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PREFACE

This book is a substantial revision of our Statistical Quality Assurance Methods
for Engineers published in 1999 by Wiley. It has evolved with the Iowa State
University course that originally motivated the writing of that first book and fairly
accurately represents the current technical content of Industrial Engineering 361
at ISU. (The biggest exception to this is that Sect. 6.2 is not formally part of the
course for all students, but does end up being important for a substantial fraction
of them as providing tools for their out-of-class process improvement project.)

This book has in Chap. 2 a substantially expanded treatment of measurement
and associated statistical methods. This has grown out of the realization that a very
large fraction of process improvement projects taken on by ISU IE 361 students
ultimately turn out to be problems of measurement (or at least have important
measurement components).

There has been some reorganization and extension of the qualitative mate-
rial that in Statistical Quality Assurance Methods for Engineers was split be-
tween Chaps. 1 and 9 into this book’s Chap. 1. Material from the former text’s
Sect. 2.2.3 on lower limits of detection, its Chap. 4 on advanced methods of pro-
cess monitoring, its Sect. 5.5 on balanced hierarchical studies, its Chap. 8 on sam-
pling inspection, and its Sect. 7.3 on mixture studies has been moved out of this
book in the interest of concentrating on the most central issues and what can ac-
tually be profitably covered in a one-semester course for undergraduates. It is our
intention to put this material onto a website as supplemental/optional resources
for those interested.

There are currently both .pdf slides for lectures on the material of this text and
videos on the material available on the website www.analyticsiowa.com
University instructors interested in obtaining laboratories used at ISU since 2006
to teach IE 361 in a “flipped” environment to juniors in industrial engineering
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are invited to contact the first author. A complete solutions manual for the end-
of-chapter exercises is available from the publisher to adopters of the book for
university courses.

The authors wish to express their deep gratitude, love, and appreciation for their
respective families. These have given form and substance to lives in which the
kind of meaningful work represented by this book has been possible and enjoyed.
The first author especially thanks his dear wife Jo Ellen Vardeman, their cherished
sons Micah and Andrew Vardeman and their wonderful wives and children. The
second author especially thanks his beloved parents, John and Caryl Jobe for their
guidance, example, and love.

Ames, IA, USA Stephen B. Vardeman
Oxford, OH, USA J. Marcus Jobe
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CHAPTER 1

INTRODUCTION

This opening chapter first introduces the subject of quality assurance and the
relationship between it and the subject of statistics in Sect. 1.1. Then Sect. 1.2 pro-
vides context for the material of this book. Standard emphases in modern qual-
ity assurance are introduced, and a six-step process-oriented quality assurance
cycle is put forward as a framework for approaching this field. Some connections
between modern quality assurance and popular business process improvement
programs are discussed next. Some of the simplest quality assurance tools are
then introduced in Sects. 1.3 through 1.5. There is a brief discussion of process
mapping/analysis in Section 1.3, discussion of some simple principles of quality
assurance data collection follows in Sect. 1.4, and simple statistical graphics are
considered in Sect. 1.5.

1.1 The Nature of Quality and the Role of Statistics

This book’s title raises at least two basic questions: “What is ‘quality’?” and
“What do ‘statistical methods’ have to do with assuring it?”

Consider first the word “quality.” What does it mean to say that a particular
good is a quality product? And what does it mean to call a particular service a
quality service? In the case of manufactured goods (like automobiles and dish-
washers), issues of reliability (the ability to function consistently and effectively
across time), appropriateness of configuration, and fit and finish of parts come

© Springer-Verlag New York 2016
S.B. Vardeman, J.M. Jobe, Statistical Methods for Quality Assurance,
Springer Texts in Statistics, DOI 10.1007/978-0-387-79106-7 1
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2 Chapter 1. Introduction

to mind. In the realm of services (like telecommunications and transportation ser-
vices) one thinks of consistency of availability and performance, esthetics, and
convenience. And in evaluating the “quality” of both goods and services, there is
an implicit understanding that these issues will be balanced against correspond-
ing costs to determine overall “value.” Here is a popular definition of quality that
reflects some of these notions.

Definition 1 Quality in a good or service is fitness for use. That fitness includes
aspects of both product design and conformance to the (ideal) design.

Quality of design has to do with Appropriateness and the choice and con-
figuration of features that define what a good or service is supposed to be like
and is supposed to do. In many cases it is essentially a matter of matching prod-
uct “species” to an arena of use. One needs different things in a vehicle driven
on the dirt roads of the Baja Peninsula than in one used on the German autobahn.
Vehicle quality of design has to do with providing the “right” features at an appro-
priate price. With this understanding, there is no necessary contradiction between
thinking of both a Rolls-Royce and a Toyota economy car as quality vehicles.
Similarly, both a particular fast-food outlet and a particular four-star restaurant
might be thought of as quality eateries.

Quality of conformance has to do with living up to specifications laid down
in product design. It is concerned with small variation from what is specified or
expected. Variation inevitably makes goods and services undesirable. Mechanical
devices whose parts vary substantially from their ideal/design dimensions tend to
be noisy, inefficient, prone to breakdown, and difficult to service. They simply
don’t work well. In the service sector, variation from what is promised/expected
is the principal source of customer dissatisfaction. A city bus system that runs on
schedule every day that it is supposed to run can be seen as a quality transportation
system. One that fails to do so cannot. And an otherwise elegant hotel that fails
to ensure the spotless bathrooms its customers expect will soon be without those
customers.

This book is concerned primarily with tools for assuring quality of confor-
mance. This is not because quality of design is unimportant. Designing effective
goods and services is a highly creative and important activity. But it is just not the
primary topic of this text.

Then what does the subject of statistics have to do with the assurance of quality
of conformance? To answer this question, it is helpful to have clearly in mind a
definition of statistics.

Definition 2 Statistics is the study of how best to:

1. collect data,

2. summarize or describe data, and

3. draw conclusions or inferences based on data,

all in a framework that recognizes the reality and omnipresence of variation.
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If quality of conformance has to do with small variation and one wishes to
assure it, it will be necessary to measure, monitor, find sources of, and seek ways
to reduce variation. All of these require data (information on what is happening
in a system producing a product) and therefore the tool of statistics. The intellec-
tual framework of the subject of statistics, emphasizing as it does the concept of
variation, makes it natural for application in the world of quality assurance. We
will see that both simple and also somewhat more advanced methods of statistics
have their uses in the quest to produce quality goods and services.

Section 1.1 Exercises

1. “Quality” and “statistics” are related. Briefly explain this relationship, us-
ing the definitions of both words.

2. Why is variation in manufactured parts undesirable? Why is variation
undesirable in a service industry?

3. If a product or service is designed appropriately, does that alone guarantee
quality? Why or why not?

4. If a product or service conforms to design specifications, does that alone
guarantee quality? Why or why not?

1.2 Modern Quality Philosophy and Business
Practice Improvement Strategies

The global business environment is fiercely competitive. No company can afford
to “stand still” if it hopes to stay in business. Every healthy company has explicit
strategies for constantly improving its business processes and products.

Over the past several decades, there has been a blurring of distinctions between
“quality improvement” and “general business practice improvement.” (Formerly,
the first of these was typically thought of as narrowly focused on characteristics
of manufactured goods.) So there is now much overlap in emphases, language,
and methodologies between the areas. The best strategies in both arenas must boil
down to good methodical/scientific data-based problem solving.

In this section we first provide a discussion of some elements of modern
quality philosophy and an intellectual framework around which we have orga-
nized the topics of this book (and that can serve as a road map for approaching
quality improvement projects). We then provide some additional discussion
and critique of the modern general business environment and its better known
process-improvement strategies.
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1.2.1 Modern Quality Philosophy and a Six-Step
Process-Oriented Quality Assurance Cycle

Modern quality assurance methods and philosophy are focused not (primarily) on
products but rather on the processes used to produce them. The idea is that if
one gets processes to work effectively, resulting products will automatically be
good. On the other hand, if one only focuses on screening out or reworking bad
product, root causes of quality problems are never discovered or eliminated. The
importance of this process orientation can be illustrated by an example.

Example 3 Process Improvement in a Clean Room. One of the authors of this
text once toured a “clean room” at a division of a large electronics manufacturer.
Integrated circuit (IC) chips critical to the production of the division’s most imp-
ortant product were made in the room, and it was the bottleneck of the whole
production process for that product. Initial experience with that (very expensive)
facility included 14% yields of good IC chips, with over 80 people working there
trying to produce the precious components.

Early efforts at quality assurance for these chips centered on final testing and
sorting good ones from bad. But it was soon clear that those efforts alone would
not produce yields adequate to supply the numbers of chips needed for the end
product. So a project team went to work on improving the production process.
The team found that by carefully controlling the quality of some incoming raw
materials, adjusting some process variables, and making measurements on wafers
of chips early in the process (aimed at identifying and culling ones that would
almost certainly in the end consist primarily of bad chips), the process could be
made much more efficient. At the time of the tour, process-improvement efforts had
raised yields to 65% (effectively quadrupling production capacity with no capital
expenditure!), drastically reduced material waste, and cut the staff necessary to
run the facility from the original 80 to only eight technicians.

Process-oriented efforts are what enabled this success story. No amount of att-
ention to the yield of the process as it was originally running would have produced
these important results.

It is important to note that while process-oriented quality improvement efforts
have center stage, product-oriented methods still have their place. In the clean
room of Example 3, process-improvement efforts in no way eliminated the need
for end-of-the-line testing of the IC chips. Occasional bad chips still needed to be
identified and culled. Product-oriented inspection was still necessary, but it alone
was not sufficient to produce important quality improvements.

A second important emphasis of modern quality philosophy is its customer
orientation. This has two faces. First, the final or end user of a good or ser-
vice is viewed as being supremely important. Much effort is expended by mod-
ern corporations in seeing that the “voice of the customer” (the will of the end
user) is heard and carefully considered in all decisions involved in product design
and production. There are many communication and decision-making techniques
(such as “quality function deployment”) that are used to see that this happens.
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But the customer orientation in modern quality philosophy extends beyond con-
centration on an end user. All workers are taught to view their efforts in terms
of processes that have both “vendors” from whom they receive input and “cus-
tomers” to whom they pass work. One’s most immediate customer need not be
the end user of a company product. But it is still important to do one’s work in
a way that those who handle one’s personal “products” are able to do so without
difficulties.

A third major emphasis in modern quality assurance is that of continual
improvement. What is state-of-the-art today will be woefully inadequate tomor-
row. Consumers are expecting (and getting!) ever more effective computers, cars,
home entertainment equipment, package delivery services, and communications
options. Modern quality philosophy says that this kind of improvement must and
will continue. This is both a statement of what “ought” to be and a recognition
that in a competitive world, if an organization does not continually improve what
it does and makes, it will not be long before aggressive competition drives it from
the marketplace.

This text presents a wide array of tools for quality assurance. But students
do not always immediately see where they might fit into a quality assur-
ance/improvement effort or how to begin a class project in the area. So, it is
useful to present an outline for approaching modern quality assurance that places
the methods of this book into their appropriate context. Table 1.1 on page 6
presents a six-step process-oriented quality assurance cycle (i.e., the intellectual
skeleton of this book) and the corresponding technical tools we discuss.

A sensible first step in any quality improvement project is to attempt to thor-
oughly understand the current and ideal configurations of the processes involved.
This matter of process mapping can be aided by very simple tools like the
flowcharts and Ishikawa diagrams discussed in Sect. 1.3.

Effective measurement is foundational to efforts to improve processes and
products. If one cannot reliably measure important characteristics of what is
being done to produce a good or service, there is no way to tell whether design
requirements are being met and customer needs genuinely addressed. Chapter 2
introduces some basic concepts of metrology and statistical methodology for
quantifying and improving the performance of measurement systems.

When adequate measurement systems are in place, one can begin to collect data
on process performance. But there are pitfalls to be avoided in this collection, and
if data are to be genuinely helpful in addressing quality assurance issues, they
typically need to be summarized and presented effectively. So Sects. 1.4 and 1.5
contain discussions of some elementary principles of quality assurance data col-
lection and effective presentation of such data.

Once one recognizes uniformity as essentially synonymous with quality of con-
formance (and variation as synonymous with “unquality”), one wants processes
to be perfectly consistent in their output. But that is too much to hope for in the
real world. Variation is a fact of life. The most that one can expect is that a process
be consistent in its pattern of variation, that it be describable as physically stable.
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TABLE 1.1. A six-step process-oriented quality assurance cycle (and corresponding tools)
Step Tools

1. Attempt a logical analysis of how • Flowcharts (Sect. 1.3)
a process works (or should work) • Ishikawa/fishbone/cause-and-effect
and where potential trouble spots, diagrams (Sect. 1.3)
sources of variation, and data
needs are located

2. Formulate appropriate (customer- • Basic concepts of measurement/
oriented) measures of process metrology (Chap. 2)
performance, and develop • Statistical quantification of
corresponding measurement measurement precision (Chap. 2)
systems • Regression and calibration (Chap. 2)

3. Habitually collect and summarize • Simple quality assurance data
process data collection principles (Sect. 1.4)

• Simple statistical graphics (Sect. 1.5)
4. Assess and work toward process • Control charts (Chap. 3)

stability
5. Characterize current process and • Statistical graphics for process

product performance characterization (Sect. 4.1)
• Measures of process capability and

performance and their estimation
(Sects. 4.2, 4.3)

• Probabilistic tolerancing and
propagation of error (Sect. 4.4)

6. Work to improve those processes • Design and analysis of experiments
that are unsatisfactory (Chaps. 5, 6)

Control charts are tools for monitoring processes and issuing warnings when there
is evidence in process data of physical instability. These essential tools of quality
assurance are discussed in Chap. 3.

Even those processes that can be called physically stable need not be adequate
for current or future needs. (Indeed, modern quality philosophy views all pro-
cesses as inadequate and in need of improvement!) So it is important to be able
to characterize in precise terms what a process is currently doing and to have
tools for finding ways of improving it. Chapter 4 of this text discusses a num-
ber of methods for quantifying current process and product performance, while
Chaps. 5 and 6 deal with methods of experimental design and analysis especially
helpful in process-improvement efforts.

The steps outlined in Table 1.1 are a useful framework for approaching most
process-related quality assurance projects. They are presented here not only as a
road map for this book but also as a list of steps to follow for students wishing to
get started on a class project in process-oriented quality improvement.
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1.2.2 The Modern Business Environment and General
Business Process Improvement

Intense global competition has fueled a search for tools to use in improving all
aspects of what modern companies do. At the same time, popular understanding
of the realm of “quality assurance” has broadened substantially in the past few
decades. As a result, distinctions between what is the improvement of general
business practice and what is process-oriented quality improvement have blurred.
General business emphases and programs like Total Quality Management (TQM),
ISO 9000 certification, Malcolm Baldrige Prize competitions, and Six Sigma pro-
grams have much in common with the kind of quality philosophy just discussed.

TQM

Take for example, “TQM,” an early instance of the broad business influence of
modern quality philosophy. The name Total Quality Management was meant to
convey the notion that in a world economy, successful organizations will manage
the totality of what they do with a view toward producing quality work. TQM
was promoted as appropriate in areas as diverse as manufacturing, education, and
government. The matters listed in Table 1.2 came up most frequently when TQM
was discussed.

TABLE 1.2. Elements of TQM emphasis

1. Customer focus
2. Process/system orientation
3. Continuous improvement
4. Self-assessment and benchmarking
5. Change to flat organizations “without barriers”
6. “Empowered” people/teams and employee involvement
7. Management (and others’) commitment (to TQM)
8. Appreciation/understanding of variability

Items 1,2, and 3 in Table 1.2 are directly related to the emphases of modern
quality assurance discussed above. The TQM process orientation in 2 is perhaps
a bit broader than the discussion of the previous subsection, as it sees an orga-
nization’s many processes fitting together in a large system. (The billing process
needs to mesh with various production processes, which need to mesh with the
product-development process, which needs to mesh with the sales process, and so
on.) There is much planning and communication needed to see that these work
in harmony within a single organization. But there is also recognition that other
organizations, external suppliers, and customers need to be seen as part of “the
system.” A company’s products can be only as good as the raw materials with
which it works. TQM thus emphasized involving a broader and broader “super-
organization” (our terminology) in process- and system-improvement efforts.
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In support of continual improvement, TQM proponents emphasized knowing
what the “best-in-class” practices are for a given business sector or activity. They
promoted benchmarking activities to find out how an organization’s techniques
compare to the best in the world. Where an organization was found to be behind,
every effort was to be made to quickly emulate the leader’s performance. (Where
an organization’s methodology is state of the art, opportunities for yet another
quantum improvement were to be considered.)

It was standard TQM doctrine that the approach could only be effective in org-
anizations that are appropriately structured and properly unified in their accep-
tance of the viewpoint. Hence, there was a strong emphasis in the movement
on changing corporate cultures and structures to enable this effectiveness.
Proponents of TQM simultaneously emphasized the importance of involving all
corporate citizens in TQM activities, beginning with the highest levels of man-
agement and at the same time reducing the number of layers between the top and
bottom of an organization, making it more egalitarian. Cross-functional project
teams composed of employees from various levels of an organization (operating
in consensus-building modes, with real authority not only to suggest changes but
to see that they were implemented, and drawing on the various kinds of wisdom
resident in the organization) were standard TQM fare. One of the corporate evils
most loudly condemned was the human tendency to create “little empires” inside
an organization that in fact compete with each other, rather than cooperate in ways
that are good for the organization as a whole.

In a dimension most closely related to the subject of statistics, the TQM move-
ment placed emphasis on understanding and appreciating the consequences of
variability. In fact, providing training in elementary statistics (including the
basics of describing variation through numerical and graphical means and often
some basic Shewhart control charting) was a typical early step in most TQM
programs.

TQM had its big names like W.E. Deming, J.M. Juran, A.V. Feigenbaum, and
P. Crosby. There were also thousands of less famous individuals, who in some
cases provided guidance in implementing the ideas of more famous quality leaders
and in others provided instruction in their own modifications of the systems of
others. The sets of terminology and action items promoted by these individuals
varied consultant to consultant, in keeping with the need for them to have unique
products to sell.

Six Sigma

Fashions change and business interest in some of the more managerial emphases
of TQM have waned. But interest in business process improvement has not. One
particularly popular and long-lived form of corporate improvement emphasis goes
under the name “Six Sigma.” The name originated at Motorola Corporation in
the late 1980s. Six Sigma programs at General Electric, AlliedSignal, and Dow
Chemical (among other leading examples) have been widely touted as at least
partially responsible for important growth in profits and company stock values.
So huge interest in Six Sigma programs persists.
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The name “Six Sigma” is popularly used in at least three different ways. It
refers to

1. a goal for business process performance,

2. a strategy for achieving that performance for all of a company’s processes,
and

3. an organizational, training, and recognition program designed to support
and implement the strategy referred to in 2.

As a goal for process performance, the “Six Sigma” name has a connection to
the normal distribution. If a (normal) process mean is set 6σ inside specifica-
tions/requirements (even should it inadvertently drift a bit, say by as much as
1.5σ), the process produces essentially no unacceptable results. As a formula for
organizing and training to implement universal process improvement, Six Sigma
borrows from the culture of the martial arts. Properly trained and effective ind-
ividuals are designated as “black belts,” “master black belts,” and so on. These
individuals with advanced training and demonstrated skills lead company process-
improvement teams.

Here, our primary interest is in item 2 in the foregoing list. Most Six Sigma
programs use the acronym DMAIC and the corresponding steps

1. Define

2. Measure

3. Analyze

4. Improve

5. Control

as a framework for approaching process improvement. The Define step involves
setting the boundaries of a particular project, laying out the scope of what is to be
addressed and bringing focus to a general “we need to work on X” beginning. The
Measure step requires finding appropriate responses to observe, identifying corre-
sponding measurement systems, and collecting initial process data. The Analyze
step involves producing data summaries and formal inferences adequate to make
clear initial process performance. After seeing how a process is operating, there
comes an Improvement effort. Often this is guided by experimentation and addi-
tional data collected to see the effects of implemented process changes. Further,
there is typically an emphasis on variation reduction (improvement in process
consistency). Finally, the Six Sigma five-step cycle culminates in process Control.
This means process watching/monitoring through the routine collection of and at-
tention to process data. The point is to be sure that improvements made persist
over time. Like this book’s six-step process-oriented quality assurance cycle in
Table 1.1, the Six Sigma five-step DMAIC cycle is full of places where statistics
is important. Table 1.3 on page 10 shows where some standard statistical concepts
and methods fit into the DMAIC paradigm.
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TABLE 1.3. DMAIC and statistics
Element Statistical topics

Measure

• Measurement concepts
• Data collection principles
• Regression and linear calibration
• Modeling measurement error
• Inference in measurement precision studies

Analyze

• Descriptive statistics
• Normal plotting and capability indices
• Statistical intervals and testing
• Confidence intervals and testing

Improve

• Regression analysis and response surface methods
• Probabilistic tolerancing
• Confidence intervals and testing
• Factorial and fractional factorial analysis

Control • Shewhart control charts

1.2.3 Some Caveats

This book is primarily about technical tools, not philosophy. Nevertheless, some
comments about proper context are in order before launching into the technical
discussion. It may at first seem hard to imagine anything unhappy issuing from an
enthusiastic universal application of quality philosophy and process-improvement
methods. Professor G. Box, for example, referred to TQM in such positive terms
as “the democratization of science.” Your authors are generally supportive of the
emphases of quality philosophy and process-improvement in the realm of com-
merce. But it is possible to lose perspective and, by applying them where they are
not really appropriate, to create unintended and harmful consequences.

Consider first the matter of “customer focus.” To become completely absorbed
with what some customers want amounts to embracing them as the final arbiters
of what is to be done. And that is a basically amoral (or ultimately immoral)
position. This point holds in the realm of commerce but is even more obvious
when a customer-focus paradigm is applied in areas other than business.

For example, it is laudable to try to make government or educational systems
more efficient. But these institutions deal in fundamentally moral arenas. We
should want governments to operate morally, whether or not that is currently in
vogue with the majority of (customer) voters. People should want their children
to go to schools where serious content is taught, real academic achievement is
required, and depth of character and intellect are developed, whether or not it is a
“feel-good” experience and popular with the (customer) students, or satisfies the
job-training desires of (customer) business concerns. Ultimately, we should fear
for a country whose people expect other individuals and all public institutions to
immediately gratify their most trivial whims (as deserving customers). The whole
of human existence is not economics and commerce. Big words and concepts like



Chapter 1. Introduction 11

“self-sacrifice,” “duty,” “principle,” “integrity,” and so on have little relevance in
a “customer-driven” world. What “the customer” wants is not always even con-
sistent, let alone moral or wise.

Preoccupation with the analysis and improvement of processes and systems
has already received criticism in business circles, as often taking on a life of its
own and becoming an end in itself, independent of the fundamental purposes of
a company. Rationality is an important part of the human standard equipment,
and it is only good stewardship to be moderately organized about how things are
done. But enough is enough. The effort and volume of reporting connected with
planning (and documentation of that planning) and auditing (what has been done
in every conceivable matter) have increased exponentially in the past few years
in American business, government, and academia. What is happening in many
cases amounts to a monumental triumph of form over substance. In a sane envi-
ronment, smart and dedicated people will naturally do reasonable things. Process
improvement tools are sometimes helpful in thinking through a problem. But slav-
ish preoccupation with the details of how things are done and endless generation
of vision and mission statements, strategic plans, process analyses, outcome as-
sessments, and so forth can turn a relatively small task for one person into a big
one for a group, with an accompanying huge loss of productivity.

There are other aspects of emphases on the analysis of processes, continuous
improvement, and the benchmarking notion that deserve mention. A preoccupa-
tion with formal benchmarking has the natural tendency to produce homogeniza-
tion and the stifling of genuine creativity and innovation. When an organization
invests a large effort in determining what others are doing, it is very hard to then
turn around and say “So be it. That’s not what we’re about. That doesn’t suit our
strengths and interests. We’ll go a different way.” Instead, the natural tendency
is to conform, to “make use” of the carefully gathered data and strive to be like
others. And frankly, the tools of process analysis applied in endless staff meetings
are not the stuff of which first-order innovations are born. Rather, those almost
always come from really bright and motivated people working hard on a problem
individually and perhaps occasionally coming together for free-form discussions
of what they’ve been doing and what might be possible.

In the end, one has in the quality philosophy and process improvement
emphases introduced above a sensible set of concerns, provided they are used in
limited ways, in appropriate arenas, by ethical and thinking people.

Section 1.2 Exercises

1. A “process orientation” is one of the primary emphases of modern quality
assurance. What is the rationale behind this?

2. How does a “customer focus” relate to “quality”?

3. What are motivations for a corporate “continuous improvement” emphasis?
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4. Why is effective measurement a prerequisite to success in process
improvement?

5. What tools are used for monitoring processes and issuing warnings of
apparent process instability?

6. If a process is stable or consistent, is it necessarily producing high-quality
goods or services? Why or why not?

1.3 Logical Process Identification and Analysis

Often, simply comparing “what is” in terms of process structure to “what is sup-
posed to be” or to “what would make sense” is enough to identify opportunities
for real improvement. Particularly in service industry contexts, the mapping of a
process and identification of redundant and unnecessary steps can often lead very
quickly to huge reductions in cycle times and corresponding improvements in cus-
tomer satisfaction. But even in cases where how to make such easy improvements
is not immediately obvious, a process identification exercise is often invaluable
in locating potential process trouble spots, possibly important sources of process
variation, and data collection needs.

The simple flowchart is one effective tool in process identification. Figure 1.1
is a flowchart for a printing process similar to one prepared by students (Drake,
Lach, and Shadle) in a quality assurance course. The figure gives a high-level
view of the work flow in a particular print shop. Nearly any one of the boxes
on the chart could be expanded to provide more detailed information about the
printing process.

People have suggested many ways of increasing the amount of information pro-
vided by a flowchart. One possibility is the use of different shapes for the boxes on
the chart, according to some kind of classification scheme for the activities being
portrayed. Figure 1.1 uses only three different shapes, one each for input/output,
decisions, and all else. In contrast, Kolarik’s Creating Quality: Concepts, Systems,
Strategies and Tools suggests the use of seven different symbols for flowchart-
ing industrial processes (corresponding to operations, transportation, delays, stor-
age, source inspection, SPC charting, and sorting inspection). Of course, many
schemes are possible and potentially useful in particular circumstances.

A second way to enhance the analytical value of the flowchart is to make good
use of both spatial dimensions on the chart. Typically, top to bottom corresponds
at least roughly to time order of activities. That leaves the possibility of using
left-to-right positioning to indicate some other important variable. For example,
a flowchart might be segmented into several “columns” left to right, each one
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indicating a different physical location. Or the columns might indicate different
departmental spheres of responsibility. Such positioning is an effective way of
further organizing one’s thinking about a process.

Another simple device for use in process identification/mapping activities is the
Ishikawa diagram (otherwise known as the fishbone diagram or cause-and-
effect diagram). Suppose one has a desired outcome or (conversely) a quality
problem in mind and wishes to lay out the various possible contributors to the
outcome or problem. It is often helpful to place these factors on a treelike struc-
ture, where the further one moves into the tree, the more specific or basic the
contributor becomes. For example, if one were interested in quality of an air-
line flight, general contributors might include on-time performance, baggage han-
dling, in-flight comfort, and so on. In-flight comfort might be further amplified
as involving seating, air quality, cabin service, etc. Cabin service could be broken
down into components like flight attendant availability and behavior, food quality,
entertainment, and so on.
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FIGURE 1.2. Cause-and-effect diagram for an injection molding process

Figure 1.2 is part of an Ishikawa diagram made by an industrial team analyz-
ing an injection molding process. Without this or some similar kind of organized
method of putting down the various contributors to the quality of the molded
parts, nothing like an exhaustive listing of potentially important factors would be
possible. The cause-and-effect diagram format provides an easily made and ef-
fective organization tool. It is an especially helpful device in group brainstorming
sessions, where people are offering suggestions from many different perspectives
in an unstructured way, and some kind of organization needs to be provided “on
the fly.”
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Section 1.3 Exercises

1. The top-to-bottom direction on a flowchart usually corresponds to what
important aspect of process operation?

2. How might a left-to-right dimension on a flowchart be employed to enhance
process understanding?

3. What are other names for an Ishikawa diagram?

4. Name two purposes of the Ishikawa diagram.

1.4 Elementary Principles of Quality Assurance
Data Collection

Good (practically useful) data do not collect themselves. Neither do they mag-
ically appear on one’s desk, ready for analysis and lending insight into how to
improve processes. But it sometimes seems that little is said about data collec-
tion. And in practice, people sometimes lose track of the fact that no amount of
clever analysis will make up for lack of intrinsic information content in poorly
collected data. Often, wisely and purposefully collected data will carry such a
clear message that they essentially “analyze themselves.” So we make some early
comments here about general considerations in quality assurance data collection.

A first observation about the collection of quality assurance data is that if
they are to be at all helpful, there must be a consistent understanding of exactly
how they are to be collected. This involves having operational definitions for
quantities to be observed and personnel who have been well trained in using the
definitions and any relevant measurement equipment. Consider, for example, the
apparently fairly “simple” problem of measuring “the” diameters of (supposedly
circular) steel rods. Simply handed a gauge and told to measure diameters, one
would not really know where to begin. Should the diameter be measured at one
identifiable end of the rods, in the center, or where? Should the first diameter seen
for each rod be recorded, or should perhaps the rods be rolled in the gauge to get
maximum diameters (for those cases where rods are not perfectly circular in cross
section)?

Or consider a case where one is to collect qualitative data on defects in molded
glass automobile windshields. Exactly what constitutes a “defect?” Surely a bub-
ble 1 in in diameter directly in front of the driver’s head position is a defect. But
would a 10−4 in diameter flaw in the same position be a problem? Or what about
a 1 in diameter flaw at the very edge of the windshield that would be completely
covered by trim molding? Should such a flaw be called a defect? Clearly, if useful
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data are to be collected in a situation like this, very careful operational definitions
need to be developed, and personnel need to be taught to use them.

The importance of consistency of observation/measurement in quality assur-
ance data collection cannot be overemphasized. When, for example, different
technicians use measurement equipment in substantially different ways, what
looks (in process monitoring data) like a big process change can in fact be noth-
ing more than a change in the person doing the measurement. This is a matter
we will consider from a more technical perspective Chap. 2. But here we can
make the qualitative point that if operator-to-operator variation in measuring is
of the same magnitude as important physical effects, and multiple technicians
are going to make measurements, operator differences must be reduced through
proper training and practice before there is reason to put much faith in data that
are collected.

A second important point in the collection of quality assurance data has to
do with when and where they are gathered. The closer in time and space that
data are taken to an operation whose performance they are supposed to portray,
the better. The ideal here is typically for well-trained workers actually doing the
work or running the equipment in question to do their own data collection. There
are several reasons for this. For one thing, it is such people who are in a position
(after being trained in the interpretation of process monitoring data and given the
authority to act on them) to react quickly and address any process ills suggested
by the data that they collect. (Quick reaction to process information can prevent
process difficulties from affecting additional product and producing unnecessary
waste.) For another, it is simply a fact of life that data collected far away in time
and space from a process rarely lead to important insights into “what is going
on.” Your authors have seen many student groups (against good advice) take on
company projects of the variety “Here are some data we’ve been collecting for the
past three years. Tell us what they mean.” These essentially synthetic postmortem
examinations never produce anything helpful for the companies involved. Even if
an interesting pattern is found in such data, it is very rare that root causes can be
identified completely after the fact.

If one accepts that much of the most important quality assurance data collection
will be done by people whose primary job is not data collection but rather working
in or on a production process, a third general point comes into focus. That is, that
routine data collection should be made as convenient as possible, and where at all
feasible, the methods used should make the data immediately useful. These days,
quality assurance data are often entered as they are collected (sometimes quite
automatically) into computer systems that produce real-time displays intended to
show those who gathered them their most important features.

Whether automatic or pencil-and-paper data recording methods are used,
thought needs to go into the making of the forms employed and displays pro-
duced. There should be no need for transfer to another form or medium before
using the data. Figure 1.3 is a so-called two-variable check sheet. Rather than
making a list of (x, y) pairs and later transferring them to a piece of graph paper
or a computer program for making a scatterplot, the use of a pencil-and-paper
form like this allows immediate display of any relationship between x and y.
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FIGURE 1.3. Check sheet for bottle mass and width of bottom piece for 18 PVC bottles

(Note that the use of different symbols or even colors can carry information on
variables besides x and y, like time order of observation.) The point here is that
if one’s goal is process improvement, data are for using, and their collection and
immediate display needs to be designed to be practically effective.

A fourth general principle of quality assurance data collection regards adequate
documentation. One typically collects process data hoping to locate (and subse-
quently eliminate) possible sources of variation. If this is to be done, care needs
to be taken to keep track of conditions associated with each data point. One needs
to know not only that a measured widget diameter was 1.503mm but also the ma-
chine on which it was made, who was running the machine, what raw material lot
was used, when it was made, what gauge was used to do the measuring, who did
the measuring, and so on. Without such information, there is, for example, no way
to ever discover consistent differences between two machines that contribute sig-
nificantly to overall variation in widget diameters. A sheet full of numbers without
their histories is of little help in quality assurance.

Several additional important general points about the collection of quality ass-
urance data have to do with the volume of information one is to handle. In the
first place, a small or moderate amount of carefully collected (and immediately
used) data will typically be worth much more than even a huge amount that is
haphazardly collected (or never used). One is almost always better off trying to
learn about a process based on a small data set collected with specific purposes
and questions in mind than when rummaging through a large “general purpose”
database assembled without the benefit of such focus.

Further, when trying to answer the question “How much data do I need to. . . ?,”
one needs at least a qualitative understanding (hopefully gained in a first course
in statistics) of what things govern the information content of a sample. For one
thing (even in cases where one is gathering data from a particular finite lot of
objects rather than from a process), it is the absolute (and not relative) size of a
sample that governs its information content. So blanket rules like “Take a 10 %



18 Chapter 1. Introduction

sample” are not rational. Rather than seeking to choose sample sizes in terms
of some fraction of a universe of interest, one should think instead in terms of
(1) the size of the unavoidable background variation and of (2) the size of an
effect that is of practical importance. If there is no variation at all in a quantity of
interest, a sample of size n = 1 will characterize it completely! On the other hand,
if substantial variation is inevitable and small overall changes are of practical
importance, huge sample sizes will be needed to illuminate important process
behavior.

A final general observation is that one must take careful account of human
nature, psychology, and politics when assigning data collection tasks. If one
wants useful information, he or she had better see that those who are going to
collect data are convinced that doing so will genuinely aid (and not threaten) them
and that accuracy is more desirable than “good numbers” or “favorable results.”
People who have seen data collected by themselves or colleagues used in ways
that they perceive as harmful (for instance, identifying one of their colleagues as
a candidate for termination) will simply not cooperate. Nor will people who see
nothing coming of their honest efforts at data collection cooperate. People who
are to collect data need to believe that these can help them do a better job and help
their organization be successful.

Section 1.4 Exercises

1. Why is it more desirable to have data that provide a true picture of process
behavior than to obtain “good numbers” or “favorable results?”

2. What personnel issues can almost surely guarantee that a data collection
effort will ultimately produce nothing useful?

3. Why is it important to have agreed upon operational definitions for charac-
teristics of interest before beginning data collection?

4. Making real use of data collected in the past by unnamed others can be next
to impossible. Why?

5. How can the problem alluded to in question 4 be avoided?

6. A check sheet is a simple but informative tool. How many variables of
potential interest can a form like this portray?

7. What is another virtue of a well-designed check sheet (besides that alluded
to in question 6)?

8. Is a large volume of data necessarily more informative than a moderate
amount? Explain.
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1.5 Simple Statistical Graphics and Quality
Assurance

The old saying “a picture is worth a thousand words” is especially true in the realm
of statistical quality assurance. Simple graphical devices that have the potential to
be applied effectively by essentially all workers have a huge potential impact. In
this section, the usefulness of simple histograms, Pareto charts, scatterplots, and
run charts in quality assurance efforts is discussed. This is done with the hope that
readers will see the value of routinely using these simple devices as the important
data organizing and communication tools that they are.

Essentially every elementary statistics book has a discussion of the making of a
histogram from a sample of measurements. Most even provide some terminology
for describing various histogram shapes. That background will not be repeated
here. Instead we will concentrate on the interpretation of patterns sometimes seen
on histograms in quality assurance contexts and on how they can be of use in
quality improvement efforts.

Figure 1.4 is a bimodal histogram of widget diameters.

FIGURE 1.4. A bimodal histogram

Observing that the histogram has two distinct “humps” is not in and of itself par-
ticularly helpful. But asking the question “Why is the data set bimodal?” begins to
be more to the point. Bimodality (or multimodality) in a quality assurance data set
is a strong hint that there are two (or more) effectively different versions of some-
thing at work in a process. Bimodality might be produced by two different work-
ers doing the same job in measurably different ways, two parallel machines that
are adjusted somewhat differently, and so on. The systematic differences between
such versions of the same process element produce variation that often can and
should be eliminated, thereby improving quality. Viewing a plot like Fig. 1.4, one
can hope to identify and eliminate the physical source of the bimodality and eff-
ectively be able to “slide the two humps together” so that they coincide, thereby
greatly reducing the overall variation.

The modern trend toward reducing the size of supplier bases and even “single
sourcing” has its origin in the kind of phenomenon pictured in Fig. 1.4. Different
suppliers of a good or service will inevitably do some things slightly differently.
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As a result, what they supply will inevitably differ in systematic ways. Reducing a
company’s number of vendors then has two effects. Variation in the products that
it makes from components or raw materials supplied by others is reduced, and the
costs (in terms of lost time and waste) often associated with switchovers between
different material sources are also reduced.

Label Weight Net Contents

Label Weight Net Contents

FIGURE 1.5. Two distributions of bottle contents

Other shapes on histograms can also give strong clues about what is going on in
a process (and help guide quality improvement efforts). For example, sorting ope-
rations often produce distinctive truncated shapes. Figure 1.5 shows two different
histograms for the net contents of some containers of a liquid. The first portrays a
distribution that is almost certainly generated by culling those containers (filled by
an imprecise filling process) that are below label weight. The second looks as if it
might be generated by a very precise filling process aimed only slightly above the
labeled weight. The histograms give both hints at how the guaranteed minimum
contents are achieved in the two cases and also a pictorial representation of the
waste produced by imprecision in filling. A manufacturer supplying a distribution
of net contents like that in the first histogram must both deal with the rework
necessitated by the part of the first distribution that has been “cut off” and also
suffer the “give away cost” associated with the fact that much of the truncated
distribution is quite a bit above the label value.

Figure 1.6 is a histogram for a very interesting set of data from Engineering
Statistics and Quality Control by I.W. Burr. The very strange shape of the data set
almost certainly also arose from a sorting operation. But in this case, it appears
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that the center part of the distribution is missing. In all probability, one large
production run was made to satisfy several orders for parts of the same type.
Then a sorting operation graded those parts into classes depending upon how
close actual measurements were to nominal. Customers placing orders with tight
specifications probably got (perhaps at a premium price) parts from the center of
the original distribution, while others with looser specifications likely received
shipments with distributions like the one in Fig. 1.6.

Marking engineering specifications on a histogram is a very effective way of
communicating to even very nonquantitative people what is needed in the way of
process improvements. Figure 1.7 on page 22 shows a series of three histograms
with specifications for a part dimension marked on them. In the first of those three
histograms, the production process seems quite “capable” of meeting specifica-

Capability of a
Process to Meet
Specifications

tions for the dimension in question (in the sense of having adequate intrinsic pre-
cision) but clearly needs to be “re-aimed” so that the mean measurement is lower.
The second histogram portrays the output of a process that is properly aimed but
incapable of meeting specifications. The intrinsic precision is not good enough
to fit the distribution between the engineering specifications. The third histogram
represents data from a process that is both properly aimed and completely capable
of meeting specifications.

Another kind of bar chart that is quite popular in quality assurance contexts is
the so-called Pareto diagram. This tool is especially useful as a political device
for getting people to prioritize their efforts and focus first on the biggest quality
problems an organization faces. One makes a bar chart where problems are listed
in decreasing order of frequency, dollar impact, or some other measure of im-
portance. Often, a broken line graph indicating the cumulative importance of the
various problem categories is also added to the display. Figure 1.8 on page 23
shows a Pareto diagram of assembly problems identified on a production run of
100 pneumatic hand tools. By the measure of frequency of occurrence, the most
important quality problem to address is that of leaks.

The name “Pareto” is that of a mathematician who studied wealth distributions
and concluded that most of the money in Italy belonged to a relatively few peo-
ple. His name has become associated with the so-called Pareto principle or 80–20
principle. This states that “most” of anything (like quality problems or hot dog
consumption) is traceable to a relatively few sources (like root causes of qual-
ity problems or avid hot dog eaters). Conventional wisdom in modern quality
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FIGURE 1.7. Three distributions of a critical machined dimension

assurance is that attention to the relatively few major causes of problems will
result in huge gains in efficiency and quality.

Discovering relationships between variables is often important in discovering
means of process improvement. An elementary but most important start in look-
ing for such relationships is often the making of simple scatterplots (plots of
(x, y) pairs). Consider Fig. 1.9. This consists of two scatterplots of the numbers
of occurrences of two different quality problems in lots of widgets. The stories
told by the two scatterplots are quite different. In the first, there seems to be a
positive correlation between the numbers of problems of the two types, while in
the second, no such relationship is evident. The first scatterplot suggests that a sin-
gle root cause may be responsible for both types of problems and that in looking
for it, one can limit attention to causes that could possibly produce both effects.
The second scatterplot suggests that two different causes are at work and one will
need to look for them separately. It is true, of course, that one can use numeri-
cal measures (like the sample correlation) to investigate the extent to which two
variables are related. But a simple scatterplot can be understood and used even by
people with little quantitative background. Besides, there are things that can be
seen in plots (like nonlinear relationships) that will be missed by looking only at
numerical summary measures.
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FIGURE 1.9. Two scatterplots of numbers of occurrences of manufacturing defects

The habit of plotting data is one of the best habits a quality engineer can
develop. And one of the most important ways of plotting is in a scatterplot against
time order of observation. Where there is only a single measurement associated
with each time period and one connects consecutive plotted points with line seg-
ments, it is common to call the resulting plot a run chart. Figure 1.10 on page 24
is a run chart of some data studied by a student project group (Williams and
Markowski). Pictured are 30 consecutive outer diameters of metal parts turned
on a lathe.

Investigation of the somewhat strange pattern on the plot led to a better under-
standing of how the turning process worked (and could have led to appropriate
compensations to eliminate much of the variation in diameters seen on the plot).
The first 15 diameters generally decrease with time, and then there is a big jump
in diameter, after which diameters again decrease. Checking production records,
the students found that the lathe in question had been shut down and allowed to
cool off between parts 15 and 16. The pattern seen on the plot is likely related
to the dynamics of the lathe hydraulics. When cold, the hydraulics did not push
the cutting tool into the workpiece as effectively as when they were warm. Hence
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FIGURE 1.10. A run chart for 30 consecutive outer diameters turned on a lathe

the diameters tended to decrease as the lathe warmed up. (The data collection
in question did not cover a long enough period to see the effects of tool wear,
which would have tended to increase part diameters as the length of the cutting
tool decreased.) If one knows that this kind of phenomenon exists, it is possible
to compensate for it (and increase part uniformity) by setting artificial target dia-
meters for parts made during a warm-up period below those for parts made after
the lathe is warmed up.

Section 1.5 Exercises

1. In what ways can a simple histogram help in understanding process
performance?

2. What aspect(s) of process performance cannot be pictured by a histogram?

3. The run chart is a graphical representation of process data that is not
“static”; it gives more than a snapshot of process performance. What about
the run chart that makes it an improvement over the histogram for monitor-
ing a process?

4. Consider Fig. 1.7. The bottom histogram appears “best” with respect to
being completely within specification limits and reasonably mound shaped.
Describe run charts for two different scenarios that could have produced
this “best” histogram and yet reflect undesirable situations, i.e., an unstable
process.



Chapter 1. Introduction 25

5. What is the main use of a Pareto diagram?

6. What is the rationale behind the use of a Pareto diagram?

1.6 Chapter Summary

Modern quality assurance is concerned with quality of design and quality of con-
formance. Statistical methods, dealing as they do with data and variation, are es-
sential tools for producing quality of conformance. Most of the tools presented
in this text are useful in the process-oriented approach to assuring quality of con-
formance that is outlined in Table 1.1. After providing general background on
modern quality and business process-improvement emphases, this chapter has int-
roduced some simple tools. Section 1.3 considered elementary tools for the use
in process mapping. Important qualitative principles of engineering and quality
assurance data collection were presented in Sect. 1.4. And Sect. 1.5 demonstrated
how effective simple methods of statistical graphics can be when wisely used in
quality improvement efforts.

1.7 Chapter 1 Exercises

1. An engineer observes several values for a variable of interest. The average
of these measurements is exactly what the engineer desires for any single
response. Why should the engineer be concerned about variability in this
context? How does the engineer’s concern relate to product quality?

2. What is the difference between quality of conformance and quality of
design?

3. Suppose 100% of all brake systems produced by an auto manufacturer have
been inspected and met safety standards. What type of quality is this? Why?

4. Describe how a production process might be characterized as exhibiting
quality of conformance, but potential customers are wisely purchasing a
competitor’s version of the product.

5. In Example 3, initial experience at an electronics manufacturing facility
involved 14% yields of good IC chips.

(a) Explain how this number (14%) was probably obtained.

(b) Describe how the three parts of Definition 2 are involved in your
answer for part (a).
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6. The improved yield discussed in Example 3 came as a result of improving
the chip production process. Material waste and the staff necessary to run
the facility were reduced. What motivation do engineers have to improve
processes if improvement might lead to their own layoff? Discuss the issues
this matter raises.

7. Suppose an engineer must choose among vendors 1, 2, and 3 to supply
tubing for a new product. Vendor 1 charges $20 per tube, vendor 2 charges
$19 per tube, and vendor 3 charges $18 per tube. Vendor 1 has implemented
the six-step process-oriented quality assurance cycle (and corresponding
tools) in Table 1.1. As a result, only one tube in a million from vendor
1 is nonconforming. Vendor 2 has just begun implementation of the six
steps and is producing 10% nonconforming tubes. Vendor 3 does not apply
quality assurance methodology and has no idea what percent of its tubing
is nonconforming. What is the price per conforming item for vendors 1, 2,
and 3?

8. The following matrix (suggested by Dr. Brian Joiner) can be used to classify
production outcomes. Good result of production means there is a large pro-
portion of product meeting engineering specifications. (Bad result of pro-
duction means there is a low proportion of product meeting requirements.)
Good method of production means that quality variables are consistently
near their targets. (Bad method of production means there is considerable
variability about target values.)

Result of production
Good Bad

Method of production
Good
Bad

1 2
3 4

Describe product characteristics for items produced under circumstances
corresponding to each of cells 1, 2, 3, and 4.

9. Plastic Packaging. Hsiao, Linse, and McKay investigated the production
of some plastic bags, specifically hole positions on the bags. Production
of these bags is done on a model 308 poly bag machine using preprinted,
prefolded plastic film delivered on a roll. The plastic film is drawn through
a series of rollers to punches that make holes in the bag lips. An electronic
eye scans the film after it is punched and triggers heated sills which form
the seals on the bags. A conveyor transports the bags to a machine operator
who counts and puts them onto wickets (by placing the holes of the bags
over 6- in. metal rods) and then places them in boxes. Discuss how this
process and its output might variously fall into the cells 1, 2, 3, or 4 in
problem 8.

10. Consider again the plastic packaging case of problem 9.

(a) Who is the immediate customer of the hole-punching process?
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(b) Is it possible for the hole-punching process to produce hole locations
with small variation and yet still produce a poor-quality bag? Why or
why not?

(c) After observing that 100 out of 100 sampled bags fit over the two 6- in
wickets, an analyst might conclude that the hole-punching process
needs no improvement. Is this thinking correct? Why or why not?

(d) Hsiao, Linse, and McKay used statistical methodologies consistent
with steps 1, 2, 3, and 4 of the six-step process-oriented quality as-
surance cycle and detected unacceptable variation in hole location.
Would it be advisable to pursue step 6 in Table 1.1 in an attempt to
improve the hole-punching process? Why or why not?

11. Hose Skiving. Siegler, Heches, Hoppenworth, and Wilson applied the
six-step process-oriented quality assurance cycle to a skiving operation.
Skiving consists of taking rubber off the ends of steel-reinforced hydraulic
hose so that couplings may be placed on these ends. A crimping machine
tightens the couplings onto the hose. If the skived length or diameter are
not as designed, the crimping process can produce an unacceptable finished
hose.

(a) What two variables did the investigators identify as directly related to
product quality?

(b) Which step in the six-step cycle was probably associated with identi-
fying these two variables as important?

(c) The analysts applied steps 3 and 4 of the six-step cycle and found that
for a particular production line, aim and variation in skive length were
satisfactory. (Unfortunately, outside diameter data were not available,
so study of the outside diameter variable was not possible.) In keep-
ing with the doctrine of continual improvement, steps 5 and 6 were
considered. Was this a good idea? Why or why not?

12. Engineers at an aircraft engine manufacturer have identified several
“givens” regarding cost of quality problems. Two of these are “making
it right the first time is always cheaper than doing it over” and “fixing a
problem at the source is always cheaper than fixing it later.” Describe how
the six-step process-oriented quality assurance cycle in Table 1.1 relates to
the two givens.

13. A common rule of thumb for the cost of quality problems is the “rule of
10.” This rule can be summarized as follows (in terms of the dollar cost
required to fix a nonconforming item).

Design
$1

→ Production
$10

→ Assembly/test
$100

→ Field
$1000
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Cost history of nonconforming parts for an aircraft engine manufacturer has
been roughly as follows.

Nonconforming item found Cost to find and fix
At production testing $200
At final inspection $260
At company rotor assembly $20, 000
At company assembly teardown $60, 000
In customer’s airplane $200, 000
At unscheduled engine removal $1, 200, 000

(a) For each step following “at production testing,” calculate the ratios of
“costs to find and fix” to “cost to find and fix at production testing.”

(b) How do the ratios in (a) compare to the rule of 10 summarized in the
four-box schematic?

(c) What does your response to (b) suggest about implementation of step
3 of the six-step cycle of Table 1.1?

14. The following quotes are representative of some engineering attitudes
toward quality assurance efforts. “Quality control is just a police func-
tion.” “The quality control people are the ones who come in and shoot the
wounded.” “Our machinists will do what’s easiest for them, so we’ll start
out with really tight engineering specifications on that part dimension.”

(a) How might an engineer develop such attitudes?

(b) How can quality engineers personally avoid these attitudes and work
to change them in others?

15. Brush Ferrules. Adams, Harrington, Heemstra, and Snyder did a qual-
ity improvement project concerned with the manufacture of some paint
brushes. Bristle fibers are attached to a brush handle with a so-called fer-
rule. If the ferrule is too thin, bristles fall out. If the ferrule is too thick, brush
handles are damaged and can fall apart. At the beginning of the study, there
was some evidence that bristle fibers were falling out. “Crank position,”
“slider position,” and “dwell time” are three production process variables
that may affect ferrule thickness.

(a) What feature should analysts measure on each brush in this kind of
problem?

(b) Suggest how an engineer might evaluate whether the quality problem
is due to poor conformance or to poor design.

(c) From the limited information given above, what seems to have moti-
vated the investigation?
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(d) The students considered plotting the variable identified in (a) versus
the time at which the corresponding brush was produced. One of the
analysts suggested first sorting the brushes according to the different
crank position, slider position, and dwell-time combinations and then
plotting the variable chosen in (a) versus time of production on sepa-
rate graphs. The others argued that no insight into the problem would
be gained by having separate graphs for each combination. What point
of view do you support? Defend your answer.

16. Window Frames. Christenson, Hutchinson, Mechem, and Theis worked
with a manufacturing engineering department in an effort to identify
cause(s) of variation and possibly reduce the amount of offset in win-
dow frame corner joints. (Excessive offset had previously been identified
as the most frequently reported type of window nonconformity.)

(a) How might the company have come to know that excessive offset in
corner joints was a problem of prime importance?

(b) What step in the six-step cycle corresponds to your answer in (a)?

(c) The team considered the following six categories of factors potentially
contributing to unacceptable offset: (1) measurements, (2) materials,
(3) workers, (4) environment, (5) methods, and (6) machines. Suggest
at least one possible cause in each of these categories.

(d) Which step in the six-step cycle of Table 1.1 is most clearly related to
the kind of categorization of factors alluded to in part (c)?

17. Machined Steel Slugs. Harris, Murray, and Spear worked with a plant
that manufactures steel slugs used to seal a hole in a certain type of casting.
The group’s first task was to develop and write up a standard operating
procedure for data collection on several critical dimensions of these slugs.
The slugs are turned on a South Bend Turrett Lathe using 1018 cold rolled
steel bar stock. The entire manufacturing process is automated by means of
a CNC (computer numerical control) program and only requires an operator
to reload the lathe with new bar stock. The group attempted to learn about
the CNC lathe program. It discovered that it was possible for the operator
to change the finished part dimensions by adjusting the offset on the lathe.

(a) What benefit is there to having a standard data collection procedure in
this context?

(b) Why was it important for the group to learn about the CNC lathe pro-
gram? Which step of the six-step cycle is directly affected by their
knowledge of the lathe program?

18. Cutoff Machine. Wade, Keller, Sharp, and Takes studied factors affecting
tool life for carbide cutting inserts. The group discovered that “feed rate”
and “stop delay” were two factors known by production staff to affect tool
life. Once a tool wears a prescribed amount, the tool life is over.
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(a) What steps might the group have taken to independently verify that
feed rate and stop delay impact tool life?

(b) What is the important response variable in this problem?

(c) How would you suggest that the variable in (b) be measured?

(d) Suggest why increased tool life might be attractive to customers using
the inserts.

19. Potentiometers. Chamdani, Davis, and Kusumaptra worked with person-
nel from a potentiometer assembly plant to improve the quality of finished
trimming potentiometers. The 14 wire springs fastened to the potentiome-
ter rotor assemblies (produced elsewhere) were causing short circuits and
open circuits in the final potentiometers. Engineers suspected that the pri-
mary cause of the problems was a lack of symmetry on metal strips holding
these springs. Of concern were the distance from one edge of the metal strip
to the first spring and the corresponding distance from the last spring to the
other end of the strip.

(a) Suggest how the assembly plant might have discovered the short and
open circuits.

(b) Suggest how the plant producing the rotor assemblies perhaps became
aware of the short and open circuits (the production plant does not test
every rotor assembly). (Hint: Think about one of the three important
emphases of modern quality philosophy. How does your response rel-
ate to the six-step cycle in Table 1.1?)

(c) If “lack of symmetry” is the cause of quality problems, what should
henceforth be recorded for each metal strip inspected?

(d) Based on your answer to (c), what measurement value corresponds to
perfect symmetry?

20. “Empowerment” is a term frequently heard in organizations in relation
to process improvement. Empowerment concerns moving decision-making
authority in an organization down to the lowest appropriate levels. Unfortu-
nately, the concept is sometimes employed only until a mistake is made,
then a severe reprimand occurs, and/or the decision-making privilege is
moved back up to a higher level.

(a) Name two things that are lacking in an approach to quality improve-
ment like that described above. (Consider decision-making resulting
from empowerment as a process.)

(b) How does real, effective (and consistent) empowerment logically fit
into the six-step quality improvement cycle?

21. Lab Carbon Blank. The following data were provided by L. A. Currie of
the National Institute of Standards and Technology (NIST). The data are
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preliminary and exploratory but real. The unit of measure is “instrument
response” and is approximately equal to one microgram of carbon. (That
is, 5.18 corresponds to 5.18 instrument units of carbon and about 5.18 mic-
rograms of carbon.) The responses come from consecutive tests on “blank”
material generated in the lab.

Test number 1 2 3 4 5 6 7
Measured carbon 5.18 1.91 6.66 1.12 2.79 3.91 2.87

Test number 8 9 10 11 12 13 14
Measured carbon 4.72 3.68 3.54 2.15 2.82 4.38 1.64

(a) Plot measured carbon content versus order of measurement.

(b) The data are ordered in time, but (as it turns out) time intervals
between measurements were not equal (an appropriate plan for data
collection was not necessarily in place). What feature of the plot in
(a) might still have meaning?

(c) If one treats the measurement of lab-generated blank material as rep-
eat measurements of a single blank, what does a trend on a plot like
that in (a) suggest regarding variation of the measurement process?
(Assume the plot is made from data equally spaced in time and col-
lected by a single individual.)

(d) Make a frequency histogram of these data with categories 1.00–1.99,
2.00–2.99, etc.

(e) What could be missed if only a histogram was made (and one didn’t
make a plot like that in (a)) for data like these?



CHAPTER 2

STATISTICS AND
MEASUREMENT

Good measurement is fundamental to quality assurance. That which cannot be
measured cannot be guaranteed to a customer. If Brinell hardness 220 is needed
for certain castings and one has no means of reliably measuring hardness, there
is no way to provide the castings. So successful companies devote substantial
resources to the development and maintenance of good measurement systems.
In this chapter, we consider some basic concepts of measurement and discuss a
variety of statistical tools aimed at quantifying and improving the effectiveness of
measurement.

The chapter begins with an exposition of basic concepts and introduction
to probability modeling of measurement error. Then elementary one- and two-
sample statistical methods are applied to measurement problems in Sect. 2.2.
Section 2.3 considers how slightly more complex statistical methods can be
used to quantify the importance of sources of variability in measurement. Then
Sect. 2.4 discusses studies conducted to evaluate the sizes of unavoidable mea-
surement variation and variation in measurement chargeable to consistent differ-
ences between how operators use a measurement system. Section 2.5 considers
statistical treatment of the measurement calibration problem. Finally, in Sect. 2.6
the chapter concludes with a brief section on contexts where “measurements” are
go/no-go calls on individual items.

© Springer-Verlag New York 2016
S.B. Vardeman, J.M. Jobe, Statistical Methods for Quality Assurance,
Springer Texts in Statistics, DOI 10.1007/978-0-387-79106-7 2
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2.1 Basic Concepts in Metrology and Probability
Modeling of Measurement

Metrology is the science of measurement. Measurement of many physical quan-
tities (like lengths from inches to miles and weights from ounces to tons) is so
commonplace that we think little about basic issues involved in metrology. But
often engineers are forced by circumstances to leave the world of off-the-shelf
measurement technology and devise their own instruments. And frequently bec-
ause of externally imposed quality requirements for a product, one must ask “Can
we even measure that?” Then the fundamental issues of validity, precision, and
accuracy come into focus.

Definition 4 A measurement or measuring method is said to be valid if it usefully
or appropriately represents the feature of the measured object or phenomenon
that is of interest.

Definition 5 A measurement system is said to be precise if it produces small vari-
ation in repeated measurement of the same object or phenomenon.

Definition 6 A measurement system is said to be accurate (or sometimes unbi-
ased) if on average it produces the true or correct values of quantities of interest.

Validity is the first concern when developing a measurement method. Without
it, there is no point in proceeding to consider precision or accuracy. The issue is
whether a method of measurement will faithfully portray the quantity of interest.
When developing a new pH meter, one wants a device that will react to changes in
acidity, not to changes in temperature of the solution being tested or to changes in
the amount of light incident on the container holding the solution. When looking
for a measure of customer satisfaction with a new model of automobile, one needs
to consider those things that are important to customers. (For example, the number
of warranty service calls per vehicle is probably a more valid measure of customer
satisfaction or aggravation with a new car than warranty dollars spent per vehicle
by the manufacturer.)

Precision of measurement has to do with getting similar values every time a
particular measurement is done. A bathroom scale that can produce any number
between 150 lb and 160 lb when one gets on it repeatedly is really not very use-
ful. After establishing that a measurement system produces valid measurements,
consistency of those measurements is needed. Figure 2.1 portrays some hardness
measurements made by a group of students (Blad, Sobotka, and Zaug) on a sin-
gle metal specimen with three different hardness testers. The figure shows that
the dial Rockwell tester produced the most consistent results and would therefore
be termed the most precise.
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Brinell

Digital Rockwell

Dial Rockwell

Brinell Number
500 550 600

FIGURE 2.1. Brinell hardness measurements made on three different machines

Precision is largely an intrinsic property of a measurement method or device.
There is not really any way to “adjust” for poor precision or to remedy it except
to (1) overhaul or replace measurement technology or to (2) average multiple
measurements. In this latter regard, the reader should be familiar with the fact
from elementary statistics that if y1, y2, . . . , yn can be thought of as independent
measurements of the same quantity, each with some mean μ and standard devi-
ation σ, then the sample mean, y, has expected or average value μ and standard
deviation σ/

√
n. So people sometimes rely on multiple measurements and aver-

aging to reduce an unacceptable precision of individual measurement (quantified
by σ) to an acceptable precision of average measurement (quantified by σ/

√
n).

But even validity and precision together don’t tell the whole story regarding the
usefulness of real-world measurements. This can be illustrated by again consider-
ing Fig. 2.1. The dial Rockwell tester is apparently the most precise of the three
testers. But it is not obvious from the figure what the truth is about “the” real
Brinell hardness of the specimen. That is, the issue of accuracy remains. Whether
any of the three testers produces essentially the “right” hardness value on aver-
age is not clear. In order to assess that, one needs to reference the testers to an
accepted standard of hardness measurement.

The task of comparing a measurement method or device to a standard one and,
if necessary, working out conversions that will allow the method to produce “cor-
rect” (converted) values on average is called calibration. In the United States,
the National Institute of Standards and Technology (NIST) is responsible for
maintaining and disseminating consistent standards for calibrating measurement
equipment. One could imagine (if the problem were important enough) sending
the students’ specimen to NIST for an authoritative hardness evaluation and using
the result to calibrate the testers represented in Fig. 2.1. Or more likely, one might
test some other specimens supplied by NIST as having known hardnesses and use
those to assess the accuracy of the testers in question (and guide any recalibration
that might be needed).

An analogy that is sometimes helpful in remembering the difference between
accuracy and precision of measurement is that of target shooting. Accuracy in
target shooting has to do with producing a pattern centered on the bull’s eye
(the ideal). Precision has to do with producing a tight pattern (consistency). Fig-
ure 2.2 on page 36 illustrates four possibilities for accuracy and precision in target
shooting.
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Not Accurate
Not Precise

Not Accurate
Precise

Accurate
Not Precise

Accurate
Precise

FIGURE 2.2. Measurement/target-shooting analogy

FIGURE 2.3. The distribution of a measurement y of a quantity x where measurement
bias is δ and standard deviation of measurement is σmeasurement. Modified from “Elementary
Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The American
Statistician, 64(1), 47. c© 2010 Taylor & Francis. Adapted with permission

Probability theory provides a helpful way to describe measurement error/
variation. If a fixed quantity x called the measurand is to be measured with error
(as all real-world quantities are), one might represent what is actually observed as

y = x+ ε (2.1)

where ε is a random variable, say with mean δ and standard deviation
σmeasurement. Model (2.1) says that the mean of what is observed is

μy = x+ δ . (2.2)

If δ = 0, the measurement of x is accurate or unbiased. If δ is not 0, it is called
the measurement bias. The standard deviation of y is (for fixed x) the standard
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deviation of ε, σmeasurement. So σmeasurement quantifies measurement precision in
model (2.1). Figure 2.3 pictures the probability distribution of y and the elements
x, δ, and σmeasurement.

Ideally, δ is 0 (and it is the work of calibration to attempt to make it 0). At a
minimum, measurement devices are designed to have a linearity property. This

Device
“Linearity”

means that over the range of measurands a device will normally be used to evalu-
ate, if its bias is not 0, it is at least constant (i.e., δ does not depend upon x). This
is illustrated in Fig. 2.4 (where we assume that the vertical and horizontal scales
are the same).

FIGURE 2.4. Measurement device “linearity” is bias constant in the measurand

Thinking in terms of model (2.1) is especially helpful when the measurand x
itself is subject to variation. For instance, when parts produced on a machine have
varying diameters x, one might think of model (2.1) as applying separately to
each individual part diameter. But then in view of the reality of manufacturing
variation, it makes sense to think of diameters as random, say with mean μx and
standard deviation σx, independent of the measurement errors. This combination
of assumptions then implies (for a linear device) that the mean of what is obs-
erved is

μy = μx + δ (2.3)

and the standard deviation of what is observed is

Standard
Deviation of
Observations
Subject to
Measurement
Error

σy =
√
σ2
x + σ2

measurement . (2.4)

A nonzero δ is still a measurement bias, but now observed variation across
parts is seen to include one component due to variation in x and another due to
measurement error. The relationships (2.3) and (2.4) between the distributions of
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measurement error (ε) and item-to-item variation in the measurand (x) and the
distribution of the observed measurements (y) are pictured in Fig. 2.5.

FIGURE 2.5. Random measurement error (maroon) and part variation (maroon) combine
to produce observed variation (black). Modified from “Elementary Statistical Methods and
Measurement Error” by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 47.
c© 2010 Taylor & Francis. Adapted with permission

Left to right on Fig. 2.5, the two distributions in maroon represent measurement
error (with bias δ > 0) and measurand variation that combine to produce variation
in y represented by the distribution in black. It is the middle (maroon) distribution
of x that is of fundamental interest, and the figure indicates that measurement error
will both tend to shift location of that distribution and flatten it in the creation of
the distribution of y. It is only this last distribution (the black one) that can be
observed directly, and only when both δ and σmeasurement are negligible (close
to 0) are the distributions of x and y essentially the same.

Observe that Eq. (2.4) implies that

σx =
√
σ2
y − σ2

measurement .

This suggests a way of estimating σx alone. If one has (single) measurements y
for several parts that produce a sample standard deviation sy and several measure-
ments on a single part that produce a sample standard deviation s, then a plausible
estimator of σx is

Estimator of
Process or
Part Variation
Excluding
Measurement
Error

σ̂x =
√
max

(
0, s2y − s2

)
. (2.5)

In the next sections, we will explore the use of reasoning like this, formulas like
(2.5), and the application of elementary confidence interval methods to quantify
various aspects of measurement precision and bias.

Section 2.1 Exercises

1. In a calibration study one compares outputs of a measurement device to
“known” or “standard” values. What purpose does this serve?
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2. Pellet Densification. Crocfer, Downey, Rixner, and Thomas studied the
densification of Nd2O3. Pellets of this material were fired at 1,400 ◦C for
various lengths of time and the resulting densities measured (in g/cc). In
this context, what are the measurand (x), y, ε, and δ?

3. Suppose that in the context of problem 2, five pellets were each fired (for
the same length of time), and their densities were each measured using a
single device. Further, assume the measurement device has constant bias.
How many measurands (xs), ys, εs, and δs are there in this setting?

4. In the study of problem 2, the purpose was to evaluate the effect of fir-
ing on pellet density. Each of the pellets fired had different original densi-
ties (that were not recorded). Does the measurement protocol described in
problem 2 provide data that track what is of primary interest, i.e., does it
produce a valid measure of firing effect? What additional data should have
been collected? Why?

5. In the context of problem 2, the density of a single pellet was repeat-
edly measured five times using a single device. How many measurands
(xs), ys, εs, and δs are there in this setting?

6. In the context of problem 2 suppose that the standard deviation of densities
from repeated measurements of the same pellet with the same device is√
2.0. Suppose further that the standard deviation of actual densities one

pellet to the next (the standard deviation of measurands) is
√
1.4. What

should one then expect for a standard deviation of measured density values
pellet to pellet?

7. Consider the five pellets mentioned in problem 3. Density measurements
similar to the following were obtained by a single operator using a single
piece of equipment with a standard protocol under fixed physical circum-
stances:

6.5, 6.6, 4.9, 5.1, and 5.4 .

(a) What is the sample standard deviation of the n = 5 density measure-
ments?

(b) In the notation of this section, which of σy, σx, or σmeasurement is
legitimately estimated by your sample standard deviation in (a)?

8. Again consider the five pellets of problem 3 and the five density values
recorded in problem 7.

(a) Compute the average measured density.

(b) Assuming an appropriate model and using the notation of this section,
what does your sample average estimate?
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2.2 Elementary One- and Two-Sample Statistical
Methods and Measurement

Elementary statistics courses provide basic inference methods for means and
standard deviations based on one and two normal samples. (See, e.g., Sects. 6.3
and 6.4 of Vardeman and Jobe’s Basic Engineering Data Collection and Analy-
sis.) In this section we use elementary one- and two-sample confidence interval
methods to study (in the simplest contexts possible) (1) how measurement error
influences what can be learned from data and (2) how basic properties of that
measurement error can be quantified. Subsequent sections will introduce more
complicated data structures and statistical methods, but the basic modeling ideas
and conceptual issues can most easily be understood by first addressing them
without unnecessary (and tangential) complexity.

2.2.1 One-Sample Methods and Measurement Error

“Ordinary” confidence interval formulas based on a model that says that y1, y2,
. . . , yn are a sample from a normal distribution with mean μ and standard devia-
tion σ are

Confidence
Limits for a
Normal Mean

y ± t
s√
n

for estimating μ (2.6)

and

Confidence
Limits for a
Normal
Standard
Deviation

(
s

√
n− 1

χ2
upper

, s

√
n− 1

χ2
lower

)
for estimating σ . (2.7)

These are mathematically straightforward, but little is typically said in basic
courses about the practical meaning of the parameters μ and σ. So a first point
to make here is that sources of physical variation (and in particular, sources of
measurement error and item-to-item variation) interact with data collection plans
to give practical meaning to “μ” and “σ.” This in turn governs what of practical
importance can be learned from application of formulas like (2.6) and (2.7).

Two Initial Applications

Figures 2.6 and 2.7 are schematic representations of two different ways that a
single “sample” of n observed values y might arise. These are:

1. Repeat measurements on a single measurand made using the same device,
and
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2. Single measurements made on multiple measurands coming from a stable
process made using the same (linear) device.

Notice that henceforth we will use the language “device” as shorthand for a fixed

This Book’s
Use of the
Word “Device”

combination of physical measurement equipment, operator identity, measurement
procedure, and surrounding physical circumstances (like time of day, temperature,
etc.). We will also use the shorthand “yi’s ∼ ind(μ, σ)” for the model statement
that observations are independent with mean μ and standard deviation σ. And in
schematics like Figs. 2.6 and 2.7, the rulers will represent generic measurement
devices, the spheres generic measurands, and the factories generic processes.

FIGURE 2.6. A single sample derived from n repeat measurements made with a fixed
device on a single measurand. Modified from “Elementary Statistical Methods and Mea-
surement Error” by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 48. c©
2010 Taylor & Francis. Adapted with permission

FIGURE 2.7. A single sample derived from single measurements made with a fixed (linear)
device on each of n different measurands from a physically stable process. Modified from
“Elementary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010,
The American Statistician, 64(1), 48. c© 2010 Taylor & Francis. Adapted with permission

The case represented in Fig. 2.6 also corresponds to Fig. 2.3 (where “measure-
ment” variation is simply that inherent in the reuse of the device to evaluate a
given measurand). The case represented in Fig. 2.7 also corresponds to Fig. 2.5
(where again “measurement” variation is a variation inherent in the “device” and
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now real part-to-part variation is represented by σx). Consider what formulas (2.6)
and (2.7) provide in the two situations.

First, if as in Fig. 2.6 n repeat measurements of a single measurand,
y1, y2, . . . , yn, have sample mean y and sample standard deviation s, applying
the t confidence interval for a mean, one gets an inference for

x+ δ = measurand plus bias .

So:

1. In the event that the measurement device is known to be well-calibrated
(one is sure that δ = 0, there is no systematic error), the limits y ± ts/

√
n

based on ν = n− 1 df are limits for x,

2. In the event that what is being measured is a standard for which x is
known, one may use the limits

(y − x)± t
s√
n

(once again based on ν = n− 1 df) to estimate the device bias, δ.

Further, applying the χ2 confidence interval for a standard deviation, one has an
inference for the size of the device “noise,” σdevice.

Next consider what can be inferred from single measurements made on n
different measurands y1, y2, . . . , yn from a stable process with sample mean y
and sample standard deviation s as illustrated in Fig. 2.7. Here:

1. The limits y ± ts/
√
n (for t based on ν = n− 1 df) are limits for

μx+δ = the mean of the distribution of true values plus (the constant) bias,

2. The quantity s estimates σy =
√
σ2
x + σ2

device that we met first in display
(2.4) and have noted really isn’t of fundamental interest. So there is little
point in direct application of the χ2 confidence limits (2.7) in this context.

Example 7 Measuring Concentration. Below are n = 5 consecutive concen-
tration measurements made by a single analyst on a single physical specimen of
material using a particular assay machine (the real units are not available, so for
the sake of example, let’s call them “moles per liter,” mol/ l):

1.0025, .9820, 1.0105, 1.0110, .9960

These have mean y = 1.0004mol/ l and s = .0120mol/ l . Consulting an χ2

table like Table A.3 using ν = 5 − 1 = 4 df, we can find 95% confidence limits
for σdevice (the size of basic measurement variability) as

.0120

√
4

11.143
and .0120

√
4

.484
i.e., .0072mol/ l and .0345mol/ l .
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(One moral here is that ordinary small sample sizes give very wide confidence
limits for a standard deviation.) Consulting a t table like Table A.2 also using
4 df, we can find 95% confidence limits for the measurand plus instrument bias
(x+ δ) to be

1.0004± 2.776
.0120√

5
, i.e., 1.0004mol/ l± .0149mol/ l .

Note that if the measurements in question were done on a standard material
“known” to have actual concentration 1.0000mol/ l, these limits then corre-
spond to limits for device bias of

0.0004mol/ l± .0149mol/ l .

Finally, suppose that subsequently samples from n = 20 different batches are
analyzed and y = .9954 and sy = .0300. The 95% t confidence limits

.9954± 2.093
.0300√

20
, i.e., .9954mol/ l ± .0140mol/ l .

are for μx + δ, the process mean plus any device bias/systematic error.

Application to a Sample Consisting of Single Measurements of a Single
Measurand Made Using Multiple Devices (From a Large Population of Such
Devices)

The two cases illustrated by Figs. 2.6 and 2.7 do not begin to exhaust the ways
that the basic formulas (2.6) and (2.7) can be applied. We present two more appli-
cations of the one-sample formulas, beginning with an application where single
measurements of a single measurand are made using multiple devices (from a
large population of such devices).

There are contexts in which an organization has many “similar” measurement
devices that could potentially be used to do measuring. In particular, a given piece
of equipment might well be used by any of a large number of operators. Recall that
we are using the word “device” to describe a particular combination of equipment,
people, procedures, etc. used to produce a measurement. So, in this language,
different operators with a fixed piece of equipment are different “devices.” A way
to compare these devices would be to use some (say n of them) to measure a
single measurand. This is illustrated in Fig. 2.8 on page 44.

In this context, a measurement is of the form

y = x+ ε ,

where ε = δ + ε∗, for δ the (randomly selected) bias of the device used and ε∗

a measurement error with mean 0 and standard deviation σdevice (representing a
repeat measurement variability for any one device). So one might write

y = x+ δ + ε∗ .
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FIGURE 2.8. A single sample consisting of n single measurements of a fixed measurand
made with each of n devices (from a large population of such devices with a common pre-
cision). Modified from “Elementary Statistical Methods and Measurement Error” by S.B.
Vardeman et al., 2010, The American Statistician, 64(1), 49. c© 2010 Taylor & Francis.
Adapted with permission

Thinking of x as fixed and δ and ε∗ as independent random variables (δ with mean
μδ , the average device bias, and standard deviation σδ measuring variability in
device biases), the laws of mean and variance from elementary probability then
imply that

μy = x+ μδ + 0 = x+ μδ (2.8)

and

σy =
√
0 + σ2

δ + σ2
device =

√
σ2
δ + σ2

device (2.9)

as indicated on Fig. 2.8. The theoretical average measurement is the measurand
plus the average bias, and the variability in measurements comes from both the
variation in device biases and the intrinsic imprecision of any particular device.

In a context where a schematic like Fig. 2.8 represents a study where several
operators each make a measurement on the same item using a fixed piece of equip-
ment, the quantity √

σ2
δ + σ2

device

is a kind of overall measurement variation that is sometimes called “σR&R,” the

Repeatability
and
Reproducibility

first “R” standing for repeatability and referring to σdevice (a variability for fixed
operator on the single item) and the second “R” standing for reproducibility and
referring to σδ (a between-operator variability).

With μy and σy identified in displays (2.8) and (2.9), it is clear what the one-
sample confidence limits (2.6) and (2.7) estimate in this context. Of the two, int-
erval (2.7) for “σ” is probably the most important, since σy is interpretable in
the context of an R&R study, while μy typically has little practical meaning. It is
another question (that we will address in future sections with more complicated
methods) how one might go about separating the two components of σy to assess
the relative sizes of repeatability and reproducibility variation.
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Application to a Sample Consisting of Differences in Measurements on
Multiple Measurands Made Using Two Linear Devices

Another way to create a single sample of numbers is this. With two devices avail-
able and n different measurands, one might measure each once with both devices
and create n differences between device 1 and device 2 measurements. This is a
way of potentially comparing the two devices and is illustrated in Fig. 2.9.

FIGURE 2.9. A single sample consisting of n differences of single measurements of n
measurands made using two devices (assuming device linearity). Modified from “Elemen-
tary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The Amer-
ican Statistician, 64(1), 49. c© 2010 Taylor & Francis. Adapted with permission

In this context, a difference is of the form

d = y1 − y2 = (x+ ε1)− (x+ ε2) = ε1 − ε2

and (again applying the laws of mean and variance from elementary probability)
it follows that

μd = δ1 − δ2 and σd =
√
σ2

device1 + σ2
device2

as indicated on Fig. 2.9. So applying the t interval for a mean (2.6), the limits

Confidence
Limits for a
Mean
Difference

d± t
s√
n

(2.10)

provide a way to estimate δ1 − δ2, the difference in device biases.

2.2.2 Two-Sample Methods and Measurement Error

Parallel to the one-sample formulas are the two-sample formulas of elementary
statistics. These are based on a model that says that

y11, y12, . . . , y1n1 and y21, y22, . . . , y2n2
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are independent samples from normal distributions with respective means μ1 and
μ2 and respective standard deviations σ1 and σ2.In this context, the so-called

Confidence
Limits for a
Difference in
Normal Means

Satterthwaite approximation gives limits

y1 − y2 ± t̂

√
s21
n1

+
s22
n2

for estimating μ1 − μ2 , (2.11)

where appropriate “approximate degrees of freedom” for t̂ are

Satterthwaite
Degrees of
Freedom for
Formula (2.11)

ν̂ =

(
s21
n1

+
s22
n2

)2

s41
(n1 − 1)n2

1

+
s42

(n2 − 1)n2
2

. (2.12)

(This method is one that you may not have seen in an elementary statistics
course, where often only methods valid when one assumes that σ1 = σ2 are
presented. We use this method not only because it requires less in terms of model
assumptions than the more common formula but also because we will have other
uses for the Satterthwaite idea in this chapter, so it might as well be met first in
this simple context.) It turns out that min ((n1 − 1), (n2 − 1)) ≤ ν̂, so that a
simple conservative version of this method uses degrees of freedom

Conservative
Simplification
of Formula
(2.12)

ν̂∗ = min ((n1 − 1), (n2 − 1)) . (2.13)

Further, in the two-sample context, there are elementary confidence limits

Confidence
Limits for a
Ratio of Two
Normal
Standard
Deviations

s1
s2

· 1√
F(n1−1),(n2−1),upper

and
s1
s2

· 1√
F(n1−1),(n2−1),lower

for
σ1

σ2
(2.14)

(and be reminded that F(n1−1),(n2−1),lower = 1/F(n2−1),(n1−1),upper so that stan-
dard F tables giving only upper percentage points can be employed).

Application to Two Samples Consisting of Repeat Measurements of a Single
Measurand Made Using Two Different Devices

One way to create “two samples” of measurements is to measure the same item
repeatedly with two different devices. This possibility is illustrated in Fig. 2.10.

Direct application of the two-sample confidence interval formulas here shows
that the two-sample Satterthwaite approximate t interval (2.11) provides limits for

μ1 − μ2 = (x+ δ1)− (x+ δ2) = δ1 − δ2

(the difference in device biases), while the F interval (2.14) provides a way of
comparing device standard deviations σdevice1 and σdevice2 through direct estima-
tion of

σdevice1

σdevice2
.
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FIGURE 2.10. Two samples consisting of n1 and n2 measurements of a single measurand
with two devices. Modified from “Elementary Statistical Methods and Measurement Error”
by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 49. c© 2010 Taylor &
Francis. Adapted with permission

This data collection plan thus provides for straightforward comparison of the basic
characteristics of the two devices.

Example 8 Measuring Polystyrene “Packing Peanut” Size. In an in-class mea-
surement exercise, two students used the same caliper to measure the “size” of a
single polystyrene “packing peanut” according to a class-standard measurement
protocol. Some summary statistics from their work follow.

Student 1 Student 2
n1 = 4 n2 = 6
y1 = 1.42 cm y2 = 1.44 cm
s1 = .20 cm s2 = .40 cm

In this context, the difference in the two measurement “devices” is the difference
in “operators” making the measurements. Consider quantifying how this differ-
ence affects measurement.

To begin, note that from formula (2.12)

ν̂ =

(
(.20)2

4
+

(.40)2

6

)2

(.20)
4

(4− 1) (4)
2 +

(.40)
4

(6− 1) (6)
2

≈ 7.7,

or using the more conservative display (2.13), one gets

ν̂∗ = min ((4− 1), (6− 1)) = 3.

So (rounding the first of these down to 7) one should use either 7 or 3 degrees of
freedom with formula (2.11). For the sake of example, using ν̂∗ = 3 degrees
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of freedom, the upper 2.5% point of the t distribution with 3 df is 3.182. So
95% confidence limits for the difference in biases for the two operators using
this caliper are

1.42− 1.44± 3.182

√
(.20)

2

4
+

(.40)
2

6
,

i.e.,

−.02 cm± .61 cm .

The apparent difference in biases is small in comparison with the imprecision
associated with that difference.

Then, since the upper 2.5% point of the F3,5 distribution is 7.764 and the upper
2.5% point of the F5,3 distribution is 14.885, 95% confidence limits for the ratio
of standard deviations of measurement for the two operators are

.20

.40
· 1√

7.764
and

.20

.40
·
√
14.885,

i.e.,

.19 and 1.93.

Since this interval covers values both smaller and larger than 1.00, there is in the
limited information available here no clear indicator of which of these students is
the most consistent in his or her use of the caliper in this measuring task.

Comparing
Devices When
Measurement
is Destructive

Application to Two Samples Consisting of Single Measurements Made with
Two Devices on Multiple Measurands from a Stable Process (Only One
Device Being Used for a Given Measurand)

There are quality assurance contexts in which measurement is destructive (and
cannot be repeated for a single measurand) and nevertheless one needs to some-
how compare two different devices. In such situations, the only thing that can be
done is to take items from some large pool of items or from some stable process
and (probably after randomly assigning them one at a time to one or the other of
the devices) measure them and try to make comparisons based on the resulting
samples. This possibility is illustrated in Fig. 2.11. This is a schematic for two
samples consisting of single measurements made with two devices on multiple
measurands from a stable process (only one device used for a given measurand).

Direct application of the two-sample Satterthwaite approximate t interval
(2.11) provides limits for

μ1 − μ2 = (μx + δ1)− (μx + δ2) = δ1 − δ2

(the difference in device biases). So, even in contexts where measurement is des-
tructive, it is possible to compare device biases. It’s worth contemplating, how-
ever, the difference between the present scenario and the immediately preceding
one (represented by Fig. 2.10).
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FIGURE 2.11. Two samples consisting of single measurements made on n1 + n2 mea-
surands from a stable process, n1 with device 1 and n2 with device 2. Modified from
“Elementary Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010,
The American Statistician, 64(1), 50. c© 2010 Taylor & Francis. Adapted with permission

The measurements y in Fig. 2.10 on page 47 are less variable than are the mea-
surements y here in Fig. 2.11. This is evident in the standard deviations shown on
the figures and follows from the fact that in the present case (unlike the previous
one), measurements are affected by unit-to-unit/measurand-to-measurand varia-
tion. So all else being equal, one should expect limits (2.11) applied in the present
context to be wider/less informative than when applied to data collected as in the
last application. That should be in accord with intuition. One should expect to
be able to learn more useful to comparing devices when the same item(s) can be
remeasured than when it (they) cannot be remeasured.

Notice that if the F limits (2.14) are applied here, one winds up with only an
indirect comparison of σdevice1 and σdevice2, since all that can be easily estimated
(using the limits (2.14)) is the ratio

√
σ2
x + σ2

device1√
σ2
x + σ2

device2

and NOT the (more interesting) ratio σdevice1/σdevice2.

Application to Two Samples Consisting of Repeat Measurements Made with
One Device on Two Measurands

A basic activity of quality assurance is the comparison of nominally identical
items. Accordingly, another way to create two samples is to make repeated mea-
surements on two measurands with a single device. This is illustrated in Fig. 2.12
on page 50.

In this context,

μ1 − μ2 = (x1 + δ)− (x2 + δ) = x1 − x2
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so that application of the two-sample Satterthwaite approximate t interval (2.11)
provides limits for the difference in the measurands and a direct way of compar-
ing the measurands. The device bias affects both samples in the same way and
“washes out” when one takes a difference. (This, of course, assumes that the
device is linear, i.e., that the bias is constant.)

FIGURE 2.12. Two samples consisting of repeat measurements made with one device on
two measurands. Modified from “Elementary Statistical Methods and Measurement Error”
by S.B. Vardeman et al., 2010, The American Statistician, 64(1), 50. c© 2010 Taylor &
Francis. Adapted with permission

Application to Two Samples Consisting of Single Measurements Made Using
a Single Linear Device on Multiple Measurands Produced by Two Stable
Processes

Another basic activity of quality assurance is the comparison of nominally iden-
tical processes. Accordingly, another way to create two samples is to make single
measurements on samples of measurands produced by two processes. This pos-
sibility is illustrated in Fig. 2.13.

In this context,

μ1 − μ2 = (μx1 + δ)− (μx2 + δ) = μx1 − μx2

so that application of the two-sample Satterthwaite approximate t interval (2.11)
provides limits for the difference in the process mean measurands and hence a
direct way of comparing the processes. Again, the device bias affects both samples
in the same way and “washes out” when one takes a difference (still assuming that
the device is linear, i.e., that the bias is constant).

If the F limits (2.14) are applied here, one winds up with only an indirect
comparison of σx1 and σx2, since what can be easily estimated is the ratio

√
σ2
x1 + σ2

device√
σ2
x2 + σ2

device

and not the practically more interesting σx1/σx2.
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FIGURE 2.13. Two samples consisting of single measurements made using a single device
on multiple measurands produced by two stable processes. Modified from “Elementary
Statistical Methods and Measurement Error” by S.B. Vardeman et al., 2010, The American
Statistician, 64(1), 50. c© 2010 Taylor & Francis. Adapted with permission

Section 2.2 Exercises

1. Consider again the Pellet Densification case of problem 7 in Sect. 2.1. Sup-
pose the five data values 6.5, 6.6, 4.9, 5.1, and 5.4 were measured densi-
ties for a single pellet produced by five different operators using the same
piece of measuring equipment (or by the same operator using five differ-
ent pieces of equipment—the two scenarios are conceptually handled in
the same way). Use the notation of this section (x, δ, μδ, σδ , and σdevice)
below.

(a) What does the sample average of these five data values estimate?

(b) What does the sample standard deviation of these five data values
estimate?

(c) Which of the two estimates in (a) and (b) is probably more important?
Why?

2. Return again to the context of problem 7 of Sect. 2.1. Suppose the origi-
nal set of five data values 6.5, 6.6, 4.9, 5.1, and 5.4 was obtained from five
different pellets by operator 1 using piece of equipment 1. Using a second
piece of equipment, operator 1 recorded densities 6.6, 5.7, 5.9, 6.2, and 6.3
for the same five pellets. So, for pellet 1, “device 1” produced measure-
ment 6.5 and “device 2” produced 6.6; for pellet 2, “device 1” produced
measurement 6.6 and “device 2” produced 5.7 and so on.
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(a) Give the five differences in measured densities (device 1 minus device
2). Calculate the sample average difference. What does this estimate?
(Hint: Consider δs .)

(b) Calculate the sample standard deviation of the five differences (device
1 minus device 2). What does this estimate? (Hint: Consider the
σdevices.)

(c) Find 90% confidence limits for the average difference in measure-
ments from the two devices.

3. Suppose the two sets of five measurements referred to in problems 1 and 2
actually came from one pellet, i.e., operator 1 measured the same pellet five
times with piece of equipment 1 and then measured that same pellet five
times with piece of equipment 2.

(a) Find a 95% confidence interval for the ratio of the two device stan-
dard deviations (σdevice1/σdevice2). What do your limits indicate about
the consistency of measurements from device 1 compared to that of
measurements from device 2?

(b) Find a 95% two-sample Satterthwaite approximate t interval for the
difference in the two device averages (device 1 minus device 2). If
your interval were to include 0, what would you conclude regarding
device biases 1 and 2?

4. Consider now the same ten data values referred to in problems 2 and 3, but
a different data collection plan. Suppose the first five data values were mea-
surements on five different pellets by operator 1 using piece of equipment 1
and the second set of data values was for another set of pellets by operator
1 using piece of equipment 2. Assume both sets of pellets came from the
same physically stable process.

(a) What does the sample standard deviation from the first set of five data
values estimate?

(b) What does the sample standard deviation from the second set of five
data values estimate?

(c) What does the difference in the two-sample average densities esti-
mate?

5. Reflect on problems 3 and 4. Which data-taking approach is better for esti-
mating the difference in device biases? Why?

6. In the same Pellet Densification context considered in problems 1 through
5, suppose one pellet was measured five times by operator 1 and a different
pellet was measured five times by operator 1 (the same physical equipment
was used for the entire set of ten observations). What is estimated by the
difference in the two sample averages?
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7. Once again in the context of problems 1 through 6, suppose the first five
data values were measurements on five different pellets made by operator
1 using piece of equipment 1 and the second five were measurements of a
different set of pellets by operator 1 using piece of equipment 1. Assume
the two sets of pellets come from different firing methods (method 1 and
method 2). Assume the two firing processes are physically stable.

(a) Find the two-sided 95% two-sample Satterthwaite approximate t int-
erval for the difference in the process mean measurands (method 1
minus method 2).

(b) In words, what does the interval in (a) estimate? In symbols, what
does the interval in (a) estimate?

(c) With this approach to data taking, can either device bias be estimated
directly? Why or why not?

8. Still in the context of problems 1 through 7, density measurements
6.5, 6.6, 4.9, 5.1, and 5.4 were obtained for five different pellets by a single
operator using a single piece of measuring equipment under a standard
protocol and fixed physical circumstances. Use the t confidence interval for
a mean, and give 95% confidence limits for the mean of the distribution of
true densities plus measurement bias.

9. Suppose the five measurements in problem 8 are repeat measurements from
only one pellet, not from five different pellets.

(a) Use the χ2 confidence limits for a standard deviation (from elemen-
tary statistics), and give a 95% confidence interval for σmeasurement.

(b) Use the t confidence interval formula for a mean from elementary
statistics and give 95% confidence limits for the (single) true pellet
density plus measurement bias.

2.3 Some Intermediate Statistical Methods
and Measurement

Through reference to familiar elementary one- and two-sample methods of statis-
tical inference, Sect. 2.2 illustrated the basic insight that:

How sources of physical variation interact with a data collection plan
governs what of practical importance can be learned from a data set,
and in particular, how measurement error is reflected in the data set.

In this section we consider some computationally more complicated statistical
methods and what they provide in terms of quantification of the impact of mea-
surement variation on quality assurance data.
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2.3.1 A Simple Method for Separating Process
and Measurement Variation

In Sect. 2.1 we essentially observed that:

1. Repeated measurement of a single measurand with a single device allows
one to estimate device variability,

2. Single measurements made on multiple measurands from a stable process
allow one to estimate a combination of process and measurement variabil-
ity,

and remarked that these facts suggest formula (2.5) as a way to estimate a process
standard deviation alone. Our first objective in this section is to elaborate a bit on
this thinking.

FIGURE 2.14. Schematic of a data collection plan that allows evaluation of σx without
inflation by measurement variation

Figure 2.14 is a schematic of a data collection plan that combines elements 1
and 2 above. Here we use the notation y for the single measurements on n items
from the process and the notation y′ for the m repeat measurements on a single
measurand. The sample standard deviation of the ys, sy, is a natural empirical
approximation for σy =

√
σ2
x + σ2

device and the sample standard deviation of the
y′’s, s, is a natural empirical approximation for σdevice. That suggests that one
estimates the process standard deviation with

Estimator of
Process
Standard
Deviation not
Inflated by
Measurement
Variability

σ̂x =
√
max

(
0, s2y − s2

)
(2.15)

as indicated in display (2.5). (The maximum of 0 and s2y − s2 under the root is
there simply to ensure that one is not trying to take the square root of a negative
number in the rare case that s exceeds sy .) σ̂x is not only a sensible single-number
estimate of σx, but can also be used to make approximate confidence limits for the
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process standard deviation. The so-called Satterthwaite approximation suggests
that one uses

Satterthwaite
Approximate
Confidence
Limits for a
Process
Standard
Deviation

σ̂x

√
ν̂

χ2
upper

and σ̂x

√
ν̂

χ2
lower

(2.16)

as limits for σx, where appropriate approximate degrees of freedom ν̂ to be used
finding χ2 percentage points are

Satterthwaite
Approximate df
for Use With
Limits (2.16)

ν̂ =
σ̂4
x

s4y
n− 1

+
s4

m− 1

(2.17)

Example 9 (Example 7 Revisited.) In Example 7, we considered m = 5 mea-
surements made by a single analyst on a single physical specimen of material
using a particular assay machine that produced s = .0120mol/ l . Subsequently,
specimens from n = 20 different batches were analyzed and sy = .0300mol/ l .
Using formula (2.15), an estimate of real process standard deviation uninflated
by measurement variation is

σ̂x =

√
max

(
0, (.0300)

2 − (.0120)
2
)
= .0275mol/ l

and this value can be used to make confidence limits. By formula (2.17) approxi-
mate degrees of freedom are

ν̂ =
(.0275)

4

(.0300)4

19 + (.0120)4

4

= 11.96 .

So rounding down to ν̂ = 11, since the upper 2.5% point of the χ2
11 distribution

is 21.920 and the lower 2.5% point is 3.816, by formula (2.16) approximate 95%
confidence limits for the real process standard deviation (σx) are

.0275

√
11

21.920
and .0275

√
11

3.816
,

i.e.,
.0195mol/ l and .0467mol/ l .
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2.3.2 One-Way Random Effects Models and Associated
Inference

One of the basic models of intermediate statistical methods is the so-called one-
way random effects model for I samples of observations

y11, y12, . . . , y1n1

y21, y22, . . . , y2n2

...
yI1, yI2, . . . , yInI

This model says that the observations may be thought of as

One-Way
Random
Effects Model

yij = μi + εij

where the εij are independent normal random variables with mean 0 and standard
deviation σ, while the I values μi are independent normal random variables with
mean μ and standard deviation σμ (independent of the εs). (One can think of I
means μi drawn at random from a normal distribution of μis and subsequently
observations y generated from I different normal populations with those means
and a common standard deviation.) In this model, the three parameters are σ (the
“within-group” standard deviation), σμ (the “between-group” standard deviation),
and μ (the overall mean). The squares of the standard deviations are called “vari-
ance components” since for any particular observation, the laws of expectation
and variance imply that

μy = μ+ 0 = μ and σ2
y = σ2

μ + σ2

(i.e., σ2
μ and σ2 are components of the variance of y).

Two quality assurance contexts where this model can be helpful are where

1. Multiple measurands from a stable process are each measured multiple
times using the same device,

2. A single measurand is measured multiple times using multiple devices.

These two scenarios and the accompanying parameter values are illustrated in
Figs. 2.15 and 2.16.

There are well-established (but not altogether simple) methods of inference
associated with the one-way random effects model that can be applied to make
confidence intervals for the model parameters (and inferences of practical inter-
est in metrological applications). Some of these are based on so-called ANOVA
methods and the one-way ANOVA identity that says that with

yi =
1

ni

∑
j

yij , n =
∑
i

ni, and y =
1

n

∑
i

niyi,
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FIGURE 2.15. Multiple measurands from a stable process each measured multiple times
using the same device

FIGURE 2.16. A single measurand measured multiple times using multiple devices

it is the case that

One-Way
ANOVA
Identity

∑
i,j

(yij − y)
2
=
∑
i

ni (yi − y)
2
+
∑
i,j

(yij − yi)
2 (2.18)

or in shorthand “sum of squares” notation

One-Way
ANOVA
Identity in Sum
of Squares
Notation

SSTot = SSTr+ SSE (2.19)

SSTot is a measure of overall raw variability in the whole data set. SSTot is
n−1 times the overall sample variance computed ignoring the boundaries between
samples. SSE is a measure of variability left unaccounted for after taking account
of the sample boundaries and is a multiple of a weighted average of the I sample
variances. SSTr is a measure of variation in the sample means yi. and is most
simply thought of as the difference SSTot− SSE. The “sums of squares” SSE
and SSTr have respective associated degrees of freedom n − I and I − 1. The
ratios of sums of squares to their degrees of freedom are called “mean squares”
and symbolized as

MSE =
SSE

n− I
and MSTr =

SSTr

I − 1
. (2.20)
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Confidence limits for the parameter σ2 of the one-way random effects model
can be built on the error mean square. A single-number estimate of σ is

One-Way
ANOVA
Estimator
of σ

σ̂ =
√
MSE (2.21)

and confidence limits for σ are

One-Way
ANOVA-Based
Confidence
Limits for σ

σ̂

√
n− I

χ2
upper

and σ̂

√
n− I

χ2
lower

(2.22)

where the appropriate degrees of freedom are ν = n− I . Further, in the case that
all nis are the same, i.e., ni = m for all i, the Satterthwaite approximation can
be used to make fairly simple approximate confidence limits for σμ. That is, a
single-number estimator of σμ is

One-Way
ANOVA-Based
Estimator
for σμ

σ̂μ =

√
1

m
max (0,MSTr−MSE) , (2.23)

and with approximate degrees of freedom

Satterthwaite
Approximate df
for Use with
Limits (2.25)

ν̂ =
m2 · σ̂4

μ

MSTr2

I − 1
+

MSE2

n− I

(2.24)

approximate confidence limits for σμ are

One-Way
ANOVA-Based
Confidence
Limits for σμ

σ̂μ

√
ν̂

χ2
upper

and σ̂μ

√
ν̂

χ2
lower

. (2.25)

Operationally, the mean squares implicitly defined in displays (2.18) through
(2.20) are rarely computed “by hand.” And given that statistical software is
going to be used, rather than employ the methods represented by formulas (2.21)
through (2.25), more efficient methods of confidence interval estimation can be
used. High-quality statistical software (like the open-source command line-driven
R package or the commercial menu-driven JMP package) implements the best
known methods of estimation of the parameters σ, σμ, and μ (based not on
ANOVA methods, but instead on computationally more difficult REML methods)
and prints out confidence limits directly.

Example 10 Part Hardness. Below are m = 2 hardness values (in mm) mea-
sured on each of I = 9 steel parts by a single operator at a farm implement
manufacturer.

Part 1 2 3 4 5 6 7 8 9
3.30 3.20 3.20 3.25 3.25 3.30 3.15 3.25 3.25
3.30 3.25 3.30 3.30 3.30 3.30 3.20 3.20 3.30
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This is a scenario of the type illustrated in Fig. 2.15. Either working “by hand”
with formulas (2.18) through (2.20) or reading directly off a report from a statis-
tical package,

MSE = .001389 and MSTr = .003368

So using formulas (2.21) and (2.22) (here n = mI = 18 so that error degrees of
freedom are n − I = 18 − 9 = 9), 95% confidence limits for σdevice (= σ here)
are

√
.001389

√
9

19.023
and

√
.001389

√
9

2.700
,

i.e.,
.026mm and .068mm .

Further, using formulas (2.23) through (2.25), Satterthwaite degrees of freedom
for σ̂μ are

ν̂ =

(
22
) (

1
2 (.003368− .001389)

)2
(.003368)

2

9− 1
+

(.001389)
2

18− 9

≈ 2.4

and rounding down to 2 degrees of freedom, approximate 95% confidence limits
for σx (= σμ here) are
√

1

2
(.003368− .001389)

√
2

7.378
and

√
1

2
(.003368− .001389)

√
2

.051
,

i.e.,

.016mm and .197mm .

The JMP package (using REML methods instead of the Satterthwaite approxima-
tion based on ANOVA mean squares) produces limits for σx:

0mm and
√
.0027603 = .053mm .

These more reliable limits at least confirm that the simpler methods “get into the
right ballpark” in this example.

What is clear from this analysis is that this is a case where part-to-part varia-
tion in hardness (measured by σx) is small enough and poorly determined enough
in comparison with basic measurement noise (measured by σdevice estimated as
.03726 =

√
.001389) that it is impossible to really tell its size.

Example 11 Paper Weighing. Below are m = 3 measurements of the weight (in
g) of a single 20 cm × 20 cm piece of 20 lb bond paper made by each of I = 5
different technicians using a single balance.

Operator 1 2 3 4 5
3.481 3.448 3.485 3.475 3.472
3.477 3.472 3.464 3.472 3.470
3.470 3.470 3.477 3.473 3.474
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This is a scenario of the type illustrated in Fig. 2.16 and further illustrates the con-
cepts of repeatability (fixed device) variation and reproducibility (here, device-to-
device, i.e., operator-to-operator) variation first discussed on page 44. Use of the
JMP statistical package (and REML estimation) with these data produces 95 %
confidence limits for the two standard deviations σδ (= σμ here) and σdevice (= σ
here). These place

0 < σδ <
√
4.5× 10−5 = .0067 g

and
.0057 g =

√
3.2× 10−5 < σdevice <

√
.0002014 = .0142 g

with 95 % confidence. This is a case where repeatability variation is clearly larger
than reproducibility (operator-to-operator) variation in weight measuring. If one
doesn’t like the overall size of measurement variation, it appears that some fun-
damental change in equipment or how it is used will be required. Simple training
of the operators aimed at making how they use the equipment more uniform (and
reduction of differences between their biases) has far less potential to improve
measurement precision.

Section 2.3 Exercises

1. Fiber Angle. Grunig, Hamdorf, Herman, and Potthoff studied a carpet-like
product. Fiber angles (to the backing) were of interest. Operator 1 obtained
the values 19, 20, 20, and 23 (in degrees) from four measurements of fiber
angle for a single specimen. This same operator then measured fiber angles
once each for three other specimens of the “carpet” and obtained the values
20, 15, and 23.

(a) Using the methods of this section, give an estimate of the specimen-
to-specimen standard deviation of fiber angle.

(b) Give the appropriate “approximate degrees of freedom” associated
with your estimate from (a). Then find a 95% confidence interval for
the specimen-to-specimen fiber angle standard deviation.

2. Continue with the Fiber Angle case of problem 1. Operator 2 obtained
the fiber angle measurements 20, 25, 17, and 22 from the first specimen
mentioned in problem 1 and operator 3 obtained the values 20, 19, 15, and
16. (Fiber angle for the same specimen was measured four times by each of
the three operators.) As before, all measurements were in degrees. The data
summaries below are from the use of the JMP statistical package with
these n = 12 measurements of fiber angle for this specimen. Use them
to answer (a) through (c). (The estimates and confidence intervals in the
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second table are for variances, not standard deviations. You will need to
take square roots to get inferences for standard deviations.)

ANOVA table
Source SS df MS
Operator 28.66 2 14.33
Error 60 9 6.66

Total 88.66 11

REML variance component analysis
Random effect VarComponent 95% lower 95% upper
Operator 1.92 −5.27 9.11
Error 6.66 3.15 22.22

(a) Give an appropriate single-number estimate of σrepeatability. Deter-
mine 95% confidence limits for device (repeatability) standard devi-
ation, σrepeatability.

(b) From the computer output, give the appropriate estimate of
σreproducibility. Give 95% confidence limits for σreproducibility.

(c) Based on your answers to (a) and (b), where would you focus mea-
surement improvement efforts?

3. Continuing with the Fiber Angle case, in addition to the repeat measure-
ments 19, 20, 20, and 23 made by operator 1 on specimen 1, this person
also measured angles on two other specimens. Four angle measurements
on specimen 2 were 15, 17, 20, and 20, and four angle measurements on
specimen 3 were 23, 20, 22, and 20. The data summaries below are from
the use of the JMP statistical package with these n = 12 measurements
for these three specimens. Use them to answer (a) through (c). (The esti-
mates and confidence intervals in the second table are for variances, not
standard deviations. You will need to take square roots to get inferences for
standard deviations.)

ANOVA table
Source SS df MS
Specimen 23.17 2 11.58
Error 33.75 9 3.75

Total 56.92 11

REML variance component analysis
Random effect VarComponent 95 % lower 95% upper
Specimen 1.96 3.78 7.69
Error 3.75 1.77 12.5

(a) Give an appropriate single-number estimate of σdevice. Determine
95% confidence limits for device variation, σdevice.
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(b) From the computer output, give an appropriate estimate of σx. Give
95 % confidence limits for σx.

(c) Based on your answers to (a) and (b), does it seem possible to det-
ermine fiber angle for a fixed specimen with acceptable precision?
(Hint: Consider the sizes of the estimated σdevice and σx.)

2.4 Gauge R&R Studies

We have twice made some discussion of “gauge R&R,” first on page 44 in the
context of comparison of two operators and then in Example 11, where three
operators were involved. In both cases, only a single part (or measurand) was
considered. In a typical industrial gauge R&R study, each of J operators uses
the same gauge or measurement system to measure each of I parts (common to
all operators) a total of m different times. Variation in measurement typical of
that seen in the m measurements for a particular operator on a particular part is
called the repeatability variation of the gauge. Variation which can be attributed
to differences between the J operators is called reproducibility variation of the
measurement system.

This section considers the analysis of such full-blown gauge R&R studies inv-
olving a total of mIJ measurements. We begin with a discussion of the two-way
random effects model that is commonly used to support analyses of gauge R&R
data. Then primarily for ease of exposition and making connections to common
analyses of gauge R&R studies, we discuss some range-based statistical meth-
ods. Finally, we provide what are really superior analyses, based on ANOVA
calculations.

2.4.1 Two-Way Random Effects Models and Gauge
R&R Studies

Typical industrial gauge R&R data are conveniently thought of as laid out in the
cells of a table with I rows corresponding to parts and J columns corresponding
to operators.

Example 12 Gauge R&R for a 1-Inch Micrometer Caliper. Heyde, Kuebrick,
and Swanson conducted a gauge R&R study on a certain micrometer caliper as
part of a class project. Table 2.1 shows data that the J = 3 (student) operators
obtained, each making m = 3 measurements of the heights of I = 10 steel
punches.

Notice that even for a given punch/student combination, measured heights are
not exactly the same. Further, it is possible to verify that averaging the 30 mea-
surements made by student 1, a mean of about .49853 in is obtained, while cor-
responding means for students 2 and 3 are, respectively, about .49813 in and
.49840 in. Student 1 may tend to measure slightly higher than students 2 and
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TABLE 2.1. Measured heights of ten steel punches in 10−3 in

Punch Student 1 Student 2 Student 3
1 496, 496, 499 497, 499, 497 497, 498, 496
2 498, 497, 499 498, 496, 499 497, 499, 500
3 498, 498, 498 497, 498, 497 496, 498, 497
4 497, 497, 498 496, 496, 499 498, 497, 497
5 499, 501, 500 499, 499, 499 499, 499, 500
6 499, 498, 499 500, 499, 497 498, 498, 498
7 503, 499, 502 498, 499, 499 500, 499, 502
8 500, 499, 499 501, 498, 499 500, 501, 499
9 499, 500, 499 500, 500, 498 500, 499, 500
10 497, 496, 496 500, 494, 496 496, 498, 496

3. That is, by these rough “eyeball” standards, there is some hint in these data
of both repeatability and reproducibility components in the overall measurement
imprecision.

To this point in our discussions of R&R, we have not involved more than a
single measurand. Effectively, we have confined attention to a single row of a
table like Table 2.1. Standard industrial gauge R&R studies treat multiple parts
(partially as a way of making sure that reliability of measurement doesn’t obvi-
ously vary wildly across parts). So here we consider the kind of multiple-part case
represented in Table 2.1.

The model most commonly used in this context is the so-called two-way ran-
dom effects model that can be found in many intermediate-level statistical method
texts. (See, e.g., Section 8.4 of Vardeman’s Statistics for Engineering Problem
Solving.) Let

yijk = the kth measurement made by operator j on part i .

The model is

Two-Way
Random
Effects Model

yijk = μ+ αi + βj + αβij + εijk , (2.26)

where the μ is an (unknown) constant, the αi are normal random variables with
mean 0 and variance σ2

α, the βj are normal random variables with mean 0 and
variance σ2

β , the αβij are normal random variables with mean 0 and variance
σ2
αβ , the εijk are normal random variables with mean 0 and variance σ2, and

all of the αs, βs, αβs, and εs are independent. In this model, the unknown con-
stant μ is an average (over all possible operators and all possible parts) measure-
ment, the αs are (random) effects of different parts, the βs are (random) effects
of different operators, the αβs are (random) joint effects peculiar to particular
part×operator combinations, and the εs are (random) measurement errors. The
variances σ2

α, σ
2
β , σ

2
αβ , and σ2 are called “variance components” and their sizes

govern how much variability is seen in the measurements yijk .



64 Chapter 2. Statistics and Measurement

Consider a hypothetical case with I = 2, J = 2, and m = 2. Model (2.26) says
that there is a normal distribution with mean 0 and variance σ2

α from which α1

and α2 are drawn. And there is a normal distribution with mean 0 and variance σ2
β

from which β1 and β2 are drawn. And there is a normal distribution with mean
0 and variance σ2

αβ from which αβ11, αβ12, αβ21, and αβ22 are drawn. And
there is a normal distribution with mean 0 and variance σ2 from which eight εs
are drawn. Then these realized values of the random effects are added to produce
the eight measurements as indicated in Table 2.2.

TABLE 2.2. Measurements in a hypothetical gauge R&R study
Operator 1 Operator 2

Part 1
y111 = μ+ α1 + β1 + αβ11 + ε111
y112 = μ+ α1 + β1 + αβ11 + ε112

y121 = μ+ α1 + β2 + αβ12 + ε121
y122 = μ+ α1 + β2 + αβ12 + ε122

Part 2
y211 = μ+ α2 + β1 + αβ21 + ε211
y212 = μ+ α2 + β1 + αβ21 + ε212

y221 = μ+ α2 + β2 + αβ22 + ε221
y222 = μ+ α2 + β2 + αβ22 + ε222

Either directly from Eq. (2.26) or as illustrated in Table 2.2, according to the

Repeatability
Standard
Deviation in the
Two-Way
Model

two-way random effects model, the only differences between measurements for a
fixed part×operator combination are the measurement errors ε. And the variability
of these is governed by the parameter σ. That is, σ is a measure of repeatability
variation in this model, and one objective of an analysis of gauge R&R data is to
estimate it.

Then, if one looks at a fixed “part i” (row i), the quantity μ + αi is common
across the row. In the context of a gauge R&R study this can be interpreted as
the value of the ith measurand (these vary across parts/rows because the αi vary).
Then, still for a fixed part i, it is the values βj + αβij that vary column/operator
to column/operator. So in this gauge R&R context, this quantity functions as a
kind of part-i-specific operator bias. (More on the qualifier “part i specific” in a
bit.) According to model (2.26), the variance of βj + αβij is σ2

β + σ2
αβ , so an

appropriate measure of reproducibility variation in this model is

Reproducibility
Standard
Deviation in the
Two-Way
Model

σreproducibility =
√
σ2
β + σ2

αβ . (2.27)

According to the model, this is the standard deviation that would be experienced
by many operators making a single measurement on the same part assuming that
there is no repeatability component to the overall variation. Another way to say
the same thing is to recognize this quantity as the standard deviation that would be
experienced computing with long-run average measurements for many operators
on the same part. That is, the quantity (2.27) is a measure of variability in operator
bias for a fixed part in this model.

As long as one confines attention to a single row of a standard gauge R&R
study, the one-way random effects model and analysis of Sect. 2.3 are relevant.
The quantity σreproducibility here is exactly σδ from application of the one-way
model to a single-part gauge R&R study. (And the present σ is exactly σdevice.)
What is new and at first perhaps a bit puzzling is that in the present context of mul-
tiple parts and display (2.27), the reproducibility variation has two components,
σβ and σαβ . This is because for a given part i, the model says that bias for operator
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j has both components βj and αβij . The model terms αβij allow “operator bias”
to change part to part/measurand to measurand (an issue that simply doesn’t arise
in the context of a single-part study). As such, they are a measure of nonlinearity
(bias nonconstant in the measurand) in the overall measurement system. Two-way
data like those in Table 2.1 allow one to estimate all of σreproducibility, σβ and
σαβ , and all else being equal, cases where the σαβ component of σreproducibility

is small are preferable to those where it is large.
The quantity

Combined R&R
Standard
Deviation

σR&R =
√
σ2
β + σ2

αβ + σ2 =
√
σ2
reproducibility + σ2 (2.28)

is the standard deviation implied by the model (2.26) for many operators each
making a single measurement on the same part. That is, quantity (2.28) is a mea-
sure of the combined imprecision in measurement attributable to both repeatabil-
ity and reproducibility sources. And one might think of

σ2

σ2
R&R

=
σ2

σ2
β + σ2

αβ + σ2
and

σ2
reproducibility

σ2
R&R

=
σ2
β + σ2

αβ

σ2
β + σ2

αβ + σ2
(2.29)

as the fractions of total measurement variance due, respectively, to repeatability
and reproducibility. If one can produce estimates of σ and σreproducibility, esti-
mates of these quantities (2.28) and (2.29) follow in straightforward fashion.

It is common to treat some multiple of σR&R (often the multiplier is six, but
sometimes 5.15 is used) as a kind of uncertainty associated with a measurement
made using the gauge or measurement system in question. And when a gauge is
being used to check conformance of a part dimension or other measured charac-
teristics to engineering specifications (say, some lower specification L and some
upper specification U ), this multiple is compared to the spread in specifications.
Specifications U and L are numbers set by product design engineers that are sup-

Engineering
Specifications

posed to delineate what is required of a measured dimension in order that the item
in question be functional. The hope is that measurement uncertainty is at least an
order of magnitude smaller than the spread in specifications. Some organizations
go so far as to call the quantity

Gauge
Capability
Ratio

GCR =
6σR&R

U − L
(2.30)

a gauge capability (or precision-to-tolerance) ratio and require that it be no
larger than .1 (and preferably as small as .01) before using the gauge for checking
conformance to such specifications. (In practice, one will only have an estimate
of σR&R upon which to make an empirical approximation of a gauge capability
ratio.)

2.4.2 Range-Based Estimation

Because range-based estimation (similar to, but not exactly the same as, what
follows) is in common use for the analysis of gauge R&R studies and is easy to



66 Chapter 2. Statistics and Measurement

describe, we will treat it here. In the next subsection, better methods based on
ANOVA calculations (and REML methods) will be presented.

Consider first the estimation of σ. Restricting attention to any particular
part×operator combination, say part i and operator j, model (2.26) says that
observations obtained for that combination differ only by independent normal
random measurement error with mean 0 and variance σ2. That suggests that a
measure of variability for the ij sample might be used as the basis of an estimator
of σ. Historical precedent and ease of computation suggest measuring variability
using a range (instead of a sample standard deviation or variance).

So let Rij be the range of the m measurements on part i by operator j. The exp-
ected value of the range of a sample from a normal distribution is a constant (dep-
ending upon m) times the standard deviation of the distribution being sampled.
The constants are well known and called d2. (We will write d2(m) to emphasize
their dependence upon m and note that values of d2(m) are given in Table A.5.)
It then follows that

ERij = d2(m)σ,

which in turn suggests that the ratio

Rij

d2(m)

is a plausible estimator of σ. Better yet, one might average these over all I × J
part×operator combinations to produce the range-based estimator of σ:

Range-Based
Estimator for
Repeatability
Standard
Deviation

σ̂repeatability =
R

d2(m)
. (2.31)

Example 13 (Example 12 continued.) Subtracting the smallest measurement
for each part×operator combination in Table 2.1 from the largest for that com-
bination, one obtains the ranges in Table 2.3. These have mean R = 1.9. From
Table A.5, d2(3) = 1.693. So using expression (2.31), an estimate of σ, the re-
peatability standard deviation for the caliper used by the students, is

σ̂repeatability =
R

d2(3)
=

1.9

1.693
= 1.12× 10−3 in .

(Again, this is an estimate of the (long-run) standard deviation that would be ex-
perienced by any particular student measuring any particular punch many times.)

Consider now the standard deviation (2.27) representing the reproducibility
portion of the gauge imprecision. It will be convenient to have some additional
notation. Let

yij = the (sample) mean measurement made on part i by operator j (2.32)
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and

Δi = max
j

yij −min
j

yij

= the range of the mean measurements made on part i .

TABLE 2.3. Ranges of 30 part×operator samples of measured punch Heights
Punch Student 1 Student 2 Student 3
1 3 2 2
2 2 3 3
3 0 1 2
4 1 3 1
5 2 0 1
6 1 3 0
7 4 1 3
8 1 3 2
9 1 2 1
10 1 6 2

Notice that with the obvious notation for the sample average of the measurement
errors ε, according to model (2.26),

yij = μ+ αi + βj + αβij + εij .

Thus, for a fixed part i these means yij vary only according to independent normal
random variables βj+αβij+εij that have mean 0 and variance σ2

β+σ2
αβ+σ2/m.

Thus their range, Δi, has mean

EΔi = d2(J)
√
σ2
β + σ2

αβ + σ2/m .

This suggests Δi/d2(J) or, better yet, the average of these over all parts i,

Δ/d2(J), as an estimator of
√
σ2
β + σ2

αβ + σ2/m. This in turn suggests that

one can estimate σ2
β + σ2

αβ + σ2/m with (Δ/d2(J))
2. Then remembering that

R/d2(m) = σ̂repeatability is an estimator of σ, an obvious estimator of σ2
β + σ2

αβ

becomes (
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2

. (2.33)

The quantity (2.33) is meant to approximate σ2
β + σ2

αβ , which is nonnegative.
But the estimator (2.33) can on occasion give negative values. When this happens,
it is sensible to replace the negative value by 0 and thus expression (2.33) by

max

(
0,

(
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2
)
. (2.34)
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TABLE 2.4. Part×operator means and ranges of such means for the punch height data
Punch(i) yi1 yi2 yi3 Δi

1 497.00 497.67 497.00 .67
2 498.00 497.67 498.67 1.00
3 498.00 497.33 497.00 1.00
4 497.33 497.00 497.33 .33
5 500.00 499.00 499.33 1.00
6 498.67 498.67 498.00 .67
7 501.33 498.67 500.33 2.67
8 499.33 499.33 500.00 .67
9 499.33 499.33 499.67 .33
10 496.33 496.67 496.67 .33

So finally, an estimator of the reproducibility standard deviation can be had by
taking the square root of expression (2.34). That is, one may estimate the quantity
(2.27) with

Range-Based
Estimator for
Reproducibility
Standard
Deviation

σ̂reproducibility =

√√√√max

(
0,

(
Δ

d2(J)

)2

− 1

m

(
R

d2(m)

)2
)

. (2.35)

Example 14 (Examples 12 and 13 continued.) Table 2.4 organizes yij and Δi

values for the punch height measurements of Table 2.1. Then Δ = 8.67/10 =
.867, and since J = 3, d2(J) = d2(3) = 1.693. So using Eq. (2.35),

σ̂reproducibility =

√√√√max

(
0,

(
.867

1.693

)2

− 1

3

(
1.9

1.693

)2
)

,

=
√
max(0,−.158) ,

= 0 .

This calculation suggests that this is a problem where σ appears to be so large that
the reproducibility standard deviation cannot be seen above the intrinsic “noise”
in measurement conceptualized as the repeatability component of variation. Es-
timates of the ratios (2.29) based on σ̂repeatability and σ̂reproducibility would at-
tribute fractions 1 and 0 of the overall variance in measurement to, respectively,
repeatability and reproducibility.

2.4.3 ANOVA-Based Estimation

The formulas of the previous subsection are easy to discuss and use, but they are
not at all the best available. Ranges are not the most effective tools for estimating
normal standard deviations. And the range-based methods have no correspond-
ing way for making confidence intervals. More effective (and computationally
more demanding) statistical tools are available, and we proceed to discuss some
of them.
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TABLE 2.5. A generic gauge R&R two-way ANOVA table
Source SS df MS
Part SSA I − 1 MSA = SSA/ (I − 1)
Operator SSB J − 1 MSB = SSB/ (J − 1)
Part × Operator SSAB (I − 1) (J − 1) MSAB = SSAB/ (I − 1) (J − 1)
Error SSE IJ (m− 1) MSE = SSE/IJ (m− 1)

Total SSTot IJm− 1

An I × J × m data set of yijks like that produced in a typical gauge R&R
study is often summarized in a so-called two-way ANOVA table. Table 2.5 is a
generic version of such a summary. Any decent statistical package will process a
gauge R&R data set and produce such a summary table. As in a one-way ANOVA,
“mean squares” are essentially sample variances (squares of sample standard de-
viations). MSA is essentially a sample variance of part averages, MSB is essen-
tially a sample variance of operator averages, MSE is an average of within-cell
sample variances, and MSTot isn’t typically calculated, but is a grand sample
variance of all observations.

For purposes of being clear (and not because they are typically used for “hand
calculation”) we provide formulas for sums of squares. With cell means yij as in
display (2.32), define row and column averages and the grand average of these

yi. =
1

J

∑
j

yij and y.j =
1

I

∑
i

yij and y.. =
1

IJ

∑
ij

yij .

Then the sums of squares are

SSTot =
∑
ijk

(yijk − y..)
2
,

SSE =
∑
ijk

(
yijk − yij

)2
,

SSA = mJ
∑
i

(yi. − y..)
2
,

SSB = mI
∑
j

(
y.j − y..

)2
, and

SSAB = m
∑
ij

(
yij − yi. − y.j + y..

)2

= SSTot− SSE − SSA− SSB

TABLE 2.6. Data from a small in-class gauge R&R study
Part Operator 1 Operator 2 Operator 3
1 .52, .52 .54, .53 .55, .55
2 .56, .55 .54, .54 .55, .56
3 .57, .56 .55, .56 .57, .57
4 .55, .55 .54, .55 .56, .55
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Corresponding degrees of freedom and mean squares are

dfE = (m− 1) IJ and MSE = SSE/ (m− 1) IJ ,

dfA = I − 1 and MSA = SSA/ (I − 1) ,

dfB = J − 1 and MSB = SSB/ (J − 1) , and

dfAB = (I − 1) (J − 1) and MSAB = SSAB/ (I − 1) (J − 1) .

Example 15 In-Class Gauge R&R Study. The data in Table 2.6 on page 69 were
collected in an in-class gauge R&R exercise where I = 4 polystyrene packing
peanuts were measured for size (in in) by J = 3 students m = 2 times apiece
using the same inexpensive caliper. The JMP statistical package produces the
sums of squares

SSA = .00241250, SSB = .00080833, SSAB = .00072500,

SSE = .00035000, and SSTot = .00429583.

for these data that can be used as raw material for making important inferences
for the R&R study based on model (2.26). Corresponding mean squares are

MSE = .00035000/ (2− 1) (4) (3) = .00002917 ,

MSA = .00241250/ (4− 1) = .00080417 ,

MSB = .00080833/ (3− 1) = .00040417 , and

MSAB = .00072500/ (4− 1) (3− 1) = .00012083 .

High-quality statistical software (like JMP or R) will automatically produce
REML-based estimates and confidence intervals for the variance components
σ2
α, σ

2
β , σ

2
αβ , and σ2. As the quantities σ2

reproducibility and σ2
R&R are a bit spe-

cialized (being of interest in our R&R application of the two-way random effects
model, but not in other common applications), inferences for them are not auto-
matically available. It is possible, but usually not convenient, to use the output of
REML analyses to make inferences for these more specialized quantities. So here
we will provide formulas for ANOVA-based estimators of σ, σreproducibility, and
σR&R and appropriate Satterthwaite approximate degrees of freedom for making
confidence limits. (Where readers know how to obtain REML-based estimates
and intervals, our recommendation is to use them in preference to ANOVA-based
estimators that follow.)

Single-number estimators for the quantities of most interest in a gauge R&R
study are

ANOVA-Based
Estimator for
Repeatability
Standard
Deviation

σ̂repeatability = σ̂ =
√
MSE , (2.36)
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ANOVA-Based
Estimator for
Reproducibility
Standard
Deviation

σ̂reproducibility =

√
max

(
0,

MSB

mI
+

(I − 1)

mI
MSAB − 1

m
MSE

)
, (2.37)

and

ANOVA-Based
Estimator
for σR&R

σ̂R&R =

√
1

mI
MSB +

I − 1

mI
MSAB +

m− 1

m
MSE . (2.38)

Confidence limits based on any of these estimators are of the generic form (alr-
eady used several times in this chapter)

Generic
Confidence
Limits for a
Standard
Deviation

“σ̂”

√
“ν̂”
χ2

upper
and “σ̂”

√
“ν̂”
χ2

lower
(2.39)

where “σ̂” is one of the estimators, “ν̂” is a corresponding (exact or “Satterthwaite
approximate”) degrees of freedom, and the χ2 percentage points are based on
“ν̂.” So it only remains to record formulas for appropriate degrees of freedom.
These are

Degrees of
Freedom for
Use with
Formulas
(2.36) and
(2.39)

νrepeatability = IJ (m− 1) , (2.40)

Degrees of
Freedom for
Use with
Formulas
(2.37) and
(2.39)

ν̂ reproducibility =
σ̂4

reproducibility

(
MSB
mI

)2
J − 1

+

(
(I−1)MSAB

mI

)2

(I − 1) (J − 1)
+

(
MSE
m

)2
IJ (m− 1)

=
σ̂4

reproducibility

1

m2

(
MSB2

I2 (J − 1)
+

(I − 1)MSAB2

I2 (J − 1)
+

MSE2

IJ (m− 1)

) ,

(2.41)
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and

Degrees of
Freedom for
Use with
Formulas
(2.38) and
(2.39)

ν̂R&R =
σ̂4

R&R

(
MSB
mI

)2
J − 1

+

(
(I−1)MSAB

mI

)2

(I − 1) (J − 1)
+

(
(m−1)MSE

m

)2

IJ (m− 1)

=
σ̂4

R&R

1

m2

(
MSB2

I2 (J − 1)
+

(I − 1)MSAB2

I2 (J − 1)
+

(m− 1)MSE2

IJ

)

(2.42)

Formulas (2.37), (2.41), (2.38), and (2.42) are tedious (but hardly impossible) to
use with a pocket calculator. But a very small program, MathCAD worksheet, or
spreadsheet template can be written to evaluate the estimates of standard devia-
tions and approximate degrees of freedom from the sums of squares, m, I, and J .

Example 16 (Example 15 continued.) A two-way random effects analysis of the
data of Table 2.6 made using the JMP statistical package produces REML-based
confidence limits of

0 and
√
.0001359, i.e., 0 in and .012 in for σβ

and
0 and

√
.0001152, i.e., 0 in and .011 in for σαβ .

There is thus at least the suggestion that a substantial part of the reproducibility
variation in the data of Table 2.6 is a kind of nonconstant bias on the part of the
student operators measuring the peanuts.

Using formulas (2.36), (2.37), and (2.38) it is possible to verify that in this
problem

σ̂repeatability = σ̂ = .005401 in ,

σ̂reproducibility = .009014 in , and

σ̂R&R = .011 in .

Using formulas (2.40), (2.41), and (2.42), these have corresponding degrees of
freedom

νrepeatability = (4) (3) (2− 1) = 12 ,

ν̂reproducibility = 4.04 , and

ν̂R&R = 7.45 .
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So (rounding degrees of freedom down in the last two cases) using the limits
(2.39), 95% confidence limits for σrepeatability are

.005401

√
12

23.337
and .005401

√
12

4.404

i.e.,
.0039 in and .0089 in ,

approximate 95% confidence limits for σreproducibility are

.009014

√
4

11.143
and .009014

√
4

.484

i.e.,
.0054 in and .0259 in ,

and approximate 95% confidence limits for σR&R are

.011

√
7

16.013
and .011

√
7

1.690

i.e.,
.0073 in and .0224 in .

These intervals show that none of these standard deviations are terribly well de-
termined (degrees of freedom are small and intervals are wide). If better infor-
mation is needed, more data would have to be collected. But there is at least
some indication that σrepeatability and σreproducibility are roughly of the same order of
magnitude. The caliper used to make the measurements was a fairly crude one,
and there were detectable differences in the way the student operators used that
caliper.

Suppose, for the sake of example, that engineering requirements on these
polystyrene peanuts were that they be of size .50 in± .05 in. In such a context, the
gauge capability ratio (2.30) could be estimated to be between

6 (.0073)

.55− .45
= .44 and

6 (.0224)

.55− .45
= 1.34.

These values are not small. (See again the discussion on page 65.) This measure-
ment “system” is not really adequate to check conformance to even these crude
±.05 in product requirements.

Some observations regarding the planning of a gauge R&R study are in order
at this point. The precisions with which one can estimate σ, σreproducibility, and
σR&R obviously depend upon I, J , and m. Roughly speaking, precision of est-
imation of σ is governed by the product (m − 1)IJ, so increasing any of the
“dimensions” of the data array will improve estimation of repeatability. However,
it is primarily J that governs the precision with which σreproducibility and σR&R

can be estimated. Only by increasing the number of operators in a gauge R&R
study can one substantially improve the estimation of reproducibility variation.
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While this fact about the estimation of reproducibility is perfectly plausible, its
implications are not always fully appreciated (or at least not kept clearly in mind)
by quality assurance practitioners. For example, many standard gauge R&R data
collection forms allow for at most J = 3 operators. But 3 is a very small sample
size when it comes to estimating a variance or standard deviation. So although
the data in Table 2.1 are perhaps more or less typical of many R&R data sets, the
small (J = 3) number of operators evident there should not be thought of as in
any way ideal. To get a really good handle on the size of reproducibility variation,
many more operators would be needed.

Section 2.4 Exercises

1. Consider again the situation of problem 3 of the Sect. 2.3 exercises and
the data from the Fiber Angle case used there. (Operator 1 measured fiber
angle for three different specimens four times each.) Recast that scenario
into the two-way framework of this section.

(a) Give the values of I, J, and m.

(b) Find a range-based estimate of σdevice .

(c) Find a range-based estimate of σx.

2. Based only on the data of problem 3 of the Sect. 2.3 exercises, can
σreproducibility be estimated? Why or why not?

3. Consider again the situation of problems 2 and 1 of the Sect. 2.3 exercises
and the data from the Fiber Angle case used there. (Fiber angle for spec-
imen 1 was measured four times by each of operators 1, 2, and 3.) Recast
that scenario into the two-way framework of this section.

(a) Give the values of I, J, and m.

(b) Find a range-based estimate of σrepeatability.

(c) Find a range-based estimate of σreproducibility.

(d) Based only on the data considered here, can σx be estimated? Why or
why not?

4. Washer Assembly. Sudam, Heimer, and Mueller studied a clothes washer
base assembly. Two operators measured the distance from one edge of a
washer base assembly to an attachment. For a single base assembly, the
same distance was measured four times by each operator. This was repeated
on three different base assemblies. The target distance was 13.320 with an
upper specification of U = 13.42 and a lower specification of L = 13.22.
A standard gauge R&R study was conducted and data like those below were
obtained. (Units are 10−1 in.)
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Part Operator 1 Operator 2
1 13.285, 13.284, 13.283, 13.282 13.284, 13.288, 13.287, 13.283
2 13.298, 13.293, 13.291, 13.291 13.297, 13.292, 13.292, 13.293
3 13.357, 13.356, 13.354, 13.356 13.355, 13.354, 13.352, 13.357

(a) What were the values of I, J, and m in this study?

(b) Based on the ANOVA table for the data given below, find the estimates
for σrepeatability,σreproducibility, and σR&R.

(c) Give 95% confidence limits for σrepeatability , σreproducibility, and
σR&R.

(d) Find 95% confidence limits for the GCR. (Hint: Use the last of your
answers to (c).)

ANOVA table
Source SS df MS
Part .0236793 2 .0118396
Operator .0000007 1 .0000007
Part×Operator .0000106 2 .0000053
Error .0000895 18 .0000050

Total .0237800 23

2.5 Simple Linear Regression and Calibration
Studies

Calibration is an essential activity in the qualification and maintenance of mea-
surement devices. In a calibration study, one uses a measurement device to
produce measurements on “standard” specimens with (relatively well-) “known”
values of measurands and sees how the measurements compare to the known
values. If there are systematic discrepancies between what is known to be true
and what the device reads, a conversion scheme is created to (in future use of the
device) adjust what is read to something that is hopefully closer to the (future)
truth. A slight extension of “regression” analysis (curve fitting) as presented in an
elementary statistics course is the relevant statistical methodology in making this
conversion. (See, e.g., Section 9.1 of Vardeman and Jobe’s Basic Engineering
Data Collection and Analysis.) This section discusses exactly how regression
analysis is used in calibration.

Calibration studies employ true/gold-standard-measurement values of measur-
ands x and “local” measurements y. (Strictly speaking, y need not even be in
the same units as x.) Regression analysis can provide both “point conversions”
and measures of uncertainty (the latter through inversion of “prediction limits”).
The simplest version of this is where observed measurements are approximately
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linearly related to measurands, i.e.,

y ≈ β0 + β1x

This is “linear calibration.” The standard statistical model for such a circum-
stance is

Simple Linear
Regression
Model

y = β0 + β1x+ ε (2.43)

for a normal error ε with mean 0 and standard deviation σ. (σ describes how much
ys vary for a fixed x and in the present context typically amounts to a repeatability
standard deviation.) This model can be pictured as in Fig. 2.17.

FIGURE 2.17. A schematic of the usual simple linear regression model (2.43)

For n data pairs (xi, yi), simple linear regression methodology allows one to
make confidence intervals and tests associated with the model and prediction lim-
its for a new measurement ynew associated with a new measurand, xnew. These are
of the form

Prediction
Limits
for ynew in SLR

(b0 + b1xnew)±tsLF

√
1 +

1

n
+

(xnew − x̄)2∑
i(xi − x̄)2

(2.44)

where the least squares line is ŷ = b0 + b1x and sLF (a “line-fitting” sample
standard deviation) is an estimate of σ derived from the fit of the line to the data.
Any good statistical package will compute and plot these limits as functions of
xnew along with a least squares line through the data set.

Example 17 Measuring Cr6+ Concentration with a UV-Vis Spectrophotome-
ter. The data below were taken from a web page of the School of Chemistry at
the University of Witwatersrand developed and maintained by Dr. Dan Billing.
They are measured absorbance values, y, for n = 6 solutions with “known”
Cr6+ concentrations, x (in mg/ l), from an analytical lab.



Chapter 2. Statistics and Measurement 77

x 0 1 2 4 6 8
y .002 .078 .163 .297 .464 .600

Figure 2.18 is a plot of these data, the corresponding least squares line, and the
prediction limits (2.44).

0 2 4 6 8

0.
6

0.
4

0.
2

0.
0

x

y

FIGURE 2.18. Scatterplot of the Cr6+Concentration calibration data, least squares line,
and prediction limits for ynew

What is here of most interest about simple linear regression technology is what
it says about calibration and measurement in general. Some applications of infer-
ence methods based on the model (2.43) to metrology are the following.

1. From a simple linear regression output,

sLF =
√
MSE =

√√√√ 1

n− 2

n∑
i=1

(yi − ŷi)
2 = “root mean square error”

(2.45)

is an estimated repeatability standard deviation. One may make confidence
intervals for σ = σrepeatability based on the estimate (2.45) using ν = n − 2
degrees of freedom and limits

Confidence
Limits for σ in
Model (2.43)

sLF

√
n− 2

χ2
upper

and sLF

√
n− 2

χ2
lower

. (2.46)

2. The least squares equation ŷ = b0 + b1x can be solved for x, giving

Conversion
Formula for
a Future
Measurement,
ynew

x̂new =
ynew − b0

b1
(2.47)
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as a way of estimating a new “gold-standard” value (a new measurand,
xnew) from a measured local value, ynew.

3. One can take the prediction limits (2.44) for ynew and “turn them around” to
get confidence limits for the xnew corresponding to a measured local ynew.
This provides a defensible way to set “error bounds” on what ynew indicates
about xnew.

4. In cases (unlike Example 17) where y and x are in the same units, confi-
dence limits for the slope β1 of the simple linear regression model

Confidence
Limits for β1 in
Model (2.43)

b1 ± t
sLF√∑
(xi − x̄)

2
(2.48)

provide a way of investigating the constancy of bias (linearity of the mea-
surement device in the sense introduced on page 37). That is, when x and
y are in the same units, β1 = 1.0 is the case of constant bias. If confi-
dence limits for β1 fail to include 1.0, there is clear evidence of device
nonlinearity.

Example 18 (Example 17 continued.) The use of the JMP statistical package
with the data of Example 17 produces

y = .0048702+ .0749895x with sLF = .007855 .

We might expect a local (y) repeatability standard deviation of around .008 (in
the y absorbance units). In fact, 95% confidence limits for σ can be made (using
n− 2 = 4 degrees of freedom and formula (2.46)) as

.007855

√
4

11.143
and .007855

√
4

.484
,

i.e.,

.0047 and .0226 .

Making use of the slope and intercept of the least squares line, a conversion
formula for going from ynew to xnew is (as in display (2.47))

x̂new =
ynew − .0048702

.0749895
,

So, for example, a future measured absorbance of ynew = .20 suggests a concen-
tration of

x̂new =
.20− .0048702

.0749895
= 2.60mg/ l .

Finally, Fig. 2.19 on page 80 is a modification of Fig. 2.18 that illustrates
how the plotted prediction limits (2.44) provide both 95% predictions for a
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new measurement on a fixed/known measurand and 95% confidence limits on a
new measurand, having observed a particular measurement. Reading from the
figure, one is “95% sure” that a future observed absorbance of .20 comes from a
concentration between

2.28mg/ l and 2.903mg/ l .

Example 19 A Check on Device “Linearity.” A calibration data set due to John
Mandel compared n = 14 measured values y for a single laboratory to corre-
sponding consensus values x for the same specimens derived from multiple labs.
(The units are not available, but were the same for x and y values.) A simple
linear regression analysis of the data pairs produced

b1 = .882 and
sLF√∑
(xi − x̄)2

= .012

so that (using the upper 2.5% point of the t12 distribution, 2.179, and formula
(2.48)) 95% confidence limits for β1 are

.882± 2.179 (.012)

or
.882± .026 .

A 95% confidence interval for β1 clearly does not include 1.0. So bias for the
single laboratory was not constant. (The measurement “device” was not linear in
the sense discussed on page 37.)

Section 2.5 Exercises

1. n = 14 polymer specimens of known weights, x, were weighed and the
measured weights, y, recorded. The following table contains the data. (All
units are gs.)

x 1 1 3 3 5 5 7
y 1.10 .95 2.98 3.01 5.02 4.99 6.97

x 7 10 10 12 12 14 14
y 7.10 10.03 9.99 12.00 11.98 14.10 14.00

(a) Find the least squares line ŷ = b0 + b1x for these data.
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FIGURE 2.19. Confidence limits for xnew based on an observed ynew (and prediction limits
(2.44))

(b) Find the estimated repeatability standard deviation corresponding to
your regression analysis.

(c) Find 95% confidence limits for the y repeatability standard deviation
based on your answer to (b).

2. In the context of problem 1, suppose a new specimen is measured as having
a weight of 6.10 g .

(a) Find the “calibrated weight,” x̂, corresponding to this new specimen
based on your regression analysis.

(b) Find 95% confidence limits for the slope of the relationship between
measured and actual weight (β1). Does the device used to produce the
y measurements have constant bias (is it “linear”)? Why or why not?

3. Based on your regression analysis in problem 1, find 95% prediction limits
for the next measured weight for a new specimen with standard known
weight of 8 g .

4. Would it be wise to use the above regression analyses to adjust a measured
specimen weight of ynew = .2 g? Why or why not?

2.6 R&R Considerations for Go/No-Go Inspection

Ideally, observation of a process results in quantitative measurements. But there
are some contexts in which all that is determined is whether an item or process
condition is of one of two types, which we will for the present call “conforming”
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and “nonconforming.” It is, for example, common to check the conformance of
machined metal parts to some engineering requirements via the use of a “go/no-
go gauge.” (A part is conforming if a critical dimension fits into the larger of two
check fixtures and does not fit into the smaller of the two.) And it is common
to task human beings with making visual inspections of manufactured items and
producing an “ok/not-ok” call on each.

Engineers are sometimes then called upon to apply the qualitative “repeatabil-
ity” and “reproducibility” concepts of metrology to such go/no-go or “0/1” con-
texts. One wants to separate some measure of overall inconsistency in 0/1 “calls”
on items into pieces that can be mentally charged to inherent inconsistency in
the equipment or method and the remainder that can be charged to differences
between how operators use it. Exactly how to do this is presently not well estab-
lished. The best available statistical methodology for this kind of problem is more
complicated than can be presented here (involving so-called generalized linear
models and random effects in these). What we can present is a rational way of
making point estimates of what might be termed repeatability and reproducibility
components of variation in 0/1 calls. (These are based on reasoning similar to that
employed in Sect. 2.4.2 to find correct range-based estimates in usual measure-
ment R&R contexts.) We then remind the reader of elementary methods of esti-
mating differences in population proportions and in mean differences and point
out their relevance in the present situation.

2.6.1 Some Simple Probability Modeling

To begin, think of coding a “nonconforming” call as “1” and a “conforming”
call as “0” and having J operators each make m calls on a fixed part. Suppose
that J operators have individual probabilities p1, p2, . . . , pJ of calling the part
“nonconforming” on any single viewing and that across m viewings

Xj = the number of nonconforming calls among the m made by operator j

is binomial (m, pj). We’ll assume that the pj are random draws from some popu-
lation with mean π and variance v.

The quantity

pj (1− pj)

is a kind of “per-call variance” associated with the declarations of operator j and
might serve as a kind of repeatability variance for that operator. (Given the value
of pj , elementary probability theory says that the variance of Xj is mpj (1− pj).)
The biggest problem here is that unlike what is true in the usual case of gauge
R&R for measurements, this variance is not constant across operators. But its
expected value, namely

E (pj (1− pj)) = π − Ep2j

= π − (
v + π2

)

= π (1− π)− v
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can be used as a sensible measure of variability in conforming/nonconforming
classifications chargeable to repeatability sources. The variance v serves as a mea-
sure of reproducibility variance. This ultimately points to

π (1− π)

as the “total R&R variance” here. That is, we make definitions for 0/1 contexts

R&R Variance
for One Part in
a 0/1 Context

σ2
R&R = π (1− π) (2.49)

and

Repeatability
Variance for
One Part in a
0/1 Context

σ2
repeatability = π (1− π)− v (2.50)

and

Reproducibility
Variance for
One Part in a
0/1 Context

σ2
reproducibility = v (2.51)

2.6.2 Simple R&R Point Estimates for 0/1 Contexts

Still thinking of a single fixed part, let

p̂j =
the number of “nonconforming” calls made by operator j

m
=

Xj

m

and define the (sample) average of these:

¯̂p =
1

J

J∑
j=1

p̂j .

It is possible to argue that

E ¯̂p = π

so that a plausible estimate of σ2
R&R is

Estimator of
R&R Variance
for a Single
Part in a 0/1
Context

σ̂2
R&R = ¯̂p

(
1− ¯̂p

)
(2.52)

Then, since p̂j (1− p̂j) is a plausible estimate of the “per-call variance”
associated with the declarations of operator j, pj (1− pj), an estimate of
σ2

repeatability is

Estimator of
Repeatability
Variance for a
Single Part in a
0/1 Context

σ̂2
repeatability = p̂ (1− p̂) (2.53)



Chapter 2. Statistics and Measurement 83

(the sample average of the p̂j (1− p̂j)). Finally, a simple estimate
of σ2

reproducibility = v is

Estimator of
Reproducibility
Variance for a
Single Part in a
0/1 Context

σ̂2
reproducibility = σ̂2

R&R − σ̂2
repeatability

= ¯̂p
(
1− ¯̂p

)− p̂ (1− p̂) (2.54)

Again, the estimators (2.52), (2.53), and (2.54) are based on a single part. Ex-
actly what to do based on multiple parts (say I of them) is not completely obvious.
But in order to produce a simple methodology, we will simply average estimates
made one part at a time across multiple parts, presuming that parts in hand are
sensibly thought of as a random sample of parts to be checked and that this aver-
aging is a reasonable way to combine information across parts.

TABLE 2.7. Hypothetical results of visual inspection of five parts by three operators
Operator 1 Operator 2 Operator 3

p̂ p̂ (1− p̂) p̂ p̂ (1− p̂) p̂ p̂ (1− p̂)
Part 1 .2 .16 .4 .24 .2 .16
Part 2 .6 .24 .6 .24 .7 .21
Part 3 1.0 0 .8 .16 .7 .21
Part 4 .1 .09 .1 .09 .1 .09
Part 5 .1 .09 .3 .21 .3 .21

In order for any of this to have a chance of working, m will need to be fairly
large. The usual gauge R&R “m = 2 or 3” just isn’t going to produce informative
results in the present context. And in order for this to work in practice (so that
an operator isn’t just repeatedly looking at the same few parts over and over and
remembering how he or she has called them in the past), a large value of I may
also be needed.

TABLE 2.8. R&R calculations for the hypothetical visual inspection data
¯̂p
(
1− ¯̂p

)−p̂ (1− p̂)

p̂ (1− p̂)= σ̂2
repeatability

¯̂p ¯̂p
(
1− ¯̂p

)
= σ̂2

R&R = σ̂2
reproducibility

Part 1 .187 .2667 .1956 .0090
Part 2 .230 .6333 .2322 .0022
Part 3 .123 .8333 .1389 .0156
Part 4 .090 .1 .0900 0
Part 5 .170 .2333 .1789 .0098
Average .160 .1671 .0071

Example 20 A Simple Numerical Example. For purposes of illustrating the for-
mulas of this section, we will use a small numerical example due to Prof. Max
Morris. Suppose that I = 5 parts are inspected by J = 3 operators, m = 10
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times apiece, and that in Table 2.7 are sample fractions of “nonconforming” calls
made by the operators and the corresponding estimates of per-call variance

Then the one-part-at-a-time and average-across-parts repeatability, R&R, and
reproducibility estimates of variance are collected in Table 2.8 on page 83.

Then, for example, a fraction of only

.0071

.1671
= 4.3%

of the inconsistency in conforming/nonconforming calls seen in the original data
seems to be attributable to clear differences in how the operators judge the parts
(differences in the binomial “nonconforming call probabilities” pj). Rather, the
bulk of the variance seems to be attributable to unavoidable binomial variation.
The ps are not close enough to either 0 or 1 to make the calls tend to be consis-
tent. So the variation seen in the p̂s in a given row is not clear evidence of large
operator differences.

Of course, we need to remember that the computations above are on the vari-
ance (and not standard deviation) scale. On the (more natural) standard devia-
tion scale, reproducibility variation

√
.0071 = .08

and repeatability variation
√
.160 = .40

are not quite so strikingly dissimilar.

2.6.3 Confidence Limits for Comparing Call Rates
for Two Operators

It’s possible to use elementary confidence interval methods to compare call rates
for two particular operators. This can be done for a particular fixed part or for “all”
parts (supposing that the ones included in a study are a random sample from the
universe of parts of interest). The first possibility can be viewed as the problem of
estimating the difference in two binomial parameters, say p1 and p2. The second
can be approached as estimation of a mean difference in part-specific call rates,
say μd.

A common elementary large-sample approximate confidence interval for p1 −
p2 has end points

p̂1 − p̂2 ± z

√
p̂1 (1− p̂1)

n1
+

p̂2 (1− p̂2)

n2
.
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But, as it turns out, this formula can fail badly if either p is extreme or n is small.
So we will use a slight modification that is more reliable, namely

Confidence
Limits for
p1 − p2p̂1 − p̂2 ± z

√
p̃1 (1− p̃1)

n1
+

p̃2 (1− p̃2)

n2
(2.55)

where

Values to Use
in Formula
(2.55)

p̃i =
nip̂i + 2

ni + 4
(2.56)

That is, under the square root of the usual formula, one essentially replaces the p̂
values with p̃ values derived by adding two “successes” in four “additional trials”
to the counts used to make up the p̂ values. (This has the effect of making the
standard large-sample interval a bit wider and correcting the problem that without
this modification for small sample sizes and extreme values of p, it can fail to hold
its nominal confidence level.)

Example 21 (Example 20 continued.) Consider again part 1 from Example 20,
and in particular consider the question of whether operator 1 and operator 2 have
clearly different probabilities of calling that part nonconforming on a single call.
With p̂1 = .2 and p̂2 = .4, formula (2.56) says that

p̃1 =
2 + 2

10 + 4
= .2857 and p̃2 =

4 + 2

10 + 4
= .4286

so that using formula (2.55) approximate 95% confidence limits for the difference
p1 − p2 are

.2− .4± 1.96

√
.2857 (1− .2857)

10
+

.4286 (1− .4286)

10

i.e.,

−.2± .49

These limits cover 0 and there thus is no clear evidence in the p̂1 = .2 and p̂2 = .4
values (from the relatively small samples of sizes m = 10) that operators 1 and 2
have different probabilities of calling part 1 nonconforming.

The so-called “paired t” confidence limits (2.10) for the mean of a difference
d = x1 − x2 (say μd) based on a random sample of normally distributed values
d1, d2, . . . , dn are presented in most elementary statistics courses. While a differ-
ence in observed call rates for operators 1 and 2 on a particular part (d = p̂1− p̂2)
will typically not be normally distributed, for rough purposes it is adequate to ap-
peal to the “robustness” of this inference method (the fact that it is widely believed
to be effective even when normality is not wholly appropriate as a modeling ass-
umption) and employ it to compare operator 1 and operator 2 in terms of average
part-specific call rates.
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Example 22 (Example 20 continued.) Consider again Example 20, and in par-
ticular the question of whether operator 1 and operator 2 have clearly different
average (across parts) probabilities of calling parts nonconforming on a single
call. The n = 5 differences in p̂s for the two operators are

.2− .4 = −.2, .6− .6 = 0, 1.0− .8 = .2, .1− .1 = 0, and .1− .3 = −.2.

These numbers have sample mean d̄ = −.04 and sample standard deviation
sd = .17. Then using the fact that the upper 5%, point of the t4 distribution is
2.132, rough 90% two-sided confidence limits for the mean difference in call
rates for the operators are

−.04± 2.132
.17√
4

that is, − .04± .18,

and there is not definitive evidence in Table 2.7 of a consistent difference in how
operators 1 and 2 call parts on average.

Section 2.6 Exercises

1. Suppose that ten parts are inspected by four operators 16 times apiece. Each
inspection determines whether or not the item is conforming. The counts in
the table below correspond to the numbers of “nonconforming” calls out of
16 inspections.

Part Operator 1 Operator 2 Operator 3 Operator 4
1 10 11 11 10
2 11 9 12 10
3 8 8 9 7
4 15 14 14 16
5 12 14 11 12
6 15 15 16 15
7 14 11 14 12
8 16 16 15 15
9 13 15 14 15
10 16 15 16 16

(a) Using the data above, fill in the table below.

Part p̂ p̂(1−p̂) p̂ (1− p̂)

1
2
...
10
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(b) What is the fraction of inconsistency in conforming/nonconforming
calls that can be attributed to clear differences in how the operators
judged the parts (differences in the binomial “nonconforming call
probabilities” pj)? (Make your answer on the variance scale.)

(c) What is the estimated reproducibility variation (on the standard devi-
ation scale)?

(d) What is the estimated repeatability variation (on the standard devia-
tion scale)?

(e) For part 10, give a 90% confidence interval for the difference (op-
erator 1 minus operator 3) in probabilities of a nonconforming call.
Does it appear the operators 1 and 3 have different probabilities of a
nonconforming call on any one of the parts? Why?

(f) Compare operator 1 and operator 3 average “nonconforming” call
rates using 90% two-sided confidence limits for a mean difference.

2.7 Chapter Summary

This chapter has been concerned with how measurement error impacts what can
be learned from empirical data. It presented some ideas from the probability mod-
eling of measurement variation and considered how the interpretation of elemen-
tary statistical inferences is affected by measurement error. Then a variety of more
advanced statistical tools were discussed, because of their usefulness in quantify-
ing, partitioning, and (in some cases) removing the effects of measurement varia-
tion in quality assurance and improvement projects.

2.8 Chapter 2 Exercises

1. Does a perfectly calibrated device return measurements of a measurand that
are completely free of error? Explain.

2. Is a standard (an item with corresponding “known” measurand) needed in
both device calibration and estimation of σdevice? If not, which requires a
standard? Explain.

3. A measurement device may have a bias as large as 1 unit (in absolute value)
and a device standard deviation as large as 1 unit. You measure x and ob-
serve y = 10. If you believe in the simple (normal) measurement model
and want to report an interval you are “at least 99% sure” contains x, you
should report what limits? (Hint: Before measurement, how far do you ex-
pect y to be from x with the indicated worst possible values of absolute
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bias and standard deviation? Interpret “99% sure” in “plus or minus three
standard deviations” terms.)

4. The same axel diameter is measured n1 = 25 times with device 1 and
n2 = 25 times with device 2, with resulting means and standard deviations
y1 = 2.001 in, y2 = 2.004 in, s1 = .003 in, and s2 = .004 in. The upper
2.5% point of the F24,24 distribution is about 2.27.

(a) Give 95% confidence limits for the difference in device biases.

(b) Give 95% confidence limits for the ratio of the two device standard
deviations.

(c) Is there a clear difference in device biases based on your interval in
(a)? Why or why not?

(d) Is there a clear difference in device standard deviations based on your
interval in (b)? Why or why not?

5. Two different (physically stable) production lines produce plastic pop bot-
tles. Suppose n1 = 25 bottles from line 1 and n2 = 25 bottles from line 2
are burst tested on a single tester, with resulting means and standard devia-
tions y1 = 201 psi, y2 = 202 psi, s1 = 3 psi, and s2 = 4 psi.

(a) Give a 95% confidence interval for the difference between the mean
burst strengths for lines 1 and 2 (line 1 minus line 2).

(b) Give a 95% confidence interval for the ratio of burst strength standard
deviations (line 1 divided by line 2). The upper 2.5% point of the
F24,24 distribution is about 2.27.

(c) Is there a clear difference between mean burst strengths? Why or why
not?

(d) Is there a clear difference between the consistencies of burst strengths?
Why or why not?

6. Using a single tester, a single metal specimen was tested for Brinell hard-
ness 20 times with resulting sample standard deviation of hardness 10HB.
Subsequently, 40 different specimens cut from the same ingot of steel have
sample standard deviation of measured hardness 20HB (using the same
tester):

(a) Give 95% confidence limits for a “test variability” standard deviation.

(b) Give approximate 95% confidence limits for a specimen-to-specimen
standard deviation of actual Brinell hardness.

7. An ANOVA analysis of a gauge R&R data set produced σ̂R&R = 53 (in
appropriate units) and ν̂R&R = 3. In these units, engineering specifications
on a critical dimension of a machined steel part are nominal ± 200. Give
approximate 95% confidence limits for a GCR (gauge capability ratio) for
checking conformance to these specifications.
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8. 95% confidence limits for a particular gauge capability ratio are 6 to 8.
What does this indicate about the usability of the gauge for checking con-
formance to the specifications under consideration?

9. Below is an analysis of variance table from a calibration study. The data
were light intensities, y (in unspecified analyzer units), for specimens of
known riboflavin concentration x (in μg/ml).

ANOVA table
Source SS df MS
Model 10946.445 1 10946.445
Error 27.155 8 3.4
Total 10973.6 9

Parameter estimates for the simple linear regression model were b0 =
6.4634 and b1 = 129.1768.

(a) Give a 95% confidence interval for a repeatability standard deviation
for this analyzer.

(b) Suppose a new specimen with unknown concentration is analyzed and
ynew = 75 is observed. Give a single-number estimate of the concen-
tration in that specimen.

10. The final step in the production of some glass vials is a visual inspection
presently carried out by human inspectors. A particular single vial (marked
in an “invisible” ink that can be seen only under ultraviolet light) known to
be defective is repeatedly run through the inspection process among a large
number of newly produced vials. In fact, each of five company inspectors
sees that vial ten times in a company study. Below are the rates at which
that vial was identified as defective by the various operators ( “1.0” means
100%).

.6, .9, .9, 1.0, 1.0

(a) In general, what two values of p̂ reflect perfect consistency of “defec-
tive/nondefective” calls made by a particular inspector?

(b) What distribution models the number of correct “defective” calls
(among ten calls) made by a particular inspector on the vial in ques-
tion?

(c) On the scale of (estimated) variances (not standard deviations), what
is the fraction of overall variation seen in the “defective/nondefective”
calls for this vial that should be attributed to operator-to-operator dif-
ferences?

(d) Give 95% confidence limits for the long run difference in proportions
of “defective” calls for the first operator (that made six out of ten “def-
ective” calls) and the last operator (who made all “defective” calls).
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11. Laser Metal Cutting. Davis, Martin and Popinga used a ytterbium argon
gas laser to make some cuts in 316 stainless steel. Using 95-MJ/pulse and
20-Hz settings on the laser and a 15.5-mm distance to the steel specimens
(set at a 45 ◦ angle to the laser beam), the students made cuts in specimens
using 100, 500, and 1000 pulses. The measured depths of four different
cuts (in machine units) at each pulse level are given below (assume the
same operator made all measurements and that repeatability variation is
negligible here).

100 Pulses 500 Pulses 1000 Pulses
7.4, 8.6, 5.6, 8.0 24.2, 29.5, 26.5, 23.8 33.4, 37.5, 35.9, 34.8

(a) What is the response variable in this problem?

(b) Give the sample average values for the 100, 500, and 1000 pulse lev-
els. Calculate the sample range for the data at each pulse level. Give
estimates of the standard deviation of cut depth for each level of pulse,
first based on the sample range and then using the sample standard de-
viation. (You will have two estimates for each of the three population
standard deviations.)

(c) Assuming variability is the same for all three pulse levels, give an
estimate of the common standard deviation based on the three sample
ranges.

(d) The concepts of measurement validity, precision, and accuracy are
discussed in Sect. 2.1. The analysts decided to report the average cut
depth for the different pulse levels. This averaging can be thought
of in terms of improving which of (1) validity, (2) precision, or (3)
accuracy (over the use of any single measurement)? The concept of
calibration is most closely associated with which of the three?

12. Fiber Angle. Grunig, Hamdorf, Herman, and Potthoff studied a carpet-
like product. They measured the angle at which fibers were glued to a
sheet of base material. A piece of finished product was obtained and cut
into five sections. Each of the four team members measured the fiber angle
eight times for each section. The results of their measuring are given in Ta-
ble 2.9 (in degrees above an undisclosed reference value). A corresponding
ANOVA is also given in Table 2.10.

(a) Say what each term in the equation yijk = μ+αi+βj +αβij + εijk
means in this problem (including the subscripts i, j, and k).

(b) Using ranges, estimate the repeatability and reproducibility standard
deviations for angle measurement. Based on this analysis, what as-
pect of the measuring procedure seems to need the most attention?
Explain.

(c) Using ANOVA-based formulas, estimate the repeatability and repro-
ducibility standard deviations for angle measurement. Is this analysis
in essential agreement with that in part (b)? Explain.
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TABLE 2.9. Data for problem 12

Angle Analyst 1 Analyst 2 Analyst 3 Analyst 4
1 19, 20, 20, 23 20, 25, 17, 22 20, 19, 15, 16 10, 10, 10, 5

20, 20, 20, 15 23, 15, 23, 20 20, 19, 12, 14 5, 5, 5, 5

2 15, 17, 20, 20 15, 13, 5, 10 15, 20, 14, 16 10, 10, 10, 10
10, 15, 15, 15 8, 8, 10, 12 13, 20, 15, 15 10, 15, 15, 10

3 23, 20, 22, 20 20, 23, 20, 20 15, 20, 22, 18 10, 10, 10, 15
25, 22, 20, 23 23, 23, 22, 20 15, 20, 16, 20 15, 10, 10, 10

4 15, 16, 22, 15 20, 22, 18, 23 13, 13, 15, 20 5, 10, 10, 10
15, 15, 22, 17 23, 23, 24, 20 11, 20, 13, 15 10, 10, 10, 10

5 20, 20, 22, 20 18, 20, 18, 23 10, 14, 17, 12 5, 10, 10, 10
27, 17, 20, 15 20, 20, 18, 15 11, 10, 15, 10 10, 10, 10, 10

TABLE 2.10. ANOVA for problem 12
Source SS df MS
Angle 390.913 4 97.728
Analyst 2217.15 3 739.05
Angle×Analyst 797.788 12 66.482
Error 971.75 140 6.941

Total 4377.6 159

(d) Using your answer to (c), give an estimate of the standard deviation
that would be experienced by many analysts making a single mea-
surement on the same angle (in the same section) assuming there is
no repeatability component to the overall variation.

(e) Specifications on the fiber angle are nominal ± 5 ◦. Estimate the
gauge capability ratio using first the ranges and then ANOVA-based
estimates. Does it appear this measurement method is adequate to
check conformance to the specifications? Why or why not?

13. Refer to the Fiber Angle case in problem 12.

(a) Is it preferable to have eight measurements on a given section by each
analyst as opposed to, say, two measurements on a given section by
each analyst? Why or why not?

(b) For a given number of angle measurements per analyst×section com-
bination, is it preferable to have four analysts instead of two, six, or
eight? Why or why not?
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(c) When making angle measurements for a given section, does it matter
if the angle at a fixed location on the piece is repeatedly measured,
or is it acceptable (or even preferable?) for each analyst to measure at
eight different locations on the section? Discuss.

(d) Continuing with (c), does it matter that the locations used on a given
section varied analyst to analyst? Why or why not?

14. Bolt Shanks. A 1- in micrometer is used by an aircraft engine manufacturer
to measure the diameter of a body-bound bolt shank. Specifications on this
dimension have been set with a spread of .002 in. Three operators and ten
body-bound bolt shanks were used in a gauge R&R study. Each bolt shank
was measured twice by each operator (starting with part 1 and proceeding
sequentially to part 10) to produce the data in Table 2.11 (in inches). A cor-
responding ANOVA is provided in Table 2.12 as well (SSs and MSs are in
10−6 in2).

(a) Plot the bolt shank diameter measurements versus part number using
a different plotting symbol for each operator. (You may wish to also
plot part×operator means and connect consecutive ones for a given
operator with line segments.) Discuss what your plot reveals about
the measurement system.

TABLE 2.11. Data for problem 14
Operator

Part A B C
1 .3473 .3467 .3472

.3473 .3465 .3471
2 .3471 .3465 .3471

.3471 .3464 .3471
3 .3472 .3467 .3471

.3472 .3464 .3471
4 .3474 .3470 .3473

.3475 .3470 .3474
5 .3474 .3470 .3473

.3474 .3470 .3473

Operator
Part A B C
6 .3472 .3463 .3471

.3472 .3464 .3471
7 .3473 .3465 .3472

.3473 .3469 .3471
8 .3474 .3470 .3473

.3473 .3470 .3473
9 .3472 .3465 .3472

.3472 .3466 .3471
10 .3474 .3470 .3474

.3474 .3470 .3473

(b) Find an ANOVA-based estimate of repeatability standard deviation.

(c) Find an ANOVA-based estimated standard deviation for reproducibil-
ity assuming there is no repeatability component of variation.

(d) Using your answers to (b) and (c), estimate the percent of total (R&R)
measurement variance due to repeatability.

(e) Using your answers to (b) and (c), estimate the percent of total mea-
surement (R&R) variance due to reproducibility.
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TABLE 2.12. ANOVA for problem 14
Source SS df MS
Part 1.3 9 .145
Operator 3.78 2 1.89
Part×Operator .321 18 .0178
Error .195 30 .0065

Total 5.601 59

(f) Discuss the relationship of your plot in (a) to your answers to (b)
through (e).

(g) Find an ANOVA-based estimate of the gauge capability ratio. Is the
measurement process acceptable for checking conformance to the
specifications? Why or why not?

15. Refer to the Bolt Shanks case in problem 14. The data in Table 2.13 are
from three new operators with a different set of ten body-bound bolt shanks
(numbered as part 11 through part 20). An appropriate ANOVA is also pro-
vided for these new data in Table 2.14 (units for the SS’s and MS’s are
10−6 in2).

TABLE 2.13. Data for problem 15
Operator

Part D E F
11 .3694 .3693 .3693

.3694 .3693 .3693
12 .3693 .3693 .3692

.3693 .3692 .3692
13 .3698 .3697 .3697

.3697 .3697 .3697
14 .3697 .3698 .3697

.3696 .3697 .3697
15 .3694 .3695 .3695

.3693 .3695 .3694

Operator
Part D E F
16 .3692 .3692 .3692

.3693 .3692 .3691
17 .3696 .3695 .3695

.3696 .3695 .3695
18 .3697 .3696 .3696

.3696 .3696 .3696
19 .3697 .3696 .3695

.3696 .3695 .3696
20 .3697 .3697 .3698

.3697 .3698 .3697

(a) Answer (a) through (g) from problem 14 for these new data.

(b) Are your answers to (a) qualitatively different than those for problem
14? If your answer is yes, in what ways do the results differ, and what
might be the sources of the differences?

(c) Do conclusions from this R&R study indicate a more consistent mea-
surement process for body-bound bolt shanks than those in problem
14? Why or why not?
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TABLE 2.14. ANOVA for problem 15
Source SS df MS
Part 2.08 9 .231
Operator .016 2 .008
Part×Operator .0873 18 .00485
Error .07 30 .00233

Total 2.254 59

16. Transmission Gear Measurement. Cummins, Rosario, and Vanek studied
two gauges used to measure ring gear height and bevel gear height in the
production of transmission differentials. (Ring gear height and bevel gear
height determine the milling points for the customized transmission hous-
ings, creating the horizontal location in the housing and the “tightness” of
the casing against the differential.) A test stand (hydraulically) puts a 1000
pound force on the differential. This force is used to keep the differential
from free spinning while allowing spin with some force applied. A 3- in Mi-
tutoyo digital depth micrometer and a 6- in Mitutoyo digital depth microm-
eter were used to make the measurements. Vanek used the 3- in micrometer
and took two ring gear height measurements on differential 8D4. Using
the same 3- in Mitutoyo micrometer, Cummins made two ring gear height
measurements on the same part. Vanek then took two bevel gear height
measurements with the 6- in Mitutoyo micrometer on the same differential.
Cummins followed with the same 6- in micrometer and took two bevel gear
height measurements on differential 8D4. This protocol was repeated two
more times for the differential 8D4. The whole procedure was then applied
to differential 31D4. The data are given in Table 2.15. ANOVAs are given
for both the ring gear data (SS and MS units are 10−4 in2) and the bevel
gear data (SS and MS units are 10−5 in2) in Tables 2.16 and 2.17, respec-
tively.

(a) Consider the ring gear heights measured with the 3- in Mitutoyo mic-
rometer. Give the values of m, I , and J .

(b) In the context of the ring gear height measurements, what do m, I ,
and J represent?

(c) Give an ANOVA-based estimated repeatability standard deviation
for ring gear height measuring. Find a range-based estimate of this
quantity.

(d) Give an ANOVA-based estimated reproducibility standard deviation
for ring gear height measuring.

(e) The upper and lower specifications for ring gear heights are, respec-
tively, 1.92 in and 1.88 in. If the company requires the gauge capabil-
ity ratio to be no larger than .05, does the 3- in Mitutoyo micrometer,
as currently used, seem to meet this requirement? Why or why not?
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TABLE 2.15. Data for problem 16
Ring gear heights (inches)

(3- in Mitutoyo micrometer)
Vanek Cummins

8D4 1.88515 1.88470
1.88515 1.88470
1.88540 1.88380
1.88530 1.88510
1.88485 1.88435
1.88490 1.88450

31D4 1.88365 1.88270
1.88370 1.88295
1.88330 1.88235
1.88325 1.88235
1.88270 1.88280
1.88265 1.88260

Bevel gear heights (inches)
(6- in Mitutoyo micrometer)

Vanek Cummins
8D4 5.49950 5.49850

5.49985 5.49945
5.49975 5.49945
5.50000 5.50005
5.49930 5.50070
5.49945 5.49945

31D4 5.49785 5.49700
5.49775 5.49710
5.49765 5.49615
5.49750 5.49615
5.49670 5.49595
5.49680 5.49620

TABLE 2.16. ANOVA for problem 16 ring gear data
Source SS df MS
Differential .219 1 .219
Operator .021 1 .021
Differential×Operator .0000042 1 .0000042
Error .0249 20 .00124

Total .2644 23

TABLE 2.17. ANOVA for problem 16 bevel gear data
Source SS df MS
Differential 4.44 1 4.44
Operator .148 1 .148
Differential×Operator .124 1 .124
Error .550 20 .02752

Total 5.262 23
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(f) Repeat (a) through (e) for bevel gear heights measured with the 6- in
Mitutoyo micrometer. Lower and upper specifications are, respec-
tively, 5.50 in and 5.53 in for the bevel gear heights.

17. Computer Locks. Cheng, Lourits, Hugraha, and Sarief decided to study
“tip diameter” for some computer safety locks produced by a campus mac-
hine shop. The team began its work with an evaluation of measurement pre-
cision for tip diameters. The data in Table 2.18 are in inches and represent
two diameter measurements for each of two analysts made on all 25 locks
machined on one day. An appropriate ANOVA is also given in Table 2.19.
(The units for the SSs and MSs are 10−4 in2.)

TABLE 2.18. Data for problem 17
Part Lourits Cheng
1 .375, .375 .374, .374
2 .375, .375 .377, .376
3 .375, .373 .374, .375
4 .375, .373 .375, .374
5 .374, .374 .374, .374
6 .374, .374 .374, .375
7 .374, .375 .375, .376
8 .374, .375 .374, .373
9 .374, .374 .375, .375
10 .374, .374 .374, .374
11 .375, .373 .374, .374
12 .375, .374 .376, .374
13 .376, .373 .373, .374

Part Lourits Cheng
14 .373, .373 .379, .374
15 .372, .373 .374, .373
16 .373, .373 .374, .374
17 .373, .373 .374, .373
18 .373, .373 .373, .373
19 .373, .373 .376, .373
20 .373, .373 .373, .373
21 .374, .374 .374, .375
22 .375, .375 .374, .377
23 .375, .375 .376, .377
24 .376, .375 .376, .374
25 .374, .374 .374, .375

TABLE 2.19. ANOVA for problem 17
Source SS df MS
Part .58 24 .0242
Operator .0625 1 .0625
Part×Operator .22 24 .00917
Error .445 50 .0089
Total 1.3075 99

(a) Organizations typically establish their own guidelines for interpret-
ing the results of gauge R&R studies. One set of guidelines is shown
below. (6σ̂repeatability ÷ (U − L) expressed as a percentage is some-
times called the “% gauge” for repeatability. 6σ̂reproducibility ÷ (U − L)
expressed as a percentage is sometimes called the “% gauge” for re-
producibility.)
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% gauge Rating
33% Unacceptable
20% Marginal
10% Acceptable
2% Good
1% Excellent

Suppose that specifications for the lock tip diameters are .375 ±
.002 in . According to the guidelines above and using ANOVA-based
estimates, how does the diameter measuring process “rate” (based
on “% gauge” for repeatability and “% gauge” for reproducibility)?
Why?

(b) Find expressions for yoperator1 and yoperator2 as functions of the
model terms used in the equation yijk = μ+ αi + βj + αβij + εijk .

(c) Continuing with (b) and applying logic consistent with that used to
develop Eq. (2.31), what does |yoperator1−yoperator2|/d2(2) estimate
in terms of σ2

α, σ
2
β , σ

2
αβ , and σ2?

18. Refer to the Computer Locks case in problem 17. Consider the mea-
surements made by Lourits. The sample average tip diameter for the ith
randomly selected lock measured by Lourits can be written (holding only
Lourits fixed) as

yiLourits = μ+ αi + βLourits + αβiLourits + εiLourits .

(a) What is the random portion of yiLourits?

(b) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , give the variance of your answer to
part (a).

(c) Letting Γ be the range of the 25 variables yiLourits, what does
Γ/d2(25) estimate?

(d) Give the observed numerical value for Γ/d2(25) considered in part
(c).

(e) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , what is the variance of (different)
lock tip diameters as measured by a single operator (say Lourits) as-
suming there is no repeatability variation?

(f) In terms of σ2, σ2
α, σ

2
β , and σ2

αβ , what is the variance of (single-) dia-
meter measurements made on (different) lock tips made by the same
operator (say Lourits)? (Hint: This is your answer to (e) plus the rep-
eatability variance, σ2.)

(g) Using the Lourits data, find a range-based estimate of the repeatability
variance.

(h) Using the Lourits data, find a range-based estimate of your answer to
(e). (Hint: Use your answers for (d) and (g) appropriately.)
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(i) Using the Lourits data, estimate your answer to (f). (Hint: Use your
answers for (h) and (g) appropriately.)

19. Implement Hardness. Olsen, Hegstrom, and Casterton worked with a
farm implement manufacturer on the hardness of a steel part. Before pro-
cess monitoring and experimental design methodology were considered,
the consistency of relevant hardness measurement was evaluated. Nine
parts were obtained from a production line, and three operators agreed to
participate in the measuring process evaluation. Each operator made two
readings on each of nine parts. The data in Table 2.20 are in mm . An
appropriate ANOVA is given in Table 2.21 (the units for the SSs and MSs
are mm2).

TABLE 2.20. Data for problem 19
Operator

Part A B C
1 3.30 3.25 3.30

3.30 3.30 3.30
2 3.20 3.20 3.15

3.25 3.30 3.30
3 3.20 3.20 3.25

3.30 3.20 3.20
4 3.25 3.20 3.20

3.30 3.25 3.20
5 3.25 3.10 3.20

3.30 3.10 3.15

Operator
Part A B C
6 3.30 3.30 3.25

3.30 3.20 3.20
7 3.15 3.10 3.15

3.20 3.20 3.20
8 3.25 3.20 3.20

3.20 3.20 3.25
9 3.25 3.20 3.30

3.30 3.30 3.40

TABLE 2.21. ANOVA for problem 19
Source SS df MS
Part .08833 8 .01104
Operator .01778 2 .00889
Part×Operator .04139 16 .00259
Error .0575 27 .002130

Total .205 59

(a) Say what each term in Eq. (2.26) means in the context of this problem.

(b) What are the values of I, J, and m in this study?

(c) Give an ANOVA-based estimate of the repeatability standard devia-
tion, σ.

(d) Give an ANOVA-based estimate of the reproducibility standard devi-
ation, σreproducibility.
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(e) Estimate the gauge capability ratio using the ANOVA-based calcu-
lation if specifications on the hardness of this part are nominal ±
10mm.

(f) Using the corporate gauge rating table given in problem 17, rate the
repeatability and the reproducibility of the hardness measurement
method.

(g) Does it appear the current measuring process is adequate to check
conformance to nominal ± 10mm hardness specifications? Why or
why not?

20. Refer to the Implement Hardness case in problem 19.

(a) Suppose each operator used a different gauge to measure hardness.
How would this affect the interpretation of your calculations in
problem 19?

(b) If it were known that measuring alters the part hardness in the vicinity
of the point tested, how should this be addressed in a gauge R&R
study?

(c) When an operator measures the same part two times in a row, it is
likely the second measurement is “influenced” by the first in the sense
that there is psychological pressure to produce a second measurement
like the initial one. How might this affect results in a gauge R&R
study? How could this problem be addressed/eliminated?

21. Is it important to include an evaluation of measuring processes early in a
quality improvement effort? Why or why not?

22. Management tells engineers involved in a quality improvement project “We
did a gauge R&R study last year and the estimated gauge capability ratio
was .005. You don’t need to redo the study.” How should the engineers
respond and why?

23. Paper Weight. Everingham, Hart, Hartong, Spears, and Jobe studied the
top loading balance used by the Paper Science Department at Miami Uni-
versity, Oxford, Ohio. Two 20 cm× 20 cm (400 cm2) pieces of 20 lb bond
paper were cut from several hundred feet of paper made in a departmen-
tal laboratory. Weights of the pieces obtained using the balance are given
below in grams. The numbers in parentheses specify the order in which
the measurements were made. (Piece 1 was measured 15 times, three times
by each operator. That is, piece 1 was measured first by Spears, second
by Spears, third by Hart,. . . ,14th by Hartong, and lastly by Jobe.) Differ-
ent orders were used for pieces 1 and 2, and both were determined using a
random number generator. Usually, the upper specification minus the lower
specification (U −L) is about 4 g/m2 for the density of this type of paper.
An appropriate ANOVA is given below (units for the SSs and MSs are g2).
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Piece Hartong Hart Spears Everingham Jobe
1 (14) 3.481 (3) 3.448 (1) 3.485 (13) 3.475 (10) 3.472

(12) 3.477 (9) 3.472 (2) 3.464 (4) 3.472 (5) 3.470
(7) 3.470 (6) 3.470 (11) 3.477 (8) 3.473 (15) 3.474

2 (1) 3.258 (13) 3.245 (7) 3.256 (6) 3.249 (11) 3.241
(2) 3.254 (12) 3.247 (5) 3.257 (15) 3.238 (8) 3.250
(3) 3.258 (9) 3.239 (10) 3.245 (14) 3.240 (4) 3.254

ANOVA table for weight
Source SS df MS
Piece .37386 1 .37386
Operator .00061 4 .000152
Piece×Operator .00013 4 .000032
Error .00095 20 .000047

Total .37555 29

(a) What purpose is potentially served by randomizing the order of mea-
surement as was done in this study?

(b) Give the table of operator×piece ranges, Rij .

(c) Give the table of operator×piece averages, yij .

(d) Give the ranges of the operator×piece means, Δi.

(e) Express the observed weight range determined by Spears for piece 2
in g/m2. (Note: 104 cm2 = 1m2.)

(f) Find a gauge repeatability rating based on ranges. (See part (a) of
problem 17.) Pay attention to units.

(g) Find a gauge reproducibility rating based on ranges. (Again see part
(a) of problem 17 and pay attention to units.)

(h) Calculate an estimated gauge capability ratio. Pay attention to units.

(i) What minimum value for (U−L) would guarantee an estimated gauge
capability ratio of at most .1?

(j) Using ANOVA-based estimates, answer (f)–(h).

(k) Using ANOVA-based estimates, give an exact 95% confidence inter-
val for σrepeatability. Your units should be g/m2.

(l) Using the ANOVA-based estimates, give 95% approximate confi-
dence limits for σreproducibility. Your units should be g/m2.

24. Paper Thickness. Everingham, Hart, Hartong, Spears, and Jobe contin-
ued their evaluation of the measuring equipment in the Paper Science
Laboratory at Miami University by investigating the repeatability and rep-
roducibility of the TMI automatic micrometer routinely used to measure
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paper thickness. The same two 20 cm × 20 cm pieces of 20 lb bond paper
referred to in problem 23 were used in this study. But unlike measuring
weight, measuring thickness alters the properties of the portion of the paper
tested (by compressing it and thus changing the thickness). So an 8 × 8
grid was marked on each piece of paper. The corresponding squares were
labeled 1, 2, . . . , 64 left to right, top to bottom. Ten squares from a given
piece were randomly allocated to each operator (50 squares from each piece
were measured). Because so many measurements were to be made, only
the “turn” for each analyst was determined randomly, and each operator
made all ten of his measurements on a given piece consecutively. A second
randomization and corresponding order of measurement was made for
piece 2. Hartong measured third on piece 1 and fifth on piece 2, Hart was
first on piece 1 and third on piece 2, Spears was fifth and fourth, Evering-
ham was second and second, and Jobe was fourth and first. The data are in
Table 2.22 (in mm). The numbers in parenthesis identify the squares (from
a given piece) measured. (Thus, for piece 1, Hart began the measurement
procedure by recording thicknesses for squares 51, 54, 18, 63, . . . , 7; then
Everingham measured squares 33, 38, . . . , 5, etc. After the data for piece
1 were obtained, measurement on piece 2 began. Jobe measured squares
9, 3, . . . , 22; then Everingham measured squares 43, 21, . . . , 57, etc.) An
appropriate ANOVA is also given in Table 2.23 (units for the SSs and MSs
are mm2).

(a) Say what each term in Eq. (2.26) means in the context of this problem.

(b) How is this study different from a “garden-variety” gauge R&R study?

(c) Will the nonstandard feature of this study tend to increase, decrease,
or have no effect on the estimate of the repeatability standard devia-
tion? Why?

(d) Will the nonstandard feature of this study tend to increase, decrease,
or have no effect on the estimated standard deviation of measurements
from a given piece across many operators? Why?

(e) Give the ANOVA-based estimated standard deviation of paper
thickness measurements for a fixed piece × operator combination,
i.e., approximate the repeatability standard deviation assuming that
square-to-square variation is negligible.

(f) Give the ANOVA-based estimated standard deviation of thicknesses
measured on a fixed piece across many operators. (The quantity
being estimated should include but not be limited to variability for a
fixed piece × operator combination.) That is, approximate the repro-
ducibility standard deviation assuming square-to-square variation is
negligible.

(g) What percent of the overall measurement variance is due to repeata-
bility? What part is due to reproducibility?
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TABLE 2.22. Data for problem 24

Piece Hartong Hart Spears Everingham Jobe
1 (14) .201 (51) .195 (48) .192 (33) .183 (43) .185

(25) .190 (54) .210 (58) .191 (38) .189 (40) .204
(17) .190 (18) .200 (15) .198 (36) .196 (49) .194
(21) .194 (63) .203 (55) .197 (3) .195 (12) .199
(53) .212 (20) .196 (44) .207 (59) .192 (29) .192
(16) .209 (50) .189 (23) .202 (45) .195 (13) .193
(47) .208 (31) .205 (64) .196 (41) .185 (56) .190
(42) .192 (37) .203 (57) .188 (9) .193 (2) .195
(22) .198 (34) .195 (26) .201 (62) .194 (8) .199
(35) .191 (7) .186 (1) .181 (5) .194 (6) .197

2 (5) .188 (14) .186 (55) .177 (43) .179 (9) .191
(16) .173 (24) .171 (51) .174 (21) .194 (3) .180
(11) .188 (62) .178 (36) .184 (18) .187 (42) .194
(47) .180 (34) .175 (12) .180 (39) .175 (50) .183
(25) .178 (29) .183 (38) .179 (6) .173 (53) .181
(15) .188 (10) .185 (41) .186 (7) .179 (17) .188
(56) .166 (30) .190 (63) .183 (64) .171 (33) .188
(26) .173 (40) .177 (45) .172 (54) .184 (23) .173

(8) .175 (58) .184 (31) .174 (59) .181 (60) .180
(52) .183 (13) .186 (2) .178 (57) .187 (22) .176

TABLE 2.23. ANOVA for problem 24
Source SS df MS
Piece .00557 1 .00557
Operator .00018 4 .000045
Piece×Operator .00028 4 .00007
Error .003986 90 .000044

Total .010013 99

25. Paper Burst Strength. An important property of finished paper is the force
( lb/ in2) required to burst or break through it. Everingham, Hart, Hartong,
Spears, and Jobe investigated the repeatability and reproducibility of exist-
ing measurement technology for this paper property. A Mullen tester in the
Miami University Paper Science Department was studied. Since the same
two 20 cm× 20 cm pieces of paper referred to in problems 23 and 24 were
available, the team used them in its gauge R&R study for burst strength
measurement. The burst test destroys the portion of paper tested, so repeat
measurement of exactly the same paper specimen is not possible. Hence, a
grid of 10 approximately equal-sized rectangles, 10 cm× 4 cm (each large
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enough for the burst tester), was marked on each large paper piece. Each
of the analysts was assigned to measure burst strength on two randomly
selected rectangles from each piece. The measurement order was also ran-
domized among the five operators for each paper piece. The data obtained
are shown below. The ordered pairs specify the rectangle measured and the
order of measurement. (For example, the ordered pair (2,9) in the top half
of the table indicates that 8.8 lb/ in2 was obtained from rectangle number
2, the ninth rectangle measured from piece 1.) An ANOVA table for this
study is also provided.

Piece Hartong Hart Spears Everingham Jobe
1 (9,2) 13.5 (6,6) 10.5 (4,8) 12.9 (2,9) 8.8 (3,10) 12.4

(7,5) 14.8 (5,1) 11.7 (1,4) 12.0 (8,3) 13.5 (10,7) 16.0

2 (3,9) 11.3 (1,8) 14.0 (5,6) 13.0 (6,7) 12.6 (2,1) 11.0
(8,10) 12.0 (7,5) 12.5 (9,3) 13.1 (4,2) 12.7 (10,4) 10.6

ANOVA table for burst strength
Source SS df MS
Piece .5445 1 .5445
Operator 2.692 4 .6730
Piece×Operator 24.498 4 6.1245
Error 20.955 10 2.0955

Total 48.6895 19

In the following, assume that specimen-to-specimen variation within a
given piece of paper is negligible.

(a) To what set of operators can the conclusions of this study be applied?

(b) To what set of paper pieces can the conclusions of this study correctly
be applied?

(c) What are the values of I , J , and m in this study?

(d) Give an ANOVA-based estimate of the repeatability standard devia-
tion, σ.

(e) Give another estimate of the repeatability standard deviation, σ, this
time based on ranges.

(f) Find an ANOVA-based estimate of σreproducibility.

(g) Find another estimate of σreproducibility, this one based on ranges

(h) Using the ANOVA, estimate the standard deviation of single burst
measurements on a fixed piece of paper made by many operators,
σR&R.
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26. Paper Tensile Strength. The final type of measurement method studied by
Everingham, Hart, Hartong, Spears, and Jobe in the Paper Science Labora-
tory at Miami University was that for paper tensile strength. Since the burst
tests discussed in problem 25 destroyed the 20 cm× 20 cm pieces of 20 lb
bond paper referred to there, two new 20 cm× 20 cm pieces of paper were
selected from the same run of paper. Ten 15 cm × 20 cm strips were cut
from each 20 cm× 20 cm piece. Each set of ten strips was randomly allo-
cated among the five operators (two strips per operator for each set of ten).
The order of testing was randomized for the ten strips from each piece, and
the same Thwing-Albert Intellect 500 tensile tester was used by each oper-
ator to measure the load required to pull apart the strips. The data appear
below in kg. (Consider, e.g., the data given for piece 1, Hartong, (9,2) 4.95.
A 4.95 - kg load was required to tear strip number 9 from piece 1 and the
measurement was taken second in order among the ten strips measured for
piece 1.) Since the testing destroyed the strip, the analysts had to assume
strip-to-strip variation for a given piece to be negligible. An appropriate
ANOVA is also given below (units for SSs and MSs are kg2).

Piece Everingham Hart Hartong Spears Jobe
1 (2,8) 4.34 (1,5) 4.34 (9,2) 4.95 (6,6) 4.03 (10,4) 4.51

(8,10) 4.71 (4,3) 4.61 (7,7) 4.53 (3,9) 3.62 (5,1) 4.56

2 (4,7) 5.65 (6,6) 4.80 (1,1) 4.38 (2,2) 4.65 (9,5) 4.30
(8,9) 4.51 (10,8) 4.75 (3,3) 3.89 (5,4) 5.06 (7,10) 3.87

ANOVA table for tensile strength
Source SS df MS
Piece .13778 1 .1378
Operator .69077 4 .17269
Piece×Operator 1.88967 4 .47242
Error 1.226 10 .1226

Total 3.9442 19

(a) Make a table of load averages, yij , for the ten operator×piece com-
binations.

(b) Plot the load averages yij versus piece number for each of the opera-
tors (connect the two yijs for each operator).

(c) Suppose the target tensile strength for strips of 20 lb bond paper is
4.8 kg . Typically, upper and lower specifications for paper properties
are set 5% above and below a target. Estimate the gauge capability
ratio under these conditions, using ANOVA-based calculations.
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(d) If upper and lower specifications for tensile strength of 20 lb bond
paper are equal distances above and below a target of 4.8 kg, find the
upper and lower limits such that the estimated gauge capability ratio
is .01.

(e) Redo part (d) for an estimated gauge capability ratio of .1.

(f) Is it easier to make a gauge capability ratio better (smaller) by increas-
ing its denominator or decreasing its numerator? Will your answer
lead to a more consistent final product? Why or why not?



CHAPTER 3

PROCESS MONITORING

This chapter discusses the important topic of process monitoring using so-called
control charts. These are devices for the routine and organized plotting of process
performance measures, with the goal of identifying process changes. When these
are detected, those running the process can either intervene and set things aright (if
the change is detrimental) or try to make permanent the source of an unexpected
process improvement.

The discussion begins with some control charting philosophy in Sect. 3.1. Then
the standard Shewhart control charts for both measurements/“variables data” and
counts/“attributes data” are presented in consecutive Sects. 3.2 and 3.3. Sec-
tion 3.4 discusses qualitative interpretation and practical implications of patterns
sometimes seen on Shewhart charts and some sets of rules often applied to check
for such patterns. Then there is a presentation of the so-called average run length
concept that can be used to quantify what a particular process-monitoring scheme
can be expected to provide in Sect. 3.5. Finally, in Sect. 3.6 the chapter closes
with a discussion clarifying the relationship between “statistical process con-
trol” and “engineering control” and presenting some basic concepts of so-called
proportional-integral-derivative (PID) engineering control schemes.
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3.1 Generalities About Shewhart Control Charting

Section 1.2.1 introduced the notion of process “stability” as consistency over time
in the pattern of process variation. Walter Shewhart, working at Bell Labs in the
late 1920s and early 1930s, developed an extremely powerful and simple tool for
investigating whether a process can be sensibly thought of as stable. He called it a
“control chart.” Some 90 plus years after the fact, your authors would prefer (for
reasons laid out in Sect. 3.6) that Shewhart had chosen instead the name “mon-
itoring chart.” Nevertheless, this book will use Shewhart’s terminology and the
“monitoring chart” terminology interchangeably.

Shewhart’s fundamental conceptualization was that while some variation is
inevitable in any real process, overall variation seen in process data can be
decomposed as

Shewhart’s
Grand
Insight

observed variation = baseline variation+variation that can be eliminated. (3.1)

Shewhart conceived of baseline variation as that variability in production and
measurement which will remain even under the most careful process monitoring
and appropriate physical intervention. It is an inherent property of a combination
of system configuration and measurement methodology that cannot be reduced
without basic changes in the physical process or how it is run or observed. This
variation is sometimes called variation due to “system” or “common” (univer-
sal) causes. Other names for it that will be used in this book are “random” or
“short-term” variation. It is the kind of variation expected under the best of cir-
cumstances, measuring item to consecutive item produced on a production line. It
is a variation that comes from many small, unnameable, and unrecognized phys-
ical causes. When only this kind of variation is present, it is reasonable to call a
process “stable” and model observations on it as independent random draws from
a fixed population or universe.

The second component of overall variability portrayed in Eq. (3.1) is that which
can potentially be eliminated by careful process monitoring and wise physical
intervention (when such is warranted). This has variously been called “special
cause” or “assignable” cause variation and “nonrandom” and “long-term” varia-
tion. It is the kind of systematic, persistent change that accompanies real (typically
unintended) physical alteration of a process (or the measurement system used to
observe it). It is a change that is large enough that one can potentially track down
and eliminate its root cause, leaving behind a stable process.

If one accepts Shewhart’s conceptualization (3.1), the problem then becomes
one of detecting the presence of the second kind of variation so that appropriate
steps can be taken to eliminate it. The Shewhart control chart is a tool for making
such detection.

Shewhart’s charting method is this. One periodically takes samples from
the process of interest (more will be said later about the timing and nature of
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these samples) and computes a statistic meant to summarize process behavior at
the period in question. Values of the statistic are plotted against time order of
observation and compared to so-called control limits drawn on the chart. These

Control Limitsseparate values of the statistic that are plausible if the process is in fact stable,
from those that are rare or implausible under this scenario. As long as the plotted
points remain inside the control limits, one presumes that all is well (the process
is stable) and does not intervene in its workings. (This is an oversimplification
of how these charts are often used that will be corrected in Sect. 3.4. But for
the time being, this simplified picture will suffice.) When a point plots outside
control limits, there is an indication that a physical change has probably taken
place and that intervention is appropriate. Figure 3.1 shows a generic Shewhart
control chart where the plotted statistic is Q; upper and lower control limits are
UCLQ, and LCLQ respectively; and there is one “out-of-control” point.

‘‘Out of Control” Point

Lower Control Limit

Upper Control Limit

Q

Time
1110987654321

FIGURE 3.1. Generic Shewhart control chart (for a statistic Q)

There are many different kinds of Shewhart charts, corresponding to various
choices of the plotted statistic, Q. Some of these chart types will be discussed in
the next two sections. But before moving to discussion of specific charts, several
generalities remain to be considered. First, there is the question of how one sets
the control limits, UCLQ and LCLQ.

Shewhart’s suggestion for setting control limits was essentially the following. If
one can model the process output under stable conditions (i.e., if one can specify a
sensible probability distribution for individual observations made on the process),
then probability theory can often be invoked to produce a corresponding distribu-
tion for Q. Then small upper and lower percentage points for this distribution can
provide the necessary control limits. The thinking is that only rarely will values
outside these be seen under stable process conditions. Further, rather than work-
ing explicitly with probability tables or formulas for a distribution of Q, one often
simply makes use of the fact that for many probability distributions, most of the
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probability is within three standard deviations of the mean. So, if μQ and σQ are,
respectively, a stable process mean and standard deviation for Q, then common
control limits are

Generic
3-Sigma
Control Limits

UCLQ = μQ + 3σQ and LCLQ = μQ − 3σQ . (3.2)

Further, it is common to draw in a “center line” on a Shewhart control chart at

Generic
Center Line CLQ = μQ . (3.3)

To make this discussion slightly more concrete, consider briefly the situation
where the plotted statistic is the sample mean of n individual measurements,
Q = x. If the process output can be modeled as independent selections from a
distribution with mean μ and standard deviation σ, the statistic x has a distri-
bution with mean μQ = μx = μ and standard deviation σQ = σx = σ/

√
n.

Then applying relationships (3.2) and (3.3), it follows that typical control limits
for x are

UCLx = μ+ 3
σ√
n

and LCLx = μ− 3
σ√
n

, (3.4)

with a center line drawn at μ.
Display (3.4) helps bring into focus another general issue regarding Shewhart

control charting. As in limits (3.4), process parameters (like μ and σ) typically
appear in formulas for control limits. Values for them must come from somewhere
in order to apply a control chart, and there are two possibilities in this regard.
Sometimes past experience with a process, engineering standards, or other con-

Standards
Given Context

siderations made prior to process monitoring specify what values should be used.
This kind of situation is commonly known as a standards given scenario. In other
circumstances, one has no information on a process outside a series of samples
that are presented along with the question “Is it plausible that the process was
physically stable over the period represented by these data?” In such a case, all
that one can do is tentatively assume that in fact the process was stable, make
provisional estimates of process parameters and plug them into formulas for con-
trol limits, and apply those limits to the data in hand as a means of criticizing
the tentative assumption of stability. This kind of situation is sometimes called an

Retrospective
Context

as past data scenario and will often be referred to in this text as a retrospective
scenario.

The difference between what is possible in standards given and retrospective
contexts can be thought of in terms of two different questions addressed in the
two situations. In a standards given context, with each new sample, one can face
the question

Are process parameters currently at their standard values?

In a retrospective context, one can only wait until a number of samples have been
collected (often, a minimum of 20–25 time periods is recommended) and then
looking back over the data ask the question
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Are these data consistent with any fixed set of process parameters?

Having introduced the notion of control limits, it is important to warn read-
ers of a common pitfall. That is the confusion that students (and even practicing
engineers) often have regarding the much different concepts of control limits and
engineering specifications. Control limits have to do with assessing process sta-

Control Limits
vs. Engineering
Specifications

bility. They refer to a statistic Q. They are usually derived from what a process has
done in the past or is currently doing. On the other hand, engineering specifica-
tions have to do with assessing product acceptability or functionality. They almost
always refer to individual measurements. They are usually derived from product
performance requirements and may have little or nothing to do with the inherent
capability of a process to produce a product meeting those requirements.

Despite these real differences in meaning, people often confuse these concepts
(e.g., applying specifications to sample means as if they were control limits or
arguing that since a mean or individual is inside control limits for x, the product
being monitored is acceptable). But it is vital that these notions be kept separate
and applied in their proper contexts. (Notice that a process that is stable and pro-
ducing Qs inside appropriate control limits need not be producing mostly accept-
able product. And conversely, a process may produce product that is acceptable
by current engineering standards, but nevertheless be very unstable!)

Another issue needing some general discussion here is the matter of sampling.
How should one go about gathering the data to be used in control charting?
This matter includes the issue sometimes referred to as rational subgrouping
or rational sampling. When one is collecting process-monitoring data, it is impor-
tant that anything one intends to call a single “sample” be collected over a short
enough time span that there is little question that the process was physically stable
during the data collection period. It must be clear that an “independent draws from
a single-population/single-universe” model is appropriate for describing data in a
given sample. This is because the variation within such a sample essentially spec-
ifies the level of background noise against which one looks for process changes.
If what one calls “samples” often contain data from genuinely different process
conditions, the apparent level of background noise will be so large that it will be
hard to see important process changes. In high-volume manufacturing applica-
tions of control charts, single samples (rational subgroups) typically consist of n
consecutive items taken from a production line. On the other hand, in extremely
low-volume operations, where one unit might take many hours to produce and
there is significant opportunity for real process change between consecutive units,
the only natural samples may be of size n = 1.

Once one has determined to group only observations close together in time
into samples or subgroups, there is still the question of how often these samples
should be taken. When monitoring a machine that turns out 1000 parts per hour,
where samples are going to consist of n = 5 consecutive parts produced on the
machine, does one sample once every minute, once every hour, once every day,
or what? An answer to this kind of question depends upon what one expects in
terms of process performance and the consequences of process changes. If the
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consequences of a process change are disastrous, one is pushed toward frequent
samples. The same is true if significant process upsets are a frequent occurrence.
On the other hand, if a process rarely experiences changes and even when those
occur, only a moderate loss is incurred when it takes a while to discover them,
long intervals between samples are sensible.

As a final matter in this introductory discussion of Shewhart charting philoso-
phy, we should say what control charting can and cannot reasonably be expected
to provide. It can signal the need for process intervention and can keep one from
ill-advised and detrimental overadjustment of a process that is behaving in a sta-
ble fashion. But in doing so, what is achieved is simply reducing variation to
the minimum possible for a given system configuration (in terms of equipment,
methods of operation, methods of measurement, etc.). Once that minimum has
been reached, what is accomplished is maintaining a status quo best possible pro-
cess performance. (Remember, e.g., the use of the “control” step in the Six Sigma
paradigm discussed on page 9.) In today’s global economy, standing still is never
good enough for very long. Achieving process stability provides a solid back-
ground against which to evaluate possible innovations and fundamental/order-of-
magnitude improvements in production methods. But it does not itself guide their
discovery. Of the tools discussed in this book, it is the methods of experimental
design and analysis covered in Chaps. 5 and 6 that have the most to say about
aiding fundamental innovations.

Section 3.1 Exercises

1. What can control charting contribute to a process-improvement effort?

2. What is the difference between “standards given” and “retrospective” con-
trol charting?

3. What is the difference between common cause and special cause variation?
Which type of variation are control charts designed to detect?

4. What happens to the control limits (3.4) for an x chart as the subgroup size
gets large?

5. How do you expect the behavior of a control charting scheme to change if
a value smaller than 3 is used in limits (3.2)?

6. How do you expect the behavior of a control charting scheme to change if
a value larger than 3 is used in limits (3.2)?

7. If the plotted statistic Q is inside appropriately constructed control limits
(indicating that a process is stable), does that necessarily imply that the
process is producing acceptable product? Briefly explain.
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8. If the plotted statistic Q is regularly outside appropriately constructed con-
trol limits (indicating that a process is unstable), does that necessarily imply
that the process is producing unacceptable product? Briefly explain.

9. The same item is being produced on two production lines. Every 15min, 5
items are sampled from each line, and a feature of interest is measured on
each item. Some statistic Q is calculated for each set of 5 measurements
from each line and plotted versus time. Analyst 1 puts all 10 items together
into a single group (5 from line 1 and 5 from line 2), calculates a value
of the statistic Q, and plots it. (This person says, “After all, is not a larger
sample size better?”) Analyst 2 keeps the data from the two different lines
separate and makes a different control chart for each production line.

(a) What subgroup size is Analyst 1 using?

(b) What subgroup size is Analyst 2 using?

(c) Which analyst is making the most appropriate chart? Why? (Hint:
Consider the concept of rational subgrouping. See also the discussion
of stratification on page 141.)

3.2 Shewhart Charts for Measurements/“Variables
Data”

This section considers the problem of process monitoring when the data available
are measurements (as opposed to counts or the kind of 0/1 calls considered in
Sect. 2.6). Sometimes the terminology “variables data” is used in this context. In
such situations, it is common to make charts for both the process location and also
for the process spread (size of the process short-term variability). So this section
will consider the making of x and median (x̃) charts for location and R and s
charts for spread.

3.2.1 Charts for Process Location

The most common of all Shewhart control charts is that for means of samples of
n measurements, the case where Q = x. As was discussed in the previous section
(and portrayed in display (3.4)), the fact that sampling from a distribution with
mean μ and standard deviation σ produces sample averages with expected value
μx = μ and standard deviation σx = σ/

√
n suggests standards given Shewhart

control limits for x

Standards
Given x Chart
Control Limits

UCLx = μ+ 3
σ√
n

and LCLx = μ− 3
σ√
n
, (3.5)
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and center line at

Standards
Given x Chart
Center Line

CLx = μ .

Example 23 Monitoring the Surface Roughness of Reamed Holes. Dohm,
Hong, Hugget, and Knoot worked with a manufacturer on a project involving
roughness measurement after the reaming of preformed holes in a metal part.
Table 3.1 contains some summary statistics (the sample mean x, the sample
median x̃, the sample range R, and the sample standard deviation s) for 20
samples (taken over a period of 10 days) of n = 5 consecutive reamed holes.

Suppose for the time being that standards (established on the basis of previous
experience with this reaming process) for surface roughness are μ = 30 and
σ = 4. Then, standards given control limits for the x values in Table 3.1 are

UCLx = 30 + 3
4√
5
= 35.37

and

LCLx = 30− 3
4√
5
= 24.63 .

TABLE 3.1. Summary statistics for 20 samples of five surface roughness measurements on
reamed holes (μ in)

Sample x̄ x̃ R s

1 34.6 35 9 3.4
2 46.8 45 23 8.8
3 32.6 34 12 4.6
4 42.6 41 6 2.7
5 26.6 28 5 2.4
6 29.6 30 2 0.9
7 33.6 31 13 6.0
8 28.2 30 5 2.5
9 25.8 26 9 3.2
10 32.6 30 15 7.5
11 34.0 30 22 9.1
12 34.8 35 5 1.9
13 36.2 36 3 1.3
14 27.4 23 24 9.6
15 27.2 28 3 1.3
16 32.8 32 5 2.2
17 31.0 30 6 2.5
18 33.8 32 6 2.7
19 30.8 30 4 1.6
20 21.0 21 2 1.0
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Figure 3.2 is a standards given x chart for the surface roughness measurements.
Based on this chart, one would detect the fact that the reaming process is not sta-
ble at standard process parameters as early as the second sample. Several of the
sample means fall outside control limits, and had the control limits been applied
to the data as they were collected, the need for physical intervention would have
been signaled.
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FIGURE 3.2. Standards given x chart for surface roughness

In order to make a retrospective x chart, one must derive estimates of the
process parameters μ and σ from data in hand (temporarily assuming process
stability) and plug them into the formulas (3.5). There are many possible ways
of doing this, each leading to slightly different retrospective control limits. Here
only the most common ones will be considered and we begin with the matter of
estimating μ.

Let r stand for the number of samples available in a retrospective x chart analy-
sis. One way of estimating a supposedly common process mean for the r periods
is to simply average the r sample means. Standard control charting practice is
to use

Average
Sample Meanx =

1

r

r∑
i=1

xi

as an estimator of μ in making retrospective control limits for x.
An answer to the question of how to estimate σ is not so obvious. The estima-

tor of σ with the best theoretical properties is obtained by pooling the r sample
variances to obtain (in the constant sample size case)

s2pooled =
1

r

r∑
i=1

s2i ,
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and then taking the square root. However, this method is not common in practice
(due to historical precedent). Instead, common practice is to use estimators based
on the average sample range or the average sample standard deviation.

Consider first the estimation of σ based on

Average
Sample Range R =

1

r

r∑
i=1

Ri.

As in the discussion of range-based estimation in gauge R&R on page 66, if pro-
cess output is normally distributed at time period i,

ERi = d2σ

and thus

E

(
Ri

d2

)
= σ .

(The dependence of d2 on n is not being displayed here, since there is no chance
of confusion regarding which “sample size” is under discussion.) So assuming
the process is stable over all r periods, all sample sizes are n, and that a normal
distribution governs the data generation process,

R

d2

is a sensible estimator of σ. Plugging this and x into the standards given control
limits for x provided in display (3.5), one obtains retrospective Shewhart control
limits for x:

UCLx = x+ 3
R

d2
√
n

and LCLx = x− 3
R

d2
√
n
. (3.6)

Further, one can define a constant A2 (depending upon n) by

A2 =
3

d2
√
n
,

and rewrite display (3.6) more compactly as

Retrospective
Control Limits
for x Based on
the Average
Range

UCLx = x+A2R and LCLx = x−A2R . (3.7)

Values of A2 can be found in the table of control chart constants, Table A.5.
As an alternative to estimating σ on the basis of sample ranges, next consider

estimating σ based on the average sample standard deviation

Average
Sample
Standard
Deviation

s =
1

r

r∑
i=1

si .
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When sampling from a normal distribution with standard deviation σ, the sample
standard deviation, s, has a mean that is not quite σ. The ratio of the mean of s
to σ is commonly called c4. (c4 depends upon the sample size and again is tabled
in Table A.5, but it will not be necessary to display the dependence of c4 on n.)
Thus, if one assumes that process output is normally distributed at period i,

E

(
si
c4

)
= σ.

So assuming the process is stable over all r periods, all sample sizes are n, and
that a normal distribution governs the data generation process,

s

c4

is a sensible estimator of σ. Plugging this and x into the standards given control
limits for x provided in display (3.5) one obtains retrospective Shewhart control
limits for x

UCLx = x+ 3
s

c4
√
n

and LCLx = x− 3
s

c4
√
n
. (3.8)

Further, one can define another constant A3 (depending upon n) by

A3 =
3

c4
√
n
,

and rewrite display (3.8) more compactly as

Retrospective
Control Limits
for x Based on
the Average
Standard
Deviation

UCLx = x+A3s and LCLx = x−A3s . (3.9)

Values of A3 can also be found in the table of control chart constants, Table A.5.

Example 24 (Example 23 continued.) Returning to the reaming study, from
Table 3.1

x = 32.1, R = 8.95, and s = 3.76 .

Further, for n = 5 (which was the sample size used in the study), Table A.5 shows
that A2 = .577 and A3 = 1.427. Thus, from formulas (3.7), retrospective control
limits for x based on R are

UCLx = 32.1 + .577(8.95) = 37.26 and LCLx = 32.1 − .577(8.95) = 26.94 .

And from formulas (3.9), retrospective control limits for x based on s are

UCLx = 32.1 + 1.427(3.76) = 37.47 and LCLx = 32.1− 1.427(3.76) = 26.73.

Figure 3.3 on page 118 shows the retrospective x control chart with control limits
based on R. It is clear from this chart (as it would be using the limits based on
s) that the reaming process was not stable over the period of the study. The mean
measured roughness fluctuated far more than one would expect under any stable
process model.
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FIGURE 3.3. Retrospective x chart for surface roughness

x charts are by far the most common charts for monitoring process location, but
there is an alternative worth mentioning. That is to use sample medians in place
of sample means (x̃ in place of x). This alternative has the advantage of requiring
less in the way of computational skills from those who must compute the values
to be plotted, but has the drawback of being somewhat less sensitive to changes
in process location than the x chart.

The basic probability facts that lead to control limits for x̃ concern sampling
from a normal distribution. For a sample of size n from a normal distribution with
mean μ and standard deviation σ, the random variable x̃ has mean μx̃ = μ and
standard deviation σx̃ = κσx = κσ/

√
n for a constant κ (depending upon n).

Table 3.2 gives a few values of κ.

TABLE 3.2. Ratios κ between σx̃ and σx when sampling from a normal distribution
n 3 5 7 9 11 ∞
κ 1.160 1.197 1.214 1.223 1.229

√
π/2

Applying these facts about the probability distribution of x̃ under a normal pro-
cess model and the generic Shewhart control limits given in display (3.2) produces
standards given control limits for x̃

Standards
Given Control
Limits for
Medians

UCLx̃ = μ+ 3κ
σ√
n

and LCLx̃ = μ− 3κ
σ√
n
. (3.10)

Retrospective limits can be made by replacing μ and σ with any sensible
estimates.

Example 25 (Examples 23 and 24 continued.) Returning to the reaming study,
suppose once more that process standards are μ = 30 and σ = 4. Then for
samples of size n = 5 (like those used in the students’ project), control limits for
sample medians are:

UCLx̃ = 30 + 3(1.197)
4√
5
= 36.42
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and

LCLx̃ = 30− 3(1.197)
4√
5
= 23.58 .

Had these limits been applied to the data of Table 3.1 as they were collected, the
need for physical intervention would have been signaled as early as the second
sample.

3.2.2 Charts for Process Spread

Our exposition of control charts for measurements began with the x chart for loca-
tion because it is surely the single most commonly used process-monitoring tool
and because facts from elementary probability can be invoked to quickly motivate
the notion of control limits for x. However, in practice it is often important to deal
first with the issue of consistency of process spread before going on to consider
consistency of process location. After all, such consistency of spread (constancy
of σ) is already implicitly assumed when one sets about to compute control limits
for x. So it is important to now consider charts intended to monitor this aspect of
process behavior. The discussion here will center on charts for ranges and stan-
dard deviations, beginning with the range chart.

In deriving R/d2 as an estimator of σ, we have employed the fact that when
sampling from a normal universe with mean μ and standard deviation σ,

ER = μR = d2σ . (3.11)

The same kind of mathematics that stands behind relationship (3.11) can be used
to also derive a standard deviation to associate with R. (This is a measure of
spread for the probability distribution of R, which is itself a measure of spread
of the sample.) It turns out that the standard deviation of R is proportional to σ.
The constant of proportionality is called d3 and is tabled in Table A.5. (Again, d3
depends on n, but it will not be useful to display that dependence here.) That is,

σR = d3σ . (3.12)

Now the relationships (3.11) and (3.12) together with the generic formula for
Shewhart control limits given in display (3.2) and center line given in display (3.3)
imply that standards given control limits for R are

UCLR = (d2 + 3d3)σ and LCLR = (d2 − 3d3)σ (3.13)

with a center line at

Standards
Given R Chart
Center Line

CLR = d2σ . (3.14)

Further, if one adopts the notations D2 = d2 + 3d3 and D1 = d2 − 3d3, the
relationships (3.13) can be written somewhat more compactly as

Standards
Given R Chart
Control Limits

UCLR = D2σ and LCLR = D1σ . (3.15)
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Values of the constants D1 and D2 may again be found in the table of control
chart constants, Table A.5.

It is instructive to look at the tabled values of D1. There are no tabled values
for sample sizes n ≤ 6. For such sample sizes, the difference d2 − 3d3 turns out
to be negative. Since ranges are nonnegative, a negative lower control limit would
make no sense. So standard practice for n ≤ 6 is to use no lower control limit
for R.

Consider also the implications of the fact that for n > 6, one typically employs
a positive lower control limit for R. This means that it is possible for an R chart to
signal an “out-of-control” situation because R is too small. This fact sometimes
causes students confusion. After all, is it not the goal to produce small variation?
Then why signal an alarm when R is small? The answer to this conundrum lies
in remembering precisely what a control chart is meant to detect, namely, process
instability/change. It is possible for unintended causes to occasionally act on a
process to reduce variability. A lower control limit on an R chart simply allows
one to detect such happy events. If one can detect such a change and identify its
physical source, there is the possibility of making that assignable cause part of
standard practice and the accompanying decrease in σ permanent. So the practice
of using positive lower control limits for R when n is sufficiently big is one that
makes perfectly good practical sense.

Example 26 (Examples 23 through 25 continued.) Consider once more the
reaming example of Dohm, Hong, Hugget, and Knoot from a standards given
perspective with σ = 4. For samples of size n = 5, Table A.5 provides the values
d2 = 2.326 and D2 = 4.918. So using formulas (3.14) and (3.15), standards
given control chart values for R are

UCLR = 4.918(4) = 19.7 and CLR = 2.326(4) = 9.3 .

Figure 3.4 is the corresponding standards given control chart for the students’
ranges. There are three out-of-control points on the chart, the first coming as
early as the second sample. The reaming process did not behave in a manner
consistent with the σ = 4 standard over the period of the study. Samples 2, 11,
and 14 simply have too much internal variability to make consistency of σ at the
value 4 believable. One wonders if perhaps the reamer was changed in the middle
of these samples, with the effect that some holes were very rough, while others
were very smooth.

Retrospective control limits for R come about by plugging an estimate for σ
derived from samples in hand into the formulas (3.14) and (3.15). A particularly
natural choice for an estimator of σ in this context is R/d2. Substituting this into
relationship (3.14), one gets the perfectly obvious retrospective center line for an
R chart,

Retrospective R
Chart
Center Line

CLR = R . (3.16)
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FIGURE 3.4. Standards given R chart for surface roughness

Further, substituting R/d2 into Eq. (3.15) for σ, one gets retrospective control
limits for R

UCLR = D2

(
R

d2

)
and LCLR = D1

(
R

d2

)
. (3.17)

And adopting the notations D4 = D2/d2 and D3 = D1/d2, it is possible to write
the relationships (3.17) more compactly as

Retrospective R
Chart
Control Limits

UCLR = D4R and LCLR = D3R . (3.18)

As is by now to be expected, the constants D3 and D4 are tabled in Table A.5.
And the table contains no values of D3 for n ≤ 6.

Example 27 (Examples 23 through 26 continued.) Recall that the 20 samples
in Table 3.1 have R = 8.95 and note that for n = 5, D4 = 2.114. So from
displays (3.16) and (3.18), a retrospective control chart for the ranges (based on
R/d2 as an estimator of σ) has center line at

CLR = R = 8.95

and upper control limit

UCLR = D4R = 2.114(8.95) = 18.9 .

A plot of this retrospective R chart would look very little different from Fig. 3.4.
The same three ranges plot outside control limits. Not only is a “σ constant at
4” view of the students’ data not plausible, but neither is a “σ constant at some
value” view. There is solid evidence of reaming process instability in the ranges
of Table 3.1. The short-term process variability changes over time.

The R chart is the most common Shewhart control chart for monitoring pro-
cess spread. It requires very little from its user in the way of calculations, is based
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on a statistic that is very easy to understand, and is firmly entrenched in quality
assurance practice dating from the days of Shewhart himself. There is, however,
an alternative to the R chart that tends to detect changes in process spread more
quickly, at the price of increased computational complexity. Where the quantita-
tive sophistication of a user is high and calculations are not a problem, the s chart
is a viable competitor for the R chart.

The fact that (when sampling from a normal distribution)

Es = c4σ , (3.19)

has already proved useful when making retrospective control limits for x based
on s. The same kind of mathematics that leads to relationship (3.19) can be used to
find the standard deviation of s (based on a sample from a normal universe). (This
is a measure of spread for the probability distribution of the random variable s that
is itself a measure of spread of the sample.) It happens that this standard deviation
is a multiple of σ. The multiplier is called c5 and it turns out that c5 =

√
1− c24.

That is,

σs = σ
√
1− c24 = c5σ . (3.20)

Now relationships (3.19) and (3.20) together with the generic Shewhart control
limits and center line specified in displays (3.2) and (3.3) lead immediately to
standards given control limits and center line for an s chart. That is,

UCLs = (c4 + 3c5)σ and LCLs = (c4 − 3c5)σ (3.21)

and

Standards
Given s Chart
Center Line

CLs = c4σ . (3.22)

Further, if one adopts the notations B6 = c4 + 3c5 and B5 = c4 − 3c5, the
relationships (3.21) can be written as

Standards
Given s Chart
Control Limits

UCLs = B6σ and LCLs = B5σ . (3.23)

Values of the constants B5 and B6 may again be found in the table of control chart
constants, Table A.5. For n ≤ 5, there are no values of B5 given in Table A.5
because for such sample sizes, c4 − 3c5 is negative. For n > 5, B5 is positive,
allowing the s chart to provide for detection of a decrease in σ (just as is possible
with an R chart and n > 6).

Retrospective control limits for s can be made by substituting any sensible
estimate of σ into the standards given formulas (3.23) and (3.22). A particularly
natural choice in this context is s/c4. Substituting this into relationship (3.23),
one gets the obvious retrospective center line for an s chart

Retrospective s
Chart Center
Line

CLs = s . (3.24)
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Further, substituting s/c4 into Eqs. (3.23) for σ produces retrospective control
limits for s

UCLs = B6

(
s

c4

)
and LCLs = B5

(
s

c4

)
. (3.25)

And adopting the notations B4 = B6/c4 and B3 = B5/c4, it is possible to write
the relationships (3.25) more compactly as

Retrospective s
Chart Control
Limits

UCLs = B4s and LCLs = B3s . (3.26)

As usual, the constants B3 and B4 are tabled in Table A.5, and the table contains
no values of B3 for n ≤ 5.

Example 28 (Examples 23 through 27 continued.) The 20 samples in Table 3.1
have s = 3.76. For n = 5, B4 = 2.089. So from displays (3.24) and (3.26)
a retrospective control chart for the standard deviations (based on s/c4 as an
estimator of σ) has center line at

CLs = s = 3.76

and upper control limit

UCLs = B4s = 2.089(3.76) = 7.85 .

Figure 3.5 is a retrospective s chart for the sample standard deviations of
Table 3.1. It carries the same message as does a retrospective analysis of the
sample ranges for this example. Not only is a “σ constant at 4” view of the
students’ data not plausible, neither is a “σ constant at some value” view. There
is solid evidence of reaming process instability in the standard deviations of
Table 3.1.
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FIGURE 3.5. Retrospective s chart for surface roughness
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3.2.3 What If n = 1?

To call n observations a “sample” or a “rational subgroup” is to implicitly guar-
antee that they were collected under essentially constant process conditions. The
discussion in Sect. 3.1 has already raised the possibility (particularly in some low-
volume production contexts) that a natural sample or subgroup size can be n = 1.
Sometimes it is simply not safe to assume that even two successive process out-
comes are necessarily generated under the same conditions.

There are two commonly raised questions about control charting for measure-
ments when n = 1. These are:

1. Exactly what should one chart (in particular, should one chart so-called
moving ranges)? and

2. How does one estimate a process standard deviation, σ?

We consider these questions before closing this section on Shewhart charting for
measurement data.

Where rational subgroups are of size n = 1, there is really only one possible
choice for a plotted statistic Q, namely, x. One can “transform” the most natural
measurement to some other scale (e.g., by taking logarithms), but ultimately it is
Q = x that is available for plotting. However, people used to making x and R
chart (or x and s chart) pairs in cases where n > 1 sometimes reason that it might
be useful to supplement an x chart (or individuals chart) with a chart on which
one plots moving ranges

Moving Range
for an ith
Observation, xi

MRi = |xi − xi−1|

The most commonly suggested version of this is where standards given control
limits for x (the limits (3.5) for x when n = 1)

Standards
Given Control
Limits for
Individuals, x

UCLx = μ+ 3σ and LCLx = μ− 3σ (3.27)

are used together with

UCLMR = D2σ (3.28)

(for D2 based on the pseudo-sample size of n = 2). This practice turns out to
produce a very large “false alarm rate” when in fact the process is stable. And
attempts to remedy this by applying control limits looser than (3.27) and (3.28) are
typically not repaid with improved ability to detect process changes over what is
available using only an x chart with limits (3.27). Adding a moving range chart to
an individuals chart just turns out to be a bad idea that should probably disappear
from control charting practice. There is, to our knowledge, only one circumstance
in which adding the moving range chart to an individuals chart makes sense. That
is a case where the departure from stable process behavior that one fears and needs
to detect is one of oscillation in consecutive individuals. There, a moving range
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chart is (not surprisingly) more effective than the individuals chart at “seeing” the
nonstandard process behavior. To be absolutely explicit, in cases where n = 1,

Chart Only x
When n = 1

the best thing to do about control charting is typically to use only an individuals
chart with corresponding control limits (3.27).

Consider then the second question above. When n = 1, there are no sample
ranges or standard deviations to use in estimating σ. In fact, there is no really
honest way to estimate a process standard deviation unless one has a sample or
samples with n ≥ 2. But some “dishonest” methods are less dishonest than others,
and the best known method (the least dishonest method) is based on an average
of moving ranges of successive observations. (Notice that this is not a matter of
process monitoring based on moving ranges, but rather using moving ranges to
estimate process standard deviation.)

The rationale for using moving ranges of successive observations in estimating
σ is this. If process conditions can change observation to observation, observa-
tions will vary not only because σ 	= 0, but because the process mean changes.
However, it is not unreasonable to expect the variability in pairs of successive
observations to be less affected by mean changes than the variability of any other
type of group of observations that could be made up. It is thus reasonable to use
moving ranges to make an estimate of process standard deviation. While such an
estimate is potentially inflated by variation in the process mean, it can be expected
to be less so than any other estimate one might make.

The exact form of estimator of σ we will use (based on samples of size n = 1) is

Moving Range-
Based Estimate
of σσ̂ =

MR

d2
(3.29)

where d2 is for “sample size” 2 (as there are two observations represented in each
moving range). This is a conservative estimator, as it will tend to overestimate σ
when μ is not constant. But it is the best one available.

Example 29 A Numerical Example. Consider the eight successive observations
in the table below and the corresponding 7 moving ranges.

Sample 1 2 3 4 5 6 7 8
x 5 3 9 10 17 4 6 2

MR 2 6 1 7 13 2 4

The values 5, 3, 9, 10, 17, 4, 6, and 2 certainly vary because σ 	= 0. They may
vary beyond what can be attributed to inherent process short-term variability if
μ is not constant. That is, the 7 moving ranges should not be thought of as hon-
est sample ranges, but as potentially overrepresenting σ. Nevertheless, the best
available estimate of σ in this n = 1 context is from formula (3.29):

σ̂ =
MR

d2
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=
(2 + 6 + 1 + 7 + 13 + 2 + 4) /7

1.128
= 4.43 .

Section 3.2 Exercises

1. Some specialized containers are produced by a process that runs 8 hours
per day. Nine containers are sampled hourly, each day for five days. The
distance from the bottom of the container to the container’s handle is of in-
terest. The target value for this dimension is 4 cm, and the process standard
deviation for this quality dimension is .1 cm . (This is known from extensive
experience with the process.)

(a) What is a subgroup in this context? What is the subgroup size? How
many subgroups make up the entire study?

(b) Give control limits for process monitoring when subgroup averages
are plotted versus time.

(c) In addition to the chart in (b), a control chart for short-term process
variation is to be made. Suppose that only subgroup averages and the
smallest and largest values in a subgroup are available for analysis.
What subgroup statistic can be used to do the charting? Give appro-
priate control limits and center line for the chart.

(d) Are the limits in (b) and (c) standards given or retrospective limits?
Why?

(e) Suppose both the charts in (b) and (c) indicate that the process is
stable. Is it then possible that any plotted subgroup mean is outside
the limits from (b)? Is it possible that there are plotted values on the
second chart outside control limits from (c)? Explain.

2. Continue in the context of problem 1, except now assume that no target val-
ues for the critical dimension or process standard deviation have previously
been established. The average of the r = 40 subgroup averages was 3.9 cm,
the average of the subgroup ranges was .56 cm, and the average of the 40
subgroup standard deviations was .48 cm.

(a) Find control limits and center line to assess the consistency of “hourly
variation” quantified as subgroup ranges.

(b) Find control limits and center line to assess the consistency of process
aim hour to hour based on subgroup averages. (Estimate the “within-
hour” standard deviation based on subgroup ranges.)

(c) Repeat (a), except now use the subgroup standard deviations instead
of ranges.
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(d) Repeat (b), except now use the subgroup standard deviations to esti-
mate the “within-hour” standard deviation.

(e) Suppose that none of the charts in (a) to (d) suggest lack of process
stability (so that it makes sense to talk about a single process mean and
single process standard deviation). Give a valid estimate of the pro-
cess average distance from the container bottom to the handle. Give
two valid estimates of the standard deviation of the distance from the
container bottom to the handle. (Provide both the formulas you use
and numerical answers.)

3. Below are sample means and standard deviations from ten samples, each of
size n = 4.

Sample 1 2 3 4 5 6 7 8 9 10 Sum
x̄ 7.0 7.9 7.1 7.7 5.2 5.4 6.4 6.5 5.8 6.8 65.8
s 1.5 3.1 3.4 1.1 1.4 1.0 2.5 .7 1.4 1.1 17.2

(a) Suppose process standards μ = 6.0 and σ = 1.5 are provided. Find
the standards given center line and control limits for an x chart. If
these limits had been applied to the values in the table as they were
collected, would there have been out-of-control signals?

(b) Using the standards in (a), find the standards given center line and
control limits for an s chart. If these limits had been applied to the
values in the table as they were collected, would there have been out-
of-control signals?

(c) Suppose that the standards in (a) were not available. Make retrospec-
tive x and s charts, and assess whether there is evidence of process
instability in the values in the table.

(d) What is an estimate of σ based on the average sample standard dev-
iation? Use this estimate and estimate the mean of a range for an
additional sample of size n = 6.

4. Transmission Housings. Apple, Hammerand, Nelson, and Seow analyzed
data taken from a set of “series XX” transmission housings. One critical
dimension they examined was the diameter for a particular hole on the side
cover of the housing. A total of 35 consecutively produced housings were
examined and the corresponding x = hole diameter measured and recorded
(in inches). Specifications for the diameter were 3.7814 ± .002 in. Below
are the first 10 recorded diameters. Summary statistics for all 35 housings
are

∑
x = 132.319 in and

∑
MR = .02472 in.

Housing 1 2 3 4 5 6 7 8 9 10

x 3.7804 3.7803 3.7806 3.7811 3.7812 3.7809 3.7816 3.7814 3.7809 3.7814

(a) What is a subgroup here and what is the subgroup size?
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(b) The 35 consecutive hole diameters produce how many moving
ranges?

(c) Compute the first two moving ranges.

(d) Make an estimate of σ. Use your estimate and the sample mean diame-
ter to replace process parameters in the limits (3.27). Are the resulting
limits for individuals standards given or retrospective limits? Why?
Apply your limits to the first ten hole diameters. Do these values pro-
vide evidence of process instability?

3.3 Shewhart Charts for Counts/“Attributes Data”

The control charts for measurements introduced in Sect. 3.2 are the most impor-
tant of the Shewhart control charts. Where it is at all possible to make measure-
ments, they will almost always provide more information on process behavior
than will a corresponding number of qualitative observations. However, there are
occasions where only attributes data can be collected. So this section presents
Shewhart control charting methods for such cases. The section considers charting
counts and corresponding rates of occurrence for nonconforming items (or defec-
tives) and for nonconformities (or defects). The case of so-called np charts and
p charts for “percent nonconforming” (or percent defective) contexts is treated
first. Then follows a discussion of c and u charts for “nonconformities per unit”
(or defects per unit) situations.

3.3.1 Charts for Fraction Nonconforming

Consider now a situation where one periodically samples n items or outcomes
from a process and (making careful use of operational definitions) classifies each
one as “nonconforming” or “conforming.” (The old terminology for these pos-
sibilities is “defective” and “nondefective.” The newer terminology is used in
recognition of the fact that some kinds of failures to meet inspection criteria do
not render a product functionally deficient. There is also reluctance in today’s
litigious society to ever admit that anything produced by an organization could
possibly be “defective.”)

Then let

X = the number nonconforming in a sample of n items or outcomes (3.30)

and

p̂ =
X

n
= the fraction nonconforming in a sample of n items or outcomes .

(3.31)
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Shewhart np charts are for the plotting of Q = X , and p charts are for the
monitoring of Q = p̂. Both are based on the same probability model for the
variable X . (The fact that p̂ is simply X divided by n implies that control limits
for p̂ should simply be those forX , divided by n.) Under stable process conditions
for the creation of the n items or outcomes in a sample (under the assumption
that the sample in question is a rational subgroup), it is reasonable to model the
variable X with a binomial distribution for n “trials” and “success probability,”
p, equal to the process propensity for producing nonconforming outcomes.

Elementary properties of the binomial distribution can be invoked to conclude
that

μX = EX = np and σX =
√
VarX =

√
np(1− p). (3.32)

Then the mean and standard deviation in display (3.32) and the generic Shewhart
control limits and center line specified in displays (3.2) and (3.3) lead to standards
given control limits for both X and p̂. That is,

Standards
Given np Chart
Center Line

CLX = np (3.33)

while

Standards
Given np Chart
Control Limits

UCLX = np+ 3
√

np(1− p) and LCLX = np− 3
√

np(1− p). (3.34)

And dividing the expressions (3.33) and (3.34) through by n, one arrives at stan-
dards given values for p̂,

Standards
Given p Chart
Center Line

CLp̂ = p, (3.35)

Standards
Given p Chart
Control Limits

UCLp̂ = p+ 3

√
p(1− p)

n
and LCLp̂ = p− 3

√
p(1− p)

n
.

(3.36)

Example 30 Monitoring the Fraction Nonconforming in a Pelletizing Process.
Kaminiski, Rasavaghn, Smith, and Weitekamper worked with a manufacturer of
hexamine pellets. Their work covered a time period of several days of production.
Early efforts with the pelletizing machine (using shop standard operating proce-
dures) produced a standard fraction nonconforming of approximately p = .60.
On the final day of the study, after adjusting the “mix” of the powder being fed
into the machine, the counts and proportions of nonconforming pellets in samples
of size n = 30 portrayed in Table 3.3 were collected.

From Eqs. (3.34), standards given control limits for the numbers of noncon-
forming pellets in the samples represented by Table 3.3 are

UCLX = 30(.6) + 3
√
30(.6)(.4) = 26.05
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TABLE 3.3. Counts and fractions of nonconforming pellets in samples of size 30
Sample X p̂ Sample X p̂

1 14 .47 14 9 .30
2 20 .67 15 16 .53
3 17 .57 16 16 .53
4 13 .43 17 15 .50
5 12 .40 18 11 .37
6 12 .40 19 17 .57
7 14 .47 20 8 .27
8 15 .50 21 16 .53
9 19 .63 22 13 .43

10 21 .70 23 16 .53
11 18 .60 24 15 .50
12 14 .47 25 13 .43
13 13 .43

and

LCLX = 30(.6)− 3
√
30(.6)(.4) = 9.95,

and from display (3.33) a center line at

CLX = 30(.6) = 18

is in order. Figure 3.6 is the standards given np control chart for the data of
Table 3.3.

It is evident from Fig. 3.6 that the pelletizing process was not stable at the stan-
dard value of p = .60 on the final day of the students’ study. Notice that there are
two out-of-control points on the chart (and most of the plotted points run below
the center line established on the basis of the standard value of p). The message
that was delivered at samples 14 and 20 (if not even before, on the basis of the
plotted values running consistently below 18) was one of clear process improve-
ment, presumably traceable to the change in powder mix.

Example 30 nicely illustrates the fact that a positive lower control limit on an np
chart or on a p chart makes perfectly good sense in terms of allowing identification
of unexpectedly good process output. Remember that the objective of Shewhart
charting is to detect process instability/change. On occasion, that change can be
for the good.

Retrospective control limits for X or p̂ require that one take the data in hand
and produce a provisional estimate of (a supposedly constant) p for plugging into
formulas (3.33) through (3.36) in place of p. If samples (of possibly different
sizes) are available from r different periods, then a most natural estimator of a
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FIGURE 3.6. Standards given np chart for counts of nonconforming pellets

common p is the pooled sample fraction nonconforming

Pooled
Fraction
Nonconforming

p̂pooled =

∑r
i=1 nip̂i∑r
i=1 ni

=

∑r
i=1 Xi∑r
i=1 ni

=
total nonconforming

total of the sample sizes
. (3.37)

Example 31 (Example 30 continued.) Returning again to the pelletizing ex-
ample, the counts of nonconforming pellets in Table 3.3 total to 367. There
were 30(25) = 750 pellets inspected, so from relationship (3.37), p̂pooled =
367/750 = .4893. Substituting this into Eqs. (3.33) and (3.34) in place of p, one
arrives at retrospective values

CLX = 30(.4893) = 14.68 ,

UCLX = 30(.4893) + 3
√
30(.4893)(.5107) = 22.89 ,

and

LCLX = 30(.4893)− 3
√
30(.4893)(.5107) = 6.47 .

Figure 3.7 is a retrospective np chart made using these values and the data of
Table 3.3. The figure shows that although it is not plausible that the pelletizing
process was stable at the standard value of p (.60) on the final day of the students’
study, it is plausible that the process was stable at some value of p, and .4893 is
a reasonable guess at that value.

A few words need to be said about cases where sample sizes vary in a fraction
nonconforming context. In such situations, it makes much more sense to plot p̂
values than it does to plot Xs based on differing sample sizes. Then at least, one
has a constant center line (given by expression (3.35)). Of course, the control lim-
its represented in display (3.36) will vary with the sample size. Equations (3.36)
show that the larger the sample size, the tighter will be the control limits about
the central value p. This is perfectly sensible. The larger the sample, the more



132 Chapter 3. Process Monitoring

10 15 205
0

25

10

20

Sample

N
um

be
r 

N
on

co
nf

or
m

in
g

CLX

LCLX

UCLX

FIGURE 3.7. Retrospective np chart for counts of nonconforming pellets

information about the current process propensity for producing nonconforming
outcomes, and the less variation one should allow from the central value before
declaring that there is evidence of process instability.

3.3.2 Charts for Mean Nonconformities per Unit

A second kind of situation leading to count and rate data (that is fundamentally
different from the fraction nonconforming scenario) is the so-called “mean non-
conformances/nonconformities per unit” (“or mean defects per unit”) situation. In
such a context, one periodically selects k inspection units from a process output
and counts

X = the total number of nonconformities on the k units (3.38)

(older terminology for nonconformities is “defects” or “flaws”). In cases where k
is always equal to 1, the count X itself is plotted, and the resulting chart is called
a c chart. Where k varies and/or is not equal to 1, it is common to plot instead

û =
X

k
= the sample mean nonconformities per unit (3.39)

and the resulting chart is called a u chart.
Control limits for c and u charts are based on the Poisson process model. If one

assumes that under stable process conditions, the generation of nonconformities
can be described by a Poisson process with (constant) rate parameter λ, the num-
ber of defects on one inspection unit has a Poisson distribution with mean λ. And
X , the number of defects on k inspection units, is a Poisson random variable with
mean kλ. Thus, under stable process conditions,

μX = EX = kλ and σX =
√
VarX =

√
kλ. (3.40)

So using facts (3.40) and the generic Shewhart control limits and center line spec-
ified in displays (3.2) and (3.3), in the c chart situation (k ≡ 1), standards given
values are

Standards
Given c Chart
Center Line

CLX = λ , (3.41)
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and

Standards
Given c Chart
Control Limits

UCLX = λ+ 3
√
λ and LCLX = λ− 3

√
λ . (3.42)

It follows from the definition of û in display (3.39) and relationships (3.40) that

μû = Eû = λ and σû =
√
Var û =

√
λ

k
. (3.43)

Then using again the generic Shewhart control limits and center line and applying
the facts (3.43), standards given values for a u chart are

Standards
Given u Chart
Center Line

CLû = λ , (3.44)

and

Standards
Given u Chart
Control Limits

UCLû = λ+ 3

√
λ

k
and LCLû = λ− 3

√
λ

k
. (3.45)

Notice that in the case k = 1, the u chart control limits reduce (as they should) to
the c chart limits.

Retrospective control limits for X or û require that one take the data in hand
and produce a provisional estimate of (a supposedly constant) λ for plugging into
formulas (3.41), (3.42), (3.44), and (3.45) in place of λ. If data from r different
periods are available, then a most natural estimator of a common λ is the pooled
mean nonconformities per unit

Pooled Mean
Nonconformities
Per Unit

λ̂pooled =

∑r
i=1 kiûi∑r
i=1 ki

=

∑r
i=1 Xi∑r
i=1 ki

=
total nonconformities
total units inspected

. (3.46)

Example 32 Monitoring the Number of Leaks in Assembled Radiators. The
article “Quality Control Proves Itself in Assembly,” by Wilbur Burns (reprinted
from Industrial Quality Control) in Volume 2, Number 1 of Quality Engineering,
contains a classic set of data on the numbers of leaks found in samples of auto
radiators at final assembly. These are reproduced in Table 3.4.

This is a nonconformities per unit situation. Each unit (each radiator) presents
the opportunity for the occurrence of any number of leaks, several units are being
inspected, and the total number of leaks on those units is being counted. The leaks
per radiator are calculated as in display (3.39), and if one wishes to investigate
the statistical evidence for process instability, a u chart is in order.

The article gives no shop standard value for λ, so consider a retrospective anal-
ysis of the data in Table 3.4. There are 116 total leaks represented in Table 3.4,
and 841 radiators were tested. So from relationship (3.46),

λ̂pooled =
116

841
= .138,
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TABLE 3.4. Counts and occurrence rates of outlet leaks found in 18 daily samples of
radiators

Day X (leaks) k (radiators) û (leaks/radiator)
1 14 39 .36
2 4 45 .09
3 5 46 .11
4 13 48 .27
5 6 40 .15
6 2 58 .03
7 4 50 .08
8 11 50 .22
9 8 50 .16
10 10 50 .20
11 3 32 .09
12 11 50 .22
13 1 33 .03
14 3 50 .06
15 6 50 .12
16 8 50 .16
17 5 50 .10
18 2 50 .04

and a center line for a retrospective u chart for these data can be drawn at this
value. From Eqs. (3.45) (using .138 for λ), the control limits change with k, larger
k leading to tighter limits about the center line. As an example of using Eq. (3.45),
note that for those û values based on tests of k = 50 radiators,

UCLû = .138 + 3

√
.138

50
= .296 .
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FIGURE 3.8. Retrospective u chart for rates of radiator outlet leaks

On the other hand, since the formula (3.45) for LCLû produces a negative value
for the intrinsically nonnegative û, no lower control limit would be used for û
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based on 50 radiators. (As a matter of fact, no k in Table 3.4 is large enough to
lead to the use of a lower control limit.)

Figure 3.8 is a retrospective u chart for the radiator leak data. It shows that
the initial day’s experience does not “fit” with the subsequent 17 days. There is
evidence of process change/instability, and appearances are that things improved
in the radiator assembly process after the first day.

This section opened with the disclaimer that where possible, the charts for mea-
surements introduced in the previous section should be used in preference to the
ones presented here. That advice bears repeating. The two examples in this sec-
tion are reasonably convincing, but they are so in part because the relevant frac-
tion nonconforming and mean nonconformities per unit are fairly large. Modern
business pressures make standard defect rates in the “parts per million” range
common. And there is really no way to effectively monitor processes that are sup-
posed to have such performance with attributes control charts (sample sizes in
the millions would be required for effective detection of even doubling of defect
rates).

Section 3.3 Exercises

1. In a packaging department of a food processor, types of packaging “imper-
fections” are carefully defined and include creases, holes, printing smudges,
and broken seals. 30 packages each hour are sampled, and X = the total
number of imperfections identified on the 30 packages is recorded. On aver-
age about .05 imperfections per package have been seen in the past. Below
are data from 7 hours one day in this department.

Hour 1 2 3 4 5 6 7
X 1 0 2 0 1 1 3

(a) Are the data above variables or attributes data? Why?

(b) What distribution (fully specify it, giving the value of any parame-
ter(s)) can be used to model the number of imperfections observed on
a single package?

(c) What is the expected total number of imperfections observed on a set
of 30 boxes? What probability distribution can be used to model this
variable?

(d) What is the standard deviation of the total number of imperfections
on 30 boxes?

(e) Find the standards given control limits and center line for a chart based
on the data above, where the plotted statistic will be X/30. Do any
values of X/30 plot outside your control limits?

(f) What is the name of the type of chart you made in (e)?
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(g) Suppose no standard is given for the rate of imperfections. Using
values above, find appropriate retrospective control limits and center
line for plotting X/30.

2. Consider a variant of problem 1 where any package with at least one imp-
erfection (a crease, a hole, a smudge, or a broken seal) is considered to
be nonconforming. Reinterpret the values X in the table of problem 1 as
counts of nonconforming packages in samples of size 30. Suppose that in
the past .05 (5%) of packages have been nonconforming.

(a) Does this variant of problem 1 involve variables data or attributes
data? Why?

(b) What probability distribution (fully specify it, giving the value of any
parameter(s)) can be used to model the number of nonconforming
packages in a sample of 30?

(c) What is the mean number of nonconforming packages in a sample of
30?

(d) What is the standard deviation of the number of nonconforming pack-
ages in a sample of 30?

(e) Find the standards given control limits and center line for monitoring
the proportion of nonconforming packages in samples of size 30.

(f) Repeat (e) for monitoring the number of nonconforming packages in
samples of size 30.

(g) Suppose no standard is given for the fraction of nonconforming pack-
ages. Based on the data in the table above, find appropriate retrospec-
tive control limits and center line for an np chart.

3.4 Patterns on Shewhart Charts and Special
Alarm Rules

To this point all that we have discussed doing with values Q plotted on a Shewhart
chart is to compare them to control limits one at a time. If that were the whole
story, there would be little reason to actually make the plots. Simple numerical
comparisons would suffice. But the plots offer the possibility of seeing other imp-
ortant things in process-monitoring data besides only where points plot outside
control limits. And it is standard control charting practice to examine Shewhart
control charts for these other kinds of indications of process change. The purpose
of this section is to discuss some types of revealing patterns that occasionally
show up on control charts (providing both jargon for naming them and discussion
of the kinds of physical phenomena that can stand behind them) and to provide
some sets of rules that can be applied to identify them.
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Under stable process conditions (leading to Qs that can be modeled as inde-
pendent and identically distributed), one expects to see a sequence of plotted val-
ues that

1. are without obvious pattern or trend,

2. only on rare occasions fall outside control limits,

3. tend to cluster about the center line, about equally often above and below it,

4. on occasion approach the control limits.

(The tacit assumption in most applications is that the stable process distribution
of Q is reasonably “mound shaped” and centered at the chart’s center line.) When
something other than this kind of “random scatter” picture shows up on a control
chart, it can be possible to get clues to what kinds of physical causes are acting
on the process that can in turn be used in process-improvement efforts.

On occasion one notices systematic variation/cycles, regular “up then back
down again” patterns on a Shewhart chart like those pictured in Fig. 3.9. This
suggests that there are important variables acting on the process whose effects are
periodic. Identification of the period of variation can give strong hints where to
start looking for physical causes. Examples of factors that can produce cycles on a
Shewhart chart are seasonal and diurnal variables like ambient temperature. And
sometimes regular rotation of fixtures or gages or shift changes in operators run-
ning equipment or making measurements can stand behind systematic variation.
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FIGURE 3.9. A plot of factory ambient temperature vs. time exhibiting systematic varia-
tion or cycles

While systematic variation is a variation of the “second kind” on the right side
of Eq. (3.1), it may not always be economically feasible to eliminate it. For exa-
mple, in some applications it may be preferable to live with effects of ambient
temperature rather than try to control the environment in which a process operates.
But recognition of its presence at least allows one to intelligently consider options
regarding remedial measures and to mentally remove that kind of variation from
the baseline against which one looks for the effects of other special causes.
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Instability is a word that has traditionally been applied to patterns on control
charts where many points plot near or beyond control limits. This text has used
(and will continue to use) the word to refer to physical changes in a process that
lead to individual points plotting outside of control limits. But this traditional
usage refers more to a pattern on the chart and specifically to one where points
outside of control limits are very frequent. Figure 3.10 contrasts variation on a
Shewhart chart that one expects to see, to a pattern of instability. Standing behind
such a pattern can be more or less erratic and unexpected causes, like different
lots of raw material with different physical properties mixed as process input.
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FIGURE 3.10. Two x charts, the second of which shows “instability”

Another important possible cause of many points at or beyond control limits is
that of unwise operator overadjustment of equipment. Control charting is useful
both because it signals the existence of conditions that deserve physical interven-
tion and because it tells one to leave equipment untouched when it seems to be
operating as consistently as possible. When that “hands-off” advice is not fol-
lowed and humans tinker with physically stable processes, reacting to every small
appearance of variation, the end result is not to decrease process variation, but
rather to increase it. And such fiddling can turn a process that would otherwise be
generating plotted values inside control limits into one that is regularly producing
Qs near or beyond control limits.

Changes in level are sometimes seen on control charts, where the average plot-
ted value seems to move decisively up or down. The change can be sudden as pic-
tured on Fig. 3.11 and traceable to some basic change at the time of the shift. The
introduction of new equipment or a clear change in the quality of a raw material
can produce such a sudden change in level.

A change in level can also be like that pictured in Fig. 3.12, more gradual and
attributable to an important cause starting to act at the beginning of the change
in level, but so to speak “gathering steam” as time goes on until its full effect is
felt. For example, effective worker training in machine operation and measuring
techniques could well begin a gradual decrease in level on an R chart that over
time and with practice will reach its full potential for reducing observed variation.
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FIGURE 3.11. Run chart with sudden change in part hardness level

Where a gradual change in level does not end with stabilization around a new
mean, but would go on unabated in the absence of physical intervention, it is tra-
ditional to say that there is a trend on a control chart. Figure 3.13 on page 140
pictures such a trend on a run chart. Many physical causes acting on manufactur-
ing processes will produce trends if they remain unaddressed. An example is tool
wear in machining processes. As a cutting tool wears, the parts being machined
will tend to grow larger. If adjustments are not made and the tool is not periodi-
cally changed, machined dimensions of parts will eventually be so far from ideal
as to make the parts practically unusable.
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FIGURE 3.12. Run chart with gradual change in part hardness level

There is another phenomenon that occasionally produces strange-looking pat-
terns on Shewhart control charts. This is something the early users of control
charts called the occurrence of mixtures. These are the combination of two or
more distinct patterns of variation (in either a plotted statistic Q or in an under-
lying distribution of individual observations leading to Q) that get put together
on a single control chart. In “stable” mixtures, the proportions of the component
patterns remain relatively constant over time, while in “unstable” versions the
proportions vary with time.
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FIGURE 3.13. A run chart with an unabated trend

Where an underlying distribution of observations has two or more radically
different components, a plotted statistic Q can be either unexpectedly variable or
surprisingly consistent. Consider first the phenomenon of unexpectedly large vari-
ation in Q traceable to a mixture phenomenon. Where blunders like incomplete or
omitted manufacturing operations or equipment malfunctions lead to occasional
wild individual observations and correspondingly wild values of Q, the termi-
nology freaks is often used. The resulting impact of mixing normal and aber-
rant observations can be as pictured in Fig. 3.14. Where individual observations
or values of Q of a given magnitude tend to occur together in time as pictured
in Fig. 3.15, the terminology grouping or bunching is common. Different work
methods employed by different operators or changes in the calibration of a mea-
surement instrument can be responsible for grouping or bunching. So, how mix-
ture phenomena sometimes lead to unexpectedly large variation on a control chart
is fairly obvious.
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FIGURE 3.14. An example of a pattern that could be described as exhibiting “freaks” (and
the corresponding histogram)
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FIGURE 3.15. A run chart showing grouping or bunching

How a mixture can lead to unexpectedly small variation in a plotted statistic is
more subtle, but very important. It involves a phenomenon sometimes known in
quality assurance circles as stratification. If an underlying distribution of obser-

Stratificationvations has radically different components, each with small associated variation,
and these components are (wittingly or unwittingly) sampled in a systematic fash-
ion, a series of plotted values Q with unbelievably small variation can result. One
might, for example, be sampling different raw material streams or the output of
different machines and unthinkingly calling the resulting values a single “sample”
(in violation, by the way, of the notion of rational subgrouping). The result can be
a Shewhart control chart like the one in Fig. 3.16.
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FIGURE 3.16. Unexpectedly small variation on an x chart, potentially due to stratification

To see how stratification can lead to surprisingly small variation in Q, consider
the case of a p chart and a hypothetical situation where a 10-head machine has
one completely bad head and 9 perfect ones. If the items from this machine are
taken off the heads in sequence and placed into a production stream, “samples” of
10 consecutive items will have fractions defective that are absolutely constant at
p̂ = .10. A p chart for the process will look unbelievably stable about a center line
at .10. (A similar hypothetical example involving x and R charts can be invented
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by thinking of 9 of the 10 heads as turning out widget diameters of essentially
exactly 5.000, while the tenth turns out widget diameters of essentially exactly
7.000. Ranges of “samples” of 10 consecutive parts will be unbelievably stable at
2.000, and means will be unbelievably stable at 5.200.)

So, too much consistency on a control chart is not a cause for rejoicing and rel-
axation. When plotted points hug a center line and never approach control limits,
something is not as it should be. There may be a simple blunder in the computa-
tion of the control limits, or the intrinsic variation in the process may be grossly
overestimated. (For example, an excessive standard value for σ produces x and R
chart control limits that are too wide and plotted points that never approach them
under stable conditions.) And on occasion stratification may be present. When it
is and it goes unrecognized, one will never be in a position to discover and elim-
inate the cause(s) of the differences between the components of the underlying
distribution of observations. In the 10-head machine example, someone naively
happy with the “p̂ constant at .10” phenomenon will never be in a position to dis-
cover that the one head is defective and remedy it. So, a chart that looks too good
to be true is as much a cause for physical investigation as is one producing points
outside control limits.

Once one recognizes the possibility of looking for patterns on a Shewhart con-
trol chart, the question becomes exactly what to consider to be an occurrence of a
pattern. This is important for two reasons. In the first place, there is the matter of
consistency within an organization. If control charts are going to be used by more
than one person, those people need a common set of ground rules for interpreting
the charts that they together use. Second, without a fair amount of theoretical exp-
erience in probability and/or practical experience in using control charts, people
tend to want to “see” patterns that are in actuality very easily produced by a stable
process.

Since the simple “one point outside control limits” rule is blind to the interest-
ing kinds of patterns discussed here and there is a need for some standardization of
the criteria used to judge whether a pattern is present, organizations often develop
sets of “special checks for unnatural patterns” for application to Shewhart control
charts. These are usually based on segmenting the set of possible Qs into various
zones defined in terms of multiples of σQ above and below the central value μQ.
Figure 3.17 shows a generic Shewhart chart with typical zones marked on it.

The most famous set of special checks is the set of “Western Electric alarm
rules” given in Table 3.5. They are discussed extensively in the Statistical Quality
Control Handbook published originally by Western Electric and later by AT&T.
Two other possible sets of rules, one taken from A.J. Duncan’s excellent Quality
Control and Industrial Statistics and the other published by Lloyd Nelson in the
Journal of Quality Technology in 1984, are given in Tables 3.6 and 3.7, respec-
tively. The reader should be able to see in these sets of rules attempts to provide
operational definitions for the kinds of patterns discussed in this section. It is not
at all obvious which set should be considered best or even what are rational crite-
ria for comparing them and the many other sets that have been suggested. But the
motivation behind them should be clear.
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FIGURE 3.17. Generic Shewhart control chart with “1-sigma,” “2-sigma,” and “3-sigma”
zones marked on it

TABLE 3.5. Western electric alarm rules
A single point outside 3-sigma control limits
2 out of any 3 consecutive points outside 2-sigma limits on one side of the center
4 out of any 5 consecutive points outside 1-sigma limits on one side of the center
8 consecutive points on one side of the center

TABLE 3.6. Alarm rules from Duncan’s Quality Control and Engineering Statistics
A single point outside 3-sigma control limits
A run of 7 consecutive points up and down or on one side of the center
2 consecutive points outside 2-sigma limits
4 consecutive points outside 1-sigma limits
“Obvious” cycles up and down

TABLE 3.7. Nelson’s alarm rules from the Journal of Quality Technology

A single point outside 3-sigma control limits
9 consecutive points on one side of the center
6 consecutive points increasing or decreasing
14 consecutive points alternating up and down
2 out of any 3 consecutive points outside 2-sigma limits on one side of the center
4 out of any 5 consecutive points outside 1-sigma limits on one side of the center
15 consecutive points inside 1-sigma limits
8 consecutive points with none inside 1-sigma limits
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Section 3.4 Exercises

1. When a process is stable, what do you expect to see on a control chart for a
statistic Q?

2. What motivates the use of multiple rules for identifying out-of-control
situations?

3. When “extra alarm rules” (beyond the “single point outside 3-sigma control
limits” rule) are used in process monitoring, do you expect the frequency of
false alarms to decrease, stay the same, or increase? (A “false alarm” occurs
when the chart signals, but no physical special cause can be identified.)

3.5 The Average Run Length Concept

Realizing that alternative schemes for issuing out-of-control signals based on
process-monitoring data are possible, the need arises to quantify what a given
scheme can be expected to do. For example, to choose intelligently between the
sets of alarm rules in Tables 3.5 through 3.7, one needs some way of predicting
behavior of the alternative monitoring schemes. The most effective tool avail-
able for making this kind of prediction is the “average run length” (ARL) notion.
This section introduces the concept and illustrates its use in some very simple
situations.

Consider a context where based on values of Q plotted at periods 1, 2, 3, . . . ,
one will monitor a process until an out-of-control signal is issued. Let

T = the period at which the process-monitoring scheme first signals. (3.47)

T is a random variable and is called the run length for the scheme. The prob-
ability distribution of T is called the run length distribution, and the mean or
average value of this distribution is called the average run length (ARL) for the
process-monitoring scheme. That is,

ARL = ET = μT . (3.48)

It is desirable that a process-monitoring scheme has a large ARL when the process
is stable at standard values for process parameters and small ARLs under other
conditions.

Finding formulas and numerical values for ARLs is usually not elementary.
Some advanced probability and numerical analysis are often required. But there
is one kind of circumstance where an explicit formula for ARLs is possible and
we can illustrate the meaning and usefulness of the ARL concept in elementary
terms. That is the situation where

1. the process-monitoring scheme employs only the single alarm rule “signal
The first time that a point Q plots outside control limits,” and
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2. it is sensible to think of the process as physically stable (though perhaps not
at standard values for process parameters).

Under condition 2, the values Q1, Q2, Q3, . . . can be modeled as independent
random variables with the same individual distribution, and the notation

Probability of
an Immediate
Alarm

q = P [Q1 plots outside control limits] (3.49)

will prove useful.
In this simple case, the random variable T has a geometric distribution with

probability function

f(t) =

{
q(1 − q)t−1 for t = 1, 2, 3, . . .
0 otherwise

It then follows from the properties of the geometric distribution and relationship
(3.48) that

ARL for a “One
Point Outside
Control
Limits” Scheme

ARL = ET =
1

q
. (3.50)

Example 33 Some ARLs for Shewhart x Charts. To illustrate the meaning of
relationship (3.50), consider finding ARLs for a standards given Shewhart x chart
based on samples of size n = 5. Note that if standard values for the process mean
and standard deviation are, respectively, μ and σ, the relevant control limits are

UCLx = μ+ 3
σ√
5

and LCLx = μ− 3
σ√
5
.

Thus, from Eq. (3.49)

q = P

[
x < μ− 3

σ√
5

or x > μ+ 3
σ√
5

]
.

First suppose that “all is well,” and the process is stable at standard values of
the process parameters. Then μx = μ and σx = σ/

√
5 and if the process output

is normal, so also is the random variable x. Thus

q = 1− P

[
μ− 3

σ√
5
< x < μ+ 3

σ√
5

]
= 1− P

[
−3 <

x− μ

σ/
√
5
< 3

]

can be evaluated using the fact that

Z =
x− μ

σ/
√
5

is a standard normal random variable. Using a normal table with an additional
significant digit beyond the one in this text, it is possible to establish that

q = 1− P [−3 < Z < 3] = .0027
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to four digits. Therefore, from relationship (3.50) it follows that

ARL =
1

.0027
= 370 .

The interpretation of this is that when all is OK (i.e., the process is stable and par-
ameters are at their standard values), the x chart will issue (false alarm) signals
on average only once every 370 plotted points.

In contrast to the situation where process parameters are at their standard
values, consider next the possibility that the process standard deviation is at its
standard value, but the process mean is one standard deviation above its standard
value. In these circumstances one still has σx = σ/

√
5, but now μx = μ + σ

(μ and σ are still the standard values of, respectively, the process mean and stan-
dard deviation). Then,

q = 1− P

[
μ− 3

σ√
5
< x < μ+ 3

σ√
5

]
,

= 1− P

[
μ− 3σ/

√
5− (μ+ σ)

σ/
√
5

<
x− (μ+ σ)

σ/
√
5

<
μ+ 3σ/

√
5− (μ+ σ)

σ/
√
5

]
,

= 1− P [−5.24 < Z < .76] ,

= .2236 .

Figure 3.18 illustrates the calculation being done here and shows the roughly
22% chance that under these circumstances the sample mean will plot outside x
chart control limits. Finally, using relationship (3.50),

ARL =
1

.2236
= 4.5.

That is, if the process mean is off target by as much as one process standard
deviation, then it will take on average only 4.5 samples of size n = 5 to detect
this kind of misadjustment.

LCL UCL

Standard Mean Shifted Mean

.2236

FIGURE 3.18. Two distributions for x and standards given control limits

Example 33 should agree completely with the reader’s intuition about “how
things should be.” It says that when a process is on target, one can expect long pe-
riods between signals from an x chart. On the other hand, should the process mean
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shift off target by a substantial amount, there will typically be quick detection of
that change.

Example 34 Some ARLs for Shewhart c Charts. As a second example of the
meaning of Eq. (3.50), consider finding some ARLs for two different versions of a
Shewhart c chart when the standard rate of nonconformities is 1.5 nonconformi-
ties per unit. To begin, suppose that only one unit is inspected each period. Using
relationships (3.42) with λ = 1.5, it follows that since 1.5−3

√
1.5 < 0, no lower

control limit is used for the number of nonconformities found on an inspection
unit, and

UCLX = 1.5 + 3
√
1.5 = 5.2 .

So for this situation

q = P [X > 5.2] = 1− P [X ≤ 5] .

Consider evaluating q both when the nonconformity rate is at its standard value
(of λ = 1.5 nonconformities per unit) and when it is at three times its standard
value (i.e., is 4.5 nonconformities per unit). When the rate is standard, one uses a
Poisson distribution with mean 1.5 for X and finds

q = 1− P [X ≤ 5] = .005 and ARL =
1

.005
= 200 .

When the rate is three times standard, one uses a Poisson distribution with mean
4.5 for X and finds

q = 1− P [X ≤ 5] = .298 and ARL =
1

.298
= 3.4 .

That is, completely in accord with intuition, the mean waiting time until an alarm
is much smaller when quality deteriorates than when the process defect rate is
standard.

Now suppose that two units will be inspected each period. One can then either
use a u chart or equivalently simply apply a c chart where the standard value of
λ is 3.0 nonconformities per two units. Applying this second way of thinking and
relationships (3.42) with λ = 3.0, it follows that since 3.0−3

√
3.0 < 0, no lower

control limit is used for the number of nonconformities found on two inspection
units, and

UCLX = 3.0 + 3
√
3.0 = 8.2 .

So, for this situation

q = P [X > 8.2] = 1− P [X ≤ 8] .

Consider again the ARLs both where the nonconformity rate is at its standard
value (of λ = 3.0 nonconformities per two units) and where it is at three times
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its standard value (i.e., is 9.0 nonconformities per two units). When the rate is
standard, one uses a Poisson distribution with mean 3.0 for X and finds

q = 1− P [X ≤ 8] = .004 and ARL =
1

.004
= 250.

When the rate is three times standard, one uses a Poisson distribution with mean
9.0 for X and finds

q = 1− P [X ≤ 8] = .545 and ARL =
1

.545
= 1.8.

TABLE 3.8. ARLs for two c chart monitoring schemes for a standard nonconformity rate
of 1.5 defects per unit

Standard 3×Standard
Defect rate Defect rate

One unit inspected 200 3.4
Two units inspected 250 1.8

Table 3.8 summarizes the calculations of this example. It shows the superiority of
the monitoring scheme based on two units rather than one unit per period. The
two-unit-per-period monitoring scheme has both a larger ARL when quality is
standard and a smaller ARL when the nonconformity rate degrades by a factor of
3.0 than the one-unit-per-period scheme. This, of course, does not come without
a price. One must do twice as much inspection for the second plan as for the first.

Examples 33 and 34 illustrate the ARL concept in very simple contexts that are
covered by an elementary formula. Where the rules used to convert observed val-
ues Q1, Q2, Q3, . . . into out-of-control signals or the probability model for these
variables are at all complicated, explicit formulas and elementary computations
are impossible. But it is not necessary to understand the nature of the numerical
analysis needed to compute ARLs for more complicated cases to appreciate what
an ARL tells one about a monitoring scheme.

For example, a paper by Champ and Woodall appearing in Technometrics in
1987 considered ARL computations for monitoring schemes using various com-
binations of the four Western Electric alarm rules. Example 33 showed the “all
OK” ARL for an x chart scheme using only the “one point outside 3σx con-
trol limits” rule to be about 370. When all four Western Electric alarm rules are
employed simultaneously, Champ and Woodall found that the x chart “all OK”
ARL is far less than 370 (or what naive users of the rules might expect), namely,
approximately 92. The reduction from 370 to 92 shows the effects (in terms of in-
creased frequency of false alarms) of allowing for other signals of process change
in addition to individual points outside control limits.
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Section 3.5 Exercises

1. Interpret the terms “ARL” and “all OK ARL.”

2. What kind of ARL does one want under a “stable at standard parameter
values” process model? What kind of ARL does one hope to have under
any other circumstance?

3. n = 4 values are sampled every hour from a process that under “all OK
stable process” conditions produces observations x that are normal with
mean 20 and standard deviation 4. A typical Shewhart x chart is set up.

(a) What is the all OK ARL of the monitoring scheme?

(b) An upward shift in the process mean of at least 1 unit occurs, while
the process standard deviation variation does not change. At worst,
how many hours on average will pass before this change produces a
subgroup average outside the control limits?

4. Consider a production process where one item (the subgroup size is 1) is
periodically sampled and the number of nonconformities is observed. Sup-
pose standard nonconformity rate per item is λ = 4.

(a) Find the all OK ARL.

(b) Find the ARL if an increase to a rate of λ = 8 occurs.

(c) Answer (a) and (b) if two items make up each subgroup.

5. Control charting Method A is preferred to Method B relative to an “all OK”
and some “not all OK” process conditions. Which of the following is true?

(a) ARLA > ARLB when “all is OK” and ARLA > ARLB when “all is
not OK.”

(b) ARLA > ARLB when “all is OK” and ARLA < ARLB when “all is
not OK.”

(c) ARLA < ARLB when “all is OK” and ARLA > ARLB when “all is
not OK.”

(d) ARLA < ARLB when “all is OK” and ARLA < ARLB when “all is
not OK.”

6. Process standards are μ = 100 and σ = 7, and observations from the
process are normally distributed. A Shewhart x chart is being considered
for use in monitoring the process.

(a) The charts with n = 5 and n = 10 will have different control limits.
Why?
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(b) The charts with n = 5 and n = 10 will have the same ARL if process
parameters remain at standard values. Why?

3.6 Statistical Process Monitoring and Engineering
Control

We have said that “statistical process control” is really better called “statistical
process monitoring.” “Engineering control” is a very important subject that is
largely distinct from the considerations laid out thus far in this chapter. Unfor-
tunately, there has been a fair amount of confusion about what the two method-
ologies offer, how they differ, and what are their proper roles in the running of
industrial processes. This section is intended to help readers better understand
the relationship between them. It begins with an elementary introduction to one
simple kind of engineering control, called PID control. It then proceeds to a num-
ber of general comments comparing and contrasting statistical process monitoring
and engineering control.

3.6.1 Discrete Time PID Control

Engineering control has to do with guiding processes by the deliberate manip-
ulation of appropriate process parameters. For example, in a chemical process, a
temperature in a reaction vessel might be kept constant by appropriate manipula-
tion of the position of an inlet steam valve. A very common version of engineering
control in industry can be represented in terms of a feedback control diagram like
that in Fig. 3.19.

Noise
Y

X T

Physical
Process

Control
Algorithm

FIGURE 3.19. Schematic of an engineering feedback control system

In Fig. 3.19, a process outputs a value of a variable Y , which is fed into a con-
trol algorithm along with a value of a target T for the next output, resulting in a
value for some manipulated process variable X , which together with (unavoid-
able) noise (somehow) produces a subsequent value of Y and so on. Depending
upon what is known about the various elements in Fig. 3.19, different means of
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choosing a control algorithm can be applied. A method that requires very little
in the way of detailed knowledge about how X or the noise impacts Y is that of
proportional-integral-derivative (PID) control.

The discussion here will treat the discrete time version of PID control. So con-
sider discrete integer times t = 1, 2, 3, . . . (typically evenly spaced in real time),
and as in Fig. 3.19, suppose that

Y (t) = the value of the controlled or output variable at time t ,

T (t) = the value of a target for Y at time t, and

X(t) = the value of a (manipulated) process variable that is

chosen after observing Y (t) .

A control algorithm converts knowledge of Y (1), Y (2), . . . , Y (t) and T (s) for
all s into a choice of X(t). For example, in machining Y (t) could be a measured
widget diameter, T (t) a target diameter, and X(t) a cutting tool position. A con-
trol algorithm orders a tool position in light of all past and present diameters and
all targets for past, present, and future diameters.

The practice of PID control does not typically invest much effort in modeling
exactly how changes in X get reflected in Y . (If the goal of a study was to under-
stand that relationship, tools of regression analysis might well be helpful.) Never-
theless, in understanding the goals of engineering control, it is useful to consider
two kinds of process behavior with which engineering control algorithms must
sometimes deal.

For one thing, some physical processes react to changes in manipulated vari-
ables only gradually. One behavior predicted by many models of physical science
is that when initially at “steady state” at time t0, a change of ΔX in a manipulated
variable introduces a change in the output at time t > t0 of the form

ΔY (t) = Y (t)− Y (t0) = GΔX

(
1− exp

(−(t− t0)

τ

))
, (3.51)

for process-dependent constants G and τ . Figure 3.20 on page 152 shows a plot
of ΔY in display (3.51) as a function of time. In cases where relationship (3.51)
holds, G is the limit of the ratio ΔY/ΔX and is called the control gain. τ governs
how quickly the limiting change in Y is reached (τ is the time required to reach a
fraction 1− e−1 ≈ .63 of the limiting change in Y ). It is called the time constant
for a system obeying relationship (3.51).

Another phenomenon that is sometimes part of the environment in which engi-
neering control systems must operate is that of dead time or delay between when
a change is made in X and when any effect of the change begins to be seen in Y .
If there are δ units of dead time and thereafter a relationship similar to that in
Eq. (3.51) holds, one might see a pattern like that shown in Fig. 3.21 on page 152
following an adjustment ΔX made at time t0 on a process at steady state at that
time.

Of course, not all physical systems involve the kind of gradual impact of pro-
cess changes illustrated in Fig. 3.20, nor do they necessarily involve dead time.
(For example, real-time feedback control of machine tools will typically involve
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GΔX

(1 – e–1)GΔX

t0
t

t0 + τ
ΔY

0.0

FIGURE 3.20. Change in the output Y (initially at steady state) in response to a ΔX
change in the manipulated variable X

GΔX

t0
t

t0 + δ

ΔY

0.0

FIGURE 3.21. Change in the output Y (initially at steady state) in response to a ΔX
change in the manipulated variable at time t0 if there are δ units of dead time

changes in tool positions that take their full effect “immediately” after being or-
dered.) But where these phenomena are present, they increase the difficulty of
finding effective control algorithms, the dead time problem being particularly
troublesome where δ is large.

To get to the point of introducing the general PID control algorithm, consider a
situation where it is sensible to expect that increasing X will tend to increase Y .
Define the observed “error” at time t

Error at Time t
E(t) = T (t)− Y (t) ,

and the first and second differences of errors,

First Difference
in Errors at
Time t

ΔE(t) = E(t)− E(t− 1)

and

Second
Difference in
Errors at
Time t

Δ2E(t) = Δ(ΔE(t)) = ΔE(t) −ΔE(t− 1) .
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With some additional algebra

Δ2E(t) = (E(t)− E(t− 1))− (E(t − 1)− E(t− 2))

= E(t)− 2E(t− 1) + E(t− 2) .

Then, for constants κ1, κ2, and κ3, a PID control algorithm sets

PID Control
AlgorithmΔX(t) = κ1ΔE(t) + κ2E(t) + κ3Δ

2E(t) . (3.52)

(In cases where Y tends to increase with X , the constants κ1, κ2, and κ3 are typi-
cally nonnegative.) The three terms summed on the right of Eq. (3.52) are, respec-
tively, the proportional, integral, and derivative parts of the control algorithm.

Example 35 PID Control of Final Dry Weight of 20-lb Bond Paper. Through
the kind cooperation of the Miami University Paper Science Laboratory and Mr.
Doug Hart, Research Associate at the lab, one of your authors was able to help
implement a PID controller on a 13- in Fourdrinier paper-making machine. This
machine produces paper in a long continuous sheet beginning with vats of pulp
mix. The final dry weight of paper is measured as the paper leaves the machine
and can be controlled by the rate at which a Masterflex peristaltic pump delivers
pulp mix to the machine. A manual knob is used to vary the pump speed and
can be adjusted in “ticks.” (Each 1- tick change corresponds approximately to a
change of pump speed equal to .2% of its maximum capacity.) Past experience
with the machine indicated that for 20- lb bond pulp mixture, a 1- tick increase
in pump speed produces approximately a .3 g/m2 increase in paper dry weight.
But unavoidable variations in the process (including the “thickness” of the mix
available to the pump) produce variation in the paper dry weight and need to be
compensated for by varying the pump speed.

Since there is over a 4-min lag between when a pump speed change is made
and when paper affected by the speed change reaches the scanner that measures
dry weight at the end of the machine, measurements and corresponding adjust-
ments to pump speed were made only once every 5min. (This choice eliminates
the effect of dead time on the control algorithm, which would be a concern if
measurements and adjustments were made closer together.) Some experimenta-
tion with the machine led to the conclusion that a sensible PID control algorithm
for the machine (using the 5-min intervals and measuring the control variable
changes in terms of ticks) has

κ1 = .83, κ2 = 1.66, and κ3 = .83

in formula (3.52). Table 3.9 on page 154 shows an actual series of dry weight
measurements and PID controller calculations made using these constants. (Since
it was impossible to move the pump speed knob in fractions of a tick, the actual
adjustments applied were those in the table rounded off to the nearest tick.) The
production run was begun with the knob (X) in the standard or default position
for the production of 20- lb bond paper.

For example, for t = 3,

E(3) = T (3)− Y (3) = 70.0− 68.6 = 1.4,
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TABLE 3.9. PID control calculations for the control of paper dry weight (T, Y,E,ΔE,
and Δ2E in g/m2 and ΔX in ticks)

ΔX(t) = .83ΔE(t)

Period, t T (t) Y (t) E(t) ΔE(t) Δ2E(t) +1.66E(t) + .83Δ
2
E(t)

1 70.0 65.0 5.0
2 70.0 67.0 3.0 −2.0
3 70.0 68.6 1.4 −1.6 .4 1.328
4 70.0 68.0 2.0 .6 2.2 5.644
5 70.0 67.8 2.2 .2 −.4 3.486
6 70.0 69.2 .8 −1.4 −1.6 −1.162
7 70.0 70.6 −.6 −1.4 0 −2.158
8 70.0 69.5 .5 1.1 2.5 3.818
9 70.0 70.3 −.3 −.8 −1.9 −2.739
10 70.0 70.7 −.7 −.4 .4 −1.162
11 70.0 70.1 −.1 .6 1.0 1.162

ΔE(3) = E(3)− E(2) = 1.4− 3.0 = −1.6,

Δ2E(3) = ΔE(3)−ΔE(2) = −1.6− (−2.0) = .4,

and so the indicated adjustment (increment) on the pump speed knob is ΔX(3) =
.83ΔE(3)+1.66E(3)+ .83Δ2E(3) = .83(−1.6)+1.66(1.4)+ .83(.4) = 1.328
ticks. (As actually implemented, this led to a 1- tick increase in the knob position
after measurement 3.)

It is useful to separately consider the proportional, integral, and derivative parts
of algorithm (3.52), beginning with the integral part. With κ2 > 0, this part of the
algorithm increases X when E is positive and thus T > Y . It is this part of a PID
control algorithm that reacts to (attempts to cancel) deviations from target. Its
function is to try to move Y in the direction of T .

To grasp why κ2E(t) might be called the “integral” part of the control algo-
rithm, consider a case where both κ1 = 0 and κ3 = 0 so that one has an “integral-
only” controller. In this case (supposing that Y (t)s and T (t)s with t < 1 are
available so that one can begin using relationship (3.52) at time t = 1), note that

t∑
s=1

ΔX(s) = κ2

t∑
s=1

E(s). (3.53)

But the sum on the left of Eq. (3.53) telescopes to X(t)−X(0) so that one has

X(t) = X(0) + κ2

t∑
s=1

E(s).

That is, the value of the manipulated variable is X(0) plus a sum or “integral” of
the error.
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“Integral-only” control (especially in the presence of a large time constant
and/or large dead time) often tends to overshoot target values and set up oscil-
lations in the variable Y . The proportional and derivative parts of a PID algorithm
are meant to reduce overshoot and damp oscillations. Consider next the propor-
tional term from Eq. (3.52), namely, κ1ΔE(t).

The proportional part of a PID control algorithm reacts to changes in the error.
In graphical terms, it reacts to a nonzero slope on a plot of E(t) versus t. Where
κ1 > 0, this part of the algorithm increases X if the error increases and decreases
X if E decreases. In some sense, this part of the algorithm works to hold the error
constant (whether at 0 or otherwise).

When κ1 and κ2 have the same sign, the proportional part of a PID control alg-
orithm augments the integral part when E is moving away from 0 and “brakes” or
cancels part of the integral part when E is moving toward 0. Figure 3.22 pictures
two plots of Y (t) versus t for cases where the target T is constant. In the first
plot, Y is approaching T from below. E(t) > 0, while ΔE(t) < 0. This is a case
where the proportional part of the algorithm brakes the integral part. In the second
plot, Y is above T and diverging from it. There, both E(t) < 0 and ΔE(t) < 0,
and the proportional part of the algorithm augments the integral part. The braking
behavior of the proportional part of a PID algorithm helps to resist the kind of
oscillation/overshoot problem produced by “integral-only” control.

{ {
{

T

t – 3 t – 2 t – 1 t

Time

T

t – 3 t – 2 t – 1 t

Time

Y YE(t – 1) > 0 E(t) > 0
ΔE(t) < 0

E(t – 1) < 0
E(t) < 0

ΔE(t) < 0

FIGURE 3.22. Two plots of Y against time and a constant target, T

To see why κ1ΔE(t) might be called the “proportional” part of the control
algorithm, consider a case where both κ2 = 0 and κ3 = 0 so that one has a
“proportional-only” controller. In this case (supposing that Y (t)s and T (t)s with
t < 1 are available so that one can begin using relationship (3.52) at time t = 1),

t∑
s=1

ΔX(s) = κ1

t∑
s=1

ΔE(s). (3.54)

But the sums on both sides of Eq. (3.54) telescope, so that one has

X(t) = X(0)− κ1E(0) + κ1E(t).
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That is, the value of the manipulated variable is X(0) − κ1E(0) plus a term
“proportional” to the error.

Finally, consider the derivative part of the algorithm (3.52), namely, κ3Δ
2E(t).

This part of the algorithm reacts to curvature or changes in slope on a plot of E(t)
versus t. That is, it reacts to changes in ΔE(t). If a plot of errors versus t is linear
(ΔE(t) is constant), this part of the algorithm does nothing to change X . If κ3 >
0 and a plot of errors versus t is concave up, the derivative part of algorithm (3.52)
will increase X (and thus Y , decreasing E), while if the plot is concave down,
it will decrease X . For constant target T , this will tend to “straighten out” a plot
of E(t) or Y (t) versus t (presumably then allowing the proportional part of the
algorithm to reduce the slope to 0 and the integral part to put the process on target).
Once again, since “integral-only” control often produces unwanted oscillations of
Y about a target and it is impossible to oscillate without local curvature in a plot
of Y versus t, the derivative part of the algorithm can be considered as corrective
to a deficiency in the naive “integral-only” idea.

The rationale for calling κ3Δ
2E(t) the “derivative” part of the PID algorithm

(3.52) is similar to the arguments made about the other two parts. Namely, if κ1

and κ2 are both 0 (so that one has “derivative-only” control),

t∑
s=1

ΔX(s) = κ3

t∑
s=1

Δ2E(s). (3.55)

Telescoping both sides of Eq. (3.55), one then has

X(t) = X(0)− κ3ΔE(0) + κ3ΔE(t),

and the value of the manipulated variable is X(0) − κ3ΔE(0) plus a term pro-
portional to the change in (or “derivative” of) the error.

The primary practical problem associated with the use of PID controllers is the
matter of choosing the constants κ1, κ2, and κ3, sometimes called, respectively,
the proportional, integral, and derivative gains for the control algorithm. In
simple situations where engineers have good mathematical models for the phys-
ical system involved, those can sometimes provide at least starting values for
searches to find good values of these constants. Where such models are lack-
ing, various rules of thumb aid searches for workable values of κ1, κ2, and κ3.
For instance, one such rule is to initially set κ1 and κ3 to zero, increase κ2 until
oscillations occur, then halve that value of κ2, and begin searching over κ1 and
κ3. And it is pretty clear that in systems where a relationship like (3.51) holds, the
gains κ1, κ2, and κ3 should be inversely proportional to G. Further, conventional
wisdom also says that in systems where there is dead time δ > 0, the control gains
should decrease (exponentially?) in δ. (One should not be changing a manipulated
variable wildly if there is to be a long delay before one gets to measure the impact
of those changes and to begin to correct any unfortunate effects one sees.)

Ultimately, the matter of finding good values for the gains κ1, κ2, and κ3 is
typically a problem of empirical optimization. Section 6.2 of this book discusses
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some experimental strategies in process optimization. These can be applied to
the problem of finding good constants κ1, κ2, and κ3 in the following way. For
given choices of the constants, one may run the process using the PID controller
(3.52) for some number of periods, say m. Then a sensible figure of merit for that
particular set of constants is the random variable

S =
1

m

m∑
t=1

(E(t))2 ,

the average squared error. The empirical optimization strategies of Sect. 6.2 may
then be applied in an attempt to find a set of values for κ1, κ2, and κ3 with
minimum associated mean for S, μs. Chapter problems 38 through 44 describe
how the average squared error idea was used to arrive at the control algorithm of
Example 35.

3.6.2 Comparisons and Contrasts

The PID ideas just discussed are not the only ones used to produce engineer-
ing control algorithms. For example, where good models are available for both
uncontrolled process behavior and for the impact of control actions on process
outputs, mathematically optimal control algorithms (that need not be of the PID
type) can sometimes be derived. And the introduction just given completely ig-
nores real issues like the multivariate nature of most industrial applications. (The
Y and X just considered are one-dimensional, while real process outputs and pos-
sible manipulated variables are often multidimensional.) But the foregoing brief
discussion is intended only to give the reader enough of an idea of how engi-
neering control operates to allow the following comments on the proper roles of
engineering control and statistical process monitoring to make sense.

The relative merits of the two methodologies when applied in production con-
texts have been at times been hotly debated by their proponents. On some occ-
asions, zealots on one side or the other of the debate have essentially claimed
that their methods are universally applicable, and those of the other side are either
without merit or are simply a weak version of their own. The truth is that the meth-
ods of statistical process monitoring and engineering control are not competitors.
They are, in fact, completely complementary, each having its own purposes and
appropriate areas of application. When applied to the running of industrial pro-
cesses, both are aimed at the reduction of unwanted variability. In many applica-
tions, they can and should be used together in an effort to reduce process variation
and improve quality, engineering control helping to create stable conditions that
are monitored using statistical process-monitoring methods.

In cases where a process is already physically stable about a target value, statis-
tical process-monitoring tools should only infrequently (and wrongly) signal the
need for intervention, and engineering control is of no help in reducing variation.
That is, in the classical stable process situation, tweaking process parameters can
only make variation worse, not better. On the other hand, if successive observa-
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tions on a process look as if they are dependent or if they have means (either
constant or moving) different from a target, engineering control may be able to
improve process performance (uniformity of output) essentially by canceling pre-
dictable misadjustments of the process. Statistical process monitoring will then
protect one from unexpected process changes.

Table 3.10 puts side by side a number of pairs of statements that should help the
reader keep clear the basic differences between engineering control and statistical
process monitoring as they are applied to industrial processes. The late Dr. Bill
Tucker was fond of saying “You can’t steer a car with statistical process control
and you can’t fix a car with engineering control.” His apt and easily remembered
analogy brings into focus the differences in intent of the two methodologies.

Section 3.6 Exercises

1. The target value for a process output variable, Y , is four units, and a con-
trollable process parameter X is thought to impact Y in a direct fashion. In
three successive periods, Y (1) = 2, Y (2) = 1, and Y (3) = 0. You may
finish filling in a table like that below to help you answer this question.

Period, t T (t) Y (t) E(t) ΔE(t) Δ2E(t) ΔX(t)

1 2
2 1
3 0

(a) What are your values of T (t) here? What is the practical meaning of
this variable?

(b) What values do you get for E(t),ΔE(t), and Δ2E(t) here? Describe
what these are measuring.

(c) Use control gains κ1 = .8, κ2 = 1.6, and κ3 = 1.9, and compute a
PID control action ΔX (3) to be taken after observing Y (3).

(d) How will this table and future values of Y be used to extend the PID
control of part (c) beyond period 3?

2. In the context of problem 1, suppose that no one is really sure whether Y
is affected by changes in X and, if it is, whether the relationship is “direct”
or “inverse”.

(a) Speculate on what might happen if the PID controller of part (c) above
is implemented where Y is completely unrelated to X . What might
happen if in fact Y is inversely related to X?

(b) How would you propose to figure out what, if any, PID control based
on X might be fruitful?

3. In what sense are control charts tools for “controlling” a process? In what
meaning of the word “control” are they not tools for controlling a process?
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3.7 Chapter Summary

Shewhart control charts are an engineer’s most widely applicable and easily und-
erstood process-monitoring tools. The first four sections of this chapter have intro-
duced these charts for both variables data and attributes data, considered their use
in both standards given and retrospective contexts, and discussed their qualitative
interpretation and supplementation with sets of “extra alarm rules.” Table 3.11
summarizes many of the standard formulas used in the making of elementary
Shewhart charts.

TABLE 3.11. Formulas for Shewhart control charting
Standards given Retrospective

Chart Q μQ σQ UCLQ LCLQ UCLQ LCLQ

x x μ σ/
√
n μ+ 3σ/

√
n μ− 3σ/

√
n x+A2R x−A2R

x+A3s x−A3s

Median x̃ μ κσ/
√
n μ+ 3κσ/

√
n μ− 3κσ/

√
n

R R d2σ d3σ D2σ D1σ D4R D3R

s s c4σ c5σ B6σ B5σ B4s B3s

np X np
√

np(1− p) np+ 3
√

np(1− p) np− 3
√

np(1− p) (use p̂pooled for p)

p p̂ p

√
p(1−p)

n
p+ 3

√
p(1−p)

n
p− 3

√
p(1−p)

n
(use p̂pooled for p)

c X λ
√
λ λ+ 3

√
λ λ− 3

√
λ (use λ̂pooled for λ)

u û λ
√

λ
k

λ+ 3
√

λ
k

λ− 3
√

λ
k

(use λ̂pooled for λ)

The final two sections of the chapter have provided context and perspective for
the study of Shewhart charts and other process-monitoring tools. Section 3.5 in-
troduced the ARL concept as a means of quantifying the likely performance of
a monitoring scheme. Section 3.6 contrasted methods and goals of “engineer-
ing control” with those of process monitoring when they are both applied in
production.

3.8 Chapter 3 Exercises

1. What is the purpose of control charting? What is suggested by out-of-
control signals?

2. What makes step 3 in the quality assurance cycle presented in Chap. 1 dif-
ficult in service contexts? Explain.

3. Why is it essential to have a clear understanding of what constitutes a non-
conformance if a Shewhart c or u chart is to be made?
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4. Is control charting most directly concerned with “quality of design” or with
“quality of conformance” ?

5. Distinguish between “control limits” and “specification limits” for variables
data.

6. Explain the difference between “control limits” and “specification limits”
in an attributes data setting.

7. Explain the ARL concept in terms that a person with no statistical training
could understand.

8. When designing a control chart, what kinds of ARL values are desirable for
an on-target process? For an off-target process? Explain why your answers
are correct from an economic point of view.

9. State why statistical methodology is an unavoidable part of quality assur-
ance practice. (Review Chap. 1.)

10. Sometimes the plotted statistics appearing on a Shewhart control chart hug
(or have little scatter around) a center line. Explain why this is not neces-
sarily a good sign.

11. Uninformed engineers sometimes draw in lines on Shewhart x charts at
engineering specifications for individual measurements. Why is that a bad
practice?

12. It is common to hear people imply that the job of control charts is to warn
of degradation in product quality. Do you agree with that? Why or why not?

13. What is the purpose of sets of “extra alarm rules” like the Western Electric
alarm rules presented in Sect. 3.4?

14. What (relevant to quality-improvement efforts) does a multimodal shape of
a histogram for a part dimension suggest? (Review Chap. 2.)

15. In colloquial terms, the language “control” chart perhaps suggests a plot
associated with continuous regulatory efforts. Is this understanding correct?
Why or why not? Suggest a better term than “control chart.”

16. Journal Diameters. Table 3.12 provides some summary statistics (means
and standard deviations) for journal diameters of tractor axles as the axles
come off an automatic grinding machine. The statistics are based on sub-
groups of size n = 4 pieces taken once per hour. The values listed are
in millimeters. Specifications on the journal diameter are from 44.975 to
44.990mm. Note that

∑
x = 899.5876 and

∑
s = .0442.

(a) Are the above attributes data or variables data? Why?

(b) Make a retrospective s chart for these values.

(c) Make a retrospective x chart for these values.
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TABLE 3.12. Summary statistics for problem 16
Subgroup x s Subgroup x s

1 44.9875 .0029 11 44.9815 .0017
2 44.9813 .0025 12 44.9815 .0017
3 44.9808 .0030 13 44.9810 .0024
4 44.9750 .0000 14 44.9778 .0021
5 44.9783 .0039 15 44.9748 .0024
6 44.9795 .0033 16 44.9725 .0029
7 44.9828 .0021 17 44.9778 .0021
8 44.9820 .0024 18 44.9790 .0034
9 44.9770 .0024 19 44.9785 .0010
10 44.9795 .0010 20 44.9795 .0010

(d) What do these charts indicate (in retrospect) about the stability of the
grinding process?

(e) Based on your conclusion in (d), can the fraction of journal diameters
that currently meet specifications be reliably estimated? Why or why
not?

(f) Independent of your conclusion in (d), if one judged the process to be
stable based on the 20 subgroups summarized above, what could be
used as an estimate of the fraction of journal diameters that currently
meet specifications? (Give a number based on a normal distribution
assumption for diameter measurements.)

(g) Suppose that henceforth (into the future) this process is to be moni-
tored using subgroups of size n = 5. Give control limits for a (stan-
dards given) median chart based on the mid-specification (giving the
center line) and your estimated process standard deviation from (b).

(h) Give control limits for future monitoring of sample ranges (use your
estimated process standard deviation from (b) as a future standard
value and assume n = 5).

17. Refer to the Journal Diameter case introduced in problem 16. Some-
times subgroup size is not constant. When using standard deviations from
subgroup of varying sizes n1, n2, . . . , nr to estimate σ, there are several
possibilities. Of commonly used ones, the one with the best theoretical
properties is

spooled =

√
(n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nr − 1)s2r

(n1 − 1) + (n2 − 1) + · · ·+ (nr − 1)
.
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Another possibility is

σ̂ =

(n1 − 1)s1
c4(n1)

+
(n2 − 1)s2
c4(n2)

+ · · ·+ (nr − 1)sr
c4(nr)

n1 + n2 + · · ·+ nr − r
.

(Since sample sizes vary in this development, we are displaying the de-
pendence of c4 on sample size here.) The most appropriate estimator of a
common mean, μ, when sample sizes vary is

xpooled =
n1x1 + n2x2 + · · ·+ nrxr

n1 + n2 + · · ·+ nr
.

Consider the subgroup means and standard deviations given in problem 16.
Suppose subgroups were of size n = 4 except for the ones indicated in the
following table.

Subgroup Sample size
1 2
8 2
10 8
15 5
18 3
19 3
20 9

(a) Find values for spooled, σ̂, and xpooled.

(b) Give two estimates of (1) the standard deviation of a subgroup mean
when n = 2 and (2) the standard deviation of a subgroup stan-
dard deviation when n = 2. (Hint: Varxi = σ2/ni and Var si =
σ2(1 − c24(ni)).)

(c) With the new subgroup sizes, consider two retrospective control
charts, one chart appropriate for assessing the constancy of variability
of axle journal diameters and the other for monitoring average axle
journal diameter. Would the control limits be constant across time for
the two charts? (There is no need to actually make them here.) Why
or why not? (See (a) and (b).)

(d) Do the center lines for the two charts in (c) change depending on
subgroup size? (Again, there is no need to make the charts.) Why or
why not?

18. Rolled Paper. Shervheim and Snider did a project with a company that cuts
rolled paper into sheets. The students periodically sampled n = 5 consecu-
tive sheets as they were cut and recorded their actual lengths, y. Data from
20 subgroups are summarized in Table 3.13. (Measurements correspond-
ing to the values in the table were in 64ths of an inch above nominal, i.e.,
x = y − nominal.)
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(a) Make a retrospective s chart.

(b) Make a retrospective x chart.

(c) What do these charts indicate (in retrospect) about the stability of the
cutting process?

(d) Give an estimate of the process standard deviation based on s.

(e) If one judges the process to be stable and sheet length to be normally
distributed, estimate the fraction of sheets below nominal in length.
(Hint: Find P (x < 0) by transforming to a standard normal random
variable Z .)

TABLE 3.13. Summary statistics for problem 18
Subgroup x̄ s

1 12.2 .84
2 11.2 1.64
3 10.6 2.07
4 12.2 2.49
5 11.2 .84
6 12.6 1.82
7 12.2 2.95
8 13.6 1.67
9 12.2 1.30
10 10.4 1.52

Subgroup x̄ s
11 10.4 1.95
12 10.6 1.67
13 10.4 1.67
14 12.0 2.91
15 11.2 .84
16 10.6 1.82
17 10.4 1.14
18 9.8 2.17
19 9.6 2.07
20 10.6 1.95

224.0 35.33

(f) Each .25 in that the cutting process mean is above nominal represents
a $100,000/ year loss to the company from product “given away.” On
the other hand, the company wants to be sure that essentially no sheets
are produced with below-nominal lengths (so it wants μx > 3σ). With
this in mind, what adjustment in mean length do you suggest, and
what yearly savings or additional cost do you project if this adjustment
is made?

(g) Suppose that the adjustment you recommend in (f) is made and hence-
forth the cutting process is to be monitored based on samples of size
n = 3. What are standards given control limits for future monitoring
of x and s?

(h) Suppose that while using your x chart from (g), the process mean sud-
denly drops to the point where 1 % of the sheets produced are below
nominal in length. On average, how many samples will be required to
detect this? (Hint: Find the “new μx” that will make P (x < 0) = .01;
then using it find P (x < LCL) + P (x > UCL).) How does this
compare in terms of quickness of detection to a scheme (essentially a
p chart) that signals the first time a sample of n = 3 contains at least
one sheet with below-nominal length?
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19. Refer to the Rolled Paper case in problem 18. Again use the means and
standard deviations given there, but suppose that the number of sheets
per subgroup was not constant. Instead, suppose subgroups contained five
sheets except for the ones indicated in the following table.

Subgroup Subgroup size
3 7
6 7
10 2
14 4
17 3
19 2
20 6

(a) Compute xpooled and two different estimates of σ. (See problem 17.)

(b) For a subgroup size of n = 7, give two estimates of 1) the stan-
dard deviation of a subgroup mean and 2) the standard deviation of
a subgroup standard deviation. (Hint: Varxi = σ2/ni and Var si =
σ2(1 − c24(ni)).)

(c) With the variable subgroup sizes, consider two retrospective control
charts, one s chart and one x chart. Would the control limits be con-
stant across time for either chart? (There is no need to make the
charts.) Why or why not? (See (a) and (b).)

(d) Do the center lines for the two charts in (c) remain constant across
subgroup sizes? (Again, there is no need to make the charts.) Why or
why not?

20. U-bolt Threads. A manufacturer of U-bolts for the auto industry measures
and records thread lengths on bolts that it produces. Eighteen subgroups,
each of n = 5 consecutive bolts were obtained, and actual thread lengths
y were measured. These can be expressed as deviations from nominal by
transforming as x = y − nominal. Some summary statistics are indicated
in Table 3.14 (the units are .001 in above nominal).

(a) Estimate the supposedly common subgroup standard deviation, σ,
using (1) the subgroup ranges (Ri) and (2) the subgroup standard
deviations (si).

(b) Find control limits for the subgroup ranges. (Use the estimate of σ
based on the si.)

(c) Find control limits for the subgroup standard deviations. (Use the est-
imate of σ based on the si.)

(d) Plot the ranges and standard deviations on Shewhart charts using the
retrospective limits from (b) and (c). Is it plausible that variability of
thread length was constant from sampling period to sampling period?
Why or why not?
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TABLE 3.14. Data and summary statistics for problem 20
Subgroup Thread length x̃ s x̄ R

1 11, 14, 14, 10, 8 11 2.61 11.4 6
2 14, 10, 11, 10, 11 11 1.64 11.2 4
3 8, 13, 14, 13, 10 13 2.51 11.6 6
4 11, 8, 13, 11, 13 11 2.05 11.2 5
5 13, 10, 11, 11, 11 11 1.10 11.2 3
6 11, 10, 10, 11, 13 11 1.22 11.0 3
7 8, 6, 11, 11, 11 11 2.30 9.4 5
8 10, 11, 10, 14, 10 10 1.73 11.0 4
9 11, 8, 11, 8, 10 10 1.52 9.6 3
10 6, 6, 11, 13, 11 11 3.21 9.4 7
11 11, 14, 13, 8, 11 11 2.30 11.4 6
12 8, 11, 10, 11, 14 11 2.17 10.8 6
13 11, 11, 13, 8, 13 11 2.05 11.2 5
14 11, 8, 11, 11, 11 11 1.34 10.4 3
15 11, 11, 13, 11, 11 11 .89 11.4 2
16 14, 13, 13, 13, 14 13 .55 13.4 1
17 14, 13, 14, 13, 11 13 1.22 13.0 3
18 13, 11, 11, 11, 13 11 1.10 11.8 2

202 31.51 200.4 74

(e) Find retrospective control limits for the subgroup means. (Use your
estimate of σ based on the si.) Plot the means on a Shewhart chart
with these limits.

(f) Setting the center line at x, find upper and lower control limits for the
subgroup medians. (Use your estimate of σ based on the si.) Plot the
medians on a Shewhart chart with these limits.

(g) What do the charts in (e) and (f) suggest about the threading process?

(h) A U-bolt customer requires that essentially all U-bolt thread lengths
are within .011 in of nominal. Assuming bolt manufacturing contin-
ues as represented by the values in the table, will the customer be sat-
isfied with current production? Why or why not? Give a quantitative
defense of your answer assuming normality of thread length. (Hint:
Find P (−11 < x < 11).)

21. Refer to the U-bolt Threads case in problem 20. Problem 17 presented
ways of estimating σ when r subgroups are of varying size ni. The for-
mulas there are based on subgroup sample standard deviations si. Another
expression sometimes used to estimate the process standard deviation is
based on ranges, namely,

(n1 − 1)R1

d2(n1)
+

(n2 − 1)R2

d2(n2)
+ · · ·+ (nr − 1)Rr

d2(nr)

n1 + n2 + · · ·+ nr − r
.
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Consider the subgroup means and ranges given in problem 20, and suppose
that subgroups consisted of n = 5 bolts except for the subgroups indicated
in the following table.

Subgroup Subgroup size
2 8
5 4
6 6
7 2
11 3
14 7
15 2
18 2

(a) Give xpooled and three estimates of σ. Base two of the estimates of σ
on the subgroup standard deviations and the other on the ranges.

(b) Find three estimates of the standard deviation of a subgroup mean
when n = 8. Base two of the estimates on subgroup standard devia-
tions and one on the ranges. (Hint: Var xi = σ2/ni.)

(c) Find three estimates of the standard deviation of each subgroup sam-
ple standard deviation when n = 8. Base two of the estimates on
subgroup standard deviations and one on the ranges.

(Hint: Var si = σ2(1− c24(ni)).)

(d) Find an estimate of the standard deviation of each subgroup range
when n = 8. Base the estimate on the subgroup ranges. (Hint:
VarRi = d23(ni)σ

2.)

(e) Consider retrospective x and R charts using the new configuration of
subgroup sizes. (There is no need to make the charts here.) Would
control limits for either chart be constant across time? Why or why
not?

(f) Are the center lines for the charts referred to in (e) constant across
subgroups? Why or why not?

22. Turning. Allan, Robbins, and Wycoff worked with a machine shop that
employs a CNC (computer numerically controlled) lathe in the machining
of a part for a heavy equipment manufacturer. Some summary statistics for
a particular part diameter (x) obtained from 25 subgroups of n = 4 parts
turned on the lathe are given in Table 3.15. The units are inches.

(a) Find retrospective control limits for the values (both means and
ranges). What do the x and R values indicate about the stability of
the turning process?

(b) Suppose that one wishes to apply the four Western Electric alarm rules
to the x values. Specify the zones to be used for the mean diameters.
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TABLE 3.15. Summary statistics for problem 22
Subgroup x̄ R

1 1.18093 .0001
2 1.18085 .0002
3 1.18095 .0002
4 1.18063 .0008
5 1.18053 .0007
6 1.18053 .0005
7 1.18058 .0005
8 1.18195 .0001
9 1.18100 .0003
10 1.18095 .0001
11 1.18095 .0006
12 1.18098 .0001
13 1.18123 .0009

Subgroup x̄ R
14 1.18128 .0002
15 1.18145 .0007
16 1.18080 .0003
17 1.18100 .0000
18 1.18103 .0001
19 1.18088 .0003
20 1.18100 .0000
21 1.18108 .0002
22 1.18120 .0004
23 1.18088 .0002
24 1.18055 .0022
25 1.18100 .0004

29.52421 .0101

Are any of the rules violated in the first 10 samples? (If you find any
violations, say which rule is violated for the first time where.)

(c) Give an estimate of the process short-term standard deviation derived
from the ranges (use all 25 subgroups and the assumption that σ is
constant over the study period).

(d) Engineering specifications on the diameter in question were in fact
1.1809± .005 in. Suppose that over short production runs, diameters
can be described as normally distributed and that your estimate of σ
from (c), is an appropriate description of the variation seen in short
runs. Give an estimate of the best possible fraction of diameters meet-
ing specifications available using this particular lathe.

(e) Make further use of your estimate of σ from (c), and set up control
limits that could be used in the future monitoring of the process stan-
dard deviation via Shewhart charting of s based on samples of size
n = 5.

(f) Again use your estimate of σ from (c) and consider future monitor-
ing of x based on samples of size n = 4 using “3-sigma” limits and a
center line at the target diameter, 1.1809. Assuming diameters are nor-
mally distributed, on average how many subgroups would be required
to detect a change in mean diameter, μ, from 1.1809 to 1.1810?

23. Refer to the Turning case in problem 22. Problem 21 presented a method
for estimating σ based on ranges of subgroups of varying size. Use that
method in this problem. Use again the subgroup means and ranges given in
problem 22, and suppose all subgroups were of size n = 4 parts except for
the ones indicated in the following table.
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Subgroup Subgroup size
1 2
4 3
5 6
9 2
11 7
13 5
15 3
16 2
17 8
18 2

(a) Give xpooled and an estimate of σ.

(b) Find an estimate of the standard deviation for a subgroup mean, xi,
when n = 7.

(c) Find an estimate of the standard deviation for a subgroup range, Ri,
when n = 7.

(d) Consider retrospective x and R charts using the new configuration of
subgroup sizes. (There is no need to make the chart here.) Are the
control limits for the two charts constant across subgroups? Why or
why not?

(e) Are the center lines for the charts considered in (d) constant across
subgroups? Why or why not?

24. Package Sorting. Budworth, Heimbuch, and Kennedy analyzed a com-
pany’s package sorting system. As packages arrive at the sorting system,
they are placed onto trays, and the bar codes affixed to the packages are
scanned (in an operation much like the scanning process at a grocery store
checkout). Bar code identification numbers begin with the zip code of the
package destination. This permits packages to be sorted into 40 bins, each
of which represents a different bulk mail center (BMC) or auxiliary service
facility (ASF). All packages in a given bin are shipped by truck to the same
mail center. The bulk transportation of these packages is much cheaper than
if they were mailed directly by the nearest US Post Office. The large num-
ber of BMC packages handled daily by the company produces tremendous
cost savings.

Initially, the team tackled the so-called “no chute open” problem. When
one of the BMC bins is full, packages destined for that bin cannot be
dropped into it. They end up in a “no chute open” bin. This eventuality pro-
duced many inefficiencies and even shutdowns of the entire system. In fact,
the system was shut down about 10min/day on average because of this
problem. This lost time cost the company the ability to process about 400
packages/day, and accumulated over a year, this represents a serious loss.
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TABLE 3.16. Data for problem 24
Date Shift Number in bin
10/16 1 1510
10/17 3 622
10/18 1 2132
10/18 2 1549
10/19 1 1203
10/19 2 2752
10/19 3 1531
10/20 1 1314

Date Shift Number in bin
10/20 2 2061
10/20 3 981
10/21 1 1636
10/21 2 2559
10/21 3 1212
10/22 1 2016
10/22 2 2765
10/22 3 574

The team decided to document the number of packages per shift dumped
into the “no chute open” bin. The data they collected are in Table 3.16.

(a) Is this an attributes data problem or a variables data problem? Why?

(b) What constitutes a “subgroup” in the context of this problem?

(c) What probability model is a possible description of the number of
packages routed to the “no chute open” bin during a given shift?

(d) Assuming the sorting process is stable, estimate the average number
of packages routed to the “no chute open” bin during a particular shift.
Estimate the standard deviation of the number of packages routed to
the “no chute open” bin. These estimates should be consistent with
your answer to (c).

(e) Was the number of packages in the “no chute open” bin apparently
constant except for random fluctuation? Why or why not? Defend
your answer using a control chart.

25. Refer to the Package Sorting case in problem 24. Budworth, Heimbuch,
and Kennedy were told that the sorting system was set up to let a package
circle on the conveyor belt for 10 cycles (once each cycle the package would
fall into the correct chute if that chute was not occupied). If after ten cycles
the correct chute was always occupied, a package would be consigned to the
inefficient “no chute open” bin. Upon observing the system in operation, the
team immediately recognized packages dropping into the “no chute open”
bin after only 2 or 3 cycles. Management was notified and the programming
of the system was corrected. The team gathered the data below after the
correction.
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Date Shift Number in bin
10/23 1 124
10/24 3 550
10/25 1 0
10/25 2 68
10/25 3 543
10/26 1 383
10/26 2 82
10/26 3 118

(a) Extend the control limits from your chart in part (e) of problem 24.
Plot the data above on the same chart. Does it appear the system
change was effective? Why or why not?

(b) Make a chart to assess stability of the number of packages in the “no
chute open” bin using only the data above. Does it appear the system
was stable? Why or why not?

(c) Has the team solved the problem of a large number of packages in the
“no chute open” bin? Defend your answer.

26. Refer to the Package Sorting case of problems 24 and 25. Budworth,
Heimbuch, and Kennedy also investigated the performance of the package
scanning equipment. Just as items at a cashier’s scanner often are not read
on the first scan, so too were bar codes on packages not necessarily read
on the first or second scan. Label damage and incorrect orientation, erro-
neous codes, and some simply unexplained failures all produced “no-read”
packages. If a package was not read on the first pass, it continued on the
carousel until reaching a second scanner at the end of the carousel. Failure
to read at this second scanner resulted in the package being dropped into
a “no-read” bin and scanned manually with a substantial loss in efficiency.
The team took data over 30 consecutive 1-min periods on the variables

n = the number of packages entering the system during the

1-min period ,

X1 = the number of those packages failing the first scan, and

X2 = the number of those packages failing both scans.

The values they recorded are in Table 3.17.

(a) What constitutes a “subgroup” in this problem?

(b) Is this an attributes data or a variables data problem? Why?

(c) Make a retrospective control chart to assess consistency of the propor-
tion of packages failing both scans, and comment on what it indicates.
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TABLE 3.17. Data for problem 26
Minute n X1 X2 Minute n X1 X2

1 54 10 2 16 66 17 0
2 10 3 2 17 56 11 3
3 55 22 3 18 26 6 1
4 60 18 5 19 30 6 0
5 60 12 1 20 69 14 1
6 60 14 1 21 58 23 5
7 37 14 0 22 51 18 5
8 42 17 1 23 32 15 1
9 38 20 10 24 44 23 4
10 33 6 2 25 39 13 2
11 24 6 3 26 26 3 1
12 26 7 5 27 41 17 1
13 36 12 0 28 51 25 5
14 32 10 3 29 46 18 1
15 83 25 2 30 59 23 6

(d) Make a retrospective control chart to assess consistency of the pro-
portion of packages that are not read on the first scan, and comment
on what it indicates.

(e) Make a retrospective control chart to assess consistency of the pro-
portion of all packages in a given minute that are not read on the first
scan and are read on the second scan. Comment on what it indicates.

(f) Calculate the proportions of those packages failing the first scan that
also fail the second scan.

(g) Make a retrospective control chart to assess consistency of the propor-
tions in (f). Comment on what it indicates.

27. Jet Engine Visual Inspection. The data in Table 3.18 are representative of
counts of nonconformances observed at final assembly at an aircraft engine
company. Suppose that one final assembly is inspected per day.

(a) Is this a variables data problem or is it an attributes data problem?
Explain.

(b) In the context of the problem, what is a “subgroup”?

(c) What probability distribution is a likely model for counts of noncon-
formances on these engines? Defend your answer.

(d) Find an estimated mean number of visually identified nonconfor-
mances and the corresponding estimated standard deviation.

(e) Find appropriate upper and lower control limits and center line to
apply to the counts. Make the corresponding control chart for these
data. Does it appear that the process was stable over the period of
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TABLE 3.18. Data for problem 27
Number of Number of Number of

Day Nonconformances Day Nonconformances Day Nonconformances
7/5 15 7/15 18 7/29 16
7/6 19 7/16 4 8/1 30
7/7 12 7/19 16 8/2 34
7/8 24 7/20 24 8/3 30
7/9 18 7/21 16 8/4 40
7/10 10 7/22 12 8/5 30
7/11 16 7/25 0 8/6 36
7/12 26 7/26 16 8/8 32
7/13 16 7/27 26 8/9 42
7/14 12 7/28 12 8/10 34

the study? Why or why not? Identify any out-of-control points. Apply
Nelson’s rules.

(f) Suppose two inspectors were involved in the data collection. Briefly
discuss what must be true (in terms of data collection protocol) to
assure that the chart and analysis in (e) are credible.

28. Refer to the Jet Engine Visual Inspection case in problem 27.

(a) When possible causes for out-of-control points on a control chart are
addressed and physically eliminated, it is common practice to discard
the data associated with those out-of-control points and recalculate
control limits. Apply this thinking to part (e) of problem 27, assuming
causes of the out-of-control points have been addressed (you should
“throw out” July 16 and 25 and August 1 through 10—a total of 11
out of 30 points).

(b) Suppose the following data are obtained in visual inspection of final
engine assemblies over the next three days:

Assemblies Number of
Day inspected nonconformances
1 .5 8
2 2.0 31
3 1.5 26

(Partial inspection of final engine assemblies could possibly occur
because of unforeseen labor problems. More than one engine assem-
bly might be inspected on days 2 and 3 to, in some sense, make up for
the partial inspection on day 1.) Using the information from (a) above,
find control limits for nonconformance rates on these three days (do
not use the number of nonconformances during these 3 new days to
find the limits). Also give the center line and three plotted values (non-
conformances per engine assembly inspected).
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(c) Do your values from part (b) suggest process instability? Explain.

(d) Your center line should be constant across the three days represented
in (b). Why is this?

29. In a u charting context, the number of standard units inspected may vary
from period to period. Let

Xi = the number of nonconformances observed at period i,

ki = the number of standard units inspected at period i, and

ûi = Xi/ki .

The following values were obtained over nine periods.

i 1 2 3 4 5 6 7 8 9
ki 1 2 1 3 2 1 1 3 1
ûi 0 3.00 0 1.33 4.00 0 0 .67 1.00

(a) From these values, what conclusions can you make about stability of
the process being monitored? Make the appropriate control chart.

(b) Suppose that in the future ki will be held constant at 1 and that 2.4
nonconformances per inspection unit will be considered to be “stan-
dard quality.” Find the probability of an out-of-control signal on a
3-sigma Shewhart control chart, if the true nonconformance rate is at
the standard quality level (λ = 2.4). Find the probability of an out-of-
control signal if the true nonconformance rate changes to λ = 4.8.
(Remember that the Poisson(μ) probability function is P (X = x) =
(exp (−μ)μx) /x! .)

(c) Suppose that in the future ki will be held constant at 2. Find the prob-
ability of an out-of-control signal if the true nonconformance rate is
at the standard quality level (λ = 2.4). Find the probability of an out-
of-control signal if the true nonconformance rate changes to λ = 4.8

(d) Compare your answers to (b) and (c). Which subgroup size (k = 1 or
k = 2) is more appealing? Why?

30. Electrical Switches. The following scenario is taken from an aircraft
engine company’s training material. One hundred electrical switches are
sampled from each of 25 consecutive lots. Each sampled switch is tested
and the sample numbers failing are recorded in Table 3.19.

(a) Find the sample fractions of switches failing the test.

(b) What is a plausible probability model for describing the count of
switches in a particular sample failing the test? Explain.

(c) Plot the number failing versus the sample period. Plot an appropriate
center line and control limits on the same graph.
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TABLE 3.19. Data for problem 30
Sample Number failing Sample Number failing

1 11 14 18
2 9 15 7
3 15 16 10
4 11 17 8
5 22 18 11
6 14 19 14
7 7 20 21
8 10 21 16
9 6 22 4
10 2 23 11
11 11 24 8
12 6 25 9
13 9

(d) What does your plot in (c) monitor here?

(e) Interpret your plot in (c). Identify any out-of-control points.

(f) What is the usual name of the chart you prepared in part (c)?

(g) Suppose causes for out-of-control points identified in (e) are iden-
tified and physically removed. It would then make sense to delete
the out-of-control points and recalculate limits. Do this recalculation
and redo (c). (You should have identified and eliminated two out-of-
control points.)

(h) Suppose the number of switches sampled and the number failing for
the next three consecutive lots are as follows.

Number sampled Number failing
75 8
144 12
90 11

Using your estimated fraction failing from (g) as a standard for judg-
ing these samples, find control limits and center lines appropriate for
the three new “number failing” data points. Are the three sets of con-
trol limits and center lines the same? Why is this to be expected?

31. A data set in the book Elementary Statistical Quality Control by Burr in-
dicates that in the Magnaflux inspection for cracks in a type of malleable
casting, about p ≈ .11 of the castings will have detectable cracks. Consider
the examination of 12 such castings. Let X be the number of castings from
the set of 12 identified as being cracked.

(a) Find P [X = 5].

(b) Find P [X > 5].
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(c) Find EX .

(d) Find Var X .

(e) Ten sets of 12 castings are to be inspected. What is the probability that
at least one set of 12 will have one or more cracked castings?

32. Plastic Packaging. This concerns a plastic packaging case investigated by
Hsiao, Linse, and McKay. Plastic bags were supposed to hold three bagels
each. An ideal bag is 6.75 in wide, has a 1.5- in lip, and has a total length of
12.5 in (including the lip). The ideal hole positions are on the lip. The hole
position on selected bags was measured as the distance from the bottom of
the bag to the hole. Five bags were obtained at six times on each of three
days. Hole position, bag width, bag length, and lip width were measured
and recorded for each bag. The data for hole position (in inches) are in
Table 3.20.

(a) What is a natural subgroup in this situation?

(b) How many items are in each subgroup described in (a)? How many
subgroups are there here in total?

(c) Calculate the subgroup means and subgroup ranges.

(d) Make a retrospective control chart for mean hole position. Give the
center line, control limits, and zone limits using your answers from
part (c).

(e) Make a retrospective control chart for variability in position using
your values from (c). Give the control limits and zone limits.

(f) What is the usual name of the chart in (d)? What is the usual name of
the chart in (e)?

(g) Is it important which of the charts developed in (d) and (e) is analyzed
first? Why or why not?

(h) Find the estimated standard deviation of hole position based on the
ranges.

33. Refer to the Plastic Packaging case in problem 32.

(a) Calculate the 18 subgroup means and 18 subgroup ranges.

(b) Use your answers from part (a), and for each day separately, make
retrospective control charts for mean hole position. Give center lines,
control limits, and zone limits. What do these charts suggest about
process performance?

(c) Use your answers from part (a), and for each day separately, make
retrospective control charts for variability of hole position.

(d) Based on your answer to (c), is variability of hole location constant
within any one of the days? Why or why not?
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TABLE 3.20. Data for problem 32
Day Time Hole position
1 10:10 am 1.87500, 1.84375, 1.87500, 1.84375, 1.84375
1 10:25 am 1.90625, 1.90625, 1.90625, 1.87500, 1.90625
1 10:55 am 1.87500, 1.93750, 1.93750, 1.93750, 1.96875
1 11:12 am 2.09375, 2.12500, 2.21875, 2.15625, 2.12500
1 11:35 am 2.00000, 2.00000, 2.00000, 2.00000, 2.03125
1 11:41 am 1.87500, 1.90625, 1.90625, 1.87500, 1.93750
2 8:15 am 1.62500, 1.62500, 1.59375, 1.65625, 1.59375
2 8:54 am 1.62500, 1.62500, 1.59375, 1.68750, 1.65625
2 9:21 am 1.62500, 1.59375, 1.62500, 1.59375, 1.62500
2 9:27 am 1.62500, 1.59375, 1.62500, 1.65625, 1.65625
2 9:51 am 1.56250, 1.59375, 1.56250, 1.56250, 1.56250
2 9:58 am 1.56250, 1.56250, 1.56250, 1.53125, 1.56250
3 10:18 am 1.50000, 1.56250, 1.53125, 1.53125, 1.50000
3 10:33 am 1.53125, 1.53125, 1.53125, 1.53125, 1.50000
3 10:45 am 1.50000, 1.53125, 1.50000, 1.53125, 1.46875
3 11:16 am 1.50000, 1.50000, 1.50000, 1.53125, 1.50000
3 11:24 am 1.53125, 1.53125, 1.50000, 1.50000, 1.50000
3 11:39 am 1.50000, 1.50000, 1.53125, 1.53125, 1.53125

(e) According to your charts in (c), is there a day in which a single stan-
dard deviation of hole position is plausible? Why or why not?

(f) Suppose your answer in (e) is “yes” for each day. Find estimated σs
for the three different days treated separately. (Base your estimates on
sample ranges.)

(g) Comment on how your estimates in (f) compare to the estimate in part
(h) of problem 32.

34. Refer to the Plastic Packaging case in problems 32 and 33. The ideal lip
width is 1.5 in. The lip width data in Table 3.21 (in inches) were taken on
the same bags represented in problem 32.

(a) Is this a variables data or an attributes data scenario? Why?

(b) Find the subgroup means, ranges, and standard deviations.

(c) Make retrospective control charts for lip width variability and lip
width mean based on the sample ranges.

(d) In view of the appearance of your chart for variability of lip width,
does it make sense to seriously examine the chart for mean lip width?
Why or why not?

(e) Instead of making the completely retrospective charts asked for in (c),
is it possible to incorporate some “standards” information and make a
different chart for mean lip width? Explain.
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TABLE 3.21. Data for problem 34
Day Time Lip width
1 10:10 am 1.75000, 1.62500, 1.62500, 1.65625, 1.62500
1 10:25 am 1.62500, 1.62500, 1.62500, 1.65625, 1.65625
1 10:55 am 1.53125, 1.53125, 1.50000, 1.50000, 1.50000
1 11:12 am 1.40625, 1.43750, 1.43750, 1.46875, 1.46875
1 11:35 am 1.46875, 1.46875, 1.46875, 1.46875, 1.40625
1 11:41 am 1.43750, 1.43750, 1.46875, 1.50000, 1.46875
2 8:15 am 1.37500, 1.40625, 1.37500, 1.40625, 1.37500
2 8:54 am 1.37500, 1.43750, 1.43750, 1.40625, 1.40625
2 9:21 am 1.40625, 1.37500, 1.43750, 1.40625, 1.40625
2 9:27 am 1.50000, 1.46875, 1.43750, 1.46875, 1.43750
2 9:51 am 1.43750, 1.43750, 1.43750, 1.43750, 1.43750
2 9:58 am 1.53125, 1.46875, 1.53125, 1.50000, 1.53125
3 10:18 am 1.53125, 1.56250, 1.50000, 1.50000, 1.53125
3 10:33 am 1.50000, 1.53125, 1.53125, 1.50000, 1.50000
3 10:45 am 1.34375, 1.34375, 1.34375, 1.37500, 1.37500
3 11:16 am 1.46875, 1.46875, 1.46875, 1.43750, 1.43750
3 11:24 am 1.37500, 1.40625, 1.40625, 1.40625, 1.40625
3 11:39 am 1.43750, 1.43750, 1.40625, 1.37500, 1.43750

(f) Instead of treating all 18 samples at once as in part (c), for each day
separately, make retrospective R and x charts. What are your conclu-
sions regarding process stability for each day separately?

(g) Find three daily estimated lip width standard deviations. How do these
estimates compare to that calculated when the complete set of data is
used? (See (c) above.)

(h) Would there be advantages to using subgroup standard deviations ins-
tead of subgroup ranges in parts (c) and (f) above? Explain.

35. Refer to the Plastic Packaging case in problem 32.

(a) Make a control chart for the standard deviation of hole position. Is
short-term variation stable?

(b) Make a control chart for mean hole position based on subgroup stan-
dard deviations. Is process aim stable?

(c) For each day separately, make charts for the standard deviation of
hole position. Is short term variation stable for each day?

(d) For each day separately, make charts for mean hole position (use an
estimate of σ based on the subgroup standard deviations). Is process
aim stable for each day?

(e) For each of (a), (b), (c), and (d), was it helpful to use the subgroup
standard deviations instead of the subgroup ranges as in problem 32?
Why or why not?
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36. Refer to the Hose Skiving case of problem 11 in the Chap. 1 exercises. The
plant works two shifts/day. Five hoses were sampled every two hours from
each of three production lines and skive length, y measured. Specifications
for skive length are target ± .032 in. The values (x = y − target) in the
accompanying tables are in units of .001 in above target.

(a) Explain (possibly using the notions of “rational subgrouping” and
“stratification”) why it would not make good sense to combine data
taken at a particular time period from the three different production
lines to make a single “sample.” (Particularly in cases where it is only
possible to select a single item from each line at a given time period,
the urge to make such a “sample” is strong, and this kind of error is a
common one.)

(b) Compute the 48 sample means and ranges for the data given in
Table 3.22. Then separately for lines 1, 2, and 3, make both x charts
and R charts. Comment on what they indicate about the stability of
the skiving process on the three lines over the two days of this study.

(c) One could think about plotting all 48 sample means on a single chart,
for example, plotting means from lines 1, 2, and 3 in that order at a
given time period. Discuss why that is not a terribly helpful way of
summarizing the data. (Will it be easier or harder to see trends for a
given production line on this kind of plot compared to the separate
charts of part (b)?)

37. Consider the hypothetical values in Table 3.23 on page 181 from a process
where T (t) is the target value,Y (t) is the realized value of the characteristic
of interest, E(t) = T (t)−Y (t), ΔE(t) = E(t)−E(t−1), and Δ2E(t) =
ΔE(t) − ΔE(t − 1). A PID controller ΔX(t) = κ1ΔE(t) + κ2E(t) +
κ3Δ

2E(t) has been used.

(a) What does ΔX(t) represent? Was the adjustment ΔX(3) made
before or after observing Y (3) = 0?

(b) Suppose the integral gain in the control algorithm is 4. What are the
proportional and derivative gains?

(c) Using your answer in (b), find the complete set of ΔX(t)s.

(d) Find the average squared error for the last 9 periods, the last 8 periods,
. . . , and the last 3 periods.

(e) Make a plot of your values from (d) as follows. Label the horizontal
axis with t. For t = 4 plot the average squared error for periods 4
through 12, for t = 5 plot the average squared error for periods 5
through 12, . . . , and for t = 10 plot the average squared error for
periods 10 through 12. Does the appearance of this plot give you hope
that any transient or “startup” effects have been eliminated before the
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TABLE 3.22. Data for problem 36

Day Time
1 8:00 am
1 10:00 am
1 12:00 pm
1 2:00 pm
1 4:00 pm
1 6:00 pm
1 8:00 pm
1 10:00 pm
2 8:00 am
2 10:00 am
2 12:00 pm
2 2:00 pm
2 4:00 pm
2 6:00 pm
2 8:00 pm
2 10:00 pm

Line 1
Skive length

3, 2, 4,−5, 2
5,−4,−3, 0,−2
−5, 5, 5,−3, 2
−2, 5, 4,−3, 2
−10, 2, 1, 2, 1

−5,−6,−3,−3,−7
−5, 0,−3,−3,−8

−5,−10, 10,−9,−3
2, 4, 1, 0,−5

−3, 3,−4, 5, 3
−5,−7, 6, 8,−10

3,−4, 4, 6,−3
−10,−7,−3,−1,−3

0,−1,−6,−2, 0
2, 4,−2,−3, 5
1, 0,−1, 7,−5

Line 2
Skive length
−17, 3, 2, 10, 4

13, 3,−2, 12, 15
14, 6, 10, 5, 1
7, 2, 10, 16, 13

−15,−12,−2,−4, 0
−4,−6,−4,−4, 4
2,−5,−5,−3,−4
0,−1,−2,−1, 0
15, 2, 16, 10, 14

12, 4,−10, 10,−3
1,−7, 4,−5,−9
−6, 8,−5, 18, 20

−2,−4,−5,−1,−3
−2,−2,−2,−4,−2

0, 2,−1,−1,−2
−1,−2, 0,−1,−1

Line 3
Skive length
−3,−5, 7, 10, 3

3, 5, 5, 8, 1
3, 6, 6, 5, 5

5,−2, 5, 4, 6
2, 5, 4, 1, 1
2, 1, 0, 1, 1

1, 3, 5,−6,−10
−7,−5, 4, 2,−9

18, 15, 5, 3, 4
3, 2,−2,−5, 2

4, 2, 2, 1, 3
6, 5, 4, 2, 5

2, 0, 1,−3, 5
2,−5,−7,−3,−5

−6,−3,−10,−4,−7
0,−4,−7,−10,−2

last few periods and that those periods adequately represent control
algorithm performance? Explain.

38. Paper Dry Weight. Before progressing to the collection of the data in Ta-
ble 3.9, several different PID algorithms were tried. Miami University Paper
Science Laboratory Research Associate Doug Hart set up the paper-making
machine with 1 % de-inked pulp stock to produce 20- lb bond paper. No
filler was used. Then Jobe and Hart began an investigation into how to best
control the dry weight variable. Twelve periods of data were obtained to
benchmark the process behavior without any pump speed adjustments. (It is
well known that the pump speed does affect final dry weight.) A standard
setting of 4.5 (45% of maximum speed that was known to produce paper
with a dry weight in the vicinity of the target of 70 g/m2) was used. Paper
dry weight measurements were made at roughly 5-min intervals, and these
are presented in Table 3.24 as Y (t). Units are g/m2.

(a) Plot the measured values Y (t) versus t.

(b) Plot the errors E(t) versus t.

(c) Find the average squared error for periods 1 through 12, for periods 2
through 12,. . . , and for periods 10 through 12.

(d) Make a plot of your values from (c) for t = 1, 2, . . . , 10. (At time t
plot the average squared error for periods t through 12.)

39. Refer to the Paper Dry Weight case of problem 38. Hart informed Jobe
that for every 5- tick increase on the speed pump dial, paper dry weight
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TABLE 3.23. Values for problem 37
Period, t T (t) Y (t) E(t) ΔE(t) Δ2E(t) ΔX(t)

1 4 2 2
2 4 1 3 1
3 4 0 4 1 0 18
4 4 2 2 −2 −3 1
5 4 2 2 0 2
6 4 3 1 −1 −1
7 5 3 2 1 2
8 5 4 1 −1 −2
9 5 5 0 −1 0
10 5 6 −1 −1 0
11 5 6 −1 0 1
12 5 6 −1 0 0

TABLE 3.24. Values for problem 38
Time Period, t T (t) Y (t) E(t)

8:45 1 70 75.3 −5.3
8:50 2 70 75.8 −5.8
8:55 3 70 73.1 −3.1
9:00 4 70 72.4 −2.4
9:05 5 70 73.5 −3.5
9:10 6 70 72.8 −2.8
9:15 7 70 72.6 −2.6
9:20 8 70 71.7 −1.7
9:25 9 70 69.8 .2
9:30 10 70 66.9 3.1
9:45* 11 70 70.9 −.9
9:50 12 70 71.7 −1.7

increases about 1.5 g/m2. This means that in rough terms, to increase a
dry weight by 1 g/m2, an increase of pump speed setting of about 3.33
ticks is needed.

(a) If one were to consider an “integral-only” version (a κ1 = κ3 = 0
version) of the control equation (3.52) for use with the paper-making
machine, why might κ2 = 3.33 be a natural first choice? (X is in
ticks, while T and Y are in g/m2.)

(b) The “integral-only” controller of part (a) was used for 7 time periods
and paper dry weight data collected. This is summarized in Table 3.25.
Fill in the ΔX(t) and E(t) columns in that table for t = 1, 2, . . . , 8.
(The machine was running without adjustment with X set at 4.5 until
9:55. The measurements were taken far enough apart in time that the
entire effect of a pump speed change ordered on the basis of data
through a given period was felt at the next measuring period.)
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TABLE 3.25. Values for problem 39
Time Period, t T (t) Y (t) E(t) ΔX(t)
9:55 1 70 72.1

10:08 2 70 70.6
10:14 3 70 71.3
10:25 4 70 67.1
10:32 5 70 71.5
10:38 6 70 70.3
10:44 7 70 68.4
10:50 8 70 71.7

(c) Plot Y (t) versus t.

(d) Plot E(t) versus t.

(e) Find the average squared error for periods 2 through 8, for periods 3
through 8,. . . , for periods 6 through 8.

(f) Make a plot of your values from (e) for t = 2, . . . , 6. (At time t plot
the average squared error for periods t through 8.) Does the appear-
ance of this plot give you hope that any transient or “startup” effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance?

40. Refer to the Paper Dry Weight case in problems 38 and 39. At 10:50 the
speed pump dial was set back to 4.5 (45%) and left there for 5min in order
to return the system to the benchmark conditions of problem 38. A new
coefficient κ2 in an integral control algorithm was adopted, and beginning
at 10:55 this new adjustment algorithm was employed for 7 periods with
results summarized in Table 3.26.

TABLE 3.26. Values for problem 40
Time Period, t T (t) Y (t) E(t) ΔX(t)

10:55 1 70 72.0 −2 −3.32
11:01 2 70 71.7
11:13 3 70 71.1
11:19 4 70 68.8
11:25 5 70 69.6
11:31 6 70 71.8
11:37 7 70 68.2
11:43 8 70 69.7

(a) Find the value of the new coefficient κ2 used by Jobe and Hart. Then
fill in the E(t) and ΔX(t) values in the table for t = 2, . . . , 8.

(b) Plot Y (t) versus t.
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(c) Plot E(t) versus t.

(d) Find the average squared error for periods 2 through 8, for periods 3
through 8,. . . , and for periods 6 through 8.

(e) Make a plot of your values from (d) for t = 2, . . . , 6. (At time t plot
the average squared error for periods t through 8.) Does the appear-
ance of this plot give you hope that any transient or “startup” effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance?

41. Refer to the Paper Dry Weight case of problems 38, 39, and 40. After
making the measurement at 11:43 indicated in problem 40, the speed pump
dial was again set back to 4.5 and left there for 5min (from 11:44 to 11:49).
(This was again done to in some sense return the system to the benchmark
conditions.) Hart and Jobe decided to include both integral and proportional
terms in a new control equation, and κ2 = 1.66 and κ1 = .83 were selected
for use in Eq. (3.52). (The same integral control coefficient was employed,
and a proportional coefficient half as large as the integral coefficient was
added.) This new adjustment algorithm was used to produce the values in
Table 3.27.

TABLE 3.27. Values for problem 41
Time Period, t T (t) Y (t) E(t) ΔE(t) ΔX(t)

11:49 1 70 70.9 −.9
11:54 2 70 70.3 −.3 .6 0
11:59 3 70 68.8
12:06 4 70 70.0
12:12 5 70 69.6
12:18 6 70 69.3
12:24 7 70 68.4
12:30 8 70 68.4
12:36 9 70 69.8

(a) Find the values of E(t), ΔE(t), and ΔX(t) for periods 3 through 9.

(b) Plot Y (t) versus t.

(c) Plot E(t) versus t.

(d) Find the average squared error for periods 3 through 9, for periods 4
through 9,. . . , and for periods 7 through 9.

(e) Make a plot of your values from (d) for t = 3, . . . , 7. (At time t plot
the average squared error for periods t through 9.) Does the appear-
ance of this plot give you hope that any transient or “startup” effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance?
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42. Refer to the Paper Dry Weight case of problems 38 through 41. Yet ano-
ther control algorithm was considered. κ1 from problem 41 was halved and
the coefficient κ2 was left at 1.66. The pump speed dial was set to 4.5 at
12:37. Thereafter, the new “PI” control algorithm was used to produce the
values in Table 3.28.

TABLE 3.28. Values for problem 42
Time Period, t T (t) Y (t) E(t) ΔE(t) ΔX(t)

12:42 1 70 66.2
12:45 2 70 66.4
12:51 3 70 67.2
12:58 4 70 69.4
1:04 5 70 69.5
1:10 6 70 69.2
1:16 7 70 70.1
1:22 8 70 66.2
1:29 9 70 71.7

(a) Find E(t) for all 9 periods and ΔE(t) and the corresponding ΔX(t)
for periods 2 through 9.

(b) Plot Y (t) versus t.

(c) Plot E(t) versus t.

(d) Find the average squared error for periods 3 through 9, for periods 4
through 9, . . . , and for periods 7 through 9.

(e) Make a plot of your values from (d) for t = 3, . . . , 7. (At time t plot
the average squared error for periods t through 9.) Does the appear-
ance of this plot give you hope that any transient or “startup” effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance?

43. Refer to Example 35.

(a) Plot Y (t) versus t.

(b) Plot E(t) versus t.

(c) Find the average squared error for periods 4 through 11, for periods 5
through 11,. . . , and for periods 9 through 11.

(d) Make a plot of your values from (c) for t = 4, . . . , 9. (At time t plot
the average squared error for periods t through 11.) Does the appear-
ance of this plot give you hope that any transient or “startup” effects
have been eliminated before the last few periods and that those periods
adequately represent control algorithm performance?
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44. Refer to the Paper Dry Weight case and specifically the plots in problems
38d), 39f), 40e), 41e), 42e), and 43d). Which control equation seems to be
best in terms of producing small average squared error?

45. Rewrite the PID control equation (3.52) so that ΔX(t) is expressed in terms
of a linear combination of E(t), E(t − 1), and E(t − 2), the current and
two previous errors.

46. Fill levels of jelly jars are of interest. Every half hour, three jars are
taken from a production line and net contents measured and recorded. The
range and average of these three measurements are calculated and plotted
on charts. One of these charts is intended to monitor location of the fill
distribution, and the other is useful in monitoring the spread of the fill
distribution.

(a) What is the name for the chart used to monitor location of the fill-level
distribution?

(b) What is the name for the chart used to monitor spread of the fill-level
distribution?

(c) What is the name and value of the tabled constant used to make retro-
spective control limits for process location?

(d) What are the names and values of the two tabled constants used to
make retrospective control limits for process spread or short-term
variability?

(e) In this context, what constitutes a natural subgroup?

(f) Give an expression for the usual estimate of process short-term vari-
ability (σ) based on an average of subgroup ranges.

47. Consider again the scenario of problem 46. Suppose that instead of ranges
and averages, sample standard deviations and averages are computed and
plotted:

(a) What is the name and value of the tabled constant used to make retro-
spective control limits for process location?

(b) What are the names and values of the two tabled constants used to
make retrospective control limits for process spread or variability?

(c) Give an expression for the usual estimate of process short-term vari-
ability (σ) based on an average of subgroup standard deviations.

48. Consider again the scenario of problems 46 and 47, and suppose that instead
of three jars, 10 jars are sampled every half hour. Redo problems 46 and 47
with this change. For a given set of ranges or standard deviations, say which
sets of retrospective control limits are wider apart with this new sample size.
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49. Consider again the scenario of problems 46 and 47, and suppose that in-
stead of plotting averages to monitor location, the decision is made to plot
medians. What multiple of σ (or an estimate of this quantity) would be used
to set control limits for medians around some central value in the case that
n = 3? In the case that n = 11?

50. Consider drained weights of the contents of cans of Brand X green beans.
Believable values for the process mean and standard deviation of these
weights are 21.0 oz and 1.0 oz, respectively. Suppose that in a Brand X
canning factory, 8 of these cans are sampled every hour and their net con-
tents determined. Sample means and ranges are then computed and used to
monitor stability of the filling process.

(a) What is the name and value of the multiplier of σ = 1.0 that would
be used to establish a center line for sample ranges?

(b) What are the names and values of the multipliers of σ = 1.0 that
would be used to establish upper and lower control limits for sample
ranges?

(c) What center line and control limits should be established for sample
means?

51. Consider again the situation of problem 50, but suppose that instead of
ranges and averages, sample standard deviations and averages are computed
and plotted. Answer the questions posed in problem 50 (in the case of sam-
ple standard deviations instead of ranges).

52. Consider again the situation of problems 50 and 51, and suppose that in-
stead of eight cans, only five cans are sampled every hour. Redo problems
50 and 51 with this change. Say which sets of control limits are wider apart
with this new sample size.

53. Electronic Card Assemblies. In a 1995 article in Quality Engineering, Er-
mer and Hurtis discussed applications of control charting to the monitoring
of soldering defects on electronic card assemblies. One assembly technol-
ogy they studied was pin-in-hole (PIH) technology, which uses wave solder-
ing to secure components to printed circuit boards after the leads of com-
ponents have been inserted through holes drilled in the boards. The most
common types of soldering defects encountered using this technology are
“shorts” (unwanted electrical continuity between points on an assembly)
and “opens” (the absence of desired electrical continuity between points on
an assembly).

Production of a particular card is done in “jobs” consisting of 24 cards.
All cards from a job are tested, and a count is made of the total number
defects found on the job. What type of probability model might plausibly be
used to describe the number of defects found on a given job? What type of
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control chart might you use to monitor the production of soldering defects?
Suppose that records on 132 jobs show a total of 2 defects recorded. What
retrospective control limits might then be applied to the 132 different counts
of defects? Does a job with any defect at all signal a lack of control?

54. Milling Operation. A student group studied a milling operation used in
the production of a screen fixture mounting. Of primary importance was
a “deviation from flatness” measurement. The units of measurement were
.001 in. In the past, deviations from flatness had an average of 2.45 and a
standard deviation of 1.40. What do the values of these and the fact that
deviation from flatness cannot be negative suggest about the plausibility of
a normal model for deviation from flatness? For what follows temporarily
put aside any misgivings you might rightly have.

(a) Set up standards given control limits for process location. (Monitoring
is to be done on the basis of subgroups of size one.)

(b) Ten consecutive mountings produced the deviation from flatness val-
ues below (units are .001 in).

.5, 4.5, 2.0, 2.0, 3.0, 3.0, 2.0, 4.5, 3.0, 0.0

Together with the limits in (a), use these data values to make a control
chart for monitoring process aim. Has there been a process change
away from the standards? Why or why not?

(c) Find the moving ranges of adjacent observations and the mean of
these 10 observations.

(d) Make a retrospective individuals chart using the moving ranges and
grand average of the 10 data values. Give the center line and control
limits. What do you conclude based on this chart?

55. Refer to the Milling Operation case in problem 54.

(a) For purposes of process monitoring only, let a target deviation from
flatness be μ = 5, and suppose the process standard deviation is
σ = 1.40, as in problem 54. (In functional terms a 0 deviation from
flatness is ideal.) Compute control limits for individuals based on this
set of standards. Give the center line and control limits.

(b) Plot the individuals from problem 54(b) using your new limits from
(a). Does it appear that there has been a process change from standard
conditions? Why or why not?

(c) Discuss the practical meaning of the terms “stability,” “shift,” and “out
of control” in light of parts (b) and (d) of problem 54 and part (b)
above.
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56. Refer to the Lab Carbon Blank case in problem 21 of Chap. 1. Suppose
that repeated measurements of the same blank are normally distributed. For
convenience, the data are repeated here.

Test number 1 2 3 4 5 6 7
Measured carbon 5.18 1.91 6.66 1.12 2.79 3.91 2.87

Test number 8 9 10 11 12 13 14
Measured carbon 4.72 3.68 3.54 2.15 2.82 4.38 1.64

(a) Find retrospective control limits and center line for the sequence of
measurements. Use “3-sigma” limits.

(b) Plot the individual responses versus time and compare them to the
limits found in (a). Do you detect any measurement process instabil-
ity? Why or why not?

(c) Give an estimated mean measured carbon content. Give an estimated
standard deviation of measured carbon content, MR/1.128.

57. Refer to the Lab Carbon Blank case of problem 56. Suppose the nominal
or “real” carbon content is 1.0.

(a) Find control limits and center line to apply to the data of problem 56.
Use 3-sigma limits and MR in place of a real average range (R) in the
formula for retrospective limits. Make use of the nominal value 1.0 in
place of x.

(b) Plot the x values from problem 56, and compare them to your limits
from (a), i.e., make an individuals chart.

(c) What dilemma is revealed by your chart in (b) above and problem
56(b)? Discuss this using phrases such as “consistency of location,”
“shift in the mean,” “off-target process,” and “unstable process.”

58. Refer to the Lab Carbon Blank case in problems 56 and 57. It is unknown
whether the carbon measurements were made by the same person or by
as many as 14 different people. What configuration of operators would be
most effective in isolating instrument changes in the measurement of car-
bon content? Defend your answer in terms of the concept of “sources of
variability.”

59. Consider the analysis of a series of samples some time after their collection.

(a) What might be learned from an analysis based on standards given
control charts?

(b) What might be learned from an analysis instead using retrospective
limits on the control charts?
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60. Refer to the Paper Dry Weight case in problem 38. Recall that the target
for dry weight of 20- lb bond paper is 70 g/m2. The pump speed control-
ling the flow of liquid pulp mixture onto the conveyor-roller mechanism
was held fixed at 4.5 (45% of maximum flow) in the production of the data
in problem 38. Assume that under stable process conditions, dry weights
are normally distributed. The dry weight of a sample was recorded for each
of 12 consecutive samples, approximately equally spaced in time.

(a) Find control limits to apply to the data of problem 38. Use the nom-
inal dry weight of 70 as a target value, and employ MR/1.128 as an
estimate of σ. Does the process appear to be stable? Why or why not?

(b) 100 measurements correspond to how many subgroups in the context
of problem 38?

(c) Suppose that the limits of (a) are applied to the future monitoring of
individuals. About what ARL is produced if σ is as in part (a), but μ
increases from its standard value by 3.5 g/m2? Assume the process
is stable and dry weights are normally distributed.

(d) If completely retrospective control limits were used (x was used in
place of the target value for dry weight), would your conclusion in (a)
change? Why or why not?

61. Transmission Housings. Apple, Hammerand, Nelson, and Seow ana-
lyzed data taken from a set of 35 transmission housings. In addition to
the side cover hole diameter considered in problem 4 of Section 2 of
this chapter, they also examined upper borehole diameters on the trans-
mission housings. For y the hole diameter in inches, the values below
concern x = (y − 3.5000)× 104, diameters stated in ten thousandths of an
inch above 3.5000 in. Specification limits for the upper borehole diameter
were 3.502 ± .002 in. (Below, 19 represents y = 3.5019, 28 represents
y = 3.5028, etc.)

Transmission housing 1 2 3 4 5 6 7 8 9 10 11 12
Measured diameter 19 28 25 22 18 20 20 14 20 12 16 16

Transmission housing 13 14 15 16 17 18 19 20 21 22 23 24
Measured diameter 22 22 22 21 23 21 20 18 18 18 12 11

Transmission housing 25 26 27 28 29 30 31 32 33 34 35
Measured diameter 13 12 16 12 10 20 21 15 28 26 24

(a) What is the subgroup size?

(b) Give appropriate retrospective lower and upper control limits and cen-
ter line for monitoring the hole diameters.

(c) What does the chart using on your limits from (b) indicate about the
stability of the upper borehole diameter production process? Why?



CHAPTER 4

PROCESS
CHARACTERIZATION AND

CAPABILITY ANALYSIS

The previous chapter dealt with tools for monitoring processes and detecting
physical instabilities. The goal of using these is finding the source(s) of any pro-
cess upsets and removing them, creating a process that is consistent/repeatable/
predictable in its pattern of variation. When that has been accomplished, it then
makes sense to summarize that pattern of variation graphically and/or in terms of
numerical summary measures. These descriptions of consistent process behavior
can then become the bases for engineering and business decisions about if, when,
and how the process should be used.

This chapter discusses methods for characterizing the pattern of variation exh-
ibited by a reasonably predictable system. Section 4.1 begins by presenting some
more methods of statistical graphics (beyond those in Sect. 1.5) useful in pro-
cess characterization. Then Sect. 4.2 discusses some “Process Capability Indices”
and confidence intervals for them. Next, prediction and tolerance intervals for
measurements generated by a stable process are presented in Sect. 4.3. Finally,
Sect. 4.4 considers the problem of predicting the variation in output for a system
simple enough to be described by an explicit equation, in terms of the variability
of system inputs.
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4.1 More Statistical Graphics for Process
Characterization

The elementary methods of Sect. 1.5 provide a starting point for picturing the
pattern of variability produced by a process. Slightly more sophisticated methods
are also possible and often prove useful. Some of these are the topic of this section.
After briefly reviewing the simple ideas of dot plots and stem-and-leaf diagrams,
graphical tools based on the concept of distribution quantiles are discussed. The
tools of quantile plots, box plots, and both empirical and theoretical Q-Q plots
(probability plots) are presented.

4.1.1 Dot Plots and Stem-and-Leaf Diagrams

Two very effective tools for presenting small to moderate-sized data sets are dot
plots and stem-and-leaf diagrams. A dot plot is made by ruling off an appropriate
scale and then placing a large dot above the scale for each data point, stacking dots
corresponding to points that are identical (to the indicated precision of the data).
A stem-and-leaf diagram is made by using a vertical line (a stem) to separate
the leading digits for data values from the final few (usually one or two) digits.
These (sets of) final digits are stacked horizontally to form “leaves” that function
like the bars of a histogram, portraying the shape of the data set. The virtue of a
stem-and-leaf diagram is that it provides its picture of data set shape without loss
of the exact individual data values.

Example 36 Tongue Thickness on Machined Steel Levers. Unke, Wayland, and
Weppler worked with a machine shop on the manufacture of some steel levers.
The ends of these levers were machined to form tongues. Table 4.1 contains mea-
sured thicknesses for 20 tongues cut during the period the students worked on the
process. The units are inches, and engineering specifications for the tongue thick-
ness were .1775 to .1875. Figure 4.1 is a dot plot of the tongue-thickness data,
and Fig. 4.2 is a corresponding stem-and-leaf diagram. On the stem-and-leaf dia-
gram, the digits “.18X” have been placed to the left of the stem, and only the final
digits recorded in Table 4.1 have been used to make the leaves. Notice also that
the digits in the leaves have been sorted smallest to largest to further organize the
data.
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TABLE 4.1. Measured tongue thicknesses for twenty machined steel levers (inches)
.1825 .1817 .1841 .1813 .1811
.1807 .1830 .1827 .1835 .1829
.1827 .1816 .1819 .1812 .1834
.1825 .1828 .1868 .1812 .1814

.1800 .1850

FIGURE 4.1. Dot plot of the tongue-thickness data
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FIGURE 4.2. Stem-and-leaf diagram of tongue thicknesses

A useful variation on the basic stem-and-leaf diagram is placing two of them
back to back, using the same stem for both, with leaves for the first projecting to
the left and leaves for the second projecting to the right. This is helpful when one
needs to make comparisons between two different processes.

Example 37 Heat Treating Gears. The article “Statistical Analysis: Mack Truck
Gear Heat Treating Experiments” by P. Brezler (Heat Treating, November 1986)
describes a company’s efforts to find a way to reduce distortion in the heat treat-
ing of some gears. Two different methods were considered for loading gears into a
continuous carburizing furnace, namely, laying the gears flat in stacks and hang-
ing them from rods passing through the gear bores. Table 4.2 on page 194 contains
measurements of “thrust face runout” made after heat treating 38 gears laid and
39 gears hung. Figure 4.3 shows back-to-back stem-and-leaf diagrams for the
runouts. (Notice that in this display, there are two sets of stems for each leading
digit, a “0-4” stem and a “5-9” stem.) The stem-and-leaf diagrams clearly show
the laying method to produce smaller distortions than the hanging method.
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TABLE 4.2. Thrust face runouts for gears laid and gears hung (.0001 in)
Laid Hung

5, 8, 8, 9, 9, 9, 9, 10, 10, 10 7, 8, 8, 10, 10, 10, 10, 11, 11, 11
11, 11, 11, 11, 11, 11, 11, 12, 12, 12 12, 13, 13, 13, 15, 17, 17, 17, 17, 18
12, 13, 13, 13, 13, 14, 14, 14, 15, 15 19, 19, 20, 21, 21, 21, 22, 22, 22, 23
15, 15, 16, 17, 17, 18, 19, 27 23, 23, 23, 24, 27, 27, 28, 31, 36

9 8

9 9 9 9 8 8 5

1 1 1 1 0 0 0

7 7 6 5 5 5 5

7 8 8

0 0 0 0 1 1 1 2 3 3 3

5 7 7 7 7 8 9 9

0 1 1 1 2 2 2 3 3 3 3 4

7 7 8

1

6

4 4 4 3 3 3 3 2 2 2 2 1 1 1
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3

7

Laid Runouts Hung Runouts

FIGURE 4.3. Back-to-back stem-and-leaf plots of thrust face runouts (10−4 in)

Dot plots and stem-and-leaf diagrams are primarily tools for working data
analysis. Histograms are more easily understood by the uninitiated than are stem-
and-leaf diagrams. As such, they are more appropriate for final reports and presen-
tations. But because of the grouping that is usually required to make a histogram,
they do not provide the kind of complete picture of a data set provided by the
simple dot plots and stem-and-leaf diagrams discussed here.

4.1.2 Quantiles and Box Plots

The concept of quantiles is especially helpful for building descriptions of distri-
butions. Roughly speaking, the p quantile (or 100×pth percentile) of a distribution
is a number such that a fraction p of the distribution lies to the left and a fraction
1 − p lies to the right of the number. If one scores at the .8 quantile (80th per-
centile) on a national college entrance exam, about 80% of those taking the exam
had lower marks, and 20% had higher marks. Or, since 95% of the standard nor-
mal distribution is to the left of 1.645, one can say that 1.645 is the .95 quantile
of the standard normal distribution. The notation Q(p) will be used in this book

Notation for the
p Quantile

to stand for the p quantile of a distribution.
While the idea of a distribution quantile should be more or less understandable

in approximate terms, a precise definition of Q(p) is needed. For example, faced
with a sample consisting of the five values 4, 5, 5, 6, and 8, exactly what should
one mean by Q(.83)? What number should one announce as placing 83% of the
five numbers to the left and 17% to the right? Definition 38 gives the two-part
convention that will be used in this book for quantiles of data sets.
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Definition 38 For a data set consisting of n values x1 ≤ x2 ≤ · · · ≤ xn (xi is
the ith smallest data value),

1. for any positive integer i, if p = (i− .5)/n, the p quantile of the data set is

Q

(
i− .5

n

)
= xi, and

2. for values of p not of the form (i − .5)/n for any integer i but with .5/n <
p < (n− .5)/n, the p quantile of the data set is found by linear interpola-
tion between the two values Q((i − .5)/n) with corresponding (i − .5)/n
closest to p.

Definition 38 defines Q(p) for all p between .5/n and (n− .5)/n. If one wants
to find a particular single quantile for a data set, say Q(p), one may solve the
equation

p =
i− .5

n

for i, yielding

Index i of the
Ordered Data
Point that
is Q(p)

i = np+ .5 . (4.1)

If np+ .5 is an integer, then Q(p) is simply the (np+ .5)th smallest data point. If
relationship (4.1) leads to a non-integer value for i, one interpolates between the
ordered data points with indices just smaller than and just larger than np+ .5.

It is sometimes helpful to plot Q(p) as a function of p. Such a plot is called a
quantile plot and can be made by plotting the n points ((i − .5)/n, xi) and then
drawing in the interpolating line segments. It gives essentially the same infor-
mation about a distribution as the possibly more familiar “cumulative frequency
ogive” of elementary statistics.

Example 39 (Example 36 continued.) Returning to the tongue-thickness
example, Table 4.3 on page 196 shows the n = 20 ordered data values and
corresponding values of (i − .5)/n. From the values in Table 4.3, it is clear,
for example, that Q(.425) = .1819. But should one desire the .83 quantile
of the tongue-thickness data set, one must interpolate appropriately between
Q(.825) = .1834 and Q(.875) = .1835. Doing so,

Q(.83) =
.830− .825

.875− .825
Q(.875) +

(
1− .830− .825

.875− .825

)
Q(.825) ,

= .1(.1835) + .9(.1834) ,

= .18341 .

And giving a more complete summary of the entire quantile function for the
tongue-thickness data set, Fig. 4.4 on page 196 is a quantile plot based on
Table 4.3.
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TABLE 4.3. Ordered tongue thicknesses and values of ((i− .5) /20)

i p = i−.5
20 xi= Q

(
i−.5
20

)
i p = i−.5

20 xi= Q
(
i−.5
20

)

1 .025 .1807 11 .525 .1825
2 .075 .1811 12 .575 .1827
3 .125 .1812 13 .625 .1827
4 .175 .1812 14 .675 .1828
5 .225 .1813 15 .725 .1829
6 .275 .1814 16 .775 .1830
7 .325 .1816 17 .825 .1834
8 .375 .1817 18 .875 .1835
9 .425 .1819 19 .925 .1841
10 .475 .1825 20 .975 .1868

1.00.50.0

0.187
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0.185

0.184
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0.181

p

Q
(p

)

FIGURE 4.4. Quantile plot for the tongue-thickness data

Special values of p have corresponding specially named p quantiles. The .5
quantile of a distribution is the usual median, symbolized as x̃ in Sect. 3.2.Q(.25)
is often called the first quartile of a distribution and Q(.75) is called the third
quartile. And the values Q(.1), Q(.2), . . . , Q(.9) are called the deciles of a dis-
tribution.

Example 40 (Examples 36 and 39 continued.) Looking carefully at Table 4.3,
it is easy to see that the median of the tongue-thickness data set is the simple
average of Q(.475) = .1825 and Q(.525) = .1825. That is, x̃ = Q(.5) = .1825.
Similarly, the first quartile of the data set is halfway between Q(.225) = .1813
and Q(.275) = .1814. That is, Q(.25) = .18135. And the third quartile of the
tongue-thickness data is the mean of Q(.725) = .1829 and Q(.775) = .1830,
namely, Q(.750) = .18295.

Quantiles are basic building blocks for many useful descriptors of a distribu-
tion. The median is a well-known measure of location. The difference between the
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quartiles is a simple measure of spread called the interquartile range. In symbols

Interquartile
RangeIQR = Q(.75)−Q(.25) . (4.2)

And there are a number of helpful graphical techniques that make use of quantiles.
One of these is the box plot.

Figure 4.5 shows a generic box plot. The box locates the middle 50% of the
distribution, with a dividing line drawn at the median. The placement of this divid-
ing line indicates symmetry (or lack thereof) for the center part of the distribution.
Lines (or “whiskers”) extend out from the box to the most extreme data points that
are within 1.5IQR (1.5 times the box length) of the box. Any data values that fall
more than 1.5IQR away from the box are plotted individually and in the process
identified as unusual or “outlying.”

Are Plotted Separately.

Smallest Data Point
Bigger than or Equal to
Q(.25)–1.5 IQR

Q(.25)

Q(.5)

Q(.75)

Largest Data Point
Less than or Equal to
Q(.75)+1.5 IQR

1.5 IQR 1.5 IQRIQR

Any Data Values Less Than Q(.25)–1.5 IQR or Larger Than Q(.75)+1.5 IQR

FIGURE 4.5. Generic box plot

Example 41 (Examples 36, 39, and 40 continued.) As an illustration of the
calculations necessary to implement the schematic shown in Fig. 4.5, consider the
making of a box plot for the tongue thicknesses. Previous calculation has shown
the median thickness to be .1825 and the quartiles of the thickness distribution
to be Q(.25) = .18135 and Q(.75) = .18295. Thus, from display (4.2), the
interquartile range for the thickness data set is

IQR = Q(.75)−Q(.25) = .18295− .18135 = .0016 .

Then, since

Q(.25)− 1.5IQR = .18135− .0024 = .17895

and there are no data points less than .17895, the lower whisker extends to the
smallest data value, namely, .1807. Further, since

Q(.75) + 1.5IQR = .18295 + .0024 = .18535

and there is one data point larger than this sum, the value .1868 will be plotted
individually, and the upper whisker will extend to the second largest data value,
namely, .1841. Figure 4.6 on page 198 is a box plot for the tongue-thickness data.
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It reveals some asymmetry in the central part of the data set, its relative short-
tailedness to the low side, and the one very large outlying data value.

.1800 .1850

FIGURE 4.6. Box plot for the tongue-thickness data

Box plots carry a fair amount of information about distribution location, spread,
and shape. They do so in a very compact way. Many of them can be placed on a
single page to facilitate comparisons among a large number of distributions. The
next example illustrates the comparison of three distributions using side-by-side
box plots.

Example 42 Comparing Hardness Measurement Methods. Blad, Sobatka, and
Zaug did some hardness testing on a single metal specimen. They tested it on three
different machines, 10 times per machine. A dial Rockwell tester, a digital Rock-
well tester, and a Brinell tester were used. The Brinell hardnesses they recorded
(after conversion in the case of the Rockwell readings) are given in Table 4.4.

Figure 4.7 shows box plots for the measurements produced by the three hard-
ness testers. It is very helpful for comparing them. It shows, among other things,
the comparatively large variability and decided skewness of the Brinell machine
measurements and the fact that the dial Rockwell machine seems to read consis-
tently higher than the Digital Rockwell machine.

TABLE 4.4. Hardness values for a single specimen obtained from three different testers
(Brinell hardness)

Dial Rockwell Digital Rockwell Brinell
536.6, 539.2, 524.4, 536.6 501.2, 522.0, 531.6, 522.0 542.6, 526.0, 520.5, 514.0
526.8, 531.6, 540.5, 534.0 519.4, 523.2, 522.0, 514.2 546.6, 512.6, 516.0, 580.4
526.8, 531.6 506.4, 518.1 600.0, 601.0

4.1.3 Q-Q Plots and Normal Probability Plots

An important application of quantiles is to the careful comparison of the shapes of
two distributions through making and interpreting Q-Q plots. The version of the
Q-Q plot that is easiest to understand is that where both distributions involved are
empirical, representing data sets. The most important version is that where one
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Dial Rockwell

Digital Rockwell

Brinell

500 550 600
Brinell Number

FIGURE 4.7. Box plots for hardness measurements made on three different testers

distribution is empirical and the other is a theoretical distribution. One is essen-
tially investigating how the shape of a data set matches that of some probability
distribution. This discussion will begin with the easy-to-understand (but practi-
cally less important) case of comparing shapes for two data sets and then proceed
to the more important case.

Consider the two small data sets given in Table 4.5. Figure 4.8 shows dot plots
for them and reveals that by most standards, they have the same shape. There are
several ways one might try to quantify this fact. For one thing, the relative sizes
of the gaps or differences between successive ordered data values are the same for
the two data sets. That is, the gaps for the first data set are in the ratios 1 : 1 : 0 : 2,
and for the second data set, the ratios are 2 : 2 : 0 : 4.

TABLE 4.5. Two small artificial data sets
Data set 1 Data set 2
2, 3, 4, 4, 6 5, 7, 9, 9, 13

2 3 4 5 6

5 6 7 8 9 10 11 12 13

FIGURE 4.8. Dot diagrams for two small data sets

A second (and for present purposes more germane) observation is that the ord-
ered values in the second data set are linearly related to those in the first. In fact,
the values in the second data set were derived by doubling those in the first data
set and adding 1. This means that the second quantile function is linearly related
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to the first by

Q2(p) = 2Q1(p) + 1 .

Notice then that if one makes up ordered pairs of the form (Q1(p), Q2(p)) and
plots them, all of the plotted points will fall on a single line. Using the values
p = .1, .3, .5, .7, and .9, one has in the present case the five ordered pairs:

(Q1(.1), Q2(.1)) = (2, 5) ,

(Q1(.3), Q2(.3)) = (3, 7) ,

(Q1(.5), Q2(.5)) = (4, 9) ,

(Q1(.7), Q2(.7)) = (4, 9) , and

(Q1(.9), Q2(.9)) = (6, 13) ,

and the scatterplot in Fig. 4.9.
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FIGURE 4.9. Q-Q plot for the data sets of Table 4.5

What is true in this highly simplified and artificial example is true in general.
Equality of “shape” for two distributions is equivalent to the two correspond-
ing quantile functions being linearly related. A way of investigating the extent to
which two distributions have the same shape is to plot for suitable p, ordered pairs
of the form

Points for a
Q-Q Plot of
Distributions
1 and 2

(Q1(p), Q2(p)) , (4.3)

looking for linearity. Where there is perfect linearity on such a plot, equality of
shape is suggested. Where there are departures from linearity, those departures
can often be interpreted in terms of the relative shapes of the two distributions.
Consider, for example, a modified version of the present example where the value
5 in the second data set is replaced by 1. Figure 4.10 is the Q-Q plot for this
modification.
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FIGURE 4.10. Q-Q plot after modifying one value in Table 4.5

Notice that while four of the plotted points in Fig. 4.10 fall on a single straight
line, the fifth, (2, 1), does not fall on that line. It is below/to the right of the line
established by the rest of the points. To bring it “back on line” with the rest,
it would have to be moved either up or to the left on the plot. This says that
relative to the shape of data set 1, the second data set is long tailed to the low side.
Equivalently, relative to the shape of data set 2, the first is short tailed to the low
side.

The important version of Q-Q plotting where the first distribution is that of
a data set and the second is a theoretical or probability distribution is usually
called probability plotting. And the most common kind of probability plotting is
normal plotting, where one is investigating the degree of similarity between the
shape of a data set and the archetypal bell shape of the normal distribution.

The values of p typically used in making the points (4.3) for a probability plot
are those corresponding exactly to the data points in hand, namely, those of the
form (i − .5)/n for integer i. Using such values of p, if Qz(p) is the standard
normal quantile function, it follows that a normal plot can be made on regular
graph paper by plotting the n points

Points for a
Normal Plot of
an x Data Set

(
xi, Qz

(
i − .5

n

))
, (4.4)

where as in Definition 38, xi is the ith smallest data value.
Standard normal quantiles for use in display (4.4) can, of course, be found by

locating values of p in the body of a cumulative normal probability table like
Table A.1 and then reading corresponding quantiles from the table’s margin. Sta-
tistical packages provide “inverse cumulative probability” functions that can be
used to automate this procedure. And there are approximations for Qz(p) that are
quite adequate for plotting purposes. One particularly simple approximation (bor-
rowed from Probability and Statistics for Engineers and Scientists by Walpole
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and Myers) is

Approximate
Standard
Normal p
Quantile

Qz(p) ≈ 4.91[p.14 − (1− p).14] ,

which returns values that are accurate to within .01 for .005 ≤ p ≤ .995 (and to
within .05 for .001 ≤ p ≤ .999).

Example 43 (Examples 36, 39, 40, and 41 continued.) Consider the problem
of assessing how normal/bell shaped the tongue-thickness data of Table 4.1 are.
A normal probability plot (theoretical Q-Q plot) can be used to address this prob-
lem. Table 4.6 shows the formation of the necessary ordered pairs, and Fig. 4.11
is the resulting normal plot. The plot might be called roughly linear, except for
the point corresponding to the largest data value. In order to get that point back
in line with the others, one would need to move it either to the left or up. That
is, relative to the normal distribution shape, the data set is long tailed to the high
side. The tongue thickness of .1868 simply does not fit into the somewhat normal-
looking pattern established by the rest of the data.

TABLE 4.6. Coordinates for points of a normal plot of the tongue-thickness data
i xi= Q

(
i−.5
20

)
Qz

(
i−.5
20

)
i xi= Q

(
i−.5
20

)
Qz

(
i−.5
20

)

1 .1807 −1.96 11 .1825 .06
2 .1811 −1.44 12 .1827 .19
3 .1812 −1.15 13 .1827 .32
4 .1812 −.93 14 .1828 .45
5 .1813 −.76 15 .1829 .60
6 .1814 −.60 16 .1830 .76
7 .1816 −.45 17 .1834 .93
8 .1817 −.32 18 .1835 1.15
9 .1819 −.19 19 .1841 1.44

10 .1825 −.06 20 .1868 1.96

Theoretical Q-Q plotting (probability plotting) is important for several reasons.
First, it helps one judge how much faith to place in calculations based on a prob-
ability distribution and suggests in what ways the calculations might tend to be
wrong. For example, Fig. 4.11 suggests that if one uses a normal distribution to
describe tongue thickness, the frequency of very large data values might well be
underpredicted.

A second way in which probability plotting is often helpful is in providing
graphical estimates of distribution parameters. For example, it turns out that if
one makes a normal plot of an exactly normal distribution, the slope of the plot is
the reciprocal of σ, and the horizontal intercept is μ. That suggests that for a real
data set whose normal plot is fairly linear, one might infer that
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FIGURE 4.11. Normal plot of the tongue-thickness data

1. the horizontal intercept of an approximating line is a sensible estimate of
the mean of the process generating the data, and Estimates of a

Mean and
Standard
Deviation from
a Normal Plot

2. the reciprocal of the slope is a sensible estimate of the standard deviation
of the process generating the data.

Example 44 Angles of Holes Drilled by Electrical Discharge Machining
(EDM). Duren, Ling, and Patterson worked on the production of some small,
high-precision metal parts. Holes in these parts were being drilled using an
electrical discharge machining technique. The holes were to be at an angle to
one flat surface of the parts, and engineering specifications on that angle were
45◦±2◦. The actual angles produced were measured on 50 consecutive parts and
are given in Table 4.7. (The units there are degrees and the values are in decimal
form. The data were originally in degrees and minutes.) Figure 4.12 on page
204 is a normal plot of the hole angle data. Notice that the plot is fairly linear
and that the horizontal intercept of an approximating line is near the sample
mean x = 44.117, while the slope of an approximating line is approximately the
reciprocal of s = .983.

TABLE 4.7. Angles of fifty holes drilled by electrical discharge machining (degrees)

46.050 45.250 45.267 44.700 44.150 44.617 43.433 44.550 44.633 45.517
44.350 43.950 43.233 45.933 43.067 42.833 43.233 45.250 42.083 44.067
43.133 44.200 43.883 44.467 44.600 43.717 44.167 45.067 44.000 42.500
45.333 43.467 43.667 44.000 44.000 45.367 44.950 45.100 43.867 43.000
42.017 44.600 43.267 44.233 45.367 44.267 43.833 42.450 44.650 42.500

The facts that (for bell-shaped data sets) normal plotting provides a simple way
of approximating a standard deviation and that 6σ is often used as a measure
of the intrinsic spread of measurements generated by a process together lead to
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FIGURE 4.12. Normal plot of the tongue-thickness data

the common practice of basing process capability analyses on normal plotting.
Figure 4.13 on page 206 shows a very common type of industrial form that essen-
tially facilitates the making of a normal plot by removing the necessity of evaluat-
ing the standard normal quantiles Qz(p). (On the special vertical scale, one may
simply use the plotting position p rather than Qz(p), as would be required when
using regular graph paper.) After plotting a data set and drawing in an approx-
imating straight line, 6σ can be read off the plot as the difference in horizontal
coordinates for points on the line at the “+3σ” and “−3σ” vertical levels (i.e.,
with p = .0013 and p = .9987).

A form like the one in Fig. 4.13 encourages the plotting of process data (always
a plus) and also allows even fairly nonquantitative people to easily estimate and
develop some intuition about “the process spread.” Normal plotting is certainly
not the last word in process characterization, but it is a very important tool that can
and should be used alongside some of the other (numerical) methods presented in
the following sections.

Section 4.1 Exercises

1. A distributor of spices and seasonings checks moisture content of lots of
pepper that it receives from a supplier. The company’s specifications on
moisture content are from 9% to 12%. The following are moisture content
data for 22 incoming pepper lots (in %). The data are not listed according
to production or arrival order.

11.5, 11.1, 11.1, 10.9, 10.6, 10.6, 10.6, 10.7, 10.7, 10.4, 10.4,

10.5, 10.5, 10.3, 10.0, 10.0, 10.1, 9.7, 9.6, 9.3, 9.3, 9.3

(a) Make a normal probability plot for these data. Does it appear that
normal distribution is an adequate model for % moisture content in
lots of pepper? Why or why not?
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(b) Based on the normal probability plot in (a), estimate the mean and
standard deviation of % moisture content in a pepper lot.

(c) Make a dot plot for these data.

(d) Make a histogram for these data using 9.25 to 9.49, 9.5 to 9.74, 9.75
to 9.99, 10.0 to 10.24, . . . .., 11.5 to 11.75 as the “bins.”

(e) Make a box plot for these data.

(f) Give the first quartile, median, and third quartile for these data.

(g) Find the interquartile range for this set of data.

2. Continue with the data of problem 1. It was noted that the data are not
listed here according to production or arrival order.

(a) In addition to the data above, what should have been recorded to mon-
itor (over time) the % moisture content in pepper lot production?

(b) For your conclusions and estimates in problem 1 to fairly represent the
future, what must be true (over time) about the pepper lot production
process?

3. A painting process was studied and determined to be stable. The variable
of interest was paint thickness on a particular item at a specified location
on the item. The following paint thickness data were recorded for n = 10
such items in some unspecified units.

.2, .8, 4.1, 2.4, 9.7, 9.5, 4.4, 6.2, 5.9, 1.8

(a) Make a normal probability plot for the data. Does it appear that a
normal model for paint thickness is adequate? Why or why not?

(b) Make a box plot of the data. Do you find any outliers?

(c) Based on the normal probability plot, (graphically) estimate the 1st
quartile, the 3rd quartile, and the median of paint thicknesses.

4. Below are individual values of the percentages, x, of “small” grit particles
in a bulk abrasive used by a company in the production of a type of sandpa-
per. The company has already done extensive process monitoring and has
concluded the percentage of this “small” grit particle % in lots of the mate-
rial is stable. Below are the most recent data obtained from 11 samples.

11.0, 14.2, 13.1, 19.6, 16.7, 13.3, 14.1, 14.7, 16.5, 16.1, 13.7

(a) Make a normal probability plot for the data. Does it appear that a
normal model for percent of small grit particles is adequate? Why or
why not?

(b) Find the sample mean and sample standard deviation of x.

(c) Based on the normal probability plot (graphically), estimate the 90th
percentile of percent small grit particles in a sample of this material.
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4.2 Process Capability Measures and Their
Estimation

The methods of Sect. 4.1 can be used to picture the pattern of variation associated
with a process. It is also helpful to have some numerical summary measures to
quote as more or less representing/condensing the graphics. Of course, the mean
and standard deviation are useful in this regard. But there are also more special-
ized measures that have come into common use in quality assurance circles. Some
of these are the subject of this section.

This section presents some measures of process performance that are appro-
priate for processes that generate at least roughly normally distributed data. The
“process capability” and two “capability ratios,” Cp and Cpk , are discussed, and
confidence intervals for them are presented. But before introducing these, it is
important to offer a disclaimer: unless a normal distribution makes sense as a des-
cription of process output, these measures are of dubious relevance. Further, the
confidence interval methods presented here for estimating them are completely
unreliable unless a normal model is appropriate. So the normal plotting idea pre-
sented in the last section is a very important prerequisite for these methods.

μ–3σ μ μ + 3σ x

.9973

FIGURE 4.14. Normal distribution

The large majority of a normal distribution is located within three standard
deviations of its mean. Figure 4.14 illustrates this elementary point. In light
of this fact, it makes some sense to say that 6σ is a measure of process spread
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Process
Capability

and to call 6σ the process capability for a stable process generating normally
distributed measurements.

The fact that there are elementary statistical methods for estimating the stan-
dard deviation of a normal distribution implies that it is easy to give confidence
limits for the process capability. That is, if one has in hand a sample of n observa-
tions with corresponding sample standard deviation s, then confidence limits for
6σ are simply

Confidence
Limits for 6σ

6s

√
n− 1

χ2
upper

and/or 6s

√
n− 1

χ2
lower

, (4.5)

where χ2
upper and χ2

lower are upper and lower percentage points of the χ2 distribu-
tion with n− 1 degrees of freedom. If the first limit in display (4.5) is used alone
as a lower confidence bound for 6σ, the associated confidence level is the prob-
ability that a χ2

n−1 random variable takes a value less than χ2
upper. If the second

limit in display (4.5) is used alone as an upper confidence bound for 6σ, the asso-
ciated confidence is the probability that a χ2

n−1 random variable exceeds χ2
lower.

If both limits in display (4.5) are used to make a two-sided interval for the process
capability, the associated confidence level is the probability that a χ2

n−1 random
variable takes a value between χ2

lower and χ2
upper.

Example 45 Process Capability for the Angles of EDM-Drilled Holes (Exam-
ple 44 revisited). Figure 4.12 shows the angle data of Table 4.7 to be reasonably
described by a normal distribution. As such, it makes sense to consider estimat-
ing the process capability for the angles at which holes are drilled. Recall that the
students’ data had n = 50 and s = .983. From the approximation provided with
Table A.3 or a statistical package, the .05 and .95 quantiles of the χ2 distribution
for ν = n− 1 = 49 degrees of freedom are, respectively, 33.93 and 66.34. Thus,
from display (4.5), the interval with end points

6(.983)

√
50− 1

66.34
and 6(.983)

√
50− 1

33.93
,

that is,

5.07◦ and 7.09◦

is a 90% confidence interval for the process capability. (One is “90% sure” that
the process spread is at least 5.07◦ and no more than 7.09◦.)

Where there are both an upper specification U and a lower specification L for
measurements generated by a process, it is common to compare process variabil-
ity to the spread in those specifications. One way of doing this is through process
capability ratios. And a popular process capability ratio is
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Capability
Ratio CpCp =

U − L

6σ
. (4.6)

When this measure is 1, the process output will fit more or less exactly inside spec-
ifications provided the process mean is exactly on target at (U + L)/2. When Cp

is larger than 1, there is some “breathing room” in the sense that a process would
not need to be perfectly aimed in order to produce essentially all measurements
inside specifications. On the other hand, where Cp is less than 1, no matter how
well a process producing normally distributed observations is aimed, a significant
fraction of the output will fall outside specifications.

The very simple form of Eq. (4.6) makes it clear that once one knows how to
estimate 6σ, one may simply divide the known difference in specifications by
confidence limits for 6σ in order to derive confidence limits for Cp. That is, lower
and upper confidence limits for Cp are, respectively,

Confidence
Limits for Cp

(U − L)

6s

√
χ2
lower

n− 1
and/or

(U − L)

6s

√
χ2
upper

n− 1
, (4.7)

where again χ2
upper and χ2

lower are upper and lower percentage points of the χ2

distribution with n − 1 degrees of freedom. If the first limit in display (4.7) is
used alone as a lower confidence bound for Cp, the associated confidence level is
the probability that a χ2

n−1 random variable exceeds χ2
lower. If the second limit in

display (4.7) is used alone as an upper confidence bound for Cp, the associated
confidence is the probability that a χ2

n−1 random variable is less than χ2
upper.

If both limits in display (4.7) are used to make a two-sided interval for Cp, the
associated confidence level is the probability that a χ2

n−1 random variable takes a
value between χ2

lower and χ2
upper.

Example 46 (Examples 44 and 45 continued.) Recall from Example 44 in
Sect. 4.1 that the engineering specifications on the angles for the EDM-drilled
holes were 45◦ ± 2◦. That means that for this situation, U − L = 4◦. So, since
from before one is 90% confident that 6σ is between 5.07◦ and 7.09◦, one can be
90% confident that Cp is between

4

7.09
and

4

5.07
,

that is, between
.56 and .79.

Of course, this same result could have been obtained beginning directly with
expressions (4.7) rather than starting from the limits (4.5) for 6σ.
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Cp is more a measure of process potential than it is a measure of current per-
formance. Since the process aim is not considered in the computation of Cp, it
is possible for a misaimed process with very small intrinsic variation to have a
huge value of Cp and yet currently be turning out essentially no product in spec-
ifications. Cp measures only “what could be” were the process perfectly aimed.
This is not necessarily an undesirable feature of Cp, but it is one that users need
to understand.

Another process capability index that does take account of the process mean
(and is more a measure of current process performance than of potential perfor-
mance) is one commonly known as Cpk . This measure can be described in words
as “the number of 3σs that the process mean is to the good side of the closest
specification.” For example, if U − L is 10σ and μ is 4σ below the upper speci-
fication, then Cpk is 4σ/3σ = 1.33. On the other hand, if U − L is 10σ and μ is
4σ above the upper specification, then Cpk is −1.33.

In symbols,

Capability
Index Cpk

Cpk = min

{
U − μ

3σ
,
μ− L

3σ

}
=

U − L− 2
∣∣μ− U+L

2

∣∣
6σ

. (4.8)

This quantity will be positive as long as μ is between L and U . It will be large if μ
is between L and U (and close to neither L nor U ), and U − L is large compared
to σ. Cpk is never larger than Cp, i.e.,

Cpk ≤ Cp ,

and the two are equal only when μ is exactly at the mid-specification (L+ U) /2.
Making a confidence interval for Cpk is more difficult than making one for

Cp. The best currently available method is only appropriate for large samples
and provides a real confidence level that only approximates the nominal one. The
method is based on the natural single-number estimate of Cpk ,

Estimate
of Cpk

Ĉpk = min

{
U − x̄

3s
,
x̄− L

3s

}
=

U − L− 2
∣∣x̄− U+L

2

∣∣
6s

. (4.9)

Then confidence limits for Cpk are

Confidence
Limits for Cpk

Ĉpk ± z

√
1

9n
+

Ĉpk

2

2n− 2
. (4.10)

If z is the p quantile of the standard normal distribution (z = Qz(p)), a single one
of the two limits in display (4.10) is an approximately p× 100% (lower or upper)
confidence bound for Cpk. If both limits are used to make a two-sided interval,
then the approximate confidence level is (2p− 1)× 100%.
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Example 47 (Examples 44, 45, and 46 continued.) The 50 EDM hole angles
have sample mean x = 44.117. Then from relationship (4.9),

Ĉpk = min

{
47− 44.117

3(.983)
,
44.117− 43

3(.983)

}
= min {.98, .38} = .38.

So, for example, since the .95 quantile of the standard normal distribution is
1.645, an approximate 95% lower confidence bound for Cpk is from expression
(4.10)

.38− 1.645

√
1

9(50)
+

(.38)2

2(50)− 2
= .28.

One can be in some sense approximately 95% sure that Cpk for the angles in the
EDM drilling process is at least .28.

Overreliance upon process capability measures can be justly criticized. Critics
have correctly noted that

1. 6σ, Cp, and Cpk have unclear relevance when a process distribution is not
normal,

2. “one-number summaries” like those discussed here can leave much unsaid
about what a process is doing or even the shape of a distribution of mea-
surements it is generating, and

3. really going to work tuning a process, monitoring for and removing upsets,
and determining what it is really “capable” of doing involve much more
than the simple estimation of 6σ or one of the measures Cp or Cpk .

In addition to these objections, the capability ratios Cp and Cpk depend upon
specifications that are sometimes subject to unannounced change (even arbitrary
change). This makes it difficult to know from one reporting period to the next
what has happened to process variability if estimates of Cp or Cpk are all that are
provided. It thus seems that for purposes of comparisons across time, if any of the
measures of this section are to be used, the simple process capability 6σ is most
attractive.

Despite these issues, the measures of this section are very popular. Provided
one understands their limitations and simply views them as one of the many tools
for summarizing process behavior, they have their place. But the wise engineer
will not assume that computing and reporting one of these figures is in any way
the last word in assessing process performance.

Section 4.2 Exercises

1. Consider again problem 1 of Sect. 4.1 and the data given there. Assume
pepper lot production has a stable lot percent moisture content, and percent
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moisture content is approximately normally distributed. Acceptable lot per-
cent moisture content has been specified as between 9% and 12%.

(a) Give limits that you are 95% sure will bracket 6σ where σ is the lot-
to-lot standard deviation of percent moisture content.

(b) Does your interval in (a) suggest 6σ is less than U − L? How does
your answer relate to the potential quality of the pepper lot production
process (with respect to percent moisture content)?

(c) Give a single-number estimate of Cpk for percent measured moisture
content in the lots of pepper. Interpret your estimate.

(d) Give a single-number estimate of Cp for percent measured moisture
content in the lots of pepper. Interpret your estimate.

(e) Give 95% confidence limits for a capability index that measures (not
potential but) current pepper lot production process performance.

(f) Give 95% confidence limits for a capability index that reflects what
the pepper lot process performance could be if the percent moisture
content per lot could be centered. Is the process centered? Why or
why not?

2. Often, capability indices are used as “quick” reflections of process quality
and as measures of quality improvement (comparing indices over time).
This can sometimes be misleading.

(a) Consider the capability index Cpk . Assuming a process has the same
μ and σ, how might one “artificially” increase Cpk even though the
process has not improved at all? Consider the capability ratio Cp.
Again, assuming a process has the same μ and σ, how might one
“artificially” increase Cp even though the process potential has not
improved at all?

(b) Answer (a) with respect to estimated Cpk and Cp when x and σ̂ do
not change.

3. Lengths of steel shafts are measured by a laser gauge that produces a coded
voltage proportional to shaft length (above some reference length). In the
units produced by the gauge, shafts of a particular type have length speci-
fications 2300 ± 20. Below are measured lengths of n = 10 such shafts.
Assume the shafts came from a physically stable process.

2298, 2301, 2298, 2289, 2291, 2290, 2287, 2280, 2289, 2290

(a) Using a normal distribution model for shaft length, give 90% con-
fidence limits for a process capability index that measures process
potential.

(b) Using a normal distribution model for shaft length, give 90% confi-
dence limits for a process capability index that measures current pro-
cess performance.
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(c) Based on your answers to (a) and (b) what do you conclude about the
current and potential process performance?

4. The ratio of an upper confidence limit for a process capability 6σ to a lower
confidence limit for the quantity can be taken as a measure of how much
one can learn about it based on a given size sample. For a sample of size
n = 30 and 95% confidence, to within what factor (multiple) does this
ratio indicate 6σ can be estimated?

5. Consider again problem 3 of Sect. 4.1 and the data given there. A painting
process was investigated and determined to be stable with an approximately
normal distribution. The variable of interest was paint thickness. Accept-
able paint thicknesses are between 4 and 6 units.

(a) Using the sample standard deviation from the data, give a 90% confi-
dence interval for 6σ,where σ is the standard deviation of paint thick-
ness from all items (at the specified location on the items).

(b) Using the standard deviation and sample average from the data, would
the current painting process be considered “acceptable” or of high
quality? Why?

6. Consider again problem 4 of Sect. 4.1 and the data given there. Recall
that the percentages (x) of “small” grit particles in bulk abrasive used by
a company in the production of a type of sandpaper are of interest. The
company has already done extensive process monitoring and has concluded
the percentage of this “small” grit particle is stable. Specifications are from
13.0% to 16.6%.

(a) Using the sample mean and standard deviation, estimate the potential
process capability.

(b) Using the sample mean and standard deviation, estimate the current
process performance as expressed in a capability index.

(c) Give two-sided 95% confidence intervals for the indices in (a) and (b).

(d) Briefly comment on the current process performance and potential
performance.

4.3 Prediction and Tolerance Intervals

The methods of the previous section and those of elementary statistics can be used
to characterize the pattern of variation produced by a stable process through the
estimation of process parameters. Another approach is to provide intervals likely
to contain either the next measurement from the process or a large portion of
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all additional values it might generate. Such intervals are the subject of this sec-
tion. The so-called prediction interval and tolerance interval methods for normal
processes are considered first. Then some simple “nonparametric” methods are
considered. These can be used to produce prediction and tolerance intervals for
any stable process, regardless of whether or not the process distribution is normal.

4.3.1 Intervals for a Normal Process

The usual confidence interval methods presented in elementary statistics courses
concern the estimation of process parameters like the mean μ and standard dev-
iation σ. The estimation methods for 6σ, Cp, and Cpk presented in Sect. 4.2
essentially concern the empirical approximation of interesting functions of these
process parameters. A completely different approach to process characterization
is to use data, not to approximate process parameters or functions of them but
rather to provide intervals in some sense representing where additional observa-
tions are likely to fall. Two different formulations of this approach are the making
of prediction intervals and the making of tolerance intervals.

A prediction interval based on a sample of size n from a stable process is an
interval thought likely to contain a single additional observation drawn from the
process. Suppose one makes a 90% prediction interval. The associated confidence
guarantee is that if the whole business of “selecting a sample of n, making the
corresponding interval, observing an additional value and checking to see if the
additional value is in the interval” is repeated many times, about 90% of the
repetitions will be successful.

Where it is sensible to assume that one is sampling from a normal process, a
very simple formula can be given for prediction limits. That is, prediction limits
for a single additional observation from a normal distribution are

Normal
Distribution
Prediction
Limits

x− ts

√
1 +

1

n
and/or x+ ts

√
1 +

1

n
, (4.11)

where t is a quantile of the t distribution with ν = n − 1 associated degrees of
freedom. If t is the p quantile and the first limit in display (4.11) is used alone as a
lower prediction bound, the associated confidence level is p× 100%. Similarly, if
t is the p quantile and the second limit in display (4.11) is used alone as an upper
prediction bound, the associated confidence level is p × 100%. And if t is the p
quantile and both limits in display (4.11) are used as the end points of a two-sided
prediction interval, the associated prediction confidence level is (2p−1)×100%.

Example 48 Predicting the Angle of an Additional EDM-Drilled Hole (Exam-
ples 44, 45, 46, and 47 revisited). The normal plot of Fig. 4.12 shows the angle
data of Table 4.7 to be reasonably normal looking. Capability figures for the EDM
drilling process were estimated in Examples 45, 46, and 47. Here consider the pre-
diction of a single additional angle measurement. Either from the t distribution
quantiles given in Table A.2 or from a statistical package, the p = .95 quantile
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of the t distribution with ν = 50 − 1 = 49 degrees of freedom is 1.6766. Then
recalling that for the angle data x = 44.117 and s = .983, formulas (4.11) show
that a 90% two-sided prediction interval for a single additional angle has end
points

44.117− 1.6766(.983)

√
1 +

1

50
and 44.117 + 1.6766(.983)

√
1 +

1

50
,

that is,

42.45◦ and 45.78◦.

One can be in some sense 90% sure that a single additional angle generated by
the stable EDM drilling process will be between 42.45◦ and 45.78◦.

A second formulation of the problem of producing an interval locating where
additional observations from a process are likely to fall is that of making a toler-
ance interval for some (typically large) fraction of the process distribution. A tol-
erance interval for a fraction p of a distribution is a data-based interval thought
likely to bracket at least that much of the distribution. Suppose one uses a for-
mula intended to produce 95% tolerance intervals for a fraction p = .90 of a
distribution. Then the associated confidence guarantee is that if the whole busi-
ness of “selecting a sample of n, computing the associated interval and checking
to see what fraction of the distribution is in fact bracketed by the interval” is rep-
eated many times, about 95% of the intervals will bracket at least 90% of the
distribution.

Where it is sensible to assume one is sampling from a normal process dis-
tribution, very simple formulas can be given for tolerance limits. That is, using
constants τ1 or τ2 given in Tables A.6, a one-sided tolerance limit for a fraction
p of an entire normal process distribution is

One-sided
Normal
Distribution
Tolerance
Limits

x− τ1s or x+ τ1s, (4.12)

while a two-sided tolerance interval for a fraction p of such a distribution can be
made using end points:

Two-sided
Normal
Distribution
Tolerance
Limits

x− τ2s and x+ τ2s. (4.13)

The constant τ1 or τ2 may be chosen (from Table A.6.2 or A.6.1, respectively) to
provide a 95% or a 99% confidence level.

Example 49 (Example 48 continued.) Rather than as before predicting a single
additional EDM-drilled angle, consider the problem of announcing an interval
likely to contain 95% of the angle distribution. In fact, for purposes of illustration,
consider the making of both a 99% one-sided lower tolerance bound for 95%



216 Chapter 4. Process Characterization and Capability Analysis

of all additional angles and a 99% two-sided tolerance interval for 95% of all
additional angles.

Beginning with the one-sided problem, the first formula in display (4.12) and
the n = 50, p = .95, and 99% confidence level entry of Table A.6.2 produce the
lower tolerance bound

44.117− 2.269(.983) = 41.89◦.

One can be “99% sure” that at least 95% of all angles are 41.89◦ or larger.
In a similar fashion, using the formulas (4.13) and the n = 50, p = .95, and

99% confidence level entry of Table A.6.1, one has the end points

44.117− 2.580(.983) = 41.58◦ and 44.117 + 2.580(.983) = 46.65◦.

That is, one can be in some sense 99% sure that at least 95% of all angles are in
the interval (41.58, 46.65).

It is instructive to compare the second interval in Example 48 to the 95% pre-
diction interval obtained earlier, namely, (42.45, 45.78). The tolerance interval is
clearly larger than the prediction interval. This is typical of what happens using
common (large) confidence levels for tolerance intervals. A tolerance interval is
simply designed to do a more ambitious task than a corresponding prediction in-
terval. That is, a prediction interval aims to locate a single additional measurement
while a tolerance interval intends to locate most of all additional observations. It
is therefore not surprising that the tolerance interval would need to be larger.

4.3.2 Intervals Based on Maximum and/or Minimum
Sample Values

The prediction and tolerance intervals prescribed by displays (4.11), (4.12), and
(4.13) are very definitely normal distribution intervals. If a normal distribution is
not a good description of the stable process data-generating behavior of a system
under consideration, the confidence guarantees associated with these formulas are
null and void. If measurements x are not normal, on occasion it is possible to find
a “transformation” g(·) such that transformed measurements g(x) are normal.
When this can be done, one can then simply find prediction or tolerance intervals
for g(x) and then “untransform” the end points of such intervals (using the inverse
function g−1(·)) to provide prediction or tolerance intervals for raw values x. This
approach to making intervals really amounts to finding a convenient scale upon
which to express the variable of interest when the original one turns out to be
inconvenient.

A second approach to making prediction and tolerance intervals when a process
distribution does not seem to be normal is to use limits that carry the same confi-
dence level guarantee for any (continuous) stable process distribution. Such limits
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can be based on minimum and/or maximum values in a sample. Because their ap-
plicability is not limited to the normal “parametric family” of distributions, these
limits are sometimes called nonparametric limits.

One-sided
Prediction or
Tolerance
Interval
(Lower Bound)

If one has a sample of n measurement from a stable process, the most obvious
of all statistical intervals based on those measurements are

(minxi,∞), (4.14)
One-sided
Prediction or
Tolerance
Interval
(Upper Bound)

(−∞,maxxi), (4.15)

and

Two-sided
Prediction or
Tolerance
Interval

(minxi,max xi). (4.16)

It turns out that any of these intervals can be used as either a prediction interval
for a single additional observation from a process or as a tolerance interval for a
fraction p of the process distribution.

Where either of the one-sided intervals (4.14) or (4.15) is used as a prediction
interval, the associated prediction confidence level is

Prediction
Confidence of
Intervals (4.15)
and (4.14)

n

n+ 1
. (4.17)

Where the two-sided interval (4.16) is used, the associated prediction confidence
level is

n− 1

n+ 1
. (4.18)

Prediction
Confidence of
Interval (4.16)Where either of the one-sided intervals (4.14) or (4.15) is used as a tolerance

interval for a fraction p of the output from a stable process, the associated confi-
dence level is

Confidence
Level of
Tolerance
Intervals (4.14)
and (4.15)

1− pn. (4.19)

And where the two-sided interval (4.16) is used as a tolerance interval, the asso-
ciated confidence level is

Confidence
Level of
Tolerance
Interval (4.16)

1− pn − n(1− p)pn−1. (4.20)

Example 50 Prediction and Tolerance Intervals for Tongue Thicknesses of
Machined Levers (Example 36 revisited). The normal plot in Fig. 4.11 shows the
tongue-thickness data of Table 4.1 to be long tailed to the high side and clearly
not adequately described as approximately normal. As such, the normal distribu-
tion formulas (4.11) through (4.13) are not appropriate for making prediction or
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tolerance intervals for tongue thicknesses. But if one assumes that the machining
process represented by those data is stable, the methods represented in formulas
(4.14) through (4.20) can be used.

Consider first the problem of announcing a two-sided prediction interval for a
single additional tongue thickness. Reviewing the data of Table 4.1, it is easy to
see that for the sample of size n = 20 represented there,

minxi = .1807 and maxxi = .1868.

So, in view of displays (4.16) and (4.18), the interval with end points

.1807 in and .1868 in

can be used as a prediction interval for a single additional tongue thickness with
associated prediction confidence

20− 1

20 + 1
= .905 = 90.5% .

One can in some sense be 90% sure that an additional tongue thickness generated
by this machining process would be between .1807 in and .1868 in.

As a second way of expressing what the data say about other tongue thick-
nesses, consider the making of a two-sided tolerance interval for 90% of all
tongue thicknesses. The method represented in displays (4.16) and (4.20) implies
that the interval with end points

.1807 in and .1868 in

has associated confidence level

1− (.9)20 − 20(1− .9)(.9)19 = .608 = 60.8%.

One can be only about 61% sure that 90% of all tongue thicknesses generated by
the machining processes are between .1807 in and .1868 in.

The prediction and confidence interval methods presented here are a very small
fraction of those available. In particular, there are methods specifically crafted
for other families of process distributions besides the normal family. The reader
is referred to the book Statistical Intervals: A Guide for Practitioners by Hahn
and Meeker for a more comprehensive treatment of the many available meth-
ods, should the ones presented in this section not prove adequate for his or her
purposes.

Section 4.3 Exercises

1. Consider again problems 1 from Sects. 4.1 and 4.2 and the data given in
Sect. 4.1. Pepper lot production has a stable lot percent moisture content
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that is approximately normally distributed. Acceptable lot percent moisture
content is between 9% and 12%.

(a) Give limits that you are “95% sure” will bracket the measured mois-
ture content from the next sampled lot.

(b) Among the n = 22 lots tested, the smallest and largest measured
moisture contents are, respectively, 9.3% and 11.5%. How “sure”
can one be that 95% of all additional lots will have measured contents
between these two values?

(c) Give limits that you are “95% sure” will bracket the percent moisture
content in 95% of all pepper lots.

2. Consider again problem 3 of Sect. 4.2 and the data given there. Lengths
of steel shafts are measured by a laser gauge that produces a coded voltage
proportional to shaft length (above some reference length). In the units
produced by the gauge, shafts of a particular type have length specifications
2300 ± 20. Assume the n = 10 shafts measured to produce the data in
Sect. 4.2 came from a physically stable process.

(a) How confident are you that an 11th shaft produced by this process
would measure at least 2280? (Give a numerical confidence level
without relying on a normal distribution assumption.)

(b) Assuming shaft lengths are normally distributed, give two-sided limits
that you are 95% sure contain at least 99% of all measured shaft
lengths.

(c) Suppose (that shaft lengths are normally distributed and) you purchase
one additional shaft. Construct an interval that will include the length
of the one you buy with 95% confidence.

3. Consider again problem 3 of Sect. 4.1 and problem 5 of Sect. 4.2 and the
data given in Sect. 4.1. Recall that a painting process was investigated and
determined to be stable and producing an approximately normal distribu-
tion of thicknesses.

(a) Using the data in Sect. 4.1, find limits that you are “95% sure” contain
99% of thickness values.

(b) Suppose your normal probability analysis detected a strong departure
from a normal distribution. If you use .2 and 9.7 as limits for an addi-
tional measured thickness, what level of confidence would you have?

(c) Suppose your normal probability analysis had detected a strong dep-
arture from a normal distribution. If you use .2 and 9.7 as limits
for 90% of all paint thicknesses, what level of confidence would you
have?
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4. Consider again problem 4 of Sect. 4.1 and problem 6 of Sect. 4.2 and the
data given in Sect. 4.1. Recall that percentages (x) of “small” grit parti-
cles in bulk abrasive lots used by a company in the production of a certain
type of sandpaper are of interest and that the company has already done
extensive process monitoring and has concluded that these are stable with
an approximately normal distribution. Specifications are from 13.0% to
16.6%.

(a) Find limits that you are “99% sure” will bracket the lot percent of
“small” grit particles from the next sample.

(b) Find limits that you are “99% sure” will bracket the lot percent
“small” grit particles from 90% of all samples.

(c) Give the respective names for the intervals constructed in (a) and (b).

(d) Find a limit L such that you are “95% sure” at least 95% of all sam-
ples will have at least L% “small” grit particles.

4.4 Probabilistic Tolerancing and Propagation
of Error

The methods of the previous three sections have had to do with characterizing
the pattern of variation associated with a stable process on the basis of a sample
from that process. There are occasions where one needs to predict the pattern
of variation associated with a stable system before such data are available. (This
is quite often the case in engineering design contexts, where one must choose
between a number of different possible designs for a process or product without
having many systems of each type available for testing.)

Where the product or process of interest can be described in terms of a rel-
atively simple equation involving the properties of some components or system
inputs, and information is available on variabilities of the components or inputs,
it is often possible to do the necessary prediction. This section presents methods
for accomplishing this task. There is first a brief discussion of the use of simu-
lations. Then a simple result from probability theory concerning the behavior of
linear combinations of random variables is applied to the problem. And finally, a
very useful method of approximation is provided for situations where the exact
probability result cannot be invoked.

In abstract terms, the problem addressed in this section can be phrased as
follows. Given k random system inputs X,Y, . . . , Z , an output of interest U , and
the form of a function g giving the exact value of the output in terms of the inputs,

U = g(X,Y, . . . , Z), (4.21)

how does one infer properties of the random variable U from properties of
X,Y, . . . , Z? For particular joint distributions for the inputs and fairly simple
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functions g, the methods of multivariate calculus can sometimes be invoked to
find formulas for the distribution of U . But problems that yield easily to such
an approach are rare, and much more widely applicable methods are needed for
engineering practice.

One quite general tool for this problem is that of probabilistic simulations.
These are easily accomplished using widely available statistical software. What
one does is to use (pseudo-)random number generators to produce many (say n)
realizations of the vector (X,Y, . . . , Z). Upon plugging each of these realizations
into the function g, one obtains realizations of the random variable U . Properties
of the distribution of U can then be inferred in approximate fashion from the
empirical distribution of these realizations. This whole program is especially easy
to carry out when it is sensible to model the inputs X,Y, . . . , Z as independent.
Then the realizations of the inputs can be generated separately from the k marginal
distributions. (The generation of realizations of dependent variables X,Y, . . . , Z
is possible but beyond the scope of this discussion.)

Example 51 Approximating the Distribution of the Resistance of an Assembly
of Three Resistors. The “laws” of physics often provide predictions of the behav-
ior of simple physical systems. Consider the schematic of the assembly of three
resistors given in Fig. 4.15 on page 222. Elementary laws of physics lead to the
prediction that if R1, R2, and R3 are the resistances of the three resistors in the
schematic, then the resistance of the assembly will be

R = R1 +
R2R3

R2 +R3
.

Suppose that one is contemplating the use of such assemblies in a mass-produced
product. And suppose further that resistors can be purchased so that R1 has mean
100 Ω and standard deviation 2 Ω and that both R2 and R3 have mean 200 Ω
and standard deviation 4 Ω. What can one then predict about the variability of
the assembly resistance?

Table 4.8 on page 222 holds some simple simulation code and output for the
open-source R statistical package, based on an assumption that the three resis-
tances are independent and normally distributed. Ten thousand simulated values
of R have been created. Figure 4.16 on page 223 shows the histogram that results.

It is evident from Table 4.8 that assembly resistances are predicted to average
on the order of 200.0 Ω and to have a standard deviation on the order of 2.5 Ω.
And Fig. 4.16 indicates that the distribution of assembly resistances is roughly bell
shaped. Of course, rerunning the simulation would produce slightly different re-
sults. But for purposes of obtaining a quick, rough-and-ready picture of predicted
assembly variability, this technique is very convenient and powerful.

For the very simplest of functions g relating system inputs to the output U ,
it is possible to provide expressions for the mean and variance of U in terms of
the means and variances of the inputs. Consider the case where g is linear in the
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Resistor 1

Resistor 2

Resistor 3

FIGURE 4.15. An assembly of 3 resistors

TABLE 4.8. Code and output for the resistance simulation
> R1<-c(rnorm(10000,mean=100,sd=2))
> R2<-c(rnorm(10000,mean=200,sd=4))
> R3<-c(rnorm(10000,mean=200,sd=4))
> R<-R1+(R2*R3/(R2+R3))
> summary(R)
Min. 1st Qu. Median Mean 3rd Qu. Max.
191.3 198.3 200.0 200.0 201.6 209.7

> mean(R)
[1] 199.9601
> sd(R)
[1] 2.466333
> hist(R)

inputs, that is, for constants a0, a1, . . . , ak, suppose that

U = a0 + a1X + a2Y + · · ·+ akZ. (4.22)

Then if the variables X,Y, . . . , Z are independent with respective means
μX , μY , . . . , μZ and variances σ2

X , σ2
Y , . . . , σ

2
Z , U has mean

Mean of a
Linear
Function of k
Random
Variables

μU = a0 + a1μX + a2μY + · · ·+ akμZ (4.23)

and variance

Variance of a
Linear
Function of k
Independent
Random
Variables

σ2
U = a21σ

2
X + a22σ

2
Y + · · ·+ a2kσ

2
Z . (4.24)

These facts represented in displays (4.22) through (4.24) are not directly app-
licable to problems like that in Example 51, since there the assembly resistance
is not linear in either R2 or R3. But they are directly relevant to many engi-
neering problems involving geometrical dimensions. That is, often geometrical
variables of interest on discrete parts or assemblies of such parts are sums and
differences of more fundamental variables. Clearances between shafts and ring
bearings are differences between inside diameters of the bearings and the shaft
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FIGURE 4.16. Histogram for 10,000 simulated assembly resistances, R

diameters. Thicknesses of five-ply sheets of plywood are sums of thicknesses of
the individual layers. Tongue thicknesses of steel levers machined on both sides
are the original steel bar thicknesses minus the depths of cut on both sides of the
bar and so on.

Example 52 Choosing a Box Size in a Packaging Problem. Miles, Baumhover,
and Miller worked with a company that was having a packaging problem. The
company bought cardboard boxes nominally 9.5 in in length intended to hold 4
units of a product they produced, stacked side by side in the boxes. They were find-
ing that many boxes were unable to accommodate the full 4 units, and a sensible
figure was needed for a new target dimension on the boxes.

The students measured the thicknesses of 25 units of product. They found that
these had x = 2.577 in and s = .061 in. They also measured several of the nom-
inally 9.5- in boxes and found their (inside) lengths to have mean x = 9.556 in
and s = .053 in. Consider applying the results (4.23) and (4.24) to the problem
of finding a workable new target dimension for the inside length of boxes ordered
by this company.

Let X1, X2, X3, and X4 be the thicknesses of 4 units to be placed in a box
and Y be the inside length of the box. Then the clearance or “head space” in the
box is

U = Y −X1 −X2 −X3 −X4.

This simple relationship is illustrated in Fig. 4.17 on page 224.
Based on the students’ measurements, a plausible model for the variables Y,

X1, X2, X3, X4 is one of the independence where Y has mean to be chosen and
standard deviation .053 and each of the X variables has mean 2.577 and standard
deviation .061. Then, since U is of form (4.22), display (4.24) implies that U has

σ2
U = 12σ2

Y + (−1)2σ2
X1

+ (−1)2σ2
X2

+ (−1)2σ2
X3

+ (−1)2σ2
X4

,

that is,

σ2
U = (.053)2 + 4(.061)2 = .0177,
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so that

σU = .133 in .

One might then hope for at least approximate normality of U and reason that
if the mean of U were set at 3σU , essentially all of the boxes would be able to
hold the required 4 units of product (few values of U would be negative). Again
remembering that U is of form (4.22), display (4.23) implies that

μU = μY − μX1
− μX2

− μX3
− μX4

= μY − 4(2.577).

So setting μU = 3σU = 3(.133), one has

3(.133) = μY − 4(2.577),

that is, one wants

μY = 10.707 in .

(Then given that nominally 9.5- in boxes were running with mean inside lengths
of 9.556 in, it might be possible to order boxes with nominal lengths .056 in
below the value for μY found above without creating packing problems.)

FIGURE 4.17. Schematic for a packaging problem

Example 52 is a very nice example of a real “probabilistic tolerancing” prob-
lem. Such problems can be effectively attacked using the relationships (4.23) and
(4.24). It is evident from the example that if the standard deviation of the head
space (namely, σU = .133 in) is unacceptably large, then either the uniformity of
the thicknesses of the units of product or the uniformity of the inside lengths of
the boxes will need substantial improvement. (In fact, setting σY = 0 and recalcu-
lating σU will show the reader that the potential for variance reduction associated
with the box length is small. It is product uniformity that will require attention.)

The simple exact probability result represented in displays (4.22) through
(4.24) is not of direct help where U is nonlinear in one or more of X,Y, . . . , Z .
But it suggests how one might proceed to develop approximate formulas for the
mean and variance of U for even nonlinear g. That is, provided g is smooth near
the point (μX , μY , . . . , μZ) in k-dimensional space, if the point (x, y, . . . , z) is
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not too far from (μX , μY , . . . , μZ), a first-order multivariate Taylor expansion of
g implies that

g(x, y, . . . , z) ≈ g(μX , μY , . . . , μZ)+g′x(μX , μY , . . . , μZ)(x−μX)
+g′y(μX , μY , . . . , μZ)(y−μY ) + · · ·+ g′z(μX , μY , . . . , μZ)(z−μZ)

}

(4.25)

where the subscripted g′ functions are the partial derivatives of g. Now the func-
tion on the right of approximation (4.25) is linear in the variables x, y, . . . , z. So
plugging the random variables X,Y, . . . , Z into approximation (4.25) and then
applying the probability result indicated in displays (4.22) through (4.24), one
can arrive at approximations for μU and σ2

U . These turn out to be

Approximate
Mean of a
Function of k
Random
Variables

μU ≈ g(μX , μY , . . . , μZ) (4.26)

and

Approximate
Variance of a
Function of k
Independent
Random
Variables

σ2
U ≈

(
∂g

∂x

)2

σ2
X +

(
∂g

∂y

)2

σ2
Y + · · ·+

(
∂g

∂z

)2

σ2
Z , (4.27)

where the partial derivatives indicated in display (4.27) are evaluated at the point
(μX , μY , . . . , μZ). (The notation for the partial derivatives used in display (4.27)
is more compact but less complete than the g′ notation used on the right of approx-
imation (4.25). The same partials are involved.) The formulas (4.26) and (4.27)
are often called the propagation of error formulas in that they provide a simple
approximate view of how “error” or variation “propagates” through a function g.
And it is also worth noting that the exact result (4.24) for linear g is (upon realiz-
ing that a1, a2, . . . , ak are the partial derivatives of a linear g) essentially a special
case of relationship (4.27).

Example 53 Uncertainty in the Measurement of Viscosity of S.A.E. no. 10 Oil.
One technique for measuring the viscosity of a liquid is to place it in a cylindrical
container and determine the force needed to turn a cylindrical rotor of nearly the
same diameter as the container at a given velocity. If F is the force, D1 is the
diameter of the rotor, L is the length of the rotor, D2 is the inside diameter of the
container, and ν is the velocity at which the rotor surface moves, then the implied
viscosity is

η =
F (D2 −D1)

πνD1L
=

F

πνL

(
D2

D1
− 1

)
.

Suppose that one wishes to measure the viscosity of S.A.E. no. 10 oil and the ba-
sic measurement equipment available has precision adequate to provide standard
deviations for the variables F,D1, D2, L, and ν,

σF = .05N, σD1 = σD2 = σL = .05 cm and σν = 1 cm/sec .
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Further, suppose that approximate values for the quantities F , D1, D2, L, and
ν are

F ≈ 151 N , D1 ≈ 20.00 cm , D2 ≈ 20.50 cm , L ≈ 20.00 cm , and ν ≈ 30 cm/sec .

These approximate values will be used as means for the variables and formula
(4.27) employed to find an approximate standard deviation to use in describing
the precision with which the viscosity can be determined.

To begin with, the partial derivatives of η with respect to the various measured
quantities are

∂η

∂F
=

(D2 −D1)

πνD1L
,

∂η

∂D1
=

F

πνL

(
−D2

D2
1

)
,

∂η

∂D2
=

F

πνD1L
,

∂η

∂L
= −F (D2 −D1)

πνD1L2
, and

∂η

∂ν
= −F (D2 −D1)

πν2D1L
.

And it is straightforward to check that if the approximate values of F , D1, D2, L,
and ν are plugged into these formulas, then (in the appropriate units)

∂η

∂F
= 1.326× 10−5,

∂η

∂D1
= −4.106× 10−3,

∂η

∂D2
= 4.005× 10−3,

∂η

∂L
= −1.001× 10−4, and

∂η

∂ν
= −6.676× 10−5.

Then from expression (4.27), it is apparent that an approximate variance for η is

σ2
η ≈ (1.326 × 10−5)2(.05)2 + (−4.106× 10−3)2(.05)2 + (4.005 × 10−3)2(.05)2

+ (−1.001× 10−4)2(.05)2 + (−6.676 × 10−5)2(1)2,

and doing the arithmetic and taking the square root, one finds

ση ≈ 2.9× 10−4 N sec/cm2.

Making use of relationship (4.26), this standard deviation of measurement accom-
panies a “true” or mean measured viscosity of about

η =
151(20.50− 20.00)

π30(20)(20)
= 20.0× 10−4 N sec/cm

2
.

There are several practical points that need to be made about the methods
presented here before closing this section. First, remember that formulas (4.27)
and (4.27) are only approximations (based on the linearization of g at the point
(μX , μY , . . . , μZ)). It is a good idea to cross-check results one gets using these
propagation of error formulas with results of simulations (a different kind of ap-
proximation). For example, Table 4.9 holds R code and output for a simulation
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of 10,000 viscosities and shows substantial agreement with the calculations in
Example 53.

A reasonable question is “If one is going to do simulations anyway, why bother
to do the hard work to use the propagation of error formulas?” One answer lies
in important extra insight into the issue of variance transmission provided by for-
mula (4.27). Formula (4.27) can be thought of as providing a partition of the

Propagation
of Error and
Variance
Partitioning

variance of the output U into separate parts attributable to the various inputs in-
dividually. That is, each of the terms on the right side of formula (4.27) is related
to a single one of the inputs X,Y, . . . , Z and can be thought of as that variable’s
impact on the variation in U . Comparing these can lead to the identification of the
biggest source(s) of (unwanted) variability in a system and allow consideration
of where engineering resources might best be invested in order to try and reduce
the size of σU . To get these kinds of insights from simulations would require the
comparison of many different simulations using various hypothetical values of the
standard deviations of the inputs.

Example 54 Partitioning Variance in Measured Viscosity (Example 53 contin-
ued). Returning to the approximation for σ2

η and displaying some of the interme-
diate arithmetic, one has

(
∂η

∂F

)2

σ2
F = (1.326× 10−5)2(.05)2 = 4.4× 10−13,

(
∂η

∂D1

)2

σ2
D1

= (−4.106× 10−3)2(.05)2 = 4.21× 10−8,

(
∂η

∂D2

)2

σ2
D2

= (4.005× 10−3)2(.05)2 = 4.01× 10−8,

(
∂η

∂L

)2

σ2
L = (−1.001× 10−4)2(.05)2 = 2.51× 10−11,

TABLE 4.9. R Code and output for the viscosity simulation
> F<-c(rnorm(10000,mean=151,sd=.05))
> D1<-c(rnorm(10000,mean=20,sd=.05))
> D2<-c(rnorm(10000,mean=20.5,sd=.05))
> L<-c(rnorm(10000,mean=20,sd=.05))
> v<-c(rnorm(10000,mean=30,sd=1))
>
> Eta<-F*((D2/D1)-1)/(pi*v*L)
> summary(Eta)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0008432 0.0018080 0.0020040 0.0020060 0.0022020 0.0030430
> mean(Eta)
[1] 0.002006421
> sd(Eta)
[1] 0.000291604
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and (
∂η

∂ν

)2

σ2
ν = (−6.676× 10−5)2(1)2 = 4.46× 10−9.

It is then evident from these values that the biggest contributors to the variance of
η are the two diameter measurements. (Next in order of importance is the velocity
measurement, whose contribution is an order of magnitude smaller.) The single
most effective method of improving the precision of the viscosity measurement
would be to find a more precise method of measuring the diameters of the rotor
and cylinder.

It is instructive to note that although the standard deviation of the length mea-
surement is exactly the same as those of the two diameter measurements (namely,
05 cm), the length measurement contribution to σ2

η is much smaller than those of
the two diameter measurements. This is because the partial derivative of η with
respect to L is much smaller than those with respect to D1 and D2. That is, the
contributions to the overall variance involve not only the variances of the inputs
but the “gains” or rates of change of the output with respect to the inputs. This is
only sensible. After all, if g is constant with respect to an input variable, whether
or not it varies should have no impact on the output variation. On the other hand,
if g changes rapidly with respect to an input, any variation in that variable will
produce substantial output variation.

A final caution regarding the methods of this section is that one should not
expect the impossible from them. They are tools for predicting the pattern of
variation within a particular model. But even the best of equations we use to
describe physical phenomena are only approximations to reality. They typically
ignore variables whose effects on a response of interest are “small.” They are
often good only over limited ranges of the inputs (and of other variables that
do not even appear in the equations) and so on. So the kinds of predictions that
have been illustrated in this section should be thought of as typically producing
underpredictions of the variability that will be seen, should one observe a number
of realizations of the output variable over a period of time.

Section 4.4 Exercises

1. The force opposing the motion of a block of weight W moving across a flat
horizontal surface is F = kW where k is the coefficient of kinetic friction
specific to the block and the surface. Suppose that in an application of this
simple physical relationship, W has a mean μW = 10 lb and standard
deviation σW = .2 lb, and k varies with a mean of μk = .3 and standard
deviation σk = .01.

(a) Find the expected force opposing the motion of a block.

(b) Find the standard deviation of force necessary to accelerate the block.
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(c) Find “2-sigma” limits on either side of the expected force necessary
to accelerate the block.

2. Sheets of book paper have mean thickness of .01 in and standard deviation
.0001 in . A particular book will have 200 sheets of this paper in it. (Ignore
the cover for this problem.) Let xi correspond to thickness of the ith page
for any one copy of the book.

(a) Which function correctly models thickness of a book copy: 200x or
x1 + x2 + · · ·+ x200? Why?

(b) Find the average book thickness.

(c) Find the standard deviation of book thickness.

(d) Within how many inches from the average book thickness should one
expect about 95% of the book copies to be?

3. Consider two holes (A and B) on a mass-produced part. On a coordinate
system with origin at the ideal position of hole A, ideal A is at (0, 0), and
ideal B is at (5, 0). Suppose holes A and B are not exactly positioned
because of imprecision in the manufacturing process. Hence, actually A is
located at (x1, y1) and hole B is actually at (5 + x2, y2). The variables x1

and x2 correspond to horizontal positioning errors, and the variables y1 and
y2 are vertical errors. Defining u = x2 − x1 and v = y2 − y1, the actual
distance between the positions of holes A and B is D =

√
(5 + u)2 + v2.

(a) A design engineer believes the holes can be drilled independently
where x1and x2 have standard deviations σx1 = σx2 = .01. What
does this person then expect will be the standard deviation of u =
x2 − x1?

(b) Suppose that u and v can be described as independent variables with 0
means and standard deviations σu = σv = .02. Find an approximate
standard deviation for D.

(c) n = 20 parts were sampled and D measured. For these measurements
D = 5.0017, and sample standard deviation of D was .0437. A nor-
mal probability plot suggested a normal model for D, and the hole
drilling process was determined to be stable. Give end points of an
interval that you are “90% sure” will contain the distance between
hole positions for a single additional part.

4.5 Chapter Summary

When a process is behaving consistently, it makes sense to try to characterize or
describe its behavior in quantitative terms. This chapter has discussed methods for
this enterprise. Graphical methods including the important tool of normal plotting
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were discussed first. Then measures of process capability and their estimation
were considered in the second section. Prediction and tolerance intervals were
presented next, as means of projecting outputs of a stable process based on a
sample. Finally, propagation of error and simulations were introduced as tools
for engineering design that can sometimes be used to predict variation in system
performance from variation in component characteristics.

4.6 Chapter 4 Exercises

1. Weld Pulls. The following scenario and data are used by GE aircraft eng-
ines as part of a data analysis demonstration. A shop uses spot welding to
join two pieces of an assembly. Welds have been failing in the field, and
some have been observed to pop apart in a 280◦ F electrostatic paint oven.
Process-monitoring efforts are going to be applied to these welds, and as a
part of a preliminary “snapshot” of current process performance, 25 weld
strengths are measured for each of two machines. (Specifications on weld
strength are that an individual weld button should hold up under a 1100 psi
pull without tearing. No upper specification limit is used, but manufacturing
personnel believe that “blue welds” with strengths larger than 1800 psi are
brittle and difficult to finish because of excessive dimpling.) The strength
data are below in psi.

Machine 1
1368 1129 1020 1157 1531
1022 1195 1288 1220 1792
1313 1764 989 1666 1643
1703 1764 1952 1706 2004
1135 1946 1105 1502 1629

Machine 2
1187 1862 1821 1713 1887
1110 1376 1871 1315 1498
1206 1736 1904 1873 1208
1696 1307 1965 1305 1744
1358 1215 1551 1369 1375

(a) For the machine 1 weld strengths, make a dot diagram, a stem-and-
leaf plot, and a frequency table, where the first category begins with
900 psi and the last category ends with 2100 psi. (Use six categories
of equal length.) Make the relative frequency histogram correspond-
ing to your frequency table.

(b) Redo (a) for machine 2.

(c) Make back-to-back stem-and-leaf plots for the two machines.

(d) Make back-to-back relative frequency histograms for the two
machines.

(e) Suppose engineering management decides that since current produc-
tion goals do not require full use of both welders, all welding will be
done with the better of the two machines. (The other machine will not
be used.) Which machine should be used? Why?
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2. Refer to the Weld Pull case in problem 1.

(a) Find the 25 values of (i − .5)/25 for i = 1, 2, . . . , 25 and (by order-
ing the observations from smallest to largest) find the corresponding
quantiles of the machine 1 data.

(b) Find the .10, .25, .50, and .90 quantiles of the machine 1 data.

(c) Do you expect your answers in part (b) to be exactly the corresponding
quantiles for all welds made by machine 1? Why or why not?

(d) Find the 25 standard normal quantiles Qz(
i−.5
25 ) for i = 1, 2, . . . , 25.

(e) Use your answers to (a) and (d) to make a normal plot for the machine
1 pull strengths. Does it appear the pull strengths are coming from a
normal distribution? Why or why not?

(f) Apply the natural logarithm (ln) transformation to each of the raw
strength quantiles from (a). (The results are quantiles of the distribu-
tion of log strengths.)

(g) Plot standard normal quantiles in (d) versus the log strength quantiles
from (f). Does it appear that the log strength distribution is normal?
Why or why not?

3. Refer to the Weld Pull case of problems 1 and 2.

(a) Redo problem 2 for machine 2.

(b) Make side-by-side box plots for the original data from problem 1.
(Make one for data from machine 1 and one for data from machine 2.)

(c) Making use of the facts of the case given in problem 1 and your graph
from (b), compare machine 1 and machine 2 weld qualities.

4. Oil Field Production. Geologists and engineers from a large oil company
considered drilling new wells in a field where 64 wells had previously been
drilled. The oil production figures for each of the 64 wells were available
for analysis and are given in Table 4.10 (units of the data are 1000 barrels).

TABLE 4.10. Data for problem 4
217.1 43.4 79.5 82.2 56.4 36.6 12.0 12.1∗

53.2 69.5 26.9 35.1 49.4 64.9 28.3 20.1∗

46.4 156.5 13.2 47.6 44.9 14.8 104.9 30.5∗

42.7 34.6 14.7 54.2 34.6 17.6 44.5 7.1∗

50.4 37.9 32.9 63.1 92.2 29.1 10.3∗ 10.1∗

97.7 12.9 196.0 69.8 37.0 61.4 37.7∗ 18.0∗

103.1 2.5 24.9 57.4 58.8 38.6 33.7∗ 3.0∗

51.9 31.4 118.2 65.6 21.3 32.5 81.1∗ 2.0∗
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Twelve of the wells were “completed” using a different technique than used
for the other 52 wells. (The process of completing a well involves stimu-
lation of the rock formation to draw the last “hard to get” oil.) The data
values with an “∗” correspond to the 12 wells that were completed using
the second or alternative method.

Knowledge of the .10, .50, and .90 quantiles of a field’s production distri-
bution is very useful to geologists and engineers as they decide whether it
is economically feasible to drill again.

(a) Make a stem-and-leaf plot of oil production for the 64 wells. Then
make back-to-back stem-and-leaf plots for the two groups of wells
with different completion methods. Does it appear there is a difference
in the distributions of total production for the two groups? Explain.

(b) Make side-by-side box plots for the two groups of wells with different
completion methods. Compare the two distributions based on these
plots.

(c) Find and plot the 52 points that make up a normal probability plot for
the oil production of the wells completed by the first method. Does it
appear that there is any serious departure from the normal distribution
shape in these data? Explain.

(d) Find and graph the 12 points that make up a normal probability
plot for the oil production of the wells completed by the alternative
method. Does it appear there is any serious departure from the normal
distribution shape in these data? Explain.

(e) Find and graph the 64 points that make up a normal probability plot
for the oil production of the whole set of wells. Does it appear there
is any serious departure from the normal distribution shape in these
data? Explain.

5. Refer to the Oil Field Production case in problem 4.

(a) Find the .10, .50, and .90 quantiles of the standard normal distribution,
Qz(.1), Qz(.5), and Qz(.9).

Note that the p quantile of a normal distribution with mean μ and standard
deviation σ is μ+ σQz(p).

(b) Find the sample mean and sample standard deviation of production
for the 52 wells completed by the first method. Use these, a normal
distribution assumption, the formula above, and your answer to (a), to
estimate the .1, .5, and .9 quantiles of the production distribution for
this field (under the first completion method).

(c) Find directly the .10, .50, and .90 quantiles of the production data for
the first well completion method (represented by the 52 wells).
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(d) Find the sample mean and sample standard deviation of production for
the 12 wells completed by the alternative method. Use these, a normal
distribution assumption, the formula above, and your answer to (a) to
estimate the .1, .5, and .9 quantiles of the production distribution for
this field (under the alternative completion method).

(e) Find directly the .10, .50, and .90 quantiles of the production data for
the alternative well completion method (represented by the 12 wells).

(f) For the first completion method, which set of estimates do you rec-
ommend for the .10, .50, and .90 quantiles, the set from (b) or the one
from (c)? Why?

(g) For the alternative completion method, which set of estimates do you
recommend for the .10, .50, and .90 quantiles, the set from (d) or the
one from (e)? Why?

6. Refer to the Oil Field Production case in problems 4 and 5. Apply the nat-
ural log (ln) transformation to every data value in problem 4. Redo (b)–(g)
in problem 5 for the transformed data (the log productions).

7. Consider the following small ordered data set for the variable x.

1, 4, 5, 10, 11

(a) Apply the natural logarithm (ln) transformation to each of the data
values. Does the order of the values change as the xs are transformed
to ln(x)s?

(b) Find the .30, .50, and .70 quantiles of both the x distribution and the
ln(x) distribution.

(c) Let y be the .50 quantile of the ln(x) distribution. Find exp(y).

(d) Let w be the .30 quantile of the ln(x) distribution. Find exp(w).

(e) What relationship do you see between quantiles of the x distribution
and quantiles of the ln(x) distribution?

8. Part Hardness. Measured hardness values for eight heat-treated steel parts
produced on a single day were (in units of mm)

3.175, 3.200, 3.100, 3.200, 3.150, 3.100, 3.100, and 3.175.

(a) What must have been true about the heat-treating process on the day
of data collection before an estimate of Cpk derived from these data
could possibly have any practical relevance or use?

(b) What other quantities (besides raw data values like those above) are
needed in order to estimate Cpk? Where should these quantities come
from?
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The analysts that obtained the data above had previously done a gauge R&R
study on the hardness measurement process. Their conclusion was that for
this method of hardness measurement, the repeatability standard deviation
is σ ≈ .044 mm.

(c) Suppose that hardness specifications were ±.150 mm around an ideal
value. Is the gauging method used here adequate to check confor-
mance to such specifications? Explain. (Even if there were no repro-
ducibility variance, would it be adequate?)

(d) Compare the sample standard deviation of the eight measurements
above to the estimate of σ developed in the gauge R&R study. Based
on this comparison, do you see clear evidence of any real hardness
differences in the eight parts?

(e) Formula (4.8) involves μ, σ, U , and L. If these parameters refer to
“true” (as opposed to values measured with error) hardnesses for
parts, how optimistic are you about getting a sensible estimate of Cpk

using the data in this problem? Explain.

(f) If one uses the hardness values from this problem to estimate “σ” and
set up a monitoring scheme for part hardness (say a chart for individu-
als), will your scheme allow for any “natural manufacturing variabil-
ity” as part of all-OK conditions? Explain in light of your answer to
(d). Do you see this as necessarily good or bad if the eight parts used
in this study fairly represent an entire day’s production of such parts?

9. Refer to the Oil Field Production case in problems 4, 5, and 6.

(a) In problems 6b) and 6c), you were asked to find estimates of pop-
ulation .10, .50, and .90 quantiles of the log production distribution
(for the first completion method) using two different methods. Exp-
onentiate those estimates (i.e., plug them into the exp(·) function).
These exponentiated values can be treated as estimates of quantiles of
the raw production distribution. Compare them to the values obtained
in problems 5b) and 5c).

(b) In problems 6d) and 6e), you were asked to find estimates of popula-
tion .10, .50, and .90 quantiles of the log production distribution (for
the alternative completion method) using two different methods. Ex-
ponentiate those estimates (i.e., plug them into the exp(·) function).
These exponentiated values can be treated as estimates of quantiles of
the raw production distribution. Compare them to the values obtained
in problems 5d) and 5e).

(c) In all, you should have three different sets of estimates in part (a).
Which set do you find to be most credible? Why?

(d) In all, you should have three different sets of estimates in part (b).
Which set do you find to be most credible? Why?
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10. Refer to the Oil Field Production case in problems 4 and 6. Consider the
52 wells completed using the first method, and assume that oil production
from wells like those on the field in question is approximately normally
distributed.

(a) Find a two-sided interval that has a 95% chance of containing oil
production values from 95% of all wells like the 52.

(b) Find a two-sided interval that has a 95% chance of containing the
total oil production of the next well drilled in the same manner as the
52.

(c) Find a lower bound, B, such that one can be 99% sure that 90% of
all wells drilled in the same manner as the 52 will produce B or more
barrels of oil.

11. Refer to the Oil Field Production case in problems 4, 6, and 10. Redo
(a)–(c) in problem 10 assuming that the logarithm of total oil production
for a well like the 52 is normally distributed. (Do the computations called
for in (a) through (c) on the log production values, and then exponentiate
your results to get limits for raw production values.)

12. Refer to problems 10 and 11. Which of the two sets of intervals produced
in problems 10 and 11 do you find to be more credible? Why?

13. Refer to the Oil Field Production case in problems 10 and 11. Redo (a)–(c)
in problem 10 and then problem 11 for wells like the 12 completed using the
alternative method. Which set of intervals (those derived from the original
data or from the transformed data) do you find to be more credible? Why?

14. Refer to the Oil Field Production case in problems 10, 11, and 13. One
important feature of the real problem has been ignored in making projec-
tions of the sort in problems 10, 11, and 13. What is this? (Hint: Is the
“independent random draws from a fixed population” model necessarily
sensible here? When using a straw to drink liquid from a glass, how do the
first few “draws” compare to the last few in terms of the amount of liquid
obtained per draw?)

15. Sheet Metal Saddle Diameters. Eversden, Krouse, and Compton inves-
tigated the fabrication of some sheet metal saddles. These are rectangular
pieces of sheet metal that have been rolled into a “half tube” for placement
under an insulated pipe to support the pipe without crushing the insulation.
Three saddle sizes were investigated. Nominal diameters were 3.0 in, 4.0
in, and 6.5 in. Twenty saddles of each size were sampled from production.
Measured diameters (in inches) are in Table 4.11.

(a) Make side-by-side box plots for the data from the three saddle sizes.

(b) Make a frequency table for each of the three saddle sizes. (Use cat-
egories of equal length. For the 3- in saddle data, let 2.95 in be the
lower limit of the first category and 3.20 in be the upper limit of the
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TABLE 4.11. Data for problem 15
3- in saddles

3.000 3.031 2.969 3.063
3.125 3.000 3.000 3.125
3.000 3.063 3.000 3.063
3.031 2.969 2.969 3.094
3.063 3.188 3.031 2.969

4- in saddles
4.625 4.250 4.250 4.313
4.313 4.313 4.313 4.250
4.313 4.313 4.125 4.063
4.094 4.125 4.094 4.125
4.156 4.156 4.156 4.125

6.5- in saddles
6.625 6.688 6.406 6.438
6.469 6.469 6.438 6.375
6.500 6.469 6.375 6.375
6.469 6.406 6.375 6.469
6.469 6.438 6.500 6.563

last category, and employ five categories. For the 4- in saddle data,
let 4.05 in be the lower limit of the first category and 4.65 in be the
upper limit of the last category, and use five categories. For the 6.5- in
saddle data, let 6.35 in be the lower limit of the first category and 6.70
in be the upper limit of the last category and use five categories.)

(c) Make the relative frequency histograms corresponding to the three
frequency tables requested in (b).

(d) Supposing specification limits are ±.20 in around the respective nom-
inal diameters, draw in the corresponding specifications on the three
relative frequency histograms made in (c). What do you conclude
about the saddle-making process with respect to meeting these speci-
fications?

(e) Make a quantile plot for each saddle size.

(f) Find the .25, .50, and .75 quantiles for data from each saddle size.
Give the corresponding IQR values.

16. Refer to the Saddle diameters case in problem 15.

(a) Find the 20 values (i − .5)/20 for i = 1, 2, . . . , 20, and (by order-
ing values in each of the data sets from smallest to largest) find the
corresponding quantiles of the three data sets in problem 15.

(b) Find the standard normal quantiles Qz(
i−.5
20 ) for i = 1, 2, . . . , 20.

Then for each of the three data sets from problem 15, plot the standard
normal quantiles versus corresponding diameter quantiles.

(c) Draw in straight lines summarizing your graphs from (b). Note that
Qz(.25) ≈ −.67, Qz(.50) = 0, and Qz(.75) ≈ .67, and from your
lines drawn on the plots, read off diameters corresponding to these
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standard normal quantiles. These values can function as additional es-
timates of quantiles of the diameter populations. Give the correspond-
ing estimated IQRs.

(d) Suppose the object is to make inferences about quantiles of all saddles
of a given size. For each saddle size, which set of estimates do you find
to be more credible, those from problem 15f) or those from (c) above?
Why?

17. Refer to the Saddle diameters case in problem 15. Assume diameters for
each saddle size are approximately normally distributed.

(a) For each saddle size, find a two-sided interval that you are 95% sure
will include 90% of all saddle diameters.

(b) For each saddle size, find a two-sided interval that you are 95% sure
will contain the diameter of the next saddle of that type fabricated.

(c) For each saddle size, find a numerical value so that you are 99% sure
that 90% of all saddles of that type have diameters at least as big as
your value.

(d) For each saddle size, find a numerical value so that you are 95% sure
the next saddle of that type will have a diameter at least as big as your
value.

18. Refer to the Saddle diameters case in problems 15 and 17. Consider first
(for the nominally 3- in saddles) the use of the two-sided statistical interval

(minxi,maxxi).

(a) Thought of as an interval hopefully containing 90% of all diameters
(of nominally 3- in saddles), what confidence should be attached to
this interval?

(b) Thought of as an interval hopefully containing the next diameter (of a
nominally 3- in saddle), what confidence should be attached to this
interval?

Consider next (for the nominally 3- in saddles) the use of the one-sided
statistical interval:

(minxi,∞).

(c) How sure are you that 90% of all diameters (of nominally 3-
in saddles) lie in this interval?

(d) How sure are you that the next diameter (of a nominally 3- in saddle)
will lie in this interval?

19. Refer to problems 17 and 18.
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(a) The intervals requested in 17 and 18 are based on a mathematical
model of “independent random draws from a fixed universe.” Such a
model makes sense if the saddle-forming process is physically stable.
Suppose the data in problem 17 are in fact listed in the order of fab-
rication (read left to right and then top to bottom for each size) of the
saddles. Investigate (using a retrospective Shewhart X chart with σ
estimated by MR/1.128 as in Sect. 3.2.3) the stability of the fabrica-
tion process (one saddle size at a time). Does your analysis indicate
any problems with the relevance of the basic “stable process” model
assumptions? Explain.

(b) The intervals requested in problem 17 are based on a normal distribu-
tion model, while the ones in problem 18 are not. Which set of inter-
vals seems most appropriate for the nominally 3- in saddles? Why?

20. Case hardening in Red Oak. Kongable, McCubbin, and Ray worked with
a sawmill on evaluating and improving the quality of kiln-dried wood for
the use in furniture, cabinetry, flooring, and trim. Case hardening (one of
the problems that arises in drying wood) was the focus of their work. Free
water evaporates first during the wood-drying process until about 30% (by
weight) of the wood is water. Bound water then begins to leave cells, and the
wood begins to shrink as it dries. Stresses produced by shrinkage result in
case hardening. When case-hardened wood is cut, some stresses are elim-
inated, and the wood becomes distorted. To test for case hardening of a
board, prongs are cut in the board, and a comparison of the distances be-
tween the prongs before and after cutting reveals the degree of case harden-
ing. A decrease indicates case hardening, no change is ideal, and an increase
indicates reverse casehardening. The engineers sampled 15 dried 1- in red
oak boards, and cut out prongs from each board. Distances between the
prongs were measured and are recorded in Table 4.12. (Units are inches.)

TABLE 4.12. Data for problem 20
Board Before After
1 .80 .58
2 .79 .29
3 .77 .50
4 .79 .77
5 .90 .55
6 .77 .36
7 .90 .57
8 .80 .55

Board Before After
9 .80 .64
10 .79 .27
11 .79 .79
12 .80 .80
13 .79 .41
14 .80 .72
15 .79 .37

(a) The data here are most appropriately thought of as which of the fol-
lowing: (i) two samples of n = 15 univariate data points or (ii) a
single sample of n = 15 bivariate data points? Explain.
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(b) One might wish to look at either the “before” or “after” width distri-
bution by itself. Make dot plots useful for doing this.

(c) As an alternative to the dot plots of part (b), make two box plots.

(d) Make normal probability plots for assessing how bell shaped the “be-
fore” and “after” distributions appear to be. Comment on the appear-
ance of these plots.

A natural means of reducing the before-and-after measurements to a single
univariate data set is to take differences (say after − before).

(e) Suppose that the intention was to mark all sets of prongs to be cut
at a distance of .80 in apart. Argue that despite this good intention,
the after − before differences are probably a more effective measure
of case hardening than the “after” measurements alone (or the “after”
measurements minus .80). Compute these 15 values.

(f) Make a dot plot and a box plot for the differences. Mark on these the
ideal difference. Do these plots indicate that case hardening has taken
place?

(g) Make a normal probability plot for the differences. Does this measure
of case hardening appear to follow a normal distribution for this batch
of red oak boards? Explain.

(h) If there were no case hardening, what horizontal intercept would you
expect to see for a line summarizing your plot in (g)? Explain.

(i) When one treats the answers in parts (a) through (h) above as char-
acterizations of “case hardening,” one is really making an implicit
assumption that there are no unrecognized assignable/nonrandom
causes at work. (For example, one is tacitly assuming that the boards
represented in the data came from a single lot that was processed in a
consistent fashion, etc.) In particular, there is an implicit assumption
that there were no important time-order-related effects. Investigate
the reasonableness of this assumption (using a retrospective Shewhart
X chart with σ estimated by MR/1.128 as in Sect. 3.2.3) supposing
that the board numbers given in the table indicate order of sawing
and other processing. Comment on the practical implications of your
analysis.

21. Refer to the Case hardening case in problem 20. Assume both the “after”
values, and the after − before differences are approximately normal.

(a) Find a two-sided interval that you are 99% sure will contain the next
“after” measurement for such a board.

(b) Find a two-sided interval that you are 95% sure contains 95% of all
“after” measurements.

(c) Find a two-sided interval that you are 95% sure will contain the next
difference for such a board.
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(d) Find a two-sided interval that you are 99% sure contains 99% of all
differences for such boards.

22. Refer to the Case hardening case in problem 20 and in particular to the
after − before differences, x. Consider the use of the two-sided statistical
interval

(minxi,maxxi).

(a) Thought of as an interval hopefully containing the next difference,
what confidence should be attached to this interval?

(b) Thought of as an interval hopefully containing 95% of all differences,
what confidence should be attached to this interval?

(c) Thought of as an interval hopefully containing 99% of all differences,
what confidence should be attached to this interval?

23. Refer to the Case hardening case in problems 20, 21, and 22 and in particu-
lar to the after–before differences. The prediction interval in problem 21c)
relies on a normal distribution assumption for the differences, while the
corresponding interval in problem 22a) does not. Similarly, the tolerance
intervals in problems 21b) and 21d) rely on a normal distribution assump-
tion for the differences, while the corresponding intervals in problems 22b)
and 22c) do not.

(a) Which set of intervals (the one in problem 21 or the one in problem
22) is most appropriate? Why?

(b) Compare the intervals (based on the differences) found in problem 21
with those from problem 22 in terms of lengths and associated confi-
dence levels. When a normal distribution model is appropriate, what
does its use provide in terms of the practical effectiveness of statistical
intervals?

(c) If one were to conclude that differences cannot be modeled as normal
and were to find the results of problem 22 to be of little practical
use, what other possibility remains open for finding prediction and
tolerance intervals based on the differences?

24. Bridgeport Numerically Controlled Milling Machine. Field, Lorei,
Micklavzina, and Stewart studied the performance of a Bridgeport num-
erically controlled milling machine. Positioning accuracy was of special
concern. Published specifications for both x and y components of posi-
tioning accuracy were “±.001 in” One of the main problems affecting
positioning accuracy is “backlash.” (Backlash is the inherent play that a
machine has when it stops movement or reverses direction of travel in a
given plane.) The group conducted an experiment aimed at studying the
effects of backlash.
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A series of holes was reamed, moving the machine’s head in the x direction
only. Then a series of holes was reamed, moving the machine’s head in the
y direction only. (The material used was a 1/4- in-thick acrylic plate. It was
first spot faced with a 3/8- in drill bit to start and position the hole. The hole
was then drilled with a regular 15/64- in twist drill. A 1/4- in reamer was
finally used to improve hole size and surface finish. This machining was
all done at 1500 rpm and a feed rate of 4 in/min.) The target x distance
between successive holes in the first set was 1.25 in, while the target y
distance between successive holes in the second set was .75 in Table 4.13
contains the measured distances between holes (in inches).

It is not completely obvious how to interpret positioning accuracy speci-
fications like the “nominal ± .001 in” ones referred to above. But it is
perhaps sensible to apply them to distances between successive holes like
the ones made by the students.

TABLE 4.13. Data for problem 24
x Movement y Movement

1.2495 1.2485 1.2505 1.2495 1.2505 .7485 .7490 .7505 .7500 .7480
1.2490 1.2495 1.2505 1.2500 1.2505 .7515 .7495 .7500 .7490 .7505
1.2495 1.2525 1.2500 1.2520 1.2505 .7490 .7525 .7500 .7490 .7490
1.2485 1.2510 1.2480 1.2480 1.2495 .7510 .7485 .7490 .7485 .7495
1.2505 1.2490 1.2505 1.2500 1.2505 .7480 .7500 .7500 .7485 .7490
1.2500 1.2515 1.2500 1.2495 1.2495 .7500 .7490 .7500 .7510 .7505

(a) Make a box plot for the x distances. Indicate on the plot the ideal
value of 1.250 in and the specifications L = 1.249 in and U = 1.251
in .

(b) Make a box plot for the y distances. Indicate on the plot the ideal value
of .750 in and the specifications L = .749 in and U = .751 in.

(c) Is there any clear indication in your box plots from (a) and (b) that x
positioning is better than y positioning (or vice versa)? Explain.

(d) Make a normal plot for the x distances. Is it sensible to treat x dis-
tances as normally distributed? Why?

(e) From the plot in (d), estimate the mean and the standard deviation of
x distances. Explain how you got your answer.

(f) Make a normal plot for the y distances. Is it sensible to treat y dis-
tances as normally distributed? Why?

(g) From the plot in (f), estimate the mean and the standard deviation of
y distances. Explain how you got your answer.

25. Refer to the Bridgeport Numerically Controlled Milling Machine case in
problem 24. Assume both the x and y distances are approximately normally
distributed.
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(a) Make a two-sided interval that you are 95% sure contains 99% of
x distances between such reamed holes (nominally spaced 1.250 in
apart on a horizontal line).

(b) Does your interval in (a) “sit within” the specification limits for such
x distances? Is this circumstance appealing? Why or why not?

(c) Make a two-sided interval that you are 99% sure contains 95% of y
distances between such reamed holes (nominally spaced .750 in apart
on a vertical line).

(d) Does your interval in (c) “sit within” the specification limits for such
y distances? Is this circumstance appealing? Why or why not?

(e) In light of the results of problem 24d) and problem 24f), are the inter-
vals made in (a) and (c) above credible? Explain.

26. Hose Cleaning. Delucca, Rahmani, Swanson, and Weiskircher studied a
process used to ensure that some industrial hoses are free of debris. Specifi-
cations were that the inside surfaces of these were to carry no more than 44
mg of contaminant per square meter of hose surface. (The hoses are cleaned
by blowing air through them at high pressure.)

Periodically, five of these hoses are tested by rinsing them with trichlo-
roethylene, filtering the liquid, and recovering solids washed out in the
cleaning fluid. The data in Table 4.14 are milligrams of solids per m2 of
inside hose surface from 13 such tests.

This scenario and data set have a number of interesting features. For one,
specifications here are inherently one-sided, so that two-sided capability
measures like Cp and Cpk do not make much sense in this context. For an-
other, it is obvious from a plot of the observed contamination levels against
sample number, or from a plot of sample standard deviations against sample
means, that the variability in measured contamination level increases with
mean contamination level.

Consider first the matter of clear dependence of standard deviation on mean.
In a circumstance like this (and particularly where data range over several
orders of magnitude), it is often helpful to conduct an analysis not on the
raw data scale but on a logarithmic scale instead. Notice that on a log-
arithmic scale, the upper specification for solids washed out in a test is
ln(44) = 3.78 (lnmg/m2).

(a) Replace the raw data by their natural logarithms. Then compute 13
subgroup means and standard deviations.

(b) Make retrospective x and s charts based on the transformed data.
Working on the log scale, is there evidence of process instability in
either of these charts? Would an analysis on the original scale of mea-
surement look any more favorable (in terms of process stability)?
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TABLE 4.14. Data for problem 26
Sample Contamination levels

1 45.00, 47.77, 145.43, 31.84, 45.01
2 24.00, 33.37, 22.87, 27.89, 21.46
3 13.50, 17.75, 13.34, 9.87, 15.42
4 3.0, 5.21, 1.82, 6.97, 11.13
5 8.62, 4.91, 18.42, 6.16, 6.58
6 231.02, 440.32, 136.24, 379.77, 171.78
7 257.00, 207.18, 240.09, 213.93, 389.62
8 107.57, 101.40, 133.49, 141.50, 92.56
9 51.00, 47.72, 59.45, 53.75, 46.51
10 85.00, 58.40, 52.30, 60.50, 46.84
11 44.00, 45.66, 83.30, 47.31, 66.13
12 88.37, 44.35, 35.65, 146.78, 37.50
13 59.30, 55.67, 62.52, 33.66, 34.96

(c) In light of your answer to (b), explain why it does not make sense to
try to state process capabilities based on the data presented here.

Suppose that after some process analysis and improvements in the way
hoses are cleaned, control charts for logarithms of measured contamina-
tions show no signs of process instability. Suppose further, that then com-
bining ten samples of five measured log contamination rates to produce a
single sample of size n = 50, one finds x = 3.05 and s = 2.10 for (logged)
contamination rates and a normal model to be a good description of the
data.

(d) Find an interval that (assuming continued process stability) you are
95% sure will include log contamination levels for 95% of all future
tests of this type. Transform this interval into one for contamination
levels measured on the original scale.

(e) Find an interval that (assuming continued process stability) you are
99% sure will contain the next measured log contamination level.
Transform this interval into one for the next contamination level mea-
sured on the original scale.

(f) Give a 95% two-sided confidence interval for the process capability,
6σ, measured on the log scale.

Although Cp and Cpk are not relevant in problems involving one-sided
specifications, there are related capability indices that can be applied. In
cases where there is only an upper engineering specification U , the mea-
sure

CPU =
U − μ

3σ



244 Chapter 4. Process Characterization and Capability Analysis

can be used, and in cases where there is only a lower engineering specifica-
tion L, there is the corresponding measure

CPL =
μ− L

3σ
.

As it turns out, the formula (4.10) used to make lower confidence bounds
for Cpk can be applied to the estimation of CPU or CPL (after replacing

Ĉpk by ̂CPU =
U − x

3s
or by ̂CPL =

x− L

3s
) as well.

(g) Find and interpret the estimate of CPU corresponding to the descrip-
tion above of log contamination levels obtained after process improve-
ment.

(h) Give a 95% lower confidence bound for CPU .

(i) Suppose management raises the upper specification limit to 54
mg/m

2. How does this change your answers to (g) and (h)?

(j) When comparing estimated capability ratios from different time peri-
ods, what does part (i) show must be true in order to allow a sensible
comparison?

27. Drilling Depths. Deford, Downey, Hahn, and Larsen measured drill depths
in a particular type of pump housing. Specifications on the depth for each
hole measured were 1.29± .01 in. Depth measurements for 24 holes were
taken and recorded in the order of drilling in Table 4.15.

(a) Find the average moving range for these data (as in Sect. 3.2.3) and
estimate σ by MR/1.128. Use this estimate of the process short-term
variability to make a retrospective “3-sigma” Shewhart X chart for
these data. Is there evidence of drilling process instability on this
chart?

TABLE 4.15. Data for problem 27
Hole Measured depth Hole Measured depth
1 1.292 13 1.292
2 1.291 14 1.290
3 1.291 15 1.292
4 1.291 16 1.291
5 1.291 17 1.290
6 1.291 18 1.291
7 1.290 19 1.290
8 1.291 20 1.291
9 1.292 21 1.290
10 1.291 22 1.290
11 1.291 23 1.291
12 1.290 24 1.291
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(b) In light of part (a), it perhaps makes sense to treat the measured depths
as a single sample of size n = 24 from a stable process. Do so and
give 90% lower confidence bounds for both Cp and Cpk.

(c) Give a 95% two-sided confidence interval for the process capability
6σ.

(d) Find an interval that you are 95% sure contains 90% of all depth
measurements for holes drilled like these.

(e) The validity of all the estimates in this problem depends upon the app-
ropriateness of a normal distribution model for measured hole depth.
The fact that the gauging seems to have been fairly crude relative to
the amount of variation seen in the hole depths (only three different
depths were ever observed) makes a completely satisfactory investi-
gation of the reasonableness of this assumption impossible. However,
do the best you can in assessing whether normality seems plausible.
Make a normal probability plot for the data and discuss how linear the
plot looks (making allowance for the fact that the gauging is relatively
crude).

28. Refer to the Journal Diameters case of problem 16 in the Chap. 3 exer-
cises. Suppose that after some attention to control charts and process beh-
avior, engineers are able to bring the grinding process to physical stability.
Further, suppose that a sample of n = 30 diameters then has sample mean
x = 44.97938, sample standard deviation s = .00240, and a fairly lin-
ear normal probability plot. In the following, use the mid-specification of
44.9825 as a target diameter.

(a) Give 95% lower confidence bounds for both Cp and Cpk.

(b) Which estimated index from (a) reflects potential process perfor-
mance? Which one summarizes current performance? Explain.

(c) If (say because of heavy external pressure to show “quality improve-
ment,” real or illusory) the lower specification for these diameters was
arbitrarily lowered and the upper specification was arbitrarily raised,
what would happen to Cp and Cpk?

(d) In light of your answer to part (c), what must be clarified when one is
presenting (or interpreting someone else’s presentation of) a series of
estimated Cp’s or Cpk’s?

(e) Find a two-sided interval that you are 99% sure will include the next
measured journal diameter from the process described in problem 16
of Chap. 3. What mathematical assumptions support the making of
this interval?

(f) Find a two-sided interval that you are 95% sure contains 99% of all
measured journal diameters.
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29. Refer to the U-bolt Threads case of problem 20 in the Chap. 3 exercises.

(a) Make retrospective x and R control charts for the thread-length data.
Is there evidence of process instability in these means and ranges?

(b) In light of part (a), it makes sense to treat the 5×18 = 90 data points in
problem 20 of Chap. 3 as a single sample from a stable process. You
may check that the grand sample mean for these data is x = 11.13
and the grand sample standard deviation is s = 1.97. (The units are
.001 in above nominal length.) Compare this latter figure to R/d2,
and note that as expected there is substantial agreement between these
figures.

(c) Specifications for thread lengths are given in problem 20h) of Chap. 3.
Use these and x and s from part (b) and give estimates of Cp and Cpk .

(d) Find a 95% lower confidence bound for Cpk.

(e) Find a 90% two-sided confidence interval for Cp. What mathematical
model assumptions support the making of this interval?

(f) Which of the two quantities, Cp or Cpk, is a better indicator of the
actual performance of the U-bolt thread-making process? Why?

(g) Find a 99% two-sided confidence interval for the process short-term
standard deviation, σ.

(h) Find a two-sided interval that you are 99% sure contains 95% of all
thread lengths for bolts from this process.

(i) What mathematical model assumptions support the making of the inf-
erences in parts (d), (e), (g), and (h)? How would you check to see if
those are sensible in the present situation?

(j) Use a statistical package to help you make the check you suggested in
part (i), and comment on your result.

30. An engineer plans to perform two different tests on a disk drive. Let X be
the time needed to perform test 1 and Y be the time required to perform
test 2. Further, let μX and μY be the respective means of these random
variables and σX and σY be the standard deviations. Of special interest is
the total time required to make both tests, X + Y .

(a) What is the mean of X + Y, μX+Y = E(X + Y ) (in terms of μX and
μY )?

(b) What is required in terms of model assumptions in order to go
from σX and σY to a standard deviation for X + Y, σX+Y =√
Var(X + Y )?

(c) Make the assumption alluded to in (b), and express σX+Y in terms of
σX and σY .
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Suppose that in order to set work standards for testing disk drives of a cer-
tain model, the engineer runs both test 1 and test 2 on n such drives. Test 1
time requirements have sample mean x and sample standard deviation sx,
while test 2 time requirements have sample mean y and sample standard
deviation sy .

(d) How would you use the information from the n tests to estimate
μX+Y ? (Give a formula.)

(e) How would you use the information from the n tests to estimate the
function of σX and σY that you gave as an answer in part (c)? (Give
a formula.)

(f) Suppose that in the engineer’s data, there is a fairly large (positive)
sample correlation between the observed values of X and Y . (For
example, drives requiring an unusually long time to run test 1 also
tended to require an unusually long time to run test 2.) Explain why
you should then not expect your answer to (e) to serve as a sensible
estimate of σX+Y . In this circumstance, if one has access to the raw
data, what is a safer way to estimate σX+Y ? (Hint: Suppose you can
reconstruct the n sums x+ y.)

(g) Would the possibility alluded to in part (f) invalidate your answer to
part (d)? Explain.

31. Let X be the inside length, Y be the inside width, and Z be the inside
height of a box. Suppose μX = 20, μY = 15, and μZ = 12, while
σX = .5, σY = .25, and σZ = .3. (All units are inches.) Assume inside
height, inside width, and inside length are “unrelated” to one another.

(a) Find the mean area of the inside bottom of the box.

(b) Approximate the standard deviation of the area of the inside bottom
of the box.

(c) Find the mean inside volume of the box.

(d) Approximate the standard deviation of the inside volume of the box.

32. Impedance in a Micro-Circuit. In their article “Robust Design Through
Optimization Techniques,” which appeared in Quality Engineering in 1994,
Lawson and Madrigal modeled impedance (Z) in a thin film redistribution
layer as

Z =

(
87.0√
ε+ 1.41

)
ln

(
5.98A

.80B + C

)

where A is an insulator thickness, B is a line width, C is a line height,
and ε is the insulator dielectric constant. ε is taken to be known as 3.10,
while A, B, and C are treated as random variables (as they would be in the
manufacture of such circuits) with means μA = 25, μB = 15, and μC = 5
and standard deviations σA = .3333, σB = .2222, and σC = .1111. (Units
for A, B, and C are 10−6 in. The article does not give the units of Z .)
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(a) Find an approximate mean and standard deviation of impedance for
this type of device. Assume A, B, and C are independent.

(b) Variation in which of the variables is likely to be the largest contrib-
utor to variation in impedance of manufactured devices of this type?
Explain.

33. TV Electron Guns. In their article, “Design Evaluation for Reduction in
Performance Variation of TV Electron Guns,” which appeared in Quality
Engineering in 1992, Ranganathan, Chowdhury, and Seksaria reported on
their efforts to improve consistency of cutoff voltages for TV electron guns.
Cutoff voltage (Y ) can be modeled in terms of several geometric properties
of an electron gun as

Y =
KA3

(B +D)(C −D)

where K is a known constant of proportionality, A is the diameter of an
aperture in the gun’s first grid, B is the distance between that grid and the
cathode, C is the distance between that grid and a second grid, and D is a
measure of lack of flatness of the first grid. The quality team wished to learn
how variation in A, B, C, and D was ultimately reflected in variation in Y .
(In particular, it was of interest to know the relative importance of the lack
of flatness variable. At the beginning of the study, an expensive selective
assembly process was being used to try to compensate for problems with
consistency in this variable.)

(a) Find an expression for an approximate standard deviation of cutoff
voltage assuming A, B, C, and D are independent.

(b) In a manufacturing context such as the present one, which of the terms
in an expression like you produced for part (a) represent target val-
ues set in product design, and which represent item-to-item manufac-
turing variation? How might realistic values for these latter terms be
obtained?

The following means and standard deviations are consistent with the des-
cription of the case given in the article. (Presumably for reasons of corpo-
rate security, complete details are not given in the paper, but these values
are consistent with everything that is said there. In particular, no units for
the dimensions A through D are given.)

Dimension Mean Standard deviation
A .70871 .00443
B .26056 .00832
C .20845 .02826
D 0 .00865
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(c) Using the means and standard deviations given above and your an-
swer to (a), approximate the fractions of variance in cutoff voltage
attributable to variability in the individual dimensions A through D.

(d) In light of your answer to (c), does it seem that the company’s expen-
sive countermeasures to deal with variation in lack of flatness in the
first grid are justified? Where should their variance-reduction efforts
be focused next? Explain.

(e) What advantages does the method of this problem have over first mea-
suring cutoff voltage and then dissecting a number of complete elec-
tron guns, in an effort to see which dimensions most seriously affect
the voltage?

34. The heat conductivity of a circular cylindrical bar of diameter D and length
L, connected between two constant temperature devices of temperatures
T1 and T2, that conducts C calories in τ seconds is

λ =
4CL

π(T1 − T2)τD2
.

In a particular laboratory determination of λ for brass, the quantities C,
L, T1, T2, τ , and D can be measured with means and standard deviations
approximately as follows.

Standard
Variable Mean Deviation ∂λ

∂variable

C 240 cal 10 cal .000825
L 100 cm .1 cm .199
T1 100◦ C 1◦ C −.00199
T2 0◦ C 1◦ C .00199
τ 600 sec 1 sec .000332
D 1.6 cm .1 cm −.249

(The units of the partial derivatives are the units of λ, namely,
cal/(cm)(sec)(◦ C) divided by the units of the variable in question.)

(a) Find an approximate standard deviation for a realized heat conductiv-
ity value from a single determination.

(b) In this experimental setup, which of the variables do you expect to
contribute most to the variation in experimentally determined heat
conductivity values? Explain.

35. An output voltage Vout in an audio circuit is a function of an input voltage
Vin and gains N and K supplied, respectively, by a transformer and an
amplifier via the relationship

Vout = VinNK.
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Many such circuits are to be built and used in circumstances where Vin may
be somewhat variable.

(a) Considering manufacturing variability in N and K and variation in
Vout attributable to environmental factors, how would you predict the
mean of Vout without testing any of these complete circuits? How
would you predict the amount of variability to be seen in Vout without
testing any of these complete circuits?

(b) What assumption might you add to your answers to (a) in order to
predict the fraction of output voltages from these circuits that will fall
in the range 99 V to 100 V?

(c) Why might it be “not so smart” to rely entirely on calculations like
those alluded to in (a) and (b) to the complete exclusion of product
testing?



CHAPTER 5

EXPERIMENTAL DESIGN
AND ANALYSIS FOR

PROCESS IMPROVEMENT
PART 1: BASICS

The first four chapters of this book provide tools for bringing a process to physical
stability and then characterizing its behavior. The question of what to do if the
resulting picture of the process is not to one’s liking remains. This chapter and the
next present tools for addressing this issue. That is, Chaps. 5 and 6 concern sta-
tistical methods that support intelligent process experimentation and can provide
guidance in improvement efforts.

Section 5.1 presents “one-way” methods for the analysis of experimental data.
These treat r samples in ways that do not refer to any special structure in the pro-
cess conditions leading to the observations. They are thus among the most widely
applicable of statistical methods. Then Sect. 5.2 considers the analysis of two-
way complete factorial data sets and introduces some basic concepts needed in
the study of systems where several different factors potentially impact a response
variable. Finally, Sect. 5.3 is a long one discussing p-way factorial analysis, with
particular emphasis on those complete factorial studies where each factor appears
at two levels (known as the 2p factorial studies).
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5.1 One-Way Methods

Figure 5.1 is useful for helping one think about experimental design and data
analysis. The proverbial “black box” represents a process to be studied. Into that
process go many noisy/variable inputs, and out of the process comes at least one
noisy output of interest, y. At the time of experimentation, there are “knobs” on
the process that the experimenter can manipulate, variables x1, x2, x3, . . . whose
settings or “levels” are under the investigator’s control. The engineer can choose
values for the variables and observe one or more values of y, choose another set
of values for the variables and observe one or more additional values of y, and
so on. The object of such data collection and subsequent data analysis is to figure
out how the black box/process responds to changes in the knob settings (i.e., how
the process output depends upon the variables x1, x2, x3, . . . ). Armed with such
knowledge, one can then try to

1. optimize the choice of values for the variables x1, x2, x3, . . . in terms of
maximizing (or minimizing) y or,

2. identify those variables that have the largest effects on y, with the goal
of prescribing very careful future supervision of those, in order to reduce
variation in y.

FIGURE 5.1. Black box with noisy inputs, “knobs” x1, x2, x3, . . ., and noisy output y

This section presents methods of data analysis that do not depend upon any
specifics of the nature of the variables x1, x2, x3, . . . nor on the pattern of changes
one makes in them when collecting data. (In particular, there is no assumption that
the variables x1, x2, x3, . . . are quantitative. Nor does one need to suppose that
any specific number of the variables are changed in any specific way in order to
use the basic methods of this section.) All that one assumes is that there are r
different sets of experimental conditions under consideration.

The presentation begins with a discussion of a “one-way” normal model for
data from r different sets of conditions and an estimator of variance in that model.
Then a method of making confidence intervals for linear combinations of the r
means involved is presented.
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5.1.1 The One-Way Normal Model and a Pooled Estimator
of Variance

Example 55 is typical of many engineering experiments. Fairly small samples are
taken to represent r different sets of process conditions, and one must use the
limited information provided by the r samples to make comparisons.

Example 55 Strengths of Solder Joints. The paper “Fracture Mechanism of
Brass/Sn-Pb-Sb Solder Joints and the Effect of Production Variables on the Joint
Strength,” by Tomlinson and Cooper, appeared in Journal of Materials Science in
1986 and contains data on shear strengths of solder joints (units are megapas-
cals). Table 5.1 gives part of the Tomlinson/Cooper data for six sets of process
conditions (defined in terms of the cooling method employed and the amount of
antimony in the solder).

The data in Table 5.1 comprise r = 6 samples of common size m = 3, rep-
resenting six different ways of making solder joints. In terms of the conceptual-
ization of Fig. 5.1, there are p = 2 process “knobs” that have been turned in the
collection of these data, the cooling method knob and the % antimony knob. Sec-
tion 5.2 introduces methods of analysis aimed at detailing separate effects of the
two factors. But to begin, we simply think of the data (and summary statistics) in
Table 5.1 as generated by six different unstructured sets of process conditions.

TABLE 5.1. Shear strengths and some summary statistics for r = 6 different soldering
methods (MPa)

Method (i) Cooling Sb (% weight) Strength, y yi si
1 H2O quench 3 18.6, 19.5, 19.0 19.033 .451
2 H2O quench 5 22.3, 19.5, 20.5 20.767 1.419
3 H2O quench 10 15.2, 17.1, 16.6 16.300 .985
4 Oil quench 3 20.0, 20.9, 20.4 20.433 .451
5 Oil quench 5 20.9, 22.9, 20.6 21.467 1.250
6 Oil quench 10 16.4, 19.0, 18.1 17.833 1.320

In order to make statistical inferences from r small samples like those rep-
resented in Table 5.1, it is necessary to adopt some model for the data gener-
ation process. By far the most widely used, most convenient, and most easily

One-Way
Normal Model

understood such mathematical description is the one-way normal (or Gaussian)
model. In words, this model says that the r samples in hand come from r normal
distributions with possibly different means μ1, μ2, . . . , μr, but a common stan-
dard deviation σ. Figure 5.2 on page 254 is a graphical representation of these
assumptions.

It is helpful to also have a statement of the basic one-way Gaussian model
assumptions in terms of symbols. The one that will be used in this text is that with
yij the jth observation in sample i (from the ith set of process conditions),
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FIGURE 5.2. r normal distributions with a common standard deviation

One-Way
Model
Equation

yij = μi + εij , (5.1)

for μ1, μ2, . . . , μr (unknown) means and ε11, . . . , ε1n1 , ε21, . . . , ε2n2 , . . . ,
εr1, . . . , εrnr independent normal random variables with mean 0 and (unknown)
standard deviation σ. n1, n2, . . . , nr are the sample sizes, and the means
μ1, μ2, . . . , μr and the standard deviation σ are the parameters of the model
that must be estimated from data.

It is always wise to examine the plausibility of a mathematical model before
using it to guide engineering decisions. So how might one investigate the appro-
priateness of the “constant variance, normal distributions” model represented by
Eq. (5.1)? Where the sample sizes n1, n2, . . . , nr are moderate to large (say on
the order of at least 6 or 7), one option is to make r normal plots (possibly on the
same set of axes) for the different samples. One uses the normal plotting method
of Sect. 4.1 and hopes to see reasonably linear plots with roughly the same slope—
linearity indicating normality and equal slopes indicating constant variance.

While making r different normal plots is a viable option where sample sizes are
big enough, it is not really very helpful in contexts like Example 55 where sample
sizes are extremely small. About all that can be done for very small sample sizes is
to examine “residuals” in much the same way one studies residuals in regression
analysis. That is, for the one-way model (5.1), the ith sample mean yi is a kind of
“predicted” or “fitted” response for the ith set of process conditions. One might
then (for those samples with ni > 1) compute and examine residuals

Residual for
Data Point yij

eij = yij − yi. (5.2)

The motivation for doing so is that in light of the model (5.1), eij is an approx-
imation for εij , and the eij might thus be expected to look approximately like
Gaussian random variation. (Actually, when sample sizes vary, a slightly more
sophisticated analysis would consider standardized residuals, which in this con-
text are essentially the eij divided by

√
(ni − 1)/ni. But for the sake of brevity,
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this refinement will not be pursued here.) So, for example, if model (5.1) is to be
considered completely appropriate, a normal plot of the eij ought to look reason-
ably linear.

Example 56 (Example 55 continued.) Considering again the soldering study,
Table 5.2 contains 18 = 6 × 3 residuals computed according to formula (5.2).
Figure 5.3 is a normal plot of the 18 residuals of Table 5.2. It is quite linear and
raises no great concerns about the appropriateness of an analysis of the soldering
data based on the one-way normal model.

TABLE 5.2. Residuals for the soldering data (MPa)

Method Residuals
(i) eij= yij−yi
1 18.6− 19.033 = −.433, 19.5− 19.033 = .467,

19.0− 19.033 = −.033
2 22.3− 20.767 = 1.533, 19.5− 20.767 = −1.267,

20.5− 20.767 = −.267
3 15.2− 16.300 = −1.100, 17.1− 16.300 = .800,

16.6− 16.3 = .300
4 20.0− 20.433 = −.433, 20.9− 20.433 = .467,

20.4− 20.433 = −.033
5 20.9− 21.467 = −.567, 22.9− 21.467 = 1.433,

20.6− 21.467 = −.867
6 16.4− 17.833 = −1.433, 19.0− 17.833 = 1.167,

18.1− 17.833 = .267

FIGURE 5.3. Normal plot of residuals in the soldering study
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After considering the appropriateness of the basic model (5.1), an estimate of
the parameter σ should be found. This is the (supposedly constant) standard dev-
iation of observations y from any fixed set of process conditions. Any one of
the sample standard deviations s1, s2, . . . , sr could serve as an estimator of σ.
But a better option is to somehow combine all r of these into a single “pooled”
estimator. Usually, one computes a kind of weighted average of the r sample
variances and then takes a square root in order to get back to the original units of
observation. That is, a pooled estimator of σ2 is

Pooled
Estimator of σ2

s2pooled =
(n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nr − 1)s2r

(n1 − 1) + (n2 − 1) + · · ·+ (nr − 1)
, (5.3)

or setting n = n1+n2+ · · ·+nr and abbreviating the word “pooled” to the letter
“P,” one can rewrite display (5.3) as

Pooled
Estimator of σ2

s2P =
(n1 − 1)s21 + (n2 − 1)s22 + · · ·+ (nr − 1)s2r

n− r
. (5.4)

A corresponding pooled estimator of σ is thus

Pooled
Estimator of σ

sP =
√
s2P . (5.5)

Example 57 (Examples 55 and 56 continued.) Table 5.1 gives the r = 6 sam-
ple variances for the soldering methods. These may be combined according to
formula (5.4) to produce the pooled sample variance:

s2P =
(3− 1)(.451)2 + (3− 1)(1.419)2 + · · ·+ (3− 1)(1.320)2

18− 6
,

= 1.116 ,

so that
sP =

√
1.116 = 1.056 MPa .

This pooled estimate of σ is meant to represent the amount of variability seen in
shear strengths for any one of the six conditions included in the Tomlinson and
Cooper study.

The pooled estimator (5.3) is sometimes called the “error mean square” (MSE)
where people emphasize ANOVA in the analysis of experimental data. This text
does not emphasize ANOVA or the significance tests that it facilitates. Rather,
it concentrates on confidence intervals and graphical displays in the analysis of
experimental data. And from this point of view, the present language is probably
more natural.
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5.1.2 Confidence Intervals for Linear Combinations of Means

The estimator sP is a measure of background noise or observed experimental
variability against which differences in the sample means y1, y2, . . . , yr must be
judged. The particular form of the estimator specified in displays (5.3) and (5.4)
allows the development of a number of simple formulas of statistical inference.
For one thing, it supports the making of simple confidence intervals for linear
combinations of the means μ1, μ2, . . . , μr.

That is, for constants c1, c2, . . . , cr, consider the problem of estimating the
linear combination of means

L = c1μ1 + c2μ2 + · · ·+ crμr , (5.6)

based on samples from process conditions 1, 2, . . . , r. A number of important
quantities are of this form. For example, where all ci’s are 0 except one which
is 1, L is just a particular mean of interest. And where all ci’s are 0 except one
that is 1 and one that is −1, L is a difference in two particular means of interest.
And as this chapter proceeds, it will become evident that there are other more
complicated Ls that are useful in the analysis of data from process-improvement
experiments.

A natural estimator for L specified in display (5.6) is

Estimator of L

L̂ = c1y1 + c2y2 + · · ·+ cryr , (5.7)

obtained by replacing each population mean by its corresponding sample version.
And as it turns out, one can use L̂ as the basis of a confidence interval for L. That
is, confidence limits for L are

Confidence
Limits for L

L̂± tsP

√
c21
n1

+
c22
n2

+ · · ·+ c2r
nr

, (5.8)

where t is a quantile of the t distribution with n−r associated degrees of freedom.
(n continues to stand for the total of the r sample sizes.) If t is the p quantile and
only one of the limits indicated in display (5.8) is used, the associated confidence
level is p × 100%. If both limits in formula (5.8) are employed to make a two-
sided confidence interval, the associated confidence is (2p− 1)× 100%.

Two important special cases of formula (5.8) are those where L is a single mean
and where L is a difference of means. That is, confidence limits for the ith mean
response μi are

Confidence
Limits for a
Single Mean

yi ± tsP

√
1

ni
. (5.9)
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And confidence limits for the difference in the ith and i′th means, μi − μi′ , are

Confidence
Limits for a
Difference in
Means

yi − yi′ ± tsP

√
1

ni
+

1

ni′
. (5.10)

Example 58 (Examples 55, 56, and 57 continued.) Return again to the solder-
ing problem, and first consider an individual method mean strength, μi. Associ-
ated with the pooled standard deviation sP are n − r = 18 − 6 = 12 degrees
of freedom. So, for example, finding that the .975 quantile of the t12 distribution
is 2.179, two-sided 95 % confidence limits for any single mean strength in the
soldering study are from display (5.9):

yi ± 2.179(1.056)

√
1

3
, that is, yi ± 1.328 MPa .

In some sense, the yi values in Table 5.1 are each good to within 1.328 MPa as
representing their respective long-run mean solder joint strengths.

Next, consider the comparison of any two mean strengths. A way to make such
a comparison is through a confidence interval for their difference, as indicated in
display (5.10). Again using the fact that the .975 quantile of the t12 distribution
is 2.179, two-sided 95 % confidence limits for any particular difference in mean
strengths are

yi − yi′ ± 2.179(1.056)

√
1

3
+

1

3
, that is, yi − yi′ ± 1.879 MPa .

For example, μ1−μ4 (which represents the difference in mean strengths for water-
quenched and oil-quenched joints when 3 % antimony is used in the solder) can
be estimated with 95 % confidence as

(19.033− 20.433)± 1.879, that is, −1.400 MPa± 1.879 MPa .

The fact that the uncertainty reflected by the ±1.879 MPa figure is larger in
magnitude than the difference between y1 and y4 says that evidence in the data
that methods 1 and 4 produce different joint strengths is not overwhelming. (The
confidence interval includes 0.)

Finally, as an example of using the general form of the confidence interval
formula given in display (5.8), consider estimation of

L =
1

3
(μ4 + μ5 + μ6)−

1

3
(μ1 + μ2 + μ3)

= −1

3
μ1 −

1

3
μ2 −

1

3
μ3 +

1

3
μ4 +

1

3
μ5 +

1

3
μ6 ,

the difference between the average of the oil-quench mean strengths and the av-
erage of the water-quench mean strengths. First, from formula (5.7)

L̂ = −1

3
(19.033+ 20.767 + 16.300) +

1

3
(20.433 + 21.467+ 17.833) = 1.211.
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Then, based on the fact that each ci is ± 1
3 and thus has square 1

9 , formula (5.8)
gives 95 % two-sided confidence limits for L of the form

1.211± 2.179(1.056)

√
6

(
1

9

)(
1

3

)
, that is, 1.211 MPa± 1.085 MPa .

This shows that (at least on average across different amounts of antimony) the oil-
quenched joints are detectably stronger than water-quenched joints. (The interval
includes only positive values.)

It is important to realize that the confidence level associated with an interval
with end points (5.8) (or one of the specializations (5.9) and (5.10)) is an individ-
ual confidence level, pertaining to a single interval at a time. For example, if one
uses formula (5.9) r times, to estimate each of μ1, μ2, . . . , μr with 90 % confi-
dence, one is 90 % confident of the first interval, separately 90 % confident of the
second interval, separately 90 % confident of the third interval, and so on. One is
not 90 % confident that all r of the intervals are correct. But there are times when
it is desirable to be able to say that one is simultaneously “90 % sure” of a whole
collection of inferences.

If one wishes to make several confidence intervals and announce an overall
or simultaneous confidence level, one simple approach is to use the Bonferroni
Inequality. This inequality says that if l intervals have associated individual con-
fidence levels γ1, γ2, . . . , γl, then the confidence that should be associated with
them simultaneously or as a group, say γ, satisfies

Bonferroni’s
Lower Bound
on Overall
Confidence

γ ≥ 1− ((1 − γ1) + (1− γ2) + · · ·+ (1− γl)) . (5.11)

(This says that the “unconfidence” associated with a group of inferences is no
worse than the sum of the individual “unconfidences,” 1 − γ ≤ (1 − γ1) + (1 −
γ2) + · · ·+ (1 − γl).)

Example 59 (Examples 55 through 58 continued.) Consider a simple use of
the Bonferroni inequality (5.11) in the solder joint strength study. The r = 6
individual 95 % confidence intervals for the means μi of the form yi ± 1.328
taken as a group have simultaneous confidence level at least 70 %, since

1− 6(1− .95) = .7.

If one wanted to be more sure of intervals for the r = 6 means, one could instead
make (much wider) 99 % individual intervals and be at least 94 % confident that
all six intervals cover their respective means.

The Bonferroni idea is a simple all-purpose tool that covers many different
situations. It is particularly useful when there are a relatively few quantities to
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be estimated and individual confidence levels are large (so that the lower bound
for the joint or simultaneous confidence is not so small as to be practically use-
less). But it is also somewhat crude, and a number of more specialized methods
have been crafted to produce exact simultaneous confidence levels for estimating
particular sets of Ls. When these are applicable, they will produce narrower int-
ervals (or equivalently, higher stated simultaneous confidence levels) than those
provided by the Bonferroni method. (The reader is referred to Sect. 7.3 of Varde-
man and Jobe’s Basic Engineering Data Collection and Analysis for discussion of
methods of making simultaneous intervals for a set of means or for all differences
in a set of means.)

Section 5.1 Exercises

1. For the one-way normal model of this section, describe the distributional
aspects (means, variances, and distribution) of observations yij .

2. sP is the pooled sample standard deviation for an experiment for comparing
r different experimental conditions. What does this statistic estimate in the
context of the one-way normal model?

3. Suppose r = 3 conditions in an experiment have sample sizes and produce
sample standard deviations. What is the corresponding value of sP?

Condition 1 Condition 2 Condition 3
n1 = 4 n2 = 3 n3 = 5
s1 = 2 s2 = 6 s3 = 4

4. If approximately 95% confidence limits for μ1 are y1± 3, while 95% con-
fidence limits for μ2 in the same study are y2 ± 4, find 95% confidence
limits for the difference μ1 − μ2. (All limits are based on sP. Assume the
appropriate t multiplier is about 2.0.)

5. Consider an experiment with r = 4 conditions in which samples of size
m = 4 are obtained under each condition. Further, suppose that sP = 3.
95% confidence limits for each μi are of the form yi ±Δ.

(a) What is the numerical value of Δ?

(b) Will you be 95% confident that all 4 intervals include the respective
μi’s? Why or why not? If not, your confidence in all intervals simul-
taneously is at least how much?

6. Air Filters. Tests of effectiveness of r = 5 different operator cab air filtra-
tion systems (meant to protect agricultural workers operating large mobile
pesticide spraying machines) produced ratios y of outside-cab-particle-
counts to inside-cab-particle-counts with summary statistics below. (Large
ratios y are good.) Suppose that the variation in the ratios y can be
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described by a single standard deviation appropriate for any fixed design
and that the y values for each design are approximately normally dis-
tributed.

Design 1 Design 2 Design 3 Design 4 Design 5
n1 = 3 n2 = 2 n3 = 1 n4 = 3 n5 = 4
y1 = 50 y2 = 40 y3 = 65 y4 = 35 y5 = 55
s1 = 7.2 s2 = 6.5 s3 = 0 s4 = 5.0 s5 = 7.5

(a) Find sP.

(b) Find 95% confidence limits for the average ratio for design 4.

(c) Find 95% confidence limits for the difference between the average
ratio for design 4 and the average ratio for design 1 (design 4 minus
design 1).

(d) Let μ1, μ2, μ3, μ4, and μ5 be the long run average y for the five de-
signs. Suppose designs 2 and 4 use filters supplied by Company X
and designs 3 and 5 use filters supplied by Company Y. Give an L
(linear combination of design means) that might be used to compare
the performance of the two filter companies.

(e) The numbers in the table above for a given design might summarize
multiple measurements on a single prototype or summarize individual
measurements on several prototypes. Which of these two possibilities
is better in practical terms? Why?

7. Continue with the Air Filter problem.

(a) Give a 90% confidence interval for the L from problem 6(d).

(b) How many possible differencesμi−μj (for i 	= j) are there for the five
designs? (Do not count μ1−μ2 and μ2−μ1 as different comparisons
of two means.)

(c) An analyst wanted to make a set of intervals for all the differences
μi −μj (for i 	= j) and be 90% confident that all intervals simultane-
ously cover their respective differences μi − μj . What confidence
level for each individual interval would guarantee the 90% figure
overall?

5.2 Two-Way Factorials

It is not yet apparent how the analysis tools of the previous section address the
facts that most often process-improvement experiments involve several factors
and that separating their influences is a primary issue. This section begins to show
how these vital matters can be handled, taking the case of p = 2 factors as a
starting point.
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The section begins with a discussion of two-way factorial data structures and
graphical and qualitative analyses of these. Then the concepts of main effects
and interactions are defined, and the estimation of these quantities is consid-
ered. Finally, there is a brief discussion of fitting simplified or reduced models
to balanced two-way factorial data.

5.2.1 Graphical and Qualitative Analysis for Complete
Two-Way Factorial Data

This section concerns situations where on the black box of Fig. 5.1 there are two
“knobs” under the control of an experimenter. That is, two-factor experimentation
is treated. So for ease of communication, let Factor A and Factor B be two generic
names for factors that potentially impact some process output of interest, y. In
cases where levels of Factors A and B are defined in terms of values of quantitative
process variables x1 and x2, respectively, the tool of multiple regression analysis
provides a powerful method of data analysis. That tool is applied to multifactor
process-improvement problems in Sect. 6.2 of this book. But here, methods of
analysis that can be used even when one or both of Factors A and B is qualitative
will first be considered.

The most straightforward analyses of two-factor studies are possible in cases
where Factor A has levels 1, 2, . . . , I , Factor B has levels 1, 2, . . . , J , and every
possible combination of a level of A and a level of B is represented in the data
set. Such a data set will be called an I ×J complete factorial data set. Figure 5.4
illustrates the fact that the I ×J different sets of process conditions in a complete
factorial study can be laid out in a rectangular two-way table. Rows correspond
to levels of Factor A, columns correspond to levels of Factor B, and the factorial
is “complete” in the sense that there are data available corresponding to all I × J
“cells” in the table.

Corresponding to Fig. 5.4, let

yijk = the kth observation from level i of Factor A and level j of Factor B,

yij =
1

nij

∑
k

yijk

= the sample mean from level i of Factor A and level j of Factor B,

and

s2ij =
1

nij − 1

∑
k

(yijk − yij)
2

= the sample variance from level i of Factor A and level j of Factor B,
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FIGURE 5.4. r = I × J combinations in a two-way factorial study

where nij is the sample size corresponding to level i of A and level j of B. Ex-
cept for the introduction of (i, j) double subscripting to recognize the two-factor
structure, there is nothing new in these formulas. One is simply naming the vari-
ous observations from a data structure like that indicated in Fig. 5.4 and the cor-
responding r = I × J sample means and variances.

Example 60 Two-Way Analysis of Solder Joint Strengths (Examples 55
through 59 revisited). Table 5.3 on page 264 is essentially a repeat of Table 5.1,
giving the joint strength data of Tomlinson and Cooper and corresponding sample
means and standard deviations. What is new here is only that in place of naming
r = 6 sets of process conditions with indices i = 1, 2, 3, 4, 5, and 6, double
subscripts (i, j) corresponding to the 2 × 3 different combinations of I = 2
different cooling methods and J = 3 different amounts of antimony are used.

Figure 5.5 on Page 264 shows the six sample means and standard deviations of
Table 5.3 laid out in a 2 × 3 table, with rows corresponding to levels of Factor A
(cooling method) and columns corresponding to levels of Factor B (% Sb).

Most basically, data from a complete two-way factorial study are simply obser-
vations from r = I×J different sets of process conditions, and all of the material
from the previous section can be brought to bear (as it was in Example 55) on
their analysis. But in order to explicitly acknowledge the two-way structure, it is
common to not only double subscript the samples (for level of A and level of B)
but to also double subscript the theoretical mean responses as well, writing μij

instead of simply the μi used in Sect. 5.1. And so, using the obvious subscript no-



264 Chapter 5. Experimental Design and Analysis for Process Improvement

TABLE 5.3. Shear strengths and summary statistics for I × J = 2 × 3 combinations of
cooling method and amount of antimony (MPa)

Factor A Factor B
Cooling i Sb (% weight) j Strength, y yij sij
H2O quench 1 3 1 18.6, 19.5, 19.0 19.033 .451
H2O quench 1 5 2 22.3, 19.5, 20.5 20.767 1.419
H2O quench 1 10 3 15.2, 17.1, 16.6 16.300 .985
Oil quench 2 3 1 20.0, 20.9, 20.4 20.433 .451
Oil quench 2 5 2 20.9, 22.9, 20.6 21.467 1.250
Oil quench 2 10 3 16.4, 19.0, 18.1 17.833 1.320

FIGURE 5.5. Sample means and standard deviations from Table 5.3 (MPa)

tation for εs the one-way model assumptions (5.1) are rewritten for the two-way
factorial context as

Two-Way
Model
Equation

yijk = μij + εijk ,

for μ11, μ12, . . . , μ1J , μ21, . . . , μ2J , . . . , μI1, . . . , μIJ (unknown) means and
ε111, . . . , ε11n11 ,ε121, . . . , ε12n12 , . . . , εIJ1, . . . , εIJnIJ independent normal ran-
dom variables with mean 0 and (unknown) standard deviation σ.

Finding interpretable patterns in how the means μij change with i and j (with
level of Factor A and level of Factor B) is a primary goal in a two-way factorial
analysis. A very effective first step in achieving that goal is to make a plot of
the I × J sample means yij versus (say) level of Factor B, connecting points
having a common level of (say) Factor A with line segments. Such a plot is usually

Interaction Plot called an interaction plot (although the terminology is not terribly descriptive or
helpful). It is useful to indicate on such a plot the precision with which the mean
responses are known. This can be done by using confidence limits for the μij to
make error bars around the sample means. The formulas (5.9) can be used for
this purpose as long as one bears in mind that the confidence level associated with
them is an individual one, not one that applies to the entire figure simultaneously.

Example 61 (Example 60 continued.) Figure 5.6 is an interaction plot for the
solder joint strength data. In Example 58, 95 % confidence limits for the six
method means μij were found to be of the form yij ± 1.328 MPa, and this 1.328
MPa figure has been used to make the error bars in the figure.

Figure 5.6 gives a helpful summary of what the data say about how cooling



Chapter 5. Experimental Design and Analysis for Process Improvement 265

method and amount of antimony impact solder joint strength. That is, there are
strong hints that (1) a large amount of antimony in the solder is not good (in
terms of producing large joint strength), (2) oil-quenched joints are stronger than
water-quenched joints, and (3) patterns of response to changes in a given fac-
tor (A or B) are consistent across levels of the other factor (B or A). But these
conclusions are somewhat clouded by the relatively large error bars on the plot
(indicating uncertainty in knowledge about long-run mean joint strengths). The
indicated uncertainty does not seem large enough to really draw into question the
importance of amount of antimony in determining joint strength. But exactly how
the two different cooling methods compare is perhaps somewhat murkier. And the
extent to which a change in antimony levels possibly produces different changes
in mean joint strength for the two different cooling methods is nearly completely
clouded by the “experimental noise level” pictured by the error bars.

FIGURE 5.6. Interaction plot for the solder joint strength study

In two-way factorial experiments where it turns out that one has good preci-
sion (small error bars) for estimating all I × J means, an interaction plot in the
style of Fig. 5.6 can be all that is really required to describe how the two factors
impact y. But where one has learned less about the individual means, finer/more
quantitative analyses are helpful. And the next subsection discusses such analy-
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ses, both because they can be important in two-factor studies and because they set
the pattern for what is done in the analysis of p-way factorial data for p > 2.

5.2.2 Defining and Estimating Effects

Figure 5.6 for the solder joint strength data hints at “an effect” of cooling method,
Factor A, on y. If one can make a sensible quantitative definition of exactly what
the effect of a level of Factor A might mean, the possibility exists of doing inf-
erence (giving a confidence interval) for it. To those ends, notations for row and
column averages of both μij’s and corresponding yij ’s are needed. These are
indicated in Fig. 5.7 for the specific case of the solder study and detailed in general
in formulas (5.12) through (5.17).

FIGURE 5.7. Two-way layout of yij , yi., y.j , y.., μij , μi., μ.j , μ.. for the 2×3 solder joint
study

Let

Average of
Row i Sample
Means

yi. =
1

J

∑
j

yij = the simple average of the row i sample means (5.12)

and correspondingly

μi. =
1

J

∑
j

μij = the simple average of the row i theoretical means.

(5.13)
Similarly, take

Average of
Column j
Sample Means y.j =

1

I

∑
i

yij = the simple average of the column j sample means

(5.14)
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and correspondingly

μ.j =
1

I

∑
i

μij = the simple average of the column j theoretical means.

(5.15)
Finally, use the notation

Average of
All I × J
Sample Means

y.. =
1

IJ

∑
i,j

yij = the average of all I × J cell sample means (5.16)

and correspondingly

μ.. =
1

IJ

∑
i,j

μij = the average of all I × J theoretical means. (5.17)

Example 62 (Example 60 continued.) Averaging yij values across rows, down
columns, and over the whole table summarized in Fig. 5.5 produces the yi., y.j
values and the value of y.. displayed in Fig. 5.8 along with the six cell means.
(Since the long-run mean strengths μij are not known, it is not possible to present
an analog of Fig. 5.8 giving numerical values for the μi., μ.j , and μ...)

FIGURE 5.8. Cell, marginal, and overall means from the data in Table 5.3 (MPa)

The row and column means in Fig. 5.8 suggest a way of measuring the direct
or main effects of Factors A and B on y. One might base comparisons of levels of
Factor A on row averages of mean responses and comparisons of levels of Factor
B on column averages of mean responses. This thinking leads to definitions of
main effects and their estimated or fitted counterparts.

Definition 63 The (theoretical) main effect of Factor A at level i in a complete
I × J two-way factorial is

αi = μi. − μ...

Definition 64 The (estimated or) fitted main effect of Factor A at level i in a
complete I × J two-way factorial is

ai = yi. − y...
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Definition 65 The (theoretical) main effect of Factor B at level j in a complete
I × J two-way factorial is

βj = μ.j − μ...

Definition 66 The (estimated or) fitted main effect of Factor B at level j in a
complete I × J two-way factorial is

bj = y.j − y...

A main effects are row averages of cell means minus a grand average, while
B main effects are column averages of cell means minus a grand average. And a
very small amount of algebra makes it obvious that differences in main effects of
a factor are corresponding differences in row or column averages. That is, from
the definitions

αi − αi′ = μi. − μi′. and ai − ai′ = yi. − yi′. , (5.18)

while
βj − βj′ = μ.j − μ.j′ and bj − bj′ = y.j − y.j′ . (5.19)

Example 67 (Example 60 continued.) Some arithmetic applied to the row and
column average means in Fig. 5.8 shows that the fitted main effects of cooling
method and antimony content for the data of Table 5.3 are

a1 = 18.700− 19.305 = −.605 and a2 = 19.911− 19.305 = .605

and

b1 = 19.733− 19.305 = .427, b2 = 21.116− 19.305 = 1.811, and
b3 = 17.066− 19.305 = −2.238.

More decimals have been displayed in Example 67 than are really justified on
the basis of the precision of the original data. This has been done for the purpose
of pointing out (without clouding the issue with roundoff error) that a1 + a2 = 0
and b1 + b2 + b3 = 0. These relationships are no accident. It is an algebraic
consequence of the form of Definitions 63 through 66 that
∑
i

ai = 0 and
∑
j

bj = 0, and similarly
∑
i

αi = 0 and
∑
j

βj = 0.

(5.20)
Both fitted and theoretical main effects of any factor sum to 0 over all possible
levels of that factor. Notice that, in particular, relationships (5.20) imply that when
a factor has only two levels, the two (theoretical or fitted) main effects must have
the same magnitude but opposite signs.

The main effects of Factors A and B do not in general “tell the whole story”
about how means μij depend upon i and j. Figure 5.9 specifies two hypothetical
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(a) (b)

FIGURE 5.9. Two hypothetical sets of means μij for 2 × 3 factorials that share the same
row and column averages

FIGURE 5.10. Interaction plots for the two sets of means in Fig. 5.9

sets of means μij for 2×3 factorials that share the same row and column averages
and therefore the same main effects. Interaction plots for the two sets of means
are given in Fig. 5.10.

The qualitative characters of the two plots in Fig. 5.10 are substantially differ-
ent. The first graph represents a situation that is fundamentally simpler than the
second. On the first graph, as one changes level of Factor B, the same change in
mean response is produced regardless of whether one is looking at the first level
of Factor A or at the second level. In some sense, it is legitimate to think about
how Factor B impacts the mean response as independent of the level of A under
discussion. The same is not true for the second plot. On the second graph, what
happens to mean response when one changes level of B depends strongly on what
level of A is being considered. That implies, for example, that if one were inter-
ested in maximizing mean response, the preferred level of B would depend on the
level of A being used. No simple blanket recommendation like “level 2 of Factor
B is best” can be made in situations like that pictured on the second plot.

A way of describing the feature of the first plot in Fig. 5.10 that makes it simple
is to say that the plot exhibits parallelism between the profiles (across levels
of B) of mean response for various levels of A. It is thus important to be able
to measure the degree to which a set of means departs from the kind of simple
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parallelism seen on the first plot.
It turns out that parallelism on an interaction plot of μijs is equivalent to the

possibility that for all (i, j), combinations

μij = μ.. + αi + βj .

This is exactly the eventuality that the main effects (and the grand mean) com-
pletely summarize the μij . Departures from this simple state of affairs can then
be measured by taking the difference between the left- and right-hand sides of this
simple ideal relationship. That is, one is led to two more definitions.

Definition 68 The (theoretical) interaction of Factor A at level i and Factor B
at level j in a complete I × J two-way factorial is

αβij = μij − (μ.. + αi + βj).

Definition 69 The (estimated or) fitted interaction of Factor A at level i and
Factor B at level j in a complete I × J two-way factorial is

abij = yij − (y.. + ai + bj).

To the extent that parallelism or lack thereof can be clearly identified on an int-
eraction plot like Fig. 5.6, data-based examination of the possibility of important
AB interactions in a two-factor study can proceed graphically. But a more quan-
titative look at the issue must begin with computation of the fitted interactions
defined in Definition 69. In this regard, it is worth noting that there is an alter-
native “computational” formula for fitted interactions that is sometimes useful.
That is,

Computational
Formula for
Fitted
Interactions

abij = yij − yi. − y.j + y...

Example 70 (Example 60 continued.) Returning again to the solder joint
strength example, Table 5.4 organizes calculations of the six fitted interactions
derived from the data of Table 5.3.

It is worth noting that the largest of the fitted interactions in Table 5.4 is smaller
than even the smallest fitted main effect calculated earlier. That is numerical evi-
dence that the lack of parallelism in Fig. 5.6 is in some sense smaller than the
gap between the oil- and water-quench profiles and the differences between the
observed strengths for the different amounts of antimony.

Once again, more decimal places are displayed in Table 5.4 than are really
justified on the basis of the precision of the original data. This has been
done so that it can be clearly seen that ab11 + ab21 = 0, ab12 + ab22 = 0,
ab13 + ab23 = 0, ab11 + ab12 + ab13 = 0, and ab21 + ab22 + ab23 = 0. These
relationships are not special to the particular data set. Fitted interactions sum to
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TABLE 5.4. Calculation of the fitted interactions for the solder joint strength study

i j yij y..+ai+bj abij=yij−(y..+ai+bj)

1 1 19.033̄ 19.305̄ + (−.605̄) + .427̄ = 19.127̄ −.094̄
1 2 20.766̄ 19.305̄ + (−.605̄) + 1.811̄ = 20.511̄ .255̄
1 3 16.300 19.305̄ + (−.605̄) + (−2.238̄) = 16.461̄ −.161̄
2 1 20.433̄ 19.305̄ + .605̄ + .427̄ = 20.338̄ .094̄
2 2 21.466̄ 19.305̄ + .605̄ + 1.811̄ = 21.722̄ −.255̄
2 3 17.833̄ 19.305̄ + .605̄ + (−2.238̄) = 17.672̄ .161̄

0 down any column or across any row in any two-way factorial. It is an algebraic
consequence of Definitions 68 and 69 that

∑
i

abij = 0 and
∑
j

abij = 0, and similarly that

∑
i

αβij = 0 and
∑
j

αβij = 0. (5.21)

To go beyond simply computing single-number estimates of (main and inter-
action) effects, to making confidence intervals for these, it is only necessary to
realize that effects are linear combinations of the means μij (Ls). And not sur-
prisingly, the fitted effects are the corresponding linear combinations of the sam-
ple means yij (the corresponding L̂s). That implies (repeating formula (5.8) in
two-way factorial/double subscript notation) that

Confidence
Limits for L in
Two-Way
Notation

L̂± tsP

√
c211
n11

+ · · ·+ c21J
n1J

+
c221
n21

+ · · ·+ c2IJ
nIJ

, (5.22)

can be used to make confidence intervals for the main effects and interactions.
The only real question in applying formula (5.22) to the estimation of an effect is
what form the sum of squared coefficients over sample sizes takes. That is, one
needs to know how to compute the sum:

∑
i,j

c2ij
nij

(5.23)

that goes under the root in formula (5.22). It is possible to derive formulas for
these sums where the Ls involved are two-way factorial effects or differences in
such effects. Table 5.5 on page 272 collects the very simple formulas that are ap-
propriate when data are balanced (all nij are equal to some number m). Table 5.6
on page 272 gives the more complicated formulas for the quantities (5.23) needed
when the nij vary.

Example 71 (Example 60 continued.) Once again consider the solder joint
strength example and now the problem of making confidence intervals for the
various factorial effects, beginning with the interactions αβij . The fitted inter-
actions abij are collected in Table 5.4. Use of the formula (5.22) allows one to
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TABLE 5.5. Balanced data formulas for the quantities
∑

i,j

c2ij
nij

needed to make confidence
intervals for effects in two-way factorials (All nij = m)

L L̂
∑

i,j

c2ij
nij

αβij abij
(I−1)(J−1)

mIJ

αi ai
I−1
mIJ

αi − αi′ ai − ai′
2

mJ

βj bj
J−1
mIJ

βj − βj′ bj − bj′
2

mI

TABLE 5.6. General formulas for the quantities
∑

i,j

c2ij
nij

needed to make confidence in-
tervals for effects in two-way factorials

L L̂
∑

i,j

c2ij
nij

αβij abij
(

1
IJ

)2
(

(I−1)2(J−1)2

nij
+ (I − 1)2

∑
j′ �=j

1
nij′

+(J − 1)2
∑

i′ �=i
1

ni′j
+
∑

i′ �=i,j′ �=j
1

ni′j′

)

αi ai
(

1
IJ

)2 (
(I − 1)2

∑
j

1
nij

+
∑

i′ �=i,j
1

ni′j

)

αi − αi′ ai − ai′
1
J2

(∑
j

1
nij

+
∑

j
1

ni′j

)

βj bj
(

1
IJ

)2 (
(J − 1)2

∑
i

1
nij

+
∑

i,j′ �=j
1

nij′

)

βj − βj′ bj − bj′
1
I2

(∑
i

1
nij

+
∑

i
1

nij′

)

associate “plus or minus values” with these estimates. In Example 57, the pooled
estimate of σ from the joint strength data was found to be sP = 1.056 MPa with
ν = 12 associated degrees of freedom. Since the data in Table 5.3 are balanced
factorial data with I = 2, J = 3, and m = 3, using the first line of Table 5.5, it
follows that 95 % two-sided confidence limits for the interaction αβij are

abij ± 2.179(1.056)

√
(2 − 1)(3− 1)

3(2)(3)
, that is abij ± .767 MPa .
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Notice then that all six of the intervals for interactions (centered at the values
in Table 5.4) contain positive numbers, negative numbers, and 0. It is possible
that the αβij are all essentially 0, and correspondingly the lack of parallelism on
Fig. 5.6 is no more than a manifestation of experimental error. By the standard
of these 95 % individual confidence limits, the magnitude of the uncertainty ass-
ociated with any fitted interaction exceeds that of the interaction itself and the
apparent lack of parallelism is “in the noise range.”

Next, using the second row of Table 5.5, it follows that 95 % two-sided confi-
dence limits for the cooling method main effects are

ai ± 2.179(1.056)

√
2− 1

3(2)(3)
, that is ai ± .542 MPa .

This is in accord with the earlier more qualitative analysis of the joint strength
data made on the basis of Fig. 5.6 alone. The calculation here, together with the
facts that a1 = −.606 and a2 = .606, shows that one can be reasonably sure
the main effect of water quench is negative and the main effect of oil quench is
positive. The oil-quench joint strengths are on average larger than the water-
quench strengths. But the call is still a relatively “close” one. The ±.542 value is
nearly as large as the fitted effects themselves.

Finally, as an illustration of the use of formula (5.22) in the comparison of main
effects, consider the estimation of differences in antimony amount main effects,
βj − βj′ . Using the last row of Table 5.5, 95 % two-sided confidence limits for
differences in antimony main effects are

bj − bj′ ± 2.179(1.056)

√
2

3(2)
, that is bj − bj′ ± 1.328 MPa .

Recall that b1 = .428, b2 = 1.811, and b3 = −2.239 and note that while b1
and b2 differ by less than 1.328 MPa, b1 and b3 differ by substantially more
than 1.328, as do b2 and b3. This implies that while the evidence of a real dif-
ference between average strengths for levels 1 and 2 of antimony is not sufficient
to allow one to make definitive statements, both antimony level 1 and antimony
level 2 average joint strengths are clearly above that for antimony level 3. This
conclusion is in accord with the earlier analysis based entirely on Fig. 5.6. The
differences between antimony levels are clearly more marked (and evident above
the background/experimental variation) than the cooling method differences.

Example 72 Computing Factors from Table 5.6. As a way of illustrating the
intended meaning of the components of the formulas in Table 5.6, consider a
hypothetical 3× 3 factorial where n12 = 1, n33 = 1, and all other nij are 2. For
the (i, j)-pair (1, 1), sums appearing in the table would be

1

n11
= .5,

∑
j′ �=1

1

n1j′
=

1

n12
+

1

n13
= 1.0 + .5 = 1.5,



274 Chapter 5. Experimental Design and Analysis for Process Improvement

∑
i′ �=1

1

ni′1
=

1

n21
+

1

n31
= .5 + .5 = 1.0,

∑
i′ �=1,j′ �=1

1

ni′j′
=

1

n22
+

1

n23
+

1

n32
+

1

n33
= .5 + .5 + .5 + 1.0 = 2.5,

∑
j

1

n1j
=

1

n11
+

1

n12
+

1

n13
= .5 + 1.0 + .5 = 2.0,

∑
i

1

ni1
=

1

n11
+

1

n21
+

1

n31
= .5 + .5 + .5 = 1.5,

∑
i′ �=1,j

1

ni′j
=

1

n21
+

1

n22
+

1

n23
+

1

n31
+

1

n32
+

1

n33

= .5 + .5 + .5 + .5 + .5 + 1.0 = 3.5,

and

∑
i,j′ �=1

1

nij′
=

1

n12
+

1

n13
+

1

n22
+

1

n23
+

1

n32
+

1

n33

= 1.0 + .5 + .5 + .5 + .5 + 1.0 = 4.0.

Using sums of these types, intervals for factorial effects can be computed even in
this sort of unbalanced data situation.

5.2.3 Fitting and Checking Simplified Models for Balanced
Two-Way Factorial Data

The possibility that interactions in a two-way factorial situation are negligible is
one that brings important simplification to interpreting how Factors A and B affect
the response y. In the absence of important interactions, one may think of A and
B acting on y more or less “independently” or “separately.” And if, in addition,
the A main effects are negligible, one can think about the “two-knob black box
system” as having only one knob (the B knob) that really does anything in terms
of changing y.

The confidence intervals for two-way factorial effects introduced in this section
are important tools for investigating whether some effects can indeed be ignored.
A further step in this direction is to derive fitted values for y under assumptions
that some of the factorial effects are negligible and to use these to compute resid-
uals. The idea here is very much like what is done in regression analysis. Faced
with a large list of possible predictor variables, one goal of standard regression
analysis is to find an equation involving only a few of those predictors that does
an adequate job of describing the response variable. In the search for such an
equation, y values predicted by a candidate equation are subtracted from observed
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y values to produce residuals, and these are plotted in various ways looking for
possible problems with the candidate.

Finding predicted values for y under an assumption that some of the two-way
factorial effects are 0 is in general a problem that must be addressed using a reg-
ression program and what are known as “dummy variables.” And the matter is
subtle enough that treating it here is not feasible. The reader is instead referred
for the general story to books on regression analysis and intermediate-level books
on statistical methods. What can be done here is to point out that in the special
case that factorial data are balanced, appropriate fitted values can be obtained
by simply adding to the grand sample mean fitted effects corresponding to those
effects that one does not wish to assume are negligible.

That is, for balanced data, under the assumption that all αβij are 0, an appro-
priate estimator of the mean response when Factor A is at level i and Factor B is
at level j (a fitted value for any yijk) is

Balanced Data
“No-
Interaction”
Fitted Values

ŷijk = y.. + ai + bj. (5.24)

Further, for balanced data, under the assumption that all αβij are 0 and all αi are
also 0, an appropriate estimator of the mean response when Factor B is at level j
(a fitted value for any yijk) is

Balanced Data
“B Effects
Only” Fitted
Values

ŷijk = y.. + bj . (5.25)

And again for balanced data, under the assumption that all αβij are 0 and all βj

are also 0, an appropriate estimator of the mean response when Factor A is at level
i (a fitted value for any yijk) is

Balanced Data
“A Effects
Only” Fitted
Values

ŷijk = y.. + ai. (5.26)

Using one of the relationships (5.24) through (5.26), residuals are then defined as
differences between observed and fitted values:

Residuals
eijk = yijk − ŷijk. (5.27)

It is hopefully clear that the residuals defined in Eq. (5.27) are not the same as
those defined in Sect. 5.1 and used there to check on the reasonableness of the
basic one-way normal model assumptions. The residuals (5.27) are for a more
specialized model, one of “no interactions,” “B effects only,” or “A effects only,”
depending upon which of Eqs. (5.24) through (5.26) is used to find fitted values.

Once residuals (5.27) have been computed, they can be plotted in the same
ways that one plots residuals in regression contexts. If the corresponding sim-
plified model for y is a good one, residuals should “look like noise” and carry
no obvious patterns or trends (that indicate that something important has been
missed in modeling the response). One hopes to see a fairly linear normal plot of
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TABLE 5.7. Fitted values and residuals for the no-interaction model of solder joint strength

i j ŷijk = y.. + ai + bj eijk = yijk − ŷijk
1 1 ŷ11k = 19.305 + (−.605) + .427 = 19.128 −.53, .37,−.13
1 2 ŷ12k = 19.305 + (−.605) + 1.811 = 20.511 1.79,−1.01,−0.01
1 3 ŷ13k = 19.305 + (−.605) + (−2.238) = 16.461 −1.26, .64, .14
2 1 ŷ21k = 19.305 + .605 + .427 = 20.339 −.34, .56, .06
2 2 ŷ22k = 19.305 + .605 + 1.811 = 21.722 −.82, 1.18,−1.12
2 3 ŷ23k = 19.305 + .605 + (−2.238) = 17.672 −1.27, 1.33, .428

residuals and hopes for “trendless/random scatter with constant spread” plots of
residuals against levels of Factors A and B. Departures from these expectations
draw into doubt the appropriateness of the reduced or simplified description of y.

Example 73 (Example 60 continued.) The earlier analysis of the solder joint
strength data suggests that a no-interaction description of joint strength might be
tenable. To further investigate the plausibility of this, consider the computation
and plotting of residuals based on fitted values (5.24). Table 5.7 shows the calcu-
lation of the six fitted values (5.24) and lists the 18 corresponding residuals for
the no-interaction model (computed from the raw data listed in Table 5.3).

Figure 5.11 is a normal plot of the 18 residuals listed in Table 5.7, and then
Figs. 5.12 and 5.13 are, respectively, plots of residuals versus level of A and then
against level of B. The normal plot is reasonably linear (except possibly for its
extreme lower end), and the plot of residuals against level of Factor A is com-
pletely unremarkable. The plot against level of Factor B draws attention to the
fact that the first level of antimony has residuals that seem somewhat smaller than
those from the other two levels of antimony. But on the whole, the three plots offer
no strong reason to dismiss “normal distributions with constant variance and no
interactions between A and B” model of joint strength.

FIGURE 5.11. Normal plot of the residuals for a no-interaction model of solder joint
strength
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FIGURE 5.12. Plot of no-interaction residuals versus level of Factor A in the soldering
study

FIGURE 5.13. Plot of no-interaction residuals versus level of Factor B in the soldering
study

Section 5.2 Exercises

1. What does the phrase “two-way factorial study” mean? Is each factor res-
tricted to two levels? Briefly, give examples.
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2. In a 3 × 3 two-way factorial study, fitted A main effects are a1 = 2 and
a2 = 3, fitted B main effects are b1 = −1 and b2 = 2, and four of the fitted
AB interactions are ab11 = 1, ab12 = −1, ab21 = 2 and ab22 = −3. The
average of the 9 sample means is y = 10.

(a) What was the sample mean response where both A and B were at their
third levels?

(b) Suppose in this problem m = 2 and sP = 2. Using a 95% confidence
level, find an appropriate “margin of error” Δij for estimating each of
the fitted interactions.

(c) If you were to make an interaction plot (a plot trace of sample means
against level of A, one for each level of B), would you see a departure
from “parallelism”? Why or why not? (Hint: consider your answer to
(b) above.)

3. Suppose in a two-way factorial study, the fitted interactions abij are both
statistically detectable and large in a practical sense.

(a) Is it reasonable to think of a Factor A effect without regard to the level
of Factor B? Why or why not?

(b) Is it reasonable to think of a Factor A effect for each level of Factor B
separately? Why or why not?

(c) Can Factor A effects be judged to be essentially the same at each
separate level of Factor B? Why or why not?

4. Students Bauer, Brinnk, and Fife studied the performance of 3 different
copy machines. m = 5 copies of the same CAD drawing were made on
each machine for 3 different enlargement settings, and the length of a par-
ticular line segment on that drawing was measured. (All the measuring
was done by a single student, and as a means of getting a handle on mea-
surement precision, that student measured the line on the original drawing
10 times, obtaining lengths with sample mean 2.0058 in and sample stan-
dard deviation .0008 in.) Sample means and standard deviations for the
measurements on the copies are below.

Factor B-enlargement setting
100 % 129 % 155 %

1
y11 = 2.0158
s11 = .0028

y12 = 2.6058
s12 = .0024

y13 = 3.1192
s13 = .0018

Factor A-
copier

2
y21 = 2.0134
s21 = .0011

y22 = 2.5996
s22 = .0009

y23 = 3.1038
s23 = .0011

3
y31 = 2.0206
s31 = .0011

y32 = 2.6098
s32 = .0022

y33 = 3.1150
s33 = .0007

A pooled sample standard deviation computed from the 9 values sij is sP =
.0017
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(a) Is it a surprise that sP = .0017 is larger than the .0008 in standard
deviation obtained in the preliminary measurement study? Why or
why not?

(b) The m = 5 measurements from copier 1 at the 100% setting were in
fact 2.014, 2.020, 2.017, 2.015, and 2.013. What are the values of the
corresponding residuals?

(c) Is it possible from what is given to find all the residuals? How might
one use all the residuals?

(d) Four of the 9 fitted copier × enlargement setting interactions are
ab11 = −.00296, ab12 = −.00142, ab21 = .00264, and ab22 =
.00038. Find the other five interactions.

(e) Are ANY of the nine interactions statistically detectable (using, say
95% two-sided confidence limits for each interaction as a basis of
judging this)?

(f) Give 95% individual two-sided confidence limits for the difference in
copier 1 and 2 main effects, α1−α2 . Is it credible to use your interval
for every level of enlargement? Why or why not? (Hint: consider your
answer to part (e).)

(g) Make an interaction plot for the set of means. Let the horizontal axis
correspond to enlargement setting and the vertical axis correspond to
mean line length. You should have one trace for each level of copier.
How does your plot support your answer to (e)?

5.3 2p Factorials

Section 5.2 began discussion of how to profitably conduct and analyze the results
of process-improvement experiments involving several factors. The subject there
was the case of two factors. We now consider the general case of p ≥ 2 factors.
This will be done primarily for situations where each factor has only two levels,
the 2 × 2 × · · · × 2 or 2p factorial studies. This may at first seem like a severe
restriction, but in practical terms it is not. As p grows, experimenting at more than
two levels of many factors in a full p-way factorial arrangement quickly becomes
infeasible because of the large number of combinations involved. And there are
some huge advantages associated with the 2p factorials in terms of ease of data
analysis.

The section begins with a general discussion of notation and how effects and
fitted effects are defined in a p-way factorial. Then, methods for judging the statis-
tical detectability of effects in the 2p situation are presented, first for cases where
there is some replication and then for cases where there is not. Next, the Yates
algorithm for computing fitted effects for 2p factorials is discussed. Finally, there
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is a brief discussion of fitting and checking models for balanced 2p factorials that
involve only some of the possible effects.

5.3.1 Notation and Defining Effects in p-Way Factorials

Consider now an instance of the generic process experimentation scenario rep-
resented in Fig. 5.1 where there are p knobs under the experimenter’s control.
Naming the factors involved A, B, C, . . . and supposing that they have, respec-
tively, I , J , K , . . . possible levels, a full factorial in the p factors is a study
where one has data from all I × J ×K × · · · different possible combinations of
levels of these p factors. Figure 5.14 provides a visual representation of these pos-
sible combinations laid out in a three-dimensional rectangular array for the case
of p = 3 factors. Then, Examples 74 and 75 introduce, respectively, p = 3 and
p = 4-way factorial data sets that will be used in this section to illustrate methods
of 2p factorial analysis.

FIGURE 5.14. IJK cells for a three-way factorial

Example 74 Packing Properties of Crushed T-61 Tabular Alumina Powder.
Ceramic Engineering researchers Leigh and Taylor, in their 1990 Ceramic Bul-
letin paper “Computer-Generated Experimental Designs,” present the results of
a 23 factorial study on the packing properties of crushed T-61 tabular alumina
powder. Densities, y, of the material were determined under several different mea-
surement protocols. Two different “mesh sizes” of particles were employed, full
flasks of the material of two different volumes were used, and the flasks were sub-
jected to one of two vibration conditions before calculating densities. This can be
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thought of as a three-way factorial situation where the factors and their levels are

Factor A—mesh size 6 mesh vs. 60 mesh
Factor B—flask 100 cc vs. 500 cc
Factor C—vibration none vs. yes

Table 5.8 gives the m = 5 densities reported by the researchers for each of
the r = 2 × 2 × 2 measurement protocols and corresponding sample means and
standard deviations. The goal of a 23 factorial analysis of the data in Table 5.8
will be to identify structure that can be interpreted in terms of the individual and
joint effects of the three factors mesh, flask, and vibration.

TABLE 5.8. Crushed T-61 tabular alumina powder densities, sample means, and sample
standard deviations for 23 different measurement protocols ( g/cc)

Mesh Flask Vibration Measured density y s

6 100 None 2.13, 2.15, 2.15, 2.19, 2.20 2.164 .030
60 100 None 1.96, 2.01, 1.91, 1.95, 2.00 1.966 .040
6 500 None 2.23, 2.19, 2.18, 2.21, 2.22 2.206 .021
60 500 None 1.88, 1.90, 1.87, 1.89, 1.89 1.886 .011
6 100 Yes 2.16, 2.31, 2.32, 2.22, 2.35 2.272 .079
60 100 Yes 2.29, 2.29, 2.23, 2.39, 2.18 2.276 .079
6 500 Yes 2.16, 2.39, 2.30, 2.33, 2.43 2.322 .104
60 500 Yes 2.35, 2.38, 2.26, 2.34, 2.34 2.334 .044

Example 75 Bond Pullouts on Dual In-Line Packages. The article “An Anal-
ysis of Means for Attribute Data Applied to a 24 Factorial Design” by R. Zwickl
that appeared in the Fall 1985 ASQC Electronics Division Technical Supplement
describes a four-way factorial study done to help improve the manufacture of an
electronic device called a dual in-line package. Counts were made of the numbers
of bonds (out of 96) showing evidence of ceramic pullout (small numbers are de-
sirable) on devices made under all possible combinations of levels of four factors.
The factors and their levels used in the study were

Factor A—ceramic surface unglazed vs. glazed
Factor B—metal film thickness normal vs. 1.5 times normal
Factor C—annealing time normal vs. 4 times normal
Factor D—prebond clean normal clean vs. no clean

Table 5.9 on page 282 gives Zwickl’s data. (We will suppose that the counts
recorded in Table 5.9 occurred on one device made under each set of experimen-
tal conditions.) Zwickl’s data are unreplicated 24 factorial data. (In fact, they are
attribute or count data. But for present purposes it will suffice to ignore this fact
and treat them as if they were measurements obtained from 16 different process
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conditions.) The object of a 24 factorial analysis will be to find simple structure
in the data that can be discussed in terms of the separate and joint effects of the
four factors.

TABLE 5.9. Counts of pullouts on dual in-line packages under 24 sets of experimental
conditions

A B C D Pullouts
Unglazed Normal Normal Normal clean 9
Glazed Normal Normal Normal clean 70
Unglazed 1.5× Normal Normal clean 8
Glazed 1.5× Normal Normal clean 42
Unglazed Normal 4× Normal clean 13
Glazed Normal 4× Normal clean 55
Unglazed 1.5× 4× Normal clean 7
Glazed 1.5× 4× Normal clean 19
Unglazed Normal Normal No clean 3
Glazed Normal Normal No clean 6
Unglazed 1.5× Normal No clean 1
Glazed 1.5× Normal No clean 7
Unglazed Normal 4× No clean 5
Glazed Normal 4× No clean 28
Unglazed 1.5× 4× No clean 3
Glazed 1.5× 4× No clean 6

It should be obvious from analogy with what was done in the previous section
that general notation for p-way factorial analyses will involve at least p subscripts,
one for each of the factors. For example, for the case of p = 3 factors, one will
write

yijkl = the lth observation at the ith level of A, the jth level of B,

and the kth level of C,

μijk = the long-run mean system response when A is at level i,

B is at level j, and C is at level k,

nijk = the number of observations at level i of A, level j of B,

and the kth level of C,

yijk = the sample mean system response when A is at level i,

B is at level j, and C is at level k, and

sijk = the sample standard deviation when A is at level i, B is at level j,

C is at level k,
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and write the one-way model equation (5.1) in three-way factorial notation as

Three-Way
Model
Equation

yijkl = μijk + εijkl.

Further, the obvious “dot subscript” notation can be used to indicate averages of
sample or long-run mean responses over the levels of factors “dotted out” of the
notation. For example, for the case of p = 3 factors, one can write

y.jk =
1

I

∑
i

yijk, y.j. =
1

IK

∑
i,k

yijk, y... =
1

IJK

∑
i,j,k

yijk

and so on.
The multiple subscript notation is needed to write down technically precise

formulas for general p-way factorials. However, it is extremely cumbersome and
unpleasant to use. One of the benefits of dealing primarily with 2p problems is
that something more compact and workable can be done when all factors have
only two levels. In 2p contexts it is common to designate (arbitrarily if there is no
reason to think of levels of a given factor as ordered) a “first” level of each factor
as the “low” level and the “second” as the “high” level. (Often the shorthand
“−” is used to designate a low level and the shorthand “+” is used to stand for
a high level.) Combinations of levels of the factors can then be named by listing
those factors which appear at their second or high levels. Table 5.10 illustrates
this naming convention for the 23 case.

TABLE 5.10. Naming convention for 2p factorials

Level of A i Level of B j Level of C k Combination name
− 1 − 1 − 1 (1)
+ 2 − 1 − 1 a
− 1 + 2 − 1 b
+ 2 + 2 − 1 ab
− 1 − 1 + 2 c
+ 2 − 1 + 2 ac
− 1 + 2 + 2 bc
+ 2 + 2 + 2 abc

Armed with appropriate notation, one can begin to define effects and their fitted
counterparts. The place to start is with the natural analogs of the two-way factorial
main effects introduced in Definitions 63 through 66. These were row or column
averages of cell means minus a grand average. That is, they were averages of cell
means for a level of the factor under discussion minus a grand average. That same
thinking can be applied in p-way factorials, provided one realizes that averaging
must be done over levels of (p − 1) other factors. The corresponding definitions
will be given here for p = 3 factors with the understanding that the reader should
be able to reason by analogy (simply adding some dot subscripts) to make defini-
tions for cases with p > 3.
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Definition 76 The (theoretical) main effects of factors A, B, and C in a complete
three-way factorial are

αi = μi.. − μ..., βj = μ.j. − μ..., and γk = μ..k − μ....

Definition 77 The (estimated or) fitted main effects of factors A, B, and C in a
complete three-way factorial are

ai = yi.. − y..., bj = y.j. − y..., and ck = y..k − y....

It is an algebraic consequence of the form of Definitions 76 and 77 that main
effects and fitted main effects sum to zero over the levels of the factor under con-
sideration. That is, for the case of three factors, one has the extension of display
(5.20):
∑
i

αi = 0,
∑
j

βj = 0,
∑
k

γk = 0,
∑
i

ai = 0,
∑
j

bj = 0, and
∑
k

ck = 0.

One immediate implication of these relationships is that where factors have only
two levels, one need only calculate one of the fitted main effects for a factor. The
other is then obtained by a simple sign change.

TABLE 5.11. Alternative notations for the sample mean measured alumina powder
densities

Mesh (A) Flask (B) Vibration (C) Sample mean
− − − y111 = y(1) = 2.164

+ − − y211 = ya = 1.966
− + − y121 = yb = 2.206
+ + − y221 = yab = 1.886
− − + y112 = yc = 2.272
+ − + y212 = yac = 2.276
− + + y122 = ybc = 2.322
+ + + y222 = yabc = 2.334

Example 78 (Example 74 continued.) Considering again the density measure-
ments of Leigh and Taylor, one might make the “low” versus “high” level desig-
nations as:

Factor A—Mesh Size 6 mesh (−) and 60 mesh (+)
Factor B—Flask 100 cc (−) and 500 cc (+)
Factor C—Vibration none (−) and yes (+)

With these conventions, Table 5.11 gives two sets of notation for the sample means
listed originally in Table 5.8. Both the triple subscript and the special 23 conven-
tions are illustrated.
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It is then the case that

y... =
1

8
(2.164 + 1.966 + · · ·+ 2.334) = 2.1783,

and, for example,

y2.. =
1

4
(ya+yab+yac+yabc) =

1

4
(1.966+1.886+2.276+2.334) = 2.1155.

So using Definition 77

a2 = y2.. − y... = 2.1155− 2.1783 = −.063.

The average of the four “60 mesh” mean densities is .063 g/cc below the overall
average of the eight sample means. A simple sign change then says that a1 = .063,
and the main effect of mesh size at its low level is positive .063 g/cc .

Similar calculations then show that for the means of Table 5.11

b2 = y.2. − y... = 2.187− 2.178 = .009 and
c2 = y..2 − y... = 2.301− 2.178 = .123.

Then switching signs for these two-level factors, one also has b1 = −.009 and
c1 = −.123.

Figure 5.15 on page 286 is a very common and helpful kind of graphic for
displaying the 23 factorial means sometimes called a cube plot. On the plot for
this example, the fact that a2 = −.063 g/cc says that the average of the means
on the right face of the cube is .063 g/cc below the overall average of the eight
sample means pictured. The fact that b2 = .009 says that the average of the means
on the top face of the cube is .009 g/cc above the overall average. And the fact
that c2 = .123 says that the average of the means on the back face of the cube is
.123 g/cc above the overall average.

Main effects do not completely describe a p-way factorial set of means any
more than they completely describe a two-way factorial. There are interactions
to consider as well. In a p-way factorial, two-factor interactions are what one
would compute as interactions via the methods of the previous section after aver-
aging out over all levels of all other factors. For example, in a three-way factorial,
two-factor interactions between A and B are what one has for interactions from
Sect. 5.2 after averaging over levels of Factor C. The precise definitions for the
three-factor situation follow (and the reader can reason by analogy and the addi-
tion of subscript dots to corresponding definitions for more than three factors).

Definition 79 The (theoretical) two-factor interactions of pairs of factors A, B,
and C in a complete three-way factorial are

αβij = μij. − (μ... + αi + βj),

αγik = μi.k − (μ... + αi + γk), and

βγjk = μ.jk − (μ... + βj + γk).
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FIGURE 5.15. Cube plot of sample mean measured alumina powder densities ( g/cc)

Definition 80 The (estimated or) fitted two-factor interactions of pairs of factors
A, B, and C in a complete three-way factorial are

abij = yij. − (y... + ai + bj),

acik = yi.k − (y... + ai + ck), and

bcjk = y.jk − (y... + bj + ck).

A main effect is in some sense the difference between what exists (in terms
of an average response) and what is explainable in terms of only a grand mean.
A two-factor interaction is similarly a difference between what exists (in terms of
an average response) and what can be accounted for by considering a grand mean
and the factors acting individually.

Just as interactions in two-way factorials sum to zero across rows or columns, it
is a consequence of the form of Definitions 79 and 80 that two-factor interactions
in p-way factorials also sum to 0 over levels of either factor involved. In symbols

∑
i

abij =
∑
j

abij = 0,
∑
i

αβij =
∑
j

αβij = 0,

∑
i

acik =
∑
k

acik = 0,
∑
i

αγik =
∑
k

αγik = 0, and

∑
j

bcjk =
∑
k

bcjk = 0, and
∑
j

βγjk =
∑
k

βγjk = 0.

One important consequence of these relationships is that for cases where factors
have only two levels, one needs to calculate only one of the four interactions for a
given pair of factors. The other three can then be obtained by appropriate changes
of sign.

Example 81 (Examples 74 and 78 continued.) Turning once again to the alu-
mina powder density study, consider the calculation of AB two-factor interactions.
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Averaging front to back on the cube plot of Fig. 5.15 produces the values:

y11. = 2.218, y21. = 2.121, y12. = 2.264, and y22. = 2.110.

An AB interaction plot of these is shown in Fig. 5.16, and there is some lack of
parallelism in evidence. The size of this lack of parallelism can be measured by
computing

ab22 = y22. − (y... + a2 + b2) = 2.110− (2.178 + (−.063) + .009) = −.014.

Then, since ab21 + ab22 = 0, ab21 = .014. Since ab12 + ab22 = 0, ab12 = .014.
And finally, since ab11 + ab21 = 0, ab11 = −.014. Similar calculations can be
done to find the fitted two-way interactions of A and C and of B and C. The reader
should verify that (except possibly for roundoff error)

ac22 = .067 and bc22 = .018.

Others of the AC and BC two-factor interactions in this 23 study can be obtained
by making appropriate sign changes.

FIGURE 5.16. Interaction plot for alumina powder density after averaging over vibration
conditions

Main effects and two-factor interactions do not tell the whole story about a
p-way factorial set of means. For example, in a three-factor context, there are
many quite different sets of means having a given set of main effects and two-
factor interactions. One must go further in defining effects to distinguish between
these different possibilities. The next logical step beyond two-factor interactions
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would seem to be some kind of three-factor interactions. To see what these
might be, it is helpful to remember that (1) a main effect is the difference between
what exists and what is explainable in terms of only a grand mean and (2) a two-
factor interaction is the difference between what exists and what can be accounted
for by considering a grand mean and main effects. This suggests that one defines
a three-factor interaction to be the difference between what exists in terms of an
average response and what is explainable in terms of a grand mean, main effects,
and two-factor interactions. That is, one has Definitions 82 and 83 for the case of
p = 3. (The reader can reason by analogy to produce definitions of three-factor
interactions in higher way studies by adding some dot subscripts to the three-way
factorial expressions.)

Definition 82 The (theoretical) three-factor interactions of factors A, B, and C
in a complete three-way factorial are

αβγijk = μijk − (μ... + αi + βj + γk + αβij + αγik + βγjk).

Definition 83 The (estimated or) fitted three-factor interactions of factors A, B,
and C in a complete three-way factorial are

abcijk = yijk − (y... + ai + bj + ck + abij + acik + bcjk).

Three-factor interactions sum to 0 over any of their three indices. That means
that for the case of p = 3 factors

∑
i

abcijk =
∑
j

abcijk =
∑
k

abcijk = 0 and

∑
i

αβγijk =
∑
j

αβγijk =
∑
k

αβγijk = 0.

So, in the case of 2p studies, it again suffices to compute only one fitted interaction
for a set of three factors and then obtain all others of that type by appropriate
choice of signs.

Example 84 (Examples 74 through 81 continued.) In the powder density study,
the fitted three-factor interaction for the “all-high level” combination is

abc222 = y222 − (y... + a2 + b2 + c2 + ab22 + ac22 + bc22)

= 2.334−(2.178+(−.063)+.009+.123+(−.014)+.067+.018)

= .016.

Because the fitted interactions in this 23 study must add to 0 over levels of any one
of the factors, it is straightforward to see that those abcijk with an even number
of subscripts equal to 1 are .016, while those with an odd number of subscripts
equal to 1 are −.016.
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Hopefully, the pattern of how factorial effects are defined is by now clear. To
define an interaction effect involving a particular set of q factors, one first averages
means over all levels of all other factors and then takes a difference between such
an average mean and the sum of a grand mean, main effects, and interactions of
order less than q. The result is a quantity that in some sense measures how much
of the system response is explainable only in terms of “what the factors do q at
a time.” The objective of a p-way factorial analysis is to hopefully identify some

Objective
of a p-Way
Analysis

few effects that taken together both account for most of the variation in response
and also have a simple interpretation. This is not always be possible. But when it
is, a factorial analysis can provide important insight into how p factors impact the
response.

5.3.2 Judging the Detectability of 2p Factorial Effects
in Studies with Replication

Although the examples used in this section have been ones where every factor has
only two levels, the definitions of effects have been perfectly general, applicable
to any full factorial. But from this point on in this section, the methods intro-
duced are going to be specifically 2p factorial methods. Of course there are data
analysis tools for the more general case (that can be found in intermediate-level
statistical method texts). The methods that follow, however, are particularly sim-
ple and cover what is with little doubt the most important part of full factorial
experimentation for modern process improvement.

We have noted that all effects of a given type in a 2p factorial differ from each
other by at most a sign change. This makes it possible to concentrate on the main
effects and interactions for the “all factors at their high levels” treatment combina-
tion and still have a complete description of how the factors impact the response.
In fact, people sometimes go so far as to call a2, b2, ab22, c2, ac22, bc22, abc222,
and so on “the” fitted effects in a 2p factorial (slurring over the fact that there are
effects corresponding to low levels of the factors). This subsection considers the
issue of identifying those fitted effects that are big enough to indicate that the cor-
responding effect is detectable above the baseline experimental variation, under
the assumption that there is some replication in the data.

The most effective tool of inference for 2p factorial effects is the relevant spe-
cialization of expression (5.8). As it turns out, every effect in a 2p factorial is a
linear combination of means (an L) with coefficients that are all ±1/2p. The cor-
responding fitted effect is the corresponding linear combination of sample means
(the corresponding L̂). So under the constant variance normal distribution model
assumptions (5.1), if E is a generic 2p factorial effect and Ê is the corresponding
fitted effect, formula (5.8) can be specialized to give confidence limits for E of
the form

Confidence
Limits for a
2p Factorial
Effect

Ê ± tsP
1

2p

√
1

n(1)
+

1

na
+

1

nb
+

1

nab
+ · · · . (5.28)
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When the plus or minus value prescribed by this formula is larger in magnitude
than a fitted effect, the real nature (positive, negative, or 0) of the corresponding
effect is in doubt.

Example 85 (Example 74 through 84 continued.) The fitted effects correspond-
ing to the 60 mesh/500cc/vibrated flask conditions in the alumina powder density
study (the “all-high levels” combination) have already been calculated to be

a2 = −.063, b2 = .009, ab22 = −.014, c2 = .123,

ac22 = .067, bc22 = .018, and abc222 = .016.

Formula (5.28) allows one to address the question of whether any of these empir-
ical values provides clear evidence of the nature of the corresponding long-run
effect.

In the first place, using the sample standard deviations given in Table 5.8, one
has

sP =

√
(5− 1)(.030)2 + (5− 1)(.040)2 + · · ·+ (5− 1)(.044)2

(5− 1) + (5 − 1) + · · ·+ (5 − 1)
= .059 g/cc .

Actually, before going ahead to use sP and formula (5.28), one should apply
the methods of Sect. 5.1 to check on the plausibility of the basic one-way normal
model assumptions. The reader can verify that a normal plot of the residuals is
fairly linear. But, in fact, a test like “Bartlett’s test” applied to the sample stan-
dard deviations in Table 5.8 draws into serious question the appropriateness of
the “constant σ” part of the usual model assumptions. For the time being, the
fact that there is nearly an order of magnitude difference between the smallest
and largest sample standard deviations in Table 5.8 will be ignored. The ratio-
nale for doing so is as follows. The t intervals (5.28) are generally thought to
be fairly “robust” against moderate departures from the constant σ model as-
sumption (meaning that nominal confidence levels, while not exactly correct, are
usually not ridiculously wrong either). So rather than just “give up and do noth-
ing in the way of inference” when it seems there may be a problem with the model
assumptions, it is better to go ahead with caution. One should then remember
that the confidence levels cannot be trusted completely and agree to avoid mak-
ing “close calls” of large engineering or financial impact based on the resulting
inferences.

Then, assuming for the moment that the one-way model is appropriate, note
that sP has associated with it ν = (5 − 1) + (5 − 1) + · · · + (5 − 1) = 32
degrees of freedom. So since the .975 quantile of the t32 distribution is 2.037,
95% two-sided confidence limits for any one of the 23 factorial effects E are

Ê ± 2.037(.059)
1

23

√
1

5
+

1

5
+ · · ·+ 1

5
, i.e., Ê ± .019 g/cc .

By this standard, only the A main effects, C main effects, and AC two-factor in-
teractions are clearly detectable. It is comforting here (especially in light of the
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caution necessitated by the worry over appropriateness of the constant variance
assumption) that all of a2, c2, and ac22 are not just larger than .019 in magni-
tude but substantially so. It seems pretty safe to conclude that mesh size (Factor
A) and vibration condition (Factor C) have important effects on the mean mea-
sured density of this powder but that the size of the flask used (Factor B) does not
affect mean measured density in any way that can be clearly delineated on the
basis of these data. (No main effect or interaction involving B is visible above the
experimental variation.)

The fact that the AC interaction is nonnegligible says that one may not think
of changing mesh size as doing the same thing to mean measured density when
the flask is vibrated as when it is not. Figure 5.17 shows an interaction plot for
the average sample means yi.k obtained by averaging out over the two flask sizes.
6 mesh material consists of (a mixture of both coarse and finely ground) mate-
rial that will pass through a fairly coarse screen. 60 mesh material is that (only
relatively fine material) that will pass through a fine screen. It is interesting that
Leigh and Taylor’s original motivation for their experimentation was to determine
if their density measurement system was capable of detecting changes in material
particle size mix on the basis of measured density. The form of Fig. 5.17 suggests
strongly that to detect mix changes on the basis of measured density, their system
should be operated with unvibrated samples.

FIGURE 5.17. Interaction plot for alumina powder density after averaging over levels of
flask size
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5.3.3 Judging the Detectability of 2p Factorial Effects
in Studies Lacking Replication

The use of formula (5.28) to make confidence limits for 2p factorial effects
depends upon the existence of some replication somewhere in a data set, so
that sP can be calculated. When at all possible, experiments need to include
some replication. Most fundamentally, replication allows one to verify that exp-
erimental results are to some degree repeatable and to establish the limits of
that repeatability. Without it, there is no completely honest way to tell whether
changing levels of experimental factors is what causes observed changes in y, or
if instead changes one observes in y amount only to random variation. But having
said all this, one is sometimes forced to make the best of completely unreplicated
data. And it is thus appropriate to consider what can be done to analyze data like
those in Table 5.9 that include no replication.

The best existing method of detecting factorial effects in unreplicated 2p data
is one suggested by Cuthbert Daniel. His method depends upon the principle
of effect sparsity and makes use of probability plotting. The principle of effect
sparsity is a kind of Pareto principle for experiments. It says that often a relatively
few factors account for most of the variation seen in experimental data. And when
the principle governs a physical system, the job of detecting real effects amounts
only to picking out the largest few. Daniel’s logic for identifying those then goes
as follows. Any fitted-effect Ê is related to its corresponding effect E as

Ê = E + noise.

When σ (and therefore the noise level) is large, one might thus expect a normal
plot of the 2p− 1 fitted effects (for the all-high combination) to be roughly linear.
On the other hand, should σ be small enough that one has a chance of seeing the
few important effects, they ought to lead to points that plot “off the line” estab-
lished by the majority (that themselves represent small effects plus noise). These
exceptional values thereby identify themselves as more than negligible effects
plus experimental variation.

Actually, Daniel’s original suggestion for the plotting of the fitted effects was
slightly more sophisticated than that just described. There is an element of arbi-
trariness associated with the exact appearance of a normal plot of a2, b2, ab22,
c2, ac22, ab22, abc222,. . . . This is because the signs on these fitted effects depend
on the arbitrary designation of the “high” levels of the factors. (And the choice
to plot fitted effects associated with the all-high combination is only one of 2p

possible choices.) Daniel reasoned that plotting with the absolute values of fitted
effects would remove this arbitrariness.
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Now if Z is standard normal and has quantile function Qz(p), then |Z| has
quantile function

“Half-Normal”
Quantile
Function

Q(p) = Qz

(
1 + p

2

)
. (5.29)

Rather than plotting standard normal quantiles against fitted-effect quantiles as in
Sect. 4.1, Daniel’s original idea was to plot values of the quantile function Q(p)
specified in Eq. (5.29) versus absolute-fitted-effect quantiles, to produce a half-
normal plot. This text will use both normal plotting of fitted effects and half-
normal plotting of absolute fitted effects. The first is slightly easier to describe
and usually quite adequate, but as Daniel pointed out, the second is somewhat
less arbitrary.

Example 86 (Example 75 continued.) Return again to Zwickl’s data on pullouts
on dual in-line packages given in Table 5.9 early in this section. As it turns out,
the fitted effects for the counts of Table 5.9 are

a2 = 11.5, b2 = −6.0, ab22 = −4.6, c2 = −.6, ac22 = −1.5, bc22 = −2.3,

abc222 = −1.6, d2 = −10.3, ad22 = −7.1, bd22 = 2.9, abd222 = 2.5,

cd22 = 3.8, acd222 = 3.6, bcd222 = −.6, and abcd2222 = −1.3.

Table 5.12 on page 294 then gives the coordinates of the 15 points that one plots
to make a normal plot of the fitted effects. And Table 5.13 gives the coordinates of
the points that one plots to make a half-normal plot of the absolute fitted effects.
The corresponding plots are given in Figs. 5.18 and 5.19 on page 295.

The plots in Figs. 5.18 and 5.19 are not as definitive as one might have hoped.
None of the fitted effects or absolute fitted effects stand out as tremendously larger
than the others. But it is at least clear from the half-normal plot in Fig. 5.19 that
no more than four and probably at most two of the effects should be judged “det-
ectable” on the basis of this data set. There is some indication in these data that
the A and D main effects are important in determining bond strength, but the
conclusion is unfortunately clouded by the lack of replication.

Example 87 (Examples 74 through 85 continued.) As a second (and actually
more satisfying) application of the notion of probability plotting in the analysis of
2p data, return again to the powder density data and the issue of the variability in
response. We noted earlier that the eight sample standard deviations in Table 5.8
do not really look as if they could all have come from distributions with a com-
mon σ. To investigate this matter further, one might look for 23 factorial effects
on the standard deviation of response. A common way of doing this is to compute
and plot fitted effects for the natural logarithm of the sample standard deviation,
log(s). (The logarithm is used because it tends to make the theoretical distribution
of the sample standard deviation look more symmetric and Gaussian than it is in
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TABLE 5.12. Coordinates of points for a normal plot of the pullout fitted effects

i ith smallest Ê p = i−.5
15 Qz(p)

1 d2 = −10.3 .033 −1.83
2 ad22 = −7.1 .100 −1.28
3 b2 = −6.0 .167 −.97
4 ab22 = −4.6 .233 −.73
5 bc22 = −2.3 .300 −.52
6 abc222 = −1.6 .367 −.34
7 ac22 = −1.5 .433 −.17
8 abcd2222 = −1.3 .500 0
9 bcd222 = −.6 .567 .17
10 c2 = −.6 .633 .34
11 abd222 = 2.5 .700 .52
12 bd22 = 2.9 .767 .73
13 acd222 = 3.6 .833 .97
14 cd22 = 3.8 .900 1.28
15 a2 = 11.5 .967 1.83

TABLE 5.13. Coordinates of points for a half-normal plot of the pullout absolute fitted
effects

i i th smallest |Ê| p = i−.5
15 Q(p) = Qz

(
1+p
2

)
1 |bcd222| = .6 .033 .04
2 |c2| = .6 .100 .13
3 |abcd2222| = 1.3 .167 .21
4 |ac22| = 1.5 .233 .30
5 |abc222| = 1.6 .300 .39
6 |bc22| = 2.3 .367 .48
7 |abd222| = 2.5 .433 .57
8 |bd22| = 2.9 .500 .67
9 |acd222| = 3.6 .567 .78
10 |cd22| = 3.8 .633 .90
11 |ab22| = 4.6 .700 1.04
12 |b2| = 6.0 .767 1.19
13 |ad22| = 7.1 .833 1.38
14 |d2| = 10.3 .900 1.65
15 |a2| = 11.5 .967 2.13

its raw form.) The reader is invited to verify that the logarithms of the standard
deviations in Table 5.8 produce fitted effects

a2 = −.16, b2 = −.26, ab22 = −.24, c2 = .57,
ac22 = −.07, bc22 = .15, and abc222 = −.00.
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FIGURE 5.18. Normal plot of fitted effects for pullouts on dual in-line packages

FIGURE 5.19. Half-normal plot of absolute fitted effects for pullouts on dual in-line
packages

For example

a2 = 1
4 (ln(.040) + ln(.011) + ln(.079) + ln(.044))

− 1
8 (ln(.030) + ln(.040) + · · ·+ ln(.104) + ln(.044)) = −.16.

A half-normal plot of the absolute values of these is given in Fig. 5.20 on page 296.
It seems clear from Fig. 5.20 that the fitted main effect of Factor C is more than

just experimental noise. Since c2 = .57, c2−c1 = 1.14. One would judge from this
analysis that for any mesh size and flask size, the logarithm of the standard devia-
tion of measured density for vibrated flasks is 1.14 more than that for unvibrated
flasks. This means that the standard deviation itself is about exp(1.14) = 3.13
times as large when vibration is employed in density determination as when it is
not. Not only does the lack of vibration fit best with the researchers’ original goal
of detecting mix changes via density measurements, but it provides more consis-
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tent density measurements than are obtained with vibration.

FIGURE 5.20. Half-normal plot of absolute fitted effects on log (s) in the solder joint
strength study

The kind of analysis of sample standard deviations just illustrated in
Example 87 is an important rough-and-ready approach to the problem of see-
ing how several factors affect σ. Strictly speaking, even logarithms of sample
standard deviations from normal populations are not really legitimately treated
like sample means. But often, at least for balanced 2p factorial data with m of at
least 4 or 5, this kind of crude analysis will draw attention to interpretable struc-
ture in observed values of s. And in light of the fact that variation is the enemy of
quality of conformance, this can be very important to quality engineering efforts.

5.3.4 The Yates Algorithm for Computing Fitted 2p Effects

Computing fitted effects directly from definitions like those given in this section
is unpleasant. Of course there are computer programs (and even spreadsheets)
that will do the work. But it is also very helpful to have an efficient means of
computing 2p fitted effects more or less by hand. Frank Yates discovered such a
means many years ago. His algorithm will produce, all at once and with minimum
pain, the average sample mean and the fitted effects for the all-high combination.

One sets up the Yates algorithm by first listing 2p sample means in a column

Yates
Algorithm
for 2p Fitted
Effects

in what is called “Yates standard order.” This order is easily remembered by be-
ginning with combination (1) (the “all-low” combination) and then combination
a, and then “multiplying by b” to get b and ab, then “multiplying by c” to get
c, ac, bc, and abc, and so on. One then creates a second column of numbers by
adding the numbers in the first column in pairs and then subtracting them in pairs
(the first value in a pair being subtracted from the second). The additions and



Chapter 5. Experimental Design and Analysis for Process Improvement 297

subtractions are applied to the new column, and so on, until a total of p succes-
sive new columns have been generated from the original list of y’s. Finally, the
entries in the last column generated by additions and subtractions are divided by
2p to produce the fitted effects (themselves listed in Yates standard order applied
to effects rather than combinations).

Example 88 (Examples 74 through 87 continued.) The means listed in Table
5.11 are in fact in Yates standard order. Table 5.14 shows the use of the Yates algo-
rithm to quickly obtain the fitted effects computed earlier by much more laborious
means.

The final column of Table 5.14 is a very compact and helpful summary of what
the data of Leigh and Taylor say about mean density measurements. And now that
the hard work of defining (and understanding) the fitted effects has been done, the
computations needed to produce them turn out to be fairly painless. It should be
evident that 2p factorial analyses are quite doable by hand for as many as four
factors.

TABLE 5.14. Use of the Yates algorithm on the alumina powder density means
Combination y Cycle #1 Cycle #2 Cycle #3 Cycle #3÷ 8

(1) 2.164 4.130 8.222 17.426 2.178 = y...
a 1.966 4.092 9.204 −.502 −.063 = a2
b 2.206 4.548 −.518 .070 .009 = b2
ab 1.886 4.656 .016 −.114 −.014 = ab22
c 2.272 −.198 −.038 .982 .123 = c2
ac 2.276 −.320 .108 .534 .067 = ac22
bc 2.322 .004 −.122 .146 .018 = bc22
abc 2.334 .012 .008 .130 .016 = abc222

Example 88 and Table 5.14 illustrate the Yates algorithm computations for
p = 3 factors. There, three cycles of additions and subtractions are done and
the final division is by 23 = 8. For the case of p = 4, 16 means would be listed,
four cycles of additions and subtractions are required, and the final division is by
24 = 16. And so on.

5.3.5 Fitting Simplified Models for Balanced 2p Data

Just as in the case of two-way factorials, after identifying effects in a 2p factorial
that seem to be detectable above the experimental variation, it is often useful
to fit to the data a model that includes only those effects. Residuals can then
be computed and examined for indications that something important has been
missed in the data analysis. So the question is how one accomplishes the fitting of
a simplified model to 2p data. The general answer involves (as in the case of two-
way data) the use of a regression program and dummy variables and cannot be
adequately discussed here. What can be done is to consider the case of balanced
data.
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For balanced 2p data sets, fitted or predicted values for (constant σ, normal)

Fitted Values
for Balanced
Data

models containing only a few effects can be easily generated by adding to a grand
mean only those fitted effects that correspond to effects one wishes to consider.
These fitted values, ŷ, then lead to residuals in the usual way:

Residuals e = y − ŷ.

Example 89 (Examples 74 through 88 continued.) Return yet again to the alu-
mina powder density data of Leigh and Taylor and consider fitting a model of the
form:

yijkl = μ+ αi + γk + αγik + εijkl (5.30)

to their data. This says that mean density depends only on level of Factor A and
level of Factor C and (assuming that the ε have constant standard deviation) that
variation in density measurements is the same for all four AC combinations. The
four different corresponding fitted or predicted values are
ŷ1j1l = y... + a1 + c1 + ac11 = 2.178 + .063 + (−.123) + .067 = 2.185,

ŷ1j2l = y... + a1 + c2 + ac12 = 2.178 + .063 + .123 + (−.067) = 2.297,

ŷ2j1l = y... + a2 + c1 + ac21 = 2.178 + (−.063) + (−.123) + (−.067) = 1.926, and

ŷ2j2l = y... + a2 + c2 + ac22 = 2.178 + (−.063) + .123 + .067 = 2.305.

Residuals for the simple model (5.30) can then be obtained by subtracting these
four fitted values from the corresponding data of Table 5.8. And plots of the resid-
uals can again make clear the lack of constancy in the variance of response. For
example, Fig. 5.21 is a plot of residuals against level of Factor C and shows the
increased variation in response that comes with vibration of the material in the
density measurement process.

The brute force additions just used to produce fitted values in Example 89 are
effective enough when there are a very few factorial effects not assumed to be 0.
But where there are more than four different ŷs, such additions become tedious
and prone to error. It is thus helpful that a modification of the Yates algorithm
can be used to produce 2p fitted values all at once. The modification is called the

Reverse Yates
Algorithm for
Balanced Data
Fitted Values

reverse Yates algorithm.
To use the reverse Yates algorithm to produce fitted values, one writes down a

column of 2p effects (including a grand mean) in Yates standard order from bottom
to top. Then, p normal cycles of the Yates additions and subtractions applied to the
column (with no final division) produce the fitted values (listed in reverse Yates
order). In setting up the initial column of effects, one sets to 0 all those assumed
to be negligible and uses fitted effects for those believed from earlier analysis to
be nonnegligible.

Example 90 (Examples 74 through 89 continued.) As an illustration of the rev-
erse Yates calculations, consider again the fitting of model (5.30) to the powder
density data. Table 5.15 shows the calculations (to more decimal places that are
really justified, in order to avoid roundoff).
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FIGURE 5.21. Plot of residuals from model (5.30) versus level of Factor C in the powder
density study

The calculations in Table 5.15 involve p = 3 factors and therefore begin with a
column of 23 = 8 effects. They involve 3 cycles of the Yates additions and sub-
tractions and end with 8 fitted means. An example involving p = 4 factors would
start with a column of 24 = 16 effects, involve 4 cycles of the Yates additions and
subtractions, and yield 16 fitted means.

As a final point in this chapter, it should be said that while the full factorial anal-
yses presented here are important and useful in their own right, they are rarely the
starting point for real engineering experimentation on systems with many poten-
tially important factors. Rather, the fractional factorial methods presented first in
the next chapter are often used to “screen” a large number of factors down to what
look like they may be the most important few before full factorial experimenta-
tion is done. It is, however, necessary to introduce the material in the order that
has been employed here, since it is impossible to understand the principles of in-
telligent fractional factorial experimentation without first understanding complete
factorial design and analysis.

TABLE 5.15. Use of the reverse Yates algorithm to fit a model with only A and C effects
to the alumina powder density data

Effect Fitted value Cycle #1 Cycle #2 Cycle #3

αβγ222 0 0 .1895 2.305 = ŷabc = ŷ222l
βγ22 0 .1895 2.1155 2.297 = ŷbc = ŷ122l
αγ22 .06675 0 .0560 2.305 = ŷac = ŷ212l
γ2 .12275 2.1155 2.2410 2.297 = ŷc = ŷ112l

αβ22 0 0 .1895 1.926 = ŷab = ŷ221l
β2 0 .0560 2.1155 2.185 = ŷb = ŷ121l
α2 −.06275 0 .0560 1.926 = ŷa = ŷ211l
μ... 2.17825 2.2410 2.2410 2.185 = ŷ(1) = ŷ111l
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Section 5.3 Exercises

1. Analysts were considering a study involving five factors each having two
levels. How many conditions or “treatments” would make up such a
study? Express your answer numerically and in the form of a base with an
exponent.

2. Cooley, Franklin, and Elrod in a 1999 Quality Engineering article describe
a 23 factorial experiment aimed at understanding the effects of A-hole type
(in the fan “spider”), B-barrel type (to which the fan “spider” was attached),
and C-assembly method on the torque, y (in ftlbs), required to break some
industrial fans (large y is good). m = 8 fans of each of the 23 types were
tested. Below are estimated mean responses for each of the 23 combina-
tions. (For all except combination ac, these are sample means, but a pe-
culiarity of the data collection for that combination necessitates the use of
something more complicated for ac. (Here ignore this issue and just treat
the values below as if they were sample means of m = 8 torques.)

y(1) = 53, ya = 105, yb = 44, yab = 50,

yc = 176,“yac” = 197, ybc = 154, and yabc = 166.

(a) Use the Yates algorithm and compute the fitted effects for the “all
high” treatment combination.

(b) Use 7.2 ftlbs as an estimate of the standard deviation of breaking
torques for any fixed combination of hole type, barrel type and ass-
embly method. (7.2 is not actually sP in this problem, but treat it
as if it were.) Which of the 23 factorial effects do you judge to be
“clearly more than noise”? Show appropriate calculations to support
your conclusion. Use a 95% confidence level.

(c) Suppose that one somehow judges that the only effects of practical
importance in this study were A, B, and C main effects and the A
× B interactions. What combination of hole type, barrel type, and
assembly method has the largest predicted breaking torque, and what
is this predicted value, ŷ?

3. In a particular 22 factorial, sample means are y(1) = 8, ya = 10, yb = 6,
and yab = 16. Find the fitted main effects of A and B at their “high” levels
(a2 and b2, respectively).

4. For 25 factorial data, the Yates algorithm requires how many cycles/columns
of additions and subtractions, followed by division by what?

5. In a balanced 23 factorial study with m = 4 observations y per combina-
tion, 95% confidence limits for the factorial effects are of the form Ê ±Δ.
Express Δ as a (numeric) multiple of sP.
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6. In a particular 23 factorial study, the only clearly detectable effects are the
grand mean and the C main effect. Identify which of the following state-
ments are true:

(a) Changing from the low to high level of C definitely changes mean
response.

(b) Changing levels of factors A or B has no clearly discernible effect on
mean response.

(c) All of the conditions {(1), a, b, ab} have indistinguishable mean res-
ponses, as do all of the conditions {c, ac, bc, abc}.

7. In a particular 23 factorial study, the only clearly detectable effects are the
grand mean and the AB 2-factor interactions. (In fact ab22 = 3.) This
indicates (select one of the following):

(a) That for maximization purposes, one wants either {A high and B
high} or {A low and B low}.

(b) That as long as you keep the level of A fixed, changing level of B does
not change mean y.

(c) That since factor C is not involved, the low level of C is best.

(d) That conditions {(1), a, b, ab} have indistinguishable mean responses.

8. In a 2-way factorial study, if there are strong/important AB interactions,
then which of the following are true concerning the quantity α1 − α2?

(a) It still measures the difference between average means for levels 1 and
2 of Factor A.

(b) It can still be estimated (provided there are data from all I × J com-
binations of levels of A and B).

(c) It is of limited practical importance (because “lack of parallelism”
says this is not necessarily the change in mean response upon chang-
ing from level 1 to level 2 of A for any single level of B).

5.4 Chapter Summary

Once a process has been brought to physical stability and is behaving predictably,
further improvements typically require fundamental process changes. Intelligent
experimentation can be used to guide those changes. This chapter has begun dis-
cussion of relevant methods of experimental planning and data analysis. It opened
with a presentation of general tools for comparing r experimental conditions that
can be used without regard to any special structure in the conditions. Then, sta-
tistical methods for two-factor studies with complete factorial structure were con-
sidered. Finally, the long final section of the chapter addressed (full factorial) p
factor studies, giving primary attention to cases where all p factors each have two
levels.
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5.5 Chapter 5 Exercises

1. An engineer and a material scientist are interested in a process for making
a synthetic material. Contamination of the material during production is
thought to be a real possibility. To find manufacturing conditions that pro-
duce minimal contamination, they select three different curing times and
two different coating conditions (none versus some) for producing the ma-
terial. Suppose two pieces of the synthetic material are produced for each
combination of time and coating condition. The order of production is ran-
domized and the raw material is randomly assigned to combinations of time
and coating. The amount of iron (an important contaminant) in the final
product is measured.

(a) What type of (designed) experiment is this?

(b) How many treatment combinations are there in this experiment?

(c) To what future production circumstances can conclusions based on
this experiment be extended?

(d) Write a model equation for this experiment. Let “time” be Factor
A and “coating condition” be Factor B. Say what each model term
means, both in mathematical terms and in the context of the physical
experiment.

(e) What are the degrees of freedom for the estimated variance in
response (for pieces made under a given set of process conditions)?

(f) How many factors are there in this experiment? Identify the number
of levels for all factors.

(g) Write your answer to (b) as I × J × · · · , in terms of the number of
levels you gave in answer to (f).

2. Refer to problem 1.

(a) Let i represent the level of Factor A and j the level of Factor B (j =
1 indicating no coating). Write out the six equations for treatment
means μij that follow from the model in problem 1(d).

(b) For each of the three levels of Factor A (curing time), average your
answers to (a) across levels of Factor B, and apply the facts in displays
(5.20) and (5.21) to write the averages in terms of μ.. and the curing
time main effects (αis).

(c) Find the difference between your mean in (a) for the second level of
curing time and no coating and your mean in (a) for the first level of
curing time and no coating in terms of the appropriate αis and αβijs.
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(d) Find the difference between your mean in (a) for the second level of
curing time and some coating and your mean in (a) for the first level
of curing time and some coating in terms of the appropriate αis and
αβijs.

(e) Find the difference between your answer to (b) for the second level of
curing time and your answer to (b) for the first level of curing time in
terms of the appropriate αis .

(f) Reflect on (c), (d), and (e). Would you use your answer in (e) to rep-
resent the quantities in (c) or (d)? Why or why not?

(g) What must be true for the two differences identified in (c) and (d) to
both be equal to the difference in (e)?

3. Refer to problems 1 and 2.

(a) Average your answers to problem 2(a) across time levels and use the
facts in displays (5.20) and (5.21) to express the no coating and coat-
ing means in terms of μ.. and the coating main effects (the βjs).

(b) Find the difference between your mean in problem 2(a) for the third
level of curing time and no coating and your answer to problem 2(a)
for the third level of curing time and some coating in terms of the
appropriate βjs and αβijs.

(c) Find the difference between your mean in problem 2(a) for the first
level of curing time and no coating and your answer to 2(a) for the
first level of curing time and some coating.

(d) Reflect on (a), (b), and (c). Would you use the difference of your two
answers in (a) to represent the quantities requested in (b) and (c)?
Why or why not?

(e) What must be true for the two differences identified in (b) and (c) to
both be equal to the difference of your two answers in (a)?

4. Refer to problem 1. Suppose the following table gives mean iron contents
(mg) for the set of six different treatment combinations.

Low time Medium time High time
No coating 8 11 7
Coating 2 5 7

(a) Plot the mean responses versus level of time. Use line segments to
connect successive points for means corresponding to “no coating.”
Then separately connect the points for means corresponding to “coat-
ing.” (You will have then created an interaction plot.)

(b) Find the average (across levels of time) mean for “no coating” pieces.
Do the same for “coating” pieces. Find the difference in these two
average means (coated minus no coating).
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(c) Find the following three differences in means: (low time/coating)
minus (low time/no coating), (medium time/coating) minus (medium
time/no coating), and (high time/coating) minus (high time/no coat-
ing).

(d) Compare the three differences found in (c) to the difference in (b).
What is implied about the αβij values? (Hint: use Eq. (5.21) and
Definition 68.)

(e) What feature of your graph in (a) reflects your answers in (d)?

(f) If asked to describe the effect of coating on iron content, will your
answer depend on the time level? Why or why not?

5. Repeat problem 4 with the table of means below.

Low time Medium time High time
No coating 6 8 7
Coating 1 10 4

6. Repeat problem 4 with the table of means below.

Low time Medium time High time
No coating 7 14 22
Coating 1 5 8

7. NASA Polymer. In their article “Statistical Design in Isothermal Aging
of Polyimide Resins” that appeared in Journal of Applied Polymer Science
in 1995, Sutter, Jobe, and Crane reported on their study of polymer resin
weight loss at high temperatures. (The work was part of the NASA Lewis
Research Center HITEMP program in polymer matrix composites. The
focus of the HITEMP program was the development of high-temperature
polymers for advanced aircraft engine fan and compressor applications.)
The authors’ efforts centered on evaluating the thermal oxidative stability
of various polymer resins at high temperatures. The larger the weight loss
in a polymer resin specimen for a given temperature/time combination, the
less attractive (more unstable) the polymer resin. Maximum jet engine tem-
peratures of interest are close to 425◦C (700◦F), and the experiment des-
igned by the researchers exposed specimens of selected polymer resins to a
temperature of 371◦C for 400 h . The specimens were initially essentially
all the same size. Upon completion of the 400 h exposures, percent weight
loss was recorded for each specimen (m = 4 specimens per polymer type).
The following data are from two of the polymer resins included in the study,
Avimid-N, a polymer resin developed by DuPont, and VCAP-75, a polymer
resin investigated in earlier engine component development programs.

Avimid-N
10.6576
9.1014
9.0909
10.2299

VCAP-75
25.8805
23.5876
26.4873
30.5398
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(a) How many experimental factors were there in the study described
above? What were the levels of that factor or factors?

(b) Give a model equation for a “random samples from normal distribu-
tions with a common variance” description of this scenario. Say what
each term in your model means in the context of the problem. Also,
give the numeric range for each subscript.

(c) How many treatments are there in this study? What are they?

(d) Find the two estimated treatment means (the two sample means) and
the eight residuals.

(e) Find the estimated (common) standard deviation, sP.

(f) Normal plot the eight residuals you found in (d). Does this plot indi-
cate any problems with the “samples from two normal distributions
with a common variance” model? Explain.

8. Refer to the NASA Polymer case in problem 7. Suppose that the “random
samples from two normal distributions with a common variance” model is
appropriate for this situation.

(a) Find simultaneous 95% two-sided confidence intervals for the two
mean percent weight losses using the Bonferroni approach.

(b) Find a 99% two-sided confidence interval for the difference in mean
percent weight losses for VCAP-75 and Avimid-N (VCAP-75 minus
Avimid-N).

(c) If you were to choose one of the two polymer resins on the basis of
the data from problem 7, which one would you choose? Why?

9. Refer to the NASA Polymer case in problems 7 and 8.

(a) Transform each of the percent weight loss responses, y, to ln(y). Find
the sample means for the transformed responses.

(b) Find the new residuals for the transformed responses.

(c) Make a normal probability plot of the residuals found in (b). Does
normal theory appear appropriate for describing the log of percent
weight loss? Does it seem more appropriate for the log of percent
weight loss than for percent weight loss itself? Why or why not?

Henceforth in this problem, assume that usual normal theory is an appro-
priate description of log percent weight loss.

(d) Make simultaneous 95% two-sided confidence intervals for the two
average ln(y)s using the Bonferroni approach.

(e) If ln(y) is normal, the mean of ln(y) (say μln(y)) is also the .5 quantile
of ln(y). What quantile of the distribution of y is exp(μln(y))?
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(f) If end points of the intervals produced in (d) are transformed using
the exponential function, exp(·), what parameters of the original y
distributions does one hope to bracket?

10. Refer to the NASA Polymer case in problem 7. Sutter, Jobe, and Crane ex-
perimented with three other polymer resins in addition to the two mentioned
in problem 7. (m = 4 specimens of all five polymer resins were exposed to
a temperature of 371◦C for 400 h.) Percent weight losses for specimens of
the three additional polymer resins N-CYCAP, PMR-II-50, and AFR700B
are given below. All specimens were originally of approximately the same
size.

N-CYCAP PMR-II-50 AFR700B
25.2239 27.5216 28.4327
25.3687 29.1382 28.9548
24.5852 29.8851 24.7863
25.5708 28.5714 24.8217

(a) Use both the data above and the data in problem 7 and answer (a)–(f)
of problem 7 for the study including all five polymer resins.

(b) Answer (a) from problem 8 using data from all five polymer resins.

(c) How many different pairs of polymer resins can be made from the five
in this study?

(d) Make 95% individual two-sided confidence intervals for all differ-
ences in pairs of weight loss means.

(e) The smaller the weight loss, the better from an engineering/strength
perspective. Which polymer resin is best? Why?

11. Refer to the NASA Polymer case in problems 7, 8, and 10.

(a) Find the five sample standard deviations (of percent weight loss) for
the five different polymer resins (the data are given in problems 7 and
10).

(b) Transform the data for the five polymer resins given in problems 7 and
10 by taking the natural logarithm of each percent weight loss. Then
find the five sample standard deviations for the logged values.

(c) Consider the two sets of standard deviations in (a) and (b). Which set
is more consistent? What relevance does this comparison have to the
use of the methods in Sect. 5.1?

(d) Find the five different sample means of log percent weight loss. Find
the five sets of residuals for log percent weight loss (by subtracting
sample log means from individual log values).

(e) Plot the residuals found in (d) versus the sample means from (d)
(means of the log percent).
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(f) Plot the residuals found in part (a) of problem 10 (calculated as in
problem 7d) versus the sample means (of percent weight loss). Com-
pare the plot in (e) to this plot.

(g) Which set of data, the original one or the log transformed one, better
satisfies the assumption of a common response variance for all five
polymer resins?

12. Refer to the NASA Polymer case in problems 7, 8, 10, and 11.

(a) Normal plot the residuals found in part (d) of problem 11. Does the
normal theory model of Sect. 5.1 seem appropriate for transformed
percent weight loss (for all five resins)? Why or why not?

(b) Answer (a) from problem 8 using the log transformed data from all
five polymer resins. (The requested intervals are for the means of the
log transformed percent weight loss.)

(c) If one exponentiates the end points of the intervals from (b) (plugs the
values into the function exp(·)) to produce another set of intervals,
what will the new intervals be estimating?

(d) Make individual 99% confidence intervals for all differences in pairs
of mean log percent weight losses for different polymer resins.

(e) If one exponentiates the end points of the intervals from (d) (plugs
the values into the function exp(·)) to produce another set of inter-
vals, what will the new intervals be estimating? (Hint: exp(x − y) =
exp(x)/exp(y).)

13. Refer to the NASA Polymer case in problems 7 and 10. The data given
in those problems were obtained from one region or position in the oven
used to bake the specimens. The following (percent weight loss) data for
the same five polymer resins came from a second region or position in the
oven. As before, m = 4.

Avimid-N VCAP-75 N-CYCAP PMR-II-50 AFR700B
9.3103 24.6677 26.3393 25.5882 23.2168
9.6701 23.7261 23.1563 25.0346 24.8968
10.9777 22.1910 25.6449 24.9641 23.8636
9.3076 22.5213 23.5294 25.1797 22.4114

Suppose the investigators were not only interested in polymer resin effects
but also in the possibility of important position effects and position/polymer
resin interactions.

(a) How many experimental factors are there in the complete experiment
as represented in problems 7 and 10 and above?

(b) How many levels does each factor have? Name the levels of each fac-
tor.
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(c) Give a model equation for a “random samples from normal distribu-
tions with a common variance” description of this multifactor study.
Say what each term in your model represents in the context of the
problem and define each one in terms of the μ.., μi., μ.j , and μij .

(d) Find the complete set of 10 sample average percent weight losses and
plot them in an interaction plot format. Plot oven position on the hor-
izontal axis. Use two-sided individual 95% confidence limits to es-
tablish error bars around the sample means on your plot. What is the
value of Δ such that yij ± Δ represents the 10 intervals? Does your
plot suggest that there are strong interactions between position and
resin? Why or why not?

(e) Find and plot the 10 sets of residuals. (Make and label 10 tick marks
on a horizontal axis corresponding to the 10 combinations of oven
position and polymer resin and plot the residuals against treatment
combination.)

(f) Find the sample standard deviation for each oven position/polymer
resin combination.

(g) Does it appear from (e) and (f) that variability in percent weight loss
is consistent from one oven position/polymer resin combination to
another? Why or why not?

(h) Make a normal probability plot for the 40 residuals. Does the plot
suggest any problems with the “normal distributions with a common
variance” model for percent weight loss? Why or why not?

(i) Possibly ignoring your answer to (g), find an estimated standard
deviation of percent weight loss (supposedly) common to all oven
position/polymer resin combinations, i.e., find sP. What degrees of
freedom are associated with your estimate?

(j) Continuing to possibly ignore your answer to (g), find Δ and âbi1 such
that âbi1 ± Δ are individual 99% two-sided confidence intervals for
the five oven position/polymer resin interaction effects for position
1. Should one be 99% confident that all five intervals are correct?
Use the Bonferroni inequality to identify a minimum simultaneous
confidence on this whole set of intervals.

(k) In terms of the model from (c), what is the position 1/Avimid-N mean
minus the position 1/VCAP-75 mean? Again in terms of the model
from (c), what is the difference between mean percent weight loss
from Avimid-N averaged over positions 1 and 2 and mean percent
weight loss from VCAP-75 averaged over positions 1 and 2? (Use fact
(5.21) in answering this second question.) Under what circumstances
are the two differences here the same?

14. Refer to the NASA Polymer case of problems 7, 10, and 13. Use a “normal
distributions with common variance” description of percent weight loss.
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(a) Based on the intervals for âbi1 in part (j) of problem 13, is the condi-
tion asked for in part (k) of problem 13 satisfied?

(b) Consider the difference in sample mean percent weight losses for po-
sition 1/Avimid-N and position 1/VCAP-75. Find the estimated stan-
dard deviation of this difference.

(c) Consider the average over positions 1 and 2 of the Avimid-N sample
mean percent weight losses minus the average over positions 1 and
2 of the VCAP-75 sample mean weight losses. Find the estimated
standard deviation of this difference.

(d) Reflect on your answers to parts (j) and (k) of problem 13 and (a)
through (c) of this problem. If you wished to estimate a difference
between the mean percent weight losses for two of the polymer resins,
would you report two intervals, one for position 1 and one for posi-
tion 2, or one interval for the difference averaged across positions?
Defend your answer. What would be the width (Δ) of your interval(s)
(using a 90% confidence level)? Make the 10 comparisons of pairs of
polymer means averaged across position (using individual 90% con-
fidence levels).

15. Refer to the NASA Polymer case in problems 7, 10, and 13. Transform the
40 observed percent weight losses by taking their natural logarithms.

(a) Answer parts (d)–(j) of problem 13 using the transformed data.

(b) Answer parts (a)–(d) of problem 14 using the transformed data.

(c) Should conclusions from the transformed data or original data be pre-
sented? Defend your answer.

(d) Consider the final set of intervals made in (b) above (the ones corre-
sponding to part (d) of problem 14). Exponentiate the end points of
these intervals (i.e., plug them into the exponential function exp(·))
to get new ones. What do these resulting intervals estimate? (Hint:
consider the original percent weight loss distributions and recall that
exp(x − y) = exp(x)/ exp (y).)

16. NASA Polymer II. (See problems 7 and 13 for background.) In a prelim-
inary investigation, Sutter, Jobe, and Crane designed a weight loss study
that was to be balanced (with an equal number of specimens per polymer
resin/oven position combination). Polymer resin specimens of a standard
size were supposed to be randomly allocated (in equal numbers) to each of
two positions in the oven. The following percent weight loss values were in
fact obtained.

Position 1 Position 2
Avimid-N 8.9 10.2, 9.1, 9.1, 8.5
PMR-II-50 29.8, 29.8 27.4, 25.5, 25.7
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(a) The lack of balance in the data set above resulted from a misunder-
standing of how the experiment was to be conducted. How would you
respond to a colleague who says of this study “Well, since an equal
number of specimens were not measured for each polymer resin/oven
position combination, we do not have a balanced experiment so a
credible analysis cannot be made”?

(b) How many experimental factors were there in this study? Identify the
numbers of levels for each of the factors.

(c) Write a model equation for the “normal distributions with a common
variance” description of this study. Give the numeric ranges for all
subscripts.

(d) Find the fitted main effect for each level of each factor.

(e) Find the fitted interactions for all combinations of polymer resin and
oven position.

(f) Use the model from (c) and find a 99% two-sided confidence interval
for the interaction effect for Avimid-N and position 1. Are intervals
for the other interaction effects needed? Why or why not?

(g) Use the model from (c) and find 95% two-sided confidence intervals
for each of the main effects.

(h) Use the model from (c) and find a 90% two-sided confidence interval
for the difference in oven position main effects.

(i) Use the model from (c) and find a 90% confidence interval for the
difference in polymer resin main effects.

17. Refer to the NASA Polymer II case in problem 16.

(a) Find the residuals and plot them against the cell means (that serve as
fitted values in this context). Does it appear that response variability
is consistent from treatment combination to treatment combination?
Why or why not?

(b) Normal plot the residuals found in (a). Does this plot suggest prob-
lems with the basic “normal distributions with a common variance”
model? Why or why not?

(c) Transform each response using y′ = arcsin (y/100), where y is a
percent (between 0 and 100) as given in problem 16. Compute the
four sample means for the transformed values.

(d) Find residuals for the transformed data from (c). Plot these against the
sample means from (c). Does it appear that variability in transformed
response is consistent from treatment combination to treatment com-
bination? Normal plot these residuals. Does this plot suggest problems
with the basic “normal distributions with a common variance” model
for the transformed response? Why or why not?
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(e) Transform each response in problem 16 using y′ = ln (y). Answer (c)
and (d) with the newly transformed data.

(f) Which version of the data (the original, the arcsin transformed, or the
log transformed) seems best described by the “normal distributions
with a common variance” model? Why?

18. Refer to the NASA Polymer II case in problems 16 and 17. Consider the
original data in problem 16 and use the “normal distributions with a com-
mon variance” model.

(a) Plot the sample means in interaction plot format, placing “oven posi-
tion” on the horizontal axis and using two-sided individual 90% con-
fidence limits to establish error bars around each of the sample means.
(Note that since the sample sizes vary, the error bars will not be the
same length mean to mean.) Does the line segment connecting the two
Avimid-N points cross that connecting the two PMR-II-50 points?

(b) Find a 95% two-sided confidence interval for the difference in aver-
age percent weight losses at position 1 (Avimid-N minus PMR-II-50).

(c) Find a 95% two-sided confidence interval for the difference in
Avimid-N and PMR-II-50 main effects.

(d) Which interval, the one from (b) or the one from (c), is better for esti-
mating the difference in mean percent weight losses (Avimid-N minus
PMR-II-50) at oven position 1? Why? (See part (f) of problem 16 and
(a) above.)

(e) Find a 90% two-sided confidence interval for the difference in oven
position mean percent weight losses (position 2 minus position 1) for
Avimid-N.

(f) Find a 90% two-sided confidence interval for the difference in the two
oven position main effects (position 2 minus position 1).

(g) Which interval, the one from (e) or the one from (f), is better for es-
timating the difference in mean percent weight losses at the two oven
positions for Avimid-N? Why? (See part (f) of problem 16 and (a)
above.)

19. NASA Percent Weight Loss. Sutter, Jobe, and Ortiz designed and con-
ducted an experiment as part of NASA Lewis Research Center’s efforts
to evaluate the effects of two-level factors kapton, preprocessing time at
700◦ F, 6 F dianhydride type, and oven position on percent weight loss of
PMR-II-50 specimens baked at 600◦F for 936 h. Two specimens were pro-
duced for each of the possible combinations of kapton, preprocessing time,
and dianhydride type. One specimen of each type was randomly selected
for baking at position 1 (and the other was assigned to position 2). Ex-
act baking locations of the 8 specimens at each position were randomized
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within that region. The oven was set at 600◦ F and the specimens were ex-
posed to this temperature for 936 h. All specimens initially had about the
same mass. Percent weight losses (y) similar to those in Table 5.16 were
observed.

The levels of the factors “kapton,” “preprocessing time,” and “dianhydride
type” were:

Kapton No kapton (1) vs. With kapton (2)
Preprocessing time 15 min (1) vs. 2 h (2)
Dianhydride type Polymer grade (1) vs. Electronic grade (2)

(a) How many experimental factors were there in this study? (Include
oven position as a factor.) Identify them and say how many levels of
each were used.

(b) Describe the factorial structure of the treatment combinations using a
“base and exponent” notation.

TABLE 5.16. Data for Problem 19

Oven Preprocessing Dianhydride
Position Kapton Time Type y

1 1 1 1 4.5
2 1 1 1 5.0
1 2 1 1 4.7
2 2 1 1 5.3
1 1 2 1 4.4
2 1 2 1 5.0
1 2 2 1 4.8
2 2 2 1 5.2
1 1 1 2 3.9
2 1 1 2 3.8
1 2 1 2 3.9
2 2 1 2 3.8
1 1 2 2 4.0
2 1 2 2 3.8
1 2 2 2 3.4
2 2 2 2 3.9

(c) How many treatment combinations were there in this experiment?
Identify them.

(d) Was there replication in this study? Why or why not?

(e) Give a model equation for the “normal distributions with a common
variance” description of percent weight loss that uses “factorial ef-
fects” notation.

(f) Find the fitted effects corresponding to the “all-high” treatment com-
bination. Use Yates algorithm.
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(g) Find the p = (i− .5) /15 standard normal quantiles (for i =
1, 2, . . . , 15).

(h) Use Eq. (5.29) and find the p = (i− .5) /15 half-normal quantiles
(for i = 1, 2, . . . , 15).

(i) Using your answers to (f)–(h), make a full normal plot of the fitted ef-
fects and a half-normal plot for the absolute fitted effects correspond-
ing to the all-high treatment combination.

(j) Does it appear from your plots in part (i) that there are any statistically
detectable effects on mean percent weight loss? Defend your answer.

20. Refer to the NASA Percent Weight Loss case in problem 19. Recall that
single specimens of all eight different combinations of kapton, preprocess-
ing time, and dianhydride type were randomized within position 1, and
another set of eight were randomized within position 2. The factor “posi-
tion” was not really one of primary interest. Its levels were, however, differ-
ent, and its systematic contribution to response variability could have been
nontrivial. (This type of experimental design is sometimes referred to as
a factorial arrangement of treatments (FAT) in a randomized block.) Prob-
lem 19 illustrates one extreme of what is possible in the way of analysis of
such studies, namely, that where the main effects and all interactions with
the “blocking” factor are considered to be potentially important. The other
extreme (possibly adopted on the basis of the results of an analysis like that
in problem 19) is that where the main effects of the blocking variable and
all interactions between it and the other experimental factors are assumed
to be negligible. (Intermediate possibilities also exist. For example, one
might conduct an analysis assuming that there are possibly main effects
of “blocks” but that all interactions involving “blocks” are negligible.)

In this problem consider an analysis of the data from problem 19 that com-
pletely ignores the factor “oven position.” If one treats the main effects and
all interactions with oven position as negligible, the data in problem 19 can
be thought of as three-factor factorial data (in the factors kapton, prepro-
cessing time, and dianhydride type) with m = 2.

(a) Redo parts (a)–(e) of problem 19 taking this new point of view regard-
ing oven position.

(b) Find the fitted effects for the all-high treatment combination in this
three-factor study.

(c) Is normal plotting the only possible means of judging the statistical
detectability of the factorial effects you estimated in (b)? Why or why
not?

(d) Find the residuals for this study by subtracting sample means from
individual percent weight loss measurements.
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(e) Plot the residuals versus the sample means. Does it appear the as-
sumption of a common variance across treatment combinations is rea-
sonable? Why or why not?

(f) Find the sample standard deviation, s, for each treatment combination.
Let y∗ = ln (s) and find fitted effects for the log sample standard
deviations, y∗.

(g) Use Eq. (5.29) and find the (i− .5)/7 half-normal quantiles (for
i = 1, 2, . . . , 7).

(h) Make a half-normal plot of the absolute values of the fitted effects
found in (f) using the quantiles found in (g). Do you see evidence
in this plot of any kapton, preprocessing time, or dianhydride type
effects on the variability of percent weight loss? Why or why not?

21. Refer to the NASA Percent Weight Loss case in problems 19 and 20.
Continue the analysis begun in problem 20 where the factor “oven posi-
tion” is ignored.

(a) How many pairs can be formed from the set of eight different treat-
ment combinations considered by Jobe, Sutter, and Ortiz?

(b) Find sP based on the eight “samples” of size m = 2. What degrees of
freedom are associated with this estimate of σ?

(c) Find a set of (eight) two-sided interval estimates for the treatment
mean weight losses that have associated 95% individual confidence
levels.

(d) Consider the all-high treatment combination. Find individual 95%
confidence intervals for all three two-factor interactions and the three-
factor interaction corresponding to this combination. How “sure” are
you that all four intervals bracket their corresponding theoretical
interactions? (Use the Bonferroni inequality.)

(e) Let α2 correspond to “with kapton,” β2 correspond to “2 h,” and γ2

correspond to “electronic dianhydride.” The investigators wanted a
good estimate of the effect (averaged over the two time conditions)
of kapton on the mean percent weight loss of electronic grade PMR-
II-50 polymer resin. Find a 95% two-sided confidence interval for
the mean percent weight loss of electronic grade PMR-II-50 polymer
resin made with kapton, minus the mean for specimens made without
kapton (both averaged over time), i.e., estimate

μ2.2 − μ1.2 =
1

2
(μ212 + μ222)−

1

2
(μ212 + μ222) .

(Hint: use display (5.8).) Find a 95% two-sided confidence interval
for the difference in the two kapton main effects (with kapton minus
without kapton), i.e., estimate (α2 − α1). Which interval is better
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for the investigators’ purposes? Defend your answer. (Hint: consider
your answer to (d) above.)

(f) Let α2 correspond to “with kapton,” β2 correspond to “2 h,” and γ2

correspond to “electronic dianhydride.” The investigators wanted a
good estimate of the effect (averaged over the two time conditions) of
kapton on the mean percent weight loss of polymer grade PMR-II-50
polymer resin. Find a 95% two-sided confidence interval for the mean
percent weight loss of polymer grade PMR-II-50 polymer resin made
with kapton minus the mean for specimens made without kapton (both
averaged over time), i.e., estimate

μ2.1 − μ1.1 =
1

2
(μ211 + μ221)−

1

2
(μ111 + μ121) .

(Hint: use display (5.8).) Find a 95% two-sided confidence interval
for the difference in the two kapton main effects (with kapton mi-
nus without kapton), i.e., estimate (α2 −α1). Which interval is better
for the investigators’ purposes? Defend your answer. (Hint: consider
your answer to (d) above.)

(g) Let α2 correspond to “with kapton,” β2 correspond to “2 h,” and γ2

correspond to “electronic dianhydride.” The investigators wanted a
good estimate of the effect of dianhydride type (grade) (averaged over
the two time conditions) on the mean percent weight loss of PMR-II-
50 polymer resin with kapton. Find a 95% confidence interval for the
mean percent weight loss of polymer grade PMR-II-50 with kapton
minus the mean for specimens of electronic grade PMR-II-50 with
kapton (both averaged over time), i.e., estimate

μ2.1 − μ2.2 =
1

2
(μ211 + μ221)−

1

2
(μ212 + μ222) .

(Hint: use display (5.8).) Find a 95% interval for the difference in dia-
nhydride type main effects (polymer grade minus electronic grade),
i.e., estimate (γ1−γ2). Which interval is better for the investigators’
purposes? Defend your answer. (Hint: consider your answer to (d)
above.)

22. NASA Fe. Refer to the NASA Percent Weight Loss case in problem 19.
A portion of each PMR-II-50 specimen represented by the data in prob-
lem 19 was not exposed to 600◦F temperature for 936 h but instead was
analyzed for iron (Fe) content. It is known that electronic grade dianhy-
dride has small amounts of iron and polymer grade dianhydride has larger
amounts of iron. NASA researchers Sutter and Ortiz were also aware of the
possibility of iron transfer from the pressing mechanism used to form the
polymer resin specimens. Thus, the protective kapton coating was used on
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the mechanism in pressing half of the PMR-II-50 polymer resin specimens,
and no kapton was used for the others. Data like the sixteen responses (y)
(in ppm Fe) in Table 5.17 were obtained.

TABLE 5.17. Data for problem 22

Preprocessing Dianhydride
Kapton Time Type y

1 1 1 12.0, 2.5
2 1 1 9.0, 9.1
1 2 1 2.6, 2.5
2 2 1 25.0, 2.5
1 1 2 18.0, 34.0
2 1 2 7.0, 4.5
1 2 2 3.0, 14.0
2 2 2 2.5, 2.6

(a) How many experimental factors were there in this study? Identify
them and say how many levels of each were used.

(b) Describe the factorial structure of this arrangement of treatment com-
binations using a “base and exponent” notation.

(c) How many treatment combinations are there in this experiment? Iden-
tify them.

(d) Does “oven position” play any role in the iron content measurements
here?

(e) Was there replication in this study? What are the eight sample sizes in
this study?

(f) Give a model equation in factorial effects notation for the “normal
distributions with a common variance” description of Fe content.

(g) Find the eight sample means.

(h) Find the fitted effects corresponding to the all-high treatment combi-
nation using the Yates algorithm. Say what terms in your model from
(f) each of these is meant to estimate.

(i) Find the 16 residuals for this data set. Plot the residuals versus the
sample means (that can function as fitted or predicted Fe responses).
Does it appear that a constant variance model is reasonable? Why or
why not?

(j) Find the sample standard deviation of iron content, s, for each of the
eight treatment combinations. Let y∗ = ln(s) and find new fitted
effects for the log standard deviations, y∗, using Yates algorithm.

(k) Use Eq. (5.29) and find the (i− .5)/7 half-normal quantiles (for i =
1, 2, . . . , 7).



Chapter 5. Experimental Design and Analysis for Process Improvement 317

(l) Make a half-normal plot of the absolute values of the fitted effects
computed in (j). Do you see evidence in this plot of any kapton, pre-
processing time, or dianhydride type effects on the variability of iron
content? Explain.

23. Refer to the NASA Fe case in problem 22. Transform each Fe content re-
sponse by taking its natural logarithm. Answer parts (g)–(l) of problem 22
based on the log iron contents. Should the data in problem 22 be analyzed
in terms of the original y or in terms of ln (y)? Why?

24. Refer to NASA Fe case in problems 22 and 23. In this problem, use the log
transformed responses.

(a) Find sP for the log Fe contents. What degrees of freedom are associ-
ated with this estimate of σ?

(b) Make individually 95% two-sided confidence intervals for the eight
mean log iron contents.

(c) If the end points of each interval in (b) are exponentiated (plugged into
the function exp (·)), what parameters of the original iron distributions
are estimated?

(d) Find a value Δ, so that if one attaches an uncertainty of ±Δ to any
particular difference among the eight sample mean log Fe contents,
one may be 95% confident of that interval (as representing the corre-
sponding difference in theoretical mean log iron contents).

(e) If the end points of each interval in (d) are exponentiated (plugged
into the function exp (·)), what does a given interval estimate in terms
of parameters of the original iron distributions?

(f) Consider the all-high treatment combination. Find individual 99%
confidence intervals for all three two-factor interactions and the three-
factor interaction corresponding to this combination. How “sure” are
you that all four intervals bracket their corresponding theoretical in-
teractions? (Use the Bonferroni inequality.)

(g) Let α2 correspond to “with kapton,” β2 correspond to “2 h,” and γ2

correspond to “electronic dianhydride.” The investigators wanted a
good estimate of the effect (averaged over the two time conditions)
of kapton on the mean log Fe content of electronic grade PMR-II-
50 polymer resin. Find a 95% two-sided confidence interval for the
mean log Fe content of electronic grade PMR-II-50 polymer resin
made with kapton minus the mean log Fe content for specimens of
electronic grade PMR-II-50 polymer resin made without kapton (both
averaged over time), i.e., estimate

μ2.2 − μ1.2 =
1

2
(μ212 + μ222)−

1

2
(μ112 + μ122) .
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(Hint: consider display (5.8).) Find a 95% two-sided confidence in-
terval for the difference in the two kapton main effects (with kapton
minus without kapton), i.e., estimate (α2−α1). Which interval is bet-
ter for the investigators’ purposes? Defend your answer. (Hint: con-
sider your answer to (f) above.)

(h) Let α2 correspond to “with kapton,” β2 correspond to “2 h,” and γ2

correspond to “electronic dianhydride.” The investigators wanted a
good estimate of the effect of dianhydride type (grade) (averaged over
the two time conditions) on the mean log Fe content of PMR-II-50
polymer resin with kapton. Find a 95% confidence interval for the
mean log Fe content of polymer grade PMR-II-50 with kapton minus
the mean for electronic grade PMR-II-50 with kapton (both averaged
over time), i.e., estimate

μ2.1 − μ2.2 =
1

2
(μ211 + μ221)−

1

2
(μ212 + μ222)

(Hint: consider display (5.8).) Find a 95% confidence interval for
the difference in dianhydride type main effects (polymer grade minus
electronic grade), i.e. estimate (γ1 − γ2). Which interval is better for
the investigators’ purposes? Defend your answer. (Hint: consider your
answer to (f) above.)

(i) Using the fitted effects computed in part (h) of problem 23, find a
set of interval estimates for the factorial effects corresponding to the
all-high treatment combination. Make 99% two-sided individual con-
fidence intervals. What can be said concerning the confidence that
each one of these intervals simultaneously contains its corresponding
theoretical effect? (Use the Bonferroni inequality.)

(j) If an interval in (i) includes 0, set that fitted effect to 0. Otherwise,
use the value from part (h) of problem 23 and find fitted values for all
eight treatment combination mean log Fe contents using the reverse
Yates algorithm. Show your work in table form.

25. Refer to the NASA Percent Weight Loss and NASA Fe cases in problems
19 through 24. Reflect on your responses to these problems. Does it appear
Fe content is related to percent weight loss? Why or why not? (Hint: con-
sider your conclusions when lnFe content was the response variable and
when percent weight loss was the response variable.)

26. Refer to the Brush Ferrules case in problem 15 of Chap. 1. Adams, Har-
rington, Heemstra, and Snyder identified several factors that potentially af-
fected ferrule thickness. Ultimately, they were able to design and conduct
an experiment with the two factors “crank position” and “slider position.”
Two levels (1.625 in and 1.71875 in) were selected for crank position, and
two levels (1.75 in and 2.25 in) were selected for slider position. m = 4
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new ferrules were produced for every combination of crank position and
slider position. The resulting ferrule thicknesses (in inches) are given be-
low.

Crank position Slider position Thickness
1.625 1.75 .421, .432, .398, .437

1.71875 1.75 .462, .450, .444, .454
1.625 2.25 .399, .407, .411, .404

1.71875 2.25 .442, .451, .439, .455

(a) Give a model equation for the “normal distributions with a common
variance” description of ferrule thickness that uses “factorial effects”
notation. Say what each term in your model represents in the context
of the problem and define each one in terms of the μ.., μi., μ.j, and
μij .

(b) Find the four sample means.

(c) Plot the sample means versus crank position in interaction plot for-
mat. (Connect means having the same slider level with line segments.)
Does it appear there are strong interaction effects? Why or why not?

(d) Find the residuals. Plot these versus sample means. Does it appear
that a common variance (across treatment combinations) assumption
is reasonable? Why or why not?

(e) In Example 87, half-normal plotting of absolute fitted effects of two-
level factors on logged sample standard deviations is used as a means
of looking for factor effects on response variability. Why is that
method likely to provide little insight here? (Hint: How many points
would you end up plotting? How decidedly “nonlinear” could such a
plot possibly look?)

(f) Use the Yates algorithm and find fitted effects for the thickness data
corresponding to the all-high treatment combination.

(g) Find sP for the thickness data.

(h) Enhance your plot from (c) with the addition of error bars around the
sample means individual 95% two-sided confidence intervals for the
four treatment combination means.

(i) Find a 95% two-sided confidence interval for the interaction effect for
the all-high treatment combination. Interpret this interval and point
out in what ways it is consistent with the enhanced plot from (h).

(j) Find a 95% two-sided confidence interval for the difference in slider
position main effects (2.25 in setting minus 1.75 in setting). Would
you use this interval to estimate the difference in mean thicknesses for
1.625 in crank position ferrules (2.25 in slider setting minus 1.75 in
slider setting)? Why or why not? (Consider your answer to part (i).)
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(k) Find a 95% two-sided confidence interval for the difference in crank
position main effects (1.71875 in setting minus 1.625 in setting).
Would you use this interval to estimate the difference in mean thick-
nesses for 2.25 in slider position ferrules (1.71875 in crank setting
minus 1.625 in crank setting)? Why or why not? (Consider your
answer to part (i).)

27. Refer to the Brush Ferrules case in problem 26. The slider controls the
first stage of a forming process and the crank controls the second.

(a) Make individual 95% two-sided confidence intervals for the two main
effects and the two-factor interaction corresponding to the 1.71875
crank position and 2.25 slider position (the all-high) treatment com-
bination. Why is it sufficient to consider only these factorial effects in
this 22 factorial study? (For instance, why is nothing additional gained
by considering the effects corresponding to the “all-low” treatment
combination?)

(b) Replace by 0 any effect whose interval in (a) includes zero and use
the reverse Yates algorithm to find fitted means for a model of fer-
rule thickness that involves only those effects judged (via the intervals
from part (a)) to be statistically detectable.

(c) Plot the fitted thickness values from part (b) versus crank position.
Connect the two points for the 1.75 slider position with a line seg-
ment and then connect the two points for the 2.25 slider position with
another line segment.

(d) The desired ferrule thickness was .4205 in. Assuming the linearity
of your plot in (c) is appropriate, give several (at least two) differ-
ent combinations of crank and slider positions that might produce the
desired ferrule thickness.

28. Refer to the Cutoff Machine case in problem 18 of Chap. 1. The focus of
project team efforts was improving the tool life of carbide cutting inserts.
Carbide cutting inserts are triangular shaped pieces of titanium-coated car-
bide about 3/16 in thick. All three corners of a given insert can be used
to make cuts. A crater, break, and poor quality dimension of a cut part
are typical indicators of a “failed” corner, and the objective was to improve
(increase) the number of cuts that could be made before failure of an insert.

Stop delay and feed rate were seen as factors potentially affecting tool life.
Stop delay is the time required to insert raw material (during which the
insert cools). Feed rate is the rate at which the cutting insert is forced into
the tubing being cut. Tubing RPM was also identified as a factor possibly
affecting tool life, but because of time constraints, this factor was held fixed
during the team’s study. The team considered two stop delay settings (low,
high) and four different feed rate settings (coded here as 1 through 4). For
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each combination of stop delay and feed rate, a new carbide insert was used
to cut 304 stainless steel. The number of tubes cut (until a failure occurred)
was recorded for each corner of the insert. Thus, three responses (one from
each corner of an insert) were recorded for each combination of stop delay
and feed rate. The resulting data are in Table 5.18.

TABLE 5.18. Data for problem 28

Stop delay Feed rate Number of tubes cut
1 1 125, 129, 146
1 2 135, 130, 176
1 3 194, 183, 166
1 4 176, 187, 204
2 1 136, 141, 149
2 2 169, 155, 177
2 3 162, 207, 198
2 4 163, 195, 224

(a) How many treatment combinations were there in this study?

(b) Find the eight “sample” means.

(c) Plot the sample means from (b) in interaction plot format, placing feed
rate on the horizontal axis. Does there seem to be serious interaction
between stop delay and feed rate? Why or why not?

(d) Find all the fitted factorial effects for this study. (Find two stop delay
main effects, four feed rate main effects, and eight two-factor interac-
tion effects.)

(e) How many carbide inserts were used in this experiment? Do you think
that this experiment was equivalent to one in which only one corner
is used from each insert (three inserts per treatment combination)?
Would you expect to see more variation or less variation in response
than that in the data above, if three inserts (one corner of each) had
been used?

(f) Probably the safest analysis of the data above would simply use the
averages from (b) as responses, admitting that there was no real repli-
cation in the study and that one really has eight samples of size m = 1.
If this route were taken, could you go beyond the computations in
(d) to make confidence intervals for main effects and interactions?
Explain.

Henceforth, in this problem, suppose that the data in the table above act-
ually represent total cuts (for all corners) for three different inserts per
treatment combination (so that it makes sense to think of the data as eight
samples of size m = 3).
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(g) Give a model equation for the “normal distributions with a common
variance” description of number of tubes cut that uses “factorial
effects” notation. Say what each term in your model represents in the
context of the problem and define each one in terms of the μ.., μi., μ.j,
and μij .

(h) Find the 24 residuals by subtracting sample means from observations.

(i) Plot the residuals found in (h) versus the sample means. Does it appear
that the constant variance feature of the model in (g) is appropriate for
number of tubes cut? Why or why not?

(j) Find sP, the pooled estimate of the supposedly common standard
deviation, σ.

(k) Normal plot the 24 residuals found in (h). What insight does a plot of
this type provide?

29. Refer to the Cutoff Machine case in problems 28. As in the last half of
problem 28, treat the data given in that problem as if they had been obtained
using three different inserts per treatment combination. Use the “normal
distributions with a common variance” model for number of cuts per insert
in the following analysis.

(a) Make individual 95% lower confidence bounds for the eight mean
numbers of cuts.

(b) Find a value Δ, so that if one attaches an uncertainty of ±Δ to a par-
ticular (pre-chosen) difference in a pair of sample mean numbers of
cuts, one may be 99% confident the resulting interval (as an estimate
of the corresponding difference in long-run mean numbers of cuts).

(c) There are a total of 28 different comparisons between means that
could be made in this context. If one applies the uncertainty from
(b) to each, what minimum overall confidence does the Bonferroni
inequality guarantee for all comparisons? On the basis of your anal-
ysis in (b), is there a combination of stop delay and feed rate that is
clearly better than the others by the standard of (b)? Why or why not?
(Hint: compare the maximum sample average to the minimum sample
average.)

(d) Find a value Δ so that an interval with end points abij ± Δ can be
used as a 95% two-sided confidence interval for the corresponding
interaction αβij .

(e) Make a 99% two-sided confidence interval for the difference (feed
rate 2, stop delay 1) minus (feed rate 2, stop delay 2).

(f) Make a 99% two-sided confidence interval for the difference (feed
rate 4, stop delay 1) minus (feed rate 3, stop delay 1).
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(g) Find a 99% two-sided confidence interval for the difference in stop
delay main effects (stop delay 1 minus stop delay 2). Would you use
this interval in place of the one from (e)? Why or why not? (Hint: con-
sider (d) above and the estimated interactions from problem 28(d).)

(h) Find a 99% two-sided confidence interval for the difference in feed
rate 4 and feed rate 3 main effects. Would you use this interval in place
of the one from (f)? Why or why not? (Hint: consider (d) above and
the estimated interactions from problem 28(d).)

30. Tablet Hardness. Tablet hardness (for medicine) is measured in standard
Cobb units (SCU) and specifications for hardness are 17 ± 5 SCU. After
analyzing the tablet production process, engineers concluded that tablet
press compression level and powder moisture level had large effects on final
tablet hardness. Management was using a trial-and- error method to adjust
compression and moisture levels. The engineering team decided to adopt
a more systematic approach to finding a good combination of compres-
sion and moisture. Low and high settings were identified for both factors
for purposes of experimentation. The following summaries were obtained
from an experiment where the four different combinations of compression
and moisture content were used to produce tablets. Given in the table are
means and standard deviations of hardness for a number of batches made
under each treatment combination. (Batch hardness, y, was defined by test-
ing and averaging test results for ten tablets from the batch. The ns in the
following table are numbers of batches. The ys were obtained by averaging
the y’s determined from each batch. The s’s are the standard deviations of
the ys for a given compression/moisture combination.)

Compression Moisture n y s

Low Low 29 17.59 1.22
High Low 17 16.75 .71
Low High 27 17.53 .78
High High 23 17.60 1.02

(a) How many experimental factors were there in this study? Name them.

(b) Give a model equation for the “normal distributions with a common
variance” description of batch hardness that uses “factorial effects”
notation.

(c) Find the pooled estimate of the (supposedly common) variance of
batch hardness under a fixed set of processing conditions. What are
the associated degrees of freedom?

(d) Plot the sample means in interaction plot format. Put compression on
the horizontal axis. Does it appear that there are strong interactions
between compression and moisture? Why or why not?

(e) Find individual 95% two-sided confidence intervals for the four treat-
ment combination means.
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(f) Enhance your plot in (d) by drawing error bars around the means
based on your confidence limits from (e). What is suggested by these
about the statistical detectability of interaction (lack of parallelism) in
this study?

(g) Find the fitted effects for each effect in the model given in (b) using
Yates algorithm.

(h) Find a 99% two-sided confidence interval for the two-factor interac-
tion at the high levels of both factors.

(i) Find a 99% two-sided confidence interval for the high moisture main
effect. Find a 99 % two-sided confidence interval for the high com-
pression main effect.

(j) Using the Bonferroni inequality, find a set of 94% simultaneous con-
fidence intervals for the three effects estimated in (h) and (i).

(k) Based on your intervals from (j) and the enhanced interaction plot
from (f) discuss what has been learned about how compression and
moisture impact tablet hardness.

(l) Which combination of compression and moisture seems best? Defend
your answer. (Hint: recall the ideal hardness value established in the
problem description above.)

(m) Using the information given in this problem estimate the fraction of
high compression/low moisture batches that have measured “batch
hardness” within 1 SCU of the target value of 17 SCU. Adopt a
normal model and assume your estimated average for high compres-
sion/low moisture is reasonable for the true average and the pooled
estimate of variance is reasonable as well. Do you have appropriate
information here to estimate the fraction of individual tablets made
under these same conditions with tested hardness inside the 17 ± 5
SCU specifications (for individuals)? Why or why not?

31. Consider a situation where fatigue life testing of steel bar stock is to
be done. Bar stock can be ordered from several different vendors and it
can be ordered to several different sets of specifications with regard to
each of the factors “dimensions,” “hardness,” and “chemical composition.”
There are several different testing machines in a lab and several different
technicians could be assigned to do the testing. The response variable will
be the number of cycles to failure experienced by a given test specimen.
Assume that each factor has two levels.

(a) Describe the three-factor full factorial study that might be carried out
in this situation (ignoring testing machine differences, technician dif-
ferences, etc.). Make out a data table that could be used to record the
results. For each “run” of the experiment, specify the levels of each of
the 3 factors to be used. What constitutes “replication” in your plan?
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(b) Suppose that attention is restricted to steel bar stock from a single
vendor, ordered to a single set of specifications, tested on a single
machine by a single technician. Suppose further, that either 10 spec-
imens from a single batch or 1 specimen from each of 10 different
batches can be used. Under which of the two scenarios would you
expect to get the larger variation in observed fatigue life? Under what
circumstances would the first test plan be most appropriate? Under
what circumstances would the second be most appropriate?

32. Resistance Measurements. Anderson, Koppen, Lucas, and Schotter made
some resistance measurements on five nominally 1000 Ω resistors. The
measurements were made with an analog meter, an old digital meter and
a new digital meter. As it turns out, the analog readings and a set of new
digital readings were made on one day and the old digital readings and a
second set of new digital readings were made on another day. The students’
data are given in Table 5.19. We will assume that the readings were all made
by the same person, so that the matter of reproducibility is not an issue here.

(a) Discuss why it does not necessarily make sense to treat the two mea-
surements for each resistor made with the new digital meter as a
“sample” of size m = 2 from a single population, and to then derive a
measure of digital meter repeatability from these five samples of size
two. If the students had wanted to evaluate measurement repeatability
how should they have collected some data?

(b) It is possible to make a judgment as to how important the “day” effect
is for the new digital meter by doing the following. For each resis-
tor, subtract the day 1 new digital reading from the day 2 new digital
reading to produce five differences d. Then apply the formula (2.10),
d ± tsd/

√
5, to make a two-sided confidence interval for the mean

difference, μd. Do this using 95% confidence. Does your interval in-
clude 0? Is there a statistically detectable “day” effect in the new dig-
ital readings? What does this analysis say about the advisability of
ignoring “day,” treating the two measurements on each resistor as a
sample of size m = 2 and attempting to thereby estimate repeatabil-
ity for the new digital meter?

(c) Differencing the day 1 analog and new digital readings to produce
five differences (say analog minus new digital), gives a way of look-
ing for systematic differences between these two meters. One may
apply the formula (2.10) to make a confidence interval for the mean
difference, μd. Do this, making a 95% two-sided interval. Does your
interval include 0? Is there a statistically detectable systematic differ-
ence between how these meters read?

(d) Redo (c) for the day 2 old digital and new digital readings.
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TABLE 5.19. Data for Problem 32

Measured
Resistor Day Meter Resistance

1 1 Analog 999
1 1 New digital 994
2 1 Analog 1000
2 1 New digital 1001
3 1 Analog 999
3 1 New digital 992
4 1 Analog 999
4 1 New digital 987
5 1 Analog 1000
5 1 New digital 1001

Measured
Resistor Day Meter Resistance

1 2 Old digital 981
1 2 New digital 993
2 2 Old digital 988
2 2 New digital 1000
3 2 Old digital 979
3 2 New digital 992
4 2 Old digital 974
4 2 New digital 987
5 2 Old digital 988
5 2 New digital 1000

(e) A means of comparing the analog and old digital meters looking for
a systematic difference in readings is the following. For each resistor
one may compute

y=(analog−new digital day 1)− (old digital−new digital day 2)

and then apply the formula (2.6), y ± tsy/
√
5, to make a confidence

interval for the mean μy . Do this, making a 95% interval. Does your
interval include 0? Is there a statistically detectable systematic differ-
ence between how these meters read?

(f) Carefully describe a complete factorial study with the factors “me-
ters,” “resistors,” and “days” that includes some replication and would
allow more straightforward use of the material of this chapter in as-
sessing the effects of these factors. Does your plan allow for the esti-
mation of the repeatability variance component?

33. Consider the situation of Example 60. Suppose a colleague faced with a
similar physical problem says “We do not need to change levels of both
factors at once. The scientific way to proceed is to experiment one factor at
a time. We’ll hold the cooling method fixed and change antimony level to
see the antimony effect. Then we’ll hold antimony level fixed and change
cooling method in order to see the cooling method effect.” What do you
have to say to this person?

34. Heat Treating Steel. Bockenstedt, Carrico, and Smith investigated the ef-
fects of steel formula (1045 and 1144), austenizing temperature (800◦C
and 1000◦C), and cooling rate (furnace and oil quench) on the hardness of
heat-treated steel.

(a) If all possible combinations of levels of the factors mentioned above
are included in an experiment, how many treatment combinations total
will be studied?
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(b) If only a single specimen of each type alluded to in (a) was tested,
how would one go about judging the importance of the main effects
and interactions of the three factors?

In fact, a 23 full factorial with m = 3 steel specimens per treatment combi-
nation was run and hardness data like those in Table 5.20 were obtained.

(c) Compute the pooled standard deviation here, sP.

TABLE 5.20. Data for Problem 34

Steel Temperature Cooling rate Hardness, y
1045 800 Furnace cool 186.0, 191.0, 187.0
1144 800 Furnace cool 202.5, 204.0, 202.0
1045 1000 Furnace cool 146.0, 153.0, 147.0
1144 1000 Furnace cool 154.0, 156.0, 156.5
1045 800 Oil quench 222.5, 230.0, 221.5
1144 800 Oil quench 239.5, 248.5, 249.0
1045 1000 Oil quench 268.0, 278.0, 272.5
1144 1000 Oil quench 297.5, 296.0, 299.0

(d) Find the eight sample means and apply the Yates algorithm to find the
fitted 23 factorial effects corresponding to the all-high (1144/1000/oil
quench) treatment combination.

(e) Apply formula (5.28) to make seven individual 95% two-sided confi-
dence intervals for the main effects, two-factor interactions, and three-
factor interaction for the all-high treatment combination here.

(f) The seven intervals from part (e) have at least what level of simulta-
neous confidence?

(g) Based on the intervals from (e), which effects do you judge to be
statistically detectable?

(h) Suppose that maximum hardness is desired, but hardness being equal,
the preferable levels of the factors (perhaps for cost reasons) are 1045,
800, and oil quench. In light of your answer to (g), how do you rec-
ommend setting levels of these factors? Explain.

35. Valve Airflow. In their “Quality Quandaries” article in the 1996, volume 8,
number 2 issue of Quality Progress, Bisgaard and Fuller further developed
an example due originally to Moen, Nolan, and Provost in their Improving
Quality Through Planned Experimentation. The emphasis of the Bisgaard
and Fuller analysis was to consider the effects of four experimental factors
on both mean and standard deviation of a response variable, y, measuring
airflow through a solenoid valve used in an auto air pollution control device.
The factors in a 24 factorial study with m = 4 were length of armature (A)
(.595 in vs. .605 in), spring load (B) (70 g vs. 100 g), bobbin depth (C)
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(1.095 in vs. 1.105 in), and tube length (D) (.500 in vs. .510 in). Mean
responses and sample standard deviations are given in Table 5.21.

(a) As in Example 87, take the natural logarithms of the sample standard
deviations and then use the Yates algorithm and normal plotting (or
half-normal plotting) to look for statistically detectable effects on the
variability of airflow. Which factors seem to have significant effects?
How would you recommend setting levels of these factors if the only
object were consistency of airflow?

TABLE 5.21. Data for problem 35

A B C D y s

− − − − .46 .04
+ − − − .42 .16
− + − − .57 .02
+ + − − .45 .10
− − + − .73 .02
+ − + − .71 .01
− + + − .70 .05
+ + + − .70 .01

A B C D y s

− − − + .42 .04
+ − − + .28 .15
− + − + .60 .07
+ + − + .29 .06
− − + + .70 .02
+ − + + .71 .02
− + + + .72 .02
+ + + + .72 .01

(b) Your analysis in part (a) should suggest some problems with a “con-
stant (across treatment combinations) variance” model for airflow.
Nevertheless, at least as a preliminary or rough analysis of mean air-
flow, compute sP, apply the Yates algorithm to the sample means, and
apply the 95% confidence limits from display (5.28) to judge the det-
ectability of the 24 factorial effects on mean airflow. Which variables
seem to have the largest influence on this quantity?

36. Collator Machine Stoppage Rate. Klocke, Tan, and Chai worked with
the ISU Press on a project aimed at reducing jams or stoppages on a large
collator machine. They considered the two factors “bar tightness” and “air
pressure” in a 2 × 3 factorial study. For each of the six different treatment
combinations, they counted numbers of stoppages and recorded machine
running time in roughly 5 min of machine operation. (The running times
did not include downtime associated with fixing jams. As such, every in-
stant of running time could be thought of as providing opportunity for a
new stoppage.) Table 5.22 summarizes their data.

This situation can be thought of as a “mean nonconformities per unit” sce-
nario, where the “unit of product” is a 1-second time interval.

(a) A crude method of investigating whether there are any clear differ-
ences in the six different operating conditions is provided by the ret-
rospective u chart material of Sect. 3.3.2. Apply that material to the
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TABLE 5.22. Data for problem 36

Number of Running
Bar tightness Air pressure Jams, X Time, k ( sec) û=X/k

Tight Low 27 295 .0915
Tight Medium 21 416 .0505
Tight High 33 308 .1071
Loose Low 15 474 .0316
Loose Medium 6 540 .0111
Loose High 11 498 .0221

six û values given in the table and say whether there is clear evidence
of some differences in the operating conditions (in terms of produc-
ing stoppages). (Note that a total of 113 stoppages were observed in a
total of 2531 seconds of running time, so that a pooled estimate of a
supposedly common λ is 113/2531 = .0446.)

(b) Plot the û values in interaction plot format, placing levels of air pres-
sure on the horizontal axis.

(c) As in Sect. 3.3.2, a Poisson model for X (with mean kλ) produces a
standard deviation for û of

√
λ/k. This in turn suggests estimating

the standard deviation of û with

σ̂û =
√
û/k.

Crude approximate confidence limits for λ might then be made as

û± zσ̂û

(for z a standard normal quantile). For each of the six treatment
combinations, make approximate 99% two-sided limits for the cor-
responding stoppage rates. Use these to place error bars around the
rates plotted in (b).

(d) Based on the plot from (b) and enhanced in (c), does it appear that
there are detectable bar tightness/air pressure interactions? Does it
appear that there are detectable bar tightness or air pressure main
effects? Ultimately, how do you recommend running the machine?

(e) The same logic used in (c) says that for r different conditions leading
to r values û1, . . . , ûr and r constants c1, . . . , cr, the linear combina-
tion

L̂ = c1û1 + · · ·+ crûr

has a standard error

σ̂L̂ =

√√√√
r∑

i=1

c2i ûi

ki
,
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that can be used to make approximate confidence intervals for

L = c1λ1 + · · ·+ crλr

as
L̂± zσ̂L̂.

Use this method and make an approximate 95% two-sided confidence
interval for

α1 − α2 =
1

3
(λ11 + λ12 + λ13)− 1

3
(λ21 + λ22 + λ23),

the difference in tight and loose bar main effects.

37. Refer to the Collator Machine Stoppage Rate case in problem 36. The
analysis in problem 36 is somewhat complicated by the fact that the stan-
dard deviation of û depends not only on k but on λ as well. A way of
somewhat simplifying the analysis is to replace û with y = g(û) where g
is chosen so that (at least approximately) the variance of y is independent
of λ. The Freeman-Tukey suggestion for g is

y = g(û) =

√
û+

√
û+ 1

k

2
,

and unless λ is very small

Vary ≈ 1

4k
.

This problem considers the application of this idea to simplify the analysis
of the collator machine data.

(a) Compute the six y values corresponding to the different observed jam
rates, û, in problem 36.

(b) Plot the y values in interaction plot format, placing levels of air pres-
sure on the horizontal axis.

(c) Approximate confidence limits for the mean of y (Ey = μy) are

y ± z
1

2
√
k
,

for z a standard normal quantile. Make individual 99% two-sided
confidence limits for each of the six different means of y. Use these
to enhance the plot in (b) with error bars.

(d) Based on the plot from (b) and enhanced in (c), does it appear that
there are detectable bar tightness/air pressure interactions? Does it
appear that there are detectable bar tightness or air pressure main ef-
fects? Ultimately, how do you recommend running the machine?
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(e) If r different conditions lead to r different values y1, . . . , yr and one
has in mind r constants c1, . . . , cr, the linear combination

L̂ = c1y1 + · · ·+ cryr

has an approximate standard deviation

σL̂ ≈ 1

2

√√√√
r∑

i=1

c2i
ki
.

The quantity
L = c1Ey1 + · · ·+ crEyr

then has approximate confidence limits

L̂± zσL̂,

and these provide means for judging the statistical detectability of
factorial effects (on the mean of the transformed variable). Use this
method and make an approximate 95 % two-sided confidence interval
for

α1 − α2 =
1

3
(Ey11 + Ey12 + Ey13)− 1

3
(Ey21 + Ey22 + Ey23),

the difference in tight and loose bar main effects. Does this method
show that there is a clear difference between the bar tightness main
effects?



CHAPTER 6

EXPERIMENTAL DESIGN
AND ANALYSIS FOR

PROCESS IMPROVEMENT
PART 2: ADVANCED TOPICS

The basic tools of experimental design and analysis provided in Chap. 5 form
a foundation for effective multifactor experimentation. This chapter builds on
that and provides some of the superstructure of statistical methods for process-
improvement experiments.

Section 6.1 provides an introduction to the important topic of fractional
factorial experimentation. The 2p−q designs and analyses presented there give
engineers effective means of screening a large number of factors, looking for
a few that need more careful subsequent scrutiny. Then Sect. 6.2 is concerned
with using regression analysis as a tool in optimizing a process with quantitative
inputs. That is, it considers “response surface methods” in systems where the
process variables can be changed independently of each other. Finally, the short
Sect. 6.3 discusses a number of important qualitative issues in experimentation
for process improvement.
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6.1 2p−q Fractional Factorials

It is common for engineers engaged in process-improvement activities to be ini-
tially faced with many more factors/“process knobs” than can be studied in a
practically feasible full factorial experiment. For example, even with just two lev-
els for each of p = 10 factors (which is not that many by the standards of real
industrial processes), there are already 210 = 1,024 different combinations to be
considered. And few real engineering experiments are run in environments where
there are both time and resources sufficient to collect 1,000 or more data points.

If one cannot afford a full factorial experiment in many factors, the alternatives
are two. One must either hold the levels of some factors fixed (effectively elim-
inating them from consideration in the experiment) or find some way to vary all
of the factors over some appropriate fraction of a full factorial (and then make
a sensible analysis of the resulting data). This section concerns methods for this
second approach. The thinking here is that it is best in early stages of experimen-
tation to run fractional factorial experiments in many factors, letting data (rather
than educated guessing alone) help screen those down to a smaller number that
can subsequently be studied more carefully.

The discussion begins with some additional motivation for the section and some
preliminary insights into what can and cannot possibly come out of a fractional
factorial study. Then specific methods of design and analysis are provided for half-
fractions of 2p factorials. Finally, the methods for half-fractions are generalized
to provide corresponding tools for studies involving only a fraction 1/2q of all
possible combinations from a full 2p factorial.

6.1.1 Motivation and Preliminary Insights

Table 6.1 lists two levels of 15 factors from a real industrial experiment discussed
by C. Hendrix in his article, “What Every Technologist Should Know About
Experimental Design,” which appeared in Chemtech in 1979. The object of ex-
perimentation was to determine what factors were principal determiners of the
cold crack resistance of an industrial product. Now 215 = 32,768, and there is
clearly no way that plant experimentation could be carried out in a full 215 facto-
rial fashion in a situation like this. Something else had to be done.

Rather than just guessing at which of the 15 factors represented in Table 6.1
might be most important and varying only their levels in an experiment, Hendrix
and his colleagues were able to conduct an effective fractional factorial experi-
ment varying all p = 15 factors in only 16 experimental runs. (Only a 1/2048
fraction of all possible combinations of levels of these factors was investigated!)
Methods of experimental design and analysis for problems like this are the sub-
ject of this section. But before jumping headlong into technical details, it is best
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TABLE 6.1. 15 Process variables and their experimental levels

Factor Process variable Levels
A Coating roll temperature 115◦ (−) vs. 125◦ (+)
B Solvent Recycled (−) vs. refined (+)
C Polymer X-12 preheat No (−) vs. yes (+)
D Web type LX-14 (−) vs. LB-17 (+)
E Coating roll tension 30 (−) vs. 40 (+)
F Number of chill rolls 1 (−) vs. 2 (+)
G Drying roll temperature 75◦ (−) vs. 80◦ (+)
H Humidity of air feed to dryer 75% (−) vs. 90% (+)
J Feed air to dryer preheat Yes (−) vs. No (+)
K Dibutylfutile in formula 12% (−) vs. 15% (+)
L Surfactant in formula .5% (−) vs. 1% (+)
M Dispersant in formula .1% (−) vs. .2% (+)
N Wetting agent in formula 1.5% (−) vs. 2.5% (+)
O Time lapse before coating web 10min (−) vs. 30min (+)
P Mixer agitation speed 100 rpm (−) vs. 250 rpm (+)

to begin with some qualitative/common sense observations about what will ulti-
mately be possible. (And the reader is encouraged to return to this subsection after
wrestling with the technical details that will follow, in an effort to avoid missing
the forest for the trees.)

To begin, there is no magic by which one can learn from a small fractional
factorial experiment all that could be learned from the corresponding full facto-
rial. In the 15-factor situation represented by Table 6.1, there are potentially 215 =
32,768 effects of importance in determining cold crack resistance (from a grand
mean and 15 main effects through a 15-way interaction). Data from only 16 dif-
ferent combinations cannot possibly be used to detail all of these. In fact, intuition
should say that ys from 16 different conditions ought to let one estimate at most
16 different “things.” Anyone who maintains that there is some special system
of experimentation by which it is possible to learn all there is to know about a
p-variable system from a small fractional factorial study is confused (or is selling
snake oil).

In fact, unless the principle of effect sparsity is strongly active, small fractions
of large factorials are doomed to provide little useful information for process-
improvement efforts. That is, in complicated systems the methods of this section
can fail, in spite of the fact that they are indeed the best ones available. So from
the outset, the reader must understand that although they are extremely important
and can be instrumental in producing spectacular process-improvement results,
the methods of this section have unavoidable limitations that are simply inherent
in the problem they address.

It is important next to point out that if one is to do fractional factorial experi-
mentation, there are more effective and less effective ways of doing it. Take, for
example, the (completely unrealistic but instructive) case of two factors A and
B, both with two levels, supposing that one can afford to conduct only half of a
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full 22 factorial experiment. In this artificial context, consider the matter of exp-
erimental design, the choice of which of the four combinations (1), a, b, and ab
to include in one’s study. Temporarily supposing that the “all-low” combination,
(1), is one of the two included in the experiment, it is obvious that combination ab
should be the other. Why? The two combinations a and b can be eliminated from
consideration because using one of them together with combination (1) produces
an experiment where the level of only one of the two factors is varied. This kind
of reasoning shows that the only two sensible choices of half-fractions of the 22

factorial are those consisting of “(1) and ab” or of “a and b.” And while it is sim-
ple enough to reason to these choices of half of a 22 factorial, how in general to
address the choice of a 1/2q fraction of a 2p factorial is much less obvious.

The artificial situation of a half-fraction of a 22 factorial can be used to make
several other points as well. To begin, suppose that one uses either the “(1) and
ab” or the “a and b” half-fraction as an experimental plan and sees a huge change
in response between the two sets of process conditions. How is that outcome to
be interpreted? After all, both the A “knob” and the B “knob” are changed as one
goes from one set of experimental conditions to the other. Is it the A main effect
that causes the change in response? Or is it the B main effect? Or is it perhaps
both? There is inevitable ambiguity of interpretation inherent in this example.
Happily, in more realistic problems (at least under the assumption of effect spar-
sity), the prospects of sensibly interpreting the results of a 2p−q experiment are
not so bleak as they seem in this artificial example.

Finally, in the case of the half-fraction of the 22 factorial, it is useful to consider
what information about the 22 factorial effectsμ.., α2, β2, andαβ22 can be carried
by, say, y(1) and yab alone. Clearly, y(1) tells one about μ(1) and yab tells one
about μab, but what information about the factorial effects do they provide? As
it turns out, the story is this. On the basis of y(1) and yab, one can estimate two
sums of effects, namely, μ..+αβ22 and α2+β2, but cannot further separate these
four effects. The jargon typically used in the world of experimental design is that
the A and B main effects are confounded or aliased (as are the grand mean and
the AB interaction). And the fact that such basic quantities as the two main effects
are aliased (and in some sense indistinguishable) in even this “best” half-fraction
of the 22 factorial pretty much lays to final rest the possibility of any practical
application of this pedagogical example.

With this motivation and qualitative background, it is hopefully clear that there
are three basic issues to be faced in developing tools for 2p−q fractional factorial
experimentation. One must know how to

1. choose wisely a 1/2q fraction of all 2p possible combinations of levels of p
two-level factors,

2. determine exactly which effects are aliased with which other effects for a
given choice of the fractional factorial, and

3. do intelligent data analysis in light of the alias structure of the experiment.

The following two subsections address these matters, first for the case of half-
fractions and then for the general 1/2q fraction situation.
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6.1.2 Half-Fractions of 2p Factorials

Consider now a situation where there are p two-level experimental factors and for
some reason one wishes to include only half of the 2p possible combinations of
levels of these factors in an experiment. Standard notation for this kind of cir-
cumstance is that a 2p−1 fractional factorial is contemplated. (The p exponent
identifies the number of factors involved, and the −1 exponent indicates that a
half-fraction is desired, one that will include 2p−1 different treatment combina-
tions.)

The following is an algorithm for identifying a best possible half-fraction of a

Algorithm for
Identifying a
Best Half-
Fraction

2p factorial:

Write down for the “first” p − 1 factors a 2p−1 × (p − 1) table of
plus and minus signs specifying all possible combinations of levels of
these, columns giving the levels for particular factors in combinations
specified by rows. Then multiply together the “signs” in a given row
(treating negative signs as −1s and positive signs as +1s) to create
an additional column. This new (product) column specifies levels of
the “last” factor to be used with the various combinations of levels of
the first p− 1 factors.

Example 91 A Hypothetical 24−1 Design. The preceding prescription can be
followed to produce a good choice of 8 out of 16 possible combinations of levels
of factors A, B, C, and D. Table 6.2 shows that the combinations following from
the algorithm are those that have an even number of factors set at their high
levels.

TABLE 6.2. Construction of a best half-fraction of a 24 factorial

(D)
A B C Product Combination
− − − − (1)
+ − − + ad
− + − + bd
+ + − − ab
− − + + cd
+ − + − ac
− + + − bc
+ + + + abcd

Example 92 An Unreplicated 25−1 Chemical Process-Improvement Study. The
article “Experimenting with a Large Number of Variables” by R. Snee, which
appeared in the 1985 ASQC Technical Supplement Experiments in Industry, des-
cribes a p = 5 factorial experiment aimed at improving the consistency of the
color of a chemical product. The factors studied and their levels were
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Factor A—solvent/reactant Low (−) vs. High (+)
Factor B—catalyst/reactant .025 (−) vs. .035 (+)
Factor C—temperature 150◦C (−) vs. 160◦C (+)
Factor D—reactant purity 92% (−) vs. 96% (+)
Factor E—pH of reactant 8.0 (−) vs. 8.7 (+)

Snee’s unreplicated 25−1 fractional factorial data are given here in Table 6.3, in
a way that makes it clear that the algorithm for producing a best 2p−1 fractional
factorial was followed. (The reader might also notice that for p = 5 factors, the
prescription for constructing a good half-fraction picks out those combinations
with an odd number of factors set at their high levels.)

TABLE 6.3. Observed color index for 16 combinations of levels of five two-level factors

(E)
A B C D Product Combination Color Index, y
− − − − + e −.63
+ − − − − a 2.51
− + − − − b −2.68
+ + − − + abe −1.66
− − + − − c 2.06
+ − + − + ace 1.22
− + + − + bce −2.09
+ + + − − abc 1.93
− − − + − d 6.79
+ − − + + ade 6.47
− + − + + bde 3.45
+ + − + − abd 5.68
− − + + + cde 5.22
+ − + + − acd 9.38
− + + + − bcd 4.30
+ + + + + abcde 4.05

Having identified which 2p−1 combinations of levels of the factors one is
going to include in a fractional factorial study, the next issue is understanding the
implied alias structure, the pattern of what is confounded or aliased with what.
As it turns out, 2p factorial effects in a half-fraction are aliased in 2p−1 different
pairs. One can hope to estimate 2p−1 sums of two effects, but cannot further
separate the aliased effects. Exactly which pairs are confounded can be identified
using a system of formal multiplication as follows:

Method for
Determining
the Alias
Structure for
a Half-Fraction

One begins by writing down the relationship

name of the last factor↔product of the other p− 1 factor names
(6.1)
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called the generator of the design, in that it specifies how the column
of signs is made up for the last factor. Then one can multiply both
sides of the relationship (6.1) by any letter under the rules that

1. any letter times itself produces the letter I, and

2. I times any letter is that letter.

The relationships that then arise identify pairs of effects that are
aliased.

For example, it follows from display (6.1) and these rules of multiplication that

I↔product of the names of all p factors. (6.2)

Identifying I with the grand mean, this relationship says that the grand mean is
aliased with the p factor interaction. Relationship (6.2), having I on the left side,
is often called the defining relation for the fractional factorial. This is because
one can easily multiply through by any string of letters of interest and see what
is confounded with the corresponding main effect or interaction. For example,
multiplying both sides of a defining relation like (6.2) by A, one sees that the
main effect of A is aliased with the (p− 1)-way interaction of all other factors.

Example 93 (Example 91 continued.) Return to the hypothetical 24−1 situation
introduced earlier. In making up the combinations listed in Table 6.2, levels of
factor D were chosen using products of signs for factors A, B, and C. Thus the
generator for the design in Table 6.2 is

D↔ABC.

From this (multiplying through by D and remembering that D·D is I), the defining
relation for the design is

I↔ABCD,

and all aliases can be derived from this relationship. To begin, the grand mean
is aliased with the four-factor interaction. That is, based on data from the eight
combinations listed in Table 6.2, one can estimate μ.... + αβγδ2222 but cannot
further separate the summands. Or, multiplying through by A, one has

A↔BCD,

and the A main effect and BCD three-factor interaction are aliases. One can esti-
mate α2 + βγδ222 but cannot further separate these effects. Or, multiplying both
sides of the defining relation by both A and B, one has

AB↔CD.

The combinations in Table 6.2 produce data leaving the AB two-factor interaction
confounded with the CD two-factor interaction. One can estimate αβ22+γδ22 but
cannot further separate these two-factor interactions on the basis of half-fraction
data alone.
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Example 94 (Example 92 continued.) In Snee’s color index study, levels of fac-
tor E were set using a column of signs derived as products of signs for factors A,
B, C, and D. That means that the generator of the design used in the study is

E↔ABCD,

so the defining relation is (upon multiplying through by E)

I↔ABCDE.

This implies that the grand mean is aliased with the five-factor interaction. Then,
for example, multiplying through by A, one has

A↔BCDE

and the A main effect is confounded with the four-way interaction of B, C, D, and
E. On the basis of the data in Table 6.3, one can estimate α2 + βγδε2222 but
neither of the summands separately.

Examples 93 and 94 are instructive in terms of showing what happens to the
alias structure of the best 2p−1 designs with increasing p. For the 24−1 case,
main effects are aliased with three-factor interactions, while for five factors, main
effects are confounded with four-factor interactions. If one expects high-order
interactions to typically be negligible, this is a comforting pattern. It says that for
moderate to large p, an estimate of a main effect plus the aliased (p − 1)-way
interaction may often be thought of as essentially characterizing the main effect
alone. And this kind of thinking suggests what is the standard design doctrine
for 2p−q studies. One wants to set things up so that (often important) low-order
effects (main effects and low-order interactions) are aliased only with high-order
interactions (that in simple systems are small). The virtue of the prescription for
half-fractions given in this section is that it produces the best alias structure pos-
sible in this regard.

The final issue needing attention in this discussion of half-fractions is the matter
of data analysis. How does one make sense out of 2p−1 fractional factorial data
like those given in Table 6.3? This question has a simple answer:

Data Analysis
Method for a
2p−1 Study

To analyze 2p−1 fractional factorial data, one first ignores the exis-
tence of the last factor, treating the data as if they were complete fac-
torial data in the first p− 1 factors. “Fitted effects” are computed and
judged exactly as in Sect. 5.3. Then the statistical inferences are in-
terpreted in light of the alias structure, remembering that one actually
has estimates of not single effects, but sums of pairs of 2p effects.

Example 95 An Artificial 23−1 Data Set. For purposes of illustrating the mean-
ing of the instructions for data analysis just given when there is some replication
in a 2p−1 data set, consider the artificial figures in Table 6.4.
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TABLE 6.4. Some summary statistics from a hypothetical 23−1 study
A B C Combination n y s2

− − + c 1 2.6
+ − − a 1 6.4
− + − b 2 3.4 1.5
+ + + abc 3 7.6 1.8

The means in Table 6.4 are listed in Yates standard order as regards the first
two factors. The reader should check that (ignoring factor C) application of the
Yates algorithm (two cycles and then division by 22 = 4) produces the “fitted
effects” (listed in Yates order for A and B) 5.0, 2.0, .5, and .1.

The pooled sample variance here is

s2P =
(2− 1)1.5 + (3 − 1)1.8

(2− 1) + (3 − 1)
= 1.7,

with n − r = 7 − 4 = 3 associated degrees of freedom. So then formula (5.28)
can be used to make confidence intervals for judging the statistical detectability
of the (sums of) effects estimated by the output of the Yates algorithm. The “p”
appropriate in formula (5.28) is 2, since one is computing as if the last factor
does not exist. Then, since the .975 quantile of the t3 distribution is 3.182, using
individual two-sided 95% confidence limits, a plus or minus value of

3.182
√
1.7

(
1

22

) √
1

1
+

1

1
+

1

2
+

1

3
= 1.7

should be associated with the values 5.0, 2.0, .5, and. 1. By this standard, only the
first two represent effects visible above the experimental variation.

This statistical analysis has to this point ignored the existence of factor C. But
now in interpreting the results, it is time to remember that the experiment was
not a 22 factorial in factors A and B, but rather a 23−1 fractional factorial in
factors A, B, and C. Note that the signs in Table 6.4 show that the generator for
this hypothetical study was

C↔AB,

so that the defining relation is
I↔ABC.

Now if the means in Table 6.4 were from a 22 factorial, the value 5.0 appearing on
the first line of the Yates calculations would be an estimate of a grand mean. But
in the 23−1 fractional factorial, the grand mean is aliased with the three-factor
interaction, that is,

5.0 estimates μ... + αβγ222 .

Similarly, if the means were from a 22 factorial, the value 2.0 appearing on the
second line of the Yates calculations would be an estimate of the A main effect.
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But in the 23−1 fractional factorial, the A main effect is aliased with the BC two-
factor interaction, that is,

2.0 estimates α2 + βγ22 .

Of course, the simplest (and possibly quite wrong) interpretation of the fact that
both μ... + αβγ222 and α2 + βγ22 are statistically detectable would follow from
an assumption that the two interactions are negligible and the estimated sums of
effects are primarily measuring the overall mean and the main effect of factor A.

TABLE 6.5. The output of the Yates algorithm applied to the 16 color indices

Combination Color Index, y (Yates cycle 4) ÷ 16 Sum estimated
e −.63 2.875 μ..... + αβγδε22222
a 2.51 .823 α2 + βγδε2222
b −2.68 −1.253 β2 + αγδε2222

abe −1.66 .055 αβ22 + γδε222
c 2.06 .384 γ2 + αβδε2222

ace 1.22 .064 αγ22 + βδε222
bce −2.09 .041 βγ22 + αδε222
abc 1.93 .001 αβγ222 + δε22
d 6.79 2.793 δ2 + αβγε2222

ade 6.47 −.095 αδ22 + βγε222
bde 3.45 −.045 βδ22 + αγε222
abd 5.68 −.288 αβδ222 + γε22
cde 5.22 −.314 γδ22 + αβε222
acd 9.38 .186 αγδ222 + βε22
bcd 4.30 −.306 βγδ222 + αε22

abcde 4.05 −.871 αβγδ2222 + ε2

Example 96 (Examples 92 and 94 continued.) As an example of how the anal-
ysis of a half-fraction proceeds in the absence of replication, consider what can
be done with Snee’s color index data given in Table 6.3. The observations in
Table 6.3 are listed in Yates standard order as regards factors A, B, C, and D.
One may apply the (4-cycle, final division by 24 = 16) Yates algorithm to these
data and arrive at the fitted sums of effects listed in Table 6.5.

Snee’s data include no replication. So the only method for judging the det-
ectability of effects in this study presented in this text is probability plotting.
Figures 6.1 and 6.2 (on page 344) show, respectively, a normal plot of the last 15
estimates listed in Table 6.5 and a half-normal plot of their magnitudes. (Since one
is probably willing to grant a priori that the mean response is other than 0, there
is no reason to include the first estimate listed in Table 6.5 in the plot.) Especially
from Fig. 6.2 it is clear that even if the bulk of the estimates in Table 6.5 consists of
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nothing more than experimental variation, those corresponding to “D+ABCE,”
“B+ACDE,” “ABCD+E,” and “A+BCDE” do not. The four sums of effects

δ2 + αβγε2222, β2 + αγδε2222, αβγδ2222 + ε2, and α2 + βγδε2222

are statistically detectable.
The simplest possible interpretation of the judgment that the four largest

(in magnitude) of the last 15 estimates in Table 6.5 correspond to detectable sums
of effects is that only the main effects of factors D, B, E, and A are important. This
interpretation says

(1) that (in decreasing order of importance) reactant purity, catalyst/reactant
ratio, reactant pH, and solvent/reactant ratio affect color index for this
product,

(2) that temperature has no appreciable impact on product color, and

(3) that the important factors act separately on the color index.

Since the original motivation for the experimentation was to find a way of
improving color consistency, this result would guide engineers to the very care-
ful control of process inputs. Reactant purity would deserve first attention, cata-
lyst/reactant ratio would deserve second attention, and so on.

These tentative conclusions about color index are so clean and intuitively
appealing that there would seem to be little reason to doubt that they are the right
ones for the color index problem. But it must be kept in mind that they are based
on a fractional factorial study and an assumption of simple structure for the
chemical system. If, in fact, the chemical system is not simple (and, e.g., there are
important four-factor interactions), then they could lead one in wrong directions
when looking for a way to improve color consistency.

FIGURE 6.1. Normal plot of fitted sums of effects for Snee’s color index data
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FIGURE 6.2. Half-normal plot of absolute-fitted-sums-of-effects for Snee’s color index
data

6.1.3 1/2q Fractions of 2p Factorials

The tools just presented for half-fractions of 2p factorials all have their natural
extensions to the general case of 1/2q fractions. To begin, the problem of choosing
2p−q out of 2p possible combinations to include in a fractional factorial study can
be addressed using the product of signs idea introduced for half-fractions. That
is, one may follow this prescription:

Algorithm for
Producing a
2p−q Fractional
Factorial

Write down for the first p − q factors a 2p−q × (p − q) table of
plus and minus signs specifying all possible combinations of levels of
these, columns giving the levels for particular factors in combinations
specified by rows. Then make up q (different) additional columns of
signs as products (a row at a time) of signs in q (different) groups of
the first p− q columns. These new product columns specify levels of
the last q factors to be used with the various combinations of levels
of the first p− q factors.

This set of instructions is somewhat ambiguous in that it does not specify exactly
which product columns one ought to construct. The fact is that some choices are
better than others in terms of the alias structures that they produce. But discussion
of this must wait until the matter of actually finding an alias structure has been
considered.

Example 97 A 25−2 Catalyst Development Study. In a paper presented at the
1986 National Meeting of the American Statistical Association, Hanson and Best
described an experimental program for the development of an effective catalyst
for the production of ethyleneamines by the amination of monoethanolamine. One
part of that program involved a quarter-fraction of a 25 factorial with the follow-
ing factors and levels.
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Factor A—Ne/Re ratio 2/1 (−) vs. 20/1 (+)
Factor B—precipitant (NH4)2CO3 (−) vs. none (+)
Factor C—calcining temperature 300◦ (−) vs. 500◦ (+)
Factor D—reduction temperature 300◦ (−) vs. 500◦ (+)
Factor E—support used Alpha-alumina (−) vs. silica-alumina (+)

The response variable of interest was

y = the percent water produced.

A quarter-fraction of a full 25 factorial involves 8 out of 32 possible combina-
tions of levels of factors A, B, C, D, and E. To follow the prescription just given
for choosing such a 25−2 fractional factorial, one begins by writing down an 8×3
table of signs specifying all eight combinations of levels of the factors A, B, and C.
Then one must make up q = 2 product columns to use in choosing corresponding
levels of factors D and E. The particular choice made by Hanson and Best was to
use ABC products to choose levels of factor D and BC products to choose levels
of E. Table 6.6 shows the construction used, the 25 names of the eight combi-
nations selected, the raw data, and some (sample-by-sample) summary statistics.
The choice of product columns made by the engineers in this study was by no
means the only one possible. Different choices would have led to different con-
founding patterns (that in other circumstances might have seemed preferable on
the basis of engineering considerations).

TABLE 6.6. % H2O values produced in runs of eight combinations of five factors in the
catalyst development study and some summary statistics

(D) (E)
ABC BC

A B C Product Product 25 Name %H2O, y y s2

− − − − + e 8.70, 11.60, 9.00 9.767 2.543
+ − − + + ade 26.80 26.80
− + − + − bd 24.88 24.88
+ + − − − ab 33.15 33.15
− − + + − cd 28.90, 30.98 29.940 2.163
+ − + − − ac 30.20 30.20
− + + − + bce 8.00, 8.69 8.345 .238
+ + + + + abcde 29.30 29.30

The way one finds the alias structure of a general 2p−q fractional factorial is
built on the same formal multiplication idea used for half-fractions. The only
new complication is that one must now work with q generators, and these lead to
a defining relation that says that the grand mean is aliased with 2q − 1 effects.
(So in the end, effects are aliased in 2p−q different groups of 2q.) To be more
precise:
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One begins by writing down the q generators of the design of the
form

Method for
Determining
the Alias
Structure for
a 2p−q Study

name of one of the last q factors ↔
product of names of some of the first (p− q) factors (6.3)

that specify how the columns of signs are made up for choosing lev-
els of the last q factors. Then each of these q relationships (6.3) is
multiplied through by the letter on the left to produce a relationship
of the form

I ↔ product.

These are taken individually, multiplied in pairs, multiplied in triples,
and so on to produce a defining relation of the form

I ↔ product 1 ↔ product 2 ↔ · · · ↔ product (2q − 1) (6.4)

specifying 2q − 1 aliases for the grand mean. This defining relation
(6.4) and the formal multiplication scheme are then used to find all
aliases of any 2p effect of interest.

A 2p−q fractional factorial of the type described here has q generators. Each
of the 2p factorial effects has 2p − 1 aliases. And the defining relation identifies
2q − 1 products as equivalent to I.

Example 98 (Example 97 continued.) Consider again the 25−2 catalyst study of
Hanson and Best. Table 6.6 shows the two generators for the eight combinations
used in the study to be

D↔ABC and E↔BC.

Multiplying the first of these through by D and the second by E, one has the two
relationships

I↔ABCD and I↔BCE.

But then, multiplying the left sides and the right sides of these two together, one
also has

I · I↔(ABCD) · (BCE), that is, I↔ADE.

Finally, combining the three “I↔product” statements into a single string of
aliases, one has the defining relation for this study

I↔ABCD↔BCE↔ADE.

This relationship shows immediately that one may estimate the sum of effects
μ..... + αβγδ2222 + βγε222 + αδε222 but may not separate the summands. Or,
multiplying through the defining relation by A, one has

A↔BCD↔ABCE↔DE,
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and sees that the A main effect is aliased with the BCD three-factor interaction,
the ABCE four-factor interaction, and the DE two-factor interaction. It should be
easy for the reader to verify that (as expected) the 25 factorial effects are aliased
in 8 = 25−2 sets of 4 = 22 effects. With data from eight different combinations,
one can estimate “eight things,” the corresponding eight different sums of four
effects.

Example 99 Defining Relations for Two Different 26−2 Plans. Consider the
choice of generators for a 26−2 plan. Two different possibilities are

E↔ABCD and F↔ABC (6.5)

and
E↔BCD and F↔ABC. (6.6)

The reader should do the work (parallel to that in the previous example) necessary
to verify that the defining relation corresponding to the set of generators (6.5) is

I↔ABCDE↔ABCF↔DEF.

And the defining relation corresponding to the set of generators (6.6) is

I↔BCDE↔ABCF↔ADEF.

This second defining relation is arguably better than the first. The first shows
that the choice of generators (6.5) leaves some main effects aliased with two-
factor interactions, fairly low-order effects. In contrast, the choice of generators
(6.6) leads to the main effects being aliased with only three-factor (and higher-
order) interactions. This example shows that not all choices of q generators in a
2p−q study are going to be equally attractive in terms of the alias structure they
produce.

Example 100 Finding the Defining Relation for a 1/8 Fraction of a 26 Study.
As an example of what must be done to find the defining relation for fractions of
2p factorials smaller than 1/4, consider the set of generators of a 26−3 study:

D↔AB,E↔AC, and F↔BC.

These immediately produce

I↔ABD, I↔ACE, and I↔BCF.

Then multiplying these in pairs, one has

I · I↔(ABD) · (ACE), i.e., I↔BCDE,

I · I↔(ABD) · (BCF), i.e., I↔ACDF,
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and
I · I↔(ACE) · (BCF), i.e., I↔ABEF.

And finally multiplying all three of these together, one has

I · I · I↔ (ABD) · (ACE) · (BCF), i.e., I↔DEF.

So then, stringing together all of the aliases of the grand mean, one has the defin-
ing relation:

I↔ABD↔ACE↔BCF↔BCDE↔ACDF↔ABEF↔DEF,

and it is evident that 26 effects are aliased in eight groups of eight effects.

Armed with the ability to choose 2p−q plans and find their confounding struc-
tures, the only real question remaining is how data analysis should proceed.

Data Analysis
Method for a
2p−q Study

Again, essentially the same method introduced for half-fractions is relevant.
That is:

To analyze 2p−q fractional factorial data, one first ignores the exis-
tence of the last q factors, treating the data as if they were complete
factorial data in the first p− q factors. “Fitted effects” are computed
and judged exactly as in Sect. 5.3. Then the statistical inferences are
interpreted in light of the alias structure, remembering that one act-
ually has estimates of not single effects, but sums of 2p factorial
effects.

Example 101 (Examples 97 and 98 continued.) The sample means in Table 6.6
are listed in Yates standard order as regards factors A, B, and C. The reader may
do the arithmetic to verify that the (three-cycle, final division by 23 = 8) Yates
algorithm applied directly to these means (as listed in Table 6.6) produces the
eight fitted sums of effects listed in Table 6.7.

There is replication in the data listed in Table 6.6, so one may use the confi-
dence interval approach to judge the detectability of the sums corresponding to
the estimates in Table 6.7. First, the pooled estimate of σ must be computed from
the sample variances in Table 6.6:

s2P =
(3− 1)2.543 + (2− 1)2.163 + (2 − 1).238

(3− 1) + (2− 1) + (2− 1)
,

= 1.872,

so that
sP =

√
1.872 = 1.368 %water.

Then the p = 3 version of formula (5.28) says that (using individual 95 % two-
sided confidence limits) a plus or minus value of

2.776(1.368)
1

23

√
1

3
+

1

1
+

1

1
+

1

1
+

1

2
+

1

1
+

1

2
+

1

1
= 1.195 % water
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should be associated with each of the estimates in Table 6.7. By this criterion, the
estimates on the first, second, fourth, seventh, and eighth lines of Table 6.7 are big
enough to force the conclusion that they represent more than experimental error.

TABLE 6.7. Fitted sums of effects from the catalyst development data
A B C D E y Estimate (8 Divisor) Sum estimated
− − − − + 9.767 24.048 μ.....+ aliases
+ − − + + 26.80 5.815 α2+ aliases
− + − + − 24.88 −.129 β2+ aliases
+ + − − − 33.15 1.492 αβ22+ aliases
− − + + − 29.94 0.399 γ2+ aliases
+ − + − − 30.20 −.511 αγ22+ aliases
− + + − + 8.345 −5.495 βγ22+ aliases
+ + + + + 29.30 3.682 αβγ222+ aliases

How then does one interpret such a result? Ignoring the sum involving the
grand mean, the sums of 25 effects corresponding to the four largest (in absolute
value) fitted sums are (using the defining relation for this study)

α2 + βγδ222 + αβγε2222 + δε22 estimated as 5.815,
βγ22 + αδ22 + ε2 + αβγδε22222 estimated as − 5.495,
αβγ222 + δ2 + αε22 + βγδε2222 estimated as 3.682, and
αβ22 + γδ22 + αγε222 + βδε222 estimated as 1.492.

Concentrating initially on the first three of these, one can reason to at least four
different, relatively simple interpretations. First, if the largest components of these
sums are the main effects appearing in them, one might have an “A, E, and D
main effects only” explanation of the pattern of responses seen in Table 6.6. But
picking out from the first sum the A main effect, from the second the E main effect,
and from the third the AE interaction, an explanation involving only factors A
and E would be “A and E main effects and interactions only.” And that does not
end the relatively simple possibilities. One might also contemplate an “A and D
main effects and interactions only” or a “D and E main effects and interactions
only” description of the data. Which of these possibilities is the most appropriate
for the catalyst system cannot be discerned on the basis of the data in Table 6.6
alone. One needs either more data or the guidance of a subject matter expert who
might be able to eliminate one or more of these possibilities on the basis of some
physical theory. (As it turns out, in the real situation, additional experimentation
confirmed the usefulness of an “A, E, and D main effects only” model for the
chemical process.)

Exactly what to make of the detectability of the sum corresponding to the 1.492
estimate is not at all clear. Thankfully (in terms of ease of interpretation of the
experimental results), its estimate is less than half of any of the others. While it
may be statistically detectable, it does not appear to be of a size to rival the other
effects in terms of physical importance.
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This 25−2 experiment does what any successful fractional factorial does. It
gives some directions to go in further experimentation and hints as to which fac-
tors may not be so important in determining the response variable. (The factors
B and C do not enter into any of the four simple candidates for describing mean
response.) But definitive conclusions await either confirmation by actually “try-
ing out” tentative recommendations/interpretations based on fractional factorial
results or further experimentation aimed at removing ambiguities and questions
left by the study.

TABLE 6.8. 16 Experimental combinations and measured cold crack resistances
Combination y

eklmnop 14.8
aghjkln 16.3
bfhjkmo 23.5
abefgkp 23.9
cfghlmp 19.6
acefjlo 18.6
bcegjmn 22.3
abchnop 22.2
dfgjnop 17.8
adefhmn 18.9
bdeghlo 23.1
abdjlmp 21.8
cdehjkp 16.6
acdgkmo 16.7
bcdfkln 23.5
abcdefghjklmnop 24.9

Example 102 Tentative Conclusions in a 215−11 Fractional Factorial Study. As
a final (and fairly extreme) example of what is possible in the way of fractional
factorial experimentation, return to the scenario represented by the factors and
levels in Table 6.1. The study actually conducted by Hendrix and his associates
was a 215−11 study with the 11 generators

E↔ABCD,F↔BCD,G↔ACD,H↔ABC, J↔ABD,K↔CD,
L↔BD,M↔AD,N↔BC,O↔AC, and P↔AB.

The combinations run and the cold crack resistances observed are given in
Table 6.8.

In this scenario it is practically infeasible to write out the whole defining rela-
tion. Since only 16 out of the 32,768 possible combinations are involved in this
215−11 study, every 215 factorial effect is aliased with 2,047 other effects! But at
least the generators make it clear which main effects are aliased with the effects
involving only factors A, B, C, and D.
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The combinations and means in Table 6.8 are listed in Yates standard order as
regards the first 15 − 11 = 4 factors, A, B, C, and D. Applying the (four-cycle
and 16 divisors) Yates algorithm to them (in the order listed), one obtains the
estimates given in Table 6.9.

Judging the detectability of the sums of 215 factorial effects in this study is com-
plicated by the lack of replication. All that can be done is to probability plot the
estimates of Table 6.9. Figures 6.3 and 6.4 on page 352 are, respectively, a normal
plot of the last 15 estimates in Table 6.9 and a half-normal plot of the absolute
values of these. The plots show clearly that even if all other estimates really repre-
sent only experimental variation, the ones corresponding to the B main effect plus
its aliases and the F main effect plus its aliases do not. Of course, the simplest
possible interpretation of this outcome is that only the factors B and F impact
cold crack resistance in any serious way, the factors acting independently on the
response and the high levels of both factors leading to the largest values of y. In
light of the very small fraction involved here, however, the wise engineer would
treat such conclusions as very tentative. They are intriguing and are perhaps even
absolutely correct. But it would be foolhardy to conclude such on the basis of
215−11 data. Of course, if one’s object is only to find a good combination of levels
of these 15 factors, this analysis points out what is in retrospect completely obvi-
ous about the data in Table 6.8. It is those four combinations with both of B and
F at their high levels that have the largest responses.

TABLE 6.9. Estimates of sums of effects for the cold crack resistance data
Sum of effects estimated Estimate
Grand mean + aliases 20.28
A main + aliases .13
B main + aliases 2.87
P main + aliases (including AB) −.08
C main + aliases .27
O main + aliases (including AC) −.08
N main + aliases (including BC) −.19
H main + aliases (including ABC) .36
D main + aliases .13
M main + aliases (including AD) .03
L main + aliases (including BD) .04
J main + aliases (including ABD) −.06
K main + aliases (including CD) −.26
G main + aliases (including ACD) .29
F main + aliases (including BCD) 1.06
E main + aliases (including ABCD) .11
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FIGURE 6.3. Normal plot of fitted sums of effects for the cold crack resistance data

FIGURE 6.4. Half-normal plot of absolute-fitted-sums-of-effects for the cold crack
resistance data

Section 6.1 Exercises

1. Consider a 24−1 fractional factorial study.

(a) How many different combinations of levels of the experimental
factors are involved?

(b) Suppose three combinations were run twice and the other five were
run once each. The 95% confidence limits for sums of pairs of facto-
rial effects (aliased pairs) are Ê ±Δ. Find Δ as a (numeric) multiple
of sP.

(c) How many generators are involved in setting up this study?
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(d) Suppose as run, D↔ABC and only the “grand mean plus alias,” “A
main effect plus alias,” “BC interaction plus alias,” and “ABC inter-
action plus alias” sums of effects are clearly detectable. Assuming all
two-factor and higher-order interactions are negligible, give a simple
interpretation of this result.

2. Suppose that in a 24−1 fractional factorial study with D↔ABC, data anal-
ysis leads to the conclusion that the detectable sums of effects are “grand
mean plus alias,” “A main effect plus alias,” “B main effect plus alias,” “C
main effect plus alias,” and “ABC 3-factor interaction plus alias.” One plau-
sible interpretation of this is that all of A, B, C, and D have detectable main
effects. Further, suppose that α2, β2, and γ2 appear to be positive, while δ2
appears to be negative. What combination of levels of factors A, B, C, and
D then has the largest fitted mean? Is this combination represented in the
original data set?

3. PCB Study. article “Reduction of Defects in Wave Soldering Process” that
appeared in Quality Engineering discuss a 29−5 fractional factorial exper-
iment run in an attempt to learn how to reduce defects on printed circuit
boards (PCBs). The factors studied and their levels were:

Factor Process variable Levels
A Wave height 11.0mm (−) vs. 11.5mm (+)
B Flux specific gravity .80 (−) vs. .78 (+)
C Conveyor speed 1.75m/mm (−) vs. 1.65m/mm (+)
D Preheater temp 80◦C (−) vs. 75◦C (+)
E Solder bath temp 225◦C (−) vs. 230◦C (+)
F Blower heater temp 215◦ (−) vs. 210◦ (+)
G Foam pressure .20 kg/cm

2 (−) vs. .15 kg/cm2 (+)
H Direction of PCB Reverse (−) vs. existing (+)
J Jig height High (−) vs. low (+)

The response variable was

y = total number of dry solder defects on 20 PCBs.

(a) How many factors that potentially affect the response variable, y , have
been considered in this study?

(b) If every combination of levels of the complete list of factors were to
be evaluated, how many would there be?

(c) Suppose Chowdhury and Mitra had run a 29−1 half-fraction design,
how many combinations would they have considered?

(d) As mentioned above, in fact, Chowdhury and Mitra used a 29−5 frac-
tional factorial design. How many combinations of the factors were
included in their study?

(e) What fraction of the number of possible combinations were actually
run?
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(f) How many generators were needed in choosing the study the authors
ran?

(g) For the fractional factorial actually run, how many effects were aliased
with the grand mean?

4. Continuing with the preceding PCB problem. The generators used for the
PCB study were

E↔BC,F↔BD,G↔ACD,H↔AD, and J↔AB.

(a) Consider the two experimental runs partially described with the A, B,
C, and D levels in the small table below. Give the necessary levels
(determined by the generators) for E, F, G, H, and J. (Essentially
finish filling in the two rows of the table.)

A B C D E F G H J
+ + − −
+ − − +

(b) Name 3 effects aliased with the A main effect in this study.

(c) When the values of y obtained in the study are listed in Yates order
for factors A through D and the Yates algorithm is applied, the results
(again in Yates order, left to right, top to bottom) are

92.0, 3.75, 1.25,−1.25, 0.00,−1.00,−0.75,−3.50,−6.38,

−10.13, 0.13,−1.88, 5.13, 0.13,−0.38, and 1.88.

The two largest (in magnitude) of the “fitted effects” computed by the
Yates algorithm are −10.13 and −6.38. Give the simplest possible
interpretation of these quantities (Hint: assume all 2-factor and higher-
order interactions are negligible.)

(d) Suppose the effects you identified in (c) are judged to be the only
ones of importance in this study. What settings of factors A through
J should one use to produce a minimum y, and what response do you
predict if your recommendations are followed? That is, recommend
levels of all factors and give a corresponding value of ŷ.

6.2 Response Surface Studies

When p process variables x1, x2, . . . , xp are all quantitative, there is the possibil-
ity of doing some experimentation and then using the resultant data to produce
an equation describing how (at least in approximate terms) a response y depends
upon the process variables. This section primarily concerns methods for using
such an equation in the exploration of the approximate relationship between y
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and x1, x2, . . . , xp. This can then provide direction as one tries to optimize (max-
imize or minimize) y by choice of settings of the process variables.

Standard methodology for turning n data points (x1, x2, . . . , xp, y) into an
equation for y as a function of the xs is the multiple regression analysis that
is a main topic in most introductions to engineering statistics. This section does
not repeat basic regression material, but instead assumes that the reader is already
familiar with the subject and shows how it is useful in process improvement.

The section opens with a discussion of using graphical means to aid under-
standing of equations fit to (x1, x2, . . . , xp, y) data. Then the topic of quadratic
response functions is introduced, along with the experimental design issues asso-
ciated with their use. There follows a discussion of analytical tools for interpret-
ing fitted quadratic functions. Finally, the section concludes with a discussion of
search strategies that can be used when one’s goal is to optimize a response and
issues of process modeling are not of particular concern.

6.2.1 Graphics for Understanding Fitted Response Functions

The primary output of a standard regression analysis based on n data points

(x11, x21, . . . , xp1, y1), (x12, x22, . . . , xp2, y2), . . . , (x1n, x2n, . . . , xpn, yn)

is an equation that we will temporarily represent in generic terms as

ŷ = f(x1, x2, . . . , xp). (6.7)

A typical specific version of Eq. (6.7) is, of course,

ŷ = b0 + b1x1 + b2x2 + · · ·+ bpxp, (6.8)

an equation linear in all of the process variables. But more complicated equations
are possible and, in many cases, are necessary to really adequately describe the
relationship of y to the process variables.

Example 103 A Two-Variable Drilling Experiment. The paper “Design of a
Metal-Cutting Drilling Experiment: A Discrete Two-Variable Problem” by E.
Mielnik appeared in Quality Engineering in 1993 and concerns the drilling of
7075–T6 aluminum alloy. The two process variables

x1 = feed rate (ipr) and

x2 = drill diameter (inches)

were varied in (800 rpm) drilling of aluminum specimens and both

y1 = thrust (lbs) and

y2 = torque (ft lbs)

were measured. A total of nine different (x1, x2) combinations were studied, and
12 data points (x1, x2, y) were collected for both thrust and torque. Mielnik’s
data are given in Table 6.10 on page 356.
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Apparently on the basis of established drilling theory, Mielnik found it useful
to express all variables on a log scale and fit linear regressions for y′1 = ln(y1)
and y′2 = ln(y2) in terms of the variables x′

1 = ln(x1) and x′
2 = ln(x2). Multiple

regression analysis then provides fitted equations

ŷ′1 = 10.0208 + .6228x′
1 + .9935x′

2

and
ŷ′2 = 6.8006 + .8927x′

1 + 1.6545x′
2.

By exponentiating, one gets back to equations for the original responses y1 and
y2 in terms of x1 and x2, namely,

ŷ1 = 22,489x
(.6228)
1 x

(.9935)
2

and
ŷ2 = 898.39x

(.8927)
1 x

(1.6545)
2 .

TABLE 6.10. Thrust and torque measurements for nine feed rate/drill diameter combina-
tions

Feed Rate, x1 ( ipr) Diameter, x2 ( in) Thrust, y1 ( lbs) Torque, y2 ( ft lbs)
.006 .250 230 1.0
.006 .406 375 2.1
.013 .406 570 3.8
.013 .250 375 2.1
.009 .225 280 1.0
.005 .318 255 1.1
.009 .450 580 3.8
.017 .318 565 3.4
.009 .318 400, 400, 380, 380 2.2, 2.1, 2.1, 1.9

Example 104 Lift-to-Drag Ratio for a Three-Surface Configuration. P. Burris
studied the effects of the placement of a canard (a small forward “wing”) and a
tail, relative to the main wing of a model aircraft. He measured the lift/drag ratio
for nine different configurations. With

x1 = the canard placement in inches above the main wing and

x2 = the tail placement in inches above the main wing.

part of his data are given in Table 6.11.
Burris’ data set has the unfortunate feature that it contains no replication. It

is a real weakness of the study that there is no pooled (or “pure error”) sample
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standard deviation against which to judge the appropriateness of a fitted equa-
tion. However, making the best of the situation, a multiple regression analysis
described on pages 133 through 136 of Vardeman’s Statistics for Engineering
Problem Solving leads to the equation

ŷ = 3.9833 + .5361x1 + .3201x2 − .4843x2
1 − .5042x1x2

as a plausible description of lift-to-drag ratio in terms of canard and tail posi-
tions. (Equations simpler than this one turn out to have obvious deficiencies when
one plots residuals.)

Notice that in Example 103, the equations for log thrust and log torque are
linear in the (logs of the) process variables. That is, they are exactly of the form
in display (6.8). But the equation for lift-to-drag ratio obtained from Burris’ data
in Example 104 (while still linear in the fitted parameters) is not linear in the
variables x1 and x2. (It is, in fact, a kind of quadratic equation in the predictor
variables x1 and x2. Much more will be said about such equations later in this
section.)

After one has fit an equation for y in the variables x1, x2, . . . , xp to data from
a process-improvement experiment, the question of how to interpret that equation
must be faced. Several possibilities exist for helpfully representing the generic
fitted relationship (6.7) in graphical terms. The most obvious is to simply make
plots of y against a single process variable, xi, for various combinations of the
remaining variables that are of particular interest. This amounts to viewing slices
of the fitted response function.

A second possibility is to make contour plots of y against a pair of the process
variables (xi, xi′), for various combinations of any remaining variables that are
of particular interest. Such plots function as “topographic maps” of the response
surface. They can be especially helpful when there are several more or less com-

TABLE 6.11. Lift/drag ratio for nine different canard and tail configurations (positions in
inches above the main wing)

Canard position, x1 Tail position, x2 Lift/Drag ratio, y
−1.2 −1.2 .858
−1.2 0 3.156
−1.2 1.2 3.644
0 −1.2 4.281
0 0 3.481
0 1.2 3.918
1.2 −1.2 4.136
1.2 0 3.364
1.2 1.2 4.018
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peting responses and one must find a compromise setting of the process variables
that balances off process performance on one response against performance on
another.

And a final method of representing a fitted response function is to make use
of modern graphics software and produce surface plots/perspective plots of y
against a pair of the process variables (xi, xi′), again for various combinations of
any remaining variables that are of particular interest. These plots attempt to give
a “3-D” rendering of the relationship between y and (xi, xi′) (with values of the
remaining variables held fixed).

Example 105 (Example 103 continued.) Figure 6.5 is a plot of the fitted log
torque in the drilling study as a function of log feed rate for drills of several
diameters. Figure 6.6 is the corresponding plot where both torque and feed rate
are in their original units (rather than being portrayed on logarithmic scales).

On the logarithmic scales of Fig. 6.5, the response changes linearly in the feed
rate variable. In addition, the linear traces on Fig. 6.5 are parallel. In the lan-
guage of factorial analysis, on the logarithmic scales there are no interactions
between feed rate and drill diameter. On the logarithmic scales, the fitted rela-
tionship between feed rate, diameter, and torque is a very simple one. The rel-
ationship on the original scales of measurement represented by Fig. 6.6 is not
impossibly complicated, but neither is it as simple as the one in Fig. 6.5.

Figures 6.7 and 6.8 are, respectively, a contour plot and a surface plot of the
fitted relationship between log torque and the logarithms of feed rate and drill
diameter. They illustrate clearly that on the logarithmic scales, the fitted equation
for torque defines a plane in three space.

FIGURE 6.5. Fitted log torque as a function of log feed rate for five different drill diameters
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FIGURE 6.6. Fitted torque as a function of feed rate for five different drill diameters

FIGURE 6.7. Contour plot of fitted log torque as a function of log feed rate and log drill
diameter

FIGURE 6.8. Surface plot of fitted log torque as a function of log feed rate and log drill
diameter
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Example 106 (Example 104 continued.) Figures 6.9 and 6.10 are, respectively,
a contour plot and surface plot for the equation for lift-to-drag ratio fit to the
data of Table 6.11. They show a geometry that is substantially more complicated
than the planar geometry in Figs. 6.7 and 6.8. It is evident from either examining
the fitted equation itself or viewing the surface plot that, for a fixed tail position
(x2), the fitted lift-to-drag ratio is quadratic in the canard position (x1). And even
though for fixed canard position (x1) the fitted lift-to-drag ratio is linear in tail
position (x2), the relevant slope depends upon the canard position. That is, there
are canard positions by tail position interactions.

FIGURE 6.9. Contour plot for fitted lift/drag ratio as a function of canard and tail positions

Having raised the issue of interactions in the examples, it is worth pointing
out how one can tell from the form of a fitted equation whether or not it implies
the existence of interactions between the process variables. The general story is
this. If the function f(x1, x2, . . . , xp) in Eq. (6.7) can be written as a sum of two
functions, the first of which has as its arguments x1, x2, . . . , xl and the second
of which has as its arguments xl+1, xl+2, . . . , xp, then the fitted equation implies
that there are no interactions between any variables in the first set of arguments
and any variables in the second set of arguments. Otherwise there are interactions.
For example, in the case of the lifting surface study, the existence of the cross
product term −.5042x1x2 in the fitted equation makes it impossible to write it in
terms of a sum of a function of x1 and a function of x2. So the interactions noted
on Fig. 6.9 are to be expected.
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FIGURE 6.10. Surface plot for fitted lift/drag ratio as a function of canard and tail positions

TABLE 6.12. Yields and filtration times for nine combinations of condensation temperature
and amount of B

Temperature, x1 (◦ C) Amount of B, x2(cc) Yield, y1(g) Time, y2(sec)
90 24.4 21.1 150
90 29.3 23.7 10
90 34.2 20.7 8
100 24.4 21.1 35
100 29.3 24.1 8
100 34.2 22.2 7
110 24.4 18.4 18
110 29.3 23.4 8
110 34.2 21.9 10

Example 107 Yield and Cost Associated with a Chemical Process. The data
in Table 6.12 are from the paper “More on Planning Experiments to Increase
Research Efficiency” by Hill and Demler, which appeared in Industrial and Eng-
ineering Chemistry in 1970. The responses are a yield (y1) and a filtration time
(y2) for a chemical process run under nine different combinations of the process
variable condensation temperature (x1) and amount of boron (x2). Notice that
the filtration time is a cost factor, and ideally one would like large yield and small
filtration time. But chances are that these two responses more or less work against
each other, and some compromise is necessary.

The study represented in Table 6.12 suffers from a lack of replication, making
it impossible to do a completely satisfactory job of judging the appropriateness of
regressions of the responses on the process variables. But as far as is possible to
tell given the inherent limitations of the data, the fitted equations (derived using
multiple regression analysis)

ŷ1 ≈ −113.2 + 1.254x1 + 5.068x2 − .009333x2
1 − .1180x2

2 + .01990x1x2,
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and

̂ln(y2) ≈ 99.69− .8869x1 − 3.348x2 + .002506x2
1 + .03375x2

2 + .01196x1x2

do a reasonable job of summarizing the data of Table 6.12. Figure 6.11 goes a
long way toward both making the nature of the fitted response surfaces clear and
providing guidance in how compromises might be made in the pursuit of good
process performance. The figure shows contour plots for yield and log filtration
time overlaid on a single set of (x1, x2)-axes.

FIGURE 6.11. Overlaid contour plots for yield and filtration time

The three real applications used thus far in this section (begun in Examples 103,
104, and 107) are all ones involving only two process variables, x1 and x2. As
such, the figures shown here provide reasonably straightforward and complete
pictures of the fitted response functions. When more than two variables are in-
volved, it becomes harder to make helpful graphics. In the case of three process
variables, one can make plots like those shown here involving x1 and x2 for sev-
eral different values of x3. And in the case of four process variables, one can
make plots involving x1 and x2 for several different (x3, x4) combinations. But
unless the fitted equation is such that the function f(x1, x2, . . . , xp) in Eq. (6.7)
can be written as a sum of several functions of small and disjoint sets of process
variables (that can be individually represented using the kind of plots illustrated
in the examples), the plots become less and less helpful as p increases.

6.2.2 Using Quadratic Response Functions

Equation (6.8) represents the simplest kind of response function that can be easily
fit to (x1, x2, . . . , xp, y) data. As illustrated in Example 103, this kind of equation
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represents a p-dimensional plane in (p + 1)-dimensional space. As useful as it
is, it does not allow for any curvature in the response. This means, for example,
that when used to describe how y varies over some region in (x1, x2, . . . , xp)-
space, an equation of the type in display (6.8) will always predict that optimum
y occurs on the boundary of the region. And that is not appropriate for many
situations where one is a priori fairly certain that optimum settings for the process
variables occur in the interior of a region of experimentation. But to allow for this
kind of circumstance, one needs alternatives to relationship (6.8) that provide for
curvature.

The simplest convenient alternative to the linear relationship (6.8) with the abil-
ity to portray curvature is the general quadratic relationship between process
variables x1, x2, . . . , xp and a response y. This involves a constant term, p linear
terms in the process variables, p pure quadratic terms in the process variables, and(
p
2

)
cross product terms in the process variables. In the simple case of p = 2, this

means fitting the approximate relationship

General
Quadratic
Relationship
Between
Two Process
Variables and a
Response

y ≈ β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 (6.9)

via least squares to obtain the fitted equation

ŷ = b0 + b1x1 + b2x2 + b3x
2
1 + b4x

2
2 + b5x1x2.

The use of quadratic equations like that in display (6.9) can be motivated on
a number of grounds. For one, such equations turn out to be convenient to fit to
data (multiple linear regression programs can still be used). For another, they can
provide a variety of shapes (depending on the values of the coefficients β) and
thus can be thought of as a kind of “mathematical French curve” for summarizing
empirical data. And they can also be thought of as natural approximations to more
complicated theoretical relationships between process variables and a response.
That is, if there is some general relationship of the form

y ≈ h(x1, x2, . . . , xp)

at work, making a second-order Taylor approximation of h about any relevant
base point (i.e., finding a function with the same first- and second-order partial
derivatives as h at the point of interest, but all partials of higher order equal to 0
at that point) will produce a relationship like that in Eq. (6.9).

Quadratic response functions have already proved helpful in Examples 104
and 107, and once one realizes that (taking the coefficients on the pure quadratic
and cross product terms to be 0) linear equations of the form (6.8) are just
special quadratics, it is evident that even Example 103 can be thought of as
using them. The potential usefulness of quadratic equations then prompts the
question of what data requirements are in order to be able to fit them. Not
every set of n data points (x1, x2, . . . , xp, y) will be adequate to allow the fitting
of a quadratic response function. At a minimum, one needs at least as many
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different (x1, x2, . . . , xp) combinations as coefficients β. So one must have
n ≥ 1 + 2p+

(
p
2

)
. But in addition, the set of (x1, x2, . . . , xp) combinations must

be “rich” enough, sufficiently spread out in p-space.
One kind of pattern in the (x1, x2, . . . , xp) combinations that is sufficient to

support the fitting of a quadratic response function is a full 3p factorial design.
For example, the data sets in Examples 104 and 107 are (unreplicated) 32 factorial
data sets. But as p increases, 3p grows very fast. For example, for p = 4, a full 34

factorial requires a minimum of 81 observations. And it turns out that for p > 2, a
full 3p factorial is really “overkill” in terms of what is needed. On the other hand,
a 2p factorial will not support the fitting of a quadratic response function.

There are two directions to go. In the first place, one might try to “pare down”
a 3p factorial to some useful (small) fraction that will still allow the use of a full
quadratic response function. One popular kind of fraction of a 3p of this type
is due to Box and Behnken and is discussed, for example, in Section 15.4 of
Empirical Model-Building and Response Surfaces by Box and Draper.

A second route to finding experimental designs that allow the economic (and
precise) fitting of second-order surfaces is to begin with a 2p factorial in the p
process variables and then augment it until it provides enough information for the
effective fitting of a quadratic. This route has the virtue that it suggests how the
designs can be used in practice in a sequential manner. One can begin with a 2p

Sequential
Experimental
Strategy

factorial experiment, fitting a linear equation of form (6.8), and augment it only
when there is evidence that a response function allowing for curvature is really
needed to adequately describe a response. This kind of experimental strategy is
important enough to deserve a thorough exposition.

So suppose that in a study involving the process variables (x1, x2, . . . , xp),
one desires to center experimentation about the values x∗

1, x
∗
2, . . . , x

∗
p. Then for

Δ1,Δ2, . . . ,Δp positive constants, one can let the low level of the ith process
variable be x∗

i − Δi and the high level be x∗
i + Δi and begin experimentation

with a 2p factorial. It is a good idea to initially also collect a few responses at
the center point of experimentation (x∗

1, x
∗
2, . . . , x

∗
p). Data from such a 2p plus

repeated center point experimental design provide a good basis for checking the
adequacy of a linear equation like the one in display (6.8). If (applying regression
techniques) one finds important lack of fit to the linear equation and/or (applying
the Yates algorithm to the 2p part of the data) important interactions among the
process variables, the need for more data collection is indicated.

Then, a clever way of choosing additional points at which to collect data is to
augment the 2p with star or axial points. For some constant α (usually taken to
be at least 1), these are 2p points of the form

(x∗
1, x

∗
2, . . . , x

∗
l−1, x

∗
l ± αΔl, x

∗
l+1, . . . , x

∗
p)

for l = 1, 2, . . . , p. Geometrically, if one thinks of setting up a coordinate system
with origin at the center of the 2p factorial part of the experimental design, these
are points on the axes of the system, α times as far from the center as the “faces”
of the 2p design. Figure 6.12 shows p = 2 and p = 3 versions of this “2p facto-
rial plus center points plus star points” arrangement of combinations of process
variables. In practice, it is also wise to make some additional observations at the
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center point in the second round of experimentation. (These repeats of a condition
from the first round of experimentation allow one to investigate whether experi-
mental conditions appear to be different in the second round than they were in the
first.)

FIGURE 6.12. (a) 22 factorial plus center points and star points and (b) 23 factorial plus
center points and star points

When the whole “2p plus center points plus star points” experimental program
is completed, the jargon typically employed is that one has used a central com-
posite experimental design. Allowing for the fact that only certain settings of the
drilling machine were possible and only certain drill diameters were available, the
data set in Table 6.10 came approximately from a p = 2 central composite design.
The next example involves a p = 3 central composite study.

TABLE 6.13. Seal strengths under 15 different combinations of p = 3 process variables

x1 x2 x3 y
225 46 .5 6.6
285 46 .5 6.9
225 64 .5 7.9
285 64 .5 6.1
225 46 1.7 9.2
285 46 1.7 6.8
225 64 1.7 10.4
285 64 1.7 7.3
255 55 1.1 10.1, 9.9, 12.2, 9.7, 9.7, 9.6
204.54 55 1.1 9.8
305.46 55 1.1 5.0
255 39.862 1.1 6.9
255 70.138 1.1 6.3
255 55 .0908 4.0
255 55 2.1092 8.6
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Example 108 A Seal Strength Optimization Study. The article “Sealing
Strength of Wax-Polyethylene Blends” by Brown, Turner, and Smith appeared
in Tappi in 1958 and contains an early and instructive application of a central
composite design and a quadratic response function. Table 6.13 on page 365
contains the data from the article. Three process variables,

x1 = seal temperature (◦F),
x2 = cooling bar temperature(◦F), and
x3 = polyethylene content (%)

were considered regarding their effects on

y = the seal strength of a paper bread wrapper stock( g/in).

The data in Table 6.13 comprise a central composite design with center point
(255, 55, 1.1), Δ1 = 30, Δ2 = 9, Δ3 = .6, and α = 1.682. The first eight rows
of Table 6.13 represent a 23 design in the three process variables. The ninth row
represents six observations taken at the center point of the experimental region.
And the last six rows represent the axial or star points of the experimental design.
It is important to note that the repeated center point provides an honest estimate
of experimental variability. The sample standard deviation of the six ys at the
center of the design is sP = 1.00 g/in to two decimal places.

It is instructive to consider the analysis of the data in Table 6.13 in two stages,
corresponding to what could have first been known from the “23 factorial plus
repeated center point” part of the data and then from the whole data set. To begin,
the reader can verify that fitting a linear regression

y ≈ β0 + β1x1 + β2x2 + β3x3.

to the data on the first nine lines of Table 6.13 produces the prediction equation

ŷ = 13.0790− .0292x1 + .0306x2 + 1.2917x3,

R2 = .273, sSF = 1.75 a regression-based (or “surface fitting”) estimate of σ,
and residuals that when plotted against any one of the process variables have a
clear “up then back down again pattern.” There are many indications that this
fitted equation is not a good one. The R2 value is small by engineering standards,
the regression-based estimate of σ shows signs of being inflated (when compared
to sP = 1.00) by lack of fit (in fact, a formal test of lack of fit has a p-value
of .048), and the fitted equation underpredicts the response at the center of the
experimental region, while overpredicting at all but one of the corners of the 23

design. (This last fact is what produces the clear patterns on plots of residuals
against x1, x2, and x3.)

A way of formally showing the discrepancy between the mean response at the
center of the experimental region and what an equation linear in the process vari-
ables implies is based on the fact that if a mean response is linear in the process
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variables, the average of the means at the 2p corner points is the same as the
mean at the center point. This implies that the average of the ys on the first eight
lines of Table 6.13 should be about the same as the average of the ys on the ninth
line. But this is clearly not the case. Using the obvious notation for corners and
center points,

ycenter − ycorners = 10.20− 7.65 = 2.55 g/in .

Then formula (5.8) can be applied to make 95% two-sided confidence limits
(based on the 5-degree-of-freedom sP computed from the repeated center point)
for the linear combination of nine μs corresponding to this combination of ys.
Doing this, an uncertainty of only

±2.571(1.00)

√
(1)2

6
+

8
(− 1

8

)2
1

= ±1.39 g/in

can be associated with the 2.55 g/in figure. That is, it is clear that the 2.55 figure
is more than just noise. A linear equation simply does not adequately describe
the first part of the data set. There is some curvature evident in how seal strength
changes with the process variables.

So based on the first part of the data set, one would have good reason to col-
lect data at the star points and fit a quadratic model to the whole data set. The
reader is invited to verify that using multiple regression to fit a quadratic to all 20
observations represented in Table 6.13 produces

ŷ = −104.82 + .49552x1 + 1.72530x2 + 14.27454x3 − .00084x21 − .01287x22

−3.19013x23 − .00130x1x2 − .02778x1x3 + .02778x2x3,

R2 = .856, sSF = 1.09, and residuals that look much better than those for the
linear fit to the first part of the data. This fitted equation is admittedly more com-
plicated than the linear equation, but it is also a much better empirical description
of how seal strength depends upon the process variables.

As a means of aiding understanding of the nature of the quadratic response
function, Fig. 6.13 on page 368 shows a series of contour plots of this function
versus x1 and x2, for x3 = 0, .5, 1.0, 1.5, and 2.0. This series of plots suggests
that optimum (maximum) seal strength may be achieved for x1 near 225◦F, x2

near 57◦F, and x3 near 1.5%, and that a mean seal strength exceeding 11 g/in
may be possible by proper choice of values for the process variables.

It is worth noting that on the basis of some theoretical optimality arguments,
it is common to recommend values of α for constructing central composite des-
igns that are larger than 1.0 (thereby placing the star points outside of the region
in (x1, x2, . . . , xp)-space with corners at the 2p design points). There are cases,
however, where other considerations may come into play and suggest smaller
choices for α. For example, there are experimental scenarios where one really
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FIGURE 6.13. Series of five contour plots of seal strength for polyethylene contents x3

between 0 and 2.0 (%)
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wants to minimize the number of different levels of a given factor that one uses.
And the choice α = 1 places the star points on the “faces” of the 2p design and
makes the resulting central composite a fraction of the 3p design (so that only
three different levels of each factor are used, rather than five).

6.2.3 Analytical Interpretation of Quadratic Response
Functions

For p much larger than 2 or 3, graphical interpretation of a fitted quadratic
response function becomes difficult at best and impossible at worst. Happily
there are some analytic tools that can help. Those tools are the subject of this sub-
section. Readers without a background in matrix algebra can skim this material
(reading for main points and not technical detail) without loss of continuity.

For the quadratic function of p = 1 variable,

y ≈ β0 + β1x+ β2x
2,

it is the coefficient β2 that governs the basic nature of the relationship between
x and y. For β2 > 0, the equation graphs as a parabola opening up, and y has
a minimum at x = −β1/2β2. For β2 < 0, the equation graphs as a parabola
opening down, and y has a maximum at x = −β1/2β2. And for β2 = 0, the
function is actually linear in x and (if β1 is not 0) has neither a maximum nor
a minimum value when x is allowed to vary over all real numbers. Something
similar to this story is true for p larger than 1.

It is the coefficients of the pure quadratic and mixed terms of a multivariate
quadratic relationship like that in display (6.9) which govern the nature of the
response function. In order to detail the situation, some additional notation is
required. Suppose that based on n data points (x1, x2, . . . , xp, y), one arrives at a
quadratic regression equation with fitted coefficients

bi = the fitted coefficient of the linear term xi,

bii = the fitted coefficient of the pure quadratic term x2
i , and

bii′ = bi′i = the fitted coefficient of the mixed term xixi′ .

Then using these, define the p× 1 vector b and p× p matrix B by

Vector and
Matrix of
Coefficients
for a p Variable
Quadratic

b =

⎡
⎢⎢⎢⎣

b1
b2
...
bp

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣

b11
1
2b12 · · · 1

2b1p
1
2b21 b22 · · · 1

2b2p
...

...
...

1
2bp1

1
2bp2 · · · bpp

⎤
⎥⎥⎥⎦ . (6.10)

It is the eigenvalues of the matrix B that govern the shape of the fitted quadratic,
and b and B together determine where (if at all) the quadratic has a minimum or
maximum.
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The eigenvalues of the matrix B are the p solutions λ to the equation

Equation
Solved
by Eigenvalues

det(B − λI) = 0. (6.11)

The fitted surface has a stationary point (i.e., a point where all first partial deriva-
tives with respect to the process variables are 0) at the point

Location of
the Stationary
Point for a p
Variable
Quadratic

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xp

⎤
⎥⎥⎥⎦ = −1

2
B−1b. (6.12)

When all p eigenvalues are positive, the fitted quadratic has a minimum at the
point defined by relationship (6.12). When all p eigenvalues are negative, the fitted
quadratic has a maximum at the point defined in display (6.12). When some
eigenvalues are positive and the rest are negative, the fitted response function has
a saddle geometry. (Moving away from the point defined in display (6.12) in
some directions causes an increase in fitted y, while moving away from the point
in other directions produces a decrease in fitted y.) And when some eigenvalues
are 0 (or in practice, nearly 0), the fitted quadratic has a ridge geometry.

Example 109 (Example 107 continued.) The fitted equation for yield in the Hill
and Demler chemical process study is a quadratic in p = 2 variables, and the
corresponding vector and matrix defined in display (6.10) are

b =

[
1.254
5.068

]
and B =

[ −.009333 1
2 (.01990)

1
2 (.01990) −.1180

]
.

Figure 6.11 indicates that the fitted yield surface has a mound-shaped geometry,
with maximum somewhere near x1 = 99 and x2 = 30. This can be confirmed
analytically by using Eq. (6.12) to find the stationary point and examining the
eigenvalues defined in Eq. (6.11).

To begin,

−1

2
B−1b = −1

2

[ −.009333 1
2 (.01990)

1
2 (.01990) −.1180

]−1 [
1.254
5.068

]
=

[
99.09
29.79

]
,

so that the stationary point has x1 = 99.09 and x2 = 29.79. Then Eq. (6.11) for
the eigenvalues is

0 = det

([ −.009333 1
2 (.01990)

1
2 (.01990) −.1180

]
− λ

[
1 0
0 1

])
,

that is,

0 = (−.009333− λ)(−.1180− λ)− 1

4
(.01990)2.
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This is a quadratic equation in the variable λ, and the quadratic formula can be
used to find its roots

λ = −.0086 and λ = −.1187.

The fact that these are both negative is an analytical confirmation that the sta-
tionary point provides a maximum of the fitted yield surface.

Example 110 (Examples 104 and 106 continued.) Figures 6.9 and 6.10 por-
traying the fitted equation for Burris’s lift/drag ratio data indicate the saddle
surface nature of the fitted response. This can be confirmed analytically by noting
that B corresponding to the fitted equation is

B =

[ −.4843 1
2 (−.5042)

1
2 (−.5042) 0

]
,

and that in this instance Eq. (6.11) for the eigenvalues,

0 = det(B − λI) = (−.4843− λ)(−λ)− 1

4
(−.5042)2,

has roots
λ = −.592 and λ = .107,

one of which is positive and one of which is negative.

For p larger than two, the calculations indicated in Eqs. (6.11) and (6.12) are
reasonably done only using some kind of statistical or mathematical software that
supports matrix algebra. Table 6.14 on page 372 holds code and output from an
R session for finding the eigenvalues of B and the stationary point identified in
display (6.12) for the quadratic response function fit to the seal strength data of
Table 6.13. It illustrates that as suggested by Fig. 6.13, the quadratic fit to the data
has a maximum when x1 = 226◦F, x2 = 57.2◦F, and x3 = 1.50%.

A final caution needs to be sounded before leaving this discussion of interpret-
ing fitted response surfaces. This concerns the very real possibility of overinter-
preting a fitted relationship between p process variables and y. One needs to be
sure that a surface is really fairly well identified by data in hand before making
conclusions based on the kind of calculations illustrated here (or, for that matter,
based on the graphical tools of this section).

One useful rule of thumb for judging whether a surface is well enough deter-
mined to justify its use is due to Box, Hunter, and Hunter (see their Statistics
for Experimenters) and goes as follows. If a response function involving l co-
efficients b (including a constant term where relevant) is fit to n data points via
multiple regression, producing n fitted values ŷ and an estimate of σ (based on
surface fitting) sSF, then one checks to see whether

Criterion for
Judging
Whether
a Response is
Adequately
Determined

max ŷ −min ŷ > 4

√
ls2SF
n

(6.13)
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TABLE 6.14. R code and output for analysis of the quadratic fit to bread wrapper seal
strength

> B<-matrix(c(-.00084,-.00065,-.01389,-.00065,
-.01287,.01389, + -.01389, .01389,
-3.19013),nrow=3,byrow=T)

> b<-c(.49552,1.72530,14.27454)
> eigen(B)
$values
[1] -0.0007376919 -0.0128511209 -3.1902511872

$vectors
[,1] [,2] [,3]

[1,] 0.998261929 -0.05877213 -0.004354062
[2,] -0.058753124 -0.99826298 0.004370551
[3,] -0.004603366 -0.00410714 -0.999980970

> x<-(-.5)*solve(B)%*%b
> x

[,1]
[1,] 225.793876
[2,] 57.246829
[3,] 1.503435

before interpreting the surface. The difference on the left of inequality (6.13) is a
measure of the movement of the surface over the region of experimentation. The
fraction under the root on the right is an estimate of average variance of the n
values ŷ. The check is meant to warn its user if the shape of the fitted surface is
really potentially attributable completely to random variation.

6.2.4 Response Optimization Strategies

The tools of this section are primarily tactical devices, useful for understanding
the “local terrain” of a response surface. What remains largely unaddressed in
this section is the broader, more strategic issue of how one finds a region in
(x1, x2, . . . , xp)-space deserving careful study, particularly where the ultimate
objective is to optimize one or more responses y. Many sensible strategies are
possible and this subsection discusses two. The first is something called evolu-
tionary operation (or EVOP for short), and the second is an empirical optimization
strategy that uses the linear and quadratic response surface tools just discussed.

EVOP is a strategy for conservative ongoing experimentation on a working
production process that aims to simultaneously produce good product and also
provide information for the continual improvement (the “evolution”) of the pro-
cess. The notion was first formally discussed by Box and Wilson and is thor-
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oughly detailed in the book Evolutionary Operation by Box and Draper. Various
authors have suggested different particulars for implementation of the general
EVOP strategy, including a popular “simplex” empirical hill-climbing algorithm
put forth by Spendley, Hext, and Himsworth. As the present treatment must be
brief, only the simplest (and original) factorial implementation will be discussed
and that without many details.

So consider a situation where p process variables x1, x2, . . . , xp are thought
to affect l responses (or quality characteristics) y1, y2, . . . , yl. If x∗

1, x
∗
2, . . . , x

∗
p

are current standard operating values for the process variables, an EVOP program

Outline of an
EVOP Strategy

operates in the following set of steps:

1. An EVOP Committee (consisting of a broad group of experts with various
kinds of process knowledge and interests in process performance) chooses
a few (two or three) of the process variables as most likely to provide imp-
rovements in the response variables. For the sake of concreteness, suppose
that x1 and x2 are the variables selected. A “two-level factorial plus center
point” experimental design is set up in the selected variables with (x∗

1, x
∗
2)

as the center point. The high and low levels of the variables are chosen to be
close enough to x∗

1 and x∗
2 so that any change in any mean response across

the set of experimental conditions is expected to be small.

2. Holding variables x3, x4, . . . , xp at their standard values x∗
3, x

∗
4, . . . , x

∗
p,

in normal process operation, (x1, x2) is cycled through the experimental
design identified in step 1, and values for all of y1, y2, . . . , yl are recorded.
This continues until for every response, enough data have been collected so
that the changes in mean as one moves from the center point to corner points
are estimated with good precision (relative to the sizes of the changes).

3. If, in light of the estimated changes in the means for all of y1, y2, . . . , yl,
the EVOP Committee finds no corner point of the design to be preferable to
the center point, the program returns to step 1 and, a different set of process
variables is chosen for experimentation.

4. If there is a corner of the two-level factorial design that the EVOP Com-
mittee finds preferable to the center point, new standard values of x1 and
x2, x∗

1 and x∗
2, are established between the previous ones and the values

for the superior corner point. A new two-level factorial plus center point
experimental design is set up in variables x1 and x2 with the new (x∗

1, x
∗
2)

as the center point. The high and low levels of the variables are chosen
to be close enough to the new x∗

1 and x∗
2 so that any change in any mean

response across the experimental conditions is expected to be small. The
EVOP program then returns to step 2.

Evolutionary Operation is intended to be a relatively cautious program that suc-
ceeds in process improvement because of its persistence. Only a few variables are
changed at once, and only small moves are made in the standard operating con-
ditions. Nothing is done in an “automatic” mode. Instead the EVOP Committee
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considers potential impact on all important responses before authorizing move-
ment. The caution exercised in the ideal EVOP program is in keeping with the
fact that the intention is to run essentially no risk of noticeably degrading process
performance in any of the experimental cycles.

A more aggressive posture can be adopted when experimentation on a process

A Second
Response
Optimization
Strategy

can be done in a “get in, make the improvement, and get out” mode, and there
is no serious pressure to assure that every experimental run produces acceptable
product. The following steps outline a common kind of strategy that makes use of
the linear and quadratic response function ideas of this section in the optimization
of a single response y, where p process variables are at work and initial standard
operating values are x∗

1, x
∗
2, . . . , x

∗
p:

1. A “2p plus center points” experimental design is run (with center at the
point (x∗

1, x
∗
2, . . . , x

∗
p)), and a linear response function for y is fit to the

resulting data and examined for its adequacy using the tools of regressions
analysis.

2. In the event that the linear equation fit to the 2p factorial plus center
points data is adequate, a sequence of observations is made along a ray
in (x1, x2, . . . , xp)-space beginning at the center point of the design and
proceeding in the direction of the steepest ascent (or the steepest descent
depending upon whether the object is to maximize or to minimize y). That
is, if the fitted values of the parameters of the linear response function are
b0, b1, b2, . . . , bp, observations are made at points of the form

(x∗
1 + ub1, x

∗
2 + ub2, . . . , x

∗
p + ubp)

for positive values of u if the object is to maximize y (or for negative values
of u if the object is to minimize y). If the object is to maximize y, the
magnitude of u is increased until the response seems to cease to increase
(or seems to cease to decrease if the object is to minimize u). Polynomial
regression of y on u can be helpful in seeing the pattern of response to these
changes in u. The point of optimum response (or optimum fitted response
if one smooths the y values using regression on u) along the ray becomes a
new point (x∗

1, x
∗
2, . . . , x

∗
p), and the algorithm returns to step 1.

3. If the linear surface fit in step 1 is not an adequate description of the 2p

plus center point data, star points are added, and a quadratic surface is
fit. The quadratic is examined for adequacy as a local description of mean
response, and the location of the best fitted mean within the experimental
region is identified. This point becomes a new center of experimental effort
(x∗

1, x
∗
2, . . . , x

∗
p), and the algorithm returns to step 1.

Fairly obviously, at some point this algorithm typically “stalls out” and ceases
to provide improvements in mean y. At that point, engineering attention can be
turned to some other process or project.



Chapter 6. Experimental Design and Analysis for Process Improvement 375

Section 6.2 Exercises

1. Polymer Density. In a 1985 Journal of Quality Technology article, R. Snee
discussed a study of the effects of annealing time and temperature on poly-
mer density. Data were collected according to a central composite design,
except that no observation was possible at the highest level of temperature
(because the polymer melted at that temperature), and an additional run was
made at 170◦C and 30min. Snee’s data are given below:

Temperature, x1 (◦C) Time, x2 (min) Density, y
140 30 70
155 10 70
155 50 72
170 30 91
190 60 101
190 30 98
190 0 70
225 10 83
225 50 101

(a) Plot the nine design points (x1, x2) in two space, labeling each with
the corresponding observed density, y.

(b) Use a multiple regression program and fit the equation

y ≈ β0 + β1x1 + β2x2

to these data.

(c) Make a contour plot for the fitted response from part (a) over the
“region of experimentation.” (This region is discernible from the plot
in (a) by enclosing the nine design points with the smallest possible
polygon.) Where in the experimental region does one have the largest
predicted density? Where is the smallest predicted density?

(d) Compute residuals from the fitted equation in (b), and plot them
against both x1 and x2 and against ŷ. Do these plots suggest that an
equation that allows for curvature of response might better describe
these data? Why or why not?

(e) Use a multiple regression program to fit the equation

y ≈ β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2

to these data.
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(f) Make a contour plot for the fitted response from (e) over the experi-
mental region. Use this plot to locate a part of the experimental region
that has the largest predicted density.

(g) Compute residuals from the fitted equation in (e), and plot them
against both x1 and x2 and against ŷ. Do these plots look “better”
than the ones in (d)? Why or why not? Does it seem that the quadratic
equation is a better description of density than the linear one?

2. Tar Yield. In the article “Improving a Chemical Process Through Use of a
Designed Experiment” that appeared in Quality Engineering, 1990–1991,
J.S. Lawson discussed an experiment intended to find a set of production
conditions that would produce minimum tars in a process that can be des-
cribed in rough terms as

A+ B
SOLVENT−→
CATALYST

PRODUCT+ TARS .

(In the process studied, side reactions create tars that lower product qual-
ity. As more tars are produced, yields decrease, and additional blending of
finished product is needed to satisfy customers. Lower yields and increased
blending raise the average production cost.)

High, medium, and low levels of the three process variables

x1 = temperature,

x2 = catalyst concentration, and

x3 = excess reagent B

were identified, and 15 experimental runs were made with high reagent A
purity and low solvent stream purity. Then 15 additional runs were made
with low reagent A purity and low solvent stream purity. In both sets of
experimental runs, the response variable of interest was a measure of tars
produced, y. Lawson’s data are below in separate tables for the two different
reagent A purity/solvent stream purity conditions. (The process variables
have been coded by subtracting the plant standard operating values and
then dividing by the amounts that the “high” and “low” values differ from
the standard values.)
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“High” reagent A purity and
“low” solvent stream purity data
x1 x2 x3 y

−1 −1 0 57.81
1 −1 0 24.89

−1 1 0 13.21
1 1 0 13.39

−1 0 −1 27.71
1 0 −1 11.40

−1 0 1 30.65
1 0 1 14.94
0 −1 −1 42.68
0 1 −1 13.56
0 −1 1 50.60
0 1 1 15.21
0 0 0 19.62
0 0 0 20.60
0 0 0 20.15

“Low” reagent a purity and
“low” solvent stream purity data
x1 x2 x3 y

−1 −1 0 37.29
1 −1 0 4.35

−1 1 0 9.51
1 1 0 9.15

−1 0 −1 20.24
1 0 −1 4.48

−1 0 1 18.40
1 0 1 2.29
0 −1 −1 22.42
0 1 −1 10.08
0 −1 1 13.19
0 1 1 7.44
0 0 0 12.29
0 0 0 11.49
0 0 0 12.20

(a) Make a “three-dimensional” sketch of the cube-shaped region with
−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, and −1 ≤ x3 ≤ 1. Locate the 13
different (x1, x2, x3) design points employed in Lawson’s experiment
on that sketch.

(b) Do the 13 design points in Lawson’s study constitute a central com-
posite design? Explain.

For (c) through (g), consider only the first set of 15 data points, the ones for
high reagent A purity.

(c) Was there any replication in this study? Explain.

(d) Use a multiple regression program to fit the linear equation

y ≈ β0 + β1x1 + β2x2 + β3x3

to the high reagent A purity data.

(e) Use a multiple regression program to fit a full quadratic function in
x1, x2, and x3 to the high reagent A purity data. (You will need a
constant term, three linear terms, three pure quadratic terms, and three
cross product terms.)

(f) Is the quadratic equation in (e) a better description of the relationship
between the process variables and tar production than the equation fit
in (d)? Explain.

(g) Find an “honest” estimate of σ, the experimental variability in y, for
a fixed set of process conditions. (Consider the repeated center point
of the design.)
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6.3 Qualitative Considerations in Experimenting
for Quality Improvement

The discussion of experimental design and analysis in Chap. 5 and thus far in
Chap. 6 has concentrated primarily on technical statistical tools. These are essen-
tial. But there are also a number of more qualitative matters that must be han-
dled intelligently if experimentation for process improvement is to be successful.
This section discusses some of these. It begins by considering the implications
of some “classical” experimental design issues for process-improvement studies.
Then some matters given emphasis by followers of Genichi Taguchi are discussed.

6.3.1 “Classical” Issues

It is a truism that the world is highly multivariate. Accordingly, almost any pro-
cess response variable that a person would care to name is potentially affected
by many, many factors. And successful quality-improvement experimentation
requires that those myriad factors be handled in intelligent ways. Section 1.3
has already presented some simple aids for the identification/naming of the most
important of those factors. But there is also the matter of how to treat them during
an experiment.

There are several possibilities in this regard. For factors of primary interest, it
is obvious that one will want to vary their levels during experimentation, so as to
learn how they impact the response variable. That is, one will want to manipulate
them, treating them as experimental variables.

For factors of little interest (usually because outside of the experimental env-
ironment, they are not under the direct influence of those running a process) but
that nevertheless may impact the response, one approach is to control them in the
sense of holding their levels fixed. This is the laboratory/pilot plant approach,
where one tries to cut down the background noise and concentrate on seeing
the effects of a few experimental variables. Scientists doing basic research of-
ten think of this approach as “the” scientific method of experimentation. But for
technologists, it has its limitations. Results produced in carefully controlled lab-
oratory/pilot plant environments are notoriously hard to reproduce in full-scale
facilities where many extraneous variables are not even close to constant. That is,
when a variable is controlled during experimentation, there is in general no guar-
antee that the kind of responses one sees at the single level of that variable will
carry over to other levels met in later practice. Controlling a factor can increase
experimental sensitivity to the effects of primary experimental variables, but it
also limits the scope of application of experimental results.

Another approach to the handling of extraneous factors (those not of primary
interest) is to include them as experimental factors, purposefully varying them in
spite of the fact that in later operation one will have little or no say in their values.
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If a full-scale chemical process is going to be run in a building where humid-
ity and temperature change dramatically over the course of a year, technological
experimentation with the basic process chemistry might well be carried out in a
variety of temperatures and humidities. Or if a metal-cutting process is affected
by the hardness of steel bar stock that itself cannot be guaranteed to be completely
constant in plant operations, it may be wise to purposely vary the hardness in a
process-improvement experiment. This is in spite of the fact that what may be
of primary interest are the effects of tooling and cutting methods. This notion of
possibly including as experimental variables some whose precise effects are of at
most secondary interest is related to two concepts that need further discussion.
The first is the notion of blocking from classical experimental design, and the
second is Taguchi’s notion of noise variables that will be discussed later in the
section.

There are situations in which experimental units or times of experimentation
can be segmented into groups that are likely to be relatively homogeneous in
terms of their impact on a response variable, but when looked at as a whole are
quite heterogeneous. In such cases, it is common (and useful) to break the exper-
imental units or times up into homogeneous blocks and to essentially conduct an
independent experiment in each of these blocks. If one has in mind two types of
tooling and two cutting methods, it makes sense to conduct a 22 factorial experi-
ment on a block of “soft” steel bar stock specimens and another one on a block of
“hard” steel bar stock specimens. Of course, a way to then think about the study
as a whole is to recognize that one has done a complete 23 factorial, one factor of
which is “blocks.” Blocking has the effect of allowing one to account for variation
in response attributable to differences between the groups (blocks) rather than, so
to speak, lumping it into an omnibus measure of experimental error. It amounts to
a sort of local application of the notion of control and provides several relatively
homogeneous environments in which to view the effects of primary experimental
variables.

Of course there are limits to the size of real-world experiments, and it is not pos-
sible to purposely vary every variable that could potentially affect a response. (In-
deed, one can rarely even be aware of all factors that could possibly affect it!) So
there need to be means of protecting the integrity of experimental results against
effects of variables not included as experimental factors (and perhaps not even ex-
plicitly recognized). Where one is aware of a variable that will not be controlled
or purposely varied during data collection and yet might influence experiment re-
sults, it makes sense to at least record values for that concomitant variable. It is
then often possible to account for the effects of such variables during data analy-
sis by, for example, treating them as additional explanatory variables in regression
analyses.

In addition, whether or not one is going to try to account for effects of non-
experimental variables in data analysis, it is a good idea to take steps to try and
balance their effects between the various experimental conditions using the no-
tion of randomization. Randomization is the use of a table of random digits (or
other randomizing devices) to make those choices of experimental protocol not
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already specified by other considerations. For example, if one is doing a machin-
ing study with two types of tooling and two cutting methods and is planning to
apply each of the 22 combinations to three steel specimens, one might initially di-
vide 12 specimens up into four groups of three using a randomizing device. (The
hope is that the randomization will treat all four combinations “fairly” and, to the
extent possible, average between them the effects of all named and unnamed ex-
traneous factors like hardness, surface roughness, microstructure, and so on. This
is, of course, a different approach to handling an extraneous factor than treating it
as a blocking variable.)

And one might well also randomize the order of cutting in such a study, par-
ticularly if there is some concern that ambient conditions might change over
the course of experimentation and impact a response of interest. If, for example,
one were to make all experimental runs involving tooling type 1 before making
the runs for tooling type 2, any factor that changed over time and had an impact
on the response would contribute to what the experimenter perceives as the effects
of tool type. This is a very unhappy possibility. In terms of understanding what is
really affecting a response, it would be far better to either completely randomize
the order of the 12 experimental runs or to create three (time) blocks of size 4 and
run a full 22 factorial within each of the blocks of experimental runs.

This matter of randomizing order in an engineering experiment brings up
two additional qualitative issues. The first is that engineers frequently argue that
there are cases where some experimental factors have levels that cannot be easily
changed, and in those cases it is often much more economical to make runs in
an order that minimizes the number of changes of levels of those factors. It is
impossible to say that this argument should never be allowed to stand. Physical
and economic realities in engineering experimentation are just that, and the object
is not to stick to inflexible rules (like “you must always randomize”) but rather
to artfully make the best of a given set of circumstances and recognize the impli-
cations of the choices one makes in experimental design. Where it is absolutely
necessary to make all experimental runs with level 1 of Factor A before those
with level 2 of factor A, so be it. But the wise analyst will recognize that what
looks like an effect of factor A is really the effect of A plus the effects of any
other important but unnamed factors whose levels change over time.

The second matter is the whole issue of what one really means by the word
replication. Not all methods of obtaining multiple observations associated with
a given set of process conditions are equal. Consider, for example, an injection
molding process where one is studying the effects of two raw material mixes,
two shot sizes, and two temperatures on some property of parts produced by the
process. To set up a machine for a given material mix, shot size, and temperature
combination and to make and measure five consecutive parts are not at all the same
as making that setup and measuring one part, going to some other combination(s)
and then returning later to make the second part at that setup, and so on. Five
consecutive parts could well look much more alike than five manufactured with
intervening time lapses and changes in setup. And it is probably a variation of the
second (typically larger) magnitude that should be viewed as the baseline against
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which one correctly judges the effects of material mix, shot size, and temperature.
A way of describing this concern is to contrast repetition or remeasurement with
“true” replication. With the former, one learns a lot about a particular setup, but
not nearly so much about all setups of that type as with the latter.

This issue is also sometimes called the unit of analysis problem. If one wishes
to compare physical properties for two steel formulas, the logical unit of analysis
is a heat of metal. Making one heat of the new formula and one heat from the
old, pouring these into ingots, and measuring some property of each of 10 ingots
produce 20 measurements. But in effect one has two (highly multivariate) sam-
ples of size 1, not two samples of size 10. Why? The object is almost surely to
compare the formulas, not the two specific heats. And that being the case, the unit
of analysis is a heat, and there is but one of these for each formula. Replication
means repeating the unit of analysis, not just remeasuring a single one. Engineers
who are constrained by economics to build and tweak a single prototype of a
new product need to be very conscious that they have but a single unit of analy-
sis, whose behavior will almost certainly exhibit much less variation than would
several “similar” prototypes.

A final matter that should be mentioned in this discussion of classical issues in
experimental design concerns resource allocation. It is implicit in much of what
has been said in this chapter, but needs to be clearly enunciated, that experimen-
tation for process improvement is almost always a sequential business. One typ-
ically collects some data, rethinks one’s view of process behavior, goes back for
a second round of experimentation, and so on. This being true, it is important to
spend resources wisely and not all on round one. A popular rule of thumb (trace-
able to Box, Hunter, and Hunter) is that not more than 25% of an initial budget
for process experimentation ought to go into a first round of data collection.

6.3.2 “Taguchi” Emphases

Genichi Taguchi was a Japanese statistician and quality consultant whose ideas
about “offline quality control” have been extremely popular in some segments of
US manufacturing. Some of the “Taguchi methods” are repackaged versions of
well-established classical statistical tools like those presented in this text. Others
are, in fact, less than reliable and should be avoided. But the general philosophi-
cal outlook and emphases brought by Taguchi and his followers are important and
deserve some discussion. The reader who finds his or her interest piqued by this
subsection is referred to the article “Taguchi’s Parameter Design: A Panel Dis-
cussion,” edited by V. Nair, which appeared in Technometrics in 1992, for more
details and an entry into the statistical literature on the subject.

Taguchi’s offline quality control ideas have to do with engineering experimen-
tation for the improvement of products and processes. Important points that have
been emphasized by him and his followers are

1. small variation in product and process performance is important,

2. the world of engineered products and processes is not a constant variance
world,
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3. not all means of producing small variation are equal . . . some are cheaper
and more effective than others, and

4. it is experimental design and analysis that will enable one to discover
effective means of producing products and processes with consistent
performance.

The goal of consistent product and process performance in a variety of environ-
ments has become known as the goal of robust (product and process) design.

As an artificial but instructive example, consider a situation where, unbe-
knownst to design engineers, some system response variable y is related to three
other variables x1, x2, and x3 via

y = 2x1 + (x2 − 5)x3 + ε, (6.14)

where x1 and x2 are system variables that one can pretty much set at will (and
expect to remain where set), x3 is a random input to the system that has mean
0 and standard deviation η, and ε has mean 0 and standard deviation σ and is
independent of x3. Suppose further that it is important that y have a distribution
tightly packed about the number 7.0 and that if necessary η can be made small,
but only at huge expense.

Having available the model (6.14), it is pretty clear what one should do in order
to achieve desired results for y. Thinking of x1 and x2 as fixed and x3 and ε as
independent random variables,

Ey = 2x1 and Var y =
√
(x2 − 5)2η2 + σ2.

So taking x2 = 5, one achieves minimum variance for y without the huge expense
of making η small, and then choosing x1 = 3.5, one gets an ideal mean for y. The
object of Taguchi’s notions of experimentation is to enable an empirical version of
this kind of optimization, applicable where one has no model like that in display
(6.14) but does have the ability to collect and analyze data.

Notice, by the way, what it is about the model (6.14) that allows one to meet the
goal of robust design. In the first place, the variable x2 interacts with the system
input x3, and it is possible to find a setting of x2 that makes the response “flat” as
a function of x3. Then, x1 interacts with neither of x2 nor x3 and is such that it
can be used to put the mean of y on target (without changing the character of the
response as a function of x2 and x3).

How common it is for real products and processes to have a structure like
this hypothetical example just waiting to be discovered and exploited is quite
unknown. But the Taguchi motivation to pay attention to response variance as
well as response mean is clearly sound and in line with classical quality control
philosophy (which, e.g., has always advised “get the R chart under control before
worrying about the x chart”). Statistical methods for plotting residuals after fitting
“mean-oriented” models can be used to look for indications of change in response
variance. And the analysis of Example 87 presented in this book shows explicitly
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(using a logged standard deviation as a response variable) what can be done in
the way of applying methods for response mean to the analysis of patterns in re-
sponse variance. The genuinely important reminder provided by Taguchi is that
nonconstant variance is not only to be discovered and noted, but is to be exploited
in product and process design.

There is some special terminology and additional experimental philosophy
used by Taguchi that needs to be mentioned. In a product or process design
experiment, those factors whose levels are under the designer’s control both in
the experiment and in later use are termed control factors. The designer gets to
choose levels of those variables as parameters of the product or process. Other
factors which may affect performance but will not be under the designer’s in-
fluence in normal use are then called noise factors. And Taguchi emphasized
the importance of including both control variables and noise variables as factors
in product- and process-development experiments, which he termed parameter
design experiments.

In the synthetic example represented by display (6.14), Taguchi would have
called the variables x1 and x2 control variables, and the variable x3 would be
termed a noise variable. The objects of experimentation on a system like that
modeled by Eq. (6.14) then become finding settings of some control variables that
minimize sensitivity of the response to changes in the noise variables and finding
other control variables that have no interactions with the noise variables and that
can be used to bring the mean response on target.

There has been a fair amount of discussion in the statistical literature about
exactly how one should treat noise factors in product- and process-development
experimentation. The “Taguchi” approach has been to develop separate experi-
mental designs involving first the control factors and then the noise factors. These
are sometimes referred to as, respectively, the inner array and the outer array.
Then each combination of control factors is run with every combination of the
noise factors, and summary measures (like a mean and “standard deviation” taken
over all combinations of the noise factors) of performance are developed for each
combination of control factors. These summary measures are (for better or worse)
sometimes called signal-to-noise ratios and serve as responses in analyses of ex-
perimental results in terms of the “effects” of only the control variables.

This approach to handling noise variables has received serious criticism on a
number of practical grounds. In the first place, there is substantial evidence that
this Taguchi product array approach ultimately leads to very large experiments
(much larger than are really needed to understand the relationships between ex-
perimental factors and the response). (For more on this point, the reader is referred
to the panel discussion mentioned at the beginning of this section and to the pa-
per “Are Large Taguchi-Style Experiments Necessary? A Reanalysis of Gear and
Pinion Data” by Miller, Sitter, Wu, and Long, which appeared in Quality Engi-
neering in 1993.) Further, there seems to be little to guarantee that any pattern
of combinations of noise variables set up for purposes of experimentation will
necessarily mimic how those variables will fluctuate in later product or process
use. And the whole notion of “summarizing out” the influence of noise variables
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before beginning data analysis in earnest seems misguided. It appears to preclude
the possibility of completely understanding the original response in terms of main
effects and interactions of all experimental variables or in terms of the kind of
response function ideas discussed in Sect. 6.2. The statistical literature indicates
that it is both more economical and more effective to simply treat control variables
and noise variables on equal footing in setting up a single combined array exp-
erimental design, applying the methods of design and analysis already discussed
in Chap. 5 and the present chapter of this book.

If nothing else is obvious on a first reading of this section, hopefully it is clear
that the tools of experimental design and analysis presented in this book are just
that, tools. They are not substitutes for consistent, careful, and clear thinking.
They can be combined in many different and helpful ways, but no amount of
cleverness in their use can salvage a study whose design has failed to take into
account one or more of the important qualitative issues discussed here. Experi-
mentation for process improvement cannot be reduced to something that can be
looked up in a cookbook. Instead, it is a subtle but also tremendously interesting
and rewarding enterprise that can repay an engineer’s best efforts with order of
magnitude quality improvements.

6.4 Chapter Summary

Chapter 5 introduced the basics of experimental design and analysis for process
improvement, covering full factorial studies. This chapter has filled in the picture
of process experimentation sketched in Chap. 5. It opened with a discussion of
the design and analysis of fractional factorial studies, which are widely used to
efficiently screen a large number of factors looking for plausible descriptions of
process behavior in terms of a few factorial effects. The second section considered
the use of regression analysis and response surface methods in problems where all
experimental factors are quantitative. Finally, the last section discussed a number
of qualitative issues in experimental planning/design that must be thoughtfully
addressed if one hopes to achieve process improvement.

6.5 Chapter 6 Exercises

1. Tile Manufacturing. Taguchi and Wu (Introduction to OffLine Quality
Control, 1980) discussed a tile manufacturing experiment. The experiment
involved seven factors, each having two levels. A current operating condi-
tion and a newly suggested value were used as levels for each of the factors.
A set of 100 tiles was produced for each treatment combination included in
the study, and the number of nonconforming tiles from each set of 100 was
recorded:
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(a) If all possible treatment combinations had been included in the study,
how many different experimental runs would have been required (at a
minimum)? (A single experimental run consists of all items produced
under a single set of process conditions.) How many tiles would that
have required?

(b) In fact, a 1/16 fraction of the full factorial set of possible treatments
was actually employed. How many different treatment combinations
were studied? How many total tiles were involved?

Suppose the seven factors considered in the experiment were A, B, C, D, E,
F, and G, where the current operating conditions are (arbitrarily) designated
as the “high” or “+” levels of the factors.

(c) How many generators are needed for specifying which combinations
are to be run in this 27−4 study?

(d) Using the multiplication-of-signs convention introduced in Sect. 6.1,
suppose

i. levels of factor D are chosen by making products of signs for
levels of factors A and B,

ii. levels of factor E are chosen by making products of signs for
levels of factors A and C,

iii. levels of factor F are chosen by making products of signs for
levels of factors B and C, and

iv. levels of factor G are chosen by making products of signs for
levels of factors A, B, and C.

Make the table of signs that indicates which eight treatment combi-
nations will be run in the experiment. (List the combinations in Yates
standard order as regards factors A, B, and C.)

(e) The grand mean will be aliased with how many other 27 factorial ef-
fects? Give the defining relation for this experiment.

2. Refer to the Tile Manufacturing case in problem 1. The data actually col-
lected are given in Table 6.15 in a format close to that used by the original
authors. (Note that the real experiment was not run according to the hypo-
thetical set of generators used for exercise in problem 1d).) The response
variable, y, is the fraction of tiles that were nonconforming.

(a) Suppose that levels of factors C, E, F, and G were determined by
multiplication of signs for some combination of the factors A, B,
and D. (The table below is in reverse Yates order for the three fac-
tors D, B, and A—from bottom to top instead of top to bottom.)
What four generators were then used? (Hint: Find the four possible
“product” columns, and identify which combination of factors (A, B,
and D) multiplied together produces the given “sign” for the identified
column.)
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TABLE 6.15. Data for problem 2

Run A B C D E F G y

1 + + + + + + + .16
2 + + + − − − − .17
3 + − − + + − − .12
4 + − − − − + + .06
5 − + − + − + − .06
6 − + − − + − + .68
7 − − + + − − + .42
8 − − + − + + − .26

(b) Find the defining relation from the four generators in (a).

(c) Find the 15 effects that are aliased with the A main effect.

(d) Rearrange the rows of the table (the bottom row should be the top row,
the second from the bottom row becomes the second row. . . , the top
row becomes the bottom row) to produce the Yates standard order for
factors A, B, and D.

(e) Apply the Yates algorithm to the rearranged list of y’s, and find the
eight fitted sums of effects.

(f) Normal plot the last seven fitted sums from (e).

(g) Make a half-normal plot of the absolute values of the last seven fitted
values from (e).

(h) What conclusions do you draw from the plots in (f) and (g) regarding
statistically significant effects on the fraction nonconforming?

3. Refer to the Tile Manufacturing case in problems 1 and 2. The analysis of
the data suggested in problem 2 ignores the fact that the responses “y” were
really fractions nonconforming “p̂” and that if p is the long-run fraction
nonconforming for a given set of conditions, reasoning as in Sect. 3.3.1,
Var p̂ = p(1 − p)/n. This in turn suggests that here (where each sample
size is m = 100 tiles) for Ê a fitted sum of effects, one might estimate the
standard deviation for Ê as

σ̂Ê =
1

23
√
100

√∑
p̂(1− p̂) ,

where the sum is over the 23 treatment combinations included in the study.

Then, based on such a standard error for fitted sums of effects, it is fur-
ther possible to make crude approximate confidence intervals for the corre-
sponding sum of effects, E, using the end points

Ê ± zσ̂Ê .
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(In this equation, z is standing for an appropriate standard normal quantile.
For example, a two-sided interval made with z = 1.96 would have asso-
ciated approximate confidence of 95%.) Make intervals such as this (with
approximate individual confidence levels of 95%) for the eight sums of eff-
ects based on the data of problem 2. Are your intervals consistent with your
conclusions in problem 2? Explain.

4. Nickel-Cadmium Cells. In a 1988 Journal of Quality Technology paper,
Ophir, El-Gad, and Snyder reported results of quality-improvement efforts
focusing on finding optimal process conditions for the making of nickel-
cadmium cells. (Their study resulted in a process producing almost no
defects, annual monetary savings of many thousands of dollars, and an imp-
roved workplace atmosphere.) In the production of nickel-cadmium batter-
ies, sometimes contact between the two electrodes occurs. This causes an
internal short and the shorted cell must be rejected.

The authors used Pareto and Ishikawa diagrams in their efforts to identify
factors possibly influencing battery shorts. Seven factors, each at two levels,
were selected as most likely to control the production of shorts. A full fac-
torial design would have involved 128 “treatments.” Instead, the levels of
the four factors “rolling order,” “rolling direction,” “nylon sleeve on edge,”
and “side margin of the plate” were held constant at plant standard levels.
The three experimental factors considered were:

A—Method of sintering Old (−) vs. new (+)
B—Separator Thin (−) vs. thick (+)
C—Rolling pin Thin (−) vs. thick (+)

Data like the ones in Table 6.16 resulted.

TABLE 6.16. Data for problem 4

Run Sintering method Separator Rolling pin Number short Number tested
1 New Thick Thick 0 50
2 New Thick Thin 0 50
3 New Thin Thick 1 50
4 New Thin Thin 1 50
5 Old Thick Thick 1 50
6 Old Thick Thin 1 50
7 Old Thin Thick 1 50
8 Old Thin Thin 2 41

(a) Reorder the rows in the table to put it in Yates standard order for
the factors A, B, and C. (Hint: Current row 8 becomes row 1.)
Compute the sample fraction nonconforming, p̂, for each treatment
combination.
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(b) The most natural way to think of this study is as a full factorial in the
three factors A, B, and C. Is it possible to think of it as a fractional
factorial in the original seven factors? Why or why not? What can
potentially be learned from the data above about the effects of the four
factors “rolling order,” “rolling direction,” “nylon sleeve on edge,” and
“side margin of the plate”?

(c) Find the fitted effects of the three factors corresponding to the all-high
treatment combination by applying the Yates algorithm to the sample
fractions p̂ calculated in (a).

(d) Make a normal probability plot for the fitted effects found in (c).

(e) Make a half-normal plot for the absolute values of the fitted effects
found in (c).

(f) Are there factors that seem to be important? Why? (Notice that your
conclusions here apply to operation at the standard levels of the fac-
tors “rolling order,” “rolling direction,” “nylon sleeve on edge,” and
“side margin of the plate.”)

(g) A rough-and-ready method of investigating whether there is evidence
of any real differences in the fractions nonconforming across the eight
treatment combinations is to apply the retrospective p chart ideas from
Sect. 3.3.1. Do that here (temporarily entertaining the possibility that
one has samples from eight equivalent sets of process conditions). Is
there clear evidence of a difference somewhere in this factorial set of
treatment combinations?

5. Refer to the Nickel-Cadmium Cells case in problem 4 and the discussion
in problem 3. Since the sample sizes in problem 4 were not all the same,
the estimated standard deviation of a fitted effect Ê is a bit messier than
that suggested in problem 3. In place of the m = 100 formula given in
problem 3, one has

σ̂Ê =
1

23

√∑ p̂(1− p̂)

n
,

where again the sum is over the 23 treatment combinations included in the
study. Use the formula

Ê ± zσ̂Ê

and make approximate 90% two-sided individual confidence intervals for
the 23 factorial effects on fraction of cells nonconforming. What do these
say about the importance of the factors in determining fraction noncon-
forming? How do your conclusions here compare to those in problem 4?

6. Refer to the Nickel-Cadmium Cells case in problems 4 and 5. The inves-
tigators decided that the new sintering methodology combined with a thick
separator produced a minimum of shorts and that rolling pin thickness had
no appreciable influence on this quality measure. Using the new sintering
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method, a thick separator, and a thin rolling pin thickness, half of a full
24 factorial experiment in the factors originally held constant was designed
and carried out. Data like those in Table 6.17 were obtained.

TABLE 6.17. Data for problem 6
A B C D Number of

Nylon sleeve Rolling direction Rolling order Margin Shorts n

No Lower edge first Negative first Narrow 1 80
No Lower edge first Positive first Wide 8 88
No Upper edge first Negative first Wide 0 90
No Upper edge first Positive first Narrow 2 100
Yes Lower edge first Negative first Wide 0 90
Yes Lower edge first Positive first Narrow 1 90
Yes Upper edge first Negative first Narrow 0 90
Yes Upper edge first Positive first Wide 0 90

(a) Designate “yes,” “upper edge first,” “positive first,” and “wide” as the
high levels of factors A through D. Rearrange the rows of the table
above to place the combinations in Yates standard order as regards
factors A, B, and C.

(b) Is this design a fractional factorial of the type discussed in Sect. 6.1?
Why or why not? If your answer is yes, describe the structure in terms
of 2 raised to some “p− q” power.

(c) Find the defining relation for the design.

(d) What (single) 24 factorial effects are aliased with each of the main
effects in this study?

(e) Using the Yates algorithm, find the estimated sums of effects on the
long-run fractions nonconforming.

(f) Normal plot the last seven estimates from (e).

(g) Make a half-normal plot of the magnitudes (absolute values) of the
last seven estimates from (e).

(h) Based on your plots from (f) and (g), do any of the sums of effects
appear to be significantly different from 0? Why or why not?

(i) A rough-and-ready method of investigating whether there is evidence
of any real differences in the fractions nonconforming across the eight
treatment combinations is to apply the retrospective p chart ideas from
Sect. 3.3.1. Do that here (temporarily entertaining the possibility that
one has samples from eight equivalent sets of process conditions).
Is there clear evidence of a difference somewhere in this fractional
factorial set of treatment combinations?
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7. Refer to the Nickel-Cadmium Cells case in problem 6 and the discussion
in problem 5. Since there are 24−1 = 23 = 8 treatment combinations rep-
resented in the study in problem 6, the formulas in problem 5 can be used
to make rough judgments of statistical detectability of sums of 24 effects
on the fraction of cells with shorts.

Use the formulas in problem 5, and make an approximate 95% two-sided
individual confidence interval for each of the eight different sums of the 24

effects that can be estimated based on the data given in problem 6. What
do these say about the importance of the factors in determining fraction
nonconforming? How do your conclusions here compare to those in prob-
lem 6?

8. Paint Coat Thickness. In an article that appeared in the Journal of Quality
Technology in 1992, Eibl, Kess, and Pukelsheim reported on experimenta-
tion with a painting process. Prior to the experimentation, observed paint
thickness varied between 2mm and 2.5mm, clearly exceeding the target
value of .8mm. The team’s goal was to find levels of important process
factors that would yield the desired target value without substantially in-
creasing the cost of production. Preexperimental discussions produced the
following six candidate factors and corresponding experimental levels:

A—Belt speed Low (−) vs. high (+)
B—Tube width Narrow (−) vs. wide (+)
C—Pump pressure Low (−) vs. high (+)
D—Paint viscosity Low (−) vs. high (+)
E—Tube height Low (−) vs. high (+)
F—Heating temperature Low (−) vs. high (+)

The (−) or low levels of each of the experimental factors were in fact the
same number of units below standard operating conditions as the (+) or
high levels were above standard operating conditions. For some purposes,
it is then useful to think of variables xA, xB, . . . , xF giving (coded) values
of the factors in the range −1 to 1, −1 corresponding to the (−) level of the
factor, 1 corresponding to the (+) level, and 0 corresponding to a level half-
way between the experimental ones (and corresponding to standard plant
conditions).

Since an experiment including all possible combinations of even two levels
of all six factors was judged to be infeasible, 1/8 of the possible treat-
ment combinations were each applied to m = 4 different work pieces. The
resulting paint thicknesses, y, were measured and are given in Table 6.18
(in millimeters).

(a) Is this experiment a fractional factorial of the type discussed in
Sect. 6.1? Why or why not?

(b) Describe the experiment in terms of an appropriate base and exponent.
Say what the “base” and “exponent” correspond to in the context of
the problem.
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TABLE 6.18. Data for problem 8
Combination A B C D E F y

1 + − + − − − 1.09, 1.12, .83, .88
2 − − + − + + 1.62, 1.49, 1.40, 1.59
3 + + − − − + .88, 1.29, 1.04, 1.31
4 − + − − + − 1.83, 1.65, 1.70, 1.76
5 − − − + − + 1.46, 1.51, 1.59, 1.40
6 + − − + + − .74, .98, .79, .83
7 − + + + − − 2.05, 2.17, 2.36, 2.12
8 + + + + + + 1.51, 1.46, 1.42, 1.40

(c) Rearrange the rows of the data table to put the treatment combinations
into Yates standard order as regards factors A, B, and C.

(d) Find the sample averages and standard deviations for each row.

(e) Find the 3 generators for this study. Find the defining relation for this
study.

(f) Name the seven 26 factorial effects aliased with the A main effect, α2.
Do the same for the B main effect, β2.

(g) Use the Yates algorithm, and find the 7 estimated sums of effects cor-
responding to the all-high treatment combinations and the estimated
grand mean plus aliases.

(h) Use Eq. (5.28) and (g) above to construct the 90% individual two-
sided confidence intervals for each of the 8 sums of effects on mean
paint thickness. Which of these intervals fail to include 0 and thus
indicate statistically detectable sums? What is the simplest (assuming
all 2-factor and higher interactions are 0) possible interpretation of
these results (in terms of 26 factorial effects)?

(i) Suppose that only main effects of the factors A through F (and no
interactions) are important and that any main effect not found to be
detectable by the method of part (h) is judged to be ignorable. Based
only on estimated main effects and the grand mean estimate, find
a predicted (or estimated mean) coating thickness for the all-high
treatment combination. Based only on estimated main effects and
the grand mean estimate, find a predicted coating thickness for the
“all-low” treatment combination. (Notice that this is not one included
in the original study.)

(j) Use a multiple regression program to fit the equation

y ≈ β0 + βAxA + βBxB + βCxC + βDxD + βExE + βFxF

to the data (“+” means 1 and a “−” means−1). (You will have n = 32
data points (xA, xB, xC, xD, xE, xF, y) to work with.) How do the
estimates of the coefficients β compare to the results from part (g)?
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(k) Drop from your fitted equation in (j) all terms x with correspond-
ing fitted coefficients that are not “statistically significant.” (Drop all
terms x corresponding to β’s whose 90% two-sided confidence inter-
vals include 0.) Use the reduced equation to predict coating thickness
when all x’s are 1. Then use the reduced equation to predict coating
thickness when all x’s are −1. How do these predictions compare to
the ones from (i)?

(l) The factorial-type analysis in parts (g) through (i) only presumes to
infer mean paint thickness at combinations of (−) and (+) levels of
the factors. On the other hand, the linear regression analysis in parts (j)
and (k) could be used (with caution) for extrapolation or interpolation
to other levels of the factors. Using your fitted equation from part (k),
give values for xA, xB, xC, and xD (either −1 or +1) such that the
predicted paint thickness is about .846. Your set of xA, xB, xC, and
xD values should satisfy the defining relation for xD.

9. Speedometer Cable. In a 1993 Journal of Quality Technology paper,
Schneider, Kasperski, and Weissfeld discussed and reanalyzed an exp-
eriment conducted by Quinlan and published in the American Supplier
Institute News in 1985. The objective of the experiment was to reduce
post-extrusion shrinkage of speedometer casing. Fifteen factors each at two
levels were considered in 16 experimental trials. Four measurements were
made on pieces of a single (3000 ft) cable segment for each different treat-
ment combination. (A different cable segment was made using each of the
different combinations of process conditions.) The fifteen factors were A
(liner tension), B (liner line speed), C (liner die), D (liner outside diameter
(OD)), E (melt temperature), F (coating material), G (liner temperature),
H (braiding tension), J (wire braid type), K (liner material), L (cooling
method), M (screen pack), N (coating die type), O (wire diameter), and P
(line speed). The log ( ln) transformation was applied to each of the 4× 16
shrinkage responses, and “sample” means for the 16 combinations included
in the study were computed. Estimated sums of effects (on the log scale)
for the all-high treatment combination were as in Table 6.19.

(a) If one objective of the experiment was to say what would happen for
different 3,000 ft segments of cable made under a given set of process
conditions, why would it be a bad idea to treat the four measurements
made for a given treatment combination as “replicates” and base inf-
erences on formulas for situations where a common sample size is
m = 4? What is the real “sample size” in this study?

(b) Normal plot the last 15 estimated sums of effects listed in Table 6.19.

(c) Make a half-normal plot of the absolute values of the last 15 estimated
sums of effects.

(d) Based on your plots from (b) and (c), which (if any) sums appear to
be clearly larger than background noise?
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TABLE 6.19. Estimates for problem 9

Sum of effects estimated Estimate
Grand mean + aliases −1.430

A main + aliases .168
B main + aliases .239
C main + aliases −.028
D main + aliases .222
E main + aliases −.119
F main + aliases .046
G main + aliases −.084
H main + aliases .212
J main + aliases −.882
K main + aliases −.317
L main + aliases −.102
M main + aliases −.020
N main + aliases .309
O main + aliases −.604
P main + aliases −.025

(e) If one adopts the tentative conclusion that any sums of effects judged
in (d) to be important consist primarily of main effects, it might make
sense to follow up the initial 215−11 fractional factorial study with a
replicated full factorial in the seemingly important factors (holding the
other, apparently unimportant, factors fixed at some standard levels).
Describe such a 2p study with, say, m = 3.

(f) What will constitute “replication” in your new study from (e)?

10. Bond Strength. Grego (in a 1993 Journal of Quality Technology paper)
and Lochner and Matar (in the 1990 book Designing for Quality) analyzed
the effects of four two-level factors on the bond strength of an integrated
circuit mounted on a metalized glass substrate. The four factors identified
by engineers as potentially important determiners of bond strength were:

A—Adhesive type D2A (−) vs. H-1-E (+)
B—Conductor material Copper (Cu) (−) vs. nickel (Ni) (+)
C—Cure time at 90◦C 90min (−) vs. 120min (+
D—Deposition material Tin (−) vs. silver (Ag) (+)

Half of all 24 possible combinations were included in an experiment. m =
5 observations were recorded for each treatment combination. Summary
statistics from the experiment are given in Table 6.20 on page 394.

(a) Describe the structure of this study in terms of a base raised to some
power p− q. (Give numerical values for the base, p and q.)
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TABLE 6.20. Summary statistics for problem 10

A B C D y s2

D2A Cu 90 tin 73.48 2.452
D2A Cu 120 Ag 87.06 .503
D2A Ni 90 Ag 81.58 .647
D2A Ni 120 tin 79.38 1.982

H-1-E Cu 90 Ag 83.88 4.233
H-1-E Cu 120 tin 79.54 8.562
H-1-E Ni 90 tin 75.60 26.711
H-1-E Ni 120 Ag 90.32 3.977

(b) The treatment combinations in the table are presently arranged in
Yates standard order as regards factors C, B, and A. Rearrange the
rows so that the table is in Yates standard order as regards factors A,
B, and C.

(c) Find the defining relation for this study.

(d) For each factor A through D, find the effect aliased with that factor’s
main effect. (Use notation like A↔BCD.)

(e) Write out (in terms of subscripted individual lowercase Greek letters
and products of the same, like α2 + βγδ222) the eight sums of 24 fac-
torial effects that can be estimated based on the data from this study.

(f) Use the Yates algorithm to find estimates of the eight sums identified
in (e).

(g) Find 95% two-sided individual confidence intervals for the 8 sums
identified in (e). (Use display (5.28).)

(h) Use your intervals from (g) to identify statistically detectable sums of
effects. What is it about an interval in (g) that says the associated sum
of effects is statistically significant?

11. Refer to the Bond Strength case in problem 10. Factor screening is one
motivation for using a fractional factorial experiment. Providing at least ten-
tative suggestions as to which treatment combination(s) might maximize or
minimize a response is another (regardless of whether such a combination
was part of an original fractional factorial data set).

(a) Reflect on the results of part (h) of problem 10. What is the simplest
possible interpretation (assuming all 2-factor and higher order inter-
actions are 0) of your results in terms of the four original factors?
How many of the original four factors are involved in this interpre-
tation? Which factors are not involved and might possibly be “inert,”
not affecting the response in any way?
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(b) Set up a “design” table for a full 2p factorial in any factors that from
part (a) you suspect of being “active,” that is, affecting the response.
Say which levels you will use for any factors in (a) that you suspect
to be “inert.”

(c) Again, consider the results of part (h) of problem 10. What combina-
tion (or combinations) of levels of factors A through D do you sus-
pect might maximize mean bond strength? (Assume all 2-factor and
higher order interactions are 0.) Is such a combination in the original
data set? (In general, it need not be.)

(d) For the combination(s) in (c), what is the predicted bond strength?

12. Solder Thickness. Bisgaard, in a 1994 Journal of Quality Technology
paper, discussed an experiment designed to improve solder layer mean
thickness and thickness uniformity on printed circuit boards. (A uniform
solder layer of a desired thickness provides good electrical contacts.) To
stay competitive, it was important for a manufacturer to solve the problem
of uneven solder layers. A team of engineers focused on the operation of
a hot air solder leveler (HASL) machine. A 16-run screening experiment
involving six two-level factors was run. A measure of solder layer uni-
formity was obtained from each of the 16 runs (y is a sample variance
thickness based on 24 thickness measurements). The design generators
were E↔ABC and F↔BCD. The 16 combinations of levels of factors A
through D and corresponding values of the response variable are given in
Table 6.21.

TABLE 6.21. Data for problem 12

A B C D y

− − − − 32.49
+ + + − 46.65
+ − − + 8.07
− + + + 6.61
− + − − 25.70
+ − + − 16.89
+ + − + 29.27
− − + + 42.64
+ + − − 31.92
− − + − 49.28
− + − + 11.83
+ − + + 18.92
+ − − − 35.52
− + + − 24.30
− − − + 32.95
+ + + + 40.70
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(a) Rearrange the rows in the table to produce Yates standard order for
factors A, B, C, and D. Then add two columns to the table giving the
levels of factors E and F that were used.

(b) Discuss why, even though there were 24 thickness measurements
(probably from a single PC board) involved in the computation of “y”
for a given treatment combination, this is really an experiment with
no replication (m = 1).

(c) Find the defining relation for this 26−2 fractional factorial experiment.

(d) The effects are aliased in 16 groups of four effects each. For each of
the six main effects (α2, β2, γ2, δ2, ε2, and φ2), find the sums involv-
ing those which can be estimated using data from this experiment.
(Use notation like α2+βγε222+αβγδφ22222+ δεφ222.) (Hint: Con-
sider your answer in (c).)

(e) Transform the responses y by taking natural logarithms, y′ = ln(y).
Then use the Yates algorithm to find the estimated sums of effects
on y′.

(f) Make a normal probability plot for the last 15 estimated sums of ef-
fects in (e). Then make a half-normal plot for the absolute values of
these estimates.

(g) Based on your plots in (f), do you detect any important effects on sol-
der layer uniformity? Why or why not? What is the simplest possible
interpretation of the importance of these? Based on your results from
the full normal plot and using the simplest interpretation (assume all
interaction effects are 0), what combination or combinations of levels
of the six factors do you predict will have the best uniformity of sol-
der layer? Why? (Hint: the best uniformity corresponds to a small
y′, i.e., a sample standard deviation that is small.)

(h) Would you be willing to recommend adoption of your projected best
treatment combination(s) from (g) with no further experimentation?
Explain.

13. A 1/2 replicate of a full 24 factorial experiment is to be conducted. Unfor-
tunately, only four experimental runs can be made on a given day, and it is
feared that important environmental variables may change from day to day
and impact experimental results.

(a) Make an intelligent recommendation of which ABCD combinations
to run on each of 2 consecutive days. Defend your answer. (You
should probably think of “day” as a fifth factor and at least initially
set things up as a 1/4 replicate of a full 25 factorial. Let the two
generators be D↔ABC and E↔BC where E is (+) for day 2 and (−)
for day 1.)
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(b) Assuming that environmental changes do not interact with the exper-
imental factors A through D, list the eight sets of aliases associated
with your plan from (a). Your sets must include the main effects and
interactions of A through D and the main effect (only) of E (day).
(Hint: Consider what the sets of aliases would have been with your
setup in (a). Drop any of the alias terms including E interacting with
one or more terms.)

(c) Discuss how data analysis would proceed for your study.

14. Return to the Polymer Density problem 1 in the Sect. 6.2 Exercises.

(a) Use Eq. (6.12), and find the stationary point for the fitted quadratic
equation from part (e) of problem 1 in the Sect. 6.2 Exercises. Is the
stationary point the location of a maximum, a minimum, or a saddle
point? Why?

(b) Is the stationary point determined in (a) above located inside the ex-
perimental region? Why might the answer to this question be impor-
tant to the company producing the polymer?

(c) The experiment was originally planned as a perfect central composite
design, but when it became clear that no data collection would be pos-
sible at the set of conditions x1 = 240 and x2 = 30, the “extra” data
point was added in its place. Snee suggests that when one suspects
that some planned experimental conditions may be infeasible, those
combinations should be run early in an experimental program. Why
does this suggestion make good sense?

15. Surface Finish in Machining. The article “Including Residual Analysis in
Designed Experiments: Case Studies” by Collins and Collins that appeared
in Quality Engineering in 1994 contains discussions of several machining
experiments aimed at improving surface finish for some torsion bars. The
following is a description of part of those investigations. Engineers selected
surface finish as a quality characteristic of interest because it is directly
related to part strength and product safety and because it seemed possi-
ble that its variation and production cost could simultaneously be reduced.
Surface roughness was measured using a gauge that records total vertical
displacement of a probe as it is moved a standard distance across a speci-
men. (The same 1- in section was gauged on each torsion bar included in
the experiment.)

Speed rate (rate of spin during machining, in rpm) and feed rate of the
machining (rate at which the cutting tool was moved across a bar, in inches
per revolution) were the two factors studied in the experiment. Three levels
of speed rate and three levels of feed rate were selected for study. m =
2 bars were machined at each combination of speed and feed. Speed rate
levels were 2,500, 3,500, and 4,500 rpm . Feed rate levels were .001, .005,
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and .009 in per revolution. In Table 6.22, the speeds x1 have been coded
to produce values x′

1 via

x′
1 =

x1 − 3,500

1,000

and the feed rates x2 have similarly been coded to produce values x′
2 using

x′
2 =

x2 − .005

.004
.

(Note that with this coding, low, medium, and high levels of both variables
are respectively −1, 0, and 1.)

(a) Describe the factorial experimental design employed here in terms of
a base and an exponent.

(b) How many different (x1, x2) pairs were there in this study? Is this set
sufficient to fit an equation like that given in display (6.8) and like that
in display (6.9)? Why or why not?

(c) Use a multiple regression program to fit an equation for y that (like
that in display (6.8)) is linear in x′

1 and x′
2. (Note that there are 18

data points (x′
1, x

′
2, y) indicated in the table below.)

TABLE 6.22. Data for problem 15

x′
1 x′

2 y

−1 −1 7, 9
−1 0 77, 77
−1 1 193, 190
0 −1 7, 9
0 0 75, 85
0 1 191, 191
1 −1 9, 18
1 0 79, 80
1 1 192, 190

(d) For the equation from (c), plot contours in the (x′
1, x

′
2)-plane corre-

sponding to fitted values, ŷ, of 5, 55, 105, and 155.

(e) Where in the experimental region (the square specified by−1 ≤ x′
1 ≤ 1

and −1 ≤ x′
2 ≤ 1) is ŷ optimum (minimum)? What is the optimum

predicted value? Do you find this value reasonable? (Can y be nega-
tive?)

(f) Find the residuals for the equation fit in (c). Plot these against each of
x′
1, x′

2, and ŷ.

(g) Find R2 for the equation fit in (c).
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(h) Based on (f) and (g), does it appear the fitted model in (c) fits the data
well? Why or why not?

(i) Fit a full quadratic equation in x′
1,x

′
2 to the surface roughness data.

(That is, fit an equation like (6.9) to the data.)

(j) For the equation from (i), plot contours in the (x′
1, x

′
2)-plane corre-

sponding to fitted values, ŷ, of 5, 55, 105, and 155.

(k) Based on the plot from (j), where in the experimental region does
it seem that the predicted roughness is optimum? What is the opti-
mum predicted value? Do you find this value reasonable? (Can y be
negative?)

16. Refer to the Surface Finish case in problem 15. In problems like the sur-
face finish case, where responses at different conditions vary over an order
of magnitude, linear and quadratic fitted response functions often have diffi-
culty fitting the data. It is often helpful to instead try to model the logarithm
of the original response variable.

(a) Redo the analysis of problem 15 using y′ = ln(y) as a response vari-
able. (Notice, for one thing, that modeling the logarithm of surface
roughness deals with the embarrassment of possible negative pre-
dicted values of y.) Do the methods of Sect. 6.2 seem better suited
to describing y or to describing y′?

(b) For your quadratic description of y′, find the stationary point of the
fitted surface in both coded and raw units. Is the stationary point inside
the experimental region? Is it a maximum, a minimum, or a saddle
point? Why?

(c) Use the rule of thumb summarized in display (6.13) to judge whether
first the linear and then the quadratic fitted equations for y′ are clearly
“tracking more than experimental noise.”

17. Refer to the Surface Finish case in problem 15. Suppose that in a similar
situation, experimental resources are such that only 10 torsion bars can be
machined and tested. Suppose further that the lowest possible machining
speed is 2,200 rpm and the highest possible speed is 4,800 rpm. Further,
suppose that the smallest feed rate of interest is .0002 in/rev and the maxi-
mum one of interest is .0098 in/rev.

(a) Set up a central composite experimental plan for this situation. Use
the four “corner points” of the design in problem 15 as “corner points”
here. (These are the points with x′

1 = ±1 and x′
2 = ±1.) Base the

“star points” on the minimum and maximum values of the process
variables suggested above, and allow for replication of the “center
point.” (Hint: choose the minimum of the different αs.) Make out
a data collection form that could be used to record the 10 measured
roughness values next to the values of the process variables that pro-
duce them.
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(b) What are α, Δ1, and Δ2 for your plan in (a)? (Answer this for both the
raw (x) and coded (x′) representations of your data collection plan.)

(c) In what order would you suggest collecting the 10 data points speci-
fied in part (a)? Why is this a good order?

18. Revisit the Tar Yield case in problem 2 of the Sect. 6.2 Exercises. Consider
the second set of 15 data points, the ones for low reagent A purity. Redo
parts (c) through (g) for this second situation.

19. Refer to the Tar Yield case in problem 2 of the Sect. 6.2 Exercises and
problem 18.

(a) Consider the high reagent A purity data. Use the fitted quadratic equa-
tion from part (e) of problem 2 of the Sect. 6.2 Exercises. Set x1

equal to 1 to produce a quadratic for y in terms of x2 and x3. Make
a contour plot and find the associated (x2, x3) stationary point. Is
the point a maxima, minima, or saddle point? Is the stationary point
within the experimental region (i.e., does it satisfy −1 ≤ x2 ≤ 1 and
−1 ≤ x3 ≤ 1)?

(b) Consider the low reagent A purity data. Use the fitted quadratic equa-
tion from problem 18. Again, set x1 equal to 1 to produce a quadratic
for y in terms of x2 and x3. Make a contour plot and find the asso-
ciated (x2, x3) stationary point. Is the point a maxima, minima, or
saddle point? Is the stationary point within the experimental region
(i.e., does it satisfy −1 ≤ x2 ≤ 1 and −1 ≤ x3 ≤ 1)?

(c) Find the stationary point for the quadratic equation in three process
variables found in part (e) of problem 2 of the Sect. 6.2 Exercises—
high reagent A purity data. Is this a minimum, a maximum, or a saddle
point? Explain. Is the point inside the experimental region defined by
−1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1, and −1 ≤ x3 ≤ 1?

(d) Find the stationary point for the quadratic equation in three process
variables found in part (e) of problem 18—low reagent A purity data.
Is this a minimum, a maximum, or a saddle point? Explain. Is the
point inside the experimental region defined by −1 ≤ x1 ≤ 1, −1 ≤
x2 ≤ 1, and −1 ≤ x3 ≤ 1?

(e) Reflect on your answers to problem 18 and (a), (b), (c), and (d) above.
What combination of temperature, catalyst concentration, excess
reagent B, reagent A purity, and solvent stream purity (inside the exp-
erimental region) seems to produce the minimum tar? Defend your
answer.
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20. Chemical Process Yield. The text, Response Surface Methodology, by
Raymond Myers contains the results of a four-variable central composite
experiment. The conversion of 1,2-propanediol to 2,5-dimethyl-piperazine
is affected by

NH3 = amount of ammonia ( g),

T = temperature ( ◦C),

H2O = amount of water ( g), and

P = hydrogen pressure ( psi).

The response variable of interest was a measure of yield, y. For purposes of
defining a central composite experimental plan, it was convenient to define
the coded process variables

x1 = (NH3 − 102)/51,

x2 = (T − 250)/20,

x3 = (H2O− 300)/200, and

x4 = (P − 850)/350.

(The 24 factorial points of the design had x1 = ±1, x2 = ±1, x3 = ±1,
and x4 = ±1.)

(a) Find the raw (uncoded) high and low levels of each process variable
in the 24 factorial part of the design.

(b) α for this study was 1.4. Find the uncoded (NH3, T , H2O, P ) coordi-
nates of the “star points” in this study. What was the (uncoded) center
point of this design?

(c) How many design points total were there in this study (including the
24 factorial, the star points, and the center point)?

(d) The quadratic equation fit to the data set was

ŷ = 40.198− 1.511x1 + 1.284x2 − 8.739x3 + 4.995x4

−6.332x2
1 − 4.292x2

2 + .020x2
3 − 2.506x2

4

+2.194x1x2 − .144x1x3 + 1.581x1x4

+8.006x2x3 + 2.806x2x4 + .294x3x4.

Find the stationary point for the fitted response surface. Is the station-
ary point a minimum, maximum, or saddle point? Is the stationary
point within the experimental region? Why or why not?

(e) Consider the following two different (x3, x4) ordered pairs

(−1.4,−1.4) and (−1.4, 0).
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Substitute each of these pairs into the equation in (d), and produce a
quadratic equation for y in terms of x1 and x2. Find the stationary
points for these two different equations, and say whether they locate
minima, maxima, or saddle points. What predicted responses are ass-
ociated with these points?

(f) Based on your analysis in this problem, recommend a point (x1, x2,
x3, x4) that (within the experimental region) maximizes the fitted con-
version yield. Explain your choice, and translate the recommendation
to raw (uncoded) values of process variables.

21. Turning and Surface Roughness. The article “Variation Reduction by Use
of Designed Experiments” by Sirvanci and Durmaz appeared in Quality
Engineering in 1993 and discusses a fractional factorial study on a turning
operation and the effects of several factors on a surface roughness measure-
ment, y. Below are the factors and levels studied in the experiment:

A—Insert #5023 (−) vs. #5074 (+)
B—Speed 800 rpm (−) vs. 1000 rpm (+)
C—Feed rate 50mm/min (−) vs. 80mm/min (+)
D—Material Import (−) vs. Domestic (+)
E—Depth of cut .35mm (−) vs. .55mm (+)

Only 25−2 = 8 of the possible combinations of levels of the factors were
considered in the study. These eight combinations were derived using the
generatorsD↔AB and E↔AC. For each of these eight combinations,m =
5 different overhead cam block auxiliary drive shafts were machined, and
surface roughness measurements, y (in μ inches), were obtained.

(a) Finish Table 6.23 specifying which eight combinations of levels of the
five factors were studied.

TABLE 6.23. Treatment combinations for problem 21

A B C D E Combination name
− − −
+ − −
− + −
+ + −
− − +
+ − +
− + +
+ + +

(b) Use the two generators D↔AB and E↔AC and find the entire defin-
ing relation for this experiment. Based on that defining relation, de-
termine which effects are aliased with the A main effect.
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(c) The experimenters made and measured roughness on a total of 40
drive shafts. If, in fact, the total number of shafts (and not anything
connected with which kinds of shafts) was the primary budget con-
straint in this experiment, suggest an alternative way to “spend” 40
observations that might be preferable to the one the experimenters
tried. (Describe an alternative and possibly better experimental design
using 40 shafts.)

(d) In Table 6.24 are the eight sample means (y) and standard deviations
(s) that were obtained in the experiment, listed in Yates standard order
as regards factors A, B, and C, along with results of applying the Yates
algorithm to the means.

TABLE 6.24. Summary statistics and estimates for problem 21

y s Estimate
74.96 36.84 65.42
57.92 3.72 −3.01
50.44 8.27 −6.80
49.16 4.19 2.27
80.04 8.25 7.30
75.96 3.69 1.57
68.28 5.82 1.52
66.60 6.32 −1.67

In the list of estimates, there are five that correspond to main effects
and their aliases. Give the values of these.

(e) The pooled sample standard deviation here is sP = 14.20. For pur-
poses of judging the statistical significance of the estimated sums of
effects, one might make individual 95% two-sided confidence limits
of the form Ê ±Δ. Find Δ. See display (5.28).

(f) Based on your answers to parts (d) and (e), does it seem that the D
main effect here might be tentatively judged to be statistically det-
ectable (assuming all interactions are 0)? Explain.

(g) What about the values of s listed in the table calls into question the
appropriateness of the confidence interval analysis outlined in parts
(e) and (f)? Explain.

22. Professor George Box was famous for saying that to find out what happens
to a system when you interfere with it, you have to interfere with it (not just
passively observe it). Reflect on the roles (in modern quality improvement)
of (1) control charting/process monitoring and (2) experimental design and
analysis in the light of this maxim. What in the maxim corresponds to exp-
erimental design and analysis? What corresponds to control charting?



404 Chapter 6. Experimental Design and Analysis for Process Improvement

23. Consider a hypothetical 23−1 experiment with generator C↔AB and inv-
olving some replication that produces sample means yc = 1, ya = 13,
yb = 15, and yabc = 11 and sP small enough that all four of the sums
of effects that can be estimated are judged to be statistically detectable.
One possible simple interpretation of this outcome is that the grand mean
μ... and all of the main effects α2, β2, and γ2 (and no interactions) are
important.

(a) If one adopts the above simple interpretation of the experimental
results, what combination of levels of factors A, B, and C would you
recommend as a candidate for producing maximum response? What
mean response would you project?

(b) Is the combination from (a) in the original experiment? Why would
you be wise to recommend a “confirmatory run” for your combina-
tion in (a) before ordering a large capital expenditure to permanently
implement your candidate from (a)?

24. Problems 3 and 5 offer one means of dealing with the fact that sample frac-
tions nonconforming p̂ have variances that depend not only on n, but on
p as well, so that somewhat complicated formulas are needed for standard
errors of estimated effects based on them. Another approach is to (for anal-
ysis purposes) transform p̂ values to y = g(p̂) where y has a variance that
is nearly independent of p. The Freeman-Tukey transformation is

y = g(p̂) =
arcsin

√
np̂

(n+1) + arcsin
√

np̂+1
(n+1)

2
.

Using this transformation, as long as p is not extremely small or extremely
large,

Var y ≈ 1

4n
.

That means that if one computes fitted effects Ê based on the transformed
values (using the k-cycle Yates algorithm), then standard errors can be com-
puted as

σ̂Ê =
1

2k+1

√∑ 1

n
,

where the sum of reciprocal sample sizes is over the 2k treatment combi-
nations in the study. (Approximate confidence limits are Ê ± zσ̂Ê as in
problems 3 and 5.)

(a) Redo the analysis in part (e) through (h) of problem 2 using trans-
formed values y.

(b) Redo the analysis in problem 3 using the transformed values y and σ̂Ê

given above.
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25. A project team identifies three quantitative variables (x1, x2, and x3) to be
used in an experiment intended to find an optimal way to run a vibratory
burnishing process. The project budget will allow 18 runs of the process to
be made. Suppose that the process variables have been coded in such a way
that it is plausible to expect optimum conditions to satisfy

−2 ≤ x1 ≤ 2, −2 ≤ x2 ≤ 2, and− 2 ≤ x3 ≤ 2.

(a) Make and defend a recommendation as to how the 18 runs should be
allocated. That is, make up a data collection sheet giving 18 combi-
nations (x1, x2, x3) that you would use. List these in the order you
recommend running the experiment, and defend your proposed order.

(b) Suppose that after running the experiment and fitting a quadratic re-
sponse surface, ŷ appears to be maximized at the point (x∗

1, x
∗
2, x

∗
3).

What are some circumstances in which you would be willing to rec-
ommend immediate use of the conditions (x∗

1, x
∗
2, x

∗
3) for production?

What are some circumstances in which immediate use of the condi-
tions (x∗

1, x
∗
2, x

∗
3) would be ill advised?
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TABLE A.1. Standard normal cumulative probabilities

Φ(z) =

∫ z

−∞

1√
2π

exp

(
− t2

2

)
dt

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
−3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002
−3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003
−3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005
−3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007
−3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

−2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014
−2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
−2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
−2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
−2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

−2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
−2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
−2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
−2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
−2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

−1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
−1.8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
−1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
−1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
−1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

−1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681
−1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
−1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
−1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
−1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

−0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
−0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
−0.7 .2420 .2389 .2358 .2327 .2297 .2266 .2236 .2206 .2177 .2148
−0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
−0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

−0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
−0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
−0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
−0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
−0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641

This table was generated using Minitab
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TABLE A.1. Standard normal cumulative probabilities (continued)

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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TABLE A.2. t Distribution quantiles

ν Q(.9) Q(.95) Q(.975) Q(.99) Q(.995) Q(.999) Q(.9995)

1 3.078 6.314 12.706 31.821 63.657 318.317 636.607
2 1.886 2.920 4.303 6.965 9.925 22.327 31.598
3 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 6.869

6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.812 2.228 2.764 3.169 4.144 4.587

11 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073

16 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.849

21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.060 2.485 2.787 3.450 3.725

26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.310 1.697 2.042 2.457 2.750 3.385 3.646

40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460

120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291

This table was generated using Minitab
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TABLE A.3. Chi-square distribution quantiles

ν Q(.005) Q(.01) Q(.025) Q(.05) Q(.1) Q(.9) Q(.95) Q(.975) Q(.99) Q(.995)

1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.833 15.086 16.750

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.042 19.812 22.362 24.736 27.688 29.819
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.844 7.633 8.907 10.117 11.651 27.204 30.143 32.852 36.191 38.582
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.290 42.796
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.559
25 10.520 11.524 13.120 14.611 16.473 34.382 37.653 40.647 44.314 46.928

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.808 12.879 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.336
30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672

31 14.458 15.655 17.539 19.281 21.434 41.422 44.985 48.232 52.192 55.003
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.815 17.074 19.047 20.867 23.110 43.745 47.400 50.725 54.775 57.648
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.192 18.509 20.569 22.465 24.797 46.059 49.802 53.204 57.342 60.275

36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.586 19.960 22.106 24.075 26.492 48.364 52.192 55.668 59.893 62.885
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.163 64.183
39 19.996 21.426 23.654 25.695 28.196 50.660 54.572 58.120 62.429 65.477
40 20.707 22.164 24.433 26.509 29.051 51.805 55.759 59.342 63.691 66.767

This table was generated using Minitab. For ν > 40, the approximation Q(p) ≈

ν

(

1− 2

9ν
+Qz(p)

√
2

9ν

)3

can be used
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TABLE A.6.1. Factors for two-sided tolerance intervals for normal distributions

95 % Confidence 99 % Confidence
n p = .90 p = .95 p = .99 p = .90 p = .95 p = .99

2 36.519 46.944 182.720 234.877
3 8.306 9.789 12.647 18.782 22.131 28.586
4 5.368 6.341 8.221 9.416 11.118 14.405
5 4.291 5.077 6.598 6.655 7.870 10.220

6 3.733 4.422 5.758 5.383 6.373 8.292
7 3.390 4.020 5.241 4.658 5.520 7.191
8 3.156 3.746 4.889 4.189 4.968 6.479
9 2.986 3.546 4.633 3.860 4.581 5.980

10 2.856 3.393 4.437 3.617 4.294 5.610

11 2.754 3.273 4.282 3.429 4.073 5.324
12 2.670 3.175 4.156 3.279 3.896 5.096
13 2.601 3.093 4.051 3.156 3.751 4.909
14 2.542 3.024 3.962 3.054 3.631 4.753
15 2.492 2.965 3.885 2.967 3.529 4.621

16 2.449 2.913 3.819 2.893 3.441 4.507
17 2.410 2.868 3.761 2.828 3.364 4.408
18 2.376 2.828 3.709 2.771 3.297 4.321
19 2.346 2.793 3.663 2.720 3.237 4.244
20 2.319 2.760 3.621 2.675 3.184 4.175

25 2.215 2.638 3.462 2.506 2.984 3.915
30 2.145 2.555 3.355 2.394 2.851 3.742
35 2.094 2.495 3.276 2.314 2.756 3.618
40 2.055 2.448 3.216 2.253 2.684 3.524
50 1.999 2.382 3.129 2.166 2.580 3.390

60 1.960 2.335 3.068 2.106 2.509 3.297
80 1.908 2.274 2.987 2.028 2.416 3.175

100 1.875 2.234 2.936 1.978 2.357 3.098
150 1.826 2.176 2.859 1.906 2.271 2.985
200 1.798 2.143 2.816 1.866 2.223 2.921

500 1.737 2.070 2.721 1.777 2.117 2.783
1000 1.709 2.036 2.676 1.736 2.068 2.718
∞ 1.645 1.960 2.576 1.645 1.960 2.576

This table was computed using Mathcad
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TABLE A.6.2. Factors for one-sided tolerance intervals for normal distributions

95 % Confidence 99 % Confidence
n p = .90 p = .95 p = .99 p = .90 p = .95 p = .99

2
3 6.155 7.656 10.553 14.006 17.372 23.896
4 4.162 5.144 7.042 7.380 9.083 12.388
5 3.407 4.203 5.741 5.362 6.578 8.939

6 3.006 3.708 5.062 4.411 5.406 7.335
7 2.755 3.399 4.642 3.859 4.728 6.412
8 2.582 3.187 4.354 3.497 4.285 5.812
9 2.454 3.031 4.143 3.240 3.972 5.389

10 2.355 2.911 3.981 3.048 3.738 5.074

11 2.275 2.815 3.852 2.898 3.556 4.829
12 2.210 2.736 3.747 2.777 3.410 4.633
13 2.155 2.671 3.659 2.677 3.290 4.472
14 2.109 2.614 3.585 2.593 3.189 4.337
15 2.068 2.566 3.520 2.521 3.102 4.222

16 2.033 2.524 3.464 2.459 3.028 4.123
17 2.002 2.486 3.414 2.405 2.963 4.037
18 1.974 2.453 3.370 2.357 2.905 3.960
19 1.949 2.423 3.331 2.314 2.854 3.892
20 1.926 2.396 3.295 2.276 2.808 3.832

25 1.838 2.292 3.158 2.129 2.633 3.601
30 1.777 2.220 3.064 2.030 2.515 3.447
35 1.732 2.167 2.995 1.957 2.430 3.334
40 1.697 2.125 2.941 1.902 2.364 3.249
50 1.646 2.065 2.862 1.821 2.269 3.125

60 1.609 2.022 2.807 1.764 2.202 3.038
80 1.559 1.964 2.733 1.688 2.114 2.924

100 1.527 1.927 2.684 1.639 2.056 2.850
150 1.478 1.870 2.611 1.566 1.971 2.740
200 1.450 1.837 2.570 1.524 1.923 2.679

500 1.385 1.763 2.475 1.430 1.814 2.540
1000 1.354 1.727 2.430 1.385 1.762 2.475
∞ 1.282 1.645 2.326 1.282 1.645 2.326

This table was computed using Mathcad
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A
A2 (Shewhart charts), 116, 117, 160
A3 (Shewhart charts), 117, 160
Accuracy, 18, 34, 35, 90, 240, 241

of measurements, 34, 35
Aircraft wing three-surface

configuration study,
356–358

Alarm rules, 136–144, 148, 160,
161, 167

Shewhart control charts, 10,
113, 128, 139, 160

Aliased main effects, 347
Alias structure, 336, 338, 340,

344–348
for fractional factorials

2p−q studies, 338, 345–348
2p−1 studies, 338, 340–344

Alumina powder packing
properties, 280–281

Analysis of variance (ANOVA)
one-way methods contrasted,

252–260

two-way and gage R&R, 69,
234

ANOVA. See Analysis of variance
(ANOVA)

ARLs. See Average run lengths
As past data scenario, Shewhart

control charts, 110
Assignable cause variation, 108
Attributes data, 128–135, 160

Shewhart charts, 128–135, 160
Average run lengths (ARLs),

144–150
Shewhart charts, 109, 145, 147

Axial points, 364
with 2p factorial, 364

B
B4 (Shewhart charts), 121, 122,

124, 160
B5 (Shewhart charts), 122, 124, 160
B6 (Shewhart charts), 122, 124, 160
Balanced data, 272, 274, 275,

297–301
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Balanced data (cont.)
2p factorials, 275, 297–299

Balanced data two-way factorials,
262–266

Baseline variation, 108
Benchmarking, 7, 8, 11
Between group, 56
Bimodality, 19
Black box process, 252
Blocking, 313, 379, 380
Blocks, 196, 313, 379, 380
Bolt shanks, 92, 93
Bond strength, integrated circuits,

393–394
Bonferroni’s inequality, 259, 308,

314, 317, 318, 324
Box-Behnken design, 364
Box plots, 192, 194–199
Bridgeport numerically controlled

milling machine,
240–241

Brinell hardness measurements, 35
Brush ferrules, 28, 318–320
Bunching, 140, 141

in control charts, 140, 141

C
c4 (Shewhart charts), 418,
c5 (Shewhart charts), 418,
Calibration, 6, 10, 33, 35, 37–39,

75–79, 87, 89, 90, 140
Capability analysis sheet, 206
Capability index Cpk , 210, 212,
Capability measures, 207–211
Capability ration Cp, 207, 209, 211,
Carbon atmospheric blank, 188
Casehardening in red oak,

238–239
Cast iron carbon content, 188
Catalyst development fractional

factorial study, 335, 343
Cause-and-effect diagrams, 14

c charts, 132, 133, 147, 148
average run lengths, 144
formulas, 144

Center line, 110, 114, 119–123,
129–134, 137, 141, 142

Shewhart control charts, 110
Central composite designs, 365,

366, 375
Check sheets, 16–18
Chemical process improvement

fractional factorial study,
137–138

Chemical process yield studies,
401–402

Chi-square distribution, 411
quantiles, 411

Clean room process improvement,
4–6

CNC lathe turning, 29
Cold crack resistance fractional

factorial study, 334
Collator machine stoppage rate,

328–331
Color index fractional factorial

study, 338, 340
Common causes, 112

variation, 112
Complete factorial, 262, 301, 379
Computer locks, 96–97
Concomitant variables, 379
Confidence interval, 10, 38, 40, 42,

46, 56, 58, 68, 70, 76, 79,
84, 207, 208, 210, 214,
218, 252, 256–260, 266,
271, 272, 274, 331, 341,
386

Confidence limits
for Cp, 209, 210,
for Cpk , 210–211,
for a difference in means, 258
for a mean, 45
for a mean difference, 45, 87
for 2p factorial effect, 289, 292
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for p1 − p2, 85,
for a process standard

deviation, 55
for a ratio of two standard

deviations, 46
for a standard deviation, 71

Conforming, 80–82, 84, 128
Confounded main effects, 336
Continual improvement, 8, 27,

372
Contour plots, 357–362, 367, 368,

375, 400
Control. See Engineering control;

Statistical process
monitoring

Control charts, 6, 8, 10, 102,
108–110, 113, 115–117,
119–126, 128, 130,
135–143, 146, 149, 160,
161, 170–174, 176–178,
186–188, 243, 245, 403,
418. See also Shewhart
control charts

constants, 116, 117, 418
count data Shewhart charts,

129
Control factors, 383
Control gain, PID control, 158
Control limits, 109–125, 129–134,

136–138, 142–146, 148.
See also Three sigma
control limits

engineering specifications
contrasted, 111

Shewhart control charts, 128,
139, 143, 160

Corporate culture, TQM efforts at
changing, 8

Counts, 85, 113, 128–135, 281,
282, 293

Shewhart charts, 128–143
Cp, 207–212, 214, 242, 243, 245,

246

Cpk, 207, 210–212, 214–216, 233,
234, 242–246

Crack inspection, by magnaflux,
175

Cube plots, 285–287
Cumulative frequency ogive, 195
Curvature, 156, 363, 364, 367

in response surfaces, 363
Customer orientation, 5

of modern quality assurance,
4, 5

of TQM, 7, 8
Cut-off machine, 20

D
D1 (Shewhart charts), 418
D2 (Shewhart charts), 418
d2 (Shewhart charts), 418
D3 (Shewhart charts), 418
d3 (Shewhart charts), 418
D4 (Shewhart charts), 418
Data collection, 10, 12, 15–18, 24,

25, 40, 47, 53, 54, 75,
111, 252, 260, 364, 379,
381

principles, 6, 10
Dead time, 151–153, 155, 156

in PID control, 151, 153
Deciles, 196
Defects, defining what constitutes,

15
Defining relations, 339–341,

345–347, 349
for fractional factorials

2p−q studies, 334–352
2p−1 studies, 337

Delay, in PID control, 151
Derivative gain, in PID control, 156
Destructive, 48
Device, 2, 34, 107, 281, 372

bias, 42–46, 48, 50
variability, 54

Difference in means, 258
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Dimethyl phenanthrene
atmospheric blank, 401

Discrete time PID control, 150–157
DMAIC, 9, 10
Documentation, in data collection,

15
Dot plots, 192–194, 199, 205, 239
Drilling depths, 244–245
Drilling experiment response

surface study, 355
Dual in-line package bond pullouts,

281, 282, 293, 295
Dummy variables, 275, 297
Duncan’s alarm rules, 142

E
Effect sparsity principle, 192, 335
Eigenvalues, 369–371

of quadratic response function,
369–371

principle, 370
Electrical discharge machining

(EDM)
hole angles, 211
prediction/tolerance intervals,

213–220
process capability analysis,

204
Electrical switches, 174–176
Electronic card assemblies,

186–187
Empowerment, 30
Engineering control, 107, 150, 151,

157–160
statistical process monitoring

contrasted, 157–158
Engineering specifications

control limits contrasted, 111
marking on histograms to

communicate
improvement needs, 21

Error bars, 264, 265, 308, 311, 319,
324, 329, 330

Error propagation formulas,
225–227

Evolutionary operation (EVOP)
studies, 372–374

EVOP. See Evolutionary operation
(EVOP) studies

Experimental design. See also
Factorial designs;
One-way methods;
Response surface studies

black box processes, 252
issues in, 261
sequential strategy, 364
Taguchi methods, 381

F
Factorial designs. See also 2p

factorials; 2p−q factorials;
Threeway factorials;
Two-way factorials

blocks, 379
central composite designs,

365–367
fractional designs, 299
qualitative considerations,

378–381
Farm implement hardness, 98
F distribution, 412–417
Fiber angle, carpets, 60, 90
First quartile, 196, 205
Fishbone diagrams, 14
Fitted interactions, 270, 273, 275,

288
three-way factorials, 280, 281,

283–286, 288
two-way factorials, 261–279,

283, 285, 286, 297
Fitted main effects, 267, 268, 270,

295
three-way factorials, 284
two-way factorials, 267, 268

Fitted response values, 254



Index 429

Fitted three-factor interactions, 288
Fitted two-factor interaction, 286
Flowcharts, 5, 6, 12, 13
Formal multiplication, 338, 345,

346
Fractional factorials, 10, 299,

334–354, 384, 389, 390,
393, 394, 396, 402

limitations, 335
Fraction nonconforming, 128–132,

386, 387
Shewhart charts for, 128–132

Freaks, 140
in control charts, 140

Full factorial in p factors, 280, 301

G
Gauge capability ratio, 65, 73, 88,

89, 91, 93, 99, 100, 104,
105

Gauge R&R studies, 62–74, 83, 116
and change detection, 65

Gear heat treatment, 193
General quadratic relationships, 363
Generators, 221, 339–341,

345–347, 350
of fractional factorial designs

2p−q studies, 340, 345, 347,
348

2p−1 studies, 340
go/no-go inspection, 80–86
Graphical methods

for process characterization,
191–230

for quality assurance, 15–18
for surface response studies,

354–374
Graphics, 207, 355–362
Grit composition, 205, 207, 213,

220
Grouping, 140, 194

in control charts, 140

H
Half fractions, 331, 336–345, 348

2p factorials, 337–344
1/2q fraction, 334, 336
Half-normal plots, 293–296, 313,

317, 319, 328, 342, 344,
351, 352, 386, 388, 389,
392, 396

Hardness measurement method
comparison, 198

Histograms, 19–21, 24, 31, 140,
161, 192, 194, 205, 221,
223, 230, 236

dot plots/stem-and-leaf
diagrams contrasted,
192–194

Hose cleaning, 242–244
Hose skiving, 27–28, 179
Hypothesis testing, 64, 83, 141,

179, 227, 268, 269, 273,
337, 339, 341, 382, 404

I
I × J complete factorial, 262
Impedance in micro-circuits, 247
Implement hardness, 98–99
Individual observation control

charts, 109, 139, 140
Individuals chart, 124, 125
Injection molding cause-effect

diagram, 14
Inner array, 383

experimental design, 383
Instability, 6, 120, 121, 123, 130,

132, 133, 135, 138, 159
in control charts, 6, 120, 246

Integral gain, in PID control, 179
Interactions, 270–273, 275, 286,

289, 291, 335, 336,
339–342, 349

aliasing in fractional factorials,
342
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Interactions (cont.)
plots, 264, 265, 269, 270, 277,

279, 287, 291, 303, 308,
311, 319, 321, 323, 324,
329, 330

parallelism, 269, 270
three-way factorials, 280, 281,

283–286, 288
two-way factorials, 261–279,

283–286, 297
Interquartile range, 197, 205
Ishikawa diagrams, 5, 14, 387

J
Jet engine visual inspection,

172–174
JMP, 58–60, 70, 72, 78
Journal diameters, 161–163, 245

L
Laboratory carbon blank, 30–31,

188
Laser metal cutting, 90
Lathes. See Turning operations
Level changes, in control charts,

111
Lift-to-drag ratio wing

configuration study,
356–358

Linear combination of means, 257,
289

in one-way methods, 251–261
in 2p factorials, 279–301
in two-way factorials,

261–279, 283, 285, 286,
297

Linearity, 37, 45, 78, 79, 200, 251
Long-term variation, 108
Lower control limits. See Control

limits
Lower specification, for variables

acceptance sampling, 208

M
Machined steel lever tongue

thickness, 192–193
Machined steel sleeves, inside

diameter monitoring, 88
Machined steel slugs, 29–30
Magnaflux crack inspection, 175
Main effects, 262, 267–271, 273,

274, 283–288, 290, 291,
293, 295, 335, 336,
339–342, 347, 349–351

aliasing in fractional factorials,
342

three-way factorials, 284
two-way factorials, 261–279,

283–286, 297
Maximum, in quadratic response

surface, 367
Mean, 1, 35, 45, 46, 109, 194, 202,

222, 252, 258, 335. See
also Linear combinations
of means; specific Quality
assurance methods

difference, 45, 81, 84, 86
nonconformities per unit,

132–136, 328
Shewhart charts for,

132–136
square error, 77

Measurand, 36–51, 54, 56, 57,
62–65, 75, 76, 78, 79

Measurements
accuracy, 34, 90
bias, 36, 53
error, 10, 33, 36–38, 40–53,

63, 64, 66, 87
gauge R&R studies, 62–75
noise, 59
precision, 6, 10, 37, 38, 60

and change detection, 60
Shewhart charts, 113–128
validity, 90
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Median, 113, 114, 118, 160, 162,
166, 186, 196, 197, 205

chart, 113, 162
formulas, 160

Metrology, 5, 6, 34–39, 77, 81
Micro-circuit impedance, 247–248
Micrometer caliper gauge R&R,

62–63
Milling operation, 187
Minimum, in quadratic response

surface, 388
Mixtures, 139

in control charts, 139
Monitoring chart, 108
Moving range, 124, 125
Multimodality, 19
Multiple regression analysis, 262,

355, 357, 361

N
NASA polymer

iron content, 317
percent weight loss, 315–317

NASA polymer, 323–331
National Institute of Standards and

Technology (NIST), 18,
30, 35

Nelson’s alarm rules, 143
Nickel-cadmium cells,

387–388, 390
Noise factors, 383
Noise variables, 379, 383, 384
Non-conforming, 81, 82, 84–86,

128–132, 135, 384
Nonparametric limits, 217
Nonrandom variation, 108
Normal distribution

confidence intervals, 10
expected value of sample

range, 90
Normal plot(ing), 10, 201–204,

214, 217, 229–230, 254,
255, 275, 276, 290,
292–295, 342, 343,
351, 352

Normal probability plots, 198–204
formulas, 202
np charts, 128, 129, 131

np chart, 128, 129, 131, 132

O
Observed variation, 37, 38, 108,

138
Offline quality control, 381
Oil field production, 231–235
Oil viscosity measurement

uncertainty, 225
One-way ANOVA, 56–58, 69
One-way methods, 252–260

linear combinations of means,
257–261

pooled variance estimator,
253–256

One-way normal model, 252–256,
260, 275

Operational definitions, 15, 128,
142

of measurable quantities, 15
Optimization, surface response

studies for, 366–369
Outer array, 383

experimental design, 383
Out of control point, 109, 120, 130

P
Packaging, box size choice,

223–225
Paint coat thickness, 390–392
Paper burst strength measurement,

102–103
Paper dry weight, 153, 154,

180–184, 189
Paper tensile strength measurement,

104–105
Paper thickness measurement,

100–102
Paper weight

measurement, 99
PID control, 153

Parallelism, 269, 270, 273, 287
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Parallelism (cont.)
in interaction plots, 270

Parameter design experiments, 381
Pareto diagrams, 21, 25
Pareto principle

formulas, 292
p charts, 19

Part-to-part variation, 42
Past data, 110
p chart, 129, 141
Pellet densification, 39, 51, 52
Pelletizing process, fraction

nonconforming, 129–130
Perspective plots, 358
Physical variation, 40, 53
PID control, 150–158, 179, 185

algorithm, 152, 153, 155
Pipe compound mixture study, 235
Plastic packaging, 26, 176–178
Poisson processes, 132
Polymer density, 375–376, 397
Pooled estimator of σ2, 256
Pooled fraction nonconforming,

131
Pooled mean nonconformities per

unit, 133
Pooled-sample variance estimator,

in one-way methods,
253–256

Pooled variance estimator,
253–256

Potentiometers, 30
p quantile, 194, 195, 202, 257
Precision, 6, 10, 21, 34–38, 44, 60,

73, 192, 225, 226, 228,
264, 268, 270, 373

of measurements (see
Measurement precision)

Precision-to-tolerance ratio, 65
Prediction intervals, 214–218, 240

nonparametric limits, 217
Prediction limits in SLR, 76–78
Principle of effect sparsity, 335
Printing process flowchart, 13

Probabilistic simulations, 221
Probabilistic tolerancing, 6, 10,

220–239
Probability plotting, 201, 202, 292,

293, 342
Process and characterization

capability, 191–230
Process capability, 6, 191, 207–213,

229, 243, 245
analysis, 207, 208
measures, 207–213
ratios, 208

Process characterization, 192–250
Process identification, 12–15
Process improvement, 3, 4, 6–11,

17, 21, 22, 25, 137,
251–301, 333–384

Process location charts, 113–119
Process mapping, 5, 25
Process monitoring, 16, 107–160.

See also Control charts
change detection, 108, 111
statistical, 150

Process-oriented quality assurance,
4–6, 9, 26, 27

Process spread charts, 119–123
Process stability, 108, 112, 178,

242, 243
control charts for monitoring,

118
Process standard deviation, 54–56,

124, 125, 146
Process variability, 121, 211
Product array, 383

experimental design, 383
Production outcomes matrix, 26
Product-oriented inspection, 4
Product-oriented quality assurance,

4, 6
Propagation of error, 6, 225–227,

230
formulas, 225–227

Proportional gain, in PID control,
156
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Proportional-integral-derivative
(PID) control, 150–158,
179, 185

Pump end cap depths, 153
Pump housing drilling depths, 244

Q
Q-Q plots, 192, 198–202
Quadratic relationship, 363–364,

369
Quadratic response surfaces

adequately determined, 371
analytical interpretation,

369–372
mixtures, 369

Quality, 1–7, 10–12, 14–17, 19–25,
27, 28, 30, 34, 48–50, 56,
58, 70, 74, 87, 99, 122,
126, 133, 138, 142, 143,
147, 148, 157, 174, 175,
185, 186, 207, 212, 213,
238, 245, 247, 248, 296,
300, 326, 327

assurance
cycle, 4–6, 8
data collection, 15–18
modern philosophy of, 3–6
process-oriented cycle, 4–6
process-versus

product-oriented, 4
role of inspection in, 4
statistical graphics for, 6,

19–25
of conformance, 2, 3, 25, 26,

296
uniformity and, 5, 24

consultants, 381
of design, 2, 25
improvement, 3–7, 19, 20, 25,

378–384
Quantile plots, 192, 195, 196, 236
Quantiles, 192, 194–198, 201, 204,

208, 214, 293, 410–412,
414, 416

chi-square distribution, 411
standard normal, 201–203
studentized range distribution,

5, 34, 67, 121
t-distribution, 410

R
Radiator leak monitoring, 135
Random effects, 56–60, 62–65, 70,

72, 81
models, 52–65

two-way and gage studies,
62–65

Randomization, 101, 379, 380
Randomized block model, 313
Random variation, 254, 292, 372
Range charts, 119, 124. See R

charts
Rational sampling, 111
Rational subgrouping, 111, 141

formulas, 381
R charts, 120, 122
Taguchi emphasis and,

381–384
R chart, 119–122, 138, 382
Reamed holes, surface finish, 114
Red oak casehardening, 238–239
Regression analysis, 10, 75, 79, 80,

151, 262, 274, 275, 333,
355–357, 361, 384, 392

Reliability, 1, 63
Remeasurement, replication

contrasted, 381
Repeatability, 44, 60–68, 70, 73,

76–78, 81–84, 292
Replication, 279, 289–296, 312,

316, 324, 326, 340, 342,
348, 351, 356, 361, 377,
380, 381, 393, 396, 399,
404

Reproducibility, 44, 60, 62–68,
71–74, 81–84
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Residuals, 254, 255, 274–277, 279,
290, 297–299, 357, 366,
367, 382

balanced data 2p factorials,
279–280

balanced data two-way
factorials, 274–276

one-way methods, 252
Resistors

resistance distribution,
221–223

resistance measurements,
325–326

Response optimization strategies,
372–374

Response surface studies,
354–377

adequately determined, 371
graphics for, 355
optimization strategies,

390–393
quadratic, 362–364

Retrospective, 110, 115–118,
120–123, 130–135, 160

c charts, 132
median chart, 162
np charts, 131, 132
p charts, 388, 389
R chart, 120, 121
scenario, Shewhart control

charts, 128
s charts, 122, 123, 162, 164
u charts, 134, 135
x chart, 115, 118, 162, 164

Reverse Yates algorithm, 298, 299,
320

Ridge geometry, in quadratic
response surface, 370

Robust design, 247, 382
Rolled paper, 163, 165
Rolled products, 29
R&R standard deviation, 65

Rule of 10, 28
Run charts, 19, 23, 24, 139–141
Run length, 107, 144–148

distribution, 144

S
Saddle geometry, in quadratic

response surface, 370
Sample medians, 118
Sample standard deviation, 38, 39,

42, 51, 52, 54, 66, 86, 88,
116, 123, 166, 185, 186,
208, 213, 232, 234, 245,
247, 256, 260, 278, 281,
282, 290, 293, 296, 306,
308, 314, 316, 319, 366,
396, 403

Scatterplots, 16, 19, 22, 23, 77, 200
formulas, 16
s charts, 122

s chart, 122, 123
Seal strength optimization study,

366–369
Sequential experimental strategy,

364–369
Service industries, statistical

control applications, 12
Sheet metal saddle diameters,

235–236
Sheet metal slips, 235
Shewhart control charts. 8,

108–112, 128, 160. See
also specific Shewhart
charts

alarm rules, 136–144
average run lengths, 144
constants, 128
data hugging center line, 110
formula summary, 119, 120
fraction nonconforming charts,

129
limitations, 211
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mean nonconformities per unit
chart, 132, 133

patterns, 136–144
process location charts,

113–119
process spread charts, 119, 120

Short-term variation, 108, 178
Signal-to-noise ratios, 383
Simple linear regression, 75–79
Single sourcing, for reducing

product variation, 19
Six Sigma, 7–10, 112
Solder joint strength, 259, 263–266,

271, 276
Solder thickness, 395–396
Sorting operations, histogram

shapes, 20
Sparsity of effects principle, 292
Special cause, 137, 159

variation, 112, 159
Specifications, 2, 21, 65, 111, 192,

203, 208, 209, 211. See
also Engineering
specifications

Speedometer cable, 391–392
Standard

normal, 145, 194, 201, 202,
210, 211, 293, 408, 409

normal cumulative
probabilities, 408, 409

normal quantiles, 201, 231,
236, 293

Standard deviation, 35–46, 49, 52,
56, 60, 61, 66–71, 73, 74,
76, 78, 80, 84, 86–92, 94,
101, 103, 110, 113, 114,
116–119, 123–125, 127,
129, 135, 145, 146,
162–167, 169, 172, 177,
178, 185–188, 202, 205,
207, 208, 212, 213, 221,
223, 226–229, 232, 234,
241, 242, 245–249, 254,
256, 258, 260, 261, 263,
264, 278, 281, 282, 290,

293, 295, 296, 298, 300,
305, 306, 308, 309, 314,
316, 319, 323, 327–329,
331, 357, 366, 382, 383,
386, 388, 396, 403

Standardized residuals, 254
Standards given, 110, 113–122,

124, 129–133, 145, 146,
160

c charts, 132, 133
median charts, 110
np charts, 131
p charts, 129
R charts, 121
scenario, Shewhart control

charts, 110
s charts, 133
u charts, 133
x charts, 115

Star points, 364–367, 369, 374
with 2p factorial, 292

Stationary point, 370, 371
in quadratic response surface,

372
Statistical graphics methods. See

Graphical methods
Statistical process monitoring,

150–159
engineering control contrasted,

150–159
Statistical quality assurance. See

Quality assurance
Statistics, 1–3, 8, 10, 17, 19–24,

33–87, 114, 142, 143,
159, 162, 166, 167, 191,
195, 201, 213, 214, 253,
260, 264, 341, 345, 355,
357, 371, 393, 394, 403

Steel heat treatment, 15, 29
Steel machined sleeves, inside

diameter monitoring, 225
Stem-and-leaf diagrams, 192–194
Stratification, 141–143

in control charts, 141
Sum of squares, 57, 69, 70, 72
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Surface finish
machined bars, 397–398
reamed holes, 114

Surface plots, 358–361
Systematic variation/cycles, 137
Systematic variation, in con, 137
System causes, 108

T
Tablet hardness, 323–324
Tabular alumina powder packing

properties, 280–281
Taguchi methods, 381
Tar yield, 376–377, 400
Taylor expansion, 225
t-distribution, 48, 86, 214, 215, 410

quantiles, 410
Third quartile, 196, 205
Three-factor interactions, 288, 339,

340, 347
Three sigma control limits, 143,

144
Shewhart control charts, 139

Three-way factorials
3p factorials, fitting quadratic

response functions with,
364

in three-way factorials, 285,
286

Tile manufacturing, 384–386
Time constant, PID control, 151,

155
Tolerance intervals, 191, 213–218,

230, 240, 419, 420
nonparametric limits, 217

Total quality management (TQM),
7–8, 10.

elements of, 7
limitations, 361, 378

Training, need for in data
collection, 9

Transmission gear measurement,
94–96

Trends, 19, 31, 137, 139, 140, 179,
275, 276

in control charts, 139, 140
Turning operations

with CNC lathe, 29
CUSUM-controlled CNC

lathe, 29
run chart for, 23
and surface roughness,

402–403
TV electron guns, 262–263
2p factorials, 279–300

algorithm for producing, 344
balanced data, 298, 299
effect detection without

replication, 292, 312–317
effect detection with

replication, 289–291,
308–312

for fitting quadratic response
surfaces, 364

half fraction, 334
2p−1 fractional factorials, 340
2p half fractions, 337–344
plus repeated center point,

364, 382
2p−q factorials, 334–336
reverse Yates algorithm for,

298
with star or axial points, 364
Yates algorithm for, 318

Two-factor interactions, 285–288,
339, 347

in three-way factorials, 285
2p−1 fractional factorial, 337, 340
Two-way ANOVA, 69
Two-way factorials, 261–276, 283,

285, 286, 297
balanced data, 275



Index 437

effect definition and
estimation, 58, 66

Two-way model, 64, 264
Two-way random effects models,

62–65
for gauge R&R studies, 62–65

U
U-bolt threads

formulas, 246
u charts, 133

u chart, 132–135, 147
Uniformity, and quality of

conformance, 2
Unit of analysis, 381

problem, 381
Upper control limits. See Control

limits

V
Validity, 34, 35

of measurements, 245
Valve airflow, 327–328
Variables data, 113, 161

Shewhart charts, 113–128
Variance. See specific quality

assurance methods
Variance components, 63, 70

random effects model, 56–60
Variation, 2, 36, 108, 193, 252, 341
Voltage regulator, for alternator,

248, 249

W
Wax-polyethylene blends seal

strength optimization
study, 366

Weld pulls, 230
Western electric alarm rules, 142,

143, 148
Window frame sampling, 29
Within group, 56

X
x charts, 112–115, 118, 119, 124,

127, 138, 141, 145, 146,
148, 149, 161–162, 164,
165, 178, 179, 239, 382
symbol)

Y
Yates algorithm, 296–300, 312,

316, 319, 320, 324, 328,
341, 342, 351, 354, 364,
386, 388, 389, 391, 394,
396, 410

reverse, 298, 299, 320
Yates standard order, 296–298, 341,

342, 351, 386, 387, 389,
391, 394, 396, 409

Z
Zones, 142, 143
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