Lecture Notes in Mechanical Engineering

Jurgen Gausemeier
Franz Josef Rammig
Wilhelm Schafer Editors

Design Methodology
for Intelligent
Technical Systems

Develop Intelligent Technical Systems of the Future

@ Springer

Lecture Notes in Mechanical Engineering

For further volumes:

http://www.springer.com/series/11236

About this Series

Lecture Notes in Mechanical Engineering (LNME) publishes the latest develop-
ments in Mechanical Engineering - quickly, informally and with high quality. Orig-
inal research reported in proceedings and post-proceedings represents the core
of LNME. Also considered for publication are monographs, contributed volumes
and lecture notes of exceptionally high quality and interest. Volumes published in
LNME embrace all aspects, subfields and new challenges of mechanical engineer-

ing. Topics in the series include:

Engineering Design

Machinery and Machine Elements

Mechanical Structures and Stress Analysis
Automotive Engineering

Engine Technology

Aerospace Technology and Astronautics
Nanotechnology and Microengineering

Control, Robotics, Mechatronics

MEMS

Theoretical and Applied Mechanics

Dynamical Systems, Control

Fluid Mechanics

Engineering Thermodynamics, Heat and Mass Transfer
Manufacturing

Precision Engineering, Instrumentation, Measurement
Materials Engineering

Tribology and Surface Technology

Jiirgen Gausemeier - Franz Josef Rammig
Wilhelm Schifer
Editors

Design Methodology
for Intelligent
Technical Systems

Develop Intelligent Technical
Systems of the Future

@ Springer

Editors

Jirgen Gausemeier Wilhelm Schifer
Product Engineering Software Engineering
Heinz Nixdorf Institute Heinz Nixdorf Institute
University of Paderborn University of Paderborn
Paderborn Paderborn

Germany Germany

Franz Josef Rammig

Design of Distributed Embedded Systems
Heinz Nixdorf Institute

University of Paderborn

Paderborn

Germany

ISSN 2195-4356 ISSN 2195-4364 (electronic)
ISBN 978-3-642-45434-9 ISBN 978-3-642-45435-6 (eBook)

DOI 10.1007/978-3-642-45435-6
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956527

(© Springer-Verlag Berlin Heidelberg 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Collaborative Research Centre 614 "Self-Optimizing Concepts and Structures
in Mechanical Engineering", funded from 2002 to 2013 by the German Research
Foundation (DFG) has focused vanguard products for future markets that are char-
acterized by the close interaction of mechatronics with information and communi-
cation technology. The CRC 614 combines the greatest strengths of the University
of Paderborn and the Heinz Nixdorf Institute, the symbiosis of computer science,
engineering and mathematics. This is visible by the strong expertise in the field
of mechatronics in conjunction with optimization. Our focus was on mechatronic
systems with inherent partial intelligence that have cognitive functions.

Our vision has been a design methodology for such systems. The CRC 614
has been pursuing the long-term aim of opening up the active paradigm of self-
optimization for mechanical engineering and also enabling others to develop self-
optimizing systems. Facing a large span of aspects and issues, an interdisciplinary
working group was funded — the interest group self-optimization (IG SO) — to
bring together the many thoughts and basic concepts and integrate it into a design
methodology for self-optimizing systems. The present book summarizes the results
of eleven years of research. It is one of two books that were created at the end of
the CRC 614. The book “Dependability of Self-optimizing Mechatronic Systems”
focuses on tools and methods to ensure the dependability of these systems during
development and run-time.

The results of the CRC 614 represent a major milestone on the way to intelligent
technical systems. While you are reading the present book, we are in the midst of
the development of concepts and methods in follow-on projects for example for the
industry 4.0. Please contact us, if you have any questions or contributions to discuss.
Furthermore we would like to invite you to our virtual exhibition and to explore our
CRC 614 interactively (www.sfb614 .de/en).

Your CRC-Team

Paderborn, Prof. Dr.-Ing. Jiirgen Gausemeier
October 2013 Speaker of the Collaborative Research Centre 614

www.sfb614.de/en

Acknowledgements

This book was written within the context of the Collaborative Research Center 614
"Self-Optimizing Concepts and Structures in Mechanical Engineering", which has
been funded by the Deutsche Forschungsgemeinschaft (DFG).

It is testimony for the exemplary interdisciplinary collaboration and the team
spirit. In the name of all members of the CRC 614 we want to thank the members
of the interest group self-optimization (IG SO) and the authors as well as the many
not mentioned discussion partner, without whom the book would not have been.
Special thanks to Mrs. Dipl.-Wirt.-Ing. Mareen VaBholz, who was coordinating the
development of the book, to the coordinator of the IG SO Mr. Dipl.-Inform. Oliver
Sudmann as well as to Dr. Thomas Ditzinger and his team from Springer-Verlag.

Contents

1 The Paradigm of Self-optimization 1
1.1 From Mechatronics to Intelligent Technical Systems 2
1.2 Introduction to Self-optimization 5
1.3 Architecture of Self-optimizing Systems 8

1.3.1 Structure of Self-optimizing Mechatronic Systems 8
1.3.2 Operator-Controller-Module 10
1.4 Self-optimization in Intelligent Technical Systems............. 12
1.4.1 Model-Based Self-optimization..................... 12
1.42 Behavior-Oriented Self-optimization 16
1.4.3 Self-optimization by Reconfiguration................ 19
1.5 Structure of ThisBook o i i, 22
Referenceso 23
2 Examples of Self-optimizing Systems 27
2.1 Rail Technology—RailCab 27
2.1.1 Self-optimizing Operating Point Control 29
2.1.2 intelligent Drive Module iDM)..................... 33
2.1.3 Active Guidance Module 36
2.1.4 Active Suspension Module......................... 38
2.1.5 Hybrid Energy Storage System (HES) 42
2.1.6 Crosslinked Test Benches.......................... 46
217 ConvoyModecoiiiiiiii 49
2.2 Miniature Robot BeBot 50
221 BasicVehicle i 50
222 ExtensionModules L. 51
2.2.3 Operating Systemcoouuniineiinnennnnn. 53
2.2.4 Implementing Self-X Properties 54
2.3 X-by-Wire Test Vehicle 56
2.3.1 Vehicle Dynamics 57

2.3.2 Self-optimizing Integrated Vehicle-Dynamics Control .. 58
References ... 61

Development of Self-optimizing Systems
3.1 Design Methodology for Self-optimizing Systems
3.2 Domain-Spanning Conceptual Design
3.3 Domain-Specific Design and Development
3.3.1 Mechanical Engineering
3.3.2 Control Engineering
3.3.3 Software Development
3.3.4 Electrical and Electronic Engineering.............
3.3.5 (Sub)system Integration
3.3.6 Interaction of the Domains in the Design and
Development
3.4 Self-optimizing Development Process
34.1 Framework of a Self-optimizing Development
Process ...
3.4.2 Systematic Planning of Synchronizations..........
Referenceso

Methods for the Domain-Spanning Conceptual Design
4.1 Specification Technique CONSENS for the Description of
Self-optimizing Systemsoeiiiiiia..
4.2 Software Support for the Specification of the Principle
SOIUtION . ..o
4.3 Consistency Analysis of Application Scenarios
4.4 Design of the System of Objectives
4.5 Design Framework for the Integration of Cognitive Functions
Based on Solution Patterns
4.5.1 Systems Analysiscoiiiiiiiiiiiin.,
4.5.2 Functional Description
4.5.3 Solution Selection
4.5.4 Systems Specification
4.6 Product Structuring for Self-optimizing Systems
4.7 Early Probabilistic Reliability Analysis Based on the Principle

SOIUtION ..ot e
4.8 Evaluation of the Economic Efficiency
Referencesot e

Methods for the Design and Development
5.1 Automatic Model Transformation and Synchronization..
5.1.1 Example Scenario

5.1.2 Deriving Initial Domain-Specific Models from the
SystemModel

5.1.3 Synchronizing Models during the Domain-Specific
RefinementPhase
5.2 Software Design i
5.2.1 ComponentModel.............................

Contents

Contents

5.2.2 Decompose Communication Requirements
5.2.3 Real-Time Coordination Patterns
524 Discrete Behavior oo ool
5.2.5 Simulation of Hybrid Behavior
5.2.6 Specification of Deployment
5.2.7 Integration of Self-healing Behavior.................
5.2.8 Code Generationccouuuueeeeunnnn...

5.3 System Optimizationc.coeeinieerneeenneennnenn.

5.3.1 Set-Oriented Multiobjective Optimization
5.3.2 Hierarchical Multiobjective Optimization
5.3.3 Hierarchical Modeling of Mechatronic Systems
5.3.4 Parametric Multiobjective Optimization..............
5.3.5 Computation of Robust Pareto Points
5.3.6 Optimal Control of Mechanical and Mechatronic
SYStEIMS oottt
5.3.7 Motion Planning with Motion Primitives
5.3.8 Hierarchical Hybrid Planning
5.3.9 Statistical Planning
5.3.10 Behavior Planning in Nondeterministic Environment . . .
5.3.11 FIPA Conform Cross-Domain Communication
5.3.12 Preparing Solution Pattern "Hybrid Planning"

5.4 Dynamic Reconfiguration,

5.4.1 Fine-Grained Reconfigurable Architectures
5.4.2 Coarse-Grained Reconfigurable Architectures.........
543 Modelling.......cooviiniin
5.4.4 Design Methods for Dynamic Reconfigurable

SYSEIMS o\t eeea
5.4.5 Platforms and Applications

5.5 System Software i

5.5.1 Architecture for Self-optimizing Operating Systems. . . .
5.5.2 Self-optimized Flexible Resource Management
5.5.3 Self-optimization in the Operating System............
5.5.4 Hierarchical Flexible Resource Manager

5.6 Virtual Prototypingottt

5.6.1 Virtual Prototypes and Virtual Environments..........
5.6.2 Automatic Model Linking
5.6.3 Visualization Agentsc.ccoiiiiiinnn....
5.6.4 Virtnal TestBench................................

References

XI

199
200
210
220
221
221
222
222
224
229
232
236
237

239
244
246
250
253
257
261
265
265
267
267

List of Contributors

Harald Anacker

Fraunhofer Institute for Production Technology IPT, Project Group Mechatronic
Systems Design, Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: harald.anacker@ipt.fraunhofer.de

Prof. Dr.-Ing. Joachim Bocker

Power Electronics and Electrical Drives, University of Paderborn, Warburger
Strale 100, 33098 Paderborn, Germany

e-mail: boecker@lea.upb.de

Christian Brenner

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: cbr@uni-paderborn.de

Prof. Dr.-Ing. habil. Wilhelm Dangelmaier

Heinz Nixdorf Institute, University of Paderborn, Business Computing, especially
CIM, Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: wilhelm.dangelmaier@hni.uni-paderborn.de

Prof. Dr. Michael Dellnitz

Chair of Applied Mathematics, University of Paderborn, Warburger Strafle 100,
33098 Paderborn, Germany

e-mail: dellnitz@uni-paderborn.de

Rafal Dorociak

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: rafal .dorociak@hni.uni-paderborn.de

Dr.-Ing. Roman Dumitrescu

Fraunhofer Institute for Production Technology IPT, Project Group Mechatronic
Systems Design, Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: roman.dumitrescu@ipt.fraunhofer.de

harald.anacker@ipt.fraunhofer.de
boecker@lea.upb.de
cbr@uni-paderborn.de
wilhelm.dangelmaier@hni.uni-paderborn.de
dellnitz@uni-paderborn.de
rafal.dorociak@hni.uni-paderborn.de
roman.dumitrescu@ipt.fraunhofer.de

X1V List of Contributors

Kathrin FlaBkamp

Computational Dynamics and Optimal Control, University of Paderborn, Warburger
StraBe 100, 33098 Paderborn, Germany

e-mail: kathrinf@math.uni-paderborn.de

Tobias Gaukstern

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: tobias.gaukstern@uni-paderborn.de

Prof. Dr.-Ing. Juergen Gausemeier

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: juergen.gausemeier@hni.uni-paderborn.de

Stefan Groesbrink

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: stefan.groesbrink@hni.uni-paderborn.de

Philip Hartmann

Heinz Nixdorf Institute, University of Paderborn, Business Computing, especially
CIM, Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: philip.hartmann@hni.uni-paderborn.de

Christian Holscher

Design and Drive Technology, University of Paderborn, Pohlweg 47-49, 33098
Paderborn, Germany

e-mail: ¢ . hoelscher@uni-paderborn.de

Christian Heinzemann

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: ¢ . heinzemann@uni-paderborn.de

Christian Horenkamp

Chair of Applied Mathematics, University of Paderborn, Warburger Strafle 100,
33098 Paderborn, Germany

e-mail: christian.horenkamp@math.upb.de

Peter Iwanek

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: peter.iwanek@hni.uni-paderborn.de

Alexander Jungmann

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: alexander . jungmann@c-1lab.de

kathrinf@math.uni-paderborn.de
tobias.gaukstern@uni-paderborn.de
juergen.gausemeier@hni.uni-paderborn.de
stefan.groesbrink@hni.uni-paderborn.de
philip.hartmann@hni.uni-paderborn.de
c.hoelscher@uni-paderborn.de
c.heinzemann@uni-paderborn.de
christian.horenkamp@math.upb.de
peter.iwanek@hni.uni-paderborn.de
alexander.jungmann@c-lab.de

List of Contributors XV

Jan Henning KeBler

Heinz Nixdorf Institute, University of Paderborn, Control Engineering and
Mechatronics, Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: jan.henning.kessler@hni.uni-paderborn.de

Sebastian Korf

Heinz Nixdorf Institute, University of Paderborn, System and Circuit Technology,
Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: korf@hni .uni-paderborn.de

Dr. Lisa Kleinjohann

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: l1isa@c-lab.de

Dr. Bernd Kleinjohann

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: bernd@c-lab.de

Martin Kriiger

Heinz Nixdorf Institute, University of Paderborn, Control Engineering and
Mechatronics, Fuerstenallee 11, D-33102 Paderborn, Germany

e-mail: kruemar@uni-paderborn.de

Dr.-Ing. Mario Porrmann

Cornitronics and Sensor Systems, Center of Excellence Cognitive Interaction
Technology, Bielefeld University,Universititsstrae 21-23, 33615 Bielefeld,
Germany

e-mail: mporrmann@cit-ec.uni-bielefeld.de

Jun.-Prof. Dr. Sina Ober-Blobaum

Computational Dynamics and Optimal Control, University of Paderborn, Warburger
Strale 100, 33098 Paderborn, Germany

e-mail: sinaob@math.uni-paderborn.de

Dr. Simon Oberthuer

Design of Distributed Embedded Systems, Heinz Nixdorf Institute, University of
Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: oberthuer@uni-paderborn.de

Claudia Priesterjahn

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: ¢ .priesterjahn@uni-paderborn.de

Prof. Dr. Franz-Josef Rammig

Heinz Nixdorf Institute, University Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: franz@uni-paderborn.de

jan.henning.kessler@hni.uni-paderborn.de
korf@hni.uni-paderborn.de
lisa@c-lab.de
bernd@c-lab.de
kruemar@uni-paderborn.de
mporrmann@cit-ec.uni-bielefeld.de
sinaob@math.uni-paderborn.de
oberthuer@uni-paderborn.de
c.priesterjahn@uni-paderborn.de
franz@uni-paderborn.de

XVI List of Contributors

Christoph Rasche

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: crasche@c-lab.de

Peter Reinold

Heinz Nixdorf Institute, University of Paderborn, Control Engineering and
Mechatronics, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: peter.reinold@hni.upb.de

Jan Rieke

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: jan.rieke@uni-paderborn.de

Maik Ringkamp

Applied Mathematics, University of Paderborn, Warburger Strafie 100, 33098
Paderborn, Germany

e-mail: ringkamp@math.upb.de

Dr.-Ing. Christoph Romaus

Power Electronics and Electrical Drives, University of Paderborn, Warburger
StraBe 100, 33098 Paderborn, Germany

e-mail: romaus@lea.upb.de

Prof. Dr. Wilhelm Schifer

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: wilhelm@uni-paderborn.de

Thomas Schierbaum

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: thomas .schierbaum@hni .uni-paderborn.de

Christoph Schulte

Power Electronics and Electrical Drives, University of Paderborn, Warburger
StraBe 100, 33098 Paderborn, Germany

e-mail: schulte@lea.upb.de

Christoph Sondermann-Woelke

Mechatronics and Dynamics, University of Paderborn, Pohlweg 47-49, 33098
Paderborn, Germany

e-mail: christoph.sondermann-woelke@uni-paderborn.de

Katharina Stahl

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: katharina.stahl@uni-paderborn.de

crasche@c-lab.de
peter.reinold@hni.upb.de
jan.rieke@uni-paderborn.de
ringkamp@math.upb.de
romaus@lea.upb.de
wilhelm@uni-paderborn.de
thomas.schierbaum@hni.uni-paderborn.de
schulte@lea.upb.de
christoph.sondermann-woelke@uni-paderborn.de
katharina.stahl@uni-paderborn.de

List of Contributors XVII

Dominik Steenken

Specification and Modelling of Software Systems, University of Paderborn,
Warburger Strafle 100, 33098 Paderborn, Germany

e-mail: dominik@uni-paderborn.de

Karl Stephan Stille

Power Electronics and Electrical Drives, University of Paderborn, Warburger
StraBe 100, 33098 Paderborn, Germany

e-mail: stille@lea.upb.de

Dr. Jorg Socklein

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: Joerg.Stoecklein@hni .uni-paderborn.de

Oliver Sudmann

Heinz Nixdorf Institute, University of Paderborn, Software Engineering Group,
Zukunftsmeile 1, 33102 Paderborn, Germany

e-mail: oliversu@uni-paderborn.de

Robert Timmermann

Applied Mathematics, University of Paderborn, Warburger Strafie 100, 33098
Paderborn, Germany

e-mail: robert . timmermann@math.upb.de

Prof. Dr.-Ing. habil. Ansgar Tréchtler

Heinz Nixdorf Institute, University of Paderborn, Control Engineering and
Mechatronics, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: ansgar . traechtler@hni.upb.de

Mareen Vaf3holz

Heinz Nixdorf Institute, University of Paderborn, Product Engineering,
Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: mareen.vassholz@hni.uni-paderborn.de

Prof. Dr. Heike Wehrheim

Specification and Modelling of Software Systems, University of Paderborn,
Warburger Strafle 100, 33098 Paderborn, Germany

e-mail: wehrheim@uni-paderborn.de

Dr. Katrin Witting

Applied Mathematics, University of Paderborn, Warburger Strafie 100, 33098
Paderborn, Germany

e-mail: witting@math.upb.de

dominik@uni-paderborn.de
stille@lea.upb.de
Joerg.Stoecklein@hni.uni-paderborn.de
oliversu@uni-paderborn.de
robert.timmermann@math.upb.de
ansgar.traechtler@hni.upb.de
mareen.vassholz@hni.uni-paderborn.de
wehrheim@uni-paderborn.de
witting@math.upb.de

XVIII List of Contributors

Yuhong Zhao

Heinz Nixdorf Institute, University of Paderborn, Design of Distributed Embedded
Systems, Fuerstenallee 11, 33102 Paderborn, Germany

e-mail: zhao@uni-paderborn.de

Steffen Ziegert

Specification and Modelling of Software Systems, University of Paderborn,
Warburger Strafle 100, 33098 Paderborn, Germany

e-mail: steffen.ziegert@uni-paderborn.de

Prof. Dr.-Ing. Detmar Zimmer

Design and Drive Technology, University of Paderborn, Pohlweg 47-49, 33098
Paderborn, Germany

e-mail: Detmar . Zimmer@uni-paderborn.de

zhao@uni-paderborn.de
steffen.ziegert@uni-paderborn.de
Detmar.Zimmer@uni-paderborn.de

Chapter 1
The Paradigm of Self-optimization

Michael Dellnitz, Roman Dumitrescu, Kathrin FlaBkamp, Jiirgen Gausemeier,
Philip Hartmann, Peter Iwanek, Sebastian Korf, Martin Kriiger, Sina Ober-Blobaum,
Mario Porrmann, Claudia Priesterjahn, Katharina Stahl, Ansgar Trichtler,

and Mareen VafBholz

Abstract. Machines are ubiquitous. They produce, they transport. Machines
facilitate and assist with work. The increasing fusion of mechanical engineering
with information technology has brought about considerable benefits. This situa-
tion is expressed by the term mechatronics, which means the close interaction of
mechanics, electrics/electronics, control engineering and software engineering to
improve the behavior of a technical system. The integration of cognitive functions
into mechatronic systems enables systems to have inherent partial intelligence. The
behavior of these future systems is formed by the communication and cooperation
of the intelligent system elements. From an information processing point of view,
we consider these distributed systems to be multi-agent-systems. These capabilities
open up fascinating prospects regarding the design of future technical systems. The
term self-optimization characterizes this perspective: the endogenous adaptation of
the system’s objectives due to changing operational conditions. This resuls in an au-
tonomous adjustment of system parameters or system structure and consequently of
the system’s behavior. In this chapter self-optimizing systems are described in detail.
The long term aim of the Collaborative Research Centre 614 "Self-Optimizing Con-
cepts and Structures in Mechanical Engineering" is to open up the active paradigm
of self-optimization for mechanical engineering and to enable others to develop
these systems. For this, developers have to face a number of challenges, e.g. the
multidisciplinarity and the complexity of the system. This book povides a design
methodology that helps to master these challenges and to enable third parties to
develop self-optimizing systems by themselves.

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 1
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 1, (© Springer-Verlag Berlin Heidelberg 2014

2 R. Dumitrescu et al.

1.1 From Mechatronics to Intelligent Technical Systems

Roman Dumitrescu, Jiirgen Gausemeier, Peter Iwanek, and Mareen Vallholz

Machines are ubiquitous, from white goods to medical devices and transportation
systems. Their purpose is to make life easier. The increasing integration of in-
formation and communication technology in the field of conventional mechanical
engineering implies considerable potential for innovation. Most modern products
created in the field of mechanical engineering and related areas such as automo-
bile technology, already rely on the close symbiotic interaction between mechanics,
electrics/electronics, control engineering and software technology, which is aptly
expressed by the term mechatronics [29] . Mechatronics — a portmanteau of the
words mechanics and electronics [10] — represents the potential for the development
of fundamentally new solutions in the area of mechanical engineering and related
disciplines, which in turn can significantly improve the cost-benefit ratio of familiar
products and also stimulate the innovation of new products. In the following, the
way from Mechatronic Systems across Adaptive Systems towards Intelligent Tech-
nical Systems will be outlined.

Mechatronic Systems

The aim of mechatronics is to improve the behavior of a technical system by using
sensors and information from humans or other systems to obtain information on the
environment and also on the system. Thus, they can respond to changes in their envi-
ronment, detect critical operating states and control processes which are difficult to
control in real-time by humans [2, 22, 34]. Mechatronic systems are distinguished
by the functional and/or spatial integration of sensors, actuators, information pro-
cessing and a basic system. The basic structure of a mechatronic system is shown
in Fig. 1.1. In general, mechatronic systems can also be composed of subsystems
which themselves are mechatronic systems (cf. Sect. 1.3) [2].

The basic system is commonly a mechanical structure. Generally any desired
physical system is conceivable as a basic system, so that it is even possible to
hierarchically represent mechatronic systems structurally (cf. Sect. 1.3) [2]. The
relevant physical (continuous) values of the basic system or its environment are
measured using sensors. Sensors in this case can be physically present measured-
value pickups or straightforward software sensors [2] (so-called "observers", see for
example [34]). The sensors supply the input variables for information processing,
which in most cases takes place digitally, i.e. discretely in terms of value and time.
The information processing unit determines the necessary changes to the basic sys-
tem using the measurement data as well as the user specifications (human-machine
interface) and also available information from other processing units (communi-
cation system). The information processing unit is often realized as an electronic
microprocessor, which realize open-loop and closed-loop control functions. The be-
havior adaptation of the basic system will be caused by actuators. In general, an

1 The Paradigm of Self-optimization 3

Digital Values primarily information flow
communication human-machine
information i<geeeeeees S yStem »| information <mterface >§human'
Processing gro processing lesennnnsananns [
Y ;
power > actuators Sensors environment
suppy

: > basic system

Analog Values primarily energy and material flow

----- » information flow
— energy flow
= material flow

Fig. 1.1 Basic structure of a mechatronic system [2]

actuator converts energy into motion, for example by using a motor or a hydraulic
cylinder.

The relationships between the basic system, sensors, information processing and
actuators are represented as flows (cf. Fig. 1.1). For example there is a flow from
the sensors (e.g. informations of the environment) to the information processing
unit of the system. In principle, three types of flows can be distinguished: informa-
tion flows, energy flows and material flows [44], whereby the information flows are
frequently also referred to as signal flows.

e Material flows: Examples for materials which flow between units of mecha-
tronic systems are for example gases, fluids, solids, dust and also raw products,
objects being tested or objects being treated.

e Energy flows: Energy is understood to be any form of energy, such as for exam-
ple mechanical, thermal, electrical, optical energy, or force and electric current.

e Information flows: Information exchanged between units of mechatronic sys-
tems or components are, for example measured variables, control pulses, or data.

To serve customer needs and to create cost and energy efficient systems, mecha-
tronic systems have to fulfill increasingly advanced functions and requirements.
These requirements can vary or conflict depending on the situation. An example
is the consideration of execution speed and resource use: if the application situation
requires the fastest possible execution of a task (e.g. an important rush order), the
requirement resource efficiency is considered to be less important. In the develop-
ment of conventional mechatronic systems, the developer has to decide on a com-
promise between two competing requirements. Thus, the controller of the system is

4 R. Dumitrescu et al.

designed for acceptable behavior under specific circumstances. A first step to solve
this challenge is to use adaptive control strategies [3, 8].

Adaptive Systems

Adaptive systems use adaptive control strategies, that make it possible to adjust the
controller of the system in real time by using adaptation algorithms. These algo-
rithms help to achieve a desired level of control system performance for situations in
which the parameters of the basic system are a priori unknown and/or change in time
[39]. Therefore adaptive systems form a necessary step towards intelligent technical
systems. Adaptive controllers enable higher levels of adaptability, but still remain a
compromise for anticipated situations [3]. The improvement of communication and
information technology opens up more and more fascinating perspectives, which go
far beyond current standards of mechatronics: mechatronic systems having inherent
partial intelligence.

Intelligent Technical Systems

Future mechanical engineering systems will comprise of configurations of system
elements with inherent partial intelligence. These system elements are able to re-
alize functions such as "to share knowledge", "to coordinate behavior" or "to learn
from experience". Those functions are also typical for cognitive systems and are
known as cognitive functions [16]. Systems having these cognitive functions, are
also called intelligent technical systems. There are four central properties, which

describe intelligent technical systems [14, 15]:

e Adaptive: Adaptive systems react autonomously and flexibly on changing oper-
ation conditions. They are able to learn and optimize their behavior at runtime.

e Robust: These systems are able to behave "acceptable”, even in situations which
have not been considered during the development phase of the system. Uncer-
tainties can be compensated to certain extends.

e Foresighted: Based on gained experience, these systems have the ability to rec-
ognize emerging states and situations. Thus they are able, to spot possible dan-
gers and accordingly change their behavior.

e User-friendly: The systems are able to adapt their behavior to the specific user.
They interact closely with the user and their behavior is always comprehensible.

Keywords as "Things that Think", "Cyber-Physical Systems", "Industry 4.0" or
"Self-optimization" express this perspective on intelligent technical systems. These
systems exceed the functionality of mechatronic systems and set new requirements
on design methodologies. Therefore the gap between system complexity and per-
formance of the design methodology is increasing (see Fig. 1.2). To realize intel-
ligent technical systems, such as self-optimizing systems, not only the domains
mechanical, software, control and electrical/electronic engineering have to be con-
sidered, but also experts from higher mathematics and artificial intelligence have to

1 The Paradigm of Self-optimization 5

Product Complexity

Performance discipline-specific development methods

Mechanics i Self-optimizing
. Systems

Fig. 1.2 Complexity of self-optimizing systems versus performance of design methodologies

be involved in the development process. This book provides a design methodology
for self-optimizing systems consisting of a reference process, methods and tools
that master the shortcomings of existing design methodologies. This methodology
closes the gap between system complexity and performance of the design method-
ology, to enable developers who are not specifically trained in higher mathematics
and artificial intelligence to develop self-optimizing systems.

1.2 Introduction to Self-optimization

Roman Dumitrescu, Jiirgen Gausemeier, and Peter Iwanek

The Collaborative Research Center (CRC) ’Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering’ defines self-optimization as follows:

"Self-optimization describes the ability of a technical system to endogenously
adapt its objective regarding changing influences and thus adapt the system’s be-
havior in accordance to the objectives. The behavior adaptation may be performed
by changing the parameters or the structure of the system. Thus self-optimization
goes considerably beyond the familiar rule-based and adaptive control strategies;
Self-optimization facilitates systems with inherent "intelligence" that are able to take
action and react autonomously and flexibly to changing operating conditions." [3]

Figure 1.3 shows the key aspects and the mode of operation of a self-optimizing
system. Factors that influence the technical system originate in its surroundings
(environment, users, etc.) or from the system itself. They can support the system’s

6 R. Dumitrescu, J. Gausemeier, and P. Iwanek

Fig. 1.3 Aspects of self- Influences on the Technical System
optimizing systems [21, 25] Environment User System
e.g. Changes of e.g. Changed e.g. Wear and
the Track-Profile User Behavior Tear
RailCabs | 9
System of Objectives
(Internal Objectives)
- A- . Mathematical
. R(t)= A-x(t)+B-u(t)
Behavior ;- o | Description of
Behavior
A A
Structure Parameters
X

2100 ..0 1
P | R
000 .| 1

C=c'=[ctce c] D=0

Specialized Representation STpeciaIized Representation
of the System Structure of System Parameters

Technical System (e.g. RailCab)

objectives or hinder them. Influences from the environment, for example such as
strong winds or icy conditions, are unstructured and often unpredictable. If they hin-
der the system fulfilling its pursued objectives they are called disturbance variables.
The user can influence the system, for instance by choosing preferred objectives.
It is also possible that the system itself or other technical systems will influence
the system’s objectives, for example if mechanical components are damaged, the
objective "max. safety" has to be prioritized [20].

The self-optimizing system determines its current pursued objectives (System of
Objectives) on the basis of the encountered influences on the system for example
the environment, the user or the system itself. New objectives can be added, existing
objectives can either be rejected or the priority of objectives can be modified during
system operations. Therefore, the system of objectives and its autonomous change
is the core of self-optimization [3, 15]. Objectives can be distinguished between ex-
ternal and inherent objectives. External objectives are set from the outside of the
self-optimizing system, by other systems or by the user (e.g. for a driving mod-
ule this could be "max. comfort"). Inherent objectives reflect the design purpose of
the self-optimizing system. An inherent objective of a driving module can be for
example "max. energy efficiency". Objectives build a hierarchy and each objective
can thus be refined by sub-objectives (e.g. "min. energy consumption" is a possible
sub-objective of "max. energy efficiency"). Inherent and external objectives that are
pursued by the system at a given moment during its operation are called internal
objectives [13].

Adapting the objectives, leads to a continuous adjustment of the system behavior
to the occuring situation. This is achieved by adapting parameters or reconfiguring
the structure (e.g. adapting control strategies) [15]. The self-optimization process
consists of the following three actions [23]:

1 The Paradigm of Self-optimization 7

Fig. 1.4 Behavioral adap-

| Behavior Adaption
tation in a self-optimizing
system by structure and/or
parameter adaptation [3] | Paramater Adaption | | Structure Adaption |
| Compositional Adaption | | Reconfiguration |

1. Analyzing the current situation: The current situation includes the current state
of the system as well as all observations of the environment that have been car-
ried out. Observations can also be made indirectly by communication with other
systems. Furthermore, a system’s state contains previous observations that were
saved. One basic aspect of this first step is the analysis of the fulfillment of the
objectives [3].

2. Determining the system’s objectives: The system’s objectives can be extracted
by choice, adjustment, and generation. By choice means the selection of one
alternative output of a predetermined quantity of possible objectives; the adjust-
ment of objectives means the gradual modification of existing objectives respec-
tive to their relative weighting. Generation means, if new objectives are being
created that are independent from the existing ones [3].

3. Adapting the system behavior: The changed system of objectives demands an
adaptation of the behavior of the system and its components. As mentioned be-
fore, this can be realized by adapting the parameters and, if required, by adapting
the structure of the system. The different types of behavior adaptation strate-
gies are shown in Fig. 1.4. Parameter adaptation means for example changing
a control parameter. Structure adaptations affect the arrangement of the system
elements and their relationships. Here we distinguish between reconfiguration,
which changes the relationships between a fixed set of available elements, and
compositional adaptation, in which new elements are integrated into the existing
structure or existing elements are removed from it [20]. The self-optimization
process leads, according to changing influences, to a new system state. Thus a
state transition takes place [3]. The behavior adaptation finally concludes the
self-optimization process.

The self-optimization process takes place if the three actions are performed re-
peatedly by the system. The three actions do not need to be performed in a spec-
ified sequence. For example, within the scope of planning, different situations are
considered and according to the situations, the objectives are adapted. This results
in repeated situation analysis, based on the determination of objectives. Thus, the
self-optimization process is executed, if the situation of the system is changed or a
planning for possible system scenarios is performed [3].

Thus, self-optimization can be considered as an extension of classical and ad-
vanced control engineering [8]. In order to provide an optimal conformity to the

8 M. Kriiger and A. Trichtler

environment of the system at any time, self-optimizing systems utilize implemented
adaptation strategies, instead.

To control self-optimizing systems, a consistent structuring of the information
processing is needed. We distinguish between the macro structure of the mecha-
tronic system and the structure of the information processing, represented by the
Operator-Controller-Module. These structures will be explained in detail in the fol-
lowing section.

1.3 Architecture of Self-optimizing Systems
Martin Kriiger and Ansgar Trichtler

Two types of structuring are presented. First, a description is given on how the entire
system can be divided into subsystems or modules according to their function within
the system. Such a decoupling naturally leads to a hierarchical ordering of the mod-
ules, with simpler modules on the lowest level and the entire system on the topmost
level [40]. Second, the Operator-Controller-Module (OCM), a multi-level architec-
ture, is introduced [32]. It includes all of the types of information processing which
are necessary to realize an intelligent system: classical quasi-continuous controllers,
discrete or event-based methods like error analysis and monitoring concepts as well
as methods for cognitive capabilities, e.g. learning or optimization algorithms, to
name but a few. Both structuring types complement one another and can be used in
combination.

1.3.1 Structure of Self-optimizing Mechatronic Systems

One main step in the design of self-optimizing systems is to develop a hierarchy
of functions based on the system requirements, see 4.1 for more details. A self-
optimizing system can be divided into subsystems using this hierarchy of functions.
The first step is to create a hierarchy of motion functions which describe the con-
trolled motion of bodies, c.f. [3, 31]. Each motion function of the hierarchy can be
realized by one of the three structuring elements:

Mechatronic Function Module (MFM): The MFMs are the basic elements of
the entire mechatronic system. Each MFM includes sensors, actuators, information
processors and the basic mechanical system. The motion of the mechanical system
is measured using sensors and can be controlled by means of actuators. The control
input is computed by the information processing. The actuators of a MFM can again
be given by another MFM.

Autonomous Mechatronic System (AMS): The AMS is on the top level of an ac-
tual mechatronic system. It is associated with the complete mechanical structure of
the physical element and thus forms the top level of the mechanical structure. Be-
sides the associated mechanical structure, the AMS includes sensors and informa-
tion processing elements. There is no need for actuators in an AMS. The actuating
elements are given by the underlying MFMs and are coordinated by the AMS.

1 The Paradigm of Self-optimization 9

Networked Mechatronic System (NMS): NMS elements make up the top level
of the hierarchy. A NMS is comprised of information processing and sensors. How-
ever, the CNS is made up of several AMS, which are linked by signals alone. The
NMSs do not necessarily have their own physical representation in terms of a data-
processing hardware. The function of the NMS might be implemented in the AMS,
so that the NMS is generated whenever several AMS are interconnected.

Figure 1.5 exemplarily shows the hierarchical structure of the RailCab System
which is described in detail in Sect. 2.1. On the topmost level a convoy consisting of
a couple of RailCabs is represented by a NMS. Each RailCab itself is described by
an AMS and includes several MFMs, e.g. the active suspension system. The infor-
mation processing units of the structuring elements can be seen as agents. An agent
in this context is an information processing unit which is used to fulfill a particu-
lar functionality pursuing the corresponding objectives. It analyzes its environment
conditions and has the ability to adjust its own behavior autonomously according to
the current situation and to the requirements of the remaining agents. In this way hi-
erarchically structured self-optimizing systems can be seen as multi-agent systems.

Information processing of each structuring element can itself be a complex unit
consisting of several software components. Hence, it also has to be structured in

Agent
Information
Processing (control)

Information

o Processing (control)
ra/lcab

Information
Processing (control)
: Multi-agent
_____ Communication
—— » : Information Flow (I)

Spring-/Tilt Module

- || - » : Energy Flow (E)
MT, out
MFM: Mechatronic Function Module

: Material Flow (M)

Fig. 1.5 Structure of intelligent mechatronic systems [3]

10 M. Kriiger and A. Trichtler

order to ensure a systematic design and a dependable functionality. The Operator-
Controller-Module described in the following section can be used to structure the
information processing of self-optimizing systems.

1.3.2 Operator-Controller-Module

The information processing unit of a self-optimizing system has to perform a multi-
tude of functions: quasi-continuous control of the plant motion, monitoring in view
of occurring malfunctions, adaptation of the control strategy to react to changing en-
vironmental conditions, communication with other systems to name a few of these
functions.

In order to ensure a clear and manageable information processing, an architec-
ture is needed which contains all these functions. Additionally, the hierarchical
structuring concept described in the last section has to be taken into account. The
Operator-Controller-Module (OCM) is an architecture with three levels that has
been proven to be an advantageous and effective structure for self-optimizing sys-
tems (see Fig. 1.6). It is based on results of cognition science, see [48], and was
first published in [32]. It is used for the information processing on each level of a
complex mechatronic system. The result is a hierarchy of OCMs that is also bene-
ficial for modeling and optimization as described in detail in Sec. 5.3.3. The three
different levels of an OCM are geared to the kind of effect on the technical system.

Controller: The controller, which is on the lowest level, realizes the desired dy-
namical behavior of the plant. It is similar to a classical control loop. Measurements
are used to compute control signals which directly affect the plant. Hence, it can
be called a “Motor Loop”. The controller operates in a quasi-continuous way under
hard real-time constraints. Several types of controllers can be implemented at the
same time with the possibility to switch between them. Different switching strate-
gies can be used, e.g. a flatness-based approach presented in [42].

Reflective Operator: The reflective operator monitors and regulates the controller.
It consists of sequential control, emergency routines as well as adaptation algorithms
for the control strategies. The reflective operator does not access the actuators of the
system directly, but modifies the controller by initiating changes of controller pa-
rameters or switching between different controllers. The reflective operator works
mostly in an event-oriented manner. It also has to operate under hard real-time con-
straints, because it is tightly linked to the controller. However, it is also the connect-
ing element to the cognitive level of the OCM and provides an interface between
those elements that are not capable to operate in real-time and the controller. It fil-
ters incoming signals and results from the cognitive level and inputs them to the
subordinated level.

Cognitive Operator: The topmost level of the OCM is represented by the cog-
nitive operator. On this level the system can gather information on itself and its
environment by applying various methods such as learning, use of knowledge-
based systems, or model-based optimization. The results can be used to improve the

1 The Paradigm of Self-optimization 11

Fig. 1.6 Structure of
Operator-Controller-
Module [3]

Operator-Controller-Module (OCM)

Cognitive Operator Cogpnitive Information Processing

Planning Level

Reflective Operator Reflective Information Processing
(A)(c) config
ﬂ N Control

Controller BN Motor Information Processing

Action Level

i Canfigurations i
e ©

Motor Loop

Controlled System

system behavior. This optimizing information processing can roughly be divided
into model-based and behavior-oriented optimization, introduced in Sect. 1.4.1 and
Sect. 1.4.2, respectively. The former class of optimization techniques is based on a
model for the dynamical behavior of technical systems while the latter uses methods
from artificial intelligence and soft-computing. While both the controller and the re-
flective operator are subject to hard real-time constraints, the cognitive operator can
also operate asynchronously to real-time. Nevertheless, it has to respond within a
certain time limit. Otherwise, self-optimization would not find utilizable results in
view of changing environmental conditions. Hence, the cognitive operator is subject
to soft real-time. Consequently we are able to integrate cognitive functions into the
technical system that previously only biological systems were capable of.

12 M. Dellnitz et al.

1.4 Self-optimization in Intelligent Technical Systems
Michael Dellnitz, Kathrin FlaBkamp, Philip Hartmann, and Sina Ober-Blobaum

Self-optimizing systems adapt their behavior according to current situations and
objectives. Therefore, appropriate strategies and methods have to be implemented
into the Cognitive Operator of the Operator-Controller-Module (cf. Fig. 1.6). As
introduced in Sect. 1.2 (cf. in particular Fig. 1.4), the system’s adaptation can be
realized by parameter adaption and/or by reconfiguration. Finding parameters that
optimize a current set of objectives is an optimization or an optimal control problem.
Methods to solve these kind of problems typically rely on models of the system’s
dynamic behavior. In Sect. 1.4.1, an introduction to formal problem statements and
solution approaches is given for these model-based methods for self-optimization. In
case an explicit physical model of the system or process is not available, behavior-
oriented self-optimization is used. These approaches work on a mapping of input
values to output values (cf. Sect. 1.4.2). Strutural reconfiguration affects all levels
of a self-optimizing system, from software to hardware. This kind of adaptation is
realized by exchanging system parts, e.g. software components or areas of FPGAs
(Field Programmable Gate Arrays). We will provide a closer look on reconfiguration
in Sect. 1.4.3.

1.4.1 Model-Based Self-optimization
Michael Dellnitz, Kathrin FlaBkamp, and Sina Ober-Blobaum

The development of self-optimizing mechatronic systems requires the solution of
optimization problems from the early design phase to system operation. Model-
based design techniques, which are state of the art in particular in control engineer-
ing, allow an automatic, model-based computation of solutions that are guaranteed
to be optimal for the given problems by numerical optimization methods.
Optimization problems are classified by the type of variables, which can be dis-
crete or continuous. Discrete optimization problems typically arise in logistic or
planning problems where long term forecasts have to be computed and can be either
addressed with discrete model-based or discrete behavior-based methods. The opti-
mization of the design and the dynamical behavior of intelligent mechatronic sys-
tems gives rise to various continuous optimization problems. If time-dependent
steering maneuvers for technical systems or processes have to be optimized, we are
faced with optimal control problems. In many applications, in particular for self-
optimizing systems, there are several objectives which have to be simultaneously
optimized leading to multiobjective optimization. Regarding the process of self-
optimization, it is multiobjective optimization which enables the identification of
objectives (step 2 of the self-optimization process, cf. Sect. 1.2) during operation.

1 The Paradigm of Self-optimization 13

Fig. 1.7 Sketch of an MOP
with two objectives f] and

f>. While the points (A) and
(B) are not optimal, (C) is a

point of the Pareto set
Pareto Front

C B
Pareto Set L

1.4.1.1 Multiobjective Optimization

Multiobjective optimization (sometimes also called multicriteria optimization) takes
several conflicting objectives into account and searches for optimal compromises, so
called Pareto points. Simple examples of trade-offs between conflicting objectives
are “minimal energy consumption versus minimal time” or “maximal quality, but
minimal time and minimal (e.g. production) costs”. A number of detailed examples
of concurring objectives in technical applications are given in Sect. 2.

While ordinary optimization problems typically have a single global optimum,
the solution of multiobjective optimization problems results in an entire set of Pareto
points, the Pareto set. Formally, the multiobjective optimization problem (MOP) is
stated as

min{F(p) : p € R"}, (1.1)

with F being a vector of objectives fi,...,fi : R* = R, i.e. F: R" — R¥, F(p) =
(fi(p),--.,fi(p)). Here, p denotes the optimization parameters. These could be de-
sign parameters for the mechanical or electrical subsystem, for instance, or control
parameters of the regulators. Minimization is meant with respect to the following
partial ordering <, on R": given u,v € R", the vector u is smaller than the vector
v,u<,v,ifu; <v;foralli e {1,...,k}. The solutions of MOP can then be defined
as follows: a point p* € R” is called globally Pareto optimal for MOP (or a global
Pareto point for MOP)if there does not exist any p € R” with F(p) <, F(p*) and
fi(p) < fj(p*) for at least one j € {1,...,k}. That means, no other point p gives
a better or equal (but not entirely identical) value in all objectives. However, there
typically exists other Pareto optimal points which are, compared to p*, better in one
objective but worse in another. Figure 1.7 gives an illustration of an MOP and Pareto
optimal points. If the Pareto optimality property only holds for some neighborhood
U(p*) C R, p* is called locally Pareto optimal. The image of the Pareto set, i.e. the
corresponding function values, is called the Pareto front (cf. Fig. 1.7).

Necessary optimality conditions for Pareto optimality are given by the Karush-
Kuhn-Tucker (KKT) equations, i.e. for an optimal point x*, there exist multipliers
Bi € R with 8; > 0 and ¥X_, B; = 1 such that

14 M. Dellnitz, K. FlaBkamp, and S. Ober-Blobaum

k

> BiVfi(p*) =0. (1.2)

i=1
The MOP (cf. Eq. (1.1)) can be extended to include equality or inequality con-
straints, which have to be considered in the KKT equations involving additional
terms with additional multipliers. Iteratively solving Eq. (1.2) to determine Pareto
points p* is the basic idea of many multiobjective optimization algorithms.

For the solution of real world multiobjective optimization problems, numerical
techniques have to be applied. There exist a number of methods for the computa-
tion of single Pareto points, for an overview we refer to [17]. However, for self-
optimizing systems, it is important to gather knowledge about the entire Pareto
set for later selections of specific design configurations, the decision making
(cf. Sect. 1.4.1.3) during operation of the system. In the last decades, a num-
ber of techniques for the computation of entire Pareto sets have been developed
(cf. e.g. [9, 11, 33, 37, 46]). In the course of the research of the CRC 614, set-
oriented methods for multiobjective optimization (cf. e.g. [12] for an early reference
or [47] for an overview) have been developed. Due to the approximation of the entire
Pareto set (or the front, respectively) by box coverings, the methods are outstand-
ing in their robustness and applicability to real world MOP problems, in particular
for self-optimizing systems. These techniques are described in detail in Sect. 5.3.1
(cf. also Sect. 5.3.2, Sect. 5.3.4, and Sect. 5.3.5 for extensions to hierarchical and
parametric multiobjective optimization problems).

In the following, we give a short introduction to optimal control problems, which
often arise in control applications for technical systems. Solution methods for prob-
lems with single and multiple objectives are presented in Sect. 5.3.6.

1.4.1.2 Optimal Control

Optimal control problems arise, when the system’s dynamical behavior has to be
optimized by determining a time-dependent steering maneuver. In other words, such
an optimal maneuver has to satisfy certain constraints and has to minimize a given
cost functional like the control effort or the maneuver time. Typical examples are
the optimal control of open chain industrial robots, the finding of optimal paths for
vehicles, or the optimal control of engines. Formally, an optimal control problem
(OCP) is defined by a cost functional (1.3a), e.g. the control effort, the time duration,
or the deviation to a reference path, that has to be minimized with respect to several
constraints:

T
xé}glir}f)J(x,u):/o C(x(t),u(t))dt (1.3a)

with respect to x(t) = f(x(¢),u ()) (1.3b)
r(x(0),x(T)) (1.3¢)
h(x(7),u(z)) (1.3d)

Il
=
2

1 The Paradigm of Self-optimization 15

The dynamical system (1.3b) describes the system’s equations of motion in its state
x under the influence of some control u. Equations (1.3c) and (1.3d) are called
boundary and path constraints, respectively, and take into account technical restric-
tions on the states or controls.

There exists a number of different approaches for numerically solving single ob-
jective OCP, for a good overview we recommend [7] and the references therein.
The solution methods can be divided into indirect and direct methods. While in-
direct methods generate and then solve a boundary value problem according to the
necessary optimality conditions of the Pontryagin maximum principle', direct meth-
ods start with a discretization of the problem (1.3a)-(1.3d). Thus, one obtains a non-
linear optimization problem that can be addressed by appropriate state of the art
techniques such as sequential quadratic programming (SQP, cf. e.g. [28]).

In the case of differentially flat systems, the entire dynamics of the technical sys-
tem can be described via (artificial) outputs and therefore, only the output functions
have to be approximated by a finite number of parameters (equally spread nodes or
splines as in [26]). Otherwise, the system’s continuous states have to be discretized
(by a finite number of nodes or even by some appropriately chosen short pieces of
trajectories, so called primitives, cf. Sect. 5.3.7). A method that is especially tai-
lored to the optimal control of mechanical systems (DMOC, Discrete Mechanics
and Optimal Control, cf. [41]) is presented in Sect. 5.3.6.

If several cost functionals of the form (1.3a) have to be optimized simultaneously
(e.g. the energetic effort and the duration of a steering maneuver), we are faced with
a multiobjective optimal control problem. In Sect. 5.3.6, a method is presented
that combines a multiobjective optimization algorithm with a direct optimal control
technique to address problems of this kind.

1.4.1.3 Decision Making and Self-optimization

The computation of entire Pareto sets of multiobjective optimization or optimal con-
trol problems is computationally costly but important for the design of a knowledge
base on which the self-optimization during operation time relies. The Pareto optimal
alternatives are computed offline in advance and stored in this knowledge base. Dur-
ing operation, one specific optimal configuration of the Pareto set has to be chosen
at every time: this process is called decision making.

If only a (small) finite number of Pareto points is stored in the knowledge base,
one possibility to implement the decision making process is given by the hybrid
planning method, cf. Sect. 1.4.2 below and Sect. 5.3.8. Self-optimization based on
precomputed knowledge bases of Pareto sets can be also realized by path following
methods for parameter-dependent MOPs (cf. Sect. 5.3.4 and [49] for details) or
in a model predictive control fashion for scalarized online optimization problems
(cf. [26]).

! The Pontryagin maximum principle and a discussion of indirect optimal control methods
are e.g. given in [7].

16 P. Hartmann

1.4.2 Behavior-Oriented Self-optimization

Philip Hartmann

The term behavior-oriented optimization describes methods without an explicit
physical model of the system or process. Instead, these approaches work on map-
ping input values to output values. The actual system and the considered process are
observed as a black box and usually a discretization of the processes goes hand in
hand. The relationship between system state, behavior, and objectives are provided
by the developers of the system or learned by the system by using learning methods
and exploration strategies. Because a classification of the environmental conditions
and the system behavior are assumed when using defaults defined by experts or
learning methods, the model of the behavior-oriented self-optimization is in general
coarser than the model of the model-based self-optimization (cf. Sect. 1.4.1). Thus
it is possible to plan the system’s behavior for longer planning horizons.

Planning refers to a process that determines and examines the future behavior of
the system instead of considering only the current situation. To analyze alternative
options for execution, planning methods work on simplified models of the system
behavior. An integral part of the simplification is the mapping to a discrete state
space, so that only a snapshot of the system state at defined points in time will be
considered. In general this approach corresponds to the definition of the planning
problem in artificial intelligence, which can be used with a variety of methods. Due
to the exploration of the state space for future situations a proactive reaction to future
influences or avoidance of undesirable situations is made possible by the planning
[3].

Any task of a mechatronic system (e.g. the transportation of persons or goods
between two locations) can be expressed by a function [43]. This function describes
the relationship between input and output variables [1] of the system by converting
incoming energy, material and information flows into outgoing flows of the same
types. Subtasks (such as driving with an active suspension system) are represented
by analogous partial functions which are logically connected and make up the hi-
erarchy of the overall function. The effect of a partial function also depends on the
physical effect leading to a particular partial function solution [43]. Thus, partial
functions can be implemented using various solutions (e. g. high or low compensa-
tion of disturbances). The choice of solutions to these partial functions determines
the solution to the overall function and its effect on the mechatronic system.

Let PFj.qr be the set of all partial functions at the lowest level in the overall func-
tion hierarchy. Then, the selected solutions in the overall function at time ¢; (cf. Fig.
1.8, black circles) can be listed as a sequence of solutions to partial functions[35]:

sﬂf(t):(sﬁfw""spfk)? (1.4)

with s,z € Sy and 1 <i <k = |PFy].
The behavior of the overall system at time ¢ can be described by V(¢) =
(X:,80£(t),y:) with x; as an input vector and y; as an output vector. Consequently,

1 The Paradigm of Self-optimization 17

Fig. 1.8 Planning sequence X, Y
for the behavior of a self- Ita Eb
optimizing system !
V(t, t,) -
ti h
t, : t,
lor ()

the behavior of one time period is: V (74,1,) = (V(2,), ...,V (t)) with t, <1, (cf. Fig.
1.8).

The mechatronic system reacts to each input variable by converting it to the
output variables; it does so by executing the currently implemented overall func-
tion (linked partial functions of the functional hierarchy, reactive behavior). The
information processing takes time and there is a latency involved according to the
response to input variables. Because of that, the effect of the overall function on
the output variables is delayed. Since the system execution takes place under real-
time conditions, this has to be taken into account during the development of self-
optimizing systems.

For autonomous control [1] of the behavior, the system has to independently
select solutions to the partial functions at certain times in order to achieve the de-
sired effect (active behavior). The selection is made by considering specific objec-
tives. This is the decision problem of a self-optimizing system: selecting solutions to
partial functions which achieve these objectives with a high reliability result (goal-
directed behavior).

1.4.2.1 Deterministic Planning

Mechatronic systems are able to execute a function in different ways. From the
planning perspective, these different ways are distinguished from each other by how
well they achieve the possible objectives and how they change the system state.
We refer to these different implementations of functions as operation modes. In
a mechatronic planning domain most relevant variables are numerical, hence we
restrict the state vector to real valued numerical variables. A deterministic planning
model for behavior-oriented self-optimization can be formulated as follows [36]:

e OM afinite set of available operation modes
e S afinite set of possible system states
e sc Sastate vector with s(i) € R for the i-th component

Furthermore for each operation mode om € OM exists:

18 P. Hartmann

o prec®™ = {(Xjower < (i) < Xupper)|XiowersXupper € R} a set of preconditions
which have to be true for executing om

e post®™ a set of conditional numeric functions to define the effects on the state
variables of the subsequent state s’

A specific planning problem is finding a sequence of operation modes which de-
scribes a transition from an initial system state s; € S to a predetermined goal state
s; € S. So a single task of a mechatronic system is given as a 2-tupel O = (s;,s,). A
solution of the planning problem can be determined by applying a state space search
algorithm (cf. [27]), for example [36].

1.4.2.2 Probabilistic Planning

Because of the uncertainty of environmental influences, probabilistic planning mod-
els are formulated based on the deterministic planning models. A probabilistic
model for behavior planing for self-optimzing mechatronic system consists of prob-
abilistic states s” with

range(sP(i)) — W(R)

for the value range (e.g. 0 < SOC;, < 100 with SOCy, for the state of charge of the
mechatronic system in state k) and

distribution(sP(i))

for the probabilistic distribution for state variable s” (i) (e. g. P(SOC, < 50) = 0.25A
P(SOC; > 50) = 0.75). Furthermore, there are probabilistic variants of the operation
modes om of the mechatronischen System with

o in{™ C pre®™ for a subset of input variables and
o out{™ C post®" for a subset of output variables

Then for each output variable o € out{™ a bayesian network (cf. [6]) bn)™ is
created to formulate the probabilistic effect A on the state variable of the subsequent
state k4 1 by conditional probabilities (e. g. IP’(SOCkA+1 = +10|windKmh < 20 A
SOC;, > 50) = 0.015). With the definition of a lower respectively upper bound for
critical state values (e. g. SOCy; < 10) branching points with likely violation of
these bounds can be found and alternative plans can be genrated by using just-in-
case-planning [35, 36, 38].

1.4.2.3 Hybrid Planning

The planning methods described above consider discrete system states and tran-
sitions relying, for instance, on average values or approximations. However, the
continuous behavior can not be neglected for mechatronic systems. Therefore the
necessity arises to integrate the continuous domain also in the planning process.
Furthermore, planning for mechatronic systems has to cope with changing envi-
ronmental conditions and imprecisions of a priori defined models during system
operation which grow further with a widening planning horizon. For these reason

1 The Paradigm of Self-optimization 19

continuous planning was combined with the discrete planning techniques presented
above; the so called hybrid planning.

The hybrid planner uses the discrete planning techniques to generate an offline
plan before the system starts its operation. For the RailCab this plan would, for in-
stance, determine the course (sequence of track sections) to reach its destination
and the parameter settings, i.e. the selected Pareto points based on the results of
the multiobjective optimization. During system operation while executing the plan,
however, deviations between the actual system state and those assumed by the of-
fline plan can not necessarily be avoided due to the time that elapsed before the
system reaches a certain state of the plan during execution. Also unforeseen condi-
tions or changes of the environment may cause such deviations.

To counteract these shortcomings the hybrid planner simulates the system’s be-
havior including the continuous aspects in an online manner. This simulation antic-
ipates the future behavior of the system for a restricted time and allows to directly
adapt the current action according to the simulation results. When the remaining
part of the (discrete) offline plan is affected, the results of the just-in-case-planning
may be used. If this is not possible an online replanning is initiated [4, 5, 18].

1.4.3 Self-optimization by Reconfiguration

Stefan Groesbrink, Sebastian Korf, Mario Porrmann, Claudia Priesterjahn,
and Katharina Stahl

A self-optimizing system applies reconfiguration methods to adjust to changing
requirements. In contrast to simple parameter changes, reconfiguration modifies
the internal structure of a hardware or software system. When principles of self-
optimization refer to the topology and structure of mechatronic systems, a reconfig-
urability of the system architecture or of dedicated system components is required.
Reconfiguration decisions must be made autonomously. Therefore, parts of the clas-
sical design process have to be performed by the system at runtime: various imple-
mentation alternatives are available, from which the system selects the most appro-
priate realization (hardware or software) and the corresponding parameters.

Reconfiguration is executed on every system level: Self-optimizing Application,
System Software, and Hardware. The levels of a self-optimizing mechatronic system
are shown in Figure 1.9 and described in the following.

The self-optimizing application may be the execution of self-optimizing algo-
rithms, e.g. finding optimal strategies to perform a task, or the communication be-
tween system parts. On the application level, reconfiguration means the exchange
of software parts, e.g., switching between different software implementations to
change the system behavior. Thereby, the self-optimizing application may change
the requirements on the system software and its services. The system software in-
terconnects the self-optimizing application and hardware and is composed of a virtu-
alization layer and operating system. The virtualization layer is optional and enables
the hosting of multiple operating systems on a single hardware platform. The sys-
tem software supports the applications by reacting in a self-optimizing manner to

20 S. Groesbrink et al.

Fig. 1.9 Levels of a self-

optimizing system Self-optimizing Application
(e.g. communication between system parts)

l System Software

[]| (e.g. RTOS)

Hardware
(e.g. FPGA)

the changing operating conditions of both the applications and the self-optimizing
hardware. Self-optimization is introduced on the hardware level by means of dy-
namically reconfigurable hardware. Here, hardware reconfiguration means chang-
ing the functionality or the interconnect of hardware modules in microelectronic
systems before and even during operation. Self-optimization in hardware must be
encapsulated by the system software so that applications will execute without any
perceivable interference. The system software must guarantee service supply in ac-
cordance to the given real-time constraints to enable hardware reconfiguration at
runtime.

Self-optimizing Application

The self-optimizing application is implemented in the Cognitive and Reflective Op-
erator of the OCM (cf. Sect. 1.3.2). The Cognitive Operator gathers information
about the system and the environment. It applies methods like learning and model-
based self-optimization to optimize the system behavior. The Reflective Operator
is the interface between the Cognitive Operator and the Controller. The interaction
with the Controller requires operation in hard-real time and includes safety-critical
tasks. This, in turn, demands a safe software that is free from design faults.

We therefore apply model-based software development to guarantee that the soft-
ware satisfies all safety and real-time requirements. This means, the software is de-
signed using models, the models are verified, and program code is generated, which
preserves the verified properties.

On the level of the self-optimizing application, reconfiguration means the cre-
ation or removal of software components at runtime. This reconfiguration is speci-
fied by graph transformation rules (cf. Sect. 5.2.3.1) at design time. This allows to
prove that no unplanned, e.g. unsafe, configurations are created at runtime.

The behavior of the components which execute the reconfiguration rules is mod-
eled using state-based real-time behavior models. The reconfiguration rules are ex-
ecuted as side effects of this behavior. Therefore, the reconfiguration rules must not
only guarantee to create no unplanned configurations but they must also satisfy the

1 The Paradigm of Self-optimization 21

time constraints of the real-time behavior. To ensure this, we extended graph trans-
formation rules by timing information and developed a verification approach (cf.
Sect. 5.2.3.2) that takes into account the state-based real-time behavior, the recon-
figurations, and the execution times of the reconfigurations.

System Software

The software models also allow computing application parameters such as the
worst-case execution times [30]. In the context of mechatronic systems, the oper-
ating system has to manage the execution of the applications considering timeliness
and predictability of the system behavior. It needs this parameter for the required
real-time scheduling. Since efficiency is an important factor for operating systems
for restricted environments such as mechatronic systems, operating system design-
ers aim to deliver an application- or a domain-specific operating system with the ob-
jective to integrate required functionality only. ORCOS (Organic Reconfigurable
Operating System) [19] is an example for an fully customizable real-time operat-
ing system at design time. Beyond design time configurability, the entire informa-
tion processing process of monitoring, analyzing and reacting must be integrated
into the self-optimizing operating system. In Sect. 5.5, we will present an exten-
sion of the ORCOS architecture that builds up the basis for online reconfiguration.
However, self-optimization in the operating system is not restricted to react on re-
quirement changes only. The operating system may also implement methods that
can be applied to self-optimize the performance of the operating system (e.g. re-
source allocation strategy) as well as the overall system performance (e.g. resource
utilization).

The operating system manages the use of hardware resources. This includes
the abstraction of the underlying hardware which is usually done by implementing
drivers. Dedicated interfaces specify the access to the hardware. In our approach, dy-
namic reconfiguration is provided by a combination of dynamically reconfigurable
hardware and a reconfigurable real-time operating system (RTOS). The proposed
hardware platform offers the fundamental mechanisms that are required to execute
arbitrary software and to adapt the system to new requirements (e.g. by dynamic
reconfiguration). The operating system triggers hardware reconfiguration as a reac-
tion to varying requirements and decides whether a task is executed in software, in
hardware, or in a combination of both.

Hardware

To adapt to changing environments, dynamically reconfigurable hardware is a key
technology. Dynamically reconfigurable hardware can be classified as fine-grained
or coarse-grained. Fine-grained reconfigurable architectures are typically based
on Field Programmable Gate Arrays (FPGAs), which facilitates the System on
Programmable Chip (SoPC) designs with a complexity of several million logic
gates, several hundred kBytes of internal SRAM memory, and embedded proces-
sor cores. For the group of coarse-grained architectures we introduce reconfigurable

22 M. Valholz

embedded processors, which can change their internal structure to adapt to the cur-
rently needed environment.

The idea of dynamic and partial hardware reconfiguration is to reconfigure the
hardware in a way that it maximizes the use of all available resources for the quired
controller implementation. The information processing system is shared among all
tasks, and offers limited resources with respect to memory, computational power,
and energy. Any task may be composed of various sub-tasks and different real-
izations of these sub-tasks (e.g. different software implementations running on an
embedded CPU and various hardware implementations for an integrated FPGA).
Since all of these realizations have different computational requirements and differ-
ent application characteristics, a control algorithm in a self-optimizing system can
be understood as an optimal solution for the current internal and external objectives
of the system. Therefore, in each new environmental condition of the mechatronic
system, there is a controller architecture and a corresponding implementation vari-
ant that represent an optimal solution in this situation [45].

1.5 Structure of This Book
Mareen ValBholz

In this Chapter self-optimizing systems were described briefly. It serves to show
the potential of self-optimization for technical systems. In Chap. 2 examples of self-
optimizing systems are presented that were developed in the Collaborative Research
Center 614. They show the benefits that are provided by using self-optimization,
but demonstrate its complexity as well. The resulting challenges for the develop-
ment of these systems show the need for a design methodology presented in the
following chapters. The different development tasks that have to be performed, are
presented as a reference process for the development of self-optimizing systems in
Chap. 3. This reference process is divided into the domain-spanning conceptual de-
sign and the domain-specific design and development phase. Chapter 4 depicts the
domain-spanning development methods and tools. The ones relevant to the domain-
specific design and development are presented in Chap. 5. The applications serve as
examples for the description of the methods and tools for the development of self-
optimizing systems. Chapter 6 gives a summary and an outlook over future work in
the field of self-optimization and intelligent technical systems.

This book is one result of the research of the Collaborative Research Center 614
"Self-Optimizing Concepts and Structures in Mechanical Engineering" and is com-
plemented by the book "Dependability of Self-Optimizing Mechatronic Systems".
It focuses on tools and methods to ensure the dependability of self-optimizing
systems during development and run-time. Throughout this book you will find
cross-references, like [24, D.0.S.0.M.S. Chap. 2], for detailed information on de-
pendability specific methods and tools.

1 The Paradigm of Self-optimization 23

References

1.

10.
11.

12.

13.

14.

15.

16.

DIN 19 226 Teil 1: Leittechnik - Regelungstechnik und Steuerungstechnik - Allgemeine
Grundbegriffe. Deutsche Norm (1994)

. VDI 2206 - Entwicklungsmethodik fiir mechatronische Systeme. Beuth Verlag, Berlin

(2004)

. Adelt, P., Donoth, J., Gausemeier, J., Geisler, J., Henkler, S., Kahl, S., Klopper, B.,

Krupp, A., Miinch, E., Oberthiir, S., Paiz, C., Porrmann, M., Radkowski, R., Romaus,
C., Schmidt, A., Schulz, B., Vocking, H., Witkowski, U., Witting, K., Znamenshchykov,
O.: Selbstoptimierende Systeme des Maschinenbaus. In: Heinz Nixdorf Institut, Univer-
sitdt Paderborn, vol. 234. HNI-Verlagsschriftenreihe, Paderborn (2009)

. Adelt, P, Esau, N., Holscher, C., Kleinjohann, B., Kleinjohann, L., Kriiger, M., Zimmer,

D.: Hybrid Planning for Self-Optimization in Railbound Mechatronic Systems. In: Naik,
G. (ed.) Intelligent Mechatronics, pp. 169-194. InTech Open Access Publisher, New
York (2011)

. Adelt, P, Esau, N., Schmidt, A.: Hybrid Planning for an Air Gap Adjustment System

Using Fuzzy Models. Journal of Robotics and Mechatronics 21(5), 647-655 (2009)

. Ben-Gal, I.: Bayesian Networks. In: Encyclopedia of Statistics in Quality and Reliability

(2007)

. Binder, T., Blank, L., Bock, H., Bulirsch, R., Dahmen, W., Diehl, M., Kronseder, T.,

Marquardt, W., Schloder, J., von Stryk, O.: Introduction to Model-based Optimization
of Chemical Processes on Moving Horizons. In: Groétschel, M., Krumke, S., Rambau,
J. (eds.) Online Optimization of Large Scale Systems - State of the Art, pp. 295-340.
Springer, Heidelberg (2001)

. Bocker, J., Schulz, B., Knoke, T., Frohleke, N.: Self-Optimization as a Framework for

Advanced Control Systems. In: Proceedings of the 32nd Annual Conference on IEEE
Industrial Electronics, Paris (2006)

. Coello Coello, C.A., Lamont, G., Veldhuizen, D.V.: Evolutionary Algorithms for Solving

Multi-Objective Optimization Problems, 2nd edn. Springer, Heidelberg (2007)
Comford, R.: Mecha.. what? IEEE Spectrum 31(8), 4649 (1994)

Das, 1., Dennis, J.: A Closer Look at Drawbacks of Minimizing Weighted Sums of Ob-
jectives for Pareto Set Generation in Multicriteria Optimization Problems. Structural Op-
timization 14(1), 63-69 (1997)

Dellnitz, M., Schiitze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdi-
vision Techniques. Journal of Optimization Theory and Application 124(1), 113-136
(2005)

Dorociak, R., Gaukstern, T., Gausemeier, J., Iwanek, P., Vaholz, M.: A Methodology for
the Improvement of Dependability of Self-optimizing Systems. Production Engineering
- Research and Developement 7(1), 53-67 (2013)

Dumitrescu, R.: Entwicklungssystematik zur Integration kognitiver Funktionen in fort-
geschrittene mechatronische Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Univer-
sitdt Paderborn, HNI-Verlagsschriftenreihe, Band 286, Paderborn (2011)

Dumitrescu, R., Anacker, H., Gausemeier, J.: Design Framework for the Integration of
Cognitive Functions into Intelligent Technical Systems. Production Engineering - Re-
search and Developement 7(1), 111-121 (2013)

Dumitrescu, R., Gausemeier, J., Romaus, C.: Towards the Design of Cognitive Func-
tions in Self-Optimizing Systems Exemplified by a Hybrid Energy Storage System. In:
Proceedings of the 10th International Workshop on Research and Education in Mecha-
tronics, Ostrava (2010)

24

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

References

Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer, Heidelberg (2005)

Esau, N., Kriiger, M., Rasche, C., Beringer, S., Kleinjohann, L., Kleinjohann, B.: Hierar-
chical Hybrid Planning for a Self-Optimizing Active Suspension System. In: Proceedings
of the 7th IEEE Conference in Industrial Electronics and Applications, Singapore (2012)
FG Rammig, University of Paderborn: ORCOS - Organic Reconfigurable Operating Sys-
tem, https://orcos.cs.uni-paderborn.de/doxygen/html

(accessed August 12, 2013)

Frank, U., Gausemeier, J.: Self-Optimizing Concepts and Structures in Mechanical En-
gineering - Specifying the Principle-Solution (2005)

Frank, U., Giese, H., Klein, F., Oberschelp, O., Schmidt, A., Schulz, B.H.V., Witting, K.:
Selbstoptimierende Systeme des Maschinenbaus. In: Heinz Nixdorf Institut, Universitit
Paderborn, vol. 155. HNI-Verlagschriftenreihe, Paderborn (2004)

Gausemeier, J.: From Mechatronics to Self-optimizing Concepts and Structures in Me-
chanical Engineering: New Approaches to Design Methodology. International Journal of
Computer Integrated Manufacturing 18(7), 550-560 (2005)

Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201-223 (2009)

Gausemeier, J., Rammig, FJ., Schifer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

Gausemeier, J., Steffen, D., Donoth, J., Kahl, S.: Conceptual Design of Modularized
Advanced Mechatronic Systems. In: Proceedings of the 17th International Conference
on Engineering Design, Stanford (2009)

Geisler, J., Witting, K., Tréchtler, A., Dellnitz, M.: Multiobjective Optimization of Con-
trol Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th
IFAC World Congress, Seoul (2008)

Ghallab, M., Nau, D., Traverso, P.: Automated Planning - Theory and Practice. Elsevier,
Amsterdam (2004)

Gill, PE., Jay, L.O., Leonard, M.W., Petzold, L.R., Sharma, V.: An SQP Method for
the Optimal Control of Large-scale Dynamical Systems. Journal of Computational and
Applied Mathematics 120, 197-213 (2000)

Harashima, F., Tomizuka, M., Fukuda, T.: Mechatronics - What is it?, Why and how? An
Editorial. IEEE/ASME Transactions on Mechatronics 1(1) (1996)

Henkler, S., Oberthiir, S., Giese, H., Seibel, A.: Model-driven Runtime Resource Pre-
dictions for Advanced Mechatronic Systems with Dynamic Data Structures. Computer
Systems Science & Engineering 26(6) (2011)

Hestermeyer, T.: Strukturierte Entwicklung der Informationsverarbeitung fiir die aktive
Federung eines Schienenfahrzeugs. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitit
Paderborn, Verlag Dr. Hut, Miinchen (2006)

Hestermeyer, T., Oberschelp, O., Giese, H.: Structured Information Processing for Self-
Optimizing Mechatronic Systems. In: Proceedings of the 1st International Conference
on Informatics in Control, Automation and Robotics, Setubal (2004)

Hillermeier, C.: Nonlinear Multiobjective Optimization - A Generalized Homotopy Ap-
proach. Birkhiuser (2001)

Isermann, R.: Mechatronische Systeme - Grundlagen. Springer, Heidelberg (2008)
Klopper, B.: Ein Beitrag zur Verhaltensplanung fiir interagierende intelligente mecha-
tronische Systeme in nicht-deterministischen Umgebungen. Ph.D. thesis, Fakultit
fiir Wirtschaftswissenschaften, Universitdt Paderborn, HNI-Verlagsschriftenreihe, Band
253, Paderborn (2009)

https://orcos.cs.uni-paderborn.de/doxygen/html

1 The Paradigm of Self-optimization 25

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Klopper, B., Aufenanger, M., Adelt, P.: Planning for Mechatronics Systems - Architech-
ture, Methods and Case Study. Engineering Applications of Artificial Intelligence 25(1),
174-188 (2012)

Knowles, J., Corne, D., Deb, K.: Multiobjective Problem Solving from Nature: From
Concepts to Applications. Springer, Heidelberg

Kopper, B., Sondermann-Woélke, C., Romaus, C.: Probabilistic Planning for Predictive
Condition Monitoring and Adaptation within the Self-Optimizing Energy Management
of an Autonomous Railway Vehicle. Journal for Robotics and Mechatronics 24, 5-15
(2012)

Landau, I., Lozano, R., M’Saad, M., Karimi, A.: Adaptive Control - Algorithms, Analy-
sis and Applications. Springer, Heidelberg (2011)

Liickel, J., Hestermeyer, T., Liu-Henke, X.: Generalization of the Cascade Principle in
View of a Structured Form of Mechatronic Systems. In: Proceedings of the IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, Como (2001)
Ober-Blobaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control:
An Analysis. Control, Optimisation and Calculus of Variations 17(2), 322-352 (2011)
Osmic, S., Trichtler, A.: Flatness-based Online Controller Reconfiguration. In: Proceed-
ings of the 34nd Annual Conference of the IEEE Industrial Electronics Society, Orlando
(2008)

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Kontruktionslehre. Grundlagen erfolgre-
icher Produktentwicklung - Methoden und Anwendung, 6th edn. Springer, Heidelberg
(2005)

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design - A Systematic Ap-
proach, 3rd edn. Springer, Heidelberg (2007)

Paiz, C., Hagemeyer, J., Pohl, C., Porrmann, M., Riickert, U., Schulz, B., Peters, W.,
Bocker, J.: FPGA-Based Realization of Self-Optimizing Drive-Controllers. In: Proceed-
ings of the 35th Annual Conference of the IEEE Industrial Electronics Society, Porto
(2009)

Schiffler, S., Schultz, R., Weinzierl, K.: A Stochastic Method for the Solution of Un-
constrained Vector Optimization Problems. Journal of Optimization Theory and Appli-
cations 114(1), 209-222 (2002)

Schiitze, O., Witting, K., Ober-Blobaum, S., Dellnitz, M.: Set Oriented Methods for the
Numerical Treatment of Multi-objective Optimization Problems. In: Tantar, E., Tantar,
A.-A., Bouvry, P., Del Moral, P., Legrand, P., Coello Coello, C.A., Schiitze, O. (eds.)
EVOLVE- A bridge between Probability. SCI, vol. 447, pp. 185-218. Springer, Heidel-
berg (2013)

Strube, G.: Modelling Motivation and Action Control in Cognitive Systems. In: Mind
Modelling, pp. 89-108. Pabst, Berlin (1998)

Witting, K., Schulz, B., Dellnitz, M., Bocker, J., Frohleke, N.: A new Approach for
Online Multiobjective Optimization of Mechatronic Systems. International Journal on
Software Tools for Technology Transfer STTT 10(3), 223-231 (2008)

Chapter 2
Examples of Self-optimizing Systems

Joachim Bocker, Christian Heinzemann, Christian Holscher, Jan Henning KeBler,
Bernd Kleinjohann, Lisa Kleinjohann, Claudia Priesterjahn, Christoph Rasche,
Peter Reinold, Christoph Romaus, Thomas Schierbaum, Tobias Schneider,
Christoph Schulte, Bernd Schulz, Christoph Sondermann-Wolke,

Karl Stephan Stille, Ansgar Trichtler, and Detmar Zimmer

Abstract. In this chapter, the benefits resulting from self-optimization will be de-
scribed based on application examples from the Collaborative Research Center 614
“Self-optimizing Concepts and Structures in Mechanical Engineering”. First, the
autonomous rail vehicle RailCab developed at the University of Paderborn is in-
troduced. Then, the RailCab subsystems Self-Optimizing Operating Point Control,
Intelligent Drive Module, Active Suspension Module, Active Guidance Module and
Hybrid Energy Storage System and their test rigs are described in detail as well as an
overall approach for Energy Management. The chapter concludes with the presen-
tation of other development platforms such as the BeBot, an intelligent miniature
robot acting optimally in groups, and the X-by-wire vehicle Chameleon with in-
dependent single-wheel chassis actuators. All the above mentioned demonstrators
are used to validate the methods and procedures developed in the Collaborative Re-
search Center. The experiences gained, provide direct input into further development
and optimization of the design as well as the self-optimization process.

2.1 Rail Technology — RailCab

The RailCab system is an innovative self-optimizing transportation system for pas-
sengers and goods that allows comfortable travel on railways, while at the same
time satisfying the desire for individual but energy-efficient mobility, with no dis-
tinction being made between local and long-distance traffic?. Important elements

2 http://nbp-www.upb.de
J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 27

Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 2, (©) Springer-Verlag Berlin Heidelberg 2014

http://nbp-www.upb.de

28 J. Bocker et al.

of the novel system are small, driverless vehicles, called RailCabs. These RailCabs
can transport passengers or goods directly to their destination without the need for
changing trains or reloading (cf. Fig. 2.1). The vehicles drive on demand and not ac-
cording to a schedule. They can be ordered and configured via telecommunication
services. In order to increase traffic flow on the lines, minimize energy consumption
and maximize the flexibility, the RailCabs are not coupled mechanically, so that,
on more frequented routes they can automatically form convoys, thus reducing air
resistance, saving enormous amounts of energy, and increasing transportation ca-
pacity. The active steering of the vehicles along with passive track switches allows
vehicles to move out of the convoy at track switches even in cases where the dis-
tance between the vehicles is small and at maximum speeds. As there are no stops
or changes of trains, the RailCabs reach high average speeds and the transportation
times are also short. The vehicles are designed in a modular way from standard-
ized components that consist of intelligent function modules. The structuring of the
RailCab into function modules can be conducted in the conceptual design (cf. Sect.
4.6). Therefore each vehicle can be scaled and flexibly adapted to its respective
transportation tasks. The entire technical part is integrated into the undercarriage.
This ensures that the system can comply with various specific transportation tasks.
For the entire traffic system, a new and comprehensive logistics concept will be de-
veloped that employs a passive rail network with individually guided vehicles that
make decisions autonomously. In order to provide a satisfactory informational base
for these decisions, the RailCabs have positioning systems as well as mobile com-
munication devices for communicating with one another and with the stationary
facilities along the track. This gives the RailCabs the chance to detect congestions
in advance and give them a wide forecast. Compared to conventional scheduling
this will lead to a far better utilization of the system, because the RailCabs always
travels along the route that is, among other objectives, optimal in terms of travel
time. The economic efficiency of this system can be proven during the conceptual
design based on the principle solution of the RailCab (cf. Sect. 4.8).

In order to test this entirely new RailCab system under realistic conditions a test
track on a reduced scale of 1:2.5 was constructed at the University of Paderborn
in 2003. It is 530 m long, consists of sections with an ascending slope of 5.3 % and
a passive track switch, thus allowing in-depth checks and comprehensive trials of
strategies for forming and disbanding convoys.

To date, two test vehicles have been built (see Fig. 2.2). Each of them is 3.4m
long and 1.2m high and wide and weights 1.2t. On the test track, vehicles can
be operated at a maximum speed of 10 m/s. The test vehicles already comprise all
the essential function modules of the future series-produced RailCabs. Every pro-
totypical RailCab has two Active Guidance Modules, one for each single axle, and
individual wheel sets, an active suspension system, two secondary elements of the
doubly-fed linear-motor drive and an energy storage. For test operation, they are
also equipped with a multitude of sensors and data-processing devices.

The operation of the prototypical RailCabs gives impressive proof of the techni-
cal feasibility of the whole concept and the self-optimizing behavior of the function
modules as well as of the entire system. Besides, several Hardware-in-the-Loop

2 Examples of Self-optimizing Systems 29

Demand- and not Schedule-Driven Standardized Vehicles that
Autonomous Vehicles (RailCabs) for can be customized individually
Passengers and Cargo

Cargo RailCab Convoy Formation Local Traffic Version

Fig. 2.1 The possible varieties of the RailCab

Fig. 2.2 RailCabs on the
test track (Scale 1:2.5)

(HiL) test rigs emulate the behavior of the function modules in order to explore
innovative self-optimizing control strategies irrespective of the entire system. The
following sections give a detailed description of the self-optimization approaches
and the test rig implementations.

The development process of the RailCab and the different function modules
served as input for the developed design methodology for self-optimizing systems
presented in Chap. 3.

2.1.1 Self-optimizing Operating Point Control
Christoph Schulte, Tobias Schneider, Bernd Schulz, and Joachim Bocker

The linear drive is one of the central components of the RailCab system. It con-
sists of a doubly-fed linear asynchronous drive with an active track and offers both
propulsion with a defined thrust independent of the wheel-rail-contact and contact-
free energy supply of the vehicle [35].

30 C. Schulte et al.

Fig. 2.3 Test rig of the lin- o

ear doubly fed asynchronous

drive

Fig. 2.3 shows the 1:2.5 scaled test rig of the mentioned linear doubly-fed asyn-
chronous drive which is used for research on the self-optimizing operating point
control of the drive module. The behavior of this system is analyzed in detail with
the illustrated construction of the doubly-fed linear drive shown in Fig. 2.3. It con-
sists of an 8 m long straight test track with a varying airgap contour and an approx-
imately 1 m long vehicle which can reach speeds vy, up to 2.5 m/s. The windings
of the vehicle and track motor part are each fed by 3-phase power converters to
set the desired thrust. For the control, a real-time processing unit is installed on the
vehicle. The self-optimizing operating point control (SOAPS) composes working
points by the inputs of speed control or from Energy Management of the vehicle.
The determined working points are forwarded to the implemented control of the
vehicle. The test rig also allows to measure the power consumption of the vehicle
and the track synchronously as well as the thrust at standstill. Thus, it is possible
to test the developed structures for self-optimization as well as the practical appli-
cation of new optimization strategies and algorithms. In the following paragraph,
an optimization problem is presented, which demonstrates some aspects of the self-
optimization process.

According to Fig. 2.4, the overall power flow can be distributed in the individual
stator and rotor side parts of the drive. Here, p; and p; are the stator and rotor side
power, pyv is the mechanical power, pg the power transferred to the vehicle, p1 josses
and p; josses are the dissipated power in the stator and rotor due to copper and iron
losses. The propulsion force of the vehicle is defined by Fy,.

The ability to transfer energy with the doubly-fed induction drive is one of the
great advantages for such an autonomous railway vehicle. But the energy transfer
is also coupled with losses which increase the motor temperature and decrease the
efficiency. Therefore the losses have to be determined precisely and hence an accu-
rate loss model of the motor is required to ensure operation at an efficient working
point.

2 Examples of Self-optimizing Systems 31

Fig. 2.4 Power flow of the
drive with corresponding
losses

Ps = -P2

Secondary field

Py v, A Paosss

p‘\,losses

Primary field

P4

2.1.1.1 Determination of Optimal Operating Points

For the considered autonomous railway vehicle, a well defined thrust has to be de-
veloped. In this context, the thrust has to be understood as a constraint. Beside this
constraint, there are also two conflicting objectives: On the one hand, a maximum
power transfer is intended, which can be achieved by increasing the currents and/or
the frequency. On the other hand, it is desirable to minimize the losses in order to
increase efficiency. This requires low frequencies and currents.

During drive operation, a working point considering these two competitive objec-
tives has to be selected, based on the given demands and surroundings. This dilemma
is a classical example for a multiobjective optimization problem (MOP). In general,
the objective functions will not have a common global optimum. Instead, the set of
optimal trade-offs, the so-called Pareto set [35] is obtained.

Recently, combined set-oriented and path-following methods have been devel-
oped to treat time-dependent MOPs. Thus, the point determined by the decision
heuristic is only valid for a fixed point in time. As it would be too time-consuming
to approximate the entire Pareto set for many discretized points of time, we use nu-
merical path following methods. These methods allow to solve parameter-depending
equation systems. Thus, we can define a time-dependent path of Pareto optimal
points by requiring that every point on the path has the same relevance of the objec-
tives. To compute this path, the algorithm performs the so-called predictor-corrector
steps [42] based on equation systems which are repeated until a given final time is
reached. This allows the computation of entire Pareto sets for fixed points in time
and the tracking of some chosen Pareto optimal points over time. These algorithms
are very efficient and can even be used online for this application. Their mathemat-
ical background will be described in Sect. 5.3.1 and Sect. 5.3.4.

32 C. Schulte et al.

Reluctance-
torque

Fig. 2.5 Photo and cross section of the switched reluctance motor

In the operating point assignment of the linear drive, a convex objective function
(total losses) and a concave objective function (transferred power) emerge. The total
losses are minimized, while the transferred power is maximized. The optimization
variables are the stator and rotor side current and frequencies, time occurs as an
additional parameter. In our case, the choice of one Pareto optimal point from the set
depends on two parameters: the state of charge of the energy storage and the motor
temperature. A low state of charge requires an increase of power transfer to charge
the battery. This also increases the losses and the motor temperature respectively. In
order to protect the drive against the risk of damage, it is advisable to take the motor
temperature into consideration.

With this self-optimization working-point control it is now possible to take time-
variant objectives into account and to adapt new objective functions during op-
eration. Further, in the case of failure the selected working-point will be chosen
sub-optimally but highly reliable, so that a further operation of the drive is
enabled.

2.1.1.2 Alternative Drive System

In addition to the linear asynchronous drive an additional rotary switched reluc-
tance motor test-rig was built [34], which can be seen in Fig. 2.5. In comparison
to the asynchronous drive this type of motor offers a higher efficiency especially
on passive tracks without stator windings. Here, an alternative working-point op-
timization was examined. The optimization goal in this case is represented by the
maximization of the efficiency/minimization of the power loss, wherein the torque
of the motor has to be kept constant [7]. To solve this optimal control problem a
direct discretization method was used, which is based on the discretization of the
method of Lagrange. This optimal control method, along with extensions e.g. to
multiple objectives, is presented in Sect. 5.3.6 and Sect. 5.3.7.

2 Examples of Self-optimizing Systems 33

Fig. 2.6 Test rig of the
Intelligent Drive Module

2.1.2 intelligent Drive Module (iDM)

Christian Holscher and Detmar Zimmer

The drive of the RailCab is realized by a doubly-fed asynchronous linear drive.
In addition to the force transmission, this direct drive enables contactless energy
transfer to the RailCab [35]. The immovable part of the above named drive is the
secondary part, which is installed on the track bed. The primary part is mounted at
the bottom of the RailCab. Hence it is the movable part of the drive.

There is an air gap between the primary and the secondary part, which has a
large influence on the electrical losses. Different influences such as incorrectly laid
tracks and setting processes lead to displacements of the secondary parts, which re-
sults in a fluctuating air gap. In order to avoid a collision between the primary and
the secondary part, a relatively large air gap can be chosen. Unfortunately this re-
sults in higher electrical losses and hence reduces the efficiency of the linear drive.
The relationship between efficiency and the air gap is reciprocal. This implies an
improvement of the efficiency by minimizing the air gap. A small but fluctuating air
gap encourages a dynamic air gap adjustment . The Intelligent Drive Module (iDM)
performs the task of an efficiency improvement by a track dependent dynamic mini-
mization of the air gap. The main objectives are low energy consumption and a high
degree of safety for the adjustment procedure. In order to validate an improvement
of the efficiency by the iDM a test rig has been developed (Fig. 2.6).

The iDM is partitioned into two actuator groups (Fig. 2.7). Both consist of a
primary part of the linear drive and an adjustment actuator. In addition spring as-
semblies are mounted to the actuator groups. The characteristic curves of the spring
assemblies are adjusted to the normal force, which has a large influence on the
secondary part. Hence, the adaption to the normal force reduces the load of the ad-
justment actuators. In case of an actuator failure, the linear drive will be raised by
the spring assembly to avoid a collision between primary and secondary parts. Load
cells on each actuator group measure the normal, the propulsion and the shear force.

34 C. Holscher and D. Zimmer

Adjustment
actuator

Spring assembly

Load cell for Load cell for
propulsion force _— normal force
Load cell for
shear force
Primary part = l]
\\ = = L Hall sensors
- Q
(Secondary part
W] BEag™

Fig. 2.7 Actuator group of the iDM test rig

They identify the characteristics of the forces depending on the air gap and the drive
current. Hall sensors mounted on each of the primary parts measure the magnetic
field of the secondary parts and determine the electrical rotation angle, the track ve-
locity and the air gap. These measured data are essential for the control of the linear
drives and the adjustment actuators.

In contrast to the RailCab, the primary part of the linear drive is mounted at
the frame of the test rig and propels the secondary parts, which are mounted on the
rotating track. That means, they are arranged in a circle and allow a continuous track
simulation. The vertical position of the secondary parts can be adjusted manually to
simulate different track characteristics.

The general objective of the iDM is to improve the efficiency of the linear drive
by means of a dynamic air gap adjustment. The energy consumption of the iDM
essentially depends on the environment, the operating point and the operating strat-
egy. The influence of the environment takes effect through the track characteris-
tics, the vertical profile and inherent influences like air resistance and friction. We
consider three different track types. A rough track section comprises of many alter-
nating displacements of the secondary parts. An obstacle track contains only a few
displacements. A smooth track has no displacements. In this work we use a rough
track with displacements of 3 mm. This is the maximum of secondary part displace-
ments measured on the test track of the Neue Bahntechnik Paderborn. The vertical
profile produces different load characteristics for the linear drive. The air resistance
depends on the vehicle velocity. The operating point follows from the chosen ve-
locity and needed propulsion force. The operating strategy optimizes the efficiency
of the iDM. At first the two actuator groups are partitioned in a master and slave

2 Examples of Self-optimizing Systems 35

actuator group with different system behaviors. The master actuator group is the
first group in the direction of travel. The air gap of the master linear drive has to
be larger than the air gap of the slave drive to cover displacements which are not
registered in the Track Section Control. The minimum allowed air gap of the master
linear drive depends on the vehicle velocity and the maximum acceleration of the
adjustment actuator and increases at a velocity threshold. The slave actuator group
knows the actual track characteristics from the master actuator group. Due to the
known track characteristics, the slave linear drive can adjust its air gap to the mini-
mum value at any velocity. Furthermore the slave adjustment actuator uses a brake
to reduce the actuator load. This brake produces a time delay and will only be used
for the slave adjustment actuator. Two parameters, the master and slave adjustment
actuators, will be determined for a track section. These two controller parameters
Kp.up and K, jo, are further divided into parameters for the downwards and the
upwards motion controllers. The optimal velocity @y, for the track section is the
third optimization parameter. These optimization parameters define the air gap of
both the master and the slave actuator group. For the multiobjective optimization,
two objectives are defined:

e The minimization of the absorbed energy of the adjustment actuators:

T 2
fi = Eugj = /0 S Poji(t)dt @.1)
i=1

e The minimization of the absorbed energy of the linear drives:

T 2
fr=Eg= /0 S Pui(t)de 2.2)
i=1

The function f; describes the absorbed energy E,,4; of the adjustment actuators
and f, the absorbed energy E;; of the linear drives.

In order to evaluate the objectives, a specific optimization model is used. This
consists of a base model, an environment model and an evaluation model. The base
model describes the behavior of the actuator groups.

The nonlinear characteristic of the normal and propulsion force is considered.
This motor type is also assembled at the iDM test rig. A typical cascaded control
is used for the actuators. The environment model describes track specific displace-
ments of the secondary parts, the air resistance and friction.

The air resistance depends on the velocity and is adapted to test rig conditions.
The evaluation model computes the objectives for each track section. A minimal air
gap of 0.5 mm is ensured in the optimization process by means of a corresponding
constraint term.

When raising velocity, the energy consumption E;; of the linear drives also raises,
because of the increased demand for the propulsion force and the enlarged air gap.
At a low velocity the energy consumption E,y; of the adjustment actuators raises
through an smaller air gap and the associated increased normal forces, which lead
to an increased load of the adjustment actuators (2.8a). The calculated Pareto front

36 C. Sondermann-Wolke

120 1 T T T T T T T T ;
A : : : : : Legend i
Pareto Front :
[Chosen Pareto Point |]
0 L .l L L L 1 r 1
100 150 200 250 300 350 400 450 500 550
a) £,[J]
20
<
E 10
ERE
3
5.
60

40' P 20
K, goun[1/mi 20 — 10
p’down[min/mm] 5

b)

[1/min/mm]

Kp,up

Fig. 2.8 a Pareto front for the iDM, b Pareto set for the iDM

results from the set-oriented subdivision algorithm (cf. Sect. 1.4.1.1). The Pareto
fronts of the different track sections can then be used as a basis for the hybrid plan-
ning approach described in Sect. 5.3.8.

Fig. 2.8b shows the Pareto set of the iDM for the sample track. These parameters
are used in the superordinated optimization (cf. Sect. 2.1.6). Additional information
of the iDM and the hierarchical optimization are described in [15] and in Sect. 5.3.2.

2.1.3 Active Guidance Module

Christoph Sondermann-Wolke

As described in the introduction, RailCabs are able to form convoys and save en-
ergy using the slipstream of the vehicle ahead. Hence, an innovation is required to
guide the RailCabs through a track switch if the RailCabs need to leave the convoy
at track switches with an intended maximum velocity of about 180 km/h. Conven-
tional switches are too slow to resolve this convoy, when certain RailCabs need to
leave the convoy and continue their travel on a different track. Therefore, the passive
switch was invented [41]. The passive switch offers the possibility for each RailCab

2 Examples of Self-optimizing Systems 37

to choose the direction independently by steering into the desired direction. The sys-
tem module for this steering action is called the Active Guidance Module [5]. Each
RailCab is equipped with two independently steering Active Guidance Modules. For
the domain-spanning description of the system "Active Guidance Module" the spec-
ification technique CONSENS can be used. For example the application scenario
"Steering into passive switches" can be specified (cf. Sect 4.1). In this application
scenario, the description of the situation and the demanded behavior of the Active
Guidance Module can be modeled. For example, the module should turn off the op-
timization in this scenario, to realize a controlled and safe drive through the passive
switch. Further partial models of the principle solution like the active structure and
the environment can be applied, too. Based on the models primary dependability
analyses can be performed, like the early probabilistic reliability analysis based on
the principle solution (cf. Sect. 4.7). For example, the engineer can detect that the
actuator can be damaged, the flange could break or the RailCab could derail. Based
on these identified causes and consequences, countermeasures can be determined to
improve the dependability of the Active Guidance Module.

In addition to steering into passive switches, the guidance module actively con-
trols the wheel guidance in normal tracks. By compensating disturbances like track
irregularities and side wind flange contacts on straight tracks as well as in curved
tracks are avoided, so that wear on wheels and rails is reduced. The clearance be-
tween the flange of the wheels and the rail heads is about 5 to 10 mm.

Therefore, a model-based optimization method for calculating trajectories for
each Active Guidance Module is implemented [12]. The system of objectives can be
defined by using the method for the design of the system of objectives (cf. Sect.4.4),
which is based on the domain-spanning specification of the Active Guidance Mod-
ule. Afterwards, set-oriented multiobjective optimization methods (for a detailed
review cf. Sect. 5.3.1) have been applied to consider the objectives availability, com-
fort, energy efficiency and a limitation of the steering angle.

The planned trajectories are 10 m in length and consist of cubic splines parame-
terized by the decreasing number of knots over the whole trajectory. This concept
was chosen, because only the first part of the trajectory is applied before it is re-
placed by replanning (receding horizon). The optimization is model-based because
of the underlying model of the track system and, even more important, the model
of the lateral dynamics of the RailCab vehicle. Depending on the current situation,
a suitable trajectory is derived from a calculated Pareto set by weighting the ob-
jectives. This Pareto set is calculated offline considering a model of the RailCab,
the track including track irregularities, and different velocities. Online, one Pareto
point is chosen according to the desired objectives of the guidance module. This
Pareto point leads to the calculation of the desired trajectory. A trajectory increas-
ing availability will be close to the center line of the clearance (to avoid flange
strikes), whereas a trajectory maximizing the energy efficiency will cut curves and
increases the probability of flange strikes. The selection of Pareto points and their
online adaptation to the actual system and environment state could also be supported
by the hybrid planning approach described in Sect. 5.3.8.

38 J.H. KeBler and A. Trichtler

Fig. 2.9 Main components
of the Active Guidance

Center pivot axle

Mechanical Steering actuator
Module guidance (hydraulic cylinder)
wheels
Axle-carrier

Emergency brakes

Eddy-current sensors

This trajectory is the set value for the underlying control strategy, which is exe-
cuted in the controller of the Active Guidance Module. One module with its most
important components is shown in Fig. 2.9. It consists of the axle carrier in which
the center pivot axle is suspended. Each set of wheels uses loose cylindrical wheels
to reduce slip and wear on wheels. The axle is actuated by a servo-hydraulic cylinder
with an integrated displacement sensor.

For control, every guidance module features four eddy-current sensors, which
measure the distance between the flange of the wheels and the rail heads. Two di-
agonally arranged sensors are coupled and the mean of both is calculated to get
more precise information about the position of the axle relative to the track. This
sensor data is used to calculate the current deviation to the planned trajectory and
thus the required steering angle to reduce the deviation. The steering angle is set by
the steering actuator, a hydraulic cylinder. For this purpose, a PI-controller is used.
If the self-optimization process fails and no trajectory is calculated, the center line
of the clearance is used. In advance, a feed-forward control is chosen, which cal-
culates the desired steering angle based on the straight and curved track sections. If
the longitudinal position, which is determined by incremental sensors and a prox-
imity switch, fails, then none of the control strategies can be executed. To avoid
uncontrolled behavior of the guidance modules in this case, the axles are fixed. This
increases the wear on wheels and rails dramatically and the velocity of the RailCab
should be reduced. Fixing axles does not lead to a standstill of the RailCab.

Further information regarding different control strategies and the behavior of the
Active Guidance Module in case of sensor failures can be found in [38].

2.1.4 Active Suspension Module

Jan Henning KeBler and Ansgar Tréchtler

The RailCab is equipped with an Active Suspension Module that is designed to
increase passenger comfort. The task of this module is to suppress the undesirable
effects of frequent bumps and other agitations of the railway. For the development of
innovative self-optimizing control structures, a Hardware-in-the-Loop (HiL) test rig
was built which emulates the suspension of a half-vehicle (Fig. 2.10). The test rig
consists of a body mass that represents the coach body with its three degrees of

2 Examples of Self-optimizing Systems 39

Fig. 2.10 Test rig of the
Active Suspension Module

freedom in vertical, horizontal and rotational (body roll) direction. Beneath the
coach body there are two symmetrically mounted actuator groups, each with a so-
phisticated kinematics guide, a passive fiberglass reinforced polymer spring
(GRP-spring) with a low damping characteristic and three hydraulic cylinders. By
deflecting the spring base actively, it is possible to exert additional forces on the
right and left side of the coach body in the vertical and horizontal direction in order
to damp the coach body’s motion in each degree of freedom. A Skyhook controller
calculates these damping forces using the body velocities and the three controller
parameters representing the damping characteristic of each degree of freedom of
the coach body. The chassis framework that can be displaced by three hydraulic
cylinders. This is used to simulate the railway excitations. The chassis framework is
connected to the lower end of the GRP-springs.

2.1.4.1 Problem Definition and Self-optimization Approach

The purpose of the self-optimizing active suspension system is to increase passen-
ger comfort by minimizing the accelerations of the body, while reducing the energy
consumption of the actuator modules. The lower the acceleration of the body, the
higher the damping forces and the power demand of the actuator modules. This
leads to an optimization problem with two conflicting objectives: "minimize body
accelerations" and "minimize power demand". By varying the three Skyhook con-
troller parameters, the system characteristics can be adapted to the two objectives.
Thus for an optimization of the system the controller parameters are also the op-
timization parameters. The two objective functions are typically chosen as a mean
value of characteristic signals, i.e., they are given by the integral functions

e
fi=, 2 P (0 3

1 T 3
f= T/O ;\wi(a,-(r))\ dr. 2.4)

40 J.H. KeBler and A. Trichtler

The function f; describes the power demand. It comprises of the hydraulic power
Pyyq of the six cylinders. The function f> describes the level of comfort concerning
the weighted body accelerations a; in the aforementioned three degrees of freedom.
The weighting filters w; are explained in [1].

Multiobjective optimization has been proven to be an effective technique for
computing optimal system configurations. The solution of the multiobjective op-
timization problem is given by a set of points, the so-called Pareto set. The image of
the Pareto set are the optimal compromises of the objectives, called the Pareto front
(cf. Sect. 1.4.1.1). The optimization is based on a complex nonlinear model, which
emulates the suspension system in detail. It comprises the differential equations of
the dynamical behavior of the active suspension system and a synthetic model of the
railway disturbances that are assumed to be stochastic. Most of the real disturbances
are unknown and differ from the synthetic disturbances of the optimization model.
Thus the task of self-optimizing control is to choose and adjust points on the Pareto
set, i.e. controller parameters, that guarantee an optimal behavior in terms of the
desired objectives despite the effects of unknown disturbances over time.

The active suspension system also serves as an application example for several
self-opimization methods. Two methods based on the hierarchical system structure
have been applied. First, hierarchical modeling has been used to compute a simpli-
fied model of the suspension system by means of parametric model-order reduction,
cf. Sect. 5.3.3. Second, hierarchical optimization has been applied to a coupled sys-
tem that consists of the active suspension system and the Intelligent Drive Module,
see Sect. 5.3.2 for more details. Furthermore, varying crosswind conditions which
affect the Active Suspension Module can be formulated as a parametric multiobjec-
tive optimization problem to compute so-called robust Pareto points (cf. Sect. 5.3.4
and Sect. 5.3.5). The hybrid planning approach (cf. Sect. 5.3.8) can then be used to
determine a sequence of Pareto points and adapt them online to the actual environ-
ment conditions, which might differ from those assumed during the multiobjective
optimization.

2.1.4.2 Objective-Based Controller

Concerning unknown and continuously varying disturbances of the railwayj, it is
not viable to control both values of the conflicting objective functions at the same
time, because the desired values are either unattainable or better solutions for both
objectives exist. Finally the aim of the objective-based controller is to drive the
system toward a desired relative weighting o of the objective values and to adjust
deviations of this weighting quickly.

The structure of the objective-based control scheme is illustrated in Fig. 2.11.
It can be seen as a hierarchical control structure. The classical Skyhook controller,
which parameters are adjustable at runtime, forms the lower control loop. The upper
loop is given by the objective-based controller. The current values of the objective
functions F(y(p*)), are computed using the output y(p*) of the dynamic system.
These values are transformed via the function s~! to the domain of the o param-
eterization, yielding o,,,. The variable o, is given by the relative length of the

2 Examples of Self-optimizing Systems 41

ddes
Objective [<*+—
ayse Based Aeur .
S I Controller [< s" e FV(P") =
P, & Dynamic |
: | Controller System
u o - — 1 |
Excitation : » Plant »| Evaluation | >

Fig. 2.11 Structure of the objective-based controller

orthogonal projection of the current point in objective space compared to the length
of a straight line between the terminal points of the Pareto front. The current and
desired o values serve as inputs to the objective-based controller, which outputs the
0,5 value. The transformation s is then applied to find the corresponding controller
configuration p* from the Pareto set, which is used in the Skyhook controller.

The control structure uses two different sample rates. While the lower control
loop operates with a very fast sampling time, the objective-based controller of the
upper loop operates in discrete time 7 with a significantly slower sampling rate.
The sample time 7 depends on the average amount of time necessary for the objec-
tive functions to converge to a relatively constant value in response to a change in
the Skyhook controller parameters effected by the upper loop’s previous cycle. The
objective-based controller is realized as a discrete PI-controller. A detailed descrip-
tion of the controller design and the realization is presented in [24] and [23].

2.1.4.3 Test Rig Implementation

The practical results at the Hardware-in-the-Loop test rig and the performance of
the objective-based controller show that the sample time 7" of each upper loop’s cy-
cle has to be 3.5 seconds so that the objective function values are converged. The
chassis framework simulates disturbances of the railway that change over time in
order to ensure unpredictable and non repeating characteristics. The results are il-
lustrated in Fig. 2.12. The desired value oy, of the relative weighting of the two
objective functions changes over time. The objective-based controller is able to ad-
just the system characteristics by calculating new configurations from the Pareto set
in response to a change in ¢,;. The response speed of the controller is approxi-
mately 1 to 2 sample times 7. The controller is also able to maintain the current
relative weighting o,,. The fluctuation of o, is the result of unpredictable and

42 K.S. Stille, C. Romaus, and J. Bocker

Fig. 2.12 Desired and cur-
rent o values over time

0.5

0 50 100 150 200
Timeins

continuously changing disturbances, but is sufficiently close to the desired value
Oes-

2.1.5 Hybrid Energy Storage System (HES)

Karl Stephan Stille, Christoph Romaus, and Joachim Bécker

The on-board power system of the RailCab is primarily fed by the power transfer
via the doubly-fed linear motor. As the power transfer is not sufficient under all op-
erating conditions, an on-board energy storage is necessary to continuously supply
the vehicle.

The requirements of the energy storage are high energy storage to offer long op-
eration as well as high power while charging and discharging to meet the demands.
When installed in the vehicle, the mass and volume also have to be small. Low costs,
a high efficiency and operating safety are implicit. As existing energy storage tech-
nologies do not satisfy these requirements, a combination of batteries and double
layer capacitors (DLC) in a Hybrid Energy Storage System (HES) was chosen.
The batteries serve as long term energy storage with high specific energy, while the
DLCs provide high specific power for short term. The storages are each connected
via bi-directional power converters to a common DC-link, which supplies the motor
and other loads of the vehicle (Fig.2.13).

2.1.5.1 Energy Management

With two independent energy storages, a degree of freedom exists for the distri-
bution of power. Energy Management is therefore necessary to benefit from this.
It should react to varying influences from the environment of the vehicle and ade-
quately adapt its behavior. Depending on the situation, different objectives can be
important.

2 Examples of Self-optimizing Systems 43

Hybrid Energy Storage System Propulsion Module and Vehicle Loads

NiMH- _||_||_| Ry |1 =

Battery v — T m

DC-Link Vehicle Loads

oic | [| €==p -

— 3~

Power

Converter

Propulsion Module

Fig. 2.13 Structure of the Hybrid Energy Storage System

As the RailCab is automatically operated, the future power demand can be suf-
ficiently calculated ahead by a predictor leading to the possibility of using optimal
optimization methods, that offer very high quality results [31]. For applications with
stochastically characterized power demands, suboptimal strategies can be used as
well [22, 30, 32]. Statistical planning techniques (cf. Sect. 5.3.9) could be used in
this context to learn power demands on certain track sections from previous obser-
vations.

The travel of the vehicle is divided into short sections of about 1-5 minutes de-
pending on the frequency and significance of changes in the power profile provided
by the predictor. The optimization of the operating strategy is then carried out for
each section. It can be described as an optimal control problem, stating the dis-
tribution of the on-board power of both storage devices at discrete points in time,
represented by the battery current as optimization variable. The time between these
discrete points is calculated depending on the amount of energy transferred from or
to the energy storage and the variation of the demanded power.

Two objectives are of particular importance:

e Minimization of the normalized energy losses Ejogses Of the HES — objective

function 1:
to+7T

fl = Elosses = /t plossesdt (25)
0
e Maximization of the power reserve to compensate for unexpected power peaks,
thus increasing availability, if there are deviations from the predicted power pro-
file. This is expressed by the minimization of an associated second objective
function Py, which represents the deviation of the DLC’s state of charge SOCpy ¢
from a medium value SOCieq:

(2.6)

1 fto+T _ 2
f2 =P < SOCDLC SOCmed) dr

e T 1o SOCDLC,max - SOCmed

44 K.S. Stille, C. Romaus, and J. Bocker

o
3

Parameters

f2:Power Reserve
o
»~

0.3
e.g. SOC of DLC
0.2
Environment
Influences 01}
Selection
Battery SOC Heuristic

0 R .
Quality of ¢ 0.3 0.35 fE O-T’_

Prediction 1:Energy Losses

< Corresponding Optimized Battery Current Profile

(Temperature) c 4 -
Power of iDM § ob---b--4----- b .

and AMS 3 : 5

> 0 T i

Lack of Energy 2 , i

g 2 '

0 50 100

Timeins

Fig. 2.14 Structure of the multi objective optimization of HES

Mathematically speaking, this problem is called a multi-objective optimization
problem (MOP), because the objectives compete with each other. There are differ-
ent approaches to solve MOPs. In the case of the Hybrid Energy Storage System,
a combination of the set-oriented multiobjective optimization methods described
in Sect. 5.3.1 and a discrete heuristic search are applied. The set-oriented meth-
ods offer high quality results and an overview of the possible objective values by
approximation of the complete Pareto set (Fig. 2.14). However, as they are compu-
tationally costly, they are only applied to well-known, often recurring track sections
with specific power profiles precalculated in advance, e.g. in shuttle or suburban
rail service. For other track sections, the heuristic search is applied online, showing
inferior quality of results due to discretization of the optimization variable and only
local optimality [31]. Currently a new on-line Pareto search, which is described in
[40], is being implemented.

2.1.5.2 Self-optimization

As shown in Fig. 2.14, both objective functions can be varied in a wide range. For
example, the losses f; can be reduced by 23 % inbetween the different solutions,
f>» by even 98 %. However, both objectives can not be minimized at the same time.
So with two objectives and different possible solutions, the question arises which

2 Examples of Self-optimizing Systems 45

solution should be selected. For classic operating strategies, the weighting of objec-
tives has to be fixed during controller design, accepting a trade-off for all possible
situations. Adaptive strategies can ensure this weighting even under a varying sys-
tem environment. But the weighting of objectives is fixed, which leads to suboptimal
solutions in many cases.

With the concept of self-optimization, the relevance of objectives is selected on-
line during the operation of the RailCab. Thus, the system can autonomously react
to varying surroundings and choose the appropriate solution. This is demonstrated
below by the example of a RailCab traveling twice on the same track section with
the same velocity and thus the same power demand from the HES.? During the first
travel, however, the power demand is unassured and can only be estimated with
high uncertainty, e.g. as no data of previous travels is available or as there are dis-
tinct variations in the predicted power, e.g. due to weather conditions. Then, the
same track section is passed over again, this time with a reliable prediction of power
due to favourable conditions.

The self-optimization Energy Management now performs the 3 steps of self-
optimization (Fig. 2.14) for each following track section:

1. Situation analysis: Relevant parameters like costs for power transmission, reli-
ability of prediction or state of charge of the storages are analyzed.

2. Determination of relevance of objectives: The relevance of objectives is deter-
mined e.g. by heuristic rules. Objective one ("minimize energy losses") is chosen
preferably when energy is low on the on-board system, costs of power trans-
mission are high and the power prediction is dependable. Otherwise, preference
shifts to the second objective to offer a power reserve.

3. Adaptation of system behavior: The corresponding optimal operating strategy
is determined. In case of well-known sections and pre-calculated strategies by the
set-oriented methods, a solution is taken from a database, otherwise the heuristic
search is applied, weighting the relevance of objectives according to the former
step. In the second case the hybrid planning approach (cf. Sect. 5.3.8) can be
used.

The result of the self-optimization process is presented in Fig. 2.15 and compared
to a strategy with static System of Objectives for the described travels. On the first
travel, the self-optimization strategy mainly follows objective f, to ensure a high
power reserve to compensate for the uncertainties in power prediction, reaching
better values up to 82 % cp. to the static strategy. Objective f; is disregarded. During
the second travel, now objective f; is prioritized, improving by 23 % cp. to the
strategy used so far. The mean power dissipation is lower by 13 % cp. to the static
strategy. Obviously, the objectives relevant during the respective travel are better
achieved by the self-optimization strategy compared to the operating strategy with
static System of Objectives.

Additional details on the optimization of power flow in the Hybrid Energy Stor-
age System are described in [30, 31, 32, 40].

3 The same track section was chosen to clearly compare the results of self-optimization. In
real operation, the mentioned conditions will apply to different sections as well.

46 K.S. Stille and J. Bocker

Travel 1: Travel 2:
Maximize Power | Minimize Losses
Reserve I Objective Values
kil S 0.6 .
[Power Dissipation| | & :
. ' S |
= 0.04 f------o--- o
b i
o '
S 0.03 f---mmoooadenaons
T .
R
8 0 .
. 0.4 0.5
kN

f,:Energy Losses

S e R LSETSY A\

7 |Legend

—-H~ S.o. System of Objectives
-3 Static System of Objectives

20 40 6 80 100 120
Change of System Objectives —»| Time ins

|
05 ' : ‘
0 0

Fig. 2.15 Self-optimization operating strategy compared to an operating strategy with static
System of Objectives

Self-optimization adapts the relevance of competing objectives according to the
environment of the system. It offers low losses in uncritical situations while ensuring
a secure and dependable operation at demanding travels. Thus, the self-optimization
strategy superiorly meets the objectives that are relevant to the respective situation
compared to static strategies, achieving a distinctly enhanced quality of results.

2.1.6 Crosslinked Test Benches

Karl Stephan Stille and Joachim Bocker

The RailCab’s energy needs are transferred via contactless power transfer in the
Intelligent Drive Module (cf. Sect. 2.1.2). As the energy transfer is not directly con-
trollable, the Hybrid Energy Storage System (cf. Sect. 2.1.5) is necessary to sup-
ply the entire vehicle. The RailCab consists of several Mechatronic Function Mod-
ules explained in the sections before, each one using self-optimization for the local
optimal operation.

For an efficient operation, the RailCab needs to find an overall optimal operation
point. This is accomplished by a distributed crosslinked Energy Management.

As the test benches are situated in different locations, influences of the function
models on each other are not directly verifiable. For this purpose all test benches
have been interconnected via Ethernet.

2 Examples of Self-optimizing Systems 47

Reflecting the prior sections, the mechatronic function modules of the RailCab
have the following conflicting objectives:

e Intelligent Drive Module

1. minimize power loss
2. maximize transferred power

e Hybrid Energy Storage System

1. minimize power loss
2. maximize power reserve (ability to react on unforseen power demands)

e Active Suspension Module

1. minimize energy consumption
2. minimize chassis acceleration (which is the maximization of comfort)

The common objective of all modules is "minimize energy consumption". From
this point it is possible to globally optimize the energy requirement of the RailCab
on AMS level, as well as finding a Pareto trade-off between the efficiency needs and
the other objectives.

2.1.6.1 Structure of the Crosslinked Test Benches

At the beginning of the development it is necessary to create a common under-
standing of the system between the developers involved, to be able to realize the
Crosslinked Test Benches. Therefore the system is modeled using the specification
technique CONSENS (cf. Sect. 4.1). Figure 2.16 shows its active structure and the
interaction of the function modules. The environmental influences are not shown to
keep the structure simple. In the lower part the three test benches, the Intelligent
Drive Module (cf. Sect. 2.1.2), the Active Suspension Module (cf. Sect. 2.1.4) and
the Hybrid Energy Storage System (cf. Sect. 2.1.5) can be seen. Only those three test
benches communicate with each other in hard real time as they are test benches with
real mechanical or electrical hardware, exchanging information about system states
and instantaneous power. The data transmission of the instantaneous power emu-
lates the power flow in the vehicle’s electrical system which can not be modeled by
real power flow as the test benches are not located close to each other.

The optimization block above does not have a controller or a reflective operator.
The complete optimization is done in soft real time, stating that the optimizer is a
cognitive operator for the system on AMS level.

Only dependability functions are added to each part of the system to check for
malfunctions and to enable real time capability reactions. This way they are imple-
mented as reflective operators.

Data-handling of the whole vehicle is combined in the vehicle management. The
track data processing communicates with data servers near the track fetching infor-
mation about velocity limits, slopes, environmental data and track/stator positions
measured previously by other vehicles on the same section. While fetching informa-
tion about the next section, track data processing transmits its own measured data of

48 K.S. Stille and J. Bocker

Crosslinked Test Bench

Vehicle Management

1

1

1

0 p

: 1

= :'8 R Y Y pareto point | """
o, O :g N pareto set
D |0 i5) ! \
O o= ' | |
B ol | |
21218 B\ S

1
o T 1 A paretoset ________ 35 |
0 = 515) | Sio !
g @l oo paretopoint _______ H P19 H
[=1 ! 1 -9‘::2 1
[= { ! Sio !
. :5' 31 0 ! =3 !
I 7+ 0 | 19, 0
1 ! :(‘?
0 |
1

Ppredicted power profile (iDM) _ i
< energy > iDM
__ instantaneous power (iDM) \

energy
Legend
(D) system -~ information flow — energy flow
element

Fig. 2.16 Active structure of the Crosslinked Test Benches

the previous section. By this process the database on the data server near the track
is always up-to-date.

2.1.6.2 Optimization

The optimization itself consists of an Energy Management and a profile generator.
The profile generator creates profiles of track, velocity, slope and needed thrust for
the following section based on the information from the track data processing and
energy presets given by the Energy Management. Those energy presets are evaluated
based on the needed energy for the travel, the states of charge of the energy storage
devices and the possibility to get energy transmitted from the stator.

In addition, to give presets to the profile generator, the Energy Management
coordinates the overall multiobjective optimization of the whole system. For this, it
receives Pareto sets from the MFM which were created based on the current infor-
mation about the following track section.

As the HES needs to know the power demand of the other MFMs, its Pareto set
can not be calculated nor chosen prior to get information about the power profile
from the iDM and the ASM.

To break this optimization loop which is not guaranteed to converge, a hierarchi-
cal optimal control has been chosen. It combines reduced models of the test benches
into one optimization problem. As components on one level of optimization are not

2 Examples of Self-optimizing Systems 49

Fig. 2.17 RailCab joining a
convoy at a switch

allowed to depend on each other, the HES has been raised to an intermediate level
between the mechanical test benches and the Energy Management System.

In order to exploit the hierarchical problem structure and to combine the results
obtained by the multiobjective optimization, the hierarchical hybrid planning (cf.
Sect. 5.3.8) can be used to select appropriate Pareto points determining the parame-
ter settings for such a hierarchical mechatronic system.

2.1.7 Convoy Mode

Christian Heinzemann and Claudia Priesterjahn

The objective of the convoy mode (cf. Sect. 2.1) is the optimization of the energy
consumption of the RailCab [13]. As a result of the small distances between the ve-
hicles, each RailCab drives in the slipstream of the RailCab which is driving directly
in front. This reduces the air resistance and thereby reduces the energy needed for
driving.

If a RailCab is driving alone but can benefit from convoy mode, it needs to adapt
its behavior in order to enter a convoy. After the behavior adaptation, the RailCab
may realize the behavior of the convoy coordinator or a convoy member: At any
time, one RailCab needs to serve as a convoy coordinator. The convoy coordina-
tor drives ahead and defines, e.g. the speed for the convoy. In addition, it needs to
notify all other RailCabs in the convoy, called convoy members, about acceleration
and braking maneuvers to ensure convoy stability and prevent collisions. If another
RailCab wants to join the convoy, the coordinator needs to decide at which position
the RailCab may safely enter the convoy depending on its braking characteristics
(cf. [10, D.0.S.0.M.S. Sect. 3.2.10], [6]).

The behavior of the convoy coordinator and convoy members is realized by soft-
ware and communication protocols to coordinate the RailCabs within the convoy.
This software realization is necessary, because RailCabs drive without mechanical

50 A. Jungmann et al.

coupling. The loose coupling enables RailCabs to join or leave a convoy at full speed
as shown in Fig. 2.1.7.

If a RailCab wants to join a convoy as a member, it needs to adapt its behavior
for driving in the convoy by performing software reconfiguration. First, it needs to
instantiate a software component that implements the communication protocols that
are necessary for the convoy mode. Second, it needs to switch to a different velocity
controller. If a RailCab drives alone or as a coordinator, the speed of the RailCab
is controlled based on the current speed and the reference speed. If a RailCab is a
member, it needs to switch to a velocity controller that also considers the current
distance to the preceding RailCab in the convoy. Finally, the aforementioned soft-
ware component and the new velocity controller need to be connected because the
RailCab will now receive the reference speed from the coordinator of the convoy
and must not decide on its speed itself.

To guarantee the correctness of the reconfiguration behavior and the communica-
tion protocols, we apply formal verification. The intention of the formal verification
is to proof that the RailCab will have a correct software architecture at any given
time, e.g. that a RailCab will only enter the convoy if it is approved by the coordi-
nator, and that the communication protocol satisfies the required safety properties
as illustrated in Sect. 5.2. Our formal verification includes the verification of timing
properties as well [3], because the system has to react in time. In case of an emer-
gency brake for example, each convoy member needs to be notified in time to avoid
collisions. A particular difficulty for the verification is that the number of RailCabs
participating in the convoy may vary during runtime.

2.2 Miniature Robot BeBot

Alexander Jungmann, Bernd Kleinjohann, Lisa Kleinjohann, Christoph Rasche, and
Thomas Schierbaum

The miniature robot BeBot was designed as research platform to design and evaluate
swarm intelligence algorithms, dynamic reconfiguration and multi-agent systems
[11, 14]. Furthermore it is also a test bed for the technology "Molded Interconnect
Devices" (MID). MID-parts are three-dimensional plastic parts, manufactured by
partially metalizing their surface. The housing of the robot is realized as such a
MID-component. It comprises mechanical and electrical components.

The next sections will describe the hardware and software system of the BeBots.
Additionally, extension modules which are used for specific tasks are introduced.
The last section will show the step by step implementation of self-x properties to
the BeBot.

2.2.1 Basic Vehicle

The miniature robot BeBot has a size of approximately 9cm x 9cm x 9cm. Its chassis
uses the technology MID and has traces directly on the body surface which offers

2 Examples of Self-optimizing Systems 51

new possibilities for the synergistic integration of mechanics and electronics (cf.
Fig. 2.18) [20]. This technology is used for mounting 12 infrared sensors, a micro-
controller, several transistors and resistors for preprocessing directly on the robot
chassis. The drive of the robot consists of a chain drive. Together with two 2 W DC
gear motors with built-in encoders, this robot provides the robots with robust motion
capabilities, even on slightly rough ground. Such a drive supports omni-directional
movements, as it allows the BeBot to turn right on the spot. Two lithium-ion accu-
mulators are used as power supply. One supplies the power to the overall system
while the other one is dedicated to the motor drives.

The BeBot uses a modular concept of information processing with two board
slots. The lower board provides basic functions and power supply. Additionally, it
contains several sensors, like a three axis acceleration sensor, a yaw rate gyroscope,
and a sensor for monitoring the charging level of the battery. The upper board is
responsible for wireless communication based on Zig-Bee, Bluetooth, and W-LAN.
It is equipped with a low power system on chip, with package on package mem-
ory and provides an ARM Cortex-A8 600 MHz high performance processor, a TI
Co64x+ digital signal processor, 256 MB main memory and 512 MB flash mem-
ory. Additionally, the board also stores four groups of three high brightness tricolor
LEDs. LEDs, allowing the BeBots to express their internal state via different col-
ors. The robots are equipped with a camera and twelve infrared sensors, used for
distance measurement and environment recognition. Based on this equipment, it is
possible to perform complex calculations for determining the robot’s behavior, e.g.
image processing algorithms directly on the BeBot. Different techniques for energy
saving, like dynamic frequency and voltage scaling as well as dynamic power down
of unused hardware components, including RF processing, provide powerful com-
putation capabilities with long battery life. Additionally, I2C, UART, USB, SDcard,
camera, and memory interfaces as well as a small module slot, provide great expan-
sion capabilities. On top of the body a light guide realized by a satined hemisphere
and a cover plate with integrated WLAN-Antenna are installed. An infrared com-
munication interface allows the equipping of the BeBots with mechanical extension
modules wirelessly.

2.2.2 Extension Modules

In order to make the BeBot universally applicable, three extension modules have
been designed to allow the BeBots to handle different items [11]. These modules
enhance the range of functions of the BeBots as described in the following.

The first module is the grafter shown in Fig. 2.19 (a). Its main task is to push
different objects in a controlled manner. Objects can be stored within the graft unit
allowing controlled object guidance, which is advantageous for a controlled deposit-
ing. Furthermore, slopes can be passed without losing objects located in the unit.

The second extension module is the lifter, which is built similarly to a fork-
lift as depicted in Fig. 2.19 (b). Its task is to lift different items and, for instance,
load them onto the transporter module described below. The gripping unit can be

52 A. Jungmann et al.

Light guideand cover platewith integrated
WLAN-Antenna

Expansion module: 600 MHz-processor, Linux OS, 512
MB Flash, 256 MB RAM and 430 MHz-DSP for real-time
image processing.

Base module: 60 MHz-processor (ARM7), 256 KB Flash,
32 KB RAM for drive control, sensor analysis and energy
management.

Sensor system: 12 Infrared-sensors on the body for
360°-coverage of the environment and an SVGA-
camera.

Drives: Two electro-miniature drives with
each 2,8 W power and high efficiencv and
high acceleration.

3D-MID chassis

Fig. 2.18 The miniature robot BeBot. On the left-hand side the two boards of the robot are
depicted while on the right-hand side the MID technology is shown.

moved vertically. This is achieved by a gear rack attached to a gear wheel. The gear
wheel is attached to a gear box, which is coupled to an electric engine. The gripping
mechanism is also realized with an electric engine. The engine is coupled with a
gear wheel, which in turn is attached to the grippers. By rotating the gear wheel the
grippers are moved horizontally. An infrared sensor ensures that an object located
between the gripping unit can be lifted correctly. Furthermore, the gripping unit is
equipped with pressure sensors to control the gripping power generated by the elec-
tric engine. The lifter is controlled via a separate conductor board. The power supply
is realized by a rechargeable battery.

The third extension module is the transporter. It is able to store up to four objects
in separate cavities (cf. Fig. 2.19 (c)). Each object can be unloaded individually
with the help of two electric drives, each serving two cavities. Objects located in a
single cavity can be detected via infrared sensors installed on each side of the cavity.
According to the modular assembly of the BeBot the transporter is also controlled
via the same separate conductor board and rechargeable battery like the lifter.

The conductor board provides four half bridges to control two electric drives or
four solenoids, four LED drivers and analog inputs to detect objects with infrared
sensors and four general purpose, inputs to interpret two motor encoders. The com-
munication between the BeBot and the extension module is realized by an infrared
communication interface. If the extension module is detected and identified by the
BeBot, it sets different colors at the light guide: green for the grafter, blue for the
lifter and red for the transporter.

2 Examples of Self-optimizing Systems 53

a) grafter b) lifter ¢) transporter

Fig. 2.19 BeBots equipped with the extension modules

2.2.3 Operating System

To execute programs directly on the robots, the BeBots provide the Linux distribu-
tion OpenRobotix [25]. It is based on a modified Linux kernel 3.0.32. The standard
GNU C library is included and udev is used as device manager. Several standard
GNU and Unix tools are available by the use of BusyBox, which provides a fairly
complete software environment for any small and embedded system. The system can
be built via an extension of the OpenEmbedded development environment, called
OpenRobotix [25]. It allows the creation of an embedded Linux operating system.
OpenRobotix enables the cross compilation of software packages for the use of the
ARM processor of the BeBot. The existing software branch was extended to con-
tain the robot specific information, patches and additional software, like the Player
network server and drivers for the robot hardware.

The Linux kernel supports the WiFi device and all standard communication pro-
tocols. By using Linux BlueZ protocol stack, the Bluetooth communication, and
all standard Bluetooth protocols like RFCOMM and BNEP are supported. Addi-
tionally, all Linux and platform-independent or ARM compatible protocols can be
ported to the robot platform. One example is the ad hoc wireless mesh routing dae-
mon OLSRD. It implements the optimized link state routing protocol and allows
mesh routing on any network device.

In addition, system software concepts for self-optimizing applications were de-
veloped, as introduced in detail in Sect. 5.5. The real-time operating system ORCOS
in contrast to Linux provides guaranteed real-time behavior. It has been ported to the
BeBot as well.

54 A. Jungmann et al.

g @ —
: ~ transporter ,’ﬁﬁl
o® % o

7 lifter

objects . i‘,v/ ®
..'L grafter @

defined
area

Fig. 2.20 Schematic overview of the application scenario

2.2.4 Implementing Self-X Properties

To investigate and evaluate algorithms that enable an entire group of BeBots to opti-
mize its cooperative behavior while simultaneously taking environment changes into
account, a complex application scenario was designed: Objects of different color
and geometric shape are randomly distributed throughout the entire playground.
Smaller sections (drop spots) with the same color of the existing objects are addi-
tionally placed inside the area (cf. Fig. 2.20). The positions of the objects as well
as the drop spots are not known in advance, but have to be found by the group of
BeBots. The main collective task for the group of BeBots is to locate all of those
objects and bring them to the drop spots with the corresponding color.

In consideration of the described scenario, the integration of self-optimization
seems obvious: it is nearly impossible to take all situations, which may appear dur-
ing a real world scenario, into account, while implementing the behavior of a single
BeBot. Therefore, a BeBot must posess the ability to adapt its behavior to unfore-
seen situations and changes in the environment (cf. Sect. 1.2). When incorporating
objectives like "collect the objects as fast as possible" or "expend the lowest pos-
sible effort while sticking to a given deadline" occur, we are talking about external
objectives that have to be optimized during operation mode. With respect to the
two mentioned objectives, the BeBots should self-optimize their behavior in order
to minimize the required time for collecting all objects and to minimize the effort
in terms of the overall power consumption, respectively. Furthermore, the robots
apparently have to involve self-organization mechanisms in order to apply appro-
priate team coordination for accomplishing the current goal as a collective. To be
able to perform the described scenario in a self-optimizing manner, different prop-
erties were developed. The main steps will be explained in the following.

To allow for deliberative behavior, first of all a single BeBot has to incorporate
means for realizing self-awareness: a BeBot not only has to react to sensor infor-
mation, but to maintain a model of its current state as well as its environment in

2 Examples of Self-optimizing Systems 55

Fig. 2.21 Cooperation of
the BeBots in the application
scenario

order to analyze the current situation and create a plan for future actions. Within
the scope of an initial application scenario, in which a BeBot autonomously has to
fulfill the external objective of driving slalom through a chain of small traffic cones
[17], a light-weight architecture incorporating a reactive component based on Motor
Schemes [25] for reactive behavior, a deliberative component for planning behavior
based on Hierarchical State Machines as well as an efficient color-based image pro-
cessing approach was realized [19]. Based on the processed and abstracted image
data, the BeBot is able to reason about its current situation and to adapt its behavior
according to its currently active internal objective such as passing the next traffic
cone either on the left side or on the right side.

In a next step, the extension modules were integrated into a separate application
scenario, where a BeBot equipped with a lifter module had to cooperate with a Be-
Bot equipped with a transporter module in order to load detected items (external
objective) (cf. Fig. 2.21). For enabling transporter and lifter to cooperate with each
other during the loading process, a message based communication component was
realized. To enable the lifter to successfully load an item into a cavity of the trans-
porter, the light guide of the transporter was used to indicate free cavities. Based
on the image processing approach, the color code indicated by the transporters light
guide was decoded and used by the lifter to identify an empty cavity and to correctly
align to the cavity for the loading process. In terms of the self-optimization process,
the BeBots’ capabilities of analyzing their current situation were extended in order
to determine their situation dependent, internal objective such as "searching for ob-
jects" or "loading objects onto the transporter”. In a final step, the BeBots’ behavior
for the initially described scenario was realized by combining all developed compo-
nents. To separate the localization problem from the situation analyzing phase, the
entire scenario took place in a test bed [18] that is able to determine each BeBot’s
position on the playground based on unique landmarks. By means of the image pro-
cessing approach, items as well as team mates can be detected by a single BeBot.
Reactive behavior enables a BeBot to avoid obstacles (inherent objective). The more
complex deliberative component allows for planning and decision-making in order
to change strategy, depending on the current game situation [27]. In order to enable
a BeBot to adapt to environmental changes and to improve its individual behavior, a

56 P. Reinold and A. Trichtler

statistical planner based on Reinforcement Learning was developed (cf. Sect. 5.3.9).
Organization between team mates is realized based on a distributed communication
component.

There exist still a lot of possibilities for improving the BeBot behavior. In fact,
machine learning techniques can be applied to most of the mentioned components
in order to improve the BeBot’s capability of adapting its behavior according to
unpredictable situations. Nevertheless, the BeBot with all its hardware capabilities
is a decent platform for developing and investigating algorithms that realize self-x
properties under real-world conditions. The entire self-optimization process can be
seamlessly incorporated into the BeBot based on the conceptual design described in
Chap. 4.

2.3 X-by-Wire Test Vehicle

Peter Reinold and Ansgar Tréchtler

As an example to demonstrate a self-optimizing system, the fully active mecha-
tronic test vehicle Chameleon was developed (cf. Fig. 2.22). It is actuated entirely
electronically. The necessary energy is provided by a lithium-ion accumulator. It
can carry one person (the driver) and is controlled via a joystick. The Chameleon
is an X-by-wire vehicle i.e. there are no mechanical couplings between the control
element (in our case the joystick) and the actuators. A rapid prototyping hardware
is used as the control unit. The empty weight is approx. 280 kg and the maximum
speed is about 50 km/h.

It is built up modularly and has four identically constructed corner modules with
three DC motors each: One for steering, one for driving and one for an active sus-
pension. They enable

e all-wheel drive
e single-wheel steering
e active suspension.

Thus all relevant degrees of freedom of the wheel (except for the camber angle)
can be influenced. This multitude of possible interventions enables the influence of
longitudinal and lateral dynamics systematically. The system is overactuated: Thus
there are degrees of freedom to realize the same global movement.

The driving motors are used to drive and brake the vehicle. In this process the
driving motors act as generators and make recovering energy possible. Addition-
ally the single-wheel steering enables the deceleration of the vehicle by turning the
wheels inwards. The mechanical brake is used only in the case of an emergency.

Even a cornering manoeuvre can be realized in several ways:

e conventional front-wheel steering,

e all-wheel steering,

e different driving torques/wheel speeds on the left- and right-hand sides (torque
vectoring),

e a combination of all-wheel-steering and torque vectoring.

2 Examples of Self-optimizing Systems 57

Fig. 2.22 Test vehicle
Chameleon

2.3.1 Vehicle Dynamics

The degrees of freedom of the vehicle’s movement can be allocated to different
domains of the vehicle dynamics: the vertical, the longitudinal and the lateral dy-
namics. The combination of the first two is called the horizontal dynamics which
describe the planar movement of the vehicle. It can be described by three degrees of
freedom: the yaw rate ys (rotational speed around the vertical axis), the velocity v
and the slip angle 3 (angle between the longitudinal direction of the vehicle and the
velocity vector). The resulting longitudinal and lateral forces at the center of gravity
of the vehicle Fyy and F;y and the yaw moment M,y can be computed unambigu-
ously by the three kinematic values v, 3, and {r and their temporal derivatives with
the inverse dynamics:

Fx,v:mv(v~cosﬁ—v(lj/+[3)-sinﬁ) 2.7
Fyy =my(v-sinf8 +v(li/+B)~cos[3) (2.8)
My =Jy -y 2.9)

my is the mass of the vehicle and J,y is its moment of inertia about the yaw
movement.

As each tire has a longitudinal force Fy; and a lateral force Fy;, there are in total
the eight horizontal tire forces which can be influenced by the driving and steering
motors. The index i=1..4 represents the wheel. To compute these tire forces the well-
known Pacejka tire model is used [26]. Among other things the tire forces depend on
the longitudinal tire slip A; and the slip angle o;*. These eight forces result in three

4 The slip angle o; is the angle between the tire velocity and its longitudinal axis.

58 P. Reinold and A. Trichtler

forces/moments at the center of gravity (Fyy,F,v,M.yv). Thus there are degrees of
freedom for the force distribution. With §; to be the steering angle of the different
wheels, one gets:

Fov = f(Fi, Fyi, 6) (2.10)
Fyv = f(Fi,Fyi, &) (2.11)
M.y = f(Fy;, Fyi,) (2.12)

The vertical dynamics can be used to improve comfort and safety independent from
the horizontal dynamics control or to influence the horizontal dynamics system-
atically by changing the wheel loads. Thus there are degrees of freedom for the
distribution of the forces to the tires.

2.3.2 Self-optimizing Integrated Vehicle-Dynamics Control

One aim of the CRC was to develop a self-optimizing vehicle-dynamics control,
which uses degrees of freedom that were described in the section above for an
optimization to ensure an optimal realization of a desired movement in changing
environmental conditions. E.g. in case of a low state of charge of the battery it is
important to save energy. In other driving situations the tire wear may be important.
For safety reasons the utilization of the adhesion potential has to be minimized. As
these objectives are contradictory, a compromise between them has to be found.

A simplified structure for the self-optimizing vehicle-dynamics control is pre-
sented in Fig. 2.23. First the reference values for the velocity v, the slip angle 3 and
the yaw rate | are generated based on the driver’s input. As the driver gives only
two input values with the joystick (the longitudinal deflection x; and the lateral de-
flection y;) but three kinematic values to be computed, there is a degree of freedom
in this set-point generation. Based on these set points, the desired forces and torques
at the center of gravity can be computed with the inverse dynamics as presented in
Eqgs. 2.7-2.9. A model-based optimization distributes theses forces at the center of
gravity to the tires and computes the optimal values for the tire slips A; and the tire
slip angles ¢; for the four wheels. Also the vertical dynamics can be considered in
this optimization. The optimized values of A; and o; are used as reference values for
the local controllers of different actuators. Single-wheel actuation enables the influ-
encing of A; and ¢ systematically by using the driving motors and steering motors.

The optimization objectives of the vehicle-dynamics control are [29]:

e Minimization of the tire wear by minimizing the tire slip angles ¢;:

min (fl =Y oci> (2.13)

i=1..4

2 Examples of Self-optimizing Systems 59

.. LV
JE vehicle ! {ﬁ]
5 v

%r
|

5 IR
: T i
‘ [x; ¥/ | :
, P
' |generation 1o
' |of set-points 7 computing and | . : H
' AT optimization —»! control of wheel — o
: v B v] P speed P
' ref [
. [computing of vehicle computing of L
1 |the forces at model S the sﬁeeri?\g on o
. |the center of (horizontal angles Lo
. |gravity Fioy and vertical) o
; Fol || F, lcompuingof 1 g, 1 |
' information M,, tire model |- - —»'the vertical -l
' z, H
' processing m_ct_u_aﬂgg forces;

Fig. 2.23 Control structure without closed-loop control [29]

e Minimization of the energy consumption by minimizing the longitudinal tire

forces’:

min (o= Y F (2.14)
04 i i=1..4
e Minimization of the maximum utilization of the adhesion potential represented
by the ratio between the magnitude of the tire force and its adhesion limit:

\/F2.i+Fy2.i
min = max ' ' (2.15)
oA =14 U-F;

The purpose of the third objective is to increase the systems reliability.

As the vehicle has to perform its driving task, the realization of the desired forces
are regarded as constraints. Thus the realization of the desired forces/torques at the
center of gravity have to be realized by the tire forces (cf. Egs. 2.10-2.12). Even the
technical limitations of the driving torques M; and the steering angles ; have to be
taken into account as constraints. The physical limitation of the tire forces is already
considered in the tire model, which is the basis of the optimization. Hence it doesn’t
need to be considered as an additional constraint.

3 In the case of braking negative longitudinal tire forces can be used for energy recovery.

60 P. Reinold and A. Trichtler

Furthermore it is possible to consider actuator breakdowns or to eliminate degrees
of freedom which do not exist by using additional constraints. Thus the optimization
strategy can be adapted to other vehicles and actuator concepts [2], [28], [39]. Ad-
ditional constraints can be included e.g. to prevent actuators from damage.

The three objectives (Egs. 2.13-2.15) are contradictory - depending on the driving
situation. The multiobjective optimization problem is solved as a weighted sum of
the objectives:

3
min (f = & fk> (2.16)
oA k=1
The optimization is used to compute reference values for the actuating variables.
Depending on the situation the weighting factors g; are changed.

E.g. if the battery’s state of charge low, the objective to minimize the energy
consumption becomes more important. This is the basis for a self-optimizing
vehicle-dynamics control which changes the weighting of the objectives
autonomously depending on the actual driving situation. Thus the behavior can be
adapted automatically to changing environmental conditions.

In particular for braking maneuvers so-called set-oriented methods were used for
the multiobjective optimization of the distribution of the tire forces. The applied
technique is described in more detail in Sect. 5.3.1.

Due to model inaccuracies and disturbances differences between desired and ac-
tual movement are still possible. Thus a closed-loop controller is necessary. The
driver of course can act as the controller and compensate for such differences. This
is basically the same task a driver performs in conventional cars. But this would
not tap the potentials of this control approach completely. The velocity v, the slip
angle 3 and yaw rate s have to be controlled. Thus the control strategy includes
vehicle-dynamics control systems and driver assistance systems like electronic sta-
bility control (ESC) and cruise control. If we also use an additional feedback-control
we should avoid adding values after the optimization because this would adulterate
the optimized variables. Thus an outer feedback-control loop should not use the slip
variables A; or the slip angles ¢; as actuating variables. This would eliminate the
benefit of the optimization since the sum is no longer optimal concerning the used
objectives. For this reason we consider the optimization as a part of the plant. This
enhanced plant consists of the optimization, the local controllers and the vehicle
itself (cf. Fig. 2.24). It has three input and three output values. In this case the en-
hanced plant is no longer over-actuated and the optimization results are not adulter-
ated. With some simplifications the enhanced plant can be described as a nonlinear
control-affine state space model. Hence we can use exact linearization techniques.
The nonlinear decoupling feed-forward controller M;,(x) and the feed-back con-
troller ry;, (x) are computed in the way described detailed in [16], [9] and [21]. The
resulting overall behavior of the closed-loop control system consists of three de-
coupled first-order lag elements. In addition, an outer control loop, a conventional
2-degree-of-freedom structure is used. Due to the decoupling and linearization of
the plant, the controller C of the outer loop can be designed with the methods used
for LTI-SISO-systems. The resulting structure is presented in Fig. 2.24.

2 Examples of Self-optimizing Systems 61

14 14
{xi B B
v v
Yy olell ¢/ & 4
/gl| set-point L M,, (x) | optimization | 0@l 1] A
generation _ control
enhanced plant
X
c 1 (%) N
linearization

Fig. 2.24 Structure with control loop with the enhanced plant, the linearization and the
feedback-control loop

As a consequence of this control structure the driver is decoupled from the ac-
tuating variables of the real actuators. E.g. the driver has no direct influence on the
four steering angles §;. The driver describes how the vehicle should move, but not
how this should be realized.

By using self-optimizing techniques a multitude of different and contradictory
objectives can be achieved. An optimal compromise for the current driving situation
can be found instead of a fixed compromise which may not be optimal for each
specific situation.

References

1. VDI 2057, Part 1: Human Exposure to Mechanical Vibrations - Whole-body Vibration
(2004)

2. Andreasson, J., Knobel, C., Buente, T.: On Road Vehicle Motion Control - Striving To-
wards Synergy. In: Proceedings of the 8th International Symposium on Advanced Vehi-
cle Control, Taipei (2006)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

4. Bocker, J., Schulz, B., Knoke, T., Frohleke, N.: Self-Optimization as a Framework for
Advanced Control Systems. In: Proceedings of the 32nd Annual Conference on IEEE
Industrial Electronics, Paris (2006)

5. Ettingshausen, C., Hestermeyer, T., Otto, S.: Aktive Spurfithrung und Lenkung von
Schienenfahrzeugen. In: Tagungsband der 6. Magdeburger Maschinenbautage, Intelli-
gente technische Systeme und Prozesse. Grundlagen, Marburg (2003)

6. FlaBkamp, K., Heinzemann, C., Kriiger, M., Steenken, D., Ober-Blobaum, S.,
Schifer, W., Trachtler, A., Wehrheim, H.: Sichere Konvoibildung mit Hilfe opti-
maler Bremsprofile. In: Gausemeier, J., Rammig, F.J., Schifer, W., Trachtler, A. (eds.)
Tagungsband Zum 9. Paderborner Workshop Entwurf mechatronischer Systeme, HNI-
Verlagsschriftenreihe, Paderborn (2013)

7. FlaBkamp, K., Ober-Blobaum, S., Ringkamp, M., Schneider, T., Schulte, C., Bocker, J.:
Berechnung optimaler Stromprofile fiir einen 6-phasigen, geschalteten Reluktanzantrieb.
In: Tagungsband Vom 8, Paderborn. Paderborner Workshop Entwurf mechatronischer
Systeme. Heinz Nixdorf Institut Verlagsschriftreihe, Paderborn (2011)

62

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.

References

FlaBkamp, K., Ober-Blobaum, S., Schneider, T., Bocker, J.: Optimal Control of a
Switched Reluctance Drive by a Direct Method Using a Discrete Variational Principle.
In: Proceedings of the 52nd IEEE Conference on Decision and Control, Florenz (2013)
Foellinger, O.: Nichtlineare Regelungen II, 7th edn. Oldenbourg Verlag, Miinchen (1993)
Gausemeier, J., Rammig, FJ., Schifer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

Gausemeier, J., Schierbaum, T., Dumitrescu, R., Herbrechtsmeier, S., Jungmann, A.:
Miniature Robot BeBot - Mechatronic Test Platform for Self-x Properties. In: Proceed-
ings of the 9th IEEE International Conference on Industrial Informatics, Lisbon, pp.
451-456 (2011)

Geisler, J., Witting, K., Tréchtler, A., Dellnitz, M.: Multiobjective Optimization of Con-
trol Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th
IFAC World Congress, Seoul (2008)

Henke, C., Tichy, M., Schneider, T., Bocker, J., Schifer, W.: Organization and Control
of Autonomous Railway Convoys. In: Proceedings of the 9th International Symposium
on Advanced Vehicle Control, Kobe, pp. 318-323 (2008)

Herbrechtsmeier, S., Witkowski, U., Riickert, U.: BeBot - A Modular Mobile Miniature
Robot Platform Supporting Hardware Reconfiguration and Multi-standard Communica-
tion. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady,
K.S., Riickert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson,
J., Wong, C.-C., Verner, 1., Ahlgren, D. (eds.) Progress in Robotics. CCIS, vol. 44, pp.
346-356. Springer, Heidelberg (2009)

Holscher, C., KeBler, J.H., Kriiger, M., Tréchtler, A., Zimmer, D.: Hierarchical Optimiza-
tion of Coupled Self-optimizing Systems. In: Proceedings of the 10th IEEE International
Conference on Industrial Informatics, Beijing (2012)

Isidori, A.: Nonlinear Control Systems, 2nd edn. Springer, Heidelberg (1989)
Jungmann, A., Kleinjohann, B., Kleinjohann, L., Bieshaar, M.: Efficient Color-Based
Image Segmentation and Feature Classification for Image Processing in Embedded Sys-
tems. In: Proceedings of the 4th International Conference on Resource Intensive Appli-
cations and Services, St. Maarten (2012)

Jungmann, A., Lutterbeck, J., Werdehausen, B., Kleinjohann, B.: A Test Bed for In-
vestigating Self-X Properties in Multi-Robot Societies. In: Proceedings of the 9th IEEE
International Conference on Industrial Informatics, Lisbon, pp. 437-442 (2011)
Jungmann, A., Schierbaum, T., Kleinjohann, B.: Image Segmentation for Object Detec-
tion on a Deeply Embedded Miniature Robot. In: Proceedings of the Seventh Interna-
tional Conference on Computer Vision Theory and Applications (VISAPP), Rome, pp.
441-444. Insticc Press, Setubal (2012)

Kaiser, I., Kaulmann, T., Gausemeier, J., Witkowski, U.: Miniaturization of Autonomous
Robot by the new Technology Molded Interconnect Devices (MID). In: Proceedings of
the 4th International AMiRE Symposium, Buenos Aires (2007)

Khalil, H.K.: Nonlinear Systems, 2nd edn. Prentice-Hall, New Jersey (1996)

Knoke, T.: Entwurf und Betrieb hybrid-elektrischer Fahrzeugantriebe am Beispiel von
Abfallsammelfahrzeugen. Ph.D. thesis, Institute for Power Electronics and Electrical
Drives, Universitit Paderborn (2010)

Kriiger, M., Remirez, A., KeBler, J.H., Trichtler, A.: Discrete Objective-based Con-
trol for Self-Optimizing Systems. In: Proceedings of the American Control Conference,
Washington (2013)

2 Examples of Self-optimizing Systems 63

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Miinch, E.: Selbstoptimierung verteilter mechatronischer Systeme auf Basis paretoop-
timaler Systemkonfigurationen. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitit
Paderborn, HNI-Verlagschriftenreihe, Paderborn (2012)

Openrobotix: Open Embedded Based Open Source Linux Distribution for Mini Robots
(2012), http://openrobotix.berlios.de/ (accessed September 10, 2012)
Pacejka, H.B.: Tyre and Vehicle Dynamics, 2nd edn. Butterworth-Heinemann, Amster-
dam (2006)

Rasche, C., Jungmann, A., Schierbaum, T., Werdehausen, B., Kleinjohann, B.: Towards
Hierarchical Self-Optimization in Autonomous Groups of Mobile Robots. In: Proceed-
ings of the 10th International Conference on Industrial Informatics, Beijing (2012)
Reinold, P., Nachtigal, V., Tréchtler, A.: An Advanced Electric Vehicle for the Develop-
ment and Test of New Vehicle-Dynamics Control Strategies. In: Proceedings of the 6th
IFAC Symposium on Advances in Automotive Control AAC, Miinchen (2010)

Reinold, P., Traechtler, A.: Multi-objective Optimization for the Determination of the
Actuating Variables of the Horizontal Dynamics of an Electric Vehicle with Single-
wheel Chassis Actuators. In: Tagungsband vom Autoreg: Steuerung und Regelung von
Fahrzeugen und Motoren, Baden-Baden, pp. 185-198 (2011)

Romaus, C.: Selbstoptimierende Betriebsstrategien fiir ein hybrides Energiespeicher-
system aus Batterien und Doppelschichtkondensatoren. Ph.D. thesis, Berichte aus dem
Fachgebiet Leistungselektronik und Elektrische Antriebstechnik Band 3, Shaker-Verlag,
Aachen (2013)

Romaus, C., Bocker, J., Witting, K., Seifried, A., Znamenshchykov, O.: Optimal En-
ergy Management for a Hybrid Energy Storage System Combining Batteries and Double
Layer Capacitors. In: Proceedings of the Energy Conversion Congress and Exposition,
San Jose, pp. 1640-1647 (2009)

Romaus, C., Gathmann, K., Bocker, J.: Optimal Energy Management for a Hybrid En-
ergy Storage System for Electric Vehicles Based on Stochastic Dynamic Programming.
In: Proceedings of the Vehicle Power and Propulsion Conference, Lille (2010)
Schneider, T.: Traktionsantrieb mit linearem, geschalteten Reluktanzmotor fiir ein au-
tonomes Bahnfahrzeug. Ph.D. thesis, Universitit Paderborn

Schneider, T., Schulte, C., Mathapati, S., Bocker, J.: Energy Transfer with Doubly-
excited Switched Reluctance Drive. In: Proceedings of the International Symposium on
Power Electronics, Electrical Drives, Automation and Motion, Pisa (2010)

Schneider, T., Schulz, B., Henke, C., Witting, K., Steenken, D., Bocker, J.: Energy Trans-
fer via Linear Doubly-fed Motor in Different Operating Modes. In: Proceedings of the
International Electric Machines and Drives Conference, Miami, pp. 598-605 (2009)
Schulz, B.: Selbstoptimierende Antriebsregelung. Ph.D. thesis, Universitit Paderborn
Schulz, B., Pottharst, A., Frohleke, N., Bocker, J.: Modelling of Influences to a Linear-
Drive-System. In: Proceedings of the 11th Int. Power Electronics and Motion Control
Conferences, Riga (2004)

Sondermann-Wolke, C., Sextro, W.: Integration of Condition Monitoring in Self-
Optimizing Function Modules Applied to the Active Railway Guidance Module. Inter-
national Journal on Advances in Intelligent Systems 3(1&2), 65-74 (2010)
Sondermann-Wolke, C., Sextro, W., Reinold, P., Traechtler, A.: Reliability-oriented
Multi-objective Optimization for the Actuator Reconfiguration of an X-by-wire Vehicle.
In: Tagungsband Technische Zuverlaessigkeit, Leonberg (2011)

Stille, K.S., Romaus, C., Bocker, J.: Online Capable Optimized Planning of Power Split
in a Hybrid Energy Storage System. In: 25th International Conference on Computer as a
Tool, Zagreb (2013)

http://openrobotix.berlios.de/

64 References

41. Walther, M., Miiller, T., Wallaschek, J.: Optimisation of Mechatronic Systems Using
Dependability Oriented Design Methods. In: Proceedings of the Mechatronic Systems
and Materials, Cracow (2006)

42. Witting, K., Schulz, B., Dellnitz, M., Bocker, J., Frohleke, N.: A new Approach for
Online Multiobjective Optimization of Mechatronic Systems. International Journal on
Software Tools for Technology Transfer STTT 10(3), 223-231 (2008)

Chapter 3
Development of Self-optimizing Systems

Jiirgen Gausemeier, Sebastian Korf, Mario Porrmann, Katharina Stahl,
Oliver Sudmann, and Mareen VaB3holz

Abstract. The development of self-optimizing systems is challenging due to the
involvement of different domains, such as mechanical, electrical/electronic, con-
trol and software engineering as well as experts from higher mathematics and ar-
tificial intelligence. This leads to an increased design complexity and requires an
effective communication and cooperation between the developers. The Collabora-
tive Research Centre 614 developed a design methodology for self-optimizing sys-
tems that extends existing methodologies for mechatronic systems to support the
developer appropriately with self-optimization specific expertise. The methodology
consists of a reference process, methods and tools. The reference process is based
on our experiences from the development of the RailCab and its function mod-
ules and is recommendatory. It shows the ideal approach for the development of
self-optimizing systems. It is structured into two main phases: "Domain-Spanning
Conceptual Design" and "Domain-Specific Design and Development". The differ-
ent steps in each phase are described in detail in this chapter. To make sure, that
the necessary self-optimization expertise, especially from higher mathematics and
artificial intelligence, is available during the development process, solution patterns
are used. The specific methods for the development of self-optimizing systems are
introduced in the following chapters of this book. Each development task has its
own characteristics according to the project, the system tpye, and the environment
of the development project, therefore an implementation model for the development
process is needed, which is modeled individually with the components of the ref-
erence process. Furthermore, the planned process sequence of the implementation
model can vary due to changing development objectives such as time and costs dur-
ing the project excecution. Our framework of a self-optimizing development process
supports the management of the development process.

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 65
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 3, (© Springer-Verlag Berlin Heidelberg 2014

66 J. Gausemeier and M. VaBholz

3.1 Design Methodology for Self-optimizing Systems
Jirgen Gausemeier and Mareen Val3holz

The previous chapter has shown the benefit of the functionality of self-optimizing
systems. But also that this leads to an increasing design complexity and requires
an effective communication and cooperation between developers from different do-
mains throughout the development process. In addition to mechanical, electrical/-
electronic, control and software engineers, experts from advanced mathematics and
artificial intelligence are involved. This requires a fundamental understanding of the
entire system as well as of its development.

The Collaborative Research Center (CRC) 614 pursued the long-term aim to open
up the active paradigm of self-optimization for mechanical engineering and to en-
able others to develop these systems. Therefore a design methodology was devel-
oped, that expands existing ones for mechatronic systems such as the VDI guideline
2206 [1], the approach by Isermann (2008) [32] or Ehrlenspiel (2007) [18], the
iPeM-Modell [5] or the V-Model by Bender (2005) [10] and supports developers by
providing domain-spanning and self-optimization-specific methods and tools [34].
The methodology consists of a reference process, methods and tools for the develop-
ment of self-optimizing systems. The reference process for self-optimizing systems
was developed based on our experiences in the development of the RailCab and its
function modules (cf. Sect. 2.1). It describes the chronological sequence with regard
to the content of the development process for self-optimizing systems based on the
modeling language OMEGA. The reference process provides guide lines on how to
apply self-optimization methods and solution pattern for self-optimizing systems,
that bind the knowledge of self-optimization experts. The reference process serves
as basis for the application to a specific development task and company in form of
an implementation model. This model provides a detailed process sequence ac-
cording to the project, the system type and the environment of the development
project. It consists of process steps from the reference process and builds the start-
ing point for the project management. For example the implementation model for
the RailCab consists of about 850 steps and 900 development objects. During the
development project execution, deviations and changes from the planned develop-
ment process can occur, for example due to changing development objectives such
as time and costs. To support the management during the project execution to react
to these changes we adopted the self-optimizing approach to the management of the
development process (cf. Sect. 3.4).

In accordance with the existing development methodologies, the development
of self-optimizing systems can be basically structured into two main phases: the
"Domain-Spanning Conceptual Design" and the "Domain-Specific Design and
Development" (Fig.3.1). Within the conceptual design, the basic structure and the
operation mode of the system are defined and the system is also structured into
subsystems. This division into subsystems has to result in a development-oriented
product structure, which integrates the two basic and mostly contradictory views of

3 Development of Self-optimizing Systems 67

Design and Development

System Integration

Subsystem 1

Subsystem Integration
Mechanical Engineering
Control Engineering

Conceptual \
Desi
eslan Software Engineering y/4
Electrical Engineering ,

Principle Production
Solution Subsystem n Documents

Subsystem Integration
¢ Mechanical Engineering
¢ Control Engineering
Software Engineering V/4
Electrical Engineering ,

Fig. 3.1 Macro cycle for the development of self-optimizing systems

shape- and function-oriented structure (cf. Sect. 4.6). This is a recursive process,
which means that subsystems can also be assembled by further subsystems.

All the results of the conceptual design are specified in the so called principle
solution. The principle solution based on the specification technique CONSENS
(CONCceptual design Specification technique for ENgineering of complex Systems,
cf. Sect. 4.1), is built up to create common understanding of the system to be devel-
oped. The procedure used to develop the principle solution is described in Sect. 3.2.
Based upon the principle solution, the subsequent domain-specific design and de-
velopment is planned and realized. All defined subsystems are developed in parallel
to each other and each subsystem is developed in parallel within the participating
domains [34]. During this domain-specific phase, the domains involved, work in
parallel with their domain-specific methods and tools, e.g. MCAD, ECAD or MAT-
LAB. During the domain-specific design and development, system optimization is
conducted in the domain control engineering as well, which particularly requires the
involvement of experts from advanced mathematics and artificial intelligence. This
specific knowledge is not available in development departments nowadays, there-
fore the expertise is made available by solution patterns (cf. Sect. 4.5). Because the
domains work in parallel during the design and development it is necessary to en-
sure the consistency of the system model. Therefore the results of the domains are
integrated continuously. For this purpose, model transformation and synchroniza-
tion techniques are used (cf. Sect. 5.1). The integrated system is tested as a virtual
prototype, to identify faults (cf. Sect. 5.6). This allows a short response time to fail-
ures and therefore reduces time and cost intensive iterations. The result of the design
and development phase is the engineering data, such as manufacturing drawings or
part lists [15].

68 J. Gausemeier and M. VaBholz

Analysis
Results ok

Dependability

Dynamical
Behavior
N Analyze the \\
o System Module
Unconsidered Y Structure

Conflicting

Objectives .

Analysis
Identify Conflic- \ Results Analysis
ting Objectives Results
not ok
Unconsidered
Conflicting
Objectives
Develop System Integrate Cognitive Identify Solution .|
of Objectives Functions Patterns for s.o.
System of Functional Hierarchy Solution Patterns
Objectives Including Cognitive for s.o.
Functions
7

Extend the \
Requirements

Expanded List of
Requirements

Legend
Business ’ Excluswe or Synchronization Splitting
y
Process Link Fj Inand Out DeCISIOnS Line Line

Fig. 3.2 Elements of the modeling language OMEGA

To serve as a compendium for developers to develop self-optimizing systems
independently, this level of detail is not appropriate enough. For this reason, the
macro cycle is refined by our reference process.

Therefore we use the object-oriented modeling language OMEGA (Object-
Oriented® Method of Business Process Modeling and Analysis). It was developed
at the Heinz Nixdorf Institute of the University of Paderborn for modeling and an-
alyzing business processes. OMEGA allows the modeling of the entire operational
structure of a company. It is also a good instrument for the analysis and planning
of business processes, because of its intuitively understandable visualization with
an easy and concise imagery [34]. For the description of the reference process we
focus on the following elements of the modeling language (cf. Fig. 3.2):

Business process:
A business process is a sequence of activities to create an output or to transform
an input. It has a defined starting point (trigger or input) and a defined endpoint
(result or output).

6 With respect to the development objects and not within the meaning of software
engineering.

3 Development of Self-optimizing Systems 69

Process objects:

Process objects are input and output variables of business processes. Usually a
process object, which has been generated or transformed by a business process,
is the input object of a subsequent process.

Connector:
A connector can mark iterations within the development process. It can also be
used to assign the results of one process step to another.
Synchronization/Splitting Line:
This line synchronizes or splits the development tasks of different domains. At
these points process objects can be exchanged.
Exclusives or Decisions:
At this point different lines of actions are possible based on the state of the
process object.

3.2 Domain-Spanning Conceptual Design
Jirgen Gausemeier and Mareen Va3holz

The aim of the domain-spanning conceptual design is to develop the principle so-
Iution of the system. The principle solution describes the physical and the logical
operating characteristics of the system. The description of the principle solution is
structured into the aspects environment, application scenarios, requirements, func-
tions, active structure, behavior, system of objectives and shape. The principle so-
lution is concretized during the conceptual design [22]. To describe the different
aspects the specification technique CONSENS (CONceptual design Specification
technique for ENgineering of complex Systems, cf. Sect. 4.1) is used. The principle
solution creates a common understanding of the development task and the system
between the developers of the different domains involved. Based on the principle
solution the developer can design and develop the system in the involved domains
of mechanical, software, control and electrical/electronic engineering.

The reference process for the domain-spanning conceptual design consists of
four main phases "Planning and Clarifying the Task", "Conceptual Design on the
System Level", "Conceptual Design on the Subsystem Level" and "Concept Inte-
gration” (cf. Fig. 3.3). In "Planning and Clarifying the Task" the design task of
the system and the requirements are identified and evaluated. The results are the
list of requirements, the environment model, the recommended product structure
type and its design rules, as well as the application scenarios. Based on the previ-
ously determined requirements on the system, solution variants are developed in the
"Conceptual Design on the System Level". These solution variants are evaluated
within the phase. Based on the results, the best one will be chosen and consoli-
dated into the principle solution on the system level. This includes the identifica-
tion of potential for the use of self-optimization, based on contradictions within the
principle solution for the system that can be solved either by compromise or by
self-optimization. The principle solution for the self-optimizing system on the sys-
tem level is the result of this phase. Based on this, the system is modularized and

70 J. Gausemeier and M. VaBholz

Domain-spanning Conceptual Design Decomposition

Subsystem n
Subsystem 2
Subsystem 1
Planning and Conceptual Design onceptual Design ol Concept
Clarlfylng the Task on the System Level ‘the Subsystem Level - Integration
List of Requirements, Principle Solution Principle Solution Complete
Application Scenarios on System Level on Subsystem Level Principle

Solution

Fig. 3.3 The four main phases of the domain-spanning conceptual design

a principle solution for each single subsystem is developed in the "Conceptual De-
sign on the Subsystem Level". This procedure corresponds to the conceptual de-
sign on the system level, starting out with planning and clarification of the task. The
result of this phase is presented by the principle solutions on the subsystem level.
This process can be conducted recursively, because the subsystem itself can be a
system with subsystems and so forth. The principle solutions for the subsystems
are integrated into one principle solution, which represents the complete system,
within the phase "Concept Integration". Afterwards the principle solution is ana-
lyzed regarding its economic efficiency, dynamical behavior and dependability. In
this analysis phase contradictions between the principle solutions on the subsystem
level are identified. Again it will be checked, if these contradictions can be solved by
self-optimization. The result of this phase is the principle solution for the complete
system that serves as the starting point for the subsequent domain-specific design
and development. This is carried out in parallel in the specific domains (mechani-
cal engineering, electrical/electronic engineering, control engineering and software
engineering) [23]. Section 3.3 describes this process in detail.

In "Planning and Clarifying the Task" (Fig.3.4), the development task is ab-
stracted in the first step ("Analyze the Task") and its core is identified. This is
followed by an analysis of the environment which investigates the most important
boundary conditions and influences on the system ("Analyze the Environment").
The external objectives (e.g. "maximize comfort") emerge as well as disturbances
("Identifiy External Objectives"). Beyond that, consistent combinations of influ-
ences which are called situations are formed. By the combination of characteristic
situations with system states, application scenarios occur that describe a part of the
whole functionality of the system, which has to be developed ("Identify Application
Scenarios"). By using the structuring procedure by Steffen (2007) it is possible to
identify an adequate product structure type for the system (cf. Sect. 4.6). The re-
sults of the first phase are documented by demands and requests within the list of
requirements ("Identify Requirements") [23].

Based on the list of requirements the main functions of the system are identified
and set into a function hierarchy in the “Conceptual Design on the System Level”
(Fig. 3.5). Each function has to be fulfilled to satisfy the requirements ("Define the
Function Hierarchy"). Therefore solution patterns are sought, which can execute the

3 Development of Self-optimizing Systems 71

Domain-spanning Conceptual Design

Planning and Clarifiying the Task

Analyze the Analyze the Identify Application \ Identify
Task Environment Scenarios / Requirements /
Task Environmental Application List of

Scenarios
Identify External \
Objectives /

External Objectives

Requirements

Fig. 3.4 Planning and Clarifiying the Task

desired functions ("Identify Solution Patterns"). Solution patterns represent reusable
expertise for problem-specific solutions in generic mode (cf. Sect. 4.5). Within a
morphologic box the solution patterns are combined to consistent solution variants
("Develop Solution Variants"). A consistency analysis is used, in order to determine
useful combinations of solution patterns of the morphologic box [38]. In the next
step, the solution variants are evaluated and the most promising chosen ("Evaluate
and Choose Solution Variants"). In this step more than one solution variant can be
promising, the developers have to decide individually, whether they concretize one
or more promising solution variants. Then the selection of one solution variant can
be done based on more detailed information at a future date in the development pro-
cess. The resulting solution must not be self-optimizing at this stage. This is only
the case, if self-optimizing functions are explicitly requested in the list of require-
ments. Otherwise a mechatronic solution variant results. The potential for the use of
self-optimization is identified later in this phase.

The consistent bundle of solution patterns form the basis for the active structure.
The active structure describes the characteristics of the system elements as well as
their cross-linking ("Define Active Structure"). Based on the active structure, an
initial construction structure can be developed, because there are primal details on
the shape within the system elements ("Define Shape"). In addition, the systems
behavior is modeled in the step "Define System Behavior". In this step the appli-
cation scenarios are formalized and the respective behavior is analyzed regarding
its consistency (cf. Sect. 4.3). Basically, this concerns the activities, states and state
transitions of the system as well as the communication and cooperation with other
systems and subsystems. Subsequently the principle solution is analyzed regarding
conflicting objectives. A potential for self-optimization is given, if the changing in-
fluences on the system requires modifications of the pursued objectives. The system
needs to adjust its behavior ("Identify Conflicting Objectives"). In this case the sys-
tem of objectives is developed ("Develop System of Objectives", cf. Sect. 4.4) and
the list of requirements extended ("Extend the Reqirements"). Based on the new

J. Gausemeier and M. VaBholz

72

|9A97 waysAg ay} uo ubiseq |enydasuo)

uisaq enjdaouog Buluueds-urewoq
"0 10} suonoun aagubog Buipnjou|
sulaljed uonnjog AyoresaiH [euonouny

'0'S 10} SWsjed suofouny
a _. uonn|og Apusp| anubo? ajesbajy|
|opow
JolAeyag
wajshg
eyeq
wayshg auysq
adeys
. / adeys auyeq —
ainpnyg wE.m_‘_m> suonnjog
anjoy Buisiwolyg SJUELIEA JUSJSISUOD
S3A}03IG0 ainpnyg SiUeEA uonog SJUBLIEA LOIN|OS
BMOY auleq ; 5 dojensg

/ Bugoruog Aynusp|

850049 pue ojenieny

sjuawalinbay
403817 popuedx3

sjuswalinbay
) pusix3

S8AR03IG0
Jo wayshs

$OAR3IG0
Jo wayshg dojeneg

palapisuoouf)

ainonig
Inpow
S8NJ3IG0
Buporyuod
paispisuodun oN
EMEXIEN]

‘0'$ 10}
swisljed Uoynos

sulaneq
uonnjog fyoresaiy
eaueIog Jeuopoung

swsled
uonnjog Ayyusp|

AyoresaiH
/ uonoun4 ay} suyaq

Fig. 3.5 Conceptual Design on the System Level

3 Development of Self-optimizing Systems 73

Concept Integration Domain-spanning Conceptual Design

| Economic Efficiency

| Dependability

Dynamical Behavior
Analyze the
System H

Integrated Weaknesses and Adaptability Principle
Concept of the System Solution

Merge the
Subsystems

Analyze/Evaluate
the Solution

J

Fig. 3.6 Concept Integration

requirements, cognitive functions are chosen and the function hierarchy comple-
mented. The tasks that need to be done in the step "Integrate Cognitive Functions"
are explained in Sect. 4.5. For these functions solution patterns for self-optimization
are identified to enable self-optimizing behavior continuously ("Identify Solution
Pattern for Self-Optimization"). Generally a pattern describes a recurring problem
in our environment and the core of the solution to that [6]. Especially in the con-
text of self-optimizing systems the pattern approach is an established instrument
to externalize and store the knowledge of experts. The overall objective is to in-
tegrate specialized knowledge for self-optimizing algorithm during the conceptual
design (cf Sect. 4.5 and 5.3.12). The resulting changes and extensions of the sys-
tem structure and the system behavior need to be included appropriately for the
selected solution pattern (Link 1). In preparing the self-optimization concept, the
self-optimization processes will eventually be defined, the absence of conflicts of
the self-optimization process will be analyzed and the conditions, in which the self-
optimization has to be working in, will be defined as well. This iteration (see Fig.
3.5) runs as long as all conflicting objectives are taken into account. If all conflicting
objectives of the system are considered the system is modularized into subsystems
("Modularize the System").

In the next phase ""Conceptual Design on the Subsystem Level" the principle
solution for the subsystems are developed. This is done in the same way as in the
conceptual design on the system level. The conceptual design is an iterative pro-
cess, because subsystems are systems as well and can therefore be modularized to
subsystems, too.

To make sure that the specified subsystems are not in conflict, the phase " Con-
cept Integration'' is performed on each system hierarchy level (Fig. 3.6). In the
first step "Merge the Subsystems", the principle solutions on the subsystem level
are merged to a detailed principle solution on the system level. The final concept is
analyzed regarding the dynamical behavior, dependability and economic efficiency
before the design and development is initiated ("Analyze the System").

74 S. Korf et al.

Dynamical Behavior: For the analysis of the dynamical behavior of the sys-
tem an idealized simulation model is built based on the aspects active structure and
behavior-states [8]. To make sure, that the controlled basic structure of the system
can realize the specified dynamical behavior, the resulting requirements and con-
straints for the mechanical structure are identified. Based on these the plant model
of the simulation model can be expanded by idealized actuators and sensors to de-
sign a first control concept. This is secured by the idealized model. The analysis
results of the secured control concept help to detail the aspects active structure and
behavior-states [16].

Dependability: Due to the autonomous adaptation of the system behavior of a
self-optimizing system during operation, the dependability of the system is of high
priority. It has to be secured over the entire development process. In the concep-
tual design specially developed methods can be used, such as the combined Failure
Mode and Effect Analysis (FMEA) and the Fault Tree Analysis (FTA) based on the
principle solution (cf. Sect. 4.7) [14]. To support the developers with search, se-
lection and planning of dependability engineering methods, which are suitable for
their particular development task, a methodology has been developed. Further infor-
mation about the methodology and some dependability methods are given in [24,
D.0.S.0.M.S. Chap. 2]

Economic Efficiency: Besides the technical feasibility, economical aspects also
contribute to the decision to further design and develop a self-optimizing system,
because it can result in changing resource requirements in the development, produc-
tion and operation when compared to a conventional mechatronic solution. For this
reason the economic efficiency of the developed solution needs to be proven dur-
ing the conceptual design. Section 4.8 presents a method to identify the costs and
benefits of a self-optimizing product concept to prove its economic efficiency.

In the last step "Evaluate the Solution", the solution is evaluated and the decision
is made, if the system, will be designed and developed further in the following
domain-specific design and development.

3.3 Domain-Specific Design and Development

Sebastian Korf, Mario Porrmann, Katharina Stahl, Oliver Sudmann, and Mareen
VaBholz

The principle solution is the starting point for the domain-specific design and devel-
opment. It contains the information that builds the basis for the domain-specific de-
velopment tasks. The transition from the principle solution to the domains involved
is described briefly in Sect. 5.1. In classical mechatronic development processes,
the four domains mechanical, control, software, and electrical/electronic engineer-
ing are involved. To realize the self-optimization process for the system optimization
needs to be performed. For this task the expertise of higher mathematics and artifi-
cial intelligence is needed. The tasks of the domains are executed in parallel, where
possible. Therefore, the consistency of the system models needs to be ensured, by
continuously integrating the results of the domains in the (sub)system integration.

75

3 Development of Self-optimizing Systems

1ieauIbug 211399]3/|eo14393|3

ButieauiBu3 51129[3/129112913

Bunaauibug asemyog

Bupisouibu3 esemyos

_
&:_hmw:_mcm |oJ3uo)

BupsauiBuz jonuod

Bunissuibug jesiueyosspy

Bupioauibu3 jeojueyooN

uoneiBolu) warsAsans.

Fig. 3.7 Schematic representation of the domain-specific design and development

This allows a short response time to failures and therefore reduces time and cost

intensive iterations.

76 S. Korf et al.

Fig. 3.7 gives an overview of the process for one subsystem. As modeled in the
conceptual design, the system itself consists of subsystems. Therefore, the presented
process for the design and development is recursive and conducted at different hier-
archy levels of the system.

The presented reference process for the domain-specific design and develop-
ment of self-optimizing systems shows an ideal approach. It is based on our experi-
ences from the development of the RailCab and its function modules. Depending on
the development project, the system type and the environment of the development
project this process needs to be implemented for the specific development task.

The domains work in parallel where possible to reduce development time and
costs. In the domain mechanical engineering the mechanical basic structure with
actuators and sensors of the self-optimizing system is developed (cf. Sect. 3.3.1).
To guarantee the desired dynamical behavior of the system the domain control engi-
neering designs the controller for the system (cf. Sect. 3.3.2). In control engineering
the optimization strategy for the system is developed for the Cognitive Operator as
well. The results of the optimization phase are implemented into the control strat-
egy. The domain software engineering develops the system software and the discrete
software to realize the reconfiguration of the hardware and the communication be-
tween different system components (cf. Sect. 3.3.3). The reconfigurable hardware
is designed and developed within the electronic engineering to realize the high flex-
ibility that is needed to enable the autonomous change of the systems behavior.
Furthermore, self-optimizing systems demand high power transmission. The power
electronic is developed by electrical engineering (cf. Sect. 3.3.4). The results of the
domains are integrated continuously in an overall system model. Their interaction is
tested as a virtual prototype, to identify failures at an early stage (cf. Sect. 3.3.5). Im-
portant synchronization points are depicted within the process, where the domains
exchange their results and get information that are needed for the further develop-
ment. In Sect. 3.3.6 the interaction of the domains in the design and development is
explained.

Even though the process gives the impression that it is stringent, especially at
these synchronization points iterations can emerge. But they are also possible at
every stage of the process. The amount and order of the iterations depends on the
design objects, organizational boundary conditions and the developers individual
behavior as well as on the specific use of methods. Therefore, the application of the
presented approach for the design and development to a specific development task
and company has to be tailored individually (cf. Sect. 3.4).

3.3.1 Mechanical Engineering

The aim of the domain mechanical engineering is the design and development of
the shape model for the self-optimizing system (cf. Fig. 3.8). The starting point
is the principle solution. On its basis the kinematics of the multibody system are
refined and analyzed ("Refine and Analyze Kinematics"). The result is a list of
movement possibilities and displacements of the system. The kinematic model of

77

Systems

mizing

3 Development of Self-opti

Bunisauibug josuo)

s)|nsay
sisAjeuy-iW34

- sishleuy-N34
wiopad

sjoaysejeq
uowo) Addng

juauodwo)
Aiddng 108198

Bupeauibuz josuo)y

synsay sishjeuy
-uonjejeswad

uoljejesiad
azAjeuy

adeys
wajsAg
pajtejaq

sjeaysejeq
10jenjoy

oedys wajsks
pajieloq ubiseq

0Ny
TS

adeys wajsks
auyey

sjnsay

sisAjeuy-uoisi

sisAjeuy
uoIsl||0Q wiopisd

adA] aulbug

Bupieauibug
1B21U01303]3/|e214)03]3

ABiauz
10)eNjoYy papasN

AbBiauz
Jojenjoy aulwisieq

s[elajey mey
jo3s11

. |eLsjep mey
10008

ueld
onjewnaud

$92104
olweulqg

$90104
olweuAQg sulwisleq -

ue|d
olnespAq

ueld olnelpAq

ue|d onjewnaud
. dojenag

dojeneq

ABoajengs [ojuo)

Bupieauibuy
lo1u0)

13O
olweufqg

19PON
olweuAqg dojereqg

do wajsAsqng

) m:_._wc:_m:m |o1u0)

$92104
onels

$80104 BUILLIBIRQ

juswaoe|dsiq

Aybnoy sofjewaury

azAjeuy pue auyey

Fig. 3.8 Development process for the domain mechanical engineering

78 S. Korf et al.

the system allows the determination of the forces that affect the system, like tensile
or compressive forces. An output object of the step "Determine Forces Roughly"
are the static forces. Now that the systems kinematic and static forces are known,
the appropriate raw materials can be selected that meets the resulting requirements
("Select Raw Material"). In the next step "Refine System Shape" the aspect shape
of the principle solution is detailed in the 3D-CAD software tool. Based on this
rough system shape model, the permeation of the bodies are analyzed ("Analyze
Permeation"). If the analysis shows no permeation conflicts, the results of the do-
main control and electrical engineering are integrated into the dynamic model in
the step "Develop Dynamic Model". Furthermore, the shape model serves as input
for the "System Integration", where the first virtual prototype can be implemented.
Based on the dynamic model the dynamic forces can be determined ("Determine
Dynamic Forces") and control engineering can design the optimization strategy for
the self-optimizing system parallelly. Now the domain mechanical engineering can
determine the needed actuator energy for the system ("Determine Actuator Energy")
and select an actuator that meets the requirements ("Select Actuator"). The chosen
engine type by electrical engineering is integrated as well. In the next step "Select
Supply Component" the supply components are selected. Then the hydraulic and
pneumatic plan for the system are developed ("Develop Hydraulic Plan"; "Develop
Pneumatic Plan"). Afterwards a collision analysis is performed ("Perform Collision
Analysis") and in case, that the analysis results are satisfactory, the shape of the sys-
tem is designed in detail ("Design Detailed System Shape") and integrated into the
overall system model [35].

3.3.2 Control Engineering

The domain control engineering designs the controller to guarantee the desired dy-
namical behavior of the self-optimizing system (cf. Fig. 3.9. The main results are the
components in the Operator-Controller-Module (OCM, cf. Sect. 1.3). However, par-
ticular parts of the two operator levels can also be defined by control engineering. To
realize the control strategy the shape model of the system serves as input. Already
in the domain-spanning conceptual design a simplified controller is designed as part
of the principle solution (cf. Sect. 3.2). By integration of the shape model and the
corresponding parameters from the principle solution, the plant model can be mod-
ified in the step "Integrate and Modify Plant Model". Based on this, the control
strategy can be finalized. Feedforward and feedback controllers as well as observers
are designed in this step. This step represents the main task of control engineering.
A multitude of different techniques to perform this task are known and this step can
deviate sharply for different systems. Additionally, this step can be quite complex.
Thus, the process needs to be tailored for a specific controller design task. After the
design of the controller, the dynamic model can be integrated, which is the basis for
the system optimization (cf. Fig. 3.10.

The dynamic model, integrates the results of the domains mechanical, electri-
cal and control engineering, that can be simulated by appropriate tools (e.g. Matlab

79

3 Development of Self-optimizing Systems

wiaysAg doo J9)aweled
-paso|) |lonuo) 19)owelred adfjojoid |eay
wayshg JIajoweled
doo7-paso|) jo5u0) Jejeueled]
ozhleuy 1snipy Apuopl
uonebiaju|
wajsAsqng
s)insay ABajens
sisAjeuy louo) [9POIA Jueld
uogeziwydo adeys waysAs ybnoy
woyshs albajens S|opo
doo-peso|) L} 1ueld Alpow
azhleuy az|jeuly pue ajeibaju|
uopezjwndo
wayshsqng i Bunsauibug
Buusauibug jonuon BulieauiBu3 |esjueyss iy |esiueyosy

Budsuibuz josuoH

Fig. 3.9 Development pro-
cess for the domain control

engineering

80 S. Korf et al.

Simulink’ to name only one state of the art simulation tool). In the first step "Iden-
tify Potential for Multiobjective Optimization" an analysis of the dynamic model,
returns system properties which are important for simulation (e.g. integration step
sizes appropriate for the time scale of the system’s behavior) and especially for op-
timization (e.g. which parameters are design variables, of what type are they and
how big is their influence on the system’s behavior). Aims and restrictions on the
(sub)system have been listed before in the conceptual design. Now they have to be
formally specified into a vector of mathematical objectives (e.g. a formula measur-
ing the system’s energy or the passengers’ comfort) and constraints (e.g. a constraint
envelope on the system’s states or box constraints on the controls). If there are more
than one single objective and if they are contradictory, i.e. a better value of one ob-
jective leads to a worse achievement of the other objectives, there is potential for
multiobjective optimization. Simulations with different sets of parameters can help
to identify contradictory objectives and in the end, the multiobjective optimization
procedure itself precisely reveals the set of optimal compromises between different
objectives that can be achieved (cf. Sect. 1.4.1). The mathematical objectives and
constraints along with the dynamical model of the system define the (multiobjec-
tive) optimization problem ("Formulate Optimization Problem"). Depending on its
nature, an appropriate optimization method has to be chosen ("Choose Optimization
Method", cf. Sect. 1.4.1 and Sect. 5.3 for examples of subclasses and appropriate
methods). These methods can be behavior-based and/or model-based. In case that
an behavior-based optimization method is chosen, the planing domain needs to
be defined ("Define Planning Domain").

The planning domain can be the RailCab for example. In the next step the planing
model is formulated ("Formulate Planning Model"). This model is an abstraction
of the reality and includes for the RailCab e.g. track sections. For this planning
model Pareto fonts need to be generated using model-based optimization methods.
In both cases the chosen optimization method is applied to generate an initial set
of (Pareto) optimal configurations of the design parameters ("Apply Optimization
Method").

The optimization of the system during runtime can proceeded in three different
ways, each one requiring a different approach during the development.

1) "Planning on Pareto Points'': To allow self-optimization of the module, a
planning algorithm can be chosen that selects current design configurations from a
knowledge base during runtime, i.e. a finite set of Pareto optima during runtime (cf.
the hybrid planning method described in Sect.5.3.8).

2) "Online Optimization'': Alternatively, a model based optimization method
can be implemented on the system that allows for an online optimization (e.g. of a
scalarized multiobjective optimization problem by path following methods) during
operation.

3) "Offline Optimization'': From the set of Pareto optimal points, one specific
optimum is selected and the corresponding design configuration is fixed or made
constant for the remaining development process. In case of multiobjective optimiza-

7 For further information see http: //www.mathworks.de/

http://www.mathworks.de/

81

3 Development of Self-optimizing Systems

POUIBIN
uoneziundo
fiddy

uoneinbyuo)y
ubisaq
lewndo ajfuis

uoneziwiydo
uoneziugdo

poyle
uoneziwndo
auljuQ

uoneziwpdo
aulluo

aseg
abpajmouoyy

Buuaauibug |eaiueyssjy

19poI
oalweulq
Bunsauibug
heziwndo 40 uone|nwio4 AR 6
9)el)S
|onuo)
POUISIN wajgold uopeziuldo
uoneziwndo uoeziwndo aAjoalqon|A 4oy
. aje|nuLIoS |eRujod Ajjuap|

uoneziwndo waysAsqng
Buudauibuz josuon

Fig. 3.10 Development process for the (sub)system optimization

82 S. Korf et al.

tion this means to choose and fix once and for all a weighting (prioritization) of the
different objectives.

Variants 2) and 3) can be also combined such that at runtime, precomputed pa-
rameters from a knowledge base are used until updated parameters have been com-
puted. A typical example of optimization parameters are the control parameters, e.g.
for feedback control laws. The planning algorithms are integrated into the Cognitive
Operator.

The results of the system optimization are integrated and the closed-loop system
is simulated and analyzed according to its dynamic behavior ("Analyze Closed-
Loop System"). A first version of the closed-loop system and characteristic values,
like switching times are handed over to the domain software engineering. Further-
more, it is integrated into the virtual prototype. After testing the control strategy
in the virtual prototype a real prototype for chosen parts of the system is built and
tested as hardware-in-the-loop. The measured data needs to be compared with the
simulation results to identify uncertain parameters of the real system ("Identify Pa-
rameter"). For this parameter identification, a multitude of methods are given in
literature. These uncertainties may result from missing data concerning the compo-
nents used and especially the interaction of the different components. Examples for
those parameters are moments of inertia. Depending on the identified system pa-
rameters an adjustment of the control parameters can be necessary to guarantee the
desired operational behavior ("Adjust Control Parameter").

After this adjustment the controller is finalized and the characteristic values, like
switching times are available for further development of the system. In order to test
the desired behavior the adapted system with the finalized parameters is simulated
("Adjust Closed-Loop System"). The finalized closed-loop system is given back
to the domain of software engineering. These three steps may be necessary again,
after building the real prototype of the whole system, when the comparison of the
measured data and the simulation results show deviations.

3.3.3 Software Development

The domain software engineering focuses on the development of the discrete soft-
ware and the system software. The discrete software coordinates the interaction
among the components and its reconfigurations. In particular, discrete software trig-
gers controller reconfigurations to adapt the system’s behavior or changes the soft-
ware structure to different communication needs. Of course, this requires synchro-
nizations of the domains control and software engineering, i.e. control engineers
hand-over interface specifications of the controllers, message time intervals for the
communication, and the switching durations of the controller reconfigurations [31].

These different software configurations demand varying resources. The system
software must consider the resource demands on reconfigurable hardware. Accord-
ingly, synchronizations with the domain electrical engineering are necessary, i.e. the
system software must consider properties of the dynamically reconfiguring hard-
ware. In the following we will first describe the design and development process

3 Development of Self-optimizing Systems 83

of the discrete software. Afterwards we will introduce the system software design
process.

We apply the MECHATRONICUML method [9, 17, 27] to develop the discrete
software. The key concepts of MECHATRONICUML are a component-based sys-
tem model which enables scalable compositional verification of safety-properties,
the model-driven specification and verification of reconfiguration operations [17,
30, 42], and the integration of the discrete software with the controllers of the
mechatronic system [12]. Section 5.2 introduces MECHATRONICUML in detail.
Figure 3.11 provides an overview of the MECHATRONICUML design and develop-
ment process and its integration with the domain control engineering and the system
software design process [28, 31].

In "Derive Component Model", a software architect uses the active structure
(Sect. 4.1) and the application scenarios (Sect. 4.3) to derive a set of components
describing the structure of the system. A component is a software entity that en-
capsulates a part of the system behavior which implements a certain functionality.
Each component defines a set of external interaction points for accessing its func-
tionality. An initial component model can be derived with a semi-automatic model
transformation approach (Sect. 5.1.2.1) [25].

Components do not work in isolation, but they collaborate for realizing the in-
tended system functionality. A system engineer describes the collaboration with
Modal Sequence Diagrams (MSDs), a formal variant of UML sequence diagrams
[2], for all Application Scenarios during the conceptual design. As the conceptual
design addresses all involved domains, the communciation behavior specification
is often only a coarse-grained description that a software engineer must refine in
the next steps. Of course, the refinement results in a more complex behavior that
is hard to analyze efficiently. Therefore, a software architect decomposes the spec-
ified MSDs into smaller, reusable sets of MSDs in "Decompose Communication
Requirements". These smaller sets of MSDs form the communication requirements
for the system software and the next steps of MECHATRONICUML.

In "Determine Coordination Pattern", a software architect determines real-time
coordination patterns, that describe communication protocols by real-time state-
charts, a combination of UML state machines [2] and timed automata [7, 11]. Based
on the communication requirements, real-time coordination patterns can either be
reused, or new real-time coordination patterns can be specified and verified.

Afterwards, component engineers specify the component’s communication be-
havior based on the real-time coordination patterns and integrate the controllers to
specify the reconfiguration behavior ("Specify Discrete Behavior"). Of course, this
requires a synchronization with the domain control engineering, i.e. control engi-
neers must hand over the interface specification of the controllers, and the dura-
tion to change from one controller configuration to another. We call these durations
switching times.

The component behavior is safety-critical. In particular, engineers must ensure
that the reconfiguration behavior does not include harmful configurations, and that
all hard real-time constraints can be met. Component engineers use formal methods
such as model checking to guarantee these safety-properties for the discrete behavior.

S. Korf et al.

apo) Joineyag snonunuo)
olloadg-aiempieH Joineyag BuieaH-jlos juswAoldaq pue 98}210s1q paje|nwiS

/ \oSm:om J081q g A

/ 19]|0JJU0D ‘WIS v

JuswAoldeq
Ayoadg

J @poD oyads
/ MH 8jelausg

/ ‘Aeyag Buljeay-
/ 1198 ajesbayu)

Joineysg uwisped sjuawalinbay [EleleN]
jusuodwo) 8)a19sIg uopeulplood uolesIuNWWoD jusuodwog [enu|
Joineyeg / wieyed pioo) / bay wwo) |opop Juauod
aja.0s1g Ay0adg Aﬂ sulwelag “ AU asodwooaq “ -wo) aAleQ
alempleH
AbBajeng |onuo) 3y} Jo syuswalinbay
(a1empyog aja19s1q)
Buueauibug Buussuibuz ouy09|3

|o13uo) I ELTE] m_.‘__._00_.‘__0_,_m alemjjos

Fig. 3.11 Development

84

process for the discrete
software of the domain
software engineering

3 Development of Self-optimizing Systems 85

In order to fulfill the optimization objectives, the system must select an appro-
priate reconfiguration and still ensure all safety-properties. Component engineers
integrate a planning technique, called safe planning (cf. Sect. 5.2.4.5), to ensure that
the system selects only reasonable reconfigurations.

Formal methods do not scale well for the analysis of hybrid behavior, i.e. the
combination of discrete components and continuous controller behavior. Instead in
the step "Simulate Controller and Discrete Behavior", software and control engi-
neers collaborate to simulate the complete hybrid system. Software engineers can
apply model transformation techniques to integrate the discrete with the continuous
controller behavior [29].

Next, electrical engineers hand over the specification of the hardware platform.
A deployment engineer uses this information to specify the mapping of all software
components to hardware nodes in the step "Specify Deployment".

Although formal methods and simulation can prevent systematic flaws of the be-
havior specification, random failures of the hardware are still a risk for safety-critical
tasks. In the step "Integrate Self-healing Behavior", a hazard analyst identifies dan-
gerous combinations of failures [26] and extends the reconfiguration behavior to
enable self-healing of the system (Sect. 5.2.7).

At this point, the models of the discrete components and the controllers are trans-
lated to hardware-specific code and integrated with the system software. In fact, sys-
tem software engineers must provide the configuration of the system software, i.e.
the interface specification, such that software engineers can perform an appropriate
code generation.

The system software is the system layer interconnecting the reconfigurable hard-
ware and the software layer. The process to develop self-optimizing system software
is a strongly coorperative approach that requires interaction between the respective
domains. Figure 3.12 provides an overview of the system software’s development
process and its interaction with other domains. Design decisions within a related do-
main may affect the system software layer and raise changes in the system software
design. Hence, continuous cooperation and coordination during the entire design
and development process is essential between all the related domains.

Self-optimization is a run-time property of a system which is often realized by
rule-based (and often threshold-based) autonomous decision making. It is therefore
important to ensure that the system’s self-optimizing methods are able to satisfy
the given objectives at operation time. This leads to an iterative process for the
development of self-optimizing system software that is characterized by three main
phases:

1. Identification and Conception
2. Development and Implementation
3. Evaluation

As a prerequisite, we assume the self-optimizing system software to be composed
of reusable components that are activated in respect to the present system require-
ments. Each system component addresses a specific system function or property.
In the context of real-time operating systems, a component might be represented

86 S. Korf et al.

by a kernel function or an operating system service. This approach provides the
basis for reconfiguration within the system software. An architecture for such a
self-optimizing real-time operating system is described in Sect. 5.5.

Considering the design and development process of system software we are start-
ing with Identification and Conception and the step "Derive Requirements on Sys-
tem Software". Here, the basic requirements on the system software can directly be
derived from the principle solution. Additionally, the requirements of the software
and the hardware layer flow together and determine the detailed requirements and
properties of the system software. As each component is assigned to a specific sys-
tem property, in the step "Select System Components”, we identify the components
or types of components that contribute to realize the defined system properties. Re-
curring properties will be addressed by providing a pool of already implemented
components. These components do not need to be implemented from scratch any
more. Reusing these existing components only requires an integration and configu-
ration by performing "SCL Configuration of System Software".

Development, Implementation and Evaluation phases are omitted when taking
advantage of reusable components. However, these two phases become essential for
the development of a novel component which is related to a system requirement that
has not been raised before.

In the Development and Implementation phase, the appropriate models or algo-
rithms to address the requirements, e.g. concerning objective of the self-optimizing
method, have to be determined in "Determine Appropriate Models/Algorithms" be-
fore implementing the new approach ("Implement New Approach"). Then, the new
component requires the integration into the system software and the existing system
components by "Integrate New Approach into System Software and System Soft-
ware Components". This integration might incorporate an adaptation or adjustment
of the existing system components in the step "Extend System Software".

In some cases, requirements on the extension of the system software might be
contradictorily and inconsistent with the existent design which will make a simple
extension impossible. Such a case could not necessarily be foreseen at a former de-
velopment phase. An adjustment of the developed new approach will be performed
in "Integrate New Approach into System Software and System Software Compo-
nents". In other cases, the integration of a specific component may require further
components that have to be developed and we have to start again from the develop-
ment step "Determine Appropriate Models/Algorithms".

The aim of the Evaluation phase is to verify whether the new system component
operates towards the desired objective. Because of the nature of self-optimization,
it does not always need to be obvious at design or development phase. If the result-
ing system behavior does not match the system objectives, adjustment either in the
concept of the method, its implementation and integration, or the evaluation func-
tions are required. This process has to be iteratively conducted until the developed
self-optimizing method meets its requirements.

87

3 Development of Self-optimizing Systems

2IEMYOS Wa)SAS
40 8po)

MS 84} Jo

4

wajshs
a|qeajnoaxy

aIempleH 0}

sploysaiy] pue

] /m_matow Koideq

uopeinbyuod
10S

9pod
olyioads-aiempleH

uoijejuswa|dul| a1empieH

j09ysejeq pue

Bupeauibug poylsy
211)99]3/[e214}99[3 uanoid
adAjojoid
pajenjeny s)nsay Juswiuadx3y s)nsay uoneinwis
ws 7
L) \\ Uo uoneniers ul uojenjeny ybnouy} “jer3
pouisN
MoN

alemyos
uonoun4 uonenjeas s
y uopoun4 yoeoiddy mau pajesbaju|
LR feng Aosd BHE
/_m\c|w |opojy 0} susuodwiopy Uoe0Iddy Mau SOOINISS pue 8IEM08
waysAg Jo Juswubissy pajuswa|dw| wyoBby/epo sjuauodwo) waisAs swa)sAg jo saipadold
d|qissod)
uonensny|
\m,\&wm >.\% ..w\.% yoeouddy .‘_omn_ﬁ_m m@o_\,_ syusuodwo) |opoy Jusuod
a 21eM)J0S Wa)SAS \dy mdu jo Bajuj Mau jJuawa|dw| suuLBlRd wa)sAg 109|198 -wo) aAue(Qg
s|qepuelXg | PePUST 9|qIssod jou
alemyos uonensn|||
WS / alemyog es | alempleH ay}
L /Emuw\ﬂw puexg Jo sjuswaisinbay
a|qepuaixg —
10U 2IEM})JOS

wajshs

Bupieauibuz
911303|3/]ed11309|3

(aaemypog walsAg)
Buusauibug asemyos

Fig. 3.12 Development process for the system software of the domain software engineering

88 S. Korf et al.

3.3.4 Electrical and Electronic Engineering

Self-optimizing systems demand high flexibility, to be able to adapt the behavior
during operation. Dynamically reconfigurable hardware can ensure this flexibility.
On the other hand they demand high power transmission. Therefore, in the domain
electrical/electronic engineering both microelectronic devices for the information
processing and power electronics are developed.

The design of new microelectronic devices for information processing in self-
optimizing systems comes with an increasing complexity compared to todays me-
chatronic systems, and a high demand for flexibility, which can be achieved, e.g. by
utilizing dynamically reconfigurable hardware. In order to allow an automatic adap-
tation of the hardware to dynamically changing environments, the well-established
design-flows for microelectronic systems need to be extended. Figure 3.13 depicts
the process to create statically as well as dynamically reconfigurable microelectronic
hardware for self-optimizing systems. Starting from the principle solution the re-
quirements of the hardware are analyzed ("Requirement Analysis of the Hardware").
Based on these requirements, a set of appropriate information processing hardware
components is selected ("Selection of Information Processing Hardware"). If all the
requirements can not be fulfilled with existing hardware, new components need to
be implemented. In this case, as a first step, the hardware technology (e.g. embed-
ded processor architecture, FPGA technology, semiconductor technology) is chosen
("Selection of Hardware Technology"). In the next step of the process it is defined,
if the new hardware will contain only static components or static and dynamic ones.
In the first case, a standard design flow is used for the hardware development:

1) The information processing hardware needs to be modeled ("Modeling of In-
formation Processing Hardware"). In accordance to the classical Y-diagram [21],
the hardware can be specified on different abstraction levels (e.g. circuit level, logic
level, register-transfer level, algorithmic level, or system level) in three different
domains (behavior, structure, and geometry). In the domains of structure and be-
havior, a description of the hardware in a Hardware Description Language (HDL) is
prevalent.

2) A simulation and verification step of the new hardware model ensures the
correct implementation of the hardware ("Simulation/Verification of the Information
Processing Hardware").

3) In the synthesis step, the hardware model is transformed into a structural de-
scription in the chosen technology ("Synthesis").

If dynamic reconfiguration of the hardware is foreseen, the design flow has to
be extended with respect to the special requirements of these architectures. There-
fore, in a first step the best suited technique for dynamic reconfiguration has to be
selected ("Selection of Methods for Dynamic Reconfiguration"). Depending on the
granularity of the reconfigurable architecture, different variants of the subsequent
process steps are executed (cf. Sect. 5.4.1 and Sect. 5.4.2).

89

3 Development of Self-optimizing Systems

2IeMYOS
wa)sAg auyj Jo Jake
uonoeJSqY SJempeH

uonelbaju|

alempieH
alempieH alempieH a|q a|qeinbiyuooay
9|qeinbyuossy uAkg -einbyuooay Ajjesiweuiq Alleaiweuiq uoljeinbyuodey
Jo uonduosa([einjonis 83 O [8PON pejepleA 8} JO [8PON olweuAq 4o} poyiay
3lempieH MH Bljucday MH ‘Byucday alempieH
9|qeinblyuoosy uhQ Juj ‘ukQ Buissoold ‘Byuooay ukg A_
\UAQ Jo sisaypis 8y} JO “JUBA/ WIS “Ju| Jo Buljjepoy 40 Buipo olweu/(
BuissIy alempieH
sjuauodwon uonduosaqg Buissaooid uonew.oju) alempieH Buissaooid
[eAnjonig 8U3 0 [8POIN perepleA uoneuwlioju] 8y} Jo [Spo

j98ysejeq pue

uopejuswa|dw| siempieH

uonelbaju|
3INpo

a|qejieny aie
syusuodwo) ||y
2IleM}joS
waysAg Jo apo)
Bupieauibug
alemyos

sISaYUAS

S1empieH
Buissaooid
JU1 8Y} JO “JUIA

alempieH
Buissaoold
“Ju] JO Buijjapopy

ABojouyoa|
alempleH

Abojouyoa|
alempleH

JO UOIIRIBS alempleH

uasoy)
sjuswalinbay oy
aiempieH bupsix3g oN

sjuswaunbay o}
aiemp.ieH Bunsixg

Burieauibuz asemyjos

9IempieH
Buissaoold
10 199|198

<13]

alempieH ey}
10 sjuswiasainbay

21EMpIeH U}
Jo sishjeuy
sjuswalinbay

Budsuibug
21U04393]3/|ed14393|3

Fig. 3.13 Development process for the microelectronic devices in the domain electrical/elec-

tronic engineering

90 S. Korf et al.

Fig. 3.14 Development
process for the power elec-
tronics in the domain elec-
trical/electronic engineering

(2]
@ o o Q
a = e £
- g 2
[} 5 — T oW
£ s O£
=) =) . W o
= = = @
i wi s B
E : 38
= o
=
©
=
%3
{5}
=

fine Power \
Electronics /'

De

Capacity

Datasheet of the
Electrical Engine

Determine
Capacity

Type of Drvie

Thermally
Resilience

Select Type

Analyze Thermally\
Resilience

Electrical/Electronical

Engineering

The complete design flow for FPGA-based dynamic reconfiguration has been
integrated within the design environment INDRA (Integrated Design Flow for Re-
configurable Architectures, cf. Sect. 5.4.4.1). For the modeling ("Simulation/Veri-
fication of the Information Processing Dynamically Reconfigurable Hardware") of
a complex dynamic reconfigurable system, the PALMERA layer model has been
implemented (cf. Sect. 5.4.3.1). The simulation ("Simulation/Verification of the
Dynamically Reconfigurable Hardware") is supported by a Hardware-in-the-Loop
design environment, specifically targeting dynamically reconfigurable systems (cf.
Sect. 5.4.4.3). The synthesis step ("Synthesis of Dynamically Reconfigurable
Hardware") is an integral part of the INDRA environment. The steps "Selection of

3 Development of Self-optimizing Systems 91

Hardware Technology" to "Synthesis of Dynamically Reconfigurable Hardware" are
repeated until all hardware requirements are fulfilled. Finally, all hardware
components are integrated in a complete module ("Module Integration") and the
system software is ported to the new architecture ("System Software Integration").
Examples of platform applications with dynamic reconfiguration are shown for the
minirobot BeBot in Sect. 5.4.5.2 and for Multiprocessor architectures in
Sect. 5.4.5.3.

The necessary steps for the design and development of the power electronics are
presented in Fig. 3.14. The aspects requirements and active structure serve as input
for this task. Based on these, the type of electrical drive is selected that fulfills the
requirements ("Select Type of Drive"). For the drive the capacity is determined to
ensure that the demanded consumer load of the system components can be realized
("Determine Capacity"). In the next step "Select Actuator" the appropriate engine
is chosen. The information about the engine are handed over to the mechanical
engineering domain and integrated into the system model. Afterwards the thermal
resilience of the engine is tested ("Analyze Thermally Resilience"). Then the data
sheet of the electrical engine is derived ("Dimension Electrical Actuator") and the
power electronics can be defined ("Define Power Electronics"). The result of the
task is integrated into the overall system [35].

3.3.5 (Sub)system Integration

The domains work in parallel in the design and development of a self-optimizing
system. In the (sub)system integration their results are integrated continuously into
the overall system model ("Integrate Domain Results"). The synchronization of the
overall system model with the domain specific models is supported by the model
synchronization technique described in Sect. 5.1. In case that the changes in the
overall system model by one domain are relevant for other ones, these changes are
transfered. Thus the consistency of the different models is ensured over the entire
development process. To analyze the interaction of the different parts, a virtual pro-
totype is built. Based on the principle solution a requirement analysis for virtual pro-
totyping is performed ("Analyze the Requirements"). The principle solution gives
evidence for the virtual prototype, but in the ongoing development process, new
requirements can occur and need to be considered, too. With these requirements we
will be able to build the virtual shape model ("Build the Virtual Shape Model") in
parallel with the modeling of the self-optimizing test environment ("Model the
Self-Optimizing Test Bench"), in which the virtual prototype will be tested. After
completing these two steps we get a static prototype of our system and its environ-
ment. To be able to test various aspects of the virtual prototype, we have to identify
interaction and interfaces ("Identify Interaction and Interfaces of Virtual Model").
This is needed when a specific part of the virtual prototype is to be tested later on.
When, e.g. we want to test a spring damper system, we have to identify the actors
in the virtual model and define an interaction and an interface for it. With this we
have the ability to place inputs in and receive results out of the system under test.

wayshg doo-pasol)

S. Korf et al.

Bupsauibug
lonuo)

synsay
isaL

adAjojoid
Y 8y} ajenjeng

adfjojoud
1eay

adAjojold [eay
ping

adfjojoid
papuajx3

A m

a|qesbiaju|
S1 [9pO

a|qesBiaju| Jou
S113poN uonnyBsang

92

Buipuig
MH PUE Sjopopy
\\ ‘wonmisans i

adAj0j0.d 3y} 10}
ejeq uondeynuey

| |
juasynsun
s)sa) ay}
40 Ayjenp EImE
a8y} uo paseg

uonen|eAs 3sa| S}Nsay 3saL

A

jusoyng ||
s)say ay}
Jo fyenp

/ sjso] ejenjeny

$90104/|8POJ\| JleUAQ

Bunsauibug

1B2IUBYIIN lepoN adeys
adfj0301, / nuIA 8y} Buipiing

EINELIT

adfjojo.d
onels

[SPOI [ENMIA B}
| 10 saoBYa}U| pUB | |
uonoesa)u| Ausp|

19POI

JuswuosiAUg
synsay
| | urewoQ
[EIEN]

|] / S1s8) Wiopad

s)Insay 3saL

|] / 1s9] auyeq

adfjojoid
[enMIA 3y}
10} sjuawaiinbay

] sjuswalinbay
/ ay) azAleuy

uone.ibaju|
wajshs(qng)

Fig. 3.15 Integration and test of the results of the different domains in the (sub)system

integration

3 Development of Self-optimizing Systems 93

When the interaction and interfaces are identified we get an interactive virtual pro-
totype. This interactive prototype is ready for testing by the other domains. When a
domain wants to do a test series with the virtual prototype they have to integrate the
substitution models and/or do the hardware binding ("Integrate Substitution Mod-
els and Hardware Binding"). For example when control engineering wants to test a
PID controller as part of the system, they may integrate a substitution model of this
controller into the virtual prototype (mostly done in earlier iterations when only the
model of the controller exists) or, in later phases, bind the real hardware to the vir-
tual prototype. In case the virtual prototype is not exact enough to be able to do a test
accurately enough, we have to refine the self-optimizing test environment as well as
the virtual shape model and identify the interaction and interfaces of the improved
virtual prototype in the steps "Model the Self-optimizing Test Environment" to "In-
tegrate Substitution Models and Hardware Binding". After the substitution model is
integrated the tests can be defined ("Define Test"). After that step we get test cases
and an evaluation metric. Now the tests can be performed on the virtual prototype
("Perform Test"). The test results can be evaluated and we get a test evaluation based
on the metric we defined earlier ("Evaluate Test"). To be sure, that the tests are sig-
nificant we check the quality. If the quality is not sufficient enough we do another
iteration, defining new tests, performing them and evaluating the results (cf. Sect.
5.6).

When all subsystems in all domains are implemented and built, we are able to
build the real prototype ("Build Real Prototype") and evaluate it ("Evaluate Real
Prototype"). After the successful test of the prototype the production documents
can be finalized and the production of the system is initiated.

3.3.6 Interaction of the Domains in the Design and Development

In the previous sections the tasks of the domains involved as well as the integration
of their results were described briefly. To successfully realize a self-optimizing sys-
tem the performance of the different tasks and also their interactions are essential.
Important synchronization points are depicted within the reference process, where
the domains exchange their results and get information that are needed for the fur-
ther development. Fig. 3.16 illustrates the interaction of the domains in the design
and development from an object oriented development point of view.

Based on the principle solution the domains start with their specific develop-
ment tasks. The domain mechanical engineering starts with the design of the system
shape. By the time a rough shape model of the basic structure for the system is
developed, the model is handed over to the domain control engineering (synchro-
nization point (1)). The shape model is integrated into the plant model of Control
engineering and the control strategy can be designed. This strategy defines the dy-
namic behavior of the system. Therefore, it needs to be integrated into the dynamic
model of the domain mechanical engineering. Furthermore, the control strategy is
an important input for the domain software engineering, to define the communi-
cation between the system components (synchronization point (2)). In parallel, the

94 S. Korf et al.

domain software engineering has identified the communication requirements for the
system components and the domain electrical/electronic engineering has identified
the requirements for the dynamically reconfigurable hardware, based on the prin-
ciple solution. The identified requirements are exchanged at synchronization point
(3) between the two domains. Based on the requirements the design of the system
software can be initiated. Meanwhile the (sub)system integration has developed an
interactive prototype for the virtual test of the system and has integrated the results
of the domains continuously into the overall system model. At synchronization point
(4) the dynamic model of the system is handed over to the (sub)system integration,
where it is merged with the interactive prototype. The dynamic model is also the
basis for the development of the optimization strategy in the control engineering. In
parallel to the development of the optimization strategy, the system shape is detailed
by the domain mechanical engineering. The shape model is extended by actuators
and sensors, as well as by the engine type for the system, that has been selected by
the experts from electrical engineering. In the next step in electrical engineering the
power electronics of the engine are selected. The detailed system shape is passed
over to control engineering, where it is integrated into the closed-loop system to-
gether with the optimization strategy at synchronization point (5). The closed-loop
system is simulated afterwards. In the interim the hardware was developed by the
domain electrical/electronic engineering. At synchronization point (6) the hardware
implementation and the corresponding data sheet are exchanged with the domain
software engineering, where the code for the system software is derived. In paral-
lel the hardware abstraction layer of the system software and the hardware specific
code are developed. The three design objects are integrated at synchronization point
(7). The software is ported to the hardware resulting in an executable system.

Now the design objects of the domains involved are integrated into the overall
system model at synchronization point (8) and the real prototype of the sub(system)
is build (synchronization point (9)). Based on the tests of the prototype the domain
control engineering ensures, that the simulated parameters do not differ from the test
results. In that case, the control strategy needs to be adjusted. After synchronization
point (10) and the successful test of the prototype the manufacturing documents can
be finalized and the production of the system is initiated.

The presented reference process is recommendatory for the development of self-
optimizing systems, for a specific development task further development steps can
be necessary. Therefore it needs to be implemented to a development project individ-
ually, the resulting process sequence provides the framework for the development.
Nevertheless, during execution changes in the development objectives can result
that make adjustments necessary. To support the project manager with changes in
the planned procedure, we adopted the concept of self-optimization to the manage-
ment of the development, which will be explained in the following section.

95

3 Development of Self-optimizing Systems

auibug ay} jo

SOIUOI}OB[T Jamod

adA] suibug

&

dlemyos Joaysejeq pue
wsalshs ay) Jo Jefe] uonejuswalduw
uonoeIsqy alempleH a1empIeH

&

alempieH ay)
10 syuswaleinbay

f@y

b

Bupiaauibug 211399]3/[e211303]3

pouls|\ uanoid/adijoolq
pejenjers

2IEMYOS WaISAS

syusuodwo)
walsAs

woayshs
9|qes)noaxy

A ¢

&

10 M.Moo
8pod

oly10adg-91empieH

Y
®

sjuswalinbay
uoljeoIUNWIWOYD

@

K

K

Bunieauibug aiemyos

uopjeinbyuo) ubisaq jewndo

wayskg doo synsay a|Buig/poyay uoneziwndo albejens
paso|) sishjeuy auljup/aseg abpajmouy| @ @ |0u0)
synsey adeyg welshs $82104/|9pON odeys weysAs
e @ Q sisAleuy-W34 pajieleq olweuAqg @ ybnoy

By

i

i

sjinsay
JsaL

* @K

adfjojoig
L

» @K

9o\ By} uo paseq
uonenjeas 3sap

» @K

adfjojoud
aA1oBIAU|

|1opo|\ wajsAg pajesbaju)

- G

uoneibaju| wayshsqng

Fig. 3.16 Interaction of the domains at the synchronization points

96 T. Gaukstern and O. Sudmann

3.4 Self-optimizing Development Process
Tobias Gaukstern and Oliver Sudmann

Development processes for self-optimizing systems are characterized by an increas-
ing communication and coordination effort. The reasons for this are the increasing
interdisciplinary nature as well as the increasing system and interface complexity.
Hence, the process is inherently complex.

As a consequence of the interdisciplinary nature, the development process must
consider several synchronizations between the domains. Most synchronizations are
project-specific. Project managers add them according to the system structure and
the overlapping domain-specific models.

Furthermore, development projects are often long-term projects. During a long-
term project, strategic goals can change. In addition, changes to the system often
occur. Therefore, project managers must adapt the project to these changes during a
project many times.

As a starting point, project managers can implement the introduced reference
process for their specific development task. In particular, the process of the "Design
and Development” phase must consider characteristics of the developed system and
the strategic goals of the organization.

As development processes can consist of thousands of process steps, the tailoring
of a process is time-consuming and error-prone. Therefore, project managers need
methods to plan complex and dynamic development processes. In the following,
we present a combination of two approaches to address these challenges. First, we
present a framework for a self-optimizing development process by Kahl (2013)
(Sect. 3.4.1). The framework adapts the paradigm of self-optimization for the plan-
ning of the development process. Based on the analysis of the actual development
situation, the weighting of the strategic goals and thus the development process are
adjusted. The result is a situation-specific development process that fits with the
strategic goals and the system under development.

The framework adds known synchronizations by means of process rules to the
development process. Usually, an organization is not aware of all possible synchro-
nizations. We, therefore, apply our second approach to plan synchronizations sys-
tematically (Sect. 3.4.2). The approach refines the process further and adds synchro-
nizations between the domains according to the interdependencies of the models
systematically.

3.4.1 Framework of a Self-optimizing Development Process

During the development of self-optimizing systems, unexpected, dynamic and
changeable situations occur. These situations cannot be controlled by the available
process management methods. The obvious solution is to transfer mechanisms to
increase the performance of mechatronic systems in managing the development pro-
cesses. Therefore we will introduce the framework by Kahl (2013) that depicts the

3 Development of Self-optimizing Systems 97

transformation of the paradigm of self-optimization on development processes and
provides appropriate procedures for its application [35].

3.4.1.1 Aspects of the Self-optimizing Development Process

The systematic model of a self-optimizing development process consists of a pro-
cess management and development activities (Fig. 3.17). The self-optimizing pro-
cess management adapts the development activities according to all relations af-
fecting the development process, which are denoted as influences. The sum of all
influences results in the development situation at a specific point in time.

The development activities are connected through relations between their input-
and output-objects. Its entirety describes the object of development. According to
the involved disciplines the development objects can be divided into discipline-
spanning and discipline-specific objects. The development objects are generated
through resources, which can be divided in personnel resources and impersonal re-
sources (machines, methods, software tools).

The development objects are transformed through development activities, ac-
cording to the system of objectives, which is determined by the process manage-
ment. The system of objectives describes the desired, claimed, or avoided behavior
of the development process. They are classified in external, inherent and internal
objectives: External objectives are set from the outside of the development process,
e.g. objectives regarding the time limit. Further, they result from properties of the
development object. Inherent objectives reflect the purpose of the development pro-
cess, e.g. "minimize number of staff turnover". Internal objectives are objectives,
which are relevant at a specific point in time. Their weighting is adapted to devel-
opment situations through the self-optimizing development process.

The entirety of development activities, action and development objects and their
relations result in the structure of the development process. Their properties are the
parameter of the process. Together they form its behavior. The behavior depicts the
execution of the development activities and the resulting transformation of input-
into output-objects at a specific point in time. According to the resulted remarks the
defined aspects of self-optimization can be transferred to the development process
of advanced mechatronic systems:

"We understand a development process’ self-optimization as an endogenous
adaptation of the objectives of the development process on changing operating con-
ditions, as well as a resulting target-oriented adaptation of the parameters and, if
necessary, of the structure and therefore the behavior of the development process”.

3.4.1.2 Sequence of the Self-optimizing Process

The self-optimization of the development process takes place as a process that con-
sists of the following three actions (cf. Sect. 1.2):

1. Analyzing the current situation: The current situation of the development pro-
cess is gathered by using monitoring variables (e.g. progress of the develop-
ment objects, elapsed development time) as well as the influences, affecting the

Company intern Stakeholders

Management, Sale, Quality
Management, Production, etc.

T. Gaukstern and O. Sudmann

Company extern Stakeholders

Customers, Suppliers, Science,
Governement, Competitors, etc.

Acting Objects

Process Management
(incl. System of Objectives)

Development Activities

Behavior
Work Package(s)

|

|

|

I

|

|

|

|

I

|

|

|

|

I

|

I Meier today
I R
1 XXILX [XXXXK] ey
I
|
|
|
|
I
|
|
|
|
I
|
|
|
|
I
|

Staff Member

12000/ 100

Time

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Parameters
Development Activities:
required abilities,
modality, etc.

[5

Development
Object(s):
type, maturity, etc.

Acting Object(s):
availability,
cost rate, etc.

Development Objects t

Object of Development
Discipline-spanning Aspects

Active
Structure

Environ-
ment

Require-
ments

Functions

Discipline-specific Aspects

|

1|| Building structure, Component Structur, Circuit Layout, Dynamic Model, Block Diagrams,
| Actuator/Sensor Specification, Test Case Specification, ...
|

Further Environment System Boundary |

Legend

System- Element|:| Component I:l

Fig. 3.17 Systemic model of the self-optimizing development process

Effect .
(Standard)

Effect

(Object) ™

-

3 Development of Self-optimizing Systems 99

process. It is checked, if the project plan and the internal objectives of the de-
velopment process are underachieved, achieved, or overachieved. On the basis of
this information alternative process plans can be generated, if necessary.

2. Determining the system of objectives: The objectives and their weighting can
be changed on basis of the information collected in the situation analysis. There-
fore alternative process plans are evaluated by references to the internal system of
objectives. If there is a better process plan than the actual implemented plan, ac-
cording to the internal system of objectives, an adaptation of the system behavior
is initiated.

3. Adapting the systems behavior: The adaptation of the behavior of the devel-
opment process is effected by a new process plan. This plan can have the same
structure, but different parameters or both.

For the realization of the self-optimization process a control system is necessary.
The structure of this system is illustrated in Fig 3.18. It is a network of interacting
control loops, consisting of the following components: controller, monitor, planner,
objective and implementing determination.

These four components can influence the execution of the development process
directly or implicitly through the modification of its system of objectives. In general
the four components of the control system can be allocated to the three levels of the
Operator-Controller-Module (cf. Sect. 1.3.2).

3.4.1.3 Procedure for the Realization of the Self-optimizing Development
Process Planning

For the self-optimizing adaptation of system development processes it is necessary
to know possible process sequences for the transformation of the object of develop-
ment into the complete description of the system documentation. Hence, the objec-
tive of the procedure is the automatic generation of Pareto optimal process plans,
which each contain a process sequence, a plan for time and costs as well as for the
necessary auxiliaries and resources.

The procedure is knowledge-based. It uses the information modeled in the
discipline-spanning system model of the object of development and in the process
elements (Fig. 3.19). Information specified in the system model, modeled with the
specification technique CONSENS (cf. Sect. 4.1), are e.g. attributes of the subsys-
tems, like the responsible discipline or the degree of complexity. For the specifica-
tion of the process elements the modeling language OMEGA (cf. Sect. 3.1) is used.
The process elements are distinguished in basic elements and coordination elements.
The basic elements depict the analysis and synthesis of development activities; the
coordination elements describe the synchronization and integration activities for the
coordination of the discipline- or subsystem-spanning development activities. In-
formation specified within the process elements, are e.g. input- and output-objects,
used resources, auxiliaries, or costs.

The procedure is divided into three phases (Fig. 3.19): 1) analysis of the object
of development, 2) process synthesis, and 3) scheduling. They result in alternative
and Pareto optimal process plans, with which the object of development can be

100 T. Gaukstern and O. Sudmann

Company intern Stakeholders Company extern Stakeholders
b l Acting Objects 1‘ !
Self-Optimizing Development Process

Process Management
Do System of Objectives z :
' 0 X X I_I_I il
o0 (Internal Objectives of the Z, z, ;
Development Process) —— ——= :
0 1 Z, Z, %4, %, H
P T A i
B0 Internal " I 0
; : Objectives : Modifications .
' ! Standards - Standards !
D oooomeneeeneessssos000000 » - !
Determination |«-------------------- o
| = of Objectives |---------------- ' 19
' 1‘5‘ ®© . 1 [=3
L ‘oo and Execution [« ------- N 25
' i 1 O ' [S I 1o ©
') 1 X g ' O 1= e
16 .2 oo : . P B ‘58
ey e 3 Demand for : | Possible Lo okl
e S LA Modification | : Process Plans !5 ‘qc')' . ;‘gg
23 : mv_ o £ 120 128
2B i e 2 89 Fc
1 <C 1 :CD % 1 g g T §
i ATt > Planer - ' 8' | 8 =

' 20 ' 210 (0]
a0 ko i<sS
Maturity of Development Objects
Controller [~~~ T Monitor
E Control Variable u Mor_1itoring
| + Variables
¥ ;
> Execution of the Developement Process >
l Development Objects t
Object of Development
Legend
Cognitive Reflective Effect Effect
Controller Operator Operator m (Object) # (Standard) ™

Fig. 3.18 Control System of the self-optimizing development process

transferred into the complete description of a technical system, fulfilling all objec-
tives. Below, we describe the three phases in more detail.

Phase 1 — Analysis of the development object: The objective is a first rough
development object oriented structure of the development process. Therefore the
subsystems, which have to be developed in parallel, are identified within the system
model of the object of development. For each subsystem a swim lane within the

3 Development of Self-optimizing Systems 101

Object of Development

Process Case Basis
(Knowledge Basis)

Process Elements

System Properties Pareto-optimal Process Plans

| Analysis of the Object of Development | [

| Process Synthesis |<

| Scheduling |

Standards

: Company extern Stakeholders :

Environment of the Company
Development Order

* Date of Delivery + Available Resources
* Budget .

Fig. 3.19 Components of the procedure for the system model based process planning

development process is generated (I in Fig. 3.20). At the end of each swim lane
subsystem-specific development objects have to be available. To identify which
class of mechatronic systems (e.g. dynamic multibody system, integrated mecha-
tronic system) and to which discipline (e.g. mechanical engineering, software en-
gineering) the system elements of the subsystems belong to, classification trees are
used. The required development objects are selected from the so called objective-
object matrix (/I in Fig. 3.20), which allocates disciplines to development objects.
For mechanical engineering e.g. production drawings or the subsystem part list have
to be available. At the end of phase 1 already available development objects are cap-
tured and allocated to the swim lanes (/I in Fig. 3.20). As a result of the first phase
we get subsystem-specific development swim lanes and their input- and output-
objects.

Phase 2 — Process synthesis: During the process synthesis process elements are
combined to possible process sequences, with which the development objects can
be transferred into the objective development objects. For the identification of nec-
essary process elements the properties of system elements from the system model
and the process elements are compared by classification trees. The suitable pro-
cess elements are allocated to the subsystem specific swim lanes. Subsequently the
process elements are combined to process sequences for each subsystem-specific
swim lane, according to their possible input-output-relations (/V in Fig. 3.20). This
is carried out to a backward breadth-first search. To link these subsystem-specific
process sequences we use subsystem-spanning coordination elements, which are

102 T. Gaukstern and O. Sudmann

Objective-Object-Matrix

Objective|
Object |Z2| £
S|l 3
I S|ls ©
Discipline hl=a
_I'Mech. Eng. x| X
Electronics

Process rule NI N o © SEEEEEEEEES S e) S

LIntegrate Shape Model*: R N (5 \..\ \

: \
Module 1.(,,l§{Iechan|caI 5 /"DO\./
Engineering"); , ‘@ -. ; X
Module 2 (,Electronics*); R / AR
relation {,mechanic / ‘DO(/DO |
Relation” = ; / N
V ,Energy Flow"}

Legend
s gt (T Development N

ystem -— Swim Lane -

Available Develop- e

Module <:> ment Object (@) Information Flow
Basis Element > D :gecr:fgb?eec\;ebp_ 0 Energy Flow E—
Coordination Objective Develop- Logic R
Element D ment Object ® Relation

Fig. 3.20 Phases of the procedure for the system model based process planning

3 Development of Self-optimizing Systems 103

selected according to the modeled relations among the system elements of the sys-
tem model. The necessary coordination elements are determined by process rules (V
in Fig. 3.20). Therefore, the following information has to be analyzed: classification
of the subsystems, relations among the system elements in the active structure of the
system model, and the hierarchical relations of the corresponding functions within
the function hierarchy. Next, possible auxiliaries, which are necessary to conduct
the process, are identified and allocated to them. For this execution rules (relation
between input-object, auxiliary, and output-object) of the process elements are used.
If it is possible to realize an input-output-relation through several auxiliaries, alter-
native process sequences are built. The result is a set of possible process sequences,
which depict the logic sequence of the necessary development activities.

Phase 3 — Scheduling: In the next step time and cost plans are calculated for the
process sequences, considering the applied auxiliaries and resources. Therefore the
process sequences are transferred to Hierarchical Precedence Graphs (HPG) accord-
ing to Klopper (2010) [36]. Based on the execution rules of the process the abilities
of the applied resources are identified. The appropriate resources are selected and
allocated to the processes by using a heuristic multiobjective search (cf. [13]), to
generate Pareto optimal process sequences [36], [37]. Resources are allocated to the
process elements according to key figures (e.g. duration, costs), whereby resources
with the best key figures are chosen. At this point, there is rarely a resource, whose
performance is better in all key figures. For example: An experienced engineer de-
livers a higher process quality, but is more expensive then an inexperienced engineer
of the same duration. In such conflicts a separate plan is generated for each option.
As a consequence one plan e.g. is optimal according to process quality and another
according to costs. In this manner all processes sequences are planned, whereby
each new generated plan is compared to the already available plans; inferior plans
are scrapped. A plan is better than all other plans, if one or more key figures are
better than the other and all the rest of the key figures are equal.

This procedure is deployed on all generated possible process sequences in phase
2. The outcomes are Pareto optimal process plans of all possible process se-
quences for the development of the complete system documentation. These are de-
livered to the objective and implementing determination within the control device
of the self-optimizing management of the development project (Fig 3.18), which
selects a particular plan according the actual development situation.

3.4.1.4 Procedure for the Situation Specific Determination and Weighting of
Development Process Objectives

The procedure for the system model based process planning delivers a set of Pareto
optimal process plans. From this set an appropriate plan has to be chosen according
to the actual development situation. This requires a basis of decision making, which
is the system of objectives for the development process. The following procedure is
used to determine and weight the objectives of the development process in a specific
development situation. From this the following aspects are considered: development
situation, external stakeholders, environment of the company, development object,

104 T. Gaukstern and O. Sudmann

previous sequence of the development process. The sequence of the procedure con-
sists of five phases. Its objective results in the situation specific internal system of
objectives of the development process. According to the influence, changing the
development situation, passed each or only single phases of the procedure.

Phase 1 — Determination of internal system of objectives: The target is the
determination of the basic quantity of external and inherent objectives, which forms
the potential internal objectives of the development process. The external objec-
tives result from the available development order, the chosen strategy options of
the company, and the actual properties of the development object. Exemplary exter-
nal objectives are: "minimize development time", "minimize development costs", or
"minimize technical risk". The inherent objectives are experiences of good engineer-
related practice. Examples are: "minimize personnel turnover", or "minimize media
disruption". All external and inherent objectives are taken together and broken down
to the swim lanes of the subsystems appropriate to the properties of the actual avail-
able development objective.

Phase 2 — Determination of strategic priority of objectives: In this phase the
priority of the objectives is determined forming a strategic view point. The identified
external und inherent objectives (phase 1) are compared by pairs considering the
development order and the strategy option. It is stated by pairs, if an objective has
the same, a lower or greater relevance than the other concerning the development
project. The calculated strategic priority of all objectives forms the fundamental
weighting of the external and the inherent objectives form the view points of the
environment of the company and the external stakeholders.

Phase 3 — Determination of technological priority of objectives: The techno-
logical priority of the objectives is calculated, to consider the fact that the attributes
of the subsystems influence the objectives of the development process. First the tech-
nological relevance of each subsystem is calculated, which can be deduced from the
complexity and the dynamic index of a subsystem. The dynamic index describes,
how strong a subsystem is influenced from other subsystems or if it even influences
them. Second it is calculated, how the technological relevance of a subsystem affects
the objectives of the swim lane. This is set depending on whether the technological
relevance correlates negatively or positively with the identified external and inherent
objectives, identified in phase 1. A combination of both, the technological relevance
and their correlation with the objectives, form the technological priority for each
objective per subsystem-specific swim lane.

Phase 4 — Determination of demand for modification of objectives: For the
situation specific weighting of the objectives, it is necessary to identify the devia-
tion from the project plan and the resulting demand to modify the objectives. For this
purpose monitoring variables are stated (e.g. depleted budget, progress of the devel-
opment object, elapsed time). The next step is the definition of the impact (positive,
negative, and neutral) of the actual-target-deviation of the monitoring variables on
the weighting of one or more objectives. Out of this the demand for modification is
determined for each objective and each subsystem.

Phase 5 — Weighting of internal objectives: The weighting of the internal ob-
jectives for each subsystem specific swim lane are calculated on the basis of the

3 Development of Self-optimizing Systems 105

strategic (phase 2) and the technological priority (phase 3) of the objectives as well
as the actual demand for modification (phase 4). Therefore a weighting function is
used, which considers the risk of the development project as the slope. From the
weighted function and the demand for modification of the objectives the relevance
per objective and subsystem is calculated. Through normalization of the relevance’s
per subsystem we get the weighting of the internal objectives per subsystem. The
described procedures deliver 1) Pareto optimal development processes for the actual
development situation and 2) the situation specific internal system of objectives of
the development process. On this basis the optimal plan has to be selected from the
set of all possible plans according to the development situation. On this, two steps
are necessary: 1) Determination of plan specific objective fulfillment and 2) plan
selection.

3.4.2 Systematic Planning of Synchronizations

One particular challenge for the planning of an appropriate development process is
the interleaving of the domains involved. Models of the domains overlap or inter-
faces between domain models exist, which lead to dependencies of the domains.
If the process does not consider these dependencies, inconsistencies and costly it-
erations are likely to occur. Appropriate planned synchronizations of the domain-
specific processes can prevent these problems.

Most existing approaches for process planning and modeling require a prior
knowledge of all synchronizations. Examples are imperative process modeling ap-
proaches such as petri nets [4], or rule-based approaches. Usually, organizations are
aware of recurring synchronizations, but lack knowledge on synchronizations that
are highly dependent on the dependencies of the domains’ models, i.e. synchroniza-
tions depending on the structure of the system.

Data-centric approaches address the interplay of the process and the domains’
models and provide better support to consider dependencies of the domains’ models.
Miiller et al. (2007) specify subprocesses for each system element in a state-based
manner [40]. Transitions between the states represent the process steps. Similarly,
process-centered environments use state-based languages to specify executable pro-
cess step for each domain model [20, 33, 39, 41]. Still, process engineers must know
the states and interactions of the different domains’ models.

To overcome these problems, we will introduce a systematic approach that en-
ables project managers to derive synchronizations based on known consistency re-
lations of the domains’ models. Although engineers are usually not aware of the
detailed interactions between the domains, most engineers have local knowledge,
i.e. they know to which modeling elements their domain models must be consistent.
For example, the durations for the exchange of signals of the controller play an im-
portant role for the behavior of the discrete software. A software engineer knows
that the time constraints of the discrete software must correspond to these durations
of the controller. However, the software engineer is not aware of the process steps
that a control engineer must perform to define the durations.

106 T. Gaukstern and O. Sudmann

The systematic approach suggests processes based on a set of unrelated subpro-
cesses for the domains and dependencies between the domain models. In order to
derive initial subprocesses, project managers can apply the framework for a self-
optimizing process (cf. Sect. 3.4.1) and use the frameworks result as an initial pro-
cess. We, therefore, assume that the subprocesses are known before the planning of
synchronizations. The focus of the systematic planning approach lies on the spec-
ification of the consistency relations and their interplay with the subprocesses to
derive processes that consider all necessary synchronizations.

As illustrated in Figure 3.21, the approach consists of five steps: (1) a process
manager specifies the interplay of the process and the dependencies of the models,
while project managers specify the consistency relations among the models that hold
for the project at the planning time, (2) a set of processes is generated automatically
based on the consistency relations and the domain-specific processes, and the set is
sorted based on evaluation heuristics that are applied to estimate the process quality,
(3) a project manager selects one process that fits best for the project, (4) engineers
perform the process to develop the self-optimizing system, and (5) process engi-
neers evaluate the executed process and adjust the evaluation heuristics. A project
manager typically applies these steps after the conceptual design and repeats the
steps, each time the dependencies of the models or the domain-specific processes
change.

Vital for the approach is a process modeling language that considers the specifi-
cation of the models’ dependencies (step 1) and the synthesis of the synchronization
(step 2). We illustrate both with the help of an scenario that is based on our experi-
ence on the development of the RailCab. We will introduce the example in the next
section. Afterwards, we will explain the two steps in separated sections.

3.4.2.1 Example Scenario

The interaction of the domain control engineering and software engineering dur-
ing the design of the convoy maneuver of the RailCab (cf. Sect. 2.1) serves as a
running example in the following. In order to keep a constant distance while par-
ticipating in a convoy, RailCabs use a distance controller that controls the speed
of the RailCab. For safety purposes, RailCabs exchange their position to calculate
the distance to the next RailCab in addition to distance sensors. Control engineers
model the control loop of the distance controller. In parallel, software engineers de-
rive a component model and design the message-based communication behavior for
all components. In particular, software engineers specify the exchange of the po-
sition values between RailCabs. The domain-specific processes must be integrated
by defining synchronizations [31]. As an example of synchronizing two domains,
we focus on the exchange of message time intervals, which are necessary for the
specification of the communication behavior.

Controllers are usually specified in terms of differential equations (step Final-
ize Controller”). The differential equations are evaluated with a fixed sample rate
that is defined by control engineers. This sample rate influences the stability of the

107

3 Development of Self-optimizing Systems

2
oljsuUnay \@ /

uoljen|eAg aAuaQ

a

$88001d penoexy

CEXCEX

A

v

2
$S9001d wﬂzowxm_\@ A

$S900.1d 21j109dg-108[01d

e e=le=
A

$88S800.d
2|qIssod 10 19S

$88001d 109|195

_AH
KX

b

ol)sUNaH uonenjeany

wco_umN_:oEoc\Aw
10 SISaYIUAS

$8859001d
oyoadg-ulewoq

MO|4 UOlBW.IOU|

-——

puabo

sajouapuadaq |9pop

LEe-(

2
|opoj\ ,sutewoq B\@

sajouspuada Ayoadg

~

salouapuada(|9poN
uo abpajmouy [euwloju|

Fig. 3.21 Steps to plan synchronizations systematically

108 T. Gaukstern and O. Sudmann

control strategy. Stability means that a controller can compensate disturbances of
the environment without oscillating.

The sample rates are also important for the specification of the communication
behavior. If controller signals, e.g. the position values, are transmitted, a current
value of a signal must always be available according to a given sample rate [42].
Messages which transmit these signals must be executed within the so-called mes-
sage time intervals according to the given sample rates. Hence, software engineers
must wait to specify the coordination patterns in the step ’Determine Coordination
Patterns” (cf. Sect. 3.3.3) until control engineers have defined the sample rates. We
identified two cases where control engineers hand-over the message time intervals.

First, the message time intervals may already be known at the time when the
principle solution is developed. This is the case, if (partial) models or parts thereof
are being reused in new projects. Especially, controllers can be reused so that the re-
quired information for software engineering can be added to the principle solution.
This removes the dependencies of the process steps and enables a parallel develop-
ment of both disciplines. Note, that we assumed this case for the reference process
(cf. Sect. 3.3.3).

Second, software engineers may have to wait until the control engineers designed
the controller and ensured its stability in step ”Analyze Closed-Loop System” (cf.
Sect. 3.3.2). This is the case, if control engineers model new sophisticated con-
trollers, in order to implement innovative functionality. During the interdisciplinary
conceptual design, control engineers can only estimate the message time intervals.
It is, therefore, likely that the message time intervals change during the controller
design.

The goal of our approach is to identify these cases automatically and add the
synchronization that fits best for the current project. We will demonstrate in the next
two sections how our approach can be applied to the RailCab example.

3.4.2.2 Combined Modeling of Process and Domain Model Dependencies

Process engineers and project managers have to capture the domain-specific pro-
cesses, the domain models, and their consistency relations in a computer inter-
pretable representation to derive the synchronizations. We extend Yet Another
Workflow Language (YAWL) [3], a business process language which is inspired
by petri nets, to consider consistency relations of the domain models.

In contrast to data-centric processes, we do not specify the dependencies of the
process steps or the domain models explicitly. Instead, we introduce two new mod-
eling languages: (1) artifact consistency graphs (ACG) to specify the consistency
relations of the domain models that hold currently, and (2) artifact story diagrams
(ASD), which describe changes to the consistency relations during process exe-
cution. This has the advantage, that information on consistency relations and the
changes of these relations is usually available.

An ACG abstracts the domain models and their relations to capture only the
information that is relevant to derive synchronizations. Concerning the relations,
we identified three common relations: modeling elements can (1) be consistent, (2)

3 Development of Self-optimizing Systems 109

req_RailCab:
Requirements
A

as_RailCab:
i ActiveStructure :
| A |

se_ConvoyManager: < flow_currentPosition: se_DistanceController:
SystemElement "1 Information Flow [™] SystemElement

Legend
mgg?:::ns Element Consistent ---# Refers to Contradicts

Fig. 3.22 Artifact Consistency Graph (ACG) of the development state after the domain-
spanning conceptual design

contradict, or (3) refer to each other. Initially, a process manager must collect the
relevant modeling elements. For instance, message time intervals play an important
role for the process planning, but the differential equations of the controllers are
not important. As a rule of thumb, modeling elements that overlap with modeling
elements of other domains are usually relevant. Thereafter, project managers can
derive an ACG of the current development situation from the domain models and
based on interviews with the engineers.

Figure 3.22 shows an example of an ACG that represents the state of the con-
sistency relations after the conceptual design for the RailCab convoy. The active
structure of the RailCab is consistent with the requirements of the RailCab. The re-
lation refers to describes relevant information on the structure of the models. In our
example, the active structure consists of two important system elements: a system
element se_ConvoyManager that encapsulates the communication behavior of the
convoy, and a system element se_DistanceController that represents the distance
controller. These system elements are connected by an information flow.

If an engineer performs a process step, the existing modeling elements and their
consistency relation may change. For instance, the step “Finalize Control Strategy”
adds a controller and its message time intervals. Artifact story diagrams (ASD) are a
compact modeling formalism to capture such changes. A process engineer specifies
a set of ASD for each process step after the collection of relevant modeling elements.
Process engineers only have to do this once, in contrast to the specification of the
ACG that project managers must specify each time synchronizations are planned.

ASDs base on Story Diagrams (SD) [19], which were developed to describe soft-
ware behavior in a graphical manner. An ASD describes which modeling elements
and relations must exist in an ACG before a process step can be performed and de-
scribes which modeling elements and relations are created or removed during the

110 T. Gaukstern and O. Sudmann

ACG before ACG after
req_RailCab: req_RailCab: |
Requirements Requirements |
I
E
Distan ntroller: |58 DistanceController: |- cDistanceController:
> SystemElement SystemElement Controller
A
:
msg_position:

MessageTimelnterval

\ Finalize Control
/ Strategy

ASD:Finalize Control Strategy

:Requirements

:SystemElement

Fig. 3.23 Example of an Artifact Story Diagram (ASD) to specify the interaction of process
steps and Artifact Consistency Graphs (ACG)

process step. If a process step has more than one ASD, the step is executable, if at
least one ASD can be applied.

The bottom of Figure 3.23 shows the ASD for the process step “Finalize Control
Strategy”. The annotation «create» means that a new modeling element or a new
relation will be created. Similarly, elements or relations are removed, if they have
the annotation «delete».

The ASD can be applied if a system element and requirements exist in the ACG.
Then, a controller (c_DistanceController), its message time intervals, and two refers
to relations are added. Note that the c¢_DistanceController does not yet have a con-
sistent relation to the system element and the requirements, because the control
engineers have not checked if the controller fulfills the requirements.

After this specification step, we can analyze the dependencies between pro-
cess steps of different domains in the current process and add synchronizations
accordingly.

3.4.2.3 Synthesis of Synchronizations

The aim of the synthesis of synchronization is an overall development process that
contains all necessary synchronizations between the domains. Inputs for the ap-
proach are the set of ASD, the inital ACG, and a set of domain-specific processes
that are tailored for the current project. We assume that the domain-specific pro-
cesses are separated by process specifications, i.e. an overall process does not exist.

3 Development of Self-optimizing Systems 111

Initially, we create an overall process that consists of a parallel composition of the
domain-specific processes.

In order to find out where synchronizations are necessary, we simulate the overall
process. If the process lacks synchronizations, one of the following two situations
occur during the simulation: (1) parallel processes of the domains produce con-
flicting modeling elements or consistency relations, or (2) a process step requires
modeling elements with consistency relations that are produced by another domain.
We add synchronizations between the process steps that depend on each other.

Figure 3.24 shows an example of a simulation run. The top of Figure 3.24 illus-
trates two process steps of the domain control engineering and corresponding set of
ACG. The bottom of Figure 3.24 illustrates two steps of the domain software engi-
neering. The analysis simulated the steps of the domain control engineering and the
step "Derive Component Model” of the domain software engineering. We will see
later, that the simulation can not execute the step Determine Coordination Pattern”,
because a necessary synchronization between the domains is missing.

The ACG concepmalDesign Tepresents the consistency relations after the "Domain-
spanning Conceptual Design”. This ACG forms the basis for the subsequent simu-
lation of the subprocesses of the domains software and control engineering. First,
control engineers add a new controller and define its message time intervals
(ACGFinatizecontrol)- Second, they ensure that the controller meets the requirements,
i.e. the controller is stable. As a consequence, consistency relations are added to the
ACG. The result is the ACGnatyzeSysiem-

Independently, we simulate the process of the domain software engineering. Dur-
ing the step “Derive Component Model”, software engineers add components for
each system element and connectors for each information flow of the active struc-
ture. The result is the ACGcomponenimodel- The step “Determine Coordination Pat-
tern” requires message time intervals of a stable controller, i.e. the controller has to
be consistent with the requirements. The message time intervals are, however, not
defined during the software design. Therefore, the simulation can never execute this
step.

An analysis searches the results of all steps that are executed in parallel to ”De-
termine Coordination Pattern” for the missing controller with a consistency relation
to the requirements and the message time intervals. As the step ”Analysis Closed-
Loop System” provides these, a synchronization after the step ”Analysis Closed-
Loop System” and before the step "Determine Coordination Pattern” is added. This
is, however, not the only solution. Each process step after ”Analyze Closed-Loop
System” also provides the required message time intervals.

Generally, the simulation starts with the initial ACG, as specified by the project
manager. A process step can be executed, if it is executable according to the domain-
specific processes, and if it has at least one ASD that can be applied to the current
ACG. A process step execution includes the execution of the ASD. As a conse-
quence, the ACG is modified. Hence, the ACG evolves during the simulation of the
process.

If process steps produce conflicting modeling elements or relations, we add a
new synchronization between these steps. If a process step waits for a combination

T. Gaukstern and O. Sudmann

112

e M E—

|9po Jusuodwo)

910)

sulaped uoneu
- -1pJ00) BulwIslRa

A - _Amno_z jJuauodwo)
anueQ

Jusuodwo): _AI_ Jojosuuo): _|V_ Juauodwo): _
()

JuaWo|JwaysAg:

SUIa)ed UOIEUIPI00) aUllIaled:aSY

[ENE N ENNELESEN

“UONISO

¥

waysAg dooT
-paso|) asAeuy

\ ABajens ml -

y |05u0D 8zijeuly

ubisagenidesuo)

/ ubisa [enjdeouod
/ Areuydiosipiajuy

910)

Tajonuo)
To[[OU0)3IUBISI(] 9

IENETE TN

BN e Io VST IR

L

()

SNEMENIE]

qeniey bai

wayshgashleuy

910)

IE]I)

IMENMEENEES
TRNONUO)BOUBRIg 35

TTSONU0)BIUERIT D | -
r

SUETEIEN)

qeniey bai

J0JU0D ozlfeuly

o0V

Fig. 3.24 Example of a synchronization identified by a deadlock

3 Development of Self-optimizing Systems 113

of modeling elements and consistency relations from another domain, we add a new
synchronization between the step that waits and the process steps that provide the
necessary modeling elements and consistency relations. Usually, there are more than
one combination of steps that provide the required modeling elements and relations.
As described above, the message time intervals are available after the step “Finalize
Control Strategy”, but they are still available after the following step, e.g. ”Analyze
Closed-Loop System”. Because the step ”Analyze Closed-Loop System” ensures
the stability of the controller, a synchronization after this step is the better choice.
We, therefore, create different variants of the process for each possible combination.

We apply evaluation heuristics to sort the process variants. We have identi-
fied three common heuristics: (1) before modeling elements are handed-over, they
should be analyzed, (2) synchronizations due to missing modeling elements or con-
sistency relations should be performed as early as possible in the process, (3) a
synchronization should occur with the least possible process steps.

References

1. VDI 2206 - Entwicklungsmethodik fiir mechatronische Systeme. Beuth Verlag, Berlin
(2004)

2. Uml 2.2: Superstructure specification (2009)

3. van der Aalst, W., ter Hofstede, A.: YAWL: Yet Another Workflow Language. Tech. Rep.
FIT-TR-2003-04, Queensland University of Technology, Brisbane (2003)

4. van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M.: Business Process Management:
A Survey. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM 2003.
LNCS, vol. 2678, pp. 1-12. Springer, Heidelberg (2003)

5. Albers, A.: Five Hypotheses About Engineering Processes and Their Consequences. In:
Proceedings of the 8th International Symposium on Tools and Methods of Competitive,
Ancona (2010)

6. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdhlking, I., Angel, S.: A
Pattern Language. Oxford University Press, Oxford (1977)

7. Alur, R, Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126,
183-235 (1994)

8. Bauer, F., Anacker, H., Gaukstern, T., Gausemeier, J., Just, V.: Analyzing the Dynamical
Behavior of Mechatronic Systems Within the Conceptual Design. In: Proceedings of the
18th International Conference on Engineering Design, Copenhagen, pp. 329-336 (2011)

9. Becker, S., Brenner, C., Brink, C., Dziwok, S., Heinzemann, C., Loffler, R., Pohlmann,
U., Schifer, W., Suck, J., Sudmann, O.: The MechatronicUML Design Method - Process,
Syntax, and Semantics. Tech. Rep. tr-ri-12-326, Software Engineering Group, Heinz
Nixdorf Institute, University of Paderborn (2012)

10. Bender, K.: Embedded Systems - Qualititsorientierte Entwicklung. Springer, Heidelberg
(2005)

11. Bengtsson, J.E., Yi, W.: Timed Automata - Semantics, Algorithms and Tools. In: Desel,
J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87—124. Springer,
Heidelberg (2004)

114 References

12. Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design of
Complex Self-optimizing Mechatronic Systems. In: Braz, J., Aratjo, H., Vieira, A., En-
carnacao, B. (eds.) Informatics in Control, Automation and Robotics I. Springer, Heidel-
berg (2006)

13. Dasgupta, P., Chakrabarti, P., Desarkar, S.C.: Multiobjective Heuristic Search - An In-
troduction to Intelligent Search Methods for Multicriteria Optimization. Vieweg & Sohn
Verlagsgeschellschaft, Braunschweig (1999)

14. Dorociak, R.: Early Probabilistic Reliability Analysis of Mechatronic Systems. In: Pro-
ceedings of the Reliability and Maintainability Symposium (2012)

15. Dorociak, R., Gaukstern, T., Gausemeier, J., Iwanek, P., VaBholz, M.: A Methodology for
the Improvement of Dependability of Self-optimizing Systems. Production Engineering
- Research and Developement 7(1), 53-67 (2013)

16. Dziwok, S., Just, V., Schierbaum, T., Schifer, W., Trichtler, A., Gausemeier, J.: Inte-
grierter Regelungs- und Softwareentwurf fiir komplexe mechatronische Systeme. In:
Tagungsband vom Wissenschaftsforum 2013 Intelligente Technische Systeme - 9, Pader-
born. Paderborner Workshop Entwurf mechatronischr Systeme (2013)

17. Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M., Priesterjahn, C., Schifer, W.: Mod-
eling and Verifying Dynamic Communication Structures Based on Graph Transforma-
tions. Computer Science - Research and Development 28, 3-22 (2013)

18. Ehrlenspiel, K.: Integrierte Produktentwicklung, 2nd edn. Carl Hanser Verlag, Miinchen
(2007)

19. Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story Diagrams - A New Graph Rewrite
Language Based on the Unified Modeling Language and Java. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Transformation. LNCS, vol. 1764, pp.
296-309. Springer, Heidelberg (2000)

20. Fuggetta, A.: Software Process: A Roadmap. In: Proceedings of the Conference on The
Future of Software Engineering, pp. 25-34. ACM Press, New York (2000)

21. Gajski, D., Kuhn, R.: Guest Editors Introduction: New (VLSI) Tools. Computer 16(12),
11-14 (1983)

22. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Spezifikationstechnik zur Beschreibung
der Prinziplosung selbstoptimierender Systeme des Maschinenbaus - Teil 2. Konstruk-
tion 9 (2008)

23. Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201-223 (2009)

24. Gausemeier, J., Rammig, F.J., Schifer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

25. Gausemeier, J., Schiifer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Management of
Cross-Domain Model Consistency During the Development of Advanced Mechatronic
Systems. In: Proceedings of the 17th International Conference on Engineering Design,
Stanford (2009)

26. Giese, H., Tichy, M.: Component-based Hazard Analysis: Optimal Designs, Product
Lines, and Online-reconfiguration. In: Proceedings of the 25th International Conference
on Computer Safety, Security and Reliability, Gdansk (2006)

27. Giese, H., Tichy, M., Burmester, S., Schifer, W., Flake, S.: Towards the Compositional
Verification of Real-time UML Designs. In: Proceedings of the 9th European Software
Engineering Conference Held Jointly with the 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, Helsinki, pp. 38—47. ACM Press, New
York (2003)

3 Development of Self-optimizing Systems 115

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Greenyer, J., Rieke, J., Schifer, W., Sudmann, O.: The Mechatronic UML Development
Process. In: Tarr, P.L., Wolf, A.L. (eds.) Engineering of Software, pp. 311-322. Springer,
Heidelberg (2011)

Heinzemann, C., Pohlmann, U., Rieke, J., Schifer, W., Sudmann, O., Tichy, M.: Gener-
ating Simulink and Stateflow Models From Software Specifications. In: Proceedings of
the 12h International Design Conference DESIGN, Dubrovnik (2012)

Heinzemann, C., Priesterjahn, C., Becker, S.: Towards Modeling Reconfiguration in Hi-
erarchical Component Architectures. In: Proceedings of the 15th ACM SigSoft Inter-
national Symposium on Component-Based Software Engineering, Bertinoro, pp. 23-28
(2012)

Heinzemann, C., Sudmann, O., Schifer, W., Tichy, M.: A Discipline-spanning Devel-
opment Process for Self-adaptive Mechatronic Systems. In: Proceedings of the Interna-
tional Conference on Software and System Process, San Francisco (2013)

Isermann, R.: Mechatronische Systeme - Grundlagen. Springer, Heidelberg (2008)
Junkermann, G., Peuschel, B., Schifer, W., Wolf, S.: MERLIN - Supporting Coopera-
tion in Software Development Through a Knowledge-based Environment, pp. 103-129.
Research Studies Press Ltd., Taunton (1994)

Kahl, S., Gausemeier, J., Dumitrescu, R.: Interactive Visualization of Development Pro-
cesses. In: Proceedings of the 1st International Conference on Modelling and Manage-
ment of Engineering Processes (2010)

Kahl, S.M.: Rahmenwerk fiir einen selbstoptimierenden entwicklungsprozess fortschrit-
tlicher mechatronischer systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitit
Paderborn, HNI-Verlagschriftenreihe, Band 308, Paderborn (2013)

Klopper, B., Ishikawa, F., Honiden, S.: Service Composition with Pareto-optimality of
Time-dependent QoS Attributes. In: Proceedings of the 8th International Conference on
Service-Oriented Computing, Berlin, pp. 635-640 (2010)

Klopper, B., Pater, J.P., Honiden, S., Dangelmaier, W.: A Multi-objective Evolutionary
Approach to Scheduling for Evolving Manufacturing Systems. Evolving Systems 3, 31—
44 (2012)

Kockerling, M.: Methodische Entwicklung und Optimierung der Wirkstruktur mechatro-
nischer Produkte. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitidt Paderborn, HNI-
Verlagschriftenreihe, Band 143, Paderborn (2004)

Kiinzle, V., Reichert, M.: PHILharmonicFlows - Towards a Framework for Object-aware
Process Management. Journal of Software Maintenance and Evolution: Research and
Practice 23(4), 205-244 (2011)

Miiller, D., Reichert, M., Herbst, J.: Data-driven Modeling and Coordination of Large
Process Structures. In: Proceedings of the OTM Confederated International Conference
on the Move to Meaningful Internet Systems: CooplS, DOA, ODBASE, GADA, and IS,
Vilamoura, pp. 131-149 (2007)

Miinch, J., Armbrust, O., Kowalczyk, M., Soto, M.: Software Process Definition and
Management. Springer, Heidelberg (2012)

Osmic, S., Miinch, E., Trichtler, A., Henkler, S., Schifer, W., Giese, H., Hirsch, M.: Safe
Online-Reconfiguration of Self-Optimzing Mechatronic Systems. In: Gausemeier, J.,
Rammig, F.J., Schifer, W. (eds.) Tagungsband vom 7, Paderborn. Internationalen Heinz
Nixdorf Symposium fiir industrielle Informationstechnik - Selbstoptimierende mecha-
tronische Systeme: Die Zukunft gestalten, pp. 411-426 (2008)

Chapter 4

Methods for the Domain-Spanning Conceptual
Design

Harald Anacker, Christian Brenner, Rafal Dorociak, Roman Dumitrescu,
Jirgen Gausemeier, Peter Iwanek, Wilhelm Schifer, and Mareen Valholz

Abstract. The development of self-optimizing systems is a highly interdisciplinary
task, as several domains are involved. Existing design methodologies do not adress
this issue, as they focus on the respective domain; a holistic domain-spanning con-
sideration of the system occurs — if at all — only rudimentally. The partial solu-
tions developed by the respective domains may be optimal from the point of view
of this domain. However, it does not automatically mean, that the sum of the opti-
mal domain-specific solutions forms the best possible overall solution: "the whole is
more than the sum of its parts". This especially holds true for the early design phase,
the conceptual design. Its result is the so-called principle solution, which is further
refined in the domain-specific design and development. Thus, a great need for meth-
ods arises which support the domain-spanning conceptual design for self-optimizing
systems in a holistic manner. In this chapter we will introduce such methods. In
particular, we will explain the specification technique for the domain-spanning de-
scription of the principle solution of a self-optimizing system. Furthermore, meth-
ods are explained which support the creation of the principle solution. This includes
a method to ensure the consistency of application scenarios, a method for the de-
sign of the system of objectives, which is crucial for a self-optimizing system, as
well as a method for the re-use of proven solutions for recurring problems (solution
patterns). Finally, some analysis methods are explained that are performed on the
specification of the principle solution. These are: the early analysis of the reliability
and the analysis of the economic efficiency.

The development of self-optimizing systems is structured into the domain-
spanning conceptual design and the domain-specific design and development as
explained in Chap. 3. During the conceptual design, experts from the domains of
mechanical, electrical/electronic, control and software engineering work together
and develop the principle solution. The involvement of the different domains in the

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 117
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 4, (© Springer-Verlag Berlin Heidelberg 2014

118 H. Anacker et al.

Fig. 4.1 Central challenge: oW RS
a specification technique Geometry
for the description of the D | BoundayUiC 505-1
principle solution of a self- "] D {Conally,’ 0%00mm
... . D Height hy,,: <2855 mm
optimizing mechatronic o e —

system [24] Field of Activity

Conceptual
Design

<

H
Cross-domain Design
Methodology for Mechatronic
Systems

Mechanics Control Electronics | | Software
Engineering Engineering

Design and
Development

Increasing Concretizationof the Product Specification

v o
i i :
£2 3
L@ 9
2=
- Integration
-

development process for self-optimizing systems as well as the integration of partial
intelligence in self-optimizing systems call for new development methods as well
as new development tools. Existing design methodologies need to be fundamentally
extended. This especially concerns the conceptual design. Certainly, the basic struc-
ture of the phases of existing design methodologies (formulation of requirements,
definition of functions, etc.) [43] also applies for self-optimizing systems. Never-
theless, such aspects as domain-spanning understanding, modeling of application
scenarios, partial intelligence and system behavior have to be considered as well.
Due to the involvement of different domains, devices have to be provided which al-
low fundamental understanding of the whole system by all developers from the very
beginning of the development process. The gap between the list of requirements,
which is more or less a rough specification of the total system and, hence, leaves
much space for interpretation, and well-established specification techniques of the
domains involved needs to be closed (Fig. 4.1) [24]. Otherwise, time and cost in-
tensive iterations and failure can emerge when the engineers have to integrate their
results in the domain-specific design and development.

To overcome these challenges a holistic description of the principle solution for
the whole system is necessary. It describes the basic structure and operational mode
of the system, as well as its desired behavior. Moreover, it considers different as-
pects such as environment, requirements and application scenarios - just to name
a few. These different aspects form a coherent system as all aspects correlate with
each other. To secure the overall consistency of the principle solution is a challenge,
which can only be overcome with an adequate software support. Hence, a software
tool which supports the modeling of the principle solution is also a necessary.

A detailed analysis of the state of the art has shown that there are a number
of approaches for the specification of mechatronic systems [24]. None of these
approaches, however, fulfill the aforementioned requirements to a full extent. In

4 Methods for the Domain-Spanning Conceptual Design 119

order to address this need for action, we have developed a specification technique
CONSENS 8 for the domain-spanning description of the principle solution for self-
optimizing systems, which is introduced in the following section [24].

This chapter is structured according to the reference process for the conceptual
design (cf. Sect. 3.2). First, the specification technique CONSENS for the domain-
spanning description of the principle solution for self-optimizing systems is intro-
duced (Sect. 4.1). Sect. 4.3 - 4.5 explain methods, which support the creation of the
principle solution. Sect. 4.3 shows, how to ensure the consistency of application sce-
narios regarding the discrete behavior specified in them. In Sect. 4.4 it is explained,
how the system of objectives, the backbone for self-optimization, is modeled. In
Sect. 4.5 we will describe, how solution patterns are used during the conceptual de-
sign, i.e. how established solutions for recurring problems can be reused during the
specification of the principle solution. The method for the product structuring for
self-optimizing systems in the conceptual design is explained in Sect. 4.6. Finally,
we will explain how first analyses can be conducted on the description of the prin-
ciple solution at an early stage. These are the early analysis of the reliability (Sect.
4.7) as well as the analysis of the economic efficiency (Sect. 4.8).

4.1 Specification Technique CONSENS for the Description of
Self-optimizing Systems

Rafal Dorociak, Roman Dumitrescu, Jiirgen Gausemeier, and Peter Iwanek

In accordance to the reference process for the conceptual design (cf. Sect. 3.2) the
specification technique CONSENS is used to describe the domain-spanning prin-
ciple solution for the self-optimizing system [18, 24]. The principle solution de-
scribes the basic structure (e.g. components of the system and interactions between
them), operational mode of the self-optimizing system, and its desired behavior.
The principle solution forms the basis for the communication and cooperation of
the domains involved (e.g. mechanical and software engineering) in the course of
the further domain-specific design and development.

The description of the principle solution of self-optimizing systems consists of
eight interrelated aspects. As shown in Fig. 4.2 these aspects are requirements, en-
vironment, system of objectives, application scenarios, functions, active structure,
shape and behavior. The aspects are computer-internally represented as partial mod-
els. The aspects relate to each other and ought to form a coherent system. We will
describe each aspect in the following.

Environment: There are many interrelations between the system and its environ-
ment. Therefore, it is important to analyze the environment of the system to ensure
that the final system will work properly in it, without any restrictions caused by
not considered interactions. For this purpose the specification technique CONSENS
offers the aspect environment. This aspect describes the embedding of the system
within its environment; the system itself is treated as a "black-box". In particular,

8 CONceptual design Specification technique for the ENgineering of complex Systems.

120 R. Dorociak et al.

Environment Application Scenarios Requirements

Knowlod rowied 2 | Geometry
"base 24| Length__: 6600 mm
- 22 [Widlhb,,; 2420 mm
—-\) 23 | Feighth b 2855 rom
M 24 | Distance hy : >400 mm

section x section y

Functions
Adjust Air
Gap
Determine
Control Input

A

AV VA

System of Objectives

[Extornal System of Objectives.
[Shutte (cut-out)

stem of
Shuttle (Cut-out)

Targets of sl

the Cluster max [

Internal system of objectives

[Shuttle (Cut-out)
)|
e ooy
.5 Interval 3 Control Input

AN V4

Behavior L Shape Active Structure

v, Serial _____
put Interface,
i

Wor'lgir:g-
int
ool
H
Drive X\~~~ =~ Drive
Module, Module,

System of Coherent
Partial Models

Determine
Influences

Fig. 4.2 Partial models for the domain-spanning description of the principle solution for self-
optimizing systems [24]

other elements of the environment (e.g. the user, other technical systems or the un-
derground) and their interrelation with the system are described. Relevant influences
of the environment on the system such as weather, temperature and humidity are de-
scribed as well. Influences which have an disturbing impact on the system operation
are marked as such. The identification of the relevant influences is supported by
respective catalogues and check lists. The interrelations between the system under
development and elements of the environment are represented as flows. In princi-
ple, three types of flows can be distinguished: information flows, energy flows, and
material flows.

Figure 4.3 shows the specification of the environment of the RailCab. In partic-
ular, it is shown that the driving behavior of the RailCab is affected by the weight
of users and cargo as well as influences from the environment, the state of the track
sections as well as the abrasion of the RailCab itself.

Application Scenarios: Application scenarios form first concretizations of the
system’s behavior. They describe the most common operation modes of the system
and the corresponding behavior in a rough manner. Every application scenario de-
scribes a specific situation (e.g. start-up, failure of the system or an interaction with

4 Methods for the Domain-Spanning Conceptual Design 121

user Legend
environment
. f <:> element
destination E 1 driving- system under
' Fuser ! conditions <:> development
Feargo ' !
cargo - ! I --- information flow
' E —— energy flow
1 ! =_— material flow
E E — disturbance relation
Yyvy |
rain, snow, wind etc. -
RailCab SRR
| informations
i E (data requests,
abrasion FRailCab, ' track data etc.)
track- .
set error '
A v
environment rain, snow, wind etc. track track-section
section contol

Fig. 4.3 The partial model environment of the RailCab (excerpt) [24]

the user), and the required behavior of the system for this situation. Thus, applica-
tion scenarios characterize a problem and the possible solution for it. By modeling
the application scenarios requirements and potential operational modes for the sys-
tem can be identified. Fig. 4.4 shows the application scenario "AS12: Drive onto
next track section” for the RailCab as an example. The description of an application
scenario includes e.g. general information, like a title, an ID, the date of change, and
a textual characterization of the application scenario; to gain greater insight into the
application scenario a sketch can be added.

Requirements: Based on the general problem definition and the aspects envi-
ronment and application scenarios, the requirements for the system under develop-
ment can be defined and modeled. Requirements present an organized collection
of requirements that need to be fulfilled by the system under development (e.g.
features of the system, overall size, performance, quality). Requirements allow the
engineering team to expose what is expected from the future system. They form a
corner pillar for the validation and verification in further development phases. Re-
quirements are represented in tabular form; the requirements list. requirements can
be decomposed into sub-requirements to structure multiple requirements. For ex-
ample; "height", "length" and "width" can be sub-requirements of the "size" of an
element. Each requirement in the requirements list has an ID, is verbally described,
and, if possible, concretized by corresponding parameters (e.g. temperature, length,
velocity) and values (e.g. the RailCab should be able to reach a velocity of 100
km/h). Several checklists assist the identification of requirements; see for example

122

Fig. 4.4 Description of the
application scenario "Drive
onto next Track Section"
(excerpt) [24]

Fig. 4.5 Requirements on
the RailCab (excerpt)

R. Dorociak et al.

Application Scenario

. . Jul. 17,2010 | AS12 |Page: 1
Drive onto next track section

Description of the partial development task AS12: When the RailCab is
driving on a track section, it is at some point notified that it approaches the end
of the track section. Then, the RailCab must obtain the information, whether it
may enter the next track section, from the corresponding section control. This
information must be available to the RailCab before the RailCab reaches the
point of the last safe brake. This point precedes the point of no return, beyond
which it cannot be guaranteed that braking will safely stop the RailCab before it
enters the next track section.

Principle solution for AS12: The RailCab, when reaching the end of the
track section, sends a request to enter the next track section to the
section control responsible for the next track section. Then the section

control replies, stating whether entering the track section is currently
allowed or not. The reply is sent in time for the RailCab to receive it
before it reaches the point of the last safe brake.

current track next track
section control section conti

@

rol

approacﬁ?ﬁg end last safe p(;iﬁt of next track section
of track section brake noreturn reached

Reference to Application Scenario Specific Cut-out of
- Requirements

- Environment

- Active Structure

'\—/\

Requirements list
No. Requirement description D/W
1|Geometry
1.9|Entrance should be possible from both sides. D
1.10|Optimal aerodynamics for single and convoi drive modes.| D
1.11 [Modular construction. D
2 |Kinematics D
2.1|The vehicle has a steering system. D
7 |Safety
7.9 |Provide emergency mechanisms and exits. D
7.10|Minimize sensitivity to the side wind. w

[11, 43, 47]. Requirements are separated into demands and wishes [43]. If needed,
the requirements can also be divided into functional (e.g. the doors of the RailCab
should be able to close automatically) and non-functional requirements (e.g. the
doors of the RailCab should be red). An excerpt of the requirements list for the
RailCab is shown in Fig. 4.5; demands are marked with "D", wishes with "W".

4 Methods for the Domain-Spanning Conceptual Design 123

Fig. 4.6 Functions of the provide mobility
RailCab (excerpt) for people or goods
I
= T T T T | 1
provide energy provide movement enable convoy
supply capability driving mode
I
C r L
accelerate the decelerate the
system system

Functions: Based on the requirements, the functions for the system under devel-
opment can be defined. The aspect functions describes the hierarchical subdivision
of the desired functionality of the system. A function is the general and required
relationship between input and output parameters, with the aim to fulfill a task. For
the specification of function hierarchies, we use a catalogue with functions which
is based on the works of Birkhofer (1980) [5] and Langlotz (2000) [35]. This cata-
logue has been extended by functions, which describe self-optimizing functionality.
Functions are realized by solution patterns and their concretizations. Starting with
the overall function (e.g. provide mobility for people or goods), a subdivision into
sub functions takes place (e.g. accelerate the system) until useful solution patterns
can be found for the functions (e.g. linear motor). The use of solution patterns is
described in a detailed manner in Sect. 4.5. Figure 4.6 shows a section of the func-
tion hierarchy of the RailCab. After the definition of the overall and sub-functions
the classification scheme by Zwicky (morphological matrix) can be used, for the
systematic combination of certain solutions [43]. In this classification scheme, the
sub-functions and the appropriate solutions are entered into the rows of the mor-
phological matrix. By systematically combining a solution fulfilling a specific sub-
function with the solution for a neighbouring sub-function, one obtains an overall
solution in the form of a possible conception. In this process, only those solution
that are compatible should be combined [43].

Active Structure: Based on the functions and the combination of the chosen
solutions the active structure for the system under development can be modeled.
Thus, in contrast to the aspect environment (Black-Box view on the system and
its context), the active structure concretize the system (White-Box view). The ac-
tive structure defines the internal structure and the operational mode of the system.
It describes system elements (e.g. chosen solutions), their attributes as well as the
relationships between system elements (material, energy and information flows as
well as logical relationships). Depending on the level of concretization, system ele-
ments may be described abstract (e.g. temperature sensor) or specific (e.g. resistance
thermometer). If necessary, it is also possible to model elements of the environment
(e.g. user) and their interaction with elements of the system (e.g. interaction of the
user with the human-machine-interface of the system).

124 R. Dorociak et al.

energy spring and tilt
management module
A

Fhotding

RailCab

\d

hl

i

i

\ ;

Fteering hydraulic- undercarriage :
actuator frame ;
i

i

i

i

i

i

i

i

Fhoding

|
Va n
. eddy-current \ - information-
- nsor . .
distance S distance \ Processing

flange-rail information

'
__ e

Fraicab ! informations
¥ (data requests, track data etc.)

track-
track i
q section
section
control

Legend
<:> environment --- information flow r=1 logical
element Lo-od
—— energy flow group
system . measurement
<:> element == material flow O -» informations

Fig. 4.7 The partial model active structure of the RailCab (excerpt) [24]

Figure 4.7 visualizes an excerpt of the active structure for the RailCab. The active
structure consists of system elements such as the Energy Management, the Spring
and Tilt Module or the Track-guidance Module. To show system elements of the
Track-guidance Module at the same hierarchy level as the other modules, logical
groups can be used. The track-guidance module consists of eddy-current sensors (in
Fig. 4.7 only one of them is shown), the hydraulic actuator, the axis, the wheels etc.
The hydraulic actuator can change the position of the axis and thus of the wheels.
In addition, the wheel has an mechanical contact to the rail. The eddy-current sen-
sor measures the distance between the flange and the rail. This is specified with a
measurement information flow. The information of the eddy-current sensor are sent
to the information processing unit of the Track-guidance Module. The information
processing unit calculates the needed displacement force, based on the sensor in-
formation and information from the track-section control. The needed displacement
will be sent to the hydraulic actuator, which changes the steering position then. A
closed control loop between sensor, actuator, information processing, axis, and the
wheels results.

System of Objectives: This aspect describes external, inherent and internal ob-
jectives of the system and their interrelations. An excerpt of the system of objectives
of the RailCab is shown in Fig. 4.8. External objectives are set from the outside of

4 Methods for the Domain-Spanning Conceptual Design 125

External System of Objectives Internal System of Correlation of the

Shuttle (Cut-out) Comfort Obijectives Shuttle (Cut-out) Objectives (Cut-out)
4] o7.1|“emi© max

s Lateral
User's 4 F 09.1 Acceleration pjp
07 | Satisfaction max[*..~ ~|07.2 are min
N Travelling 09.2 Eosts min
07.3|Time min
Travelling
Inherent System of Objectives 09.3 Time min
Shuttle (Cut-Out)
09.4 APr i

min
Maintenance
09.5 Interval max

.\.
\

. Failure Safety
’ max.

g
Safety / .
| oaw Reliability max,l‘.’\"'|osh'°‘bras'°" i,
\,

>

b=,
08.3| Costs min.,

Legend
[T] Extenal Objective D :rgz_rnatl_Obj?(;:Veo fmization) + positive, supporting correlation
jective of the Optimization R L))
- (obedive —rmrmm Logical Relation negative, impeding correlation
™7 Inherent Objective (Is Part-Objective of) 0 neutral, respectively no correlation

Fig. 4.8 The partial model system of objectives of the RailCab (excerpt) [24]

the self-optimizing system; they are set by other systems or by the user (e.g. "max-
imize user satisfaction"). Inherent objectives reflect the design purpose of the self-
optimizing system. Inherent objectives of the RailCab are for example the objectives
"maximize dependability" and "minimize energy consumption”. Objectives build
a hierarchy and each objective can thus be refined by sub-objectives (e.g. "maxi-
mize safety” is a possible sub-objective of the objective "maximize dependability",
"maximize comfort" and "maximize driving speed" are possible sub-objectives of
the objective "maximize user satisfaction"). Inherent and external objectives that
are pursued by the system at a given moment during its operation are called internal
objectives. The selection of internal objectives and their prioritization occurs con-
tinuously during the operation of the system. "Maximize comfort" and "maximize
safety" are examples of internal objectives. Only the internal objectives are part of
the self-optimization. During the operation of the self-optimizing system some of
its objectives may be in conflict to each other, as they can not be pursued both to
the full extend at the same time. In such cases a prioritization of the objectives has
to take place. For instance, during the adjustment of the driving speed the objec-
tives "maximize driving speed" and "minimize energy consumption" are in conflict
to each other, as energy consumption typically increases with increasing driving
speed. Such potential mutual influences between internal objectives are modeled in
an influence matrix. In particular, the influence matrix shows which objectives may
influence each other in a negative way. Such a potential negative mutual influence
may be an indication for the need for self-optimization. In Sect. 4.4 we will describe
how the system of objectives is designed.

Shape: This aspect describes the first definition of the shape of the system
within the conceptual design. In particular, the working surfaces, working places

126 R. Dorociak et al.

and frames of the system are described in a rough manner. In mechanical engineer-
ing the aspects shape and active structure form the core of the principle solution. It is
very important to model the draft of the shape during the domain-spanning concep-
tual design. For example, geometric restrictions for wires or mechanical components
can be recognized by the different domains involved and the communication and
cooperation between them is improved. Thus, expensive corrections can be avoided
(e.g. too short wires in the Airbus A380 in 2006 [7]). The computer-aided modeling
is performed using 3D CAD systems.

Behavior: A self-optimizing system is characterized by different kinds of behav-
ior (e.g. kinematic, dynamic and reactive behavior). In order to describe the behavior
of such systems, a group of behavior models is used: there are three partial models
to specify the behavior. We distinguish between the partial models behavior—states,
behavior—activities and behavior—sequence. The usage of the diagrams depends on
the underlying development task. Additional kinds of behavior, such as kinematics,
dynamics or electro-magnetic compatibility can be specified additionally.

e The partial model behavior—states describes all possible states of the system, all
possible state transitions as well as events which initiate state transitions. Events
correspond to external influences on a system or a system element as well as to
already finished activities. For example, the lighting system of the RailCab can
have two different states: lights on and lights off. The user-event "switch power
button" causes a state transitions from "lights off" to "lights on" and vice versa.

e The partial model behavior-activities describes the operation process of the
system , i.e. operations and tasks of the system that are performed during its
operation. This especially includes operation processes which are performed in
order to implement the self-optimization process (e.g. "determine the fulfillment
of current system objectives", "select adequate parameters and configuration”,
etc.). We call such operation processes adaptation processes.

e The partial model behavior-sequence describes the interaction of several sys-
tems or system elements. The messages being exchanged during the interaction
of those system elements are modeled in a chronological order. In Sect. 4.3 some
examples of behavior description with sequence diagrams are introduced in a
detailed manner.

It is necessary to alternately work on the aspects and the corresponding partial
models although there is a certain order. This order is defined by the reference pro-
cess for the conceptual design (cf. Sect. 3.2). In contrast to other system model-
ing approaches such as UML [24, 44] or SysML [20] the specification technique
CONSENS is strongly interconnected with the reference process and focuses on
self-optimizing mechatronic systems.

As stated before, the partial models form a coherent system and are strongly
interconnected. These interconnections are modeled as cross-references between
partial models. Tab. 4.1 shows some examples of such partial model spanning cross-
references. There are e.g. bidirectional cross-references between requirements and
functions, between requirements and system elements as well as between system

4 Methods for the Domain-Spanning Conceptual Design 127

Table 4.1 Interrelations between the partial models (excerpt) [24]

Construct Partial Model ind °.f Construct Partial Model
Interrelation
System Element Active Structure Realizes Function Functions
System Element Active Structure Performs Activity Behavior/Activities
System Element Active Structure Takes State Behavior/State
System Element Active Structure Persuades from Objective System of Objectives
System Element Active Structure Has (opt.) Volumes Shape
Activity Behavior/Activities Results from Function Functions
Requirement Requirements Sets Boundaries for Volumes Shape
Requirement Requirements Decides Function Functions
Function Function Results from Requirement Requirements
Influence/Event Environment Activates State Behavior/State
Influence/Event Environment Activates Activity Behavior/Activities
coe

elements and functions (e.g. a "System Element" from the "Active Structure" "Re-
alizes" a certain "Function" from the partial model "Functions"). Based on the spec-
ification of cross-references, analyses such as requirements traceability can be real-
ized [23].

4.2 Software Support for the Specification of the Principle
Solution

Rafal Dorociak and Jiirgen Gausemeier

To secure the overall consistency of the principle solution and to manage its
complexity, a software support is necessary. The software tool Mechatronic Mod-
eller supports the creation and editing of the specification of the principle solution
[23, 25]. It was developed within the research project "VireS — Virtual Synchroniza-
tion of Product Development and Production System Development" founded by the
German Federal Ministry of Education and Research (BMBF) in cooperation with
the software company itemis. The Mechatronic Modeller is a dedicated software so-
lution, which is fully aligned with the specification technique CONSENS. It offers a
separate editor for each partial model. Figure 4.9 shows the graphical user interface
of this software tool.

Within the model browser the elements of the principle solution are presented as
a tree. This tree can be used to navigate within the principle solution. The currently
processed partial model is shown on the right in the diagram view together with a

128 R. Dorociak and J. Gausemeier

¥ Resource - RailCab/RailCab.activestructure_diagram - Mechatronic Modeler =13
Fie) Edt) Diagram) Navigate | Searchll Project || Run window) Help)

[t | @ - | 47 - || Application scenarios -~][queryResuts— <] | 21 - G0t o -
[[R PR L= | CR: | O- %o

[| [Resource

2 <unspecified name <RailCab. activestructure_diagram> Eﬂ
T T SR Y T N VU

RailCah energy demand information <>

2 Railcal _diagram
2 Railcab.environment _diagram

&2 RailCab.functions_diagram R
W RaiCab.principlesolution M

<> System Element

{1
energy
management <> Template based

System Element

= Flow Section

f—| -+ Logical Relation

O lnfluence

optimizatior} information <> optin 7 Parameter

-
| model browser | : W N\ eetmeetoliiemmatoncloptn
. T i [information
- route profile forecast <> i
2 spring and ti
: diagram view module | tool palette
<
0% outline &% ‘ G F = 8 || i Tasks | =1 Properties 52 ‘ =~ =0
. RailCab.activestructure_diagram - RailCab
Resource |[LSBHSE | value =
E Info
derived false
editable true
last modiied 11, Februar2_|
linked false
location C:\12_Projekt

= RailCab. active X
outline view l—;' properties view I—' 2
m - RailCab | |

Fig. 4.9 Screenshot of the Mechatronic Modeller showing the active structure editor [23]

tool palette. Within this diagram view the respective partial model can be modified.
Using the tool palette new elements can be added. The outline view (bottom left)
continuously shows the outline of the whole diagram. Within this view the user can
navigate through the whole diagram. This allows the user to navigate to sections of
the partial model which are currently not shown in the diagram view.

A so-called metamodel has been defined for the specification technique. It defines
[52]:

e which model elements are available during the description of the principle solu-
tion as well as how they are related to each other (abstract syntax); for instance,
states can be linked to other states using a relation, and

e criteria for well-formedness (static semantics); for instance, the names of states
must be unique in the scope of the statechart.

In particular, the metamodel describes all possible interrelations between the
different partial models.

The Mechatronic Modeller is based upon this metamodel. Thus, each principle
solution modeled with the Mechatronic Modeller is computer-internally represented
as a data model, which is an instance of this metamodel. Given that all constraints
have been formally defined in the metamodel, the conformance of such a model to
the metamodel can be easily checked, allowing immediate feedback for the devel-
oper in case of modeling errors.

In addition to the metamodel, the following aspects of the specification technique
had to be defined during the development of the tool:

4 Methods for the Domain-Spanning Conceptual Design 129

e how the models will be graphically represented (concrete syntax); for instance, a
state is represented as a rounded rectangle, and

e the meaning of the different modeling constructs in a particular principle solution
(dynamic semantics); for instance, state transitions are triggered when the event
at the transition is fired.

Using a precise definition of the dynamic semantics of a language, a model can
be simulated, analyzed, and/or formally verified [23, 25].

The Mechatronic Modeller addresses all particularities of the specification tech-
nique. The very important aspect of usability can therefore be appropriately ad-
dressed. The aim is to hide the complexity of the model from the developer. Thus,
several functions have been incorporated into the Mechatronic Modeller which sup-
port working with the specification technique and make the tool more comfortable
and enables an intuitive use. In particular, complex manipulations such as partial
model reorganization by incorporating or deleting of hierarchy levels, are provided
by the tool. Furthermore, cross-references between elements of different partial
models are stored in the data model. Thus, Mechatronic Modeller is capable of han-
dling complex dependencies between elements of different partial models within
the principle solution. For example, it is possible to check which requirements have
not yet been realized by functions or system elements (static semantics checks). In
particular, requirements traceability is possible, e.g. if a particular system element
needs to be exchanged, then the developer can examine which requirements had to
be originally met by it [23].

4.3 Consistency Analysis of Application Scenarios
Christian Brenner and Wilhelm Schifer

During the development of a self-optimizing system, the definition of the system
behavior is highly important. Application scenarios usually form the earliest de-
scription of the system behavior (cf. Sect. 4.1). In the course of the progressing
conceptual design this description is further refined; the partial models behavior—
states and behavior—activities are used for this purpose. Eventually, these partial
descriptions of the behavior are combined into one scenario-spanning model of the
overall system behavior. It is a challenge to ensure the consistency of the afore-
mentioned partial descriptions of behavior. In order to support this difficult task, a
method to ensure the consistency of application scenarios has been developed. This
method is based on a formal description of application scenarios [29]. It allows for
the early detection and correction of inconsistencies between partial descriptions of
the behavior.

Figure 4.10 shows the procedure model of the method. The starting point is
the definition of the discrete system behavior by using application scenarios. The
method consists of the following three phases:

Phase 1 - formalization of the discrete behavior: In order to automatically de-
tect inconsistencies in the modeled system behavior, the models of interest have to

130 C. Brenner and W. Schifer

phases/milestones tasks/methods results

e identification of requirements on

formalization of the the discrete system behavior from

discrete behavior the application scenarios
o formalisation of the requirements
IL using MSDs MSD specification
| of appl. scenarios
[|
q q q e automatic check, if
automatic interactive computation feasable
consistency check consistency check | o interactive simulation,
| | otherwise
é representation of

inconsistencies

- e correction of the identified inconsis-
correction of tencies in the MSDs and the cor-
inconsistencies responding application scenarios
within the principle solution
é improved principle

solution

Fig. 4.10 The procedure model of the method for ensuring the consistency of application
scenarios [29]

be specified in a formal way. We will demonstrate this by using the example of
the application scenario "AS12: Drive onto next track section" shown in Fig. 4.4
(Sect. 4.1, p. 122). It defines how the RailCab and the track section control interact,
when the RailCab is about to enter a track section. In particular, it defines require-
ments regarding the system behavior using text (e.g. in the principle solution of
AS12: "[...] the RailCab, when reaching the end of the track section, sends a request
[...]") and illustrations. Also, it may contain assumptions about the system envi-
ronment (e.g. in the description of AS12: "[the RailCab] is at some point notified
that it approaches the end of the track section."). However, these requirements and
assumptions are at first specified only informally using natural language. In order
to process the application scenario automatically, we first need to formalize them.
We use Modal Sequence Diagrams (MSDs) for this purpose [30]. They have been
adapted for mechatronic systems [29] by taking into account real-time behavior and
assumptions about the system environment. We distinguish requirement MSDs and
assumption MSDs. Requirement MSDs model requirements on the system based on
the respective application scenario. Assumption MSDs specify assumptions about
the environment of the system.

Figure 4.11 shows the MSD specification formalizing the application scenario
"AS12" from Fig. 4.4. It consists of three MSDs. The topmost MSD and the one in
the middle are both requirement MSDs. The bottom MSD is an assumption MSD,
which is indicated by the label « EnvironmentAssumption».

In each MSD, the vertical dashed lines, called lifelines, represent the partici-
pants of the respective scenario. At the top of each lifeline, a label in a hexagon
defines the corresponding system element or environment element. The application

4 Methods for the Domain-Spanning Conceptual Design 131

RequestEnterAtEndOfTrackSection

rc:RailCab <next:TrackSectionControI >

ron

L endOfTS -H
|
[
|

requestEnter

enterAllowed

v]

ReplyBeforeLastSafeBrake

rc:RailCab <next:TrackSectionControI >

| L _ _ fequestEnter
| | |
| |< enterAllowed |
I lastBrake [I
r-—--- " """ ™ |
<<EnvironmentAssumption>>
LastBrakeBeforeEnterNext Legend
system element
<:> system element
endOfTS (environment)
- - - - = > I
[_enterNext _>| : lifeline
I I — — — 9 cold message
false
| | —» hot message
lastBrake <> hot condition
P e >

Fig. 4.11 Modal Sequence Diagrams for the application scenario of Fig. 4.4 [29]

scenario in Fig. 4.4 explicitly mentions a RailCab and a section control of the next
track section. Consequently, both requirement MSDs contain a system element "rc"
(representing a RailCab) and a system element "next" (representing the upcoming
track section control). In addition, the environment is represented by the lifeline
"env". The horizontal arrows in the MSDs are messages that are exchanged between
system elements. Each arrow starts at the lifeline of the sender and ends at the life-
line of the receiver. The label at the arrow defines the type of message that is ex-
changed. Dashed arrows represent messages that may occur, but do not have to (e.g.
endOfTS in the topmost MSD). These are called cold messages. Solid arrows rep-
resent messages that are required to occur (e.g. requestEnter in the topmost MSD).
We refer to them as hot messages. The vertical position of the arrows in the MSD

132 C. Brenner and W. Schifer

defines the chronological order of the corresponding messages: the topmost message
is expected to occur first, then the one below it, and so on.

As mentioned before, the MSDs in Fig. 4.11 formalize the requirements and as-
sumptions that are informally expressed in the description of the application sce-
nario in Fig. 4.4. For example, in the topmost MSD, the cold message endOfTS
models the notification by the environment mentioned in the first sentence of the
description of the development task of AS12 ("[...] the RailCab [...] is at some point
notified that it approaches the end of the track section"). The system has to realize
the requirements specified by the hot messages requestEnter and enterAllowed only
after receiving the message endOfTS. According to the MSD, both messages have to
be sent in this particular order. They model the requirements stated in the first sen-
tence in the principle solution part of the description of the AS12 in Fig. 4.4 ("[...]
the RailCab, when reaching the end of the track section, sends a request to enter
the next track section to the section control [...]", "Then the section control replies
[...]"). The second MSD formalizes the remaining requirement in a similar way: the
reply must be sent on time, i.e. as long as braking is still allowed.

When the first message of an MSD is exchanged, this MSD becomes active. For
example, the topmost MSD becomes active when the environment sends the mes-
sage endOfTS to the RailCab "rc". Then, the message requestEnter is expected to
occur next. The next expected message of an active MSD is referred to as an enabled
message. After an enabled message has been sent, the next enabled message is the
subsequent message in the order defined by the MSD. If, for example, the message
requestEnter in the topmost MSD is enabled and is actually sent, enterAllowed is
the next enabled message.

If a message occurs that is included in an active MSD, but is not currently en-
abled, then this is a violation of the MSD. Messages that are not included in an MSD
can never violate it (e.g. lastBrake can never violate the topmost MSD). A violation
of an MSD is a cold violation, if the enabled message is a cold message. It is a hot
violation, if the enabled message is hot. A cold violation of an MSD turns the MSD
inactive again. Assume, for example, that the MSD at the bottom of Fig. 4.11 is
active and the message enferNext is enabled. Then, the message lastBrake, if it is
sent, causes a cold violation and turns the MSD inactive. Note, that a cold violation
does not indicate incorrect behavior. It only means that there is an allowed deviation
from the scenario modeled by the MSD. A hot violation, on the contrary, models
forbidden behavior of the system or unexpected behavior of the environment. If, for
instance, the topmost MSD is active because endOfTS was sent, the next enabled
message is the hot message requestEnter. If requestEnter is never sent, or if enter-
Allowed or endOfTS is sent instead, a hot violation occurs. Unlike a cold violation,
a hot violation of a requirement MSD may never occur in the real system. A hot
violation of an assumption MSD means that the environment does not behave as
assumed. The system may not be used in such an environment.

After modeling the requirement MSDs and assumption MSDs for all application
scenarios, they are combined into one complete MSD specification for the whole
system. In Phase 2 this MSD specification is analyzed for inconsistencies.

4 Methods for the Domain-Spanning Conceptual Design 133

Phase 2b - interactive consistency check: The automatic consistency check is
computationally very expensive and, hence, not applicable for very complex MSD
specifications. In case of such complex specifications, the engineer can instead per-
form an interactive simulation. This simulation does a stepwise evaluation of the
specified behavior. The simulation can be influenced by the engineer by selecting
the actions of the system, if the specification allows several alternatives. The en-
gineer performing the simulation can also influence the simulated behavior of the
environment. However, the interactive simulation only allows to consider individ-
ual simulation runs. For large systems, it is usually not possible to cover all pos-
sible executions. Therefore, the interactive simulation alone can not prove that the
discrete behavior of the system described with application scenarios is completely
consistent.

Phase 3 - correction of inconsistencies: Here the inconsistencies found dur-
ing Phase 2, if any, are corrected. This happens in two ways. On the one hand,
contradicting requirements are directly corrected by modification of the respective
requirement MSDs. On the other hand, contradictions in the requirements can of-
ten be resolved by modeling additional environment assumptions using assumption
MSDs. In both cases, the engineers also adapt the textual descriptions of the appli-
cation scenarios in accordance with the changes in the MSD specification.

Tool support: For our method a software tool, called Scenario Tools, has been
developed. It allows the engineer to create and edit MSD specifications as well as
to validate the specification by using either the automatic consistency check or the
interactive simulation, as described above.

All in all, with the presented method and tool the overall consistency of the be-
havior described with application scenarios is improved. This is very important, as
potential inconsistencies in the behavior specification would otherwise be difficult
to detect in later product development phases and could lead to problems regarding
reliability, safety or availability.

4.4 Design of the System of Objectives
Rafal Dorociak and Jiirgen Gausemeier

Sections 4.4 - 4.5 introduce methods, which support the development of the princi-
ple solution. We will begin with the specification of the system of objectives. The
partial model system of objectives describes the objectives of the system which are
subject to self-optimization and are therefore of particular importance for the de-
sign of self-optimizing systems. For the specification of the system of objectives, a
method has been developed by Pook (2011) [45]. Using the method objectives of the
system, their relationships to each other and potential conflicts are identified based
on the description of the principle solution for the system. Altogether the method as-
sists developers with the design of the information processing of the system, which
then realizes self-optimization. During the development of the method some ideas
and concepts from the Fault Tree Analysis (FTA) [4, 6, 32] and Failure Mode and

134 R. Dorociak and J. Gausemeier

phases/milestones tasks/methods results

e requirements analysis for identi-
_develoPment _Of the fication of potential objectives of
hierarchy of objectives the system and their hierarchical

relationships
IL hierarchy of

| objectives

. lvsis of analysis of the interdependences
deductive analysis o between system elements

disturbing influences identification of disturbing influen-
A ces, their causes and their effects

cause and effects chains
| of disturbing influences

analysis of the interdependences

inductive analysis of between the system its environ-

disturbing influences ment
e identification of the origins and
é causes for the disturbing influences origins and causes for

| the disturbing influences

compare the failure specifications

[sfinementiofithe from the FMEA and FTA
principle solution e update and extend the FMEA table
and the failure propagation specifi-
Jl cation accordingly refined partial model

system of objectives

Fig. 4.12 The procedure model of the method for the design of the system of objectives

Effects Analysis (FMEA) [4, 6, 31] were adapted. Figure 4.12 shows the constituent
phases of the method and the corresponding milestones:

Phase 1 - development of the hierarchy of objectives: The starting point is
the identification of the possible objectives of the system. The objectives are con-
tained in the list of requirements. The list of requirements of a complex mechatronic
system usually contains a great number of entries, e.g. up to several thousands of
requirements. In order to extract the objectives of the system from the list of require-
ments, the cross-references between the partial models of the principle solution are
used (e.g. cross-references between functions and functional requirements and be-
tween system elements and functions). The starting points are the system elements
which realize the information processing. The hierarchical dependencies between
the identified objectives are found, analogously. The first phase is performed only
once. The result is the hierarchy of the objectives of the system. Figure 4.13 shows
a cut-out of the principle solution for the trace guidance module of the RailCab sys-
tem. System elements, which realize the information processing, are identified first,
e.g. the system element "data processing of the trace guidance module" (1). The
corresponding requirements are then traced using the respective cross-references.
One requirement corresponding to the system element "data processing of the trace
guidance module" is the requirement "2.1.1. The vehicle determines autonomously

4 Methods for the Domain-Spanning Conceptual Design 135

Distance Between
Flange and Data Processin Active Structure
. d 9\ To-be Values Actuator for
Mezlss:?:ni?ent — Rail Head of the Trace SR Adjustment of
Guidance Modulg the Axle Bridge
L)
! Uy 0 |
\ =7 S g \
. > N : .
| 4 I - I L | \ Function
- + - + - y - T Hierarchy
Determine the Determine the Determine the Steet Adjust the Steer
Distance between Position of the Angle Angle
Flange and Rail Vehicle between
Head Rails

|

Requirement List |

. Requirement Description ! - N
- - | An Objective Derived
L |
1 The Vehicle has a Steering System, which supports the .
|> Avoidance of Flange Contacts. ./
1

The Vehicle Determines Autonomously the Steer Angle, 7 5
by which Flange Contacs can be Avoided.] Min. Flange Contacts

N

———

Legend
(O SystemElement [_| Function [) System Objective ——» Information Flow - - Cross-Reference

Fig. 4.13 Development of the hierarchy of objectives of the RailCab System (cut-out) [45]

the steering angle, where flange contacts can be avoided" (2). From this requirement
the system objective "minimize flange contacts" is derived (3).

Further requirements and objectives are found, analogously. For instance, the
requirement ("13.1. The vehicle has facilities for increasing the comfort during the
transport of people"). From this requirement the objective "maximize traveling com-
fort" is derived. In the context of the RailCab system the objective "maximize travel-
ing comfort" is subordinated to the previously identified objective "minimize flange
contacts". In the partial model system of objectives this fact is modeled using the "is
part of" relationship; a hierarchy of objective is constructed in this manner.

Phase 2 - deductive analysis of disturbing influences: Each of the objectives
of the system found in Phase 1 is further examined. The disturbing influences are
identified, which may occur during the operation of the system and have negative in-
fluence on the objective of the examined system. In order to identify these disturbing
influences a Fault Tree [4] is built for each objective of the system. The top event
of the Fault Tree is first postulated. It usually has the form: "the system is being
disturbed while pursuing the objective x". The deductive analysis follows. It can be
thought of as a "how-can" analysis [15]. The developer works in a top-down manner
to find specific combinations of events, which could have occurred for the top-event
to have taken place. We propose the following schema: The left branch of the tree
describes cases, in which the system is disturbed by provision of premises for the
pursuit of the objective under consideration; the inputs of the system element are
examined here. The right branch describes cases, in which the premises are given,
but the system is disturbed during the execution of activities for the pursuit of the

136 R. Dorociak and J. Gausemeier

Fault Tree There is a Disturb.ing. Derivation of
Influence on the Objective the Top Event e Flangs Contacts
e Topven.

of the System to Minimize
Flange Contacts

[
Actuator Adjusts the
Steer Angle in an Undesired
Manner due to Insufficient
Amount of Supplied Energy, 3b

The Adjusted Steer
Angle does not Lead to
theDesired Adjustment
of the Vehicle Movement

[1

The Energy Demands of Energy Storage is 0
the Electrical Consumers Depleted; the Desired Data Processing
cannot be Satisfied; too Power cannot be of the Trace
less Electrical Energy has Provided Guidance Modulg
been Transferred

To-be Values

The Power Transferred
into the Vehicle

Active Structure

Legend

Supplied
Power

Supplied Power/ !

Other Consumers

Mechanical
Connection

Actuator for
Adjustment of
the Axle Bridge,

Energy Storage
and the intermediate
Circuit

Axle Bridge with
Wheals and
Wheal Bearings

Wheel/Rail Contact

{ System Element — — Information Flow —» Energy Flow [] Event [gﬁ:?i]ve AND Gate @'OR Gate

Fig. 4.14 Deductive analysis of disturbing influences of the RailCab system (cut-out) [45]

objective; here, mainly the outputs of the system element under consideration are
examined.

Let us consider the objective "minimize flange contacts". The respective cut-out
of the active structure for the RailCab system and the corresponding Fault Tree are
shown in Fig. 4.14. From Phase 1 we know, that the objective originated from the
system element "data processing of the trace guidance module" (Fig. 4.14 (1)). The
"desired values" are sent to the system element "actuator for adjustment of the axle
bridge" (2). We construct the left branch of the tree by following the aforementioned
schema. The system element "actuator for adjustment of the axle bridge" receives
power from the "energy storage and the intermediate circuit" (3a). Thus the event
"actuator adjusts the steer angle in an undesired manner due to insufficient amount
of supplied energy" (3b) is integrated in the left branch of the Fault Tree. This event
is further refined in cooperation with the respective developers. In the course of this,
two subordinated events are incorporated into the Fault Tree (4). We now proceed
with the right branch of the tree. One of the outputs of the "actuator for adjustment
of the axle bridge" is the flow "mechanical connection" (5). It is examined and
the event "The adjusted steer angle does not lead to the desired adjustment of the
vehicle movement" is integrated into the right branch of the Fault Tree (6). The
newly incorporated event is then further refined and the procedure continues.

Phase 3 - inductive analysis of disturbing influences: Usually not all of the
disturbing influences are found in Phase 2. Therefore an inductive analysis similar
to the FMEA is performed as well. An inductive analysis can be thought of as a
"what-if" analysis [15]. The developer asks: What if this system element failed,
what are the consequences, what are the possible causes etc.? The developer starts

4 Methods for the Domain-Spanning Conceptual Design 137

Active
Structure

Connections Between
Modules and the Carrier

Fig. 4.15 Inductive analysis
of disturbing influences of
the RailCab (cut-out) [45]

Carrier Frames
of the Vehicle

Supplied
Power

Mechatronic
Functional Group
pring-Tilt-Systel

Connection to Module1 T T Connection to Module4
Connection to Modul€ Connection to Moduled

Front Trace
Guidance Module

Wheel/Rail
Contact Left

Rear Trace
Guidance Modul

Wheel/Raol Contact Left
Wheel/Raol Contact Right

Wheel/Rail
Contact Right

Rail Il Rail Il

Outdoor
Temperature

Environment

Connections between
Rails and Thresholds

Legend System Element — Influence
() System Element) (Environment) (Disturbing)
Energy Flow Material Flow
— Energy Flow (Disturbing) " (Disturbing)

with the influences from the environment of the system and investigates how they
propagate through the active structure of the system. Fault Trees from Phase 2 are
extended with regard to the newly gathered information.

Figure 4.15 shows a cut-out of the partial models environment and active struc-
ture of the RailCab. The track bed changes due to growing plants (Fig. 4.15 (1)). As
a result the position of the sleeper in the track changes (2), as well as the position of
the rails (3a and 3b). In combination with environmental influences (4) deformations
of the rail occur. These lead to movements of the vehicle body (5a and 5b) which
are transferred to the Active Suspension Module through mechanical connections
(6). In order to dampen vibrations and tilt the vehicle body during curves, more en-
ergy has to be provided to the active suspension (7). The increased energy demands
of the Active Suspension Module can eventually lead to the depletion of the stored
energy. The newly gathered information is incorporated into the Fault Trees, which
have been constructed in Phase 2.

Phase 4 - refinement of the principle solution: The Fault Trees are evaluated
and the principle solution is extended accordingly. In particular, the conflicts be-
tween objectives of the system are identified. Objectives of the system which do
not exhibit any conflicts with other objectives are marked as not relevant for the
self-optimization and removed from the partial model system of objectives. The
description of the identified conflicts is incorporated into the system of objectives.

138 R. Dorociak and J. Gausemeier

. ’ . Top Event of the Objective
Fault Tree There is a Disturbing P under Examinatijon
Influence on the Objective -
of the System to Minimize | <-———— | Min. Flange Contactsﬁ

Flange Contacts. o

21 ‘

[.

Actuator Adjusts the ‘
Steer Angle in an .
Undesired Manner due ‘
to Insufficient Amoung i
of Supplied Energy. ‘

[| Prerequisite for the ‘
The Energy demands of Conflict to Arise ‘
O,
Conflict between
Objectives
\

the Electrical Consumers Energy Storage is Depleted;

cannot be Satisfied; too low the Desired Power cannot | —————>

Electrical Energy has been be Provided. e
Transferred.

>1

Event Occurs Due to the e
Disturbing Influences Lead < Objective being Pursued Min. Acceleration of the
to Increase of the Consumed Vehicle Body

Power, which is needed to L p
Minimize the Acceleration of egen

the Vehicle Body. [JEvent [)Objective [&] AND Gate OR Gate

Fig. 4.16 Identification of conflicts between objectives based on the Fault Tree (cut-out) [45]

The result of this phase is the extended system of objectives, showing all objectives
relevant for the self-optimization and the possible conflicts between them.

A cut-out of the refined Fault Tree for the RailCab is shown in Fig. 4.16. The
event "There is a disturbing influence on the objective of the system to minimize
flange contacts" (1) was derived from the objective "minimize flange contacts" in
Phase 2. Starting with this event the Fault Tree is further examined. The event
"Disturbing influences lead to increase of the consumed power, which is needed
to minimize the acceleration of the vehicle body" (2) is found. It occurs if the objec-
tive "minimize acceleration of the vehicle body" is being pursued. According to the
Fault Tree there is a potential conflict between both objectives. The prerequisite for
the occurrence of conflict is also derived from the Fault Tree (3). Such information
is very relevant for the further realization of the self-optimization process.

Phases 2 - 4 are conducted for each objective identified in Phase 1. Possible con-
flicts as well as prerequisites for their occurrence are recorded in the partial model
system of objectives (for an example see Fig. 4.8 in Sect. 4.1). In particular, ob-
jectives, which are in conflict with the objective "maximize reliability”, and the
respective prerequisites are identified. The gathered information forms a basis for
the further improvement and extension of the principle solution. In particular, new
measuring system elements and corresponding information flows have to be incor-
porated into the active structure. Furthermore, activities for gathering information

4 Methods for the Domain-Spanning Conceptual Design 139

about disturbing influences and conflicts between objectives as well as for recog-
nizing and mitigating these are integrated into the partial model behavior—activities.
In particular, condition monitoring and performance assessment are implemented
[37, 51]. Altogether, the system under development is made more reliable. The pro-
cess of the improvement of the principle solution can be supported by solution pat-
terns, which we will explain in Sect. 4.5.

4.5 Design Framework for the Integration of Cognitive
Functions Based on Solution Patterns

Harald Anacker, Roman Dumitrescu, and Jiirgen Gausemeier

The following approach by Dumitrescu (2011) defines a design framework for the
development of cognitive functions based on solution pattern during early design
phases — conceptual design or system design. By using this framework develop-
ers can systematically integrate those functions within the principle solution of a
self-optimizing system. The result is the early specification of the information pro-
cessing within the architecture of the Operator-Controller-Module. Later on, during
the concretization, this enables the final implementation of the cognitive functions
[10]. The basis for this approach are the research fields of mechatronics, that cover
the technical demand, and cognitive science, from which many results about intel-
ligent behavior and structures have to be considered. The design framework itself
covers four basic steps, which will be introduced in the following four sections.

The core of the framework is a procedure model (4.17). It gives an overview of
the steps that have to be carried out during the conceptual design to integrate cog-
nitive functions in the principle solution and the concrete results of the correlative
steps.

Moreover, the procedure model defines what methods or tools should be used
during which step. The procedure model connects all the parts of the design sys-
tematics in a logical sequence for their application. The different phases will be
explained in the following subsections.

4.5.1 Systems Analysis

The objective of the first phase is to create a statement if the significant improvement
of system performance can be expected through the integration of cognitive func-
tions. Consequently, this phase clarifies the requirements for using cognition and its
respective methods. In order to detect the potential use of cognitive functions, the
method for objective function analysis is used. With this method, the necessity of
using active paradigms for self-optimization can be established. This is divided into
four successive steps:

1. Identification of relevant influential specifications: In the first phase, if not
already done, the objectives of the system are identified (e.g. low energy

140 H. Anacker, R. Dumitrescu, and J. Gausemeier

Phases/milestones Tasks Results
Systems analysis o |dentify influences from the environment model.
e Analyze the relevance of the inflences according

to the objectives.
IL e Describe the potentials and system of objectives. Potentials based on
I > cognitive functions

Functional description | ® Identify function verbs.
e Make functions in combination with function

substantives.
A e Specify the function hierarchy. Function hierarchy
I of the OCM
lution selection
Eelutepiselocty e Search for solution pattern to realize the functions.
e Combine those solution patterns, if necessary.
é e Select relevant solution patterns or other methods.
- Solution patterns

Systems specification | ® Cut out the relevant aspects of the active patterns.
e Specify the active structure and the behavior of the

Specification

system.
J] e Document new active patterns, if detected.
of the OCM

Fig. 4.17 Procedure model for the specification of the OCM with cognitive functions [10]

consumption or the level of safety of a vehicle.) In addition, a context analy-
sis has to determine the influences that in principle the objectives can influence.
It is important that potential forms of the influences are determined.

2. Illustration of the effect of the influential specifications: The next step, the in-
fluential specifications and the objectives of the system are placed in relationship
to each other. It is interesting to note how the influential specifications affect the
objective priority. The objective priority characterizes the importance of a objec-
tive under the given influence. Accordingly, an increase in the objective priority
should be accompanied by an increase in the objective weighing. Here the Ob-
jective Priority Matrix lists the influence like its specifications in rows and in
the columns the rows. The matrix can then change the priority objective due to
the influential specifications (strong decrease, decrease, no effect, increase, and
strong increase). 4.17 shows a portion of the objective priority matrix of the flex-
ible road vehicle Chameleon 2.3.

3. Educational relevant situations: In the third phase non-relevant objectives and
influential specifications are stricken from the Objective Priority Matrix of op-
eration. It is evident that a column (irrelevant objective) or a row (irrelevant in-
fluential specification) is evaluated neutrally with a "0". Afterwards situations
are formed from the leftover influential specifications. Situations are consistent
combinations of influences. Combinations of influential specifications that can-
not happen in reality should be excluded.

4 Methods for the Domain-Spanning Conceptual Design 141

Objective Priority Matrix N
question: ,,How does the influence expression i (line) affect the c 2
P . . . o
priority of system objectives j (column)?“ © g ?
S E| » 2
=] 2) =
scale: ° 2 | = ©
-- = strong reduction of the objective priority % 8 & = 5 k]
- =reduction of the objective priority Q ER = g 3
0 = no change of the objective priority g g |2 Sl el &
+ = inrease of the objective priority .3 5 2 ° = TE::-
++ = strong inrease of the objective priority > 2 2|2 2 s
influences expression no. 1 2 3 4 5
available 1 0 + + 0 0
unevenness
not available 2 0 0 0 0 0
) high 3 (+|o]o]o]oO
driver mass
low 4 0 0 0 0 0
X override 5 0 + 0 0 0
steering strategy
understeer 6 0 0 0 0 0
. high 23 + 0 0 0 0
energy consumption
low 24 0 0 0 0 0
. . high 25 0 0 0 - 0
negative acceleration
low 26 0 0 0 0 0

Fig. 4.18 Objective Priority Matrix (example: demonstrator Chameleon) [10]

4. Evaluation of the situation-dependency of the objective: In the final step, the
objective priorities are counted from the Objective Priority Matrix for each situ-
ation and a situation-dependent priority of each line determined. The outcome of
this is the degree of dependence of the objective. Thus, an objective of single pri-
ority in a given situation can stand on its own or distribute itself to one or many
other objectives. If the objectives of situations across other situations prioritize
differently, then this is the first criteria for the integration of cognitive functions.
Furthermore, the proportion of shared objectives is of importance. With a high
proportion of shared objectives this suggests that this objective is closely related
to other objectives and its weight should not be from the outset determined and
isolated by the developer.

4.5.2 Functional Description

In order to realize a self-optimization process, optimization systems have to perform
information processing functions such as to communicate, to share knowledge or to
extract information. These functions are known as cognitive functions. Even though
there is no common accepted definition of cognition, there is a common sense that
cognition intervenes between the perception and the behavior of a system in the
way, that certain stimuli does not always result in the same reaction. Therefore,
cognition can be characterized as the ability that does not only enable autonomy
and adaptability, but also a more reliable, effective ,and viable system with regard

142 H. Anacker, R. Dumitrescu, and J. Gausemeier

Table 4.2 Examples of basic information processing functions [10]
basic func- specific functions for concretization
tions
to acquire to (call, update, ask, receive, measure)
to process to (prepare, contain, divide, compensate, choose, filter, convert, delete, save,
compare, evaluate)
to transfer to (command, deactivate, activate, provide, set, inform, send, allocate, transmit)

Table 4.3 Examples of cognitive functions [10]
complex declaration - exemplary combination of basic functions
functions
(abstract)
toanalyze A system element receives information or makes an explicit request. In addi-
tion, the information is analyzed based on existing and additionally requested
information. In conclusion, the results are transmitted to one or more system
elements. to call - to compare - to transmit
to classify A system element receives information or makes an explicit request. The ele-
ment compares the information with already existing information. Depending
on the comparison; the information gets a new evaluation and classified. This
classification is saved and transmitted to other system elements. to receive - to
compare/prepare/save - to allocate

to its purpose. Strube (1996) distinguishes the following cognitive functions on a
psychological level [54]: to observe, to recognize, to encode, to store, to remember,
to think, to solve problems, to control motor function and to use language. Thus,
cognitive functions are basically information processing functions which not only
formalize new information, but also connect new information with existing internal
information. Since cognitive functions process information — and this is the main
assumption of cognitive science — they are calculation processes and can therefore
also be implemented in technical systems.

To name the functions of technical systems different noun-verb-catalogs for me-
chanical engineering have been developed [34, 35, 43, 54]. Due to an outstanding
overall catalog of information processing functions, we have developed one as the
first step to integrate software specific aspects in the principle solution. According
to the IPO-Model (Input-Processing-Output), we have distinguished between three
basic functions: the functions of acquiring, processing and transferring information.
In respect to several other functions were identified to concretize those basic func-
tions. For example, the acquisition of information can be done in a passive (e.g. to
receive information) or an active way (e.g. to retrieve information). All in all, 24
functions have been documented Table 4.2. Furthermore, other types of functions
have occurred: functions, which were a combination of the basic functions (e.g. to
analyze or to classify). These functions are named complex cognitive functions of
information processing Table 4.3.

4 Methods for the Domain-Spanning Conceptual Design 143

solution patterns
|
[1
working principles l ’ pattern of information processing

[I
[] [[|
active pattern

of self-

optimization

working principles working principles software pattern of
of mech. engin. of elect. engin. pattern control engin.

Fig. 4.19 Classification of solution patterns [10]

4.5.3 Solution Selection

In this phase, the potential solutions for the functions are identified. In order to
achieve this, the sub-functions must be allocated at the lowest level of the function
hierarchy of partial solutions and successively fill the higher-level functions up until
the complete function. The prerequisite for finding solutions for the integration of
cognitive functions is an adequate representation. For this purpose, recurring solu-
tions in the form of solution patterns are prepared.

In the architecture the idea was formulated in this context that the core of a so-
lution can be described as a pattern for a specific problem that can be drawn upon
in this analogous problem situations [1]; recurring problems are not to be solved
from the ground up every time. This is valid in an analogous way in mechanical
and electrical engineering as well as in control and software engineering and also
for the conception of intelligent behavior of self-optimizing systems. In this respect,
the structuring of the solution patterns during the development processes presents
an important foundation for the development of these systems.

Generally a pattern describes a recurrent problem in a definite context and the
core for this problem, i.e. the structure and behavior of the characteristic elements
of possible solutions in a generalized form. Based on this assumption, 4.19 presents
a depicted classification of the solution patterns.

We differentiate solution patterns that contact physical effects and patterns that
serve exclusively for processing information. The construction doctrine of mechan-
ical and electrical engineering identifies the first group as working principles [43].
Working principles create the connections between the physical effect, material, and
geometric structure. An example for this is the working principles of the electric
motor that can be used as a solution of the function to convert electrical energy into
mechanical energy.

This similarly applies for the area of information processing. In the area of soft-
ware engineering, software patterns are utilized in order to save cooperating ob-
jects and classes in case these solve a general design problem. The patterns contain
information on how they can be used and implemented in new situations. The so-
lution description is made up of a structure and the partial behavior of each struc-
tural element. The domain of control engineering describes solution patterns on
how a control loop is created, influenced or how the size of a path is measured
or observed. Patterns of control engineering are primarily assigned to patterns of

144 H. Anacker, R. Dumitrescu, and J. Gausemeier

information processing. In doing so it must be observed that the patterns of con-
trol engineering can be concretized as patterns of software technique or as working
principles. Besides the mentioned specifications of solution patterns, in the context
of self-optimizing systems, working patterns for self-optimization come into play
[50]. They are used for the implementation of self-optimization processes. Working
patterns for self-optimization fulfill functions for self-optimization like autonomous
planning, cooperating, acting and learning. The spectrum of the working patterns
for self-optimization envelops the complete self-optimization process (1. Analysis
of the actual situation, 2. Designation of system objectives and 3. Adaption of the
System Behavior) [40].

As already mentioned the early design phases of self-optimizing systems require
an effective cooperation and communication between all developers involved. To
come up with such requirements we developed a uniform specification of solution
patterns that is similar for all the disciplines involved. We structured the specifi-
cation in six aspects with respect to the categories according to Alexander (1977),
which is presented in Fig. 4.20 and will be explained in the following:

Characteristics: This Aspect describes the characteristics of the pattern. Be-
cause of the significant differences between the characteristics of the basic system
and the information processing we will distinguish two subcategories of this Aspect.
Examples for relevant characteristics of the basic system are usage conditions, ge-
ometry or material. In this context it is useful to note the environmental conditions,
where the physical system elements can be used. The geometrical aspect implies the
description of the approximate dimensions of the elements. Material characteristics
in particular have to be specified for a compatible combination of solution patterns
for the basic system. This aspect refers to similarities of the system elements and
the working medium like fluid in hydraulic systems.

Similar to the patterns for the basic system, the information processing of the
OCM is linked to some kind of usage conditions. More examples are processing
speed or the type of calculation. So by generating a new SP for the information
processing, the developer has to differentiate between hard real-time and soft real-
time. The kind of calculations is based on different information methods. Generally
we distinguish between mathematic relations and software code that represent an
application’s flow of commands.

Functions: This Aspect contains all those functions that the SP can realize. Thus
this aspect expresses the problem description. The hierarchical structure facilitates
the developers to assign a suitable SP for the underlying problem.

Active Structure: The aspect active structure is the core of the solution-descrip-
tion. This Aspect specifies which system elements are necessary in order to im-
plement the SP and how those system elements are interrelated. To support the
developer to handle the complexity of a self-optimizing system we designed a gen-
eral structure according to the OCM. This structure shows the basic elements of a
self-optimizing system and has to be modified and concretized for each problem.
This general structure also clarifies the interface between all involved disciplines on
the different levels of the OCM.

4 Methods for the Domain-Spanning Conceptual Design

Fig. 4.20 Uniform spec- ==
. . . o]
ification of solutipPat- 2 c 0l% |4 w
30 K] o€ (5]
terns [10] 8= @) - =
©a Lo c € S -
% < o | c L0 B o
g8 / £ga |2
esSZ a.= £ e
63% \ I S >
O g o fOECRS
7] | = o
5 5 \ 3=9 |3
<) : O g O =S
= n > c 2
x 2B £
@ QE

145

[}
Q9
=
=
o @
5% .
o >0 i
>Qan H > L
o T o T‘T@
%0\0 L L ¢)
=3
.Qgc
Ew
£ S
S
] @
= Q
© 7
ST
@
cn
g 2
£ =
2 £
o @ _
»n 2o c i
S ©9
]
SED
ELQ
il 535
o2
2 >*F
S g2 5
3 L] e
Q @
Q 7]
@
c
2
£ 5“" c
2 = > S
" ® =2 c S
T = !——EN
9 & w =02 =
) 3 cZER i |3
2 c 8 St | |_ [
R 3 8 S g2al (55!
8% 3 5 E < B oE o |52
= 1%} L = S O 0 o oo
O - ®© S S B = c==09 dS|i
5o 2 g 8 = ER = 21,
O« = s § 3 - c g2 ! 5
8= kel g g 3 SES i |l s
= g z 2 ¢ 8 =) L]
9] s I E « C o =
[} = = ° c 2
2 o> E & I g c 8
9 g .8 .¢ .2 25 7
© S io i E S o @

Behavior: This Aspect describes the behavior of the system elements. The aspect
behavior is split into two sub-aspects. Behavior—activity describes the activities that
are performed by the active elements during operations. So this sub-aspect has to be
developed for patterns of the information processing. However, the behavior—state
aspect models the possible sequences of states and states transitions of all system
elements of the active structure. Thus this aspect has to be modified for each pattern
to design self-optimizing systems.

Implementation: In the course of engineering, the implementation of solutions
is generally based on certain method. However, an explicit definition that focuses
the implementation of physical problems as well as information processing does not

146 H. Anacker, R. Dumitrescu, and J. Gausemeier

exist. According to the definition by Sauer (2006) [48], methods describe sequences
of physical, chemical, biological or information processing application flows that
are necessary to realize the defining functionality. So a method concretizes the ab-
stractly formulated process, which describes the transformation of the operand from
the initial state to the final state.

Therefore patterns of the basic system are generally based on physical effects.
The Controller algorithms are based on mathematic relations like elementary trans-
fer elements (e.g. P-element). However, the SPs for the RO are based on software
algorithms. These are implemented in the CO model-based and behavior-based
methods.

Context: A solution pattern is generally attached to a specific context, so this
Aspect completes the uniform specification. Examples, which clarify the successful
use of the pattern, have to be declared. The core of each pattern is the description
of the underlying problem and the related solution. Therefore the aspects functions,
active structure and behavior have to be modified for each example.

The presented specification is similar for all different problems within the do-
main-spanning conceptual design. Because of the increasing complexity of self-
optimizing systems the following question is asked: Is it possible and advantageous
to categorize solution patterns?

In order to design self-optimizing systems, we propose a categorization according
to the generic composition of mechatronic systems that adjusts to the subdivision of
information processing into several hierarchical levels, see Fig. 4.21. This division
is well-grounded in cognitive science and enables the illustration of information
processes which implement intelligence (cf. Chap. 1).

Tool Support: The structure of the above presented solution patterns allow the
externalization and documentation of reusable solution knowledge. However, an ef-
ficient use of these patterns requires an appropriate computer support. Developers
need a way to create new solution patterns, to store them in a repository, as well
as an opportunity to integrate existing solution patterns in their current develop-
ment process. A need for some kind of database, in which solution patterns and
thus the knowledge of the experts can be stored, is apparent. Therefore, we devel-
oped a knowledge base for the systematic management of solution patterns, called
"Solution Pattern Knowledge Base". The basic functionality is shown Fig. 4.22.

The solution pattern knowledge base is a central repository for all developers.
Apparently, it is necessary to extend the functional range of a standard database,
which only stores the information. In a standard database all users need detailed
knowledge about the structure of the information and possible search methods. In-
stead, the Knowledge Base has to support in such a manner, that developers from
different domains are able to recognize an appropriate solution pattern.

An information system that implements the pattern repository must support the
collaboration of the solution patterns developers, which are e.g. experts within the
field of artificial intelligence or mathematical optimization, and the engineers. Our
aim is the storage of all required information in one single repository to enable
the developers an access to domain-spanning solutions during the system design.
The Knowledge Base is composed by several parts: database, which stores solution

4 Methods for the Domain-Spanning Conceptual Design 147

Operator-Controller-Modul (OCM) Patterns for the Design of OCM
Cognitive Operator cognitive information processing Solution Pattern
3 | Behavior-based Self-Optimization | for the Cognitive Operator
>
o v prior involved disciplines:
@ Model-based Self-Optimiazation artificial intelligence & higher math.
E _________
f:“ 4 Cognitive Loop | @
Reflective Operator reflective information processing Solution Pattern
o _d. m for the Reflective Operator
, Copiaurationy prior involved disciplines:
_ (B . software- und control engineering
$
Q
-
c
2
°
< Solution Pattern
for the Controller
prior involved disciplines:
process- and control engineering

Solution Pattern
for the Basic System

prior involved disciplines:
mechanical- & electrical engineering

Basic System

Fig. 4.21 Classification of solution patterns according to the Operator-Controller-
Module [10]

patterns and a catalog of functions; ontologies for the consideration of the semantic;
inference-rules to combine solution patterns.

4.5.4 Systems Specification

In order to support the engineers during the conceptual design of self-optimizing
systems, especially the design of the information processing, we developed a design
template for the active structure. Therefore it was necessary to identify the interre-
lationship between the cognitive functions and elements of the technical systems. In
this context, the scientific cognitive view is transferred to the technically oriented
OCM-architecture in the following. Figure 4.23 presents the transformation of the
point of view from cognitive science to the technical OCM-architecture. It shows
a general active structure that can be concretized by different flows. This general

148 H. Anacker, R. Dumitrescu, and J. Gausemeier

Knowledge Solution Pattern Knowledge
Provider Repository User
Domain B
Domain A &
O Analyze &
Create & —>Ut|I|ze
Edit
—_—
Domain C
Search

|

Analyze &
Utilize

Fig. 4.22 Basic concept of a knowledge base for the domain-spanning reuse of solution pat-
terns (in accordance to [10])

structure also clarifies the interface between all involved disciplines of the different
levels of the OCM.

Basic System: The physical system elements are located in the basic system.
This can be subdivided into the following system elements: passive basic structure,
hardware for data processing and energy supply. All energy flows of the basic sys-
tem represent the attachment of single elements at the passive basic structure. The
actuating and sensor elements are the interface for data processing.

Controller: The Controller (CO) realizes the non-cognitive control. The most
important task of the Controller is to improve the system performance. This is im-
plemented by adjusting disturbance values, which influence the basic system. From
a process control point of view, the actuator elements are an integrative part of the
setting device. It fulfills functions like e.g. "to balance system deviation". The Con-
troller realizes a rigid interface between the actuating and sensor elements, whose
action flow is known as a motoric loop

Reflective Operator: In the Reflective Operator (RO) the associative regulation,
such as classical or operant conditioning, can be implemented by its corresponding
algorithms. The RO can thus be used for learning control superimposed by the CO.
The processing speed through the RO is subdivided in soft and hard real-time. The
studies of existing systems have shown that associative functions run in soft real-
time. Basically, the majority of the calculations in the RO run under hard real-time
conditions. Its primary task is to generate reference values based on sensory input
for regulation in the Controller. The data processing of the OCM has to split into
several system elements that fulfill different functions (e.g. configuration manage-
ment, monitoring or corrective element). Furthermore, a communication module is
necessary to share important data or information with external systems.

149

4 Methods for the Domain-Spanning Conceptual Design

Juswubisse ——

pinp ?A?

anewsje H vojewioy D

(nn) @ m diysuoneja Moy
ae)s Jusuoduioo [eabo] — uopewso
z_zamm

-

we(D) oee()

-—

~ fbioua 10 pus

Mol ssao0.d ®

Juswsle
EwimAU

ss800Jd -
ougeg @ IO %\

waned uoroun,
uognjos O oun _H_

puaba

wayshg oiseg

sisseyo Japuifo
A fiayeq N m Jojow 9193 Josuss v
I T
r Jajj04u0o -
1 J9)jo1u0)
I
e - |“ Jojesadg
2INjonJjg uoonlysuo) § 202y
Joued et ——————— Juabe Bupuued
KBajens i ". —_— CEE] - d| o
||||||||||||| + e Jojesadg
i il ay) deay EWH efipaouy anubon
“ H “ H q i -UoJIAU
Tonss) (TRonwog on) s swaisig) aINjoN1Ig BANOY
L] I ueid I A
==¢E.Mv.__>=w sty ued
SR maimo || Jord S © S (]
uondepe Jojreyag e uonenys jo 04 Bojens I EIEp puewsap ay} || suoneiqin
— juabe HEniS & oL 0} Ejep Yoyms 0} essaaU Aueo 0} qJosqe 0}
I sishjeuy Jwsues o} i |e2 0}
||||| _.|.|_!|.._|.|.|.|._ ———d
i
—_— 18]|01u0D) BOUE)S| asn Abiaua | [st
<1 Jgji0nu09 Aoojep: lfofed ! s swaiss o Usana Jojow ay) wajshs ayy || ped Jojow
4] oneu SWeISTS oy} °q oquoa 0} || alenjoe o) || sy Auea o)
.._m,gm qeqold aziwndo 0} YOJIMS 0} ! ;
ajealn T | | | T
|||||||||||||||||| “ Jauueyd I
[$3A13[q0 JO UoeUILIRAQ Eﬁman.o.w
aledaud o)
|||||||||||||||||| O —————] d

ainjonyg jusuodwio)

Ayasesaly uogoung

uofjez|ja1ouo? buisealou|

telligent technical systems based on the OCM-structure [10]

1ni

ic structure of

Fig. 4.23 Gener

150 H. Anacker, R. Dumitrescu, and J. Gausemeier

Cognitive Operator: The cognitive regulation is realized in the Cognitive Op-
erator (CO). The calculation of the mathematical problems can run in offline or
online mode. The system elements that are involved in the implementation of cal-
culation methods are situation analysis, system of objectives and adapting system’s
behavior. The needed information to optimize are identified, received, tested and
classified by the situation analysis. The keyelement of an autonomous intelligent
system is a knowledgebase that stores the relevant information and generates inter-
nal knowledge. The system of objectives is the internal target system that plans the
expected system behavior in certain situations. The results are transmitted to the el-
ement "adapting system’s behavior". This system element does not directly access
the regulation or the basic system with the appropriate actuators. Rather it adjusts
the planned and optimized strategy in the RO. This coupling between RO and CO is
called cognitive loop.

Conceptual Design of Self-optimizing Systems with Solution Patterns Exemplified
by Probabilistic Planning

According to Fig. 4.24 the use of patterns to develop self-optimizing systems starts
on the left with the successful implementation of eligible solution patterns for spe-
cific sub-functions. In the next step the developer has to feed the aspects of the
active structure and behavior to specify the complete system. Therefore it is gener-
ally necessary to modify these aspects of the basic pattern to achieve the different
fundamental problem. The developed principle solution is the second intermedi-
ate result. At the beginning of concretization the aspects have to be transformed in
domain-specific terminologies. So the process ends in an early specification of the
information processing as a component structure and a state chart. Simultaneously
the construction structure, based on the principle solution of the basic system, is
developed.

In the following we will explain the solution pattern "Probabilistic Planning".
The topic of the patterns, which is shown in Fig. 4.25, is the forward planning of
possible situations when considering insecurity. The core of the planning is a deci-
sion tree consisting of an ideal path and several possible intersections, which lead
to the same result. A condition is defined as the amount of the critical value of one
or more state variables (conditional planning). The probabilistic planning contains
the aforementioned limited planning and the execution monitoring. Furthermore, a
new planning can be considered. The basic idea is to use the conditional planning
as a standard practice. The new planning however represents a backup level for un-
predictable and implausible events. In this case, more intersections have to be added
to the decision tree. The requirements for the planning speed become more diverse
depending on the situation, in which the new planning is necessary. Because of the
fact, that the planning quality decreases if an alternative solution is found, the use
of the backup level should be avoided as much as possible. In the following, the
different aspects of the solution pattern "Probabilistic Planning" will be explained.
The uniform specification characteristics are:

4 Methods for the Domain-Spanning Conceptual Design 151

cognitive Operator -7 T~ -)
to save information _ - to project system
Tl = i performance
S \W—-mm oo oo P | ~
-
knowledge base s o RN
to classify \ - o~ to optimize system
informatio%\ - i @i A = p‘;rforma:ce
objectives ' o N
: ! ~
' ! N N
to call information L \ | | to weight objectives
b adapting system's
cognitive behavior
ji looj
_to receive _ ’ to simulate modells
information
to transmit
y configuration/
external system comrr:;;:ﬁ:tlon i parameter
to evaluate
/ /0 information
to save data /- -r
7/ 1
' N
T T to call data
; s '
to interact with controller reﬂecﬁve '
external systems ' loop 1 ~
'
'
7 H / . to process data
'
to generate index I T i
value /0 '
...... '
/s \N ! to switch
to transmit data/ E_ _______________ -— - - configuration
information ' _ 7 =~ -
1 - -~
L to balance system
motoric deviation
B .
to compare | sensor system °°p BBy
measurand elements "

/ to set actuating
tomeasure ||~ . - - - - < _ \ variable
measurand passive basic =~ -

structure N
? ? to carry out action
hardware for the
external ener . N
e energy supply) < information
converting
basic system

Legend

Dsystem group of system D environment I:l function - - - g information _ _ assignedto
element elements element flow 9

Fig. 4.24 Design of self-optimizing systems with solution patterns [10]

Working conditions: The probabilistic planning is designed for mechatronic sys-
tems that don’t always start from the same position and constantly change their
positions, e.g. vehicle mobile robotics.

Mode of calculation: The processed values are discrete. This applies to both the
conditional monitoring as well as for the execution monitoring.

Real time capability: The requirements for the planning time are diverse. The
entry of an unexpected event has an effect on the quality of the new planning. The
creation of the decision tree including the necessary intersections happens in soft
real-time with a significant variation of the time limits.

152 H. Anacker, R. Dumitrescu, and J. Gausemeier

Modeling: A holistic physical representation of the system‘s behavior is not
necessary.

Entity: The system element‘s planner and agent work in a collective way.

Modeling language: The specification of this pattern is based on the detailed ter-
minology PDDL (Planning Domain Definition Language).

A functional description of the SP probabilistic planning divides the overall
function "evaluate probabilistic" into three sub-functions to analyze the situation, to
determine objectives and to adapt behavior. The analysis of the situation calls all
essential information of the knowledge base and preprocessed data of the Reflective
Operator. The sub function to determine objectives is to predict using probabilistic
planning and to compare situations in one step in the plan. The adaption of the
behavior allocates a configuration in the next step in the plan. For each subsystem,
one configuration exists. The configuration is then sent to the Reflective Operator.

Active Structure: The two central elements of the solution pattern "Probabilis-
tic planning" are the agent and the planner. The tasks of the agent cannot be clearly
assigned to a phase of the self-optimization process. The agent’s participation is
significant in the analysis of the situation based on the analysis of the environment
as well as the analysis of the system state. The agent is active in the objective de-
termination because the agent can evoke a new plan through his evaluation of a
corresponding step in the plan. The planner on the contrary is assigned to determine
objectives. The necessary information for the planner — which normally relates to
models — resides in the knowledge base. With the help of this information, a plan-
ner can determine the probability distribution for all the discrete system states. The
information is either generated in real-time or saved externally in the knowledge
base. Additional data that is necessary is provided by the data call system element.
It receives data from the data storage/memory of the RO and executes the system
analysis along with the agent. The pattern group is complemented through the be-
havior adjustment.

Behavior: Directly after the beginning of the process, a deterministic plan is
triggered. This occurs offline, because the system is incapable of action without an
established strategy. The necessary decision tree contains a finite number of alterna-
tive branches that are created in a repeating loop. After the completion of the loop,
it is verified if the plan is mature enough so that the system can begin the operation.
At this point three deciding criteria are differentiated. If the conditions for the ex-
ecution of an operation are not fulfilled, other branches are created. This way the
normal as well as the new planning can be executed. However, if the condition is
fulfilled, the system can begin the targeted aim. If the plan is not completed at this
point the planning is resumed parallel to the executing system.

An essential task of the agent is to compare the next possible controlling point in
the plan with the current environmental condition as well as with the system state.
An evaluation is carried out after an analysis of the actual situation with the four de-
ciding factors. If an unexpected event occurs that the existing branches do not con-
sider the agent initializes a new plan through the planner. If however an alternative
branch already exists for the event, the subsequent behavior adjustment will react
correspondingly and an alternative will be set up accordingly to the configuration. If

153

4 Methods for the Domain-Spanning Conceptual Design

EICNET

—
waists C

usne

O o[]

__I|||||||||||||||| moy sse001d Moy
|__ ABioue "0 @ uonewsoj 47~ 8;64_“
_ _ uoneinbyuoo _ L - ssa00id
| T — — — — — — = eyl | jepioouco A.T. loupsq @ uonewio! D
_ oMol BAljeuIs)e ueyd elep Auanoe Aumz.msm__m 0 oS D
= uoneinByuod 01 Buipioooe U] (L = juswiuolAuS
Jajsuen uoneinbiyuoo anneuss)e
dnjes 0} abueyo

anoiaeyaq jdepe

e1ep Jouses

EICNET

@ saniiqeqod oe)s JUBWUOIIAUS ueyd sy} aseq abpajmouy,
<\ B uonenis waysAs asAjeue’ oshjeue ur dejs esoyo [l woy —
@ oy dajs anjen ueyd anaL}al
Jusby uonenyis askjeue

|||||||||||||| f

oseq sayouelq yoeo 'Seyouelq Woly \
abpajmouy ayy 10} sa] sueld oAl
uj ug|d enes SENE SEIIE /

Jaueld

saAafqo aujwiajep

aulyo ueld ueid _
ansiulwILiep ay) ajesousb |.
[SEIIER 0} ejep aAsUjel _

“Jellolinus Jo ejep
uoenBiyuod — — = Jojessdo

|

| |IEHEVEZEP anoayel

I 1

Siosuss f
1 0 ejep

“ueid [eUORIPUOD

uoneniee-uey
| Jonses

Juabe VA. - - \A juabe

T uoljenyis JuaLno buizAjeue
Uonenfena-ueid joJinsel

JIe0al - eyep

Ueld jeuoppuoo

siopow

saAoalqo Buluiwisiapl

Jojesado aAuBoo

21njoNn.g OAIOY

pusba

@),

9 9Aloe Juabe

annoe Jauueid
@ 9AOR ‘U0 Wa)sAs

' aAoe Juabe

¢>_«om_mc:m_n
9 BAIJOE ‘U0 Wa)shs

@ —

aAnoe Jouueld |
SAlORUI ‘U0 WasAS 4o weyshs

i
—— e i __ @) — —! I
anoiAeyag
aseq abpajmouy
aje)s wayshAs JUBIUOIIAUS ueid ayy u Oy woyy W0l UonewIo!
ashjeue ashleue dajs asoyo Blep analiay hw>w_‘:w_ '
| I | I T |;_| [
s|eob Jo uoniuyep oy :
woyy uoneinbyuoo| | o} uoneinbyuod |
Addns Jajsuely |
— e — —— T
I |
_ ueid d ueid _
P euyurdays yum senl n 0! ay) ul sayouelq
| [uonenys asedwoo eienoled ajesausb |
| L ——. — = —— |
Joineyaq jdepe MNRNMMM uonenys asAjeue | | uoneusojul anes
| —_— e ————— I |
ansiiqeqoud
RIENIELS Ayosiessiy uonoung

Fig. 4.25 Main aspects of the solution pattern "Probabilistic Planning" [10]

154 R. Dorociak and J. Gausemeier

the evaluation yields that the complete behavior proceeds according to plan, a check
is performed to clarify if the targeted objective has already been reached or not. If
the objective has been reached, the system is turned off. It is however necessary to
finalize further steps in the plan to communicate to the behavior adaptation that the
configuration should stay the same. The whole process runs recurrently until the ob-
jective of the plan is reached.

4.6 Product Structuring for Self-optimizing Systems

Rafal Dorociak and Jiirgen Gausemeier

Another important method that supports the creation of the principle solution is the

product structuring. Product structuring is an important mean to handle the com-
plexity of a technical system [38]. The aim is to identify modules that form logical
and functional units, which can be developed, tested, maintained and, if necessary,
be exchanged autonomously by different teams. Thus, the product structure affects
the whole product life-cycle.

Before we introduce the method by Steffen (2006) itself, two basic concepts have
to be explained [53]. These are 1) the basic types of a development task with regard
to product structuring and 2) design rules for product structuring.

Basic types of development task: In general, the product structure can be either
modular, integral or a combination of both. Which product structure mechatronic
systems and especially self-optimizing systems have, depends on a number of fac-
tors. These factors are, in particular, requirements on the product, on the product
program and on the product development process. The analysis of several develop-
ment tasks and their respective requirements has shown, that there is a number of
criteria, according to which a development task can be described [27]. These criteria
can be divided into three groups:

e criteria with regard to the product: These are: the size of the system, installa-
tion space, weight, performance data, recyclability, quality/reliability, availabil-
ity, expandability and reconfigurability.

e criteria with regard to the product program: These are: number of market
segments, planned product generations, quality of differentiation and variance of
costs.

e criteria with regard to the product development process: These are: develop-
ment effort, depth of the development and time of delivery.

Another result of the analysis of the development tasks is that, using the consis-
tency analysis [21], they can be clustered in nine consistent combinations, which we
call profiles [27]. As a consequence there are nine basic types of development tasks.
As shown in Fig. 4.26 these are: 1) miniaturized product, 2) cost optimized mass
product, 3) performance optimized single product, 4) complex miniaturized system,
5) system with numerous variants, 6) complex system with specialized modules,
7) mechatronic function module, 8) safety-intensive system and 9) reconfigurable
system.

4 Methods for the Domain-Spanning Conceptual Design 155

1 2 3
J miniaturized J cost optimized J perfgrmance
optimized
product mass product .
single product
ﬂ complex ﬂ system with ﬂ complex system
miniaturized numerous with specialized
system variants modules
7 i 8 3 9
J mechat.ronlc J . safety J reconfigurable
function intensive
system
module system

Fig. 4.26 Nine basic types of development tasks [27]

Figure 4.27 shows the profile of the basic type "9) reconfigurable system". An
example of a system that complies to this basic type of development task is the
RailCab. The profile is represented in a tabular form. The rows of the table are
the aforementioned criteria. The cells describe the values of the respective criteria
and whether they indicate a integral, modular or neutral type of the product struc-
ture. It is shown that reconfigurable systems are of relative high size and have high
requirements when it comes to quality/reliability and availability as well as on ex-
pendability and reconfigurability. In addition, the breadth of the product program
for such systems is high (i.e. a high number of markets has to be addressed and
several product generations have to be planned). All in all, the values of the criteria
indicate, that in most cases a modular product structure is recommended. Although,
particular subsystems (modules) can certainly have an integral product structure,
when some particular technical requirements have to be met.

Design rules for the product structuring: The basic types of a development
tasks provide only a guideline. A direct adoption of the product structure for a whole
class of systems is usually not possible (e.g. one product structure which can not be
universally applied to all types of reconfigurable systems). Therefore, a number of
design rules were defined, which support the developer by decision making in the
conceptual design with regard to product structure relevant issues. In [27] 27 design
rules were defined, which build eight categories. These are design rules for 1) prod-
uct functionality, 2) disassembly/recyclability, 3) quality/reliability, 4) expandabil-
ity, 5) standardization, 6) costs, 7) development and 8) manufacturing. The design
rules address a number of properties of the product (disassembly/recyclability, ex-
pandability) and boundary conditions of the product development (standardization,
manufacturing) into account. They are applied for the development of the partial
models active structure, shape, etc. An example of a design rule is shown in Fig.
4.28. The main goal of this particular rule is to support reusability of the modules,
which result from the product structuring.

For each basic type of development task a selection of such design rules has been
defined [27]. Figure 4.26 shows a number of design rules, which are used for sys-
tems of the basic type "9) reconfigurable system". These are function fulfillment,

156 R. Dorociak and J. Gausemeier

Basic type 9: reconfigurable system

Profile of the development task Specifics
Type of product| ¢ - Autonomous vehicle
structure * high complexity
itari integral | |
Criteria 9 neutra modular « prototype or advanced
Product development

« innovative control and
communication strategies

* high importance of safety and
reliability

* expandability

Size of the system

’_
’_

Installation space
Weight
Performance data

Recycling * low costs (standard parts,
Quality/Reliability multiple use)
Availability

Expandability

Reconfigurability

Design rules
Product program

Product Structuring
according to:

» Minimal data exchange
+ Development risk

* Durability

» Reconfigurability

—0
—0

-0
)
—9

«¢o
—
®

Number of market segments

Planned product generations

Quality of differentiation

Variance of costs

Production

Development effort

Depth of the development

!
L-.-.

Time of delivery

profile basic type 9
. Jreconfigurable system*

Fig. 4.27 Description of the characteristics of the basic development task "9) reconfigurable
system" [27]

Fig. 4.28 Example of a de- -
i le: "product structur- 19 FGW [IAEE 61 T

Sign rule: p Herr in terms of reusability

ing in terms of reusability

[53] standardization Sum up systems elements in a way that they

can be used several times in the same
« time between product or other series.
innovation The aim is reduction of development costs

 rate of reuse and the realization of economies of scale.
[MaI00, S. 31] example: automotive — plattform concept
[Woh98, S. 56] of the VW group

minimal data exchange, ability of testing and validation, durability, reconfigurabil-
ity, user aspects, independence during further development, and development risk
[27].

4 Methods for the Domain-Spanning Conceptual Design 157

phases/milestones tasks/methods results

. e determination of the basic type of
developm. task analysis, the development task

selection of design rules | o derivation of the first definition of

the desired product structure _ _
IL e identification of design rules first definition of the
desired product structure
| e application of the design rules incl. design rules

e development of a product structu-
product structuring res with regard to flow interdepen-
dencies, spatial interdependencies,
reconfiguration and other relevant
é aspects (e.g. to maintenance) concept of the
| product structure

validation of the concept of the

validation of the product structure with respect to

product structure technical and economical require-
ments, available product plattforms
é etc. validated product
structure

Fig. 4.29 The procedure model of the method for the product structuring of self-optimizing
systems based on the principle solution [53]

The method for the product structuring of self-optimizing systems consists of the
following three essential phases [27] (Fig. 4.29):

Phase 1 — development task analysis and selection of design rules: First, the
underlying development task is analyzed. The goal is to define the desired product
structure for the system of interest. For this purpose, requirements on the product,
the product program and the product development process are gathered according to
the criteria described before. These are compared then with the profiles of the nine
basic types of development tasks. Based on this comparison, one particular basic
type of development task is chosen, which corresponds best to the development
task. The result of this phase is a first definition of the desired product structure
based on the profile of the chosen basic type. It serves as an orientation aid or "light
house" during the further development (it can be compared to the "ideal concept”
by Altschuller (2000) [28]). As explained in Sect. 4.6 there is a number of design
rules assigned to each basic type of development task. For the system of interest the
design rules are used, which correspond to the chosen basic type of development
task.

The described approach has been validated on the RailCab. The analysis of the
development task has shown that the development of the RailCab focuses on the
validation of the applied technologies and the newly developed information tech-
nological processes (self-optimization). Design and efficiency of the prototype are
less important. It is important that the drive and the active spring technology are ac-
cessible and modifiable during later test cases. For the validation of new processes
in the field of information technology, additional properties are important. These
are: autonomy of the included modules and system elements, learning ability, high

158 R. Dorociak and J. Gausemeier

control performance, and high safety requirements. In addition, the prototype has
to be updatable. With respect to a later serial production, the mechanical compo-
nents have to be reusable. Altogether the development task has the characteristics of
basic development task "9) reconfigurable system" (Fig. 4.27). The corresponding
design rules are: function fulfillment, minimal data exchange, ability of testing and
validation, durability, reconfigurability, user aspects, independence during further
development, and development risk.

Phase 2 — product structuring: The design rules selected in Phase 1 are applied
in the course of the specification of the principle solution throughout the whole
conceptual design, when design decisions with regard to product structuring are
made. The design rules are used especially at the end of the conceptual design on
the system level (before the beginning of the conceptual design on the subsystem
level), as the subsystems (modules) of interest result from product structuring. In
order to obtain modules, a number of established methods is used in combination.
This is shown in Fig. 4.30. The starting point is the analysis of the specification
of the principle solution (Fig. 4.30, (1)). Especially the partial models application
scenarios, active structure and shape are concerned.

The information about system elements and their relationships (energy, material,
information flows and spatial relationships) are extracted from the principle solution
(mainly active structure and shape) and serve as input for the Design Structure Ma-
trix (DSM) [14] (Fig. 4.30, (2)). With the resulting DSM the relationships between
system elements are analyzed. The weighting of the different relationships is deter-
mined in accordance with the desired product structure and the chosen design rules.
For product structuring, two particular views on the system are created. One focuses
on its shape-oriented structure, the other one focuses on its function-oriented struc-
ture. Both views are then superimposed. Using DSM algorithms clusters of strongly
dependent system elements are built. This happens semi-automatically. Some of the
weights (values of the matrix) have to be modified manually in accordance with the
underlying development task. The results are a product structure with regard to flow
interdependencies and a product structure with regard to spatial interdependencies.

For self-optimizing systems, one aspect has to be particularly taken into account:
self-optimizing systems have the ability to reconfigure. Hence, autonomous modules
with disjoint functions and homogeneous interfaces have to be identified. For this
purpose, the so called aggregation DSM and the Reconfiguration Structure Ma-
trix (RSM) have been developed (Fig. 4.30, (3)). Both extend the DSM concept and
use application scenarios of the system as input. For each application scenario a sep-
arate DSM is set up. Afterwards, the different DSMs are superimposed in two ways.
Firstly, the aggregation of all DSMs is generated in a way, that all interrelationships
are taken into account only once. The resulting aggregation DSM shows all possible
connections within the system and allows the formulation of an adequate product
structure. Secondly, the RSM is built. For this purpose, the frequency of the con-
nections is taken into account by summing up the interrelations over all application
scenarios. The resulting RSM allows the identification of system elements, which
are only active in few application scenarios. This is a hint for reconfiguration poten-
tial. Such system elements could be integrated into autonomous additional modules.

159

\1

sjoadsy Jusiaglg
8} JO UOJEUIGLIOD BU 10}
2InjoNJ)S 1onpoid

/

Sped pauIqIoD S0UBUBIUIEY uoneinBiyuoday sajpuapuadiaju] || serouspuadisiul
Buiuisouo) Buluigouo) 10} |eneds buiuisouo) || moj4 Buiuisouo)
Injong Jonpolg 2INNLS JoNPoId 2Injon.)S Jonpoid 8INjON.)S JoNpold | | 8injonais Jonpoid
j0adsy Aouspadep solieuassg aJess ajejo] 10
-19ju] yoea Jad NS duo ojul uonjeoijddy 10y IE9S 9[ejol toj B/}\, >77 r/_/»/\/ g
ainjonu)g Jonpoud N T
INIIN @Y} O uonewojsuel] ainjonug jonpoid Ad3s| zlz 2
TET, N PR TV i - WN Wiz
M 6| ¢ sisaNojesedag £ Nm s £ :
SH—— SRR NGV |],
8|3 vl ¢ 3 2|z 7 e =
AWV i Wmnuum_ i mN.N e)i M_lmwm_w_ N‘N «N‘ - A M_w_ 12 Wb
[ele swormosiswempa | | R O X 1 R f ¥ > Wi
s|| xuen <l 3l | d o <[85| [o o = 2s T Z
H :M_wduonwvc_ | - < X1yl - W Xujely
| INPON T H -uor w_m_mm__mm - ainjonns K MF ¢ ainjnns w_w_
&Qpeinpon) |~UoR \ Al Juoneinbyuodey| | Z ubisag Z[wi
5| 8| v eweis weisks B W 1 I B E W T 1T 7 T [3s

SSINQLNY PUE S8SS8001d UOIISUBI]
SMO|4

uoijewuoyu) pue ABisu3 ‘|eusie| «

S8NQUNY pue sjusuodwo)) WIISAS .

S0LIBUSDS uoped||ddy «

sajouspuadisjul jeneds «

SMO|4
uoijewuoyu) pue ABisu3 ‘|eusie| «
SjuBWa|3 WAISAS «

salouspuadiaiu| mojy pue

sjusla|3 wa)sAS au} Jo SBINQLNY
SjusWa|3 WAISAS «

4 Methods for the Domain-Spanning Conceptual Design

g .- g .- g .-
SOIIANOY $S9001d 2InPNIS seAnoalqo SOLIBUSDS
-Joineyag || oejnuepy adeys QAIOY J0 swasAg || SUOHRUNE | yopeoyddy
uaselw o @ Auégu; 0 e — 2
G || (o, ®-¢

Fig. 4.30 Interaction of the partial models with DSM, RSM, Aggregation-DSM and MIM
With the aggregation DSM and the RSM only flow and spatial interdependencies
between system elements were taken into account. For the definition of the product

[27]
sic modules of the system. The result of the application of the aggregation DSM and

System elements which are active in all application scenarios are integrated into ba-
RSM is a product structure with regard to reconfiguration.

160 R. Dorociak and J. Gausemeier

structure, other aspects such as maintenance have to be considered, as well. A fur-
ther refinement of the product structure is therefore necessary. We use the Module
Indication Matrix (MIM) by Erixon (1998) [16] and its extension by Blackenfeld
(1999) [39] for this purpose (Fig. 4.30, (4)). The MIM makes it possible to consider
different properties of the system elements (e.g. maintenance intervals of a systems
element) as well as partial model spanning cross-references (e.g. functions that a
particular system elements concretizes). Which information is taken into account
depends on the underlying development task and the selected design rules. The re-
sult of the analysis with a MIM with regard to the additional relevant aspects (e.g.
with regard to maintenance).

Finally, the previously developed product structures are combined to the final
product structure, which addresses all the aforementioned aspects (flow and spatial
interdependences, reconfiguration, maintenance etc.) (Fig. 4.30, (5)) [27]. It forms
the basis for planning of the activities in the further design and development phase.
In particular, the resulting product structure integrates the two basic and mostly con-
tradictory views of a shape- and function-oriented product structure. This is neces-
sary, as both aspects are equally relevant for the development of mechatronic and
especially self-optimizing systems.

During the conceptual design on the system level of the RailCab the design rules
identified in Phase 1 were applied in an implicit way. The result is a first prin-
ciple solution specified with the specification technique CONSENS presented in
Sect. 4.1. At this stage the active structure for the RailCab consists of about 150
system elements. An explicit application of the design rules takes place at the be-
ginning of the conceptual design on the subsystem level. For this purpose, flows
(representing functional interdependencies) and spatial interdependencies are taken
into account. Additionally the multiple usability of system elements is relevant.
Two product structures are generated by using DSM. One with regard to flow in-
terdependencies (function-oriented) and one with regard to spatial interdependen-
cies (shape-oriented). Figure 4.31 shows these two structures (the function-oriented
and the shape-oriented ones) and their relationship to the specification of the active
structure for the RailCab. It is shown, that the two driving modules (front and rear)
result from the shape-oriented product structure. They consist of one drive and one
brake module and one axle that includes a Tracking Module as well as an Spring
and Tilt Module. The Active Suspension Module, the Active Guidance Module and
the Actuation Module are derived, from the function-oriented product structure.

As already explained, the initial product structure of the RailCab was refined by
taking into account additional aspects. RSM and aggregation DSM are used to refine
the Active Suspension Module. The MIM is used to analyze the aspects reusability
and extensibility.

Phase 3 — validation of the product structure: Finally the developed product
structure is validated. The core criteria of the validation are the level of compliance
of the desired product structure to the underlying development task, technical and
economical requirements as well as, if applicable, the available product platforms.
If a need for improvement is identified, revisions of the product concept that support

4 Methods for the Domain-Spanning Conceptual Design 161

Fig. 4.31 Comparison of
initial shape- and function-
oriented product structure
[27]

| s/t module 1
g
—| s/t module 2
{
— s/tmod. adj.
— tracking mod. 1
—{ tracking mod. 2
—{ track. mod. adj.

guidance

actuation mod.

act. suspension

function oriented
product structure
RailCab

active structure of the RailCab

RailCab (AMS)

s/t module 1
d/b module 1
1
s/t module 2
|
tracking mod. 2

mod. 1

power supply

driving

product structure
RailCab

shape oriented

a consequent realization of the desired product structure are initiated (e.g. modifi-
cations of the interfaces). Afterwards, the parallel domain-spanning design and de-
velopment of the subsystems begins. The validated, development-oriented product
structure of the RailCab is shown in Fig. 4.32 [27].

Product structuring is an important step in the development process for mod-
ern mechatronic and self-optimizing systems. It helps reduce the complexity and
increase the quality of a system, but it also requires additional effort. A success
factor is an adequate integration in the development process, by using established

162 R. Dorociak and J. Gausemeier

specification techniques, methods and tools. The presented approach shows, how
this could be realized for mechanical engineering systems of tomorrow that may
possess a high amount of information technology. The additional effort for prod-
uct structuring during the conceptual design is profitable, compared to the costs
of typically sub-optimal interfaces and high synchronization efforts which lead to
time-intensive and costly iteration loops during the further design and development.

4.7 Early Probabilistic Reliability Analysis Based on the
Principle Solution

Rafal Dorociak and Jiirgen Gausemeier

Based on the domain-spanning description of the principle solution a number of
analysis methods can be conducted. In this and the following section examples of
such analysis methods will be shown. We begin with the method for the early prob-
abilistic analysis of the reliability of a self-optimizing system based on its principle
solution. It allows for first statements with regard to the reliability of the system in
the early engineering phase of conceptual design. In particular, the weak points of
the system with respect to reliability are found. For those weak points, detection
measures and countermeasures are derived and implemented directly in the princi-
ple solution of the system. Altogether, the system under consideration is made more
reliable in the early development stage.

The main input of our method is the domain-spanning specification of the prin-
ciple solution (cf. Sect. 4.1). Following the recommendation of the CENELEC EN
50129 norm [13], our method uses two complementary reliability assurance meth-
ods FMEA (Failure Mode and Effects Analysis) [6, 25, 31] and FTA (Fault Tree
Analysis) [6, 8, 32] interdependent. Some concepts known from the FHA (Func-
tional Hazard Analysis) [58] method have been adapted, as well. This is especially
relevant in, the use of a failure taxonomy for the identification of possible failures.
By using these complementary methods, the completeness of the list of possible fail-
ure modes, failure causes and failure effects as well as of the specification of failure
propagation is increased; both failure specifications are held mutually consistent.

Figure 4.33 shows the procedure model of our method; iterations are not shown.

Phase 1 - specification of the principle solution: The starting point are mod-
erated workshops, where the experts from the involved domains work together in
order to specify the system with the specification technique CONSENS as well as
to analyze and optimize the principle solution with regard to reliability. In particular,
the aspects functions, active structure, and behavior are described.

Our method has been performed for the RailCab. We will show some of the re-
sults for its Active Suspension Module. Each Active Suspension Module consists of
three servo cylinders which dampen vibrations and tilt the vehicle body in curves.
Figure 4.34 shows a cut-out of the partial model active structure for the servo cylin-
der of the Active Suspension Module. Each servo cylinder consists of a hydraulic
cylinder, a 4/4-way valve, a servo cylinder regulation and a hydraulic valve regula-
tion [46].

4 Methods for the Domain-Spanning Conceptual Design 163

Fig. 4.32 The product struc- |
ture of the RailCab [27] RailCab

souepINg

>
g z
w f=4
< S
o S
@

3 <
@, 19}
(s} Q
S ¢

—| Driving Mod. 1
—| s/t Module 1
Air Spring 1

—{d/b Module 1
Stator 1

—{ Tracking Mod. 1 @

i

Driving Mod. 2
I

s/t Module 2
Air Spring

—{ " d/b Module 2
—| Tracking Mod. 2 T

—| Power Supply

Phase 2 — early FMEA based on the principle solution: The system structure
and the corresponding functions are automatically derived from the description of
the partial models functions, active structure, and behavior which are recorded in the
FMEA table. Failure modes, failure causes and failure effects are identified then.
Checklists and failure taxonomies (e.g. one shown in Fig. 4.35) [17, 56] support
the failure identification process. In addition, combinations of failure modes are
identified, which can possibly occur together and have a negative impact on the
system (pairs of failures, trios of failures, etc.). Failure modes and relevant failure
mode combinations are recorded in the FMEA table. For each failure mode (and
failure mode combination) the possible causes and effects are analyzed. Check lists
can be used to accomplish this because they describe system elements known to be
source of problems with regard to reliability [15]. A number of failure effects can
be found by analyzing the principle solution for the system; this concerns the partial
models active structure and behavior. A risk assessment of the failure modes, failure
causes and failure effects takes place using the risk priority number (cf. the IEC
60812 norm [31]). Finally, detection measures and countermeasures are defined as

164 R. Dorociak and J. Gausemeier

phases/milestones tasks/methods results

g g e specify and analyse the active
spgmf_lcatlon of_ the structure
principle solution e identify the functions of the system
elements
A principle solution

identify failures, failure causes

early FMEA based on the and failure effects; use of failure

principle solution classifications
o identify relevant failure combina-
é tions
FMEA table
o specify the failure propagation
early_ FT.A based ¢.)n the within the principle solution
principle solution
é] specification of the
| failure propagation

. compare the failure specifications
comparison of both from the FMEA and FTA

failure specifications update and extend the FMEA table
IL and the failure propagation specifi-

cation accordingly improved failure

| specification

conduct further analyses; e.g.

refinement of the minimal cut sets

principle solution e derive counter measures; optimize
the specification of the principle
g solution improved principle
solution

Fig. 4.33 The procedure model of the method for the early probabilistic analysis of the reli-
ability of a self-optimizing mechatronic system

well as the corresponding responsibilities. This occurs similarly when compared to
the classical FMEA. The FMEA table is updated accordingly.

The early FMEA method has been performed for the servo cylinder of the Active
Suspension Module. A cut-out of the resulting FMEA table is shown in Fig. 4.36.
Using the failure taxonomy by [17], the failure mode hydraulic valve regulation pro-
vides no switch position for the 4/4-way valve is found. This failure mode occurs,
for instance, if the energy supply of the system element hydraulic valve regulation
is interrupted. According to the FMEA the risk priority number for this case is 252.
In order to eliminate or at least mitigate the failure mode, the energy supply of the
hydraulic valve regulation should be monitored. One possible solution is to incor-
porate an additional monitoring system element into the principle solution. Then
additional measures such as a redundant energy supply have to be implemented.

4 Methods for the Domain-Spanning Conceptual Design 165

X*oyiinder (to-be value
servo cylinder {cylinder’s rive way)

hydraulic valve servo cylinder

X*\awe (to-be value of the hydraulic

regulation valve switch position) regulation
! !
1Xvaive 1 Xeylinder
Y yave (SWitch i (as-is value i (as-is value
position valve 1 switch position valve) | cylinder's
! | drive way)
Y () . q
4/4-way valve hydraulic connection 1 hydraulic

> < cylinder
hydraulic connection 2

measurement
information flow

Legend

() system element ----- information flow ~ O--» — energy flow ==»material flow

Fig. 4.34 Active structure of the Active Suspension Module (cut-out)

failure classification (according to FENELON ET AL.)

provision timing value
. . subtle coarse
omission commission early late . .
incorrect incorrect

Fig. 4.35 Failure classification (according to FENELON ET AL.(1994)) [17]

Phase 3 — early FTA based on the principle solution: The specification of the
failure propagation within the principle solution is performed. The process is very
similar to the traditional FTA. For each system element, its internal failures as well
as incoming and outgoing failures are specified and related to each other.

In our application example, the specification of the principle solution is extended
by the specification of failure propagation (cf. Fig. 4.37). For each system element
the relationship between incoming, local and outgoing failures is described. For in-
stance, the output HV, exhibits an undesired system behavior, if the internal failure
"F1" or "F2" occur or one the input HV| is faulty. Based on such a description of
the failure propagation a fault tree can be generated (semi)-automatically [8].

Phase 4 — comparison of both failure specifications: The FMEA table and the
specification of the failure propagation both contain information about causal re-
lationships between failures. Following the recommendation of the CENELEC EN
50129 [13], we use both methods in combination, to ensure a completeness of the

R. Dorociak and J. Gausemeier

166

(0,p4S = udy) Joaquinu Ayioud ysu udi

asneo alinjie} ay} Jo Ajjigeqosd 9ouaInd20
asned ainjie} ay) Jo Aljigeqoud uonoslep
1080 ain|ie} ay} o Ajuanss

» T O

06

S

4

paysidwoooe

uoljeliqies Buoim g jou
fom B [11m Aem Buny)
wsalsAs Buunsesw | pg |z |¢ eM buoim e paJlisep 8y} | paulwIs}ep
ay} jo ubisap Juepunpal Ul paJim Uussq Sey 1osuses ‘anjeA Buoim u2aq sey Aem Buiy
e sey ‘epulkoy Aem Buiy Japuljho
ealq 9|qeo

Japulifoy el |c|6 Aeelq aiq —epuihd v | Japullko ayy | ey Joj enjea uonenbai
Kem Buiyi| JepuljAo =9 UONeIASP | JO} BnjeA sl s|-se ay} JapuljAo
8y} JO anjeA si-se Jojuow 9lc ¢ |8 pabewep s| Josuas jonuod | -se Buoim e aulwis}ep -OAJ8S

papaau Ji ‘ebessaw z61 lels Jauuew

Buiuiem e syelsush pabewep s 100 ojaubew uonisod juaiin pajuemun
pajdnuiiajul ay} ul sAejs ue u aAeA aAjen
Alddns ABisus Jojiuow vee | v (L s1 Aiddns ABisua aneA olnelpAy | S8sojo aAjeA ay) 8s0[o Rem-y/

padnuiayui sl

Ajddns ABisus Jojuow 26z |9 | | voneinses m\M,_nﬂ, o__mmhn\f) SABA

. ay} Jo ns ABisus EM-p/y U}

papaau Ji ‘obessaw Wi A 104 uomisod

Buiuiem e ajessusab uso.q si "

oL €6 uone|nbai aneA olnelpAy a.owAue UoIms

£ indjino ayy | ou sapiroid
ON[EA ABM-T7 /17 BU} uonisod Japl|s aAleA uo ainssaid uolne|nbai OAleA By} uone|nbai
wEMBcho_«mo_c:EEoo 8 |L|¢C 8Q-0} apiaolid Jou seop ay) abueyo oAlBeA 10 uonisod oAlBeA
UI0BIN0 S Jojuow uonejnbal Japullfo oAlas JOU SO0p 8A|eA ol|nelpAy aje|nbau ol|neJpAy
einsesul | 4, lo p asned ainjie} J09y)3 ainjie} apou! uolouny juswiaje
uoI}29}9p J0 J9jUNod ainjiey wayshs

19puljA2-0Alas :d|npow
(v3N4) sisAjeuy s}oay3 pue apojy ainjiey

Fig. 4.36 FMEA table of the servo cylinder (cut-out)

4 Methods for the Domain-Spanning Conceptual Design 167

servo cylinder

Xeylinder

v
servo cylinder
regulation

hydraulic valve
regulation

\J

not(ok))
HZ3

C) system element

F1: hydraulic valve regulation defect
() failure F2: energy supply of the hydraulic valve regulation interrupted
F3: energy supply of the regulation servo cylinder interrupted
F4: servo cylinder regulation defect
C) port state F5: sealing between cylinder pistons and cylinder wall leaks

[1 Boolean operator

——# canlmply relationship

Fig. 4.37 Specification of the failure propagation of the servo cylinder (cut-out)

failure specification. This can be achieved by comparing the information content of
the FMEA and the failure propagation specification: e.g. failures and causal rela-
tionships between failures can potentially be found in the failure propagation speci-
fication, which have not been found during the FMEA and are thus not documented
in the FMEA table; the FMEA table is updated accordingly. This also applies for
the other comparison direction: For example, if a causal relationship between two
failures (e.g. between a failure mode and a failure effect) has been recorded in the
FMEA table, there has to be a corresponding causal relationship in the failure prop-
agation specification. If this is not the case, the causal relationship is incorporated
into the failure propagation specification. In the process, some additional failures
which have not been specified can be found. The completeness of the identified
failure modes, failure effects, failure causes as well as of the failure propagation
specification is improved.

Figure 4.38 depicts the interrelation between both failure representations for the
servo cylinder. The failure cause servo cylinder regulation does not provide to-be
valve switch position from the FMEA table (cf. Fig. 4.38, (1)) corresponds to the
port state not(ok) of the input HV1 of the system element hydraulic valve regulation.
The failure causes hydraulic valve regulation is broken (2) and energy supply of the
hydraulic valve regulation is interrupted (3) correspond to the internal failures F1
and F2 of the hydraulic valve regulation. The aforementioned failure causes (2) and
(3) may lead to the failure hydraulic valve regulation provides no switch position for
the 4/4-way valve (4); it is recorded in the FMEA table as well as in the specification

168 R. Dorociak and J. Gausemeier

Failure Mode and Effects Analysis (FMEA)

module: servo-cylinder

system ; q q q counter- or detection
element function failure failure effect | s | failure cause d|o| rpn e —

hyldraulic reg_JtI_ate . hyldraulic Vﬁlve dois not :ervo cylinder.éegulition monitor the outgoing
valve position of valve change the oes not provide to-be 2| 7| 84 | communication towards
regulation the valve regulation pressure on valve slider position

. the 4/4-way valve

provides n the output hydraulic valve regu‘rati

swn_c_h panymore a 6 is broken PRd 9|3 162 generate a warning
FMEA (cut-out) position f message, if needed

the 4/4-ylay II energy supply of th;/ ’

valve 7 hydradlic valve regdiati 716|252 "

/ 7 jsTterrupted < monitor energy supply
4/4-way close the valve closes hydraulidvalve/ ¥ ”| energy supﬁy is // 714|204 monitor energy supply
valve valve #han stays il llhe;/ 8 interrupfed s

unwanted currer,zl/uesi&ion Lo i A A 3| 192 generate a warning

message, if needed

3 | 216 | Monitor as-is value of the
cylinder liting way
Keylinder

servo cylinder prd Ao, 7

-
_ -

hydraullc/ alve
regulat'ywn

2| 162

redundant design of the
"""" 2| 54 | measuring system

5| 90
ctuating
power
__________ cylinder A
partial model active structure
(cut-out)

Legend (D port state

-+ canimply relationship F1: hydraulic valve regulation defect cylinder interrupted

D system element F2: energy supply of the hydraulic valve regulation interrupted
(D failure F3: energy supply of the regulation servo

F4: servo cylinder regulation defect
1 Boolean operator F5: sealing between cylinder pistons and cylinder wall leaks

Fig. 4.38 Interrelation between the FMEA table and the specification of the failure
propagation

of the failure propagation (port state not(ok) of the output HV2 of the hydraulic
valve regulation).

According to the FMEA table there is a causal failure relationship between the
failure hydraulic valve regulation provides no switch position for the 4/4-way valve
(4) and the failure effect valve does not change the pressure on the output anymore
(5). Although both failures were specified in the failure propagation model (input
WV1 of the 4/4-way valve as well as inputs HZ1 and HZ?2 of the hydraulic cylinder,
respectively), the causal relationship between them has not been modeled. As a con-
sequence, a thorough analysis was performed on the causal relationship. During this
course the respective failure propagation path was modeled as well as an additional
failure F6 (valve position can no longer be changed mechanically; the valve slider
stays in its current position) (cf. Fig. 4.39).

Phase 5 — refinement of the principle solution: Both failure specifications are
analyzed. For instance, the classical analyses known from the FTA field such as
minimal cut sets are used [6]. In particular, the importance analysis is performed.
For this purpose, the Bayesian network driven approach is used [9]; it enables the
computation of the Fussell-Vesely importance measure. In this manner, the most
critical system elements are identified. Detection measures and countermeasures are
defined based on the analysis results. If possible, they are directly incorporated into

4 Methods for the Domain-Spanning Conceptual Design 169

servo cylinder Xeylinder

hydraulic valve
regulation

servo cylinder
regulation

The additional
failure
propagation path

and additional == O - = .
failure (F6). ! . : ; - ctuating
I ! !) i power
Lep OR Limemo | L. fot(oR) cylinder A

HZ3,

Legend

D System Element F1: Hydraulic Valve Regulation Defect

G Failure F2: Energy Supply of the HydrauI!c Valve Regullatlon Interrupted
F3: Energy Supply of the Regulation Servo-Cylinder Interrupted

[Boolean Operator F4: Servo-Cylinder Regulation Defect

© Port Stat F5: Sealing between Cylinder Pistons and Cylinder Wall Leaks

o ate F6: Valve Position can no longer be changed Mechanically;
--—# Canlmply Relationship the Valve Slider stays in its Current Position

Fig. 4.39 The extended failure propagation specification of the servo cylinder

the principle solution (e.g. redundancy, condition monitoring [37], etc.). Otherwise,
they are recorded for further domain-specific design and development (e.g. test and
simulation measures, etc.).

The result of the method is an updated principle solution for the system which is
improved with regard to reliability. As a consequence, the reliability of the system
under consideration is improved during the early development stage and a great
number of time-intensive and costly iteration loops during the further development
phases is avoided. The failure specifications and analysis results from the conceptual
design are used in the further development phase of domain-specific design and
development. The reliability analyses such as FTA and FMEA are performed again
along with the concretization of the system.

In our application example, the specification of the failure propagation of the
servo cylinder from the Active Suspension Module is translated into a Bayesian net-
work. The translation algorithm proceeds as follows: for each system element its
internal failures and port states of its inputs and outputs are translated into nodes
of the Bayesian network. The relationships between them are represented as edges
in the Bayesian network. The Conditional Probability Table (CPT) of the Bayesian
network is then populated: for each value of variables associated to a node or a
node state, its conditional probabilities are described, with respect to all combina-
tion of values associated to variables of the parent nodes in the network. To sup-
port the translation, a dictionary of translation rules has been developed [9], [26,
D.o.S.0.M.S. Sect. 3.1] .

170 R. Dorociak and J. Gausemeier

The result is a comprehensive Bayesian network, which describes the part of
the system that is relevant for the examination of the chosen top event. Based on
the Bayesian network some further analyses are performed [36]. In particular, the
Fussell-Vesely importance measure is computed, i.e. it is determined with what
probability a particular system element (failure cause) had led to a particular fail-
ure (the so-called posterior probability). The top event that we examine is valve
does not change the pressure on the output anymore (corresponds to the port state
WV2.not(ok)). Let us consider the state of the failure specification before the ad-
ditional failure F6 and the corresponding propagation path were incorporated into
the specification. The failure rates of the failures are shown in Tab. 4.4. Let us fur-
ther assume, that the output WV2 of system element hydraulic valve regulation is
in state not(ok), as this is our top event. According to the specification of the fail-
ure propagation (cf. Fig. 4.37) failures F1, F2, F3 and F4 contribute to this. Table
4.4 reports the Fussell-Vesely importance measure of each failure, i.e. the poste-
rior probability of the contributing failures given the occurrence of the aforemen-
tioned failure. Failures F1 and F4 are especially important with importance greater
than 28 %.

Table 4.4 Failures, the failure rates and the Fussell-Vesely importance measure (before and
after the failure specification had been extended) (Top-Event is WV2.not(ok))

Failure Failure rate (per hour) Fussel-Vesely Fussel-Vesely
importance (before) importance (after)

Fl 5.11 x 1077 0.2897 0.2416

F2 4.02 x 1077 0.2279 0.1901

F3 3.28 x 1077 0.1859 0.1551

F4 5.23 x 1077 0.2965 0.2473

F6 3.51 x 1077 N/A 0.1660

Now let us consider the extended specification of the failure propagation (includ-
ing failure F6). The failure rate of failure F6 and the respective importance measures
are shown in Tab. 4.4. The failures F1, F2, and F4 are of highest importance with
importance of approximately 25 %.

All in all, by using our method, the completeness of the failure specification has
been improved. Especially, failures and failure relationships were identified, which
could have been easily omitted otherwise. In our application example, the failure
F6 has been identified, the importance of which is quite high (approximately 17 %).
Based on the failure specification, further analyses are conducted. Detection mea-
sures and countermeasures are then derived and, if possible, implemented directly in
the principle solution. Altogether, the reliability of the system under consideration
is improved during the early development stage.

4 Methods for the Domain-Spanning Conceptual Design 171

4.8 Evaluation of the Economic Efficiency
Mareen Vallholz

The decision to design a self-optimizing system is made in the early development
phase, when the potential for the optimization of contradictory objectives is identi-
fied. In this case the developer has to determine whether these contradictions will be
resolved in the further development by compromising or by using self-optimization.
The technical feasibility and economical aspects also contribute to this decision,
since the use of self-optimization can result in changing resource requirements
for the development, production and operation when compared to a conventional
mechatronic solution.

The economic efficiency of a system is given by the ratio of its evaluated mone-
tary benefit to costs. The result is a dimensionless number. If it is exactly 1, neither
profit nor loss is made [55]. In particular, the evaluation of the benefits of a self-
optimizing system is challenging because it occurs during run-time of the system.
The high complexity and the dynamics of the system in operation make the eval-
uation in the conceptual design phase difficulty. Existing methods to evaluate the
costs and benefit do not meet this complexity [57]. The aim of the presented method
is therefore to provide proof of the economic efficiency of self-optimizing prod-
uct concepts during the early stage of the conceptual design based on the principle
solution. This includes the evaluation of the two aspects costs and benefit for the
company as well as for the customer. Furthermore it enables a comparison with
conventional mechatronic solutions in order to select the most economical one. On
this basis, the decision can be made whether the solution variant will be developed
further in the design and development and eventually brought to market.

Figure 4.40 provides an overview of the phases and milestones of the method for
the early estimation of the economic efficiency of a self-optimizing system based on
the principle solution. The starting point for the development of a technical system
are different product ideas, that can be beneficial for the customer and the company.
Before the development of one of these product ideas is initiated, it needs to be clar-
ified whether this can strategically benefit the company. In phase 1 the market for
the product ideas is analyzed. For the stakeholder the qualitative benefit is identi-
fied by experts of the company. Based on these benefits the changes of the market
performance of the company can be derived. For example through a competitive
advantage, shares of sales from the competitors can be tapped and a higher revenue
growth for the company results. In the case of promising expected revenue growth,
the conceptual design of the product is initiated in phase 2. To be able to estimate
the production costs in the subsequent phase, the production system is designed as
well. Before the solution variant is developed further in the design and develop-
ment phase, its economic efficiency needs to be proven. In order to pursue this we
need to distinguish the economic efficiency for the company and for the customer.
The quotient of the expected benefit (expected revenue growth and market price)
and the anticipated costs (development, production and investment costs) describe
the economic efficiency for the company. For the customer the solution variant is

172 M. Valholz

phases/milestones tasks/methods results
o identify stakeholder
analyze ® identify benefit for the stakeholder
market e market segmentation
o derive market volume
e derive expected revenue growth

expected revenue growth

design the product concept

ETE ST design the production concept

conceptual design

principle solution product
Iproduction system

method for the early analysis of

analyze system the system behavior and dynamics

dynamics based on the principle solution
é situation-dependend
objective value
) e estimate development costs
estimate ® estimate manufacturing costs
costs e estimate investment costs
e estimate life-cycle costs
e estimate market price ..
P anticipated costs
and market price
e perform conjoint analysis
estimate e assign value of benefit to the
benefit situation dependend objective
values
e calculate accumulated value of
benefit principle solution product

Iproduction system

calculate cost-benefit ration for
the enterprise
calculate cost-benefit ration for
the customer

select the most-promising
é economical solution concept

select economical
solution concept

economical
solution concept

Fig. 4.40 Phase-milestone diagram for the early estimation of the economic efficiency of a
self-optimizing system

economically efficient, if the quotient of the accumulated benefit in system oper-
ation to the life-cycle costs (purchase price, operation, maintenance and recycling
costs) result in a value higher than one.

To be able to determine the benefit for the customer as well as the operation
costs, the dynamics of the self-optimizing and the conventional mechatronic sys-
tems needs to be analyzed in phase 3. The result is the behavior of the systems
in different operating situations. In the following phase the costs for the solution

4 Methods for the Domain-Spanning Conceptual Design 173

variants are estimated in phase 4. In phase 5 the benefit for the customer is esti-
mated based on a conjoint analysis. The result is annotated to the simulation results
of phase 3 and by accumulation, the benefit for the customer over the life-cycle of
the system results. Finally the economic efficiency of each solution variant is calcu-
lated in phase 6 and the most promising one is selected and developed further.

Phase 1 - analyze market: The first phase is carried out before the conceptual de-
sign of the system ideas. Before time and money are invested for the development of
a technical system, it needs to be clarified whether the development is advantageous
for the company. Therefore the potential for the new system on the market needs
to be analyzed and the expected revenue growth identified. This is the case, when
stakeholders derive benefit from the system and thus are willing to buy it. Based on
the approach by Freeman (1984) [19], the stakeholders are identified and analyzed.
In this case a stakeholder is a group or an individual, who can affect or is affected
by the achievement of the system to be developed. In the next step the identified
stakeholder are categorized by the three attributes power, legitimacy and urgency
due to Mitchell et al. (1997). They distinguish between eight categories: dormant,
discretionary, demanding, dominant, dangerous, dependent, definitive stakeholder
as well as nonstakeholder [41]. From this distinction preliminary indications can be
conducted on how the stakeholder will benefit from the new system. For example
dormant stakeholders could be customers of the competitors. In the case that the
new system is brought to the market, they can be a potential customer for the new
system, because their expectations are met. This leads to a growth in revenue for the
company at the expense of the competitor. The identification of the benefit for the
stakeholder by causal chains is performed in the next step. The qualitative benefit is
collected in a stakeholder-benefit-matrix. The business is structured into market seg-
ments according to the segmentation criteria by Backhaus (2003) [2]. The identified
stakeholder can be assigned to the market segments. The segments are compared to
the market performance of the system ideas in a matrix. For each combination, the
respective market volume, the company revenue, the sales growth in the previous
year and the expected revenue growth are evaluated. The expected revenue growth
can be predicted by the benefit that is resulting for the respective stakeholder. The
result of the first phase is the expected revenue growth resulting from the develop-
ment of the system for the company. On this basis, a decision is made whether the
development of the system is advantageous or disadvantageous. In the first case the
conceptual design of the idea is triggered. Otherwise the idea is rejected.

Phase 2 - domain-spanning conceptual design: A promising revenue growth
is the trigger for the development of the system. In phase 2, the principle solution
for the system is developed. To be able to estimate the production costs of the sys-
tem, the respective production system needs to be designed in the early phase as
well. For the development of the principle solution for the product the approach in
Sect. 3.2 is used. In case a self-optimizing solution is not expressively required, a
mechatronic and a self-optimizing solution is made. To develop the principle solu-
tion for the production system, part dimensions and material data are derived during
the first step of determining the manufacturing requirements. Afterwards the active

174 M. Valholz

Analyze System Dynamics
Derive System Describe System Generate Simulate the
Parameters Dynamics Causal Test Cases System Behavior,

Behavior of

External Influences, Design Structure Matrix Test Cases
Objectives, Control Variables Dynmaic Behavior the System
and their Characteristics

Fig. 4.41 Four steps to analyze the system dynamics

structure and the building structure of the self-optimizing/mechatronic system are
analyzed, to identify all system elements that need to be manufactured. Based on the
structural connections, the process sequence for the manufacturing and the assem-
bly process are set up. Based on the initial assembly sequence, the system elements
are linked by assembly processes. Next, parts to be purchased and parts that need
to be manufactured are determined. The parts to be manufactured are completed by
the necessary manufacturing processes to produce them from raw materials or pre-
fabricated parts. In this context adequate manufacturing technologies are chosen
with respect to the deployed product technologies then the resources of the produc-
tion system are determined. The resources realize the specified processes and are
allocated to them, based on the chosen production technologies. The selection de-
pends on the production requirements, this way, alternative resource combinations
are obtained [22]. In the following phases the developed principle solution for the
self-optimizing and mechatronic system will be analyzed regarding the economic
efficiency, whereupon the concept of the production systems gives evidence for the
production costs.

Phase 3 - analyze system dynamics: Because the benefits and costs of self-
optimizing systems during operation results from the dynamics of the system, it
needs to be analyzed. A particular challenge for self-optimizing systems is, that
their behavior can not be predicted easily due to its interdependencies and the re-
sulting high complexity. To reduce the complexity, we use a matrix based approach
and map the dependencies of the control loop between external influences, con-
trol variables of the system and the objectives of the system in a Multiple Domain
Matrix. By matrix multiplication the continuous self-optimization process can be
simulated and the respective system state detected. This results in having the objec-
tive characteristics of the system state for each operating condition over time. For
this purpose four steps need to be performed (cf. Fig. 4.41):

Step 1 - derive system parameters: To be able to simulate the system dynam-
ics the principle solution (cf. Sect. 4.1) for the self-optimizing system and of the
conventional mechatronic system needs to be analyzed to derive the necessary pa-
rameter. These are the external influences, control variables and the objectives of
the system. External influences result from the flows in the aspect environment.
This can be for example the desired speed of the RailCab by the customer. The con-
trol variables can be identified based on the active structure of the system, e.g. the

4 Methods for the Domain-Spanning Conceptual Design 175

disturbance value

influences

external system of
influences objectives

reference
value

system
deviation

provokes changes changes control
changes of the variable

system of

objectives

measured

influences output

equates at
point of time t

Fig. 4.42 Closed-loop representing the dynamic behavior of a self-optimizing system

charge rate of the capacitor of the Hybrid Energy Storage System. An example for
an objective of the RailCab is "minimize energy losses". For each parameter charac-
teristics are determined. For instance the priority of the objective "minimize energy
losses" can be qualitative low, high or very high.

Step 2 - describe causal system dynamics: The dependencies of the parameters
in the closed-loop of the self-optimizing system derived in step 1 are presented in a
causal diagram in Fig. 4.42. In the case that the external influences of the environ-
ment on the system changes a changed priority of the objectives of the system can
be provoked. The objectives of the system of objectives are also influenced by itself
and the current system state. The system state can be influenced by the environ-
ment by disturbing values. The self-optimizing system determines its objectives, if
necessary. This leads to a changed reference value for the control strategy of the sys-
tem. The deviation between reference value and measured system state can change
the control variable and therefore the behavior of the system. This circumstance is
described in the Multiple Domain Matrix in Fig. 4.43.

Step 3 - generate test cases: In this step the life-cycle of the system is repre-
sented by test cases consisting of different operating situations. For this, the sit-
uation of the aspect application scenarios is formalized. In the Design Structure
Matrix (cf. Fig. 4.43, matrix No. 1) the consistency of the characteristics of the ex-
ternal influences were analyzed [21]. Different operating situations are derived from
this matrix, consisting of a combination of characteristics of the external influences.
These are clustered by similarity and assigned to the application scenarios, which
describe one situation during the life-cycle of the system. Afterwards a sequence of
application scenarios is generated and each one is provided with a time stamp. Thus
test cases that represent the life-cycle result.

Step 4 - simulate the system behavior: For these test cases the dynamical be-
havior of the systems is simulated by matrix multiplication. For the self-optimizing
system the self-optimization process is conducted as follows:

176 M. Valholz

1. Analyzing the current situation: The self-optimization process is initiated, in
case either the situation and therefore the external influences or the system state
changes. The first case results by the sequence of the application scenarios in the
test cases. The associated state vector for the external influences can be derived
from matrix No. 1 (cf. Fig. 4.43). Furthermore it is examined whether this change
leads to a changing system state because of disturbance variables (Fig. 4.43, ma-
trix No. 3). The other case occurs for example when the capacity of the battery
of the RailCab switches from one state to another, due to energy consumption of
the system, as described in "4. Continuous system operation". The state vector
for the control variable is derived.

2. Determining the system’s objectives: The next step is to determine the objective
of the system. The priority of the objectives is dependent on external influences
(Fig. 4.43, matrix No. 2), the system state (Fig. 4.43, matrix No.6) and the cur-
rent priority of the objectives (matrix No. 4). Each characteristic in the matrices
demand a certain priority of the objectives. Out of these demands the Pareto op-
tima for every objective prioritization is chosen and results in the state vector for
the new objectives.

3. Adapting the system behavior: The alteration of the system of objectives for
the system, demands a change of the systems behavior. Figure 4.43, matrix No.
5 presents the influence of the control variables by the priority of the objectives.
The new state vector of the system can be taken and the system switches to
another operation mode.

4. Continuous system operation: Since the system behavior can change during
the operation, e.g. by energy consumption, continuous operation of the system
is simulated as well. How the system state is changing over time is described in
Fig. 4.43, matrix No. 8. The consumption, for example of the available energy
is simulated over time. When the system state changes to another mode the self-
optimization process is initiated again.

This procedure is conducted for all scenarios of the test cases. The respective
priority of the objectives as well as the system state is recorded to be able to assign
the operation costs and the situational benefit to each test case. For the conventional
mechatronic system the simulation is conducted in a similar way, except that the
changes of the objectives are limited to the defined control strategies.

Phase 4 - estimate costs: In this phase, the costs for the solution concepts are
estimated. The costs for the company consist of the development, investment and
production costs, which in turn are composed of various expenses. For the customer
the life-cycle costs of the system are of interest. The presented method provides
a guideline to estimate the relevant costs for the self-optimizing and mechatronic
system.

To determine the development costs, the costs of all initiated processes for the
development are required. For this purpose, the following questions must be an-
swered: What do we do? How do we do it? and Who does it? [12]. To this end,
the reference process (cf. Chap. 3) for the development of self-optimizing system
is tailored due to the individual development task. This is accomplished using the

4 Methods for the Domain-Spanning Conceptual Design

177

Consistency analysis of the
external objectives

“Can the external influences
occur together in this
characteristic in a situation ?”

Rating scale:

0 = can not occur together in a
situation

1 = can occure togetherin a
situation

Adaptation of the system
of objectives due to external
influences

“Which objective characteristic
is prioritized in case that the
external influence occures in
this characteristic?”

Rating scale:

0 = is not preferred
1 =is preferred

Disturbing influences on the
system

“How strong is the influence of the
external influences on the control

variables?” Rating scale:

System Dynamics Objectives Control Variable
Min. Energy Min. Battery socC socC
Losses Damage Capacitor Battery
5 > o [3 ©
NENINE .| E AR
2| E|Els. B3| 2l2l5|5|22lalgl8|s]g]s
z gle|s2g| sl 8|2lele|g|8lelrle|ulale]ly
HHF R I T H IR R AR
» T |8 > c o |[>0o| = © o c | = © o c n | o o | @ =) @D
slow b_ At a high desired speed |° A1 2
quickly 0 % ||the objective ,,l\ﬁlm.' o o lololols
Er]erlgy Los.ses willbe | FA'sjow desired speed has a
fast 1| o |prioritzed high not low. |o| gmall disturbing influence
_lg on the SOC of the Capaitor,
very fast o vlejo g the energy supply is not
no comfort _"/I_] At a high desired speed the JoLY™Y. figh:
e objective ,Min. Baterie Damage*
comfortable | 1| 1| reading will be prioritzed low; energy -] '2/L <
verv hioh Is:r?fg:t ! ty_ dlretihon :S o suplvply I|s 2 f?cus] T T T 9l A comfortable drive with i
high priority | | m:” 2 ?O Ll The change from a low priority to the RailCab demans for o
@ In case the user no priority of the objective requires || energy supply; the]
e average priority (demands for a high gloﬁ effolrt for the system. : |r!ﬂuen(_:e on the SOCis | o
w —|level of comfort he 71— [| disturbing.]
o= low pririty || can also desire a 1 88 ! In case that the objective ,Min.
g = no priority ||Nigh speed. Battery Damage* is prioritized
?'d I 4 high a low SOC for the batterie is
-y high priority 2 |not seeked.
o 5 — To change the priority of an
£ average priority objective from no priority to é oo o
m_ low priority a high priority requires a |
£ very high effort for the In case that the objective
= no priority system. »Min. Battery Damage“ a
high SOC of the Capcitor is
o S0C>0,8 seeked, to releve the
2o % ~soo< The state of charge batterie.
8|Q § 04=S0c-08 of the capaitor does | [The state of charge (SOC)
§ S| 025<s0c<04 1| o not influence the of the battery and the
= fam objective ,Min. capacitor are independent
£ S0C>08 At a low state of charge of |0 | 1 Battery Damage". in this exampel, therefore
8 8 & 02<soc<o0s the_ capacitor the obj?cti_ve NEE - D we have no interference.
»n ° .Min. Energy Losses" will / é
(=] S0C<0,2 beI prio:’itze? higrl1. . . ol o 0 1 o|o| o |% | 0 | 0 | |
Legend

Adaptation of the system behavior

"Which system state is seeked
based on the objectives priority?"

0 = system state is not seeked

Rating scale:

-1 = small disturbing influence
-2 = disturbing influence

-3 = low disturbing influence
0 = no influence

+1 = small positive influence
+2 = positiv influence

+3 = strong positiv influence

Rating scale:

1 =is prefered
Effort for the objective P

change

"What is the effort for the
change from one objective
priority to another?"

during runtime

Rating scale: Rating scale:
0 = no effort

1 = barely effort

2 = low effort

3 = high effort

4 = very high effort

0 = no change

0 = is not prefered

-1 = negative change
-2 = strong negative change

1= system state is seeked

+2 = strong positive change
+1= positiv change

Influence of the system state
on the system of objective
"Which objective is prioritized
due to the system state?"

Change of the system state

"How does the control variable
in the row change the one in
the column during runtime?"

Fig. 4.43 Causal description of the system dynamics with a Multiple Domain Matrix

178 M. Valholz

framework for a self-optimizing process development of advanced mechatronic sys-
tems by Kahl (2013) [33] (cf. Sect. 3.4). For each process step it can be determined,
which developer performs it, how long it will take and what potential additional
expenses to the personnel costs will arise. The required personnel costs plus other
expenses form the development costs.

The investment costs for the company result from the procurement of material
resources and from training costs for the developer in self-optimization specific ex-
pertise. For self-optimizing systems, this may result in part from the provision of
new production plants, and also from the procurement of test bed and platforms.
The investment costs for the production system can be derived from the princi-
ple solution for the production system. The necessary test beds and test platforms
as well as training for the developers are associated with the solution pattern for
self-optimization. Depending on the selected solution patterns, the necessary in-
vestments for the system test can be estimated.

The core of the product-related costs are the production costs. These consist of
the basic mechanical structure by the material, manufacturing, assembly and testing
costs. The manufacturing and assembly costs can, for example, be determined by
the process costs based on the principle solution for the production system (cf. [42]).
The production costs for the electronic components result in addition to the material
and manufacturing costs from the so-called yield-loss costs as well as test costs [49].
To calculate the production costs for the software components, the staff required
for the implementation, integration, and testing in personnel-months is included. In
addition, there are charges which are incurred in the administration and sales which
can not be directly associated with the system. These are shown in the surcharge
calculation of overhead rates and added to the production costs. This results in the
cost for the company for the product [12]. Based on these the market price can be
calculated.

The life-cycle costs for the customer include the purchase price, the operating
costs of the system as well as maintenance and recycling costs. The purchase price
corresponds to the market price set by the company earlier in this phase. The op-
erating costs of the system can be derived based on the simulated behavior of the
system in phase 3. Over all operating situations, the changes of the system behav-
ior were simulated. For each modification switching costs result. For the simulation
these costs are taken as a factor. Furthermore, the consumption of the system has
been simulated as well based on these factors. By the expertise of the developer
these factors can be transform to monetary costs. The maintenance cycles can be
estimated through the product life-cycle based on the simulation. Disposal costs are
estimated based on the active structure and the expertise of the developer.

Phase S - estimate benefit: The benefit of a self-optimizing system during oper-
ation must be evaluated in terms of its situational dependency. The behavior of the
system in different operating situations has already been simulated in phase 3. In this
phase the benefit that results from certain behaviors of the system for the customer
is identified with the traditional conjoint analysis [3]. In the first step the system
properties and their characteristics to be queried are determined. For this purpose,

4 Methods for the Domain-Spanning Conceptual Design 179

Fig. 4.44 Roadlpap .for the Situation-dependent Situation-dependent
value (.)f be.neﬁt' in different Value of Benefit Value of Benefit
operatlng situations for Test Case 1 q ; 5 . P
Operating Situation 1 O
Operating Situation 5 O
Operating Situation 8 Q
Operating Situation 1 O
Operating Situation 3 J
Operating Situation 10 O
Operating Situation 4 O '
Operating Situation 11 O
Operating Situation 2 \
Operating Situation 5 O
Operating Situation 12 Q
Operating Situation 10 |Q

J Self-Optimizing System Mechatronic System

the operating situations with the highest probability, the value of the system of ob-
jectives in the situation, as well as the operating costs for the situation are chosen.
These are prioritized during a survey. Furthermore the price that the customer is
willing to pay for the system should be queried in order to determine possible prices
for the system based on the desired profit margins.

In the second step, the survey design is created. With the aid of the profile method,
the stimuli which means the combinations of property characteristics are created.
Then the number of stimuli is determined and a reduced design, which makes an
evaluation manageable, is designed. The selected stimuli and operating situations
are clearly described.

Then the stimuli are evaluated by the focus group. This group is selected by
stakeholders in regard to the relevant market segments. The respondents are asked
to prioritize the stimuli so that the resulting ranking order matches their personal
preferences. Upon completion of the survey, partial values of benefit are determined
for all property characteristics based on the empirically determined ranking-data.
From this, the total values of benefit for all stimuli and the relative importance of
each property can be derived. The aggregation of values of benefit is achieved using
cluster analysis [21].

Finally, the values of benefit are assigned to the operating conditions for each test
case and the situation-dependent benefit of each alternative solution is presented in
a benefit-roadmap (cf. Fig. 4.44). The cumulative benefit of a the solution variant is
derived from the weighted sum of the partial values of benefit. The monetary benefit
is derived from the survey, based on the computed preferred price for the system and
expenditure for a situation.

180 References

Phase 6 - select economical solution concept: The expected benefit and costs
for the company and the customer are compared and the economic efficiency of
each solution is calculated. The comparison provides the basis for decisions on the
selection of the most economical solution variant that will be developed further in
the domain-spanning design and development (cf. Sect. 3.3).

References

1. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdhlking, 1., Angel, S.: A
Pattern Language. Oxford University Press, Oxford (1977)

2. Backhaus, K.: Industriegiitermarketing, 13th edn. Vahlen, Miinchen (2003)

3. Backhaus, K., Erichson, B., Plinke, W., Weiber, R.: Multivariate Analysemethoden - Eine
anwendungsorientierte Einfithrung, 13th edn. Springer, Heidelberg (2011)

4. Bertsche, B.: Reliability in Automotive and Mechanical Engineering - Determination of
Component and System Reliability. Springer, Heidelberg (2008)

5. Birkhofer, H.: Analyse und Synthese der Funktionen technischer Produkte. Ph.D. thesis,
Technische Universitit Braunschweig, VDI-Verlag, Diisseldorf (1980)

6. Birolini, A.: Reliability Engineering - Theory and Practice, Sth edn. Springer, Heidelberg
(2007)

7. Clark, N.: The Airbus Saga - Crossed Wires and a Multibillion-euro Delay - Business -
International Herald Tribune,
http://www.nytimes.com/2006/12/11/business/worldbusiness/
lliht-airbus.3860198.html?pagewanted=all (accessed July 1, 2013)

8. Deyter, S., Gausemeier, J., Kaiser, L., Poeschl, M.: Modeling and Analyzing Fault-
Tolerant Mechatronic Systems. In: Proceedings of the 17th International Conference on
Engineering Design, Stanford (2009)

9. Dorociak, R.: Early Probabilistic Reliability Analysis of Mechatronic Systems. In: Pro-
ceedings of the Reliability and Maintainability Symposium (2012)

10. Dumitrescu, R.: Entwicklungssystematik zur Integration kognitiver Funktionen in fort-
geschrittene mechatronische Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Univer-
sitdt Paderborn, HNI-Verlagsschriftenreihe, Band 286, Paderborn (2011)

11. Ehrlenspiel, K.: Integrierte Produktentwicklung, 2nd edn. Carl Hanser Verlag, Miinchen
(2003)

12. Ehrlenspiel, K., Kiewert, A., Lindemann, U.: Cost-Efficient Design. Springer, Heidel-
berg (2007)

13. for Electrotechnical Standardization (CENELEC), E.C.: CENELEC EN 50129: 2003.
Railway Applications - Communication, Signalling and Processing Systems - Safety Re-
lated Electronic Systems for Signalling. Norm (2003)

14. Eppinger, S., Whitney, D., Smith, R., Gebala, D.: A Model-Based Method for Organizing
Tasks in Product Development - Reserarch in Engineering Design. Springer, Heidelberg
(1994)

15. Ericson, C.: Hazard Analysis Techniques for System Safety. John Wiley & Sons, Hobo-
ken (2005)

16. Erixon, G.: Modular Function Deployment - A Method for Product Modularization.
Ph.D. thesis, Royal Institute of Technology, KTH, Stockholm (1998)

17. Fenelon, P., McDermid, J.A., Nicolson, M., Pumfrey, D.J.: Towards Integrated Safety
Analysis and Design. ACM SIGAPP Applied Computing Review 2(1), 21-32 (1994)

http://www.nytimes.com/2006/12/11/business/worldbusiness/11iht-airbus.3860198.html?pagewanted=all
http://www.nytimes.com/2006/12/11/business/worldbusiness/11iht-airbus.3860198.html?pagewanted=all

4 Methods for the Domain-Spanning Conceptual Design 181

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

Frank, U.: Spezifikationstechnik zur Beschreibung der Prinziplosung selbstoptimieren-
der Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitit Paderborn, HNI-
Verlagsschriftenreihe, Band 26, Paderborn (2006)

Freeman, R.E.: Strategic Management — A Stakeholder Approach. Pitman, Marschfield
(1984)

Friedenthal, S., Steiner, R., Moore, A.C.: Practical Guide to SysML: The Systems Mod-
eling Language. Elsevier, Amsterdam (2008)

Gausemeier, G., Plass, C., Wenzelmann, C.: Zukunftsorientierte Unternehmensgestal-
tung - Strategien, Geschiftsprozesse und IT-Systeme fiir die Produktion von morgen.
Carl Hanser Verlag, Miinchen (2009)

Gausemeier, J., Brandis, R., Kaiser, L.: Integrative Conceptual Design of Products and
Production Systems of Mechatronic Systems. In: Procedings of the Workshop on Re-
search and Education in Mechatronics, Paris (2012)

Gausemeier, J., Dorociak, R., Pook, S., Nyssen, A., Terfloth, A.: Computer-Aided Cross-
Domain Modeling of Mechatronic Systems. In: Proceedings of the International Design
Conference, Dubrovnik (2010)

Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201-223 (2009)

Gausemeier, J., Kaiser, L., Pook, S.: FMEA von komplexen mechatronischen Systemen
auf Basis der Spezifikation der Prinziplosung. ZWF 11 (2009)

Gausemeier, J., Rammig, FJ., Schifer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

Gausemeier, J., Steffen, D., Donoth, J., Kahl, S.: Conceptual Design of Modularized
Advanced Mechatronic Systems. In: Proceedings of the 17th International Conference
on Engineering Design, Stanford (2009)

Gimpel, B., Herb, R., Herb, T.: Ideen finden, Produkte entwickeln mit TRIZ. Hanser
Verlag, Miinchen (2000)

Greenyer, J.: Scenario-based design of mechatronic systems. Ph.D. thesis

Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Sequence
Diagrams. Software and System Modeling 7(2), 237-252 (2007)

International Electrotechnical Commission (IEC): Analysis Techniques for System Re-
liability - Procedure for Failure Mode and Effects Analysis (FMEA), IEC 60812 (2006)
International Electrotechnical Commission (IEC): Fault Tree Analysis (FTA), IEC 61025
(2006)

Kahl, S.M.: Rahmenwerk fiir einen selbstoptimierenden entwicklungsprozess fortschrit-
tlicher mechatronischer systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitét
Paderborn, HNI-Verlagschriftenreihe, Band 308, Paderborn (2013)

Koller, R., Kastrup, N.: Prinziplosungen zur Konstruktion technischer Produkte.
Springer, Heidelberg (1998)

Langlotz, G.: Ein Beitrag zur Funktionsstrukturentwicklung innovativer Produkte. Ph.D.
thesis, Institut fiir Rechneranwendung in Planung und Konstruktion, Universitidt Karl-
sruhe, Shaker Verlag, Band 2, Aachen (2000)

Langseth, H., Portinale, L.: Bayesian Networks in Reliability. In: Reliability Engineering
& System Safety (2007)

Lee, J., Ni, D., Djurdjanovic, H., Qiu, H., Liao, H.: Intelligent Prognostic Tools and
E-maintenance. Computers in Industry 57(6), 476489 (2006)

Lindemann, U., Maurer, M.: Individualisierte Produkte - Komplexitit beherrschen in
Entwicklung und Produktion. Springer, Heidelberg (2006)

182 References

39. Blackenfelt, M.: On the Development of Modular Mechatronic Products. Royal Institute
of Technology, KTH Stockholm (1999)

40. Mehrabian, A., Russell, J.A.: An Approach to Environmental Psychology. MIT Press,
Cambridge (1974)

41. Mitchell, R.K., Agle, B.R.: Towards a Theory of Stakeholder Identification and Salience
- Defending the Principle of Who and What Really Counts. Journal = Academy of Man-
agement Review 22(4), 11-14 (1997)

42. Nordsiek, D., Gausemeier, J., Lanza, G., Peters, S.: Early Evaluation of Manufacturing
Costs within an Integrative Design of Product and Production System. In: Proceedings
of the APMS 2010, International Conference on Advances in Production Management
Systems, Como (2010)

43. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design - A Systematic Ap-
proach, 3rd edn. Springer, Heidelberg (2007)

44. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell: A Desktop Quick Reference. O’Reilly
(2005)

45. Pook, S.: Eine Methode zum Entwurf von Zielsystemen selbstoptimierender mechatro-
nischer Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitidt Paderborn, HNI-
Verlagsschriftenreihe, Band 296, Paderborn (2011)

46. RailCab - Neue Bahntechnik Paderborn: The Project Web Site, http://railcab.de
(accessed March 5, 2012)

47. Roth, K.: Konstruieren mit Konstruktionskatalogen: 1. Band: Konstruktionslehre, 3rd
edn. Springer, Heidelberg (2000)

48. Sauer, T.: Ein Konzept zur Nutzung von Losungsobjekten fiir die Produktentwicklung in
Lern- und Anwendungssystemen. Ph.D. thesis, TU Darmstadt, VDI-Verlag, Diisseldorf
(2006)

49. Scheffler, M.: Cost vs. Quality Trade-off for Gigh-density Packaging of Electronic Sys-
tems. Ph.D. thesis, Swiss Ferderal Institute for Technology, Eidgendssische Technische
Hochschule, Ziirich (2001)

50. Schmidt, A.: Wirkmuster zur Selbstoptimierung - Konstrukte fiir den Entwurf selbstop-
timierender Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitidt Paderborn,
HNI-Verlagsschriftenreihe, Band 204, Paderborn (2006)

51. Sondermann-Wolke, C., Geisler, J., Sextro, W.: Increasing the Reliability of a Self-
optimizing Railway Guidance System (2010)

52. Stahl, T., Voelter, M.: Model-driven Software Development: Technology, Engineering,
Management. John Wiley & Sons, Hoboken (2006)

53. Steffen, D.: Ein Verfahren zur Produktstrukturierung fiir fortgeschrittene mechatron-
ische Systeme. Ph.D. thesis, Fakultit fiir Maschinenbau, Universitit Paderborn, HNI-
Verlagsschriftenreihe, Band 207, Paderborn (2006)

54. Strube, G.: Worterbuch der Kognitionswissenschaft. Klett-Cotta, Stuttgart (1996)

55. Thommen, J.P.: Managementorientierte Betriebswirtschaftslehre, 8th edn. Versus Verlag,
Ziirich (2008)

56. Tumer, 1., Stone, R., Bell, D.: Requirements for a Failure Mode Taxonomy for Use in
Conceptual Design. In: Proceedings of the International Conference on Engineering De-
sign, Stockholm (2003)

57. VaBholz, M., Gausemeier, J.: Cost-Benefit Analysis - Requirements for the Evaluation
of Self-Optimizing Systems. In: Proceedings of the 1st Joint International Symposium
on System-Integrated Intelligence, Hannover (2012)

58. Wilkinson, P., Kelly, T.: Functional Hazard Analysis for Highly Integrated Aerospace
Systems. In: Proceedings of the Ground/Air Systems Seminar (1998)

http://railcab.de

Chapter 5
Methods for the Design and Development

Harald Anacker, Michael Dellnitz, Kathrin FlaBkamp, Stefan Groesbrink, Philip
Hartmann, Christian Heinzemann, Christian Horenkamp, Bernd Kleinjohann, Lisa
Kleinjohann, Sebastian Korf, Martin Kriiger, Wolfgang Miiller, Sina Ober-Blobaum,
Simon Oberthiir, Mario Porrmann, Claudia Priesterjahn, Rafael Radkowski, Chris-
toph Rasche, Jan Rieke, Maik Ringkamp, Katharina Stahl, Dominik Steenken, Jorg
Stocklein, Robert Timmermann, Ansgar Trichtler, Katrin Witting, Tao Xie, and
Steffen Ziegert

Abstract. After the domain-spanning conceptual design, engineers from different
domains work in parallel and apply their domain-specific methods and modeling
languages to design the system. Vital for the successful design, are system opti-
mization methods and the design of the reconfiguration behavior. The former meth-
ods enable the parametric adaption of the system’s behavior, e.g. an adaption of
controller parameters, according to a current selection of the system’s objectives.
The latter realizes structural adaption of the system’s behavior, e.g. the exchange
of software or hardware parts. Altogether, this leads to a complex system behavior
that is hard to overview. In addition, self-optimizing systems are used in safety-
critical environments. Consequently, the system’s safety-critical behavior has to un-
dergo a rigorous verification and testing process. Existing design methods do not
address all of these challenges together. Indeed, a combination of established de-
sign methods for traditional technical systems with novel methods that focus on
these challenges is necessary. In this chapter, we will focus on such new methods.
We will introduce new system optimization and design methods to develop recon-
figurations of the software and the microelectronics. In order to ensure the correct-
ness of safety-critical functionality, we propose new testing methods and formal
methods to ensure safety-properties of the software. We show how to apply virtual
prototyping to deal with the complexity of self-optimizing systems and perform an
early analysis of the overall system. As each domain applies its own modeling lan-
guages, the result of these methods are several overlapping models. In order to keep
these domain-specific models consistent among all domains, we will introduce a

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 183
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 5, (© Springer-Verlag Berlin Heidelberg 2014

184 H. Anacker et al.

new semi-automatic model synchronization technique. Each of these design meth-
ods are integrated with the reference process for the development of self-optimizing
systems.

The principle solution forms the basis of the design and development. Engineers
of the involved domains derive their domain-specific models from the it. This is,
however, an error-prone and tedious task. Therefore, we will introduce a semi-
automatic model transformation techniques (cf. Sect. 5.1) that enables engineers
to, e.g. derive an initial controller hierarchy or an initial software architecture. Af-
terwards, each domain details these models. This may involve changes that have an
impact on the other domains. In order to keep the models of all domains consistent,
we will propose a model synchronization technique (cf. Sect. 5.1.3).

The system must consider several concurrent objectives in different Application
Scenarios.

This requires methods for optimizing the system with respect to these objectives
and appropriate adaption methods. System optimization methods origin from the
research areas of applied mathematics and artificial intelligence. The methods de-
termine the optimal system behavior or a set of optimal compromises for several
concurrent objectives. Practically, this is a formalism to compute optimal controller
parameters or optimal configurations of the system structure (cf. Sect. 5.3). Then,
it is the task of engineers from the domains mechanical, electrical/electronic, con-
trol, and software engineering to specify the corresponding change of the system’s
behavior, i.e. the reconfiguration of the system.

The system can perform reconfigurations on every system level (cf. Sect. 1.4.3).
In particular, this requires new design methods for the application software, the
system software, and the hardware modules to specify reconfiguration. Furthermore,
reconfiguration is often safety-critical and must fulfill hard real-time constraints.
Consider the RailCab’s reconfiguration behavior to build a convoy as an example (cf.
Sect. 2.1.7): The RailCab must reconfigure the controller behavior to consider the
distance to the preceding RailCab if the RailCab joins a convoy as a member. In
fact, if this function is not free from design faults or the system cannot execute the
reconfiguration within a certain time, a crash may happen. Therefore testing and
formal verification methods are crucial to ensure the safety of the system’s complex
behavior and its real-time properties.

On the level of the application software, software engineers specify the com-
munication behavior and the switching between alternative behavior implementa-
tions. We apply a component-based design method called MECHATRONICUML
that considers hard-real time constraints for the communication behavior, the re-
configuration of controllers, and the reconfiguration of software components. In
MECHATRONICUML, formal verification techniques are applied to ensure safety
constraints and the real-time properties of the system.

As a consequence of reconfigurations of the application software, the software’s
resource and performance demands changes. Usually, the system must reconfig-
ure hardware modules to meet the changed requirements of the application software

5 Methods for the Design and Development 185

again. For instance, a change of the communication behavior may require a change
of the physical communication topology or the implementation of a communication
protocol on the hardware to meet the performance requirements. Different hardware
techniques such as FPGAs or multi-processor platforms are capable to realize these
reconfigurations. We will present design methods, architectures, and modeling ap-
proaches to design dynamically reconfigurable hardware for different techniques
and enable flexible and robust implementation of dynamically reconfigurable hard-
ware (Sect 5.4). In particular, a layered architecture such as PALMERA (Paderborn
Layer Model for Embedded Reconfigurable Architectures) can be applied to ab-
stract from the different hardware techniques. Based on PALMERA the design-flow
INDRA guides engineers through the different steps towards the realization of in-
formation processing systems based on dynamically reconfigurable hardware.

The system software forms the interface between the application software and
the dynamic reconfigurable hardware. Hence, the system software must define a
common interface to trigger changes of the hardware. Furthermore, it must adapt to
changing available resources and changing resource demands while operating un-
der hard real-time constraints. This requires new concepts and design methods for
the system software. ORCOS (Organic Reconfigurable Operating System) is a real-
time operating system that provides operating system services and an architecture
to master these challenges (cf. Sect. 5.5). For instance, the FRM (flexible resource
management) allows an overallocation of resources to optimize the resource avail-
ability under changing resource demands (cf. Sect. 5.5.2).

The result of the design and development is a complex composed behavior devel-
oped by different engineers. This leads to a specification, that is hard to overview.
In addition, engineers must ensure the correctness of safety-critical functionality as
early as possible during the design. One solution to cope with the complexity is to
build and test a virtual prototype. Virtual prototyping enables engineers to perform
experiments during early development phases. It requires models of the system that
are often created by several tools. We will introduce a concept of a virtual environ-
ment and methods to extend the environment and integrate models of the domains
involved.

This chapter is structured as follows: First, we will describe the model transfor-
mation techniques to derive the domain-specific models from the principle solu-
tion and the model synchronization technique to keep the domain-specific models
consistent (cf. Sect. 5.1). In Sect. 5.2, we will introduce the design of the commu-
nication software and reconfiguration behavior with MECHATRONICUML. Novel
system optimization approaches that origin from mathematics and artificial intelli-
gence follow in Sect. 5.3. We will describe technologies and design methods for
dynamic reconfigurable hardware in Sect. 5.4. In Sect 5.5, we will focus on the
system software and introduce the self-optimizing real-time operating system OR-
COS. Finally, we will introduce virtual prototyping and advanced testing methods
in Sect. 5.6.

186 J. Rieke

5.1 Automatic Model Transformation and Synchronization
Jan Rieke

In the domain-spanning conceptual design, experts from all domains have elabo-
rated the principle solution. This principle solution covers all domain-spanning rel-
evant information, i.e. all interfaces and overlaps between different domains are
described in this model. Thus, the principle solution can serve as a starting point for
the domain-specific design and development.

In this section, we will show how model transformation techniques can be ap-
plied to automatically derive initial domain-specific models that are consistent with
the principle solution and all other domain-specific models. Basically, these initial
models contain skeletons that are filled by the domain engineers in the design and
development phase. We will explain a model transformation that generates software
engineering models from a principle solution in Sect. 5.1.2.1. In Sect. 5.1.2.2, we
will also show how initial control engineering models can be generated.

Ideally, the principle solution covers all domain-spanning aspects. Thus, there
should be no need for further domain-spanning coordination. However, in practice,
the principle solution rarely captures every domain-spanning concern. Additionally,
changes to the overall system design may become necessary later on, e.g. due to
changing requirements. Therefore, cross-domain changes may become necessary
during the domain-specific design and development. Sect. 5.1.3 explains in detail
how model synchronization techniques can be applied in such a scenario.

Before describing the model transformation and synchronization technique in
detail, let us have a closer look at an example.

5.1.1 Example Scenario

As a running example, let us consider the RailCab system (cf. Sect. 2.1). When
driving in a convoy, all RailCabs (except for the convoy leader) control their velocity
based on the distance to the RailCab traveling in front of them. To measure the
distance, a distance sensor is mounted in the front of each RailCab. Figure 5.1 shows
how the different models evolve in the exemplary scenario described below.

To illustrate transformations and synchronizations that may become necessary
throughout the development, assume the following exemplary process. After the
system engineers design the principle solution, we apply model transformations to
the different domain-specific models (step 1). The control engineers then start im-
plementing the controllers (step 2). In particular, they elaborate on the velocity con-
trol strategies for driving in a convoy as a follower based upon the distance measured
by the distance sensor. This is a domain-specific refinement that has no influence on
the models of other disciplines.

Modern mechatronic systems incorporate self-healing to repair the system in case
of failure. As described in Sect. 5.2.7, the software engineers perform an analysis of
the self-healing operations in order to determine whether they reduce the probability
of hazards successfully. In our example, the distance sensor could fail or send bad

5 Methods for the Design and Development 187

principle solution ---- 0

Initial transformation and mapping o
corresponding design artefacts

U
B¢
®

O IR Y

Domain-specific refinements
(implementation of control strategies)

Domain-spanning relevant change
(additional distance sensor)

Update of domain-specific models

“0l0-0l0

I

L

I

I { Update of the system model
I

4 (

U {

I

|]

y
Legend
(D Domain-Spanning System Model (@ we) Mechanical Engineering Models
(&) Electrical Engineering Models — Manual Change
(—s0) Software Engineering Models — > No or Automatic Change
Control Engineering Models

Fig. 5.1 Evolution of different models during the development process

data. It may turn out that even with self-healing the hazard probability can not be
reduced to an acceptable level: The hazard of two RailCabs colliding during convoy
mode due to a failing distance sensor exceeds the acceptable hazard probability of
the system. Thus, software engineers should propose adding redundancy by adding
a second distance sensor. They add a new sensor measurement component to their
software model (step 3). This is a domain-spanning relevant change, i.e. it affects
the domain-spanning system model as well as several domain-specific models. In
particular, the velocity control strategy must be modified.

Thus, we use model synchronization techniques to propagate the change to
the system model (step 4). In contrast to model transformation, which translates
complete models, the idea of model synchronization is to modify only the model el-
ements that have been changed after the initial model transformation. Thus, model
synchronization is also called an incremental update. Version 1.1 of the system
model now contains a second distance sensor. To allow all engineers to react to
change, it is propagated further to all affected domain-specific models. For instance,
the control engineering model is updated, again using model synchronization tech-
niques (step 5).

The control engineers can now modify their control strategy to use both sensor
data as input. In step 5, it is crucial that the domain-specific model is updated in a

188 J. Rieke

way, so that all refinements and implementations that have been added to it in the
meantime (see step 2) are retained.

Next, we will describe in detail a) how to derive initial domain-specific models,
and b) how to propagate changes to the system model and further on to domain-
specific ones.

5.1.2 Deriving Initial Domain-Specific Models from the System
Model

In this section, we will present two example transformations from the system model
to domain-specific models. We will use the principle solution as the input to these
transformations to create models for the domain-specific design and development.
However, these transformations can also already be used during the conceptual de-
sign to generate domain-specific models, for instance, for early simulation and ver-
ification.

First, we will describe how the active structure can be used to derive initial soft-
ware component models in MECHATRON ICUML?, and how the Behavior—States
model is transformed to an initial software statechart. Next, we will show how con-
trol engineering models (MATLAB/Simulink and Stateflow) can be derived.

5.1.2.1 Transformation from CONSENS to Software Engineering Models

Figure 5.2 shows the basic principles of the transformation from CONSENS to
MECHATRONICUML software models. In the active structure, you can see small
colored annotations above the system elements. These so-called relevance annota-
tions define which element is relevant to which domain-specific model. For instance,
“SE” and “CE” denotes software and control engineering, respectively.

The central idea of mapping is that every system element that has a software
engineering relevance annotation (i.e. it fulfills software functions) should be rep-
resented by a software component in the MECHATRONICUML model. The in-
formation flows between system elements are mapped to ports and connectors in
MECHATRONICUML.

Generally, we distinguish between continuous and discrete components. Con-
tinuous components are typically controllers that continuously process input data
from sensors to compute outputs for actuators Typically, control engineers imple-
ment them. However, MECHATRONICUML allows integrating them as continuous
components. Continuous components are black-box components, i.e. no actual be-
havior is attached to continuous components in MECHATRONICUML. In this way,
they define the interface to control engineering in a MECHATRONICUML software
model.

In contrast, the behavior of discrete components is implemented using MECHA-
TRONICUML (cf. Sect. 5.2). Discrete components communicate with each other
via discrete ports using asynchronous, message-based communication defined in

9 See Sect. 5.2 for a detailed explanation of MECHATRONICUML.

189

5 Methods for the Design and Development

-
. E——
uonoalaqg J9jj013Uu0)
piezeHq spJezey 6 E_o.w_ :wm_uwwm_w._o
pajo9)ap uljesado
qeoiedp f

1
| spiezey
|pajoajap

“qeiedy

A

aje)s

|osu0)
Aoauod

Ayoojap

'
'
«
'
'

LLETENPY
“qeoiiedy

|o43uo0d
Ayoolap

uolnewiojsues} [eniul

_
0
1 “ 1
1 1 1
1 " 1
pe 8|npoy
| | ePSIA RS uonesiunwiwo)
Mm,oﬂmx|> Bn.uﬂuxlunl auw__wnmsﬂ M_Muﬂ_mwzw qejjiey
olqegiey
]
qeolrey
e|le; -
CB qedjiey |e——» s EAE

7]
=]

Fig. 5.2 Initial transforma-
tion from the active structure
to a software component di-
agram (adapted from [70])

190 J. Rieke

real-time statecharts. Discrete components can also send or receive signals to or
from continuous components using hybrid ports. In Fig. 5.2, the components Drive
Control and Velocity Control have both discrete and continuous ports.

The transformation creates discrete components in MECHATRONICUML for ev-
ery system element that is relevant for software engineering. We use a technique
called Triple Graph Grammars (TGG) for defining the model transformations to the
different domain-specific models. TGGs are a graph-based, declarative technique to
define mappings between two models, invented by Schiirr (1994) [188].

Figure 5.3 shows a TGG rule that is part of the TGG rule set that implements this
mapping.

A TGG rule describes which model elements in one or more source models relate
to which model elements in one or more target models. In Fig. 5.3, the two source
models are the two left columns, AS Annotation and active structure.'® The target
models are located in the right columns, Component Diagram and UML Annota-
tion. In the middle column, the so-called correspondence model is described, which
is a kind of trace model, storing relations between the models. It is used to identify
corresponding model parts when incrementally updating models. The green parts of
the rule, additionally marked with “++”s, is the actual mapping, stating that a Sys-
temElementlnstance that has a Relevance annotation must be mapped to Property,
also with a Relevance annotation. The b/w part of the rule is the context, defining in
which situations the mapping must be valid.

We use our TGG Interpreter Tool Suite [203] to define and automatically ex-
ecute these TGG rules. Given a domain-spanning system model and a TGG rule
set, the TGG Interpreter can automatically create the corresponding domain-specific
models. We refer to Greenyer and Kindler (2010) [78] for further details on TGGs.
Gausemeier et al. (2009) [70] describe the principles of the transformation from the
active structure to software models in detail.

5.1.2.2 Transformation from CONSENS to Control Engineering Models

Figure 5.4 shows the basic principles of the transformation from CONSENS to
MATLAB/Simulink control engineering models.

Generally, every system element that is relevant to software or control engineer-
ing is mapped to a Simulink block. The system elements relevant only to software
engineering, however, are just placeholders. When the software engineers finish the
actual implementation, this implementation is inserted. This is because we use a
MATLAB/Simulink model at the end of the development process as a combined
software/control engineering model from which code is generated. Thus, all arti-
facts of the software engineering domain are integrated into this MATLAB/Simulink
model.

To allow the integration of discrete software components that use asynchronous,
message-based communication and reconfiguration, we use a message bus

10 Dye to technical reasons (e.g. to allow easy extensibility), annotations are stored in two
separate models. Thus, they are located in the separate columns AS Annotation and UML
Annotation in Fig. 5.2.

191

5 Methods for the Design and Development

aoueAs[aY:
++

uonejouuy
TINNDIuocseyI9N

175

ts
= 5 2
3 =
52
kdo@
=) S
=g EX
Q23 g
O 2 .9
Tsmmﬁ
n $x73
v § & 2
L83 E
208 0 g
= eSS

++

++

juauodwo):

Juawsa|3ppbexoed

Auadoigpaumo

+

+

mo:m«w:_EmEm_m_EEﬁw“l%&

JUBWa|JWa)SAS:

abesoed:

JUBWIB|JWIBISAS:

juswa|3zpabexoed e

juswa|gpabeyoed

% _Rusdoid: s doidzisui3s:
?mn_oHM_ QUMO ” d%
|
jusuodwod: , dwodz3s:
==
” abesoedzabeyoed:
TNND1uodjeydsp Qucw_ocoamw._._oo

abeyoed:

aiInjonug dAIDY — SNISNOD

ERNELEIEINE
++

uoljejoUUY
SN3ISNOD

J. Rieke

192

uonos}eq piezeH

splezey

J19|j013U0)

pajosiep

Ja|j0u0)
juiod Bunesado

uonodjaq

juiod
Bunesado piezeH
! ! spiezey
A SIS 'pajoajep
1

-
-4

Koauod

|onuon

Youms
uonediunwwo)d
jou0) AjooldA
WA lﬂ no Ul e
;U L
ajels
Koauoo

Ayoolap)
|o1)U0D BALQ T sh 2
- , uoljeuIpI00d
1
A spJezey i ! i KoAauod
b pajoslep P
1 1
- N
R | 11 PRI TR P I0ReOIUNWWOY N~ B g e

qedliey

qedlieN p fqeDlENy

GeDliRdp qeOlRNy

“_

Fig. 5.4 Initial transforma-
tion from the active structure
to a MATLAB/Simulink
control engineering model

olqedjley

A:o_umE._ov.m:wb leniui

qeojiey

B ESIEFIETEE]

5 Methods for the Design and Development 193

Fig. 5.5 Initial transforma- Domain-spanning System Model

: TOT_ v1.0 Qe ms] GE0ms]
tion from Behavior—States T -
1 i

to a MATLAB/Stateflow

model [convoyFollower } [noConvoy } [convoylLeader }

i [} [} i
ey | e
@ Q
Legend .
(D state (O event —»- 0918 ® time attributes

relationship

Control Engineering

V1.0ce

| send(createConvoy) , |_1_createConvoy
onvoyFollower| sendpreakconvoy) | MCOMVOY | breakconvor

Legend

it transition with initial
name) state —q-event

approach. The communication between two discrete components is implemented
using a Communication Switch. This switch connects every component and is re-
sponsible for forwarding sent messages to the correct recipient. This is necessary
to allow changing communication structures as required when reconfiguring a sys-
tem. Signal-based information flow, like the 7* value signal from Velocity Control
to Operating Point Controller, is mapped to connected outputs and inputs of the
respective blocks.

Furthermore, we use behavioral models of the principle solution to generate
MATLAB/Stateflow control engineering models. Figure 5.5 shows such a transfor-
mation of behavioral models.

Rieke et al. (2012) [180] describe the principles of the transformation of state-
based models. Heinzemann et al. (2012) [93] give technical details on the generation
of MATLAB/Stateflow and Simulink models.

5.1.3 Synchronizing Models during the Domain-Specific
Refinement Phase

Although most domain-spanning relevant information should already be present at
the end of the conceptual design, changes to the system in development may be-
come necessary during the domain-specific design and development. For instance,
requirements may still change during later phases, or it may turn out that some
aspect of the system must be implemented in another way. This easily leads to
changes that affect both the domain-spanning system model and several domain-
specific models. Furthermore, engineers may have already generated early domain-
specific models during conceptual design, to allow early checks and simulations of
different concepts and ideas. It is reasonable to keep these early models and to reuse
and refine them during the design and development.

194 J. Rieke

This requires keeping the development models consistent during all phases of the
development. Manually checking and restoring the consistency of all models is a
time-consuming and error-prone task. Therefore, we apply similar methods as with
the derivation of initial models (described in the previous section) to synchronize
models during the development.

First, we will describe how the system model is updated when changes in a
domain-specific model occur. Next, we will show how domain-specific models can
be updated with respect to these system model changes.

5.1.3.1 Updating the System Model

As described in Sect. 5.1.1, an extra distance measurement component is added to
the software model (step 3 in Fig. 5.1). Our model transformation approach forwards
this change to the system model (step 4 in Fig. 5.1). Figure 5.6 shows the result of
this step.

We again use TGGs to perform such model synchronization operations. TGG
rules can be applied bidirectionally, i.e. transformation and synchronization opera-
tions can be performed both from the system model to the software model and vice
versa. Here, we apply the TGG rules reverse, propagating the change from the soft-
ware model to the system model. The added Distance Measurement system element
is shown on the left side of Fig. 5.6.

We do not want to simply run the transformation again in backwards direction,
as this would completely re-create one model. Thus, the core idea is to only update
modified model parts and leave everything else untouched. For every model element,
we check whether mapping of this element is still valid. To do so, our approach uses
the existing trace information that is stored inside the correspondence graph. Using
this correspondence graph, it can identify corresponding model elements in the two
models and then check the consistency of these model elements by testing whether
the TGG rule that was applied there still holds. The approach only modifies a model
element if a rule does not hold any more relevance. Such an approach is called
incremental model transformation or model synchronization.

We have developed a new, improved model synchronization algorithm that is tai-
lored for the use in mechatronic system design. More specifically, it prevents the
loss of information in models during the synchronization process. This is especially
required when synchronizing development models of mechatronic system, as these
models have different abstraction levels and/or different views: The system model
is usually more abstract than the domain-specific models that contain concrete im-
plementation details. Thus, the domain-specific models may contain information
that is not part of the system model. For instance, the Stateflow model shown in
the lower part of Fig. 5.5 is later refined such that it contains details of controller
reconfigurations that happen when switching convoy states. Thus, the Stateflow
model now contains information that is not present in the abstract system model.
When the system model is changed, this change may affect parts of the Stateflow
model that has been refined. Our synchronization algorithm avoids affecting these

195

5 Methods for the Design and Development

Josuas
aouejsip
ayj buippe

juswainsesa\
aoueysIq

|apow wajsAs
ay} bunepdn

juawainsesp
aouejsiq

FEEICT)
| o} @duejsip|

Js]j013U0D) L
julod y
Bunesado piezey

qedlieyp » !
“qeoneay | SpJezey

|pajoajep

|osuod
Ayo0]9

1
1
- AN
1
qedlleyp
‘qedliedy

Josuo)
Ayoojap

e o=l Loosooooo

qEOIIRY A CqEDIIRHY

qediley

() qegjiey _T.HTV BEEEESERIETEE]

sa
4
23 .
9 L
ae.l
0o =
S C =
tem
mbhn)
d —_
= OO
z o &2
o .EE =
v O
chm
v o 2
O = o= =
..\mma/\
.S 2 E
%02 a3
== 0 =
= @ & &b

refinements when updating this domain-specific model. Rieke et al. (2012) describe
such a change scenario in detail [180]. For details on the improved model synchro-

nization algorithm, see Greenyer et al. (2011) [79].

J. Rieke

196

" juewsalnses)y souelsiq

J13]|013U0D
julod Bunelado

abueyd ayy juswiainseajy
, «moomhmﬂmﬂ Bunebedo.d, aouejsiq
|
T = | 1 300lq0 0y
uoposleq ?mNmI « i soueysip |
| 19310 o} | . >
el SOUBISIP gt Jajjonuon
S julod uopdajeq
Bunesadg plezeH
| | spJezey
1 1
d g oje)s 1P330939p
< g KoAuod ¥
oS e
louo)
— s Awooop /™
oHM o
co_«mw_“.:,m&og 104u03 eni@ :
1}eol

|jonuo) Ajoojop

WA no
«P!

ajels

Aonuod

|

u

spiezey

D pajoslep
AOAUOO

" aeorexy aeorery

|

Fig. 5.7 Updating the MAT-
LAB/Simulink control en-

updated active structure dia-

gineering model using the
gram

qeliey A <qEDNRNY QeOIRY A “qRONTYY

qedirey
IESERIETIEE])

Models

mneering

5.1.3.2 Updating Control Eng

After updating the system model, these changes must be propagated to other af-

fected domain-specific models (step 5 in Fig. 5.1). Figure 5.7 shows how the added
Distance Measurement system element can also be added to the control engineering

model.

This is again achieved by rerunning the transformation incrementally, leaving the
unaffected parts untouched and only adding a new block with its respective inputs,

outputs and lines.

5 Methods for the Design and Development 197

When changes to a model occur, we are able to update other affected models
automatically in most cases, using these improved model transformation and syn-
chronization techniques. However, there might be cases where user decisions are
indispensable, for instance when there are different possibilities to propagate a spe-
cific change. Thus, it is reasonable to combine this technique with means for user
interaction [79].

5.2 Software Design

Christian Heinzemann, Claudia Priesterjahn, Dominik Steenken, and Steffen Ziegert

Self-optimizing mechatronic systems execute a great amount of software to coordi-
nate the operations of the system. In the following, we will refer to that software as
the discrete software of the system as opposed to the controller software. The Rail-
Cab demonstrator for example (cf. Sect. 2.1) needs discrete software to manage the
necessary communication for getting admission to drive onto a track section and,
especially, for driving in convoy mode. In convoy mode, RailCabs need to execute
complex coordination behavior for maintaining the convoy when the convoy con-
sists of more than two RailCabs. Since RailCabs can join or leave a convoy during
a journey, a flexible structure for the specification of the coordination is needed.
The required small distances between RailCabs in a convoy imply real-time coor-
dination between the speed control units of the RailCabs. This is safety-critical and
requires the software engineer to address a number of constraints when designing
the RailCabs’ control software.

In the design and development, the software engineers apply the MECHA-
TRONICUML method [53, 75] for designing the discrete software of mechatronic
systems, especially of self-optimizing mechatronic systems (cf. Sect. 3.3.3).
MECHATRONICUML enables a component-based specification of the discrete
software with a special focus on specifying the communication and reconfiguration
behavior of a self-optimizing mechatronic system. The development process for de-
veloping with MECHATRONICUML in the course of the design and development
is shown in Fig. 3.11 on Page 84. We illustrate the development with MECHA-
TRONICUML by providing an overview of the general concepts of MECHATRON-
ICUML [1, 43, 75] and recent extensions [53, 54, 91, 196] in the course of this
section. The complete, technical language specification of MECHATRONICUML
can be found in [18].

The software engineers start the development with MECHATRONICUML by de-
riving a component model for the discrete software as discussed in Sect. 5.2.1. In
the next step, the communication requirements need to be decomposed based on
the components of the component model as described in Sect. 5.2.2. The commu-
nication protocols that define the message-based communication of the components
are specified formally by using real-time coordination patterns and verified with our
design-time verification procedure as explained in Sect. 5.2.3. Afterwards, the com-
ponent’s discrete communication behavior is specified as described in Sect. 5.2.4.

198 C. Heinzemann et al.

In Sect. 5.2.5 we will outline how the complete hybrid system is simulated. When
the simulation is successful, the deployment of software components to hardware
is specified as explained in Sect. 5.2.6. Finally, we will outline an analysis of self-
healing operations in Sect. 5.2.7 and the code generation in Sect. 5.2.8.

5.2.1 Component Model

The software development with MECHATRONICUML starts by deriving an ini-
tial component model for the system, because MECHATRONICUML follows the
component-based approach [198] for developing software. Each component encap-
sulates part of the system functionality and the components only interact via well-
defined interfaces, called ports. An initial component model is derived from the
Active Structure by using the transformation presented in Sect. 5.1.2.1. Since the
Active Structure only contains components that affect more than one discipline, it
might be necessary to refine the component model by splitting the behavior of a
component into several subcomponents. That reduces the complexity of the single
components which, in turn, enables the reuse of existing components and makes
their verification more efficient.

Fig. 5.8 shows the DriveControl component of the RailCab that has been derived
from the system element DriveControl as shown in Fig. 5.2. The DriveControl com-
ponent encapsulates the software controlling the driving operations of the RailCab.
In our example, a RailCab will either be a coordinator or a member of a convoy, but
not both at the same time. Therefore, the developer may decide to split the behavior
of the RailCab component into subcomponents. The two components ConvoyCoor-
dination and MemberControl encapsulate the behavior of being coordinator and of
being member respectively. In addition to these components, each RailCab requires
a component SpeedControl which defines the speed for the RailCab which serves
as the reference speed for the controller. If the RailCab is a convoy member, the
reference speed and an additional reference distance to the preceding RailCab in
the convoy are received by the MemberControl and propagated by SpeedControl to
the controller.

In self-optimizing mechatronic systems, the components interact by means of
message passing via their ports. In MECHATRONICUML, the behavior that de-
fines an interaction between two components is specified by so-called real-time
coordination patterns (cf. Sect. 5.2.3). In Fig. 5.8, the DriveControl interacts with
other components using the ports coordinator, member, hazardReceiver, convoyS-
tate, refSpeed, and refDist. The former four ports are discrete ports that execute a
state-based communication protocol specified by a real-time coordination pattern
(cf. Sect. 5.2.3). The refSpeed and refDist ports are so-called hybrid ports which
are used for providing a value, in this example the reference speed and reference
distance for the RailCab, to a controller.

The behavior of components and ports is defined using a state-based
approach called real-time statecharts (RTSC). RTSCs are a combination of UML

5 Methods for the Design and Development 199

DriveControl E
B] B]

convoy : member :

o ' ConvoyCoordination [0..1] MemberControl [0..1] |:=:|
coordinator| coordinator member |member
[va] [va]
convoySpeed‘—l—' convoySpeed ‘—l—'

convoySpeed

| Akl El refDist refDist

sp_ctrl : SpeedControl [1]

[yal [val
hazardReceiver AL AL convoyState
hazardReceiver & & convoyState

Fig. 5.8 DriveControl component of the RailCab

statemachines and timed automata [8]. We will provide more information on RTSCs
using an example in Sect. 5.2.3.

The MECHATRONICUML component model distinguishes between components
and component instances. A component instance is the occurrence of a component
in a system. Component instances are connected via their ports for specifying a
concrete system architecture, called component instance configuration.

Fig. 5.9 shows a component instance configuration that consists of three instances
of the component RailCab (cf. Fig. 5.2). The RailCabs drive in a convoy because
they execute the real-time coordination pattern ConvoyCoordination which we will
introduce in detail in Sect. 5.2.3.

5.2.2 Decompose Communication Requirements

In a self-optimizing mechatronic system, the single components often interact and
exchange different kinds of data. In the example in Fig. 5.9, RailCabs interact with
each other for two reasons. First, they communicate to coordinate the convoy drive
and, second, a RailCab needs to transmit its current position to adjacent RailCabs
in the convoy for controlling the distance. The communication protocols defining
the necessary message exchange are specified by real-time coordination patterns
of MECHATRONICUML. A developer should specify one real-time coordination
pattern for each reason for interaction to achieve separation of concerns. This in
return will reduce the complexity of the single real-time coordination patterns, allow
a more efficient verification, and enable their reuse in different systems.

The requirements for the real-time coordination patterns are specified by means
of Modal Sequence Diagrams (MSDs) as described in Sect. 4.3. The MSD specifi-
cation, however, does not distinguish the different communication protocols. There-
fore, the developer needs to decompose the MSDs according to the communication
protocols that are needed in the system. For the example in Fig. 5.9, we obtain

200 C. Heinzemann et al.

---------------- AG (coordinator.sendUpdate =>

(:/ ConvovCoordinatior;\\,/ AF._50 coordinator.idle)

-

:member ~~_ :member

8] 5

r2 : RailCab E E r3 : RailCab

Fig. 5.9 Component instance configuration of a convoy with three RailCabs

one set of MSDs for the ConvoyCoordination and one set of MSDs for the Dis-
tanceControl. Then, the developer needs to define a real-time coordination pattern
as described in Sect. 5.2.3 for each of the communication protocols. These real-
time coordination patterns are then associated with the ports and connectors of the
component model as shown in Fig. 5.9.

In addition, the developer may split components into several subcomponents as
illustrated in the DriveControl component in Fig. 5.8. In this case, the interactions
need to be associated with subcomponents that will implement the interaction. This
step might require a further derivation of MSDs that define the requirements for the
communication within a component. In the DriveControl component, the developer
needs to specify MSDs for the interaction of SpeedControl with ConvoyCoordina-
tion and MemberControl.

5.2.3 Real-Time Coordination Patterns

The communication behavior of the components is specified formally by using real-
time coordination patterns. The developer needs to specify a real-time coordina-
tion pattern for each connector between components in the component model. In
MECHATRONICUML, real-time coordination patterns are specified independent of
a concrete component to allow reusing them in different systems. Thus, the de-
veloper either needs to specify a new real-time coordination pattern based on the
communication requirements as described in Sect. 5.2.3.1 or he may reuse an ex-
isting real-time coordination pattern. The real-time coordination pattern is refined
to the specific components as part of process step "Specify Discrete Behavior"
(cf. Sect. 5.2.4).

The communication behavior is safety-critical. In our example, errors in the com-
munication between convoy coordinator and convoy members may lead to an ac-
cident. If a RailCab still operates in convoy mode while the convoy coordinator
assumes that it has left the convoy, a crash may occur if the convoy brakes because

5 Methods for the Design and Development 201

Fig. 5.10 Instance of a real- Multi-role
time coordination pattern Instance
with a multirole

Adaptation RTSC

Sub-Role, | Sub-Role, Sub-Role,
RTSC RTSC RTSC

role RTSC role RTSC role RTSC
Single-Role Single-Role Single-Role
Instance Instance Instance

the RailCab will not be notified. We can prove the correctness of the communication
behavior by using our design-time verification procedure outlined in Sect. 5.2.3.2.

5.2.3.1 Specification of Real-Time Coordination Patterns

A real-time coordination pattern defines the required communication between two
communications partners independent of a concrete component implementation. We
call the communication partners roles. In this section, we focus on 1:n communica-
tion where one role communicates with n other roles all executing the same behav-
ior [53]. In a RailCab convoy (cf. Fig. 5.9), one RailCab serves as a coordinator and
needs to communicate with the n other members of the convoy. The coordinator is
required, e.g. for defining a reference speed for the whole convoy and to coordinate
acceleration and braking maneuvers.

RailCab r/ is the coordinator of the convoy, while r2 and 3 are members. There-
fore, rl executes an instance of the coordinator role of the ConvoyCoordination
real-time coordination pattern. RailCabs 2 and 3 execute an instance of the mem-
ber role. The instances of the DistanceControl real-time coordination pattern are
used for controlling the distance between two successive RailCabs in a convoy.

Since the coordinator role instance communicates with n member role instances,
we call it a multirole. The member role instance, which communicate with only one
coordinator role instance is called a singlerole. Fig. 5.10 shows the general structure
of an instance of a real-time coordination pattern with a multirole instance.

The multirole instance consists of an adaptation real-time statechart and n sub-
role real-time statecharts. Each of the subrole instances manages the communication
with exactly one singlerole instance. The adaptation real-time statechart is responsi-
ble for creating and deleting subrole instances, e.g. if RailCabs join or leave a con-
voy. In addition, the adaptation real-time statechart is used to coordinate the subrole
real-time statecharts, e.g. to trigger that they send data to the member RailCabs in a
defined order.

Fig. 5.11 shows the real-time statechart that defines the behavior of the singlerole
member. The real-time statechart starts its execution in the initial state waitUpdate.
It waits for 500 time units for an update message to arrive. Messages are sent asyn-
chronously between different roles, i.e. the receiver stores the message in a buffer
and may process it at a later point in time. If the message arrives in time, the real-
time statechart switches to sendAck thereby resetting the clock c to 0. If the message

202 C. Heinzemann et al.

Fig. 5.11 Real-time state- Member (1] Tack() clock: c;
chart of a convoy member I6 > 500] Mwaiwpdate sendAck
c<500 |—f c<1
update(..)/ [1;1]

{reset: c}
\I/ / publishStatorFailure()
[networkFaiIure] [statorFaiIure]

does not arrive in time, it switches to state networkFailure. The state sendAck is left
after 1 time unit by sending a message ack and switching to waitUpdate.

Fig. 5.12 shows the real-time statechart that defines the behavior of the multirole
coordinator. The real-time statechart of a multirole always consists of one state that
contains two parallel regions, which is Coordinator_Main in the example. One re-
gion contains the adaptation real-time statechart while the other contains the subrole
real-time statechart that is executed by all subrole instances. At run-time, we obtain
one real-time statechart instance of the subrole real-time statechart for each subrole
instance.

The coordinator subrole real-time statechart in the lower region of Coordina-
tor_Main is the pendant to the member real-time statechart of Fig. 5.11. It is initially
in state idle. The transition from idle to sendUpdate is triggered by a synchronous
internal event next which is parameterized by an integer. Synchronous events cause

Coordinator var: int size;
4 Coordinator_Main N

ch: next[size];

i lock: c2;
adaptation [c2 < 489] nextfsize+1]? clock: c2; @
newFollower? / ;I;
NoConvoy {createSubRolelnstance(size+1)} convoy sendUpdates
c2 <500 c2 <499
[c2 = 500]
_ N next[1]!/
[10;10]) {rest: c2}
[10;10] addMember
’ c2 <499

coordinate? /

{createSubRolelnstance(1)}

coordinator sub-role clock: c1; var: int id; @

publishStatorFailure() /

tlid+1]! /
nextlid] ? / nextfid+1]
{reset: c1}
statorFailure sendUpdate / update(..) awaitAck
c1<10 c1<48
[30;30]

. J

Fig. 5.12 Real-time statechart of the convoy coordinator

5 Methods for the Design and Development 203

ConvoyCoordination::createSubRolelnstance(int k)) i

[k==1] k=[1]
create sub-role instance create sub-role instance \
/,,—’ TSl - TSl
. this] s this)
N P
. e c) - ~
‘coordinator ,* *_ :member :coordinator _.~ *_:member
// \\ e~ -7 \\
’ AN | 1 AN
-’ " BEll ; .
Pt ¢ . «nexty 11 colk-1]:coordinator N
1 ¢ AN " ¢ AN
1 1
i | ‘ T

) [yt

é

Fig. 5.13 Component story diagram modeling the creation of a subrole instance

the sender transition (event suffixed by !) and the receiver transition (event suffixed
by ?) to fire simultaneously. Additionally, sender and receiver must provide and ex-
pect the same integer parameter. In the state sendUpdate, the real-time statechart
may spend up to 10 time units before it sends the update message and switches to
the state awaitAck. Executing this transition takes a minimum and a maximum of 30
time units which is indicated by the deadline in square brackets. The transition from
awaitAck to idle is triggered by the receipt of the ack message from the member
role. It triggers the next subrole using the synchronous event next, incrementing the
expected integer by 1.

The adaptation real-time statechart in the upper region of Coordinator_Main
starts in state noConvoy. If the RailCab is chosen to coordinate the convoy, it is
triggered by the synchronous event coordinate and switches to addMember. The
side effect createSubRolelnstance at the transition triggers the component story di-
agram of Fig. 5.13 that creates a new subrole instance in the coordinator multirole
instance. Then, the real-time statechart switches to the state convoy. In the state con-
voy, the real-time statechart triggers the first subrole instance every 500 time units
using the synchronous event next. The transition from sendUpdate back to convoy
synchronizes with the last subrole instance after it has successfully received the ack
from the member role. Back in the state convoy, the real-time statechart can only be
triggered by the synchronous event newFollower and switch to addMember. Again,
the side effect createSubRolelnstance of the transition executes the component story
diagram of Fig. 5.13 for creating a new subrole instance.

Component story diagrams [200] are a special kind of graph transformation
rules [184] that use the concrete syntax of MECHATRONICUML. We use compo-
nent story diagrams for specifying run-time reconfiguration operations, i.e. the cre-
ation and deletion of component instances and connections. The component story
diagram of Fig. 5.13 instantiates a new connection to a new member that wants
to join the convoy at position k. In the component story diagram, we distinguish

204 C. Heinzemann et al.

between creating the first connection and creating further connections. In the activ-
ity node on the left, we create the first connection between coordinator and a mem-
ber in the real-time coordination pattern. The this-variable represents the instance of
the ConvoyCoordination real-time coordination pattern which called the component
story diagram from the adaptation real-time statechart of its multirole instance. In
addition, the multirole instance, modeled by the dashed rectangle, is bound. Then,
the parts of the rule annotated with «create» are created and the connection is
established. In the activity node on the right, the subrole instance with index k — 1
is bound additionally and the new subrole instances is created as a successor to this
subrole instance.

5.2.3.2 Design-Time Verification of Real-Time Coordination Patterns

The correctness of software for self-optimizing mechatronic systems is often safety-
critical, especially if the software influences the physical movement of the system.
That requires the software to meet high quality standards to ensure its safe opera-
tion. Traditional testing-based development approaches are not able to guarantee
functional correctness. Design-time verification, however, is a method to give a
mathematical proof that a software is functionally correct with respect to a formal
specification [13]. In this section, we will illustrate how design-time verification
can be used to ensure that the communication within a self-optimizing mechatronic
system modeled by real-time coordination patterns is safe.

The real-time coordination patterns used in self-optimizing mechatronic systems
are often subject to run-time reconfiguration. An example is given by the Convoy-
Coordination real-time coordination pattern introduced in Sect. 5.2.3. In such real-
time coordination patterns, the behavior is defined by a syntactical combination of
real-time statecharts and component story diagrams. Consequently, a verification
procedure needs to take both into account.

Existing approaches and corresponding tools for design-time verification do
not provide sufficient support for self-optimizing mechatronic systems that adhere
to real-time constraints and use run-time reconfiguration. Graph-based tools like
GROOVE are very effective for verifying untimed graph transformation systems
(GTS) [113], but are still limited, especially with respect to verification of timing
properties. Timed model checkers such as Kronos [31] or UPPAAL [21], which
support the verification of real-time statecharts, provide no means for specifying
dynamic object creation and deletion.

Our method for design-time verification combines the strengths of both
approaches for verifying real-time coordination patterns with run-time reconfigu-
ration. It is executed at design-time by the software engineer while creating the real-
time coordination patterns as opposed to run-time verification which is performed
while the mechatronic system is running [69, D.0.S.0.M.S. Sect. 3.2.14] .

Fig. 5.14 provides an overview of the single steps of our verification procedure.
It requires two inputs: a real-time coordination pattern and a set of requirements that
need to be verified. The textual requirements informally state the properties that the
behavior modeled in MECHATRONICUML needs to fulfill. Then, we perform two

5 Methods for the Design and Development 205

. o Textual
Real-Time Coordination Pattern| | Component | | Requirements
éutomatic Model Transformatioa Manual Translation
Y A
|(Timed) Graph Transformation System| | Formal Requirements (FO-TCTL)

Verification
Procedure
I:I Artifact | OK | |Counterexample|

Fig. 5.14 Overview of the design-time verification procedure

transformation steps that transform the inputs such that they can be processed by the
verification procedures. The transformation of the real-time coordination pattern to
a (timed) graph transformation is completely automatized. The transformation of
textual requirements to formal requirements is a manual task. After explaining them
in the following subsections, we will describe our verification procedure.

The result of applying this method to a MECHATRONICUML model is either that
the model fulfills the formalized requirements or a counterexample. A counterex-
ample is an execution of the system that leads to a state that violates the specified
requirement. The counterexample is intended to support an engineer in locating and
correcting the cause of an error in the model. After correcting the error, this method
needs to be applied again until no more errors are found in the model. Then, the
model is correct with respect to the formal requirements that have been verified.
The verified model is the input for a code generator that generates the source code
for the system.

From Real-Time Statecharts to Graph Transformation Systems

Design-time verification of MECHATRONICUML models needs to capture the be-
havior of the real-time statecharts as well as their run-time reconfiguration opera-
tions in terms of component story diagrams. This is because both strongly influence
each other. As an example, consider the real-time coordination pattern ConvoyCo-
ordination shown in Fig. 5.9. The coordinator needs one subrole instance for each
convoy member. Therefore, the multirole real-time statechart calls a reconfiguration
operation as a side effect (cf. Fig. 5.12). The reconfiguration operation, in turn, cre-
ates a new subrole instance including an instance of the subrole real-time statechart.
The execution of the new real-time statechart instance contributes to the behavior
of the real-time coordination pattern instance and, thus, needs to be analyzed by
the verification procedure. To cope with this strong interconnection between timed

206 C. Heinzemann et al.

state-based behavior and reconfiguration, we use timed graph transformation sys-
tems (timed GTS), as shown in [53].

At this point, graph transformations [184] play a double role in our approach [53].
While they are used to model reconfiguration operations formally in terms of com-
ponent story diagrams, they are also used as a meta-language to define the semantics
of MECHATRONICUML. Such formally defined semantics is the basis for an auto-
mated verification procedure. A key extension necessary for self-optimizing mecha-
tronic systems is the annotation of time, which is needed to capture the semantics of
real-time statecharts. Therefore, we use timed GTS as the basis for our verification
procedure. The use of timed GTS at this level, however, is hidden from the mod-
eler who gives a MECHATRONICUML specification to the model checker which
performs the translation automatically.

A timed GTS [53] consists of a start graph, a type graph, and a three different
types of rules, namely timed graph transformation rules (timed GT rules), clock
instance rules, and invariant rules. The start graph defines the starting point for the
execution of the timed GTS and the type graph defines the types of nodes and edges
for all graph generated by the timed GTS. Timed GT rules change a timed graph, but
may neither add nor remove clock instances. Clock instance rules are used to add
all clock instances that are possibly required for the application of a timed GT rule.
Invariant rules forbid the existence of a subgraph of a timed graph after a certain time
bound. For a formal definition of timed GTS, we refer to our technical report [196].

The translation of a MECHATRONICUML model into a timed GTS needs to en-
code the behavior of the real-time statecharts by timed graph transformation rules.
We use objects representing the instances of the real-time statecharts including their
states. Transitions cause a change of the active state of a real-time statechart. Con-
sequently, we create a timed GT rule for each transition of a real-time statechart.
State invariants forbid that a state is active beyond a specified point in time. They
are translated to invariant rules. The clocks that are used by the real-time statecharts
are created using clock instance rules. We refer to [53] and our technical report [92]
for more information on the translation.

From Textual Requirements to Formal Requirements

As shown in Fig. 5.14, a second translation is required for translating the textual
requirements into formal requirements. Informal requirements in natural language
are not suitable for being processed by an automatic verification procedure. An au-
tomatic verification procedure requires a formal specification of the requirements.
Such translation needs to be carried out manually by an engineer. For timed au-
tomata, TCTL [6] has been introduced as a formal language for expressing such
requirements.

In our ConvoyCoordination example, operating in convoy mode requires one
RailCab to operate as a coordinator and periodically send reference data updates
to all other convoy members. There, we need to ensure, e.g. that after the coordina-
tor sends an update to a member, the coordinator must receive an acknowledgement
within 50 ms. This constraint is formalized by the TCTL property

5 Methods for the Design and Development 207

AG(coordinator.sendUpdate = AF._spcoordinator.idle)

shown in Fig. 5.9. This property obviously needs to be valid for all subrole instances
of the coordinator and, in particular, must be valid throughout the reconfiguration.

In our verification procedure, we use FO-TCTL which is an extension of TCTL
[6] by constructs of first-order logic. It enables specification of properties on graph
structures in a much more user-friendly way compared to plain TCTL. In particular,
it supports specifying a property that needs to be valid for all subrole instances of
a real-time coordination pattern. To achieve this, we introduce variables that range
over the nodes of a graph, constants that represent particular nodes that are known at
design-time, predicates representing types of nodes and edges, and quantifiers. Vari-
ables allow the formulation of properties concerning nodes without knowing which
particular nodes exist during run-time. Expressing the same property using the nor-
mal TCTL requires knowledge of all nodes that may exist during the execution of
the system.

Verification Procedures

We defined two verification procedures for verifying properties specified in FO-
TCTL based on a timed GTS that we will introduce in the following subsections.
The first verification procedure, called FO-TCTL model checking, uses a state-
exploration technique that enumerates the run-time states of the timed GTS, thereby
considering the timing conditions of the timed GTS. Consequently, it supports timed
GTS with a finite number of run-time states. Our second verification procedure ap-
plies a shape analysis technique. It supports timed GTS with an infinite number of
run-time states, but it does not consider the timing conditions.

Verification Procedure 1 - FO-TCTL Model Checking: Our FO-TCTL model
checking procedure consists of three steps that are visualized in Fig. 5.15. The key
idea of our approach is a reduction of the model checking problem for a timed GTS
and a FO-TCTL specification to the well-studied TCTL model checking problem for
timed automata [6, 7, 21]. Then, a standard timed model checking tool answers the
question whether the MECHATRONICUML model fulfills its formal requirements.

In the first step, a so-called Gt-automaton is computed for the timed GTS. The
Gt-automaton is a timed automaton where each of its states corresponds to a timed
graph which can be derived from the initial graph of the timed GTS. Transitions
result from derivations using the timed GT rules and are labeled with the guard
and reset of the timed GT rule that was used for the derivation. We label each state
with the clock constraints of the invariant rules that can be matched to the state.
Each node in a state is labeled with a unique identifier that is preserved by the
derivation. The set of clocks of the Gt-automaton corresponds to the union of the
clock instances that have been created by the clock instance rules.

In the second step, we use the Gt-automaton to reduce the FO-TCTL formula to
a standard TCTL formula. In particular, we exploit the identifiers of the nodes for
replacing quantifiers and variables by boolean expressions with constants, only. An
3 quantifier is replaced by a disjunction replacing the occurrences of the quantified

208 C. Heinzemann et al.

|(Timed) Graph Transformation System| | Formal Requirements (FO-TCTL)

~

h J
<1. Gt-Automaton Computation)

Y
»(2. Formula Reducation

Gt-Automaton

TCTL-Formula

3. TCTL Model Checking (Kronos)

FO-TCTL Model Checking

-
@ Algorithm |
[] e

Fig. 5.15 Overview of FO-TCTL model checking

OK | |Counterexample|

variable by all possible node identifiers occurring in the Gt-automaton. A V quanti-
fier is replaced analogously by a conjunction. Finally, we encode the identifiers by
atomic propositions that can be processed by the timed model checker.

In the third step, we use the Gt-automaton and the TCTL formula as inputs to a
standard timed model checking tool. We propose using Kronos [31] because Kronos
provides a full TCTL model checking. UPPAAL [40], on the contrary, only supports
a simple subset of TCTL. UPPAAL can be used with our method as well, if the
supported TCTL subset is sufficient for the verification task.

Verification Procedure 2 — Shape Analysis: Commonly, models contain behav-
ior that allows the runtime structure specified by the model to grow. An example
of this is convoy coordination in the RailCab system, where new RailCabs can join
existing convoys. Usually, and in this example as well, there is no natural limit to
this growth.

There are two ways out of this. One is to use bounded model checking, which
is what the method detailed above amounts to. Instead of checking the entire sys-
tem, a finite subsystem is identified by bounds, such as maximum convoy size, and
then checked. In order to construct the Gt-automaton, the entire state space of the
system must be constructed, and thus all possibilities of infinite growth pruned at
some arbitrary bound, like, e.g. 10 RailCabs. Any behavior within that subsystem is
safe, yet nothing is known of the remainder. That means that any correctness result
obtained using this method is only valid as long as there is no convoy longer that
10 RailCabs. As soon as there is, all verification results obtained with this bound in
place are lost.

In this particular case, there might be some merit to limiting the number of Rail-
Cabs that can take part in a convoy a priori to a constant number. This is because
the communication range of RailCabs is limited, as is the maximum deceleration

5 Methods for the Design and Development 209

Member L

Fig. 5.16 An abstracted convoy

a RailCab is capable of, which limits the length of a potential convoy. However,
such limitations usually only apply to hardware structures, such as convoys. Also,
as the system evolves, physical parameters change. Better transmitters might extend
a RailCabs WiFi range, improved brakes might improve maximum deceleration.
Most successful distributed systems eventually outgrow any bound on size.

The second way to deal with infinite growth is called overapproximation, and
that is what shape analysis essentially does. Instead of looking at a subset of the
behavior of a system, in shape analysis one looks at a superset of it which has the
property of being compactly (finitely) representable. This is done in such a way that
safety properties that can be shown for the overapproximation, are also guaranteed
to be valid for the original system.

Shape Analysis was initially a formalism used to abstractly describe heap struc-
tures in imperative programs [185]. In our work we have utilized the concepts devel-
oped for that formalism to create a verification algorithm that applies them to GTS
[193, 194, 211]. This algorithm is generic and applies to all GTS. It is an instance
of a class of algorithms performing abstract graph transformations. Other instances
include [25, 137, 176].

At its core, the algorithm works by identifying groups of nodes in a given graph
that have similar properties and grouping them together into one summary node. The
resulting graph then is a representative for the set of all graphs where the summary
node is replaced by a particular number of nodes. Thus a single abstract graph, called
shape, can represent an infinite number of actual, concrete graphs. As an example,
consider Fig. 5.16. Here, the rectangle represents an arbitrary number of follower
RailCabs. The entire shape therefore represents a convoy of arbitrary size.

Such shapes can now be subjected to dynamic behavior, just as the original graphs
were. If the abstraction was chosen well, we obtain a finite representation of the en-
tire state space and can check then whether the given safety properties are valid or
not. If they are, we have just proven the safety of the original system in its uncon-
strained form, e.g. the safety of convoy coordination regardless of the number of
participants. If they are not, we get a counterexample. This counterexample can ei-
ther be genuine, or it can be an artifact of the abstraction. This can be decided by
retracing the counterexample obtained on the shape level on concrete graphs. If the
counterexample is genuine, we need to fix the system, if it is not, we must refine the
abstraction to remove the artifact that produced the counterexample.

210 C. Heinzemann et al.

The ability to verify infinite systems does of course not come without a price.
The two main drawbacks of this method are increased complexity and undecidabil-
ity. Abstraction introduces a lot of complex definitions and properties that make it
hard to enrich with additional properties. This is the reason Shape Analysis is cur-
rently unable to take time into account in any form (unlike the method described
above). Undecidability means that in its finished form, the algorithm will run fully
automatically, but in the absence of human intervention there is the possibility that
the algorithm will run forever. It is however possible to reduce the probability of
this by allowing the algorithm access to as much domain specific information as
possible to help it guide its abstraction refinement process.

5.2.4 Discrete Behavior

After proving the correctness, the real-time coordination patterns are integrated into
the component implementation and refined if necessary. We provide an algorithm
for checking the correctness of the refinement in Sect. 5.2.4.1. Additionally, we
may integrate existing legacy components into a MECHATRONICUML model such
that they meet the system’s safety and liveness requirements; this is presented in
Sect. 5.2.4.2. In Sect. 5.2.4.3, we will provide an automatic synthesis of component
behavior to resolve dependencies that might exist between different real-time coor-
dination patterns when they are combined in a component. Sect. 5.2.4.4 describes
the specification of reconfiguration behavior of components. Finally, we will outline
a planning technique that selects which runtime reconfigurations to apply to reach
the system’s objectives at runtime in Sect. 5.2.4.5.

5.2.4.1 Refinement of Real-Time Coordination Patterns

Real-time coordination patterns as introduced in Sect. 5.2.3 aim at reusing the mod-
eled interaction in different applications. Therefore, real-time coordination patterns
are specified independent of a concrete component implementation. A concrete im-
plementation often has to refine this behavior, e.g. add internal computations or
access internal variables, thereby introducing new internal states and/or transitions.
Such modifications of the behavior may invalidate the formal requirements that have
been proven for the real-time coordination pattern using the design-time verification
procedure (cf. Sect. 5.2.3.2).

As described in Sect. 5.2.3.1, real-time coordination patterns may specify 1:n
communication with runtime reconfiguration. Then, the reconfiguration operations
need to be considered when checking for a correct refinement [91]. This problem
is more difficult than the 1:1 communication case as additionally the creation and
deletion of the protocols and the dependencies between the instances has to be con-
sidered. Since the abstract real-time coordination patterns are verified formally be-
forehand, the refinement must preserve these verified properties.

The overall refinement approach is shown in Fig. 5.17. First, a real-time coordina-
tion pattern is modeled as described in Sect. 5.2.3.1. Afterwards, we verify this real-
time coordination pattern using the verification approach outlined in Sect. 5.2.3.2

5 Methods for the Design and Development 211

AG member.statorFailure implies
---------------- coordinator.statorFailure

¢ ConvoyCoord ination

ZGREEEEEE <
coordinator \ member
= 1 .
» > =0
|
I \
! Refinement \
|
|
B 3 2
r1:RailCab [} 2] r2:RailCab I= @
\—1—, coordinator member
Fig. 5.17 Refinement approach
Coordinator sub-role clock: c1; var: int id; D
ack(..) "
publishStatorFailure() / idle nextid+1]! / awaitAck
c1<49
[1:1]
~—_——
next[id] ?/
{reset. c1} /update..)
compData sendUpdate
statorFailure
=T<70 {computeData()} 1240
[] [30;30]
\§ J

Fig. 5.18 Excerpt of the refined real-time statechart of the convoy coordinator

for proving that the specified properties ¢ are valid. Then, both roles are refined to
a port as part of a component implementation. Finally, we check the conformance
of the component implementation to the roles of the real-time coordination pattern
by checking for a correct refinement.

As an example, consider the excerpt of a coordinator real-time statechart shown
in Fig. 5.18. The real-time statechart has been refined with respect to the real-time
statechart shown in Fig. 5.12 by inserting a new state compData. The transition
from compData to sendUpdate specifies a side effect that computes new data to be
sent via the update message which causes the transition to consume 30 time units of
computation time. Since the timing values have been changed and a new state has
been added, it is not clear whether the refined coordinator multirole still fulfills all
verified properties.

In the literature, two basic types of refinements are defined: simulation and bisim-
ulation that exist for untimed systems as well as for real-time systems [37, 202].
These standard refinement definitions are based on automata and disregard run-time
reconfiguration that is used in our approach. Additionally, simulation is a very weak
condition as it does not require the refined system to specify all communications
being specified in the abstract real-time coordination pattern. Obviously, this is not
sufficient for safe protocol reuse. In contrast, bisimulation is a very strong condition

212 C. Heinzemann et al.

as it requires the refined system to perform exactly the same in exactly the same time
as the abstract real-time coordination pattern. This does not allow applying changes
to the protocol, thereby limiting the set of component implementations complying
to the abstract real-time coordination pattern.

Therefore, we introduce a refinement definition called relaxed weak timed bisim-
ulation [91] that relaxes the strict conditions of a bisimulation by using information
of our component model. We assume that each port has an unbounded input buffer
for received messages that can accept messages at any time. If a statechart receives
a message, the message is taken out of the input buffer. Using such an input buffer,
the point in time, at which a message is consumed by a real-time statechart, does
not matter for a communication partner. Therefore, we allow that the refined role
processes messages later than the abstract role. Delaying a sent message is not al-
lowed as we only consider one role in the refinement and we cannot assume that
the receiver of the message can still receive it after the time interval specified by the
abstract real-time coordination pattern has elapsed.

We consider the run-time reconfiguration of real-time coordination patterns by
a so-called structural refinement as defined in [90]. It ensures that the refined real-
time coordination pattern executes its reconfiguration operations in the right time
intervals by relating the subrole and singlerole instances including their connections
in both the abstract and refined real-time coordination pattern instance.

Checking for a correct refinement requires checking the refined role implemented
in a port of a component against the abstract role of the real-time coordination pat-
tern. This requires exploring the state-spaces of both and to compare the intervals
in which messages are sent or received. The refinement check algorithm is based on
the same implementation as the verification procedure introduced in Sect. 5.2.3.2.
In [91], we showed for the RailCab example that this is more efficient than verifying
all properties for the refined real-time coordination pattern again. The reason is that
we do not need to consider the connector, but only one role at a time.

5.2.4.2 Integration of Legacy Components

The software of self-optimzing mechatronic systems is usually a network of com-
ponents. By MECHATRONICUML we provide a sound method that guarantees a
high quality of this software. However, in domains like the automotive industry the
development of new functions is an exception rather than the norm. In many cases,
components exist and have to be reused where no model or only incomplete mod-
els exist. On the one hand, reuse accelerates the development of the system. On the
other hand, one can rely on the quality the component has proven in the past. Both
saves development costs.

These so-called legacy components must be integrated into the newly built system
such that they meet the system’s safety and liveness requirements. Therefore, we
reconstructed a real-time statechart that specifies the communication behavior of
the legacy component. The reconstructed real-time statechart is used to verify the
correct integration of the legacy component into a MECHATRONICUML model [96,
97].

5 Methods for the Design and Development 213

'
'

'

Pl
i

i front.convoy implies rear.convoy
:

A [] not deadlock AN

:RailCab B :LegacyRailCab

Fig. 5.19 Architecture with legacy RailCab

Fig. 5.19 shows a scenario where an old RailCab LegacyRailCab communi-
cates with a RailCab developed with MechtronicUML. Here we assume that the
developer does not have a MechtronicUML model of the communication software
of the LegacyRailCab. Both RailCabs shall communicate using the DistanceCo-
ordination Pattern. The communication behavior of the rear role must satisfy the
liveness constraint that no deadlock occurs (A[] no deadlock) and the safety
contraint that both RailCabs drive in convoy mode (front.convoy implies
rear .convoy) when applying the DistanceCoordination pattern.

The role behavior with which the legacy component has to interact is called con-
text. In Fig. 5.19 the context is the front role of the component RailCab. An inte-
gration is successful, if the communication between the legacy component and the
context is error-free. This is specified by safety properties and liveness properties.
Moreover we need to guarantee that, depending on the communication behavior,
the correct control behavior is executed. The continuous behavior is identified by
system identification.

In order to integrate a legacy component into a MECHATRONICUML model, the
following requirements must be met. The legacy component must provide an inter-
face that is accessible by the developer. This interface must define all incoming and
outgoing messages used for communication, all signals used by embedded feedback
controllers, and all information which is relevant for executing the component (e.g.
execution periods). This, however, does not require additional effort in the domain
of safety-critical systems, as this is typically part of the system specification.

Moreover, we assume that initially the component is in its starting state or in a
quiescent state (cf. [127, 213]). We further assume that the developer is able to put
the component in such a state.

The information provided by the interface of the legacy component may differ
substantially. We distinguish three cases. First, (/) the interface provides function-
ality to query its current state. If this is not the case, we distinguish the cases where
(2) the source code of the interface is provided and (3) no source code is provided.

Depending on the provided information, we apply different methods to integrate
the legacy component. For case (/) we apply grey-box-checking, for case (2) white-
box-checking, and for case (3) black-box-checking. We will shortly explain these
methods below. We will introduce the basic approach of iterative learning by grey-
box-checking. Thereafter we will point out how the other methods differ from grey-
box-checking.

214 C. Heinzemann et al.

Grey-Box-Checking

We start grey-box-checking with a chaotic closure. This chaotic closure is an over-
approximation of the actual communication behavior. The chaotic closure is a be-
havior model that enables all possible communication behaviors and also a deadlock
of the legacy component at any time. However, not all of this behavior may be im-
plemented in the legacy component. Therefore, the behavior is defined step-by-step
by limiting the behavior of the chaotic closure until it conforms to the behavior of
the legacy component.

First, we verify the safety and liveness properties on the combination of the
chaotic closure and the context. If the verification yields a counterexample, the coun-
terexample is used to generate a test case for the legacy component. The test case
is generated by extracting all inputs and outputs including their time or appearance.
The legacy component is executed with the extracted inputs. The test has passed, if
the extracted outputs are observed from the legacy component at identical points of
time as in the counterexample. Otherwise, the test has failed.

If the test case passed, we have found a valid counterexample. This means, one
of the required safety and liveness properties are not satisfied. At this point, reverse
engineering either stops or the requirements on the system need to be relaxed. If the
test case failed, the observed behavior is used to refine the chaotic closure. There-
fore, the current state is requested from the legacy component. If a new state is
found, a new state is created for the chaotic closure. Edges are built according to the
observed transitions. This process continues until a valid counterexample is found
or all traces of the context have been taken into account.

Black-Box-Checking

Black-box-checking also uses a counterexample guided refinement. But here the
legacy component does not provide the functionality to request its current state. Our
solution is to construct a candidate for the behavior of the legacy component. The
candidate is constructed by an extension of the learning algorithm of Angluin (1987)
[9], an efficient approach for learning a deterministic finite automaton of a black-
box. We extended the algorithm of Angluin (1987) to take into account incoming
and outgoing messages and time.

The candidate and the context are verified by model checking with respect to the
safety and bounded liveness properties of the legacy component. If the verification is
successful, it is proven that the candidate is equivalent to the behavior of the legacy
component. Otherwise, the counterexample is used to improve the candidate.

White-Box-Checking

For White-box-checking, we assume that we know the source code of the legacy
component. To safely integrate the legacy component into the system, we generate
source code from the context model. The source code of the context and the legacy
component are embedded into a framework. The framework simulates scheduling,

5 Methods for the Design and Development 215

message exchange and timed behavior. The resulting system is verified by a source
code model checker with respect to the safety and bounded liveness properties.

5.2.4.3 Synthesis of Component Behavior

As described in Sect. 5.2.4.1, the roles of a real-time coordination pattern are refined
to ports of a component. Often, a component needs to engage in more than one
interaction in order to fulfill its function, i.e. it refines roles of several real-time
coordination patterns.

In the RailCab example, a RailCab interacts with other RailCabs for building
convoys, but it also needs to register at the track section it is currently driving on.
The registration at track sections is required to ensure that each track section is only
accessed by RailCabs driving in the same direction. Up to this point, all interactions
defined by real-time coordination patterns are operating independent of each other.
For a safe convoy operation, however, we need to fulfill the requirement that "in
convoy operation mode, each participating RailCab has to be registered to a track
section" [54]. Thus, there may exist dependencies between real-time coordination
patterns when they are combined in a component.

In our previous works, we used a so-called synchronization real-time state-
chart in a component for resolving such dependencies [75]. The specification of
such a synchronization real-time statechart was subject to the developer. Specifying
a synchronization real-time statechart, however, is a difficult and error-prone task.
This is because, on the one hand, it needs to resolve the dependency and, on the other
hand, it must not remove communications specified by one of the roles. If commu-
nications specified by one of the roles was removed, the results of the design-time
verification will not necessarily be valid anymore.

As a solution, we provide an automatic synthesis of a component behavior that
automatically resolves the dependencies and ensures the role conformance of the
resulting behavior [54]. The dependencies are either specified by state-composition
rules referring to the states of the roles or by event-composition automata refer-
ring to the sent and received messages of the roles. To perform the synthesis, first,
a product automaton including the behavior of all ports is constructed and the
dependencies are resolved automatically by applying the state-composition and
event-composition rules. Then, the role conformance check ensures that all com-
munications originally specified by both roles are still available in the synthesized
behavior. That, in turn, ensures that all verified properties are still valid in the
synthesized behavior.

We illustrate our approach by a simplified example using UPPAAL timed au-
tomata [21]. Fig. 5.20a) shows a simplified convoy behavior consisting of the two
states noConvoy and convoy. Fig. 5.20b) shows a timed automaton for registering at
a track section.

In the following, we will first introduce state-composition rules. Thereafter, we
will explain event-composition automata before outlining the synthesis algorithm.

216 C. Heinzemann et al.

startConvoy! register!

registered
ce <= 2000

ce >=800
lifetick!

ce >=500

>= nregister!
cr >=200 unregi ce =0

a) b)

breakConvoy?

Fig. 5.20 Simplified behavior models for a) convoy coordination and b) registration

State-Composition Rules

State-composition rules define restrictions for the component behavior based on the
states of the role automata. In particular, they specify forbidden state combinations
of the input automata. The state information encoded in state-composition rules in-
cludes timing information that forbids certain state combinations only for a specific
time interval. The state-composition rules need to be specified by a developer when
creating the component.

An example of a state-composition rule for the automata in Fig. 5.20 is given by:

r1 = —((unregistered,true) N (convoy,true)).

The state-composition rule r; formalizes the requirement that a RailCab may
only drive in convoy mode while it is registered at a track section. Consequently,
r forbids the component behavior to be in states unregistered and convoy at the
same time. A reference to a state, e.g. (unregistered,true), is a tuple where the first
entry refers to the name of the state and the second entry defines a clock restriction.
In this case, the clock restriction is true for both states which means that the state
combination is not allowed for all possible clock values of all used clocks.

Event-Composition Automata

Event-composition automata define restrictions for the component behavior based
on sequences of messages that the role automata may send or receive. They monitor
the messages that are sent or received by the role automata. Consequently, only
messages used in one of the role automata may be used in an event-composition
automaton.

In our example, we assume another requirement for the RailCab component
which states that a RailCab needs to be registered at a track section for at least
2500 time units before it can start at convoy. This requirement refers to a message
of the automaton and, thus, can not be specified by state-composition rules. The
event-composition automaton for the requirement is shown in Fig. 5.21.

The automaton starts in state ec_initial. If it monitors that the RailCabs sends
register, it switches to ec_registered thereby setting the clock ec_cI back to 0. The
message startConvoy may be monitored, at the earliest, 2500 time units later which
is specified by the time guard of the corresponding transition. The automaton stays
in ec_registeredConvoy until the RailCab sends an unregister message.

5 Methods for the Design and Development 217

Fig. 5.21 Example of an ec_inital
unregister!

event composition automa-
ton ecaq
unregip
ec_registeredConvoy
ec_c1>=2500
- startConvoy!
Synthesis Algorithm

The synthesis algorithm takes three inputs. These are the automata of the roles that
should be synthesized to a component behavior as well as the state-composition
rules and the event-composition automata that define the restrictions for the synthe-
sis. Based on these inputs, the resulting automaton for the component is synthesized
in four steps. We briefly outline these steps in the following. For a complete descrip-
tion, we refer to Eckardt and Henkler (2010) [54].

Step 1 — Computing the parallel composition: In the first step, we compute the
parallel composition of the role automata. The parallel composition is derived from
the parallel composition operator of CCS (Calculus of Communicating Systems,
[144]) which is also used in UPPAAL [21]. The parallel composition contains the
complete behavior of the role automata.

Step 2 — Applying state-composition rules: In the second step, the state-
composition rules are applied to the parallel composition resulting from step 1. Itera-
tively, each state-composition rule is applied to each state of the parallel composition
automaton. If the state fulfills the state conditions imposes by the state-composition
rule, the time condition is added to the invariant of the state. If the resulting invariant
of the state is false, the state is removed from the parallel composition along with
all its incident transitions.

The state (convoy,unregistered) of the product automaton fulfills the state con-
ditions of r;. Consequently, the time conditions —((true) A (true)) is added to the
invariant which makes it false and causes the state to be removed.

Step 3 — Applying event-composition automata: In the step 3, all event-
composition automata are applied iteratively to the automaton resulting from step 2.
Since the event-composition automaton is a timed automaton, the application is
similar to the parallel composition of step 1. The difference is that the event-
composition automaton only monitors the messages that are sent and received by
the role automata.

After the parallel composition, each state refers both, to the states of the initial
parallel composition and the state of the event-composition automaton. All states re-
sulting from the parallel composition that are not reachable from the initial location
are removed from the automaton.

218 C. Heinzemann et al.

Step 4 — Checking Behavior Conformance: In step 4, we check for behavior
conformance of the synthesized automaton resulting from steps 1-3. In step 2 and
step 3, every behavior not allowed by the state-composition and event-composition
rules have been removed from the parallel composition of the role automata. Due
to the removal of behavior, it is not ensured that the communications specified by
the roles of the real-time coordination pattern are still contained in the synthesized
automaton. As a consequence, it is not guaranteed that the synthesized behavior still
fulfills all properties that have been verified for the real-time coordination pattern.

By checking the synthesized automaton for behavior conformance to the roles
of the real-time coordination pattern, we ensure that the verified properties still be
valid. "In order to preserve the relevant role behavior, we need to ensure that in
the refined component behavior, every timed safety properties and every untimed
liveness properties are preserved. This would imply that no deadlines of the original
role automata are violated while all events of the original automata are (in the
correct order) still visible within the original time interval. If both of these properties
are preserved, we say that the refined component behavior is role conform." [54]

If the synthesized automaton resulting from steps 1-3 is not behavior conform,
the synthesis reports an error. In this case, it is not possible to synthesize an automa-
ton that fulfills the state-composition and event-composition rules while specifying
the behavior of the roles of the real-time coordination pattern. In this case, the engi-
neer needs to specify the synchronization real-time statechart manually and ensure
correctness by repeating the verification steps introduced above.

We refer to our technical report [55] for a detailed proof of the correctness of the
synthesis.

5.2.4.4 Modeling Component Reconfiguration

In Sect. 5.2.3 we showed how reconfiguration is specified for real-time coordination
patterns. Additionally, we can specify reconfiguration behavior for the components
of our component model [43]. For the specification of reconfiguration behavior, we
use component story diagrams [200] again. We specify component story diagrams
for each component of the component model that needs to perform reconfiguration.

Figure 5.22 shows an example of a component story diagram that specifies the be-
havior for becoming a convoy member for the DriveControl component in Fig. 5.8.
Becoming a convoy member requires to instantiate the subcomponent MemberCon-
trol and to connect it to the SpeedControl such that it can provide the reference speed
for the speed controller.

Since we model the component reconfiguration by component story diagrams, we
can use our design-time verification procedure introduced in Sect. 5.2.3.2 for veri-
fying the reconfiguration behavior. We refer to [94] for more technical information
on executing reconfiguration in a hierarchical component model.

5 Methods for the Design and Development 219

Fig. 5.22 Reconfiguration DriveControlb Memb)
rule of DriveControl to riveControl::becomeMember()
become a convoy member t

(¢ Create MemberControl incl. Connections N

this 2]

s/ctrl: El

SpeedControl

.

5.2.4.5 Safe Planning

In each configuration of a self-optimizing mechatronic system, a large set of
runtime reconfigurations can be applied to adapt the system to changes in its en-
vironment at runtime. Selecting which runtime reconfigurations to apply can be a
complex task. Self-optimizing systems often have superordinated objectives that
should be reached during execution, like optimizing the energy consumption or
achieving user-specified objectives. These objectives have to be respected when se-
lecting which runtime reconfigurations to apply. However, selecting runtime recon-
figurations that are likely to help to achieve the objective is no trivial task. Since the
selection of runtime reconfigurations is supposed to happen autonomously (a hu-
man intervention would not meet the response time requirements of self-optimizing
mechatronic systems), it has to be planned by a software system.

To prevent unsafe configurations, e.g. an inadequate safety distance between two
RailCabs, from occurring in a plan, the planning system should further take safety
requirements into account. The safety requirements restrict the set of valid configu-
rations, i.e. they specify which configurations are not allowed to occur in a resulting
plan. In contrast to the verification of runtime reconfigurations (cf. Sect. 5.2.3.2),
where the absence of unsafe states is guaranteed categorically, this technique allows
unsafe states to exist in the reachability graph, but plans the reconfigurations in
such a way that no unsafe state is passed through. The latter approach is chosen for
specific safety requirements that can not be verified by the design-time verification

220 C. Heinzemann et al.

or impose to many restrictions to the specification of the runtime reconfigurations.
In [69,D.0.S.0.M.S. Sect. 3.2.9], we present a technique that considers these safety
requirements when planning runtime reconfigurations.

Our approach uses GTS as an underlying formalism. The transition system of
the GTS can be constructed by successively applying the graph transformations to
the initial configuration and its successor configurations. The planning task is to
find a path in this transition system so that a target configuration is reached. A safe
planning task is basically the same, but includes the requirement that no potentially
unsafe configuration is passed through. In our case, the initial configuration corre-
sponds to a UML object diagram and each transition is the result of applying a graph
transformation rule to the configuration.

To solve these planning tasks, different algorithms and techniques exist. One of
the approaches is to translate the planning problem into an available off-the-shelf
planning system. These traditional planning systems, however, employ models dif-
ferent from GTS. They employ models with first-order literals that are usually com-
piled into a propositional representation by grounding predicates and actions. While
a translation is basically possible, there are some restrictions because typical plan-
ning languages, like the Planning Domain Definition Language (PDDL), which is
the current de facto standard in academia, has a different expressive power than
GTS. By planning directly in the transition system defined by the GTS, we avoid
these problems.

Given a goal specification, our model can be fed into a planning system, e.g. [57],
that directly plans on the transition system that results from the model. Therefore, no
translation to a dedicated planning language and thus no restriction to the expressive
power of GTS is necessary. Unsafe configurations are recognized by the planning
system and not allowed in a valid plan. The resulting plan specifies a sequence of
runtime reconfigurations that safely turn the system from its initial configuration
into a target configuration.

5.2.5 Simulation of Hybrid Behavior

The software of a self-optimizing mechatronic system consists of discrete software
developed with MECHATRONICUML and continuous controllers developed with a
tool like MATLAB/Simulink. That results in a so-called hybrid behavior specifica-
tion [98]. The design-time verification procedures described in Sect. 5.2.3.2 can only
be applied to the discrete software. Corresponding hybrid verification techniques [5]
do not scale sufficiently for complex mechatronic systems.

Therefore, we use simulation for testing the complete hybrid system and, in par-
ticular, the correct integration of discrete software and controllers. We provide an
automatic model transformation for transforming the MECHATRONICUML model
into an input of a simulation tool, namely MATLAB/Simulink [93, 95].

5 Methods for the Design and Development 221

dc : DriveControl El
g]
-

member : MemberControl >:|
member member
[yal

YA
convoySpeed ::I::
convoySpeed

=)

sp_ctrl : SpeedControl

refDist refDist

=
o

v A] |_|v N refSpeed refSpeed
hazardReceiver \’:[: convoyState
A A
hazardReceiver |V_, |V_, convoyState

Fig. 5.23 Deployment diagram

5.2.6 Specification of Deployment

The software components that have been created with MECHATRONICUML need
to be deployed on a hardware. This hardware comprises sensors that provide in-
put signals, controllers that control actuators and computing hardware that executes
the software components. In MECHATRONICUML the deployment of software to
hardware is specified by deployment diagrams. Hardware entities are represented
by hardware nodes which communicate unidirectionally via hardware ports.

Figure 5.23 shows an example of a deployment diagram which specifies the
deployment of an instance of the component type DriveControl (cf. Fig. 5.8) to
an ECU. In deployment diagrams hardware nodes are drawn as boxes. Hardware
ports are drawn as squares that contain either an “i” for incoming signals or an
“o0” for outgoing signals. The embedded component instances member:Member and
sp_ctrl:SpeedControl of dc:DriveControl are both connected to the hardware node
el:ECU which represents the ECU that executes these component instances.

5.2.7 Integration of Self-healing Behavior

The self-optimization capabilities of self-optimizing mechatronic systems can be
used to repair systems in case of failures at runtime. This so-called self-healing
can be used to reduce occurrence probabilities of hazards in systems which are
applied in safety-critical environments. Self-healing systems react to failures by a
reconfiguration of the system architecture during runtime.

Take for example the speed control of the RailCab. The electric current to be set
on the linear drive depends on the speed of each wheel which is measured by speed
sensors. If a failure occurs in at least one of the speed sensors, a wrong value is
passed to the current controller. This causes the RailCab to drive at a wrong speed
which can result in a collision. To prevent such a situation, a self-healing operation

222 H. Anacker et al.

can be specified in form of a reconfiguration which replaces the faulty sensor by a
spare which is still working.

This reaction is subject to hard real-time constraints because reacting too late
does not yield the intended self-healing effects. Consequently, it is necessary to an-
alyze the propagation times of failures and the effect of a reconfiguration on the
propagation of failures [166]. In [69, D.0.S.O.M.S. Sect. 3.2.13], we present an ap-
proach for the analysis of self-healing operations which specifically considers these
properties.

Not all parameters which are needed to analyze self-healing operations, e.g. the
concrete system architecture, are known at design time. When, for example, Rail-
Cabs have become ready for the market, they will be produced by more than one
manufacturer. Then it will be possible that two vehicles that come from different
manufacturers meet on the track. In order to build a convoy they need to establish
a connection. This connection leads to a system architecture that was unknown at
design time, because the system architecture of the unknown vehicle was, of course,
unknown to the developers of the RailCab.

Consequently, the effect of self-healing operations needs to be analyzed during
runtime. We developed an approach to analyze self-healing operations at runtime. It
prevents the construction of system architectures at runtime where self-healing op-
erations can not reduce the occurrence probabilities of hazard so that they become
acceptable.

Based on the system’s current architecture, we compute each reachable system
architecture for a fixed number of subsequent reconfigurations at runtime. We then
analyze the self-healing operations. If the hazard occurrence probability of a reach-
able system architecture exceeds the system’s acceptable hazard occurrence proba-
bility event after the application of a self-healing operation, the reconfiguration rule
that constructs this system architecture is locked.

5.2.8 Code Generation

We use the models that have been created using MECHATRONICUML for an au-
tomatic generation of the source code of the self-optimizing mechatronic system.
An approach for code generation has been introduced in [1]. Alternatively, we can
use the MATLAB/Simulink code generation facilities to generate code out of the
MATLAB/Simulink model that we created for simulation (cf. Sect. 5.2.5).

5.3 System Optimization

Harald Anacker, Michael Dellnitz, Kathrin FlaBkamp, Philip Hartmann, Chris-
tian Horenkamp, Bernd Kleinjohann, Lisa Kleinjohann, Martin Kriiger, Sina Ober-
Blobaum, Christoph Rasche, Maik Ringkamp, Robert Timmermann, Ansgar
Tréchtler, and Katrin Witting

In order to develop self-optimizing systems, optimization plays a crucial role. In the
following section, a couple of methods are presented which allow a systematical and

5 Methods for the Design and Development 223

formal optimization of the system behavior. In contrast to successive improvement,
which often has to be done manually, these methods aim at automatically seeking
the optima, i.e. points of no further improvement. During the conceptual design, the
relevant objectives are identified and a general control structure is designed, that
is capable to alter the fulfillment of the objectives, cf. Sect. 3.2. At the beginning
of the system’s design and the development, concrete mathematical models of the
system behavior are created in the respective domains as well. These are the inputs
for the methods of model-based self-optimization described in the first seven sec-
tions. The following sections deal with behavior-oriented self-optimization which
describes methods without an explicit physical model of the system or process. In-
stead, these approaches work on mapping input values to output values. The actual
system and the considered process are observed as a black box.

In the first section, we get back to multiobjective optimization which has al-
ready been introduced in Sect. 1.4.1.1 and present some more details about novel
set-oriented algorithms for solving multiobjective optimization problems (MOP) in
Sect. 5.3.1. The algorithms can be used to compute optimal system configurations
that considers several conflicting objectives in one single MOP.

Self-optimizing systems are often complex systems consisting of several subsys-
tems which are hierarchically structured (see Sect. 1.3 for an introduction into the
structuring concept). If each system comes with its own objectives, one also gets a
hierarchy of MOPs that has to be solved. Section 5.3.2 describes an approach on
how to handle such optimization problems. The following section, Sect. 5.3.3, is
closely related to hierarchical optimization. A so-called hierarchical model is intro-
duced that can be used to significantly reduce the model complexity of hierarchical
systems by means of parametric model-order reduction.

The following two Sections 5.3.4 and 5.3.5, deal with MOPs which also depend
on continuous external parameters. Two numerical methods are presented that are
used to solve such problems efficiently and to identify so-called robust Pareto points.

Optimal Control, a different aspect of system optimization, is addressed in
Sections 5.3.6 and 5.3.7. In optimal control problems the goal is to compute time-
dependent steering maneuvers as introduced in Sect. 1.4.1.2. In Sect. 5.3.6, the
optimal control technique DMOC is presented which is especially tailored for
the optimal control of mechanical systems. In order to improve the solvability of
optimal control problems by creating efficient initial guesses, a motion planning
technique based on motion primitives is described in Sect. 5.3.7. Within this ap-
proach, several short pieces of simply controlled trajectories are sequenced to longer
trajectories.

In Sect. 5.3.8 one approach for decision making (cf. Sect. 1.4.1.3) is presented
that is called hierarchical hybrid planning. The hierarchical model is used to sim-
ulate the prospective system behavior and a discrete planning problem is defined
based on the simulation results as well as on a pre-computed Pareto set.

All these different methods of system optimization need a physically motivated
mathematical model of the self-optimizing system. If such a detailed model is not

224 M. Dellnitz, K. FlaBkamp, and C. Horenkamp

available for a specific task, methods of the behavior-oriented self-optimization
can be used (see Sect. 1.4.2 for an introduction). Statistical Planning, described
in Sect. 5.3.9, is one of these methods. It uses statistical data to compute plans
for mechatronic systems based on an environmental model given by a discrete fi-
nite nondeterministic Markov decision process. A different approach is presented
in Sect. 5.3.10. A discrete planning problem is defined that can be used to find a
sequence of operation modes which describe a transition from an initial state to
a predetermind goal state. Section 5.3.11 presents an approach to realize a multi-
agent system by behavior planing, to open up the advantage given by the possibility
for intelligent communication of individual subsystems. Finally we will present the
application of solution pattern presented in Sect. 4.5 to make the method hybrid
planning available to the developers.

5.3.1 Set-Oriented Multiobjective Optimization

Michael Dellnitz, Kathrin FlaBkamp, and Christian Horenkamp

The demand for multiobjective optimization in the context of self-optimizing sys-
tems was already shown in Sect. 1.4.1. Here, we review algorithms developed and
applied within the CRC 614 for the computation of the entire Pareto set of multiob-
jective optimization problems. The basic idea of these methods is to use set-oriented
algorithms for dynamical systems (cf. [46]).

We reconsider the multiobjective optimization problem (MOP Eq. (1.1)) intro-
duced in Sect. 1.4.1

. min F(p), (5.1)

where F : R" — R*, F(p) = (fi(p),...,f(p))” is the vector of k € N objective
functions, p the optimization variable or design variable of dimension n € N,
and S denotes the feasible set. The necessary conditions for Pareto optimality are
given by the Karush-Kuhn-Tucker (KKT) equations (cf. Sect. 1.4.1). Here, we
consider the left hand side of the KKT equations as a map H : R — R”, with
H(B,p) = XX, BVfi(p) and B = (Bi,...,) with B; >0 for all i € {1,...,k} and
Zf?:l Bi =1 (cf. Eq. (1.2) in Sect. 1.4.1). By finding zeros of the map H, we identify
points that satisfy the necessary optimality conditions. Therefore, the use of zero
finding strategies as well as the minimization of the function H are essential steps
in many techniques for solving multiobjective optimization problems.

5.3.1.1 Set-Oriented Solution Techniques for Multiobjective Optimization

The set-oriented solution techniques for multiobjective optimization are imple-
mented in the software package GAIO!!. They can be divided into two approaches:
subdivision methods and recovering methods, which we shortly introduce in the
following (cf. [190] for a detailed overview).

T Global Analysis of Invariant Objects, see www .math.upb.de/~agdellnitz

www.math.upb.de/~agdellnitz

5 Methods for the Design and Development 225

/ \\\\:/‘:\ / / /

LI . -~ > vV

o o i \\.\: 7

Fig. 5.24 Tllustration of the subdivision algorithm: it alternates between subdivision and se-
lection steps to approximate the Pareto set by a box covering

The subdivision procedure (cf. Fig. 5.24 for a sketch) starts with a box that cov-
ers the admissible set of optimization parameters and approximates the Pareto set by
a successive refinement and selection of boxes. After every subdivision step, a gra-
dient method is applied to chosen test points in all boxes. This iterates the test points
forward, possibly into other boxes. The selection step deletes all boxes that do not
contain iterated test points and only keep the other boxes for further subdivision.
This scheme generates a box covering of the Pareto set with desired refinement.
A sampling algorithm (cf. [190]) that does not require gradient information can be
used instead of the gradient step.

Recovering techniques are applied to fill gaps in the covering of the Pareto set.
Under certain conditions, the Pareto set (locally) forms a manifold [100], i.e. in
the neighborhood of already known Pareto points further points can be found. The
recovering algorithm is similar to a predictor corrector method, which is typically
used for numerical integration. Based on an initial partial box covering, new test
points are generated nearby (prediction step) and then iterated until they fulfill the
KKT conditions (correction step). In this way, connected components of the Pareto
set can be found if at least one Pareto point of this component is already known
(cf. Fig. 5.25).

In the following two sections, we present two basic strategies to use the recover-
ing technique. Firstly, the recovering techniques are applied in the preimage space
(space of optimization parameters). This approach reaches its limitations when the
number of design variables is high. In such a case one can pursue a second strategy,
for which the recovering techniques are applied in the image space (space of objec-
tive functions). This is more suitable if the number of design variables is high but
the number of objectives is small as discussed in Sect. 5.3.1.3.

5.3.1.2 Set-Oriented Recovering Methods in the Preimage Space Applied to
the Multiobjective Optimization of the Test Vehicle Chameleon

In this subsection we review a recovering technique for the approximation of the
Pareto set based on a predictor corrector method working in the preimage space.
This method is a very efficient tool for the approximation of a finite representation
of the entire Pareto set and has been successfully applied for the multiobjective
optimization of the test vehicle Chameleon within the CRC 614.

In principle, starting with a point p* of the Pareto set, the following steps are
performed:

226 M. Dellnitz, K. FlaBkamp, and C. Horenkamp

Fig. 5.25 TIllustration of
the recovering algorithm:
starting with an initial partial
covering of the Pareto set, a
full covering is computed by
a generation and mapping
of test points near existing
boxes

NN
/-

v
:JZJZZ

Fig. 5.26 Tllustration of the a) r2 b)

predictor-corrector method: o

(a) Predict points r! and r2 r

in the neighborhood of p*. @ p* p*
(b) Correct points such that

they lie on the Pareto set.

1. Predict points r!,r" in the neighborhood of p*.

2. Correct the points r!,....r" such that they lie on the Pareto set by minimizing
the norm of the KKT equations and adding the boxes containing the corrected
points.

An illustration of this technique can be found in Fig. 5.26. The number of pre-
dicted points m € N has to be sufficiently large in order to cover the Pareto set after
the correction step well. Therefore, the bottleneck of this method is the prediction
step where new test points are generated near an initial solution p*. A common way
for the generation of new test points is to linearize the Pareto set around the initial
solution p* by an approximation of the tangent space of the Pareto set in p* (grey
line in Fig. 5.26). In general, one can use the Hessians of all objectives, but this
approach reaches its limitation when high-dimensional models, where n is large, are
considered. In the course of the research of the CRC 614, a novel method has been
developed for the treatment of high-dimensional MOPs by successive approxima-
tion of the tangent space [181]. In detail, a new algorithm has been stated, where the
tangent space is approximated by secants. This algorithm leads to an efficient ap-
proximation of the Pareto set of high-dimensional MOPs. Table 5.1 shows the CPU
time for a scalable multiobjective optimization problem with three objectives which
are taken from [189] for the recovering algorithm using the tangent space approxi-
mation (R¢) and the new algorithm (Rg) developed in [181]. For the test problem a
significant speedup can be obtained for large n.

Within the corrector step in which the predicted points are corrected such that
they lie on the Pareto set, many efficient minimizers make use of derivatives of the
objective function F. In many applications only program code for the objective F
is provided and the corresponding derivatives, if existent, can not be determined
analytically, thus other techniques are required. For example, finite differences can

5 Methods for the Design and Development 227

dimension Rc Rg
of MOP
Table 5.1 Comparison between the 100 CPU t?me 2.9 2.9
classical recovering algorithms R¢ 200 CPU t?me 14 119
and a method using a successive ap- 500 CPU time 134 91
proximation of the tangent space Rg 1000 CPU time 965 500

be used, however, this approach leads to inaccurate derivatives which slows down
the correction step. Alternatively, algorithmic differentiation (also called automatic
differentiation) can be used (cf. [81]). These techniques automatically compute for-
mulas for the derivatives based on the program code of the optimization problem for
example.

In [182] the recovering technique of [181] has been combined with algorithmic
differentiation. In more detail, the feasible set S of a MOP has been described as a
zero set and the recovering procedure is adapted as follows: Let p* be a solution of
the MOP (1.1), then for the prediction step select neighboring points of p* along
the feasible set S and correct them to points on S. After the correction step a non-
dominance test is performed to ensure that only the Pareto set is approximated as
a subset of the feasible set S. For all non-dominated points, the predictor-corrector
step is repeated until a covering of the Pareto set is reached. For the correction
of the predicted points, the derivatives involved are calculated by an algorithmic
differentiation method.

This method was successfully applied for the multiobjective optimization of the
distribution of the tire forces for a braking maneuver of the test vehicle, Chameleon,
which is described in more detail in Sect. 2.3. The tire forces of the Chameleon can
be influenced individually within the physical and technical restrictions [175], hence
there are a multitude of possibilities to realize a braking maneuver with the same
braking force. In [182] the slip A; and the slip angle ¢; for each wheel i = 1,...,4 are
the optimization parameters. The objectives are to avoid tire wear by minimizing the
squared sum of the slip angles (1) and for each tire the minimization of the distance
between the tire force and the adhesion limit for safety reasons (f2, ..., f5). Fig. 5.27
shows projections of the resulting Pareto set and Pareto front.

Another extension of both the recovering and subdivision algorithms is the use
of parallelization techniques. This is motivated by time-consuming function eval-
uations of a sufficiently high amount of test points involved in the algorithms. In
[26], for instance, a multiobjective optimization problem is solved for the resource
efficient design of integrated circuits. In more detail, the dimensions of transis-
tors in simple logic cells are optimized with respect to noise margin, propagation
delay and dynamic energy consumption. A function evaluation in this setup is a

228 M. Dellnitz, K. FlaBkamp, and C. Horenkamp

c) safety f,

-0.05
-0.1

slip 1, b2 02 04 06 08 1
H safety f3 safety f,
safety fg
1
0.8
0.6
04
0.2 ks
0.4
0 e 0 o o 0d®
slip angle o, slip angle o, slip angle o, slip angle o4 safety f; safety f3

Fig. 5.27 Projection of the resulting Pareto set and Pareto front of a multiobjective optimiza-
tion problem of the distribution of the tire forces for a braking maneuver of the test vehicle
Chameleon. The Pareto set and Pareto front were computed with the algorithmic differentia-
tion approach: (a), (d) A set of boxes covering smooth connected parts of the Pareto set. (b),
(e) Corresponding Pareto points. (c), (f) Corresponding Pareto front. Figure from [182].

one to three seconds simulation of an integrated circuit. Using a parallelization in-
frastructure, it is possible to obtain good approximations of the Pareto set within
adequate computational time.

5.3.1.3 Set-Oriented Recovering Methods in the Image Space Applied to the
Multiobjective Optimization of the Active Guidance System of the
RailCab

The previously described recovering method reaches its limitations if the number
of design variables is high. In such a case, the approximation of the tangent space
in the predictor step is computationally costly, therefore the recovering method will
be applied in the image space Image space (cf. [41]). The principal procedure is the
same as shown in Fig. 5.26. This approach is a good alternative for the case when
the dimension of the parameter set is high and only a few objectives are considered.

This method was applied to find trajectories of the RailCab vehicle (cf. Sect. 2.1)
in the rails [72, 206]. The control of the RailCab vehicle is done by the active guid-
ance system that controls the displacement of the vehicle in the rails. It controls
the position of the front and rear axles. The computed trajectories should maximize
safety (f1) and passenger comfort (f;) and minimize the average energy consump-
tion (f3) of the hydraulic actuators. Naturally, this problem is an optimal control
problem but due to the fact that the problem underlies a certain structure it can be
transformed into a multiobjective optimization problem with a high number of pa-
rameters (cf. Sect. 1.4.1.2 and 5.3.6). In [72] the trajectories of the front and rear
axles of a fixed rail track with respect to fi, f> and f3 have been optimized. Due to
the high amount of parameters, a recovering method in the image space Image space
is necessary. In Fig. 5.28 the computed Pareto front is shown. Two optimal compro-
mise solutions were selected (marked by a circle and a rectangle). In Fig. 5.29 the

5 Methods for the Design and Development 229

Fig. 5.28 Pareto front for
the three objectives safety, .

comfort and energy. The 8ggmg?gm:§:;

7
trajectories corresponding 6y
to the Pareto points marked L e
with a rectangle and a circle Zad
are shown in Fig. 5.29. E 34
Figure from [72]. i’; ol
LR IR —
ol.

2 25 3

f, (safet
J(safety) 67 5
f, (comfort)
Fig. 5.29 Different refer- Leg

. end

N safety optimal
|- — - — comfort optimal
© .]— — — energy optimal
- |—e—— compromise 1
' |—e—— compromise 2

ence trajectories for the
front axle. While comfort
prioritizing trajectories are
apparently smooth, safety
prioritizing trajectories try
to follow vertical displace-
ment to stay near the middle
line. Figure from [72].

trajectory y/mm

position s/m

corresponding trajectories of the position of the front axle are shown. The recov-
ering techniques in the image space are also suitable to find well-distributed Pareto
points in the image space. In [183] such a method was applied to design an operating
strategy for the Energy Management of a Hybrid Energy Storage System combining
batteries and double layer capacitors.

To sum up, various applications have shown the great suitability of the set-
oriented mutliobjective optimization methods in the design of self-optimizing tech-
nical systems.

5.3.2 Hierarchical Multiobjective Optimization

Michael Dellnitz and Maik Ringkamp

Modeling of self-optimizing systems often leads to hierarchical multiobjective op-
timization problems. These kinds of problems consist of several MOPs instead of

230 M. Dellnitz and M. Ringkamp

just one MOP. All MOPs are related to each other by a hierarchy. The solutions of
a lower level MOP restrict the preimage space of the next higher level MOP in the
sense that the feasible set of the higher level MOP is a subset of the lower level
Pareto set. Each level of the hierarchy consists of one MOP.

Consequently, in the case of two MOPs two levels of hierarchy exist. Such a
problem is also called bilevel MOP and is defined as follows:

min F(p,p") (5.2)
(p,p!)ER"xR™M
st. (p,p)es
p' € Zu(p)

Here, the p-dependent Pareto set & (p) is defined as the solution of the MOP of
the lower level:

P (p) :=arg min f'(p,p!) (5.3)
pleR™
s.t. (p,p!) € ! (5.4)

with feasible sets S,S e R" x R™, objective functions F : R” x R" — R¥, and
fl:R" x R™ — Rk,

Under given regularity conditions, bilevel MOPs can be solved using the Karush-
Kuhn-Tucker equations (Egs. (1.2)) of the lower level MOP as additional equality
constraints for the upper level MOP as described in detail in [42].

The hierarchical structure of the optimization problems derived from the OCM
structure allows to consider a special case of the general bilevel MOP (5.2). Instead
of computing one general MOP on the lower level, we consider problems where the
lower level MOP can be separated into several independent MOPs, i.e. each MOP
has a different set of optimization parameters.

5.3.2.1 Hierarchical Multiobjective Optimization by Parametrization of the
Lower Levels

More specifically, the kind of problems we consider are given as
min F(p,p',....p") (5.5)
st.pl e Py, je{l,... 1},

where / > 1 is the number of independent lower level MOPs and § C R” x R"™ x
... x R™ the feasible set as in Eq. (5.2) with independent Pareto sets &%;,j €
{1,...,1}, as solutions of the / lower level MOPs

Py = arg min t/(p’) (5.6)

pj E]Rn.f

5 Methods for the Design and Development 231

with objective functions F : R” x R™ x ... x R" — RF and £/ : R — R?Vj €
{1,...,1}.

Under certain regularity conditions, the resulting Pareto sets 2%, of the lower
level MOPs are 1-dimensional submanifolds of R" for each j € {1,...,/}. Thus,
these sets can be parametrized by variables o/ € [0, 04y4:] and a map ¢/ : [0, Car] —
Z4;. The parametrization reduces the complexity of the upper level MOP, it can be
described with the help of an auxiliary objective F : R x [0, O4ax] X . .. X [0, Opax] —
RE F(p,al,....of) :=F(p,o'(a'),..., 0 (o)) as

min F(p,o!,...,al) (5.7

(p,ac!,...,o)) ER" X [0, 04max] X ... X [0, Climay]

s.t. (p,ol,...,0)es.

For problem (5.5) we propose the following solution strategy:

1. Compute the Pareto sets of all independent lower level MOPs (5.6) by using the
methods explained in Sect. 5.3.1.

2. Parametrize the resulting Pareto sets by the map ¢.

3. Use the parametrization variables as parameters for the MOP on the next higher
level and solve the auxiliary problem (5.7).

This method was successfully applied for example in [131] or [102] to solve
bilevel MOPs derived by the OCM structure. In the latter work, the considered ap-
plication examples are an active suspension system and a linear drive with an active
air gap adjustment which both represent a module of the rail-bound vehicle RailCab.
Hierarchical optimization is used to combine the module-related optimal operating
strategies. In Fig. 5.30 the computed Pareto front of the upper level MOP is shown.

Fig. 5.30 Active suspension body accelerations, f,
system and linear drive: .o

Computed Pareto front for 6
the hierarchical model of the
combination of the active
suspension system and the 4y
linear drive with an active ad..-
air gap adjustment (original
figure from [102]).

..

. 20 5 40
time, f3 energy
consumption, f4

232 M. Kriiger and A. Trichtler

5.3.3 Hierarchical Modeling of Mechatronic Systems

Martin Kriiger and Ansgar Trichtler

The hierarchical modeling is based on the hierarchical OCM structure presented
in Sec. 1.3. Mathematical models of the dynamical behavior are needed for sev-
eral methods in the design process of self-optimizing systems. Such methods are
for example, the design of feed-forward or feedback controllers, identification and
observation of system parameters respective states or model-based optimization.
Complexity of the models rapidly increases at higher levels of the system hierarchy.
The modeling approach described in the following sections yields a so-called hierar-
chical model which uses the hierarchical structure to reduce the model complexity
in a systematic way. Particularly, in combination with hierarchical multiobjective
optimization (cf. 5.3.2) a novel approach for parametric model-order reduction can
be used.

5.3.3.1 Hierarchical Model

Each element of the system hierarchy is equipped with its own information process-
ing described by an OCM. In general, this reduces the complexity of the information
processing, as several tasks can be encapsulated. However, the dynamical behavior
of a subsystem depends on the underlying elements (subsystems) in the hierarchy.
Hence, the behavior of the underlying subsystems has to be taken into account in
the modeling process.

The idea of the hierarchical model is to include the dynamics of the underlying
systems in a simplified form, rather than considering all details. This reduces the
complexity of the resulting model while ensuring that models have an appropriate
amount of detail that can be used by model-based methods. Figure 5.31 illustrates
the general idea.

Additionally, if each element of the hierarchy is seen as a self-optimizing system
with its own objectives, a Pareto set, i.e. a set of optimal compromises, can be com-
puted by applying multiobjective optimization. This Pareto set can then be used as
additional information for the simplification of the system before it is transferred
to the superordinated element. The parametric model-order reduction approach de-
scribed below has been developed especially for this task. The result is a simplified
respective reduced model which can, for example, be simulated much faster than
the original model while maintaining a certain variability in view of the objectives.

5.3.3.2 Parametric Model-Order Reduction

In the following we will give a short overview about a particular parametric model-
order reduction approach which yields parametric reduced models for the Pareto-
optimal systems that was first published in [129]. The Pareto-optimal systems are
those that correspond to the Pareto-optimal parameters p* € &r. The general goal
is to construct an approximation of these Pareto-optimal systems in terms of the
parameterization variable ¢, limited to the case of two objective functions. This

5 Methods for the Design and Development 233

Fig. 5.31 Hierarchical mod-
eling principle for self-
optimizing systems. First,
the optimal configurations
of the lower level module
are computed. The resulting

Pareto set is parameterized Objective-Based
and the system model cor- Controller
responding to the optimal
configurations is reduced
by parametric model-order
reduction. On the upper
level the reduced models are Parametric

integrated in the hierarchical Model-Order Reduction
model which can then be
used for following tasks as
e.g. (hierarchical) optimiza- Pareto Set Model

tion (Sect. 5.3.2) hybrid
==

Multiobjective Hierarchical Model
Optimization

Controller

planning (Sect. 5.3.8) or the
design of an objective-based
controller (Sect. 2.1.4).

kind of model-order reduction can also be beneficial for analyzing the objective-
based controller described in Sect. 2.1.4 where ¢ is the control variable.

Interpolation of Pareto-Optimal Systems

The parameterization of the Pareto set described in Sect. 5.3.2 also defines a param-
eterization of the Pareto-optimal systems. Assuming a linear closed-loop system

x = A(¢(a))x+ Bu, (5.8a)
y = Cx, (5.8b)

with u being the vector of external inputs and y being the output vector for cal-
culating the objectives, the dynamics depend on the parameterization function ¢.
Since a higher number of parameters complicates the reduction process for almost
all parametric model-order reduction algorithms we do not directly use this kind of
parameterization. Instead, we create an interpolation, of the Pareto-optimal systems
and not of the Pareto set, that depends directly on c.

The first step is to define a sequence of knots 0 = o] < 0p < ... < O = OYpgy-
Then, a component-wise linear spline interpolation can be applied to the Pareto-
optimal systems that yields

234 M. Kriiger and A. Trichtler

Fig. 5.32 Pareto set of the

. . Legend
active suspension system
Pre-Image of Pareto Set
and results of the knot 9
.. . ° Knot Sequence
placement. Optimization >ed

parameters are given by
three variables, which define
the sky-hook damping of the
system. A number of ten
equidistantly placed knots
has been used as input for
the algorithm leading to a
knot sequence of 24 knots
placed along the Pareto set
to reach the given error
bound.

[A(p(0i1)) —A(p(0s))] (5.9)

for a € [0y, 0611).

The number of knots ¢; as well as their positions can be chosen automatically
by an algorithm that is described in more detail in [129]. It consists of two parts.
One part improves the knot positions of an existing sequence by means of the clas-
sical FORTRAN algorithm newnot [30] that has been extended to the matrix case.
The second part compares the linear matrix-valued spline with a cubic one to esti-
mate the approximation quality and inserts additional knots if necessary. Both parts
are executed alternately until a given error bound is reached. Figure 5.32 shows the
results of the knot placement for a Pareto set of the active suspension system, in-
troduced in Sect. 2.1.4 using the same objectives energy consumption and level of
comfort.

Parametric Model-Order Reduction

The result of the aforementioned interpolation is a piecewise matrix polynomial
A(a) and a corresponding parametric system

x = A(a)x + Bu, (5.10a)
y = Cx, (5.10b)

with the states x € R™ and system matrices A(a),B and C of appropriate dimen-
sions that can be reduced by parametric model-order reduction. The first step of the
reduction procedure comprises of a non-parametric reduction of the systems cor-
responding to the knots ¢;. Any projection-based reduction method that yields two
projection matrices V;, W; € R">*4, can be used for this task, e.g. the IRKA (Iterative
Rational Krylov Algorithm) to get an 7% -optimal interpolation [10]. This leads to
the reduced systems of order ¢

5 Methods for the Design and Development 235

param. model-order reduction of active suspension system

2.
*

....... reIativeHz—error

....... reIativeHw—error

: : : : x non-param. reduction (IRKA)| :

10‘3 i i i i i I I I I j

0 100 200 300 400 500 600 700 800 900 1000
parameter o

Fig. 5.33 Relative error of the reduced system compared to the original system (5.10).

W/ Vi, = W AV,x, + W/ Bu, (5.11a)
\v/ - ~ - \v/
Eni /ir.i Br.i
y=CVix, (1<i<k). (5.11b)
~
C);i

Secondly, we apply a method called matrix interpolation to compute a parametric
reduced system, see [160] for more details. Using Matrix Interpolation, the reduced
matrices are compatible to one another by means of a reprojection to a common
subspace, given by the columns of an orthonormal matrix R € R™*4. This matrix is
computed by means of a singular value decomposition of the concatenation of the
projection matrices [Vi, ..., V]. Each reduced system is then transformed by means
of two quadratic matrices

M; = (W/R)™" and T; = R" V.. (5.12)

The parametric reduced system consists of an interpolation of the transformed re-
duced matrices

E,j=ME, T, A,; = MiA,;T;, B,; = MiB,;, C; = C,,;T; (5.13)

In our case we use a simple weighted sum depending on o, i.e.

o— o o— o
Ar(a) = (1 — ')A,,,-—i— ' Arit (5.14)
Oy — 0 Oy — O

236 M. Dellnitz, C. Horenkamp, and K. Witting

for the system matrix to give one example. The results of the parametric model-order
reduction of the active suspension system are shown in Fig. 5.33.

5.3.4 Parametric Multiobjective Optimization

Michael Dellnitz, Christian Horenkamp, and Katrin Witting

Many mechatronic systems are subject to external forces or time-varying param-
eters. In many cases, such dependencies cannot be directly modeled in the op-
timization problem (5.1) in Sect. 5.3.1. Therefore, in this section, we extend the
optimization problem (5.1) in such a way that it additionally depends on an external
parameter A € [Agarr, Aenal:
minF(p,1), (5.15)
peS
where F : R" X [Agarts Aena] — RE, F(p,A) = (fi(p,A4), ..., fu(p,A))7 is the vector
of objective functions. The parameter A can model the dependence on time or any
other external parameter of the objectives. In such situations, instead of choosing a
single Pareto point, the decision maker has to choose a whole curve p(A) describing
for each A a Pareto optimal solution for the MOP. Similar as in Sect. 5.3.1, for each
fixed A € [Agarr, Aena) the necessary optimality conditions are given by the Karush-
Kuhn-Tucker equations, and the underlying optimization problem can be solved
separately for each parameter value.
Consider the following parameter dependent MOP with A € [0, 1] and the two
objective functions f1, f> : R? x [0, 1] — R defined as

A@A) =2 ((p1 =2+ (p2=2)) +(1=2) (P1 +2)* + (p2—2)%) and
HpA) = (p1 202+ (pr+22)2.

Fig. 5.34 (a) shows the Pareto sets for different values of A and Fig. 5.34 (b)
shows the entire A-dependent Pareto set.

Calculating for each parameter value the entire Pareto set is numerically very
costly and therefore, this approach is not suitable for applications, for which the
solution has to be computed online. Thus, we propose a solution method which
alternates between Pareto set computations and numerical path following of single
Pareto points and therefore prevent the computation of the entire Pareto set. The
proposed algorithm is designed for online use and works as follows:

1. Compute the entire Pareto set for a fixed parameter value A; and select a point
p(21) on the Pareto set.

2. Compute the solution curve p : [A1,4,] — S up to a fixed parameter value A,.

3. Compute the entire Pareto set for the parameter value 4, and select a point x(4,)
on the Pareto set. Proceed with step 2.

For the computation of the solution curve, in step 2 a predictor corrector method
along the curve direction is involved.

5 Methods for the Design and Development 237

a) b)
2

15 / 1T

0 |7 |Legend
X2 _— — A=0
05 - A=05
/ A=09
-1 // A=0.99
15|/ - ﬁ:?-999
2l

215 1 05 0 -05 -1 15 -2
X4

Fig. 5.34 (a) Pareto sets for some specified values of A. (b) entire A dependent Pareto set.
Figure from [206].

The parameter dependent approximation of the Pareto optimal solutions was de-
veloped in [206]. In [208] and [187], it has been successfully applied to the opti-
mization of the operating point assignment of the linear-motor of the driven railway
system RailCab (cf. 2.1). It was also successfully applied to the active suspension
system of the RailCab. In this application the crosswind has an influence and it was
modeled as a parameter (see also Sec. 5.3.5.1).

5.3.5 Computation of Robust Pareto Points
Michael Dellnitz, Robert Timmermann, and Katrin Witting

One important question in the context of multiobjective optimization problems (cf.
Sect. 1.4.1.1) is the choice of the actual optimal configuration for one specific ap-
plication, the so-called decision making. In this section we address this problem by
defining the robust Pareto points and give a brief overview of two methods for the
computation of such points. For a more detailed explanation, the reader is referred to
[206]. We consider a Pareto point to be robust, if it varies as little as possible under
variation of the external parameters of the parametric multiobjective optimization
problem Eq. (5.15). Here, we additionally have the choice to regard the variation in
parameter space or objective space.

Computation is based on two approaches: The first approach to the computa-
tion of robust Pareto points is based on numerical path following methods (cf.
Sect. 5.3.4). First, a A-dependent Pareto set for A = Agq,r is computed. Secondly, A
is varied from Agqr t0 Aepg for a subset of points of the Pareto set and the lengths of
the resulting paths, which then run from the Ag,,-Pareto set to the A,,4-Pareto set,
are calculated. Finally, these path lengths can be taken into account when choosing
one of the Pareto optimal operating points, since robust Pareto points are those with
minimal path length. This enables the decision maker to choose points, which vary

238 M. Dellnitz, R. Timmermann, and K. Witting

as little as possible under the influence of A. If A, for example, describes the influ-
ence of a change of temperature, one can chose an operating point, such that varying
temperature has little effect on the system.

The second approach is based on the calculus of variations. The problem of find-
ing the shortest path from a point on the Pareto set for Ay,,+ onto the Pareto set for
Aena can be formulated as the variational problem

A'end
min /
(P(A),0(A)) S Astare
st Hgr(p(A), (A), 1) = 0

Ip'(A)]]5 dA (5.16)

where the constraint Hxr = 0 represents the necessary Kuhn-Tucker equations for
optimality (cf. Eq. (1.2)) in Sect. 1.4.1.1 and Sect. 5.3.1). The integral means, that
the energy of the A-dependent curve of Kuhn-Tucker points is minimized. If points
exist in which all Pareto sets intersect, both approaches lead to the same robust
Pareto points. Otherwise those points may differ. The main advantage of the second
concept over the first one is that the starting point on the Pareto set needs not to be
fixed in advance but is implicitly calculated during the minimization. Unfortunately,
this concept is computationally more expensive, so if the underlying models are very
complex or if execution time is critical (e.g. if the robust points are calculated in real
time), the first concept is more suitable.

A much more detailed explanation of the path following approach can be found
in [47], and two applications are presented in [26] (transistor sizing of CMOS logic
standard cells) and [201] (robust Pareto points for the Active Suspension Module).
For further reading about the variational method we refer to [207]. Both methods
are also presented in [69, D.0.S.O.M.S. Sect. 3.1.8] .

5.3.5.1 Application

The second concept has been successfully used to compute robust Pareto points for
the Active Suspension Module (ASM, cf. Sect. 2.1.4) in [130].

In this work, an external parameter A is used to model varying crosswind con-
ditions which affect the ASM’s behavior. A parametric multiobjective optimization
problem was formulated using a simple ASM model with three degrees of freedom
p1, P2, p3 and with the two objectives comfort and energy consumption.

Figure 5.35 shows three Pareto sets for three different crosswind values and two
robust Pareto points which were computed using the variational method. The robust
point at (0,0,0) corresponds to the energy optimal solution and could be expected
in advance, the second point is nontrivial though and was not expected before the
calculations. It can be used when designing the system such that it exhibits similar
behavior in a variety of crosswind situations.

5 Methods for the Design and Development

Fig. 5.35 Application of
the second concept (based

Pareto Sets

on the calculus of varia- 9
tions) to compute robust 8 J
Pareto points for the Active

Suspension Module. This 74
figure shows Pareto sets for 6 J

without crosswind

239

crosswind A = 8.15
crosswind A= 16.3
robust Pareto points [+

three specific crosswind val-
ues and two robust Pareto

points. Figure from [130]. Ps

P2

5.3.6 Optimal Control of Mechanical and Mechatronic Systems

Kathrin FlaBkamp and Sina Ober-Blobaum

As introduced in Sect. 1.4.1, an optimal control problem seeks a control trajectory
which steers the dynamical system in an optimal way with respect to a given cost
functional. This is a challenging task for complicated nonlinear dynamical systems
and thus has to be addressed by numerical techniques. In this section, we present
an optimal control technique which is especially developed for the optimal control
of mechanical systems (including mechatronic systems with additional electronic
subsystems). For this class of systems, the equations of motion in the optimal con-
trol problem (OCP), cf. Eq. (1.3b), can be specified to the forced Euler-Lagrange

equations, i.e.

min

x(1),u(r)

J(x,u) = /O " Cx(e)u(e)) de

oL d JL
with respect to a4 (q,q) — dt 94 (q,9) +f(q,q,u) =0

r(x(0),x(7T)) =0, and

h(x(¢),u(r)) <0 withx = (q,q).

(5.17a)

(5.17b)

(5.17¢)
(5.17d)

Here, the system’s state x = (q, q) consists of configurations q and corresponding
velocities q, L(q, q) is the Lagrangian of the system (closely related to the system’s

240 K. FlaBkamp and S. Ober-Blobaum

energy) and f a control dependent forcing!?. All possible configurations of a system
form the configuration manifold'® Q such that the system’s state space is given by
the tangent bundle 7'Q.

To numerically solve an OCP, direct optimal control methods directly discretize
the differential equations (5.17b). This can be done by integration schemes, i.e. the
continuous state x(¢) is replaced by a sequence of discrete states {x;} in the same
manner as discretized trajectories are generated by numerical integration (simula-
tion) of dynamical systems. An optimal solution has to fulfill the discretized dif-
ferential equations (and additional constraints) and it is optimal with respect to the
discretized cost functional, i.e. it is a solution to a nonlinear optimization problem
and approximates the solution of the original OCP.

5.3.6.1 The Direct Optimal Control Technique DMOC

DMOC (Discrete Mechanics and Optimal Control, [151]) is a direct optimal control
method tailored to the special structure of mechanical systems . The forced Euler-
Lagrange equations (5.17b) are derived from a variational principle: the Lagrange-
d’Alembert principle ([140]). DMOC is based on a direct discretization of the
Lagrange-d’ Alembert principle of the mechanical system. The goal of this discrete
variational mechanics approach is to derive discrete approximations of the solu-
tions of the forced Euler-Lagrange equations that inherit the same qualitative be-
havior as the continuous solution. For the discretization, the state space TQ is re-
placed by Q x Q and the discretization grid for the time interval [0, T] is defined by
At ={ty = kh|k=0,...,N}, Nh =T, where N is a positive integer and % is the
step size. The path q : [0,7] — Q is replaced by a discrete path g4 : {#x}y_o — O,
where q; = qq(kh) is an approximation of q(kh) [141, 151]. Similarly, the control
pathu:[0,T] — U is replaced by a discrete one. The discrete Lagrange-d’ Alembert
principle then leads to the discrete forced Euler-Lagrange equations

Dy Ly(Qr, Qi+1) + DoLy(qe—1,qx) + £, +£, =0 (5.18)

for each k = 1,...,N — 1, where D; denotes the derivative w.r.t. the i-th argument.
That means, solution curves of the differential equation (5.17b) can be approximated
by discrete solution trajectories of the set of algebraic equations. In other words, for
given control values iy, equation (5.18) provides a time stepping scheme for the sim-
ulation of the mechanical system which is called a variational integrator (cf. [141]).
Since these integrators, derived in a variational way, are structure-preserving, impor-
tant properties of the continuous system are preserved (or change consistently with
the applied forces), such as symplecticity or momentum maps induced by symme-
tries (e.g. the linear or angular momentum of a mechanical system). In addition,

12 Confere e.g. [140] for a general introduction into the theory of mechanical systems, in
particular regarding Lagrangian mechanics.

13 Simply speaking, a manifold is a generalization of the vector space R” including e.g. tori,
but readers non-familiar with differential geometry can replace Q by R” and T'Q by R?"
in the following.

5 Methods for the Design and Development 241

Fig. 5.36 Space mission 0.01-
fieszg;?: Pareto'o'ptlmal tra- 0.008k
jectories for minimal control
effort and time-minimal 0.006
transfer between period or- 0.004F
b¥ts neaf s.un ar‘1d earth. Red: 0.002k
high mission times, low
control effort. Green: small yoor
mission times, high control -0.002}
effort. Blue and magenta: -0.004F
solution between the first 0,006
two (Figure from [152]). e
-0.008}
-0.01 L

1 1 1 1 1
0.985 0.99 0.995 1 1.005 1.01 1.015

their long-time energy behavior is excellent. Therefore, variational integrators can
be used with relatively large step sizes. However, rather than solving initial value
problems, an optimal control problem has to be solved, which involves the mini-
mization of a cost functional J(x,u) = f(;f C(x(t),u(t))dr. Thus, in the same man-
ner, an approximation of the cost functional generates the discrete cost functions Cy
and J,;, respectively. The resulting nonlinear restricted optimization problem reads

N—1

min Jg(qq,ug) = min Y Cy(Qy, Qe 1, %) (5.19)
PRy a0 =

subject to the discrete forced Euler-Lagrange equations (5.18) together with dis-
cretized boundary and (in-)equality constraints for states and/or controls. Thus, the
discrete forced Euler-Lagrange equations serve as equality constraints for the opti-
mization problem which can be solved by standard optimization methods like SQP
(cf. e.g. [76]). In [151], a detailed analysis of DMOC resulting from this discrete
variational approach is given. The optimization scheme is symplectic-momentum
consistent, i.e. the symplectic structure and the momentum maps corresponding to
symmetry groups are consistent with the control forces for the discrete solution
independent of the step size h. Thus, the use of DMOC leads to a reasonable ap-
proximation of the continuous solution, also for large step sizes, i.e. a small number
of discretization points. Furthermore, constraints of mechanical systems can be in-
cluded in DMOC such that it is applicable to constrained systems, which often occur
in multi-body dynamics ([134]).

5.3.6.2 [Extensions and Applications

Typically, in particular for self-optimizing systems, there is more than one single
objective that has to be optimized, hence we are faced with multiobjective optimal
control . Problems of this kind, i.e. with a vector J(x,u) = (J;(x,u),...,Jn(x,u))

242 K. FlaBkamp and S. Ober-Blobaum

current [A]

L A I .
40 N i current [A] — lIreal
2% . Mo i4 551 i ides
0 0.005 0.0 0.015 0.02]---i5| 90T e “'“'"\{ ‘
——ig| 457 L
torque [Nm] wl \
105(- 35|
100 a0k
95 . , . H 25t
0 0.005 0.01 0.015 0.02
20
voltage [V] Wl st
500} S B
- |——ug| 107
0 o] st
-500k L L L h¥ --Us 0
0 0.005 0.01 0.015 0.02| . 5| 0065 007 0075 008 008 009 0095

time [s] time [s]

Fig. 5.37 Switched reluctance drive: Optimal profile for current and voltage computed by
DMOC. Note that the constraint of a fixed motor torque is fulfilled for every discretization
point. The profile is combined with a feedback controller. It can be followed at the real test
bench very well as shown in the right plot (original Figure from [63])

of cost functionals can be solved by a combination of multiobjective optimization
methods and optimal control techniques. Since the discretization of the differential
equations, e.g. by DMOC as described above, leads to a high-dimensional multiob-
jective optimization problem (i.e. a high number of optimization parameters q,u,),
image space oriented methods should be applied. In [152], this method has been ap-
plied to an optimal control problem in space mission design, cf. Fig. 5.36. Here,
the concurring objectives are the control effort and the transfer time, which should
both be simultaneously minimized. Thus, the solution of the multiobjective optimal
control problem results in a number of very different Pareto optimal trajectories. A
mission designer would now choose one of the correspondent control trajectories
dependent on current aims and restrictions on the mission for a thorough analysis
and further optimization with more detailed models.

As proposed above, the DMOC method is not restricted to purely mechanical
systems since many electrical (sub)systems can be modeled by Lagrangian functions
as well . In the course of the CRC 614, the optimization of the Hybrid Energy
Storage System (cf. Sect. 5.3.1 and Sect. 2.1.5) has been repeated with additional
(final) constraints on the optimal control problem. Furthermore, DMOC has been
successfully used for the optimal control of a switched reluctance drive (cf. [63]
and Sect. 2.1.1 above for a description of the test bed). The optimal current profiles
have to fulfill two aims: maximizing the efficiency of the engine and guaranteeing
a constant torque of the drive. In this application, the torque restriction is modeled
as an equality constraint and the resulting single objective optimization problem is
solved by DMOC. The resulting feedforward control is combined with a feedback
controller. In Fig. 5.37, results are shown from the successful application to the real
test bed.

5 Methods for the Design and Development 243

x10° —
" I'Pareto Front Two Layer Optimization
10 s Uiz Lenzr Multiobjective Optimization
of Transition Values
r) or
5 8r Optimal Transition
=
o Costs Optimal Control of Values
oTr .
= Lower Layer Continous Parts
3 [Fiybria
Oscillator Example of Pareto Optimal Solution
5 22
c 2
o
4 S18
o
\ a1e Optimal Postion
3
2 ‘ ‘ \‘ B - ; : " Time * : : :
0 2 4 10 12

6 8
Duration Time T

Fig. 5.38 Hybrid single mass oscillator: in the two layer optimization approach, a multiob-
jective optimization problem arises since both the control effort and the time of the maneuver
(into the equilibrium position) have to be optimized. The resulting Pareto front is shown with
an example solution for the resulting hybrid position trajectory (Subimages from [61])

Hybrid mechanical systems are described by continuous-time dynamics in com-
bination with discrete events to model e.g. impacts, varying topologies of interact-
ing robots, or a changing environment. From the perspective of optimal control, the
switching times at which the discrete events occur, become new design variables.
The optimal control of hybrid systems is an active field of research. Promising
results can be achieved by approaches that split the problem up into several layers
(cf. Fig. 5.38 and [61] for a detailed discussion). It is then possible to solve ordinary
optimal control problems on a lower layer with well established methods while on
the upper layer, the switching time optimization can be performed with other appro-
priate techniques. Figure 5.38 shows an example with a multiobjective optimization
of a hybrid single mass oscillator, which has to be steered into its equilibrium posi-
tion. Switching time optimization as a specific, isolated optimal control problem for
hybrid systems has been studied in [60].

The optimal control method DMOC has been extended in several directions to
improve performance and applicability even further. For the computation of gra-
dients that are used for the optimization, e.g. by the SQP algorithm, DMOC can
be combined with ADOL-C [153], a tool for algorithmic differentiation. In appli-
cations where subsystems with different time scales are interacting, the variational
integrator can be extended to a multirate integration scheme [132, 133] that allows
for an accurate integration with acceptable computational effort for combined fast
and slow dynamical systems. The accuracy of numerical integration and thus of op-
timal solutions as well depend on the order of the approximation scheme. Therefore,
higher order schemes can be used for the discrete Lagrangian [34].

244 K. FlaBkamp and S. Ober-Blobaum

Direct optimal control methods are based on local optimizers for the nonlinear
optimization problem and therefore, they strongly rely on good initial guesses. Since
minimal control effort is often a desired aim, it is a fruitful approach to use inherent
dynamical properties of the uncontrolled system to generate such initial guesses. In
space mission design, it has become state of the art to use trajectories on the system’s
invariant manifolds to design energy efficient control maneuvers (cf. e.g. [45, 146,
199] for applications using DMOC as the optimal control method). This approach
can be used for technical systems as well, in [64] it is shown that, compared to
black box optimizations with simple initial guesses, better (local) optima can be
found with the help of initial guesses on the stable manifold of the final equilibrium
position for a planar double pendulum. In more detail, this idea is explained in the
broader context of motion planning with motion primitives in the following section.

5.3.7 Motion Planning with Motion Primitives

Kathrin FlaBkamp and Sina Ober-Blobaum

Solving optimal control problems which arise in real applications is a challenging
task for current numerical techniques. Since many optimal control techniques are
based on local optimization methods, they strongly depend on good initial guesses
to provide (local) optimal solutions which are also globally efficient. Motion plan-
ning with motion primitives — going back to [66] — tackles these difficulties with
a two phase approach. In the first step, several short pieces of simply controlled
trajectories are collected in a motion planning library, typically represented as a
graph. These motion primitives can be sequenced to longer trajectories in various
combinations. In the second phase, for a given optimal control problem, the optimal
sequence of motion primitives is determined from the motion planning library. Such
motion primitives originate from inherent symmetries, i.e. the dynamical system is
equivariant with respect to certain transformations and certain system properties turn
out to be invariant with respect to these symmetries'*. Typically, mechanical sys-
tems naturally exhibit symmetries as translational or rotational invariance. By con-
sequence, controlled maneuvers, that have been computed for a specific situation,
are suitable in many different (equivalent) situations as well. Recently (cf. [62]), this
motion planning technique has been extended by a new kind of primitives, namely
trajectories on (un)stable manifolds of the natural system dynamics. In space mis-
sion design, such trajectories on invariant manifolds have already been successfully
used (cf. e.g. [146]). This approach is especially tailored to the computation of en-
ergy efficient (minimal control effort) solutions, which is often a major objective for
technical systems.

We formally introduce symmetry and motion primitives for Lagrangian sys-
tems (cf. 5.3.6), although the basic approach holds for general dynamical systems
(cf. [66]). Assume that a Lie group G is acting on the configuration manifold Q by

14 Again, we recommend [140] for an introduction to the role of symmetries in mechanical
systems.

5 Methods for the Design and Development 245

a so called left-action @ : G x Q — Q (D(g,-) =: Dy is a diffeomorphism for each
g € G). It can be lifted to the tangent space: @72 : G x TQ — TQ for (q,v) € TQ
given by (DgT Q(q,v) = T(®g) - (q,V). Then, symmetry corresponds to the invari-
ance of the Lagrangian under the group action, i.e. Lo (DgT € — L for all gcG.
In other words, two trajectories 7y : 1 € [t;1,t¢1] — (q1,q;,u1)(z) and m : 1 €
[tin,tr2] = (q2,4,,u2)(7) are equivalent, if it holds that (1) 77 — ;1 =72 —ti2,
both have the same time duration and (2) there exists g € G,T € R, such that
(q1,q,)(r) = (DgTQ((qz,qz)(t —T))andu; () =ux(t —T)Vt € [tj1,t5,1]. All equiva-
lent trajectories can be summed up in an equivalence class, the motion primitive. The
number of candidates for the motion planning library can be immensely reduced by
exploiting the system’s invariance, i.e. only a single representative is stored that can
be used at many different points when transformed by the lifted symmetry action.
Induced by the symmetry, trim primitives are a special class of motion primitives.
They are constantly controlled solutions which are generated solely by the symme-
try action, i.e. (q,q) () = @7 (exp(& 1), (qo,qy)),u(t) = ug = const.Vz € [0, T] with
& € g, the corresponding Lie algebraand exp: g — G, & — exp(&) € G (cf. [140] for
an introduction to mechanical systems and symmetry from a differential geometric
perspective). Trim primitives can be found analytically or numerically based on the
symmetry action. For mechanical systems, they are identical to relative equilibria
and can be computed by symmetry reduction procedures (cf. [62]).

The second type of primitives, trajectories on (un)stable manifolds are computed
for fixed points (or equilibria) X = (q,0) of the uncontrolled system. The local sta-
ble manifold for a neighborhood U of X is defined as W} .(X) = {x € U |F(x,1) —
xast — o and Fr(x,1) € UVr > 0}. Then, the global stable manifold can be ob-
tained by the union of the (pre)images of the Lagrangian flow F;. A stable manifold
consists of all points in state space flowing towards the equilibrium. The correspond-
ing trajectories are promising candidates for energy efficient steering maneuvers to
operation points which are often the fixed points. The unstable manifold consists of
all points that show the same behavior in backward time. Their existence is guaran-
teed by the stable manifold theorem [84]. In general, the (un)stable manifolds have
to be computed numerically, e.g. by set-oriented methods [44].

As a third class of primitives, short controlled maneuvers between trims and ma-
nifold trajectories are required such that the primitives can be sequenced. They can
be computed by DMOC (cf. Section 5.3.6) for example. The computed primitives
are stored in a library. Then, for a specific control problem, i.e. with initial and
final points on trims, e.g. operation modes of mechanical systems, in the library it
is searched for the optimal sequence of primitives. This can be done based on the
graph representation, the so called maneuver automaton (cf. [62, 66]). In principle,
this second step could be even performed in real time, when using appropriate graph
search methods.

We illustrate the approach for a spherical pendulum. Its Lagrangian is given by
L(g,0,¢) = émrz((i)2 + 62sin()) — mgr(cos(¢) + 1) and we assume forcing in
both directions. The system is symmetric with respect to rotations about the vertical
axis. Trims are horizontal rotations with constant velocity. Contrarily, the (un)stable
manifolds of the upper equilibrium are purely vertical motions. For an example

246 B. Kleinjohann, L. Kleinjohann, and C. Rasche

B
—

Stable Short DMOC
Stable

Manifold Maneuvers :
y Orbits Manifold

Fig. 5.39 Sphercial pendulum: in the motion planning with motion primitives approach, trim
primitives are horizontal rotations while orbits on manifolds are purely vertical motions. An

optimal sequence has been computed by DMOC and used for a post optimization (“DMOC
solution”, original subimages from [62])

DMOC
Solution

..... 3

Trims T=5g === /-

control problem, the resulting optimal sequence is shown in Fig. 5.39 that consists
of five motion primitives: the initial and final trim, two connecting maneuvers, and
a trajectory on the stable manifold in between. The sequence has been used for a
post-optimization by DMOC.

5.3.8 Hierarchical Hybrid Planning

Bernd Kleinjohann, Lisa Kleinjohann, and Christoph Rasche

Hybrid Planning [3] is based on hierarchical modeling presented in Sect. 5.3.3 and
Pareto points calculated by a multiobjective optimization presented in Sect. 5.3.5.
Taking the RailCab system (cf. Sect. 2.1) into account, several constraints have to be
considered when moving a single RailCab from an initial position to a given goal po-
sition. One constraint is that the RailCab has only limited energy resources. To take
such constraints concerning discrete as well as continuous system parameters into
account, an overall plan for the movement of the RailCab must be computed. The
term hybrid planning [2] denotes the integration of discrete and continuous domains
in the planning approach. Initially a plan is created offline. It is updated continuously
during the movement of the RailCab to ensure that, e. g. environmental influences,
like wind do not lead to a violation of the given constraints. Hierarchical hybrid
planning [56] denotes a planning approach, which does not only combine discrete
and continuous planning but also considers the system’s hierarchical decomposition
into its single parts (cf. Sect. 5.3.3) during planning.

5 Methods for the Design and Development 247

Fig. 5.40 Architecture of External Objectives System and Environment
the hierarchical hybrid plan- Constraints rState and Approximation
; Planner Simulation Trace
ning system
g5y 0-\.\./‘ [Simulation
Pareto Optima/

¥ Parameters System Pl
Plan A_Monitoring Model anner
{ ode Components
Knowledge Base

Process 8 ® Hierachical Modell
o Pareto Set

Optimization Hierarchical Modelling

5.3.8.1 Principle

A plan is computed in order to ensure that a RailCab moves from its initial position
to its destination while the requirements are taken into account by the planner. Dif-
ferent parts of a traveling route have diverse properties, like, e. g. slopes which have
to be modeled. Thus, to actually create such a plan the complete route between the
initial and the end position of the RailCab is subdivided into single track segments.
In the first step an initial plan is computed consisting of different parameter settings
for the single parts of the system for each track segment. These parameter settings
build a discrete dimension of choice for the planner. In the case of the RailCab sys-
tem considered here several objectives regarding for instance values like passenger
comfort and energy consumption, which are in conflict have to be taken into ac-
count. For handling such conflictive objectives a multiobjective Pareto optimization
is used. The Pareto optimization calculates a Pareto front determining optimal trade
off's between parameter settings for each track section of the selected traveling route.
Then, the offline planner selects a single Pareto point from the Pareto front for each
section. Due to the actual system or environment conditions like wind, abrasion, etc.
the forecasted results which selected parameter settings of the plan should lead to,
might not be reached. Such deviations between the plan and the actual conditions
are detected by continuously monitoring several values that determine the system
state, allowing to initiate replanning by the online planner. Fig. 5.40 shows the com-
ponents used to implement this approach.

As described in detail in [56] the planner is equipped with overall external objec-
tives that need to be fulfilled at any time. In order to forecast the future development
of continuous values determining the system state, the planner initiates a simulation
with the actually measured system and environment state for the considered actions.
The result of the simulation is a number of continuous value traces that are evalu-
ated according to the constraints and objectives. The constraints are used to rule out
an action, e.g. if the maximum peak power is too high or the comfort value used by
the system is too poor during the simulation. Otherwise the action is considered as
possible alternative by the planner. To finally decide for a possible alternative it is
further evaluated with respect to the external objectives, for instance regarding the
mean comfort or energy consumption of the overall section.

248 B. Kleinjohann, L. Kleinjohann, and C. Rasche

5.3.8.2 Methodology

One important issue of a hierarchical hybrid planner is the computation of a multi-
level hierarchical configuration of system parameters during system operation. This
configuration is used to improve the offline plan to take additional constraints or
external objectives into account when different environment conditions or track seg-
ment properties must be considered.

The planner takes its input from the hierarchical optimization (cf. Sect. 5.3.2)
and the hierarchical modeling (cf. Sect. 5.3.3). The results of these components are
abstract models of the system parts and a set of Pareto-optimal parameter settings.
As these components are designed in a hierarchical fashion, the outputs are precal-
culated on different hierarchical levels.

As an example for illustrating the methodology the Active Suspension Module
of the RailCab (cf. Sect. 2.1.4) may serve. The active suspension system of the
RailCab can be partitioned and structured hierarchically according to the function
of each module. The hierarchy consists of two levels. On the upper level, the entire
system which is in charge of the active suspension is considered. Beneath, on the
lower level, there are two actuator groups realizing the active suspension by ensuring
correct deflections of the fiberglass reinforced polymer springs (cf. Sect. 2.1.4).

The planner computes a multilevel configuration of the parameters of the active
suspension system for each track segment based on the inputs described before. If
the constraints could not be met, the planner adjusts only the lower level settings to
reach the current goals, without affecting the upper level settings. Different objec-
tives can be handled by different hierarchical levels.

During the movement of a RailCab, which executes a given plan, a monitoring of
the current system behavior by measuring values like energy consumption and given
comfort takes place. The measured data is compared to the data, which were taken
into account to compute the initial plan. If the difference between this data is too
high, a replanning is necessary. Hence, during system movement alternative Pareto-
optimal parameter configurations have to be selected, which take into account these
deviations. For this purpose the simulation component is used to predict the system
behavior resulting from alternative parameter settings for the next track sections.
These settings build a discrete dimension of choice for the planner and can be used
for a predictive planning of the next track sections.

5.3.8.3 Application and Evaluation

The approach was evaluated using the Active Suspension Module (cf. Sect. 2.1.4),
which is a part of the RailCab. The values for energy and comfort are abstract values
without units of measurement. The test track consists of seven track sections. An
overall energy consumption with the value 10600 and a comfort constraint for each
track section of 49 was given. The two constraints, energy consumption and comfort,
are in conflict because a higher comfort leads to a higher energy consumption. Two
different types of planning were compared. They also considered the influence of
changing environmental conditions, in this case represented by varying crosswind

5 Methods for the Design and Development 249

Fig' 5'41 Results Of a test 35 R FEI I EERRRE)
run. As higher the energy P, :
consumption is as higher is 8 P
the value. A higher comfort ~ 30 : : 2
is represented by a lower g : : . : :
value. S osf D . [P N S
aob o N Fores ... A L ;
E 3gt ‘‘‘‘‘ ‘‘‘‘‘‘ ‘‘‘‘‘‘ ‘‘‘‘‘‘ ‘‘‘‘‘‘
o == === Constraint : : :
36 p 444444 444444
=)
34 2
o 10 44444444444 ' L L
£ : :
= L |]
@ Crosswind
S o
0 2 4 6 8

Track Sections

settings. First, a hybrid planning was performed, which led to a resulting plan P;.
Thereafter, the hierarchical hybrid planning approach was executed using the same
constraints on the same test track. While the non-hierarchical approach was not
always able to reach the constraints, the hierarchical approach computed a plan P,
in which each constraint was always reached with only small increases in energy
consumption. A more detailed evaluation of the results is represented in [56].

The results in Fig. 5.41 show the energy values and comfort values as well as the
crosswind settings on each track segment.

The results show that only the hierarchical approach was able to consistently
meet the comfort constraints by finding a feasible plan. The non hierarchical plan-
ner violated the constraints at the track segments 2 — 4 and 6 — 7. The reason is,
that the non-hierarchical planner did not have enough options to consider these con-
straints. The hierarchical planner can change the Pareto points influencing the lower
level parts, i.e. the two actor groups realizing the active suspension as mentioned
above. In contrast, the non-hierarchical planner can only change to another Pareto
point for the overall system in order to satisfy the given constraints. This leads to
different and sometimes inadmissible configurations. The concrete values selected
by the planners P; and P> are shown in Table 5.2.

Table 5.2 shows that changes on the upper level have a much higher effect on
the resulting values than changes on the lower level. Changes on the lower level
also have an effect when both planners choose the same Pareto points for each track
segment on the upper level. Only the hierarchical approach was able to meet the

250 B. Kleinjohann, L. Kleinjohann, and C. Rasche

constraints due to its ability to change the Pareto points influencing the lower level
parts.

The results show that the hierarchical planning can use a more precise config-
uration to match the given constraints. Nevertheless, improvements regarding one
parameter always imply impairments regarding other conflictive parameters, due to
the Pareto-nature of the available planning alternatives.

Table 5.2 Energy and comfort values. Energy Comfort
Maximum of Total Energy 28.300. Comfort Pl P2 P1 P2

Constraint 39 section] 48124 494023 35.14 34.87
section2 2930.19 363437 40.15 38.09
section3 292029 362522 40.07 38.02
sectiond 3001.84 371425 407 38.62
section5 48237 49527 3523 34.97
section6 3001.84 371425 407 38.62
section 2920.83 3625.69 40.08 38.02

amount 24411.09 28206.71 272.07 261.21

5.3.9 Statistical Planning

Bernd Kleinjohann, Lisa Kleinjohann, and Christoph Rasche

Taking statistical data into account to compute plans for mechatronical systems re-
sults in a self-optimizing behavior. This is due to the fact that observations of previ-
ous system behavior are used to improve the so called policy describing the action
selection strategy of the system. This principle of learning from observations is used
to construct an intelligent self-optimizing system that is able to fulfill several prede-
fined tasks in dynamically changing environments.

5.3.9.1 Principle

The statistical planning approach for mechatronic systems described in this sec-
tion relies mainly on a statistical data base and rewards; it applies the principles of
Reinforcement Learning. The environment is modeled as a discrete finite non deter-
ministic Markov decision process as described by Sutton and Barto (1998) [197].
The mechatronic system measures its current state, selects an action according to a
given policy and performs this action. This leads to a transition into a new state and
generates a reward signal. Finally, the mechatronic system observes the new state
and the reward and compares it with the previous state and the action performed.
Based on this comparison the policy is adapted. The objective is to maximize the
reward.

5 Methods for the Design and Development 251

5.3.9.2 Methodology

One requirement is that the statistical planning, i. e. the creation of statistical data
and the planning, must be done online. This requirement arises since it is hard to
create a statistical data base for a real world system where model values appropri-
ately reflect the properties of the environment in which the system works. Hence,
the algorithms used for statistical planning must take into account the limited com-
putational power of the mechatronic system.

One algorithm recently investigated by several researchers, which is able to fulfill
the requirements is Q-Learning [205]. It is an off-policy temporal difference learn-
ing algorithm and uses an action-value-function whose update can be expressed
recursively. This allows the online execution of the algorithm. The action-value-
function Q(s,a) is used to compute the benefit, if a given action in a given state is
executed while a fixed policy follows. This action-value-function is similar to the
cost functionals presented in Sect. 1.4.1.

QH_](S,(J) = Q[(S,Cl) +a I"H_I(S,(l) + Y HLE}XQH—I(s/aa/) - Q[(S,a) (520)

Equation 5.20 is a so called sample backup update of the action value function
where r(s,a) specifies the reward for taking action a in state s, @ denotes a step
size parameter and Yy a discounting factor used to handle continuous tasks. The step
size parameter controls the learning rate while the discounting factor determines the
importance of future rewards. Q(s,a) is the quality of a state-action combination.
One drawback when using this approach for statistical planning is that it needs a
large number of episodes before it converges making it very time consuming. An
episode is a single run from the initial configuration until s’ is a final state.

To overcome this problem, the Prioritized Sweeping algorithm [147] can be
used. The main idea is that a model of the environment is maintained. In this context
the term model means everything the mechatronic system can use to predict the
reaction of the environment when a certain action is performed while the system
is in a certain state. In the described case it means that after the performance of
an action and updating the action value function, several steps are simulated using
the stored model of the environment to predict the outcome. This can speed up the
approach by a factor of several magnitudes compared to the classical Q-Learning
approach. Additionally, convergence to the optimal policy can be guaranteed, as
shown by Li and Littmann (2008) [136].

5.3.9.3 Platforms and Applications

The approach was implemented on the miniature robot platform BeBot [99] (cf.
Sect. 2.2) in order to improve the behavior for the application presented in Sect.
2.2.4. The main sensor used to measure the current state is the camera of the Be-
Bot. Moreover, in order to use classical learning algorithms like Q-Learning, a few
assumptions concerning the state space of the environment were made. The state

252 B. Kleinjohann, L. Kleinjohann, and C. Rasche

space is assumed to be discrete and of finite size. In addition, a restriction of the
set of possible actions took place and the mapping of abstract actions to the actual
motor commands was fixed. The used state space and action set is based on Asada
etal. (1995) [11].

Image processing is done directly on the BeBot using a color based image seg-
mentation and feature classification approach [111]. The data extracted from the
images are then used to determine the current state of the BeBot, for instance, its
(discretized) distance to objects in its environment, which could either be goals it
has to reach or obstacles it has to avoid. This state information is further used as
input of the behavior module, i. e. as input of the statistical planning algorithm.

Practical evaluations of this approach revealed, that noisy images and high sen-
sitivity of the color based feature extraction to illumination changes often lead to
the detection of abrupt state changes of the system, e.g. since the detected objects
or their positions vary between subsequent images. Another problem is that using
the camera a BeBot is not able to perfectly determine its current state. Often several
states can be possible due to the limited information the BeBot receives through the
use of its camera. The problems were solved by considering a so called hidden state
in the model. These models are called partially observable Markov decision process
(POMDP) [143]. In POMDPs it is assumed that the actual state (hidden state) of the
underlying Markov decision process is not directly observed but the given observa-
tions appear with a certain probability in each state. Rather than always having a
fully observable state, a belief state probability distribution over all the states has to
be maintained. The probability for each state s to be the belief state can be computed
recursively, i. e. based on the last belief state, the last action a, the current observa-
tion o, and the transition and emission probability parameters of the model as shown
in Eq. (5.21).

bl+l (S]) —Pr (Sj|0,a,bt> _ Pr (O‘SJ‘)ZS,*ESPI. (sj‘siva) bt (Si)

= 5.21
S, esPr(olse) SoesPr(silsna)b (s)) O

The parameters of the model can be computed offline using a modified version
of the Baum-Welch algorithm [143].

This leads to a belief state which is no longer discrete. That makes it impossible
to find an optimal policy using the described algorithms. Solving POMDPs directly
needs a high computational effort. So, only the most likely state and output are
considered to be the actual hidden state. The BeBot then takes the selected state as
its current state and uses it as the basis to determine its next action. Based on this
method only the underlying MDP must be solved using Q-Learning or Prioritized
Sweeping as described above.

5 Methods for the Design and Development 253

5.3.10 Behavior Planning in Nondeterministic Environment

Philip Hartmann

In order to increase the dependability of self-optimizing mechatronic systems, cog-
nitive planning components with enhanced information processing are also inte-
grated into the system. These components allow mechatronic systems to plan their
behavior in order and fulfill individual tasks independently and proactively. A single
task represents a sequence of actions executed by the mechatronic system within a
limited time frame in order to reach a given goal state. Along with bare fulfill-
ment of that task, i.e. finding an arbitrary sequence of actions to reach the desired
goal-state, planning tries to minimize or maximize objectives, such as minimizing
energy consumption. For this reason, actions are only selected if their expected re-
sults fit the desired objectives. With respect to dependability, it is possible to create
alternative plans for critical situations before they arise, i.e. for particular environ-
mental or low energy situations. However, this may decrease the availability of the
mechatronic system and the reliability of subsequent task fulfillment. Furthermore,
behavior planning considers the continuous and nondeterministic environment of
the system (cf. [118]).

When modeling a planning domain for behavior planning of intelligent mecha-
tronic systems (cf. [118, 119, 125]), the main challenge is to map the partial function
solutions onto actions within the framework of PDDL (Planning Domain Definition
Language, cf. [65]). Depending on the amount of detail desired when modeling
these functions, this approach results in a higher or lower abstraction of actions. In
case the of behavior planning, the executed partial function solutions are called oper-
ation modes. Thus, a planning problem for mechatronic systems can be formulated
as follows (adapted from [119]):

OM is a finite set of available operation modes,
S is a finite set of possible system states, and
s € S is a state vector with s(i) € R for the i-th component.

Furthermore, for each operation mode om € OM:

o prec®™ = {(Xjpwer < (i) < Xupper) | Xiower, Xupper € R} s the set of preconditions
which must be true for the execution of operation mode om and

e post®" is a set of conditional numerical functions describing the change of in-
fluenced state variables. A condition is a logical expression (conjunctions and
disjunctions) of comparison operations; if a condition is true, the result of the
corresponding numerical function is assigned to state variable in the next state s’
of the plan [119].

A specific planning problem is the finding of a sequence of operation modes
which describes a transition from an initial system state s; € S to a predetermined
goal state s; € S. Thus, a single task of a mechatronic system is given as a 2-tuple
O = (si,Sg). A solution to the planning problem can be determined by applying a

254 P. Hartmann

state space search algorithm (cf. [74]), for example. The optimal solution (e.g. mini-
mum of energy consumption) can be found by computing the specific solutions with
respect to the given System of Objectives. For this purpose, €2 is a set of objectives
and f: S x Q — [0,1] is a function that indicates how well the execution of an op-
eration mode in a given state satisfies the objective. Using the weighted sum of the
objectives, the optimal sequence of operation modes can be determined (cf. [119]).

During runtime in a non-deterministic environment with continuous processes,
behavior planning has to include methods for handling resulting problems. For ex-
ample, Klopper (2009) (cf. [118]) uses a modeling approach to integrate continuous
processes based on optimal control and continuous multiobjective optimization (also
cf. [73]), as well as estimation obtained by fuzzy approximation. To manage plan-
ning under uncertain conditions, different techniques can be combined in a hybrid
planning architecture (cf. [119]).

[}]
7]
o) o) =)
o Se o c
ec > £ 2c
= Cc & c —_C
= C c e €
oc U} oG
o a0 o
-
A 4 A4
Plans Real Time Plan
Modification
\ 4
Active
Simulation » Plan Update > Plan
A
Execution » Comparison

Fig. 5.42 Hybrid planning architecture (source: [119])

Figure 5.42 shows the hybrid planning architecture with the corresponding com-
ponents for planning, execution and monitoring of plans. The total planning is di-
vided into three separate sections: offline, just-in-case and online planning. The of-
fline planning represents a planning process where, initially, a deterministic and
optimal plan in view of the objectives is fully created before execution. The result-
ing plan is used in the just-in-case planning to do a probabilistic analysis for plan
deviations. The present and deterministic plan is examined for estimated variances

5 Methods for the Design and Development 255

in order to proactively generate conditional branches, with alternative plans for crit-
ical system conditions. A threshold specifies the maximum probability of state de-
viations which would result in a generation of conditional branches (see [125], in
particular also [125] and [118].)

For this purpose, an additional stochastic planning model is formulated based on
the deterministic planning model. This consists of stochastic states s” with |s?| = |s],
where range(s?(i)) — P(R) is the values range and distribution(s”(i)) the proba-
bility distribution of the state variable s” (i) and a stochastic variant of the operation
modes. Let in{™ C pre®” be a subset of input variables and out{™ C post™ a subset
of output variables. For each output variable o € out{", a Bayesian network (cf. [20])
bnd™ is created to formulate the stochastic relation (cf. [118, 119]; for a concrete ex-
ample of creating a stochastic model cf. [125]). As a result, it is now possible to use
the just-in-case-planning to generate alternative plans for situations that could occur
with high probability during operation.

The online planning (cf. Fig. 5.42) serves as a fallback mechanism; it selects the
optimal operation mode for the next execution step. Thus, operation in previously
unplanned situations is guaranteed. A simulation of the continuous system behavior
will check whether the current action of the active plan is executable under the given
environmental conditions. If this is not possible, online planning is necessary, e.g.
for a situation with extreme environmental influences such as heavy rain. While
completing the execution of previously planned operation modes, a comparison of
planned and actually reached system states is carried out.

A process for plan updating will check whether a pre-determined plan is avail-
able or whether a plan modification by the online planning is necessary. This will
guarantee the immediate availability of the next operation mode (cf. Fig. 5.42).

The just-in-case and online planning are implemented as anytime algorithms (for
the usage of anytime algorithms in intelligent systems cf. [214]). The planning pro-
cess can be interrupted at any time to obtain a result, but with increasing time for
calculations it provides a higher quality of result, as it is possible to generate more
branches and to reach a higher depth of planning.

The dependability our type of system can be influenced by various factors. A
major factor is the availability of energy, as this is crucial for the operation of the
system. To ensure the dependability of the mechatronic system, it is essential to
use the energy storage in a valid range and in particular to continuously observe
the state of charge. Energy Management can use behavior planning to proactively
schedule future energy demands according to the fulfillment of the current task,
which increase the dependability of the mechatronic system (cf. [125]). Table 5.3
shows the values for operation modes derived from the multiobjective optimization
from the Active Suspension Module of the RailCab system.

The experiments described here were intended to allow to evaluate three hypothe-
ses (cf. [119]). One of these hypotheses in connection with the dependability was
that a lower threshold probability and a higher number of alternative plans increases
the reliability of the just-in-case planning ([125]). The simulated experiments in-
cluded four scenarios (source [119]):

256 P. Hartmann

Table 5.3 Values for f; (weighted average body acceleration in m/s*) and f» (energy con-
sumption in ws) of operation modes derived from the multiobjective optimization of the Ac-
tive Suspension Module. (source: [119])

OM Objective Track type
function I I ma mv.v VI VI VI IX X

a fi 0.117 0.233 0.350 0.466 0.583 0.699 0.816 0.932 1.049 1.166
bp) 196 393 589 786 982 1179 1375 1572 1768 1965
b f1 0.152 0.304 0.457 0.609 0.761 0.913 1.066 1.218 1.370 1.522
Ni) 165 329 494 659 823 988 1153 1317 1482 1647
c fi 0.192 0.385 0.577 0.770 0.962 1.155 1.347 1.540 1.732 1.925
bp) 142 283 425 567 709 850 992 1134 1275 1417
d fi 0.224 0.449 0.673 0.897 1.122 1.346 1.570 1.794 2.019 2.243
f 122 245 367 489 612 734 856 979 1101 1224
e fi 0.262 0.523 0.785 1.047 1.308 1.570 1.832 2.093 2.355 2.617
Ni) 104 208 313 417 521 625 730 834 938 1042
ffi 0.298 0.595 0.893 1.191 1.488 1.786 2.084 2.381 2.679 2.977
bp) 87 173 260 346 433 520 606 693 779 866
g fi 0.331 0.662 0.994 1.325 1.656 1.987 2.318 2.649 2.981 3.312
Ni) 69 138 206 275 344 413 482 550 619 688
h fi 0.375 0.749 1.124 1.499 1.873 2.248 2.623 2.997 3.372 3.747
f 50 99 149 199 248 298 348 398 447 497
ifi 0.435 0.870 1.305 1.739 2.174 2.609 3.044 3.479 3.914 4.349
f 27 55 82 110 137 164 192 219 247 274

1. (£0%): The energy consumptions drawn from track networks were not changed
during simulation.

2. (£15%): The energy consumptions drawn from track networks were either de-
creased or increased by a random value up to 15%.

3. (+15%): The energy consumptions drawn from track networks were always de-
creased by a random value up to 15%.

4. (—15%): The energy consumptions drawn from track networks were always in-
creased by a random value up to 15%.

The results are shown in Fig. 5.43 (for a detailed description of the simulation
parameters and the executed scenarios cf. [119]) When regarding the percentage of
failed plan execution during the simulation runs for different scenarios, adjusting
the two parameters threshold values and number of alternative plans reduces the
number of failed plans significantly.

A detailed explanation of behavior planning for mechatronic systems can be
found in [119, 125]. In particular, [125] gives a deeper understanding of the prob-
abilistic plan structure used in the analysis of the just-in-case planning. The ba-
sic methods were originally published in the dissertation by Klopper (2009) [118],
which may also be a good starting point for further information.

(9}

Methods for the Design and Development 257

a (a)#plans b
(b) tresholds
(c) failure in %

Initial
Initial

oor oM) oor M)

Initial
Initial

Fig. 5.43 Percentage of failed execution depending on threshold probability and number of
available alternative plans; (a) Return to Standardplan (£0%); (b) No Return to Standardplan
(£0%); (c) Return to Standardplan (£15%); (d) Return to Standardplan (4+15%) (source:
[119])

5.3.11 FIPA Conform Cross-Domain Communication

Philip Hartmann

Another advantage of self-optimizing systems is given by the possibility for intelli-
gent communication of individual subsystems. The FIPA specifications (cf. [106])
provide a suitable way to implement cross-domain communication for autonomous
mechatronic systems. To enable a more sophisticated approach the further consid-
erations will include a requirement scenario for the RailCab system. A production
facility is pursuing a just-in-time procurement strategy (JIT). To achieve this strat-
egy, the transportation of goods is done by the RailCab system. For this purpose the
production facility has access to a data base of RailCabs, which are able to deliver
goods in the given time. Because of the RailCab’s ability to work in a team, there
is the possibility to take a closer look at complex voting scenarios to determine
a suitable RailCab for specific orders. Both the production facility and the Rail-
Cab system are modeled as multi-agent systems with two different domains repre-
sented by ontologies (cf. [101]). The main goal of this section is to show a principal

258 P. Hartmann

feasibility for the implementation of a FIPA based communication across the given
domain boundary. First, an exemplary overview of the ontologies, that are available
to the production facility (domain 1) and the RailCab system (domain 2) is pro-
vided. In this approach an interface ontology forms the basis of the cross-domain
communication. In addition the communication procedure of the agent interaction,
as described by the FIPA standard, is outlined in an FIPA conform auction between
the production facility and RailCabs within the JIT radius. The JIT radius forms a
set of suppliers. They have in common, that they are able to deliver the required
goods within the given time. Therefore, the goal of the auction is to identify the
lowest priced RailCab. During the auction RailCabs may occur as a team. Negotia-
tion and voting procedures enables each RailCab to submit an optimal offer for the
team.

5.3.11.1 T-Box Design

The following two ontologies are designed to demonstrate in which way the T-Box
design of underlying ontologies can be done. It is important to point out, that there
is a so called Open World Assumption given. This implies the need to explicitly rule
out unwanted facts within the ontology design. Another aspect of central importance
for the successful deployment of ontologies is their integration. Unfortunately, this
is not trivial in general. Figures 5.44 and 5.45 show the conceptual approach to
be proportionate to the problem, based on [19] and [12]. Figure 5.44 shows that a
distinction is done within the facility (domain 1) between the following levels:

e The Foundational Ontology includes the abstract concepts of time, space, object,
event, etc. As well as the concepts of major priority for this context, as there
are transporter, product and package. It is desired that only one Foundational
Ontology exists within this design, which serves as a starting point for mod-
elling the production-side and the RailCab-Interface-Ontology. In this manner,
the other ontologies can be seen as specializations and by thus allow integration.
The Foundational Ontology forms a key specification that allows more special-
ized ontologies to model redundant concepts.

e The RailCab-Interface-Ontology provides the communication interface to the
RailCab agents.

e The domainl-ontology represents the entire ontology structure, that is available
for domain 1.

Figure 5.45 provides an overview of the integration approach for the mentioned
ontologies in more detail, with respect to RailCab agent system. It should be noted
that both, the already known Foundational Ontology and the RailCab Interfaceon-
tology can be integrated into the domain2-Ontology in the same way. The ontol-
ogy of the RailCab is similar to the one of the production side in a way, that both
share the concept of the Foundational-Ontology as well as the terms of the RailCab
interface-ontology.

5 Methods for the Design and Development 259

Fig. 5.44 Three levels of
ontology generalization foundational-ontology
regarding the production

facility (domain 1) / \

production side RailCab interface
ontology ontology

N/

domain1-ontology

Fig. 5.45 Three levels of
the ontology generalization foundational-ontology
regarding the RailCab sys-

tem (domain 2) / \

RailCab RailCab interface
ontology ontology

AN

domain2-ontology

5.3.11.2 Communication Flow

In this section, a communication protocol is presented that allows the communica-
tion between the production site (domain 1) and the RailCab system (domain 2).
The shown communication process meets the specifications by FIPA standard. In
this, the production side will request RailCabs to make an offer regarding to the
transportation of a specified delivery. The contacted RailCabs may be associated
with a supplier’s fleet, with teams trying to optimize their company’s profit. This
is realized by distributing received auctions towards their team members as part of
a negotiation. In order to vote for the RailCab which offers the best conditions for
the group to take over the job. The figure 5.46 illustrates the underlying connection
graph of a single RailCab team. Highlighted are the agents RailCab A and C, and
productionside because they are particularly interesting for the further consideration
of the communication sequence.

260 P. Hartmann

It is necessary to find an efficient voting algorithm which allows the RailCabs to
optimize their teams benefit within the given time. The problem is equivalent to the
principle Leader Election problem where agents are differentiated on the basis of a
utility function. Since this may not be clear, however, ambiguity of the function is
not relevant for maximizing the supplier’s earnings.

Fig. 5.46 Arbitrary connec-
tion graph of Railcab units

and the production site

RailCab C

production side

RailCab A

It must also be assumed that not every member of the team can exactly name all
other team members that are relevant for the problem. Since individual data might
not be actual, or communication might not be successful within the given deadline
by the production side (cf. Fig. 5.46). The voting problem in principle is a Leader
Election in a spanning tree with asynchronous communication. It is therefore useful
to take advantage of the FloodMax approach here. Unfortunately, the algorithm is
generally in arbitrary graphs with asynchronous communication is very difficult to
use (cf. [139]). Therefore the algorithm will be used in an optimized form regarding
to the problem.

The voting procedure can be divided into several sub-routines. Figure 5.47 illus-
trates the reaction of the RailCab receiving a call-for-proposal message. It
sends an inform message to all known team members containing the following:

e The original cfp message, that was send from the production site, this contains
all the terms of the offer and a deadline until proposals in the form of proposal
messages have to be done.

e The value that was determined by the utility function, with respect to the auction.
This should be the benefit of the team as the transmitter can achieve if it would
accept the job.

Each receiver of such an inform message has to check weather the utility func-
tion may result in an higher value, with respect to his individual parameters. In case
of a higher value the receiver knows that a better result for it’s team can be achieved
by taking the job, rather than the team member, that has send the inform message.

5 Methods for the Design and Development 261

production side RailCab A RailCab C
| | |
| 1: cfp | AN

—_— — = — — |— each RailCab will

e | make a proposal if
| 2:inform deadline is due and
auction votin i no better neighbor
{ } | { 9} < 3: inform | has been found. This

may result in multiple
proposals. But

4: propose results will optimize
with a looser
deadline.

_ — — | |— — — |

-
-¢

5: accent proposal

Y

Fig. 5.47 Sequence diagram communication flow

If the deadline, given by the production side within the initial ¢ fp message, is
about to expire, each RailCab is in a difficult situation. The potential team bene-
fit can only be optimal if and only if the production side gets proposals from team
members, which can grant a maximal profit. Because the production side itself does
not differ between the optimal and suboptimal team members, because there is no
data nor interest about it, it may choose randomly among the best bids. In order
to maximize the potential team profit, it would be best for those suboptimal team
members to ignore the auction, by this they higher the probabilities of each optimal
team member to gain the job. Figure 5.47 shows an example for the flow of com-
munication, the presentation is limited for reasons of clarity to only three RailCabs
of the same team. It can be seen how the auction is initiated and in which way the
negotiation of RailCab voting takes place.

5.3.12 Preparing Solution Pattern '"Hybrid Planning''

Roman Dumitrescu and Harald Anacker

To enable self-optimization in mechatronic systems, planning methods are of high
importance. However, classic planning methods consider state transitions as a black
box, so only the state before and after the transition will be accounted for the self-
optimization process. In mechatronic systems the continuous run of the processes
taking place within the system should not be neglected in order to avoid deviations
during the execution of a plan. As a consequence, mechatronic processes have to be
described in a continuous way, but also needs to be planned. The solution pattern
"Hybrid Planning" is based on the detailed method for the behavior planning in
non-deterministic environment which was explained before. Core of the solution

262 R. Dumitrescu and H. Anacker

to analyze
the situation

to adapt

objectives behavior

|
l |
I |
b P . |

applicable methods: applicable methods: applicable methods:
I fuzzy-approximation 1. partial-order-planning I '+ no specific methods necessary |
| » numeric simulation | | « forward state-space search || |
I « backward state-space search |

« graphbased planning

I | '« real-time heuristic search | |
| | |+ online-planning | |

Fig. 5.48 Possible methods fort he implementation of the solution pattern "Hybrid Planning"

to realize
self-optimization

to update the to determine to adapt the
situation objectives behavior

1
1
to retrieve the o run simulation to update the ;to ret'rieve altern| | to gdjust the to provide the
model plan : discr. plan physical process plan
1
1

to retrieve result| |legend
matched plan | |[__| functon ---- logical relation

Fig. 5.49 Partial model behavior—activity of the solution pattern "Hybrid Planning"

pattern is the combination of classical planning algorithms with methods for the
approximation of continuous behavior. Regularly the approximation is realized by
a simulation model and an update of the existing plan. The solution pattern could
be realized by different combination of methods that are illustrated in Fig. 5.48.
The different methods are allocated to the different phases of the self-optimization
process.

The main planner is subdivided in two different planners. A discreet planner gen-
erates the offline plan before the system starts running. Depending on the different
usage conditions additional planners are necessary, for example to cooperate with
additional (sub)systems. Figure 5.49 shows the partial model functions of the solu-
tion pattern "Hybrid Planning". A discrete planning method "determines the objec-
tives" to generate plans or partial plans, whereas the continuous parts of the planning
focuses on "to update the situation" for the evaluation of the planning steps. Merging
the results of the continuous planning into the discrete planning results in "adapt-
ing the behavior" whether by "providing the plan" or by "adjusting the physical
process".

263

5 Methods for the Design and Development

sse004d Jo pus Q) sseooud jo uibeq @ ©)eplodu0d f-“ apIAIp AA.

uopjewlojul

MO|
P <

puabaj

aAoalgo
mau oy ued
8y} ydepe o}

ue|d pasedaid
18s 0}

Joineyaq jdepe o}

ABojens
Buiesado
ua.1Ind
Ayipow 0y

'senjeA payoads
Yim uope|nwis
ay) aledwoo 0}

ABajens 1ualind
uo paseq
- aimnyay; N+

aje|nwis o}

uoienyis ay) azAjeue o}

sueld jo
Jaquuinu ayul
a)esausb o)

sueld
- aAljeulIs)e ~
ajesauab 0y

auliyo

ue|d aja10sI9p Au.

a)jesausb o}

SOA1}09[q0 BuUIWIB)ep 0}

Fig. 5.50 Partial model ac-

tive structure of the solution
pattern "Hybrid Planning"

R. Dumitrescu and H. Anacker

264

Moy}
uoljewJojul
dnoib

|eo1bo|

dnoib
-uiened
juswale
-JUBWIUOJIAUD

Juswae
-wa)sAs

Jojelado aAB|al

o
<

puaba)

Fig. 5.51 Partial model
functions of the solution
pattern "Hybrid Planning"

Bujuued
paseqabpajmous|

ue|d wus)-piw

ueld “
wisl-piw |

ABajesis buiesado
Buiuue|d ayei0sIp

jusuwiuolinue
ay} Jo ejep :

uopneooads
-wa)shs

Bunelado jo
aseqg-abpamouy

apow s|qissod

ue|d wJa)-piw

Buneledoos jo saibeiens

Bujuued
opsijiqeyoud

Bujuueld

slouped aAlesadood

Jojelado aApubod

The procedure of the hybrid planning takes place in several steps (cf. Fig. 5.50).
As opposed to the three actions of the self-optimizing process, the hybrid planning

has at the beginning four main activities, which can be classified into the three steps
of self-optimization anyhow. Even before the "Analysis of the situation" takes place,

there is an initial offline planning which determines the initial objectives (red ele-
ment in Fig. 5.50). Then, the plan actions are analyzed in simulation by comparing

5 Methods for the Design and Development 265

the plan with the current situation and the current plan gets modified or rescheduled,
not only by calculating alternative plans, but also potentially by using the data from
the simulation steps. Eventually the currently active plan gets executed.

For the implementation of the functions of the solution pattern "Hybrid Planning"
the following essential system elements and arrangement of them were identified
(cf. Fig. 5.50).

The system elements "offline planning" and "predictive planning" are realizing
the function "to retrieve alternative discrete plan", which is illustrated in Fig. 5.51.
The "online planning" holds the function "to retrieve result matched plan". The sys-
tem element "approximation of continuous behaviors" carries out the functions "to

run simulation", "to retrieve the model" and "to run simulation".

5.4 Dynamic Reconfiguration

Sebastian Korf and Mario Porrmann

When principles of self-optimization refer to the topology and structure of micro-
electronic systems, a reconfiguration of the system architecture or of the dedicated
system components is required. In this context, reconfigurability means the possibil-
ity to change the functionality or interconnection of hardware modules in microelec-
tronic systems before and during operation. We distinguish between fine-grained
(FPGA-based) and coarse-grained (processor-based) reconfigurable architectures.
These architectures assign two different hardware technologies for the process step
"Selection of Hardware Technology" in the design and development of electronic
engineering in Sect. 3.3.4 on page 88. In Sect. 5.4.1, fine-grained FPGA-based dy-
namically reconfigurable systems are introduced which facilitate System on Pro-
grammable Chip (SoPC) designs with a complexity of several million logic gates,
several hundred kBytes of internal SRAM memory, and embedded processor cores.
Section 5.4.2 will detail our work on embedded processor cores that can adapt their
internal structure at run-time. In Sect. 5.4.3, two modeling approaches for recon-
figurable architectures are described, which are used to determine the appropriate
model for the process step "Modeling of Information Processing Dynamic Recon-
figurable Hardware" in the design and development of electronic engineering. The
modeling approaches are used in Sect. 5.4.4 for the design of a dynamically recon-
figurable system. The design methods are used within the process steps "Modeling
of Information Processing Dynamically Reconfigurable Hardware" to "Synthesis
of Dynamically Reconfigurable Hardware". Section 5.4.5 concludes with concrete
applications for fine-grained and coarse-grained architectures.

5.4.1 Fine-Grained Reconfigurable Architectures

FPGA-based reconfigurable systems try to fill the gap between flexible, pro-
grammable microprocessors and application-specific hardware with respect to cost,
energy-efficiency, and performance. Partially and dynamically reconfigurable

266 S. Korf and M. Porrmann

Fig. 5.52 Architecture of a
dynamically reconfigurable
system

Static System Components

Configuration

Processor Memo
Manager v

Hierarchial Communication Infrastructure
(Application Data, Config. Data, /0O Data)

On-Chip Communication Infrastructure

PR
Module

PR
Module

PR
Module

Partially Reconfigurable Region

Dynamic System Components

systems add an additional level of flexibility since the functions and interconnec-
tivity of their hardware resources can be changed during run-time. In this way, the
architecture can be flexibly adapted to changing environmental conditions. The tra-
ditionally static partitioning into hardware and software can be replaced by a dy-
namic partitioning at run-time. Therefore, dynamically reconfigurable hardware is a
promising technology for information processing in self-optimizing systems. Nev-
ertheless, these methods are rarely used in real-world applications due to a lack of
sophisticated design tools that support partial reconfiguration. Therefore, new de-
sign methods and new hardware platforms have been developed, which enable an
efficient utilization of dynamically reconfigurable systems.

Figure 5.52 shows the system architecture that is used for the implementation
of FPGA-based dynamically reconfigurable hardware. The FPGA resources are di-
vided into a static and a partially reconfigurable region (PR region), connected by
a hierarchical communication infrastructure. The static region typically comprises
of one or more processors, embedded memory, and a configuration manager that
manages the available resources, configuration files, and the reconfiguration pro-
cess. The dynamic system components are represented by partial reconfiguration
modules (PR modules) and the placement of a PR module is done by configuring a
predefined area in a PR region of the FPGA with the corresponding configuration
data. PR modules can be loaded into or erased from the system during run-time.
Communication between PR modules as well as with the static components is real-
ized by a flexible on-chip communication infrastructure. Using state-of-the-art FP-
GAs enables the realization of complete systems on one chip, since these devices
provide all the logic resources that are required.

5 Methods for the Design and Development 267
Fig. 5.53 Multiprocessor
with processing elements in
different conditions
Fully
functional PE

performance
E Malfunctioning
)

5.4.2 Coarse-Grained Reconfigurable Architectures

The high flexibility of fine-grained reconfigurable systems, like FPGAs, comes at
the cost of high overhead in terms of chip area, timing delays, and power. An al-
ternative to dynamically reconfigurable FPGA-based systems are Multi Processor
System on Chip (MPSoC) architectures, which are also able to cope with today’s
requirements on short time-to-market due to manageable design complexity, high
energy efficiency in spite of high performance, and high reliability [210]. Here, we
target on-chip multiprocessors composed of hundreds of simple embedded proces-
sors, connected by a network on-chip (NoC) [107]. In these architectures, the inher-
ent redundancy can be utilized to increase reliability and system lifetime [165].

As illustrated in Fig. 5.53, it is expected that future on-chip multiprocessors will
comprise a growing number of processing elements. Some of them will probably
be malfunctioning or provide only reduced performance, e.g. due to semiconductor
parameter variations. Unfortunately, more and more of these system faults occur dy-
namically during operation. The goal of our approach for future self-optimizing MP-
SoCs is to provide the user with the maximum performance of energy efficiency that
can be achieved in the actual system state by utilizing as many hardware building
blocks of the architecture as possible. Therefore, we integrate methods for dynamic
reconfiguration into the architecture, which enable reconfiguration of the intercon-
nection between the building blocks of the processors at run-time. Details about
these methods are described in Sect. 5.4.5.3.

5.4.3 Modelling

The realization of dynamically reconfigurable systems requires a complex design
flow that cannot be established based on commercially available tools. Therefore,
two modelling approaches will be introduced. In Sect. 5.4.3.1 the PALMERA model
abstracts the design on different layers. The DMC model described in Sect. 5.4.3.2
further introduces analysis methods and concepts.

268 S. Korf and M. Porrmann

Fig. 5.54 PALMERA -

Paderborn Layer Model for VI Application Layer N

Embedded Reconfigurable A \

Architectures
Vv Module cPU @
Management Layer
IV Allocation Layer DD } D}l

Il Positioning Layer D }]
Il Configuration Layer %: ,

| Hardware Layer

5.4.3.1 PALMERA (Paderborn Layer Model for Embedded Reconfigurable
Architectures)

In order to realize dynamically reconfigurable systems, we propose a layer-based
approach to dynamic reconfiguration in [116]. This model systematically abstracts
the underlying reconfigurable hardware to the application level by means of six
specified layers and well defined interfaces between these layers, as depicted in
Fig. 5.54. The main objective is to reduce the error-proneness of the system design
while increasing the reusability of existing system components. Additionally, it can
be used for the comparison and consolidation of various approaches to dynamic
reconfiguration that have been proposed in literature. Each layer offers services to
the next higher layer and makes requests of the next lower layer. As for other known
layer models in computer science and engineering, the interfaces between layers
are standardized to enable an easy and separate exchange of single layers without
modifying the whole system.

The first layer in PALMERA is the Hardware Layer, representing the underly-
ing reconfigurable hardware. As such it is defined after choosing an FPGA archi-
tecture for the system. The interface to its adjacent layer is the configuration port
of the chosen FPGA. This makes the interface between the Hardware Layer and the
Configuration Layer the only non-specified interface in our model. It is the task of
the Configuration Layer to adapt to this interface.

The purpose of the Configuration Layer is to abstract from the underlying hard-
ware and its configuration port and to give a standardized interface to the Position-
ing Layer. For Xilinx FPGAs, the configuration ports are typically either the internal
configuration access port (ICAP) or an external configuration port such as the Se-
lectMAP interface. It should support write and read-back of partial bitstreams as

5 Methods for the Design and Development 269

well as a complete configuration with a complete bitstream. Due to the streaming-
based configuration interfaces of common FPGAs, the Configuration Layer can ef-
ficiently be realized in hardware. To shorten configuration time and to avoid storing
the bitstreams in the Configuration Layer before configuring, the interface to the Po-
sitioning Layer should offer a streaming-based data input for incoming bitstreams
as well as a data output for storing the information, which was read back from the
FPGA.

The Positioning Layer adapts the position information of a given bitstream to
a desired location on the FPGA. This can significantly reduce the number of bit-
streams that have to be stored for each module since all equivalent (homogenous)
areas on the FPGA can be configured with the same bitstream in this case. This
also applies to existing heterogeneous architectures if the placement is chosen ap-
propriately. The Positioning Layer thus performs a bitstream manipulation that can
be done in software (e.g. with PARBIT [103]), or in hardware (e.g. with REPLICA
[112]). However, a hardware implementation of the Positioning Layer is preferred,
since it can be realized using only a few resources, without increasing the configura-
tion time significantly. The Positioning Layer has a separate interface to the memory
holding the partial bitstreams. It is the uppermost layer that deals with bitstreams as
physical representations of the modules. The three upper layers treat the modules as
abstract units. Hence, the interface to the Allocation Layer consists only of control
flow signals. The services offered to the Allocation Layer are loading and reading
configuration data to/from a given area of the FPGA. In addition, combined read-
ing and writing should be offered, in order to shift active modules as needed for a
defragmentation of the FPGA.

The Allocation Layer manages all available reconfigurable hardware resources
on the FPGA and assigns appropriate positions to incoming modules. Therefore, the
Allocation Layer holds an abstract image of the resources which can be allocated
and deallocated during run-time. In addition, a list of all currently loaded modules is
stored in this layer. It holds information about the modules’ names, positions, status
(active, inactive, etc.), module type and a unique ID. This ID is used to identify
a module within the upper two layers. The mapping of a module to an area on
the FPGA is done according to a given placement strategy, such as first fit, best
fit, or even more sophisticated strategies for heterogeneous FPGAs, as proposed,
e.g. in [121]. When needed, the possibility to defragment the FPGA area can also
be implemented in the Allocation Layer. A defragmentation can be accomplished
automatically (e.g. when a certain degree of fragmentation is reached) or it can
be done on-demand. The Allocation Layer offers the service to place a module of
a given type on the FPGA or to delete a module with a given ID. The latter is
realized by loading an empty bitstream to the FPGA (as required for some fine-
grained placement approaches) or by simply deallocating the used resources.

The Module Management Layer completely abstracts from the reconfigurable
hardware. Its main service offered to the Application Layer is to provide access to a
module of a requested type. For this reason it holds a list of all currently loaded mod-
ules. With this list a set of different strategies can be implemented, e.g. a caching of
unused modules. For this strategy, modules are set to inactive after being released

270 S. Korf and M. Porrmann

from an application. In case an application needs a module of which an inactive in-
stance exists, a time consuming configuration can be avoided by just reactivating the
concerned module. Inactive modules get deleted from the FPGA as soon as the Allo-
cation Layer runs out of free resources. In this case the Module Management Layer
chooses a module to be deleted. This can be done according to different strategies
such as longest-unused-module-first or module priorities.

The Application Layer represents any task using the dynamically reconfigurable
hardware. This could be either software running on a (embedded) processor, such as
an operating system, or other static hardware modules. In the last-mentioned case it
is possible that multiple applications use the dynamically reconfigurable hardware
modules simultaneously.

Depending on the architecture of the system, all layers can be implemented either
in hardware or in software. On the Application Layer e.g. a small reflex operator can
be realized as a pure hardware solution or as a complex software solution running on
a CPU with an RTOS such as ORCOS. PALMERA has been included in an extension
of the OS Monta-Vista-Linux, where the bottom layers (up to the Positioning Layer)
are implemented in hardware and the upper layers are software implementations
running on a PowerPC processor on a Xilinx FPGA [174].

5.4.3.2 DMC Model for Dynamically Reconfigurable Systems

The DMC (Design, Module, and Component) model [124] is used as a basis for
the analysis of the methods and concepts for dynamic reconfiguration. The model
divides the placement of a hardware module into three levels of abstraction: De-
sign, Module, and Component. It defines the relations between these levels and is
restricted to the fundamental measures that are required for the realization of dy-
namic reconfiguration. Therefore, methods for placement and scheduling in dynam-
ically reconfigurable systems can be formally described using the DMC model. In
the DMC model, reconfigurable architectures are modeled as reconfigurable cells,
which are arranged in a matrix structure and interconnected by a communication
infrastructure. Fine-grained architectures like FPGAs can be modeled as well as
coarse grained and heterogeneous architectures. A design in the DMC model rep-
resents an abstract specification of the hardware design, e.g. based on a hardware
description language or a schematic. The term module refers to a specific imple-
mentation of a design, e.g. generated by a hardware synthesis. Finally, the com-
ponent represents an instance of a module. Several instances of the same module
may be placed in parallel at different positions on the reconfigurable hardware. For
the analysis of architectures and methods based on the DMC model, we have de-
veloped the simulation framework SARA (Simulation Framework for Analyzing
Reconfigurable Architectures). SARA is specifically designed for FPGA-based ar-
chitectures. The simulation flow of SARA is split into three phases. In phase one,
a Virtual Synthesis tool creates the modules to be downloaded to the FPGA from a
given set of module descriptions. These descriptions include information about the
required FPGA resources as well as minimum module dimensions. According to
one or more given synthesis strategies, module implementations with various aspect

5 Methods for the Design and Development 271

ratios are generated for each module description. In phase two, an RTR-manager
(run-time reconfiguration manager) executes the given benchmark and places the
required modules in a predefined order onto a virtual FPGA. The simulation anal-
ysis is done in phase three by a dedicated analysis tool integrated in SARA. In the
context of self-optimizing systems, SARA is specifically used for the analysis of
new placement and defragmentation strategies [120, 122, 123].

5.4.4 Design Methods for Dynamic Reconfigurable Systems

Based on the abstract modelling of PALMERA and the DMC model, the Integrated
Design Flow for Reconfigurable Architectures (INDRA) has been developed that
guides the designer through the different implementation steps to create a con-
crete dynamic reconfigurable system architecture. This design flow is described in
Sect. 5.4.4.1. Section 5.4.4.2 introduces algorithms for the flexible placement of
dynamically reconfigurable (hardware) modules. A design method for a Hardware-
in-the-Loop (HiL) implementation is shown in Sect. 5.4.4.3.

5.4.4.1 INDRA (Integrated Design Flow for Reconfigurable Architectures)

The design-flow of a partially reconfigurable system is different from the standard
design-flow of reconfigurable systems, which only allows the reconfiguration of
the whole FPGA. To efficiently handle these deviations from the standard flow, the
Integrated Design Flow for Reconfigurable Architectures (INDRA) has been devel-
oped (cf. Fig. 5.55). INDRA integrates all tools that are required to design dynami-
cally reconfigurable systems based on Xilinx FPGAs [88]. It combines commercial
state-of-the-art tools and tools that have been adapted or especially designed for this
framework. INDRA supports a flexible one-dimensional or two-dimensional mod-
ule placement.

First, the given application is partitioned into static and dynamic system com-
ponents. The area that is used for the static components is also referred to as the
base region. The partitioning depends on the properties of the selected device, such
as the reconfiguration granularity (length of a so-called configuration frame), and
on the selected placement approach. The architecture of Xilinx Virtex-4 to Virtex-7
devices allows a two-dimensional placement of partial reconfiguration modules at
a granularity of a configuration frame. The description of the static and dynamic
system components as well as their interconnections between each other on the top
level are specified in a hardware description language (HDL). The synthesis of the
base region and of the PR Modules is performed based on the system partitioning.
Depending on the size of the modules, which is obtained from synthesis estimation,
and on the inherent heterogeneity of the FPGA, INDRA determines the steps re-
quired for the synthesis of the PR Modules. The floorplanning of the system (the
mapping of each component to a position on the FPGA) is done by SARA, which
implements the DMC model for the dynamically reconfigurable system.

In addition to the partitioning and floorplaning of the FPGA, the concept
of partial reconfiguration requires a suitable communication infrastructure for

272 S. Korf and M. Porrmann

Partitioning

Top | | Stat. Dyn. | | Dyn. HDL/Netlist &
Level | {Comp. come |ComP\ Scheduling

Layout/
ArchGen SARA X Floorplanning

Communication
I DHHarMa Macro Generation

HW Architecture
Partitioning, Communi-

cation Macro

] Static

MiDesires Implementation of
(make_initial) Static Hardware

Initial Design,
Template for Dynamic
Components

AV X/
[MiDesires

(make_module)

Implementation of
Dynamic Hardware

[
[

HE—F A L]

Partial Designs

2 R/

N
MiDesires MiDesires Bitstream
(make_bitstream) (make_bitstream) Generation

T
| |
Top Mod. Initial/Partial
Level B Bitstreams

Fig. 5.55 INDRA - Integrated Design Flow for Reconfigurable Architectures

5 Methods for the Design and Development 273

SE

A

Rec2 g

T

It
i’

Fig. 5.56 Example of a homogeneous hard macro for a communication infrastructure with 9
regions and 4 different types of regions

interconnecting the PR modules and the base region. The communication infras-
tructure should not introduce any further heterogeneity in the system to maintain
the flexibility of placement by preserving the number of feasible positions of the PR
modules. Homogeneity implies that the individually reconfigurable tiles (a tile is the
atomic partially reconfigurable unit, cf. 5.4.4.2) are connected by the same routing
resources. Thus, modules cannot only be placed at one dedicated position, but at any
position with sufficient free contiguous resources [87]. Current commercially avail-
able FPGA place and route tools lack an option for generating this type of homoge-
neous designs. The Design Flow for Homogeneous Hard Macros (DHHarMa) [126]
targets the automatic generation of homogeneous and regular designs starting from a
high-level description, such as VHDL or Verilog. Using DHHarMA, complex com-
munication infrastructures for dynamically reconfigurable systems can be generated
based on an abstract high-level description. In [126], examples are presented, using
32 Bit data, 32 Bit addresses, 4 Byte-enable signals, and 4 Bit auxiliary lines. Ad-
ditionally, dedicated signals are connected to each region for strobe, master request,
master grant, region enable, and region reset. The communication infrastructure also
supports bursts (transmission of multiple data packets at a time) using an embedded
8 Bit burst counter (cf. Fig. 5.56).

Figure 5.57 shows an example partitioning of a Virtex-4 FX100 FPGA. In the
Virtex-4 architecture, the area of a PR region should be multiples of a configuration
frame. In the example implementation, we vertically divided the FPGA, so that the
resources located left of the center column are dedicated to static system compo-
nents, and the resources located right of the center column are considered for the
tiled PR region.

274 S. Korf and M. Porrmann

Fig. 5.57 Example for the
partitioning of a Xilinx
Virtex-4 FX100 FPGA

2 x 10 Grid of Reconfigurable Tiles

Base Region (Static Logic) PR Region (Static Logic)

5.4.4.2 Placement Algorithms for Flexible Dynamically Reconfigurable
Systems

Nowadays, most realizations of dynamically reconfigurable systems use simple ap-
proaches that are based on fixed module slots. The placement flexibility of these
implementations is different from the flexibility assumed and analyzed in the theo-
retical research work. In [123] we present ways to help close this gap by showing
how today’s heterogeneous FPGAs can be used for dynamic reconfiguration with
free module placement, varying module sizes, and multiple instances of modules.

In a tiled partially reconfigurable system as described in [87] the partially re-
configurable region is subdivided into reconfigurable tiles. Tiled partitioning allows
for the placement of multiple PR modules with various sizes in a PR region. A re-
configurable tile can be considered as an atomic unit of partial reconfiguration. A
PR region may contain several different types of tiles offering different amounts of
available resources. The tile sizes may vary according to the different resource types
within each tile.

5 Methods for the Design and Development 275

Fig. 5.58 Example of a par-

. [J Logic Block |L1 L1 LI LTICT CIHCd L0 LI O
titioning scheme using a PR OO0 00 D7D D1D D1D D1D
region with reconfigurable D RAM Block Qo0 c oo oEo

tiles . D 1 ZD 1 1
Base Region ([] [] [J O O [
PR Region HEENN D D1D DZD D1D D1D
HEENN O 0o I
OdJod D1D D1D D1D D1D
I [
D1D Reconfigurable DZD Reconfigurable

[[Tile — Type 1] Tile — Type 2

Fig. 5.59 Example of a set m,

of PR modules and their
feasible positions

4
[(21
Bil&
0

XpolMs) =
{0, (1,4)} {3,1),(3,2), 3.3)}

Figure 5.58 shows an example with a base region and a PR region, which is
partitioned into an area of 4 x 4 reconfigurable tiles. The PR region in the example
is heterogeneous, since two different types of tiles are used. At run-time, an instance
of a PR module is mapped to one or several contiguously aligned tiles. This is done
by partially reconfiguring the selected tiles using the equivalent configuration data
(partial bitstream) of the PR module. A PR module can occupy any size from a
single tile to all tiles of the PR region. Figure 5.59 shows the PR region of Fig. 5.58
and an example of a set of PR modules with the corresponding feasible positions.
The values in each tile indicate the type of the tile.

With respect to run-time placement, the PR modules vary according to their re-
source requirements, their shape, and their feasible positions. Each feasible position
of a PR module can have a different degree of overlap with the feasible positions
of the other PR modules in the system. The degree of overlap has an impact on the
placeability of the PR module. Those feasible positions that overlap with many other
feasible positions are likely to be blocked by a previously placed instance of another
PR module. Thus a reasonable online placement policy is to always select the free
position with the least degree of overlap as discussed in [121]. Besides maintain-
ing a large number of free positions at run-time, it is also possible to optimize the
placeability of PR modules at design-time. This is done by minimizing the degree
of overlap of the feasible positions of the given PR modules. At design-time, the set

276 S. Korf and M. Porrmann

Fig. 5.60 Example of an m,
overlap graph pootennnen e :
)20 1)
{11
m,
1 1 1 1
LT
1 1 .
1) [1]

of feasible positions of a PR module is defined by the shape and position of the syn-
thesis region. The optimization of the placeability is done by selecting the synthesis
regions of the PR modules that allow the best possible placement at run-time.

In order to optimize the placeability of the PR modules, a metric is required,
which quantifies the degree of overlap of the feasible positions. The overlap graph
G = (V,E) is an undirected graph, where V are the nodes and E the edges between
the nodes, that enables visualizing these resource dependencies. It shows which of
the feasible positions of the PR modules overlap with each other. The graph can be
used with arbitrarily shaped PR modules. For simplicity we will focus on rectangular
PR modules. A vertex v = (m, x,y) € V represents a feasible position (x,y) € X,o4(m)
of the PR module m € M. The set of all vertices is defined as

V= U {(m,x,y) | (x,y) € Xpos(m)}. (5.22)

meM

Hence, the number of vertices is the same as the sum of feasible positions of all PR
modules. For a vertex vi = (mj,x;,y;) € V and a vertex v, = (mp,x2,y2) € V an
edge (vq,v) is created, if v; # v, and the area of PR module m, at position (xj,y;)
overlaps with the area of PR module m; at position (x3,y,). Figure 5.60 shows the
overlap graph for the PR modules of the example in Fig. 5.59.

With the overlap graph, we can evaluate the degree of overlap for each feasible
position of the PR modules. For this purpose we introduce the position weight. Using
the overlap graph, the computation of the position weights is done in two steps. First,
the probability weights

WP(V) = palloc(m)/|Xpos(m)‘ (5.23)

are computed for each vertex v = (m,x,y) € V, where p,ji,.(m) denotes the proba-
bility of an allocation of the PR module m. The probability weight w,(v) indicates
the probability of a feasible position to be chosen, if all tiles in the PR region are
available and a random placement is applied.

5 Methods for the Design and Development 277

Secondly, the position weight w,,s(v) of a feasible position is computed by sum-
ming the probability weights of the adjacent vertices. The set of adjacent vertices
Vaaj 1s defined as

Vaaj(v) = {vaaj | (v,vaqj) € E}, (5.24)

and the resulting position weight is calculated by

Wpos(V) =wp(V)+ D wp(Vaa))- (5.25)

Vadj€Vadj(v)

The position weights reflect the degree of overlap. For example, the placement of
an instance of my at position (1,4) only blocks the position (3,3) of mj3, while the
placement of an instance of m; at position (1, 1) blocks the positions (1,1) of m; and
(3,1) of mj3. Therefore, the position weight 5/18 of position (1,4) of my is lower
than the one from position (1,1).

Apart from the design-time aspects, the position weight can also be used for
the placement of PR modules at run-time. The placement is done by selecting the
available position with the least position weight. This ensures maintaining a large
number of available positions for future placements.

A metric to evaluate the degree of overlap of all feasible positions is to generate
a weighted sum of the position weights of all feasible positions. As the probability
weight w,(v) reflects the probability of a feasible position to be selected when ran-
domly placing a module, the overlap weight of all PR modules is defined as follows:

Wour(V) = ! N Wpos(v) - wp(v) (5.26)
|V| veVv

The weighted mean of the position weights is divided by the total number of
feasible positions |V| to balance the degree of overlap and the number of feasible
positions. The synthesis regions of the given PR modules can be selected in such a
way as to minimize wo,,(V). A small w,,(V) indicates that the overlaps of feasi-
ble positions of the PR modules are small. Minimizing the overlap weight aims at
maximizing the number of available positions after placement of a PR module at
run-time. Thus the overlap weight is a metric for the placeability of all PR modules.

5.4.4.3 Hardware-in-the-Loop

Hardware-in-the-Loop (HiL) simulations are applied in many areas of embedded
systems design, but originate from control design, this is still the main area of in-
terest. In [162], three concepts and tools are presented which allow to interface a
simulation of the controller’s environment (plant) to an actual implementation of the
controller on an FPGA. While this usually requires a model of the plant which can
be calculated in real-time, we slow the implemented controller down by exploiting
special features of digital hardware. In fact, the simulation environment running the
plant model gets in charge of the clock of the hardware design. With this technique
we can integrate nearly any FPGA based DUT (Design Under Test) into a simula-
tion environment like MATLAB (Simulink), CamelView [148], or ModelSim. This

278 S. Korf and M. Porrmann

Fig. 5.61 Non-real-time I ‘
hardware interface for . .
a Hardware-in-the-Loop i ke

system ‘ I

R2K Interface to Host

Synchronizer FSM
V
System Generator/ e
VHDL-DUT .

offline HiL tool flow, called HILDE (Hardware-in-the-Loop Design Environment)
allows for a functional verification of the implemented controller in real hardware,
while former test benches from pure software simulations can be reused. Addition-
ally, HiLDE can speed up simulations by several orders of magnitude, depending on
the number of in- and outputs and the complexity of the user design. As soon as the
DUT is embedded in its target environment, HILDE cannot be used for testing any-
more, as real-time processing is required then. For this, we developed HILDEGART,
(HiLDE for Generic Active Real Time Testing), a tool to visualize and parameter-
ize an active controller in its real environment. Both branches of our tool flow use
VMAGIC, an API for the generation and manipulation of VHDL code, to gener-
ate the required hardware interfaces as well as configuration data. In the following
paragraph, the developed tools HILDE, HILDEGART, and vMAGIC are discussed
in more detail.

HIiLDE: The basic idea of our framework is the automatic integration of a DUT
into a standardized hardware interface (cf. Fig. 5.61), which enables communica-
tion between a simulator and the DUT. This interface consists of a clock controller
(Synchronizer) and a set of registers at the inputs and outputs of the DUT. The Syn-
chronizer allows clock cycle accurate control over the DUTs clock by a software
environment like Simulink. The input and output registers are used to transfer data
between the DUT and the simulation. During a simulation, the three steps 1) write
inputs, 2) do n-clock cycles, and 3) read outputs are repeated in a loop controlled
by the simulator. The data transfer from the simulation to DUT is done with the
Rapid Prototyping Platfrom RAPTOR (e.g. the R2K, cf. Sect. 5.4.5.1). In general,
the clock speed in HiLDE simulations will be much slower than the desired clock
Speed of the DUT (non-real-time) because the computation of a simulation step of
the test-bench or plant-model in the simulator typically takes a lot of time. However,
the overall simulation can become faster by several orders of magnitude, if a DUT
is moved from the simulation towards hardware.

HIiLDEGART: After a design has been successfully tested in the HILDE environ-
ment, it can be integrated into its target environment, where it works in real-time.

5 Methods for the Design and Development 279

Still, it is desirable to monitor the controller’s IOs as well as its internal states for
further testing under real-life conditions. To meet these requirements, HHLDEGART
generates hardware interfaces capable of recording signals in real-time without ad-
ditional external hardware such as logic analyzers. The idea is basically the same
as for HILDE: a hardware wrapper is generated which adds memories to the signals
in question and connects those to a bus interface. This enables a GUI to access and
display the recorded values. As the output data rates can be much higher than the
available communication bandwidth between hardware and software, resampling
units and FIFOs are used instead of registers. In addition to that, registers are con-
nected to inputs which parameterize the DUT (such as constants of a controller), so
that users can change those values from within the HILDEGART GUI. Furthermore,
the GUI offers advanced features like a triggering unit, which casts events based on
boolean operations on the 1O signals. This facilitates for example, to increase the
resampling rate once a signal reaches a critical level.

T —
Matlab/Simulink/
> Modelsim
MAI;Le/-r\'E/r 22’05:9"1 configuration Simulator (SW)
Netlist File +)
Entity Definition V\'\//ﬁgllc\;vge”efates ISE Hardware Design
rapper + Bitstream (FPGA/ [T,
VHDL Design Configuration Files RAPTOR2000) E
Entity Definition |
configuration q !
HILDEGART '
> Visualisation + E
Parameterization !
'

Fig. 5.62 Design Flow for HILDE and HILDEGART using vVMAGIC

VMAGIC: The interfaces described in the previous sections are DUT specific
and have to be adapted to each new design, which is a tedious and error prone task.
As the basic structure stays the same between all implementations, an API was de-
veloped, which enables users to write scripts that automatically generate interfaces
like these, or automate any other recurring task based on VHDL code as depicted in
Fig. 5.62. In [163], the implementation details of VMAGIC are presented.

5.4.5 Platforms and Applications

Two main platforms that support dynamic reconfiguration are used in this Section:
RAPTOR and BeBot. In the process of developing microelectronic systems, a fast
and reliable methodology for the realization of new architectural concepts is of vi-
tal importance. Prototypical implementations help to convert new ideas into prod-
ucts quickly and efficiently. Furthermore, they allow for the parallel development
of hardware and software for a given application, thus shortening time to market.
FPGA-based hardware emulation can be used for functional verification of new
MPSoC architectures as well as for HW/SW co-verification and for design-space

280 S. Korf and M. Porrmann

exploration. The rapid prototyping systems of the RAPTOR family [164] provide
the user with a complete hardware and software infrastructure for ASIC and MP-
SoC prototyping (cf. Sect. 5.4.5.3). A distinct feature of the RAPTOR systems is
that the platform can be easily scaled from the emulation of small embedded sys-
tems to the emulation of large MPSoCs with hundreds of processors. Along with
rapid prototyping, the system can be used to accelerate computationally intensive
applications and to perform partial dynamic reconfiguration of Xilinx FPGAs, as
presented in Sect. 5.4.5.1.

The BeBot miniature robot, which will be discussed in detail in Sect. 2.2, in-
tegrates an embedded processor and a dynamically reconfigurable FPGA (Xilinx
Spartan-3). An example for a vision processing application utilizing this architec-
ture will be discussed in Sect. 5.4.5.2.

5.4.5.1 Dynamic Reconfiguration of FPGAs on the Rapid Prototyping
Platfrom RAPTOR

The RAPTOR systems follow a modular approach, consisting of a base system
and up to six daughterboards. The base system comprises the communication and
management infrastructure, used by the daughterboards, which realize the required
application-specific functionalities. Because of the modular design, the user can eas-
ily integrate new FPGA technologies or communication facilities by means of addi-
tional daughterboards. The RAPTOR base system can be integrated into a host PC
or run as a stand-alone system. The optional host system can be used to ease moni-
toring and debugging. For communication with the host system, the RAPTOR-X64
base system integrates a PCI-X and a USB-2.0 interface. The board can be op-
erated outside the normal PCI environment by utilizing the USB-2.0 interface. It
is also possible to integrate a PCI-Express-based host-connection by replacing the
RAPTOR-X64 by the RAPTOR-XPress baseboard.

The Local Bus and the Broadcast Bus, which are provided with the RAPTOR
base system, offer powerful communication infrastructures and guarantee a high-
speed communication with the host system and between individual modules. Ad-
ditionally, direct links between neighboring modules can be used to exchange data
with high bandwidth and low latency. Furthermore, all FPGA modules provide ad-
ditional high-speed serial links for communication between the modules. Reconfig-
uration (including dynamic reconfiguration) is performed with the maximum pos-
sible bandwidth that the FPGAs support. The RAPTOR systems provide a direct
migration path from FPGA-based prototypes to ASIC realizations by simply replac-
ing the FPGA based daughterboards with daughterboards that integrate the devel-
oped ASICs. Daughterboards integrating different MPSoCs (discussed in detail in
Sect. 5.4.5.3) have been realized and can be integrated together with additional dy-
namically reconfigurable FPGA modules. In this way, information processing sys-
tems can be realized that combine the advantages of dynamically reconfigurable
FPGAs and MPSoCs.

Figure 5.63 gives an overview of an architecture that has been developed for
the realization of self-optimizing drive controllers for a permanent magnet servo

5 Methods for the Design and Development 281

[T Uart 0 Uart 1 GPIO
Controller

AR PPC MEQ

x
5
x
<
s 3
X BRAM PLB
& el Controller [BRAM CTRL-Intf. ‘_‘
x
s Communication
=) Fabric
T o b} b}
Pyl Py X by
SiLLis-PLB HILDE. SDRAM C§> C§> Og C’g
IEHEA . a a a o
Listener = =i Controller @b SDRAM % % % %
Legend

Local Bus

static component (not
dynamically reconfigurable)

PCI

Config Arbiter & Q | bus bridge |
Logic Decoder m -

dynamically reconfigurable
component

pJeoqJaylo ¥OLdVY

component

hard (not configurable)
Host PC

Fig. 5.63 System architecture for the implementation of a self-optimizing drive controller
based on the RAPTOR prototyping system

motor [159]. The implementation is based on the methods for dynamic reconfigura-
tion that have been previously described and is realized on a Xilinx Virtex-4 FX100
FPGA. The architecture is composed of an embedded PowerPC processor connected
to dynamically reconfigurable resources (PR Module). A processor local bus (PLB)
enables communication to the local bus of the RAPTOR system, and from there to
the host PC. The dynamically reconfigurable PR modules are used to implement
controllers or signal conditioning blocks, since these elements are exchanged ac-
cording to the current state of the plant and the current objective of the system. The
reconfiguration is performed by the Virtex Configuration Manager (VCM) [88].

A program running on the PowerPC initiates the reconfiguration based on a con-
tinuous evaluation of the control quality and realization effort, indicating the mem-
ory space from the external SDRAM where the partial bitstream ought to be copied.
The partial bitstream contains only the needed configuration for one PR module.
When a reconfiguration is requested, the VCM initiates DMA transfers from the
SDRAM controller, loads the requested partial bitstream to the target PR module
by accessing the Internal Configuration Access Port (ICAP), and sends an interrupt
to the PowerPC when done. The reconfiguration process lasts about 4.38ms, which
represents several control cycles. To overcome this, an initialization routing is used
to calculate the initial states of the new-loaded controller. A supervising program,
running in the PowerPC, is in charge of monitoring system activity and trigger-
ing the dynamic reconfiguration. For the verification of the implemented control

282 S. Korf and M. Porrmann

algorithms and for testing the correct behavior of the system during dynamic re-
configuration between different controller implementations, we have used the HiLL
environments HiLDE and HILDEGART as described in Sect. 5.4.4.3.

5.4.5.2 Dynamic Reconfiguration of FPGAs on the Miniature Robot BeBot

The hybrid processing architecture of the BeBot miniature robot consists of a main
processor complemented by an FPGA device that offers on-demand parallel pro-
cessing with the major advantage that the FPGA can be dynamically reconfigured
during runtime to optimally utilize the hardware resources and the energy budget.
In contrast to other reported approaches on dynamic hardware reconfiguration, for
example [23, 38, 145], we focus on a concept that automatically and dynamically al-
locates hardware resources depending on the current status of the robot, the required
tasks, and the context of operation [149]. Processes can be executed in software on
the processor or as modules on the FPGA using partial dynamic reconfiguration.
The reconfiguration process is managed by the robot’s operating system. The access
to the hardware is, from the application point of view, transparent.

Utilizing dynamically reconfigurable hardware for image processing instead of a
pure software solution enables real-time image processing and significantly reduces
the required computing power of the CPU. Instead, the CPU can be used, e.g. for
sensor fusion tasks, behavior generation, and communication within the wireless
network. Depending on the current context, hardware configurations can be auto-
matically loaded into the FPGA device, that is, one or more hardware modules are
able to process images in parallel. If a specific processing task has been finished,
a new hardware configuration can be loaded to optimize the resource utilization
on-the-fly.

An initial configuration of the FPGA is loaded after booting the robot. Typically,
the local flash memory of the robot is used to store the configuration data. But it
is also possible to load the configuration via one of the available wireless commu-
nication links. This feature is very useful in multi-robot applications in order to
share available processing resources of the robot team by wirelessly transmitting
FPGA configuration data to robots that are able to offer computing resources to
other robots. This type of resource sharing between wirelessly connected robots, re-
quires additional operating system services, as discussed, e.g. in [80]. In the context
of image processing, this can significantly reduce computation time and increase
the throughput of images. Reconfiguration of the complete FPGA, requires loading
a bitstream file of 728 kByte. On the BeBot, a complete FPGA reconfiguration is
performed in 25 ms, corresponding to a reconfiguration rate of 30 MByte/s. If slow
communication interfaces are used to transfer the reconfiguration data to the robot,
the configuration files can be cached in the internal SDRAM.

Utilizing the INDRA design flow (cf. Sect. 5.4.4.1), partial dynamic reconfigu-
ration of the FPGA can be used to reduce the reconfiguration time. Furthermore,
with this concept, it is possible to keep parts of the application and the application
data inside the FPGA, essentially reducing communication time. Here, the FPGA is
divided into two parts: a static region utilizing 20% of the FPGA resources (slices)

5 Methods for the Design and Development 283

frame transmission i f, fs | s |
frame processing A] [AM] [A)] [AR | [Al] $
reconfiguration rec rec rec %
i L

time/ms 5 3 - .

Fig. 5.64 Dynamic reconfiguration on a frame-by-frame basis

and a dynamically reconfigurable region, comprising 80% of the available FPGA
slices. During dynamic reconfiguration, the base region remains unchanged while
the partially reconfigurable region is completely reconfigured. Here, partial recon-
figuration can be performed in 20 ms if the bitstream is available locally on the
BeBot.

Depending on the trigger for dynamic reconfiguration, a differentiation can
be made between time-driven reconfiguration and event-driven reconfiguration. In
time-driven reconfiguration, the time and order in which PR modules are loaded
is known at design-time and do not change at run-time. The reconfiguration con-
troller can be a simple state machine that triggers the reconfiguration at the prede-
fined time intervals. On the one hand, the time between two reconfigurations can be
orders of magnitude higher than the reconfiguration time, if complex applications
are executed in turn. An example would be changing between two video process-
ing algorithms every 10 seconds. On the other hand, fast partial reconfiguration
enables hardware changes at high frequency: in video processing, time-driven re-
configuration can be triggered on a frame-by-frame basis. Figure 5.64 gives an ex-
ample, where two applications (A; and A,) are processing consecutive data frames
(f1,f2,...). It has to be assured that the sum of reconfiguration time and applica-
tion execution times are lower than 33 ms for the 30 frame per second on BeBot,
i.e. 13 ms are available for application execution for the used partitioning, which
requires 20 ms for reconfiguration. In the example, the applications are decoupled
from the data transmission from the camera since all executions are performed at
the previous frame. If this is not possible, a more complex scheduling is required,
and application execution typically starts in parallel to data transmission to increase
performance.

In the event-driven scheme, the reconfiguration time and the order of the PR mod-
ules are not known at design-time. A trigger for dynamic reconfiguration can occur
at any time. Changes of the ambient light could, e.g. be used to reconfigure between
different video processing algorithms. While the tool flow and the hardware infras-
tructure are identical for event-driven and time-driven reconfiguration, the imple-
mentation of the reconfiguration controller varies. For time-driven reconfiguration,
the reconfiguration controller can be realized by a simple timer. In event-driven re-
configuration various internal and external parameters may have to be taken into
account to decide when and which PR module to load. On the BeBot the trigger
for reconfiguration is set by a software implementation on the internal processor. In
both schemes, time-driven and event-driven reconfiguration, the calculation times

284 S. Korf and M. Porrmann

of this software part of the reconfiguration controller are negligible compared to the
FPGA reconfiguration time.

Two different hardware modules have been developed in the context of vision
processing. The first provides optical flow motion detection and the second sup-
ports color recognition [4, 35, 52]. The optical flow calculation is used to detect
walls or obstacles in the operational area and to dynamically construct a map of the
environment. The color detection algorithm enhances options to identify objects like
marked landmarks or other robots, in order to improve navigation and to map build-
ings. With the dynamic approach, both algorithms can be processed on the robot
platform under real-time constraints achieving a good utilization of the processing
devices.

To evaluate the performance of the hardware implementation of these two al-
grotihms, the BeBot miniature robot prototype has been evaluated in a test room
with artificial lighting and a convenient environment. A frame size of 160x120 was
chosen, requiring 38,400 Bytes to be transferred from the camera to the SDRAM.
The frame rate is fixed to 30 frames per second by the camera used. Therefore, the
bandwidth required to transfer the image data into memory is less than 1.2 Mbyte/s.
Since the SDRAM can be accessed with more than 80 MByte/s and the FPGA im-
plementation achieves about 46 MByte/s, sufficient bandwidth is available in the
system to transfer data between the system components. Performance is mainly lim-
ited by the processing time on the FPGA. Wherever possible, communication and
calculation are performed in parallel, i.e. calculation starts directly after receiving
the first data from the camera, or one frame is processed while the next frame is
loaded.

The optical flow does not need any particular parameter updates when the en-
vironment is changing, except for the number of columns and the speed threshold.
These parameters do not affect the performance nor the area usage of the FPGA-
based implementation. A single module implementation of the optical flow requires
1338 slices (18% of the resources available for the partially reconfigurable module)
and one frame is processed in 0.9 ms. Processing time includes the time for reading
the image data from the SDRAM and for writing the results to the processor.

In contrast, the required FPGA resources and the computation time for the color
recognition module can vary significantly depending on the number of maximum
recognizable blocks and on the number of colors. In the following paragraph, an
analysis of the different configurations on BeBot will be presented, focusing on
area consumption and computation time. For the evaluation of the block recognition
module, various configurations have been tested. Table 5.4 shows the configurations
chosen for a laboratory test. The resource requirements of the PR modules are given
in the column Used slices. The Utilization represents the percentage of slices in
the PR modules that are utilized by the implementation. Configurations that could
not be realized on the Spartan-3 FPGA because of the resource limitations of the
PR-modules are marked with an X.

In Table 5.4 the execution time and the amount of frames per second are calcu-
lated starting from the write command for the first pixel of the frame to the final

5 Methods for the Design and Development 285

Table 5.4 Configuration test parameters for color recognition on BeBot

N colors N blocks Used slices Utilization Execution time [1ts] Frame/sec

1 1 1250 11% 783.83 1275
1 2 1363 12% 784.13 1275
1 4 1898 16% 785.20 1273
1 8 2547 22% 810.60 1233
1 16 3867 33% 5281.64 189
1 32 6794 58% 20450.22 48

2 1 2351 20% 783.83 1275
2 2 2912 25% 784.13 1275
2 4 3672 31% 785.20 1273
2 8 5061 43% 810.60 1233
2 16 7816 67% 5281.64 189
2 32 X X X X

4 1 5174 44% 783.83 1275
4 2 6165 53% 784.13 1275
4 4 7434 64% 785.20 1273
4 8 9846 84% 810.60 1233
4 16 X X X X

4 32 X X X X

interrupt provided by the module. At that time the results of the computation are
already stored in the output FIFOs.

Reconfiguring between optical flow and color recognition requires 20 ms. The
camera sends data with 30 frames per second, which results in 33 ms for calcula-
tion. Since the optical flow is calculated in 0.9 ms, 12.1 ms are available for color
recognition if dynamic reconfiguration on a frame-by-frame basis is performed (cf.
Fig. 5.64). Hence, optical flow and color recognition for up to 16 blocks can be
performed virtually in parallel without frame-loss by dynamically reconfiguring be-
tween two frames.

The proposed hardware implementations of the vision algorithms on the BeBot
miniature robot platform show that real-time image processing is possible even on
platforms with limited processing capabilities. The use of FPGA-based hardware
releases the processor from these very computational intensive tasks. Additionally,
dynamic reconfiguration can be used to switch between different applications or to
modify the elaboration parameters at run-time.

5.4.5.3 Dynamic Reconfiguration of Multi Processor System on Chip

In addition to fine-grained FPGA-based architectures, coarse-grained architectures
are evaluated. In this context, we focus on on-chip multiprocessors that integrate
mechanisms for dynamic reconfiguration with minimum area overhead. In gen-
eral, our MPSoC system comprises of a generic and hierarchical architecture, so

286 S. Korf and M. Porrmann

Fig. 5.65 MPSoC archi-
tecture comprising the
GigaNoC communication
infrastructure

Legend

i WX Wishbone
Switch Box (i:» Professor Cluster / OnChip Bus
Professor .)
“e Subsystem I GigaNoC On-Chip
Network

& Local Memory

that the system can be configured for different application scenarios at design-time.
Figure 5.65 depicts the MPSoC architecture proposed in [150], consisting of the
SoC level, the cluster level, and the processor level. At the SoC level, a variable
number of cluster components is connected via a network-on-chip communication
infrastructure. Due to the homogeneous structure, the MPSoC system can be scaled
to meet the performance requirements of various application domains. While the
NoC provides the communication backbone for propagating data, at cluster level,
this data is processed by a reconfigurable multiprocessor system. Via an on-chip
Wishbone bus, the processor elements of each cluster can communicate locally and
can access shared memory. A single processor element represents the lowest level
of hierarchy of our MPSoC architecture.

GigaNoC is our hierarchical and scalable NoC communication infrastructure,
which is especially suitable for multiprocessor SoCs [109, 170]. The GigaNoC ar-
chitecture is depicted in Fig. 5.65. The switch boxes (SB) represent the core com-
ponents of the NoC and act like high-performance routing nodes that propagate the
data through the on-chip network. GigaNoC comprises of packet-switching [107]
and each packet is divided into smaller fragments, called flits. In order to support
arbitrary network topologies with different connectivity, the number of communica-
tion ports for each switch box can be configured during design-time. For the mesh
topology, depicted in Fig. 5.65, every switch box has four external and one internal
communication port, which connects the processor cluster to the NoC.

5 Methods for the Design and Development 287

While the number of communication channels per switch box is chosen at design-
time, the NoC topology and the routing strategies inside the switch boxes can be
adapted at run-time. Several possible routing schemes are integrated into the hard-
ware description of the switch box IP-core. A pre-selection can be made at design-
time; at run-time the user or the operating system can easily switch between the
integrated routing schemes by using special command flits. These command flits
are also used to disable single malfunctioning embedded processors or complete
processor clusters. In this case, the routing is automatically adapted to changes in
the architecture.

QuadroCore Multiprocessor Cluster

Due to the generic implementation of the internal communication port, arbitrary pro-
cessor cores and processor clusters can be attached to the NoC. Figure 5.65 depicts
an example configuration, where clusters of four N-Core processors are attached to
each switch box. N-Core is a 32-bit RISC microprocessor, which was developed in
our group as a softmacro that can be easily adapted to the needs of specific areas of
application [150]. N-Core has a common load/store architecture with a three-stage
pipeline, which delivers reasonable performance for embedded systems.

The cluster organization based on the N-Core processor elements represents a
typical MIMD multiprocessor cluster. In order to optimize flexibility and fault toler-
ance, a fast reconfiguration mechanism with low overhead has been added to the
processor cluster, resulting in the run-time reconfigurable multiprocessor cluster
QuadroCore. Without altering the instruction set architecture of the processors, run-
time reconfigurability has been introduced by adding intra-processor interconnects
to adapt the architecture in terms of synchronization, communication, and the de-
gree of parallelism [105]. Figure 5.66 depicts the base architecture of QuadroCore
and two typical configurations. Each of the four processors has its own local regis-
ter file and instruction and data memory. Exchange of register contents between the
four processors is achieved via a shared register file. Large amount of data sharing
is possible via external shared memory, accessible by a shared bus.

The decision of altering the existing structure is driven by a special reconfigura-
tion instruction, that has been added to the instruction set of the N-Core processors.
This mechanism enables a quick, single-cycle run-time reconfiguration, i.e. very
low overhead in terms of time required to reconfigure the resource connectivity.
The reconfiguration instructions can be embedded into the normal program code by
the programmer or by an optimizing compiler; no additional memory is required to
store the configuration data, like in FPGAs.

In the proposed implementation, reconfiguration requires an alteration in the in-
terconnection of the various building blocks inside and between the processors.
Currently, capabilities for reconfiguration have been added between the decode &
execute stages, between the execute & register read/write stages, and between the
processors and the shared memory. In QuadroCore, the reconfigurable interconnect
is realized by means of additional multiplexers that have been integrated into the
architecture. The reconfiguration instruction provides the configuration information

288 S. Korf and M. Porrmann

to determine the functionality of the reconfigurable interconnects between the in-
termediate stages of the instruction pipeline, i.e. the control signals of the added
multiplexers.

As mentioned, the QuadroCore cluster can be dynamically reconfigured with
respect to three main features: synchronization, communication, and parallelism,
which are briefly described in the following paragraphs.

Synchronization: Depending on the amount and frequency of inter-processor data
exchange, the processors in the cluster can operate synchronously at instruction level
or asynchronously. The cluster can be adapted according to the application char-
acteristics during run-time, since both a fine-grained synchronization scheme (for
instruction-level parallelism) and a coarse-grained independent operation (for task-
level parallelism) are supported. The run-time change in synchronization is achieved
by introducing a synchronization instruction between parts of the application where
a change in application characteristics is determined during compilation. The syn-
chronous mode ensures a lock-step operation while the asynchronous mode initiates
a barrier synchronization for every inter-processor data exchange.

Communication: The communication between the processing elements is mainly
categorized in terms of frequency of data exchange and amount of data exchange.
To suit applications where exchange of data such as register contents is frequent,
a shared register file provides a quick data-exchange mechanism. For large amount
of data, the shared memory is accessible via arbitration over a common bus. The
shared register file has a round-trip time (write and read) of 4 clock cycles, whereas
the shared memory has a variable access time between 5 to 12 clock cycles for each
access. Furthermore, register sharing among processors is possible on account of the
reconfigurable interconnect introduced between the ALUs and the register files as
depicted in the right configuration in Fig. 5.66. For applications with high register
pressure, registers from the neighboring processors can be utilized (supported by
the compiler).

Parallelism: The choice of data-parallel or task-parallel behaviour steers architec-
tural characteristics. The Multiple Instruction, Multiple Data (MIMD) mode, allows
asynchronous operations on independent data and instruction streams. The Single
Instruction, Multiple Data (SIMD) mode, as illustrated in the middle configuration
in Fig. 5.66, co-ordinates all the four data-paths with a single instruction stream,
thus saving energy via reduced memory interactions.

As mentioned above, the reconfiguration can be easily controlled by the user by
adding simple reconfiguration instructions into the C code. A smarter way of in-
troducing reconfiguration is to integrate the decision process into the compiler. As
detailed in [105, 168], the choice of the best mode of execution can be made using
standard program analysis techniques. For every basic block, our compiler, called
COBRA (Compiler-Driven Dynamic reconfiguration of Architectural Variants), de-
termines the best possible mode during compilation and a reconfiguration is inserted
between the modes. The reconfiguration overhead is kept as low as possible since
the reconfiguration between modes requires only a single clock cycle [167, 169].

5 Methods for the Design and Development 289

CoreVA VLIW Processor

As an alternative to the QuadroCore architecture, we have developed a VLIW (Very
Long Instruction Word) processor, especially suited for signal processing applica-
tions, called CoreVA [110]. Resource efficiency together with high flexibility were
the main design goals for the processor implementation. The CoreVA architecture
is a modular soft-core design, which can be configured at design-time with respect
to the number of functional units (e.g. ALUs, Multiply-Acummulate (MAC) units,
division step units), the width of the data paths, and the structure of forwarding
circuits. In the default configuration, the CoreVA architecture represents a 4-issue
VLIW architecture, implemented as a Harvard Architecture with separated instruc-
tion and data memory and six pipeline stages.

The operations follow a two- and three-address format and are all executed in
one clock cycle. Most instructions have a latency of one clock cycle, except branch,
MAC and load operations, which have a latency of two clock cycles. In SIMD mode,
two 16-bit words can be processed in each functional unit, which leads to an eight-
fold parallelism. As a first prototype, the CoreVA architecture has been fabricated
in a 65nm STMicroelectronics technology. The CoreVA system (including level-1
cache and several dedicated hardware extensions) operates at a clock frequency of
up to 285 MHz with a power consumption of about 100mW. The chip area is about
2.7sqmm including 32 kByte level-1 cache for instruction and data.

With respect to adaptability of the architecture, two mechanisms have been inte-
grated to enhance the efficiency of the architecture: dynamic bypass reconfiguration
and dynamic voltage and frequency scaling using a specially designed subthreshold
standard cell library. The bypass reconfiguration exploits the fact that many paths of
the integrated bypass are rarely used for certain applications. Therefore, the user can
change between application-specific bypass configurations at run-time. Depending
on the actual implementation, this leads to a reduction of the critical path by 26%,
which can be used to dynamically increase the clock frequency or to decrease power
consumption.

The next generation of CoreVA processor has been realized utilizing a specially
developed ultra-low power standard cell library. The new processor, CoreVA ULP,
is capable of dynamically adapting its operating parameters according to applica-
tion requirements and environmental conditions at run-time [138]. During times of
low processor load, power dissipation is substantially reduced by operating the pro-
cessor in subthreshold mode. A chip containing two Core VA ULP processors was
fabricated in an STMicroelectronics 65 nm CMOS technology and has been suc-
cessfully tested. At 1.2V, the average energy dissipation of a single-slot processor
core is 110.22pJ (at a clock frequency of 100 MHz). The minimum energy point
of 9.94pJ occurs at 325mV, i.e. energy savings of 11.1 % can be achieved during
subthreshold operation. The average clock frequency at this point is 133kHz.

S. Korf and M. Porrmann

290

sie)siboy paieys

si)sibay paieys

sla)sibay palseys

!

sio)sibay

!
!

! !

sig)siboy sia)siboy

! !

108UU0DIB)U| PaINBlU0osY

! !

Kowsy
eleq

!

sio)siboy

!
!

nv

!

Japooa

!

JSTET]
uononusul

¢

¢ 4

¢

Kiowspy
ejeqg

!

sia)siboy

!

niv

!
!

Kiowspy
ejeqg

!

sio)sibay

!

nv

!
!

109UU02JBJU| painbliuooay

Kiowspy
ejeqg

!

sia)siBoy

!

nv

!
!

Kiowsy
ejeg

!

sloisibay

!

nv

!
!

JapodaQg

!

Kiowsy
uononuisuj

Kiows|y
ejed

!

sJoysibay

_

nvy

.

J18pooaq

!

Kiowspy
uononsu|

Kiows\
eleq

!

slosibay

|

nv

|

J19p02aQ

!

AKiows|y
uononssu|

Kiowsy
ejed

!

sioysibay

nv

Japooaq

!

AKiowspy
uoronsu|

Kows\
eleq

!

sio)sibay

|

nv

|

J1apooaQ

!

Kiowas
uononsu|

¢

Kiows|\ paieys

A

A

A

109UU00IB)U| paInBluoosy

V4

A

8

8

8

8

Fig. 5.66 QuadroCore en-

uoneinblyuooay yueq Jaisibay

different modes of operation

ables switching between
at run-time

Aiows|\ paieys

Aows|\ paieys

anis

uonjesadQ |ewloN

5 Methods for the Design and Development 291

5.5 System Software

Stefan Groesbrink, Simon Oberthiir, and Katharina Stahl

System software encompasses all software approaches that interconnect the applica-
tion software layer and the hardware layer. This includes operating systems as well
as other middleware approaches, e.g. virtualization.

In the context of self-optimizing mechatronic systems, the system software pro-
vides an execution platform for self-optimizing applications that run on online-
reconfigurable hardware. The ability to cope with the dynamically changing re-
quirements from either the software or the hardware and the capability to adapt
to these changes at run-time is a prerequisite for system software being applied on
self-optimizing mechatronic systems. Hence, the system software must implement
self-optimizing methods by itself. Self-optimization in system software is thereby
not restricted to reacting to dynamical changes. The system software may also im-
plement methods that can be applied to self-optimize the performance of the execu-
tion platform concerning e.g. resource utilization.

The functionality the system software offers is strongly coupled to the require-
ments related to it. Referring to the overall design and development of the self-
optimizing mechatronic system, the general requirements on the self-optimizing
system software are defined by the principle solution (cf. Sect. 3.3.3). One example
for a general requirement is the optimization of resource allocation by exploiting
unused (however reserved) resources. This requirement is solved by means of the
flexible resource management which is presented in Sect. 5.5.2. Another example
for a general requirement on the system software is to support run-time depend-
ability. The problem of run-time dependability is addressed by two different op-
erating system service approaches, one is testing the application state by using an
online model checking while the other one is inspired by artificial immune sys-
tems that tries to identify system behavior anomalies. However, dependability of
self-optimizing mechatronic systems is it’s own subject. These operating system
services have been introduced in detail in [69, D.0.S.O.M.S. Sect. 3.2] .

General requirements express general properties of the system software, that is
implemented in the form of an OS kernel module, an OS service, or a separate
middleware layer.

However, being the interconnecting execution platform, there is a strong interde-
pendency between the system software and the application software layer as well
as between the system software and the reconfigurable hardware. Specific require-
ments arise from this interconnection in terms of provided interfaces or services
that are required by the applications or on the other hand in providing abstractions
of hardware implementation in order to encapsulate a change in the hardware con-
figuration. Both, the general requirements on the system coming from the princi-
ple solution and the specific requirements arising from the software and hardware
have to be satisfied by the system software so that an adequate platform for self-
optimizing mechatronic systems can be ensured. We assume the self-optimizing
system software to be composed of reusable components (cf. Sect. 3.3.3) that are

292 S. Groesbrink, S. Oberthiir, and K. Stahl

Fig. 5.67 Self-optimizing
system software layers Online VM, Self-
Mod(_al P monitoring
Checking [® »| ORCOS
/T I
|Hypervisor |

am [“— =
D D mory o

Hardware Resources

activated with respect to the present system requirements. Each system component
addresses a specific system function or system property.

We separate the self-optimizing system software into two different layers: one
containing the self-optimizing real-time operating system ORCOS and the lower
level layer containing the virtualization platform including the hypervisor named
Proteus. This section presents the self-optimizing real-time operating system OR-
COS and the self-optimizing virtualization platform. Fig. 5.67 shows an overview
of the system software architecture. In addition, figure Fig. 5.67 also illustrates how
the operating system ORCOS integrates the methods for Online Model Checking
and for Self-Monitoring which addresses the system’s dependability.

Considering the real-time operating system (RTOS) of a self-optimizing mecha-
tronic system, it has to be able to cope with dynamically changing system behavior
and hence dynamical changes on the requirements of the platform. We distinguish
between external and internal requirement changes. External requirement changes
are those originating from outside the system software. That means changes in the
requirements either from the software or the hardware layer. For example, due to a
software reconfiguration, an OS service will be required that has not been provided
by the operating system before. Another scenario might be that the implementation
strategy of an OS service must be exchanged based on the new software configu-
ration. The biggest challenge to cope within such a system is that not all system
parameters are determined during design-time and therefore have to be identified
during run-time. Resulting from this, the OS has to provide an interface that al-
lows to signify the changes in requirements. Furthermore, to be able to satisfy these
changes, the operating system must also provide alternatives in implementation.
And last but not least, the operating system needs structures to enable the run-time
activation or online exchange of components.

Internal requirements come from the operating system itself. As being a self-
optimizing operating system, it is equipped with desired objectives and optimiza-
tion criteria. Usually, the operating system’s objective is to optimally manage the
application’s task and the resources, e.g. in terms of resource consumption, mem-
ory management, scheduling strategies, etc. To achieve those requirements, the
operating system requires internal structures to monitor and analyze the perfor-
mance and to verify whether the optimization objectives are fulfilled. Obviously, all

5 Methods for the Design and Development 293

self-optimization efforts of the operating system must be performed under consid-
erations of real-time constraints.

The real-time operating system ORCOS [59] was first designed to be fully cus-
tomizable during design-time. However, for the purpose of online self-optimization,
we needed an operating system that is flexible and can be extended during run-time.
Therefore, we adjusted the architecture of ORCOS to enable information processing
required to enable self-optimization. We will describe the resulting OS architecture
in Sect. 5.5.1. As a basis for run-time reconfiguration, we use the concept of our Pro-
file Framework, described in Sect. 5.5.1.1, that allows alternative implementations
for applications task as well as OS components.

Modern self-optimizing mechatronic systems have highly dynamic resource con-
sumption. One of the main objectives of a real-time operating system is to optimize
resource management. Common real-time systems and middleware software are
fixed and not optimal for such scenarios. A problem with dynamic real-time applica-
tions using common real-time system software is that applications allocate resources
up to their maximum requirements. On the one hand, this allocation behavior guar-
antees that the applications have all resources being required during execution. On
the other hand, the maximum resources are often required only in the worst case and
are mostly unused. An approach for optimizing the dynamic resource consumption
is presented by applying flexible resource management. We developed a Flexible
Resource Manager (FRM) (cf. Sect. 5.5.2) that allows to optimize resource con-
sumption autonomously. It uses the Profile Framework as the basis for alternative
resource requirements of applications. The FRM optimizes resource consumption
in such a way that it allows temporal usage of resources that are reserved by other
applications for worst-case. However, this overallocation of resources is conducted
in a safe manner as the FRM guarantees a reconfiguration of the system without
violating worst-case deadlines.

An additional implementation technique for self-optimization — especially in
terms of resource utilization — is our virtualization platform. Like any kind of vir-
tualization our approach provides strict separation of hardware resources by means
of a hypervisor. A two-level scheduling (hypervisor and RTOS) has been designed
in such a way that real-time aspects are strictly taken into consideration. The FRM
approach has been extended in such a way that now a two-level FRM (integrated
in hypervisor and RTOS) is implemented and dynamic reconfiguration may even
happen across virtual machines (cf. Sect. 5.5.4). Some further interesting aspects
concerning enhancing the system dependability by virtualization are illustrated in
more details in [69, D.0.S.0.M.S. Sect. 3.2] .

5.5.1 Architecture for Self-optimizing Operating Systems

As the first step, we developed a real-time operating system named ORCOS (Or-
ganic Re-Configurable Operating System, see [59]) that allows a fine-grained
configuration of the basic (functional) OS components according to the given re-
quirements. According to the definition of self-optimization (cf. Sect. 1.2), the

294 S. Groesbrink, S. Oberthiir, and K. Stahl

Fig. 5.68 Architecture for
a self-optimizing operating yji‘
Ssystem 4 T A
______________ Syscall |
- Manager Y
i i . Observer/
E E Monitor
E Functional OS E
| Kernel Components E
1 1
1 1
i 1<——| Controller
N J

workflow of a self-optimizing system includes the following steps: Analysis of the
current situation, determination of objectives and adaptation of the system behavior.
Hence, the self-optimizing real-time operating system must provide mechanisms
and structures to enable the implementation of a self-optimization workflow.

The architecture of the RTOS is required to be extended in order to support self-
optimization and adaptation to the changing requirements of the self-optimizing
software and hardware. We adjusted the OS architecture based upon the Observer-
Controller Architecture that was first instantiated by the Organic Computing Initia-
tive [179]. An Observer and a Controller component extend the OS and build up
the basis of self-optimization and enable monitoring, self-reflection and reconfigu-
ration in the real-time operating system. The resulting architecture of the operating
system ORCOS is presented in Fig. 5.68. These new components are integrated into
ORCOS as configurable kernel components but separated from the functional OS
kernel modules. The Observer is responsible for monitoring and data collection,
and analyzing and evaluating system behavior based on the defined system policies
and objectives. Self-optimization in the operating system is triggered by a reconfig-
uration that is initiated by the Controller as a reaction on the evaluation procedure
results. The ORCOS Profile Framework builds up the basis for reconfiguration in
the operating system, as it offers alternative implementations defined within a pro-
file from which the Controller can select.

5.5.1.1 Reconfiguration Framework

The central component for the run-time reconfiguration of the operating system is
build up by the Controller. It is responsible for initializing a reconfiguration on the
basis of the Profile Framework [156] provided by ORCOS.

Originally, it has been developed in the context of the Flexible Resource Manager
(FRM) [154] to self-optimize resource consumption in resource restricted real-time
systems as it allows for alternative implementations of an application task in terms
of resource requirements.

The Profile Framework follows the following principle: at each point of time ex-
actly one profile of a task is active (cf. Fig. 5.69). A configuration ¢ of the system

5 Methods for the Design and Development

Fig. 5.69 Profile Frame-

295

System Configuration
work: Example for a system
configuration Task A Task B Task C
| Profile 1 | | Profile 1 | | Profile 1 |
| Profile2 | | Profile2 | | Profile2 |
Profile 3 Profile 3
Legend
[active profile

is defined as configuration ¢ = (py, p2,..., pn), with n being the number of running
tasks T and p; € Py, ps € Ps,...,p, € P, and P, being the profile set of task 7;. Each
task must define at least one profile to be executed. For any task there may be avail-
able multiple profiles, i.e. versions with different parameters concerning nonfunc-
tional properties. Selecting a specific profile is completed due to dynamic decisions
at run-time.

We enlarge the concept of a profile to be applied to any reconfigurable OS com-
ponent. This encompasses all system entities:

application tasks

OS kernel components and services

components of the self-optimizing framework (e.g. Observer consisting of a re-
configurable Monitor and Analyzer described before)

Profiles may differ concerning their resource demands, which resources are ap-
plied (e.g. a specific communication resource), the implemented algorithm (e.g. in
terms of accuracy of the algorithm or the strategy), execution times, deadlines etc.
A prerequisite for identifying a component to be a reconfigurable component is the
existence of alternatives, which in fact means the definition of at least two different
profiles. Applying profiles to all OS components and the applications running on the
system, all system parts become (re)-configurable online. In this case we can really
speak about fully realizing a self-optimization operating system.

For reconfiguration the Controller contains policies, restrictions and thresholds
for decision making. Of course, a decision for reconfiguration must be checked
against the system characteristics and the real-time requirements of the application
tasks. A reconfiguration must not harm the system service delivery and guarantee
the compliance with the task’s real-time deadline. If all the conditions are met, the
Controller performs a reconfiguration of the system at run-time by simply switching
between the profiles.

Observer

The Observer component is responsible for (1) identifying and selecting the appro-
priate information and (2) analyzing them in order to make conclusions on future

296 S. Groesbrink, S. Oberthiir, and K. Stahl

A~ ~ N

,'/ Functional OS Kernel Components \|

1 1

- [Commumiaton e o [o
1

i . i

. [Board ; ; @

E Interrupt Memory | i | CPU !

! Handler Manager ' Dispatcher | i

| ; ! Analyzer

1 ' 1

i Timer ' i

i 0 |

: : ! :

| DeviceDriver | |-+ File <! Scheduler | !

! Manager]

'.\ ,:<::| Controller

Fig. 5.70 ORCOS Architecture integrating Monitor, Analyzer and Controller.

system states. For our purpose, we subdivide the observer into two separate entities:
a Monitor and an Analyzer (cf. Fig. 5.70). Although, these two entities are strongly
coupled (the monitor only collects the data that is required by the analyzing method)
they exhibit self-contained tasks which can be executed in a timely decoupled man-
ner. Due to the ability of online reconfiguration we introduce an additional intercon-
nection between the components: The strategy of the analyzer is reconfigurable at
run-time and can be exchanged by the controller. The data collected by the monitor
depends on the applied analyzing algorithm so that an exchange of the analyzing
strategy in turn has effect on the data aggregation of the monitor.

The monitor collects the behavioral data and aggregates the data for the analyzer
while the analyzer evaluates the data and passes its evaluation results to the Con-
troller. In order to collect data about the application behavior, we can monitor the
SyscallManager interface as it is the only interface through which a task can interact
with the kernel. Integrated into the SyscallManager, the Monitor is able to intercept
and record all the system calls from the tasks.

The idea is to enable the use of a broad range of analysis algorithms with the
same monitor. Hence, the monitor is designed to be independent of any analysis
algorithm that evaluates behavior profiles. However, different analysis algorithms
use different parameters to evaluate task behavior. Some of them use system calls
and system call arguments, while others use the return address stack or the program
counter [58].

The monitor defines different monitor modes to make it reconfigurable at run-
time in order to modify which parameters are monitored in accordance to the ana-
lyzing algorithm and control monitor memory usage. The monitor is designed to se-
lectively monitor specific parameters like the system call id, system call arguments,

5 Methods for the Design and Development 297

return address stack, task resources etc. These parameters can be reconfigured at
run-time by changing the monitor’s mode. By using this filtering mechanism, the
monitor minimizes the overhead associated with monitoring data since it only ag-
gregates the data that is required to build up the behavior knowledge base for the
associated anomaly detection algorithm. To set up the monitor modes, the monitor
offers an interface through a monitor API.

The monitor extracts the system call information parameters along with further
OS state information whenever a system call happens. As the monitor intercepts the
system call execution in order to record the data, it introduces additional run-time
overhead into the system call handling.

Furthermore, real-time systems have limited memory and, hence, real-time appli-
cations have severe restrictions on the amount of memory they can use. The moni-
tor has similar restrictions. System call information is collected at thread basis. The
amount of memory used is also governed by the frequency of system calls invoca-
tions and the amount of monitored parameters. This mechanism enables the con-
troller to re-configure the monitor at run-time in order to prevent memory overflows
and safeguard overall memory usage.

Analyzer

The ORCOS Analyzer provides a framework for anomaly detection algorithms that,
based on the run-time reconfigurability of the system, may be exchanged at run
time. Algorithms implemented to analyze system behavior must comply with the
API provided by the monitor and be applicable for analyzing self-x behavior.

The workflow of each analyzing algorithm is:

1. generate a behavior representation according to the requirements of the algorithm
from the behavioral data base provided by the monitor,

2. evaluate and match the actual behavior against the normal behavior profile pro-
vided knowledge base,

3. inform the controller in case of deviations and detected anomalies.

Strictly separated from the monitor which in turn is directly attached to the sys-
tem call handler, the analyzer is scheduled individually. The monitor must record
the data whenever a system call is invoked while the analyzer is triggered when a
sufficient amount of behavioral data is available (determined by the anomaly detec-
tion strategy). An anomaly detection method that can be integrated into the analyzer
is introduced in [69, D.0.S.O.M.S. Sect. 3.2].

5.5.2 Self-optimized Flexible Resource Management

The Flexible Resource Manager (FRM) [155] permits an over-allocation of re-
sources under hard real-time constraints. The technique allows to minimize the in-
ternal waste of resources by putting temporarily unused resources, which are only
reserved for the worst-case, at other applications’ disposal. Additionally, an adaptive
self-optimizing system or middleware software can be built using this technique.

298 S. Groesbrink, S. Oberthiir, and K. Stahl

To use the Flexible Resource Manager, applications have to stick to a specific re-
source allocation paradigm and can specify multiple modes of operation — so called
profiles — to allocate additional resources if other applications temporarily do not
need them. The resource allocation paradigm comprises:

1. The application has to specify a priori the minimum and maximum limits per re-
source usage. The application can not acquire less or more resources than spec-
ified in the current active profile, which the FRM activates. If the application
wants to do so, then it has to specify a new profile with appropriate limits. The
activation of the new profile underlies an acceptance test of the FRM.

2. The FRM is in charge of the assignment of applications into their profiles. If
a reconfiguration between profiles is enforced by the FRM, application-specific
transition functions are activated. This allows for an application-specific change
between different operation modes with different resource requirements.

3. The FRM also registers the actual resource consumption of the active profile of
an application, which must be within the specified limits. The FRM guarantees to
the applications that they can allocate the resources up to the specified limit in the
active profiles. In case of a resource conflict — when the system is over-allocated —
the FRM solves the conflict by forcing applications into other profiles so that ev-
ery resource request can be fulfilled. The FRM ensures that no deadlines of hard
real-time tasks are violated. This is done by only allowing an over-allocation of
a resource if a plan for solving every possible conflict exists and this plan can be
scheduled under hard real-time constrains. Figure 5.71 illustrates this approach.

4. Resources are distinguished which can be reassigned within an negligible real-
location time and resources which have to be configured in the background by
the system software. Resources which are reconfigurable in background need
more time to be reassigned between different applications. All resource demands
of background reconfigurable resources — also within the specified limits of the
actual profile — require an announcement to the operating system. Between the
announcement and the assignment a delay is assumed. The profile specifies a
maximum delay per background reconfigurable resource. Note that this delay is
a worst-case value.

The ability to schedule and the deadlock-freeness of the FRM approach have
been formally proven.

To enable engineers to easily use the FRM and the profile model, the approach
is integrated into the high-level design process for self-optimizing mechatronic sys-
tems. A semi-automatic code generation was presented [33], which allows for a gen-
eration of profiles out of hybrid real-time state charts. Hybrid state charts combine
continuous models and discrete real-time state charts (e.g. for the reconfiguration
model). The application programmer only has to specify a minimum of additional
information to generate profiles. For simulation purposes the FRM was not only
implemented on top of the operating system DREAMS [51] , but also integrated
into MATLAB/SIMULINK. This enabled a simulation of an application using the
FRM in which the continuous part, including the controller and the plant, of the
application is encapsulated [157].

5 Methods for the Design and Development 299

Fig. 5.71 Over allocation Internal waste
PR hlsvtlsvioufivetv P

P, : P,
e A
Over allocation
ZEEEEEEEE—— ._i._. et e am
P SR
O N P
Solve the conflict
s PP
i / [
] R i R i

5.5.3 Self-optimization in the Operating System

If self-optimizing applications change their behavior and their resource requests dy-
namically during run-time, even the underlying real-time operating system (RTOS)
should reconfigure its QoS by means of the currently provided services. For exam-
ple, a specific protocol stack should only be present in the RTOS, when applications
request this protocol for their communication. l.e., a reconfigurable/customizable
RTOS includes only those services that are currently required by its applications.
Hence, services of the RTOS must be loaded or removed on demand. Thus, the
RTOS also releases valuable resources that can be used by applications.

As self-optimizing applications are — in the context of this book — embedded
mechatronic systems, they run under hard or soft real-time constraints. Thus, the
reconfiguration of RTOS components is critical. The RTOS always has to assure
a timely and functional correct behavior and has to support the required services.
Hence, the reconfiguration underlies the same deadlines as the normal operation
of the applications. To handle exactly this problem, the FRM can be applied to
the RTOS as well. The FRM model executes the reconfiguration under real-time
constraints. The acceptance test inside the FRM assures that the reconfiguration
does not violate real-time constraints.

The main idea is to release resources of system services by deactivating/activating
basic versions or activating development alternatives (e.g. an implementation on the
FPGA instead on the CPU) of these services. These different states of the services
are modeled as different profiles for each service. Then, these RTOS components
will be handled by the FRM as normal application profiles. Thus, no change of the
FRM model is required.

5.5.3.1 Reconfiguration Model

To build an online configurable RTOS, components which can be re-configured
(activated, deactivated, etc.) have to be identified during run-time. For this pur-
pose the offline configurator TEReCS is reused (Tools for Embedded Real-Time

300 S. Groesbrink, S. Oberthiir, and K. Stahl

Primitives

)

Service
Dependencies

Devices ; t ;

Fig. 5.72 TEReCS’s design space description from system primitives via services down to
hardware devices (from [29]).

Communication Systems) [28, 29]. In the TEReCS approach the complete and valid
design space of the customizable operating system is specified in a knowledge base
by a so-called AND/OR service dependency graph [36]. This domain knowledge
contains options, costs, and constraints and defines an over-specification by con-
taining alternative options.

The complete valid design space of the configurable operating system is specified
by an AND/OR graph:

e Nodes represent services of the operating system and are the smallest atomic
items, which are subject of the configuration,

e Mandatory dependencies between services are specified by the AND edges,

e Optional or alternative dependencies between services are specified by the OR
edges,

e Services and their dependencies have costs and can be prioritized,
Constraints (preferences, prohibitions, enforcements under specific conditions)
for the alternatives can be specified,

e Root nodes of the graph are interpreted as system primitives/system calls of the
operating system.

The algorithm works, e. g. for communication primitives, as follows: A path can
be found through the complete graph from the sending primitive down to the sending
device, considering the routing and then up to the receiving primitive. The services

5 Methods for the Design and Development 301

that are visited on this path have to be installed on the appropriate nodes of the
service platform (see more color saturated nodes in Fig. 5.72). Thereby, the path
should create minimal costs by the use of the services.

Such paths will be searched for all primitives that are used in the requirement
specification. Because only a subset of all primitives is normally used, especially
the particular selection is responsible for the instantiated services and its parameter-
ization. The primitives can be considered as the strings of a puppet. Depending on
which strings are pulled, the “configuration” of the puppet will change accordingly.
The service dependencies can be compared to the joints of the puppet. Therefore,
the algorithm is named “Puppet Configuration”.

The online configuration makes use of pre-defined solutions that have been con-
figured offline. Thus, it is up to the online configuration phase to identify the use
cases, for which the solutions have been created and to activate them. The identi-
fication is simple, because it depends on the system primitives, which are used by
applications and other clusters. Those pre-defined solutions have to be instantiated
so that all required primitives are implemented for the concrete situation during run-
time. If primitives are unused an alternative cluster can be activated during run-time,
which does not implement the unused primitives.

The same system primitives that have been used to create a pre-defined solution
are leading to the selection of that solution component in the coarse-grained design
space level. This condition must be assured during the specification of the abstract
design space for the pre-defined solutions. This problem must also be solved by
the system expert offline. This procedure is allowed, as TEReCS’ main philosophy
obliges the encapsulation of all expert knowledge in the design space descriptions.

Example

Figures 5.73 and 5.74 sketch an example for two pre-defined cluster options (B+C).
The primitives Scheduling and Communication in Fig. 5.73 are used by the equally
named clusters from Fig. 5.74. The option B is generated from A if the primitive
Scheduling is not used. The option C is generated alternatively. In Fig. 5.74, the
pre-generated solutions B+C are included as the OS Hierarchy Option I and II.

Except the cluster Scheduling all other clusters can use both options alternately.
Only the cluster Scheduling requires explicitly the solution of the OS Hierarchy II,
which supports multiple threads. If the primitive CreateThread will be used, then
the cluster Scheduling is requested. Thus, the request of the primitive CreateThread
from an application requests the cluster Scheduling to be instantiated. Moreover,
as the cluster Scheduling requires the internal primitive Scheduling, the cluster OS
Hierarchy II also has to be instantiated instead of the cluster OS Hierarchy I.

The alternatives of the operating system services are modeled as different pro-
files. Using the previous example, OS Hierarchy I and OS Hierarchy Il are mapped
into two profiles of the system service OS Hierarchy, which is from the point of
view of the FRM handled as a normal application.

S. Groesbrink, S. Oberthiir, and K. Stahl

302

L4
peaiyl
“SWv3¥a

oelS
peaiy | sAneN

peaiyL”|dy

SO SWv3dd

Bunpayog

suondo [
puaba

SWY3¥Qosez
peaiy L
“SWv3da
(]
wo)
_SWv3yag

S oo)
peaiy]s|oo)
D

L]
peaiyl|dy

SO SWvIda UONEQIIMUNIOS)

Fig. 5.73 Zoom to the fine-grained level of to the OS cluster with its optional components

(A) and two pre-defined configuration examples (B+C).

5 Methods for the Design and Development 303

[]
||
0s 0s Memory Board
Hierarchy | Hierarchy Il || Management Devices

|
Interrupting Communication
Legend
Data Structures Synchronization
[Options

Fig. 5.74 OS design space at 2" level with integrated options for pre-defined solutions of
clusters.

5.5.3.2 Online Reconfiguration

For each primitive a new resource is introduced. When an application or other RTOS
service wants to use a system primitive, it requests the corresponding resource. Ini-
tially, each service holds each corresponding resource of the primitive it provides.
When an application or other system service arrives or wants to use a primitive, it
has to request the corresponding resource, which must be in the range of the spec-
ified resource boundary of its actual profile. As a reaction, the FRM activates a
corresponding profile of the service, where the service does not block the primitive
by occupying the corresponding resource but implements the primitive by activating
an alternative pre-defined solution. The service implements in the enter and leave
functions of the profiles the switch between the pre-defined clusters. These reconfig-
uration functions represent the Online-TEReCS module as a whole entity. In a pro-
file the meaning for the system services of holding a primitive provides the reverse
meaning of an application: a service holding a primitive means that the primitive
is not required and does not need to be implemented. On the other hand, when an
application holds a primitive, the service has to provide the primitive’s code.

Clusters representing the system services are reconfigured during run-time em-
ploying the FRM approach to mediate the reconfiguration. The alternatives are mod-
eled as different profiles. Using the previous example again, OS Hierarchy I and
OS Hierarchy II are mapped into two profiles of the system service OS Hierarchy,
which is from the point of view of the FRM handled as a normal application.

As sketched in Fig. 5.75 and before, the reconfiguration of the RTOS cluster com-
ponents is completely managed by the Online-TEReCS module in the enter/leave
functions of the corresponding profiles. The reconfiguration options are modeled
as optional profiles being offered by Online-TEReCS, which are activated and de-
activated by the FRM. Each profile defines which primitives are used by a system
service profile and which are not used — as the primitives are modeled as resources.

304 S. Groesbrink, S. Oberthiir, and K. Stahl

Thus, the FRM does not need to distinguish between RTOS components and normal
applications. The FRM mediates the system primitives (resources) between all the
applications and the RTOS. Thus, it handles the competition between the applica-
tions and the reconfiguration options of the RTOS. The system primitives represent
the dependencies between the services. The services which are locked do not pro-
vide system primitives in corresponding profiles by allocating the system primitive
itself. Thus, the FRM manages and assures that all dependencies are considered dur-
ing run-time, otherwise the concrete allocation of a system primitive corresponding
recourse would by surmount the maximum available number and lead to unfeasible
system configuration. Real-time constraints are respected by modeling the recon-
figuration time of the RTOS in the switching conditions respective to the minimum
dwell time of the profiles and the acceptance test in the FRM.

Applications must define all real-time constraints regarding their future resource
allocations. Additionally, an application can only allocate resources in the range of
the profile, which is currently active. With this information the FRM guarantees by
means of the acceptance test, that all resource allocations can be timely performed.
Deactivating a system service, by activating a profile in which this service is not
configured into the system, and an application, which is currently not using the
service but specifying a possible future use through the defined profile parameters,
creates an over-allocation state. If the application wants to use the service this leads
into a reconfiguration. The acceptance test assures that a system service is only
deactivated if the reconfiguration to reactivate the service can be executed “in time”
to provide the resources when needed.

The creation of pre-defined solutions for clusters is done automatically. For
each combination of possible requests or dismissals of system primitives and in-
ternal primitives a configuration is generated. For the optimization and reduction
of the design space of the operating system, a system expert might restrict the
combinations of parallelly instantiated system primitives to only those ones that
make sense which cover other solutions and — with high probability — are not used
simultaneously.

A repository stores all pre-defined solutions of the clusters. A cache will tem-
porarily store the code and the description of optional configurations for clusters, in
order to speed up the loading of required cluster implementations. The cache can
retrieve other configuration’s implementations from background storage (hard disk)
or from the network (cf. Fig. 5.75).

The FRM tries to optimize the system according to the current resource require-
ments of the components (system services and applications) and the quality informa-
tion of the profiles. To do this, the FRM requests the application and system services
to change their current profiles. This results in a reconfiguration of the RTOS and
an optimization of the resource usage between the applications and the operating
system.

The FRM approach includes the definition of quality values per profile. Thus,
the FRM can not only reason about the optimality of application profiles, but it can
additionally reason about the optimality of the RTOS configuration.

5 Methods for the Design and Development 305

By the integration of TEReCS and the FRM into a RTOS a self-optimizing real-
time operating system (SO-RTOS) is derived. Such an OS adapts itself with the
help of the FRM to the needs of the current applications executed on top of it.
Using this technique services can be deactivated and freed resource can be put at the
applications’ disposal. The real-time capability of the FRM ensures that only such
services are deactivated, which can be reactivated under hard-real time constraints,
if required by application tasks.

Application/
Middleware
Application 1

Configurabel : . }
R-?OS Tglr"]\’“en(?s @ ,\T ég:;;er.k Distribution F'{:gz)gs:ze
Components 0 e

Component

Cache K=

$ $

Basis Communication/Storage

Fig. 5.75 Integration of TEReCS and the FRM framework into the RTOS

5.5.4 Hierarchical Flexible Resource Manager

The Flexible Resource Manager concept was adapted to system virtualization [195].
Integrated systems with multiple software systems executed on a single hardware
unit provide often a more resource-efficient implementation compared to multiple
separated hardware systems. System virtualization realizes this integration of mul-
tiple systems with maintained separation, and therefore is well suited for safety-
critical mechatronic systems. The hypervisor allows the sharing of the underly-
ing hardware among multiple operating systems, each executed in an isolated vir-
tual machine. We developed a real-time capable hypervisor for embedded systems,
which is characterized by multicore support and possibility to host both paravirtual-
ized and fully virtualized guests [14, 77].

The Hierarchical Flexible Resource Manager consists of FRM components on
two levels, Guest-FRMs and Hypervisor-FRM, as depicted in Fig. 5.76. In a parti-
tioned manner, the FRMs on both levels take resource management decisions. The
Guest-FRM is part of the operating system and switches between task profiles in
order to assign resources to tasks, as previously described in detail. The Hypervisor-
FRM is part of the hypervisor and switches between virtual machine profiles in order
to assign resources to virtual machines. Communication takes place in both direc-
tions. The Guest-FRMs inform the Hypervisor-FRM about the dynamic resource

306 S. Groesbrink, S. Oberthiir, and K. Stahl

Fig. 5.76 General Architec- VM, VM, VM,
ture: Hierarchical Flexible o
Resource Manager [195] TaSkS‘[O O O @) O OOO @) O 0 00O
Local Scheduler Local Scheduler Local Scheduler
Guest
os Guest-FRM Guest-FRM Guest-FRM
|
Hypervisor

|
| VM Scheduler | |Hypervisor—FRM |

L]

Hardware Resources

requirements and current resource utilization. The Hypervisor-FRM’s resource al-
location among the virtual machines is based on this information. The Hypervisor-
FRM informs the Guest-FRMs about the assigned resources in order to allow the
Guest-FRM to manage its resource share. The cooperation of the hypervisor’s vir-
tual machine scheduler and Guest-FRM guarantees that each guest system becomes
(1) active in time, (2) for a sufficient duration and (3) equipped with the necessary
resources, in order to allow the guest to execute its applications in compliance with
their timing requirements.

The implementation of the Hierarchical Flexible Resource Manager requires par-
avirtualization, since the Guest-FRMs as part of the guest operating systems have
to pass information to the Hypervisor-FRM as part of the hypervisor. According to
paravirtualization [16], the guest operating systems are aware of being executed in
a virtualized manner on top of a hypervisor and not on top of the bare hardware.
The guest operating systems are modified and explicitly ported to the interface of
the hypervisor. By consequence, they are able to communicate with the hypervisor.
The requirement to modify the guest operating system is outweighed by the advan-
tages gained in terms of flexibility of an explicit communication and cooperation of
hypervisor and operating systems.

In contrast to static virtualization techniques where the resource shares are as-
signed a priori to the virtual machines, our approach allows for a dynamic resource
allocation even across virtual machine borders. The cooperation of Hypervisor-FRM
and Guest-FRMs is based on a hierarchical mode change protocol. We refer to pro-
files and transitions between them. A non-empty set of rask profiles is assigned to
each task, as introduced before. The Guest-FRM is in charge of switching between
these profiles at run-time. The task profile Prj of task 7; is defined as:

e resource allocation minimums and maximums:
Y resources Ry with limit Ry : 0 < (1)]."7’;” < (1)]."7’,?" < R,
profile quality Q(t;) € [0,1]
subset of the set of task profiles to which the Guest-FRM can switch from P,

5 Methods for the Design and Development 307

In addition to task profiles, there are VM profiles, which specify the minimal and
maximal resource limits for a virtual machine. VM profiles unite the active profiles
of the tasks of a virtual machine. In case of a task profile transition, the VM profile
is updated and communicated to the Hypervisor-FRM and used for the resource
assignment among the virtual machines.

A VM profile Pyy; is defined as follows:

e resource allocation minimums and maximums:
V resources Ry : Y tasks jof VM, : (15{:’,5” =3; J’{‘,i", (Dl"}c‘” Z] e
profile quality Q(VM;) € N: Q(VM;) = 3 0(7)
subset of the set of VM profiles to which the Hypervisor-FRM can switch from
Py,

The set of active profiles is called configuration. The possibility to switch be-
tween profiles on both the task level and on virtual machine level enables a dynamic
resource assignment across virtual machine borders. A Guest-FRM can shift re-
sources by task profile switches from one task to another; and similarly, due to the
cooperation of the FRMs on the two levels, resources can be reallocated from task
T; of VM, to task 7, of VM,. The Hypervisor-FRM activates a VM profile with a
lower resource allocation maximum for VM, and according to this, the Guest-FRM
of VM, activates a task profile with a lower resource allocation for 7;. This allows the
Hypervisor-FRM to activate a VM profile with a higher resource allocation maxi-
mum for VM, and the Guest-level FRM of VM, to activate a task profile with a
higher resource allocation for 7.

The hierarchical FRM assigns fractions of resources at run-time to other tasks
whenever a task does not use the complete amount of resources as needed in the
worst case. If at a later point in time, the resource lending task needs more resources
than remaining, a resource conflict occurs and has to be solved under real-time con-
straints. There are two kinds of resource conflicts, caused by two kinds of dynamic
resource reallocation. The Guest-FRMs can reallocate resources among their tasks
and the Hypervisor-FRM can reallocate resources among virtual machines. In both
cases, an acceptance test precedes and a resource reallocation is accepted if and only
if:

e V Resources Ry , ¥V tasks 1..n: Z o < Ry
e the FRM identifies a feasible reconﬁguratzon

A reconfiguration is a sequence of profile switches that activate a configuration,
which fulfills the worst-case requirements of all tasks. If such a reconfiguration plan
includes VM profile switches, it is called global reconfiguration. The Hypervisor-
FRM and at least two Guest-FRMs have to perform configuration switches. In con-
trast, a local reconfiguration only includes task profile switches and is accomplished
by a single Guest-FRM. A reconfiguration plan can only be accepted, if the schedu-
lability analysis attested that the time required to execute the reconfiguration does
not lead to a deadline miss. The reconfiguration plans for conflict resolution are
stored in conflict resolution tables. An entry is created after a reconfiguration was
accepted and lists the required profile switches to reach a state that guarantees all

308 S. Groesbrink, S. Oberthiir, and K. Stahl

switchTask
Profile

getConflict
Resolution

switch sequenze
'

(VM, N\ Hypervisor 7 WM,

VM, s VM, s Conflict Hypervisor || Global Conflict VM,’s VM,’s Conflict

.Re ource_ ' ' ' ' '

cdnflict getConflict : : . .

Resolution : : . .

global : : . .

~“conflict” ™, ' ' ' '

X I ' ' '

resolveGISIobaIConf ict ' getConflict ' ' '

Resolution ' '

VM profile. ; ;

'

'

|

PR L ALY Ll AL A B,

switch sequence
'

:
:

:

1

1 switchVMprofile
:

E VDM profile switched
: X

:

e _SwitchV Profile

switchTask
Profile

4...-........|

Fig. 5.77 Conflict Resolution: Global Reconfiguration Sequence [195]

deadlines. If a conflict is always solved by reconfiguration to the initial state, there
is at most one entry per task profile. A larger table with the possibility to reconfigure
to multiple optimization levels is more promising, but requires additional memory.

In the following, an example depicts the conflict resolution process. It is assumed
that task A, executed in virtual machine VM|, has a specific worst-case requirement
of a resource and consequently, this resource share was assigned. Since the actual re-
source usage of task A was significantly below the reserved amount, the Guest-FRM
switched to another profile and made a fraction of the assigned resources available
to task B of the same VM. In case of a resource conflict, i.e. task A requires a larger
resource share than remaining, the Guest-FRM resolves the conflict by switching to
task profiles with a resource distribution that fulfills the timing requirements of task
A. The sequence of profile switches that have to be performed to obtain this state
was stored in VM| ’s local conflict resolution table when the acceptance test for the
resource reallocation was passed.

It is possible that the Guest-FRM can not resolve the resource conflict, since
a global reconfiguration is required to achieve this. This is the case, if it was
caused by a resource reallocation to another guest system. A share of the resource
reserved for virtual machine VM) could have been assigned to virtual machine
VM, by the Hypervisor-FRM, and further assigned by VM,’s Guest-FRM to task
C. The Hypervisor-FRM informed VM,’s Guest-FRM about this resource reallo-
cation and the Guest-FRM noted this in the local conflict resolution table. The
conflict resolution is depicted in the UML sequence diagram of Fig. 5.77. In case

5 Methods for the Design and Development 309

of a resource conflict of task A, the Guest-FRM of VM, informs the Hypervisor-
FRM, which prompts the Guest-FRM of VM, to release the supplemental resources.
The Guest-FRM of VM, switches the profile of task C to one of lower resource uti-
lization. The Hypervisor-FRM can accordingly switch the profile of both VM; and
VM, and inform the Guest-FRM of VM to ultimately activate the conflict resolving
profile switch for task A.

In order to guarantee real-time requirements, hypervisors for embedded systems
typically assign virtual machines statically to processors. This static approach is in-
appropriate for the varying resource requirements of self-optimizing mechatronic
systems. Virtualization’s architectural abstraction and the encapsulation of virtual
machines support migration, i.e. the relocation of a virtual machine from one pro-
cessing element and connected memory to another one at run-time. Prerequisite is a
multiprocessor architecture with an instance of the hypervisor running on each pro-
cessor. Multiple processing elements operate on their own dedicated memory, but
are connected by input/output devices.

By the application of emulation, virtual machine migration is even possible
for heterogeneous multiprocessor platforms, which are characterized by processors
with differing instruction set architectures. Emulation executes program binaries
that were compiled for a different architecture. This translation between instruction
set architectures realizes cross-platform software portability. We developed a real-
time capable emulation approach [115] and a real-time migration for heterogeneous
multiprocessor architectures, which analyzes at run-time whether a virtual machine
with real-time constraints can be performed without risking a deadline miss [82]. It
selects an appropriate target for the migration and controls the migration process.
This migration manager was integrated into our hypervisor Proteus [83].

For the migration of virtual machines, a coarse-grained dynamic reassignment of
resources can be realized in comparison to the mode switches of the Hierarchical
Flexible Resource Manager. In particular it is useful for open systems, in which the
addition of applications or subsystems at run-time is possible. System virtualiza-
tion isolates arriving potentially faulty or malicious software from existing critical
applications. The acceptance of an application or even an entire subsystem typi-
cally changes the load balancing significantly and it might actually be necessary to
perform migration to be able to accept an arriving subsystem.

System virtualization and its ability to reuse subsystems is a powerful tech-
nique to meet the functionality and reliability requirements (see [69, D.0.S.O.M.S.
Sect. 3.2.8]) of increasingly complex systems and has potential to support the mi-
gration to multiprocessor platforms. Targeting this architecture, the Hierarchical
Flexible Resource Manager provides a resource management for the dynamically
varying resource requirements of integrated adaptive systems. The two-level solu-
tion beyond virtual machine borders has the potential to increase the resource uti-
lization significantly compared to static approaches.

310 J. Stocklein et al.

5.6 Virtual Prototyping

Jorg Stocklein, Wolfgang Miiller, Tao Xie, and Rafael Radkowski

Virtual prototyping is a technique, which applies Virtual Reality-based product de-
velopment for the engineering of mechanical and mechatronic systems. Virtual pro-
totyping is based on the modeling, design, and analysis of Virtual Prototypes (VPs),
i. e. computer-internal models, which are executed and analyzed in a Virtual Envi-
ronment (VE). VPs are typically developed prior to physical prototypes (or mock-
ups), which are mainly profitable for relatively small subsystems, e. g. the Hybrid
Energy Storage System (HES) (cf. Sect. 2.1.5) or Active Guidance Module (cf. Sect.
2.1.3). Compared to physical prototypes, the development of VPs is less expensive
and time-consuming, and VPs provide a significantly higher flexibility for change
requests and variant management. Moreover, due to the virtualization of the pro-
totype and the environment, Virtual Prototypes faciliate the early evaluation of the
final product. All experiments can be conducted under controlled conditions of a
well structured Virtual Test Bench (VTB) and for instance can easily be repeated
for regression testing.

Today, with the outcome of sufficiently fast and affordable computing plat-
forms and devices, Virtual Reality (VR) based Virtual Prototyping is widely ac-
cepted in several engineering disciplines. Examples are the design review of vehi-
cles [114, 192] and plant engineering [212]. Meanwhile, Augmented Reality (AR)
based technologies also are frequently considered for engineering related applica-
tions such as evaluation of automotive prototypes and the preparation of experi-
ments [117, 209].

We apply Virtual Prototyping for the development of complex self-optimizing
mechatronic systems with inherent intelligence, which react autonomously and are
flexible to changing environmental conditions. This applies at each level of the hi-
erarchical structure that makes up a complex mechatronic system: e.g. Mechatronic
Function Modules (MFM) such as an intelligent suspension strut, Autonomous
Mechatronic Systems (AMS) such as a vehicle, and Networked Mechatronic Sys-
tems (NMS) such as a vehicle convoy. Due to their complex structure and highly
dynamically evolving behavior, self-optimizing mechanical systems impose huge
challenges during their entire product development process, starting from the initial
specification to composition, analysis, testing, and final operation [68].

As such, for the development of self-optimizing mechatronic systems, the ade-
quate combination of VTBs, VEs, and simulation-based VPs can be beneficial over
classical development platforms as they are highly flexible and customizable for
the individual, dynamic needs and requirements of such systems and support differ-
ent views and seamless integration of multiple integrated models. Nevertheless, the
manual configuration of virtual platforms for mechatronic systems is cumbersome
and error-prone as it is conducted on an individual base and requires the integration
of different domains like electrical and mechanical engineering.

We introduce a novel Virtual Prototyping platform dedicated to the develop-
ment of self-optimizing mechatronic systems. The platform seamlessly combines

5 Methods for the Design and Development 311

VR- and AR-based user interaction and control with model-based execution of the
different integrated VPs, which are controlled by domain-specific simulators or in-
tegrated Hardware-in-the-Loop components [17, 172]. For true design automation,
we investigated automatic linking of the different models to VEs and advanced VTB
technologies for the controlled and repeatable execution of experiments.

The remainder of this section is organized as follows. In the next subsection we
will introduce the principles of VPs and VEs 5.6.1. Next we will describe our ap-
proach to automatic VE configuration. Section 5.6.2 presents the agent-based auto-
matic model linking. Section 5.6.3 gives an agent-based solution to link the mod-
els to different visualizations. Finally, Sect. 5.6.4 outlines the basic concepts of our
self-optimizing VTB, which is based on the principles of mutation analysis. All sub-
sections present application examples based on the reconfigurable miniature robot
BeBot [99], which serves as one of our main development platforms.

5.6.1 Virtual Prototypes and Virtual Environments

Rafael Radkowski

A Virtual Prototype (VP) is defined as a computer-internal representation of a real
prototype of a product [128]. Figure 5.78 outlines the basic concept of a VP, which
is based on the notion of a digital mock-up (DMU) with the definition of the product
shape and structure. A DMU is typically based on two models: 3D CAD models and
the logical product structure. A VP extends a DMU by further domain-specific as-
pects like the kinematics, dynamics, force or information processing. Each of these
aspects is defined by a different domain-specific view. As such, VPs help engineers
to exercise, analyze, and evaluate the interaction of the system and its subcompo-
nents. That way, VPs facilitate an easy comprehension of the product behavior long
before a first physical mock-up is built.

VPs are executed and analyzed in a Virtual Environment (VE). A VE is a
VR/AR-based synthetic environment, which provides a visual, haptic, auditive, and
interactive experimentation environment for the VP [86].

In our approach, we developed a methodology and technologies for simulation-
based VEs for the advanced interactive analysis of self-optimizing mechatronic sys-
tems. Our VE also comprises a Virtual Test Bench (VTB) for the structured and
controlled execution of experiments and tests, respectively. As such, we have ad-
vanced the idea of the classical VE [86] towards a simulation-based VE like in the
Extensible Modeling and Simulation Framework (XMSF) [32] or in the High Level
Architecture (HLA) [39]. That means, our approach is not limited to visualize VP
models, rather than also integrates behavioral simulation models and physical hard-
ware (Hardware-in-the-Loop) for real-time user interaction with VPs for realistic
product development, analysis, and testing. For this, we have already introduced
a common VE infrastructure for semi-automatic multi-domain integration of the
VP [17, 172].

312 R. Radkowski

Fig. 5.78 Schematic repre-
sentation of the term Virtual

Prototype (VP) Modeling and
Digital Mock-zp (DMU) analysis of

Shape-based modeling and analysis | additional aspects
-

Virtual Prototype

Product Kinematics,
Structure Dynamics, etc. |

Shape

i

C Oy | ¢ i
- _|

3D-CAD PDM MBS, FEM, ... ||l
Legend

Product Data Multibody Finite Element
Management Simulation Method

Figure 5.79 presents an overview of the principle components of our VE and their
interaction by the example of our BeBot robot [99]. The VE on top is composed
of interacting Virtual Prototypes (VPs) and a Virtual Test Bench (VTB). The latter
covers the objects of the test environment including the behavior for interacting with
the VPs, i.e. stimuli, as well as a test strategy given by a verification plan for the
controlled execution of experiments and tests, respectively. We can see that each VP
has different aspects: shape, structure, and behavior such as kinematics, dynamics
behavior, which can be given by an executable component, such as Hardware-in-the-
Loop, or a domain-specific simulation model, such as a MATLAB/Simulink model,
as illustrated at the bottom of Fig. 5.79.

Typically, a VE is created manually like the maritime combat simulation in [85]
or the virtual factory in [186]. That means, either interactions between the different
VPs and the VE are implemented manually or by means of predefined data structure
with a fixed set of variables for each VP. As of today, with the increasing intelligence
of mechatronic systems, the number of considered system components and their
interaction significantly increases. The increasing complexity of data structures and
their interaction both make the manual integration of VPs to a simulation-based
real-time VE infrastructure highly time-consuming and error-prone. Therefore, we
have developed an agent-based approach where software agents [108] identify the
physical and non-physical interaction between single VPs automatically and link
them to a VE. An agent compares two function structures given as standard models
of the product development process and identifies similarities for automatic model
linking.

Before we will introduce our approach for VTB automation, the next two sections
outline our concepts for automatic model linking and their linking to the visual
representation.

5 Methods for the Design and Development 313

Communication &
Integration Platform t
_____ N @
— £
c
VP ‘ _[vP o
BeBot1 | " |BeBot2 'S
c
o T VP T w
4 -
virtual environment . | [S
: and BeBots E
Visualization of a virtual environment
Virtual Prototype BeB! 1
L Teell Digital Mock-zp (DM}
S o .. modeling and Virtual Prototype BeBot 2 g
AN Shape. RO Modeling and >
S i Digital Mock-zp (DMU) analysis of “5
~ ‘Shape-based modeling and analysis | additional aspects -
% : O/Z || o | 2
every BeBot ool |] E
is a single virtual Logond AW E
B mapenen BESIS >
prototype “ 3D-CAD PDM MBS, FEM, ...
=
Visualization of virtual prototypes B ragement B Sy
ntake Arfow Estmation and Closed-Logp Correction i
A4 ERSUSEEE SR -._ |BeBotz o
i - N N -8
» N -
4 contel double: _position g
double: _speed 3
controller under int. _state 2
] e test
- = i
Simulation tool Matlab/Simulink Mathematical description
Legend <—» interaction virtual prototype

Fig. 5.79 Schematic overview of the composition of a virtual environment

5.6.2 Automatic Model Linking

Rafael Radkowski

Our automatic model linking is based on Semantic Web technologies. The Semantic
Web (SW) facilitates machines to capture the content of web pages and other similar
documents [22]. Thus, machines can automatically link information from different
sources. The Resource Description Framework (RDF) plays a decisive role for
the SW. RDF is a description language, which is used to annotate the content of a
web page; it is the syntax for meta-data of a web page. The underlying model is
based on a directed graph. The nodes of the graph denote resources, while the edges
denote properties. The idea of RDF is to describe complex facts by a network of
simple RDF statements. A RDF statement consists of a subject, a predicate, and an

314 R. Radkowski

object. The predicate is the most important part of the semantic. It is defined as a
W3C (World Wide Web Consortium)-standardized predicate for the description of
business cards. The SW can only function successfully if all participants have the
same understanding of these predicates and interprets them in the same manner.

A reasoning system is necessary to identify relations between two RDF-annotated
web pages. RDF represents the database only. For that purpose, query languages are
used to query the necessary information. Queries need to be transformed to a form
where reasoning is possible by processing production rules.

Some researchers have already used RDF and the related reasoning mechanism
for the engineering of technical systems. For instance, Bludau and Welp (2012) [27]
have developed a framework, which supports engineers during the development
of mechatronic systems. Their framework searches for active principles and solu-
tion elements, which meet a given specification. Restrepo (2007) [177] uses SW
techniques to search for design solutions for a given problem. He has developed a
database, which contains different design solutions; Simulink RDF annotates every
solution. A reasoning mechanism searches for solutions for the given design prob-
lem. Ding et al. (2009) use XML-based annotations to annotate CAD models with
design constrains, goals, relationships, and bounds [50]. They mainly annotate geo-
metric, topological, and kinematic properties of a given design. Their approach can
be utilized to find an optimal design solution during the product development pro-
cess. The authors use XML as a notation basis, but their notation is similar to a RDF
notation. Ding et al. (2009) developed an XML-based product representation that
also allows an annotation of geometrical properties [49]. For further information,
Li et al. (2009) present a classification of different annotation approaches [135].
They all demonstrate the importance of software agents and annotation techniques
in engineering design, on which our approach is based.

The main principle of our approach for agent-based automatic model linking is
outlined in Fig. 5.80. On the bottom left of the figure, we can see the example of
two Virtual Prototypes (VP), which are linked to a Virtual Environment (VE). A
software agent represents each VP.

In this example, each VP includes two models: a 3D model and a behavioral
model. Both models are shown at the top of the figure with the 3D model on
the left and the behavioral model on the right. The latter is illustrated by a MAT-
LAB/Simulink screenshot. The application contains and processes a model that sim-
ulates the behavior. Both models are annotated. Therefore, an RDF-notation is uti-
lized; the annotations describe the purpose of the models. Normally, more than two
aspect models (3D model and behavior) and one VP are used.

The main task of the software agent is to combine both aspect models (3D model
and behavior) to one VP and to integrate them into the VP-template, which is pro-
vided by the VE. As shown in Fig. 5.80, this requires five steps.

The first step is an initialization by a user (1). Normally, the user specifies one
model (3D model or behavior model) as the origin. The objective of the agent is to
identify the other models and to integrate them into the template of the VP. There-
fore, the agent searches for every available model. A service directory of the agent
platform references them. The annotation of every available model is read (2). The

5 Methods for the Design and Development 315

3D model Matlab/Simulink) Legend
represents) model represents 22T Agen_t represents
shape w4l behavior 0= the virtual prototype
: e s ¥= e |l Ty Semantic annotation
e e LT using the resource
= Bls e description network
RDF [—— RDF Semantiv representation
[= .
. of a virtual prototype
c o o Communication
\ integrate \init &] server
. \ /read .
N 1read / o —-a Agent’s tasks

v — Data exchange

S © -
Agent). AGE ~+. Mobile
vp 9 VP 9" robot

configure i
n: 7| BeBot

Virtual Environment ——

Graphical presentation of
virtual environment

Fig. 5.80 Automatic model linking overview

agent compares the RDF model of the 3D model with the RDF model of the behav-
ior model (3). A set of production rules is used for this task. If two models pass the
production rules, the agent assumes them to be similar.

Next, the 3D model is integrated into the VE by loading the model and including
it into an internal data model (4). However, the behavioral model cannot be included
by simply importing it. Since the processing of the behavioral model is very resource
consuming, it is executed on a separate computer system. As only simulation results
are required for an analysis of the VP, only the results are transmitted by means of a
communication server (CS) to the main host. The CS manages the communication
between the simulation software and the VP/VE. The agent configures the CS and
establishes the communication between the behavior model and the 3D model (5).

5.6.2.1 Semantic Annotations with the Resource Description Framework

After automatic linking, the VP models are enhanced by semantic annotations by
means of the RDF (Resource Description Framework) language [22]. RDF provides
a syntax for web page meta data, where the underlying model is based on a directed
graph. The nodes of the graph refer to resources, the edges to properties. The idea
of RDF is to describe complex facts by a network of simple RDF statements. We
apply RDF as an annotation language to describe the context of each VP model.
The challenge of the annotation is to identify the relevant elements of a specific
model, which are required to conduct the automatic integration of the model. At this

316

R. Radkowski

has_moving_part

Active Surface . .
Element_ active_surface 2D Hinge Joint
Surface ¢l > Fixation of the
- Ly Shock Absorber
Coordinate
System has_active_surface
XN 1
“~._-4 Model_Shock Shock Absorber
Absorber _ in Left Front

Active ; ; Moving Part of
Direction Part_Piston Is_active_part > the Shock
Absorber
has_active_direction
Active 4
Part Global_Coord_ “\ranslation Moving Direction
System_z of the Piston
Legend:

Vocable
——— > Property

O Resource/URI I:I Resource/Literal

Fig. 5.81 Example of the semantic annotation of a 3D model

step, we presume the availability of VP models of the following aspects: shape (3D
model), behavior, functions, and activations.

For semantic annotation, we will outline the main concepts by the example of a
shock absorber as given in Fig. 5.81. Four items of a 3D model are annotated: the
entire part, the active surfaces, the subparts, and the active directions:

Entire part (/): The resource is linked to the variable, which represents the
model, normally a file. In this example, the name of the model is Model_Shock_
Absorber. The variable is annotated by the predicate element. To describe the
element, a literal is used. In this example it is ‘Shock Absorber in Left Front *.

Active surface (2): The active surfaces of a component are the surfaces, which
fulfill the functions of this component [158]. The resource is linked to the variable
in the data structure of the 3D model, which represents the active surface. In the
example, the name of the variable is Element_Surface_cly. active_surface_2D is
the predicate, which defines the item as an active surface.

Active part (3): This type of part moves to cause an effect of the entire model.
The resource refers the variable, which describes the main part in the data struc-
ture of a 3D model; in this case it is the entire piston. The word has_moving_part
is used as RDF predicate to annotate to the subpart, which describes the part in
the structure of the entire 3D model; the variable’s name is Part_Piston. Further-
more, to describe this active part, the predicate is_active_part is used. It facili-
tates the annotation with a literal. In this case the literal is: ‘Moving Part of the
Shock Absorber*.

Active direction (4): The fourth annotation type is the active direction. Accord-
ing to Pahl and Beitz (2007) [158], the active direction describes the direction,

5 Methods for the Design and Development 317

£ 3D Model Behavior Model

8 q’ VP e

S

(/) double_ [@----------------------+ T

c speed : - e
i Speed

2 identifies = = Hlasd

L 1

g

< [T]

Reasoning

c System
2
=
2
B element | 3D Model of Multi Body
[model_bebot the Entire - System and
8 BeBot receive Controller
1 translation
[=]
& locit Speed of
translation speed velocity peed of
- e the BeBot
Legend:
X Link that has to be Identified
[T] Translation <----- by the Reasoning System

Fig. 5.82 Schematic overview of the reasoning using an example

into which a function of a component effects. In Fig. 5.81, the piston of the shock
absorber is the active part, which active direction should be described. The vari-
able Global_Coord_System_z describes the coordinate system; it describes the
direction of moving. It is attached to the resource part_piston by the predicate
has_active_direction. In addition, the resource Global_Coord_System_z needs
to be annotated with a human understandable literal. In the example, the literal
is ‘Moving direction of the Piston’. It is attached to the resource by the predicate
translation.

However, though we outlined our concepts by just one example it should be suf-
ficient to give an impression to show how the semantic annotation with RDF is
applied, and which elements of a 3D model are necessary in order to describe the
purpose and functionality of a 3D model in a natural way (literals). In total, we have
defined 36 RDF keywords to describe active surfaces and directions as well as the
parts and subparts of an assembly. Further details can be found in [171].

5.6.2.2 Software Agent Reasoning

Recall here that the software agent has two major tasks. First, it has to identify
similar aspect models and, second, it has to establish the communication and the
exchange of data between different software tools. The following paragraphs will
outline the reasoning mechanism for establishing the communication infrastructure
as sketched by the example in Fig. 5.82.

Figure 5.82 shows a 3D model of our miniature robot BeBot on the left side and
a behavioral (MATLAB/Simulink) model of the robot on the right. We presume that
both models are already annotated by RDF, where the example just shows a small

318 R. Radkowski

portion of it, the variable speed. As a BeBot can fulfill different tasks in a team, the
variables of the behavior model need to be linked with the related variables of the 3D
model and with other VPs. For that, a reasoning mechanism identifies variables that
are related to each other. In general the software agent compares the RDF models,
two at the same time, and converts the results of the comparison into a numerical
value. This numerical value expresses the similarity of two models, respectively
their variables. The comparison is based on production rules. Each production rule
has the form:

IF (Condition Cy & Condition By & ... & Condition C, & Condition B,,)
THENAy; ... ;A

Conditions of type C are predicates of the 3D model, conditions of type B are
predicates of the behavior model. By applying these production rules a set of cor-
responding predicates is identified. As corresponding predicates each pair of predi-
cates is defined, which describes the same meaning of an item. For instance, condi-
tion C states translation & cal (calculated) and condition B states output & velocity
are defined as corresponding predicates; they result in an output A = 1. Otherwise
they result in an output A = 0. The result of this calculation is weighted by a weight
value g:

Ao :Ag—‘rE

The value g indicates the importance of a production rule. The term E is an offset.
It is calculated by comparing the literals of each pair of corresponding predicates.
This is done by a statistical phrase analysis (see also [171]). A vector describes the
results of every production rule:

Rsimilar = AI,AQ, . 7A0

That vector is a rating scale for the quality of the similarity of a certain task.
After the vector is determined, the agent ranges all results Ry;jqr;, Where the index
i refers to a certain production rule of two compared models. A statistical method
is used for this comparison, the so-called squared ranking. This method calculates a
likelihood value p(i) for each corresponding pair of predicates:

. 1
P(]) = size : (Emax - (Emax - Emin) :

(Rsimilar,j - 1)2)

size — 1

with two rating values E,,, and E,,;,. These values express the estimated amount
of minimal and maximal corresponding predicates, respectively the number of pos-
sible relations. The equation assigns a numerical value to each production rule and
expresses the fulfilled rules by a numerical value. A high value indicates the simi-
larity of the compared variables. The agent links all data, which value p(j) exceed
a threshold:

5 Methods for the Design and Development 319

The BeBot with a 3D Model Behavior
yellow diamond on top F
tries to reach the flag T

s B
o

|
»

Direction

Position
State
Direction

Position
State

A

L T State diagram:

Chasing BeBots | visualize the state
N

¢ of the BeBot

—

Communication server J

The data of the behavior
model has to be send to the
3D model by communication

Fig. 5.83 Overview of the application (left), the architecture of the application (right)

p(i) > Dthreshold

The value p(i) needs to cross a threshold psjresnora- At this time the threshold
is determine empirically. After this decision, the agent establishes the communica-
tion between the behavior model and the 3D model. Further information about the
communication infrastructure and the behavior of the agent inside the VE has been
presented in [173].

5.6.2.3 Application Example

To proof our concepts of automatic model linking, a software prototype was devel-
oped and validated by the BeBot robot application example [99]. Figure 5.83 shows
a screenshot with an overview of the VE on the left. In the environment, the Flag is
located in the middle of the environment and spheres are placed as obstacles for the
BeBots around it. The BeBot with the diamond on top tries to capture the flag. On
the right, it shows the corresponding infrastructure of the VPs.

Each BeBot is represented by a 3D model and a behavioral model. Both models
are annotated by RDF [171]. The annotation of the 3D model describes the input
variables to set the position and direction of a robot as well as a state diagram to
visualize its current state. The behavioral model provides the position and direction
of each BeBot. Both applications (VE and behavior) need to be linked by the agent,
the agent has to identify the variables and link them respectively.

In summary, the agent is able to realize the communication between both mod-
els/applications utilizing the RDF-based annotations of both models. The desired
application can be realized, without any need for a user to describe the communica-
tion manually.

320 R. Radkowski

5.6.3 Visualization Agents

Rafael Radkowski

In engineering, software agents are utilized in many different application fields.
Agents are mainly used to support the design process by making decisions, which
are based on a large amount of data. Mendez et al. (2005) describe an agent-based
software architecture for agents in virtual environments [142]. They introduce the
concept of expert agents. Expert agents are software agents with an expert knowl-
edge in a specific technical domain. Based on this knowledge, the expert agent is
capable of finding a solution to solve a specific problem. The paper introduces a sim-
ilar idea. However, their desired tasks are training tasks. Galea et al. (2009) present
a framework for an intelligent design tool that assists a designer, while working on
micro-scale components [67]. They do not label their framework as software agent,
but they use a similar artificial intelligence technique to model the knowledge and
the reasoning system. Multi-agent systems have also been used to support engineers
in time-critical tasks [161]. An agent aggregates relevant information from other
agents that represent different members of an engineering team. Thus, an engineer
gets the right information at the right time. Baolu et al. (2009) propose the so-called
Multi-Agent Cooperative Model (MACM) [15]. It is a product design system that
facilitates easy access to similar data of different products. The system facilitates
the product design and manages product data. With its aid the product design cycle
will be shortened. Geiger et al. (1998) introduce the agent modeling language SAM
(Solid Agents in Motion), a language to describe 3D models in virtual environments
and their behavior [71]. In contrast to our work, SAM covers the complete visual-
ization of animated processing of SAM-specific rules rather than links to arbitrary
behavioral models.

In the following, we will describe the concept of visualization agents for link-
ing visual representations to VP models. For this, we presume two different agents:
one agent for the VP (VP-agent) and a second one for the visualization (Vis-agent).
We also presume an agent platform, which is formed by a set of interacting agents,
which finally form the VE. Each agent contains an internal data model. This data
model describes the represented object like meta-data. Along the lines of the previ-
ously introduced linking of models, we apply RDF in combination with a reasoning
mechanism to identify similarities of annotations between visualization and model
agents. As a result, if models are identified as similar, we assume that the visualiza-
tion is suitable to explain the data of a VP. In the following, an overview of the entire
concept is presented. Then the necessary agent models are described and finally, the
reasoning mechanism is introduced.

5.6.3.1 Concept

Figure 5.84 shows a schematic overview of the basic principles. On the left side, a
box represents the VP of a mobile BeBot robot. The box on the right side indicates

5 Methods for the Design and Development 321

Service Directory Legend:

Task Agent ©Virtua| Prototype Agent

Path Planing | Agent 1 o
Path Planing | Agent 2 OVlsuaIlsatlon Agent

3D Model Agent VR
Skalar Value | Agent 3

%erence

Cooperation

Virtual Prototype

e.g. a mobile robot

Virtual Environment

Variable Datatype

Position Double[3] Velocity
Velocity Double
State Int
Analysis l Analysis

Kinetic Behavior Scalar Value
Configuration of

Communication System the Communication Communication System

System
Communication ;

| Communication Server — |

Fig. 5.84 Concept of the visualization agents

a VE with visualizations. Software agents are associated to the VP (VP-agent) and
the visualization (Vis-agent).

The objective of both agents is to identify an appropriate visualization by commu-
nication and cooperation. This visualization should help a user accomplish a certain
task. In the following, detailed steps are explained, which are necessary to identify
a suitable Vis-agent for the visualization of a specific VP-agent along the six steps
of Fig. 5.84.

In step (1), a user needs to initialize the VP, the simulation, and the VE. At the
beginning, the agent platform is initialized and the agents start to operate simulta-
neously. The user needs to specify the task, which he or she wants to carry out, e. g.
to analyze the kinetic movement or to inspect the parts of the VP.

In step (2), the VP starts to search for an appropriate visualization for the VP and
its data. For this, the VP-agent contacts a service directory provided by the VE and
queries for reachable Vis-agents. It contains a list of all reachable agents, sorted by
a category of tasks. The VP-agents submit a desired category, which meets the kind
of visualization the VP-agent searches for. Normally, more than one visualization

322 R. Radkowski

facilitates the visualization of the data of the VP. Thus, in step (3), the VP-agent
receives a list of potential Vis-agent candidates.

In step (4), the VP-agent contacts each Vis-agent with the reference from the ser-
vice directory. Thereby, it submits data about the functions of the VP and data about
the task the user desired to apply to every Vis-agent. Each Vis-agent compares this
data with two internal data models. These data models characterize the capabilities
of a Vis-agent. A similarity-vector Evis is calculated. This vector and its numer-
ical values represent the capability of the agent to visualize the queried task and
data. This vector is returned as a result to the VP-agent. At the end of this step, the
VP-agent has a set of similarity-vectors, one for each Vis-agent.

Next, the VP-agent compares the different similarity-vectors and by this, it com-
pares the different Vis-agents. Therefore, a reasoning mechanism is used. After the
VP-agent has decided for one Vis-agent (4), they start to cooperate.

In step (5), the visualization is realized. Therefore, the data of the VP needs to
be submitted to the Vis-agent and its represented visualization. Figure 5.84 shows a
simple example: the VP has a ‘velocity’ that needs to be visualized. The Vis-agent
on the right side can visualize this by a bar chart. For that, the ‘velocity’ values
need to be transmitted to the Vis-agent. To realize this data exchange, a communi-
cation server is used [173]. This communication server manages the data exchange
between different connected programs. In the example, this is a program that simu-
lates the VP and its behavior and a VE that hosts the visualization (6). The task of
both agents is to configure this communication server and by this, configure the data
exchange. The VP-server informs the communication server about the attributes it
wants to allocate. The Vis-agent informs the server, what data it requires. If the re-
quested data is available, the data exchange starts until an agent stops its operation.

5.6.3.2 Data Models

Agents maintain three different RDF-based data models to represent their knowl-
edge: a task model and a function model for the VP-agent, and a visualization model
for the Vis-agent.

Task Model

A task is defined as ‘the application of methods, techniques, and tools to add value to
a set of inputs — such as material and information — to produce a work product that
meets fitness for use standards established by formal or informal agreement’ [204].
A common technique to specify a task is a block diagram where each block rep-
resents a certain activity and the entire diagram represents the task (cf. Fig. 5.85).
A string inside the block denotes the activity, e. g. ‘Check the impulse response’.
Incoming arrows represent input data (objects or information), which are processed
during the activity. Information can be the velocity of a mobile robot, for instance, or
an object of the computer-internal representation of the shape of the VP. In addition,
an activity may also refer to a method and a tool. To concretize the task, boundary
conditions can be specified. For instance, this can be the required amount of data.

5 Methods for the Design and Development 323
req_min_value
A set of actions Matlab/ 120
represents a task Simulink Impulse
respond user_input
s
_Task y method

s ‘\‘ input_object

'/ Activity |1

," ". check impulse @ 12.456
| ': response

i Activity i input_ ; fitness_value

i '{ information / output_

:. ! ,,/ information or

[Activiy |/ T——— output_object Quality

e Shape > ,check impulse

Movement____ . response” Action represented
as a block
Legend
|:| Activity Q Resource/URI |:| Resourcel/Literal
. . Vocable
— Object ----- » Information —— Property

Fig. 5.85 RDF-Description of a task model

To describe this task model as computer-internal representation, an RDF-based

notation has been developed, which covers the definition of a set of resources and
properties describing a task. Figure 5.85 shows an extract of the resulting RDF-
based notation for one action. The following resources and properties are used in
that figure:

Activity (1): The activity itself is the main element. It is specified by a resource,
which keeps a string of the action itself.

Input information (2): The activity has a property input_information to specify
the incoming information. The property refers to a resource, movement in the
shown example. This resource keeps a link to the computer-internal data of this
information.

Input object (3): The activity uses a property input_object to refer to the incom-
ing objects. The property points to an additional resource, which contains a link
to the computer-internal representation of this object.

The properties output_information and output_object (4) are used to refer to the

outgoing information and objects. The properties refer to resources, too. Every ac-
tivity can use multiple input and output objects and information.

Fitness value (5): Every input and output object and information uses a property
fitness_value to express a numerical value or a set of numerical values that quan-
tifies the objects and information. It is an optional property. It refers to a literal
that contains the numerical value.

324 R. Radkowski

e Tool (6): The vocab tool labels a property of the activity to describe an additional
software tool. This software tool is utilized to carry out the named activity. The
property refers to a resource containing a link to this certain tool. This property
is optional.

e Method (7): Every activity needs one method, which is utilized to process the
activity. The vocab method is used to express this property. It refers to an addi-
tional resource. At this time, only the resource keeps a name of the method. The
methods are provided in a database. The user can only select a method.

e Conditions (8): Every method can be concretized by additional conditions. Two
conditions are used. The first one is a requirement value. It denotes a minimum
amount of data that is necessary to process this method. This property is ex-
pressed by the keyword req_min_value. It refers to a literal containing a numeri-
cal value. The value quantifies the requirement. The second condition expresses
whether a user input is necessary during this activity or not. For this, the keyword
user_input is used. It labels a property, which refers to a resource. This resource
contains a statement that expresses the type of user input. For instance a Boolean
decision (yes/no). The conditions are optional properties.

Function Model

Figure 5.86 shows a schematic overview of the function model. It is defined to
specify the functionality of a VP in respective to the product under development.
Therefore, a function structure according to Pahl/Beitz (2007) is used [158]. For
the graphical presentation of the function structure a block diagram is a common
technique. Each block represents a function. A function is defined as ‘Operation,
activity, process, or action performed by a system element to achieve a specific
objective within a prescribed set of performance limits’. According to Pahl/Beitz
(2007) it is expressed by a substantive and a verb [158]. The substantive names the
object that is processed by the function. The verb names the process or the activity
the technical system carries out. To build up a function structure, the functions of
a technical system are connected by the flow of material, energy, and information.
The arrows in Fig. 5.86 show these flows. The entire function structure represents a
model of the functionality of the technical system.

To use the function structure as a knowledge model for an agent, a formal com-
puter internal representation has been developed. Therefore, we have developed a
RDF notation, too. Figure 5.86 shows an extract of the developed RDF scheme in
order to introduce the resources and properties and to demonstrate its application.
The example explains how a function model can be built up and which properties
are necessary to describe the functionality of a VP by RDFE. The following notation
is used:

e Function (/): The function itself is expressed by a resource. The resource keeps
a character string of the function. It is the main resource of every function and it
is required.

e Function term (2): To facilitate an automatic processing of the function term,
the function uses a property function_term. This refers to an empty resource that

5 Methods for the Design and Development 325

m>| Function |—>| Function |—+
: [

Function Function structure
according to Pahl/Beitz

v
J
Q» Function |—>| Function Function |ﬂ>

Transfer

— Energy —
Legend 7 X
K link_out
|:| Function ; material

1

Transfer

— Flow of Energy E
nergy

> Flor of Information

function_term .
Flow of Material - link_out
energy

O Resource/URI .

Verb Substantive
|:| Resource/Literal

9 imension
Vocable Store &
——— Property | Transfer | | Energy | Energy

Fig. 5.86 Schematic presentation of the RDF notation of a function structure

points to the substantive and the verb of the function. The property substantive
refers to a literal of the substantive. The property verb refers to the function verb
literal.

e Flow of energy, information, and material: To model these three types of flow,
the function uses the properties link_x_material (3), link_x_information (4), and
link_x_energy (5), where x is a wild-card for in or out. The property refers to an
empty resource.

e Attributes: The flow of energy, information, and material need to be specified
by three additional properties. These properties are the label, the unit of the tech-
nical dimension, and the dimension of the value. The property label (6) refers to
a literal, it contains a character string that names the flow. The property unit (7)
points to a resource. This resource keeps a value of a technical dimension; in the
example the unit “V’ for voltage is shown. The last property depicts the dimen-
sion of the flow. A scalar, a vector, or an array can model the flow. For this, the
property dimension (8) is used. It refers to a literal to characterize the dimension.

e Source and drain (9): Every flow has a source and a drain. To specify them, the
properties source and drain are applied. Both properties refer to a resource that
contains a link to the related function.

Visualization Model

A visualization is defined as a technique to create images, diagrams, 3D models, and
animations to communicate and to explain abstract data. For instance, it can be a bar

326 R. Radkowski

Internal data Bar Chart
model of the Length of g 10 Visualization
vizualization the red bar -E of a bar chart
Variable Dat ’
my_position double[3] 6
my_length double
my_color A double[4] | Alignment

visualizatiol
dimensions

spatial_
e
dimension a

interaction

color
parameter_

range
5 INTERACTION
[0.0, 10.0] _POSITION

Legend:

Vocabl
O Resource/URI I:I Resource/Literal —Yocabe Property

Fig. 5.87 Schematic representation of the visualization model

chart as a visual representation of a scalar value (cf. Fig. 5.87). In the context of the
visualization agent, visualizations are diagrams and 3D models. Both of them are a
part of the VE. A visualization is annotated by an RDF-notation, too. Figure 5.87
shows an overview of the used resources and properties and how they are applied.
As an example, a bar chart is used. To define the RDF-notation, it was necessary to
identify elements and attributes that specify a visualization and its capabilities. The
following resources and properties are used:

e Visualization (7): The visualization itself is modeled as a resource. The entry
of this resource refers to the internal data model of the visualization. This key
element is required.

e Visualization type (2): To specify the type of visualization the related resource
has a property type. This property refers to a resource that denotes the visual-
ization by a keyword. In the example, the keyword BAR_CHART specifies a
bar chart. Other keywords are SYMBOL, ICONS, NET, TREE, and some more.
Each of them represents a certain type of visualization.

e Dimensions (3): Every visualization has a set of visual variables. These visual
variables are modified to express abstract data by a graphical representation. The
property visualization_dimensions specifies the number of visual variables each
visualization provides. It refers to a resource that contains the number of modifi-
able visual variables.

e Visual variable (4): This property is used to specify the visual variables itself. To
describe them, visual variables according to Bertin (1983) [24] are used. These

5 Methods for the Design and Development 327

variables define the size of a visualization, the position, the orientation, the grey
scale value, the color, the texture, and the shape. They are transferred to proper-
ties like size_ID, size_2D, size_3D, position, orientation, color, etc. For instance
size_ID specify a visualization, which size can be modified in one dimension.
In the example of the bar chart, it is the length of the bar. The property refers to
a resource. This resource keeps a link to a variable of the visual variable, which
represents its length inside the computer-internal data model. In the example
shown, it refers to the double my_length.

e Parameters (5): To concretize the visualization, the visual variable can be lim-
ited by a set of parameters. At this time, two parameters respectively properties
are used: range and threshold. The property range specifies the boundaries of a
dimension. For instance, the bar of the bar chart is limited by a minimum and a
maximum value. In the example, it ranges from O to 10. The property threshold
names a threshold, which is shown by the visual variable.

e Alignment (6): The property alignment specifies the spatial alignment of the
visualization. It refers to a resource that contains a keyword. Used alignments
are HUD (head-up display), TO_SCREEN, TO_MODEL, and some more. For
instance, TO_SCREEN means that the visualization is rotated into the viewing
direction of the user automatically. Thus, the user sees the right face of the visu-
alization every time.

e Spatial Dimension (7): A visualization can be distinguished by its spatial dimen-
sion. This feature is specified by the term spatial_dimension. The property refers
to an additional resource, it contains the dimension: OD (Points), 1D (Lines), 2D
(Surfaces), 3D (Volumes).

e Interaction (8): The property interaction needs to be specified if input data from
the user is necessary or possible, e.g. when a visualization should be moved
on screen or the range of a bar needs to be adapted interactively. The prop-
erty refers to a resource that contains the keyword INTERACTION_x, where
x is a wild card for RANGE, POSITION, and some more. For instance, INTER-
ACTION_RANGE means that the user can modify the boundaries of a visual
attribute.

This data is sufficient to specify a visualization with a set of annotations. Its
computer-internal representation has been integrated into an agent model to specify
the visualization.

Reasoning Mechanism

The reasoning mechanism identifies the Vis-agent, which associated visualization is
adequate to visualize the data of the VP or the VP itself. In general, the reasoning
mechanism compares the models and converts the results to a numerical value. This
numerical value expresses the capability of a Vis-agent to visualize the data of a VP.

We apply three steps to identify a proper visualization. The first step is processed
by the Vis-agent. The second and the third step are processed by the VP-agent. At
the beginning, we presume that the VP-agent has submitted its models to the Vis-
agent.

328 R. Radkowski

In the first step, production rules are used to determine the similarity between
different models. A Vis-agent keeps a set of production rules to evaluate the request.
Each production has the form

IF (Condition Cy & Condition Bi & ... & Condition C, & Condition B,,)
THENAy; ... ;A

Conditions of type C, are related to the function model and the task model of
the VP-agent. Conditions of type B,, are related to the visualization model and task
model of the Vis-agent. Each visualization agent contains a set of production rules.
These rules compare the referred models and determine, whether the Vis-agent ful-
fills the requirements of the VP-agent. If the capabilities meet the requirements,
action Ay is processed. Each action is an equation of the form

Ay =Ag+E

with the term a = 1 if the production rule is passed and a = 0 if the production rule
fails. The value g is a weight that indicates how important the production rule is.
The term E is an offset; it represents the experience of the agent and describes, how
useful this action was during previous uses. The value A represents the result. The
results of every production rule are combined in one vector:

Eyis = Ay,A,...,Ag

This vector is a rating scale for the quality of the visualization in a certain task.
Every Vis-agent calculates this vector and returns it to the VP-agent.

In the second step the VP-agent compares all results Ey;s;, where the index i
refers to a certain Vis-agent. A statistical method is used for this comparison, the
so-called linear ranking. This method calculates a likelihood value p(i) for each
visualization:

(Evis,j—1)?

Emax - (Emax - Emin) : size 1

pli)=

~.
1M

with rating values E,,;y and E,,;,, which determine the estimated amount of mini-
mal and maximal fulfilled production rules. During the development of a VP-agent,
it needs to be estimated how many production rules need to be fulfilled in order to
identify a suitable visualization. This estimation needs to be evaluated by the devel-
oper of a individual visualization. The equation assigns a numerical value to each
production rule and expresses the fulfilled rules by a numerical value. A high value
indicates that the Vis-agent is adequate to visualize the VP and the generated data
of the VP.

5 Methods for the Design and Development 329

In the third step, the VP-agent decides, which visualization agent is applied: the
VP-agent takes the Vis-agent with the highest value p(). One constraint is the equa-
tion:

p(i) > PDthreshold

The value p(i) needs to cross a threshold ppesnoa- At this time, the threshold is
determined empirically.

The concepts of visualization agent have been implemented and proven by the
following application example.

5.6.3.3 Application Example

To test the concept of visualization agents and the developed models, a software
prototype has been developed and a BeBot robot [99] application example has been
implemented.

The software prototype has four components. The first component, a VE, is based
on OpenSceneGraph!, an open source scene graph library for the development of
3D graphic applications. The second component is a simulation for mobile robots
based on Open Steer [178], an open source software library, which covers a robot
model and a set of functions like seek, evade, path following, and leader follow-
ing. The third component is JADE (Java Agent DEvelopment Framework). JADE
is a software framework that facilitates the implementation of multi-agent systems
by means of a middleware that complies with the FIPA (Foundation for Intelligent
Physical Agents) specifications, a standard specification for software agents. Fur-
thermore, it provides a set of tools that supports the debugging and deployment
phases of agents. The described agent behavior has been implemented using the
JADE framework. The fourth component is a communication server. It realizes the
exchange of data between the three components, mentioned before. The entire sys-
tem works in real time. The technical details of the server are described in [173].

In addition to the four components, the software SchemaAgent from Altova'® is
used to annotate the models. It provides a graphical user interfaces to model the
resources, properties, and the entire RDF graph. The RDF model is stored in an
XML notation. Finally, the software library Jena is used to implement the RDF
vocabulary for the annotation, the RDF queries, and the reasoning system.]7 Jena
is a framework for building Semantic Web applications. It provides a programmatic
environment for RDF and RDF-Schemas including a rule-based inference engine.
The inference engine has been extended to realize the method, which is described
in Sect. 5.6.3.2.

Based on that platform, we will outline the basic principles of visualization by
means of the Capture the Flag (CtF) application example.

15 yww . openscengraph. org

16 http://www.altova.com
17 http://jena.sourceforge.net/

www.openscengraph.org
http://www.altova.com
http://jena.sourceforge.net/

330 W. Miiller and T. Xie

The BeBot with a

Obstacles the yellow diamond on top
BeBot has to avoid tries to reach the flag

A

State diagram:
visualize the state
of the BeBot

o —

Fig. 5.88 Overview of the virtual environment (left), detail view of the test (right)

CtF is an example, which is originally based on a game where a hunter has to
capture a flag, the other players chasing the hunter and try to prevent him from
capturing the flag. In our case the players are the BeBots with one hunter and n
chasers. The BeBots operate autonomously without any interactions from a user.
Figure 5.88 shows two screenshots from the application. The left part shows an
overview of the VE.

The flag stands in the middle of the environment with spheres as additional ob-
stacles for the BeBots. The right part shows a detailed view to the scene. The BeBot
with the diamond on top identifies the hunter. A state machine with six states models
the behavior of a BeBot. Each state represents a type of behavior: seek, flee, obstacle
avoidance, robot avoidance, pursuit, and arrival. The BeBots decide autonomously
which state is active; the decision is based on a rule system.

To test the visualization agents, the BeBots and one visualization (state diagram)
have been implemented and represented by software agents. The task, the behavior,
and the visualizations have been specified by the introduced RDF notation. The CtF
task has been specified by a task model, the behavior by a function model, and the
visualizations by a visualization model.

The task of the Vis-agents is to visualize the different states by a state diagram.
Therefore, the VP-agent needs to identify the correct Vis-agent. Finally, the appli-
cation has proven the correctness of our models and it was possible to identify a
visualization.

5.6.4 Virtual Test Bench

Wolfgang Miiller and Tao Xie

The complexity of self-optimizing systems requires a systematic and thorough ver-
ification methodology in order to guarantee their adaptive run-time behavior. In the
context of the VE, our test bench is based on the principles of mutation analysis,

5 Methods for the Design and Development 331

which we have extended towards a self-optimizing Virtual Test Bench (VTB) for
the simulation-based analysis of self-optimizing systems.

Mutation analysis defines a unique coverage metric that assesses the quality of
test cases of a test bench with respect to coding errors. It was originally introduced
for software testing in the 90’s [48]. Since 2007, mutation analysis was adopted for
Register-Transfer Level (RTL) hardware design verification [191]. At that time, the
professional mutation analysis tool Certitude(TM)d was introduced by CERTESS
(now Synopsys) with the support of VHDL, Verilog, and C [89].

The remainder of this subsection first outlines the basic principles of mutation
analysis before our self-optimizing test bench with a brief BeBot robot [99] appli-
cation example is introduced.

5.6.4.1 Mutation Analysis and Simulation

Mutation testing is a fault-based simulation metric. It highlights an intrinsic require-
ment on simulation test data that they should be capable of stimulating potential de-
sign coding errors and propagating the erroneous behavior to check points. Mutation
testing measures and enhances a simulation process as shown by Fig. 5.89.

[| \

Simulate | I I I Measure)
— | I I I > Tests Quality by —b@@)
killed Mutants

L1 L1

Mutant

E Electronic Component \ 4 R

' Design under Verification A Tyt k

¢ Simulate Monitor/ Verification \
' Tests H=——"—> > R
: (e.g. an Embedded Checker Closure \
! Microprocessor) '
I

i Simulated Based i
. y

! Functional Verification of Electronic Design 4

Fig. 5.89 Principle of mutation testing for the functional verification of electronic component
designs

A so-called mutation is a single fault injection into a copy of the design under
verification, such as this HDL statement modification:

mutation
a<=bandc, ——a<=borc;

332 W. Miiller and T. Xie

The fault-injected copy is denoted as a mutant of the design. For each test case,
the mutant is simulated after the simulation of the original design and both simula-
tion results are compared. If any simulation difference appears at the design output,
this test is said to be able to kill the mutant. Each type of fault injection is called
a mutation operator and dozens of such operators can be defined based on the de-
sign language under consideration. By applying these pre-defined mutation opera-
tors at different locations of a design, we can obtain a huge database of mutants. The
number of killed mutants becomes the mutation coverage metric and measures the
overall quality and thoroughness of a simulation process.

We consider employing random simulation as a long recognized useful lightwei-
ght method to support mutation testing. However, the lightweight nature of ran-
dom simulation will conflict with the inherent computation expensiveness of muta-
tion testing. Basically, each time a random test is generated, it should be simulated
against not only the original design under verification but also all the mutants that
are created as the coverage points, which can be numerous. Since the test is ran-
domly selected and relatively aimless, this amplifies the mutation testing problem.
We have addressed that problem by developing an approach for a self-optimizing
test bench, which is outlined in the next paragraphs.

5.6.4.2 Self-optimizing Virtual Test Bench

Our self-optimizing Virtual Test Bench is based on the combination of mutation
analysis with constrained random test pattern generation. Constrained random test
pattern generation is a technique, which has been introduced in conjunction with the
principles of functional verification and is an offline method to generate random test
patterns for intervals, which are defined by constraints.

We apply constrained Markov chains to enable effective adjustment to the prob-
ability model of random simulation. An efficiency-improving heuristic is proposed
to make this adjustment by utilizing two-phase mutation testing results. Such a test
bench is shown in Fig. 5.90. The self-optimizing Virtual Test Bench integrates an in-
loop heuristics that dynamically adapts the test probability model to a more efficient
distribution for mutation coverage. As such, we finally arrived at a self-optimizing
simulation-based test bench integrated into our VE that achieves higher mutation
coverage for VPs under test within less simulation time.

As a prerequisite for the dynamic adjustment, we need a probability model on
test sequences that provides the possibility of parameter steering. We consider that
an electronic component design has a precisely defined instruction interface, such
as the ISA of a microprocessor, or the communication protocol of a bus controller.
For this, test inputs in a random test generator are modeled in two layers as shown
in Fig. 5.90. First, a Markov chain is used to represent sequences of tests. Each node
models one type of test instruction. The selection probability on edges enables us to
establish the correlation between mutation analysis efficiency and a short pattern of
test sequence. Second, weighted constraints are defined on the fields of an instruc-
tion. This provides the possibility for steering test patterns towards more effective
areas like corner cases.

5 Methods for the Design and Development 333

—| Prage_new = MiN{Pryoo g ™ (1 + Efficiency .,).Pyax } I

Constrained Random Mutation Analysis (MA)
Test Generator

(0<IMM<4) weight: 0.1 T Weak MA Strong MA
(IMM==4) weight: 0.05 (locally activated) (killed)
, B
one simulation run for one simulation run for
test all un-killed mutants each activated mutants

Probability Model

Fig. 5.90 A mutation testing directed adaptive simulation framework for the functional veri-
fication of electronic component designs

Each time a test is generated, we record the pair of Markov edge and constraint
that is selected for the generation. The basic idea is to estimate the efficiency of this
test on mutation analysis and use the estimation to adjust the probability of the corre-
sponding Markov edge and constraint. This efficiency estimation should follow the
unique simulation cost of mutation analysis. As the right half of Fig. 5.90 shows, we
introduce at first an extra weak mutation analysis phase [104]. It uses one simulation
cycle to identify the locally activated mutants. Only those are fed into a traditional,
strong mutation analysis phase and fully simulated, to see, whether they are killed
under the criterion that a different value appears at design output ports. Consider
that ¢ is the test probability distribution from a Markov-chain/constraint model,
which further implies Py, acrivarea and Py, iy for each mutant M; as its probabilities
of being activated and killed under the current test model. On a set of Nyy,qn; design
mutants, this leads to an expected simulation effort for the mutation analysis flow in
Fig. 5.90 as

max (1/Py)+ Y, (Pu_activare/Pot,_sinr)
1<i<Numutant 1<i<Nmutant

Based on this expected simulation effort, we use the number of mutants activated
by the test Nyeivared and the number of its mutants killed Ny to estimate the
efficiency of this test as
. Nii
Efficiency = killed

activated

334 W. Miiller and T. Xie

A low ratio means that too many mutants are merely activated and a lot of
simulations are wasted in the second phase without killing the mutants. We also
record this efficiency value for the last 10 tests generated and use the average
E f ficiencYaverage_last_ten 10 derive a relative value that lies between 0 and 1.

. E fficiency
Efflaencyrel EffiCienCyaverage_last_ten + EffiCienCy

By this, at the early stage of a random simulation, test patterns with high mutation
kill/activation rates are encouraged. However, we observed in our experiment that in
the last stage, it may well happen that no single mutant is killed in ten consecutive
iterations. In such a case, the heuristic approach changes to another mode that en-
courages more activation of mutants, by first calculating efficiency as an adjustment
value and then increasing the probability/weight of the corresponding Markov chain
edge/constraint with the following value:

N, activated
EfflClencyrelactivationmode = N N
activated_average_last_ten + Nactivated

Here, it is safe for us to assume that there will always be some mutants acti-
vated. Initially, all Markov chain edges have the same probability to be selected
and instruction constraints have the same weight. At the end of each iteration for
test generation, the probability of the used edge, as well as the weight of the used
constraint is adjusted by

PEdge_new = min{PEdgeold * (1 + EffiCienCyrel)aPMAX}
PConstr_new = min{WConstrold * (1 + EffiCienCyrel) 5 WMAX}

Pyax and Wyax are efforts to prevent the starvation of other edges/constraints,
by setting an upper bound of probability to one edge/constraint. In the following
example, with a model of 58 Markov edges, we set these two numbers to 0.9.

For each Edge; that flows out from the same instruction node and each Constr;
on this node, we adjust their probability/weight proportionally to their old values

Prage; old
o gei_o
PEdgei_new - (1 - PEdge_new) * 1—P '
— I'Edge;_old
PConstr- old
PConstr,-_new = (1 - PConstr_new) * 1—-P .
— LConstri_old

5.6.4.3 Application Example

We applied our self-optimizing Virtual Test Bench to the BeBot robots [99] in order
to indicate the strength and also the current limits of the approach in the context of
a Virtual Prototyping Environment. As such, we consider a path finding algorithm
implemented in C as a design under test, which navigates the BeBot by means of 12
infrared sensors inside the VE of a randomly generated labyrinth. For test automa-
tion, we used an automatically generated configuration file to parameterize each

5 Methods for the Design and Development 335

simulation run, such as the terrain of the environment, starting point and target of
the BeBot. A configuration generator tries to dynamically improve the test bench
by utilizing results from the mutation analysis. After each run, the test bench moni-
tored, whether the BeBot successfully finished the predefined route. The code of the
path finding algorithm was mutated by the tool Certitude(TM). After applying our
self-optimization heuristics, the configuration generator improves the test bench by
utilizing results from the mutation analysis.

For our application example, with our original BeBot C source file as input, CER-
TITUDE(TM) initially generated 184 mutants by injecting various faults. All these
mutants were compiled together with the VE, in the same way as the original code.
Then, each of the generated 184 mutants and the original BeBot code were simulated
before new configurations were generated.

Figure 5.91 (top) shows results of the BeBot test experiments, as a summary from
the Certitude(TM) report, as well as examples of mutants for the first configuration
of the test environment. It shows that, at the end, the test was able to detect 68 BeBot
mutants, among the total 184 mutants generated.

The remaining mutants could not be detected in this test configuration and re-
vealed the weakness of the test patterns. These included 28 non-activated, 28 non-
propagated, and 60 non-detected mutants. The status of a mutant and its injected
fault is measured by Certitude(TM) as follows:

e Non-Activated: The fault-injected mutation statement was not executed in the
simulation.

e Non-Propagated: The mutation statement was executed, but the execution had
the same result as that from the original statement in the original design simula-
tion.

e Non-Detected: The mutation statement was executed and introduced a wrong-
valued behavior into the mutant simulation. However, the test bench was not able
to distinguish this mutant as an incorrect design.

e Detected: The Test bench was able to tell that we had an error in the mutant
simulation.

There were two reasons for the applied test bench not being able to detect a mu-
tant. The first reason was that the mutant is created at a location of the code, which
inherently does not induce any wrong behavior in the BeBot, like, for example,
some debugging statements. The second reason was that the undetected mutant in-
deed reveals the weakness of our test bench. It can either be that the exercise from
the test bench with the current labyrinth was not sufficient to stimulate the faulty
behavior, or that the stimulated erroneous behavior did not have significant impact
to be observed by the test bench.

Figure 5.91 shows at the bottom an example of such undetected mutant. The
mutant with ID 46 was created by a fault injection of changing an && (logical AND)
operator to || (logical OR). The Virtual Test Bench could not detect this artificial
bug in the BeBot code, which indicates that an improvement of the test bench is
necessary.

336 W. Miiller and T. Xie

Mutants
File (faults Non- Non- Non- Detected
L. Activated Propagated Detected
injected)
src/Bebot.c 184 28 28 60 68

Mutant detail

Fault ID Fault Type Status
46 Operator && to | |

With the fault 46 of type 'Operator && to | |', the code:

if (sensor_values[7] < 0x150 . sensor_values[10] > 0x100 && sensor_values[10] < 0x400) {

Is changed into:
if (sensor_values[7] < 0x150 . sensor_values[10] > 0x100 && sensor_values[10] < 0x400) {

Fig. 5.91 Snapshot from CERTITUDE(TM) report for BeBot virtual test. TOP: Overall re-
sults BOTTOM: A mutant detail

Certitude(TM) is widely and successfully applied for the mutation analysis of
hardware models at register-transfer level (RTL), e. g. in VHDL and Verilog, and
we also successfully demonstrated our self-optimizing approach for the test bench of
the MicroBlaze processor at electronic system level (ESL). In summary, our BeBot
evaluations indicate that the application of Certitude(TM) also makes sense for the
mutation analysis of abstract self-optimizing behavior. However, though promising,
our evaluations also demonstrate there is a considerable gap between RTL and our
system level applications so that further studies are still required to draw a wider
conclusion.

We developed a VR- and AR-based platform for the Virtual Prototyping of self-
optimized mechatronic systems with real-time user interaction. The previous section
focused on the automatic configuration of VEs and on Virtual Test Bench automa-
tion. The general concepts of that framework for the integrated simulation of multi-
domain VPs can be found in [17, 172]. Here, we have demonstrated the feasibility
of our approach for automatic configuration VEs by means of the BeBot robot ap-
plication. However, as the degree of automation is partly based on the analysis of
domain-specific models, it still requires further investigation of the semantic analy-
sis for cross-domain application and model linking.

5 Methods for the Design and Development 337

References

13.
14.

15.

. Adelt, P., Donoth, J., Gausemeier, J., Geisler, J., Henkler, S., Kahl, S., Klopper, B.,

Krupp, A., Miinch, E., Oberthiir, S., Paiz, C., Porrmann, M., Radkowski, R., Romaus,
C., Schmidt, A., Schulz, B., Vocking, H., Witkowski, U., Witting, K., Znamenshchykov,
O.: Selbstoptimierende Systeme des Maschinenbaus. In: Heinz Nixdorf Institut, Uni-
versitit Paderborn, vol. 234. HNI-Verlagsschriftenreihe, Paderborn (2009)

. Adelt, P, Esau, N., Holscher, C., Kleinjohann, B., Kleinjohann, L., Kriiger, M., Zim-

mer, D.: Hybrid Planning for Self-Optimization in Railbound Mechatronic Systems. In:
Naik, G. (ed.) Intelligent Mechatronics, pp. 169—194. InTech Open Access Publisher,
New York (2011)

. Adelt, P, Esau, N., Schmidt, A.: Hybrid Planning for an Air Gap Adjustment System

Using Fuzzy Models. Journal of Robotics and Mechatronics 21(5), 647-655 (2009)

. Ali, M.ILA.H., Sitte, J., Witkowski, U.: Parallel Early Vision Algorithms for Mobile

Robots. In: Proceedings of the 4th International Symposium on Autonomous Mini-
robots for Research and Edutainment, Buenos Aires, pp. 133-140 (2007)

. Alur, R.: Formal Verification of Hybrid Systems. In: Proceedings of the 9th ACM In-

ternational Conference on Embedded Software, Taipei, pp. 273-278. ACM, New York
(2011)

. Alur, R., Courcoubetis, C., Dill, D.: Model-Checking in Dense Real-time. Information

and Computation 104, 2-34 (1993)

. Alur, R., Courcoubetis, C., Halbwachs, N., Dill, D.L., Wong-Toi, H.: Minimization of

Timed Transition Systems. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630,
pp. 340-354. Springer, Heidelberg (1992)

. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126,

183-235 (1994)

. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information

and Computation 75(2), 87-106 (1987)

. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory Model Reduction of Large-

Scale Dynamical Systems. In: Mohammadpour, J., Grigoriadis, K.M. (eds.) Efficient
Modeling and Control of Large-Scale Systems, pp. 3-58. Springer, Heidelberg (2010)

. Asada, M., Noda, S., Tawaratsumida, S., Hosoda, K.: Vision-based Reinforcement

Learning for Purposive Behavior Acquisition. In: Proceedings of the IEEE International
Conference on Robotics and Automation, Nagoya, pp. 146—153 (1995)

. Babitski, G.: Inferenzalgorithmen zur Auswahl ontologiebasierter Situationsbeschrei-

bungen fiir ein kontextadaptives Dialogsystem. Ph.D. thesis, Technische Universitit
Darmstadt (2004)

Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Baldin, D., Kerstan, T.: Proteus, a Hybrid Virtualization Platform for Embedded Sys-
tems. In: Rettberg, A., Zanella, M.C., Amann, M., Keckeisen, M., Rammig, F.J. (eds.)
IESS 2009. IFIP AICT, vol. 310, pp. 185-194. Springer, Heidelberg (2009)

Baolu, G., Shibo, X., Meili, C.: Research and Application of a Product Cooperative
Design System Based on Multi-Agent. In: Proceedings of the 3rd International Sym-
posium on Intelligent Information Technology Application, Nan Chang, pp. 198-201
(2009)

. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,

Pratt, 1., Warfield, A.: Xen and the Art of Virtualization. In: Proceedings of the 19th
ACM Symposium on Operating Systems Principles, Bolton Landing (2003)

338

17.

18.

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

References

Bauch, J., Radkowski, R., Zabel, H.: An Explorative Approach to the Virtual Proto-
typing of Self-optmizing Mechatronic Systems. In: Proceedings of the ProSTEP iViP
Science Days - Cross Domain Engineering, Darmstadt (2005)

Becker, S., Brenner, C., Brink, C., Dziwok, S., Heinzemann, C., Loffler, R., Pohlmann,
U., Schifer, W., Suck, J., Sudmann, O.: The MechatronicUML Design Method - Pro-
cess, Syntax, and Semantics. Tech. Rep. tr-ri-12-326, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn (2012)

. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-agent Systems with

JADE. John Wiley & Sons, Hoboken (2007)

Ben-Gal, I.: Bayesian Networks. In: Encyclopedia of Statistics in Quality and Reliabil-
ity (2007)

Bengtsson, J.E., Yi, W.: Timed Automata - Semantics, Algorithms and Tools. In: De-
sel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87-124.
Springer, Heidelberg (2004)

Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
Berthelot, F., Nouvel, F., Houzet, D.: Partial and Dynamic Reconfiguration of FPGAs:
A Top Down Design Methodology for an Automatic Implementation. In: Proceed-
ings of the 20th International Parallel and Distributed Processing Symposium, Rhodes
(2006)

Bertin, J.: Semiology of Graphics. University of Wisconsin Press, Wisconsin (1983)
Beyer, D., Henzinger, T.A., Théoduloz, G., Zufterey, D.: Shape Refinement Through
Explicit Heap Analysis. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS,
vol. 6013, pp. 263-277. Springer, Heidelberg (2010)

Blesken, M., Ruckert, U., Steenken, D., Witting, K., Dellnitz, M.: Multiobjective Opti-
mization for Transistor Sizing of CMOS Logic Standard Cells Using Set-oriented Nu-
merical Techniques. In: Proceedings of the 27th Norchip Conference, Trondheim, pp.
1-4 (2009)

Bludau, C., Welp, E.: Semantic Web Services for the Knowledge-based Design of
Mechatronic Systems. In: Proceedings of the International Conference on Engineering
Design, Melbourne (2005)

Boke, C.: Software Synthesis of Real-Time Communication System Code for Dis-
tributed Embedded Applications. In: Proceedings of the 6th Annual Australasian Conf.
on Parallel and Real-Time Systems, Melbourne (1999)

Boke, C.: Automatic Configuration of Real-Time Operating Systems and Real-
Time Communication Systems for Distributed Embedded Applications. Ph.D. thesis,
Fakultit fiir Elektrotechnik, Informatik und Mathematik, Universitit Paderborn, HNI-
Verlagschriftenreihe, Band 142, Paderborn (2003)

de Boor, C.: A Practical Guide to Splines. Springer, Heidelberg (2001)

Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos - A
Model-checking Tool for Real-time Systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546-550. Springer, Heidelberg (1998)

Brutzman, D., Zyda, M., Pullen, M., Morse, K.: XMSF 2002 Findings and Recommen-
dations (2002)

Burmester, S., Gehrke, M., Giese, H., Oberthiir, S.: Making Mechatronic Agents
Resource-Aware to Enable Safe Dynamic Resource Allocation. In: Proceedings of the
4th ACM International Conference on Embedded Software, Pisa (2004)

Campos, C., Junge, O., Ober-Blobaum, S.: Higher Order Variational Time Discretiza-
tion of Optimal Control Problems. In: Proceedings of the 20th International Symposium
on Mathematical Theory of Networks and Systems, Melbourne (2012)

5 Methods for the Design and Development 339

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Chinapirom, T., Kaulmann, T., Witkowski, U., Rueckert, U.: Visual Object Recogni-
tion by 2D-Color Camera and On-Board Information Processing for Minirobots. In:
Proceedings of the FIRA Robot World Congress, Busan (2004)

Chivukula, R.P., Boke, C., Rammig, F.J.: Customizing the Configuration Process of
an Operating System Using Hierarchy and Clustering. In: Proceedings of the S5th IEEE
International Symposium on Object-oriented Real-time Distributed Computing, Crystal
City, pp. 280-287 (2002)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

Commuri, S., Tadigotla, V., Sliger, L.: Task-based Hardware Reconfiguration in Mo-
bile Robots Using FPGAs. Journal of Intelligent and Robotic Systems 49(2), 111-134
(2007)

Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M.: The Department of Defense High
Level Architecture. In: Proceedings of the 29th Conference on Winter Simulation, At-
lanta, pp. 142-149 (1997)

David, A., Behrmann, G., Bulychev, P., Byg, J., Chatain, T., Larsen, K.G., Pettersson, P.,
Rasmussen, J.I., Srba, J., Yi, W., Joergensen, K.Y., Lime, D., Magnin, M., Roux, O.H.,
Traonouez, L.M.: Tools for Model-Checking Timed Systems. In: Roux, O.H., Jard, C.
(eds.) Communicating Embedded Systems - Software and Design, pp. 165-225 (2009)
Dell’ Aere, A.: Multi-Objective Optimization in Self-Optimizing Systems. In: Proceed-
ings of the 32nd Annual Conference on IEEE Industrial Electronics, Paris, pp. 4755—
4760 (2006)

Dell’ Aere, A.: Numerical Methods for the Solution of Bi-level Multi-objective Opti-
mization Problems. Ph.D. thesis, Fakultit fiir Elektrotechnik, Informatik und Mathe-
matik, Universitdt Paderborn, HNI-Verlagschriftenreihe, Paderborn (2008)

Dell’ Aere, A., Hirsch, M., Klopper, B., Koster, M., Krupp, A., Kriiger, M., Miiller, T.,
Oberthiir, S., Pook, S., Priesterjahn, C., Romaus, C., Schmidt, A., Sondermann-Wolke,
C., Tichy, M., Vicking, H., Zimmer, D.: Verlésslichkeit selbstoptimierender Systeme -
Potenziale nutzen und Risiken vermeiden, vol. 235. HNI-Verlagsschriftenreihe, Pader-
born (2009)

Dellnitz, M., Froyland, G., Junge, O.: The Algorithms Behind GAIO - Set Oriented Nu-
merical Methods for Dynamical Systems. In: Fiedler, B. (ed.) Ergodic Theory, Analy-
sis, and Efficient Simulation of Dynamical Systems, pp. 145—174. Springer, Heidelberg
(2001)

Dellnitz, M., Ober-Blobaum, S., Post, M., Schiitze, O., Thiere, B.: A Multi-objective
Approach to the Design of low Thrust Space Trajectories Using Optimal Control. Ce-
lestial Mechanics and Dynamical Astronomy 105(1), 33-59 (2009)

Dellnitz, M., Schiitze, O., Hestermeyer, T.: Covering Pareto Sets by Multilevel Subdi-
vision Techniques. Journal of Optimization Theory and Application 124(1), 113-136
(2005)

Dellnitz, M., Witting, K.: Computation of robust Pareto points. International Journal of
Computing Science and Mathematics 2(3), 243-266 (2009)

DeMillo, R.A., Offutt, A.J.: Constraint-based Automatic Test Data Generation. IEEE
Transactions on Software Engineering 17(9) (1991)

Ding, L., Davies, D., McMahon, C.A.: The Integration of Lightweight Representation
and Annotation for Collaborative Design Representation 19(4), 223-238 (2009)

Ding, L., Matthews, J., Mullineux, G.: Annacon - Annotation with Constrains to Sup-
port Design. In: Proceedings of the International Conference on Engineering Design,
Stanford, pp. 548 (2009)

340

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

References

Ditze, C.: Towards Operating System Synthesis. Ph.D. thesis, Fachgruppe Entwurf Par-
alleler Systeme, Universitit Paderborn, HNI-Verlagsschriftenreihe, Band 76, Paderborn
(2000)

Ebied, H.M., Witkowski, U., Rueckert, U., Abdel-Wahab, M.S.: Robot Localization
Based on Visual Landmarks. In: Filipe, J., Andrade-Cetto, J., Ferrier, J.L. (eds.) Pro-
ceedings of the 5th IEEE International Conference on Informatics in Control, Automa-
tion and Robotics, Funchal, pp. 49-53 (2008)

Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M., Priesterjahn, C., Schifer, W.:
Modeling and Verifying Dynamic Communication Structures Based on Graph Trans-
formations. Computer Science - Research and Development 28, 3-22 (2013)

Eckardt, T., Henkler, S.: Component Behavior Synthesis for Critical Systems. In: Giese,
H. (ed.) ISARCS 2010. LNCS, vol. 6150, pp. 52-71. Springer, Heidelberg (2010)
Eckardt, T., Henkler, S.: Synthesis of Reconfiguration Charts. Tech. Rep. tr-ri-10-314,
Software Engineering Group, University of Paderborn (2010)

Esau, N., Kriiger, M., Rasche, C., Beringer, S., Kleinjohann, L., Kleinjohann, B.: Hier-
archical Hybrid Planning for a Self-Optimizing Active Suspension System. In: Proceed-
ings of the 7th IEEE Conference in Industrial Electronics and Applications, Singapore
(2012)

Estler, H.C., Wehrheim, H.: Heuristic Search-based Planning for Graph Transformation
Systems. In: Proceedings of the Workshop on Knowledge Engineering for Planning and
Scheduling, Freiburg, pp. 54-61 (2011)

Feng, H.H., Kolesnikov, O.M., Fogla, P., Lee, W., Gong, W.: Anomaly Detection Using
Call Stack Information. In: Proceedings of the 2003 IEEE Symposium on Security and
Privacy, Berkeley (2003)

FG Rammig, University of Paderborn: ORCOS - Organic Reconfigurable Operat-
ing System, https://orcos.cs.uni-paderborn.de/doxygen/html (ac-
cessed August 12, 2013)

FlaBkamp, K., Murphey, T., Ober-Blobaum, S.: Switching Time Optimization in Dis-
cretized Hybrid Dynamical Systems. In: Proceedings of the 51th IEEE Conference on
Decision and Control, Maui, pp. 707-712 (2012)

FlaBkamp, K., Ober-Blobaum, S.: Variational Formulation and Optimal Control of Hy-
brid Lagrangian systems. In: Proceedings of the 14th International Conference on Hy-
brid Systems: Computation and Control, Chicago, pp. 241-250. ACM Press, New York
(2011)

FlaBkamp, K., Ober-Blobaum, S., Kobilarov, M.: Solving Optimal Control Problems by
Exploiting Inherent Dynamical Systems Structures. Journal of Nonlinear Science 22(4),
599-629 (2012)

FlaBkamp, K., Ober-Blobaum, S., Ringkamp, M., Schneider, T., Schulte, C., Bocker,
J.: Berechnung optimaler Stromprofile fiir einen 6-phasigen, geschalteten Reluktan-
zantrieb. In: Tagungsband Vom 8. Paderborner Workshop Entwurf mechatronischer
Systeme. Heinz Nixdorf Institut Verlagsschriftreihe, Paderborn (2011)

FlaBkamp, K., Timmermann, J., Ober-Blobaum, S., Dellnitz, M., Tréchtler, A.: Optimal
Control on Stable Manifolds for a Double Pendulum. In: Applied Mathematics and
Mechanics, vol. 12, pp. 723-724. Springer, Heidelberg (2012)

Fox, M., Long, D.: PDDL 2.1: An Extension to PDDL for Expressing Temporal Plan-
ning Domains. Jornal of Artificial Intelligence Research, 189-208 (2003)

Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based Motion Planning for Nonlinear
Systems with Symmetries. IEEE Trans. on Robotics 21(6), 1077-1091 (2005)

https://orcos.cs.uni-paderborn.de/doxygen/html

5 Methods for the Design and Development 341

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

Galea, A., Borg, J., Grech, A., Farrugia, P.: Towards Intelligent Design Tools for Micro-
scale components. In: Proceedings of the International Conference on Engineering De-
sign, Stanford, pp. 5-84 (2009)

Gausemeier, J., Frank, U., Donoth, J., Kahl, S.: Specification Technique for the Descrip-
tion of Self-optimizing Mechatronic Systems. Research in Engineering Design 20(4),
201-223 (2009)

Gausemeier, J., Rammig, FJ., Schifer, W., Sextro, W. (eds.): Dependability of Self-
optimizing Mechatronic Systems. Springer, Heidelberg (2014)

Gausemeier, J., Schifer, W., Greenyer, J., Kahl, S., Pook, S., Rieke, J.: Management of
Cross-Domain Model Consistency During the Development of Advanced Mechatronic
Systems. In: Proceedings of the 17th International Conference on Engineering Design,
Stanford (2009)

Geiger, C., Lehrenfeld, G., Miiller, W.: Authoring Communicating Agents in Virtual
Environments. In: Proceedings of the Computer Human Interaction, Adelaide, pp. 22—
29 (1998)

Geisler, J., Witting, K., Tréchtler, A., Dellnitz, M.: Multiobjective Optimization of Con-
trol Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th
IFAC World Congress, Seoul (2008)

Geisler, J., Witting, K., Tréchtler, A., Dellnitz, M.: Multiobjective Optimization of Con-
trol Trajectories for the Guidance of a Rail-bound Vehicle. In: Proceedings of the 17th
World Congress International Federation of Automatic Control, Milano (2008)
Ghallab, M., Nau, D., Traverso, P.: Automated Planning - Theory and Practice. Elsevier,
Amsterdam (2004)

Giese, H., Tichy, M., Burmester, S., Schifer, W., Flake, S.: Towards the Compositional
Verification of Real-time UML Designs. In: Proceedings of the 9th European Software
Engineering Conference Held Jointly with the 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, Helsinki, pp. 38—47. ACM Press, New
York (2003)

Gill, PE., Jay, L.O., Leonard, M.W., Petzold, L.R., Sharma, V.: An SQP Method for
the Optimal Control of Large-scale Dynamical Systems. Journal of Computational and
Applied Mathematics 120, 197-213 (2000)

Gilles, K., Groesbrink, S., Baldin, D., Kerstan, T.: Proteus Hypervisor - Full Virtualiza-
tion and Paravirtualization for Multi-Core Embedded Systems. In: Proceedings of the
International Embedded Systems Symposium, Paderborn (2013)

Greenyer, J., Kindler, E.: Comparing Relational Model Transformation Technologies:
Implementing Query/View/Transformation with Triple Graph Grammars. Software and
Systems Modeling 9, 21-46 (2010)

Greenyer, J., Pook, S., Rieke, J.: Preventing Information Loss in Incremental Model
Synchronization by Reusing Elements. In: Proceedings of the 7th European Conference
on Modelling Foundations and Applications, Birmingham (2011)

Griese, B., Oberthiir, S., Porrmann, M.: Component Case Study of a Self-optimizing
RCOS/RTOS System: A Reconfigurable Network Service. In: Proceedings of the Inter-
national Embedded Systems Symposium - From Specification to Embedded Systems
Application, Manaos, pp. 267-277 (2005)

Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algo-
rithmic Differentiation. Society for Industrial and Applied Mathematics, Philadelphia
(2008)

342

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

References

Groesbrink, S.: A First Step Towards Real-time Virtual Machine Migration in Het-
erogeneous Multi-Processor Systems. In: Proceedings of the 1st Joint Symposium on
System-Integrated Intelligence, Hannover (2012)

Groesbrink, S.: Basics of Virtual Machine Migration on Heterogeneous Architectures
for Self-optimizing Mechatronic Systems - Necessary Conditions and Implementation
Issues. In: Production Engineering Research & Development (11740) (2012)
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifur-
cations of Vector Fields. In: Applied Mathematical Sciences, vol. 42, Springer, Heidel-
berg (1983)

Guleyupoglu, S., Ng, H.: Distributed Collaborative Virtual Reality Framework for Sys-
tem Prototyping and Training. In: Proceedings of the RTO IST Symposium on New
Information Processing Techniques for Military Systems, Istanbul (2000)

Gutiérrez, M., Vexo, F., Thalmann, D.: Stepping into Virtual Reality. Springer, Heidel-
berg (2008)

Hagemeyer, J., Kettelhoit, B., Koester, M., Porrmann, M.: Design of Homogeneous
Communication Infrastructures for Partially Reconfigurable FPGAs. In: International
Conference on Engineering of Reconfigurable Systems and Algorithms, Las Vegas
(2007)

Hagemeyer, J., Kettelhoit, B., Koster, M., Porrmann, M.: A Design Methodology for
Communication Infrastructures on Partially Reconfigurable FPGAs. In: Proceedings
of the 17th International Conference on Field Programmable Logic and Applications,
Amsterdam (2007)

Hampton, M., Petithomme, S.: Leveraging a Commercial Mutation Analysis Tool for
Research. In: Proceedings of the Testing Academic & Industrial Conference Practice
and Research Techniques, Windsor (2007)

Heckel, R., Thone, S.: Behavioral Refinement of Graph Transformation-based Mod-
els. In: Proceedings of the Workshop on Software Evolution through Transformations:
Model-based vs. Implementation-level Solutions, Rom, pp. 101-111 (2005)
Heinzemann, C., Henkler, S.: Reusing Dynamic Communication Protocols in Self-
Adaptive Embedded Component Architectures. In: Proceedings of the 14th Interna-
tional Symposium on Component Based Software Engineering, Boulder, pp. 109-118
(2011)

Heinzemann, C., Henkler, S.: Timed Story Driven Modeling. Tech. Rep. tr-ri-11-326,
University of Paderborn (2011)

Heinzemann, C., Pohlmann, U., Rieke, J., Schifer, W., Sudmann, O., Tichy, M.: Gen-
erating Simulink and Stateflow Models From Software Specifications. In: Proceedings
of the 12h International Design Conference DESIGN, Dubrovnik (2012)

Heinzemann, C., Priesterjahn, C., Becker, S.: Towards Modeling Reconfiguration in Hi-
erarchical Component Architectures. In: Proceedings of the 15th ACM SigSoft Interna-
tional Symposium on Component-Based Software Engineering, Bertinoro, pp. 23-28
(2012)

Heinzemann, C., Rieke, J., Schéfer, W.: Simulating self-adaptive component-based sys-
tems using matlab/simulink. In: Proceedings of the 7th IEEE International Conference
on Self-Adaptive and Self-Organizing Systems, SASO 2013. IEEE Computer Society
Press (2013)

Henkler, S., Meyer, J., Schifer, W., Nickel, U.: Reverse Engineering mechatronischer
Systeme. In: Proceedings of the 7th Paderborner Workshop Entwurf Mechatronischer
Systeme, Paderborn (2010)

5 Methods for the Design and Development 343

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

Henkler, S., Meyer, J., Schifer, W., Nickel, U.A., von Detten, M.: Legacy Component
Integration by the Fujaba Real-time Tool Suite. In: Proceedings of the 32nd Interna-
tional Conference on Software Engineering, Cape Town, vol. 2, pp. 267-270 (2010)
Henzinger, T.A.: The Theory of Hybrid Automata. In: Logic in Computer Science, p.
278 (1996)

Herbrechtsmeier, S., Witkowski, U., Riickert, U.: BeBot - A Modular Mobile Miniature
Robot Platform Supporting Hardware Reconfiguration and Multi-standard Communi-
cation. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthussery-
pady, K.S., Riickert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J.,
Anderson, J., Wong, C.-C., Verner, 1., Ahlgren, D. (eds.) Progress in Robotics. CCIS,
vol. 44, pp. 346-356. Springer, Heidelberg (2009)

Hillermeier, C.: Nonlinear Multiobjective Optimization - A Generalized Homotopy Ap-
proach. Birkhduser (2001)

Hitzler, P., Krétzsch, M., Rudolph, S., Sure, Y.: Semantic Web - Grundlagen. Springer,
Heidelberg (2008)

Holscher, C., KeBler, J.H., Kriiger, M., Trdchtler, A., Zimmer, D.: Hierarchical Opti-
mization of Coupled Self-optimizing Systems. In: Proceedings of the 10th IEEE Inter-
national Conference on Industrial Informatics, Beijing (2012)

Horta, E.L., Lockwood, J.W.: PARBIT: A Tool to Transform Bitfiles to Implement Par-
tial Reconfiguration of Field Programmable Gate Arrays (FPGAs). Tech. rep. (2001)
Howden, W.E.: Weak Mutation Testing and Completeness of Test Sets. IEEE Transac-
tions on Software Engineering 8(4) (1982)

Hussmann, M., Thies, M., Kastens, U., Purnaprajna, M., Porrmann, M., Rueckert, U.:
Compiler-driven Reconfiguration of Multiprocessors. In: Proceedings of the Workshop
on Application Specific Processors, Salzburg, pp. 3—10 (2007)

for Intelligent Physical Agents, F.: FIPA Propose Interaction Protocol Specifi-
cation (2002), http://www.fipa.org/specs/fipa00036/SC00036H.pdf
(accessed May 8, 2012)

Jantsch, A., Tenhunen, H.: Networks on Chip. Kluwer Academic Publishers, Dordrecht
(2003)

Jennings, N.R., Wooldrige, M.: Applying Agent Technology. Applied Artificial Intelli-
gence 9(4), 357-369 (1995)

Jungeblut, T., Ax, J., Porrmann, M., Rueckert, U.: A TCMS-based Architecture for
GALS NoCs. In: Proceedings of the IEEE International Symposium on Circuits and
Systems, Seoul (2012)

Jungeblut, T., Liss, C., Porrmann, M., Rueckert, U.: Design-space Exploration for Flex-
ible WLAN Hardware. In: Zorba, N., Skianis, C., Verikoukis, C. (eds.) Cross Layer
Designs in WLAN Systems, pp. 521-564. Troubador Publishing, Leicester (2011)
Jungmann, A., Kleinjohann, B., Kleinjohann, L., Bieshaar, M.: Efficient Color-Based
Image Segmentation and Feature Classification for Image Processing in Embedded Sys-
tems. In: Proceedings of the 4th International Conference on Resource Intensive Appli-
cations and Services, St. Maarten (2012)

Kalte, H., Lee, G., Porrmann, M., Riickert, U.: REPLICA: A Bitstream Manipulation
Filter for Module Relocation in Partial Reconfigurable Systems. In: Proceedings of the
19th International Parallel and Distributed Processing Symposium - Reconfigurable Ar-
chitectures Workshop (2005)

Kastenberg, H., Rensink, A.: Model Checking Dynamic States in GROOVE. In: Val-
mari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 299-305. Springer, Heidelberg (2006)

http://www.fipa.org/specs/fipa00036/SC00036H.pdf

344

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

References

Katzenbach, A., Haasis, S.: Virtual and Mixed Reality in a SOA Based Engineering
Environment. In: Proceedings of the CIRP Design Conference Design Synthesis, En-
schede (2008)

Kerstan, T., Oertel, M.: Design of a Real-time Optimized Emulation Method. In: Pro-
ceedings of the Design, Automation and Test in Europe, Dresden (2010)

Kettelhoit, B., Porrmann, M.: A Layer Model for Systematically Designing Dynami-
cally Reconfigurable Systems. In: Proceedings of the 16th International Conference on
Field Programmable Logic and Applications, Madrid (2006)

Klinker, G., Dutoit, A., Bauer, M., Bayer, J., Novak, V.: Fata Morgana - A Presentation
System for Product Design. In: Proceedings of the International Symposium on Mixed
and Augmented Reality, Darmstadt (2002)

Klopper, B.: Ein Beitrag zur Verhaltensplanung fiir interagierende intelligente mecha-
tronische Systeme in nicht-deterministischen Umgebungen. Ph.D. thesis, Fakultit fiir
Wirtschaftswissenschaften, Universitdt Paderborn, HNI-Verlagsschriftenreihe, Band
253, Paderborn (2009)

Klopper, B., Aufenanger, M., Adelt, P.: Planning for Mechatronics Systems - Ar-
chitechture, Methods and Case Study. Engineering Applications of Artificial Intelli-
gence 25(1), 174-188 (2012)

Koester, M., Kalte, H., Porrmann, M.: Run-time Defragmentation for Partially Recon-
figurable Systems. In: Proceedings of the IFIP International Conference on Very Large
Scale Integration, Madrid, pp. 109-115 (2005)

Koester, M., Kalte, H., Porrmann, M.: Task Placement for Heterogeneous Recon-
figurable Architectures. In: Proceedings of the IEEE 2005 Conference on Field-
Programmable Technology, Singapore, pp. 43-50 (2005)

Koester, M., Kalte, H., Porrmann, M.: Task Placement for Heterogeneous Recon-
figurable Architectures. In: Proceedings of the IEEE 2005 Conference on Field-
Programmable Technology, Singapore, pp. 43-50 (2005)

Koester, M., Luk, W., Hagemeyer, J., Porrmann, M.: Design Optimizations to Improve
Placeability of Partial Reconfiguration Modules. In: Proceedings of the International
Conference on Design, Automation and Test in Europe, Nice (2009)

Koester, M., Porrmann, M., Riickert, U.: Placement-oriented Modeling of Partially
Reconfigurable Architectures. In: Proceedings of the 19th International Parallel and
Distributed Processing Symposium - Reconfigurable Architectures Workshop, Phoenix
(2005)

Kopper, B., Sondermann-Wélke, C., Romaus, C.: Probabilistic Planning for Predictive
Condition Monitoring and Adaptation within the Self-Optimizing Energy Management
of an Autonomous Railway Vehicle. Journal for Robotics and Mechatronics 24, 5-15
(2012)

Korf, S., Cozzi, D., Koester, M., Hagemeyer, J., Porrmann, M., Riickert, U., Santam-
brogio, M.D.: Automatic HDL-based Generation of Homogeneous Hard Macros for
FPGAs. In: Proceedings of the IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines, Salt Lake City, pp. 125-132 (2011)
Kramer, J., Magee, J.: Analysing Dynamic Change in Software Architectures: A Case
Study. In: Proceedings of the International Conference on Configurable Distributed Sys-
tems, Annapolis (1998)

Krause, F.L., Jansen, H., Kind, C., Rothenburg, U.: Virtual Product Development as an
Engine for Innovation. In: Krause, F.L. (ed.) The Future of Product Development, pp.
703-713. Springer, Heidelberg (2007)

5 Methods for the Design and Development 345

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.
145.

146.

Kriiger, M., Trichtler, A.: Approximation of Pareto-optimal Systems Using Paramet-
ric Model-order Reduction. In: 7th Vienna International Conference on Mathematical
Modelling, Wien

Kriiger, M., Witting, K., Dellnitz, M., Trichtler, A.: Robust Pareto Points with Respect
to Crosswind of an Active Suspension System. In: Proceedings of the 1st Joint Interna-
tional Symposium on System-Integrated Intelligence, Hannover (2012)

Kriiger, M., Witting, K., Trichtler, A., Dellnitz, M.: Parametric Model-order Reduction
in Hierarchical Multiobjective Optimization of Mechatronic Systems. In: Proceedings
of the 18th IFAC World Congress, Milano (2011)

Leyendecker, S., Ober-Blobaum, S.: A Variational Approach to Multirate Integration.
In: Proceedings of the 4th European Conference on Computational Mechanics, Paris
(2010)

Leyendecker, S., Ober-Blobaum, S.: A Variational Approach to Multirate Integration
for Constrained Systems. In: Fisette, P., Samin, J.C. (eds.) Proceedings of the ECCO-
MAS Thematic Conference: Multibody Dynamics: Computational Methods and Appli-
cations, Briissel (2011)

Leyendecker, S., Ober-Blobaum, S., Marsden, J.E., Ortiz, M.: Discrete Mechanics and
Optimal Control for Constrained Systems. Optimal Control, Applications and Meth-
ods 31(6), 505-528 (2010)

Li, C., McMahon, C., Newnes, L.: Annotation in Design Processes: Classification of
Approcches. In: Proceedings of the International Conference on Engineering Design,
Stanford, pp. 8-262 (2009)

Li, L., Littman, M.L., Littman, L.: Prioritized Sweeping Converges to the Optimal Value
Function. Tech. Rep. DCS-TR-631 (2008)

Loginov, A., Reps, T., Sagiv, M.: Abstraction Refinement via Inductive Learning. In:
Proceedings of the 17th International Conference on Computer Aided Verification, Ed-
inburgh, pp. 519-533 (2005)

Luetkemeier, S., Porrmann, M., Jungeblut, T., Rueckert, U.: A 200 mV 32-bit Sub-
threshold Processor with Adaptive Supply Voltage Control. In: Proceedings of the 2012
IEEE International Solid-state Circuits Conference, San Francisco, pp. 484—485 (2012)
Lynch, N.A.: Distributed Algorithms, 1st edn. Morgan Kaufmann, Burlington (1997)
Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer,
Heidelberg (1999)

Marsden, J.E., West, M.: Discrete Mechanics and Variational Integrators. Acta Numer-
ica 10, 357-514 (2001)

Mendez, G., de Antonio, A.: An Agent-based Architecture for Collaborative Virtual En-
vironments for Training. In: Proceedings of the Sth WSEAS Int. Conf. on Multimedia,
Internet and Video Technologies, Corfu, pp. 29-34 (2005)

Mescheder, D., Tuyls, K., Kaisers, M.: POMDP Opponent Models for Best Response
Behavior. In: Proceedings of the 23rd Benelux Conference on Artificial Intelligence,
Gent (2011)

Milner, R.: A Calculus of Communicating Systems. Springer, Heidelberg (1982)
Moctezuma Eugenio, J.C., Arias Estrada, M.: Hardware/Software FPGA Architecture
for Robotics Applications. In: Proceedings of the 5th International Workshop on Re-
configurable Computing: Architectures, Tools and Applications, Karlsruhe, pp. 27-38
(2009)

Moore, A., Ober-Blobaum, S., Marsden, J.E.: Trajectory Design Combining Invariant
Manifolds with Discrete Mechanics and Optimal Control. Journal of Guidance, Control,
and Dynamics 35(5), 1507-1525 (2012)

346

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

References

Moore, A.W., Atkeson, C.G.: Prioritized Sweeping - Reinforcement Learning with less
Data and less Time. Machine Learning 13(1), 103—130 (1993)

Miinch, E., Gambuzza, A., Paiz, C., Pohl, C., Porrmann, M.: FPGA-in-the-Loop Sim-
ulations with CAMEL-View. In: Proceedings of the 7th International Heinz Nixdorf
Symposium, Paderborn (2008)

Nava, F., Sciuto, D., Santambrogio, M.D., Herbrechtsmeier, S., Porrmann, M.,
Witkowski, U., Rueckert, U.: Applying Dynamic Reconfiguration in the Mobile
Robotics Domain - A Case Study on Computer Vision Algorithms. ACM Transactions
on Reconfigurable Technology and Systems 4(3), 29:1-29:22 (2011)

Niemann, J.C., Puttmann, C., Porrmann, M., Riickert, U.: Resource Efficiency of the
GigaNetIC Chip Multiprocessor Architecture. Journal of Systems Architecture (JSA),
Special Issue on Architectural Premises for Pervasive Computing 53(5-6), 285-299
(2007)

Ober-Blobaum, S., Junge, O., Marsden, J.E.: Discrete Mechanics and Optimal Control:
An Analysis. Control, Optimisation and Calculus of Variations 17(2), 322-352 (2011)
Ober-Blobaum, S., Ringkamp, M., Zum Felde, G.: Solving Multiobjective Optimal
Control Problems in Space Mission Design using Discrete Mechanics and Reference
Point Techniques. In: Proceedings of the 51th IEEE Conference on Decision and Con-
trol, Maui, pp. 5711-5716 (2012)

Ober-Blobaum, S., Walther, A.: Computation of Derivatives for Structure Preserving
Optimal Control Using Automatic Differentiation. Proceedings of Applied Mathemat-
ics and Mechanics 10(1), 585-586 (2010)

Oberthiir, S.: Towards an RTOS for Self-optimizing Mechatronic Systems. Ph.D. thesis,
Fakultit fiir Elektrotechnik, Informatik und Mathematik, Universitit Paderborn, HNI-
Verlagschriftenreihe, Paderborn (2009)

Oberthiir, S.: Towards an RTOS for Self-optimizing Mechatronic Systems. Ph.D. thesis,
Fakultit fiir Elektrotechnik, Informatik und Mathematik, Universitit Paderborn, HNI-
Verlagschriftenreihe, Paderborn (2010)

Oberthiir, S., Boke, C.: Flexible Resource Management - A Framework for Self-
optimizing Real-time Systems. In: Gao, G.R., Kopetz, H., Kleinjohann, L., Rettberg,
A. (eds.) Proceedings of IFIP Working Conference on Distributed and Parallel Embed-
ded Systems, Toulouse (2004)

Oberthiir, S., Zaramba, L., Lichte, H.S.: Flexible Resource Management for Self-X
Systems: An Evaluation. In: Proceedings of the 1st IEEE Workshop on Self-Organizing
Real-Time Systems, Carmona (2010)

Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design - A Systematic
Approach, 3rd edn. Springer, Heidelberg (2007)

Paiz, C., Hagemeyer, J., Pohl, C., Porrmann, M., Riickert, U., Schulz, B., Peters, W.,
Bocker, J.: FPGA-Based Realization of Self-Optimizing Drive-Controllers. In: Pro-
ceedings of the 35th Annual Conference of the IEEE Industrial Electronics Society,
Porto (2009)

Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric Model Order Reduction by
Matrix Interpolation. at - Automatisierungstechnik 58, 475-484 (2010)

Payne, T.: Agent-based Team Aiding in a Time Critical Task. In: Proceeding of the 44rd
Hawaii International Conference on System Sciences, Maui, vol. 1 (2000)

Pohl, C., Paiz, C., Porrmann, M.: A Hardware-in-the-Loop Design Environment for FP-
GAs. In: Proceedings of the Design, Automation and Test in Europe, Miinchen (2008)

5 Methods for the Design and Development 347

163.

164.

165.

166.

167.

168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

Pohl, C., Paiz, C., Porrmann, M.: vYMAGIC - VHDL Manipulation and Automation for
Reliable System Development. In: Proceedings of the 3rd International Workshop on
Reconfigurable Computing Education, Karlsruhe (2008)

Porrmann, M., Hagemeyer, J., Pohl, C., Romoth, J., Strugholtz, M.: RAPTOR - A Scal-
able Platform for Rapid Prototyping and FPGA-based Cluster Computing. In: Proceed-
ings of the Parallel Computing: From Multicores and GPUs to Petascale, Lyon, pp.
592-599 (2010)

Porrmann, M., Purnaprajna, M., Puttmann, C.: Self-optimization of MPSoCs Targeting
Resource Efficiency and Fault Tolerance. In: Proceedings of the NASA/ESA Confer-
ence on Adaptive Hardware and Systems, San Francisco, pp. 467-473 (2009)
Priesterjahn, C.: Hazard Analysis of Self-optimizing Mechatronic Systems. In: Pro-
ceedings of the Doctoral Symposium of the 7th Joint Meeting of the European Software
Engineering Conference (ESEC) and the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, Amsterdam (2009)

Purnaprajna, M., Porrmann, M., Rueckert, U.: Run-time Reconfigurability in Embed-
ded Multiprocessors. SIGARCH Computer Architecture News 37(2), 30-37 (2009)
Purnaprajna, M., Porrmann, M., Rueckert, U., Hussmann, M., Thies, M., Kastens, U.:
Runtime Reconfiguration of Multiprocessors Based on Compile-time Analysis. ACM
Transactions on Reconfigurable Technology and Systems (TRETS) 3(3), 17:1-17:25
(2010)

Purnaprajna, M., Puttmann, C., Porrmann, M.: Power Aware Reconfigurable Multipro-
cessor for Elliptic Curve Cryptography. In: Proceedings of the Conference on Design,
Automation and Test in Europe, Miinchen, pp. 1462—-1467 (2008)

Puttmann, C., Niemann, J.C., Porrmann, M., Riickert, U.: GigaNoC — A Hierarchical
Network-on-Chip for Scalable Chip-Multiprocessors. In: Proceedings of the 10th EU-
ROMICRO Conference on Digital System Design, Liibeck, pp. 495-502 (2007)
Radkowski, R.: Towards Semantic Virtual Prototypes for Automatic Model Combina-
tion. In: Proceedings of the 20th CIRP Design Conference, Global Product Develop-
ment, Nantes (2010)

Radkowski, R., Wallmann, H.: Augmented Reality-based Approach for the Visual
Analysis of Intelligent Mechatronic Systems. In: Proceedings of the Workshop at the
IDETC/CIE Design Engineering Technical Conference & Computer and Information
in Engineering Conference, New York (2008)

Radkowski, R., Walmann, H.: Software-agent Supported Virtual Experimental Envi-
ronment for Virtual Prototypes of Mechatronic Systems. In: Proceedings of the ASME
2010 World Conference on Innovative Virtual Reality, Ames (2010)

Rana, V., Santambrogio, M., Sciuto, D., Kettelhoit, B., Koester, M., Porrmann, M.,
Riickert, U.: Partial Dynamic Reconfiguration in a Multi-FPGA Clustered Architec-
ture Based on Linux. In: Proceedings of the 21st International Parallel and Distributed
Processing Symposium: Reconfigurable Architectures Workshop, Long Beach (2007)
Reinold, P., Nachtigal, V., Trichtler, A.: An Advanced Electric Vehicle for the Devel-
opment and Test of New Vehicle-Dynamics Control Strategies. In: Proceedings of the
6th IFAC Symposium on Advances in Automotive Control AAC, Miinchen (2010)
Reps, T., Sagiv, M., Loginov, A.: Finite Differencing of Logical Formulas for Static
Analysis (ESOP). In: Proceedings of European Symposium on Programming, Las Ve-
gas, vol. 32, pp. 393-412 (2003)

Restrepo, J.: A Visual Lexicon to Handle Semantic Similarity in Design Precedents. In:
Proceedings of the 16th International Conference on Engineering Design, Paris (2007)

348

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

References

Reynolds, C.W.: Steering Behaviors For Autonomous Characters. In: Proceedings of
Game Developers Conference, San Jose, pp. 763-782 (1999)

Richter, U., Mnif, M., Branke, J., Miiller-Schloer, C., Schmeck, H.: Towards a Generic
Observer/Controller Architecture for Organic Computing. In: Tagungsband vom 36,
pp. 112-119. Jahrestagung der Gesellschaft fiir Informatik - Informatik fiir Menschen,
Dresden (2006)

Rieke, J., Dorociak, R., Sudmann, O., Gausemeier, J., Schifer, W.: Management of
Cross-domain Model Consistency for Behavioral Models of Mechatronic Systems. In:
Proceedings of the 12th International Design Conference, Dubrovnik (2012)
Ringkamp, M., Ober-Blobaum, S., Dellnitz, M., Schiitze, O.: Handling High Dimen-
sional Problems with Multi-objective Continuation Methods via Successive Approxi-
mation of the Tangent Space. Engineering Optimization 44(9), 1117-1146 (2012)
Ringkamp, M., Walther, A., Reinold, P., Witting, K., Dellnitz, M., Trichtler, A.: Using
Algorithmic Differentiation for the Multiobjective Optimization of a Test Vehicle. In:
Proceedings of EVOLVE, Mexico City (2012)

Romaus, C., Bocker, J., Witting, K., Seifried, A., Znamenshchykov, O.: Optimal Energy
Management for a Hybrid Energy Storage System Combining Batteries and Double
Layer Capacitors. In: Proceedings of the Energy Conversion Congress and Exposition,
San Jose, pp. 1640-1647 (2009)

Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph Transforma-
tion. Foundations, vol. 1. World Scientific Publishing Co. Inc., River Edge (1997)
Sagiv, M., Reps, T., Wilhelm, R.: Parametric Shape Analysis via 3-valued Logic. ACM
Transactions on Programming Languages and Systems 24(3), 217-298 (2002)

Schenk, M., Strafburger, S., Kissner, H.: Combining Virtual Reality and Assembly
Simulation for Production Planning and Worker Qualification. In: Zaeh, M., Reinhart,
G. (eds.) Proceedings of the International Conference on Changeable, Agile, Reconfig-
urable and Virtual Production, Miinchen, pp. 411-414 (2005)

Schneider, T., Schulz, B., Henke, C., Witting, K., Steenken, D., Bocker, J.: Energy
Transfer via Linear Doubly-fed Motor in Different Operating Modes. In: Proceedings
of the International Electric Machines and Drives Conference, Miami, pp. 598-605
(2009)

Schiirr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr,
E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151-163.
Springer, Heidelberg (1995)

Schiitze, O., Dell’ Aere, A., Dellnitz, M.: On Continuation Methods for the Numerical
Treatment of Multi-objective Optimization Problems. In: Proceedings of the Practical
Approaches to Multi-objective Optimization, Dagstuhl (2005)

Schiitze, O., Witting, K., Ober-Blobaum, S., Dellnitz, M.: Set Oriented Methods for the
Numerical Treatment of Multi-objective Optimization Problems. In: Tantar, E., Tantar,
A.-A., Bouvry, P, Del Moral, P., Legrand, P., Coello Coello, C.A., Schiitze, O. (eds.)
EVOLVE- A bridge between Probability. SCI, vol. 447, pp. 187-219. Springer, Heidel-
berg (2013)

Serrestou, Y., Beroulle, V., Robach, C.: Functional Verification of RTL Designs Driven
by Mutation Testing Metrics. In: Proceedings of the 10th Euromicro Conference on
Digital System Design, Lebeck, pp. 222-227 (2007)

Spors, K., Martin, A., Leetz, A.: Moglichkeiten fotorealistischer Visualisierungen im
Produktionsprozess eines Automobils. Automobiltechnische Zeitschrift 3, 1-8 (2009)

5 Methods for the Design and Development 349

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

204.

205.
206.

207.

208.

209.

Steenken, D., Wehrheim, H., Wonisch, D.: Sound and Complete Abstract Graph Trans-
formation. In: Proceedings of the Brazilian Symposium on Formal Methods, Sao Paulo,
pp. 92-107 (2011)

Steenken, D., Wonisch, D.: Using Shape Analysis to verify Graph Transformations in
Model Driven Design. In: Proceedings of the 9th IEEE International Conference on
Industrial Informatics, Lisbon, pp. 457-462 (2011)

Groesbrink, S., Baldin, D.: Towards Adaptive Resource Management for Virtualized
Real-Time Systems. In: Proceedings of the 4th Workshop on Adaptive and Reconfig-
urable Embedded Systems, Beijing (2012)

Suck, J., Heinzemann, C., Schéfer, W.: Formalizing Model Checking on Timed Graph
Transformation Systems. Tech. Rep. tr-ri-11-316, Software Engineering Group, Heinz
Nixdorf Institute, University of Paderborn (2011)

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (1998)

Szyperski, C.: Component Software: Beyond Object-oriented Programming. Addison-
Wesley, Bonn (1998)

Thiere, B., Ober-Blobaum, S., Pergola, P.: Detecting Initial Guesses for Trajectories in
the (P)CRTBP. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Confer-
ence, Toronto (2010)

Tichy, M., Henkler, S., Holtmann, J., Oberthiir, S.: Component Story Diagrams: A
Transformation Language for Component Structures in Mechatronic Systems. In: Pro-
ceedings of the 4th Workshop on Object-oriented Modeling of Embedded Real-time
Systems, Paderborn, pp. 27-39 (2008)

Timmermann, R., Horenkamp, C., Dellnitz, M., KeBler, J.H., Tréchtler, A.: Optimale
Umschaltstrategien bei Aktorausfall mit Pfadverfolgungstechniken. In: Gausemeier, J.,
Rammig, F.J., Schifer, W., Tréchtler, A. (eds.) Tagungsband vom 9. Paderborner Work-
shop Entwurf mechatronischer Systeme. HNI-Verlagsschriftenreihe, Paderborn (2013)
Tripakis, S., Yovine, S.: Analysis of Timed Systems Using Time-abstracting Bisimula-
tions. Formal Methods in System Design 18(1), 25-68 (2001)

University of Paderborn: TGG Interpreter Tool Suite (2012),
http://www.cs.uni-paderborn.de/
index.php?id=tgg-interpreter

(accessed August 13, 2013)

Wasson, C.S.: System Analysis, Design, and Development. John Wiley & Sons, Hobo-
ken (2006)

Watkins, C.J.C.H., Dayan, P.: Q-Learning. Machine Learning 8(3-4), 279-292 (1992)
Witting, K.: Numerical Algorithms for the Treatment of Parametric Multiobjective Op-
timization Problems and Applications. Ph.D. thesis, Fakultit fiir Elektrotechnik, In-
formatik und Mathematik, Universitit Paderborn, HNI-Verlagschriftenreihe, Paderborn
(2011)

Witting, K., Ober-Blobaum, S., Dellnitz, M.: A Variational Approach to Define Ro-
bustness for Parametric Multiobjective Optimization Problems. Journal of Global Op-
timization (2012)

Witting, K., Schulz, B., Dellnitz, M., Bocker, J., Frohleke, N.: A new Approach for
Online Multiobjective Optimization of Mechatronic Systems. International Journal on
Software Tools for Technology Transfer STTT 10(3), 223-231 (2008)

Wittke, M.: AR in der PKW-Entwicklung bei Volkswagen. In: Schenk, M. (ed.)
Tagungsband zur 4. Fachtagung zu Virtual RealityIFF-Wissenschaftstage - Virtual Re-
ality und Augmented Reality zum Planen, Testen und Betreiben technischer Systeme,
Magdeburg (2007)

http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

350

210.

211.

212.

213.

214.

References

Wolf, W., Jerraya, A., Martin, G.: Multiprocessor System-on-Chip (MPSoC) Technol-
ogy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 27(10), 1701-1713 (2008)

Wonisch, D.: Increasing the Preciseness of Shape Analysis for Graph Transformation
Systems. Ph.D. thesis, Institut fiir Informatik, Universitit of Paderborn (2010)

Ye, J., Badiyani, S., Raja, V., Schlegel, T.: Applications of Virtual Reality in Product
Design Evaluation. In: Jacko, J.A. (ed.) Human-Computer Interaction, Part IV, HCII
2007. LNCS, vol. 4553, pp. 1190-1199. Springer, Heidelberg (2007)

Zhang, J., Cheng, B.H.C.: Model-based Development of Dynamically Adaptive Soft-
ware. In: Proceedings of the 28th International Conference on Software Engineering,
Shanghai (2006)

Zilberstein, S.: Using Anytime Algorithms in Intelligent Systems. Al Magazine 17(3),
73-83 (1996)

Chapter 6
Summary and Outlook

Jiirgen Gausemeier and Mareen Valholz

The increasing development of information and communication technology enables
mechatronic systems with inherent partial intelligence, so called self-optimizing
systems. Their behavior is formed by the communication and cooperation of in-
telligent system elements. Self-optimization describes the endogenous adaptation
of the system’s objectives due to changing operation conditions and the resulting
autonomous adjustment of the system’s behavior. Self-optimization therefore opens
up fascinating prospects for the development of future mechatronic systems, which
meet the increasing requirements on such systems. At the same time the devel-
opment of self-optimizing systems sets new requirements on the design method-
ology, due to the involvement of different domains such as mechanical, electri-
cal/electronic, control, software engineering and experts from higher mathematics
and artificial intelligence. This leads to an increasing design complexity and re-
quires an effective cooperation and communication between the developers. The
approach of the Collaborative Research Center (CRC) 614 for the development of
self-optimizing systems presented in this book, overcomes the shortcomings of the
existing design methodologies. It provides a design methodology consisting of a
reference process, tools and methods. It makes the self-optimization specific ex-
pertise available for the developers and enables them to develop these systems
independently.

After introducing the paradigm of self-optimization and deriving the challenges
for their development in Chap. 1 of this book, the various application example un-
derline the capabilities of self-optimizing systems. Based on these application exam-
ples, presented in Chap. 2, different methods, developed within the CRC 614, were
evaluated. The implementation of self-optimization led for example to minimized
energy losses or an increased comfort for the passenger in the rail vehicle Rail-
Cab. All application examples clarify the high potential benefit of self-optimizing
systems. To take advantage of these benefits a design methodology for the develop-
ment of self-optimizing systems is presented in Chap. 3. The reference process is
divided into two phases, the domain-spanning conceptual design and the domain-
specific design and development. Within the domain-spanning conceptual design
the principle solution is developed which generates a common understanding of the

J. Gausemeier et al. (eds.), Design Methodology for Intelligent Technical Systems, 351
Lecture Notes in Mechanical Engineering,
DOI: 10.1007/978-3-642-45435-6 6, (© Springer-Verlag Berlin Heidelberg 2014

352 J. Gausemeier and M. VaBholz

system for all domains involved. The methods and tools that are necessary to de-
velop the principle solution are presented in Chap. 4. Based on the principle solution
the domain-specific design and development can be initiated. During this phase the
domains involved work in parallel with their domain specific tools and methods. For
this phase the reference process points out the self-optimization specific tasks and
is therefore not intended as a substitute but as a supplement to the existing domain-
specific development processes. It compromises the domains mechanical, control,
software and electrical/electronic engineering as for classical mechatronic systems,
but also experts for the (sub)system optimization where the self-optimization pro-
cess is implemented. For this task expertise from higher mathematics and artificial
intelligence are needed. For a specific development task the design and develop-
ment phase needs to be tailored individually due to development objectives and
organizational conditions. For this we applied the paradigm of self-optimization
to the management of development processes (cf. Sect. 3.4). The self-optimization
specific methods, tools and expertise that are needed for the design and develop-
ment of self-optimizing systems are presented in Chap. 5. To ensure the consistency
of the overall system, the domain-specific models are integrated continuously with
model transformation and synchronization techniques (cf. Sect. 5.1). By this means
changes in one domain that are also relevant for other domains are communicated.
The integrated results of the domains involved are tested with a virtual prototype.
Failures and inconsistencies can be identified early and therefore cost and time con-
suming iterations in the development process can be avoided. Sect. 5.6 presents the
approach of the CRC 614 regarding virtual prototyping and testing. Before start of
production, a real prototype is built and tested. In case of satisfactory test results,
the manufacturing documents are derived and the system is produced.

With the provided design methodology efficient self-optimizing systems can be
developed that are able to adapt optimally to changing operation conditions and
therefore meet todays requirements. The design methodology is extended by the
aspect dependability in the book "Dependability of Self-optimizing Mechatronic
Systems". The application examples of the CRC 614 show both the benefits and
the transfer of the approaches to other areas. The CRC 614 has laid the foundation
during its eleven years of research in the field of self-optimizing systems. Our future
goal is to promote research in the area of intelligent technical systems as well as to
bring these systems into use. For this purpose, the work of the CRC 614 will be
continued in the leading-edge cluster “Intelligent Technical Systems Ost-Westfalen
Lippe - Its OWL”.18

18 For further information cf. www . its-owl .de

Index

A

Active Guidance Module

Active Suspension Module
162, 231, 238, 248

Activity 126

Adaptation process 126

Adaptive systems 4

Air gap 33

air gap adjustment 33

Algorithmic differentiation 227

AMS see Autonomous Mechatronic
System

Autonomous Mechatronic System 8

28, 36, 160, 228
28, 38, 160,

B

Battery 42
Bayesian Network 168
dictionary of translation rules 169
translation algorithm 169
BeBot 50, 251
grafter module 51
lifter module 51
transporter module 52
Behavior 16
Behavior planning 253
hybrid planning architecture 254
just-in-case planning 255
online planning 255
probabilistic planning model 253
Behavioral adaptation 7
compositional adaptation 7
parameter adaptation 7

reconfiguration 7
structure adaptation 7
BN see Bayesian Network

C

Capacitor 42
Challenge
system complexity 4,5
Chameleon, 225 227
Change
domain-spanning relevant 187
Cognitive functions 139, 141-143, 147
of information processsing 142
Component model 198
Component story diagram 203, 218
Conceptual design see Domain-spanning
conceptual design, 162
principle solution 67
Conditional Probability Table 169
CONSENS, see Specification technique
CONSENS, see Specification tech-
nique CONSENS, see Specification

technique CONSENS
Consistency analysis 129
Convoy 49

CPT, see Conditional Probability Table
Crosslinked Test Benches 46

D
Deductive analysis 135

Deployment 221
Design and development 67

354

(sub)system integration
virtual prototype 67
system model 67
consistency 67
Design Flow for Homogeneous Hard
Macros 273
Design methodology 66
methods 66
solution pattern 66
reference process 66
tools 66
Design rules
application of 158
selection of 157
Design Structure Matrix
aggregation DSM 158
Deterministic planning 17
Development task
analysis of 157
basic types of 154, 155
profile 154, 155
criteria for description of 154
Discrete behavior
consistency analysis of
correction of inconsistencies 133
interactive simulation 133

158, 175

DMOC 15, 240, 245

Domain 66, 67, 74
advanced mathematics 66, 67
artificial intelligence 66, 67

control engineering 66, 74
electrical/electronic engineering 66, 74,
88
mechanical engineering 66, 74
software engineering 66, 74
Domain-spanning conceptual design 69
concept integration 69
conceptual design on the subsystem level
69
conceptual design on the system level
69
planning and clarifying the task 69, 70
principle solution 69
Domain-specific design and development
74,76
(sub)system integration 74, 76, 91, 94
synchronization 91
system model 91
virtual prototype 91

Index

control engineering 76, 78, 93, 94
electrical engineering 76, 78, 94
power electronic 88, 91
electronic engineering 76, 94
microelectronic devices 88
interaction 76, 93
mechanical engineering 76, 78, 93, 94
software engineering 76, 82, 93
discrete software 82, 83
system software 82, 85
tailoring 76
DSM see Design Structure Matrix

E

Economic efficiency 171
benefit 171,178, 179
costs 171, 176, 178

Efficiency 33

Emulation 309

Energy Management

Event 126

External objectives 124

42, 46

F
Failure
cause 163
effect 163
mode 163
combinations 163
propagation
specification of 165
taxonomy 162, 164
Failure Mode and Effects Analysis 133,
136, 162, 163
Fault Tree see Fault Tree Analysis
Fault Tree Analysis 133, 135, 162, 165

Feasible set 230
FHA see Functional Hazard Analysis
Flexible Resource Manager 297
Flow specification 3
energy flow 3, 123
information flow 3, 123
material flow 3, 123
FMEA see Failure Mode and Effects
Analysis
FO-TCTL 207
FTA see Fault Tree Analysis

Index

Functional Hazard Analysis 162
Fussell-Vesely importance measure 168

G

GAIO 224

Graph transformation 190

Graph transformation system 220
rule 220

time 206

H

Hardware-in-the-Loop 28, 38, 277

Hierarchical Flexible Resource Manager
305

Hierarchical optimization 46

Hybrid Energy Storage 42, 229

Hybrid planning 18, 246
Hypervisor 292, 305
I

Incremental update 187
Inductive analysis 136
Influences
distrubing 135
deductive Analysis of 135
disturbing 136
inductive analysis of 136
of the environment 120
Inherent objectives 125
Integrated circuits 227
Intelligent Drive Module 33
Intelligent technical systems 4
adaptive 4
foresighted 4
robust 4
user-friendly 4
Internal objectives 125

K

Kuhn-Tucker equations 13, 224, 230, 236,

238

L

Linear doubly-fed asynchronous drive 30

355

Linear drive 33
Linear motor 28, 231

M

Markov decision process 250
partially observable 252
MATLAB
Simulink 190, 220
Stateflow 193
Mechatronic Function Module 8
Mechatronic Modeller 127
Mechatronic systems 2
actuators 3
basic structure 2
basic system 2
flow specifications, see Fow specification3
information processing 2
sensors 2
Mechatronics see Mchatronic systems2
MechatronicUML 83, 188, 197
MechatronicUML process, 83
MFM see Mechatronic Function Module
MIM see Module Indication Matrix
Modal Sequence Diagrams (MSD) 130,
199
Assumption MSDs 130
lifeline 130
messages 131
cold messages 131
hot messages 131
order of messages 132
Requirement MSDs 130
specification 132
syntax of 130
violation 132
cold violation 132
hot violation 132
Model
domain-spanning model 186
domain-specific model 186
hierarchical 232
Model synchronization 186, 194
Model transformation 186
bidirectional 194
Triple Graph Grammar 190
Model-based optimization 12
Model-order reduction
parametric 232

356

projection-based 234
Module 155
Module Indication Matrix 160
Motion function 8
Motion planning 244
with motion primitives 244
MSD, see Modal Sequence Diagrams
Multi Processor System on Chip, 267
Multicriteria optimization ~ see Multiob-
jective optimization13
Multiobjective optimal control problem
15, 241
Multiobjective optimization 12, 13, 35,
40, 60, 224, 232
problem, 13
recovering algorithm 225
set-oriented methods 14, 224
subdivision algorithm 225
decision making 15
hierarchical 229
parametric 236-238
Pareto front 227
Pareto set 224, 225, 227, 228
problem 224,237
bilevel 230
recovering algorithm 225, 227, 228
subdivision algorithm 227
Multiple Domain Matrix 174

N

Network on-chip 267
Networked Mechatronic System 9
NMS see Networked Mechatronic System
Norm
IEC 60812 163
CENELEC EN 50129 162

o

Objective function 40

Objective Priority Matrix 140, 141
Objective-based controller 40
Objectives 139

external 6
inherent 6
internal 6

Observer 295
Observer-Controller Architecture 294

Index

OCM see Operator-Controller-Module,
see Operator-Controller-Module

OMEGA 68

business process

connector 69

68

exclusives or decisions 69

process objects

69

synchronization line 69
Operating point control 29
Operating strategy 229

Operation process

126

Operator-Controller-Module 10, 231, 232
Cognitive Operator

Controller 10

, 148

Reflective Operator
14, 239
of electrical systems 242
of hybrid systems
of mechanical systems 240
of mechatronic systems 242
15, 240
problem 12, 14, 228, 239
Optimization 58

Optimal control

direct methods

P

PALMERA 267
Paravirtualization 306

Pareto front 13,
Pareto point 13
robust 237

35

10, 150

10, 148

243

Pareto set 13, 15, 36, 41, 225, 233
parametrization 230
Partial models 119

active structure

11

9, 123

application scenarios 119, 120, 129
consistency analysis of 129
formal description of 129

behavior, 119

126

behavior—activities 126
behavior-sequence 126
behavior—states
coherent system of, see Principle solution

environment

119

126

functions 119, 123

interrelations
objectives

126,

conflict between

hierarchy of

134

127

125, 133, 137

Index

requirements 119, 121
demands 122
wishes 122

shape 119, 125

system of objectives
design of 133
external objectives 124
inherent objectives 125
internal objectives 125

Path following
numerical
Planning

continuous 246

discrete 246

hybrid 246

offline 247

Planning Domain Definition Language
220
Policy 250
Posterior probability 170
Principle solution 118, 119, 162, 186
aspects of the description of see Partial
models

data model of 128

Probabilistic planning 18
Probabilistic reliability analysis 162
Product structure 158

119, 124, 133

236, 237

Q
Q-Learning 251
R

RailCab 27, 38, 228, 231, 237
active structure of 124
application scenarios 121
application scenarios for 130
environment of 120
external ojectives of 125
failure specification of 169
function hierarchy of 123
inherent objectives of 125
internal objectives of 125
Modal Sequence Diagrams of 132
modules of 160
objectives of 125

potential conflicts 138
product structure of 161, 163

357

function-oriented 160
shape-oriented 160

requirements on 122
Rapid Prototyping Platfrom RAPTOR 280
Real-time 293
Real-time coordination pattern 200

multirole 201

role 201

singlerole 201

subrole 201
Real-time Operating System 293, 299
Real-time statechart 201, 205
Reconfiguration 19, 294

hardware 21

self-optimizing application 20

system software 21
Reconfiguration Structure Matrix 158
Redundancy 169
Reference process

domain-spanning conceptual design 66

domain-specific design and development

67

Refinement 186

real-time coordination pattern 210
Reliability 162
Requirements

traceability
Reward 250
Risk Priority Number 163
RoSM, see Reconfiguration Structure

Matrix

RPN, see Risk Priority Number
Runtime reconfiguration 218, 219

127, 129

S

Safe planning 219
Schedulability 298
Self-optimization 5

key aspects 6

system of objectives 6
Self-optimization process 6, 144
Self-optimizing control structure 38
Self-optimizing development process 96
Self-optimizing Operating Point Control

30

Self-optimizing systems 5

product structure of

function-oriented 160

358

shape-oriented 160
validation of 160
with regard to additional aspects 160
with regard to flow interdependencies
158
with regard to flow reconfiguration
159
with regard to spatial interdependencies
158
product structuring of 154
design rules for 155
example of a design rule 156
system dynamics 174, 175
Solution pattern 143, 144, 146, 147, 150,
261
aspects 144
active Structure 152
active structure 144
behavior 145, 152
characteristics 144
context 146
functions 144
implementation 145
for the basic system 144
prohabilistic planning 150, 152
tool support 146
uniform specification of 145
Specification technique CONSENS 119
abstract syntax of 128
concrete syntax of 129
dynamic semantics of 129
metamodel of 128
software support for
Modeller
static semantics of 128
State of the system 126
State transition 126
Statistical planning 250
Switched Reluctance Motor
Synthesis 215
SysML see Systems Modeling Language

see Mechatronic

32,242

Index

System element 124
System virtualization 305
Systems Modeling Language 126

T

Testrig 33, 38

Test track 28

TGG see Triple Graph Grammar

Trade-off between objectives see
Multiobjective optimization 13

Transition see State transition

Triple Graph Grammar 190

UML see Unified Modeling Language
Unified Modeling Language 126

\%

Vehicle dynamics 57, 58
Vehicle-dynamics control 60
Verification

design-time
Virtual Environment
Virtual machine 305

migration 309
Virtual Prototype 310-312, 314

software agent 314
Virtual Prototype Agent 321, 322
Virtual Test Bench 311, 312, 331, 332,

335, 336
mutant 332-335
simulation 335

self-optimizing 332, 334
Virtualization 305
Visualization Agents

204, 220
310, 311, 314, 336

320-322

X

X-by-wire vehicle 56

	Preface
	Acknowledgements
	Contents
	List of Contributors
	The Paradigm of Self-optimization
	1.1
From Mechatronics to Intelligent Technical Systems
	1.2
Introduction to Self-optimization
	1.3
Architecture of Self-optimizing Systems
	1.3.1
Structure of Self-optimizing Mechatronic Systems
	1.3.2
Operator-Controller-Module

	1.4
Self-optimization in Intelligent Technical Systems
	1.4.1
Model-Based Self-optimization
	1.4.2
Behavior-Oriented Self-optimization
	1.4.3
Self-optimization by Reconfiguration

	1.5
Structure of This Book
	References

	Examples of Self-optimizing Systems
	2.1
Rail Technology – RailCab
	2.1.1
Self-optimizing Operating Point Control
	2.1.2
intelligent Drive Module (iDM)
	2.1.3
Active Guidance Module
	
2.1.4Active Suspension Module
	2.1.5
Hybrid Energy Storage System (HES)
	2.1.6
Crosslinked Test Benches
	2.1.7
Convoy Mode

	2.2
Miniature Robot BeBot
	2.2.1
Basic Vehicle
	2.2.2
Extension Modules
	2.2.3
Operating System
	2.2.4
Implementing Self-X Properties

	2.3
X-by-Wire Test Vehicle
	2.3.1
Vehicle Dynamics
	2.3.2
Self-optimizing Integrated Vehicle-Dynamics Control

	Development of Self-optimizing Systems
	3.1
Design Methodology for Self-optimizing Systems
	3.2
Domain-Spanning Conceptual Design
	3.3
Domain-Specific Design and Development
	3.3.1
Mechanical Engineering
	3.3.2
Control Engineering
	3.3.3
Software Development
	3.3.4
Electrical and Electronic Engineering
	3.3.5
(Sub)system Integration
	3.3.6
Interaction of the Domains in the Design and Development

	3.4
Self-optimizing Development Process
	3.4.1
Framework of a Self-optimizing Development Process
	3.4.2
Systematic Planning of Synchronizations

	Methods for the Domain-Spanning Conceptual Design
	4.1
Specification Technique CONSENS for the Description of Self-optimizing Systems
	4.2
Software Support for the Specification of the Principle Solution
	4.3
Consistency Analysis of Application Scenarios
	4.4
Design of the System of Objectives
	4.5
Design Framework for the Integration of Cognitive Functions Based on Solution Patterns
	4.5.1
Systems Analysis
	4.5.2
Functional Description
	4.5.3
Solution Selection
	4.5.4
Systems Specification

	4.6
Product Structuring for Self-optimizing Systems
	4.7
Early Probabilistic Reliability Analysis Based on the Principle Solution
	4.8
Evaluation of the Economic Efficiency

	Methods for the Design and Development
	5.1
Automatic Model Transformation and Synchronization
	5.1.1
Example Scenario
	5.1.2
Deriving Initial Domain-Specific Models from the System Model
	5.1.3
Synchronizing Models during the Domain-Specific Refinement Phase

	5.2
Software Design
	5.2.1
Component Model
	5.2.2
Decompose Communication Requirements
	5.2.3
Real-Time Coordination Patterns
	5.2.4
ete Behavior
	5.2.5
Simulation of Hybrid Behavior
	5.2.6
Specification of Deployment
	5.2.7
Integration of Self-healing Behavior
	5.2.8
Code Generation

	5.3
System Optimization
	5.3.1
Set-Oriented Multiobjective Optimization
	5.3.2
Hierarchical Multiobjective Optimization
	5.3.3
Hierarchical Modeling of Mechatronic Systems
	5.3.4
Parametric Multiobjective Optimization
	5.3.5
 Computation of Robust Pareto Points
	5.3.6
Optimal Control of Mechanical and Mechatronic Systems
	5.3.7
Motion Planning with Motion Primitives
	5.3.8
Hierarchical Hybrid Planning
	5.3.9
Statistical Planning
	5.3.10
Behavior Planning in Nondeterministic Environment
	5.3.11 FIPA Conform Cross-Domain Communication

	5.3.12
Preparing Solution Pattern "Hybrid Planning"

	5.4
Dynamic Reconfiguration
	5.4.1
Fine-Grained Reconfigurable Architectures
	5.4.2
Coarse-Grained Reconfigurable Architectures
	5.4.3
Modelling
	5.4.4
Design Methods for Dynamic Reconfigurable Systems
	5.4.5
Platforms and Applications

	5.5
System Software
	5.5.1
Architecture for Self-optimizing Operating Systems
	5.5.2
Self-optimized Flexible Resource Management
	5.5.3
Self-optimization in the Operating System
	5.5.4
Hierarchical Flexible Resource Manager

	5.6
Virtual Prototyping
	5.6.1
Virtual Prototypes and Virtual Environments
	5.6.2
Automatic Model Linking
	5.6.3
Visualization Agents
	5.6.4
Virtual Test Bench

	Summary and Outlook
	Index

