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Preface

The Italian Conference on Theoretical Computer Science (ICTCS) is the confer-
ence of the Italian Chapter of the European Association for Theoretical Computer
Science (IC-EATCS), that takes place every three years. The conference aims at
enabling computer scientists, especially young researchers, to enter the EATCS
community and to exchange ideas and results, as well as theory based practical
experiences and tools in computer science.

This was the seventh Italian Conference on Theoretical Computer Science,
and its main topics included analysis of algorithms, automata, computability,
computational complexity, cryptography, data types and structures, design of
algorithms, formal languages, foundations of functional programming, founda-
tions of logic programming, new computing paradigms, parallel and distributed
computation, program specification, program verification, term rewriting, theory
of concurrency, theory of data bases, theory of logical design and layout, theory
of robotics, theory of knowledge bases, type theory, semantics of programming
languages, security, and symbolic and algebraic computation.

ICTCS2001 was held in Turin, Italy, October 4–6, 2001. Previous conferences
took place in Pisa (1972), Mantova (1974 and 1989), L’Aquila (1992), Ravello
(1995), and Prato (1998).

The Program Committee selected 25 papers out of 45 submissions, all of
them in electronic format. Their authors are from 11 countries, from all over
the world. Each submission was sent to three Program Committee members,
assisted by their own referees.

The selection meeting took place as an electronic forum. To permit a deeper
evaluation of the papers, the Program Committee split them into two subject
areas for the preliminary discussion, according to the two tracks of the Journal
of Theoretical Computer Science which are “Algorithms, automata, complexity,
and games”, and “Logic, semantics, and theory of programming”, and which
reflect the main division in research topics within the community. Then, to pre-
serve the unifying aspects of the research in theoretical computer science, all the
papers were evaluated again and all the decisions were taken together.

We would like to warmly thank all the people who submitted their papers
to the conference, the Program Committee members, and their referees for their
invaluable contribution.

July 2001 Antonio Restivo, Simona Ronchi Della Rocca, and Luca Roversi
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Bruno Codenotti University of Pisa
PierPaolo Degano University of Pisa
Moreno Falaschi University of Udine
Giuseppe F. Italiano University of Rom
Linda Pagli University of Pisa
Simona Ronchi Della Rocca (Co-chair) University of Turin
Alberto Bertoni University of Milan
Clelia De Felice University of Salerno
Rocco De Nicola University of Florence
Paola Inverardi Università dell’Aquila
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Job Shop Scheduling Problems with Controllable Processing Times . . . . . . . 107
Klaus Jansen, Monaldo Mastrolilli, and Roberto Solis-Oba

New Computing Paradigms

Upper Bounds on the Size of One-Way Quantum Finite Automata . . . . . . . . 123
Carlo Mereghetti and Beatrice Palano

P Systems with Gemmation of Mobile Membranes . . . . . . . . . . . . . . . . . . . . . . . . 136
Daniela Besozzi, Claudio Zandron, Giancarlo Mauri,
and Nicoletta Sabadini

Instantaneous Actions vs. Full Asynchronicity:
Controlling and Coordinating a Set of Autonomous Mobile Robots . . . . . . . . 154
Giuseppe Prencipe



X Table of Contents

Formal Languages

Some Structural Properties of Associative Language Descriptions . . . . . . . . . 172
Alessandra Cherubini, Stefano Crespi Reghizzi, and Pierluigi San Pietro

Block-Deterministic Regular Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Dora Giammarresi, Rosa Montalbano, and Derick Wood

Constructing Finite Maximal Codes from Schützenberger Conjecture . . . . . .197
Marcella Anselmo

Objects and Mobility

An Effective Translation of Fickle into Java(Extended Abstract) . . . . . . . . . . 215
Davide Ancona, Christopher Anderson, Ferruccio Damiani,
Sophia Drossopoulou, Paola Giannini, and Elena Zucca

Subtyping and Matching for Mobile Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa

On Synchronous and Asynchronous Communication Paradigms . . . . . . . . . . . 256
Diletta Cacciagrano and Flavio Corradini

Algorithms and Data Structures II

Complexity of Layered Binary Search Trees with Relaxed Balance . . . . . . . . 269
Lars Jacobsen and Kim S. Larsen

Distance Constrained Labeling of Precolored Trees . . . . . . . . . . . . . . . . . . . . . . . . 285
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A LTS Semantics of Ambients via Graph

Synchronization with Mobility�

GianLuigi Ferrari, Ugo Montanari, and Emilio Tuosto

Dipartimento di Informatica, Università di Pisa
{giangi,ugo,etuosto}@di.unipi.it

Abstract. We present a simple labelled transition system semantics of
Cardelli and Gordon’s Ambient calculus. We exploit a general and flex-
ible model based on (hyper)graphs, where graph transformation is ob-
tained via (hyper)edge replacement and local synchronization with mo-
bility. In addition to tree-like ambients, the calculus we define works just
as well with graph-like ambients, which are a more realistic model of
internetworks.

1 Introduction

Foundational research on global computing aims at describing, modeling and
analyzing the complex interactions taking place in internetwork applications
encompassing several physical networks, multiple administration domains and
a variety of possible users. Several models have been proposed to tackle the new
computational phenomena. They usually take the form of distributed process
calculi (e.g. Join calculus [7], Ambient calculus [2]), of specialized program logics
(e.g. Mobile Unity [13], Mobadtl [6]), and of Linda-like coordination languages
(e.g. KLAIM [4], Lime [12]), to mention a few.

Most models mainly focus on the spatial structure of global computing. To
reflect the idea of administration domains, they exhibit explicit localities, which
help modeling distributed computations and the discovery of network resources
and services. These features distinguish the models of global computing from the
traditional models (and paradigms) for distributed programming (e.g. CORBA),
the motto being network awareness : localities are under programmer’s control.

However network awareness is only one relevant tile of the mosaic of global
computing. Another important aspect concerns the temporal structure of the ap-
plications. The run-time environment typically interleaves computational activ-
ities with structuring and managing activities. The temporal structure of appli-
cations takes care of describing application rearrangements and security checks.
A proper understanding of both spatial and temporal structures is clearly needed
to allow formal verification of applications.
� Partially supported by CNR project Metodi per Sistemi Connessi mediante Reti ; by

MURST project Theory of Concurrency, Higher Order and Types; by TMR Network
GETGRATS; and by Esprit Working Groups APPLIGRAPH.

A. Restivo, S. Ronchi Della Rocca, L. Roversi (Eds.): ICTCS 2001, LNCS 2202, pp. 1–16, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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The Ambient calculus is one of the best studied models addressing the needs
of global computing, and it has acquired the role of touchstone for the most
recent proposals. However the interactive, abstract semantics of ambients is still
not fully explored. In fact, as it is the case of most foundational calculi for global
computing, reduction semantics for ambients has been found to be simpler than
the corresponding labeled transition system (LTS) semantics. However, reduc-
tion semantics has the main disadvantage with respect to LTS semantics that it
makes harder to define, and reason about, abstract compositional behavior.

A LTS operational semantics for ambients has been defined by Gordon and
Cardelli in an unpublished note [1]. It requires the introduction in the calculus
of co-actions, abstractions, concretions and outcomes. At the authors’ knowl-
edge, the bisimilarity abstract semantics based on this operational semantics
has not been compared with the reduction semantics and with the logics de-
veloped by Cardelli, Gordon and Caires, which is equipped with specialized
modalities to deal with the spatial and the temporal dimensions of global com-
puting. Sewell [14] introduces a technique to develop an LTS-based semantics
from a reduction semantics; however the resulting transition semantics exploits
arbitrary contexts and, moreover, it is not inductive on process operators.

In this paper we define a LTS semantics of ambients by exploiting a gen-
eral and flexible model based on (hyper)graphs, where graph transformation
is obtained via (hyper)edge replacement and local synchronization with mobil-
ity. While getting acquainted with the formal techniques necessary for handling
graphs (rather than trees or terms) may require some effort, the actual defini-
tion of the Ambient calculus is quite short and intuitive. Moreover, in addition
to tree-like ambients, the calculus we define works just as well with graph-like
ambients, which are a more realistic model of internetworks.

More generally, we propose our graph-based technique as a tool for mod-
eling internetworking systems. In fact, edges can be used to represent compo-
nents and nodes to model the network environment of components. Some edges
sharing a node means that the corresponding components may interact by ex-
ploiting network communication infrastructure. Structured versions of graphs
(typed graphs, term graphs, hierarchical graphs) can precisely model complex
internetwork configurations and access policies.

Graph synchronization adds to network awareness the ability of dealing with
the temporal dimension of computations. Graphs synchronization is purely local
and it is obtained by the combination of graph rewriting with constraint solving.
The intuitive idea is that local rewritings depends on the outcome of a (possi-
bly global) constraint satisfaction algorithm. Mobility allows to exchange nodes
during synchronizations, and thus constraint solving must include unification to
allow for node binding.

One may wonder if this approach is too abstract and general and it does not
capture the intrinsic limitations of internetworking applications. We feel that on
the one side the generality of the approach can be tamed and adapted to the
needs of the various layers of applications, more powerful primitives being made
available to upper layers, like B2B or CSCW. On the other side, some impor-
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tant network technologies actually require the solution of global constraints, like
modifying local router tables according to the routing update information sent
by the adjacent routers.

Graph rewriting based on edge replacement and synchronization was intro-
duced in [3,5] and related to distributed constraint satisfaction problems in [11].
The version with mobility, which employs a notation based on logical sequents
and inference rules, was introduced recently in [8] and extended in [9] to encode
π-calculus. Abstract semantics based on bisimilarity was discussed in [10]. To
model Ambient calculus, synchronized hyperedge replacement has been further
extended in this paper with fusions. Fusions allow to coalesce in the right mem-
ber of a production sets of interface nodes which are distinct in the left member.
This extension is necessary for representing the effect of the open capability,
which merges the localities inside and outside the open ambient.

In the paper we handle a limited version of ambients, without restriction
(of ambient names) and process communication, and with guarded recursion
rather than replication. We relate the operational semantics of ambients based
on synchronized edge replacement to the original reduction semantics. We show
that there is a bijective correspondence between ambient processes and certain
graphs called ambient graphs. We also show that ambient processes and their
corresponding graphs have corresponding reductions. Of course the graphs have
in addition transitions with observable labels, which can be exploited in the
abstract semantics, that however is not studied in the paper.

2 Hypergraphs and Graph Synchronization

We first review (as presented in [9]) the notion of hypergraph and its formaliza-
tion in terms of well formed syntactic judgements. Then we introduce the notion
of graph synchronization.

A edge, or simply an edge, is an atomic item with a label (from a ranked
alphabet LE = {LEn}n=0,1,...) and with as many (ordered) tentacles as the rank
of its label. A set of nodes together with a set of such edges forms a hypergraph
(or simply a graph) if each edge is connected, by its tentacles, to its attachment
nodes. A graph is equipped with a set of external nodes identified by distinct
names. External nodes can be seen as the connecting points of a graph with its
environment.

Now, we present a definition of graphs as syntactic judgements, where nodes
correspond to names, external nodes to free names and edges to basic terms of
the form L(x1, . . . , xn), where xi are arbitrary names and L ∈ LE.

Definition 1 (Graphs as Syntactic Judgements). Let N be a fixed infinite
set of names and LE a ranked alphabet of labels. A syntactic judgement (or
simply a judgement) is of the form Γ � G where,

1. Γ ⊆ N is a set of names (the external nodes of the graph).
2. G is a term generated by the grammar

G ::= L(x)
∣∣ G|G ∣∣ (νy)G

∣∣ nil where x is a vector of names, L is an
edge label with rank(L) = |x| and y is a name.
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Let fn(G) denote the set of all free names of G, i.e. all names in G not bound
by a ν operator. We require that fn(G) ⊆ Γ .

We use the notation Γ, x to denote the set obtained by adding x to Γ , as-
suming x �∈ Γ . Similarly, we will write Γ1, Γ2 to state that the resulting set of
names is the disjoint union of Γ1 and Γ2.

Definition 2 (Structural Congruence and Well-Formed Judgements).

– Structural Congruence ≡ on syntactic judgements obeys axioms in Table 1.
– The well-formed judgements for constructing graphs over LE and N are

those generated by applying the rules in Table 1 up to axioms of structural
congruence.

Table 1. Well-formed judgments

Structural Axioms
(AG1) (G1|G2)|G3 ≡ G1|(G2|G3) (AG2) G1|G2 ≡ G2|G1

(AG3) G|nil ≡ G (AG4) νx.νy.G ≡ νy.νx.G
(AG5) νx.G ≡ G ifx /∈ fn(G) (AG6)

νx.G ≡ νy.G{y/x}
if y /∈ fn(G)

(AG7) νx.(G1|G2) ≡ (νx.G1)|G2 if x /∈ fn(G2)

Syntactic Rules
(RG1)

x1, . . . , xn � nil (RG2)
L ∈ LEm yi ∈ {xj}

x1, . . . , xn � L(y1, . . . , ym)

(RG3)
Γ � G1 Γ � G2

Γ � G1|G2
(RG4)

Γ, x � G
Γ � νx.G

Axioms (AG1), (AG2) and (AG3) define the associativity, commutativity
and identity over nil for operation |, respectively. Axioms (AG4) and (AG5)
state that the nodes of a graph can be hidden only once and in any order, and
axioms (AG6) and (AG7) define alpha conversion of a graph with respect to its
bounded names and the interplay between hiding and the operator for parallel
composition, respectively.

Rule (RG1) creates a graph with no edges and n nodes and rule (RG2) creates
a graph with n nodes and one edge labelled by L and with m tentacles (note that
there can be repetitions among nodes in y, i.e. some tentacles can be attached
to the same node). Rule (RG3) allows to put together (using |) two graphs that
share the same set of external nodes. Finally, rule (RG4) allows to hide a node
from the environment.

If necessary, thanks to axiom (AG4), we will write νX , with X =
⋃

xi,
to abbreviate νx1.νx2 . . . νxn. Note that using the axioms, for any judgement
we can always have an equivalent normal form Γ � νX.G, with G a subterm
containing only composition of edges. It is clear from the above definitions that Γ
and X can be made disjoint sets of nodes using the axioms and that nodes(G) ⊆
(Γ ∪X).
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The correspondence theorem expressing that well-formed syntactic judge-
ments up to structural axioms are isomorphic to graphs up to isomorphism has
been proved in [9].

We now introduce the notion of synchronized edge replacement. Synchronized
edge replacement is obtained using graph rewriting combined with constraint
solving. More specifically, we use context-free productions enriched with actions
that are used to coordinate the simultaneous application of various productions.

The following definitions introduce synchronized edge replacement systems
where actions can declare and refer to names as nodes and where names are
bound via unification.

A context-free edge replacement production rewrites a single edge into an
arbitrary graph. A production p = (L → R) can be applied to a graph G
yielding H if there is an occurrence of an edge labeled by L in G. Graph H is
obtained from G by removing the previously matched edge and by embedding
a fresh copy of R in G by coalescing its external nodes with the corresponding
attachment nodes of the replaced edge. This notion of edge replacement yields
the basic steps in the derivation process of an edge replacement grammar.

To model synchronized rewriting, it is necessary to add some labels to the
nodes in productions. Assuming to have a ranked alphabet Act of actions, then
we associate actions to some of the attachment nodes of the left member of
the production. In this way, each rewrite of an edge must synchronize actions
with (a number of) its adjacent edges and then all the participants will have
to move as well (how many depends on the synchronization policy). It is clear
that coordinated rewriting will allow the propagation of synchronization all over
the graph where productions are applied. Determining which productions can
be synchronized at any given stage corresponds to solve a distributed constraint
satisfaction problem [11].

A synchronized edge replacement grammar, or simply a grammar, consists of
an initial graph and a set of productions. A derivation is obtained by starting
with the initial graph and by executing a sequence of transitions, each obtained
by synchronizing possibly several productions.

Now, for adding mobility to our model of computation we let a production
to declare on each of its connecting nodes new names for the nodes it creates
and to share these names and/or other existing names with the rest of the graph
using the synchronization process. This is done in a production by adding to the
action in a node a tuple of names that one wants to communicate. Therefore, the
synchronization of a rewriting rule has to match not only actions, but also has to
unify the tuples of names. After the productions are applied, the declared names
that were unified are used to obtain the final graph by merging the corresponding
nodes.

The expressive power of our model depends on the meaning of the names
unified in the synchronization process. If these names correspond only to nodes
newly generated in the productions, the expressive power is analogous to the
π-I-calculus, where only extruded names can be transmitted. Instead, if also
“old” nodes can be communicated, but not unified, we are analogous to the
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π-calculus. If all types of nodes can be unified, the corresponding process alge-
bra is the fusion calculus [15]. However we emphasize that in our model it is
possible (and easy) to define multiple synchronizations,while the existing calculi
are usually limited to binary synchronizations.

In this paper we handle for the first time the general case (with Milner
synchronization style). The π − I-like case was defined in [8,10] while the inter-
mediate case was presented in paper [9], which in fact includes the encoding of
the π-calculus.

Below we define the transitions of a grammar as certain logical sequents. We
exploit the previously introduced representation of graphs as syntactic judge-
ments. Notice that no distinction is made between nodes and names.

Definition 3 (Transitions (with fusion)). A transition has the form

Γ � G1
Λ,π−→ φ � G2

where:

1. Λ : Γ ◦−→ (Act×N ∗)
2. π : Γ → Γ and x ∈ π−1(x)
3. n(Λ) = {z | ∃x.Λ(x) = (a,y), z ∈ Set(y)}
4. ∆ = n(Λ) − Γ
5. φ = π(Γ ) ∪∆

A transition says that G1 is rewritten into G2 satisfying a set of requirements
Λ and a fusion substitution π. The free nodes of graph G2 must include the
free nodes of G1 (after applying π) and those new nodes (∆) that are used in
synchronization. Note that φ is determined by the Γ and Λ of the same transition.

The set of requirements Λ ⊆ Γ ×Act×N ∗ is defined as a partial function in
its first argument, i.e. if (x, a,y) ∈ Λ we write Λ(x) = (a,y) with rank(a) = |y|.
With Λ(x) ↑ we mean that the function is not defined for x, i.e. that there is
no requirement in Λ with x as first argument. Function set(y) returns the set of
names in vector y. The definition of Λ as a function means that all edges in G1

attached to node x that are participating in a synchronization must satisfy the
conditions of the corresponding synchronization algebra. The function is partial
since not all nodes need to be loci of synchronization.

Fusion substitution π determines a partition of Γ where all nodes in an
equivalence class are mapped to a representative element of the class. We use
x �→ y to denote the substitution mapping node x to y.

Definition 4 (Productions). A synchronized production, or simply a produc-
tion, is a special transition of the form,

x1, . . . , xn � L(x1, . . . , xn)
Λ,π−→ φ � G

The context-free character of productions is here made clear by the fact
that the graph to be rewritten consists of a single edge with distinct nodes.
Productions combine the roles of prefix, sum and recursion in process calculi.
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Renaming can be applied to productions in several ways: i) free names
x1, . . . , xn can be changed throughout the sequent; ii) names declared in ∆ =
n(λ)− Γ can be α-converted; and iii) the representative names chosen by π can
be consistently changed. Also identity productions of the form

x1, . . . , xn � L(x1, . . . , xn)
∅,id−→ x1, . . . , xn � L(x1, . . . , xn)

are always considered available.

Definition 5 (Grammars). Let N be a fixed infinite set of names, LE a
ranked alphabet of labels and Act a ranked set of actions. A grammar consists of
an initial graph Γ0 � G0 and a set P of productions on LE and Act.

A derivation is a finite or infinite sequence of the form Γ � G
Λ1,π1−−→ φ1 � G1

Λ2,π2−−→ . . .
Λn,πn−−−→ φn � Gn . . ., where Γ � G

Λ1,π1−−→ φ1 � G1 and φi−1 � Gi−1
Λi,πi−−→ Γ i

� Gi, i = 2, . . . , n are transitions in the set T (P) of transitions generated by P.
Transitions T (P) are generated by P applying the inference rules defined below.

Definition 6 (Inference rules). Let 〈Γ � G0,P〉be a grammar. The set T (P)
of transitions is obtained from the productions P using the inference rules in
Table 2 where the side conditions of the rules are:

ψ1
def⇐⇒




∆ ∩ σ(Γ ) = ∅ and ∀x ∈ ∆.σ(x) = x
σ(x) = σ(y) ∧ Λ(x) ↓ ∧Λ(y) ↓ ∧x �= y ⇒

(∀z �∈ {x, y}.σ(z) = σ(x) ⇒ Λ(z) ↑)
∧ Λ(x) = (a,v) ∧ Λ(y) = (a,w) ∧ a �= τ

ρ=mgu({σ(v)=σ(w)|σ(x)=σ(y) ∧ Λ(x)=(a,v) ∧ Λ(y)=(a,w)}
∪{σ(x) = σ(y)|π(x) = π(y)})

Λ′(z) =
{

(τ, 〈〉), if σ(x)=σ(y)=z ∧ x �=y ∧ Λ(x) ↓ ∧ Λ(y) ↓
ρ(σ(Λ))(z), otherwise

π′(σ(x)) = ρ(σ(π(x)))
u = ρ(σ(φ)) − φ′

ψ2
def⇐⇒




(π(x) = π(y) ∧ x �= y) ⇒ π(x) �= x
Λ(x) ↑ or Λ(x) = (τ, 〈〉),
Λ′ = Λ− (x, τ, 〈〉)
z = φ− φ′

Rule (par) simply combines together two disjoint judgements.
Rule (merge) is the rule for synchronization. The rule states that in a tran-

sition it is possible to merge two nodes x and y that offer complementary non-
silent actions (conditions on σ). Here ρ is the most general unifier that fuse the
corresponding names of the actions and propagates the previous fusions (deter-
mined by π). The label Λ′ takes into account all possible synchronizations and
leaves unchanged the actions offered on the other nodes up to the necessary
fusions (ρ and σ). The new fusion substitution π′ acts on σ(Γ ) by applying to
it the mgu ρ. Finally, the names in φ after the fusion which are not present in
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Table 2. Inference rules for graph synchronization

(par)
Γ � G1

Λ,π−→ φ � G2 Γ ′ � G′
1

Λ′,π′
−−→ φ′ � G′

2

Γ, Γ ′ � G1|G′
1

Λ∪Λ′,π∪π′
−−−−−−→ φ, φ′ � G2|G′

2

where Γ ∩ Γ ′ = ∅

(merge)
Γ � G1

Λ,π−→ φ � G2

σΓ � σG1
Λ′,π′
−−→ φ′ � ν u.ρ(σ(G2))

where ψ1 holds

(res)
Γ, x � G1

Λ,π−→ φ � G2

Γ � ν x.G1
Λ′,π|Γ−−−→ φ′ � ν z.G2

where ψ2 holds

φ′ = π′(Γ ) ∪ (n(Λ′) − σ(Γ )) are restricted; this corresponds to the close rule of
the π-calculus.

Rule (res) deals with node restriction. According to the first condition, the
restricted node must not be the representative element of its equivalence class
induced by π when this class contains nodes different from x. Furthermore, only
nodes can be restricted where either no action or only synchronization actions
take place. If this conditions hold, Λ′ is obtained by hiding the (possible) silent
action on x and restricting all the nodes that are not in φ′. Notice that φ′ is
defined as usual as φ = π(Γ ) ∪∆, with ∆ = n(Λ′) − Γ .

3 Ambient Calculus

In this section we apply our graph synchronization framework to the Ambient
calculus [2] that is considered one of the most suitable calculi for representing
wide area network computations. First we give syntax and semantics of the
Ambient calculus and then its representation in terms of graphs is specified.

3.1 The Calculus

The syntax and the reduction semantics of Ambient calculus [2] is given below.
The calculus relies on the notion of ambient that can be thought of as a bounded
environment where processes interact. An ambient has a name, a collection of
local agents and a collection of subambients. Ambients can be moved as a whole
under the control of agents which are confined to ambients. Processes use ca-
pabilities for controlling interaction. We do not consider synchronization and
restriction, and replication is replaced by (guarded) recursion.

Definition 7 (Syntax). Let N be an infinite set of names ranged over by
a, b, c, ..., n,m, p, r...; let X,Y, Z, ... be process variables.

M ::= in n | out n | open n
P,Q ::= 0 | n[P ] | M.P | P |Q | rec X.P | X
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We assume that X is guarded by M in rec X.P .
We denote with Proc the set of the Ambient calculus processes.

Capabilities M are the usual Ambient calculus capabilities: in n allows to drive
an ambient inside an ambient named n; dually, out n allows to exit an ambient n;
open n dissolves an ambient n.

A process is the void process 0, a process n[P ] obtained by wrapping P in an
ambient n, a sequential process M.P , the parallel composition of two processes
P |Q, the recursive process rec X.P or a process variable X .
Definition 8 (Structural equivalence). The semantics of the Ambient cal-
culus relies on the structural equivalence defined by the following rules:
1. The parallel operator | is associative, commutative and 0 is its identity;

2.
P ≡ Q

M.P ≡ M.Q

P ≡ Q

n[P ] ≡ n[Q]
3. rec X.P ≡ rec Y. P{Y/X}, if Y �∈ fv(P );
4. rec X.P ≡ P{recX.P/X}.

The usual algebraic properties of the parallel composition and the 0 process are
assumed (rule 1); rule 2 guarantees that structural equivalence is preserved by
capabilities and ambient processes; the process variable X is bound in rec X.P
and may be renamed (rule 3); finally, rule 4 is the analogous of the usual struc-
tural rule for replication (namely, !P ≡ P | !P ).

Definition 9 (Reduction Semantics). The reduction relation → ⊆ Proc ×
Proc is the relation inductively generated by the axioms and rules in table 3 and
closed under the structural equivalence given in Definition 8:

Table 3. Ambient calculus reduction relation

m[n[out m.P | Q] | R]→ n[P | Q] | m[R]

n[in m.P | Q] | m[R]→ m[n[P | Q] | R]

open n.P | n[Q]→ P | Q

P → Q

P | R→ Q | R
P → Q

n[P ]→ n[Q]

The first two axioms in Table 3 state that an ambient n can be driven by
a sequential process inside it to exit the wrapping ambient (out m.P ) or to
enter a parallel ambient m (in m.P ). The third axiom is relative to the open n
capability: an ambient may be dissolved by an external process. Note that all
the capabilities are “asynchronous”, in the sense that the only condition under
which they can be fired is the presence of a particular ambient.
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3.2 Graph Representation of Ambient Calculus

We now show how it is possible to translate the Ambient calculus in our graph
synchronization framework maintaining the semantics of processes.

Definition 10 (Translation).

[[ 0 ]]x = x � nil
[[ n[P ] ]]x = x � ν y.(G | n(y, x)), if y �= x ∧ [[ P ]]y = y � G
[[ M.P ]]x = x � LM.P (x)

[[ P1|P2 ]]x = x � G1 | G2, if [[ Pi ]]x = x � Gi,where i = 1, 2
[[ rec X.P ]]x = [[ P [rec X.P/X ] ]]x

Definition 10 introduces the mapping function [[ P ]]x that returns a graph whose
only free node x corresponds to the root of the ambient process P .

In the above translation, sequential processes M.P are directly represented
by edges labelled by M.P . While this introduces an infinite number of labels, it
is easy to see that only a finite number of them (and of the corresponding activ-
ity rules defined below) is needed to derive all computations of any particular
ambient.

The graph associated to the 0 process is an isolated node. The graph of
n[P ] with free node x is obtained by constructing the graph of P on node y,
attaching it to the graph n(y, x) and restricting y; note that the ambient name n
is interpreted as an edge from y to x labelled n. Ambient names N and sequential
processes are the only edge labels.

The parallel composition P1 | P2 is obtained by making the graph of P1

and P2 to share their root node x; finally, recursive processes are unfolded first1.
The given translation is injective but not surjective. However, the graphs

[[ P ]]x in the image of the translation function can be characterized as follows.

Definition 11 (Ambient graphs). An ambient graph is a graph labeled on
LE = {LM.P |M.P ∈ Proc is sequential} ∪N which

1. is acyclic;
2. every node has at most one outgoing edge labelled in N ;
3. there is one root node with no outgoing edges.

Theorem 1. [[ ]]x is a bijection on ambient graphs.

We now define the productions of our version of the Ambient calculus. There
are two kinds of productions: activity productions, relative to sequential pro-
cesses, and coordination productions that corresponds to ambients.

Definition 12 (Activity productions). The activity productions have the fol-
lowing form.

LM.P
�� • ��M

x
G x � LM.P (x)

{(x,M,〈〉)}−−−−−→ [[ P ]]x

1 Note that the [[ ]]x is well defined because recursion variables are guarded by capa-
bilities.
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Activity productions determine the actions that sequential processes are able
to perform. In our approach, sequential processes become edge labels: when an
action is performed, an edge labelled by M.P is rewritten as the graph corre-
sponding to P .

The complementary actions to synchronize the activity productions must be
offered by ambients; more precisely, ambients must signal their existence emit-
ting the complementary actions on their attaching nodes and, in this manner,
performing the correct synchronized steps.

Definition 13 (Coordination productions). Coordination productions are
as follows.

(open)
•x a �� •

y

open a

x 
→y �� •
y

x, y � a(x, y)
{(y,open a,〈〉)}[x 
→y]−−−−−−−−−−−−→ y � nil

(input1)

•
y

•x
in a

b �� •
y

input a, z
�� •x b

�������

•
z

x, y � b(x, y)
{(x,in a,〈〉),(y,input a,〈z〉)}−−−−−−−−−−−−−−−−→ x, y, z � b(x, z)

(input2)
•x a �� •

y

input a, x
�� •x a �� •

y

x, y � a(x, y)
{(y,input a,〈x〉)}−−−−−−−−−→ x, y � a(x, y)

(output1)

•
y

•x
out a

b �� •
y

output a, z
�� •x b

�������

•
z

x, y � b(x, y)
{(x,out a,〈〉),(y,output a,〈z〉)}−−−−−−−−−−−−−−−−−−→ x, y, z � b(x, z)

(output2)
•x

output a, y
a �� •

y
�� •x a �� •

y

x, y � a(x, y)
{(x,output a,〈y〉)}−−−−−−−−−−→ x, y � a(x, y)
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For every production, we give both the sequent and its graphical representa-
tion. In the latter, left and right members of a production are drawn in the style
of Definition 10, but without restricted nodes. When (x, µ, 〈y〉) ∈ Γ , node x in
the right member is labeled by x, µ. Coordination productions define the comple-
mentary actions that ambients must perform in order to synchronize themselves
with sequential processes.

The (open) production states that if the ambient a has a parallel process that
wants to open it, then the edge corresponding to a disappears and x is fused
with y.

Production(input1) asserts that is a process inside b wants to drive b in an
ambient a, then the destination of b will become the new node z. On the other
hand, production (input2) controls the entrance of an external process in a: this
production simply passes the source x of a to the entering process.

Analogously to the input productions, (output1) and (output2) take care of
the output action. We remark that (output1) acts quite similarly to (input1).

Definition 14 (Basic transition). A transition Γ � G
Λ,π−→ φ � G′ is basic if:

– π is the identity function on Γ ;
– its proofs uses exactly one instance of either (open) or (input1) or (output1);
– Λ is either a singleton {(x, τ〈〉)} or it is empty.

Theorem 2. For all ambient processes P,Q ∈ Proc:

– if P → Q then [[ P ]]x
Λ,id−→ [[ Q ]]x and either Λ = ∅ or Λ = {(x, τ, 〈〉)};

– if [[ P ]]x
Λ,π−→ φ � G is a basic transition, then φ � G = [[ Q ]]x and P → Q.

Proof (sketch): The proof of the theorem is based on the fact that if a basic

derivation [[ P ]]x
Λ,id−→ exists, then it is possible to derive the same transition by

1. applying instances of the (par) rule to a suitable set of productions;
2. applying the (merge) rule in such a way that the graph relative to P without

restrictions is obtained;
3. restricting by means of rule (res) all the nodes that are not the root node

of P .

It is easy to note that all the reductions that do not take place at the top level
of P correspond to basic transitions of the graph whose Λ is empty, while the
transitions that involve subprocesses of P at the top level have Λ = {(x, τ, 〈〉)}.

3.3 Example

As an example we show the correspondence between an Ambient calculus re-
duction and the corresponding graph transition. Let us consider the ambient
reduction

b[in a.P | Q] | a[0] → a[b[P | Q]]

where P and Q are sequential processes.
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Following Definition 10 and Theorem 2, we should obtain

◦
x1 ◦

x1

b

������
a

������
a

������

• • {(x1,τ,〈〉)}�� •

Lin a.P

�����
LQ

�����

b

������

•

LP

�����
LQ

�����

(1)

The picture on the left is the graphical representation of [[ b[in a.P | Q] | a[0] ]]x1 ,
while the rightmost picture is [[ a[b[P | Q]] ]]x1 (we represent the restricted nodes
with • and the free nodes with ◦).

The steps described in the proof sketch of Theorem 2 guide us in applying
the productions (activity and coordination) and the inference rules of Table 2 in
order to construct a proof for transition (1).

First (step 1) we decompose the graph in its elementary edges and determine
the productions that correspond to the elementary components of the transition.

x1, y1 � b(y1, x1)

{
(x1, input a, 〈z1〉),
(y1, in a, 〈〉)

}
,id

−−−−−−−−−−−−−−−→ x1, y1, z1 � b(y1, z1) (2)

y2 � Lin a.P (y2)
{(y2,in a,〈〉)},id−−−−−−−−−→ y2 � LP (y2) (3)

x2, z � a(z, x2)
{(x2,input a,〈z〉)},id−−−−−−−−−−−−→ x2, z � a(z, x2) (4)

y3 � LQ(y3)
∅,id−→ y3 � LQ(y3) (5)

Transitions (2) and (4) are instances of the coordination productions (input1)
and (input2), respectively; transition (3) is the activity production relative to
in a.P and transition (5) is the identity transition that leaves LQ idle.

The graphical representation is:

◦
x1

input a, z1 ◦
x2

input a, z ◦
x1 ◦

z1 ◦
x2

b

������
a

������
b

������
a

������

◦y1in a ◦ z �� ◦y1 ◦ z

◦ y2in a ◦ y3 ◦y2 ◦ y3

Lin a.P

�����
LQ

�����

LP

�����
LQ

�����
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The previous graph represents the transition obtained by applying the (par) rule
to the productions (2), (3), (4) and (5). Let

G1 = b(y1, x1) | a(z, x2) | Lin a.P (y2) | LQ(y3)
G2 = b(y1, z1) | a(z, x2) | LP (y2) | LQ(y3)
Γ = {x1, x2, y1, y2, y3, z}

then, in terms of sequents we have:

Γ � G1




(x1, input a, 〈z1〉),
(x2, input a, 〈z〉)
(y1, in a, 〈〉)
(y2, in a, 〈〉)


,id

−−−−−−−−−−−−−−−−→ Γ, z1 � G2 (6)

The application of the merge rule (step 2) provides the fusion of the nodes
in order to obtain a graph of the same shape of the ambient process but without
restricted nodes. Referring to the rule (merge), let σ the function that behaves
as the identity on all nodes different from x2, y2 and y3 and

σ :




x2 �→ x1

y2 �→ y1

y3 �→ y1

that determines Λ′ = {(x1, τ, 〈〉), (y1, τ, 〈〉)} and ρ : z1 �→ z. The rule (merge)
may be applied to transition (6) obtaining the transition

x1, y1, z � σ(G1)

{
(x1, τ, 〈〉),
(y1, τ, 〈〉)

}
,id

−−−−−−−−−→ x1, y1, z � ρ(σ(G2))

that is graphically represented as

◦
x1 ◦

x1

b

������
a

������
a

������

◦y1 ◦ z

{
(x1, τ, 〈〉),
(y1, τ, 〈〉)

}
�� ◦ z

Lin a.P

�����
LQ

�����

b

������

◦y1

LP

�����
LQ

�����

We remark that the above transition requires a synchronization involving three
edges and two nodes: the edges relative to in a.P and b that synchronize on
node y1, and the edges relative to ambients b and a that synchronize on node x1.
This makes clear that the in capability of ambients requires to synchronize three
components (the out capability is analogous).

Finally, two applications of the (res) rule (step 3) are needed in order to
restrict nodes z and y1. This concludes the proof of the transition.
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4 Conclusion

In the paper we presented a simple LTS semantics of Cardelli and Gordon’s
Ambient calculus exploiting a graphical model based on edge replacement and
local synchronization with mobility. While the correspondence with the original
operational semantics of ambients is shown for a restricted class of graphs (the
ambient graphs), it is also conceivable to lift this limitation and to allow all
graphs on the same edge labels. Coordination productions should be exactly the
same, while activity productions should be allowed to rewrite an edge into any
such graph. The resulting calculus should allow programmable ambient mobility
on any graphical model of internetworks, providing a more realistic description
of real systems.

The work presented here is still at an initial stage. The labeled transition
system defined by the logical sequents in the paper automatically provides an
abstract semantics of ambients under the usual definition of bisimilarity. Since
all nodes in ambient graphs are restricted except for the root, interactions can
only be observed there. This should respect the intuition of abstract semantics
of ordinary ambients, where barb observation and ambient composition are via
the root. However we did not yet study the relation of our abstract semantics
with Cardelli and Gordon’s, and we do not know if it is a congruence, i.e. if it is
respected by our operations of composition and restriction of graphs. Finally, we
would like to experiment with network reconfiguration techniques more general
than ambients, but still realistic for actual internetworks, taking advantage of
our general approach.
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Abstract. We illustrate the use of intersection types as a tool for syn-
thesizing λ-models which exhibit special purpose features. We focus on
semantical proofs of easiness. This allows us to prove that the class of
λ-theories induced by graph models is strictly included in the class of
λ-theories induced by non-extensional filter models.

Introduction

Intersection types were introduced in the late 70’s by Dezani and Coppo [10,12,6],
to overcome the limitations of Curry’s type discipline. They are a very expressive
type language which allows to describe and capture various properties of λ-
terms. For instance, they have been used in [29] to give the first type theoretic
characterization of strongly normalizable terms and in [13] to capture persistently
normalizing terms and normalizing terms. See [15] for a more complete account
of this line of research.

Intersection types have a very significant realizability semantics with respect
to applicative structures. This is a generalization of Scott’s natural semantics [31]
of simple types. According to this interpretation types denote subsets of the
applicative structure, an arrow type A → B denotes the sets of points which
map all points belonging to the interpretation of A to points belonging to the
interpretation of B, and an intersection type A ∩B denotes the intersections of
the interpretation of A and the interpretation of B. Building on this, intersection
types have been used in [6] to give a proof of the completeness of the natural
semantics of Curry’s simple type assignment system in applicative structures,
introduced in [31]. See [14] for a more complete treatment of completeness of
intersection type assignment systems.

But intersection types have also an alternative semantics based on duality
which is related to Abramsky’s Domain Theory in Logical Form [1]. Actually it
amounts to the application of that paradigm to the special case of ω-algebraic
complete lattice models of pure lambda calculus, [11]. Namely, types correspond
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to compact elements: the type Ω denoting the least element, intersections de-
noting joins of compact elements, and arrow types denoting step functions of
compact elements. A typing judgment then can be interpreted as saying that
a given term belongs to a pointed compact open set in a ω-algebraic complete
lattice model of λ-calculus. By duality, type theories give rise to filter λ-models.
Intersection type assignment systems can then be viewed as finitary logical def-
initions of the interpretation of λ-terms in such models, where the meaning of
a λ-term is the set of types which are deducible for it.

This duality lies at the heart of the success of intersection types as a powerful
tool for the analysis of λ-models, see e.g. [2,6,11,13,3,17,21,16,28,19,30].

In this paper we illustrate the use of intersection types as a tool for synthe-
sizing λ-models which exhibit special purpose features. For building our models
we will introduce a strengthened version of intersection type theories, namely
the easy ones. We focus on semantical proofs of easiness [23], [5] (Definition
15.3.8) (we recall that a closed term P is easy if, for any other closed term M ,
the theory λβ + {M = P} is consistent). More specifically we will consider the
terms ω2ω2 and ω3ω3I where ω2 ≡ λx.xx, ω3 ≡ λx.xxx and I is the identity
combinator. Let P be ω2ω2 or ω3ω3I. For any closed term M we will build a
non-trivial filter model (that is a non-trivial λ-model built on intersection type
theories) where the interpretations of M and P coincide. From this fact it fol-
lows that the theory λβ + {P = M} is consistent, hence P is easy. A feature of
the present model construction is that with very small changes we can show the
consistency of λβη + {P = M} for P ≡ ω2ω2 and P ≡ ω3ω3I.

The easiness of both ω2ω2 (see [23], [26]) and ω3ω3I (see [24], [9]) have been
shown by syntactic arguments. These and other easiness results have been mainly
obtained either using the “Jacopini technique” [23], [27] (Section 4.4.4), [26], or
using Church-Rosser relations which extend λβ [22], [8], [9]. Actually a semantic
proof of the easiness of ω2ω2 has already appeared in the literature [4] with
a proof based on non-standard P(ω) models. Moreover [20] builds extensional
filter models equating ω2ω2 to arbitrary closed terms. See also [33].

One of the by-product of this paper is that it provides a negative answer to
an interesting question, namely whether the class of λ-theories induced by graph
models, (e.g. Scott, Park and Engeler models are instances of graph models),
coincide with the class of λ-theories induced by non-extensional filter models as
defined in [16]. In [25] it was shown that the equation of ω3ω3I = I cannot be
proved in any graph model, whilst our paper shows that this is possible with non-
extensional filter models. Hence the two mentioned classes differ (actually [16]
shows that graph model λ-theories are included in non-extensional filter model
λ-theories).

It is an open question of this paper to single out which classes of λ-terms can
be proved easy using filter models as semantical tools.

Also a “philosophic” question arises: a part from classical semantics tools,
such as Fixed Point Induction, what do we gain when we have an ordered cpo
model for a λ-theory? At present, we have not a clear cut answer to such question.
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The present paper is organized as follows. In Section 1 we present easy in-
tersection type theories and type assignment systems for them. We prove some
meta-theoretic properties including a Generation Theorem. In Section 2 we in-
troduce λ-models based on spaces of filters in easy intersection type theories.
Sections 3 and 4 exhibit the mentioned models which allow to prove easiness of
ω2ω2 and ω3ω3I. Section 5 discusses the extensional versions of the above models.

1 Intersection Type Assignment Systems

Intersection types are syntactical objects built inductively by closing a given
set CC of type atoms (constants) under the function type constructor → and
the intersection type constructor ∩. In this paper we only need to consider
intersection types which contain the universal type Ω and possibly the “isolated”
type ι in their set of atoms.

Definition 1 (Intersection Type Language).
Let CC be a countable set of constants such that Ω ∈ CC. The Ω-intersection type
language over CC, denoted by TT = TT(CC) is defined by the following abstract
syntax:

TT = CC | TT → TT | TT ∩ TT. 	

Notice that the most general form of an intersection type is a finite intersection
of arrow types and type constants.

Notation. Upper case Roman letters, i.e. A,B, . . ., will denote arbitrary types.
Greek letters will denote constants in CC. When writing intersection types we
shall use the following convention: the constructor ∩ takes precedence over the
constructor → and it associates to the right.

Much of the expressive power of intersection type disciplines comes from the
fact that types can be endowed with a preorder relation ≤, which induces the
structure of a meet semi-lattice with respect to ∩, the top element being Ω.

The notion we introduce of easy intersection type theory is new in the litera-
ture. It is tailored in order both to include the type theories of Sections 3, 4, 5 and
to have easier proofs of the following Theorems 1, 2, 3. We refer the interested
reader to [7] for the general definition of intersection type theory.

(refl) A ≤ A (idem) A ≤ A ∩A
(inclL) A ∩B ≤ A (inclR) A ∩B ≤ B

(mon)
A ≤ A′ B ≤ B′

A ∩B ≤ A′ ∩B′ (trans)
A ≤ B B ≤ C

A ≤ C
(Ω) A ≤ Ω (Ω-η) Ω ≤ Ω → Ω

(→-∩) (A→ B) ∩ (A→ C) ≤ A→ B ∩ C (η)
A′ ≤ A B ≤ B′

A→ B ≤ A′ → B′

Fig. 1. The set �0 of axioms and rules
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Definition 2 (Easy intersection type theories).
Let TT = TT(CC) be an Ω-intersection type language. The easy intersection type
theory (eitt for short) Σ(CC,�) over TT is the set of all judgments A ≤ B
derivable from �, where � is a collection of axioms and rules such that (we
write A ∼ B for A ≤ B & B ≤ A):

1. � contains the set �0 of axioms and rules of Figure 1;
2. further axioms can be of the following three shapes only:

ψ ≤ ψ′, ψ ∼ (φ→ A), ψ ∼ (φ→ ζ) ∩ (ξ → A),

where ψ, ψ′, φ, ζ, ξ ∈ CC \ {ι}, A ∈ TT, and ψ, ψ′ �≡ Ω;
3. � does not contain further rules;
4. for each ψ �≡ Ω, ι there is exactly one axiom in � of the shape ψ ∼ A;
5. let � contain ψ ∼ A and ψ′ ∼ A′ where either A≡φ → ζ or A≡ (φ → ζ)

∩(ξ → B). Then � contains also ψ ≤ ψ′ iff A′ ≡ φ′ → ζ′ and � contains
both φ′ ≤ φ and ζ ≤ ζ′.

Notice that:
(a) since Ω ∼ Ω → Ω ∈ Σ(CC,�) by axioms (Ω) and (Ω-η), it follows that all
atoms in CC different from ι are equivalent to suitable (intersections of) arrow
types;
(b) � cannot contain axioms of the shape ι ≤ A or A ≤ ι: this justifies the label
“isolated” for ι;
(c) associativity and commutativity of ∩ (modulo ∼) follow easily from the
axioms and rules of �0 as defined in Definition 2.

A consequence of (a) is that an eitt induces an extensional λ-model iff its set
of constants does not contain ι: this will be proved in Theorem 3.

Notation.
When we consider an eitt Σ(CC,�), we will write CC� for CC, TT� for TT(CC) and
Σ� for Σ(CC,�). Moreover A ≤� B will be short for (A ≤ B) ∈ Σ� and A∼�B
for A ≤� B ≤� A. We will consider syntactic equivalence “≡” of types up to
associativity and commutativity of ∩. We will write

⋂
i≤n Ai for A1 ∩ . . . ∩An.

Similarly we will write
⋂
i∈I Ai, where I denotes always a finite non-empty set. 	


Theorem 1 gives useful properties of eitt’s.

Theorem 1.
For all I, and Ai, Bi, C,D ∈ TT�,⋂

i∈I(Ai → Bi) ≤� C → D & D �∼�Ω ⇒
∃J ⊆ I. C ≤�

⋂
i∈J Ai &

⋂
i∈J Bi ≤� D.

Proof. In this proof we assume that ψ, φ, ξ denote constants different from ι. Let
A(∩ι) ≤� B(∩ι) be short for A ≤� B or A ∩ ι ≤� B or A ∩ ι ≤� B ∩ ι, where
A,B �≤� ι. Notice that we cannot have A ≤� B ∩ ι and A �≤� ι.

By assumption for each constant ψ there exists in � exactly one judgment of
the shape ψ ∼ ⋂l∈L(ψ)(ξ

(ψ)
l → E

(ψ)
l ). We can prove by simultaneous induction

on the definition of ≤� two statements, the first of which implies the thesis.
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1. if (
⋂
i∈I(Ai → Bi))∩(

⋂
h∈H ψh)(∩ι) ≤� (

⋂
j∈J (Cj → Dj))∩(

⋂
k∈K φk)(∩ι),

and Dj �∼�Ω, then for each j ∈ J there exist I ′ ⊆ I, H ′ ⊆ H and, for all h ∈
H ′, L(ψh)′ ⊆ L(ψh) such that Cj ≤� (

⋂
i∈I′ Ai) ∩ (

⋂
h∈H′(

⋂
l∈L(ψh)′ ξ

(ψh)
l ))

and (
⋂
i∈I′ Bi) ∩ (

⋂
h∈H′(

⋂
l∈L(ψh)′ E

(ψh)
l )) ≤� Dj ;

2. if (
⋂
i∈I(Ai → Bi))∩(

⋂
h∈H ψh)(∩ι) ≤� (

⋂
j∈J (Cj → Dj))∩(

⋂
k∈K φk)(∩ι),

and φk �∼�Ω, then for eachm∈L(φk) there exist I ′⊆I, H ′⊆H and, for all h∈
H ′, L(ψh)′ ⊆ L(ψh) such that ξ(φk)m ≤� (

⋂
i∈I′ Ai)∩ (

⋂
h∈H′(

⋂
l∈L(ψh)′ ξ

(ψh)
l ))

and (
⋂
i∈I′ Bi) ∩ (

⋂
h∈H′(

⋂
l∈L(ψh)′ E

(ψh)
l )) ≤� E

(φk)
m . 	


Inside the set of types we single out those which are not ι and not intersections
containing ι. Moreover we associate to each type the maximum number of nested
arrows in the leftmost path.

Definition 3. 1. A type A ∈ TT� is functional iff A �≡ ι and there is no B ∈
TT� such that A ≡ ι ∩B;

2. The mapping # : TT� → IN is defined inductively on types as follows:

#(A) = 0 if A ∈ CC�;
#(A→ B) = #(A) + 1;
#(A ∩B) = max{#(A),#(B)}. 	


Trivially all types in TT� are functional when ι �∈ CC.

Some properties of functional types are crucial.

Theorem 2. 1. If A ≤� B and A is functional, then B is functional.
2. Let A ∈ TT� be a functional type. Then, if #(A) ≥ 1, there is B ∈ TT� such

that A∼�B, B ≡ ⋂i∈I(Ci → Di), and #(B) = #(A).

Proof. (1) asy by induction on ≤�.
(2) et A ≡ (

⋂
j∈J (C′

j → D′
j)) ∩ (

⋂
h∈H ψh), where C′

j , D
′
j ∈ TT�, ψh ∈ CC�.

Being A functional, ∀h ∈ H. ψh �≡ ι, hence for each h ∈ H there are Ih,
ξi,h ∈ CC�, Ai,h ∈ TT�, such that ψh∼�

⋂
i∈Ih(ξi,h → Ai,h). We can choose

B ≡ (
⋂
j∈J (C′

j → D′j)) ∩ (
⋂
h∈H(

⋂
i∈Ih(ξi,h → Ai,h))). 	


Before giving the key notion of intersection-type assignment system, we in-
troduce bases and some related definitions.

Definition 4 (Bases).

1. A �-basis is a (possibly infinite) set of statements of the shape x :B, where
B ∈ TT�, with all variables distinct.

2. x ∈ Γ is short for ∃A ∈ TT�. (x :A) ∈ Γ and Γ, x :A is short for Γ ∪ {x :A}
when x /∈ Γ .

3. Let Γ and Γ ′ be �-bases. The �-basis Γ � Γ ′ is defined as follows:

Γ � Γ ′ = {x : A ∩B | x : A ∈ Γ and x : B ∈ Γ ′}
∪ {x : A | x : A ∈ Γ and x /∈ Γ ′}
∪ {x : B | x : B ∈ Γ ′ and x /∈ Γ}.



22 Fabio Alessi et al.

Accordingly we define:

Γ ⊆+Γ ′ ⇔ ∃Γ ′′. Γ � Γ ′′ = Γ ′. 	


Definition 5 (The type assignment system).
The intersection type assignment system elative to the eitt Σ�, notation λ∩�,
is a formal system for deriving judgments of the form Γ �� M : A, where the
subject M is an untyped λ-term, the predicate A is in TT�, and Γ is a �-basis.
Its axioms and rules are the following:

(Ax)
(x :A) ∈ Γ

Γ �� x :A
(Ax-Ω) Γ �� M : Ω

(→ I)
Γ, x :A �� M : B

Γ �� λx.M : A→ B
(→ E)

Γ �� M : A→ B Γ �� N : A
Γ �� MN : B

(∩I)
Γ �� M : A Γ �� M : B

Γ �� M : A ∩B (≤�)
Γ �� M : A A ≤� B

Γ �� M : B
	


As usual we consider λ-terms modulo α-conversion.
Notice that intersection elimination rules

(∩E)
Γ �� M : A ∩B
Γ �� M : A

Γ �� M : A ∩B
Γ �� M : B

can be immediately proved to be derivable in all λ∩�.
A first simple proposition, which can be proved straightforwardly by induc-

tion on the structure of derivations is the following.

Proposition 1.

1. If x /∈ FV(M) and Γ, x :B �� M : A, then Γ �� M : A;
2. If Γ �� M : A and Γ ⊆+Γ ′, then Γ ′ �� M : A.

We end this section by stating a Generation, or Inversion, Theorem for the
type assignment systems λ∩�.

Theorem 3 (Generation Theorem).

1. Assume A�∼�Ω. Γ �� x : A iff (x :B) ∈ Γ and B ≤� A for some B ∈ TT�.
2. Γ �� MN : A iff Γ �� M : B → A, and Γ �� N : B for some B ∈ TT�.
3. Γ �� λx.M : A iff Γ, x : Bi �� M : Ci and

⋂
i∈I(Bi → Ci) ≤� A, for

some I and Bi, Ci ∈ TT�.
4. If Γ �� λx.M : A then A is a functional type.
5. Γ �� λx.M : B → C iff Γ, x :B �� M : C.

Proof. The proof of each (⇐) is easy. So we only treat (⇒).
(1) Easy by induction on derivations, since only the axioms (Ax), (Ax-Ω),

and the rules (∩I), (≤�) can be applied. Notice that the conditionA�∼�Ω implies
that Γ �� x : A cannot be obtained just using axioms (Ax-Ω).
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(2) If A∼�Ω we can choose B∼�Ω. Otherwise the proof is by induction on
derivations. The only interesting case is when A ≡ A1 ∩A2 and the last applied
rule is (∩I):

(∩I)
Γ �� MN : A1 Γ �� MN : A2

Γ �� MN : A1 ∩A2
.

The condition A�∼�Ω implies that we cannot have A1∼�A2∼�Ω. We do the
proof for A1 �∼�Ω and A2 �∼�Ω, the other cases can be treated similarly. By
induction there are B,C,D,E such that

Γ �� M : B → C, Γ �� N : B,
Γ �� M : D → E, Γ �� N : D,

C ≤� A1 & E ≤� A2.

So we are done being (B → C) ∩ (D → E) ≤� B ∩D → C ∩ E ≤ B ∩D → A
by rules (→-∩) and (η) since C ∩E ≤� A.

(3) The proof is very similar to the proof of (2). It is again by induction on
derivations and again the only interesting case is when the last applied rule is
(∩I):

(∩I)
Γ �� λx.M : A1 Γ �� λx.M : A2

Γ �� λx.M : A1 ∩A2
.

By induction there are I,Bi, Ci, J,Dj, Ej such that

∀i ∈ I. G, x :Bi �� M : Ci, ∀j ∈ J. G, x :Dj �� M : Ej ,⋂
i∈I(Bi → Ci) ≤� A1 &

⋂
j∈J (Dj → Ej) ≤� A2.

So we are done since (
⋂
i∈I(Bi → Ci)) ∩ (

⋂
j∈J (Dj → Ej)) ≤� A.

(4) Immediate from (3) and Theorem 2(1).
(5) The case C∼�Ω is trivial. Otherwise let I,Bi, Ci be as in (3), where

A ≡ B → C. Then
⋂
i∈I(Bi → Ci) ≤� B → C implies by Theorem 1 that

there exists a J ⊆ I such that B ≤�
⋂
i∈J Bi and

⋂
i∈J Ci ≤� C. From Γ, x :

Bi �� M : Ci we can derive Γ, x :B �� M : Ci by Proposition 1(2), so by (∩I)
we have Γ, x :B �� M :

⋂
i∈J Ci. Finally applying rule (≤�) we can conclude

Γ, x :B �� M : C. 	


2 Filter Models

In this section we discuss how to build λ-models out of type theories. We start
with the definition of filter for eitt’s. Then we show how to turn the space of filters
into an applicative structure. Finally we will define a notion of interpretation of
λ-terms and show that we get λ-models (filter models).

Filter models arise naturally in the context of those generalizations of Stone
duality that are used in discussing domain theory in logical form (see [1], [11],
[32]). This approach provides a conceptually independent semantics to inter-
section types, the lattice semantics. Types are viewed as compact elements of
domains. The type Ω denotes the least element, intersections denote joins of
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compact elements, and arrow types allow to internalize the space of continuous
endomorphisms. Following the paradigm of Stone duality, type theories give rise
to filter models, where the interpretation of λ-terms can be given through a
finitary logical description.

Definition 6.

1. A �-filter (or a filter over TT�) is a set X ⊆ TT� such that:
– Ω ∈ X;
– if A ≤� B and A ∈ X, then B ∈ X;
– if A,B ∈ X, then A ∩B ∈ X;

2. F� denotes the set of �-filters over TT�;
3. if X ⊆ TT�, ↑ X denotes the �-filter generated by X;
4. a �-filter is principal if it is of the shape ↑ {A}, for some type A. We shall

denote ↑ {A} simply by ↑ A. 	

It is well known that F� is a ω-algebraic cpo, whose compact (or finite)

elements are the filters of the form ↑ A for some type A and whose bottom
element is ↑ Ω.

Next we endow the space of filters with the notions of application and of
λ-term interpretation. Let EnvF� be the set of all mappings from the set of
term variables to F�.

Definition 7.

1. Application · : F� ×F� → F� is defined as

X · Y = {B | ∃A ∈ Y.A→ B ∈ X}.
2. The interpretation function: [[ ]]� : Λ× EnvF� → F� is defined by

[[M ]]�ρ = {A ∈ TT� | ∃Γ |= ρ. Γ �� M : A},

where ρ ranges over EnvF� and Γ |= ρ if and only (x : B) ∈ Γ implies
B ∈ ρ(x).

3. The triple 〈F�, ·, [[ ]]�〉 is called the filter model over Σ�. 	

Notice that previous definition is sound, since it is easy to verify that X · Y

is a �-filter and moreover:

Theorem 4.
The filter model 〈F�, ·, [[ ]]�〉 is a λ-model, in the sense of Hindley-Longo [18],
that is:

1. [[x]]�ρ = ρ(x);
2. [[MN ]]�ρ = [[M ]]�ρ · [[N ]]�ρ ;
3. [[λx.M ]]�ρ ·X = [[M ]]�ρ[X/x];

4. (∀x ∈ FV(M). [[x]]�ρ = [[x]]�ρ′ ) ⇒ [[M ]]�ρ = [[M ]]�ρ′ ;
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5. [[λx.M ]]�ρ = [[λy.M [y/x]]]�ρ , if y /∈ FV(M);
6. (∀X ∈ F�.[[M ]]�ρ[X/x] = [[N ]]�ρ[X/x]) ⇒ [[λx.M ]]�ρ = [[λx.N ]]�ρ .

Moreover it is extensional - that is [[λx.Mx]]�ρ = [[M ]]�ρ when x /∈ FV(M) - iff
ι /∈ CC.

Proof. (1) We show A ∈ [[x]]�ρ iff A ∈ ρ(x). The case A∼�Ω is immediate. If
A�∼�Ω and A ∈ [[x]]�ρ , then Γ �� x : A for some �-basis Γ such that Γ |= ρ.
So there exists a premise x : A′ in Γ such that A′ ∈ ρ(x). By Theorem 3(1),
A′ ≤� A, hence A ∈ ρ(x). The vice versa is trivial.

(2) Let A ∈ [[MN ]]�ρ . Then there exists Γ |= ρ such that Γ �� MN : A.
By Theorem 3(2), there exists B ∈ TT� such that Γ �� M : B → A and
Γ �� N : B, hence B ∈ [[N ]]�ρ and B → A ∈ [[M ]]�ρ . By definition of application
it follows A ∈ [[M ]]�ρ · [[N ]]�ρ .
Let now A ∈ [[M ]]�ρ · [[N ]]�ρ . Then there exists B ∈ TT� such that B → A ∈ [[M ]]�ρ
and B ∈ [[N ]]�ρ , hence there exist two �-bases, Γ and Γ ′, such that Γ |= ρ,
Γ ′ |= ρ, and moreover Γ �� M : B → A, Γ ′ �� N : B. Consider the basis
Γ ′′ = Γ � Γ ′. We have Γ ′′ |= ρ, Γ ′′ �� M : B → A and Γ ′′ �� N : B. From
the last two judgments we deduce Γ ′′ �� MN : A, which, along with the first
judgment, implies A ∈ [[MN ]]�ρ .

(3) Let A ∈ [[M ]]�ρ[X/x]. Then there exists Γ |= ρ[X/x] such that Γ �� M : A.
Let Γ = Γ ′, x :B, then, by rule (→ I), we get Γ ′ �� λx.M : B → A. This implies
B → A ∈ [[λx.M ]]�ρ since from Γ |= ρ[X/x] we have Γ ′ |= ρ. Being B ∈ X

(because Γ |= ρ[X/x]), we get A ∈ [[λx.M ]]�ρ ·X .
Let A ∈ [[λx.M ]]�ρ · X . Then there exists Γ |= ρ and B ∈ X such that Γ ��

λx.M : B → A. Since x /∈ FV(λx.M) by Lemma 1(1) we can assume x �∈ Γ . By
Theorem 3(5) it follows Γ, x :B �� M : A. Since B ∈ X we have Γ, x :B |= ρ,
hence A ∈ [[M ]]�ρ .

(4) easily proven by induction on the structure of M .
(5) trivial.
(6) Suppose that the premise hold and A ∈ [[λx.M ]]�ρ . Then there is Γ |= ρ

such that Γ �� λx.M : A. Since x /∈ FV(λx.M) by Lemma 1(1) we can assume
x �∈ Γ . By Theorem 3(3) there exist I and Bi, Ci ∈ TT� such that Γ �� λx.M :
Bi → Ci for all i ∈ I and

⋂
i∈I(Bi → Ci) ≤� A. So we have, for each i ∈ I,

by Theorem 3(5) Γ, x :Bi �� M : Ci. By the premise, we get, for each i ∈ I,
Γ, x :Bi �� N : Ci, which implies [[λx.M ]]�ρ ⊆ [[λx.N ]]�ρ . Similarly one proves
[[λx.N ]]�ρ ⊆ [[λx.M ]]�ρ .

We show now that the model is extensional when ι /∈ CC. Let A ∈ [[λx.Mx]]�ρ ,
with x /∈ FV(M). Then there is Γ |= ρ such that Γ �� λx.Mx : A. Reasoning
as in the proof of (6), we have that there exist I and Bi, Ci ∈ TT� such that for
each i ∈ I, Γ, x :Bi �� Mx : Ci and

⋂
i∈I(Bi → Ci) ≤� A. By Theorem 3(2), it

follows that there exists, for each i ∈ I, Di such that Γ, x :Bi �� M : Di → Ci,
and Γ, x :Bi �� x : Di. We have Bi ≤� Di for each i ∈ I either by Theorem 3(1)
if Di �∼�Ω or by axiom (Ω) and rule (trans) if Di∼�Ω. Hence we get, by (≤�),
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Γ, x : Bi �� M : Bi → Ci, for each i ∈ I. Since x /∈ FV(M) we can apply
Lemma 1(1) and obtain, for each i ∈ I, Γ �� M : Bi → Ci, hence, by rules (∩I)
and (≤�), Γ �� M : A, which implies A ∈ [[M ]]�ρ .
Suppose A ∈ [[M ]]�ρ . Then there exists Γ |= ρ such that Γ �� M : A. Since
x /∈ FV(M) by Lemma 1(1) we can assume x �∈ Γ . By Theorem 2 we have
A∼�

⋂
i∈I(Bi → Ci) for suitable I and Bi, Ci ∈ TT�, so by applying rule (≤�)

we get Γ �� M : Bi → Ci for each i ∈ I. By Lemma 1(2), we have Γ, x :
Bi �� M : Bi → Ci. This judgment, along with Γ, x : Bi �� x : Bi allows to
obtain, by rule (→ E), Γ, x :Bi �� Mx : Ci, for each i ∈ I. By rule (→ I) we
deduce Γ �� λx.Mx : Bi → Ci for each i ∈ I, hence by rule (∩I) it follows
Γ �� λx.Mx :

⋂
i∈I(Bi → Ci), which implies, by rule (≤�), Γ �� λx.Mx : A,

so we conclude A ∈ [[λx.Mx]]�ρ .
Finally, if ι ∈ CC the model is non-extensional, since taking ρ(x) =↑ ι, we get

[[x]]�ρ =↑ ι while [[λy.xy]]�ρ =↑ Ω. 	


3 Semantical Proof of the Easiness of ω2ω2

Let ω2 be the λ-term λx.xx. For an arbitrary closed λ-term M we build a non-
extensional filter model 〈F�′

, ·, [[ ]]�
′〉 such that [[M ]]�

′
= [[ω2ω2]]�

′
.

First we give a lemma which characterizes the types derivable for ω2 and
ω2ω2.

Lemma 1.

1. �� ω2 : A→ B iff A ≤� A→ B;
2. �� ω2ω2 : B iff A ≤� A→ B for some A ∈ TT� such that �� ω2 : A.
3. If �� ω2ω2 : B then there exists A ∈ TT� such that #(A) = 0, A ≤� A→ B

and �� ω2 : A.

Proof. (1) By a straightforward computation A ≤� A → B implies �� ω2 :
A → B. Conversely, suppose �� ω2 : A → B. If B∼�Ω, then by axioms (Ω),
(Ω-η), and rules (η), (trans), we have A ≤� A → B. Otherwise, by Theorem
3(5) it follows x :A �� xx : B. By Theorem 3(2) there exists a type C ∈ TT�

such that x :A �� x : C → B and x :A �� x : C. Notice that B �∼�Ω implies
C → B �∼�Ω, since from C → B∼�Ω we get C → B∼�Ω → Ω by axiom (Ω-η)
and rule (trans) and this implies B∼�Ω by Theorem 1. So by Theorem 3(1),
we get A ≤� C → B. We have A ≤� C either by Theorem 3(1) if C �∼�Ω or by
axiom (Ω) and rule (trans) if C∼�Ω. From A ≤� C → B and A ≤� C by rule
(η) it follows A ≤� A→ B.

(2) The case B∼�Ω is trivial. Otherwise, if �� ω2ω2 : B, by Theorem 3(2)
it follows that there exists A ∈ TT� such that �� ω2 : A and �� ω2 : A → B.
We conclude by (1).

(3) Let �� ω2ω2 : B. Then, by Point (2), there exists A ∈ TT� such that ��

ω2 : A and A ≤� A→ B. We prove the thesis by induction on #(A). If #(A) = 0
we are done. Suppose now #(A) ≥ 1. First by Theorem 3(4) A is functional. By
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applying Lemma 2, we obtain a type A′ such that A′∼�A, A′ ≡ ⋂i∈I(Ci → Di)
and #(A′) = #(A). From A ≤� A → B we have

⋂
i∈I(Ci →Di) ≤� A→B,

hence, by Theorem 1, there exists J ⊆ I such that A ≤�
⋂
i∈J Ci and

⋂
i∈J

Di ≤� B. Since �� ω2 : A, by (≤�) it follows �� ω2 : Ci → Di for all i ∈ J
and �� ω2 :

⋂
i∈J Ci. By Point (1) it follows ∀i ∈ J.Ci ≤� Ci → Di. By axiom

(→-∩) and rule (η) we get C ≤� C → ⋂
i∈J Di, and also C ≤� C → B, where

C ≡ ⋂i∈J Ci. We have obtained:

�� ω2 : C;
C ≤� C → B;
#(C) < #(A′) = #(A).

The thesis follows by applying the induction properties. 	

We build the desired model by taking the union of a suitable countable

sequence of eitt’s Σ�n defined in such a way that the final interpretation of M
coincides with the interpretation of ω2ω2. In the following 〈·, ·〉 denotes any
bijection between IN × IN and IN.

Definition 8.

1. The eitt’s Σ�n are defined inductively on n as follows:
– CC�1 = {Ω, ι};
– �1 = �0;
– CC�n+1 = CC�n ∪ {ς〈n,m〉 | m ∈ IN};
– �n+1 = �n ∪ {ς〈n,m〉 ∼ ς〈n,m〉 →W〈n,m〉 | m ∈ IN},

where 〈W〈n,m〉〉m∈IN is any enumeration of the set {A | vdash�nM : A}.
2. We define Σ�′

as follows:

CC�′
=
⋃
n∈IN CC�n ; �′ =

⋃
n∈IN �n. 	


Since Σ�′
is an eitt and ι ∈ CC�′

, by Theorem 4, it follows that it induces
a non-extensional λ-model.

Theorem 5.
The triple 〈F�′

, ·, [[ ]]�
′〉 is a non-extensional λ-model.

We need also a negative result on the typing of ω2.

Lemma 2.
���′

ω2 : ι and ���′
ω2 : ι→ ι.

Proof. From Theorem 3(4) we get ���′
ω2 : ι, since the type ι is not functional.

To show ���′
ω2 : ι → ι we define the sets EΩ, Gτ as the minimal sets such

that:
Ω ∈ EΩ; A ∈ TT�′

, B ∈ EΩ ⇒ A→ B ∈ EΩ;
A,B ∈ EΩ ⇒ A ∩B ∈ EΩ; Wi ∈ EΩ ⇒ ςi ∈ EΩ;
ι ∈ Gι; EΩ ⊆ Gι; A,B ∈ Gι ⇒ A ∩B ∈ Gι.
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It is easy to check by induction on ≤�′ that for all A ∈ TT�′
:

B ≤�′ A and B ∈ EΩ imply A ∈ EΩ;
B ≤�′ A and B ∈ Gι imply A ∈ Gι.

This implies that ι �≤�′ ι→ ι since ι ∈ Gι and ι→ ι /∈ Gι.
Suppose by contradiction that ��′

ω2 : ι → ι: we get ι ≤�′ ι → ι by Lemma
1(1). 	


We are now able to prove the first main theorem.

Theorem 6.
The filter model 〈F�′

, ·, [[ ]]�
′〉 is not trivial and [[M ]]�

′
= [[ω2ω2]]�

′
.

Proof. The model is not trivial since it is easy to derive ��′
I : ι → ι while

���′
ω2 : ι→ ι by Lemma 2.

The inclusion [[M ]]�
′ ⊆ [[ω2ω2]]�

′
is almost immediate by construction. By easy

calculation, ω2 may be given type ςj for any integer j. In fact, since ςj ∼�′ ςj →
Wj , it follows x : ςj ��′

xx : Wj , hence ��′
λx.xx : ςj → Wj ∼�′ ςj . From

this last fact, by applying (→E), we obtain ��′
ω2ω2 : Wj for all j. This proves

[[M ]]�
′ ⊆ [[ω2ω2]]�

′
.

On the other hand, let ��′
ω2ω2 : B. Then applying Lemma 1(3), it follows

that there exists A such that #(A) = 0, ��′
ω2 : A and A ≤�′ A → B. Let

A ≡ ⋂
i∈I ψi. By Lemma 2, for all i ∈ I we get that ψi is either Ω or ςj for

some integer j. This implies either A ∼�′ Ω → Ω or A ∼�′
⋂
j∈J (ςj →Wj) for

some J . Therefore from A ≤�′ A → B either Ω ≤�′ B or ∃L ⊆ J such that⋂
j∈LWj ≤�′ B, by Theorem 1. Since each Wj is in [[M ]]�

′
, we have B ∈ [[M ]]�

′

and we are done. 	


4 Semantical Proof of the Easiness of ω3ω3I

Let ω3 be the λ-term λx.xxx. For an arbitrary closed λ-term M we build a non-
extensional filter model 〈F�′′

, ·, [[ ]]�
′′ 〉 such that [[M ]]�

′′
= [[ω3ω3I]]�

′′
.

First we give a lemma, which characterizes the types deducible for ω3 and
ω3ω3I.

Notation.
In the following Q̄ will denote types of the shape

⋂
k∈K(Qk → Qk), that is the

minimal types which I can receive. 	

Lemma 3.

1. �� ω3 : A→ B iff A ≤� A→ A→ B;
2. �� ω3ω3I : B iff there exist A, Q̄ such that A ≤� A → A → Q̄ → B and

�� ω3 : A.
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Proof. Throughout this proof we freely (and heavily!) use Theorem 3. We show
just (⇒), since (⇐) are obtained simply by applying the typing rules. The case
B∼�Ω is trivial.

(1) �� ω3 : A → B implies x :A �� xxx : B, hence there exist C,D such
that x :A �� x : C → D → B, x :A �� x : C and x :A �� x : D. The first of
these three last judgments implies A ≤� C → D → B, while the last two imply
A ≤� C and A ≤� D, hence, by rule (η), we obtain A ≤� A→ A→ B.

(2) If �� ω3ω3I : B, then there exists C such that �� ω3ω3 : C → B
and �� I : C. By straightforward calculation it must exist Q̄ such that Q̄ ≤� C.
Moreover this implies C → B ≤� Q̄→ B, hence by rule (≤�),��ω3ω3 : Q̄→B.
This last judgment holds only if there exists A such that �� ω3 : A → Q̄ → B
and �� ω3 : A. We conclude by using Point (1). 	


We define the eitt Σ�′′
as the union of a countable sequence of eitt’s Σ�n

similarly to Σ�′
.

Definition 9.

1. Σ�n are defined inductively on n as the eitt’s generated by the following sets
CC�n and �n:
– CC�1 = {Ω, ι};
– �1 = �0;
– CC�n+1 = CC�n ∪ {α〈n,m〉, β〈n,m〉, γ〈n,m〉 | m ∈ IN};
– �n+1 = �n ∪ {α〈n,m〉 ≤ β〈n,m〉, α〈n,m〉 ≤ γ〈n,m〉, β〈n,m〉 ≤ γ〈n,m〉,

α〈n,m〉 ∼ (γ〈n,m〉 → α〈n,m〉) ∩ (β〈n,m〉 → τ →W〈n,m〉),
β〈n,m〉 ∼ γ〈n,m〉 → α〈n,m〉,
γ〈n,m〉 ∼ γ〈n,m〉 → β〈n,m〉 | m ∈ IN},

where τ ≡ ι→ ι and 〈W〈n,m〉〉m∈IN is any enumeration of the set
{A | vdash�nM : A}.

2. We define Σ�′′
as follows:

CC�′′
=
⋃
n∈IN CC�n ; �′′ =

⋃
n∈IN �n.	


From Definition 9 we immediately have that Σ�′′
is an eitt and ι ∈ CC�′′

,
hence it induces a non-extensional λ-model.

Theorem 7.
The triple 〈F�′′

, F�′′
, G�′′〉 is a non-extensional λ-model. 	


Notation. Sometimes we will omit subscript 〈n,m〉 for α, β, γ,W . 	

The proof of [[M ]]�

′′
= [[ω3ω3I]]�

′′
is done in three steps. First we show that

some subtypings do not hold (Lemma 5). The second step is a characterization of
the constants which can be deduced for ω3 (Lemma 6). Lastly we use these results
in order to obtain properties for the types which satify particular subtyping
relations and which contain proper subtypes deducible for ω3 (Lemma 7).
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For the first step we introduce four subsets of TT�′′
, whose meaning is the

following (recall that τ ≡ ι→ ι)1:

1. EΩ is the set of all types which are equivalent to Ω;
2. Gι is the set of all types which are greater than or equivalent to ι;
3. Lι is the set of all types which are less than or equivalent to ι;
4. Gτ is the set of all types which are greater than or equivalent to τ .

Definition 10. The sets EΩ, Gι, Lι, Gτ , are defined as the minimal sets such
that:

Ω ∈ EΩ; A ∈ TT�′′
, B ∈ EΩ ⇒ A→ B ∈ EΩ; A,B ∈ EΩ ⇒ A ∩B ∈ EΩ;

ι ∈ Gι; EΩ ⊆ Gι; A,B ∈ Gι ⇒ A ∩B ∈ Gι;
ι ∈ Lι; A ∈ TT�′′

, B ∈ Lι ⇒ A ∩B,B ∩A ∈ Lι;
EΩ ⊆ Gτ ; A ∈ Lι, B ∈ Gι ⇒ A→ B ∈ Gτ ; A,B ∈ Gτ ⇒ A ∩B ∈ Gτ . 	


From this definition we easily get:

Lemma 4.
1. EΩ = {A ∈ TT�′′ | Ω ≤�′′ A};
2. Gι = {A ∈ TT�′′ | ι ≤�′′ A};

3̃. Lι = {A ∈ TT�′′ | A ≤�′′ ι};
4. Gτ = {A ∈ TT�′′ | τ ≤�′′ A}.

Proof. It is easy to check by induction on the definition of EΩ that A ∈ EΩ ⇒
A ∼�′′ Ω, and similarly for the other sets.
Vice versa one can show by induction on ≤�′′ that:

B ≤�′′ A and B ∈ EΩ imply A ∈ EΩ;
B ≤�′′ A and B ∈ Gι imply A ∈ Gι;
B ≤�′′ A and A ∈ Lι imply B ∈ Lι;
B ≤�′′ A and B ∈ Gτ imply A ∈ Gτ .

We consider just the case of application of rule (η) for B ∈ Gτ . Let A ≡ A′ → A′′,
B ≡ B′ → B′′ and let the judgment B ≤�′′ A be obtained by applying rule
(η) from the premises A′ ≤�′′ B′ and B′′ ≤�′′ A′′. Since B ∈ Gτ , it must hold
B′ ∈ Lι and B′′ ∈ Gι. By (3) and (2) we obtain A′ ∈ Lι and A′′ ∈ Gι, hence A
belongs to Gτ . 	


Next lemma ensures that the types α, β, γ are not equivalent whenW �∼�′′ Ω.

Lemma 5. If Wi �∼�′′ Ω then γi �≤�′′ βi �≤�′′ αi and Q̄ �≤�′′ γi.

Proof. We prove γi �≤�′′ βi �≤�′′ αi by contradiction. By Theorem 1 γi ≤�′′ βi
holds iff βi ≤�′′ αi, since γi ∼�′′ γi → βi, βi ∼�′′ γi → αi and αi �∼�′′ Ω
by Lemma 4(1). So it is sufficient to prove βi �≤�′′ αi. Since αi ∼�′′ βi ∩
(βi → τ → Wi), we are done if we can prove that it is impossible to have

1 The symbols EΩ, etc. are overloaded, since they were used already in the proof of
Lemma 2 and they will be used in Section 5, but no confusion can arise, since it is
always clear from the context the eitt we are considering.
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βi ≤�′′ βi → τ → Wi, that is γi → αi ≤�′′ βi → τ → Wi. By Theorem 1
being Wi �∼�′′ Ω this last judgment is equivalent to the pair of judgments
βi ≤�′′ γi and αi ≤�′′ τ → Wi. Consider this last judgment, that is equivalent
to (γi → αi) ∩ (βi → τ → Wi) ≤�′′ τ → Wi. By Theorem 1, it should hold
τ ≤�′′ γi, which is impossible by Lemma 4(4), since γi /∈ Gτ .
Finally we prove Q̄ �≤�′′ γi. If by contradiction Q̄ ≤�′′ γi, by Theorem 1 (since
γi ∼�′′ γi → βi and βi �∼�′′ Ω by Lemma 4(1)), there exists H ⊆ K such that
γi ≤�′′

⋂
h∈H Qh and

⋂
h∈H Qh ≤�′′ βi, which implies γi ≤�′′ βi. This is a

contradiction by above. 	

The definition of Σ�′′

is tailored so that, as far as constants are concerned,
ω3 can receive just α’s, and hence β, γ, and Ω, but not ι.

Lemma 6. Let ψ ∈ CC∇′′
, then ��′′

ω3 : ψ iff αi ≤�′′ ψ for some i. Moreover
� ��′′

ω3 : τ .

Proof. We know, from Theorem 3(4), that � ��′′
ω3 : ι. We show:

(1) ��′′
ω3 : αi for all i; (2) � ��′′

ω3 : τ.

(1) Since αi ∼�′′ (γi → αi) ∩ (βi → τ → Wi), by Lemma 3(1), it is sufficient
to prove that γi ≤�′′ γi → γi → αi and βi ≤�′′ βi → βi → τ → Wi. The first
judgment is immediate by the equivalences in �′′ on γi and βi. The second one
follows by using rule (η) twice:

βi ∼�′′ γi → αi
≤�′′ γi → βi → τ →Wi (since αi ≤�′′ βi → τ →Wi)
≤�′′ βi → βi → τ →Wi (since βi ≤�′′ γi).

(2) If ��′′
ω3 : τ , then by Lemma 3(1), it should be ι ≤�′′ ι → ι → ι, which is

impossible by Lemma 4(2) since ι→ ι→ ι �∈ Gι. 	

Lemma 7.

1. If
⋂
i∈I αi ≤�′′ A → B → C and ��′′

ω3 : B then there is J ⊆ I such that⋂
i∈J αi ≤�′′ B → C.

2. If A ≤�′′ A → A → B and ��′′
ω3 : A then there are I, αi ∈ CC�′′

, and n
such that C ≤�′′ C → C → An → B, where C ≡ ⋂i∈I αi.

Proof. (1) The case C ∼�′′ Ω is trivial. Otherwise by Theorem 1 from
⋂
i∈I

αi ≤�′′ A → B → C we get (
⋂
i∈J αi) ∩ (

⋂
i∈H(τ → Wi)) ≤�′′ B → C for

some J,H ⊆ I, since αi ∼�′′ (γi → βi) ∩ (βi → τ → Wi). It is impossible to
have B ≤�′′ τ , since this implies ��′′

ω3 : τ , which contradicts Lemma 6. So, by
Theorem 1 it must hold

⋂
i∈J αi ≤�′′ B → C.

(2) The case B ∼�′′ Ω is trivial. Otherwise the proof is by induction on
#(A). Notice that A is functional by Theorem 3(4).
If #(A) = 0, then A is an intersection of constants which cannot contain ι. Thus
we have A ≡ ⋂

i∈J ψi such that ψi is α, β, γ, or Ω, for all i ∈ J (notice that
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we cannot have ψi ≡ Ω for all i ∈ J by Lemma 4(1) since A → A → B �∈ EΩ
when B �∼�′′ Ω). Consider now the type C obtained from A by replacing every
constant βl and γl occurring in A with αl. By Lemma 6 ��′′

ω3 : C. Moreover
C ≤�′′ A, hence C ≤�′′ C → C → B. The type C has the required shape since
by construction C ≡ ⋂

i∈I αi, where I = {i ∈ J | ψi �≡ Ω}, hence the thesis is
satisfied (in this case n = 0).

Let us suppose now #(A) > 0. Then, by Lemma 2, there exist J , Dj , Ej
such that

⋂
j∈J (Dj → Ej) ∼�′′ A and moreover #(

⋂
j∈J (Dj → Ej)) = #(A).

By Theorem 1, from
⋂
j∈J (Dj → Ej) ≤�′′ A → A → B there exists H ⊆ J

such that A ≤�′′
⋂
j∈H Dj and

⋂
j∈H Dj ≤�′′ A→ B. Let D ≡ ⋂j∈H Dj . Since

��′′
ω3 : A, it follows by (≤�) ��′′

ω3 : D. By the same reason, for all j ∈ H ,
��′′

ω3 : Dj → Ej . Hence, by Lemma 3(1), it follows, for all j ∈ H , Dj ≤�′′

Dj → Dj → Ej , which implies
⋂
j∈H Dj ≤�′′

⋂
j∈H(Dj → Dj → Ej). Using

(→-∩) and (η) we obtain D ≤�′′ D → D → ⋂
j∈H Ej , which implies D ≤�′′

D → D → A → B. Since #(D) < #(A), we can now apply the inductive
hypothesis and deduce that there exists C ≡ ⋂

i∈I αi and n such that C ≤�′′

C → C → Dn → A → B, which implies C ≤�′′ C → C → An+1 → B, since
A ≤�′′ D. 	


Lastly we can prove the second main theorem.

Theorem 8.
The filter model 〈F�′′

, ·, [[ ]]�
′′〉 is not trivial and [[M ]]�

′′
= [[ω3ω3I]]�

′′
.

Proof. The model is not trivial since it is easy to derive ��′
I : τ while ���′

ω3 : τ
by Lemma 6.

(⊆) By Lemma 6 we have ��′′
ω3 : αi for all i, hence, by (≤�), ��′′

ω3 : βi
and ��′′

ω3 : βi → τ → Wi. By rule (→ E) it follows ��′′
ω3ω3 : τ → Wi. Since

��′′
I : τ , we conclude by rule (→ E) ��′′

ω3ω3I : Wi for all i, which implies
[[M ]]�

′′ ⊆ [[ω3ω3I]]�
′′
.

(⊇) Let B ∈ [[ω3ω3I]]�
′′
. The only interesting case is B �∼�′′ Ω. We get

��′′
ω3ω3I : B and by Lemma 3(2), there exist A, Q̄ such that A ≤�′′ A→ A→

Q̄→ B and �� ω3 : A. By Lemma 7(2) there are I, αi ∈ CC�′′
, and n such that

C ≤�′′ C → C → An → Q̄ → B, where C ≡ ⋂i∈I αi. By applying n + 1 times
Lemma 7(1) we get

⋂
i∈J αi ≤�′′ D → Q̄→ B for some J ⊆ I, where D ≡ C if

n = 0 and D ≡ A otherwise. By Theorem 1 this gives (
⋂
i∈H αi) ∩ (

⋂
i∈K(τ →

Wi)) ≤�′′ Q̄→ B for some H,K ⊆ J , being αi ∼�′′ (γi → αi)∩(βi → τ → Wi).
Let L = {i ∈ H | Wi ∼�′′ Ω}. Since, by Lemma 5 Wi �∼�′′ Ω implies Q̄ �≤�′′

γi, βi, if we apply Theorem 1 to (
⋂
i∈H αi) ∩ (

⋂
i∈K(τ → Wi)) ≤�′′ Q̄ → B we

have that there exist L′ ⊆ L and K ′ ⊆ K such that (
⋂
i∈L′ αi)∩(

⋂
i∈K′ Wi) ≤�′′

B. Notice that Wi ∼�′′ Ω gives αi ∼�′′ αi → αi. The proof by structural
induction on terms that {x :A | x ∈ FV(N)} �� N : A whenever A ∼�′′ A→ A

is easy. This implies ��′′
M : αi being M closed, i.e. αi ∈ [[M ]]�

′′
for all i ∈ L′.

Moreover by construction Wi ∈ [[M ]]�
′′

for all i ∈ K ′. Since [[M ]]�
′′

is a filter,
(
⋂
i∈L′ αi) ∩ (

⋂
i∈K′ Wi) is in it, hence B too. 	
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5 Extensional Models

In this section we will show how to modify the model construction of previous
sections in order to obtain extensional filter models. In this way we will prove
the consistency of λβη + {ω2ω2 = M} and of λβη + {ω3ω3I = M}.

5.1 Consistency of λβη + {ω2ω2 = M}
If in Definition 8 we put:

– CC�1 = {Ω,χ};
– �1 = �0 ∪ {χ ∼ Ω → χ};

we obtain an eitt we call Σ�′
η . By Theorem 4, 〈F�′

η , ·, [[ ]]�
′
η 〉 is an extensional

λ-model. It is essentially the model of [20].
In Σ�′

η the type χ plays the role of ι in Σ�′
. So instead of Lemma 2 we

need:

Lemma 8.
���′

ω2 : χ and ���′
ω2 : (χ→ χ) → χ→ χ.

Proof. Define the set EΩ as the minimal set such that:

Ω ∈ EΩ; A ∈ TT�′
η , B ∈ EΩ ⇒ A→ B ∈ EΩ;

A,B ∈ EΩ ⇒ A ∩B ∈ EΩ; Wi ∈ EΩ ⇒ ςi ∈ EΩ.

It is easy to check by induction on ≤�′
η

that for all A ∈ TT�′
η :

B ≤�′
η
A & B ∈ EΩ ⇒ A ∈ EΩ.

This implies that Ω �≤�′
η
χ since Ω ∈ EΩ and χ /∈ EΩ.

Suppose by contradiction that ��′
η ω2 : χ, i.e. ��′

η ω2 : Ω → χ: we get Ω ≤�′
η

Ω → χ ∼�′
η
χ by Lemma 1(1).

Similarly from ��′
η ω2 : (χ → χ) → χ → χ by Lemma 1(1) we get χ → χ ≤�′

η

(χ → χ) → (χ → χ) → χ → χ, which implies by Theorem 1 χ → χ ≤�′
η
χ.

Applying again Theorem 1 to this last judgment we get Ω ≤�′
η
χ. 	


The model 〈F�′
η , ·, [[ ]]�

′
η 〉 is not trivial since it is easy to derive ��′

η I : (χ→χ)
→ χ → χ while ���′

η ω2 : (χ → χ) → χ → χ by Lemma 8. The proof that this
model equates ω2ω2 and M is just the proof of Theorem 6 using Lemma 8 instead
of Lemma 2.
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5.2 Consistency of λβη + {ω3ω3I = M}
If in Definition 9 we put:

– CC�1 = {Ω, σ, τ};
– �1 = �0 ∪ {σ ∼ τ → σ, τ ∼ σ → σ};

and we erase the condition τ ≡ ι → ι, we obtain an eitt that we call Σ�′′
η .2

Notice that in this case it is not possible to start from a simpler theory Σ�1

built on just two constants, say Ω and χ, as in the case of Σ�′
η . If Σ�1 contains

only two constants, we are forced to define τ ≡ χ → χ. Whatever equivalence
we choose to make each constant equivalent to a suitable intersection of arrow,
we derive type τ for ω3, which contradicts Lemma 10(2) below.

By Theorem 4 〈F�′′
η , ·, [[ ]]�

′′
η 〉 is an extensional λ-model. We prove that

this model equates ω3ω3I to M just mimicking the same proof for the model
〈F�′′

, ·, [[ ]]�
′′ 〉.

First we introduce five subsets of TT�′′
η , whose meaning is the following:

1. EΩ is the set of all types which are equivalent to Ω;
2. Gσ is the set of all types which are greater than or equivalent to σ;
3. Lσ is the set of all types which are less than or equivalent to σ;
4. Gτ is the set of all types which are greater than or equivalent to τ ;
5. Lτ is the set of all types which are less than or equivalent to τ .

Definition 11. The sets EΩ, Gσ, Lσ, Gτ , Lτ , are defined as the minimal sets
such that:

Ω ∈ EΩ; A ∈ TT�′′
η , B ∈ EΩ ⇒ A→ B ∈ EΩ; A,B ∈ EΩ ⇒ A ∩B ∈ EΩ;

σ ∈ Gσ; EΩ ⊆ Gσ; A ∈ Lτ , B ∈ Gσ ⇒ A→ B ∈ Gσ; A,B ∈ Gσ ⇒ A ∩B ∈ Gσ;

σ ∈ Lσ; A∈Gτ , B∈Lσ ⇒ A→ B ∈ Lσ;A ∈ TT�′′
η , B ∈ Lσ ⇒ A ∩B,B ∩ A ∈ Lσ;

τ ∈ Gτ ; EΩ ⊆ Gτ ; A ∈ Lσ, B ∈ Gσ ⇒ A→ B ∈ Gτ ; A,B ∈ Gτ ⇒ A ∩ B ∈ Gτ ;

τ ∈ Lτ ; A∈Gσ, B∈Lσ ⇒ A→ B∈Lτ ; A∈TT�′′
η , B∈Lτ ⇒ A ∩B,B ∩A∈Lτ .�

Similarly to Lemma 4 we can easily show:

Lemma 9.

1. EΩ = {A ∈ TT�′′
η | Ω ≤�′′

η
A};

2. Gσ = {A ∈ TT�′′
η | σ ≤�′′

η
A};

3. Lσ = {A ∈ TT�′′
η | A ≤�′′

η
σ};

4. Gτ = {A ∈ TT�′′
η | τ ≤�′′

η
A};

5. Lτ = {A ∈ TT�′′
η | A ≤�′′

η
τ}.

From previous lemma we immediately have that σ and τ are incomparable:

Corollary 1. σ �≤�′′
η
τ and τ �≤�′′

η
σ.

In correspondence with Lemmas 5, 6, 7 we have:

2 Remark that τ ≡ ι→ ι in Σ�′′
, while τ is an atom in Σ�′′

η . We use the same name
since this allows us to have the same defininition of α(n,m).
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Lemma 10.

1. If Wi �∼�′′
η
Ω then γi �≤�′′

η
βi �≤�′′

η
αi and Q̄ �≤�′′

η
γi.

2. Let ψ ∈ CC∇′′
, then ��′′

η ω3 : ψ iff αi ≤�′′
η
ψ for some i.

3. If
⋂
i∈I αi ≤�′′

η
A → B → C and ��′′

η ω3 : B then there is J ⊆ I such that⋂
i∈J αi ≤�′′

η
B → C.

4. If A ≤�′′
η
A → A → B and ��′′

η ω3 : A then there are I, αi ∈ CC�′′
η , and n

such that C ≤�′′
η
C → C → An → B, where C ≡ ⋂i∈I αi.

Proof. Almost all proofs are the same as those of the corresponding lemmas in
Section 4, by using Lemma 9 instead of Lemma 4. We only need to prove:

(a) ���′′
η ω3 : τ ; (b) ���′′

η ω3 : σ.

(a) If ��′′
η ω3 : τ ∼�′′

η
σ → σ, then by Lemma 3(1), it should be σ ≤�′′

η

σ → σ → σ, which implies τ → σ ≤�′′
η
σ → τ . In particular, by Theorem 1,

being τ �∼�′′
η
Ω by Lemma 9(1), it should be σ ≤�′′

η
τ , which is impossible by

Corollary 1.
(b) is proven similarly to previous Point. If ��′′

η ω3 : σ, it should hold τ ≤�′′
η
τ →

τ → σ. Since τ ∼�′′
η
σ → σ, this should implies τ ≤�′′

η
σ, which is impossible

by Corollary 1. 	

The model 〈F�′′

η , ·, [[ ]]�
′′
η 〉is not trivial since it is easy to derive ��′′

η I : τ
while ���′′

η ω3 : τ by the proof of Lemma 10(2). The proof that this model
equates ω3ω3I and M is just the proof of Theorem 8 using Lemma 10 instead of
Lemmas 5, 6, 7.
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1 Faculty of Engineering, University of Novi Sad, Yugoslavia
2 Computing Science Department, Catholic University

Nijmegen, The Netherlands
silviagh@cs.kun.nl

3 Laboratory of Computer Science, MIT
Cambridge, USA
vkuncak@mit.edu

Abstract. We present a new proof of confluence of the untyped lambda
calculus by reducing the confluence of β-reduction in the untyped lambda
calculus to the confluence of β-reduction in the simply typed lambda
calculus. This is achieved by embedding typed lambda terms into simply
typed lambda terms. Using this embedding, an auxiliary reduction, and
β-reduction on simply typed lambda terms we define a new reduction
on all lambda terms. The transitive closure of the reduction defined is
β-reduction on all lambda terms. This embedding allows us to use the
confluence of β-reduction on simply typed lambda terms and thus prove
the confluence of the reduction defined. As a consequence we obtain the
confluence of β-reduction in the untyped lambda calculus.

1 Introduction

The main axiom of lambda calculus is the axiom of β-reduction. The well-known
scheme of one step β-reduction is

(λx.M)N →βM [x :=N ],
whereas β-reduction →→β is the reflexive transitive closure of →β .

The Church-Rosser property or confluence is a fundamental property that
holds for β-reduction, →→β, in the untyped lambda calculus. It states that if

M1 β←←M→→βM2

for any M, M1, and M2, then
M1 →→βM3 β←←M2

for some lambda term M3. There are various approaches and proofs of this prop-
erty (Barendregt [1], Koletsos and Stavrinos [8], Pfenning [13], Takahashi [16],
van Oostrom [17]).

In order to prove the confluence of →→β it suffices to prove the confluence of
any relation whose transitive closure is →→β . Unfortunately, one step β-reduction
→β is not confluent. If

M1 β←M→βM2,
then

M1 →→βM3 β←←M2

A. Restivo, S. Ronchi Della Rocca, L. Roversi (Eds.): ICTCS 2001, LNCS 2202, pp. 38–49, 2001.
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for some M3, which is referred to as the weak Church-Rosser property or lo-
cal confluence. It does not necessarily mean that M1 →βM3 β←M2, since the
contraction of one redex may duplicate others. Due to the possibility of infinite
reduction sequences in the untyped lambda calculus, the confluence cannot be
inferred immediately from the local confluence. It is well-known according to
Newman’s lemma (Newman [12]) that local confluence implies confluence on the
set of strongly normalizing lambda terms.

The way to proceed is to find a confluent relation →I such that
→β ⊆ →I ⊆ →→β.

Then the transitive closure of →I is →→β , hence the confluence of →→β follows
immediately.

Although an elementary inductive definition of →I is possible, it is not quite
clear how to find it. Instead, a deeper understanding of the proof of confluence
can be obtained by considering →I as an image of a strongly normalizing relation
on a different set of lambda terms. This idea is realized in Barendregt [1] by
β0-reduction on the set of marked lambda terms, which is referred to as the
finiteness of developments. In Takahashi [16] the notion of parallel reduction is
introduced for the same reason. In Koletsos and Stavrinos [8] this idea is achieved
by embedding untyped lambda terms into terms typeable with intersection types,
which are known to be strongly normalizing.

The central idea of this paper is to reduce the confluence of β-reduction in the
untyped lambda calculus to the confluence of β-reduction in the simply typed
lambda calculus. For that reason we construct an embedding of untyped lambda
terms into simply typed lambda terms. We define the required reduction →I on
all lambda terms using this embedding, an auxiliary reduction, and β-reduction
on simply typed lambda terms. We show that the transitive closure of →I is
→→β . The confluence of the auxiliary reduction makes explicit the joining of the
sets of redexes to be reduced. This embedding allows us to use the confluence
of →→β on simply typed lambda terms and thus prove the confluence of →I . As
a consequence we obtain the confluence of →→β in the (untyped) lambda calculus.

Section 2 contains the outline of our proof as well as of the proof of confluence
presented in Barendregt [1]. In order to keep the work self-contained the notion
of simple types and simply typed lambda calculus is presented in Section 3. In
Section 4 we define the embedding of (untyped) lambda terms into simply typed
ones, the auxiliary reduction on simply typed lambda terms and the required
reduction →I on lambda terms. In Section 5 the relation between reductions in
simply typed lambda calculus is considered. In Section 6 the investigation of the
properties of →I leads to the confluence of β-reduction in the untyped lambda
calculus.
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2 Outline of the Proof

The proof of the Church-Rosser theorem for untyped lambda calculus in Baren-
dregt [1] can be represented by diagram in Figure 1. Let Λ denote the set of
all (untyped) lambda terms. The set Λ′ of marked lambda terms is defined in
Barendregt [1].

Definition 2.1. (i) Λ = Var|λVarΛ|ΛΛ, the set of all lambda terms.
(ii) Λ′ = Var|λVarΛ′|Λ′Λ′|(λ0Var.Λ′)Λ′, the set of marked lambda terms.

A redex of the form (λ0x.M)N is called a marked redex. Note that a lam-
bda abstraction may be marked only if it is a part of a redex. The notion of
β0-reduction is defined as a process of contracting only marked redexes.

Definition 2.2. β0 = {((λ0x.M)N,M [x :=N ]) |M,N ∈ Λ′}.
In Figure 1 the notation M→−N means that the term N is obtained from M
by marking a lambda abstraction in one of the redexes in M and →→− is its
transitive closure. The relation →I is defined by composition

→I = →→− ◦→→β0 ◦−←←.

M

M

P Q

M2M1

R

P1

   R2

M3

Q1

P2 Q2

-

- -

- -

- -

-

-

β0β0

β0 β0

β0 β0

II

I
I

CR(β0)

Fig. 1. Proof of the confluence of →I using β0-reduction (in the interior part of
the diagram the arrow → denotes →→ in the standard lambda calculus terminol-
ogy)
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The point of introducing β0-reduction is that no “new” redexes are created
during the reduction since in the substitution M [x :=N ] the term N can be an
already existing marked redex, but it can never be a marked lambda abstraction,
as we noticed previously. A consequence of this is that β0-reduction is strongly
normalizing, i.e. there are no infinite sequences of β0-reductions. This is proved
in Barendregt [1] using an ordering on marked lambda terms. Also, β0-reduction
is proved to be locally confluent and then altogether, by Newman’s Lemma
(Newman [12]), it follows that β0-reduction is confluent on marked lambda terms.
This result then leads to the confluence of →I and consequently of β-reduction.

M

Ψ(M)

Ψ(P)

Ψ(R)

Ψ(Q)P Q

M2M1

R

P1

   R2

M3

Q1

P2 Q2

o

o o

o o

o o

o

o

ββ

β β

β β

II

I
I

CR(β)
in λ→

CR(o)

Fig. 2. Proof of the confluence of →I using an embedding in λ→ (in the interior
part of the diagram the arrow → denotes →→ in the standard lambda calculus
terminology)

Our proof has the structure presented by diagram in Figure 2. The embed-
ding Ψ maps untyped terms into terms in the simply typed lambda calculus using
constants f and g that can be thought of as a retraction pair used in the inter-
pretation of the simply typed lambda calculus (see Scott [14], Wadsworth [19],
and Meyer [10]). From the syntactical point of view Ψ blocks all applications.
Therefore Ψ blocks all redexes as well, replacing (λx.M)N by f(g(λx.M))N .
The notion of o-reduction (→→o) is introduced to play an analogous role to the
lambda abstraction marking (→→−): it replaces a blocked redex f(g(λx.M))N
by the unblocked redex (λx.M)N and leaves other applications which are not
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redexes blocked. In this case ordinary β-reduction in the simply typed lambda
calculus will play a similar role to β0-reduction on marked lambda terms, due
to the fact that β-reduction is confluent on simply typed lambda terms. The
relation →I is defined to be an inverse image of β-reduction. It is proved that
→I has all the required properties according to which β-reduction is proved to
be confluent on (untyped) lambda terms.

3 Simply Typed Lambda Calculus

The notion of simple types and the notion of simply typed lambda calculus λ→
are formulated in a suitable way. All types are generated from a basic type 0 in
the usual way.

Definition 3.1. The set type of types is defined as follows.

type = 0 | type → type

A type assignment is an expression of the form M : ϕ, where M ∈ Λ and
ϕ ∈ type. A context Γ is a set {x1 : σ1, . . . , xn : σn} of type assignments with
different term variables.

Definition 3.2 (Type assignment system λ→).
The type assignment P : ϕ is derivable from the context Γ in λ→, notation
Γ 	 P : ϕ, if Γ 	 P : ϕ can be generated by the following axiom-scheme and
rules.

(ax) Γ, x : σ 	 x : σ

(→ E)
Γ 	M : σ → τ Γ 	 N : σ

Γ 	MN : τ

(→ I)
Γ, x : σ 	M : τ

Γ 	 (λx.M) : σ → τ

The crucial point of our proof is the confluence of →→β in λ→. This is proved
by Newman’s Lemma since β-reduction is locally confluent and the set of sim-
ply typed lambda terms is strongly normalizing. There are direct proofs of this
property using reducibility arguments and logical relations in Koletsos [7], Stat-
man [15], and Mitchell [11].

Theorem 3.3 (Confluence of →→β in λ→).
The reduction →→β is confluent on simply typed lambda terms.
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4 Embedding of Lambda Terms into Simply Typed Terms

In order to construct the embedding of lambda terms into simply typed terms we
will point out two predefined constants f and g. Hereafter we implicitly assume
that untyped lambda terms from Λ do not contain constants f and g. The set
of terms typeable by the basic type 0 in the simply typed lambda calculus with
the predefined constants f and g will be denoted by Λ0.

Definition 4.1. (i) Γ0 = {f : 0 → (0 → 0), g : (0 → 0) → 0}.
(ii) Λ0 = {M ∈ Λ | (∃x1, . . . , xn) Γ0, x1 : 0, . . . , xn : 0 	M : 0}.
The idea is to show that terms in the interior region of diagram 2, i.e. all terms
but M,P,Q, and R, are terms typeable by type 0 in the simply typed lambda
calculus with predefined constants f and g, namely that they belong to Λ0.

Note that some of our definitions are stated on more general sets of lambda
terms than needed. This makes it simple to immediately check their validity.
Later propositions will make the intended domains clear.

The embedding Ψ : Λ → Λ0 that allows the representation of arbitrary
untyped terms in the simply typed lambda calculus is defined as follows.

Definition 4.2. (i) Ψ(x) = x.
(ii) Ψ(MN) = fΨ(M)Ψ(N).
(iii) Ψ(λx.M) = g(λx.Ψ(M)).

It is straightforward to verify that Ψ : Λ→ Λ0.

Proposition 4.3. (∀P ∈ Λ) Ψ(P ) ∈ Λ0.

Proof. By induction on the construction of the term P .
Case P ≡ x. Clearly, Γ0, x : 0 	 x : 0.
Case P ≡MN . By the induction hypothesis Γ0, x1 : 0, . . . , xn : 0 	 Ψ(M) : 0

and Γ0, y1 : 0, . . . , ym : 0 	 Ψ(N) : 0. Since f : 0 → (0 → 0) ∈ Γ0, we have

Γ0, z1 : 0, . . . , zk : 0 	 fΨ(M)Ψ(N) : 0,

where {z1, . . . zk} = {x1, . . . , xn, y1, . . . , ym}.
Case P ≡ (λx.M). By the induction hypothesis Γ0, x : 0, x1 : 0, . . . , xn :

0 	 Ψ(M) : 0. Therefore, Γ0, x1 : 0, . . . , xn : 0 	 (λx.Ψ(M)) : 0 → 0. Since
g : (0 → 0) → 0 ∈ Γ0, it follows that Γ0, x1 : 0, . . . , xn : 0 	 g(λx.Ψ(M)) : 0.

This was the idea behind the definition of Ψ and it will allow us to use the
confluence of β-reduction in the simply typed lambda calculus. Obviously,
f and g act as a retraction pair for a Scott domain (see Scott [14]).

Next we define the o-relation which induces the auxiliary reduction →→o. This
corresponds to the marking of lambda abstractions that are parts of already
existing redexes.
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Definition 4.4. o = {(f(g(λx.M))N, (λx.M)N) |M,N ∈ Λ}.
As usual, →o is the congruent closure of o and →→o is the reflexive transitive
closure of →o. We use the term unblocked redex to denote a β-redex and we
refer to a term of the form f(g(λx.M))N as a blocked redex. Hence, Ψ blocks
all applications (including redexes) and o-reduction turns blocked redexes into
unblocked redexes leaving blocked applications which are not redexes.

Proposition 4.5. (i) Λ0 is closed under →→β.
(ii) Λ0 is closed under →→o.

Proof. (i) Easy, since subject reduction holds in λ→.
(ii) Let P ∈ Λ0 and P →oQ, where R ≡ f(g(λx.M))N →o(λx.M)N is the

contracted o-redex in P . Then Γ0, Γ 	 P : 0. According to the types of
f and g we obtain that Γ0, Γ 	 R : 0. By the typeability of subterms (see
Barendregt [2]), it follows that Γ0, Γ 	 (λx.M) : 0 → 0 and Γ0, Γ 	 N : 0.
This implies Γ0, Γ 	 (λx.M)N : 0. This means that the resulting term Q
remains well-typed with the type 0.

Example 4.6. Let Ω ≡ (λx.xx)(λx.xx). Then
Ψ(Ω) = f(g(λx.fxx))(g(λx.fxx)).

Let N ≡ (λx.fxx)(g(λx.fxx)). Observe that Ψ(Ω) has no β-redexes, whereas N
has no o-redexes. However, there is an infinite reduction

Ψ(Ω)→oN→β Ψ(Ω)→oN→β Ψ(Ω)→o . . .,
which corresponds to the β-reduction Ω→β Ω→β Ω→β . . . in the untyped lam-
bda calculus. In this way, the combination of β- and o-reduction enables us to
simulate infinite β-reductions of untyped lambda terms in λ→.

Proposition 4.7 (Confluence of →o).
If M1 o←M→oM2, then there is M3 such that M1 →oM3 o←M2.

Proof. If M1 has an unblocked redex ∆1 and M2 has an unblocked redex ∆2,
then M3 has both redexes ∆1 and ∆2 unblocked. (In terms of term-rewriting
systems, there are no critical pairs because any two o-redexes are either properly
contained one in the other or are in disjoint parts of the term, see Dershowitz
and Jounnaud [3].)

The previous proposition is even more obvious in terms of redex marking: if M1

and M2 are obtained by marking different redexes in M , then M3 has marked
redexes from both M1 and M2.

Corollary 4.8 (Confluence of →→o).
If M1 o←←M→→oM2, then there is M3 such that M1 →→oM3 o←←M2.

Proof. From Proposition 4.7 by simple diagram chasing.
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Following the idea that →I has to be an image of a strongly normalizing
relation, we are now in the position to define the required relation→I on untyped
lambda terms. A relation, say τ , between untyped lambda terms and terms
typeable in λ→ can be established in the following way: first, Ψ turns untyped
terms from Λ into terms from Λ0 and then →→o unblocks some redexes (the
effects analogous to marking lambda terms are achieved). The relation →I is
then defined as an inverse image w.r.t. τ of β-reduction in λ→.

Definition 4.9 (Reduction →I).

(i) τ = Ψ ◦→→o.
(ii) →I = τ ◦→→β ◦τ−1, and it corresponds to the following diagram.

M0 N0

M N

✲

✲

❄ ❄β

I

τ τ

Example 4.10. Let M ≡ (λx.xy)(λz.z) and N ≡ (λz.z)y. Then

Ψ(M) ≡ f(g(λx.fxy))(g(λz.z))→→
o
M0 ≡ (λx.fxy)(g(λz.z)).

Therefore, MτM0. Let N0 ≡ Ψ(N) ≡ f(g(λz.z))y. Trivially, Ψ(N)→→oN0, so
NτN0. The fact that M0 →→β N0, together with MτM0 and NτN0, means that
M→I N .

Note thatM→I y is not true. The reason behind this is that the redex present
in N was created during the reduction (it did not exist in M).

5 Relating Reductions

The next two lemmas are the key steps for this proof of the confluence of →I .

Lemma 5.1. Let M ∈ Λ0. If M0 o←←M→→β N , then M0 →→β N0 o←←N for
some N0 ∈ Λ0.

M0 N0

M N

✲

✲

❄ ❄β

β

o o

Proof. Note that all unblocked redexes from M are also unblocked in M0, so
in order to perform the reduction M0 →→β N0 just reduce the unblocked redexes
corresponding to those reduced in M→→β N . For N→→oN0, unblock as many
redexes as necessary to obtain N0. According to Proposition 4.5 N0 ∈ Λ0.
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Example 5.2. According to the previous lemma the reductions which correspond
to

(λx.yxx)((λz.z)y)←
o
(λx.yxx)(f(g(λz.z))y)→

β
y(f(g(λz.z))y)(f(g(λz.z))y)

are

(λx.yxx)((λz.z)y)→
β
y((λz.z)y)((λz.z)y)←←

o
y(f(g(λz.z))y)(f(g(λz.z))y).

Lemma 5.3. Let M ∈ Λ. If M τ M0 →→β N0, then M→→β N τ N0 for some
N ∈ Λ.

M0 N0

M N

✲

✲

❄ ❄β

β

τ τ

Proof. Let Ψ(M)→→oM0. Suppose M0 →→β N0. This β-reduction reduces redexes
from M unblocked by →→o, so there is a corresponding reduction M→→β N for
some N ∈ Λ, such that Ψ(N)→→oN0.

Proposition 5.4. τ(Λ) = {N | (∃M ∈ Λ) (M,N) ∈ τ} is closed under →→β.

Proof. Given M0 ∈ τ(Λ), if M0 →→β N0, then by Lemma 5.3 there is N ∈ Λ such
that NτN0. Therefore N0 ∈ τ(Λ).

Proposition 5.5. τ(Λ) is closed under →→o.

Proof. Let M0 ∈ τ(Λ) and M0 →→oN0. Then by the definition of τ (Defini-
tion 4.9) Ψ(M)→→oM0 for some M ∈ Λ. Also, Ψ(M)→→oN0, hence N0 ∈ τ(Λ).

Obviously, Proposition 5.4 and Proposition 5.5 provide stronger results than
Proposition 4.5. Previous two propositions show that in Figure 2 all but the
terms M , P , Q, and R are in τ(Λ).

Corollary 5.6 (Confluence of →→β in τ(Λ)).
β-reduction is confluent in τ(Λ).

Proof. The statement follows by the confluence of →→β in λ→ (Theorem 3.3),
since τ(Λ) is closed under →→β (Proposition 5.4).
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6 Confluence of →I and →→�

In this section we show that →I is the right relation for our purpose, showing
that the transitive closure of →I is exactly →→β.

Lemma 6.1. →I ⊆ →→β.

Proof. LetM→IN . This means thatM τ M0 →→β N0 andN τ N0. By Lemma 5.3,
there is some N1 ∈ Λ such that M→→β N1 and also N1 τ N0. Both
Ψ(N1)→→oN0 and Ψ(N)→→oN0, so it follows that by erasing all constants f and g
from N0 we obtain both N1 and N . Hence N ≡ N1, so M→→β N .

Lemma 6.2. →β ⊆ →I .

Proof. Let M ∆→β N where ∆ is a β-redex in M . Let Ψ(M)→oM0 with only

the redex ∆ unblocked by →o. Let M0
∆0→β N0 with ∆0 being the redex in M0

that corresponds to ∆. It is easy to verify that Ψ(N)→→oN0. Now we have that
Ψ(M)→→oM0 →→β N0 o←←Ψ(N), implying M→I N .

Proposition 6.3 (Confluence of →I).
The reduction →I is confluent on Λ.

Proof. Let PI←M→I Q. We obtain the desired term R with the property
P →I RI←Q by constructing the diagram in Figure 2 in several steps.

1. By Definition 4.9 of →I we have that

Ψ(P )→→
o
P1 ←←

β
M1 ←←

o
Ψ(M)→→

o
M2 →→

β
Q1 ←←

o
Ψ(Q).

2. Using the diamond property for →→o (Corollary 4.8), we obtain that
M1 →→oM3 o←←M2.

3. By Lemma 5.1 we have that P1 →→o P2 β←←M3 nd M3 →→β Q2 o←←Q1.
4. Notice that P2 β←←M3 →→β Q2. By Proposition 5.4 and Proposition 5.5 all

mentioned terms except M , P , andQ are in τ(Λ), hence by confluence of →→β

in τ(Λ) (Corollary 5.6) we have that P2 →→β R2 β←←Q2 for some R2 ∈ τ(Λ).
5. Finally, by the definition of τ (Definition 4.9(i)) there is R ∈ Λ such

that Ψ(R)→→oR2. Therefore Ψ(P )→→o P1 →→o P2 →→β R2 o←←Ψ(R), which
means that P →I R and also Ψ(R)→→oR2 β←←Q2 ←←oQ1 o←←Ψ(Q), which
means RI ←Q. Now we have P →I RI ←Q, which completes the proof.

Theorem 6.4 (Confluence of →→β).
The reduction →→β is confluent on the set Λ.

Proof. By Lemmas 6.1 and 6.2, we have →β ⊆ →I ⊆ →→β , therefore the tran-
sitive closure of →I is →→β . By Proposition 6.3, →I is confluent. Now again a
simple diagram chasing argument yields the confluence of →→β in Λ.
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7 Discussion

Confluence is of great importance in the theory of rewriting as well. Beside
Newman’s Lemma there are several conditions for confluence of abstract rewrite
systems. Detailed studies of this subject can be found in van Oostrom [17], van
Oostrom and van Raamsdonk [18], and Klop et al. [6].

The proof of the finiteness of developments presented in Ghilezan [4] and [5]
is based on the strong normalization property of the simply typed lambda cal-
culus. For that reason a bijection is established there between β0-reduction on
marked lambda terms and β-reduction on a subset of simply typed lambda terms.
This bijection explains the correspondence between the proof of the confluence
presented in this paper and the proof in Barendregt [1].

In the proof of the confluence in Koletsos and Stavrinos [8] the confluence
of β-reduction in the intersection type system was used. The same system was
considered in Krivine [9] in order to prove the finiteness of developments. Despite
its simplicity, the system of simply typed lambda calculus turned out, as well, to
be adequate for proving the confluence of β-reduction on all (untyped) lambda
terms.

Our proof, together with the proofs in Krivine [9], Koletsos and Stavrinos [8],
and Ghilezan [4] and [5] adds to the understanding of the relation between the
typed and the untyped lambda calculi.

Acknowledgment The authors are grateful to George Stavrinos for helpful
remarks.
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Abstract. We present a type inference procedure with partial types for
a λ–calculus equipped with datatypes. Our procedure handles a type
language containing greatest and least types (ω and ⊥ respectively), re-
cursive types, subtyping, and datatypes (yielding constants at the level of
terms). The main feature of our algorithm is incrementality ; this allows
us to progressively analyse successive definitions, which is of interest in
the setting of a system like the CuCh machine (developed at the Univer-
sity of Rome). The methods we describe have led to an implementation;
we illustrate its use on a few examples.

1 Introduction

Modern functional programming languages are usually equipped with powerful,
polymorphic type systems which preserve most of the great freedom and general-
ity which are typical of the functional paradigm. However a completely type free
programming style, allowing one to work with heterogeneous data structures
or to define operators (like auto-application) which would not be typable in
a standard way, is still appealing and supported by real programming languages
([AS85]).

Even in a type free environment, however, most real functional programs
could naturally be typed in an ML-like type system, since there are usually
few functions or parts of these which would not get a type although correctly
designed for performing their intended task. The definition of these functions
often requires a deep understanding of the functional paradigm and a good
programming skill. A programmer writing them should then be aware of this
and well confident in what he is doing.

One main motivation of this paper is that of studying an inference framework
for recursive and polymorphic types, liable to be added to the top of a type-free
functional programming language. The system is not designed to reject any pro-
gram, but rather to give only partial type information for those programs which
cannot be typed in the usual sense. Another fundamental feature of our type
system is the treatment of subtyping. Subtyping will be motivated by the need
to define a partial order structure over the set of types representing different lev-
els of type information, but it will also allow us to properly handle the inclusion
properties of user-defined datatypes.
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Our system was designed as a typing support for the CuCh machine, a system
developed at the University of Rome in the team of Corrado Böhm (the design
of a type inference procedure for this system actually originated our work). The
CuCh machine is a programming language based on the untyped λ-calculus.
There are two modes to define objects in CuCh, called @lam and @env; in
@lam, the user defines λ-terms using abstraction, application, and some built-in
constants including natural numbers, strings, lists and boolean tests. The Cuch
system also supports the definition of inductive data types. The @env mode
is used to define functions on the free algebras generated by user-defined data
types by sets of equations, following [BB85]. The introduction of free algebras
and of recursive definitions over these algebras is akin to the classic second-order
encoding of datatypes; however, in CuCh, the solutions to (possibly recursive)
definitions are not defined using a fixpoint operator, but rather following the
Böhm-Piperno technique of [BPG94], using self-application. In this setting, more
freedom is given in the construction of terms, and “traditional” type systems for
functional languages à la ML can sometimes be too restrictive.

The basic technical tools for the definition of the system are the introduc-
tion of a “greatest” type ω and of a recursion operator over types. The use of
type ω has been inspired by the ”partial” type system introduced in [Tha94]
(following [Gom90]), to describe some terms that are considered as ill-typed in a
classical setting. Examples of such terms are auto-applications (e.g. λx. (xx)), or
heterogeneous lists (e.g. [true; λf x. (f x)]). Using a notion of subtyping among
partial types one is able for example to infer judgments like λx. (xx) :(ω→α)→α
(where α is a type variable). The type associated to the occurrence of x in ar-
gument position can be coerced from ω→α to ω in order to permit the auto-
application, yielding final type α. In [Tha94], however, there are still terms that
cannot be typed (like λx.x(3 3)) although their behaviour could be represented
by some partial type (like, in the former example, (ω→t)→t ). To handle these
cases (following e.g [BCDC83]), we introduce a rule (ω) postulating that any
term has type ω.

Partial types can carry useful information. If we prove, for instance, that
a (closed) term M has type ω→ω we know that M represents a “function”
and not, for instance, an integer. Moreover this also guarantees that M can be
head-reduced to a term of the shape λx.M ′ without going through meaningless
applications like those determined for instance by a functional application in
which the value in function position is an integer.

Other interesting typings can be derived assuming the existence of recursive
types. For instance assuming to have a type c such that c = c→α we can assign
to λx. (xx) type c→α = (c→α)→α, which turns out to be smaller (and then
more informative) than (ω→α)→α. The introduction of recursive types amounts
to extend the set of types allowed in the system to all regular infinite tree expres-
sions. The type system presented in this paper works indeed on this extended
set of types.

The question of partial type inference, as addressed in [Tha94], is shown to
be decidable in [WO92], and [KPS94] provides an efficient algorithm to solve
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the problem. Our study differs from these works by three main aspects. First
of all the language we focus on is equipped with user-defined datatypes (as well
as with a least type, written ⊥, that has to be introduced mainly for technical
reasons). The introduction of (parametrised) datatypes somehow increases the
complexity in the structure of the typing information that has to be dealt with,
as will be seen thorough this study.

The second main original aspect of our work is the stress that is put on
incrementality in defining the type inference method. Indeed, the traditional
approach to type inference in presence of subtyping consists in exploring the
structure of the term to be typed, and, while doing so, in collecting the cor-
responding subtyping constraints. Once all these constraints are put together,
one can attack the problem of constraints satisfiability using several different
approaches ([KPS94], for example, uses an automata-based method).

In this paper, we try on the contrary to preserve the readability of the type in-
formation along the exploration of the term. Our approach, inspired by [WO92],
consists in representing internally the typing information about a given term on a
table, which represents a kind of principal typing of the term itself (see [Jim96]).
In doing this, however (and this is were our study differs from [WO92]), we are
interested in inferring the consequences of the type constraints as soon as they
are generated, and in resolving immediately the possible resulting inconsisten-
cies. This kind of inconsistencies can be eliminated at the typing level, only by
the use of the (ω) rule. To take this into account in the inference process (and
this is the third new aspect of our approach), we introduce a notion of guarded
constraint, that allows us to define an incremental and rather flexible type in-
ference procedure. Due to the possibility of incomparable uses of the (ω) rule,
however, the number of principal typings (i.e. tables) of a term is in general finite
but not unique.

The paper is organized as follows. In Section 2, we introduce our system,
defined by the terms of a core subset of CuCh, the (possibly recursive) defini-
tions, the language of types and the two judgments corresponding to the typing
and subtyping relations. Section 3 is devoted to the technical definitions we need
for our type inference procedure, i.e. tables (to represent the type constraints),
properties of tables, and various functions over tables. We define our type infer-
ence method in Section 4, as well as an heuristic to recover consistency where an
inconsistent table is generated during the type inference process. In Section 5 we
introduce the inductive datatypes and show how they can be integrated in the
system. We finally conclude. In the appendix, we present the implementation of
our system and illustrate its behavior through an example.

2 The System

We introduce a restricted language to develop the basic theory. In this core
language we assume to have int, real and bool as basic types, provided with
the usual arithmetic and booolean constants. Indeed in the complete language
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also int and bool are defined as inductive data types. The extension to the full
language will be presented in Section 5.

Objects of the Language

Terms The terms we use are defined by the following syntax:

M λx.M | x | M N | c ,
where constants (denoted by c) are represented by the basic integer, real and
boolean functions and terms. In CuCh, recursive functions are not introduced
with a fixpoint–like construct, but are instead given by recursive equations (in-
troduced below).

Definitions We consider simple CuCh definitions with the following syntax:

I := M

where I is an identifier and M an expression, possibly containing occurrences
of I, hence we deal in general with recursive equations. We write D to range
over a sequence of definitions.

Programs A CuCh program is a list of definitions followed by an expression:

P := D M .

where D is a sequence of definitions and M an expression. An example of Cuch
program is the following

M := \x y.((y (x 3)) (x x))
N := (M \z.z)
(N (\u v.u))

Types and Type Schemes Types are built from a set B = {int, real, bool,⊥, ω} of
basic types, where ⊥ represents the ”least type” (which we assume to be included
in every other type) and ω the whole domain of values (which then includes
all types). We will introduce two notions of types, the ground types and the
type schemes. In order to make our type discipline more liberal we also handle
recursive types, introduced through the µ operator; recursive types represent
infinite (but regular) types. The syntax of type schemes is the following:

T := V | int | real | bool | ω | ⊥ | T→T | µt.T ,

where V is a set of type variables. As usual the operator µ acts as a variable
binder. Informally, a type of the shape µt.A is intended to represent the infinite
regular tree obtained by infinitely unfolding A along t. For example a type T =
µt.int→t represents the following infinite type:
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✧✧
int

int

✧✧

◗◗
. . .

→
◗◗

→

Ground types are then defined as the subset of closed type schemes, i.e. those
containing no free variables. Let G denote the set of ground types.

In the style of the ML type system ([Mil78]) a type scheme intuitively repre-
sents all its possible instances with ground types. Note that every ground type
is trivially a type scheme.

Subtyping Relation

We define a partial order relation ≤ between types (representing inclusion of the
corresponding sets of values). The basic inclusion is int ≤ real (which represents
a prototype structural inclusion between datatypes). Types ⊥ and ω represent
respectively the least and greatest elements with respect of this relation, so we
have ⊥ ≤ T ≤ ω for all types T .

The inclusion axioms induce a natural partial pre-order relation in T, cor-
responding to the semantics given in [CC91]. This inclusion can be completely
formalized (see e.g. [AC93, AK95, BH98]) and is decidable. We give here only
the basic subtyping rules.

Let Σ denote a set of subtyping assumptions of the form t ≤ u, where t and u
are type variables. The judgment for inclusion between type schemes is written

Σ � A ≤ B .

Figure 1 gives the rules defining these judgments, where A ≈ B intuitively
means that A and B represent the same infinite tree (i.e. have the same infinite
unfolding). A complete axiomatization of ≈ is given in [AC93]. Note the usual
monotonicity-antimonotonicity of →.

We write A ≤ B for � A ≤ B, meaning that A ≤ B can be derived from the
empty set of assumptions.

(S⊥) Σ � ⊥ ≤ T (Sω) � T ≤ ω (Sc) Σ � int ≤ real

(Sid) Σ � t ≤ t (Strans)
Σ � A ≤ B Σ � B ≤ C

Σ � A ≤ C
(Shyp) Σ, t ≤ u � t ≤ u

(SAC)
A ≈ B

Σ � A ≤ B
(S→)

Σ � A2 ≤ A1 Σ � B1 ≤ B2

Σ � A1→B1 ≤ A2→B2

(Sµ)
Σ, t ≤ u � A ≤ B
Σ � µt.A ≤ µu.B

Fig. 1. Subtyping relation
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Remark 1. (i) The intuitive type semantics in our approach relies on the notion
of types as topologically closed subsets (ideals) of the domain of interpretation of
the language [CC90]. This model also supports the notion of recursive type and
recursive type equation. In this case the least (undefined) element of the domain
belongs to every type. The type ω is then interpreted as the whole domain while
⊥ is interpreted as the singleton containing only the least element of the domain.
This provides a justification of the consistency and semantic correctness of the
subtyping assumptions.
(ii) In our core language structural type inclusion is only represented, at the
ground level, by the inclusion int ≤ real. More interesting structural subtyping
will be introduced by Datatype definitions (see Section 5). That framework shall
provide a richer set of schemes and subtyping rules.

Typing Rules

We consider two typing judgments, one for terms and one for definitions. The
typing judgement for terms is of the form

∆,Γ � M : T ,

where M is a term, T is a type, Γ is a set of typing assumptions for the free
variables of M and ∆ is the type environment determined by a CuCh definition,
associating a type to each defined name. The domains of ∆ and Γ are always
disjoint. As usual, Γ and ∆ are seen as sets, modulo permutations. Accordingly,
we use ∅ in the formal system to explicitly denote an empty sequence or an
empty environment. The notation Γ. x :A denotes a set of assumptions contain-
ing x : A (which is assumed not to appear in Γ ). For each constant c we assume
a type τ(c) which captures its functional properties. For instance τ(3) = int and
τ(succ) = int→int, where succ is the successor function on integers. The typing
judgments for definitions are of the form

�def D ⇒ ∆,

where D is a sequence of CuCh definitions. The meaning is that ∆ is the type
environment determined by the definitions in D. The rules defining typing judg-
ments are given on Figure 2; in rule (env), new(A) is a function that returns a
fresh copy of A introducing new type variables.

Notation: We indicate with �−, �−
def derivability in the systems obtained

from those of Fig. 2 by eliminating rule (ω).
It is easy to see that type assignment is closed by substitution.

Lemma 1. Suppose ∆,Γ � M : T . Then for any substitution σ,

σ(∆), σ(Γ ) � M : σ(T ) .

Typing judgements containing free type variables can thus be seen as typing
schemes, representing all their possible instances.
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(var) ∆,Γ.x :A � x :A (env) ∆.I :A,Γ � I :new(A)

(const) ∆,Γ � c :τ (c) (ω) ∆,Γ �M :ω

(→I)
∆,Γ.x :A �M :B

∆,Γ � λx.M :A→B
(→E)

∆,Γ �M :A→B ∆,Γ � N :C C ≤ A
∆,Γ � (M N) :B

(Def∅) �def ∅ ⇒ ∅ (Defmore)
�def D ⇒ ∆ ∆, {I :A} �M :B B ≤ A

�def D. I :=M ⇒ ∆. I :A

Fig. 2. Typing expressions and definitions

Some Basic Properties

A notion of reduction for expressions of the CuCh machine can be defined by tak-
ing into account computation rules introduced by the definitions. Let indeed D
be a list of definitions. For each definition

I := M

in D, add a reduction rule

I →D M .

Let →Dβ be the notion of reduction we obtain by adding this notion of reduction
to the usual β. It is routine to prove the subject reduction theorem.

Theorem 1. Let D be a list of CuCh definitions and let M be an expression
such that

�def D ⇒ ∆ and ∆,Γ � M : T.

Then whenever M→DβM ′ we have ∆,Γ � M ′ : T .

Our system has no normalization property, owing to the presence of recursive
definitions and of rule (ω). We can however prove a weaker result which is anyway
interesting from a programming point of view.

The top level operator of a term M is the operator associated to the root of
its abstract syntax tree. This can be, in our language, application, abstraction or
a constant. In a language with datatypes it could also be a datatype constructor.
A head reduction is a reduction in which, at every step, only the leftmost outer-
most redex can be reduced, provided it does not occur inside the scope of some
term operator different from application. We say that a term is in weak head
normal form if no head reduction step can be applied on it. We can prove the
following property.
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Theorem 2. Let D be a list of CuCh definitions and let M be an expression
such that

�def D ⇒ ∆, ∆, Γ � M : T and T �= ω.

Then either the head reduction starting from M is infinite or M head reduces to a
term M ′ in weak head normal form whose top level term constructor corresponds
(in an obvious sense) to the top level type constructor of T .

By the above theorem, for instance, if T = ω→ω then M reduces to a term
of the shape λx.M ′ or to a constant function like succ. Theorem 2 assures that
in the head reduction of a term having a type different from ω, no meaningless
applications (like, for instance, (3 3)) can be encountered.

This is not true, in general, for reductions strategies which can reduce non
head redexes, like call-by-value. We can prove a stronger result for the system
�− without rule ω. We say that a term is well formed if it does not contain
meaningless applications in the sense explained above.

Theorem 3. Let D be a list of CuCh definitions and let M be an expression
such that

�def D ⇒ ∆ and ∆,Γ �− M : T .

Then M is well formed.

Form Theorems 1 and 3 we have immediately that terms that can be typed
in �− never produce bad applications independently of the reduction strategy
being applied.

3 Systems of Type Constraints

3.1 Type Constraints and Tables

Our inference procedure is based on the representation of relations between types
by sets of constraints. In this section we define the procedures to handle these.

A substitution is defined here as a finite mapping σ between type variables
and types in T, that is naturally extended to all types. A single substitution is
denoted [t := A]: it replaces t by A and behaves like the identity on all other
variables. Similarly, [t1 := A1, . . . , tn := An] (where ti does not occur in Aj for
all 1 ≤ i, j ≤ n) denotes the composition of n single substitutions. If all the
type expressions Ai are single variables, we say that [t1 := A1, . . . , tn := An] is
trivial.
A ground substitution γ is instead a mapping from type variables to ground
types.

Definition 1 (Constraints). A type constraint is an expression of the form
t ≤ u1→u2 or u1→u2 ≤ t where t, u1, u2 are type variables.
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To handle the inference rule (ω) of Fig. 2 we need the notion of guard an some
operators on it.

Definition 2. (i) A guard is a list of type variables. Let w range over guards.
(ii) If w1, w2 are guards then w1"w2 is the guard obtained by concatenating w1

and w2 and by eliminating from w2 the variables which already occur in w1.
(iii) A guarded constraint (g.c. for short) is an expression of the form w :G

(A ≤ B) where w is a guard and A ≤ B is a type constraint.

If S = {wi :G (Ai ≤ Bi) | 1 ≤ i ≤ n} is a set of g.c. and w is a guard then w"S
denotes the set {w"wi :G (Ai ≤ Bi) | 1 ≤ i ≤ n}. A guard hides the constraint
associated to it whenever at least one of the variables occurring in it is set to ω.

A solution of a set S of g.c. is a ground substitution γ such that for all
w :G (A ≤ B) ∈ S in which γ(t) �= ω for all variables t in w we have γ(A) ≤ γ(B).
A strong solution of S is a ground substitution γ such that for all w :G (A ≤
B) ∈ S we have γ(A) ≤ γ(B) (ignoring guards).

The inference algorithm keeps the information about the types involved in a
deduction using the notion of table, which has been inspired by [WO92]. A table
is simply a structured set of type constraints, which are represented in a slightly
different way via the notion of guarded elementary expression.

Definition 3. (i) A guarded elementary expression (g.e. for short) is an ex-
pression of the shape w :G (v1→v2) where v1, v2 are variables.

(ii) A table Θ is a set of triples 〈t, L, U〉 (called the entries of the table),
where t is a variable and L and U are sets of g.e. which are said, respectively,
the lower and upper sets of t in Θ. If 〈t, L, U〉 ∈ Θ we denote L as LΘ(t), or
simply L(t) (when Θ is understood) and U as UΘ(t), or simply U(t). Moreover
define dom(Θ) = {t | 〈t, L, U〉 ∈ Θ}.

A table is just a structured way of representing a set of elementary g.c.s. In
fact each w :G (A) ∈ L(t) represents a g.c. w :G (A ≤ t), and each w :G (A) ∈ U(t)
also represents a g.c. w :G (t ≤ A). A solution of a table is a solution of the
corresponding set of g.e.s.

A simplified table (s-table for short) Ξ is a structure which has the same
shape as a table but without guards. So the elements of the upper and lower
sets are type expressions (containing only one type constructor) instead of g.e.s.
The kernel of a table Θ, written kernel(Θ) is an s-table Ξ obtained from Θ by
erasing all guards.

Definition 4. A table Θ is closed if for all t ∈ dom(Θ) such that both L(t) and
U(t) are nonempty and for all w1 :G (u1→u2) ∈ L(t) and w2 :G (v1→v2) ∈ U(t)
we have:

- w1"w2"L(u2) ⊆ L(v2).
- w1"w2"U(v2) ⊆ U(u2)
- w1"w2"L(v1) ⊆ L(u1)
- w1"w2"U(u1) ⊆ U(v1)
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A table obtained from a set of elementary g.c.s is in general not closed. It is easy
to define an algorithm closure that takes a table Θ in input and returns its
closure closure(Θ) by adding elements to the sets L(t), U(t) according to the
previous definition. Since all the new constraints added to a table by closure
are simply consequences of the definition of the ≤ relation we have immediately
the following lemma:

Lemma 2. A table Θ and its closure closure(Θ) have the same solutions.

There is a simple condition to decide whether a closed table has a solution.
In the following definition we informally assume the existence of a partial

order between type constructors. This coincides with the subtyping relation for
constant types. The type constructor → is considered incomparable with all
constant types, while ⊥ (ω) is smaller (greater) than all type constructors.

Definition 5 (Consistent table). (i) A closed table Θ is consistent with re-
spect to a variable t ∈ dom(Θ) if there is a type constructor c which is a sup
for all type constructors occurring in LΘ(t) and an inf for all type constructors
occurring in UΘ(t)

(ii) A closed table Θ is consistent (tout court) if it is consistent with respect
to every t ∈ dom(Θ).

Note that a table Θ is always consistent with respect to a variable t if UΘ(t)
(resp. LΘ(t)) is empty. In such case we can can take t := ω (resp. t := ⊥).

3.2 Solving Tables

In this subsection we show that every consistent table admits a strong solution,
and we give an algorithm to find it. To obtain it we need to define some more
transformations on tables. To keep notations light we consider here only simpli-
fied tables. The extension of the transformations to guarded tables is routine.

Let an elementary substitution (e.s. for short) e be an expression of the
form [t := u1→u2] where u1, u2 are variables. A substitution path (s.p.) is
a list 〈en, . . . , e1〉 of e.s. such that no two e.s. in it have the same l.h.s.. A
s.p. s = 〈en, . . . , e1〉 naturally determines a substitution en ◦ . . . ◦ e1 (where ◦
denotes function composition) which we identify with s itself. Let dom(s) denote
the set of variables occurring as l.h.s. of the e.s. in s.

We now define a function solve, that takes a simplified closed table Ξ, and
returns a pair 〈Ξ ′, s〉 where Ξ ′ is a simplified closed table and s is a substitution
path. We define function solve by giving an algorithm to compute it.

Definition 6. Let Ξ be a closed table. The function solve is defined by the
following steps. The basic operation is to build a sequence of s-tables Ξi and
substitution paths si (i ≥ 0). During the construction, we ”mark” some entries
of the table (to remember that the substitution for the corresponding variables
has already been generated).

1. Set i = 0. Let Ξ0 = Ξ, s0 be the empty list. All entries of Ξ0 are unmarked.
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2. Take any unmarked entry 〈t, L(t), U(t)〉 of Ξi such that both L(t) and U(t)
are not empty and mark it. We then distinguish two cases;
(a) if there is a marked entry 〈u, L(u), U(u)〉 in Ξi such that both L(u) =

L(t) and U(u) = U(t) then define
- Ξi+1 as the table obtained by removing the entry for t in Ξi.
- si+1 as the s.p. obtained by replacing t with u in si.

(b) Otherwise let t1, t2 be two new fresh variables. Then:
– Define si+1 as the s.p. obtained by adding [t := t1→t2] at the begin-

ning of si.
– Define Ξi+1 by adding to Ξi two new entries for t1 and t2, and set:

L(t1) =
⋃{UΞi(u1) | u1→u2 ∈ L(t)}

U(t1) =
⋃{LΞi(u1) | u1→u2 ∈ U(t)}

L(t2) =
⋃{LΞi(u2) | u1→u2 ∈ L(t)}

U(t2) =
⋃{UΞi(u2) | u1→u2 ∈ U(t)}

3. Repeat step 2. until there are no more unmarked entries with both a lower
and an upper set nonempty. Let n be the last value of i. Return 〈Ξn, sn〉.
Note that each new upper and lower set built in step 2(b) contains only g.e.s

already occurring in Ξ. Then there is only a finite number of possible upper and
lower sets that can occur in the tables Ξi. Owing to step 2(a) we get immediately
the following termination property. .

Lemma 3. The construction in Def. 6 is always terminating.

It also easy to verify by induction on i that, in the construction of Definition 6,
each Ξi is closed and consistent. More generally we have the following property.

Lemma 4. Let Ξ be a consistent closed table and let solve(Ξ) = 〈Ξ ′, s〉. Then
Ξ ′ is consistent and closed, and each of its solutions is also a solution of Ξ.
We now get to the main result of this section.
Proposition 1. Any consistent closed s-table Ξ has a solution.

Proof hint. Let solve(Ξ) = 〈Ξ ′, s〉. By Lemma 4 it is enough to find
a solution for Ξ ′. Let S denote the subset of dom(Ξ ′) containing the variables
having an empty upper or lower set. First define a ground substitution γ0, having
domain S, by {

γ0(t) = ω if U(t) = ∅
γ0(t) = ⊥ if L(t) = ∅

Now let s = 〈en, . . . , e1〉 for some n ≥ 0. Starting from σ0 = γ0 define a sequence
of ground substitutions σi for 0 ≤ i ≤ n in the following way.
Let e1+i ≡ [ti+1 := u→v] and let A = σi(u→v). Then

- If ti+1 does not occur in A then take σi+1 = [ti+1 := A] ◦ σi
- otherwise (ti+1 occurs in A) take σi+1 = [ti+1 := µti+1.A] ◦ σi

It is easy to see that σn is indeed a ground substitution. Moreover σn gives
a solution of Ξ ′ and then of Ξ. ♦
Corollary 1. A consistent table has a strong solution.
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3.3 Finding a Solution Scheme

In Proposition 1, it is proved that a consistent table admits at least one ground
solution. Actually we are rather interested, in the type inference procedure, to
give a readable characterization of a large set of solutions of a table, possibly
all of them. Let us define a solution scheme for an s-table Ξ as a substitution σ
such that γ ◦ σ is a solution of Θ for all ground substitutions γ.

In this subsection we define a simple algorithm that builds a solution scheme
for a given table. The scheme that we obtain may fail to capture some solu-
tions; these could be represented only at the cost of introducing more complex
subtyping expressions.

In building a solution scheme for an s-table we first define a function collapse
that “flattens” a table Θ into a simpler one Ξ ′, preserving most of the solutions
(but not all of them). From the flattened table Ξ ′ we can get in a rather standard
way a solution scheme for Θ. In these steps, ω-reductions are not considered, so
we can describe our construction for simple tables.

We first give some definitions. An entry for t of a consistent simple table Ξ
is simple if either both L(t) and U(t) contain only basic types or L(t) ∪ U(t)
contains only one expression (of the form u→v). A entry is complex if it is non
simple and L(t) ∪ U(t) contain at least two type expressions having → as type
constructor and no basic types. In all other cases we say that the entry is easy.
We have to be more precise about complex entries. An open entry is L-complex
if U(t) = ∅, U-complex if L(t) = ∅ and L-U-complex if both U(t) �= ∅, L(t) �= ∅.

Definition 7. Let Ξ be a simplified table. Then collapse(Ξ) is a pair 〈Ξ ′, s〉
where Ξ ′ is an s-table and ρ is a trivial substitution. The function collapse
is defined by the steps given below. Also in this case the basic operation is to
build a succession of s-tables Ξi and trivial substitutions ρi (i ≥ 0). During the
construction, we assume that we are able to mark (and unmark) some entries of
the considered tables. Take Ξ0 as Ξ in which all easy entries have been marked
and ρ0 as the empty substitution. Repeat the following steps until there are no
more open non marked entries in Ξi.

1. Take any non marked complex entry 〈t, Lt, Ut〉 of Ξi and let
L(t) ∪ U(t) = {uk→vk | 1 ≤ k ≤ p}

for some p > 1.
2. Take two fresh variables u, v and define the substitution

ρ∗ = [u1 := u, . . . , up := u, v1 := v, . . . , vp := v]. If some ui is t itself then
take t instead of u, and similarly for v.

3. Add to Ξi two entries 〈u, L(u), U(u)〉, 〈v, L(v), U(v)〉 and set
– L(u) =

⋃{LΞi(uk) | 1 ≤ k ≤ p}
– U(u) =

⋃{UΞi(uk) | 1 ≤ k ≤ p}
– L(v) =

⋃{LΞi(vk) | 1 ≤ k ≤ p}
– U(v) =

⋃{UΞi(vk) | 1 ≤ k ≤ p}
4. Remove from Ξi all entries for the variables ui, vi and compute

Ξ ′ = closure(ρ∗(Ξi)). Keep in Ξ ′ the marking of Ξ.
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5. If Ξ ′ is consistent then mark the entry for t and set Ξi+1 = Ξ ′ and ρi+1 =
ρ∗ ◦ ρi. Otherwise take Ξi+1 as Ξi and mark the entry for t1

Let n the final value of i. Then return 〈Ξn, ρn〉
Basically, the key step in procedure collapse consists in reading the various ex-
pressions that occur in the lower and upper sets of a given entry for t “transver-
sally”, and map all the variables read this way to a single variable, that can in
particular be t itself.

The last step in the construction of the solution scheme for a table is the
definition of a substitution. This construction is similar to that given in the
proof of Proposition 1.

Definition 8. Let Ξ be a consistent table and let 〈Ξ ′, ρ〉 = collapse(Ξ). Let
t1, . . . tn be the variables corresponding to the entries of Ξ ′. The canonical substi-
tution σΞ associated to Ξ is defined by constructing, iteratively on i, a sequence
of substitutions σi (0 ≤ i ≤ n) in the following way.
Let σ0 = ρ.
Given σi, let 〈ti+1, Li+1, Ui+1〉 (0 ≤ i < n) be the entry for ti+1 in Ξ ′. Distin-
guish the following cases:

1. If Ui+1 = ∅ and Li+1 contains basic types admitting a l.u.b. κ, then define
σi+1 = [ti+1 := ξ] ◦ σi, where ξ = ω if Li+1 also contains arrow types, ξ = κ
otherwise.

2. Proceed similarly when Li+1 = ∅, replacing l.u.b. with g.l.b. and ω with ⊥.
3. If Li+1 ∪ Ui+1 = {ui+1→vi+1}, let A = σi(ui+1→vi+1). Then:

- if ti+1 does not occur in A then set σi+1 = [ti+1 := A] ◦ σi;
- otherwise (ti+1 occurs in A) set σi+1 = [ti+1 := µti+1.A] ◦ σi.

4. Otherwise (because of step 5. in Def. 7) exactly one of Li+1, Ui+1 is empty,
and there are at least two different arrow types in Li+1 ∪ Ui+1. Then set
σi+1 = [ti+1 := ξ] ◦ σi where ξ is ⊥ if Li+1 = ∅ and ω if Ui+1 = ∅.

Note that case 4. occurs when either Li+1 or Ui+1 contains two arrow g.e. which
cannot be unified without making the table inconsistent (see case 5. of Def. 7).
In general, to get more informative types, we avoid the use of ⊥ and ω whenever
possible.

Lemma 5. Let Ξ be a consistent table. Then σΞ is a solution scheme for Ξ.

Remark 2. In some cases the solution scheme we get is the most general one.
For instance if a simple table Ξ can be solved without use of subtyping and
recursive types (i.e. using only simple types without subtyping) σΞ characterizes
all solutions of Ξ.
1 It can be shown that this is liable to happen only if the entry for t in Ξi is L-complex
or U-complex; indeed, the closure condition insures that if the entry for t in Ξi is
L-U-complex then Ξ ′ is consistent.
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3.4 ω Reductions

In order to take into account the non-homogeneous nature of the type assignment
system (the ω type has a somewhat particular behaviour), we equip the system
with a ω reduction rule for tables, which corresponds to assigning type ω to
some of its entries and simplifying the table accordingly. By choosing different
variables we can reduce the table in different ways, so the ω reduction relation
is not functional.

The reduction of tables is denoted by Θ ⇒R Θ′, where Θ, Θ′ are tables. We
first define a function that represents an elementary reduction step.

Definition 9. If Θ is a table and t a variable occurring in some guards of Θ such
that UΘ(t) is empty (or contains only ω), then redω(Θ, t) is the table obtained
by applying to Θ the following steps.

1. Eliminate from Θ all the g.e.s that have an occurrence of t in their guard.
2. Set both the upper and lower set of t to {ω}.
3. Apply the function closure to the resulting table.

The application of closure in step 3. is there to propagate ω in the table. The
ω reduction relation for tables is defined by the following rules:

(ax1) Θ ⇒R Θ (ω − red) Θ ⇒R Θ′ t ∈ dom(Θ′)
Θ ⇒R redω(Θ′, t)

Note in particular that the reduction step can be applied with any variable in
dom(Θ′). The following is easily proved:

Lemma 6. Let Θ ⇒R Θ′. Then any strong solution of Θ′ is a solution of Θ.

4 Type Inference

4.1 Operators on Tables

We will need in the following a couple of operators to handle tables.

Definition 10. (i) If Θ1 and Θ2 are two (closed) tables, then Θ1 � Θ2 is the
table defined by merging them and applying closure.
(ii) If g is an elementary g.c. and Θ is a table, then addtable(Θ, g) is the table
obtained from Θ by adding the constraints in g and applying closure to the
resulting table.

Definition 11. If Θ is a table and w a guard, then w"Θ is the table obtained by
replacing the guard w′ of each g.e. occurring in the L and U sets of Θ by w"w′.

Let Θ be a table and V a set of type variables. The function simplify extracts
from a table Θ the subpart of it which is relevant for finding the solution relative
to the variables in V . In particular

simplify(Θ,V)
is the table Θ′ obtained from the empty table through the following steps:
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1. Put in Θ′ all the entries for variables in V .
2. Add to Θ′ all the entries of variables which occur in the upper or lower sets

of variables already in Θ′.
3. Repeat step 2. until no other entry can be added to Θ′.

It is easy to see that if Θ is a closed table, so is the case for simplify(Θ,V) as
well. Moreover, the basic property of simplify( , ) is the following.

Lemma 7. Let Θ′ = simplify(Θ,V). Then any solution of Θ′ can be extended
to a solution of Θ.

4.2 From Terms to Tables

The inference procedure we define in this section will yield, for each term M de-
fined inside a set D of CuCh definitions, a characterization of all possible typings
of M in D with respect to the system of Fig. 2. In our approach this character-
ization will be given by a set of consistent tables, whose solutions characterize
in a complete way all possible typings of M .

Our type inference method is defined by a set of rules in Natural Semantics
through a judgment of the form

∆∆ �TI M ⇒ Γ | t |Θ
where M is a term, t is a type variable representing the type of M , Γ a typing
context and Θ a consistent table. The context ∆∆ is a finite function mapping
identifiers x (used in CuCh definitions) to pairs of the shape 〈t, Θ〉 where t is a
variable and Θ a table representing the constraints that characterize the type
of x. The intuitive meaning of this judgment is that typing M starting from ∆∆
we get a context Γ ′ and a table Θ which characterizes the typings of M , whose
type is associated to the variable t. The definition of judgment �TI involves
the application of the reduction relation ⇒R in a nondeterministic way. This is
essential to have a complete inference procedure. We will define later a heuristic
to avoid nondeterminism and produce a more practical typing procedure. Indeed
the cases in which the use of nondeterministic reduction is needed seem to occur
rarely.

Type inference for definitions is based on a judgement of the shape

�DI D ⇒ ∆∆,

where D is a sequence of CuCh definitions and ∆∆ characterizes the generated
type environment. Informally, tables will be brought along in the computation
and progressively updated as we get new information about the term, thus pro-
viding the incrementality of our approach.

In the inference rules Γ ranges over sets of statements of the shape x : t
where x is a term variable and t a type variable. We define an auxiliary function
on contexts, called merge, to merge the assignment contexts. In particular

merge(Γ1, Γ2) =< Γ, ρ > ,

where ρ is the trivial substitution (only a variable renaming) that identifies all
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(and only) the type variables which are predicates of the same term variable in
Γ1 and Γ2 and Γ = ρ(Γ1)∪ρ(Γ2). We shall use merge (which is associative) also
with more than two arguments.

Canonical tables For each constant c of the language, we shall assume that we
have a (closed and consistent) canonical table Θcan(c), representing the type
constraints that characterize the typings of c. The root variable of Θcan(c) is the
variable representing the type of c. For example Θcan(n), where n is any integer
is given by2:

t t : int

whose root variable is t while Θcan(succ) where succ is the integer function is
given by:

t u→v
u t : int
v t : int

The description of canonical tables we give does not tell how such tables are
built—although we hope that an intuition can be found in the examples above.
For the moment, we rely on an assumption that such tables “have the right
shape”; the treatment of datatypes described in Sec. 5 will provide precise defi-
nitions. The type inference procedure for terms and definitions is formalized on
Figure 3 as a set of natural semantics rules.

Rule (Tapp) is the only case in which we can reduce the size of the table by
applying simplify. The type inference relation is non-deterministic owing to the
possibility of ω-reducing Θ in rule (Tapp). This corresponds to the possibility of
applying a (ω) rule to different subterms of a given term. The different tables
produced by a ω-reduction of Θ can have uncomparable sets of solutions. So
if one sees the table produced by the type inference procedure as a kind of
”principal” type we could say that a term has in general a finite set of principal
types.

Let now �−
TI and �−

DI denote derivability in the system obtained from the
one in Fig. 3 by eliminating in rule (Tapp) the possibility of using (ω)-reduction
to get a consistent table. Note that in this system type inference is deterministic
and the table resulting from the analysis of a program is unique.

The following theorem states (in a somewhat simplified form to make it
more readeable) the soundness and completeness of the inference procedure with
respect to the rules of Fig. 2.

Theorem 4. (i) Let D be a list of CuCh definitions and M a term and let

�DI D ⇒ ∆∆ and ∆∆ �TI M ⇒ Γ | t |Θ
for some ∆∆, Γ and Θ. Then there is a type environment ∆ such that for all
ground substitutions γ solving Θ we have
2 A table is represented by a column of entries, where an entry for a variable t is
represented by t | L(t) | U(t).
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(Tvar1) ∆∆ �TI x⇒ {x : t} | t | ∅ (Tvar2) ∆∆ �TI x⇒ ∅ | t |Θ
(if x /∈ dom(∆∆)) (if x :〈t0, Θ0〉 ∈ ∆∆)

where t is a fresh variable where 〈t, Θ〉 = new(∆∆(x))

(Tconst) ∆∆ �TI c⇒ ∅ | t | new(Θcan(c))

where t is the root variable of new(Θcan(c))

(Tλ)
∆∆ �TI M ⇒ Γ, x :u | v | Θ

∆∆ �TI λx.M ⇒ Γ | t | addtable(t%Θ, {t :G (u→v ≤ t)})
where u is a fresh variable

(Tapp)
∆∆ �TI M ⇒ Γ1 | u |Θ1 ∆∆ �TI N ⇒ Γ2 | v |Θ2

∆∆ �TI M N ⇒ ρ(Γ ) | t | simplify(Θ′, t)
where t is a fresh variable, < Γ, ρ >= merge(Γ1, Γ2)
Θ = addtable(ρ(Θ1) � ρ(Θ2), {t :G (ρ(u) ≤ ρ(v)→t)}),
t%Θ ⇒R Θ

′, and Θ′ is consistent

(D∅) �DI ∅ ⇒ ∅ (Dmore)
�DI D ⇒ ∆∆ ∆∆.I :〈t, ∅〉 �TI M ⇒ ∅ | u |Θ
�DI D, I :=M ⇒ ∆∆. I :〈t,closure([u := t]Θ′)〉

Fig. 3. Type inference procedure

�def D ⇒ ∆ and ∆, γ(Γ ) � M : γ(T ) .
Conversely, for all ground Γ ′ and T ′ such that for some type environment ∆

�def D ⇒ ∆ and ∆,Γ ′ � M : T ′ ,
there is a ground substitution γ′ solving Θ and such that Γ ′ = γ′(Γ ) and T ′ =
γ′(t).
(ii) The same property holds by replacing �− with �, i.e. type inference without
ω-reduction corresponds to deductions not using the (ω) rule.

The typechecking procedure defined in Fig. 3 keeps the whole table as an internal
representation of the typing of a term. The table is indeed the only way of
representing the “most general” typing. Taking the canonical substitution for
a table defined in Sec. 3.3 we can give, however, a readeable representation of
the typing of a term. As remarked in Sec. 3.3 this implies a possible loss of
information, but only at the level of interface with the user.

Lemma 8. Let �DI D ⇒ ∆∆ and ∆∆ �TI M ⇒ Γ | t |Θ. Then there is a typing
context ∆ such that �def D ⇒ ∆ and ∆,σΘ(Γ ) � M : σΘ(T )
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Remark 3. There are interesting cases in which the typing scheme determined
by a canonical substitution is complete. For example, by Remark 2, this happens
when a term has a type in the standard ML type system (without subtyping).
In this case we get the very type scheme produced by the ML typechecker.

4.3 A Heuristic to Handle ω Reductions

The type checking relation defined in subsection 4.2 is not deterministic, due to
the presence of ω-reductions, but we are interested in turning it into a deter-
ministic process, in order to get a reasonably efficient implementation of type
inference. Of course, we do this at the cost of losing the completeness of the
inference procedure.

We present here the basic intuitions behind a heuristic to transform a (closed)
table that is not consistent into a consistent one. We have then to apply the
reduction relation ⇒R to eliminate the constraints on variables with respect to
which the table is not consistent. This actually means simulating an application
of rule (ω) to the subterms for which we are not able to find a meaningful type.

Since we want to preserve as much information as possible, our strategy
is to try to apply rule (ω) starting from the inner subterms. To do this, we
exploit the notion of guard. We rely on the assuption that guards are kept
topologically sorted w.r.t. the inclusion of the corresponding subterms when
building the table, so that we can easily have access to an innermost guard in
the sense of the subterm relation. The heuristic anihilates those entries in U
and L sets that cause inconsistency by triggering their corresponding innermost
guard. Moreover, when doing this, we choose if possible to perform ω-reduction
on variables having an empty U set. Indeed, putting a type variable v to ω has
the effect of “pushing” to ω every type possibly occurring in the U set of v, and
we want to keep the effect of ω-reductions as local as possible in order to keep a
meaningful typing information.

The precise design of our heuristic involves some choices at several steps, in
particular when selecting the constraint we eliminate, and the guard we trigger
(when several type variables may apply). We have been experimenting with
our tool in order to understand these tuning issues, but we do not have enough
insight to explicitely choose a deterministic way to perform ω-reductions. For this
reason, we have decided to keep the explanations about our heuristics informal,
and just sketch here the main ideas.

5 Adding User-Defined Datatypes

In this section, we show how our framework for type inference can be adapted
to a richer language allowing the user to define his own datatypes.

Introducing datatypes The syntax we adopt for datatype definitions is as follows

DType D[X1, . . . , Xk] is cD1 : arg[T 1
1 ; . . . ;T 1

m1
], . . . , cDn : arg[T n1 ; . . . ;T nmn

] ,
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where the Xis are the parameters of the datatype and each T ij is either a parame-
ter Xj or another datatype (possibly D itself) having the shape Ti,j [X1, . . . , Xk].

The definition above reads “D is a datatype that has n constructors and k
parameters X1, . . . , Xk; each constructor cDi , for 1 ≤ i ≤ n has type

T i1→ . . .→T imi
→D[X1, . . . , Xk]

where the Tis are either parameters or datatypes”. Note that nested arrow types
are not allowed in the definition of constructors.
Example: In this framework, the declaration of the dataype List would be:

DType List[X ] is Nil : arg[], Cons : arg[X ; List[X ]]

CuCh Definitions Having introduced datatypes, we can enrich the shape of def-
initions and take into account declarations of the following form:

f (cDi x1 . . . xmi) = e .

e is an expression possibly containing occurrences of the xis and f. Such defi-
nitions are used as an alternative to the case construct (a case–like definition
can easily be translated into a set of recursive equations). Taking into account
this kind of definition in the typing and type inference rules then imposes to
enrich locally the typing context with hypotheses for the xis. This extension is
quite natural but would require some more work on the technical details of the
system, which are left out of this presentation.

Structural subtyping In the extended framework of this section, we obtain a richer
notion of structural subtyping on datatypes. This relation, written D � D′,
means that datatype D is “structurally smaller” than D′. Fig. 4 gives the cor-
responding rules. Let us make a few comments about the definition of �. It

(D�)

D[X1, . . . ,Xk] is (c1 : arg[T
1
1 ; . . . ;T

1
m1 ] . . . cn : arg[Tn

1 ; . . . ;T
n
mn

])

D′[X1, . . . ,Xk] is (c1 : arg[T
′1
1; . . . ;T

′1
m1 ] . . . cn : arg[T ′n

1 ; . . . ;T
′n
mn

] . . .

. . . cn+l : arg[T
′n+l
1 ; . . . ;T ′n+l

mn+l
])

T i
l ≤ T ′i

l (1 ≤ l ≤ n, 1 ≤ i ≤ ml)

D � D′

(SD)
D � D′ ∀i, (1 ≤ i ≤ k) . Σ � Ai ≤ A′

i

Σ � D[A1; . . . ;Ak] ≤ D′[A′
1; . . . ;A

′
k]

Fig. 4. Structural subtyping relation
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has first to be noted that one can always suppose that both datatypes have the
same number of parameters, some of them possibly being unused in the smaller
type. Moreover, as the context of typing assumptions is empty in T il ≤ T ′i

l (rule
(D�)), this condition means that either T il and T ′i

l are comparable datatypes, or
they represent the same type variable. Rule (SD) makes the link with the rules
of Fig. 1, by allowing one to inject � into ≤.
Examples: let us illustrate the meaning of relation � on two examples.
(i)− consider the datatypes of booleans and tri–valued tags, defined as follows:

DType Bool is true : arg[], false : arg[] ;
DType Bool′ is true : arg[], false : arg[], unknown : arg[] .

It holds that Bool � Bool′, because Bool′ has two constructors in common with
Bool, and one extra constructor (no parameter is involved here).
(ii)− suppose now we want to tag a term (of any type) with an element of Bool
or of Bool′; this would lead to the following definitions:

DType Tagged[X ] is c : arg[X,Bool] ;
DType Tagged′[X ] is c : arg[X,Bool′] .

We can derive Tagged � Tagged′: indeed, they have the same number of param-
eters and we can derive both subtyping judgments X ≤ X and Bool ≤ Bool′ for
their first and second argument respectively.

Remark 4 (Real numbers). The framework we have introduced does not make
it possible to introduce a datatype real for real numbers, as presented in Sec. 2.
However, there is a priori no difficulty in mixing the approach we have adopted
until this section with the introduction of user-defined datatypes, and keep an
axiomatical presentation of real numbers, together with the base rule int ≤ real.

Canonical tables We now explain how to construct canonical tables, as used in
subsection 4.2, for datatype constructors.

Definition 12 (Canonical table for datatype constructors).
Consider a datatype D, with its parameters X1, . . . , Xk. Recall that a datatype

constructor cDi (we shall abbreviate it simply to c) is defined by arg [L], where
L = T i1, . . . , T

i
mi

. We now define a function returning a pair 〈Θcan(c), t〉 where
Θcan(c) is the canonical table associated to constructor c and t is the corre-
sponding root (type) variable.

Let u1, . . . , uk be fresh variables, we let σ = {X1 := u1, . . . , Xk : uk}, and
define Θparam as the table consisting in the k rows of the form uj | ∅ | ∅, 1≤j≤k.
The result is then defined by recursion over the list L of “arguments” of c:

– if L = [], take a fresh variable v, and
return 〈addtable(Θparam, {v :G (D[u1, . . . , uk] ≤ v)}), v〉;

– if L = T i1, . . . , T
i
mi

, compute the canonical table for T i2, . . . , T
i
mi

, yielding
〈Θ, t〉. Then distinguish two cases, according to the shape of T i1:
• if T i1 is Xp for some p, then let v be a fresh variable;

return 〈addtable(v"Θ, {v :G (up→t ≤ v)}), v〉;
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• otherwise, let T i1 =D′[X1,. . .,Xk] and let v and v′ be two fresh variables;
return 〈addtable(v′"Θ,{v′ :G (v→t ≤ v′), [v′] :G (v≤D′[X1,. . .,Xk])}), v′〉.

Note that by definition, Θcan(c) is already closed and consistent (consistency
is insured by the fact that there is no application).

To evidenciate the dependency towards type variables, we can adopt the
notation Θcan(c)[u1, . . . , uk, v1, . . . , vm, t], t being the root variable of Θcan(c)
and v1, . . . , vm the type variables introduced during the analysis of L described
above.
Example: consider the list constructor cons, of type X→list[X ]→list[X ]; its
associated canonical table is

u1

t : (u1→v1) t
t, v1 : (t2→v2) v1

t2 t, v1, t2 : list[u1]
t, v1, v2 : list[u1] v2

Note that variables t1 and u1 collapsed, and we only keep u1. Here are the scopes
of the type variables:

cons underbrace X︸︷︷︸
u1

→

v1︷ ︸︸ ︷
list[X ]︸ ︷︷ ︸

t2

→
v2︷ ︸︸ ︷

list[X ]

t

D = list[X ], u1 = X .

The canonical tables we build can then be inserted in the type inference frame-
work according to rule (Tconst) of Fig. 3.
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A A Detailed Example

We illustrate the way our procedure works on an example, that shows the build-
ing of the table and the treatment of what would be considered as typing errors
in a classical setting. This example is studied with an implementation of the
algorithms we have described—the source code is available at

http://www.ens-lyon.fr/~hirschko/typetables.
The user of our system introduces definitions of terms, and the system an-

swers by showing the corresponding table being constructed, and its evolution
(as the closure function is applied). The initial environment contains several con-
stants, such as elements of types bool, int, real, lists, and a few constant functions
of types int→bool, int→int, etc.

For the moment, we only have the implementation of the type inference
procedure (table construction), and of the closure function. The generation of
solutions and the heuristic to resolve inconsistencies are in beta version, and we
leave their discussion to a later presentation of this work.

We shall start with the definition

M := \x y.((y (x 3)) (x x))

By using x both in an auto-application and as function on integers, we force
a typing conflict in the table that is generated (not leading to an inconsistency,
though). The type inference procedure yields the following table:

< i | {[i]. b->h} | {} >

< h | {[i;h]. a->g} | {} >

< g | {} | {} >

< f |{} | {} >

< e | {} | {[i;h;g]. f->g} >
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< d | {} | {} >

< c | {[i;h;g;e;d]. INT} | {} >

< b | {} | {[i;h;g;f]. b->f;[i;h;g;e;d]. c->d} >

< a | {} | {[i;h;g;e]. d->e} >

Each line corresponds to a row in the table, and for each row, we successively
give the corresponding type variable, and its sets L and U. For example, we can
see that type variable a has an empty L set, and has the guarded expression
[i;h; g; e] :Gd→e in its U set. The system also gives some extra information:

Current context is: M:i

To help debugging, here are the "old" variable assumptions

x:b / y:a

This means that during type inference term variables x and y have been as-
sociated to type variables b and a respectively. Using this information, we can
reconstruct the structure of the term, by establishing a correspondence between
the type variables and every subterm of the term M , as follows:

i︷ ︸︸ ︷
λxb.

h︷ ︸︸ ︷
λya. y (x 3c)︸ ︷︷ ︸

d︸ ︷︷ ︸
e

(xx)︸ ︷︷ ︸
f

︸ ︷︷ ︸
g

To compute this decoration, we reason like this: y x 3) being of type e, we read
in the row corresponding to e that e is less than f→g (omitting the guards); as
(xx) is of type f , we obtain that y x 3) xx) is of type g. We can also read the
following type constraints:

b ≤ b→f b ≤ c→d c ≥ INT .

The cyclic constraint on b comes from the auto-application of x, and the appli-
cation of x to 3 generates the two other inequalities. The system then applies
the closure rules; the previous table being already closed, it remains unchanged
in this case. The conflicts coming from the “non–standard” use of x in M are
not well visible on the table above. The type scheme for M produced by applying
the canonical substitution defined in Sec. 3.3 would be ⊥→(d→f→g)→g. This
looks certainly strange but is obtained without using any (ω) reduction. To meet
real inconsistencies we need to go further in our session.

Let us now define
N := (M \z.z)

After the application of the closure operation we get for N the following:

The closed table is:

< l | {[l;i;h]. a->g} | {} >

< k | {[l;k]. j->j} | {[l;i;h;g;f]. b->f;[l;i;h;g;e;d].c->d}>



Incremental Inference of Partial Types 73

* < j | {[l;i;h;g;f;k]. j->j;[l;i;h;g;e;d;k]. INT} | {} >

< i | {[l;i]. b->h} | {[l]. k->l} >

< h | {[l;i;h]. a->g} | {} >

< g | {} | {} >

* < f | {[l;i;k;h;g;f]. j->j;[l;i;k;h;g;f;e;d]. INT} | {} >

< e | {} | {[l;i;h;g]. f->g} >

* < d | {[l;i;k;h;g;e;d;f]. j->j;[l;k;i;h;g;e;d]. INT} | {} >

< c | {[l;i;h;g;e;d]. INT} | {} >

< b | {[l;i;k]. j->j} | {[l;i;h;g;f].b->f;[l;i;h;g;e;d].c->d}>

< a | {} | {[l;i;h;g;e]. d->e} >

A star “*” indicates the rows where a conflict is apparent (between an arrow
type and datatype INT): this is the case for type variables d, f and j (that
intuitively correspond to the points where the two different typings for x “meet”).
However, the resulting table is still consistent, since the upper set is empty for
these entries (which means that we can still use rule (Sω)). The type scheme for
N that we get from the canonical substitution is now (ω→ω→g)→g. Note how
this type, although meaningful, does not fully represent all the informations
contained in the tables.

Let us now define:
P := (N (\u v.v))

we obtain a table which, after closure, indicates a root type variable q for the
whole term whose corresponding entry is

<q | {[r;q;l;p;g;e;f]. j->j;[r;q;l;p;g;e;f;d]. INT} | {}>

the table is still consistent but to solve it we are forced to take q = ω. This
is meaningful since this type is obtained without using the ω reduction (i.e.
in the system �−), and this guarantees that the term can be reduced without
encountering bad applications.

Indeed the right type for P would be int. But if we try now to typecheck the
expression:

(S P)

where S is the constant for the successor function of type int→int we get an
inconsistent table containig entries like this:

< t | {[v;u;t;o;s;j;h;i]. m->m;[v;u;t;o;s;j;h;i;g]. INT}|
{[v;u;c;a]. INT}>

However with an ω reduction we are still able to infer the correct type int for
(S P).
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Abstract The aim of this paper is to study the notion of separability
in the call-by-value setting.
Separability is the key notion used in the Böhm Theorem, proving that
syntactically different βη-normal forms are separable in the classical
λ-calculus endowed with β-reduction, i.e. in the call-by-name setting.
In the case of call-by-value λ-calculus endowed with βv-reduction and
ηv-reduction (see Plotkin [7]), it turns out that two syntactically different
βη-normal forms are separable too, while the notion of βv-normal form
and ηv-normal form is semantically meaningful.
An explicit representation of Kleene’s recursive functions is presented.
The separability result guarantees that the representation makes sense
in every consistent theory of call-by-value, i.e. theories in which not all
terms are equals.

1 Introduction

The call-by-value λ-calculus (λβv-calculus) and the operational machine for its
evaluation has been introduced by Plotkin [7] inspired by the seminal work of
Landin [4] on the language ISWIM and the SECD machine.

The λβv-calculus is a paradigmatic language able to capture two features
present in many real functional programming languages: call-by-value parameter
passing and lazy evaluation. The parameters are passed in a call-by-value way,
when they are evaluated before being passed and a function is evaluated in a lazy
way when its body is evaluated only when parameters are supplied.

In this paper we are dealing with pure (i.e. without constants) version of
λβv-calculus. Plotkin has endowed this calculus by two rules, namely βv and ηv,
which are obtained by restriction from respectively β-rule and η-rule of classical
(call-by-name) λ-calculus. This restriction is based on the notion of value. Values
are either variables or abstractions.

Formally, the βv-rule is: (λx.M)N → M [N/x], if and only if N is a value.
Let =βv be the congruence relation induced by the βv-reduction. A term M ∈ Λ
is said valuable if and only if M =βv P , for some value P .
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Plotkin has proved that the λβv-calculus enjoys some basic properties we
expected from a calculus, namely Church-Rosser and standardisation property.

However in standard λ-calculus there is another fundamental theorem: Böhm
Theorem [2].
The standard notion of separability is: “two terms M,N are separable if and only
if there exists a context C[.], such that C[M ] =β x and C[N ] =β y, where x, y
are different variables” (see [1,8]). The Böhm Theorem says that two different
βη-normal forms are separable.

The importance of Böhm Theorem has been pointed out by Wadsworth,
which in [9] says: “The Church-Rosser Theorem shows that distinct normal forms
cannot be proved equals by the conversion rules; the Böhm Theorem shows that
if one were ever to postulate, as an extra axiom, the equality of two distinct
normal forms, the resulting system would be inconsistent”.

In particular, the Böhm Theorem allows the coding of computable func-
tions in λ-calculus, since by representing different natural numbers by different
βη-normal forms, assures that they are different in every consistent λ-theory.

It is natural, to state that two terms M,N are v-separable if and only if there
exists a context C[.], such that C[M ] =βv x and C[N ] =βv y, where x, y are
different variables.

The näıve adaptation of Böhm-Theorem to call-by-value λ-calculus would
be:

“two different βvηv-normal forms are v-separable”.

It is immediate to check that two syntactically different βvηv-normal forms
are not always separable, for example consider the following terms: λx.xxx and
λx.(λz.xxx)(xx). Thus, βvηv-normal forms are not semantically meaningful.

Actually, there is a subtler problem with βvηv-normal forms. Let I ≡ λx.x,
∆ ≡ λx.xx and M ≡ (λx.∆)(xI)∆. Clearly M is a βvηv-normal form (since
xI is not a value), but you can check that C[M ] →βv x implies C[N ] →βv x,
for all N ∈ Λ. Terms as M are discovered and studied in [5], [6]: a term is
said potentially valuable if and only if there exists a substitution that make it
valuable. Clearly, M is not potentially valuable.

Plotkin in [7] gives simulations of call-by-value λ-calculus in the call-by-name
and vice versa, by using continuation techniques. Thus, he has implicitly showed
that the computational power of the two calculus is the same.

In this paper, an explicit representation of Kleene’s recursive functions is
presented, based on a coding of natural numbers using βη-normal forms, as in
the classical λ-calculus case, but using the βv-reduction as computational rule.
Let n, n ∈ N be different; if m̄ and n̄ are their λ-representation then m̄ and n̄
must be different in our theory. This is true in the call-by-value setting, since:

“two different βη-normal forms are v-separable”

whose proof is the most important result of this paper.
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This separation result is based on the fact that every subterm of a βη-normal
form is a potentially valuable term.

The main difficulty in carrying out the proof of Böhm-Theorem, basically
consists in handling open subterms that are neither values nor valuables (because
they are in normal form). For instance, let M ≡ x(xP0)Q and N ≡ x(xP1)Q be
βη-normal forms. A context C[.] v-separating M and N need to handle subterms
as xP0, xP1 and Q by using the βv-reduction. Thus, C[.] needs being able to
transform xP0, xP1 and Q in values, by a “uniform substitution” preserving the
structural difference. Our main goal is to show as it is possible to build such a
substitution.

In the algorithm, some β-reduction is taken in order to normalise terms after
substitutions. Thus, an additional problem is to show that these β-reductions
can be “reconciled”, in some sense, with βv-reduction. In general, from =β �⊆=βv

follows that separation results using β-reduction as computation rule do not
imply the v-separation results.

The semantical consequence of the separability result, is that two different
βη-normal forms cannot be equated in models of call-by-value λ-calculus.

A theory of call-by-value λ-calculus is a congruence relation, containing the
relation =βv .
Let =T be a such theory; if M and N are v-separable terms, such that M =T N
then =T is inconsistent, i.e. all terms are equals. In fact, if C[.] is the con-
text such that C[M ] =βv x and C[N ] =βv y then P =βv (λxy.C[M ])PQ =βv

(λxy.C[N ])PQ =βv Q, for every P,Q ∈ Λ.

The paper is organised in the following way. In section 2 basic definitions
and notions are recalled. In section 3 the notion of v-separability and similarity
are introduced, together with the Separability Algorithm; furthermore, its ter-
mination and correctness are proved. In section 4 a representation of Kleene’s
recursive function for the call-by-value λ-calculus is presented and proved cor-
rect.

2 λβ-calculus and λβv-calculus

The pure language of λ-calculus is defined as usual (see [1,8]).

Definition 1. Let Var be a denumerable set of variables, ranged over x, y, z, ...
.
Let Λ be the set of λ-terms M built by the following grammar:

M ::= x|MM |λx.M

Let M,N,P,Q, ... to denote terms. A term of shape (MN) is said application,
while a term of shape (λx.M) is said abstraction.
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Free and bound variables are defined as usual, FV (M) denotes the set of
free variables of a term M and Λ0 ⊂ Λ denotes the set of closed terms. Terms
are considered modulo α-conversion, that is up to renaming of bound variables.
M [N/x] denotes the substitution of N for every free occurrence of x in M ,
eventually by renaming bound variables ofM in order to avoid a wrong binding of
free variables of N . ≡ denotes syntactical identity on terms, up to α-conversion.
λx1. . .xn.M is an abbreviation for λx1.(λx2.(... (λxn.M))) and M1. . .Mm is an
abbreviation for ((...((M1M2)M3)...)Mm). A context is a term containing some
hole [.] .

Definition 2.
- The β-rule is: (λx.M)N → M [N/x].

- The η-rule is: λx.Mx → M if and only if x �∈ FV (M).

- The βv-rule is: (λx.M)N → M [N/x] if and only if N ∈ Val;
where Val = Var ∪ {λx.M | x ∈ Var and M ∈ Λ} is the set
of values.

- The ηv-rule is: λx.Mx → M if and only if x �∈ FV (M) and M ∈ Val.

Let � ∈ {β, η, βv, ηv, βη, βvηv} then →�, →∗� and =� denote respectively the
contextual closure of �-rule(s), the reflexive and transitive closure of →� and the
reflexive, symmetric and transitive closure of →�.

A term M is in �-normal form (noted M ∈ �-nf) if and only if, in M there
are no occurrences of �-redexes, i.e. there are no subterms that can be �-reduced.

It is well-known that the β-normal forms have the shape: λx1. . .xn.xM1. . .Mm

where n,m ≥ 0 and all Mi are in β-normal forms. While, the shape of a
βv-normal form is: λx1. . .xn.ξM1. . .Mm where n,m ≥ 0, all Mi are in βv-normal
forms and ξ ∈ V ar or ξ ≡ (λx.P )Q, with P,Q ∈ βv-nf and Q �∈ Val .

Definition 3.

– M ∈ Λ is valuable if and only if M →∗
βv

N ∈ V al, for some N ∈ Λ.
– A term is potentially valuable if and only if there is a substitution s of values

for free variables such that s(M) is valuable.

The set of potentially valuable terms, noted Pv has been completely charac-
terised in [5,6].
Let I ≡ λx.x and ∆ ≡ λx.xx. Note that x(I∆) and (λy.∆)(xI)∆ are two not
valuable βv-normal forms; moreover, only the first term is potentially valuable.

Let M ≡ zM0M1, M1 ∈ Val ∩ Λ0 and z �∈ FV(M0). It is possible to build
a context C[.], such that C[M ] →βv M1, only under the necessary and sufficient
condition that M0 is a potentially valuable term. Thus a term is potentially
valuable if and only if it can be erased, or simply handled by βv-reduction, after
some substitution.

It is easy to check that every β-normal form M is a potentially valuable
term; furthermore, recursively a subterm N of M is a β-normal form too, and
so a potentially valuable term.
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Definition 4. Let M ∈ β-nf; step[M ] is the natural number given by:

– step[xM1. . .Mm] = 1 + step[M1] + ...+ step[Mm]
– step[λy.N ] = 1

step is a structural measure on term, considering recursively the number of
arguments of head variables not under a λ-abstraction. See [5,6] for more details.
Clearly, ∀M ∈ β-nf ∃n ∈ N such that step[M ] = n.

Lemma 1. Let M ∈ β-nf, FV(M) ⊆ {x1,. . ., xn} and r ≥ step[M ]. If Qr
j ≡

λx1. . .xr−1.Qj and Qj ∈ Val (1 ≤ j ≤ n) then M [Qr
1/x1, ..., Q

r
n/xn] →∗

βv
M̄ ,

for some M̄ ∈ Val.

Proof. By induction on step. Let step[M ] = 1, thus M ≡ λy.N or M ≡ x.
If step[M ] > 1 then M ≡ xM1. . .Mm, so there exists k ≤ n such that M ′ ≡
M [Qr

1/x1, ..., Q
r
n/xn] ≡ Qr

kM
′
1. . .M

′
m, where M ′

i ≡ Mi[Qr
1/x1, ..., Q

r
n/xn] (1 ≤

i ≤ m).
step[M ]=1+

∑m
i=1 step[Mi] and step[Mi]≥1(1≤ i≤m) imply r≥ step[M ]>m;

moreover, by induction M ′
i →∗

βv
M̄i ∈ Val (1 ≤ i ≤ m). Thus M ′ →∗

βv

λxm+1...xr−1.Qk ∈ Val. ✷

In order to extend this property to every subterm N of a β-normal form M ,
let V is be a structural measure on a β-normal form, considering recursively the
number of arguments of head variables.

Definition 5. Let M ∈ β-nf; V is[M ] is the natural number given by:

– V is[xM1. . .Mm] = 1 + V is[M1] + ...+ V is[Mm]
– V is[λy.N ] = 1 + V is[N ]

It is easily seen that ∀M ∈ β-nf ∃n ∈ N such that V is[M ] = n.

Lemma 2. If N is a subterm of M ∈ β-nf then N ∈ β-nf and step[N ] ≤
V is[M ].

Proof. Trivial. ✷

Let →s to denote the strategy that reduce, at every step, the leftmost
βv-redex, not under the scope of a λ-abstraction. This strategy is normalising,
i.e. if the terms M ∈ Λ0 is valuable then ∃M̄ ∈ Val such that M →s M̄ . The
operational evaluation of call-by-value, showed in [7] by Plotkin, can be obtained
by this reduction. Thus, in the section 4 we use the s-reduction.

3 v-Separability

Let us recall the formal definition of v-separability.

Definition 6. Two terms M,N ∈ Λ are v-separable if and only if ∃C[.] such
that C[M ] =βv x̃ and C[N ] =βv ỹ, where x̃, ỹ are different variables.
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In order to design the v-separability algorithm, we introduce the notion of
similarity between β-normal-forms.

Definition 7. Let M,N ∈ β-nf , M =η λx1. . .xp.xM1. . .Mn, N =η λx1. . .xp.y
N1. . .Nn with p, n ≥ 0. We say that they are similar, noted �, if and only if
x ≡ y and ∀i. Mi � Ni.

The relation � is introduced in order to make explicit the interesting struc-
ture of terms, for the separability goal (see [3]).

Let M,N ∈ β-nf ; it is easy to check that M =η N if and only if M � N .

Definition 8. Let σ be a sequence of natural numbers (ε is the empty sequence)
and M,N ∈ β-nf .
M �∼=σ N if and only if one of following cases arises

1. if x �≡ y then M =η λx1. . .xp.xM1. . .Mm �∼=σ λx1. . .xq.yN1. . .Nn =η N and
σ ≡ ε;

2. if |p−m| �= |q−n| then M=ηλx1. . .xp.xM1. . .Mm �∼=σ λx1. . .xq.xN1. . .Nn=
ηN and σ ≡ ε;

3. if Mi �∼=σ′ Ni then M =η λx1. . .xp.xM1. . .Mn �∼=σ λx1. . .xp.xN1. . .Nn =η N
and σ ≡ i, σ′.

The �� relation is formalised by the following lemma.

Lemma 3. Let M,N ∈ β-nf . M �� N if and only if M �∼=σ N , for some
sequence σ.

Proof. Trivial. ✷

We will prove that two not similar β-normal forms M,N are v-separable.
More precisely, let FV(M) ∪ FV(N) ⊆ {z1,. . ., zh}, M̆ ≡ λz1. . .zh.M and N̆ ≡
λz1. . .zh.N ; we will design an algorithm which, builds a context C̆[.] on M̆, N̆
such that:

– if M̆, N̆ are closed then C̆[M̆ ] =βv x̃ and C̆[N̆ ] =βv ỹ, where x̃ �≡ ỹ.

It is easily seen that M̆ �� N̆ and C[λz1. . .zh.[.]] is v-separating M,N .

If M,N ∈ βη-nf and M �≡ N then M �=βη N and M �� N ; thus, it would be
clear that two different βη-normal forms will be v-separable.

For sake of simplicity, in the algorithm description, we assume that all bound
variables are denoted with a variable symbol different from each other (free or
bound) variable symbol, in the same term.

Definition 9 (Separability Algorithm).
Let M,N ∈ β-nf, M �� N , x̃ �≡ ỹ and r = max{V is[M ], V is[N ]}.

The separability algorithm is a set of logical rules for proving statements of

shape M,N ⇒ C[.], where C[.] is a context.
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Let I ≡ λx.x, On ≡ λx1. . .xn.I, U i
n ≡ λx1. . .xn.xi and πn ≡ λx1. . .xnz.z

x1. . .xn.

Furthermore, if S ⊆ V ar then Xn
xi,S

≡
{

λz1. . .zn−1. xiz1. . .zn−1 if xi �∈ S;
xi otherwise.

∀i. Mi[Xr
x1,{x,y}/x1, ..., X

r
xp,{x,y}/xp] →∗

β M̄i ∈ β-nf
∀i. Ni[Xr

x1,{x,y}/x1, ..., X
r
xq,{x,y}/xq] →∗

β N̄i ∈ β-nf
p ≤ q xM̄1. . .M̄mXr

xp+1,{x,y}...X
r
xq,{x,y}, yN̄1. . .N̄n ⇒ C[.]

(1)
λx1. . .xp.xM1. . .Mm, λx1. . .xq.yN1. . .Nn ⇒ C[[.]Xr

x1,{x,y}...X
r
xq,{x,y}]

∀i. Mi[Xr
x1,{x,y}/x1, ..., X

r
xp,{x,y}/xp] →∗

β M̄i ∈ β-nf
∀i. Ni[Xr

x1,{x,y}/x1, ..., X
r
xq,{x,y}/xq] →∗

β N̄i ∈ β-nf
p > q xM̄1. . .M̄m, yN̄1. . .N̄nX

r
xq+1,{x,y}...X

r
xp,{x,y} ⇒ C[.]

(2)
λx1. . .xp.xM1. . .Mm, λx1. . .xq.yN1. . .Nn ⇒ C[[.]Xr

x1,{x,y}...X
r
xp,{x,y}]

x �≡ y s = max{r,m, n}
(3)

xM1. . .Mm, yN1. . .Nn ⇒ (λxy.[.])(λx1 . . .xs+m.x̃)(λx1. . .xs+n.ỹ) I.....I︸ ︷︷ ︸
s

m > n s = max{r,m, n}
(4)

xM1. . .Mm, xN1. . .Nn ⇒ (λx.[.])Os+n I.....I︸ ︷︷ ︸
s+n−m

(λx1. . .xm−n.x̃) ỹ.....ỹ︸ ︷︷ ︸
m−n

m < n s = max{r,m, n}
(5)

xM1. . .Mm, xN1. . .Nn ⇒ (λx.[.])Os+m I.....I︸ ︷︷ ︸
s+m−n

(λx1. . .xn−m.ỹ) x̃.....x̃︸ ︷︷ ︸
n−m

Mk �� Nk s = max{r,m, n} x �∈ FV(Mk) ∪ FV(Nk) Mk, Nk ⇒ C[.]
(6)

xM1. . .Mm, xN1. . .Nm ⇒ C[(λx.[.])Us
k I.....I︸ ︷︷ ︸

s−m
]
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Mk �� Nk s = max{r,m, n} x ∈ FV(Mk) ∪ FV(Nk) C′[.] ≡ (λx.[.])πs

C′[Mk] →∗
β M̃k ∈ βη-nf C′[Nk] →∗

β Ñk ∈ βη-nf M̃k, Ñk ⇒ C[.]
(7)

xM1. . .Mm, xN1. . .Nm ⇒ C[(λx.[.])πs I.....I︸ ︷︷ ︸
s−m

Us
k ]

In order to prove both correctness and termination of algorithm, we need
some preliminary lemmas.

Lemma 4. Let M,N ∈ β-nf, r ≥ max{V is[M ], V is[N ]} and C′[.] ≡ (λx.[.])πr .

1. ∃M̄ ∈ β-nf such that C′[M ] →∗
β M̄ and V is[M ] ≤ V is[M̄ ].

2. If P ≡ xP1. . .Pp is a subterm of M̄ then step[Pj ] ≤ r (1 ≤ j ≤ p).

3. If M �∼=σ N and C′[N ] →∗
β N̄ ∈ β-nf then M̄ �∼=σ N̄ .

Proof. 1, 2. By induction on M . 3. By induction on σ. ✷

Lemma 5. Let M,N ∈ β-nf, r ≥ max{V is[M ], V is[N ]} and C′′
p [.] ≡ [.]

Xr
x1,{x,y}...X

r
xp,{x,y}.

1. ∃M̄ ∈ β-nf such that C′′
p [M ] →∗

β M̄ and V is[M ] ≤ V is[M̄ ].

2. If P ≡ xP1. . .Pp is a subterm of M̄ then step[Pj ] ≤ r (1 ≤ j ≤ p).

3. If M �∼=σ N and C′′
p [N ] →∗

β N̄ ∈ β-nf then M̄ �∼=σ N̄ .

Proof. 1, 2. By induction on M . 3. By induction on σ. ✷

Be careful to understand the statement of Lemmas 4 and 5, since for some
subterm M ′ of M̄ , step[M ′] ≤ r but it is possible that V is[M̄ ] > r.

Lemma 6 (Termination).
If M,N ∈ β-nf and M �� N then M,N ⇒ C[.].

Proof. M �� N implies M �∼=σ N , for some sequence of numbers σ. By induction
on σ. Observe that the rules (3), (4), (5) are axioms and the rules (6), (7) follow
by induction. Rules (1) and (2) must be followed, by a rule between (3), (4), (5),
(6) and (7). ✷

Thus M,N ∈ β-nf and M �� N implies that there is a finite derivation such
that M,N ⇒ C[.].

Theorem 1 (Correctness). Let M,N ∈ β-nf , M �� N and FV(M)∪FV(N) ⊆
{z1,. . ., zh}.
Let M̆ ≡ λz1. . .zh.M and N̆ ≡ λz1. . .zh.N .
If M̆, N̆ ⇒ C̆[.] then C∗[.] ≡ C̆[λz1. . .zh.[.]] is a context v-separating M and N ,
namely C∗[M ] =βv x̃ and C∗[N ] =βv ỹ, where x̃ �≡ ỹ.
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Proof. By next proposition. ✷

The use of β-reduction in the rules (1), (2) and (7) of our algorithm cause
some technical difficulty in the development of correctness proof, since the
βv-reduction cannot to execute, in general, the same redexes. In order to fill
this gap, we will prove something more the statement of Correctness Theorem,
namely the Proposition 1.

Some observation is needed before to build the statement of Proposition 1.
Let P ∈ β-nf and S,R ⊆ V ar. If x1 ∈ S ∩ R then Xr

x1,S
= Xr

x1,R
= x1 and

P [Xr
x1,S

/x1][Xr
x1,R

/x1] = P , otherwise P [Xr
x1,S

/x1][Xr
x1,R

/x1] = P [λz1. . .zr.x1

z1. . .zr/x1].
Thus P [Xr

x1,S
/x1][Xr

x1,R
/x1] = P [Xr

x1,R
/x1][Xr

x1,S
/x1] = P [Xr

x1,R∩S/x1].
Furthermore, P [Xr

x1,S
/x1][πr/x1] = P [πr/x1][Xr

x1,S
/x1] = P [πr/x1].

Proposition 1. Let P,Q ∈ β-nf, such that P �� Q.
Let ρ ≥ max{V is[P ], V is[Q]} and FV(P ) ∪ FV(Q) ⊆ {u1, ..., ut}.
Let ∀i. Ui be values of shape πr or Xr

zi,Si
(Si ⊆ V ar and r ≥ ρ), such that Ui

has shape Xr
zi,Si

≡ zi (in case zi ∈ Si) if and only if M ≡ ziM1...Mm or
N ≡ ziN1...Nn.
Let P ′ ≡ (λu1. . .ut.P )U1...UT =β M ∈ β-nf, Q′ ≡ (λu1. . .ut.Q)U1...UT =β N ∈
β-nf and t ≤ T .

If M,N ⇒ C∗[.] then C∗[P ′] =βv x̃ and C∗[Q′] =βv ỹ, where x̃ �≡ ỹ.

Proof. By induction on the derivation proving M,N ⇒ C∗[.].

Note that M �� N , V is[P ] ≤ V is[M ], V is[Q] ≤ V is[N ] and for some subterm R
of M or N , step[R] ≤ ρ, by Lemmas 4 and 5.
Let M ≡ λx1. . .xp.xM1. . .Mm and N ≡ λy1. . .yq.yN1. . .Nn.

(1) xM̄1. . .M̄mXr
xp+1,{x,y} . . . Xr

xq,{x,y}, yN̄1. . .N̄n ⇒ C[.] and
C∗[.] ≡ C[[.] Xr

x1,{x,y} . . . Xr
xq,{x,y}].

Let P ′′ ≡ P ′Xr
x1,{x,y} . . .Xr

xq,{x,y}, thus
P ′′ →∗

β xM̄1...M̄mXr
xp+1,{x,y} . . . X

r
xq,{x,y} ∈ β-nf.

By induction x̃ =βv C[P ′′], but

C[P ′′] ≡ C[P ′Xr
x1,{x,y}...X

r
xq,{x,y}] ≡ C∗[P ′]

C∗[Q′] =βv ỹ is similar.

(2) Similar to case (1).

(3) In such a case x �≡ y and p = q = 0. Let P ≡ λw1. . .wnp .wP1. . .Pmp ∈ β-nf
(mp ≤ m) and P ′ ≡ (λu1. . .ut.P )U1 . . . UT →∗

β xM1. . .Mm ≡ M . Note that
m = mp + T − (t + np).
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Since ∀i. Ui ∈ Val, then P ′ =βv (λw1. . .wnp .wP ′
1. . .P

′
mp

)Ut+1 . . . UT where
P ′
i ≡ Pi[U1/u1 . . . Ut/ut] (1 ≤ i ≤ mp).

Moreover P ′=βvxP
′′
1 . . .P ′′

mp
Ut+np+1 . . . UT ≡P ′′ where P ′′

i ≡ P ′
i [Ut+1/w1 . . .

Ut+np/wnp ] =β Mi (1 ≤ i ≤ mp) and Uj ≡ Mj (t + np + 1 ≤ j ≤ T ).

C∗[P ′] =βv C∗[P ′′]
≡ (λxy.xP ′′

1 . . .P ′′
mp

Ut+np+1...UT︸ ︷︷ ︸
m

)(λx1. . .xs+m.x̃)(λx1. . .xs+n.ỹ) I...I︸︷︷︸
s

=βv (λx1. . .xs+m.x̃)P ′′′
1 . . .P ′′′

mp
U ′
t+np+1...U

′
T︸ ︷︷ ︸

m

I.....I︸ ︷︷ ︸
s

where
{

P ′′′
i ≡ P ′′

i [(λx1. . .xs+m.x̃)/x][(λx1. . .xs+n.ỹ)/y];
U ′
j ≡ Uj[(λx1. . .xs+m.x̃)/x][(λx1. . .xs+n.ỹ)/y].

Since FV (Pi) ⊆ {u1, ..., ut}
P ′′
i [(λx1. . .xr+m.x̃)/x][(λx1. . .xr+n.ỹ)/y] →∗

βv
P̄i ∈ V al

by Lemma 1, so the proof is immediate.

In the same manner C∗[Q′] =βv ỹ.

(4) In such a case m > n, p = q = 0 and s = max{r,m, n}. Let P ≡
λw1. . .wnp .wP1. . .Pmp ∈ β-nf (mp ≤ m) and P ′ ≡ (λu1. . .ut.P )U1...UT →∗

β

xM1. . .Mm ≡ M . Note that m = mp + T − (t + np).
Since ∀i. Ui ∈ Val, then P ′ =βv xP ′′

1 . . .P ′′
mp

Ut+np+1...UT ≡ P ′′ where

P ′′
i ≡ Pi[U1/u1...Ut/ut][Ut+1/w1...Ut+np/wnp ] =β Mi

(1 ≤ i ≤ mp) and Uj ≡ Mj (t + np + 1 ≤ j ≤ T ).

C∗[P ′] =βv C∗[P ′′]
≡ (λx.xP ′′

1 . . .P ′′
mp

Ut+np+1...UT︸ ︷︷ ︸
m

)Os+n I...I︸︷︷︸
s+n−m

(λx1. . .xm−n.x̃) ỹ....ỹ︸ ︷︷ ︸
m−n

=βv Os+n P ′′′
1 . . .P ′′′

mp
U ′
t+np+1...U

′
T︸ ︷︷ ︸

m

I.....I︸ ︷︷ ︸
s+n−m

(λx1. . .xm−n.x̃) ỹ.....ỹ︸ ︷︷ ︸
m−n

≡ A

where P ′′′
i ≡ P ′′

i [O
s+n/x] and U ′

j ≡ Uj[Os+n/x]. Since FV (Pi) ⊆ {u1, ..., ut}
by Lemma 1 P ′′′

i =βv P̄i ∈ V al. Thus A =βv O0(λx1. . .xm−n.x̃) ỹ.....ỹ︸ ︷︷ ︸
m−n

=βv x̃.

On the other hand,

C∗[Q′] =βv Os+nN ′
1. . .N

′
n I.....I︸ ︷︷ ︸
s+n−m

(λx1. . .xm−n.x̃) ỹ.....ỹ︸ ︷︷ ︸
m−n

=βv ỹ

for some valuable terms N ′
i and s+ n+ 1 = n+ (s + n −m) + 1 + (m − n)

is the number of terms postponed to Os+n.
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(5) Similar to previous case.

(6) In such a caseMk, Nk ∈ β-nf,Mk, Nk ⇒ C[.] and C∗[.] ≡ C[(λx.[.])Us
k I.....I︸ ︷︷ ︸

s−m
].

Let P ≡ λw1. . .wnp .wP1. . .Pmp ∈ β-nf (mp ≤ m) and P ′ ≡ (λu1. . .ut.P )
U1 . . . UT →∗

β xM1. . .Mm ≡ M . Note that m = mp + T − (t + np).
Since ∀i. Ui ∈ Val, then P ′ =βv (λw1. . .wnp .wP ′

1. . .P
′
mp

)Ut+1...UT where
P ′
i ≡ Pi[U1/u1...Ut/ut].

Moreover,P ′ =βv xP ′′
1 . . .P ′′

m ≡ P ′′ where P ′′
i ≡ P ′

i [Ut+1/w1...Ut+np/wnp ] =β
Mi (1 ≤ i ≤ mp) and P ′′

j ≡ Uj ≡ Mj (t + np + 1 ≤ j ≤ T ).
P ′′
k = βv(λu1. . .utw1. . .wnp .Pk) U1 . . . UT = βv (λxu1. . .utw1. . .wnp .Pk)

Us
kU1...UT =β Mk since x �∈ FV(Mk), so by induction hypothesis C[P ′′

k ] =βv

x̃.

C∗[P ′] =βv C[(λx.((λu1. . .ut.P )U1...UT ))Us
k I.....I︸ ︷︷ ︸

s−m
]

=βv C[(λx.xP ′′
1 . . .P ′′

m)Us
k I.....I︸ ︷︷ ︸

s−m
]

=βv C[(λx1. . .xs.xk)P ′′′
1 . . .P ′′′

m I.....I︸ ︷︷ ︸
s−m

]

=βv C∗[P ′′′
k ] =βv C[P ′′

k ] =βv x̃.

where P ′′′
i ≡P ′′

i [U
s
k/x] →∗

β P̄i ∈ Val by Lemma 1, since FV (Pi)⊆{u1, ..., ut}.
Case C∗[Q′] is very similar to the previous.

(7) C∗[.] ≡ C[(λx.[.])πs I.....I︸ ︷︷ ︸
s−m

Us
k ], Mk �� Nk, x ∈ FV(Mk), C′[.] ≡ (λx.[.])πs

and M̃k, Ñk ⇒ C[.].
Let P ≡ λw1. . .wnp .wP1. . .Pmp ∈ β-nf (mp ≤ m) and P ′ ≡ (λu1. . .ut.P )
U1...UT →∗

β xM1. . .Mm ≡ M . Note that m = mp + T − (t + np).
P ′ = βvxP

′′
1 . . .P ′′

m≡P ′′ where P ′′
i ≡Pi[U1/u1...Ut/ut][Ut+1/w1...Ut+np/wnp ]

=β Mi (1 ≤ i ≤ mp) and P ′′
j ≡ Uj ≡ Mj (t + np + 1 ≤ j ≤ T ).

Let P̄ ′′′
k ≡ (λxu1. . .utw1. . .wnp .Pk)πsU1...UT =β M̃k, so by induction hy-

pothesis C[P̄ ′′′
k ] =βv x̃.

C∗[P ′] ≡ C[(λx.((λu1. . .ut.P )U1...UT ))πs I.....I︸ ︷︷ ︸
s−m

Us
k ]

=βv C[(λx.xP ′′
1 . . .P ′′

m)πs I.....I︸ ︷︷ ︸
s−m

Us
k ]

=βv C[(λx1. . .xsz.zx1. . .xs)P ′′′
1 . . .P ′′′

m I.....I︸ ︷︷ ︸
s−m

Us
k ]

=βv C[Us
kP

′′′
1 . . .P ′′′

m I.....I︸ ︷︷ ︸
s−m

] =βv C[P ′′′
k ] =βv C[P̄ ′′′

k ] =βv x̃

where P ′′′
i ≡P ′′

i [π
s/x] →∗

β P̄i ∈ Val by Lemma 1, since FV (Pi)⊆{u1, . . . , ut}.
Case C∗[Q′] =βv ỹ is similar. ✷
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4 Computability

In order to show a representation of recursive functions, we need a numerical
system; we will use the Barendregt system ([1]). Näıvely, T ≡ λxy.x denote True
and F ≡ λxy.y denote False.

The pair of terms M and N is represented by [M,N ] ≡ λz.zMN.

Definition 10 (Barendregt Numerical System).
- zero 0̄ ≡ λx.x
- successor s̄ ≡ λx.[F, x] ≡ λxz.zFx
- predecessor p̄ ≡ λx.xF
- test for zero δ ≡ λx.xT

Conventionally, by an overlined mathematical entity we will denote the cor-
responding λ-term; for instance, 1̄ denotes λz.zF (λx.x)

The Separability Theorem guarantees that different natural numbers are de-
noted with different λ-terms. Further, we use the reduction →s defined in sec-
tion 2, in order to check that the representation can be used for computational
goal, using the operational machine presented by Plotkin in [7].

Definition 11. A partial function f : N
n → N is v-definable if and only if there

is a term f̄ ∈ Λ0 such that:

f̄ x̄1. . .x̄n →∗
s f(x1,. . ., xn)

for all n-tuple of numerals x̄1,. . ., x̄n for which the function is defined, otherwise
f̄ x̄1. . .x̄n must be not valuable.

Our goal is to show that every recursive function is v-definable.

LetΞ be the following recursion operator (λxf.f(λz.xxfz))(λxf.f(λz.xxfz));
note that this term is different from the original operator introduced by Plotkin
in [7].

Theorem 2 (Recursion). If M ∈ V then ΞM →∗
s M(λz.ΞMz), where z �∈

FV (M).

Proof. Let A ≡ (λxf.f(λz.xxfz)). Clearly

ΞM ≡ (AA)M →∗
s M(λz.AAMz) ≡ M(λz.ΞMz).

✷

Note that Ξ is not a fixed point operator, in fact ΞM →∗
s M(λz.ΞMz),

where z �∈ FV (M).
If Θ is a fixed point operator then ΘM →∗

s M(ΘM); but ΘM is neither a value
nor valuable, thus it cannot be used in a βv-reduction in order to obtain the
recursion.

We start with primitive recursive functions, that are all total functions.



86 Luca Paolini

Lemma 7.

Zero is v-definable: z̄ ≡ λx.0̄.
Successor is v-definable: s̄ ≡ λx.[F, x] ≡ λxz.zFx.
Projections are v-definable: U i

n ≡ λx1. . .xn.xi.

Proof. Trivial. ✷

Lemma 8.
Let h : N

n → N be a v-definable primitive recursive function and let g1,. . ., gn :
N
m → N be v-definable primitive recursive functions. The following function f

is v-definable

f(x1,. . ., xm) = h(g1(x1,. . ., xm), ....., gn(x1,. . ., xm)).

Proof. By hypothesis there exists the terms h̄ and ḡ1,. . ., ḡn.
Let f̄ ≡ λx1. . .xm.h̄(ḡ0x1. . .xm).....(ḡnx1. . .xm). Thus, for all n̄1,. . ., n̄m

f̄ n̄1. . .n̄m →∗
s h(g1(n1,. . ., nm), ....., gn(n1,. . ., nm)).

✷

Lemma 9. Let h : N
m+2 → N be a v-definable primitive recursive function

and let g : N
m → N be v-definable primitive recursive functions. The following

function f is v-definable

f(k, x1,. . ., xm) =
{

g(x1,. . ., xm) if k = 0
h(f(k − 1, x1,. . ., xm), k − 1, x1,. . ., xm) otherwise.

Proof. By induction on k. There exists terms h̄ and ḡ, by hypothesis.
Let M ≡ λtzx1. . .xm.((δy)(λy.ḡx1. . .xm)(λy.h̄(t(p̄y)x1. . .xm)(p̄y)x1. . .xm))z.

k = 0.

ΞM 0̄n̄1. . .n̄m →∗
s M(λz.ΞMz)0̄n̄1. . .n̄m →∗

s

(δ0̄)(λy.ḡn̄1. . .n̄m)(λy.h̄((λz.ΞMz)(p̄y)n̄1. . .n̄m)(p̄y)n̄1. . .n̄m))0̄ →∗
s

T (λy.ḡn̄1. . .n̄m)(λy.h̄((λz.ΞMz)(p̄y)n̄1. . .n̄m)(p̄y)n̄1. . .n̄m))0̄ →∗
s

(λy.ḡn̄1. . .n̄m)0̄ →s ḡn̄1. . .n̄m →∗
s f(0, n1,. . ., nm).

k > 0.

ΞMk̄n̄1. . .n̄m →∗
s M(λz.ΞMz)k̄n̄1. . .n̄m →∗

s

(δk̄)(λy.ḡn̄1. . .n̄m)(λy.h̄((λz.ΞMz)(p̄y)n̄1. . .n̄m)(p̄y)n̄1. . .n̄m)k̄ →∗
s

F (λy.ḡn̄1. . .n̄m)(λy.h̄((λz.ΞMz)(p̄y)n̄1. . .n̄m)(p̄y)n̄1. . .n̄m)k̄ →∗
s

h̄((λz.ΞMz)(p̄k̄)n̄1. . .n̄m)(p̄k̄)n̄1. . .n̄m) →∗
s

h̄(ΞM(p̄k̄)n̄1. . .n̄m)(p̄k̄)n̄1. . .n̄m) →∗
s

h̄f(k − 1, n1,. . ., nm) k − 1 n̄1,. . ., n̄m →∗
s

h(f(k − 1, n1,. . ., nm), k − 1, n1,. . ., nm)
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since by induction

(ΞM(p̄k̄)n̄1. . .n̄m) →∗
s f(k − 1, n1,. . ., nm).

✷

Now we prove that every recursive function is v-definable. As usual f(x) ↑
and f(x) =⊥ mean that f is undefined in x, while f(x) ↓ and f(x) �=⊥ mean
that f is defined in x. If f is a m-ary recursive function, we must to check
that f̄ x̄1. . .x̄m →s f(x1,. . ., xm) ∈ V al if and only if f(x1,. . ., xm) is defined.
Actually, f̄ x̄1. . .x̄m is a v-unsolvable term (see [5,6]) if and only if f(x1,. . ., xm)
is not defined.

Lemma 10. Let h : N
n→N be a v-definable recursive function and let g1,. . ., gn :

N
m → N be v-definable recursive functions. The following function is v-definable

f(x1,. . ., xm) = h(g1(x1,. . ., xm), ....., gn(x1,. . ., xm)).

Proof. f is undefined if and only if there is a function between h, g1, ..., gn
undefined on its arguments, thus the proof follows by hypothesis that h, g1, ..., gn
are v-definable recursive functions. ✷

Lemma 11. Let h : N
m+2 → N and g : N

m → N be a v-definable recursive
functions.
The following function f is v-definable

f(k, x1,. . ., xm) =
{

g(x1,. . ., xm) if k = 0
h(f(k − 1, x1,. . ., xm), k − 1, x1,. . ., xm) otherwise.

Proof. f(k, x1,. . ., xm) ↓ if and only if f̄(k̄, x̄1,. . ., x̄m) →∗
s P ∈ V al. In fact

f(k, x1,. . ., xm) ↑ if and only if, in the computation ḡ or h̄ are not valuable on
some argument. ✷

Finally, we check the v-definability of minimalisation function.
Let h be a binary recursive and total function and let x ∈ N. The minimali-

sation function f : N → N associated to h : N
2 → N is defined as

f(x) = µy[h(x, y)] =
{

min{k ∈ N | h(x, k) = 0} if a such k ∈ N exists
⊥ otherwise.

Let h be a total recursive function v-defined by h̄, M ≡ λt.λhxy.((δ̄(hxy))I
(λy.t̄(h̄x(s̄y))y and n ∈ N. We want to check that:

1. If f(n) ↓ then (ΞM)h̄n̄0̄ →∗
s f(x).

2. If f(n) ↑ then (ΞM)h̄n̄0̄ →∗
s P k̄, for all numerals k̄, for some P ∈ Λ.

Lemma 12.
1. If h(n, k) = 0 then (ΞM)h̄n̄k̄ →∗

s k̄.
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2. If h(n, k) �= 0 then (ΞM)h̄n̄k̄ →∗
s (ΞM)h̄n̄(s̄k̄).

Proof. By induction on k. ✷

Lemma 13. Let h : N
2 → N be a v-definable total recursive function. If f(x) =

µy[h(x, y) = 0] is defined for x = n then (ΞM)h̄n̄0̄ →∗
s f(x) where

M ≡ λthxy.(δ̄(hxy))I(λy.t̄(h̄x(s̄y))y)

Proof. Let f(n) = k, thus k the minimum number such that h(n, k) = 0. By
Lemma 12.2 we have

(ΞM)h̄n̄0̄ →∗
s (ΞM)h̄n̄k̄

and by Lemma 12.1 we conclude. ✷

Lemma 14. Let h : N
2 → N be a v-definable total recursive function. If f(x) =

µy[h(x, y) = 0] for x = n is always different from zero then ∀k̄ (ΞM)h̄n̄0̄ →∗
s

P k̄, for some P ∈ Λ.

Proof. By Lemma 12.2 . ✷

Lemma 15.
Let h : N

2 → N be a v-definable total recursive function. The following function
is v-definable:

f(x) = µy[h(x, y) = 0].

Proof. Trivial, by using previous lemmas. ✷
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Abstract. We consider the job shop scheduling problem unit−Jm, where
each job is processed once on each of m given machines. The execution of
any task on its corresponding machine takes exactly one time unit. The
objective is to minimize the overall completion time, called makespan.
The contribution of this paper are the following results: (i) For any input
instance of unit−Jmwith d jobs, the makespan of an optimum schedule is
at mostm+o(m), for d = o(m1/2). For d = o(m1/2), this improves on the
upper bound O(m+d) given in [LMR99] with a constant equal to two as
shown in [S98]. For d = 2 the upper bound is improved to m+ � √m �.
(ii) There exist input instances of unit−Jmwith d = 2 such that the
makespan of an optimum schedule is at least m+ � √m �, i.e., the result
(i) cannot be improved for d = 2. (iii) We present a randomized on-line
approximation algorithm for unit−Jmwith the best known approximation
ratio for d = o(m1/2). (iv) A deterministic approximation algorithm for
unit−Jmis described that works in quadratic time for constant d and has
an approximation ratio of 1 + 2d/�√m � for d ≤ 2 log2m.

1 Introduction

Minimizing the makespan for general job shop scheduling is one of the funda-
mental optimization problems. It is NP-hard, and Williamson et al. [WHH97]
proved that the minimum makespan is not even approximable in polynomial
time within 5/4 − ε for any ε. Moreover, no constant approximation algorithm
is known, see Goldberg et al. [GPSS97] and Shmoys et al. [SSW94].

Many job shop scheduling models have been identified as having a number
of practical applications. But even severely restricted models remain strongly
NP-hard. In this paper, we consider a problem setting that relates to finding
optimum schedules for routing packets through a network, see [LMR99]. It is
a well-studied version of job shop scheduling with m different machines and
unit length tasks, denoted by unit−Jm. There are d jobs J1, J2, . . . , Jd for some
integer d ≥ 2. Each job consists of a sequence ofm tasks, such that each machine
processes exactly one task of the job. Therefore, for each job the order of the tasks

A. Restivo, S. Ronchi Della Rocca, L. Roversi (Eds.): ICTCS 2001, LNCS 2202, pp. 90–106, 2001.
c© Springer-Verlag Berlin Heidelberg 2001
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σ1, σ2, . . . , σm determines a permutation of the m machines, where σi requires
processing on the i-th machine. As in the general job shop, each machine can
process only one task at a time and each job must be executed on the machines
in the order given by its permutation. A feasible schedule is an assignment of
starting times to tasks that satisfies all stated restrictions. The makespan of a
schedule is the maximum over the completion times of all jobs. The objective is
to minimize the makespan over all feasible schedules. The problem unit−Jmis
NP-hard for m ≥ 3, see Lenstra and Rinnooy Kan [LR79].

The algorithm of Goldberg et al. [GPSS97] improved a result of Shmoys
et al. [SSW94] and provides an approximation ratio O((log2 m)/(log2 log2 m)2)
for unit−Jm. Instances with two jobs have been shown by Brucker [B88] to be
solvable in linear time. Later, we shall see that a straightforward extension of
this algorithm leads to an O(md) time algorithm for any input instance of unit−
Jmwith d jobs. Leighton et al. [LMR99] proved that there exists always a schedule
with makespan O(m + d). This provides a randomized constant approximation
algorithm for this problem. The constant is equal to two and was determined
by Scheideler [S98]. Feige and Scheideler [FS98] proved that the bound does not
extend to the case of arbitrary task lengths.

In this paper, we analyze the hardest input instances of unit−Jm. As already
mentioned, finding the optimal makespan of job shop instances with two jobs is
solveable in linear time. Therefore, in this paper, the term hard instance is used
in the sense of makespan length only. Our observations lead to the design of a
randomized on-line algorithm that solves unit−Jmwith d jobs in linear time with
expected approximation ratio that tends to 1 for d = o(m1/2). The contributions
of this paper can be formulated as follows.

1. The makespan of an optimum schedule is at most

m+ 2d
√
m;

this amounts to m + o(m) for every problem instance of unit−Jmwith d =
o(m1/2) jobs, and thus for this case improves on the upper bound O(m+ d)
derived by Leighton et al. [LMR99]. For d = 2 we prove the stronger upper
bound m+ �√m�.

2. There exist input instances of unit−Jmwith two jobs such that every schedule
has a makespan of at least

m+
√
m.

Hence, the result (i) cannot be improved for d = 2.
3. For every positive integer m, there is a randomized on-line approximation

algorithm that solves unit−Jm in linear time with an expected approximation
ratio of

1 +
2d√
m
;

this amounts to 1 + o(1) for d = o(m1/2). These results demonstrate an ex-
treme power of randomness for unit−Jm for several reasons. First of all our
randomized on-line algorithm is competitive with respect to the makespan
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of an optimum solution. For d = o(m1/2) the algorithm is the best approxi-
mation algorithm for unit−Jm. We do not know any off-line polynomial-time
approximation algorithm with an approximation ratio that would tend to 1
for d = o(m1/2) with growing m. Moreover, no deterministic on-line algo-
rithm can achieve a makespan better than d · (m− 1)/ log2 d [LMR99].

4. We present a deterministic approximation algorithm that is efficient at least
for small d’s in comparison with m. Its run-time is O(d2m2), and it has an
approximation ratio of at most

1 +
2d

�√m �
which tends to 1 with growing m for d = o(log2 m).

The paper is organized as follows. Section 2 presents a geometrical repre-
sentation of the input instances of unit−Jm that is essential for a transparent
analysis of unit−Jm. In Section 3 we present some hard input instances with
two jobs only. Section 4 shows the existence of efficient schedules for all input
instances of unit−Jm. In Section 5 the randomized algorithm with the proper-
ties as described in (iii) is given. Our deterministic approximation algorithm is
presented in Section 6.

2 A Geometrical Representation of Instances

We start with the representation of input instances with two jobs that was
employed in [B88] to design a linear time algorithm for this special case of
unit−Jm.

Let (i1, . . . , im) and (j1, . . . , jm) be two permutations of (1, 2, . . . ,m)
that represent the input instance (σi1 , σi2 , . . . , σim), (σj1 , σj2 , . . . , σjm) of
unit−Jm. We consider a grid Gm of size m×m, where for all k, l ∈ {1, . . . ,m}
the k-th row of Gm is labeled by jk and the l-th column of Gm by il. A pair (k, l),
i.e., the intersection of the k-th row and the l-th column, is called an obstacle, if
and only if il = jk. The corresponding square is depicted by a black box.

Fig. 1a illustrates the G9 of the input instance with two jobs that are given by
the two permutations (1, 2, 3, 4, 5, 6, 7, 8, 9) and (1, 3, 2, 6, 5, 4, 8, 7, 9). The term
obstacle is motivated by the following observation. Assume that the first job has
executed its first l − 1 tasks and the second job its first k − 1 tasks. If il = jk,
then both tasks σil and σjk require the same machine and therefore, only one of
the two jobs can continue its execution in the next time unit and the other one
is delayed. Otherwise, both jobs can proceed simultaneously.

We assign to the grid Gm the Graph(Gm)=(V,E), where V consists of all
vertices of the grid and the set E includes all orthogonal edges of the grid.
Additionally, E contains diagonal edges that connect the upper-left corner with
the lower-right corner of a grid square that is not an obstacle. Fig. 1b shows
the corresponding Graph(G9) of G9 given in Fig. 1a. Any feasible schedule is
represented by a path from the upper-left corner of G9 to the lower-right corner
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of G9. The path consists of edges of Graph(G9), where each edge represents one
unit of time. A vertical grid edge indicates that in this time unit, a task of the
first job is delayed; a horizontal grid edge indicates a delay of a task of the second
job; a diagonal edge tells that both jobs are processed at the same time with no
delay.

An optimum schedule corresponds to a shortest path from the upper-left
corner a to the lower-right corner b. The bold polygonal line in Fig. 1 represents
an optimum schedule of our example. In the schedule, there are 6 delays that
are equally distributed between the two jobs. Therefore, the makespan of the
illustrated schedule is m+ 6/2 = 9 + 3 = 12.

Let S be a schedule of an instance with two jobs. The number of vertical
edges of the path representing S is called the delay of the first job according
to S, and the number of horizontal edges of S is called the delay of the second job
according to S. The delay of S is the maximum over these two delays. Obviously,
the makespan of S is exactly the sum of m and the delay of S. For later use, we
denote by sum-delay(S) the sum of the delays of jobs according to S.

5
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1 2 3 4 5 6 7 8 9

1

3

2

5

6

4

8

7

9

1 2 3 4 5 6 7 8 9

1

3

2

(a) (b)

Fig. 1. An hard input instance of unit−Jmwith two jobs and nine machines

We outline the extension of this representation for an arbitrary number d of
jobs. In this case we have a d-dimensional gridGdm that containsmdd-dimensional
grid cells. Again, the unit intervals of each axis are labeled by the tasks accord-
ing to the sequence of machines of the corresponding job. A label i of some axis
determines a (d− 1)-dimensional subgrid of Gdm.



94 Juraj Hromkovič et al.

The intersection of two such different subgrids with labels i is a (d − 2)-
dimensional subgrid of md−2 grid hypercubes that are obstacles in the following
sense. If d′ and d′′ are the dimensions in which the common label i defining
the obstacles occurs, then any diagonal of a grid square Q in the intersection is
forbidden whose projection on dimensions d′ and d′′ is a diagonal (and all others
are allowed w.r.t. to this intersection). In particular, the main diagonal of such
a square Q (that corresponds to the execution of all tasks determined by the
coordinates of this grid square Q) is forbidden, and so are the diagonals of the
surface of Q that correspond to the intersection. For instance, if Q is part of the
intersection of q (d − 1)-dimensional subgrids determined by the same task σi
and q different axes, then to go from the “lowest” corner of Q to the opposite
corner of Q requires at least q time units: Since in this case q tasks request the
same machine, this congestion can be resolved by q subsequent steps only. Fig. 2
gives an exsample of such an obstacle in the 3-dimensional case.

J2

J3

J1σi

σi

σi

Fig. 2. An obstacle in the 3-dimensional case

Again, any optimum schedule corresponds to a shortest path between the two
extreme corners of the grid. Therefore, for any constant d we get a polynomial-
time algorithm for input instances with d jobs. The notions delay of S and
sum-delay(S) can be extended for d > 0 jobs in a straightforward way.
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3 Some Hard Instances

The aim of this section is to construct some of the hardest problem instances with
two jobs, i.e., instances where the optimum schedule has a maximum number
of delays. Let makespan(I) denote the length of an optimum schedule for the
problem instance I in what follows.

Lemma 1. For every m =
(
k+1
2

)
, k a positive integer, there exists an input

instance IR of two job unit−Jm such that

makespan(IR) ≥ m+
√
m

2
− 1
2
.

Proof: Let ImR = (J1, J2), where

J1 = w1, w2, . . . , wk , and J2 = wR1 , w
R
2 , . . . , wRk ,

with wi denoting a subsequence of tasks (represented by integers for the respec-
tive machine numbers), and wRi denoting the reverse of wi.
The subsequences wi and wRi , with i = 1, . . . , k, are defined as

wi = [
(
i

2

)
+ 1,

(
i

2

)
+ 2, . . . ,

(
i

2

)
+ i− 1,

(
i

2

)
+ i] , and hence

wRi = [
(
i

2

)
+ i,

(
i

2

)
+ i− 1, . . . ,

(
i

2

)
+ 2,

(
i

2

)
+ 1].

Observe that wi is a sequence of i integers, for i = 1, . . . , k, and that J1 =
1, 2, . . . ,m. An example for m = 10 =

(
5
2

)
is

J1 = [1], [2, 3], [4, 5, 6], [7, 8, 9, 10], and J2 = [1], [3, 2], [6, 5, 4], [10, 9, 8, 7].

In the full proof (in the Appendix for the convenience of the reader) we show
that every schedule on ImR contains at least k delays, i.e., every shortest path
contains at least k orthogonal grid edges. Note that this is sufficient to prove
our result because it implies that at least one of the jobs J1 and J2 is delayed
by at least k/2 ≥ √

m/
√
2 − 1/2 time units and therefore, the makespan must

be at least m+ k/2. �
Consider an input instance Im

R
= (π1, π2), for m = k2, k a positive integer,

where

π1 = w1, w2, . . . , wk, uk−1, uk−2, . . . , u1,

π2 = wR1 , w
R
2 , . . . , w

R
k , u

R
k−1, u

R
k−2, . . . , u

R
1 ,

where the wi have the same meaning as before, and ul is a sequence of l tasks
for l = 1, . . . , k − 1, with uRl denoting the reverse of ul . The example of I9

R
for π1 = 1, 2, . . . ,m is given in Fig. 1. An extension of the analysis presented in
Lemma 1 leads to the following result.
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Lemma 2. For every m = k2, k a positive integer,

makespan(Im
R
) ≥ m+

√
m = m+ k.

Proof: To prove the Lemma we show (in the Appendix, for the convenience
of the reader) that every shortest path between the two opposite corners of the
grid contains at least 2 · k orthogonal grid edges; this implies that at least one
of the two jobs is delayed by at least k =

√
m time units and therefore, the

makespan must be at least m+
√
m. �

4 Upper Bounds on the Number of Delays

In this section, we show that any input instance of unit−Jm can be scheduled
with 2 ·m1−ε delays for d ≤ m1/2−ε, as compared with the lower bound on the
makespan. This improves on the upper bound O(m+ d) [LMR99] for d = o(m).

First, we give the upper bound for two jobs. Note that this upper bound
meets the lower bound of Lemma 2.

Lemma 3. For every positive integer m, any two job problem instance I of
unit−Jm satisfies

makespan(I) ≤ m+ �√m �.

m

(0,0)

j

D-j

m

m

m

j
(m,m)

Fig. 3. The considered diagonals of Gm

Proof: For simplicity we present the proof for the case m = k2 only. To do this
we use the geometric representation. In what follows for i = 0, 1, . . . ,

√
m, the

diagonal Di of the grid Gm is the diagonal going from the position (0, i) to the
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position (m − i,m); similarly, diagonal D−i goes from (i, 0) to (m,m − i), see
Fig. 3.

For each i ∈ {−√
m, . . . , 0, . . . ,

√
m}, we associate a schedule S(Di) to

diagonal Di. The schedule S(Di) uses first i orthogonal grid edges to reach the
beginning of the diagonal Di, then it runs via this diagonal and avoids each
obstacle on this diagonal by one horizontal move and one vertical move. Finally,
it uses i grid edges on the border of Gm in order to reach (m,m). Observe that
the makespan of this schedule is exactly

m+ i+ the number of obstacles at Di

because the length of Di is m − i and the schedule uses 2 · i steps to reach
and to leave this diagonal. Therefore, the delay of the schedule S(Di) is i+ the
number of obstacles at Di. The sum of all delays over all 2

√
m + 1 considered

schedules Di is at most

m+

√
m∑

i=−√
m

|i| = m+ 2 ·
√
m∑

i=1

i = m+
√
m · (√m+ 1)

because the number of all obstacles in the whole Gm is exactly m, the number
of machines1. Since the average delay over all 2 · √m+1 considered schedules is

m+
√
m · (√m+ 1)

2 · √m+ 1
≤ √

m+
1
2
,

there must exist a schedule that has delay at most
√
m. �

Now, we extend Lemma 3 to all input instances, i.e., any number of jobs.

Theorem 1. For every positive integer m, and every instance I of unit−Jm with
d = o(m1/2) jobs, the length of any optimum schedule can be bounded from above
by

makespan(I) ≤ m+ 2d
√
m = m+ o(m).

Proof: The idea of the proof is to generalize the case with d = 2 to any
dimension. We can view the d-dimensional m × m × . . . × m grid Gm,d(I) as
a subgrid of an infinite d-dimensional grid. We consider the following set D
of diagonals that are parallel to the main diagonal of Gm,d(I) that starts in
the point (0, 0, . . . , 0) and ends in (m,m, . . . ,m): We take every diagonal with
a starting point (i1, i2, . . . , id), where there is exactly one j ∈ {1, . . . , d} such
that ij = 0, and 0 > ib ≥ −r, for b ∈ {1, . . . , d} − {j} and some m ≥ r > 0. Let
D(i1, i2, . . . , id) denote the diagonal starting in (i1, i2, . . . , id) that ends in the
point (i1+m+a, i2+m+a, . . . , id+m+a), where a=max{|ic| |c∈{1, . . . , d}}≤r.
Every diagonal D(i1, i2, . . . , id) corresponds to a job schedule where the j − th

1 Therefore, in the worst case, all obstacles of Gm lie on the 2k + 1 diagonals, see
Fig. 3.
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job is postponed by ij time units with respect to jobs starting with the delay 0.
If this schedule reaches the final point (i1+m+a, i2+m+a, . . . , id+m+a) then
all jobs were completely executed because ij +m+ a ≥ m for all j ∈ {1, . . . , d}.

Obviously, the number of all such diagonals is exactly

d · rd−1. (1)

Note, that one could consider also diagonals with starting points containing
several 0 elements, but this makes the calculation more complex and the achieved
gain is negligible.

Similarly, as in the 2-dimensional case we calculate an upper bound on the
total delay of all d ·rd−1 schedules. This bound can be obtained as the sum of an
upper bound on the sum of the lengths of all diagonals and of an upper bound
on the number of all delays occurring on these diagonals.

Because the starting points of all diagonals in D lie on the bounding surface
of the grid, translated by m diagonally, and because at the end at most r extra
diagonal steps are added, the length of each described diagonal is bounded from
above by m+ r. Because of (1) the sum of the lengths of all diagonals is at most

d · rd−1 · (m+ 2r). (2)

Now, we count the number of possible delays. The d axes of the subgrid
Gm,d(I) are labeled by the d jobs. A label σi on an axis determines a (d − 1)-
dimensional subgrid of Gm,d(I) ofmd−1 d-dimensional unit grid cubes. An inter-
section of two such subgrids determined by the same label σi on two different axes
is a (d− 2)-dimensional subgrid of md−2 d-dimensional unit grid cubes. Observe
that the inner diagonal of any unit grid cube induced by this intersection subgrid
as well as the corresponding diagonal on the surface of this unit grid cube are
forbidden, for any schedule. Therefore, any of our diagonal schedules containing
such a unit grid cube will get a delay. Obviously, if q (d−1)-dimensional subgrids
labeled by σi meet in one unit grid cube, the diagonal schedule containing such
a grid cube must use q − 1 additional steps to avoid this obstacle.

We calculate the total number of delays as the sum of the number of delays
caused by pairs of (d−1)-dimensional subgrids with the same label. We start with
the following technical fact (whose proof is in the Appendix for the convenience
of the reader):

Fact 1 The intersection of every pair of (d−1)-dimensional subgrids determined
by the same task σ affects at most

(d− 1) · rd−2

diagonals of D, each of them in exactly one unit grid cube.

Since we have m tasks in each of the d jobs and
(
d
2

)
pairs of axes (jobs), the

number of schedule delays on all d · rd−1 diagonals is at most

m ·
(
d

2

)
· (d− 1) · rd−2. (3)
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Therefore, the average number of delays per diagonal is at most

m · d·(d−1)
2 · (d− 1) · rd−2

d · rd−1
≤ m · (d− 1)2

2 · r .

Since the length of every diagonal is bounded bym+2r, the averagemakespan
over all diagonal strategies in D is bounded by

m+ 2r +
m(d− 1)2

2r
≤ m+ 2r +

md2

2r
. (4)

Choosing r = d
√
m/2 we obtain an average makespan over our drd−1 diagonal

strategies of at most

m+ 2d
√
m.

Thus, there must exist at least one diagonal strategy with a makespan of at most
m+ 2d

√
m = m+ o(m) for d = o(m1/2).

�
Corollary 1 For every positive integer m and every instance I of unit−Jm with
d ≤ m1/2−ε jobs, with 0 < ε ≤ 1/2, the makespan of any optimal schedule can
be bounded from above by

makespan(I) ≤ m+ 2m1−ε.

Proof: We choose
r = �1

2
m1−ε�,

and insert it into (4). Then we have

m+ 2�1
2
m1−ε�+ m(d− 1)2

2� 1
2m

1−ε� ≤ m+ 2m1−ε.

�
Since the best known upper bound on the makespan is 2(m+ d) ≥ 2m, our

upper bound is an improvement for d = o(m).

5 A Randomized On-Line Approximation Algorithm

We propose the following randomized on-line algorithm for unit−Jm.
Algorithm OLRm

Input: The number of jobs d and the number of machinesm are known initially
and d = o(m1/2). The tasks of the jobs are presented one by one, within each
job in the order of their occurrence, and in arbitrary order across the jobs.

Step 1: Choose uniformly a diagonal D at random from D, i.e., generate the
start coordinates of a diagonal from D at random by following Theorem 1.
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Step 2: Apply the schedule determined by Step 1 by avoiding the obstacles as
they appear.

Theorem 2. The randomized on-line algorithm OLRm for unit−Jm
1. has an expected competitive ratio of at most 1 + 2d/

√
m, that is, 1 + o(1) if

d = o(m1/2), and
2. runs in linear time.

Proof: First we prove (ii). We have an input of length m · d. A number d ·
�log2 (d

√
m/2)� of random bits is sufficient to determine a diagonal and therefore,

Step 1 can be executed in linear time. It is straightforward to follow a given path
for actual jobs (using diagonals whenever possible) in linear time.

Now, we prove (i). Since the average makespan over all schedules determined
by the diagonals from D is at most m+ 2d

√
m, and the optimum makespan is

at least m, the expected approximation ratio of OLR is at most

m+ 2d
√
m

m
= 1 +

2d√
m

�
Therefore, OLR is (1 + 2d/

√
m) competitive w.r.t. optimum schedules. Note

that no (randomized) polynomial-time algorithm with an approximation ratio
tending to 1 for d = o(m1/2) with growing m has been known before. For d ≤
m1/2−ε our algorithm is better than the 2-approximation algorithm of Leighton
et al. [LMR99]. Moreover, OLRm shows nicely the power of randomization,
because every deterministic on-line algorithm for unit−Jm has its competitive
ratio at least Ω

(
d / log2 d

)
[LMR99].

6 A Deterministic Approximation Algorithm

As we already observed our grid representation provides an O(md) algorithm for
input instances with m machines and d jobs. The complexity of this algorithm
is too large even for constant d’s and it is not polynomial for d growing with m.
The aim of this section is to present an efficient approximation algorithm at least
for small d in comparison with m.

The idea is again to find a diagonal strategy, but in a deterministic way
by looking on the

(
d
2

)
2-dimensional surfaces of Gm,d(I) only. Remember that

fixing a diagonal strategy is nothing else than fixing the relative delays between
all pairs of jobs.

Algorithm SURFACE(I)

Input: I = (J1, J2, . . . , Jd), where Ji is the ith job, i.e., a permutation of
(1, 2, . . . ,m), and d ≤ 1/2 log2 m.
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Step 1: If d = 2 take the best diagonal strategy from the 2
√
m + 1 diagonal

strategies with the relative delay between J1 and J2 bounded by
√
m. If

d > 2, then apply SURFACE(J1, J2, . . . , Jd−1) in order to find a diagonal
strategy D for (J1, J2, . . . , Jd−1), that contains at most 2d−1

√
m delays and

for every j ∈ 2, . . . , d− 1 the relative delay between J1 and Jj is at most√
m. (Observe, that D fixes the delay between any two of the first d − 1

jobs.)
Step 2: Fix consecutively the relative delays between Jd and the jobs J1, J2,

J3, . . . , Jd−1 in the following way:
(2.1) Set S1 as the set of the best1 �√m� diagonal strategies from the 2 ·

�√m�+ 1 diagonal strategies for the input instance (J1, Jd). (S1 can be
viewed as a set of relative delays from {�−√

m�, . . . , �√m�} between J1

and Jd and together with D it determines �√m� diagonal strategies for
(J1, J2, . . . , Jd)).

(2.2) Set S2 as the set of the best �√m�/2 diagonal strategies from the diag-
onal strategies of S1 according to the input instance (J2, Jd).
...

(2.i) Set Si as the set of the best �√m�/2i−1 diagonal strategies from the
diagonal strategies of Si−1 according to the input instance (Ji, Jd).

(2.d-1) Choose the best diagonal strategy D from Si−1 according to (Jd−1, Jd).
Output: The diagonal strategy determined by D and D.

Theorem 3. For every input instance I = (J1, J2, . . . , Jd) of unit−Jm with
d ≤ 2 log2 m, the algorithm SURFACE(I)

(i) runs in time O(d2m2), and
(ii) has an approximation ratio of at most 1 + 2d√

m
.

Proof: SURFACE(I) does nothing else than looking on all
(
d
2

)
2-dimensional

surfaces of Gm,d(I) in order to choose a set of convenient delays with respect to
every pair of jobs. The size of each surface is m2 and the choice of a group of the
best diagonals from a given set of diagonals can be done in O(m2) time. Thus,
the overall time is in O(d2m2).

To prove (ii) we first prove

(ii)′ The diagonal strategy computed by the algorithm SURFACE(I) contains at
most 2d�√m � delays.

We prove (ii)′ by induction on d. For d = 2 Lemma 3 guarantees at most
�√m � delays. Let (ii)′ be true for d − 1, i.e., the strategy D computed for
(J1, J2, . . . , Jd−1) in the first step of SURFACE(I) contains at most 2d−1 · �√m �
delays between the first d − 1 jobs. In Step (2.1) we look on the surface de-
termined by (J1, Jd). Following Lemma 3 the average number per diagonal of
obstacles on the main 2 · �√m �+ 1 diagonals of this surface is at most

m

2 · �√m �+ 1
≤ �√m �

2
.

1 with respect to the number of obstacles
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So, there must exist a set S1 of �√m � diagonals such that every diagonal of S1

has at most �√m � obstacles, i.e., at most twice the average. Observe, that each
of these diagonals from S together with D determines a diagonal strategy for
the whole instance I = (J1, J2, . . . , Jd), where J1 and Jd have at most �√m �
delays. Thus, we have | S1 |= �√m � candidates for the output. In Step (2.2)
we choose the best �√m �/2 from these candidates with respect to the obstacles
for J2 and Jd. Since these �√m � candidates can contain together at most m
obstacles, the average number of obstacles is �√m �, and so there exist �√m �/2
diagonals each with at most 2 · �√m � obstacles. In general, in Step (2.i) for
2 ≤ i ≤ d − 2 we choose from the remaining �√m �/2i−2 candidates the best
�√m �/2i−1 candidates with respect to the number of obstacles on the surface
determined by Ji and Jd. Each of the candidates of Si has at most 2i−1 · �√m �
obstacles between Ji and Jd. The last Step (2.d-1) corresponds to the choice of
the best diagonal D′ (with respect to the relation between Jd−1 and Jd) from
�√m �/2d−3 candidates. The number of obstacles between Jd−1 and Jd on D′ is
bounded by the average

m

�√m �/2d−3
= 2d−3 · �√m �.

Let D be the resulting strategy for I. Thus, the overall number of obstacles
between Jd and all other jobs in D is at most

d−2∑
i=1

2i−1 · �√m � = (2d−2 − 1) · �√m � < (2d−1 − 2) · �√m �.

By the induction hypothesis the number of obstacles between the first d− 1
jobs is at most 2d−1 · �√m �, and therefore, the overall number of obstacles on
all
(
d
2

)
2-dimensional surfaces is at most

(2d − 2) · �√m �.
Obviously, these obstacles together cause at most (2d−2)�√m � delays when

following the diagonal strategy D. The length of D is at most m + 2 · �√m �
because D was constructed in such a way that no relative delay between J1

and any other job would be greater than �√m � (i.e., the relative delay between
any pair of jobs is at most 2 · �√m �). Thus, the schedule that follows D has a
makespan of at most

m+ 2 · �√m �+ (2d − 2) · �√m � ≤ m+ 2d · �√m �.
Since the optimum makespan is at least m, the approximation ratio is at

most

1 +
2d

�√m � .
�

The main point is that SURFACE works in quadratic time for constant d
and can provide a good approximation ratio in that case. Observe, that the ap-
proximation ratio of SURFACE(I) tends to 1 with growing m for d = o(log2 m).
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7 Conclusions

For the job shop schedule problem unit−Jmwe derived an upper bound on the
makespan of optimum schedules that improves on the result given in [LMR99]
for d = o(m1/2). We presented a competitive w.r.t. the makespan of an optimum
solution, randomized on-line approximation algorithm that solves unit−Jm in
linear time with an expected approximation ratio of 1+2d/

√
m which amounts to

1+o(1) for d = o(m1/2). For d = o(m1/2) the algorithm is the best approximation
algorithm for unit−Jm. Our deterministic approximation algorithm is efficient at
least for small d’s in comparison with m. Its run-time is O(d2m2), and it has an
approximation ratio of at most 1 + 2d

�√m � which tends to 1 with growing m for
d = o(log2 m). For the special case of unit−Jmwith two jobs, which is solvable
in linear time, we have shown that there exist input instances such that every
schedule has a makespan of at least m +

√
m. Therewith, we proved that our

upper bound on the makespan for m+ �√m�, for d = 2 cannot be improved.
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8 Appendix: Proofs

8.1 Proof of Lemma 1: The Remaining Part

Remaining part of the proof of Lemma 1: We prove by induction on i+1
that any schedule for the jobs (w1, w2, . . . , wi) and (wR1 , w

R
2 , . . . , wRi ) causes

at least i delays. To do so, we use the following induction hypothesis:

Any schedule for I(
i+1
2 )

R , where one job is completed and for the other job a
prefix of length

(
i+1
2

)− r, for r ≤ i, is already processed (r is called the relative
delay), uses at least i orthogonal grid edges (sum-delay is at least i), and it uses
at least i+ 1 orthogonal grid edges if the parities of r and i differ (i.e., r is odd
and i is even, or r is even and i is odd).

Obviously, this is true for i = 1. Let the hypothesis be true for i′ = i− 1.

Now, consider a prefix of a schedule S for I(
i+1
2 )

R , i > 1, and i is odd. The
case that i is even is left to the reader. Let us consider the last time unit t
before the first task of wi or of wRi will be executed. We distinguish between two
possibilities according to the relative delay r of the executions of the prefixes up
to t of J1 to J2 (i.e., the distance to the diagonal) in Graph(G(i+1

2 )).

(ii)′ Let the relative delay be at least i′, i.e., the distance to the main diagonal is
r ≥ i′. If r ≥ i′+1 = i, we are done. If r = i′, then one can use the diagonal
edges only to execute wi or wRi , but because of the same parity of r and i′,
the induction hypothesis is satisfied. Since any change of the relative delay
during the work on wi or wRi causes a new delay, the hypothesis is true after
processing wi or wRi , too.

(ii)′ Let the relative delay r be at most i′. Then, following the induction hypothe-
sis, the schedule contains in this moment at least i′ delays if r is even, and at
least i′+1 delays if r is odd. If r is even, then it is sufficient to observe that it
is impossible to reach the border of the grid G(i+1

2 ) by using diagonal edges

only. This is because wi =
(
i
2

)
+ 1, . . . ,

(
i
2

)
+ i, wRi =

(
i
2

)
+ i, . . . ,

(
i
2

)
+ 1.

Therefore, the execution of the task σ(i
2)+j is an obstacle for the following

sequence of diagonal edges running parallel to the main diagonal in the dis-
tance i−2j+1 (corresponding to relative delay i−2j+1) for j = 1, . . . , �i/2�.
Hence, at least 1 additional delay is necessary, and two additional delays are
necessary if the schedule finishes in the same distance r from the diagonal.
If r is odd, and the schedule S executes wi or wRi by using diagonal edges
only, we have i “old” delays (induction hypothesis) and we are done. Obvi-
ously, if the distance to the diagonal changes, at least one additional delay
occurs.

�

8.2 Proof of Lemma 2: The Remaining Part

Remaining part of the proof of Lemma 2: We use the induction of the
proof of Lemma 1 in the following way. The prefixes π′

1 = w1, w2, . . . , wk−1 and
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π′
2 = wR1 , w

R
2 , . . . , w

R
k−1 of the instance I

k2

R
define an instance I ′(

k′+1
2 )

R considered
in Lemma 1, with k′ = k − 1. The suffixes π′′

1 = uk−1, uk−2, . . . , u1 and π′′
2 =

uRk−1, u
R
k−2, . . . , u

R
1 define the same instance in a symmetric way. We distinguish

two cases.

(ii)′ The relative delay r caused by the prefix I ′(
k′+1

2 )
R is r ≤ k′ and the parities

of k′ and r are the same. Then we know from Lemma 1 that any schedule
of this prefix uses k′ orthogonal grid edges. However, in the case that the
parities of k′ and r are the same it is impossible to reach the border of the
grid G(k+1

2 ) by using diagonal edges only. This is because of wk and wRk and
hence, at least 1 additional delay is necessary, and two additional delays are
necessary if the schedule finishes in the same distance r from the diagonal.
After executing the tasks of wk and wRk the schedule uses either k′ + 1 = k
orthogonal grid edges and changes the parity of r or it uses k′ + 2 = k + 1
orthogonal grid edges and does not change the parity of r.

(ii)′ The relative delay r caused by the prefix I ′(
k′+1

2 )
R is r ≤ k′ and the parities

of k′ and r differ. Then we know from Lemma 1 that any schedule of this
prefix uses k′+1 orthogonal grid edges. In this case, the schedule can execute
the tasks of wk and wRk by using diagonal grid edges only and therefore, does
not need to change the parity of r.

Now, if the parities of r and k′ are the same and the schedule uses two
additional delays to execute wk and wRk then we have k′ delays for the prefix
and k′ delays for the suffix, i.e., the sum-delay equals 2(k − 1) + 2 = 2k. If the
schedule uses only one additional delay to execute wk and wRk then the parities
of r and k′ for the suffix differ. Hence, we have k′ delays for the prefix and k′+1
delays for the suffix, i.e., the sum-delay equals k+ k− 1+ 1 = 2k. The case that
the parities of r and k′ differ for the prefix are symmetrical. �

8.3 Proof of Fact 1

Proof of Fact 1: It is obvious that every (d − 1)-dimensional subgrid de-
termined by a task σ intersects each of the diagonals of D in exactly one unit
grid cube2. Thus, it remains to bound the number of diagonals intersecting the
(d− 2)-dimensional subgrid considered.

The intersection Gσ of two subgrids labeled by the same task σ corresponds
to a fixed relative delay between the execution of two jobs. If the task σ is at
the ith position on the ath-axis and at the jth position on the bth axis, j ≤ i,
then the relative delay between the execution of the bth job and the ath job is
j − i for all diagonals intersecting Gσ.

Thus, we count the number of diagonals from D with the relative delay j− i
between the bth and the ath job. Since D is the union of all Dp’s, where Dp
2 This is the cube that corresponds to the execution of the task σ in the job determined
by the considered axis.
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contains all diagonals with the pth element equal to 0 and Du ∩ Dv = ∅ for
u �= v, u, v ∈ {1, 2, . . . , d}, we count the number of such diagonals in Dp for
every p separately.

Let p ∈ {1, 2, . . . , d} − {a, b}. The intersection of Dp with Gσ meets all the
diagonals with D(c1, c2, . . . , cd), where cp = 0 and cb = ca + j − i. One has r
possible choices for every position from the d − 3 positions of {1, 2, . . . , d} −
{p, a, b}, and at most r − (j − i) ≤ r choices for the ath axis. The bth axis
is unambiguously determined by the ath position. So, we have at most rd−2

grid cubes in the intersection of Gσ and Dp for p ∈ {1, 2, . . . , d} − {a, b}. Gσ
meets exactly the diagonals D(t1, t2, . . . , td) of Db, that has tb = 0 and ta =
i− j. The number of such diagonals3 is exactly rd−2. Gσ does not intersect any
diagonal from Da because the diagonals D(s1, s2, . . . , sd) in Da have sa ≥ su
for every u ∈ {1, 2, . . . , d}, i.e., the ath job is executed as the first one and so it
cannot be delayed with respect to any other job (including the bth job). Thus,
all together Gσ intersects at most

(d− 1) · rd−2

diagonals. �

3 with 2 fixed positions
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Most classical scheduling models assume that in a scheduling problem the
jobs to be scheduled have fixed processing times. However, in real-life applica-
tions the processing time of a job often depends on the amount of resources such
as facilities, manpower, funds, etc. allocated to it, and so its processing time can
be reduced when additional resources are assigned to the job. This accelerated
processing of a job comes at a certain cost, though. A scheduling problem in
which the processing times of the jobs can be reduced at some expense is called
a scheduling problem with controllable processing times.

Scheduling problems with controllable processing times have gained impor-
tance in scheduling research since the early works of Vickson [14,15]. For a survey
of this area until 1990, the reader is referred to [8]. More recent results in-
clude [2,3,10]. Two interesting related results are due to Trick [13] and Shmoys
& Tardos [12]. They studied the scheduling of jobs with controllable processing
times on unrelated machines. Trick [13] gave a 2.618-approximation algorithm
for problem P3 (see below for definition of problem P3) on unrelated machines.
This was improved by Shmoys and Tardos [12] who designed a 2-approximation
algorithm. Furthermore, they also found a 2-approximation algorithm for prob-
lem P1 (see below) on unrelated machines.

1.1 Job Shop Scheduling with Controllable Processing Times

The job shop scheduling problem is a fundamental problem in Operations Re-
search. In this problem there is a set J = {J1, ..., Jn} of jobs that must be
processed by a set of m machines. Every job Jj consists of an ordered sequence
of µ operations O1j , O2j , . . . , Oµj . Every operation Oij must be processed with-
out interruption by machine mij for pij units of time. A machine can process
only one operation at a time, and for any job at most one of its operations can
be processed at any moment. The problem is to schedule the jobs so that the
maximum completion time Tmax is minimized. Time Tmax is called the length or
makespan of the schedule.

The job shop scheduling problem is considered to be one of the most difficult
to solve problems in combinatorial optimization, both, from the theoretical and
the practical points of view. The problem is strongly NP-hard even if each job
has at most three operations and there are only two machines [7]. Williamson et
al. [16] show that the optimum solution of the problem cannot be approximated
in polynomial time within a factor smaller than 5/4 unless P=NP. However,
when m and µ are fixed, Jansen et al. [5] designed a polynomial time approxi-
mation scheme for the problem.

Solving a scheduling problem with controllable processing times amounts to
specifying a schedule σ that indicates the starting times for the operations and
a vector δ that gives their processing times and costs. We denote by T (σ, δ) the
makespan of schedule σ with processing times according to δ, and we denote
by C(δ) the total cost of δ. The problem of scheduling jobs with controllable
processing times is a bicriteria optimization problem for which we can define the
following three natural optimization problems.
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P1. Minimize T (σ, δ), subject to C(δ) ≤ κ, for some given value κ ≥ 0.
P2. Minimize C(δ), while ensuring that T (σ, δ) ≤ τ , for some given value τ ≥ 0.
P3. Minimize T (σ, δ) + αC(δ), for some given value α > 0.

In this paper we consider two variants for each one of the three above prob-
lems. The first variant allows continuous changes to the processing times of the
operations. The second assumes only discrete changes. In the case of contin-
uously controllable processing times, we assume that the cost of reducing the
time needed to process an operation is an affine function of the processing time.
This is a common assumption made when studying problems with controllable
processing times [12,13]. In the case of discretely controllable processing times,
there is a finite set of possible processing times and costs for every operation Oij .
We observe that, since for problem P2 deciding whether there is a solution of
length T (σ, δ) ≤ τ is already NP-complete, the best result that we might expect
to obtain (unless P=NP) is a solution with cost at most the optimal cost and
makespan not greater than τ(1 + ε), ε > 0.

The problems addressed in this paper are all generalizations of the job shop
scheduling problem, and therefore, they are strongly NP-hard. Nowicki and
Zdrzalka [9] show that the version of problem P3 for the less general flow shop
problem with continuously controllable processing times is NP-hard even when
there are only two machines.

1.2 Our Contribution

We present the first known polynomial time approximation schemes for problems
P1, P2, and P3, when the numberm of machines and the number µ of operations
per job are fixed. Our algorithms can handle both, continuously and discretely
controllable processing times, and they can be extended to the case of convex
piecewise linear processing times and cost functions. These results improve the
4/3-approximation algorithm for problem P3 described in Nowicki [10]. More-
over, the linear time complexity of our PTAS for problem P3 is the best possible
with respect to the number of jobs.

Our algorithms are based on a paradigm that has been successfully applied to
solve other scheduling problems. First partition the set of jobs into “large”, and
“small” jobs. The set of large jobs has a constant number of jobs in it. Compute
all possible schedules for the large jobs and, for each one of them, schedule the
remaining jobs inside the empty gaps that the large jobs leave by first using
a flinear program to assign jobs to gaps, and then computing a feasible schedule
for the jobs assigned to each gap.

A major difficulty with using this approach for our problems is that the pro-
cessing times and costs of the operations are not fixed, so we must determine
their values before we can use the above approach. One possibility is to use
a linear program to assign jobs to gaps and to determine the processing times
and costs of the operations. But, we must be careful, since, for example, a nat-
ural extension of the linear program described in [5] defines a polytope with an
exponential number of extreme points, and it does not seem to be possible to
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solve such linear program in polynomial time. We show how to construct a small
polytope with only a polynomial number of extreme points that contains all the
optimum solutions of the above linear program. This polytope is defined by a lin-
ear program that can be solved exactly in polynomial time and approximately,
to within any pre-specified precision, in strongly polynomial time.

Our approach is robust enough so that it can be used to design polynomial
time approximation schemes for both the discrete and the continuous versions of
problems P1-P3. Due to space limitation we focus our attention on the contin-
uous case of P1 and the discrete case of P3. The remaining results will be given
in the long version of this paper.

Throughout this paper we present a series of transformations that simplify
any instance of the above problems. Some transformations may potentially in-
crease the value of the objective function by a factor of 1 +O(ε), ε > 0, so we
can perform a constant number of them while still staying within 1 + O(ε) of
the optimum. We say that this kind of transformations produce 1 + O(ε) loss.
A transformation that does not modify the value of the optimum solution is said
to produce no loss.

The rest of the paper is organized in the following way. In Section 2, we
present a polynomial time approximation scheme for problem P1 with continuous
processing times. In Section 3 we study problem P3 with discrete processing
times, and show how to design a linear time PTAS for it.

2 Minimizing the Makespan Subject to Budget
Constraints: Continuous Processing Times

In the case of continuously controllable processing times, we assume that for
each job Oij there is an interval [�ij , uij ], 0 ≤ �ij ≤ uij , specifying its possible
processing times. The cost for processing operation Oij in time �ij is denoted
as c�ij ≥ 0 and for processing it in time uij the cost is cuij ≥ 0. For any value
δij ∈ [0, 1] the cost for processing operation Oij in time pδijij = δij�ij + (1 −
δij)uij is c

δij
ij = δijc�ij + (1− δij)cuij . We assume that �ij , uij , c�ij , c

u
ij and δij are

rational numbers. Moreover, without loss of generality, we assume that for every
operation Oij , cuij ≤ c�ij , and if cuij = c

�
ij then uij = �ij .

Let us consider an instance of problem P1. Divide all cuij and c
�
ij values by κ

to get an equivalent instance in which the bound on the total cost of the solution
is one, i.e. C(δ) ≤ 1. If c�ij > 1 for some operation Oij , we set c�ij = 1 and make
�ij = (uij(c�ij − 1)− �ij(cuij − 1))/(c�ij − cuij) to get an equivalent instance of the
problem in which c�ij ≤ 1 for all operations Oij .

2.1 A Simple m-Approximation Algorithm

We begin by showing that it is possible to compute in linear time an m-approxi-
mate solution for problem P1. This allows us to compute upper and lower bounds
for the minimum makespan that we use in the following sections.
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Let U =
∑n

j=1

∑µ
i=1 uij ; note that U is a constant value. Consider an optimal

solution (σ∗, δ∗) of problem P1 and let us use OPT to denote the optimum

makespan. Let P ∗ =
∑n

j=1

∑µ
i=1 p

δ∗ij
ij =

∑n
j=1

∑µ
i=1(�ij −uij)δ∗ij +U be the sum

of the processing times of all jobs in this optimum solution. Define cij = c�ij−cuij ,
so C(δ∗) =

∑n
j=1

∑µ
i=1(cijδ

∗
ij + c

u
ij) ≤ 1. Let x̃ be an optimal solution for the

following linear program and P (x̃) the corresponding value.

min P =
∑n

j=1

∑µ
i=1(�ij − uij)xij + U

s.t.
∑n

j=1

∑µ
i=1 xijcij ≤ 1−∑n

j=1

∑µ
i=1 c

u
ij .

0 ≤ xij ≤ 1 j = 1, ..., n and i = 1, ..., µ.

Observe that P (x̃) ≤ P ∗ and C(x̃) ≤ 1. Note that this linear program is equiva-
lent to the knapsack problem when the integrality constraints have been relaxed,
and thus it can be solved in O(n) time [6]. If we schedule all the jobs one after
another with processing times as defined by x̃, we obtain a feasible schedule
for the jobs J with makespan at most P (x̃). Since OPT ≥ P ∗/m (this is the
makespan of a schedule which leaves no idle times in the machines), the ob-
tained schedule has cost at most 1 and makespan P (x̃) ≤ m · OPT . Therefore,
OPT ∈ [P (x̃)/m,P (x̃)], and by dividing all �ij and uij values by P (x̃), we get
the following bounds for the optimum makespan:

1/m ≤ OPT ≤ 1. (1)

2.2 Large, Medium, and Small Jobs

We partition the set of jobs in three groups in the following way. Let P ∗
j =∑µ

i=1 p
δ∗ij
ij be the sum of the processing times of the operations of job Jj according

to an optimum solution (σ∗, δ∗). Let k and q be two constants, to be defined
later, that depend on m, µ and ε. We define the set L of large jobs consisting of
the k longest jobs according to δ∗. The next ( qµm

2

ε − 1)k longest jobs define the
set M of medium jobs. The remaining jobs form the set S of small jobs. Even
when we do not know an optimum solution (σ∗, δ∗) for the problem, we show in
Section 2.4 how to select the set of long and medium jobs in polynomial time.
Hence, we assume that we know sets L, M and S. An operation that belongs
to a large, medium, or small job is called a large, medium, or small operation,
respectively, regardless of its processing time.

In the following we simplify the input by creating a well-structured set of
possible processing times. We begin by showing that it is possible to bound from
above the possible processing times of small operations by ε

qkµm .

Lemma 1. With no loss, for each small operation Oij we can set uij ← ūij

and cuij ← c�ij−cuij
uij−�ij

(uij − ūij) + cuij, where ūij = min{uij, ε
qkµm}.

Proof. By Inequality (1), the optimal makespan is at most 1, and therefore
the sum of all processing times cannot be larger than m. Let p the length of
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the longest small job according to δ∗. By definition of L and M, |M ∪ L| ·
p = qkµm2

ε p ≤ ∑
Jj∈M∪L P

∗
j ≤ m, and so p ≤ ε

qkµm . Therefore, the length
of the schedule is not increased if the largest processing time uij of any small
operation Oij is set to be ūij = min{uij , ε

qkµm}. It is easy to check that, in order

to get an equivalent instance it is necessary to set cuij ← c�ij−cuij
uij−�ij

(uij − ūij) + cuij
(this is the cost to process operation Oij in time ūij).

In order to compute a 1 + O(ε)-approximate solution for P1 we show that
it is sufficient to take into consideration only a constant number of different
processing times and costs for medium jobs.

Lemma 2. There exists a (1 + 2ε)-optimal schedule where each medium opera-
tion has processing time equal to ε

m|M|µ(1 + ε)
i, for i ∈ N.

Proof. Let us use (σ∗, δ∗) to denote an optimal solution. Let A be the set of
medium operations for which p

δ∗ij
ij ≤ ε

m|M|µ . Since c
u
ij ≤ c�ij , we observe that

by increasing the processing time of any operation then the corresponding cost
cannot increase. Therefore, if we increase the processing times for the opera-
tions in A up to ε

m|M|µ , the makespan may potentially increase by at most
|A| ε

m|M|µ ≤ ε/m, and by Inequality (1) the schedule length may be increased
by a factor of 1 + ε. Now, consider the remaining medium operations and round
every processing time p

δ∗ij
ij up to the nearest value of ε

m|M|µ(1 + ε)
i, for some

i ∈ N. Since each processing time is increased by a factor 1 + ε, the value of an
optimum solution potentially increases by the same factor 1 + ε.

Recall that by Inequality (1), every processing time cannot be greater than 1.
Then, by the previous lemma, the number of different processing times for
medium operations can be bounded by O(log(m|M|µ)/ε) (clearly, the same
bound applies to the number of different costs, since processing times and costs
are closely related). Since there is a constant number of medium operations, there
is also a constant number of choices for the values of their processing times and
costs. We consider all these choices (thus, we also consider the case where the
processing times p̄ij and costs c̄ij for the medium operations are chosen as in the
(1+ 2ε)-optimal schedule of the previous lemma). In the following we show that
when the medium operations are processed according to these (p̄ij , c̄ij)-values,
it is possible to compute a 1 + O(ε)-approximate solution for P1 in polynomial
time. Clearly, a 1 + O(ε)-approximate algorithm is obtained by considering all
possible choices for processing times for the medium operations, and by return-
ing the solution that is of minimum length. From now on, we assume, without
loss of generality, that we know these (p̄ij , c̄ij)-values for medium operations. In
order to simplify the following discussion, for each medium operation Oij we set
�ij = uij = p̄ij and c�ij = c

u
ij = c̄ij (this settings fix the processing time and cost

of Oij to be p̄ij and c̄ij , respectively).
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2.3 Computing Processing Times and Assigning Operations to
Snapshots

A relative schedule for the large operations is an ordering of the starting and
ending times of the operations. A feasible schedule S for the large operations
respects a relative schedule R if the starting and ending times of the operations
as defined by S are ordered as indicated in R (breaking ties in an appropriate
way).

Fix a relative schedule R for the large operations. The starting and finishing
times of the operations define a set of intervals that we call snapshots. Let
M(1),M(2), . . . ,M(g), be the snapshots defined by R. Snapshots M(1) and
M(g) are empty. The number of snapshots g can be bounded by g ≤ 2kµ+ 1.

Lemma 3. The number of different relative schedules for the large jobs is at
most (2ek)2kµ.

Proof. The number of possible starting times for the operations of a large job
Jj is at most the number of subsets of size µ that can be chosen from a set
of (2kµ − 1) positions (there are 2µk − 1 choices for the starting times of each
operations of Jj). Since each large operation can end in the same snapshot in
which it starts, the number of ways of choosing the starting and ending times of
the operations of a large job is at most the number of subsets of size 2µ that can
be chosen from a set of 2(2kµ−1) positions (we consider two positions associated
to each snapshot, one to start and one to end an operation, but both positions
denote the same snapshot). For each large job Jj there are at most

(
4µk−2

2µ

)
different choices of snapshots where operations of Jj can start and end. Since(
4µk−2

2µ

)
= (4µk−2)(4µk−3)...(4µk−2µ−1)

(2µ)! ≤ (4µk)2µ

(2µ/e)2µ = (2ek)2µ and the number of

large jobs is k, then there are at most (2ek)2kµ different relative schedules.

By the previous lemma the number of different relative schedules is bounded
by a constant. Our algorithm considers all relative schedules for the large jobs.
Therefore, one of them must be equal to the relative schedule R∗ defined by
some optimum solution. In the following we will show that when R∗ is taken into
consideration we are able to provide in polynomial time a 1+O(ε)-approximate
solution.

Given a relative schedule R∗ as described above, to obtain a solution for
problem P1 that respects R∗ we must select the processing times for the op-
erations and schedule the medium and small operations within the snapshots
defined by R∗. We use a linear program to compute the processing times and for
deciding the snapshots where the small and medium operations must be placed.
Then we find a feasible schedule for the operations in every snapshot.

To design the linear program, we create a variable x�ij for each large opera-
tion Oij ; this variable defines the processing time and cost of operation Oij . For
convenience we define another variable xuij with value 1 − x�ij . The processing
time of operation Oij is then x�ij�ij+x

u
ijuij , and its cost is x�ijc

�
ij+x

u
ijc

u
ij . Let αij

be the snapshot where the large operation Oij starts processing in the relative
schedule R∗ and let βij be the snapshot where it finishes processing.
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Let Free(R∗) = {(�, h) | � = 1, ..., g, h = 1, ...,m and no long operation
is scheduled by R∗ in snapshot M(�) on machine h} be the set of snapshots
and machines not used by the large jobs in relative schedule R∗. We repre-
sent the processing times and costs for the medium and small operations as
follows. For every job Jj ∈ S ∪M, let Λj be the set of tuples of the form
Λj = {(s1, s2, . . . , sµ) | 1 ≤ s1 ≤ s2 ≤ . . . ,≤ sµ ≤ g, and (si,mij) ∈ Free(R∗),
for all i = 1, . . . , µ}. Set Λj defines the set of µ-snapshots where it is possible to
put the operations of job Jj .

Let ∆ = {(δ1, δ2, . . . , δµ) | δk ∈ {0, 1} for all k = 1, . . . , µ}. For each job
Jj ∈ S ∪M we define a set of at most (2g)µ variables xj,(s,δ), where s ∈ Λj
and δ ∈ ∆. To explain the meaning of these variables, let us define xij(w, 1) =∑

(s,δ)∈Λj×∆ | si=w, δi=1 xj,(s,δ) and xij(w, 0) =
∑

(s,δ)∈Λj×∆ | si=w, δi=0 xj,(s,δ),
for each operation i, job Jj , and snapshot w. Given a set of values for the
variables xj,(s,δ), they define the processing times and an assignment of medium
and small operations to snapshots in which the amount of time that operationOij
is processed within snapshotM(w) is xij(w, 1)·�ij+xij(w, 0)·uij , and the fraction
of Oij that is assigned to this snapshot is xij(w, 0) + xij(w, 1).

For each snapshot M(�) we use a variable t� to denote its length. For any
(�, h) ∈ Free(R∗), we define the load L�,h on machine h in snapshot M(�) as
the total processing time of the operations from small and medium jobs that get
assigned to h during M(�), i.e.,

L�,h =
∑

Jj∈S∪M

∑
(s,δ)∈Λj×∆




µ∑
i=1

si=�,mij=h

δi=1

xj,(s,δ)�ij +
µ∑
i=1

si=�,mij=h

δi=0

xj,(s,δ)uij


 .

Let the cost be

C =
∑

Jj∈S∪M

∑
(s,δ)∈Λj×∆




µ∑
i=1
δi=1

xj,(s,δ)c
�
ij +

µ∑
i=1
δi=0

xj,(s,δ)c
u
ij


+

∑
Jj∈L

µ∑
i=1

(x�ijc
�
ij + x

u
ijc

u
ij).

We use the following linear program LP (R∗) to determine processing times and
to allocate operations to snapshots.
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min T =
∑g

�=1 t�
s.t. C ≤ 1, (1)∑βij

�=αij
t� = x�ij�ij + x

u
ijuij , Jj ∈ L, i = 1, . . . , µ, (2)

x�ij + x
u
ij = 1, Jj ∈ L, i = 1, . . . , µ, (3)∑

(s,δ)∈Λj×∆ xj,(s,δ) = 1, Jj ∈ S ∪M, (4)
L�,h ≤ t�, (�, h) ∈ Free(R∗), (5)
x�ij , x

u
ij ≥ 0, Jj ∈ L, i = 1, . . . , µ, (6)

xj,(s,δ) ≥ 0, Jj ∈ S ∪M, (s, δ) ∈ Λj ×∆, (7)
t� ≥ 0, � = 1, . . . , g. (8)

In this linear program the value of the objective function T is the length of
the schedule, which we want to minimize. Constraint (1) ensures that the total
cost of the solution is at most one. Condition (2) requires that the total length of
the snapshots where a long operation is scheduled is exactly equal to the length
of the operation. Constraint (4) assures that every small and medium operation
is completely assigned to snapshots, while constraint (5) checks that the total
load of a machine h during some snapshot � does not exceed the length of the
snapshot.

Let (σ∗, δ∗) denote an optimal schedule when the processing times and costs
of medium jobs are fixed as described in the previous section.

Lemma 4. The optimal solution of LP (R∗) has value no larger than the make-
span of (σ∗, δ∗).

Proof. We only need to show that for any job Jj ∈ S ∪M there is a feasible
solution of LP (R∗) that schedules all operations Oij in the same snapshots and
with the same processing times and costs as the optimum schedule (σ∗, δ∗).

For any operation Oij , let p
δ∗ij
ij (w) be the amount of time that Oij is as-

signed to snapshot M(w) by the optimum schedule (σ∗, δ∗). Let x∗ij(w, 1) =

δ∗ijp
δ∗ij
ij (w)/p

δ∗ij
ij and x∗ij(w, 0) = (1−δ∗ij)p

δ∗ij
ij (w)/p

δ∗ij
ij . The processing time p

δ∗ij
ij (w)

and cost c
δ∗ij
ij (w) ofOij can be written as x∗ij(w, 1)·�ij+x∗ij(w, 0)·uij and x∗ij(w, 1)·

c�ij + x
∗
ij(w, 0) · cuij , respectively.

Now we show that there is a feasible solution of LP (R∗) such that
(i) x∗ij(w, 1) =

∑
(s,δ)∈Λj×∆ | si=w, δi=1 xj,(s,δ) and

(ii) x∗ij(w, 0) =
∑

(s,δ)∈Λj×∆ | si=w, δi=0 xj,(s,δ).

Therefore, for this solution p
δ∗ij
ij (w) and c

δ∗ij
ij (w) are linear combinations of the

variables xj,(s,δ). We assign values to the variables xj,(s,δ) as follows.

1. For each job Jj ∈ S ∪M do
2. (a) Compute Sj = {(i, �, d) | x∗ij(�, d) > 0, i = 1, . . . , µ, � = 1, . . . , g, d =

0, 1}.
3. (a) If Sj = ∅ then exit.



116 Klaus Jansen et al.

4. (a) Let f = min {x∗ij(�, d) | (i, �, d) ∈ Sj} and let i′, �′, and d′ be such that
x∗i′j(�

′, d′) = f .
5. (a) Let s = (s1, s2, . . . , sµ) ∈ Λj and δ = (d1, d2, . . . , dµ) ∈ ∆ be such

that si′ = �′, di′ = d′ and x∗ij(si, di) > 0, for all i = 1, . . . , µ.
6. (a) xj,(s,δ) ← f
7. (a) x∗ij(si, di) ← x∗ij(si, di)− f for all i = 1, 2, . . . , µ.
8. (a) Go back to step 2.

With this assignment of values to the variables xj,(s,δ), equations (i) and (ii)
hold for all jobs Jj ∈ S ∪M, all operations i, and all snapshots w. Therefore,
this solution of LP (R∗) schedules the jobs in the same positions and with the
same processing times as the optimum schedule.

2.4 Finding a Feasible Schedule

Linear program LP (R∗) has at most 1 + 2µk+n− k+mg− µk constraints. By
condition (3) every large operation Oij must have at least one of its variables x�ij
or xuij set to a non-zero value. By condition (4) every small and medium job Jj
must have at least one of its variables xj,(s,δ) set to a positive value. Furthermore,
there is at least one snapshot � for which t� > 0. Since in any basic feasible
solution of LP (R∗) the number of variables that receive positive values is at most
equal to the number of rows of the constraint matrix, then in a basic feasible
solution there are at mostmg variables with fractional values. This means that in
the schedule defined by a basic feasible solution of LP (R∗) at most mg medium
and small jobs receive fractional assignments, and therefore, there are at most
that many jobs from M∪S for which at least one operation is assigned to at
least two different snapshots. Let F be the set of jobs that received fractional
assignments. For the time being let us forget about those jobs. We show later
how to schedule them.

Note that this schedule is still not feasible because there might be ordering
conflicts among the small or medium operations assigned to a snapshot. To
eliminate these conflicts, we first remove the set V of jobs from M∪S which
have at least one operation with processing time larger than ε

µ3m2g according
to the solution of the linear program. Since the sum of the processing times
computed by the linear program is at most m, then |V| ≤ µ3m3g/ε, so we
remove only a constant number of jobs.

Let O(�) be the set of operations from M∪S that remain in snapshotM(�).
Let pmax(�) be the maximum processing time among the operations in O(�).
Every snapshot M(�) defines an instance of the classical job shop problem,
since the solution of LP (R∗) determined the processing time of every opera-
tion. Hence, we can use Sevastianov’s algorithm [11] to find in O(n2µ2m2) time
a feasible schedule for the operations in O(�); this schedule has length at most
t̄� = t� + µ3mpmax(�). We must increase the length of every snapshot M(�) to
t̄� to accommodate the schedule produced by Sevastianov’s algorithm. Summing
up all these snapshot enlargements, we get a solution of length at most the value
of the solution of LP (R∗) plus ε/m.
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It remains to show how to schedule the jobs V ∪ F . First we choose the value
for parameter q:

q = 6µ4m3/ε. (2)

Then the number of jobs in V ∪ F is

|V ∪ F| ≤ µ3m3g/ε+mg ≤ qk. (3)

Lemma 5. Consider solution (σ∗, δ∗). Let P ∗
j =

∑µ
i=1 p

δ∗ij
ij denote the length of

job Jj according to δ∗. There exists a positive constant k such that if the set of
large jobs contains the k jobs Jj with the largest P ∗

j value, then
∑

Jj∈V∪F P
∗
j ≤

ε/m.

Proof. Let us sort the jobs Jj non-increasingly by P ∗
j values, and assume for con-

venience that P ∗
1 ≥ P ∗

2 ≥ ... ≥ P ∗
n . Partition the jobs into groups G1, G2, ..., Gd

as follows Gi = {J(1+qb)i−1+1, ..., J(1+qb)i}, and let P (Gj) =
∑

Ji∈Gj P
∗
j . Let

Gρ+1 be the first group for which P (Gρ+1) ≤ ε/m. Since
∑

Jj∈J P
∗
j ≤ m and∑ρ

i=1 P (Gi) > ρε/m then ρ < m2

ε . We choose L to contain all jobs in groups G1

to Gρ, and so k = (1 + q)ρ. Since |V ∪ F| ≤ qk, then with this choice of L,
|Gρ+1| = qk ≥ |V ∪ F| and therefore

∑
Jj∈V∪F P

∗
j ≤∑Jj∈Gρ P

∗
j ≤ ε/m.

We choose the set of large jobs by considering all subsets of k jobs, for all
integer values 1 ≤ k ≤ m2

ε . For each choice of k the set of medium jobs is obtained
by considering all possible subsets of

(
qµm2/ε− 1

)
k jobs. Since there is only

a polynomial number of choices for large and medium jobs, we require only a
polynomial number of attempts before detecting the set of large and medium
jobs as defined by an optimum solution.

The processing time of every small operation Oij in V ∪ F , is chosen as pij =
uij and so its cost is cij = cuij . Furthermore, recall that we are assuming that
each medium operation Oij is processed in time pij = p̄ij and cost cij = c̄ij
(see section 2.2). Let Pj =

∑µ
i=1 pij . Then

∑
Jj∈V∪F Pj =

∑
Jj∈M∩(V∪F) Pj +∑

Jj∈S∩(V∪F) Pj . Note that by Lemma 1 and inequality (3),
∑

Jj∈S∩(V∪F) Pj≤
qkµε/(qkµm) = ε/m. By the arguments of section 2.2, p̄ij ≤ max{ pδ

∗
ij

ij (1+
ε), ε/(m|M|µ) } and, therefore,

∑
Jj∈M∩(V∪F) Pj ≤

∑
Jj∈M∩(V∪F) P

∗
j (1 + ε) +

ε/m ≤ ε(2+ε)/m, by Lemma 5. Therefore, we can schedule the jobs from V ∪ F
one after the other at the end of the schedule without increasing too much the
length of the schedule.

Theorem 1. For any fixed m and µ, there exists a polynomial-time approxi-
mation scheme for P1 that computes a feasible schedule with makespan at most
(1 + ε) times the optimal makespan and cost not greater than κ, for any fixed
ε > 0.
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3 Problem P3 with Discrete Processing Times

In the case of discretely controllable processing times, the possible processing
times and costs of an operation Oij are specified by a set of values ∆ij ={
δ1, δ2, . . . , δw(i,j)

}
, 0 ≤ δk ≤ 1 for all k = 1, 2, . . . , w(i, j). When the pro-

cessing time for operation Oij is pδkij = δk�ij + (1 − δk)uij , the cost is equal to
cδkij = δkc�ij + (1− δk)cuij .

For each operation Oij , let dij = min δij∈∆ij{pδijij + cδijij }. For every job Jj
let dj =

∑µ
i=1 dij , and let D =

∑
j dj . We partition the set of jobs into large L

and small S jobs, where the set L includes the k jobs with the largest dj values,
and k is a constant computed as in Lemma 5 so that the set T containing the
qk jobs with the next dj values has

∑
Jj∈T dj ≤ ε/m. The set of large jobs can

be computed in O(nµ|∆max|) time, where |∆max| = maxij |∆ij |.
By dividing all cδijij values by parameter α, we can assume without loss of

generality that the objective function for problem P3 is: minT (σ, δ) + C(δ).

Let p
δ∗ij
ij and c

δ∗ij
ij be the processing time and cost of operation Oij in an optimal

solution. Let F ∗ be the value of an optimal solution for P3. It is easy to see
that F ∗ ≤ D and F ∗ ≥ 1

m

∑
ij p

δ∗ij
ij +

∑
ij c

δ∗ij
ij ≥ D

m . By dividing all execution
times and costs by D, we may assume that D = 1 and

1
m

≤ F ∗ ≤ 1. (4)

The following lemma shows that with 1 + 2ε loss we can reduce the number
of different costs and processing times for each operation (proof in appendix).

Lemma 6. With 1 + 2ε loss, we assume that |∆ij | = O(log n) for every Oij .

Proof. To prove this claim, divide the interval [0, 1] into b subintervals as fol-
lows, I1 = [0, ε

µnm ], I2 = ( ε
µnm ,

ε
µnm (1 + ε)], ..., Ib = ( ε

µnm (1 + ε)b−1, 1], where b
is the largest integer such that ε

µnm (1+ ε)b−1 < 1. Clearly b = O(log n). We say
that d is a choice for operation Oij if d ∈ ∆ij . For each operation Oij , partition
the set of choices ∆ij into b groups g1, g2, ..., gb, such that d ∈ ∆ij belongs to
group gh iff cdij falls in interval Ih, h ∈ {1, ..., b}.

For each group take the choice (if any) with the lowest processing time and
delete the others. The new set of choices has at most O(min {|∆ij |, logn}) ele-
ments and by using arguments similar to those used in the proof of Lemma 2 we
can prove that with this transformation the cost of an optimum solution can be
up to 1+2ε times the optimum value for the original problem. The transformed
instance can be computed in O(nµ|∆max|) time.

By using arguments similar to those used to prove Lemma 6 we can obtain,
with 1+2ε loss, a new instance with O(log k) different costs and processing times
for each large operation. Since there is a constant number of large operations,
there is only a constant number of possible assignments of costs and processing
times for them.
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By trying all possible assignments of cost and processing times, we can find
for each large operation Oij a processing time p̄ij and cost c̄ij such that p̄ij ≤
max{ pδ

∗
ij

ij (1 + ε), ε/(mkµ) } and c̄ij ≤ cδ
∗
ij

ij . Let us use the same definition of
relative schedule given for the continuous case. Let R denote a relative schedule
that respects the ordering of the large operations in some optimal schedule. For
each small job Jj we define a set of at most O((g log n)µ) variables xj,(s,δ), where
s ∈ Λj and δ ∈ ∆j = {(δ1j, δ2j , . . . , δµj) | δij ∈ ∆ij for all i = 1, . . . , µ}.

As in the continuous case we define a linear program LP ′(R) to compute
the processing times and snapshots for the small jobs. LP ′(R) is obtained from
LP (R) by deleting constraints (1), (3), and (6), and considering the following
changes. Variable xj,(s,δ) takes value 0 ≤ f ≤ 1 to indicate that a fraction f
of operation Oij , i = 1, . . . , µ is scheduled in snapshot si with processing time
pδiij . Let C be the cost function, i.e., C =

∑
Jj∈S

∑
(s,δ)∈Λj×∆

∑µ
i=1 xj,(s,δ)c

δk
ij +∑

Jj∈L
∑µ

i=1 c̄ij . The objective function is now to minimize
∑g

�=1 t� + C. Con-
straint (2) is replaced with

βij∑
�=αij

t� = p̄ij , for all Jj ∈ L, i = 1, . . . , µ.

As in Lemma 4, we can prove that any optimum solution of problem P3 is a
feasible solution for LP ′(R). The rest of the algorithm is as that described in
the previous subsection 2.4.

By using interior point methods to solve the linear program, we get a total
running time for the above algorithm that is polynomial in the input size [1].
It is easy to check that similar results can be obtained if, instead of finding
the optimum solution of the linear program, we solve it with a given accuracy
ε > 0. In the following section we show that we can solve approximately the
linear program in O(n|∆max|) time. Therefore, for every fixed m, µ and ε, all
computations (including Sevastianov’s algorithm [5]) can be carried out in time
O(n|∆max|+nmin{logn, |∆max|}·f(ε, µ,m)), where f(ε, µ,m) is a function that
depends on ε, µ and m. This running time is linear in the size of the input.

Theorem 2. For any fixed m and µ, there exists a linear time approximation
scheme for P3 with discretely controllable processing times.

3.1 Approximate Solution of the Linear Program

In this section we show how to find efficiently a solution for LP ′(R) of value no
more than 1+O(ε) times the value of the optimum solution for problem P3. To
find an approximate solution for the linear program we rewrite it as a convex
block-angular resource-sharing problem, and then use the algorithm of [4] to
solve it with a given accuracy. A convex block-angular resource sharing problem
has the form:
λ∗ = min

{
λ
∣∣∣∑K

j=1 f
j
i (x

j) ≤ λ, for all i=1, . . . , N, and xj ∈ Bj, j = 1, . . . ,K
}
,
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where f ji : Bj → R
+ are N non-negative continuous convex functions, and Bj are

disjoint convex compact nonempty sets called blocks. The algorithm in [4] finds a
(1+ρ)-approximate solution for this problem for any ρ > 0 in O(N(ρ−2 ln ρ−1+
lnN)(N ln ln(N/ρ)+KF )) time, where F is the time needed to find a ρ-approxi-
mate solution to the problem: min

{∑N
i=1 pif

j
i (x

j)
∣∣xj ∈ Bj

}
, for some vector

(p1, . . . , pN) ∈ R
N .

We can write LP ′(R) as a convex block-angular resource sharing problem
as follows. First we guess the value V of an optimum solution of problem P3,
and add the constraint:

∑g
�=1 t� +C +1−V ≤ λ, to the linear program, where

λ is a non-negative value. Since 1/m ≤ V ≤ 1, we can use binary search on
the interval [1/m, 1] to guess V with a given accuracy ε > 0. This search can
be completed in O(log(1

ε logm)) iterations by doing the binary search on the
values: 1

m (1 + ε), 1
m (1 + ε)2, ..., 1. We replace constraint (5) of LP ′(R) by

(5’) L�,h + 1− t� ≤ λ, for all (�, h) ∈ Free(R)
where

L�,h =
∑
Jj∈S

∑
(s,δ)∈Σj×∆

µ∑
q=1

sq=�,mqj=h

xj,(s,δ)p
δq
qj .

This new linear program, that we denote as LP (R, V, λ), has the above block-
angular structure. The blocks Bj = {xj,(s,δ) | (s, δ) ∈ Σj×∆, constraints (4) and
(8) hold}, for Jj ∈ S are (g|∆max|)µ-dimensional simplicies. The block B0 = {<
t1, t2, .., tg >|constraints (2) and (9) hold} has constant dimension. Let f�,h =
L�,h + 1− t�. Since t� ≤ V ≤ 1, these functions are non-negative.

For every small job Jj , let f
j
0 (x

j) =
∑

(s,δ)∈Λj×∆

∑µ
i=1 xj,(s,δ)c

δi
ij . For ev-

ery (�, h) ∈ Free(R), let f j�h(xj) =
∑

(s,δ)∈Λj×∆

∑µ
q=1

sq=�,mqj=h

xj,(s,δ)p
δq
qj . For

every x0 ∈ B0 let f0
0 (x

0) =
∑

Jj∈L
∑µ

i=1 cij +
∑g

�=1 t� + 1 − V , and for every
(�, h) ∈ Free(R), let f0

�h(x
0) = 1− t�. All these functions are nonnegative. Now

LP (R, V, λ) is to find the smallest value λ such that
∑

Jj∈S f
j
0 (x

j) + f0
0 (x

0) ≤ λ, for all xk ∈ Bk,∑
Jj∈S f

j
�h(x

j) + f0
�h(x

0) ≤ λ, for all (�, h) ∈ Free(R) and xk ∈ Bk.

Using the algorithm in [4], a 1+ρ, ρ > 0 approximation for the problem can be
obtained by solving on each block Bj a constant number of block optimization
problems of the form: min{pTf j(x) | x ∈ Bj}, where p is a (g|∆max| + 1)-
dimensional positive price vector, and f j is a (g|∆max| + 1)-dimensional vector
whose components are the functions f j0 , f

j
�h.

Note that B0 has constant dimension, and the corresponding block optimiza-
tion problem can be solved in constant time. But, the blocks Bj for Jj ∈ S do
not have a constant dimension. To solve the block optimization problem on Bj

we must find a snapshot where to place each operation of Jj and determine its
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processing time, so that the total cost plus processing time of all operations
times the price vector is minimized. To choose the snapshots we select for each
operation the snapshot in which the corresponding component of the price vec-
tor is minimum. Then we select for each Oij the value δij that minimizes its
cost plus processing time. This can be done in O(|∆max|) time for each block, so
the algorithm of [4] finds a feasible solution for LP (R, V, 1 + ρ) in O(nw) time.
Linear program LP (R, V, 1+ ρ) increases the length of each snapshot by ρ, and
therefore the total length of the solution is V + gρ ≤ (1 + 2ε)V ∗, for ρ = ε

mg ,
where V ∗ is the optimal solution value.

There is a problem with this method: we cannot guarantee that the solution
found by the algorithm is basic feasible. Hence it might have a large number of
fractional assignments. In the following we show that the number of fractional
assignments is O(n). Since the number of fractional assignments is O(n), using
the rounding technique described in [5], we can obtain in linear time a new
feasible solution with only a constant number of fractional assignments.

The algorithm in [4] works by choosing a starting solution x0 ∈ Bj and then
it repeats the following three steps for at most O(mg log(mg)) times: (step 1)
use a deterministic or randomized procedure to compute a price vector p; (step
2) use a block solver to compute an optimal solution of each block problem,
(step 3) replace the current solution by a convex combination of the previous
solutions. By starting from a solution x0 in which every vector xj0 ∈ Bj is an
integer vector, for j �= 0, we get at the end at most O(n ·mg log(mg)) fractional
assignments. To achieve the promised running time we additionally need that
λ(x0) ≤ cλ∗ [4], where c is a constant and λ(x0) is the value of λ corresponding
to x0. This is accomplished as follows.

For convenience, let us rename jobs such that J1, ..., Jn̄ are the small jobs,
where n̄ = n − k. Choose the processing time pδijij and cost cδijij for every small

operation Oij so that dij = p
δij
ij + cδijij . Put the small jobs one after the other in

the last snapshot. Set tg =
∑

Jj∈S
∑µ

i=1 p
δij
ij . The large operations are sched-

uled as early as possible, according to the optimal relative schedule R. Set
each t� ∈ {t1, t2, ..., tg−1} equal to the maximum load of snapshot � according
to the described schedule. By inequality (4), we know that

∑
Jj∈S

∑µ
i=1 dij ≤ 1.

Furthermore, we have
∑g−1

�=1 t� +
∑

Jj∈L
∑µ

i=1 cij ≤ V , since by construction∑g−1
�=1 t� cannot be greater than the optimal length and the costs of large opera-

tions are chosen according to the optimal solution. Hence,
∑g

�=1 t� +C ≤ 1+V ,
and

∑g
�=1 t� + C + 1 − V ≤ 2, L�,h + 1− t� ≤ 1; so λ(x0) ≤ 2. Since λ∗ = 1, it

follows that λ(x0) ≤ 2λ∗.
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Abstract. We show that, for any stochastic event p of period n, there
exists a measure-once one-way quantum finite automaton (1qfa) with at
most 2

√
6n + 25 states inducing the event ap + b, for constants a > 0,

b≥ 0, satisfying a+ b ≤ 1. This fact is proved by designing an algorithm
which constructs the desired 1qfa in polynomial time. As a consequence,
we get that any periodic language of period n can be accepted with iso-
lated cut point by a 1qfa with no more than 2

√
6n+26 states. Our results

give added evidence of the strength of measure-once 1qfa’s with respect
to classical automata.

Keywords: quantum finite automata; periodic events and languages

1 Introduction

One of the main investigations in the field of quantum computing certainly
deals with the study of the computational power of quantum devices with re-
spect to their classical counterparts. In this sense, the results obtained by, e.g.,
Shor [18,19] and Grover [7] give evidences that the quantum paradigm might
lead to faster algorithms. Nevertheless, it is reasonable to think that the first
implementations of quantum machines will not be fully quantum mechanical.
Instead, we can expect that they will consists of “expensive” quantum compo-
nents embedded in classical devices (see, e.g., [3]). This motivates the study of
the computational power of “small” quantum devices such as quantum finite
automata (qfa’s).

The simplest version of qfa’s are the one-way qfa’s (1qfa’s) which are ba-
sically defined by imposing the quantum paradigm — unitary evolution plus
observation — to the classical model of one-way deterministic or probabilistic
automata (1dfa’s and 1pfa’s, resp.). Two variants are considered: In the first
one, called measure-once [5,17], the probability of accepting strings is evaluated
by “observing” 1qfa’s just once, at the end of input scanning. In the measure-
many model [4,5,12], instead, observation is performed after each move. In this
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work, we will be concerned only with measure-once 1qfa’s. Thus, the attribute
measure-once will always be understood.

The question 1qfa’s vs. classical automata is usually tackled from two points
of view: the recognizability of languages, and the size — number of states — of
automata when they perform certain works. It is well known that, quite sur-
prisingly, the class of languages accepted by 1qfa’s with isolated cut point is a
proper subclass (group languages) of regular languages [5]. On the other hand,
it is also well known that, in some cases, 1qfa’s turn out to be more succinct
than 1dfa’s and 1pfa’s. For instance, in [4], it is proved that accepting the lan-
guage Lp = {1kp | k ∈ N and p is a fixed prime} with isolated cut point requires
at least p states on 1pfa’s, while a 1qfa with O(log p) states for Lp is exhibited.
Several other results are pointed out in the literature, that witness strength and
weakness of 1qfa’s (see, e.g., [4,8,10]). Almost all of them are obtained by con-
structing 1qfa’s accepting ad hoc languages or solving suitably defined problems.

Here, we aim to give a general method for building succinct 1qfa’s that have
a “periodic behavior”. More precisely: The stochastic event induced by a unary
(i.e., with a single letter input alphabet) 1qfa A is the function p : N → [0, 1]
defined, for any k ∈ N, as p(k) = probability that A accepts the string 1k. We
are interested in designing unary 1qfa’s inducing periodic events, i.e., events
satisfying p(k) = p(k+ n), for a fixed period n > 0 and any k ∈ N. Actually, we
will be content with obtaining a “linear approximation” of p, that is, an event
of the form ap + b, for some constants a > 0, b ≥ 0, with a + b ≤ 1. It is not
hard to verify that, from a language acceptance point of view, the events p and
ap+ b are fully equivalent.

We prove that, for any stochastic event p of period n taken as input, there
exists a unary 1qfa A with at most 2

√
6n + 25 states which induces ap+ b, for

some constants a > 0, b ≥ 0, with a + b ≤ 1. More precisely, we provide an
algorithm which actually constructs A in polynomial time. To this purpose, we
first show that any event induced by a unary 1qfa has a sort of normal form. We
then display an algorithm which, in a first phase, computes some parameters in
this normal form so to reproduce the harmonic structure of p. In a second phase,
the algorithm turns the computed parameters into a well formed unary 1qfa A
with at most 2

√
6n+25 states that induces ap+b. It is interesting to notice that

the size of A is bounded by the size of difference covers for Zn, i.e., sets ∆ ⊆ Zn
such that each element in Zn can be obtained as the difference modulo n of two
elements in ∆.

This result allows us to give an upper bound on the size of 1qfa’s accepting
periodic languages. A unary languages L is said to be periodic if it can be writ-
ten as L = {1k | k ∈ N and (kmodn) ∈ S}, for a fixed S ⊆ Zn. The reader is
referred to, e.g., [9,15] where the relevance of periodic languages is emphasized.
We show that any periodic language of period n can be accepted with isolated cut
point by a unary 1qfa with no more than 2

√
6n+ 26 states.

Our results once more witness the strength, by a quadratic state decreasing,
of 1qfa’s with respect to classical automata. It is well known, for instance, that
accepting n-periodic languages on 1dfa’s requires at least n states. Furthermore,
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when n is prime, we cannot hope to save states even by using 1pfa’s [4,16] or two-
way nondeterminism [15]. For a more extensive discussion on these and other
topics in relation to the question quantum vs. classical devices, we refer the
reader to Section 5.

The paper is organized as follows: In Section 2, we give basics on linear al-
gebra, quantum finite automata, and difference cover. In Section 3, we present
the polynomial algorithm to construct a O(√n)-state 1qfa inducing a linear
approximation of a periodic stochastic event given as input. In Section 4, we
show how to recognize with isolated cut point periodic languages with O(√n)
quantum states. Finally, in Section 5, we discuss our results in the light of quan-
tum vs. classical question, and we point out some possible directions for future
researches.

2 Preliminaries

2.1 Linear Algebra

Here, we recall some basic notions on vector spaces and linear algebra. For more
details, we refer the reader to any of the standard books on the subject, such
as [13,14]. Given a complex number z ∈ C, its complex conjugate is denoted
by z∗, and itsmodulus is |z| = √

zz∗. Let V be a vector space of finite dimension n
on C. The inner product of vectors x, y ∈ V , with x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn), is defined as 〈x, y 〉 =∑n

i=1 xi y
∗
i . The norm of x is defined

as ‖ x ‖= √〈x, x 〉. If 〈x, y 〉 = 0 (and ‖ x ‖=‖ y ‖= 1) then x and y are
orthogonal (orthonormal). A decomposition of V is a set {S1,S2, . . . ,Sk} (k ≤ n)
of mutually orthogonal subspaces of V such that each x ∈ V can be written as
the sum of the projections of x onto each Si.

We denote by Cm×n the set of complex matrices having m rows and n
columns. Given two matrices M ∈ Cm×m and N ∈ Cn×n, their direct sum is the
block diagonal matrix M ⊕N ∈ C(m+n)×(m+n) having M and N on its main di-
agonal and 0 elsewhere. Let us introduce some properties of normal matrices that
will turn out to be useful in what follows. We denote by M † ∈ Cm×m the conju-
gate transpose of the matrix M . If MM † = M †M then M is said to be normal.
Two important subclasses of normal matrices are the unitary and the Hermi-
tian matrices. A matrix M is said to be unitary whenever MM † = I = M †M ,
where I is the identity matrix. The eigenvalues of unitary matrices are com-
plex numbers of modulus 1, i.e., they are in the form eiϑ , for some real ϑ. This
fact characterizes the class of unitary matrices if we restrict to normal matri-
ces. Alternative characterizations of normal and unitary matrices are contained,
respectively, in

Proposition 1. [14, Thm. 4.10.3] A matrix M ∈ Cm×m is normal if and only
if there exists a unitary matrix X ∈ Cm×m such that M = XDX†, where
D = diag(ν1, ν2, . . . , νm) is the diagonal matrix of the eigenvalues of M .

Proposition 2. [14, Thms. 4.7.24, 4.7.14] A matrix M ∈ Cm×m is unitary if
and only if:
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(i) its rows are mutually orthonormal vectors;
(ii) ‖xM ‖=‖x‖ , for each vector x ∈ C1×m.

A matrix M is said to be Hermitian whenever M = M †. All the eigenvalues
of an Hermitian matrix are real. An Hermitian matrix is positive semidefinite if
and only if all its eigenvalues are non negative. Alternative characterizations are
contained in

Proposition 3. [13, Thms. 4.12, 4.8] An Hermitian matrix M ∈ Cm×m is
positive semidefinite if and only if:

(i) xMx† ≥ 0, for each vector x ∈ C1×m;
(ii) M = Y Y †, for some matrix Y ∈ Cm×m (Cholesky factorization).

Let ω = ei
2π
n be the n-th root of the unity (ωn = 1), and define the matrix

W ∈ Cn×n whose (r, c)-th component is ωrc, for 0 ≤ r, c < n. The discrete
Fourier transform of a vector x ∈ Cn×1 is the vector Wx. The inverse dis-
crete Fourier transform of x is the vector (1/n)W †x. It is easy to verify that
(1/n)W †W = I = W (1/n)W †.

Let f : N → C be a periodic function of period n, i.e., for any k ∈ N,
f(k) = f(k + n) holds true. We say that f is n-periodic, for short, and it can
be represented by the column vector (f(0), f(1), . . . , f(n − 1)). It is well know
that f can be expressed as a linear combination of trigonometric functions by
using the discrete Fourier transform and its inverse. More precisely:

f(k) =
1
n

n−1∑
j=0

F (j)ω−kj , (1)

where (F (0), F (1), . . . , F (n − 1)) = W (f(0), f(1), . . . , f(n − 1)). We define the
support set Supp(F ) = {j ∈ Zn | F (j) �= 0}. Thus, Equation (1) can be equiv-
alently written as f(k) = 1/n

∑
j∈Supp(F ) F (j)ω

−kj . The reader is referred to,
e.g., [1, Chp. 7] for more details on the discrete Fourier transform and its rele-
vance from a computational point of view. Here, we just recall that computing
the discrete Fourier transform of n-dimensional vectors requires O(n logn) se-
quential time.

2.2 Difference Cover

The set ∆ ⊆ Zn is a difference cover for Zn if, for each i ∈ Zn, there exist two
elements x, x̃ ∈ ∆ such that i ≡ x− x̃ (modn).

The problem of covering by differences Zn is well studied in the literature.
Its relevance is also due to connections with some mutual exclusion issues in
distributed systems, especially concerning quorums [6]. In [20], Wichmann pro-
poses the following sequence of integers, for any r ≥ 0 (xr here means xx · · ·x
repeated r times): σ = 1r (r+1)1 (2r+1)r (4r+3)2r+1 (2r+2)r+1 1r. From σ, con-
struct the set D of 6r+4 integers by setting a1 = 0, and ai+1 = ai+bi for 1 ≤ i ≤
6r+3, where bi is the i-th element of σ. It is easy to see that a6r+4 = 12r2+18r+6.
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The set D has the remarkable property that, for any 1 ≤ d ≤ 12r2 + 18r + 6,
there exist a, b ∈ D such that d = a− b.

In [6], Colbourn uses this fact to show that, for any n ≤ 24r2 + 36r+ 13, D
is a difference cover for Zn. This is basically due to the fact that, given d ∈ Zn,
d or −d can be represented by a positive integer less than or equal to 12r2 +
18r + 6. Hence, to find a difference cover for any Zn, it is enough to choose the
smallest r satisfying 24r2+36r+13 ≥ n, and then to construct the corresponding
set D with 6r + 4 elements. Simple arithmetics shows that 6r + 4 ≤ √

1.5n+ 6,
hence:

Theorem 1. [6, Thm. 2.4] For any n ≥ 0, there exists a difference cover for Zn
of cardinality at most

√
1.5n+ 6.

2.3 Quantum Finite Automata

In this paper, we are interested inmeasure-once quantum finite automata [4,5,17].
Roughly speaking, in this kind of automata, the probability of acceptance is
evaluated only at the end of the computation. In the literature, measure-many
automata are also considered [2,4,5,12], where such an evaluation is taken after
each move. Hereafter, the attribute measure-once will always be understood.

The “hardware” of a one-way quantum finite automaton is that of a classical
finite automaton. Thus, we have an input tape which is scanned by an input head
moving one position right at each move1, plus a finite state control. Formally:

Definition 1. A one-way quantum finite automaton (1qfa, for short) is a quin-
tuple A = (Q,Σ, π(0), δ, F ), where

– Q = {s1, s2, . . . , sq} is the finite set of states,
– Σ is the finite input alphabet,
– π(0) ∈ C1×n, with ‖π(0)‖2= 1, is the vector of the initial amplitudes of the

states,
– F ⊆ Q is the set of accepting states,
– δ : Q × Σ × Q → C is the transition function mapping into the set of

complex numbers having square modulus not exceeding 1; δ(si, σ, sj) is the
amplitude of reaching the state sj from the state si, upon reading σ. The
transition function must satisfy the following condition of well-formedness:
for any σ ∈ Σ and 1 ≤ i, j ≤ q,

∑q
k=1 δ(si, σ, sk) δ∗(sj , σ, sk) = 1 if i = j,

and 0 otherwise.

It is often useful to express the transition function on every σ ∈ Σ as the
transition matrix U(σ) ∈ Cq×q whose (i, j)-th entry is the amplitude δ(si, σ, sj).
Since δ satisfies the condition of well-formedness, the rows of each U(σ) are
mutually orthonormal vectors and hence, by Proposition 2(i), U(σ)’s are unitary.
The 1qfaA can thus be represented as a triple A = (π(0), {U(σ)}σ∈Σ , ηF ), where
ηF ∈ {0, 1}n×1 is the characteristic vector of the accepting states.
1 This kind of automata are sometimes referred to as real time automata [8,17], stress-
ing the fact that they can never present stationary moves.
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Let us briefly discuss how our 1qfaA works. At any given time t, the state ofA
is a superposition of the states in Q and is represented by a vector π(t) of norm 1
in the Hilbert space l2(Q): the i-th component of π(t) is the amplitude of the
state si. The computation on input x = x1x2 . . . xn ∈ Σ∗ starts in the superposi-
tion π(0). After k steps, i.e., after reading the first k input symbols, the state of
A is the superposition π(k) = π(0)U(x1)U(x2) · · ·U(xk). Since ‖π(0)‖= 1 and
U(xi)’s are unitary matrices, Proposition 2(ii) ensures that ‖π(k)‖= 1. When A
enters the final superposition π(n) = π(0)

∏n
i=1 U(xi), we observe A by the stan-

dard observable O = {l2(F ), l2(Q \ F )}. O is the decomposition of l2(Q) into the
two subspaces spanned by the accepting and nonaccepting states, respectively.
The probability of accepting x is given by the square norm of the projection of
π(n) onto l2(F ). Formally, pacc(x) =

∑
{j | (ηF )j=1} |(π(0)

∏n
i=1 U(xi))j |2, where

the subscript j denotes the j-th vector component.
A stochastic event is a function p : Σ∗ → [0, 1]. The stochastic event induced

or defined by the 1qfa A is the function pA : Σ∗ → [0, 1] defined, for any x ∈ Σ∗,
as pA(x) = pacc(x). The language accepted by A with cut point λ ≥ 1/2 is the
set LA,λ = {x ∈ Σ∗ | pA(x) > λ}. A language L is said to be accepted by A with
isolated cut point λ, if there exists ε > 0 such that, for any x ∈ L (x �∈ L), we
have pA(x) ≥ λ+ ε (≤ λ− ε).

A 1qfa A is unary if |Σ| = 1. In this case, we let Σ = {1}, and we can
write A = (π(0), U, ηF ) since we have a unique transition matrix U . With a
slight abuse of notation, we write k for the input string 1k. The probability of
accepting k now writes as

pacc(k) =
∑

{j | (ηF )j=1}
|(π(0)Uk)j |2. (2)

The stochastic event induced or defined by the unary automaton A is the
function pA : N→ [0, 1], with pA(k) = pacc(k).

A stochastic event p : N→ [0, 1] is said to be n-periodic if it is an n-periodic
function. A unary language is a set L ⊆ 1∗. L is n-periodic if there exists a set
S ⊆ Zn such that L = {k ∈ N | (kmodn) ∈ S}.

3 Synthesis of 1qfa’s from Periodic Events

The first problem we shall be dealing with is the synthesis of 1qfa’s inducing
given periodic stochastic events. As a matter of fact, we will consider a relaxed
version of this problem where, given a periodic event p, we aim to obtain a 1qfa
inducing ap+ b, for some reals a > 0, b ≥ 0 satisfying a+ b ≤ 1.

If p is taken to be n-periodic, then it can be specified as input for the problem
by providing the column vector (p(0), p(1), . . . , p(n−1)). Thus, formally we state:

Synthesis from events (SynE)
0 Input: An n-periodic stochastic event (p(0), p(1), . . . , p(n− 1)).
0 Output: A 1qfa A inducing the event ap+ b, for some reals a > 0, b ≥ 0,

with a+ b ≤ 1.
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Let us now prepare some tools to approach the problem. First of all, we point
out some closure properties on the stochastic events induced by 1qfa’s:

Proposition 4. Let p and p̃ be two stochastic events induced, respectively, by
the 1qfa’s A = (π, {U(σ)}σ∈Σ , η) and Ã = (π̃, {Ũ(σ)}σ∈Σ , η̃). Then there exist
1qfa’s inducing the stochastic events 1− p and αp+ βp̃, where α and β are non
negative reals such that α+ β = 1.

Proof. It is easy to see that the event 1 − p is induced by the 1qfa A =
(π, {U(σ)}σ∈Σ ,¬η), where ¬η is the bitwise negation of η, while the event αp+βp̃

is induced by the 1qfa αA+βÃ = ((
√

απ,
√

βπ̃), {U(σ)⊕ Ũ(σ)}σ∈Σ , (η, η̃)). ��
At this point, a quick comment on the relevance of SynE is in order. From a

language recognition point of view, the events p and ap+ b are equivalent in the
following sense: Suppose we have a unary 1qfaA accepting the languageLA,λ and
suppose we are able to construct a unary 1qfa A1 inducing the event apA+b. By
setting λ1 = aλ+ b, it is easy to see that LA1,λ1 = LA,λ. Here, a technical detail
should be considered. As stated in Section 2.3, we must require that λ1 ≥ 1/2.
If the opposite is true, by Proposition 4, we construct the 1qfa A2 = 1

2A1 + 1
2U ,

where U is a single state 1qfa realizing the event pU (x) = 1, for any x ∈ Σ∗. We
have pA2 = 1/2(apA + b) + 1/2 and, by setting λ2 = (1/2)λ1 + 1/2, one easily
get LA2,λ2 = LA,λ. In other words, solving SynE enables us to obtain unary
1qfa’s accepting unary languages defined by a precise stochastic event.

Now, we show that the stochastic events induced by unary 1qfa’s have a sort
of normal form. In what follows, we denote by Mij the (i, j)-th entry of the
matrix M and by xi the i-th component of the vector x.

Proposition 5. Let p be a stochastic event induced by a unary 1qfa A=(π, U, η)
with q states. Then, for any k ∈ N, p(k) =

∑
1≤s,t≤q e

ik(ϑs−ϑt)Bst, where B is
an Hermitian positive semidefinite matrix.

Proof. From Equation (2) in Section 2.3, the stochastic event induced by A
writes as p(k) =

∑
{j | ηj=1} |(πUk)j |2. Since U is a unitary matrix, by Propo-

sition 1, we can write U = X diag(eiϑ1 , eiϑ2 , . . . , eiϑq )X†, where X is a unitary
matrix and eiϑ ’s are the norm 1 eigenvalues of U . Thus,

Uk = X diag(eikϑ1 , eikϑ2 , . . . , eikϑq )X†,

and

p(k) =
∑

{j | ηj=1}
|(πX diag(eikϑ1 , eikϑ2 , . . . , eikϑq )X†)j |2 (3)

By letting ξ = πX and substituting in (3), we get

p(k) =
∑

{j | ηj=1}
((ξ1eikϑ1 , . . . , ξqeikϑq )X†)j ((ξ1eikϑ1 , . . . , ξqeikϑq )X†)∗j



130 Carlo Mereghetti and Beatrice Palano

=
∑

{j | ηj=1}

(
q∑
s=1

ξseikϑsX
†
sj

)(
q∑
t=1

ξ∗t e
−ikϑt(X†

tj)
∗
)

=
∑

1≤s,t≤q
eik(ϑs−ϑt)

∑
{j | ηj=1}

ξsX
†
sj(ξtX

†
tj)

∗.

Now, define the matrix B as

Bst =
∑

{j | ηj=1}
ξsX

†
sj(ξtX

†
tj)

∗,

for 1 ≤ s, t ≤ q. It is easy to verify that B = B†, and hence B is Hermitian. To
prove that B is positive semidefinite, by Proposition 3(i), it is enough to show
that xBx† ≥ 0, for any x ∈ C1×q:

xBx† =
∑

1≤s,t≤q
xs


 ∑

{j | ηj=1}
ξsX

†
sj(ξtX

†
tj)

∗


x∗

t

=
∑

{j | ηj=1}

(
q∑
s=1

xsξsX
†
sj

)(
q∑
t=1

xtξtX
†
tj

)∗

=
∑

{j | ηj=1}

∣∣∣∣∣
q∑
s=1

xsξsX
†
sj

∣∣∣∣∣
2

≥ 0.

��
We are now ready to concentrate on SynE. Recall that our aim is to build a

unary 1qfa A which induces ap+ b, for some reals a > 0, b ≥ 0, with a+ b ≤ 1,
and an n-periodic stochastic event p : N→ [0, 1] given as input.

We start by observing that the event p is an n-periodic function and hence,
according to Equation (1) in Section 2.1, it expands as

p(k) =
1
n

n−1∑
j=0

P (j)ω−kj , (4)

for (P (0), P (1), . . . , P (n− 1)) = W (p(0), p(1), . . . , p(n− 1)). On the other hand,
in the light of Proposition 5, to be induced by a unary 1qfa, the event p must
have the form

p(k) =
∑

1≤s,t≤q
eik(ϑs−ϑt)Bst, (5)

for some real ϑ’s and an Hermitian positive semidefinite matrix B. These obser-
vations lead us to design an algorithm consisting of two parts. In the first part,
we compute ϑ’s and B so that Equation (5) exactly reproduces Equation (4). In
the second part, we construct from such ϑ’s and B a well formed 1qfa inducing
ap+ b.
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First Part of the Algorithm

� Input (p(0), p(1), . . . , p(n− 1))
step 1 Compute (P (0), P (1), . . . , P (n − 1)) = W (p(0), p(1), . . . , p(n − 1)), the

discrete Fourier transform, and let Supp(P ) = {j ∈ Zn | P (j) �= 0}.
step 2 Find a difference cover ∆ = {a1, a2, . . . , aq} for Zn.
step 3 For each 1 ≤ t ≤ q, let ϑt = − 2π

n at.
step 4 For each j ∈Supp(P ), let

N(j) = |{(as, at) | as, at ∈ ∆ and j ≡ as − at (modn)}|,
and, for 1 ≤ s, t ≤ q, compute

Bst =

{
1
n
P (j)
N(j) if j ∈ Supp(P ) and j ≡ as − at (modn)

0 otherwise.

It is easy to verify that B ∈ Cq×q is an Hermitian matrix: to see that Bst =
Bts

∗, it is enough to notice that P (j) = P ∗(−jmodn) andN(j) = N(−jmodn),
for each j ∈ Zn. By plugging ϑ’s obtained at step 3 and B obtained at step 4
into Equation (5), we get exactly p(k) as in Equation (4).

Now comes the second part of the algorithm. We show how to build a 1qfa
A = (π, U, η) inducing ap+b from ϑ’s and B computed in the first part. There are
two ways of reconstructing A, depending on whether B is positive semidefinite
or not.

Second Part of the Algorithm

step 5.a If B is positive semidefinite Then
– Find a matrix Y ∈ Cq×q satisfying Y Y † = B. Such Y exists by Propo-
sition 3(ii).

– Construct the 2q×2q matrix M =
�

Y E

F

�
, where the row vectorsMi ∈

C1×2q are mutually orthogonal. To get this, the first q rows of M can be
computed by setting the lower triangular matrix E ∈ Cq×q as

Eij =



1 if i = j
−〈Yi, Yj 〉 −Pj−1

k=1 EikEjk
∗ if i > j

0 otherwise,

where Yi is the i-th row of Y . At this point, we can take the q rows
of F as an orthogonal basis of the subspace which is orthogonal to that
spanned by the vectors M1,M2, . . . ,Mq. Such a task can be performed
by using standard tools in linear algebra (see, e.g., [13]).

– Define X†
i = Mi/‖Mi ‖ the i-th row of the 2q × 2q unitary matrix X†.

Unitarity of X† comes from the fact that we are constructing its rows as
mutually orthonormal vectors, and hence Proposition 2(i) applies.
Define also the vectors ξ̃ ∈ C1×2q and η ∈ C2q×1 as

ξ̃i =
{‖Mi ‖ for i ≤ q
0 otherwise and ηi =

{
1 for i ≤ q
0 otherwise.
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– Compute the C1×2q vector π = ξX†, where ξ = ξ̃/‖ ξ̃‖ .
� Output A = (π,XDX†, η), where D = diag(eiϑ1 , . . . , eiϑq , 1, . . . , 1︸ ︷︷ ︸

q−times

).
Output also a = 1

||ξ̃||2 .

Fact. It is not hard to see that A is a well formed 1qfa: First, notice that π
is obtained by multiplying the norm 1 vector ξ by the unitary matrix X†.
Hence, by Proposition 2(ii), ‖π‖= 1. Next, notice that the transition matrix
XDX† is unitary, being the product of unitary matrices. A has 2q states
and it is easily seen to induce the event ap, with 0 < a = 1

||ξ̃||2 ≤ 1.

step 5.b If B is not positive semidefinite Then
– Find two Hermitian positive semidefinite matrices G,H ∈ Cq×q such
that B = G−H .
These two matrices can be constructed as follows. Since B is an Hermi-
tian matrix, by Proposition 1, we can write B = Xdiag(ν1, ν2, . . . , νq)X†,
where ν’s are the real eigenvalues of B and X is a unitary matrix. De-
fine D+ = diag(υ1, υ2, . . . , υq), where υi = νi if νi > 0, and 0 otherwise.
Set D− = D+−D. Let G = XD+X† and H = XD−X†. It is easy to see
that B = G−H , and that both G and H are Hermitian. Moreover, one
can easily verify that, for each x ∈ C1×q, both xGx† ≥ 0 and xHx† ≥ 0
hold true. Hence, by Proposition 3(i), G and H are positive semidefinite.

– Perform step 5.a by having as input G and H . This yields two 2q-state
1qfa’s A1 and A2 inducing, respectively, the events a1p1 and a2p2, with
0 < a1, a2 ≤ 1 and p1 − p2 = p.

– Let U be the 1-state 1qfa inducing the event pU (k) = 1, for any k ≥ 0.
Use Proposition 4 to construct the following 1qfa’s:
If a1 ≤ a2 Then
− construct A3 = a1

a2
A2 + (1− a1

a2
)U . A3 has 2q+ 1 states and induces

the event a1p2 + (1− a1
a2
).

− constructA3, i.e., the (2q+1)-state 1qfa inducing 1−pA3 =
a1
a2
−a1p2.

� Output A4 = 1
2A1 + 1

2A3. Output also a = a1
2 and b = a1

2a2
.

If a1 > a2 Then
− construct A3 = a2

a1
A1 + (1− a2

a1
)U . A3 has 2q+ 1 states and induces

the event a2p1 + (1− a2
a1
).

− construct A2, i.e., the 2q-state 1qfa inducing 1− a2p2.
� Output A4 = 1

2A3 + 1
2A2. Output also a = a2

2 and b = 1− a2
2a1

.

Fact. It is easy to see that, in both cases, A4 is a (4q + 1)-state 1qfa inducing
the event ap+ b, for a, b > 0, with a+ b ≤ 1.

In conclusion, the above algorithm provides a constructive proof of the fol-
lowing

Theorem 2. For any n-periodic event p, there exists a unary 1qfa with at most
2
√
6n+ 25 states inducing ap+ b, for some reals a > 0, b ≥ 0, with a+ b ≤ 1.
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Proof. We use our algorithm to construct a 1qfa A for ap+ b. As one may easily
see, A has at most 4q + 1 states, where q is the cardinality of a difference cover
for Zn. By Theorem 1, q is bounded above by

√
1.5n+6, whence the result. ��

We end with a quick evaluation of the complexity of our algorithm.
First Part of the Algorithm: Computing the discrete Fourier transform

at step 1 requires O(n logn) time, as observed in Section 2.1. The operations
at steps 3, 4 are easily seen to require polynomial time. Finally, at step 2, we
can construct a difference cover for Zn in polynomial time by using Wichmann’s
sequence, as addressed in Section 2.2.

Second Part of the Algorithm: The hardest tasks at steps 5.a, 5.b are
basically to solve some problems from linear algebra, such as: Cholesky factoriza-
tion, computation of basis for orthogonal subspaces, decomposition of Hermitian
matrices. For all these tasks, polynomial time algorithms can be obtained from
the literature (see, e.g., [11]).

This enables us to conclude that a (2
√
6n+25)-state 1qfa for the event ap+b

can be constructed in polynomial time.

4 Synthesis of 1qfa’s from Periodic Languages

We now focus on accepting periodic languages, i.e., unary languages in the form
L = {k ∈ N | (kmodn) ∈ S}, for a fixed S ⊆ Zn. As recalled in the introduction,
recognizing n-periodic languages by 1dfa’s takes at least n states. Moreover, in
some cases, e.g. when n is a prime, even using 1pfa’s (or also two-way nondeter-
minism) does not help in saving states.

By using the results in the previous section, we are always able to design
1qfa’s with O(√n) states and isolated cut point for n-periodic languages, as
proved in the following

Theorem 3. Any n-periodic language can be accepted with isolated cut point
on a 1qfa having no more than 2

√
6n+ 26 states.

Proof. With each n-periodic language L = {k ∈ N | (kmodn) ∈ S}, for some
S ⊆ Zn, we can associate the n-periodic event p defined, for each k ≥ 0, as
p(k) = 1 if (kmodn) ∈ S, and 0 otherwise. By Theorem 2, there exists a 1qfa A,
with no more than 2

√
6n+ 25, that induces ap+ b, for some reals a > 0, b ≥ 0,

a + b ≤ 1. If b + a/2 ≥ 1/2, we let λ = b + a/2 and ε = a/2. Otherwise, we
construct the automaton A1 = 1

2A+ 1
2U by adding one more state to the states

of A, and we let λ = b/2 + a/4 + 1/2 and ε = a/4. It is easy to verify that A or
A1 accepts L with cut point λ ≥ 1/2 isolated by ε. ��
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5 Some Concluding Remarks and Open Problems

In this work, we have provided a polynomial time algorithm for constructing
small 1qfa’s that induce periodic stochastic events or accept periodic languages.
More precisely, we have shown that any n-periodic event can be induced by
a 1qfa with at most 2

√
6n+25 states, while any n-periodic language is accepted

with no more than 2
√
6n+ 26 states.

These results point out that, on a wide class of problems, 1qfa’s are quadrat-
ically more succinct than corresponding deterministic automata2. In fact, it is
well known that any 1dfa recognizing an n-periodic language must have at least n
states.

More can be said even on the question quantum vs. probabilistic automata.
As proved in [4], for any given prime p, the language Lp requires at least p
states to be accepted on 1pfa’s with isolated cut point. This clearly implies the
same state lower bound to induce p-periodic events by 1pfa’s. Our results show
that 1qfa’s can be built that induce p-periodic events using only O(√p) states.
Moreover, we have used this fact to accept p-periodic languages with isolated
cut point on O(√p)-state 1qfa’s.

It should be noticed that, by using ad hoc techniques on ad hoc problems, we
can sometimes obtain even more succinct 1qfa’s. For instance, in [4], a O(log p)-
state 1qfa for Lp is exhibited. However, due to its generality, we cannot expect
our method to be so “state-saving”. Nevertheless, it can be used as a tool to
generate small quantum machines that can eventually serve as starting points for
further refinements. Yet, we feel that our method could be of help in approaching
open questions on quantum finite automata, some of which are quickly suggested
hereafter:

– How to construct 1qfa’s exactly inducing given periodic stochastic events?
– How to obtain Monte Carlo 1qfa’s (a more “reliable” version of isolated cut
point 1qfa’s, see [8]) accepting periodic languages?

– What about the size of the resulting 1qfa’s?
– What about the size of minimal 1qfa’s inducing periodic stochastic events
or accepting periodic languages?

Acknowledgments. The authors wish to thank Alberto Bertoni for stimulating
discussions, and anonymous referees for their comments.
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Abstract. P systems are computational models inspired by some bi-
ological features of the structure and the functioning of real cells. In
this paper we introduce a new kind of communication between mem-
branes, based upon the natural budding of vesicles in a cell. We de�ne
the operations of gemmation and fusion of mobile membranes, and we
use membrane structures and rules over strings of biological inspiration
only. We prove that P systems of this type can generate all recursively
enumerable languages and, moreover, the Hamiltonian Path Problem can
be solved in a quadratic time. Some open problems are also formulated.

1 Introduction

The P systems were recently introduced in [7] as a class of distributed parallel
computing devices of a biochemical type. The basic model consists of a mem-
brane structure composed by several cell-membranes, hierarchically embedded in
a main membrane called the skin membrane. The membranes delimit regions and
can contain objects, which evolve according to given evolution rules associated
with the regions. Such rules are applied in a nondeterministic and maximally
parallel manner: at each step, all the objects which can evolve should evolve.
A computation device is obtained: we start from an initial con�guration and
we let the system evolve. A computation halts when no further rule can be ap-
plied. The objects in a speci�ed output membrane (or expelled through the skin
membrane) are the result of the computation.

Many basic variants are considered in [7], [8], and [10]. Further extensions
are de�ned in [6], [9], [15], where polynomial (or even linear) time solution for
some NP-complete problems are proposed.
A survey and an up-to-date bibliography can be found at the web address
http://bioinformatics.bio.disco.unimib.it/psystems.

Up to now, in all the variants of P systems only the direct communication of
objects through membranes has been considered: an object can exit the mem-
brane where it is placed and enter the upper level region, or it can enter a lower
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level region. Such communications are de�ned by means of target indications
in/out attached to the evolution rules of the system. The aim of the present
work is to introduce a new kind of communication between membranes and to
keep the de�nition of P systems closer to the real structure of cells.

The notion of mobility was �rst introduced into P systems area in [11], where
a link was established between P systems and Ambient Calculus (see, e.g., [1]).
In that paper, the creation of travelling cells was proposed in order to get direct
and secure communications of objects between non-adjacent membranes, both
provided with a common shared key. The passage and the possible consequent
modi�cation of objects along the path between the two membranes was thus
avoided.

In this paper we do not consider any security feature, instead we want to
introduce a di�erent de�nition of mobile membranes, based upon a biological
process of alive cells. Cellular membranes are selectively permeable to many
small substances as water and ions, but not to bigger ones as proteins (see,
e.g., [14]). Such substances are communicated inside or outside the cell by means
of vesicles, which are little parts of a membrane, encased on their cytosolic
face by a speci�c protein that causes their budding from the membrane. When
the vesicle fuses with its target membrane, the carried proteins are introduced
inside it, where they can be modi�ed by other chemical reactions. Many cellular
compartments use this kind of communication, in particular this is the case
of the Golgi apparatus ([12]), a stack of distinct elementary membranes (i.e.
membranes without other membranes inside) where, in sequence, many proteins
are stepwise modi�ed and then sent to another Golgi-region. Speci�cally, only
the substances that have completed their �maturation path� inside the current
region can be communicated by a vesicle to the next destination. For example,
only the proteins that have reached their exact folding can enter a budding
vesicle, otherwise they will remain inside the current Golgi-region.

In order to simulate all these natural features, we consider P systems with
simple membrane structures (the skin membrane can only contain elementary
membranes) and with operations on strings of a biochemical inspiration, such
as mutation, replication and splitting rules. Moreover, we de�ne a meta-priority
between the set of classical evolution rules and the set of pre-dynamical rules,
which are the rules that give rise to the gemmation of mobile membranes (that
is, the budding of vesicles in the cell). The meta-priority is needed to the aim
of simulating the completion of the maturation path of an object. After a pre-
dynamical rule has been used, the phases of gemmation and fusion of mobile
membranes take place. In particular, the output of the system is due to the
fusion of a mobile membrane with the skin membrane: this process causes the
release of the objects outside the system. The set of strings that exit the skin
membrane is the language generated by the system, as usual in P systems with
external output ([10]).

We show that the obtained system is able to generate every recursively enu-
merable language and that it can be used to solve NP-complete problems in
polynomial time. In particular, we prove this by showing how to solve the Hamil-
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tonian Path Problem in a quadratic time with respect to the input length. A so-
lution to this problem was also proposed, for a di�erent variant of P systems,
in [2].

2 De�nition

We refer to [13] for formal language theory prerequisites, we only mention here
that we denote by V ∗ the free monoid generated by the alphabet V under the
operation of concatenation. The empty string is denoted by λ and V + = V ∗−{λ}
is the set of non-empty strings over V .

A membrane structure µ is a construct consisting of several membranes hier-
archically embedded in a unique membrane, called a skin membrane. We identify
a membrane structure with a string of correctly matching square parentheses,
placed in a unique pair of matching parentheses; each pair of matching parenthe-
ses corresponds to a membrane. We can also associate a tree with the structure,
in a natural way; the height of the tree is the depth of the structure itself. In
order to stay close to the structure of a real cell, in this paper we will consider
only membrane structures of depth 2, with the skin membrane always labelled
with 0 and the inner membranes injectively labelled with numbers in the set
{1, . . . , n}.

Each membrane identi�es a region, delimited by it and the membrane imme-
diately inside it. If we place multisets of objects in the region from a speci�ed
�nite set V , we get a super-cell. A super-cell system (or P-system) is a super-cell
provided with evolution rules for its objects.

We will work with string-objects, so with every region i = 0, 1, . . . , n of µ we
associate a multiset of �nite support over V ∗, that is a map Mi : V ∗ → N
where Mi = {(x1,Mi(x1)), . . . , (xp,Mi(xp))}, for some xk ∈ V + such that
Mi(xk) > 0 ∀k = 1, . . . , p.
We will use three types of operations on strings over V , which were �rst consid-
ered in [2]:

1. Mutation: a mutation rule is a context-free rewriting rule rm : a → u,
where a ∈ V and u ∈ V ∗. For strings w1, w2 ∈ V + we write w1 ⇒rm w2

if w1 = x1ax2 and w2 = x1ux2, for some x1, x2 ∈ V ∗.
2. Replication: if a ∈ V and u1, u2 ∈ V +, then rr : a → u1 ‖ u2 is called a

replication rule. For strings w1, w2, w3 ∈ V + we write w1 ⇒rr (w2, w3) (and
we say that w1 is replicated with respect to rule rr) if w1 = x1ax2, w2 =
x1u1x2 and w3 = x1u2x2 for some x1, x2 ∈ V ∗.

3. Splitting : if a ∈ V and u1, u2 ∈ V +, then rs : a → u1 : u2 is called a
splitting rule. For strings w1, w2, w3 ∈ V + we write w1 ⇒rs (w2, w3) (and
we say that w1 is split with respect to rule rs) if w1 = x1ax2, w2 = x1u1

and w3 = u2x2 for some x1, x2 ∈ V ∗.

Note that only replication and splitting rules increase the number of strings,
while mutation rules can delete symbols. When using such operations in P sys-
tems, we will add target indications to rules, indicating the regions where the
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resulting strings will be communicated at the next step.
With each region i = 0, 1, . . . , n of the membrane structure we associate two
distinct sets of rules:

1. A set Ci of classical evolution rules, that is a set of mutation, replication and
splitting rules of the form a → α, with α ∈ {(u, tar), (u1‖u2; tar1, tar2), (u1 :
u2; tar1, tar2)}, where u, u1, u2 are strings over V (as de�ned above) and
tar, tar1, tar2 ∈ {here, out} if i = 1, . . . , n, tar, tar1, tar2 ∈ {here, out} ∪
{in1, . . . , inn} if i = 0.

2. A set Di of pre-dynamical evolution rules, that is a set of mutation, replica-
tion and splitting rules of the form a → α′, with α′ ∈ {(u, here), (u1 ‖ u2;
here, here), (u1 : u2;here, here)}, where, following the above notations for
strings and substrings, it holds that x1 = λ (or x2 = λ), u and at least one
string between u1, u2 belong to {@j} ·V ∗ (respectively V ∗ · {@j}), where @j

is a special symbol not in V and j ∈ {0, 1, . . . , n}, j �= i.
We point out that a pre-dynamical rule can introduce the special symbol @j

only at the ends of the string, that is the reason why we ask for x1 or x2

to be empty words. Note that if i = 0, then the set D0 is empty, that is no
pre-dynamical rule is de�ned inside the skin membrane.

Once the symbol @j as been introduced by a pre-dynamical rule in membrane
i, for j �= i, inside the P system we have two sequential and dynamical commu-
nication processes carried out by a mobile membrane, which we write as a couple
of well-matching round brackets (i,j . . .)i,j , where i is the label of the originating
membrane and j is the label of the target membrane. The communication steps
are de�ned by means of the following rules:

1. Gemmation of a mobile membrane:

[0. . . [i. . . , w@j , . . .]i . . .]0 →G [0. . . [i. . .]i(i,j w )i,j . . .]0

for some i ∈ {1, . . . , n}, j ∈ {0, 1, . . . , n}, j �= i, w ∈ V +.
During this �rst phase the symbol @j is removed, its subscript becomes the
second label of the mobile membrane, the string w leaves membrane i and
enters the freshly created mobile membrane.
If there are more than one string as w1@j, . . . , wk@j inside membrane i, all
of which directed to the same target membrane j, then a single common
mobile membrane will be budded o� from membrane i:

[0. . . [i. . . , w1@j, . . . , wk@j, . . .]i . . .]0 →G [0. . . [i. . .]i(i,jw1, . . . , wk)i,j . . .]0.

Otherwise, if inside membrane i there are strings w1@j1 , . . . , wh@jk
(h ≥ k)

such that j1, . . . , jk are pairly distinct, then k distinct mobile membranes
will be gemmated, each one containing the strings directed to the speci�ed
membrane:

[0. . . [i. . . , w1@j1 , . . . , wh1@j1 , . . . , whk
@jk

, . . . , wh@jk
, . . .]i . . .]0 →G
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[0. . . [i. . .]i(i,j1w1, . . . , wh1)i,j1 . . . (i,jk
whk

, . . . , wh)i,jk
. . .]0.

Exactly analogous is the symmetrical case when a membrane i, for some
i ∈ {1, . . . , n}, contains one or more strings of the form @jw, for some
j ∈ {0, 1, . . . , n}. Obviously the same holds when a membrane i contains
some strings of both forms.

2. Fusion of the mobile membrane:

[0. . . (i,jw)i,j [j . . .]j . . .]0 →F [0. . . [j . . . , w, . . .]j . . .]0

for some i ∈ {1, . . . , n}, j ∈ {1, . . . , n}, j �= i, w ∈ V +.
During this second phase the mobile membrane becomes a part of the target
membrane, leaving its contents inside it.
In particular, if j = 0 the mobile membrane fuses with the skin membrane
and the objects exit the system. In this way we simulate the biological process
of exocytosis and hence we have the (external) output of the string:

[0. . . (i,0w)i,0 . . .]0 →F [0. . .]0w.

The processes of gemmation and fusion of a mobile membrane are illustrated
in �gure 1, where Euler-Venn diagrams of two types are used: rectangular boxes
represent membranes in the membrane structure µ, while a circle box represents
a mobile membrane.

One more theoretical feature has to be introduced to the aim of keeping this
variant closer to the functioning of real cells. We de�ne a meta-priority between
the whole set Ci and the whole set Di, ∀i = 1, . . . , n, meaning that all applicable
classical rules in Ci must be used before any other applicable pre-dynamical rule
in Di. The meta-priority is used to simulate the completion of the maturation
path of a substance inside the Golgi apparatus. On the contrary, we do not de-
�ne any priority relation between rules in the set Ci neither between rules in
the set Di, as it has been previously done in [7] in the form of a partial order
relation between evolution rules.

Finally, a P system (of degree n + 1) with gemmation of mobile membranes
(or gemmating P system, in short) is de�ned by the construct

Π(G,F ) = (V, T, µ,M0, . . . ,Mn, (C0, ∅), (C1, D1), . . . , (Cn, Dn),∞)

with the following components:

(i) V is an alphabet such that V ∩ {@j} = ∅,∀j = 0, 1, . . . , n;
(ii) T ⊆ V is the output alphabet;

(iii) µ = [0[1]1[2]2 . . . [n−1]n−1[n]n]0 is a membrane structure of depth 2 and degree
n + 1;

(iv) M0, . . . ,Mn are multisets of �nite support over V ∗;
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Fig. 1. Gemmation of a single mobile membrane from membrane i and fusion
with target-membrane j
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(v) (Ci, Di) ∀ i = 0, 1, . . . , n are the set of classical evolution rules and the set of
pre-dynamical evolution rules, respectively. Ci has a meta-priority above Di

as far as the application of all of its rules is concerned, ∀ i = 1, . . . , n. The
set D0 is empty;

(vi) ∞ means that the system has external output.

The application of the rules is done as usual in P system area: in one step
all regions are processed simultaneously by using the rules in a nondeterministic
and maximally parallel manner. This means that in each region the objects to
evolve and the rules to be applied to them are nondeterministically chosen, but all
objects which can evolve should evolve. Speci�cally, at each step of a computation
a string can be processed by one rule only, and its multiplicity is decreased by one.
The multiplicity of strings produced by an operation is accordingly increased.
The strings resulting after the application of a rule are communicated by mobile
membranes or by in/out communication to the regions speci�ed by the target
indications (the target indication here will often be omitted).

The membrane structure at a given time, together with all multisets of ob-
jects associated with the regions de�ned by the membrane structure, is the
con�guration of the system at that time. The (n + 1)-tuple (µ,M1, . . . ,Mn)
constitutes the initial con�guration of the system. For two con�gurations C1 =
(µ,M ′

1, . . . ,M
′
n), C2 = (µ,M ′′

1 , . . . ,M ′′
n) of Π(G,F ) we say that we have a transi-

tion from C1 to C2 by applying the rules present in the sets (Ci, Di), 0 ≤ i ≤ n,
according to the meta-priority relation. A sequence of transitions forms a com-
putation. A computation halts when there is no rule which can be further applied
in the current con�guration. On the contrary, we say that a computation is non-
halting if there is at least one rule which can be applied forever. The output is
the set of strings over T sent out of the system during the computation. The
language generated in this way by a P system Π(G,F ) is denoted by L(Π(G,F )).
Non-halting computations provide no output.

3 Examples

We show that we can easily generate non context-free languages using P systems
with only mutation rules and only communications performed by gemmation
of mobile membranes. Moreover, we will consider only sets of strings without
multiplicities, as no replication nor splitting rules will be used.

3.1 Example 1

We construct the P system Π1 with gemmation of mobile membranes

Π1 = (V, T, µ,M0, . . . ,M3, C0, (C1, D1), . . . , (C3, D3),∞)

where:

V = {A,A′, B,B′, C, a, b, c};
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T = {a, b, c};
µ = [0 [1 ]1 [2 ]2 [3 ]3 ]0;

M1 = {ABC}, all other sets are empty;
C0 = ∅;
C1 = {A → aA′, B → bB′},
D1 = {C → cC@2, C → cC@3};
C2 = {A′ → aA,B′ → bB},
D2 = {C → cC@1, C → cC@3};
C3 = {A → λ,A′ → λ,B → λ,B′ → λ},
D3 = {C → λ@0}.
The computation starts in membrane 1, where both classical rules A →

aA′, B → bB′ must be used before any pre-dynamical rule can be applied. The
symbols A′, B′ guarantee that an equal number of a and b will be generated, and
they are necessary in order to obtain halting computation. In fact, if we would
substitute the two rules A → aA′, B → bB′ with A → aA,B → bB respectively,
then we should apply each one forever because of the meta-priority relation.
Hence, by making cycles between membranes 1 and 2 we generate all the strings
of the form anXbnY cnC, with (X,Y ) ∈ {(A,B), (A′, B′)}. When the current
string reaches membrane 3, all nonterminal symbols are erased and the string
leaves the systems.

It is easy to see that the language generated by the system is L(Π1) =
{anbncn | n ≥ 1}.

3.2 Example 2

We de�ne the system

Π2 = (V, T, µ,M0, . . . ,M7, C0, (C1, D1), . . . , (C7, D7),∞)

with the following components:

V = {A,B,A′, B′, C, a, b};
T = {a, b};
µ = [0 [1 ]1 [2 ]2 [3 ]3 [4 ]4 [5 ]5 [6 ]6 [7 ]7 ]0;

M1 = {ABC}, all other sets are empty;
C0 = ∅;
C1 = ∅,
D1 = {C → λ@6, C → λ@7, C → C@2, C → C@3};
C2 = {A → aA′, B → aB′},
D2 = {C → λ@6, C → λ@7, C → C@4, C → C@5};
C3 = {A → bA′, B → bB′},
D3 = {C → λ@6, C → λ@7, C → C@4, C → C@5};
C4 = {A′ → aA,B′ → aB},
D4 = {C → λ@6, C → λ@7, C → C@2, C → C@3};
C5 = {A′ → bA,B′ → bB},
D5 = {C → λ@6, C → λ@7, C → C@2, C → C@3};
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C6 = {A → a,A′ → a},
D6 = {B → a@0, B

′ → a@0};
C7 = {A → b, A′ → b},
D7 = {B → b@0, B

′ → b@0}.

The computation starts in membrane 1 which contains only pre-dynamical
rules that non deterministically redirect the current string to membrane 2, 3,
6 or 7. In each membrane of the system the gemmation phase is controlled by
the support-symbol C. If we make cycles between membranes 2 and 4, then
we generate strings of the form xaAxaBC, with x ∈ {a, b}∗. Observe that in
membrane 2 we could use no rules such as A → aA,B → aB or C → C in order
to get an immediate generation of such strings, because we should apply these
rules forever and hence the computation would never halt. In the same way, we
need a cycle between membranes 3 and 5 for further rewriting of the terminal
symbol b; the generated strings have now the form xbA′xbB′C, with x ∈ {a, b}∗.
Finally, membranes 6 and 7 cause the terminal rewriting of the string and its
output from the system.

It follows that the generated language is L(Π2) = {xx | x ∈ {a, b}+}.

4 Computational Completeness

We show that P systems with gemmation of mobile membranes and in/out com-
munications are able to generate any recursively enumerable language. Moreover,
as only mutation rules are used in the proof, there is no need of using multi-
sets of strings. Hence, we will not indicate the multiplicity of the string, being
understood that it is always equal to one.

In the proof we need the notion of a matrix grammar with appearance check-
ing ; such a grammar is a construct G = (N,T, S,M,F ), where N,T are disjoint
alphabets of nonterminal and terminal symbols, S ∈ N is the axiom, M is
a �nite set of matrices, which are sequences of context-free rules of the form
(A1 → x1, . . . , An → xn), n ≥ 1, (with Ai ∈ N, xi ∈ (N ∪ T )∗, in all cases),
and F is a set of occurrences of rules in M .
For w, z ∈ (N∪T )∗ we write w ⇒ z if there are a matrix (A1 → x1, . . . , An → xn)
in M and strings wi ∈ (N ∪ T )∗, 1 ≤ i ≤ n + 1, such that w = w1, z = wn+1,
and, for all 1 ≤ i ≤ n, either wi = w′

iAiw
′′
i , wi+1 = w′

ixiw
′′
i , for some w′

i, w
′′
i ∈

(N ∪ T )∗, or wi = wi+1, Ai does not appear in wi, and the rule Ai → xi ap-
pears in F . (The rules of a matrix are applied in order, possibly skipping the
rules in F if they cannot be applied � one says that these rules are applied
in the appearance checking mode). The language generated by G is de�ned by
L(G) = {w ∈ T ∗ | S ⇒∗ w}. The family of languages of this form is denoted by
MATac. When F = ∅ (hence we do not use the appearance checking feature),
the generated family is denoted by MAT .
A matrix grammar with appearance checking G = (N,T, S,M,F ) is said to be
in the binary normal form if N = N1 ∪ N2 ∪ {S, †} is the union of mutually
disjoint sets, and the matrices in M are of one of the following forms:
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1. (S → XA) with X ∈ N1, A ∈ N2;
2. (X → Y,A → x) with X,Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T )∗;
3. (X → Y,A → †) with X,Y ∈ N1, A ∈ N2;
4. (X → λ,A → x) with X ∈ N1, A ∈ N2, x ∈ T ∗.

Moreover, there exists only one matrix of type 1, F exactly consists of all rules
A → † appearing in matrices of type 3 and † is a trap-symbol (once introduced,
it can never be removed). Finally, each matrix of type 4 is used only once, at
the last step of a derivation. According to Lemma 1.3.7 in [3], for each matrix
grammar there exists an equivalent one in the binary normal form.

We denote by CF and RE the families of context free and recursively enumer-
able languages. The following proper inclusions hold:CF ⊂MAT ⊂MATac =RE.
Further details about matrix grammars can be found in [13] and [5]. Moreover,
in [5] it is shown that all one-letter languages in MAT are regular.

We denote by GemPn(MPri, (in/out)) the family of languages generated by
gemmating P systems of degree n, for n ≥ 1, with relation of meta-priority and
communications of type in/out. If the number of membranes is not limited, then
the subscript n is replaced by ∗.
Theorem 1. GemP∗(MPri, (in/out)) = RE.

Proof. The inclusion GemP∗(MPri, (in/out)) ⊆ RE directly follows from
Church-Turing thesis. So, we only have to prove the opposite inclusion; to this
aim, we make use of the equality RE = MATac and we consider a matrix
grammar with appearance checking G = (N,T, S,M,F ), in the binary normal
form previously described. Let p be the number of matrices of type 2 in G, q
the number of matrices of type 3 and r the number of matrices of type 4, with
p ≥ 1, q ≥ 1, r ≥ 1.
We show how to construct a gemmating P system of degree s = 2p + q + 2r + 3
that generates the same language as G:

Π(G,F ) = (V, µ,M0,M1,M(2)1 ,M(2)2 , . . . ,M(p+1)1 ,M(p+1)2 ,M(p+2)1 , . . . ,

M(p+q+1)1 ,M(p+q+2)1 ,M(p+q+2)2 , . . . ,M(p+q+r+1)1 ,M(p+q+r+1)2 ,Mc,

C0, (C1, D1), (C(2)1 , D(2)1), . . . , (C(p+q+r+1)2 , D(p+q+r+1)2), (Cc, Dc))

with

V = N1 ∪N2 ∪ T ∪ {P, J, J ′, 0}
(we use the symbols of G plus four support-symbols P, J, J ′ and 0);

µ = [0 [1]1 [(2)1 ](2)1 [(2)2 ](2)2 . . . [(p+1)1 ](p+1)1 [(p+1)2 ](p+1)2 [(p+2)1 ](p+2)1

. . . [(p+q+1)1 ](p+q+1)1 [(p+q+2)1 ](p+q+2)1 [(p+q+2)2 ](p+q+2)2 . . .
[(p+q+r+1)1 ](p+q+r+1)1 [(p+q+r+1)2 ](p+q+r+1)2 [c ]c ]0
(membrane 1 simulates the matrix of type 1 in G, each couple of mem-
branes labelled with (i)1, (i)2, 2 ≤ i ≤ p + 1, simulate a matrix of type
2 in G, each membrane labelled with (j)1, p + 2 ≤ j ≤ p + q + 1, sim-
ulate a matrix of type 3 in G, each couple of membranes labelled with
(k)1, (k)2, p + q + 2 ≤ k ≤ p + q + r + 1, simulate a matrix of type 4 in
G; we also use a control-membrane labelled with c);
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M1 = {XAP | S → XA is the rule of the matrix of type 1}, all other sets are
empty;

C0 = {J → (λ, in1), J ′ → (λ, inc)}
(the skin membrane contains two classical rules, one for each support-
symbol J, J ′, which redirect the received strings to membrane 1 or to the
control-membrane);

C1 = ∅ and D1 = {P → P@(i)1 , P → P@(j)1 , P → P@(k)1},
∀ i = 2, . . . , p+1, ∀ j = p+2, . . . , p+q+1, ∀ k = p+q+2, . . . , p+q+r+1
(membrane 1 sends the current string to the �rst membrane (i)1, (k)1 of
any couple of membranes simulating matrices of type 2 and 4, or to any
of the single membranes (j)1 simulating the matrices of type 3);

∀ i = 2, . . . , p + 1 we de�ne:

C(i)1 = ∅ and D(i)1 = {X → @(i)2Y }
(for each matrix of type 2, in the �rst membrane we simulate the �rst
rule of the matrix with one pre-dynamical rule),

C(i)2 = {A → (Jx, out)} and D(i)2 = ∅
(for each matrix of type 2, in the second membrane we simulate the
second rule of the matrix with one classical rule, which introduces the
support-symbol J in the string);

∀ j = p + 2, . . . , p + q + 1 we de�ne:

C(j)1 = {A → A} and D(j)1 = {X → @1Y }
(for each matrix of type 3, in a unique membrane we simulate the second
rule of the matrix by one classical evolution rule, and the �rst rule of
the matrix by one pre-dynamical rule);

∀ k = p + q + 2, . . . , p + q + r + 1 we de�ne:

C(k)1 = ∅ and D(k)1 = {X → @(k)2λ}
(for each matrix of type 4, in the �rst membrane we simulate the �rst
rule of the matrix with one pre-dynamical rule),

C(k)2 = {A → (J ′x, out)} and D(k)2 = ∅
(for each matrix of type 4, in the second membrane we simulate the
second rule of the matrix with one classical rule. The support-symbol J ′

is introduced in the string);

and �nally

Cc = {B → (0, here), 0 → (0, here)} ∀B ∈ N1 ∪N2

(in the control-membrane we de�ne a classical rule for each nonterminal
symbol in N1 ∪N2, and one classical mutation rule over 0 which causes
the non termination of a computation),

Dc = {P → λ@0}
(this pre-dynamical rule erases the support-symbol P and sends the
string outside the system).
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The system works as follows: consider the string ZwP in membrane 1 with
Z ∈ N1 and w ∈ (N2 ∪ T )∗. Initially we have Z = X and w = A.
We nondeterministically choose between any of the pre-dynamical rules de-
�ned in membrane 1, the string ZwP is so rewritten as ZwP@t, with t ∈
{(i)1, (j)1, (k)1}. This string is sent to membrane (i)1, with 2 ≤ i ≤ p + 1,
or (k)1, with p + q + 2 ≤ k ≤ p + q + r + 1, or (j)1, with p + 2 ≤ j ≤ p + q + 1,
where we simulate the �rst rule of the matrices of type 2 and 4, or both rules of
matrices of type 3, respectively.

If the string ZwP enters a membrane (i)1, for any i = 2, . . . , p + 1, and
Z = X , then we can apply the pre-dynamical rule X → @(i)2Y : the rule of
the corresponding matrix is correctly simulated and the string enters the second
membrane (i)2. On the contrary, if Z �= X , then the rule cannot be applied and
the computation halts, no string will be generated. In the �rst case, when the
string Y wP enters membrane (i)2, if the symbol A ∈ w then we can apply the
rule A → (Jx, out). The string Y w1Jxw2P , with w1, w2 ∈ (N2 ∪ T )∗ such that
w = w1Aw2, enters membrane 0 and then it returns to membrane 1 by means of
the rule J → (λ, in1). Observe that the support-symbol J is immediately erased
and it will never appear in any terminal string. From membrane 1 we can now
start the simulation of another matrix. In membrane (i)2, if the symbol A �∈ w,
then the string will never exit the current membrane, the computation halts and
no string will be generated. Thus, with two membranes we are able to simulate
the productions of any matrix of type 2, and we can correctly do it.

If the string ZwP enters a membrane (j)1, for any j = p + 2, . . . , p + q + 1,
and A ∈ w, then the computation will never stop: the rule A → A will be applied
forever because of the meta-priority relation. No string will be generated, thus
we correctly simulate the introduction of the symbol † in a production of G. On
the contrary, if A �∈ w, then the classical rule A → A cannot be applied and we
pass to the pre-dynamical rule X → @1Y . If Z = X then the string Y wP will be
sent to membrane 1, otherwise the rule cannot be applied and the computation
stops. Thus we only need one membrane for every matrix in G whose rules are
to be applied in the appearance checking mode. Observe that the order of the
rules in the membrane is opposite to the order of the rules in the matrix, but
this fact does not change the set of generated strings.

Finally, if the string ZwP enters a membrane (k)1, for any k = p+ q+2,
. . . , p + q + r + 1, and Z = X , then we can apply the pre-dynamical rule X →
@(k)2λ: the rule of the corresponding matrix is correctly simulated and the string
enters the second membrane (k)2. If Z �= X , then the rule cannot be applied
and the computation halts, no string will be generated. If the string wP enters
membrane (k)2 and if the symbol A �∈ w, then the string will never exit the
current membrane, the computation halts and no string will be generated. On the
contrary, if A ∈ w we can apply the rule A → (J ′x, out): the string w1J

′xw2P ,
with w1, w2 ∈ (N2 ∪ T )∗ such that w = w1Aw2, enters membrane 0. As for
matrices of type 2, we are therefore able to simulate the productions of any
matrix of type 4 with two membranes, and we can do it in the correct order.
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When a string reaches a membrane labelled with (k)2, for any k=p + q + 2,
. . . , p + q + r + 1, the simulation of the matrices of G has to be ended. To
this aim, we make use of the support-symbol J ′: in membrane 0 we de�ne the
rule J ′ → (λ, inc) which will send the received string w1xw2P to membrane c.
Again, the support-symbol J ′ is immediately erased and it will never appear
in any terminal string. Inside the control-membrane we check that the string
does not contain any nonterminal symbol: if it is so, then the string w1xw2 will
exit the system by a �nal gemmation due to the rule P → λ@0. Otherwise,
if w1xw2P contains a symbol B ∈ (N1 ∪N2), then the classical rules B → 0 will
introduce the trap symbol 0 that causes never halting computations. No string
will be generated and, once more, we can correctly simulate any production in G.

It follows that we exactly generate the strings of terminal symbols generated
by G, that is L(Π(G,F )) = L(G). ��

We want to point out that, as seen in the proof, a unique membrane su�ces
for simulating each matrix of type 3, while we need two membranes and in/out
communications for each matrix of type 2 and 4. The meta-priority relation and
the gemmation of mobile membranes yield here an easy and immediate simu-
lation of the appearance checking mode, unlike all other variants of P systems
where this aspect of matrix grammars is harder to be proved.

We stress the fact that in/out communications are essential in order to get a
correct simulation of matrices of type 2 and 4. In fact, let us consider the second
rule A → x (with x ∈ (N2 ∪ T )∗ or x ∈ T ∗) of such matrices and analyse the
following cases:

1. this rule could not be simulated using a pre-dynamical rule of the form
A → x@1, because the symbol @1 can be introduced only at one end of
the string but we do not know where the symbol A is placed in the current
string;

2. we could not use a single membrane and two rules of the form A → x, P →
P@1 because the meta-priority forces the application of the classical rule to
all occurrences of the symbol A in the string. Hence, the simulation of the
corresponding matrix could not be correct.

If we do not use in/out communications, it is possible to show that the family
of languages MAT is properly included in the family of languages generated by
gemmating P systems of degree 4.

Theorem 2. GemP4(MPri, n(in/out)) −MAT �= ∅.
Proof. Consider the P system

Π = (V, T, µ,M0, . . . ,M3, C0, (C1, D1), (C2, D2), (C3, D3),∞)

with components

V = {A,A′, B, a};
T = {a};
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µ = [0[1]1[2]2[3]3]0;
M1 = {AB}, all other sets are empty;

C0 = ∅;
C1 = {A → A′A′},
D1 = {B → B@2, B → B@3};
C2 = {A′ → AA},
D2 = {B → B@1, B → B@3};
C3 = {A → a,A′ → a, },
D3 = {B → λ@0}.

The system works as follows: in membrane 1 and 2 we duplicate the num-
ber of the symbols A and A′, respectively, and we generate strings of the form
(A′)2

n

B or (A)2
n

B ∀n ≥ 1. When the current string is sent to membrane 3, each
nonterminal symbol A or A′ becomes a terminal symbol a, while the support-
symbol B is erased and the string leaves the system. Thus we generate the
language L(Π) = {a2n | n ≥ 1}, which is a non regular language over one-letter
alphabet.
It follows that MAT ⊂ GemP4(MPri, n(in/out)). ��

5 Solving the HPP in Quadratic Time

Consider a directed graph γ = (N,A) where N is a �nite set of n vertices,
identi�ed with the numbers 1, 2, . . . , n, and A is a set of ordered pairs of vertices
(vi, vj), for i, j ∈ {1, . . . , n}. The Hamiltonian Path Problem (in short HPP)
for γ asks whether or not there exists a path from a given initial vertex v1 to
a �nal vertex vn which passes exactly once through each and every vertex of the
graph ([4]). We write as ri the outdegree of the vertex vi, ∀ i ∈ {1, . . . , n}, and
we ignore useless arcs of the form (vi, vi), so ri will be at most equal to n− 1.

We show how to construct a P system with gemmation of mobile membranes,
with rules similar to those used in [2], which actually �nds all Hamiltonian paths
in a given graph and not only their existence (if any). The computation halts
for all inputs and the problem is solved at most in a quadratic time with respect
to the number of vertices.

Theorem 3. The HPP can be solved by P systems with gemmation of mobile
membranes in a quadratic time with respect to the number of vertices.

Proof. We de�ne a gemmating P system of degree n + 1 associated with γ

ΠHPP = (V, T, µ,M0, . . . ,Mn, C0, (C1, D1), . . . , (Cn, Dn),∞)

with the following components:

V = {〈i, k〉, [i, k], 〈i, k; j1, . . . , jri〉, 0 | 1 ≤ i ≤ n, 0 ≤ k ≤ n− 1 and j1, . . . , jri
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are labels in {1, . . . , n} such that (vi, vjh
) ∈ A, ∀ h = 1, . . . , ri},

i is the label of the vertex vi, ri is the outdegree of the vertex vi,

while k is used to count the steps of computation;
T = {[i, k] | 1 ≤ i ≤ n, 0 ≤ k ≤ n− 1};
µ = [0[1]1[2]2 . . . [n−1]n−1[n]n]0, that is we de�ne an inner membrane i

for each vertex vi in N ;
M1 = {(〈1, 0〉, 1)}, all other multisets are empty;
C0 = ∅,

and with the following sets of rules which, starting from the object 〈1, 0〉 in
membrane 1 and by repeatedly using replication rules in the inner membranes,
create all the strings that correspond to paths in γ:

C1: 〈1,k〉 → (0;here) ∀ k = 1, . . . , n− 1
(in membrane 1 if a string contains the symbol 〈1, k〉 for k �= 0, then
it codi�es a wrong path because it surely visited the current membrane
twice. We stop such strings by the introduction of the symbol 0);

D1: 〈1,0〉 → ([1,0]〈j1,1〉@j1 ;here) if r1 = 1
(if there is a single arc from vertex v1 to vertex vj1 , then the nonter-
minal symbol 〈1, 0〉 is rewritten as the corresponding terminal symbol
[1, 0], and the string is prolonged by adding 〈j1, 1〉, which denotes the
label of the membrane to be visited and the next step in the path);
〈1,0〉 → ([1,0]〈j1,1〉@j1 ‖ [1,0]〈j2,1〉@j2 ;here,here) if r1 = 2
(if there are two arcs exiting from vertex v1, then we replicate the initial
object into two strings at the same step);
〈1,0〉 → ([1,0]〈j1,1〉@j1 ‖ 〈1,0; j2, . . . , jr1〉;here,here) if r1 > 2
(if there are more than two vertices exiting vertex v1, then we use a
replication rule to prolong one string and to memorize all the others
vertex-labels in the nonterminal symbol 〈1, 0; j2, . . . , jr1〉);
〈1,0; jh, . . . , jr1〉 → ([1,0]〈jh,1〉@jh ‖ 〈1,0; jh+1, . . . , jr1〉;here,here)
∀ h = 2, . . . , r1 − 2
(if there are more than two memorized vertices, then in a step we prolong
only one of them, while keeping memorized all the others);
〈1,0; jr1−1, jr1〉 → ([1,0]〈jr1−1,1〉@jr1−1‖ [1,0]〈jr1 ,1〉@jr1

;here,here)
(if there are exactly two memorized vertices, then we replicate the single
object into a new couple of strings in a single step);

Ci, ∀ i = 2, . . . , n− 1, consists of:
[i,k] → (0 : 0;here,out) ∀ k = 1, . . . , n− 2
(if a string containing the symbol [i, k] enters membrane i, then such
string must be stopped because it codi�es a wrong path and we break it
into two substrings by a splitting rule);
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Di, ∀ i = 2, . . . , n − 1, consists of rules analogous to those de�ned for the
set D1 (here the range of the step counter is 1 ≤ k ≤ n− 2 for all rules):
〈i,k〉 → ([i,k]〈j1,k + 1〉@j1 ;here) if ri = 1;
〈i,k〉 → ([i,k]〈j1,k + 1〉@j1 ‖ [i,k]〈j2,k + 1〉@j2 ;here,here) if ri = 2;
〈i,k〉 → ([i,k]〈j1,k + 1〉@j1 ‖ 〈i,k; j2, . . . , jri〉;here,here) if ri > 2;
〈i,k; jh, . . . , jri〉 → ([i,k]〈jh,k + 1〉@jh ‖ 〈i,k; jh+1, . . . , jri〉;here,here)
∀ h = 2, . . . , ri − 2;
〈i,k; jri−1, jri〉 →
([i,k]〈jri−1,k + 1〉@jri−1 ‖ [i,k]〈jri ,k + 1〉@jri ;here,here);

Cn: 〈n,k〉 → (0;here) ∀ k = 1, . . . , n− 2
(in membrane n, if k �= n − 1 we introduce the symbol 0 to stop every
string containing the symbol 〈n, k〉, which codi�es a wrong path);

Dn: 〈n,n − 1〉 → ([n,n − 1]@0;here)
(if a string reaches membrane n and if it contains the symbol 〈n, n− 1〉,
then it surely codi�es a correct path and it can leave the system).

The computation starts in membrane 1 from the unique object 〈1, 0〉: we start
from vertex v1 at the step 0 and, by repeatedly using pre-dynamical replication
rules, we prolong all the strings which correspond to paths in γ. The paths can
be correctly continued if either no vertex label is repeated in the string or we
reach membrane n (that is, the �nal vertex in γ) at the step n− 1.
The special symbol 0 is thus needed in order to break and stop every wrong
Hamiltonian path, 0 is introduced in membrane 1 and n by classical rules, which
have meta-priority above all other rules de�ned inside the membrane, so we can
assure that no wrong path will be prolonged in the system.
Observe that, to this aim, we could not use a similar mutation rule in membranes
2, . . . , n − 1, in fact if a string containing the symbol [i, k] enters membrane i,
then it will certainly be of the form [1, 0]x1[i, k]x2〈i, k′〉, where k′ > k, x1 is
a (possible empty) string over {[j, k]}, and x2 is a non-empty string over {[j, k]},
for j ∈ {2, . . . , n− 1}, j �= i. If we would use the rule [i, k] → (0, here) then the
last symbol 〈i, k′〉 would cause the continuation of the path and we would �nally
have a wrong output. We choose not to use the similar rule [i, k] → (0, out)
because we try to simulate the direct transport through a membrane only for
those objects which do not have "too long" length. So we break any wrong string
by a splitting rule and then we send to the skin membrane the second halves of
such strings, which would otherwise be processed again. As the �rst half of any
wrong string is not dangerous at all, we can decide both to send it out or to keep
it inside the current membrane.
We continue in this way only those paths that pass exactly one time through each
and every membrane, the computation always stops and we send every Hamil-
tonian path (if existing) outside the system by a mobile membrane gemmated
from membrane n.

Let's now compute the maximum number of steps until a computation halts.
We suppose that the outdegree of each vertex is equal to n− 1. In membrane 1
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all the possible continuations of the starting string are generated and sent to the
destination membrane step by step, hence the worst complexity case corresponds
to the last generated strings, which take n − 2 steps to be ready to leave the
membrane. With two more steps (gemmation and fusion phases) such strings are
communicated to any membrane i, for i = 2, . . . , n− 1, where again other n− 2
steps (plus two communication steps) are needed for the local last generated
strings to reach their destination membranes. So it takes n2 − n steps until the
last generated strings reach membrane n. Here after three more steps (evolution,
gemmation, fusion) the strings codifying Hamiltonian paths (if any) will be sent
out of the system. Hence, in total we perform at most n2 − n + 3 steps before
the system stops its computation.

The exact number of steps is given by the formula
[∑n−1

i=1 ((ri − 1) + 2)
]

+ 3,
when ri ≤ n− 1. ��

Note that, in particular, if the maximum outdegree of each vertex of the
graph is bounded by 2, then the computation always halts after 3n steps. The
quadratic time would collapse to linear time also if parallel replication rules
were used, as introduced in [6]. In this case, in fact, we could prolong all the
paths from each vertex in a single step, then in other two communication steps
(gemmation and fusion of the mobile membranes) the strings would be sent to
the target membranes. It follows that we would only need 3n steps to prolong
and output all the Hamiltonian paths in the graph.

6 Final Remarks

We have introduced a new kind of communication for P systems and worked
with membrane structures and evolution rules of biological inspiration, keeping
the model as close as possible to the real structure of cells, in order to make
easier an implementation of the model. We have proved that P systems with
such features characterize the recursively enumerable languages and they can
solve the Hamiltonian Path Problem in a quadratic time. We close the paper
with three topics for further research.

As no priority is de�ned between classical evolution rules, we could think
about a parallel application of all applicable rules over the same string, as in
Lindenmayer systems ([13]). The generative power of this variant is still to be
analyzed.

The second problem concerns the fact that, for the moment, no pre-dynamical
rule can be de�ned in the skin membrane: up to now P systems have been
"isolated" structures and no rules have ever been de�ned for letting an object
entering the skin membrane from outside. Moreover, no object can be ejected
from the system by mobile membranes gemmated from the skin membrane: the
mobile membrane could never reach any other P system and the objects would
remain forever inside it (no language would be generated in this way). Hence, it
would be interesting to de�ne either an external ambient for P systems, either
colonies of P systems (of depth 2) which can communicate by mobile membranes
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or by getting the objects from outside with a new kind of evolution rules. We
remark here again that the goal is to keep the model as realistic as possible,
hence it is di�erent to think about a colony of P systems of depth 2 (which
stands as a formal model for a real multi-cellular tissue), or about a unique
system with a big skin membrane enclosing inner P systems of any depth (which
has no realistic counterpart).

Finally, we have seen that P systems which use gemmation of mobile mem-
branes and no in/out communications can generate at least all languages in
MAT , but it is still an open problem knowing if the family of generated lan-
guages can ever be enlarged using this new communication feature only.
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Corso Italia, 40, 56100 - Pisa, Italy

prencipe@di.unipi.it

Abstract. Over the past few years, the focus of robotic design has been
moving from a scenario where few, specialized (and expensive) units were
used to solve a variety of tasks, to a scenario where many, general purpose
(and cheap) units were used to achieve some common goal. Consequently,
part of the focus has been to better understand how to efficiently coor-
dinate and control a set of such “simpler” mobile units. Studies can be
found in different disciplines, from engineering to artificial life: a shared
feature of the majority of these studies has been the design of algorithms
based on heuristics, without mainly being concerned with correctness
and termination of such algorithms. Few studies have focused on trying
to formally model an environment constituted by mobile units, study-
ing which kind of capabilities they must have in order to achieve their
goals; in other words, to study the problem from a computational point
of view. This paper focuses on two of these studies [1,6,14] (the only
ones, to our knowledge, that analyze the problem of coordinating and
controlling a set of autonomous, mobile units from this point of view).
First, their main features are described. Then, the main differences are
highlighted, showing the relationship between the class of problems solv-
able in the two models.

Keywords:Mobile Robots, Distributed Coordination, Distributed Mod-
els, Computability.

1 Introduction

In a system consisting of a set of totally distributed agents the goal is generally
to exploit the multiplicity of the elements in the system so that the execution of
a certain number of predetermined tasks occurs in a coordinated and distributed
way. Such a system is preferable to one made up of just one powerful robot for
several reasons: the advantages that can arise from a distributed and parallel
solution to the given problems, such as a faster computation; the ability to
perform tasks which are unable to be executed by a single agent; increased fault
tolerance; and, the decreased cost through simpler individual robot design. On
the other hand, the main concern in such a system is to find an efficient way to
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coordinate and control the mobile units, in order to exploit to the utmost the
presence of many elements moving independently.

Several studies have been conducted in recent years in different fields. In
the engineering area we can cite the Cellular Robotic System (CEBOT) of
Kawaguchi et al. [9], the Swarm Intelligence of Beni et al. [3], and the Self-
Assembly Machine (“fructum”) of Murata et al. [11]. In the AI community there
has been a number of remarkable studies: social interaction leading to group be-
havior by Matarić [10]; selfish behavior of cooperative robots in animal societies
by Parker [12]; and primitive animal behavior in pattern formation by Balch and
Arkin [2].

The shared feature of all these approaches is that they do not deal with
formal correctness and they are only analyzed empirically. Algorithmic aspects
were somehow implicitly an issue, but clearly not a major concern - let alone
the focus - of the study.

A different approach is to analyze an environment populated by a set of au-
tonomous, mobile robots, aiming to identify the algorithmic limitations of what
they can do. In other words, the approach is to study the problem from a compu-
tational point of view. This paper deals with two studies leading in this direction
(the only ones, to our knowledge, that analyze the problem of coordinating and
controlling a set of autonomous, mobile units from this point of view). The first
study is by Suzuki et al. [1,13,14]. It gives a nice and systematic account on the
algorithmics of pattern formation for robots, operating under several assump-
tions on the power of the individual robot. The second is by Flocchini et al. [6,8]:
they present a model (that we will refer to as Corda – Coordination and con-
trol of a set of robots in a totally distributed and asynchronous environment),
that has as its primary objective to describe a set of simple mobile units, which
have no central control, hence move independently from each other, which are
totally asynchronous, and which execute the same deterministic algorithm in
order to achieve some goal. In both studies, the modeled robots are rather weak
and simple, but this simplicity allows us to formally highlight by an algorithmic
and computational viewpoint the minimal capabilities they must have in order
to accomplish basic tasks and produce interesting interactions. Furthermore, it
allows us to better understand the power and limitations of the distributed con-
trol in an environment inhabited by mobile agents, hence to formally prove what
can be achieved under the “weakness” assumptions of the models, that will be
described later in more detail (see [7] for more detailed motivations).

An investigation with an algorithmic flavor has been undertaken within the
AI community by Durfee [5], who argues in favor of limiting the knowledge that
an intelligent robot must possess in order to be able to coordinate its behavior
with others.

Although the model of Suzuki et al. (which we will refer to as SYm) and
Corda share some features, they differ in some aspects that render the two
models quite different. In this paper we highlight these differences, focusing in
particular on the different approach in modeling the asynchronicity of the envi-
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ronment in which the robots operate, and showing that the algorithms designed
on SYm do not work in general on Corda.

In Section 2.1, SYm and Corda are described, highlighting the features that
render the two models different. In Section 3, we show that the class of problems
solvable in Corda is strictly contained in the class of problems solvable in SYm.
In Section 4, we present a case study: we analyze the oblivious gathering problem,
showing that the algorithmic solutions designed for SYm do not work in Corda.
Finally, in Section 5 we draw some conclusions and present open problems and
suggestions for further study.

2 Modeling Autonomous Mobile Robots

In this section we present the approaches used in SYm and Corda to model the
control and coordination of a set of autonomous mobile robots. In particular, we
first present the common features in the two models, and successively present in
detail the instantaneous action of SYm, and the full asynchronicity of Corda,
that model the interactions between the robots.

2.1 Common Features

The two models discussed in this paper share some basic features. The robots are
modeled as units with computational capabilities, which are able to freely move
in the plane. They are viewed as points, and they are equipped with sensors
that let them observe the positions of the other robots in the plane. Depending
on whether they can observe all the plane or just a portion of it, two different
models can arise: Unlimited and Limited Visibility model (each robot can see
only whatever is at most at distance V from it). The robots are anonymous,
meaning that they are a priori indistinguishable by their appearances, and they
do not have any kind of identifiers that can be used during the computation.
They are asynchronous and no central control is allowed. Each robot has its
own local view of the world. This view includes a local Cartesian coordinate
system with origin, unit of length, and the directions of two coordinate axes,
identified as x axis and y axis, together with their orientations, identified as the
positive and negative sides of the axes. The robots do not necessarily share the
same x − y coordinate system, and do not necessarily agree on the location of
the origin (that we can assume, without loss of generality, to be placed in the
current position of the robot), or on the unit distance. They execute, however,
the same deterministic algorithm, which takes in input the positions of the robots
in the plane observed at a time instant t, and returns a destination point towards
which the executing robot moves. The algorithm is oblivious if the new position
is determined only from the positions of the others at t, and not on the positions
observed in the past1; otherwise, it is called non oblivious. Moreover, there are no
1 We also refer to the robots as oblivious because of this feature of the algorithms they
execute.
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explicit means of communication: the communication occurs in a totally implicit
manner. Specifically, it happens by means of observing the change of robots’
positions in the plane while they execute the algorithm.

Clearly, these basic features render the modeled robots simple and rather
“weak”, especially considering the current engineering technology. But, as al-
ready noted, the main interest in the studies done in [6,14], is to approach the
problem of coordinating and controlling a set of mobile units from a computa-
tional point of view. The robots are modeled as “weak robots” because in this
way it is possible to formally analyze the strengths and weaknesses of the dis-
tributed control. Furthermore, this simplicity can also lead to some advantages.
For example, avoiding the ability to remember what has been computed in the
past gives the system the nice property of self-stabilization [7,14].

During its life, each robot cyclically is in three states: (i) it observes the
positions of the others in the world, (ii) it computes its next destination point,
and (iii) it moves towards the point it just computed. As already stated, the
robots execute these phases asynchronously, without any central control: in this
feature the two models drastically differ. In fact, in SYm states (i) to (iii)
are executed atomically (instantaneously), while this assumption is dropped in
Corda. In the following we better describe how the asynchronicity is approached
in the two models.

2.2 The Instantaneous Actions of SYm

In this section we better describe how the movement of the robots is modeled in
SYm [1,14]. The authors assume discrete time 0, 1, 2, . . .. At each time instant t,
every robot ri is either active or inactive. At least one robot is active at every
time instant, and every robot becomes active at infinitely many unpredictable
time instants. A special case is when every robot is active at every time instant;
in this case the robots are synchronized, but this case is not interesting for the
purpose of this paper.

Let pi(t) indicate the position of robot ri at time instant t, and ψ the al-
gorithm every robot uses. Since the robots are viewed as points, in SYm it is
assumed that two robots can occupy the same position simultaneously and never
collide. ψ is a function that, given the positions of the robots at time t (or, in the
non oblivious case, all the positions the robots have occupied since the beginning
of the computation2), returns a new destination point p. For any t ≥ 0, if ri is
inactive, then pi(t + 1) = pi(t); otherwise pi(t + 1) = p, where p is the point
returned by ψ. The maximum distance that ri can move in one step is bounded
by a distance εi > 0 (this implies that every robot is then capable of traveling
at least a distance ε = min{ε1, . . . , εn} > 0). The reason for such a constant is
to simulate a continuous monitoring of the world by the robots.

Thus, ri executes the three states (i)–(iii) instantaneously, in the sense that
a robot that is active and observes at t, has already reached its destination
2 Note that the non obliviousness feature does not imply the possibility for a robot
to find out which robot corresponds to which position it stored, since the robots are
anonymous.
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point p at t + 1. Therefore, a robot takes a certain amount of time to move
(the time elapsed between t and t+ 1), but no fellow robot can see it while it is
moving (or, alternatively, the movement is instantaneous).

2.3 The Full Asynchronicity of Corda

Similarly to SYm, each robot repeatedly executes four states. A robot is initially
in a waiting state (Wait); at any point in time, asynchronously and independently
from the other robots, it observes the environment in its area of visibility (Look),
it calculates its destination point based only on the current locations of the
observed robots (Compute), it then moves towards that point (Move) and goes
back to a waiting state. The states are described more formally in the following.

1. Wait The robot is idle. A robot cannot stay infinitely idle.
2. Look The robot observes the world by activating its sensors which will re-

turn a snapshot of the positions of all other robots with respect to its local
coordinate system. Each robot r is viewed as a point, and therefore its po-
sition in the plane is given by its coordinates. In addition, the robot cannot
in general detect whether there is more than one fellow robot on any of the
observed points, included the position where the observing robot is. We say
it cannot detect multiplicity. If, on the other hand, a robot can recognize
that there is more than one fellow on the positions where it is, we say that
it can detect a weak multiplicity.

3. Compute The robot performs a local computation according to its determin-
istic algorithm. The result of the computation can be a destination point or
a null movement (i.e., the robot decides to not move).

4. Move If the result of the computation was a null movement, the robot does
not move; otherwise it moves towards the point computed in the previ-
ous state. The robot moves towards the computed destination of an un-
predictable amount of space, which is assumed neither infinite, nor infinites-
imally small (see Assumption A2 below). Hence, the robot can only go to-
wards its goal, but it cannot know how far it will go in the current cycle,
because it can stop anytime during its movement 3.

A computational cycle is defined as the sequence of the Wait-Look-Compute-
Move states; the “life” of a robot is then a sequence of computational cycles.

In addition, we have the following assumptions on the behavior of a robot:

A1(Computational Cycle) The amount of time required by a robot r to com-
plete a computational cycle is not infinite, nor infinitesimally small.

A2(Distance) The distance traveled by a robot r in a Move is not infinite.
Furthermore, it is not infinitesimally small: there exists an arbitrarily small
constant δr > 0, such that if the result of the computation is not a null

3 That is, a robot can stop before reaching its destination point, e.g. because of limits
to the robot’s motorial autonomy.
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movement and the destination point is closer than δr, r will reach it; oth-
erwise, r will move towards it of at least δr. In the following, we shall use
δ = minr δr.

Therefore, in Corda there is no assumption on the maximum distance
a robot can travel before observing again (apart from the bound given from the
destination point that has to be reached), while in SYm an active robot ri always
travels at most a distance εi in each step. The only assumption in Corda is
that there is a lower bound on such distance: when a robot r moves, it moves at
least some positive, small constant δr. The reason for this constant is to better
model reality: it is not realistic to allow the robots to move an infinitesimally
small distance.

The main difference between the two models is, as stated before, in the way
the asynchronicity is regarded. In Corda the environment is fully asynchronous,
in the sense that there is no common notion of time, and a robot observes the
environment at unpredictable time instants. Moreover, no assumptions on the
cycle time of each robot, and on the time each robot elapses to execute each
state of a given cycle are made. It is only assumed that each cycle is completed
in finite time, and that the distance traveled in a cycle is finite. Thus, each
robot can take its own time to compute, or to move towards some point in the
plane: in this way, it is possible to model different computational and motorial
speeds of the units. Moreover, every robot can be seen while it is moving by
other robots that are observing. This feature renders more difficult the design of
an algorithm to control and coordinate the robots. For example, when a robot
starts a Move state, it is possible that the movement it will perform will not be
“coherent” with what it observed, since, during the Compute state, other robots
can have moved.

3 Instantaneous Action vs. Full Asynchronicity

In this section, we highlight the relationship between the two models. In particu-
lar, we first show that any algorithm designed in Corda to solve some problem P
can be used in SYm to let the robots accomplish the task defined by P . The vice
versa is not true. In fact, we will give strong evidence that the differences pointed
out in the previous sections, in particular the way in which the asynchronicity is
modeled, render the two models really different, both in the oblivious and non
oblivious case, and that the algorithms designed in SYm do not work in Corda.

Let us first introduce the definition of a valid activation schedule for an
algorithm in Corda.

Definition 1. Given an algorithm A, an activation schedule for A in Corda is
defined as a function F(t) =< W(t),L(t),C(t),M(t) >, where W(t) is a set of
pairs (r, t′), such that

1. r is a robot that is in the Wait state at time t,
2. t′ > t, and
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3. in W(t) there is at most one pair per each robot in the system

(L(t), C(t), and M(t) are defined similarly for the Look, Compute, and Move
states, respectively).

Definition 2. An activation schedule is valid, if the following conditions hold:
(i) (r, t′) ∈ W(t) ⇒ ∀ t ≤ t′′ < t′, (r, t′) ∈ W(t′′) (a similar condition applies also
for L(t), C(t), and M(t)); (ii) for all t, W(t), L(t), C(t), and M(t) constitute
a partition of all the robots in the system.

An algorithm A correctly solves a problem P in Corda, if, given any valid
activation schedule for A, the robots accomplish the task defined by P in a finite
number of cycles. Let us denote by C and Z the class of problem that are solvable
in Corda and SYm, respectively. We are now ready to show that SYm is at
least as powerful as Corda, that is C ⊆ Z.

Theorem 1. Any algorithm that correctly solves a problem P in Corda, cor-
rectly solves P also in SYm.

Proof. Let A be an algorithm that solves a given problem P in Corda. In
order to prove that A solves P also in SYm, we show that any execution of
A in SYm corresponds to an activation schedule in Corda. Hence, since by
hypothesis A correctly solves P in Corda, the theorem follows.

Let us execute A in SYm, and let E(t) be the set of robots that are active at
time t. Therefore, all the robots E(t) finish to execute their cycle at time t+ 1.
The activation schedule F(t), for all t ≤ t < t+1, in Corda for A corresponding
to the portion of the execution of A in SYm starting at time t and ending at
time t+ 1, is defined as follows (see Figure 1). If r ∈ E(t), then for all t ≤ t < t1,
(r, t1) ∈ L(t); for all t1 ≤ t < t2, (r, t2) ∈ C(t); for all t2 ≤ t < t3, (r, t3) ∈ M(t);
and for all t3 ≤ t < t + 1, (r, t + 1) ∈ W(t). Otherwise, for all t ≤ t < t + 1,
(r, t + 1) ∈ W(t). In other words, all the robots in E(t) start their Look state,
while all the others are in Wait. Moreover, all these robots execute their three
states perfectly synchronized, so that they start their next cycle all together.
Inductively, F(t), for all t+ 1 ≤ t < t+ 2, corresponding to the next cycle (from
time t+ 1 to t+ 2) of the execution of A in SYm is constructed.

Therefore, any execution of A in SYm corresponds to a valid activation sched-
ule for A in Corda. Since by hypothesis A correctly solves P on Corda, the
robots will correctly accomplish their task in SYm, and the theorem follows.

Corollary 1. Any problem that can be solved in Corda, can be solved in SYm;
hence C ⊆ Z.

To prove that the inclusion is strict, we place ourselves in the non oblivious
setting: the robots have an unlimited amount of memory, hence they can remem-
ber the positions of all the other robots since the beginning of the execution,
and they can use this information while computing.
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t t1 t+ 1t2

SYm

Corda

Active (SYm)

Wait/Inactive

Look (Corda)

Compute (Corda)

Move (Corda)

t3

Fig. 1. The activation schedule defined in Theorem 1

Definition 3 (Movement Awareness). The Movement Awareness problem
MA is divided in two subtasks T1 and T2. In T1, robot ri, 1 ≤ i ≤ n, simply moves
along a direction it chooses arbitrarily; ri can start T2 only after it observed rj
in at least three different positions, and after rj observed ri in at least three
different positions, for all j �= i.
Theorem 2. There exists no algorithm that solves MA in Corda in the non
oblivious setting.

Proof. By contradiction, let us assume that there exists an algorithm A that
correctly solves MA in Corda. The generic robot r starts its execution by
moving along the direction it chooses. By hypothesis, it will eventually and
within a finite number of cycles start the second subtask. Let t be the time
when r decides to switch to T2. Since the robots operate in full asynchronicity,
there can exist a robot r′ that started its first Move state at time t′ < t, and
is still moving at time t (that is r′ is still executing its first cycle). Then MA
is not correctly solved, since r′ has not started its second cycle at time t yet,
hence r′ has not observed r in at least three different positions yet, having a
contradiction.

An algorithm similar to the one used in [14] to discover the initial con-
figuration (“distribution”) of the robots in the system, can be used to solve
in SYm MA. Namely, each robot starts moving along the direction it locally
chooses, e.g. the direction of its local y axis. When a robot r observes another
robot r′ in at least three different positions, r moved at least twice. Moreover,
since in SYm the actions are instantaneous, r can correctly deduce that r′ ob-
served at least twice, hence that r′ observed r in at least three different positions.
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Therefore, r can correctly start T2 when it observes all r′ �= r in at least three
different positions. Hence, we can state the following

Theorem 3. MA is solvable in SYm, in the non oblivious setting.

Corollary 2. C ⊂ Z.

A question that arises is: what does it happen in the oblivious case? Unfor-
tunately, we do not yet have an answer. Our conjecture, however, is that the
result stated in Corollary 2 holds also in the oblivious case. In the non oblivious
setting, the fact that in Corda a robot can be seen by its fellows while it is
moving is crucial to prove C ⊂ Z. This is not the case in the oblivious setting.
In fact, since the robots have no memory of robots’ positions observed in the
past, every time a robot r observes another robot r′, r can not tell if r′ moved
since last cycle or not, and every observation is like the first one (that is every
time r observes, is like the execution begins). Hence, we believe that the key
to prove C ⊂ Z in the oblivious case is related to the fact that in Corda the
positions of the robots between a Look and a Compute can change, hence the
computation can be done on ”outdated” data. In other words, if r executes the
Look at time t and the Compute at time t′ > t, the set of robots’ positions at t
and at t′ can be clearly different; hence r computes its destination point on the
old data sensed at time t, implying that the movement will not be ”choerent”
with what it observed at time t. This clearly does not happen in SYm, where
the possible states a robot can be in are executed instantaneously.

4 Case Study: Oblivious Gathering

In this section, we will give evidence that the algorithms designed in SYm in the
oblivious setting do not work in general in Corda.

The problem we consider is the gathering problem: the robots are asked to
gather in a not predetermined point in the plane in a finite number of cycles.
An algorithm is said to solve the gathering problem if it lets the robots gather
in a point, given any initial configuration. An initial configuration is the set of
robots’ positions when the computation starts, one position per robot, with no
position occupied by more than one robot. This is the only problem, to our
knowledge, solved with an oblivious algorithm in SYm [1,14]. In the following,
we will analyze both the unlimited and limited visibility setting.

4.1 The Unlimited Visibility Setting

An algorithm for solving the gathering problem in SYm in the unlimited visibility
setting (called Algorithm 1 in Appendix A.1) is presented in [14]. The idea is
as follows. Starting from distinct initial positions, the robots are moved in such
a way that eventually there will be exactly one position, say p, that two or
more robots occupy. Once such a situation has been reached, all the robots
move towards p. It is clear that such a strategy works only if the robots in the
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Cycle 1 Cycle 2 Cycle 3

r1
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r3
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r4

r3
r2 r3

r2

Cycle 5Cycle 4 Cycle 6

r1

r1

r4

r4

r3r1
r1

r1

Fig. 2. Proof of Theorem 4. The symbols used for the robots are the same as in
Figure 1. The dotted circles indicate the robots in the Look state; the grey ones
the robots in the Compute state; the circle with an arrow inside are the robots
that are moving; the white circles represent the robots in Wait. The arrows
indicate the direction of the movement computed in the Compute state

system have the ability to detect the multiplicity. In SYm this capability is never
mentioned, but it is clearly used implicitly.

Theorem 4. Algorithm 1 does not solve the gathering problem in Corda, in
the unlimited visibility setting.

Proof. In order to show that Algorithm 1 does not solve the gathering problem in
Corda, we give an initial configuration of the robots and describe an activation
schedule that leads to having two points in the plane with multiplicity greater
than two, thus violating the invariant proven for Algorithm 1, that “eventually
there will be exactly one position that two or more robots occupy” [14].

Let us suppose to have 4 robots ri, i = 1, 2, 3, 4, that at the beginning are on
a circle C, with r2 and r4 that occupy the ending points of a diameter of C (as
pictured in Figure 2, Cycle 1). In the following, the positions of the robots are
indicated by pi, i = 1, 2, 3, 4. Executing Algorithm 1, but assuming the features
of Corda, a possible run (activation schedule) is described in the following.

Cycle 1 At the beginning the four robots are in distinct positions, on a circle C.
r1 and r2 enter the Look state, while the others are in Wait. After having
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observed, both of them enter the Compute state, and let us assume that r2 is
computationally very slow (or, alternatively, that r1 is very fast). Therefore,
r1 decides to move towards the center of C (part 2.3 of Algorithm 1), while r2
is stuck in its Compute state. r1 starts moving towards the center, while r2
is still in Compute, and r3 and r4 are in Wait.

Cycle 2 r1 is inside C, while the other robots are still on C. Now r1 observes
again (already in its second cycle) and, according to part 2.1 of the algorithm,
decides to move toward a robot that is on the circle, say r2. Moreover, r2 is
still in the Compute state of its first cycle, and r3 and r4 are in Wait.

Cycle 3 r1 reaches r2 and enters the Wait of its third cycle: at this point,
there is one position in the plane with two robots, namely p = p1 = p2.
Now, r3 enters its first Look state, looks at the situation and, according to
the algorithm, decides to move towards p, that is the only point in the plane
with more than ore robots on it. r2 is still in its first Compute, and r4 in
Wait.

Cycle 4 r3 reaches r1 and r2 on p, and it starts waiting. r1 is in Wait, r2 still
in its first Compute state, and r4 starts its first Look state, decides to move
towards p, and starts moving.

Cycle 5 While r4 is on its way towards p, r2 ends its first Compute state.
Since the computation is done according to what it observed in its previous
Look state (Cycle 1), it decides to move towards the center of C (part 2.3
of the algorithm). r2 starts moving towards the center of C after r4 passes
over the center of C, and while r4 is still moving towards p; r1 is in Wait.

Cycle 6 r2 and r4 are moving in opposite directions on the same diameter of C,
and they stop exactly on the same point p′ (in Corda a robot can stop before
reaching its final destination). There are two points in the plane, namely p
and p′ with p �= p′, with two robots on each. Therefore, the invariant proven
for Algorithm 1, that “eventually there will be exactly one position that two
or more robots occupy” [14], is violated.

Remark 1. We note that in Cycle 6 we made use of the possibility that a robot
stops before reaching the destination point it computed. The proof, however,
works even if we do not assume this; that is, if r2 and r4 do not stop before
reaching their respective destination points. In fact, if we assume, as in SYm,
that the robots simply cross each other without stopping, if (i) the crossing
happens in a point p′ �= p, and (ii) r1 enters its Observe phase exactly when the
crossing happens, we have that r1 sees two points in the plane with two robots
on each, namely p and p′, and does not know what to do, since this possibility
is not mentioned in SYm’s algorithm. Therefore, Theorem 4 still holds.

4.2 The Limited Visibility Setting

In [1], an algorithm to solve the gathering problem in SYm in the limited visi-
bility setting (called Algorithm 2 in Appendix A.2) is presented. We recall that,
in this setting a robot can see only whatever is at distance V from it. In the
following we shortly describe it.
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Let us denote by ri(t) the position of robot ri at time instant t. The set
P (t) = {r1(t), . . . , rn(t)} then denotes the set of the robots’ positions at t. Define
G(t) = (R,E(t)), called the Proximity Graph at time t, by (ri, rj) ∈ E(t) ↔
dist(ri(t), rj(t)) ≤ V , where dist(p, q) denotes the Euclidean distance between
points p and q. It can be proven that, if the proximity graph is not connected
at the beginning, the robots can not gather in a point [1] (form a point, in
SYm language).

Let Si(t) denote the set of robots that are within distance V from ri at time t;
that is, the set of robots that are visible from ri (note that ri ∈ Si(t)). Ci(t)
denotes the smallest enclosing circle of the set {rj(t)|rj ∈ Si(t)} of the positions
of the robots in Si(t) at t. The center of Ci(t) is denoted ci(t).

Every time a robot ri becomes active, the algorithm moves ri toward ci(t),
but only over a certain distanceMOV E. Specifically, if ri does not see any robot
other than itself, then ri does not move. Otherwise, the algorithm chooses x to
be the point on the segment ri(t)ci(t) that is closest to ci(t) and that satisfies
the following conditions:

1. dist(ri(t), x) ≤ σ. An arbitrary small constant σ > 0 is fixed, and it is
assumed that the distance a robot can travel in one state is bounded by σ
(similarly to the ε introduced in Section 2.2).

2. For every robot rj ∈ Si(t), x lies in the disk Dj whose center is the mid-
point mj of ri(t) and rj(t), and whose radius is V/2. This condition ensures
that ri and rj will still be visible after the movement of ri (and possibly
of rj , see Figure 3.a).

a. b.

mj

ri(t)

V/2

rj(t)

Dj

dj

mj

lj

Dj

V/2

ri(t) rj(t)θj

ci(t)

Fig. 3. The algorithm for the gathering problem in SYm, limited visibility setting
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Fig. 4. Proof of Theorem 5. The symbols used for the robots are the same as in
Figure 2. A vertical arrow means that a robot decided not to move (Move = 0).
A robot ri moves always towards the center ci of the smallest enclosing circle of
all the robots it can see

We note that, since by condition 1. the algorithm uses the constant σ to
compute the destination point of a robot, all the robots must agree on the value
of this constant, and thus it must be a priori known.

In [1] it is proven that, executing Algorithm 2, two robots that are connected
in G(t), will be connected in G(t+ 1). In the following theorem we prove that it
does not solve the gathering problem in Corda, in the limited visibility setting.
Specifically, we give an initial configuration of the robots and describe a possible
run of the algorithm that leads to partitioning the proximity graph: two robots
that were visible until time t, are not visible any more at t+1, contradicting the
result proven in [1].

Theorem 5. The algorithm presented in [1] does not solve the gathering prob-
lem in Corda, in the limited visibility setting.

Proof. In order to show that Algorithm 2 does not solve the gathering problem in
Corda, we give an initial configuration of the robots and describe an activation
schedule that leads to partitioning the proximity graph: two robots that were
visible until time t, are not visible any more at t + 1, contradicting the result
proven in [1].

Let us suppose to have at the beginning 5 robots on a straight line, as shown
in Figure 4. Moreover, let τ be a constant such that τ ≤ σ and δ = τ/16, where δ
is the constant introduced in the Assumption A2 in Section 2.3. At the beginning,
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we have the following visibility situation: r1 can see r2 (dist(r1, r2) = V ), r2 can
see r1 and r3 (dist(r2, r3) = V −τ), r3 can see r2 and r4 (dist(r3, r4) = V ), r4 can
see r3 and r5 (dist(r4, r5) = V ), r5 can see r4. We recall that a robot ri always
move towards the center ci of the smallest circle enclosing all the robots it can
see. Executing Algorithm 2, but assuming the features of Corda, a possible run
is described in the following.

Cycle 1 All the robots, except r1 and r5 (that we assume in Wait), execute
their first Look, and start the Compute state. Let us suppose that r3 and r4
are faster than r2 in computing. The values they compute are:

r3:
{
Goal = dist(r3, c3) =

∣∣V−τ+V
2 − V + τ

∣∣ = τ
2

Limit = min{−V−τ
2 + V

2 , V } = τ
2

⇒Move =
τ

2
r4: Goal = 0 ⇒Move = 0
Moreover, r3 and r4 also start moving while r2 is still computing; r1 and r5
are in Wait.

Cycle 2 After r3 and r4 move, the visibility situation is the same as it was in
the beginning. r3 and r4 Look and Compute again, as follows:
r3: Goal = 0 ⇒Move = 0

r4:

{
Goal = dist(r4, c4) =

∣∣∣V+V− τ
2

2 − V + τ
2

∣∣∣ = τ
4

Limit = min{−V− τ
2

2 + V
2 , V } = τ

4

⇒Move =
τ

4

r3 and r4 move again, while r2 is still in its first Compute state, and r1 and r5
in their first Wait.

Cycle 3 After the movement of the previous cycle, the visibility situation is still
unchanged, that is, the proximity graph is still connected. r3 and r4 enter
their third Look and Compute states.

r3:

{
Goal = dist(r3, c3) =

∣∣∣V− τ
2 +V− τ

4
2 − V + τ

2

∣∣∣ = τ
8

Limit = min{−V− τ
2

2 + V
2 ,

V− τ
4

2 + V
2 } = τ

4

⇒Move =
τ

8

r4: Goal = 0 ⇒Move = 0
r3 and r4 move again. The other robots are in the same states as in the
previous cycle.

Cycle 4 The proximity graph is still connected. r3 and r4 Look and Com-
pute again (this is their fourth cycle).
r3: Goal = 0 ⇒Move = 0

r4:

{
Goal = dist(r4, c4) =

∣∣∣V− 3
8 τ+V− τ

4
2 − V + 3

8τ
∣∣∣ = τ

16τ

Limit = min{−V+ 3
8 τ

2 + V
2 ,

V− τ
4

2 + V
2 } = 3

16τ
⇒Move =

τ

16

r3 and r4 enter the Move state. Meanwhile, r2 finishes its first Compute. The
values it computes refer to what was the situation when it observed, in Cycle
1.

r2:
{
Goal = dist(r2, c2) =

∣∣V+V−tau
2 − V ∣∣ = τ

2

Limit = min{V,−V−τ
2 + V

2 } = τ
2

⇒Move =
τ

2
r2 starts moving according to the destination point it just computed (it
enters it first Move state).
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Cycle 5 The distance between r2 and r3 is V + τ/8 > V ; so r2 and r3 can
not see each other anymore, breaking the proximity graph connectivity that
we had at the beginning of the cycle. So, the invariant that “robots that
are mutually visible at t remain within distance V of each other thereafter”
asserted in [1] is violated. Therefore, the theorem follows.

5 Conclusions

In this paper we discussed two models, SYm [1,14], and Corda [6,7,8], whose
main focus is to study the algorithmic problems that arise in an asynchronous
environment populated by a set of autonomous, anonymous, mobile units that
are requested to accomplish some given task. These studies want to gain a better
understanding of the power of the distributed control from an algorithmic point
of view; specifically, the goal is to understand what kind of goals such a set
of robots can achieve, and what are the minimal requirements and capabilities
that they must have in order to do so. To our knowledge, these are the only
approaches to the study of the control and coordination of mobile units in this
perspective.

We showed that the different way in which the asynchronicity is modeled in
SYm and Corda, is the key feature that renders the two models different: in
SYm the robots operate executing instantaneous actions, while in Corda full
asynchronicity is modeled, and the robots elapses finite, but otherwise unpre-
dictable, amount of time to execute their states. In particular, we showed that
C ⊂ Z in the non oblivious setting. Therefore, one open issue is to prove this
result also in the oblivious setting.

We feel that the approach used in Corda better describes the way a set
of independently-moving units operates in a totally asynchronous environment;
hence the motivation to further investigate coordination problems in a dis-
tributed, asynchronous environment using the fully asynchronous approach. Is-
sues which merit further research, regard the operating capabilities of the robots
modeled. In fact, it would be interesting to look at models where robots have dif-
ferent capabilities. For instance, we could equip the robots with just a bounded
amount of memory (semi-obliviousness), and analyze the relationship between
amount of memory and solvability of the problems, or how it would affect the
self-stability property of the oblivious algorithms [7].

Other features that would inspire further study include giving a dimension to
the robots, and adding stationary obstacles to the environment, thus adding the
possibility of collision between robots or between moving robots and obstacles.
Furthermore, we could also study how the robots can use some kind of direct
communication, and we could introduce different kinds of robots that move in the
environment (as in the intruder problem, where all the robots in the environment
must chase and “catch” a “designated” robot).

Relationship between memory and ability of the robots to complete given
tasks, dimensional robots, obstacles in the environment that limit the visibility
and that moving robots must avoid or push aside, suggest that the algorithmic
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nature of distributed coordination of autonomous, mobile robots merits further
investigation.
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Appendix

A Oblivious Gathering in SYm

In this appendix, we report the oblivious algorithms described in [1,14] that let
the robots gather in a point in SYm, in both the unlimited and limited visibility
settings.

A.1 Unlimited Visibility

In the following we report the oblivious algorithm described in [14] that lets the
robots achieve a configuration where a unique point p with multiplicity greater
than one is determined.

Algorithm 1 (Point Formation Algorithm in SYm, Unlim. Visib.[14])

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.
1.1. If n = 3 and p1, p2, and p3 are collinear with p2 in the middle, then

the robots at p1 and p3 move towards p2 while the robot at p2 remains
stationary. Then eventually two robots occupy p2.

1.2. If n = 3 and p1, p2, and p3 form an isosceles triangle with |p1p2| =
|p1p3| �= |p2p3|, then the robot at p1 moves toward the foot of the per-
pendicular drop from its current position to p2p3 in such a way that
the robots do not form an equilateral triangle at any time, while the
robots at p2 and p3 remain stationary. Then eventually the robots be-
come collinear and the problem is reduced to part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1, p2, p3 are all
different, say |p1p2| > |p1p3| > |p2p3|, then the robot at p3 moves toward
the foot of the perpendicular drop from its current position to p1p2 while
the robots at p1 and p2 remain stationary. Then eventually the robots
become collinear and the problem is reduced to part 1.1.

1.4. If n = 3 and p1, p2, and p3 form an equilateral triangle, then every robot
moves towards the center of the triangle. Since all robots can move up
to at least a constant distance ε > 0 in one step, if part 1.4. continues to
hold then eventually either the robots meet at the center, or the triangle
they form becomes no longer equilateral and the problem is reduced to
part 1.2 or part 1.3.

Case 2. n ≥ 4; Ct denotes the smallest enclosing circle of the robots at time t.
2.1. If n ≥ 4 and there is exactly one robot r in the interior of Ct, then r

moves toward the position of any robot, say r′, on the circumference
of Ct while all other robots remain stationary. Then eventually r and r′

occupy the same position.
2.2. If n ≥ 4 and there are two or more robots in the interior of Ct, then

these robots move toward the center of Ct while all other robots remain
stationary (so that the center of Ct remains unchanged). Then eventually
at least two robots reach the center.
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2.3. If n ≥ 4 and there are no robots in the interior of Ct, then every robot
moves toward the center of Ct. Since all robots can move up to at least
a constant distance ε > 0 in one step, if part 2.3 continues to hold,then
eventually the radius of Ct becomes at most ε. Once this happens, then
the next time some robot moves, say, at t′, either (i) two or more robots
occupy the center of Ct or (ii) there is exactly one robot r at the center
of Ct, and therefore there is a robot that is not on Ct′ (and the problem
is reduced to part 2.1 or part 2.2) since a cycle passing through r and
a point on Ct intersects with Ct at most at two points.

A.2 Limited Visibility

In the following we report the oblivious algorithm described in [14] that lets the
robots gather in a point (refer to Figure 3.b).

Algorithm 2 (Point Formation Algorithm in SYm, Lim. Visib. [1] )

1. If Si(t) = {ri}, then x = ri(t).
2. ∀rj ∈ Si(t) − {ri},

2.1. dj = dist(ri(t), rj(t)),
2.2. θj = ci(t)r̂i(t)rj(t),
2.3. lj = (dj/2) cos θj +

√
(V/2)2 − ((dj/2) sin θj)2,

3. LIMIT = minrj∈Si(t)−{ri}{lj},
4. GOAL = dist(ri(t), ci(t)),
5. MOV E = min{GOAL,LIMIT, σ},
6. x = point on ri(t)ci(t) at distance MOV E from ri(t).
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Abstract. The Associative Language Description model (ALD), a
combination of locally testable and constituent structure ideas, has been
recently proposed to overcome some criticisms relative to context-free
languages. This approach is consistent with current views on brain
organization and can conveniently describe typical technical languages
such as Pascal or HTML. ALD languages are strictly enclosed in
context-free languages but in practice the ALD model equals context-
free grammars in explanatory adequacy. Moreover, it excludes
mathematical sets based on counting properties that are never used in
the definition of artificial languages. Many properties of ALD are still
to be investigated. Here, a characterization of context free languages in
term of ALD languages is proved and a new hierarchy in the ALD
family is given.

1 Introduction

In spite of their universal adoption in language reference manuals and compilers,
Context-Free (CF) Grammars have a generative capacity that is partly misdirected: it
affords languages that are unsuitable for practical use, like counting languages, which
characterize the legal strings by some numerical congruence. Clearly, nobody has
ever proposed a language where grammaticality depends on the number of certain
items being congruous to some integer value. In an attempt to rule out counting, years
ago the class of NC CF languages has been introduced for parenthesis grammars [1],
and later on reformulated within the theory of tree languages [2].
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Another defect of CF grammars that has been often pointed out (for instance by the
Marcus� school of Contextual Grammars) is that CF grammars require an unbounded
number of metasymbols, the nonterminals. A �pure� grammar should not use
metavariables, which are �external� to the language, but it should rely instead on
structural and distributional properties.

In [3], a language definition technique has been presented that addresses both
criticisms, but does not extend the capacity of CF grammars: the Associative
Language Description model (ALD), originally motivated by the want of a brain
compatible theory of language. In essence, this definition combines the concepts of
local testability and of phrase structure in as simple a way as possible and it is related
with Z. Harrys's linguistic models of word distribution in sentences. Such approaches,
also known as Skinner's associative models, were antagonized by Chomsky's
generative grammars and had no comparable success. Yet, associative models on the
one hand provide an intuitively appealing explanation of many linguistic regularities,
on the other they are aligned with current views on information processing in the
brain [4].

The ALD model has been studied more in depth in [5], where basic properties of
the model were established, such as nonclosure under union, concatenation and
homomorphism, and strict inclusion in the CF family; moreover, the ALD family of
languages was compared with CF, Non-Counting (NC) CF, locally testable, non-
contextual families of languages, and other families. However, many problems still
remain open, the main one being the inclusion of regular languages in the ALD
family. The expressive adequacy of the ALD family for common artificial languages,
such as Pascal and HTML, has been shown in [6].

The aim of this paper is to solve a few of the open questions, by establishing a new
hierarchy in the ALD family and giving a characterization of CF languages in terms
of the ALD family. Section 2 recalls the basic definitions and some properties of the
model, while Section 3 proves the main theorems of the paper. Section 4 draws a few
conclusions.

2 Basic Definitions

Let Σ be a finite alphabet, and let ∆∉ Σ be the placeholder.

Definition 2.1. (stencil trees, frontier, constituents)

A stencil tree is a tree such that its internal nodes are labeled by ∆ and its leaves have
labels in Σ∪{ε}. The constituents of a stencil tree are its subtrees of height one and
leaves with labels in Σ∪{ε}∪{∆}. The frontier of a stencil tree T or of a constituent K
is denoted, respectively, by τ (T) and τ (K).

Definition 2.2. (maximal subtree)

Given a stencil tree T, a maximal subtree of T is a subtree of T whose leaves are also
leaves of T.
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Definition 2.3. (left and right contexts)

Let T be a stencil tree. For an internal node i of T, let Ki and Ti be respectively the
constituent and the maximal subtree of T having root i. Consider the tree T' obtained
by excising the subtree Ti from T, leaving only the root, labeled ∆, of Ti behind. Let s,
t ∈Σ* be two strings such τ (T') = s ∆ t.

The left context of Ki in T and of Ti in T is left(Ki, T) = left(Ti, T) = s; the right
context of Ki in T and of Ti in T is right(Ki, T) = right(Ti, T) = t.

Definition 2.4. (ALD, pattern, permissible contexts of a rule)

Let ⊥∉Σ be the left/right terminator. An Associative Language Description (ALD) A
is a finite collection of triples (x, z, y), called rules, where x ∈{ε ∪⊥}Σ*,
y∈ Σ*{⊥ ∪ ε }, and z ∈ (Σ∪∆)* \ {∆}.

The string z is called the pattern of the rule (x, z, y) and the strings x and y are
called the permissible left/right contexts.

Shorthand notations
When a left/right context is irrelevant for a pattern, it is represented by the empty
string ε or it is omitted. The new symbol Λ may be used to denote the optionality of
one occurrence of ∆, that is to merge two rules (x, z' ∆ z'', y) and (x, z' z'', y) into the
rule (x, z' Λz'', y). Other convenient shorthands have been defined in [6], but they are
not used in this paper.

An ALD defines a set of constraints or test conditions that a stencil tree must
satisfy, in the following sense.

Definition 2.5. (Constituent matched by a rule, valid trees)

Let A be an ALD. A constituent Ki of a stencil tree T is matched by a rule (x, z, y) of
an ALD A iff:

1) z = τ(Ki),
2) x is a suffix of ⊥left(Ki, T), and
3) y is a prefix of right(Ki, T)⊥.
A stencil tree T is valid for A iff each constituent Ki of T is matched by a rule of A.

Therefore, an ALD is a device for defining a set of stencil trees and a string
language, corresponding to the set of their frontiers. The validity of a stencil tree is
determined by means of a derivation but by a test. Hence, an ALD is not a generative
grammar.

Definition 2.6. (Tree language and string language of an ALD)

The (stencil) tree language defined by an ALD A, denoted by TL(A), is the set of all
stencil trees valid for A. The (string) language defined by an ALD A, denoted by
L(A), is the set {x ∈Σ*  | x = τ(T) for some tree T∈ TL(A) }.

Example 2.1. Let L be the CF language {anbn | n>0}+, which is generated for example
by the CF grammar G with axiom S, nonterminals X and S, and productions S→XS |
aXb, X→aXb | ε. L is also defined by the ALD {(⊥, a∆bΛ, ⊥), (b, a∆bΛ, ⊥), (a, a∆b,
b), (a, ε, b)}. For instance, the string a2b2ab of L is the frontier of the valid tree shown
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in Fig. 1, where the constituent K1 is matched by the rule (⊥, a∆b∆, ⊥), the constituent
K2 is matched by the rule (a, a∆b, b), the constituent K3 is matched by the rule (b,
a∆b, ⊥) and both constituents labeled K4 are matched by the rule (a, ε, b). Notice that
this tree is different from the derivation tree in G of the string a2b2ab.

K1 

K2 K3 

K4 K4 

Fig. 1. A valid tree for Example 2.1

Definition 2.7. (degree, width of an ALD)

For every ALD A and every rule (x, z, y) in A the degree of the rule (x, z, y) is max
(|x|,  |y|), the maximum length of the permissible left/right contexts; the width of the
rule (x, z, y) is  |z|, the length of the pattern. For an ALD A the degree is the
maximum degree and the width is the maximum width of its rules.

Definition 2.8. (Left and Right Contexts)

Let A be an ALD of degree k. LCk (Left Contexts) is the set: Σk∪∪0≤j≤k-1⊥Σj, RCk

(Right Contexts) is the set: Σk∪∪0≤j≤k-1Σj⊥.

Definition 2.9. (homogenous and reduced ALD)

An ALD A of degree k is:

homogeneous iff A ⊆ LCk × (Σ ∪{∆})* ×RCk;
reduced iff each rule matches some constituent, in some valid tree.

Definition 2.10. (equivalent, structurally equivalent ALD's)

Two ALD's A1, A2 are called equivalent (resp. structurally equivalent) iff L(A1) =
L(A2) (resp. TL(A1) = TL(A2)).

The assumption that an ALD is homogeneous and reduced does not violate
generality, as shown by the following proposition.

Lemma 2.11 [6] For every ALD there exists a structurally equivalent, homogeneous
and reduced ALD.

2.1 Examples of ALD Languages

To better assess the expressive power of the ALD family, it is useful to look at
various examples of ALD and non-ALD languages.
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While it is unknown, at the present, whether the ALD family includes the regular
languages, there are various examples of regular languages that are in ALD. A non-
trivial example is the following regular language. Let L1 and L2 be two languages: the
shuffle L1  || L2 is defined as the language: {x1 y1 x2 y2 � xn yn  | n ≥ 1, xj ∈ Σ*, yj

∈ Σ*, x1 x2 � xn ∈ L1, y1 y2 � yn ∈ L2}. The regular language L = a* || b*c*d* is
described by the ALD rules:

(⊥, Λ c Λ d Λ, ⊥), (⊥, Λ c Λ, ⊥), (⊥, Λ d Λ, ⊥), (⊥,ε,⊥), (ε, Λ a, ε), (⊥, Λ b, ε), (c, Λ c, ε), (d, Λ d, ε) 

Many CF languages are ALD, such as the cited Pascal and HTML. We also
provide here a few examples of CF languages not in the ALD family:

{an bn  | n ≥ 1} ∪ {an b2n  | n ≥ 1},
{an bn am b2m  | n, m ≥ 1},
{an c bn am d bm  | n, m ≥0}.

The proof that these languages are not ALD is omitted, since it is a simple
variation of similar proofs in [5]. Notice that simple changes to the alphabet of a
language may make it ALD: for instance, {anbn  | n ≥ 1} ∪ {anc2n  | n ≥ 1} is ALD.
This fact will be explained in Theorem 3.9 below.

3 A Hierarchy of ALD Languages

In [5] it has been proved that the degree classifies the ALD family in an infinite, strict
hierarchy. A similar, but weaker, result holds also with respect to the width. Let
ALDW = k, k > 0, be the subfamily of ALD having width k.

Proposition 3.1. For all k > 0, there exist an ALD language L such that L is not
ALDW = k but is in ALDW = k2.

Proof. For every i > 0, let Li = {bin | n≥1}, where each Li is defined by the ALD rule
(⊥, Λbi, ε). Assume by contradiction that there is k > 0 such that every language in the
ALD family is also ALDW = k. Let j = k2: Lj ∈ ALDW = k. Let A be an ALD of width k
defining Lj. Without loss of generality, we can assume that A is homogeneous and
reduced of degree r for some r≥0. Hence, every rule with contexts not including the
endmarker must be of the form (br, z, br) with z∈{b, ∆}*, 0≤ |z | ≤k.

Claim 1: We can assume that for each rule of the form (br, z, br), with z ∈ {b, ∆}* , the
rule is in A only if z ∈ b*.

To prove the claim, first we notice that if (br, z, br) ∈ A, with z∈{b, ∆}* ∆ {b, ∆}*,
then the rule must occur in a valid tree, since A is reduced. But then also a rule of the
form (br, bs, br) for some s, 0≤s≤k, must occur in the same valid tree (since a node
labeled ∆ cannot be on the frontier of a valid tree). We now claim that in this case
s = 0 and z does not contain any occurrence of b. As a consequence, if there is a
constituent K matched by the rule (br, z, br) then the maximal subtree with the same
root of K has an empty frontier. In fact, take a valid tree T where the rule (br, z, br)
matches some constituent (Fig.2, case (a) ), i.e., a valid tree having a constituent K
whose frontier is bs and whose right and left contexts are both br, i.e., it is matched by
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(br, bs, br). The frontier τ(T) of T is bjh for some h > 0. Let T' be a new tree obtained
from T by replacing the constituent K with a constituent K' matched by the rule (br, z,
br), and by appending the constituent K to each ∆ occurring on the frontier of K'. T' is
a valid tree because the new constituents K' and K are matched respectively by the
rules (br, z, br) and (br, bs, br). The frontier of the maximal subtree with root K' is
b|z|-t+ts where t≤ |z |≤k is the number of ∆ occurring in z (see Fig. 2, (b) ). Hence, τ (T')
= bjh-s+ |z |-t+ts, where 0 ≤  |z| - t + (t-1)s <  |z | + (t-1)s ≤ k + (k-1)k = k2. Since j = k2,
then τ (T') ∈ Lj necessarily implies  |z |-t+ (t-1) s = 0: since t≥1 and  |z|≥t, it must be |z|
= t and s = 0. This means that if there is a rule of the form (br, z, br), with z ∈{b}*∆{b,
∆}*, then in A there cannot be any rule of the form (br, bs, br) with s > 0, and z must
be of the form ∆t for some t, 0≤t≤k. Since there is no way to add b�s by using rules of
the form (br, ∆t, br), for some t≤k, we can safely remove all those rules from A,
obtaining an equivalent ALD that is homogeneous, reduced, of width k, of degree r
and where the rules of the form (br, z, br) have z ∈ b*. Hence, we can assume that A is
already in this form.

 

    bs 

K 
   z 

K' 

    bs 

K 

   bs 

K 

 (a) The tree T  (b) The tree T'

Fig. 2. T' is obtained from T by replacing K, in the left and right contexts br, with a constituent
K' matched by (br, z, br), z ∈ {b}*∆{b,∆}*. In the picture, it is shown the case where z includes
two placeholders

Claim 2. For all t, 0≤t≤ k, and for all s, 1≤s≤k, there is no rule in A of the form (⊥bt,
∆bs, br) or of the form (br, bs∆, bt⊥). Suppose by contradiction that in A there is at
least a rule of the former form, the latter case being analogous. Then, since the ALD
is reduced there is a valid tree T with a constituent K matched by the rule. Let τ (T) =
bjn for some n > 0. Let T1 be the maximal subtree of T with K at its root. Denote with
T2 a tree with the constituent K at its root and with the tree T1 appended at the node
labeled ∆  (hence, there are two constituents of T2 matched by the rule (⊥bt, ∆bs, br) ).
Let T' be the tree obtained by replacing in T the subtree T1 with the tree T2. T' is a
valid tree because the contexts of K and T1 in T' are equal to the contexts of T1 in T,
but T' is longer than T of exactly s characters: τ (T') = bjn+s with 0 < s≤k < j. Then
τ(T') ∉ L(A).

Claim 3. There is a constant p > 0 such that every valid tree T of A, whose frontier is
larger than p, has at least a constituent K matched by one rule of A either of the form
(⊥bt, ∆v, br) or of the form (br, v∆, bt⊥), for some t < r and v∈{b, ∆}*.

The constituent K of part (a) is at the root of a maximal subtree whose frontier is
larger than br.
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In A there is at least a rule (br, bs, br) with 0≤s≤k.
If the constituent K of part (a) is matched by a rule such that v∈ ∆* then in A there

is at least a rule of the form (br, bs, br) with 0 < s ≤k.
Part (a). By Claim 1, in the ALD A there is at least a rule (⊥bt, z, br) with

z∈{b}*∆{b, ∆}*, otherwise it would be impossible to get valid trees whose frontier is
bjn, for n > k. Moreover, if the pattern of each rule (⊥bt, z, br) (resp. (br, z, bt⊥) ) had
prefix (resp. suffix) b then the rule could match a constituent at most once in a valid
tree. Hence, if part (a) of Claim 3 were false, the height of the valid tree T would be
less or equal to the number  |A | of rules in A: since the width is limited, the maximum
length of the frontier of a tree without such constituent is k |A |. Select p = max (r,  |τ
(T)  |) > max (r, k |A |) to have a contradiction. Hence, in every valid tree of frontier
larger than p there must be an occurrence of either a constituent K matched by (⊥bt,
∆v, br) or by (br, v∆, bt⊥), for some t < r and v∈{b, ∆}*.

Part (b). If p is large enough, the occurrence of the constituent K can be chosen
high enough in T to be the root of maximal subtree T' whose frontier is larger than p1
= max (r, k |A |) (by applying the same line of reasoning).

Part (c). By combining Claim 3, part (a), and Claim 2, the constituent K has v∈{b,
∆}*∆{b, ∆}* and in A there is no rule of the same form with v∈b+. Then each
occurrence of a placeholder in v must be in the left context br and in the right context
br. Hence, to be able to �close� those rules, it is necessary that in A there are rules
with the same contexts. But by Claim 1, only rules of the form (br, bs, br) with 0≤s≤k
are possible with left and right contexts br.

Part (d). If v ∈ ∆* and all productions of the form (br, bs, br) have s = 0, then all the
placeholders at the right of the leftmost one in the constituent, with both left and right
contexts br, would be roots of trees whose frontier is the empty string. Since no other
rule can match a constituent at the root of a tree with more than p b�s, the frontier of
the maximal subtree T' would be shorter than p1.

Now we prove the statement of the proposition. Let T be a valid tree whose frontier
is bjn with n larger than the constant p of Claim 3. By Claim 3, T has a maximal
subtree T1 such that the left and right contexts of T1 are, respectively, either ⊥bt and
br, or br and bt⊥, for some t, 0≤t < r, with  |τ (T1)  | > r. Assume that the contexts of T1

are ⊥bt and br, respectively. The constituent K of T at the root of T1 is matched by a
rule (⊥bt, ∆v, br), for some v. By claim 3, either there is s > 0 such that (br, bs, br) is in
A or in v there is at least one occurrence of the letter b. As shown in Fig. 3, let T2 be
the tree that has the constituent K at its root, where, at the node labeled by the
leftmost occurrence of ∆, the tree T1 is appended, and where at each remaining
occurrence of ∆ a constituent K1, matched by (br, bs, br) of A, with s > 0, is appended.
Since the constituent K has at most k-1 placeholders, and 0 < s≤k, then τ (T2) = bi+q,
where q≤k (k-1) < j. By Claim 3, part (d), q > 0. Replace T1 in T with the tree T2,
obtaining a tree T'. T' is a valid tree because the contexts of K and T1 in T' are equal to
the contexts of T1 in T, and both of the contexts of K1 in T' are br. Then the frontier of
T' is τ (T') = bjn+q with 0 < q < k2 = j, which is not a word in Lj: a contradiction. ■
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The tree T

The tree T2 

 bi, i> r 

The tree T1 

K

K

K K1 K1 

Fig. 3. The trees T and T' of the proof of Theorem 3.9

Remark. The above proof shows that for every k>1 there is a regular language Lj =
{bjn  | n > 0}, with j = k2, that is in ALDW = j but not in ALDW = k. Hence, the theorem
cannot state that there is a proper hierarchy for the width. i.e., that each level is
properly contained in the following level, but only that the hierarchy is infinite. This
derives from the usage of Lj as typical language of ALDW = j. A strict hierarchy
theorem could be proved only if Lj is in ALDW = k+1. Actually, we can prove that Lj∈
ALDW = h with h < j. Namely, Lj is defined for j even by the ALD A: (⊥, Λbj/2∆, ε), (b,
bj/2, ε) and for j odd by the ALD A': (⊥, Λbj/2∆, ε), (b, bj/2, ε), both having width
j/2+2. In most cases, it seems possible to improve further this bound: for instance,
L9 is defined by the following ALD of width 4: (⊥, Λb∆∆, ε), (b, b4, ε). This means
that the language L9 is at the level 4 of the hierarchy, while, by Proposition 3.1, it is
not at the level 3: level 3 is strictly included in level 4. Similarly, L4 is not in ALDW = 2,
though it is in ALDW = 3. It could then be possible to generalize this fact and prove that
that for every k > 1 there exists a language that is in ALDW = k but not in ALDW = k-1.

The previous examples show also a general fact about ALD�s: to decrease the
width it is often necessary to increase the maximum number of placeholders in the
rules. So the following problem naturally arises: does the maximum number of
placeholders in ALD rules classify ALD's in a hierarchy? or may each ALD language
be defined by an ALD whose rules contain at most k placeholders? In the latter case,
an analogy with the CF case suggests that a possible value for k is 2.

As pointed out in the introduction, it is yet unknown whether all regular languages
are also ALD languages. However, all CF unary languages (hence, regular) can be
described by ALD.

Proposition 3.2 Every context-free language on a one-letter alphabet is an ALD
language.

Proof: Each CF unary language is semilinear: hence, it is the finite union of the
languages of the form Lj = {bjn | n > 0}, for every j (and possibly also with the empty
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string). Let L be a CF language on a one-letter alphabet. Hence, there exists n such
that L = Lk1 ∪ Lk2 ∪ � Lkn. L is defined by the following ALD: { (⊥, aki Λ, ⊥)  |
1≤i≤n} ∪ { (⊥ aki, Λaki, ⊥)  | 1≤i≤n}.■

In [5], it has been proved that the ALD family is strictly included in the CF one and
that it is not closed under homomorphism. Here we prove that the closure of ALD
under homomorphism gives exactly the family of CF languages.

We recall the following

Definition 3.3. [7] (Operator form of CF grammars)

A context free grammar G = (VN, Σ, P, S) is said in operator form if P ⊆ VN ×
(VN∪Σ) * \ (VN∪Σ) * VN

2 (VN∪Σ) *.

This means that each rule of P is either in the form:
A→B for A∈VN, B∈ VN∪Σ∪{ε},

or in the form A→αBCβ, where for all α, β∈ (VN∪Σ) *, A, B∈ (VN∪Σ) either B∈Σ
or C∈ Σ.

Roughly speaking, in the right-hand side of a rule two nonterminals are never
adjacent.

The following theorem is well-known:

Theorem 3.4 ([7], th.4.8.2). For any context-free grammar G there is an equivalent
grammar G' in operator form.

Looking at the proof of Theorem 3.4 in [7], it is easy to check that, in the grammar
G', the right-hand side of a production contains at most two nonterminals; moreover,
the productions of the form A→B for A∈VN, B∈ VN∪ {ε} can be eliminated: add the
productions obtained by replacing with B all occurrences of A in the right-hand side
of a rule to the productions of G'. So we can state the following

Corollary 3.5. For every context-free grammar G there is an equivalent grammar G'
in operator form whose productions are in one of the following forms:

A→a for A∈VN, a∈Σ, or
A→αBβ with αβ∈Σ+, A, B∈VN.
A→αBγCβ with α, β∈Σ*, γ∈Σ+, A, B∈VN.

We recall two definitions and a lemma from [5], stated here for the case of degree
k =1.

Definition 3.6 (Contexts of the nonterminals of a CF grammar)

Let G = (VN, Σ, P, S) be a CF grammar. For every X∈ VN, Con(X) is the set:
{(x, y)  | (x, y) ∈LC1×RC1 ∧∃u ∈ ⊥Σ* ∧∃v ∈ Σ*⊥ ∧ ∃ z∈Σ*: ⊥S⊥⇒*

G uxXyv⇒*
G

uxzyv}

Definition 3.7 (Disjoint operator form of CF grammars)

Let G = (VN, Σ, P, S) be a CF grammar. G is said to be in disjoint operator form if,
and only if:
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G is in operator form;
Con(X) ≠∅ for all X∈VN;
For all X, Y∈VN, with X≠Y, Con(X) ∩Con(Y) = ∅.

A disjoint operator form grammar can always be transformed into an equivalent
ALD of degree 1, as stated in the next lemma.

Lemma 3.8 ([5]) Let G = (VN, Σ, P, S) be a CF grammar in disjoint operator form.
Let h: VN ∪ Σ →∆∪Σ be the homomorphism defined by h(a) = a for a ∈ Σ, h(X) = ∆
for X ∈ VN.
Let A be the following homogeneous ALD of degree 1:

{(x, w, y)  | ∃ X ∈ VN, z ∈ (VN∪Σ)*: X → z ∈P, w = h(z), (x, y) ∈Con(X) }.

A is structurally equivalent to G. Then we can prove the following:

Theorem 3.9. A language L is context-free if and only if it is a (non erasing)
homomorphic image of an ALD of degree 1.

Proof. Obviously, the homomorphic image of an ALD is a CF language because
every ALD language is CF and the CF family is closed under homomorphism.

Conversely, let L be a CF language. Without loss of generality we can assume that
it is generated by a grammar G = (VN, Σ, P, S) in operator form with productions of
types described in Corollary 3.5. We construct from G a new grammar G' by
renaming the terminal symbols which precede or follow a nonterminal, according to
following rules:

P' = {A→a  | A→a ∈ P} ∪
{A→α (a, B) B (b, B) β | A→αaBbβ ∈ P} ∪
{A→B (b, B) β  | A→Bbβ ∈ P} ∪
{A→α (a, B) B  | A→αaB ∈ P} ∪
{A→α (a, B) B (c, B) γ (d, C) C(b, C) β  | A→αaBcγdC bβ ∈ P} ∪
{A→B (c, B) γ (d, C) C(b, C) β  | A→BcγdC bβ ∈ P} ∪
{A→α (a, B) B (c, B) γ (d, C) C  | A→αaBcγdC ∈ P} ∪
{A→B (c, B) γ (d, C) C | A→BcγdC ∈ P} ∪
{A→α (a, B) B (c, BC) C(b, C) β  | A→αaBcCbβ ∈ P}} ∪
{A→B (c, BC) γC (b, C) β  | A→BcCbβ ∈ P} } ∪
{A→α (a, B) B (c, BC) C | A→αaBcC ∈ P}} ∪
{A→B (c, BC) C  | A→BcC ∈ P}

where A, B, C are in VN, a, b, c are in Σ and α, β, γ are in Σ*.

Then G' = (VN, Σ ∪ {Σ × (VN ∪V 2
N ) }, P', S) is a CF grammar in disjoint operator

form. Then by Lemma 3.8 there is a homogeneous ALD A of degree 1 structurally
equivalent to G'. Let L' = L(G') = L(A) and let h be the homomorphism from Σ ∪
{Σ × (VN ∪V 2

N ) } to Σ that acts as identity on Σ and as natural projection on Σ× (VN

∪V 2
N ). It is obvious that h(L') = L. ■
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Corollary 3.10. A language L defined by an ALD of degree k is a (non erasing)
homomorphic image of an ALD of degree 1.

Theor. 3.9 shows that by a suitable change of alphabet any CF language can be
turned into an ALD language of degree one, preserving its structure. As a practical
case consider the language Pascal, which is an ALD language of degree 3 [6]. By a
change of alphabet, the degree can be lowered to 1. In practice, one does not need to
turn the grammar into operator form, nor to rename all terminals surrounding
nonterminal symbols, as in the proof of Theorem 3.9; it suffices to rename the rare
terminal occurrences where the contexts do not meet the disjointness hypothesis of
Definition 3.7. Similar transformations of the surface representation of a language
have been applied in the early days for obtaining grammars suitable for parsing using
precedence algorithms. Another remark relates Theor. 3.9 to modern mark-up
languages such as XML. The terminal symbols introduced in the proof can be viewed
as "tags" that mark-up or delimit a piece of text.

4 Conclusions
In spite of the simplicity of the model, various theoretical questions on ALD are still
open or under investigation, e.g. inclusion of the regular set, some decidability
properties, minimization w.r.t. degree or width, hierarchy with respect to the number
of placeholders in a pattern. Comparisons with related models, such as the contextual
grammars of S. Marcus [8] and [9], are given in [5]. A similar, but more complex,
model has been introduced in [10].

We hope that ALD could be a good model both as an explanation of fundamental
syntactic phenomena and as a practical technique for language specification. To
explore to what extent existing technical languages can be defined by ALD, in [6] the
CF syntax of Pascal has been completely defined by ALD rules; it was checked that
the main features of HTML can be described conveniently by ALD.
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Abstract. We introduce the notions of blocked, block-marked and block-
deterministic regular expressions. We characterize block-deterministic
regular expressions with deterministic Glushkov block automata. The
results can be viewed as a generalization of the characterization of one-
unambiguous regular expressions with deterministic Glushkov automata.
In addition, when a language L has a block-deterministic expression E,
we can construct a deterministic finite-state automaton for L that has
size linear in the size of E.

1 Introduction

A regular language is one-unambiguous, according to Brüggemann-Klein and
Wood [4], if there is a deterministic Glushkov automaton for the language. An
alternative definition of one-unambiguity based on regular expressions is that
each position in a regular expression has at most one following position for
each symbol in the expression’s alphabet. The latter definition is used to define
unambiguous content model groups in the Standard Generalized Markup Lan-
guage (SGML) [13], which are a variant of regular expressions. Indeed, it was
the SGML standard that motivated Brüggemann-Klein and Wood’s investiga-
tion of one-unambiguity. In contrast, to the results of Book and his coworkers [3]
on ambiguity of regular expressions, there are regular languages that are not
one-unambiguous [4]. It is clear, from the definition of one-unambiguity, that
when a regular expression is one-unambiguous it is also unambiguous in the
sense of Book and his colleagues. The difference is that one-unambiguity can
also be viewed as one-determinism. A lookahead of one symbol when processing
a string from left to right determines a unique next position in the given regular
expression; they are, essentially, LL(1) regular expressions [1,4].
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These observations lead to two possible generalizations (at least) of one-
unambiguous regular expressions. The first is based on a lookahead of at most
k ≥ 1 symbols to determine the next, at most one, matching position in a reg-
ular expression. The second is similar except that when we use a lookahead
of l symbols we must match the next l positions uniquely. The first notion de-
fines k-unambiguous expressions and the second defines k-block-deterministic
expressions. We focus on k-block-deterministic expressions in this work.

Our results have an interesting implication about the regular languages that
have block-deterministic expressions. When a language L has a k-block-determi-
nistic expression E, we can construct a deterministic finite-state automaton for L
that has size linear in the size of E. Are there other “natural” classes of regular
expressions that have this property?

In Section 2, we review basic notation and terminology and, in Section 3, we
introduce blocked expressions, block-marked expressions and block-deterministic
expressions. In Section 4, we characterize block-deterministic languages in terms
of block-deterministic automata.

2 Notation and Terminology

Let Σ be an alphabet of symbols. A regular expression over Σ is built from λ,
∅, and symbols in Σ using the binary operators + and · and the unary operator ∗.
The language specified by a regular expression E is denoted by L(E) and it is
referred to as regular language.

To indicate different positions of the same symbol in a regular expression,
we mark symbols with unique subscripts. For example, (a1 + b1)∗a2(a3b2)∗ and
(a4 + b2)∗a1(a5b1)∗ are both markings of the regular expression (a+ b)∗a(ab)∗.
A marking of a regular expression E is denoted by E′. If H is a subexpression
of E, we assume that markings H ′ and E′ are chosen in such a way that H ′ is a
subexpression of E′. A marked regular expression E′ is a regular expression
over Π , the alphabet of subscripted symbols, where each subscripted symbol
occurs at most once in E′.

The reverse of marking is the dropping of subscripts, indicated by � and
defined as follows: If E′ is a regular expression over Π , then (E′)� is the regu-
lar expression over Σ that is obtained by dropping all subscripts in E′. Thus,
a marked regular expression H over Π is a marking of regular expression E if
and only if H� = E. Observe that for each regular expression E over Σ, up to
an isomorphism on the set of subscripts, set Π is unique and so is the marking
E′. Unmarking can also be extended to words and languages: For a word w
over Π, let w� denote the word over Σ that is constructed from w by dropping
all subscripts. For a language L over Π , let L� denote {w�|w ∈ L}. Then, for
each regular marked expression E′ over Π , L((E′)�) = L(E′)�.

Book and his associates [3] and Eilenberg [8] define unambiguous regular
expressions as follows. A regular expression E is unambiguous, if and only if
for all words x and y over Π , the alphabet of subscripted symbols, condition
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x �= y implies x� �= y�. A regular language L is unambiguous if it is denoted
by an unambiguous regular expression. It is know that all regular languages are
unambiguous.

Brüggemann-Klein and Wood [4] defined a more restrictive version of un-
ambiguity motivated by SGML content models [13]. A regular expression E is
one-unambiguous if and only if, for all words u, v and w over Π and all sym-
bols x and y in Π , the conditions uxv, uyw ∈ L(E′) and x �= y imply that
x� �= y�. A regular language is one-unambiguous if it is denoted by some
one-unambiguous expression. Brüggemann-Klein and Wood proved that not all
regular languages are one-unambiguous.

It is well known that regular languages are those recognized by finite-state
automata. Given a regular expression E over an alphabet Σ, we can construct an
automaton that recognizes L(E) in many different ways. Many of these automata
can be reduced to the Glushkov automaton [4,10]. Glushkov first suggested
this construction in 1960 [11,12]; it was also suggested by McNaughton and
Yamada [14] independently and at about the same time. The construction, given
first by Book et al. [3], is based on the first, last and follow sets of positions in
the marking E′ of E. We define the three sets of positions as follows:

first(E′) is the set of all positions that can begin a string in L(E′);
last(E′) is the set of all positions that can end a string in L(E′);
follow(a,E′) is the set of all positions in E′ that can follow position a.

Once we have computed these sets, we can construct the Glushkov automa-
ton GE as follows: The states of GE are Π ∪ {0} where Π is the alphabet of
subscripted symbols, 0 �∈ Π is the start state, last(E′) (or last(E′) ∪ {0}, if the
empty word is in the language) is the set of final states, and the transitions in
(Π ∪ {0})×Σ ×Π are

{(x, a, aj) : aj� = a, aj ∈ follow(x,E′) or x = 0 and aj ∈ first(E′)}.

Caron and Ziadi [5] recently characterized Glushkov automata. Observe that,
as consequence of Caron and Ziadi’s result, given a finite-state automaton we
can estabilish whether it is a Glushkov one or not, without any knowledge on E,
its generating regular expression. Moreover, E can be computed from GE .

Finite-state automata admit a generalization in terms of block automata,
that also describe all and only regular languages. Block automata 1 were intro-
duced by Eilenberg [8]. They allow the transition labels to be nonempty strings
or blocks over the input alphabet rather than just symbols. Formally, a block
automaton A is specified by a tuple (Q,Σ, Γ, δ, s, F ), where Q is a finite set
of states, Σ is an input alphabet, Γ is a finite subset of Σ+ called the block
alphabet, δ ⊆ Q × Γ × Q is a transition relation, s ∈ Q is a start state and
F ⊆ Q is a set of final states. If the maximum block length in A is k, then we
refer to A as a k-block automaton.
1 Block automata are called generalized automata by Eilenberg [8].
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From this viewpoint, a standard finite-state automaton (where all transitions
are single-symbol labelled) is a one-block automaton. From now on, we will refer
to standard finite-state automata as to one-block automata.

As with one-block automata, a string w has an accepting computation
in a block automaton A if there is a path from the start state to some final
state that spells the string w. The collection of all strings that have an accepting
computation in a block automaton A is called the language of A and it is
denoted by L(A).

A block automaton is nondeterministic, and therefore ambiguous, if the
same string has more than one accepting computation. As we known, in one-
block automata this condition implies there is at least a state that has two
outgoing transitions with the same label. For k-block automata the implication
is generally weaker: Nondeterminism occurs in a k-block automaton when there
is at least a state that has two outgoing transitions whose labels are one prefix of
the other. As a consequence, the condition of determinism in a block automaton
corresponds to the set of all labels in transitions from a given state being prefix
free. Formally, let A = (Q,Σ, Γ,E, s, F ) be a block automaton and, for each
q ∈ Q, let block(q) ⊆ Γ be the set of labels in the transitions out of q. A is a
deterministic block automaton if, for each q ∈ Q, block(q) is prefix-free.

Deterministic block automata were introduced by Giammarresi and Montal-
bano [9] when they investigated the minimization of block automata. We will use
deterministic block automata to define block-deterministic regular languages.

Observe that block automata can be regarded to as one-block automata
when we treat the blocks in the transitions as single symbols—as we do when-
ever we refer to the elements of a block alphabet. With this assumption, we
can apply the usual automata transformations, such as state minimization and
determinization, to block automata. Given a block automaton A, we denote its
deterministic and minimal deterministic automata by D(A) and M(A), respec-
tively, when considering its blocks as single symbols.

We now describe two transformations that are essentially mutual inverses of
each other: state elimination and block elimination. The first one eliminates
states from a block automaton creating transitions with longer block labels than
the original ones; the second transformation eliminates block-labelled transitions
creating states whose transitions have single-symbol labels.

Let A be a block automaton and q be a state of A such that q is not the
start state, it is not a final state and it has no self-loops. We define the state
elimination of q in A as follows: We first remove state q and all transitions
into and out of q from A. Second, for every pair (r, u, q) and (q, v, s) of tran-
sitions that were in A, we add a new transition (r, uv, s) to A. We denote the
resulting automaton by S(A, q). It is easy to verify that S(A, q) is indeed a block
automaton equivalent to A. We can also extend state elimination to a set S ⊂ Q
of states. Giammarresi and Montalbano [9] prove that if S does not contain the
start state and any final state, and the subgraph induced by S is acyclic, then
we can construct a unique block automaton S(A,S) by eliminating the states
in S in any order. In this case we say that the set S ⊆ Q of states satisfies the
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state-elimination precondition for A. Notice that when S satisfies the above
precondition and A is a k-block automaton, the length of blocks in S(A,S) can
increase to at most |S|k. Finally, if we apply state elimination to any state of
a deterministic finite-state automaton that satisfies the precondition, then we
obtain a deterministic block automaton.

Let A be a block automaton and e = (p, a1a2 · · · ak, q) be a transition in A,
where k ≥ 2. We define the block elimination of e in A as follows: We first re-
move the transition e from A. Second, we introduce new states p1, . . . , pk−1 and
new transitions (p, a1, p1), (p1, a2, p2), . . . , (pk−1, ak, q). We denote the resulting
block automaton by B(A, e). It is easy to verify that B(A, e) is indeed a block
automaton equivalent to A. Clearly, given a block automaton A, it can be trans-
formad into a one-block automaton by applying B(A,B), where B denotes the
set of all block-labelled transitions in A. Observe that, when A is a deterministic
block automaton, the resulting one-block automaton need not be deterministic.

3 Block-Deterministic Regular Expressions

We define block-marked regular expressions, and block-deterministic regular ex-
pressions and languages. Then, we characterize block-deterministic regular lan-
guages as those languages defined by deterministic block automata.

Let E be a regular expression over an alphabet Σ. We define a block of E to
be a subexpression of E containing only concatenation operations. For example,
given the expression

E = (a · a)∗ · (a · b · b+ b · a) · b∗,
then a, aa, ab, abb, b, ba and bb are all possible blocks in E, whereas aab and bbb
are not blocks of E although they are factors of words in L(E). We can partition
the dotted subexpressions in a regular expression E into disjoint blocks. We can
partition the running-example expression in more than two ways; for example,
we obtain six blocks with the partition

([a][a])∗([ab][b] + [ba])([b])∗,

where we use square brackets [ and ] to enclose blocks. There is the minimum
partition of a regular expression that treats each maximal dotted subexpression
as a block; for example,

([aa])∗([abb] + [ba])([b])∗

has four blocks. There is also the maximum partition that treats each single
symbol as a block; for example,

([a][a])∗([a][b][b] + [b][a])([b])∗,

has eight blocks. An expression that is partioned into blocks is called a blocked
expression.
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We define a block marking of an expression using a blocked version of the
expression. A block marking of an expression E is obtained by partitioning E
into blocks and uniquely marking each block with an integer subscript. When we
wish to identify the maximum length, k, of the blocks in a block marking, we call
it a k-block marking. We denote a block-marked version of an expression E
by E′. We denote by block(E′) the set of all marked blocks of E′. Thus, a block-
marked regular expression E′ is a marked regular expression over the alphabet
Γ = block(E′). For example, one block marking for the running example E is

E′ = ([a]1[a]2)∗([ab]3[b]4 + [ba]5)([b]6)∗,

in which case: block(E′) = {[a]1, [a]2, [ab]3, [b]4, [ba]5, [b]6}.
The block unmarking of a block-marked expression removes all subscripts

and the square brackets. If E′ is a block-marked expression, then (E′)� is the
corresponding unmarked and unblocked expression.

Block marking and unmarking of regular expressions can be extended in an
obvious way to block marking and unmarking of words and languages. Notice
that block marking generalizes the notion of marked expressions [11,14,2,4] that
corresponds to one-block marking.

Now, given a block-marked regular expression E′, we can extend to E′ the
functions first, last and follow introduced by Glushkov, McNaughton and Ya-
mada [11,14]. In this case, first(E′), last(E′) and follow(x,E′) are subsets of
block(E′) = Γ . Using these sets, we give a formal definition of block-deterministic
regular expressions.

A block-marking E′ of E is a deterministic block-marking if the following
two conditions hold:

1. For all x, y ∈ first(E′), x �= y implies that x� and y� are not one prefix of the
other.

2. For all z ∈ block(E′) and for all x, y ∈ follow(z, E′), x �= y implies that x� is
not a prefix of y�.

A regular expressionE is block-deterministic if there exists a deterministic
block-marking E′ of E.

If we restrict the block length to one, then one-block-deterministic expres-
sions coincide with one-unambiguous expressions as defined by Brüggemann-
Klein and Wood [4]. In general, a deterministic block marking for a given block-
deterministic regular expression E is not unique. This observation holds even
when the maximal length k of the blocks is specified. As an example, consider
the running example expression E = (aa)∗(abb+ba)(b)∗. There are two different
deterministic two-block markings for E:

E′
1 = ([aa]1)∗([ab]2[b]3 + [b]4[a]5)([b]6)∗

E′
2 = ([aa]1)∗([ab]2[b]3 + [ba]4)([b]5)∗.

From now on, we will refer to Γ when the set of blocks will be treated as
atomic symbols and we will refer to block(E′), when the set of blocks will be
treated as strings.
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Given a block-marked expression E′ of E, the Glushkov automaton for E′,
denoted by Gk(E′), is defined in the classical way considering as alphabet the
block set block(E′) and it is called Glushkov block automaton. Observe that
the Glushkov block automaton for a given regular expression E depends on the
block marking of E. We use Glushkov block automata to characterize block-
deterministic regular expressions. This characterization generalizes the one of
Brüggemann-Klein and Wood [4] to the case of k-block markings for k > 1.

Lemma 1. A k-block marking E′ is deterministic if and only if the correspond-
ing Glushkov block automaton Gk(E′) is deterministic.

Proof. From definition of deterministic block marking, and from construction of
Glushkov automaton, it follows that for each state q in Gk(E′), block(q) is a
prefix-free set, that is Gk(E′) is a deterministic block automaton.

Since by definition E is block deterministic iff there exists a deterministic
block marked expression E′ such that (E′)� = E, then we get the following

Corollary 1. A regular expression E is block deterministic if and only if it
admits a deterministic Glushkov block automaton.

If we want to emphasize the maximal length k of the blocks, we write k-block
deterministic.

We now consider the problem of deciding whether a given regular expres-
sion E is block-deterministic. Corollary 1 suggest one simple method: To guess a
k ≥ 1 and a k-block marking E′ and then construct the corresponding Glushkov
k-block automaton Gk(E′). If Gk(E′) is deterministic, then E is k-block-deter-
ministic.

Note that, for the case k = 1, the problem is easy to solve since there is
a unique one-block marking and the corresponding Glushkov block automaton
is the Glushkov one-block automaton GE . In this case, if GE is deterministic,
then E is one-block deterministic. We now consider the case when GE is not
deterministic and describe a procedure to determine whether there is a deter-
ministic k-block marking for E, for some k ≥ 2. More precisely, such a k-block
marking will be one with the minimum k.

Lemma 2. If a regular expression E is k-block-deterministic, then its corre-
sponding Glushkov one-block automaton GE can be transformed into a deter-
ministic k-block automaton by a sequence of state eliminations.

Proof. Let E′ be a deterministic k-block marking for E and letGk(E′) be the cor-
responding Glushkov deterministic block automaton. We will prove that Gk(E′)
is the requested automaton of the statement.

By applying a sequence of block eliminations to all appropriate transitions
in Gk(E′), we transform Gk(E′) into a one-block automaton B(A,B) = G�

(see Section 2 for the definition). Observe that any breaking of a block-labelled
transition into a sequence of symbol-labelled transitions corresponds to the block
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unmarking of one block of E′, and to a new subscription of each of its symbols,
since all the states introduced by block eliminations correspond to the positions
of the symbols in the blocks of E′ that are not the last symbols of the blocks.
Then, it follows that G� = GE . By applying state eliminations of all the new
states of G� = GE we obtain Gk(E′).

As a consequence of Lemma 2, the Glushkov automaton GE of a k-block-
deterministic expression E can be determinized (as block automaton) without
using subset construction: All the states that are responsible for its nondeter-
minism can be eliminated by a finite sequence of state eliminations to give a de-
terministic k-block automaton. Moreover we obtain a Glushkov deterministic k-
block automaton.

We now show how to get a Glushkov deterministic k-block automaton equiv-
alent to GE , if it exists, starting by GE itself. First, we identify the set of states
of GE to be eliminated.

Let A be a (block) automaton and let q1 and q2 be two different states of A.
Then, q1 and q2 are duplicates if the following condition holds:

∃p ∈ Q and x ∈ Σ∗: (p, x, q1) and (p, x, q2) are paths in A.

Recall that, given an automaton A, if we apply the subset construction to A
we get a deterministic automaton D(A) whose states are subsets of the original
set of states of A. We refer to a state of D(A) as either a multiple state or as a
single state according to the cardinality of such sets. A state q of A is possibly
included in several states, single and multiple, of D(A).

Observe that the duplicate states of a given automaton A are those that are
in multiple states in D(A). Therefore, an automaton is deterministic if and only
if it does not have any duplicate states.

Lemma 3. Let E be a regular expression and let GE be a corresponding Glushkov
automaton. Let Qdup be the set of all duplicate states of GE. If Qdup satisfies the
state-elimination precondition and S(GE , Qdup) is a Glushkov block automaton
then E is block deterministic.

Proof. By hypothesis Qdup satisfies the state-elimination precondition (see Sec-
tion 2) and G′

E = S(GE , Qdup) is a Glushkov block automaton. Let E′ be the
block-marked regular expression obtained from G′

E (characterization of Caron
and Ziadi show how to obtain it). Note that E′ is a block marking of E (in
fact, the state eliminations in GE correspond to combining some one blocks in
the standard marking of E ), so that to prove block-determinism of E can be
reduced to prove that G′

E is deterministic.
Let D(GE) be the deterministic automaton obtained by applying the subset

construction to GE , and let Q′ denote the set of states in D(GE) that are im-
ages (under determinization) of all states in Qdup. We claim that Q′ satisfies the
state-elimination precondition for D(GE) and that S(D(GE), Q′) = G′

E . As a
consequence, since transformation S preserves determinism, G′

E is a determin-
istic block automaton.
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Lemmas 2 and 3 suggest the following theorem.

Theorem 1. Let E be a regular expression and let GE be a corresponding
Glushkov automaton. Then, E is k-block deterministic, for some k ≥ 2, if and
only if GE can be transformed into a k-deterministic Glushkov automaton by
eliminating all of its duplicate states. Moreover, this Glushkov automaton de-
fines a deterministic k-block marking of E.

In the sequel, if E is a k-block-deterministic regular expression, we denote
by GkE the deterministic Glushkov k-block automaton obtained by applying state
elimination to all duplicate states in GE . Moreover, we will refer to the block
marking induced by GkE as the standard block marking of E.

From Lemma 3, we obtain the following algorithm to determine whether
a given regular expression E is block deterministic. First compute the Glushkov
automaton GE and identify the set Qdup of its duplicate states. If Qdup satisfies
the state-elimination precondition (it does not contain the start state or a final
state and it induces an acyclic subgraph), then compute G′

E = S(GE , Qdup).
Second, determine whether G′

E is a Glushkov automaton for the block alphabet
using, for example, the characterization of Caron and Ziadi [5]. If it is, then G′

E =
GkE defines a deterministic block marking of E.

Consider the running example expression E and its Glushkov automaton
in Fig. 1(a). It contains two duplicate states; that is, the states in Qdup =
{1, 3} satisfy the state-elimination precondition. By eliminating these states we
obtain Gk(E′) that is a deterministic Glushkov automaton for the alphabet
{a, aa, ab, b}.

We conclude this section by mentioning that the application of subset con-
struction to the Glushkov automaton GE of a block-deterministic regular ex-
pression E does not increase the size of the automaton ([6,7]) whereas, in the
worst case, subset construction produces exponential blow-up. Indeed, from the
proof of Lemma 3 we infer that the number of states of D(GE) is at most the
number of states of GE since the set of duplicate states does not induce cycles.

4 Block-Deterministic Regular Languages

A regular language L is block deterministic if there is a block-deterministic
regular expression E such that L = L(E). We now demonstrate that there are
regular languages that are not block deterministic.

We first consider the problem of deciding whether a given regular language
is block deterministic. The basic idea is to use the characterization established
by Brüggemann-Klein and Wood [4] for unambiguous regular languages (one-
block-deterministic regular languages in our terminology). Now, a regular expres-
sion is one-unambiguous if and only if its Glushkov automaton is deterministic.
Brüggemann-Klein and Wood show that if a Glushkov automaton is determinis-
tic, then it has some properties that are preserved under minimization. Therefore,
such properties can be checked on the minimal finite-state automatonM for the
given language. Moreover, if these properties hold for some minimal automaton,
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Fig. 1. Two Glushkov automata for the running example expression E. a. The
Glushkov automaton GE for E. b. The deterministic Glushkov block automa-
ton G2(E′) for a two-block marking of E obtained by state elimination in GE

they prove that the corresponding regular language is one-unambiguous. Thus,
they are able to give an algorithm that determines whether a given language
is one-block deterministic and, if it is, they are able to construct a one-block-
deterministic expression for it. We refer to this characterization as the BW test
for one-block-deterministic languages. Suppose we want to test whether
a given language L ⊂ Σ∗ is k-block deterministic for some fixed k. Let M be
the minimal automaton for L. We apply state elimination to M to get a k-block
automaton Nk. Let N be the same automaton as Nk considered as a minimal
automaton on its block alphabet Γ . We can then apply the BW test to N . If L,
considered to be over Γ , is one-block-deterministic, then there is a determin-
istic Glushkov automaton on Γ that reduces to N under minimization. Such
a Glushkov automaton gives a k-block-deterministic regular expression together
with a deterministic k-block marking for the original L (L ⊆ Σ∗).

On the other hand, if we consider all possible k-block automata that we can
get from M by state elimination and none of them pass the BW test (when
considered on the corresponding block alphabet), then we can conclude that L
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is not k-block deterministic for any k. This procedure always terminates. Given
an automaton A, the number of all possible block automata obtained from A by
state elimination is finite.

Notice that the preceding algorithm works only under the assumption that,
given a block alphabet Γ , the minimal automaton N for L, when considered to
be over Γ , can be obtained by applying state elimination to the minimal finite-
state automaton M (the minimal automaton for L when considered to be over
Σ). We show that this assumption is valid. If q is a state of a given automaton A,
we let Lq denote the language recognized by A using q as the start state. The
proof of the following result will be given in the full version.

Lemma 4. Let L be a block-deterministic regular language. Then, there is a
block-deterministic regular expression E� for L with the property that if p and q
are two states of D(G

E�
), then Lp = Lq implies that either p and q are sets of

duplicate states of G
E�

or p and q are (single) non-duplicate states of G
E�

.

Given a k-deterministic regular expression E, we let GE and GkE be its cor-
responding Glushkov and k-block Glushkov automata, respectively. We consider
the following two automata

M = M(D(GE)) and Mk = M(GkE) = M(S(GE , Qdup)),

whereM is obtained fromGE by applying first subset construction and then min-
imization whereas Mk is obtained from GkE by applying minimization. (Equiva-
lently,Mk is obtained fromGE by first applying state elimination of all duplicate
states and then applying minimization.)

Lemma 5. Let L be a k-deterministic language. Then, there is a block-determi-
nistic regular expression E for L such that M can be transformed into Mk by
state elimination.

Proof. Let QM and QMk be the sets of states of the automata M and Mk,
respectively. By Lemma 4, QMk is a proper subset of QM (or, more precisely, QM
contains an isomorphic copy of QMk). Moreover, all the states in QM \QMk are
classes of duplicate states of GE and their corresponding transitions define an
acyclic subgraph of M (the set of all such states satisfies the state-elimination
precondition).

Let us consider once again the running example expressionE; that is, consider
the language L = L(E) on the alphabet Σ = {a, b}. The minimal finite-state
automaton M for L in Fig. 2(a) is obtained by determinizing GE of Fig. 1(a)
and then minimizing it. When we apply the BW test to M , we see that L is not
one-block deterministic. We then eliminate state (1, 3) from M and obtain the
automaton Nk of Fig. 2(b).

Nk, considered as an automaton on the block alphabet Γ = {a, b, aa, ab}, can
be obtained minimizing the deterministic Glushkov block automaton of Fig. 1(b),
where states s and 2 are equivalent, and states 5, 7 and 8 are equivalent. These
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[s] (1,3) 4

a

a

b

bb
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M = M(D(GE))

[s] 4

bb

a
b6 [5]

ab

aa

Nk = S(M, {1, 3})

Fig. 2. A minimal finite-state automaton and state elimination. a. The minimal
finite-state automaton M for the running example expression E. b. The result
of eliminating state (1, 3) in M

observations imply that L is a one-block-deterministic automaton on Γ and a
two-block-deterministic automaton on Σ.

Using the same approach, we can exhibit languages that are not k-block
deterministic, for any k; therefore, they are not k-deterministic. One example
language is L = {a + b}∗{a{a + b}n}. Brüggemann-Klein and Wood [4] prove
that L is not one-block deterministic. Moreover, we can verify that it does not
pass the BW test after the state elimination of all states that satisfy the state-
elimination precondition.
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Abstract. Schützenberger Conjecture claims that any finite maximal
code C is factorizing, i.e. SC∗P = A∗ in a non-ambiguous way, for
some S, P . Let us suppose that Schützenberger Conjecture holds. Two
problems arise: the construction of all (S, P ) and the construction of C
starting from (S, P ). Regarding the first problem we consider two families
of possible languages S: S prefix-closed and S s.t. S \ {1} is a code. For
the second problem we present a method of constructing C from (S, P ),
that is relied on the construction of right- and left-factors of a language.
Results are based on a combinatorial characterization of right- and left-
factorizing languages.

1 Introduction

The theory of codes takes its origin in information theory, devised by Shannon
in the 1950s. The codes were considered as communication tools. Then, in the
1960s, M. P. Schützenberger pointed out the close relations between codes theory
and classical algebra (free monoids, groups, and so on). M. P. Schützenberger
and his school investigate codes inside the theory of formal languages, using an
algebraic, analytical or combinatorial approach. The aim is to give a structural
description of the codes in a way that allows their construction. Remark that
indeed no systematic method is known even for constructing all finite codes.
Algorithms exist for some sub-classes: prefix codes, suffix codes, biprefix codes
and n-codes, with n ≤ 3 (see [17] and references inside). Further, starting from
a factorizing code C one can construct an infinite family of factorizing codes C′,
applying composition ([6]) or substitution, introduced in [4,5]. Another way of
constructing factorizing codes starting from a related class is given in [19].

Regarding the problem of constructing codes, there is the famous conjec-
ture due to Schützenberger ([29,6]), that characterizes finite maximal codes
as factorizing codes. A finite code C ⊆ A∗ is factorizing if there exist lan-
guages S, P s.t. SC∗P = A∗, by non-ambiguous operations; the couple (S, P )
is called a factorization of C. Remark that non-ambiguity of operations on lan-
guages can be expressed, in an elegant and concise way, by introducing formal
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power series, and characteristic series in particular. A finite code is factorizing
if there exist S, P s.t. S C∗P = A∗. The Schützenberger Factorization Conjec-
ture is open after more than 30 years. Despite a lot of researchers worked on
it ([10,11,15,16,18,19,20,26,27]), only partial results exist ([17,27,30]). Remark
that if a finite code is factorizing then it can have several factorizations, as is the
case of biprefix codes for example, or a unique factorization ([9]). On the other
hand, by means of the substitution operation, if S appears in some equation
S C∗P = A∗ then an infinite family of couples (C′, P ′) can be constructed s.t.
S C′∗P ′ = A∗ ([4,5]).

In this paper we study the construction of (finite maximal) codes, assuming
that Schützenberger Factorization Conjecture holds. Indeed two problems arise:

1. the characterization/construction of all the couples (S, P ) that can be a fac-
torization of some finite code

2. the construction of a finite code C starting from its factorization (S, P ).

Problem 1 was firstly singled out in [15], where it is pointed out that the
couple (S, P ) can be a factorization of a finite code iff P (A − 1)S + 1 ≥ 0. We
survey all the triplets (S,C, P ) we know to be related by S C∗P = A∗. Then
we consider two more possible families of languages S: S prefix-closed and S s.t.
S \ {1} is a code and |S| ≤ 4. We establish conditions under which they can
appear in a factorization S C∗P = A∗ (Corollary 2 and Proposition 2).

Considering Problem 2, we propose and compare two possible ways of con-
structing a finite factorizing code C, once its factorization (S, P ) is given. The
first method uses the definition and comes out to be less efficient than the sec-
ond one. The second method is based on a result (Proposition 3) that allows
to express C in terms of the right-factor of S and the left-factor of P (see Sec-
tion 4 for the definitions). It is more efficient than the first method, as far as an
efficient construction of right-factors and left-factors of finite languages is avail-
able. We propose a new construction of right-factors and left-factors of a finite
language, that is more efficient than the one already given in [1]. Remark that
this construction, as well as Proposition 2, is based on a combinatorial charac-
terization of the right- (left-, resp.) factor of a language (Theorem 1), involving
the factorizations of a word and an alternating property.

The paper starts with a section devoted to some background. Section 3 con-
tains a survey on all the triplets (S,C, P ) we know to be related by S C∗P = A∗.
Section 4 contains our characterization of right- (left-, resp.) factorizing lan-
guages. Section 5 contains our contributions to the problem stated in item 1.
In Section 6 we consider two methods for constructing C, once its factorization
(S, P ) is given. Some conclusions are given in the last section.

2 Background and Notations

For definitions about formal languages and automata, see for example [23]. We
note here that, given a finite alphabet A, < A∗, ·, 1 > denotes the free monoid
generated by A and a language is any S ⊆ A∗. We will denote by A<n =
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{w ∈ A∗ w| < n} and by x−1w the word y s.t. w = xy, if any. Moreover the
reverse of word w = a1 · · · an is wR = an · · · a1 and the reverse of language S
is SR = {wR ∈ S}. A word x ∈ A∗ is a prefix of w ∈ A∗, and we write x ≤ w, if
w = xy, with y ∈ A∗; it is a proper prefix if x �= w and we write x < w. Pref(S),
(Suff(S), Fact(S), resp.) denotes the set of proper prefixes (suffixes, factors,
resp.) of words in S. S is prefix- (suffix-, factor-, resp.) closed if Pref(S) ⊆ S
(Suff(S) ⊆ S, Fact(S) ⊆ S, resp.). The union X ∪ Y is non-ambiguous when
X ∩ Y = ∅; the product XY is non-ambiguous when w = xy = x′y′ with
x, x′ ∈ X , y, y′ ∈ Y implies x = x′ and y = y′ and the star X∗ is non-ambiguous
when all unions and products in its definition are non-ambiguous. For the sake
of simplicity, we will sometimes write 1 instead of {1}.

We now recall some notations about formal power series; for more details
see [7,25,28]. Given a finite alphabet A and a semi-ring K, the class K � A �
of formal power series (briefly series) with non-commuting variables in A and
coefficients in K is the set of functions s : A∗ → K. As usual, the value of s
on w ∈ A∗ is denoted by (s, w) and the power series is written as a formal sum
s =

∑
w∈A∗(s, w)w. The image of the series s is the set Im(s) = {(s, w)| ∈ A∗}.

The support of s is the set supp(s) = {w ∈ A∗| s, w) �= 0}. The characteristic
series of a language X ⊂ A∗, denoted X , is defined by (X,w) = 1 if w ∈ X and
(X,w) = 0 if w �∈ X . By this formalism, we have that X ∪ Y is non-ambiguous
iff X ∪ Y = X+Y ; XY is non-ambiguous iff XY = X ·Y ; X∗ is non-ambiguous
iff X∗ = (X)∗.

3 Factorizing Codes and Their Factorizations

In this section we consider factorizing codes and present the Schützenberger’s
Factorization Conjecture. Then we survey some results related to it, in the aim
of Problem 1 in Section 1. Our main reference for codes is [6]. See also [11,12]
for some open problems in the field.

A subset C of A∗ is a code if for any c1, . . . , ch, c
′
1, . . . , c

′
k ∈ C, the equal-

ity c1 · · · ch = c′1 · · · c′k implies h = k and for every i ∈ {1, . . . , h}, ci = c′i. In
the terminology of series, C is a code iff C∗ = (C)∗. A prefix (suffix, resp.) code
is a language such that no word is a prefix (suffix, resp.) of another one in the
language. A code C is maximal over A if for any code C′ over A then C ⊆ C′

implies that C = C′.
A finite code C is factorizing (over A) if there exist two finite subsets S, P

of A∗ such that S C∗P = A∗. The couple (S, P ) is called a factorization of C.
A finite language S ⊂ A∗ such that S C∗P = A∗ for finite languages C,P ⊆ A∗,
is called a polynomial having solutions in [15] and strong factorizing in [3]. The
first terminology is motivated by the remark there exists C s.t. S C∗P = A∗ iff
P (A − 1)S ≥ 0. Further we have that if S C∗P = A∗ then S, P are finite iff C
is a finite and maximal code ([29,6]).

The most important conjecture on theory of codes is Schützenberger Factor-
ization Conjecture ([29,6]). It claims that any finite maximal code is factoriz-
ing. In this paper we study the construction of (finite maximal) codes, assuming
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that Schützenberger Factorization Conjecture holds. A problem that arises is the
characterization/construction of couples (S, P ) that are factorizations of some
code. Let us now survey the results we know about.

Firstly in [4,5] it is proved that it is decidable whether a finite language S is
strong factorizing and a construction for related couples (C,P ) is given, if any.
We will say that a language S is right-context-closed if s = s′t with s, s′ ∈ S
implies t ∈ S. For example, any suffix-closed language is right-context-closed.
Any factor-closed language is suffix-closed and hence right-context-closed.

Let us now enumerate some couples (S, P ) that appear in some equation
S C∗P = A∗. Remark that 8 is a particular case of 5; 9 is a particular case
of 11, 12 and 10 is a particular case of 11.

1. S = 1, C prefix code, P = A∗ \ CA∗

2. S = 1, C maximal prefix code, P = Pref(C) (P is prefix-closed)
3. S = A∗ \A∗C, C is a suffix code, P = 1
4. S = Suff(C) (S is suffix-closed), C maximal suffix code, P = 1
5. S = 1 ∪ X with X prefix code, P = Pref(X) ([3]) (all possible P ’s are

characterized in [15])
6. S = 1 ∪X with X suffix code iff X is biprefix ([15])
7. S = 1 ∪X with X code, |S| ≤ 3 iff X is prefix ([3])
8. S = {1, v} (all possible P ’s are characterized in [15])
9. S = {1, a2}, P = {1, a, aba2, aba3, aba2b},

C = {a4, ab, aba6, aba3b, aba3ba2, aba2ba, aba2ba3, aba2b2, aba2b2a2, b, ba2}
(C is an example of a factorizing code that is neither prefix nor suffix)

10. |S| = 3 and S \ 1 not a code iff S = {1, v, v2}, P = Pref({v}) ([3]) (all
possible P ’s are characterized in [21])

11. S ⊆ w∗ iff S = wI and (I, J) a Krasner factorization, (possible P ’s are
studied in [21])

12. A = {a, b} S ⊆ a∗ iff S = aI and (I, J) a Krasner factorization, (all possi-
ble P ’s are characterized in [17])

13. S right-context-closed (suffix-closed, factor-closed), P =Pref(S\1)\(S\1)
A+ (P is prefix-closed) ([15]).

Note that from the above list we can obtain an infinite list using: duality,
composition, substitution or extension of the alphabet, as follows.

If (S,C, P ) are s.t. S C∗P = A∗ then (PR, CR, SR) are s.t. PR CR∗
SR = A∗

(see Remark 1). Therefore if (S,C, P ) is a triplet in the above list, then its dual
(PR, CR, SR) can also appear in the list. For example the triplet in point 3 is the
dual of the one in point 1. The composition is a well-known operation on codes
([6]). It holds that the composition of two factorizing codes is a factorizing code
([8]). Substitution is an operation on languages introduced in [4,5] that allows to
construct from a factorizing code C with factorization (S, P ) an infinity family
of factorizing codes C′ with factorization (S, P ′).

Further, as an extension of a remark in ([2]), we have that if S · Y = A∗

and B is an alphabet s.t. B ⊇ A then S · Y ′ = B∗ with Y ′ = Y ∪ Y (B \ A)B∗.
Moreover one can easily show the following lemma.
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Lemma 1. Let S ⊂ A∗ and B an alphabet s.t. B ⊇ A. If S C∗P = A∗ then
S CB

∗P = B∗ where CB = C ∪ P (B \A)S.

In Section 5, we will give some contributions to the above list. In view of
results 5, 6, 7 we will conjecture that S = 1∪X with X code is strong factorizing
iff X is prefix. We will prove this result for |S| = 4. Then, in order to complete
item 13, we will study the case S is prefix-closed and show that S prefix-closed
is strong factorizing iff it is factor-closed.

4 A Characterization of Right- and Left-Factorizing
Languages

We introduce right- and left- factorizing languages. Right-factorizing languages
were firstly defined in [1], where they were simply called factorizing. We char-
acterize them, in terms of some combinatorial properties based on the factor-
izations of a word. This characterization will be used in Section 5 to decide
whether some languages are strong factorizing and in Section 6 to construct an
automaton recognizing the right-factor of a finite language.

Definition 1. A language S ⊂ A∗ is right-factorizing (left-factorizing, resp.) if
there exists Y ⊂ A∗ such that S Y = A∗ (Y S = A∗, resp.). In this case, Y is
called the right factor (left factor, resp.) of S and denoted by RF (S) (LF (S),
resp.).

For the sake of simplicity, we will sometimes write ”r-” (”l-”, resp.) instead of
”right-” (”left-”, resp.).

Remark 1. If X Y = A∗ then Y R XR = A∗. Therefore X is r-factorizing iff XR

is l-factorizing. We emphasize that hence any property on r-factorizing languages
yields a dual property on l-factorizing languages, just moving to the reverse of
languages. For instance, in the dual property ”prefix” will be replaced by ”suffix”.

Remark 2. Let S a right-factorizing language. It can be easily shown that S ∩
RF (S) = {1}; A∗\RF (S) = (S\1)RF (S); and A∗\(S\1)A∗ ⊆ RF (S). Further,
if s is a word of minimal length in S \ 1, then A<|s| ⊆ RF (S).

Observe that if S C∗P = A∗ then S, SC∗ are right-factorizing with RF (S) =
C∗P and RF (SC∗) = P . Similarly P,C∗P are left-factorizing with LF (P ) =
SC∗ and LF (C∗P ) = S. Therefore any strong factorizing language is r- factoriz-
ing too. An example of a language that is r-factorizing, but not strong factorizing
is S = {1, a, a2b} ([3]). The language S = {1, a, ab} is not right-factorizing ([1]).
Right-factorizing languages with at most three words are completely character-
ized in [1,2].

In [1,2], given a language S ⊆ A∗ with 1 ∈ S, the series rS = (S)−1A∗ is
considered. It is shown that (S)−1 = (S \ 1 · S \ 1)∗ − (S \ 1 · S \ 1)∗S \ 1 and
that S containing 1 is right-factorizing iff rS is a characteristic series; in this
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case RF (S) = supp(rS). A combinatorial characterization is then presented by
means of the following definitions. A prefix sequence of w with respect to S is a
sequence (x1, x2, . . . , xn) such that either n = 1 and x1 = 1 or xi ∈ (S \ 1) for
i ∈ {1, . . . , n} and x1 · · ·xn ≤ w. It is said an even prefix sequence if n is even or
it is (1) and an odd prefix sequence if n is odd. Furthermore a language S ⊆ A∗

is right-factorizing iff for any word w ∈ A∗, the difference between the number
of its even prefix sequences w.r.t. S and the number of its odd prefix sequences
w.r.t. S is always either 0 or 1. Finally, if S is right-factorizing then RF (S) is
the set of words for which this difference is 1.

We introduce here lS = A∗(S)−1 and observe that S is left-factorizing iff lS
is a characteristic series and in this case LF (S) = supp(lS).

Example 1. Let S={1, a, a2}. It can be shown that S is factorizing and RF (S)=
(a3)∗ since (rS , ai) = 1 if i = 3k for some k ≥ 0 and 0 otherwise ([1,2]). As an
example:
for k = 0 the unique even prefix sequence is (1) and there are no odd prefix
sequences, yielding (rS , 1) = 1;
for k = 1 the unique even prefix sequence is (1) and the unique odd prefix
sequence is (a), yielding (rS , a) = 0;
for k = 2 the even prefix sequences are (1), (a, a) and the odd prefix sequences
are (a), (a2), yielding (rS , a2) = 0;
for k = 3 the even prefix sequences are (1), (a, a), (a, a2), (a2, a) and the odd
prefix sequences are (a), (a2), (a, a, a), yielding (rS , a3) = 1.

Let us give a combinatorial characterization of right- (left-, resp.) factorizing
languages and their right- (left-, resp.) factors, starting from the above consider-
ations. Indeed we relate (rS , wa) with (rS , w), for w ∈ A∗, a ∈ A, thus obtaining
a sort of recursive way of expressing rS .

Definition 2. Let S ⊆ A∗ with 1 ∈ S. The formal power series fS is defined
as fS = (S)−1.

Definition 3. A factorization of w with respect to S is a sequence (x1,x2,...,xn)
such that either n = 1 and x1 = w = 1 or xi ∈ (S \ 1) for all i ∈ {1, . . . , n}
and x1 · · ·xn = w. It is said an even factorization if n is even or it is (1) and
an odd factorization if n is odd.

Remark 3. As above mentioned, the series fS equals fS = (S \ 1·S \ 1)∗−(S \ 1·
S \ 1)∗S \ 1. Therefore for any w ∈ A∗, the value (fS , w) is the difference between
the number of even factorizations of w and the number of its odd factorizations.

Factorizations of a word are indeed prefix sequences ending at the right-end
of the word. Counting factorizations instead of all prefix sequences is thus a
gain. Next lemmas show that counting factorizations (by fS), instead of prefix
sequences (by rS) is sufficient to establish whether a language is r-factorizing
and distinguish words in its right factor.
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Lemma 2. Given a language S ⊆ A∗ with 1 ∈ S, a ∈ A, w ∈ A∗, z ∈ A+, we
have that:
(rS , 1) = (lS , 1) = (fS , 1) = 1;
(rS , wa) = (rS , w) + (fS , wa) and (lS , aw) = (lS , w) + (fS , aw);
(rS , z) = (rS , x)+(fS , z), where x is the longest proper prefix of z s.t. (fS , x) �= 0
(lS , z) = (lS , y)+(fS , z), where y is the longest proper suffix of z s.t. (fS , y) �= 0.

From Lemma 2 and using induction on |w|, we obtain the following.

Lemma 3. Given a language S ⊆ A∗ with 1 ∈ S, if rS (lS, resp.) is a charac-
teristic series then

1. Im(fS) ⊆ {−1, 0, 1}
2. for any w ∈ A∗,

if (fS , w) = 1 then (rS , w) = 1 ((lS , w) = 1, resp.);
if (fS , w) = −1 then (rS , w) = 0 ((lS , w) = 0, resp.);
if (fS , w) = 0 then (rS , w) = (rS , x) ((lS , w) = (lS , x), resp.) where x is the
longest prefix (suffix, resp.) of w s.t. (fS , x) �= 0.

Corollary 1. Let S ⊆ A∗ and Si = {w ∈ A∗ s.t. (fS , w) = i}, for i = −1, 0, 1.
If S is a right-factorizing language then

1. RF (S) is the set of words whose longest prefix in S∗ \ S0 belongs to S1

2. A∗\RF (S) is the set of words whose longest prefix in S∗\S0 belongs to S−1.

Example 2. (continued) Let S = {1, a, a2}. S is factorizing and RF (S) = (a3)∗

([1,2]). As an example:
for k = 0 the unique even factorization is (1) and there are no odd factorizations,
yielding (fS , 1) = 1;
for k = 1 the unique odd factorization is (a), yielding (fS , a) = −1;
for k = 2 the unique even factorization is (a, a) and the unique odd factorization
is (a2), yielding (fS , a2) = 0;
for k = 3 the even factorizations are (a, a2), (a2, a) and the unique odd factor-
ization is (a, a, a), yielding (fS , a3) = 1.

Figure 1 shows the values of fS and rS on ak for any k = 0, · · · , 8.

The condition 1 of Lemma 3 is not sufficient, as shown by this example.

Example 3. Let S = {1, a, ab}. Since S \1 is a code, then every word w ∈ A∗ has
one factorization at most and thus Im(fS) ⊆ {−1, 0, 1}. On the other hand S
is not right-factorizing. Consider for example the word ab. We have (fS , 1) = 1;
(fS , a) = −1 and (rS , a) = 0; (fS , ab) = −1 and thus (following Lemma 2)
(rS , ab) = (rS , a) + (fS , ab) = −1, showing that rS is not a characteristic series.

A characterization of right-factorizing languages is indeed given by the fol-
lowing theorem.
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fS

Sr

a 8  a a a a

:

a a a a

1 0 1 0 0 1 0 00

1 -1 0 1 -1 0 1 -1 0:

Fig. 1. The values of fS, rS on a0, a, a2, · · · , a8 for S = {1, a, a2}

Theorem 1. Let S ⊆ A∗ with 1 ∈ S and fS = S−1.
S is a right- (left-, resp.) factorizing language iff A∗ can be partitioned as A∗ =
S−1 + S0 + S1 where Si = {w ∈ A∗ s.t. (fS , w) = i}, for i = −1, 0, 1 and the
following alternating property holds:

1. ∀ ∈ S1 \ 1 its longest proper prefix (suffix, resp.) in S∗ \ S0 belongs to S−1

2. ∀ ∈ S−1 its longest proper prefix (suffix, resp.) in S∗ \ S0 belongs to S1.

Proof. We prove the theorem for S right-factorizing. The proof for left-factorizing
is the dual one. Recall that ([1,2]) S is r-factorizing iff rS is a characteristic series.

Let us suppose that S is right-factorizing. Then rS is a characteristic se-
ries ([1,2]) and Im(fS) ⊆ {−1, 0, 1}, by Lemma 3. It follows that A∗ can be
partitioned as A∗ = S−1 + S0 + S1.

Now let us suppose that the alternating property does not hold. Let w ∈
S1 \ 1 s.t. its longest proper prefix x in S∗ \ S0 belongs to S1. By Lemma 2,
(rS , w) = (rS , x)+(fS , w) = (rS , x)+1. Moreover (rS , x) = 1 because (fS , x) = 1
and Lemma 3 holds. Therefore we had (rS , w) = 1 + 1 = 2 against rS is a
characteristic series. In an analogous way, if w ∈ S−1 and its longest proper
prefix x in S∗ \ S0 belongs to S−1 then we had (rS , w) = 0− 1 = −1.

For the vice versa let us suppose that Im(fS) ⊆ {−1, 0, 1} and that the
alternating property holds. We are going to show that rS is a characteristic
series. Indeed we are going to show by induction on |w|, that for any w ∈ A∗

and x longest proper prefix of w s.t. (fS , x) �= 0, we have (rS , w) ∈ {0, 1} and
if (fS , w) = 1 then (rS , w) = 1, if (fS , w) = −1 then (rS , w) = 0, if (fS , w) = 0
then (rS , w) = (rS , x).

If |w| = 0 then (rS , 1) = (fS , 1) = 1, by Lemma 2.
Let w s.t. |w| > 1. From Im(fS) ⊆ {−1, 0, 1}, three cases are possible. If

(fS , w) = 1 then (fS , x) = −1 by the alternating property, (rS , x) = 0 by the
inductive hypothesis, and then (rS , w) = (rS , x)+(fS , w) = 0+1 = 1 by Lemma
2. In an analogous way, if (fS , w) = −1 then (fS , x) = 1, (rS , x) = 1, and then
(rS , w) = (rS , x) + (fS , w) = 1 − 1 = 0. If (fS , w) = 0 then (rS , w) = (rS , x) ∈
{0, 1} by Lemma 2 and the inductive hypothesis. ��
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Let us now express Theorem 1 and Corollary 1, in a more descriptive way.
Following the scheme used in Example 2 (see Fig. 1), for any word we point out
the values of fS on its prefixes, from the shortest one by increasing length. Given
S ⊆ A∗, w = a1 · · · an ∈ A∗, let us define:

ρS(w) = (fS , 1)(fS, a1) · · · (fS , a1 · · · an) and
λS(w) = (fS , a1 · · · an)(fS , a1 · · · an−1) · · · (fS , 1).
Remark that ρS(w) also shows the values of ρS on every prefix of w.

Example 4. (continued) Let S = {1, a, a2}. For any k ≥ 0 we have ρS(a3k) =
(1(−1)0)k, ρS(a3k+1) = (1(−1)0)k1, ρS(a3k+2) = (1(−1)0)k1(−1) (cfr. Fig. 1).

Example 5. If S = {1, a, a2b} then ρS(a2ba) = 1(−1)1(−1)1.

Example 6. Let S = {1, a3ba, a, b, a2, ab, ba, a3, a2b, aba, a3b, a2ba}. Remark that
S is a factor-closed language: it contains 1, w = a3ba and every factor of w.
Using Lemma 4, it can be shown that ρS(a3ba) = 1(−1)0000.

Theorem 1 and Corollary 1 can be restated as follows, keeping in mind that
for any language S, (fS , 1) = 1 and S is factorizing iff the values of fS can be
only 0, 1,−1 and in such a way that non-zero values 1,−1 alternates in a reading
of the word from the left end to its right end.

Theorem 2. Let S ⊆ A∗, U+=1(0∗(−1)0∗10∗)∗, U−=1(0∗(−1)0∗10∗)∗(−1)0∗

and U = U+ ∪ U−.
The language S is right-(left-, resp.) factorizing iff for any w ∈ A∗, ρ(w) ∈ U

(λ(w) ∈ U , resp.). Moreover if S is right- factorizing then RF (S) = {w s.t.
ρ(w) ∈ U+} and A∗ \RF (S) = {w s.t. ρ(w) ∈ U−}; if S is left-factorizing then
LF (S) = {w s.t. λ(w) ∈ U+} and A∗ \ LF (S) = {w s.t. λ(w) ∈ U−}.

Finally let us show how to compute the value of fS on a word, once the values
of fS on its proper prefixes are known.

Lemma 4. Let S a language, w = a1 · · · an ∈ A+ and HS(w) = {h | h =
|x1 · · ·xm−1| and (x1, · · · , xm) is a factorization of w}. Then

(fS , w) = −
∑

h∈HS(w)

(fS , a1 · · ·ah)

where a1 · · · ah = 1 if h = 0.

Proof. Remark that for any factorization (x1, · · · , xm) of w, m≥2, m is even iff
m− 1 is odd and that if m=1 then 0 ∈ HS(w). Moreover denote feS=(S \ 1 ·
S \ 1)∗, foS = (S \ 1 · S \ 1)∗S \ 1 and observe that (feS , 1) = 1, (foS , 1) = 0.
Consider now w ∈ A+. Then (feS, w)=

∑
h∈HS(w)(foS , a1 · · · ah) and (foS , w)=∑

h∈HS(w)(feS , a1 · · ·ah). Finally, (fS , w) = (feS , w)− (foS , w) =
−[
∑
h∈HS(w)(feS , a1 · · ·ah)−

∑
h∈HS(w)(foS , a1 · · · ah)] =

−∑h∈HS(w)(fS , a1 · · · ah). ��
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5 Some Classes of Languages S

In this section, we give some contributions to the characterization of finite lan-
guages S,C, P s.t. S C∗P = A∗, using results of previous sections. Motivated
by the state of art, as presented in Section 3, we consider two more cases of
possibly strong factorizing languages: the case S is prefix-closed and the case
S \ 1 is a code. Remark that these two cases are at the opposite sides, regarding
the number of factorizations on S of a word. We show that a finite prefix-closed
language is strong factorizing iff it is factor-closed. Then we obtain that a lan-
guage S s.t. |S| ≤ 4 and S \ 1 is a code, is strong factorizing iff S \ 1 is prefix
and we conjecture that the result holds for any value of the cardinality of S.
Proposition 1 and its proof are partially outlined in [14].

Proposition 1. A prefix-closed language is right-factorizing iff it is factor-
closed.

Proof. Any factor-closed language is trivially prefix-closed. Moreover it is
(strong) r-factorizing, as shown in [15].

For the converse, let S ⊆ A∗ be a prefix-closed and r-factorizing language.
We are going to show that for any w ∈ S, all of its factors are in S, by induction
on the length of w.

If |w| = 1 then the only factor of w is w itself and thus the goal.
Let w = a1 · · · an, n ≥ 2. By the inductive hypothesis, all the factors of w

that are factors of a1 · · ·an−1 belong to S. Using induction on h and Lemma 4
it can be shown that (fS , 1) = 1, (fS , a1) = −1 and (fS , a1 · · · ah) = 0 for any
2 ≤ h ≤ an−1 (cfr. Example 6).

Let us now consider (fS , a1 · · · an). From a1 · · · an ∈ S \ 1 ⊆ A∗ \ RF (S) we
have that (fS , a1 · · · an) equals either 0 or −1. But (fS , a1 · · ·an) = −1 contra-
dicts the alternating property of Theorem 1. Hence (fS , a1 · · ·an) = 0. Using
Lemma 4, the unique possibility comes out to be a2 · · · an ∈ S. The inductive
hypothesis applied to a2 · · · an achieves the proof. ��
Corollary 2. A finite prefix-closed language is strong factorizing iff it is factor-
closed.

Let us now consider the case S \ 1 is a code. Motivated by results 5, 6, 7 of
Section 3, we present the following conjecture and we prove it in the particular
case |S| ≤ 4.

Conjecture 1. A language S = 1 ∪ X with X code is strong factorizing iff X is
prefix.

The proofs of the following results are very technical and based on com-
binatorics on words. They use results in Section 4 and are based on the fol-
lowing considerations. Firstly observe that, when studying right-factorizing lan-
guages S, the case where S \ 1 is a code is a very special case. If S \ 1 is a
code then S∗ = S1 + S−1, S∗ ∩ RF (S) = S1 = ((S \ 1)2)∗, and S∗ \ RF (S) =
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S−1 = ((S \ 1)2)∗(S \ 1). Further in the considered case (S \ 1 code, |S| = 4) it
is possible to single out some words that are forbidden to be in RF (S) (namely
((S \ 1)2)∗(S \ 1)) and some words that are forced to be in C+ (namely s2k

1 in
Lemma 6, (sisj)k or s2s

h
j l in Proposition 2). Such words cannot be arbitrar-

ily concatenated. It is a trivial (but very crucial in the sequel) remark, that if
S C∗P = A∗ then RF (S) = C∗P , C ·RF (S) ⊆ RF (S) and equivalently, w = ct
with w �∈ RF (S), c ∈ C implies t �∈ RF (S).

Let us now present some results (Lemmas 5, 6, 7) on shortest words of a lan-
guage S s.t. S \ 1 is a code.

Lemma 5. Let S be a right-factorizing language. If S \ 1 is a non-prefix code
and s is a shortest word of S \ 1 having a proper prefix in S \ 1 then s = s′s′′y
where s′, s′′ ∈ S \ 1 and y ∈ RF (S).

Proof. Let s′ be the proper prefix of s in S \1 (it is unique because of minimality
of s). Let s = a1 · · ·an, s′ = a1 · · · ah, 1 ≤ h < n. We have ρ(s′) ∈ 10∗(−1) and
(fS , a1 · · · an) = −1. From the alternating property of Theorem 1, there exists
h < k < n s.t. (fS , a1 · · · ak) = 1; let k be the smallest one. The minimality
of s implies that the even factorization of a1 · · ·ak is (a1 · · · ah, ah+1 · · · ak). Let
s′′ = ah+1 · · · ak ∈ S \ 1 and y = ak+1 · · · an. We show that y ∈ RF (S), by
showing that its longest prefix x in S∗ \ S0 belongs to S1 (cfr. Corollary 1).
Suppose by the contrary that x ∈ S−1. We had that s′s′′x, s ∈ S−1 and s′s′′x �= s
since S \ 1 is a code. Moreover no z ∈ S1 could exist s.t. s′s′′x < z < s because
of the minimality of s. This is a contradiction to the alternating property. ��
Lemma 6. Let S be a strong factorizing language. If S \ 1 is a code and s1 is a
shortest word of S \ 1 then there exists k > 0 s.t. s2k

1 ∈ C+.

Proof. Firstly (s2
1)

∗ ⊆ S1 ⊆ RF (S) and RF (S) = C∗P for some C,P , finite
languages. Because of finiteness of P , (s2

1)∗ ⊆ P cannot hold. Let us now suppose
that � ∃k s.t. s2k

1 ∈ C+. This means that ∃h (indeed ∃h0 s.t. ∀h ≥ h0) s.t. s2h
1 = cp

where c ∈ C+, p ∈ P \ 1 and s2m
1 < c < s2m+2

1 for some m < h. Two cases are
possible: either s2m

1 < c < s2m+1
1 or s2m+1

1 ≤ c < s2m+2
1 .

If s2m
1 < c < s2m+1

1 then s2m+1
1 = ct, t �= 1 and t ∈ A<|s1| ⊆ RF (S) from

Remark 2. Therefore we had s2m+1
1 ∈ C+RF (S) ⊆ RF (S) against s2m+1

1 ∈
S−1 ⊆ A∗ \RF (S).

Let us suppose now s2m+1
1 ≤ c < s2m+2

1 . Because c ∈ C+ ⊆ RF (S), the
longest prefix x of c in S∗ \S0, x ∈ S1 and then s2m+1

1 < x ≤ c. From x, s2m+2
1 ∈

S1 and the alternating property it follows that ∃z ∈ S−1, x < c < z < s2m+2
1 .

Let z = ct′. Then t′ ∈ A<|s1| ⊆ RF (S) by Lemma 2 and then z ∈ C+RF (S) ⊆
RF (S).

��
Lemma 7. Let S be a strong factorizing language. If S\1 is a non-prefix code, s1

is a shortest word of S \ 1 and s2 is a shortest word in S \ {1, s1} then s1 is not
a prefix of s2.
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Proof. If |s2| = |s1| then s1 cannot be a prefix of s2. Otherwise (see Fig. 2),
let us suppose that s1 < s2. From Lemma 5 and since there is no s′′ s.t. |s1| <
|s′′| < |s2|, s2 = s1s1y with y ∈ RF (S). Let k be s.t. s2k

1 ∈ C+, as in Lemma 6.
A contradiction holds for the word w = s2k

1 y. Indeed w ∈ C+RF (S) ⊆ RF (S)
against w = (s1)2(k−1)s2 ∈ S−1 ⊆ A∗ \RF (S). ��

2

s 1 s 1 s 1 s 1 s 1s 1

s

1

y

{ {{

k-1 k

Fig. 2. Proving Lemma 4

Our goal is now to prove that if S is a strong factorizing language with S \ 1
a code and |S| = 4, then S \ 1 is prefix. In view of Lemma 7, we only have to
show that the longest word in S cannot have a proper prefix in S \ 1. This is
achieved by using an (not trivial) extension of the proofs of Lemmas 6 and 7,
that we do not give here in details, since it uses similar techniques, but with
more cases and sub-cases to handle.

Proposition 2. Let S ⊆ A∗ s.t. S \ 1 is a code and |S| = 4. Then S is strong
factorizing iff S \ 1 is prefix.

Proof. (Sketch) If S \ 1 is prefix then it is strong factorizing, as shown in [3].
Let us suppose that S is a strong factorizing language with S C∗P = A∗ and

S \ 1 is a non-prefix code. Let S = 1 + s1 + s2 + s3 with |s1| ≤ |s2| ≤ |s3|.
By Lemmas 5 and 7 we have s3 = sisjy for some i, j ∈ {1, 2} and y ∈ RF (S).

Observe that (sisj)∗ ⊆ S1 ⊆ RF (S) = C∗P . Thus for any large enough k > 0, if
(sisj)k �∈ C+ then (sisj)k = cp with c ∈ C+, p ∈ P \ 1. Two cases are possible:
either c = (sisj)hsil, for some 1 < l < sj (case 1) or c = (sisj)hl, 1 < l < si
(case 2). It can be shown that case 1 is not possible and that case 2 implies
that si = s2 and l−1si = sd1, d odd. Therefore, for any i, j ∈ {1, 2} then either
∃k s.t. (sisj)k ∈ C+ or si = s2 and ∃h st. (sisj)hl ∈ C+, for 1 < l < si
and l−1si = sd1, d odd.

If (sisj)k ∈ C+ then (sisj)ky=(sisj)k−1s3 would belong both to C+RF (S)⊆
RF (S) and to S−1 ⊆ A∗ \RF (S).

Otherwise s3 = s2sjy, y ∈ RF (S). Further, sd1sj ∈ RF (S), using Corollary 1.
Moreover let (y1, · · · , yn), n even, the factorization of the longest prefix of y
in S∗\S0, x the longest prefix of sd1sjy in S∗\S0 and (x1, · · · , xm) its factorization.
We have that x1 = · · · = xd = s1, xd+1 = sj and ∀1 ≤ j ≤ n, xd+1+j = yj ,
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since s1 �≤ s2 and |sd1sjy| < |s3|. Consider then (s2sj)hs3. We have (s2sj)hs3 =
csd1sjy ∈ C+RF (S) ⊆ RF (S) against (s2sj)hs3 ∈ S−1 ⊆ A+ \RF (S). ��

6 Constructing C from (S, P )

In this section we consider the problem of constructing finite maximal codes.
Observe that any code is a subset of some maximal code. We assume that
Schützenberger Conjecture holds, i.e. for any finite maximal code C there exist
finite languages S, P s.t. S C∗P = A∗. We focus on the problem of construct-
ing C, once S, P are given, and propose two methods of solution.

The first method uses the definition. From S C∗P =A∗, using properties of for-
mal power series, we obtain that C−1=P (A−1)S and C=supp(P (A−1)S + 1).
Starting from an automaton recognizing S and automaton recognizing P , we can
easily obtain an automaton recognizing the series P (A − 1)S + 1. Let n be the
number of its states. Its support (C indeed) is regular because of some results by
Schützenberger and Sontag (cfr. [7]). Applying a construction contained in [7]
we can obtain an automaton recognizing C with a number of states 2n

2
. Remark

that n = Ω(|Qmin
S | + |Qmin

P |), where Qmin
X is the set of states of the minimal

automaton for a language X .

The second method we propose for constructing C, given a couple (S, P ) of
finite languages, is based on the following result.

Proposition 3. Let S,C, P languages s.t. S C∗P = A∗. Then:
S is a right-factorizing language and P ⊆ RF (S),
P is a left-factorizing language and S ⊆ LF (P ),
C∗ = RF (S) ∩ LF (P ) and C = C+ \ C+C+.

Proof. RF (S) = C∗P , LF (P ) = SC∗. Moreover, since 1 ∈ S and 1 ∈ P ,
then C∗ ⊆ RF (S) ∩ LF (P ). Vice versa, let w ∈ RF (S) ∩ LF (P ). If w �∈ C∗

then w ∈ (S \ 1)C∗ ∩ C∗(P \ 1), against the non-ambiguity of SC∗P . Finally
C = C+ \ C+C+ since C is the basis of C∗ (see [6], e.g.). ��

For the sake of completeness let us summarize in the next corollary, what
Proposition 3 and the characterization of right- and left- factorizing languages
of Section 4 yield to languages S,C∗, P . Recall that the values (rS , w), (lS , w)
are related to the number of prefix- and suffix- sequences of w.

Corollary 3. Let S,C, P languages s.t. S C∗P = A∗. Then:
S \ 1 ⊆ {w rS , w) = 0, (lS, w) = 1} = (S \ 1)C∗,
C∗ = {w rS , w) = (lS , w) = 1},
P \ 1 ⊆ {w rS , w) = 1, (lS, w) = 0} = C∗(P \ 1).
Using Proposition 3, an automaton recognizing C can be obtained in the

following way. First construct an automaton recognizing C∗ as intersection of
an automaton recognizing RF (S) and an automaton recognizing LF (P ); then
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obtain an automaton recognizing C using the formula C = C+\C+C+, that is by
completion, product and intersection of automata. Therefore the second method
strongly depends on the construction we use to recognize RF (S) and LF (P ).
The rest of the section is devoted to a construction of a deterministic automaton
recognizing RF (S), starting from a deterministic automaton recognizing S. The
case LF (P ) is clearly the symmetric one. We will find that when considering
a finite r-factorizing language S, such a construction gives rise to an automaton
with a number of states |Q| ≤ 2 · (2|Qmin

S |)|QS |. Moreover the completion of
an automaton can be obtained by adding 1 state at most to the states of the
given automaton; the intersection and the product of two given deterministic
automata can be obtained with a number of states equal to the product of the
number of states of the two given automata ([23]). Therefore this second method
is asymptotically more efficient than the first one.

Let us now construct a deterministic automaton AfS that recognizes the
right-factor of a regular right-factorizing language S. The construction is based
on Theorem 2. Indeed the state of AfS reached from the initial state reading
a word w, shows the value of fS on w.

Let S ⊆ A∗ a regular language and AS= (QS , q0, δS , FS) a determinis-
tic trim automaton recognizing S. Consider the automaton (QS , q0, δ

′
S, {q0})

where δ′S(q, a) = {δS(q, a)} if δS(q, a) �∈ FS and δ′S(q, a) = {δS(q, a)} ∪ {q0} if
δS(q, a) ∈ FS . Let AS∗ = (QS∗ , q0, δS∗ , {q0}) be the flower automaton (cf. [6])
of AS obtained by removing from (QS , q0, δ

′
S , {q0}) every not coaccessible state

and all transitions involving it. Let QS∗ = {q0, q1, · · · , qn−1}. Remark that AS∗

is no more deterministic, but the number of its transitions is at most twice.
Let us define the function sign : Z \ {0} → {+,−}, as sign(z) = + if z > 0

and sign(z) = − if z < 0.
The automaton AfS = (Q, 1, δ, F ) is the following. A state q ∈ Q is q =

(l0, · · · , ln−1, σ) with li ∈ Z ∪ {∞}, σ ∈ {+,−}; 1 = (1,∞, · · · ,∞,+) and F =
{(l0, · · · , ln−1, σ)|σ = +}. Further δ((l0, · · · , ln−1, σ), a) = (m0, · · · ,mn−1, τ)
where:

m0 =
{−∑δS∗ (qj ,a)=q0 nd j �=∞ lj if ∃j s.t. δS∗(qj , a) = q0

∞ otherwise

mi =
{∑

δS∗ (qj ,a)=qi nd j �=∞ lj if ∃j s.t. δS∗(qj , a) = qi
∞ otherwise

τ =
{
sign(m0), if m0 �= 0
σ otherwise.

Remark that the automaton AfS is deterministic. Moreover it can have an
infinite number of states, since li ∈ Z ∪ {∞}.
Proposition 4. Let S a finite right-factorizing language, AfS = (Q, 1, δ, F )
constructed as above and L(AfS ) the language recognized by AfS .

Then AfS is finite and L(AfS ) = RF (S).
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Proof. The proof is based on Theorem 1 and on the following observations
that can be proved by induction on the length of w. Let w ∈ A∗ and q(w) =
(l0, · · · , ln−1, σ) the state of AfS reached from 1 reading w. We have that:

if li = ∞ then there is no path in AS∗ from q0 to qi labelled w;
if li �= ∞ and i = 0 then w ∈ S∗, (fS , w) = l0 and (rS , w) > 0 iff σ = +;
if li �= ∞ and i �= 0 then w = u1v1 = · · · = uhvh where for any j =

1, · · · , h, uj ∈ S∗,
∑

j=1,···,h(fS , uj) = li and there is some path in AS from q0

to qi labelled vj and that does not pass through q0 .
Observe that AfS is finite. Indeed if S is factorizing then (fS , uj) ∈ {0, 1,−1}

for any uj ∈ A∗. Moreover li ∈ {−k, · · · , 0, · · · , k,∞}, where:
|k| = maxw∈A∗

∑
j=1,···,h(fS , uj) ≤ maxw∈A∗(maxj=1,···hvj) ≤ maxs∈S |s| − 1.

��
Remark that |Q| ≤ 2 ·(2k+1)|QS | and k = O(|Qmin

S |). The exponential blow-
up is due to the deterministic visit of paths in the non-deterministic automaton
AS∗ . Nevertheless this construction in the case of a finite language S is asymp-
totically more efficient than the one contained in [1,2]. The number of states
of the automaton recognizing RF (S) as constructed in [1,2], is 2n

2
, where n is

the number of states of an automaton recognizing rS . Since n = Ω(|Qmin
S |), the

number of states of that automaton is 2Ω(|Qmin
S |2). Moreover, the construction

presented in this section is simpler: the transitions are obtained by some tests
and sums of integers, while in [1,2] they were obtained by some products of
matrices n× n with entries in Z2.

Example 7. Let A = {a, b} and S = {1, a, a2b}. Let AS = (QS , qo, δS , FS),
where QS = {q0, q1, q2, q3}, FS={q0, q1, q3} and the only transitions are δS(q0, a)
= q1, δS(q1, a) = q2 and δS(q2, b) = q3. We find AS∗ = (QS∗ , qo, δS∗ , {q0}),
where QS = {q0, q1, q2}, and the only transitions are δS∗(q0, a) = {q0, q1},
δS∗(q1, a) = q2 and δS(q2, b) = q0.

Using the above construction, AfS = (Q, 1, δ, F ) is given as follows. The
states are Q = {1, 2, 3, 4, 5, 6, 7}, where 1 = (1,∞,∞,+), 2 = (−1, 1,∞,−),
3 = (1,−1, 1,+), 4 = (−1, 1,−1,−), 5 = (1,∞,∞,+), 6 = (−1,∞,∞,−),
7 = (1,−1,∞,+). The final states are F = {1, 3, 5, 7}. The transitions are as
given in Fig. 3.
In Fig. 4 we compare the path in AfS from 1 labelled w = a4ba with the factor-
izations of w and its prefixes.

7 Conclusions

The problem of constructing codes, is still far away from a solution.
We have singled out two problems to explore, assuming that Schützenberger

Conjecture holds: the construction of all the possible factorizations (S, P ) of
some code C and the construction of a code C starting from its factorization
(S, P ). Regarding the first problem we have presented the state of art, adding



212 Marcella Anselmo

a

1 2 3 4

5

6 7

a a

b

a

a

b

a

a

Fig. 3. The automaton AfS for S = {1, a, a2b}

q   , 1
1 

q   , 11 
q   , -1

1 
q   , -1

1 
q   , -1

q   , 12

q   , 12

2
q   ,- 1

q   ,100q   , -1q   ,100q   , -1q   ,100q   , -1q   ,10

1
-1

1
+

1 

-1

a a a a b a

1

8
8

8

+

-1

8

1

-

-1

-1
-

-1 1

-1

8

+

8

-

1
1

1
+

Fig. 4. The path labelled a4ba in AfS



Constructing Finite Maximal Codes from Schützenberger Conjecture 213

some contributions, but a lot of them can be still given. Then we have pre-
sented a solution to the second problem. Finally: Schützenberger Factorization
Conjecture is indeed still open!

References

1. M. Anselmo, A. Restivo: Factorizing Languages, Procs. 13th World Computer
Congress IFIP 94 1, B. Pehrson and I. Simon eds., Elsevier Sc. B. V. North
Holland (1994) 445-450 198, 201, 202, 203, 204, 211

2. M. Anselmo, A. Restivo: On Languages Factorizing the free Monoid, Internat. J.
of Algebra and Computation 6, n.4 (1996) 413-427 200, 201, 202, 203, 204, 211

3. M. Anselmo, C. Defelice, A. Restivo: On some factorization problems, Bulletin of
the Belgian Mathematical Society 4 (1997) 25-43 199, 200, 201, 208

4. M. Anselmo: A Non-ambiguous Language Factorization Problem Procs. DLT 99
G. Rozenberg, W. Thomas eds., World Scientific (2000) 141-152 197, 198, 200

5. M. Anselmo. A Non-ambiguous Decomposition of Regular Languages and factor-
izing Codes, in revision for a journal 197, 198, 200

6. J. Berstel, D. Perrin: Theory of Codes, Academic Press (1985) 197, 199, 200,
209, 210

7. J. Berstel, Ch. Reutenauer: Rational Series and their Languages, EATCS Mono-
graphs 12, Springer Verlag (1988) 199, 209
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Abstract. We present a translation from Fickle (a Java-like language
allowing dynamic object re-classification, that is, objects that can change
their class at run-time) into plain Java. The translation is proved to pre-
serve static and dynamic semantics; moreover, it is shown to be effective,
in the sense that the translation of a Fickle class does not depend on the
implementation of used classes, hence can be done in a separate way, that
is, without having their sources, exactly as it happens for Java compi-
lation. The aim is to demonstrate that an extension of Java supporting
dynamic object re-classification could be fully compatible with the ex-
isting Java environment.

1 Introduction

Dynamic object re-classification is a feature which allows an object to change
its class membership at run-time while retaining its identity. Thus, the ob-
ject’s behavior can change in fundamental ways (e.g., non-empty lists becom-
ing empty, iconified windows being expanded, etc.) through re-classification,
rather than replacing objects of the old class by objects of the new class. Lack
of re-classification primitives has long been recognized as a practical limita-
tion of object-oriented programming. Fickle [4] is a Java-like language support-
ing dynamic object re-classification, aimed at illustrating features for object
re-classification which could extend an imperative, typed, class-based, object-
oriented language.

Other approaches have been attempted [3,6,7]; however, Fickle is more within
the main stream of the object oriented approach, and moreover it is type-safe,
in the sense that any type correct program (in terms of the Fickle type system)
is guaranteed never to access non-existing fields or methods.

A further problem is how to construct, starting from the Fickle design,
a working extension with dynamic object re-classification of a real object-oriented
language. Java is the first natural candidate to be considered, since Fickle can be
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considered a small subset of Java (with only non-abstract classes, instance fields
and methods, integer and boolean types and a minimal set of statements and
expressions) enriched with features for dynamic object re-classification. Thus, in
particular, a Fickle class which does not use these features is a Java class.

In this paper, we provide a first important step towards the solution, that
is, we show that a Java environment could be easily and naturally extended in
such a way to handle standard Java and Fickle classes together.

In order to show that, we define a translation from Fickle into plain Java.
The translation is proved to preserve static and dynamic semantics (that is, well-
formed Fickle programs are translated into well-formed Java programs which
behave “in the same way”). Moreover, the translation is effective, in the sense
that it gives the basis for an effective extension of a Java compiler. This is
ensured by the fact that the translation of a Fickle class does not depend on the
implementation of used classes, hence can be done in a separate way, that is,
without having their sources, exactly as it happens for Java compilation. This
is so because type information needed by the translation can be retrieved from
type information stored in binary files.

Hence, an extension of Java supporting dynamic object re-classification could
be fully compatible with the existing Java environment.

The problems we had to solve in order to define a translation that were
both manageable from the theoretical and implementative point of view were
not trivial. The main issues we had to face were the following:

1. to find an appropriate encoding for re-classifiable objects;
2. to deal with the fact that a standard Java class c can be extended by a re-

classifiable class, possibly after c is translated (i.e., compiled);
3. to make the translation as simple as possible, neglecting efficiency in favor

of clearer proofs of correctness;
4. to make the translation effective, in the sense that it truly supports separate

compilation as in Java.

Concerning point 1), the basic idea of the translation is to represent each re-
classifiable Fickle object o through a pair <w, i> of Java objects. Roughly speak-
ing, w is a wrapper object providing the (non-mutable) identity of o, whereas i is
an implementor object providing the (mutable) behavior of o. A re-classification
of o changes i but not w, and method invocations are resolved by i.

To solve problems 2), 3) and 4), even non-re-classifiable objects are repre-
sented through such a pair <o, o>, where o plays both roles. This greatly sim-
plifies the translation, and allows the same treatment for re-classifiable classes
(i.e., state classes in Fickle terminology), and non-re-classifiable classes.

The work presented in this paper comes out of a collaboration among different
research groups and is based on their previous experience in the design and
implementation of Java extensions [1,4].

The paper is organized as follows: In Section 2 we introduce Fickle informally
using an example. In Section 3 we give an informal overview of the translation,
while in Section 4 we give the formal description. In Section 5 we state the formal
properties of the translation (preservation of static and dynamic semantics) and
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illustrate the compatibility of the translation with Java separate compilation.
In the Conclusion we summarize the relevance of this work and describe further
research directions.

A prototype implementation largely based on the translation described in
this paper has already been developed [2].

2 Fickle: A Brief Presentation

In this section we introduce Fickle informally using an example. However, this
section is not intended to be a complete presentation of Fickle. We refer to [4]
for a complete definition of the language.

For readability, in the examples we allow a slightly more liberal syntax than
that used in the formal description of the translation (given in Section 4).

The (extended) Fickle program in Fig. 1 defines a class Stack, with subclasses
EmptyStack and NonEmptyStack. A stack has a capacity (field int capacity)
that is, the maximum number of integers it can contain, and the usual operators
isEmpty, top, push, and pop.

In Fickle class definitions may be preceded by the keyword state or root
with the following meaning:

– state classes are meant to describe the properties of an object while it satisfies
some conditions; when it does not satisfy these conditions any more, it must
be explicitly re-classified to another state class. For example, NonEmptyStack
describes non-empty stacks; if these become empty, then they are re-classified
to EmptyStack.
We require state classes to extend either root classes or state classes.

– root classes abstract over state classes. Objects of a state class C1 may
be re-classified to a class C2 only if C2 is a subclass of the uniquely de-
fined root superclass of C1. For example, Stack abstracts over EmptyStack
and NonEmptyStack; objects of class EmptyStack may be re-classified to
NonEmptyStack, and vice versa.
We require root classes to extend only non-root and non-state classes.

Objects of a non-state, non-root class C behave like regular Java objects, that is,
are never re-classified. However, since state classes can be subclasses of non-state,
non-root classes, objects bound to a variable x of type C may be re-classified.
Namely, if C had two state subclasses C1 and C2 and x referred to an object o
of class C1, then o may be re-classified to C2.

Objects of an either state or root class C are created in the usual way by the
expression new C().
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class StackException extends Exception{

StackException (String str) {} {super(str);}}

abstract root class Stack{

int capacity; // maximum number of elements

abstract boolean isEmpty() {};

abstract int top() {} throws StackException;

abstract void push(int i) {Stack} throws StackException;

abstract void pop() {Stack} throws StackException;}

state class EmptyStack extends Stack{

EmptyStack(int n){} {capacity=n;}

boolean isEmpty() {} {return true;}

int top() {} throws StackException {

throw new StackException("StackUnderflow");}

void push(int i) {Stack} {

this!!NonEmptyStack; a=new int[capacity]; t=0; a[0]=i;}

void pop() {} throws StackException {

throw new StackException("StackUnderflow");}}

state class NonEmptyStack extends Stack{

int[] a; // array of elements

int t; // index of top element

NonEmptyStack(int n, int i) {} {capacity=n; a=new int[n]; t=0; a[0]=i;}

boolean isEmpty() {} {return false;}

int top() {} {return a[t];}

void push(int i) {} throw StackException{ t++;

if (t==capacity) throw new StackException("StackOverflow");

else a[t]=i; }

void pop() {Stack} {if (t==0) this!!EmptyStack; else t--;}}

public class StackTest{

static void main(String[] args) {Stack} throws StackException{

Stack s=new EmptyStack(100); s.push(3); s.push(5);

System.out.println(s.isEmpty());

Stack s1=new NonEmptyStack(100,3); Stack s2=s1; s1.pop();

System.out.println(s2.isEmpty());}}

Fig. 1. Program StackTest - stacks with re-classifications

Re-classification statement, this!!C, sets the class of this to C, where C must
be a state class with the same root class of the static type of this. The re-
classification operation preserves the types and the values of the fields defined
in the root class, removes the other fields, and adds the fields of C that are not
defined in the root class, initializing them in the usual way. Re-classifications may
be caused by re-classification statements, like this!!NonEmptyStack in body of
method push of class EmptyStack, or, indirectly, by method calls, like s.push(3)
in body of main. At the start of method push of class EmptyStack the receiver
is an object of class EmptyStack, therefore it has the field capacity, while it
does not have the fields a and t. After execution of this!!NonEmptyStack the
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receiver is of class NonEmptyStack, the field capacity retains its value while the
fields a and t are now available.

Fields, parameters, and values returned by methods (for simplicity, Fickle does
not have local variables) must have declared types which are not state classes; we
call these types non-state types. Thus, fields and parameters may denote objects
which do change class, but these changes do not affect their type. Instead, the
type of this may be a state class and may change.

Annotations like {} and {Stack} before throws clauses and method bodies
are called effects. Similarly to what happens for exceptions in throws clauses,
effects list the root classes of all objects that may be re-classified by execution of
that method. Methods annotated by the empty effect {}, like isEmpty, do not
cause any re-classification. Methods annotated by non-empty effects, like pop
and push by {Stack}, may re-classify objects of (a subclass of) a class in their
effect (in the example, of Stack).

A method annotated with effects can be overridden only by methods anno-
tated with the same or less effects1.

By relying on effects annotations, the type and effect system of Fickle ensures
that re-classifications will not cause accesses to fields or methods that are not
defined for the object.

Note that effects are explicitly declared by the programmer rather then in-
ferred by the compiler. Even though effects inference could be implemented in
practice, more flexibility in method overriding can be achieved by allowing the
programmer to annotate methods with more effects than those that would be
inferred (similarly to what happens for exceptions).

3 An Informal Overview of the Translation

3.1 Encoding Fickle Objects

The translation is based on the idea that each object o of a state class c can be
encoded in Java by a pair <w, i> of objects; we call w the wrapper object of i
and i the implementor object of w. Roughly speaking, w provides the identity
and i the behavior of o, so that any re-classification of o changes i but not w
and method invocations are resolved by i.

The class of w is called a wrapper class and is obtained by translating the root
class of c, whereas the class of i is called an implementor class and is obtained
by translating c. For any pair <w, i> encoding an object of a state class, the
class of i is always a proper subclass of the class of w.

An object o which is not an instance of a state class does not need to be
encoded in principle; however, the same kind of encoding proposed above can
be adopted also in this case, since o can always be encoded by the pair <o, o>,
where both the wrapper and the implementor are the object o itself (in other
words, if c is not a state class, then it may seen as wrapper class of itself). Even

1 This means that adding a new effect in a method of a class c does not require any
change to the subclasses of c, but may require some changes to its superclasses.
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though at first sight this may seem inefficient and unnecessary, it allows for a
simpler and more effective translation, as explained in the sequel.

The translation of classes follows the following two rules:

– each Fickle class is translated into exactly one Java class (including Object);
– the translation preserves the inheritance hierarchy.

Throughout the paper we adopt the following terminology:

– the translation of a non-state, non-root class is called a non-implementor,
non-wrapper class ;

– the translation of a root class is called a wrapper class ;
– the translation of a state class is called an implementor class.

We illustrate the above in terms of the example in Fig.1. After the instruction

s=new NonEmptyStack(100,3);

where s has static type Stack, the object stored in s is encoded in the translation
as sketched in Fig.2.

to methods
of NonEmptyStack

implementor

capacity

to methods
of Stack

implementor

trueThis

capacityunused

a

t

s

trueThis

Fig. 2. Encoding of the object stored in s

The variable s contains an object o of dynamic type Stack with three fields:
capacity is declared in Stack, whereas implementor and trueThis are inherited
from class FickleObject, have type FickleObject and are used in the transla-
tion for recovering the implementor and the wrapper of a re-classifiable object,
respectively. In this case the field implementor points to an object of the imple-
mentor class obtained by translating NonEmptyStack, whereas trueThis points
to the object itself. Note that here the field capacity is redundant, since its
actual value is stored in implementor.capacity.

The implementor object contains all fields declared in NonEmptyStack (a and
t), and also the field capacity, since the implementor class NonEmptyStack is a
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subclass of the wrapper class Stack. The field implementor points to itself, even
though is never used. The field trueThis is inherited from class FickleObject,
has type FickleObject and is used to recover the wrapper object of the imple-
mentor, which is essential for correctly handling re-classification of this.

3.2 Translation of Classes

In this section we introduce some examples in order to explain how classes and
expressions are translated.

Example 1. Consider the following class declaration in (extended) Fickle :

class C{
int x;
int m1(){}{m2(); return m2();}
int m2(){R}{x=0; return x;}

}

Our translation maps the declaration of C in the following Java class2

class C extends FickleObject{
int x;
int m1(){
((C) trueThis.implementor).m2();
return ((C) trueThis.implementor).m2();}
int m2(){
((C) trueThis.implementor).x=0;
return ((C) trueThis.implementor).x;}
C(){}
C(FickleObject oldImp){
super(oldImp);
x=((C) oldImp).x;}

}

FickleObject is the common ancestor of the Java classes obtained by translating
Fickle classes, and, in fact, corresponds to the translation of the Fickle predefined
class Object:

class FickleObject extends Object{
FickleObject implementor;
FickleObject trueThis;
FickleObject(){
implementor=this;
trueThis=this;}

2 The translation examples in this paper do not completely agree with the formal
definition given in Sect.4, since some optimization has been performed in order to
keep the code simpler.
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FickleObject(FickleObject oldImp){ // re-classifies objects
implementor=this;
trueThis=oldImp.trueThis;
trueThis.implementor=this;}

}

The fields implementor and trueThis are declared in this top level class for
correctly dealing with the encoding of objects which are not instances of state
classes, as already explained in 3.1; constructor FickleObject() initializes fields
implementor and trueThis to the new instance o so that its encoding is <o, o>.
This constructor is invoked whenever either a new instance of a non-state class
or a new implementor of a state class is created.

On the other hand, constructor FickleObject(FickleObject oldImp) is in-
voked whenever an object is re-classified and is placed in FickleObject just for
avoiding code duplication. An object o which needs to be re-classified to a state
class C (recall that in the translation every class is subclass of FickleObject)
and which is encoded by the pair <w, i>, is transformed into <w, i′>, where i′

denotes the new implementor of class C (provided by a proper constructor of
C; see Example 3 below). The argument of the constructor denotes the old im-
plementor i, from which the wrapper w can be recovered as well (recall that
w.implementor = i.trueThis must hold), whereas i′ is denoted by this. Fields
are initialized so that wrapper w and the new implementor i′ point to each
other. The assignment implementor=this could be omitted, since in principle
field implementor of implementors should never be used.

Two interesting parts of C translation concern invocations of method m2 in
m1 and access of field x in m2.

Method m2 must be invoked on implementor because it could be overridden
by some state subclass of C, whereas this must be translated in trueThis be-
cause method m2 could be inherited by some subclass of C (hence, this could
contain a possibly wrong implementor rather than a wrapper). Downcasting is
needed since implementor has type FickleObject.

The same explanations apply also for selection of field x.
Constructor C(FickleObject oldImp) invokes the corresponding construc-

tor in class FickleObject which is used for re-classifying objects, as already
explained. However, during re-classification all fields of the new implementor i′

which are inherited from non-state classes (like x in the example) must be initial-
ized with the values of the corresponding fields of the old implementor i (x=((C)
oldImp).x).

Finally, note that the translation of C is totally independent of any possible
existing subclass or client class of C; this property, which is satisfied by our
translation for any kind of class, is crucial for obtaining a translation which truly
reflects Java separate compilation (see also the related comments in Example 3).

Example 2. Assume now to add to the declaration of Example 1 the following
class declaration:
root class R extends C{
}
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This Fickle class declaration is translated in the following Java class declaration:

class R extends C{
R(){}
R(FickleObject oldImp){super(oldImp);}
R(R imp){
trueThis=this;
implementor=imp;
imp.trueThis=this;}

}

In the translation, root classes declare three constructors.
Constructor R() is used for creating instances of R and simply invokes the

corresponding constructor of the direct superclass C.
Constructor R(FickleObject oldImp) is used for re-classifying objects and

simply invokes the corresponding constructor of the direct superclass C, since in
this case R does not declare any field.

Constructor R(R imp) is used by state subclasses of R for creating new in-
stances. The argument represents the implementor of the object which has been
properly created by the constructor of a state subclass of R, while the wrapper
object is created by the constructor itself. Fields are initialized so that wrapper
and implementor point to each other. The assignment trueThis=this could be
omitted, since field trueThis of wrappers will never be used.

Example 3. Consider now the following state classes:

state class S1 extends R{
int m2(){R}{this!!S2;x=1;return x;}
static void main(String[] args)
{System.out.println(new S1().m1());}}

state class S2 extends R{
int y;
int m2(){R}{y=1;return x+y;}

}

They are translated in Java as follows:

class S1 extends R{
int m2(){
new S2(trueThis.implementor);
((S2) trueThis.implementor).x=1;
return ((S2) trueThis.implementor).x;}
static void main(String[] args){
System.out.println(
((S1) new R(new S1()).implementor).m1());}

S1(){}
S1(FickleObject oldImp){super(oldImp);}

}



224 Davide Ancona et al.

class S2 extends R{
int y;
int m2(){
((S2) trueThis.implementor).y=1;
return ((S2) trueThis.implementor).x+

((S2) trueThis.implementor).y;}
S2(){}
S2(FickleObject oldImp){super(oldImp);}

}

In the translation, state classes declare two constructors.
In class S2, for instance, constructor S2() is used for creating the

implementor component of a new instance of S2, while constructor
S2(FickleObject oldImp) is used for re-classifying objects; note that, differ-
ently to what happens for non-state classes, no extra-code is added in the body
for any field declared in the class (like y).

Let us now focus on the translation of object re-classification this!!S2 (in
the body of method m2 of class S1) and on instance creation of class S1 (in the
body of method main of class S1).

As already explained, for re-classifying an object to class S2, the proper con-
structor of S2 must be invoked, passing as parameter the current (and soon obso-
lete) implementor i, denoted by trueThis.implementor; then, the constructor
creates a new implementor i′ (belonging to S2), initializes and updates fields
so that the wrapper w and the new implementor i′ point to each other (recall
that the wrapper can be recovered from the old implementor i) and properly
initializes all fields inherited from non-state superclasses (like x). This last step
is performed by invoking all the corresponding constructors of superclasses up
to FickleObject.

Creation of an instance of S1 is achieved by invoking the proper constructor
of the root class R of S1; a new implementor, created by invoking the default
constructor of S1, is passed as parameter to the constructor.

We now consider issues related to the effectiveness of the translation. As
already pointed out in Example 1, the translation of a Fickle class C does not
depend on any possible subclass or client of C, as happens for Java separate
compilation. On the other hand, the translation of class S1, for instance, depends
on classes R and S2 inherited and used, respectively, by S1; for instance, all type
casts in the body of S1 are determined by type-checking S1 and this process
requires to retrieve type information about classes R and S2 (that is, the signature
of methods and the inheritance hierarchy). However, the translation of S1 is
clearly independent of the specific bodies of methods of R and S2.

As a consequence, dependencies computed by our translation process are
exactly the same as those computed by the Java compiler. Furthermore, the
translation of classes depends only on the inheritance hierarchy and on method
signatures; therefore a class c depending on classes c1, . . . , cn could be success-
fully translated in a context where only the binary files of c1, . . . , cn are available,
as happens for Java.
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p ::= class∗

class ::= [root | state] class c extends c′{field∗ meth∗}
field ::= t f
meth ::= t m(t′ x)φ{sl return e; }
t ::= boolean | int | c
φ ::= {c∗}
sl ::= s∗

s ::= {sl} | if (e) s1 else s2 | se; | this!!c;
se ::= var = e | e1.m(e2) | new c()
e ::= sval | var | this | se
var ::= x | e.f
sval ::= true | false | null | n

Fig. 3. Syntax of Fickle

4 Formal Description of the Translation

In this section we give a formal description of the translation. The syntax of the
source language is specified in Fig.3. We refer to [4] for the definition of the
static semantics of Fickle (the type system of Fickle can be easily adapted to
the subset of Java serving as target for the translation) and of some auxiliary
functions used in the sequel.

4.1 Programs

The translation of a Fickle program p consists of the translation of all classes
declared in p. The classes are translated w.r.t the program p, needed because
the translation of expressions depends on their types (in particular, for method
invocation and field selection) and on the names of root classes (in particular,
constructor invocation and this).

[[p]]prog
∆= [[class1]]class(p) . . . [[classn]]class(p) where p = class1 . . . classn.

4.2 Classes

As already explained, each Fickle class c is translated into a single Java class
containing the translation of all field and method declarations of c and a number
of constructors, used for creating instances and for re-classifying objects.

The translation of fields and methods is independent of the kind of class.
However, translation of non-state non-root classes, root classes and state

classes leads to the declaration of different constructors. That is why for each
kind of class we give a different translation clause.

Class Object: This class is translated in FickleObject which is the common
superclass of all translated classes, already defined in Sect.3.2.
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Non-state, non-root classes: These classes are translated by translating all their
methods, and by adding two constructors: c() is used for the creation of new
instances of c and c(FickleObject oldImp) is used for the creation of new
implementors when objects of subclasses are re-classified. In this last case
all fields of the old implementor oldImp which are declared in class c must
be copied into the corresponding new implementor created by the construc-
tor (see Example 1 in Sect.3.2). The additional parameter c for the transla-
tion of methods is needed to determine the class of this inside the bodies.
[[class c extends c′{t1 f1; . . . tm fm; meth1 . . .methn}]]class(p) ∆=
class c extends name(c′){ [[t1 f1;]]field(c) . . . [[tm fm;]]field(c)

[[meth1]]meth(p, c) . . . [[methn]]meth(p, c)
c(){}
c(c oldImp){
super(oldImp);
f1 = oldImp.f1;
. . .
fm = oldImp.fm; }

}
The auxiliary function name is defined as follows:

name(c) =
{
FickleObject if c = Object
c otherwise

Root classes: The translation of this kind of classes produces three construc-
tors: c() creates instances of c, c(FickleObject oldImp) deals with object re-
classification, and c(c imp) creates wrappers of instances of state classes:
[[root class c extends c′{t1 f1; . . . tm fm; meth1 . . .methn}]]class(p) ∆=
class c extends name(c′){ [[t1 f1;]]field(c) . . . [[tm fm;]]field(c)

[[meth1]]meth(p, c) . . . [[methn]]meth(p, c)
c(){}
c(c oldImp){
super(oldImp);
f1 = oldImp.f1;
. . .
fm = oldImp.fm; }

c(c imp){
trueThis = this;
implementor = imp;
imp.trueThis = this; }

}

State classes: The translation of this kind of classes produces two constructors:
the former (with no arguments) for creating new implementors for new instances
of class c, the latter for dealing with object re-classification to c:
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[[state class c extends c′{field1 . . .fieldm meth1 . . .methn}]]class(p) ∆=
class c extends name(c′){ [[field1]]field(c) . . . [[fieldm]]field(c)

[[meth1]]meth(p, c) . . . [[methn]]meth(p, c)
c(){}
c(FickleObject oldImp){super(oldImp)}
}

Note that here name(c′) = c′, since a state class cannot extend class Object.

4.3 Fields

Translation of each field f comes equipped with a static method tof used for
translating assigments of value v to field f of object tT (see the paragraph on
expressions translation below), since the implementor of the object tT can be
correctly selected only after evaluating v.

[[t f ;]]field(c)
∆=

t f ;
static t tof(FickleObject tT, t v){return ((c) tT.implementor) = v; }

4.4 Methods

Translating methods consists of translating their bodies. Effects are omitted,
whereas the signatures remain the same. Since the translation of statements and
expressions depends on their types, the program p and the environment γ must
be passed as parameters to the corresponding translation functions.

Note that the environment γ′ used for translating the returned expression e
may be different from γ, since execution of sl could re-classify this. Furthermore,
translation of each method m comes equipped with a static method callm used
for translating invocations of m on receiver tT and with argument x (see the
paragraph on expressions translation below); indeed, the implementor of tT can
be correctly selected only after evaluating the argument x.

The judgment p, γ � sl : void || c′ || φ′ is valid (see [4] for the typing
rules) whenever sl has type void w.r.t. program p and environment γ; c′ denotes
the type of this after evaluating sl, whereas φ conservatively estimates the
re-classification effect of the evaluation of sl on objects (this last information
is never used by our translation). The environment γ defines the type of the

parameters and of this.

[[t m(t′ x)φ{sl return e; }]]meth(p, c)
∆=

t m(t′ x){[[sl]]stmts(p, γ) return [[e]]expr(p, γ′); }
static t callm(FickleObject tT, t′ x){
return ((c) tT.implementor).m(x); }

where γ = t′ x, c this, γ′ = t′ x, c′ this, and p, γ � sl : void || c′ || φ′

4.5 Statements

Except for object re-classification, all statements are translated by translating
their constituent statements or subexpressions. The notation γ[c this] denotes
the environment obtained by updating γ so that it maps this to c.
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[[s sl]]stmts(p, γ) ∆= [[s]]stmt(p, γ) [[sl]]stmts(p, γ′)
where p, γ � s : void || c || φ and γ′ = γ[c this]

[[{sl}]]stmt(p, γ) ∆= {[[sl]]stmts(p, γ)}
[[if (e) s1 else s2]]stmt(p, γ) ∆=
if ([[e]]expr(p, γ)) [[s1]]stmt(p, γ′) else [[s2]]stmt(p, γ′)

where p, γ � e : boolean || c1 || φ1, γ′ = γ[c1 this]
[[se;]]stmt(p, γ) ∆= [[se]]expr(p, γ);
The translation of re-classification to class c consists of the call to the appro-

priate constructor of class c. The current implementor (trueThis.implementor)
is passed as parameter to the constructor in order to correctly initialize the fields
of the new implementor.

[[this!!c;]]stmt(p, γ) ∆= new c(trueThis.implementor);

4.6 Expressions

Types of expressions are preserved under the translation, up to state classes:
more precisely, if a Fickle expression e has type t and t is not a state class,
then its type is preserved; otherwise, the type of the translation of e is the root
superclass of t. This is formalized and proven in Sect.5.

Simple cases: Values, variables and variables assignment: The translation is
straightforward.

[[sval ]]expr(p, γ) ∆= sval
[[x]]expr(p, γ) ∆= x

[[x = e]]expr(p, γ) ∆= x = [[e]]expr(p, γ)

Field selection: as already explained in Sect.3.1, in the encoding <w, i> of an
object o of class c, the fields of o are stored in the implementor object i (be-
longing to the class obtained by translating c). Therefore, fields can be accessed
only through w.implementor on object3 w. Downcasting is needed because field
implementor has type FickleObject.

[[e.f ]]expr(p, γ) ∆= ((c) [[e]]expr(p, γ).implementor).f
where p, γ � e : c || c′ || φ

Field assignment: Field f of the wrapper object w denoted by the translation
of e1 is accessed through the implementor of w; however, e2 could re-classify w,
therefore selection w.implementor is correct only after evaluating the translation
of e2. This is achieved by invoking the auxiliary static method tof.

[[e1.f = e2]]expr(p, γ) ∆= c.tof([[e1]]expr(p, γ), [[e2]]expr(p, γ′))
where p, γ � e1 : c || c′ || φ, and γ′ = γ[c′ this]

3 Note that this is necessary only when c is a state class, while in the other cases
selection could be performed directly on the object o itself, since w = i = o holds.
However, to keep the mapping simpler, we do not make this distinction.
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Method invocation: The same considerations as for field assignment apply in this
case: method call is performed by calling the auxiliary static method callm,
so that implementor field of the receiver is selected only after evaluating the
translation of e2.

[[e1.m(e2)]]expr(p, γ) ∆= c.callm([[e1]]expr(p, γ), [[e2]]expr(p, γ′))
where p, γ � e1 : c || c′ || φ, and γ′ = γ[c′ this]

Object creation: Creation of instances of a non-state class c only requires invo-
cation of the default constructor of c. If c is a state class, then two objects must
be created: the implementor i (created by invoking the default constructor of c),
and the wrapper w (created by invoking the proper constructor of class R(p, c),
that is, the wrapper class of c). The implementor is passed as parameter to the
constructor of the wrapper so that fields of w and i can be properly initialized to
satisfy the equations w.implementor = i and i.trueThis = w. The term R(p, c)
denotes the least superclass of c which is not a state class: If c is a state class,
then R(p, c) is its unique root superclass, otherwise R(p, c) = c.

[[new c()]]expr(p, γ) ∆=
{
new R(p, c)(new c()) if p � c �s
new c() otherwise

This: The expression this is translated into trueThis because this could
denote the implementor object i, rather than the wrapper w. Furthermore, the
actual implementor of w may have changed because of re-classification, therefore
this may denote an obsolete implementor. Because trueThis has static type
FickleObject, in order to preserve types, the translation also needs to downcast
to the root superclass of the type of this4. Note that since a state class c cannot
be used as a type, the translation is statically correct also when this is passed
as a parameter or assigned to a field.

[[this]]expr(p, γ) ∆= (R(p, γ(this))) trueThis

5 Properties of the Translation

In this section we formalize the properties of the translation previously men-
tioned. For lack of space we only sketch some proofs which will be detailed in a
future extended version of this paper.

Preservation of Static Correctness

Theorem 1. For any Fickle program p, if p is well-typed (in Fickle), then [[p]]prog
is well-typed (in Java).

4 Note that this downcasting is only necessary when this is used for parameter passing
or assignments, and is unnecessary when this is used in method calls or field selec-
tion. This is so because in the latter cases field implementor of the object denoted
by trueThis must be selected and implementor is declared in the type of trueThis.
But, as already stated, we do not consider such optimization issues.
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In order to be proved, the claim of the theorem must be extended to all
subterms of p and, hence, to all typing judgments. The strengthened claim can
be proved by induction on the typing rules. The claim concerning judgment for
expressions is the most interesting, hence is stated below.

The translation preserves types up to state classes, in the following sense: if
a Fickle expression e has type t w.r.t. a program p and an environment γ, and e
is translated into a Java expression e′ that has type t′ w.r.t. [[p]] and γ, then
t = t′, when t is not a state class, and t′ is the root superclass of t, when t is
a state class. For the Java fragment obtained from the translation we can use the
Fickle type system, so that for any well-typed Java expression e we can derive
judgments of the form p, γ � e : t || γ(this) || ∅, where t is the type of e.
The fact that the type of this remains the same, and the set of effects is empty
indicates that e contains no re-classifications.

The claim for expressions can be formalized as follows:

Lemma 1. For any Fickle expression e, program p, environment γ, if

– p, γ � e : t || c || φ, and
– [[e]]expr(p, γ) = e′, and
– [[p]]prog = p′,

then

– p′, γ � e′ : R(p, t) || γ(this) || ∅.

Preservation of Dynamic Semantics We now show that the semantics of ex-
pressions is preserved by the translation. The semantics of the language Fickle we
consider is the one introduced in [4]. Such semantics rewrites pairs of expressions
and stores into pairs of values (or the exception nullPntrExc, indicating a ref-
erence to a null object), and stores. Values, denoted by v, are either booleans, or
integers, or addresses, denoted by ι. Stores map the unique parameter5 x and the
receiver this to values and addresses to objects. Objects are mappings between
fields and values tagged by the class they belong to:[[f1 : v1, . . . , fr : vr]]

c . We
use o as a metavariable for objects, and if f is a field of o, o(f) is the value
associated to f in o.

The rewriting, defined in the context of a given program p that provides
the definition for the classes used in the expression, is defined by the judgment
e, σ ❀

p
v, σ′. The syntax of Fickle and the one of the Java fragment consid-

ered here are slightly different from the language of [4]. In particular there is a
distinction between statements and expressions and classes have constructors.
However, the definition of the semantics in [4] can be easily adapted to deal with
these features. Note that the Java fragment contains also casting. However, we
do not need rules for casting, since well-typing will insure that casting is applied
to objects that already have the target type.
5 Recall that, for simplicity, we assume that in Fickle syntax each method definition
has a unique parameter denoted by x.
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To state the semantic correctness result we introduce a relation between
stores p � σ ≈ σ′ that expresses the fact that store σ′ is the ”translation” of
store σ. That is, an object o of class c in σ corresponds univocally to an object
o′ in σ′ that is an instance of the translation of the class c. Both the store σ and
the store σ′ are assumed to agree with the relative environments and programs.
That is, they contain values which agree, w.r.t. typing, with their definitions
(see [4] for the formal definition of p, γ � σ✸).

Definition 1. Let p, γ � σ✸ and [[p]], γ � σ′ ✸. We say that v′ in σ′ corresponds
to v in σ w.r.t. p, and write p, σ, σ′ � v ≈ v′, if either of the following conditions
hold:

– v = v′ = true, or v = v′ = false, or v = v′ = n (for some integer n), or
v = v′ = null, or

– v = ι, v′ = ι′, σ(ι) = [[f1 : v1, . . . , fr : vr]]
c,

σ′(ι′) = [[f1 : v′1, . . . , fq : v′q, impl : ι′′, trueThis : ι′]]R(p,c),
(q ≤ r) and

σ′(ι′′) = [[f1 : v′′1 , . . . , fr : v′′r , impl : ι′′, trueThis : ι′]]c,
and
for all i, 1 ≤ i ≤ r, p, σ, σ′ � vi ≈ v′′i , and
if c is not a state class, then ι′ = ι′′.

Note that if c is not a state class, then R(p, c) = c, and so q = r. With this
notion of correspondence between values we can define a correspondence between
stores.

Definition 2. Let p, γ � σ✸ and [[p]], γ � σ′ ✸. We say that store σ′ corre-
sponds to σ w.r.t. p, and write p � σ ≈ σ′, if

1. p, σ, σ′ � σ(x) ≈ σ′(x),
2. p, σ, σ′ � σ(this) ≈ (σ′(this))(trueThis), and
3. for all ι if σ(ι) is defined there is a unique ι′ such that p, σ, σ′ � ι ≈ ι′, and
4. for all ι′ if σ′(ι′) is defined there is a unique ι such that

p, σ, σ′ � ι ≈ (σ′(ι′))(trueThis).

The last two conditions of the previous definition assert that there is an injection
between the set of addresses defined in σ and the set of addresses defined in σ′.

Theorem 2. For a well-typed expression e, stores σ0 and σ1 such that p, γ �
σ0 ✸, [[p]], γ � σ1 ✸ and p � σ0 ≈ σ1,

e, σ0 ❀p v, σ′
0 if and only if [[e]], σ1 ❀[[p]] v′, σ′

1

where p � σ′
0 ≈ σ′

1 and p, σ, σ′ � v ≈ v′

The proof is by induction on the derivation of e, σ ❀
p

v, σ′. The proof that,
in case of field selection and method call, the right method is selected relies on
the following fact. If p � σ ≈ σ′, then: for all ι and c, σ(ι) = [[ · · · ]]c implies
σ′(σ′(ι′)(impl)) = [[ · · · ]]c , where p, σ, σ′ � ι ≈ ι′.
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Support for Separate Compilation For any Fickle program p, let classes(p)
denote the set of all classes defined in p, and, for each class c in classes(p), depp(c)
the set of all superclasses of c and of all classes (either directly or indirectly)
used by c (for reasons of space we omit the formal definitions). The following
claim states that a Fickle class declaration can be successfully translated in
a Fickle program p whenever the set of dependencies of c is contained in p,
exactly as happens for Java compilation.

Theorem 3. For any well-formed Fickle program p and class declaration cld
in p, if depp(class(cld)) ⊆ classes(p), then [[cld ]]cld(p) is well-defined.

Let strip be the function on Fickle programs defined as follows:

strip(cld1 . . . cldn) = strip(cld1) . . . strip(cldn)
strip([root | state] class c extends c′{field∗ meth∗}) =

[root | state] class c extends c′{field∗ strip(meth∗)}
strip(meth1 . . .methn) = strip(meth1) . . . strip(methn)
strip(t m(t′ x)φ{sl return e; }) = t m(t′ x)φ{return v(t); }

v(t) =



false if t = boolean
0 if t = int
null otherwise

The following theorem states that translation of a Fickle class c depends only on
the body of c and the type information of all other classes, namely, class kind,
parent class, method headers and field declarations. This information is stored
in a regular Java class file6, therefore the translation of c can be successfully
carried out also when only the binary files of the other classes are available7.

Theorem 4. For any Fickle program p and Fickle class declaration cld1, if
[[cld1]]cld(p) = cld2, then [[cld1]]cld(strip(p)) = cld2.

6 Conclusion

We have defined a translation from Fickle (a Java-like language supporting dy-
namic object re-classification) into plain Java, and proved that this translation
well-behaves in the sense that it preserves static and dynamic semantics. This
is a nice theoretical result, strengthened by the fact that, in order to ensure
these properties, we were able to identify some invariants which turned out to
be a very useful guide to the translation.

Our concerns are not only theoretical, but we are interested in investigating
the possibility of implementing an extension of Java with re-classification. From
this point of view, our translation is a good basis since it exhibits the following
additional properties:
6 Except for the kinds root and state, but class files format can be easily extended
for storing this new piece of information.

7 Note that this property does not depend on Java support for reflection.
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– it is fully compatible with Java separate compilation, since each Fickle class
can be translated without having other class bodies, hence in principle only
having other classes in binary form;

– dependencies among classes are exactly those of standard Java compilation,
in the sense that a Fickle class can be translated only if type information on
all the ancestor and used classes is available.

Our translation is similar both in the structure of classes and in their behavior
to the state pattern, see [5]. The wrapper class corresponds to the context class
(of the pattern) and the implementation to the state class. Access to members
require a level of indirection, as in the state pattern. So from the point of view
of efficiency our implementation of reclassification performs as well as the state
pattern. On the other side our translation maintains the structure of the original
hierarchy, whereas the state pattern does not.

A prototype implementation largely based on the translation described in
this paper has already been developed [2].8 However, the work presented here
is only a first step towards a working extension of Java with dynamic object
re-classification. On one side, an extension of full Java should take into ac-
count other Java features (like constructors, access modifiers, abstract classes,
interfaces, overloading and casting) which, though in principle orthogonal to
re-classification, should be carefully analyzed in order to be sure that the inter-
action behaves correctly. On the other side, as mentioned above, an extended
compiler should be able to work even in a context where only binary files are
available, while our prototype implementation works on source files.

Finally, an alternative direction for the implementation of Fickle (or, more
generally, of an object-oriented language supporting dynamic re-classification of
objects) could be in a direct way, through manipulation of the object layout or
the object look-up tables.
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Abstract. In [BCC00], we presented a general framework for extending
calculi of mobile agents with object-oriented features, and we studied
a typed instance of that model based on Cardelli and Gordon’s Mobile
Ambients. Here, we refine our earlier work and define a new calculus
which is based on Remote Procedure Call as the underlying protocol for
method invocation, and on a different typing technique for method bod-
ies. The new type system is equipped with a subtyping and a matching
relation: the combination of matching with subtyping provides new in-
sight into the relationship between ambient opening in the new calculus
and method overriding in object-oriented calculi.

1 Introduction

Calculi of mobile agents are receiving increasing interest in the programming
language community as advances in computer communications and hardware
enhance the development of large-scale distributed programming. Agents are
effective entities that perform computation and interact with other agents: the
term “mobile” implies that agents are bound to locations and that this binding
may vary over time; agent interaction, in turn, is achieved using resources such
as communication channels.

Independently of the new trends in communication technology, object-oriented
programming has established itself as the de-facto standard for a principled de-
sign of complex software systems.

Drawing on our earlier work [BC00, BCC00], in this paper we study a formal
calculus that integrates object-oriented constructs into calculi of mobile agents.
The resulting calculus provides foundations for a computation model for dis-
tributed applications, where conventional client-server technology —based on
remote exchange of messages between static sites— and mobile agents coexist
in a uniform way.

The model results from extending the structure of named agents in the style
of Mobile Ambients [CG98] with method definitions and primitive constructs for
self denotation and message passing. The extension has interesting payoffs, as
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it leads to a principled approach to structuring agents: specifically, introducing
methods and message passing as primitive, rather than encoding them on top
of the underlying calculus of agents leads to a rich and precise notion of agent
interface and type. Furthermore, it opens the way to reusing the advances in
type system of object-oriented programming and static analysis.

With respect to our earlier work [BC00, BCC00] this paper brings two main
contributions to the calculus. For the operational semantics, we study a new
model of message passing and method invocation based on Remote Procedure
Call (RPC)1. For the type system, we discuss a non-trivial blend of matching
and subtyping relations. Method invocation based on RPC fits nicely the design
of a typed distributed calculus as it allows method bodies to be type-checked
locally, in the object where they are defined, independently of the caller. As a con-
sequence, the choice of RPC as the underlying semantics of method invocation
yields a notion of interface-type for our mobile objects that is substantially sim-
pler and more tractable than the corresponding notion defined in [BCC00]. The
combination of subtyping and matching, in turn, conveys new insight into the
relationship between method overriding in object-oriented calculi and the open
capability in our mobile objects. As we show, matching is necessary in the type
system to ensure type soundness for object opening in the presence of subtping2.

Plan of the paper In Section 2 we introduce the calculus of mobile objects,
named MA++ , based on the calculus of Mobile Ambients by [Car99, CG98].
Section 3 illustrates the expressive power of the calculus with several, diversified,
examples. In Section 4 we study the type theory of our calculus, and state
relevant properties. Related work is discussed in Section 5. Final remarks in
Section 6 conclude our presentation with a discussion on current and future
work.

2 MA++

The syntax of the calculus is essentially the same as that originally defined
in [BCC00], and results from generalizing the structure of ambients to include
method definitions, or interfaces, as in a[[ I ; P ]] , where P is a process and I is
a list of method definitions, defined by the following productions:

Processes P ::= 0 inactivity
⏐ P | P parallel composition
⏐ a[[ I ; P ]] ambient
⏐ (νx)P restriction
⏐ M.P action

1 RPC is often referred to as Remote Method Invocation (RMI) in this context.
2 The new version of the type system also rectifies a flaw of the type system we

presented in [BCC00].
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Interfaces I ::= �(x) � ς(z)P method
⏐ I :: J sequence
⏐ ε empty interface

Patterns x ::= x variable
⏐ (x1, . . . ,xn) tuple (n � 1)

The syntax of processes is a generalization of the combinatorial kernel of the
Ambient Calculus: 0 denotes the inactive process, P | Q the parallel composition
of two processes P and Q, a[[ I ; P ]] denotes the object named a with interface
I and enclosed process P , (νx)P restricts the name x to P , and finally M.P
performs the action described by the term M and then continues as P .

Interfaces are lists of labels with associated processes: the syntactic form
�(x) � ς(z)P denotes a method labeled � whose associated body is the process P
where the ς-bounded variable z is the self parameter distinctive of object calculi,
representing the method’s host object. Finally, the pattern x is the tuple of input
parameters for P .

Terms M,N ::= a, b, . . . , x, y . . . name/variable
⏐ (M1, . . . ,Mn) tuple (n � 0)
⏐ M.M path
⏐ ε empty path
⏐ in a enter a
⏐ out a exit a
⏐ open a open a
⏐ a send �〈M〉 remote invocation

Terms include the capabilities distinctive of Mobile Ambients. In addition, our
ambients are equipped with a capability for remote method invocation: the ex-
pression a send �〈M〉 invokes the method labeled � residing on the object denoted
by a with arguments M .

In the following we let P,Q,R, . . . range over processes, I, J over (possibly
empty) interfaces, and use lower case letters to denote generic names, reserv-
ing a, b, . . . for ambient names, and x, y, . . . for parameters, whenever possible.
Method names, denoted �, range over a disjoint alphabet and have a different
status: they are fixed labels that may not be restricted, abstracted upon, nor
passed as values (they are similar to field labels in record-based calculi). We omit
trailing or isolated 0 processes and empty interfaces, using M , a[[ I ]] , a[[P ]] , and
a[[ ]] as shorthands for, respectively, M.0, a[[ I ; 0 ]] , a[[ ∅ ; P ]] , and a[[ ∅ ; 0 ]] .
Throughout, we use the terms “ambient” and “object” interchangeably.

2.1 Operational Semantics

We define the operational semantics of the calculus by means of a structural
congruence and a reduction relation. As usual, the former is used to rearrange
a term in order to apply the latter.
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Structural Congruence Structural congruence for processes is defined in terms
of an auxiliary equivalence relation ≡I over interfaces, given in Figure 1. This
relation allows method definitions be reordered without affecting the behavior
of the enclosing object: reordering of methods, in turn, is used to define the
reduction of method invocation.

(Eq Meth Assoc) (I :: J) :: L ≡I I :: (J :: L)
(Eq Meth Comm) I :: m(xm) � P ; �(y�) � Q ≡I I :: �(y�) � Q :: m(xm) � P � �= m
(Eq Meth Over) I :: �(x) � P :: �(x) � Q :: I ≡I I :: �(x) � Q

Fig. 1. Equivalence for methods

Definitions for methods with different name and/or arity may freely be per-
muted (Eq Meth Comm); instead, if the same method has multiple definitions,
then the right-most definition overrides the remaining ones (Eq Meth Over). Sim-
ilar notions of equivalence can be found in the literature on objects: in fact, our
definition is directly inspired by the bookkeeping relation introduced in [FHM94].

Structural congruence of processes is defined as the smallest congruence that
forms a commutative monoid with product | and unit 0, and is closed under
the rules in Figure 2, where the set fn of free names is defined by a standard
extension of the definition in [Car99].

(Struct Res Dead) (�x)0 ≡ 0
(Struct Res Res) (�x)(�y)P ≡ (�y)(�x)P x �= y
(Struct Res Par) (�x)(P | Q) ≡ P | (�x)Q x �∈ fn(P )

(Struct Res Amb) (�p)a[[ I ; P ]] ≡ a[[ I ; (�p)P ]] p �∈ fn(I) ∪ {a}
(Struct Path Assoc) (M.M ′).P ≡M.M ′.P
(Struct Empty Path) ε.P ≡ P
(Struct Cong Amb Meth) I ≡I J⇒ a[[ I ; P ]] ≡ a[[ J ; P ]]

Fig. 2. Structural congruence for processes

The first block of clauses are the rules of the π-calculus. The rule (Struct Path
Assoc) is a structural equivalence rule for the Ambient Calculus, while the rule
(Struct Res Amb) modifies the rule for ambients in the Ambient calculus to
account for the presence of methods. Rule (Struct Cong Amb Meth) establishes
ambient equivalence up to reordering of method suites. In addition, we identify
processes up to renaming of bound names: (νp)P = (νq)P{p := q} if q �∈ fn(P ).
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Reduction Relation The reduction semantics of the calculus is given by the
context rules in Figure 3, plus the notions of reduction collected in Figure 4,
that we comment below.

P ′ ≡ P, P ➞ Q, Q ≡ Q′ ⇒ P ′ ➞ Q′ P ➞ Q⇒ a[[ I ; P ]] ➞ a[[ I ; Q ]]
P ➞ Q⇒ (�x)P ➞ (�x)Q P ➞ Q⇒ P | R ➞ Q | R

Fig. 3. Structural rules for reduction

(in) b[[ I ; in a.P | Q ]] | a[[ J ; R ]] ➞ a[[ I ; R | b[[ J ; P | Q ]] ]]

(out) a[[ I ; b[[ J ; out a.P | Q ]] | R ]] ➞ b[[ J ; P | Q ]] | a[[ I ; R ]]

(open) open a.P | a[[Q ]] ➞ P | Q

(update) b[[ I ; open a.P | a[[ J ; Q ]] | R ]] ➞ b[[ I :: J ; P | Q | R ]] for J �= ε

(send) b[[ I ; a send �〈M〉.P | Q ]] | a[[ J :: �(x) � ς(z)R ; S ]]
➞ b[[ I ; P |Q ]] | a[[ J :: �(x) � ς(z)R ; R{z,x := a,M} | S ]]

Fig. 4. MA++ reduction rules

The first three rules are exactly the same as the corresponding rules for Mo-
bile Ambients. Rule (update) is a direct generalization of the open rule that
handles the case when the opened ambient contains a non-empty set of method
definitions. If a is one such ambient, open a may only be reduced within an
enclosing ambient: as a result of reduction, the process local to a is unleashed
within the opening ambient, and the interfaces of the opening and the opened
ambients are merged as shown by the definition of the rule. The rule (send) han-
dles the new syntactic construct for method invocation, implementing the RPC
model. The notation R{z,x := a,M} indicates the simultaneous substitution
in R of a for z and of M for x. Informally, the result of the ambient b sending
message � to its sibling a, with argument M , is the activation of the process
associated with � on the receiver a, with M substituted for the input pattern x
and the self parameter dynamically bound to the name of the receiver.

3 Expressive Power

We discuss a number of constructs that can be expressed in our calculus, in-
cluding constructs for method overriding distinctive of object calculi, various
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forms of process communication, as well as different primitives of method in-
vocation. Some of these examples have been already presented in our earlier
work [BCC00] where, however, they were defined in terms of a different seman-
tics for method invocation based on Code On Demand. Throughout this section,
we use the terms “protocol” and “encoding” as synonyms: technically, this is an
abuse of terminology, as we don’t claim the protocols to really be encodings, i.e.
interference-free simulations of the constructs in question.

3.1 Parent-Child and Local Communications

As a first example, we look at alternative models for method invocation. Having
having chosen RPC as our primitive semantics, we now discuss other models,
such as those described in Figure 5, for sending messages from an ambient to its
parent or children, or to its own methods.

(downsend) a downsend �〈M〉.P | a[[ I :: �(x) � ς(z)Q ; R ]]

➞ P | a[[ I :: �(x) � ς(z)Q ; R | Q{z := a,x :=M} ]]
(upsend) a[[ I :: �(x) � ς(z)Q ; R | b[[ J ; a upsend �〈M〉.P ]] ]]

➞ a[[ I :: �(x) � ς(z)Q ; R | Q{z := a,x :=M} | b[[ J ; P ]] ]]

(local) a[[ I :: �(x) � ς(z)Q ; a local �〈M〉.P1 | P2 ]]

➞ a[[ I :: �(x) � ς(z)Q ; Q{z,x := M,a} | P1 | P2 ]]

Fig. 5. Other constructs for method invocation

Parent-to-child invocation. The intended behavior for this form of method invo-
cation can be obtained by defining the construct for downward method invoca-
tion as follows, where p, q /∈ fn(M) ∪ fn(P )):

a downsend �〈M〉.P �
= (νp, q) (p[[ a send �〈M〉.q[[ out p ]] ]] | open q.open p.P )

Informally, we temporarily create a new ambient p that becomes a sibling of the
receiver a on which it invokes the method; the ambient q is used for synchroniza-
tion, to guarantee that the ambient p be destroyed only after the receiver has
served the invocation. It is a routine check to verify that the desired effect of the
invocation is achieved by a sequence of reduction steps. To ease the notation,
we give the reduction steps in the simplified case of a method which does not
have parameters and does not depend on self (neither of the two simplifications
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affects the protocol):

a downsend �.P | a[[ � � Q ; R ]]

≡ (νp, q)
(
p[[ a send �〈M〉.q[[ out p ]] ]] | open q.open p.P

)
| a[[ � � Q ; R ]]

➞ (νp, q)
(
p[[ q[[ out p ]] ]] | open q.open p.P

) | a[[ � � Q ; R | Q ]]

➞ (νp, q)
(
p[[ ]] | q[[ ]] | open q.open p.P

) | a[[ � � Q ; R | Q ]]

➞∗P | a[[ � � Q ; R | Q ]]

Local and Self Invocation. Local method invocation within an ambient a is en-
coded similarly to the previous case. Choosing p, q /∈ fn(M)∪ fn(P ), one defines:

a local �〈M〉.P �
= (νp, q) (p[[ out a.a send �〈M〉.ina.q[[ out p ]] ]] | open q.open p.P )

Relying upon this definition, it is then easy to define self-invocation within
method bodies. To exemplify, consider the following process:

a[[ �1(x) � ς(z)z local �2〈x〉 :: �2(x) � P ; R ]]

Invoking the method �1 from outside the object a results in the execution of the
process P in parallel with R within a.

Child-to-parent. We conclude our survey of alternative models of method invo-
cation with a form of upward invocation, whereby an ambient invokes a method
residing in the enclosing ambient. A first definition of the construct is simply

a upsend �〈M〉.P �
= out a.a send �〈M〉.in a

One problem with this definition is that it requires a move of the sender. As
an alternative, one may envisage a different protocol that relies on an auxiliary
ambient. Assume that the invocation occurs within an object b, and that b is
directly enclosed into a:

a upsend �〈M〉.P �
=

(ν p, q) (p[[ out b.out a.a send �〈M〉.in a.in b.q[[ out p ]] ]] | open q.open p.P )

The definition is easily understood by simply looking at the chain of capabilities
inside the ambient p. First, the ambient p exits its parent ambient b, then exits
the ambient a (that contains the method to be invoked), then performs the
message send and is finally destroyed after having opened the locking ambient q.
It should be noted that a formal specification of the protocol requires that the
definition be given parametrically with respect to the enclosing ambient (b in
the definition given above).
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3.2 Replication

The behavior of replication in concurrent calculi is typically defined by a struc-
tural equivalence rule establishing that !P ≡!P | P . In our calculus, we can
provide a similar construct by relying upon the implicit form of recursion un-
derlying the reduction of method invocation. Let be p, q /∈ fn(P ):

!P
�
= (νp, q) (p downsend !〈〉.open q.P |

p[[ ! � ς(z)(q[[ out z.z downsend !〈〉.open q.P ]] ) ; ]] )

The reduction for the encoding of !P is then the following:

!P
�
= (νp, q)

(
p downsend !〈〉.open q.P | p[[ ! � ς(z)(q[[ · · · ]] ) ; ]]

)
➞ (νp, q)

(
open q.P | p[[ ! � ς(z)(...) ; q[[ out p.p downsend !〈〉.open q.P ]] ]]

)
➞ (νp, q)

(
open q.P | q[[ p downsend !〈〉.open q.P ]] | p[[ ! � ς(z)(...) ; ]]

)
➞ (νp, q) (P | p downsend !〈〉.open q.P | p[[ ! � ς(z)(...) ; ]] )

≡ P | !P
Notice that there is just one capability ready to be exercised at each reduc-
tion step. Furthermore, the process P is activated only after the opening of the
ambient q, hence it does not interfere with the protocol.

3.3 Code on Demand

We continue our series of examples showing a protocol for method invocation
based on Code on Demand (CoD). The behavior CoD can be described as fol-
lows: a client c invokes a method � on a server s; the server activates the method
and then sends it back to the client for the latter to execute it. Formally this
correspond to the following reduction rule:

c[[ J ; s send cod�〈M〉.R | S ]] | s[[ I :: �(x) � ς(z)Q ; P ]] ➞
c[[ J ; Q{z, x := s,M} | R | S ]] | s[[ I :: �(x) � ς(z)Q ; P ]]

The intended behavior can be obtained by defining the sender and the receiver
ambients as follows:

server
�
= s[[ I :: �(u, v, x) � ς(z)u[[ out z.in v.Q ]] ; P ]]

client
�
= c[[ J ; (νp)s send �〈p, c,M〉.open p.R | S ]]

The protocol relies on the agreement between the server and the client upon
the name of the ambient that carries the activated process back to the client.
This name is decided locally by the client which passes it as an argument of the
call together with its own name. Invoking �〈p, c.M〉 spawns a new process on
the server that simply carries the ambient p out of the server and back into the
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client c: once inside c, the transport ambient p is opened thus unleashing the
process Q to be executed on the client.

The protocol can be refined by having the client pass a “return path” rather
than just its name. In that case, the client would be in the position to choose
where to receive and execute the requested method (e.g. , in one of its subam-
bients).

3.4 Updates

The standard notion of method override in formal object calculi [AC96, FHM94]
can be rephrased in our calculus, as follows:

given the ambient a[[ I ::�(x) � ς(z)P ;Q ]] replace the current definition P
of � by the new definition P ′ to form the ambient a[[ I :: �(x) � ς(z)P ′;Q ]] .

Method updates in this form can be expressed in our calculus by means of a pro-
tocol that uses an “updater” ambient to carry the new method body inside the
ambient to be updated. The updater enters the ambient a to be updated, and
the latter has a controlling process that opens the updater thus allowing updates
on its own methods. The protocol is defined precisely below in an asynchronous
setting, with the update defined as a process term: a similar encoding can be
defined for synchronous updates. Moreover, the definition only allows local up-
dates, in that an ambient may only override methods contained in subambients
(of course other kind of updates can be expressed similarly)

A method update is denoted by a update �(x) � ς(z)P , read “the � method
at a gets definition P ”, and is defined as the following process:

a update �(x) � ς(z)P
�
= upd[[ �(x) � ς(z)P ; in a ]]

The ambient to be updated may now be defined as follows:

a�[[ I ; P ]]
�
= a[[ I ; !(open upd) | P ]]

Now, if we form the composition a update �(x)�ς(z)P ′ | a�[[ I :: �(x) � ς(z)P ; Q ]] ,
the reduction for open enforces the expected behavior:

a update �(x)�ς(z)P ′ | a�[[ I :: �(x) � ς(z)P ; Q ]] ➞∗ a�[[ I :: �(x) � ς(z)P ′ ; Q ]]

Multiple updates for the same method may occur in parallel, in which case their
relative order is established nondeterministically. The protocol, as defined, relies
on the assumption that the name upd of the updater carrying the new method
body is “well known”. A more realistic assumption is that the ambient to be
updated and the context agree on the name of the updater prior to start the
protocol. This can be accomplished with a different definition of the ambient to
be updated, one that assumes that such ambients come with an ad-hoc method
that sets the appropriate conditions for the actual update to take place. The upd
method below serves this purpose.

a�[[ I ; P ]]
�
= a[[ I :: upd(u) � ς(z)open u ; P ]]
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Now, the protocol comprises two steps. First the ambient to be updated receives
the name of the updater, and only then does the update take place:

a update �(x) � ς(z)P
�
= (νp) (a downsend upd〈p〉.p[[ �(x) � ς(z)P ; in a ]] )

3.5 Encoding the π-Calculus

As a final example, we define constructs for synchronous and asynchronous com-
munication between processes (all processes, not just ambients) over named
channels. Similar construts for channel-based communication are presented in
[CG98], based on the more primitive form of local and anonymous communi-
cation defined for the Ambient Calculus. Here, instead, we rely on the ability,
distinctive of our ambients, to exchange values between methods. We first give
a construct for synchronous communication.

A named channel n is represented by an “updatable” ambient n, and three
auxiliary ambients ni, no and n̄ used for synchronization. The ambient n defines
a method ch: a process willing to read from n installs itself as the body of this
method, whereas a process willing to write on n invokes ch passing along the
argument of the communication.

(ch n)
�
= n�[[ ch(x) � 0 ]] | ni [[ ]]

n!〈y〉.Q �
= open no.n downsend ch(y).open n̄.(ni [[ ]] | Q)

n?(x).P
�
= open ni. n update ch(x) � (n̄[[ out n.P ]] ) .no[[ ]]

The steps of the communication protocol are as follows. A process n?(x).P read-
ing from n first grabs the input lock ni provided by the channel, then installs
itself as the body of the ch method in n, and finally releases the output lock no.
Now the writing process can start its computation: after acquiring the lock no, it
sends the message ch(y). The message activates the process n̄[[ out n.P{x := y} ]]
inside n. One further step brings the ambient n̄ outside n where it is opened by
the output process: this last step completes the synchronization phase of the
protocol, and both processes may continue their computation. The output pro-
cess releases a new input lock to reset the channel to its initial condition, and
the protocol is completed.

Asynchronous communications are obtained directly from the protocol above,
by a slight variation of the definition of n!〈A〉.Q. We simply need a different way
of composing Q with the context:

n!〈y〉.Q �
= (open no.n downsend ch(y).open n̄.(ni [[ ]] )) | Q

Based on this technique, we can encode the synchronous (and similarly, the asyn-
chronous) polyadic π-calculus in ways similar to what is done in [CG99]. Each
name n in the π-calculus becomes a quadruple of names in our calculus: the
name n of the ambient dedicated to the communication, the names ni and no of
the two locks, and the name n̄ of the auxiliary ambient. Therefore, communica-
tion of a π-calculus name becomes the communication of a quadruple of ambient
names.
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〈〈 (�n)P 〉〉 �
= (�n, n̄, ni, no)(n i [[ ]] |n�[[ch(x, x̄, xi, xo) � 0]] | 〈〈P 〉〉 ) n̄, ni, no �∈ fn(〈〈P 〉〉)

〈〈n!〈y〉.Q 〉〉 �
= open no.n downsend ch(y, ȳ, yi, yo).open n̄.(n i [[ ]] | 〈〈Q 〉〉 )

〈〈n?(x).P 〉〉 �
= open ni.n update ch(x, x̄, xi, xo) � (n̄[[ out n. 〈〈P 〉〉 ]] ) .no[[ ]]

〈〈P | Q 〉〉 �
= 〈〈P 〉〉 | 〈〈Q 〉〉

〈〈 !P 〉〉 �
= ! 〈〈P 〉〉

〈〈0 〉〉 �
= 0

Fig. 6. Encoding of the synchronous π-calculus

The initialization of the ch method in the ambient that represents the channel n
could be safely omitted, without affecting the operational properties of the en-
coding. However, as given, the definition scales smoothly to the case of a typed
encoding, preserving well-typing.

4 Types and Type Systems

The structure of ambient, capability and process types is similar to that of
companion type systems for Mobile Ambients: their intended meaning, instead,
is different.

Signatures Σ ::= ( �i(Vi) )i∈I
Ambients A ::= Amb[Σ]
Capabilities C ::= Cap[Σ]
Processes P ::= Proc[Σ]

Values V ::= A | C
Types T ::= X | A | C | P

Signatures convey information about the interface of an ambient, by listing the
ambient’s method names and their input types. The type Amb[Σ] is the type of
ambients with methods declared in Σ, while the types Cap[Σ] and Proc[Σ] are
the types of capabilities and processes, respectively, whose enclosing ambient (if
any) has a signature containing at least the methods included in Σ.

The type V identifies the type of the expressions that may occur as arguments
for method invocation, and defines them to be ambient names and capabilities.
The complete syntax of types includes type variables, which are used in the
typing rules for the typing of method bodies, as we explain shortly.

4.1 Subtyping and Matching

To enhance the flexibility of ambient typing and mobility, a subtype relationship
is introduced over capability and process types, as defined by the two following
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core rules.
(Sub Cap)

Σ ⊆ Σ′

Cap[Σ] ≤ Cap[Σ′]

(Sub Proc)

Σ ⊆ Σ′

Proc[Σ] ≤ Proc[Σ′]

Informally, the rules state that a capability (resp. process) type Cap[Σ] (resp.
Proc[Σ]) is a subtype of any capability (resp. process) type whose associated
signature (set theoretically) contains Σ. The resulting relation of subtyping is
reminiscent of the relation of subtyping in width distinctive of type systems for
object calculi. Width subtyping is restricted to capability and process types, and
does not extend to ambient types, as the extension would break type soundness in
the presence of ambient opening. The reason is explained, intuitively, as follows:
when opening an ambient, one needs exact knowledge of the contents of that
ambient —specifically, of what exactly is the set its methods and their types—
so as to ensure that the possible method overrides resulting from the opening be
traced in the types.

As a result of capability and process subtyping, it is nevertheless possible,
from within an ambient with interface Σ, to open any enclosed ambient with in-
terface Σ′ ⊆ Σ, where the inclusion may be strict. To account for this flexibility,
we introduce a relation of matching [Bru94] over ambient types to complement
the subtype relation over capability and process types. The relation of matching
is defined by the following rule:

(Match Amb)

Γ � � Σ′ ⊆ Σ

Γ � Amb[Σ]<#Amb[Σ′]

The complete definition of subtyping and matching includes standard rules for
reflexivity and transitivity (not shown). Also, as customary, the subtyping rela-
tion is endowed in the type system via a subsumption rule, while matching is
not.

A further remark is in order to explain the role of type variables in the
syntax of types. As we noted, due to the presence of ambient opening, a method
residing in ambient, say a, may be re-installed inside any ambient, say b, that
opens a; furthermore, the (sub)typing rules provide guarantees that b has “more
methods” than a. Now, in order for the original typing of the methods residing
in a to be sound after the methods have been re-installed in b, one must ensure
that the bodies of these methods be type-checked under appropriate assumptions
for the type of self: specifically, this type should be so defined as to represent
the type of all ambients where the methods may eventually be re-installed, via
opening. This is accomplished in the type system by typing method bodies in
type environments that assume the so-called MyType [Bru94] typing for the self
variable, i.e. a match-bounded type variable X<#A, where A is the type of the
ambient where the methods are initially installed.

Our relation of matching, and the technique of MyType typing of methods we
just outlined are simplified versions of the corresponding relation and technique
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originally introduced in [Bru94]. The simplifications result from the syntax of
types, and specifically from our ambient types being simple, i.e. not containing
occurrences of type variables (neither free, nor bound). As a consequence, the
type system does not support MyType method specialization [Bru94, FHM94],
the OO-typing technique that allows method-types to be specialized when meth-
ods are inherited (or, in our context, when they are subsumed in an opening am-
bient). Instead, in our calculus a method body has always the same type (the one
declared in Σ), independently of the dynamic binding of its self variable. This is
not surprising, as our method bodies are processes with no return value, hence
they are dealt with essentially as methods with return type unit in imperative
object calculi.

4.2 Judgements and Typing Rules

The typed syntax of the calculus is described by the productions below:

Interfaces I ::= �(x) � ς(z)P | I :: I | ε
Processes P ::= 0 | P |P | a[[ I ; P ]] | (�x:A)P |M.P

Expressions M ::= x | (M1, . . . ,Mn) | x send �〈M〉 | in x | out x | open x | ε
The only type annotations in the syntax are those introduced by the restriction
operator: the types for all the other variables are directly inferred from the
existing annotations. Also note that we take method names to be fixed labels
that may not be passed as values, nor restricted. The first restriction is justified
by the fact that method names are part of the structure of ambient (capability
and process) types; as a consequence, lifting this restriction would be possible
but it would make our types (first-order) dependent types. Instead, lifting the
second restriction is possible, and in fact not difficult, even though it complicates
the format of the typing rules. For this reason we will disregard this issue in what
follows.

Type environments are lists of term and type variable declarations, as de-
fined by the following productions: Γ ::= ∅ | Γ, x : W | Γ,X<#A. The typing
rules derive the following judgement forms, where we let W range over the set
{X,A, C} of extended value types:

Γ � M : W M has type W
Γ � X<#A X matches A
Γ � P : P P has type P
Γ � T well-formed type
Γ � � well-formed type environment

The complete set of typing rules is presented in Appendix A, the most interesting
are discussed below. We start with the rule for typing ambient opening.

(open)

Γ � a : Amb[Σ]

Γ � open a : Cap[Σ]
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As we noted earlier, opening an ambient requires precise knowledge of the type
of the ambient being opened: this is expressed in the rule by fact that the type
of the ambient a is an ambient type, not a type variable. Opening a is now legal
under the condition that the signature of the opening ambient be equal to (in
fact, contain, given the presence of subtyping) the signature of the ambient being
opened. This condition is necessary for type soundness, as it guarantees that an
ambient may only update existing methods of the opening ambient, preserving
their original types.

(Message)

Γ � a : W Γ � W<#Amb[ �(V ′) ] Γ � M ′ : V ′

Γ � a send �〈M ′〉 : Cap[Σ]

The rule (Message) states that invoking method � on an ambient a requires the
type of a to match an ambient type containing the method �. Note that the type
of a may either be an ambient type matching (i.e. “longer” then) Amb[�(V ′)],
or else an unknown type (i.e. a type variable) occurring match-bounded in the
context Γ . Since the body of the invoked method is activated on the receiver
(rather than on the sender) no constraint is required on the type of the send
capability. Of course, in order for the expression to type check, the message
argument and the method parameters must have the same type3.

(Amb) (Σ = ( �i(Vi) )i∈I)
Γ � a : Amb[Σ] Γ,Z<#Amb[Σ], z:Z, xi:Vi � Pi : Proc[Σ] Γ � P : Proc[Σ]

Γ � a[(�i(xi) � ς(z)Pi) i∈I ; P ] : Proc[Σ′]

The rule (Amb) for typing ambients is similar to the typing rule for objects
in the calculus of extensible objects of [BB99]. Each method of the ambient is
type-checked under the assumptions that (i) the self parameter has a type that
matches the type of the enclosing ambient, (ii) method parameters have the
declared type, and (iii) the type of each method body be consistent with the
type of the enclosing ambient. As we noted earlier, the use of the match-bound
type variable Z as the type of self ensures that methods local to ambient a are
well-typed also within any other ambient that might eventually open a. On the
other hand, the typing rule does not support MyType method specialization, as
the types of method bodies are independent of the type of self .

Also note that the rule requires exact knowledge of the type of the ambient a:
a structural rule allowing the name of the ambient to be typed with a match-
bounded type variable would break type soundness, since we would not have
a precise control of the openings of that ambient (see rule (open)). Finally, no
constraint is imposed on the signature Σ′, associated with the process type in
the conclusion of the rule, as that signature is (a subset of) the signature of the
ambient enclosing a (if any).

3 In fact, since capability types can be subtyped, the type of the arguments can be
subtypes of the type of the formal parameters.
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4.3 Subject Reduction and Type Soundness

We conclude the description of the basic type system with a result of subject
reduction. The proof is rather standard, and only sketched due to lack of space.

Lemma 1 (Substitution).

1. If Γ, x : W � P : P and Γ � M : W, then Γ � P{x :=M} : P.
2. If Γ,Z<#A, z : Z � P : P and Γ � a : A′, Γ � A′<#A,

then Γ � P{z := a} : P.

Proof. By induction on the derivation of the first judgment in hypothesis.

Lemma 2 (Subject Congruence).

1. If Γ � P : Proc[Σ] and P ≡ Q then Γ � Q : Proc[Σ].
2. If Γ � P : Proc[Σ] and Q ≡ P then Γ � Q : Proc[Σ].

Proof. By simultaneous induction on the derivations of P ≡ Q and Q ≡ P .

Lemma 3 (Bounded Weakening).

1. If Γ, x : W � P : P and Γ � W ′ ≤ W then Γ, x : W ′ � P : P.
2. If Γ,Z<#A, z:Z � P : P and Γ � A′<#A then Γ,Z<#A′, z:Z � P : P.

Proof. By induction on the derivation of the first judgment in hypothesis.

Theorem 1 (Subject Reduction).
If Γ � P : Proc[Σ] and P➞Q then Γ � Q : Proc[Σ].

Proof. By induction on the derivation of P➞Q, and a case analysis on the last
applied rule.

Besides being interesting as a meta-theoretical property of the type system,
subject reduction may be used to derive a type safety theorem ensuring the
absence of run-time (type) errors for well-typed programs. The errors we wish
to statically detect are those of the kind “message not understood”distinctive
of object calculi. With the current definition of the reduction relation such er-
rors may not arise, as not-understood messages simply block: this is somewhat
unrealistic, however, as the result of sending a message to an object (a server)
which does not contain a corresponding method should be (and indeed is, in real
systems) reported as an error.

To state and formalize type safety, we instrument the reduction relation with
an additional error reduction, state as follows:

a[[ I ; P | b send �〈M〉.Q ]] | b[[ J ; R ]] ➞ a[[ I ; P | ERR ]] | b[[ J ; R ]] (� �∈ J)

where ERR is a distinguished process, with no type. The intuitive reading of the
reduction is that a not-understood message causes a local error —for the sender
of that message— rather than a global error for the entire system. The rule
above is meaningful also in the presence of multiple ambients with equal name,
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as our type system (like those of [CG99, CGG99, LS00]) ensures that ambients
with the same name have also the same type.

It is easy to verify that no system containing an occurrence of ERR can be
typed in our type system. Type safety, i.e. absence of run-time errors may now
be stated follows:

Theorem 2 (Soundness). Let P be a well-typed MA++ process. Then, there
exist no context C[−] such that P ➞∗ C[ERR].

5 Related Work

In the literature on concurrent object-oriented programming, papers can be clas-
sified in two basic categories. The first category includes papers that provide
semantics to objects by encoding them into process calculi. Examples of sys-
tematic translations of objects into the π-calculus can be found, for instance,
in [Wal95, HK96, San98, KS98].

Papers in the second category propose formal calculi where primitive con-
structs for objects and for concurrent processes coexist. Within this class, one
can further distinguish two complementary approaches. In the first, high-level
object-oriented constructs are defined on top of name-passing process calculi
[Vas94, PT95, FMLR00]. In the second, primitives for concurrency are built on
top of imperative object calculi, in ways related to those we have discussed in
this paper. Below we present a detailed discussion on papers closest to ours.

Gorgon and Hankin’s concς-calculus [GH98]. The concς-calculus is a concurrent
object calculus that results from Abadi and Cardelli’s imperative object calculus
by the addition of primitive constructs for parallel composition, restriction and
synchronization via mutexes. Type systems for the calculus may be defined by
sound extensions of existing type systems for the underlying object calculus to
accommodate concurrency.

There are several similarities between concς and our calculus. In particular,
the semantics of method invocation, based on self-substitution was directly in-
spired by [GH98]. As in our semantics, in [GH98] objects are explicitly named,
and what gets substituted for the self variable is the name of the object rather
then the object itself.

The fundamental difference between the work of [GH98] and ours is that
concς does not address process mobility. In [GH98] distribution is completely
disregarded, while in our framework objects may move through a hierarchy of
nested locations, and communication (method invocation) often requires mobil-
ity. Moreover, due to the interplay between the dynamic nesting of ambients and
the communication primitives, more method invocation styles can be modeled
in our framework. A further difference is that the syntax of concς includes se-
quential composition of expressions that return results. This contrasts with the
standard practice in process-based calculi [Vas94, PT95, Wal95, KS98], where
the operation of returning a result is translated into sending a message on a re-
sult channel. Even though we did not explicitly address the problem of returning
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a result, it is easy to extend our framework by endowing agent interfaces not
only with methods, but also with fields whose invocation returns an expression.

A distributed version of concς is studied in [Jef00], where the syntax of the
calculus is enriched with a notion of location, and threads are allowed to migrate
across locations. A basic difference with our approach is that in [Jef00] the author
assumes a flat topology of locations, in which no explicit routing is required for
mobility, and locations may not be created dynamically. Furthermore, in [Jef00]
only a subset of objects (serializable objects) can be sent across the network,
and only the so-called located objects can be accessed via remote threads.

The Ojeblik calculus [NHKM99]. Ojeblik is a concurrent object-based language
built on top of Obliq [Car95], Cardelli’s lexically scoped distributed program-
ming language. In Ojeblik (and Obliq) object mobility is rendered by means of
a migration mechanism that is accomplished by creating a copy of the object
at the target site and then modifying the original (local) object such that it
forwards future requests to the new (remote) object: The lexical scope rules of
Obliq allow the aspects of distribution to safely be disregarded: object migration
is then correct if the behavior of an object is transparent to whether the object
has migrated or not.

Our approach is very different. As in Mobile Ambients, we assume that
the process a[[ I ; P ]] is an abstraction for both an agent (client) and an ob-
ject (server). This implies that in our framework mobile objects move without
the burden of future obligations at the source location. A client agent willing to
invoke a method of a server object, in turn, must approach the server in order to
start the communication protocol. In addition, while the work on Ojeblik does
not address typing issues, as we do for our calculus.

6 Current and Future Work

We have defined a core calculus for distributed and mobile objects on top of
which several extensions can be defined. We conclude our presentation with
a discussion on some of these extensions.

Co-capabilities à la Safe Ambients. In [LS00], Levi and Sangiorgi define a variant
of Mobile Ambients in which the reduction relation requires actions (i.e. capabil-
ities) to synchronize with corresponding co-actions. To exemplify, consider the
ambients a[[ in b.P ]] | b[[Q ]] . In mobile ambients, the move of a into b is “one
sided” as b simply undergoes the action. In Safe Ambients, instead, the move
requires mutual agreement between a and b: in order for the move to take place,
Q inside b must offer the co-capability coin b to signal that it is willing to be
entered. Based on this synchronization mechanisms, Levi and Sangiorgi discuss
a suite of type systems for on top of which they develop a rich algebraic theory
for their Safe Ambients.

Co-capabilities can be included in our calculus with no fundamental difficulty.
In particular, one can include a co-capability listen a, the dual of the capability
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a send , whose meaning is that the ambient a is ready to serve an invocation
to one of its methods. For reasons of space, we do not describe the extension
in detail. Nevertheless, it is instructive to point out one of the effects of the
extension, showing how it allows us to derive a simple compositional encoding
of the π-calculus.

〈〈n?(x).P 〉〉 �
= (�p)(n[[ ch(x) � p[[ out n.coopen p. 〈〈P 〉〉 ]] ; listen n.coout n ]] | open p)

〈〈n!〈x〉 〉〉 �
= n downsend ch〈x〉

〈〈 (�x)P 〉〉 �
= (�x) 〈〈P 〉〉

〈〈P | Q 〉〉 �
= 〈〈P 〉〉 | 〈〈Q 〉〉

〈〈 !P 〉〉 �
= ! 〈〈P 〉〉

〈〈0 〉〉 �
= 0

〈〈n 〉〉 �
= n

Every input on a channel n generates a new ambient named n, waiting to syn-
chronize with an output on n. Having received input, the transport ambient p
carries (the encoding of) P out of n. Once outside n, p is dissolved and the
continuation process P unleashed. Notice that the ambient n is left without ca-
pabilities after having let the transport p out. As such, after synchronization, n
is unavailable for interactions with the context, and thus behaviorally equivalent
to the null process (which can be garbage collected). Also, the encoding can be
shown to be interference-free, as the use of co-capabilities allows the definition
of an interference-free encoding of output construct of the π-calculus, based on
downward method invocation.

Other Extensions. Further extensions to the core calculus include the addition
of fields and refinements of the type system.

In object calculi, fields are often represented as parameter-less methods, that
do not depend on self. This direct representation is not possible in our calculus,
as invoking a method spawns a process rather than returning a value, as one
would expect from selecting a field. Nevertheless, it is not difficult of explicitly
include new syntax for fields, and extend the reduction relation so that selecting
a field returns a term rather than triggering a process.

A different extension is to allow method names to be treated as ordinary
names. This would allow one to restrict them, thus obtaining private methods,
and to communicate them, thus obtaining dynamic messages. This is a straight-
forward modification in the untyped calculus but it is quite problematic in the
typed case since the possibility of communicating method names would naturally
give rise to dependent types.

These extensions, together with the study of type-driven security in the cal-
culus are subject of our current and future work.
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A Typing Rules

Context formation

(Env-empty)

∅ � �

(Env-x)

Γ � W x /∈ Dom(Γ )

Γ, x : W � �

(Env-X)

Γ � � X /∈ Dom(Γ )

Γ,X<#A � �

Type formation

(Type X)

Γ,X<#A, Γ ′ � �
Γ,X<#A, Γ ′ � X

(Type Amb)

Γ � �
Γ � Amb[Σ]

(Type Cap)

Γ � �
Γ � Cap[Σ]

(Type Proc)

Γ � �
Γ � Proc[Σ]

Matching : Reflexivity, Transitivity and the following

(Match X)

Γ,X<#A, Γ ′ � �
Γ,X<#A, Γ ′ � X<#A

(Match Amb)

Γ � �
Γ � Amb[(�i(Vi))i∈1..n+k]<#Amb[(�i(Vi))i∈1..n]

Subtyping and subsumption : Reflexivity, Transitivity and the following

(Sub Cap)

Σ ⊆ Σ′

Cap[Σ] ≤ Cap[Σ′]

(Sub Proc)

Σ ⊆ Σ′

Proc[Σ] ≤ Proc[Σ′]

(Subsumption)

Γ � A : T T ≤ T ′

Γ � A : T ′

Expressions

(name/var)

Γ � �
Γ � x : Γ (x)

(ε)

Γ � �
Γ � ε : Cap[Σ]

(path)

Γ � M1 : Cap[Σ] Γ � M2 : Cap[Σ]

Γ � M1.M2 : Cap[Σ]
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(open)

Γ � a : Amb[Σ]

Γ � open a : Cap[Σ]

(inout)

Γ � M : W Γ � W<#Amb[Σ] (M ′ ∈ {in M, out M})
Γ � M ′ : Cap[Σ′]

(Message)

Γ � a : W Γ � W<#Amb[ �(V ′) ] Γ � M ′ : V ′

Γ � a send �〈M ′〉 : Cap[Σ]

Processes

(pref)

Γ �M : Cap[Σ] Γ � P : Proc[Σ]

Γ � M.P : Proc[Σ]

(par)

Γ � P : Proc[Σ] Γ � Q : Proc[Σ]

Γ � P | Q : Proc[Σ]

(restr)

Γ, x:A � P : Proc[Σ]

Γ � (νx:A)P : Proc[Σ]

(dead)

Γ � �
Γ � 0 : Proc[Σ]

(Amb) (Σ = ( �i(Vi) )i∈I)
Γ � a : Amb[Σ] Γ,Z<#Amb[Σ], z:Z, xi:Vi � Pi : Proc[Σ] Γ � P : Proc[Σ]

Γ � a[(�i(xi) � ς(z)Pi) i∈I ; P ] : Proc[Σ′]
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Abstract. The π-calculus, its asynchronous version and Boudol’s map-
ping from the former language to the latter one are well-known math-
ematical objects in theoretical computer science. It is also well-known
that the mapping is not fully-abstract w.r.t. most of the semantics de-
fined over these two languages.
In this paper we study and fix conditions on the existance of fully-
abstract results for Boudol’s mapping (and its variants). The testing
theories à la De Nicola-Hennessy turned out to be very useful tools for
such a purpose.

1 Introduction

Concurrent and distributed systems use communication as a means to exchange
information. Communication can be of two kinds: synchronous and asynchronous.
A communication is synchronous when sending and receiving information be-
tween a sender and a receiver are simultaneous events. A communication is
asynchronous when sending and receiving information between a sender and
a receiver do not necessarily happen at the same time instant.

The π-calculus [MPW92] implements a synchronous communication while
the asynchronous π-calculus [Bou92] implements an asynchronous one. Since
the latter language is essentially a subset of the former one, the natural ques-
tion is whether or not the π-calculus can be somehow encoded into its asyn-
chronous subset. This would mean that the synchronous communication can
be “implemented” via asynchronous communication. Boudol’s mapping [Bou92]
goes in such a direction. It views the synchronous communication as a sequence
of asynchronous communications (a possible “simulation” of the synchronous
communication).

If we denote with Ps the π-calculus, with Pa the asynchronous π-calculus,
with [[ ]] the Boudol’s mapping and with R a generic equivalence generated by
a semantic theory, then it is well-known that [[ ]] (typically) does not preserve
R; i.e., the following statement

∀P,Q ∈ Ps, P RQ if and only if [[P ]] R [[Q]] (1)

does not hold (even for “non-severe” equivalences such as language equiva-
lence). An evidence of this fact can be found in [Bou92], where the author proves
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only the adequacy of the mapping (if implication) with respect to the Morris’
preorder. The other implication does not hold.

This paper is still concerned with Boudol’s mapping from the π-calculus to
the asynchronous π-calculus. We study and fix conditions on the considered
languages and mapping in such a way that the statement (1) holds in both
directions. In such a case we will say that [[ ]] preserves R or [[ ]] is fully-abstract
with respect to R.

The testing semantics à la De Nicola-Hennessy [DH84] are particularly suit-
able to the present study. Of course, as it stated, there are counterexamples for
the above statement whichever testing semantics is taken into account. Before
going into the details, we briefly recall the main assumptions behind the testing
scenario. It resorts on (i) a set P of processes to be tested (here concentrate on
the π-calculus and the asynchronous π-calculus), (ii) a set O of tests or observers
(these are processes that can perform a particular action ω reporting success),
(iii) a way to exercise a process on a given test (obtained by letting the process
and the observer to run in parallel and by looking at the computations which
this embedded process can perform. These computations can be successful or
failing, depending on whether or not they allow the execution of action ω) and
(iv) a general criterion for interpreting the results of these exercises. Different
criteria have been defined which provide P processes with different semantics.
For a given process P and observer o,

- P may o if there exists a successful computation between P and o;
- P must o if every computation between P and o is successful;
- P fair o (proposed in [BRV95, NC95]) if each state of every computation

between P and o leads to success after finitely many interactions.

Each criterion above allows the natural definition of a corresponding preorder
over P . For any P and Q, P processes:

- P �may Q if and only if for each o ∈ O, P may o implies Qmay o;
- P �must Q if and only if for each o ∈ O, P must o implies Qmust o;
- P �fair Q if and only if for each o ∈ O, P fair o implies Q fair o.

As already said, according to these testing theories, counterexamples can be
found for the statement in (1). They are reported in full details in Section 5.

We now show (first) how the testing theories can be refined in order to get
a fully-abstract result (then we have to operate also at the language level). The
key idea is given by the following statement:

P satisfies o iff [[P ]] satisfies [[o]] (2)

where satisfies can be either may , must or fair . This means that a process P
can reach a successful state, when exercised on a test o, if and only if [[P ]] can
reach a successful state, when exercised on a test [[o]].

Though this idea can appear quite intuitive we show that it is not trivial at
all. Indeed, this statement holds for the may testing relation and for the fair one,
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while it does not scale to the must testing. This is due to the presence of possible
divergent computations in the source programs and to the fact that an (atomic)
synchronous communication between a sender and a receiver is implemented
as a non atomic sequence of asynchronous communications. More in detail, the
execution of this sequence may lead the system to states in which a sender process
can proceed its execution while the corresponding receiver partner is still involved
in simulating the synchronous communication. A phatological situation is when
the receiver has the ability to perform the success action, after the completion of
the simulation, while the sender can engage in a divergent computation. In such
a case, however, the receiver has always the potential to perform the success
action after finitely many interactions. This is mainly the reason why the fair
relation holds (2).

(2) suggests us to consider parameterized versions of the testing theories with
respect to sets of observers. Formally, for a given set of observers O ⊆ O,

- P �Omay Q if and only if for each o ∈ O, P may o implies Qmay o;
- P �Omust Q if and only if for each o ∈ O, P must o implies Qmust o;
- P �Ofair Q if and only if for each o ∈ O, P fair o implies Q fair o.

Of course any parameterized preorder coincides with the original one when O
coincides with O itself. According to these new testing preorders and the obser-
vations above, we have the following results:

- P �Omay Q iff [[P ]] �[[O]]
may [[Q]];

- P �Ofair Q iff [[P ]] �[[O]]

fair [[Q]]:

- P �Omust Q if [[P ]] �[[O]]

must [[Q]] (but not the other way round).

Apart from this problem with must testing our study gives some insight on
the reasons why the statement in (1) cannot hold for the original versions of
the testing preorders. The set of processes in the asynchronous π-calculus which
are mapping of some process in the π-calculus, indeed, is a strict subset of the
whole language. Thus testing a process [[P ]] with respect to a test which is not
the coding of any process in the π-calculus means testing [[P ]] over a set of tests
which is “more powerful” than that available for testing P .

In order to have a fully-abstract result for the must case, we restrict the
source language by considering only those terms which are divergent-free; that
is, those terms that can perform only finite internal computations.

The rest of the paper is organized as follows. The next section briefly recalls
a few basic notions; namely, the π-calculus and the asynchronous π-calculus.
Section 3 presents the testing preorders of De Nicola and Hennessy, as well as
their parameterized versions, and Section 4 presents Boudol’s mapping from the
π-calculus into the asynchronous π-calculus. Section 5, the core of the paper,
studies fully-abstract results of the mapping. Section 6 contrasts our work with
related ones while Section 7 contains a few concluding remarks and further work.

This paper is an abridged version of [CC00], where the reader can
find all the proofs not included in the body of this extended abstract.
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2 The π-Calculus and the Asynchronous π-Calculus

Let N (ranged over by x, y, z, . . .) be a set of names. The set Ps of π-terms is
generated by the following (two level) grammar:

P ::= x̄y.P P | P (νx)P ! P G

G ::= 0 x(y).P τ.P G+G

Terms in Ps are usually called processes. Input prefix, y(x).P , and restriction,
(νx)P , act as name binders for name x in P . Consequently, the notions of free
names, fn( ), bound names, bn( ), over process terms are as expected. The set
of names of process terms, n( ), is defined as n( ) = fn( ) ∪ bn( ).

The operational semantics of processes is given via labelled transition sys-
tems. The states of such transition systems are Ps terms. The labels (ranged
over by µ, γ, . . .) correspond to prefixes, input x〈y〉, output x̄y and tau τ , and
bounded output x̄〈y〉 (which models scope extrusion). If µ = x〈y〉 or µ = x̄y or
µ = x̄〈y〉 we let sub(µ) = x and obj(µ) = y. Functions fn( ), bn( ) and n( ) are
extended to cope with labels as follows:

bn(x〈y〉) = {y} bn(x̄〈y〉) = {y} bn(x̄y) = ∅ bn(τ) = ∅
fn(x〈y〉) = {x} fn(x̄〈y〉) = {x} fn(x̄y) = {x, y} fn(τ) = ∅

The transition relation defining the transitional semantics of processes is
given in Table 1. ≡, used in Rule Cong, stands for the structural congruence
over set Ps induced by the axioms and inference rules in Table 2.
Notation: 〈P 〉, where P ∈ Ps, stands for P with some restrictions at the top
level; i.e., 〈P 〉 denotes (νx1)(νx2) . . . (νxn)P for some x1, x2, . . . , xn ∈ N (n ≥ 0).

Definition 1. (Weak Transitions) Let P and Q be Ps processes. Then:

- P
ε=⇒ Q if and only if P = P0

τ−→ P1
τ−→ . . .

τ−→ Pn = Q for some n ≥ 0
and P0, P1, . . . , Pn ∈ Ps;

- P
µ

=⇒ Q if and only if P ε=⇒ P1
µ−→ P2

ε=⇒ Q for some P1, P2 ∈ Ps.
Notation: Sometimes we write P

µ−→ (P
µ

=⇒) to mean that there exists P ′

such that P
µ−→ P ′ (P

µ
=⇒ P ′) and write P ε=⇒ µ−→ to mean that there are P ′

and Q such that P ε=⇒ P ′ and P ′ µ−→ Q.
The asynchronous π-calculus [HT91, Bou92] is the set Pa of terms generated

by the following grammar:

P ::= x̄y P | P (νx)P ! P G

G ::= 0 x(y).P τ.P G+G

The operational semantics of Pa is given by the rules in Table 1, when rule
Output/Tau is replaced by rules Output and Tau in Table 3. The axioms defining
the structural congruence are the same as the ones in Table 2. Similar defini-
tions and notation already given in the synchronous setting are assumed in the
asynchronous one. Note that the Pa calculus is a proper sub-set of Ps since the
output-action process x̄y can be thought as a special case of output prefix x̄y.0.
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Table 1. Early operational semantics for Ps terms

Input x(y).P
x〈z〉−→ P{z/y} where x, y ∈ N

Output/tau α.P
α−→ P where α = x̄y or α = τ

Open
P

x̄y−→ P ′

(νy)P
x̄〈y〉−→ P ′

x �= y Res
P

µ−→ P ′

(νy)P
µ−→ (νy)P ′

y �∈ nm(µ)

Par
P

µ−→ P ′

P |Q µ−→ P ′ |Q
bn(µ) ∩ fn(Q) = ∅

Com
P

x〈y〉−→ P ′, Q
x̄y−→ Q′

P |Q τ−→ P ′ |Q′
Close

P
x〈y〉−→ P ′, Q

x̄〈y〉−→ Q′

P |Q τ−→ (νy)(P ′ |Q′)

Sum
P

µ−→ P ′

P +Q
µ−→ P ′

Bang
P

µ−→ P ′

!P
µ−→ P ′ | !P

Cong
P ≡ P ′ P ′ µ−→ Q′ Q′ ≡ Q

P
µ−→ Q

3 Testing Preorders

We now briefly summarize the basic definitions behind the testing machinery to
the π-calculus and the asynchronous π-calculus. P denotes either Ps or Pa.

Definition 2. (Observers)

- Let N ′ = N ∪ {ω} be the set of names. By convention we let fn(ω) = ω,
bn(ω) = ∅ and sub(ω) = ω. Action ω is used to report success;

- The set O (ranged over by o, o′, o′′, . . .) of observers is defined like P , where
the grammar with non terminal P has extended with production P ::= ω.P ;

- The operational semantics of P extends to O by adding rule: ω.o ω−→ o.

Definition 3. (Experiments) The set of experiments E is the set {P | o |P ∈ P
and o ∈ O}.

Definition 4. (Maximal Computation) Given an experiment P | o ∈ E , a maxi-
mal computation from P | o is an infinite sequence
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Table 2. The structural congruence

a1) P ≡ Q iff Q can be obtained from P by alpha-renaming
a2) (Ps/≡, | , 0) is a commutative monoid
a3) (Ps/≡, + , 0) is a commutative monoid
a4) (P + P ) ≡ P
a5) !P ≡ P | !P
a6) ((νx)P |Q) ≡ (νx)(P |Q), if x �∈ fn(Q)
a7) (νx)P ≡ P, if x �∈ fn(P )
a8) (νx)(νy)P ≡ (νy)(νx)P
a9) ((νx)P + (νx)Q) ≡ (νx)(P +Q)

Table 3. The rules for Output and Tau in Pa

Output x̄y
x̄y−→ 0 Tau τ.P

τ−→ P

P | o = 〈P0 | o0〉 τ−→ 〈P1 | o1〉 τ−→ 〈P2 | o2〉 τ−→ . . .

or a finite sequence P | o = 〈P0 | o0〉 τ−→ 〈P1 | o1〉 τ−→ . . .
τ−→ 〈Pn | on〉 such that

n ≥ 0 and 〈Pn | on〉 � τ−→.

Definition 5. (May, Must and Fair Relations) Given a process P ∈ P and an
observer o ∈ O, define:

- P may o if and only if there exists a maximal computation

P | o = 〈P0 | o0〉 τ−→ 〈P1 | o1〉 τ−→ . . . 〈Pi | oi〉 τ−→ . . .

such that 〈Pi | oi〉 ω−→, for some i ≥ 0;
- P must o if and only if for every maximal computation

P | o = 〈P0 | o0〉 τ−→ 〈P1 | o1〉 τ−→ . . . 〈Pi | oi〉 τ−→ . . .

there exists i ≥ 0 such that 〈Pi | oi〉 ω−→;
- P fair o if and only if for every maximal computation

P | o = 〈P0 | o0〉 τ−→ 〈P1 | o1〉 τ−→ . . . 〈Pi | oi〉 τ−→ . . .

〈Pi | oi〉 ω=⇒, for every i ≥ 0.

Definition 6. (Testing Preorders) Given two processes P,Q ∈ P and a set of
observers O ⊆ O, define:

- P �Omay Q if and only if for every o ∈ O, P may o implies Qmay o;
- P �Omust Q if and only if for every o ∈ O, P must o implies Qmust o;
- P �Ofair Q if and only if for every o ∈ O, P fair o implies Q fair o.
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4 Coding the π-Calculus into the Asynchronous
π-Calculus

This section recalls the coding from the π-calculus to the asynchronous
π-calculus [Bou92] and states some useful properties.

Definition 7. (Coding Ps into Pa) The mapping [[ ]] : Ps �−→ Pa has the fol-
lowing basic clauses:

[[x̄z.P ]] = (νu)(x̄u | u(v).(v̄z | [[P ]])), where u, v �∈ fn(P )
[[x(y).P ]] = x(u).(νv)(ūv | v(y).[[P ]]), where u, v �∈ fn(P )

the others are defined extending [[]] homomorphically over all the other operators.

We now state two key properties relating (strong and weak) transitions out
of terms in Ps and those out of their translations. The proof is not conceptually
difficult but involved in the details (see [CC00]).

Proposition 1. Let P be a Ps process. Then

(i) P
µ−→ if and only if [[P ]]

γ−→, where sub(µ) = sub(γ);
(ii) P

ε=⇒ µ−→ if and only if [[P ]] ε=⇒ γ−→, where sub(µ) = sub(γ).

5 Fully-Abstract Results of the Coding

Let P and P ′ be two languages and [[ ]] be a coding from the former to the latter
language. Let R be an equivalence generated by a semantic theory. We say that
the coding is fully-abstract w.r.t. R if and only if

∀P,Q ∈ P , P RQ if and only if [[P ]] R [[Q]] .

When considering the case P = Ps, P ′ = Pa and Boudol’s coding we have
a negative result. Typically only the if implication holds. In order to have fully-
abstract results we reduce the expressive power of the languages and refine the
considered semantics.

5.1 Full Abstraction of the Coding W.R.T. �O
may

We start by considering the �Omay preorder. We prove a fully- abstract result
for our coding w.r.t. �Omay . In particular we prove that two Ps processes P
and Q are related by �Omay, for a set of tests O, if and only if their translations

[[P ]] and [[Q]] are related by �[[O]]
may. We first need a preliminary result.

Proposition 2. Let P be a Ps process and O ⊆ O be a set of observers. Then,
for every o ∈ O, P may o if and only if [[P ]] may [[o]].
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Proof. We just prove the if implication, since the only if one is completely sim-
ilar. Assume [[P ]] may [[o]]. By definition, [[P ]] may [[o]] if and only if there exists
a maximal computation

[[P ]] | [[o]] = 〈T0 | o0〉 τ−→ 〈T1 | o1〉 τ−→ . . . 〈Ti | oi〉 τ−→ . . .

such that 〈Ti | oi〉 ω−→, for some i ≥ 0. By Definition 1 we can also write
[[P ]] | [[o]] ε=⇒ ω−→. By Proposition 1, [[P ]] | [[o]] = [[P | o]] ε=⇒ ω−→ if and only if
P | o ε=⇒ ω−→. Thus P may o.

From the previous proposition we have the expected result for may testing.

Theorem 1. (Full abstraction of the coding w.r.t. �Omay )
Let P and Q be Ps processes and O ⊆ O be a set of observers. Then,

P �Omay Q if and only if [[P ]] �[[O]]
may [[Q]].

Remark: The fully-abstract result in Theorem 1 holds when the observers used
to test [[P ]] and [[Q]] in the asynchronous setting are the translations of the
observers used to test P and Q in the synchronous one.

The above condition is strictly needed, since if we allow observers not in the
set [[O]] (i.e., consider a more “powerful set” of observers) to test [[P ]] and [[Q]]
then our fully- abstract result does not hold anymore. Intuitively, all that is
reasonable: indeed, testing in Pa the translation of a term, say [[P ]], regarding
a generic observer o′ �∈ [[O]] (in particular, o′ is not the mapping of an observer
in O) means testing [[P ]] in [[Ps]] with a test which belongs to a more powerful
language than [[Ps]].

Indeed, consider the pair of Ps processes P = ā | ā, Q = ā.ā and the set
of observers O = {a.a.ω}. Let O′ = {a.a.ω} be the set of observers in Pa. Of
course aaω is not the translation of any observer in O, though it can perform
two a-actions before reporting success exactly as the observer in O. Then it is
easy to convince one that P �Omay Q and O′ �= [[O]].
On the other hand, consider the coding of our terms P and Q

- [[P ]] = [[ā | ā]] = [[ā]] | [[ā]] = (νu)(āu | u(v).(v̄ | 0)) | (νt)(āt | t(h).(h̄ | 0)) ≡
(νu)(νt)(āu | u(v).(v̄ | 0) | āt | t(h).(h̄ | 0))

- [[Q]] = [[ā.ā]] = (νu)(āu | u(v).(v̄ | [[ā]])),

and then the corresponding transitions when put in parallel with their observers

- [[P ]] | a.a.ω ≡ a.a.ω | (νu)(νt)(āu | u(v).(v̄ | 0) | āt | t(h).(h̄ | 0)) ≡
(νu)(νt)(a.a.ω | āu | u(v).(v̄ | 0) | āt | t(h).(h̄ | 0))

τ−→ (νu)(νt)(a.ω | 0 | u(v).(v̄ | 0) | āt | t(h).(h̄ | 0))
τ−→ (νu)(νt)(ω | 0 | u(v).(v̄ | 0) | 0 | t(h).(h̄ | 0)) = P1 and P1

ω−→ ;
- [[Q]] | a.a.ω ≡ a.a.ω | (νu)(āu | u(v).(v̄ | [[ā]])) ≡ (νu)(a.a.ω | āu | u(v).(v̄ | [[ā]]))

τ−→ (νu)(a.ω | 0 | u(v).(v̄ | [[ā]])) = Q1 and Q1 � ω−→ ;

By Definition 6, hence, we have that P �Omay Q but [[P ]] � �O′
may [[Q]].
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5.2 Full Abstraction of the Coding W.R.T. �O
fair

The same fully-abstract result proved for �Omay can be proved for �Ofair . Also in

this case, to guarantee a fully-abstract coding w.r.t. �Ofair , we have to make sure
that only the translations of the observers in the synchronous setting are taken
into account when comparing translations of Ps processes. Then the expected
result for fair testing follows.

Proposition 3. Let P be a Ps process and O ⊆ O be a set of observers. Then,
for every o ∈ O, P fair o if and only if [[P ]] fair [[o]].

Theorem 2. (Full abstraction of the coding w.r.t. �Ofair )
Let P and Q be Ps processes and O ⊆ O be a set of observers. Then

P �Ofair Q ⇐⇒ [[P ]] �[[O]]

fair [[Q]].

5.3 The Must Preorder

After considering the �Omay and the �Ofair preorders, we tackle the �Omust
case. In particular, we look for a proposition similar to Proposition 2 and Propo-
sition 3, since have been central to prove the fully abstract result for the former
preorders. Unfortunately, the statement we are looking for does not hold. The
following proposition provides a counterexample.

Proposition 4. There exists a Ps process P and an observer o such that
P must o but [[P ]] �must [[o]].

Proof. Consider the Ps process P defined as P = ā. !τ , and the observer o = a.ω.
The only one maximal computation that P | o can perform is

P | o = ā. !τ | a.ω τ−→ !τ | ω τ−→ . . .
τ−→ 0 | 0 | . . . | !τ | ω τ−→ . . .

Of course Pmusto. Now, consider [[P |o]] = [[P ]]|[[o]] and the maximal computation
that this process can perform. Consider the following one:
[[P | o]] = [[ā. !τ ]] | [[a.ω]] =
(νu)(āu | u(v).(v̄ | [[ !τ ]])) | a(h).(νk)(h̄k | k.[[ω]]) ≡
(νu)(νk)(āu | u(v).(v̄ | [[ !τ ]]) | a(h).(h̄k | k.[[ω]]))
τ−→ (νu)(νk)(0 | u(v).(v̄ | [[ !τ ]]) | ūk | k.[[ω]])
τ−→ (νu)(νk)(0 | k̄ | [[ !τ ]] | 0 | k.[[ω]]) ≡ (νk)(k̄ | [[ !τ ]] | k.[[ω]]) = (νk)(k̄ | ! [[ τ ]] | k.[[ω]])
τ−→ (νk)(k̄ | 0 | ! [[ τ ]] | k.[[ω]])
τ−→ (νk)(k̄ | 0 | 0 | ! [[ τ ]] | k.[[ω]])
τ−→ . . . (νk)(k̄ | 0 | 0 | . . . | 0 | ! [[ τ ]] | k.[[ω]]) . . .

and note that each intermediate state of the computation cannot perform any ω
action. Hence, [[P ]] �must [[o]].
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Thus,

Theorem 3. The coding is not fully-abstract w.r.t. �Omust .

Proof. Consider O = {a.ω}, P = ā and Q = P | ā.!τ . First of all note that
P �Omust Q. Indeed, P |o and Q |o can only perform the following computations
P | o = ā | a.ω τ−→≡ ω

ω−→ and Q | o = P | ā.!τ | a.ω τ−→≡ ω | ā.!τ ω−→ or
Q | o = P | ā.!τ | a.ω τ−→≡ ω | !τ ω−→, respectively.

Then note that P ��[[O]]

must Q. Indeed, [[P ]]|[[o]] = [[ā]]|[[a.ω]] ε=⇒≡ (νk)(k̄ ||k.[[ω]])
τ−→≡ ω

ω−→ but there exists a computation from [[Q]] | [[o]], namely, [[Q]] | [[o]] =
[[P ]]|[[ā.!τ ]]|[[a.ω]] ε=⇒≡ [[P ]]|(νk)(k̄ |![[τ ]]|k.[[ω]]) τ−→ . . . [[P ]]|(νk)(k̄ |![[τ ]]|k.[[ω]]) . . .,
where each intermediate state of the computation cannot perform any ω action.

In the following section we state fully-abstract results for the must preorder
by restricting the base language.

Fully-Abstract Results for the Must Preorder Let us concentrate on the
set of processes, tests and experiments in the π-calculus and its asynchronous
version that hold the hereditary convergence predicate meaning that they can
perform only finite maximal computations. In the following we will generically
use P to denote either Ps or Pa.

Definition 8. Let P be a P process and O ⊆ O. We say that P is hereditary
convergent w.r.t. O, P ↓O, if and only if ∀ o ∈ O, (P | o) ↓; where (P | o) ↓, read
P | o is convergent, if and only if every maximal computation from P | o is finite.

If we concentrate on the subset of hereditary convergent processes then we
have the following result. We refer the reader to [CC00] for a detailed proof.

Theorem 4. Let P and Q be Ps processes and O ⊆ O a set of tests. If P ↓O
and Q ↓O then P �Omust Q if and only if [[P ]] �[[O]]

must [[Q]].

The hereditary convergence predicate is very severe since processes in parallel
with observers are allowed to perform only finite sequences of internal actions. We
previously tried with weaker forms than the hereditary convergence predicate.
A more generous one is the following. Consider the set HerConv of hereditary
convergent processes as the largest set of processes P which satisfies:

(i) P ↓;
(ii) P

µ−→ Q implies Q ∈ HerConv.

Unfortunately, also such a predicate is not enough to obtain a fully-abstract
result for the mapping w.r.t. �Omust . Indeed, there exists a process P and an
observer o which are in HerConv and P must o but [[P ]] �must [[o]]. As an example,
consider P =!ā.0 and o =!a.ω. The parallel composition of their translation can
engage an infinite computation of τ actions without showing the presence of ω.
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6 Related Works

Mappings from synchronous languages to asynchronous ones (and relative fully-
abstract results, when possible) have been considered in many papers. For this
reason we report here only a very brief introduction to those papers that are
very close to our study.

One of this papers is [QW00]. It also aims at studing the relationships be-
tween synchronous and asynchronous mobile processes. The authors consider the
polyadic π-calculus and the asynchronous version of the monadic π-calculus as
base languages, Boudol’s mapping from the former to the latter language and
barbed congruence as the semantics to be preserved by the mapping. Some of the
ideas exploited in the present paper are also present there. I.e., the restriction of
the asynchronous tests, contexts in their setting, to those which are mapping of
synchronous tests. However, we have proven that such a condition is necessary
but not sufficient to get full abstraction for every semantic theory. Indeed, it can
be obtained for may and fair testing but not for must (unless strict restrictions
on the base language are considered). In more detail, they provide a type system
for processes of the asynchronous monadic π-calculus which characterizes the set
of contexts in the asynchronous world. These are all contexts which are map-
ping of contexts in the synchronous setting. Then prove a fully abstract result
for barbed congruence similar to those stated in Theorem 1 and Theorem 2. It
is worth of noting that our proof techinque still work when their barbed con-
gruence is considered (and, actually, also when Morris’ testing preorder is taken
into account).

Another very interesting paper is [Pal97]. Also this paper is concerned with
the attempt of solving or, at least, clarify how these two communication mecha-
nisms (synchronous and asynchronous) can be implemented one into the other.
The π-calculus and the asynchronous π-calculus are the considered languages
together with their own transitional semantics. It has been shown that it is not
possible to encode the π-calculus into the asynchronous π-calculus because the
“leader election problem” cannot be solved in the latter language while it is still
possible in the former one. More in general, it has been shown that it is not
possible to map the π-calculus in the asynchronous π-calculus for every possible
“uniform” encoding (it is compositional w.r.t. parallel composition and “behaves
well” w.r.t. renamings) and for every “reasonable” semantics (it distinguishes two
processes P and Q whenever in some computation of P the actions on certain
intended channels are different from those of any computation of Q) which one
wants to preserve. According to our interpretation of uniform and reasonable,
we can say that Boudol’s mapping is uniform, may and fair semantics are not
reasonable while must is. We cannot, however, exploit Palamidessi’s result to
justify our negative result with the must preorder. Indeed, her proof technique
strongly relies on the presence of mixed choices (input and output prefixes in al-
ternative composition) in the π-calculus while we do not have such choice in our
source language. Moreover, such a technique does not hold anymore if separate
choice is taken into account as shown in [Nes97]. But, as shown in this paper,
the must preorder gives problems anyway.
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Another work with similar issues of ours, though following quite different
means, is [HT91]. Honda and Tokoro concentrate on the π-calculus without
sum and bounded output and provide terms of this algebra with two transi-
tional semantics: one describes processes with a synchronous communication
and the other describes processes with an asynchronous communication. The
former transitional semantics is that standard while the latter one relies on a new
input-prefix rule. It allows any process to perform an input action also when not
syntactically specified (this models output as a non blocking action). Then, vari-
ous observational semantics based on trace, failure and bisimulation, are defined
on the top of the considered transitional semantics. The relationships between
the synchronous bisimulation and its asynchronous counterpart are investigated.
The main result of this study shows that the latter relation is strictly weaker
than the former one. Similar results hold for trace and failure-based semantics.
To obtain fully abstract results, they introduce the notion of I completion. This
is a mapping from a term interpreted asynchronously into a term interpreted
synchronously. Any target term is able to mimic all the asynchronous transi-
tions via synchronous transitions. More in detail, the target term is the original
one in parallel with the so-called identity receptors. These are processes with the
ability of performing input actions on suitable channels after which they become
themselves in parallel with output actions on the same channels. In this way
they simulate the transitions which are in the asynchronous setting but not in
the synchronous one. By weakening terms interpreted synchronously in this way,
Honda and Tokoro prove that two terms are asynchronously bisimilar (resp. fail-
ure, trace) if and only if their mappings are, up to I completion, synchronously
bisimilar (resp. failure, trace). They do not mention, however, to fully abstract
results for the opposite mapping; i.e., how to implement synchronous communi-
cation in terms of the asynchronous one which, instead, is the main purpose of
the current work.

7 Further Work

This paper rises several interesting questions to look at. We would like to check
whether our results scale up to versions of π-calculus with mixed choice by
exploiting the results and the non-uniform encodings in [Nes97].

Another interesting question is related to the negative result for must testing.
It is reasonable to ask whether or not there are uniform encodings (also in the
case the source language which only has separate choice, as the π-calculus we
have considered), that preserve the must testing. We conjecture a negative result
for this question. Always regarding the must testing, we would like to investigate
on the possibility of proving fully abstract results when some “fair” scheduling
assumption is imposed on the execution of the parallel components of a global
system. For this questions, instead, we conjecture a positive result. This, of
course, would improve the result stated in Section 5.3.
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Finally, we intend to import the ideas developed for testing in a bisimulation
scenario. At the first glance it seems that [HT91] can provide a valid support to
this investigation.
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Abstract. When search trees are made relaxed, balance constraints are
weakened such that updates can be made without immediate rebalanc-
ing. This can lead to a speed-up in some circumstances. However, the
weakened balance constraints also make it more challenging to prove
complexity results for relaxed structures.
In our opinion, one of the simplest and most intuitive presentations of
balanced search trees has been given via layered trees. We show that
relaxed layered trees are among the best of the relaxed structures. More
precisely, rebalancing is worst-case logarithmic and amortized constant
per update, and restructuring is worst-case constant per update.

Introduction

Usually, updating in a balanced search tree is carried out as follows: First,
a search is carried out in order to determine the location of the update. Sec-
ond, the update is performed. Third, local balance constraints are reconsidered.
Since balance constraints are usually based on path lengths or subtree sizes,
these constraints may have been violated, because most often, an insertion will
add at least one node to the tree and a deletion will remove at least one node
from the tree. If there is a balance problem, this is fixed completely if possible,
and otherwise it is fixed at the cost of introducing a new problem closer to the
root. This problem is then handled recursively until it disappears or is moved
all the way to the root, where balance problems are normally easily fixed.

The three phases described above are referred to as searching, updating,
and rebalancing. Informally, relaxed balance is a term used for the following. If
a search tree has been equipped with relaxed balance, the searching and updating
have been uncoupled from the rebalancing. Thus, it is now possible to search
and make an update without performing any rebalancing. For this to be well-
defined, the balance constraints must be weakened (relaxed) in such a way that
the tree after an update is still in the now broader class of trees. Additionally, the
standard tree, which is made relaxed, should belong to the class, and the overall
goal of the (presumably generalized and/or expanded) collection of rebalancing

� Supported in part by the Danish Natural Sciences Research Council (SNF).

A. Restivo, S. Ronchi Della Rocca, L. Roversi (Eds.): ICTCS 2001, LNCS 2202, pp. 269–284, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



270 Lars Jacobsen and Kim S. Larsen

operations is to bring the tree back to fulfilling the constraints of the standard
balanced tree.

The benefit of the uncoupling depends on the environment. Discussions of
this can be found in many of the papers on the subject, but here is a brief
account. In a sequential system, bursts of requests, possibly from an external
source, can be served faster if rebalancing is “turned off” during the period.
After the burst, rebalancing should gradually bring the tree back in balance,
while requests are served at the same time. In a parallel (shared-memory) system,
a näıve implementation would lock the root of the tree so frequently that the
degree of parallelism would be extremely low. In relaxed structures, it is generally
possible to exclusively lock only nodes which will be involved in pointer changes,
instead of all nodes which might be involved in pointer changes. This implies
that most of the exclusive locking will take place close to the leaves.

The cost of the relaxation is that the guaranteed worst-case bound of loga-
rithmic path lengths is temporarily lost. The options are to trust that this does
not become a problem for these short periods of time (maybe the requests are
known to be close to uniform), to monitor path lengths and rebalance when
some limit is exceeded, to dedicate a fixed minimum amount of rebalancing time
to each update (or group of updates), or something else along those lines. The
best solution can only be found when the specifics of the concrete scenario are
known.

However, to ensure that as much time as possible is dedicated to request
processing, it is vital that rebalancing, when it is performed, is performed effi-
ciently. The difficulty in proving the various possible efficiency bounds on the
run-time complexity is of course that after the structure has been relaxed, much
less is known about its appearance. For instance, if k updates are performed on
a standard balanced search tree of size n, usually (k logn), or fewer, rebalancing
operations can easily be shown to completely rebalance the tree. In a relaxed
version, path lengths can approach logn + k, so if k is more than a constant,
will (k logn) operations still suffice?

To make relaxed proposals as usefull as possible in the sequential as well
as in the parallel setting, it is always required that rebalancing is carried out
in local independent steps. However, in the sequential setting, this may not be
mandatory.

Finally, relaxed balance is also a topic of theoretical interest. Search trees are
some of the most important data structures, and this line of work answers some
very fundamental questions concerning whether or not the traditional tight cou-
pling between updating and rebalancing is necessary for the efficient rebalancing
results to follow.

We give a very brief summary of the developments; more details can be found
in [16], for example. Some of the ideas were initiated in [10,15]. AVL-trees [1,23]
were investigated in [17,25,28], red-black trees [3,10,31] in [5,6,7,8,16,26,27], and
(a, b)-trees [13,22], B-trees [4], 2-3-trees [2,12] in [18,19,25]. In [20], a general
result for balanced trees was developed, and in [9,11,21,24,32], some variations
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of the standard schemes were investigated. Locking in a parallel setting was
discussed in [6,27].

In this paper, we investigate layered trees [30]. A relaxed version of layered
trees was given in [29]. The primary contribution of this paper is to establish the
complexity results which hold for the structure. We give our own presentation
of layered trees with and without relaxed balance; partly to make the paper
self-contained, but also partly because greater precision in the formulation of
rebalancing operations is required in order for a proof of amortized constant
rebalancing to be established.

The paper [29] primarily focuses on the design ideas, and on the important
issue (not least in a parallel setting) of limiting restructuring. The principal
difference between changing a pointer and updating balance information is that
searching can proceed simultaneous with the information updating. Thus, if fine-
grained locking is an option, limiting restructuring operations is more important.
With the set-up in [29], the authors can show that only a constant amount of
restructuring is necessary per update.

Layered Trees

It is possible to give a quite general definition of a layered tree [30]. However, to
present the ideas in a form as simple as possible, we first give one very specific
definition. Later, we discuss the more general alternatives.

A layered tree is a binary search tree. It is leaf-oriented, meaning that all
keys are kept in the leaves. Internal nodes contain routers, which are of the same
type as the keys and often copies of some of these. However, the only purpose
of the routers is to guide the searches to the correct leaves. In a leaf-oriented
binary tree, internal nodes always have two children.

Leaf-oriented trees are often the choice in large database-oriented applica-
tions because keys often have significant amounts of information attached. It is
generally more efficient not to have to encounter this extra information when
searching down the tree and when changing internal nodes due to rebalancing.

Fig. 1. The four basic configurations

Additionally, when designing relaxed structures, there is no good way of
carrying out deletions in a step-wise and local manner if the tree is not leaf-
oriented. The problem is that if an internal node with two children should be
deleted, the standard method for handling this is to switch keys with its internal
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predecessor or successor and delete that node instead. However, that node can
be located a non-constant distance away.

A leaf-oriented binary search tree is called layered if it can be constructed as
described below from the configurations listed in Fig. 1:

1. Select one of the four basic configurations. The top node in the selected
configuration will be the root of the whole tree.

2. Add a number of layers. One layer is added as follows: For each node u in the
already constructed part of the tree which does not have a left (right) child,
select one of the basic configurations and let the top node of the configuration
be the left (right) child of u.

3. Construct a final layer of leaves, by adding a leaf everywhere a left or right
child is missing.

We refer to the level of leaves as layer 0. The layer on top of that is layer 1
and so on. An edge connecting a node in some layer i with a node in the next
layer i + 1 is said to cross the border between the two layers. In the concrete
implementation described in this paper, we assume that borders are explicitly
stored in the structure. The most flexible way of doing this is by storing one bit
in each node such that the bit is zero if it belongs to an even-numbered layer and
one otherwise. The manipulation of this bit in connection with the operations
to be discussed is easy, and we will not describe it explicitly. For easy future
reference we define the following two subsets of basic configurations: the small
configurations CS = { , , } and the large configurations CL = { , , }.
Proposition 1. The height of a layered tree with n leaves is bounded by 2�log2n�.
Proof. We show by induction in the number of layers that a node in layer i has
at least 2i leaves in its subtree. This is trivial for the base case of a single leaf.
For the induction step, we notice that any node u in the configurations from
Fig. 1 at any level i > 0 has at least two descendants at level i − 1. Since each
of these, by the hypothesis, have at least 2i−1 leaves in their subtrees, u has 2i

leaves in its subtree. Thus, the layer of the root is at most �log2 n�, and so there
are at most �log2 n�+1 layers. Since the height of the highest basic configuration
is two, the result follows.

Keys in the search tree come from a totally ordered domain. The keys in
the leaves appear in strictly increasing order from left to right. A router in an
internal node is greater than or equal to any key in its left subtree and less than
any key in its right subtree.

In the light of this and Proposition 1, searching can obviously be performed
in logarithmic time. The update operations, insert and delete, can also be per-
formed in logarithmic time, and with at most a constant number of structural
changes per update [30]. One way of describing this is as follows.

The general idea is to make the update, and register if there is a problem,
i.e., if the tree is no longer constructed according to the layered tree definition.
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Recursively, we remove the problem if possible, and otherwise move it to the
next layer. At the root, any problem can be eliminated.

In the following, we describe the updating procedures. Proof of correctness
follows later.

Insertions

To insert a key, we search for the given key as usual in a search tree, and we
end up at a leaf. If that leaf does not already contain the given key, a new leaf
is created using operation New leaf insertion. The new key and the one already
present in the existing leaf are arranged in order, and the key to the left is copied
to the new internal node as its router.

→ ↑

↑Root

→ Root T1

↑

→ T2

New leaf insertion. Up root . Up finish. T1 ∈ CS.
T2 ∈ CL. |T2| = |T1|+ 1.

The new internal node is on layer 0, which is not allowed, and is therefore
equipped with a push-up request (↑). This push-up request is dealt with recur-
sively as follows. If it reaches the root, the problem is solved using operation Up
root . Otherwise, if there is room at the next layer, i.e., its parent is part of
a configuration consisting of at most two nodes, the problem is solved using
operation Up finish.

If the parent at the next layer is in a three-node configuration, the problem
is moved up one layer using operation Up push.

Deletions

To delete a key, we search for the given key as usual in a search tree, and
we end up at a leaf. If that leaf contains the given key, we proceed as follows
(the leaf to be deleted is marked with two crossing lines in the figures). If the
parent configuration has at least two nodes, using operation Remove finish, we
can rearrange the nodes such that the leaf and its parent are deleted, while all
configurations are still basic configurations.

↑

→
↑

T1 → T2 → ↓

Up push. Remove finish. T1 ∈ CL.
T2 ∈ CS. |T1| = |T2|+ 1.

Remove continue.
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If the next layer has a one-node configuration, we use operation Remove
continue. This introduces a leaf at layer 1, which should be moved down to
layer 0 before the tree can again be guaranteed to be a layered tree. We register
this problem by marking the node with a pull-down request (↓).

A pull-down request is handled recursively as follows. If it reaches the root,
the problem is solved using operation Down root . Otherwise, if the sibling and
parent configurations have at least three internal nodes together, then there are
sufficiently many nodes locally such that the node can be moved down using
either operation Down finish 1 or Down finish 2 , and at least one-node config-
urations can be created everywhere.

Finally, if the parent and sibling configurations contain only one node each,
the problem is moved up one layer using operation Down push.

Observe that only operation Remove continue and Down push create pull-
down requests. Since the only nodes which are marked are leaves or internal
nodes with exactly one child on the next layer, such requests are created only
if the marked node can be pulled down without violating the design criteria for
layered trees.

Root ↓ →
Root

T1
↓ → T3T2

T4

↓
→

T5

Down root . Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS.
|T1| = |T2|+ |T3|.

Down finish 2 . T4 ∈ CL.
T5 ∈ CS. |T4| = |T5|+ 1.

Layered Trees with Relaxed Balance

To make the tree relaxed, we must allow that rebalancing can be interrupted at
any time. In particular, its start can be delayed. In addition, the tree must be
able to accommodate several updates for which the corresponding rebalancing
has not been undertaken.

In addition to the basic configurations, several new configurations are allowed
in the tree; any one or two node basic configuration where the bottom-most node
is marked by a pull-down request, a zero-node configuration (a layer-crossing
edge), and a four node configuration, where the top-most node is marked by
a push-up request. The complete set of extra configurations (up to symmetric
variants) are depicted in Fig. 2.

When an insertion is made, a leaf is replaced by an internal node with two
leaves. If several insertions are made, large trees might be build this way without
respecting the design criteria for relaxed layered trees. Such trees are always
rooted at an internal node marked with a push-up request at layer 0. This part
of the tree is called the unstructured part, while the part satisfying the design
criteria for relaxed layered trees is called the structured part.
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↑

↓

↓

Fig. 2. Relaxed configurations

Rebalancing is now carried out by moving a problem from the unstructured
part into the structured part, and recursively towards the root, until the problem
is removed.

Since we cannot control when a deletion is actually carried out, the leaf
to be deleted is marked physically for deletion by the operation Delete mark .
Observe that the leaf might already be marked with a pull-down request, which
is indicated by a parenthesized pull-down request (↓).

A leaf-oriented relaxed layered search tree can be constructed in the following
way:

1. Select any configuration,except the layer-crossing edge. The top node of the
selected configuration will be the root of the tree.

2. Add a number of layers: For each node u in the already constructed part of
the tree, which does not have a left (right) child: if u is not marked with
a pull-down request, and u is not on the layer above (a layer-crossing edge)
add any of the node-containing configurations as the left (right) child of u.
If u is marked with a pull-down request, add any configuration as the left
(right) child of u, such that exactly one of the child configurations of a node
marked by a pull-down request is a layer-crossing edge.

3. Construct the final layer by adding leaves, leaves marked for deletion, or
unstructured trees to every node on the second to final layer that does not
have a left (right) child, unless that node is marked by a pull-down request,
in which case the node itself is made a leaf or a leaf marked for deletion.

Some operations involve the parent configuration, and some also the sibling
configuration. An operation can generally not be carried out if the involved con-
figurations are marked by requests. However, in some situations, we must allow
that the sibling and parent configurations contain requests to avoid deadlocks.

In the case of deletion, the sibling of the deleted leaf in operation Remove
continue, might be marked for deletion, and is thus of course still marked after
the application of the operation. This is indicated by an asterisk in the modified
operation Remove continue. Analogously, two single-node siblings might both
contain pull-down requests. Therefore, operation Down finish 2 and Down push
are modified to allow this.
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↓ →
↓

(↓) → (↓) ∗
→ ∗↓

Down push. Delete mark . Modified Remove continue.

Furthermore, since we cannot control when updates are made, two new op-
erations are needed to handle special cases of insertions. If a leaf is marked for
deletion and an insertion is made at the very same leaf, the leaf is recycled as
depicted in operation Insert recycle. If a leaf is marked with a pull-down request
and an insertion is made at the very same leaf, the creation of the new internal
node cancel out with the pull-down request; operation Insert solve.

T4

↓ (↓)
→

(↓)

T5

↓ (↓) →
↓

(↓) T1

↓

→ T3T2

Modified Down
finish 2 . T4 ∈ CL. T5 ∈ CS.
|T4| = |T5|+ 1.

Modified Down push. Down cancel . |T1| ≥ 2.
|T2|, |T3| ≥ 1.
|T1| = |T2|+ |T3|.

Finally, pull-down requests are created if and only if both child configura-
tions and the parent configuration are single nodes. However, when the request
is to be resolved, this might not still be the case. One child is always a layer-
crossing edge, while the other might be any other configuration. If the other child
contains more than one node, these nodes can be rearranged such that it is no
longer necessary to pull the marked node down. This is done by operation Down
cancel . Observe that push-up requests among the rearranged nodes are anal-
ogously made obsolete, while pull-down requests must follow their respective
layer-crossing child edges. It is an implicit precondition for applying any other
operation involving pull-down requests that operation Down cancel cannot be
applied.

Analogously, the parent (the node marked by a pull-down request) might
not be a single node anymore, in which case the node is just pulled down, using
operation Down finish 3 .

(↓) → (↓)

↓ →
↓ →

Insert recycle. Insert solve. Down finish 3 .
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Correctness and Complexity of Relaxed Balancing

By inspecting the individual operations, one can easily verify that the rebal-
ancing operations satisfy the soundness property; applying any operation turns
a relaxed layered tree into a relaxed layered tree.

Now we show that the collection of rebalancing operations is sufficient.

Theorem 1. Completeness: Let T be a relaxed layered tree. While T contains
at least one node marked by a request, some rebalancing operation can be applied.

Proof. Let R denote the set of nodes marked by a request or marked for deletion
on the top-most layer containing marked nodes.

If the root is in R, then one of the Root operation can be applied. Assume
that the root is not in R. Assume that R contains some node u marked with
a push-up request. Since u is top-most and non-root, the parent configuration is
a basic configuration, and thus either operation Up finish or operation Up push
can be applied. Observe that this is independent of whether or not u is located
in the structured or the unstructured part of the tree.

Assume that R contains no nodes marked by a push-up request. Assume
that R contains nodes marked by a pull-down request, and let u be such a node in
a two node configuration, if any such exist. Consider the configurations below u.
By the soundness property, one of these configurations is a layer-crossing edge.
If the other configuration has at least 2 nodes, then operation Down cancel can
be applied. Otherwise u can be moved down using operation Down finish 3 .

Now assume that R contains nodes marked by a pull-down request, but that
all these are single node configurations. Again, if a child which is not a layer-
crossing edge contains at least two nodes, operation Down cancel can be applied.
Otherwise we know that u’s sibling configuration is either a single node (possibly
marked by a pull-down request) or a basic configuration containing at least two
nodes. In the first case, depending on whether the parent configuration of u has
more than one node or not, either operation Down push or operation Down fin-
ish 2 can be applied (recall that u was a top-most request, which means that u’s
parent configuration is a basic configuration). In the latter case, operation Down
finish 1 can be applied.

Finally, assume that R contains only leaves marked for deletion. By this
assumption, the parent configuration of such a leaf contains no requests, so
either operation Remove finish or Remove continue can be applied.

Amortized Constant Rebalancing

We use the standard potential function technique [33]. Any update operation
creates exactly one problem in the unstructured part. Either a leaf marked for
deletion or an internal node. This problem is either removed by a finishing re-
balancing operation or moved into the structured part as a request which is
then in turn moved a number of times using a non-finishing operation, until it
is removed by a finishing operation.
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Theorem 2. Rebalancing is amortized constant.

Proof. Assume that we remove every edge which connects two nodes in different
layers. This splits the tree up into a collection of small trees with at most four
nodes. We let Pi(T ) for i ∈ {1, 2, 3, 4} denote the number of pieces with i nodes
resulting from splitting T .

We define the potential Φ(T ) of the tree T as follows:

Φ(T ) = P1(T ) + P2(T ) + 3P3(T )

Any update operation, including the operation creating a request in the struc-
tured part, and any finishing operation may increase the potential, but it can
do so by at most a constant. What remains is to show that every non-finishing
operation decreases the potential by at least a constant to cover for its own
application. The operations Up push and Down push are the only non-finishing
rebalancing operations.

Operation Up push is applied only if the parent configuration of the node
marked by the push-up request is a three node basic configuration. Recall that
any node marked by a push-up request is the root of a four node configuration.
Thus by the application, a three node configuration and a four node configuration
is replaced by a four node, a two node, and a one node configuration, which
decreases the potential by one.

Operation Down push is applied only if the parent and sibling configurations
are single nodes. Furthermore, operation Down push is applied only if opera-
tion Down cancel cannot be applied. Thus, the children of the node marked by
a pull-down request are a layer crossing edge and a single node, respectively.
After the application, the node pulled down forms a two node configuration to-
gether with the single node child configuration at the child layer. Thus, four one
node configurations are replaced by two one node configurations and a two node
configuration, which decreases the potential by one.

Worst-Case Logarithmic Rebalancing

The previous theorem shows that rebalancing is amortized constant, if we start
with an initially empty tree. However, if we start with a non-empty layered tree,
we cannot use the theorem to guarantee a good complexity immediately. In the
following, we show that even if we start with a layered tree, rebalancing is at
most logarithmic in the worst-case.

Inspired by [16], we define a count function c as follows: If the tree is a stan-
dard layered tree, the count function is one on all leaves, and zero for all internal
nodes. The count sum of a node u is the sum of the count function applied to
all nodes in the subtree rooted at u, i.e.,

∑
v∈Tu

c(v).
In a relaxed layered tree, the count function is maintained as follows: When

an insertion is made, a leaf � is replaced by an internal node with two leaves. The
function value of the internal node is set to c(�)−1, while the count function for
both leaves is initialized to one.



Complexity of Layered Binary Search Trees with Relaxed Balance 279

When a leaf � is actually deleted (not just marked), its parent u is deleted
as well. The function value of the node v replacing the parent is then increased
by c(�) + c(u).

When nodes are rotated, some node is the root of the rotation. The function
value of the root is assigned to the new root, while all the remaining function
values are reassigned in-order to the remaining nodes involved in the rotation.

Since the count sum of the whole tree is incremented by insertions, but not
decremented by deletions, the count sum of the root is always n+ i where n is
the number of leaves in the tree the last time it was a standard layered tree,
and i is the number of insertions.

Note that the values of the count function are always non-negative, and for
leaves, they are positive.

We define the relaxed layer of a node u to be its layer in a layered tree
unless u and u’s parent are connected by a layer crossing edge. In this case, we
define the relaxed layer to be one higher than its actual layer.

Lemma 1. For any node u on relaxed layer j:
∑
v∈Tu

c(v) ≥ 2j

Proof. By induction on the number of operations on the tree since it was last
a standard layered tree.

The base case follows by an argument similar to the proof of Proposition 1,
since the count sum is exactly the number of leaves in any subtree.

It is easily verified that the result holds for any application of an update
operation or an operation bringing a request into the structured part.

If nodes (in the structured part) are rearranged to form basic configurations,
i.e., we also consider nodes marked by push-up request which are unmarked as
a consequence of the rearrangement, the result follows immediately from the
hypothesis since all such nodes have at least two descendants on the next layer.

If a node (marked by a pull-down request) is pulled down, we have two cases:
It is either pulled down using operation Down push, in which case the relaxed
layer is unchanged, or by a finishing operation, in which case the relaxed layer
is decreased. In either case, the count sum is unchanged, and the result follows
again immediately from the hypothesis.

Observe that any node marked by a push-up request has both its children
on the same layer as itself. Thus, such a node is the root of a subtree with twice
the count sum it needs, and the result follows from the hypothesis—even when
the node is pushed to the next layer.

What remains is to verify that the result holds after the application of op-
eration Down cancel when nodes marked by pull-down requests are rearranged.
However, this follows from the way relaxed layers are maintained. Since both
children of nodes marked by pull-down requests have the same relaxed layer—
that of nodes on the next layer—the result follows from the hypothesis.

Theorem 3. Rebalancing is worst-case logarithmic.

Proof. Rebalancing after any update involves bringing the problem into the
structured part of the tree, applying a number of non-finishing operations, and
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applying one finishing operation. Hence, if the number of non-finishing opera-
tions can be bounded by a logarithmic term, the theorem follows. However, the
application of a non-finishing operation moves a problem to a node on a higher
relaxed layer, and as, by Lemma 1, the size of a subtree is exponential in the
relaxed layer, there can be at most a logarithmic number of such layers.

More precisely, if i insertions (and possibly some deletions) are applied to
a tree of size n, we get the bound n+ i =

∑
v∈TRoot

c(v) ≥ 2jRoot , where jRoot is
the relaxed layer of the root.

Since at the root, the number of the layer and the relaxed layer must coincide,
the root is in layer at most �log2(n + i)�. Including initial, finishing, and non-
finishing operations, at most �log2(n + i)� + 2 operations can be applied per
update.

Worst-Case Constant Restructuring

The following result is from [29].

Theorem 4. Restructuring is worst-case constant.

Proof. As was observed earlier, every finishing rebalancing operation removes
at least one request. Hence, at most one finishing rebalancing operation can
be applied per update. Since neither of the non-finishing operations make any
structural changes, the theorem follows.

Concluding Remarks

The objective of this presentation of relaxed layered trees was twofold. We
wanted to give a presentation precise enough that correctness and complexity
proofs could be based on it. At the same time, we wanted to keep the presenta-
tion simple, in the spirit of the presentation of the standard version. The first
objective has been obtained, but, admittedly, some of the simplicity is lost in
the transition to a relaxed version. The problem is that the extra configurations,
which are allowed in the relaxed setting, multiplies the total number of cases.
With the level of precision which is required to establish all the complexity re-
sults, there does not seem to be any way to treat the operations at a higher level
of abstraction to cut down on the number of cases.

On the positive side, we have shown that relaxed layered trees are among the
best relaxed binary search trees. In particular, all the asymptotic complexities
of [16] are matched: No update gives rise to more than a logarithmic number
of rebalancing operations, of which at most one is restructuring. Additionally,
rebalancing is amortized constant per update. It should also be noted that the
potential function used in the proof for amortized constant rebalancing can be
modified to satisfy the requirements for Theorem 1 in [14]. Thus, rebalancing in
relaxed layered trees is exponentially decreasing with respect to the height.

As it is also pointed out in [29], there are many ways of tuning the operations
to improve performance. For instance, several rebalancing operations can be
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redefined or extended such that push-up requests and pull-down requests would
cancel out when possible.

There is also a trade-off in the number of legal configurations and the number
of rebalancing operations (and their complexity). For example, one could define
relaxed layered trees without the two node configuration with the bottom-most
node marked by a pull-down request. However, then the set of operations is
increased and some operations must be made larger.
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Overview: All the Operations from within the Paper

The Sequential Structure

→ ↑

↑Root

→ Root T1

↑

→ T2

New leaf insertion. Up root . Up finish. T1 ∈ CS.
T2 ∈ CL. |T2| = |T1|+ 1.

↑

→
↑

T1 → T2 → ↓

Up push. Remove finish. T1 ∈ CL.
T2 ∈ CS. |T1| = |T2|+ 1.

Remove continue.

Root ↓ →
Root

T1
↓ → T3T2

T4

↓
→

T5

Down root . Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS.
|T1| = |T2|+ |T3|.

Down finish 2 . T4 ∈ CL.
T5 ∈ CS. |T4| = |T5|+ 1.

↓ →
↓

Down push.
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The Relaxed Structure

→ ↑

(↓) → (↓)

↓ →

New leaf insertion. Insert recycle. Insert solve.

↑Root

→ Root T1

↑

→ T2

↑

→
↑

Up root . Up finish. T1 ∈ CS.
T2 ∈ CL. |T2| = |T1|+ 1.

Up push.

(↓) → (↓)

T1 → T2

∗
→ ∗↓

Delete mark . Remove finish. T1 ∈ CL.
T2 ∈ CS. |T1| = |T2|+ 1.

The modified Remove
continue.

Root ↓ →
Root

↓ (↓) →
↓

(↓) T1

↓

→ T3T2

Down root . The modified Down push. Down cancel . |T1| ≥ 2.
|T2|, |T3| ≥ 1.
|T1| = |T2|+ |T3|.

T1
↓ → T3T2

T4

↓ (↓)
→

(↓)

T5

↓ →

Down finish 1 . T1 ∈ CL.
T2, T3 ∈ CS.
|T1| = |T2|+ |T3|.

The modified Down
finish 2 . T4 ∈ CL. T5 ∈ CS.
|T4| = |T5|+ 1.

Down finish 3 .
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Abstract. Graph colorings with distance constraints are motivated by
the frequency assignment problem. The so called λ(p,q)-labeling problem
asks for coloring the vertices of a given graph with integers from the
range {0, 1, . . . , λ} so that labels of adjacent vertices differ by at least p
and labels of vertices at distance 2 differ by at least q, where p, q are
fixed integers and integer λ is part of the input. It is known that this
problem is NP-complete for general graphs, even when λ is fixed, i.e., not
part of the input , but polynomially solvable for trees for (p,q)=(2,1).
It was conjectured that the general case is also polynomial for trees.
We consider the precoloring extension version of the problem (i.e., when
some vertices of the input tree are already precolored) and show that in
this setting the cases q=1 and q > 1 behave differently: the problem is
polynomial for q=1 and any p, and it is NP-complete for any p > q > 1.

1 Introduction

The radio frequency (or channel) assignment problem stems from important
practical applications. Its graph theoretical model [9] asks for a labeling of the
vertices of an input graph by nonnegative integers so that labels of vertices at
distance at most i differ by at least pi, for every i ≤ k, where k and p1, . . . , pk are
parameters of the problem. As a particular subproblem, Roberts proposed the
problem of assigning integers (frequencies) to vertices (transmitters) such that
vertices that are “fairly close” to each other (at distance two) receive different
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labels and vertices that are very close (adjacent) receive labels that are at least
two apart. This corresponds to the case of k = 2 and (p1, p2) = (2, 1), referred to
as (2, 1)-labelings of graphs [2,4,7,8,10,13,14]. The more general two-parameter
problem with (p1, p2) = (p, q), p ≥ q > 1, was considered in [1,4,5].

The minimum λ such that a graph G allows a (p, q)-labeling by integers
from the range {0, 1, . . . , λ} is denoted by λ(p,q)(G). It was shown in [7,14] that
determining λ(2,1)(G) is an NP-complete problem even for graphs G with di-
ameter two. The complexity of deciding λ(2,1)(G) ≤ λ for fixed λ was shown
NP-complete for every λ ≥ 4 in [4] (answering a problem asked in [14]). It was
also shown in [4] that for every p ≥ q ≥ 1, there is a λ (dependent on p, q) such
that deciding λ(p,q)(G) ≤ λ is NP-complete.

As concerns special graph classes, λ(2,1)(G) can be determined efficiently for
paths, cycles and wheels [7], and for cographs and trees [2] (thus disproving the
conjecture of [7] that the problem is NP-complete for trees). D. Welsh suggested
[personal communication, 1999] that, by an algorithm similar to Chang and
Kuo’s, it should be possible to determine λ(p,q)(T ) for a tree T for arbitrary p, q.
We will review the algorithm of [2] in Section 2. The crucial step of the algorithm
uses bipartite matchings (or Systems of Distinct Representatives, SDR), and an
analogous algorithm for q > 1 would need to be able to decide existence of
“Systems of Distant Representatives”. This problem is, however, NP-complete
in general, as shown in Section 3. It is therefore plausible to conjecture that
determining λ(p,q)(T ) is NP-hard for trees, when q > 1. Note also that the
complexity of determining λ(2,1)(G) for graphs of bounded tree-width is not
known.

For graph coloring problems, it is natural to consider the precoloring exten-
sion variants of the problems where some vertices of the input graph are given
as already (pre)colored, and the question is if this precoloring can be extended
to a proper coloring of the entire graph using a given number of colors. For sev-
eral results on the complexity of precoloring extension for special graph classes
see e.g. [11,12]. The aim of this paper is to consider the precoloring extension
variant of (p, q)-labelings of trees. We show that at least in this setting the cases
q = 1 and q > 1 behave quite differently. We will show in Section 2 that Chang
and Kuo’s algorithm can be easily extended to precolored trees and parameters
(p, 1), for any p. On the other hand, as we will show in Section 4, the problem
is NP-complete for every p > q > 1.

2 Algorithm for Trees and q = 1

We present a slightly modified version of the algorithm of [2].
The input consists of an integer value λ and a tree T with some vertices

precolored by a function g : U −→ {0, 1, . . . , λ}, where U ⊆ V (T ) is the set
of precolored vertices. We first choose a leaf r as a root of T , which defines
the parent-child relation between every pair of adjacent vertices. For any edge
xy ∈ E(T ) such that x is a child of y (i.e., y is the neighbor of x on the
path from x to the root), we denote by Txy the subtree of T rooted in y and
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containing y, x and all descendants of x. For every such edge and for every pair
of colors a, b, we introduce a boolean variable φ(x, y; a, b) valued true if and
only if Txy has a (p, 1)-coloring f : V (Txy) −→ {0, 1, . . . , λ} which extends the
precoloring and such that f(x) = a, f(y) = b. We show how to evaluate φ in
polynomial time (using dynamic programming from the leaves of T towards the
root r). This will constitute a polynomial time algorithm for T , since the tree T
allows a precoloring extension if and only if there exist colors a, b such that
φ(r′, r; a, b) = true, where r′ is the only child of r. The evaluation of φ goes as
folows:

1. Set φ(x, y; a, b)= false for every edge xy and any two colors a, b∈{0, 1, . . . , λ}.
2. Consider an edge xy such that x is a leaf. Set φ(x, y; a, b) = true for all pairs

a, b ∈ {0, 1, . . . , λ} such that |b−a| ≥ p and, if applicable, such that a = g(x)
if x ∈ U and/or b = g(y) if y ∈ U .

3. Consider an edge xy such that φ(x′, y′; a, b) was already evaluated for all
edges x′y′ of Txy except xy. Let z1, . . . , zk be the children of x.
For every pair of colors a, b ∈ {0, 1, . . . , λ} such that |b−a| ≥ p, and a = g(x)
if x ∈ U and/or b = g(y) if y ∈ U , define

Mi = {c| φ(zi, x; c, a) = true and b 
= c}, (∗)

and set
φ(x, y; a, b) = true

if and only if the set system Mi, i = 1, 2, . . . , k, has a System of Distinct
Representatives.

4. If there are colors a, b ∈ {0, 1, . . . , λ} such that φ(r′, r; a, b) = true then
output “T allows a precoloring extension.” else output “T does not allow
a (p, 1)-labeling extending the precoloring.”

The correctness of the algorithm follows by an easy inductive argument. For
the time complexity, φ(x, y; a, b) is evaluated for n− 1 edges and for O(λ2) pairs
of labels for each edge. The recursive step (assuming x has k children) takes
time O(kλ) for constructing the sets Mi and then O((k + λ)2kλ) for bipartite
matching (SDR). Altogether the running time is O(n2λ5). Thus we have proved:

Theorem 1. Existence of a (p, 1)-labeling which extends a given precoloring
of a given tree can be decided in polynomial time, for any integer p.

A similar algorithm could be used for the general case of (p, q)-colorings. The
only difference is that condition (∗) must now read

Mi = {c| φ(zi, x; c, a) = true and |b − c| ≥ q}

and we set φ(x, y; a, b) = true if and only if the set system Mi, i = 1, 2, . . . , k,
allows a System of q-Distant Representatives, i.e., a system of representatives ci,
i=1, 2, . . . , k such that ci ∈ Mi for each i and |ci − cj | ≥ q for all i 
= j. We will
show in the next section that this problem is in general NP-complete, and hence
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the algorithm is not straightforwardly polynomial for q > 1. It is, however, still
possible that the existence of a System of q-Distant Representatives within the
algorithm can be decided in polynomial time because of some special properties
of the sets Mi. But most likely (unless P=NP) this can be the case only for the
plain (p, q)-labeling problem (when T has no precolored vertices). We will show
in Section 4 that for any p ≥ q > 1, the precoloring extension (p, q)-labeling
problem is NP-complete.

Note that the hardness results apply only when the bound λ is part of the
input:

Theorem 2. For every fixed p, q and fixed λ, the precoloring extension (p, q)-
labeling problem with labels in the range {0, 1, . . . , λ} is polynomially solvable for
trees.

Proof. Since λ(p,q)(G) ≥ q∆(G) (where ∆(G) denotes the maximum degree
in G), the precoloring may only allow an extension to a (p, q)-labeling if the
maximum degree of T is bounded. But then k, the number of children of x in
the recursive step is bounded as well and the existence of a System of q-Distant
Representatives can be decided in time O(λk) by brute force.

3 Systems of Distant Representatives

The System of Distinct Representatives is a mapping that assigns to every set
of a finite family one of its elements, such that distinct sets are represented by
distinct elements. This system can be equivalently described as a matching in
bipartite graph.

The theory of Systems of Distinct Representatives is well known and very
important for discrete optimization problems. Both for the elegant Hall theorem
that describes necessary and sufficient conditions for the existence of an SDR,
and for a polynomial time algorithm (augmenting paths or the matching algo-
rithm of Edmonds [3]). Though several generalizations of the concept have been
studied, we believe that the concept of distant representatives is new.

Definition 1. Given integers q and m and a family F = {Mi| i ∈ I} of subsets
of X = {1, 2, . . . ,m}, a mapping f : I −→ X is called a System of q-Distant
Representatives (shortly an Sq-DR) if

(1) f(i) ∈ Mi for every i ∈ I,
(2) |f(i)− f(j)| ≥ q for every i, j ∈ I, i 
= j.

Note that for q = 1 the condition (2) merely says that f(i) 
= f(j), i.e.,
a System of 1-Distant Representatives is a System of Distinct Representatives.
For this case the ordering of the elements of X becomes irrelevant (as long as any
two elements of X are at distance at least 1). For q > 1, the linear ordering of
the elements of X becomes a determining factor. The fact that deciding whether
a given family has an Sq-DR is NP-complete for q > 1 is interesting on its own.
For the purpose of λ-colorings we need a somewhat stronger result. We call a set
of numbers t-sparse if |x− y| ≥ t for every two distinct members x, y of the set.
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Theorem 3. For every q > 1 and every t, it is NP-complete to decide if a family
F of t-sparse sets of integers has a System of q-Distant Representatives.

Proof. We reduce from 3-Satisfiability of Boolean formulas in conjunctive normal
form. This problem is known to be NP-complete even when restricted to formulas
whose each clause contains 2 or 3 literals and every variable occurs in exactly
3 clauses – once positive and twice negated [6]. Suppose Φ = (V,C) is such
a formula (where V is its variable set and C its clause set). We assume that the
variables are numbered x1, x2, . . . , xn.

Fix a number s > t + q ≥ 2q (we may assume without loss of generality that
t ≥ q). For a variable xi, let clause c contain the positive occurence of xi and
let clauses d, e contain ¬xi. Denote xi(c) = (i − 1)s + 2, xi(d) = (i − 1)s + 1
and xi(e) = (i− 1)s+ q +1. For every clause c ∈ C create a 3-element set Mc =
{xi(c)|xi ∈ c or ¬xi ∈ c}.

Observe first that the sets Mc, c ∈ C are t-sparse. This is because the smallest
difference of any two numbers xi(c), xj(d), i 
= j is at least s − q > t.

We claim that M = {Mc}c∈C contains an Sq-DR if and only if Φ is satisfiable.
Suppose first that M contains an Sq-DR f . We define a truth valuation φ of the
variables V so that

– φ(xi) = true if f(c) = xi(c) for some clause c such that xi ∈ c,
– φ(xi) = false if f(c) = xi(c) for some clause c such that ¬xi ∈ c,
– φ(xi) is arbitrary if none of the above applies.

Obviously every clause is satisfied by this assignment. We have to show, though,
that φ is defined correctly. Assume to the contrary that for some variable xi,
φ(xi) should be both true and false. That means that (i − 1)s + 2 and at least
one of (i−1)s+1 and (i−1)s+ q+1 are both representatives of some sets. This
is, however, impossible, since their difference (i− 1)s + 2− ((i− 1)s + 1) = 1 or
(i − 1)s + q + 1 − ((i − 1)s + 2) = q − 1 would be less than q.

On the other hand, suppose that Φ is satisfied by a truth valuation φ. For
every clause c, pick a variable (say xi) which satisfies c and set f(c) = xi(c).
This is clearly a set of representatives of M. To see that the system is q-distant,
note that if different clauses c and d are satisfied by different variables then
the difference of f(c) and f(d) is at least s − q > t ≥ q, while if c and d are
satisfied by the same variable, say xi, then this variable must occur negated in
both clauses, and hence f(c) = (i − 1)s + 1 and f(d) = (i − 1)s + q + 1 (or vice
versa), and thus their difference is q.

4 NP-Completeness for q > 1

We prove the main result in this section:

Theorem 4. For every fixed p ≥ q > 1, it is NP-complete to decide if a pre-
coloring of a tree can be extended to a (p, q)-labeling whose labels do not exceed
a given λ.
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Proof. We show a reduction from Systems of q-Distant Representatives. Let
t ≥ q2 + 2p and let a family M = {Mi}ni=1 of t-sparse sets be given. We may
assume that min(

⋃n
i=1 Mi) ≥ t and we set λ = t + max(

⋃n
i=1 Mi).

We build a tree T with a root v0 and children of the root vi, i = 1, 2, . . . , n
(and another level of nodes vi,j,m, as defined later). The root will be precolored
by 0, vertices vi will not be precolored, but each of them will have a certain
number of children precolored so that the only admissible colors for vi will be
exactly the elements of Mi. This can be attained as follows.

For a vertex vi, let Mi = {ai,1 < ai,2 < . . . < ai,ki}. Now consider the
interval [ai,j + 1, ai,j+1 − 1]. Since Mi is t-sparse, ai,j+1 − ai,j ≥ q2 + 2p and
one can choose numbers ci,j,1 = ai,j + p < ci,j,2 < . . . < ci,j,lj = ai,j+1 − p
so that q ≤ ci,j,m+1 − ci,j,m ≤ 2p − 1 for every m = 1, 2, . . . , lj − 1. (In more
detail, if ai,j+1 − ai,j − 2p = αq + β then α ≥ q and we set lj = α + 1. Then
take ci,j,m+1 = ci,j,m+ q+1 for m = 1, 2, . . . , β and take ci,j,m+1 = ci,j,m+ q for
m = β + 1, . . . , α. Note that 2p − 1 ≥ q + 1 > q.) Finally for all m = 1, 2, . . . , lj
add leaves vi,j,m precolored by ci,j,m pending on the vertex vi. In every (p, q)-
labeling f , it must be f(vi) /∈ [ai,j + 1, ai,j+1 − 1], since any integer from this
interval differs by at most p − 1 from some ci,j,m.

We perform this construction for every vertex vi and for each interval [ai,j +
1, ai,j+1−1]. Because we have assumed that ai,1 ≥ t and λ−ai,ki ≥ t, the initial
and terminal intervals [0, ai,1 − 1] and [ai,ki +1, λ] are handled in the same way,
with dummy border values ai,0 = −1 and ai,ki+1 = λ + 1.

It follows that T allows a (p, q)-labeling which extends the precoloring (and
uses labels from {0, 1, . . . , λ}) if and only if M has a System of q-Distant Rep-
resentatives.

Suppose that f : V (T ) −→ {0, 1, . . . , λ} is a (p, q)-labeling which extends the
precoloring. For each i, f(vi) ∈ Mi, since (by the argument above) for every j,
f(vi) 
∈ [ai,j + 1, ai,j+1 − 1]. Since for i 
= i′, vi and vi′ have a common neighbor
(the root v0), we have |f(vi) − f(vi′)| ≥ q and f restricted to {v1, v2, . . . , vn}
yields a System of q-Distant Representatives for M.

The converse, i.e., showing that T allows a (p, q)-labeling extending the pre-
coloring, provided M allows a System of q-Distant Representatives, is straight-
forward. Note here that the precoloring of T constructed from M itself satisfies
the (p, q)-constraints, since for each i the colors used on vi,j,m are at least q
apart, they are at least p (and thus at least q away from the label 0 of the
root), and they do not interfere with other vi′ or vi′,j′,m′ since such vertices are
at distance at least three.

5 Conclusion and Open Problems

We have shown a significant difference in the computational complexity of (p, q)-
labeling of trees for q = 1 and q > 1, when some vertices are precolored. This
has been achieved by introducing the notion of q-distant representatives for
set systems, which generalizes the well known distinct representatives (bipartite
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matching). We believe that the result that Sq-DR is NP-complete for q > 1
(while S1-DR, identical with SDR, is polynomial) is interesting on its own.

The following generalization of Systems of Distant Representatives was raised
during discussion of the second author and L. Lovász. Let A be a class of graphs.
The input to the SA-IR (System of A-Independent Representatives) is a graph
G ∈ A and a family F of subsets of the vertex set of G. The question is whether F
allows a System of Distinct Representatives such that the representatives form an
independent set in G. Our results show that SA-IR is NP-complete if for every n,
the class A contains a graph G with n · K1,2 (n disjoint copies of K1,2) as an
induced subgraph. It would be very interesting to know whether this problem is
polynomially solvable for classes of graphs without induced n · K1,2 for large n.
This would be the first step in the full classification of classes A for which the
question is solvable in polynomial time and for which is NP-complete.

Let us remark that SA-IR is at least as difficult as Independent Set restricted
to graphs of A: Given a graph G ∈ A and a number k, we take G and the multiset
of k copies of V (G) as F . Then this family allows a System of Independent
Representatives if and only if α(G) ≥ k. Observe also that SA-IR is solvable
in polynomial time if for every graph of A, all its maximal independent sets
can be enumerated in polynomial time. (Try the maximal independent sets one
by one and solve bipartite matching for each of them.) On the other hand, for
A={disjoint unions of complete graphs}, this condition is not fulfilled but SA-
IR could be solved in polynomial time by contraction and bipartite matching.
Finally, for A={cographs}, the Independent Set problem allows a polynomial-
time algorithm, in contrary to the NP-completeness of SA-IR (since n · K1,2 is
a cograph for any n).

For the (p, q)-labeling problem of trees without precolored vertices, the com-
plexity is still open when q > 1. It is tempting to try to prove NP-completeness
along the lines above. One possibility would be to replace precolored vertices by
trees that allow only certain labels at the root. Of course one cannot ask for trees
that would allow only one possible label, since the set of admissible labels for
a particular vertex is always symmetric with respect to the interval [0, λ] (if f
is a (p, q)-labeling then so is f ′ = λ − f). This does not cause problems for the
desired reduction since one can show that Systems of q-Distant Representatives
are NP-complete even when all sets Mi ∈ M are symmetric. This observation
leads to the following open problems (affirmative solution to the first one would
imply NP-completeness of (p, q)-labelings of trees):

Problem 1 Does there exist, for any relatively prime p > q > 1, any sufficiently
large λ and any (q2+2p)-sparse set M , a construction of trees Tx,λ, x ∈ [p, λ−p],
such that

(1) the size of Tx,λ is polynomial in λ,
(2) Tx,λ allows a (p, q)-labeling in which the root is labeled by x and all labels

of children of the root are at distance at least q from the set M ,
(3) in any (p, q)-labeling of Tx,λ, the root is labeled either by x or by λ− x?
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The condition (1) is imposed to guarantee polynomiality of the desired re-
duction. However, we do not even know of the existence of any Tx,λ satisfying at
least (2-3), and therefore we deem the following problem interesting on its own:

Problem 2 Prove that for any relatively prime p > q > 1, any large enough λ
and any x ∈ [p, λ − p], there exists a tree Tx,λ such that in any (p, q)-labeling
of Tx,λ the root is labeled either by x or by λ− x, and Tx,λ has such a labeling.
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12. Kratochv́ıl, J. and A. Sebő, Coloring precolored perfect graphs, J. Graph. Th. 25,
(1997), pp. 207–215. 286

13. Liu, D. D.-F. and R. K. Yeh, On distance two labellings of graphs, ARS Combi-
natorica 47, (1997), pp. 13–22. 286

14. Yeh, K.-Ch., Labeling graphs with a condition at distance two, Ph.D. Thesis, Uni-
versity of South Carolina, 1990. 286



Exponentially Decreasing Number of Operations

in Balanced Trees�

Lars Jacobsen and Kim S. Larsen

University of Southern Denmark, Department of Mathematics and Computer Science
Main Campus: Odense University, Campusvej 55, DK–5230 Odense M, Denmark

{eljay,kslarsen}@imada.sdu.dk

Abstract. While many tree-like structures have been proven to support
amortized constant number of operations after updates, considerably
fewer structures have been proven to support the more general expo-
nentially decreasing number of operations with respect to distance from
the update. In addition, all existing proofs of exponentially decreasing
operations are tailor-made for specific structures. We provide the first
formalization of conditions under which amortized constant number of
operations imply exponentially decreasing number of operations. Since
our proof is constructive, we obtain the constants involved immediately.
Moreover, we develop a number of techniques to improve these constants.

1 Introduction

When asynchronous processes work on a shared tree-like structure, operations
which are carried out by one process near the root are likely to interfere with
and slow down other processes. In contrast, if the tree structure is large, then
operations near the leaves will most likely not disturb others (this of course is
application-dependent). This scenario is one motivation for considering analyses
of where operations are carried out.

Many tree-like structures have been proven to have amortized constant time
operations (see for instance [5,6,11,12,14]). If operations are initiated at the
leaves of trees and move towards the root by local operations, this gives some
hope that operations will not often be carried out close to the root. In particular,
this hope is justified if some balance constraints on the trees guarantee that all
leaves have some minimum non-constant distance to the root. A typical example
of such a scenario is bottom-up rebalancing in balanced search trees. Tailor-
made proofs of exponentially decreasing operations exist for (a, b)-trees [6] and
insertions into AVL-trees [12].

The main contribution of this paper is a formalization of these concepts of
balance and locality, and a proof that under these conditions, amortized constant
time operations imply that the number of rebalancing operations carried out at
a certain level in the tree decreases exponentially in the distance from the leaves.
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We have focused on formulating sufficient conditions that are as weak as
possible such that our theorem is as broadly applicable as possible. This means
that the many structures on which operations have been shown to be amortized
constant can now, with very few extra arguments, claim to provide the stronger
and more directly useful exponentially decreasing operations.

However, our proof is constructive, meaning that once exponentially descreas-
ing operations have been established, constants can also be derived. More pre-
cisely, we obtain constants c1 and c2 such that the theorem guarantees that
at most c1

u
c2i

operations are carried out at a distance i from the leaves in re-
sponse to u initiations of amortized constant time operations from the leaves.
The constant c2 is of course particularly interesting; the larger it is, the better.

The rest of this paper is organized as follows: In Section 2 we state and prove
the main theorem, and give an example of its use. In Section 3 we show how
to improve the constants obtained from the theorem for certain structures. In
Section 4 we demonstrate a technique to make non-local structures, which are
not naturally covered by the theorem, satisfy the theorem after all. Finally, in
Section 5 we show how to make the theorem applicable to the large class of
search trees with relaxed balance.

2 The Main Theorem

We now address the statement and proof of the main theorem. We first give
a few definitions.

Let T be a tree. A configuration is a constant number of connected nodes.
A function L : T → N0 is a layer function on T if for nodes u, v ∈ T , where v
is a proper ancestor of u, L(v) ≥ L(u), and there exists a constant k such that
for all nodes u, v ∈ C for any configuration C, |L(u) − L(v)| ≤ k. This naturally
defines a layer 
i(T ) = {v ∈ T | L(v) = i} as a subset of T .

A local potential function Φ on T is a potential function defined on each
node of the tree, such that the potential of a node is a function of a surrounding
configuration, and the potential of any subset S ⊆ T of the tree is exactly the
sum of the potentials of the nodes in S. In addition, no node has non-constant
or negative potential, i.e., there exists some constant c such that 0 ≤ Φ(u) ≤ c
for all nodes u ∈ T .

A local rule is a transformation on T describing before and after configura-
tions. If a configuration in the tree matches the before configuration, it may be
transformed to the after configuration. Moreover, there exists some configuration
C containing the before configuration such that for all nodes u ∈ T \C, neither u,
Φ(u) nor L(u) are changed by the tranformation.

We distinguish between transformations controlled by external events (from
here on referred to as updates) and transformations where the before configura-
tion matches a configuration in the tree created by another transformation (from
here on referred to as post-processing operations or just operations).

Theorem 1. Let T be a tree. Let L be a layer function on T . Let Φ be a local
potential function on T such that every update on T is made at most a constant
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number of layers from layer 0 and increases the potential by at most a constant,
and every operation decreases the potential by at least a constant. Then there exist
constants c1, c2, satisfying c2 > 1 such that the number of operations performed

on layer i is bounded by c1
#upd
ci2

, when starting with a tree with potential zero.

First observe that the restriction on the potential changes by the transfor-
mations ensures that post-processing can be done in O(1) amortized time.

In the following, let U denote the set of updates and let R denote the set of
operations.

When an operation t ∈ R is performed, the potential of the entire tree T
is decreased. However, since the potential of a node is based on its surrounding
configuration, and operations are defined in terms of local rules on configurations,
an operation can only affect the potential on a constant number of consecutive
layers. This change can be expressed as:

∆Φt(T ) =
j0+k∑
j=j0

∆Φt(
j(T ))

for some j0 and constant k such that ∆Φt(
j0(T )) and ∆Φt(
j0+k(T )) are both
non-zero.

For all operations t ∈ R, we say that t spans k layers and denote this k by kt.
We now define the layer of an operation. For j0 ≤ i ≤ j0 + kt, let

N i
t =

i∑
j=j0

∆Φt(
j(T )) , and P it =
j0+kt∑
j=i+1

∆Φt(
j(T )).

Define the set: I =
{
j0 ≤ i ≤ j0 + kt

∣∣ N i
t < 0 and P it ≥ 0

}
. Note that this

set is non-empty since every operation decreases the potential of the tree, and
thus j0 + kt ∈ I. Let it = min

{
i ∈ I ∣∣ i minimizes N i

t

}
. We say that the oper-

ation t is performed on layer it.
If we consider an update t ∈ U , the total potential increase can also be

expressed as a sum of changes on a constant number of consecutive layers j0, j0+
1, . . . , j0 + k as above. Letting j0 = 0, we say t spans kt = k + 1 layers. Observe
that ∆Φt(
j0(T )) might be zero. By definition, the layer of an update is 0.

In the following, we use the shorthand ∆Φit for ∆Φt(
i(T )).

Proof (of Theorem 1). To show the exponentially decreasing post-processing,
we want to bound the amount of potential that is moved upwards in the tree,
and we want to bound the number of layers this potential is moved.

Let t ∈ R be an operation on T . Define:

N ′
t = −

∑
∆Φit<0

∆Φit , P ′
t =

∑
∆Φit≥0

∆Φit , and ct =
P ′
t

N ′
t

< 1.

Now ct denotes the largest possible fraction of potential that is moved up-
wards by t, and this potential is moved at most kt layers.
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Let kr = max
t∈R

{kt}, ku = max
t∈U

{kt} − 1, c = max
t∈R

{ct}, and cu = max
t∈U

{∆Φt(T )} .
We can now bound the amount of potential that is (eventually) created on

layer i due to some fixed update t ∈ U . We denote this by ∆Φt∞(
i(T )).
Claim: ∆Φt∞(
i(T )) ≤ cu · c�

i−ku
kr

�.
This is clearly true for i ∈ [0, . . . , ku] since the update might create this much

potential on layer i. What remains is to show that for all j ≥ 1: ∆Φt∞(
i(T )) ≤
cu · cj , for i ∈ [ku + (j − 1) · kr + 1, . . . , ku + j · kr]

However, this follows from the fact that no potential can reach any layer
within this range unless it has been moved at least j times by an operation.
Since any operation moves at most the fraction c < 1 of the potential, cu · cj is
an upper bound on the potential that might reach layer i.

By straightforward calculations, we obtain:

cu · c�
i−ku
kr

� ≤ cu · kr
√
c
(i−ku) =

cu
kr
√
c
ku

kr
√
c
i
.

If we consider this when #upd updates are made, we have

∆Φ∞(
i(T )) ≤ cu
kr
√
c
ku

kr
√
c
i · #upd.

Now consider the application of an operation t. By the definition of it, we
must have that ∆Φitt < 0, i.e., whenever an operation is performed on layer i,
the potential of layer i is decreased. Let cr = mint∈R{−∆Φitt } > 0, then, in
total, the potential on layer i is decreased by at least cr · #opsi, where #opsi
denotes the total number of operations performed on layer i. Combining these
inequalities, we get

0 ≤ Φ(
i(T )) ≤ cu
kr
√
c
ku

kr
√
c
i · #upd − cr · #opsi

#opsi ≤
cu

cr · kr
√
c
ku

kr
√
c
i · #upd.

If we let c1 = cu
cr· kr√cku and c2 = (kr

√
c )−1, the theorem follows.

Observe that the layer function should define a non-constant number of lay-
ers in order for the theorem to provide new information. Moreover, if h is the
length of the shortest path of T , then the layer of the top-most node in the
tree must be in O(h), since otherwise we would have that some configuration
spans a nonconstant number of layers, or updates are made a non-constant dis-
tance from layer 0.

Since two applicable layer functions may differ by an additive constant, and
the exact layer on which an operation is carried out can be defined in several rea-
sonable ways, the proper interpretation of Theorem 1 is that #opsi ∈ O

(
#upd
ci2

)
,

i.e., the constant in front of the expression is of minor interest.
If the initial tree has a non-zero potential of Φ0, then this potential

can create at most a linear amount of extra work on each layer. Thus,
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i → i+1

Update

i

e+1
→ i+1

0

Propagation

e+1Root → 0Root

Root

Fig. 1. Transformations for pebble games

#opsi ∈ O
(
Φ0 + #upd

ci2

)
. In [9], the existence of trees with arbitrary sizes and

constant potential is discussed.

2.1 Partially Persistent Binary Trees

We consider partial persistence as in [5]. A study of partial persistence through
‘pebble games’ has been carried out in [4], and we use a similar presentation here.

We consider the following game played on a complete binary tree of height h.
Each internal node has, besides pointers to its children, room for e pebbles, for
some constant e. Updates consists of updating a leaf, and putting a pebble on
the parent (this is the equivalent of copying a leaf and using an extra-pointer at
the parent in the node-copying model [5]). Post-processing consists of making
sure no internal node is storing more than e pebbles. The possible operations
are to remove all pebbles from a node and put one on the parent (this is the
equivalent of copying an internal node and using an extra-pointer at the parent
in the node-copying model), or removing all pebbles from the root.

Since all transformations are described by local rules, we assume that nodes
are capable of storing e+1 pebbles to represent the intermediate state between
two consecutive operations.

The transformations1 are depicted in Figure 1. The number to the right of a
node u is the number of pebbles on this node, denoted π(u). We then define a
layer function L(u) = h(u), where h(u) denotes the height of the node u (leaves at
height 0) and a local potential function Φ(u) = π(u). Using these transformations
and the functions L and Φ, we have proven the following corollary.

Corollary 1. The number of persistence operations in a balanced binary tree is
exponentially decreasing with respect to the distance from the leaves. 

We now turn to use the constructive part of the proof of Theorem 1 to derive
constants for the exponential expression. Since an update puts a pebble on an
internal node on layer 1, we immediately have: cu = 1 and ku = 1.

To derive the remaining constants, we analyze each operation one by one.
A table such as Table 1 can be constructed for the potential changes by each
operation. From the table we derive: kr = 1, cr = e+ 1, and c = 1

e+1 . Thus, the

1 The set of transformations showed in this example (and any of the following) is only
complete up to symmetric variants of the transformations.
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Table 1. Potential changes by operations for the pebble game

Operation t ∆Φit
t ∆Φit+1

t ct
Propagation −(e+ 1) 1 1

e+1

Root −(e+ 1) 0 0

number of persistence operations at height i, denoted #opsi, is bounded by:

#opsi ≤
1

(e + 1) · 1
e+1

· #upd
(e + 1)i

=
#upd
(e + 1)i

,

where #upd denote the number of updates to the tree.
Observe that the constant e is completely independent of the size of the

tree, so the exponential expression in the denominator is independent of the size
of the subtree. Moreover, this bound is tight, which can easily be verified by
considering a sequence of updates to the same leaf.

3 Splitting Large Transformations

In this section, we present a construction to reduce the span of any transforma-
tion to one, by replacing the transformation by a sequence of transformations.

Let t be a transformation on T . We use the notation B
t�−→ A to denote that

applying t to the before configuration B yields the after configuration A.

Lemma 1. Let T be a tree satisfying the conditions in Theorem 1 with layer
function L and potential function Φ. Let t ∈ U ∪ R be a transformation on T
with kt ≥ 1. Then there exists a sequence of configurations C2, C3, . . . , Ckt−1,
a sequence of transformations t1, t2, . . . , tkt−1, satisfying for all i, 1 ≤ i ≤ kt −
1 : kti = 1 and 1 > cti ≥ ct, a layer function L′, and a potential function Φ′

on T , such that B
t1�−→ C2

t2�−→ . . .
tkt−1�−→ A and T satisfies Theorem 1 using L′

and Φ′. Moreover, no transformation on T other than ti can be applied to the
configuration Ci for i ≥ 2.

Proof. The proof is by induction on kt. The base case (kt = 1) is trivial. Assume
that the lemma is true for all kt < N . Consider the case kt = N . We show how
to replace a transformation B

t�−→ A by two transformations t1 and t′ such that

B
t1�−→ C

t′�−→ A for some configuration such that kt1 = 1 and kt′ = kt − 1. The
lemma will follow by application of the induction hypothesis on t′.

Observe that by the definition of the local potential function, the potential
on layer i cannot change, unless some node is present on this layer. Therefore,
to control the potential on every layer from j0 to j0 + kt we must ensure that a
node is present on each layer. However, since ∆Φttj0 + kt is non-zero, a node is
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Table 2. Potential changes by t1, t′ and t

Operation τ ∆Φτ
t j0 ∆Φτ

t j0 + 1 ∆Φτ
t j0 + 2 · · · ∆Φτ

t j0 + kt

t1 ∆Φt
tj0 −x ·∆Φt

tj0 0 0
t′ 0 ∆Φt

tj0 + 1 + x ·∆Φt
tj0 ∆Φ

t
tj0 + 2 ∆Φt

tj0 + kt

t ∆Φt
tj0 ∆Φt

tj0 + 1 ∆Φt
tj0 + 2 ∆Φt

tj0 + kt

present on this layer in either B or A (or both). We will only consider the first
case here, the latter is analogous.

Let v ∈ 
j0+kt(T )∩B before t is applied. We now add two new types of nodes
to T . A neutral node wt1 having at most one child and a marker node for t1
denoted vt1 . Let vt1 be a copy of v except that the degree of vt1 is one higher
than the degree of v.

Define a new layer function:

L′(u) =




L(v) , if u = vt1

L(u) , if u �∈ {wt1 , vt1}
L′(u.p) − 1 , otherwise

Where u.p (u.pi) denotes the (ith transitive) ancestor of u.
The transformation t1 now replaces the node v by the marker node vt1 and

adds a chain of kt wt1 ’s as the extra child of vt1 . We now have at least one
node on every layer. The transformation t′ removes the wt1 ’s again, replaces the
marker vt1 by v, and applies t. By weigthing the neutral nodes in the new poten-
tial function according to their distance to the marker, the desired properties of
t1 and t′ can be obtained. See also Table2 for potential changes on the different
layers.

Φ′(u) =




Φ(v) , if u = vt1

Φ(u) , if u �∈ {wt1 , vt1}
∆Φttj0 , if u = wt1 and u.pkt = vt1

−x ·∆Φttj0 , if u = wt1 and u.pkt−1 = vt1

0 , otherwise

What remains is to choose x. Observe that ct1 = x if ∆Φttj0 is negative,
and ct1 = 1

x otherwise. So x should simply be chosen such that 0 > ∆Φt1(T ) >
∆Φt(T ) and 1 > ct1 ≥ ct.

In the case where I = {j0, j0 + 1, . . . , j0 + kt} for the transformation t (the
potential is moved upwards with respect to any layer), the optimal ct1 = ct2 =
· · · = ctkt−1 = x, where x is the solution to:

0 = −∆Φj0t · xkt −∆Φj0+1
t · xkt−1 − · · · −∆Φj0+kt

t · x0.

This is optimal because then the potential decrease (as a fraction) is balanced
over all kt − 1 transformations.
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→ 0

Update: Insert

bRoot → bRoot

Height Increase

0

b
→ −1

b

Balance Change

1

b
→ 0

b
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−1

−1
→ 0

0

Single

−1

1
−1

→ 0

1 0

Double 1

−1

1

0

→ 0

0 0

Double 2

−1

1

1

→ 0

0 −1

Double 3

Fig. 2. Insert and rebalancing operations on AVL-trees. For all operations: b ∈
{−1, 0, 1}

Observe that when updates are split using the lemma above, all resulting
transformations, except t1, become post-processing operations.

4 Designing Local Rules for Non-local Structures

In the following, #upd denotes the number of updates. The number of rebalanc-
ing operations on layer i, with respect to some layer function, is denoted #opsi.
Moreover, the search trees considered in the following are all leaf-oriented. This
means that all keys stored in internal nodes are routers used only to guide the
search, and all elements are stored in the leaves. This is to satisfy the requirement
that updates are always made near layer 0.

4.1 Semi-Dynamic AVL-Trees: Insertions

The complexity of sequences of insertions into an AVL-tree [1] is treated in [12].
In [12], it is shown that the number of post-processing (rebalancing) operations
is exponentially decreasing in the height. In this section, we prove matching
bounds using our construction.

Again, as noted in the previous section, transformations on the tree must be
described by local rules, i.e., no transformation (including updates) can make
changes to more than a constant number of nodes. In particular, we cannot
immediately update the balance of all nodes on the search path of an update.

To satisfy this requirement, we introduce a special node that indicates that
the height of the tree below has been increased by one. Rebalancing then consists
of propagating this node upwards, and it ceases when the critical node [12] or
the root is reached. The critical node is the bottommost node on the search path
with non-zero balance. The set of operations in terms of local rules is depicted
in Figure 2. The special node described above is the white node.
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−1

1

−1

0

1 0→

∆Φit

1

−φ2+1

0

0

Layer i

it+1

it

it−1

it−2

Fig. 3. Example of analysis of the Double 1 rebalancing operation. The lines
indicate the layer boundaries

We define the height of a node in a partially rebalanced AVL-tree as follows:

H(u) =




0 , if u is a leaf
max {H(u.l), H(u.r)} , if u is white
max {H(u.l), H(u.r)} + 1 , otherwise

where u.l (u.r) denote the left (right) child of the node u. The balance of a node
b(u) is defined as b(u) = H(u.l)−H(u.r). The number to the right of each node
in Figure 2 is its balance. A balanced AVL-tree contains no white nodes and
satisfies b(u) ∈ {−1, 0, 1} for all nodes u.

The layer of a node is simply its height, L(u) = H(u). Observe that as
a consequence of the definition of L(u), the layer of the topmost node of any
operation (except Height Increase) is not changed by the operation.

Finally, we define a local potential function2:

Φ(u) = 1b(u)=0 + φ2 · 1u is white,

where φ denotes 1+
√

5
2 , the golden ratio.

With the layer and potential functions we now have, by Theorem 1, that
rebalancing is exponentially decreasing in AVL-trees with insertions. To deter-
mine the exact bound, we analyze each transformation on the tree. By analyzing
each rebalancing operation one by one (see Figure 3), Table 3 (top) can be con-
structed.

By examining Insert, we find cu = ∆Φ(T ) = φ2 + 1 and ku = 2. From
the table we have c = 1

φ , kr = 2, and cr = φ. However, this will not yield
the best possible bound. For Absorption and Insertion, both having kt > 1, we
apply Lemma 1. The potential changes of the new transformations are depicted
schematically in Table 3 (bottom). Observe that Insert2 is now a rebalancing
operation.

This way, kr is reduced to 1 and ku to 0, while c remains 1
φ and cu becomes

2φ2 − 1. The value of cr = φ is unchanged.
Finally, we find that the number of rebalancing operations at height i is:

#opsi ≤ 2φ2−1

φ· 1
q

1
φ

0 · #upd
1√φi = (φ + 1) · #upd

φi , matching the result of [12].

2 1p is the indicator function, i.e., 1p = 1 if p is true and 1p = 0 otherwise.
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Table 3. Top: Potential changes by rebalancing operations on AVL-trees. Bot-
tom: Potential changes by resulting transformations after splitting Absorption
and Insert

Operation t ∆Φit
t ∆Φit+1

t ∆Φit+2
t ct

Height Increase −φ2 0 0 0
Balance Change −φ2 φ2 − 1 0 1

φ

Absorption −φ2 0 1 1
φ2

Single, Double 1–3 −φ2 + 1 1 0 1
φ

Operation t ∆Φit
t ∆Φit+1

t ∆Φit+2
t ct

Absorption1 −φ2 φ 0 1
φ

Absorption2 0 −φ 1 1
φ

Absorption −φ2 0 1 1
φ2

Transformation t ∆Φ0
t ∆Φ1

t ct
Insert1 2φ2 − 1 0
Insert2 −φ2 + 1 1 1

φ

Insert φ2 1

4.2 Semi-dynamic AVL-Trees: Deletions

The amortized complexity of sequences of deletions with rebalancing in AVL-
trees is treated in [14]. However, unlike for sequences of insertions, to our knowl-
edge, rebalancing has not been shown to be exponentially decreasing. We show
that in this section, and show that the constants obtained using Theorem 1 and
the technique described in the previous section are tight.

Again, as in the previous section, we use a special node (this time indicating
that the height of the subtree below has decreased by one) to capture the notion
of a partially rebalanced tree. Again rebalancing is done by propagating this
node upwards, and it ceases when the node is removed by some transformation.
The set of transformations in terms of local rules is depicted in Figure 4. The
special node described above is the white node.

We define the height H(u) and the corrected height CH(u) of a node u as
follows:

H(u) =
{

0 , if u is a leaf
max {CH(u.l), CH(u.r)} + 1 , otherwise

CH(u) = H(u) + 1u is white

Here u.l (u.r) denotes the left (right) child of the node u. The balance of a node
b(u) is defined as b(u) = H(u.l)−H(u.r). The number to the right of each node
in Figure 4 is its balance. Again, a balanced AVL-tree contains no white nodes
and satisfies b(u) ∈ {−1, 0, 1} for all nodes u.

The layer function L(u) is defined to be the corrected height, i.e, L(u) =
CH(u). Again, as a consequence of this definition, the layer of the top-most
node is not changed by any operation, except for Height Decrease.

Finally, the local potential function:

Φ(u) = x · 1|b(u)|=1 + y · 1u is white,
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0 →
Update: Delete 1

−1

0 → 0

Update: Delete 2

−1
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→

0
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0
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Terminating Single
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0 1
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0

1

0

0

Double 1

−1

0 1

0
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0

0

0

0

Double 2

−1

0 1

1

→
0

0

0

−1

Double 3

1

0
→ 0

0

Propagation

0

0
→ −1

0

Absorption

0Root → 0Root

Height Decrease

Fig. 4. Operations on AVL-trees to handle sequences of deletions

for positive constants x, y such that y > x. One can easily verify that this
suffices to show amortized constant rebalancing, wherefore Theorem 1 applies.
To determine the constants, we analyze each operation one by one, as in the
previous section, and obtain Table 4 (top).

From the table, we find that kr = ku = 2. However, this will again not
yield the best c2. For Single, Double 1–3, and Delete 2 having kt > 1, we apply
Lemma 1 to reduce kt. See Table 4 (bottom) for the new potential changes.

We now find from the tables that kr = 1 and c = max
{
x
y ,

y−x
y

}
= 1

2 when
y = 2x and cr = y. By examination of the Delete operations, we now find that
ku = 1 and cu = y. Hence,

#opsi ≤
y

y · 1

√
1
2

1 · #upd
1
√

2
i = 2 · #upd

2i
.

Moreover, this bound is tight. Consider a perfectly balanced binary tree of
height h. That is, all internal nodes have balance 0 and the tree has zero potential.
Delete every second element. In this way, every remaining internal node has had
its balance changed to 1 (or −1) by an Absorption operation once, and has been
the ’white’ node of a Propagation (or Height Decrease) operation once. Only the
latter counts as an operation on the layer of the node (which is one higher than
where it ends), i.e., the number of rebalancing operations on any layer is exactly
the number of internal nodes on this layer, which is 2h

2i = 2 · #upd
2i on layer i.

4.3 (a, b)-Trees

In this section, we consider (a, b)-trees [2,6], i.e., multi-way search trees satisfying
that the number of children of each node (except maybe the root) is between a
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Table 4. Top: Potential changes by rebalancing operations on AVL-trees. Bot-
tom: Potential changes by resulting transformations after splitting Single, Dou-
ble 1–3, and Delete 2. The layer it refers to the layer of Single (and Double 1–3 )

Operation t ∆Φt(T ) ∆Φ
it−1
t ∆Φit

t ∆Φit+1
t ct

Term. Single x− y 0 −y x x
y

Absorption x− y 0 −y x x
y

Propagation −x 0 −y y − x y−x
y

Height Decrease −y 0 −y 0 0
Single, Double 1–3 −2x −y −x y − x y−x

y+x

Operation t ∆Φit−1
t ∆Φit

t ∆Φit+1
t ct

Single1, Double 11–31 −y y − x 0 y−x
y

Single2, Double 12–32 0 −y y − x y−x
y

Single, Double 1–3 −y −x y − x y−x
y+x

Operation t ∆Φ1
t ∆Φ2

t ct
Delete 21 y 0
Delete 22 −y y − x y−x

y

Delete 2 0 y − x

and b for b ≥ 2a. In [6,11], it is shown that rebalancing is exponentially decreasing
in (a, b)-trees. Here, we demonstrate how to obtain comparable constants to [6]
using Theorem 1 and refining the potential function.

To represent intermediate states between operations, we assume that nodes
are capable of storing b+1 pointers. We define the set of local rules depicted in
Figure 5. The layer of a node is its height, L(u)=h(u), with the leaves at height 0.

In the following, we assume that b > 2a. We only consider potential functions
of the form φ(u) = ψ(ρ(u)), i.e., the potential of a node u depends only on the
number of children ρ(u) of this node. In this way, kr remains one, and so c2 = c−1.
Moreover, we assume that ψ is a piecewise linear function; see Figure 6.

Assume that we want to achieve c−1 = C for some C > 1. The function
ψ should then meet two objectives; −∆Φit ≥ C · ∆Φi+1

t and ∆Φt(T ) < 0, for
all rebalancing operations t—the latter to ensure that rebalancing is amortized
constant.

Based on the five rebalancing operations, ψ should satisfy the following in-
equalities, where ψ(+1) (ψ(−1)) is the maximum increase of ψ caused by adding
(removing) a pointer:

Root 1: C · ψ(a) ≤ ψ(b + 1)− (ψ (� b+1
2 �) + ψ (� b+1

2 �))
Root 2: 0 < ψ(a− 1)
Split : C · ψ(+1) ≤ ψ(b + 1)− (ψ (� b+1

2 �) + ψ (� b+1
2 �))

Fuse : C · ψ(−1) ≤ ψ(a− 1) + ψ(a) − ψ(2a− 1)
Share : 0 < ψ(a− 1) + ψ(d) − (ψ (� d+a−1

2 �) + ψ (�d+a−1
2 �))

Observe that the last inequality is always satisfied if the slope of the leftmost
segment is strictly less than −1, and the second is always satisfied by the same
argument and the fact that ψ(ρ) ≥ 0 for all ρ, since ψ(a− 1) = ψ(a) + 2.
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≤b
+ → ≤b+1

Update: Insert

≥a → ≥a−1

Update: Delete

≤b

b+1

→
≤b+1

≥a+1 ≥a
Split

≥a

ρ1 ρ2

→
≥a−1

ρ1+ρ2

Fuse

≥a

ρ1 ρ2

→
≥a

ρ′1 ρ′2
Share

b+1
Root → Root

≥a+1 ≥a
Root 1

Root

ρ

→ ρ
Root

Root 2

Fig. 5. Operations on (a, b)-trees. Conditions: Fuse: ρ1 < a or ρ2 < a and
ρ1 + ρ2 < 2a. Share: ρ1 < a or ρ2 < a and ρ1 + ρ2 ≥ 2a

Moreover, the best C for this set of inequalities is achieved when ψ(a) =
ψ(+1), reducing the first and third inequality to just one.

Depending on a and b, we consider two cases (recall that b > 2a):
Case 1 2a− 1 >

⌈
b+1
2

⌉
: Assume that in Figure 6, ρ1 =

⌈
b+1
2

⌉
and ρ2 = 2a− 1.

Let ψ(2a − 1) = ψ(
⌈
b+1
2

⌉
) = k. Then ψ(a) = k + (

⌈
b+1
2

⌉ − a) and ψ(b + 1) =
k+(b+1− (2a−1)) ·ψ(a). We determine C from the two remaining inequalities:

C · ψ(a) ≤ k + (b + 1 − (2a− 1)) · ψ(a) − (2k + 1)
C · 2 ≤ 2(k +

⌈
b+1
2

⌉− a) + 2 − k

✲

✻

k

a ρ1 ρ2 b

ψ(a)

−2

−1

Fig. 6. The function ψ. The slopes of the segments from left to right are: −2,
−1, 0, and ψ(a), respectively. For the root node, the horizontal segment is ex-
tended to accommodate the additional legal degrees
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The second of these inequalities reduces to C ≤ k+2(
⌈
b+1
2

⌉−a+1). If 2k+1 ≤
k+ψ(a) = k+k+(

⌈
b+1
2

⌉−a), which is satisfied for b ≥ 2a+1, then, by the first
inequality, C ≤ b− 2a+1, and we can simply choose k ≥ 2(C− (

⌈
b+1
2

⌉− a+1))
and the same C satisfies the second inequality.
Case 2 2a − 1 ≤ ⌈

b+1
2

⌉
: Let ρ1 = ρ2 =

⌈
b+1
2

⌉
. Then ψ(

⌈
b+1
2

⌉
) = k and

ψ(2a−1) = k+
⌈
b+1
2

⌉−(2a−1). Furthermore, ψ(a) = k+
⌈
b+1
2

⌉−(2a−1)+a−1.
Since ψ(+1) = ψ(a), we get ψ(b + 1) = k +

⌊
b+1
2

⌋ · ψ(a), and the two inequali-
ties become:

C · ψ(a) ≤ k +
⌊
b+1
2

⌋ · ψ(a) − (2k + 1)
C · 2 ≤ 2(k +

⌈
b+1
2

⌉− (2a− 1) + a) − (k +
⌈
b+1
2

⌉− (2a− 1))
= k +

⌈
b+1
2

⌉
+ 1

Using that ψ(a) ≥ k + 1, we obtain C ≤ ⌊
b−1
2

⌋
from the first inequality.

Choosing k ≥ 2C − (
⌈
b+1
2

⌉
+ 1), this C satisfies the second inequality as well.

We find that c1 = ψ(a) since cu = ψ(a), ku = 0, kr = 1, and cr = 1. Using
that C = 3

2 in the case b = 2a, we summarize the result above:
Assume that b ≥ 2a. Then the number of rebalancing operations performed

at height i, #opsi, in an (a, b)-tree satisfies: #opsi ≤ ψ(a) · #upd
Ci for C =

max
{

3
2 ,min

{
b− 2a + 1,

⌊
b−1
2

⌋}}
and a constant ψ(a), matching the result of [6].

5 Relaxed Balance

A large family of search trees satisfying the criteria for applying the results in
this paper is search trees with relaxed balance.

Relaxed balance is a paradigm for rebalancing search trees in small inde-
pendent steps, such that while still being efficient, rebalancing can at any time
be suspended. In particular, relaxed balance has desirable properties in a paral-
lel setting. For brief a survey of the motivation and results on relaxed balance,
see [8]. A discussion of the synchronization issues involved in using a relaxed
structure in a parallel environment can be found in [3].

In this section we show how to apply our results to an (a, b)-tree with relaxed
balance [7,10,13]. For our results to apply, we need to interpret the relaxed
structure and the transformation on it in a special way. While we study a specific
example in this section, the technique is generally applicable to any relaxed
balanced search tree satisfying the remaining criteria. The structure considered
is the second proposal from [7], which is an extension of the proposal from [10].
For details concerning completeness and correctness of this structure, we refer
the reader to [7].

The major difference between a relaxed (a, b)-tree and the (a, b)-tree dis-
cussed in the previous section (from here on referred to as a standard (a, b)-
tree), is that rebalancing is completely uncoupled from updates. In particular,
no rebalancing can be assumed to be applied immediately following an update.
Analogously, when a rebalancing operation is applied, we cannot assume that
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Fig. 7. Operations on relaxed (a, b)-trees. The tag of a node is written to its
right. For Insert 3, ρ = b or t1 > 0
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rebalancing afterwards immediately run to completion. Hence, we must be able
to handle any number of insertions (deletions) in any node before any rebalanc-
ing is performed. Yet, once rebalancing has been completed, the tree must be a
standard (a, b)-tree.

Each node u in a relaxed (a, b)-tree has an associated integer tag-value t(u).
We define the relaxed height of a node u as follows:

rh(u) =
{

0 , if u is a leaf
rh(c(u)) + 1 + t(c(u)) , if u is an internal node with a child c(u)

An invariant for the structure is that the tags are maintained in such a way
that for all children of a node, the sum of its tag and its relaxed height is the
same. Therefore it suffices to just refer to any child in the definition of relaxed
height above.

The tags are used to compensate for postponed rebalancing. If a node con-
tains too many pointers, it is split, and, if possible, the extra pointer is inserted
into the parent. If the parent is already completely full, we create an extra node
between the split node and its parent with a tag of −1, making it neutral in the
definition of relaxed height. In this way, we avoid the ripple effect if the entire
path needs to be split. Similarly, if an underfull node is the only child of its
parent, we cannot merge it with a sibling. In this case, to speed up searches in
the subtree, we remove the parent, while incrementing the tag of the child. This
unit of positive tag counts for the parent in the computation of relaxed height.

We allow any node u to have 1 ≤ ρ(u) ≤ b, where ρ(u) denotes the number
of children. The operations on a relaxed (a, b)-tree are depicted in Figure 7. All
operations are identical to those in the second proposal from [7], with the excep-
tion of Positive 1, where the two bottom nodes in [7] had their tags decremented
by min {t1, t2} rather than one, and the operations involving the root. As will
be discussed shortly, this is to avoid operations of non-constant size.

Since collapsing paths of unary nodes creating positive tags might result in a
non-constant number of layers between a node and its parent, we cannot apply
Theorem 1 immediately. Therefore we introduce an interpretation of the positive
tags that allows us to use Theorem 1. By this interpretation, a node u with tag
t(u) > 1 is a chain with t(u) unary nodes and the node u at the bottom, without
its positive tag. Indeed, this interpretation is what the tree would have looked
like had we not collapsed the path of unary nodes and introduced positive tags.
Decrementing a positive tag is then the equivalent of removing a unary node,
while incrementing the positive tag is the equivalent of adding a unary node.
Note that this is only an interpretation; the physical representation of the tree
remains the same, using the positive tags. See Figure 8 for an illustration of this
interpretation. To distinguish the special unary nodes introduced to interprete
positive tags, we use round nodes to represent these.

The layer L(u) of a node u (which is referred to in Figure 8) is based on the
interpretation and is defined as:

L(u) =
{L(c(u)) , if u is a round unary node
rh(u) , otherwise
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Fig. 8. Illustration of the interpretation of positive tags. The lines indicate layer
boundaries. Left: The actual representation of a relaxed (a, b)-tree. Right: The
interpretation of the same tree

What now remains to make Theorem 1 applicable is a local potential function.
In [7], relaxed (a, b)-trees are shown to have amortized constant behavior using
an almost local potential function. Since the potential of nodes with positive tags
depends linearly on the value of the tag, the maximum potential is not bounded
by a constant. However, this function is easily adapted to the interpretation of
positive tags (recall that all non-zero tags are negative):

Φ(u) =




1 + 2(ρ(u)− 1) , if t(u) < 0
4 , if ρ(u) = 1 and u is not round
3 , if 1 < ρ(u) < au or if u is round
1 , if ρ(u) = au
0 , if a < ρ(u) < b
2 , if ρ(u) = b

,

where au is the minimum legal degree for the node in a standard (a, b)-tree,
which is 2 for the root, and a otherwise. One can easily verify that Φ is a local
potential satisfying that any update increases the potential by at most a constant
and any rebalancing operation decreases the potential by at least a constant, so
it follows from Theorem 1 that rebalancing in relaxed (a, b)-trees is exponentially
decreasing.

To determine the constants involved, we analyze each operation one by one
and obtain Table 5. After applying Lemma 1 to the larger updates, we find that
kr = 1, ku = 0, cu = 4, cr = 1 and that the best value of c is 2

3 for a > 2 and
3
4 for a = 2. In all cases, the number of rebalancing operations on layer i is at
most:

#opsi ≤
4

1 · 1

√
3
4

0
1

√
3
4

i

· #upd =
4 · #upd(

4
3

)i

6 Concluding Remarks

A reasonable question to consider is whether or not the theorem has found its
right form. In particular, are all the requirements necessary? Clearly, if opera-
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Table 5. Potential changes

Operation t ∆Φt(T ) ∆Φ
it
t ∆Φit+1

t ∆Φit+2
t ct

Insert 1 2 2 0 0

Insert 2 1 −1 2 0

Insert 3 (t1 > 0) −1 −1 0 0

Insert 3 (t1 = 0) 2 −1 3 0

Delete 3 3 0 0

Root 1 −1 −1 0 0 0

Root 2 −2 −2 0 0 0

Root 3 −3 −3 0 0 0

Minus One 1 −1 −1 0 0 0

Minus One 2 & 3 −3 −5 2 0 3
5

Minus One 4 −2 −5 3 0 2
5

Fusion (a = 2) −1 −4 3 0 3
4

Fusion (a > 2) −1 −3 2 0 2
3

Share −1 −1 0 0 0

Compress 1 & 2 −1 −1 0 0 0

Positive 1 −3 −3 0 0 0

Positive 2 & 3 −1 −3 2 0 2
3

Positive 4 −1 −1 0 0 0

tions are not local, then every operation could involve the root. Furthermore,
requiring that there is a local potential function which assigns at most a constant
amount of potential to each node gives a similar type of control over the progress
of operations. Without this requirement, one can construct the scenario where
every (logn)’th operation progresses all the way to the root, while all other op-
erations finish immediately at the leaves. Then, assuming that the height of the
tree (as well as the number of layers) is Θ(log n), the operation is clearly amor-
tized constant, while the number of operations cannot decrease exponentially,
since the root is accessed too often.
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Abstract. The purpose of this paper is twofold. First, we review several
basic combinatorial problems that have been stated in terms of directed
hypergraphs and have been studied in the literature in the framework
of different application domains. Among them, transitive closure, tran-
sitive reduction, flow and cut problems, and minimum weight traversal
problems. For such problems we illustrate some of the most important
algorithmic results in the context of both static and dynamic applica-
tions. Second, we address a specific dynamic problem which finds sev-
eral interesting applications, especially in the framework of knowledge
representation: the maintenance of minimum weight hyperpaths under
hyperarc weight increases and hyperarc deletions. For such problem we
provide a new efficient algorithm applicable for a wide class of hyperpath
weight measures.

Keywords: Directed hypergraph, minimum weight hyperpath, dynamic
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1 Hypergraph Structures in Computer Science

Hypergraph is a common name for various combinatorial structures that gener-
alize graphs. Beside the most known undirected hypergraphs (or simply hyper-
graphs [13,14]), a relevant role is played by directed hypergraphs, a generalization
of directed graphs, which find applications in several areas of computer science
and mathematics for representing implicative structures. In a directed hyper-
graph we are given a set of nodes N and a set of pairs 〈T, h〉 (hyperarcs) where T
is a subset of N and h is a single node in N . The most obvious interpretation
of a hyperarc 〈T, h〉 is that the information associated to h functionally depends
on the information associated to nodes in T .

Directed hypergraphs and other strictly related combinatorial structures are
widely used in computer science. Notably, they are used in artificial intelligence
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for representing problem solving relationships (And-Or graphs [32] and recur-
sive label node hypergraphs [15]), in database theory for representing functional
dependencies among attributes (FD-graphs [5] and connections in acyclic hyper-
graphs [29,36]), in deductive databases [23], in fuzzy logic, for determining the
reliability of facts [8], in propositional logic, for satisfiability check (namely in
the case of Horn formulæ [9,21,33]), in formal languages (weighted context free
grammars [26]), in the theory of concurrency (Petri net paths [37]), in model
checking (dependency graphs [28] and boolean graphs [3]), in diagnostics [2].
More applications can be found in [1,4,34].

In all these applications we need to provide a formal representation for a set
of many-to-one implications and to study properties of the resulting structures
such as assessing reachability, evaluating flows and cuts, determining less ex-
pensive implication chains under various cost criteria (‘shortest’ hyperpaths). In
most cases determining hypergraph properties that consist in generalizations of
corresponding properties on ordinary graphs is a much more complex (usually
NP-hard) task. Therefore, the study of particular polynomial restrictions and of
polynomial time approximation algorithms is quite important and constitutes
a largely still unexplored field.

The purpose of this paper is twofold. First we want to review several basic
combinatorial problems that have been stated in terms of directed hypergraphs
and have been studied in the literature in the framework of different application
domains. Among them, transitive closure and transitive reduction [6,10], flow
and cut problems [16,21], minimum weight traversal problems [12,21,35]. For
such problems we illustrate some of the most important algorithmic results in
the context of both static and dynamic (mostly incremental) applications.

In second place, we want to address a specific dynamic problem which finds
several interesting applications especially in the framework of knowledge rep-
resentation: the maintenance of minimum weight hyperpaths under hyperarc
deletions and weight increases. For such problem we provide a new efficient al-
gorithm applicable for a large variety of hyperpath weight measures.

The paper is organized as follows. In section 2 the basic definitions con-
cerning hypergraphs and hyperpaths are given and various hyperpath weight
measures are presented. In Section 3 the problems of transitive closure and tran-
sitive reduction are discussed and the main algorithmic results are reviewed.
Section 4 is devoted to flows and cuts in hypergraphs. Section 5 is devoted to
hypergraph traversal problems with respect to a variety of hyperpath weight
measures. Finally, in Section 6 we give a summary of algorithmic results in
the dynamic framework and present a new efficient algorithm for maintaining
minimum weight hyperpaths under hyperarc eliminations and weight increase
operations. In the last section we draw some conclusions and suggest future
research directions.
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2 Hypergraphs and Hyperpaths

The following definitions concerning directed hypergraphs are from [6] and [12],
and are consistent with the more general definitions given in [22].

A directed hypergraph H (see Fig. 1 for an example) is a pair 〈N,A〉, where N
is a non empty set of nodes and A is a set of hyperarcs; a hyperarc e is an ordered
pair 〈T, h〉, with T ⊆ N , T �= ∅, and h ∈ N \ T ; T and h are called the tail and
the head of e, and are denoted by tail(e) and head(e), respectively. A set of
nodes is called a source set if it is the tail of some hyperarc; the source area of
H is the sum of the cardinalities of its source sets. The forward star of v ∈ N
is the set fstar(v) = {e ∈ A : v ∈ tail(e)}, while the backward star of v is the set
bstar(v) = {e ∈ A : v = head(e)}.

b

c

d

e

a

t
h8

h4

h1

h3

h10

h9h6

h2

h5

f

s

h7

Fig. 1. A directed hypergraph

The size of a hypergraph H is defined as size(H) =
∑

e∈A |tail(e)|. The
following different notion of size has been also used in the literature: a “compact”
hypergraph Hc is derived from H where a set of p hyperarcs having the same
tail T is represented by a single hyperarc from T to a dummy node c, plus p
hyperarcs from c to the original heads; the size of this hypergraph is denoted by
minsize(H) = size(Hc). This parameter is called size of a hypergraph H in [12],
and is denoted by |H|.

Given a hypergraph H, a subhypergraph of H is a hypergraph H′ = 〈N ′, A′〉
with N ′ ⊆ N and A′ ⊆ A. A subhypergraph is proper if at least one of the
inclusions is strict. A hyperpath in H from a set of nodes S ⊂ N , with S �= ∅,
called source, to a target node t ∈ N is a subhypergraph ΠS,t =

〈
NΠS,t , AΠS,t

〉
of H having the following property: if t ∈ S, then AΠS,t = ∅, otherwise its k ≥ 1
hyperarcs can be ordered in a sequence 〈e1, . . . , ek〉 such that:

1. ∀ei ∈ AΠS,t , tail(ei) ⊆ S ∪ {head(e1), . . . ,head(ei−1)}
2. t = head(ek)
3. No proper subhypergraph of ΠS,t is a hyperpath from S to t in H.
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The above definition of hyperpath is consistent with the notion of folded
hyperpath given in [12], and generalizes the notion of simple path in a directed
graph. A node t is said to be reachable in H from source S if there exists a
hyperpath ΠS,t in H. The port of a node v on ΠS,t, denoted by port(v), is
the hyperarc in AΠS,t having v as head; it is unique by condition 3 above. In
Fig. 1, thick hyperarcs represent the hyperpath from source S = {a, b} to node t
consisting of hyperarcs 〈h5, h6, h9〉.

The most intuitive and classical measure of the weight of a hyperpath is its
cost, defined as the sum of the weights of its hyperarcs (see, for example, [11]).
A different approach leads to defining the weight of a hyperpath in an inductive
manner. First attempts in this direction can be found in [31] and in [11]. This
approach has been formalized in [12] in the following terms.

Definition 1. A functional hypergraphHF = 〈N,A;F 〉 is a directed hypergraph
H = 〈N,A〉 in which each hyperarc e = 〈X, y〉 ∈ A is associated to a triple Fe =
(we, ψe, fe), where:

– we is a real value;
– ψe is a function from |X |-tuples of reals to reals;
– fe is a function from pairs of reals to reals.

Let ΠS,t be a hyperpath from S to t, and let 〈Z, t〉 be the last hyperarc
in ΠS,t (i.e., the port of t), where Z = {z1, z2, . . . , zk}: then1 ΠS,t = ΠS,z1 ∪
ΠS,z2 ∪ . . . ∪ ΠS,zk

∪ {〈Z, t〉}, where ΠS,zi is the subhyperpath of ΠS,t going
from S to zi, 1 ≤ i ≤ k. The weight of ΠS,t depends on w〈Z,t〉, that gives the
weight of hyperarc 〈Z, t〉, and on ψ〈Z,t〉, that takes into account the weights of all
hyperpaths ΠS,zi. Function f〈Z,t〉 combines these two weights. This is formalized
in the following definition.

Definition 2. Given a functional directed hypergraph HF = 〈N,A;F 〉, a weight
measure µ associates a real weight to a hyperpath ΠS,t as follows:

– if ΠS,t has no hyperarcs (i.e., t ∈ S), then µ(ΠS,t) = µ0, where µ0 is a
proper constant;

– if ΠS,t = ΠS,z1 ∪ ΠS,z2 ∪ . . . ∪ ΠS,zk
∪ {〈Z, t〉}, then µ(ΠS,t) =

f〈Z,t〉(w〈Z,t〉, ψ〈Z,t〉(µ(ΠS,z1), µ(ΠS,z2), . . . , µ(ΠS,zk
))).

Several weight measures have been introduced in the literature to define the
weight of a hyperpath in a functional directed hypergraph, by considering, given
a hyperarc e such that tail(e) = {x1, x2, . . . , xk}, different choices for functions
ψe and fe:

rank: fe(x, y) = x+ y, ψe(x1, x2, . . . , xk) = max1≤i≤k{xi}, and µ0 = 0;
gap: fe(x, y) = x+ y, ψe(x1, x2, . . . , xk) = min1≤i≤k{xi}, and µ0 = 0;
threshold: fe(x, y) = max {x, y}, ψe(x1, x2, . . . , xk) = max1≤i≤k{xi}, and
µ0 = 0;

1 By a little abuse of notation, given two hypergraphs H1 = 〈N1, A1〉 and H2 =
〈N2, A2〉 we denote the hypergraph 〈N1 ∪N2, A1 ∪A2〉 by H1 ∪H2.
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bottleneck: fe(x, y) = min {x, y}, ψe(x1, x2, . . . , xk) = min1≤i≤k{xi}, and
µ0 = +∞;

traversal cost: fe(x, y)=x+y, ψe(x1, x2, . . . , xk) =
∑

1≤i≤k{xi}, when we>0
for each e ∈ A, and µ0 = 0;

closure: fe(x, y)=min {x, y}, ψe(x1, x2, . . . , xk)=min1≤i≤k{xi}, when we=1
for each e ∈ A, and µ0 = 0;

For example, if we assume that all hyperarcs of the hypergraph in Fig. 1
but h5 have unit weight, while hyperarc h5 has weight 2, then the thick hyperpath
has rank 3, gap 2 and traversal cost 4.

Some of the weight measures listed above have been used by other authors
with different names. For example, in [21,34], the rank is called distance, and
the traversal cost is called value.

3 Transitive Closure and Transitive Reduction

In this section, we summarize the main results achieved in the literature con-
cerning the notions of transitive closure and transitive reduction in directed
hypergraphs, that extend the analogous notions in the case of directed graphs.
Both problems find application in the field of databases, where on one side we
want to derive transitive functional dependencies, and on the other side we want
to find minimal covers of sets of functional dependencies, that is a minimal set
of functional dependencies equivalent to the given ones.

Transitive closure.
In [6] the authors introduce the notion of transitive closure of a directed hy-
pergraph H = 〈N,A〉 as the hypergraph H+ = 〈N,A+〉 such that 〈X, i〉 is
a hyperarc in A+ if and only if one of the following conditions hold:

– 〈X, i〉 ∈ A
– i ∈ X Extended reflexivity
– there exists a set of nodes Y = {n1, n2, . . . , nq} such that for each 1 ≤ j ≤ q,

〈X,nj〉 ∈ A+ and 〈Y, i〉 ∈ A Extended transitivity

Note that, in our framework such definition is equivalent to say that a hy-
perarc 〈X, i〉 is in A+ if and only if there is a hyperpath in H from X to i. If X
and Y are singletons, then the extended reflexivity and transitivity coincide with
the usual notions of reflexivity and transitivity of graphs. Furthermore, note that
the size of the closure of a directed hypergraph can be exponential in the number
of nodes of the hypergraph, in fact, set X can be any element of 2N (the power
set of N).

In the same paper it is shown that using a suitable representation of H, i.e.,
its FD-graph and the closure of the FD-graph (see [6] for the definitions), it
is possible to compute the transitive closure of a directed hypergraph without
falling into the exponential explosion of the hypergraph closure. In fact, the FD-
graph closure grows at most quadratically. Using this approach the transitive
closure of H is computed in O(size(H) · ns) worst case time, where ns is the
number of source sets of H.
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Transitive reduction.
The problem of finding the transitive reduction of a directed hypergraphs, that
is finding a minimal hypergraph that has the same closure of a given one, is
much more complex than in the case of graphs for two main reasons: i) the
closure of a hypergraph has an exponential number of hyperarcs; ii) in the case
of hypergraphs it is possible to define minimality with respect to a variety of
parameters, while in the case of graph the only notion of minimality is with
respect to the number of arcs. In [6], minimality in hypergraphs is defined with
respect to the following criteria:

1. minimum size;
2. minimum number of hyperarcs;
3. minimum number of source sets;
4. minimum source area.

In the same paper, it has been shown that, given a directed hypergraph H,
the problems of deciding whether there exists a hypergraph H′ with the same
closure of H, such that H′ is minimum with respect to criteria 1, 2 or 4 are
NP-hard, while deciding whether there exists a hypergraph H′ with the same
closure of H having the minimum number of source sets is polynomial and can
be done in O(size(H) · ns) worst case time. Notice that the transitive reduction
of a directed graph, that corresponds to minimality with respect to number of
hyperarcs in a directed hypergraph, can be computed in polynomial time.

4 Flows and Cuts in Hypergraphs

Other classical graph problems that have been extended to hypergraphs are
the problems of determining flows and cuts. In this section we review the main
results achieved in the literature concerning these problems.

Flows in hypergraphs.
Flows in hypergraphs, also known as hyperflows, have been recently introduced
as generalizations of flows in graphs. In particular, in [16] the minimum cost
hyperflow problem is considered and some analogies with the standard minimum
cost flow problem in directed graphs are shown.

In what follows, we summarize the results given in [16]. Given a directed
hypergraph H = 〈N,A〉, an upper capacity u(e) and a cost c(e) are associated
with each e ∈ A, and a positive real multiplier mv(e) is associated with each
v ∈ tail(e). Moreover, a real demand b(v) is associated with each v ∈ N . A flow
in H is a function f : A→ R, that satisfies the following conservation constraint:

∑
head(e)=v

f(e) −
∑

v∈tail(e)
mv(e)f(e) = b(v), ∀v ∈ N

The flow is feasible if it satisfies the following capacity constraint:
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0 ≤ f(e) ≤ u(e), ∀e ∈ A

The minimum cost hyperflow problem consists of finding a feasible flow in H
which minimizes the value

∑
e∈A c(e)f(e).

An interesting issue is computing the maximum flow in a directed hyper-
graph. Let us assume that H has only one node s such that bstar(s) = ∅ and
only one node t such that fstar(t) = ∅; they are called the source and the ter-
minal of H, respectively (if s and t do not exist, dummy nodes and hyperarcs
can be added in a standard way). The maximum hyperflow problem consists of
finding a feasible flow in H that maximizes the amount of flow entering t, and
satisfies the conservation constraint in the special case that b(v) = 0, for each
v ∈ N .

In [16] the notion of spanning hypertree of a hypergraph is introduced as a
generalization of the notion of spanning tree of a graph, and it is shown that
there exists a correspondence between basis matrices and spanning hypertrees.
Based on this correspondence, the authors propose a simplex like algorithm for
minimum cost hyperflow computations, and show that most of the computations
performed by this algorithm have a direct and elegant hypergraph interpretation.

Cuts in hypergraphs.
The notion of cut in a directed hypergraph has been defined in [21] as follows.
A cut Cst between two nodes s and t of a directed hypergraph H = 〈N,A〉 is
a partition of N into two subsets Ns and Nt such that s ∈ Ns and t ∈ Nt. The
associated cutset is the set of all hyperarcs e ∈ A such that tail(e) ⊆ Ns and
head(e) ∈ Nt. The size of a cut is the number of hyperarcs in its cutset.

It is well known that the unsatisfiability of a propositional Horn formula
corresponds to the existence of a hyperpath in a hypergraph connecting two
special nodes s and t, where s corresponds to True and t to False [9,19]. As
a consequence, it is clear that the Maximum Horn Sat problem can be reduced to
the problem of finding a minimum cardinality cut in a directed hypergraph, i.e.,
a cut whose associated cutset has the minimum number of hyperarcs. In [21], the
authors also show that the latter problem is equivalent to the problem of finding
the minimum set of hyperarcs of H such that each hyperpath of H contains at
least one of these hyperarcs. Therefore, the minimum cardinality cut problem
can be formulated as the problem of assigning 0/1 weights to the hyperarcs of
H in order to make the weight of each hyperpath larger than or equal to 1, and
to minimize the sum of the assigned weights.

Based on this result, the authors propose three different IP formulations
for the minimum cardinality cut problem, by using three different measures to
assign hyperpath weights, that is: the cost, the distance (rank), and the value
(traversal cost). They also show that these three formulations and the well known
ILP formulation of the Max Horn SAT problem are all equivalent.

Finally, they investigate the properties of the relaxations of these IP for-
mulations by showing that they define a hierarchy. The weakest relaxation in
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the hierarchy, that is the relaxation of the formulation making use of the value
(traversal cost) weight function, is shown to correspond to the dual of a hyper-
graph max flow problem with unit capacities [16]. This implies that the well-
known max-flow-min-cut theorem for directed graphs (see, e.g., [17]) holds in
the case of directed hypergraphs with unit upper capacities. For example, if we
assume unit upper capacities for all the hyperarcs in the hypergraph of Fig. 1,
and mv(e) = 1/|tail(e)| for each v ∈ tail(e), then the minimum cut and the
maximum flow are both equal to 2.

In the case of non unit upper capacities, the size of a cut is the sum of the
upper capacities of the hyperarcs in the cutset. An interesting feature of hyper-
graphs is that, if hyperarcs have arbitrary upper capacities, then the max-flow-
min-cut theorem does not hold any longer, even in the restrictive case in which
we fix mv(e) = 1/|tail(e)| for each v ∈ tail(e). In fact, if in the hypergraph shown
in Fig. 1 we assume the following upper capacities: u(h1) = u(h2) = u(h3) =
u(h4) = 10, u(h5) = 2, u(h6) = 1, u(h7) = 1, u(h8) = 1, u(h9)=4, u(h10) = 1,
then the minimum cut is 3 (partitioning nodes into the sets {s, a, b, c, d, f} and
{e, t}), while the maximum flow is 5.

5 Minimum Weight Traversal Problems

One of the most important problems in hypergraphs is finding minimum weight
hyperpaths. Such problem finds relevant applications in reachability in Petri
nets [1], reliability in fuzzy systems [8], assumption-based truth maintenance
systems [18,27], computation of minimum models of Horn formulæ [9], search of
optimal strategies in problem solving [30], analysis of dynamic programming [24].

Several results have been proposed in the literature concerning the problem
of finding minimum (or maximum) weight hyperpaths in a directed hypergraph.
As already mentioned, there are various ways in which a weight can be attached
to a hyperpath. Depending on the weight measure used to assign a weight to a
hyperpath the problem can be polynomially tractable or NP-hard. For example,
in [11] it has been shown that the problem of finding minimum cost hyperpaths
in a directed hypergraph is NP-hard, where the cost of a hyperpath is the sum
of the weights of its hyperarcs. Conversely, when we take into consideration
inductively defined measures, it is possible to characterize a number of cases in
which the problem can be solved in polynomial time. Examples of inductively
defined measures that can be computed in polynomial time are the rank and the
gap [25]. Observe that cost, rank and gap are all generalizations of the standard
notion of distance in graphs, which can be computed in polynomial time.

The more general approach for finding minimum weight hyperpaths in a
functional directed hypergraph is finding a fixed point of the following set of
equations, known as generalized Bellman-Ford equations (see, e.g., [21,35]):

L(v) =



0 if v ∈ S

min
e∈bstar(v)

{fe(we, ψe(x1, x2, . . . , xk))} if v ∈ N \ S
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where tail(e) = {x1, x2, . . . , xk}, and fe and ψe depend on the particular weight
measure used. The complexity of this problem strongly depends on the char-
acteristics of functions fe and ψe, since, as we will see in the remainder of this
section, in several cases the solution of the general problem can be achieved with
a Dijkstra-like computation.

In his definition of grammar problems [26], Knuth introduces the concepts
of superior and inferior function in the framework of context-free grammars, as
follows.

Definition 3. A function g(x1, . . . , xk) from (R+)k to R
+ is:

– superior (SUP) if it is monotone nondecreasing in each variable and
g(x1, . . . , xk) ≥ max(x1, . . . , xk)

– inferior (INF) if it is monotone nondecreasing in each variable and
g(x1, . . . , xk) ≤ min(x1, . . . , xk)

Examples of superior functions are max1≤i≤k{xi}, and Σk
i=1xi. Examples

of inferior functions are: min1≤i≤k{xi}, and Πk
i=1{xi} when 0 ≤ xi ≤ 1, i =

1, . . . , k. Ramalingam and Reps in [35] introduced the following generalizations
of superior (inferior) functions.

Definition 4. A function g(x1, . . . , xk) from (R+)k to R
+ is:

– weakly superior (WSUP) if it is monotone nondecreasing in each variable
and, for 1 ≤ i ≤ k, g(x1, . . . , xk) < xi ⇒ g(x1, . . . , xi, . . . , xk) =
g(x1, . . . ,∞, . . . , xk)

– weakly inferior (WINF) if it is monotone nondecreasing in each variable
and, for 1 ≤ i ≤ k, g(x1, . . . , xk) > xi ⇒ g(x1, . . . , xi, . . . , xk) =
g(x1, . . . ,∞, . . . , xk)

Examples of weakly superior functions that are not superior are
min1≤i≤k{xi}, min1≤i≤k{xi}∗2, and any constant function. Examples of weakly
inferior functions that are not inferior functions are: max1≤i≤k{xi},
max1≤i≤k{xi}/2, and any constant function.

Both Knuth [26] and Ramalingam and Reps [35] considered also the classes
of strict superior, strict inferior, strict weakly superior, and strict weakly inferior
functions, as defined below.

Definition 5. A function g(x1, . . . , xk) from (R+)k to R
+ is:

– strict superior (SSUP) if it is monotone nondecreasing in each variable and
g(x1, . . . , xk) > max(x1, . . . , xk)

– strict inferior (SINF) if it is monotone nondecreasing in each variable and
g(x1, . . . , xk) < min(x1, . . . , xk).

Definition 6. A function g(x1, . . . , xk) from (R+)k to R
+ is:

– strict weakly superior (SWSUP) if it is monotone nondecreasing in each
variable and, for 1 ≤ i ≤ k, g(x1, . . . , xk) ≤ xi ⇒ g(x1, . . . , xi, . . . , xk) =
g(x1, . . . ,∞, . . . , xk)



Directed Hypergraphs: Problems, Algorithmic Results 321

– strict weakly inferior (SWINF) if it is monotone nondecreasing in each vari-
able and, for 1 ≤ i ≤ k, g(x1, . . . , xk) ≥ xi ⇒ g(x1, . . . , xi, . . . , xk) =
g(x1, . . . ,∞, . . . , xk)

We now relate the above defined classes of functions to hypergraphs. Re-
member that in a functional hypergraph, each hyperarc e ∈ H is associated to
a triple (we, ψe, fe). Given e = 〈X, t〉, with X = {x1, x2, . . . , xk}, the weight
µ of any hyperpath ΠS,t having e as the last hyperarc is given by µ(ΠS,t) =
fe(we, ψe(µ(ΠS,x1), µ(ΠS,x2), . . . , µ(ΠS,xk

))). If functions fe and ψe, for all e∈H,
are, say, superior functions, then the overall weight measure µ is superior as well
(with respect to arguments we, for each hyperarc e in the considered hyperpath).
The table in Fig. 2 summarizes the properties of the weight measures known in
the literature with respect to the classes of function defined above. Concerning
the relationship among the different classes of weight measures, as well as their
compositions, we refer to [12].

weight resulting
measure µ fe(we, ψe) ψe(µ1, . . . , µk) properties

rank + max
we > 0 SSUP SUP, WINF SSUP

gap + min
we > 0 SSUP WSUP, INF SWSUP

bottleneck min min
we > 0 WSUP, INF WSUP, INF WSUP, INF

threshold max max
we > 0 SUP, WINF SUP, WINF SUP, WINF

traversal cost +
P

we > 0 SSUP SSUP SSUP

closure min min
we = 1 WSUP, INF WSUP, INF WSUP, INF

Fig. 2. Properties of hyperpath weight measures

The generalization of Dijkstra algorithm to directed hypergraphs (or similar
structures) was first tackled by Knuth in [26]. For weight measures based on
superior functions, it is possible to determine minimum cost derivation trees in
a weighted context free grammar (or, equivalently, a minimum weight hyperpath
in a functional directed hypergraph) in O(size(H)+m logn) worst case time (or
O(size(H)+n logn) by using Fibonacci heaps [20]). This result was subsequently
extended in [12,31,35] to weakly superior (inferior) functions, thus including
all weight measures in Fig. 2. In [12], it is also shown how the suitability of
Dijkstra-based algorithms is related to the properties of weight measures and to
the existence of particular types of cycles in hypergraphs.
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6 Dynamic Traversal Algorithms

In this section we consider the problem of dynamically maintaining reachability
and minimum weight hyperpaths in a directed hypergraph subject to modifica-
tions as hyperarc insertions and deletions, and hyperarc weight changes. These
problems arise in several application domains as, for example, in the minimum
model maintenance in Horn Formulæ [7,8,9,35].

In this setting we do not want to recompute hyperpaths from scratch after
each change, but we want to take advantage of the part of the previous solution
that is still valid. A common classification of dynamic problems in hypergraphs
is among fully-dynamic ones, where insertions and deletions of hyperarcs can
be intermixed, and semi-dynamic ones (incremental or decremental), where only
insertions or only deletions are allowed, respectively.

The first hypergraph problem stated in a dynamic framework has been the
maintenance of the transitive closure of a directed hypergraphH under hyperarc
insertions. In [10], it is shown that this problem can be solved in O(size(H) ·ns)
worst case time, where ns is the number of source sets of H, in such a way that
checking the existence of a hyperpath takes O(log ns) time.

Minimum weight traversal problems have been studied by various authors.
For the incremental case, an algorithm is presented in [9], that maintains satis-
fiability and the minimum model of a Horn formula F in O(n ·Length(F)) total
time over a sequence of clause insertions, where Length(F) is the sum of the
number of literals in the clauses of F . This incremental algorithm is extended
in [8] to the case of Horn formulæ with uncertainty. Algorithms are given in [25]
for the incremental maintenance of minimum rank and minimum gap hyperpaths
under a sequence of hyperarc insertions in overall O(n · size(H)) time, under the
assumption of unit hyperarc weights.

The fully dynamic version of the problem has been considered in [35]. The
authors propose a Dijkstra-like procedure, applicable to strict weakly superior
functions. The proposed algorithm takes O(||δ|| · (log ||δ|| + M)) worst case
time per update operation, where each operation may consist of several inser-
tions/deletions of hyperarcs and hyperarc weight changes. Parameter ||δ|| repre-
sents the number of nodes interested by the operation plus the total number of
hyperarcs incident to these nodes, while M is the time needed to compute the
weight function. Note that in the worst case ||δ|| = m.

In this section, we are interested in the decremental case for two reasons:
first, it finds applications in the context of assumption-based truth maintenance
systems [18,27], where maintaining minimum hyperpaths under deletions of hy-
perarcs corresponds to maintaining a set of “small” explanations of all observa-
tions under the elimination of either an hypothesis or a clause in the background
theory. Second, better complexity bounds can be obtained with respect to the
fully dynamic case. For example, in [7] a decremental algorithm is proposed for
maintaining the minimum rank hyperpaths under a sequence of hyperarc dele-
tions in overall O(n · size(H)) time and O(size(H)) space, under the assumption
of unit hyperarc weights. In the case of integer hyperarc weights in [1, C] the
algorithm requires O(C · n · size(H)) total time and O(C + size(H)) space to
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handle any sequence of hyperarc deletions and weight increase operations. This
improves over the solution in [35] when applied to the decremental maintenance
of minimum rank hyperpaths in the case of integer hyperarc weights in [1, C].

In the next subsection, we propose a new decremental algorithm, with respect
to those given in [7,35], that applies to all weight function in SWSUP. This
algorithm is based on a novel approach, since it essentially performs a bfs-like
visit, rather than a Dijkstra-like visit.

6.1 A New Decremental Algorithm

Let H = 〈N,A;F 〉 be a functional directed hypergraph with n nodes and m
hyperarcs. Procedure Weight Increase (see Fig. 3), maintains the minimum
weight hyperpaths from a fixed source S ⊂ N to all other nodes of H under
hyperarc weight increases and hyperarc deletions.

In a minimization (maximization) problem, as a consequence of a hyperarc
weight increase or hyperarc deletion, the weight of some hyperpath may increase
or some hyperpaths may disappear, and the weight of minimum weight hyper-
paths can only increase (decrease).

In what follows, we consider the minimization problem in the case that the
weight of a hyperarc e is increased by a positive quantity δ, and then discuss how
to modify Procedure Weight Increase in order to handle hyperarc deletions.
Each fe is supposed to assume values in an interval of integers [1, C].

We denote by H′ the hypergraph obtained from H after updating hyperarc
e = 〈X, y〉, and by w(v) (w′(v)) the weight of the minimum weight hyperpath
from S to v in H (H′). Analogously, p(v) (p′(v)) denotes the port of v in H (H′).

First of all, we observe that after updating we in H, each hyperpath in H
that does not contain e preserves its weight. Hence, w′(v) = w(v) for each node v
whose minimum weight hyperpath in H does not contain e. We thus concentrate
on the set of nodes in H whose current minimum weight hyperpath from S
contains e. Given one of these nodes v, either w′(v) = w(v), or w′(v) > w(v).

Hypergraph H is represented by associating to each node v two simple lists
containing all hyperarcs in bstar(v) and fstar(v). Minimum weight hyperpaths
are represented as follows. For each node v, we store:

– weight(v), that coincides with w(v) (w′(v)) before (after) the update;
– port(v), that coincides with p(v) (p′(v)) before (after) the update.

For each hyperarc e, we explicitly store the value F (e) = fe(we, ψe(weight(x1),
weight(x2), . . . ,weight(xk))), where {x1, x2, . . . , xk} = tail(e). In order to keep
the space occupancy within O(size(H)), we explicitly represent each hyperarc in
H only once; all the occurrences of hyperarcs in the above data structures are
implemented as references.

Procedure Weight Increase explores the set of nodes whose weight and/or
port changes under the update of hyperarc e = 〈X, y〉, and builds the new
minimum weight hyperpaths as follows. The hypergraph is examined starting
from node y by a bfs-like visit (that is, by increasing minimum weight), that
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Procedure Weight Increase(e = 〈X, y〉; δ)
begin
1. we ← we + δ
2. Update(e,v)
3. if port(y) �= e or F (e) has not changed then EXIT
4. NewWeightSet(weight(y)) ← {y}
5. for i ← weight(y) to C do
6. foreach v ∈ NewWeightSet(i) do
7. delete v from NewWeightSet(i)
8. search the first h in bstar(v) such that F (h) = i
9. if h exists then
10. port(v) ← h
11. else
12. port(v) ← NIL
13. weight(v) ← min {F (h) | h ∈ bstar(v)}
14. insert v in NewWeightSet(weight(v))
15. foreach e′ ∈ fstar(v) do
16. Update(e′,v)
17. if F (e′) has changed then
18. let z be head(e′)
19. if e′=port(z) and z �∈ NewWeightSet(weight(z)) then
20. insert z into NewWeightSet(weight(z))
21. endfor
22. endfor
23. endfor
end

Fig. 3. Procedure Weight Increase

is pruned any time a hyperarc is found that does not belong to any minimum
weight hyperpath and/or whose weight does not change.

The i-th iteration of the for loop at Line 5 identifies the set of nodes hav-
ing weight i (after the update), whose weight and/or port changes due to the
hyperarc update, by selecting all nodes v such that w(v) = i, w′(v) = i and
p′(v) �= p(v), and all nodes v such that w(v) < i and w′(v) = i.

Inspected nodes are temporarily stored in an array of sets of nodes, named
NewWeightSet. A node v is put in NewWeightSet(i) if and only if w′(v) is
known to be at least i. Nodes are extracted from set NewWeightSet(i) by in-
creasing i, and for each node v we check whether there is a hyperarc h such
that fh(wh, ψh(tail(h))) = i. If this is the case, the weight of node v is set to i,
otherwise v is inserted into some set NewWeightSet(j), where j > i, for future
inspection.

Procedure Update(e,v), called at Lines 2 and 16 of Procedure
Weight Increase, updates F (e), by re-evaluating ψe and fe under the increase
of weight(v), v ∈ tail(e), or we.
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In order to manage hyperarc deletions, we add a new item NewWeightSet(C+
1), containing all nodes that are found to be unreachable as a consequence of
a deletion. The algorithm detects unreachability from the source, by checking
whether a node gets a weight greater than C or its backward star is empty.
In these cases, unreachable nodes are put in the set NewWeightSet(C + 1) and
considered at the end of the algorithm, by setting the port to nil and the weight
to +∞.

Provided that the weight functions associated to hyperarcs fulfill the following
conditions:

– the composition of functions fe and ψe is in SWSUP (SWINF ) for each
hyperarc e. For example, it is sufficient that fe and ψe are both monotone non
decreasing (non increasing), and either fe or ψe are in SWSUP (SWINF );

– fe(we, ψe(x1, x2, . . . , xk)) can be maintained under increments (decrements)
of xi within O(k) space and O(1) amortized time;

– fe(we, ψe(x1, x2, . . . , xk)) can be maintained under increments (decrements)
of we within O(k) space and O(k) worst case time.

we can show that Procedure Weight Increase manages a sequence of hyperarc
weight increases and deletions in O((C + n) · size(H)) overall worst case time.

Note that the algorithm in [7] is a special case of the algorithm in this paper,
in fact it maintains minimum rank hyperpath of a directed hypergraph within
the same time bounds of Procedure Weight Increase and the rank is a special
case of SWSUP weight functions (see table of Fig. 2). It is also clear that our
algorithm improves that of [35] with respect to the amortized time per operation,
if only hyperarc deletions and weight increases are allowed.

7 Concluding Remarks

There is a large body of results on implicative structures, that is structures in
which we need to provide a formal representation for a set of many-to-one impli-
cations and to study the resulting properties, such as determining less expensive
implication chains under various cost criteria. Our aim has been to illustrate the
most important problems and the main algorithmic results that are available in
the literature. Besides we have discussed in particular the problem of maintain-
ing chains of implications under implication elimination. This problem consists
of maintaining minimum hyperpaths (under some minimality criteria) under hy-
perarc deletions, and can be efficiently tackled for several natural hyperpath
weight measures.

It is worth noting that the higher complexity of the problems we have dis-
cussed in this paper with respect to the complexity of the corresponding prob-
lems in graphs, arises from the peculiar combinatorial features of implicative
structures (see, e.g., [12,31] for the notions of path, distance, cycle, etc). The
comprehension of such aspects can be greatly enhanced by making use of a uni-
form representation of implicative structures in terms of directed hypergraphs.
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Future research directions might address various goals. On one side, it would
be desirable to determine hypergraph properties under which hypergraph prob-
lems become tractable; on the other side, approximability properties of hyper-
graph problems should be better explored; finally, since the connection between
flows and cuts in hypergraphs is significantly different with respect to graphs, the
complexity of the various formulations of flow problems in hypergraphs deserves
further investigation.
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Abstract. The problem of determining the unsatisfiability threshold
for random 3-SAT formulas consists in determining the clause to vari-
able ratio that marks the (experimentally observed) abrupt change from
almost surely satisfiable formulas to almost surely unsatisfiable. Up to
now, there have been rigorously established increasingly better lower and
upper bounds to the actual threshold value. An upper bound of 4.506
was announced by Dubois et al. in 1999 but, to the best of our knowl-
edge, no complete proof has been made available from the authors yet.
We consider the problem of bounding the threshold value from above
using methods that, we believe, are of interest on their own right. More
specifically, we explain how the method of local maximum satisfying truth
assignments can be combined with results for coupon collector’s proba-
bilities in order to achieve an upper bound for the unsatisfiability thresh-
old less than 4.571. Thus, we improve over the best, with an available
complete proof, previous upper bound, which was 4.596. In order to ob-
tain this value, we also establish a bound on the q-binomial coefficients
(a generalization of the binomial coefficients) which may be of indepen-
dent interest.

1 Introduction

Let φ be a random 3-SAT formula constructed by selecting uniformly and with
replacement m clauses from the set of all possible clauses with three literals of
three distinct variables. It has been observed experimentally that as the numbers
n,m of variables and clauses respectively tend to infinity, while the ratio m/n
tends to a constant r, the random formulas exhibit a threshold behaviour: if
r > 4.17 (approximately) then almost all random formulas are unsatisfiable
while the opposite is true if r < 4.17. The constant r is called the density of
the formula. On the theoretical side, Friedgut [10] has proved that there exists
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a sequence γn such that for any ε > 0, if m/n ≤ γn − ε for sufficiently large n
then the probability of a random formula being satisfiable approaches 0 while if
m/n ≥ γn+ ε for sufficiently large n then this probability approaches 1 although
it is not known if the sequence γn convergences to some constant value γ. Thus,
finding the exact value of the threshold point or even proving that a threshold
value exists is still a major problem in probability and complexity theory. Up
to now, only upper and lower bounds have been rigorously established for the
threshold value. The best lower bound has been recently proved by Achlioptas
and Sorkin [1] and it is 3.26 while the currently best upper bound has been
announced by Dubois et al. [7] and it is 4.506.

In this paper, we address the upper bound question for the unsatisfiabil-
ity threshold from a new perspective that combines the idea of local maximum
satisfying truth assignments proposed by Kirousis et al. [14], with the use of
sharp estimates on some of the probabilities involved based on results about
the so called coupon collector experiment (see for instance [17] and references
thereafter). We obtain an upper bound of 4.571 thus improving over the best,
with an available complete proof, previous upper bound (4.596 given in [12]). As
a by-product of our proof, we also establish an upper bound to the q-binomial
coefficients (a generalization of the binomial coefficients). Despite the extensive
literature on q-binomial coefficients (see, e.g., [9,11,15]), no such bound was, to
the best of our knowledge, known.

2 The Method of Local Maxima

In this section, we will state briefly the methodology followed in [14] and obtain
the starting upper bound on the probability that a random formula is satisfiable.
Let S be the class of all truth assignments to n variables and An the (random)
class of truth assignments that satisfy a random formula φ. For a given A ∈ S,
a single flip sf is the change in A of exactly one false value to true and
by Asf we denote the truth assignment that results from this change. We define
as A1

n ⊆ An the random class of truth assignments with the following two
properties:

– A |= φ,
– for every single flip sf, it holds Asf 	|= φ.

A partial order can be defined on S: a truth assignment A is smaller than a truth
assignment A′ iff there exists an i such that both A and A′ assign the same value
to all variables xj , for all j < i while A assigns false to xi and A′ assigns true
to it. The random class A1

n coincides with the set of satisfying truth assigments
that are local maxima with respect to the partial order defined above among
satisfying truth assignments that differ in one bit.

A more restricted random class of truth assignments results from A1
n if we

extend the scope of locality in obtaining a local maximum. A double flip is the
change of exactly two variables xi and xj (with i < j) where xi is changed from
false to true and xj from true to false. In analogy with single flips, by Adf
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we denote the truth assignment that results from A if we apply the double flip
df . Let A2�

n be defined as the set truth of assignments A that have the following
properties:

– A |= φ,
– for all single flips sf, it holds Asf 	|= φ,
– for all double flips df, it holds Adf 	|= φ.

Our starting point is the following inequality:

Lemma 1. [14]

Pr[φ is satisfiable] ≤ E[|A2�
n |] =

∑
A∈S

Pr[∀df Adf �|= φ,∀sf Asf �|= φ,A |= φ]

= (7/8)rn
∑

A∈S
Pr[∀df Adf �|= φ,∀sf Asf �|= φ | A |= φ]

= (7/8)rn
∑

A∈S
Pr[∀sf Asf �|= φ | A |= φ] · Pr[∀df Adf �|= φ | A ∈ A1

n]. (1)

In order to find an upper bound for the unsatisfiability threshold, it suffices to
find the smallest possible value for r for which the right-hand side of (1) tends
to 0. In the sections to follow, we will describe the sequence of steps that will
lead us to the determination of an upper bound on the probabilities that appear
in the third line of (1).

3 Coupon Collectors and Single Flips

For notational convenience, we will consider a formula φ as a set of clauses. Thus,
the expression φ∩A, with A a set of clauses, has the meaning of set intersection
with the additional requirement that a clause that appears in the intersection,
appears as many times as it appears in φ.

Given a truth assignment A, and a variable x such that A(x) = false, the
set of critical clauses for x in A, B(A, x), is the set of clauses whose unique true
literal is ¬x. Note that |B(A, x)| = (n−1

2

)
and B(A, x) ∩ B(A, y) = ∅ for x 	= y.

Assuming A sets k variables false, the probability Pr[∀sf Asf 	|= φ | A |= φ]
in (1) is the ratio between a function N(n,m, k), counting the number of ways to
build a formula with m clauses out of n variables containing at least one critical
clause for each of the k critical variables, and the total number of ways to build
a formula on m clauses out of n variables which is satisfied by A. Hence

Pr[∀sf Asf 	|= φ | A |= φ] = N(n,m,k)

[7(n3)]
m

If φ contains l ∈ {k, k + 1, . . . ,m} critical clauses, then

Pr[∀sf Asf 	|= φ | A |= φ] =∑m
l=k

C(n,m,k,l) R(n,m,k,l)

[7(n3)]
m

where C(n,m, k, l) counts the number of ways of choosing l critical clauses so
that at least one member of B(A, x) is chosen for each of the k critical variables
and R(n,m, k, l) counts the number of ways of filling up the remainder of φ with
m− l clauses that are true under A but not critical.
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Lemma 2. For any choice of the parameters R(n,m, k, l)=
(
7
(
n
3

)−k(n−1
2

))m−l
.

Proof. There are 7
(
n
3

)
clauses consistent with A. If A forces k variables to be

critical there are k disjoint groups of
(
n−1

2

)
critical clauses. ��

Lemma 3. For any choice of the parameters C(n,m, k, l) =
(
m
l

) [
k
(
n−1

2

)]l
coupon(l, k) where coupon(l, k) is the probability that a coupon collector picks k
distinct random coupons over l trials.

Proof. Assume that there are k critical variables associated with a given assign-
ment A. Moreover φ contains l critical clauses. There are

(
m
l

)
ways of choosing l

positions out of them available. Also, there are k
(
n−1

2

)
critical clauses. Therefore,

if we do not distinguish among the non-critical clauses, there are
(
m
l

) [
k
(
n−1

2

)]l
ways of choosing a sequence of m clauses so that exactly l of them are critical.
Since C(n,m, k, l) counts the number of these which has at least one occurrence
of a critical clause for each of the k critical variables, and since there are equal
numbers of possible critical clauses for each variable, the ratio of these terms is
the probability coupon(l, k). ��

To be able to state the main result in this section we need to quote a result
giving asymptotic approximations to the probabilities coupon(l, k).

Theorem 1. [4] Let x = l/k with l = Θ(k). For all x > 1 define g1(x) =df
(er0 −1)

(
x

er0

)x
where r0 is the solution of rer

er−1 = x. Also let g1(1) = e−1. Then

for all sufficiently large integer k and all x ≥ 1, coupon(l, k) ∼ g1(x)k.
The proof of the following theorem is entailed by the argument above, the

use of the estimate given in Theorem 1 and Stirling’s approximation to the
various factorials involved. In the following result F � G denotes the fact that
lnF ∼ lnG. So for example

(
m
l

) � [( rnl ) l
rn ( rn

rn−l)
(1− l

rn )
]rn

.

Theorem 2. The probability that a truth assignment A with αn false values
is a local maximum satisfies:

Pr[∀sf Asf �|= φ | A |= φ] 

rn∑

l=αn

(
3αrn

7l

)l
(
(7− 3α)rn

7(rn− l)

)rn−l

g1

(
l

αn

)αn

. (2)

An important remark is that in the expression given in Theorem 2, two polyno-
mially large factors have been omitted: one implicit in the relation “∼” used in
Theorem 1 and one related to the asymptotics of the binomial coefficients. How-
ever, for our goal of making a certain expression that contains (2) converge to 0,
such factors are immaterial and what is required is an optimal estimate only for
the exponential factors which is guaranteed by Theorem 1 and the asymptotics
for the binomial coefficients given above.
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4 Probability Models for Random Formulas

A random 3-SAT formula φ with m = rn clauses is most commonly formed
according to one of the following probability models (Ω is the set of 8

(
n
3

)
possible

3-SAT clauses):

1. Select the m clauses of φ, drawing each clause uniformly and independently
from Ω, with replacement (model Gmm).

2. Select the m clauses of φ, drawing each clause uniformly and independently
from Ω, without replacement (model Gm).

3. With probability p(n) each clause is chosen independendly of the others and
with probability p(n) for inclusion in φ (model Gp).

The probability that a random formula φ generated according to modelGm,Gmm
or Gp belongs to a set Q defining some property, is denoted by Prm[φ ∈ Q],
Prmm[φ ∈ Q] and Prp[φ ∈ Q] respectively. Notice that the probabilities in (1)
are all in Gmm since the model we considered until now allows clause repetitions
when forming a formula. We will now outline an argument showing that the
second probability in the third line of (1) can be rewritten into the Gp model,
in order to take advantage of the computation of this probability in Gp that has
already been performed in [14].

Consider again an arbitrary but fixed truth assignment A. As all probabilities
which will undergo a change in the probabilistic model are conditional on A |= φ,
in the considerations below we assume that the universe of all clauses is restricted
to those that are satisfied by A, and consequently that p(n) = rn

7(n3)
∼ 6r

7n2.

First let “NoRep” be the event that φ has no two clauses identical and let
NoRep its complement. Then, because the order of the number of all possible
clauses is Θ(n3) and the order of the number of the clauses contained in φ is
Θ(n), limn→∞ Prmm[NoRep] = 0.

Now let Q1 and Q2 be two arbitrary events such that the following two
conditions, which we call regularity conditions hold:

– For some ε > 0 and for all n, ln (Prmm[Q2|Q1]) < −ε, i.e. Prmm[Q2|Q1] is
bounded away from 1.

– limn→∞ Prmm[NoRep|Q1, Q2] = limn→∞ Prmm[NoRep|Q1] = 0.

Notice that the events we consider in this paper have probabilities (condi-
tional or not) that are exponentially small, so the first of the two regularity
conditions is satisfied. Also, the second regularity condition is true when Q1

and Q2 are the events A ∈ A1
n and ∀df Adf 	|= φ, respectively. Indeed both

these events and their conjunction are negatively correlated with NoRep, so
Prmm[NoRep|Q1] ≤ Prmm[NoRep] → 0 and similarly for Prmm[NoRep|Q1, Q2].
To prove the negative correlation claim for, say, Q1 and NoRep, observe that the
correlation claim is equivalent to Prmm[Q1|NoRep] ≥ Prmm[Q1], which in turn
is equivalent to Prm[Q1] ≥ Prmm[Q1]. This last inequality is intuitively obvious
under the assumption that A |= φ, because the probability to get at least a
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critical clause for each critical variable of the satisfying truth assignment A in-
creases when the clauses of the formula are assumed to be different. For a formal
proof of this for general increasing and reducible properties (like Q1 and Q2),
we refer to [13]. Therefore, the second regularity condition is also true for the
probabilities we will consider below.

Under the above regularity conditions, we have that:

Prm[Q2|Q1] 
 Prmm[Q2|Q1]. (3)

Indeed,

Prm[Q2 |Q1] = Prmm[Q2 |Q1,NoRep] =
Prmm[Q2 |Q1]− Prmm[Q2 ∧NoRep |Q1]

1− Prmm[NoRep |Q1]

= Prmm[Q2 |Q1]
1− Prmm[NoRep |Q2, Q1]

1− Prmm[NoRep |Q1]
.

Now first taking logarithms, then dividing both sides with ln (Prmm[Q2|Q1]) and
finally letting n → ∞, we get the required inequality (the regularity conditions
are needed in the computation of the limits).

On the other hand, it follows easily from Theorem II.2 (iii) in [3] that:

Prm[Q2 |Q1] ≤ 3m1/2Prp[Q2 |Q1]. (4)

The inequality above has been proved by Bollobas for an arbitrary unconditional
event. In general, it might not be true for conditional events. However, if both Q2

and Q1 are monotone increasing (i.e. Prm2 [Qi] ≥ Prm1 [Qi] for any m2 ≥ m1, for
both i = 1, 2), then it still holds true. For an informal explanation why this is in-
deed so, first observe that the conditionalQ1, being monotone increasing, ”forces
more clauses” into the formula in the variable-length Gp model. Since Q2 is also
monotone increasing, this has as a consequence that the conditional probability
of Q2 in Gp deviates even further to the right from the corresponding conditional
probability in the fixed-length model Gm. A formal proof of this, based in the
four-functions theorem of Ahlswede and Daykin [8] (see [2] for a nice presenta-
tion) will be given in the full paper. Finally, notice that the events Q2 and Q1,
for which we apply this inequality below are trivially monotone increasing.

Now, (3) (4) and (1) imply that Prmm[φ is satisfiable] is at most (ignoring
polynomial factors):

(
7

8

)rn∑
A∈S

Prmm[∀sf Asf �|= φ | A |= φ] · Prp[∀df Adf �|= φ | A ∈ A1
n]. (5)

We are now in a position to use the probability calculations performed earlier
in this paper using the coupon collector analogy for the method of local maxima
with the probability calculations in [14] in order to derive a value for r that
makes the right-hand side of (5) converge to 0. It is perhaps interesting to note
that Prp[A |= φ] 	� Prmm[A |= φ] (the former is larger). Therefore, as both
Prp[A |= φ] and Prmm[A |= φ] are easily computable, it was advantageous to
retain in the first factor of the right hand side of (5) the value of Pr[A |= φ](=



334 Alexis C. Kaporis et al.

(7/8)rn) computed in the model Gmm rather than replace it with its value in Gp
(Prp[A |= φ] � (e−(1/8)rn). Also, Prp[∀sf Asf 	|= φ | A |= φ] 	� Prmm[∀sf Asf 	|=
φ | A |= φ]. The coupon collector analogy helped us exploiting the advantage
of the model Gmm for the probability of single flips. We were unable to do the
same for the computation of Prmm[∀df Adf 	|= φ | A ∈ A1

n], so we resorted to the
“easier”, but worse, model Gp (in contrast, by Equation (3), the models Gmm
and Gm are not asymptotically distinguishable, ignoring polynomial factors).

5 Calculations

Let sf(A) denote the number of false values assigned by a truth assignment A.
We define the following functions of r:

u = e−r/7

z = −6u
6 ln(1/u)

1− u3
+

18u9 ln2(1/u)

(1− u3)2
φ2

(
6u6 ln(1/u)

1− u3

)
(6)

X(sf (A)) = Prmm[∀sf Asf �|= φ | A |= φ] (7)

Y = 1 + z
1

n
+ o
(
1

n

)
, (notice that z < 0), (8)

where φ2(t) is the smallest root of φ2(t) = etφ2(t) and can also be expressed by
means of the Lambert W function [6]. Although φ2 is defined only in the interval
[0, e−1], we have verified that the argument to φ2 in the definition of z in (6) lies
in this interval for all r ≥ 0. In [14], it was proved that

Prp[∀df Adf 	|= φ | A ∈ A1
n] ≤ Y df(A).

Therefore, using Equations (7) and (8), expression (5) may be written as follows:
(
7

8

)rn∑
A∈An

X(sf (A))Y df (A). (9)

Furthermore the following equality can be derived [14] by induction on n:

∑
A∈An

X(sf (A))Y df (A) =

n∑
k=0

(
n

k

)
Y

X(k), (10)

where
(
n
k

)
q
denotes the q-binomial or Gaussian coefficients (see [11]). From

expression (9), the definition of X(sf (A)) in (7), Equality (10) and Theorem 2,
we deduce that Prmm[φ is satisfiable] is at most (omitting a polynomial factor)

(
7

8

)rn
n∑

k=0

rn∑
l=k

(
n

k

)
Y

E
(
k

n
,
l

rn
, r, n

)
, (11)

where

E(α, β, r, n) =
[(

3α
7β

)βr(
7−3α

7(1−β)

)r−rβ
g1

(
rβ
α

)α]n
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We will now consider an arbitrary term of the double sum that appears in (11)
and examine for which values of r it converges to 0. If we find a condition on r
that forces all such terms to converge to 0, then the whole sum will converge to
0 since it contains polynomially many terms, all of which vanish exponentially
fast. This technique avoids the problem of finding a closed-form upper bound
for the sum itself. However, in order to handle an arbitrary term, we need an
upper bound for the q-binomial coefficients. To establish such a bound one will
need the following standard result:

Lemma 4. [18] Let f(z) =
∑∞

i=0 fiz
i be the generating function for the se-

quence fi, i ≥ 0. Then if f(z) is analytic in |z| < R and if fi ≥ 0 for all i ≥ 0,
then for any t, 0 < t < R, and any n ≥ 0, it holds that fn ≤ t−nf(t).
Using this lemma, we can prove the following:

Theorem 3. Let
(
n
αn

)
q
denote the q-binomial coefficients for α real in (0, 1) and

αn an integer. Then the following inequality holds:(
n

αn

)
q

≤ 2q−(
n
2)x−n

0 e
1

ln q [dilog(1+x0)−dilog(1+x0qn−1)]
(12)

where x0 = 1−qαn
qαn−qn−1 and dilog(x) =

∫ x
1

ln t
1−tdt.

Proof. For the ordinary generating function of q(
i
2)
(
n
i

)
q
it holds [5, p.118]

n∑
i=0

q(
i
2)
(
n

i

)
q

xn =

n∏
i=1

(1 + xqi−1) = e

∑n

i=1
ln(1+xqi−1)

= (1 + x) · e
∑

n

i=2
ln(1+xqi−1)

.

Since ln(1 + xqi−1) is decreasing in i,

n∑
i=0

q(
i
2)
(
n

i

)
q

xi ≤ (1 + x) · e
∫ n
1

ln(1+xqi−1)di
= (1 + x) · e 1

ln q [dilog(1+x)−dilog(1+xqn−1)].

Applying Lemma 4 and using the fact that x ≤ 1, we obtain the inequality

q(
i
2)
(
n

i

)
q

≤ x−i(1 + x) · e 1
ln q [dilog(1+x)−dilog(1+xqn−1)]

. (13)

The above inequality holds for any value of x ∈ (0, 1). Therefore, we may
optimize it by choosing the value x0 = 1−qi

qi−qn−1 that minimizes the expression
on the right-hand side of (13). From this we obtain

(
n

i

)
q

≤ 2q−(
i
2)x−i

0 e
1

ln q [dilog(1+x0)−dilog(1+x0qn−1)]. (14)

which gives the required inequality by setting i = αn. ��
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Setting q = Y = 1+ z/n in (12) and using the approximation ln(1 + z/n) ∼
z/n, as n→ ∞, the following can be derived:(

n

αn

)
q

≤ 2
[(

1

x0

)α

· e−α2z
2 + 1

z
[dilog(1+x0)−dilog(1+x0ez)]

]n

, (15)

where x0 = 1−eαz
eαz−ez , which is expedient in the proof of the following:

Theorem 4. An arbitrary term of the double sum in (11) is asymptotically
(ignoring polynomial multiplicative factors) bounded from above by:

Tr(α, β)
n =

[(
3α

7β

)βr(
7− 3α

7(1− β)

)r−rβ

g1

(
rβ

α

)α e−
α2z
2 + 1

z
[dilog(1+x0)−dilog(1+x0ez)]

x0
α

]n

where, α = k
n , β = l

rn , x0 = 1−eαz
eαz−ez , z as given in (6).

An immediate consequence of this result is that the smallest value of r for
which Tr(α, β) is smaller than 1 for all α ∈ (0, 1) and β ∈ (α/r, 1) is an up-
per bound for the unsatisfiability threshold.

We finally claim that for any value of r, the expression lnTr(α, β) is a convex
function of α, β over the domain D = {α, β ∈ [0, 1] and βr

α ≥ 1}. Therefore we
will compute its unique maximum value for r = 4.571 and (α, β) ∈ D. Due to
the complexity of the expression for lnTr(α, β), we maximized it numerically
using a Maple [16] implementation of Downhill Simplex. This implementation is
based on the method and the code described in [19] and it is freely distributed
by F.J. Wright in his Web page [21]. Using the plots of Tr(α, β) we obtained with
Maple, we chose as a starting set of values for the downhill simplex algorithm the
values (α, β) = (0.42, 0.21) and we set the accuracy and the scale parameters
equal to 10−50. In addition, we set the Digits parameter of Maple (accuracy
of floating point numbers) equal to 100. We ran the algorithm and it returned
as the maximum value of lnTr(α, β) the value −0.0000884. Additionally, we
computed all the partial derivatives of lnTr(α, β) at the point where downhill
simplex claims that it has located the maximum and they were found to be
numerically equal to 0. Therefore, this provides additional support that at this
point the function attains its maximum. As a final check, we generated 30000
random points close to the point at which downhill simplex finds the maximum
of ln Tr(α, β) and we confirmed that the value of lnTr(α, β) is not above the
value returned by the method. All these considerations show that −0.0000884
is a global maximum of lnTr(α, β), which establishes the value r = 4.571 as an
upper bound to the unsatisfiability threshold.

6 Discussion

We derived an upper bound for the unsatisfiability threshold that improves over
all previously proved upper bounds, except the one announced in [7]. We looked
at the problem from a new perspective, by combining the method of local max-
imum satisfying truth assignments proposed in [14] with the sharp estimates
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on some of the probabilities involved based on the coupon collector experiment.
In addition, we gave a relationship between two conditional probability spaces
for generating random formulas that allowed us to use probability calculations
performed in the easier to handle probability model according to which each of
the clause is selected independently of the others with some fixed probability
to appear in the formula. As a final ingredient, we proved a tight upper bound
for the q-binomial coefficients that may be of interest in its own right. Our ap-
proach showed that the unsatisfiability threshold is less than 4.571. This bound
improves over the best previous upper bound with a complete proof (4.596,
see [12]). Dubois et al. in [7] have announced the value 4.506 but to the best of
our knowledge, no complete proof is available yet from the authors. Nevertheless,
we believe that our approach contains elements of a separate value and interest
that might be useful in another context or in other applications: exact (in the
exponential order) computation of the first probability in the last line of (1) us-
ing the coupon collector problem, relationships between conditional probability
models and an upper bound for the q-binomial coefficients. And even though we
used a numerical method for maximizing our function in order to show that for
r = 4.571 it is strictly below 1 for every legal value of its parameters, our proof
that the function is convex and the observation that its derivatives are bounded,
renders our proof essentially rigorous since the Downhill Simplex method is cer-
tain to find a global maximum within guaranteed accuracy. We also believe that
our approach of using the occupancy problem for the accurate computation of
the first probability in (1) can be extented in order to give a sharp estimate also
for the second probability in the last line of (1). To this end, we are currently
working on extending the coupon collector approach or some similar scheme to
model double flips. If this is accomplished, then it is conceivable that an analogue
of Theorem 2 can be proved that will enable further improvements on the value
obtained in this paper. There is also the question of combining this approach
with the idea of “typical formulas” proposed in [7], thus obtaining still better
bounds, under 4.5.
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Abstract. We prove that computing a single pair of vertices that are
mapped onto each other by an isomorphism φ between two isomorphic
graphs is as hard as computing φ itself. This result optimally improves
upon a result of Gál et al. We establish a similar, albeit slightly weaker,
result about computing complete Hamiltonian cycles of a graph from
partial Hamiltonian cycles. We also show that computing the lexico-
graphically first four-coloring for planar graphs is ∆p

2-hard. This result
optimally improves upon a result of Khuller and Vazirani who prove
this problem to be NP-hard, and conclude that it is not self-reducible in
the sense of Schnorr, assuming P �= NP. We discuss this application to
non-self-reducibility and provide a general related result.
Keywords: partial solutions; complexity of smallest solutions; self-
reducibility; graph isomorphisms; Hamiltonian cycles; graph colorability

1 Introduction

Computational complexity theory and, in particular, the theory of NP-complete-
ness [5] traditionally is concerned with the decision versions of problems. For
practical purposes, however, to find or to construct a solution of a given NP
problem is much more important than merely to know whether or not a solu-
tion exists. For example, computing an isomorphism between two isomorphic
graphs (that is, solving the search version of the graph isomorphism problem)
is much more important for most applications than merely to know that the
graphs are isomorphic. Therefore, much effort has been made in the past to re-
late the complexity of solving the search problem to the complexity of solving
the corresponding decision problem. This property is known as “search reducing
to decision,” see, e.g., [8] and the references cited therein. The decisive prop-
erty enabling search to reduce to decision for NP problems such as the graph
isomorphism problem is their self-reducibility.
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The present paper is concerned with both these properties: how to reduce
the search problem and whether or not concrete problems are self-reducible.

Regarding the first property, we build on the recent work of Gál, Halevi,
Lipton, and Petrank [4] who studied a property that might be dubbed “complete
search reducing to partial search.” They showed for various NP problems A
that, given an input x ∈ A, computing a small fraction of a solution for x is
no easier than computing a complete solution for x. For example, given two
isomorphic graphs, computing roughly logarithmically many pairs of vertices
that are mapped onto each other by a complete isomorphism φ between the
graphs is as hard as computing φ itself.

As Gál et al. note, their results have two possible interpretations. Positively
speaking, their results say that to efficiently solve the complete search problem
it is enough to come up with an efficient algorithm for computing only a small
part of a solution. Negatively speaking, their results say that constructing even
a small part of a solution to instances of hard problems also appears to be
a very difficult task. The work of Gál et al. [4] also has consequences with regard
to fault-tolerant computing (in particular, for recovering the complete problem
solution when parts of it are lost during transmission), and for constructing
robust proofs of membership.

As regards the self-reducibility property, we build on the work of Khuller
and Vazirani [11] who proved an NP-hardness lower bound for computing the
lexicographically first solutions of the planar graph four colorability problem,
which we denote by Pl-4-Color. It follows from their result that, assuming P �=
NP, the problem Pl-4-Color is not self-reducible in the sense of Schnorr [16,17].
Noting that their result appears to be the first such non-self-reducibility result
for problems in P, they proposed as an interesting task to find other problems
in P that are not self-reducible under some plausible assumption.

The present paper makes the following contributions. Firstly, we improve the
above-mentioned result of Gál et al. [4] by showing that computing even a single
pair of vertices that are mapped onto each other by a complete isomorphism φ
between two isomorphic graphs is as hard as computing φ itself. This result is
a considerable strengthening of the previous result and an optimal improvement.
Interestingly, the self-reducibility of the graph isomorphism problem is the key
property that makes our stronger result possible.

Secondly, we obtain a similar, albeit somewhat weaker, result about com-
puting complete Hamiltonian cycles of a given graph from accessing to partial
information about the graph’s Hamiltonian cycles.

Thirdly, we raise Khuller and Vazirani’s NP-hardness lower bound for
computing the lexicographically smallest four-coloring for planar graphs to
∆p

2-hardness. Our result is optimal, since this problem belongs to (the function
analog of) the class ∆p

2.
∆p

2 = PNP is the class of problems solvable in deterministic polynomial time
with an NP oracle. Papadimitriou [15] proved that Unique-Travaling-Optimal-
Salesperson is ∆p

2-complete, and Krentel [13] and Wagner [21] established many
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more ∆p
2-completeness results, including the result that the problem Odd-Max-SAT

is ∆p
2-complete.

As mentioned above, if for some problem in P computing the lexicographically
smallest solution is hard, then the problem itself cannot be self-reducible in the
sense of Schnorr [16,17], unless P = NP. We discuss this application to non-self-
reducibility and provide a general related result. In particular, it follows from
this result that even a set as simple as Σ∗ has representations in which it is not
self-reducible in Schnorr’s sense, unless P = NP.

2 Computing Complete Graph Isomorphisms from
Partial Ones

Gál et al. [4] prove the following result. Suppose there exists a function oracle f
that, given any two isomorphic graphs with m vertices each, outputs a part of
an isomorphism between the graphs consisting of at least (3 + ε) logm vertices
for some constant ε > 0. Then, using the oracle f , one can compute a complete
isomorphism between any two isomorphic graphs in polynomial time.

We improve their result by showing the same consequence under the weakest
assumption possible: Assuming that we are given a function oracle that provides
only one vertex pair belonging to an isomorphism between two given isomorphic
graphs, one can use this oracle to compute complete isomorphisms between two
isomorphic graphs in polynomial time. Thus, our improvement of the previous
result by Gál et al. [4] is optimal.

Definition 1. For any graph G, the vertex set of G is denoted by V (G), and
the edge set of G is denoted by E(G).

Let G and H be undirected and simple graphs, i.e., graphs with no reflexive
and multiple edges.

An isomorphism between G and H is a bijective mapping φ from V (G) onto
V (H) such that, for all x, y ∈ V (G),

{x, y} ∈ E(G) ⇐⇒ {φ(x), φ(y)} ∈ E(H).

Let ISO(G,H) denote the set of isomorphisms between G and H.

We now state our main result.

Theorem 1. Suppose there exists a function oracle f that, given any two iso-
morphic graphs Ĝ and Ĥ, outputs two vertices x ∈ V (Ĝ) and y ∈ V (Ĥ) with
φ̂(x) = y, for some isomorphism φ̂ from ISO(Ĝ, Ĥ).

Then, there is a recursive procedure g that, given any two isomorphic graphs G
and H, uses the oracle f to construct a complete isomorphism φ ∈ ISO(G,H)
in polynomial time.

Before proving Theorem 1, we explain the main difference between our proof
and the proof of Gál et al. [4]. Crucially, to make their recursive procedure
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terminate, they ensure in their construction that the (pairs of) graphs they
construct are of strictly decreasing size in each loop of the procedure. In contrast,
for our algorithm this strong requirement is not necessary to make the procedure
terminate.

Let us informally explain why. Our algorithm is inspired by the known self-
reducibility algorithm for the graph isomorphism problem. A self-reduction for a
problem A is a computational procedure for solving A, where the set A itself may
be accessed as an oracle. To prevent this notion from being trivialized, one re-
quires that A cannot be queried about the given input itself; usually, only queries
about strings that are “smaller” than the input string are allowed. When formally
defining what precisely is meant by “smaller,” most self-reducibility notions—
including that of Schnorr [16,17], see Definition 5—employ the useful concepts of
“polynomially well-founded” and “length-bounded” partial orders, rather than
being based simply on the lengths of strings. This approach is useful in order
to “obtain full generality and to preserve the concept under polynomially com-
putable isomorphisms” [10, p. 84], see also [14,18]. That means that the strings
queried in a self-reduction may be larger in length than the input strings as
long as they are predecessors in a polynomially well-founded and length-bounded
partial order. It is this key property that makes our algorithm terminate without
having to ensure in the construction that the (pairs of) graphs constructed are
of strictly decreasing size in each loop.

Here is an intuitive description of how our algorithm works. Let G and H be
the given isomorphic graphs. The function oracle will be invoked in each loop
of the procedure to yield any one pair of vertices that are mapped onto each
other by some isomorphism between the graphs as yet constructed. However, if
we were simply deleting this vertex pair, we would obtain new graphs Ĝ and
Ĥ such that ISO(Ĝ, Ĥ) might contain some isomorphism not compatible with
ISO(G,H), which means it cannot be extended to an isomorphism in ISO(G,H).
That is why our algorithm will attach cliques of appropriate sizes to each vertex
to be deleted, and the deletion of this vertex, and of the clique attached to it,
will be delayed until some subsequent loop of the procedure. That is, the (pairs
of) graphs we construct may increase in size in some of the loops, and yet the
procedure is guaranteed to terminate in polynomial time.

We now turn to the formal proof.

Proof of Theorem 1. Let G and H be two given isomorphic graphs with n
vertices each. Let f be a function oracle as in the theorem. We describe the
recursive procedure g that computes an isomorphism φ ∈ ISO(G,H). Below, we
use variables Ĝ and Ĥ to denote (encodings of) graphs obtained from G and H
according to g, and we refer to the vertices of G and H as the old vertices and
to the vertices of Ĝ−G and Ĥ −H as the new vertices.

On input 〈G,H〉, the algorithm g executes the following steps:

1. Let Ĝ = G and Ĥ = H , and set i to n = ||V (G)||. Let φ ⊆ V (G)× V (H) be
a set variable that, eventually, gives the isomorphism between G and H to
be constructed. Initially, set φ to the empty set.
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2. Query f about the pair (Ĝ, Ĥ). Let (x, y) be the vertex pair returned by
f(Ĝ, Ĥ), where x ∈ V (Ĝ) and y ∈ V (Ĥ) and φ̂(x) = y for some isomorphism
φ̂ ∈ ISO(Ĝ, Ĥ).

3. Consider the following two cases:
Case 3.1: x ∈ V (G) is an old vertex.

We distinguish the following two cases:
(a) Set φ to φ ∪ {(x, y)}. Modify the graphs Ĝ and Ĥ as follows.

Delete x, all new neighbors of x, and all edges incident to either
of these vertices from Ĝ. Attach to each old neighbor x′ ∈ V (G)
of x a copy of a clique Ci,x′ consisting of i− 1 new vertices each of
which is connected with x′ by an edge; hence, the graph induced by
V (Ci,x′) ∪ {x′} forms an i-clique. Make sure that all the new clique
vertices are pairwise disjoint and disjoint with (the old) graph Ĝ.
Call the resulting graph (the new) Ĝ.
Modify Ĥ in the same way: Delete y and all new neighbors of y
from Ĥ , and extend each old neighbor y′ ∈ V (H) of y to a clique
consisting of the i vertices V (Ci,y′ ) ∪ {y′}.

(b) Let ỹ ∈ V (H) be the unique old vertex adjacent to y, i.e., y is
a member of the clique Cj,ỹ that was previously attached to ỹ in
the (j − n + 1)th loop, where n ≤ j < i. Note that the size of the
clique Cj,ỹ ∪ {ỹ} equals j. Since φ̂(x) = y, the old vertex x must
belong to the clique Cj,x ∪ {x} of size j and, thus, cannot have any
old neighbors in Ĝ. It follows that ỹ is also not adjacent to any old
vertex in the current graph Ĥ . That is, both the clique Cj,x∪{x} and
the clique Cj,ỹ ∪ {ỹ} are connecting components of their graphs Ĝ

and Ĥ , respectively.
Set φ to φ ∪ {(x, ỹ)}. Modify the graphs Ĝ and Ĥ by deleting the
cliques Cj,x ∪ {x} and Cj,ỹ ∪ {ỹ}.

Set i to i + 1.
Case 3.2: x �∈ V (G) is a new vertex in Ĝ.

It follows that x is a member of a clique Cj,x̃, where n ≤ j < i, that was
previously attached to some old vertex x̃ ∈ V (G) in the (j−n+1)th loop.
Also, by construction, x̃ is the only old vertex adjacent to x. Similarly,
it holds that y is a member of a clique Cj,ỹ ∪ {ỹ} in Ĥ with a uniquely
determined old vertex ỹ ∈ V (H).
If y = ỹ, then this case reduces to Case 3.1(a), with x being replaced by
x̃.
If y �= ỹ, then φ̂(x) = y implies that φ̂(x̃) = ỹ and, thus, that x̃ and ỹ
have the same number of old neighbors. Hence, this case also reduces to
Case 3.1(a), with x being replaced by x̃ and y being replaced by ỹ.

4. If there are no vertices left in Ĝ and Ĥ , output φ, which gives a complete
isomorphism between G and H . Otherwise, go to Step 2.

As alluded to in the above informal description of the algorithm, the intuition
behind introducing cliques of increasing sizes in the construction is to keep the
isomorphisms φ̂ ∈ ISO(Ĝ, Ĥ) compatible with φ ∈ ISO(G,H) when vertices
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from G and H are deleted. That is, we want to preclude the case that deleting x ∈
V (G) and y ∈ V (H) results in reduced graphs Ĝ and Ĥ such that there is some
φ̂ ∈ ISO(Ĝ, Ĥ)—and our oracle f might pick some vertex pair corresponding to
such a φ̂—that cannot be extended to φ ∈ ISO(G,H).

The following example illustrates this intuition and shows how the algorithm
works.

Example 1. Fig. 1 gives an example of a pair of isomorphic graphs G and H
with ISO(G,H) = {φ1, φ2}, where

φ1 =
(

1 2 3 4 5
1 5 4 3 2

)
and φ2 =

(
1 2 3 4 5
5 1 4 3 2

)
.

Suppose that the function oracle f , when queried about the pair (G,H),
returns, e.g., the vertex pair (5, 2). If we were simply deleting the vertex 5 from G

and the vertex 2 from H , then we would obtain graphs Ĝ and Ĥ such that
ISO(Ĝ, Ĥ) contains six isomorphisms only two of which are compatible with the
pair (5, 2); see Fig. 2. But then f , when queried about (Ĝ, Ĥ), might pick, e.g.,
the vertex pair (4, 5), which belongs neither to φ1 nor to φ2.

To preclude cases like this, our algorithm attaches cliques of size 5 to the
vertex 4 in G and to the vertex 3 in H ; see Fig. 3. Old vertices are represented
by full circles and new vertices by empty circles. Note that each φ ∈ ISO(G1, H1)
is compatible with the vertex pair (5, 2) from φ1, φ2 ∈ ISO(G,H).

Fig. 3 through Fig. 6 show how g, on input (G,H), continues to work for
a specific sequence of oracle answers from f . In Fig. 6, the only old vertex left
in G4 is the vertex 4, and the only old vertex left in H4 is the vertex 3. Hence,
whichever vertex pair f when queried about (G4, H4) picks, g maps vertex 4
in G4 to vertex 3 in H4, which completes the isomorphism

φ2 =
(

1 2 3 4 5
5 1 4 3 2

)

that is in ISO(G,H). Finally, both G4 and H4 are deleted, and the algorithm
terminates. End of Example 1

To prove the correctness of the algorithm, we argue that:

(a) each pair 〈Ĝ, Ĥ〉 constructed in any loop of g is a pair of isomorphic graphs—
hence, f can legally be called in each loop of g; and

(b) the mapping φ computed by g on input 〈G,H〉 is in ISO(G,H).

Proof of (a): This assertion follows immediately from the construction and
the assumption that G and H are isomorphic.

Proof of (b): The first call to f yields a valid initial segment (x1, y1) of
an isomorphism between G and H , since f is queried about the unmodified
graphs G and H .

Let φi = {(x1, y1), (x2, y2), . . . , (xi, yi)} be the initial segment of φ that con-
sists of i vertex pairs for some i, 1 ≤ i ≤ n, where (xi, yi) is the pair added in
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Fig. 1. Two graphs G and H with
ISO(G,H) = {φ1, φ2}
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Fig. 2. Two graphs bG and bH for
which ISO( bG, bH) contains isomorphisms
not compatible with (5, 2)
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Fig. 3. Two graphs G1 and H1 ob-
tained from G and H according to g
when f(G,H) returns (5, 2)
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Fig. 4. Two graphs G2 and H2 that re-
sult from f(G1,H1) returning (1, 5)
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Fig. 5. Two graphs G3 and H3 that
result from f(G2, H2) returning (2, 1)

G4: H4:

Fig. 6. Two graphs G4 and H4 that re-
sult from f(G3,H3) returning (u, v)
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the i loop of g. Let Gi and Hi be the graphs constructed from G and H when
loop i is entered; for example, G1 = G and H1 = H . Fix some i with 1 < i ≤ n.
We show that the extension φi of φi−1 (obtained by adding the pair (xi, yi) in
the ith loop of g) is compatible with φi−1. That is, for each (xj , yj) ∈ φi−1, it
holds that

{xi, xj} ∈ E(G) if and only if {yi, yj} ∈ E(H).

Assume {xi, xj} ∈ E(G). In loop j < i, all neighbors of xj , including xi,
and all neighbors of yj were extended to a clique of size n+ j − 1. Note that, in
each loop of g, the clique sizes are increased by one, each clique contains exactly
one old vertex, and any two cliques in Gi (respectively, in Hi) can overlap only
by having their unique old vertex in common. It follows that any isomorphism
between Gi and Hi must map cliques of size n+ j − 1 in Gi onto cliques of size
n+ j− 1 in Hi. Since yi is chosen in loop i of g, it follows from our construction
that the clique Cn+j−1,xi in Gi was mapped onto the clique Cn+j−1,yi in Hi.
Hence, yi is a neighbor of yj in H , i.e., {yi, yj} ∈ E(H).

The converse implication ({yi, yj} ∈ E(H) =⇒ {xi, xj} ∈ E(G)) follows by
a symmetric argument.

Finally, we estimate the time complexity of the algorithm g. Since in each
loop of g, a pair of old vertices from V (G)×V (H) is deleted from the graphs and
is added to the isomorphism φ ∈ ISO(G,H), the algorithm terminates after n
loops. Within each loop, g makes one oracle call to f , updates φ, and modifies
the current graphs Ĝ and Ĥ by deleting certain vertices and by adding at most
2(n− 1) cliques of size at most 2n− 1. Hence, g runs in cubic time.

3 Computing Complete Hamiltonian Cycles from Partial
Ones

Now we turn to the problem of computing complete Hamiltonian cycles in
a graph from partial ones. Our construction is easier to describe for multigraphs,
i.e., graphs with reflexive and multiple edges allowed. We may do so, as for Hamil-
tonian cycles it does not matter whether simple graphs or multigraphs are used.
We also assume that all graphs are connected.

Let us informally describe how our procedure works. As in the preceding
section, suppose we have a function oracle f that, given any multigraph G that
contains a Hamiltonian cycle, returns an edge e that is part of a Hamiltonian
cycle c of G. We want to reduce G by deleting e and identifying the two vertices
incident to e, and then want to recursively apply f to this reduced graph, call
it Ĝ. However, this approach would destroy important information about e,
namely the “left” and the “right” context of e in G. Thus, in the next recursion
loop, the oracle might return an edge contained in a Hamiltonian cycle ĉ of Ĝ that
is not compatible with the previously chosen edge e, which means that adding e
back to Ĝ does not necessarily imply that ĉ can be extended to a Hamiltonian
cycle of G. To preclude cases like this, we require our oracle to return only edges



Relating Partial and Complete Solutions and the Complexity 347

contained in Hamiltonian cycles that are compatible with the left-right-context
of the edges previously chosen. This additional requirement regarding f makes
Theorem 2 somewhat weaker than Theorem 1.

First, we define what we mean by a left-right-context of (the edges of) G,
and what we mean by Hamiltonian cycles being compatible (or consistent) with
a left-right-context of G.

Definition 2. Let G = (V,E) be an undirected multigraph with n vertices.

• A Hamiltonian cycle of G is a sequence (v1, v2, . . . , vn) of pairwise distinct
vertices from V such that {vn, v1} ∈ E and {vi, vi+1} ∈ E for each i with
1 ≤ i ≤ n− 1.

• For any set S, let P(S) denote the power set of S. For any v ∈ V , let E(v)
denote the set of edges in E incident to v.
A left-right-context of G is a function π : V → P(E)×P(E) satisfying that,
for every v ∈ domain(π), there exist sets L(v) and R(v) such that
1. π(v) = (L(v), R(v)),
2. L(v) ∪R(v) ⊆ E(v), and
3. L(v) ∩R(v) = ∅.

• We say that a Hamiltonian cycle c of G is consistent with a left-right-context
π of G if and only if for every v ∈ domain(π), c contains exactly one edge
from L(v) and exactly one edge from R(v), where π(v) = (L(v), R(v)).

We now state our result.

Theorem 2. Let Ĝ be any multigraph, and let π be any left-right-context of Ĝ.
Suppose there exists a function oracle f that, given (Ĝ, π), outputs some edge e ∈
E(Ĝ) such that some Hamiltonian cycle consistent with π contains e (provided
Ĝ has a Hamiltonian cycle consistent with π).

Then, there is a recursive procedure g that, given any multigraph G that has a
Hamiltonian cycle, uses the oracle f to construct a complete Hamiltonian cycle
of G in polynomial time.

Proof. Let G be any multigraph with n vertices that contains a Hamiltonian
cycle. Let f be a function oracle as in the theorem.

In the procedure described below, whenever we identify two vertices u and v,
deleting the edge(s) connecting u and v, we assume by convention that in the
resulting graph the vertex u = v has two name tags, namely u and v. This
convention simplifies the description of our construction and does no harm.

We now describe the procedure g on input G:

Step 0: Let G0 = (V0, E0) be the given multigraph G, and let π0 be the nowhere
defined function (on the domain V0). Set C to the empty set. Note that C will,
eventually, contain the complete Hamiltonian cycle of G to be constructed.

Step i, 1 ≤ i ≤ n − 1: Let Gi−1 = (Vi−1, Ei−1) be the multigraph and let
πi−1 be the left-right-context of Gi−1 constructed in the previous step. Com-
pute the edge ei = f(Gi−1, πi−1) by querying the oracle, and add ei to C.
Let ei = {ui, vi}. Consider the following three cases.
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Case 1: ei ∩ domain(πi−1) = ∅.
Cancel ei from Gi−1, and identify the vertices ui and vi. Call the resulting
graph Gi = (Vi, Ei). Define the left-right-context πi : Vi → P(Ei) ×
P(Ei) by domain(πi) = domain(πi−1) ∪ {ui} and

πi(v) =
{
πi−1(v) if v ∈ domain(πi−1)
(Li(ui), Ri(ui)) if v = ui,

where
• Li(ui) = Ei−1(ui) − {ei} and
• Ri(ui) = {{ui, z} | {vi, z} ∈ Ei−1 ∧ z �= ui}.

Case 2: ei ∩ domain(πi−1) = {x} for some vertex x ∈ Vi−1.
By our assumption that f returns only edges consistent with the given
left-right-context, ei must belong to exactly one of Li−1(x) or Ri−1(x).
Assume x = vi and ei ∈ Li−1(x); the other cases—such as the case
“x = ui and ei ∈ Ri−1(x)”—can be treated analogously.
Cancel ei from Gi−1, and identify the vertices ui and vi, which equals x.
Call the resulting graph Gi = (Vi, Ei). Define the left-right-context πi :
Vi → P(Ei) × P(Ei) by domain(πi) = domain(πi−1) and

πi(v) =
{
πi−1(v) if v �= x
(Li(x), Ri(x)) if v = x,

where
• Li(x) = {{x, z} | {ui, z} ∈ Ei−1 ∧ z �= vi} and
• Ri(x) = Ri−1(x).

Case 3: ei∩domain(πi−1) = {x, y} for two vertices x, y ∈ Vi−1 with x �= y.
It follows that ei = {x, y} in this case. By our assumption that f returns
only edges consistent with the given left-right-context, ei must belong to
exactly one of Li−1(z) or Ri−1(z), for both z = x and z = y. Assume ei ∈
Li−1(x) ∩Ri−1(y); the other cases can be treated analogously.
Cancel ei from Gi−1, and identify the vertices x and y. Call the resulting
graph Gi = (Vi, Ei). Define the left-right-context πi : Vi → P(Ei) ×
P(Ei) by domain(πi) = domain(πi−1) and

πi(v) =
{
πi−1(v) if v �= x = y
(Li(y), Ri(y)) if v = x = y,

where
• Li(y) = Li−1(y) and
• Ri(y) = {{y, z} | {x, z} ∈ Ri−1(x)}.

Step n: Since in each of the n− 1 previous steps two vertices have been iden-
tified and one edge has been added to C, the graph Gn−1 constructed in
the previous step contains only one vertex, say z, having possibly multiple
reflexive edges. Also, C contains n − 1 elements, and πn−1 is either of the
form
• πn−1 = (∅, Rn−1(z)) or
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• πn−1 = (Ln−1(z), ∅),
where any edge in Rn−1(z) (respectively, in Ln−1(z)) can be used to complete
the Hamiltonian cycle constructed so far. Thus, we may choose any one edge
from Rn−1(z) (respectively, from Ln−1(z)) and add it to C.

This concludes the description of the procedure g. Note that g runs in polynomial
time. To prove the correctness of the algorithm, note that, for each i∈{1, 2, n−2},
and for each Hamiltonian cycle c of Gi consistent with πi, it holds that inserting
the edge ei into c yields a Hamiltonian cycle of Gi−1, thus ensuring consistency
of the overall construction.

4 Self-Reducibility and the Hardness of Computing
Smallest Solutions

4.1 Computing the Smallest Four-Coloring is ∆p
2-Hard

The previous two sections studied the property of “complete search reducing
to partial search” for two standard NP problems that, unless P = NP, are
computationally hard. The present section shows that even for efficiently solvable
problems it can be computationally hard to compute their smallest solutions. As
noted by Khuller and Vazirani [11], unless P = NP, such hardness results indicate
the non-self-reducibility of such problems.

The problem of deciding whether a planar graph can be colored with four
colors is well-known to be efficiently solvable, see [1,2]. We show that computing
the lexicographically first k-coloring for planar graphs is ∆p

2-hard for any k ≥ 4.
Since the lexicographically smallest k-coloring of planar graphs certainly can be
computed in (the function analog of) ∆p

2, this result optimally improves upon
the previous NP-hardness lower bound for this problem established by Khuller
and Vazirani [11].

Definition 3. Let k > 1. A k-coloring of a graph G = (V,E) is a mapping
ψG : V → {0, 1, . . . , k − 1}, where {0, 1, . . . , k − 1} represents the set of colors.
A k-coloring ψG is said to be legal if for every edge {u, v} ∈ E it holds that
ψG(u) �= ψG(v). A graph G is said to be k-colorable if there exists a legal k-
coloring of G.

Let Pl-k-Color denote the planar graph k-colorability problem. Pl-3-Color
was shown to be NP-complete by Stockmeyer [19], see also [6]. Solving the famous
Four Color Conjecture in the affirmative, Appel and Haken [1,2] showed that
every planar graph is four-colorable; hence, Pl-k-Color ∈ P for k ≥ 4.

Definition 4 (Khuller and Vazirani [11]).
Let k > 1, and let the vertex set of a given graph G = (V,E) be ordered as

V = {v1, v2, . . . , vn}. Then, every k-coloring ψG of G may be represented by the
string

ψG = ψG(v1)ψG(v2) · · ·ψG(vn)
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from {0, 1, . . . , k − 1}n.
The lexicographically smallest (legal) k-coloring of a planar graph G with n

vertices is defined by

LFPl-k-Color(G) =




min
{
ψG

ψG is a legal
k-coloring of G

}
if G ∈ Pl-k-Color

10n otherwise,

where the minimum is taken with respect to the lexicographic ordering of strings.

Theorem 3. Computing the lexicographically smallest k-coloring for planar
graphs is ∆p

2-hard for any k ≥ 4.

Proof. For simplicity, we show this claim only for k = 4. Let ρ4 be the reduction
of Khuller and Vazirani [11, Theorem 3.1]. Recall that ρ4 maps a given planar
graph G = (V,E) whose vertices are ordered as V = {v1, v2, . . . , vm} to the
planar graph H = (U,F ) defined as follows:

• The vertex set of H is ordered as U = {u1, u2, . . . , u2m}, where ui is a new
vertex and um+i = vi is an old vertex for each i, 1 ≤ i ≤ m.

• The edge set of H is defined by F = E ∪ {{ui, um+i} | 1 ≤ i ≤ m}.
It follows immediately from this construction that

G ∈ Pl-3-Color ⇐⇒ LFPl-4-Color(ρ4(G)) ∈ {0mw | w ∈ {1, 2, 3}m},(1)

that is, “G ∈ Pl-3-Color?” can be decided by looking at the first m bits
of LFPl-4-Color(H).

Now, we give a reduction from the problem Odd-Min-SAT, which is defined to
be the set of all boolean formulas F = F (x1, x2, . . . , xn) in conjunctive normal
form for which, assuming F is satisfiable, the lexicographically smallest satisfy-
ing assignment α : {x1, x2, . . . , xn} → {1, 2} is “odd,” i.e., for which α(xn) = 1.
Here, “1” represents “true” and “2” represents “false.” It is well-known that
Odd-Min-SAT is ∆p

2-complete; Krentel [13] and also Wagner [21] proved the cor-
responding claim for the dual problem Odd-Max-SAT.

Let F = F (x1, x2, . . . , xn) be any given boolean formula, where without loss
of generality we may assume that F is in conjunctive normal form with exactly
3 literals per clause. Assume that F has z clauses. Let σ be the Stockmeyer
reduction from 3-SAT to Pl-3-Color, see [19] and also [6]. This reduction σ,
on input F , yields a graph G = (V,E) with m > n vertices, where m = m(F )
depends on the number n of variables, the number z of clauses, and the structure
of F . Note that F ’s structure induces a certain number of “crossovers” of edges
to guarantee the planarity of G; see [6,19] for details.

Now we order the vertex set of G as V = {v1, v2, . . . , vm} such that

(a) for each i, 1 ≤ i ≤ n, vi represents the variable xi; and
(b) for each i, n < i ≤ m, vi represents any other vertex of G.

Note that G is a planar graph such that
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(i) F is satisfiable if and only if G is 3-colorable, using the colors 1,2, and 3,
and

(ii) each satisfying assignment α of F corresponds to a 3-coloring ψα of G such
that ψα(vi) = α(vi) ∈ {1, 2}, 1 ≤ i ≤ n, and the color 3 is used for the other
vertices of G.

Now apply the reduction ρ4 of Khuller and Vazirani to G and obtain a planar
graph H = ρ4(G) = ρ4(σ(F )) that satisfies Equation (1) as described above. It
follows immediately from this construction and from Equation (1) that

F ∈ Odd-Min-SAT ⇐⇒
LFPl-4-Color(ρ4(σ(F ))) ∈ {0mw1y | w ∈ {1, 2}n−1 ∧ y ∈ {1, 2, 3}m−n},

that is, “F ∈ Odd-Min-SAT?” can be decided by looking at the first m bits and
at the (m + n)th bit of LFPl-4-Color(H).

For k > 4, the claim of the theorem follows from an analogous argument that
employs in place of ρ4 the appropriate reduction ρk from [11, Thm. 3.2].

4.2 Problems with Hard Smallest Solutions Yielding
Non-self-reducible Sets in P

From their NP-hardness lower bound for computing the lexicographically
first four-coloring of planar graphs, Khuller and Vazirani [11] conclude that
Pl-k-Color, k ≥ 4, is not self-reducible, unless P = NP. The type of (functional)
self-reducibility used by Khuller and Vazirani in [11] is due to Schnorr [16,17],
see also [3].

Definition 5 (Schnorr [16,17]).

• Let Σ and Γ be alphabets with at least two symbols; instances of problems
are encoded over Σ and solutions of problems are encoded over Γ . For any
set B ⊆ Σ∗ × Γ ∗ and any polynomial p, the p-projection of B is defined to
be

projp(B) = {x ∈ Σ∗ | (∃y ∈ Γ ∗) [|y| ≤ p(|x|) ∧ (x, y) ∈ B]}.
• A partial order ≤ on Σ∗ is polynomially well-founded and length-bounded

if and only if there exists a polynomial q such that
(a) every ≤-decreasing chain with maximum element x has at most q(|x|)

elements; and
(b) for all x, y ∈ Σ∗, x < y implies |x| ≤ q(|y|).

• Let A = projp(B) for some set B ⊆ Σ∗ × Γ ∗ and some polynomial p.
The projection A is said to be self-reducible with respect to (B, p) if and only
if there exist a polynomial-time computable function g mapping from Σ∗×Γ
to Σ∗ and a polynomially well-founded and length-bounded partial order ≤
such that for all x ∈ Σ∗, for all y ∈ Γ ∗, and for all γ ∈ Γ , it holds that
(i) g(x, γ) < x, and
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(ii) (x, γy) ∈ B ⇐⇒ (g(x, γ), y) ∈ B.
If the pair (B, p), for which A = projp(B), is clear from the context, we omit
the phrase “with respect to (B, p).”

We mention in passing that various other important types of self-reducibility
have been studied, such as the self-reducibility defined by Meyer and Pater-
son [14] and the disjunctive self-reducibility studied by Selman [18], Ko [12],
and many others. We refer the reader to the excellent survey by Joseph and
Young [10] for an overview and for pointers to the literature. Note that, in sharp
contrast with Schnorr’s self-reducibility, every set in P is self-reducible in the
sense of Meyer and Paterson [14], Ko [12], and Selman [18].

Definition 6. Let Σ = {0, 1}. Given any set A ⊆ Σ∗ in NP, there is an as-
sociated set BA ⊆ Σ∗ × Σ∗ in P and an associated polynomial pA such that
A = projpA(BA).

• For any x ∈ Σ∗, define the set of solutions for x with respect to BA and pA
by

Sol(BA,pA)(x) = {y ∈ Σ∗ | |y| ≤ pA(|x|) ∧ (x, y) ∈ BA}.
Note that x ∈ A if and only if Sol(BA,pA)(x) �= ∅.

• For any x ∈ Σ∗, define the lexicographically first solution with respect to BA
and pA by

LF(BA,pA)(x) =
{

min Sol(BA,pA)(x) if x ∈ A
bin(2p(|x|)) otherwise,

where the minimum is taken with respect to the lexicographic ordering of Σ∗,
and bin(n) denotes the binary representation of the integer n without leading
zeroes.
If the pair (BA, pA), for which A = projpA(BA), is clear from the context,
we use SolA(x) and LFA(x) as shorthands for respectively Sol(BA,pA)(x) and
LF(BA,pA)(x).

It is well-known that if A is self-reducible then LFA can be computed in
polynomial time by prefix search, via suitable queries to the oracle A. Moreover,
if A is in P then LFA can even be computed in polynomial time without any
oracle queries. It follows that if computing LFA is NP-hard then A cannot be
self-reducible, assuming P �= NP.

Khuller and Vazirani [11] propose to prove P problems other than Pl-4-Color
to be non-self-reducible, assuming P �= NP. As Theorem 4 below, we provide
a general result showing that it is almost trivial to find such problems: For any
NP problem A for which LFA is hard to compute, one can define a P-decidable
version D of A such that LFD is still hard to compute; hence, D is not self-
reducible, assuming P �= NP.

To formulate this result, we now define the functional many-one reducibil-
ity that was introduced by Vollmer [20] as a stricter reducibility notion than
Krentel’s metric reducibility [13]. We also define the function class min ·P that
was introduced by Hempel and Wechsung [9].
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Definition 7. Let f and h be functions from Σ∗ to Σ∗.

• [20] We say f is polynomial-time functionally many-one reducible to h (in
symbols, f ≤FP

m h) if and only if there exists a polynomial-time computable
function g such that for all x ∈ Σ∗, f(x) = h(g(x)).

• We say h is ≤FP
m -hard for a function class C if and only if for every f ∈ C,

f ≤FP
m h.

• We say h is ≤FP
m -complete for C if and only if h ∈ C and h is ≤FP

m -hard.
• [9] Define the class min ·P to consist of all functions f for which there exist

a set A ∈ P and a polynomial p such that for all x ∈ Σ∗,

f(x) = min{y ∈ {0, 1}∗ | |y| ≤ p(|x|) ∧ 〈x, y〉 ∈ A}.
If the set over which the minimum is taken is empty, define by convention
f(x) = bin(2p(|x|)).

Note that LFA = LF(B,p) is in min ·P for every NP set A and for every
representation of A as a p-projection A = projp(B) of some suitable set B ∈ P
and polynomial p.

Theorem 4. Let A ∈ NP and B,D ∈ P be sets, and let p be a polynomial such
that D ⊇ A = projp(B) and LFA is ≤FP

m -complete for min ·P.
Then, there exist a set C ∈ P and a polynomial q such that D = projq(C)

and computing LFD is ∆p
2-hard.

Hence, D is not self-reducible with respect to (C, q), assuming P �= NP.

Taking Σ∗ as the set D of Theorem 4, it is clear that the hypothesis of the
theorem can be satisfied by suitably choosing A, B and p. It follows that Σ∗,
unconditionally, has representations in which it is not self-reducible in the sense
of Schnorr, unless P = NP.

Proof of Theorem 4. Let A, B, and p be given as in the theorem, where
A ⊆ Σ∗ and B ⊆ Σ∗ ×Σ∗ and Σ = {0, 1}. Let D be any set in P with D ⊇ A.
Define

C = B ∪ {(x, bin(2p(|x|))) | x ∈ D},
and let q(n) = p(n) + 1 for all n. Note that C ∈ P and D = projq(C). It also
follows that LFD(x) = LFA(x) if x ∈ D, and LFD(x) = 2 · LFA(x) if x �∈ D.

We now show that computing LFD is as hard as deciding the ∆p
2-complete

problem Odd-Min-SAT, which was defined in Section 4.1. Since LFA is ≤FP
m -

complete for min ·P, we have LFSAT(F ) = LFA(t(F )) for some polynomial-time
computable function t. Hence,

F ∈ Odd-Min-SAT ⇐⇒ LFSAT(F ) ≡ 1 mod 2
⇐⇒ LFA(t(F )) ≡ 1 mod 2
⇐⇒ LFD(t(F )) ≡ 1 mod 2.

Thus, one can decide “F ∈ Odd-Min-SAT?” by looking at the last bit of
LFD(t(F )).



354 André Große et al.

5 Conclusions and Future Work

In this paper, we studied two important properties of NP problems: self-reducibi-
lity, and how to compute complete solutions from partial solutions. Regarding
the latter, we in particular studied the graph isomorphism problem. We showed
as Theorem 1 that computing even a single pair of vertices belonging to an
isomorphism between two isomorphic graphs is as hard as computing a complete
isomorphism between the graphs. Theorem 1 optimally improves upon a result
of Gál et al. [4].

We propose to establish analogous results for NP problems other than the
graph isomorphism problem. For example, Gál et al. [4] investigated many more
hard NP problems, and showed that computing partial solutions for them is as
hard as computing complete solutions. However, their results are not known to
be optimal, which leaves open the possibility of improvement. Relatedly, what
impact does the self-reducibility of such problems have for reducing complete
search to partial search?

We obtained as Theorem 2 a similar result about reducing complete search to
partial search for the Hamiltonian cycle problem. However, this result appears
to be slightly weaker than Theorem 1, since in Theorem 2 we require a stronger
hypothesis about the function oracle used. Whether this stronger hypothesis
in fact is necessary remains an open question. It would be interesting to know
whether, also for the Hamiltonian cycle problem, one can prove a result as strong
as Theorem 1. More precisely, is it possible to prove the same conclusion as in
Theorem 2 when we are given a function oracle that is merely required to return
any one edge of a Hamiltonian cycle of the given graph, without requiring in
addition that the edge returned belong to a Hamiltonian cycle consistent with
the edge’s left-right-context?

In Theorem 3, we strengthened Khuller and Vazirani’s [11] lower bound for
computing the lexicographically first four-coloring for planar graphs from NP-
hardness to ∆p

2-hardness. The non-self-reducibility of the Pl-4-Color problem
follows immediately from these lower bounds. Khuller and Vazirani [11] asked
whether similar non-self-reducibility results can be proven for problems in P
other than Pl-4-Color, under plausible assumptions such as P �= NP. We estab-
lished as Theorem 4 a general result showing that it is almost trivial to find such
problems.

This general result subsumes a number of results [7] providing concrete, al-
though somewhat artificial, problems in P that are not self-reducible in Schnorr’s
sense, unless P = NP. These problems are artificial, since they are P versions of
standard NP-complete problems—such as the satisfiability problem, the clique
problem, and the knapsack problem—defined by encoding directly into each
solvable problem instance a trivial solution to this instance. In contrast, the
Pl-4-Color problem is a quite natural problem. Can one, under a plausible
assumption such as P �= NP, prove the non-self-reducibility of other natural
problems in P?



Relating Partial and Complete Solutions and the Complexity 355

Acknowledgments. We thank Edith and Lane A. Hemaspaandra for intro-
ducing us to this interesting topic and for stimulating discussions and comments.
We acknowledge interesting discussions about graph theory with Haiko Müller.
We thank the anonymous referees for their helpful and insightful comments on
the paper. In particular, we thank the referee who suggested an idea that led to
Theorem 4, which subsumes some results from an earlier draft of this paper.

References

1. K. Appel and W. Haken. Every planar map is 4-colorable – 1: Discharging. Illinois
J. Math, 21:429–490, 1977. 349

2. K. Appel and W. Haken. Every planar map is 4-colorable – 2: Reducibility. Illinois
J. Math, 21:491–567, 1977. 349

3. A. Borodin and A. Demers. Some comments on functional self-reducibility and
the NP hierarchy. Technical Report TR 76-284, Cornell Department of Computer
Science, Ithaca, NY, July 1976. 351

4. A. Gál, S. Halevi, R. Lipton, and E. Petrank. Computing from partial solutions. In
Proceedings of the 14th Annual IEEE Conference on Computational Complexity,
pages 34–45. IEEE Computer Society Press, May 1999. 340, 341, 354

5. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979. 339

6. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1:237–267, 1976. 349, 350
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Abstract. A Key Distribution Center of a network is a server who gen-
erates and distributes secret keys used by groups of users to securely
communicate. A Distributed Key Distribution Center is a set of servers
that jointly realizes a Key Distribution Center. In this paper we study
Distributed Key Distribution Centers, pointing out the advantages of
this approach to Key Distribution. We propose an information theoretic
model of Distributed Key Distribution Center, and present bounds hold-
ing on the model. Moreover, we show that a protocol described in [5],
which uses Shamir’s secret sharing schemes, meets the bounds and is,
hence, optimal with respect to information storage, communication com-
plexity, and randomness as well.

Keywords: Key Distribution, Protocols, Distributed Systems.

1 Introduction

Key Distribution is an intriguing and deeply studied problem in Cryptography.
Loosely speaking, it can be described as follow: a group of users of a network
with insecure channels, can decide to use encryption algorithms to privately
communicate. If a public key infrastructure is available, an easy solution is the
following: a user recovers the public key of the recipient, from a publicly accessi-
ble bulletin board, and encrypts, with the public key encryption algorithm, the
message he wishes to send. If he needs to send the same message to n differ-
ent recipients, he computes n encryptions of the message, using the n different
public keys of the n recipients, and then sends the message to each of them.
However, public key encryption and decryption are slow operations and, when
the communication involves a group of users big in size, the above solution is
completely inefficient. On the other hand, symmetric algorithms are more effi-
cient than asymmetric ones and, if the group holds a common secret key, a user
has to encrypt a message just once before sending it to all the other users of
the group. Moreover, if a broadcast channel is available across the network, he
can broadcast the encrypted message along this channel, sure that all the “au-
thorized” recipients will receive and decrypt the message. Hence, computational
and communication complexities can be improved pursuing this approach. But
the group, hereafter referred to as a conference, needs a common key, to encrypt
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and to decrypt the messages, before starting the communication. Therefore, the
problem is how to design an efficient protocol to give each conference a common
key.

Notice that an improvement on the “trivial” use of public key algorithms
can be the hybrid approach: a user chooses at random a common key and sends
it in encrypted form, using the public keys, to all the other members of the
conference. Then, they can communicate using a symmetric algorithm. However,
this solution is still not efficient and it is possible to do better.

In traditional models of a network, a frequently used approach is the Key
Distribution Center (for short, KDC), a server of the network who generates and
distributes the secret keys. In this setting each user shares a common key with
the center. When the user wants to securely communicate with other users, he
sends a request for a conference key. The center “checks for membership” of the
user in that conference, and distributes in encrypted form the common key to
each member of the conference. Needham and Schroeder [6] began this approach,
implemented most notably in the Kerberos System [7].

The KDC is a suitable solution to the key distribution problem, since, apart
from the “pure distribution” of the keys to the users, several related key-mana-
gement aspects (i.e., life time, authentication, usage restrictions and so on) can
be easily solved with this third part.

The scheme implemented by the Key Distribution Center to give each confer-
ence a key is referred to as a Key Distribution Scheme (for short, KDS). A KDS
is said to be unconditionally secure if its security does not rely on computational
assumptions on the power of the adversary who can try to break the scheme.

Several unconditionally secure key distribution schemes have been proposed
so far (see [9] for a survey). However, these models and protocols assume the
presence of a single server accomplishing the key distribution task.

It is not difficult to see that with this approach the KDC must be trusted,
since it knows all the conference keys; moreover, the KDC could become a per-
formance bottleneck, since all users have to communicate with it every time they
wish to obtain a conference key. Besides, a crash of the KDC stalls the whole
system. Hence, if from one hand the KDC is a reasonable solution, on the other
hand it could be source of weaknesses and security holes across the network.

Well known and applied solutions to the availability and reliability issues are
the replication of the KDC in several points of the network and the partition
of the network in several domains with dedicated KDCs, responsible of the key
management for only a fixed local area. However, these solutions are partial and
expensive solutions [5].

Instead, a robust and efficient solution can be a Distributed KDC [5] (DKDC,
for short). A DKDC is a set of n servers of a network that jointly realizes the
same function of a KDC. In this setting, a user who need to participate to
a conference, sends a key-request message to a fixed-size subset at his choice of
the n servers. The contacted servers answer with some information enabling the
user to compute the conference key. With this approach, the concentration of
secrets and the slow down factor which arise in a network with a single KDC
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are eliminated. A single server by itself does not know the secret keys, since
they are shared between the n servers. Moreover, each user can send a key-
request in parallel to different servers. Hence, there is no loss in time to compute
a conference key with respect to a centralized environment. Besides, the users
can obtain the keys they need even if they are unable to contact some of the
servers.

In this paper we study DKDCs. We propose an information theoretic model
for a Distributed Key Distribution Scheme (DKDS, for short), a scheme realizing
a DKDC. Then, we analyze the relations between the sizes of the different pieces
of information needed to setup and manage a DKDC. We show bounds on the
amount of information that each server has to store, on the amount of informa-
tion that each server has to send to answer to a key-request message, and on
the size of the messages that have to be generated in setup phase to initialize
the DKDC. Moreover, we quantify the randomness needed to setup a DKDC.
The bounds we show are tight, since they are met by a protocol [5] which uses
multiple copies of the Shamir’s secret sharing scheme, based on polynomial in-
terpolation.

2 The Model

Let U = {U1, . . . , Um} be a set of m users, and let S= {S1, . . . , Sn} be a set of n
servers. Each user has private connections with all the servers. A distributed
key distribution scheme is divided in three phases: an initialization phase, which
involves only the servers; a key request phase, in which users ask for keys to
servers; and a key computation phase, in which users retrieve keys from the
messages received from the servers contacted during the key request phase. We
assume that the initialization phase is done by k servers say, without loss of
generality, S1, . . . , Sk. Each of these servers, using a private source of random-
ness ri, generates some information that securely distributes to the others. More
precisely, for i = 1, . . . , k, server Si generates/sends to Sj , the value γi,j , where
j = 1, . . . , n. At the end of the initialization phase, each server Si stores some
secret information ai = f(γ1,i, . . . , γk,i), which can be computed from the infor-
mation he has received. Assume that a group of users Ch ⊆ U , referred to as
a conference, wants to securely communicate. Each user Uj in Ch, to compute
a key for the conference Ch (we denote such a key with κh), contacts k servers
at least. Then, server Si, contacted by user Uj , checks1 for membership of Uj
in Ch; if so, the server Si computes a value yhi,j = F (ai, j, h), which is a function
of the private information ai, j, and the index h of the requested key. Other-
wise, the server sets yhi,j =⊥, a special value which does convey no information
on the conference key. Finally, the server sends the value yhi,j to Uj. The users
in Ch compute the conference key as a function of the information received by
the contacted servers, i.e., each user Uj in Ch computes κh = G(yhi1,j , . . . , y

h
ik,j

),

1 We do not consider the underline authentication mechanism involved in a key request
phase.



360 Paolo D’Arco

where i1, . . . , ik are the indices of the servers he has contacted and G is a publicly
known function.

We are interested in formalizing, within an information theoretic framework,
the notion of a DKDS. To this aim, we need to setup our notation.

- Let C ⊂ 2U be the set of conferences on U who need to securely communicate,
and assume they are indexed by elements of H = {1, 2, . . .}.

- For any coalition G = {Uj1 , . . . , Ujg} ⊆ U of users, denote with CG the set of
conferences containing some user in G, and with HG the set of corresponding
indices. In other words, CG = {Ch ∈ C : Ch ∩ G �= ∅}, and HG = {h ∈ H :
Ch ∈ CG}.

- For i = 1, . . . , k, let Γi,j be the set of values γi,j that can be sent by server Si
to server Sj , for j = 1, . . . , n, and let Γj = Γ1,j × · · · × Γk,j be the set of
values that Sj , for j = 1, . . . , n, can receive during the initialization phase.

- Let Kh be the set of possible values for κh, and let Ai be the set of values ai
the server Si can compute during the initialization phase.

- Finally, let Y hi,j be the set of values y
h
i,j that can be sent by Si when it receives

a key-request message from Uj for the conference Ch.

Given three sets of indices X = {i1, . . . , ir}, Y = {j1, . . . , js}, and H =
{h1, . . . , ht}, and three families of sets {Ti}, {Ti,j} and {T hi,j}, we will denote
with TX = Ti1 × · · · × Tir , TX,Y = Ti1,j1 × · · · × Tir ,js , and THX,Y = T h1

i1,j1
× · · · ×

T ht

ir ,js
, the corresponding cartesian products. According to this notation, we will

consider the following cartesian products, defined on the sets of our interest

Table 1. Cartesian products

ΓY Set of values that can be received by server Sj , for j ∈ Y
ΓX,j Set of values that can be sent by server Si to Sj , for i ∈ X
ΓX,Y Set of values that can be sent by server Si to Sj , for i ∈ X and j ∈ Y
KX Set of |X|-tuple of conference keys
AX Set of |X|-tuple of private information ai

Y h
X,j Set of values that can be sent by Si, for i ∈ X, to Uj for the conference Ch

Y h
G Set of values that can be sent by S1, . . . , Sn to Uj , with j ∈ G, for Ch

Y H
G Set of values that can be sent by S1, . . . , Sn to Uj , with j ∈ G, for Ch ∀h ∈ H

We will denote in boldface the random variables Γi,j ,Γj , . . . ,Y
HG\{h}
G assuming

values on the sets Γi,j , Γj , . . . , Y
HG\{h}
G according to the probability distributions

PΓi,j ,PΓj , . . . ,PY
HG\{h}
G

.

Roughly speaking, a DKDC must satisfy the following properties:

- Correct Initialization Phase.When the initialization phase correctly ter-
minates, each server Si must be able to compute his private information ai.
On the other hand, if server Si misses/does-not-receive just one message
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from the servers sending information, then Si must not gain any informa-
tion about ai. We model these two properties by relations 1 and 2 of the
formal definition.

- Consistent Key Computation. Each user in a conference Ch ⊆ U must be
able to compute the same conference key, after interacting with the servers
of a subset P at his choice of size at least k. Relations 3 and 4 of the formal
definition ensure these properties. More precisely, relation 3 establishes that
each server uniquely determines an answer to any key-request message; while,
property 4 establishes that each user uniquely computes the same conference
key, using the messages received by the subset of servers he has contacted
for that conference key.

- Conference Key Security. A conference key must be secure against at-
tacks performed by coalitions of servers, coalitions of users, and hybrid coali-
tions (servers and users). This is the most intriguing and difficult property to
formalize. Indeed, the worst case scenario to look after consists of a coalition
of users G that run the protocol many times, retrieving several conference
keys and, then, with the cooperation of some dishonest servers, try to gain
information on a new conference key, they didn’t ask before. Notice that,
according to our notation, the maximum amount of information the coali-
tion can acquire honestly running the protocol is represented by YHG\{h}

G ;
moreover, dishonest servers, belonging to a subset F of size at most k − 1,
know ΓF and, maybe, ΓZ,N . This random variable takes into account the
possibility that some of the dishonest servers send information in the ini-
tialization phase (i.e. Z ⊆ F ∩ {1, . . . , k}). Hence, they know the messages
they send out to the other servers in this phase. Relation 5 ensures that such
coalitions of adversaries, do not gain information on any new key.

Formally, a Distributed Key Distribution Scheme can be defined as follows:

Definition 1. Let U be a set of users, and let C ⊆ 2U . A (k, n, C)-Distributed
Key Distribution Scheme (for short, (k, n, C)-DKDS) is a protocol which enables
each user of Ch ∈ C to compute a common key κh interacting with at least k of
the n servers of the network. More precisely, the following properties are satisfied:

1. For each i = 1, . . . , n, it holds that H(Ai|Γi) = 0.
2. For each X ⊂ {1, . . . , k}, and i ∈ {1, . . . , n}, it holds that H(Ai|ΓX,i) =
H(Ai).

3. For each Ch ∈ C, for each Uj ∈ Ch, and for each i = 1, . . . , n, it holds that
H(Yh

i,j |Ai) = 0.
4. For each Ch ∈ C, for each P ⊂ {1, . . . , n} of size at least k, and for each Uj ∈
Ch, it holds that H(Kh|Yh

P,j) = 0.
5. For each Ch ∈ C, for each G, and for each subset of servers F of size less

than k it holds that

H(Kh|YHG\{h}
G ΓFΓZ,N ) = H(Kh)

where Z = F ∩ {1, . . . , k} and N = {1, . . . , n}.
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In the following, without loss of generality, we assume that for different h, h′ ∈
H, we have H(Kh) = H(Kh′).

3 Some Technical Lemmas

To show the main properties of our model, we need some technical lemmas whose
proofs will appear in the full version of the paper.

Recalling that CG = {Ch ∈ C and Ch ∩G �= ∅}, for any G ⊆ U , hereafter we
set �G = |CG|, i.e., �G denotes the number of conference keys that a coalition of
adversaries G can retrieve interacting with the servers.

The following two lemmas are useful to show lower bounds on the amount of
information that each of the initializing server S1, . . . , Sk has to send to the other
servers during the initialization phase, and on the randomness (to be defined
later) needed to setup a (k, n, C)-DKDS.

The first one essentially establishes a bound on the amount of information
server Si, performing the distribution, has to send out to server Sj.

Lemma 1. In any (k, n, C)-DKDS, for each i = 1, . . . , k, for each j = 1, . . . , n,
for each set Y ⊂ {1, . . . , n} \ {j} of size at most k − 1, and for any coalition G
of users, it holds that

H(Γi,j |ΓY ΓX,j) ≥ �G ·H(K),

where X = {1, . . . , k} \ {i}.
The second one is a consequence of the above lemma. It bounds the amount

of “residual” information a server of the system still has, given the information
received by a subset of at most k − 1 other servers.

Lemma 2. In any (k, n, C)-DKDS, for each j = 1, . . . , n, for each set Y ⊂
{1, . . . , n} \ {j} of size at most k − 1, and for any coalition G of users, it holds
that

H(Γj |ΓY ) ≥ k · �G ·H(K).

Notice that the intuition behind the above lemmas is that there is an “infor-
mation gap” between a “forbidden” subset of servers (Y ), and an “authorized”
one (Y ∪{j}, assuming |Y | = k−1). The evaluation of this gap, as we will show,
enables us to prove in an easy way lower bounds holding on the model.

4 Properties and Bounds

In this section we show some properties of our model.

The following theorem establishes a lower bound both on the amount of infor-
mation γi,j that each of the initializing servers, S1, . . . , Sk, has to send during
the setup phase to S1, . . . , Sn, and on the amount of information γi that each
server must receive in order to be able to compute his private information ai.
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Theorem 1. In any (k, n, C)-DKDS, for each i = 1, . . . , k, and j = 1, . . . , n,
the following inequalities are satisfied:

H(Γi,j) ≥ �G ·H(K) and H(Γj) ≥ k · �G ·H(K).

Proof. Notice that, from (3) of Appendix A and from Lemma 1, setting X =
{1, . . . , k} \ {i} and Y ⊂ {1, . . . , n} \ {j}, we have that

H(Γi,j) ≥ H(Γi,j |ΓY ΓX,j) ≥ �G ·H(K).

Moreover, from (3) of Appendix A and Lemma 2, choosing Y ⊂ {1, . . . , n} \ {j},
it results

H(Γj) ≥ H(Γj |ΓY ) ≥ k · �G ·H(K).

Thus, the theorem holds. ��

Remark 1. Assume that the keys are uniformly chosen (i.e., H(K) = log |K|).
Since log |Γi,j | ≥ H(Γi,j) (see Appendix A) then, from Theorem 1, we get that
log |Γi,j | ≥ �G log |K|. Therefore, each server, performing the initialization phase,
has to send to each other server a message consisting of at least �G · log |K| bits.
On the other hand, the inequality H(Γj) ≥ k · �G · H(K) implies that, when
the keys are uniformly chosen, each server, during the initialization phase, will
receive messages whose sizes will sum up to at least k · �G · log |K| bits.

Using some basic properties of the entropy function, it is possible to obtain a
lower bound on the amount of information that each server, contacted by a user,
has to send upon receiving a key-request message.

Theorem 2. In any (k, n, C)-DKDS, for any Cs ∈ C, for any i = 1, . . . , n, and
for any Uj ∈ Cs, it holds that

H(Ys
i,j) ≥ H(K).

We can also show that each server, to answer the user’s key-request messages,
has to store some information whose size is lower bounded by �G ·H(K).

Theorem 3. In any (k, n, C)-DKDS, for each i = 1, . . . , n, the private informa-
tion ai, stored by the server Si, satisfies

H(Ai) ≥ �G ·H(K).

Denoting with � the maximum number of conference keys that a coalition of
adversaries G can retrieve interacting with the servers, i.e., � = maxG⊆U �G, we
can establish a lower bound on the communication complexity of a DKDS, and
on the total randomness needed to set up such a scheme.
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Communication Complexity The Communication Complexity (CC, for short) of
a DKDS is measured by the amount of information sent by the servers S1, . . . , Sk
during the initialization phase. Using Theorem 1, it is simple to check that

CC =
k∑
i=1

n∑
j=1

H(Γi,j) ≥ k · � · n ·H(K).

Randomness When we want to set up a cryptographic protocol and, in this
case, a Distributed Key Distribution Scheme, often we need random bits. This
resource is usually referred to as the randomness of the scheme. 2 The random-
ness of a scheme can be measured in different way. Knuth and Yao [4] proposed
the following approach: let Alg be an algorithm that generates the probability
distribution P = {p1, . . . , pn}, using only independent and unbiased random
bits. Denote by T (Alg) the average number of random bits used by Alg and
let T (P ) = minAlgT (Alg). The value T (P ) is a measure of the average num-
ber of random bits needed to simulate the source described by the probability
distribution P . In [4] it has been shown the following result

Theorem 4. H(P) ≤ T (P) < H(P) + 2.

Thus, the entropy of a random source is very close to the average number
of unbiased random bits necessary to simulate the source. Hence, the entropy of
a random source is a natural measure of the randomness.

It is easy to see that the randomness R of a Distributed Key Distribution
Scheme can be lower bounded by H(Γ1 . . .Γn). The following theorem shows
a lower bound on R.

Theorem 5. In any (k, n, C)-DKDS the randomness R satisfies

R ≥ k2 · � ·H(K).

Proof. Notice that, for each {j1, . . . , jk} ⊂ {1, . . . , n}, from Theorem 4, and
property (5) of Appendix A, one gets

R ≥ H(Γ1 . . .Γn) ≥ H(Γj1 . . .Γjk)

=
k∑
r=1

H(Γjr |Γj1 . . .Γjr−1) (applying (2) of Appendix A)

≥
k∑
r=1

H(Γjr |ΓY )

(setting Y = {j1, . . . , jk} \ {jr} and (7) of Appendix A)

≥
k∑
r=1

k · � ·H(K)(from Lemma 2)

= k2 · � ·H(K).
2 A detailed analysis of the randomness in distribution protocols can be found in [2].
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Hence, the theorem holds. ��

The following table summarizes the main bounds obtained by the above
analysis assuming the keys are uniformly chosen in a set K.

Table 2. Bounds on DKDS for uniformly chosen keys

Parameters Information needed (in bits)

Randomness (R) k2 · � · log |K|
Memory Server Storage (H(Ai)) � · log |K|
Communication Complexity (CC) k · n · � · log |K|

5 On the Size of the Coalition of Adversaries

The model described in Section 2 is a generalization of the model proposed
in [1]. In that paper we considered a network with m users represented by the
set U = {U1, . . . , Um}, a set S = {S1, . . . , Sn} of n servers, and a set of possible
conferences C. Moreover, we required the scheme to be secure against coalitions
of up to k − 1 servers, coalition of users of any size, and hybrid coalitions. In
that simplified scenario a trusted authority, the dealer, realizes the initialization
phase distributing the private information ai’s to each of the n servers of the
network. It is not difficult to see that, such a model is described by relations 3
and 5 of the current model, assuming that in relation 5 the set G is equal to U
and substituting ΓXΓZ,N with AX .

In the previous sections, the analysis has been done making no assumptions
on the structure of the coalitions of adversaries that will try to break the scheme.
This approach enable us to model multiple scenarios, usually considered in the
analysis of unconditionally secure key distribution schemes. For example, it is
unrealistic to assume that all the users of a wide area network, like the Inter-
net, can collude to break a scheme. It is more realistic to consider an upper
bound g on the size of a coalition of adversaries. Such schemes are often referred
to as g-resilient scheme. Moreover, to further reduce resources requirements of
a (k, n, C)-DKDC, we can consider an environment in which the set of confer-
ences C is composed only by the subsets of users of size up to t. Such schemes
are characterized by the two parameters t and g and are referred to as g-resilient
t-conference schemes.

g-resilient schemes In such a scenario we fix the size of the possible coalitions
of adversaries G to be at most equal to g. Assuming that C contains all the
possible conferences of U , and hence |C| = 2m−m−1, we can show by a counting
argument, that the maximum number of conference keys that can be recovered
by any coalition G ⊆ {U1, . . . , Um} is
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� =
g∑
j=2

(
g

j

)
+

g∑
j=1

(
g

j

)
· (2m−g − 1)

=
g∑
j=1

(
g

j

)
− g +

g∑
j=1

(
g

j

)
· 2m−g −

g∑
j=1

(
g

j

)

=
g∑
j=1

(
g

j

)
· 2m−g − g.

Hence, the bounds of Theorems 2, 3, and 5, change according to this value.

g-resilient t-conference schemes Suppose that it is known an upper bound t on
the maximum size of the conferences of U = {U1, . . . , Um} and an upper bound g
on the maximum size of the coalitions of adversaries. Assuming that C contains
all the possible conferences of U of size at most t, then |C| =∑t

j=2

(
m
j

)
and

� =
t∑

j=2

(
g

j

)
+

t∑
s=2

s−1∑
j=1

(
g

j

)
·
(
m− g
s− j

)

=
t∑

s=2

s∑
j=1

(
g

j

)
·
(
m− g
s− j

)
.

It is easy to see that the bounds of Theorems 2, 3, and 5 are determined by
the above value for �.

6 An Optimal Protocol

A construction of a (k, n, C)-DKDS, based on a family of �-wise independent
functions3, has been proposed in [5].

The scheme enables � conferences in C, not known a priori, to securely com-
pute a conference key. The family of �-wise independent functions chosen in [5]
to construct the (k, n, C)-DKDS is the family of all bivariate polynomials P (x, y)
over a given finite field Zq, in which the degree of x is k− 1 and the degree of y
is �− 1. The protocol can be described as follows
3 A function is �-wise independent if the knowledge of the value of the function in �−1
different points of the domain does not convey any information on the value of the
function in another point.
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Initialization Phase

– Let � = maxG⊆U �G be the maximum number of conference keys that a
coalition G of users can compute.

– Each of the servers S1,. . . ,Sk, performing the initialization phase, con-
structs a random bivariate polynomial P i(x, y) of degree k − 1 in x, and
�− 1 in y by choosing k · � random elements in Zq.

– Then, for i = 1, . . . , k, server Si evaluates the polynomial P i(x, y) in the
identity j of Sj , and sends Qij(y) = P i(j, y) to the server Sj , for j =
1, . . . , n.

– For j = 1, . . . , n, each server Sj computes his private information aj , adding
the k polynomials of degree � − 1, obtained from the k servers performing
the initialization phase. More precisely,

aj = Qj(y)=
k∑
i=1

Qij(y).

A user who needs a conference key, sends a key request to the servers as follows

Key Request Phase

– A user in conference Ch, who wants to compute the conference key, sends
to at least k servers, say Si1 , . . . , Sik , a request for the conference key

– Each server Sij , invoked by the user, checks that the user belongs to Ch, and
sends to the user the value Qij (h), i.e., the value of the polynomial Qij (y)
evaluated in y = h.

Finally, using the k values received from the servers Si1 , . . . , Sik , and applying
the Lagrange formula for polynomial interpolation, each user in Ch recovers the
secret key P (0, h) =

∑k
i=1 P

i(0, h). More precisely,

Key Computation Phase

– Each user computes, for j = 1, . . . , k, the coefficients

bj =
∏

1≤s≤k,s�=j

is
is − ij .

Then, he recovers P (0, h) computing the
∑k
j=1 bjyij where, for j=1, . . . , k,

yij = Qij (h), the value received from the server Sij .
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The protocol satisfies Definition 1 and meets the bounds established by The-
orems 1, 2, 3, and 5.

7 Open Problems

Some questions arise from this analysis. We have assumed that each user has
private connections with all the n servers of the network. It can be interesting
to study the same problem assuming that, for each user, there are d possible
different secure connections with the servers, where k ≤ d ≤ n. A real world
motivation for this setting could be that each user has only connections with
geographically close servers.

Another interesting research line is in studying computationally secure dis-
tributed key distribution schemes. In [5] some constructions have been proposed.
With this approach some resource requirements can be reduced. It is interest-
ing to see if more efficient and secure schemes of those suggested in [5] can be
designed.
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A Information Theory Elements

This appendix briefly recalls some elements of information theory (see [3] for
details).
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Let X be a random variable taking values on a set X according to a proba-
bility distribution {PX(x)}x∈X . The entropy of X, denoted by H(X), is defined
as

H(X) = −
∑
xεX

PX(x) logPX(x),

where the logarithm is to the base 2. The entropy satisfies 0 ≤ H(X) ≤ log |X |,
where H(X) = 0 if and only if there exists x0 ∈ X such that Pr(X = x0) = 1;
whereas, H(X) = log |X | if and only if Pr(X = x) = 1/|X |, for all x ∈ X .

Given two random variables X and Y taking values on sets X and Y , re-
spectively, according to the probability distribution {PXY(x, y)}x∈X,y∈Y on their
cartesian product, the conditional entropy H(X|Y) is defined as

H(X|Y) = −
∑
y∈Y

∑
x∈X

PY(y)PX|Y(x|y) logPX|Y(x|y).

It is easy to see that
H(X|Y) ≥ 0. (1)

with equality if and only if X is a function of Y .
Given n + 1 random variables, X1 . . .XnY, the entropy of X1 . . .Xn given

Y can be written as

H(X1 . . .Xn|Y) = H(X1|Y) +H(X2|X1Y) + · · ·+H(Xn|X1 . . .Xn−1Y). (2)

The mutual information between X and Y is given by

I(X;Y) = H(X)−H(X|Y).

Since, I(X;Y) = I(Y;X) and I(X;Y) ≥ 0, it is easy to see that

H(X) ≥ H(X|Y), (3)

with equality if and only if X andY are independent. Therefore, given n random
variables, X1 . . .Xn, it holds that

H(X1 . . .Xn) =
n∑
i=1

H(Xi|X1 . . .Xi−1) ≤
n∑
i=1

H(Xi). (4)

Moreover, the above relation implies that, for each k ≤ n,

H(X1 . . .Xn) ≥ H(X1 . . .Xk). (5)

Given three random variables, X, Y, and Z, the conditional mutual information
between X and Y given Z can be written as

I(X;Y|Z) = H(X|Z) −H(X|Z Y) = H(Y|Z)−H(Y|Z X) = I(Y;X|Z). (6)
Since the conditional mutual information I(X;Y|Z) is always non-negative we
get

H(X|Z) ≥ H(X|Z Y). (7)
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Abstract. A form of advertisement which is becoming popular on the
web is based on digital coupon (e-coupon) distribution. E-coupons are the
digital analogue of paper coupons which are used to provide customers
with incentives to buy some merchandise. Nowadays, the potential of
digital coupons has not been fully exploited on the web. This is mostly
due to the lack of an “efficient” protocol for e-coupon distribution which
ensures that e-coupons are released by advertisers according to the mer-
chant’s specification and that customers use them properly. In this paper
we propose a protocol for e-coupons which satisfies these security require-
ments. Our protocol is lightweight and preserves users privacy since it
does not require users’ registration.

1 Introduction

New forms of business have been created by the spreading diffusion of Internet
and the WWW. Actually, the most diffused approaches for making money on the
Internet are the exchange of physical goods, services and commercial information
through advertising. The annual volume of money involved in online advertising
is on the order of billions of dollars and is still growing. According to several
forecasts, an important share of the whole advertising market will be conquered
by online advertising.

What is happening is that traditional mechanisms of communication between
customers and advertisers are being entirely transposed to digital communica-
tion, exploiting Internet as an alternative channel to the traditional ones, such as
TV and newspapers. In this perspective, merchants buy portions of a web page
in the same way they choose space on a newspapers, selecting the most visited
sites to get in touch with the largest number of people. In the context of online
advertising and e-commerce, however, the electronic nature of the medium offers
both new advantages and new risks which have to be understood and faced to
better exploit all the technological opportunities available.

Both advertising and e-commerce applications can be improved by develop-
ing new techniques to measure the impact of an advertisement campaign and to
construct new means to attract potential customers. Traditional means to rate
the success on an advertisement campaign, usually based on statistics, does not
apply well to online advertisements where the number of users and the differ-
ences among them are very high. Metering schemes [4] have been introduced
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as alternative systems to measure the exposure of online advertisements. A me-
tering scheme is a protocol which allows to count the number of client visits
received by web sites. In [10,3] metering schemes have been provided, which are
cryptographically secure against attempts of web sites to inflate the count of
client visits they have received.

Coupons are another traditional form of advertising. Coupons are normally
found in newspapers, mail, or handbills, providing customers with an incentive
to buy certain products by offering discounts or gifts on the purchase of the
merchandise. They can be issued by both manufacturers and merchants with
the purpose of promoting new brands or the switching between two brands or
of increasing the sales of an existing product [2]. Since customers can have an
immediate saving of money, coupons represent a very efficient tool to promote
a particular product. Recently, the Internet has become a distribution medium
for traditional coupons, where customers have to print the coupon contained in
a Web page and redeem it like any other coupon [12,11,5].

In [7] it has been introduced the concept of e-coupon as a new mechanism
of advertising on the web. E-coupons are the electronic version of the real-world
coupons which can be redeemed at online stores during e-commerce transac-
tions. The advantages of e-coupons over their paper counterpart are in terms of
facilities for the targeting and ease of use in the redemption phase. Furthermore,
e-coupons constitute a more powerful informative tool since they make it possi-
ble to collect information on several characteristics of the ad access, such as the
time or the context in which it was made. However, the utilization of e-coupons
for advertising poses some problems, derived from their e-nature, such as dupli-
cation, double-spending and forging.

At the moment, there is no common accepted model describing electronic
coupons, and only recently frameworks for e-coupon distribution are being de-
veloped [1,8]. In this paper we present a suitable model for e-coupons comprising
a number of characteristics which make them efficiently usable in e-commerce
applications. Furthermore we present two protocols for their generation and dis-
tribution, such that a number of security requirements are respected. E-coupons
are indeed conceived to be used in commercial transactions, and all the par-
ticipants (users, advertisers and sellers) should be ensured on the mechanisms
of generation and redemption. Our solution is deliberately lightweight with re-
spect to other proposal which rely on digital signature schemes and certification
authorities [7].

In Section 2 we introduce our model for e-coupon, distinguishing between
static and dynamic coupons. In Section 3 we introduce the protocols for the
distribution of both kinds of coupons, discussing their security requirements.
Finally in Section 4 we discuss the design of a viable implementation of the
e-coupon generation and distribution model presented.



372 Stelvio Cimato and Annalisa De Bonis

2 The Model

Our scenario comprises merchants who are willing to advertise their products,
advertisers who display ads on their web sites, and customers who browse the
web. Merchants stipulate a contract with all the advisers whose web sites she
would like to display her ads on. This contract settles the terms of the advertise-
ment campaign, including the specification of the e-coupon promotion. Indeed,
the merchant should instruct the advertiser on the product she would like to
promote, the amount of discount to be offered, the eventual conditions of the
e-coupon’s redemption, and other particulars of the promotion.

The advertisers authorized by a merchant to release e-coupons on her behalf
have to generate e-coupons according to the merchant’s specification.

Users who connect to the web site of an advertiser can download the e-coupons
hosted by that web site. A user who wants to benefit of the e-coupon’s offer will
present the e-coupon for redemption to the merchant. Merchants can obtain
information on the success of their advertisement campaigns from the number
of e-coupons redeemed by customers. In this way she can check whether the
amount of money paid to each advertiser to host her ads is worthwhile.

We will assume that each participant aims to maximize her benefit/cost ratio.
This assumption implies that:

– Merchants want to maximize the revenue coming from her advertisement
investment.

– Users download the coupon providing the most attractive offer.

We will consider two different kinds of e-coupons which we will refer to
as static e-coupons and dynamic e-coupons, respectively. Static e-coupons are
very much like coupons which are distributed by magazines, whereas dynamic
e-coupons introduce new features which are particularly useful in the context of
electronic commerce.
Static e-coupons have the following characteristics:

- They are static in the sense that their value does not depend on when they
have been downloaded by the user.

- Eventually they may indicate a validity period and it might be even the
case that their value would change, possibly decrease, during this period.
However as for their paper counterpart, there is no mean to determine the
exact time when the user has obtained them.

Dynamic e-coupon have the following characteristics:

- They contain information on the time when they have been downloaded by
the user.

- They push the users to purchase the advertised merchandise as soon as pos-
sible by offering a discount whose value starts decreasing from the moment
they are downloaded. In this way users are discouraged from shopping around
in order to find a better priced product, and at the same time, merchants
have an immediate feedback of the goodness of their ad campaign.
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Dynamic e-coupons are particularly useful for advertising products and services
which are directly sold on the web. Indeed, persons who buy goods on the web
use to visit a consistent number of e-commerce sites in order to purchase the
merchandise at the most convenient price.

2.1 Security Requirements

We assume that each participant aims to obtain the maximum possible benefit
from the system. We also contemplate the eventuality that participants would
cheat in order to achieve their objective. Users might alter the e-coupon data in
order to benefit of a more advantageous offer. For example, users may modify
the e-coupon value or its validity period. In the dynamic setting users may also
attempt to date e-coupons after the real emission time. A postdated e-coupon
will allow the dishonest user to delay the e-coupon redemption. In this way
the dishonest user will have more time to browse the web and to compare the
e-coupon’s offer with other offers available on the web. Instead of altering the
data of a legally released e-coupon, a dishonest user might try to generate a fake
e-coupon which would resemble an authentic one.

Notice that e-coupons, as any other digital object, can be easily duplicated.
For that reason a user who has downloaded an e-coupon may decide to make sev-
eral copies of it and distribute these copies to her friends or use those duplicates
herself. Obviously it is impossible for the merchant to distinguish a duplicate
from the original which has been actually downloaded from the web site of the
advertiser. Depending on the market strategy adopted by the merchant, this
circumstance may be more or less acceptable. There are situations in which
duplicate redemptions is highly undesirable for the merchant. As an example,
consider the case of a merchant who offers discounts on a new product in order to
push users to try it for the first time. The merchant’s policy consists of offering
discounts only on a very restricted number of items. In this case if the number
of redeemed e-coupons is far larger than the expected one, then the advertise-
ment campaign will turn into an economic loss for the merchant. Duplicates
redemption will also have another undesired effect for the merchant. Indeed,
the merchant could obtain information on the exposure of her advertisements
on a given web site from the number of redeemed e-coupons which have been
downloaded from that web site. Obviously, if the number of redeemed e-coupons
is far larger than the number of e-coupons which have been really downloaded
from the web site, then it represents a completely meaningless information for
the merchant. Advertisers have interest in avoiding duplicate redemption, too.
Indeed, users who obtain duplicated e-coupons will probably miss of visiting the
advertisers’ web sites. Consequently these users will not view the other ads dis-
played by the advertisers. Clearly, this is a drawback for the advertisers whose
revenues depend on the exposure of all displayed ads.

Consequently, the system should allow merchants to detect users’ attempts
of redeeming the same e-coupon more than once. In this way a merchant may
decide to accept a given e-coupon only from the user which provides it as first.
For that reason, it would be impossible for a user to use the same e-coupon more
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than once. Furthermore, it would be not convenient for the user who actually
downloads the e-coupon to give out a duplicate to another person who might use
it as first. This security problem is commonly referred to as the double-spending
problem.

Our system should also contemplate the possibility that the advertisers col-
lude with users. An advertiser might for example release a postdated e-coupon
or alter the e-coupon value or validity period in order to advantage the user.

A system for e-coupon generation should protect the merchant against the
above described misconduct of advertisers and users. Hence, a system for dis-
tributing e-coupons should verify the following security requirements.

– Advertisers’ Loyalty: The merchant should be able to determine whether
the e-coupon has been validly released by an advertiser on her behalf. In
other words, the merchant should be able to verify whether the e-coupon has
been released by the merchant according to the merchant’s specifications.

– Users’ Integrity: The merchant should be able to detect whether the e-
coupon has been released by an authorized advertiser on her behalf and/or
whether the e-coupon data have not been manipulated by the user.

– Double Spending Freeness: The merchant should avoid e-coupons’ dou-
ble spending.

In the dynamic setting a system for e-coupon generation should also verify
the following security requirement.

– E-coupon Postdating Freeness: The merchant should detect whether an
e-coupon carries an illegal emission date.

3 A Protocol for E-coupon

Our scenario contemplates � merchants, say M1, . . . ,M�, m advertisers, say
A1, . . . , Am, and n users, say U1, . . . , Un. For i = 1, . . . , � and j = 1, . . . ,m
merchant Mi stipulates a contract with advertiser Aj which authorizes Aj to re-
lease e-coupons on Mi’s behalf. Users visiting the advertisers’ sites can download
the e-coupons to purchase goods at Mi’s web site.

E-coupon data authentication is provided by message authentication codes
(MACs), whose definition is given below.

Definition 1. A message authentication code (MAC) algorithm is a family of
functions hk parameterized by a secret key k, verifying the following properties:

1. ease of computation: for a known function hk, given a value k and an in-
put x, hk(x) is easy to compute.

2. compression: hk maps an input x of arbitrary finite bitlength to an out-
put hk(x) of finite bitlength n.
Furthermore, given a description of the function family h, for every fixed al-
lowable value of k (unknown to an adversary), the following property holds:
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3. computational resistance: given zero or more text-MAC pairs (xi, hk(xi)),
it is computationally infeasible to compute any text-MAC pair (x, hk(x)) for
any new input x �= xi (including possibly for hk(x) = hk(xi) for some i).

As an example, our protocol could be implemented by using MD5-MAC or the
MAC algorithm based on DES block cipher. We refer the reader to [9] for an
extended treatise on MACs.

We assume that for i = 1, . . . , �, merchant Mi has been assigned a secret
key kMi which is known only to her, and that for i = 1, . . . , � and j = 1, . . . ,m,
there is a key kMi,Aj which is shared by Mi and Aj and is known only to them.
For i = 1, . . . , � and j = 1, . . . ,m, let hkMi

hkMi,Aj
be two MAC algorithm

functions parameterized by kMi and kMi,Aj , respectively.

Initialization Phase Merchant Mi provides the advertisers with a “framework”
for the e-coupons to be released for a given period of time.

Let Mi be a merchant who is willing to advertise her products on Aj ’s web
site. Merchant Mi releases to Aj an e-coupon framework which will be used
by the advertiser to generate the e-coupons. This framework will be the same
for both the static and the dynamic models. The framework released by the
merchant carries the following information.

a) m data: e-coupon specification data, such as,
• M name: the identity of the merchant;
• P name: the name of the promoted good;
• O name: type, value, and period of validity of the offer (discount on

purchased items, three items for the price of two, gifts, samples, etc.);
• A name: the name of the advertiser.

b) hkMi
(m data).

In addition to the above data, the e-coupon released by the advertiser Aj
contains further information whose nature depends on the type of e-coupon we
are considering.

First we will describe the information added by the advertiser to static e-
coupons and then we will show how to extend the protocol for the static model
in order to make it work under the dynamic model.

3.1 Static E-coupons

Static E-coupon Generation In the static setting the released e-coupon will carry
the following data in addition to those introduced by the merchant.

c) the serial number SN of the coupon;
d) hkMi,Aj

(m data||SN).

The serial number increases every time a new user downloads an e-coupon from
the site. The serial number SN along with the m data specified by the merchant
constitute the e-coupon’s significant data, whereas the values hkMi

(m data)
and hkMi,Aj

(m data||SN) are used for security reasons.
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Static E-coupon Verification When merchant Mi is presented an e-coupon, then
she computes the values hkMi

(m data) and hkMi,Aj
(m data||SN) and accepts the

e-coupon if and only if these values coincide with those stored in the e-coupon.

3.2 Dynamic E-coupons

In the dynamic setting the e-coupon contains information which would allow the
merchant to verify its release time.

In addition to hkMi
and hkMi,Aj

, the protocol for dynamic e-coupons uses
another publicly known function q which is assumed to be a collision resistant
hash function according to the following definition.

Definition 2. A hash function q : D → C is collision resistant if and only if
it is computationally infeasible to find a pair of distinct elements x and y of D
such that q(x) = q(y).

Two examples of popular hash functions used in many practical applications are
SHA-1 and MD5 (see [9]).

Dynamic E-coupons Generation In the following we will suppose, for the sake
of simplicity, that the e-coupons’ serial numbers are consecutive integers. In the
dynamic setting, advertiser Aj will introduce the following information into the
e-coupon.

c) SN : the serial number of the e-coupon;
d) time: the date and time at which the coupon has been downloaded;
e) u data: a piece of information released by the user (e.g., the user’s IP address

number);
f) qSN = q(u data||qSN−1);
g) hkMi,Aj

(m data||SN ||time||u data||qSN ).

Dynamic E-coupon Verification Our protocol assumes that a merchant can ask
each advertiser for the u data’s of the e-coupons released in a given time frame.
For example, we may assume that every day a merchant obtain from each ad-
vertiser the list of the e-coupons released on the previous day. We assume that
the u data’s appear in the list in the same order the corresponding e-coupons
have been downloaded.

Let u data1, u data2, . . . , u datan be the list of the u data’s for the e-coupons
released in a given time frame by advertiserAj on Mi’s behalf, and let us assume,
for the sake of simplicity, that the corresponding serial number be the integers
1, 2, . . . , n. Let q0 denote the value of q computed for the last e-coupon released
in the previous time frame. We say that the values q0, q1, . . . , qn form a depen-
dence chain. A merchant verifies the consistency of the sequence q0, q1, . . . , qn
by computing the values q(u data1, q0), q(u data2, q1), . . . , q(u datan, qn−1), and
by checking, for any i = 1, . . . , n, if q(u datai, qi−1) = qi. If for some i it re-
sults q(u datai, qi−1) �= qi then we say that qi violates the dependence chain.
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We assume that in every time frame the merchant verifies the consistency of the
dependence chain for the e-coupons released in the previous time frame. If the
merchants finds a value qi which violates the dependence chain then she realizes
that Aj is dishonest and takes the appropriate countermeasures.

When merchant Mi is presented an e-coupon, she computes the value
hkMi

(m data) and hkMi,Aj
(m data||SN ||time||u data||qSN ) and checks whether

these values coincide with those stored in the e-coupon. If the given e-coupon
has been downloaded in some previous time frame, then the merchant disposes
of the dependence chain for the e-coupons downloaded in that time frame, and
consequently she can check whether the value qSN in the e-coupon is equal to
the corresponding element in that dependence chain. If the performed tests give
positive result then the merchant accepts the e-coupon. If the given e-coupon has
been downloaded in the same time frame it has been presented for redemption,
then Mi performs only the first two tests and accepts the e-coupon if it passes
these two tests.

We assume that the merchant be mainly interested in protecting herself
against dishonest advertisers rather than in avoiding redemption of a few post-
dated e-coupons. Indeed, it is very important for her to detect an advertiser’s
misconduct which in the long run could seriously damage her advertisement
campaign.

Protocol Security In the following we will prove that the above protocol
verifies the security requirements settled in Section 2. First we will prove that the
protocol satisfies the first three security requirements. These three requirements
have to be verified by both the protocol for static e-coupons and that for dynamic
e-coupons. Then, we will prove that the protocol for dynamic e-coupons verifies
the fourth security requirement, too.

It is easy to see that if the advertisers behave correctly in the sense that they
release e-coupons according to the merchant specification, and if the users do
not manipulate, duplicate or falsify e-coupons, then the protocol works pro-perly.
Indeed, our protocol is such that a merchant accepts e-coupons which have been
generated by authorized advertisers according to her specifications and whose
significant information has not been altered.

We will show that our protocol satisfies the security requirements if we admit
the possibility that advertisers and users cheat.

Advertiser’s Loyalty Our protocol allows to detect any attempt by advertisers
to release an e-coupon which does not correspond to the merchant specifica-
tions. The crucial observation is that the dishonest advertisers need to modify
the information inserted by the merchant into the e-coupon framework. Let
m data denote the information inserted by merchant Mi into the e-coupon and
suppose that a dishonest advertiser has replaced m data with a different value
m data∗. Since the advertiser does not know kMi , then she cannot directly com-
pute hkMi

(m data∗). Moreover, since the function hkMi
is computation resis-

tant, then it is computationally infeasible for her to compute hkMi
(m data∗)
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for any value m data∗ different from the original value m data. Consequently,
the dishonest advertiser will introduce in field b) of the e-coupon a value dif-
ferent from hkMi

(m data∗). On e-coupon verification, the merchant will com-
pute hkMi

(m data∗) and find out that this value is different from the one stored
in the e-coupon. Consequently, she will reject the e-coupon.

User’s Integrity Our protocol allows the merchant to detect whether one of the
two following cases has occurred.

case 1. The e-coupon has not been generated by an authorized advertiser.
case 2. The e-coupon data have been manipulated by the user.

case 1: If the fake e-coupon is identical to a legally released one, in the sense
that the values of all significant data in the e-coupon are the same as those of
a legally released e-coupon, then it is actually a duplicate of the legal e-coupon.
We will discuss later the security of our protocol with respect to duplicates.

Let us consider the case when an unauthorized person generates a fake e-
coupon which resembles a legally released e-coupon but which does not contain
the same significant data of a legally released e-coupon. The security problem
represented by such an illegal e-coupon is the same one represented by a legally
released e-coupon which has been manipulated by a dishonest user. For that
reason this case can be assimilated to case 2 and will be treated below.
case 2: Suppose a dishonest user wants to manipulate the information in an
e-coupon legally released by advertiser Aj on Mi’s behalf. As already observed
in the previous paragraph, it is computationally infeasible for a person who does
not know kMi to compute the correct value of hkMi

for the manipulated data. By
a similar argument, it is possible to show that it is computationally infeasible for
a person who does not know kMi,Aj , the value of hkMi,Aj

corresponding to the
manipulated data. Consequently, our protocol allows to detect any attempt by
the user to manipulate either the data specified by Mi or those specified by Aj .

Double Spending Freeness The system protects the merchant against users’ dou-
ble spending attempts by having the advertiser release e-coupons which are
identified by serial numbers. The merchant will accept a given e-coupon only
from the user which provides it for the first time. In this way a dishonest user
cannot benefit more than once of the same e-coupon. Further, she is discouraged
from giving out a duplicate of her e-coupon to another user who might use it as
first.

The merchant can avoid redeeming the same e-coupon more than once by
simply maintaining a record of the e-coupons which have been already redeemed.
Every time an e-coupon is presented to the merchant, its serial number is com-
pared with those of the already redeemed e-coupons.

E-coupon Postdating Freeness In the dynamic setting the emission date might
be altered by the advertiser to advantage the user who receives the e-coupon
(they cooperate to fool the merchant). Indeed, a user who receives a postdated



Online Advertising: Secure E-coupons 379

e-coupon can delay the purchase of the promoted good and look for a better
priced offer. The serial number can be of help in preventing such a circum-
stance. Indeed, the serial number of an e-coupon carrying a certain emission
date should be smaller than one carrying a later emission date. The advertiser
does not know in advance how many users will visit the site at the time she gen-
erates the postdated coupon, and, for that reason, she should generate an illegal
coupon with a very faraway date to be sure she has enough serial numbers for the
users who will visit the site. However, the serial number does not guarantee that
a postdated e-coupon will be detected. The only way to prevent the advertiser to
postdate a given e-coupon is to introduce in each e-coupon pieces of information
depending on previously released e-coupons. This information should be genera-
ble only with the cooperation of the users who download the e-coupons. Indeed,
suppose that Uc connects to the advertiser’s web site before Ud and that the ad-
vertiser wants the e-coupon downloaded by user Uc appear as to be downloaded
after that of user Ud. In this case the e-coupon of Uc should contain a piece
of information depending also on the information released later by Ud. Conse-
quently, the advertiser in order to postdate the e-coupon of Uc must introduce
a piece of information which violates the dependence relation from previously
downloaded e-coupons. We have denoted the information released by the user
with the u data. An information which could be used as u data is the IP address
number of the user which downloads the e-coupon from the advertiser’s site.

Suppose that an advertiser and a user have colluded in order to postdate
an e-coupon downloaded in a given time frame. Assume that the postdated
e-coupon has been downloaded soon after the one carrying serial number r at
time t1. Suppose that instead of carrying the serial number r+ 1 and time = t1,
the postdated e-coupon carries serial number SN = s, with s > r + 1, and
time = t2, with t2 > t1. If a honest user visits the site at time t with t1 < t < t2,
then the advertiser must give to this user an e-coupon with time = t and a
serial number v comprised between r and s. Obviously the value qs in the il-
legal e-coupon should depend on the u data value of the e-coupon downloaded
at time t. Since these data are not available at time t1, then the value qs com-
puted by the advertiser violates the dependence chain. The merchant detects
this anomaly when it checks the consistency of the dependence chain. The only
possibility which the advertiser has of generating a value qs which does not vio-
late the dependence chain is to postdate all the e-coupons downloaded between
time t1 and time t2. In other words the advertiser should convince the merchant
that these e-coupons have been downloaded after time t1. Since the user who
downloads the e-coupon at time t is honest, then she should not realize that
her e-coupon has been postdated. Consequently, the time value of her e-coupon
should be equal to t. Suppose that both the dishonest user who has downloaded
the postdated e-coupon and the honest user who has downloaded the e-coupon
at time t decide to redeem their e-coupons. Then, the merchant will find out
that the time value of the e-coupon presented by the honest user is anterior
to that of the postdated e-coupon. Since this order does not correspond to the
order of the u data’s of the two e-coupons in the merchant’s u data list, then
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the merchant will detect the illegal misconduct of the advertiser who released
those e-coupons.

4 Implementation

In this Section we will discuss some aspects related to the implementation of
our proposed protocol. We are developing a prototype which is based on CGI
scripting to perform server side computation and a plugin to perform client side
computation. Our proposal has the advantage of reducing as far as possible the
changes to the usual client-server communication pattern over Internet.

4.1 Size of an E-coupon

Since the e-coupon is used during the interactions between the customer and the
merchant, and the customer and the advertiser, it is important to limit the size
of the e-coupon, to avoid a communication overhead for the user. In the following
we analyze the size of an e-coupon constructed according to the requirements
described in Section 2.

We will use a MAC algorithm based on a DES block cipher to implement
the functions hkMi

and hkMi,Aj
. Both keys kMi and kMi,Aj are 56-bit DES key.

In the static case, each e-coupon will be composed of the m data which can
be of arbitrary length, and of a sequence of 160 bit containing: the results of
the computation of the two hash functions hkMi

and hkMi,Aj
, each one 64 bit

long and the serial number SN ( 32 bit long). Assuming 100 bytes for each field
constituting the m data (i.e., M name, A name, P name, O name ), the total
length of a static e-coupon is approximately of 420 bytes.

A dynamic e-coupon will also have 6 bytes for the generation time and 4
bytes containing the user data (the user’s IP address). A dynamic e-coupon will
have then 30 bytes in addition to those of a static one, for a total length of
approximately 450 bytes.

4.2 Advertiser-Merchant Interaction

In our model the interaction between the advertiser and the merchant occurs at
the beginning of an advertisement campaign during the inizialitazion phase of the
protocol. During this phase, the merchant has to communicate to the advertiser
the e-coupon specification as described in Section 3. Such communication can
be done off-line or using some secured channel. After this communication, the
advertiser is able to set all the parameters for the e-coupon generation.

In the dynamic setting, eventually the advertiser and the merchant interact
also during the advertisement campaign. Indeed, in order to increase the control
on the advertiser’s activity, the merchant can split the duration of the advertise-
ment campaign in several time frames (e.g. one day), at the end of which the
advertiser is obliged to provide the log file relative to the generated e-coupons.
The merchant can use that information to reconstruct the generation process
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and to recognize any possible postdating attempt by the advertiser. The verifi-
cation is performed off-line, by examining the log file relative to the elapsed time
frame, and following the e-coupon dependence chain to control the correctness
of its generation with respect to the received e-coupons.

4.3 Customer-Advertiser Interaction

The interaction between the customer and the advertiser is the crucial point
when the exchange of the e-coupon occurs. In our model, we assume that the
interaction between the client and the advertiser is started when the customer
chooses to accept an attractive offer hosted in the advertiser’s site. In this case
the e-coupon is presented as a link (or a banner) which contains a particular
mime-type which activates the client plugin. The plugin should be freely dis-
tributed and downloadable avoiding any registration phase; indeed customers
could be discouraged to install a plugin if personal data should be given to have
access to the plugin code. After clicking on an e-coupon link the e-coupon plugin
is executed with the task to store the e-coupon data in a file which is hosted on
the client’s hard disk, constituting the customer’s wallet.

On the other side, the advertiser’s CGI script generates the e-coupon by
collecting all the data relative to the e-coupon (the updated serial number, the
m data and the IP address contained in the client http request), calculates the
hash values of both the data and the dependence chain, and stores the user
data in a file which successively would be communicated to the merchant for the
verification.

4.4 Customer-Merchant Interaction

The customer interacts with the merchant to spend an e-coupon contained in its
own wallet. When the customer decides to use one of the e-coupons contained
in his wallet to purchase some merchandise, the redemption phase is started.
The e-coupon has the address of the web site where the purchase can be made,
and extra data. This phase involves the sending of data from the customer to
the merchant, who must perform some extra computation to verify that the
e-coupon is valid and that the purchase can be finalized.

On the client side, e-coupons are stored in a local file which is used by the
browser to visualize all the e-coupons contained in the wallet. The file which
is generated by the plugin contains html code for each e-coupon, which is then
represented by the URL of the merchant plus extra data constituting the body
of the e-coupon. Since no further computation is requested on the client side, it
is not necessary to activate the plugin, but the data which are contained in the
e-coupon are sent to the merchant through an HTTP GET request. Whenever
the customer wants to redeem an e-coupon he clicks on the e-coupon establish-
ing a connection between the browser and the merchant site. The CGI script
running on the merchant site at the URL contained in the e-coupon has the task
to accept the e-coupon, to verify its validity and eventually finalize the purchase
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applying the conditions of the offer. The verification in this phase aims to con-
trol the well-formedness of the e-coupon sent by the customer. An additional
verification phase is conceived to control the advertiser’s activity in the process
of the e-coupon generation. This kind of verification can be performed off-line,
and the validity of a received e-coupon can be controlled by simulating the gen-
eration of e-coupons, following the dependence chain provided by the merchant
and controlling that all the received e-coupons have been correctly constructed.

5 Some Conclusions

In this paper, we provided a suitable model for e-coupons such that a number of
security assumptions can be done on their generation and distribution. We pre-
sented also two protocols which respect the security requirements and a viable
implementation. Our model is deliberately lightweight with respect to other pro-
posal [7] which make use of digital signature. The mechanisms ruling the coupon
generation and redemption cannot represent a substantial overhead which could
prevent the interested users to subscribe a commercial offer. On the other hand,
our model shows the same security features which guarantees each other against
malicious behavior of each participant to the protocol. Furthermore, no registra-
tion phase is requested, such that customers have not to disclose their personal
data.

We are considering some improvements to our protocol, in order to make it
work in a more general context. In particular we are concerned with the prob-
lem of verifying the e-coupon generation time. Indeed, in the dynamic setting,
our protocol relies on the fact that at least one honest user redeems a legally
released e-coupon. However, we may assume that a merchant might play the
role of a honest user who downloads e-coupons from the advertisers’ sites at
random times. In order to relax such assumption, we are considering the ap-
plication of timestamping techniques [6] to improve the mechanism of e-coupon
generation, so that both customers and merchants increase their confidence in
the advertisers’ activity.
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Abstract. In this paper, we introduce a cut-free sequent calculus for
minimal conditional logic CK and three extensions of it: namely, with
ID, MP and both of them. The calculus uses labels and transition formu-
las and can be used to prove decidability and space complexity bounds
for the respective logics. As a first result, we show that CK can be
decided in O(n log n) space.

1 Introduction

Conditional logics have a long history. They have been studied first by Lewis
[23,24,2,27] to formalize a kind of hypothetical reasoning (if A were the case
then B) that cannot be captured by classical logic with its material implication.
More recently, they have been rediscovered in computer science and artificial
intelligence for their potential application in a number of areas (see [4]), such as
knowledge representation, non-monotonic reasoning, deductive databases, and
natural language semantics. For instance, in knowledge representation, condi-
tional logics have been used to represent and reason about prototypical proper-
ties [14], the have been used to model knowledge and database update [18],
belief revision [1,15,16]. They can provide an axiomatic foundation of non-
monotonic reasoning [21], as it turns out that all forms of inferences studied
in the framework of non-monotonic logics are particular cases of conditional ax-
ioms [5]. Causal inference, which is very important for applications in action
planning [26], has been modelled by conditional logics. They have been used to
model hypothetical queries in deductive databases and logic programming; for
instance conditional logic CK+ID is the base of the logic programming language
defined in [12]. In system diagnosis, conditional logics can been used to reason
hypothetically about the expected functioning of system components with re-
spect to the observed faults [14]. Finally, they find obvious applications to the
semantics of natural language, in particular to give a formal treatment of hy-
pothetical and counterfactual sentences (those conditionals whose antecedent is
known to be false) [24].
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In spite of their significance, very few proof systems have been proposed
for conditional logics: we just mention [22,19,3,17,13,7]. One possible reason of
the underdevelopment of proof-methods for conditional logics is the lack of a
universally accepted semantics for them. This is in sharp contrast, for instance,
with modal or temporal logics logics which have a consolidated semantics based
on a standard kind of Kripke structures.

Similarly to modal logics, the semantics of conditional logics can be defined
in terms of possible world structures. In this respect, conditional logics can be
seen as a generalization of modal logics (or a type of multi-modal logic) where
the conditional operator is a sort of modality indexed by a formula of the same
language. The two most popular semantics for conditional logics are the so-called
sphere semantics [23] and selection function semantics [24]. Both are possible-
world semantics, but are based on different (though related) algebraic notions.

For our purposes, selection function semantics appear to be simpler and it
is also more general. In this approach, truth values are assigned to formulas de-
pending on a world; intuitively, the selection function f selects, for a world w
and a formula A, the set of worlds f(w,A) which are “most-similar to w” or
”closer to w” given the information A. In normal conditional logics, the func-
tion f depends on the set of worlds satisfying A rather than on A itself, so that
f(w,A) = f(w,A′) whenever A and A′ are true in the same worlds. A condi-
tional sentence A ⇒ B is true in w whenever B is true in every world selected
by f for A and w.

In this paper we propose a sequent calculus for the minimal normal condi-
tional logic CK and its extensions with the axioms/semantic conditions ID and
MP.

In our sequent calculi we use labels to represent worlds within the selec-
tion function semantics. Their completeness is an immediate property of cut-
adimissibility property. Explicit or labelled proof systems have been provided
for a wide range of modal and substructural logics and go back at least to Fit-
ting’s tableaux for modal logics [8]. A systematic development of labelled proof
systems have been proposed in [28] and [11]. However the development of this
kind of proof systems for conditional logics, with the exception of [17], is still
unexplored.

To the best of our knowledge, this is the first analytic proof method for
CK and the mentioned extensions. We begin a complexity analysis of these log-
ics, by showing that one can get decidability and complexity bounds for CK by
an entirely proof-theoretical argument, based on contraction elimination. In par-
ticular we show that CK is decidable in polynomial space, namely in O(n logn)
space.

2 Systems of Propositional Conditional Logic

Conditional logic is an extension of propositional logic by the conditional oper-
ator ⇒. We consider a propositional language L over a set of propositional vari-
ables ATM . Formulas of L are built from propositional variables by means of
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the boolean operators →,⊥ and the conditional operator ⇒. The other boolean
operators are defined by the usual equivalences.

As explained above, we adopt here the so-called propositional selection func-
tion semantics [24].

Definition 1 (CK semantics). A selection function model for L is a triple
M =< W , f, [ ] >, where

– Wis a non-empty set of items called worlds,
– f is a function of type f : W×2W −→ 2W ; f is called the selection function,
– [ ] is an evaluation function of type ATM −→ 2W .

[ ] assigns to an atom p the set of world where p is true. Hence, w ∈ [p]
means that atom p is true in the world w. The evaluation function [ ] can be
extended to every formula by means of the following inductive clauses.

[⊥] = ∅,
[A → B] = (W − [A]) ∪ [B]1,
[A ⇒ B] = {w ∈ W | f(w, [A]) ⊆ [B]}.

We say that a formula A is valid in a model M as above if [A] = W. A formula A
is valid (denoted by |=CK A) if it is valid in every model M.

The above is the semantics of the basic conditional logic CK, where no
specific properties are assumed on the selection function f . Notice that the value
of f depends on the set of worlds satisfying a formula, rather than on the formula
itself, i.e. f is defined for w and [A] rather than w and A. Consequently, we have
f(w, [A]) = f(w, [A′]), whenever A ↔ A′ is valid in M. This requisite is called
normality. Logic CK is the minimal normal conditional logic and has the same
role as modal logic K in the family of normal modal logics. CK is axiomatized
by considering the following axioms and rules :

– all tautologies of classical propositional logic.

– (Modus Ponens)
A A → B

B

– (RCEA)
A ↔ B

(A ⇒ C) ↔ (B ⇒ C)

– (RCK)
(A1 ∧ . . . ∧An) → B

(C ⇒ A1 ∧ . . . ∧C ⇒ An) → (C ⇒ B)

Logical inference is defined as usual and is denoted by �CK . CK is sound and
complete with respect to the selection function semantics [24].

Theorem 1 (Nute [24]). �CK A if and only if |=CK A.

1 By the standard equivalence we get [¬A] =W − [A], [A ∧B] = [A] ∩ [B], [A ∨B] =
[A] ∪ [B].
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Moreover, we consider also the following extensions of CK, namely CK+ID,
CK+MP, and CK+ID+MP. The semantic conditions (MP) and (ID) corre-
sponds to well-known axioms shown in the following table.

System Axiom Model condition
(ID) A ⇒ A f(x, [A]) ⊆ [A]

(MP) (A ⇒ B) → (A → B) w ∈ [A] → w ∈ f(w, [A])

ID represents a usually expected property of the conditional operator2: if we
make the hypothesis A, then A follows. The corresponding semantic property
says that the worlds selected by f according to a formula A actually satisfy A.
Following the standard terminology, let us call A-worlds the elements of [A]. By
ID we can say that A ⇒ B is true at w if B holds in the subset of A-worlds that
are ”closest” to w. Property MP, called the conditional modus ponens, means
that if the w satisfies the hypothesis A it will be among the closest worlds to
itself according to A. Logic CK+MP is called weakly material by Nute [24].

Theorem 1 extends to CK+ S, where S ⊆ {(ID), (MP )}.

3 Sequent Calculus

The sequent calculus that we present in this section makes use of labels to
represent possible worlds. In order to express that w′ belongs to the set of worlds
f(w, [A]), we use the expression w

A−→ w′, which can also be understood as
specifying a transition from w to w′ labelled by formula A3.

Let us fix a language L and a denumerable alphabet of labels A whose el-
ements are denoted by x, y, z . . .. The constituents of sequents are expressions
of the form x : A, called labelled sentences, whose meaning is that A holds in
a world x, and x

B−→ y, called transition formulas (or just transitions) whose
meaning is that y ∈ f(x, [B]), where x, y ∈ A, A,B ∈ L. We call labelled formulas
both kind of expressions and we use metavariable F,G with possible subscripts,
to denote them.

The intuitive meaning of Γ � ∆ is: every model that satisfies all labelled
formulas of Γ in the respective worlds (specified by the labels) satisfies at least
one of the labelled formulas of ∆ (in those worlds). This is made precise by the
notion of validity of a sequent as given in the next definition. We use the notation
CK+ S, where S ⊆ {ID,MP}, to refer to CK and its extensions.

2 However, this property is not assumed for instance in the causal interpretation of
A⇒ B (roughly speaking A causes B) [26]. It can also be questioned in the belief re-
vision interpretation of the conditional: A⇒ B means B follows from the knowledge
of the agent revised by A [10].

3 The use of transition formulas makes apparent some connection of conditional logic
with dynamic logics of programs: both are extensions of modal logic which can model
state (or world) transitions, but whereas in the latter the transitions are associated
to actions or program statements, in the former the transitions are associated to
propositions.
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Definition 2 (CK+S-validity). Given a CK+S model M = 〈W , f, [ ]〉 for L,
and a label alphabet A, we consider any mapping I : A → W. Let F be a labelled
formula, we define M |=I F as follows

M |=I x : A iff I(x) ∈ [A] and M |=I x
A−→ y iff I(y) ∈ f(I(x), [A])

We say that Γ � ∆ is valid in M if for every mapping I : A → W, if M |=I F
for every F ∈ Γ , then M |=I G for some G ∈ ∆. We say that Γ � ∆ is CK-valid
if it is valid in every M.

We give a sequent calculus SeqS, where S ⊆ {ID,MP}, for CK and its
extensions with ID and MP. A sequent is a pair of multi-sets of labelled formulas
〈Γ,∆ 〉 , denoted by Γ � ∆ . As usual, Γ,A is an abbreviation for Γ ∪ {A } and
Γ, Γ ′ for Γ ∪ Γ ′, where ∪ is multiset union. The calculi SeqS comprise the
axioms and the rules of figure 1. More precisely SeqCK contains the axioms
(AX),(A⊥), the structural rules (WeakL), (WeakR), (ContrL),(ContrR),
the logical rules (→ L),(→ R), (⇒ L), (⇒ R), and the transition rule (EQ)
and
- SeqID contains in addition the transition rule (ID)
- SeqMP contains in addition the transition rule (MP)
- SeqID+MP contains both (ID),(MP).
The rules for the other boolean operators can be derived from the rules/axioms
for → and ⊥ as usual.

Example 1. We show a derivation of the (ID) axiom.

y : A � y : A
(ID)

x
A−→ y � y : A

(⇒ L)� x : A ⇒ A

Example 2. We show a derivation of the (MP) axiom.

x : A � x : A
(MP )

x : A � x
A−→ x x : B � x : B

(⇒ L)
x : A ⇒ B, x : A � x : B

x : A ⇒ B � x : A → B

� x : (A ⇒ B) → (A → B)

The calculi SeqS are sound and complete with respect to the semantics.

Theorem 2 ((Soundness)). If Γ � ∆ is derivable in SeqS, where S ⊆ {(ID),
(MP )} then it is valid in the corresponding system.

Proof. By induction on the height of a derivation of Γ � ∆. As an example, we
examine the cases of (⇒ R) and (MP). The other cases are left to the reader.
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(AX) Γ, F 	 ∆,F (A⊥) Γ, x : ⊥ 	 ∆

(ContL)
Γ, F, F 	 ∆
Γ, F 	 ∆

(ContR)
Γ 	 ∆,F, F
Γ 	 ∆,F

(WeakL)
Γ 	 ∆
F,Γ 	 ∆

(WeakR)
Γ 	 ∆
Γ 	 ∆,F

(→ L)
Γ, x : A 	 x : B,∆

Γ 	 x : A→ B,∆
(→ R)

Γ 	 x : A,∆ Γ, x : B 	 ∆
Γ, x : A→ B 	 ∆

(EQ)
u : A 	 u : B u : B 	 u : A

Γ, x
A−→ y 	 x B−→ y,∆

(⇒ L)
Γ 	 x A−→ y,∆ Γ, y : B 	 ∆

Γ, x : A⇒ B 	 ∆
(⇒ R)

Γ, x
A−→ y 	 y : B,∆

(y �∈ Γ,∆)
Γ 	 x : A⇒ B,∆

(ID)
Γ, y : A 	 ∆
Γ, x

A−→ y,	 ∆
(MP)

Γ 	 x : A,∆

Γ 	 x A−→ x,∆

Fig. 1. Sequent rules for CK(+ID+MP)

(⇒ R) Let Γ � ∆,x : A ⇒ B be derived from (1) Γ, x
A−→ y � ∆, y : B, where y

does not occur in Γ , ∆ and it is different from x. By induction hypothesis we
know that the latter sequent is valid. Suppose the former is not, and that it is
not valid in a model M = 〈W , f, [ ]〉, via a mapping I, so that we have:

M |=I F for every F ∈ Γ , M �|=I F for any F ∈ ∆ and M �|=I x : A ⇒ B.

As M �|=I x : A ⇒ B there exists w ∈ f(I(x), [A]) − [B]. We can define an
interpretation I ′(z) = I(z) for z �= x and I ′(z) = w. Since y does not occur in
Γ,∆ and is different from x, we have that M |=I′ F for every F ∈ Γ , M �|=I′ F

for any F ∈ ∆, M �|= y : B and M |=I′ x
A−→ y, against the validity of (1).

(MP) Let Γ � ∆,x
A−→ x be derived from (2) Γ � ∆,x : A. Let (2) be valid

and let M = 〈W , f, [ ]〉 be a model satisfying the MP condition. Suppose that
for one mapping I, M |=I F for every F ∈ Γ , then by the validity of (2) either
M |=I G for some G ∈ ∆, or M |=I x : A. In the latter case, we have I(x) ∈ [A],
thus I(x) ∈ f(I(x), [A]), by MP, this means that M |=I x

A−→ x.

Completeness is an easy consequence of the admissibility of cut. By cut we
mean the following rule:

Γ � ∆,F F, Γ � ∆
cut

Γ � ∆

fig1.eps
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where F is any labelled formula. To prove cut adimissibility, we need the follow-
ing lemma about label substitution.

Lemma 1. If a sequent Γ � ∆ has a derivation of height h, then Γ [x/y] �
∆[x/y] has a derivation of height h, where Γ [x/y] � ∆[x/y] is the sequent ob-
tained from Γ � ∆ by replacing a label x by a label y wherever it occurs.

Proof. By a straightforward induction on the height of a derivation.

Theorem 3. If Γ � ∆,F and F, Γ � ∆ are derivable, so is Γ � ∆.

Proof. As usual, the proof proceeds by a double induction over the complexity of
the cut formula and the sum of the heights of the derivations of the two premises
of the cut inference, in the sense that we replace one cut by one or several cuts
on formulas of smaller complexity, or on sequents derived by shorter derivations.
We have several cases: (i) one of the two premises is an axiom, (ii) the last step
of one of the two premises is obtained by a rule in which F is not the principal
formula4, (iii) F is the principal formula in the last step of both derivations.

(i) If one of the two premises is an axiom then either Γ � ∆ is an axiom, or the
premise which is not an axiom contains two copies of F and Γ � ∆ can be
obtained by contraction.

(ii) We distinguish two cases: the sequent where F is not principal is derived by
any rule (R), except the (EQ) rule. This case is standard, we can permute
(R) over the cut: i.e. we cut the premise(s) of (R) and then we apply (R)
to the result of cut. If one of the sequents, say Γ � ∆,F is obtained by the
(EQ) rule, where F is not principal, then also Γ � ∆ is derivable by the
(EQ) rule and we are done.

(iii) F is the principal formula in both the inferences steps leading to the two
cut premises. There are six subcases: F is introduced by (a) a classical rule,
(b) by (⇒ L), (⇒ R), (c) by (EQ), (d) F by (EQ) on the left and by (ID)
on the right, (e) by (MP) on the left and by (EQ) on the right, (f) by (ID)
on the left and by (MP) on the right. The list is exhaustive.
(a) This case is standard and left to the reader.
(b) F = x : A ⇒ B is introduced by (⇒ R) and (⇒ L). Then we have

(∗)Γ, x A−→ z � z : B,∆
(⇒ R)

Γ � x : A ⇒ B,∆

Γ � x
A−→ y,∆ Γ, y : B � ∆

(⇒ L)
Γ, x : A ⇒ B � ∆

(cut)
Γ � ∆

where z does not occur in Γ,∆ and z �= x; By lemma 1, we obtain that
Γ, x

A−→ y � y : B,∆
is derivable by a derivation of no greater height than (*); thus we can

4 The principal formula of an inference step is the formula introduced by the rule
applied in that step.
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replace the cut as follows

Γ � x
A−→ y,∆

(WeakR)
Γ � x

A−→ y,∆, y : B Γ, x
A−→ y � y : B,∆

(cut)
Γ � ∆, y : B Γ, y : B � ∆

(cut)
Γ � ∆

The upper cut uses the induction hypothesis on the height, the lower the
induction hypothesis on the complexity of the formula.

(c) F = x
B−→ y is introduced by (EQ) in both premises, we have where

(5)u : A � u : B (6)u : B � u : A
(EQ)

Γ ′, x A−→ y � x
B−→ y,∆′

(7)u : B � u : C (8)u : C � u : B
(EQ)

Γ ′, x B−→ y � x
C−→ y,∆′

(cut)
Γ ′, x A−→ y � x

C−→ y,∆′

Γ = Γ ′, x A−→ y, ∆ = x
C−→ y,∆′. (5)-(8) have been derived by a shorter

derivation; thus we can replace the cut by cutting (5) and (7) on the one
hand, and (8) and (6) on the other, which give respectively

(9) u : A � u : C and (10) u : C � u : A.
Using (EQ) we obtain Γ ′, x A−→ y � x

C−→ y,∆′

(d) F = x
B−→ y is introduced on the left by (EQ) rule and it is introduced

on the right by (ID). Thus we have

u : A � u : B u : B � u : A
(EQ)

Γ ′, x A−→ y � ∆,x
B−→ y

Γ ′, x A−→ y, y : B � ∆
(ID)

x
B−→ y, Γ ′, x A−→ y � ∆

(cut)
Γ ′, x A−→ y � ∆

where Γ = Γ ′, x A−→ y. By lemma 1 and weakening, the sequent Γ ′, x A−→
y, y : A � y : B,∆ can be derived by a derivation of the same height as
u : A � u : B. Thus, the cut is replaced as follows

Γ ′, x A−→ y, y : A � y : B,∆ Γ ′, x A−→ y, y : B � ∆
(cut)

Γ ′, x A−→ y, y : A � ∆
(ID)

Γ ′, x A−→ y, x
A−→ y � ∆

(ContrL)
Γ ′, x A−→ y,� ∆

proof1.eps
proof2.eps
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(e) F = x
A−→ y is introduced on the left by (MP) rule and it is introduced

on the right by (EQ). Thus we have

Γ � x : A,∆′
(MP)

Γ � ∆′, x A−→ x

u : A � u : B u : B � u : A
(EQ)

Γ, x
A−→ x � ∆′, x B−→ x

(cut)
Γ � ∆′, x B−→ x

where ∆ = ∆′, x B−→ x. By lemma 1 and weakening, the sequent Γ, x :
A � x : B,∆ can be derived by a derivation of the same height as
u : A � u : B. Thus the cut is replaced as follows:

Γ � x : A,∆′ Γ, x : A � ∆′, x : B
(cut)

Γ � ∆′, x : B
(MP)

Γ � ∆′, x B−→ x

(f) F = x
A−→ y is introduced on the right by (MP) rule and on the left by

(ID). Thus we have

Γ � x : A,∆
(MP )

Γ � ∆,x
A−→ x

Γ, x : A � ∆
(ID)

Γ, x
A−→ x � ∆

(cut)
Γ � ∆

We replace this cut by the following:

Γ � x : A,∆ Γ, x : A � ∆
(cut)

Γ � ∆

Theorem 4 ((Completeness)). If A is valid in CK+S, where S ⊆ {(ID),
(MP )} then � x : A is derivable in SeqS.

Proof. We must show that the axioms are derivable and that the set of derivable
formulas is closed under (Modus Ponens), (RCEA), and (RCK). A derivation of
axioms (ID) and (MP) is shown in examples 1 and 2 respectively.
(Modus Ponens) suppose that � x : A → B and � x : A are derivable. We easily
have that x : A → B, x : A � x : B is derivable too. Since cut is admissible, by
two cuts we obtain � x : B.
(RCEA), we have to show that if A ↔ B is derivable, then also (A ⇒ C) ↔
(B ⇒ C) is so. The formula A ↔ B is an abbreviation for (A → B) ∧ (B → A).
Suppose that � x : A → B and � x : B → A are derivable, we can derive
x : B ⇒ C � x : A ⇒ C as follows: (the other half is symmetrical).

x : A � x : B x : B � x : A
(EQ)

x
B−→ y � x

A−→ y, y : C x
B−→ y, y : C � y : C

(⇒ L)
x

B−→ y, x : A ⇒ C � y : C
(⇒ R)

x : A ⇒ C � x : B ⇒ C
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(RCK), Suppose that (1) � x : B1 ∧B2 . . .∧Bn → C is derivable, x : B1, . . . , x :
Bn � x : C must be derivable too. We set Γi = x : A ⇒ Bi, x : A ⇒ Bi+1, . . . x :
A ⇒ Bn, for 1 ≤ i ≤ n. Then we have (we omit side formulas in the sequent
x

A−→ y � x
A−→ y)

x
A−→ y � x

A−→ y

x
A−→ y � x

A−→ y x : B1, . . . , x : Bn � x : C
(⇒ L)

x
A−→ y, x : A ⇒ Bn, x : B1, . . . , x : Bn−1 � y : C

...
x

A−→ y, Γ2, y : B1 � y : C
(⇒ L)

x
A−→ y, x : A ⇒ B1, x : A ⇒ B2, . . . x : A ⇒ Bn � y : C

(⇒ R)
x : A ⇒ B1, x : A ⇒ B2, . . . x : A ⇒ Bn � x : A ⇒ C

4 Complexity of CK

The sequent calculus we have presented in the previous section can be used to
prove the decidability of the respective conditional logics and possibly to obtain
complexity bounds for deduction in these systems. We analyse the case of CK.

These logics are known to be decidable, since they have the finite model
property as shown by Nute [24]. However, the Nute’s upper bound is hyper-
exponential. A complexity analysis has not been carried out yet for most of the
systems. In this section we show that CK belongs to PSPACE and it can be
decided in O(n logn) space, where n is the length of the formula.

It is easy to show that CK is PSPACE-hard using a standard translation of
modal logic K to CK; the former is known to be PSPACE-complete. To prove
that CK is PSPACE, we show that contraction is eliminable in SeqCK. We
adapt the technique used in [28]. This will give a linear (whence polynomial)
bound on derivation length. From this fact the result will follow rather easily.

We begin by some simple facts. First observe that for SeqCK the (⇒ L)-
rule can be restricted as follows:

Γ � x
A−→ y Γ, y : B � ∆

Γ, x : A ⇒ B � ∆

The reason is that:
Fact 1
if Γ � ∆,x

A−→ y is derivable then either Γ � ∆ is derivable or Γ = Γ ′, x A′
−→ y

and x
A′−→ y � x

A−→ y is derivable.
In other words a transition formula can only be proved by means of (EQ)

rule, otherwise it must be introduced by weakening.
From now on we consider the proof system with the above rule in place of

the old (⇒ L).
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Another fact that can easily be checked is that all rules, except (⇒ L),
permutes over any other rule5. Moreover, the rule (⇒ L) permutes over any
other rule except (⇒ R). (⇒ L) does not permute over (⇒ R) exactly when
the transition formula on the left premise of (⇒ L) is provable by a transition
formula introduced (looking backwards) by the (⇒ R) rule.

The first significant fact about CK is that it satisfies the disjunction property
for conditional formulas, namely

� (A ⇒ B) ∨ (C ⇒ D) implies � A ⇒ B or � C ⇒ D

as we show below. This property can be generalized to a certain extent by con-
sidering sequents -with non-empty antecedent and consequent:

Γ � ∆,x : A ⇒ B, x : C ⇒ D implies Γ � ∆,x : A ⇒ B or Γ � ∆,x : C ⇒ D.

Of course, it cannot hold for any Γ and ∆ : consider trivially x : (F1 → ⊥) →
F2 � x : F1, x : F2, where F1 and F2 are two conditional formulas, we do not
necessarily have x : (F1 → ⊥) → F2 � x : F1 or x : (F1 → ⊥) → F2 � x : F2.

Intuitively, the property holds for Γ and ∆ that do not cause any branching
by formulas with label x or its predecessors (if any) according to the transition
formulas. To this purpose we define:

Definition 3. Let T be a set of transition formulas, let the set of x-branching
formulas with respect to T , denoted by B(x, T ) be defined as follows:

x : A → B ∈ B(x, T )
u : A → B ∈ B(x, T ) if T � u

D−→ x for some formula D.
u : A ⇒ B ∈ B(x, T ) if T � u

A−→ v and v : B ∈ B(x, T )

Given a sequent Γ � ∆, where Γ = Γ ′, T , T is a set of transition formulas and
Γ ′ does not contain transition formulas, we say that Γ (∆) is x-branching if
there is a formula u : A ∈ B(x, T ) which occurs positively in Γ 6 (negatively in
∆).
5 The previous considerations also entail that for SeqCK the (EQ) rule can be

plugged into (⇒ L)-rule and removed as an independent rule. The new (⇒ L)-rule
would be:

u : A 	 u : A′ u : A′ 	 u : A Γ, x
A′
−→ y, y : B 	 ∆

Γ, x
A′
−→ y, x : A⇒ B 	 ∆

This reformulation may be useful for proof search; a similar rule is part of the tableau
system presented in [25].

6 Positive and negative occurrences of a formula are defined in the standard way: A
occurs positively in A, if B → C occurs positively (negatively) in A, then C occurs
positively (negatively) in A and B occurs negatively (positively) in A, if B ⇒ C
occurs positively (negatively) in A, then B occurs positively (negatively) in A. By
extension, we say that a formula C occurs positively (negatively) in a multiset Γ
if C occurs positively (negatively) in some formula of Γ .
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The disjunction property holds for Γ and ∆ that are not x-branching. The
reason is twofold: on the one hand, for such Γ and ∆ only the formulas on
the path from x going backwards through the transition formulas (i.e. on the
worlds u1

A1−→ u2
A2−→ . . .

An−→ x) can contribute to a proof of a formula with
label x. This is proved by lemma 2 below. On the other hand, no formula on
that path can create a branching. Given a multiset of transition formulas T and
a multiset of labelled formulas Σ, we define

Tx = {u A−→ v ∈ T | ∃u0, . . . um, A1, . . . Am(m > 0),

u0 = u, u1 = v, um = x,A = A1, ui−1
Ai−→, ui ∈ T }

ΣT
x = {u : C ∈ Σ | u D−→ v ∈ Tx} ∪ {x : C | x : C ∈ Σ}.

Given the sequent Γ � ∆, let us write Γ = Γ ′, T , where T is a set of transition
formulas and Γ ′ does not contain transition formulas; let Γ T

x = Γ ′T
x , Tx.

Lemma 2. if Γ,∆ are not x-branching, then Γ � ∆,x : A is derivable implies
either Γ T

x � ∆T
x , x : A is derivable or Γ � ∆ is derivable.

Proof. By induction on the derivation height.

Proposition 1. Let Γ and ∆ be not x-branching, then we have

Γ � ∆,x : A ⇒ B, x : C ⇒ D implies Γ � ∆,x : A ⇒ B or Γ � ∆,x : C ⇒ D.

Proof. Suppose that Γ � ∆,x : A ⇒ B, x : C ⇒ D is derivable. By the permu-
tation properties we can assume that there is a proof which terminates with the
introduction of the two conditionals by (⇒ R) rule. Thus

Γ, x
A−→ y, x

C−→ z � ∆, y : B, z : D,∆ is derivable.

Let T be the set of transition formulas in Γ . Notice that since y, z do not occur
in Γ,∆ and x, y, z are all distinct, we have that Γ and ∆ are not y-branching
(nor z-branching). Moreover observe that, letting T ′ = T, x

A−→ y, we have
(Γ, x A−→ y)T ′

y = Γ T
x x, x

A−→ y. Thus from lemma 2, we obtain either Γ T
x , x

A−→
y � ∆T

y , y : B is derivable or Γ, x
A−→ y, x

C−→ z � ∆, z : D,∆ is derivable. In

the first case, by weakening we obtain Γ, x
A−→ y � ∆, y : B,∆, from which we

derive Γ � ∆,x : A ⇒ B by the (⇒ R) rule. In the latter case, we observe first
that x

A−→ y can be deleted as it cannot contribute to the proof, since y does
not occur anywhere. Thus we have that Γ, x

C−→ z � ∆, z : D,∆ is derivable and
we conclude by the (⇒ R) rule again.

Using the previous fact we can easily show that we can eliminate right con-
tractions on conditional formulas, namely

Proposition 2. If � x : D is derivable, then it has a proof where there are no
right contractions on conditional formulas.
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Proof. By permutation properties, a proof Π ending with

Γ � ∆,x : A ⇒ B, x : A ⇒ B

can be transformed into a proof Π ′, where all rules introducing x-branching
formulas are permuted over the other rules (i.e. they are applied at the bottom
of the tree). As an example, let the end sequent of Π have the form
Γ, x : C → D � ∆,x : A ⇒ B, x : A ⇒ B,
we have that the lower sequent is x-branching, (at least) because of x : C → D.
We can permute Π so that the last step is the introduction of the x-branching
formula x : C → D from the two sequents:

Γ � ∆,x : C, x : A ⇒ B, x : A ⇒ B and Γ, x : D � ∆,x : A ⇒ B, x : A ⇒ B.

We have decomposed the x-branching formula, if the two sequents are still
x-branching we perform a similar permutation upwards, so that at the end every
branch of Π ′ will contain a sequent Γi � ∆i, x : A ⇒ B, x : A ⇒ B, such that
Γi, ∆i are no longer x-branching. Then we can apply the previous proposition
and obtain that for each i,

Γi � ∆i, x : A ⇒ B is derivable.

Thus, deleting one occurrence of x : A ⇒ B in the consequent of any sequent in
Π ′ below Γi � ∆i, x : A ⇒ B, x : A ⇒ B we get a derivation of Γ � ∆,x : A ⇒
B.

The previous propositions can be used to prove that contraction can be com-
pletely eliminated from SeqCK derivations. The relevant case is again the one
of contraction on conditional formulas. Intuitively, the reason why we can elim-
inate contractions on conditional formulas is that if two transitions x

A−→ y and
x

A−→ z are introduced by (⇒ R) in a proof of an end sequent � x : D (looking
backwards), then x, y, z are all distinct. This matters for both right and left
contraction. Regarding to right contraction, as we have argued above, we have
that formulas on possible worlds y and z cannot interact; thus only one of the
two y or z will be needed to carry on the derivation, and we can delete the other
and the relative transition. This is the reason behind the disjunctive property
itself and has a semantic counterpart: the models of CK can be assumed to
have a tree-like structure where the links are the given by transition formulas.

The reason why we can eliminate a left contraction on conditional formulas
is related, but different. Since given x

A−→ y and x
A−→ z as above, x, y, z are all

distinct a conditional x : A ⇒ B cannot be used to propagate B neither in x,
nor in z. Thus x : A ⇒ B does not need to be ”used” (e.g. be the principal
formula of (⇒ L)-rule) more than once along each branch of the proof, although
x : A ⇒ B might be used in several branches. But, the multiple use on different
branches is accomplished by the branching rules and does not require an explicit
use of contraction.



A Calculus and Complexity Bound for Minimal Conditional Logic 397

Theorem 5. If � x : A is derivable in SeqCK, then it has a derivation where
there is no application of contraction.

Proof. (Sketch) First observe that we do not have to worry about contractions on
transition formulas. They can always be eliminated by Fact 1 (at the beginning
of section 4). Then the proof proceeds similarly to the one of theorem 9.1.1 in [28]
by triple induction respectively: (i) on the number of contractions in a proof of
the sequent, (ii) on the complexity of the formula involved in a contraction step,
and (iii) the rank of the contraction, that is defined as the largest number of
steps between the conclusions of a contraction and an upward sequent containing
at least one of the two copies of the formula that is contracted. Since we can
assume (by permutation properties) that a contraction follows immediately the
introduction of one of the two copies of the formula (say the leftmost) the rank
measures the maximal number of steps between the introduction of the first and
second copy of the formula.
The minimum rank is hence 2, when the last two steps (before the contraction
step) introduce the two copies one after the other. The third induction, on the
rank, is needed because of the rule (⇒ L) which does not permute over the (⇒
R) rule: we cannot assume that there is a proof which introduces the two copies
of the conditional formulas by (⇒ L) rule one after the other, (this happens
when the introduction of the first copy is separated by the introduction of the
second copy by (⇒ R) rule occurring in the middle) and we need to consider
separately the two cases.

To carry on the proof, suppose that a derivation Π of � x1 : A contains
i + 1 contractions. Concentrate on an uppermost instance of contraction, say
on a formula x : D (so that the portion of the derivation above this step is
contraction-free). In order to eliminate this contraction step, thereby obtaining
a proof Π ′ that contain i contractions, we proceed by induction on the com-
plexity of D and then by induction on the of the contraction step. Due to space
limitations, we only sketch the proof of the most difficult case (see below). We
use proposition 2 for eliminating a right contraction on a conditional formula,
whereas a left contraction of rank = 2 can be eliminated by an argument based
on the above informal considerations.

We analyze in details the most difficult case, the one of a left contraction on
conditional formulas whose rank is > 2.

Suppose a proof Π of � x : A contains a contraction on the sequent Γ, x :
C ⇒ D,x : C ⇒ D � ∆ on the formula C ⇒ D. To make the proof non-trivial,
we assume that the first copy of C ⇒ D is introduced by (⇒ L) immediately
above the contraction step, whereas the second copy is introduced in a step fur-
ther above by (⇒ L). Moreover, to introduce the first copy it is used a transition
formula by the (EQ) rule which is present in the conclusion of the contraction
step. We have two subcases: (a) to introduce the second copy it is used a tran-
sition formula which is present (or provable by the (EQ) rule from a transition
formula) in the conclusion of the contraction step, or (b) it is used a transition
formula which is not provable from a transition formula in the conclusion of the
contraction step. In case (a), we can permute the (⇒ L), which introduces the



398 Nicola Olivetti and Camilla B. Schwind

second copy, over the following rule, so that we decrease the rank and we can
apply the induction hypothesis. In case (b), the situation is more complex: the
transition formula used to introduce the second copy of C ⇒ D comes from an
application of (⇒ R) above the contraction step. The situation is then as follows:

Γ, x
C′
−→ y 	 x C−→ y

Γ2, x
C′′
−→ z 	 x C−→ z

Π3

Γ2, z : D 	 ∆2

(⇒ L)

x : C ⇒ D,Γ2, x
C′′
−→ z 	 ∆2

Π2

x : C ⇒ D, Γ1, x
C′′
−→ z 	 z : E,∆1

(⇒ R)
x : C ⇒ D, Γ1 	 x : C′′ ⇒ E,∆1

Π1

y : D, x : C ⇒ D,Γ, x
C′
−→ y 	 ∆

(⇒ L)

Γ, x : C ⇒ D, x : C ⇒ D,x
C′
−→ y 	 ∆

(ContrL)
Γ, x : C ⇒ D 	 ∆

Π0

	 x1 : A

We abbreviate subderivations by Πi. Observe that if Π2 is empty we cannot
permute the upper (⇒ L) over the lower (⇒ R), in order to diminish the rank.
However we can observe the following: (i) x, y, z are all distinct, (ii) x : C′′ ⇒ E
cannot come from (be a subformula of) y : D, it must already be a subformula
of a formula in Γ or ∆. Thus we can divide the subproof Π1 in two parts Π ′

1 and

Π ′′
1 , such that Π ′′

1 introduces y : D and x
C′−→ y (possibly empty if y : D and

x
C′−→ y are already in Γ1), and x : C′′ ⇒ E is used in a rule in Π ′

1. Given this
separation, we can permute the (⇒ R) over the lower (⇒ L) so that we obtain:

Γ ∗, x
C′
−→ y 	 x C−→ y

Γ2, x
C′′
−→ z 	 x C−→ z

Π3

Γ2, z : D 	 ∆2

(⇒ L)

x : C ⇒ D, Γ 2, x
C′′
−→ z 	 ∆2

Π2

x : C ⇒ D,Γ1, x
C′′
−→ z 	 z : E,∆1

Π ′′
1

y : D, x : C ⇒ D,Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 z : E,∆∗

(⇒ L)

x : C ⇒ D,x : C ⇒ D, Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 z : E,∆∗

(⇒ R)

x : C ⇒ D,x : C ⇒ D, Γ ∗, x
C′
−→ y 	 x : C′′ ⇒ E,∆∗

Π ′
1

Γ, x : C ⇒ D, x : C ⇒ D, x
C′
−→ y 	 ∆

(ContrL)

Γ, x : C ⇒ D,x
C′
−→ y 	 ∆

Π0

	 x1 : A
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Then we can permute the (⇒ R) over the contraction step, so that we obtain

Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 x C−→ y

Γ2, x
C′′
−→ z 	 x C−→ z

Π3

Γ2, z : D 	 ∆2

(⇒ L)

x : C ⇒ D, Γ2, x
C′′
−→ z 	 ∆2

Π2

x : C ⇒ D, Γ1, x
C′′
−→ z 	 z : E,∆1

Π ′′
1

y : D,x : C ⇒ D,Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 z : E,∆∗

(⇒ L)

x : C ⇒ D, x : C ⇒ D,Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 z : E,∆∗

(ContrL)

x : C ⇒ D, Γ ∗, x
C′
−→ y, x

C′′
−→ z 	 z : E,∆∗

(⇒ R)

x : C ⇒ D, Γ ∗, x
C′
−→ y 	 x : C′′ ⇒ E,∆∗

Π ′∗
1

Γ, x : C ⇒ D, x
C′
−→ y 	 ∆

Π0

	 x1 : A

The subderivation Π ′
1
∗ is obtained from Π ′

1 by deleting one copy of of x :

C ⇒ D from every descendant of x : C ⇒ D,Γ ∗, x C′−→ y � x : C′′ ⇒ E,∆∗.
Now the rank of the contraction step is decreased (the instance of the (⇒ L)
rule which introduce the two copies are closer to each other), and we can apply
the induction hypothesis.

Since we can eliminate contraction, it is relatively easy to prove both decid-
ability and a space complexity bound.

First we observe that in all rules (except contraction obviously) the premises
have a smaller complexity than the conclusion. To this regard, let | A | be the
number of symbols in the string representation of A, then define

cp(x : A) = 2∗ | A | and cp(x A−→ y) = 2∗ | A | +1.

(so that cp(x : A) < cp(x A−→ y) < cp(x : A ⇒ B)). Let the complexity
of a sequent Γ � ∆ be be the sum of the complexity cp(F ) of every labelled
formula F occurring in the sequent. By inspection of the rules, it is easy to see
that each premise of every rule has a smaller complexity than its conclusion.

By this fact we get that the length of each branch in a proof of a sequent
� x : A is bounded by O(| A |).

Secondly, observe that the rules are analytic, so that the premises contains
only (labelled) subformulas of the formulas in the conclusion. Moreover, in the

proof3.eps
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search of a proof of � x : A, with | A |= n, new labels are introduced only
by (positive) conditional subformulas of A. Thus, the number of different labels
occurring in a proof is O(n); it follows that the total number of distinct labelled
formulas is O(n2), and only O(n) of them can actually occur in each sequent.

This itself gives decidability:

Theorem 6. Logic CK is decidable.

Proof. We just observe that there is only a finite number of derivations to check
of a given sequent � x : A, as both the length of a proof and the number of
labelled formulas which may occur in it is finite.

Notice that, as usual, a proof may have an exponential size because of the
branching introduced by the rules. However we can obtain a much sharper space
complexity bound using a standard technique [20,28], namely we do not need to
store the whole proof, but only a sequent at a time plus additional information to
carry on the proof search. In searching a proof there are two kinds of branching
to consider: AND-branching caused by the rules with multiple premises and OR-
branching (backtracking points in a depth first search) caused by the choice of
the rule to apply, and how to apply it in the case of (⇒ L).

We store only one sequent at a time and maintain a stack containing infor-
mation sufficient to reconstruct the branching points of both types. Each stack
entry contains the principal formula (either a labelled sentence x;B, or a tran-
sition formula x

B−→ y), the name of the rule applied and an index which allows
to reconstruct the other branches on return to the branching points. The stack
entries represent thus backtracking points and the index within the entry allows
one to reconstruct both the AND branching and to check whether there are al-
ternatives to explore (OR branching). The working sequent on a return point is
recreated by replaying the stack entries from the bottom of the stack using the
information in the index (for instance in the case of (⇒ L) applied to the princi-
pal formula x : A ⇒ B, the index will indicate which premise-first or second-we
have to expand and the label y involved in the transition formula x

A−→ y).
A proof begins with the end sequent � x : A and the empty stack. Each

rule application generates a new sequent and extends the stack. If the current
sequent is an axiom we pop the stack until we find an AND branching point
to be expanded. If there are not, the end sequent � x : A is provable and we
have finished. If the current sequent is not an axiom and no rule can be applied
to it, we pop the stack entries and we continue at the first available entry with
some alternative left (a backtracking point). If there are no such entries, the end
sequent is not provable.

The entire process must terminate since: (i) the depth of the stack is bounded
by the length of a branch proof, thus it is O(n), where | A |= n, (ii) the branching
is bounded by the number of rules, the number of premises of any rule and the
number of formulas occurring in one sequent, the last being O(n).

To evaluate the space requirement, we have that each subformula of the
initial formula can be represented by a positional index into the initial formula,
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which requires O(log n) bits. Moreover, also each label can be represented by
O(log n) bits. Thus, to store the working sequent we need O(n logn) space, since
there may occur O(n) labelled subformulas. Similarly, each stack entry requires
O(log n) bits, as the name of the rule requires constant space and the index
O(log n) bits. Having depth O(n), to store the whole stack requires O(n logn)
space. Thus we obtain:

Theorem 7. Provability in CK is decidable in O(n logn) space.

We strongly conjecture that the same result can be obtained for CK+ID.
For CK+MP and CK+MP+ID, we conjecture that contraction cannot be elim-
inated, but it can be polynomially bounded. If the latter conjecture is right, it
would give a higher, but still polynomial, space complexity bound. We will carry
on a wider investigation in future research.

5 Extension to other Systems

There are a number of extensions of CK(+ID+MP) which have been considered
in the literature. Each one of them is characterized by a set of axioms/semantic
conditions. We list a few of them, without being exhaustive:

(AC) (A ⇒ B) ∧ (A ⇒ C) → (A ∧ C → B)
If f(w, [A]) ⊆ [B] then f(w, [A ∧B]) ⊆ f(w, [A])

(RT) (A ∧B ⇒ C) ∧ (A ⇒ B) → (A ⇒ C)
If f(w, [A]) ⊆ [B] then f(w, [A]) ⊆ f(w, [A ∧B]

(CV) (A ⇒ B) ∧ ¬(A ⇒ ¬C) → (A ∧ C ⇒ B)
If f(w, [A]) ⊆ [B] and f(w, [A]) ∩ [C] �= ∅ then f(w, [A ∧ C]) ⊆ [B]

(CA) (A ⇒ C) ∧ (B ⇒ C) → (A ∨B ⇒ C)
f(w, [A ∨B]) ⊆ f(w, [A]) ∪ f(w, [B])

(CEM) (A ⇒ B) ∨ (A ⇒ ¬B)
| f(w, [A]) |≤ 1

These axioms/conditions are part of well-known conditional logics [24]. Some
of these conditions can be used to formalize non-monotonic inferences. For in-
stance AC corresponds to the property of cumulativity and CV to the property
of rational monotony. Preferential entailment corresponds to the first degree
fragment (i.e. without nested conditionals) of CK+ID+AC+CUT+CA[21].

We can think of extending our sequent calculi to these logics. One would like
to have a modular proof system in the form of a sequent calculus where each
semantic condition/axiom corresponds to a well-defined group of rules. To this
regard, it is not difficult to devise rules capturing these semantic conditions. For
instance, a possible rule for AC is the following:

(AC)
Γ, x

A−→ y � ∆ Γ, x
A−→ z � z : B,∆

(z �∈ Γ,∆)
Γ, x

A∧B−→ y � ∆
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However, the addition of (AC) rule to SeqCK does not give a complete system
unless we allow cut, or in other words, in the system SeqCK+AC cut is not
eliminable. To see this consider the formula

(A ⇒ (B ∧ C)) → ((A ∧B) ⇒ C).

This formula is provable by SeqCK+AC without cut. But the equivalent formula

(A ⇒ (B ∧ C)) → (¬(¬A ∨ ¬B)) ⇒ C).

is not. In order to apply the rule for AC, we must be able to prove the equivalence
of ¬(¬A ∨ ¬B) and A ∧B. We cannot do this unless we allow cut on transition
formulas, or we incorporate the (EQ)-test within the AC rule itself.

The same problem seems to arise with the other axiom/semantic conditions
where we need to identify a subformula which is characterized by its syntactic
structure (such as A ∧ B) above. We can conclude that a straightforward en-
coding of the semantic conditions we have exemplified results in a non-analytic
calculus where cut cannot be eliminated. This is somewhat expected as the se-
lection function cannot be assumed to satisfy any compositionality principle: i.e.
the value of f(w, [A#B]) for any connective # is not a function of f(w, [A])
and f(w, [B]), at most f satisfies some constraints as the above ones. However,
further research is needed to see how and whether we can capture the above
semantic conditions and alike within the labelled calculus by analytic rules. It
might be that some combination of semantic conditions can be translated into
a set of analytic rules, although each single condition cannot. It might also be
that, in order to represent these semantic conditions, we need sequents with a
more complex structure, than transition formulas and labelled sentences. These
are hypotheses for future research.

6 Conclusions

In this work we have provided a labelled calculus for minimal conditional logic
CK and its extensions with conditions ID and MP. The calculus is cut-free and
analytic. By a proof-theoretical analysis of CK we have shown that CK is
decidable in O(n logn) space. To the best of our knowledge, sequent calculi
for these logics have not been previously studied and the complexity bound for
CK is new. In future research we intend to expand our work in two directions:
extend the complexity analysis to other systems and find labelled analytic calculi
for other conditional logics. We briefly remark on some related work.

Some complexity results for conditional logic have been provided in [9], how-
ever the case of minimal logic CK is not considered by the authors; moreover,
the results are obtained semantically, by arguing about the size of possible coun-
termodels, and they only apply to logics stronger than CK+ID+MP for which
there is a sphere-model semantics.

In [25], it is presented a labelled tableaux system for various systems of con-
ditional logics along the same lines. The tableaux calculus is defined inductively
on the levels of nesting of the conditional operator: the equivalence of nested
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conditional subformulas is checked by a recursive “call’ of the tableaux prover.
The sequent calculus we present in this present paper does not need the induc-
tive construction of the tableau system. The equivalence test of subformulas is
fully integrated into the sequent calculus.

An approach similar to ours has been followed in [17]. The authors develop
labelled tableau for the first-degree fragment (i.e. without nested conditionals)
of conditional logic CK+ID+AC+RT+CA. Formulas are labelled by path of
worlds (containing also variable worlds) which seem to correspond to (sets of)
chains of transition formulas in our setting. They use an unification procedure to
propagate positive conditionals; moreover the unification procedure itself takes
care of checking the equivalence of antecedents. Their tableau system contains
a cut-rule, called PB, which cannot be eliminated.

Acknowledgements We are grateful to the referees for their careful reading,
constructive criticisms, and interesting remarks.
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3. G. Crocco and L. Fariñas del Cerro, Structure, Consequence relation and Logic,
volume 4, pages 239–259. Oxford University Press, 1992. 385
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Abstract. In this paper we propose a modal approach for reasoning
about dynamic domains in a logic programming setting. We present a
logical framework for reasoning about actions in which modal inclusion
axioms of the form 〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ allow procedures to be de-
fined for building complex actions from elementary actions. The language
is able to handle knowledge producing actions as well as actions which
remove information. Incomplete states are represented by means of epis-
temic operators and test actions can be used to check whether a fluent
is true, false or undefined in a state. We give a non-monotonic solution
for the frame problem by making use of persistency assumptions in the
context of an abductive characterization. A goal directed proof procedure
is defined, which allows reasoning about complex actions and generating
conditional plans.

1 Introduction

Reasoning about the effects of actions in a dynamically changing world is one
of the problems an intelligent agent has to face. Often an agent has incom-
plete knowledge about the state of the world and it needs to perform sensing
actions [25] to acquire new information for determining how to act.

There are several proposals in the literature for reasoning about actions in
the presence of sensing which have been developed along the line of Scherl and
Levesque paper [25]. Let us mention the work on the high level robot program-
ming language GOLOG [11,12], which is based on a theory of actions in the
situation calculus. Other proposals have been developed by extending the ac-
tion description language A [17], as in [23,8], while in [27] a formal account of a
robot’s knowledge about the state of its environment has been developed in the
context of the fluent calculus.

In this paper, we tackle the problem of reasoning about complex actions with
incomplete knowledge in a modal action logic. The adoption of dynamic logic or a
modal logic to formalize reasoning about actions and change is common to many
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proposals [10,24,9,26,18] and it allows very natural representation of actions as
state transitions, through the accessibility relation of Kripke structures.

We introduce an action theory on the line of [6,18,19], in which actions are
represented by modalities, and we extend it by allowing sensing actions as well as
complex actions definitions. Our starting point is the modal logic programming
language for reasoning about actions presented in [6]. Such language mainly
focuses on ramification problem but does not provide a formalization of incom-
plete initial states with an explicit representation of undefined fluents. Such an
explicit representation is needed if we want to model an agent which is capable
of reasoning and acting on the basis of its (dis)beliefs. In particular, an agent
might want to take actions to acquire new knowledge on the world, if its knowl-
edge is incomplete. These knowledge producing actions are usually called sensing
actions.

In this paper, we aim at extending the action language presented in [6] to
represent incomplete states and to deal with sensing actions. Note that, based
on the logical framework, we aim at defining an agent programming language.
In this context, we need to describe the behavior of an intelligent agent that
chooses a course of actions conditioned on its beliefs on the environment and uses
sensors for acquiring or updating its knowledge about the real world. Keeping
the point of view of the agent, as we do, the only relevant characterization
concerns the internal dynamics of the agent, which can be regarded as a result of
executing actions on the mental state. As a consequence, we only keep the agent’s
representation of the world, while in other formalizations of sensing actions [25,8],
where the focus is on developing a theory of actions and knowledge rather than
on modeling agent behaviors, both the mental state of the agent and the real
state of the world are represented. In order to represent the mental state of an
agent, we introduce an epistemic level in our logical framework.In particular, by
using modalities, we represent the mental state of an agent as a set of epistemic
fluents. Then, concerning world actions, i.e. actions affecting the real world, we
only model what the agent knows about action’s effects based on knowledge
preconditions and we consider sensing actions as input actions which produce
fresh knowledge on the value of some fluents in the real world. As a consequence,
we simply model sensing actions as non-deterministic actions, whose outcome
can not be predicted by the agent.

Another aim of the paper is to extend the action language to deal with
complex actions. The definition of complex actions we introduce draws from dy-
namic logic [20] for the definition of action operators like sequence, test and non-
deterministic choice. However, rather than referring to an Algol-like paradigm
for describing complex actions, as in [22], we refer to a Prolog-like paradigm:
complex actions are defined through (possibly recursive) definitions, given by
means of Prolog-like clauses.

In particular, we show that in modal logics, we can express complex actions’
definitions by means of a suitable set of axioms of the form

〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ.
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If p0 is a procedure name, and the pi(i = 1, . . . , n) are either procedure names,
or atomic or test actions, the above axiom can be interpreted as a procedure def-
inition, which can then be executed in a goal directed way, similarly to standard
logic programs. These axioms have the form of inclusion axioms, which were the
subject of a previous work [5,2], in which we have analyzed the class of multi-
modal logics characterized by axioms of the form [s1] . . . [sm]ϕ ⊂ [p1] . . . [pn]ϕ
where [si] and [pi] are modal operators. These axioms have interesting compu-
tational properties because they can be considered as rewriting rules.

We show that the temporal projection problem and the planning problem
can be formalized in our language. Furthermore we develop proof procedures for
reasoning about complex actions (including sensing actions) and for constructing
conditional plans to achieve a given goal from an incompletely specified initial
state. We can prove in the language that such generated plans are correct, i.e.
achieve the desired goal for a given initial state.

2 The Modal Action Logic

In our action logic each atomic action is represented by a modality. We dis-
tinguish between two kinds of atomic actions: sensing actions, which affect the
internal state of the agent by enhancing its knowledge on the environment and
non-sensing actions (or world actions), that is actions which have actual effects
on the external world. We denote by S the set of sensing actions and by A the set
of world actions. For each action a ∈ A (s ∈ S) we introduce a modality [a] ([s]).
A formula [a]α means that α holds after any execution of action a, while 〈a〉α
means that there is a possible execution of action a after which α holds (similarly
for the modalities for sensing actions). We also make use of the modality ✷, in
order to denote those formulas that hold in all states. The intended meaning of
a formula ✷α is that α holds after any sequence of actions. In order to represent
complex actions, the language contains also a finite number of modalities [pi]
and 〈pi〉 (universal and existential modalities respectively), where pi is a con-
stant denoting a procedure name. Let us denote by P the set of such procedure
names. The modal operator B is used to model agent’s beliefs. Moreover, we use
the modality M, which is defined as the dual of B, i.e. Mα ≡ ¬B¬α. Intuitively,
Bα means that α is believed to be the case, while Mα means that α is considered
to be possible.

A fluent literal l is defined to be f or ¬f , where f is an atomic proposition
(fluent name). Since we want to reason about the effects of actions on the internal
state of an agent, we define a state as a set of epistemic fluent literals. An
epistemic fluent literal F is a modal atom Bl or its negation ¬Bl, where l is a
fluent literal. An epistemic state S is a set of epistemic literals satisfying the
requirement that for each fluent literal l, either Bl ∈ S or ¬Bl ∈ S. In essence
a state is a complete and consistent set of epistemic literals, and it provides a
three-valued interpretation in which each literal l is true when Bl holds, false
when B¬l holds, and undefined when both ¬Bl and ¬B¬l hold (denoted by U l).
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All the modalities of the language are normal, that is, they are ruled at
least by axiom K. In particular, the modality ✷, is ruled by the axioms of logic
S4. Since it is used to denote information which holds in any state, after any
sequence of primitive actions, the ✷ modality interacts with the atomic actions
modalities through the interaction axiom schemas ✷ϕ ⊃ [a]ϕ and ✷ϕ ⊃ [s]ϕ,
for all a ∈ A and s ∈ S. The epistemic modality B is serial, that is, in addition
to axiom schema K we have the axiom schema Bϕ ⊃ ¬B¬ϕ. Seriality is needed
to guarantee the consistency of states: it is not acceptable a state in which, for
some literal l, both Bl holds and B¬l holds.

2.1 World Actions

World actions allow the agent to affect the environment. In our formalization
we only model the epistemic state of the agent while we do not model the real
world. This is the reason we will not represent the actual effects of world actions,
formalizing only what the agent knows about these effects based on knowledge
preconditions. For each world action, the domain description contains a set of
simple action clauses, that allow one to describe direct effects and preconditions
of primitive actions on the epistemic state. Basically, simple action clauses consist
of action laws and precondition laws. 1

Action laws define direct effects of actions in A on an epistemic fluent and
allow actions with conditional effects to be represented. They have form:

✷(Bl1 ∧ . . . ∧ Bln ⊃ [a]Bl0) (1)
✷(Ml1 ∧ . . . ∧Mln ⊃ [a]Ml0) (2)

(1) means that in any state (✷), if the set of literals l1, . . . , ln (representing
the preconditions of the action a) is believed then, after the execution of a, l0
(the effect of a) is also believed. (2) is necessary in order to deal with ignorance
about preconditions of the action a. It means that the execution of a may affect
the beliefs about l0, when executed in a state in which the preconditions are
considered to be possible. When the preconditions of a are unknown, this law
allows to conclude that the effects of a are unknown as well.

Example 1. Let us consider the example of a robot which is inside a room
(see Fig. 1). Two sliding doors, 1 and 2, connect the room to the outside and
toggle switch(I) denote the action of toggling the switch next to door I, by
which door opens if it is closed and closes if it is open. This is a suitable set of
action laws for this action:

(a) ✷(B¬open(I) ⊃ [toggle switch(I)]Bopen(I))
(b) ✷(M¬open(I) ⊃ [toggle switch(I)]Mopen(I))
(c) ✷(Bopen(I) ⊃ [toggle switch(I)]B¬open(I))
(d) ✷(Mopen(I) ⊃ [toggle switch(I)]M¬open(I))
1 In this paper we do not introduce constraints or causal rules among fluents. However,

causal rules could be easily introduced by allowing a causality operator, as in [18,19]
to which we refer for a treatment of ramification in a modal setting.
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Fig. 1. A snapshot of our robot. Initially it is inside the room, in front of door
number 2

Note that, in order to avoid introducing many variant of the same clauses, as
a shorthand, we use the metavariables I, J , where I, J ∈ {door1, door2} and
I �= J .

Precondition laws allow to specify knowledge preconditions for actions, i.e.
those epistemic conditions which make an action executable in a state. They
have form:

✷(Bl1 ∧ . . . ∧ Bln ⊃ 〈a〉true) (3)

meaning that in any state, if the conjunction of epistemic literals Bl1, . . . , Bln
holds, then a can be executed. For instance, according to the following clause,
the robot must know to be in front of a door I if it wants to open (or close) it
by executing toggle switch(I):

(e) ✷(Bin front of(I) ⊃ 〈toggle switch(I)〉true)

Knowledge Removing Actions Up to now, we considered actions with deter-
ministic effects on the world, i.e. actions in which the outcome can be predicted.
The execution of such actions causes the agent to have knowledge about their ef-
fects, because the action is said to deterministically cause the change of a given
set of fluents. However effects of actions can be non-deterministic and, then,
unpredictable. In such a case, the execution of the action causes the agent to
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lose knowledge about its possible effects, because the action could unpredictably
cause the change of some fluent. In our framework, we can model actions with
non-deterministic effects as actions which may affect the knowledge about the
value of a fluent, by simply using action laws of form (2) but without adding the
corresponding law of the form (1).

Example 2. Let us consider an action drop(I) of dropping a glass I from a table.
We want to model the fact that dropping a fragile glass may possibly make the
glass broken. It can be expressed by using a suitable action law of the form (2):

✷(Mfragile(I) ⊃ [drop(I)]Mbroken(I)).

It means that, in the case the agent considers possible that the glass is frag-
ile, then, after dropping it, it considers possible that it has become broken. Note
that, since Bα entails Mα, the action law above can also be applied in the case
the agent believes that the glass is fragile, to conclude that it is possibly broken.
If action drop is executed in a state in which Bfragile and B¬broken hold, in the
resulting state Mbroken (i.e. ¬B¬broken) will hold: the agent does not know
anymore if the glass is broken or not.

2.2 Sensing Actions: Gathering Information from the World

Let us now consider sensing actions, which allow an agent to gather information
from the environment, enhancing its knowledge about the value of a fluent. In
our representation sensing actions are defined by modal inclusion axioms [2], in
terms of ad hoc primitive actions. We represent a binary sensing action s ∈ S,
for knowing whether the fluent l or its complement ¬l is true, by means of
axioms of our logic that specify the effects of s on agent knowledge as the non-
deterministic choice between two primitive actions, the one causing the belief Bl,
and the other one causing the belief B¬l. For each binary sensing action s ∈ S
we have an axiom of form: [s]ϕ ≡ [sBl ∪ sB¬l]ϕ. The operator ∪ is the choice
operator of dynamic logic, which expresses the non-deterministic choice among
two actions: executing the choice a ∪ b means to execute non-deterministically
either a or b. This is ruled by the axiom schema 〈a ∪ b〉ϕ ≡ 〈a〉ϕ ∨ 〈b〉ϕ [20].
The actions sBl and sB¬l are primitive actions in A and they can be regarded
as being predefined actions, ruled by the simple action clauses:

✷(Bl1 ∧ . . . ∧ Bln ⊃ 〈sBl〉true) ✷(Bl1 ∧ . . . ∧ Bln ⊃ 〈sB¬l〉true)
✷(true ⊃ [sBl]Bl) ✷(true ⊃ [sB¬l]B¬l)

Note that, executability preconditions of sensing action s, are represented by ex-
ecutability preconditions Bl1, . . . , Bln of the ad hoc defining action sBl and sB¬l.
This is the reason they have to be the same.

Summarizing, the formulation above expresses the fact that s can be executed
in a state where preconditions hold, leading to a new state where the agent has
a belief about l: he may either believe that l or that ¬l.
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Example 3. Let sense door(I) ∈ S denote the action of sensing whether a door I
is open, which is executable if the robot knows to be in front of I. This is the
suitable axiom representing knowledge precondition and effects:

(f) [sense door(I)]ϕ ≡ [sense door(I)Bopen(I) ∪ sense door(I)B¬open(I) ]ϕ

where the primitive actions sense door(I)Bopen(I) and sense door(I)B¬open(I)

are ruled by the set of laws:

(g) ✷(Bin front of(I) ⊃ 〈sense door(I)Bopen(I)〉true)
(h) ✷(true ⊃ [sense door(I)Bopen(I) ]Bopen(I))
(i) ✷(Bin front of(I) ⊃ 〈sense door(I)B¬open(I)〉true)
(j) ✷(true ⊃ [sense door(I)B¬open(I) ]B¬open(I))

More in general, we can deal with sensing on a finite set of literals, where
executing a sensing action leads to a new state where the agent knows which
literal is true among an associated set of literals. More formally, we associate to
each sensing action s ∈ S a set dom(s) of literals. The effect of s will be to know
which literal in dom(s) is true. This is modeled by introducing an axiom of the
form:

[s]ϕ ≡ [
⋃

l∈dom(s)

sBl]ϕ (4)

where the primitive action sBl (∈ A), for each l, l′ ∈ dom(s), l �= l′, is ruled by
the following simple action clauses:

✷(Bl1 ∧ . . . ∧ Bln ⊃ 〈sBl〉true) (5)
✷(true ⊃ [sBl]Bl) (6)

✷(true ⊃ [sBl]B¬l′) (7)

Clause (5) means that in any state, if the set of literal Bl1 ∧ . . . ∧ Bln holds,
then the action sBl can be executed. The other ones describe the effects of sBl:
in any state, after the execution of sBl l is believed (6), while all the other fluents
belonging to dom(s) are believed to be false (7). Note that the binary sensing
action on a fluent l, is a special case of sensing where the associated finite set is
{l,¬l}.

2.3 Complex Actions

In our modal action theory, complex actions are defined on the basis of other
complex actions, atomic actions and test actions. Test actions are needed for
testing if some fluent holds in the current state and for expressing conditional
complex actions. Like in dynamic logic [20], if ψ is a proposition then ψ? can be
used as a label for a modal operator, such as 〈ψ?〉. Test modalities are charac-
terized by the axiom schema 〈ψ?〉ϕ ≡ ψ ∧ ϕ.
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A complex action is defined by means of a suitable set of inclusion axiom
schemas of our modal logic, having the form 2:

〈p0〉ϕ ⊂ 〈p1〉〈p2〉 . . . 〈pn〉ϕ. (8)

If p0 is a procedure name in P , and pi (i = 1, . . . , n) are either procedure
names, or atomic actions or test actions, axiom (8) can be interpreted as a
procedure definition. Procedures definition can be recursive and they can also
be non-deterministic, when they are defined by a collection of axioms of the
form specified above. Intuitively, they can be executed in a goal directed way,
similarly to standard logic programs. Indeed the meaning of (8) is that if in a
state there is a possible execution of p1, followed by an execution of p2, and so
on up to pn, then in that state there is a possible execution of p0.

Remark 1. Complex actions’ definitions are inclusion axioms. [2,5] presents a
tableaux calculus and some decidability results for logics characterized by this
kind of axioms, where inclusion axioms are interpreted as rewriting rules. In par-
ticular in [5,2] it is shown that the general satisfiability problem is decidable for
right regular grammar logics, but it is undecidable for the class of context-free
grammar logics. Moreover, in [2] a tableaux-based proof procedure is presented
for a broader class of logics, called incestual modal logics, in which the operators
of union and composition are used for building new labels for modal operators.
Such class includes grammar logic. These results were recently extended and
generalized by Demri [14]. In particular in [14] it is shown that every regular
grammar logics is decidable, where also more expressive logics including struc-
tured modalities of the form a; b, a ∪ b and a? are considered. Grammar logics
with definitions of complex actions as inclusion axioms could fall in the class of
context-free grammar logics or in the decidable class of regular grammar logics,
depending on the form of the axioms. As concern the complexity problem, we
refer also to [14] where some complexity results for grammar logics are presented.

Procedures can be used to describe the complex behavior of an agent, as
shown in the following example.

Example 4. Let us suppose that our robot has to achieve the goal of closing
a door I of the room (see Fig. 1). By the following axioms we can define
close door(I), i.e. the procedure specifying the action plans the robot may exe-
cute for achieving the goal of closing the door I.

(k) 〈close door(I)〉ϕ ⊂ 〈B¬open(I)?〉ϕ
(l) 〈close door(I)〉ϕ ⊂ 〈(Bopen(I) ∧ Bin front of(I))?〉〈toggle switch〉ϕ
(m) 〈close door(I)〉ϕ ⊂ 〈(Uopen(I) ∧ Bin front of(I))?〉

〈sense door(I)〉〈close door(I)〉ϕ
(n) 〈close door(I)〉ϕ ⊂ 〈(Mopen(I) ∧ B¬in front of(I))?〉

〈go to door(I)〉〈close door(I)〉ϕ
2 For sake of brevity, sometimes we will write these axioms as 〈p0〉ϕ ⊂
〈p1; p2; . . . ; pn〉ϕ, where the operator “;” is the sequencing operator of dynamic logic:
〈a; b〉ϕ ≡ 〈a〉〈b〉.
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The definition of close door is recursive. The complex behavior defined is based
on the primitive actions toggle switch(I), go to door(I) and on the sensing ac-
tion sense door(I). toggle switch(I) is ruled by the action laws (a-d) in Exam-
ple 1, and by precondition law (e) above. sense door(I) is ruled by axiom (f)
and by laws (g-j) in Example 3, while the simple action clauses for go to door(I)
are given in the following:

(o) ✷(B¬in front of(I) ∧ B¬out room ⊃ 〈go to door(I)〉true)
(p) ✷(true ⊃ [go to door(I)]Bin front of(I))
(q) ✷(true ⊃ [go to door(I)]Min front of(I))
(r) ✷(Bin front of(J) ⊃ [go to door(I)]B¬in front of(J))
(s) ✷(Min front of(J) ⊃ [go to door(I)]M¬in front of(J)))

Now we can define all door closed, which builds upon close door(I) and specifies
how to achieve the goal of closing all doors, assuming the robot to be initially
inside the room.

(t) 〈all doors closed〉ϕ ⊂ 〈close door(door1)〉〈close door(door2)〉ϕ.
(u) 〈all doors closed〉ϕ ⊂ 〈close door(door2)〉〈close door(door1)〉ϕ.

Notice that the two clauses defining the procedure all doors closed are not mu-
tually exclusive: the doors can be closed in any order. The clauses specify al-
ternative recipes that the robot can follow to close all the doors, each of them
leading the robot to reach a different position at the end of the task.

2.4 Reasoning on Dynamic Domain Descriptions

In general, a particular dynamic domain will be described in terms of suitable
laws and axioms describing precondition and effects of atomic actions, axioms
describing the behavior of complex actions and a set of epistemic fluents describ-
ing the initial epistemic state

Definition 1 (Dynamic Domain Description). Given a set A of atomic
world actions, a set S of sensing actions, and a set P of procedure names, let
ΠA be a set of simple action clauses for world actions, ΠS a set of axioms of
form (4) for sensing actions, ΠP a set of axioms of form (8). A dynamic domain
description is a pair (Π,S0), where Π is the tuple (ΠA, ΠS , ΠP) and S0 is a
consistent and complete set of epistemic fluent literals representing the beliefs of
the agent in the initial state.

Note that ΠA contains also the simple actions clauses for the primitive actions
that are elements of the non deterministic choice in axioms for sensing actions.

Example 5. An example of domain description is obtained by taking as ΠA
the set of simple action clauses in Examples 1, 3 and 4 plus the formula (e),
as ΠS the axiom (f) in Example 3 and as ΠP the set of procedure axioms
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(k-m, t-u) in Example 4. One possible initial set of beliefs is given by state
s = {Bin front of(door2),B¬in front of(door1),B¬out room,Uopen(door1),
Bopen(door2)}.

Given a domain description, we can formalize a well known form of reasoning
about actions, called temporal projection, where the reasoning task is to predict
the future effects of actions on the basis of (possibly incomplete) information
on preceding states. In particular, we formalize the temporal projection problem
“given an action sequence a1, . . . , an, does the condition Fs hold after the ex-
ecution of the actions sequence starting from the initial state?” by the query
〈a1〉 . . . 〈an〉Fs (n ≥ 0), where Fs is a conjunction of epistemic literals. 3 We can
generalize this query to complex actions p1, p2, . . . , pn by:

〈p1〉〈p2〉 . . . 〈pn〉Fs (n ≥ 0) (9)

where pi, i = 1, . . . , n, is either an atomic action (including sensing actions), or a
procedure name, or a test. If n = 0 we simply write the above goal as Fs. Query
(9) succeeds if it is possible to find a (terminating) execution of p1; p2; . . . ; pn
leading to a state where Fs holds. Intuitively, when we are faced with a query
〈p〉Fs we look for those terminating execution sequences which are plans to bring
about Fs. In this way we can formalize the planning problem: “given an initial
state and a condition Fs, is there a sequence of actions that (when executed from
the initial state) leads to a state in which Fs holds?”. The procedure definitions
constrain the search space of reachable states in which to search for the wanted
sequence4.

Example 6. Consider the domain description in Example 5, with the difference
that the robot knows that also door1 is open. The query

〈all door closed〉(B¬open(door1) ∧ B¬open(door2))

amounts to ask whether it is possible to find a terminating execution of the
procedure all door closed (a plan) which leads to a state where both doors are
closed. One terminating execution sequence is the following:

toggle switch(door2); go to door(door1); toggle switch(door1)

3 The Frame Problem

The frame problem is known in the literature on formalization of dynamic do-
mains as the problem of specifying those fluents which remain unaffected by the
3 Notice that, since primitive actions a ∈ A defined in our domain descriptions are

deterministic w.r.t the epistemic state (see semantic property 2(c) in section 4.1),
the equivalence 〈a〉Fs ≡ [a]Fs ∧ 〈a〉true holds for actions a defined in the domain
description, and then, the success of the existential query 〈a1〉 . . . 〈an〉Fs entails the
success of the universal query [a1] . . . [an]Fs.

4 Note that, as a special case, we can define a procedure p which repeatedly selects
any atomic action, so that all the atomic action sequences can be taken into account.
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execution of a given action. In our formalization, we provide a non-monotonic
solution to the frame problem. Intuitively, the problem is faced by using persis-
tency assumptions: when an action is performed, any epistemic fluent F which
holds in the state before executing the action is assumed to hold in the resulting
state unless the action makes it false. As in [6], we model persistency assump-
tions by abductive assumptions: building upon the monotonic interpretation of
a dynamic domain description we provide an abductive semantics to account for
this non-monotonic behavior of the language.

First of all, let us introduce some definitions. Given a dynamic domain de-
scription (Π,S0), let us call L(Π,S0) the propositional modal logic on which
(Π,S0) is based. The axiomatization of L(Π,S0) contains all the axioms defined
at the beginning of section 2 and the axioms ΠP and in ΠS , characterizing
complex actions and sensing actions, respectively. The action laws for primitive
actions in ΠA and the initial beliefs in S0 define a theory fragment Σ(Π,S0) in
L(Π,S0). The model theoretic semantics of the logic L(Π,S0) is given through
a standard Kripke semantics with inclusion properties among the accessibility
relations [1]. The abductive semantics builds on monotonic logic L(Π,S0) and
is defined in the style of Eshghi and Kowalski’s abductive semantics for nega-
tion as failure [16]. We define a new set of atomic propositions of the form
M[a1][a2] . . . [am]F and we take them as being abducibles.5 Their meaning is
that the epistemic fluent F can be assumed to hold in the state obtained by exe-
cuting primitive actions a1, a2, . . . , am. Each abducible can be assumed to hold,
provided it is consistent with the domain description (Π,S0) and with other
assumed abducibles. More precisely, we add to the axiom system of L(Π,S0) the
persistency axiom schema:

[a1][a2] . . . [am−1]F ∧ M[a1][a2] . . . [am−1][am]F ⊃ [a1][a2] . . . [am−1][am]F (10)

where a1, a2, . . . , am (m > 0) are primitive actions, and F is an epistemic
fluent (either Bl or Ml). Its meaning is that, if F holds after the action se-
quence a1, a2, . . . , am−1, and F can be assumed to persist after action am (i.e.,
it is consistent to assume M[a1][a2] . . . [am]F ), then we can conclude that F
holds after performing the sequence of actions a1, a2, . . . , am.

Given a domain description (Π,S0), let |= be the satisfiability relation in the
monotonic modal logic L(Π,S0) defined above.

Definition 2 (Abductive solution for a dynamic domain description).
A set of abducibles ∆ is an abductive solution for (Π,S0) if, for every epistemic
fluent F :

a) ∀M[a1][a2] . . . [am]F ∈ ∆, Σ(Π,S0) ∪∆ �|= [a1][a2] . . . [am]¬F
b) ∀M[a1][a2] . . . [am]F �∈ ∆, Σ(Π,S0) ∪∆ |= [a1][a2] . . . [am]¬F .

5 Notice that M is not a modality. Rather, Mα is the notation used to denote a new
atomic proposition associated with α. This notation has been adopted in analogy to
default logic, where a justification Mα intuitively means “α is consistent”.
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Condition a) is a consistency condition, which guarantees that each assump-
tion cannot be assumed if its “complementary” formula holds. Condition b) is a
maximality condition which forces an abducible to be assumed, unless its “com-
plement” is proved. When an action is applied in a certain state, persistency
of those fluents which are not modified by the direct effects of the action, is
obtained by maximizing persistency assumptions.

Let us now define the notion of abductive solution for a query in a domain
description.

Definition 3 (Abductive solution for a query). Given a domain descrip-
tion (Π,S0) and a query 〈p1; p2; . . . ; pn〉Fs, an abductive solution for the query
in (Π,S0) is defined to be an abductive solution ∆ for (Π,S0) such that Σ(Π,S0)∪
∆ |= 〈p1; p2; . . . ; pn〉Fs.

The consistency of an abductive solution, according to Definition 2, is guar-
anteed by the seriality of B (from which ¬(Bl ∧ B¬l) holds for any literal l).
However the presence of action laws with contradictory effects for a given ac-
tion may cause unintended solutions which are obtained by the contraposition
of action laws. Such unintended solutions can be avoided by introducing an e-
consistency requirement on domain descriptions, as for the language A in [15].
Essentially we require that, for any set of action laws (for a given action) which
may be applicable in the same state, the set of their effects is consistent. Assum-
ing that the domain description is e-consistent, the following property holds for
abductive solutions.

Proposition 1. Given an e-consistent dynamic domain description (Π,S0),
there is a unique abductive solution for (Π,S0).

4 Proof Procedure: Finding Correct Plans

In section 4.1 we present a proof procedure which constructs a linear plan, by
making assumptions on the possible result of sensing actions which are needed for
the plan to reach the wanted goal. In section 4.2 we introduce a proof procedure
that constructs a conditional plan which achieves the goal for all the possible
outcomes of the sensing actions.

4.1 Linear Plan Generation

In this section we introduce a goal directed proof procedure based on negation as
failure (NAF) which allows a query to be proved from a given dynamic domain
description. From a procedural point of view our non-monotonic way of dealing
with the frame problem consists in using negation as failure, in order to verify
that the complement of the epistemic fluent F is not made true in the state
resulting from an action execution, while in the modal theory we adopted an
abductive characterization to deal with persistency. However, it is well studied
how to give an abductive semantics for NAF [16].
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The first part of the proof procedure, denoted by “ �ps ” and presented in
Fig. 2, deals with the execution of complex actions, sensing actions, primitive
actions and test actions. The proof procedure reduces the complex actions in the
query to a sequence of primitive actions and test actions, and verifies if execution
of the primitive actions is possible and if the test actions are successful. To do
this, it reasons about the execution of a sequence of primitive actions from
the initial state and computes the values of fluents at different states. During a
computation, a state is represented by a sequence of primitive actions a1, . . . , am.
The value of fluents at a state is not explicitly recorded but it is computed when
needed in the computation. The second part of the procedure, denoted by “ �fs ”
and presented in Fig. 3, allows the values of fluents in a state to be determined.

A query of the form 〈p1; p2; . . . ; pn〉Fs, where pi, 1 ≤ i ≤ n (n ≥ 0), is either
a primitive action, or a sensing action, or a procedure name, or a test, succeeds
if it is possible to execute p1, p2, . . . , pn (in the order) starting from the current
state, in such a way that Fs holds at the resulting state. In general, we will need
to establish if a goal holds at a given state. Hence, we will write:

a1, . . . , am �ps 〈p1; p2; . . . ; pn〉Fs with answer (w.a.) σ

to mean that the query 〈p1; p2; . . . ; pn〉Fs can be proved from the domain de-
scription (Π,S0) at the state a1, . . . , am with answer σ, where σ is an action
sequence a1, . . . , am, . . . am+k which represents the state resulting by execut-
ing p1, . . . , pn in the current state a1, . . . , am. We denote by ε the initial state.

The five rules of the derivation relation �ps in Fig. 2 define, respectively, how
to execute procedure calls, test actions, sensing actions and primitive actions:6

To execute a complex action p we non-deterministically replace the modality
〈p〉 with the modality in the antecedent of a suitable axiom for it (rule 1). To
execute a test action (Fs)?, the value of Fs is checked in the current state. If Fs
holds in the current state, the state action is simply eliminated, otherwise the
computation fails (rule 2). To execute a primitive action a, first we need to verify
if that action is possible by using the precondition laws. If these conditions hold
we can move to a new state in which the action has been performed (rule 3).
To execute a sensing action s (rule 4) we non-deterministically replace it with
one of the primitive actions which define it (see Section 2.2), that, when it is
executable, will cause Bl and B¬l′, for each l′ ∈ dom(s), with l �= l′. Rule 5)
deals with the case when there are no more actions to be executed. The sequence
of primitive actions to be executed a1, . . . , am has been already determined and,
to check if Fs is true after a1, . . . , am, proof rules 6)-10) below are used.

The second part of the procedure (see Fig. 3) determines the derivability of an
epistemic fluent conjunction Fs at a state a1, . . . , am, denoted by a1, . . . , am �fs
Fs, and it is defined inductively on the structure of Fs.
6 Note that it can deal with a more general form of action laws and precondition laws

than the ones presented in Section 2. In particular, it deals with action law of the
form ✷(Fs ⊃ [a]F ) and precondition law of the form ✷(Fs ⊃ 〈a〉true), where Fs is an
arbitrary conjunction of epistemic fluents and F is an epistemic fluent, respectively.
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1)

a1, . . . , am �ps 〈p′1; . . . ; p′n′ ; p2; . . . ; pn〉Fs w. a. σ

a1, . . . , am �ps 〈p; p2; . . . ; pn〉Fs w. a. σ

where p ∈ P and
〈p〉ϕ⊂〈p′1; . . . ; p′n′〉ϕ

∈ ΠP

2)

a1, . . . , am �fs Fs
′ a1, . . . , am �ps 〈p2; . . . ; pn〉Fs w. a. σ

a1, . . . , am �ps 〈(Fs′)?; p2; . . . ; pn〉Fs w. a. σ

3)

a1, . . . , am �fs Fs
′ a1, . . . , am, a �ps 〈p2; . . . ; pn〉Fs w. a. σ

a1, . . . , am �ps 〈a; p2; . . . ; pn〉Fs w. a. σ

where a ∈ A and
✷(Fs′ ⊃ 〈a〉true)

∈ ΠA

4)

a1, . . . , am �ps 〈sBl; p2; . . . ; pn〉Fs w. a. σ

a1, . . . , am �ps 〈s; p2; . . . ; pn〉Fs w. a. σ
where s ∈ S and
l ∈ dom(s)

5)

a1, . . . , am �fs Fs

a1, . . . , am �ps 〈ε〉Fs w. a. σ
where

σ = a1; . . . ; am

Fig. 2. The derivation relation �ps

An epistemic fluent F holds at state a1, a2, . . . , am if: either F is an immediate
effect of action am, whose preconditions hold in the previous state (rule 7a); or
the last action, am, is an ad hoc primitive action sF (introduced to model the
sensing action s), whose effect is that of adding F to the state(rule 7b); or F
holds in the previous state a1, a2, . . . , am−1 and it persists after executing am
(rule 7c); or a1, a2, . . . , am is the initial state and F is in it. Notice that rule 7(c)
allows to deal with the frame problem: F persists from a state a1, a2, . . . , am−1

to the next state a1, a2, . . . , am unless am makes ¬F true, i.e. it persists if ¬F
fails from a1, a2, . . . , am. In rule 7c not represents negation as failure.

We say that a query 〈p1; p2; . . . ; pn〉Fs succeeds from a dynamic domain de-
scription (Π,S0) if it is operationally derivable from (Π,S0) in the initial state ε
by making use of the above proof rules with the execution trace σ as answer (i.e.
ε �ps 〈p1; p2; . . . ; pn〉Fs with answer σ). Notice that the proof procedure does not
perform any consistency check on the computed abductive solution. However,
under the assumption that the domain description is e-consistent and that the
beliefs on the initial state S0 are consistent, soundness of the proof procedure
above can be proved w.r.t. the unique acceptable solution.

Theorem 1. Let (Π,S0) be an e-consistent dynamic domain description and let
〈p1; p2; . . . ; pn〉Fs be a query. Let ∆ be the unique abductive solution for (Π,S0).
If 〈p1; p2; . . . ; pn〉Fs succeeds from (Π,S0) with answer σ, then Σ(Π,S0) ∪ ∆ |=
〈p1; p2; . . . ; pn〉Fs.
The proof is omitted for sake of brevity. It is by induction on the rank of the
derivation of the query, and it makes use of a soundness and completeness result
for the monotonic part of the proof procedure presented in this section w.r.t. the
monotonic part of the semantics. Indeed, if the assumptions M[a1][a2] . . . [am]F
are regarded as facts rather then abducibles and they are added to the program,
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6) a1, . . . , am �fs true

7a)

a1, . . . , am−1 �fs Fs
′

a1, . . . , am �fs F
where m > 0 and

✷(Fs′ ⊃ [am]F ) ∈ ΠA

7b) a1, . . . , am �fs F where am = sF

7c)

not a1, . . . , am �fs ¬F a1, . . . , am−1 �fs F

a1, . . . , am �fs F where m > 0

7d) ε �fs F where F ∈ S0

8)

a1, . . . , am �fs Fs1 a1, . . . , am �fs Fs2

a1, . . . , am �fs Fs1 ∧ Fs2

9)

a1, . . . , am �fs Bl
a1, . . . , am �fs Ml

Fig. 3. The derivation relation �fs

the non-monotonic step 7c) in the proof procedure can be replaced by a mono-
tonic one. The resulting monotonic proof procedure can be shown to be sound
and complete with respect to the Kripke semantics of the modal logic L(Π,S0).

Our proof procedure computes just one solution, while abductive semantics
may give multiple solutions for a domain description. As stated in proposition 1,
the requirement of e-consistency ensures that a domain description has a unique
abductive solution. Under these condition we argue that completeness of the
proof procedure can be proved.

Since a query 〈p1; . . . ; pn〉Fs is an existential formula, a successful answer σ
represents a possible execution of the sequence p1, . . . , pn. Indeed, for the answer
σ we can prove the Proposition 2. Property (a) says that σ is a possible execution
of p1, . . . , pn while (b) says that the plan σ is correct w.r.t. Fs. Notice that, since
σ is a sequence of primitive actions a ∈ A, property (b) is a consequence of the
fact that there is only one epistemic state reachable executing an action a, i.e.
primitive actions are deterministic, as stated by property (c).

Proposition 2. Let (Π,S0) be an e-consistent dynamic domain description and
let 〈p1; p2; . . . ; pn〉Fs be a query. Let ∆ be the unique abductive solution for
(Π,S0). If ε �ps 〈p1; p2; . . . ; pn〉Fs with answer σ then:

(a) Σ(Π,S0) ∪∆ |= 〈σ〉Fs ⊃ 〈p1; p2; . . . ; pn〉Fs;
(b) Σ(Π,S0) ∪∆ |= [σ]Fs;
(c) Σ(Π,S0) ∪∆ |= 〈a〉Fs ⊃ [a]Fs
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4.2 Conditional Plan Generation

In this section we introduce a proof procedure that constructs a conditional plan
which achieves the goal for all the possible outcomes of the sensing actions. Let
us start with an example.

Example 7. Consider the Example 5 and the query

〈all door closed〉(B¬open(door1) ∧ B¬open(door2))

We want to find an execution of all door closed reaching a state where all the
doors of the room are closed. When it is unknown in the initial state if door1 is
open, the action sequence the agent has to perform to achieve the goal depends on
the outcome of the sensing action sense door(door1). Indeed, after performing
the action sequence toggle switch(door2); go to door(door1) the robot has to
execute the sensing on door1 in order to know if it is open or not. The result of
sensing conditions the robot’s future course of actions: if it comes to know that
the door it is closed, it will execute the action toggle switch(door1), otherwise
it will not do anything. Given the query above, the proof procedure described in
the previous section extracts the following primitive action sequences, making
assumptions on the possible results of sense door(door1):

- toggle switch(door2); go to door(door1);
sense door(door1)Bopen(door1) ; toggle switch(door1) and

- toggle switch(door2); go to door(door1); sense door(door1)B¬open(door1).

Instead the proof procedure we are going to present, given the same query, will
look for a conditional plan that achieves the goal B¬open(door1)∧B¬open(door2)
for any outcome of the sensing, as the following:

toggle switch(door2);
go to door(door1);
sense door(door1);

((Bopen(door1)?);
toggle switch(door1))∪

(B¬open(door(1)?)))

Intuitively, given a query 〈p〉Fs, the proof procedure we are going to define
computes a conditional plan σ (if there is one), which determines the actions to
be executed for all possible results of the sensing actions. All the executions of
the conditional plan σ are possible behaviours of the procedure p. Let us define
inductively the structure of such conditional plans.

Definition 4. Conditional plan

1. a (possibly empty) action sequence a1; a2; . . . ; an is a conditional plan;
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2. if a1; a2; . . . an is an action sequence, s ∈ S is a sensing action, and σ1, . . . , σt
are conditional plans then a1; a2; . . . ; an; s; ((Bl1?);σ1 ∪ . . . ∪ (B¬lt?);σt) is
a conditional plan, where l1, . . . , lt ∈ dom(s).

Given a query 〈p1; p2; . . . ; pn〉Fs the proof procedure constructs, as answer, a
conditional plan σ such that: 1) all the executions of σ are possible executions
of p1; p2; . . . ; pn and 2) all the executions of σ lead to a state in which Fs holds.
The proof procedure is defined on the bases of the previous one. We simply need
to replace step 4) above (dealing with the execution of sensing actions) with the
following step:

4-bis)

∀li ∈ F , a1, . . . , am �ps 〈sBli ; p2; . . . ; pn〉Fs w. a. a1; . . . ; am; sBli ;σ′
i

a1, . . . , am �ps 〈s; p2; . . . ; pn〉Fs w. a. a1;. . . ;am; s; ((Bl1?);σ′
1 ∪ . . . ∪ (Blt?); σ′

t)

where s ∈ S and F = {l1, . . . , lt} = dom(s).
As a difference with the previous proof procedure, when a sensing action is

executed, the procedure has to consider all possible outcomes of the action, so
that the computation splits in more branches. If all branches lead to success, it
means that the main query succeeds for all the possible results of action s. In
such a case, the conditional plan σ will contain the σ′i’s as alternative sub-plans.

The following theorem states the soundness of the proof procedure for gener-
ating conditional plans (a) and the correctness of the conditional plan σ w.r.t. the
conjunction of epistemic fluents Fs and the initial situation S0 (b). In particular,
(b) means that executing the plan σ (constructed by the procedure) always leads
to a state in which Fs holds, for all the possible results of the sensing actions.

Theorem 2. Let (Π,S0) be a dynamic domain description and let 〈p1; p2; . . .
; pn〉Fs be a query. Let ∆ be the unique abductive solution for (Π,S0). If
〈p1; p2; . . . ; pn〉Fs succeeds from (Π,S0) with answer σ, then:

(a) Σ(Π,S0) ∪∆ |= 〈p1; p2; . . . ; pn〉Fs;
(b) Σ(Π,S0) ∪∆ |= [σ]Fs.

5 Implementation and Applications

On the basis of the presented logic formalization, a logic programming language,
named DyLOG, has been defined. An interpreter based on the proof procedure
introduced in Section 4 has been implemented in Sicstus Prolog. This imple-
mentation allow DyLOG to be used as an ordinary programming language for
executing procedures which model the behavior of an agent, but also for reasoning
about them, by extracting linear or conditional plans. Moreover, the implemen-
tation deals with domain descriptions containing a simple form of causal laws [6]
and functional fluents with associated finite domain, which are not explicitly
treated in this paper.

In [7] it is shown how DyLOG can be used to model various kind of agents,
such as goal directed or reactive agents. In particular, we experimented the use
of DyLOG as an agent logic programming language to implement Adaptive Web
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Applications, where a personalized dynamical site generation is guided by the
user’s goal and constraints [3,4]. When a user connects to a site managed by
one of our agents, (s)he does not access to a fixed graph of pages and links but
(s)he interacts with an agent that, starting from a knowledge base specific to
the site and from the requests of the user, builds an ad hoc site structure. In our
approach such a structure corresponds to a plan aimed at pursuing the user’s
goal, which is automatically generated by exploiting the planning capabilities of
DyLOG agents. Run-time adaptation occurs at the navigation level. Indeed the
agent defines the navigation possibilities available to the user and determines
which page to display based on the current dynamics of the interaction.

In order to check the validity of the proposed approach, we have implemented
a client-server agent system, named WLog, and we have applied it to the spe-
cific case of a virtual computer seller. In this application the users connect to
the structureless web site for having a PC assembled; the assembly process is
done through the interaction between the user and a software agent, the virtual
seller. Similarly to what happens in a real shop, the choice of what to buy is
taken thanks to a dialogue, guided by the seller, that ends up with the defi-
nition of a configuration that satisfies the user. In the current implementation
the server-side of the system consists of two kinds of agents: reasoners and ex-
ecutors. Reasoners are programs written in DyLOG, whereas executors are Java
Servlets embedded in an Apache web server. A DyLOG reasoner generates pre-
sentation plans; once built the plan is executed and the actual execution of
the actions in the plan consists in showing web pages to the user. Actual ex-
ecution is the task of the executors. The connection between the two kinds of
agents has the form of message exchange. Technical information about the sys-
tem, the Java classes that we defined, and the DyLOG programs can be found
at http://www.di.unito.it/~alice.

6 Conclusions and Related Work

In this paper we presented a logic formalism for reasoning about actions, which
combines the capabilities to handle actions affecting knowledge and to express
complex actions in a modal action theory.

The problem of reasoning about actions in presence of sensing and of incom-
plete states has been tackled by many authors in the literature. In the Scherl
and Levesque’ work [25] a framework has been proposed to formalize knowledge-
producing actions in classical logic, adapting the possible world model of knowl-
edge to the situation calculus. As a difference, we describe an epistemic state
by a set of epistemic literals, a simplification similar to the one considered in [8]
when 0-approximate states are defined, which leads to a loss of expressivity, but
to a gain in tractability.

In [21] Levesque formulates the planning task in domains including sensing.
Starting from the theory of sensing actions in situation calculus presented in [25],
he defines complex plans as robot programs, that may contain sensing actions,
conditionals and loops, and specifies the planning task as the problem to find a
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robot program achieving a desired goal from a certain initial state. However the
paper does not suggest how to generate automatically such robot plans, while
we presented a proof procedure to deal with it (Section 4.2).

The works in [23,8] have tackled the problem of extending the Gelfond and
Lifschitz’ language A for reasoning about complex plans in presence of sens-
ing and incomplete information. In [23] Lobo et al. introduce the language AK

which provides both actions to increase agent knowledge and actions to lose
agent knowledge. It has a general semantics in which epistemic states are rep-
resented by sets of worlds. However, in AK it is not possible for the agent to
query itself about its knowledge (the agent has no introspection). Precondition
laws to rule executability of actions are not provided. In particular, knowledge
laws have preconditions on the effects of actions rather than on their executabil-
ity. Given a domain description in AK , a query of the form φ after [α] is
true if φ holds in every model of D after the execution of the plan α in the
initial state, where α is a complex plan, possibly including conditionals and
iterations. As a difference, rather than verifying the correctness of a plan, in
this paper we have addressed the problem of finding a finite conditional plan
(a possible execution of a procedure) which is provably correct with respect to
a given condition. In [8] Baral and Son define an action description language,
also called AK , which deals with sensing actions and distinguishes between the
state of the world and the state of knowledge of an agent about the world. The
semantics of the language is proved to be equivalent to the one in [23] when
rational models are considered. Baral and Son [8] define several sound approxi-
mation of the language AK with a smaller state space with respect to AK , based
on three-valued interpretations. Our approach has strong similarities with the
0-Approximation. Indeed, our epistemic states are, essentially, three-valued mod-
els and, as for the 0-Approximation, our language does not provide reasoning
about cases. The meaning of queries in [8] is substantially similar to the one
in [23] and, therefore, it is different from ours. As a difference, conditional plans
in [8] do not allow iteration.

In [13] De Giacomo and Rossati present a minimal knowledge approach to
reasoning about actions and sensing, by proposing a formalism which combines
the modal µ-calculus and autoepistemic logic. They have epistemic formulas Bp
(where p is a literal conjunction) and they allow precondition laws of the form
Bp ⊃ 〈a〉true and action laws of the form Bp ⊃ [a]Bq. On the other hand, their
domain description does not contain formulas of the form Mp ⊃ [a]Mq, which
in our case are needed for describing the possible effects of an action when there
is uncertainty about its preconditions. Moreover, actions which make the agent
to lose information are not provided. An algorithm is introduced to compute a
transition graph from an action specification and verify properties of the possible
executions through model checking. The treatment of sensing actions in the
construction of the transition graph is similar to ours, in that, a sensing action
is regarded as the non-deterministic choice of two atomic actions. As a difference,
sensing actions do not affect fluents whose value is known before their execution.
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In a recent work Thielscher [27] faces the problem of representing a robot’s
knowledge about its environment in the context of the Fluent Calculus, a formal-
ism for reasoning about actions based on predicate logic. In order to account for
knowledge, basic fluent calculus is extended by introducing the concept of possi-
ble world state and defining knowledge of a robot in terms of possible states. The
formalism deals with sensing actions and it allows to distinguish between state
of the world and state of knowledge of an agent about the world. A monotonic
solution to the frame problem for knowledge is provided, by means of suitable
knowledge update axioms but, as a difference with [8], indipendent specifications
of state and knowledge update can be given. A concept of conditional action,
denoted by If(f, a), is introduced in order to deal with planning in presence of
sensing. Such If -constructs allow the robot to condition its course of actions
on the result of sensing actions included in its plan. However If -constructs uses
only atomic conditions, while our formalism allow to express as complex actions
conditional constructs with arbitrary complex conditions.

As concerns the problem of defining complex actions, there is a close relation
between our language and GOLOG [22], though, from the technical point of
view, it is based on a different approach. While our language makes use of modal
logic, GOLOG is based on classical logic and, more precisely, on the situation
calculus. In our case, procedures are defined as axioms of our modal logic, while
in GOLOG they are defined by macro expansion into formulae of the situation
calculus. GOLOG definition is very general, but it makes use of second order
logic to define iteration and procedure definition. Hence there is a certain gap
between the general theory on which GOLOG is based and its implementation
in Prolog. In contrast, we have tried to keep the definition of the semantics of
the language and of its proof procedure as close as possible.
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Abstract. We formulate a narrowing-based decision procedure for
E -unifiability. Termination is obtained requiring a narrowing bound : a
bound on the length of narrowing sequences. We study general condi-
tions under which the method guarantees that E-unifiability is in NP.
The procedure is also extended to narrowing modulo AC (associativity
and commutativity). As an application of our method, we prove NP -
completeness of unifiability modulo bisimulation in process algebra with
proper iteration, significantly extending a result in [8]. We also give
(new) proofs, under a unified point of view, of NP -decidability of I ,
ACI, ACI1-unifiability and of unifiability in quasi-groups and central
groupoids.

1 Introduction

E-unification is concerned with solving term equations modulo an equational
theory E [11,3]. It is a fundamental tool in theorem proving, logic programming
and type assignment systems. Narrowing is a well-known technique that can
be used as a general E-unification procedure in the presence of a term rewrit-
ing system (TRS) [2]. Narrowing a term is finding the minimal instantiation of
it such that one rewrite step becomes applicable, and to apply it. If this pro-
cess is applied to an equation and is iterated until finding an equation whose
both terms are syntactically unifiable, then the composition of the most gen-
eral unifier with all the substitutions computed during the narrowing sequence
yields an E-unifier of the initial equation. The narrowing process that builds all
the possible narrowing sequences starting from the equation to be solved, is an
E-unification procedure that yields complete sets of unifiers, provided that E can
be presented by a convergent (i.e. confluent and terminating) rewrite system [3].
However, in general this procedure does not terminate.

Hullot [9] gives sufficient conditions for this procedure to be terminating.
His results also extend to equational narrowing. However, the TRS must sat-
isfy strong requirements and no complexity analysis of the procedure is given.
Furthermore, there is not much hope to find low complexity bounds, as long
as we want complete sets of unifiers, since in simple cases their cardinality is
unfeasible [14].
� Work carried out within the MURST project TOSCA (Theory of concurrency, higher
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However, constraint approaches to theorem proving [15,5] and logic program-
ming [6], need the computation of finite complete sets of unifiers no longer for
many applications. It is sufficient to decide solvability of the E-unification prob-
lems, namely E-unifiability.

Nieuwenhuis [18], using basic paramodulation techniques, shows that
E-unifiability is in NP if E is shallow (i.e. variables at depth at most one).
But there is no extension to equational paramodulation and being shallow is
very restrictive.

Here we study E-unifiability via narrowing. This paper does not aim to define
yet another refinement of the basic narrowing which does not destroy complete-
ness (for a survey, see [3]). We show how optimal and new complexity results
can be obtained considering a simple bound on the length of the basic narrow-
ing sequences. Our method is lazy, in the sense that we never compute unifiers.
Instead, we add equations to our unification problem, and only at the end we
check the unifiability of all the equations we have created.

We show that if for every rule l → r in a convergent TRS we have that r
is a subterm of l, then E-unifiability is in NP (where E is equivalent to the
TRS). This is enough, for example, to give (new) proofs of NP -decidability of
unifiability in quasi-groups, central groupoids and of I-unifiability (idempotency,
i.e. x+ x ≈ x).

Of course not every theory can be presented as a convergent TRS. One of the
main reasons is that some (sets of) axioms cannot be oriented into terminating
(sets of) rewrite rules. Among these there is AC ( associativity, i.e. x+(y+ z) ≈
(x + y) + z, and commutativity, i.e. x + y ≈ y + x), satisfied by many common
binary operations. Consequently, we extend our results to narrowing modulo
AC. Being lazy is particularly important in this case, because the cardinality of
a minimal complete set of AC-unifiers may be doubly-exponential [14,17].

The most important application we consider here is in the field of process alge-
bra [4]: NP -completeness of unifiability modulo bisimulation in minimal process
algebra with proper iteration [7]. This is a significant extension of a result in [8].

Again, we get new proofs of classical results: NP -decidability of ACI,ACI1-
unifiability (1 stands for existence of unity, i.e. x+ 1 ≈ x).

This paper is organized as follows. In the next section we give some prelimi-
naries. In Section 3 we define our narrowing-based decision procedure, study its
complexity and compare our results with Hullot’s and with Nieuwenhuis’. We
also give some applications. In Section 4 we extend our results to AC-narrowing
and detail an application in process algebra. We also discuss other applications.
Section 5 is a conclusion.

2 Preliminaries

We assume that the reader is familiar with terms, equational theories,
E-unification, term rewriting systems and related topics [2]. We denote by
Term(

∑⋃
X) the set of terms generated by the signature

∑
and the set of

variable symbols X . We denote the set of positions of a term s by Pos(s). For
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p ∈ Pos(s), s|p is the subterm of s at position p, and s[t]p is the term obtained
from s by replacing the subterm at position p by the term t. We denote by Pos(s)
the set of non variable positions of s: {p : p ∈ Pos(s) and s|p /∈ X}. The size of
a term s is |Pos(s)|. We may write a substitution θ as {x1 ← θx1, ..., xn ← θxn}
if its domain, denoted by Dom(θ), is {x1, ..., xn}. Let E be an equational theory.
It is convenient to see an equation over

∑
modulo E as a term with top symbol

=?
E (=?

E /∈
∑

), i.e. s =?
E t where s, t ∈ Term(

∑∪X). We write θ |= s =?
E t for

θs =E θt. An E-unification problem over
∑

is a finite set of equations modulo E.
In this paper every E-unification problem is general, i.e. it may contain arbitrary
function symbols not occurring in E. Let Π be an E-unification problem. The
size of Π is

∑
e∈Π size(e). Π is E-unifiable if there is a substitution θ such that

for any e ∈ Π , θ |= e. In this case we write θ |= Π and θ is said to be a E-unifier.
If θ is a substitution, we write θΠ for {θe : e ∈ Π}.

A term rewriting system (TRS) T is a finite set of identities, called (rewrite)
rules and written l → r, such that for any l → r ∈ T , l /∈ X and var(l) ⊇ var(r)
(var(s) is the set of variables occurring in s). Let T be a TRS. We write s →T t
(s reduces to t) iff there are l → r ∈ T , p ∈ Pos(s) and a substitution θ such
that s|p = θl and t = s[θr]p. We write s →T/AC t (s reduces modulo AC to t) iff
there are terms s′, t′ such that s =AC s′ →T t′ =AC t. When considering →T/AC

we speak of an AC-TRS. Let T be an (AC-)TRS. If s →T (/AC) t we speak
of a reduction step. A term s is reducible if there is t such that s →T (/AC) t;
otherwise, s is in normal form. A substitution θ is said to be normalized if for
any x ∈ Dom(θ), θx is in normal form. T is convergent if it is confluent (modulo
AC) and terminating (modulo AC).

3 Narrowing

We start with the case where E is equivalent to a convergent TRS T . A system
is a couple Π ;K where Π is an E-unification problem and K a set of equations
(modulo ∅). We define our narrowing relation �:

Definition 1. Let Π ∪ {e};K be a system, p ∈ Pos(e) and l → r ∈ T . Then

Π ∪ {e[u]p};K �T Π ∪ {e[r]p};K ∪ {l =? u}
If Π ;K �T Π ′;K ′ then we say that Π ;K narrows in Π ′;K ′. We also speak

of a (narrowing) sequence Π1;K1 �T ...�T Πn;Kn, and we denote by�∗
T the

reflexive transitive closure of �T . In the following we will occasionally slightly
abuse this notation, narrowing systems where we have a term in place of the
E-unification problem.

Our narrowing relation is nothing but a lazy version of the basic narrowing
relation introduced by Hullot [9]. Moving the subterm u in K enforces the basic
restriction on future applications of the rule [3].

We are not interested in finding minimal complete set of E-unifiers [3], only
in E-unifiability. So in our setting narrowing gives a complete semi-decision
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Table 1. Rewrite rules for quasi-group theory

x ∗ (x\y)→ y (x ∗ y)/y → x
(x/y) ∗ y → x (x/y)\x → y
x\(x ∗ y)→ y x/(y\z) → y

procedure for E-unifiability. This means that, for every E-unification problem
Π , the following two conditions are equivalent:

1. Π is E-unifiable.
2. Π ; ∅�∗

T Π ′;K and Π ′ ∪K is syntactically unifiable.

However, this does not give rise to a terminating decision procedure for
E-unifiability. In fact some narrowing sequences may not terminate, and we
don’t know when we can stop following them.

Hullot [9] gives sufficient conditions for the narrowing to be a terminating
decision procedure for E-unifiability. He proves that, given a TRS T , if for ev-
ery l → r ∈ T every basic narrowing sequence starting from r terminates, then
every narrowing sequence starting from every term terminates. Using this fact,
one can give a decision procedure for I-unifiability. In fact the TRS {x+x → x}
is convergent and equivalent to I, and moreover it satisfies the Hullot condition
for termination, because there is no basic narrowing sequence starting from x.
Similarly, Hullot gets decidability of unifiability in quasi-group theory, whose the-
ory is equivalent to the convergent TRS reported in Table 1. Hullot’s approach
extends to narrowing modulo equational theories. But it gives no complexity
analysis of the procedure and the TRS must satisfy a quite strong requirement.

Nieuwenhuis [18] shows that E-unifiability is in NP if E is shallow (i.e.
variables at depth at most one). As a direct application one gets a new proof
that I-unifiability is in NP , but one can not prove the same for quasi-group
theory because it is not shallow. In fact being shallow is rather restrictive. In
addition, this approach gives no extensions to deduction modulo equational the-
ories.

Let’s consider an easy case which is not covered by any of the above ap-
proaches. Let T be the TRS {f(f(x)) → f(x)} convergent and equivalent to
E := {f(f(x)) ≈ f(x)}. Intuitively, E-unifiability looks like an easy task. But
we can’t apply Nieuwenhuis’ results because E is not shallow. Nor can we apply
Hullot’s results because there is a non-terminating narrowing sequence starting
from f(x), namely, using the non-lazy basic narrowing introduced by Hullot [9]:

f(x)�f(f(y))→f(y) f(y)�f(f(z))→f(z) f(z)� ...

However, suppose t ∈ Term(
∑⋃

X). If θ is normalized, how long can a re-
duction sequence starting from θt be? Clearly at most the number of occurrences
of f in t, which is less than size(t). So, if to every reduction sequence corresponds
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a narrowing sequence of the same length, in order to check the E-unifiability of
an equation s =?

E t it is sufficient to consider narrowing sequences as long as
max{size(s), size(t)}.

In order to formalize this idea we introduce a useful notation. We write
s →T,θ t to indicate the substitution θ involved in the reduction step. We write
s �→T t iff s →T,θ t and θ is normalized. Similarly, if Π and Π ′ are sets of
equations, we write Π �→T Π ′ iff Π = Π̂ ∪ {e}, Π ′ = Π̂ ∪ {e′} and e �→T e′.
We speak of an inner reduction step. Furthermore, we write s↓̄nT (Π ↓̄nT ) if s (Π)
reaches its normal form in at most n inner reduction steps, i.e. if there is no
sequence s �→T s1 �→T ... �→T sn �→T sn+1 (Π �→T Π1 �→T ... �→T Πn �→T

Πn+1).
The previous considerations lead to the following definition:

Definition 2. Let H be a computable function from the set of all E-unification
problems into the positive integers. H is a narrowing bound for T if for any E-
unification problem Π, if Π is unifiable then there is a unifier θ such that
θΠ ↓̄H(Π)

T .

The reader might wonder about the rationale for considering inner reductions.
In addition: why don’t we use the well-known innermost reductions? There is a
specific reason for this, explained at the end of Section 4.1.

We can now give our decision procedure for E-unifiability, when E is equiv-
alent to a convergent TRS T and H is a narrowing bound for T . Let Π be
an E-unification problem:

Decision Procedure

1. Guess n ≤ H(Π).
2. Guess a sequence Π ; ∅�T Π1;K1 �T ...�T Πn;Kn.
3. Answer ‘yes’ iff Πn ∪Kn is syntactically unifiable.

The proof of the completeness of the above decision procedure should be
substantially obvious [3,23].

3.1 Complexity

Our approach allows us to say something more than just decidability of E-
unifiability: we can prove it is in NP when there is a polynomial narrowing
bound:

Definition 3. A narrowing bound H is polynomial if it is polynomially com-
putable and there is a polynomial q such that for every E-unification problem Π,
H(Π) ≤ q(size(Π)).
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In fact, if there is a polynomial narrowing bound for T , then we can restrict
to considering only narrowing sequences whose length is bounded by a (fixed)
polynomial in the size of the problem. Moreover, our lazy approach guarantees
that if Π ;K �T Π ′;K ′ then size(Π ′ ∪ K ′) = O(size(Π ∪ K)). So the whole
narrowing sequence is polynomial in the size of the problem, and can therefore
be guessed in non-deterministic polynomial time. Noticing that general syntactic
unifiability is in P [19,3] concludes the proof of the following theorem.

Theorem 1. Let E be an equational theory and T a convergent TRS equivalent
to E. If there is a polynomial narrowing bound for T then E-unifiability is in
NP .

The point now is: how do we find a (polynomial) narrowing bound for a
TRS? The following corollary establishes a rather general result:

Corollary 1. Let E be an equational theory and T a convergent TRS equivalent
to E. If for every l → r ∈ T we have that r is a subterm of l, then E-unifiability
is in NP .

Proof. We prove by induction that for every term t and for every normalized
substitution θ, θt↓̄size(t)T . The result follows since for any e ∈ Π , θe↓̄size(e)T and
size(Π) =

∑
e∈Π size(e), so we have θΠ ↓̄size(Π)

T and therefore we can consider
H(Π) := size(Π).

We proceed with the induction:

– If t = x then θx is in normal form because θ is normalized.
– If t = f(t1, ..., tn) for n ≥ 0 then θt = f(θt1, ..., θtn). By induction, one gets
θt1↓̄size(t1)

T , ..., θtn↓̄size(tn)
T . If f(θt1 ↓T , ..., θtn ↓T ) →T t′ then t′ is in normal

form because it is a (proper) subterm of f(θt1 ↓T , ..., θtn ↓T ). So we perform
at most 1 +

∑n
i=1 size(ti) reduction steps, and we can conclude θt↓̄size(t)T .

��
Clearly, the existence of a polynomial narrowing bound for a TRS T does not

imply that r is a subterm of l for every rule l → r ∈ T . For example, the trivial
TRS {a → b} has a polynomial narrowing bound. We are currently working
on generalizations of the above corollary. However, it already gives interesting
results, which we detail in the next section.

3.2 Applications

We immediately get a new narrowing-based proof of the following well-known
result.

Theorem 2. I-unifiability is in NP .

Proof. The TRS {x + x → x} is convergent and equivalent to I. The result
follows because of Corollary 1. ��
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Notice that this last result is optimal: I-unifiability is NP -complete [13]. As
we noted before, I-unifiability can be showed to be in NP using the results
in [18]. However, our technique applies to non-shallow theories as well. We give
a couple of examples:

Theorem 3. Unifiability in quasi-group theory is in NP .

Proof. A convergent TRS equivalent to quasi-group theory is reported in Ta-
ble 1. The result follows because of Corollary 1. ��

The theory {(x ∗ y) ∗ (y ∗ z) ≈ y} defines central groupoids [2].

Theorem 4. Unifiability in central groupoids is in NP .

Proof. The following is a convergent TRS equivalent to {(x∗y)∗ (y ∗z) ≈ y} [2]:

(x ∗ y) ∗ (y ∗ z) → y
x ∗ ((x ∗ y) ∗ z) → x ∗ y
(x ∗ (y ∗ z)) ∗ z → y ∗ z

The result follows because of Corollary 1. ��

4 AC-Narrowing

In this section we extend our results to narrowing modulo AC. A special atten-
tion has always been devoted to this case [9,17], as A and C are well-suited for
being built-in due to their permutative nature and they often occur in practical
specifications (we will give an example in Section 4.2).

For simplicity, we assume that + is the only AC-symbol, i.e. interpreted as
an operator satisfying AC. Cases where there are several AC-symbols can be
treated analogously.

We extend our narrowing relation in a way which parallels inner equational
rewriting. One extends inner rewriting to inner AC-rewriting defining

s �→T/AC t iff s =AC s′ �→T t′ =AC t

for some s′, t′. We might then define our AC-narrowing relation in the following
way:

Π ∪ {e};K �T/AC Π ′;K ′ iff e′ =AC e and Π ∪ {e′};K �T Π ′;K ′

This would lead to a decision procedure for E-unifiability as in Section 3,
where the final system is checked for AC-unifiability instead of syntactic unifia-
bility (now K is a set of equations modulo AC).

However, the completeness is lost. In fact, the completeness of our narrowing
for E-unifiability rests on a variant of the Hullot property [9,11]:
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Definition 4. (Hullot property) For every normalized substitution θ:

if θe �→T/AC e′ then e; ∅�T/AC e′′;K

and there is a normalized substitution θ′ ⊇ θ such that θ′e′′ =AC e′ and θ′ |= K.

We now show that the introduced narrowing relation does not satisfy the
Hullot property. For readability we write x̄n for x1+ ...+xn and ān for a+ ...+a
(where there are n a’s).

Example 1. Let T := {x+ x → c} and E := AC ∪ {x + x ≈ c}. For every even
n > 1 consider the equation x̄n =?

E c. The substitution θ := {x1 ← a+ b, ..., xn
← a+ b} is normalized and we get:

θ(x̄n =?
E c) �→T/AC c+ b̄n =?

E c

The system x̄n =?
E c; ∅ could narrow in c =?

E c; x̄n =?
AC z+z but now c �= c+ b̄n.

So the Hullot property is not satisfied.
Other narrowing sequences lead to similar results.

The point is that every θxi in the above example is only partially involved in
the reduction step. I.e. θxi =AC ui+vi where ui is not involved in the reduction
step.

To overcome the incompleteness, we consider extensions of the equations.
We use them implicitly, that is coding them in the narrowing relation. This idea
first appeared in [21]. The reader may consult [22] for a comparison between
implicit and explicit [20] extensions, and for another example showing that AC-
paramodulation is incomplete without extensions. In many cases, it is sufficient
to consider single-variable extensions, i.e. given an equation s = t one considers
s+ x = t+ x where x is a new variable [20,17]. But in our framework this is not
sufficient. We will return to this later.

Recall we assume + is the only AC-symbol in
∑
. We denote by UngPos(s)

the set of variable positions unguarded in s, i.e. {p : p ∈ Pos(s), s|p ∈ X and if
p = qq′ with |q′| > 0 then s|q = t+ t′} [4].

Our AC-narrowing relation is then:

Definition 5. Let Π ∪ {e};K be a system, e =AC e′, p ∈ Pos(e′), l → r ∈ T
and y0, ..., yn−1 new variables where n ≤ |UngPos(e′|p)|. Then

Π ∪ {e};K �T/AC Π ∪ {e′[r + ȳn]p};K ∪ {l+ ȳn =?
AC e′|p}.

Using this relation, AC-narrowing is complete. For instance, in the previous
example we get:

x̄n =?
E c; ∅�T/AC c+ ȳn =?

E c; z + z + ȳn =?
AC x̄n

now considering θ′ := θ ∪ {z ←− ān/2, y1 ←− b, ..., yn ←− b} we see that the
Hullot property is satisfied.
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This example also explains the inequality n ≤ |UngPos(e′|p)|: the Hullot
property would not be satisfied using less than n new variables.

The notion of narrowing bound translates to the AC-case simply considering
inner reductions modulo AC. Let E be equivalent to a convergent AC-TRS T
and let H be a narrowing bound for T . Given an E-unification problem Π , the
following procedure decides its E-unifiability:

Decision Procedure (AC case)

1. Guess n ≤ H(Π).
2. Guess a sequence Π ; ∅�T/AC Π1;K1 �T/AC ...�T/AC Πn;Kn.
3. Answer ‘yes’ iff Πn ∪Kn is AC-unifiable.

Again, the proof of the completeness should be substantially obvious, but it
requires some technical notations to deal with AC-symbols [23].

4.1 Complexity

Implicit extensions do not affect the complexity of our decision procedure: all
we have to do is to guess the number of new variables, which is bounded by
the size of the term being considered. In addition, given a term s we can guess
in non-deterministic polynomial time any term s′ such that s =AC s′. Noticing
that AC-unifiability is in NP [12] gives the following:

Theorem 5. Let E be an equational theory and T a convergent AC-TRS equiv-
alent to E. If there is a polynomial narrowing bound for T then E-unifiability is
in NP .

Polynomial narrowing bounds exist for significant AC-TRS, as we shall see
in the next section. However, we can’t hope in a result as Corollary 1. To see
this, consider E := AC ∪ {a + b ≈ b} and T := {a + b → b}. The point is: if
a term s is in normal form, how many reductions do we need to take s + b to
its normal form? This clearly depends on the number of a’s in s, which might
be exponential in the size of the unification problem. More precisely, using an
argument similar to one in [19], we define for every n ≥ 1 the unification problem
Πn :=

x+ b =?
E b

x =?
E x1 + x1

x1 =?
E x2 + x2

...
xn−1 =?

E xn + xn
xn =?

E a

If θ |= Πn, then θx contains 2n a’s. Therefore we need 2n reduction steps to
take θ(x + b) to its normal form b, since each application of the rule a+ b → b
removes a single a.
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We conclude this section explaining why we use inner reductions instead of
innermost ones. Let’s consider the same set of problems {Πn} above, but now
let E := AC ∪ {x+ b ≈ b} and T := {x+ b → b}. As before, if θ |= Πn then θx
contains 2n a’s. If we used innermost reductions then we would need 2n reduction
steps to take θ(x+ b) to its normal form b. On the other hand, θ(x+ b) �−→ b by
just one inner reduction step. To sum it up: using innermost reductions there
is no polynomial narrowing bound for T , while using inner reductions (one can
prove) there is.

4.2 Application in Process Algebra

As mentioned before, applications of our method can be found in Process Al-
gebra [4]. We can in particular prove NP -completeness of unifiability modulo
bisimulation in minimal process algebra with proper iteration (MPA+

δ ) [7]. This
is the so-called compatibility checking problem for MPA+

δ , a significant exten-
sion of that for BCCSP , studied in [8]. See [8,10] for motivation and a survey
of the compatibility checking.

In the following, let A be a fixed set of actions. The signature of MPA+
δ

consists of a constant δ, which represents deadlock, the binary alternative com-
position x + y, the unary prefix sequential composition a(x) and the proper
iteration a+(x), for a ∈ A. Often, a(t) and a+(t) will be abbreviated by at
and a+t, which bind stronger than the alternative composition +.

The following is a complete equational axiomatization of bisimulation equiv-
alence for MPA+

δ [7]:

(x+ y) + z ≈ x+ (y + z)
x+ y ≈ y + x
x+ x ≈ x
x+ δ ≈ x

a(a+x+ x) ≈ a+x ∀a ∈ A
a+(a+x+ x) ≈ a+x ∀a ∈ A

We call this theory Bis+. So we would like to decide Bis+-unifiability. One
could notice that Bis+ can be seen as the union of ACI1 and two axioms for
iteration. ACI1-unifiability is decidable [16] (we will give a new proof in the
next section), so one may hope to use standard combination techniques for the
union of equational theories. But the combination techniques currently available,
see for instance [1], can not deal with this case, because these would require
the whole equational theory to be equal to a union of equational theories over
disjoint signatures, which is impossible because of the axiom a(a+x+x) ≈ a+x.

We can of course try to apply our results on AC-narrowing, so we need
a convergent AC-TRS equivalent to Bis+. Such an AC-TRS is reported in
Table 2 [7], and we call it T . This shifts the problem towards finding a narrowing
bound for T . But size is such!

Theorem 6. Size is a polynomial narrowing bound for T .
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Table 2. Rewrite rules of the AC-TRS T

x+ x→ x
x+ δ → x

a(a+x+ x)→ a+x ∀a ∈ A
a+(a+x+ x)→ a+x ∀a ∈ A

a(a+δ) → a+δ ∀a ∈ A
a+(a+δ) → a+δ ∀a ∈ A

Proof. We prove that if s = t+ u, where both t and u are in normal form, then
s↓̄1
T/AC . The rest of the proof proceeds exactly as that of Corollary 1.
If s is in normal form then we are done.
If t = δ (u = δ) then s �−→T/AC u (t) and we are done.
Otherwise, we reduce by the rule x + x → x. Intuitively, we simply have to

choose the greatest substitution that fits. More formally, we associate to every
term v the multiset M(v), which is defined as follows:

M(v) := M(w) ∪M(w′) if v = w + w′

M(v) := {[v]AC} otherwise

where ∪ is the union between multisets [2] and [v]AC is the equivalence class
of v modulo AC. Now consider the case where t �= δ, u �= δ and t + u is not
in normal form. Let w be a term such that M(w) = M(t) ∩M(u), and reduce
applying the rule x + x → x with substitution θ := {x ← w}. It is easily seen
that we get a normal form.

In any case, we perform at most one inner reduction step, so we can conclude
s↓̄1
T/AC . ��

Applying Theorem 5, we get that Bis+-unifiability is in NP . In [8] it is
proven that Bis-unifiability (Bis is Bis+ without the two axioms for iteration)
is NP -hard. The proof also works for Bis+-unifiability. So the upper bound on
the complexity of Bis+-unifiability we have just shown is tight:

Theorem 7. Bis+-unifiability is NP -complete.

To conclude, we point out that Bis+-unifiability is (polynomially) equiva-
lent to unifiability modulo bisimulation in minimal process algebra with prefix
iteration (MPA∗

δ) [10].

4.3 Other Applications

We briefly discuss other applications of our decision procedure.
NP -decidability of both ACI-unifiability and ACI1-unifiability are well-

known results, which can be proven via ad hoc decision procedures [16] or via
combination techniques [1].
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Our method can be used to reobtain them under a different and unified point
of view: the AC-TRS {x+x→ x} and {x+x→ x, x+1 → x} are convergent and
equivalent to ACI and ACI1, respectively. Furthermore, size is a polynomial
narrowing bound for them (the proof is a sub-case of the proof of Theorem 6).
So our results hold and we get NP -decidability. It follows that our method can
be used to prove NP -decidability of Bis-unifiability, since this is the same as
ACI1-unifiability [8].

5 Conclusion

We have presented a narrowing-based method to decide E-unifiability when E is
equivalent to a convergent (AC-)TRS. The method guarantees NP -decidability
when a polynomial narrowing bound exists, and we have studied general condi-
tions under which this existence is guaranteed.

These results have been used to provide an optimal and new result in Process
Algebra, namely Bis+-unifiability. They have also given (new) proofs under
a unified point of view of NP -decidability of I, ACI,ACI1-unifiability and of
unifiability in quasi-groups and central groupoids.

Our approach shows that sometimes E-unifiability can be shifted towards
finding a narrowing bound for a convergent (AC-)TRS equivalent to E. We
are currently working on weaker conditions which guarantee the existence of a
polynomial narrowing bound for a convergent (AC-)TRS.
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Kunčak, Viktor . . . . . . . . . . . . . . . . . 38

Larsen, Kim S. . . . . . . . . . . . .269, 293

Martelli, Alberto . . . . . . . . . . . . . . .405
Mastrolilli, Monaldo . . . . . . . . . . . 107
Mauri, Giancarlo . . . . . . . . . . . . . . 136
Mereghetti, Carlo . . . . . . . . . . . . . . 123
Montalbano, Rosa . . . . . . . . . . . . . 184
Montanari, Ugo . . . . . . . . . . . . . . . . . . 1

Olivetti, Nicola . . . . . . . . . . . . . . . . 384

Palano, Beatrice . . . . . . . . . . . . . . . 123
Paolini, Luca . . . . . . . . . . . . . . . . . . . 74
Patti, Viviana . . . . . . . . . . . . . . . . . 405
Pietro, Pierluigi San . . . . . . . . . . . 172
Prencipe, Giuseppe . . . . . . . . . . . . 154
Proskurowski, Andrzej . . . . . . . . . 285

Rothe, Jörg . . . . . . . . . . . . . . . . . . . . 339

Sabadini, Nicoletta . . . . . . . . . . . . 136
Schwind, Camilla B. . . . . . . . . . . . 384
Solis-Oba, Roberto . . . . . . . . . . . . 107
Stamatiou, Yannis C. . . . . . . . . . . 328
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