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Preface

Actuarial profession is one of the prestigious professions around the world. An actu-
ary has to evaluate the entire operation of the insurance business deploying a variety
of tools from actuarial science, which are heavily based on the statistical techniques
and principles from finance and economics. With the liberalization of the insurance
industry in India, the demand for actuaries and actuarial courses is increasing. The
aim of this book is to cater to the needs of students intending to pursue actuarial pro-
fession and to familiarize them with application of various statistical methods used
in the insurance industry. The book elaborates on actuarial concepts and statistical
techniques in multiple decrement models with their application in pension funding,
and multi-state transition models with application in disability income insurance.
This book is written in the same style as my book “Actuarial Statistics: An Intro-
duction Using R” published by Universities Press, India, in 2009, which discusses
statistical tools for the computations of premiums and reserves for life insurance
products and annuities in single decrement models, using R software.

In some policies, benefit to a single life or a group, is subject to a type of contin-
gency. For example, the death of an individual may be due to an accident or due to
any other cause. In most of the insurance policies, the coverage is firstly given for
the base cause, and then there are policy riders for additional benefits. If death is due
to an accident, then the benefit structure is different; usually benefit is more than the
base coverage. In such cases, the benefit structure and consequently the premium
structure depend on time to death and the cause of the death. Survivorship models
incorporating two random mechanisms, time to termination and various modes of
termination, are known as multiple decrement models. The first chapter introduces
the multiple decrement model and the construction of the multiple decrement table
using the associated single decrement model and central rate bridge.

Chapter 2 discusses calculation of premiums and reserves in life insurance prod-
ucts when the benefit depends on the cause of decrement along with the time to
decrement.

A major application of multiple decrement models is in pension plans and em-
ployee benefit plans. In these schemes, the benefit paid on termination of employ-
ment depends upon the several causes of termination. The cause of termination may
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vi Preface

be withdrawal, disability, death, or retirement. The benefits on retirement often dif-
fer from those payable on death or disability. As a consequence, the actuarial present
value of the benefits depends on the cause of death along with the future life time
of an individual. To determine the rate of contribution in pension funds and to value
the pension fund at specified times, it is necessary to find the actuarial present value
of the benefits. Therefore, survivorship models for employee benefit systems and
pension funds include random variables for both time to termination and cause of
termination. Chapter 3 is devoted to the application of multiple decrement models
for evaluating the cost of a given pension plan at a specific time. Once the estimate
of the ultimate cost of the plan is determined, the next step is to determine the con-
tributions required to pay for the estimated cost in an orderly manner, so that the
estimated cost of the plan is spread over future years. These actuarial techniques
are referred to as actuarial cost methods or actuarial funding methods. A funding
method specifies the pattern, that is, the frequency, and the amount of aggregate
contributions required to balance the benefit payments. Chapter 4 reviews some of
these methods.

As an extension of multiple decrement models, the multi-state model of transi-
tions is discussed in Chap. 5, when the transitions among the states are governed
by Markov models. Multiple state models have proved to be appropriate models
for an insurance policy in which the payment of benefits or premiums is dependent
on being in a given state or moving between a given pair of states at a given time.
Such a model is useful to decide premium in continuing care retirement communi-
ties model in health insurance and disability income insurance model in employee
benefit schemes.

In all these chapters, it is assumed that the rate of interest in the calculations
of actuarial present values is deterministic and usually constant over the period of
policy. However, the assumption of deterministic interest will be rarely realized in
practice, particularly for long-term policies. Chapter 6 introduces in brief stochastic
models for interest rates and calculation of premiums for some products in this
setup.

The highlight of the book is its usage of R software for statistical computations.
R software is freely available from public domain. In all the Universities in India and
abroad the use of R software is increasing tremendously. Most of the recent books
incorporate R software for statistical analysis. To be consistent with the recent trend
and demand, R software is used in this book to compute various monetary functions
involved in insurance business. R commands are given for all the computations, and
meanings of these are explained, so that a reader unfamiliar with R can also use
it. All the tables inserted in the book and solutions to all illustrative examples are
worked out using R. The command-driven R software brings out very clearly the
successive stages in statistical computations.

The book builds on from the very basic concepts, defining and explaining the
terms and to move on to their applications and actual computations with R. It is easy
to follow and moves on step-by-step from basics to detailed calculations. The book
contains many solved examples illustrating the theory. For better assimilation of the
material, exercises are given at the end of each chapter. Statistical prerequisites to
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the book are concepts and computation of premiums and reserves for some standard
insurance products based on single decrement models.

I hope that this book will be instructive and will induce interest among the stu-
dents about the actuarial profession. I am sure the book will be helpful for those
who wish to prepare for examinations conducted by actuarial societies worldwide.

Feedback, in the form of suggestions and comments from colleagues, students,
and all readers, is most welcome.

I thank all my friends, colleagues, and family members for encouragement and
support received throughout this venture. I am indeed thankful to the students who
opted for this course in the last couple of years. They provided me the incentive to
study rigorously and to collect and set a variety of problems, all of which are helpful
in writing this book.

S. DeshmukhPune, India
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Chapter 1
Multiple Decrement Models

1.1 Introduction

Calculation of premiums which are acceptable to both the parties, an insured and
an insurer, for a variety of insurance products, is one of the important computations
in insurance business. It is usually referred to as the rating or pricing of insurance
products. In the simplest setup, the interest rate is assumed to be constant through-
out the active period of the policy, and the benefit payable to individual is contingent
on the event of death. The benefit may be payable to a group, and then it is neces-
sary to define when to pay the benefit. Commonly used two approaches are payment
on the first death in a group (joint life status) or at the last death in the group (last
survivor status). In both the situations, the future life time is the only underlying ran-
dom variable. Calculation of premiums and corresponding reserves in such setups
is discussed in many books, for example, Borowiak (2003), Bowers et al. (1997),
Deshmukh (2009), Dickson et al. (2009), and Promislow (2006). In some situations,
benefit to a single life or a group, is subject to a type of contingency. For example, a
death of an individual may be due to accident or due to any other causes. In most of
the insurance policies the coverage is firstly given for the base cause. In whole life
insurance policy death is a base cause, and then there are policy riders for additional
benefits, that is, if death is due to accident, then the benefit structure is different;
usually benefit is more than the base coverage. Of course there is additional pre-
mium for such an extra benefit. In such cases, the benefit structure and consequently
the premium structure depend on time to death and the cause of the death. The ter-
mination from a given status, being alive in this context, is known as a decrement.
Survivorship models incorporating two random mechanisms, time to termination,
and various modes of termination are known as multiple decrement models.

A major application of multiple decrement models is in pension plans and em-
ployee benefit plans. In employee benefit and pension schemes, the benefit paid on
termination of employment depends upon the several causes of termination. The
cause of termination may be withdrawal, disability, death, or retirement. The bene-
fits on retirement often differ from those payable on death or disability. Benefit on
retirement is the monthly life annuity depending on the service period and the skill

S. Deshmukh, Multiple Decrement Models in Insurance,
DOI 10.1007/978-81-322-0659-0_1, © Springer India 2012
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2 1 Multiple Decrement Models

of the individual. If death occurs before retirement age, a lump sum may be payable
to the beneficiary. If an individual withdraws from the employment, then there can
be a deferred pension, or the individual’s accumulated contribution may be returned.
In case of disability, there may be additional benefit till the individual recovers com-
pletely. As a consequence, the actuarial present value of the benefits depends on the
cause of death along with the future life time of an individual. To determine the rate
of contribution in pension fund and to value the pension fund at specified times, it is
necessary to find the actuarial present value of the benefits. Therefore, survivorship
models for employee benefit systems and pension funds include random variables
for both time to termination and cause of termination.

Following are some more situations where benefit structure depends on the cause
of the death.

1. Most individual life insurance premiums are paid until death or until the end
of the premium paying period as specified in the policy. However, in practice,
some policy holders stop payments after some time. Many insurance products
provide payment of some benefit even if premiums stop before the end of the
specified premium payment term. However, an insurer has to decide how much
to pay when claim from such a customer arises. In such situations, time until
termination and cause of termination are the two random variables of interest to
decide the benefit to be paid.

2. In an individual life insurance, a person may cease to be an active insured by
(i) dying, (ii) withdrawing, (iii) becoming disabled, or (iv) reaching the end of
the coverage period. Thus there are different modes of exit from the group of
active insureds. Here also time until termination and cause of termination affect
the benefit structure.

3. Disability income insurance provides periodic payments to insureds who satisfy
the definition of disability specified in the policy. In some cases, the amount of
periodic payments depends on whether the disability was caused by illness or
accident. For example, if the disability is due to accident, then there may be pe-
riodic payment of P1 units, and if the disability is due to illness, then there may
be periodic payment of P2 units, till the individual survives or till the end of
coverage period as specified in the policy. To find the purchasing price of such
policies, it is necessary to find the actuarial present value of the periodic pay-
ments. The actuarial present value of such payments is governed by two random
mechanisms, future life time of the individual and the type of disability.

Multiple decrement models are commonly encountered in industrial applications
and in public heath insurance. For example, failure of a metal strip under test condi-
tions can occur in a number of different ways, by cracking, bucking, shearing, etc.
In public health applications, it is of interest to study the incidence rates for various
diseases. So data are collected on the cause of death, along with the data on age
at death. Death may have been caused by cardiovascular disease, cancer, accident,
or any other cause. Thus, in both these applications, the time to failure and cause
of failure are two variables of interest. In actuarial science, we use the terminol-
ogy of mortality and survival function, instead of failure rate or hazard rate as used
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in industrial applications. In actuarial science the primary interest is to see how to
incorporate such dual information while determining the premiums and the actuar-
ial present value of benefit in pension funding. In Biostatistics, theory of multiple
decrement models is known as the theory of competing risks. In Sect. 1.2, it will be
clear why it is referred to as theory of competing risks.

The theory of life table when there is a single mode of exit can be extended to
a more general theory of multiple decrement models involving the effect of several
causes of decrement on a group of individuals. The life table when the cause of death
is not taken into account will be referred to as a single decrement table. The basic
underlying random variable in a single decrement table is the future life time random
variable. Chapter 3 of Bowers et al. (1997) and Chap. 4 of Deshmukh (2009) have
discussed in detail the construction of life table, now referred to as single decrement
table. In this chapter, we discuss the generalization of theory of single decrement
model to the multiple decrement model in which we consider a group of a large
number of lives subject to several causes of decrement. The multiple decrement table
is very similar to the single decrement table, except that the lx column is reduced by
several dx ’s rather than one. These several dx columns correspond to several causes
of decrement. Thus, in the theory of multiple decrement models, one more random
variable comes in a picture, and that is the cause of termination. The next section
introduces this second random variable J (x) and discusses the joint distribution of
J (x) and the future life random variable T (x).

1.2 Time to Decrement and Cause of Decrement Random
Variables

Suppose that T (x) ≡ T is a continuous random variable denoting the time until
death of (x) in a single decrement model or time until termination from a status,
joint life and last survivor status, as defined for multiple lives or time until exit
from a certain group, such as employment with a particular employer. There may be
more than one cause for termination from a given status. Suppose that J (x) ≡ J is
a discrete random variable denoting the cause of decrement random variable. Some
illustrations, related to applications discussed in the previous section, are given be-
low:

1. In pension funding and employee benefit applications, the random variable J

takes values 1, 2, 3, or 4 depending on whether termination or exit from the
group is due to withdrawal, disability, death, or retirement, respectively.

2. In life insurance applications, J could be assigned values 1 and 2 depending
on whether the insured dies or chooses to terminate payment of premiums. If J

takes value 1, then benefit may be 1 unit, and if J = 2, then benefit may be the
fraction of accumulated value of the premiums paid.

3. In public health applications, J could be 1, 2, 3, 4 depending on whether death
was caused by cardiovascular disease, cancer, accident, or any other cause.
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We now study the joint distribution of T and J and the related marginal and
conditional distributions, as these are basic ingredients in premium calculation. In
this setup, T is a continuous random variable, while J is a discrete random variable
with values 1,2, . . . ,m. We cannot have the joint probability density function or
joint probability mass function of these two random variables. But we can define the
joint distribution function and hence can find joint probabilities of interest. Suppose
that

hx(j) = h(j) = P
[
J (x) = j

]
, j = 1,2, . . . ,m,

denotes the probability mass function of J and g(t) denotes the probability density
function of T . Suppose that

f (t, j)dt = P
[
t < T ≤ t + dt, J = j

]

is the probability of decrement in (t, t + dt) due to cause j . Then the probability of
decrement in the interval [a, b] due to cause j and the probability of decrement in
the interval [a, b] due to any cause are respectively given by

P [a ≤ T ≤ b,J = j ] =
∫ b

a

f (s, j) ds and P [a ≤ T ≤ b] =
m∑

j=1

∫ b

a

f (s, j) ds.

It is to be noted that f (t, j) does not have interpretation of joint density as T is
continuous and J is discrete. The probability mass function h(j) and the probability
density function g(t) are related to f (t, j) as follows:

h(j) = P [J = j ] =
∫ ∞

0
f (s, j) ds and g(t) =

m∑

j=1

f (t, j).

The international actuarial notation for the functions of the joint distribution of
the time-until-decrement random variable and cause of termination in the multi-
ple decrement model are as follows. t q

(j)
x denotes the probability of decrement in

(x, x + t) due to cause j and is given by

t q
(j)
x = P

[
T (x) ≤ t, J (x) = j

]=
∫ t

0
f (s, j) ds and

∞q
(j)
x = h(j), j = 1,2, . . . ,m.

Suppose that the symbol (τ ) indicates that a function refers to all causes. Then,

t q
(τ)
x = P [T ≤ t] = G(t) =

∫ t

0
g(s) ds,

tp
(τ)
x = 1 − t q

(τ)
x = P [T > t] = S(x + t)

S(x)
= e− ∫ t

0 μ
(τ)
x+s ds, and
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μ(τ)
x (t) = g(t)

1 − G(t)
= − 1

tp
(τ)
x

d

dt
tp

(τ)
x = μ

(τ)
x+t tp

(τ)
x

tp
(τ)
x

= μ
(τ)
x+t .

In the above functions, μ
(τ)
x+s denotes the force of decrement corresponding to the

life-length random variable X at age x + s, where decrement can occur due to any
one of the m causes. μ

(τ)
x (t) denotes the force of decrement corresponding to the

random variable T (x) at t . As in single decrement model, the force of decrement
of T (x) at t is the same as the force of decrement of X at x + t . t q

(τ)
x denotes the

distribution function of T (x) at t , it is chance of decrement of (x) in (x, x + t) due to
any cause, conditional on survival up to age x. tp

(τ)
x denotes the survival function of

T (x) at t ; it is the probability of survival of (x) up to x + t . The force of decrement
due to cause j , conditional on survival of (x) to x + t is defined as

μ
(j)
x (t) = f (t, j)

1 − G(t)
= f (t, j)

tp
(τ)
x

.

Since f (t, j) does not have interpretation of joint density, μ(j)
x (t) also does not have

interpretation of conditional joint density. But f (t, j)dt , j = 1, . . . ,m, t ≥ 0, can be
expressed as

f (t, j)dt = P
[
t < T (x) ≤ t + dt, J = j

]

= P [T > t]P [t < T (x) ≤ t + dt, J = j |T > t
]

= tp
(τ)
x μ

(j)
x+t dt.

Thus, f (t, j) = tp
(τ)
x μ

(j)
x+t , j = 1, . . . ,m, t ≥ 0. Substituting this expression in

μ
(j)
x (t), we get μ

(j)
x (t) = μ

(j)
x+t .

Intuitively it is clear that the total force of decrement is the addition of the indi-
vidual forces. We prove it algebraically in the following:

Result 1.2.1 The total force of decrement is the sum of the forces of decrement due
to m causes.

Proof By definition,

t q
(τ)
x =

∫ t

0
g(s) ds =

∫ t

0

m∑

j=1

f (s, j) ds =
m∑

j=1

∫ t

0
f (s, j) ds =

m∑

j=1

t q
(j)
x .

Further,

t q
(j)
x =

∫ t

0
f (s, j) ds ⇒ d

dt
tq

(j)
x = f (t, j).
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Therefore,

μ(τ)
x (t) = g(t)

1 − G(t)
= 1

tp
(τ)
x

d

dt
tq

(τ)
x = 1

tp
(τ)
x

d

dt

m∑

j=1

t q
(j)
x

= 1

tp
(τ)
x

m∑

j=1

f (t, j) =
m∑

j=1

f (t, j)

tp
(τ)
x

=
m∑

j=1

μ
(j)
x (t),

and the result is proved. �

The conditional probability mass function of J given decrement at time t is given
by

h(j |T = t) = f (t, j)

g(t)
= tp

(τ)
x μ

(j)
x+t

tp
(τ)
x μ

(τ)
x+t

= μ
(j)
x+t

μ
(τ)
x+t

= μ
(j)
x+t /

m∑

j=1

μ
(j)
x+t .

With the definitions of μ
(j)
x+t and μ

(τ)
x+t , we have for j = 1,2, . . . ,m,

f (t, j) = tp
(τ)
x μ

(j)
x+t , h(j) = ∞q

(j)
x , g(t) =

m∑

j=1

f (t, j) = tp
(τ)
x μ

(τ)
x+t ,

and

t q
(j)
x =

∫ t

0
f (s, j) ds =

∫ t

0
sp

(τ)
x μ

(j)
x+s ds.

It is to be noted that the expression for t q
(j)
x is similar to that of t qx , with an ex-

ception of superscript j . Further, the probability t q
(j)
x of decrement between ages x

to x + t due to cause j depends on sp
(τ)
x , 0 ≤ s ≤ t , and thus on all the component

forces of decrement. Consequently, when the forces for decrements other than j are
increased,

tp
(τ)
x = 1 − t q

(τ)
x = 1 −

m∑

j=1

t q
(j)
x

is reduced, and hence t q
(j)
x also gets reduced. In view of this phenomenon, mul-

tiple decrement theory is also known as the theory of competing risks in survival
analysis. The following examples illustrate the functions defined above for multiple
decrement model and their interrelations.

Example 1.2.1 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement:

μ
(1)
x+t = 0.0005tax

1 , t ≥ 0, μ
(2)
x+t = 0.001tax

2 , t ≥ 0, a1, a2 ≥ 0.
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Fig. 1.1 Graphs of t p
(τ)
x for

x = 30,40,50, and 60

(i) For this model, find the expression for tp
(τ)
x , f (t, j), t q

(j)
x , j = 1,2, and g(t).

Plot tp
(τ)
x , f (t, j), j = 1,2, and g(t) for x = 30,40,50, and 60 when a1 = 1.03

and a2 = 1.04.
(ii) Obtain the marginal distribution of J and conditional distribution of J given T .

Solution For the given two decrement model,

μ
(τ)
x+s = μ

(1)
x+s + μ

(2)
x+s = 0.0005sax

1 + 0.001sax
2 = 0.0005s

(
ax

1 + 2ax
2

)
.

Hence, the survival probability tp
(τ)
x is given by

tp
(τ)
x = exp

[
−
∫ t

0

[
0.0005s

(
ax

1 + 2ax
2

)]
ds

]

= exp
[−0.00025t2(ax

1 + 2ax
2

)]
, t ≥ 0.

Figure 1.1 shows the graph of tp
(τ)
x for four ages 30, 40, 50, and 60. For all ages,

tp
(τ)
x is a decreasing function, being a survival function, and decrease is steep for

age 60, as expected. The values of tp
(τ)
60 are almost 0 beyond t = 30.

The joint distribution of T and J is specified by

f (t, j) =
{

exp[−0.00025t2(ax
1 + 2ax

2 )]0.0005tax
1 if t ≥ 0, j = 1,

exp[−0.00025t2(ax
1 + 2ax

2 )]0.001tax
2 if t ≥ 0, j = 2.
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Fig. 1.2 Graphs of g(t), f (t,1), and f (t,2)

The marginal probability density function of T for t ≥ 0 is

g(t) =
2∑

j=1

f (t, j) = tp
(τ)
x μ

(τ)
x+t

= exp
[−0.00025t2(ax

1 + 2ax
2

)][
0.0005t

(
ax

1 + 2ax
2

)]
.

Figure 1.2 shows the graphs of g(t), f (t,1), and f (t,2) for four ages 30, 40, 50,
and 60. We note that shapes of the curves for g(t), f (t,1), and f (t,2) for all ages
are the same. However, as age increases, skewness increases.

By definition,

t q
(1)
x =

∫ t

0
f (s,1) ds = ax

1 [1 − e−(ax
1 +2ax

2 )(0.00025t2)]
ax

1 + 2ax
2

and

t q
(2)
x =

∫ t

0
f (s,2) ds = 2ax

2 [1 − e−(ax
1 +2ax

2 )(0.00025t2)]
ax

1 + 2ax
2

.
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If we allow t to tend to ∞ in these two expressions, we get the marginal probability
mass function of J . It is as follows:

h(j) =
⎧
⎨

⎩

∫∞
0 f (t,1)dt = ax

1
ax

1 +2ax
2

if j = 1,
∫∞

0 f (t,2)dt = 2ax
2

ax
1 +2ax

2
if j = 2.

Finally the conditional probability mass function of J , given decrement at t , is

h(1|t) = ax
1

ax
1 + 2ax

2
, t ≥ 0, and h(2|t) = 2ax

2

ax
1 + 2ax

2
, t ≥ 0.

It is to be noted that in this model the conditional distribution of J is the same as the
marginal distribution of J . Thus, for this model, T and J are independent random
variables.

Example 1.2.2 A multiple decrement model with two causes of decrement is speci-
fied by the following two forces of decrement:

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.

For this model, calculate tp
(τ)
x , g(t), f (t, j), t q

(j)
x , j = 1,2, and the marginal and

conditional distributions of J given T .

Solution For this model, μ
(τ)
x+s = μ

(1)
x+s + μ

(2)
x+s = BCx+s + A. It is to be noted that

μ
(1)
x+s is the force of mortality corresponding to Gompertz’ law while μ

(τ)
x+s is the

force of mortality corresponding to Makeham’s law. The survival probability tp
(τ)
x

is given by

tp
(τ)
x = exp

[
−
∫ t

0

[
A + BCx+s

]
ds

]
= exp

[−(At + mCx
(
Ct − 1

))]
,

where m = B/ loge C. Hence, the marginal probability density function of T is

g(t) = tp
(τ)
x μ

(τ)
x+t = exp

[−(At + mCx
(
Ct − 1

))](
A + BCx+t

)
if t ≥ 0,

and the joint distribution of T and J is specified by

f (t, j) =
{

exp[−(At + mCx(Ct − 1))](BCx+t ) if t ≥ 0, j = 1,

exp[−(At + mCx(Ct − 1))](A) if t ≥ 0, j = 2.

By definition,

t q
(1)
x =

∫ t

0
f (s,1) ds =

∫ t

0
exp
[−(As + mCx

(
Cs − 1

))](
BCx+s

)
ds.
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To obtain the expression for t q
(1)
x , denote mCx by αx . Then f (s,1) is expressible

as

f (s,1) = αxe
αx logCe−As−αxCs

Cs for s > 0.

Substituting Cs = y, we get e−As = y−A/ logC , Cs logC ds = dy, and the range of
integration is from 1 to Ct . Suppose (−A/ logC) + 1 = λ. For Makeham’s model
to be an appropriate model for human life length, A is usually very small, and C

ranges from 1 to 1.12. For this set of A and C, λ is always positive. Then t q
(1)
x

simplifies to

t q
(1)
x = αxe

αx

∫ Ct

1
e−αxyyλ−1 dy.

When λ > 0, with some norming constant, integral can be expressed in terms of
incomplete gamma function. Thus,

t q
(1)
x = eαx �(λ)α1−λ

x P
[
1 ≤ W ≤ Ct

]
,

where W follows the gamma distribution with shape parameter λ and scale param-
eter αx and with the probability density function fW(u) = f (u) given by

f (u) = αλ
xe−αxuuλ−1

�(λ)
, 0 < u < ∞.

Given the values of parameters A, B , and C and age x, the probability P [1 ≤ W ≤
Ct ] can be obtained using any statistical software such as minitab, matlab, SYSTAT,
or R. Once we get t q

(1)
x , t q

(2)
x is obtained as t q

(2)
x = t q

(τ)
x − t q

(1)
x = 1 − tp

(τ)
x −

t q
(1)
x . With this expression for t q

(1)
x , the marginal probability mass function of J is

obtained immediately by allowing t to tend to ∞ in t q
(1)
x . Thus,

h(1) =
∫ ∞

0
f (t,1) dt = eαx �(λ)α1−λ

x P [W ≥ 1] and h(2) = 1 − h(1).

Finally the conditional probability mass function of J , given decrement at t , is

h(1|t) = BCx+t

A + BCx+t
, t ≥ 0, and h(2|t) = A

A + BCx+t
, t ≥ 0.

For this model conditional distribution of J given T is different from the marginal
distribution of J . Thus, T and J are not independent random variables.

In Example 1.2.3, we find numerical values of all the functions derived in Exam-
ple 1.2.2 for specific values of the parameters. We use R software to compute these
functions. R is used for all the computations in this book. Hence, a brief introduction
to R is given below.
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Introduction to R R is a system for statistical analysis and graphics created by
Ross Ihaka and Robert Gentleman (1996). R is both a software and a programming
language considered as dialect of language S created by AT & T laboratories. R is
advocated for a variety of reasons, some of which are given below.

(i) R is a free software. It can be obtained from Comprehensive R Archive
Network (CRAN), which may be reached from the R project web site at
www.r-project.org. The files needed to install R are distributed from this site.
The instructions for installation are also available at this site.

(ii) It has an excellent built-in-help system and good facilities for drawing graphs.
(iii) R is a computer programming language; hence for those who are familiar with

programming language, it will be very easy to write programs with user-written
functions for required computations.

R is an interpreted language, meaning that all commands typed on the key board
are directly executed without building in the complete programme like other pro-
gramming languages such as C, Pascal, etc. Furthermore, the syntax of R is very
simple and intuitive. Variables, data, functions, and results are stored in the active
memory of R in the form of objects. The data analysis in R proceeds as an interactive
dialogue with the interpreter. As soon as we type command at the prompt (>) and
press the enter key, the interpreter responds by executing the command. R language
includes the usual arithmetic operations, such as + for addition, - for subtraction,
* for multiplication, / for division, and ^ for exponentiation, with usual hierarchy.
R uses the assignment operator <- (“less than” sign followed by “minus” sign) to
give an object its value. For example, the command

y <- 20;

assigns the value 20 to object y.
In computation of monetary functions discussed in this book, we use the follow-

ing built-in functions given in R. The most useful R function for entering small data
sets is the c function, that is, combine function. This function combines elements
together and constructs a vector. For example, the command

y <- c(10, 20, 30, 40);

constructs a vector with four elements 10, 20, 30, and 40. A command, length(y)
specifies the number of elements in a vector. When a series of observations is stored
in R as a vector, the standard arithmetic functions and operators apply to vectors on
an element-wise basis. For example, the command for division of two vectors and
its output is given below:

c(10, 20, 30, 40)/c(5, 4, 3, 2)
[1] 2 5 10 20

It is to be noted that the division is done element-wise. Such an operation is useful in
the calculation of premiums for n-year term and endowment insurance for various
values of n in one command. Observe the following command and its output:

http://www.r-project.org
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Table 1.1 The output,
formatted with the help of
Excel

x y

1 10 2

2 20 3

3 30 4

4 40 5

c(10, 20, 30, 40)/2
[1] 5 10 15 20

In this illustration, denominator 2 is repeated 4 times to construct a vector of
length 4, each element of which is 2. To combine various column vectors of the
same length in a matrix form or a tabular form, we use the data.frame function
from R. Tables presented in all the chapters are constructed using the data.frame
function. Suppose that we have two vectors: x = (10,20,30,40), y = (2,3,4,5).
The following R command creates two vectors x and y:

x <- c(10, 20, 30, 40); y <- c(2, 3, 4, 5);

The command

z <- data.frame(x, y);

constructs a table consisting of three columns, first corresponds to row number,
second corresponds to x, and the third corresponds to y. Table 1.1 presents the
output, formatted with the help of Excel.

In most applications, data sets are large, for example, values of q
(j)
x for number

ages x values and j = 1,2, . . . ,m modes of decrement. Suppose that the Excel file
consists of m + 1 columns of values of x and q

(j)
x for j = 1,2, . . . ,m and we want

to import these data from Excel for the calculation of premiums. The procedure for
this consists of the following steps. First we save the file as tab delimited text file
with some name, qx.txt, say on local disk D and then close the file. Suppose that
the columns have headings as x and q

(j)
x , j = 1,2, . . . ,m. In R console type the

command

z <- read.table("D:/qx.txt", header=T);

This command stores the file qx.txt in data object z. The first argument of this
function gives the path of the file, which should be enclosed in quotes. The second
argument header is logical. It is TRUE if the columns in the data set are named,
otherwise it is FALSE. The command

x <- z[, 1];

extracts all elements of the first column of matrix or table z, which is a column of x

values and assigns it to object x. Similarly, the command

q <- z[, 2];
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extracts all elements of the second column of z, which is a column of q
(1)
x values

and assigns it to object q.
Following are some commands frequently used in the book. The command

t <- seq(0, 60, 1) generates a sequence of numbers from 0 to 60 with in-
crement of 1 unit. sum(t) gives sum of the elements of object t. round(y, 4)
command rounds the values in object y to 4 decimals. The command gamma(p)
produces the value of gamma function at argument p, while the command
pgamma(x, shape, scale) evaluates the distribution function of gamma dis-
tribution with specified shape and scale parameters at x. In previous versions of R,
the irrational number e is stored as exp(1), but in recent version R 2.13.1 e is
stored as e. We will use all these and some more functions in the computation of
various monetary functions in the following chapters. Explanation of each function
is given in front of each command. To find out more functions and its usage, one
can use built-in-help system of R. For example,

?c ?read.table ?plot

will display information on these functions, its usage with illustration. For more
details about R and use of R in statistical analysis, reader may refer to the books
Verzani (2005), Purohit et al. (2008) and Deshmukh and Purohit (2007).

In Example 1.2.3, we find numerical values of all the functions derived in Exam-
ple 1.2.2 for specific values of the parameters. The corresponding R commands are
given for all the computations.

Example 1.2.3 Suppose that in Example 1.2.2, A = 0.0008, B = 0.00011, and C =
1.095.

(i) Draw the graph of survival probability tp
(τ)
x of T (x) for x = 30,40,50,60.

(ii) Draw the graph of probability density function g(t) of T (x) for x = 30,40,50,

60.
(iii) Prepare a table of tp

(τ)
x for t = 1,2, . . . ,10 and for x = 30,40,50,60.

(iv) Prepare a table of t q
(1)
x and t q

(2)
x for t = 1,2, . . . ,10 and for x = 30,40,50,60.

(v) Find the distribution of J (x) for x = 30,40,50,60.
(vi) Find the conditional distribution of J (x) given T (x) = 10 for x = 30,40,50,

60.

Solution In Example 1.2.2 we have obtained expressions for all the required func-
tions. We use R software to compute the values of various functions and their plots.
Following is a set of R commands to obtain the numerical values of these functions
for specified values of the parameters:

a1 <- 0.0008 #parameter A in μ
(2)
x+t;

b <- 0.00011 #parameter B in μ
(1)
x+t;

a <- 1.095 #parameter C in μ
(1)
x+t;

m <- b/log(a, base=exp(1));
p <- (-a1/log(a,base=exp(1)))+1 #parameter λ as defined

#in Example 1.2.2;
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The argument, base = exp(1), in the function log can be ignored as it is default.
The following set of commands computes tp

(τ)
x , t q

(τ)
x , t q

(1)
x , t q

(2)
x , g(t), h(1), h(2)

for x = 30, which are stored in objects p1, q1, q11, q12, g1, h11, and h12,
respectively:

x <- 30;
j <- m*a^x; # αx as defined in Example 1.2.2 for x = 30;
t <- seq(0, 60, 1);
e <- exp(1);
p1 <- e^(j-a1*t-j*(a^t)) # tp

(τ)
x ;

q1 <- 1-p1; # t q
(τ)
x ;

q11 <- e^j*gamma(p)*(j^(1-p))*(pgamma(a^t, p, j)
-pgamma(1, p, j)) # t q

(1)
x ;

q12 <- q1-q11 # t q
(2)
x ;

g1 <- p1*(a1+b*a^(x+t)) # g(t);
h11 <- e^j*gamma(p)*(j^(1-p))*(1-pgamma(1, p, j)) # h(1);
h12 <- 1-h11 # h(2);

Suppose that p2, q2, q21, q22, g2, h21, h22 denote tp
(τ)
x , t q

(τ)
x , t q

(1)
x , t q

(2)
x ,

g(t), f (t,1), f (t,2), h(1), h(2), respectively, for x = 40. Suppose that p3, q3,
q31, q32, g3, h31, h32 denote tp

(τ)
x , t q

(τ)
x , t q

(1)
x , t q

(2)
x , g(t), f (t,1), f (t,2),

h(1), h(2), respectively, for x = 50 and p4, q4, q41, q42, g4, h41, h42 denote

tp
(τ)
x , t q

(τ)
x , t q

(1)
x , t q

(2)
x , g(t), f (t,1), f (t,2), h(1), h(2), respectively, for x = 60.

Then the following set of commands produces a table of tp
(τ)
x for t = 1 to 10 and

x = 30, 40, 50, and 60:

y <- data.frame(p1, p2, p3, p4);
y1 <- round(y, 4);
y2 <- y1[2:11, ];
t <- 1:10;
y3 <- data.frame(t, y2);
y3 #Table 1.2 of tp

(τ)
x for t = 1 to 10and x = 30,40,50 and 60;

From Table 1.2 we note that for all the ages, tp
(τ)
x decreases as t increases. Fur-

ther, rate of decrease increases as age increases. The following set of commands
draws a graph of tp

(τ)
x for x = 30,40,50, and 60:

par(mfrow=c(1, 1), font.axis=2, font.lab=2,
cex.axis=1, cex.lab=1.5, font=2, lwd=2);

plot(t, p1, "o", pch = 20, cex=0.7, main=" ",
xlab=" ", ylab=" ");

lines(t, p2, "o", pch = 15, cex=0.7, main=" ");
lines(t, p3, "o", pch = 24, cex=0.7, main=" ");
lines(t, p4, "o", pch = 3, cex=0.7, main=" ");
legend(locator(1), pch=c(20, 15, 24, 3),

legend=c("30", "40", "50", "60"), cex=1.2);



1.2 Time to Decrement and Cause of Decrement Random Variables 15

Table 1.2 Survival
probability t tp

(τ)
30 t p

(τ)
40 t p

(τ)
50 t p

(τ)
60

1 0.9975 0.9949 0.9885 0.9729

2 0.9947 0.9894 0.9761 0.9441

3 0.9919 0.9834 0.9629 0.9137

4 0.9888 0.9771 0.9486 0.8815

5 0.9855 0.9702 0.9333 0.8477

6 0.9820 0.9628 0.9169 0.8122

7 0.9783 0.9549 0.8993 0.7751

8 0.9743 0.9463 0.8805 0.7364

9 0.9700 0.9371 0.8604 0.6964

10 0.9653 0.9272 0.8391 0.6550

Fig. 1.3 Graph of survival
function of T (x)

From Fig. 1.3 we note that for all ages, tp
(τ)
x is a decreasing function, being a

survival function, and decrease is steep for age 60, as expected. The values of tp
(τ)
60

are almost 0 beyond t = 30. In the above set of commands which draws the graph
of tp

(τ)
x , if we replace p1, p2, p3, p4 by g1, g2, g3, g4, we get a set of commands to

draw a graph of g(t) for x = 30,40,50, and 60 (see Fig. 1.4). As age increases, the
graph of g(t) becomes more and more skew.

The following set of commands produces a table of t q
(1)
x and t q

(2)
x for t = 1 to

10 and x = 30,40,50, and 60:

d <- data.frame(q11, q12, q21, q22, q31, q32, q41, q42);
d1 <- round(d, 4); d2 <- d1[2:11, ];
d3 <- data.frame(t, d2);
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Fig. 1.4 Graph of probability
density function of T (x)

Table 1.3 Table of decrement probabilities

t t q
(1)
30 t q

(2)
30 t q

(1)
40 t q

(2)
40 t q

(1)
50 t q

(2)
50 t q

(1)
60 t q

(2)
60

1 0.0018 0.0008 0.0043 0.0008 0.0107 0.0008 0.0263 0.0008

2 0.0037 0.0016 0.0091 0.0016 0.0223 0.0016 0.0543 0.0016

3 0.0057 0.0024 0.0142 0.0024 0.0348 0.0024 0.0840 0.0023

4 0.0080 0.0032 0.0198 0.0032 0.0483 0.0031 0.1154 0.0030

5 0.0105 0.0040 0.0259 0.0039 0.0629 0.0039 0.1486 0.0037

6 0.0132 0.0048 0.0325 0.0047 0.0785 0.0046 0.1834 0.0044

7 0.0162 0.0055 0.0396 0.0055 0.0954 0.0053 0.2199 0.0050

8 0.0194 0.0063 0.0474 0.0062 0.1135 0.0061 0.2580 0.0056

9 0.0229 0.0071 0.0559 0.0070 0.1328 0.0067 0.2975 0.0062

10 0.0268 0.0079 0.0651 0.0077 0.1535 0.0074 0.3382 0.0067

d3 #Table 1.3 of t q
(1)
x and t q

(2)
x for t = 1to 10 and

# x = 30,40,50 and 60;

It is to be noted that t q
(1)
x increases as x increases and also as t increases, as ex-

pected. The values of t q
(2)
x are very small and do not vary much as age varies.

The following set of commands produces probability mass function of J (x) for
x = 30,40,50, and 60:

h1 <- c(h11, h21, h31, h41);
h2 <- c(h12, h22, h32, h42);
h <- round(data.frame(h1, h2), 4);
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Table 1.4 Probability
function of J (x) Age h(1) h(2)

30 0.9697 0.0303

40 0.9768 0.0232

50 0.9833 0.0167

60 0.9889 0.0111

Table 1.5 Conditional
distribution of J (x) given
T (x) = 10

x P [J (x) = 1|T (x) = 10] P [J (x) = 2|T (x) = 10]

30 0.8384 0.1616

40 0.9278 0.0722

50 0.9696 0.0304

60 0.9875 0.0125

age <- c(30, 40, 50, 60);
h3 <- data.frame(age, h);
h3 #Probability mass function of J (x) for x = 30,40,50,

#and 60 as given in Table 1.4;

It is to be noted that chance of decrement due to nonaccident cause is higher than
that for accident cause for all ages, which seems reasonable. Further, h(1) increases
with age, while h(2) decreases with age. We find conditional distribution of J (x)

given T (x) = 10 for x = 30,40,50, and 60 using the following set of commands:

t <- 10;
x <- c(30, 40, 50, 60);
c11 <- b*a^(x+t)/(a1+b*a^(x+t));
c12 <- a1/(a1+b*a^(x+t));
d5 <- data.frame(c11, c12);
d6 <- round(d5, 4);
d8 <- data.frame(x, d6);
d8 #Conditional distribution of J (x) given T (x) = 10

#for x = 30,40,50 and 60 as presented in Table 1.5;

In the conditional setup also, the probability of decrement due to cause 1 is higher
than that for cause 2.

Example 1.2.4 A multiple decrement model has two causes of decrement. Both
causes have constant forces of decrement μ(1) and μ(2). Suppose ∞q

(1)
x = 0.36 and

E(T (x)) = 14. Calculate μ(1) and μ(2).

Solution We know that

∞q(1)
x =

∫ ∞

0
tp

(τ)
x μ

(1)
x+t dt = μ(1)E

(
T (x)

)
.
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Hence,

μ(1) = ∞q
(1)
x

E(T (x))
= 0.36

14
= 0.0257 and

μ(2) = ∞q
(2)
x

E(T (x))
= 1 − ∞q

(1)
x

E(T (x))
= 0.64

14
= 0.0457.

We now define the discretized version of joint distribution of T (x) and J (x)

analogous to the discretized version K(x) of T (x) defined for a single decrement
model. It is useful to find the discrete premiums, that is, when benefit is payable at
the end of year of death. In multiple decrement models, it has an application in pen-
sion funding also. In any pension plan there is a mandatory retirement age, an age at
which all active employees must retire. In such instances, a continuous distribution
for time T until termination is inadequate, as there is a positive probability of decre-
ment at a specified time t and we have to work with the distribution of curtate-future
time until decrement of (x). The random variable K , the curtate-future time until
decrement of (x), is defined as the greatest integer strictly smaller than T , and it is
similar to that in single decrement model. Using the joint distribution of T and J ,
we can write the joint probability mass function of K and J . Suppose that the pos-
sible values of J are 1,2, . . . ,m. Then the joint probability mass function of K(x)

and J (x) is given by

P [K = k, J = j ] = p(k, j) = P [k < T ≤ k + 1, J = j ]

=
∫ k+1

k
tp

(τ)
x μ

(j)
x+t dt =

∫ 1

0
k+sp

(τ)
x μ

(j)
x+k+s ds (k + s = t)

=
∫ 1

0
kp

(τ)
x sp

(τ)
x+kμ

(j)
x+k+s ds = kp

(τ)
x

∫ 1

0
sp

(τ)
x+kμ

(j)
x+k+s ds

= kp
(τ)
x q

(j)
x+k.

Once we obtain the joint distribution of K and J , we get the marginal distributions
and their expectations and variances. It is easy to see that

P
[
K(x) = k

] =
m∑

j=1

p(k, j) =
m∑

j=1

kp
(τ)
x q

(j)
x+k = kp

(τ)
x q

(τ)
x+k and

P
[
J (x) = j

] = h(j) =
∞∑

k=0

p(k, j) =
∞∑

k=0

P
[
k < T ≤ k + 1, J (x) = j

]
.

The conditional expectation of K(x) given J (x) = j is given by

E
(
K(x)|J (x) = j

) =
∞∑

k=0

kP
[
K(x) = k|J = j

]
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=
∞∑

k=0

kp(k, j)/P [J = j ], j = 1,2, . . . ,m.

The following example discusses the computations of all these functions for a two-
decrement model, as specified in Example 1.2.2.

Example 1.2.5 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.

For this model, with A = 0.0008, B = 0.00011, and C = 1.095, compute the joint
probability mass function of K(30) and J (30). Find E(K(30)), E(K(30)|J (30) =
1), and E(K(30)|J (30) = 2).

Solution The joint probability mass function of K(30) and J (30) is given by

P
[
K(30) = k, J (30) = j

]= kp
(τ)
30 q

(j)

30+k.

In Example 1.2.2, we have obtained the expressions for tp
(τ)
x and t q

(1)
x . Further,

t q
(2)
x = t q

(τ)
x − t q

(1)
x . Thus we have, kp

(τ)
30 = exp[−Ak + α30 − α30C

k] for k =
0,1, . . . ,69, where α30 = mC30. Here we assume that the limiting age is 100. It
is valid for the given model with the given set of parameters as the probability of
survival beyond 100 is 0.00002. q

(1)
x+k is given by

q
(1)
x+k = eαx+k�(λ)α1−λ

x+kP [1 ≤ W ≤ C],
where W follows the gamma distribution with shape parameter λ and scale parame-
ter αx+k and αx+k = mCx+k . For the specified values of A, B , and C, λ is positive.
Using these formulae for kp

(τ)
30 and q

(j)

30+k for j = 1,2, we have the following set of
R commands to compute the joint mass function of K(30) and J (30):

a1 <- 0.0008 #A;
b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
f <- (-a1/log(a,base=exp(1)))+1

#parameter λ as defined in Example 1.2.2;
x <- 30;
k <- 0:69;
j <- m*a^x;
j1 <- m*a^(x+k);
e <- exp(1);
p <- e^(-a1*k+j-j*a^k) #vector of kp

(τ)
30 for k = 0 to 69;

q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)
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-pgamma(1, f, j1)) #vector of q
(1)
30+k for k = 0 to 69;

q2 <- -e^(-a1-j1*a+j1)-q1 #vector of q
(2)
30+k for k = 0 to69;

p1 <- p*q1 #vector of P [K(30) = k, J (30) = 1] for k = 0 to 69;
p2 <- p*q2 #vector of P [K(30) = k, J (30) = 2] for k = 0 to 69;
p3 <- p1+p2 #vector of P [K(30) = k] for k = 0 to 69;
d <- round(data.frame(p1, p2, p3), 5);
d1 <- data.frame(k, d) #Joint distribution of J (30) and

#K(30) and marginal distribution
#of K(30) as given in Table 1.6;

h1 <- sum(p1) #P [J (30) = 1];
h2 <- sum(p2) #P [J (30) = 2];
e30 <- sum(k*p3) #E(K(30));
e130 <- sum(k*p1)/h1 #E(K(30)|J (30) = 1);
e230 <- sum(k*p2)/h2 #E(K(30)|J (30) = 2);
e30; e130; e230;

We get h1 = P [J = 1] = 0.9697, h2 = P [J = 2] = 0.0303, E(K(30)) = 37.39,
E(K(30)|J (30) = 1) = 37.91, and E(K(30)|J (30) = 2) = 20.66. The joint proba-
bility mass function is presented in Table 1.6.

Here we have obtained P [J (30) = 1] = 0.9697 by summing P [K(30) =
k, J (30) = 1] over all values of k and P [J (30) = 2] = 0.0303 by summing
P [K(30) = k, J (30) = 2] for all k. These results are consistent with the results
obtained in Example 1.2.3, using the definition P [J (x) = j ] =∞ q

(j)
x .

Example 1.2.6 Suppose that a multiple decrement model with two causes of decre-
ment is as given in Example 1.2.1:

μ
(1)
x+t = 0.0005tax

1 , t ≥ 0, μ
(2)
x+t = 0.001tax

2 , t ≥ 0.

For this model, obtain the joint distribution of K(x) and J (x). Also obtain the
marginal distribution of K(x).

Solution The joint probability mass function of K(x) and J (x) is given by

P
[
K(x) = k, J (x) = j

]= kp
(τ)
x q

(j)
x+k, j = 1,2.

For the given model, we have derived these functions in Example 1.2.1. Hence, for
k = 0,1, . . . ,

P
[
K(x) = k, J (x) = 1

]= ax+k
1 e−0.00025k2(ax

1 +2ax
2 )[1 − e−0.00025(ax+k

1 +2ax+k
2 )]

ax+k
1 + 2ax+k

2

and

P
[
K(x) = k, J (x) = 2

]= 2ax+k
2 e−0.00025k2(ax

1 +2ax
2 )[1 − e−0.00025(ax+k

1 +2ax+k
2 )]

ax+k
1 + 2ax+k

2

.
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Table 1.6 Joint distribution of K(30) and J (30); Marginal distribution of K(30)

k p(k,1) p(k,2) p(k) k p(k,1) p(k,2) p(k)

0 0.00175 0.00080 0.00255 35 0.02617 0.00050 0.02667

1 0.00191 0.00080 0.00271 36 0.02740 0.00048 0.02788

2 0.00209 0.00079 0.00288 37 0.02857 0.00045 0.02902

3 0.00228 0.00079 0.00307 38 0.02965 0.00043 0.03008

4 0.00249 0.00079 0.00328 39 0.03063 0.00041 0.03103

5 0.00271 0.00079 0.00350 40 0.03146 0.00038 0.03184

6 0.00296 0.00078 0.00375 41 0.03212 0.00036 0.03247

7 0.00323 0.00078 0.00401 42 0.03257 0.00033 0.03290

8 0.00352 0.00078 0.00430 43 0.03280 0.00030 0.03310

9 0.00384 0.00077 0.00461 44 0.03277 0.00028 0.03305

10 0.00419 0.00077 0.00495 45 0.03246 0.00025 0.03271

11 0.00455 0.00077 0.00532 46 0.03185 0.00022 0.03208

12 0.00496 0.00076 0.00572 47 0.03093 0.00020 0.03113

13 0.00540 0.00076 0.00615 48 0.02970 0.00017 0.02987

14 0.00587 0.00075 0.00662 49 0.02817 0.00015 0.02832

15 0.00638 0.00075 0.00713 50 0.02635 0.00013 0.02648

16 0.00693 0.00074 0.00767 51 0.02429 0.00011 0.02440

17 0.00752 0.00073 0.00826 52 0.02203 0.00009 0.02212

18 0.00816 0.00073 0.00889 53 0.01963 0.00007 0.01970

19 0.00885 0.00072 0.00957 54 0.01715 0.00006 0.01721

20 0.00958 0.00071 0.01029 55 0.01467 0.00005 0.01471

21 0.01036 0.00070 0.01107 56 0.01226 0.00003 0.01229

22 0.01120 0.00069 0.01189 57 0.00998 0.00003 0.01001

23 0.01209 0.00068 0.01277 58 0.00791 0.00002 0.00793

24 0.01303 0.00067 0.01371 59 0.00607 0.00001 0.00609

25 0.01403 0.00066 0.01469 60 0.00451 0.00001 0.00452

26 0.01508 0.00065 0.01573 61 0.00323 0.00001 0.00324

27 0.01618 0.00064 0.01682 62 0.00222 0.00000 0.00223

28 0.01733 0.00062 0.01796 63 0.00146 0.00000 0.00147

29 0.01853 0.00067 0.01914 64 0.00092 0.00000 0.00092

30 0.01976 0.00059 0.02035 65 0.00055 0.00000 0.00055

31 0.02102 0.00058 0.02160 66 0.00031 0.00000 0.00031

32 0.02231 0.00056 0.02287 67 0.00016 0.00000 0.00016

33 0.02361 0.00054 0.02415 68 0.00008 0.00000 0.00008

34 0.02490 0.00052 0.02542 69 0.00004 0.00000 0.00004
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The marginal distribution of K(x) is obtained by adding the above two expressions
and is given by

P
[
K(x) = k

]= e−0.00025k2(ax
1 +2ax

2 )
[
1 − e−0.00025(ax+k

1 +2ax+k
2 )
]
.

For the specified values of a1, a2, and x, we use these expressions to compute the
joint probability mass function of K(x) and J (x) and the marginal distribution of
K(x).

In the next section we will discuss how to construct the multiple decrement table
using the multiple decrement model and the related functions defined in this section.

1.3 Multiple Decrement Table

Multiple decrement table is an extension of a single decrement table. In this setup the
column of dx is partitioned in m columns corresponding to m causes of decrement.
We have noted in the previous section that once we have information on the force
of decrement corresponding to m causes, we can find the survival probability and
the decrement probabilities corresponding to all the causes. Thus, as in the setup of
single decrement table, we first consider a random survivorship group approach of
constructing a life table corresponding to m causes of decrement. Suppose that we
have a group of l

(τ )
a lives, each of age a years. Each life is assumed to have the same

joint distribution of time, until decrement and cause of decrement, specified by the
joint probability

f (t, j) dt = tp
(τ)
x μ

(j)
x+t dt, t ≥ 0, j = 1, . . . ,m.

Suppose that L(τ )
x is a random variable indicating the number of survivors at age x

out of the l
(τ )
a lives in the original group at age a. Then L(τ )

x can be expressed as

L(τ )
x =∑l

(τ )
a

i=1 Zi where Zi is defined as, Zi = 1 if the ith life survives up to age x,
x ≥ a, and 0 otherwise. Then E(Zi) = P [Zi = 1] = P [T (a) ≥ x], the same for all
i. Thus, expectation of L(τ )

x , denoted by l
(τ )
x , is given by

l(τ )
x = E

(
L(τ )

x

)= l(τ )
a P

[
T (a) ≥ x

]= l(τ )
a x−ap

(τ)
a .

Further, as in single decrement table, we get

l
(τ )
x+1 = l(τ )

a x+1−ap
(τ)
a = l(τ )

a x−ap
(τ)
a p(τ)

x = l(τ )
x p(τ)

x .

To obtain the analogue of ndx , for each such life, a Bernoulli random variable Yj

is defined as Yj = 1 if an individual from original group of l
(τ )
a individuals suffers

decrement in (x, x + n), x ≥ a, due to cause j and 0 otherwise. Then,

P [Yj = 1] = P
[
x − a ≤ T (a) ≤ x + n − a,J (a) = j

]=
∫ x+n−a

x−a
tp

(τ)
a μ

(j)
a+t dt
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=
∫ n

0
u+(x−a)p

(τ)
a μ

(j)
u+x du, with t − (x − a) = u,

=
∫ n

0
x−ap

(τ)
a up

(τ)
x μ

(j)
u+x du = x−ap

(τ)
a

∫ n

0
up

(τ)
x μ

(j)
u+x du

= x−ap
(τ)
a nq

(j)
x .

Suppose that the random variable nD(j)
x denotes the number of lives who leave the

group between ages x and x + n, x ≥ a, from cause j . Then

nD(j)
x =

l
(τ )
a∑

i=1

Yji .

Its expectation is denoted by nd
(j)
x and is given by

nd
(j)
x = E

(
nD(j)

x

)= l(τ )
a P [Yj = 1] = l(τ )

a x−ap
(τ)
a nq

(j)
x = l(τ )

x nq
(j)
x .

When n = 1, the prefixes are deleted. Thus, d
(j)
x = l

(τ )
x q

(j)
x . Suppose that nD(τ )

x

denotes the number of decrements due to all causes between (x, x + n), x ≥ a.
Then

nD(τ )
x =

m∑

j=1

nD(j)
x .

Taking the expectations, we get

nd
(τ)
x = E

(
nD(τ )

x

)=
m∑

j=1

nd
(j)
x =

m∑

j=1

l(τ )
x nq

(j)
x = l(τ )

x nq
(τ)
x .

With n = 1, d
(τ)
x = l

(τ )
x q

(τ)
x . Further, we note that

l
(τ )
x+1 = l(τ )

x p(τ)
x = l(τ )

x

[

1 −
m∑

j=1

q
(j)
x

]

= l(τ )
x −

m∑

j=1

d
(j)
x = l(τ )

x − d(τ)
x .

These results enable us to obtain l
(τ )
x and d

(j)
x values from p

(τ)
x and q

(j)
x val-

ues. The table depicting the values of p
(τ)
x and q

(j)
x , j = 1, . . . ,m, or l

(τ )
x and d

(j)
x ,

j = 1, . . . ,m, and for integral values of x, is known as a multiple decrement table.
The functions l

(τ )
x , d

(τ)
x , q

(τ)
x defined above can be viewed from the other angle,

and that is nothing but a deterministic survivorship group approach. Thus, the total
force of decrement is viewed as a total rate of decrement. In this approach, a group
of l

(τ )
a lives advances through age subject to deterministic forces of decrement μ

(τ)
y ,

y ≥ a. The number of survivors to age x from the original group of l
(τ )
a lives at age



24 1 Multiple Decrement Models

a is given by

l(τ )
x = l(τ )

a exp

[
−
∫ x

a

μ(τ)
y dy

]
,

and the total decrement between ages x and x + 1 is given by

d(τ)
x = l(τ )

x − l
(τ )
x+1 = l(τ )

x

[
1 − l

(τ )
x+1

l
(τ )
x

]

= l(τ )
x

[
1 − exp

[
−
∫ x+1

x

μ(τ)
y dy

]]
= l(τ )

x

(
1 − p(τ)

x

)= l(τ )
x q(τ)

x .

q
(τ)
x is interpreted as the effective annual total rate of decrement between the age

x to x + 1 governed by the forces μ
(τ)
y , x ≤ y ≤ x + 1. By definition, l

(τ )
x is a

differentiable function of x, when age x is treated as a continuous variable. Hence,

d

dx
l(τ)
x = l(τ )

a exp

[
−
∫ x

a

μ (τ)
y dy

]
[−μ(τ)

x

]= −μ(τ)
x l(τ )

a x−ap
(τ)
a = −μ(τ)

x l(τ )
x

⇒ μ(τ)
x = − 1

l
(τ )
x

d

dx
l(τ)
x = − d

dx
log l(τ )

x .

Thus, μ
(τ)
x is interpreted as the rate of decrement of log l

(τ )
x .

With m causes of decrement, l
(τ )
x survivors will be classified into distinct sub-

groups l
(j)
x , which denotes the number from the l

(τ )
x survivors who will suffer decre-

ment in future ages due to cause j , so l
(τ )
x =∑m

j=1 l
(j)
x . In the deterministic ap-

proach, the force of decrement at age x due to cause j is defined as

μ
(j)
x = lim

h→0

l
(j)
x − l

(j)
x+h

hl
(τ)
x

= − 1

l
(τ )
x

d

dx
l
(j)
x .

In this approach also, the total force of decrement is the sum of the forces of
decrement due to various causes, as is clear from the following. We have

μ(τ)
x = − 1

l
(τ )
x

d

dx
l(τ)
x = − 1

l
(τ )
x

d

dx

m∑

j=1

l
(j)
x = − 1

l
(τ )
x

m∑

j=1

−μ
(j)
x l(τ )

x =
m∑

j=1

μ
(j)
x .

Let q
(j)
x denote the proportion of the l

(τ )
x survivors to age x who terminate due to

cause j before age x + 1 when all m causes of decrement are operating. To obtain
the expression for q

(j)
x in the deterministic approach, recall that

μ
(j)
y = − 1

l
(τ )
y

d

dy
l
(j)
y ⇒ −dl

(j)
y = μ

(j)
y l(τ )

y dy.
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Table 1.7 Decrement
probabilities x q

(1)
x q

(2)
x

50 0.00490 0.01

51 0.00537 0.02

52 0.00590 0.03

53 0.00647 0.04

54 0.00708 0.05

55 0.00773 0.06

56 0.00844 0.06

57 0.00926 0.07

58 0.01019 0.08

59 0.01120 0.09

Therefore,

∫ x+1

x

−dl
(j)
y =

∫ x+1

x

l(τ)
y μ

(j)
y dy ⇔ l

(j)
x − l

(j)

x+1 = d
(j)
x =

∫ x+1

x

l(τ)
y μ

(j)
y dy.

Hence,

d
(j)
x

l
(τ )
x

=
∫ x+1

x

l
(τ)
y

l
(τ )
x

μ
(j)
y du =

∫ x+1

x
y−xp

(τ)
x μ

(j)
y dy =

∫ 1

0
up

(τ)
x μ

(j)
x+u dy = q

(j)
x .

Thus, we get the same expression for q
(j)
x as in the random survivorship approach.

As in the case of single decrement table, the deterministic approach provides an
alternative language and conceptual framework for multiple decrement theory. In
summary, given q

(j)
x for j = 1,2, . . . ,m and l

(τ )
x , we find for x = 1,2, . . . ,

p(τ)
x = 1 −

m∑

j=1

q
(j)
x , l

(τ )
x+1 = l(τ )

x p(τ)
x , d

(j)
x = l(τ )

x q
(j)
x .

On the other hand, given d
(j)
x for j = 1,2, . . . ,m and l

(τ )
x , we find for x = 1,2, . . . ,

q
(j)
x = d

(j)
x / l(τ)

x , j = 1,2, . . . , n, and p(τ)
x = 1 −

m∑

j=1

q
(j)
x .

The following examples illustrate how the multiple decrement tables are constructed
in both these set ups.

Example 1.3.1 Table 1.7 gives the probability of decrement due to two causes.
Cause 1 is a death, and cause 2 is retirement. Age of mandatory retirement is 60



26 1 Multiple Decrement Models

years. Suppose that there are 1000 individuals of age 50 working in a company and
they are subject to the decrement according to the probabilities given in the table.
Find the expected number of individuals who retire at 60. Also find the expected
number of retirements and expected number of deaths in each of the year from 50
to 59.

Solution From the given data we note that q
(j)
x > 0 for 50 ≤ x ≤ 59. Thus, it is

implicitly assumed that the minimum eligible age for retirement is 50. The ex-
pected number of individuals who retire at 60 is l60 in a two-way decrement ta-
ble, as 60 is the mandatory age of retirement. To find the expected number of re-
tirements and expected number of deaths in each of the year from 50 to 59, we
need to construct the two-decrement table. We construct the table using the for-
mulae summarized above and the following R commands. Suppose that Table 1.7
is saved as a file m2.txt on drive D. We begin with importing the data file to R
console:

z <- read.table("D://m2.txt", header=T);
x <- z[, 1];
q1 <- z[, 2] # q

(1)
x ;

q2 <- z[, 3] # q
(2)
x ;

q <- q1+q2 # q
(τ)
x ;

p <- 1-q #p
(τ)
x ;

w <- length(p);
l1 <- 1000;
l <- c(l1, 2:w) #dummy vector to store l

(τ )
x ;

for(i in 2:w)
{
l[i] <- l[i-1]*p[i-1];
}

d1 <- l*q1 # d
(1)
x ;

d2 <- l*q2 # d
(2)
x ;

y <- data.frame(l, d1, d2);
y1 <- round(y, 2);
y2 <- data.frame(x, q1, q2, p, y1);
y2 #Table 1.8;
a <- l[w]-d1[w]-d2[w] # l60;
a;

Thus, l(τ )
60 = l

(τ )
59 −d

(1)
59 −d

(2)
59 = 544.1952, that is, out of a group of 1000 individuals

of age 50, the expected number of individuals who retire at age 60 is 544. Column
d

(2)
x specifies the expected number of early retirements in age interval (x, x + 1)

from ages 50 to 59. Column d
(1)
x specifies the expected number of deaths between

ages x to x + 1, x = 50,51, . . . ,59.
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Table 1.8 Expected number of decrements

Age x q
(1)
x q

(2)
x p

(τ)
x l

(τ )
x d

(1)
x d

(2)
x

50 0.00490 0.01 0.98510 1000.00 4.90 10.00

51 0.00537 0.02 0.97463 985.10 5.29 19.70

52 0.00590 0.03 0.9641 960.11 5.66 28.80

53 0.00647 0.04 0.95353 925.64 5.99 37.03

54 0.00708 0.05 0.94292 882.63 6.25 44.13

55 0.00773 0.06 0.93227 832.25 6.43 49.93

56 0.00844 0.06 0.93156 775.88 6.55 46.55

57 0.00926 0.07 0.92074 722.78 6.69 50.59

58 0.01019 0.08 0.90981 665.49 6.78 53.24

59 0.01120 0.09 0.89880 605.47 6.78 54.49

Table 1.9 Expected number
of decrements x l

(τ)
x d

(1)
x d

(2)
x

50 1000 10 15

51 975 11 16

52 948 12 16

53 920 13 17

54 890 13 18

55 859 15 20

56 824 16 21

57 787 16 23

58 748 18 25

59 705 20 27

Example 1.3.2 Table 1.9 gives the number of survivors and number of deaths due
to two causes. Obtain the chance of decrement due to cause 1 and cause 2 and also
the survival probability for all the ages. Compute the probabilities 2p

(τ)
55 , 2|q(1)

53 , and

2q
(2)
56 .

Solution We compute the decrement probabilities and the survival probability us-
ing following R commands. Suppose that Table 1.9 is saved as a file m3.txt on
drive D.

z <- read.table("D://m3.txt", header=T);
x <- z[, 1];
l <- z[, 2] # l

(τ )
x ;

d1 <- z[, 3] # d
(1)
x ;

d2 <- z[, 4] # d
(2)
x ;
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Table 1.10 Decrement and
survival probabilities x q

(1)
x q

(2)
x q

(τ)
x p

(τ)
x

50 0.0100 0.0150 0.0250 0.9750

51 0.0113 0.0164 0.0277 0.9723

52 0.0127 0.0169 0.0295 0.9705

53 0.0141 0.0185 0.0326 0.9674

54 0.0146 0.0202 0.0348 0.9652

55 0.0175 0.0233 0.0407 0.9593

56 0.0194 0.0255 0.0449 0.9551

57 0.0203 0.0292 0.0496 0.9504

58 0.0241 0.0334 0.0575 0.9425

59 0.0284 0.0383 0.0667 0.9333

q1 <- d1/l # q
(1)
x ;

q2 <- d2/l # q
(2)
x ;

q <- q1+q2 # q
(τ)
x ;

p <- 1-q #p
(τ)
x ;

y <- data.frame(q1, q2, q, p);
y1 <- round(y, 4);
y2 <- data.frame(x, y1);
y2 #Table 1.10;

We compute the required probabilities as follows:

2p
(τ)
55 = p

(τ)
55 p

(τ)
56 = (0.9593)(0.9551) = 0.9162,

2|q(1)
53 = p

(τ)
53 p

(τ)
54 q

(1)
55 = (0.9674)(0.9652)(0.0175) = 0.0163,

2q
(2)
56 = q

(2)
56 + p

(τ)
56 q

(2)
57 = 0.0255 + (0.9551)(0.0292) = 0.0534.

The given data may be used to obtain the same probabilities. The answers agree
to four decimal places:

2p
(τ)
55 = l

(τ )
57

l
(τ )
55

= 787

859
= 0.9162, 2|q(1)

53 = d
(1)
55

l
(τ )
53

= 15

920
= 0.0163,

2q
(2)
56 = d

(2)
56 + d

(2)
57

l
(τ )
56

= 21 + 23

824
= 0.0534.

The sets of R commands given in Examples 1.3.1 and 1.3.2 are useful to construct
the multiple decrement tables for both the approaches for large data sets, large in the
sense of data on more number of ages.
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Table 1.11 Double
decrement table x q

(1)
x q

(2)
x q

(τ)
x l

(τ )
x d

(1)
x d

(2)
x

40 – – 0.0075 – – 12

41 0.002 0.005 – 1800 – –

42 – – – – 5 –

Example 1.3.3 Calculate 3q
(1)
40 for a double-decrement model, on the basis of infor-

mation presented in Table 1.11.

Solution By definition, 3q
(1)
40 = (d

(1)
40 + d

(1)
41 + d

(1)
42 )/ l

(τ)
40 . From the given informa-

tion,

p
(τ)
40 = 1 − q

(τ)
40 = 0.9925 = l

(τ )
41

l
(τ )
40

= 1800

l
(τ )
40

⇒ l
(τ )
40 = 1813.60.

Hence,

d
(τ)
40 = l

(τ )
40 − l

(τ )
41 = 13.60 = d

(1)
40 + d

(2)
40 = d

(1)
40 + 12 ⇒ d

(1)
40 = 1.60,

and

d
(1)
41 = l

(τ )
41 q

(1)
41 = (1800)(0.002) = 3.6.

Hence we get

3q
(1)
40 = (1.6 + 3.6 + 5)/1813.60 = 0.0056.

From the preceding examples we have noted that in building a multiple decre-
ment model, we need to have data on age and number of decrements due to all
causes of decrement for the population under study to estimate q

(j)
x . Large, well-

established employer benefit plans may have such data. In some cases, data are
available on the number of decrements only due to a specific cause j . We discuss in
the next section how to utilize such information to construct a multiple decrement
table. On the contrary, given the multiple decrement table, sometimes it is needed to
obtain the number of decrements when only a specific cause of decrement is opera-
tive and no other causes is operative. The next section also discusses how to obtain
such information from multiple decrement table.

1.4 Associated Single Decrement Model

In the multiple decrement model, different modes of decrement apply different
stresses which are modeled through the force of decrement for each cause. In the
study of relative values of the decremental stresses, the hypothetical elimination of
mortality modes leads to marginal structures. In the associated single decrement
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model all modes, except one, are eliminated. Thus, for each of the causes of decre-
ment in a multiple decrement model, we define a single decrement model that de-
pends only on a particular cause of decrement and then construct the corresponding
decrement table. Such a table is known as the associated single decrement table.
The associated single decrement table shows the operation of single decrement in-
dependent of others. Each table represents a group of lives reduced continuously
by only one decrement. This may appear unrealistic, particularly in considering a
group subject to, say, withdrawal but not to death. However, the study is useful both
in theory and practice. Such associated single decrement tables are also used in
survival analysis (Johnson and Johnson, 1980). The decrement rates in associated
single decrement model are useful in planning and modeling future financial and ac-
tuarial systems where present modes of decrement may be reduced or eliminated at
a future date. In general we cannot directly observe decrements due to single cause
when all the forces of decrement are active.

In the following we discuss how the associated single decrement table is useful
to construct a multiple decrement table, under certain assumptions. The associated
single decrement model functions are defined as follows:

tp
′(j)
x = exp

[
−
∫ t

0
μ

(j)
x+s ds

]
and t q

′(j)
x = 1 − tp

′(j)
x .

tp
′(j)
x is the probability of survival of (x) to age x + t , when a single force j is

operative. t q
′(j)
x is the probability of decrement of (x) in (x, x + t) due to cause j

only. t q
′(j)
x is called the net probability of decrement in Biostatistics as it is net of

other causes of decrement. It is also known as an independent rate of decrement,
because cause j does not compete with other causes in determining t q

′(j)
x . It is

further called the absolute rate of decrement. Sometimes the word rate is used to
avoid the word probability. The symbol t q

(j)
x denotes the probability of decrement

due to cause j between ages x and x + t when more than one cause is working, and
it differs from t q

′(j)
x . Note that tp

(τ)
x = exp(− ∫ t

0 μ
(τ)
x+s ds). As t → ∞, tp

(τ)
x → 0.

However, it may not be true for tp
′(j)
x for all j . To clarify on this, note that

∫ ∞

0
μ

(τ)
x+s ds =

m∑

j=1

∫ ∞

0
μ

(j)
x+s ds.

Thus,
∫∞

0 μ
(τ)
x+s ds = ∞ ⇒ ∫∞

0 μ
(j)
x+s ds is ∞ for at least one j and not necessarily

for all j . Thus there may exist j such that
∫∞

0 μ
(j)
x+s ds is finite, and for that j ,

tp
′(j)
x = exp

(
−
∫ t

0
μ

(j)
x+s ds

)

→ 0 as t → ∞.

Thus, for some j , tp
′(j)
x may not be a proper survival function, and in the long run

there may be a positive number of individuals who would not die due to cause j ,
which seems reasonable.
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We now study the basic relationships between associated rates and multiple
decrement model functions. By definition,

tp
(τ)
x = exp

{
−
∫ t

0
μ

(τ)
x+s ds

}
= exp

{

−
∫ t

0

m∑

j=1

μ
(j)
x+s ds

}

=
m∏

j=1

exp

{
−
∫ t

0
μ

(j)
x+s ds

}
=

m∏

j=1

tp
′(j)
x .

We know that tp
′(j)
x ∈ (0,1). Hence, tp

(τ)
x ≤ tp

′(j)
x for any j . Further,

tp
′(j)
x ≥ tp

(τ)
x for any j ⇒ tp

′(j)
x μ

(j)
x+t ≥ tp

(τ)
x μ

(j)
x+t

Therefore,
∫ 1

0
tp

′(j)
x μ

(j)
x+t dt ≥

∫ 1

0
tp

(τ)
x μ

(j)
x+t dt = q

(j)
x .

It is to be noted that
∫ 1

0
tp

′(j)
x μ

(j)
x+t dt = −

∫ 1

0

d

dt
tp

′(j)
x 1dt = −[

t
p

′(j)
x

]1
0 +

∫ 1

0
tp

′(j)
x

d

dt
1

= 1 − p
′(j)
x = q

′(j)
x .

Thus we have proved that q
′(j)
x ≥ q

(j)
x . We know that q

′(j)
x is the net probability of

decrement due to only cause j in one year, while q
(j)
x is the crude probability of

decrement due to cause j for one year, when some other causes of decrement are
operative. Thus, q

(j)
x ≤ q

′(j)
x implies that the probability of death due to j th cause

when all are operative is less than the probability of decrement due to cause j when
only cause j is operative, which is quite reasonable. The magnitude of other forces
of decrement can cause tp

′(j)
x to be considerably greater than tp

(τ)
x and leads to

the corresponding differences between the absolute rates and the probabilities of
decrement. It is to be noted that tp

(τ)
x ≤ tp

′(j)
x implies t q

(τ)
x ≥ t q

′(j)
x , and hence we

get q
(j)
x ≤ q

′(j)
x ≤ t q

(τ)
x . In the following example we find another upper bound for

q
′(j)
x .

Example 1.4.1 Prove that q
′(j)
x ≤ 1 − exp{−q

(j)
x /(1 − q

(τ)
x )}.

Solution By definition,

p
′(j)
x = exp

{
−
∫ 1

0
μ

(j)
x+t

}

= exp

[(
tp

(τ)
x

)−1
{
−
∫ 1

0
μ

(j)
x+t tp

(τ)
x

}]
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Table 1.12 The extract from a triple-decrement table

x q
(1)
x q

(2)
x q

(3)
x q

(τ)
x l

(τ )
x q

′(1)
x q

′(2)
x q

′(3)
x

50 0.001 0.005 0.002 – 10000 – – –

51 – – – 0.0076 – – – –

52 – – – – – 0.0023 0.0033 0.0010

53 – – – 0.0098 – – – –

= exp

[

−
∞∑

r=1

(
t q

(τ)
x

)r−1
q

(j)
x

]

.

We use the fact that t q
(τ)
x is a distribution function; hence, for 0 ≤ t ≤ 1, we have

t q
(τ)
x ≤1 q

(τ)
x = q

(τ)
x . Hence,

∞∑

r=1

(
t q

(τ)
x

)r−1 ≤
∞∑

r=1

(
q(τ)
x

)r−1 = (1 − q(τ)
x

)−1
.

Thus,

p
′(j)
x ≥ exp

{−q
(j)
x /
(
1 − q(τ)

x

)}
.

Hence we have proved that q
′(j)
x ≤ 1 − exp{−q

(j)
x /(1 − q

(τ)
x )}.

The following examples illustrate the basic relationships between associated
rates and multiple decrement model functions.

Example 1.4.2 Calculate l
(τ )
53 given the extract in Table 1.12 from a triple-decrement

table.

Solution From the given data we get:

p
(τ)
50 = 1 − (q

(1)
50 + q

(2)
50 + q

(3)
50 ) = 0.992, p

(τ)
51 = 1 − q

(τ)
51 = 0.9924,

p
(τ)
52 = p

′(1)
52 p

′(2)
52 p

′(3)
52 = (0.9977)(0.9967)(0.9990) = 0.9932.

Then

l
(τ )
53

l
(τ )
50

= 3p
(τ)
50 = p

(τ)
50 p

(τ)
51 p

(τ)
52 = 0.9778 ⇒ l

(τ )
53 = 9778.

Example 1.4.3 For a double-decrement table, it is given that q
′(2)
x = 0.008, 1|q(1)

x =
0.0025, and q

(1)
x+1 = 0.0067. Calculate q

′(1)
x .

Solution We have 1|q(1)
x = p

(τ)
x q

(1)
x+1. Hence, we get p

(τ)
x = 0.3731. Now,

p(τ)
x = 0.3731 = (1 − q ′(1)

x

)(
1 − q ′(2)

x

)= (1 − q ′(1)
x

)
(0.992) ⇒ q ′(1)

x = 0.6239.
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Example 1.4.4 Calculate q
′(2)
x if

(i) q
′(2)
x = 2q

′(1)
x ,

(ii) q
′(1)
x + q

′(2)
x = q

(τ)
x + 0.0018.

Solution For a double-decrement model,

q(τ)
x = 1 − p(τ)

x = 1 − p′(1)
x p′(2)

x = q ′(1)
x + q ′(2)

x − q ′(1)
x q ′(2)

x .

From the given information we get

q ′(1)
x q ′(2)

x = 0.0018 ⇒ 1

2
q ′(2)
x q ′(2)

x = 0.0018 ⇒ q ′(2)
x = 0.06.

Example 1.4.5 From a double-decrement table we have the following data:

(i) l
(τ )
40 = 1000,

(ii) q
′(1)
40 = 0.002,

(iii) q
′(2)
40 = 0.004,

(iv) 1|q(1)
40 = 0.005,

(v) l
(τ )
42 = 850.

Calculate q
(2)
41 .

Solution From q
′(1)
40 and q

′(2)
40 we get p

(τ)
40 = p

′(1)
40 p

′(2)
40 = 0.9940. From l

(τ )
40 and

l
(τ )
42 we get 2p

(τ)
40 = l

(τ )
42

l
(τ )
40

= 0.850, and then from 2p
(τ)
40 = p

(τ)
40 p

(τ)
41 we get p

(τ)
41 =

2p
(τ)
40

p
(τ)
40

= 0.8551 and q
(τ)
41 = 0.1449. From p

(τ)
40 and 1|q(1)

40 = p
(τ)
40 q

(1)
41 we get q

(1)
41 =

1|q(1)
40

p
(τ)
40

= 0.0050. Then q
(2)
41 = q

(τ)
41 − q

(1)
41 = 0.1399.

To summarize, if μ
(j)
x is known for all x, then one can find tp

′(j)
x and t q

′(j)
x for all

x and t and can construct the associated single decrement table. In some situations,
one may not have information about μ

(j)
x but have information on q

(j)
x . Thus, it is

not possible to obtain q
′(j)
x directly. These need to be obtained from q

(j)
x . We have

obtained some inequalities between q
′(j)
x and q

(j)
x . In the following, we discuss how

to obtain a relation between q
′(j)
x and q

(j)
x under some assumptions for fractional

ages so that one can be obtained from the other. Commonly used two assumptions
are: (i) the constant force of decrement assumption in a unit interval and (ii) the
uniform distribution assumption in a unit interval for multiple decrements.

Constant Force of Decrement Assumption in a Unit Age Interval Under this
assumption, μ

(j)
x+t = μ

(j)
x and hence μ

(τ)
x+t = μ

(τ)
x for 0 ≤ t < 1 and x an integer.
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Then

q
(j)
x =

∫ 1

0
tp

(τ)
x μ

(j)
x dt = μ

(j)
x

μ
(τ)
x

∫ 1

0
tp

(τ)
x μ(τ)

x dt = μ
(j)
x

μ
(τ)
x

q(τ)
x .

Further,

p(τ)
x = exp

{
−
∫ 1

0
μ

(τ)
x+s ds

}
= exp

(−μ(τ)
x

) ⇒ − logp(τ)
x = μ(τ)

x .

Similarly, μ
(j)
x = − logp

′(j)
x . So,

q
(j)
x = μ

(j)
x

μ
(τ)
x

q(τ)
x = − logp

′(j)
x

− logp
(τ)
x

q(τ)
x = q(τ)

x

logp
′(j)
x

logp
(τ)
x

.

Thus, if q
′(j)
x , j = 1,2, . . . ,m, are known, p

′(j)
x = 1 − q

′(j)
x can be obtained, and

then

p(τ)
x =

m∏

j=1

p
′(j)
x and q(τ)

x = 1 − p(τ)
x

are obtained. Hence, q
(j)
x = q

(τ)
x logp

′(j)
x / logp

(τ)
x can be obtained from the knowl-

edge of q
′(j)
x , j = 1, . . . ,m. The identity

q
(j)
x = logp

′(j)
x

logp
(τ)
x

q(τ)
x

can be inverted to obtain q
′(j)
x from q

(j)
x . The above identity can be rewritten as

logp
′(j)
x = q

(j)
x

q
(τ)
x

logp(τ)
x = log

[(
p(τ)

x

) q
(j)
x

q
(τ )
x

]
.

Therefore,

p
′(j)
x = (p(τ)

x

) q
(j)
x

q
(τ )
x and q

′(j)
x = 1 − (1 − q(τ)

x

) q
(j)
x

q
(τ )
x .

Thus absolute rates of decrement can be obtained from a given set of probabilities
of decrement and vice versa. We now study the second assumption to obtain such
relations and the uniform distribution assumption for multiple decrements in a unit
age interval.

Uniform Distribution Assumption in a Unit Age Interval Under this assump-
tion, each of the decrements in a multiple decrement context satisfy a uniform dis-
tribution assumption in each year of age. Hence, t q

(j)
x = tq

(j)
x , j = 1,2, . . . ,m,
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0 ≤ t ≤ 1, and x is an integer. As a consequence,

t q
(τ)
x =

m∑

j=1

t q
(j)x = t

m∑

j=1

q
(j)
x = tq(τ)x .

Further,

μ
(j)
x+t = 1

tp
(τ)
x

d

dt
t q

(j)
x = 1

tp
(τ)
x

d

dt
tq

(j)
x = 1

tp
(τ)
x

q
(j)
x = q

(j)
x

(1 − tq
(τ)
x )

.

Hence,

q
′(j)
x = 1 − p

′(j)
x = 1 − exp

{
−
∫ 1

0
μ

(j)
x+t dt

}

= 1 − exp

{
−
∫ 1

0

q
(j)
x

(1 − tq
(τ)
x )

dt

}

= 1 − exp

{
q

(j)
x

q
(τ)
x

[
log
(
1 − tq(τ)

x

)]1
0

}

= 1 − exp

{
q

(j)
x

q
(τ)
x

log
(
1 − q(τ)

x

)}

= 1 − (1 − q(τ)
x

)q(j)
x /q

(τ)
x ,

which is exactly the same relation as under the constant force of decrement assump-
tion.

Thus, once associated single decrement probabilities are known, the results de-
rived above can be used to construct the multiple decrement table. The availability
of a set of p

′(j)
x for j = 1, . . . ,m and for all values of x will permit the compu-

tations of p
(τ)
x and of q

(τ)
x . The next step is to break q

(τ)
x into components q

(j)
x

for j = 1, . . . ,m. If either the constant force or the uniform distribution of decre-
ment assumption in a unit age interval is adopted in the model, the q

(j)
x values can

be obtained using the results derived above. The following examples illustrate the
method.

Example 1.4.6 Given that decrement may be due to death, 1, disability, 2, or retire-
ment, 3, use constant force of decrement assumption for each unit age interval to
construct a multiple decrement table based on the absolute rates (see Table 1.13).

Solution From the given data we find

p(τ)
x = (1 − q ′(1)

x

)(
1 − q ′(2)

x

)(
1 − q ′(3)

x

)
, q(τ)

x = 1 − p(τ)
x

and q
(j)
x = q(τ)

x

logp
′(j)
x

logp
(τ)
x

, j = 1,2,3.
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Table 1.13 Associated
single decrement probabilities Age x q

′(1)
x q

′(2)
x q

′(3)
x

55 0.0210 0.029 0.20

56 0.0215 0.030 0.10

57 0.0220 0.033 0.13

58 0.0230 0.034 0.12

59 0.0260 0.038 0.14

Table 1.14 Multiple
decrement table Age x p

(τ)
x q

(1)
x q

(2)
x q

(3)
x

55 0.7605 0.0186 0.0257 0.1952

56 0.8542 0.0201 0.0282 0.0975

57 0.8228 0.0202 0.0305 0.1265

58 0.8305 0.0212 0.0316 0.1167

59 0.8058 0.0237 0.0348 0.1357

The following R commands give us the required probabilities. Suppose that the
given data are stored in a file m5.txt on D drive.

z <- read.table("D://m5.txt", header=T);
x <- z[, 1]; q1 <- z[, 2]; q2 <- z[, 3];
q3 <- z[, 4]; p1 <- 1-q1; p2 <- 1-q2;
p3 <- 1-q3; p <- p1*p2*p3; q <- 1-p;
e <- exp(1)
a1 <- q*log(p1, base=e)/log(p, base=e);
a2 <- q*log(p2, base=e)/log(p, base=e);
a3 <- q*log(p3, base=e)/log(p, base=e);
y <- round(data.frame(p, a1, a2, a3), 4);
y1 <- data.frame(x, y); y1 #Table 1.14;

The results are summarized in Table 1.14.

Example 1.4.7 Three forces of mortality for (x) are given below:

μ
(1)
x+s = 0.003 + 0.0024(x + s − 40)2, μ

(2)
x+s = 0.003 + 0.0007(x + s − 40)2.5,

μ
(3)
x+s = 0.003 + 0.00004(x + s − 40)3, s ≥ 0, x ≥ 40.

Obtain the associated single decrement table for ages 50 to 60. Under the assumption
of uniformity for fractional ages, find the corresponding multiple decrement table.
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Solution We have, by definition,

tp
′(j)
x = exp

[
−
∫ t

0
μ

(j)
x+s ds

]
and tp

(τ)
x =

m∏

j=1

tp
′(j)
x .

Under the assumption of uniformity for fractional ages, we have

q
(j)
x = q(τ)

x

logp
′(j)
x

logp
(τ)
x

, j = 1,2,3.

For the given forces of mortality we find:

tp
′(1)
x = exp

{−[0.003t + 0.0008
(
(x + t − 40)3 − (x − 40)3)]},

tp
′(2)
x = exp

{−[0.003t + 0.0002
(
(x + t − 40)3.5 − (x − 40)3.5)]}, and

tp
′(3)
x = exp

{−[0.003t + 0.00001
(
(x + t − 40)4 − (x − 40)4)]}.

We use these formulae to find the first associated single decrement table and then
the corresponding multiple decrement table:

e <- exp(1);
x <- seq(50, 60, 1);
p1 <- e^(-(0.003+0.0008*((x+1-40)^3-(x-40)^3)))

#a vector of p
′(1)
x ;

p2 <- e^(-(0.003+0.0002*((x+1-40)^3.5-(x-40)^(3.5))))
#a vector of p

′(2)
x ;

p3 <- e^(-(0.003+0.00001*((x+1-40)^4-(x-40)^4)))
#a vector of p

′(3)
x ;

q1 <- 1-p1 #a vector of q
′(1)
x ;

q2 <- 1-p2 #a vector of q
′(2)
x ;

q3 <- 1-p3 #a vector of qx^′(3);

p <- p1*p2*p3 #a vector of p
(τ)
x ;

q <- 1-p #a vector of q
(τ)
x ;

a1 <- q*log(p1, base=e)/log(p, base=e) #a vector of q
(1)
x ;

a2 <- q*log(p2, base=e)/log(p, base=e) #a vector of q
(2)
x ;

a3 <- q*log(p3, base=e)/log(p, base=e) #a vector of q
(3)
x ;

y <- round(data.frame(q1, q2, q3, p, a1, a2, a3), 4);
y1 <- data.frame(x, y);
y1 #Table 1.15;

From Table 1.15 we note that after age 52, q
′(2)
x is higher than q

′(1)
x and q

′(3)
x . It is in

view of the fact that the force of mortality corresponding to cause 2 is higher after
this age. This is clear from the graph of three forces of decrement shown in Fig. 1.5.
Further, q

′(j)
x is higher than q

(j)
x for j = 1,2,3 and x = 50,51, . . . ,60.



38 1 Multiple Decrement Models

Table 1.15 Multiple decrement table from associated single decrement model

Age x q
′(1)
x q

′(2)
x q

′(3)
x p

(τ)
x q

(1)
x q

(2)
x q

(3)
x

50 0.2349 0.2239 0.0482 0.5652 0.2041 0.1931 0.0377

51 0.2743 0.2719 0.0619 0.4957 0.2304 0.2280 0.0460

52 0.3149 0.3230 0.0780 0.4276 0.2548 0.2628 0.0547

53 0.3563 0.3763 0.0966 0.3627 0.2769 0.2967 0.0638

54 0.3982 0.4310 0.1176 0.3022 0.2961 0.3288 0.0729

55 0.4400 0.4860 0.1411 0.2472 0.3123 0.3585 0.0819

56 0.4814 0.5405 0.1671 0.1985 0.3255 0.3854 0.0906

57 0.5220 0.5935 0.1955 0.1563 0.3356 0.4092 0.0989

58 0.5616 0.6444 0.2262 0.1206 0.3429 0.4299 0.1066

59 0.5998 0.6924 0.2590 0.0912 0.3476 0.4474 0.1138

60 0.6364 0.7370 0.2938 0.0675 0.3501 0.4620 0.1203

Fig. 1.5 Forces of decrement

Example 1.4.8 For a triple-decrement model, the values of μ
(j)
x for j = 1,2,3 are

0.03, 0.04, and 0.05, respectively. Calculate

(i) q
(j)
x and q

′(j)
x for j = 1, 2, 3.

(ii) the upper bound on q
′(j)
x for j = 1, 2, 3, as derived in Example 1.4.1.

(iii) q
′(j)
x for j = 1, 2, 3 under the assumption of uniformity of deaths in a unit age

interval.
(iv) Compare the values in (iii) with the exact values and the upper bound calculated

in (i) and (ii).
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Table 1.16 Values of
associated single decrement
rates

j Exact value Approximate value Upper bound

1 0.02827 0.02958 0.03142

2 0.03769 0.03924 0.04332

3 0.04712 0.04881 0.05183

Solution (i) We have μ
(τ)
x+t =∑j μ

(j)
x+t = 0.12. Hence,

tp
(τ)
x = exp

{
−
∫ t

0
μ

(τ)
x+s ds

}
= exp(−0.12t).

By definition,

q(1)
x =

∫ 1

0
tp

(τ)
x μ

(1)
x+t dt =

∫ 1

0
e−0.12t (0.03) dt = 1

4

(
1 − e−0.12)= 0.02827.

On similar lines we get, q(2)
x = 1

3 (1−e−0.12) = 0.03769 and q
(3)
x = 5

12 (1−e−0.12) =
0.04712. Further,

q ′(1)
x = 1 − exp

{∫ 1

0
μ

(1)
x+t dt

}
= 1 − exp(−0.03) = 0.02955.

Similarly we get q
′(2)
x = 0.03921 and q

′(3)
x = 0.04877. It is to be noted that q

′(j)
x ≥

q
(j)
x for j = 1,2,3.

(ii) The upper bound of the q
′(j)
x derived in Example 1.4.1 is given by

q
′(j)
x ≤ 1 − exp

{−q
(j)
x /
(
1 − q(τ)

x

)}
.

So we get

q ′(1)
x ≤ 0.03142, q ′(2)

x ≤ 0.04332, q ′(3)
x ≤ 0.05183.

(iii) Under the assumption of uniformity in unit age interval, we have

q
′(j)
x = 1 − (1 − q(τ)

x

) q
(j)
x

q
(τ )
x .

Using this formula, we get

q ′(1)
x = 0.02958, q ′(2)

x = 0.03924, q ′(3)
x = 0.04881.

(iv) Table 1.16 presents the upper bounds and the exact and approximate values
of q

′(j)
x under the assumption of uniformity.
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Table 1.17 The extract from
a double-decrement table x l

(τ)
x d

(1)
x d

(2)
x

35 100 – –

36 – 2 12

37 – 1 2

It is to be noted that there is a close agreement among the upper bound, the
exact and approximate values of q

′(j)
x under the assumption of uniformity. Such

observation leads to the application of uniformity approximation for the associated
single decrement model.

Example 1.4.9 For a double-decrement model, it is given that p
′(2)
x = [p′(1)

x ]2 =
e−0.2 and each decrement has a constant force of decrement over each year of age.
Calculate q

(1)
x and q

(2)
x .

Solution From the given information we have

e−0.2 = p′(2)
x = exp

{
−
∫ 1

0
μ

(2)
x+s ds

}
= exp

{−μ(2)
}
.

Hence, μ(2) = 0.2. Similarly, p
′(1)
x = e−0.1 gives μ(1) = 0.1. Consequently, μ

(τ)
x =

0.3 and p
(τ)
x = e−0.3 giving q

(τ)
x = 1 − e−0.3. Further, under the assumption of con-

stant force of mortality,

q(1)
x = μ

(1)
x

μ
(τ)
x

q(τ)
x = 1

3

(
1 − e−0.3)= 0.08639

and

q(2)
x = μ

(2)
x

μ
(τ)
x

q(τ)
x = 2

3

(
1 − e−0.3)= 0.1728.

Example 1.4.10 For a double-decrement model, it is given that the force of decre-
ment is constant for each decrement over the year of age 35, 36, and 37, q ′(1)

35 = 0.01,

q
′(2)
35 = 0.06, and further information is given in Table 1.17. Find q

′(1)
37 .

Solution From the given information, p(τ)
35 = (1−q

′(1)
35 )(1−q

′(2)
35 ) = 0.9306. Hence,

l
(τ )
36 = 100(0.9306) = 93.06 and l

(τ )
37 = l

(τ )
36 −d

(1)
36 −d

(2)
36 = 93.06−2−12 = 79.06.

Now,

q
(1)
37 = d

(1)
37 /l

(τ)
37 = 0.01265 and q

(τ)
37 = d

(τ)
37 /l

(τ)
37 = 3/79.06 = 0.03795.
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Table 1.18 The extract from
a double-decrement table x l

(τ)
x d

(1)
x d

(2)
x

45 1000 36 42

46 – – 68

47 820 – –

Hence,

q
′(1)
37 = 1 − [1 − q

(τ)
37

]q(1)
37 /q

(τ)
37 = 0.01266.

Example 1.4.11 For a triple-decrement model, it is given that

(i) q
(1)
50 = q

(3)
50 ,

(ii) q
(2)
50 = 2q

(1)
50 , and

(iii) μ
(1)
50+t = log 8, 0 ≤ t < 1.

Assume a constant force of decrement for each decrement over each year of age.
Calculate q

′(2)
50 .

Solution Under the assumption of constant force of decrement,

q
(j)
x

q
(i)
x

= μ
(j)
x

μ
(i)
x

⇒ 2 = q
(2)
50

q
(1)
50

= μ
(2)
50

μ
(1)
50

⇒ μ
(2)
50 = 2μ

(1)
50 = 2 log 8 = log 64

⇒ p
′(2)
50 = e−μ

(2)
50 = e− log 64 = 1

64

⇒ q
′(2)
50 = 0.9844.

Example 1.4.12 For a double-decrement model, the data are given in Table 1.18.
Assume that each decrement is uniformly distributed over each year of age. Calcu-
late the absolute rate of decrement due to cause 1 for age 46.

Solution We have to find q
′(1)
46 = 1 − [p(τ)

46 ]q(1)
46 /q

(τ)
46 . From the given data we see that

l
(τ )
46 = l

(τ )
45 − d

(1)
45 − d

(2)
45 = 922. Further,

820 = l
(τ )
47 = l

(τ )
46 − d

(1)
46 − d

(2)
46 = 922 − d

(1)
46 − 68 ⇒ d

(1)
46 = 34.

Then,

q
(1)
46

q
(τ)
46

= d
(1)
46

d
(τ)
46

= 34

34 + 68
= 1

3
and p

(τ)
46 = 820

922
= 0.8894 ⇒ q

′(1)
46 = 0.03832.
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Example 1.4.13 For a triple-decrement model, it is assumed that each decrement is
uniformly distributed over each year of age in its associated single decrement table.
Prove that

q(1)
x = q ′(1)

x

[
1 − 1

2

(
q ′(2)
x + q ′(3)

x

)+ 1

3
q ′(2)
x q ′(3)

x

]
.

Solution Under the assumption of uniformity in the associated single decrement
table, t q

′(j)
x = tq

′(j)
x and tp

′(1)
x μ

(1)
x+t = q

′(1)
x . By definition,

q(1)
x =

∫ 1

0
tp

(τ)
x μ

(1)
x+t dt =

∫ 1

0
tp

′(1)
x tp

′(2)
x tp

′(3)
x μ

(1)
x+t dt

= q ′(1)
x

∫ 1

0

(
1 − tq ′(2)

x

)(
1 − tq ′(3)

x

)
dt

= q ′(1)
x

[
1 − 1

2

(
q ′(2)
x + q ′(3)

x

)+ 1

3
q ′(2)
x q ′(3)

x

]
.

Example 1.4.14 For a triple-decrement model, it is assumed that each decrement is
uniformly distributed over each year of age in its associated single decrement table.
Further, q

′(1)
x = 0.01, q

′(2)
x = 0.04, and q

′(3)
x = 0.0625. Calculate q

(1)
x .

Solution From Example 1.4.13 we have, under the assumption of uniformity in the
associated single decrement table,

q(1)
x = q ′(1)

x

[
1 − 1

2

(
q ′(2)
x + q ′(3)

x

)+ 1

3
q ′(2)
x q ′(3)

x

]
= 0.009496.

Example 1.4.15 The following information is given for a double-decrement table.

(i) μ
(1)
x+.5 = 0.01,

(ii) q
(2)
x = 0.001, and

(iii) each decrement is uniformly distributed over each year of age in its associated
single decrement table.

Calculate q
(1)
x .

Solution Under the given assumption, proceeding as in Example 1.4.13, we get
q

(1)
x = q

′(1)
x [1− 1

2q
′(2)
x ]. To calculate the quantities involved in this expression, under

the given assumption, we also have

μ
(j)
x+t = q

′(j)
x

tp
′(j)
x

= q
′(j)
x

1 − t · q ′(j)
x

⇒ 0.01 = μ
(1)
x+0.5 = q

′(1)
x

1 − (0.5)q
′(1)
x

⇒ q ′(1)
x = 0.0099.
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Also,

0.001 = q(2)
x = q ′(2)

x

[
1 − 1

2
q ′(1)
x

]
⇒ q ′(2)

x = 0.0011.

Hence,

q(1)
x = q ′(1)

x

[
1 − 1

2
q ′(2)
x

]
= (0.0099)

[
1 − 1

2
(0.0011)

]
= 0.009894.

There is one more approach to find q
′(j)
x from q

(j)
x and vice versa. It consists of

defining central rates of multiple decrement. We discuss it below.

Central Rates of Multiple Decrement The central rate of mortality or the central
death rate at age x in a single decrement table, denoted by mx , is defined as

mx =
∫ 1

0 tpxμx+t dt
∫ 1

0 tpx dt
=
∫ 1

0 lx+tμx+t dt
∫ 1

0 lx+t dt
= lxqx
∫ 1

0 lx+t dt
= dx
∫ 1

0 lx+t dt
= dx

Lx

.

Thus, mx is a weighted average of the force of mortality between ages x and x + 1,
and this justifies the terminology central rate. Such central rates are defined in a mul-
tiple decrement context as follows. The central rate of decrement from all causes is
defined by

m(τ)
x =

∫ 1
0 tp

(τ)
x μ

(τ)
x+t dt

∫ 1
0 tp

(τ)
x dt

= l
(τ )
x q

(τ)
x

∫ 1
0 l

(τ )
x+t dt

= d
(τ)
x

∫ 1
0 l

(τ )
x+t dt

.

It is a weighted average of μ
(τ)
x+t , 0 ≤ t < 1. Similarly, the central rate of decrement

from cause j is

m
(j)
x =

∫ 1
0 tp

(τ)
x μ

(j)
x+t dt

∫ 1
0 tp

(τ)
x

= l
(τ )
x q

(j)
x

∫ 1
0 l

(τ )
x+t dt

= d
(j)
x

∫ 1
0 l

(τ )
x+t dt

.

It is a weighted average of μ
(j)
x+t . The corresponding central rate for the associated

single decrement table is given by

m
′(j)
x =

∫ 1

0
tp

′(j)
x μ

(j)
x+t dt/

∫ 1

0
tp

′(j)
x dt.

This is again a weighted average of μ
(j)
x+t over the same age range, with weights

tp
′(j)
x and not tp

(τ)
x . From the above definitions of central rates it is easy to see that

if the force μ
(j)
x+t of decrement is constant for 0 ≤ t < 1, we have

m
(j)
x = m

′(j)
x = μ

(j)
x .
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The following examples illustrate the application of central rate of decrement to find
multiple decrement model functions.

Example 1.4.16 In a triple-decrement model, the causes of decrement are death,
withdrawal, and disability. It is given that each decrement is uniformly distributed
over each year of age. Further, l

(τ )
x = 10000, l

(τ )
x+1 = 9185, the central rate of death

for all ages equals 0.01, and the central rate of withdrawal for all ages equals 0.05.
Calculate the probability of decrement by disability at age x.

Solution Under the assumption of uniformity, l
(τ )
x+s = l

(τ )
x − s(l

(τ)
x − l

(τ )
x+1). Hence,

∫ 1
0 l

(τ )
x+s ds = l

(τ )
x +l

(τ )
x+1

2 . By the definition of central rate of death at age x,

0.01 = m(d)
x = d

(d)
x

∫ 1
0 l

(τ )
x+s ds

= 2d
(d)
x

l
(τ )
x + l

(τ )
x+1

hence, d(d)
x = 95.925.

Similarly, d(w)
x = 479.625 and d

(dis)
x = 10000−9185−95.925−479.625 = 239.45.

Hence,

q(dis)
x = 239.45

10000
= 0.0239.

Example 1.4.17 For a double-decrement model, it is given that each decrement has
a constant force of mortality over each year of age. Further, m

(1)
x = 0.01 and m

(2)
x =

0.02. Calculate q
(1)
x .

Solution Under the constant force of mortality assumption, m
(j)
x = m

′(j)
x = μ

(j)
x .

Hence,

q(1)
x =

∫ 1

0
tp

(τ)
x μ

(1)
x+t dt =

∫ 1

0
e−(μ(1)+μ(2))tμ(1) dt

=
∫ 1

0
e−0.03t (0.01) dt = 0.00985.

In the following example, we establish relations between the central rate of decre-
ments and the decrement probabilities, under certain assumptions. These relations
are useful to construct a multiple decrement table using the central rate bridge.

Example 1.4.18 Show that, under the assumption of a uniform distribution of decre-
ments in a multiple decrement model,

(a) m
(τ)
x = q

(τ)
x

1−(1/2)q
(τ)
x

,

(b) m
(j)
x = q

(j)
x

1−(1/2)q
(τ)
x

, and conversely,
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(c) q
(τ)
x = m

(τ)
x

1+(1/2)m
(τ)
x

,

(d) q
(j)
x = m

(j)
x

1+(1/2)m
(τ)
x

.

Show that, under the assumption of a uniform distribution of decrements in the
associated single decrement model,

(e) m
′(j)
x = q

′(j)
x

1−(1/2)q
′(j)
x

, and hence,

(f) q
′(j)
x = m

′(j)
x

1+(1/2)m
′(j)
x

.

Solution Under the assumption of uniform distribution of decrements in a multiple
decrement model,

tp
(τ)
x = 1 − tq(τ)

x , μ
(τ)
x+t tp

(τ)
x = q(τ)

x and μ
(j)
x+t tp

(τ)
x = q

(j)
x .

Hence,
∫ 1

0
tp

(τ)
x dt =

∫ 1

0

(
1 − tq(τ)

x

)
dt = 1 − 1

2
q(τ)
x .

Therefore,

m(τ)
x =

∫ 1

0
tp

(τ)
x μ

(τ)
x+t dt/

∫ 1

0
tp

(τ)
x dt = q(τ)

x /

(
1 − 1

2
q(τ)
x

)
,

m
(j)
x =

∫ 1

0
tp

(τ)
x μ

(j)
x+t dt/

∫ 1

0
tp

(τ)
x dt = q

(j)
x /

(
1 − 1

2
q(τ)
x

)
.

Thus (a) and (b) are proved. Now,

m(τ)
x = q(τ)

x /

(
1 − 1

2
q(τ)
x

)
⇒

(
1 − 1

2
q(τ)
x

)
m(τ)

x − q(τ)
x = 0

⇒ q(τ)
x = m(τ)

x /

(
1 + 1

2
m(τ)

x

)
.

Similarly, m
(j)
x = q

(j)
x /(1 − 1

2q
(τ)
x ). Hence,

q
(j)
x = m

(j)
x

(
1 − 1

2
q(τ)
x

)
= m

(j)
x

(
1 −

1
2m

(τ)
x

1 + 1
2m

(τ)
x

)
= m

(j)
x /

(
1 + 1

2
m(τ)

x

)
.

To prove (e), note that by definition, m
′(j)
x = ∫ 1

0 tp
′(j)
x μ

(j)
x+t /

∫ 1
0 tp

′(j)
x dt . Under the

assumption of uniformity in the associated single decrement model, t q
′(j)
x = tq

′(j)
x .
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Table 1.19 The absolute
rates Age x q

′(1)
x q

′(2)
x q

′(3)
x

55 0.0210 0.029 0.20

56 0.0215 0.030 0.10

57 0.0220 0.033 0.13

58 0.0230 0.034 0.12

59 0.0260 0.038 0.14

Hence, tp
′(j)
x = 1 − t q

′(j)
x = 1 − tq

′(j)
x and μ

(j)
x+t tp

′(j)
x = q

′(j)
x . Therefore,

m
′(j)
x = q

′(j)
x /

∫ 1

0
tp

′(j)
x dt = q

′(j)
x /

(
1 − 1

2
q

′(j)
x

)
.

From (e) we get q
′(j)
x = m

′(j)
x /(1 + 1

2m
′(j)
x ).

Example 1.4.19 Show that, under the assumption of constant force of decrements

in a multiple decrement model, q
(j)
x = m

(j)
x (1 − e−m

(τ)
x )/m

(τ)
x .

Solution Under the assumption of constant force of decrements in a multiple decre-
ment model, μ(j)

x+t = μ
(j)
x for j = 1,2, . . . ,m. As a consequence, μ(τ)

x+t = μ
(τ)
x . Now,

q
(j)
x =

∫ 1

0
tp

(τ)
x μ

(j)
x+t = μ

(j)
x

∫ 1

0
tp

(τ)
x .

Further, tp
(τ)
x = exp{− ∫ t

0 μ
(τ)
x+s ds} = exp{−tμ

(τ)
x }. Hence,

∫ 1
0 tp

(τ)
x = (1 −

exp(−μ
(τ)
x ))/μ

(τ)
x . But, under the assumption of constant force of decrements,

μ
(τ)
x = m

(τ)
x . Hence we get

q
(j)
x = μ

(j)
x

∫ 1

0
tp

(τ)
x = m

(j)
x

(
1 − e−m

(τ)
x
)
/m(τ)

x .

We use these relations in the following example to construct a multiple decrement
table.

Example 1.4.20 Given that decrement may be due to death, 1, disability, 2, or re-
tirement, 3, use the constant force of decrement assumption to construct a multiple
decrement table based on the absolute rates (Table 1.19). Use the central rate bridge.
State the underlying assumptions.

Solution We are given that the force of mortality is constant for all the causes. We
further assume the uniformity in associated single decrement model. Then we have
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m
′(j)
x = q

′(j)
x /

(
1 − 1

2
q

′(j)
x

)
.

Further, assume that m
′(j)
x = m

(j)
x , which is valid if the force of mortality remains

constant in a unit age interval. Again under the same assumption,

q
(j)
x = m

(j)
x

(
1 − e−m

(τ)
x
)
/m(τ)

x .

Now, to find m
(τ)
x , note that

m(τ)
x =

∫ 1

0
tp

(τ)
x μ

(τ)
x+t dt/

∫ 1

0
tp

(τ)
x dt =

∫ 1

0
tp

(τ)
x

m∑

j=1

μ
(j)
x+t dt/

∫ 1

0
tp

(τ)
x dt

=
m∑

j=1

∫ 1

0
tp

(τ)
x μ

(j)
x+t dt/

∫ 1

0
tp

(τ)
x dt =

m∑

j=1

m
(j)
x .

Thus, from q
′(j)
x we get m

′(j)
x = m

(j)
x ; then we find m

(τ)
x and hence q

(j)
x by using

the result proved in Example 1.4.19. Using these steps, the following R commands
produce the required results. Suppose that the given data are stored in m5.txt on
drive D. These data are the same as in Example 1.4.6.

z <- read.table("D://m5.txt", header=T);
x <- z[, 1];
q1 <- z[, 2] #vector of q

′(1)
x ;

q2 <- z[, 3] #vector of q
′(2)
x ;

q3 <- z[, 4] #vector of q
′(3)
x ;

m1 <- q1/(1-0.5*q1) #vector of m
′(1)
x = m

(1)
x ;

m2 <- q2/(1-0.5*q2) #vector of m
′(2)
x = m

(2)
x ;

m3 <- q3/(1-0.5*q3) #vector of m
′(3)
x = m

(3)
x ;

m <- m1+m2+m3 #vector of m
(τ)
x ;

e <- exp(1);
a <- e^(-m);
a1 <- m1*(1-a)/m #vector of q

(1)
x ;

a2 <- m2*(1-a)/m #vector of q
(2)
x ;

a3 <- m3*(1-a)/m #vector of q
(3)
x ;

y <- round(data.frame(a1, a2, a3), 4);
y1 <- data.frame(x, y);
y1;

The results are summarized in Table 1.20.

It is to be noted that the data in this example are the same as in Example 1.4.6
and the results match with those in Example 1.4.6.
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Table 1.20 Multiple
decrement probabilities Age x q

(1)
x q

(2)
x q

(3)
x

55 0.0186 0.0258 0.1945

56 0.0201 0.0282 0.0974

57 0.0202 0.0305 0.1263

58 0.0212 0.0316 0.1165

59 0.0237 0.0348 0.1354

The multiple decrement model developed in this chapter provides a framework
for studying many financial security systems. For example, life insurance policies
frequently provide for special benefit if death occurs by accidental means or if the
insured becomes disabled. In the next chapter, we discuss how basic methods used
in calculating the actuarial present values of benefits, and hence premium calcu-
lations in a single decrement model get modified for a multiple decrement model.
Another important application of multiple decrement models is in pension funding.
It is discussed in Chaps. 3 and 4.

Key Terms Associated single decrement tables, Cause of decrement random vari-
able, Central rates of multiple decrement, Competing risks, Multiple decrement
model, Multiple decrement table.

1.5 Exercises

1.1 A multiple decrement model with two causes of decrement has forces of decre-
ment given by

μ(1)
x (t) = 1

100 − (x + t)
and μ(2)

x (t) = 2

100 − (x + t)
, t < 100 − x.

Obtain the probability that

(i) (40) survives for next 20 years.
(ii) (40) suffers decrement due to cause 1 in next 20 years.

(iii) (40) suffers decrement due to cause 2 in next 20 years.

1.2 Suppose that a multiple decrement model with 2 causes of decrement is spec-
ified by the following forces of decrement:

μ
(1)
x+t = 0.0005tax

1 , t ≥ 0, μ
(2)
x+t = 0.001tax

2 , t ≥ 0.

Suppose a1 = 1.02 and a2 = 1.05. For this model, obtain the joint distribution
of K(30) and J (30). Also obtain the marginal distribution of K(30) and J (30)

and their expected values.
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Table 1.21 Decrement
probabilities

Curtate
duration
k

Probability of

Academic
failure q

(1)
k

Withdrawal
q

(2)
k

Completion
q

(3)
k

0 0.15 0.25 0.00

1 0.10 0.20 0.00

2 0.05 0.15 0.00

3 0.00 0.10 0.00

4 0.00 0.00 1.00

1.3 A student entering a 4-semester master program quits the program due to three
causes: academic failure during the program, J = 1, withdrawal due to various
reasons, J = 2, and completing the program successfully at the end of fourth
semester, J = 3. Table 1.21 specifies decrement probabilities which apply to
students entering a 4-semester master program.
Suppose that 100 students are admitted to the program.

(i) What is the probability that a student admitted to the program completes
the program?

(ii) What is the distribution of number of students completing the master pro-
gram? State the underlying assumptions. Find its mean and variance. Use
it to find approximate 3σ limits for the number of students completing
the master program.

(iii) What is the probability that a student admitted to the program will fail
sometimes during the 4-semester program?

(iv) What is the distribution of number of students who will fail sometimes
during the 4-semester program? State the underlying assumptions. Find
its mean and variance.

(v) What is the probability that a student admitted to the program will with-
draw sometimes during the 4-semester program?

(vi) On the basis of given multiple decrement probabilities, construct a mul-
tiple decrement table displaying the expected number of decrements due
to three causes at the end of each semester and the expected number of
survivors at the beginning of each semester. Hence find the expected num-
ber of students completing the master program, the expected number of
students who will fail sometime during the 4-semester program, and the
expected number of withdrawals. Compare with the expected values ob-
tained in (ii) and (iv). Using it, find the marginal distribution of mode of
termination random variable J .

(vii) Find the conditional distribution of J given that the student has termi-
nated the program at the end of second semester.

1.4 Table 1.22 gives the probability of decrement due to two causes, second cause
being the age-service retirement where 60 is the mandatory age of retirement.
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Table 1.22 Decrement
probabilities x q

(1)
x q

(2)
x

50 0.0051 0.011

51 0.0054 0.023

52 0.0059 0.031

53 0.0065 0.042

54 0.0071 0.054

55 0.0075 0.062

56 0.0081 0.064

57 0.0092 0.076

58 0.0101 0.082

59 0.0112 0.093

Table 1.23 The number of
survivors and number of
deaths due to two causes

x l
(τ)
x d

(1)
x d

(2)
x

50 1000 8 5

51 987 13 9

52 965 10 9

53 946 13 10

54 923 13 15

55 895 14 12

56 869 16 18

57 835 17 20

58 798 20 23

59 755 22 28

Suppose that there are 1000 individuals of age 50 working in a company and
they are subject to the decrement according to the probabilities given in Ta-
ble 1.22.

(i) Find the expected number of individuals who retire at 60.
(ii) Find the expected number of decrements due to two causes in each of the

year from 50 to 59.
(iii) Find the associated single decrement probabilities and the corresponding

central rates of mortality under the assumptions to be stated.

1.5 Table 1.23 gives the number of survivors and number of deaths due to two
causes.
Obtain the chance of decrement due to cause 1 and cause 2 and also the sur-
vival probability for all the ages. Compute the probabilities 3p

(τ)
55 , 3|q(1)

53 , and

3q
(2)
56 .
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Table 1.24 The extract from
a double-decrement table x q

(1)
x q

(2)
x q

(τ)
x l

(τ )
x d

(1)
x d

(2)
x

60 – – 0.0079 – – 14

61 0.003 0.004 – 1600 – –

62 – – – – 4 –

Table 1.25 The extract from
a double-decrement table x l

(τ)
x d

(1)
x d

(2)
x

45 100 – –

46 – 3 14

47 – 2 3

1.6 Calculate 3q
(1)
60 for a double-decrement model on the basis of information pre-

sented in Table 1.24.
1.7 Three forces of mortality for (x) are as given below:

μ
(1)
x+s = 0.002 + 0.0021(x + s − 45)2.5,

μ
(2)
x+s = 0.002 + 0.0005(x + s − 45)3,

μ
(3)
x+s = 0.002 + 0.00002(x + s − 45)3.3, s ≥ 0, x ≥ 45.

(i) Obtain the associated single decrement table for ages 50 to 60.
(ii) Under the assumption of uniformity for fractional ages, find the corre-

sponding multiple decrement table.
(iii) Using given forces of decrement, find the multiple decrement table and

compare it with that obtained in (ii).

1.8 For a triple-decrement model, the values of μ
(j)
x for j = 1,2,3 are 0.06, 0.09,

and 0.13, respectively.

(i) Calculate q
(j)
x and q

′(j)
x for j = 1,2,3.

(ii) Calculate the upper bound on q
′(j)
x for j = 1,2,3, as derived in Exam-

ple 1.4.1.
(iii) Calculate q

′(j)
x for j = 1,2,3 under the assumption of uniformity of

deaths in a unit age interval.
(iv) Compare the values in (iii) with the exact values and the upper bound

calculated in (i) and (ii).

1.9 For a double-decrement model, it is given that the force of decrement is con-
stant for each decrement over the year of age 45, 46, and 47, q

′(1)
45 = 0.02,

q
′(2)
45 = 0.08, and further information is given in Table 1.25. Find q

′(1)
47 .



52 1 Multiple Decrement Models

Table 1.26 Absolute rates
Age x q

′(1)
x q

′(2)
x q

′(3)
x

45 0.023 0.027 0.24

46 0.025 0.033 0.18

47 0.027 0.037 0.15

48 0.030 0.039 0.11

49 0.032 0.042 0.09

50 0.035 0.045 0.07

1.10 Given that decrement may be due to death, 1, disability, 2, or retirement, 3, use
the constant force of decrement assumption to construct a multiple decrement
table based on the following absolute rates (Table 1.26). Use the central rate
bridge. State the underlying assumptions.



Chapter 2
Premiums and Reserves in Multiple Decrement
Model

2.1 Introduction

A guiding principle in the determination of premiums for a variety of life insurance
products is:

Expected present value of inflow = Expected present value of outflow.

All the books listed in Sect. 1.1 of Chap. 1 thoroughly discuss the computation of
premium for a variety of standard insurance products, for a single life and for a group
in single decrement models. In this chapter we discuss its extension for multiple
decrement models, when the benefit depends upon the mode of exit from the group
of active insureds. Section 2.2 discusses how the multiple decrement model studied
in Chap. 1 is useful to find the actuarial present value of benefit when it depends on
the mode of decrement. Actuarial present value of the inflow to the insurance com-
pany, via premiums, does not depend on the mode of decrement. Hence, this part
of the premium computations remains the same as for the single decrement model.
When the two components of premiums are determined, premiums are calculated
using the equivalence principle. Section 2.3 discusses the premium computations.
In many life insurance products there is a provision of riders. For example, in whole
life insurance the base policy specifies the benefit to be payable at the moment of
death or at the end of year of death. Extra benefit will be payable if the death is due
to a specific cause, such as an accident. The premium is then specified in two parts,
one corresponding to the base policy and the extra premium corresponding to extra
benefit. We will discuss computations of premiums in the presence of rider. Another
important actuarial calculation is the reserve, that is, valuation of an insurance prod-
uct at certain time points when the policy is in force. In Sect. 2.4 we illustrate the
computation of reserve in the setup of multiple decrements.

S. Deshmukh, Multiple Decrement Models in Insurance,
DOI 10.1007/978-81-322-0659-0_2, © Springer India 2012
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2.2 Actuarial Present Value of Benefit

Actuarial applications of multiple decrement models arise when the amount of ben-
efit payment depends on the mode of exit from the group of active insureds. Our aim
is to find the actuarial present value of the benefits in multiple decrement models,
when the benefit is payable either at the moment of death or at the end of year of
death. In these two approaches it depends upon the joint distribution of T (x) and
J (x) or on the joint distribution of K(x) and J (x), respectively, and on the effective
rate of interest. We assume that the rate of interest is deterministic and remains con-
stant throughout the period of the policy. In practice the rate of interest fluctuates.
If it is assumed to be deterministic but varying over certain time periods, then the
actuarial present values of benefit or the annuity of premiums can be obtained on
similar lines as that for constant rate, with different values of v or δ for the different
time periods. The rate of interest is sometimes modeled as a random variable. We
explore the modifications needed in Chap. 6.

Suppose that the underlying mortality model is the multiple decrement model
with m causes of decrement. We consider the general setup in which benefit depends
on the cause of decrement. This approach will be useful in the theory of pension
funding in the next chapter. Suppose that B

(j)
x+t denotes the value of a benefit at

age x + t for a decrement at that age by cause j . Then the actuarial present value
of the benefit to be payable at the moment of death of (x), denoted in general by
Ā, is defined as Ā = E(B

(J (x))
x+T (x)v

T (x)). We derive its expression in terms of basic
functions as follows:

Ā = E
(
B

(J(x))
x+T (x)v

T (x)
)

= EJ(x)

[
ET (x)|J (x)

(
B

(J(x))
x+T (x)v

T (x)
)|J (x)

]

=
m∑

j=1

[∫ ∞

0

(
B

(j)
x+t v

tf (t, j)/hj

)
dt

]
hj

=
m∑

j=1

∫ ∞

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt. (2.1)

If m = 1 and B
(j)
x+t = 1, Ā reduces to Āx , the net single premium for whole life

insurance with benefit payable at the moment of death. In general it is not easy to
find these integrals. Some simplification can be obtained under certain assumptions.
The most frequently made assumption is the assumption of uniformity for fractional
ages. Suppose that we apply the uniform distribution assumption for each unit age
interval in the j th integral, in (2.1). Then we have T (x) = K(x)+U(x), where U(x)

has the uniform distribution on (0,1), and, further, U(x) and K(x) are independent
random variables. Under this assumption, sp

(τ)
x+kμ

(j)
x+k+s = q

(j)
x+k . With this, the j th
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integral in (2.1) reduces as follows:

∫ ∞

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt =

∞∑

k=0

∫ 1

0
vk+sB

(j)
x+k+s k+sp

(τ)
x μ

(j)
x+k+s ds

=
∞∑

k=0

vk+1
kp

(τ)
x q

(j)
x+k

∫ 1

0
B

(j)
x+k+s(1 + i)1−s ds

=
∞∑

k=0

vk+1/2
kp

(τ)
x q

(j)
x+kB

(j)

x+k+1/2,

where last step is obtained by the midpoint rule for the integral. The kp
(τ)
x and q

(j)
x+k

values are available from the underlying multiple decrement table. Thus,

Ā =
m∑

j=1

∞∑

k=0

vk+1/2
kp

(τ)
x q

(j)
x+kB

(j)

x+k+1/2

gives a practical formula for the evaluation of the integral.
We illustrate the computation for the n-year term insurance in the setup of a

double indemnity provision in which the death benefit is doubled when death is
caused by an accident. Let J = 1 for death by nonaccidental means, and J = 2 for
death by accident and suppose that B

(1)
x+t = 1 and B

(2)
x+t = 2. We denote the net single

premium for an n-year term insurance by ĀT , and it is given by

ĀT =
∫ n

0
vt

tp
(τ)
x μ

(1)
x+t dt + 2

∫ n

0
vt

tp
(τ)
x μ

(2)
x+t dt.

We now assume that each decrement in the multiple decrement context has a uni-
form distribution in each year of age, and the first step is to break the expression into
separate integrals for each of the years involved. The first integral can be expressed
as

∫ n

0
vt

tp
(τ)
x μ

(1)
x+t dt =

n−1∑

k=0

vk
kp

(τ)
x

∫ 1

0
vs

sp
(τ)
x+kμ

(1)
x+k+s ds.

Under the assumption of uniformity, we get

∫ n

0
vt

tp
(τ)
x μ

(1)
x+t dt =

n−1∑

k=0

vk+1
kp

(τ)
x q

(1)
x+k

∫ 1

0
(1+ i)1−s ds = i

δ

n−1∑

k=0

vk+1
kp

(τ)
x q

(1)
x+k.

Applying a similar argument for the second integral and combining, we get

ĀT = i

δ

[
n−1∑

k=0

vk+1
kp

(τ)
x

(
q

(1)
x+k + 2q

(2)
x+k

)
]
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= i

δ

n−1∑

k=0

vk+1
kp

(τ)
x q

(2)
x+k + i

δ

n−1∑

k=0

vk+1
kp

(τ)
x q

(τ)
x+k

= Ā
1(2)
x:n̄| + Ā1

x:n̄|,

where Ā
1(2)
x:n̄| is the net single premium for a term insurance of 1 covering death from

accidental means, and Ā1
x:n̄| is the net single premium for a term insurance of 1

covering death from all causes. The next example illustrates the computation for
specified mortality pattern and for specified benefit values.

Example 2.2.1 A whole life insurance of 10000 payable at the moment of death of
(x) includes a double-indemnity provision. This provision pays an additional death
benefit of 10000 during the first 20 years if death is by accidental means. It is given
that δ = 0.05, μ

(τ)
x+t = 0.005 for t ≥ 0, and μ

(1)
x+t = 0.001 for t ≥ 0, where μ

(1)
x+t is

the force of decrement due to death by accidental means. Calculate the net single
premium for this insurance.

Solution From the given information, the net single premium is the actuarial present
value of the benefit of 10000 in whole life insurance plus the actuarial present value
of the benefit of 10000 in 20-year term insurance if death is due to accident. Thus it
is given by the expression

10000

[∫ ∞

0
e−δt

tp
(τ)
x μ

(τ)
x+t dt +

∫ 20

0
e−δt

tp
(τ)
x μ

(1)
x+t dt

]

= 10000

[∫ ∞

0
e−0.05t e−0.005t0.005dt +

∫ 20

0
e−0.05t e−0.005t0.001dt

]

= 10000

[
0.005

0.055
+ 0.001

0.055

(
1 − e−1.1)

]
= 1030.

Example 2.2.2 For a 20-year term insurance issued to (30), the following informa-
tion is given.

(i) μ
(1)
30+t = 0.0005t , where (1) represents death by accidental means.

(ii) μ
(2)
30+t = 0.0025t , where (2) represents death by other means.

(iii) The benefit is 2000 units if death occurs by accidental means and 1000 units if
death occurs by other means.

(iv) Benefits are payable at the moment of death.

Taking δ = 0.06, find the purchasing price of this insurance.

Solution From the given information we have

μ
(τ)
x+t = 0.003t ⇒ tp

(τ)
x = exp

[
−
∫ t

0
μ

(τ)
x+s ds

]
= e−0.0015t2

.
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The actuarial present value of accidental death benefit is

∫ 20

0
B

(1)
30+t e

−δt
tp

(τ)
30 μ

(1)
30+t dt = 2000

∫ 20

0
e−0.06t e−0.0015t2

(0.0005t) dt.

To workout this integral, we complete the square in the exponent of e and substitute
0.0015(t + 20)2 = u. Further we use the incomplete gamma function to find the
value of the integral. Thus, we have

2000
∫ 20

0
e−0.06t e−0.0015t2

(0.0005t) dt

=
∫ 20

0
(t + 20 − 20)e−0.0015(t2+40t+400−400) dt

= e0.6

0.003

{∫ 2.4

0.6
e−u du − 20(0.0015)0.5�(0.5)

× [pgamma(2.4,0.5,1) − pgamma(0.6,0.5,1)
]
}

= 74.05.

The actuarial present value of other death benefit is calculated using the similar
procedure adopted for the actuarial present value of accidental death benefit and is
given by

1000
∫ 20

0
B

(2)
30+t e

−δt
tp

(τ)
30 μ

(2)
30+t dt = 1000

∫ 20

0
e−0.06t e−0.0015t2

(0.0025t) dt

= 185.12.

The actuarial present value of death benefit, when death may be due to any cause, is
259.17, which is the purchasing price of the insurance product.

We have seen how to find the actuarial present value of the benefits in mul-
tiple decrement models, when the benefit is payable at the moment of death.
When the benefit is payable at the end of year of death, we use the joint distri-
bution of K(x) and J (x) instead of the joint distribution of T (x) and J (x). Let
{p(k, j), k = 0,1, . . . , j = 1,2, . . . ,m} denote the joint probability mass function
of K(x) and J (x). The actuarial present value of the benefit to be payable at the end
of the year of death in whole life insurance for multiple decrement model, to be in
general denoted by A, is given by

A = E
(
B

(J(x))
x+K(x)v

K(x)+1)=
m∑

j=1

∞∑

k=0

vk+1B
(j)
x+kp(k, j).
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Similarly, the actuarial present value of the benefit to be payable at the end of the
year of death in n-year term insurance for multiple decrement model is given by

AT =
m∑

j=1

n−1∑

k=0

vk+1B
(j)
x+kp(k, j).

Actuarial present values for other insurance products are defined analogously.
In the next section we discuss the procedure for premium computation and illus-

trate it with examples.

2.3 Computation of Premiums

The actuarial present value of the benefit to be payable at the moment of death or at
the end of year of death, is one of the two components in premium calculation. The
other component in premium calculation is the expected present value of inflow to
the insurance company via premiums. These computations remain exactly the same
as in the setup of single decrement model and are not changed in view of various
modes of decrement. Suppose that the premiums are paid as continuous whole life
annuity at the rate of P per annum. Then the actuarial present value of the premiums
is P āx , and āx is given by

āx =
∫ ∞

0
vt

tp
(τ)
x dt.

Suppose that the premiums are paid as continuous n-year temporary life annuity at
the rate of P per annum. Then the actuarial present value of the premiums is P āx:n̄|,
and āx:n̄| is given by

āx:n̄| =
∫ n

0
vt

tp
(τ)
x dt.

If the premiums are paid as discrete whole life annuity due at the rate of P per
annum, then the actuarial present value of the premiums is P äx , and äx is given by

äx =
∞∑

k=0

vk
kp

(τ)
x .

Suppose that the premiums are payable as a discrete n-year temporary life annuity
due at the rate of P per annum. Then the actuarial present value of the premiums is
P äx:n̄|, and äx:n̄| is given by

äx:n̄| =
n−1∑

k=0

vk
kp

(τ)
x .
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Thus, once we have knowledge about the survival function tp
(τ)
x , we can find out the

actuarial present value of the premiums for various modes of premium payments,
such as continuous premium and discrete premium. With the equivalence principle,
premium is then obtained as

Premium = Actuarial Present Value of Benefits

Actuarial Present Value of Premium Annuity
.

The following examples illustrate how the premium computations can be done once
the multiple decrement model is specified in terms of forces of mortality.

Example 2.3.1 For the insurance product, mortality pattern, and force of interest as
specified in Example 2.2.1, find the premium payable as

(i) the whole life continuous annuity,
(ii) whole life annuity due, and

(iii) 10-year temporary continuous life annuity.

Solution For the given insurance product, mortality pattern, and force of interest,
we have obtained the actuarial present value of the benefit payable at the moment
of death. It is Rs 1030. To find the premium payable as (i) the whole life contin-
uous annuity, (ii) whole life annuity due, and (iii) 10-year temporary continuous
life annuity, we compute āx , äx , and āx:10|, respectively, for the given mortality and
interest pattern. By definition,

āx =
∫ ∞

0
vt

tp
(τ)
x dt =

∫ ∞

0
e−0.05t e−0.005t dt = 18.18182,

äx =
∞∑

k=0

vk
kp

(τ)
x =

∞∑

k=0

e−0.05ke−0.005k = (1 − e−0.055)−1 = 18.6864 > āx,

āx:10| =
∫ 10

0
vt

tp
(τ)
x dt =

∫ 10

0
e−0.05t e−0.005t = 7.6918.

Hence, (i) the premium payable as the whole life continuous annuity is 1030/

18.18182 = 56.65, (ii) the premium payable as the whole life annuity due is
1030/18.6864 = 55.12, and (iii) the premium payable as the 10-year temporary
continuous life annuity is 1030/7.6918 = 133.91. It is to be noted that the premium
payable as the 10-year temporary continuous life annuity is highest among these
three modes as the premium paying period is limited. Further, the premium payable
as the whole life continuous annuity is slightly higher than that payable as the whole
life annuity due.

Example 2.3.2 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.
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Suppose A = 0.0008, B = 0.00011, and C = 1.095. Further, the force of interest is
δ = 0.05. The benefit to be payable at the moment of death is specified as 1000 units
if death is due to cause 1 and 2000 units if the death is due to cause 2.

(i) Find the actuarial present value of the benefit payable to (x) for x = 30,40,50,
and 60 for the whole life insurance.

(ii) Find the premium payable as the continuous whole life annuity by (x) for x =
30,40,50, and 60 for the whole life insurance. Decompose the total premium
according to two causes of decrement.

(iii) Find the premium payable as the continuous n-year temporary life annuity by
(30) for the whole life insurance, for n = 1,2, . . . ,10. Decompose the total
premium according to two causes of decrement.

(iv) Find the premium payable as the continuous n-year temporary life annuity by
(30), for n-year term insurance, for n = 1,2, . . . ,10.

Solution For the given model, μ
(τ)
x+s = μ

(1)
x+s + μ

(2)
x+s = BCx+s + A. We have de-

rived in Example 1.2.2 the probability density function of T as

g(t) = tp
(τ)
x μ

(τ)
x+t = exp

[−(At + mCx
(
Ct − 1

))](
A + BCx+t

)
if t ≥ 0

and the joint distribution of T and J as

f (t, j) =
{

exp[−(At + mCx(Ct − 1))](BCx+t ) if t ≥ 0, j = 1,

exp[−(At + mCx(Ct − 1))](A) if t ≥ 0, j = 2.

Let mCx denote by αx . The actuarial present value of the benefit to be payable at
the moment of death of (x), denoted by Ā, is given by

Ā =
2∑

j=1

∫ ∞

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt

= 1000BCxeαx

∫ ∞

0
e−δt−At−αxCt

Ct dt + 2000Aeαx

∫ ∞

0
e−δt−At−αxCt

dt

= 1000BCxeαx

∫ ∞

0
e−δ1t−αxCt

Ct dt + 2000Aeαx

∫ ∞

0
e−δ1t−αxCt

dt,

where δ1 = δ + A. Then, substituting Ct = y, we get e−δ1t = y−δ1/ logC ,
Ct logC dt = dy, and the range of integration is from 1 to ∞. Suppose (−δ1/

logC) + 1 = λ1. Then, as in Example 1.2.2, the first integral in Ā simplifies to
1000eαx �(λ1)α

1−λ1
x P [W1 ≥ 1], where W1 follows the gamma distribution with

shape parameter λ1 and scale parameter αx , provided that λ1 > 0. Now, using the
fact that g(t) is a density function, we get

1 =
∫ ∞

0
g(t) dt =

∫ ∞

0
exp
[−(At + mCx

(
Ct − 1

))](
A + BCx+t

)
dt.
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Hence,

Aeαx

∫ ∞

0
exp
[−(At + αxC

t
)
dt
]= 1 − eαx �(λ)α1−λ

x P [W ≥ 1],

where λ = (−A/ logC) + 1, and W has the gamma distribution with shape param-
eter λ and scale parameter αx . Using this approach, the second term in Ā can be
expressed as

2000A[1 − eαx �(λ1)α
1−λ1
x P [W1 ≥ 1]]

δ1
.

Hence, adding the two components of Ā, we get

Ā = 2000A + 1000(δ − A)[eαx �(λ1)α
1−λ1
x P [W1 ≥ 1]]

A + δ
.

Now the premium is payable as the continuous whole life annuity. So we need to
find the actuarial present value of the premiums. It is given by P āx , and āx is given
by

āx =
∫ ∞

0
vt

tp
(τ)
x dt

= eαx

∫ ∞

0
e−δt−At−αxCt

dt = eαx

∫ ∞

0
e−δ1t−αxCt

dt

= 1 − eαx �(λ1)α
1−λ1
x P [W1 ≥ 1]
δ1

.

The last equality follows using similar arguments as in the second integral of Ā.
Suppose that the premium is payable as the continuous n-year temporary life

annuity. The actuarial present value of the premiums is given by P āx:n̄|, and āx:n̄| is
given by

āx:n̄| =
∫ n

0
vt

tp
(τ)
x dt

= eαx

∫ n

0
e−δt−At−αxCt

dt = eαx

∫ n

0
e−δ1t−αxCt

dt,

where δ1 = A + δ. To find this integral, we proceed as follows. We know that, for
the two decrement-model in this example,

∫ n

0
g(t) dt = P

[
T (x) ≤ n

]= nq
(τ)
x = 1 − np

(τ)
x = 1 − exp

[−An − αxC
n + αx

]
.
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On the other hand,
∫ n

0 g(t) dt can also be expressed as follows.:

∫ n

0
g(t) dt =

∫ n

0
tp

(τ)
x

(
A + BCx+t

)
dt

= A

∫ n

0
tp

(τ)
x dt +

∫ n

0
tp

(τ)
x

(
BCx+t

)
dt

= Aeαx

∫ n

0
exp
(−At − αxC

t
)
dt

+ BCxeαx

∫ n

0
exp
(−At − αxC

t
)
Ct dt.

The second integral in the above equation can be evaluated as eαx �(λ)α1−λ
x P [1 ≤

W ≤ Cn], where (−δ/ logC) + 1 = λ, and W follows the gamma distribution with
shape parameter λ and scale parameter αx . Hence the first integral A

∫ n

0 tp
(τ)
x dt in

the above equation is given by

Aeαx

∫ n

0
exp
(−At − αxC

t
)
dt = 1 − exp

[−An − αxC
n + αx

]

− eαx �(λ)α1−λ
x P

[
1 ≤ W ≤ Cn

]
.

We use this relation to write āx:n̄| as

āx:n̄| =
{
1 − exp

[−δ1n − αxC
n + αx

]− eαx �(λ1)α
1−λ1
x P

[
1 ≤ W1 ≤ Cn

]}
/δ1,

where δ1 = A + δ, (−δ1/ logC) + 1 = λ1, and W1 follows the gamma distribution
with shape parameter λ1 and scale parameter αx , provided that λ1 > 0.

The annual premium payable as the whole life annuity for benefit of 1000 units
if death is due to cause 1 and 2000 units if the death is due to cause 2 is then given
by P = Ā

āx
. To decompose the total premium according to two causes of decrement,

we divide two terms in Ā separately by āx . Let P
(1)
x and P

(2)
x denote the premiums

corresponding to two causes of decrement; then these are given by

P (1)
x = 1000eαx �(λ1)α

1−λ1
x P [W1 ≥ 1]

āx

and

P (2)
x = 2000A[1 − eαx �(λ1)α

1−λ1
x P [W1 ≥ 1]]

δ1āx

.

Substituting the expression for āx into P
(2)
x , we get

P (2)
x = 2000A.

It is constant and does not depend on x. It seems reasonable as the force of decre-
ment due to cause 2 is free from x. Premiums payable as the continuous n-year
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temporary life annuity for the whole life insurance are computed on similar lines,
denominator being āx:n̄| instead of āx .

To find premiums for the n-year term, we have to first find the actuarial present
value of the benefit for this product. The actuarial present value of the benefit to be
payable at the moment of death of (x), in the n-year term insurance, denoted by
ĀT , is given by

ĀT =
2∑

j=1

∫ n

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt

= 1000BCxeαx

∫ n

0
e−δt−At−αxCt

Ctdt + 2000Aeαx

∫ n

0
e−δt−At−αxCt

dt

= 1000BCxeαx

∫ n

0
e−δ1t−αxtCt

Ctdt + 2000Aeαx

∫ n

0
e−δ1t−αxCt

dt,

where δ1 = δ +A. As discussed above, the first integral in the above equation can be
expressed as 1000eαx �(λ1)α

1−λ1
x P [1 ≤ W1 ≤ Cn], where (−δ1/ logC) + 1 = λ1,

and W1 follows the gamma distribution with shape parameter λ1 and scale parameter
αx . As in the expression of āx:n̄|, the second integral in ĀT can be expressed as

2000(A/δ1)
{
1 − exp

[−δ1n − αxC
n + αx

]− eαx �(λ1)α
1−λ1
x P

[
1 ≤ W1 ≤ Cn

]}

= 2000Aāx:n̄|.

Thus, ĀT is given by

ĀT = 1000eαx �(λ1)α
1−λ1
x P

[
1 ≤ W1 ≤ Cn

]+ 2000Aāx:n̄|.

We have already derived the expression for āx:n̄|. Once we have expressions for these
actuarial present values, we can compute premiums using the equivalence principle.
Thus,

P
1(1)
x:n̄| = 1000eαx �(λ1)α

1−λ1
x P [1 ≤ W1 ≤ Cn]
āx:n̄|

and

P
1(2)
x:n̄| = 2000Aāx:n̄|

āx:n̄|
= 2000A,

similar to P
(2)
x .

We compute all these quantities using the following R commands:

a1 <- 0.0008 #A;
b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);



64 2 Premiums and Reserves in Multiple Decrement Model

Table 2.1 Premium for
whole life insurance Age x 1000Ā āx P

(1)
x P

(2)
x Px

30 202.77 16.2039 10.91 1.60 12.51

40 290.39 14.4229 18.53 1.60 20.13

50 406.68 12.0593 32.12 1.60 33.72

60 545.70 9.2338 57.50 1.60 59.10

del <- 0.05;
f <- a1+del;
p <- (-f/log(a, base=exp(1)))+1 # λ1;
x <- c(30, 40, 50, 60);
j <- m*a^x # αx;
q1 <- e^j*gamma(p)*(j^(1-p))*(1-pgamma(1, p, j))

#first term in Ā;
q2 <- (a1/f)*(1-q1) #second integral in Ā;
q3 <- 1000*q1+2000*q2 # Ā;
q4 <- (1-q1)/f # āx;
p1 <- 1000*q1/q4 #premium corresponding to cause 1;
p2 <- 1000*2*q2/q4 #premium corresponding to cause 2;
p3 <- p1+p2 #premium ;
d <- round(data.frame(q3, q4, p1, p2, p3), 4);
d1 <- data.frame(x, d);
d1 #Table 2.1;

The actuarial present values of benefit and annuity and the corresponding premiums
for four ages are reported in Table 2.1. It is to be noted that P

(2)
x = 2000A = 1.6.

Suppose that the premium are payable as the n-year temporary life annuity by (30).
Then the following commands are added after the command for p in the above set
to obtain the premiums:

x <- 30;
n <- 1:10;
j <- m*a^x;
q1 <- e^j*gamma(p)*(j^(1-p))*(1-pgamma(1, p, j));
q2 <- (a1/f)*(1-q1);
q <- e^j*gamma(p)*(j^(1-p))*(pgamma(a^n, p, j)

-pgamma(1, p, j));
q4 <- (1-q-e^(j-f*n-j*a^n))/f # āx:n̄|;
p1 <- 1000*q1/q4;
p2 <- 1000*2*q2/q4;
p3 <- p1+p2;
d <- round(data.frame(p1, p2, p3), 2);
d1 <- data.frame(n, d);
d1 #Table 2.2;
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Table 2.2 n-year premium
payment n nP

(1)
30 nP

(2)
30 nP30

1 181.53 26.61 208.14

2 93.15 13.66 106.81

3 63.72 9.34 73.07

4 49.03 7.19 56.22

5 40.24 5.90 46.14

6 34.39 5.04 39.43

7 30.23 4.43 34.66

8 27.12 3.98 31.09

9 24.71 3.62 28.33

10 22.79 3.34 26.13

Table 2.3 Premium for
n-year term insurance n P

1(1)
30:n̄| P

1(2)
30:n̄| P 1

30:n̄|

1 1.75 1.6 3.35

2 1.83 1.6 3.43

3 1.92 1.6 3.52

4 2.01 1.6 3.61

5 2.10 1.6 3.70

6 2.19 1.6 3.79

7 2.29 1.6 3.89

8 2.40 1.6 4.00

9 2.51 1.6 4.11

10 2.62 1.6 4.22

Premiums payable as the n-year temporary annuity for the whole life insurance are
reported in Table 2.2.

To compute the premium for the n-year term insurance, in the above set of com-
mands, we add the following R commands:

q3 <- 2*a1*(1-q-e^(j-f*n-j*a^n))/f;
pr1 <- 1000*q/q4;
pr2 <- 1000*q3/q4;
pr3 <- pr1+pr2;
d <- round(data.frame(pr1, pr2, pr3), 2);
d1 <- data.frame(n, d);
d1 #Table 2.3;

Table 2.3 gives the premiums for the n-year term insurance.
It is to be noted that, as usual, the premium in the n-year term insurance is always

less than that for the whole life insurance.
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In the next example, we use the same multiple decrement model used in Exam-
ple 2.3.2; however the benefit functions are taken as increasing functions and also
dependent on age.

Example 2.3.3 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.

Suppose A = 0.0008, B = 0.00011, and C = 1.095. Further, the force of inter-
est is δ = 0.05. The benefit to be payable at the moment of death is specified as
1000eb1(x+t) units if death is due to cause 1 and 1000eb2(x+t) units if the death is
due to cause 2, where b1 = 0.02, b2 = 0.03.

(i) Find the actuarial present value of the benefit payable to (x) for x = 30,40,50,
and 60 for the whole life insurance.

(ii) Find the premium payable as the continuous life annuity by (x) for x =
30,40,50, and 60 for the whole life insurance. Decompose the total premium
according to two causes of decrement.

(iii) Find the premium payable as the continuous n-year temporary life annuity by
(30) for the whole life insurance, for n = 1,2, . . . ,10. Decompose the total
premium according to two causes of decrement.

(iv) Find the premium payable as the continuous n-year temporary life annuity by
(30), for n-year term insurance, for n = 1,2, . . . ,10.

Solution As in Example 2.3.2, for this multiple decrement model, μ
(τ)
x+s = μ

(1)
x+s +

μ
(2)
x+s = BCx+s + A. The probability density function of T is

g(t) = tp
(τ)
x μ

(τ)
x+t = exp

[−(At + mCx
(
Ct − 1

))](
A + BCx+t

)
if t ≥ 0,

and the joint distribution of T and J is specified by

f (t, j) =
{

exp[−(At + mCx(Ct − 1))](BCx+t ) if t ≥ 0, j = 1,

exp[−(At + mCx(Ct − 1))](A) if t ≥ 0, j = 2.

Let mCx be denoted by αx . The actuarial present value of the benefit, omitting 1000,
to be payable at the moment of death of (x), denoted by Ā, is given by

Ā =
2∑

j=1

∫ ∞

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt

=
∫ ∞

0
eb1(x+t)e−δt

tp
(τ)
x μ

(1)
x+t dt +

∫ ∞

0
eb2(x+t)e−δt

tp
(τ)
x μ

(2)
x+t dt

= BCxeb1x+αx

∫ ∞

0
eb1t−δt−At−αxCt

Ct dt + Aeb2x+αx

∫ ∞

0
eb2t−δt−At−αxCt

dt
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= BCxeb1x+αx

∫ ∞

0
e−δ2t−αxCt

Ct dt + Aeb2x+αx

∫ ∞

0
e−δ3t−αxCt

dt,

where δ2 = δ + A − b1 and δ3 = δ + A − b2. Suppose (−δ2/ logC) + 1 = λ2 and
(−δ3/ logC) + 1 = λ3. If λ1 and λ2 are positive, then, as in Example 2.3.1, the
first integral in Ā simplifies to eb1x+αx �(λ2)α

1−λ2
x P [W2 ≥ 1], where W2 follows

the gamma distribution with shape parameter λ2 and scale parameter αx . Similarly,
as in Example 2.3.1, the second integral in Ā simplifies to

eb2xA{1 − eαx �(λ3)α
1−λ3
x P [W3 ≥ 1]}

δ3
,

where W3 follows the gamma distribution with shape parameter λ3 and scale pa-
rameter αx .

Hence, Ā is given by

eb1x+αx �(λ2)α
1−λ2
x P [W2 ≥ 1] + eb2xA{1 − eαx �(λ3)α

1−λ3
x P [W3 ≥ 1]}

δ3
.

Expressions for āx and āx:n̄| will remain the same as in Example 2.3.1. Once we
have both components of premium calculations, we can find the premiums.

To find the premium for the n-year term insurance, we have to first find the ac-
tuarial present value of the benefit for this insurance. The actuarial present value of
the benefit to be payable at the moment of death of (x), in the n-year term insurance,
denoted by ĀT , can be obtained on similar lines as in ĀT in Example 2.3.2. It is
given by

ĀT =
2∑

j=1

∫ n

0
B

(j)
x+t v

t
tp

(τ)
x μ

(j)
x+t dt

=
∫ n

0
eb1(x+t)e−δt

tp
(τ)
x μ

(1)
x+t dt +

∫ n

0
eb2(x+t)e−δt

tp
(τ)
x μ

(2)
x+t dt

= BCxeb1x+αx

∫ n

0
e−δ2t−αxtCt

Ct dt + Aeb2x+αx

∫ n

0
e−δ3t−αxCt

dt

= eαx+b1x�(λ2)α
1−λ2
x P

[
1 ≤ W2 ≤ Cn

]

+ eb2x
A

δ3

{
1 − exp

[−δ3n − αxC
n + αx

]

− eαx �(λ3)α
1−λ3
x P

[
1 ≤ W3 ≤ Cn

]}
.

We have already derived the expression for āx:n̄|. Once we have expressions for these
actuarial present values, we can compute the premiums using equivalence principle.
The following R commands compute all these functions:
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Table 2.4 Premiums for
varying benefits Age x Ā āx P

(1)
x P

(2)
x Px

30 0.6527 16.2039 37.15 3.12 40.28

40 1.0142 14.4229 66.40 3.92 70.32

50 1.5441 12.0593 123.16 4.89 128.04

60 2.2790 9.2338 240.71 6.10 246.81

a1 <- 0.0008 #A;
b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
del <- 0.05;
b1 <- 0.02;
b2 <- 0.03;
f <- a1+del;
p <- (-f/log(a, base=exp(1)))+1 # λ1;
f1 <- a1+del-b1;
p1 <- (-f1/log(a, base=exp(1)))+1 # λ2;
f2 <- a1+del-b2;
p2 <- (-f2/log(a, base=exp(1)))+1 # λ3;
x <- c(30, 40, 50, 60);
j <- m*a^x # αx;
q <- e^j*gamma(p)*(j^(1-p))*(1-pgamma(1, p, j));
q1 <- e^j*gamma(p1)*(j^(1-p1))*(1-pgamma(1, p1, j));
q2 <- e^j*gamma(p2)*(j^(1-p2))*(1-pgamma(1, p2, j));
q3 <- e^(b2*x)*a1*(1-q2)/f2 #second term in Ā;
q4 <- (1-q)/f; # āx;
q5 <- e^(b1*x)*q1+q3 # Ā;
pr1 <- 1000*e^(b1*x)*q1/q4

#premium corresponding to cause 1;
pr2 <- 1000*q3/q4 #premium corresponding to cause 2;
pr3 <- pr1+pr2;
d <- round(data.frame(q5, q4, pr1, pr2, pr3), 4);
d1 <- data.frame(x, d);
d1 #Table 2.4;

Premiums are reported in Table 2.4.
It is to be noted that the premiums are higher as compared to those reported in

Table 2.1, as here the benefit function is an increasing function for both modes of
decrement.

Suppose that the premiums are payable as the n-year temporary life annuity by
(30). Then after the set of commands up to p2, we add the following commands to
obtain the premiums:
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Table 2.5 n-year premium
n ā30:n̄| nP

(1)
30 nP

(2)
30 nP30

1 0.9742 617.98 51.97 669.95

2 1.8984 317.12 26.67 343.79

3 2.7751 216.94 18.24 235.18

4 3.6066 166.92 14.04 180.96

5 4.3949 136.98 11.52 148.50

6 5.1423 117.07 9.85 126.92

7 5.8506 102.90 8.65 111.55

8 6.5216 92.31 7.76 100.08

9 7.1573 84.11 7.07 91.19

10 7.7591 77.59 6.53 84.11

x <- 30;
n <- 1:10
j <- m*a^x;
q <- e^j*gamma(p)*(j^(1-p))*(pgamma(a^n, p, j)

-pgamma(1, p, j)) # āx:n̄|;
q4 <- (1-q-e^(j-f*n-j*a^n))/f # āx:n̄|;
pr1 <- 1000*e^(b1*x)*q1/q4 # nP

(1)
x ;

pr2 <- 1000*q3/q4 # nP
(2)
x ;

pr3 <- pr1+pr2;
d <- round(data.frame(q4, pr1, pr2, pr3), 4);
d1 <- data.frame(n, d);
d1 #Table 2.5;

Table 2.5 reports the premiums, payable as the n-year temporary annuity for the
whole life insurance. Here the premiums are also higher as compared to those in
Table 2.2.

The following R commands compute the premium for the n-year term insurance:

a1 <- 0.0008 #A;
b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
del <- 0.05;
b1 <- 0.02;
b2 <- 0.03;
f <- a1+del ;
p <- (-f/log(a, base=exp(1)))+1 # λ1;
f1 <- a1+del-b1;
p1 <- (-f1/log(a, base=exp(1)))+1 # λ2;
f2 <- a1+del-b2;
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Table 2.6 Premium for
n-year term insurance n ā30:n̄| P

1(1)
30:n̄| P

1(2)
30:n̄| P 1

30:n̄|

1 0.9742 3.22 2.00 5.22

2 1.8984 3.41 2.03 5.44

3 2.7751 3.60 2.06 5.66

4 3.6066 3.81 2.09 5.89

5 4.3949 4.03 2.12 6.14

6 5.1423 4.26 2.15 6.40

7 5.8506 4.50 2.18 6.68

8 6.5216 4.76 2.21 6.96

9 7.1573 5.03 2.23 7.26

10 7.7591 5.32 2.26 7.58

p2 <- (-f2/log(a, base=exp(1)))+1 # λ3;
x <- 30;
j <- m*a^x # αx;
n <- 1:10;
q <- e^j*gamma(p)*(j^(1-p))*(pgamma(a^n, p, j)

-pgamma(1, p, j));
q1 <- e^(j+b1*x)*gamma(p1)*(j^(1-p1))*(pgamma(a^n,p1,j)

-pgamma(1, p1, j)) #first term in ĀT ;
q2 <- e^j*gamma(p2)*(j^(1-p2))*(pgamma(a^n, p2, j)

-pgamma(1, p2, j));
q3 <- e^(b2*x)*a1*(1-q2-e^(j-f2*n-j*a^n))/f2;

#second term in ĀT ;
q4 <- (1-q-e^(j-f*n-j*a^n))/f # āx:n̄|;
pr1 <- 1000* q1/q4;
pr2 <- 1000*q3/q4;
pr3 <- pr1+pr2;
d <- round(data.frame(q4, pr1, pr2, pr3), 2);
d1 <- data.frame(n, d);
d1 #Table 2.6;

The premiums for the n-year term insurance are given in Table 2.6.

Next two examples illustrate computation of discrete premiums.

Example 2.3.4 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.

Suppose A = 0.0008, B = 0.00011, and C = 1.095. Further, the force of interest
is δ = 0.05. The benefit to be payable at the end of year of death is specified as
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1000e0.02(x+k+1) units if death is due to cause 1 and 1000e0.03(x+k+1) units if the
death is due to cause 2.

(i) Find the premium payable as the discrete life annuity due by (30) for the whole
life insurance. Decompose the total premium according to two causes of decre-
ment.

(ii) Find the premium payable as the discrete n-year temporary life annuity due
by (30) for the whole life insurance, for n = 1,2, . . . ,10. Decompose the total
premium according to two causes of decrement.

(iii) Find the premium payable as the discrete n-year temporary life annuity due by
(30), for the n-year term insurance, for n = 1,2, . . . ,10.

Solution To find the premiums, we have to first find out the actuarial present value
of the benefits and the actuarial present value of the annuities corresponding to two
modes of premium payments. The actuarial present value of the benefits in the whole
life insurance is given by

AWx =
∞∑

k=0

vk+1e0.02(x+k+1)P [K = k, J = 1]

+
∞∑

k=0

vk+1e0.03(x+k+1)P [K = k, J = 2].

Similarly, the actuarial present value of the benefits in the n-year term insurance is
given by

AT 1
x:n̄| =

n−1∑

k=0

vk+1e0.02(x+k+1)P [K = k, J = 1]

+
n−1∑

k=0

vk+1e0.03(x+k+1)P [K = k, J = 2].

Using the joint distribution of K(30) and J (30) derived in Example 1.2.5, we can
obtain these actuarial present values. Further, the actuarial present value of the
whole life annuity and n-year temporary life annuity is given by

äx:n̄| =
n−1∑

k=0

vk
kp

(τ)
x and äx =

∞∑

k=0

vk
kp

(τ)
x ,

where kp
(τ)
x for the given two decrement model is kp

(τ)
x = exp[−Ak − αxC

k +
αx], as derived in Example 1.2.5. The following set of R commands computes all
these actuarial present values and the premiums for the two insurance products.
Commands at the beginning compute the joint distribution of K(30) and J (30) and
are the same as given in Example 1.2.5.
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a1 <- 0.0008 #A;
b <- 0.00011 #B,
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
f <- (-a1/log(a, base=exp(1)))+1

#parameter λ as defined in Example 1.2.2;
x <- 30;
k <- 0:69;
j <- m*a^x;
j1 <- m*a^(x+k);
p <- e^(-a1*k+j-j*a^k) #vector of kp

(τ)
30 for k = 0 to 69;

q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)
-pgamma(1, f, j1)) #vector of q

(1)
30+k for k = 0 to 69;

q2 <- 1-e^(-a1-j1*a+j1)-q1
#vector of q

(2)
30+k for k = 0 to 69;

p1 <- p*q1 #vector of P [K(30) = k, J (30) = 1] for k = 0 to 69;
p2 <- p*q2 #vector of P [K(30) = k, J (30) = 2] for k = 0 to 69;
del <- 0.05;
v <- e^(-del);
b1 <- 0.02;
b2 <- 0.03;
x <- 30;
w130 <- e^(b1*x)*sum(p1*(v*e^b1)^(k+1))

#first term in A;
w230 <- e^(b2*x)*sum(p2*(v*e^b2)^(k+1))

#second term in A;
w30 <- w130+w230 #A;
w130; w230; w30;
wa <- e^j*sum(v^k*e^(-a1*k-j*a^k)) # äx;
pw1 <- 1000*w130/wa #premium corresponding to first

#cause in whole life insurance;
pw2 <- 1000*w230/wa #premium corresponding to second

#cause in whole life insurance;
pw <- pw1+pw2 #premium corresponding to whole life

#insurance;
pw1; pw2; pw;
ta <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta <- ta[1:10] # äx:n̄| for n = 1,2, . . . ,10;
pnw1 <- 1000*w130/nta #n-year premium corresponding to

#first cause in whole life insurance;
pnw2 <- 1000*w230/nta #n-year premium corresponding

#to second cause in whole life insurance;
pnw <- pnw1+pnw2 #n-year premium corresponding to whole

#life insurance;
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Table 2.7 n-year discrete
premiums for whole life
insurance

n nP
(1)

nP
(2)

nP

1 593.07 50.12 643.20

2 304.33 25.72 330.05

3 208.18 17.59 225.77

4 160.18 13.54 173.72

5 131.44 11.11 142.55

6 112.33 9.49 121.83

7 98.73 8.34 107.07

8 88.56 7.49 96.05

9 80.69 6.82 87.51

10 74.43 6.29 80.72

d <- round(data.frame(pnw1, pnw2, pnw), 2);
n <- 1:10;
d1 <- data.frame(n, d);
d1 #Table 2.7;
t130 <- e^(b1*x)*cumsum(p1*(v*e^b1)^(k+1))

#first term in AT 1
x:n̄|;

t230 <- e^(b2*x)*cumsum(p2*(v*e^b2)^(k+1))
#second term in AT 1

x:n̄|;
t1 <- t130[1:10] #AT 1

x:n̄| for n = 1,2, . . . ,10, due to cause 1;

t2 <- t230[1:10] #AT 1
x:n̄| for n = 1,2, . . . ,10, due to cause 2;

pt1 <- 1000*t1/nta #premium corresponding to first
#cause in n-year term insurance;

pt2 <- 1000*t2/nta #premium corresponding to second
#cause in n-year term insurance;

pt <- pt1+pt2 #premium for n-year term insurance;
d3 <- round(data.frame(pt1, pt2, pt), 2);
d4 <- data.frame(n, d3);
d4 #Table 2.8;

The first term in AWx is 0.5931, while the second term is 0.0501, and A is 0.6432. It
is to be noted that these values are close and slightly smaller than the corresponding
quantities in Ā computed in Example 2.3.2. The premiums corresponding to the
first cause, the second cause and total premium in the whole life insurance, payable
as the whole life annuity due, are, 35.50, 3.00, and 38.50, respectively. Table 2.7
reports the premiums for the whole life insurance when they are paid as the n-year
temporary life annuity.

It is to be noted that these premiums are slightly lower than the corresponding
continuous premiums. Table 2.8 gives the premiums for the n-year term insurance,
with split corresponding to two causes of decrement.
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Table 2.8 Discrete premium
for n-year term insurance n nPT (1)

nPT (2)
nPT

1 3.10 1.93 5.02

2 3.27 1.95 5.23

3 3.46 1.98 5.44

4 3.66 2.01 5.67

5 3.86 2.04 5.90

6 4.08 2.07 6.15

7 4.32 2.10 6.42

8 4.56 2.13 6.69

9 4.83 2.15 6.98

10 5.10 2.18 7.28

Here also, these premiums are again close and slightly lower than the correspond-
ing continuous premiums, as displayed in Table 2.6.

In the previous examples we have obtained the premiums corresponding to two
causes of decrement and also the total premium. Example 2.3.5 illustrates similar
computations for the whole life insurance in the presence of rider.

Example 2.3.5 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , t ≥ 0, μ

(2)
x+t = A, t ≥ 0, A ≥ 0, B ≥ 0, C ≥ 1.

Suppose A = 0.0008, B = 0.00011, and C = 1.095. Further, the force of interest is
δ = 0.05. The benefit to be payable at the end of year of death is specified as 1000
units in the whole life insurance contract issued to (30). Extra benefit of 1000 units
is payable at the end of year of death if death is due to accident before (30) attains
age 65. Find the premium payable as the discrete whole life annuity due by (30)
for the whole life insurance. Find the extra premium to be payable as the 35-year
temporary life annuity due if death occurs before age 65 due to accident.

Solution Let J = 1 if death is nonaccidental and J = 2 if death is due to accident.
Thus the premium for the base policy is given by

P
(τ)
30 = AW30

äx

= 1000
∑∞

k=0 vk+1P [K = k]
∑∞

k=0 vk
kp

(τ)
x

= 185.13

16.71
= 11.08.

The extra premium is due to cause 2. So it is given by

P
(2)
30 = AT30

ä30:35|
= 1000

∑34
k=0 vk+1P [K = k, J = 2]
∑34

k=0 vk
kp

(τ)
x

= 11.97

15.79
= 0.76.

These computations are done using the following set of R commands:
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a1 <- 0.0008 #A;
b <- 0.00011 #B,
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
f <- (-a1/log(a, base=exp(1)))+1 #parameter λ as

#defined in Example 1.2.2;
x <- 30;
k <- 0:69;
j <- m*a^x;
j1 <- m*a^(x+k);
p <- e^(-a1*k +j -j*a^k) #vector of kp

(τ)
30 for k = 0 to 69;

q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)
-pgamma(1, f, j1)) #vector of q

(1)
30+k for k = 0 to 69;

q2 <- 1-e^(-a1-j1*a+j1)-q1 #vector of q
(2)
30+k for k = 0 to 69;

p1 <- p*q1 #vector of P [K(30) = k, J (30) = 1] for k = 0 to 69;
p2 <- p*q2 #vector of P [K(30) = k, J (30) = 2] for k = 0 to 69;
p3 <- p1+p2;
del <- 0.05;
v <- e^(-del);
w130 <- sum(p3*v^(k+1)) #AW30;
wa <- e^j*sum(v^k*e^(-a1*k-j*a^k)) # äx;
pw1 <- 1000*w130/wa #premium for base policy;
w130; wa; pw1;
t130 <- cumsum(p2*v^(k+1));
t1 <- t130[35] #AT30;
ta <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta <- ta[35] # äx:35|;
pt2 <- 1000*t1/nta #premium for extra benefit;
t1; nta; pt2;

With the individual life insurance, sometimes there is a rider for disability ben-
efits. For example, during the period of disability, the premiums for the insurance
may be waived, or the policy may contain a provision for monthly income for the
period of disability. The actuarial present value of the such benefit and hence the
premiums can be determined using the multiple decrement model.

Apart from the premium calculation, another important computation in insurance
industry is the reserve computation. We now proceed to discuss reserve calculations
for the multiple decrement model in the next section.

2.4 Computation of Reserves

Reserve computations for various insurance products, in continuous and discrete
setup, are thoroughly discussed in the literature on Actuarial Statistics. In this sec-
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tion we discuss how the reserve computation for single decrement model gets ex-
tended to the multiple decrement model. In insurance industry, usually the reserve
for the base policy is computed, and a separate reserve is held for the extra benefit.
Hence, we discuss reserve calculations for policies with riders, that is, when the un-
derlying survivorship model is a multiple decrement model. The reserve for the base
policy can be computed exactly on similar lines as that for single decrement model
with the only modification that μx , qx , and px will be replaced by μ

(τ)
x , q

(τ)
x , and

p
(τ)
x , respectively. The reserve for the extra benefit can also be computed exactly on

similar lines as that for single decrement model, replacing μx , qx , and px by μ
(j)
x ,

q
(j)
x , and p

(j)
x , respectively, for j = 1,2, . . . ,m. Thus the theoretical development of

the formulae for reserves remains the same as that for the single decrement model.
The following example illustrates the computational procedure for discrete reserve.

Example 2.4.1 A multiple decrement model with two causes of decrement is given
below in terms of the forces of decrement as

μ
(1)
x+t = BCx+t , μ

(2)
x+t = A, A ≥ 0, B ≥ 0, C ≥ 1.

Suppose A = 0.0008, B = 0.00011, and C = 1.095. Further, the force of interest is
δ = 0.05. The benefit to be payable at the end of year of death is specified as 1000
units in the whole life insurance contract issued to (30). Extra benefit of 1000 units
is payable at the end of year of death if death is due to accident before (30) attains
age 65. The premium is payable as the discrete whole life annuity due by (30) for
base policy and as the 35-year temporary life annuity due for the extra benefit. Find
the reserve at t = 10,20,30,35 for the base policy and separate reserve for extra
benefit.

Solution We have noted that the reserves can be computed exactly on similar lines
as that for a single decrement model. Thus the reserve for the base policy and extra
benefit is given by the formula

tV (AW30) = AW30+t − P
(τ)
30 ä30+t and

tV (AT30) = AT30+t :35−t | − P
(2)
30 ä30+t :35−t |.

In Example 2.3.5 we have calculated P
(τ)
30 = 11.08 and P

(2)
30 = 0.76 for the benefit of

1000 units in base policy and extra benefit of 1000 units for accidental death before
age 65. The following R commands calculate the actuarial present values required
for reserve calculation. In view of having a complete set of commands for reserve,
the commands for premium are also included:

a1 <- 0.0008 #A;
b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
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f <- (-a1/log(a, base=exp(1)))+1
#parameter λ as defined in Example 1.2.2;

x <- 30;
k <- 0:69;
j <- m*a^x;
j1 <- m*a^(x+k);
p <- e^(-a1*k+j-j*a^k) #vector of kp

(τ)
30 for k = 0 to 69;

q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)
-pgamma(1, f, j1))

#vector of q
(1)
30+k for k = 0 to 69;

q2 <- 1-e^(-a1-j1*a+j1)-q1
#vector of q

(2)
30+k for k = 0 to 69;

p1 <- p*q1 #vector of P [K(30) = k, J (30) = 1] for k = 0 to 69;
p2 <- p*q2 #vector of P [K(30) = k, J (30) = 2] for k = 0 to 69;
p3 <- p1+p2;
del <- 0.05;
v <- e^(-del);
x <- 30;
w130 <- sum(p3*v^(k+1)) #AW30;
wa <- e^j*sum(v^k*e^(-a1*k-j*a^k)) # ä30;
pw1 <- 1000*w130/wa #premium for base policy;
t130 <- cumsum(p2*v^(k+1));
t1 <- t130[35] #AT30:35|;
ta <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta <- ta[35] # ä30:35|;
pt2 <- 1000*t1/nta #premium for extra benefit;
x <- 40;
j <- m*a^x;
k <- 0:59;
p <- e^(-a1*k+j-j*a^k);
j1 <- m*a^(x+k);
q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)

-pgamma(1, f, j1));
q2 <- 1-e^(-a1-j1*a+j1)-q1;
p1 <- p*q1;
p2 <- p*q2;
p3 <- p1+p2;
w40 <- sum(p3*v^(k+1)) #AW40;
wa40 <- e^j*sum(v^k*e^(-a1*k-j*a^k));
t140 <- cumsum(p2*v^(k+1));
t40 <- t140[25] #AT40:25|;
ta40 <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta40 <- ta40[25] # ä40:25|;
x <- 50;
j <- m*a^x;
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k <- 0:49;
p <- e^(-a1*k+j-j*a^k);
j1 <- m*a^(x+k);
q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)

-pgamma(1, f, j1));
q2 <- 1-e^(-a1-j1*a+j1)-q1;
p1 <- p*q1;
p2 <- p*q2;
p3 <- p1+p2;
w50 <- sum(p3*v^(k+1)) #AW50;
wa50 <- e^j*sum(v^k*e^(-a1*k-j*a^k));
t150 <- cumsum(p2*v^(k+1));
t50 <- t150[15] #AT50:15|;
ta50 <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta50 <- ta50[15] # ä50:15|;
x <- 60;
j <- m*a^x;
k <- 0:39;
p <- e^(-a1*k+j-j*a^k);
j1 <- m*a^(x+k);
q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)

-pgamma(1, f, j1));
q2 <- 1-e^(-a1-j1*a+j1)-q1;
p1 <- p*q1;
p2 <- p*q2;
p3 <- p1+p2;
w60 <- sum(p3*v^(k+1)) #AW60;
wa60 <- e^j*sum(v^k*e^(-a1*k-j*a^k));
t160 <- cumsum(p2*v^(k+1));
t60 <- t160[5];
ta60 <- e^j*cumsum(v^k*e^(-a1*k-j*a^k));
nta60 <- ta60[5] # ä60:5̄|;
x <- 65;
j <- m*a^x;
k <- 0:34;
p <- e^(-a1*k+j-j*a^k);
j1 <- m*a^(x+k);
q1 <- e^j1*gamma(f)*(j1^(1-f))*(pgamma(a, f, j1)

-pgamma(1, f, j1));
q2 <- e^(-a1-j1*a+j1)-q1;
p1 <- p*q1;
p2 <- p*q2;
p3 <- p1+p2;
w65 <- sum(p3*v^(k+1)) #AW65;
wa65 <- e^j*sum(v^k*e^(-a1*k-j*a^k)) # ä65;
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Table 2.9 Discrete reserves
for a policy with rider t tV

(τ)
30 t V

(2)
30 t V30

10 106.58 −0.02 106.56

20 248.01 −0.04 247.97

30 417.04 −0.04 417.00

35 505.70 0.00 505.70

w <- c(w40, w50, w60, w65);
wa <- c(wa40, wa50, wa60, wa65);
vb <- round(1000*(w-pw1*wa), 2) # tV (AW30);
te <- c(t40, t50, t60, 0);
ta <- c(nta40, nta50, nta60, 0);
vt <- round(1000*(te-pt2*ta), 2) # tV (AT30);
v1 <- vb+vt;
t <- c(10, 20, 30, 35);
d <- data.frame(t, vb, vt, v1);
d #Table 2.9;

Table 2.9 gives the reserves for base policy and for rider.
The reserve corresponding to extra benefit is negative, implying that the insurer

does not have positive liability corresponding to the extra benefit. The negative value
may be in view of the fact that the chance of claim due to accidental death is very
less, and thus the actuarial present value of the outflow of the company is smaller
than that of inflow. This picture is of course for the given model with given set of
parameters. We will get different results for different models.

Key Terms Actuarial present value, Premium, Reserves, Term insurance, Whole
life insurance.

2.5 Exercises

2.1 For the 20-year term insurance issued to (30), the following information is
given.

(i) μ
(1)
30+t = 0.0005t , where (1) represents death by accidental means.

(ii) μ
(2)
30+t = 0.0025t , where (2) represents death by other means.

(iii) The benefit is 2000 units if death occurs by accidental means and 1000
units if death occurs by other means.

(iv) Benefits are payable at the moment of death.
Taking δ = 0.06, find the premium payable as (i) the 20-year temporary contin-
uous life annuity, (ii) 20-year temporary life annuity due, (iii) 10-year tempo-
rary continuous life annuity, and (iv) 10-year temporary life annuity due.
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2.2 A multiple decrement model with 2 causes of decrement is given below in terms
of the forces of decrement as

μ
(1)
x+t = B1C

x+t
1 , μ

(2)
x+t = B2C

x+t
2 , Bi ≥ 0, Ci ≥ 1, i = 1,2.

Suppose B1 = 0.00012, C1 = 1.094, B2 = 0.00014, and C2 = 1.091. Further,
the force of interest is δ = 0.06. The benefit to be payable at the moment of
death is specified as 1000 units in the whole life insurance contract issued to
(25). Extra benefit of 1000 units is payable at the moment of death if death is
due to accident before (25) attains age 60.

(i) Find the premium payable as the whole life continuous annuity for the
whole life insurance issued to (25). Find the extra premium to be payable
as the 35-year temporary continuous life annuity if death occurs before age
60 due to accident.

(ii) Find the reserve at t = 10,20,35 for the base policy and separate reserve
for extra benefit.

(iii) Find the premium payable as the discrete whole life annuity due by (25)
for the whole life insurance. Find the extra premium to be payable as the
35-year temporary life annuity due if death occurs before age 60 due to
accident.

(iv) Find the reserve at t = 10,20,35 for the base policy and separate reserve
for extra benefit.

2.3 A multiple decrement model with two causes of decrement is given below in
terms of the forces of decrement as

μ
(1)
x+t = B1C

x+t
1 , μ

(2)
x+t = B2C

x+t
2 , Bi ≥ 0, Ci ≥ 1, i = 1,2.

Suppose B1 = 0.00012 and C1 = 1.094, B2 = 0.00014, and C2 = 1.091. Fur-
ther, the force of interest is δ = 0.06. The benefit to be payable at the end of year
of death is specified as 1000 units in the whole life insurance contract issued to
(25). Extra benefit of 1000 units is payable at the end of year of death if death
is due to accident before (25) attains age 60.
(i) Find the premium payable as the discrete whole life annuity due by (25)

for the whole life insurance. Find the extra premium to be payable as the
35-year temporary life annuity due, if death occurs before age 60 due to
accident.

(ii) Find the reserve at t = 10,20,35 for the base policy and separate reserve
for extra benefit.



Chapter 3
Defined Benefit Pension Plan

3.1 Introduction

Individuals constantly seek means to enhance their economic security. One cause
of economic insecurity is the probable reduction of an individual’s earning power
at an advanced age. The problem of superannuation exists everywhere. The risk
is met through either personal savings, private pensions, or government sponsored
programs. For a large number of employers, the formal pension plan approach has
proved to be a good solution. In general, a pension is an arrangement to provide
people with a regular income after superannuation. Pension plans may be set up by
employers, insurance companies, the government, or other institutions such as em-
ployer associations or trade unions. Retirement pensions are typically in the form
of a guaranteed life annuity, thus insuring against the risk of longevity. Many in-
surance companies offer pension plans. Insurance companies in USA entered the
pension business in 1921, when the Metropolitan Life Insurance Company issued
the first group annuity contract.

Pension plan analysis is one of the most active areas for both research and ap-
plications. A pension plan is a financial contract where the main pension benefit is
in the form of a deferred life annuity. Pension plans are typically employer spon-
sored plans. Employers sponsor plans for number of reasons. Some of these are
as follows: (1) competition for new employees, (2) to facilitate turnover of older
employees by ensuring that they can afford to retire, (3) to provide incentive for
employees to stay with the employer, (4) pressure from trade unions, (5) to provide
tax-efficient method of remunerating employees, and (6) responsibility to employ-
ees who have contributed to the success of the company. The pension plan design
depends on which of these motivations is the most important to the sponsor.

Pension plans are classified as defined benefit or defined contribution pension
plans. A defined benefit pension plan guarantees a certain payout at retirement, ac-
cording to a fixed formula which usually depends on the member’s salary and the
number of years of membership in the plan, that is, the number of years of service.
For example, suppose that an employee reaches retirement age with n years of ser-
vice (that is, membership of the pension plan) and pensionable salary S. Then the

S. Deshmukh, Multiple Decrement Models in Insurance,
DOI 10.1007/978-81-322-0659-0_3, © Springer India 2012
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annual initial pension at retirement is Snα, where α is called the accrual rate and is
usually 1–2 %. The pensionable salary may be the average salary of last few months
before retirement or may be the average of the salary throughout the employment.
These two cases are referred to as the final salary plan and career average salary
plan. In India, according to the Maharashtra state Goverment’s rule, the pensionable
salary is the last basic salary or average of basic salary of last 10 months, whichever
is maximum. The monthly pension is 50 % of the pensionable salary plus the al-
lowances. Before February 2009, the monthly pension was defined by the formula

(Pensionable salary/2) × (total service/66).

The accrual rate is set by consideration of appropriate replacement ratio. The pen-
sion plan replacement ratio R is defined as

R = Pension income in the year after retirement

Salary in the year before retirement
,

where it is assumed that the member survives the year following retirement. The
value of the ratio is defined to allow retirees to maintain their preretirement lifestyle.
Employer sponsored plans often target 50–70 % as the replacement ratio for an
employee with a full career in the company.

A defined contribution plan provides a payout at retirement that is dependent
upon the amount of money contributed and the performance of the investment ve-
hicles utilized. Thus, defined contribution pensions work more like a bank account.
The employee and employer pay a predetermined contribution, usually a fixed per-
centage of the salary, into a fund, and the fund earns interest. When the employee
leaves or retires, the proceeds are available to provide income throughout retirement.
In UK, proceeds are converted to annuity; in USA and Canada there are options: the
pensioner may draw funds to live on without necessarily purchasing an annuity from
the insurance company.

Some types of retirement plans, such as cash balance plans, combine features of
both defined benefit and defined contribution plans. They are often referred to as
hybrid plans. Such plan designs have become increasingly popular in the US since
1990. Examples include Cash Balance and Pension Equity plans. Many countries
have created funds for their citizens and residents to provide income when they
retire (or in some cases become disabled), for example, Employee’s Provident Fund
Organization in India, National Insurance in UK, or Social Security in the USA.
Typically this requires payments throughout the citizen’s working life in order to
qualify for benefits later on.

Thus, a pension plan in its simplest form is a promise by the employer to pay a
periodic benefit, usually for life, to employees who meet the requirements asserted
in the plan. As an illustration, suppose that a defined benefit pension plan provides
employees with a retirement benefit, usually monthly life annuity of certain amount,
after retirement age of 60 or 65, provided that the employee has completed minimum
of 5 or 10 years of service with the employer. For an employer, it is of interest to
know the cost of this plan at certain time point for all the individuals who retire over
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the period. The knowledge of the cost will enable him to decide the amount of fund
needed to meet the liability of providing pension benefits and thereby help to take
the decisions to raise the fund. Thus, the employer has to measure and value at a
regular point in time, may be each year, an ever changing group of participants in-
volving active, retired, terminated, and disabled participants. Such a dynamic group
is an important aspect of deciding the cost of pension plan, and in this chapter we
elaborate on this point.

It is interesting to note that not all the current employees will be entitled to the
benefit under the plan. Some may die in service, some may quit the job, and some
may become disabled prior to retirement age. Pension plan also specifies the benefit
if the individual dies when in active service or becomes disabled and hence has to
retire or if he withdraws after some period of service. Thus the cause of termination
from active service is a random variable. Further, the future life of retired employ-
ees after retirement is also a random variable. For the specified pension benefit, the
amount of annual benefit payments under the plan depends upon the number of re-
tired workers. This number, in turn depends on the rate at which already retired
individuals die and the rate at which new employees are added to the retirement
roles. Similarly the future life of individuals terminating due to other causes also
brings in randomness. Employer has to determine the cost of the pension plan for
such a group of employees and has to decide the pattern of annual contribution to
meet the payments of benefit spelled out in the plan. The only way to determine
the true cost of a pension plan would be to wait until the last retired employee has
died and then add up all the benefit payments and administrative expenses since the
inception of the plan and subtract the investment earnings. However it is totally im-
practical. Thus, the cost of any pension plan is uncertain until the plan terminates at
some date in distant future. As a consequence, it is essential to estimate the ultimate
cost of the pension plan with reasonable accuracy and thus arrive at a level of esti-
mated plan contributions. The rate of investment income on the fund generated via
contributions is also uncertain. In view of such a variety of uncertainties, statistical
tools are essential in pension planning.

In summary, in the estimation of pension cost, it is necessary to make a number
of assumptions regarding the factors that affect plan’s cost. The first step in the esti-
mation of pension cost is the estimate of benefits paid, expenses, and the investment
return. The estimate of benefits paid depends on the benefit provision of the plan,
the characteristics such as, age, sex, salary, length of service of the participants of
the plan, and the mortality pattern, that is, assumptions regarding the longevity of
the participants. Once an estimate of the ultimate cost of the plan is determined,
the next step is to determine the contribution required to pay for the estimated cost.
Cost methods determine the incidence, that is, occurrence or frequency, and amount
of pension costs. An orderly method of finding the cost of the pension plan, in the
presence of such multifaceted uncertainty, is known as the funding method. Differ-
ent sets of assumptions lead to different funding methods. Payments to meet the cost
of benefits in pension plan are known as contributions and not premiums as in insur-
ance policies. Of course, the principle to determine amount of contribution remains
the same as balancing the outflow of the employer to the inflow via contribution,
which may be partly by employer and partly by the employee.
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The pensions actuary working with defined benefit pensions must determine ap-
propriate contribution rates to meet the benefits promised, using models suitable
to the working patterns of the employees. Sometimes, the employer may want to
change the benefit structure, and the actuary is then responsible for assessing the
cost and impact of changes. When one company with pension plan takes over an-
other, the actuary must assist with determining the best way to allocate the assets
from the two plans and how to merge the benefits.

In this chapter we discuss the valuation of pension plans, and the next chapter
discusses various methods of funding the pension costs. In the next section, we
discuss how to compute the actuarial present value of the benefit under a pension
plan.

3.2 Actuarial Present Value of Pension Benefit

The ultimate cost of the plan is defined as the benefits paid and administrative ex-
penses less the investment earnings. In this chapter we will concentrate on the first
component, that is, benefits paid. The amount of benefits paid depends upon the
number of workers who will ultimately be entitled to receive benefits under the
plan. This number depends on following four factors: (i) mortality rates among ac-
tive employees, (ii) rates of disabilities among active employees under a plan that
offers disability benefit, (iii) rate of withdrawals from employment, and (iv) rates of
retirement at different eligible ages. Further, the amount of benefit paid also depends
on the length of benefit period, which in turn depends on the longevity of retired
members. Therefore assumptions need to be made about the mortality among the
retired members. The last factor affecting the total amount paid under the plan is the
amount of pension paid to each retired member under the plan. In general the benefit
formula includes the salary progression, amount of service, and inflation factor.

In Chap. 1 we studied multiple decrement model when there are multiple modes
of exit from a given status of an individual. A major application of multiple decre-
ment models is in valuation of pension plans. Suppose that an individual is a member
of a group of employees of an employer. The individual may exit the group by any
one of the following modes: retirement at the mandatory age of retirement, death
during employment, disability to work or withdrawal from the employment, may be
joining another employer. Benefit to the individual changes according to the mode
of exit. Benefit on retirement is the monthly life annuity depending on the service
period and the skill of the individual. For example, the retirement benefit may be
the monthly whole life annuity due or may be the 10-year certain and life annuity,
payable monthly. The initial pension may be at an annual rate of 0.02 multiplied by
the final 5-year average salary multiplied by the total number of years of service.
If death occurs before retirement age, a lump sum may be payable to the benefi-
ciary. The benefit amount may be 3 times or 5 times the salary at the time of death.
Sometimes a pension is given to the member’s surviving spouse. If an individual
withdraws from the employment, then there can be a deferred pension, depending
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on the years of service of the individual with the employer, or the individual’s accu-
mulated contribution may be returned. For example, for an employee with at least
20 years of service before withdrawal, the benefit formula may be the same as that
for the employees retiring at mandatory age, but the initial payment of the annuity
may be deferred until the earliest eligible age of retirement if the employee would
have continued in active status. In case of disability, there may be additional benefit
till the individual recovers completely. After recovery there may be life annuity of
pension. As a consequence, the actuarial present value of the benefits depends on
the cause of exit from the group along with the future life time of an individual.
The multiple decrement model thus becomes a foundation of these computations.
Contributions to meet the cost of benefits are payable in various portions by the in-
dividual and the employer. To determine the rate of contribution in pension funds
and to value the pension fund at specific time, it is necessary to find the actuarial
present value of the benefits. The theory developed in Chaps. 1 and 2 will be ap-
plicable to find the actuarial present value of the benefits and, as a consequence, to
decide contributions in pension plans.

Two sets of assumptions are needed to determine the actuarial present value of
benefits of various types. One set is labeled as demographic, which includes the first
eligible age for retirement, the mandatory age of retirement, and survival functions
for retired lives, disabled lives, and lives who have withdrawn. The second set of
assumptions is a set of economic assumptions, which includes assumptions about
the salary scale function and about investment return or rate of interest.

We begin the discussion with the demographic assumptions. Using the same no-
tation as in Chap. 1, a random variable J (x) ≡ J describes the cause of decrement.
In the context of four modes of exit from the active service, we define the random
variable J as follows:

J = 1 if death in active service,

J = 2 if withdrawal from service,

J = 3 if disability occurs in active service,

J = 4 if retirement due to age-service.

The marginal distribution of J given by hj = P [J = j ] is denoted as follows:

h1 = hd = P [J = 1], h2 = hw = P [J = 2],
h3 = hi = P [J = 3] and h4 = hr = P [J = 4].

Decrement corresponding to J = 4 is usually referred to as retirement for age-
service. Further, μ

(w)
x , μ

(d)
x , μ

(i)
x , and μ

(r)
x denote the forces of decrement at age

x due to withdrawal from service, death in service, retirement for disability, and re-
tirement due to age-service, respectively. Similarly, q

(w)
x , q

(d)
x , q

(i)
x , and q

(r)
x denote

the probability of decrement in age (x, x + 1) due to withdrawal from service, death
in service, retirement for disability, and retirement due to age-service respectively.
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Let p
(τ)
x denote the probability that individual of age x remains in active service

till age x + 1. Let d
(w)
x , d

(d)
x , d

(i)
x , and d

(r)
x denote the expected number of decre-

ments in age (x, x + 1) due to withdrawal from service, death in service, retirement
for disability, and retirement due to age-service, respectively, and let l

(τ )
x denote the

number of active members at the beginning of the interval (x, x + 1). As discussed
in Chap. 1, q

(w)
x , q

(d)
x , q

(i)
x , and q

(r)
x and hence the survival probability can be ob-

tained from the forces of mortality. As derived in Chap. 1, we have the following
relation among these functions:

l
(τ )
x+1 = l(τ )

x p(τ)
x , l(τ )

x q(w)
x = d(w)

x ,

l(τ )
x q(d)

x = d(d)
x , l(τ )

x q(i)
x = d(i)

x , l(τ )
x q(r)

x = d(r)
x .

Further, kp
(τ)
x = l

(τ )
x+k

l
(τ )
x

denotes the probability that (x) remains in service for next

k years. The following example illustrates the computation of certain probabilities
using the forces of decrements.

Example 3.2.1 Suppose that a member of the pension plan, joining the plan at age
25, exits the plan by any one of the four causes of exit: withdrawal, disability retire-
ment, death in service, and age retirement. The multiple decrement model for these
four causes of decrement is specified in terms of forces of decrements as follows:

μ(w)
x =

⎧
⎪⎪⎨

⎪⎪⎩

w1 = 0.13 if 25 ≤ x < 30,

w2 = 0.07 if 30 ≤ x < 40,

w3 = 0.02 if 40 ≤ x < 55,

0 if x ≥ 55,

μ(r)
x =

{
0 if x < 55,

r1 = 0.06 if 55 ≤ x < 65,

μ
(i)
x = i1 = 0.005, and μ

(d)
x = A + BCx , with A = 0.0007, B = 0.0001151, and

C = 1.096.
Further, 30 % of the members surviving to age 55 retire at age 55, and 65 is the

mandatory age of retirement. Calculate the probability that a member of age 25

(i) retires at exact age 65;
(ii) exits the plan due to (a) withdrawal, (b) age-service retirement, (c) disability,

and (d) death in service.

Solution (i) The mandatory age of retirement is 65; hence all those who are in ser-
vice up to 65 retire at 65. Thus, the probability that a member of age 25 retires at
age 65 is the probability that he is in service up to 65 and is given by 40p

(τ)
25 . Since

there are discontinuities in the withdrawal and retirement forces of decrement, we
have to consider separately the periods before and after the points of discontinuities.
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Let m = B
logC

. For 0 < t < 5,

tp
(τ)
25 = exp

{
−
∫ t

0

(
μ

(w)
25+s + μ

(i)
25+s + μ

(d)
25+s

)
ds

}

= exp
{−((A + w1 + i1)t + mC25(Ct − 1

))}
.

With t = 5, 5p
(τ)
25 = 0.503727.

For 5 ≤ t < 15,

tp
(τ)
25 = 5p

(τ)
25 t−5p

(τ)
30

= 5p
(τ)
25 exp

{
−
∫ t−5

0

(
μ

(w)
30+s + μ

(i)
30+s + μ

(d)
30+s

)
ds

}

= 5p
(τ)
25 exp

{−((A + w2 + i1)(t − 5) + mC30(Ct−5 − 1
))}

.

Hence,

15p
(τ)
25 = 5p

(τ)
25 10p

(τ)
30 = 0.503727 × 0.455445 = 0.229420.

For 15 ≤ t < 30,

tp
(τ)
25 = 5p

(τ)
25 10p

(τ)
30 t−15p

(τ)
40

= 5p
(τ)
25 10p

(τ)
30 exp

{
−
∫ t−15

0

(
μ

(w)
40+s + μ

(i)
40+s + μ

(d)
40+s

)
ds

}

= 5p
(τ)
25 10p

(τ)
30 exp

{−((A + w3 + i1)(t − 15) + mC40(Ct−15 − 1
))}

.

Hence,

30p
(τ)
25 = 5p

(τ)
25 10p

(τ)
30 15p

(τ)
40 = 0.503727 × 0.455445 × 0.588215 = 0.134948.

At age 55, 30 % retire so the probability of remaining in the plan, denoted 30+p
(τ)
25 ,

is given by

30+p
(τ)
25 = 0.7 × 30p

(τ)
25 = 0.094464.

For 30 ≤ t < 40,

tp
(τ)
25 = 30+p

(τ)
25 exp

{
−
∫ t−30

0

(
μ

(r)
55+s + μ

(i)
55+s + μ

(d)
55+s

)
ds

}

= 30+p
(τ)
25 exp

{−((A + r1 + i1)(t − 30) + mC55(Ct−30 − 1
))}

.

Thus the probability of remaining in the plan up to 65, that is, the probability
of retirement at exact age 65, denoted 40p

(τ)
25 , is given by 40p

(τ)
25 = 0.094464 ×

0.387277 = 0.036584.
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Thus, the expected number of retirements at 65 is 3658 if we assume that 100000
individuals join the pension plan at age 25 and the group suffers decrements accord-
ing to specified forces.

(ii) To compute the probability that the member exits the plan due to withdrawal,
we note that withdrawals are allowed up to 55. Again the force of withdrawal has
discontinuities, so to compute this probability, we split the period appropriately as
done in (i). The probability of withdrawal of (25) by age 30, denoted 5q

(w)
25 , is given

by

5q
(w)
25 =

∫ 5

0
sp

(τ)
25 μ

(w)
25+s ds = w1

∫ 5

0
sp

(τ)
25

= w1

∫ 5

0
exp
{−((A + w1 + i1)s + mC25(Cs − 1

))}
ds.

We compute the value of the integral as a Riemann sum. The interval (0,5) is parti-
tioned into 100000 intervals to get

∫ 5

0
sp

(τ)
25 ds = 3.619611.

Hence, 5q
(w)
25 = 0.470549. The probability of withdrawal of (25) between ages 30

to 40 is given by

5p
(τ)
25 10q

(w)
30 = 5p

(τ)
25

∫ 10

0
sp

(τ)
30 μ

(w)
30+s ds

= 5p
(τ)
25 w2

∫ 10

0
sp

(τ)
30 ds

= 5p
(τ)
25 w2

∫ 10

0
exp
{−((A + w2 + i1)s + mC30(Cs − 1

))}
ds

= 0.503727 × 0.07 × 6.939017 = 0.244676,

where the value of the integral is obtained by numerical integration. The probability
of decrement due to withdrawal for (25) between ages 40 to 55 is given by

15p
(τ)
25 15q

(w)
40 = 15p

(τ)
25

∫ 15

0
sp

(τ)
40 μ

(w)
40+s ds

= 15p
(τ)
25 w3

∫ 15

0
sp

(τ)
40 ds

= 15p
(τ)
25 w3

∫ 15

0
exp
{−((A + w3 + i1)s + mC40(Cs − 1

))}
ds

= 0.229420 × 0.02 × 11.8262 = 0.054263,

where the value of the integral is again obtained by numerical integration.
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Thus the probability of withdrawal of (25) is given by

hw = 0.470549 + 0.244676 + 0.054263 = 0.769488,

which is quite high. We compute the probability of decrement due to disability for
(25) on similar lines. The probability of disability by age 30, denoted 5q

(i)
25 , is given

by

5q
(i)
25 =

∫ 5

0
sp

(τ)
25 μ

(i)
25+s ds = i1

∫ 5

0
sp

(τ)
25 = 0.005 × 3.619611 = 0.018098.

The probability of disability between ages 30 to 40 is given by

5p
(τ)
25 10q

(i)
30 = 5p

(τ)
25

∫ 10

0
sp

(τ)
30 μ

(i)
30+s ds

= 5p
(τ)
25 i1

∫ 10

0
sp

(τ)
30 ds

= 0.503727 × 0.005 × 6.939017 = 0.017477.

The probability of disability between ages 40 to 55 is given by

15p
(τ)
25 15q

(i)
40 = 15p

(τ)
25

∫ 15

0
sp

(τ)
40 μ

(i)
40+s ds

= 15p
(τ)
25 i1

∫ 15

0
sp

(τ)
40 ds

= 0.229420 × 0.005 × 11.8262 = 0.013566.

The probability of disability between ages 55 to 65 is given by

30+p
(τ)
25 15q

(i)
55 = 30+p

(τ)
25

∫ 10

0
sp

(τ)
55 μ

(i)
55+s ds

= 30+p
(τ)
25 i1

∫ 10

0
sp

(τ)
55 ds

= 30+p
(τ)
25 i1

∫ 10

0
exp
{−((A + r1 + i1)s + mC55(Cs − 1

))}
ds

= 0.094464 × 0.005 × 6.598791 = 0.003117.

Thus the probability of decrement due to disability for (25) is given by

hi = 0.018098 + 0.017477 + 0.013566 + 0.003117 = 0.052257.

The probability of decrement due to age-service retirement is the sum of the prob-
abilities of exact age retirement at 55 and 65 and the probability due to retirement
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between 55 and 65. The probability of decrement due to age-service retirement at
exact age 55 is

0.3 × 30p
(τ)
25 = 0.3 × 0.134948 = 0.040484.

The probability of decrement due to age-service retirement at exact age 65 is com-
puted as 0.036584. The probability of retirement between ages 55 and 65 is given
by

30+p
(τ)
25 10q

(r)
55 = 30+p

(τ)
25

∫ 10

0
sp

(τ)
55 μ

(r)
55+s ds

= 30+p
(τ)
25 r1

∫ 10

0
sp

(τ)
55 ds

= 0.094464 × 0.06 × 6.598791 = 0.037401.

Thus the probability of decrement due to age-service retirement for (25) is given by

hr = 0.040484 + 0.036584 + 0.037401 = 0.114469.

The last step is to find the probability of decrement due to death in active service.
We have to calculate this probability again for different periods as the survival prob-
ability differs from period to period. The probability for (25) of death by age 30,
denoted 5q

(d)
25 , is given by

5q
(d)
25 =

∫ 5

0
sp

(τ)
25 μ

(d)
25+s ds =

∫ 5

0
sp

(τ)
25

(
A + BC25+s

)
ds

= A

∫ 5

0
sp

(τ)
25 ds + BC25

∫ 5

0
sp

(τ)
25 Cs ds = 0.007627.

Here also we find the values of the integrals by numerical integration. The probabil-
ity of death between ages 30 to 40 is given by

5p
(τ)
25 10q

(d)
30 = 5p

(τ)
25

∫ 10

0
sp

(τ)
30 μ

(d)
30+s ds

= 5p
(τ)
25

[
A

∫ 10

0
sp

(τ)
30 ds + BC30

∫ 10

0
sp

(τ)
30 Cs ds

]
= 0.012155.

The probability of death between ages 40 to 55 is given by

15p
(τ)
25 15q

(d)
40 = 15p

(τ)
25

∫ 15

0
sp

(τ)
40 μ

(d)
40+s ds = 0.026643

The probability of death between ages 55 to 65 is given by

30+p
(τ)
25 15q

(d)
55 = 30+p

(τ)
25

∫ 10

0
sp

(τ)
55 μ

(d)
55+s ds = 0.017363.
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Thus the probability of decrement due to death for (25) is given by

hd = 0.007627 + 0.012155 + 0.026643 + 0.017363 = 0.063792.

It is to be noted that hw + hi + hr + hd = 1 as it should be.
The following is an R code for these computations:

a <- 0.0007; b <- 0.0001151; c1 <- 1.096; m <- b/log(c1);
w1 <- 0.13; w2 <- 0.07; w3 <- 0.02;
r1 <- 0.06; i1 <- 0.005;
t1 <- 5;
p1 <- exp(-((a+w1+i1)*t1+m*c1^25*(c1^t1-1))); p1;
ps1 <- p1; ps1 # 5p

(τ)
25 ;

t2 <- 10;
p2 <- exp(-((a+w2+i1)*t2+m*c1^30*(c1^t2-1))); p2;
ps2 <- p1*p2; ps2 # 15p

(τ)
25 ;

t3 <- 15;
p3 <- exp(-((a+w3+i1)*t3+m*c1^40*(c1^t3-1))); p3;
ps3 <- p1*p2*p3; ps3 # 30p

(τ)
25 ;

ps4 <- ps3*0.7; ps4 # 30+p
(τ)
25 ;

p4 <- exp(-((a+r1+i1)*t2+m*c1^55*(c1^t2-1))); p4;
ps5 <- ps4*p4;ps5 # 40p

(τ)
25 ;

s1 <- seq(0, 5, 0.00001);
s2 <- seq(0, 10, 0.00001);
s3 <- seq(0, 15, 0.00001);
p5 <- sum(exp(-((a+w1+i1)*s1+m*c1^25*(c1^s1-1)))

*0.00001); p5;
qw1 <- w1*p5; qw1 # 5q

(w)
25 ;

p6 <- sum(exp(-((a+w2+i1)*s2+m*c1^30*(c1^s2-1)))

*0.00001); p6 # 10q
(w)
30 ;

qw2 <- p1*w2*p6; qw2;
p7 <- sum(exp(-((a+w3+i1)*s3+m*c1^40*(c1^s3-1)))

*0.00001); p7 # 15q
(w)
40 ;

qw3 <- p1*p2*w3*p7; qw3;
qw <- qw1+qw2+qw3; qw #probability of withdrawal hw;
qi1 <- i1*p5; qi1 # 5q

(i)
25 ;

qi2 <- p1*i1*p6; qi2 # 5p
(τ)
25 10q

(i)
30 ;

qi3 <- p1*p2*i1*p7; qi3 # 15p
(τ)
25 15q

(i)
40 ;

p8 <- sum(exp(-((a+r1+i1)*s2+m*c1^55*(c1^s2-1)))

*0.00001); p8;
qi4 <- p1*p2*p3*0.7*p8*i1; qi4 # 30+p

(τ)
25 10q

(i)
55 ;

qi <- qi1+qi2+qi3+qi4; qi
#probability of disability hi;

qr1 <- p1*p2*p3*0.3; qr1
#probability of retirement at exact age 55;
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qr2 <- p1*p2*p3*0.7*p4; qr2
#probability of retirement at exact age 65;

qr3 <- p1*p2*p3*0.7*p8*r1; qr3 # 30+p
(τ)
25 10q

(r)
55 ;

qr <- qr1+qr2+qr3; qr #probability of retirement hr;
p9 <- sum(exp(-((a+w1+i1)*s1+m*c1^(25)*(c1^s1-1)))

*c1^s1*0.00001); p9;
qd1 <- a*p5+b*c1^25*p9; qd1 # 5q

(d)
25 ;

p10 <- sum(exp(-((a+w2+i1)*s2+m*c1^(30)*(c1^s2-1)))

*c1^s2*0.00001); p10;
qd2 <- p1*(a*p6+b*c1^30*p10); qd2 # 5p

(τ)
25 10q

(d)
30 ;

p11 <- sum(exp(-((a+w3+i1)*s3+m*c1^(40)*(c1^s3-1)))

*c1^s3*0.00001); p11;
qd3 <- p1*p2*(a*p7+b*c1^40*p11); qd3 # 15p

(τ)
25 15q

(d)
30 ;

p12 <- sum(exp(-((a+r1+i1)*s2+m*c1^(55)*(c1^s2-1)))

*c1^s2*0.00001); p12;
qd4 <- p1*p2*p3*0.7*(a*p8+b*c1^55*p12); qd4 # 30+p

(τ)
25 10q

(d)
55 ;

qd <- qd1+qd2+qd3+qd4; qd #probability of death hd;
q <- qw+qi+qr+qd; q #approximately 1;

From Example 3.2.1 it is clear that the procedure to compute various probabili-
ties of decrement when the forces of decrement are specified is rather lengthy and
tedious as it involves numerical integration. As discussed in Chap. 1, once we have
been given the forces of decrement, we can obtain the expressions for survival and
decrement probabilities. In the setup of Example 3.2.1 we do not get explicit ex-
pressions, but we can find numerical values of these probabilities using numerical
integration wherever needed. Once these probabilities are available, we can pre-
pare a multiple decrement table, with some radix, specifying the expected number
of survivals and decrements due to four causes. The multiple decrement table is
then helpful to compute all the probabilities computed in Example 3.2.1 very easily.
Corresponding to given forces of decrement, we first find p

(τ)
x for x = 25 to 64,

taking into account the fact that withdrawal rates and age service retirement rates
change periodically. Once we have the p

(τ)
x values, we get l

(τ )
x . Next step is to find

the q
(j)
x values for four causes of decrement and the corresponding d

(j)
x values. The

following is a set of R commands to construct a table of survival and decrement
probabilities (Table 3.1) and the corresponding table of the expected number of sur-
vivals and decrements (Table 3.2) due to four causes, corresponding to the forces of
decrements as given in Example 3.2.1:

a <- 0.0007 #A;
b <- 0.0001151 #B;
c1 <- 1.096 #C;
m <- b/log(c1);
w1 <- 0.13; w2 <- 0.07; w3 <- 0.02 #withdrawal rates;
r1 <- 0.06 #retirement rates;
i1 <- 0.005 #disability rate;
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x1 <- 25:29 #ages from 25 to 29;
p1 <- exp(-((a+w1+i1)+m*c1^x1*(c1-1))); p1

#p
(τ)
x for x = 25 to 29;

x2 <- 30:39
p2 <- exp(-((a+w2+i1)+m*c1^x2*(c1-1))); p2

#p
(τ)
x for x = 30 to 39;

x3 <- 40:54
p3 <- exp(-((a+w3+i1)+m*c1^x3*(c1-1))); p3

#p
(τ)
x for x = 40 to 54;

p55 <- p3[15]*0.7; p55 #p
(τ)
55−;

x4 <- 55:64
p4 <- exp(-((a+r1+i1)+m*c1^x4*(c1-1))); p4

#p
(τ)
x for x = 55 to 64;

xl55 <- "55L" #lower limit of the age group (55−56);
x <- c(x1, x2, x3, xl55, x4, 65); x
px <- c(p1, p2, p3, p55, p4, 0); px #vector of p

(τ)
x ;

lx1 <- c(100000, 1:30)
for(i in 1:30)
{
lx1[i+1] <- lx1[i]*px[i]
}

lx2 <- 0.7*lx1[31];
lx3 <- c(lx2,1:10)
for(i in 1:10)
{
lx3 [i+1] <- lx3[i]*p4[i]
}

lx <- c(lx1,lx3); lx #vector of l
(τ )
x ;

s <- seq(0, 1, 0.00001)
qx1d <- 0
for(i in 1:5)
{
qx1d[i] <- sum((a+b*c1^(i+24)*c1^s)*exp(-((a+w1+i1)*s

+m*c1^(i+24)*(c1^s-1)))*0.00001)
}
qx1d

qx2d <- 1:10
for(i in 1:10)
{
qx2d[i] <- sum((a+b*c1^(i+29)*c1^s)*exp(-((a+w2+i1)*s

+m*c1^(i+29)*(c1^s-1)))*0.00001)
}
qx2d

qx3d <- 1:15
for(i in 1:15)
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{
qx3d[i] <- sum((a+b*c1^(i+39)*c1^s)*exp(-((a+w3+i1)*s

+m*c1^(i+39)*(c1^s-1)))*0.00001)
}
qx3d

qx4d <- 1:10
for(i in 1:10)
{
qx4d[i] <- sum((a+b*c1^(i+54)*c1^s)*exp(-((a+r1+i1)*s

+m*c1^(i+54)*(c1^s-1)))*0.00001)
}
qx4d

qxd <- c(qx1d, qx2d, qx3d, 0, qx4d, 0) #vector of q
(d)
x ;

dxd <- lx*qxd; dxd #vector of d
(d)
x ;

sum(dxd)/100000
(dxd[1]+ dxd[2]+dxd[3]+dxd[4]+dxd[5])/100000

#probability of death hd;
qx1w <- 0
for(i in 1:5)
{
qx1w[i] <- w1*sum(exp(-((a+w1+i1)*s+m*c1^(i+24)

*(c1^s-1)))*0.00001)
}
qx1w

qx2w <- 0
for(i in 1:10)
{
qx2w[i] <- w2*sum(exp(-((a+w2+i1)*s+m*c1^(i+29)

*(c1^s-1)))*0.00001)
}
qx2w

qx3w <- 0
for(i in 1:15)
{
qx3w[i] <- w3*sum(exp(-((a+w3+i1)*s+m*c1^(i+39)

*(c1^s-1)))*0.00001)
}
qx3w

qxw <- c(qx1w, qx2w, qx3w, rep(0, 12)) #vector of q
(w)
x ;

dxw <- lx*qxw; dxw #vector of d
(w)
x ;

dw25 <- dxw[1]+ dxw[2]+ dxw[3]+ dxw[4]+ dxw[5];
qw25 <- dw25/100000; qw25 #probability of withdrawal hw;
sum(dxw)/100000 # hw = qw25;
qx1dis <- 0
for(i in 1:5)
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qx1dis[i] <- i1*sum(exp(-((a+w1+i1)*s+m*c1^(i+24)

*(c1^s-1)))*0.00001); qx1dis
qx2dis <- 0
for(i in 1:10)
{
qx2dis[i] <- i1*sum(exp(-((a+w2+i1)*s+m*c1^(i+29)

*(c1^s-1)))*0.00001)
}
qx2dis

qx3dis <- 0
for(i in 1:15)
{
qx3dis[i] <- i1*sum(exp(-((a+w3+i1)*s+m*c1^(i+39)

*(c1^s-1)))*0.00001)
}
qx3dis;

qx4dis <- 0
for(i in 1:10)
{
qx4dis[i] <- i1*sum(exp(-((a+r1+i1)*s+m*c1^(i+54)

*(c1^s-1)))*0.00001)
}

qx4dis;
qxdis <- c(qx1dis, qx2dis, qx3dis, 0, qx4dis ,0)

#vector of q
(i)
x ;

dxdis <- lx*qxdis; dxdis #vector of d
(i)
x ;

sum(dxdis)/100000 #probability of disability hi;
p5 <- c(px[1], 2:30);
for(i in 2:30)
{
p5[i] <- px[i]*p5[i-1]
}

p5
p6 <- p5[30]*0.7; p6;
p7 <- c(p6, 1:10);
for(i in 1:10)
{
p7[i+1] <- p4[i]*p7[i]
}

p7;
p8 <- c(p5, p7); p8
k <- c(0:30, xl55, 31:40);
kp25 <- c(1, p8) #vector of kp

(τ)
25 ;

d4 <- data.frame(k, kp25); d4
lx <- 100000*kp25 #vector of l

(τ )
x ;
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d5 <- data.frame(x, lx); d5
q55r <- 0.3*kp25[31]; q55r;
qx4r <- 0
for(i in 1:10)
{
qx4r[i] <- r1*sum(exp(-((a+r1+i1)*s+m*c1^(i+54)

*(c1^s-1)))*0.00001)
}

qx4r;
q65r <- 1;
qxr <- c(rep(0, 30), q55r, qx4r, q65r) #vector of q

(r)
x ;

d55r <- 100000*q55r;
dxr1 <- lx[32:41]*qx4r; dxr1;
d65r <- 100000*kp25[42];
dxr <- c(rep(0, 30), d55r, dxr1, d65r) #vector of d

(r)
x ;

(sum(dxr1)+d65r+d55r)/100000
#probability of retirement hr;

d1 <- data.frame(x, qxd, qxw, qxdis, qxr, px); d1
#Table 3.1;

dxr <- c(rep(0, 30), d55r, dxr1, d65r)
d2 <- data.frame(x, lx, dxd, dxw, dxdis, dxr); d2

#Table 3.2;
lx1 <- c(100000, 1:41)
for(i in 1:41)
lx1[i+1] <- lx1[i]-(dxd[i]+dxw[i]+dxdis[i]+dxr[i]); lx1

#vector of l
(τ )
x ;

d3 <- data.frame(x, lx1); d3;
d4 <- data.frame(dxd, dxw, dxdis, dxr);
d5 <- colSums(d4); d5;

#gives the second last row of Table 3.2;

The second last row of Table 3.2 presents the expected number of decrements
due to four causes. From Table 3.2 we note that the number of members active in
service till age 65 is 3658.36. All those who are in service till age 65, retire at 65.
Hence, the probability that a member of age 25 retires at exact age 65, as asked in
Example 3.2.1(i), can be easily computed as 3658.36/100000 = 0.036584. Further,
from the last row of Table 3.2, the probability that a member of age 25 exits the plan
due to withdrawal is obtained as (sum of withdrawals at various ages between 25 to
55)/100000 = 76949.48/10000 = 0.76949. Similarly, the probability that a mem-
ber of age 25 exits the plan due to death is 6378.75/10000 = 0.063787, the proba-
bility that a member of age 25 exits the plan due to disability is 5225.79/100000 =
0.052257, and the probability that a member of age 25 exits the plan due to age ser-
vice retirement is 11446.90/100000 = 0.114469. The last row of Table 3.2 presents
these probabilities. It is to be noted that the last row of Table 3.2 displays the prob-
ability distribution of J (25).
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Table 3.1 Decrement and survival probabilities

Age x q
(d)
x q

(w)
x q

(i)
x q

(r)
x p

(τ)
x

25 0.001767 0.121497 0.004673 0.000000 0.872064

26 0.001874 0.121490 0.004673 0.000000 0.871964

27 0.001991 0.121483 0.004672 0.000000 0.871855

28 0.002119 0.121475 0.004672 0.000000 0.871735

29 0.002260 0.121466 0.004672 0.000000 0.871604

30 0.002487 0.067355 0.004811 0.000000 0.925348

31 0.002661 0.067349 0.004811 0.000000 0.925180

32 0.002851 0.067343 0.004810 0.000000 0.924997

33 0.003060 0.067336 0.004810 0.000000 0.924796

34 0.003289 0.067328 0.004809 0.000000 0.924575

35 0.003539 0.067319 0.004809 0.000000 0.924334

36 0.003814 0.067310 0.004808 0.000000 0.924069

37 0.004115 0.067300 0.004807 0.000000 0.923779

38 0.004444 0.067288 0.004806 0.000000 0.923462

39 0.004806 0.067276 0.004805 0.000000 0.923114

40 0.005333 0.019700 0.004925 0.000000 0.970042

41 0.005778 0.019695 0.004924 0.000000 0.969603

42 0.006265 0.019691 0.004923 0.000000 0.969122

43 0.006798 0.019685 0.004921 0.000000 0.968595

44 0.007383 0.019680 0.004920 0.000000 0.968018

45 0.008023 0.019673 0.004918 0.000000 0.967386

46 0.008724 0.019666 0.004917 0.000000 0.966694

47 0.009491 0.019659 0.004915 0.000000 0.965935

48 0.010332 0.019651 0.004913 0.000000 0.965105

49 0.011253 0.019642 0.004910 0.000000 0.964196

50 0.012261 0.019632 0.004908 0.000000 0.963200

51 0.013364 0.019621 0.004905 0.000000 0.962110

52 0.014572 0.019609 0.004902 0.000000 0.960917

53 0.015894 0.019596 0.004899 0.000000 0.959611

54 0.017342 0.019582 0.004895 0.000000 0.958182

55− 0.000000 0.000000 0.000000 0.040484 0.670727

55+ 0.018549 0.000000 0.004796 0.057548 0.919108

56 0.020247 0.000000 0.004791 0.057498 0.917464

57 0.022105 0.000000 0.004787 0.057443 0.915665

58 0.024138 0.000000 0.004782 0.057383 0.913698

59 0.026360 0.000000 0.004776 0.057318 0.911547

60 0.028790 0.000000 0.004771 0.057246 0.909195

61 0.031446 0.000000 0.004764 0.057168 0.906624

62 0.034348 0.000000 0.004757 0.057082 0.903814

63 0.037519 0.000000 0.004749 0.056988 0.900745

64 0.040982 0.000000 0.004740 0.056885 0.897394

65− 0.000000 0.000000 0.000000 1.000000 0.000000
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Table 3.2 Multiple decrement table

Age x l
(τ)
x d

(d)
x d

(w)
x d

(i)
x d

(r)
x

25 100000.00 176.74 12149.68 467.30 0.00
26 87206.41 163.44 10594.72 407.49 0.00
27 76040.88 151.41 9237.66 355.29 0.00
28 66296.61 140.51 8053.37 309.74 0.00
29 57793.08 130.60 7019.89 270.00 0.00
30 50372.66 125.27 3392.85 242.35 0.00
31 46612.23 124.02 3139.29 224.24 0.00
32 43124.72 122.96 2904.13 207.44 0.00
33 39890.23 122.06 2686.03 191.86 0.00
34 36890.31 121.32 2483.74 177.41 0.00
35 34107.87 120.72 2296.11 164.01 0.00
36 31527.06 120.24 2122.08 151.58 0.00
37 29133.19 119.87 1960.65 140.05 0.00
38 26912.64 119.61 1810.91 129.35 0.00
39 24852.79 119.43 1672.00 119.43 0.00
40 22941.96 122.36 451.95 112.99 0.00
41 22254.67 128.59 438.37 109.58 0.00
42 21578.19 135.19 424.87 106.22 0.00
43 20911.90 142.17 411.66 102.91 0.00
44 20255.17 149.54 398.62 99.65 0.00
45 19607.37 157.30 385.74 96.44 0.00
46 18967.89 165.47 373.03 93.26 0.00
47 18336.14 174.03 360.47 90.12 0.00
48 17711.53 183.00 348.04 87.01 0.00
49 17093.48 192.35 335.74 83.94 0.00
50 16481.46 202.07 323.56 80.89 0.00
51 15874.95 212.15 311.48 77.87 0.00
52 15273.45 222.57 299.50 74.87 0.00
53 14676.52 233.28 287.60 71.90 0.00
54 14083.75 244.24 275.78 68.95 0.00
55− 13494.80 0.00 0.00 0.00 4048.44
55+ 9446.36 175.22 0.00 45.30 543.62
56 8682.22 175.79 0.00 41.60 499.21
57 7965.63 176.08 0.00 38.13 457.57
58 7293.85 176.06 0.00 34.88 418.55
59 6664.37 175.67 0.00 31.83 381.99
60 6074.89 174.89 0.00 28.98 347.76
61 5523.25 173.68 0.00 26.31 315.75
62 5007.51 172.00 0.00 23.82 285.84
63 4525.86 169.80 0.00 21.49 257.92
64 4076.65 167.07 0.00 19.33 231.90
65− 3658.36 0.00 0.00 0.00 3658.36

Total – 6378.75 76949.48 5225.79 11446.90

hj – 0.063792 0.769488 0.052257 0.114469
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Example 3.2.2 illustrates the advantage of constructing a multiple decrement ta-
ble given the forces of decrements to compute similar probabilities.

Example 3.2.2 Suppose that a member of the pension plan, joining the plan at age
25, exits the plan by any one of the four causes of exit: withdrawal, disability re-
tirement, death in service, and age retirement. The probability law governing these
decrements is as specified in Example 3.2.1. Calculate the probability that a member
of age 40

(i) retires at exact age 65;
(ii) exits the plan due to (a) death in service, (b) withdrawal, (c) disability, and

(d) age-service retirement.

Solution We have prepared multiple decrement table, Table 3.2, corresponding to
the specified forces of decrement. Using the expected number of decrements and
survivors as displayed in Table 3.2, we compute these probabilities as follows:

(i) The probability that a member of age 40 retires at exact age 65 is

25p
(τ)
40 = l

(τ )
65 /l

(τ)
40 = 3658.36/22941.96 = 0.1595.

(ii) (40) will exit the plan due to death in service if death occurs in any one of the
next 25 years. This probability can be expressed as

25q
(d)
40 = q

(d)
40 + p

(τ)
40 q

(d)
41 + 2p

(τ)
40 q

(d)
42 + · · · + 24p

(τ)
40 q

(d)
64

= d
(d)
40

l
(τ )
40

+ l
(τ )
41

l
(τ )
40

d
(d)
41

l
(τ )
41

+ · · · + l
(τ )
64

l
(τ )
40

d
(d)
64

l
(τ )
64

= d
(d)
40

l
(τ )
40

+ d
(d)
41

l
(τ )
40

+ · · · d
(d)
64

l
(τ )
40

= 25d
(d)
40 /l

(τ)
40 .

Thus the probability that a member of age 40 exits the plan due to death in service
is

25q
(d)
40 = 25d

(d)
40 /l

(τ)
40 = 4400.57/22941.96 = 0.1918.

Similarly, the probability that a member of age 40 withdraws is

15q
(w)
40 = 15d

(w)
40 /l

(τ)
40 = 5426.41/22941.96 = 0.2365.

The probability that a member of age 40 exits the plan due to disability is

25q
(i)
40 = 25d

(i)
40 /l

(τ)
40 = 1668.27/22941.96 = 0.0727.
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The probability that a member of age 40 exits the plan due to age-service retirement
is

25q
(r)
40 = 25d

(r)
40 /l

(τ)
40 = 11446.90/22941.96 = 0.4990.

It is to be noted that four probabilities computed in (ii) add up to 1, as it should be
in view of the fact that (40) will exit the plan in next 25 years either due to one of
the four causes. More precisely, P [J (40) = 1] = 0.1918, P [J (40) = 2] = 0.2365,
P [J (40) = 3] = 0.0727, and P [J (40) = 4] = 0.4990.

A multiple decrement table specifying the expected number of decrements and
expected number of active members or the probabilities of decrement and survival
probabilities for various ages, starting from some minimum age to some maximum
age, is referred to as a service table in the pension funding context. Table 3.3 presents
a hypothetical service table. In Table 3.3, the age of entry is 25, the minimum age for
service-age retirement is 55, and the age for mandatory retirement is 65. Withdrawal
or disability retirement after 55 are treated as age-service retirement. The table dis-
plays the expected number of survivors and expected number of decrements due to
four causes. Here l

(τ )

65− = 8511. Thus, 8511 members remain in service up to 65.
Since 65 is the mandatory age of retirement, all those who remain in service up to
65 retire at 65. Hence, d

(r)
65 = 8511. Superscript − to 65 indicates the beginning of

the age interval (65–66).
The last column of Table 3.3 displays the salary scale function wx , which is

defined later, after Table 3.5.
The multiple decrement table, displayed in Table 3.4, specifying the decrement

probabilities and the survival probabilities, can be obtained from this service table
using the following formulas:

q(d)
x = d

(d)
x

l
(τ )
x

, q(w)
x = d

(w)
x

l
(τ)
x

, q(i)
x = d

(i)
x

l
(τ )
x

, q(r)
x = d

(r)
x

l
(τ )
x

and p(τ)
x = 1 − (q(d)

x + q(w)
x + q(i)

x + q(r)
x

)
or p(τ)

x = l
(τ )
x+1

l
(τ )
x

.

Since 65 is the mandatory age of retirement, q
(r)
65 = d

(r)
65

l
(τ )

65−
= 1.

We note from Tables 3.3 and 3.4 that in the early years of service, withdrawal
rates are high and after 10 years withdrawal rates tend to be low. Such a pattern is
common in practice. With any employment, there is a mandatory age for retirement.
As a consequence, in the service table, l

(τ )
x is 0 after certain age. In Table 3.3, l

(τ )
65

is 8511. As 65 is a mandatory age of retirement, all 8511 members retire, and hence
l
(τ )
x is 0 after age 65. Table 3.4 displays the proportion of exits from active service

due to various modes of exit in each unit age interval.
Our main aim is to decide on the pension fund at a specified time. The actuarial

present value of benefit due to various causes is the main input for the pension fund.
So given the decrement pattern, either in terms of the forces of decrement or in terms
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Table 3.3 Service table

Age x l
(τ)
x d

(d)
x d

(w)
x d

(i)
x d

(r)
x wx

25 100000 22 18600 – – 1

26 81378 23 13457 – – 1.05

27 67898 25 9756 – – 1.11

28 58117 26 5854 – – 1.17

29 52237 28 3875 – – 1.23

30 48334 31 2576 36 – 1.30

31 45691 32 1879 38 – 1.36

32 43742 34 1478 41 – 1.44

33 42189 36 1206 43 – 1.51

34 40904 38 967 45 – 1.60

35 39854 39 834 46 – 1.68

36 38935 41 733 47 1.77

37 38114 44 624 49 – 1.87

38 37397 45 547 51 – 1.96

39 36754 47 478 52 – 2.07

40 36177 48 462 66 – 2.18

41 35601 50 412 56 – 2.29

42 35083 54 402 53 – 2.42

43 34574 56 376 45 – 2.55

44 34097 61 334 43 – 2.68

45 33659 66 287 60 – 2.82

46 33246 69 278 87 – 2.97

47 32812 74 265 93 – 3.13

48 32380 85 254 112 – 3.30

49 31929 92 220 121 – 3.46

50 31496 124 214 132 – 3.65

51 31026 136 180 143 – 3.84

52 30567 143 175 156 – 4.03

53 30093 153 145 187 – 4.24

54 29608 178 125 215 – 4.45

55 29090 195 – – 2566 4.67

56 26329 212 – – 2096 4.89

57 24021 214 – – 2143 5.12

58 21664 234 – – 1678 5.35

59 19752 245 – – 1782 5.58

60 17725 324 – – 1985 5.80

61 15416 423 – – 1560 6.03

62 13433 523 – – 1245 6.27

63 11665 634 – – 987 6.52

64 10044 744 – – 789 6.79

65− 8511 – – – 8511 –



102 3 Defined Benefit Pension Plan

Table 3.4 Multiple decrement table

Age x q
(d)
x q

(w)
x q

(i)
x q

(r)
x p

(τ)
x

25 0.00022 0.18600 0.00000 0.00000 0.81378

26 0.00028 0.16536 0.00000 0.00000 0.83435

27 0.00037 0.14369 0.00000 0.00000 0.85595

28 0.00045 0.10073 0.00000 0.00000 0.89882

29 0.00054 0.07418 0.00000 0.00000 0.92528

30 0.00064 0.05330 0.00074 0.00000 0.94532

31 0.00070 0.04112 0.00083 0.00000 0.95734

32 0.00078 0.03379 0.00094 0.00000 0.96450

33 0.00085 0.02859 0.00102 0.00000 0.96954

34 0.00093 0.02364 0.00110 0.00000 0.97433

35 0.00098 0.02093 0.00115 0.00000 0.97694

36 0.00105 0.01883 0.00121 0.00000 0.97891

37 0.00115 0.01637 0.00129 0.00000 0.98119

38 0.00120 0.01463 0.00136 0.00000 0.98281

39 0.00128 0.01301 0.00141 0.00000 0.98430

40 0.00133 0.01277 0.00182 0.00000 0.98408

41 0.00140 0.01157 0.00157 0.00000 0.98545

42 0.00154 0.01146 0.00151 0.00000 0.98549

43 0.00162 0.01088 0.00130 0.00000 0.98620

44 0.00179 0.00980 0.00126 0.00000 0.98715

45 0.00196 0.00853 0.00178 0.00000 0.98773

46 0.00208 0.00836 0.00262 0.00000 0.98695

47 0.00226 0.00808 0.00283 0.00000 0.98683

48 0.00263 0.00784 0.00346 0.00000 0.98607

49 0.00288 0.00689 0.00379 0.00000 0.98644

50 0.00394 0.00679 0.00419 0.00000 0.98508

51 0.00438 0.00580 0.00461 0.00000 0.98521

52 0.00468 0.00573 0.00510 0.00000 0.98449

53 0.00508 0.00482 0.00621 0.00000 0.98388

54 0.00601 0.00422 0.00726 0.00000 0.98250

55 0.00670 0.00000 0.00000 0.08821 0.90509

56 0.00805 0.00000 0.00000 0.07961 0.91234

57 0.00891 0.00000 0.00000 0.08921 0.90188

58 0.01080 0.00000 0.00000 0.07746 0.91174

59 0.01240 0.00000 0.00000 0.09022 0.89738

60 0.01828 0.00000 0.00000 0.11199 0.86973

61 0.02744 0.00000 0.00000 0.10119 0.87137

62 0.03893 0.00000 0.00000 0.09268 0.86838

63 0.05435 0.00000 0.00000 0.08461 0.86104

64 0.07407 0.00000 0.00000 0.07855 0.84737

65− 0.00000 0.00000 0.00000 1.00000 0.00000
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of the survival and decrement probabilities or in terms of the expected number of
survivors and expected number of decrements due to various causes, we proceed
to find the joint distribution of the random variable K(x) ≡ K , the curtate-future
time until decrement of (x), and a random variable J (x) ≡ J describing the cause
of decrement. The random variable K denotes the complete years of service before
exit from the status of active service. As derived in Chap. 1, the joint probability
mass function of K and J is given by

P [K = k, J = j ] = p(k, j) = kp
(τ)
x q

(j)
x+k.

From the multiple decrement table displayed in Table 3.4, we can obtain the joint
probability mass function of K and J and the marginal probability mass function of
K and J . This is useful in computing the actuarial present value of the benefits, as
discussed in the next section. For convenience of future reference, we introduce the
following notation for the joint and marginal probability mass function of K and J :

p(k, d) = P [K = k, J = 1], p(k,w) = P [K = k, J = 2],
p(k, i) = P [K = k, J = 3], p(k, r) = P [K = k, J = 4], and

pk = P [K = k] = kp
(τ)
x q

(τ)
x+k, k = 0,1, . . . .

Further, the marginal distribution of J given by

hj = P [J = j ] =
∑

k≥0

P [K = k, J = j ], j = 1,2,3,4.

We find the joint distribution of K(25) ≡ K and J (25) ≡ J , and the marginal dis-
tribution of K and J from the multiple decrement model specified in Table 3.4.
The following set of R commands computes all these quantities. The results are dis-
played in Table 3.5. Suppose that Table 3.4 is stored on D drive as mdt.txt file.
We begin with importing the file to R console.

u <- read.table("D://mdt.txt", header=T);
u1 <- u[, 2] # q

(d)
x ; u2 <- u[, 3] # q

(w)
x ;

u3 <- u[, 4] # q
(i)
x ; u4 <- u[, 5] # q

(r)
x ;

u5 <- u[, 6] #p
(τ)
x ;

p <- c(1, 2:40) #dummy vector to store kp25^(τ )

#for k = 0 to 40;
for (i in 2:40)
{
p[i] <- p[i-1]*u5[i-1]
}

p #a vector of kp
(τ)
25 for k = 0 to 40;

qd <- p*u1 # kp
(τ)
25 q

(d)
25+k;

qw <- p*u2 # kp
(τ)
25 q

(w)
25+k;
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qi <- p*u3 # kp
(τ)
25 q

(i)
25+k;

qr <- p*u4 # kp
(τ)
25 q

(r)
25+k;

d <- data.frame(qd, qw, qi, qr);
h <- rowSums(d) #pk for k = 0,1, . . . ,40;
h1 <- sum(h);
h1 #it is approximately 1;
m <- colSums(d # hj for j = 1,2,3,4;
m1 <- sum(m);
m1 #it is approximately 1 and same as h1;
k <- 0:40;
d2 <- data.frame(k, qd, qw, qi, qr, h); d2 #Table 3.5;

Table 3.5 displays the joint and marginal probability distribution of K and J , with
the last row and the last column displaying the marginal distribution of J and K ,
respectively.

In Table 3.5, p(39, r) = P [K(25) = 39, J (25) = 4] indicates the chance of re-
tirement in the age interval (64–65), while

p(40, r) = P
[
K(25) = 40, J (25) = 4

]= 40p
(τ)
25 q

(r)
65 = 0.08511 × 1 = 0.08511

indicates the chance of retirement at exact age 65.
It is to be noted that the probability distributions displayed in Table 3.5 are in

context of the service Table 3.3. Thus for the given service table, the probability that
death occurs in active service is 0.05648, the probability of withdrawal is 0.66994,
quite high, the probability of disability is 0.02016, and the probability of retirement
due to age service is 0.25342. Further, from the last column we observe that the
probability of complete years of service is high for k = 0 and k = 1, mainly due to
high chance of withdrawals in early years.

Example 3.2.3 On the basis of service table given in Table 3.3, find the probability
that (40)

(i) withdraws,
(ii) becomes disabled,

(iii) dies in active service, and
(iv) retires.

Solution (i) The solution is similar to that of Example 3.2.2. (40) may withdraw up
to age 55, so the probability that (40) withdraws is given by

54∑

40

d(w)
x / l

(τ)
40 = 4129/36177 = 0.114133.
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Table 3.5 Joint and marginal distributions of K and J

k p(k, d) p(k,w) p(k, i) p(k, r) pk

0 0.00022 0.18600 0.00000 0.00000 0.18622
1 0.00023 0.13457 0.00000 0.00000 0.13479
2 0.00025 0.09756 0.00000 0.00000 0.09781
3 0.00026 0.05854 0.00000 0.00000 0.05880
4 0.00028 0.03875 0.00000 0.00000 0.03903
5 0.00031 0.02576 0.00036 0.00000 0.02643
6 0.00032 0.01879 0.00038 0.00000 0.01949
7 0.00034 0.01478 0.00041 0.00000 0.01553
8 0.00036 0.01206 0.00043 0.00000 0.01285
9 0.00038 0.00967 0.00045 0.00000 0.01050
10 0.00039 0.00834 0.00046 0.00000 0.00919
11 0.00041 0.00733 0.00047 0.00000 0.00821
12 0.00044 0.00624 0.00049 0.00000 0.00717
13 0.00045 0.00547 0.00051 0.00000 0.00643
14 0.00047 0.00478 0.00052 0.00000 0.00577
15 0.00048 0.00462 0.00066 0.00000 0.00576
16 0.00050 0.00412 0.00056 0.00000 0.00518
17 0.00054 0.00402 0.00053 0.00000 0.00509
18 0.00056 0.00376 0.00045 0.00000 0.00477
19 0.00061 0.00334 0.00043 0.00000 0.00438
20 0.00066 0.00287 0.00060 0.00000 0.00413
21 0.00069 0.00278 0.00087 0.00000 0.00434
22 0.00074 0.00265 0.00093 0.00000 0.00432
23 0.00085 0.00254 0.00112 0.00000 0.00451
24 0.00092 0.00220 0.00121 0.00000 0.00433
25 0.00124 0.00214 0.00132 0.00000 0.00470
26 0.00136 0.00180 0.00143 0.00000 0.00459
27 0.00143 0.00175 0.00156 0.00000 0.00474
28 0.00153 0.00145 0.00187 0.00000 0.00485
29 0.00178 0.00125 0.00215 0.00000 0.00518
30 0.00195 0.00000 0.00000 0.02566 0.02761
31 0.00212 0.00000 0.00000 0.02096 0.02308
32 0.00214 0.00000 0.00000 0.02143 0.02357
33 0.00234 0.00000 0.00000 0.01678 0.01912
34 0.00245 0.00000 0.00000 0.01782 0.02027
35 0.00324 0.00000 0.00000 0.01985 0.02309
36 0.00423 0.00000 0.00000 0.01560 0.01983
37 0.00523 0.00000 0.00000 0.01245 0.01768
38 0.00634 0.00000 0.00000 0.00987 0.01621
39 0.00744 0.00000 0.00000 0.00789 0.01533
40 0.00000 0.00000 0.00000 0.08511 0.08511

hj hd hw hi hr Total

– 0.05648 0.66994 0.02016 0.25342 1
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Similarly, the probability that (40) becomes disabled is given by

54∑

40

d(i)
x / l

(τ)
40 = 1569/36177 = 0.04337.

The probability that (40) dies in service is given by

64∑

40

d(d)
x / l

(τ)
40 = 5137/36177 = 0.141996.

The probability that (40) retires is

64∑

55

d(r)
x / l

(τ)
40 = 25342/36177 = 0.7005.

It is to be noted that these four probabilities add to 1 as these are the probabilities of
exit due to four causes from the plan for (40), in the context of service Table 3.3.

So far we have discussed one aspect, namely the decrement model, for the group
of active members, to find the actuarial present values of the benefits. To find these
values, we have to define clearly the benefits for various types of decrement. We
begin with the benefit function for the retirement for age-service. In most of the
pension plans, the rate of retirement income is defined by a formula. A pension plan
that defines a benefit for an employee upon retirement is known as a defined benefit
pension plan. Traditionally, retirement plans have been administered by institutions
which exist specifically for that purpose, by large businesses, or, for government
workers, by the government itself. A typical form of defined benefit plan is the final
salary plan, under which the pension paid is equal to the number of years worked,
multiplied by the member’s salary at or near retirement, multiplied by a suitable
fraction. Such an amount is available as an initial monthly pension. In this plan the
benefit income rate involves a function of the average salary at or near retirement.
Sponsor contributions are also expressed as a percentage of salary. So in both the
cases it is essential to estimate the future salaries. The following are some salary
functions needed for the estimation. Suppose that the participant of the pension plan
joins the service at complete age a and the employer wishes to find the actuarial
present value of the retirement benefit after h years that is, at age (a + h), when the
employee is in active service. We assume that both a and h are integers.

1. (AS)a+h is the actual annual salary rate at age a+h for a participant who entered
at age a and has attained age a + h.

2. (ES)a+h+t is the estimated annual salary rate at age a + h + t .
3. wx is the salary scale function, which reflects merit and seniority increases in

salary and increases due to inflation. For example, suppose that the deterministic
model for salary scale function is specified as wx = (1.05)x−25ux , where ux

represents the progression of salary due to individual merit and experience, and
5 % accumulation factor to allow for the long-term inflation and of increases
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in productivity of all members of the plan. The initial value of wx at x = 25 is
chosen arbitrarily as 1, just as l

(τ )
25 is taken as 100000. The wx function is usually

assumed to be a step function, with constant level throughout any given year
of age. Such modeling of the salary scale function is similar to the exponential
growth, (1+ i) = eδ , used for continuous compounding interest. The salary scale
function decides the size of the salary progression, and it has dramatic impact on
the level of benefit and hence on the projected cost of the plan. The last column
of Table 3.3 presents a typical salary scale function. Thus, w40 = 2.18 indicates
that for the employee of age 40, the salary scale for the next one year is 2.18, and
w64 = 6.79 indicates that for the employee of age 64, the salary scale for the last
year of employment is 6.79. With the salary scale function, an estimated annual
salary rate can be obtained from the actual annual salary rate by the rule of threes
as

(ES)a+h+t = (AS)a+h

wa+h+t

wa+h

.

As an illustration, in the following example we find the estimated salary of (40)
for the next 25 years, using the salary scale function as given in Table 3.3.

Example 3.2.4 Suppose that an individual is hired at age of 25 and is in active
service at 40 with annual salary Rs 500000/-. Using the salary scale function as
given in Table 3.3, find the estimated salary for the next 25 years.

Solution To find the estimated salaries, we use the formula

(ES)40+t = (AS)40
w40+t

w40
= 500000

w40+t

w40
.

The estimated salaries are reported in Table 3.6.
From Table 3.6 we note that if the annual salary at age 40 is Rs 500000/-, then

according to the salary scale function wx as given in Table 3.3, the estimated salary
during (50–51) is Rs 837156.00/- and during (64–65) and hence at the age of retire-
ment, it is Rs 1557339.40/-.

The projected salary is useful to estimate the initial benefit level for a pension
plan. Toward it we define a function R(a,h, t) as the projected annual benefit rate
to commence at age a + h + t for a participant who entered at age a, is in service at
age a + h, and retires at a + h + t . Suppose that the pension benefit is the monthly
life annuity due. If the pension benefit rate remains level during payout, then the ac-
tuarial present value of the benefit at time of retirement is given by R(a,h, t)ä

(12)r
a+h+t .

The superscript r in ä
(12)r
a+h+t indicates that the actuarial present value of the life an-

nuity due is obtained using the life table for retired lives. In practice the pension
payment does not remain the same for all the future years but increases periodically,
usually annually. To incorporate this increase, let h(x) denote an adjustment factor
applied to the initial pension payment rate R(a,h, t) for those who retired x–y years
ago, y being the age of retirement. h(x) is usually determined using the consumer
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Table 3.6 Estimated salary
t Age (ES)40+t t Age (ES)40+t

1 41–42 525229.40 13 53–54 972477.10

2 42–43 555045.90 14 54–55 1020642.20

3 43–44 584862.40 15 55–56 1071100.90

4 44–45 614678.90 16 56–57 1121559.60

5 45–46 646789.00 17 57–58 1174311.90

6 46–47 681192.70 18 58–59 1227064.20

7 47–48 717889.90 19 59–60 1279816.50

8 48–49 756880.70 20 60–61 1330275.20

9 49–50 793578.00 21 61–62 1383027.50

10 50–51 837156.00 22 62–63 1438073.40

11 51–52 880733.90 23 63–64 1495412.80

12 52–53 924311.90 24 64–65 1557339.40

price index or retail price index. As an example, suppose that h(x) = exp[η(x −y)],
where η is a constant rate of increase, possibly related to the expected inflation rate.
With such an adjustment function h(x), the annual increase in the pension payment
is at the rate of eη. We obtain the expression for such an increasing annuity, with
h(x) = exp[η(x − y)]. Let δ denote the force of interest, and ā

η
y denote the actuarial

present value of the life annuity at age y of retirement, of the pension benefit which
takes into account the increase in pension as governed by the function h(x). The
superscript η in ā

η
y indicates the role of the rate η. By definition,

āη
y =

∫ ∞

0
vth(t) tpy dt =

∫ ∞

0
e−δt eηt

tpy dt

=
∫ ∞

0
e−(δ−η)t

tpy dt =
∫ ∞

0
e−δ′t

tpy dt

= āy(δ
′),

where δ′ = δ − η, that is, ā
η
y is the annuity function āy with force of interest δ′ =

δ − η. Analogously it can be proved that

äη
y =

∞∑

k=0

vkh(k) kpy =
∞∑

k=0

e−δkeηk
kpy =

∞∑

k=0

v′k
kpy = äη

y (v′),

where v′ = e−δ′
. Once we get ä

η
y , we can find ä

η(12)
y by using the relation

ä(12)
x = α(12)äx − β(12), where α(12) = id

i(12)d(12)
and β(12) = i − i(12)

i(12)d(12)
.
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The nominal interest rate i(12) and nominal discount rate d(12) are given by

i(12) = 12
{
(1 + i)1/12 − 1

}
and d(12) = 12

(
1 − v1/12).

Thus, ä
(12)η
y is ä

(12)
y with force of interest δ′. In further discussion we use ä

(12)η
y to

find the actuarial present values of benefits.
We now proceed to define the most frequently used formulas for R(a,h, t) for

integer values of a, h, and t . The first two do not take into account the amount of
service, but in the last two, the benefit is proportional to the number of years of
service at retirement.

1. Suppose that the individual retires at age a + h + t and the benefit rate for the
pension is the fraction d of the final salary rate. d is sometimes referred to as the
accrual rate. Then annual initial benefit rate for the pension is projected as

R1(a,h, t) = d(ES)a+h+t−1 = d(AS)a+h

wa+h+t−1

wa+h

.

The benefit rate is estimated from the current salary rate at a + h.
2. In the first approach, the benefit rate R1(a,h, t) is a function of only the final

salary; instead, more frequently, the final m-year average salary rate is taken into
account. m is usually taken as 3 or 5. Thus the benefit rate is defined as the
fraction d of the final m-year average salary rate. The 5-year average salary rate,
denoted 5Za+h+t , is defined as

5Za+h+t = wa+h+t−5 + wa+h+t−4 + wa+h+t−3 + wa+h+t−2 + wa+h+t−1

5
.

For example, if a person retires at the age of 60, then the 5-year average salary
rate would be the average of salary at ages 55, 56, 57, 58, and 59. The 5-year
average salary rate, denoted 5Z60, is then defined as

5Z60 = w55 + w56 + w57 + w58 + w59

5
.

If t > 5, the initial benefit rate depending on the 5-year average salary rate,
denoted R2(a,h, t), is defined as

R2(a,h, t) = d(AS)a+h 5Za+h+t

wa+h

.

If t < 5, the actual salary for some years is taken into account instead of estimated
salaries.

3. Often, both the amount of service and the final 5-year salary are taken into ac-
count to define the initial benefit rate for pension. In this case, the initial benefit
rate, denoted R3(a,h, t), is given by

R3(a,h, t) = d(h + t)
(AS)a+h 5Za+h+t

wa+h

,
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where (h + t) denotes the total period of service. Here also, if t < 5, the actual
salary is taken into account instead of estimated salaries.

4. Sometimes the entire career earnings are taken into account, instead of m years.
Thus we have

R4(a,h, t) = d(h + t) × Average Salary over the Entire Career.

When the entire career earnings are taken into account, salary information is
known for the past service and is estimated for the future service.

5. For some employees, the number of years of service is large. Then the formula
for R(a,h, t) is appropriately modified for excess years of service. For example,

R(a,h, t) = 0.02(h + t)
(AS)a+h 5Za+h+t

wa+h

if h + t ≤ 30 and

R(a,h, t) = [0.6 + 0.01(h + t)
] (AS)a+h 5Za+h+t

wa+h

if h + t ≥ 30.

In this case, the benefit rate is the product of 5-year final average salary and 0.02
times the number of years of service. If the number of years of service exceeds
30 years, then for each exceeding year, there is an additional benefit as 0.01 times
number of years of service above 30 years.

In Maharashtra State government initial monthly pension benefit is 0.5 multiplied
by the last month’s basic pay or average of last 10 months basic pay, whichever is
maximum.

The following example illustrates the computation of estimated initial benefit rate
starting from age 55, assuming that it is the minimum eligible age for age-service
retirement.

Example 3.2.5 Suppose that an individual enters the job at age 25. He is eligible
for the retirement benefit if he retires at any age between 55 to 65. Assume that the
salary at age 40 is Rs 500000/- and d = 0.2 if the benefit rate is fraction d of the final
salary rate or fraction d of the 5-year average salary rate. Suppose that d = 0.007 if
the benefit rate is fraction d of the 5-year average salary rate multiplied by the total
years of service. Assume that the salary scale function is as given in the last column
of Table 3.3. Find at age 40 the projected annual initial pension benefit for ages 55
to 65.

Solution We use the formulas as derived above to write an R code for the compu-
tation of projected annual benefit. We have R1(25,15, t) = 0.2(ES)40+t−1. Thus,
the initial pension benefit if the individual retires at age 55 is the fraction of salary
when age 55 is completed. The salary during age (54–55) is estimated as (ES)54.
Similarly, the estimated salary at the retirement at age 65 is (ES)64. We have
R2(25,15, t) = 0.02(AS)40 5Z40+t

w40
. In this approach, the initial pension benefit is the

fraction of the average of last 5-years’ salary. Thus, to find the initial pension ben-
efit at age 55, we take the average of salary at complete ages 50, 51, 52, 53, and
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Table 3.7 Projected annual
benefit at retirement t Age R1(25,15, t) R2(25,15, t) R3(25,15, t)

15 55 204128.40 185412.80 194683.50

16 56 214220.20 194770.60 211326.10

17 57 224311.90 204403.70 228932.10

18 58 234862.40 214403.70 247636.20

19 59 245412.80 224587.20 267258.70

20 60 255963.30 234954.10 287818.80

21 61 266055.00 245321.10 309104.60

22 62 276605.50 255779.80 331234.90

23 63 287614.70 266330.30 354219.30

24 64 299082.60 277064.20 378192.70

25 65 311467.90 288165.10 403431.20

54. Thus, 5Z40+15 = w50+w51+w52+w53+w54
5 . In the third approach, R3(25,15, t) =

0.007(15+t)(AS)40 5Z40+t

w40
, where 5Z40+t is computed as in R2(25,15, t). Suppose that

two columns, the age and salary scale function, of the service table as given in Ta-
ble 3.3, are stored on D drive as tab delimited Excel file, service.txt. We begin
with importing the file to the R console:

z <- read.table("D://service.txt", header=T);
u <- z[30:40, 2]

#salary scale function for ages 54 to 64;
v <- u/z[16, 2] #w40+t−1/w40 for t = 15 to 25;
v1 <- 0.2*500000*v #R1(25,15, t);
x <- z[26:40, 2]

#salary scale function for ages 50 to 64;
y <- 1:11 #a dummy vector to store the 5-year averages

#for ages 55 to 65;
for (i in 1:11)
{
y[i] <- (x[i]+x[i+1]+x[i+2]+x[i+3]+x[i+4])/5
}

y #a vector of the 5-year averages for ages 55 to 64;
y1 <- 0.2*500000*y/z[16, 2] #R2(25,15, t);
t <- 15:25;
y2 <- (15+t)*0.007*500000*y/z[16, 2] #R3(25,15, t);
d <- round(data.frame(v1, y1, y2), 2);
a <- 55:65;
d1 <- data.frame(t, a, d);
d1 #Table 3.7;

Table 3.7 displays the computations of the annual initial pension benefit for three
different types of formulas, for the given salary scale function and the specified
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values of fraction d . Thus for the given setup, we note that the annual initial
pension benefit if individual retires at age 55 is 204128.40, according to formula
for R1(25,15,15) if the estimated annual salary of the individual at age 55 is
1071100.90 (as obtained in Table 3.6). The annual initial pension benefit amount
according to formula for R2(a,h, t) (fourth column) is less than that corresponding
to R1(25,15, t) as R2(25,15, t) is a function of the 5-year average salary. The an-
nual initial pension benefit amounts given by R3(25,15, t) increase fast when the
duration of service is larger than 36 years, that is, after age 61.

The multiple decrement model, the estimated salary, and the projected initial
pension benefit are the important components of the actuarial present value of the
benefits when the decrement from the group is due to one of the four causes. As
discussed in Chaps. 1 and 2, the actuarial present value A of the benefits is given by
the following formula:

A = E
(
b(J )(T )vT

)= E
[
E
(
b(J )(T )vT

)|J ]=
4∑

j=1

E
(
b(j)(T )vT |J = j

)
P [J = j ]

=
4∑

j=1

[∫ ∞

0
b(j)(t)vtf (t, j)/hj dt

]
hj =

4∑

j=1

∫ ∞

0
b(j)(t)vtf (t, j) dt.

The information about the actuarial present value of all the benefits will be helpful
to the employer to pay the appropriate contribution in the pension fund. We begin
with age-service retirement benefit. We assume that the benefit is the life annuity
due at the initial rate of R(a,h, t), increasing by a factor eη per annum. R(a,h, t)

may be any one of the forms defined above. The annuity function ä
(12)η
a+h+t denotes

the actuarial present value of the monthly life annuity due with unit benefit to begin
at age a + h + t , incorporating the annual increase eη. We assume that a life table
appropriate for retired lives is used to find the annuity function. Let α denote the
minimum eligible age for retirement, and β denote the mandatory age of retirement.
Suppose that the individual enters the service at age a, is in active service at age
a + h, and retires at age a + h + t . Then α ≤ a + h + t ≤ β . We obtain the actu-
arial present value of the retirement benefit annuity both in continuous and discrete
setups. For the continuous setup, to find the expected values, we need the force of
mortality function. Let μ

(w)
x (t), μ

(d)
x (t), μ

(i)
x (t), and μ

(r)
x (t) denote the forces of

decrement at age (x + t) due to withdrawal from service, death in service, retire-
ment for disability, and age-service retirement, respectively. These are assumed to
be continuous functions at most ages. The discontinuity occurs at the first eligible
age for retirement. Sometimes in the calculation of actuarial present values, a select
survival model is used to define the probability of decrement due to withdrawal or
disability, with some select period. Survival and decrement probabilities will be ap-
propriately modified in that case. In the following we assume an aggregate survival
model. The actuarial present value of the age-service retirement benefit annuity at
a+h+ t is b(t) = R(a,h, t)ä

(12)η
a+h+t if the individual of age a+h retires at a+h+ t ,

that is, if α − a − h ≤ t ≤ β − a − h. It is 0 for all other t values. We want to find
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the actuarial present value of b(t) at a + h, so we have to multiply b(t) by vt . Thus,
the actuarial present value at a + h, of the retirement benefit annuity, is given by

Er = E
(
b(T )vT |J = 4

)=
∫ β−a−h

α−a−h

vt
tp

(τ)
a+hμ

(r)
a+h+t

1

hr

R(a,h, t)ä
(12)η
a+h+t dt.

Here 1
hr

tp
(τ)
a+hμ

(r)
a+h+t dt = P [t ≤ T (a + h) ≤ t + dt |J = 4], as defined in Chap. 1.

We denote hrEr by APV(r). Thus, we have

APV(r) =
∫ β−a−h

α−a−h

vt
tp

(τ)
a+hμ

(r)
a+h+tR(a,h, t)ä

(12)η
a+h+t dt.

In the continuous-time approach to find the expression for APV(r), we need to know
the force of mortality function μ

(r)
x (t). Even if it is known, usually it is not possi-

ble to find the explicit value of the integral. Hence, we make some assumptions to
compute APV(r). As a first step in the practical computation, we take T = K + U ,
where K is the curtate future life random variable, and the random variable U indi-
cates the fractional age. Thus, we discretize the formula for APV(r) by substituting
t = k + s, so we get

APV(r) =
β−a−h∑

k=α−a−h

vk
kp

(τ)
a+h

∫ 1

0
vs

sp
(τ)
a+h+kμ

(r)
a+h+k+sR(a,h, k + s)ä

(12)η
a+h+k+s ds.

If we further assume that in each year of eligible age, retirements are uniformly dis-
tributed, then we have sp

(τ)
a+h+kμ

(r)
a+h+k+s = q

(r)
a+h+k , and hence APV(r) simplifies

to

APV(r) =
β−a−h∑

k=α−a−h

vk
kp

(τ)
a+hq

(r)
a+h+k

∫ 1

0
vsR(a,h, k + s)ä

(12)η
a+h+k+s ds.

Further simplification can be obtained by the midpoint formula for the integral,
which gives

APV(r) =
β−a−h∑

k=α−a−h

vk
kp

(τ)
a+hq

(r)
a+h+kv

0.5R(a,h, k + 0.5)ä
(12)η
a+h+k+0.5.

When the continuous setup is discretized, the annuity payments can be viewed as
the payments made in the middle of each year. It is to be noted that the expression in
continuous setup is essentially converted into a discrete version in terms of summa-
tion under the assumption of uniformity for fractional ages and then using midpoint
formula. Another approach is to find an expression for APV(r) in a discrete setup,
that is, using the joint probability distribution of K and J . In the following, we ob-
tain APV(r) adopting this approach. Suppose that the individual enters the service
at age a, is in active service at age a + h, and retires at age a + h + k. Here we
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assume that a, h, and k are all integers. Then α ≤ a + h + k ≤ β . Thus, k varies
from α − a − h to β − a − h. If the member retires at age a + h + k, then the initial
annual retirement benefit will be R(a,h, k), and it depends on the salary scale up to
a + h + k − 1. The actuarial present value of the retirement benefit annuity at age
a + h, denoted DEr , is then given by

DEr = E
(
b(K)vK |J = 4

) β−a−h∑

k=α−a−h

vk
kp

(τ)
a+hq

(r)
a+h+k

1

hr

R(a,h, k)ä
(12)η
a+h+k.

As in the continuous setup, we denote hrDEr by APV(r), and then APV(r) is given
by

APV(r) =
β−a−h∑

k=α−a−h

vk
kp

(τ)
a+hq

(r)
a+h+kR(a,h, k)ä

(12)η
a+h+k.

Here we implicitly assume that the retirements take place at the end of year a +h+
k, with probability kp

(τ)
a+hq

(r)
a+h+k for k = α−a−h to β −a−h. Thus the retirement

benefit starts at the end of year a +h+k, so to find its present value at age a +h, the
discount factor is vk . When the multiple decrement table, as displayed in Table 3.4
or Table 3.5, the salary scale function, as given by the last column in Table 3.3,
and the annuity values are available, APV(r) can be computed. We illustrate the
computation in Example 3.2.6.

Using the steps similar to APV(r), we find the actuarial present values of the
benefits corresponding to other modes of decrement. In the case of withdrawal, the
employee may be eligible for deferred pension if he has served for some minimum
number of years. For example, suppose that an employee with at least 20 years
of service is eligible for the retirement benefit if he withdraws. Withdrawal after
the minimum eligible age α is treated as retirement. Thus in case of withdrawal, the
initial retirement benefit payment is made at age α. Suppose that the individual joins
the employer at age a and withdraws from the service between ages a+20 and α; he
is then eligible for retirement benefit. Suppose that the current age of the employee
is a + h and he withdraws at a + h + t ; then we have a + 20 ≤ a + h + t ≤ α,
that is, 20 − h ≤ t ≤ α − a − h. The benefit function is R(a,h, t), obtained using
any one of the formulas listed above. The benefit will be payable after age α, so the
first payment is deferred for α − a − h − t period. The actuarial present value of
such withdrawal benefit annuity is obtained using the conditional distribution of T

given J = 2. We denote it by Ew and then denote hwEw by APV(w), which in a
continuous case is given by

APV(w) =
∫ α−a−h

20−h

vt
tp

(τ)
a+hμ

(w)
a+h+tR(a,h, t) (α−a−h−t)|ä(12)η

a+h+t dt.

We can simplify it using the same approach adopted for APV(r). To obtain the
expression of APV(w) in discrete setup, suppose that (a + h) withdraws at the
end of year a + h + k with probability kp

(τ)
a+hq

(w)
a+h+k , the initial retirement benefit
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depends on the salary at the end of year a + h + k, and benefit is not available
at the end of year a + h + k but is deferred for (α − a − h − k) years. To obtain
its actuarial present value at a + h, it is multiplied by vk . Thus, in discrete setup,
APV(w) is given by

APV(w) =
α−a−h−1∑

k=20−h

vk
kp

(τ)
a+hq

(w)
a+h+kR(a,h, k) (α−a−h−k)|ä(12)η

a+h+k.

Using the identities n|ä(m)
x = nExä

(m)
x+n = vn

npxä
(m)
x+n and kpx ypx+k = k+ypx , the

expression for APV(w) gets simplified as follows:

APV(w) =
α−a−h−1∑

k=20−h

vk
kp

(τ)
a+hq

(w)
a+h+kR(a,h, k) (α−a−h−k)|ä(12)η

a+h+k

=
α−a−h−1∑

k=20−h

vk
kp

(τ)
a+hq

(w)
a+h+kR(a,h, k) (α−a−h−k)Ea+h+kä

(12)η
a+h+k+α−a−h−k

=
α−a−h−1∑

k=20−h

vk
kp

(τ)
a+hq

(w)
a+h+kR(a,h, k)vα−a−h−k

α−a−h−kpa+h+kä
(12)η
α

= vα−a−h
α−a−hpa+hä

(12)η
α

α−a−h−1∑

k=20−h

q
(w)
a+h+kR(a,h, k).

The last expression of APV(w) derived above shows that if withdrawal takes place
at the end of year a +h+ k, the payment is deferred till age α, provided that (a +h)

survives till α. The benefit will depend on the salary scale at withdrawal.
We now proceed to find the actuarial present value of the disability benefit if

disability occurs in active service and hence the individual retires. Suppose that
retirement due to disability after age α is treated as retirement due to age-service.
Then proceeding on exactly similar lines as for APV(w) we get the actuarial present
value APV(i) of the disability benefit in continuous setup as follows:

APV(i) =
∫ α−a−h

0
vt

tp
(τ)
a+hμ

(i)
a+h+tR(a,h, t)α−a−h−t |ä(12)η

a+h+t dt.

In discrete set up APV(i) is given by

APV(i) =
α−a−h−1∑

k=0

vk
kp

(τ)
a+hq

(i)
a+h+kR(a,h, k) (α−a−h−k)|ä(12)η

a+h+k.
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The expression in the discrete setup again gets simplified as follows, using the iden-
tities for the deferred annuity as in case of APV(w):

APV(i) = vα−a−h
α−a−hpa+hä

(12)η
α

α−a−h−1∑

k=0

q
(i)
a+h+kR(a,h, k).

In practice, the individual may be eligible for disability retirement benefit if he has
served for some minimum years of service, in which case lower limit 0 in the above
integral and sum will be replaced by the appropriate number. The appropriate modi-
fications in the above formula will give APV(i). In some plans individuals suffering
from disability may be eligible for some disability benefits for certain period after
disability, depending on the nature of disability. It is to be noted that the actuarial
present value of withdrawal benefit or the disability benefit takes the form of the
actuarial present value corresponding to benefit in the term life insurance. The last
possible mode of exit from the active service is death during active service. In the
following, we find the actuarial present value of the death benefit if death occurs in
active service. Suppose that the death benefit is thrice the salary rate at the time of
death. Suppose that the individual joins the employer at age a, the current age of the
employee is a + h, and he dies at a + h + t , we have a + h ≤ a + h + t ≤ β , that is,
0 ≤ t ≤ β − a − h, β being the mandatory age of retirement. The actuarial present
value of such death benefit, denoted APV(d), is then given by

APV(d) =
∫ β−a−h

0
vt

tp
(τ)
a+hμ

(d)
a+h+t3(ES)a+h+t dt.

The actuarial present value of the death benefit is similar to that in the whole life in-
surance where the death benefit is a continuous increasing function. We can simplify
the expression using the uniformity assumption of death in each unit age interval and
finally using the midpoint approximation to the integral. In the discrete setup, sup-
pose that death occurs in the interval (a + h + k, a + h + k + 1); then the benefit
is 3(ES)a+h+k and is paid at the end of year of death. Hence, in the discrete setup,
APV(d) is given by

APV(d) =
β−a−h−1∑

k=0

vk+1
kp

(τ)
a+hq

(d)
a+h+k3(ES)a+h+k.

Combining the actuarial present values of the benefits corresponding to all the
modes of decrements, we get the actuarial present value, APV, of the total bene-
fit. Let E(Xj |J = j) denote the actuarial present value corresponding to the j th
mode of decrement. Then APV is given by

APV =
4∑

j=1

E(Xj |J = j)P [J = j ] = APV(d) + APV(w) + APV(i) + APV(r),

with the notation for the actuarial present value introduced above.
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The computations of all these actuarial present values in the discrete setup are
illustrated in Example 3.2.6. In all these expressions we need the annuity values.
We use the same annuity function for computing all the three actuarial present val-
ues, APV(r), APV(w), and APV(i). In practice, a suitable life table may be used
to compute the annuity values separately for each case. It is to be noted that the
annuity function involved in APV(r), APV(w), and APV(i) is ä

(12)η
x for x = α to

β . After age α and up to β , death and age-service retirement are two causes of
decrement, and after age β , death is the only cause of decrement. After retirement,
either at age α or β , the pension is payable till the individuals survive. Thus a single
decrement model governing the future life time is a suitable model to calculate the
annuity function. In the following example, in the calculation of annuity function
we assume that the mortality pattern of all the lives after 55 is governed by the sin-
gle decrement Gompertz model. We find the annuity values under the Gompertz’
law and use these in Examples 3.2.7 and 3.2.8 for calculation of actuarial present
values of the retirement benefits. The force of interest to calculate the annuity values
may not be the same as that in the calculation of the actuarial present value of the
benefits.

Example 3.2.6 Suppose that the mortality pattern after age 55 is modeled by the
Gompertz law defined by the force of mortality μx = BCx . Suppose B = 0.00011
and C = 1.095. Find ä

(12)η
x for x = 55,56, . . . ,65, taking the force of interest δ =

0.05 and rate η of annual increase in pension payment to be η = 0.045.

Solution It has already been proved that the annuity function ä
(12)η
y with the force

of interest δ is the same as ä
(12)
y with the force of interest δ′ = δ − η. Thus, to

incorporate the annual increase in pension payment, we have to only modify the
force of interest in the annuity function. Further, we know that the monthly annuity
function ä

(12)
x is related to äx as

ä(12)
x = α(12)äx − β(12), where α(12) = id

i(12)d(12)
and β(12) = i − i(12)

i(12)d(12)
.

The nominal interest rate i(12) and nominal discount rate d(12) are given by

i(12) = 12
{
(1 + i)1/12 − 1

}
and d(12) = 12

(
1 − v1/12).

By definition, äx = ∑∞
k=0 vk

kpx . For the Gompertz law with force of mortality
μx = BCx , the survival function S(x) is given by S(x) = e−m(Cx−1), where m =
B/ loge C. Hence,

kpx = S(x + k)

S(x)
= e−m(Cx+k−1)

e−m(Cx−1)
= emCx−mCx+k

, and

äx =
∞∑

k=0

vkemCx−mCx+k = emCx
∞∑

k=0

vke−mCxCk

.
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We first find ä65 using the formula ä65 =∑∞
k=0 vk

kp65 and then use the backward
recurrence relation äx = 1 + vpxäx+1 to find äx for x = 55 to 64. With these values
of äx , we find ä

(12)
x using α(12) and β(12). The following is a set of R commands

for all these computations:

b <- 0.00011 #B;
a <- 1.095 #C;
m <- b/log(a, base=exp(1));
e <- exp(1);
del <- 0.05;
eta <- 0.045;
v <- e^(-(del-eta));
x <- 65;
j <- m*a^x;
k <- 0:(100-x);
ad <- e^j*sum(v^k*e^(-j*a^k)) # ä

η
65;

x <- 55:64;
j <- m*a^x;
p <- e^(j-j*a) #vector of px for x = 55 to 64;
ad1 <- c(1:10, ad) #a dummy vector to store the values

#of äx for x = 55 to 65, last element, being ä
η
65;

{
for (i in 1:10)
ad1[11-i] <- 1+v*p[11-i]*ad1[11-i+1];
}

ad1 #a vector of ä
η
x for x = 55 to 65;

int <- 1/v-1 #effective rate of interest;
d <- 1-v #effective rate of discount;
i12 <- 12*((1+int)^(1/12)-1) #monthly nominal rate

#of interest;
d12 <-12*(1-v^(1/12)) #monthly nominal rate of discount;
b1 <- int*d/(i12*d12) # α(12);
b2 <- (int-i12)/(i12*d12) # β(12);

ad2 <- round((b1*ad1-b2),4) #a vector of ä
(12)η
x for x = 55

#to 65, rounded to 4 decimals;
x <- 55:65;
d1 <- data.frame(x, ad2);
d1 #Table 3.8;

Table 3.8 displays the values of ä
(12)η
x for x = 55 to 65. From the table we see that

the ä
(12)η
x value decreases as age increases, as expected.

Suppose that the initial monthly pension for an individual retiring at age 65 is
Rs 10000/-; then the actuarial present value at age 65 of the future pension payments,
which increase at the rate of eη per annum, is 12 × 10000 × ä

(12)η
65 = 1267788.00.

This means that at age 65, amount 1267788.00 has to be deposited in the pension
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Table 3.8 Discrete monthly
life annuity Age x ä

(12)η
x Age x ä

(12)η
x

55 16.4839 61 12.7786

56 15.8376 62 12.2045

57 15.2022 63 11.6439

58 14.5781 64 11.0973

59 13.9659 65 10.5649

60 13.3659

fund so that the fund will raise at the force of interest δ to pay for the monthly
pension for the individual at the stated rate.

In the following example we obtain the actuarial present value of the benefit
corresponding to a hypothetical pension plan. We use the annuity values as obtained
in Example 3.2.6 to find the actuarial present value of the benefit.

Example 3.2.7 Suppose that the retirement benefit plan for the individual who enters
at age 25 and who is in active service at age 40 is as follows.

(i) The age-service retirement benefit is the monthly life annuity due at an initial
annual rate of 0.7 % of the average salary of last five years multiplied by the
total years of service, with annual increase at the rate of eη with η = 0.045.
Suppose α = 55 and β = 65.

(ii) If he withdraws after at least 20 years of service and before age 55, the with-
drawal benefit is the deferred life annuity at an annual rate of 0.7 % of the
average salary of last five years multiplied by the total years of service, with
annual increase at the rate of eη with η = 0.045.

(iii) If he retires due to disability before age 55, the disability benefit is the deferred
life annuity as in the case of withdrawal.

(iv) If death occurs before 65, then the death benefit is thrice the salary at the age
of death, paid at the end of year of death.

Suppose that the annual salary of the individual at age 40 is Rs 500000/- and
the decrement pattern is as specified in multiple decrement table, Table 3.4.
Find the actuarial present value at age 40 of the benefit to the individual. Use
the annuity values for all the three cases as obtained in Example 3.2.6 and the
force of interest δ = 0.05.

Solution We use the formulas for the actuarial present values for the given plan as
obtained for the discrete setup. In case of age-service retirement, the initial retire-
ment benefit is R3(25,15, k) with d = 0.007. Hence,

APV(r) =
25∑

k=15

vk
kp

(τ)
40 q

(r)
40+kR3(25,15, k)ä

(12)η
40+k .
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If he withdraws after at least 20 years of service and before age 55, the withdrawal
benefit is the deferred life annuity at an annual initial rate of R3(25,15, k) with
d = 0.007. Hence,

APV(w) =
14∑

k=5

vk
kp

(τ)
40 q

(w)
40+kR3(25,15, k) (15−k)|ä(12)η

40+k

= v15ä
(12)η
55 15p

(τ)
40

14∑

k=5

q
(w)
40+kR3(25,15, k).

If he retires due to disability before age 55, the disability benefit is the deferred life
annuity at an initial annual rate of R3(25,15, k) with d = 0.007. Hence,

APV(i) =
14∑

k=0

vk
kp

(τ)
40 q

(i)
40+kR3(25,15, k) (15−k)|ä(12)η

40+k

= v15ä
(12)η
55 15p

(τ)
40

14∑

k=0

q
(i)
40+kR3(25,15, k).

The actuarial present value of death benefit is given by

APV(d) =
24∑

k=0

vk+1
kp

(τ)
40 q

(d)
40+k3(ES)40+k.

The actuarial present value APV(40) of all the benefits of the plan at age 40 for (25)
is then obtained as

APV(40) = APV(r) + APV(w) + APV(i) + APV(d).

The decrement and survival probabilities for each age are corresponding to the
decrement model as specified in Table 3.4. Suppose that two columns, the age and
salary scale function, of the service table as given in Table 3.3 are stored on D drive
as tab delimited Excel file service.txt. Suppose that annuity values ä

(12)η
x for

x = 55 to 65, as obtained in Example 3.2.6, are stored as a text file ad.txt, second
column specifying the values of annuity for various ages. Further, we use the decre-
ment and the survival probabilities as given in Table 3.4 which is stored as a text
file, mdt.txt, on drive D. We compute the (ES)x and R3(a,h, k) values using R
commands similar to those in Example 3.2.5. The following R commands compute
all these actuarial present values:

del <- 0.05 #force of interest;
e <- exp(1);
v <- e^(-del) #effective rate of discount;
ad <- read.table("D://ad.txt") # ä

(12)
x for x = 55 to 65;
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z <- read.table("D://service.txt")
#columns 1 and 7 of Table 3.3;

u <- z[16:40, 2] #wx values for x = 40 to 64;
v1 <- u/z[16, 2] #w40+k/w40 for k = 0 to 24;
v2 <- 500000*v1 #(ES)40+k from k = 0 to 24;
x <- z[11:40, 2] #wx values for x = 35 to 64;
y <- 1:26 #a dummy vector to store the values of

# 5-year average salary rate;
for (i in 1:26)
{
y[i] <- (x[i]+x[i+1]+x[i+2]+x[i+3]+x[i+4])/5
}

y #a vector of the values of 5-year averages;
k <- 0:25;
y2 <- (15+k)*.007*500000*y/z[16, 2]

#R3(25,15, k) for k = 0 to 25;
u <- read.table("D://mdt.txt", header=T) #Table 3.4;
u2 <- u[, 2] # q

(d)
x values for x = 25 to 65;

u3 <- u[, 3] # q
(w)
x values for x = 25 to 65;

u4 <- u[, 4] # q
(i)
x values for x = 25 to 65;

u5 <- u[, 5] # q
(r)
x values for x = 25 to 65;

u6 <- u[, 6] #p
(τ)
x values for x = 25 to 65;

u1 <- u6[16:40] #p
(τ)
x values for x = 40 to 64;

p <- c(1, 2:26) #a dummy vector to store the values of
# kp

(τ)
40 for k = 0 to 25;

for (i in 2:26)
{
p[i] <- p[i-1]*u1[i-1]
}

p #a vector of kp
(τ)
40 for k = 0 to 25;

v3 <- v^k;
apvr <- sum(v3[16:26]*p[16:26]*u5[31:41]*y2[15:25]

*ad[, 2]);
apvw <- p[16]*ad[1, 2]*v^(15)*sum(u3[21:30]*y2[6:15]);
apvi <- p[16]*ad[1, 2]*v^(15)*sum(u4[16:30]*y2[1:15]);
apvd <- 3*sum(v3[2:26]*p[1:25]*u2[16:40]*v2[1:25]);
apvr; apvw; apvi; apvd;
apv <- apvr+apvw+apvi+apvd;
apv #APV(40);

We get APV(r) = 888536.10, APV(w) = 48997.45, APV(i) = 38180.51,
APV(d) = 198495.00, and APV(40) = 1174209.00. Thus, the actuarial present
value at age 40 of the benefits specified in the pension plan is 1174209.00 for the
individual who becomes member of the plan at age 25. Thus, for this individual at
his age 40, say at time t , the amount 1174209.00 has to be deposited in the pension
fund to pay for the benefits as specified in the plan.
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Suppose that there are n40 individuals of age 40 at time t , who started their
service at age 25. Then n40APV(40) is the actuarial present value at age 40 of the
benefits to such a group of individuals. In general, if at time point t there are nx

individuals of age x, a ≤ x ≤ β , then the actuarial present value of the benefits
corresponding to all the individuals in the plan at time t can be obtained as the sum
of the actuarial present values corresponding to all the individuals of various ages at
time t . Such actuarial present value will indicate the amount of pension cost at time
t and hence the amount of deposit in the pension fund, which will raise at a force
of interest δ, to be sufficient to provide pension benefits to the individuals whenever
they are eligible.

The pension fund is generated by annual contributions to the fund. The annual
contribution for all employees together is the annual contribution to the pension
fund. The contribution may be by the employee or employer or by both in some
defined proportion. Pension benefits are financed by payments connected to an indi-
vidual’s salary levels and continue up to retirement or the maximum retirement age.
There are two basic plans for contributions. The first is a flat rate, and the second
method is a flat percentage of the individual’s salary for designated years.

The following example illustrates the computation of rate of contribution, pro-
portional to the salary rate, for an employee of age 25 when he enters the service,
again in a hypothetical setup. In the next chapter we will discuss how to find a
pension fund for a group of individuals at a specified time t .

Example 3.2.8 Suppose that the retirement benefit plan for the individual who enters
at age 25 is as follows.

(i) The age-service retirement benefit is the monthly life annuity due at an annual
initial rate of 0.7 % of the average salary of last five years multiplied by the
total years of service, that is, R3(25,0, k). Further, assume that annual increase
in the annual pension benefit is at the rate η = 0.045. Suppose α = 55 and
β = 65.

(ii) If he withdraws after at least 20 years of service and before age 55, the with-
drawal benefit is the deferred life annuity at the same rate as in (i).

(iii) If he retires due to disability before age 55, the disability benefit is the deferred
life annuity at the same rate as in (i). No benefit will be paid if disability occurs
within first five years.

(iv) If death occurs before 65, then the death benefit is thrice the salary at the age
of death and is paid at the end of year of death.

The annual contribution is proportionate to the annual salary. Suppose that the an-
nual salary of the individual at age 25 is Rs 240000/- and the salary scale is as in the
last column of Table 3.3. Suppose that the decrement pattern is as specified in the
multiple decrement table, Table 3.4. The annuity values for all the three cases are
according to the Gompertz model with B = 0.00011 and C = 1.095 and the force
of interest δ = 0.05.

Find the rate of annual contribution to the pension fund for (25). Prepare a table
of projected salary and projected year wise contribution to the pension fund for (25).
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Solution We first find the actuarial present value at age 25 of the benefits as specified
in the plan. To find it, we adopt the similar procedure as in Example 3.2.7. The
retirement benefit is the monthly life annuity due at an initial annual rate of 0.7 % of
the average salary of last five years multiplied by the total years of service, that is,
R3(25,0, k) with d = 0.007. The minimum age for age-service retirement is 55, and
65 is the age of mandatory retirement. Hence, the actuarial present value APV(r),
at age 25, of the retirement benefits is given by

APV(r) =
40∑

k=30

vk
kp

(τ)
25 q

(r)
25+kR3(25,0, k − 1)ä

(12)η
25+k .

If he withdraws after at least 20 years of service and before age 55, the withdrawal
benefit is the deferred life annuity at an initial annual rate of R3(25,0, k). Hence,

APV(w) =
29∑

k=20

vk
kp

(τ)
25 q

(w)
25+kR3(25,0, k) (30−k)|ä(12)η

25+k

= v30ä
(12)η
55 30p

(τ)
25

29∑

k=20

q
(w)
25+kR3(25,0, k).

If he retires due to disability before age 55, the disability benefit is the deferred life
annuity at an initial annual rate of R3(25,0, k). Hence,

APV(i) =
29∑

k=5

vk
kp

(τ)
25 q

(i)
25+kR3(25,0, k) (30−k)|ä(12)η

25+k

= v30ä
(12)η
55 30p

(τ)
25

29∑

k=5

q
(i)
25+kR3(25,0, k).

The actuarial present value of death benefit is given by

APV(d) =
39∑

k=0

vk+1
kp

(τ)
25 q

(d)
25+k3(ES)25+k.

The actuarial present value APV(25) of all the benefits of the plan at age 25 for (25)
is then obtained as

APV(25) = APV(r) + APV(w) + APV(i) + APV(d).

The second step is to find the actuarial present value of the contributions, de-
fined as the proportion of the annual salary paid for the employee till he is in active
service. Suppose that the contributions are paid at the end of each year. The an-
nual contribution at the end of year 25 + u is P

w25+u−1
w25

, u = 1,2, . . . ,40, where P

is a fraction. There are four modes of decrement from the active service. We begin
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with the decrement due to age-service retirement. Suppose that (25) is in active ser-
vice till 55 and may retire between 55 to 65 or will complete 40 years of service
and retires at age 65. When (25) completes one year of service, a fraction P of his
salary at 25, w25, will be a contribution to the pension fund at the end of the year;
its present value at 25 is then obtained by multiplying by v. Thus, when (25) com-
pletes k years, with probability kp25, k = 1,2, . . . ,30, P

w25+k−1
w25

will be contributed
to the pension fund at the end of kth year, its present value at age 25 is obtained by
multiplying by vk . If (25) works till 55 and retires between 55 to 56 with probability

30p
(τ)
25 q

(r)
55 , then the contribution is P

w55
w25

will be contributed to the pension fund at

the end of the year; its present value at age 25 is obtained by multiplying by v31. If
(25) works till 56, and retires between 56 to 57 with probability 31p

(τ)
25q

(r)
56 , then

the present value of the contribution is P
w55v

30+w56v
31

w25
. Continuing on similar lines,

if (25) works till 55 and retires between 55 + k to 55 + k + 1 for k = 0,1, . . . ,9,
then the present value of contribution to pension fund is [∑31+k

u=31 vu w25+u−1
w25

]P . If he
is in service till 65, then the present value of the contribution to the pension fund
will be P

w64
w25

v40. Thus, the actuarial present value A1 of annual contribution, in the
case of age-service retirement, is given by

A1 = P

{
30∑

k=1

kp
(τ)
25 vk w25+k−1

w25
+

39∑

k=30

kp
(τ)
25 q

(r)
25+k

[
k+1∑

u=31

vu w25+u−1

w25

]

+ 40p
(τ)
25 v40 w25+39

w25

}

.

If he exits the service either due to withdrawal or disability, then the contributions
are made till he is in active service. In this case the actuarial present value A2, at
age (25), of the contributions is given by

A2 = P

{
29∑

k=0

kp
(τ)
25

(
q

(i)
25+k + q

(w)
25+k

)
[

k+1∑

u=1

vu w25+u−1

w25

]}

.

If he exits the service due to death, then the contributions are made till he is in active
service. In this case the actuarial present value A3, at age (25), of the contributions
is given by

A3 = P

{
39∑

k=0

kp
(τ)
25 q

(d)
25+k

[
k+1∑

u=1

vu w25+u−1

w25

]}

.

It is to be noted that q
(w)
25+k and q

(i)
25+k is 0 after 25 + k = 55. Hence A2 and A3

can be combined. Thus the actuarial present value at age 25 of contributions in case
of exit due to death or withdrawal or disability, denoted A4, is given by

A4 = P

{
39∑

k=0

kp
(τ)
25

(
q

(d)
25+k + q

(i)
25+k + q

(w)
25+k

)
[

k+1∑

u=1

vu w25+u−1

w25

]}

.
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Combining all the modes of decrement, the actuarial present value of the contribu-
tions, APV(C), at age 25 is obtained. It is to be noted that

APV(C) = (AS)25

4∑

j=1

E[Yj |J = j ]P [J = j ],

where E[Yj |J = j ] is the actuarial present value of contributions if (25) exits due
to mode j . We have E[Y1|J = 1]P [J = 1] + E[Y2|J = 2]P [J = 2] + E[Y3|J =
3]P [J = 3] = A4 and E[Y4|J = 4]P [J = 4] = A1. Hence, APV(C) is given by

APV(C) = (AS)25{A1 + A4},
where (AS)25 = 240000. We find P by equating the actuarial present value of the
benefits to the actuarial present value of the contributions. The projected annual con-
tribution is then obtained as proportion P of projected annual salary at various ages
with initial salary at age 25 to be Rs 240000/-. The following set of R commands
is used for these computations; the R commands to compute the actuarial present
value of the benefits are similar to those in Example 3.2.7:

del <- 0.05;
e <- exp(1);
v <- e^(-del);
z <- read.table("D://service.txt", header=T)

#Table of wx values;
u <- z[, 2] #wx values for x = 25 to 64;
v1 <- u/z[1, 2] #w25+k/w25 for k = 0 to 39;
as25 <- 240000 #annual salary at age 25;
v2 <- as25*v1 # (ES)25+k = (AS)25w25+k/w25 for k = 0 to 39;
y <- 1:36 #dummy vector to store 5Z25+k for k = 5 to 40;
for (i in 1:36)
{
y[i] <- (u[i]+u[i+1]+u[i+2]+u[i+3]+u[i+4])/5
}

y #vector of 5Z25+k for k = 5 to 40;
k <- 5:40;
y2 <- (k)*.007*as25*y/z[1, 2] #R3(25, 0, k);
u <- read.table("D://mdt.txt", header=T) #Table 3.4;
u3 <- u[, 3] # q

(w)
x ;

u4 <- u[, 4] # q
(i)
x ;

u6 <- u[, 6] #p
(τ)
x ;

p <- c(1, 2:41) #dummy vector to store kp
(τ)
25 for k = 0to 40;

for (i in 2:41)
{
p[i] <- p[i-1]*u6[i-1]
}
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p #vector of kp
(τ)
25 for k = 0 to 40;

u1 <- read.table("D://jointjk.txt", header=T) #Table 3.5;
qd <- u1[, 2] # kp

(τ)
25 q

(d)
x+k;

qw <- u1[, 3] # kp
(τ)
25 q

(w)
x+k;

qi <- u1[, 4] # kp
(τ)
25 q

(i)
x+k;

qr <- u1[, 5] # kp
(τ)
25 q

(r)
x+k;

q <- u1[, 6] # kp
(τ)
25 q

(τ)
x+k;

k <- 0:40;
v3 <- v^k;
ad <- read.table("D://ad.txt")

#Table 3.8 of annuity values;
apvr <- sum(v3[31:41]*qr[31:41]*y2[25:35]*ad[, 2]);
apvw <- p[31]*ad[1,2]*v^(30)*sum(u3[21:30]*y2[16:25]);
apvi <- p[31]*ad[1,2]*v^(30)*sum(u4[6:30]* y2[1:25]);
apvd <- 3*sum(v3[2:41]*qd[1:40]*v2[1:40]);
apvr; apvw; apvi; apvd;
apv <- apvr+apvw+apvi+apvd;
apv;
s1 <- cumsum(v3[32:41]*v1[31:40]);
s2 <- sum(p[2:31]*v3[2:31]*v1[1:30])+sum(qr[31:40]*s1)

+p[41]*v3[41]*v1[40];
s3 <- cumsum(v3[2:41]*v1[1:40]);
s4 <- sum(p[1:40]*(qd[1:40]+qw[1:40]+qi[1:40])*s3);
s5 <- as25*(s2+s4) #APV(C);
s5;
cr <- apv/s5;
cr #P;
con <- v2*cr;
age <- 25:65;
d <- data.frame(age, v2, con);
d #Table 3.9;

For the given data, we get, APV(r) = 158887.10, APV(w) = 8761.53, APV(i) =
7130.42, APV(d)=39048.68, APV(25)=213827.80, and APV(C)=3461488.00.
The proportion P = 0.061773, that is, 6.18 % of the annual salary will be the an-
nual contribution to the pension fund. Table 3.9 displays the projected annual salary
(ES)x for age x = 25 to 64 and the projected annual contribution Cx+1 to the pen-
sion fund for age x = 25 to 64.

The discussion so far pertains to the actuarial present values on an individual
basis that is cost of the plan per individual. An employer requires the knowledge of
the cost of the plan on an aggregate basis for the whole group of employees working
with the employer. Aggregate values can be obtained by summing over the values on
individual basis. The cost of the pension plan at a specific time is thus the actuarial
present value of the benefits to all the employees, as assured in the pension plan.
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Table 3.9 Predicted annual salary and contribution

Age x (ES)x Cx+1 Age x (ES)x Cx+1

25 240000.00 14825.61 45 676800.00 41808.21

26 252000.00 15566.89 46 712800.00 44032.05

27 266400.00 16456.42 47 751200.00 46404.15

28 280800.00 17345.96 48 792000.00 48924.50

29 295200.00 18235.49 49 830400.00 51296.60

30 312000.00 19273.29 50 876000.00 54113.46

31 326400.00 20162.82 51 921600.00 56930.33

32 345600.00 21348.87 52 967200.00 59747.19

33 362400.00 22386.66 53 1017600.00 62860.57

34 384000.00 23720.97 54 1068000.00 65973.94

35 403200.00 24907.02 55 1120800.00 69235.58

36 424800.00 26241.32 56 1173600.00 72497.21

37 448800.00 27723.88 57 1228800.00 75907.10

38 470400.00 29058.19 58 1284000.00 79316.99

39 496800.00 30689.00 59 1339200.00 82726.88

40 523200.00 32319.82 60 1392000.00 85988.51

41 549600.00 33950.64 61 1447200.00 89398.40

42 580800.00 35877.97 62 1504800.00 92956.55

43 612000.00 37805.29 63 1564800.00 96662.95

44 643200.00 39732.62 64 1629600.00 100665.86

There are many funding or budgeting methods available to assure that contributions
are made to the plan in an orderly and appropriate manner. Next chapter discusses
various funding methods to meet the cost of the plan. In the following we discuss
briefly other type of pension plan, that is, defined contribution pension plan.

Defined Contribution Plan In a defined contribution plan, contributions are paid
into an individual account for each member. The contributions are invested, for ex-
ample, in the stock market, and the returns on the investment (which may be positive
or negative) are credited to the individual’s account. On retirement, the member’s
account is used to provide retirement benefits, sometimes through the purchase of
an annuity which then provides a regular income. Alternatively, an accumulated
amount can be made available to the individual at the time of retirement, as lump
some amount. In this plan the actuarial present value is simply the accumulation,
under specified rate of interest, of the contributions made by the individual or by
the employer for the individual. Thus, such an accumulation generates a fund from
which benefit, usually a monthly annuity, is given to the individual. The defined
contribution rate is determined with a retirement income as a goal. In defined con-
tribution pension plan the benefit on exit is the same, irrespective of the mode of
exit.
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Defined contribution plans have become widespread all over the world in re-
cent years and are now the dominant form of plan in the private sector in many
countries. For example, the number of defined benefit plans in the US has been
steadily declining, as more and more employers see pension contributions as a large
expense avoidable by terminating the defined benefit plan and instead offering a
defined contribution plan. Money contributed can either be from employee salary
or from employer contributions. In a defined contribution plan, investment risk and
investment rewards are assumed by each individual/employee/retiree and not by the
sponsor/employer. The cost of a defined contribution plan is readily calculated, but
the benefit from a defined contribution plan depends upon the account balance at
the time an employee wishes to use the assets. So, for this arrangement, the contri-
bution is known, but the benefit is unknown (until calculated). Despite the fact that
the participant in a defined contribution plan typically has control over investment
decisions, the plan sponsor retains a significant degree of fiduciary responsibility
over investment of plan assets, including the selection of investment options and
administrative providers.

Assumptions about Expenses and Investment Returns The expenses of admin-
istering the pension plan must be added to the benefits paid in arriving at the cost of
the plan. The expense assumptions depend on the type of administration and fund-
ing instrument involved. Under individual policy plans and some group pension
contracts, the insurance company includes a loading factor for expenses in gross
premiums charged for benefits. The investment income earned on the accumulated
assets of a funded pension plan reduces the ultimate cost of the plan. The choice of
the appropriate rate of investment return is particularly difficult if a sizable portion
of the assets is invested in common stocks, since these investments are subject to
significant fluctuations in value. The investment return is the most important factor
affecting the cost of the plan. The investment income earned on the accumulated
assets of a funded plan reduces the ultimate cost of the plan.

In Chap. 4 we study various methods of pension funding.

3.3 Exercises

3.1 Suppose that a member of the pension plan, joining the plan at age 25, exits
the plan by any one of the four causes of exit: withdrawal, disability retirement,
death in service, and age retirement. The probability law governing these decre-
ments is as specified in Example 3.2.1. Calculate the probability that a member
of age 35
(i) retires at exact age 65;

(ii) exits the plan due to death in service or due to withdrawal or due to disabil-
ity or due to age-service retirement.

3.2 Suppose that the annual salary of an employee aged exactly 35 is Rs 500000/-
and salary increases according to the salary scale function given in Table 3.3.
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(i) Estimate the employee’s salary for next 10 years.
(ii) Suppose that the pensionable salary for the pension benefit is defined as the

average salary in three years before retirement. Calculate the pensionable
salary if retirement is at age 65.

(iii) Suppose that an individual is eligible for the retirement benefit if he retires
at complete age between 55 to 65. Assume that d = 0.19 if the initial
pension benefit rate is fraction d of the final salary rate and fraction d of
the 3-year average salary rate. Suppose that d = 0.008 if the benefit rate is
fraction d of the 3-year average salary rate multiplied by the total years of
service. Find at age 35 the projected annual initial pension benefit for ages
55 to 65.

3.3 Suppose that the retirement benefit plan for the individual who enters at age 25
and who is in active service at age 35 is as follows.

(i) The age-service retirement benefit is the monthly life annuity due at an
initial annual rate of 0.7 % of the average salary of last five years multiplied
by the total years of service, with annual increase at the rate of eη with
η = 0.045. Suppose α = 55 and β = 65.

(ii) If he withdraws after at least 10 years of service and before age 55, the
withdrawal benefit is the deferred life annuity at an annual rate of 0.7 % of
the average salary of last five years multiplied by the total years of service,
with annual increase at the rate of eη with η = 0.045.

(iii) If he retires due to disability before age 55, the disability benefit is the
deferred life annuity as in the case of withdrawal.

(iv) If death occurs before 65, then the death benefit is thrice the salary at the
age of death, paid at the moment of death.

Suppose that the annual salary of the individual at age 35 is Rs 500000/- and the
decrement pattern is as specified in Example 3.2.1. Find the actuarial present
value at age 35 of the benefit to the individual. The annuity values for all the
three cases are according to the Gompertz model with B = 0.00011 and C =
1.095 and the force of interest δ = 0.05.

3.4 Repeat Exercise 3.3 if the age-service retirement benefit is paid in advance and
are guaranteed for five years.

3.5 Suppose that employees in a defined contribution pension plan pay contribution
of 6 % of their annual salary at the end of each year. Calculate the APV at
entry, of contributions for a new entrant at age 35 with starting annual salary of
Rs 500000. Suppose that the effective rate of interest is 6 % and salary scale is as
given in Table 3.3. Use the multiple decrement model as specified in Table 3.3.

3.6 Suppose that the retirement benefit plan for the individual who enters at age 25
is as follows.

(i) The age-service retirement benefit is the monthly life annuity due at an
annual initial rate of 0.7 % of the average salary of last five years multi-
plied by the total years of service, that is, R3(25,0, k). Further, assume that
the annual increase in the annual pension benefit is at the rate η = 0.045.
Suppose α = 55 and β = 65.

(ii) If he withdraws after at least 15 years of service and before age 55, the
withdrawal benefit is the deferred life annuity at the same rate as in (i).



130 3 Defined Benefit Pension Plan

(iii) If he retires due to disability before age 55, the disability benefit is the
deferred life annuity at the same rate as in (i). No benefit will be paid if
disability occurs within first five years.

(iv) If death occurs before 65, then the death benefit is thrice the salary at the
age of death and is paid at the end of year of death.

The annual contribution is in proportion of the annual salary. Suppose that the
annual salary of the individual at age 25 is Rs 300000/- and the salary scale
is as in the last column of Table 3.3. Suppose that the decrement pattern is as
specified in Table 3.3. The annuity values for all the three cases are according to
the Gompertz model with B = 0.00009 and C = 1.096 and the force of interest
δ = 0.06.

Find the rate of annual contribution to the pension fund by (25). Prepare a
table of projected salary and projected year wise contribution to the pension
fund for (25).



Chapter 4
Pension Funding

4.1 Introduction

A pension plan is a system for purchasing deferred life annuities, payable during
retirement, and certain ancillary benefits, with a temporary annuity of contributions
during active service. In a typical defined benefit pension plan the cost of an em-
ployee benefit is funded by the employer. Employer’s contribution is valued regu-
larly and is usually expressed as a percentage of the salary. With an insurance policy,
the policyholder pays for a contract through a level periodic premiums or a single
premium. However, in pension plan the level of contribution from the employer is
not a part of the contract, and it need not be a level. The contributions need to be
adjusted from time to time. The main principle in deciding the rate of contribution
is as follows. The funding level for the year is set so that the amount required to
be paid, together with the fund value at the start of the year, is sufficient to pay the
expected cost of any benefits due during the year and to pay the expected cost of
establishing the new actuarial liability at the year end. We discuss these issues in
detail in this chapter.

Cost of the pension plan at a specific time is the actuarial present value of the
benefits to the employees, as assured in the pension plan. In Chap. 3, we have dis-
cussed various factors affecting the ultimate cost of the plan. Once the estimate of
the ultimate cost of the plan is determined, the next step is to determine the con-
tributions required to pay for the estimated cost in an orderly manner, so that the
estimated cost of the plan is spread over future years. These actuarial techniques are
referred to as actuarial cost methods or actuarial funding methods. In Example 3.2.8
in Chap. 3, we have discussed the computation of contribution on individual basis.
In this chapter, we consider the individual set up with a different approach and also
the aggregate setup.

A funding method specifies the pattern, that is, the frequency, and the amount
of aggregate contributions required to balance the benefit payments. Once a funding
method is chosen, contributions are generated, which in turn lead to the development
of the assets of the pension plan. Ideally assets are accumulated to equal the reserve
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required at normal retirement date. Thus, the funding plan is a budgeting plan for
accumulating the funds necessary to provide the annuity benefits.

The time value of money is an important consideration in pension funding as
the outflow of the benefit payouts over time is subject to life and other contingen-
cies, and inflow of contributions occurs at different time points and in a different
pattern. Actuary then has to make certain assumptions about the rate of return on
the pension fund, age of retirement, rates of turnover and retirement, etc. The most
important step is to assign to each fiscal year a portion of the present value of future
benefit payments in such a way that the costs are accrued over the working life-
times of the employees. Any scheme for making such an assignment of costs is the
actuarial cost or actuarial funding method. The application of cost method to a par-
ticular plan in order to compute its cost is called an actuarial valuation. The primary
purpose of the pension valuation is to determine the annual cost of the plan. In the
following sections, we discuss various actuarial funding methods. An actuarial cost
method establishes the amounts and incidences of the contributions to the pension
fund. These contributions are called normal costs or normal contributions. In north
America it is commonly known as normal costs. There are supplemental costs per-
taining to the benefit and expenses of a pension plan. We will not discuss these in
this chapter. There is a wide variety of actuarial funding methods. We discuss some
of these below.

4.2 Accrued Benefit Cost Method for an Individual

Accrued benefit cost methods are also known as the unit credit methods. In these
methods, the employer (and the employee under contributory plan) sets aside funds
on some systematic basis prior to the employee’s retirement date. Thus periodic con-
tributions are made on behalf of the group of active employees during their working
years. In this approach, for cost determination purpose, an employee’s benefits un-
der the pension plan are deemed to accrue in direct relation to the years of service.
In accrued benefit funding methods, the normal costs are based directly upon bene-
fits accrued to the date of cost determination. These focus on maintaining a certain
level of funding and are security driven, in that they attempt to establish and main-
tain a sound relationship between the fund assets and the accrued liabilities. The
funding requirement is then the contributions required to achieve the funding objec-
tive. All these methods differ by a rate at which prospective pension obligations are
recognized during the participant’s working lifetimes.

The first step in the calculation of normal cost in the accrued benefit cost method
is to determine the present value of each participant’s pension for the year for which
costs are being calculated. The second step is to define an appropriate accrual func-
tion. Let r denote the age of mandatory retirement; the provision of voluntary re-
tirement is ignored at this stage. To express the accrual of actuarial liability for a
pension commencing at age r , an accrual function M(x) is defined to represent a
fraction of the actuarial value of future pensions, expecting that M(x)× actuarial
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present value at age x of future benefits equals the liability at age x and will accu-
mulate to a fund sufficient to pay the life annuity of pension benefits. It is assumed
that 0 ≤ M(x) ≤ 1, basically to have a common metric for the sake of comparison.
Further it is assumed that M(x) is a nondecreasing, right-continuous function of age
variable. There is no liability before age a, the age of entry to the pension plan, and
hence M(a) = 0. For all funding methods requiring accrual or recognition of the
total liability by age r , M(x) = 1 for x ≥ r . As an illustration, under initial funding,
if entire liability for the future pensions is recognized when the participant enters at
age a, then

M(x) = 0 for x < a and M(x) = 1 for x ≥ a.

Such a method is known as initial funding. On the contrary, under terminal fund-
ing, entire liability is recognized when the participant retires. Thus, in terminal
funding,

M(x) = 0 for a ≤ x < r and M(x) = 1 for x ≥ r.

If the benefit is accrued uniformly during the period (a, r) of active service, then
M(x) = (x −a)/(r −a). The following example illustrates how the accrual function
serves the desired purpose.

Example 4.2.1 Suppose that the pension benefit is a continuous annuity at the rate
of 1 unit per annum from retirement age r . This benefit is paid for by a temporary
life annuity which pays 1 unit per annum in pension fund, starting from entry age

a to the retirement age r . Let M(x) be defined as M(x) = āa:x−a|
āa:r−a|

, a < x < r . Show

that M(x)r−x|āx is equal to the reserve at age x corresponding to a continuous r −a

year deferred life annuity issued at age a.

Solution For a continuous r − a year deferred annuity issued at age a, the reserve
at intermediate age x is the accumulation of the fund via annual premiums, up to
age x, using retrospective approach. It is to be noted that no benefits are paid, so
reserve is just the accumulation of premiums. Thus the reserve is given by

V x(r−a|āa) = P(r−a|āa)Sa:x−a|

where P(r−a|āa) = r−a|āa

āa:r−a|
and Sa:x−a| =

āa:x−a|
x−aEa

.

Further we have x−aEa = x−apav
x−a and n|āx = nExāx+n. Hence the expression

for reserve simplifies to

V x(r−a|āa) = P(r−a|āa)Sa:x−a|

= r−a|āa

āa:r−a|
× āa:x−a|

x−aEa

= āa:x−a|
āa:r−a|

× r−aEaār

x−aEa
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= M(x) × r−apav
r−aār

x−apavx−a
= M(x) × x−apa r−xpxv

x−a+r−x ār

x−apavx−a

= M(x) × r−xpxv
r−xār = M(x) × r−xExār = M(x) × r−x|āx,

and the result is proved. Thus the reserve at age x is the accrual function multiplied
by the actuarial present value of future benefit.

We interpret the result in Example 4.2.1 as follows. The actuarial present value
of unit annual benefit after the retirement till the individual is alive is given by
ār . Its actuarial present value at age x is r−xExār = r−x|āx . The result shows that
M(x)r−x|āx represents the reserve at age x or the liability at age x. In other words,
the function M(x)r−x|āx will accumulate to ār as x increases to r . This is clear
from the fact that M(r)r−r|ār = ār and

V r(r−a|āa) = P(r−a|āa)Sa:r−a| = r−a|āa

āa:r−a|
× āa:r−a|

r−aEa

= r−aEaār

r−aEa

= ār .

Thus the accrual function M(x) presents the part of accrued liability at age x. Hence,
it is used to decide the rate of contribution to the fund at age x.

The concept of accrual function is more or less similar to that of distribution
function. From the distribution function, whenever it is differentiable, the probabil-
ity density function is obtained as the derivative of the distribution function. Simi-
larly, to define the rate of change of the function M(x), the pension accrual density
function, denoted m(x), is defined as

M(x) =
∫ x

a

m(y)dy ⇔ m(x) = d

dx
M(x), x ≥ a.

Thus if M(x) is analogous to the distribution function, m(x) is the analogue of the
probability density function. In general it is assumed that m(x) is continuous for
a < x < r , right-continuous at a, left continuous at r , and m(x) = 0 for x < a and
x > r . As an illustration, let M(x) = (x − a)/(r − a); then m(x) = (r − a)−1. Let
M(x) be as defined in Example 4.2.1, that is,

M(x) = āa:x−a|
āa:r−a|

=
∫ x

a
e−δ(y−a)S(y) dy

∫ r

a
e−δ(y−a)S(y) dy

.

Then,

M ′(x) = m(x) = e−δ(x−a)S(x)
∫ r

a
e−δ(y−a)S(y) dy

= e−δxS(x)
∫ r

a
e−δyS(y) dy

.

With this form of m(x), we have seen that the projected benefit after retirement
is funded by a level contribution from entry age to retirement. Further, m(x) is
essentially proportional to S(x)e−δx , and the denominator of m(x) is the norming
constant so that

∫ r

a
m(x)dx = 1.

The advantage of introducing the accrual function is that we can develop pen-
sion theory simultaneously for a whole family of actuarial cost methods rather than
separately for each method. Using the accrual function, we now proceed to find the
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normal cost rate which allocates the actuarial present value of future benefits to the
various time points of valuation in a participant’s active service. Determination of
normal cost rate is the main aim of any funding method. We first discuss how to find
the normal cost at individual level and then in the next section extend it for a group.

We use the accrual function M(x) or m(x) to find the normal cost rate and ac-
crued actuarial liability for each member in the plan. Suppose that the age of the
individual is x, a ≤ x ≤ r , and āh

r denotes the actuarial present value of the unit
initial benefit rate with increase in the pension benefit for later ages being recog-
nized by the function h as indicated in the superscript h in āh

r . Our aim is to find the
normal cost at age x, a < x < r , so we first find the actuarial present value (aA)(x)

of the pension benefit at age x. It is given by

(aA)(x) = e−δ(r−x)
r−xpxā

h
r = e−δ(r−x) S(r)

S(x)
āh
r = r−xExā

h
r .

It is to be noted that the survival function S(x) and the force of interest δ in the
definition of āh

r and (aA)(x) may not be the same.
The amount of contribution to the pension fund at age x has to be a fraction of

this actuarial present value so that its accumulation equals the liability at age x.
This motivates the definition of the normal cost rate P(x) and the accrued actuarial
liability (aV )(x) in terms of the accrual function. These are defined as

P(x) = (aA)(x)m(x) and (aV )(x) = (aA)(x)M(x).

Thus multiplying (aA)(x) by M(x) gives the accrued liability, while multiplying
(aA)(x) by m(x), so-called ordinate at x, gives the amount of contribution at age x.
It is to be noted that (aA)x is the actuarial present value at age x of the unit initial
benefit rate with increase in the pension benefit for later ages being recognized by
the function h. If the initial annual benefit is b units, then the rate of contribution for
each age will be given by bP (x). In other words, if amount bP (x) is deposited in the
pension fund from entry age a to the retirement age r , then the fund will be raised
at the time of retirement to an amount which will be sufficient to pay the retirement
benefit, with initial benefit b units with annual increase as given by the function h.

We illustrate computation of P(x) and (aV )(x) for some accrual functions and
with some initial benefit b. We begin with the accrual function M1(x) introduced in

Example 4.2.1. For that M1(x), the density m1(x) is given by m1(x) = S(x)e−δx
∫ r
a S(y)e−δy dy

.

The fact that m(x) is proportional to S(x)e−δ(x−a) = x−apae
−δ(x−a) with S(a) = 1

leads to its interpretation as the actuarial present value at entry age a of 1 unit,
payable at x, provided that the individual survives to age x.

Example 4.2.2 Let the accrual function be given by

m1(x) = S(x)e−δx

∫ r

a
S(y)e−δy dy

.

Find the normal constant rate P(x) and the accrued actuarial liability (aV )(x).
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Solution By definition,

P(x) = (aA)(x)m1(x) = e−δ(r−x) S(r)

S(x)
āh
r × S(x)e−δx

∫ r

a
S(y)e−δy dy

= e−δrS(r)āh
r∫ r

a
S(y)e−δy dy

.

We note that in this case P(x) is free from x, it depends on the force of interest,
the actuarial present value of the annuity based on the function h, and the survival
function. Further, (aV )(x) is given by

(aV )(x) = (aA)(x)M1(x) = e−δ(r−x) S(r)

S(x)
āh
r ×

∫ x

a
S(y)e−δy dy

∫ r

a
S(y)e−δy dy

= V x(r−a|āa),

as derived in Example 4.2.1.

Remark 4.2.1 Let us rewrite P(x) as

P(x) = e−δ(r−a) S(r)
S(a)

āh
r

∫ r

a
e−δ(y−a) S(y)

S(a)
dy

.

It is to be noted that the numerator of P(x) is the actuarial present value at entry
age a of the retirement benefit at age r , provided that the member survives to age r .
Further, the retirement benefit is 1 unit initially, with annual increase as governed by
the function h. The denominator is the actuarial present value of the payment at unit
rate per annum for the entire service period starting from entry age a to retirement
age r . Thus P(x) is analogous to the net benefit premium. In this case the projected
benefit is funded by a level contribution from entry age to retirement, and hence
this accrued cost method is popularly known as “entry age normal cost method”, cf.
(Anderson, 1985).

In the entire discussion above, age x is treated as a continuous variable. In the
numerical illustration we will treat x as a discrete variable, and hence in the fol-
lowing, we define appropriately M(x),m(x), and P(x) in the discrete setup. Taking

clue from M(x) = āa:x−a|
āa:r−a|

, a < x < r , in discrete setup, we define M(x) = aa:x−a|
aa:r−a|

,

x = a, a + 1, . . . , r . It is to be noted with this definition of M(x), we get M(a) = 0,
as it should be, and M(r) = 1. We simplify M(x) for x = a + 1, . . . , r as follows:

M(x) = aa:x−a|
aa:r−a|

=
∑x−a

k=1 vk
kpa

∑r−a
k=1 vk

kpa

=
∑x−a

k=1 vkS(a + k)
∑r−a

k=1 vkS(a + k)
=
∑x

y=a+1 vy−aS(y)
∑r

y=a+1 vy−aS(y)

=
∑x

y=a+1 vyS(y)
∑r

y=a+1 vyS(y)
, x = a + 1, . . . , r.
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The function m(x), which we will interpret as the probability mass function corre-
sponding to M(x) defined above, is given by

m1(x) = vxS(x)
∑r

y=a+1 vyS(y)
, x = a + 1, . . . , r.

In a discrete setup, P(x) corresponding to this m1(x) is defined as

P(x) = (aA)(x)m1(x) = vr−x S(r)

S(x)
ä(h)
r

vxS(x)
∑r

y=a+1 vyS(y)
= vrS(r)äh

r∑r
y=a+1 vyS(y)

.

It is to be noted that P(x) is again free from x. the following example evaluates
P(x) for m1(x) = vxS(x)∑r

y=a+1 vyS(y)
, x = a + 1, . . . , r , for the specific benefit function.

Example 4.2.3 Suppose that the retirement age is r = 65, entry age is 25, and the
survival function is given by S(x) = exp{−m(cx−25 − 1)}, x ≥ 25, where m =
B/ loge C. Assume that B = 0.001 and C = 1.098. Suppose that h(x) = eη(x−r),
x ≥ r , η = 0.045, δ = 0.05.

(i) Find ä
η
65.

(ii) Find P(x) in the discrete setup when the accrual function is m1(x) =
vxS(x)∑r

y=a+1 vyS(y)
, x = a + 1, . . . , r .

(iii) Find the normal cost per annum if the initial pension benefit is Rs 300000/-.
Also, find the corresponding (aV )(x).

Solution In the discrete setup, P(x) = 300000 e−δr S(r)ä
η
r∑r

y=a+1 S(y)vy , which is free from x

for the given accrual function. Further,

(aV )(x) = (aA)(x)M(x) = P(x)M(x)/m(x).

The following is a set of R commands to compute ä
η
65, P(x), and (aV )(x):

a <- 1.098 #C;
b <- 0.001 #B;
m <- b/log(a, base=exp(1));
e <- exp(1);
del <- 0.05;
eta <- 0.045;
x <- 65:100;
p <- e^(m-m*a^(x-25)) #survival function S(x);
v <- e^(-(del-eta));
ad <- v^(-65)*sum(v^x*p)/p[1];
ad;
x <- 26:65;
p <- e^(m-m*a^(x-25)) #survival function S(x);
v <- e^(-del);
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Table 4.1 Accrued actuarial
liability Age (x, x + 1) (aV )(x) Age (x, x + 1) (aV )(x)

25–26 17427.41 45–46 661650.76

26–27 35769.43 46–47 718214.56

27–28 55078.33 47–48 778680.90

28–29 75410.06 48–49 843434.04

29–30 96824.70 49–50 912912.26

30–31 119386.84 50–51 987617.45

31–32 143166.10 51–52 1068126.63

32–33 168237.64 52–53 1155105.87

33–34 194682.88 53–54 1249327.34

34–35 222590.14 54–55 1351689.96

35–36 252055.57 55–56 1463244.90

36–37 283184.06 56–57 1585226.93

37–38 316090.40 57–58 1719093.37

38–39 350900.58 58–59 1866572.61

39–40 387753.32 59–60 2029724.99

40–41 426801.83 60–61 2211019.69

41–42 468215.88 61–62 2413432.37

42–43 512184.21 62–63 2640570.08

43–44 558917.43 63–64 2896832.30

44–45 608651.30 64–65 3187620.00

y1 <- v^(65)*p[40]*ad;
y2 <- sum(p*v^x);
y3 <- y1/y2;
y4 <- 300000*y3;
y3; y4;
p1 <- p*v^x/y2 #m(x);
p2 <- cumsum(p1) #M(x);
p3 <- y4*p2/p1 # (aV )(x);
d <- data.frame(x, p3);
d #Table 4.1;

For the given mortality and interest pattern, ä
η
65 = 10.6254. For the given data,

if the initial pension benefit is 1 unit, the normal cost is 0.058091 and if the initial
annual pension benefit is Rs 300000/-, then the normal cost is 17427.41 for each
unit age group (x, x + 1) credited to the pension fund at the end of the year. In other
words, if Rs 17427.41 is credited to the pension fund annually after completing one
year in the plan, that is, from age 26 to 65, the individual will receive initial annual
pension of Rs 300000/-, and for future years, the pension will increase at the rate
eη = 1.046 per year. Table 4.1 gives the values of accrued actuarial liability for all
ages. (aV )(r) = 3187620.00 represents the accrued liability at the retirement age r ,
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that is, it represents the fund that will be sufficient to provide pension payments with
initial benefit of 300000 with annual increase at the rate of eη. Thus, (aV )(r) should
equal 300000ä

η
65. It is to be noted that

300000ä
η
65 = 300000 × 10.6254 = 3187620.00.

In Examples 4.2.2 and 4.2.3, we have noted that the normal cost rate is the

same for all ages when the accrual function is m1(x) = S(x)e−δx
∫ r
a S(y)e−δy dy

or m1(x) =
S(x)vx

∑r
a+1 S(y)vy . With this accrual function the retirement benefit is not related to salary

scale, and consequently contribution to the pension fund is also not related to salary.
The salary of members changes due to individual experience and merit and also due
to inflation and changes in the productivity of all the participants. To incorporate
these factors of changes in salary, as in Chap. 3, let

wx = (1 + 0.05)x−aux, a ≤ x ≤ r,

denote the salary scale for each member of age x. ux indicates the salary change
due to individual experience and merit, and (1+0.05)x−a indicates change in salary
scale by a year-of-experience factor. Suppose that eτ t reflects inflation and changes
in the productivity of all the participants at time t . This factor does not depend on
the age of the individual. Thus the annual salary rate expected at time t by a member
of age x is given by wxe

τt , a ≤ x ≤ r . In Chap. 3 we have taken τ = 0.
If the initial retirement benefit is related to the salary scale, then it seems rea-

sonable to have the contribution to pension fund as a fraction of salary rate at
that age. To incorporate such feature involving rate of salary, we define the accrual
function m2(x) proportional to S(x)e−δxeτ twx . We normalize this function so that∫ r

a
m2(y) dy = 1. If the member is of age x at time t , then the member’s age was

y < x at time t −(x−y) = t +y−x and will be y > x at time t +(y−x) = t +y−x.
Thus, for a < y < r , m2(y) is proportional to S(y)e−δyeτ(t+y−x)wy . Thus, the nor-
malized m2(x) is given by

m2(x) = S(x)e−δxeτ twx∫ r

a
S(y)e−δyeτ(t+y−x)wy dy

= S(x)e−δxeτxwx∫ r

a
S(y)e−δyeτywy dy

.

The following example derives the formula of P(x) and shows how the salary scale
affects the contribution rate for each age.

Example 4.2.4 Let the accrual function m2(x) be defined as

m2(x) = S(x)e−δxwxe
τx

∫ r

a
S(y)e−δywyeτy dy

.

Find the normal constant rate P(x).
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Solution By definition,

P(x) = (aA)(x)m(x)

= e−δ(r−x) S(r)

S(x)
āh
r × S(x)e−δxeτxwx∫ r

a
S(y)e−δyeτywy dy

= e−δrS(r)āh
r eτxwx∫ r

a
S(y)e−δyeτywy dy

= kwxe
τx,

where k is free from x but depends on the force of interest, the actuarial present value
of the annuity based on the function h, and the value of survival function. In this case
the contribution rate is proportional to the salary scale function. This method is also
known as entry age normal cost method with contribution proportional to the salary
scale, cf. (Anderson, 1985).

In a discrete setup, m2(x) is defined analogously as

m2(x) = vxS(x)wx−1e
τ(x−1)

∑r
y=a+1 vyS(y)wy−1eτ(y−1)

, x = a + 1, . . . , r.

The normal cost P(x) corresponding to m2(x) is given by

P(x) = vrS(r)ä
η
r wx−1e

τ(x−1)

∑r
a+1 S(y)vywy−1eτ(y−1)

.

The following example computes P(x) and (aV )(x) for m2(x) =
vxS(x)wx−1e

τ(x−1)
∑r

y=a+1 vyS(y)wy−1e
τ(y−1) , x = a + 1, . . . , r .

Example 4.2.5 Suppose that the retirement age is r = 65, the entry age is 25, and
the survival function is given by S(x) = exp{−m(cx−25 − 1)}, x ≥ 25, where, m =
B/ loge C. Assume that B = 0.001 and C = 1.098. Suppose that h(x) = eη(x−r),
x ≥ r , η = 0.045, δ = 0.05. Suppose that the salary rate function wx is as given
in column 7 of Table 3.3 in Chap. 3 and τ = 0.02. Further, it is given that ä

η
65 =

10.6254. In the discrete setup, find the constant k, as defined in Example 4.2.4,

the normal cast P(x) and (aV )(x) for m2(x) = vxS(x)wx−1e
τ(x−1)

∑r
y=a+1 vyS(y)wy−1e

τ(y−1) , x = a +
1, . . . , r , if the initial annual pension benefit is Rs 300000/-, with annual increase
of eη.

Solution In the discrete setup, P(x) = vrS(r)ä
η
r wx−1e

τ(x−1)
∑r

a+1 S(y)vywy−1e
τ(y−1) . The following is a set

of R commands to compute P(x) and (aV )(x), and the values are displayed in
Table 4.2.

a <- 1.098 #C;
b <- 0.001 #B;
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Table 4.2 Age wise normal cost rate and accrued actuarial liability

Age (x, x + 1) P (x) (aV )(x) Age (x, x + 1) P (x) (aV )(x)

25–26 5363.70 5363.70 45–46 22564.78 399806.88

26–27 5745.65 11390.85 46–47 24245.12 447700.43

27–28 6196.68 18186.69 47–48 26067.43 500596.26

28–29 6663.58 25809.27 48–49 28038.43 559059.32

29–30 7146.82 34320.73 49–50 29991.74 623552.27

30–31 7706.14 43846.95 50–51 32277.83 694952.91

31–32 8224.67 54404.44 51–52 34644.04 773985.45

32–33 8884.40 66193.69 52–53 37092.69 861476.77

33–34 9504.48 79246.26 53–54 39813.93 958563.62

34–35 10274.42 93786.54 54–55 42629.97 1066361.31

35–36 11006.07 109864.73 55–56 45641.28 1186260.71

36–37 11829.93 127666.62 56–57 48756.85 1319780.57

37–38 12750.77 147395.70 57–58 52081.40 1468803.28

38–39 13634.43 169135.86 58–59 55520.37 1635440.68

39–40 14690.52 193189.49 59–60 59077.03 1822198.02

40–41 15783.71 219745.43 60–61 62646.72 2031957.61

41–42 16915.08 249010.39 61–62 66446.72 2268408.35

42–43 18236.43 281362.03 62–63 70487.11 2536004.19

43–44 19604.26 317065.07 63–64 74778.31 2840159.52

44–45 21019.91 356411.94 64–65 79448.13 3187620.00

m <- b/log(a, base=exp(1));
ad <- 10.6254;
e <- exp(1);
x <- 26:65;
p <- e^(m-m*a^(x-25)) #survival function S(x);
del <- 0.05;
v <- e^(-del);
tau <- 0.02;
v1 <- e^(tau);
z <- read.table("D:service.txt", header=T);
z1 <- z[, 2] #values of service function wx;
y1 <- v^(65)*p[40]*ad*v1^(x-1)*z1;
y2 <- sum(p*v^x*v1^(x-1)*z1);
y3 <- y1/y2;
y4 <- 300000*y3;
k <- v^(65)*p[40]*ad/y2;
k;
p1 <- p*v^x*v1^(x-1)*z1/y2 #m(x);
p2 <- cumsum(p1) #M(x);
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p3 <- y4*p2/p1 # (aV )(x);
d <- data.frame(x, y4, p3);
d #Table 4.2;

For the given setup, k = 0.010844. The proportion k of annual salary rate wxe
τx is

the contribution to the pension fund. In Example 4.2.3 the normal cost is constant
given by 17427.41 for all the ages. In this example we see that the contribution
rate increases as age increases due to the increase in salary scale. Thus, if amount
P(x) is credited to the pension fund from age 25 to 65, the fund will accumulate to
provide the individual retirement benefit with initial annual pension of Rs 300000/-
and annual increase at the rate eη per year. The third and sixth columns, specifying
the values of (aV )(x), present the accumulation of the fund. It is accumulated to
3187620.00 at age 65, which is exactly equal to 300000ä

η
65.

Examples 4.2.3 and 4.2.5 depict the role of the accrual function, to decide the
annual contribution to the pension fund sufficient to provide the retirement benefits
and the accrued actuarial liability. The rate of contribution and the accrued actuarial
liability change as the accrual function changes. In the following we discuss the ac-
crued actuarial liability (aV )(x) in some more details. We have defined the accrued
actuarial liability as

(aV )(x) = (aA)(x)M(x).

The concept of accrued actuarial liability is more or less similar to the concept of
reserve in life insurance. The above definition of (aV )(x) is analogous to the ret-
rospective reserve. With the prospective approach, it can be defined as the actuarial
present value of the pension benefit at age x less the actuarial present value of future
normal costs. With this approach it is defined as

(aV )(x) = (aA)(x) − (Pa)(x), where (Pa)(x) =
∫ r

x

e−δ(y−x) S(y)

S(x)
P (y)dy.

(Pa)(x) denotes the actuarial present value of future normal costs. Thus, (Pa)(x)

can be expressed as

(Pa)(x) = (aA)(x) − (aV )(x) = (aA)(x)
[
1 − M(x)

]
.

The accrued actuarial liability is thus defined as

(aV )(x) = (aA)(x)M(x) = (aA)(x) − (Pa)(x).

The following example verifies that for accrual function m2(x), these two ap-
proaches, prospective and retrospective, of (aV )(x) result in the same value.

Example 4.2.6 Prove that (aV )(x) = (aA)(x)M(x) = (aA)(x) − (Pa)(x) if the
accrual function is given by

m2(x) = S(x)e−δxeτxwx∫ r

a
S(y)e−δyeτywy dy

.
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Solution We have P(x) = e−δr S(r)āh
r wxeτx

∫ r
a S(y)e−δyeτywy dy

, which we write as P(x) =
e−δr S(r)āh

r wxeτx

I
, where I = ∫ r

a
S(y)e−δyeτywy dy. By prospective approach of the

definition of reserve,

(aV )(x) = (aA)(x) − (Pa)(x)

= (aA)(x) −
∫ r

x

e−δ(y−x) S(y)

S(x)
P (y)dy

= e−δ(r−x) S(r)

S(x)
āh
r − (1/I)

∫ r

x

e−δ(y−x) S(y)

S(x)
e−δrS(r)āh

r wye
τy dy

= e−δ(r−x) S(r)

S(x)
āh
r

{
1 −

[∫ r

x
e−δyS(y)eτywy dy

∫ r

a
e−δyS(y)wyeτy dy

]}

= e−δ(r−x) S(r)

S(x)
āh
r

{∫ x

a
e−δyS(y)wye

τy dy
∫ r

a
e−δyS(y)wyeτy dy

}

= (aA)(x)

∫ x

a

m(y)dy = (aA)(x)M(x),

which is the formula for retrospective reserve.

We have discussed how the normal cost rate for the individual is to be obtained
using two accrual functions. A similar procedure is adopted for various forms of
accrual function m(x). Employer has to set aside the normal cost for all the members
of all ages between a to r in the plan. The total normal cost rate, say NC(t), that
employer has to pay in the pension fund at time t is obtained by summing it over all
the members n(x, t) of age x in the group at time t .

We now proceed to discuss the accrued benefit cost method for a group to obtain
the total normal cost rate at a specific time point for a group consisting of members
of all ages.

4.3 Accrued Benefit Cost Method for a Group

The basic component in this approach is recognizing the pension obligations for a
group of members retiring at time t . Toward it we first discuss a terminal funding
method and then its application to the accrued benefit cost method for a group.

Terminal Funding Method Under the terminal funding approach, the employer
sets aside for each employee, on the date of retirement of an employee, a lump-sum
amount sufficient to provide the monthly pension benefit promised under the plan.
This amount is essentially a single premium or the purchasing price of the monthly
whole life annuity due from an insurance company. Thus, the liability is discharged
in full when the employee retires, and no assets are set aside while the employee
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is working. Under this method, the required contribution rate, referred to as normal
cost rate, is denoted by TPt . The presuperscript stands for T in the nomenclature
“Terminal Funding method.” It is a rate at which the actuarial present value of future
pensions for members reaching retirement age r is incurred at time t . Thus, in this
approach the cost of the plan is recognized only at the time of retirement of the
members. Other extreme of terminal funding method is the initial funding method in
which the pension liability is recognized when the person joins the employer. Both
these methods are not used in practice. A method which recognizes the pension
liability periodically, in particular, annually, during the active service period of the
member is used in practice. In all these methods, TPt is a basic building block for
the various functions used to describe the funding operations. Hence, we proceed to
find the expression of TPt . To find the expression for TPt , we define the functions to
take into account the changing size of the working group and the changes in salary
due to a variety of factors, explained in Chap. 3. To emphasize the funding methods,
we restrict to the age-service retirement at age r .

We consider a group consisting of members entering at age a, retiring at age r ,
and subject to the survival function S(x) with S(a) = 1. For a < x < r , we fur-
ther assume that decrements occur due to mortality or other causes as specified in
Chap. 3, but for x > r , mortality is the only cause of decrement. Thus, in our usual
notation, S(x)

S(a)
= x−ap

(τ)
a , x ≤ r , is the probability that the individual joining the

group of employees is still in the group at age x. Let n(a,u) denote the number of
new entrants at age a at time u. The number of members attaining age x at time t is
then given by

n(x, t) = n(a, t − x + a) x−ap
(τ)
a = n(a, t − x + a)

S(x)

S(a)
= n(a, t − x + a)S(x),

as S(a) = 1. n(a, t − x + a) denotes the number of participants of age a at time u =
t −(x −a). Thus, n(a+1, t) = n(a, t −1)S(a+1), the number of individuals of age
a + 1 at time t , will be the number of individuals of age a at time t − 1 who survive
for a year. Similarly n(a +2, t) = n(a, t −2)S(a +2), and so on. We further assume
that the population is closed and there is no in migration, in the sense that there
are no new entrants in the group beyond age a and population of working group
decreases due to death, disability, withdrawal or death. This assumption remains
valid in practice if we consider a group of individuals joining at later ages as a
different group, separately for each age. The progress of such groups can be studied
on similar lines.

If n(x, t) is independent of t , we then say that the population is stationary. In
this case we denote n(x, t) by lx . In Chap. 3, in the service table, Table 3.3, we
have assumed that the population is stationary. In single and multiple decrement
tables discussed in Chaps. 1 and 2, we have assumed that the population is station-
ary, although it is rarely true. In stationary population it is assumed that exactly
l0 births occur in each calender year or the number of new entrants in a group is
la for each year. The number of decrements at various ages due to various causes
also remain the same over the years. Further, in such a population, age composition
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never changes, and the total size remains constant. In reality, the number of births
or the number of entrants changes, and the decrement pattern changes from year to
year, and hence the populations are rarely stationary. A restricted amount of vari-
ation from a stationary population is introduced by assuming that the number of
births or new entrants increases at a constant rate R, which can be positive or nega-
tive. It is still assumed that the age-specific decrement rates remain the same. As a
consequence, the total size of the population increases at a rate eR per year, but the
composition of the population by age remains constant. Such a population is known
as a stable population. Thus, if n(x, t) is of the form eRt lx , where R is a constant,
the population is known as a stable population. If R = 0, then a stable population
is a stationary population. If R > 0, then the population grows exponentially, and
if R < 0, then the population decreases exponentially. The case R > 0 reflects the
period of boom when the population in working period (25,65) is higher than that
in the stationary population for each age, while the case R < 0 reflects the period
of depression when the population in working period (25,65) is less than that in
the stationary setup. For a stable population, the fraction of the total population that
lies between ages x0 and x1 is independent of t . Thus, the size of a stable popula-
tion changes over time, but its relative age distribution is constant, that is why it is
labeled as the stable population. The conditions for a stable or stationary popula-
tion are seldom realized in practice in view of the changes in survival function and
density of births or new entrants in a group under study. We use these models to
illustrate the theoretical developments.

The salary of members changes due to individual experience and merit and also
due to inflation and changes in the productivity of all the participants. The annual
salary rate expected at time t by a member of age x is given by wxe

τt , a ≤ x ≤ r .
With these functions the total salary rate at time t for n(x, t) members of age x is
given by

W(x, t) = n(x, t)wxe
τt .

In particular, W(r, t) = n(r, t)wre
τ t denotes the total salary rate at the time of retire-

ment of the individual of age r at time t . The initial pension benefit is, as discussed
in Chap. 3, a fraction of W(r, t). Thus the function W(r, t) is an important compo-
nent in the expression of TPt .

At any time the group of employees consists of individuals of all ages from a to
r . Hence the total annual salary rate Wt at time t is given by

Wt = eτ t

∫ r

a

n(x, t)wx dx.

If age x is taken as a discrete variable, then

W(x, t) = n(x, t)wxe
τt , x = a, . . . , r − 1.
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Wt is obtained by summing over all ages between x and r − 1. Thus in discrete
setup, Wt is given by,

Wt =
r−1∑

x=a

W(x, t) =
r−1∑

x=a

n(x, t)wxe
τt = eτ t

r−1∑

a

n(x, t)wx.

The upper limit in the sum is r − 1 in view of the fact that wx presents the salary
scale for an individual of complete age x, which remains the same for one year. If
the retirement age is taken as 65, then the salary scale for the last year is w64.

Wt represents the total payroll payment rate at time t . It conveys the employer
the expected amount of total salary rate at any time. Contribution to the pension
fund on behalf of all employees at time t , is a fraction of this total payroll payment
rate. The following example illustrates the changes in population sizes in stationary
and stable setup and the computation of total payment rate.

Example 4.3.1 Suppose that the total force of decrement is given by μx = BCx−25,
x ≥ 25. Assume that B = 0.001, C = 1.098, l0 = 1000, and the salary scale function
wx = (1.05)x−25ux as given in column 7 of Table 3.3 in Chap. 3. Let τ = 0.02.

(i) Find lx for a stationary population and n(x, t) for a stable population with R =
0.02 and R = −0.01, and for t = 10,20, and 30. Plot the graphs of population
sizes.

(ii) Tabulate the population sizes for ages 25 to 65.
(iii) Find Wt for t = 10,20, and 30, for the stationary and the stable population

when the retirement age is 65.

Solution For a stable population, n(x, t) = eRt lx , where lx = l0S(x). For the given
force of mortality, the survival function is given by S(x) = exp{−m(cx−25 − 1)},
x ≥ 25, where m = B/ loge C. Hence,

Wt = e0.02t
64∑

25

n(x, t)wx = e0.02t
64∑

25

eRt lxwx = e(0.02+R)t
64∑

25

lxwx.

The following is a set of R commands to compute the population sizes, their graphs,
and total payroll payment rate;

a <- 1.098 #C;
b <- 0.001 #B;
m <- b/log(a, base=exp(1));
e <- exp(1);
x <- 25:100;
p <- e^(m-m*a^(x-25)) #survival function S(x);
y <- 1000*p # lx;
r <- 0.02;
t <- c(10, 20, 30);
ys1 <- e^(r*t[1])*y;
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ys2 <- e^(r*t[2])*y;
ys3 <- e^(r*t[3])*y;
par(mfrow=c(1, 1), font.axis=2, font.lab=2, cex.axis=1,

cex.lab=1.5, font=2, lwd=2);
plot(x, y, "o", pch=20, cex=0.7, main=" ", xlab=" ",

ylab=" ", ylim=range(0, max(ys3)));
lines(x, ys1, "o", pch=15, cex=0.7, main=" ");
lines(x, ys2, "o", pch=24, cex=0.7, main=" ");
lines(x, ys3, "o", pch=3, cex=0.7, main=" ");
legend(locator(1), pch=c(20, 15, 24, 3), legend=c("R=0",

"t=10, R=0.02", "t=20, R=0.02", "t=30, R=0.02"),
cex=1.2);

ys <- round(data.frame(y, ys1, ys2, ys3), 2);
d <- data.frame(x, ys);
d1 <- d[1:41, ];
d1 #Table 4.3;

In the above set of commands replacing r = 0.02 by r = −0.01, we get Fig. 4.2 and
Table 4.4. The following commands compute Wt :

z <- read.table("D:service.txt", header=T);
z1 <- z[, 2] #values of wx;
y1 <- y[1:40] # lx for x = 25 to 64;
y2 <- sum(y1*z1);
tau <- 0.02 #value of τ;
r <- c(0.02, 0, -0.01);
w1 <- e^((tau+r)*t[1])*y2;
w2 <- e^((tau+r)*t[2])*y2;
w3 <- e^((tau+r)*t[3])*y2;
w <- data.frame(r, w1, w2, w3);
w #Table 4.5;

From Table 4.3 we note that the number of working individuals at any age in
stable population is higher than the corresponding number in stationary population
for all the three time points. Within the stable population, as time t increases, the
population size also increases as R > 0. Similar pattern is revealed in Fig. 4.1. In
Table 4.4, we see the reverse scenario. The number of working individuals at any age
in stable population is less than the corresponding number in stationary population
for all the three time points and the stable population decreases as time t increases,
as R < 0. Figure 4.2 depicts the same scenario. For the given force of mortality and
the given set of parameters, the population size approaches 0 in all the cases after
age 90. So it is a reasonably good model for the population size.

Table 4.5 reports the total payment rate for three time epochs and for three types
of populations.

As expected, Wt increases as t increases for all the three types of populations,
due to factor eτ t . For a stable population with R = −0.01, Wt is the smallest for
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Table 4.3 Population size
with R = 0 and R = 0.02 Age x Stationary t = 10 t = 20 t = 30

25 1000.00 1221.40 1491.82 1822.12

26 998.95 1220.12 1490.26 1820.21

27 997.80 1218.72 1488.55 1818.12

28 996.54 1217.18 1486.67 1815.82

29 995.16 1215.49 1484.61 1813.30

30 993.65 1213.64 1482.35 1810.54

31 991.99 1211.61 1479.87 1807.51

32 990.16 1209.39 1477.15 1804.20

33 988.17 1206.95 1474.18 1800.56

34 985.98 1204.28 1470.92 1796.58

35 983.59 1201.36 1467.34 1792.22

36 980.97 1198.16 1463.43 1787.44

37 978.10 1194.65 1459.15 1782.21

38 974.95 1190.81 1454.46 1776.48

39 971.51 1186.61 1449.33 1770.21

40 967.75 1182.01 1443.71 1763.36

41 963.64 1176.99 1437.57 1755.86

42 959.14 1171.49 1430.87 1747.66

43 954.22 1165.49 1423.53 1738.71

44 948.86 1158.94 1415.53 1728.93

45 943.00 1151.78 1406.79 1718.25

46 936.61 1143.97 1397.25 1706.61

47 929.64 1135.47 1386.86 1693.92

48 922.05 1126.19 1375.54 1680.09

49 913.79 1116.10 1363.21 1665.03

50 904.80 1105.13 1349.80 1648.65

51 895.03 1093.20 1335.24 1630.86

52 884.43 1080.25 1319.42 1611.54

53 872.94 1066.21 1302.27 1590.60

54 860.49 1051.00 1283.69 1567.91

55 847.02 1034.55 1263.61 1543.37

56 832.48 1016.79 1241.91 1516.87

57 816.80 997.64 1218.52 1488.30

58 799.92 977.02 1193.34 1457.54

59 781.79 954.88 1166.29 1424.51

60 762.35 931.14 1137.30 1389.10

61 741.57 905.75 1106.29 1351.23

62 719.40 878.68 1073.22 1310.83

63 695.82 849.88 1038.05 1267.87

64 670.82 819.35 1000.75 1222.32

65 644.41 787.08 961.34 1174.19



4.3 Accrued Benefit Cost Method for a Group 149

Table 4.4 Population size
with R = 0 and R = −0.01 Age x Stationary t = 10 t = 20 t = 30

25 1000.00 904.84 818.73 740.82

26 998.95 903.89 817.87 740.04

27 997.80 902.85 816.93 739.19

28 996.54 901.71 815.90 738.26

29 995.16 900.46 814.77 737.23

30 993.65 899.09 813.53 736.11

31 991.99 897.59 812.17 734.88

32 990.16 895.94 810.68 733.53

33 988.17 894.13 809.04 732.05

34 985.98 892.16 807.26 730.43

35 983.59 889.99 805.29 728.66

36 980.97 887.62 803.15 726.72

37 978.10 885.02 800.80 724.59

38 974.95 882.17 798.22 722.26

39 971.51 879.06 795.41 719.71

40 967.75 875.66 792.33 716.93

41 963.64 871.93 788.96 713.88

42 959.14 867.86 785.28 710.55

43 954.22 863.42 781.25 706.91

44 948.86 858.56 776.86 702.93

45 943.00 853.26 772.06 698.59

46 936.61 847.48 766.83 693.86

47 929.64 841.17 761.13 688.69

48 922.05 834.31 754.91 683.07

49 913.79 826.83 748.15 676.95

50 904.80 818.70 740.79 670.29

51 895.03 809.86 732.79 663.06

52 884.43 800.27 724.11 655.20

53 872.94 789.87 714.70 646.69

54 860.49 778.60 704.51 637.46

55 847.02 766.42 693.48 627.49

56 832.48 753.26 681.57 616.71

57 816.80 739.07 668.74 605.10

58 799.92 723.80 654.92 592.59

59 781.79 707.39 640.07 579.16

60 762.35 689.80 624.16 564.76

61 741.57 671.00 607.15 549.37

62 719.40 650.94 589.00 532.95

63 695.82 629.61 569.69 515.48

64 670.82 606.99 549.22 496.96

65 644.41 583.09 527.60 477.39
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Fig. 4.1 Stationary and
stable population with
R = 0.02

Fig. 4.2 Stationary and
stable population with
R = −0.01

all t , while for a stable population with R = 0.02, Wt is the highest for all t . The
fact that for R = 0 with t = 10, Wt is same as that for R = −0.01 with t = 20,
follows easily from the formula of Wt .

To obtain the expression for TPt when age x is taken as a discrete variable, we
begin with a pension plan which provides retirement annuities payable only after
retirement age r and the initial annual pension rate is a fraction d of the salary rate
at retirement. Thus, for a member retiring at time t , the projected initial pension
payment rate is dwr−1e

τ t , where d is a fraction, and wr−1e
τ t is a salary rate at re-

tirement. The pension payment does not remain the same for all the future years but
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Table 4.5 Total payroll
payment rate R t = 10 t = 20 t = 30

0.02 162864.90 242965.90 362462.50

0 133342.50 162864.90 198923.60

−0.01 120653.30 133342.50 147366.30

increases periodically, usually annually. To incorporate this increase, as in Chap. 3,
suppose that h(x), with h(r) = 1, denotes an adjustment factor applied to the initial
pension payment rate dwr−1e

τ(t−x+r) for those who retired x − r years ago. For a
retiree of age x, x ≥ r , at time t , the annual rate of pension payment is projected as
dwr−1e

τ(t−x+r)h(x). To obtain the expression for TPt , we need to find the actuarial
present value of the future pension benefits starting at age r . Let δ denote the force
of interest, and āh

r denote the actuarial present value of the life annuity at age r of
the pension benefit which takes into account the increase in pension as governed
by the function h(x). Suppose h(x) = exp[η(x − r)], where η is a constant rate of
increase, possibly related to the expected inflation rate. We have proved that

āη
r =

∫ ∞

r

e−δ(x−r)h(x)
S(x)

S(r)
dx = ār

(
δ′),

where δ′ = δ − η, that is, ā
η
r is the annuity function with force of interest δ′ = δ − η.

Further, n(r, t) members attaining age r at time t will collect pension at an average
initial rate of dwr−1e

τ t . With the annual increase at rate eη, the expression for TPt

is given by

TPt = dwr−1e
τ tn(r, t)āη

r .

In Chap. 3, we have defined a function R(a,h, t) as the initial benefit if the indi-
vidual joins the group at age a, is in active service at age a + h, and retires at age
a +h+ t = r in this setup. If we denote such an initial benefit at age r by b(r), then
the terminal fund at time t is defined as

TPt = b(r)eτ tn(r, t)āη
r .

For a stable population, n(r, t) = lr e
Rt . Hence, for a stable population, TPt is given

by

TPt = dwr−1ā
η
r lr e

(τ+R)t .

Remark 4.3.1 The annuity function ā
η
r in the above expression may be replaced by

ä
η
r or ä

(12)η
r , as most of the pension payments are monthly, that is, according to

discrete annuity due. ä
η
r is given by

äη
r =

∑

x=r

vx−r
x−rpr =

∑

x=r

vx−r S(x)

S(r)
, where v = e−δ′

.
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Table 4.6 Normal cost rate
in terminal funding t R = 0.02 R = 0 R = −0.01

10 8322.94 6814.24 6165.78
20 12416.36 8322.94 6814.24
30 18523.03 10165.66 7530.90

Continuous annuities are mathematically simple to use, and these are usually good
approximation to the monthly annuity due; hence continuous annuities are fre-
quently used in theoretical development.

In the following example we compute TPt for the setup of Example 4.3.1 in two
cases. First, we assume that the initial annual pension benefit is dwr−1 and then take
the initial annual benefit as obtained in Example 3.2.5 in Chap. 3. In Example 3.2.5,
we have obtained the projected annual benefit at age 65 with the salary rate function
as given in column 7 of Table 3.3 and annual actual salary at age 40 to be Rs 500000.
We have b1(65) = 311467.50 and b2(65) = 288165.10, where b1(65) is the d× the
salary at 65 and b2(65) is d× average of final five years salary, where d = 0.2. In
the following example we obtain TPt with b1(65) and b2(65) as the initial pension
benefit.

Example 4.3.2 Suppose that the retirement age is r = 65, the entry age is 25, and
the survival function is given by S(x) = exp{−m(cx−25 − 1)}, x ≥ 25, where, m =
B/ loge C. Assume that B = 0.001, C = 1.098, lr = 644.41 (as in Table 4.3), and
the salary rate function is as given in column 7 of Table 3.3 in Chap. 3. Suppose that
h(x) = eη(x−r), x ≥ r , η = 0.045, τ = 0.02, δ = 0.05.

(i) Find TPt = dwr−1lr e
(τ+R)t ä

η
r for t = 10, 20, and 30 when d = 0.12.

(ii) Find TPt (i) = bi(65)lre
(τ+R)t ä

η
r for t = 10, 20, and 30, where b1(65) =

311467.90 and b2(65) = 288165.10.

Solution Using the values of ä
η
65, d , and τ as specified, we compute TPt =

dwr−1ä
η
r lr e

(τ+R)t for three time points and three specified values of R. These are
reported in Table 4.6. When the initial benefit is specified, dwr−1 is replaced by the
specified benefit value. These are reported in Tables 4.7 and 4.8. The following is R
code for these computations:

a <- 1.098 #C;
b <- 0.001 #B;
m <- b/log(a, base=exp(1));
e <- exp(1);
x <- 65:100;
p <- e^(m-m*a^(x-25)) #survival function S(x);
del <- 0.05;
eta <- 0.045;
v <- e^(-(del-eta));
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Table 4.7 Terminal fund
with initial benefit b1(65)

t R = 0.02 R = 0 R = −0.01

10 3181550167.00 2604832964.00 2356950334.00
20 4746315116.00 3181550167.00 2604832964.00
30 7080670113.00 3885954149.00 2878785639.00

Table 4.8 Terminal fund
with initial benefit b2(65)

t R = 0.02 R = 0 R = −0.014

10 2943519130.00 2409949634.00 2180612604.00
20 4391214536.00 2943519130.00 2409949634.00
30 6550922298.00 3595222384.00 2663406250.00

ad <- v^(-65)*sum(v^x*p)/p[1];
ad # ä

η
65;

lr <- 644.41;
d <- 0.12;
wr <- 6.79;
tau <- 0.02;
t <- c(10, 20, 30);
r1 <- 0.02;
y1 <- d*wr*ad*lr*e^((tau+r1)*t);
r2 <- 0;
y2 <- d*wr*ad*lr*e^((tau+r2)*t);
r3 <- (-0.01);
y3 <- d*wr*ad*lr*e^((tau+r3)*t);
y <- data.frame(t, y1, y2, y3);
y #Table 4.6;
R1 <- 311467.90 # b1(65);
R2 <- 288165.10 # b2(65);
r1 <- 0.02;
y1 <- R1*ad*lr*e^((tau+r1)*t);
z1 <- R2*ad*lr*e^((tau+r1)*t);
r2 <- 0;
y2 <- R1*ad*lr*e^((tau+r2)*t);
z2 <- R2*ad*lr*e^((tau+r2)*t);
r3 <- (-0.01);
y3 <- R1*ad*lr*e^((tau+r3)*t);
z3 <- R2*ad*lr*e^((tau+r3)*t);
y <- data.frame(t, y1, y2, y3) #Table 4.7;
z <- data.frame(t, z1, z2, z3) #Table 4.8;
y; z;

From Table 4.6, TP10 = 8322.94 is the terminal fund for a stable population with
R = 0.02 at time t = 10. It represents the expected purchasing price of the life annu-
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ities with initial payment dwr−1 with annual increase given by e0.045 and inflation
factor τ = 0.02 for the expected number lr e

0.02×10 = 787.07 individuals who retire
at age 65. Thus, the employer has to deposit this much amount in the pension fund
so that with the specified force of interest, this fund will be sufficient to pay the pen-
sion benefits at the given rate for all the retirees till they survive. The value of TPt

for R = 0 is intermediate to those for R = 0.02 and R = −0.01. As time increases,
all increase at the rate eτ , as expected.

(ii) In this setup, TPt (i) = bi(65)lre
(τ+R)t ä

η
r , i = 1,2. For the given data, TPt

corresponding to b1(65) are reported in Table 4.7 and corresponding to b2(65) are
displayed in Table 4.8.

From Table 4.7 we note that the terminal fund at t = 10 for a stable popula-
tion with R = 0.02 is 3181550167.00 if the initial pension payment is b1(65) =
311467.90 and increases annually at the rate eη . That is, the expected amount
3181550167.00 needs to be deposited in the pension fund to support the pension
benefit for expected number of 787.08 members who retire at age 65. In Table 4.8,
all the values of terminal fund are less than those in Table 4.7, as the initial benefit
amount is smaller than that in Table 4.7.

The terminal funding method is not frequently used in practice as there is no
security to the plan in case of financial collapse of the employer. So it is now well
accepted that the cost of the pension plan must be recognized during the working
times of the employees who are ultimately going to receive pensions, by actually
funding amounts sufficient to provide completely for each employee’s life annuity
at the time of retirement. When pension plans are funded in this manner, the safety of
pensions which are being paid to those who are already retired is assured and cannot
be jeopardized by fluctuations in employment levels among active members or by
the financial collapse of employer himself. In USA, Canada, and in almost every
industrialized country, a private employer has to establish a pension plan which is
properly funded.

We now discuss funding methods in which the employer (and the employee under
contributory plan) sets aside funds on some systematic basis prior to the employee’s
retirement date. Thus periodic contributions are made on behalf of the group of
active employees during their working years. We now proceed to discuss how to
obtain the total normal cost rate for a group consisting of members of all ages at a
specific time point.

Suppose that we have a group of n(x, t) members of age x, a < x < r , at time t .
Some of these may withdraw or may die or may suffer disability, and some will
work till the age of retirement. Thus, those who are in service for next r − x years,
will retire at the end of r − x years. The terminal funding cost corresponding to
these retiring individuals is given by TPt+r−x . Its present value at time t is obtained
by multiplying by vr−x = e−δ(r−x). Thus, e−δ(r−x) TPt+r−x represents the actuarial
present value of the future benefits for the active members of age x at time t . In the
normal cost function, this liability is recognized at an accrual rate m(x). That is, the
contribution to the pension fund for a group of members of age x at time t is given
by e−δ(r−x) TPt+r−xm(x). Summing over the members of all ages between a to r ,
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we get the contribution to be made to the pension fund at time t corresponding to
all working members of all ages. Thus, the normal cost rate Pt in continuous set up
is given by

Pt =
∫ r

a

e−δ(r−x) TPt+r−xm(x)dx.

Pt represents the amount to be deposited in the pension fund at time t , which will
accumulate to a fund that will be sufficient to pay retirement benefits for a group
of members who enter at age a at time u and retire r − a years later. To elaborate
more on this assertion, consider a group of participants who enter at time u. Their
ultimate terminal funding cost rate will be TPu+r−a . At time t , corresponding to a
group of individuals of age x = a + t − u, the contribution in the integral defining
Pt is e−δ(r−x) TPt+r−xm(x). In r − x years until retirement, in view of interest, it
will accumulate to

e−δ(r−x) TPt+r−xm(x) × eδ(r−x) = TPt+r−xm(x) = TPu+r−am(a + t − u).

Integrating these interest accumulated contributions over the entire time period, we
obtain

∫ u+r−a

u

TPu+r−am(a + t − u)dt = TPu+r−a,

which the required terminal funding cost rate. Thus, it is established that the normal
cost rate function Pt completely funds the future pension benefit.

The normal cost rate Pt in discrete setup is defined as

Pt =
r∑

x=a+1

v(r−x) TPt+r−xm(x).

Suppose the accrual function is given by m1(x) = S(x)vx
∑r

a+1 S(y)vy . With this accrual

function, the normal cost rate Pt is expressible as follows:

Pt =
r∑

x=a+1

v(r−x) TPt+r−xm1(x)

=
∑r

x=a+1 v(r−x) TPt+r−xS(x)vx

∑r
a+1 S(y)vy

=
∑r

x=a+1 v(r−x) TPt+r−x
S(x)
S(a)

v(x−a)

∑r
a+1

S(y)
S(a)

v(y−a)

=
∑r

x=a+1 v(r−x) TPt+r−x x−apav
(x−a)

∑r
a+1 y−apav(y−a)

.
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The numerator of the last expression for Pt is interpreted as follows. We begin with
a group of individuals who joins the pension plan at age a, conditional on survival
to age x; the present value at age x at time t of the terminal fund for such a group
is e−δ(r−x) TPt+r−x , when it is further multiplied by e−δ(x−a), we get the present
value at age a, at the time of entry. Thus numerator is the actuarial present value at
the entry point of the retirement benefits. The denominator is simply the actuarial
present value of a unit payment of the temporary life annuity immediate for the
period of active service, that is, when the payment is done at the end of the year.
Thus, the normal cost rate is similar to the net premium.

With accrual function m2(x) = S(x)e−δxwx−1e
τ(x−1)

∑r
a+1 S(y)e−δywy−1e

τ(y−1) , Pt in the discrete setup

is given by

Pt =
∑r

x=a+1 e−δ(r−x) TPt+r−x x−apae
−δ(x−a)wx−1e

τ(x−1)

∑r
a+1 y−apae−δ(y−a)wy−1eτ(y−1)

.

Here the denominator is the actuarial present value of a varying temporary life an-
nuity immediate for the period of active service. Thus here also the normal cost rate
is similar to the net premium.

Substituting the expression for TPt+r−x , which is given by

TPt+r−x = dwr−1e
τ(t+r−x)n(r, t + r − x)āh

r ,

we get the expression for Pt in terms of all basic functions. It is given by

Pt = eτ t dwr−1ā
h
r

∫ r

a

e−(δ−τ)(r−x)n(r, t + r − x)m(x)dx, u ≤ t ≤ u + r − a.

Here u indicates the time of entry. In discrete setup, Pt is given by

Pt = eτ t dwr−1ā
h
r

r∑

x=a+1

e−(δ−τ)(r−x)n(r, t + r − x)m(x).

Suppose that n(r, t + r − x) = eR(t+r−x)lr . Then Pt simplifies as follows:

Pt = eτ t dwr−1ā
h
r

r∑

x=a+1

e−(δ−τ)(r−x)n(r, t + r − x)m(x)

= eτ t dwr−1ā
h
r

r∑

x=a+1

e−(δ−τ)(r−x)eR(t+r−x)lrm(x)

= e(τ+R)t−(δ−τ−R)r dwr−1lr ā
h
r

r∑

x=a+1

e(δ−τ−R)xm(x).

Different formulas for m(x) produces different expressions for the total normal cost
rate.
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We have discussed the concept of accrued actuarial liability for an individual of
age x. We now discuss it for a group of active lives at time t. It is denoted by (aV )t
and is defined as,

(aV )t =
∫ r

a

e−δ(r−x) TPt+r−xM(x)dx.

The definition is similar to that for an individual set up. Substituting the expression
for TPt+r−x , we get the expression for (aV )t in terms of all basic functions. Thus,

(aV )t = eτ t dwr−1ā
h
r

∫ r

a

e−(δ−τ)(r−x)n(r, t + r −x)M(x)dx, u ≤ t ≤ u+ r −a,

where u indicates the time of entry. In discrete setup, (aV )t is given by

(aV )t = eτ t dwr−1ā
h
r

r∑

x=a+1

e−(δ−τ)(r−x)n(r, t + r − x)M(x).

Suppose that n(r, t + r − x) = eR(t+r−x)lr . Then (aV )t simplifies as follows:

(aV )t = eτ t dwr−1ā
h
r

r∑

x=a+1

e−(δ−τ)(r−x)eR(t+r−x)lrM(x)

= e(τ+R)t−(δ−τ−R)r dwr−1lr ā
h
r

r∑

x=a+1

e(δ−τ−R)xM(x).

It is to be noted that the expression of (aV )t is similar to that for Pt , with the
only change that m(x) in Pt is replaced by M(x) in (aV )t . the following example
illustrates how Pt , (aV )t and TPt are related.

Example 4.3.3 Prove that Pt + δ(aV )t = TPt + d
dt

(aV )t . Interpret the result.

Solution The normal cost rate Pt , given by Pt = ∫ r

a
e−δ(r−x) TPt+r−xm(x)dx, can

be rewritten as Pt = ∫ r

a
e−δ(r−x) TPt+r−x

dM(x)
dx

. Integrating by parts, we get

Pt = [e−δ(r−x) TPt+r−xM(x)
]x=r

x=a
− δ

∫ r

a

e−δ(r−x) TPt+r−xM(x)dx

= −
∫ r

a

M(x)e−δ(r−x) d

dx

(
TPt+r−x

)
dx

= TPt − δ(aV )t +
∫ r

a

M(x)e−δ(r−x) d

dt

(
TPt+r−x

)
dx

= TPt − δ(aV )t + d

dt
(aV )t .
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The third equality in the above expression follows from the fact that

d

dx

(
TPt+r−x

)= d

dt

(
TPt+r−x

) d

dx
(t + r − x) = − d

dx

(
TPt+r−x

)
.

The expression for Pt gives the identity Pt + δ(aV )t = TPt + d
dt

(aV )t . It can be
interpreted from the viewpoint of compound interest theory. The accrued actuarial
liability, (aV )t , is a fund into which normal costs, at rate Pt , are paid and from
which terminal funding costs, at rate TPt , are transferred when active members retire.
The left-hand side of the identity is the income rate to the fund from normal costs
and interest. The right-hand side represents the allocation of this income rate to the
terminal funding rate and the rate of change in the fund size.

The concept of accrued liability, which is the ideal fund balance, resembles to a
net level premium reserve, and the normal cost is like a net premium. As in indi-
vidual setup, (aV )t defined above is similar to the retrospective reserve. In life in-
surance, according to the prospective approach, the reserve at any time is defined as
the actuarial present value of the future benefits to be paid less the actuarial present
value of the future premiums to be received. We have already seen that for the in-
dividual setup, both prospective and retrospective reserves are the same. In the fol-
lowing we prove that the actuarial liability at time t for a group of active members
is given by the actuarial present value of future pensions for active members less the
actuarial present value of future normal costs. That is, two approaches lead to the
same value of liability. Toward it, we define some functions as follows.

Let (Pa)t denote the actuarial present value of future normal costs. We obtain
the expression for it as follows. We have already noted that n(x, t) members of age
x at time t will have a terminal funding cost of TPt+r−x when they retire r − x

years later. As these members pass from age y to y + dy, x ≤ y < r , the normal
cost e−δ(r−y) TPt+r−xm(y)dy will be payable. The present value of this normal
cost is

e−δ(r−y) TPt+r−xm(y)dy × e−δ(y−x) = e−δ(r−x) TPt+r−xm(y)dy.

Then (Pa)t , the actuarial present value of future normal costs for all active members
at time t , is given by

(Pa)t =
∫ r

a

e−δ(r−x) TPt+r−x

{∫ r

x

m(y)dy

}
dx

=
∫ r

a

e−δ(r−x)eτ(t+r−x) dwr−1n(r, t + r − x)āh
r

{∫ r

x

m(y)dy

}
dx

= dwr−1ā
h
r eτ t e−(δ−τ)r

∫ r

a

e−(τ−δ)xn(r, t + r − x)
{
1 − M(x)

}
dx,

where
∫ r

x
m(y)dy = 1 − M(x). In discrete setup, (Pa)t is given by

(Pa)t = dwr−1ā
h
r eτ t e−(δ−τ)r

r∑

x=a+1

e−(τ−δ)xn(r, t + r − x)
{
1 − M(x)

}
.



4.3 Accrued Benefit Cost Method for a Group 159

Suppose that n(r, t + r − x) = eR(t+r−x)lr , that is, the population is stable with
index R. Then (Pa)t simplifies as follows:

(Pa)t = dwr−1ā
h
r eτ t e−(δ−τ)r

r∑

x=a+1

e−(τ−δ)xeR(t+r−x)lr
{
1 − M(x)

}

= e(τ+R)t−(δ−τ−R)r dwr−1lr ā
h
r

r∑

x=a+1

e(δ−τ−R)x
(
1 − M(x)

)
.

We use the function (Pa)t to define contribution rate in the aggregate setup in the
next section.

As in the individual set up, here also we show that (Pa)t is related to (aV )t , the
actuarial liability at time t for active members and (aA)t = ∫ r

a
e−δ(r−x) TPt+r−x dx,

the actuarial present value of the future benefits for the active members. In the fol-
lowing we derive this relation:

(Pa)t =
∫ r

a

e−δ(r−x) TPt+r−x

{∫ r

x

m(y)dy

}
dx

=
∫ r

a

e−δ(r−x) TPt+r−x

{∫ r

x

dM(y)

}
dx

=
∫ r

a

e−δ(r−x) TPt+r−x

{
M(r) − M(x)

}
dx

=
∫ r

a

e−δ(r−x) TPt+r−x

{
1 − M(x)

}
dx

=
∫ r

a

e−δ(r−x) TPt+r−x dx −
∫ r

a

e−δ(r−x) TPt+r−xM(x)dx

= (aA)t − (aV )t .

Thus we get following two identities:

(Pa)t = (aA)t − (aV )t ⇔ (aV )t = (aA)t − (Pa)t .

The left-hand side of the second identity is the actuarial liability at time t for active
members and the right-hand side presents the actuarial present value of future ben-
efits for active members less the actuarial present value of the future normal costs.

The following example illustrates computation of normal cost Pt and actuarial
accrued liability (aV )t at three time points and for three types of population.

Example 4.3.4 Suppose that the retirement age is r = 65, the entry age is 25, and
the survival function is given by, S(x) = exp{−m(cx−25 − 1)}, x ≥ 25, where, m =
B/ loge C. Assume that B = 0.001, C = 1.098, and l0 = 1000. Suppose that h(x) =
eη(x−r), x ≥ r , η = 0.045, δ = 0.05, τ = 0.02, d = 0.12. Take R = 0.02, R = 0, and
R = −0.01.
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(i) Find Pt and (aV )t in the discrete setup for t = 10, 20, and 30 with m1(x) =
S(x)e−δx

∑r
a+1 S(y)e−δy dy

and m2(x) = S(x)e−δxwx−1e
τ(x−1)

∑r
a+1 S(y)e−δywy−1e

τ(y−1) with dwr−1 as the initial

annual benefit. The salary scale function is as in Table 3.3.
(ii) Find Pt when the initial annual benefit is Rs 300000/- for both accrual functions.

Solution For the given survival function and η, we have ä
η

65 = 10.6254 from Ex-
ample 4.3.2. Further, lr = 644.41 and wr−1 = 6.79. For the given survival function,
we compute m1(x) and m2(x) and the corresponding M1(x) and M2(x). If the ini-
tial annual pension benefit after retirement at 65 is Rs 300000/-, then the dwr−1 is
replaced by 300000. Hence, the normal cost is given by

Pt = 300000e(τ+R)t−(δ−τ−R)r lr ā
h
r

r∑

x=a+1

e(δ−τ−R)xm(x).

With these components we use the expressions of Pt and (aV )t to write the follow-
ing set of R commands to compute these functions:

a <- 1.098 #C;
b <- 0.001 #B;
m <- b/log(a, base=exp(1));
ad <- 10.6254;
e <- exp(1);
x <- 26:65;
p <- e^(m-m*a^(x-25)) #survival function S(x);
del <- 0.05; v <- e^(-del);
y1 <- p*v^x;
y2 <- sum(p*v^x);
y3 <- y1/y2 #m1(x);
w1 <- cumsum(y3) #M1(x);
tau <- 0.02;
u <- e^(tau);
z <- read.table("D:service.txt", header=T);
z1 <- z[, 2] #values of service function wx;
y4 <- p*v^x*z1*u^(x-1);
y5 <- sum(p*v^x*z1*u^(x-1));
y6 <- y4/y5 #m2(x);
w2 <- cumsum(y6) #M2(x);
d <- 0.12;
t <- c(10, 20, 30);
r <- 65;
lr <- 644.41;
r1 <- 0.02;
v1 <- e^(-(del-tau-r1));
b1 <- v1^r;
b2 <- sum(y3*v1^(-x));
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Table 4.9 Normal cost rate
with m1(x) t R = 0.02 R = 0 R = −0.014

10 6417.12 3228.29 2330.76

20 9573.22 3943.05 2575.89

30 14281.57 4816.05 2846.80

Table 4.10 Normal cost rate
with m2(x) t R = 0.02 R = 0 R = −0.014

10 6983.99 4173.52 3281.41

20 10418.88 5097.54 3626.52

30 15543.15 6226.15 4007.92

Table 4.11 Accrued
actuarial liability with m1(x) t R = 0.02 R = 0 R = −0.01

10 197952.80 124561.80 100136.50

20 295310.80 152140.10 110668.00

30 440552.00 185824.40 122307.00

b3 <- sum(y6*v1^(-x));
v2 <- e^(tau+r1);
p1 <- d*z1[40]*ad*lr*b1*b2*v2^t

#Pt corresponding to m1(x);
p2 <- d*z1[40]*ad*lr*b1*b3*v2^t

#Pt corresponding to m2(x);
w3 <- sum(w1*v1^(-x));
w4 <- d*z1[40]*ad*lr*b1*w3*v2^t

# (aV )t corresponding to m1(x);
w5 <- sum(w2*v1^(-x));
w6 <- d*z1[40]*ad*lr*b1*w5*v2^t

# (aV )t corresponding to m2(x);
p1; p2; w4; w6;

In the last 12 commands we change value of r1 to 0 to get objects p3 and p4 similar
to p1 and p2, respectively, for Pt and objects w7 and w8 similar to w4 and w6 for
(aV )t . Further, changing value of r1 to −0.01, we get the objects p5 and p6 similar
to p1 and p2, respectively, for Pt and objects w9 and w10 similar to w4 and w6
for (aV )t , using data.frame function. The values of Pt corresponding to m1(x)

and combined and are reported in Table 4.9, and those corresponding to m2(x) are
reported in Table 4.10.

The values of (aV )t corresponding to m1(x) are reported in Table 4.11, and those
corresponding to m2(x) are reported in Table 4.12.
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Table 4.12 Accrued
actuarial liability with m2(x) t R = 0.02 R = 0 R = −0.014

10 141549.30 93524.66 76842.47

20 211166.70 114231.28 84924.06

30 315023.70 139522.40 93855.61

Table 4.13 Normal cost with
initial benefit 300000 with
m1(x)

t R = 0.024 R = 0 R = −0.014

10 2362710247.00 1188620539.00 858159368.00

20 3524749500.00 1451784405.00 948412777.00

30 5258308357.00 1773213476.00 1048158219.00

Table 4.14 Normal cost with
initial benefit 300000 with
m2(x)

t R = 0.02 R = 0 R = −0.014

10 2571423240.00 1536640396.00 1208177301.00

20 3836112698.00 1876856818.00 1335242417.00

30 5722807666.00 2292398094.00 1475671088.00

With initial annual benefit Rs 300000/-, d*z1[40] in p1 and p2 will be re-
placed by 300000. Similar changes will be done in p3, p4, p5, and p6.

The normal costs, with initial annual benefit Rs 300000/-, corresponding to
m1(x), are reported in Table 4.13, and those corresponding to m2(x) are reported in
Table 4.14.

Pt is termed as the normal cost of the pension plan because it is the cost of
keeping the pension fund at the desired level. If the underlying mortality and interest
assumptions are satisfied, then the fund assets equal the accrued liability. Thus, the
normal cost represents the cost under normal circumstances. The normal cost is not
a proper reflection of the full cost of the plan except in this ideal setting. In real life
the actual experience is not exactly equal to the mortality, and interest assumptions
and hence the fund balance are not equal to the accrued liability. For example, the
plan may have experienced good fortune relative to assumptions over the years, and
then the assets in the fund may be in excess of the accrued liability. On the other
hand, the bad experience will produce an accrued liability in excess of the assets.
Therefore, although the central component of the pension cost is the normal cost,
there needs adjustment in the cost to allow for these variations from the ideal. In
other words, the normal cost is the expected value of the underlying random cost,
and the actual realization of the random variable will be scattered around this center.

In the following section we study a method to compute the normal cost which
takes into account the difference between the fund generated by the contributions
and the fund needed to meet the obligations. This method is known as the actuarial
cost method. In this method, the contribution rate is not determined on individual
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basis but on a collective basis, and it is a function of Pt , (Pa)t , and (aV )t defined
in this section.

4.4 Aggregate Actuarial Cost Method

The rate of contribution in aggregate or group actuarial cost method is defined in
terms of the following three functions. Let (aF )t denote the fund allocated to ac-
tive members at time t , (aC)t denote the contribution rate, and (aV )t denote the
accrued actuarial liability at time t with respect to active participants. Then (aU)t ,
the unfunded actuarial accrued liability at time t with respect to active participants,
is given by

(aU)t = (aV )t − (aF )t .

The unfunded actuarial accrued liability reflects the changes in the fund due to gains
or losses as a consequence of changes in assumed mortality or retirement pattern and
the rate of investment returns. In this approach some part of the unfunded actuar-
ial accrued liability is added to the normal cost rate. Suppose that the normal cost
rate Pt is determined by the accrued benefit cost methods, discussed in the previous
section. The contribution rate (aC)t in the aggregate actuarial cost method is ob-
tained by adding to the normal cost Pt some fraction of the unfunded liability and
is given by

(aC)t = Pt + λ(t)(aU)t ,

where λ(t) is a fraction and is known as the process of amortizing, that is, paying
off or paying back (aU)t . Thus, the contribution rate depends on the magnitude of
unfunded liability taking care of gains or losses resulting from the deviation from
underlying assumptions. It is to be noted that with λ(t) = 0, the contribution rate in
this approach is the same as the normal cost rate in the accrued benefit cost method.

As an illustration, suppose that λ(t) is given by

λ(t) = Pt

(Pa)t
,

where (Pa)t is the actuarial present value of future normal costs. Thus, λ(t) =
Pt

(Pa)t
represents the part of the actuarial present value of the future normal costs

recognized by the normal cost at time t . With this amortization process, (aC)t =
Pt + Pt

(Pa)t
(aU)t . The addition to the normal cost is interpreted as follows. If the

actuarial present value of future normal costs, (Pa)t , corresponds to the unfunded
liability (aU)t , then a fraction of it given by Pt

(Pa)t
(aU)t corresponds to the normal

cost at time t . So to find the contribution rate at time t which takes into account the
unfunded liability, we have to add Pt (aU)t

(Pa)t
to the normal cost Pt .

Suppose that (Pa)t = k(t)Pt . We know that (Pa)t is the actuarial present value
of the future normal costs and Pt is the normal cost at t . The constant k(t) can then
be interpreted as the actuarial present value of unit temporary annuity such that this
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temporary annuity, from t to the time of retirement, with a level income rate Pt is
equal to the actuarial present value of the future normal costs (Pa)t for the active
members at time t . Hence the constant k(t) is denoted by āPt . It is to be noted that
the annuity function notation “a” is used because the nature of k(t) is similar to
that of annuity function. The suffix Pt is used to indicate its relation to Pt . Thus the
amortization process is given by

λ(t) = 1

āPt

, where āPt = (Pa)t

Pt

.

āPt in terms of all basic functions is given by

āPt = (Pa)t

Pt

= dwr−1ā
h
r eτ t e−(δ−τ)r

∫ r

a
e−(τ−δ)xn(r, t + r − x){1 − M(x)}dx

eτt dwr−1āh
r e−(δ−τ)r

∫ r

a
e−(τ−δ)xn(r, t + r − x)m(x)dx

=
∫ r

a
e−(τ−δ)xn(r, t + r − x){1 − M(x)}dx
∫ r

a
e−(τ−δ)xn(r, t + r − x)m(x)dx

.

In discrete setup with n(x, t) = eRt lx , we have derived that

(Pa)t = e(τ+R)t−(δ−τ−R)r dwr−1lr ā
h
r

r∑

x=a+1

e(δ−τ−R)x
(
1 − M(x)

)

and

Pt = e(τ+R)t−(δ−τ−R)r dwr−1lr ā
h
r

r∑

x=a+1

e(δ−τ−R)xm(x).

Hence, in this setup,

āPt = (Pa)t

Pt

=
∑r

x=a+1 e(δ−τ−R)x(1 − M(x))
∑r

x=a+1 e(δ−τ−R)xm(x)
.

It is to be noted that for the stable population, āPt is free from t . We use this expres-
sion to compute āPt for stationary and stable populations at various time points in
the following example for two accrual functions.

Example 4.4.1 Suppose that the retirement age is r = 65, the entry age is a =
25, and the survival function is given by S(x) = exp{−m(cx−25 − 1)}, x ≥ 25,
where m = B/ loge C. Assume that B = 0.001 and C = 1.098. Suppose that
δ = 0.05 and τ = 0.02. Suppose that R = 0.02, R = 0, and R = −0.01. Find āPt

and λ(t) = 1/āPt in the discrete setup with m1(x) = S(x)e−δx
∑r

a+1 S(y)e−δy and m2(x) =
S(x)e−δxwx−1e

τ(x−1)
∑r

a+1 S(y)e−δywy−1e
τ(y−1) .
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Solution To compute āPt , we need to find M(x) for each x. We compute it as
M(x) =∑x

y=a+1 m(y). The following is a set of R commands to find the values
of āPt and hence of λ(t);

a <- 1.098 #C;
b <- 0.001 #B;
m <- b/log(a, base=exp(1));
e <- exp(1);
x <- 26:65;
p <- e^(m-m*a^(x-25)) #survival function S(x);
del <- 0.05;
v <- e^(-del);
z <- read.table("D:service.txt", header=T);
z1 <- z[, 2] #values of service function wx;
y1 <- p*v^x;
y2 <- sum(p*v^x);
y3 <- y1/y2 #m1(x);
y4 <- cumsum(y3) #M1(x);
tau <- 0.02;
u <- e^(tau);
y5 <- p*v^x*z1*u^(x-1);
y6 <- sum(p*v^x*z1*u^(x-1));
y7 <- y5/y6 #m2(x);
y8 <- cumsum(y7) #M2(x);
r <- c(0.02, 0, -0.01);
v1 <- e^(del-tau-r[1]);
y9 <- sum(v1^x*(1-y4))/sum(v1^x*y3);
y10 <- sum(v1^x*(1-y8))/sum(v1^x*y7);
y9; y10;

Changing r[1] in object v1 to r[2] and r[3], we get āPt corresponding to m1(x)

and m2(x) for R = 0 and R = −0.01. The values of āPt and λ(t) corresponding to
m1(x) are reported in Table 4.15, and those corresponding to m2(x) are reported in
Table 4.16.

From Table 4.15 we note that 8.24 % of unfunded liability is added to the normal
cast for a stable population with R = 0.02. It is to be noted that the amortization val-
ues for m1(x) are larger than those for m2(x) for all the three types of populations.
Further, for both the accrual functions, these decrease as R increases. For R > 0, the
population size is larger than that for R = 0, so the proportion of unfunded liability
is less for R > 0 as compared to R = 0.

With the amortization process λ(t) = 1
āPt

, the contribution rate (aC)t is given by

(aC)t = Pt + λ(t)(aU)t

= Pt + (aV )t − (aF )t

āPt
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Table 4.15 Amortization
values with m1(x) R āPt λ(t)

0.02 12.12567 0.0824697

0 11.32447 0.0883044

−0.01 10.88211 0.0918939

Table 4.16 Amortization
values with m2(x) R āPt λ(t)

0.02 19.21759 0.0520357

0 16.19638 0.0617422

−0.01 14.82828 0.0674387

= (Pa)t + (aV )t − (aF )t

āPt

= (aA)t − (aF )t

āPt

.

This expression of (aC)t rewritten as (aC)t āPt = (aA)t − (aF )t is interpreted as
follows. A temporary annuity at the rate of (aC)t is equivalent to the actuarial
present value of future benefits for active members less the fund allocated for them.

The amortization process λ(t) = 1
āPt

has an interesting property that for large t ,
the allocated fund (aF )t converges to the actuarial present value of the liability
(aV )t , that is, (aU)t converges to 0, and, as a consequence, for large t , (aC)t is
close to Pt . We prove the result in following example.

Example 4.4.2 Prove that for the amortization process λ(t) = 1
āPt

, for large t , (aF )t

converges to (aV )t , provided that āPu < āP∞ = 1/δ for 0 < u < t .

Solution The progress of the fund (aF )u for the active members at time u is gov-
erned by two sources of income, contributions and the interest earned, while the
fund decreases by the transfer of the terminal funding cost to a fund for retired
members. Mathematically, the progress of the fund is described by the differential
equation

d

du
(aF )u = (aC)u + δ(aF )u − TPu = Pu + (aU)u

āPu

+ δ(aF )u − TPu.

We have derived in Example 4.3.3 that d
du

(aV )u = Pu +δ(aV )u −TPu. Thus, differ-
entiating both sides of the equation (aU)u = (aV )u − (aF )u with respect to u gives
the rate of change of the unfunded actuarial accrued liability as in the following



4.4 Aggregate Actuarial Cost Method 167

differential equation:

d

du
(aU)u = d

du
(aV )u − d

du
(aF )u = − (aU)u

āPu

+ δ(aU)u = −(aU)u

(
1

āPu

− δ

)
.

To solve this differential equation, we integrate with respect to u from 0 to t and get

(aU)t = (aU)0e
− ∫ t

0 ( 1
āPu

−δ) du ⇔
(aF )t = (aV )t − [(aV )0 − (aF )0

]
e
− ∫ t

0 ( 1
āPu

−δ) du
.

If āPu < āP∞ = 1/δ for 0 < u < t , then as t → ∞, the factor e
− ∫ t

0 ( 1
āPu

−δ) du → 0.
Consequently, (aF )t → (aV )t as t → ∞, and the result is proved.

It is to be noted that the accrual function is implicitly involved in computation
of contribution rate in aggregate actuarial cost method, via Pt and (aV )t . Different
accrual functions produce a different pattern of contributions and a different ultimate
fund. Thus, while referring to an aggregate actuarial cost method, it is necessary to
specify the accrual function used to find Pt and (aV )t . The aggregate method with
entry-age accrual function, proportional to the salary scale, is particularly important
in practice. In the following example we obtain the expression for āPt if the accrual
function m(x) is as defined in the entry-age normal actuarial cost method and is
given by

m(x) = S(x)e−δxeτxwx∫ r

a
S(y)e−δyeτywy dy

.

Example 4.4.3 Suppose that the accrual function m(x) is given by

m(x) = S(x)e−δxeτxwx∫ r

a
S(y)e−δyeτywy dy

.

(i) Find āPt .
(ii) Show that āPt = āWt , where āWt = (Wa)t

Wt
. The function Wt , the total payment

rate at time t , is as defined Sect. 4.3, and (Wa)t is defined as

(Wa)t =
∫ r

a

n(x, t)

{∫ r

x

e−δ(y−x)eτ(t+y−x) S(y)

S(x)
wy dy

}
dx.

Solution (i) Substituting the expression for m(x) into the formula for āPt , we get

āPt = (Pa)t

Pt

=
∫ r

a
e−(τ−δ)xn(r, t + r − x){1 − M(x)}dx
∫ r

a
e−(τ−δ)xn(r, t + r − x)m(x)dx
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=
∫ r

a
e−δ(r−x)+τ(r−x)n(r, t + r − x){∫ r

x
e−(δ−τ)yS(y)wy dy}dx

∫ r

a
e−δ(r−x)+τ(r−x)n(r, t + r − x)e−δx+τxS(x)wx dx

=
∫ r

a
e−(τ−δ)xn(r, t + r − x){∫ r

x
e−(δ−τ)yS(y)wy dy}dx

∫ r

a
n(r, t + r − x)S(x)wx dx

.

(ii) We rewrite āPt to show that āPt = āWt . We use the fact that

n(x, t) r−xpx = n(r, t + r − x) ⇔ S(r)n(x, t) = n(r, t + r − x)S(x).

With this change, the last step in the derivation of āPt can be rewritten as follows:

āPt =
∫ r

a
e−(τ−δ)xn(x, t)S(r)/S(x){∫ r

x
e−(δ−τ)yS(y)wy dy}dx

∫ r

a
n(x, t)S(r)wx dx

=
∫ r

a
n(x, t){∫ r

x
e−δ(y−x)eτ(y−x) S(y)

S(x)
wy dy}dx

∫ r

a
n(x, t)wx dx

=
∫ r

a
n(x, t){∫ r

x
e−δ(y−x)eτ(t+y−x) S(y)

S(x)
wy dy}dx

∫ r

a
n(x, t)eτ twx dx

= (Wa)t

Wt

,

where the function Wt , the total payment rate at time t , is as defined Sect. 4.3, and
(Wa)t is defined as (Wa)t = ∫ r

a
n(x, t){∫ r

x
e−δ(y−x)eτ(t+y−x) S(y)

S(x)
wy dy}dx. Thus,

for the entry-age normal actuarial cost method, āPt = āWt .
To interpret āWt , we rewrite (Wa)t as follows:

(Wa)t =
∫ r

a

n(x, t)

{∫ r

x

e−δ(y−x)eτ(t+y−x) S(y)

S(x)
wy dy

}
dx

=
∫ r

a

n(x, t)

{∫ r

x

e−δ(y−x)
y−xpxe

τ(t+y−x)wy dy

}
dx.

Suppose that the individual of age x at time t survives to age y > x, at time t +y−x,
with probability y−xpx ; then the rate of salary is wye

τ(t+y−x), and multiplying it by
e−δ(y−x) gives the actuarial present value of the salary rate at age x at time t . Thus,
the inner integral of (Wa)t represents the actuarial present value of future wages
at age x of the individual of age y > x; summing over all ages y > x gives the
actuarial present value at time t of the future wages till the time of retirement. With
these functions (Wa)t and Wt , a function āWt defined as

āWt = (Wa)t

Wt

is interpreted as an average annuity value for the future wages of the active lives. It
is to be noted that āWt is an average annuity value for the future wages of the active
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lives, while āPt is an average annuity value for the future normal costs of the active
lives. In practice, the amortization process defined as λ(t) = 1/āWt = Wt/(Wa)t is
commonly used.

The main aim of any funding method is to find the amount of contribution rate
at time t . In the following we find the expression for (aC)t in terms of basic func-
tions and corresponding to specified amortization process. The contribution rate is
given by (aC)t = Pt + λ(t)(aU)t . To find (aC)t , we must know (aU)t . As in Ex-
ample 4.4.2, it can be shown that

d

du
(aU)u = −λ(u)(aU)u + δ(aU)u = −(aU)u

(
λ(u) − δ

)

⇔ (aU)t = (aU)0e
− ∫ t

0 (λ(u)−δ) du,

where (aU)0 = (aV )0 − (aF )0. Thus the contribution rate (aC)t in terms of fund at
time 0, the actuarial present value of future liability at time 0, and the amortization
process is given by

(aC)t = Pt + λ(t)
[
(aV )0 − (aF )0

]
e− ∫ t

0 (λ(u)−δ) du.

We have proved that if n(x, t) = eRt lx , then λ(t) = 1/āPt is free from t . We denote
it by λ. Then, in this case, the contribution rate (aC)t is given by

(aC)t = Pt + λ
[
(aV )0 − (aF )0

]
e−(λ−δ)t .

In the following example we find the contribution rate for the discrete setup of
Example 4.4.1.

Example 4.4.4 Suppose that the retirement age is r = 65, the entry age is a = 25,
and the survival function is given by S(x) = exp{−m(cx−25 − 1)}, x ≥ 25, where,
m = B/ loge C. Assume that B = 0.001, C = 1.098, and l0 = 1000. Suppose that
R = 0.02, R = 0, and R = −0.01.

(i) Find (aC)t with amortization process λ(t) = 1/āPt in the discrete setup for t =
10, 20 and 30, with m1(x) = S(x)e−δx

∑r
a+1 S(y)e−δy and m2(x) = S(x)e−δxwx−1e

τ(x−1)
∑r

a+1 S(y)e−δywy−1e
τ(y−1) .

Assume that (aU)0 = 10000.
(ii) Also find the contribution to Pt to compensate for unfunded liability.

Solution For the given setup, we have computed the values of Pt in Example 4.3.4
and of λ(t) = λ = 1/āPt in Example 4.4.1. Suppose that the values of Pt corre-
sponding to m1(x) as computed in Example 4.3.4 are stored in file pt1.txt and
the values of Pt corresponding to m2(x) are stored in file pt2.txt. Further, sup-
pose that the values of λ(t) = 1/āPt = λ corresponding to m1(x) as computed in
Example 4.4.1 are stored in object u1 for R = 0.02, R = 0, and R = −0.01, and
those corresponding to m2(x) are stored in object u2. We use these values to find
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Table 4.17 Contribution rate
for m1(x) t R = 0.02 R = 0 R = −0.01

10 7013.17 3830.34 2935.19

20 10004.01 4353.51 2973.45

30 14592.92 5095.90 3108.29

Table 4.18 Contribution rate
for m2(x) t R = 0.02 R = 0 R = −0.014

10 7493.86 4722.53 3847.88

20 10918.48 5585.74 4102.33

30 16032.68 6660.26 4407.60

the values of (aC)t . In this setup, (aC)t is given by

(aC)t = Pt + λ(aU)0e
−(λ−δ)t .

The following set of R commands compute (aC)t for specified values of t and R.
The values of (aC)t corresponding to m1(x) are reported in Table 4.17, and those
corresponding to m2(x) are reported in Table 4.18.

z1 <- read.table("D:pt1.txt");
u1 <- c(0.0824697, 0.0883044, 0.0918939);
z2 <- read.table("D:pt2.txt");
u2 <- c(0.0520357, 0.0617422, 0.0674387);
t <- c(10, 20, 30);
u0 <- 10000;
del <- 0.05;
e <- exp(1); y1 <- z1[, 1]+u1[1]*u0*e^((del-u1[1])*t);
y2 <- z1[, 2]+u1[2]*u0*e^((del-u1[2])*t);
y3 <- z1[, 3]+u1[3]*u0*e^((del-u1[3])*t);
y4 <- data.frame(t, y1, y2, y3);
y4 #Table 4.17;
y5 <- z2[, 1]+u2[1]*u0*e^((del-u2[1])*t);
y6 <- z2[, 2]+u2[2]*u0*e^((del-u2[2])*t);
y7 <- z2[, 3]+u2[3]*u0*e^((del-u2[3])*t);
y8 <- data.frame(t, y5, y6, y7);
y8 #Table 4.18;
y9 <- data.frame(y1, y2, y3);
y10 <- y9-z1;
y10 #Table 4.19;
y11 <- data.frame(y5, y6, y7);
y12 <- y11-z2;
y12 #Table 4.20;
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Table 4.19 Compensation
for unfunded liability
for m1(x)

t R = 0.02 R = 0 R = −0.01

10 596.05 602.04 604.43

20 430.79 410.46 397.56

30 311.35 279.85 261.49

Table 4.20 Compensation
for unfunded liability
for m2(x)

t R = 0.02 R = 0 R = −0.01

10 509.87 549.02 566.47

20 499.60 488.19 475.82

30 489.53 434.11 399.67

From Tables 4.17 and 4.18 we note that the rate of contribution corresponding
to m2(x) is higher than that for m1(x). These increase as time t increases in all the
cases.

Compensation for the unfunded liability, for three values of t and three types of
population, is obtained just by subtracting elements of z1 from the corresponding
entries in Table 4.17 for the accrual function m1(x), and similarly, by subtracting
elements of z2 from the corresponding entries in Table 4.18 for the accrual function
m2(x). These values are reported in Tables 4.19 and 4.20.

From Tables 4.19 and 4.20 it is to be noted that, as t increases, the compensation
for unfunded liability decreases for all the three values of R, supporting the result
in Example 4.4.2.

4.5 Exercises

4.1 For the accrual function m(x) = 1
r−a

, a ≤ x ≤ r , find the normal constant rate
P(x) and the accrued actuarial liability (aV )(x).

4.2 Suppose that the retirement age is r = 65, the entry age is 25, and the sur-
vival function is given by S(x) = exp{−Ax − m(cx−25 − 1)}, x ≥ 25, where
m = B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. Suppose that
h(x) = eη(x−r), η = 0.05, δ = 0.06.

(i) Find ä
η
65 corresponding to the given survival function.

(ii) Using it, find P(x) in the discrete setup when the accrual function m1(x) =
vxS(x)∑r

y=a+1 vyS(y)
, x = a + 1, . . . , r .

(iii) Find the normal cost per annum if the initial pension benefit is Rs 250000/-.
(iv) Also find the corresponding (aV )(x).

4.3 Suppose that the retirement age is r = 65, the entry age is 25, and the sur-
vival function is given by S(x) = exp{−Ax − m(cx−25 − 1)}, x ≥ 25, where
m = B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. Suppose
that h(x) = eη(x−r), η = 0.05, δ = 0.06. Suppose that the accrual function is
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m2(x) = vxS(x)wx−1e
τ(x−1)

∑r
y=a+1 vyS(y)wy−1e

τ(y−1) , x = a + 1, . . . , r , where the salary rate func-

tion wx is as given in column 7 of Table 3.3 in Chap. 3, and τ = 0.02.
(i) Find ä

η
65 corresponding to the given survival function.

In the discrete setup, find the constant k, as defined in Example 4.2.4, the nor-
mal cost P(x). and (aV )(x) if the initial annual pension benefit is Rs 250000/-.

4.4 Prove that (aV )(x) = (aA)(x)M(x) = (aA)(x) − (Pa)(x) if the accrual func-
tion m(x) is proportional to = S(x)e−δx .

4.5 Suppose that the retirement age is r = 65, the entry age is 25, and the survival
function is given by, S(x) = exp{−Ax − m(cx−25 − 1)}, x ≥ 25, where m =
B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. The salary rate
function is as given in column 7 of Table 3.3 in Chap. 3. Suppose that h(x) =
eη(x−r), η = 0.05, τ = 0.02, δ = 0.06.

(i) Find ä
η
65 corresponding to the given survival function.

(ii) Find TPt = dwr−1lr e
(τ+R)t ä

η
r for t = 10, 20, and 30 when d = 0.12 and

R = −0.01, 0, and 0.02.
(iii) Find TPt for t = 10, 20 and 30 and R = −0.01,0 and 0.02, when initial

annual pension benefit is Rs 250000/-.
(iv) Interpret the results.

4.6 Suppose that the retirement age is r = 65, the entry age is 25, and the survival
function is given by S(x) = exp{−Ax − m(cx−25 − 1)}, x ≥ 25, where, m =
B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. Suppose that l0 =
1000. Suppose that h(x) = eη(x−r), η = 0.045, δ = 0.05, τ = 0.02, d = 0.12.
Take R = 0.02, R = 0, and R = −0.01. It is given that ä

η
65 = 10.6254.

(i) Find Pt and (aV )t in the discrete setup for t = 10, 20, and 30 with

m1(x) = S(x)e−δx
∑r

a+1 S(y)e−δy dy
and m2(x) = S(x)e−δxwx−1e

τ(x−1)
∑r

a+1 S(y)e−δywy−1e
τ(y−1) with dwr−1

as the initial annual benefit. The salary scale function is as in Table 3.3.
(ii) Find Pt when the initial annual benefit is Rs 300000/- for both accrual

functions.
4.7 Suppose that the retirement age is r = 65, the entry age is a = 25, and the

survival function is S(x) = exp{−Ax − m(cx−25 − 1)}, x ≥ 25, where m =
B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. Suppose that δ =
0.05, τ = 0.02, and l0 = 1000. Suppose that R = 0.02, R = 0, and R = −0.01.

Find āPt and λ(t) = 1/āPt in the discrete setup with m1(x) = S(x)e−δx
∑r

a+1 S(y)e−δy

and m2(x) = S(x)e−δxwx−1e
τ(x−1)

∑r
a+1 S(y)e−δywy−1e

τ(y−1) .

4.8 Suppose that the retirement age is r = 65, the entry age is a = 25, and the
survival function is given by S(x) = exp{−Ax −m(cx−25 − 1)}, x ≥ 25, where
m = B/ loge C. Assume that A = 0.0007, B = 0.001, C = 1.098. Suppose that
R = 0.02, R = 0, and R = −0.01.
(i) Find (aC)t with amortization process λ(t) = 1/āPt in the discrete setup

for t = 10, 20, and 30 with m1(x) = S(x)e−δx
∑r

a+1 S(y)e−δy and m2(x) =
S(x)e−δxwx−1e

τ(x−1)
∑r

a+1 S(y)e−δywy−1e
τ(y−1) . Assume that (aU)0 = 10000.

(ii) Also find the contribution to Pt to compensate for unfunded liability.



Chapter 5
Multi-state Transition Models for Cash Flows

5.1 Introduction

In first four chapters we have utilized the power of probability models to analyze sit-
uations involving risk, particularly to find premiums and reserves in multiple decre-
ment models and to find the cost of pension plan. All these probability models in-
volve transition from one state to another. For example, in a single decrement model,
(x) is in one of the two states, (i) alive or (ii) dead. The only possible transition is
from state alive to dead. We use the probability distribution of T (x) or K(x) to
model the time of transition from state alive to dead. In multiple decrement model
with m causes of decrement, there are m + 1 states for transition. We denote the
state being alive as state 0 and decrement due to cause j as state j , j = 1,2, . . . ,m.
Then multiple decrement model describes the probabilities of transition from state 0
to state j at various time points. In this setup, transitions from j to 0 or transitions
between any two states i and j , i 
= j = 1,2, . . . ,m, are not possible. In multiple
life models, commonly studied statuses are the joint life status or last survivor sta-
tus. In this case, (x) and (y) are in one of the following four states: (i) both alive,
(ii) (x) is alive, but (y) is dead, (iii) (y) is alive, but (x) is dead, and (iv) both (x)

and (y) are dead. Multiple life models describe the probabilities of moving among
these states at various points in time.

All the three multi-state models described above share a common characteristic:
once the person leaves a state, he/she cannot return to that state. There are many
instances in health insurance, disability income insurance, and vehicle insurance
where the members move back and forth among states and may return to states
they have previously left. For example, in disability income insurance, while mod-
eling workers’ eligibility for various employee benefits, the states considered are
(i) active, (ii) temporarily disabled, (iii) permanently disabled, and (iv) inactive,
which may include retirement, death, or withdrawal; these can be defined as sepa-
rate states. We will discuss a model to describe the probabilities of moving among
these various states, including the possibility of moving back and forth between ac-
tive and temporarily disabled states several times. In vehicle insurance, in modeling
insured automobile drivers’ ratings by the insurer, the states considered are (i) pre-
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ferred, (ii) standard, and (iii) substandard. Thus, these states describe the insured’s
driving record. Models are needed to describe the probabilities of transitions among
these states. Sometimes a state “gone” is considered to describe that the member is
no longer insured. In health insurance, in long-term care, a commonly used model
is continuing care retirement communities (CCRC) model. In this model, residents
may move among various states such as (i) independent living, (ii) temporarily in
health center, (iii) permanently in health center, and (iv) gone.

In insurance it is of interest to see the financial impact of these transitions. Mul-
tiple state model has proved to be an appropriate model for an insurance policy in
which the payment of benefits or premiums depends on being in a given state or
moving between a given pair of states at a given time. In the simplest setup of sin-
gle decrement model, the whole life insurance policy is issued to (x) when he is in
state (i), that is, alive, premiums are payable while the insured is in state (i), and the
death benefit is payable upon transition to state (ii), that is, dead. For a life annuity
with single premium, single premium is paid when the contract is issued to an indi-
vidual when he is in state (i). Benefits are then payable until transition to state (ii).
Premiums are decided using the distribution of T (x) or K(x) and the force of inter-
est. We now introduce the model for transitions among various states, when transi-
tions among all states are possible, and see how these models are useful to study the
cash flows associated with these transitions. Single and multiple decrement models
are the particular cases of this general model. The most frequently used multi-state
transition model is the Markov process in continuous time or Markov chain in dis-
crete time. These stochastic processes are discussed in detail in statistics literature
and are applied in a variety of areas. In the next section we introduce a simple model
of Markov chain to describe the probabilities of transitions among states.

5.2 Markov Chain

Let {Xn,n ≥ 0} be a Markov chain with finite state space S = {1,2, . . . ,m}, Xn de-
noting the state of the system at time n. It satisfies the Markov property given by

P [Xn+1 =xn+1|Xn = xn,Xn−1 =xn−1, . . . ,X0 = x0] = P [Xn+1 =xn+1|Xn =xn],
provided that the conditional probabilities are defined. The Markov property is usu-
ally described as “history independence,” meaning that the probability distribution
of the state of the system at time n + 1 may depend on the state at time n but does
not depend on the states at times prior to n. Each Xn is a discrete random variable
with set S as the set of possible values. In view of the Markov property,

P [Xn+1 =xn+1|Xn =xn,Xn−1 =xn−1, . . . ,X0 =x0] = P [Xn+1 = xn+1|Xn = xn],
the joint probabilities related to the Markov chain can be expressed in terms of the
conditional distribution of Xn+1 given Xn = xn. We denote the conditional proba-
bility P [Xn+1 = j |Xn = i] by Q

(i,j)
n . Thus,

Q
(i,j)
n = P [Xn+1 = j |Xn = i]
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is the probability of transition from state i at time n to state j at time n + 1. This
probability is referred to as one-step transition probability. When it depends on n,
we say that the Markov chain is nonhomogeneous, and when it is free from n, then
the Markov chain is known as homogeneous. For a finite state space Markov chain,
transition probabilities are always presented in a matrix notation as follows. Let
Qn = Q

(i,j)
n denote the matrix of transition probabilities from state i at time n to

state j at n + 1, Q
(i,j)
n being the (i, j)th element of Qn. Thus, with state space

consisting of four elements, Qn is a 4 × 4 matrix given by

Qn =

⎛

⎜⎜⎜
⎝

1 2 3 4

1 Q
(1,1)
n Q

(1,2)
n Q

(1,3)
n Q

(1,4)
n

2 Q
(2,1)
n Q

(2,2)
n Q

(2,3)
n Q

(2,4)
n

3 Q
(3,1)
n Q

(3,2)
n Q

(3,3)
n Q

(3,4)
n

4 Q
(4,1)
n Q

(4,2)
n Q

(4,3)
n Q

(4,4)
n

⎞

⎟⎟⎟
⎠

.

Qn is known as a transition probability matrix. For a single decrement model,
suppose that an individual is of age x at time n = 0. Further, suppose that 0 denotes
the state that (x) is alive and 1 denotes state that (x) is dead. Then the transition
probability matrix Qn is given by

Qn =
(

0 1

0 px+n qx+n

1 0 1

)
,

where in usual notation, px+n denotes the probability that (x + n) survives for 1
year, and qx+n denotes the probability that (x + n) dies in the next year.

For a multiple decrement model with m decrements, suppose that 0 denotes the
state that (x) is alive, and j denotes the state that decrement occurs due to cause j ,
j = 1,2, . . . ,m. Then the transition matrix Qn can be specified in terms of its ele-
ments as

Q(0,0)
n = p

(τ)
x+n, Q

(0,j)
n = q

(j)
x+n, Q

(j,j)
n = 1, and

Q
(i,j)
n = 0, i 
= j, i, j = 1,2, . . . ,m.

For a multiple life model with group of two individuals (x) and (y), with ages x

and y at time n = 0, suppose that 1 denotes the state that both (x) and (y) are alive,
2 denotes the state that (x) is alive and (y) is dead, 3 denotes the state that (x) is
dead and (y) is alive, and 4 denotes the state that both (x) and (y) are dead. Then
transition probability matrix Qn is given by

Qn =

⎛

⎜⎜
⎝

1 2 3 4

1 px+npy+n px+nqy+n qx+npy+n qx+nqy+n

2 0 px+n 0 qx+n

3 0 0 py+n qy+n

4 0 0 0 1

⎞

⎟⎟
⎠.
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For disability income insurance, suppose that 1 denotes the state that the employee
is active, 2 denotes the state that the employee is temporarily disabled, 3 denotes
the state that the employee is permanently disabled, and 4 denotes the state that the
employee is inactive. Then,

Q(3,1)
n = Q(3,2)

n = 0, Q(4,4)
n = 1 and Q

(4,j)
n = 0 for j = 1,2,3,

and other transition probabilities are obtained from observing the group of employ-
ees over a period and using statistical inference procedures to estimate the transition
probabilities.

According to international actuarial notation, q denotes the failure probabilities,
while p denotes the so-called success probabilities. Analogously, Q

(i,i)
n is some-

times denoted by P
(i)
n , which is a “success probability” of remaining in state i at the

next time period n + 1.
The transition probability matrix provides the information about the probabil-

ity distribution of the state, one step in future from the given state. In practice we
need to know transition probabilities for longer time periods; for example, in a sin-
gle decrement model we need to know kpx+n and kqx+n. For a nonhomogeneous
Markov chain, the k-step transition probability, denoted kQ

(i,j)
n , k ≥ 1, is defined as

kQ
(i,j)
n = P [Xn+k = j |Xn = i].

Thus, kQ
(i,j)
n denotes the conditional probability that the member is in state j after

k time periods given that he is in state i at time n. It is to be noted that it is not the
probability of reaching state j from state i in exactly k steps, the member may be in
state j before, may have left it and returned again to j . The matrix kQn is used to
define the corresponding m×m matrix, with kQ

(i,j)
n being the (i, j)th element. It is

known that kpx+n = px+npx+n+1 · · ·px+n+k−1. On similar lines it follows that

kQn = Qn × Qn+1 × Qn+2 × · · · × Qn+k−1, k ≥ 1, and 0Qn = I,

where I is the identity matrix. Further, the probability that the member in state i at
time n and remains in i for next k time periods is also given by

kP
(i)
n = P (i)

n P
(i)
n+1P

(i)
n+2 · · ·P (i)

n+k−1.

For a homogeneous Markov chain, Qn does not depend on n, so we denote it by Q;
then for the homogeneous Markov chain,the k-step transition probability matrix is
given by

kQn = kQ = Qk, k ≥ 1, 0Qn = I, and kP
(i)
n = kP

(i) = (P (i)
)k

.

The following examples illustrate the role of Markov models in insurance context.
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Example 5.2.1 In autoinsurance, a Markov model is used for transitions among the
status of drivers. Suppose that the insured drivers are classified in two classes, pre-
ferred and standard, at the end of each year. Each year 70 % of preferred are re-
classified as preferred and 30 % as standard. 80 % of standard are reclassified as
standard and 20 % as preferred. Find the probability that

(i) the driver known to be classified as standard at the start of the year, will be
classified as standard at the start of the third year,

(ii) the driver is classified as standard at the start of the fourth year, given that he is
in preferred state at the start of the second year,

(iii) the driver known to be classified as standard at the start of the year will be
classified as preferred at the start of the fourth year.

Solution Suppose that the preferred state is denoted by 1 and standard by 2. Since
the transition probabilities do not depend on the time of transition, we model the
two-state transition model as a homogeneous Markov chain with the transition prob-
ability matrix Q, given by

Q =
(

1 2

1 0.7 0.3
2 0.2 0.8

)
.

We want to find (i) P [X3 = 2|X1 = 2] = 2Q
(2,2) and (ii) P [X4 = 2|X2 = 1] =

2Q
(1,2). We find Q2 and hence the required transition probabilities. For (iii), we

wish to find P [X4 = 1|X1 = 2] = 3Q
(2,1). So we compute Q3. The following R

commands compute Q2 and Q3:

m <- matrix(c(0.7, 0.3, 0.2, 0.8), nrow=2, ncol=2,
byrow=TRUE) #Q;

m1 <- m%*%m #Q2;
m2 <- m1%*%m #Q3;
m1; m2;

We get

Q2 =
(

1 2

1 0.55 0.45
2 0.30 0.70

)
and Q3 =

(
1 2

1 0.475 0.525
2 0.350 0.650

)
.

Hence, (i) 2Q
(2,2) = 0.70, (ii) 2Q

(1,2) = 0.45, and (iii) 3Q
(2,1) = 0.35.

Example 5.2.2 Suppose that the autoinsurer classifies its policyholders according
to preferred (1) and standard (2) status, starting at time 0 at the start of the first
year when they are first insured, with reclassifications occurring at the start of each
annual renewal of policy. The transition probability matrix Qn, n ≥ 0, of the corre-
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sponding nonhomogeneous Markov chain is given by

Qn =
(

1 2

1 0.6 0.4
2 0.3 0.7

)
+
(

1

n + 1

) (
1 2

1 0.15 −0.15
2 −0.20 0.20

)
.

(i) Given that the insured is in state 1 at the start of the first year, find the probability
that the insured is in state 1 at the start of the third year.

(ii) Find the probability that the insured who is in state 1 at the start of the first year
transits to state 2 at the start of the fourth year.

Solution We want to find (i) P [X2 = 1|X0 = 1] = 2Q
(1,1)
0 and (ii) P [X3 = 2|X0 =

1] = 3Q
(1,2)
0 . The Markov chain is nonhomogeneous; hence, 2Q0 = Q0 × Q1 and

3Q0 = Q0 × Q1 × Q2. We have

Q0 =
(

1 2

1 0.75 0.25
2 0.10 0.90

)
, Q1 =

(
1 2

1 0.675 0.325
2 0.200 0.800

)
and

Q2 =
(

1 2

1 0.650 0.350
2 0.233 0.767

)
.

Hence, using matrix multiplication, we get

2Q0 =
(

1 2

1 0.55625 0.44375
2 0.24750 0.75250

)
and 3Q0 =

(
1 2

1 0.4649562 0.5350438
2 0.3362075 0.6637925

)
.

Hence we have (i) 2Q
(1,1)
0 = 0.55625 and (ii) 3Q

(1,2)
0 = 0.5350438.

We can express the higher step transition probability in terms of product of in-
termediate step transition probabilities. It essentially follows from the well-known
Chapman–Kolmogorov equations in the theory of Markov chains. We discuss a par-
ticular expression of higher step transition probability which will be used heavily in
the next section to compute the actuarial present values of cash flows. Suppose the
member is in state s at time n. The probability that the member is in state i at time
n + k is then kQ

(s,i)
n . The probability of transition from i to j in the next step is

then Q
(i,j)
n+k . Then the product kQ

(s,i)
n Q

(i,j)
n+k is the probability that the member is in

state i at time n + k and in j at time n + k + 1, given that the member was in state s

at time n. Summing over all possible intermediate states i, we get the probability of
transition from state s at time n to state j after k + 1 steps. Mathematically,

k+1Q
(s,j)
n = P [Xn+k+1 = j |Xn = s]

=
∑

i∈S

P [Xn+k+1 = j,Xn+k = i|Xn = s]
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=
∑

i∈S

P [Xn+k+1 = j |Xn+k = i]P [Xn+k = i|Xn = s]

=
∑

i∈S

kQ
(s,i)
n Q

(i,j)
n+k .

Thus, the probability of transition from state s at time n to state j at time n + k + 1
can be obtained as the probability of transition from state s at time n, to any state
i in next k steps, and the probability of transition from i at time n + k to state j at
time n + k + 1.

In the next section we discuss how these Markov models are used in insurance to
analyze the financial impact of transitions through various states.

5.3 Actuarial Present Values of Cash Flows

Our main interest to study multi-state transition models is to find benefit premiums
and benefit reserves when the transitions among various states of the insureds are
governed by such models. In the simplest setup, that is, in single decrement model,
benefit payments are made upon the failure of the alive status, and premiums are
paid by the insured as long as he is in the alive status. In annuity contracts sold by
the insurer, annuity payments are made to annuitants as long as they are alive. In
disability income insurance models, payments are made to an employee when he
is in a temporarily disabled or permanently disabled state. In auto insurance setup,
an insurer is concerned about the expected claims payable and premiums collected
while a driver is in a particular status. Thus, in all such models, it is of interest to
study the cash flows while the member is in a particular state or upon the transition
from one state to another. We discuss these in Markov chain setup.

We begin with cash flows upon transitions. Let C(i,j) denote a cash flow that
occurs when there is a transition from state i to state j in one step. The cash flow
may be from the insured to the insurer or vice-versa; as a consequence, C(i,j) can
be positive or negative. We are interested in the actuarial present values of cash
flows, so we must know the epochs of transitions. Thus, we add a prefix to C(i,j)

to indicate the time points. Let l+1C
(i,j) denote the cash flow at time l + 1 if the

member is in state i at time l and in state j at time l + 1. To take into account the
time value of money, we denote by kvn the value at time n of one unit to be paid k

periods in the future at time n + k when the rate of interest changes each annum.
If in denotes the rate of interest for the period n to n + 1, then vn = (1 + in)

−1

and kvn = vnvn+1 · · ·vn+k−1. With fixed annual effective interest rate i, kvn = vk

where v = (1 + i)−1. With these components, the actuarial present value of the cash
flow is obtained as follows. Suppose that the member is in state s at time n, then the
actuarial present value at time n of cash flow C(i,j) corresponding to future one-step
transition from state i to state j , denoted APVs@n(C

(i,j)), is given by

APVs@n

(
C(i,j)

)=
∑

k≥0

{
kQ

(s,i)
n Q

(i,j)
n+k

}{
n+k+1C

(i,j)
}{k+1vn}.
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The expression APVs@n(C
(i,j)) is obtained as a sum of product of three compo-

nents. The first factor corresponds to the probability of transition from state s at
time n to state i at time n + k and then the probability of one step transition from i

at time n + k to j at time n + k + 1 for k = 0,1, . . . . The second factor is the cash
flow corresponding to transition from i at time n + k to j at time n + k + 1; these
may be 0 for some k. The third component is the discount factor to account for the
time value of the cash flow, k + 1 time units back.

Now we proceed to discuss the actuarial present value of the cash flow when the
member remains in a state for certain time period. We assume that the member is in
state i at time l, and the cash flow occurs at the start of each year. Let lC

(i) denote
the cash flow at time l if the member is in state i at time l. Suppose that the member
is in state i at time n; then the actuarial present value at n of the cash flow is denoted
by APVi@n(C

(i)). Using arguments similar to that for APVi@n(C
(i,j)), we get

APVi@n

(
C(i)

)=
∑

k≥0

kQ
(i,i)
n n+kC

(i)
kvn.

The following example will clarify how the formula is useful to find the actuarial
present values of cash flow.

Example 5.3.1 Suppose that the transitions between two states {1,2} are governed
by the Markov chain with the following transition probability matrix:

Q =
(

1 2

1 0.7 0.3
2 0.4 0.6

)
.

Suppose that the member is in state 1 at time 1 and that there is a cash flow of 100
units for a transition from state 2 to state 1 any time in the next three periods.

(i) Suppose that the interest rate is 5 %. Compute the actuarial present value of the
cash flow at time 1.

(ii) Compute the same if the interest rate is time varying, 5 % in the first year, from
time n to n + 1, 6 % in the second, and 6.5 % in the third year.

(iii) Suppose that the member is in state 1 at time 1 and that there is a cash flow of
100 units for being in state 1 at time 1 and for the next two time points. Find
the actuarial present value of cash flow at time 1.

(iv) Work out (iii) if the interest rate varies as in (ii).

Solution (i) We have to find APV1@1(C
(2,1)). The Markov chain is time homoge-

neous, hence, it is given by

APV1@1
(
C(2,1)

) =
2∑

k=0

{
kQ

(1,2)
n Q

(2,1)
n+k

}{
n+k+1C

(2,1)
}{k+1vn}
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=
2∑

k=0

kQ
(1,2)Q(2,1)C(2,1)vk+1

= 0Q
(1,2)Q(2,1)C(2,1)v + Q(1,2)Q(2,1)C(2,1)v2

+ 2Q
(1,2)Q(2,1)C(2,1)v3

= 0 + 100
[
0.3 × 0.4 × (1.05)−2 + {0.7 × 0.3 + 0.3 × 0.6}

× 0.4 × (1.05)−3]

= 24.36.

(ii) With the time varying interest rates,

1vn = (1.05)−1 = 0.9524, 2vn = 1vn(1.06)−1 = 0.8985 and

3vn = 2vn(1.065)−1 = 0.8436.

Hence, APV1@1(C
(2,1)) is given by

APV1@1
(
C(2,1)

) =
2∑

k=0

kQ
(1,2)Q(2,1)C(2,1)

k+1vn

= 0Q
(1,2)Q(2,1)C(2,1)

1vn + Q(1,2)Q(2,1)C(2,1)
2vn

+ 2Q
(1,2)Q(2,1)C(2,1)

3vn

= 0 + 100
[
0.3 × 0.4 × 0.8985 + {0.7 × 0.3 + 0.3 × 0.6}

× 0.4 × 0.8436
]

= 23.94.

(iii) We want to find APV1@1(C
(1)). Thus, with C(1) = 100,

APV1@1(100) =
∑

k≥0

kQ
(1,1)100vk

= 1×100×v0 +0.7×100×v1 +{0.7×0.7+0.3×0.4}×100×v2

= 100
{
1 + 0.7(1.05)−1 + 0.61(1.05)−2}

= 222.

(iv) With time varying interest rates, we have

APV1@1(100) =
∑

k≥0

kQ
(1,1)100 kvn

= 1 × 100 × 0vn + 0.7 × 100 × 1vn + {0.7 × 0.7 + 0.3 × 0.4}
× 100 × 2vn
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= 100{1 + 0.7 × 0.9524 + 0.61 × 0.8985}
= 221.

We have discussed computation of actuarial present values of cash flow for two
types of scenario mainly to compute the premiums when the transitions among the
states are governed by multi-state Markov models. We apply the equivalence princi-
ple to compute the benefit premium in this setup. We illustrate it with the following
example.

Example 5.3.2 An insurer issues a special 3-year insurance contract to a person
when the transitions among four states, 1: active, 2: disabled, 3: withdrawn, and 4:
dead, are governed by the homogeneous Markov model with following transition
probability matrix:

Q =

⎛

⎜⎜
⎝

1 2 3 4

1 0.50 0.25 0.15 0.10
2 0.40 0.40 0 0.20
3 0 0 1 0
4 0 0 0 1

⎞

⎟⎟
⎠.

The death benefit is Rs 10000/-, payable at the end of the year of death.

(i) Suppose that the insured is in active state at the beginning of year 1 and is
in disabled state at the end of year 1. Assuming the interest rate at 5 % per
annum, calculate the actuarial present value of the prospective death benefit at
the beginning of year 2.

(ii) Suppose that premiums are payable at the beginning of each year when the
insured is active. Insureds do not pay annual premiums when they are disabled.
Calculate the level annual net premium for this insurance.

Solution (i) The insurance policy is 3-year term insurance; hence the benefit is
payable if death occurs during the term of three years. We want to find the actu-
arial present value of death benefit at the end of year 1 when the policyholder is in
state 2. That is, we want to find APV2@2(C

(1,4)) + APV2@2(C
(2,4)), taking begin-

ning of first year as n = 1. Here the Markov chain is homogeneous, and cash flow
also is the same for all time points. Hence,

APV2@2
(
C(1,4)

) =
1∑

k=0

{
kQ

(2,1)
n Q

(1,4)
n+k

}{
n+k+1C

(1,4)
}{k+1vn}

=
1∑

k=0

kQ
(2,1)Q(1,4)C(1,4)vk+1

= 0Q
(2,1)Q(1,4)C(1,4)v + Q(2,1)Q(1,4)C(1,4)v2

= 0 × 0.1 × 10000 × (1.05)−1 + 0.4 × 0.1 × 10000 × (1.05)−2

= 362.81,
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APV2@2
(
C(2,4)

) =
1∑

k=0

{
kQ

(2,2)
n Q

(2,4)
n+k

}{
n+k+1C

(2,4)
}{k+1vn}

= 0Q
(2,2)Q(2,4)C(2,4)v + Q(2,2)Q(2,4)C(2,4)v2

= 1 × 0.2 × 10000 × (1.05)−1 + 0.4 × 0.2 × 10000 × (1.05)−2

= 2630.39.

Hence, the actuarial present value of the prospective death benefit at the beginning
of year 2 is APV2@2(C

(1,4)) + APV2@2(C
(2,4)) = 2993.20.

(ii) To find the level annual net premium, the first step is to find the actuarial
present value of the prospective death benefit at the beginning of year 1, assuming
that the policyholder is active, that is, in state 1, and the second step is to find the
actuarial present value of the premiums at the beginning of year 1, when the pre-
miums are paid only when the policyholder is active. As in (i), the actuarial present
value of death benefit at the beginning of year 1 when the policyholder is in state 1
is given by APV1@1(C

(1,4)) + APV1@1(C
(2,4)). We have

APV1@1
(
C(1,4)

) =
2∑

k=0

kQ
(1,1)Q(1,4)C(1,4)vk+1

= 0Q
(1,1)Q(1,4)C(1,4)v + Q(1,1)Q(1,4)C(1,4)v2

+ 2Q
(1,1)Q(1,4)C(1,4)v3

= 1 × 0.1 × 10000 × (1.05)−1 + 0.5 × 0.1 × 10000 × (1.05)−2

+ {0.5 × 0.5 + 0.25 × 0.4} × 0.1 × 10000 × (1.05)−3

= 1708.24,

APV1@1
(
C(2,4)

) =
2∑

k=0

kQ
(1,2)Q(2,4)C(2,4)vk+1

= 0Q
(1,2)Q(2,4)C(2,4)v + Q(1,2)Q(2,4)C(2,4)v2 + 2Q

(1,2)C(2,4)v3

= 0 + 0.25 × 0.2 × 10000 × (1.05)−2

+ {0.5 × 0.25 + 0.25 × 0.4} × 0.2 × 10000 × (1.05)−3

= 842.24.

Hence, the actuarial present value of death benefit at the beginning of year 1 when
the policyholder is in state 1 is given by APV1@1(C

(1,4)) + APV1@1(C
(2,4)) =

2550.48. To find the actuarial present value of the premiums at the beginning of
year 1, we use the formula for APV1@1(C

(1)) = APV1@1(P ), where P denotes the
annual level premium. Thus,
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APV1@1(P ) =
2∑

k=0

kQ
(1,1)P vk

= 1 × P × v0 + 0.5 × P × v1 + {0.5 × 0.5 + 0.25 × 0.4} × P × v2

= P
{
1 + 0.5(1.05)−1 + 0.35(1.05)−2}

= 1.7937P.

With the equivalence principle, the benefit premium is obtained as

APV1@1
(
C(1,4)

)+ APV1@1
(
C(2,4)

)= APV1@1(P ) ⇔ 2550.48 = 1.7937P.

Solving for P , we get P = 1421.91.

The next example illustrates the computation of cash flows in long-term care
CCRC model, described in Sect. 5.1, when the transitions among the states are gov-
erned by a nonhomogeneous Markov model.

Example 5.3.3 In the CCRC model, residents move among four states, indepen-
dent living: 1, temporarily in health center: 2, permanently in health center: 3, and
gone: 4. Suppose that the transitions among these states are modeled by a non-
homogeneous Markov chain. The transition probability matrices at time n ≥ 0 are
specified as follows:

Q0 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.80 0.10 0.05 0.05
2 0.20 0.60 0.10 0.10
3 0 0 0.80 0.20
4 0 0 0 1

⎞

⎟⎟
⎠, Q1 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.70 0.15 0.10 0.05
2 0.20 0.50 0.20 0.10
3 0 0 0.70 0.30
4 0 0 0 1

⎞

⎟⎟
⎠,

Q2 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.60 0.15 0.15 0.10
2 0.20 0.40 0.25 0.15
3 0 0 0.60 0.40
4 0 0 0 1

⎞

⎟⎟
⎠, Q3 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.50 0.20 0.20 0.10
2 0.20 0.30 0.35 0.15
3 0 0 0.50 0.50
4 0 0 0 1

⎞

⎟⎟
⎠,

Q4 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.40 0.20 0.20 0.20
2 0.10 0.30 0.30 0.30
3 0 0 0.40 0.60
4 0 0 0 1

⎞

⎟⎟
⎠, Q5 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.30 0.20 0.30 0.20
2 0.10 0.20 0.40 0.30
3 0 0 0.30 0.70
4 0 0 0 1

⎞

⎟⎟
⎠,

Q6 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.20 0.20 0.30 0.30
2 0.10 0.10 0.40 0.40
3 0 0 0.20 0.80
4 0 0 0 1

⎞

⎟⎟
⎠, Q7 =

⎛

⎜⎜
⎝

1 2 3 4

1 0.10 0.10 0.30 0.50
2 0.05 0.05 0.30 0.60
3 0 0 0.10 0.90
4 0 0 0 1

⎞

⎟⎟
⎠,
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and for n ≥ 8, Qn =

⎛

⎜⎜
⎝

1 2 3 4

1 0 0 0 1
2 0 0 0 1
3 0 0 0 1
4 0 0 0 1

⎞

⎟⎟
⎠.

Cash flows l+1C
(i,j) occurring at time l + 1 are as given in the following matri-

ces l+1C:

1C =

⎛

⎜⎜
⎝

1 2 3 4

1 12 14 16 17
2 19 22 23 25
3 0 0 29 31
4 0 0 0 0

⎞

⎟⎟
⎠, 2C =

⎛

⎜⎜
⎝

1 2 3 4

1 32 34 36 37
2 39 42 43 45
3 0 0 49 51
4 0 0 0 0

⎞

⎟⎟
⎠,

3C =

⎛

⎜⎜
⎝

1 2 3 4

1 52 54 56 57
2 59 62 63 65
3 0 0 69 71
4 0 0 0 0

⎞

⎟⎟
⎠, 4C =

⎛

⎜⎜
⎝

1 2 3 4

1 65 67 69 73
2 71 72 73 75
3 0 0 79 81
4 0 0 0 0

⎞

⎟⎟
⎠,

5C =

⎛

⎜⎜
⎝

1 2 3 4

1 72 74 76 77
2 79 80 81 85
3 0 0 86 87
4 0 0 0 0

⎞

⎟⎟
⎠, 6C =

⎛

⎜⎜
⎝

1 2 3 4

1 75 77 79 83
2 81 82 83 85
3 0 0 89 91
4 0 0 0 0

⎞

⎟⎟
⎠,

7C =

⎛

⎜⎜
⎝

1 2 3 4

1 82 84 86 87
2 89 90 91 95
3 0 0 96 97
4 0 0 0 0

⎞

⎟⎟
⎠, 8C =

⎛

⎜⎜
⎝

1 2 3 4

1 95 97 99 100
2 101 102 103 105
3 0 0 109 111
4 0 0 0 0

⎞

⎟⎟
⎠,

and for l ≥ 8, l+1C =

⎛

⎜⎜
⎝

1 2 3 4

1 0 0 0 115
2 0 0 0 118
3 0 0 0 119
4 0 0 0 120

⎞

⎟⎟
⎠.

(i) Suppose that a resident is in state 1 at time 0. Compute the actuarial present
value of the cash flow from state 1 to state 3 or state 4, assuming the annual
effective rate of interest to be 0.05.

(ii) Suppose that a resident is in state 1 at time 0. Compute the benefit premium
payable at the start of the year in which the resident is in state 1 in order to
finance the future cash flows of transition from state 1 to state 3.

Solution (i) The actuarial present value of cash flow at the beginning of year 1 when
the resident is in state 1 is given by APV1@0(C

(1,3)) + APV1@0(C
(1,4)). Now,
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APV1@0
(
C(1,3)

) =
7∑

k=0

{
kQ

(1,1)
0 Q

(1,3)
k

}{
k+1C

(1,3)
}{

vk+1},

APV1@0
(
C(1,4)

) =
7∑

k=0

{
kQ

(1,1)
0 Q

(1,4)
k

}{
k+1C

(1,4)
}{

vk+1}.

Thus, we need to calculate kQ0 = Q0 × Q1 × · · · × Qk−1, k ≥ 1. Using the R
command for the product of matrices, we find kQ0. Using the above formulas, the
actuarial present values are given by APV1@0(C

(1,3)) = 10.07, APV1@0(C
(1,4)) =

6.96, and APV1@0(C
(1,3)) + APV1@0(C

(1,4)) = 17.04.
(ii) To compute the benefit premium to finance the future cash flows at transi-

tion from state 1 to state 3, we need APV1@0(C
(1,3)) and APV1@0(C

(1)). We have
APV1@0(C

(1,3)) = 10.07. With C(1) = P , APV1@0(C
(1)) is given by

APV1@1(P ) =
7∑

k=0

kQ
(1,1)P vk

= 2.2136P.

With the equivalence principle, the benefit premium is obtained as

APV1@0
(
C(1,3)

)= APV1@0(P ) ⇔ 10.07 = 2.2136P ⇔ P = 4.55.

The following R code is used for all these computations:

m0 <- matrix(c(0.80, 0.10, 0.05, 0.05, 0.20, 0.60, 0.10,
0.10, 0, 0, 0.80, 0.20, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m1 <- matrix(c(0.70, 0.15, 0.10, 0.05, 0.20, 0.50, 0.20,
0.10, 0, 0, 0.70, 0.30, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m2 <- matrix(c(0.60, 0.15, 0.15, 0.10, 0.20, 0.40, 0.25,
0.15, 0, 0, 0.60, 0.40, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m3 <- matrix(c(0.50, 0.20, 0.20, 0.10, 0.20, 0.30, 0.35,
0.15, 0, 0, 0.50, 0.50, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m4 <- matrix(c(0.40, 0.20, 0.20, 0.20, 0.10, 0.30, 0.30,
0.30, 0, 0, 0.40, 0.60, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m5 <- matrix(c(0.30, 0.20, 0.30, 0.20, 0.10, 0.20, 0.40,
0.30, 0, 0, 0.30, 0.70, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m6 <- matrix(c(0.20, 0.20, 0.30, 0.30, 0.10, 0.10, 0.40,
0.40, 0, 0, 0.20, 0.80, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);
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m7 <- matrix(c(0.10, 0.10, 0.30, 0.50, 0.05, 0.05, 0.30,
0.60, 0, 0, 0.10, 0.90, 0, 0, 0, 1), nrow=4,
ncol=4, byrow=TRUE);

m8 <- matrix(c(0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
0, 1), nrow=4, ncol=4, byrow=TRUE);

a1 <- m0%*%m1;
a2 <- a1%*%m2;
a3 <- a2%*%m3;
a4 <- a3%*%m4;
a5 <- a4%*%m5;
a6 <- a5%*%m6;
a7 <- a6%*%m7;
a8 <- a7%*%m8;
a9 <- a8%*%m8;
a1; a2; a3; a4; a5; a6; a7; a8;
v <- (1.05)^(-1);
b1 <- 1*0.05*16*v+0.58*0.1*36*v^2+0.382*0.15*56*v^3

+0.222*0.2*69*v^4+0.10109*0.2*76*v^5
+0.038454*0.3*79*v^6+0.011338*0.3*86*v^7
+0.0017007*0.3*99*v^8;

b1 #APV1@0(C
(1,3));

b2 <- 1*0.05*17*v+0.58*0.05*37*v^2+0.382*0.1*57*v^3
+0.222*0.1*73*v^4+0.10109*0.2*77*v^5
+0.038454*0.2*83*v^6+0.011338*0.3*87*v^7
+0.0017007*0.5*100*v^8;

b2 #APV1@0(C
(1,4));

b1+b2;
b3 <- 1+0.58*v+0.382*v^2+0.222*v^3+0.10109*v^4

+0.038454*v^5+0.011338*v^6+0.0017007*v^7;
b3 #APV1@0(P );
p <- b1/b3;
p #P;

We used the equivalence principle to compute the benefit premiums for Markov
model; on similar lines we can compute the benefit reserve for the Markov model.
We illustrate it with an example. We use the setup of Example 5.3.2.

Example 5.3.4 An insurer issues a special 3-year insurance contract to a person
when the transitions among four states, 1: active, 2: disabled, 3: withdrawn, and
4: dead, are governed by the homogeneous Markov model with following transition
probability matrix:

Q =
⎛

⎜
⎝

1 2 3 4
1 0.50 0.25 0.15 0.10
2 0.4 0.4 0 0.2
3 0 0 1 0
4 0 0 0 1

⎞

⎟
⎠.
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The death benefit is Rs 10000/-, payable at the end of the year of death. Suppose
that the insured is active at the issue of policy. Insureds do not pay annual premiums
when they are disabled. Suppose that the interest rate is 5 % per annum. Calculate
the benefit reserve at the beginning of year 2 and 3.

Solution By the prospective approach of reserves, the reserve at the beginning of
year i, i = 2,3, will be the actuarial present value of the death benefit at the be-
ginning of year i, minus the actuarial present value of the future premiums at the
beginning of year i, i = 2,3. At the beginning of the second year the policyholder
may be in any one of the four states. If he is in state 3 or 4, there is no future liability,
so the reserve in this case is 0. Suppose that the policyholder is active or disabled
at the beginning of the second year. Thus, the reserve at the beginning of year 2,
denoted R2, is given by

R2 = Q(1,1)
[
APV1@2

(
C(1,4)

)+ APV1@2
(
C(2,4)

)]

+ Q(1,2)
[
APV2@2

(
C(1,4)

)+ APV2@2
(
C(2,4)

)]

− {Q(1,1)APV1@2
(
C(1)

)+ Q(1,2)APV2@2
(
C(1)

)}
.

In the second part of Example 5.3.2, we have calculated the premium P = 1421.91.
We have also computed APV2@2(C

(1,4)) + APV2@2(C
(2,4)) = 2993.20 in the

first part of Example 5.3.2. On similar lines we compute APV1@2(C
(1,4)) +

APV1@2(C
(2,4)) = 1859.51. Actuarial present value of inflow at the beginning of

the year 2 is obtained as follows. Let C(1) = P . Then

Q(1,1)APV1@2
(
C(1)

)+ Q(1,2)APV2@2
(
C(1)

)

= Q(1,1)

1∑

k=0

kQ
(1,1)P vk + Q(1,2)

1∑

k=0

kQ
(2,1)P vk

= Q(1,1)
{
P + Q(1,1)P v

}+ Q(1,2)
{
Q(2,1)P v

}

= Q(1,1)P + Pv
{
Q(1,1)Q(1,1) + Q(1,2)Q(2,1)

}

= Q(1,1)P + 2Q
(1,1)P v.

With these components, we get R2 = 549.56. Similarly, the reserve at the beginning
of year 3, denoted R3, is given by

R3 = 2Q
(1,1)

[
APV1@3

(
C(1,4)

)+ APV1@3
(
C(2,4)

)]

+ 2Q
(1,2)

[
APV2@3

(
C(1,4)

)+ APV2@3
(
C(2,4)

)]

− {2Q
(1,1)APV1@3

(
C(1)

)+ 2Q
(1,2)APV2@3

(
C(1)

)}
.

Using the similar procedure as in Example 5.3.2, we get

APV1@3
(
C(1,4)

) = 0.1 × 10000 × (1.05)−1 = 952.38, APV1@3
(
C(2,4)

)= 0,

APV2@3
(
C(1,4)

) = 0, APV2@3
(
C(2,4)

)= 0.2 × 10000 × (1.05)−1 = 1904.76.
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Further,

2Q
(1,1)APV1@3

(
C(1)

)+ 2Q
(1,2)APV2@3

(
C(1)

)= 2Q
(1,1)P .

Hence,

R3 = 264.23.

It is to be noted that R3 < R2.

Multi-state Markov models can also be applied in situations other than insurance,
and the member can be a machinery or the loan contract. The following example
illustrates such a situation.

Example 5.3.5 A machine can be in one of four possible states, labeled a, b, c,
and d . It makes transitions among these states according to Markov chain with fol-
lowing transition probability matrix:

Q =

⎛

⎜⎜
⎝

a b c d

a 0.2 0.8 0 0
b 0.6 0 0.4 0
c 0.7 0 0 0.3
d 1 0 0 0

⎞

⎟⎟
⎠.

At time 0 the machine is in state a. A company will pay 500 units at the end
of three years if the machine is in state a. Assuming the annual effective rate of
interest 5 %, calculate the actuarial present value at time 0 of this payment.

Solution The actuarial present value at time 0 of the payment is given by

APV = 3Q
(a,a) × 500 × (1.05)−3.

For the given matrix Q, we find Q3, which gives

3Q
(a,a) = 0.424, and hence APV = 183.13.

In the next section we briefly discuss how the actuarial present value of cash flows
is computed when the transitions among states are modeled by a Markov process in
continuous time, which is essentially a continuous-time Markov chain.

5.4 Markov Process Model

Let {X(t), t ≥ 0} be a Markov process with finite state space S = {1,2, . . . ,m},
X(t), denoting the state of the system at time t . It satisfies the Markov property
given by

P
[
X(s + t) = j |X(s) = i,X(u) = x(u),0 ≤ u ≤ s

]= P
[
X(s + t) = j |X(s) = i

]
,



190 5 Multi-state Transition Models for Cash Flows

provided that the conditional probabilities are defined. Thus, the future of the pro-
cess, after time s, depends only at the state at time s and not on the history of the
process up to time s. Each X(t) is a discrete random variable with set S as the set
of possible values. In view of Markov property, the probability structure depends on
the transition probabilities defined as

pij (s, s + t) = P
[
X(s + t) = j |X(s) = i

]
,

with
k∑

j=1

pij (s, s + t) = 1 for all s, t ≥ 0.

If pij (s, s + t) depends only on t , then it is a time-homogeneous Markov process.
In the following we study how the transitions among various states are modeled by
Markov process in insurance set up.

Suppose {X(t), t ≥ 0} is a Markov process with finite state space S = {0,1,

. . . ,m}, with instantaneous transitions being possible between selected pairs of
states. In insurance setup, these states represent different conditions for an indi-
vidual or for a group of individuals. The event X(t) = i means that the individual
or a group of individuals is in state i at age x + t ; thus, at time t = 0, that is, at the
time of signing the contract, the age of the individual is assumed to be x. As an il-
lustration, we consider the joint life and the last survivor model. Let x and y denote
the ages of the husband and wife, respectively, when the annuity or the insurance
policy is purchased. For t ≥ 0, the event X(t) = 0 indicates that both husband and
wife are alive at ages x + t and y + t , respectively; X(t) = 1 indicates that husband
is alive at age x + t and wife died before age y + t ; X(t) = 2 indicates that husband
died before age x + t and wife is still alive at age y + t ; X(t) = 3 indicates that hus-
band died before age x + t and wife died before age y + t . In a permanent disability
model there are three states: healthy, denoted by 0, disabled, denoted by 1, and dead,
denoted by 2. Possible transitions are from 0 to 1, 0 to 2, and from 1 to 2. It is an
appropriate model for a policy which provides some or all of the following benefits:
(i) an annuity while permanently disabled, (ii) a lump sum on being permanently
disabled, and (iii) a lump sum on death. Premiums are payable when a person is in
healthy state. In this model the transition from state 1 to 0 is not possible; hence it is
refereed to as permanent disability model. In a disability income insurance model,
there are three states: healthy, denoted by 0, sick, denoted by 1, and dead, denoted
by 2. Possible transitions are from 0 to 1, 0 to 2, 1 to 0, and from 1 to 2. Disability
income insurance policy pays a benefit during period of sickness, the benefit ceases
on recovery. Here also premiums are payable when a person is in healthy state. Such
a model incorporates the fact that there could be several periods of sickness before
death, with healthy periods in between.

We now introduce the notation for transition probabilities in Markov model in the
context of insurance. For states i and j in a multi-state model and for x, t ≥ 0, let

tp
ij
x = P

[
X(x + t) = j |X(x) = i

]
,

tp
ii
x = P

[
X(x + s) = i ∀s ∈ [0, t]|X(x) = i

]
.
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Thus, tp
ij
x is the probability that a life aged x in state i is in state j at age x + t , and

tp
ii
x is the probability that a life aged x in state i remains in state i throughout the

period from age x to x + t . In this setup, the age is treated as the time parameter in
the Markov process. tp

ii
x = tp

ii
x if state i cannot be reentered once it has been left.

In a single decrement model, tp
00
x = tpx , tp

01
x = t qx , and tp

10
x = 0, tp

11
x = 1.

For i 
= j , the transition intensity function corresponding to transitions between
states i and j at age x is defined as

μ
ij
x = lim

h→0+
hp

ij
x

h
.

The transition intensity function is analogous to the force of decrement or force of
mortality, and hence it is also referred to as the force of transition. For h > 0, μ

ij
x

can be expressed as

hp
ij
x = hμ

ij
x + o(h).

For small positive values of h, hp
ij
x is taken as hμ

ij
x . It is further assumed that for

any positive interval of time h, the probability of two or more transitions within a
time period of length h is o(h).

If there are n + 1 states, then tp
ii
x can be expressed in terms of the force of

transition as follows:

tp
ii
x = exp

[

−
{∫ t

0

n∑

j=0,j 
=i

μ
ij
x+s ds

}]

.

This expression is analogous to

tpx = exp

[
−
{∫ t

0
μx+s ds

}]

in a single decrement table and

tp
(τ)
x = exp

[

−
{∫ t

0

n∑

j=0

μ
(j)
x+s ds

}]

in a multiple decrement model.
In the following example we compute certain probabilities for the permanent

disability model using the formulas derived above.

Example 5.4.1 In a permanent disability model there are three states: healthy, de-
noted by 0, disabled, denoted by 1, and dead, denoted by 2. Possible transitions are
from 0 to 1, 0 to 2, and from 1 to 2. Suppose that the transition intensities for this
model are specified as
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(i) μ01
x = 0.03, μ02

x = μ12
x = 0.025, and

(ii) μ01
x = a1 +b1e

c1x , μ02
x = μ12

x = a2 +b2e
c2x , where, a1 = 5×10−4, b1 = 3.5×

10−6, c1 = 0.14, a2 = 6 × 10−4, b2 = 7.5 × 10−6, c2 = 0.09.

For both the cases, compute the probability that (60) (i) remains in healthy state for
next 10 years, (ii) becomes disabled in next 10 years, and (iii) dies in next 10 years.

Solution In the permanent disability model, neither state 0 nor state 1 can be reen-
tered once it has been left; hence, for i = 0,1, tp

ii
x = tp

ii
x .

(i) Thus, under the first set up, the probability that (60) remains in healthy state
for next t years is given by

tp
00
60 = tp

00
60 = exp

{
−
∫ t

0
(0.03 + 0.025) ds

}
= exp{−0.055t},

which gives 10p
00
60 = exp{−0.55} = 0.5769. Thus, the chance that (60) remains in

healthy state for next 10 years is 58 %.
Probability that (60) becomes disabled in next 10 years is denoted by 10p

01
60.

Since neither state 0 nor state 1 can be reentered once it has been left, the formula
to compute 10p

01
60 is given by

10p
01
60 =

∫ 10

0
up

00
60μ

01
60+u10−up

11
60+u du.

Intuitively this expression is interpreted as follows. For the member to move from
state 0 to 1 between ages x to x + t , the member may remain in the same state 0 for
some time, may be up to age x + u; then there is a transition from state 0 to state 1
between ages x + u to x + u + du, where du is very small, with the chance of such
an event given by μ01

x+u du; when transferred to state 1, the member remains in the
same state up to age x + t . To compute 10p

01
60, first we need to compute 10−up

11
60+u,

which is given by

10−up
11
60+u = exp

{
−
∫ 10−u

0
0.025ds

}
= exp

{−0.025(10 − u)
}
.

Hence,

10p
01
60 =

∫ 10

0
up

00
60μ

01
60+u10−up

11
60+u du

=
∫ 10

0
exp{−0.055u} × 0.03 × exp

{−0.025(10 − u)
}
du

= 0.03 exp{−0.25}
∫ 10

0
exp{−0.03u}du

= 0.2019.
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Further, 10p
02
60 = 1 − (10p

00
60 + 10p

01
60) = 1 − (0.5769 + 0.2019) = 0.2212. Thus, the

chance that (60) remains disabled for next 10 years is 20 % while dies in next 10
years is 22 %.

(ii) For the second setup,

tp
00
60 = tp

00
60 = exp

{
−
∫ t

0

(
μ01

60+u + μ02
60+u

)
du

}

= exp

{
−
[
(a1 + a2)t + b1

c1
e60c1

(
ec1t − 1

)+ b2

c2
e60c2

(
ec2t − 1

)]}
.

Hence, 10p
00
60 = 0.6896. On similar lines,

tp
11
60 = tp

11
x = exp

{
−
∫ t

0
μ12

60+u du

}

= exp

{
−
(

a2t + b2

c2
e60c2

(
ec2t − 1

))}
.

With this expression, we can compute 10p
01
60 as follows:

10p
01
60 =

∫ 10

0
up

00
60μ

01
60+u10−up

11
60+u du.

However, in this setup it is not possible to integrate analytically, but we find the
value numerically. Numerical integration gives 10p

01
60 = 0.2566. Further, 10p

02
60 =

1 − (10p
00
60 + 10p

01
60) = 1 − (0.6896 + 0.2566) = 0.0538. Thus, for the second setup,

(60) remains healthy in next 10 years with chance of 69 %, becomes disabled in
next 10 years with chance of 26 %, while dies in next 10 years with chance of 5 %.

The main aim to study such transition probabilities is the computation of premi-
ums when the transitions among the states are modeled by a Markov process. As a
first step, we generalize the definitions of insurance and annuity functions to a multi-
ple state framework. There is no standard notation for these functions. Suppose that
(x) is currently in state i. The actuarial present value of annuity of 1 per annum,
payable continuously, while (x) is in some state j , which may be equal i, in future,
is denoted by ā

ij
x and is defined as follows. Denoting by I the indicator function, we

have

ā
ij
x = E

[∫ ∞

0
e−δt I

(
X(t) = j |X(0) = i

)
dt

]

=
∫ ∞

0
e−δtE

[
I
(
X(t) = j |X(0) = i

)]
dt

=
∫ ∞

0
e−δt

tp
ij
x dt.

Thus, if (x), who is in state i at time 0, transits to state j at time t , then 1 unit will
be payable at time t . Its value at time 0 is e−δt .
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On similar lines, the actuarial present value of discrete annuity due of 1 per an-
num, while (x) is in some state j , in future, denoted ä

ij
x , is defined as follows:

ä
ij
x =

∞∑

k=0

vk
kp

ij
x .

If the time period for transitions is restricted to, say n years, the actuarial present
value of continuous and discrete annuity due of 1 per annum is defined as follows:

ā
ij
x:n̄| =

∫ n

0
e−δt

tp
ij
x dt and ä

ij
x:n̄| =

n−1∑

k=0

vk
kp

ij
x .

For insurance benefits, the payment is usually conditional on making a transition.
For example, a death benefit is payable on transition to a dead state. Suppose that a
unit benefit is payable when transition is to state k, when currently the individual is
in state i. Then the actuarial present value of the death benefit is given by

Āik
x =

∫ ∞

0
e−δt

∑

j 
=k

tp
ij
x μ

jk
x+t dt.

Similarly, if the policy is for limited period, then the actuarial present value of the
death benefit in that limited period, denoted Āik

x:n̄|, is given by

Āik
x:n̄| =

∫ n

0
e−δt

∑

j 
=k

tp
ij
x μ

jk
x+t dt.

Premiums are then found using equivalence principle. We illustrate it for the
permanent disability insurance model.

Example 5.4.2 In a permanent disability model, there are three states: healthy, de-
noted by 0, disabled, denoted by 1, and dead, denoted by 2. Possible transitions are
from 0 to 1, 0 to 2, and from 1 to 2. Suppose that the transition intensities for this
model are specified as, μ01

x = 0.03 and μ02
x = μ12

x = 0.025. An insurer issues 5-year
permanent disability income insurance policy to a healthy life aged 45.

(i) Premiums are payable continuously while in the healthy state. The benefit of
Rs 25000/- per year is payable continuously while in the disabled state, and the
death benefit of Rs 100000/- is payable immediately on death. Calculate the
premium when the force of interest is 5 % per year.

(ii) Suppose that premiums are payable yearly in advance while in the healthy state.
The benefit of Rs 25000/- per year is payable yearly in arrears while in the
disabled state, and the death benefit of Rs 100000/- is payable immediately on
death. Calculate the premium when the force of interest is 5 % per year.
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Solution We use the equivalence principle to find the premium. So we find the ac-
tuarial present value of inflow via premiums and actuarial present value of outflow
via benefit payments.

(i) Let P denote the premium payable continuously per year while in healthy
state in order to get the specified benefits. Then the actuarial present value of inflow
via premiums is given by

P ā00
45:5̄| = P

∫ 5

0
e−δt

tp
00
45 dt.

For the given forces of transition,

tp
00
45 = tp

00
45 = exp

{
−
∫ t

0
(0.03 + 0.025) ds

}
= exp{−0.055t}.

Hence,

P ā00
45:5̄| = P

∫ 5

0
e−0.05t e−0.055t dt = P

∫ 5

0
e−0.105t dt = 3.889949P.

The actuarial present value of outflow via disability benefit payments is given by

25000ā01
45:5̄| = 25000

∫ 5

0
e−δt

tp
01
45 dt.

By definition,

tp
01
45 =

∫ t

0
up

00
45μ

01
45+u t−up

11
45+u du.

So first compute t−up
11
45+u, which is given by

t−up
11
45+u = exp

{
−
∫ t−u

0
0.025ds

}
= exp

{−0.025(t − u)
}
.

Hence,

tp
01
45 =

∫ t

0
up

00
45μ

01
45+u t−up

11
45+u du

=
∫ t

0
exp{−0.055u} × 0.03 × exp

{−0.025(t − u)
}
du

= 0.03 exp{−0.025t}
∫ t

0
exp{−0.03u}du

= exp{−0.025t} − exp{−0.055t}.
Thus,

ā01
45:5̄| =

∫ 5

0
e−0.05t

[
e−0.025t − e−0.055t

]
dt = 0.2795273.



196 5 Multi-state Transition Models for Cash Flows

Hence,

25000ā01
45:5̄| = 25000 × 0.2795273 = 6988.18.

The actuarial present value of outflow via death benefit payments is given by

100000Ā02
45:5̄| = 100000

∫ 5

0
e−δt

(
tp

00
45μ

02
45+t + tp

01
45μ

12
45+t

)
dt.

Now for the given forces of transition,

Ā02
45:5̄| =

∫ 5

0
e−0.05t

(
e−0.055t + [e−0.025t − e−0.055t

])× 0.025dt = 0.1042369.

Hence,

100000Ā02
45:5̄| = 10423.69.

By the equivalence principle, the premium P is given by

P = (25000 × 0.2795273 + 100000 × 0.1042369)/3.889949 = 4476.12.

(ii) In this case, the premiums are paid yearly in advance for 5 years while (45)
is in healthy state, so it forms an annuity due. The benefit of Rs 25000/- per year is
payable in arrears while in disabled state, so it forms an annuity immediately. The
death benefit of Rs 100000/- is payable immediately on death. Here also we use the
equivalence principle to find the premium. Let P denote the premium payable at the
beginning of the year, per year in order to get the specified benefits while in healthy
state. The actuarial present value of the premiums is given by

P ä00
45:5̄| = P

4∑

0

vk
kp

00
45 = P

4∑

0

e−0.05k−0.055k = 4.097744P.

It is to be noted that ä00
45:5̄| = 4.097744 > ā00

45:5̄| = 3.889949, as expected. The actuar-

ial present value of outflow via disability benefit payments is given by 25000a01
45:5̄|,

where

a01
45:5̄| =

5∑

1

vk
kp

01
45 =

5∑

1

e−0.05(e−0.025k − e−0.055k
)

=
5∑

1

(
e−0.075k − e−0.105k

)= 0.325775.

The actuarial present value of outflow via death benefit payments remains same as
in (i). By the equivalence principle, the premium P is given by

P = (25000 × 0.325775 + 100000 × 0.1042369)/4.097744 = 4531.29.
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We now proceed to discuss the application of Markov model to disability income
insurance. In a disability income insurance model, there are three states: healthy,
denoted by 0, sick, denoted by 1, and dead, denoted by 2. Possible transitions are
from 0 to 1, 0 to 2, 1 to 0, and from 1 to 2. Disability income insurance policy
pays a benefit during period of sickness, the benefit ceases on recovery. Here also
premiums are payable when a person is in healthy state. In this model, states 0 and 1
both can be reentered. As a consequence, the transition probability tp

01
x is the sum

of the probabilities of exactly one transition from 0 to 1, the probability of three
transitions, 0 to 1, 1 to 0, and 0 to 1 again, five transitions, and so on. The following
is a procedure to evaluate tp

01
x in such cases. Suppose that the member is in state i

at age x and we want to find the probability that at age x + t + h, the member is in
state j , where i and j are any two not necessarily distinct states. Thus, we wish to
find t+hp

ij
x , which is derived using following steps:

t+hp
ij
x = P

[
X(x + t + h) = j |X(x) = i

]

=
∑

k∈S

P
[
X(x + t + h) = j,X(x + t) = k|X(x) = i

]

=
∑

k∈S

P
[
X(x + t + h) = j |X(x + t) = k

]
P
[
X(x + t) = k|X(x) = i

]

=
∑

k∈S

hp
kj
x+t tp

ik
x

= hp
jj
x+t tp

ij
x +

∑

k∈S,k 
=j

hp
kj
x+t tp

ik
x .

We have assumed that for any positive interval of time h, the probability of two or
more transitions within a time period of length h is o(h). Hence, for small h,

hp
ij
x = hμ

ij
x and hp

ii
x = hp

ii
x = 1 −

∑

k 
=i

hp
ik
x = 1 − h

∑

k 
=i

μik
x .

Consequently, for small h,

hp
jj
x+t = hp

jj
x+t = 1 −

∑

k 
=j

hp
jk
x+t = 1 −

∑

k 
=j

hμ
jk
x+t and hp

kj
x+t = hμ

kj
x+t .

Substituting these formulas into the last expression of t+hp
ij
x , for small h, we get

t+hp
ij
x = tp

ij
x

(
1 −

∑

k 
=j

hμ
jk
x+t

)
+

∑

k∈S,k 
=j

hμ
kj
x+t tp

ik
x .

This is a sort of recurrence relation to compute t+hp
ij
x from tp

ik
x for all k. Kol-

mogorov forward equations are derived from this identity. As an illustration, if we
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want to find 10p
ij
x , by choosing successively t = 0, h,2h, . . . ,10−h with small step

size h, we can use these formulas together with initial values 0p
ii
x = 1 and 0p

ij
x = 0

to calculate hp
ii
x , hp

ij
x , 2hp

ii
x , 2hp

ij
x , and so on until we get the values of tp

ii
x , tp

ij
x for

desired value of t . We then use these transition probabilities to compute the actuarial
present values of premium and benefit and hence to compute the premium using the
equivalence principle. The following example illustrates such a computation.

Example 5.4.3 In a disability income insurance model, there are three states:
healthy, denoted by 0, sick, denoted by 1, and dead, denoted by 2. Possible tran-
sitions are from 0 to 1, 0 to 2, 1 to 0, and from 1 to 2. The transition intensi-
ties for the disability income insurance are as follows: μ01

x = 0.002, which is the
force of transition for transition from healthy state to disabled state; μ10

x = 0.1μ01
x ,

which is the force of transition for transition from disabled state to healthy state;
μ02

x = μ12
x = A + BCx , where A = 0.0007, B = 0.0001151, C = 1.096. This gives

the force of transition for transition from healthy state to dead state, which is same
as the force of transition for transition from disabled state to dead state.

An insurer issues 5-year disability income insurance policy to a healthy life
aged 45.

(i) Premiums are payable continuously while in the healthy state. The benefit of
Rs 25000/- per year is payable continuously while in the disabled state, and the
death benefit of Rs 100000/- is payable immediately on death. Calculate the
premium when the effective rate of interest is 5 % per year.

(ii) Suppose that premiums are payable yearly in advance while in the healthy state.
The benefit of Rs 25000/- per year is payable yearly in arrears while in the
disabled state, and the death benefit of Rs 100000/- is payable immediately on
death. Calculate the premium when the effective rate of interest is 5 % per year.

Solution We use the equivalence principle to find the premium. So we find the ac-
tuarial present value of inflow via premiums and actuarial present value of outflow
via benefit payments.

(i) Let P denote the premium payable continuously per year while in healthy
state in order to get the specified benefits. Then the actuarial present value of inflow
via premiums is given by

P ā00
45:5̄| = P

∫ 5

0
e−δt

tp
00
45 dt.

The actuarial present value of outflow via disability benefit payments is given by

25000ā01
45:5̄| = 25000

∫ 5

0
e−δt

tp
01
45 dt.

The actuarial present value of outflow via death benefit payments is given by

100000Ā02
45:5̄| = 100000

∫ 5

0
e−δt

(
tp

00
45μ

02
45+t + tp

01
45μ

12
45+t

)
dt.



5.4 Markov Process Model 199

To obtain the transition probabilities, we proceed as follows. From the general
expression for transition probabilities, for the disability income insurance model,
we get

t+hp
00
45 = tp

00
45 − h tp

00
45

(
μ01

45+t + μ02
45+t

)+ h tp
01
45μ

10
45+t

and

t+hp
01
45 = tp

01
45 − h tp

01
45

(
μ12

45+t + μ10
45+t

)+ h tp
00
45μ

01
45+t .

By choosing successively t = 0, h,2h, . . . ,5 − h, we use these formulas together
with initial values 0p

00
x = 1 and 0p

01
x = 0 to calculate hp

00
x , hp

01
x , 2hp

00
x , 2hp

01
x , and

so on until we get the values of tp
00
x , tp

01
x for 0 ≤ t ≤ 5. An R code is given below

to find these values recursively. We take h = 1/200.

x <- 45;
int <- 0.05;
del <- log(1+int); del;
v <- 1/(1+int); v;
a <- 0.0007;
b <- 0.0001151;
c <- 1.096;
m01 <- 0.002;
m10 <- 0.1*m01;
h <- 1/200
t <- seq(0, 5, h);
length(t);
m02 <- rep(0, 1001);
m12 <- rep(0, 1001);
for(i in 1:1001)
{
m02[i] <- a+(b*(c^(x+t[i])))
m12[i] <- m02[i]
}

v1 <- rep(0, 1000);
v2 <- rep(0, 1000);
p00 <- 1 #value of 0p

00
45;

p01 <- 0 #value of 0p
01
45;

p00 <- c(p00, v1);
p01 <- c(p01, v2);
for(i in 2:1001)
{
p00[i] <- p00[i-1]*(1-h*(m01+m02[i]))+p01[i-1]*h*m10;
p01[i] <- p01[i-1]*(1-h*(m10+m12[i]))+p00[i-1]*h*m01;
}

e <- exp(1);
length(p00); length(p01);
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t1 <- e^(-del*t);
a00 <- h*sum(t1*p00);
a00;
a01 <- h*sum(t1*p01);
a01;
abar <- h*sum(t1*((p00*m02)+(p01*m12)));
abar;
pcont <- (25000*a01+100000*abar)/a00;
pcont;
p00d <- c(p00[201], p00[401], p00[601], p00[801],

p00[1001]);
p01d <- c(p01[201], p01[401], p01[601], p01[801],

p01[1001]);
p00d; p01d;
ad <- 1+v*p00[201]+v^2*p00[401]+v^3*p00[601]

+v^4*p00[801];
ad;
ai <- v*p01[201]+v^2*p01[401]+v^3*p01[601]

+v^4*p01[801]+v^5*p01[1001];
ai;
pdis <- (25000*ai+100000*abar)/ad;
pdis;

Using these R commands, we compute tp
00
45 and tp

01
45 for 1000 values of t with step

size 1/200 and hence the premiums.
The value of

ā00
45:5̄| = 4.326052

is found by using a Riemann sum approximation. The actuarial present value of
outflow via disability benefit payments is given by

25000ā01
45:5̄| = 25000

∫ 5

0
e−δt

tp
01
45 dt = 25000 × 0.02060128.

The actuarial present value of outflow via death benefit payments is given by

100000Ā02
45:5̄| = 100000

∫ 5

0
e−δt

(
tp

00
45μ

02
45+t + tp

01
45μ

12
45+t

)
dt = 105 × 0.04187389.

We use the equivalence principle to calculate the premium. Thus, the premium P is
given by

P = (25000 × 0.02060128 + 100000 × 0.04187389)/4.326052 = 1087.00.

(ii) In this case the premiums are paid yearly in advance for 5 years while (45)
is in healthy state, so it forms an annuity due. The benefit of Rs 25000/- per year
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is payable in arrears while in disabled state, so it forms an annuity immediate. The
death benefit of Rs 100000/- is payable immediately on death. Here also we use the
equivalence principle to find the premium. Let P denote the premium payable at the
beginning of the year, per year in order to get the specified benefits while in healthy
state. The actuarial present value of the premiums is given by

P ä00
45:5̄| = P

4∑

0

vk
kp

00
45 = 4.453288P,

as from the recursive relations discussed in part (i) we get 0p
00
45 = 1, 1p

00
45 =

0.9898919, 2p
00
45 = 0.9791849, 3p

00
45 = 0.9678342, 4p

00
45 = 0.9557928. Further,

v = 0.952381. It is to be noted that ä00
45:5̄| = 4.453288 > ā00

45:5̄| = 4.326052, as ex-

pected. The actuarial present value of outflow via disability benefit payments is
given by

25000a01
45:5̄| = 25000

5∑

1

vk
kp

01
45 = 25000 × 0.02421274

with 1p
01
45 = 0.001981658, 2p

01
45 = 0.003923985, 3p

01
45 = 0.005822997, 4p

01
45 =

0.007674320, and 5p
01
45 = 0.009473168. The actuarial present value of outflow via

death benefit payments remains the same as in (i). By the equivalence principle, the
premium P is given by

P = (25000 × 0.02421274 + 100000 × 0.04187389)/4.453288 = 1076.22.

5.5 Exercises

5.1 Suppose that the transitions among states in a critical illness model are governed
by a homogeneous Markov chain. Let the state space be S = {H,C,D}, where
H denotes the healthy state, C denotes the critically ill state, and D denotes the
dead state. Let the transition probability matrix be as given below. What are the
probabilities of being in each of the states after 1, 2, and 3 years, when at the
beginning of the year the individual is in an active state?

Q =
⎛

⎝

1 2 3

1 0.92 0.05 0.03
2 0.00 0.76 0.24
3 0 0 1

⎞

⎠.

5.2 The following is a three-year term insurance plan. Insureds may be in one of the
three states at the beginning of each year: active (1), disabled (2), or dead (3).
All insureds are initially active. Transitions among the states are modeled by
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a time-homogeneous Markov chain with the following transition probability
matrix:

Q =
⎛

⎝

1 2 3

1 0.90 0.05 0.05
2 0.10 0.60 0.30
3 0 0 1

⎞

⎠.

The benefit of Rs 10000 is payable at the end of year of death. Premiums are
paid at the beginning of each year when the individual is active. Insurers do not
pay premiums when they are disabled. Calculate the level annual net premium
for this insurance when the effective annual rate of interest is 6 %.

5.3 For the CCRC model with transition probability matrices and matrices of cash
flows as in Example 5.3.3, with annual effective interest rate 5 %,
(i) Find the actuarial present value at time 4 of the cash flow resulting from

the future transitions from state 2 to state 3, when the resident is in state 1
at time 4.

(ii) Suppose that the resident is in state 1 at time 4. Find the benefit premium
payable at the start of each future period in which the resident is in state 2,
for the future transitions from state 2 to 3.

5.4 In a permanent disability model, there are three states: healthy, denoted by 0,
disabled, denoted by 1, and dead, denoted by 2. Possible transitions are from
0 to 1, 0 to 2, and from 1 to 2. Let the transition intensities for this model be
specified as μ01

x = a1 + b1e
c1x and μ02

x = μ12
x = a2 + b2e

c2x , where a1 = 5 ×
10−4, b1 = 3.5 × 10−6, c1 = 0.14, a2 = 6 × 10−4, b2 = 7.5 × 10−6, c2 = 0.09.
An insurer issues 5-year disability income insurance policy to a healthy life
aged 45.
(i) Premiums are payable continuously while in the healthy state. The benefit

of Rs 25000/- per year is payable continuously while in the disabled state,
and the death benefit of Rs 100000/- is payable immediately on death. Cal-
culate the premium when the effective rate of interest is 5 % per year.

(ii) Suppose that premiums are payable yearly in advance while in the healthy
state. The benefit of Rs 25000/- per year is payable yearly in arrears while
in the disabled state, and the death benefit of Rs 100000/- is payable imme-
diately on death. Calculate the premium when the effective rate of interest
is 5 % per year.

5.5 Let the transition intensities for a disability income insurance model be spec-
ified as μ01

x = a1 + b1e
c1x , μ10

x = 0.1μ01
x , μ02

x = μ12
x = a2 + b2e

c2x , where
a1 = 5 × 10−4, b1 = 3.5 × 10−6, c1 = 0.14, a2 = 6 × 10−4, b2 = 7.5 × 10−6,
c2 = 0.09. An insurer issues 5-year disability income insurance policy to a
healthy life aged 50.
(i) Premiums are payable continuously while in the healthy state. The benefit

of Rs 25000/- per year is payable continuously while in the disabled state,
and the death benefit of Rs 100000/- is payable immediately on death. Cal-
culate the premium when the effective rate of interest is 5 % per year.
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(ii) Suppose that premiums are payable monthly in advance while in the
healthy state. The benefit of Rs 25000/- per year is payable monthly in
arrears while in the disabled state, and the death benefit of Rs 100000/- is
payable immediately on death. Calculate the premium when the effective
rate of interest is 5 % per year.



Chapter 6
Stochastic Interest Rate

6.1 Introduction

In all the previous chapters, we have assumed that the rate of interest in the calcula-
tions of actuarial present values is fixed or deterministic and usually constant over
the period of policy. However, it is well accepted that the assumption of determin-
istic interest will be rarely realized in practice, particularly for long-term policies.
The simplest approach is to take into account the interest rates which vary with time
over the time period for which the policy is in force. In some problems in Chap. 5,
we have taken into account time-varying rates. It of course requires the projection
of interest rates over time, reflecting the economic status of society or of the region
under study. The other approach is to adopt the appropriate stochastic model for the
interest rates and find the actuarial present values, when time to decrement, mode
of decrement, and the interest rate also are random variables. The suitable model
for interest rates will depend on the variety of characteristics of capital market and
its behavior governed by many uncontrollable random factors. To build a stochas-
tic model for the interest rate, a thorough study of the market conditions over long
periods is necessary.

In this chapter we discuss how the randomness in the interest rates is captured and
how it affects the actuarial present values of cash flows. In Sect. 6.2, we discuss how
different scenarios of time-varying interest rate are modeled by a random variable.
In Sect. 6.3, we discuss the commonly adopted stochastic model for the interest rate
and see how to obtain the actuarial present values of cash flows if the interest rates
for the period under study are assumed to be independent and identically distributed
random variables. In Sect. 6.4, the assumption of independence is relaxed, and in-
terest rates over the time period are modeled by an appropriate time series model.

6.2 Random Interest Scenario

In this setup, interest rates are prescribed for each period for the time period for
which the cash flows are to be studied. Suppose that m such scenarios are visual-
ized with a probability attached to each scenario. The probability distribution of the

S. Deshmukh, Multiple Decrement Models in Insurance,
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scenario reflects the chances of realization of the scenario depending on the various
economic and market fluctuations. More precisely, let i(l) = {i(l)r , r ≥ 1} denote the
fixed rates for the time period under study for the lth scenario, l = 1,2, . . . ,m, i

(l)
r

being the rate of interest for the r th transaction period. Let prl denote the probabil-
ity assigned to the lth scenario. The discount factors corresponding to lth scenario
are defined as follows:

v
(l)
0 = 1, v

(l)
k =

k∏

r=1

(
1 + i(l)r

)−1
, k ≥ 1.

Let C(l) denote the actuarial present value of the cash flow under interest scenario l.
Then the actuarial present value which takes into account randomness of the interest
scenarios is denoted by ∗C and is given by

∗C =
m∑

l=1

C(l)prl.

For example, let Ax(l) denote the actuarial present value of the unit benefit payable
at the end of year of death in a whole life insurance issued to (x) when the interest
scenario is specified by i(l) = {i(l)r , r ≥ 1}. Then

Ax(l) = E
(
v

(l)
K+1

)=
∑

k≥0

v
(l)
k+1 kpxqx+k, and ∗Ax =

m∑

l=1

Ax(l)prl

is the actuarial present value of the death benefit under random scenario. Similarly,
let äx(l) denote the actuarial present value of the unit benefit payable at the begin-
ning of each year in a whole life annuity issued to (x) when the interest scenario is
specified by i(l). Then

äx(l) =
∑

k≥0

v
(l)
k kpx and ∗äx =

m∑

l=1

äx(l)prl.

By the equivalence principle, the premium, payable as discrete whole life annuity
due, for a unit death benefit in a whole life insurance is then given by

∗Px = ∗Ax

∗äx

.

On similar lines, the benefit premium, payable as discrete n-year temporary annuity
due, for a unit death benefit in an n-year term life insurance is given by

∗P 1
x:n̄| =

∗A1
x:n̄|

∗äx:n̄|
=
∑m

l=1[
∑n−1

k=0 v
(l)
k+1 kpxqx+k]prl

∑m
l=1[

∑n−1
k=0 v

(l)
k kpx]prl

.

The actuarial present values of benefit functions and annuity functions in sin-
gle and multiple decrement models and also in multi-state transition models are
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Table 6.1 Interest rate
scenario l 1 2 3 4 5 Probability

1 0.050 0.050 0.050 0.050 0.050 0.30

2 0.050 0.055 0.060 0.062 0.066 0.25

3 0.050 0.047 0.045 0.044 0.042 0.25

4 0.050 0.053 0.047 0.049 0.052 0.20

obtained on similar lines. We illustrate with the example how the random interest
scenario is incorporated to compute the premiums.

Example 6.2.1 It is given that q28 = 0.135, q29 = 0.146, q30 = 0.159, q31 = 0.173,
and q32 = 0.188. Find the annual premium paid as the 5-year temporary discrete
annuity due, for the benefit of 1000, payable at the end of year of death, in a 5-
year term insurance, issued to (28) under the random interest scenario as depicted
in Table 6.1, where the ith row specifies the interest rates for the period of 5 years,
i = 1, . . . ,4. The last column specifies the probabilities attached to four scenarios.

Solution We use the formula

∗P 1
28:5̄| =

∗A1
28:5̄|

∗ä28:5̄|
=
∑4

l=1[
∑4

k=0 v
(l)
k+1 kp28q28+k]prl

∑4
l=1[

∑4
k=0 v

(l)
k kp28]prl

.

We first compute the actuarial present value of benefit and premium for each sce-
nario and using the probability structure for the random scenario find the premium
for the 5-year term insurance issued to (28). The following set of R commands
computes the actuarial present values and the corresponding premium:

i <- 0.05;
v <- (1+i)^(-1);
q <- c(0.135, 0.146, 0.159, 0.173, 0.188);
p <- 1-q;
p1 <- c(q[1], p[1]*q[2], p[1]*p[2]*q[3],

p[1]*p[2]*p[3]*q[4], p[1]*p[2]*p[3]*p[4]*q[5]);
p2 <- c(1, p[1], p[1]*p[2], p[1]*p[2]*p[3],

p[1]*p[2]*p[3]*p[4]);
v1 <- c(1, v, v^2, v^3, v^4, v^5);
at1 <- sum(p1*v1[2:6]);
ad1 <- sum(p2*v1[1:5]);
i2 <- c(0.050, 0.055, 0.060, 0.062, 0.066);
j2 <- 1/(1+i2);
v2 <- 1:6;
for (i in 2:6)
{
v2[i] <- v2[i-1]*j2[i-1]
}
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Table 6.2 Actuarial present
values Scenario l Probability A1

28:5̄| ä28:5̄|

1 0.30 0.50868 3.45319

2 0.25 0.50145 3.43175

3 0.25 0.51259 3.46491

4 0.20 0.50837 3.45169

at2 <- sum(p1*v2[2:6]);
ad2 <- sum(p2*v2[1:5]);
i3 <- c(0.050, 0.047, 0.045, 0.044, 0.042);
j3 <- 1/(1+i3);
v3 <- 1:6;
for (i in 2:6)
{
v3[i] <- v3[i-1]*j3[i-1]
}

at3 <- sum(p1*v3[2:6]);
ad3 <- sum(p2*v3[1:5]);
i4 <- c(0.050, 0.053, 0.047, 0.049, 0.052);
j4 <- 1/(1+i4);
v4 <- 1:6;
for (i in 2:6)
{
v4[i] <- v4[i-1]*j4[i-1]
}

at4 <- sum(p1*v4[2:6]);
ad4 <- sum(p2*v4[1:5]);
at <- c(at1, at2, at3, at4);
ad <- c(ad1, ad2, ad3, ad4);
pr <- c(0.30, 0.25, 0.25, 0.20);
l <- 1:4;
d <- data.frame(l, pr, at, ad);
d;
prm <- 1000*sum(at*pr)/sum(ad*pr);
prm;

The premium for 1000 units benefit is 147.17. Table 6.2 reports the actuarial present
values corresponding to each scenario.

If the interest rate remains the same for all the five years, then the premium is
1000×0.50868/3.45319 = 147.31. For the given setup of random interest scenario,
the two premiums are close to each other.

From the example it is clear that the important component in such a setup is
modeling the interest scenario for the time period for which the policy is in force
and assigning appropriate probability weightage for each scenario.
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In the next section, we discuss a parametric model for the interest rate and assume
that the interest rates over the periods are independent and identically distributed
random variables.

6.3 Parametric Models

Let Ik denote the random effective interest rate for the kth transaction period. In
the deterministic interest setup, Ik is a degenerate random variable, degenerate at i.
The random variable corresponding to the present value at the beginning of first
transaction period of one unit payable at the end of the nth transaction period, that
is, the discount factor random variable, denoted Vn, is defined as

Vn =
n∏

k=1

(1 + Ik)
−1.

If Ik , k = 1, . . . , n are degenerate at i, then Vn = vn, where v = (1 + i)−1.
It follows from Jensen’s inequality that

E(1 + Ik)
−1 ≥ (1 + E(Ik)

)−1
.

It is to be noted that (1 + Ik)
−1 is the random variable corresponding to the present

value at the beginning of the kth transaction period of one unit payable at the end of
the kth transaction period. Thus, the expected present value of 1 unit paid at the end
of one period, in random setup cannot be less than the present value of the payment
at the expected interest rate.

Our aim is to compute the actuarial present values and premiums under the ran-
dom interest setup. Suppose that {Ik, k ≥ 1} are independent and identically dis-
tributed random variables distributed as I . The straightforward approach is to view
all the actuarial present values of cash flows studied in the previous chapters as the
conditional expectations, conditional on Ik , and then the expectation of these with
respect to the distribution of Ik will produce the actuarial present values in random
interest rate setup. For example, denoting, as in the previous section, by ∗Ax the
actuarial present value of a unit benefit payable at the end of year of death in the
whole life insurance, we have

∗Ax = EI

{
EK|I (VK+1|I )

}
.

If we further assume that the curtate future lifetime random variable K and I are
independent, then we get

∗Ax = EI

{
EK|I (VK+1|I )

}= EI

{∑

k≥0

Vk+1 kpxqx+k

}
.

It is to be noted that the assumption of independence of K and I is reasonably valid
as randomness in K is governed by the mortality pattern while randomness in I
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is governed by the economic conditions. We can compute the expectation once we
identify the appropriate model for the interest rate. We discuss the following com-
monly adopted model. Suppose that the interest random variable Ik is modeled as

log(1 + Ik) = δ + εk, k = 1,2, . . . ,

where δ is a nonnegative constant, and εk are independent and identically distributed
random variables, known as random shocks. If the random shocks are degenerate
at 0, then log(1 + Ik) is degenerate at δ, which matches with the relation between
fixed effective rate of interest i and the force of interest δ. In fact, the relation log(1+
i) = δ leads to the model log(1 + Ik) = δ + εk . One more interesting feature of this
model is that with log transformation it becomes a linear model in parameter δ. This
model is known as a long-term mean force of interest subject to random shocks.

Once a suitable model is found for random shocks, the distribution of Ik or corre-
sponding discount factor Vk or the random force of interest �k = log(1+ Ik) can be
found. Frequently, εk are assumed to have the N(0, σ 2) distribution. This assump-
tion is also well justified by the celebrated Central Limit Theorem in view of the
fact that εk can be visualized as an additive effect of many random factors which
affect interest rate. With εk having a normal distribution, entire further mathemat-
ics becomes simple. Firstly, log(1 + Ik) has the N(δ,σ 2) distribution, implies that
(1 + Ik) has the lognormal distribution with parameters δ and σ 2. From the first two
moments of lognormal distribution we get

E(1 + Ik) = exp
{
δ + σ 2/2

}
and Var(1 + Ik) = (eσ 2 − 1

)
e{2δ+σ 2}.

From the lognormal distribution of (1 + Ik) we can find the distribution of the dis-
count factor random variable Vn as follows. We have

Vn =
n∏

k=1

(1 + Ik)
−1 ⇔ logVn = −

n∑

k=1

log(1 + Ik).

Under the assumption that Ik , k = 1,2, . . . , n are independent and identically dis-
tributed random variables with log(1 + Ik) having the N(δ,σ 2) distribution,

logVn = −
n∑

k=1

log(1 + Ik) has the N
(−nδ,nσ 2) distribution,

and hence Vn has the lognormal distribution with parameters −nδ and nσ 2. Using
the formula for mean and variance of the lognormal distribution, we get

E(Vn) = e−n(δ−σ 2/2) and Var(Vn) = (enσ 2 − 1
)(

en(−2δ+σ 2)
)
.

As a consequence, we have

∗Ax = EV

{∑

k≥0

Vk+1 kpxqx+k

}
=
∑

k≥0

e−(k+1)(δ−σ 2/2)
kpxqx+k = Ax

(
δ′),
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where δ′ = δ −σ 2/2. Thus, ∗Ax is Ax calculated at the fixed force of interest δ′. On
similar lines, we compute the annuity functions. The actuarial present value of the
whole life annuity with unit benefit issued to (x) in this setup is given by

∗äx = EI

(∑

k≥0

Vk kpx

)
=
∑

k≥0

e−k(δ−σ 2/2)
kpx = äx

(
δ′).

Thus, for the annuity function, also ∗äx is äx calculated at the fixed force of inter-
est δ′. By the equivalence principle, the premium payable as a discrete life annuity
due for the unit benefit in the whole life insurance payable at the end of year of
death is given by

∗Px = ∗Ax

∗äx

.

The actuarial present values of benefit functions and annuity functions in single and
multiple decrement models and also in multi-state transition models are obtained
on similar lines, that is, first by conditioning on the interest rate and then taking the
expectation with respect to the distribution of the interest rate. With the lognormal
distribution of Vn, we get explicit expressions for many actuarial present values.
This may not be true for any arbitrary distribution of Vn.

Example 6.3.1 Suppose that interest rate random variable is modeled as log(1 +
Ik) = δ + εk , k = 1,2, . . . , where δ = 0.05, and εk follows N(0,0.001). Suppose
that the force of mortality follows Gompertz’ law given by μx = BCx with B =
0.0001 and C = 1.098.

(i) Find the premium payable as a whole life annuity due for the benefit of
Rs 1000/- payable at the end of year of death in a whole life insurance issued
to (25).

(ii) Find the same if the interest rate is deterministic with force of interest δ = 0.05.

Solution With the Gompertz law for mortality, with m = B/ logC, we have

kpx = e−mCx(Ck−1) and kpxqx+k = e−mCx(Ck−1) − e−mCx(Ck+1−1).

We use the formula for the premium as derived above with δ′ = 0.05 − 0.0005 =
0.0495. The following set of R commands finds the premium in both the cases:

e <- exp(1);
b <- 0.0001;
a <- 1.098;
m <- b/log(a, base=exp(1));
del <- 0.05;
d <- 0.001 # σ 2;
v <- e^(-(del-d/2));
x <- 25;
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k <- 0:(100-x);
y25 <- e^(-m*a^x*(a^k-1))-e^(-m*a^x*(a^(k+1)-1))

#P [K(x) = k];
s25 <- e^(-m*a^x*(a^k-1)) # kpx;
ab <- sum(v^(k+1)*y25) # ∗Ax;
ad <- sum(v^k*s25) # ∗äx;
p <- 1000*ab/ad # ∗Px;
ab; ad; p;

(i) We have

∗Ax = 0.1479758, ∗äx = 17.64214, and 1000 ∗Px = 8.39.

(ii) We use the same set of commands with σ 2 = d = 0, to find premium in the
deterministic interest rate with δ = 0.05. We get

Ax = 0.1455162, äx = 17.52048, and 1000Px = 8.31.

Remark 6.3.1 For the given mortality pattern and random interest rate, we find that
in Example 6.3.1, the premiums in the deterministic and random setups are quite
close. Such a closeness is a consequence of a small value of variance of the ran-
dom shocks. It is to be noted that value of variance of the random shocks cannot
be very large in light of possible values of log(1 + Ik), which are between 0 and
loge 2 = 0.69316 as Ik ranges from 0 to 1. Under the assumption of normality of
random shocks, with 99 % probability, −3σ ≤ εk ≤ 3σ , so that with 99 % probabil-
ity, −3σ + δ ≤ log(1 + Ik) ≤ 3σ + δ. A specified value of δ imposes conditions on
the possible values of σ , which are usually very small.

In this section, the randomness of the interest rate is captured by the parametric
models. With the normal distribution for the shock and with the assumption that
the rate of interest are independent and identically distributed random variables for
transaction periods under study, the actuarial present values of cash flows can be
easily computed. However, in practice, the assumption of independence may not
be acceptable in some cases. One can then adopt suitable time series models for the
interest rate over the periods in which the policy is in force. In the following section,
we discuss one time series model.

6.4 Time Series Models

Time series models such as autoregressive and moving average models are exten-
sively applied in a variety of situations. let Xk = log(1+Ik). Then the autoregressive
model of order one, AR(1), for {Xk, k ≥ 1} is given by

Xk − δ = φ(Xk−1 − δ) + εk,



6.4 Time Series Models 213

where εk is white noise in the sense that εk , k ≥ 1, have zero expectation and are
uncorrelated with common variance σ 2. The moving average model of order one,
MA(1), for {Xk, k ≥ 1} is given by

Xk − δ = εk − θεk−1, where εk is white noise, and ε0 is known.

AR(1) and MA(1) models are combined to give

Xk − δ = φ(Xk−1 − δ) + εk − θεk−1, where εk is white noise, and ε0 is known.

AR(1) model for differences is given by

Xk − Xk−1 = φ(Xk−1 − Xk−2) + εk, where εk is white noise.

In the following, we discuss MA(1) model given by Xk − δ = εk − θεk−1. In
this model, the force of interest has a long-term mean δ, and random economic
shocks create deviations from mean. The shock εk−1 for period k − 1 has a de-
layed and moderated impact on the force of interest in period k of size −θεk−1.
We assume that εk , k ≥ 1, are independent and each has N(0, σ 2) distribution. We
further assume that |θ | ≤ 1, so that the model is stationary. Under this model, with
Xk = log(1 + Ik), we have

(1 + Ik) = eXk = eδ+εk−θεk−1;
hence, the discount factor random variable is given by

Vn =
n∏

k=1

(1 + Ik)
−1 = e−∑n

k=1(δ+εk−θεk−1).

Hence,

logVn = −
n∑

k=1

(δ + εk − θεk−1) = −nδ − εn + θε0 − (1 − θ)

n−1∑

k=1

εk.

We have assumed that εk , k = 1,2, . . . , n, are independent and identically dis-
tributed random variables each having N(0, σ 2). Hence, the moment-generating
function M(t) of εk is given by M(t) = exp(t2σ 2/2). Further, it is known that the
moment-generating function of the sum of n independent and identically distributed
random variables is the nth power of the common moment-generating function. Us-
ing these results, we can find the expectation of Vn as follows:

E(Vn) = e−nδ+θε0M(−1)
(
M(θ − 1)

)n−1

= e−nδ+θε0+n(θ−1)2σ 2/2M(−1)
(
M(θ − 1)

)−1 = Ce−nδ′
,

n = 1,2, . . . , where C = eθε0M(−1)(M(θ − 1))−1 = eθε0+(1−(1−θ)2)σ 2/2 and δ′ =
δ − logM(θ − 1) = δ − (θ − 1)2σ 2/2. Once we have an expression for the expected
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value of Vn, we can compute the actuarial present values first by conditioning on
the interest rate and then taking the expectation with respect to the distribution of
the interest rate. Thus, we have

∗Ax = EI

{∑

k≥0

Vk+1 kpxqx+k

}
= C

∑

k≥0

e−(k+1)δ′
kpxqx+k = CAx

(
δ′).

On similar lines, äx is given by

∗äx = EI

(∑

k≥0

Vk kpx

)
= C

∑

k≥0

e−kδ′
kpx = Cäx

(
δ′).

By the equivalence principle, the premium payable as a discrete life annuity due for
the unit benefit payable at the end of year of death in the whole life insurance is
given by

∗Px = ∗Ax

∗äx

.

Other actuarial present values can be obtained on similar lines. The following ex-
ample illustrates the computation of premium under this model.

Example 6.4.1 Suppose that interest rate random variable is modeled by MA(1)
as log(1 + Ik) = δ + εk − θεk−1, k = 1,2, . . . , where δ = 0.05, θ = 0.6, ε0 = 0,
and εk follows N(0,0.001) distribution. Suppose that the force of mortality follows
Gompertz’ law given by μx = BCx with B = 0.0001 and C = 1.098. Find the
premium payable as a whole life annuity due for benefit of Rs 1000/- payable at the
end of year of death in a whole life insurance issued to (25).

Solution As in Example 6.3.1, with the Gompertz law for mortality, with m =
B/ logC, we have

kpx = e−mCx(Ck−1) and kpxqx+k = e−mCx(Ck−1) − e−mCx(Ck+1−1).

We use the formula for the premium as derived above with δ′ = 0.05 + (0.6 − 1)2 ×
0.0005 = 0.05008. The following set of R commands computes the premium:

e <- exp(1);
b <- 0.0001;
a <- 1.098;
m <- b/log(a, base=exp(1));
del <- 0.05;
d <- 0.001 # σ 2;
t <- 0.6 # θ = 0.6;
v <- e^(-(del-(t-1)^2*d/2));
x <- 25;
k <- 0:(100-x);
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Table 6.3 Interest rate
scenario l 1 2 3 4 5 Probability

1 0.060 0.060 0.060 0.060 0.060 0.35

2 0.060 0.065 0.066 0.068 0.069 0.20

3 0.060 0.057 0.055 0.054 0.052 0.20

4 0.060 0.063 0.057 0.059 0.054 0.25

y25 <- e^(-m*a^x*(a^k-1))-e^(-m*a^x*(a^(k+1)-1))
#P [K(x) = k];

s25 <- e^(-m*a^x*(a^k-1)) #kpx;
ab <- sum(v^(k+1)*y25) # ∗Ax;
ad <- sum(v^k*s25) # ∗äx;
p <- 1000*ab/ad # ∗Px;
p;

We have 1000 ∗Px = 8.32, again very close to that in (i) and (ii) of Example 6.3.1.

6.5 Exercises

6.1 It is given that q38 = 0.0013, q39 = 0.0014, q40 = 0.0016, q41 = 0.0017, and
q42 = 0.0019. Find the annual premium paid as a 5-year temporary discrete
annuity due, for the benefit of 1000, payable at the end of year of death, in
a 5-year term insurance, issued to (38) under the random interest scenario as
depicted in Table 6.3, where the ith row specifies the interest rates for the period
of 5 years, i = 1, . . . ,4. The last column specifies the probabilities attached to
four scenarios.

6.2 Suppose that interest rate random variable is modeled as log(1 + Ik) = δ + εk ,
k = 1,2, . . . , where δ = 0.06, and εk follows N(0,0.002). Suppose that the
force of mortality follows Makeham’s law given by μx = A + BCx with A =
0.0007, B = 0.0001, and C = 1.098.
(i) Find the premium payable as a whole life annuity due for the benefit of

Rs 1000/- payable at the end of year of death in a whole life insurance
issued to (30).

(ii) Find the same if the rate of interest is deterministic with the force of interest
δ = 0.06.

6.3 Suppose that the interest rate random variable is modeled as MA(1) as log(1 +
Ik) = δ + εk − θεk−1, k = 1,2, . . . , where δ = 0.06, θ = 0.5, ε0 = 0, and εk

follows N(0,0.002) distribution. Suppose that the force of mortality follows
Makeham’s law given by μx = A + BCx with A = 0.0007, B = 0.0001, and
C = 1.098. Find the premium payable as a whole life annuity due for the benefit
of Rs 1000/- payable at the end of year of death in a whole life insurance issued
to (30).
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