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Preface 

This book has grown out of lectures given in first- and second-year graduate 
courses at Yale University and the University of Michigan. It is designed as 
a text for graduate level courses in multivariate statistical analysis, and I 
hope that it may also prove to be useful as a reference book for research 
workers interested in this area. 

Any person writing a book in multivariate analysis owes a great debt to 
T. W. Anderson for his 1958 text, An Introduction 10 Multivariate Statistical 
Analysis, which has become a classic in the field. This book synthesized 
various subareas for the first time in a broad overview of the subject and has 
influenced the direction of recent and current research in theoretical multi- 
variate analysis. It is also largely responsible for the popularity of many of 
the multivariate techniques and procedures in common use today. 

The current work builds on the foundation laid by Anderson in 1958 and 
in large part is intended to describe some of the developments that have 
taken place since then. One of the major developments has been the 
introduction of zonal polynomials and hypergeometric functions of matrix 
argument by A. T. James and A. G. Constantine. To a very large extent 
these have made possible a unified study of the noncentral distributions that 
arise in multivariate analysis under the standard assumptions of normal 
sampling. This work is intended to provide an introduction to some of this 
theory. 

Most books of this nature reflect the author’s tastes and interests, and 
this is no exception. The main focus of this work is on distribution theory, 
both exact and asymptotic. Multivariate techniques depend heavily on 
latent roots of random matrices; all of the important latent root distribu- 
tions are introduced and approximations to them are discussed. In testing 
problems the primary emphasis here is on likelihood ratio tests and the 
distributions of likelihood ratio test statistics, The noncentral distributions 
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are needed to evaluate power functions. Of course, in the absence of “best” 
tests simply computing power functions is of little interest; what is needed is 
a comparison of powers of competing tests over a wide range of alternatives. 
Wherever possible the results of such power studies in the literature are 
discussed. I I should be mentioned, however, that although the emphasis is 
on likelihood ratio statistics, many of the techniques introduced here for 
studying and approximating their distributions can be applied to other test 
statistics as well. 

A few words should be said about the material covered i n  the text. 
Matrix theory is used extensively, and matrix factorizations are extremely 
important. Most of the relevant material is reviewed in the Appcndix, but 
some results also appear in the text and as exercises. Chapter I introduces 
the multivariate normal distribution and studies its properties, and also 
provides an introduction to spherical and elliptical distributions. These form 
an important class of non-normal distributions which have found increasing 
use in robustness studies where the aim is to determine how sensitive 
existing multivariate techniques are to multivariate normality assumptions. 
In  Chapter 2 many of the Jacobians of transformations used in the text are 
derived, aiid a brief introduction to invariant measures via exterior differen- 
tial forms is given. A review of rnatrix Kronecker or direct products is also 
included here, The reason this is given at this point rather than in the 
Appendix is that very few of the students that I have had i n  multivariate 
analysis courses have been familiar with this product, which is widely used 
in later work. Chapter 3 deals with the Wishart and multivariate beta 
distributions and their properties. Chapter 4, on decision-theoretic estima- 
tion of the parameters of a multivariate normal distribution, is rather an 
anomaly. I would have preferred to incorporate this topic in one of the 
other chapters, but there seemed to be no natural place for it. The niaterial 
here is intended only as an introduction and certainly not as a review of the 
current state of the art. Indeed, only admissibility (or rather, inadmissibility) 
results are presented, and no mention is even made of Bayes procedures. 
Chapter 5 deals with ordinary, multiple, and partial correlation coefficients. 
An introduction to invariance theory and invariant tests is given in  Chapter 
6. I t  may be wondered why this topic is included here i n  view of the 
coverage of the relevant basic material in  the books by E. L.. L.ehmann, 
Testing Statistical Hypotheses, and T. S .  Ferguson, Mathenintical Statistics: 
A Decision Theoretic Approach. The answer is that most of the students that 
have taken my multivariate analysis courses have been unfamiliar with 
invariance arguments, although they usually meet them in subsequent 
courses. For this reason I have long felt that an introduction to invariant 
tests in a multivariate text would certainly not be out of place. 
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Chapter 7 is where this book departs most significantly from others on 
multivariate statistical theory. Here the groundwork is laid for studying the 
noncentral distribution theory needed in subsequent chapters, where the 
emphasis is on testing problems in standard multivariate procedures. Zonal 
polynomials and hypergeometric functions of matrix argument are intro- 
duced, and many of their properties needed in later work are derived. 
Chapter 8 examines properties, and central and noncentral distributions, of 
likelihood ratio statistics used for testing standard hypotheses about covari- 
ance matrices and mean vectors. An attempt is also made here to explain 
what happens if these tests are used and the underlying distribution is 
non-normal. Chapter 9 deals with the procedure known as principal compo- 
nents, where much attention is focused on the latent roots of the sample 
covariance matrix. Asymptotic distributions of these roots are obtained and 
are used in various inference problems. Chapter 10 studies the multivariate 
general linear model and the distribution of latent roots and functions of 
them used for testing the general linear hypothesis. An introduction to 
discriminant analysis is also included here, although the coverage is rather 
brief. Finally, Chapter I I deals with the problem of testing independence 
between a number of sets of variables and also with canonical correlation 
analysis. 

The choice of the material covered is, of course, extremely subjective and 
limited by space requirements. There are areas that have not been men- 
tioned and not everyone will agree with my choices; I do believe, however, 
that the topics included form the core of a reasonable course in classical 
multivariate analysis. Areas which are not covered in the text include factor 
analysis, multiple time series, multidimensional scaling, clustering, and 
discrete multivariate analysis. These topics have grown so large that there 
are now separate books devoted to each. The coverage of classification and 
discriminant analysis also is not very extensive, and no mention is made of 
Bayesian approaches; these topics have been treated in depth by Anderson 
and by Kshirsagar, Multivariate Analysis, and Srivastava and Khatri, An 
Introduction to Multioariate Statistics, and a person using the current work 
as a text may wish to supplement it with material from these references. 

This book has been planned as a text for a two-semester course in 
multivariate statistical analysis. By an appropriate choice of topics it can 
also be used in a one-semester course. One possibility is to cover Chapters 1, 
2, 3, 5,  and possibly 6, and those sections of Chapters 8, 9, 10 and 1 I which 
do not involve noncentral distributions and consequently do not utilize the 
theory developed in Chapter 7. The book is designed so that for the most 
part these sections can be easily identified and omitted if desired. Exercises 
are provided at the end of each chapter. Many of these deal with points 
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which are alluded to in the text but left unproved. A few words are also in 
order concerning the Bibliography. I have not felt it necessary to cite the 
source of every result included here. Many of the original results due to such 
people as Wilks, Hotelling, Fisher, Bartlett, Wishart, and Roy have become 
so well known that they are now regarded as part of the folklore of 
multivariate analysis. T. W. Anderson’s book provides an extensive bib- 
liography of work prior to 1958, and my references to early work are in- 
discriminate at best, I have tried to be much more careful concerning 
references to the more recent work presented in this book, particularly in 
the area of distribution theory. No doubt some references have been missed, 
but I hope that the number of these is small. Problems which have been 
taken from the literature are for the most part not referenced unless the 
problem is especially complex or the reference itself develops interesting 
extensions and applications that the problem does not cover. 
This book owes much to many people. My teachers, A. T. James and 

A. G. Constantine, have had a distinctive influence on me and their ideas 
are in evidence throughout, and especially in Chapters 2, 3, 7, 8, 9, 10, and 
11. I am indebted to them both. Many colleagues and students have read, 
criticized, and corrected various versions of the manuscript. J. A. Hartigan 
read the first four chapters, and Paul Sampson used parts of the first nine 
chapters for a course at the University of Chicago; I am grateful to both for 
their extensive comments, corrections, and suggestions. Numerous others 
have also helped to weed out errors and have influenced the final version; 
especially deserving of thanks are D. Bancroft, W. J. Glynn, J. Kim, M. 
Kramer, R. Kuick, D. Marker, and J. Wagner. I t  goes without saying that 
the responsibility for all remaining errors is mine alone. I would greatly 
appreciate being informed about any that are found, large and small. 

A number of people tackled the unenviable task of typing various parts 
and revisions of the manuscript. For their excellent work and their patience 
with my handwriting 1 would like to thank Carol Hotton, Terri Lomax 
Hunter, Kelly Kane, and Deborah Swartz. 

RODD J. MUIRMEAD 

Ann Arbor, Mirhrgun 
February I982 
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CHAPTER 1 

The Multivariate Normal and 
Related Distributions 

1 .  I .  INTRODUCTION 

The basic, central distribution and building block in classical multivariate 
analysis is the multivariate normal distribution. There are two main reasons 
why this is so. First, it is often the case that multivariate observations are, at 
least approximately, normally distributed. This is especially true of sample 
means and covariance matrices used in formal inferential procedures, due to 
a central limit theorem effect. This effect is also felt, of course, when the 
observations themselves can be regarded as sums of independent random 
vectors or effects, a realistic model in many situations. Secondly, the 
multivariate normal distribution and the sampling distributions it gives rise 
to are, in the main, tractable. This is not generally the case with other 
multivariate distributions, even for ones which appear to be close to the 
normal. 

We will be concerned primarily with classical multivariate analysis, that 
is, techniques, distributions, and inferences based on the multivariate nor- 
mal distribution. This distribution is defined in Section 1.2 and various 
properties are also derived there. This is followed by a review of the 
noncentral x 2  and F distributions in Section 1.3 and some results about 
quadratic forms in normal variables in Section 1.4. 

A natural question is to ask what happens to the inferences we make 
under the assumption of normality if the observations are not normal. This 
is an important question, leading into the area that has come to be known 
generally as robustness. In Section 1.5 we introduce the class of elliptical 
distributions; these distributions have been commonly used as alternative 
models in robustness studies. Section 1.6 reviews some results about multi- 
variate cumulants. For our purposes, these are important in asymptotic 
distributions of test statistics which are functions of a sample covariance 
matrix. 
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2 The Mulriourruie Normul und Related Uisrributions 

It is expected that the reader is familiar with basic distributions such as 
the normal, gamma, beta, t ,  and F and with the concepts of jointly 
distributed random variables, marginal distributions, moments, conditional 
distributions, independence, and related topics covered in such standard 
probability and statistics texts as Bickel and Doksum (1977) and Roussas 
(1973). 

Characteristic functions and basic limit theorems are also important and 
useful references are CramCr (1946). Feller (1971), and Rao (1973). Matrix 
notation and theory is used extensively; some of this theory appears in the 
text and some is reviewed in the Appendix. 

I .2. T H E  MULTIVARIATE NORMAL DISTRIBUTION 

1.2.1. Definition and Properiies 

Before proceeding to the multivariate normal distribution we need to define 
some moments of a random vector, i.e., a vector whose components are 
jointly distributed. The mean or expectation of a random M X I vector 
X=( XI, . . . ,&, ) '  is defined to be the vector of expectations: 

More generally, if Z=(z,,) i s  a p X 4 random matrix then E ( Z ) ,  the 
expectation of Z, is the matrix whose i - j th  element is E ( z , , ) .  I t  is a simple 
matter Lo check that i f  8, C and D are m X p, q X n and m X n matrices of 
constants, then 

(1 )  E( BZC + D )  = BE( Z ) C  + D .  

If X has mean p the covariance matrix of X is defined to be the m X rn 
matrix 

I: rCov(X)= E[(X-p)(X-p)q. 

The i - j th  element of Z is 
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the covariance between XI and 3, and the i-ith element is 

the variance of X,, so that the diagonal elements of Z must be nonnegative. 
Obviously Z is symmetric, i.e., Z=Z'. Indeed, the class of covariance 
matrices coincides with the class of non-negative definite matrices. Recall 
that an m X m symmetric matrix A is called non-negative definite if 

a ' A a 2 0  for all a€ R"' 

and positive definite if 

a'Aa>O forall a E R " ' ,  a # O  

(Here, and throughout the book, R"' denotes Euclidean space of m dimen- 
sions consisting of m X 1 vectors with real components.) 

LEMMA 1.2.1. The m X m matrix Z is a covariance matrix if and only if 
i t  is non-negative definite. 

Proof. Suppose Z is the covariance matrix of a random vector X, where 
X has mean p ,  Then for all a €  R", 

= E [ a ' ( X - p ) ( X - p ) ' a ]  

= a'Xa 8 0  

so that Z is non-negative definite. Now suppose 2 is a non-negative definite 
matrix of rank r, say ( I  5 m). Write Z = CC', where C is an m X r matrix of 
rank r (see Theorem A9.4). Let Y be an r X 1 vector of independent random 
variables with mean 0 and Cov(Y)= I and put X= CY. Then E(X)=O and 

Cov(X) = E[XX'] = E [  c WC']  

= CE(W')C' 

= CC'= 2, 

sb that Z is a covariance matrix. 
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As a direct consequence of the inequality (2) we see that if the covariance 
matrix 2 of a random vector X is not positive definite then, with probability 
1, the components X, of X are linearly related. For then there exists a€ R", 
a ZO, such that 

Var( a ' X )  = a'Za =O 

so that, with probability 1, a'X= k ,  where k = a'E(X)-which means that 
X lies in a hyperplane. 

We will commonly make linear transformations of random vectors and 
will need to know how covariance matrices are transformed. Suppose X is 
an rn X 1 random vector with mean p,  and covariance matrix Z, and let 
Y = B X + b ,  where B is k X m  and b is k X l .  The mean of Y is, by ( l ) ,  
py = 8 p x  +b, and the covariance matrix of Y is 

= E [  ( B X +  b- ( Bpx + b))( BX -t- b - ( Bpx + b))'] 

= BE[(X-Cx)(X-Px)'] B' 

.= BC,B'. 

In order to define the multivariate normal distribution we will use the 
following result. 

THEOREM 1.2.2. If X is an m X I random vector then its distribution is 
uniquely determined by the distributions of linear functions a'X, for every 
a E R r n .  

ProoJ The characteristic function of a 'X is 

+(r ,a )=  E[e"a 'x ]  

so that 

which, considered as a function of a, is the characteristic function of X (i.e,, 
the joint characteristic function of the components of X). The required 
result then follows by invoking the fact that a distribution in R"' is uniquely 
determined by its characteristic function [see, e.g., Cramtr (1946), Section 
10.6, or Feller (197 I), Section XV.71. 
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DEFINITION 1.2.3. The m X  1 random vector X is said to have an 
m-variate normal distribution if, for every a €  R“‘, the distribution of a’X is 
univariate normal. 

Proceeding from this definition we will now establish some properties of 
the multivariate normal distribution. 

THEOREM 1.2.4. If X has an m-variate normal distribution then both 
p = E(X) and X =Cov(X) exist and the distribution of X is determined by p 
and 2. 

If X=( X,,. , .,X,,,)’ then, for each i =  1,. . .,tn, XI is univariate 
normal (using Definition 1.2.3) so that E ( X , )  and Var(X,) exist and are 
finite. Thus Cov( X,,  X,) exists. (Why?) Putting p = E(X) and X =Cov(X), 
we have, from (1) and (9, 

Prooj. 

E( a ’ X )  = a‘p 

and 

Var( a’X) = a’Za  

so that the distribution of a’X is N(a’p ,  a’&) for each a €  Rm. Since these 
univariate distributions are determined by p and 2 so is the distribution of 
X by Theorem 1.2.2. 

The m-variate normal distribution of the random vector X of Theorem 
1.2.4 will be denoted by N,,,(p, Z) and we will write that X is Nm(p, 2). 

THEOREM 1.2.5. If X is N&, 2 )  then the characteristic function of X is 

(4) +,,( t) = exp( ip’t - 5 t’Z t ) .  

Proofi Here 

where the right side denotes the characteristic function of the random 
variable t’X evaluated at 1. Since X is Nm(p,2)  then t’X is N(t’p,t‘Xt) so 
that 

q+,x( I )  = exp( it’p - 4 t’Zt), 

completing the proof. 
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The alert reader may have noticed that we have not yet established the 
existence of the multivariate normal distribution. It could be that Definition 
1.2.3 is vacuous! To sew things up we will show that the function given by 
(4) is indeed the characteristic function of a random vector. Let Z be an 
m X rn covariance matrix (i.e., a non-negative definite matrix) of rank r and 
let U,,. , ,, r/, be independent standard normal random variables. The vector 
U=(V,,  ..., 4)’ has characteristic function 

+“(t) = E[exp(  it'^)] 
I 

= fl E[exp( if,V,)] 

= fl  exp( - i f ,?)  

= exp( - 4 t‘t) . 

(by independence) 
J = I  

r 

(by normality) 
J ’ I  

Now put 

( 5 )  x=cu+p 

where C is an m X r matrix of rank r such that Z = CC’, and pE R’”. Then 
X has characteristic function (4), for 

~ [ e x p ( i t ’ ~ ) ]  = ~ [ e x p ( i t ’ ~ ~ ) ]  exp(it’p) 

= +“( C’t) exp( it’p) 

= exp( - 4 t’CC’t) exp( ip’t) 

= exp( ip’t - f t’Xt). 

It is worth remarking that we could have defined the multivariate normal 
distribution N,,,(p, 2) by means of the linear transformation ( 5 )  on indepen- 
dent standard normal variables. Such a representation is often useful; see, 
for example, the proof of Theorem 1.2.9. 

Getting back to the properties of the multivariate normal distribution our 
next result shows that any linear transformation of a normal vector has a 
normal distribution. 

THEOREM 1.2.6. I f  X is N,,(p,  2 )  and B is k X m,  b is k X 1 then 

Y = B X +  b is N,( B p  + b, BZB‘). 
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Proof. The fact that Y is k-variate normal is a direct consequence of 
Definition 1.2.3, since all linear functions of the components of Y are linear 
functions of the components of X and these are all normal. The mean and 
covariance matrix of Yare clearly those stated. 

A very important property of the multivariate normal distribution is that 
all marginal distributions are normal. 

THEOREM 1.2.7. If X is N,,,(p, Z) then the marginal distribution of any 
subset of k(  < m) components of X is k-variate normal. 

Proof. This follows directly from the definition, or from Theorem 1.2.6. 
For example, partition X, p, and I: as 

where X, and p ,  are k X 1 and Z,,  is k X k. Putting 

B = [ I , : O ]  ( k x m ) ,  b=O 

in Theorem 1.2.6 shows immediately that XI is N k ( p I ,  Z,,). Similarly, the 
marginal distribution of any subvector of k components of X is normal, 
where the mean and covariance matrix are obtained from p and 2 by 
picking out the corresponding subvector and submatrix in an obvious way. 

One consequence of this theorem (or of Definition 1.2.3) is that the 
marginal distribution of each component of X is univariate normal. The 
converse is not true in general; that is, the fact that each component of a 
random vector is (marginally) normal does not imply that the vector has a 
multivariate normal distribution. [This is one reason why the problem of 
testing multivariate normality is such a thorny one in practice. See Gnana- 
desikan (1977), Chapter 5.1 As a counterexample, suppose U,, U,, U, are 
independent N(0, 1) random variables and Z is an arbitrary random variable, in- 
dependent of UI, U, and U3. Define X, and X, by 

U2 + Z U3 
x2= 111+3 - 

Conditional on 2, XI is N(0, I ) ,  and since this distribution does not depend 
on Z it is the unconditional distribution of XI. Similarly X, is N(0, I). Again, 
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conditional on 2, the joint distribution of XI and X 2  is bivariate normal but 
the unconditional distribution clearly need not be. Other examples are given 
in Problems 1.7, 1.8, and 1.9. Obviously the converse is true if the compo- 
nents of X are all independent and normal, or if X consists of independent 
subvectors, each of which is normally distributed. For then linear functions 
of the components of X are linear functions of independent normal random 
variables and hence are normal. This fact will be used in the proof of the 
next theorem. 

The reader will recall that independence of two random variables implies 
that the covariance between them, if it exists, is zero, but that the converse is 
not true in general. It is, however, for the multivariate normal distribution, 
as the following result shows. 

THEOREM 1.2.8. If X is A’,,,@, 2) and X, p ,  and I: are partitioned as 

( “ I ) ,  ( P I ) ,  .=( 211 2”) 
!= I 4 2  2 2 ,  = 2 2  ’ 

X= 
x2 

where XI and p ,  are k X I and Z,, is k X k, then the subvectors XI  and X2 
are independent if and only if Z,, =O. 

Pruut Z,, is the matrix of covariances between the components of X, 
and the components of X,, so independence of XI and X, implies that 
C,, =O. Now suppose that 2,2 =O. Let Y,,Y2 be independent random 
vectors where Y, is A’&,, XI,) and Y2 is Nm-,(p2, Z22) and put Y =(Y;,Y;)’. 
Then both X and Y are Nm(p, Z), where 

so that they are identically distributed. Hence XI and X2 are independent. 
Alternatively this result is also easily established using the fact that the 
characteristic function (4) of X factors into the product of the characteristic 
functions of XI and X, when Z,, = O  (see Problem 1. I )  

Theorem 1.2.8 can be extended easily and in an obvious way to the case 
where X is partitioned into a number of subvectors (see Problem I .2). The 
important message here is that in order to determine whether two subvec- 
tors of a normally distributed vector are independent it suffices to check 
that the matrix of covzriances between the two subvectors is zero. 

Let us now address the problem of finding the density function of a 
random vector X having the N,,,(p, X) distribution. We have already noted 
that if Z is not positive definite, and hence is singular, then X lies in some 
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hyperplane with probability 1 so that a density function for X (with respect 
to Lebesgue measure on R") can not exist. In this case X is said to have a 
singular normal distribution. If 2 is positive definite, and hence nonsingular, 
the density function of X does exist and is easily found using the representa- 
tion ( 5 )  of X in terms of independent standard normal random variables. 

THEOREM 1.2.9. If X is N,,,(p, I:) and I: is positive definite then the 
density function of X is 

(6 )  L(x)  = (2n)- "'12(det 2)- ' I 2  exp[ - $ (x - p)'Z'-'(x - p )] . 

(Here, and throughout the book, det denotes determinant.) 

ProoJ Write Z = CC' where C is a nonsingular m X m matrix and put 

x=cu+p, 

where U is an m X 1 vector of independent N ( 0 , l )  random variables, i.e., U 
is N,,,(O, I,,,). The joint density function of U I ,  . . , , Urn is 

ju (u)=  II (2n)-'12exp( - ju:) 
tN 

J = l  

= (2a) - '"I2exp( - iu'u). 

The inverse transformation is U= B(X- p ) ,  with B = C - ' ,  and the Jacobian 
of this transformation is 

detl i = det 

=det B=detC-'=(detC)- '  

= [det(CC')]-Ii2 =(det 2) - I i2  

so that the density function of X is 

f , ( x )  = (2n).- ,,,12(det 2)-"*exp[ - f (x- p)'C-''Cc-'(x- p ) ]  ; 

and since Z-'  = C-I'C-', we are done. 
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The density function (6) is constant whenever the quadratic form in the 
exponent is, so that it is constant on the ellipsoid 

in Rm, for every k >O. This ellipsoid has center p,  while C determines its 
shape and orientation. 

It is worthwhile looking explicitly at the bivariate normal distribution 
( m  =2). In this case 

and 

where Var( XI)= a:, Var( X2)= a:, and the correlation between XI and X, is 
p. For the distribution of X to be nonsingular normal we need a f 1 0 ,  
a; >O, and 

det 2 = ufo;( 1 - p2)=-0 

so that - 1 < p  < 1. When this holds, 

and the joint density function of XI and X2 is 

(7) 
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The "standard" bivariate normal density function is obtained from this by 
transforming to standardized variables. Putting 2, =( X,  - pl) /ul  ( i  = 1,2), 
the joint density function of Z ,  and 2, is 

This density is constant on the ellipse 

(9) 
1 -( z ;  + 2; - 2 p z , z 2 ) =  k 

1-p2 

in R Z ,  for every k>O. (Some properties of this ellipse are explored in 
Problem 1.3.) 

In order to prove the next theorem we will use the following lemma. In 
this lemma the notations R( M )  and K ( M )  for an n X r matrix M denote the 
range (or column space) and kernel (or null space) respectively: 

(10) R ( M ) = ( v E R " ;  v=Mu forsome u E R ' )  

Clearly R( M )  is a subspace of R", and K( M )  is a subspace of R'. 

LEMMA 1.2.10. 
partitioned as 

If the m X m matrix Z is non-negative definite and is 

where XI, is k X k and X,, is (m - k ) X ( m  - k )  then: 

(a) K(.,,)C K(.I,) 

(b) R ( X , , ) C  R ( Z 2 2 )  

Proob (a) Suppose z E K( 2,*). Then, for all y E R k  and a €  R' we have 

= y'Z, , y + 2ay'I: 12 z 

20 

(because ZZ2z = 0)  

(because Z is non-negative definite). 
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Taking y =  Z12z then gives 

Z ' Z ~ ~ Z  I I 2 ,2 z + 2a( Z12 z)'( Z I2 z) 24) 

for dl a, which means that Z122=0, i.e., z E K ( Z , , ) .  Hence K(Z,,)C 
K(Z12),  Then, part (b) follows immediately on noting that K(Z12)L C 
K(X,,)", where K ( M ) *  denotes the orthogonal complement of K ( M )  [i.e., 
the set of vectors orthogonal to every vector in K( M ) ]  and using the easily 
proved fact that 

(12) K( M)' = R( M'). 

Our next theorem shows that the conditional distribution of a subvector 
of a normally distributed vector given the remaining components is also 
normal. 

THEOREM 1.2.1 1. Let X be N,,,(p, Z) and partition X, p and Z as 

where XI and pI are k X 1 and X l l  is k X k. Let X i 2  be a generalized inverse 
of Z,,, i.e., a matrix satisfying 

(13) Z22Z,Zz, = 22, 

and let 2 1 1 . 2 = Z l I  -Z12Z;2X21. Then 

(a) X, -Z12&iX2 is %(PI - Z ~ Z X U P ~ , & I . ~ )  

and is independent of X,, and 

(b) the conditional distribution of XI given X, is 

~~(cl,+~lz~,(x,-cl2),~II.2). 

Prook From Lemma 1.2.10 we have R ( Z , , ) c R ( Z , , )  so that there 
exists a k X ( m  - k) matrix E satisfying 

Now note that 
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where we have used (13) and (14). Put 

' m - k  

then, by Theorem 1.2.6, 

is m-variate normal with mean 

and covariance matrix 

The firs: assertion (a) is a direct consequence of Theorems 1.2.7 and 1.2.8 
while the second (b) follows immediately from (a) by conditioning on X,. 

When :he matrix C2, is nonsingular, which happens, for example, when Z 
is nonsingular, then 2, = 2,' and L ' l l . 2  = X I I  - X122~1L121. The theorem 
is somewhat easier to prove in this case. 

The mean of the conditional distribution of XI given X,, namely, 

is called the regression function of X, on X, with matrix of regression 
coefficients Z,,Z;. It is a linear regression function since it depends 
linearly on the variables X, being held fixed. The covariance matrix 2, I .  of 
:he conditional distribution of XI given X, does nor depend on X,, the 
variables being held fixed. 
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There are many characterizations of the multivariate normal distribution. 
We will look at just one; others may be found in Rao (1973) and Kagan 
et al. (1972). We will need the following famous result due to CramCr 
(1937), which characterizes the univariate normal distribution. 

LEMMA 1.2.12. If X and Y are independent random variables whose sum 
X + Y is normally distributed, then both X and Y are normally distributed. 

A proof of this lemma is given by Feller (lY71), Section XV.8. 

THEOREM 1.2.13. If the m X 1 random vectors X and Y are independent 
and X + Y  has an m-variate normal distribution, then both X and Y are 
normal. 

Proo/. For each aE A", a'(X3- Y)= a 'X+ a'Y is normal (by Definition 
1.2.3, since X+Y is normal). Since a'X and a'Y are independent, Lemma 
1.2.12 implies that they are both normal, and hence X and Y are both 
m-variate normal. 

This proof looks easy and uses the obvious trick of reducing the problem 
to a univariate one by using our definition of multivariate normality. We 
have, however, glossed over the hard part, namely, the proof of Lemma 
1.2.12. 

A well-known property of the univariate normal distribution is that 
linear combinations of independent normal random variables are normal. 
This generalizes to the multivariate situation in an obvious way. 

THEOREM 1.2.14. If X ,,..., X, are all independent, and XI is N,,,(p,, C,)  
for i = 1,. . ., N, then for any fixed constants a ,,.. .,aN, 

The proof is immediate from Definition 1.2.3, or by inspection of the 
characteristic function of Efl=,a,X,. It is left to the reader to fill in the 
details (Problem 1.5). 

COROLLARY 1.2.15. If X,, ..., X N  are independent, each having the 
N,(p, Z) distribution, then the distribution of the sample mean uector 

- l N  x=- 2 XI 
N l = ,  
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1.2.2. Asymptotic Distributions of Sample Means and Covariance Matrices 

Corollary 1.2.15 says that the distribution of 

is N,,,(O, 2): When the vectors XI,, . .,X, are not normal we still have 

1 
E(%) = p and Cov(2) = ~ 2 ,  

but it is the asymptotic distribution which is normal, as the following 
version of the mulfivariafe central limit fheorem due to Cram& (l946), 
Sections 2 1.1 1 and 24.7, and Anderson (1958), page 74, shows. 

THEOREM 1.2.16. Let X,,X2, ... be a sequence of independent and 
identically distributed random vectors with mean p and covariance matrix Z 
and let 

Then, as N -+ 00, the asymptotic distribution of 

N 
N’12( jZN - p ) =  N - ” * , z l  (X,-p) 

is NJO, 2). 
Proof: Put YN = N -  1/22fl= , ( X I  - p).  By the continuity theorem for 

characteristic functions [see Cram& (1946), Section 10.71, it  suffices to show 
that +,,,(t), the characteristic function of YN, converges to exp( - tt’Xt), the 
characteristic function of the N,,,(O, 2 )  distribution. Now, the characteristic 
function of t’Y,,, where t E R”, is 

f N ( a ,  t) = E[exp(iat‘yN) 3 ,  
considered as a function of a €  R’. Also 
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and since t'X, - t'p, t'X, - t'p,. . . is a sequence of independent and identi- 
cally distributed random variables with zero mean and variance t'Zt, it 
follows by the univariate central limit theorem that, as N -, 00, the asymp- 
totic distribution of t'YN is N(0, t'2t) and, hence, as N --, 00 
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jN(a,t)-+exp( - fa*t'Ct) 

for all t and a, where the right side is the characteristic function of the 
N(0,  t'Zt) distribution. Putting a= I shows that 

as N -+ a, which completes the proof. 

sample of size N from any m-variate distribution and suppose 
To introduce an application of this theorem, let X [,. . . , X,,, be a random 

f i ( X , ) = p ,  C o v ( X , ) = X  ( i = l ,  ..., N). 

Put 

1 
n S = - A  

where 

r=I 

n = N- 1, and g= N-'C[V=,X,.  The m X m matrix S is called the sample 
cooariance matrix and is an unbiased estimate of Z, that is, E ( S ) =  2. To 
see this, write A as 

N 

r = l  
= z ( X I  -p)(X, - p ) ' -  N ( X - p ) ( % - p ) ' .  
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Then, 

= ( N -  1)C 

= n X  

so that E(n- ’A)= E ( S ) = Z .  

In a moment we will show that the asymptotic joint distribution of the 
elements of A is normal. 

First, some notation and terminology. If T is a p X q matrix then by 
vec(T) we mean the p q  X I vector formed by stacking the columns of T 
under each other; that is, if 

T = [ t ,  t2...tl], 

where t ,  is p X 1 for i = I , .  . . ,q ,  then 

When we talk about the asymptotic normality of a random matrix T (as in 
Theorem 1.2.17 below) we will mean the asymptotic normality of vec( T). 

Now, from (19), we have 

N 
A ( N ) =  2 Z , - N B ( N ) ,  

r = l  

where 2, =(X, -p)(X, -p ) ’ ,  B ( N ) = ( % , - p ) ( % , - p ) ‘ ,  and we are 
indexing A, % and B by N to reflect the fact that they are formed from the 
first N random vectors X, ,  . . .,X,. Hence 

N 
vec( A( N)) = 2 vec( Z,) - Nvec( B( N)), 

i = l  
(22) 
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where these vectors are all m2 X 1. Let 

V=Cov(vec( 2,)) 

(assuming this exists), then by Theorem 1.2.16 

I N  - [vec(Z,)--vec(X)] -. N,I(O,V) 
N'12 , = I  

(23) 

in distribution, as N -00. Again, by Theorem 1.2.16 

N ' l 2 ( g N  - p ) -  N,(O, 2) 

in distribution as N -t 00, and 

in probability. [This means that each component y (  N), say, of the vector 
on the left converges to zero in probability, i.e., for each E > O ,  
limN,,P(IV,(N)I>e)=O. A similar definition holds for random matrices 
also.] Thus 

in probability and hence 

I - Nvec( f?( A'))= N '12vec( B( N )) -, 0 (24) "/2 

in probability as 14 ---. 00. 
As a consequence of (23) and (24) we then have 

in distribution as N -00. [Here we have used the fact that if Y,,, -Y in 
distribution and Z, -0  in probability, then Y,,, +Z, -Y in distribution; 
see, e.g., Rao (1973, Section 2c.I 
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We can summarize our results in the following: 

THEOREM 1.2.17. Let Xl,X2, ... be a sequence of independent and 
identically distributed m X I random vectors with finite fourth moments and 
mean p and covariance matrix 2 and let 

N 
A ( N ) =  2 ( X i  -sz,)(x, -%,)# 

r = l  

where 

N - 
x ~ = N - '  2 x,. 

r = 1  

Then the asymptotic distribution of 

T( N ) = N - I /2[  A ( N ) - N z] 

is normal with mean 0 and covariance matrix 

Y=Cov[vec((X, -p)(xI - p ) ' ) ] .  

The following corollary expresses this asymptotic result in terms of the 
sample covariance matrix. 

COROLLARY 1.2.18. Let n = N - 1 and put S ( n ) =  n - ' A ( N ) .  Under the 
conditions of Theorem 1.2.17 the asymptotic distribution of U(n)= 
nil2[ S( n) - Z] is normal with mean 0 and covariance matrix V. 

This follows directly from Theorem 1.2.17 by putting A ( N ) =  nS(n) and 
replacing N by n, a modification which clearly has no effect on the limiting 
dislri but ion. 

Note that this asymptotic normal distribution is singular, because V is 
singular. This is due to the fact V is the m2 X m2 Covariance matrix in the 
asymptotic distribution of vec(T( N ) )  or vec(U(n)) and, because T ( N )  and 
V( n) are symmetric, these vectors have repeated elements. 

In general, given an underlying distribution for the X,, it is rather tedious 
(in terms of the algebraic manipulation involved) to find the elements of the 
asymptotic covariance matrix, since this involves finding all the fourth order 
mixed moments of the distribution. However, the calculations are fairly 
straightforward when sampling from a N,,,(p, Z) distribution. In this case 
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the elements of the asymptotic covariance matrix are given by 

(see Problem 1.6). For general distributions the asymptotic covariances have 
been expressed in terms of the cumulants by Cook (1951) and others; this 
work will be reviewed in Section 1.6. 

1.3. T H E  N O N C E N T R A L  x 2  A N D  F DISTRIBUTIONS 

Many statistics of interest in multivariate analysis and elsewhere have 
noncentral x 2  and F distributions. Usually these distributions occur when a 
null hypothesis of interest is not true, hence the terms “non-null” and 
“noncentral.” Here we will review these two distributions, and this will 
afford us an opportunity to introduce some definitions and notation that 
will be used later. 

DEFINITION 1.3.1. The generalized hypergeometric function (or series) 
is 

where (a)k = u(a + 1) * * - ( a  + k - 1). 

Here a,, . . . ,a  , h , ,  . . . ,bq are (possibly complex) paramclers and z ,  the 
urgumenl of the function, is a complex variable. No denotninator parameter 
bJ is allowed to be zero or a negative integer (otherwise one of the 
denominators in the series is zero), and, if any numerator parameter is zero 
or a negative integer, the series terminates to give a polynomial in z .  I t  is 
easy lo show using the ratio test that the series converges for all finite z if 
p s q ,  it converges for 1z1<1 and diverges for l z ( > I  if p = y + I ,  and i t  
diverges for all z 20 if p > q + 1. The term “generalized hypergeometric 
function” refers to the fact that Fq is a generalization of the classical (or 
Gaussian) hypergeometric function F,. For a detailed discussion of these 
functions and their properties the reader is referred to Erdtlyi et al. (1953a). 
For our purposes we will make use of the results in the following two 
lemmas. The first gives a special integral for (which is related to a Bessel 
function) and the second shows that ,+ I Fq is essentially a Laplace transform 
of , Fq. 
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LEMMA 1.3.2. 

Proofi Let I ( n , z )  denote the left side of (2). Expand the exponential 
term in the integrand and integrate term by term. (Why is this permissible?) 
Noting that terms corresponding to odd powers of z are integrals of odd 
functions and hence vanish, we get 

To evaluate this last integral, make the change of variables x =sin2 B to give 

so that 

The desired result now follows, since 

and 
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LEMMA 1.3.3. 
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for 

p < q ,  Re(a)>O, Re(z)>O 

or 

p = q ,  Re(a)>O, Re(r )>Re(k)  

[Here Re(.) denotes the real part of the argument.] 

To prove chis lemma, integrate the ,,Fq series term by term. The details 
are left as an exercise (Problem I .  15). 
We will now derive an expression for the density function of the 

noncentral x 2  distribution. Recall that the usual or central x 2  distribution is 
the distribution of the sum of squares of independent standard normal 
random variables. The noncentral x 2  distribution is the distribution of the 
sum of squares where the means need not be zero. 

THEOREM 1.3.4. If X is N , ( p ,  I,) then the random variable Z=X'X has 
the density function 

where S = p ' p .  Z is said to have the noncentral x 2  distribution with n 
degrees of freedom and noncentrality parameter 6, to be written as x i ( S ) .  

Put Y = HX, where H is an n X n orthogonal matrix whose 
elements in the first row are 

Proo/. 

Then Y is Nn(u, I,) (using Theorem 1.2.6) with v=(S1/*,O, ..., 0)', so that 

z =XX=Y'Y = Y,2 + u, 
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where W=2: , ,y2  is 
Consequently the joint density function of Y, and U is 

and is independent of Y , ,  which is N(S'I2, I ) .  

Now make the change of variables 

y1 = t ' /2cos8 ( O <  2 <oo,o< Be n )  

u = tsin2 8 .  

The Jacobian is easily calculated to be z'/2sinB so that the joint density 
function of Z and 8 is 

Now integrating with respect to 8 over O< 8 < n using Lemma 1.3.2 gives 
the desired marginal density function of Z. 

An alternative way of expressing the noncentral x 2  distribution is as a 
mixture of central x 2  density functions where the weights are Poisson 
probabilities. The result, of independent interest and often useful in in- 
vestigating distributions of functions of random variables where one or 
more of them is noncentral x 2 ,  is given in the following corollary, which is 
an immediate consequence of Theorem 1.3.4. 

COROLLARY 1.3.5. If 2 is x : ( S )  then its density function can be 
expressed as 

where K is a Poisson random variable with mean S/2 so that 

e - y  48) 
( k  =o, I ,...) 

k !  P( K = k ) =  
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and 

the density function of the x :  distribution. 

The characteristic function of 2 is easily obtained, either from the 
definition of 2 in terms of a sum of squares of independent normal 
variables or from Corollary 1.3.5, as 

from which it follows that 

E(Z)=n-kG and Var(Z)=2n+46. 

It is also apparent from the characteristic function that if 2, is x:J8,), 2, is 
x’,,CS2), and ZI and Z, are independent, then Z, + 2, is x: ,+ , , ,<S ,  -t 62). 

We now turn to the noncentral F distribution. Recall that the usual or 
central F distribution is obtained by taking the ratio of two independent x 2  
variables divided by their degrees of freedom. The noncentral F distribution 
is obtained by allowing the numerator variable to be noncentral x 2 .  
THEOREM 1.3.6. If 2, is xfi,(S), 2, is x t , ,  and 2, and Z, are indepen- 
dent, then 

has the density function 
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F is said to have the noncentral F distribution with n, and n2 degrees of 
freedom and noncentrality parameter 6, to be written as C,,”J8). 

Proofi Using Theorem 1.3.4, the joint density function of 2, and 2, is 

Making the change of variables 

with Jacobian n , f / n 2 ,  the joint density function of F and T is 

Now integrating with respect to t over 0 < t < using Lemma 1.3.3 gives 
the desired marginal density function of F. 

We could also have derived an expression for the distribution of F rather 
more directly using the mixture representation for the noncentral x 2  distri- 
bution of 2, given in Corollary 1.3.5. Since 2, is independent of 2, this 
means that the distribution of F can be expressed as a mixture of ratios of 
independent x 2  variables. Specifically, the distribution function of F can be 
expressed in the form 

where here 4,$ denotes a random variable with an F distribution on r and s 
degrees of freedom. It is not difficult to show that the mean and variance of 
the F , , , J 6 )  distribution are 
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and 

For further properties of the noncentral x 2  and I: distributions and for 
information about tables of their distribution functions, a useful reference is 
Johnson and Kotz (1970), Chapters 28 and 30. 

1.4. SOME RESULTS ON QUADRATIC FORMS 

There is a vast literature on tlie distributions of quadratic forms in normal 
variables. Here we will prove some standard theorems which give just a 
flavor of results in this area. Our first theorem, although implied by more 
general ones, will be used often and is worth stating by itself. Note that part 
(a) says that the exponent in the N,,(p,Z) density function has a x:, 
distribution. 

THEOREM 1.4.1. If X is N,,,(p, Z), where I: is nonsingular, then 

(a) (X-p)'Z-'(X-p) is x i ,  

and 

(b) X'X-IX is x:,(S),  

where d = p'C-'p. 

Proot The central idea in the proofs of both parts (and in many proofs 
like these) is to transform the components of X to a set of independent 
normal variables. Write 2 = CC', where C is nonsingular. To prove (a), put 
U =  C 1 ( X - - ~ )  so that U is N,(O, I , )  and 

(X- pyx- ' (x-  p )  =uu,  

which is a sum of squares of m independent N(O,1) variables, hence is xk. 
To prove (b), put V=C-'X so that V is N(C-Ip, I,) and 

X'Z - ' x = V'V 
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This theorem is of obvious use in testing hypotheses about the mean of a 
multivariate normal distribution when the covariance matrix is known. For 
suppose that X , ,  ..., X N  is a random sample from the N,(p, 2 )  distribution, 
then x = N ’ - ’ Z , N _ , X ,  is N , , ( p , ( I / N ) Z )  by Corollary 1.2.13 so that from (a) 
of Theorem 1.4.1, 

To test the null hypothesis H,: p = p o  against general alternatives H: 
p # p , ,  where po is a specified rn X I vector, a test of size a is to reject H,, if 

where c,,(a) denotes the upper 100a% point of the x:, distribution. When 
H ,  is not true, X - p ,  is N , , , ( p - p o , ( l / N ) X )  so that from (b) of Theorem 
1.4.1, Wisxz,(S) with6=N(p-p,)’X-’(p-po). Hence thepowerof the 
test is a function of S, namely, 

which can be found from tables of the x i , ( S )  distribution function. 

THEOREM 1.4.2. If X is N,(p ,  I ,)  and B is an m X m symmetric matrix 
then X‘BX has a noncentral x 2  distribution if and only if B is idempotent 
( B 2 = B ) ,  in which case the degrees of freedom and the noncentrality 
parameter are respectively k =rank( B)= t rB (where tr B denotes the trace 
of B) and S = p’Bp .  

ProoJ Suppose B is idempotent of rank k and let H be an m X m  
orthogonal matrix such that 

Put v= H’X then V is N,( H’p, I , )  and 

which, being the sum of squares of k independent normal variables, is 
noncentral x 2  with k degrees of freedom. To calculate the noncentrality 
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parameter 6 note that 

= tr E ( X X ' ) E  

= Lr( I +  pp')E 

= k + p'Ep 

and hence 6 = p'Bp. 

orthogonal matrix such that 
Now suppose X'BX is x i ( & ) .  If B has rank p ,  say, let H be an m X m 

where Al,...,A,, are the nonzero latent roots of B. Put V =  H X ,  then 

P 
X'BX=V'H'EHV= 2 A,?'. 

J = I  

Now, V is A',,,( Y,  I,,,) with Y = N'p ,  so that y2 is xi( v:) and has characteris- 
tic function 
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Hence the characteristic function of z,P= IAJV,2  is 

where we have used the fact that V,,. . . , Vp are independent. But since X'BX 
is x i ( S )  its characteristic function is 

Equating(l)and(2)it isseen thatwemust havep=k,X,=I ( j = l ,  . . . , p )  
and 6 =2;= Consequently H'BH has the form 

which is idempotent. Hence 

H'BH = ( H ' B H ) (  H'BH)  = H'B2H, 

giving B = B2.  

As an application of Theorem 1.4.2 we will prove the following result, 
which is of interest in the theory of linear models. 

THEOREM 1.4.3. If X is Nw,(p, X) where Z is nonsingular and X, p and 
2 are partitioned as 

where XI and p, are k X 1 and Z, ,  is k X k ,  then 
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Prooh Write Z=CC’ where C is nonsingular and partition C as 

where C, is k X m ,  so that Z,, = C , C ; .  Put U = C - ’ ( X - p ) .  then U is 
N,,,(O, f,,,) and X, - p, = C,U. Then 

=ufr, - c;(c,c;)’-’c,]u 

= U’( I,,, - P ) U  

where P = C;(C,C;)-’C, .  Now P is symmetric and idempotent, hence so is 
E = f,,, - P. Applying Theorem 1.4.2 i t  follows that Q is x ; ,  where J =  
rank( B ) =  m - k .  

Theorem 1.4.2 can be generalized to the case where X has an arbitrary 
covariance matrix 2. Suppose X is N,(O,Z).  A necessary and sufficient 
condition then for X’BX to have a x2 distribution is 

Z B Z B Z = Z B Z ,  

in  which case the degrees of freedom are k =rank( BX). This result is due to 
Ogasawara and Takahashi (1951). I f  I: is nonsingular this conditioii be- 
comes BZU = B. The above condition is implied by the assumptions of the 
following theorem which we will prove without recourse to the general 
result. 

THEOREM 1.4.4. If X is N,(O, Z), where X has rank r (5 m ) ,  and i f  B is 
a generalized inverse of 2: (so that XBZ = X ) ,  then X‘BX is x:. 

ProoJ Put Y = CX where C is a nonsingular m X m matrix such that 

Partitioning Y as (YiY;)’, where Y, is r X 1, we have that Y, is N,.(O, f,.) and 
Y2 =O with probability 1. Hence Y =(Y;O)’ with probability I. Now note 
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that 

(3) [; ;]=crc' 

= CZBZC' 

So, with probability 1, 

X B X =  Y%- "BC- 'Y 

=Y;Y,  

which is x; .  
Our final theorem assumes that the covariance matrix I: is nonsingular 

but is otherwise quite general and incorporates Theorems 1.4.1 and 1.4.2 as 
special cases. 

THEOREM 1.4.5. If X is A',&, C), where I: is nonsingular, and B is an 
m X m symmetric matrix then X'BX is &S), where k =rank( B),  S = p'Bp, 
if and only if BI: is idempotent (BZBC = BI:, i.e., BXB = B).  

Put Y = CX,  where C is a nonsingular m X m matrix such that 
CCC'= I,,,. Then 

Proo/: 

X'BX=Y'C- I ' B c -  'Y, 

where Y is Nm(Cp, Im). From Theorem 1.4.2 it follows that X'BX is 
noncentral x 2  if and only if C-I'BC-' is idempotent. Hence it suffices to 
show that this is so if and only if BC is idempotent. If BC is idempotent we 
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have 

hence 

) c- tt~c-. t = (c- ItBC- l ) (  C-i'BC- 1 

so that C-I'BC-' is idempotent. If C-"BC--' is idempotent then 

C-t'BC- I =c-~lBc-~c-~~Bc-! = C-l'BZBC-1 

so that B = B Z B  and hence B Z  is idempotent. 

Later we will look at some more results about quadratic forms, where the 
matrices of the quadratic forms are random, but for the moment enough is 
enough. It should be emphasized that we have barely scratched the surface. 
For the reader with a taste for more results relating to both the distributions 
and independence of quadratic forms, useful references are Johnson and 
Kotz (1970), Chapter 29; Rao (1973), Section 3b.4; Graybill (1961), Chapter 
4; Styan (1970); and Srivastava and Khatri (1979). Chapter 2. 

1.5.  SPHERICAL A N D  ELLIPTICAL DISTRIBUTIONS 

Although most of classical multivariate analysis has been concerned with 
the multivariate normal distribution, an increasing amount of attention is 
being given to alternative distributional models. This is particularly true in 
robustness studies where it is of interest to know how sensitive certain 
procedures are to the assumption of multivariate normality. As a starting 
point in such investigations it makes sense to consider a class of density 
functions whose contours of equal density have the same elliptical shape as 
the normal, and which contains long-tailed and short-tailed distributions 
(relative to the normal). Many properties of such distributions have been 
obtained by Kelker (1970); we will begin by looking at some of these. Our 
first definition characterizes a spherical distribution in an intuitively appeal- 
ing way. 

DEFINITION 1.5. I .  A m X I random vector X is said to have a spherical 
distribution if X and HX have the same distribution for all m X WI orthogo- 
nal matrices H. 

If X has a spherical distribution with a density function (with respect to 
Lebesgue measure on R") then i t  is clear that the density function depends 
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on x only through the value of x’x. Some examples follow: 

(i) the NJO, u 2Z,,,) distribution with density function 

1 .exp( - s i x )  1 ; 

(2no 2 )  

(ii) the “&-contaminated” normal distribution with density function 

( O r  &I I ) ;  

(iii) The multivariate I distribution with n degrees of freedom and 
density function 

When n = 1 this is called the multivariate Cauchy distribution. 

A convenient way of generating some spherical distributions is as follows. 
Let XI,. . . , X,,,, 2 (Z>O) be random variables such that given Z, XI,. . .,X,,, 
have independent N ( 0 , Z )  distributions. If Z has distribution function G 
then the joint (marginal) density function of XI,. , . , X,,, is 

which is, of course, spherical and is called a scale mixture of normal 
distributions. The class of such spherical distributions formed by varying G 
is called the class of cum~uun~nurmaldistributions. It follows that X= Z1/*Y 
where Y is N,,,(O, I,) and Z,Y are independent, so that values of X can be 
generated by generating values of independent N ( 0 , l )  variables and multi- 
plying them by values of an independent variable 2. Note that if 2 takes the 
values 1 and a2 with probabilities 1 - E and 6, respectively, X has the .+contam- 
inated normal distribution given by (2). Also, if n/Z is xi, X has the m-variate t 
distribution with n degrees of freedom given by (3) (see Problem 1.30). 
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The class of elliptical distributions can be defined in a number of ways. 
We will assume the existence of a density function. 

DEFINITION 1.5.2. The m X  1 random vector X is said to have an 
elliptical distribution with parameters p(m X 1) and V ( m  X m )  if its density 
function is of the form 

(4) c,(det V).- ' l 2 h  (( x - p) 'V- .  I (  x - p )) 

for some function h,  where V is positive definite. 

Clearly the normalizing constant c, could be absorbed into the function 
h, but with this notation h can be independent of m.  If X has an elliptical 
distribution we will write that X is V). Note that this does not mean 
that X has a particular elliptical distribution but only that its distribution 
belongs to the class of elliptical distributions. If X is E,,(O, I,,,) then 
obviously X has a spherical distribution. Also, i f  Y has an m-variate 
spherical distribution with a density function and X = CY + p,  where C is a 
nonsingular m X m matrix, then X is Em@, V )  with V = CC'. 

The following two assertions are fairly easily proved and are left to the 
reader (Problem 1.27). If X is E,,,(p, V )  then: 

(a) The characteristic function $(I)= E(e"") has the form 

( 5 )  +(t)= e"'fi+(t'Vt) for some function +. 

(b) Provided they exist, E(X) = p and Cov(X)= aV for some constant a. 
In t e rm of the characteristic function this constant is a = -24'(0). 

It follows from (b) that all distributions in the class EJp, V )  have the 
same mean p and the same correlation matrix P = ( p I J ) ,  where 

From (a) i t  follows that all marginul distributions ure ellipticul and all 
marginal density functions of dimension j < m have the same functional 
form. For example, partitioning X, p ,  and V as 

where X, and pl are k X 1 and V,I is k X k ,  the characteristic 
XI 9 

function of 
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obtained from (a) by putting t=(t',O)', where t l  is k X 1, is 

exp(it;Cr I ) w l V l  It I ) 

which is the characteristic function of a random vector with an E , ( p I ,  V , l )  
distribution. It is worth noting that if any marginal distribution is normal 
then X is normal, for the characteristic function of X has the same 
functional form as the characteristic function of the marginal distribution, 
i.e, normal. 

We know from Theorem 1.2.8 that if X is NJp, X) and 2 is diagonal 
then the components XI,..., A',,, of X are all independent. Within the class 
of elliptical distributions independence when 2 is diagonal characterizes the 
normal distribution, as the following theorem shows. 

THEOREM 1.5.3. Let X be E,,,(p, V), where Y is diagonal. If X ,,..., X,,, 
are all independent then X is normal. 

Proo/. Without loss of generality we can assume p =O. Then the char- 
acteristic function of X has the form 

for some function #, because V=diag(ull ,..., u,,,,,,). Since XI ,..., XI,  are 
independent we have 

(7) 

Equating (6) and (7) and putting u,  = r , ~ : / ~  gives 

This equation is known as Hamel's equation and its only continuous 
solution is 

$( z )  = ekz  

for some constant k [see, e.g., Feller (1971), page 3051. Hence the character- 
istic function of X has the form 
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and, because it is a characteristic function, we must have k 5 0  (why?) which 
implies that X has a normal distribution. 

We now turn to an examination of some conditional distribution proper- 
ties. If X is N,,,(p, 2) then by Theorem 1.2.1 1 the conditional expectation of 
a subvector of X given the remaining components is linear in the fixed 
variables, and the conditional covariance matrix does not depend on the 
fixed variables. The first of these properties carries over to the class of 
elliptical distributions. 

THEOREM 1.5.4. If X is E J p ,  V )  and X, p and Y are partitioned as 

where XI and p t  are k X 1 and V , ,  is k X k, then, provided they exist, 

(9) 

for some function g. Moreover the conditional distribution of XI  given X, is 
k-variate elliptical. 

A proof can be constructed which is similar to that of Theorem 1.2.11 
and is left as an exercise (Problem 1.28). I t  can also be shown that if  the 
conditional covariance matrix of XI given X, does not depend on X, then X 
must be normal, i.e., this property characterizes the multivariate normal 
distribution in the class of elliptical distributions [see Kelker (1970)) 

An interesting property of a spherically distributed vector X is that a 
transformation to polar coordinates yields angles and R radius which are all 
independently distributed, with the angles having the same distributions for 
all X. 
THEOREM 1.5.5. If X is EJO, 1,) with density function c,h(x'x) and 

XI =rsinB,sind ,... sinB,..,sinfl,,-, 

X2 = r sin 0 I sin 0, . . . sin 0, - , cos d,,, - , 
A', = rsin 8 ,  sin d2 . . . cos 0,- 

X,,l-I = rsin0,cosd2 

x, = rCOS el 
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( r  >O,  O <  6, I IT, i = 1,. . . , m - 2, Oc Om-, 5217) then r ,  8,, . . . ,em- , are inde- 
pendent, the distributions of el , .  . . ,em- , are the same for all x, with 8, 
having density function proportional to (so that ern-, is uni- 
formly distributed on (0,2n)), and r 2  =X'X has density function 

Proof: The Jacobian of the transformation from XI, ..., X,,, to 
r,fJ1,...,flm-, given by (10) is r'~-'sinm-28,sinm-36,... sin8n,-,. (For the 
reader who is unfamiliar with this result it will be derived in Theorem 2.1.3). 
I t  follows then that the joint density function of r 2 ,  el, ..., ern-, is 

fc,( r y l 2  - I sin"-, 8, 8, . . . sin 8,- ,h ( r 2 )  

from which it  is apparent that r ,  61,...,8m-l are all independent and 8 k  has 
density function proportional to sinm- 6k. Integrating (12) with respect 
to 6,,.,.,6,,,-, yields the factor 2 1 ~ ~ / ~ / r ( f m )  which is, of course, the 
surface area of a sphere of unit radius in R". It then follows that r 2  has the 
density function given by (1  I) .  

As an example, if X is N,(O, I,,,) then c, =(2n)-"l2 and h ( u ) =  e-"l2 so 
that r 2  = X X  has density function 

the familiar x i  density. 

It follows readily from Theorem 1.5.5 that if X is spherically distributed 
with a density function then X may be expressed as X= rT where r 2  =X'X 
and T is a function of the angular variables 6,, . . . ,Om- I .  The variables r and 
T are independent and the distribution of X is characterized by the 
distribution of r ,  and it is easily shown that T, for all X, is uniformly 
distributed on 

S m = ( x E R m ; x ' x = I } ,  

the unit sphere in R". The assumption that X has a density function is 
unnecessary, as Theorem 1.5.6 will show. In the proof, due to Kariya and 
Eaton (1977) and Eaton (1977) we will use the fact that the uniform 
distribution on S, is the unique distribution on S,,, which is invariant under 
orthogonal transformations. That it is invariant is clear; the uniqueness is a 
somewhat more subtle matter [see, for example, Dempster (1969), Section 
12.2 and the discussion later in Section 2.1.4). 
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THEOREM 1.5.6. If X has an m-variate spherical distribution with P(X= 
0) = 0 and 

The Mulriouriurc Normul und Reluted Distrihuriotis 

r =tlXll=(XX)'/2, T(X)=IIXlt-'X, 

then T(X) is uniformly distributed on S,,, and T(X) and r are independent. 

Proo/. For any m X m orthogonal matrix N 

T( If X) = II HXll - 'If X = ll Xll - 'H X = If T( X) , 

so that T(HX) and HT(X) have the same distribution. Since X has a 
spherical distribution both X and HX have the same distribution (by 
Def.'nition 1.5,1), hence so do T(X) and T(NX). Consequently both T(X) 
and HT(X) have the same distribution. Since the uniform distribution on S, 
is the unique distribution invariant under orthogonal transformations it  
follows that T(X) is uniformly distributed on S,,,. For the independence part 
define a measure p on S, by 

(13) p ( B ) = P ( T ( X ) E B l r € C )  

lor a fixed Borel set C with P ( r € C ) # O ,  where B is a Borel set in S,,,. I t  is 
easily shown that p is a probability measure on S,, which is invariant under 
orthogonal transformations so that p is the probability measure of the 
uniform distribution on S,; that is, the distribution of T(X). Hence 

p(B)=P(T(X)EB), 

and this, together with (13), shows that T(X) and r are independently 
distributed. 

This theorem is used to generalize well-known results for normal random 
variables. 

THEOREM 1.5.7. Let X have an rn-variate spherical distribution with 
P(X =O)=O. 

where aE R", a'a = I ,  then a'X (i) If W =  - 
IlXll ' 

( r n - - 1 p 2 W  

( 1  - w y 2  
Y =  

has the 1,-, distribution. 
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(ii) If B is  an m X m symmetric idempotent matrix of rank k then 

X'BX Z = -  
IlXll 

has the beta distribution with parameters f k  and {(m - k). 

Both parts are proved using Theorem 1.5.6 by noting that Y and 
2 are functions of a random vector T(X)=X/llXll uniformly distributed on 
S,,,. To prove (i), note that W =  cr'T(X) so, without loss of generality, we can 
assume that X is N,,,(O, I , )  and take a! =( 1 ,O,. . . ,O)'. Then 

Prooj: 

( i = 2  q y 2  

and clearly has the I,.- I distribution. To prove (ii), note that 

2 = T(X)'BT( X) 

and so we can again assume that X is NJO, I,,,). Putting U = H X where H is 
an orthogonal m x m matrix such that 

H B H ' = [  'k  ,] 
we then have 

where vI =X,"= i ~ 2  is x i ,  vZ = Z ; = k +  1 ~ 2  is Xfn-k and vi and V, are indepen- 
dent. It then foltows easily that 2 has the beta (tk, t ( m  - k)) distribution. 

This theorem will be used in Chapter 5 to weaken normality assumptions 
usually made in order to derive the distributions of correlation coefficients. 
Another simple example of statistical interest where a normality assumption 
can be dropped is the following one, noted by Efron (1969). If XI, .  . . , X, 
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are independent N ( p ,  a’) random variables and the null hypothesis 1.1 =O is 
true, i t  is well known that the statistic 

I N  
- 2 x, 

“ / 2 %  N 1 1 2  r = l  
t = - -  - 

S I N  1/2 

has the i N -  I distribution. For this result to hold it is enough that the vector 
X = ( X I ,  ..., XN)’ has a spherical distribution with P ( X = O ) = O  as (i) of 
Theorem 1.5.7, with a = ( N - . ‘ I 2  ,..., N-‘/’)’)IE RN, shows. 

There is a growing literature on spherical and elliptical distributions; as 
well as the papers by Kelker (1970) and Kariya and Eaton (1977) already 
mentioned, a useful review paper by Devlin et al. (1976) gives many 
additional references, as does another by Chmielewski ( 1981). 

1.6. MULTIVARIATE C U M U L A N T S  

We now turn to a discussion of cuniulants of multivariate distributions in 
general, aiid elliptical distributions in particular. Let X be an m X 1 random 
vector with clraracteristic function $(t) and suppose for simplicity that all 
the moments exist. The characteristic function of XJ is +J( t J )  = 4(t), where 

t= (O  ,..., 0, f J ,  0 ,... , O)‘, 

and the cumulants of 3 are the coefficients KJ in 

(The superscript on K refers to the variable, the subscript to the order of the 
cumulant.) The first four cumulants in terms of the moments pi = E( qk) of 
X, are /see, for example, CramCr (1946), Section 15.10] 
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The skewness y( and kurtosis yi of the (marginal) distribution of X, are 

l f  XJ has a normal distribution, all cumulants KJ of order k >2 are zero. 
The mixed cumulants or cumulants of a joint distribution are defined in 

a similar way. For example, denoting the joint characteristic function of X, 
and xk by +,k(f,, t k ) ,  the curnulants of their joint. distribution are the 
coefficients K& in 

[where K{:  =Cov(X,, X,)], and this can be extended in an obvious way to 
define the cumulants of the joint distribution of any number of the variables 
XI,. . . ,A',,,. The cumulants of the joint distribution of XI,. . . ,XeJ then, are the 
coefficients ~112;~ ,:", in 

I f  X is normal, all cumulants for which Zr,  >2  are zero. 

with characteristic function 
If X has an m-variate elliptical distribution E,,,(p, V )  (see Section 1.5) 

+(t) = e'p''#(t'Vt), 

cooariance matrix Z = -2#'(O)V=(a,,), and finite fourth moments, then it 
is easy to show (by differentiating log+(t)) that: 

(a) The marginal distributions of 4 ( j= I ,  ..., m) all have zero skew- 
ness and the same kurtosis 

(b) All fourth-order cumulants are determined by this kurtosis parume- 
ter K as 
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(see problem 1.33). why is this of interest? We have already noted in 
Corollary 1.2.16 that the asymptotic distribution of a sample covariance 
matrix is normal, with a covariance matrix depending on the fourth-order 
moments of the underlying distribution. It follows that statistics which are 
“smooth” functions of the elements of the sample covariance matrix will 
also have limiting distributions depending on these fourth-order moments. 
The result (b) above shows that if we are sampling from an elliptical 
distribution these moments have reasonably simple forms. We will examine 
some specific limiting distributions later. 

Finally, and for the sake of completeness, we will give the elements of the 
covariance matrix in the asymptotic normal distribution of a sample covari- 
ance matrix. From Corollary 1.2.18 we know that if  

where S ( n )  is the sample covariance matrix constructed from a sample of 
N = n  + 1 independent and identically distributed rn X I vectors XI,. . .,X, 
with finite fourth moments then the asymptotic distribution of U(n) is 
normal with mean 0. The covariances, expressed in terms of the cumulanls 
of the distribution of X,, are 

In this formula the convention is that if any of the variables are identical the 
subscripts are amalgamated; for examplc, 

and so on. These covariances (3) have been given by Cook (1951); for 
related work the reader is referred to Kendall and Stuart (1969), Chapters 3, 
12 and 13, and Waternaux (1976). 

P R O B L E M S  

1.1. Prove Theorem 1.2.8 using the characteristic function of X. 
1.2. State and prove an extension of Theorem 1.2.8 when the m X 1 vector 
X is partitioned into r subvectors XI ,..., X, of dimensions m ,,..., i n r r  

respectively ( Z ; m ,  = m).  



Problems 43 

1.3. Consider the ellipse 

1 
- ( z ?  +2,2 - 2 p z , z , ) = k  
I -p' 

for k>O. For p > O  show that the rincipal axes are along the lines 
z 1  = z2 .  z I  = - z2 with lengths 2{& and 2 { m ,  respectively. 
What happens if p<O? 

1.4. If M is an n X r matrix and R( M), K( M )  are defined by (10) and ( I  1) 
of Section 1.2 prove (12), i.e., that K ( M ) *  = R(M').  
1.5. Prove Theorem 1.2.14. 

1.6. If  U( n ) =  n ' / Z [ S (  n) - E], where S( n) is the sample covariance matrix 
formed from a random sample of size N =  n + 1 from a NJp, X) distribu- 
tion, show that the elements of the covariance matrix in the asymptotic 
normal distribution for V ( n )  are given by 

where Z =(a,,). 

1.7. Suppose that the random variables X and Y have joint distribution 
function 

F(x.  y ) = @ ( x ) @ ( y ) [ l .  + 4 - @ ( , ) ) ( I  - - @ ( Y ) ) ] ,  

where la15 1 and @ ( x )  denotes the standard normal distribution function. 
Show that the marginal distributions of X and Y are standard normal. 

1.8. Let $ , ( x , ,  x , )  and #,(x, ,  x , )  be two bivariate normal density func- 
tions with zero means, unit variances and different correlation coefficients 
p ,  and p, respectively(i.e., $, and +, have the form (8) of Section 1.2). Show 
that the density function f [ + , ( x , ,  x , ) +  +2(xI, x,) ]  is not normal but that its 
two marginal density functions are normal. 

1.9. Let h ( x )  be an odd continuous function such that ) h ( x ) ) c ( 2 ~ e ) - ' / ~  
for all x and h ( x ) = O  for x e( - 1, I ) ,  and let + ( x )  be the standard normal 
density function. Show that the function 

is a non-normal bivariate density function with normal marginal density 
functions. 
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1.10. Suppose that X= ( ;:) has the N2(0, C) distribution, with 

Changing to polar coordinates, put X, -- rcose, X, = rsine (C > O , O c  8 -= 
2n). 

(a) Show that the marginal density function of 0 is 

(b) Show that 

(c) Show that 

oc e an. \I1 - P2 
2 4 1  -2psinBcos8) 

I 1  P( XI >o, x2 > O ) =  - - - 2nCoS-Ip. 

1 1  
2 ? r  

P( X, X,  >o)  = - +- - sin- I p.  

(d) Show that 

1 P (  XI x, c 0) = ; cos- I p .  

1.11. Let X,,X2,.. ,  be independent N,,,(p, 2) random vectors and let 

N 
s,= x,. 

r = l  

For N, < N,: 
(a) Find the distribution of (Sh,,S&)’. 
(b) Find the conditional distribution of S,, given SNI.  

1.12. Suppose that X is N,(O, Z), where 

‘I2 ‘13 
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Show that 

1 1  
8 4a 

P ( X ,  >o, X ,  >o, X, >o)= - + -(sin-'o,, +sin-'a,, +sin-'a,,). 

1.13. Suppose that X is N,(O, Z), where 

Is there a value of p for which X, + X ,  + X, and X,  - X ,  - A', are indepen- 
dent? 

1.14. Suppose that the vector 

where X is ( m - 1 ) X l  and Y is 1x1, has mean vector PI, 1=(1,1. ..., 1)' 
and covariance matrix 

where o, ,  =Var(Y), Z,, =Cov(X). Find the coefficient vector a of a linear 
function a ' X  which minimizes Var( Y- a'X) subject to the condition 
E( a'X) = E( Y ). 
1.15. Prove Lemma 1.3.3. 
1.16. If Z is ,y;(S) where n is an even integer, prove that 

where X ,  and X ,  are independent Poisson random variables with means f x  
and {a, respectively. 

1.17. If 2 is x ; ( S )  show that its characteristic function is 

Hence, show that E ( Z ) =  n + 6, Var(6)=2n +4S and that the skewness yI 
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and kurtosis y2 of 2 (see Section 1.6) are 

The Multivuriute Normul and Reluted Distributions 

1.18. I f  2 is xE(S) prove that the asymptotic distribution of 

is N(0,I) as either n 4 00 with S fixed or 6 -, 00 with n fixed. 

1.19. Let f(z; n , 6 )  denote the density function of the xf,(S) distribution 
(see Theorem 1.3.4 and Corollary 1.3.5). Show that 

1.20. I f  F is F,, , ,J6)  show that 

and 

131. If F is C,,,Jd), where n I  is even, prove that 

where XI and X ,  arc independent with XI having a Poisson distribution m..h 
mean +S and X ,  having a negative binomial distribution, i.e., 
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1.22. If X is Nm(p,Z),  where X is positive definite, A is an m X m 
symmetric matrix, and E is an r X m matrix, prove that X A X  and EX are 
independent if and only if BXA =O. 

1.23. If X is Nm(p, C ) ,  where Z is positive definite and A and B are m X m 
symmetric matrices, prove that XAX and X B X  are independent if and only 
if ACE =O. 

1.24. If X is N,,(p, 2 )  prove that: 
(a) E ( X A X ) =  tr(AL:)+p’Ap; 
(b) Var(XAX)=2[tr( AXAX)+2p’AXAp]. 

1.25. Let X, ,  . . . , X,,, be independent random variables with means f?,, . . .,em, 
common variance u2,  and common third and fourth moments about their 
means p3,  p4, respectively; i.e., 

p k  = E [  ( X ,  - 6, ,”] ; k = 3,4; i = 1, .  . . , m. 

If A is an in X m symmetric matrix prove that 

where a is the m X I vector of diagonal elements of A .  

1.26. Let X be N,,,(pl,Z), where l=(l,l, ..., 1)’ER”’ and Z=(u, , )  with 
u,, = u 2 ,  a,, = u2( I - p2),  i # j .  Show that 

r = l  / = I  

are independent. (Hint :  Use Problem 1.22.) 
1.27. If  X is E,,(p, V )  (i.e. m-variate elliptical with parameters p and V )  
prove that: 

(a) The characteristic function of X has the form 

+(t)= e“’p+(t’Vt) for some function 4. 

(b) Provided they exist, E ( X ) = p  and Cov(X)=aV, where a= 
- 24’(0). 

If X is EJp, V )  and X, p and V are partitioned as 1.28. 
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where XI and pi are k X l  and V,, is k X k ,  show that the conditional 
distribution of X I  given X, is k-variate elliptical. Show also that, if they 
exist, the conditional mean and covariance matrix are given by 

E(X,IX,)=CL, 3- ~ 1 2 ~ ; 2 ' ( X 2 - - ~ 2 )  

and 

for some function g. 

1.29. Let X have the m-variate elliptical r-distribution on n degrees of 
freedom and parameters p and V, is., X has density function 

V ( n  >2). (a) Show that E ( X ) = p  and Cov(X)= - n - 2  
(b) If X=(X',X2)', where XI is k X 1, show that the marginal distri- 

bution of XI is k-variate elliptical 1. 

(c) If X is partitioned as in (h), find the conditional distribution of 
X, given X,. Give E ( X , ( X , )  and Cov(X,(X2), assuming these 
exist. 

1.30. Suppose that Y is N,,,(O, I,,,) and 2 is xi, and that Y and Z are 
independent. Let V be a positive definite matrix and Y1l2 be a symmetric 
square root of V. If 

n 

x = p +  Z-1/2(nVp2Y 

show that X has the nz-variate elliptical r-distribution of Problem 1.29. Use 
this to show that 

1 
- ( X - ~ ) ' V - ' ( X - ~ )  is F , , " .  
m 

1.31. Suppose that X is Em@, V)  with density function 
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where 1, is the indicator function of the set 

Show that E(X)=p  and Cov(X)= V.  

1.32. Let T be uniformly distributed on S, and partition T as T'=(T; :Ti) 
where TI is k X 1 and T2 is (m - k ) X  1. 

(a) Prove that T, has density function 

(b) Prove that T;T, has the beta (jk, f ( m  - k)) distribution. Eaton 
(1981). 

1.33. If X is E,,,(p, V )  with characteristic function +(t)=e"'h)(t'Vt), co- 
variance matrix X =  -2$'(O)V=( u,,) and finite fourth moments prove that: 

(a) The marginal distributions of XJ ( j= I ,  ..., m )  all have zero 
skewness and the same kurtosis y j  = 3u ( j = 1,. . . ,m) ,  where 

1. K = - -  4 4 0 )  

+w2 
(b) In terms of the kurtosis parameter K, all fourth-order cumulants 

can be expressed as 

u i J k l  - 
I I I I - u ( ' ~ ~ a k /  + *tk',/ + 'dU,k )' 

1.34. Show that the kurtosis parameter for the &-contaminated m-variate 
elliptical normal distribution with density function 

( 1  - e)(det V ) - 1 ' 2  exp( - T x ~ - l x )  I + &(det V ) - 1 / 2  exp( - g x ~ - l x  1 
(2.)"/' ( 2  Tru 2 ) m / 2  

1 + &( u4 - 1 

[ I  + E(o2- l)]* 
K =  - 1.  

1.35. Show that for the elliptical r-distribution of Problem 1.29 the kurtosis 
parameter is K = 2/( n - 4). 



CHAPTER 2 

Jacobians, Exterior Products, 
Kronecker Products, 
and Related Topics 

2.1.  JACOBIANS, EXTERIOR PRODUCTS, A N D  
R E L A T E D  TOPICS 

2.1.1. Jacobians and flxterior Producrs 

In subsequent distribution theory, functions of random vectors and matrices 
will be of interest and we will need to know how density functions are 
transformed. This involves computing the Jacobians of these transforma- 
tions. To review the relevant theory, let X be an m X 1 random vector having 
a density function /(x) which is positive on a set S C H"'. Suppose that the 
transformation y=y(x)=(y , (x ) ,  ...,ym( x))' is 1-1 of S onto T, where T 
denotes the image of S under y ,  so that the inverse transformation x=x(y)  
exists for y E T. Assuming that the partial derivatives ax,/ay, (i, j = 1, .  . . , m )  
exist and are continuous on T, it  is well-known that the density function of 
the random vector Y -y (X)  is 

d Y )  = /(X(Y))l J ( x  + Y ) l  (YE T )  

whereJ(x-.y), the Jacobian of the transformation from x to y, is 

( 1 )  J(x y )  = det 

50 

ax, ax, -...- 
aYI aYm 

ax, ax, -... - 
aYI aYm 

=dct ("an) . 
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Often when dealing with many variables it is tedious to explicitly write 
out the determinant (1). We will now sketch an equivalent approach which 
is often simpler and is based on an anticommutative or skew-symmetric 
multiplication of differentials. The treatment here follows that of James 
( 1954). 

Consider the multiple integral 

I = j f (  x I , .  . . , x ,  ) dx I . .  , dx, 
A 

where A C Rm. This represents the probability that X takes values in the set 
A. On making the change of variables 

(2) becomes 

(3) 

where A' denotes the image of A .  Instead of writing out the matrix of partial 
derivatives (ax , /ay , )  and then calculating its determinant we will now 
indicate another way in which this can be evaluated. 

Recall that the differential of the function x ,  = x,( yI, . . . ,ym) is 

(4) 

Now substitute these linear differential forms (4) (in dyl,. . . ,dy,) in (2). For 
simplicity and concreteness, consider the case m =2; the reader can readily 
generalize what follows. We then have 

Now, we must answer the question: Can the two differential forms in ( 5 )  be 
multiplied together in such a way that the result is det(aX,/ay,)dy, dy2, that 
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is. 

Well, let’s see. Suppose we multiply them in a formal way using the 
associative and distributive laws. This gives 

Comparing (6) and (7), we clearly must have 

Hence, when multiplying two differentials crY, and dy, we will use a skew- 
symmetric or alternating product instead of a commutative one; that is, we 
will put 

so that, in particular, dyIdy, = - dyidyi =O. Such a product is called the 
exterior product and will be denoted by the symbol A (usuaify read “wedge 
product”), so that (8) becomes 

Using this product, the right side of (7) becomes 

This formal procedure of multiplying differential forms is equivalent to 
calculating the Jacobian as the following theorem shows. 

THEOREM 2.1.1. If dy is an m X 1  vector of differentials and if d x =  
Bdy,  where B is an m X m  nonsingular matrix (so that d x  is a vector of 
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linear differential forms), then 

(9) 
m m 

r = l  r = l  
A dx,=det B h dyi. 

Proof. It  is clear that the left side of (9) can be written as 

m M 

A dx,=p(B) A dy,, 
r = l  r = l  

where p (  B )  is a polynomial in the elements of B. For example, with m = 3 
and B =(b,,) i t  can be readily checked that 

d x l  A d X ~ = ( b l l b , z b , 3 - b 1 2 b Z I b 3 3 -  b l I h 2 3 b 3 2 +  b13b21h32 

-k b12b23b31 - b13b22b31) dYl A dY2 A dY3. 

In general: 

(i) p(B) is linear in each row of B. 
(ii) I f  the order of two factors dx,,dx, is reversed then the sign of 

AT=, dx, is reversed. But this is also equivalent to interchanging the 
ith andjth rows of B. Hence interchanging two rows of B reverses 
the sign of p( B). 

(iii) p ( l , ) =  1. 

But (i), (ii), and (iii) characterize the determinant function; in fact, they 
form the Weierstrass definition of a determinant [see, for example, MacDuf- 
fee ( I  943). Chapter 3). Hence p (  B)=det B. 

Now, returning to our general discussion, we have 

I =  J ~ ( X ~ , . . . , X , ) ~ X , A  Adx,, 

where the exterior product sign A has been used but where this integral is 
to be understood as the integral (2). Putting 

A 

x r = x , ( y I  ,..., y,,,) ( i = l ,  ..., m) 
we have 

ax, 
dx,= 2 -dy, ( i = l ,  ..., m) 

/ = I  ay, 
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so that, in matrix notation, 

Jocobtuits. Exterior Products. Kronecker Products, aird Reluted 

ax, ax, - ,..  - 

Hence, by Theorem 2. I .  1 

and the Jacobian is the absolute value of the determinant on the right. 

DEFINITION 2.1.2. An exterior diJerenrial/orm of degree r in R m  is an 
expression of the type 

where the h l , . ,  Jx) are analytic functions of x ,,..., x,". 

A simple example of a form of degree I is the differential (4). We can 
regard (10) as the integrand of an r-dimensional surface integral. There are 
two things worth notirig here about exterior differential forms: 

(a) A form of degree rn has only one term, namely, h(x)  dx, A - . . A dx,,. 

(b) A form of degree greater than rn is zero because at least one of the 
symbols dx, is repeated in each term. 

Exterior products and exterior differential forms were given a systematic 
treatment by Caftan (1922) in his theory of integral invariants. Since then 
they have found wide use in differential geometry and mathematical physics; 
see, for example, Sternberg (1964), Cartan (1967), and Flanders (1963). 

Definition 2.1.2 can be extended to define exterior differential forms on 
differentiable and analytic manifolds and, under certain conditions, these in 
turn can be used to construct invariant measures on such manifolds. Details 
of this construction can be found in James (1954) for manifolds of particu- 
lar interest in multivariate analysis. We will not go further into the formal 
theory here but will touch briefly on some aspects of it later (see Section 
2.1.4). 
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We now turn to the calculation of some Jacobians of particular interest 
to us. The first result, chosen because the proof is particularly instructive, 
concerns the transformation to polar coordinates used in the proof of 
Theorem 1 S.5. 

THEOREM 2.1.3. For the following transformation from rectangular co- 
ordinates x,,. ..,x, to polar coordinates r ,  8 , , .  . .,drn- ,: 

x , = r sin 8, sin 0,. . . sin 0, - sin 0, _ _  , 
x2 = r sin 6 ,  sin 6,. . . sin 6, - cos 8, - , 
x j  = rsin 8, sin 62. . . cos 

x,- , = rsin 8, cos 0, 

xm = rcos 8, 

[ r  >o, O< 6,s IT ( i  = 1 ,.. . ,m  -2),  O< en,- I 5 2 ~ 1  

we have 

(so that 

J( x 4 r ,  8, , . . . , 6,-, ) = r m-  I 0,  ..sin ern-'), 

Proof: First note that 

xi" = r ' sin2 8, sin2 62. , . sin' 8, - sin' en'-. I 

xt + x i  = r'sin' 8, sin2 0,. ..sin' 

x;+ * * *  + x : = r 2 .  

Differentiating the first of these gives 

2x, dx, = 2 r 2  sin2 8 , .  . . sin2 8,- sin 0,- , cos , d6,- , 
+terms involving dr, do, ,  . . . , d6,- '. 
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Differentiating the second gives 

2 x ,  dx ,  + 2 x ,  dx,  = 2 r 2  sin' 8 , .  . .sin@,,,.. 'cos t?,,,. do,,,.. , 
+terms involving dr, df?, , . . . ,dO,,, -, , 

and so on, down to the last which gives 

2x , dx I + . . a -I- 2 x ,  dx,,, = 2 r  dr . 

Now take the exterior products of all the terms on the left and of all the 
terms on the right, remembering that repeated products of differentials are 
zero. The exterior product on the left side is 

m 

2"'xI ... x, A dx, .  
t = I  

The exterior product of the right side is 

In - I 

1 - 1  

2 m r 2 n i - l s i n 2 m - 3 #  2m-se2. . .  sin8,- ,~osf?,cos8~.. .  case,-, A de, A d r ,  I 

which equals 

nt -- I 

t = I  
(12) 2 " ' ~ ~ .  . . x , P -  I 8, sin"'-' 8,. . . sinf?,,,-, A df?, A dr 

since 

Equating ( 1  1) and (12)  gives the derived result. 

Before calculating more Jacobians we will make explicit a convention and 
introduce some more notation. First the convention. We will not concern 
ourselves with, or keep track of, the signs of exterior differential forms. 
Since we are, or will he, integrating exterior differential forms representing 
probability density functions we can avoid any difficulty with sign simply 
by defining only positive integrals. Now, the notation. For any matrix X, dX 
denotes the matrix of differentials (dx,,).  It is easy to check that i l  X is 
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n X m and Y is m X p then 

d ( X Y ) =  X . d Y + d X . Y  

(see Problem 2.1). For an arbitrary n X m matrix X, the symbol ( d X )  will 
denote the exterior product of the mn elements of d X  

m n  

( d X ) r  A A dx,,. 
J = l  I = I  

If X is a symmetric m X m matrix, the symbol ( d X )  will denote the exterior 
product of the $m( m + 1) distinct elements of d X  

Similarly, if X is a skew-symmetric matrix ( X =  - A"), then (dX) will 
denote the exterior product of the $m( m - 1) distinct elements of dX (either 
the sub-diagonal or super-diagonal elements), and if X is upper-triangular, 

( d X ) =  A dx,,. 
f 5 J  

There will be occasions when the above notation will not be used. In 
these cases (dX) will be explicitly defined (as, for example, in Theorem 
2.1.13). 

The next few theorems give the Jacobians of some transformations which 
are commonly used in multivariate distribution theory. 

THEOREM 2. I .4. If X = BY where X and Y are n X m matrices and B is 
a (fixed) nonsingular n X n matrix then 

( d X )  = (det B)"( d Y )  

so that J( X -+ Y)=(det B)". 

ProoJ. Since X =  BY it follows that dX = B d Y .  Putting d X =  
( d x ,  ... d x m j  and d Y = ( d y ,  ... dy,,,], we then have d x , =  Bdy, and hence, 
by Theorem 2. I. I ,  

A dx,, =(det B )  if dy,, 
i = l  i = l  
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From this it  follows that 

m n  m I I  

=(det B ) m ( d Y ) ,  

as desired. 

THEOREM 2.1.5. 
and C are n X n and m X m nonsingular matrices, then 

If X =  BYC,  where X and Y are n X m matrices and B 

( d X )  =(det B)"'(det C ) " ( d Y )  

so that J ( X -  Y)=(det B)"(detC)". 

First put Z = OY, then X =  ZC, so that dX= d2.C. Using an 
argument similar to that used in the proof of Theorern 2.1.4, we get 
(dX)=(detC)"(dZ), and, since dZ= O d Y ,  Theorem 2.1.4 gives ( d Z ) =  
(det B)"'( dY ), and the desired result follows. 

THEOREM 2.1.6. If X =  BYB', where X and Y are m X m sytnnietric 
matrices and B is a nonsingular m X m matrix, then 

Proof, 

(dX) = (det B ) I " +  I (  dY ) . 
Proof. Since X =  BYB' we have d X =  BdYE'  and it  is clear that 

(13) ( dX ) =( B d Y B') = p ( B ) ( d Y ) , 

where p(  8 )  is a polynomial in the elements of B. This polynomial satisfies 
the equation 

(14) P ( fl I B2 ) = P ( B I )P ( B2 ) 

for all B,  and B,. To see this, first note that from (13), 

(15) P(B lB2wY) = @ I  B 2 d W  I B2)'). 
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Equating (15) and (16) gives (14). The only polynomials in the elements of a 
matrix satisfying (14) for all B ,  and B, are integer powers of det B [see 
MacDuffee (1943, Chapter 31, so that 

p(B)=(de t  B ) k  for someintegerk. 

To calculate k we can take a special form for B. Taking B =diag(h, I , .  . . , I ) ,  
we compute 

BYE' = 

bYlm Y 2 m  ... Yn,m 

so that the exterior product of the elements on and above the diagonal is 

( B d YB') = h"+ I(  dY ). 

Hence p ( B ) =  h""' =(det B)"", so that k = m + I ,  and the proof is com- 
plete. 

THEOREM 2.1.7. If X = BYB' where X and Yare skew-symmetric m X m 
matrices and B is a nonsingular m X m matrix then 

(dX)=(det B ) " - ' (  d Y ) .  

The proof is almost identical to that of Theorem 2.1.6 and is left as an 

If X = Y- I ,  where Y is a symmetric m X m matrix, then 

exercise (see Problem 2.2). 

THEOREM 2. I .8. 

( d X )  = (det Y)- (" '+ ' ) (  d Y ) .  

Proot Since YX = I,,, we have dY.  X + Y.dX =0,  so that 

Hence 

by Theorem 2.1.6. 
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'The next result is extremely useful and uses the fact (see Theorem A9.7) 
that any positive definite m X m matrix A has a unique deconiposition as 
A = T'T, where T is an upper-triangular m X tn matrix with positive diago- 
nal elements. 

THEOREM 2.1.9. 
where T is upper-triangular with positive diagonal elements, then 

If A is an m X rn positive definite matrix and A = T'T, 

Now express each of the elements of A on and above the diagonal in terms 
of each of the elements of T and take differentials. Remember that we are 
going to take the exterior product of these differentials and that products of 
repeated differentials are zero; hence there is no need to keep track of 
differentials in the elements of T which have previously occurred. We get 

Hence taking exterior products gives 

and similarly 

as desired. 
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2.1.2. The Multivariate Gamma Function 

We will use Theorem 2.1.9 in a moment to evaluate the multidimensional 
integral occurring in the following definition, which is of some importance 
and dates back to Wishart (\928), Ingham (1933). and Siege1 (1935). 

DEFINITION 2.1.10. The multivariate gamma function, denoted by 
rm(a), is defined to be 

I-&) = etr(- A)(det A y  - (m + 'Y2(dA) 
A > O  

(17) 

[ Re(a) > (m - l)], where etr(.) = exp tr(.) and the integral is over the space 
of positive definite (and hence symmetric) m X m matrices. (Here, and 
subsequently, the notation A > O  means that A is positive definite.) 

Note that when m = 1, (17) just becomes the usual definition of a gamma 
function, so that rl(a)r r ( a ) .  At first sight an integral like (17) may appear 
formidable, but let's look closer. A symmetric m X m matrix has $m(m + 1) 
elements and hence the set of all such matrices is a Euclidean space of 
distinct elements and hence the set of all such matrices is a Euclidean space of 
subset of this Euclidean space and in fact forms an open cone described by 
the following system of inequalities: 

I t  is a useful exercise to attempt to draw this cone in three dimensions when 
m =2 (see Problem 2.8). The integral (17) is simply an integral over this 
subset with respect to Lebesgue measure 

( dA) E da, , A du,, A . . * A dam, - = da I I da Iz.. . d a , ,  . 

Before evaluating I-,( a )  the following result is worth noting. 

THEOREM 2.1.1 1. 
matrix with Re(Z)>O then 

If Re(a)> i ( m  - 1) and Z is a symmetric m X m 

(17) 1 etr( - bX-'A)(det A ) a - ( n ' + 1 ) / 2  ( d A )  = r,( a)(det Z)"2"" 
A>O 

Proofi First suppose that Z>O is real. In the integral make the change 
of variables A =221/2V21/2, where Z'/2 denotes the positive definite 
square root of X (see Theorem A9.3). By Theorem 2.1.6, (&)= 
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Zrn("+ ')l2(det Zl)(m+')/2(dV) so that the integral becomes 

lv,;tr( - V)(det V)'--(m.t1)'2 (dV)2'""(det 2)" .  

which, by Definition 2.1.10, is equal to the right side of (17). Hence, the 
theorem is true for real 2 and i t  follows for complex Z by analytic 
continuation. Since Re(X)>O, det X ZO and (det 2)" is well defined by 
continuation. 

Put a = f n  in Theorem 2.1.1 1, where n (> m - 1) is il real number, and 
suppose that Z>O. I t  then follows that the function 

(18) 

is a density function, since it is nonnegative and integrates to 1. I t  is called 
the Wishart density function, and it plays an extremely important role in 
multivariate distribution theory since, as we will see in Chapter 3, when n is 
an integer (> m - I )  it is the density function of nS, where S is a sample 
covariance matrix formed from a random sample of size n + 1 from the 
N,(p, 2 )  distribution. 

The multivariate gamma function can be expressed as a product of 
ordinary gamma functions, as the following theorem shows. 

THEOREM 2.1.12. 

Proof; By Definition 2.1.10 

( W .  
I',,,(a)=/A,;tr( - A)(det A )  (I - ( m +  I)/2 

Put A = T'T where T is upper-triangular with positive diagonal elements. 
Then 

m 

t rA=trT'T= r; 
Is J 

m 

r = l  
detA=detT'T=(detT) '= fl t : ,  



Jacobians, Exterior Products, and Related Topics 63 

and from Theorem 2.1.9 

tn m 

Hence, 

The desired result now follows using 

and 

2. I ,  3. More Jacobians 

Our next theorem uses the fact that any n X m ( n  2 m )  real matrix 2 with 
rank m can be uniquely decomposed as Z =  HIT, where T is an upper- 
triangular m X m matrix with positive diagonal elements and HI is an n X m 
matrix with orthonormal columns (see Theorem A9.8). 

THEOREM 2.1.13. Let Z be an n X m  ( n r m )  matrix of rank m and 
write Z= H,T, where HI is an n X m matrix with H;H, = I,,, and T is an 
m X m upper-triangular matrix with positive diagonal elements. Let H2 (a 
function of H I )  be an n X ( n - m )  matrix such that H = [ H , :  H2) is an 
orthogonal n X n matrix and write H=[h,. .. h,,,: h,,,+,. . . h,], where h,,  . . ., h,,, 
are the columns of HI and hm+ ,,. . . , h, are the columns of I f 2 .  Then 

m 

(dZ)  = fl dT)( N;dH,) 
r = I  

( 19 )  

where 
m n  
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Prook Since Z =  HIT we have d Z =  dH,.T+ H,.dT and hence 

1 =[ H ; d H , T + d T  
H i  dl l ,  T 

since H;H, = I,,,, H i H ,  =O. By Theorem 2.1.4 the exterior product of the 
elements on the left side of (21) is 

( H' dZ ) = (det H') ( dZ ) = ( dZ ) . 

(ignoring sign). It remains to be shown that the exterior product of the 
elements on the right side of (21) is the right side of (19). 

First consider the matrix Hi dH,T. The (j - m)th row of Hi dH, Z is 

(h;dh ,,..., h;dh,,,)T ( m + l S j ~ n ) .  

Using Theorem 2.1.1, it follows that the exterior product of the elements in 
this row is 

m 

I = )  
(det T )  A hidh,. 

Hence, the exterior product of all the elements in II; dH, T is 

m n ni 

h A hidh, .  
(22) J = m + l  [(detT) i = l  A h;dh,]=(detT)'-" j = m - k I  ( = I  

Now consider the upper matrix on the right side of (21), namely, 
H;dH,T+ dT. First note that since H ; H ,  = I,,, we have 

H;dH, + dH;. H I  = O  
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* 
* 
* 

* 
J 

and hence H ;  dH, is skew-symmetric: 

H;dH,T= 

H;dH, = 

6- * ... 
* ... 

0 

h; dhlil I 

h;dhllll h3dh2t22+* 

h,d h, f t l  h',dh2 f12+ * hm d h, - 

0 -h;dh1 ... -h',,,dh, 
hi d h, 0 ... -h;dh, 
h;dh, hidh, ... -h,dh, 

h; d h, h',d h, 0 

( m x m ) .  

Postmultiplying this by the upper-triangular matrix T gives the following 
matrix, where only the subdiagonal elements are given, and where, in 
addition, terms of the form h; d hJ are ignored if they have appeared already 
in a previous column: 

* 
* 
* 

+ *  
t t m -  1.m- 1 

Column by column, the exterior product of the subdiagonal elements of 
HidH, T + dT is (remember that dT is upper-triangular) 

m m  

It follows from (22) and (23) that the exterior product of the elements of 
H i  dH, T and the subdiagonal elements of Hi dH, T + dT is 

(24) ( r = l  ii r ; - " ' ) (  r = l  ;i j = m + l  ;i h;dh,)( , = I  ii r:-')( # = I  ;i: J " I + 1  ;i h;dhl) 
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using (20). The exterior product of the elements of I f ;dH,T+  JT on and 
above the diagonal is 

m 

(25) A dti, -t terms involving dH, . 

We now multiply together (24) and (25) to get the exterior product of the 
elements of the right side of (21). The terms involving dH, in (25) will 
contribute nothing to this exterior product because (24) is already a dif- 
ferential form of maximum degree in H I .  Hence the exterior product of the 
elements of the right side of (21) is 

ni 

r = l  
n r;  - J (  dT) (  H ;  ClN, ) . 

and the proof is complete. 

The following theorem is a consequence of Theorems 2.1.9 and 2.1.13 
and plays a key role in the derivation of the Wishart distribution in Chap- 
ter 3. 

THEOREM 2.1.14. With the assumption of Theorem 2.1.13, 

where A = Z'Z. 

Proof. From Theorem 2.1.13 

Also, A = Z'Z = T'T. Hence from Theorem 2.1.9, 

so that 
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Substituting this for ( d T )  in (26) gives 

tn 

r = l  
(dZ)=2-" fl r;-"-'(dA)(H;dH,) 

( H :  dH, )  
( n -  m -  1 ) / 2  =2-"(det A )  

since t,l =det T=(det T'T)' l2  =det A' / ' .  

21 .4 .  Invariant Measures 

It is time to look a little more closely at the differential Form (20), namely, 

m n  

( H ; d H , ) =  A A h;dhl, 
r = l  j = i + l  

which occurs in the previous two theorems. Recall that HI is an n X m  
matrix ( n  2 m )  with orthonormal columns, so that H ; H ,  = lnl. The set (or 
space) of all such matrices H I  is called the Stiefel manfold, denoted by Vn,, ,,. 
Thus 

The reader can check that there are f m ( m  + 1) functionally independent 
conditions on the mn elements of H,EV,, , , ,  implied by the equation 
H ; H ,  = I,,,. Hence the elements of H I  can be regarded as the coordinates of 
a point on a mn - f m ( m  + 1)-dimensional surface in mn-dimensional 
Euclidean space. If HI = ( h , , )  ( i  = I , .  . . ,n; j = I , .  . . ,m) then since x:= I z,M= I hfJ = m this surface is a subset of the sphere of radius m 1 l 2  in 
mn-dimensional space. Two special cases are the following: 

(a) m = n .  
Then 

V,,,,,, EZ O( m ) =  { H ( m  x m ) ;  H ' H =  I,,,},  

the set of orthogonal m X m matrices. This is a group, called the 
orthogonal group, with the group operation being matrix multiplica- 
tion. Here the elements of HE O(m)  can be regarded as the coordi- 
nates of a point on a i m ( m  - I)-dimensional surface in Euclidean 
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m2-space and the surface is a subset of the sphere of radius ml/* in 
rn2-space. 

(b) m = l .  
Then 

v,,,, f S, = { h( n X 1); h‘h= I } , 

the unit sphere in R”. This is, of course, an n - 1 dimensional 
surface in R“. 

Now let us look at the differential form (20). Consider first the special 
case n = m, corresponding to the orthogonal group O(m); then, for H E  
O( m 1, 

m 

1-=J 

( I f ’ d H ) =  A h ; d h , .  

This differential form is just the exterior product of the subdiagonal 
elements of the skew-symmetric matrix H’dH. First note that it is invariant 
under left translation H QH for QE O( m),  for then H’dH -+ H‘Q’QdH = 
H ’ d H  and hence ( N o d i f ) - ( H ’ d H ) .  It is also invariant under right transla- 
tion H -+ HQ’ for QE O( m),  for H‘ d H  4 QH’dHQ’ and hence, by Theorem 
2.1.7, (23’ dH) 4 (QH’ aHQ‘) = (det -- I(H’ dH) = (H’ dH) , ignoring the 
sign. This invariant diflerential form defines a measure p on O( m) given by 

where p(6D) represents the surface area (usually referred to as the uolurne) 
of the region 9 011 the orthogonal manifold. Since the differential form 
(H’dH) is invariant, it is easy to check that the measure p is also. What this 
means in this instance is 

(see Problem 2.9). The measure p is called the inuariant measure on O( m).  It 
is also often called the Haar measure on O(m) in honor of Haar (I933), who 
proved the existence of an invariant measure on any locally compact 
topological group (see, for example, Halmos (1950) and Nachbin (1965)j. I t  
can be shown that it is unique in the sense that any other invariant measure 
on O(m) is a finite multiple of p. The surface area (or, as it is more often 
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called, the volume) of O( m )  is 

Vol[O(m)] = p [ O ( m ) ]  = 1 ( H ' d H ) .  
O ( m )  

We will evaluate this explicitly in a moment. As a simple example consider 
the invariant measure on the proper orthogonal group Of(2) when m =2; 
that is, the subgroup of 0(2), or part of the orthogonal manifold or surface, 
of 2x2 orthogonal matrices H with det H =  1. Such a matrix can be 
parameterized as 

The invariant differential form ( H ' d H )  is 

( -s inode)  = de 
cos e de (H'dH)=h;dh, =(-sin/? cose) 

and 

Now consider the differential form (20) in general, so that H I E  Vm,n. 
Here we have (see the statement of Theorem 2.1.13) 

where ( H I :  H,]=[h, ... h,jh,+, ... h , ] E O ( n )  is a function of H,. It can be 
shown that this differential form does not depend on the choice of the 
matrix H2 and that i t  is invariant under the transformations 

and 
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and defines an invariant measure on the Stiefel manifold Vm,n. For proofs 
of these assertions, and much more besides, the interested reader is referred 
to James (1954). The surface area or volume of the Stiefel manifold I"",,, is 
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We now evaluate this integral. 

THEOREM 2.1.15. 

ProoJ Let Z be an n X nt (n 2 m )  random matrix whose elements are 
all independent N(0,l) random variables. The density function of 2 (that is, 
the joint density function of the mn elements of 2) is 

which, in matrix notation, is the same as 

Since this is a density function, it integrates to 1, so 

Put Z =  H,T, where H I E  Vrn,n and T is upper-triangular with positive 
diagonal elements, then 
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(from Theorem 2.1.13) and (29) becomes 

= (27r)mn/2. 

The integral involving the I,, on the left side of (30) can be written as 

m 

using Theorem 2.1.12. Substituting back in (30) it then follows that 

and the proof is complete. 

A special case of this theorem is when m = n, in which case it gives the 
volume of the orthogonal group O(m). This is given in the following 
corollary. 

COROLLARY 2.1.16. 

Note that V0l[O(2)]=2~e~/I',(l)=4n, which is twice the volume of O' (2 )  
found in (28), as is to be expected. 
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Another special case is when nr = I in which case Theorem 2.1.15 gives 
the surface area of the unit sphere S,, in R" as 2 ~ ' / ~ / r ( j n ) ,  a result which 
has already previously been noted in the proof of Theorem 1.5.5. 

The measures defined above via the differential form (20) on K,,,, and 
O( m )  are "unnormalized" measures, equivalent to ordinary Lebesgue mea- 
sure, regarding these spaces as point sets in Euclidean spaces of appropriate 
dimensions. Often i t  is more convenient to normalize the measures so that 
they arc probability measures. For example, in the case of the orthogonal 
group, if we denote by ( d H )  the differential form 

then 

and the measure p* on O(m) defined by 

is a probability measure representing what is often called the "Haar 
invariant" distribution [on O(m)] ;  see for example, Anderson (1958), page 
321. In a similar way the differential form ( H i d f f , )  representing the 
invariant measure on Vm, can be normalized by dividing by Vol( Vnl, ,), to 
give a probability distribution on V;,,,. In the special case m = I this 
distribution, the uniform distribution on the unit sphere S,, in R", is the 
unique distribution invariant under orthogonal transformations, a fact 
alluded to in Section 1.5. 

We have derived most of the results we need concerning Jacobians and 
invariant measures. Some other results about Jacobians appear in the 
problems and, in addition, others will be derived in the text as the need 
arises. For the interested reader useful reference papers on Jacobians in 
multivariate analysis are those by Deemer and Olkin (1951) and Olkin 
( 1953). 
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2.2. KRONECKER PRODUCTS 

Many of the results derived later can be expressed neatly and succinctly in 
terms of the Kronecker product of matrices. Rather than cover this in the 
Appendix the definition and some of the properties of this product will be 
reviewed in this section. 

DEFINITION 2.2.1. Let A = ( a , , , )  be a p X q  matrix and B = ( b , , )  be an 
r X s matrix. The Kronecker product of A and B, denoted by A B B ,  is the 
pr X qs matrix 

a , , B  a, ,B ... a,,B 1 
A @ B =  . I .  

I .  I 

The Kronecker product is also often called the direct product; actually the 
connection between this product and the German mathematician Kronecker 
(1823-1891) seems rather obscure. 

An important special Kronecker product, and one which occurs often is 
the following: If B is an r X s matrix then the pr X ps block-diagonal matrix 
with B occurring p times on the diagonal is l ,@B; that is 

I-B 0 ... 0 1  

Some of the important properties of the Kronecker product are now 
summarized. 

(a) ( a A ) Q ( / ? B ) = a / ? ( A @ B )  for any scalars a,& 

(b) If A and B are both p X (I and C is r X s, then 

( A  + B ) @ C  = A8C + B 8 C .  

(c) ( A @ B ) Q C  = A@( B Q C ) .  
(d) ( A B B Y =  A'8B' .  
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(e) If A and B are both m X rr, then 

tr( ,488) = (trA)(tr B). 

(f) If A is tn X n, B is p X q, C is n X r ,  and D is q X s then 

(A@B)(C@D)= AC@BL). 

(g) If A and B are nonsingular then 

( A 8  B ) -- ' = A - I@ B -  I 

(h) If H and Q are both orthogonal matrices, so is H 8 Q .  

(i) If A is m X rn, B is n X n then 

det(A@B)=(det A)"(det B)". 

(j) If A is m X m with latent roots u , ,  ..., a", and B is n X n with latent 
roots b ,,..., b,, then A @ B  has latent roots u,b, ( i =  1 ,..., m; j =  
I , .  . . ,n) .  

(k) I f  A>O, B>O (i.e., A and B are both positive definite) then 
A@B>O. 

These results are readily proved from the definition and are left to the 
reader to verify. A useful reference is Graybill (l969), Chapter 8. 

Now recall the vec notation introduced in (21) of Section 1.2; that is, if 
T = ( t ,  t, ... t4 ]  is a p X q matrix then 

The connection between direct products and the vec of a matrix specified in 
the following lemma is often useful. The proof is straightforward (see 
Problem 2.12). 

LEMMA 2.2.2. If B is r X m,  X is m X n ,  and C is n X s then 

vec( BXC) = (C'QDB) vect X). 
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As an application of this lemma, suppose that X is an r n X n  random 
matrix whose columns are independent m X 1 random vectors, each with the 
same covariance matrix C. That is, 

x = [ x ,  ... x,] 

where Cov(X,)= X, i = 1,. . . , n.  We then have 

vec( X) = [ X '  j 
X" 

and since the X, are all independent with the same covariance matrix i t  
follows that 

( 1 )  Cov[vec( x)] = 

2 0 '... 0 
0 2 ... 0 

0 0  c 
(mn x nm) 

Now suppose we transform to a new random matrix Y given by Y = BXC, 
where B and C are r X m  and n X s  matrices of constants. Then E ( Y ) =  
BE( X)C and, from Lemma 2.2.2, 

vec( Y)=(C'@B)vec(X) 

so that 

E[v~c(Y)] =(c@B)E[v~c(x)]. 

Also, using (3) of Section 1.2, 

~ o v ( v e c ( ~ ) ) = ( ~ ~ @ ~ ) ~ o v [ v e c (  x)](c'@B)' 

= ( C ' @ B ) (  I"@.x)( C 8 B f )  

= C'C@ BZ B', 

where we have used (1 )  and properties (d) and (0, above. 
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Some other connections between direct products and vec are summarized 
in the following lemma due to Neudecker (1969), where it is assumed that 
the sizes of the matrices are such that the statements all make sense. 

LEMMA 2.2.3. 

(i) vec( BC) = ( I @ B )  vec( C) = (C'@ I)  vec( R )  =( C'QDB) vec( I ) 
(ii) tr (BCD)=(vec(B')) ' (I@C)vec(U) 

(iii) tr( BX'CXD) =(vec( X))l( B'D'@C)vec( X) 

ProoJ; Statement (i) is a direct consequence of Lemma 2.2.2. Statement 
(ii) is left as an exercise (Problem 2.13). To prove the first line of statement 
(iii), write 

tr( BX'CXD) = tr( BX')C( XD) 

=(vec( X))'(  DB@C')vec( X) 

= (vec( HI'))'( I W )  vec( XD) using (ii) 

= [( B@l)vec( x)]'( I@c)(  ~ ' @ ~ ) v e c (  X) using ( i )  

=(vec( A'))'( B ' @ I ) (  I@C)(  D'@I)vec( X) using property (d) 

=vec( X)'( B'D'@C)vec( X) using property ( f ) .  

The second line of statement (iii) is simply the transpose of the first. 

PROBLEMS 

2.1. If X is n X m and Y is m X p prove that 

d(  XY) = X.dY + dX. Y. 

2.2. Prove Theorem 2. I .7. 

2.3. Prove that if X, Y and B are m X m lower-triangular matrices with 
X = YB where B is fixed then 

rn 

r = l  
(dX)= n b;+'- ' (dY),  

( d X )  = 2"( dY ). 

2.4. Show that if X =  Y + Y', where Y is rn X in lower-triangular, then 
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2.5. Prove that if X = YB + BY’ where Y and B are m X m lower-triangular 
then 

m 

( d X ) = 2 m  n b:+’-’(dY).  
r = l  

2.6. 
triangular, then 

Prove that if X =  Y B +  BY’, where Y and B are m X m  upper- 

m 

(dX)=Zrn IT b ; , ( d Y ) .  
r = l  

2.7. Prove that if X is m X m nonsingular and X =  Y -  ’ then 

(dX)=(det Y ) - 2 m ( d Y ) .  

2.8. The space of positive definite 2x2 matrices is a subset of R3 defined 
by the inequalities 

Sketch the region in R3 described by these inequalities. 

2.9. Verify equation (27) of Section 2. I : 

where 

p ( 9 ) = / ( H ‘ d H )  9 C O ( r n ) .  
4 

2.10. Show that the measure p on O ( m )  defined by 

is invariant under the transformation H -* H’. 
[Hint: Define a new measure Y on O ( m )  by 

where 6 D - ‘ = ( H E O ( m ) ;  H ’ E 9 ) .  Show that v is invariant under left 
translations, i.e., v ( Q q ) =  u ( 9 )  for all QEO(m). From the uniqueness of 
invariant measures Y = kp for some constant k. Show that k = I . ]  
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2.11. If 

I sin 8, sin 0, cos 0, cos 8 ,  sin 0, 

cos e, 0 -sin 6,  
sine, cos e, -sin 0, cos 8, cos e, 

(where 0s B, < Q, 0 5  0, < 2 a )  show that 

(h i  d h, )  A(h; d h, ) =sin 8, de2 A d6 , .  

Show also that its integral agrees with the result of Theorem 2.1.15. 

2.12. Prove Lemma 2.2.2. 

2.13. If B is r X m, C is m X n, and D is n X c,  prove that 

tr( BCD) = (vec( B’))’( Z@C) vec( D). 



CHAPTER 3 

Samples from a Multivariate 
Normal Distribution, and 
the Wishart and Multivariate 
Beta Distributions 

3 . 1 .  
D I S T R I B U T I O N  A N D  M A X I M U M  L I K E L I H O O D  
ESTIMATION OF T H E  P A R A M E T E R S  

SAMPLES F R O M  A M U L T I V A R I A T E  N O R M A L  

In this section we will derive the distributions of the mean and covariance 
matrix formed from a sample from a multivariate normal distribution. First, 
a convention to simplify notation. When we write that an r X s random 
matrix Y is normally distributed, say, Y is N( M, C@D) ,  where M is r X s 
and C and D are r X r and s X s positive definite matrices, we will simply 
mean that E(Y)= M and that CQD is the covariance matrix of the vector 
y = vec( Y‘) (see Section 2.2). That is, the statement “ Y  is N( M, CSD)”  is 
equivalent to the statement that “y is N&n, Cal l ) ,”  with m=vec(M’). The 
following result gives the joint density function of the elements of Y. 

THEOREM 3. I .  1. If the r X s matrix Y is N( M, C @ D ) ,  where C(r X r )  
and D(s X s)  are positive definite, then the density function of Y is 

(1) 

density function of the elements of y is 

(2n)-‘”2(detC)-”2(det D)-r’2etr[-fC-l( Y - M)D-’(Y- M)’] 

Prooh Since y=vec(Y’) is N,(m,CQD), with m=vec(M’), the joint 

(2n)-”/*det( C@D)-’/2exp[ - $ (y - m)’( C@D)-’(y - m)] . 

19 
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That this is the same as (1) follows from Lemma 2.2.3 and the fact that 
det(C 8 D )  = (det C)“(det Dy. 

Now, let XI, . . . , XN be independent N,,,(p, Z) random vectors. We will 
assume throughout this chapter that I: is positive definite (Z >O). Let X be 
the N X m matrix 

X =  [xi]  
X N  

then 

E ( X ) = [  i : ] = l p t ,  where 1=(1, ..., I ) ’ E R N ,  

and Cov[vec(X’)]= f N @ X ,  so that by our convention, Xis N(Ip’ ,  lN@,C). 

covariance matrix S, defined by 
We have already noted in Section 1.2 that the sample mean vector 2 and 

where 

N 
A = 2 (XI -%)(X;Sz)’=( x -  I%)’( x -  1%) 

l = l  
(3) 

and n = N - 1, are unbiased estimates of p and X, respectively. The follow- 
ing theorem shows that they are independently distributed and gives their 
distributions. 

THEOREM 3.1.2. If the N X nt matrix X is N(Ip’ ,  I,@Z) then 3 and A ,  
defined by (2) and (3), are independently distributed; X is N , ( p , ( l / N ) Z )  
and A has the same distribution as 2‘2, where the n X tn ( n  = N - 1) matrix 
Z is N(0, I , ,@Z) (Len, the n rows of 2 are independent N,(O, X) random 
vectors). 

ProoJ Note that we know the distribution of % from Corollary 1.2.15. 
Using ( I ) ,  the density function of X is 

(4) (2~)-”””(det2)-”~etr[-  f2-’( X - l p ’ ) ‘ ( X -  Ip’)]. 
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Now put V =  HX, where H is an orthogonal N X N matrix [i.e., H € O ( N ) ] ,  
with elements in the last row all equal to N - ’ / 2 .  The Jacobian of this 
transformation is, from Theorem 2.1.4, ldet HIm = 1. Partition V as 

where 2 is n X m (n = N- I), and v is m X 1. Then 

x’x = V’V = Z’Z + vv’. 

The term ( X -  lp‘)’( X - 1p’) which appears in the exponent of (4) can be 
expanded as 

( 5 )  (x- IF’)’( x -  lp’)= x’x- X’lp’-pI’X+ Npp’ 

= 22  + w’- X’1p’- (X’Ip’)’+ Npp‘.  

Now note that H1 = (0, . . . , 0, N1’2)’, since the first n = N - 1 rows of H are 
orthogonal to 1 E RN, and so 

Substituting back in ( 5 )  then gives 

(6) ( X - lp’)’( X -  1p’)= 2’2 4-w’- A”l2pv‘- N’/2vp’+ Npp’ 

= Z’Z+(v- ”/2p)(v- N”2p)’ .  

Hence the joint density function of Z and v can be written as 

( 2 ~ ) - “ ” / ~ ( d e t  X)-’”*etr( - fX-’Z‘Z).(2n)-“/2(det X)-’’2 

which implies that 2 is N(O,l,,@X) (see Theorem 3.1.1) and is independent 
of v, which is N,,,(N’/’p, C). This shows immediately that is 
N , , , ( p , ( l / N ) X )  and is independent of Z since 

v =  N- ‘ / 2 x ’ 1 =  N 1/23. (7) 
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The only thing left to show is that A = Z'Z; this follows by replacing p by % 
in the identity (6) and using (7). 

DEFINITION 3.1.3. If A = Z'Z, where the n X m matrix 2 is N(0, 1 , 1 8 X ) ,  
then A is said to have the Wishart distribution with n degrees of freedom and 
covariance matrix X. We will write that A is W,(n, X), the subscript on W' 
denoting the size of the matrix A .  

The Wishart distribution is extremely important to us and some of its 
properties will be studied in the next section. Note that since A = Z'Z from 
Theorem 3.1.2 then the sample covariance matrix S is 

Suniples /rum u Muhariute Normul Distribution 

where Z= n-'I2Z is N(0, I n @ ( l / n ) 2 ) ,  so that S is Wm(n,( l / n ) Z ) .  Since S 
is an unbiased estimate for C it is of interest to know whether it, like 2, is 
positive definite. The answer to this is given in the following theorem, whose 
proof is due to Dykstra (1970). 

THEOREM 3.1.4. The matrix A given by (3) (and hence the sample 
covariance matrix S = n - ' A )  is positive definite with probability I if and 
only if n z m (i.e., N >  m). 

ProoJ From Theorem 3.1.2, A = 2'2 where the n X m matrix 2 is 
N(0, I,,@PZ). Since Z'Z is nonnegative definite it suffices to show that Z'Z is 
nonsingular with probability 1 if and only if n 2 m. First, suppose that 
n = m; then the columns z I , .  . .,z,,, of 2' are independent N,,,(O, 2) random 
vectors. Now 

P ( z ,  , . . .,z, are linearly dependent) 
m 

5 

= mP(z,  is a linear combination of z2 , .  . . , 2,) 

= mE[ P ( z ,  is a linear combination of z 2  ,. . . ,zm1z2, .  . . ,z,,,)] 
= mE(O) = O ,  

P ( z ,  is a linear combination of z,,. . . , z l - .  , , z l + ,  , . . . , z r n )  
( = I  

where we have used the fact that z, lies in a space of dimension less than m 
with probability 0 because Z>O. We have then proved that, in the case 
n = m, 2 has rank m with probability I .  Now, when n > m, the rank of Z is 
m with probability 1 because adding more rows to 2 cannot decrease its 
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rank, and when n c rn the rank of Z must be less than m. We conclude that 
2 has rank m with probability one if and only if n 2 m and hence A = 2'2 
has rank m with probability 1 if and only if n L m. 

Normality plays a key part in the above proof, but the interesting part of 
the theorem holds under much more general assumptions. Eaton and 
Perlman (1973) have shown that if S is the sample covariance matrix formed 
from N independent and identically distributed (not necessarily normal) 
m X 1 random vectors X,, ..., X N  with N > m  then Sis positive definite with 
probability 1 if and only if P ( X , €  <)=O for alls-flats I;; in R'"(O5's<m), 
a condition which is implied by normality. [An s-flat is the translate 
F, = (x )  + &, of an s-dimensional linear subspace or s-subspace in 
R".] A similar result has also been obtained by Das Gupta (1971). 

The density function (4) considered as a function of the parameters p 
and Z (for fixed observed X )  is the likelihood function. Since 

( x - lpL))'( x - lp') = A + N ( X  - p )(Z - p )' 

[from (6) with A = 2'2 and v=  N ' I 2 g ] ,  (4) can be written in the form 

( 2 n )  - n'"2(det X) - 

so that in order to determine the likelihood function the only functions of 
the sample needed are % and A. From this we conclude that @ , A )  [or 
(%, S ) ]  is suficient for p and C (or for the normal family of distributions (4) 
for p E R"', 2 >O). 

We conclude this section by finding the maximum likelihood esiimates of 
p and X, that is, those values of p and C which maximize the likelihood 
function (8). 

THEOREM 3.1.5. If X,, ..., X N  are independent &Jp, 2) random vec- 
tors and N > m  then the maximum likelihood estimates of p and C are 
@ = %  and $ = ( I / N ) A = ( n / N ) S ,  where n = N - 1  and g, A, and S are 
given by (2) and (3). 

Proof: Ignoring the constant in (8), which is of no consequence, the 
likelihood function is 

L ( p ,  Z)=(det  I:)-N/2etr( - fX-'A)exp[ - : N ( % - p ) ' I : - ' ( g - g ) ] .  

Now 

L(p, C) l (de t  2)-N'2etr( - f X - ' A ) ,  
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with equality if and only if p =z, where we have used the fact that 

(Z- p ) z -  I(& p ) =O 

if and only if p =g, because Z- '  is positive definite. This shows that % is 
the maximum likelihood estimate of p for all Z. I t  remains to maximize the 
function (of C) 

L(%, z)=(detZ)-N/2etr(  -42-1~) 

or, equivalently, the function 

g( 2) = logL(2,Z) = - f N  logdet Z - f tr (  Z - ' A )  

= t N logdet( 2-  'A) - f tr( Z _- ' A )  - f N logdet A 

= fNlogdet(A'/21:-'A'/2) - $tr( A ' / 2 Z - ' A ' / 2  )- fNlogdet A 

= z ( N log A,  - A, )  - 4 N logdet A 
m 

l = l  

where A,, ..., A m  are the latent roots o f  A ' / 2 Z - - ' A ' / 2 ,  i.e., of Z - ' A .  Since the 
function 

/ (A)= NlogX - X 

has a unique maximum at A = N of Nlog N - N i t  follows that 

g(Z)SfNmlog N - 4mN- 4Nlogdet A ,  

or 

with equality i f  and only if A, = N  ( i =  I ,  ..., m). This last condition is 
equivalent to A ' / 2 2 -  'A l l2  = NI,,, and hence to I: = ( l /N  ) A .  Therefore we 
conclude that 

L(p, X ) r  N""/Ze-""/2 (det A ) - ~ / ~ ,  

with equality if and only if p =% and X = ( I / N ) A ,  and the proof is 
complete. 
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The above proof, which avoids any differentiation of the likelihood 
function, is due to Watson (1964). It is left to the reader to determine why 
the condition N > m  is imposed, where it is used, and what happens if it 
does not hold. Finally, note that the maximum likelihood estimate 3 has 
expectation 

so that it is not unbiased f0r.Z. It is, however, asymptotically unbiased since 
n/N-,l a sN+oo .  

3 .2 .  THE W I S H A R T  DISTRIBUTION 

3.2. I .  

We have defined the Wishart W,(n, 2) distribution in Definition 3.1.3 as 
the distribution of the m X m random matrix A = Z'Z, where Z(n X m) is 
N(0,  I,@Z). When n < m, A is singular (Theorem 3.1.4) and the W,(n, Z) 
distribution does not have a density function. The following theorem gives 
the density function of A when n 2 rn; most of the work involved in the 
derivation has already been done in Section 2.1 and it is only a matter of 
putting things together. 

THEOREM 3.2.1. If  A is W,(n, 2 )  with n 1 m then the density function 
of A is 

The Wishart Density Function 

where rm( -) denotes the multivariate gamma function given in Definition 
2. I .  10. 

Write A = ZZ, where Z(n X m) is N(O,I ,@z) .  The density of 2 
is 

Proof. 

(2~)-"" '~(de t  C)-'"'2etr( - +Z- 'Z 'Z)(dZ)  

where the volume element ( d Z ) =  dz,, has been included to 
facilitate the calculation of Jacobians when we make transformations on Z. 
Since n 2 m, Z has rank m with probability 1 (see the proof of Theorem 
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3.1.4). Put Z =  HIT as in Theorems 2.1.13 and 2.1.14, where II, is n X m 
with N;H, = I,,, (i.e., HIE V,,,, the Stiefel manifold consisting of n X m 
matrices with orthonormal columns) and T is m X m upper-triangular. Then 
A = 2'2 = T T ,  and from Theorem 2.1.14 the volume element ( d Z )  becomes 

Sumples from a Multivariate Normal Disirrbuiion 

( dA dH, ) 9 

n - m - 1)/2 (dZ)=2-"(det A)' 

so that the joint density of A and HI is 

The marginal density function of A given by ( I )  then follows from this by 
integrating with respect to HI over the Stiefel manifold V,,,, using 

the result of Theorem 2.1.15. 

The density function of the sample covariance matrix S follows im- 
mediately and is worth stating explicitly. 

COROLLARY 3.2.2. If X I ,  ..., X! are independent NJp, 2 )  random 
vectors and N >  m the density function of the sample covariance matrix 

. N  
1 -  S=- 2 ( X , - % ) ( X ~ - R ) ~  ( n = N - l )  

r = l  

(fn)mn/2etr(  - tnZ-'S)(det S)'" (-0) 
1 

rm( $n)(det 2)"" 
- 

ProoJ The proof follows either by recalling that S is W,(n,(l/n)Z) 
(see the discussion following Definition 3.1.3) or by making the transforma- 
tion A = nS in (1). 

In the univariate case m = 1, these results reduce to familiar ones. In this 
case let us write 
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then the density function of s 2  is, from (2), 

Putting v = ns2/u2, we then obtain the density function of B as 

( O > O ) ,  
1 e - o / 2 v n / 2 -  I 

2"i2r(  i n )  

the xi density function. This shows that if A is W,(n, u2) (so that A is 1 X 1) 
then A / u z  is x i ,  a result which we will use quite often. 

It is worth remarking here that although n is an integer ( r m )  in the 
derivation of the Wishart density function of Theorem 3.2.1, the function 
(1)  is still a density function when n is any real number greater than m - 1 
(not necessarily an integer), a fact which was noted in the discussion 
following Theorem 2.1.1 1. We can, therefore, extend our definition of the 
Wishart distribution to cover noninteger degrees of freedom n for n > m - I ;  
for most practical purposes, however, Definition 3.1.3, which defines it for 
all positive integers n, suffices. 

The density function (1) was first obtained by Fisher (1915) when m =2, 
and for general m by Wishart (1928) using a geometrical argument. Since 
that time a number of derivations have appeared. The derivation given in 
this section is due to James (1954) and OIkin and Roy (1954). 

3.2.2. Characteristic Function, Moments, and Asymptotic Distribution 

The reader will recall that if the random variable A is W,(n, u2) then A / a 2  
is xf, so that the characteristic function of A is ( I  - 2 i t ~ ~ ) - " / ~ .  The 
following theorem generalizes this result. 

THEOREM 3.2.3. If A is W,(n, Z) then the characteristic function of A 
[that is, the joint characteristic function of the - fm(m + 1) variables a,,, 
I s i s  j ~ m ]  is 

+(@)-E[exp( i j'k 2 S,,aJk)]=det( l , , , - i l .B)-"~2;  

where r = (yi,), where i, j = 1, . . . , m, with yi j  = (1 + S,,)O,,, qi  = qt ,  and a,, 
is the Kronecker delta, 

1 if i = j  
4, = { 0 if i # j '  
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Prooj The characteristic function + ( O )  can be written as 

(3) 

There are two cases to consider: 

(i) First, suppose that n is a positive integer. Then we can write A = 2'2, 
where Z is N(0, l , , @ X ) .  Let zI,. . . , i t , ,  be the columns of 2'; then zl,.. . ,z,, are 
independent N,(O, Z) random vectors and A = Z'Z = x;, , zJz;. Hence 

(by independence) 

Put y = X -  I/'zI; then y is Nm(O, I,) and 

Since 21/2rL.'/2 is real symmetric there exists an orthogonal m X m matrix 
H such that 

H Z ' / 2 r X 1 / 2 H ' =  A =diag( A , ,  . . .,A,,), 

where XI, ... ,Am are the latent roots of X 1 / 2 1 2 3 1 / 2 .  Put u=Hy, then u is 
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+( 8) = ( E [  exp 3: i u ' h ]  ) ' 

m 

m 
- n / 2  = fl ( 1 - i A , )  , 

J = I  

where we have used the fact that the u j ,  j = 1, ..., m are independent x :  
random variables. The desired result now follows by noting that 

m n (l-iAJ)=det(l,,,-iA) 
J = I  

=det( I,  - i Z ' / 2 r Z ' / 2 )  

=det( I,,, - X Z ) .  

(ii) Now suppose that n is any real number with n > m - I .  Then A has the 
density function (1) (see the discussion following Corollary 3.2.2) so that 

etr[ -+A(Z-'-iT)](det A)'""''/Z(dA). I, >o 

Now apply Theorem 2.1.1 1 to give 

as desired. 
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The moments of the elements of the Wishart matrix A of Theorem 3.2.3 
can be found from the characteristic function in the usual way. We know 
already that 

E( A )  = nL‘, 

and it is a straightforward matter to show that 

(4) 

for i ,  j ,  k ,  I = I , .  . , , m (see Problem 3.1). The matrix of covariances between 
the elements of A can be expressed in terms of a Kronecker product. Let H,J 
denote the m X m matrix with h,, = 1 and all other elements zero and put 

m 

K =  2 (H,J@II,’,), 
l , J = I  

so that K is m2 X m2. For example, with tn = 2  the reader can readily verify 
that 

1 0 0 0  ‘=[: 0 0 1 0  ; ; Pj. 
For any m X m matrix C,  the matrix K has the property that it transforms 
vec( C) into vec( C‘), 

Kvec( C )  = vec( C’), 

and for this reason is sometimes called the “commutation matrix.” If A is 
W,(n, 2) the covariance matrix of vec(A) can be readily expressed in terms 
of the matrix K as 

( 5 )  ~ov[vec(~)]=n(l , , ,2  + K ) ( Z @ Z )  

(see Problem 3.2) a fact noted by Magnus and Neudecker (1979). Finally, 
we saw in Corollary 1.2.18 that under general conditions the sample 
covariance matrix S( n )  formed from a sample of size n + 1 is asymptotically 
normal as n 00. In the case of normal sampling S ( n )  is W,(n, ( l /n )Z)  so 
that the asymptotic distribution as n .+ cn of 

n’/2[vec( S( n)) - vec( z)] 
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is 

3.2.3. 

In this section some properties of the Wishart distribution are derived. Our 
first result says that the sum of independent Wishart matrices with the same 
covariance matrix is also Wishart. 

THEOREM 3.2.4. If the m X m random matrices A , , .  , . ,A, are all inde- 
pendent and A,  is Wm(n,, x), i =  1 ,..., t, then )=:=,A, is Wm(n, x), where 
n =Z:=, n,, 

Proof. The characteristic function of z:=IAi  is the product of the 
characteristic functions of A,,  . . . ,A, and hence, with the notation of Theo- 
rem 3.2.3, is 

Some Properties of the Wishart Distribution 

t n det( fm - i rZ) -" ,12  =det( I, - i I 'Z) -"12,  
] = I  

which is the characteristic function of the Wm( n ,  X) distribution. 

The above theorem is valid regardless of whether the n, are positive 
integers or real numbers bigger than m - 1. When the n ,  are restricted to 
being positive integers one can, of course, give a proof in terms of the 
normal decomposition. Write A, = Z,'Z,, where Z, is N(0,  I , ,SC)  ( i  = 1,. . . , r )  
and Z , ,  . . . , Z, are independent, and put 

so that Z is N(0, I,QZ). Then 

r r 

2 A , =  2 Z , Z , = Z ' Z ,  
r = l  ,= I  

which is W,(n, 2). 

Wishart distributions is closed under certain linear transformations. 
The next theorem, which will be used often, shows that the family of 
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THEOREM 3.2.5. If A is W,(n, 2) and M is k X m of rank k then MAM' 
is Wk(n, MZM'). 

Proof: The characteristic function of MAM' is [see (3)] 

where we have used Theorem 3.2.3 and the fact that M is k X m. The result 
follows immediately, since the right side of (6) is the characteristic function 
of the W,(n, MXM') distribution. 

Again, this theorem is valid whenever the Wishart distribution is defined. 
If n is a positive integer a proof can be constructed in terms of the normal 
decomposition of A ;  it is left to the reader to fill in the details (see Problem 
3.4). As a special case of this theorem we have: 

COROLLARY 3.2.6. If A is q, , (n,  Z) and A and Z are partitioned as 

(7) 
A =  [ A , ,  A , , ] ,  X =  [ X I ,  X"] 

A,, A22 22, 2 2 2  ' 

where A , ,  and Z,, are k X k ,  then A , ,  is W,(n, XI,). 

Proof. Put M = [ I , : O ]  ( k x m )  in Theorem 3.2.5, then MAM'=A,,, 
MBM'= XI,, and the result is immediate. 

Corollary 3.2.6 tells us that the marginal distribution of any square 
submatrix of A located on the diagonal of A (so that the diagonal elements 
of the submatrix are diagonal elements of A )  is Wishart. In particular, of 
course, is Wm-A(n,222) .  The next result says that if Z,,=O then A , ,  
and A,, are independent. 

THEOREM 3.2.7. If A is W,(n, Z), where A and X are partitioned as in 
(7) and 8,, =0, then A , ,  and A,, are independent and their distributions 
are, respectively, W,( n ,  XI,) and Wm+(n, X,,). 

A proof of this theorem can be constructed by observing that when 
X,, =O the joint characteristic function of A , ,  and A,, is the product of the 
characteristic functions of A , ,  and A,,. The details are left to the reader (see 
Problem 3.5). As usual, when n is a positive integer a direct proof involving 
the normal decomposition of A is also available. Note that in the special 
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case when n is an integer and Z is diagonal, I: =diag( u1 ,,.. . , umm), an 
obvious extension of Theorem 3.2.7 states that the diagonal elements 
u , , , . .  . ,amm of A are all independent, and a,, is W,(n, u,,); that is, a,,/u,, is 
x i ,  for i = 1, ..., m. 

THEOREM 3.2.8. If A is Wm(n, C), where n is a positive integer and Y is 
any m X 1 random vector which is independent of A with P(Y =O)=O then 
Y'AYN'ZY is xi, and is independent of Y. 

In Theorem 3.2.5 put M=Y' ( 1  X rn) then, conditional on Y, 
Y'AY is W,(n,Y'ZY); that is Y'AY/Y'ZY is x $  Since this distribution does 
not depend on Y it is also the unconditional distribution of Y'AY/Y'ZY 
and the theorem is proved. 

The following corollary is an interesting consequence of this theorem. 

COROLLARY 3.2.9. If and S are the mean and covariance matrix 
formed from a sample of site N = n + 1 from the NJp, X) distribution then 

Our next result is also a direct consequence of Theorem 3.2.5. 

Proob 

is xf, and is independent of x. 
Proofi From Theorem 3.1.2 we know that % and S are independent, and 

S is W,(n,(l/n)Z). A direct application of Theorem 3.2.8 completes the 
proof. 

Our next result is of some importance and will be very useful in a variety 
of situations. 

THEOREM 3.2.10. Suppose that A is W,(n,Z), where A and Z are 
partitioned as in (7), and-put A , , , = A , , - ' ~ , , A ~ ' A , ,  and Z,, , = C l l -  
242Z~1Z2 , .  Then 

(i) A,,., is W , ( n - m + k , Z , , . , )  and is independent of A, ,  and A,,; 

(ii) the conditional distribution of A, ,  given A,, is N(C,,Z,?Q,,, 

(iii) A,, is Wm-k(n, XZ2). 

Proof. The Wishart density function has not yet been used explicitly, so 
we will give a proof which utilizes it. This involves assuming that n > m - 1. 
The density of A is, from Theorem 3.2.1, 

C,,.,@A22); and 
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Make the change of variables A I .  = A I f  - A, ,  Ash2 BIZ = A 12,  B22 = A22 

so that 

Note that 

( 9 )  det A=det A22det(All - A I , A , ' A 2 , )  

=det B,,det A , , . ,  

and 

det 2 =det Z2,det 2, ,. 2 .  

Now put 

where C,  I is k X k. Then 

and it can be readily verified that this can be written as 

where we have used the relations C,, =X,!,, C2, - C2,C,'C12 = X,', and 
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C~IC, ,  = - L.,,2:;', which are implied by the equation ZC= I (see Theo- 
rem A5.2). Substituting back in (8) using (9) and (lo), the joint density of 
A , , , , ,  B,,, and B,, can then be written in the form 

where we have used the fact that 

From ( 1  I )  we see that A , , . ,  is independent of B , ,  and B2,, i.e. of A,,  and 
A,,, because the density function factors. The first line is the Wk(n - m + 
k, Z, I .  2 )  density function for A ,, ,. The last two lines in (1 1) give the joint 
density function of B , ,  and B,,, i.e., of A,, and From Corollary 3.2.6, 
the distribution of A,, is WmAk(n, X,,) with density function given by the 
second line in ( I  1). The third line thus represents the conditional density 
function of B , ,  given B,,, i.e., of A,,  given Using Theorem 3.1.1, it is 
seen that this is N(XI2ZG'A2,, ZIl.,@A2,), and the proof is complete. 

The next result can be proved with the help of Theorem 3.2.10. 

THEOREM 3.2.1 1. I f  A is Wn,(n, 2:) and M is k X m of rank k, then 
( M A - ~ M ' ) - ~  is Wk(n - m + k , ( ~ L . - ' h f ' ) - ' ) .  
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Proof. Put B = X-1/2AZ-'/2, where XI/' is the positive definite square 
root of Z. Then, from Theorem 3.2.5, B is W,(n, l,,J Putting R = M Z - 1 / 2  
we have 

and (ML'- 'M') - '=(KR') - ' ,  so that we need to prove that ( R B - ' R ' ) - '  is 
Wk( n - m 4- k,( RR')-'). Put R = L[ f k  : 01 H, where L is k X k and nonsin- 
gular and H is m X m and orthogonal, then 

where C = HBH is W,(n, I,,,), using Theorem 3.2.5 again. Now, put 

where D , ,  and C,, are k X k ,  then ( f W - l R ' ) - - l =  L'-'D;'L-'  and, since 
Dn' =CII  -C12C;ICZlr i t  follows from (i) of Theorem 3.2.10 that D;l is 
W,(n - m + k, f k ) .  Hence, L'-'D;; lL-l  is Wk(n - m + k,( LL')"')  and, 
since (LL')-" =( RR')--', the proof is complete. 

One consequence of Theorem 3.2.1 1 is the following result, which should 
be compared with Theorem 3.2.8. 

THEOREM 3.2.12. If A is Wm(n,2), where n is a positive integer, n >  
m - 1, and Y is any m X I random vector distributed independently of A 
with P(Y=O)=O then Y'C-'Y/Y'A-'Y is x : - ~ . + , ,  and is independent of 
Y. 

Proof. In Theorem 3.2.11 put M=Y' ( I X m )  then, conditional on Y, 
(Y 'A- 'Y) - '  is W l ( n  - m +  l,(Y'2-1Y)-1); that is, Y'Z.-'Y/Y'A'- 'Y is 
X.-",+ I '  

2 
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Since this distribution does not depend on Y it is also the unconditional 
distribution, and the proof is complete. 

There are a number of interesting applications of this result. We will 
outline two of them here. First, if A is Wm(n,Z) then the distribution of 
A - I  is called the inverted Wishart distribution. Some of its properties are 
studied in Problem 3.6. The expectation of A-'  is easy to obtain using 
Theorem 3.2.12. For any fixed a E R", a f 0, we know that a's - 'a /a'A - 'a 
is x,,-,,,+,, so that 2 

a'Z- 'a (n - m - I >o). 
1 

n - m - 1  
- - 

Hence 

which implies that 

1 2-1 
n - m - 1  E ( A - ~ ) =  for n - m - 1 > O .  

The second application is of great practical importance in testing hy- 
potheses about the mean of a multivariate normal distribution when the 
covariance matrix is unknown. Suppose that XI,. . . , X, are independent 
Nm(p, Z) random vectors giving rise to a sample mean vector % and sample 
covariance matrix S; Hotelling's T2 statistic (Hotelling, 1931) is defined as 

Note that when m = l ,  T2 is the square of the usual t statistic used for 
testing whether p =0, In general, it is clear that T2 20, and if p =O then % 
should be close to 0, hence so should T2. It therefore seems reasonable to 
reject the null hyporhesis that p=O if the observed value of T2 is large 
enough. This test has certain optimal properties which will be studied later 
in Section 6.3. At this point however, we can easily derive the distribution of 
T2 with the help of Theorem 3.2.12. 
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THEOREM 3.2.13. Let % and S be the mean and covariance matrix 
formed from a random sample of size N = n + 1 from the N,,,(p, C) distribu- 
tion (n 2 m), and let T2 = N %S- 'x .  Then 

Samples from a Multivariate Normal Diswilnttion 

T 2  n - m + l  -. 
n m 

is Fm,n-m+,(i?), 6 =  Np'Z-'p (i.e., noncentral F with m and n - m + 1 
degrees of freedom and noncentrality parameter 6). 

Prooj From Theorem 3.1.2 % and S are independent; X is 
N, , , (p , ( I /N)C)  and S is W,(n,(l/n)Z). Write T 2 / n  as 

- 

Theorem 3.2.12 shows that 

and is independent of z. Moreover, since % is N , , J p , ( I / N ) X ) ,  Theorem 
1.4.1 shows that 

Hence 

where the denominator and numerator are independent. Dividing them each 
by their respective degrees of freedom and using the definition of the 
noncentral F distribution (see Section 1.3) shows that 

a; required. 
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This derivation of the distribution of T 2  is due to Wijsman (1957). Note 
that when p =0, the distribution of T 2 ( n  - m + I ) / n m  is (central) Fm,,-,,, 
and hence a test of size a of the null hypothesis H , : p = O  against the 
alternative H: p #O is to reject Ho if 

where F: ,n -m+l (a )  denotes the upper IOOa'R, point of the F,.n-m+l distri- 
bution. The power function of this test is a function of the noncentrality 
parameter 6, namely, 

3.2.4. 

Our next result is concerned with the transformation of a Wishart matrix A 
to T'T, where T is upper-triangular. The following theorem, due to Bartlett 
(1933), is essentially contained in the proofs of Theorems 2.1.1 1 and 2.1.12 
but is often useful and is worth repeating. 

THEOREM 3.2.14. Let A be W,(n, I,), where n 2 m  is an integer, and 
put A = T'T, where T is an upper-triangular m X m matrix with positive 
diagonal elements. Then the elements I,, ( 1  s i 5 j 5 m )  of T are all inde- 
pendent, t: is x: - ,+ ,  ( i =  I , . , . , m ) ,  and I,, is N ( 0 , l )  ( l < i < j S m ) .  

Bartlett 's Decomposition and the Generalized Variance 

Proof. The density of A is 

@A). 
n - m -  1)/2 etr( - fA)(det A)' 

1 

2mn/2rm( i n )  

Since A = T'T we have 

m 

t r A = t r T ' T =  2 t i ,  
I S J  

m 

r = l  
det A =det( T'T) = (det T ) 2  = n t t  
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and, from Theorem 2.1.9, 

m 

(dA)=2" n tf."-' dt,J. 
i = l  I S J  

Substituting these expressions in (1 3) and using 

we find that the joint density of the t I j  (1 I i I j S rn) can be written in the 
fo;m 

which is the product of the marginal density functions for the elements of T 
stated in the theorem. 

If a multivariate distribution has a covariance matrix 2 then one overall 
measure of spread of the distribution is the scalar quantity det 2, called the 
generalized uariance by Wilks (1932). In rather imprecise terms, if  the 
elements of 2 are large one might expect that det 2 is also large. This often 
happens although it is easy to construct counter-examples. For example, if 
X is diagonal, det 2' will be close to zero if any diagonal element (variance) 
is close to zero, even if some of the other variances are large. The gener- 
alized variance is usually estimated by the sample generalized trariance, 
det S, where S is the sample covariance matrix. The following theorem gives 
the distribution of det S when S is formed from a sample of size N = n + 1 
from the N,(p, Z) distribution. In this case A = nS is W,(n, 2).  

THEOREM 3.2.15. If A is W m ( n , 2 ) ,  where n ?mi is an integer then 
det A/det I: has the same distribution as I I f l = I ~ ~ - , + l ,  where the xZ-,, for 
i = 1,. . . ,tn, denote independent xz random variables. 

Since A is W m ( n , Z )  then B=2-1 /zAZ- ' . '2  is Wn,(n, I,,,) by 
Theorem 3.2.5. Put B=T'T, where T is upper-triangular, then from 

Ptoo/. 



The Wisharc Distrrhurron 101 

Theorem 3.2.14 

m m 

where the xz-,+, are independent x 2  variables. Noting that det B =  
det A/det 2 completes the proof. 

Although Theorem 3.2. I5 gives a tidy representation for the distribution 
of det A/det 2, it is not an easy matter to obtain the density function of a 
product of independent x2 random variables; see Anderson (1958), page 
172, for special cases. It  is, however, easy to obtain an expression for the 
moments of the distribution and from this an asymptotic distribution. The 
r th moment of det A is, from Theorem 3.2.15, 

where we have used the fact that 

In terms of the multivariate gamma function (14) becomes 

In particular, the mean and the variance of the sample generalized variance 
det S are 

E(det S)= n-"E(det A )  

1 m 

i = l  
=(detX) n [ I - - - ( i - l ) ]  
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and 

Sumples /.om I I  Multiuariate Norntul Distrrhutron 

Var(det S ) =  rr-""Var(det A )  

= E[(det A)2]  - E(det A ) ' )  

=(detZ)' [ l - - ( i - l ) ]  I 
r = l  n 

Note that E(det S)<det I: for m > 1 so that det S underestimates det C. The 
following theorem gives the asymptotic distribution of log det S .  

THEOREM 3.2.16. 
tion as n -. 00 of 

If S is Wm(n, ( I /n )C)  then the asymptotic distribu- 

is standard normal N(0,l) 

ProoJ. The characteristic function of u is 

using (14) with A = nS and r = itwTm-. Hence 

m 

/ = I  
- 2 i o g r [ l n + i ( i - j ) ]  

Using the following asymptotic formula for log I-( I + a),  

(17) log r( z + u ) = (  z + (I - 4)iog t - z + -510g2~ + o(2-I) 
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(see, for example, Erdtlyi et al. (1953a), page 47), it is a simple matter to 
show that 

lim 4(t)=exp( - i t ’ ) ) .  
n-+w 

For a more direct proof start with 

where the x : - , + ~ ,  for i =  I ,  ..., m, denote independent x 2  random variables. 
Taking logs then gives 

m det S 
detB i=l 

log- = 1 [logx:-l+, -1ogn1 

Using the easily proved fact that the asymptotic distribution as n -+ 00 of 
(n/2)1/2[log~:-l+I -logn] is N(0,  l), it follows that the asymptotic distri- 
bution of (n/2)’/* log(det S/det Z) is N(0,  m), completing the proof. 

Since o is asymptotically N ( 0 , l )  a standard argument shows that the 
asymptotic distribution of (n/2m)’/*(det S/det I: - 1) is also N(0, I), a 
result established by Anderson (1958), page 173. 

3.2.5. 

The latent roots of a sample covariance matrix play a very important part in 
principal component analysis, a multivariate technique which will be looked 
at in Chapter 9. Here a general result is given, useful in a variety of 
situations, which enables us to transform the density function of a positive 
definite matrix to the density function of its latent roots. 

First we recall some of the notation and results of Section 2.1.4. Let 
H = [ h ,  ... h,] be an orthogonal m X m  matrix [i.e., H E O ( m ) ] ,  and let 
( H ’ d H )  denote the exterior product of the subdiagonal elements of the 
skew-symmetric matrix H’dH, that is, 

The Latenr Roots o/a Wishart Matrix 

m 

I < J  

(H’dH)=  h h i d h , .  

This differential form represents the invariant (Haar) measure on the 
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orthogonal group O(m); see (27) OE Section 2.1.4. The differential form 

has the property that 

and i t  represents the "Haar invariant" probability measure on O(m);  see 
(29) of Section 2.1.4. I n  what follows (and in particular in the next theorem), 
( d H )  will always represent the invariant measure on O ( m ) ,  normalized so 
that the volume of O ( m )  is unity. 

THEOREM 3.2.17. If A is an m X m positive definite random matrix with 
density function ! ( A )  then the joint density function of the latent roots 
I , ,  ..., I ,  of A is 

where L =diag(l,, ..., I,,,). 

Proo/. Since the probability that any latent roots of A are equal is 0 we 
can let i ,  > I, > - >,Im >O be the ordered latent roots. Make a transforma- 
tion from A to its latent roots and vectors, i.e., put 

A = H L H ' ,  

where HE O( m )  and L = diag( I,, . . . , I , ) .  The i th column of 11 is a normal- 
ized latent vector of A corresponding to the latent root I , .  This transforma- 
tion is not 1 - 1 since A determines 2'" matrices H = [ +- h,  . - . r: h,] such 
that A = HLH'. The transformation can be made 1 - 1 by requiring, for 
example, that the first element in each column of H be nonnegative. This 
restricts the range of H (as A vanes) to a 2-"th part of the orthogonal 
group O(m).  When we make the transformation A = HLH' and integrate 
with respect to ( d H )  over O(m) the result must be divided by 2"'. 

We now find the Jacobian of this transformation. First note that 

dA = d H L H ' f  H d L H ' +  HL dH' 
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so that 

(21) H'dAH = H'dHL + dL + L d H H  

= H'dHL - LHdH -+ dL 

since H'dH = - dH'H, i.e., H'dH is skew-symmetric. By Theorem 2.1.6 the 
exterior product of the distinct elements in the symmetric matrix on the left 
side of (21) is 

(det H)"+'(dA)= (&), 

(ignoring sign). The exterior product of the diagonal elements on the right 
side of (21) is 

dl, 
i = l  

and for i <  j the i - j t h  element on the right side of (21) is h;dh,(/, -/,). 
Hence the exterior product of the distinct elements of the symmetric matrix 
on the right side of (21) is 

m m m 

A h;dh, n ( / # - I , )  A dl,. 
1-=J i < J  r = l  

Equating exterior products on both sides then gives 

m Vl m 

using (19) and (20). SubstitutingA = HLH' and (dA) from (22) inf(A)(dA), 
integrating with respect to ( d H )  over O(m), and dividing the result by 2" 
gives the density function of I,, . . . , I ,  as 
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as required. 

latent roots of a Wishart matrix. 

THEOREM 3.2.18. 
function of the latent roots I,, . . . ,Im of A is 

Sumoles from u Multivariute Normul Distribution 

As an application of this theorem we consider the distribution of the 

If A is W,(n,Z) with n > m  - I the joint density 

. etr( - iX-'/f ,! .H')(dH) (11  >I, > - * - >I, > o ) .  

Proof. The proof follows immediately by applying Theorem 3.2. 

Jo( m ) 

the W,(n, X) density function for A, namely, 
7 to 

and noting that det A =det HLH'= IIy= I I,. 
The integral in (23) is, in general, not easy to evaluate. In Chapter 9 we 

will obtain an infinite series representation for this integral in terms of zonal 
polynomiuls. For the moment, however, two observations are worth making. 
The first is that the density function (23) depends on the population 
covariance matrix Z only through its latent roots. To see this, write 
x=QAQ', where QEO(m)  and A =diag(A, ,..., A,,), with A ,  ,..., A,, being 
the latent roots of 2. Then det L: =llz I A,  and the integral in (23) is 

etr( - f Q A  - 'Q'HLII')  ( dff ) 
I = / o ( m )  

etr( - fA-'Q'HLH'Q)(dH). 

Now put f i = Q ' H  then f iEO(m)  and ( d f i ) = ( d H )  so that 

etr( - $A-If iLfi ' ) (  d f i ) ,  

which depends only on A , , . . . , A m .  The second observation is that when 
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2 = A l ,  the joint density function of I , ,  . . . ,t,,, is particularly simple and is 
given in the following corollary. 

COROLLARY 3.2.19. If A is W,(n ,  AI,,,), with n > m - 1, the joint den- 
sity function of the latent roots t,, ..., l,,, of A is 

( I ,  > I ,  > * * * >I," S O ) .  

Proof: Putting Z = XI,,, in Theorem 3.2.18 and noting that 

=exp ( -- ; A m  2 t , )  
( = I  

completes the proof. 

It is interesting to note that when Z = hl,,, and A = HLH' as in the proof 
of Theorem 3.2.17, where H = ( h ,  ... h,,]EO(m) with the first element in 
each column being nonnegative, then H is independent of the latent roots 
I,, . . . , I , ,  because the joint density of H and L factors. The columns of H are 
the latent vectors of A. The distribution of H has been called the conditional 
Haar invariant distribution by Anderson (1958), page 322; it is the condi- 
tional distribution of an orthogonal m X M matrix whose distribution is the 
invariant distribution on O(rn), given that the first element in each column 
is nonnegative. 

Our next result can be proved in a number of ways; we will establish i t  
using Corollary 3.2.19. 

THEOREM 3.2.20. If A is Wm(n, Aim) where n ( 2 m )  is an integer, then 
,u =(det A ) / [ ( l / m ) t r A j "  and trA are independent, and (I/A)trA is x i , .  

First note that ( I /A)A is W,,,(n, I,,,) so that by Corollary 3.2.6 
the diagonal elements u , , / h  ( i =  I ,  ..., m )  are independent xf, random 
variables. Hence 

Prooh 

1 l M  
- t r A = x  2 urr 
h r = l  

is xi,,,. To show that trA and u are independent we will show that their 
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joint density factors. The joint density function of the latent roots Il,...,Im 
of A is, from Corollary 3.2.19, 

Suniples froni u Multivunute Normol Distribution 

Make the change of variables from I I , .  . . ,Im to I ,  y l , . .  . ,y,- I given by 

- 1 "  1 
I= -  2 l i = - t r A  

m m l = l  

(Note that yI + * . + y,,, = m.) Then 

and the reader can readily check that the joint density function of 
i, YI . . . . ,yn, - I is 

This shows that [is independent of yI,. . . ,ym- I and hence is independent of 
u, completing the proof. 

The statistic u defined in Theorem 3.2.20 is used to test the null 
hypothesis that X = A I ,  and will be studied further in Chapter 8. For 
arbitrary X the distribution of trA is rather complicated and will be derived 
in Chapter 8. The distribution in the case m = 2  is reasonably tractable and 
is left as an exercise (see Problem 3.12). 

3.3. T H E  MULTIVARIATE BETA DISTRIBUTION 

Closely related to the Wishart distribution is the multivariate Beta distribu- 
tion. This will be introduced via the following theorem, due to Hsu (1939), 
Khatri (l959), and Olkin and Rubin (1964). 
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THEOREM 3.3.1. Let A and E be independent, where A is Wm( n , ,  Z) 
and Bis W,,,(n2,Z), withn,>m-l ,n ,>m-l .  PutA+B=T'Twhere T 
is an upper-triangular m X m matrix with positive diagonal elements. Let U 
be the m X m symmetric matrix defined by A = T'UT. Then A + B and U are 
independent; A + E is W,,,(n, + n 2 ,  C) and the density function of U is 

where O< U < I,,, means that U >O (i.e., U is positive definite) and I,,, - U >O. 

Prook The joint density of A and B is 

First transform to the joint density of C =  A + B  and A. Noting that 
(dA)A(dB)=(dA)A(dC) (i.e., the Jacobian is l), the joint density of C and 
A is 

Now put C = T'T, where T is upper-triangular, and A = T'UT. .Remem- 
bering that T is a function of C alone we have 

( ~ A ) A ( ~ c ) = (  T ' ~ U T )  A( d( T'T)) 

= (det T)m + I (  dU)A( d(  T 'T) )  
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where Theorem 2.1.6 has been used. Now substitute for C, A, and (dA)(dC) 
in (2) using det A=det(T'T)det U and det(C- A)=det(T'T)det(l- U). 
Then the joint density function of T'T and U is 

Sumples /rom u Multivariate Normal Dis!ribulion 

which shows that T 'T=C= A + B is W,,(nl + n 2 ,  Z) and is independent of 
U, where U has the density function (1). 

DEFINITION 3.3.2. A matrix U with density function ( I )  is said to have 
the multivariate beta distribution with parameters f n ,  and i n z ,  and we will 
write that U is Beta,(~n,,fn,). It is obvious that if U is Beta,(fn,,fn,) 
then I,,, - 0 is Beta,(fn,, jn,). 

The multivariate beta distribution generalizes the usual beta distribution 
in much the same way that the Wishart distribution generalizes the x 2  
distribution. Some of its properties are similar to those of the Wishart 
distribution. As an example it was shown in Theorem 3.2.14 that if A is 
Wm(n, I,,,) and is written as A = T'T, where T is upper-triangular, then 
t , , ,  t2,, ..., tmm are all independent and t ;  is x : - , + ~ .  A similar type of result 
holds for the multivariate beta distribution as the following theorem, due to 
Kshirsagar ( 196 1,1972), shows. 

THEOREM 3.3.3. If U is Beta,(+n,, in,) and U= T'T, where T is upper- 
triangular then t i , ,  ..., f m m  are all independent and t; is beta(f(n, - i +  
I), f n , ] ;  i = 1 ,..., m. 

In the density function ( I )  for U, make the change of variables 
U = T'T; then 

Proo/: 

nr 

i = l  
detU=detT'T= n l: 

and, from Theorem 2.1.9, 

m m 

( J U ) = 2 m  n t:+'-' A dt#J 
r = l  I S J  
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so that the density of T isf(T; m ,  n,, nz), where 

(3)  

Now partition T as 

where t is (m - 1)X I and T22 is (m - I)X(m - 1) and upper-triangular; 
note that 

1 1 - r ; ,  - r,,t' 

- t 1 It I - tt' - Ti2 T22 I (4) det( I - T'T) =det 

1 =(1- t;,)det( I -  T;2T22) * t'( I - T;ZTz2)-It 
1 - r:, 

(see Problem 3.20). Now make a change of variables from r , , ,  T22,t to 
t I 1 ,  Tz2,v, where 

V =  ' ( I  - q2q2)- Il2t, 
( 1  - t ; p 2  

then 
m 

t53 
A di, ,=drII A(dT , , )A(d t )  

by Theorem 2. I .  1 ,  and hence the joint density of I ,  ,, T22 and v is 
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This shows immediately that tIi, T22, and v are all independent and that I : ,  
has the beta(fn,, J n , )  distribution. The density function of 722 is propor- 
tional to 

Suniples /ram u Mulriwriate Norntul Distribution 

which has the same form as the density function (3) for T, with nt replaced 
by m - 1 and n ,  replaced by n ,  - 1. Hence the density function of T22 is 
f(T2,; m - I ,  i t ,  - 1, n 2 ) .  Repeating the argument above on this density 
function then shows that I:, is beta(f(n, - l), t n , ) ,  and is independent of 
t33, . . . ,z , l , , .  The proof is completed i n  an obvious way by repctition of this 
argument. 

The distribution of the latent roots of a multivariate beta matrix will 
occur extensively in later chapters; for future relerence i t  is given here. 

THEOREM 3.3.4. If I/ is Beta,(.Jn,,fn,) the joint density function of 
the latent roots uI ,  ..., u, of I/ is 

The proof follows immediately by applying the latent roots theorem (Theo- 
rem 3.2.17) to the Beta,(fn,, fa,) density function (1). Note that the latent 
roots of U are, from Theorem 3.3.1, the latent roots of A( A + B)' . - l ,  where A 
is W,(n,, Z), B is Wm(n,,Z) (here n ,  > m  - I ;  n2 > m  - 1) and A and B are 
independent, The distribution of these roots was obtained independently by 
Fisher, Girshick, Hsu, Roy, and Mood, all in 1939, although Mood's 
derivation was not published until 1951., 

PROBLEMS 

3.1. If A =(a,,) is W,(n, Z), where Z=(u,,), show that 

COV(%,, %,I= n(u,,o,, -t ~ , , u , d *  
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3.2. Let K = X ~ , = l ( H l , @ H l ; ) ,  where HIJ denotes the m X  m matrix with 
h,, = I and all other elements zero. Show that if A is W,(n, X) then 

Cov(vec( A ) )  = n( I,,,* + K)(XQDZ).  

3.3. If  S ( n )  denotes the sample covariance matrix formed from a sample 
of size n + 1 from an elliptical distribution with covariance matrix X and 
kurtosis parameter K then the asymptotic distribution, as n -, 00, of U(n)= 
r ~ ' / ~ [ S ( n ) -  Z] is normal with mean zero (see Corollary 1.2.18). The ele- 
ments of the covariance matrix in this asymptotic normal distribution are, 
from (2) and (3) of Section 1.6, 

Show that vec( U( n)) has asymptotic covariance matrix 

Cov[vec( I/( n))] = ( I + K ) (  I,,,* + K )( Z@Z) + ~ v e c (  Z)[vec( L')]', 

where K is the commutation matrix defined in Problem 3.2. 

3.4. 
terms of normal variables. 

3.5. Prove Theorem 3.2.7. 

3.6. A random m X  m positive definite matrix B is said to have the 
inverted Wishart distribution with n degrees of freedom and positive defi- 
nite m x m parameter matrix V if its density function is 

Prove Theorem 3.2.5 when n is a positive integer by expressing A in 

2 - m ( n - m -  1)/2 (det V ) ' n - - m - ' ) / 2  
etr( - $ B - ' V )  ( E  >O), 

r,,,[f(n - m - I ) ]  (det B)n'2 

where n >2m. We will write that B is W;-'(n, V ) .  
Show that if A is W,(n, 2) then A - '  is W;I(n + m + 1, Z-'). 
If  B is W;'(n, V )  show that 

Suppose that A is W,(n, X) and that C has a W;'(v, V)  prior 
distribution, v >2m. Show that given A the posterior distribution 
of X is W;'(n + v, A + V ) .  
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(d) Suppose that B is Wn;'(n, V )  and partition B and V as 

where B,,  and VII are k X k and B22 and V,, are ( m  - k ) X ( n i  - 
k ) .  Show that B , ,  is W L 1 ( n - 2 m + 2 k , V , , ) .  

3.7. If A is a positive definite random matrix such that & A ) ,  E( A - I )  

exist, prove that the matrix E(A- . ' ) -  E( A ) - '  is non-negative definite. 
[Hinf: Put E ( A ) = Z  and A = A - I :  and show that X-'E(AA-'A>X-l= 

3.8. If  A is W,(n, C), where n =- m - 1 and I: >O, show that the maximum 
likelihood estimate of 2 is ( l / n ) A .  

3.9. Suppose that A is W,(n, X), n > rn - 1, where Z has the form 

E ( A  - 1 ) -  %-'.I 

where 1 is an m X 1 vector of ones. 
(a) Show that 

1 I '  I:-'= 1 P 
.2( 1 - p )  '*#I - o' (  I - p ) [  t + (rn - I)p] 

and that 

det I: = ( u ' ) 'n ( I - p ) - I [ I f ( m - 1 ) p] , 

(b) Show that the maximum likelihood estimates of o 2  and p are 

3.10. 
idempotent matrix of rank k 2 m 

Let X be an n X m random matrix and P be an 11 X n symmetric 

(a) If X is N ( 0 ,  P@2) prove that X'X is W , ( k ,  2). 
(b) If X is N ( O , l , , S Z )  prove that X'PX is WJk, 2) .  
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3.11. If A is W,(n, Z), n > m  - 1, show, using the Wishart density func- 
tion, that 

3.12. If A is W,(n, 2) show that the characteristic function of t rA is 

+(I)= E[etr(irA)] =det(I-2ifZ)-"',. 

Using this, show that when m = 2  the distribution function of trA can be 
expressed in the form 

where A,  and A, are the latent roots of 2 and ck is the negative binomial 
probability 

c* = ( - I ) * (  - k :")p""(l-  p ) &  

with p =4A,X, / (A,  +A,)' .  
Hinr: Find the density function corresponding to this distribution function 

and then show that its characteristic function agrees with + ( I )  when m =2.] 

3.13. Let A be W,(n, 2 )  and let I , ,  I, ( I I  > I ,  >O) denote the latent roots of 
the sample covariance matrix S = n- 'A.  

(a) Show that the joint density function of I, and I, can be 
expressed as 

where a, and az are the latent roots of 2-I. 
(b) Without loss of generality (see the discussion following Theo- 

rem 3.2.18) 2-I can be assumed diagonal, 2-' =diag(a,,a,!), 
Oca, I a , .  Let I ( n ;  2-I, t) denote the integral in (a). Show 
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that 

where the function 
[Mint: Argue that 

is defined in Definition 1.3.1. 

where 0+(2)=(HE0(2);det  I J = l } .  Put 

and then use Lemma 1.3.2.1 
(c) Show that I ( n ;  C-I, L) can also be expressed in the form 

* /ff'2 - n/2  e x p [ - - Y ( l  - ~ 0 ~ 2 0 ) ] d t 9 ,  

wherec=(l,-/,)(a,-a,). 
(d) Laplace's method says that if a function /(x) has a unique 

maximum at an interior point 5' of [u, b ]  then, under suitable 
regularity conditions, as n -, 00, 

where h ( x ) =  -log /(x) and a - b means that u /b  -, 1 as n -4 00. 

(The regularity conditions in a multivariate generalization are 
given in Theorem 9.5.1). Assuming that al < a2 use (c) to show 
that as n -.t 00 
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3.14. Suppose that A is Wn,(n, 2 )  and partition A and 2 as 

where A , ,  and XI, are k X k  and A,, and 2,, are ( m - k ) X ( m - k ) ,  
m 2 2 k .  Note thatZ,,=O. Show that t h e m a t r i c e s ~ l , . , = ~ , l - A 1 2 A ~ ' A , ~ ,  
A,,, and A,,A,'A2, are independently distributed and that A,,A;'A2, IS 

3.15. Suppose that XI,. . . , X N  are independent NJO, 2) random vectors, 
N > m .  

(a) Write down the joint density function of X I  and B =Z,fl=2X,X;. 
(b) Put A = B + X , X ; = C ~ , X , X ;  and Y = A - ' / 2 X l  and note that 

W,(m - k ,  q,). 

det B =(det A ) (  I -Y'Y). 

Find the Jacobian of the transformation from B and XI to A 
and Y, and show that the joint density function of A and Y is 

( N  - m - 2 ) / 2  
* ( 1  -Y'Y) 

(c) Show that the marginal density function of Y is 

(d) Using the fact that Y has a spherical distribution, show that the 
random variable z =(a'Y)' has a beta distribution with parame- 
ters f, $( N - 1). where a #O is any fixed vector. 

3.16. Suppose that A is W,(n, l,,,), and partition A as 

whereA,, i s k X k a n d A 2 , i s ( m - k ) X ( m - k ) , w i t h m 2 2 k .  
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(a) Show that the matrices A , , ,  Air, and B , ,  
independently distributed and that B , ,  has density function 

A ; ' / 2 A , 2 A ; 1 / 2  are 

(b) Show that the matrix U = B I , B ; 2 = A ~ ' / Z A  I 2  A - 9  22 21 A - ' l 2  11 is 
independent of A , ,  and A,, and has the Beta,[i(ni - k ) ,  i ( n  - 
m + k)] distribution. 

3.17. Suppose that A is Wrn( Y, Z), X is N(0, I , @ D z )  ( Y 2 m) and that A and 
X are independent. 

(a) Put B = A + X'X. Find the joint density function of B and X. 
(b) Put B = T'T and Y =  XT-', where T is upper-triangular. Show 

that B and Yare independent and find their distributions. 

3.18. Suppose that A is Wrn(n,02P),  vS2/02 is x t ,  and A and S2 are 
independent. Here P is an m X m matrix with diagonal elements equal to I .  
Show that the matrix B = S-,A has density function 

3.19. Suppose that A is W,(n,  X), u is beta[+v, $ ( n  - v)J ,  where n > Y ,  and 
that A and u are independent. Put E = uA. If a is any m X 1 fixed vector 
show that: 

(a) a'Ba/a'Xa is x i  provided a'Ca # 0. 
(b) a'Ba =O with probability 1, if a'Za =O. 
(c) E ( B ) = v Z .  

Show that B does not have a Wishart distribution (cf. Theorem 3.2.8). 

3.20. If T is an m X m upper-triangular matrix partitioned as 



where Tz2 is an ( m  - I )X(m - I )  upper-triangular matrix, prove that 

I I 
det(l-  T ' T ) = (  1 - r:,)det(l- T;,T,,). 1 - T t ' ( 1 -  T;,T22)-'t . 

l - t l l  

3.21. Suppose that U has the Beta,(tn,, f n , )  distribution and put U =  T'T 
where T is upper-triangular. Partition T as 

where T,, is (m - I )X(m - 1) upper-triangular, and put v, = ( I  - ~ f , ) - ' / ~  
(1-T;2T22)-1'2t. In the proof of Theorem 3.3.3 it is shown that f I I ,  T2*, 
and v, are independent, where f:, has the beta(+n,, in,) distribution, T2, 
has the same density function as T with m replaced by m - I and n, 
replaced by n ,  - I ,  and v,  has the density function 

Now put v; = ( v , ~ ,  v13 ,..., ulm), and let 

Show that y12 i s  independent of y13, .  . . , y lm and that y:2 has a beta distribu- 
tion. 

By repeating this argument for T2, and (yI3, ,  . . , y l m )  and so on, show that 
the Beta,,(in,,$n2) density function for U can be decomposed into a 
product of density functions of independent univariate beta random vari- 
ables. 

3.22. Suppose that 0 has the Beta,(in,,$n2) distribution, n ,  > m - 1, 
n 2  > m  - 1. 

(a) If a # O  is a fixed m X 1 vector show that cr'[/a/a'a is beta(jn,, 

(b) If V has the Beta,[j(n, + n 2 ) ,  n 3 ]  distribution and is indepen- 
dent of U show that V ' / 2 U V ' / 2  is Beta,[in,,+(n, + n3) ] .  

4%). 
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(c) Partition U as 

where U l l  is k X k  and 4, i s (m-k)X(m-k) ,  n ,  > k  - I ,  and 
put U,,., =U22 - U21U,;1U12. Show that U , ,  is Betak($n,, in,), 
U,, I is Betanl_,[$(n,-k) ,~n,] ,  and I / , ,  and U,,., iire inde- 
pendent. 

(d) If H is any m X m orthogonal matrix show that HUH' has the 
Beta,,,(jn I ,  j n , )  distribution. 

(e) If a#O is a fixed vector show that a'a/a'U-'a is beta[f(n, - 

3.23. Let A have the W , ( n , Z )  distribution and let A ,  and Z, be the 
matrices consisting of the first i rows and columns of A and 2,  respectively, 
with both det A, and det Z, defined to be 1. Show that 

m + 11, h 1 .  

det A, det Z, ., .- 
det 2 0, = 

det A,-  I 

is xf-,+ , and that L) I , .  . . ,urn are independent. 

3.24. Let U have the Beta,,,(fn,,~n,) distribution and let U, be the matrix 
consisting of the first i rows and columns of U. with det U,, = I .  Show that 
o,=detU,/detO,-, is Beta[ f (n , - i+ l ) , fa , )  and that o,, ..., qn iire inde- 
pendent. 



CHAPTER 4 

Some Results Concerning 
Decision - Theoretic Estimation of 
the Parameters of 
a Multivariate Normal Distribution 

4.1. INTRODUCTION 

I t  was shown in Section 3.1 that, i f  XI, ..., X n  are independent N J p ,  C) 
random vectors, the maximum likelihood estimates of the mean p and 
covariance matrix Z are, respectively, 

- I N  l N  

N t = ,  N r = l  
X=- X, and $=-  2 (X,-%)(X,-%)’. 

We saw also that (g, 2) is sufficient, x is unbiased for , and an unbiased 

These estimates are easy to calculate and to work with, and their distribu- 
tions are reasonably simple. However they are generally not optimal esti- 
mates from a decision theoretic viewpoint in the sense that they are 
inadmissible. In this chapter we will look at the estimation of p ,  I:, and X-’ 
from an admissibility standpoint and find estimates that are better than the 
usual ones (relative to patticular loss functions). 

First let us recall some of the terminology and definitions involved in 
decision-theoretic estimation. The discussion here will not attempt to be 
completely rigorous, and we will pick out the concepts needed; for more 
details an excellent reference is the book by Ferguson (1967). 

estimate of I: is the sample covariance matrix S =( N/n) s (where n = N - 1). 
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Let X denote a random variable whose distribution depends on an 
unknown parameter 8. Here X can be a vector or matrix, as can 8. Let d( X) 
denote an estimate of 8. A IossJunction I(@, d( X)) is a non-negative function 
of 0 and d( X) that represents the loss incurred (to the statistician) when 8 is 
estimated by d( X ) .  The risk junction corresponding to this loss function is 

namely, the average loss incurred when 8 is estimated by d ( X ) .  (This 
expectation is taken with respect to the distribution of X when t9 represents 
the true value of the parameter.) In decision theory, how “good” an estimate 
is depends on its risk function. An estimate d ,  is said to be u . ~  good us an 
estimate d, if, for all 8, its risk function is no larger than the risk function 
for d,; that is, 

An estimate d ,  is better than, or beats an estimate d,  if 

R ( ~ , ~ , ) s R ( B , ~ , )  ve 

and 

R ( @ , d , ) < R ( B , d , )  for at leastoned. 

An estimate is said to be admissible if there exists no estimate which beats it. 
If there is an estimate which beats it, i t  is called inadmissible. 

The above definitions, of course, are all relative to a given loss function. 
If  J, and d ,  are two estimates of t9 i t  is possible for d ,  lo beat d ,  using one 
loss function and for d ,  to beat d ,  using another. Hence the choice of a loss 
function can be a critical consideration. Having decided on a loss function, 
however, i t  certainly seems reasonable to rule out from further consideration 
an estimate which is inadniissible, since there exists one which beats it. It 
should be mentioned that, in many situations, this has the effect of 
eliminating estimates which are appealing on intuitive rather than on 
decision-theoretic grounds, such as maximuni likelihood estimates and 
least-squares estimates, or estimates which are deeply rooted in our statisti- 
cal psyches, such as uniformly minimum variance unbiased estimates. 

4.2. ESTIMATION OF T H E  MEAN 

Suppose that Y,, . . . ,YN are independent N,,,(T, X) random vectors and that 
we are interested in estimating T. We will assume that the covariance matrix 
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Z >O is known. Let Z, = Z-1/2Yl ( i  = 1,. .., N), then Z,, , . . ,Z ,  are indepen- 
dent I V , , , ( Z - ' / 2 ~ ,  I , )  random vectors, so that z =  W i ~ ~ = , Z ,  is 
N, , , (2 - ' '2~ ,  N- l f , ) ,  and z is sufficient. Putting X = N ' / 2 Z  and p = 
N 1 / 2 Z - ' / 2 ~ ,  the problem can be restated as follows: Given a random 
vector X having the IV,,,(p, 1,) distribution [so that the components XI, .  , . , A',,, 
are independent and XI is N ( p , ,  I)], estimate the mean vector p .  

The first consideration is the choice of a loss function. When estimating a 
single parameter a loss function which is appealing on both intuitive and 
technical grounds is squared-error loss (that is, the loss is the square of the 
difference between the parameter value and the value of the estimate), and a 
simple generalization of such a loss function to a multiparameter situation is 
the sum of squared errors. Our problkm here, then, is to choose d(X)= 
[ d,(X) ,  . . . , d,(X)]' to estimate p using as the loss function 

The maximum likelihood estimate of p is d,(X)=X, which is unbiased 
for p ,  and its risk function is 

= m  Qp E R". 

For a long time this estimate was thought to be optimal in every sense, and 
certainly admissible. Stein (1956a) showed that i t  is admissible if m 5 2  but 
inadmissible if m 2 3  and James and Stein (1961) exhibited a simple estimate 
which beats it in this latter case. These two remarkable papers have had a 
profound influence on current approaches to inference problems in multi- 
parameter situations. Here we will indicate the argument used by James and 
Stein to derive a better estimate. 

Consider the estimate 
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where a 20 is a constant, Note that this estimate pulls every component of 
the usual estimate X toward the origin and, in particular, the estimate of p,  
obtained by taking the ith component of d, will depend not only on X,  but, 
somewhat paradoxically, on all the other 4's whose marginal distributions 
do not depend on p,. The risk function for the estimate d, is 

where all expectations are taken with respect to the N N l ( p ,  I,,,) distribution 
of X. From (1) and (2) it follows that 

We need now to compute the expected values on the right side of (3). 
Expressions for these are given in the following lemma. 

LEMMA 4.2.1. I f  X is N,,,(p, lN1) then 

and 

where K is a random variable having a Poisson distribution with mean 

Put Z = X X ,  then Z is x?"(pfp), that is, noncentral x 2  on m 
degrees of freedom and noncentrslfity parameter p'p. In Corollary 1.3.4 i t  
was shown that the density function of Z can be written in the form 

P% / 2 .  

Proof; 

00 

/( 2 )  = X P( K = k ) g m +  2 k ( z  ) *  
k - 0  

where K is a Poisson random variable with mean ip'p and g,(. )  is the 
density function of the (central) x:  distribution. This nieans that the 
distribution of Z can be obtained by taking a random variable K having a 
Poisson distribution with mean jp 'p and then taking the conditional 
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distribution of 2 given K to be (central) ~ f n + ~ ~ .  Now note that 

which proves (i). 

the help of (i), as 
To prove (ii) we first compute E[p‘X/llXl12]. This can be evaluated, with 

1 “ d  
m - 2 + 2 K  

1 “ d  
=ptpE[  m - 2 + 2 K  ]+ ,=, I: 



= E [  2 K  ] 
m - 2 + 2 K  ’ 

Hence 

= ( m - 2 ) E [  

which proves (ii). 

can be written as 
Returning to our risk computations, it  follows from Lemma 4.2.1 that (3) 

where K is Poisson with mean fp‘p .  The right side of (6) is minimized, for 
all p,  when a = m - 2 and the minimum value is 

Since this is less than zero for m 2 3  it  follows that, for m 2 3 ,  the estimate 
SIX) given by 

(7) 
6 ( X ) = d m - , ( X ) =  ( 1  - x ) X ,  m - 2  

with risk function 
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Figure I .  

bears the maximum likelihood estimate X which is therefore inadmissible. 
The risk (8) depends on p only through p'p, and it is clear that if p =O the 
risk is 2; the risk approaches m (the risk for X) as p'p -, 00, as shown in 
Figure 1. It is apparent that if m is large and p is near 0, 6(X) represents a 
substantial improvement (in terms of risk) over the usual estimate X. It is 
also worth noticing that although X is inadmissible it can be shown that i t  is 
a minimax estimate of p; that is, there is no other estimate of p whose risk 
function has a smaller supremum. This being the case, it is clear that any 
estimate which beats X-for example, the James-Stein estimate 6(X) given 
by ('l)-must also be minimax. 

James and Stein ( 1  96 I )  also consider estimating p when I: is unknown 
and a sample of size N is drawn from the N,,,(p, Z) distribution. Reducing 
the problem in an obvious way by sufficiency we can assume that we 
observe X and A, where X is N,, , (p ,Z) .  A is Wm(n, X), X and A are 
independent, and n = N - 1. Using the loss function 

I(( p , C), d) = (d - p )'Z-'(d - p 1 

it  can be shown, using an argument similar to that above, that the estimate 

has risk function 

where K has a Poisson distribution with mean $p'Z-'p. The risk of the 
maximum likelihood and minimax estimate X is 

and hence, if m 2 3 ,  the estimate d beats X (see Problem 4.1). 
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An entertaining article by Efron and Morris (1977) in Scientific American 
provides a discussion of the controversy that Stein’s result provoked among 
statisticians. Other interesting papers, slanted toward the practical use of the 
James-Stein estimates, and modifications of them, are those by Efron and 
Morris (1973, 1975). Stein’s ideas and results have been generalized and 
expanded on in two main directions, namely, to more general loss functions, 
and to other distributions with location parameters. For examples of such 
extensions the reader is referred to Brown (1966), (1980), Berger et al. 
(1977), and Brandwein and Strawderman ( 1  978, 1980), Berger ( 1  980a, b) 
and to the references in these papers. 

4.3. ESTIMATION OF T H E  COVARIANCE MATRIX 

Let X,, . . . ,X, (where N > m )  be independent Nn,( p, Z) random vectors and 
Put 

N 
A =  L\ (XI -%)(XI -ji)’, 

1 = i  

so that A is W,(n, 2) with n = N .- 1. The maximum likelihood estimate of 
Z is f: = N-’A, and an unbiased estimate of Z is the sample covariance 
matrix S = n-’A.  In this section we consider the problem of estimating I: by 
an m X rn positive definite matrix $ ( A )  whose elements are functions of the 
elements of A. Two loss functions which have been suggested and consid- 
ered in the literature by James arid Stein (1961), Olkin and Selliah (1977), 
and Haff ( 1980) are 

and 

The respective risk functions will be similarly subscripted. Both loss func- 
tions are non-negative and are zero when $ -= Z. Certainly there are many 
other possible loss functions with these properties; the two above, however, 
have the attractive feature that they are relatively easy to work with. We will 
first consider the loss function I , (  2, $). If we restrict attention to estimates 
of the form aA, where a is a constant, we can do no better than the sample 
covariance matrix S, as the following result shows. 
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THEOREM 4.3.1. Using the loss function 
estimate of Z having the form aA is the unbiased estimate S = n-’AA. 

+), the best (smallest risk) 

Proof: The risk of the estimate aA is 

(3) R I( Z, aA ) = E [  a tr( Z- ‘ A )  - logdet( aZ-’A) - m] 

= a! tr Z - - ’ E (  A )  - mloga - E log- - m [ ::::I 
= a m n - m l o g a r  E 

i = l  

where we have used E ( A ) =  n Z  and the fact that det A/det 2 has the same 
distribution as the product of independent x 2  random variables fl;= ‘xi- ,+ 
the result of Theorem 3.2.15. The proof is completed by noting that the 
value of a which minimizes the right side of (3) is a = I /n .  

I f  we look outside the class of estimates of the form aA we can do better 
than the sample covariance matrix S,  as James and Stein (1961) have shown 
using an invariance argumenf. It is reasonable to require that if @ ( A )  
estimates Z and L is a nonsingular m X m matrix then (p should satisfy 

+( L’AL)= L‘$( A ) L ,  

for L’AL is W,(n. L’ZL),  so that +(L’AL) estimates L’ZL, as does 
L‘@(A)L. If this holds for all matrices L then + ( A ) =  aA. If the requirement 
is relaxed a little an estimate which beats any estimate of the form aA can 
be found. The approach taken by James and Stein is to find the best 
estimate r$ out of all estimates satisfying 

(4) @( L’AL)  = L’$( A ) L  

for all upper-triangular matrices L. Note that all estimates of the form aA 
satisfy (4); the best estimate however turns out not to be of the form aA so 
that all such estimates, including S, are inadmissible. I t  also turns out that 
the best estimate is not particularly appealing; an estimate need not be 
attractive simply because i t  beats S. 

Putting A = I,,, in (4) gives 

( 5 )  cp( L’L) = L’+( I ) L .  
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Now let 

then L'L = I,,, and ( 5 )  becomes 

9 ( 0 =  m J ( I ) L .  

for all such matrices L, which implies that +(I) is diagonal, 

(6) +(I)=diag(6 ,,,.., Snt)=h, say. 

Now write A = T'T, where 7' is upper-triangular with positive diagonal 
elements, then 

What we have shown is that an estimate + ( A )  is inuariunt under the group 
of upper-triangular matrices [that is, i t  satisfies (4)j if and only if i t  has the 
form (7) where A = T'T with T upper-triangular and where A is an arbitrary 
diagonal matrix whose elements do not depend on A .  We next note that the 
estimate $4 A )  in (7) has constant risk; that is, the risk does not depend on 2'. 
To spell it out, the risk function is 

R , ( Z ,  $I)= E,[tr C-'$( A )  -1ogdet X - ' + ( A ) -  rn] 

Now write X-' as X-' = LL', where L is upper-triangular, and note that 

tr 2- I+( A )  - logdet 2- I+( A )  - m = tr L'+( A )  L - logdet L'+( A )  L .- m 

= tr+( L'AL) - logdet t#~( L'AL) - m ,  
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using (4). Hence 

Putting U =  L'AL, this becomes 

and hence the risk does not depend on Z. The next step is to compute the 
risk and to find the diagonal matrix A which minimizes this. We have 

(8) R , (  I,,,, +)= E [  tr+( A)-logdet +( A ) -  m] 

= E [ tr T'AT - log det T'A T ] - rn 
= E(trT'AT)-IogdetA-E[logdetA]-m, 

where all expectations are computed with X = I,. 
Now, if T=(rrJ)  then 

m 

trT'AT= 2 art; 

and, from Theorem 3.2.14, the elements f,, of T are all independent, r: is 
x : - , + ~  ( i = I  ,..., m) and t r ,  is N(O,I)  for i < j .  Hence 

rsj 

(9) 
nt 

E(trT'AT)= 2 6 , E [ t : ] +  2 6,E[1;]  
i = 1  l < J  

m 

= 2 6 , ( n - - i + l ) +  6, 
r = l  I C J  

f i t  

= 6 , ( n + m - 2 i + 1 )  
r = l  
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Also, det A = I I ~ = , x ~ - , + ,  by Theorem 3.2.15, so that 

In 

E[logdet A ] =  2 E[log~~-,+~]. 
r = l  

(10) 

Substituting for (9) and (10) in (8) we then have 

R , ( X + ) =  R l ( L + )  

This attains its minimum value when 

( i  = I , . .  , ,m). 1 
n + 113 -2 i  + 1 6, = 

We can summarize our results in the following theorem. 

THEOREM 4.3.2. Using the loss function /,(X,+) given by ( I ) ,  the best 
(smallest risk) estimate of I: in the class of  estimates satisfying 

+(L‘AL)=  L ’ + ( A ) L  

for all upper-triangular matrices L,  is 

+ * ( A ) = T  

I 
n + m - 1  

I 
w i- m - 3 

0 

0 

I 
I I  + m - 2 m  -t 1 

where A = T’T with T upper-triangular. The minimum risk [i.e., the risk 
function for + * ( A ) ]  is 

m 

r = l  
H , ( X , + * ) =  2 ~ l o g ( n + m - Z i + I ) - E [ l o g x ~ - , ,  I ] } .  
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In  particular, $ * ( A )  beats all estimates of Z of the form a A  (which have 
6 1 9  = a-  i = 1,. , . ,m), the best of which is S = n- 'A with risk function 

It can be shown that + * ( A )  is minimax (that is, there is no other estimate 
of Z whose risk function has a smaller supremum), but that i t  is itself 
inadmissible. For details, the reader is referred to James and Stein (1961). 

I t  is interesting to examine the estimate + * ( A )  when rn = 2 .  If A = (a , f ) ,  
the sample covarance matrix is 

S = - A = (  1 ;a,,) 1 
n 

whereas + * ( A )  is easily shown to be 

(see Problem 4.2). The expectations of these two estimates are E ( S ) =  5: = 
(ajj 1 and 

1 
(12) 

te th N t although +*(A)  beats S it has the rather unappealing feature of 
not being invariant under permutations of the variables. 

A problem of considerable importance in principal components analysis 
(see Chapter 9) concerns the estimation of the latent roots of Z. These are 
commonly estimated by the latent roots of the sample covariance matrix S. 
In view of the fact that +* (A)  is a better estimate of I: than S with respect 
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to the rather special loss function I, one might also consider estimating the 
latent roots of I: by the latent roots of +*(A) .  Relations between these two 
sets of estimates are investigated in Problem 4.3. 

Finally, we will look briefly at the problem of estimating 2 using the loss 
function 

Sonre Results Concerning Vecisiorr -Theoretic Esrtmurion 

considered by Olkin and Selliah ( 1  977) and Haff (1980). We have seen that 
any estimate + ( A )  satisfying 

+(L'AL)=  L ' + ( A ) L  

for all upper-triangular matrices L has the fortn 

+ ( A )  = T'AT 

where A = T'T with T upper-triangular and where A =diag(S,, . . . ,S,,,) is an 
arbitrary diagonal matrix whose elements 6, do not depend on A.  (The 
argument used to show this had nothing to do with the loss function.) 
Again, one can easily show that the risk function for +( A )  does not depend 
on Z, so that the risk need only be computed for 2 = I,,,. Hence 

= E[tr(T'ATT'AT)] - 2 E [ t r ( T ' A T ) ]  -I- m. 

The Dartlett decomposition (Theorem 3.2.14) can be used to show that 

(13) 
m 

R , ( Z , + ) =  2 S:(n + m - 2 i - t  l ) ( n +  m - 2 i + 3 )  
t = I  

m t?l 

+ 2  2 S , S , ( n + m - - 2 i + 1 ) - 2  2 6 , ( n + m - 2 i + 1 ) + m .  
i< J 1 - 1  

The 8,'s which minimize this are obtained by differentiating H , ( Z ,  +) with 
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respect to the 6, and equating the derivatives to zero. The minimizing 6’s are 
given by the solutions of 

(14) B 6 =  

n + m - 1  
n + m - 3  . 

where &=(a,, ...,a,,,)’ and B=(b, , )  is a symmetric m X m  matrix with 

b,, = ( n  + m -2 i  + I ) ( .  + m -2 i  + 3 ) ,  b,, = n + m  - 2 j +  1 ( i <  j ) .  

Summarizing we have the following theorem. 

THEOREM 4.3.3. 
(smallest risk) estimate in the class of estimates satisfying 

Using the loss function /,(2,+) given by ( 2 )  the best 

+( L’AL) = L‘+( A)L 

for all upper-triangular matrices L, is 

4( A )  = TAT,  

where A = T’T with T upper-triangular, and A = diag( S,, . . . ,a,,,), where the 
S, are given by the solution of (14). In particular, all estimates of the form 
a A  are inadmissible. 

I t  is difficult to obtain the 6,’s in & A )  explicity. For m=2 they are given 
by 

(n + I ) ,  -(n - I) 
( n  + l),(n + 2 ) - ( n  - 1) 

6 ,  = 

and 

(n + I ) (  n + 2) 
6, = 

( n + 1 ) 2 ( n + 3 ) - ( n - l )  * 

Finally, the estimate + ( A )  can be shown to be minimax (see Olkin and 
Selliah, 1977). And it is also worth noting that relative to the loss function 
/J2, +) the estimate & A )  beats the estimate +*(A)  (given in Theorem 
4.3.2) but that the opposite is true when the loss function I , ( &  +) is used. 
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Estimates which are more appealing than + * ( A )  and & ( A )  have been 
given by Haff (1980). With respect to the loss function Il(X,r#) Haff has 
shown all estimates of the form 

beat S, where u =  l/tr(A-'C), C is an arbitrary positive definite matrix, 
and I (  u )  is an absolutely continuous, nonincreasing function with 0 5  I(  u)s 
2(m - l)/n. Similarly, using the loss function 12(Z,+) ,  the best estimate of 
the form aA is ( n  4- m + 1)-',4 (see Problem 4 3 ,  and this is beaten by all 
estimates of the form 

where u =  l/tr(A-'C), Cis an arbitrary positive definite matrix, and y is a 
constant with 0 5  y 5 2 ( m  - l)/(n - m +3). For details and further refer- 
ences concerning the estimation of I: the interested reader is referred to 
Haff ( 1  980). 

4.4.  ESTIMATION OF T H E  PRECISION MATRIX 

In this section we consider the problem of estimating the precision matrix 
2-' by y(A),  whereA is W,(n, X), with n > m + I .  Here we will concentrate 
primarily on the loss function 

t r [ ( y - Z - ' ) 2 A ]  - 
I (  2-1, y )  = 

n tr I: - -  I 

introduced by Efron and Morris (1976) in an empirical Bayes estimation 
context. First recall from (12) of Section 3.2.3 that 

E [  A - ' I  = 1 2-1 
n - m - 1  

so that the estimate 

(3)  
n - m - I 

n 
.-, yo( A )+n  - m - l ) A - l =  

is unbiased for X-'. In the class of estimates of the form a A - '  this is the 
best estimate, as the following result demonstrates. 



Esrrnrurron o/ the Precision Murrrx I37 

THEOREM 4.4.1. The best (smallest risk) estimate of X-' having the 
form a A - '  is the unbiased estimate y,(A)=(n - m  - ])A-I. 

Proof: The risk of the estimate aA- '  is 

E [  tr(aA - 1 - z-1 ) 2 ~ ]  

n tr X-' 
(4) R():- l ,aA- ' )= 

+ n - 2 a ,  1 
where we have used 

and 

( 6 )  E (  trA ] = tr E [  A ]  = n tr 2. 

The proof is completed by noting that the value of a which minimizes the 
right side of (4) is a = n - m - 1 and the minimum risk is 

Outside the class of estimates of the form aA Efron and Morris (1976) 
have shown that we can do  better than the unbiased estimate yo(A). To 
demonstrate this we will make use of the following lemma. 

LEMMA 4.4.2. Suppose that A is WJn, X) and put 

1 
m 

where w r - t r Z - ' .  

Then 
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and 
(i i )  0</3<1 forall Z>O. 

Prool: To prove (i) we have to show that 

Let H be an orthogonal m X m matrix such that 

HZH'= A =diag(A,, ..., A,) 

and put B = HAH'.  Then B is WJn, A )  and the right side of (8) is 

tr 2-  tr H'A- 'HH'BH ] 
tr H'BH .[A] t r A  = E[ 

Let u I = b , , / X , ;  then from Theorem 3.2.7 i t  follows that u I ,  ..., u ,  are 
independent x i  random variables, and 

(9 )  

where 0, = u,/Zy= ,u,. Now, it is well-known (and easily checked) that 
Z;"=lu, is independent of (u  ,,..., o,,). The distribution of Z;"=,u, is xi,,, so 
that 

1 
m n - 2 '  

X m n  
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Using this in (9) we then have 

which proves (8) and hence establishes (i). 
To prove (ii) note that 

Clearly f l  >O, and since 

it follows that 

We are now ready to demonstrate the existence of an estimate which 
beats yo( A ) .  



140 Some Results Concerning Decision -Theoretic Estrnrurion 

THEOREM 4.4.3. The estimate 

of Z- '  beats y, (A)=(n  - m - 1)A-I if m 1 2  [and hence yo( A )  i s  inadmissi- 
ble if m 221, 

PruoJ Define p and w as in Lemma 4.4.2 and put S = n -- m - 1 and 
9 = m 2 + m - 2  so that 

y, (A)=SA. . - '+ - - - I , , .  11 
trA 

The risk function of yI is 

- --. 62 trx-' +---- 2 h P  2s + q2p - w +,, 
mnw n - m - I  n ( m n - 2 )  n mn(mn-2) mn 

where we have used (S), (6),  and (i) of Lemma 4.4.2. Substitution of 
S = n - m - 1 and q = m2 + m - 2  gives 

m + l  m n - 2  
R ( Z - l , y l ) = y - - - - -  nlll c2p 1 

where 

m2 + m - 2 
mn - 2  

c=-- 

Note thatOcc l l  andO<c<l  i f m > I  andn>m+l ,andweknowfrom 
Lemma 4.4.2 that O< P I  1 .  I t  follows that for rn 2 2  and n > m + 1 
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The right side of this inequality is the risk function of the unbiased estimate 
yo( A )  of 2-’ [see (7)], hence the estimate yl( A )  has uniformly smaller risk 
than yo( A )  and the proof is complete. 

I t  is interesting to note that y , ( A )  can be written as 

where 

mn - 2  
tr A 

y * (  A )  f- I .  

Here y * ( A )  is the best unbiased estimate of X-’ when I: is known to be 
proportional to I,,,. The estimate yl( A )  increases the unbiased estimate 
yo( A )  by an amount proportional to y*( A). It is also worth pointing out 
that y o ( A )  is minimax and, as a consequence, so is y , ( A ) .  For more details 
the reader is referred to Efron and Morris (1976). 

Another loss function considered by Haff (1977, 1979) is 

where Q is an arbitrary positive definite matrix. We will not go into the 
details, but Haff has noted an interesting result. We saw that, using the loss 
function (l) ,  the Efron-Morris estimate y , ( A )  beats the unbiased estimate 
yo( A). When the loss function (1  1) is used the reverse is true; that is, the 
unbiased estimate yo( A )  beats y,( A). This is curious in view of the fact that 
the two loss functions ( I )  and (11)  are expected to be close (up to a 
multiplicative factor) if Q = Z and n is large, for then n- ’A -+ 2 in probabil- 
ity. 

PROBLEMS 

4.1. Suppose that Y,, . . . ,YN are independent N,( T,  I:) random vectors 
where both T and I: are unknown and I is to be estimated. Reducing the 
problem by sufficiency it can be assumed that X= N 1 / * V  and A =Z;”= ,(Y, - 
q)(Y, -v)’ are observed; X is N,,,(p, Z) with p = N‘/’T, A is W,,,(n, Z) with 
n = N - 1, and X and A are independent. Consider the problem of estimat- 
ing p using the loss function 

I ( ( p ,  Z), d)=(d-p)’I:-’(d-p).  
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Let d, denote the estimate 

Some Resulls Concerning Decisrori - Theoreric Esirmcrtion 

d,=( 1 - -)X a 
X A X  

(a) Show that the risk function of d, can be written as 

' ( ( ~ 9  ' a ) =  E , , * , , , ) [ (~ , - I - , * ) ' (~ , - I - , * ) ]  

where I- ,*=((p'Z-'I- ,) ' /2,0 ,..., 01' and E,, .,.,* denotes expecta- 
tion taken with respect to the joint distribution of X and A ;  X is 
N,,,(I-,*, I,,,), A is W,,,(n, I,,,), and X and A are independent. 

(b) From Theorem 3.2.12 it follows that conditional on X, X'A-'X 
=X'X/U, where U is and is independent of X. Writing 

conditioning on X, and using Lemma 4.2.1, show that 

R ( (  I-, , Z), d,) = nt - 2a( n - m + I ) (  m - 2 ) E  

where K has a Poisson distribution with mean ~I-,'Z-II-,. Show 
that this risk is minimized, for all p and E, when a = (rn - 2)/ 
( n  - m + 3), and show that with this value for a the estimate d, 
beats the maximum likelihood estimate X if m 23 .  

4.2. Show that when m =2  the best estimate of 2 in Theorem 4.3.2 is (1  I )  
of Section 4.3 and that it has expectation given by (12) of Section 4.3. 

4.3. Suppose that S is a sample covariance matrix and nS is W J n ,  L.) and 
consider the problem of estimating the latent roots X , r . . . , X , , I  ( A ,  2 - * 9 2 
h,,,>O) of 2. A commonly used estimate of A, is I,, where l i , . , . , l ,n  
(I ,  1: - - Z I,,, >0) are the latent roots of S. An estimate of A,  obtained using 
the unbiased estimate (( n - m - I ) /n ]S -  of 2- ' is h, = HI,/( n - m - l), 
( i = l ,  ..., m). Let +; ,..., +: (+:r ... 2 +: > O )  be the latent roots of the 
estimate +*(A) given in Theorem 4.3.2. Show that 
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[Hint: The following two facts are useful [see Bellman, 1970, pp. 122 and 
1371: (a) If  F is a symmetric matrix whose latent roots all lie between 0 and 
I and E is positive definite then the latent roots of E 1 / 2 F E 1 / 2  are all less 
than those of E. (b) For any two matrices E and F the square of the 
absolute value of any latent root of EF is at  least as big as the product of 
the minimum latent root of EE’ and the minimum latent root of FF‘.] 

4.4. If + * ( A )  is the best estimate of X in Theorem 4.3.2, show that 

R , ( Z , + * ) -  R , ( Z ,  S ) = 0 ( n F 2 ) .  

4.5. Suppose A is W,(n,2) and consider the problem of estimating X 
using the loss function /*(I:,+) given by (2) of Section 4.3. Show that the 
best estimate having the form cuA is ( n  S m S  1)-?4. 

4.6. Suppose that @ * ( A )  is the best estimate of X in Theorem 4.3.2 and put 
@L( A ) =  L’-’@*( L’AL)L-’  where L is an m X m nonsingular matrix. Show 
that 

4.7. When m =2, express the best estimate of I: in Theorem 4.3.3 in terms 
of the elements of A and find its expectation. 
4.8. Suppose A is W,(n, X) and consider the problem of estimating the 
generalized variance det Z by d( A )  using the loss function 

(a) Show that any estimate of d e t z  which is invariant under the 
group of upper-triangular matrices, i.e., which satisfies 

d(  L’AL)= (det t’) d( A )  (det L )  

for all upper-triangular nonsingular matrices L, has the form 
d ( A ) =  kdet A. 

(b) Show that the best estimate of det I: which is invariant under the 
group of upper-triangular matrices is 

M 

d ( A ) =  n (n- i+3) - ’ -de tAa  
r = l  



CHAPTER 5 

Correlation Coefficients 

5.1 .  O R D I N A R Y  CORRELATION COEFFICIENTS 

5.1.1. Introduction 

If the m X 1 random vector X has covariance matrix 2 = ( o , ! )  the correlation 
coefficient between two components of X, say, X, and 3, is 

The reader will recall that Ip, 15 1 and that pIJ = 1?: 1 if and only if XI and X, 
are linearly related (with prokability I )  so that p,, is commonly regarded as 
a natural measure of linear dependence between XI and X,. 

Now let X,, , , . , X,, be N independent observations an X and put 

N 
A = n S =  2 (X~-R) (X~- -Z )~  

1 - 1  

where n = N- I ,  so that S is the sample covariance matrix. The sample 
correlation coefficient between Xi and X ,  is 

U - I J  - ' I J  -- 
I* Jo,,a// G' (2) 

It is  clear that if we are sampling from a multivariate normal distribution 
where all parameters are unknown then rlJ is the maxinrum likelihood 
estimate of plJ. In this case plJ =O if and only i f  the variables X I  and XJ are 
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independent. For other multivariate distributions p,, = O  will not, in general, 
mean that X, and 4 are independent although, of course, the converse is 
always true. 

In the following subsections, exact and asymptotic distributions will be 
given for sample correlation coefficients, sometimes under fairly weak 
assumptions about the underlying distributions from which the sample is 
drawn. We will also indicate how these results can be used to test various 
hypotheses about population correlation coefficients. 

5.1.2. Joint and Marginal Distributions of Sample Correlation Coeflicients 
in the Case of independence 

In this section we will find the joint and marginal distributions of sample 
correlation coefficients formed from independent variables. First let us look 
at a single sample correlation coefficient; i t  is clear that in order to find its 
distribution we need only consider the distribution of those particular 
variables from which it is formed. Hence we consider N pairs of variables 
( XI, Yl ), . . . , ( X,, Y,,,) and form the sample correlation coefficient 

where g= N-'ZfV=, X, and F= N-'ZY=,  x. The assumption that is com- 
monly made is that the N 2X 1 vectors 

are independent iV2(p, X) random vectors, where 

with ~ = u , ~ / ( u , , u ~ , ) ' ~ ~ .  In this case the X ' s  are independent of the Y's  
when p =O. If, in general, we assume that the X ' s  are independent of the 
Y 3, the normality assumption is not important as long as one set of these 
variables has a spherical distribution (see Section 1.5). This result, noted by 
Kariya and Eaton (l977), is given in the following theorem. In this theorem, 
1 = (1.. . . , 1 )' E RN and ( 1 ) = { k 1; k E R' }, the span of 1. 
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THEOREM 5.1.1. Let X=(X,, ..., XN)’ and Y = ( Y  ,,..., Y,)’. with N>2, 
be two independent random vectors where X has an N-variate spherical 
distribution with P(X=O)=O and Y has uny distribution with P(Y E { 1})=0. 
If r is the sample correlation coefficient given by (3) then 

r 

( I  - r2)‘” 

( N  -2)1’2 

has the 1 N - 2  distribution. 

Proof. Put M=(i/N)ll‘; then r can be written as 

X (  I - M)Y 
r =  

[ X (  I - M)XY’( I - M)Y]”2 

Since I - M is idernpotent of rank N - 1 there exists H E  O ( N )  such that 

H ( I -  M ) H ’ = [  ’”6;’ 

Put U= HX and V =  HY and partition U and V as 

.=( u;), U* 
v = (  .vJ, V* 

where U* and V* are (N - I )X 1. Then 

U’H( I - M)H’V 
t =  

[ U’H( I - M)H‘UV’H( I - M ) H ’ V y 2  

[U*’U*V*’V1]’/2 

(4) 

- U*’V* 

- U*’V* 

- 

- 
IIU*ll IlV*ll . 

Note that U* has an (N - I)-variate spherical distribution and is indepen- 
dent of V*.ConditioningonV*,part (i)ofTheorem 1.5.7 witha=IIV*II-’V* 
then shows that ( N  -2)’I2r,/( 1 - r 2 ) 1 / 2  has the t N - *  distribution, and the 
proof is complete. 
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I t  is easy to see that r=cosd, where B is the angle between the two 
normalized vectors IIU*II-'U* and IIV*ll-'V* in the proof of Theorem 
5.1.1. Because U* has a spherical distribution, IiU*ll-'U* has a uniform 
distribution over the unit sphere in R N - '  (see Theorem 1.5.6), and i t  is clear 
that in order to find the distribution of cosd we can regard IlV*ll-'V* as a 
fixed point on this sphere. 

As noted previously, i t  is usually assumed that the X ' s  and Y's are 
normal. This is a special case of Theorem 5.1.19 given explicitly in the 
following corollary. 

COROLLARY 5.1.2. Let 

be independent N,(p ,  Z) random vectors, where 

and let r be the sample correlation coefficient given by (3). Then, when p =O 

ProoJ Since the correlation between the standardized variables ( X ,  - 
pl)/u, and (x - p z ) / q  is the same as the correlation between X, and we 
can assume without loss of generality that p =O and 2 = I2 (when p =O). 

Then X,, . . . X, are independent N(0, 1) random variables and so X = 

( XI,. . . , X N ) '  certainly has a spherical distribution and is independent of 
Y = (Y,, . . . , YN )' by assumption. The conditions of Theorem 5.1. I are satis- 
fied and the desired result follows immediately. 

Suppose that the conditions of Theorem 5.1.1 are satisfied, so that 
( n  - l)'I2r/( 1 - r 2 ) l I 2  is I,- where n = N - 1. Starting with the density 
function of the t n - '  distribution the density function of r can be easily 
obtained as 

Equivalently, r 2  has the beta distribution with parameters f and $(n - 1). 
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The density function (5) is symmetric about zero so that all odd moments 
are zero. The reader can easily check that the even moments are 

so that Var(r)= E ( r 2 ) =  n - ' .  In fact, if c is the sample correlation coeffi- 
cient formed from two sets of independent variables then E ( r ) = O  and 
Var( r ) = n -- ' under much more general conditions than those of 'Theorem 
5.1.1, a result noted by Pitman (IY37). 

Let us now turn to the problem of finding the joint distribution of a set 
of correlation coefficients. 

THEOREM 5.1.3. Let X be an N X m random matrix 

(so that the X: are the rows of X and the Y, are the columns of X) and let 
R = ( r l J )  be the m X m sample correlation matrix where 

with Z =  N - ' X ; = ,  X,k. Suppose that Yl,,..,Ym are all independent random 
vectors where Y, has an N-variate spherical distribution with P(Y, =O)=O 
for i = I,. . . ,m. (These spherical distributions need not be the same.) Then 
the density function of R (i.e., the joint density function of the r,,, i < j )  is 

where n = N - 1, 

Proo/. As in the proof of Theorem 5.1.1 we can write r .  =Ul'$, where 
and $ are uniformly distributed over the unit sphere in f?' [see (4)). This 
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being the case we can assume that Yi, ..., Ym are all independent NN(O,lN) 
random vectors since this leads to the same result. Thus XI, ..., X,, are 
independent Nm(O,l"l) random vectors so that the matrix 

N 
A = 2 (x, -fz)(x, -E) '=(u , , ) ,  

r = i  

with x= N-lxy=, X,, is Wm(n, I,) and r,, =ul , / (u l ,uJJ) i~2 ,  The density of 
A is then 

Now make the change of variables 

t I = a i ,  ( i = l ,  ..., m); 

then da,, = dt, and 

da,, = (~ l t , )"2dr lJ  +terms in dt, 

so that 

that is, the Jacobian is flz, t / m - ' ) / 2 .  The joint density function of the r,, 
and t i  is, then, 
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Now note that 

Substituting in (8) gives the joint density of the r,, and the t ,  as 

Integrating with respect to 1 , .  . . . , I ,  using 

gives the desired marginal density function of the sample correlation matrix, 
completing the proof. 

The assumption commonly made is that the rows of the matrix X in 
Theorem 5.1.3 are independent N,,,(p, X) random vectors, where C, is 
diagonal. This is a special case of Theorem 5.1.3 and follows in much the 
same way that Corollary 5.1.2 follows from Theorem 5.1.1. 

Suppose that the conditions of Theorem 5.1.3 are satisfied, so that R has 
density function (7). From this we caR easily find the moments of det R, 
sometimes called the scatter coeflicient. We have 

i .C j 

on adjusting the integrand so that it is the density function (7) with n 
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replaced by n +2k, and hence integrates to 1. In particular 

M 

E(det R ) =  fl ( 1 -  ") n 
r = l  

and 

From the moments follows the characteristic function of logdet R, and 
this can be used to show that the limiting distribution, as n + m ,  of 
- nlogdet R is (see Problem 5.1). 

5.1.3. 
Case of Normality 

In this section we will derive the distribution of the sample correlation 
coefficient r formed from a sample from a biuariate normal distribution with 
population correlation coefficient p. The distribution will be expressed in 
terms of a 2Fl hypergeometric function (see Definition 1.3.1). We will make 
use of the following lemma, which gives an integral representation for this 
function. 

LEMMA 5.1.4. 

The Non - null Distribution o/a Sample Correlation Coefiicient in the 

for Re(c)>Re(a)>O and l z l c  1. 

To prove this, expand (1 - I Z ) - *  in a binomial series and.integrate term 
by term. The details are left as an exercise (see Problem 5.2). 

The following theorem gives an expression for the non-null density 
function of r .  

THEOREM 5.1.5. If r is the correlation coefficient formed from a sample 
of size N = n + 1 from a bivariate normal distribution with correlation 
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coefficient p then the density function of r is 

. ( l - r 2 ) ( - / *  2 r j( z , j ;  I n + 4 ;  ; ( I  + p r ) )  ( -  1 -==r< I ) .  

Proof. Let the sample be XI,.. . ,XN so that each of these vectors are 
independent and have the N 2 ( p ,  Z) distribution. Since we are only inter- 
ested in the correlation between the components we can assume without loss 
of generality that 

Put A=Zr=I(X, -%)(X, -%)', then A is W2(n, Z), where n = N - 1, and the 
sample correlation coefficient is r = a I 2 / ( a l  lu22)1/2. The density function 
of A (Le., the joint density function of all, uIz, and u22)  is 

Now 

so that 

and hence the joint density function of aI,, u12, and u22 is 

Now make the change of variables 
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(so that r = a 1 2 / ( a l l a 2 2 ) 1 / 2 ) ,  then 

da,, Ada,,Ada2,=2s2dsAdtAdr 

(i.e., the Jacobian is 2s2); the joint density function of r ,  s, and t is then 

where now 

Integrating (12) with respect to s from 0 to 00 using 

r (n ) ( l  7')" 

(cosh I - p r ) "  1 /owexp[ - 1-p2 S (cosh I - pr )  s"-lds = 

gives the joint density function of r and t as 

We must now integrate with respect to I from - 00 to 00 to get the marginal 
density function of r .  Note that 

(cosht-pr)-"dt 

= 21m(cosh t - p r ) -  ' dt 

-00 
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on making the change of variables 

Using Lemma 5.1.4 we then see that 

Hence the density function of r is 

Using Legendre's duplication formula 

[see, for example, Erdblyi et a]. (1953a), Section 1.21 the constant in the 
density function (13) can be written 

and the proof is complete. 

The density function of r can be expressed in many forms; the form (lo), 
which converges rapidly even for small n ,  is due to Hotelling (1953). Other 
expressions had been found earlier by Fisher (1915). One of these is 
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which can be obtained from (11) by changing variables to r = 
u 1 2 / ( u l l u 2 2 ~ 1 ~ 2 .  u = u l l ,  U = U ~ ~ ,  expanding exp(pr(uu)'/*/(l - p 2 ) ]  (which 
is part of the exp( - 6) term) and integrating term by term with respect to u 
and u (see Problem 5.3) .  The form (15) for the density function of r is 
probably the easiest one to use in an attack on the moments of r.  To derive 
these, i t  helps if one acquires a taste for carrying out manipulations with 
hypergeometric functions. For example, the mean of r is, using ( 1  5) ,  

This last integral is zero unless k is odd so, putting k = 2 j +  1, we have 

Substituting back in (16) gives 

On using 

and the duplication formula (14) we get 
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This can be simplified a little more using the Euler relation 

(17) ,F,(u, b:  c ;  z ) = ( i - t )  2F1(c -a , c -  h; C; z ) ,  

[see, for example, Erdklyi et al. (1953a), Section 2.9, or Rainville (1960), 
Section 381; we then gel 

c - a - - h  

In a similar way the second moment can be obtained; we have 

. p ( l -  r 2 ) ( # - 1 ) / 2 & .  

This integral is zero unless k is even; putting k =2  j we have 

Substituting back in (19) and using 

22'I '(j+4) I 
,,1/*(2,)! j! ' 

=- 

1 -. 2 (f4, 
-'---- 

r(h + j )  

r ( i . n + j + i )  f n + j  n (jn+i); 

the duplication formula (14) and Euler's relation (17), we then find that 

These moments, and others, have been given by Ghosh (1966). Expanding 
(IS) and (20) in term of powers of n - '  it is easily shown that 

P ( l - - P 2 )  + O ( n - 2 )  

2 n E (  r ) =  p - 
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and 

+ O ( n - 2 ) .  
( 1 - P 2 ) 2  

Var(r)= 
n 

I t  is seen from (18) that r is a biased estimate of p. Olkin and Pratt (1958) 
have shown that an unbiased estimate of p is 

which may be expanded as 

r( I - r 2 )  
T ( r ) = r +  + O(n-2) 

n - 1  

and hence differs from r only by terms of order n-  '. Since it is a function of 
a complete sufficient statistic, T( r )  is the unique minimum variance unbi- 
ased estimate of p. 

5.1.4. Asymptotic Distribution of a Sample Correlation Coefficient from an 
Elliptical Distribution 

Here we will derive the asymptotic distribution of a correlation coefficient 
as the sample size tends to infinity. Since it turns out to be not very 
different from the situation where the underlying distribution is normal, we 
will assume that we are sampling from a bivariate elliptical distribution. 
Thus, suppose that S( n )  = (s,,( n ) )  is the 2 X 2 covariance matrix formed 
from a sample of size N = n + 1 from a bivariate elliptical distribution with 
covariance matrix 

and finite fourth moments. It has previously been noted that, as n -, 00, the 
asymptotic joint distribution of the elements of n'/ ' [S(n)-  X] is normal 
and that the asymptotic covariances are functions of the fourth order 
cumulants (see Corollary 1.2.18 and the discussion at the end of Section 
1.6). We have also noted that, for elliptical distributions, all fourth-order 
cumulants are functions of the elements of X and a kurtosis parameier K [see 
( I )  and (2) of Section 1.61. 
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Pu t 

it then follows, using (2) and (3) of Section 1.6, that the asymptotic 
distribution of u = (uII,  uI2, u ~ ~ ) ’  is normal with mean 0 and covariance matrix 

I 2 + 3 u  (2+3K)P 2p2 + K (  1 +2p2) 

(24) y = (  ( 2 + 3 ~ ) p  K(I+2p2)+(1+p2)  (2+3K)p . 
2p2 + K (  I + 2p2) (2 + 3K)P 2 + 3 ~  

Now, in terms of the elements of U, the sample correlation coefficient r ( n )  
can be expanded as 

[For the reader who is unfamiliar with the O,, notation, a useful reference is 
Bishop et al. (1975), Chapter 14.1 It follows from this that 

n ’ / 2 [ r ( n ) - p j =  u12- fpu,‘ - $ p u 2 ,  +0,(n-’/2) 

and hence the asymptotic distribution of n ’ / 2 ( r ( n ) - p )  is the same as that 
of u12 - f p u , ,  - fpu,,. With a =(- f p  - i p ) ’ ,  the asymptotic distri- 
bution of 

1 

a’u= u12 - f p u , ,  - f p ~ i ~ ~  

is normal with mean zero and variance a’Va, which is easily verified to be 
equal to (1 + K)(I - p212. 

THEOREM 5.1.6. Let r ( n )  be the correlation coefficient formed from a 
sample of size n + I from a bivariate elliptical distribution with correlation 

Summarizing, we have the following theorem. 
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coefficient p and kurtosis parameter K.  Then the asymptotic distribution, as 
n+m,  of 

is N(O.1 + K ) .  

When the elliptical distribution in Theorem 5.1.6 is normal, the kurtosis 
parameter K is zero and the limiting distribution of n ' / 2 [ r ( n ) -  p]/(l - p 2 )  
is N(0,l). In this situation Fisher (192 I )  suggested the statistic 

I + r  
z=tanh-'r=flog- I - r  

(known as Fisher's t transformation), since this approaches normality much 
faster than r ,  with an asymptotic variance which is independent of p. In this 
connection a useful reference is Hotelling (1953). For elliptical distributions 
a similar result holds and is given in the following theorem. 

THEOREM 5.1.7. Let r ( n )  be the correlation coefficient formed from a 
sample of size n + I from a bivariate elliptical distribution with correlation 
coefficient p and kurtosis parameter K and put 

I + r ( n )  
z( n) = tanh- ' r(  n) = +log - r( n) 

and 

I + P  
1-P 

= tanh-'p = jlog-, 

Then, as n -, 00, the asymptotic distribution of 

n'I2( z( n )  - t )  

is N ( 0 ,  I + K ) .  

This theorem follows directly from the asymptotic normality of r( n) 
established in Theorem 5.1.6; the details are left as an exercise (see Problem 
5.4). 

Again, when the elliptical distribution here is normal we have K =0, and 
the limiting distribution of n ' / * [ t ( n ) -  €1 is N(0 , l ) .  In this particular case, t 



I60 Correlutron Cutjjicients 

is the maximum likelihood estimate of E. For general non-normal distribu- 
tions Gayen (195 1) has obtained expressions for the mean, variance, skew- 
ness, and kurtosis of z. These have been used by Devlin et al. (1976) to 
study Fisher’s z transformation for some specific elliptical distributions. 
They state that “the main effect of the elliptically constrained departures 
from normality appears to be to increase the variabilty of z ”  and conclude 
that the distribution of L can be approximated quite well in many situations, 
even for small sample sizes, by taking z to he normul with mean E ( z ) =  
and variance 

1 K 
Var(z)= ~ + - 

n - 2  n + 2  

( n  = N - I ) .  ( I t  should be noted that the kurtosis parameter (pz used by 
Devlin et al. is equal to 1 + K in our notation.) 

5.1.5. Testing Hyporhesev about Population Correlution Coeflicienrs 

The results of the preceding sections can be used in fairly obvious ways to 
test hypotheses about correlation coefficients and to construct confidence 
intervals. First, suppose that we have a sample of size N = n + 1 from a 
bivariate normul distribution with correlation coefficient p and we wish to 
test the null hypothesis H,: p = O  (that is, the two variables are uncorrelated 
and hence independent) against general alternatives H: p ZO. 11 is clear that 
this problem is equivalent to that of testing whether two specified variables 
are uncorrelated in an m-variate normal distribution. An exact test can be 
constructed using the results of Section 5.1.2. We know from Theorem 5.1.1 
that, when 11, is true, ( n  - l)’’2r/(l - r2)I /*  has the I,_. , distribution so 
that a test of size LY is to reject H, if 

where ( : - ‘ (a)  denotes the two-tailed 100a% point of the t,,.. , distribution. 
This test is, in fact, the likelihood ratio lest of the null hypothesis H, 
(Problem 5.5). The power function of this test is a function of p,  namely, 
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where 

Expressions for the density function of r when p ZO were given in Section 
5. I .3. From these, expressions for the distribution function 

F ( x ;  n , p ) =  P , ( r S x )  

of r can be obtained. Tables of this function have been prepared by David 
(1938) for a wide range of values of x, p ,  and n. In terms of the distribution 
function the power is 

@ ( p ) =  I - F(r*;  n, p ) +  F( - r * ;  n, p). 

Now consider testing the null hypothesis H: p = po against one-sided 
alternatives K: p > p o .  A test of size a is to reject H if r>k , ,  where k ,  is 
chosen so that 

This test has the optimality property stated in the following theorem due to 
T. W. Anderson (1958). 

THEOREM 5. I .8. In the class of tests of H: p 5 po against K: p == po that 
are based on r ,  the test which rejects H if r > k, is uniformly most powerful. 

Because we are restricting attention to tests based on r we can 
assume that a value of r is observed from the distribution with density 
function specified in Theorem 5.1.5, namely, 

Proof: 

(29) 

The desired conclusion will follow if we can show that the density 
function f ( r ;  n ,  p )  has monotone likelihood ratio; that is, if p > p‘ then 
j ( r ;  n, p ) / / ( r ;  n,  p’) is increasing in r [see, for example, Lehmann (l959), 
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Section 3.3, or Roussas (1973), Section 13.31. To this end, it suffices 10 show 

for all p and r [see Lehmann (1959). page 1 1  I]. Writing the series expansion 
for the *FI hnction in (29) as 

M 

F, ( f ,$ ; n + 1 ; f ( I -I- pr )) = 2 6, z’, 
1-0 

where 

and z = I + pr,  it is reasonably straightforward to show that 

where 

We now claim that g(z)>O for all I >O. To see this note that 

Holding i fixed, the coefficient of t’ in the inner sum is 

6,[ - ( j - i) ’  + ( i  + j ) ]  + 8,- ,( j - i - I )2 
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for j L i + 1. That this is non-negative now follows if we use the fact (easily 
proved) that 

and the proof is complete. 

The test described by Theorem 5.1.8 is a uniformly most powerful 
invariant test; this means that if the sample is (X,, Y,)', with i = I,. . . ,N, then 
r is invariant under the transformations = c y  + d, where 
a >O and c>O, and any function of the sufficient statistic which is invariant 
is a function of r .  The invariant character of this test is discussed in Chapter 
6 in Example 6.1.16. 

The asymptotic results of Section 5.1.4 can also be used for testing 
hypotheses and, in fact, it is usually simpler to do this. Moreover, one can 
deal with a wider class of distributions. Suppose that we have a sample of 
size N = n + 1 from an ellipiticul distribution with correlation p and kurtosis 
parameter K and we wish to test the null hypothesis H,: p = po against 
H :  p # po. Putting lo = tanh-'p,, we know that when Ho is true the distri- 
bution of z = tanh-'r is approximately 

= ax, + b, 

+"X 1 +") n + 2  

so that an approximate test of size a is to reject H, if 

where d ,  is the two-tailed 100a% point of the N(0 , I )  distribution. (If K is 
not known i t  could be replaced by a consistent estimate 8.) The asymptotic 
normality of z also enables us to easily construct confidence intervals for 6, 
and hence for p. A confidence interval for 6 with confidence coefficient 
I - a (approximately) is 
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and for p it is 

I t  is also possible, for example, to test whether the correlation coefficients in 
two elliptical distributions are equal; the details are left as an exercise (see 
Problem 5.6). 

A caveat is in order at this point; the procedure just described for testing 
a hypothesis about a correlation coefficient in an elliptical distribution may 
have poorer power properties than a test based on a statistic computed from 
a robust estimate of the covariance matrix, although if the kurtosis parame- 
ter K is small there probably is not very much difference. 

5.2. THE MULTIPLE CORRELATION C O E F F I C I E N T  

5.2.1. Introduction 

Let X=(XI,  ..., X,,,)’ be a random vector with covariance matrix Z>O. 
Partition X and I: as 

where X, =( X, ,..., X,,,)’ and Z,, is ( m  - I )X(m - l), so that Var( X I ) =  u , , ,  
Cov(X,)= Z22, and uI2 is the ( m  - I ) X  1 vector of covariances between X, 
and each of the variables in X,. The multiple correlation coefficient can be 
characterized in various ways. We will use the following definition. 

DEFINITION 5.2.1. The multiple correlation coefficient between XI and 
the variables X,, . . . , X,, denoted by El . 2 . .  . m ,  is the maximum correlation 
between XI and any linear function a’X, of X,, . . . , X,,,. 

Using this definition, we have 

- Cov( x, , a ’ X  * ) 
[ ~ a r (  X ,  ) ~ a r (  a’x2 >I ’I2 

a’0.12 

( u , , a ~ ~ 2 2 a ) ” 2  

R, ,.. .,,, = niax 
a 

= max 



The Multiple Correlation Coeflicient 165 

(u'u) 1'2("'v) 

( Q1 I"'Z22a)'/2 ' 
rl by the Cauchy-Schwarz inequality, 

with equality if a = Z3laI2. Using this in (2)' we can show that 

(3) 

- 
Note that 0 5  R, ., . .,,,2 1, unlike an ordinary correlation coefficient. We 
have now shown that R, ,.. .,,, is the correlation between XI and the linear 
function a ; , Z ; ' X , .  NOW recall that if X is N,,,(p, 2) and p is partitioned 
similarly to X then the conditional distribution of XI given X, is normal 
with mean 

(4) W,IX,)= P *  + al,~,'tXz - P z )  

and variance 

(see Theorem 1.2.1 I ) ;  hence we see in this case that the multiple correlation 
coefficient El .,.. .,,, is the correlation between XI and the regression function 
E ( X , I X 2 )  of XI on X ,  [see (16) of Section 1.21. [In general, this will be true 
if E( XI {Xz) is a linear function of X,, . . . ,X,,,.] Also, using ( 5 )  we have 
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the numerator here is the amoun! that the variance of XI can be reduced by 
conditioning on X, and hence E,. 2 . .  .,,, measures the fraction of reduction in 
the variance of XI obtained by conditioning on X,. 

It is worth noting that in the bivariate case where 

we have Var( XI I X2) G u, I .  , = u:( I - p2 ), so that 

and hence 

the absolute value of the ordinary correlation coefficient. 
We have defined the multiple correlation coefficient between XI and X,, 

where X, contains all the other variables, but we can obviously define a 
whole set of multiple correlation coefficients. Partition X and Z as 

where XI i sk  X I ,  X, is ( m - k ) X  1, X I ,  i sk  X k ,  and Z,, is(m -- k ) X ( m  - 
k). Let X, be a variable in the subvector X, (with i = I ,  ..., k). The multiple 
correlation coefficient between X ,  and the variables A', + I , .  , . I X,,, in X,, 
denoted by XI.&+ I,...,m, is the maximum correlation between X, and any 
linear function a'X2 of Xk+, ,..., Xm. Arguing as before i t  follows that the 
maximizing value of LT is a = Z;,b,, where u,' is the ith row of Z,,, and 
hence that 

Equivalen 11 yI 
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where 211.2 = X I l  -2122221221 =(u, , .~+~, . . , ,~) .  In the case where X is nor- 
mal, Z,,., is the covariance matrix in the conditional distribution of XI 
given X,. 

For the remainder of the discussion we will restrict attention to the 
multiple correlation coefficient El .z . .,,, between X, and the variables 
X2,, . .,X,,,, and we shall drop the subscripts, so that x= R, ., . ,,,,. What 
follows will obviously apply to any other multiple correlation coefficient. 
We then have X and I: partitioned as in (1). Now let XI, ..., X,, be N 
independent observations on X and put 

N 
A = nS = 2 (x, --Z)(X, -52)' 

( = I  

where n = N - I ,  so that S is the sample covariance matrix. Partition A and 
S as 

where A,, and S,, are ( m  - 1)X ( m  - 1). The sample multiple correlation 
coefficient between XI and X,, . . . , X,,, is defined as 

(7) 

When the underlying distribution is normal, R is the maximum likelihood 
estimate of E. Note that E=O implies that u12 =O [see (2)]; hence, in the 
case of normality, R=O if and only if XI is independent of X, = 

In the following subsections exact and asymptotic distributions will be 
derived for the sample multiple correlation coefficient under various as- 
sumptions about the underlying distribution from which we are sampling. 
Some uses for these results in the area of hypothesis testing are also 
discussed, 

( x,, . . ., X,,,)'. 

5.2.2. Distribution of the Sample Multiple Correlation Coeflicient in the Case 
of Independence 

Here we will find the distribution of a multiple correlation coefficient 
formed from independent variables. We consider N random m X 1 vectors 



where each X, is (m - l ) X  I and form the m X N matrix 

where Y is N X 1 and X is N X ( m  - 1). The square of the sample multiple 
correlation coefficient is 

Here A is the usual matrix of sum of squares and sum of products 

(9) 

where A,, is ( m - l ) X ( m - I )  and 1=(1,1, ..., 1)'ER"'. (For convenience 
the notation has been changed from that in Section 5.2.1. There we were 
looking at the multiple correlation coefficient between X, and X,; here XI 
has been replaced by Y and X2  by X.) The assumption usually made is that 
the N vectors 

are independent N,,,(p, 2) random vectors, where 

so that the population multiple correlation coefficient is given by 

-2 u;2z2,1u12 
R =  

01 I 

In this case the Y's are independent of the X s  when R=O. If, in generul, we 
assume that the Y's  are independent of the XIS, the normality assumption is 
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not important as long as the vector Y has a spherical distribution. This is 
noted in the following theorem. 

THEOREM 5.2.2. Let Y be an N X 1 random vector having a spherical 
distribution with P(Y=O)=O, and let X be an N X ( m  - 1) random matrix 
independent of Y and of rank m - 1 with probability I.  If R is the sample 
multiple correlation coefficient given by ( 8 )  then R2 has the beta distribu- 
tion with parameters j ( m  - I )  and i ( N -  m),  or equivalently 

N - m  R 2  
m - 1  1-p is F,- ,, N-m. -.- 

Proo/. Write the matrix A given by (9) as 

A = Z ( I -  M ) Z ’  

where 

I 
N M=-11’ and Z= 

Then 

U , l  = Y ’ ( I -  M ) Y ,  

a , ,=X’ ( I -M)Y,  

and 

A22 = X‘( I - M ) X  

so that 

R2 = Y’( I - M)X[ x l ( I  - M ) X ]  -’x’(I - M ) Y  
Y’( I - M ) Y  

Since I - M is idempotent of rank N - 1 there exists HE O ( N )  such that 

Put U = H Y and V = HX, and partition U and V as 
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where U* is (N- 1)X 1 and V* is (N- I)X(m - I). Then 

U'H( I - M ) H ' V [  VIf( I - M)H'V]  - - I  V'H( I - M)N'U 
U'H( I - M)H'U 

U*'V*( V*'V*) - I V*'U* 

( 1 1 )  R2= 

I - 
U*'U* 

Now, V*( V*'V*)-'V*' is idempotent of rank m - 1 and is independent of 
U*, which has an (A'- I)-variate spherical distribution. Conditioning on 
V*, we can then use part (ii) of Theorem 1.5.7, with B = V*( V*'V*)- IV*', to 
show that R 2  has the beta distribution with parameters $ ( m -  1) and 
f( N - m), and the proof is complete. 

A geometrical interpretation of R is apparent from ( 1  I) .  Writing U =  
IlU*ll-'U* we have 

where U has a uniform distribution over the unit sphere in R N - ' .  Hence 
R =cos&J, where B is the angle between U and the orthogonal projection of 
U onto the m - 1 dimensional subspace of R N - '  spanned by the colunins of 
V*. 

We noted previously that it is usually assumed that the vectors (10) are 
normal. This is a special case of Theorem 5.2.2, stated explicity in the 
following corollary. 

COROLLARY 5.2.3. Let 

be independent Nm(p, 2) random vectors, where each Xi is ( m  - I )X 1, and 
let R be the sample multiple correlation coefficient given by (8). Then, when 
the population multiple correlation coefficieiit ii is, 

N - m  R2 
m-1 1-p 
-- 



The Multiple Correlaiion Coefficietii I7 I 

Proof: Partition p and Z as 

p = (  F:) andX=[ “I 0 =2z 0 ] 
where p2 is ( m - 1 ) X l  and Z,, is ( m - l ) X ( m - l ) .  Note that u12=0 
because R=O. The reader can easily check that the multiple correlation 
between the standardized variables (Y, - pl)/o,’(’ and X,’/’(X, - p 2 )  is 
the same as that between and X,, so we can assume without loss of 
generality that p =O and I: = I,,,. Then i t  is clear that the conditions of 
Theorem 5.2.2 are satisfied and the desired result follows immediately. 

Suppose that the conditions of Theorem 5.2.2 are satisfied, so that R 2  has 
a beta distribution with parameters f( m - 1) and f( N - m). Then the k th 
moment of RZ is 

In particular, the mean and variance of R 2  are 

and 

Z ( N - m ) ( m  - 1) 
Var( P)= 

( N *  - 1 ) ( N -  1)  * 

5.2.3. 
Coefficient in the Case of Normality 

In this section we will derive the distribution of the sample multiple 
correlation coefficient R formed from a sample from a normal distribution, 
when the population multiple correlation coefficient 

The Non -null Distribution of a Sample Multiple Correlation 

is non-zero. 
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THEOREM 5.2.4. Let ( i )  be N,,(p,Z), where X is ( r n  - l ) X  1 and 
partition Z as 

where Z,, is ( m  - I)X(m - I), so that the population multiple correlation 
coefficient between Y and X is ~ = ( ~ ~ ~ Z , ' u , ~ / u , , ) ' / ~ .  Let R be the sample 
multiple correlation coefficient between Y and X based on a sample of size 
N(N> m);  then the density function of R 2  is 

where n = N- 1. 

ProoJ. Let 2 be the maximum likelihood estimate of I: based on the N 
observations, and put A =  N $  then A is W,(n, Z), n = N -  1. If we 
partition A similarly to Z as 

the sample multiple correlation coefficient is given by 

so that 

where a , , . , = a , ,  -dI2.4;'al2. From Theorem 3.2.10 we know that the 
numerator and denominator on the right side of (13) are independent; 
ull.2/u,l.2 is x&,,~+,, where u,,.~ = a , ,  - u ; ~ X ; ~ ' U , ~ ,  and the conditional 
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, - -8 /2  F 
I I 

distribution of 812 given A,, is N(A,,X,lal,, uI ,.,A,,). Hence, conditional 
on A,,, part (b) of Theorem 1.4.1 shows that 

1 m - 1  - 
1 1  2 n - m + l  
2 2  
-n; - ( m - I ) ;  

r n - I  

where the noncentrality parameter 6 is 

Hence, conditional on A,,, or equivalently on 6, 

is Fm- ,(&) (see Section 1.3 for the noncentral F distribution). At this 
point it is worth noting that if u12 =O (so that R=O), then S =O and the F 
distribution is central, the result given in Theorem 5.2.2. Now, using the 
noncentral F density function given in Theorem I .3.6, the conditional 
density function of the random variable Z in (15) given & is 

* (  m - I  y'-I)',, ( Z > O ) .  

n - m + l  

Changing variables from Z to R 2  via 

n - m - t - l  R2 z= 
m - l  1 - ~ 2  
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the conditional density function of R 2  given 6 is 

To get the (unconditional) density function of R 2  we first multiply this by 
the density function of 6 to give the joint density function of R 2  and 6. 
Now, A,, is W,- l (n ,  ZZ2) and hence u ; 2 Z ~ 2 1 A 2 2 2 ; ~ u 1 2  is Wl(n, a;,Z;21a12) 
(using Theorem 3.2.5); that is, 

I f  we define the parameter 8 as 

i t  follows from (14) and (17) that 6 = 80. The joint density function of R2 
and u is obtained by multiplying (16) (with 6 = 6 0 )  by the x i  density for v 
and is 

To get the marginal density function of R2 we now integrate with respect lo 
u from 0 to 00. Now, since 
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[on putting Jiu = u( 1 - k 2, and using ( 1  8)] 

= ( I - R 2 ) n ' 2 2 ~ l ( f n , f n ; f ( m - I ) ; R 2 R 2 ) ,  

by Lemma 1.3.3 the result desired is obtained and the proof is complete. 

The distribution of R 2  was first found by Fisher (1928) and can be 
expressed in many different forms. We will give one other due to Gurland 
(1968). First let l J a ,  p )  denote the incomplete beta funcrion: 

(19) 

It is well known (and easily verified), that the cl,n, distribution function 
and the incomplete beta function are related by the identity 

(20) P ( F , , , . + d =  4(f%4%), 

where z = n , x / ( n 2  + nix). 

THEOREM 5.2.5. With the same assumptions as Theorem 5.2.4, the 
distribution function of R 2  can be expressed in the form 

k =O 

n - m f l  
m - I +2k i% 1. = 2 c k p (  ' m - I + 2 k , f 1 - t ? 1 + 1 -  < 

k =O 

where ck is the negative binomial probability 

Proof: Using the series expansion for the 2Fl function, it follows from 
Theorem 5.2.4 that the density function of R2 can be written as 

(23) 
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Using 

( a ) J ( a ) =  r(a + k )  

[with a equal to f n  and t ( m  - I)], and 

(in),=( - k - q ( - l ) , k !  

in (23), and integrating with respect to RZ from 0 to x gives the desired 
result. 

Note that Theorem 5.2.5 expresses the distribution of R 2  as u mixture of 
beta distributions where the weights are negative binomial probabilities; 
that is, the distribution of R2 can be obtained by taking a random variable 
K having a negative binomial distribution with P(K = k ) = c , .  k =O, 1, ... 
and then taking the conditional distribution of R2 given K = k to be beta 
with parameters f ( m  - 1)+ k and f(n - m + 1). An immediate consequence 
of Theorem 5.2.5 is given in the following corollary. 

COROLLARY 5.2.6. I f  U = R2/(1 - R 2 )  then 

where c, is given by (22). 

From this it follows that U can be expressed as I/ = V , / V , ,  where Vl and 
V2 are independent, V2 has the x:-, + I distribution, and the distribution of 
V ,  is a mixture of x 2  distributions, namely, 

( 2 5 )  
m 

A common way of approximating a mixture of x 2  distributions is to f i t  a 
scaled central x 2  distribution, ax: say, or, more correctly, since the degrees 
of freedom need not be an integer, a gamma distribution with parameters kb 
and 2a and density function 

If the distribution of V, is approximated in this way by equating the first 
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two moments of V, with those of this gamma distribution, one finds that the 
fitted values for a and b are 

n e ( o  + z)+ - 1 ( n s  + m - 
b =  

nB(B+2)+ rn - 1 ’ a =  
(27) n B + m - 1  ’ 

where B = 
then get an approximation to the distribution function of R2 as 

’/( 1 - ’) (see Problem 5.10). With these values of a and b we 

(28) 

P(R2 s x ) =  P( us-) X = P( 5 .c- )d(  -5- X 

1 - x  v, - 1 - x  I - x  

where t = x/[ a( 1 - x )  + x 1. This approximation, due to Gurland ( I  968)’ 
appears to be quite accurate. Note that when R=O (so that B=O),  the 
values of a and b are 

a = l ,  b = m - I ,  

and the approximation (28) gives the exact null distribution for R2 found in 
Theorem 5.2.2. 

The moments of R2 are easily obtained using the representation given in 
Theorem 5.2.5 for the distribution of R2 as a mixture of beta distributions. 
Using the fact that the hth moment of a beta distribution with parameters a 
and p is 

+ h ) r ( a  + p )  
r( a)r (  (Y + /3 + h )  ’ 

we find that 

where ck is 

e & = ( - * ) * (  - ; n ) ( l - R  - 2  ) n / 2  ( R  - 2  ) k = - - - ( l - R  (4& - 2  ) n/Z ( R  - 2  )*. 
k !  
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Hence we can write 

If  we use the Euler relation given by (17) of Section 5.1, this becomes 

(29) E [  ( 1 - R 2 ) h ]  = ['(' - rn i- ( I  - ') F, ( h , h ; 1 n -+- h ; ') 
( f n ) h  

In particular, the mean and the variance of H 2  are 

(30) E (  R 2 ) =  1 - ( n - m t l  n ) ( l -R2)2F,(1,1;4n+1; R2) 
- 2  m - 1  2 - 2  

= R -t - ( 1 - R 2, + - R ( I - R ') + O( 11 -' ) 
n n + 2  

and 

(31) 

Var( R2)= E (  R4) - E (  R 2 ) 2  

= E [ ( 1 -  R 2 ) 2 ] -  E(1- R2)2 

( 1  - ~ ~ ) ~ ~ ~ , ( 2 , 2 ;  i n  + 2 ;  R * )  I [ h (  n - I I I  +- I ) ] ~  

( 4 4 2  

- 

) ( l -R2)2F , (1 ,1 : jn+ l ;R  - 2  )]  2 

-[( - '," + I  

I - 2  4( m - 1) + n ( n - nt -t- 1) (1- E2)2(  2 ( m  - 1 ) + 4 R  [ - 
I t  - t 4  

- n - m + l  

n 2 ( n  t-2) 

+ o(n-2)). 

- 
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Note the different orders of magnitude .for Var( R 2 )  depending on whether 
R=O or EfO. For RZO, (31) gives 

4R2( 1 - R 2 ) ’ ( n  - m + I)’ 
Var( R’)  = + o ( n - 2 )  

n(n  + 2 ) ( n  +4) (32) 

+ O( n - * ) ;  
- - 4R2(1-R2)2 

n 

if R=O. (31) gives 

(33) 
2(n - m + l ) ( m  - I )  

n 2 ( n + 2 )  
Var( R ’ )  = 9 

which is the exact variance in the null case. 

E ( R 2 ) > E 2 ;  that is, R’ overestimates 
shown that an unbiased estimate of E * is 

It is seen from (30) that R 2  is a biyed estimate of E 2  and that 
. Olkin and Pratt (1958) have 

(see Problem 5.1 I). This may be expanded as 

2(n - 2 )  
( I - R 2 ) -  

n - 2  
(35) T ( R 2 ) = R 2 - n - m + $ 1  ( n  - m + I ) ( .  - m + 3 )  

. ( 1 - R 2 ) 2 + o ( n - 2 ) ,  

from which it is clear that T ( R 2 ) <  P’. T ( R 2 )  is in fact the unique minimum 
variance unbiased estimate of R since it is a function of a complete 
sufficient statistic. Obviously T(1)= I and it can be shown that T(O)= -(m 
- l ) / ( n  - m + 1). In fact it is clear from (35) t h p  T(R2)<0  for R 2  near 
zero, so that the unique unbiased estimate of takes values outside the 
parameter space [O, I]. 

5.2.4. Asymptotic Distributions of a Sample Multiple Correlation Coeflicient 
from an Elliptical Distribution 

In the case of sampling from a multivariate normal distribution, we noted in 
(32) and (33) the different orders of magnitude of Var( R 2 ) ,  depending on 
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whether R=O or RfO. This is true for more general populations and it 
reflects the fact that the limiting distributions of R2 are different in these 
two situations. In this section we will derive these limiting distributions 
when the underlying distribution is ellipricul; this is done mainly for the 
sake of concreteness and because the asymptotic distributions turn out to be 
very simple. The reader should note, however, that the only essential 
ingredient in the derivations is the asymptotic normality of the sample 
covariance matrix so that the arguments that follow will generalize with 
obvious modifications if the underlying distribution has finite fourth mo- 
ments. 

Thus, suppose that the m X I random vector (Y,X')', where X is 
( m  - l ) X  1, has an elliptical distribution with covariance matrix 

and kurtosis parameter K [see ( I )  and (2) of Section 1.61. The population 
multiple correlation coefficient between Y and X is 

(37) 

It helps at the outset to simplify the distribution theory by reducing the 
covariance structure. This is done in the following theorem. 

THEOREM 5.2.7. If Z>U is partitiorled as in (36) there exisfs a nonsin- 
gular rn X m matrix 

where Cis ( m  - l ) X ( m  - I), such that 

1 ii- 0 ... 
BZB'= jl 1 0 . I .  I] 

0 0 0 ,.. 

where x i s  given by (37). 
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Prooh Multiplying, we have 

b2all b4,C' I bCu,, CC,,C' 
BXB'= 

Put h = 
CZ,,C'= I, , ,- l ,  and 

and C = HX;2'/2,  where HE O(m - 1); then h2a,,  = I ,  

bCa,, = u p H Z ~ ' / 2 u 1 2 .  

Now let H be any orthogonal matrix whose first row is ~ - ' O ~ ' / ~ U ; , X ~ ' / ~ ,  
then 

and the proof is complete. 

Now, if we put 

it follows that Var(Y*)= I ,  Cov(X*)= I , - ,  and the vector of covariances 
between Y* and X* is (E,  0,. . . ,O)'. Given a sample of size N, the reader can 
easily check that the sample multiple correlation coefficient between Y and 
X is the same as that between the transformed variables Y* and X*, so there 
is no loss of generality in assuming that the covariance matrix in our 
elliptical distribution has the form 

where 

(39) P=(R,O, ..., 0)'. 

This is an example of an inoariance argument commonly used in distribu- 
tion theory as a means of reducing the number of parameters that need to 
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be considered; we will look at the area of invariance in more detail in 
Chapter 6. 

Now, let S(n)=(s, , (n))  be the m X m sample covariance matrix formed 
from a sample of size N = n  + 1 from an m-variate elliptical distribution 
with covariance matrix Z, given by (38), and kurtosis prirameter K .  Partition- 
ing S ( n )  as 

(where we have supressed the dependence on n ) ,  the sample multiple 
correlation coefficient R is given by the positive square root of 

RZ = 9‘ 12 s-Is 22 I 2  

$ 1  I 

It is convenient to work in terms of the following variables constructed from 
S(nh 

- 2 -. 

R ) 1’2(I-PP)-”2(~12 --P) 

yz = n1/2( I - PP) - s,, - I ) (  I - PP)  - 

where P is given by (39). Let U=(u , , )  be the rn X m matrix 

The asymptotic normality of U follows from the asymptotic normality of 
n l / ’ ( S  - 2 )  (see Corollary 1.2.18). In ternis of the elements of U the sample 
multiple correlation coefficient R can be expanded as 

(42) 
R2=s- l s t  S-1 

I I  12 12 512 

- 2  1/2 = [ I  + n- I/2( I -. E 2, UI I ]  -- ’ [ P + n -  1/2( 1 - R ) “ ; 2 (  I - PP)’/2] 

1/2 - 1  - [ I  + n-( I - P P y 2 U z 2 (  I -PP) ] 
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and hence the asymptotic distribution of n 1 I 2 ( R 2  - E2)/2&1 - R 2 )  is the 
same as that of u I 2  - f E u l l  - Now note that 

and the asymptotic distribution of this vector, given in Section 5.1.4, is normal 
with mean 0 and covariance matrix (1 - E2)-2V, where V is given by (24) of 
Section 5.1.4, with p replaced by Z. Putting a = (AE 1 - 42)' it follows that the 
asymptotic distribution of 

- - 
a ' u = u 1 2 - f R u l l  - 4 R u z 2  

is normal with mean 0 and variance 

- 2  2 

= l + K .  
a'Va - ( l + ~ ) ( l - - R  - ) 

(1  - R L ) 2  ( 1 - li L)2 
Summarizing, we have the following theorem. 

THEOREM 5.2.8. Let E b e  the multiple correlation coefficient between Y 
and X, where (Y, X')' has an m-variate elliptical distribution with kurtosis 
parameter K ,  and let R( n) be the sample multiple correlation coefficient 
between Y and X formed from a sample of size n + 1 from this distribution. 
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If  EfO, 1, the asyniptotic distribution as n --t 00, of 

n”’( R( n)’ - iT L ,  

2R( 1 - R2) 
is N(0,l + K). 

When the elliptical distribution in Theorem 5.2.8 is normal, the kurtosis 
parameter K is zero and the limiting distribution of r ~ ’ / ~ ( R ( n ) ~  - 
F ’l/i2E( I - E ’)I is N(O, 1 ). 

Let us now turn to the asymptotic distribution of R 2  in the null case 
when g = O .  In this situation it is clear that in the expansion (42) for R‘ we 
need the term of order n-I. Defining the matrix U as in (41) as before, but 
with R=O, we have 

R = s I s’, .S; Is 

so that 

nR’=u’,,u,, + O, (n - ‘ / ’ ) .  

Hence the asymptotic distribution of nR2 (when k=O) is the same as that 
of U ’ , ~ U , ~ :  Using (2)  and (3) of Section 1.6, we can show that the asymptotic 
distribution of u I 2  = n’ /2s ,2  is (m - 1)-variate normal, with mean 0 and 
covariance matrix (1  + ic)I,,,-, and so the asymptotic distribution of 
ui2u I2 / (  1 + K )  is x$.. Summarizing, we have the following theorem. 

THEOREM 5.2.9. With the assumptions of Theorem 5.2.8 but with E=O, 
the asymptotic distribution of n R 2 / (  1 + K )  is x k -  I. 

Again, when the elliptical distribution is normal we have K =0, and then 
the limiting distribution of nR2 is x i -  I. This is a special case of a result due 
to Fishe; (1928), who established that if n -+ GO and R 4 0  in such a way 
that nR =6 (fixed) then the asymptotic distribution of nR’ is x: , - , (S ) .  A 
similar result holds also for elliptical distributions, as the following theorem 
shows. 

THFOREM 5.2.10. With the assumptions of Theorem 5.2.8 but with 
n x  = 6 (fixed), the asymptotic distribution of nR2/ (  1 4- K )  is xT,.- ,(6*), 
where the noncentrality parameter is 6* = S/( 1 + K). 

- 2  
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The proof of this result is similar to that of Theorem 5.2.9 and is left as 
an exercise (see Problem 5.12). 

It is natural to ask whether Fisher's variance-stabilizing transformation, 
which works so well in the case of an ordinary correlation coefficient, is 
useful in the context of multiple correlation. The answer is yes, as long as 
E>O. 
THEOREM 5.2.1 1. Assume the conditions of Theorem 5.2.8 hold, with 
RfO, and put 

z=tanh-'R and t= tanh- 'z .  

Then, as n -, 60, the asymptotic distribution of 

is N(0,l + K). 
This result follows readily from the asymptotic normality of R 2  (when 

EfO) established in Theorem 5.2.8; the details are left as an exercise (see 
Problem 5.13). 

For further results on asymptotic distributions for R and approximations 
to the distribution of R, the reader is referred to Gajjar (1967) and Johnson 
and Kotz (1970). Chapter 32. Many of the results presented here appear 
also in Muirhead and Waternaux (1980). 

5.2.5. 
Correlation Coefliciennr 

The results of the previous section can be used to test hypotheses about 
multiple correlation coefficients and to construct confidence intervals. Sup- 
pose ( Y, XI)' is N,( p ,  Z), where 

Testing Hypotheses about a Population Multiple 

and we wish to test the null hypothesis H,: R=O against general alterna- 
tives H: R>O, where k i s  the multiple correlation coefficient between Y and 
X given by 

Note that testing H, is equivalent to testing that Y and X are independent. 
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Given a sample of size N = n + 1 from this distribution, an exact test can be 
constructed using the results of Section 5.2.2. If R2 denotes the sample 
multiple correlation coefficient between Y and X we know from Corollary 
5.2.3 that 

n - m + l  RZ 
m - 1  1 - R 2  

has the cl- 
reject H ,  if 

I distribution when H, is true, so that a test of size (Y is to 

where F2.- I ,,,- m+ l ( a )  denotes the upper 100a% point of the Fm- I,n-.,,,+l 

distribution. This test is, in fact, the likelihood ratio test of the null 
hypothesis H, (see Problem 5.14). The power function of the test is a 
function of R ,  namely, 

An expression for the distribution function of R2/( I - R2) was given in 
Corollary 5.2.6. Using this, it follows that the power function can be 
expressed as 

where ck (with kZO) denotes the negative binomial probability given by 
(22) of Section 5.2.3. 

The test described above also has the property that i t  is a uniformly most 
powerful invariant test; this approach will be explored further in Section 
6.2. 

The asymptotic results of Section 5.2.4 can also be used for testing 
hypotheses. Suppose that we have a sample of size N = n  + I  from an 
elliptical distribution for (V,X')' with kurtosis parameter K and that we wish 
to test H,: x=O against H: x>O. Bear in mind that K =O takes us back to 
the normal distribution. From Theorem 5.2.9, the asymptotic distribution of 
nR2/( 1 f K )  is xi,,-. ,, so that an approximate test of size (Y is to reject H ,  if 
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where c,- l (a )  denotes the upper 100a% point of the x",- distribution. (If 
K is not known, it can be replaced by a consistent estimate 2.) The power 
function of this test may be calculated approximately using Theorem 5.2.10 
for alternatives Ewhich are close to zero and Theorem 5.2.8 for alternatives 
E further away from zero. Theorems 5.2.8 or 5.2.1 I may also be used for 
testing the null hypothesis KO: R= KO( >O) against general alternatives 
K: E# xo. Putting to = tanh-'ko, we know from Theorem 5.2.1 I that 
when KO is true the distribution of t = tanh-' R is approximately 

so that an approximate test of size a is to reject H, if 

where d ,  is the two-tailed lOOa% point of the N(0,  I )  distribution. It should 
be remembered that the asymptotic normality of R and hence of t holds 
only if RZO, and the normal approximation is not likely to be much good if 
E is close to zero. If EfO the asymptotic normality of z also leads to 
confidence intervals for 6 and for R. An interval for € with confidence 
coefficient 1 - a (approximately) is 

and for Rsuch an interval is 

tanh [ r-d,  ( - l ; K ) ' l 2 ]  SRStanh [ r + d ,  ( - l i K ) ' ' 2 ]  

The caveat mentioned at the end of Section 5.1.5 is also applicable here 
with regard to inferences concerning elliptical distributions. 

5.3. PARTIAL CORRELATION COEFFICIENTS 

Suppose that X is N,,,(p, Z) and partition X, p,  and I: as 



I88 Correlurion CoeJiidents 

where XI  and p ,  are k X I ,  X2 and p2  are ( m -  k ) X  1, XI, is k X k ,  and C,, 
is ( m  - k) X ( m  - k). From Theorem 1.2.1 1 the conditional distribution of 
X ,  given X, is N k ( p I  + XI2X,'(X2 - p 2 ) ,  where 

i.e., utJ.k+ ,,... denotes the i - j t h  element of the k X  k matrix 211.a2. The 
partial correlation coefficient between two variables XI and A',, which are 
components of the subvector XI when X, is held fixed, is denoted by 
p , , . k +  I,,,,,m and is defined as being the correlation between XI and XJ in the 
conditional distribution of XI, given X,. Hence 

Now suppose a sample of size N is drawn from this N,(p, 2) distribution. 
Let A =  N e ,  where 2 is the maximum likelihood estimate of 2, and 
partition A as 

where All is k X k and A*, is ( m  - k ) X ( m  - k). The maximum likelihood 
estimate of X I I . *  is = N - ' A , l . 2 ,  where A l l . z  = A l l  - A12A,1A21 = 
(at,.&+ , and the maximum likelihood estimate o l  P , , . ~  + ,,, ., ,,, is 

Now recall that we obtained the distribution of an ordinary correlation 
coefficient defined in terms of the matrix A having the Wnt(n, 2 )  distribu- 
tion, with n =  N - I .  Here we can obtain the distribution of a partial 
correlation coefficient starting with the distribution of the matrix A ,  , 
which, from Theorem 3.2.10, is Wk(n - m 4- k, The derivation is 
exactJy the same as that of Theorem 5.1.5, leading to the following result. 

THEOREM 5.3.1. If r, .k+l.,.,.nt is a sample partial correlation coefficient 
formed from a sample o/ size N = n + I from a normal distribution then its 
density function is the same as that of an ordinary correlation coefficient 
given by (10) and (15) of Section 5.1 with n replaced by n - m + k. 

As a consequence of this theorem, the inference procedures discussed in 
Section 5.1.5 in the context of an ordinary correlation coefficient are all 
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relevant to a partial correlation coefficient as well, as long as the underlying 
distribution is normal. The asymptotic normality of r,,.k+,,. ,,, and of 
z =tanh-'r,,.,+,, ,,.,follow directly as well, using Theorems 5.1.6 and 5.1.7 
(with K =O) .  

P R O B L E M S  

5.1. Let R be an m X m correlation matrix having the density function of 
Theorem 5.1.3 and moments given by (9) of Section 5.1. Find the character- 
istic function $,,(r) of - nlog det R. Using (17) of Section 3.2, show that 

lim log +,( I ) = - f m ( m - 1 ) log( 1 - 2it ) 

in distribution as n - 00. 
f I  - Q) 

so that - nlog det R -, 
' 5.2. Prove Lemma 5.1.4. 

5.3. Show that the density function of a correlation coefficient r obtained 
from normal sampling can be expressed in the form (15) of Section 5.1. 

5.4. Prove Theorem 5.1.7. 
I Hinr: A very useful result to know is that if (X,,} is a sequence of random 
variables such that nl / ' (  X, - p) -  N(0, 0 ' )  in distribution as n 400, and if 
f ( x )  is a function which is differentiable at x = p,  then n ' / ' [  f( f (p ) ]+  
b / ( O , f ' ( ~ ) ~ u ~ )  in distribution as n 00; see, e.g., Bickel and Doksum 
( 1977), p. 46 1 .] 

5.5. Let XI,, , . , X, be independent N2(p, 2) random vectors where 

(a) Show that the likelihood ratio statistic for testing H,: p =po 
against H: p # po is 

(b) Show that the likelihood ratio test of size a rejects H ,  if r < rl or 
r > r,, where rl and r, are determined by the equations 

P ( r < r ,  I p = p o ) + P ( r > r 2  I p = p o ) = a  



(c) Show that when po = O  the likelihood ratio test of size a rejects 
H,:p=O if ( ~ - l ) ” z ~ r ~ / ( l - ~ 2 ) ‘ ’ 2 > t ~ - l ( a ) ,  where t f - ’ ( n )  de- 
notes the two-tailed 100a% point of the t n - ,  distribution, with 
n = N - 1 .  

5.6. Suppose r, is the sample correlation coefficient from a sample of size 
N, = n,  + I from a bivariate elliptical distribution with correlation coeffi- 
cient p, and kurtosis parameter K, ( i  = l ,2), where K ,  is assumed known 
( i  = 1,2), Explain how an approximate test of size a of Hi): pI = p 2  against 
H: p ,  # pz may be constructed. 

5.7. Let r be the correlation coefficient formed from a sample of size 
N = n  -t I from a bivariate normal distribution with correlation Coefficient 
p, so that r has density function given by (15) of Section 5.1. Show that 
&“sin- I r ] =  sin-’ p. 

5.8. Let r be the sample correlation coefficient formed from a sample of 
size N = n + 1 from a bivariate normal distribution with correlation coeffi- 
cient p. Put z=tirnh-’r and €=tanh’-’p so that I is the maximum likeli- 
hood estimate of 1. Show that 

E ( z ) = ( + P  + 0 ( n - ’ )  
2 N 

and 

I 
Var( z )  = + O( t ~ - ~ ) .  

5.9. From Problem 5.8 the bias in z is of order n - I .  Often bias can bc 
reduced by looking not at the maximum likelihood estimate but at an 
estimate which maximizes a “marginal” likelihood function depending only 
on the parameter of interest. The density function of r in Theorem 5.1.5 
depends only on p;  the part involving p can be regarded as a marginal 
likelihood function L ( p ) ,  where 
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It is difficult to find the value of p which maximizes this but an approxima- 
tion can be found. Since 

where 

L , ( p ) =  ( 1  - p y 2 (  I - p r ) -  +"2. 

(a) Show that the value r* of p which maximizes L , ( p )  may be 
written as 

r*= r - -r(  1 1 - r Z ) + o ( n - 2 ) .  
2 n  

(b) Let z*=tanh-Ir*. Show that 

+ o(n-2). r 
t*= tanh- ' r  - - 

2 n  

(c) Show that 

and 

I 
var(z*)=, + O ( n - 2 )  

where € = tanh-'p. (This shows that the bias in z* is of smaller 
order of magnitude than the bias in z =tanh-'r given in Prob- 
lem 5.8.) 

5.10. Consider a random variable Vl whose distribution is the mixture of 
x 2  distributions given by ( 2 5 )  of Section 5.2.  This says that the distribution 
of Vl can be obtained by taking a random variable K having a negative 
binomial distribution with P ( K = k ) = c ,  ( k  = O , l ,  ...), where ck is given 
by (22) of Section 5.2,  and then taking the conditional distribution of V ,  
given K = k to be xk-  I + 2 k .  
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(a) By conditioning on K show that 

and 

Var(Vl)=2m -2+4t18+2n8~, 

where 8 =  R2/(1- R2). 
(b) Suppose that the distribution of Vl is approximated by the 

gamma distribution, with parameters t b  and 2rr given by (26) of 
Section 5.2, by equating the mean and variance of V, to the 
mean and variance of the gamma distribution. Show that the 
fitted values for a and b are 

nB(O +2)+ m - 1 ( n o  + 111 - I ) *  
a =  b =  

nB+m-I  ' n8(tl+2)+ m - 1 

5.11. Prove that: 

Re( c )  > Re( a + b ) ]  
(c) Let R be a sample multiple correlation coefficient obtained from 

normal sampling having the density function of Theorem 5.2.4, 
and consider the problem of estimating R2.  Using parts (a) and 
(b) above and the moments of 1 - R2 given by (29) of Section 
5.2, show that the estimate 

T ( R 2 ) = 1 - (  n - m + l  n - 2  ) ( 1 -  R2)2F,(1, 1 ;  f (n  - m + 3 ) ;  I - R2) 

is an unbiased estimate of R2. 
5.12, Prove Theorem 5.2.10. 

5.13. Prove Theorem 5.2.1 1. (See the hint following Problem 5.4.) 
5.14. Suppose that (Y,X')' is N&, Z), where X is ( m  - l ) X  1 and 
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and consider testing H,,: = 0 against H: R> 0, where = 
(u;22;21u12/u11)1/2. Note that H, is true if and only if u12 =O. Suppose a 
sample of size N = n + 1 is drawn. 

(a) Show that the likelihood ratio statistic for testing H,  against H 
is 

A = ( I  - R ~ ) ~ / ~ ,  

where R is the sample multiple correlation coefficient between 
Y and X. 

(b) Show that the likelihood ratio test of size a rejects H,, if 

where F~-l.n-m,.l(a) is the upper IOOaTg point of the 
F,-l ,n-, , ,+l  distribution. 

5.15. Let S be the sample covariance matrix formed from a sample of size 
N = n + l  on X=(XI,X2 ,..., X,,)', which is a N,(p,Z) random vector, so 
that A = nS is Wm(n, Z). Suppose that 2 =diag(a, ,,.. . ,a,,,,). Let R,. l , , ,  , 
denote the sample multiple correlation between X, and Xl,...,X,-l for 
j = 2 , . .  ., m. Put A = T'T, where T is an upper-triangular matrix with 
positive diagonal elements. 

(a) Show that 

(b) Show that the joint density function of the tfI's is 

(c) From part (b), above, find the join1 density function of the t,, 
for i < j and the R:. I I for j=2 , .  . ., m. Hence show that the 

has the beta 
[ f (  j - I), +( n - j -k l)] distribution. 

R,. 2 I ,..,.,- I are independent and Rf. I ,... ~ 1 -  I 

5.16. Show that: 

(a) 2 ~ l ( a ,  b; c; x)=( l -  x ) - a , ~ ,  (a,  c - 6; c;  - - x  ). I - x  
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[Hint: The right side is equal to 

Expand ( 1  - x ) - - " - ~  using the binomial expansion and then 
interchange the order of summation. Use result (b) of Problem 
5.1 I to iidy up.] 

(b) Suppose that a sample multiple correlation coefficient R2 has 
the density function given in Theorem 5.2.4. Show that if 
k = f ( n  + 1 - m )  is a positive integer the distribution function 
of R2 can be written in the form 

k 

P( R 2  5 X )  = 2 b, l,,( 1 ( m  - 1) + j ,  k ), 
J =o 

where !y denotes the incompleje beta funftion given by (19) of 
Section 5.2, with y = x (  1 - )/( 1 - xR ), and bj denotes the 
binomial probability 

5.17. Prove that 

and use this to show that 
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5.19. I f  the random vector X=( XI, X,, X,, X4)' has covariance matrix 

19s 

" u12 'I3 'I4 

x =  
'I3 '14 'I2 

'I4 'I3 O12 '' 
show that the four multiple correlation coefficients between one variable 
and the other three are equal. 



CHAPTER 6 

Invariant Tests and 
Some App Zica t ions 

6.1. I N V A R l A N C E  A N D  I N V A R I A N T  TESTS 

Many inference problems in statistics have inherent properties of symmetry 
or invariance and thereby impose fairly natural restrictions on the possible 
procedures that should be used. As a simple example, suppose that ( XI Y)' 
has a bivariate normal distribution with correlation coefficient p and 
consider the problem of estimating p given a sample ( X , ,  q)', i =  I ,  ..., N. 
The correlation coefficient p is unchanged by, or is invcriant under, the 
transformations $= b , X +  c , ,  f =  b,Y+ c2 wliere b ,  >O, b2 rO, so that i t  is 
natural to require that if the statistic +(Xi, Y I I . .  . ,XN, YN) is to be used as 
an estimate of p then + should also be invariant; that is 

since both sides are estimating the same parameter. The sample correlation 
coefficient r (see Section 5.1) is obviously an example of such an invariant 
estimate. The reader will recall lhat a similar type of invariance argument 
was used in Section 4.3 in connection with the estimation of a covariance 
matrix. 

In many hypothesis-testing problems in multivariate analysis there is no 
uniformly most powerful or uniformly most powerful unbiased test. There 
is, however, often a natural group of transformations with respect to which 
a specific testing problem is invariant, and where it is sensible to restrict 
one's attention to the class of invariant tests; that is, to tests based on 
statistics that are invariant under this group of transformations. The likeli- 
hood ratio test under general conditions is such a test, but it need not be the 
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“best” one. In some interesting situations it turns out that within this class 
there exists a test which is uniformly most powerful, and such a test is 
called, of course, a uni/ormb most powerful invariant rest. Often such a test, 
if it exists, is the same as the likelihood ratio test, but this is not always the 
case. In what follows we will review briefly some of the relevant theory 
needed about invariance; much more detail can be found in Lehmann 
(1959), Chapter 6, and Ferguson (1967). Chapters 4 and 5 .  For further 
applications of invariance arguments to problems in multivariate analysis 
the reader is referred to T. W. Anderson (1958) and Eaton (1972). 

Let G denote a group of transformations from a space ‘X, into itself; this 
means that, if glEG, g2EG, then gIg2EG where g1g2 is defined as the 
transformation (g,g, )x = g, (g ,x) ,  and that if g €  G then g-’E G, where 
g-l satisfies gg-’ = e, with e the identity transformation in G. Obviously all 
transformations in G are 1-1 of 3(, onto itself. 

DEFINITION 6.1.1. Two points xI,x2 in % are said to be equivalent 
under G, written x I  - x 2  (mod G), if there exists a gE G such that x2 = g x , .  

Clearly, this is an equivalence relation; that is, it has the properties that 

(i) x - x (mod G); 
(ii) x - y  (modG)=y-x (modG); and 

(iii) x -y (modG) ,y - t (modG)*x- t  (modG). 

The equivalence classes are called the orbits of Ix under G; in particular, the 
set (gx; gE G )  is called the orbit of x under G. Obviously two orbits are 
either identical or disjoint, and the orbits form a partition of Ix. Two types 
of function defined on ‘X, are of fundamental importance, 

DEFINITION 6.1.2. A function +(x) on ’% is said to be inoariant under 
G if 

+ ( g x ) = + ( x )  forall x € %  and gEG. 

Hence, #I is invariant if and only if it is constant on each orbit under G. 

DEFINITION 6.1.3. A function + ( x )  on Ix is said to be a maximal 
invariant under G if it is invariant under G and if 

Hence + is a maximal invariant if and only if it is constant on each orbit 
and assigns different values to each orbit. Any invariant function is a 
function of a maximal invariant, as the following theorem shows. 
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THEOREM 6.1.4. Let the function +(x) on % be a niaximal invariant 
under G. Then a function + ( x )  on Ox is invariant under G if and only if + is 
a function of g ( x ) .  

Proof: Suppose + is a function of + ( x ) ;  that is, there exists a function j 
such that 

Invuriant Tests and Some Applrcutions 

+ ( x ) = j ( + ( x ) )  forall XEX. 

Then, for all g E  GI x E % 

and hence $I is invariant. 
Now suppose that $J is invariant. If + ( x , ) =  +(xz) then x ,  - x 2  (modG), 

because + is a maximal invariant, and hence x2 = gx, for some gE G. Then 

+(4= + ( ! P , ) = + ( 4 ) 1  

which establishes lhat +(x) depends on x only through +(x) and completes 
the proof. 

DEFINITION 6.1.5. If xi - x 2  (modG) for all xi, x 2  in % then the group 
G is said to act rrunsifioely on 3c, and % is said to be homogeneous with 
respect to G. 

Hence, G acts transitively on %, if there is only one orbit, namely, % 
itself. In this case the only invariant functions are constant functions. 
Continuing, if xo is any point taken as origin in the homogeneous space %, 
then the subgroup Go of GI consisting of all transformations which leave xo 
invariant, namely, 

is called the isotropy subgroup of G at xo.  I t  is clear that if g is any group 
element transforming xo into x ( g x ,  = x )  then the set of all group elements 
which transform x o  into x is the cosef 

Hence the points ~ € 3 ,  are in 1-1 correspondence with the cosets gGo so 
that 3, may be regarded as the coset space G / G o  consisting of the cosets 
gGo * 

We will now look at some examples which illustrate these concepts. 
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EXAMPLE 6.1.6. Suppose that X = R" and G = O(m) ,  the group of 
m X m orthogonal matrices. The action of HE O(m) on x E R" is 

X-HX 

and the group operation is matrix multiplication. The orbit of x under O(m)  
consists of all points of the form y=  H x  for some HE O(m);  this is the 
same as the set of all points in R" which have the same distance from the 
origin as x. For, if y = H x  then obviously y'y = x'x. Conversely, suppose that 
y'y=x'x. Choose H, and H ,  in O ( m )  such that 

H,x=(llxll, 0, ..., 0)' and H,y=(Ilyll, 0, ..., 0)' 

then H,x=H,y so that y= H x ,  with H = H ; H , E O ( m ) .  A maximal in- 
variant under G is +(x)=x'x, and any invariant function is a function of 
x'x. 

EXAMPLE 6.1.7. Suppose that X = R2 X S 2 ,  where S2 is the space of 
positive definite 2 x 2  matrices Z =(u,,), and G is the group of transforma- 
tions 

The group operation is defined by 

A maximal invariant under G is 

To prove this, first note that if ( B , c )  E G, then 
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so that 

and hence t$ is invariant. To show that it is maximal invariant, suppose that 

that is 

so that 

as required. Regarding 3c = R2 X 5, as the set of all possible mean vectors p 
and covariance matrices X of the random vector X=( XI, X2)', the transfor- 
mation (2) is induced by the transformation Y = B X f c in the sense that the 
mean of Y is Bp +c and the covariance matrix of Y is BZU'. We have 
shown that the correlation coefficient p between XI and X2 is a maximal 
invariant under G, and so any invariant function is a function of p. 

EXAMPLE 6.1.8. Suppose that %x.=S,,,, the space of positive definite 
m X m  matrices, and G=Qt?(tn, R), the general linear group of m X m  
nonsingular real matrices. The action of 1, E !3E( m,  R )  on SE Sn, is given by 
the congruence transformation 

s+ LSL', 

with the group operation being matrix multiplication. The group Q t ( m ,  R )  
acts transifioely on S,,, and the only invariant functions are constant func- 
tions. The isotropy subgroup of Q t ( r n ,  R )  at I,,,€ $, is clearly the orthogonal 
group O(m). Given SE S,,, the coset corresponding to S is 
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where L is any matrix in 4t (m,  R )  such that S= LL'. Writing the homoge- 
neous space S, as a coset space of the isotropy subgroup, we have 

S, = @( m, R ) / O (  m ) .  

EXAMPLE 6.1.9. Suppose that % = V,,,, the Stiefel manifold of n X m 
matrices with orthonormal columns (see Section 2.1.4). and G = O(n). The 
action of H E  O( n) on Q l €  V,,, is given by 

Q ,  + HQt * 

with the group operation being matrix multiplication. Then O( n )  acts 
transitively on V,," (why?) so that the only invariant functions are constant 
functions. The isotropy subgroup of O( n )  at 

is clearly 

and the coset corresponding to Q , €  V,,, is [Q, : Q2]Go,  where Q2 is any 
n X ( n  - m )  matrix such that [ Q ,  : Qz]EO(n) .  This coset consists of all 
orthogonal n X n matrices with Q, as the first m columns. Writing the 
homogeneous space V,, )) as a coset space of the isotropy subgroup we have 

V,,, = o(n)/o(n - m ) .  

Continuing, let X be a random variable with values in a space 5% and 
probability distribution Pe, with BE Q. (The distributions Pe are, of course, 
defined over a a-algebra 9 of subsets of 5%, but measurability considera- 
tions will not be stressed in our discussion.) Let G be a group of transforma- 
tions from 5€ into itself. (These transformations are assumed measurable, so 
that for each gE G, gX is also a random variable, taking the value gx when 
X =  x . )  The space Gx. here is the sample space and 0 is the parameter space. 
In many important situations it turns out that the distributions Pe are 
invariant, in the sense of the following definition. 

DEFINITION 6.1.10. The family of distributions (Pe; BE Q }  is said to be 
inuariant under G if every gE G, 8E Q determine a unique element in Q, 
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denoted by #I, such that when X has distribution fe, gX has distribution 
f i e  - 

This means that for every (measurable) set B C %, 

which is equivalent to 

and hence to 

Pie( gs) = Pe( B )  - 
Now, suppose that the family (fe; B E Q )  is invariant under G and let 

c= { g; g €  G) . 
Then the elements of are transformations of the parameter space into 
itself. In fact, as the following theorem shows, cis a group, called the group 
induced by G. 

THEOREM 6.1.1 I .  If the family of distributions (P#; BE Q) is invariant 
under the group G then c=(jj; gE G} is a group of transformations from Q 
into itself. 

Proof, If the distribution of X is PO then g ,  X has distribution Pi,e and 
so g,(g,X) has distribution But g , ( g , X ) = ( g , g , ) X  also has distri- 
bution f=#. By uniqueness it follows that g2gl =g2g, E G, so that 5 is 
closed under composition. To show that is closed under inversion, put 
g2=g& then g,'z = P ;  now P is the identity element in c, and so 

Obviously, all transformations in c- are 1-1  of Q onto itself, and the 
mapping G - G' given by g - # is a homomorphism. 

The next result shows that if we have a family of distributions which is 
invariant under a group G then the distribution of any invariant function 
(under G) depends only on a maximal invariant parameter (under c). 
THEOREM 6.1.12. Suppose that the family of distributions ( f e ;  BEG) is 
invariant under the group G. If + ( x )  is invariant under C and +(f/) is a 
maximal invariant under the induced group then the distribution of +( X )  
depends only on # ( B ) .  

- 
- 

- 
=gF1 E G. 
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ProoJ I t  suffices to show that P , [ + ( X ) E  B ]  is constant on the orbits of 
Q under c, for then it is invariant under cand  by Theorem 6.1.4 must be a 
function of the maximal invariant Jl(t9). Thus, suppose that 0, =SO, for 
some gE G; then 

and the proof is complete. 

This theorem is of great use in reducing the parameter space in com- 
plicated distribution problems. Two simple examples follow, and other 
applications will appear later. 

EXAMPLE 6.1.13. Suppose that X is N,,(p, I,,,). Here, both the sample 
space %, and the parameter space Q are R'". Take the group G to be O ( m )  
acting on 3 = RM as in Example 6.1.6. Since HX is N,,,(Hp, I,,,) we see that 
the family of distributions is invariant and that the group cinduced by G is 
G= O( m),  where the action of HE O( m )  on p E 51 is given by p --+ H p .  A 
maximal invariant parameter under c i s  +(p)=  p'p (see Example 6.1.6), so 
that by Theorem 6.1.12 any function +(X) of X which is invariant under 
O ( m )  has a distribution which depends only on p'p. In particular XX,  a 
maximal invariant under G, has a distribution which depends only on p'p 
and is, of course, the xi(&& distribution. 

EXAMPLE 6.1.14. Suppose that A is W2(n,Z),  n22. Here both the 
sample space % (consisting of the values of A )  and the parameter space P 
(consisting of the values of Z) are S,, the space of 2x2 positive definite 
matrices. Take G to be the group 

where the action of BE G on A E  S2 is 

(3)  A BAB'. 

Since BAB' is WJn, BZB') the family of distributions is invariant and the 
induced transformation on Q corresponding to (3) is Z -. BZB', so that 
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c= G. A maximal invariant parameter under G is the population correla- 
tion coefficient 
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(see Example 6.1.7-actually a trivial modification of it); hence by Theorem 
6.1.12 any function of A which is invariant under G has a distribution which 
depends only on the population correlation coefficient p ,  In particular the 
sample correlation coefficient 

a maximal invariant under G, has a distribution which depends only on p. 
Hence, in order to find the distribution of r i t  can be assumed without loss 
of generality that 

this reduction was noted in the proof of Theorem 5.1.5. I t  is also worth 
noting that if 2 is restricted to being diagonal, so that the parameter space is 

then acts transitiuely on 52 so that the only invariant functions are 
constant functions. Theorem 6.1.12 then tells us that the distribution of r ,  a 
maximal invariant under G, does not depend on any parameters. This, of 
course, corresponds to the case where p -0 and the distribution of r in this 
case is given in Theorem 5.1.1. 

The next definition explains what is meant when one says that a testing 
problem is invariant. 

DEFINITION 6.1.15. Let the family of distributions { P B ;  0663) be in- 
variant under G. The problem of testing H: 6~ n, against K: 8E n - n,, is 
said to be invariant under G if  1pS1, = 0, for all g€ G. 

If the testing problem is invariant under G then obviously we must also 
have g(0-52,)=S2-52, for all gEG. In an invariant testing problem 
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(under G )  an inuarianf test is one which is based on a statistic which is 
invariant under G. If  T ( x )  is a maximal invariant under G then all invariant 
test statistics are functions of T by Theorem 6.1.4, so that the class of all 
invariant test statistics is the same as the class of test statistics which are 
functions of the maximal invariant T. 

There are some standard steps involved in the construction of invariant 
tests, and i t  may be worthwhile to list them here, at least informally. 

(a) Reduce the problem by sufficiency. This means at the outset that all 
test statistics must be functions of a sufficient statistic; such a 
reduction usually has the effect of reducing the sample space. 

(b) For the sample space 3, of the sufficient statistic find a group of 
transformations G on 3c under which the testing problem is in- 
variant . 

(c) Find a maximal invariant T under G; then any invariant test 
statistic is a function of T and by Theorem 6.1.12 its distribution 
depends only on a maximal invariant parameter under the induced 
group c acting on the parameter space Q. 

At this stage we are looking at test statistics which are functions of a 
maximal invariant T. Often there is no “best” test in this class, and the 
choice of a test now may be somewhat arbitrary. The likelihood ratio test is 
one possibility since, under fairly general conditions, this is invariant. In 
some cases, however, it  is also possible to carry out one more step. 

(d) In the class of invariant tests, find a uniformly most powerful test. 
If such a test exists it is called a uniformly most powerful invariant 
rest under the group G. Often, but not always, it coincides with the 
likelihood ratio test. This, being an invariant test, can certainly be 
no better, 

We will deal with some examples of uniformly most powerful invariant 
tests in the following sections. For now, by way of illustration, let us return 
to the example on the ordinary correlation coefficient (see Examples 6.1.7 
and 6.1.14). 

EXAMPLE 6.1.16. Let X,, ..., X N  be independent N,(p,  2) random vec- 
tors and consider the problem of testing H p I po against K: p >pol where p 
is the population correlation coefficien 1, 
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A sufficient statistic is the pair (x, A), where 

- I N  
I= I  N , = l  

N 
A= (X,-X)(X,-X)’,  Xz- 2 X,. 

Here and A are independent; 3 is N , , , ( p , ( l / N ) Z )  and A is W,(n,X), 
with n = N - 1. Reducing the problem by sufficiency, we consider only test 
statistics which are functions of ?z and A. Consider the group of transforma- 
tions G given by 

(4) 
%-, B%+c 
A -+ BAB’ , 

where 

‘1 (6,>0, 6,>O, and c E R Z ) .  
0 62 

(This is the group G of Example 6.1.7.) Obviously the family of distributions 
of (x, A )  is invariant, and the transformations induced on the parameter 
space by (4) are given by 

p - , B p + c  

24 BZB‘.  

Both H and K are invariant under these transformations, so the testing 
problem is invariant under G. A maximal invariant under G is the sample 
correlation coefficient r = u12/(ul lu22)’~2,  and its distribution depends 
only on p. Thus any invariant test statistic is a function of r. Finally, we 
have already seen in Theorem 5.1.8 that of all tests based on r the one which 
rejects H if r>k, , ,  with k, being chosen so that the test has size a, is 
uniformly most powerful of size a for testing H against K. Hence, this test is 
a uniformly most powerful invariant test under the group G. 

6.2. T H E  MULTIPLE C O R R E L A T I O N  COEFFICIENT 
A N D  INVARIANCE 

We will now apply some of the invariance theory of Section 6.1 to the 
multiple correlation coefficient. Using the notation of Section 5.2.3, suppose 
that (Y,X’)’ is a N,, , (p ,2)  random vector, where X is ( m -  1)X 1, and I: is 
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partitioned as 

where X 2 ,  is ( m  - l ) X ( m  - I). The population multiple correlation coeffi- 
cient between Y and X is 

Let (q,X{)', with i = l ,  ..., N, be a sample of size N(>m) ;  a sufficient 
statistic is the pair (( c%')', A), where A = N e  is the usual matrix of sums of 
squares and sums of products. Under the transformations 

where b ,  # O  and B2 is ( m  - l ) X ( m  - 1) nonsingular [i.e., B2E Gf(m - 1, R)] 
the sufficient statistic is transformed as 

A -+ BAB' 

where 

B = [ "  0 1  and cER'".  
0 B2 

The family of distributions of the sufficient statistic is invariant under this 
group of transformations, G say, and the group of transformations 
induced on the parameter space is given by 

(3) 
p 4 B p - I - c  
I: + BZB'. 

The next result shows that the sample multiple correlation coefficient 
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is a maximal invariant under the group of transformations G given by ( 2 )  
and that the population multiple correlation coefficient is a maximal 
invariant under the group of transformations given by (3). We will state 
the result for 

THEOREM 6.2.1. Under the group of transformations a maximal 
invariant is 

Invariant Tests and Some Applications 

- 2  
Proo/. Let +(p,  Z)= u ; 2 2 ~ b 1 2 / u I I  = R . First note that since 

we have 

so that + ( p ,  2) is invariant. To show that it  is maximal invariant, suppose 
that 

i.e., 

Then 
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By Vinograd’s theorem (Theorem A9.5) there is an (m - I )  X ( m  - 1) orthog- 
onal matrix H such that 

Now, putting 

and 

we have 

and 

C= - B p  4-7, 

Bp + c = 7  

so that 

Hence $I is a maximal invariant, and the proof is complete. 

I t  follows, using Theorems 6.1.4 and 6.1.12, that any function of the 
sufficient statistic which is invariant under G is a function of R2 and has a 
distribution which depends only on the population multiple correlation 
coefficient R , a maximal invariant under the induced group E. In particu- 

lar, R 2  has a distribution which depends only on x2, a result which is 
apparent from Theorem 5.2.4. In the proof of that theorem we could have 

- 2  
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assumed without any loss of generality that Z has the form 

Inwriurrt Tests and Some Applicutions 

(4) 

(see Theorem 5.2.7), often called a cununicul/urm for Z under the group of 
transformations since it depends only on the maximal invariant E. The 
reader is encouraged to work through the proof of Theorem 5.2.4, replacing 
the arbitrary 2 there by (4). 

Let us now consider testing the null hypothesis If: R=O (or, ev iva-  
lently, ui2 =O, or Y and X are independent) against the alternative K: H >O.  
We noted in Section 5.2.5 that a test of size (Y (in fact, the likelihood ratio 
test) is to reject H if 

where n = N- 1 and F;-,,n-m+ I (a )  denotes the upper 100a% point of the 
&- fi, distribution. Equivalently, the tes: is to reject N if 

This test is a uniformly most powerful invariant test, as the following 
theorem shows. 

THEOREM 6.2.2. Under the group of transformations G given by (2) a 
uniformly most powerful invariant test of size a of 11: R = O  against 
K: x>O is to reject H if R 2  2 cn, where c, is given by (5 ) .  

ProuJ Clearly the testing problem is invariant under G, and we have 
already noted that R 2  is a maximal invariant under G. Restricting attention 
to invariant tests, we can assume that a value of R 2  is observed from the 
distribution with density function specified in Theorem 5.2.4, namely, 

(6) 
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The Neyman-Pearson lemma says that in this class of tests the most 
powerful test of size a of H: R=O against a simple alternative K,: K= Kl 
(>O) is to reject H if 

(7) 

where k, is chosen so that the size of the test is a. Substituting the density 
function (6) in (7) gives the inequality 

I 
( 1  - k12)n'22Fl(  $n,in; i ( m  - 1); E12R2)5X,= -. 

k, (8) 

Using the series expansion for the 2Tl function it is easy to see that the left 
side of (8) is an increasing function of R2. Hence this inequality is 
equivalent to R 2 r c a ,  where c, is given by (9, so that the test has size a. 
Since this test is the same for all alternatives El it is a uniformly most 
powerful invariant test, and the proof is complete. 

The test described by (S), as well as being the uniformly most powerful 
invariant and the likelihood ratio test, has a number of other optimal 
properties. Simaika (1941) has shown that it is uniformly most powerful in 
the class of all tests whose power function depends only on Clearly this 
is a wider class than the class of invariant tests. The test is also admissable 
(see Kiefer and Schwartz, 1965); that is, there is no other test whose power 
function is at least as large and actually larger for some alternatives. For a 
discussion of other properties, the reader is referred to Giri (1977), Section 
8.3, and the references therein. 

6.3 .  HOTELLING'S T 2  STATISTIC AND INVARIANCE 

The T 2  statistic proposed by Hotelling (1931) for testing hypotheses about 
mean vectors has already been introduced briefly in Section 3.2.3 (see 
Theorem 3.2.13). In this section we will indicate some testing problems for 
which a T2 statistic is appropriate and look at some properties of such tests, 
concentrating primarily on those concerned with invariance. First, let us 
paraphrase Theorem 3.2.13. 

THEOREM 6.3.1. Let X be Nm(p, X) and A= nS be Wm(n, X) ( n  Z m ) ,  
with X and 5' independent, and put T 2  =XS- 'X.  Then 

T2 n - m + l  
n m 

-. 

is Fm,n-m+l(6), where 6 =p'X- 'p .  
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This is merely the restatement of Theorem 3.2.13 obtained by replacing 
N1*'2% by X and N1I2p by p. 

Now, suppose that XI,.. .,X, are independent NJp. C) random vectors 
where p and C are unknown and consider testing the null hypothesis that p 
is a specified vector. Obviously we can assume without loss of generality 
that the specified vector is 0 (otherwise subtract it from each X, and it will 
be). Thus the problem is to test H: p =O against the alternative K: p +O. 
Let and S be the sample mean and covariance matrix formed from 
XI, ..., X N  and put 

The test of size a suggested in Section 3.2.3 consists of rejecting H i f  

where n =  N-1 and Fm*,n-mt. I (~) denotes the upper lOOaS point of the 
F,:,-,+, distribution. We will show in a moment that this test is a 
uniformly most powerful invariant test. That i t  is also the likelihood ratio 
test is established in the following theorem. 

THEOREM 6.3.2. If XI,. ..,X, are independent N,(p, 2) random vec- 
tors the likelihood ratio test of size a of H: p =O against K: p # 0 is given 

Prooh Apart from a multiplicative constant which does not involve p or 

by (2). 

Z, the likelihood function is 

L(p,2)=(detZ')-"'etr( - lX-'A)exp[ -IN(z-p)'X-'(%-p)], 

where A = nS, n = N - I .  [See, for example, (8) of Section 3.1.1 The likeli- 
hood ratio statistic is 

The denominator in (3) is 

supL(p ,  X)= L(%, e)= N""/2e~-'"N/2(det 
POI: 

(4) 

where 2 = N-IA (see the proof of Theorem 3 . 1 . 9  while the numerator in 
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(3) is 

sup L(0, Z)= sup (det 2)- N/2etr[ - jX-'( A + Nm')]. 
I: 20 L: > O  

The same argument used in the proof of Theorem 3.1.5 shows that this 
supremum is attained when 

and is 

( 5 )  
- N/2 

SUP L(0,  X)=det( F A  1 +m') 
z >O 

e-mN/2 

Using (4) and ( 5 )  in (3), we get 

A 2 / N =  det A 
det( A + N m') 

1 

1 + N%'A-'% 
- - 

1 
1 + T 2 / n  ' 

- - 

where TZ = N%'S-'%. The likelihood ratio test is to reject H if the 
likelihood ratio statistic A is small. Since A is a decreasing function of T 2  
this is the same as rejecting H for large values of T2, thus giving the test in 
(2) and completing the proof. 

Now let us look at the problem of testing H: p =O against K: p # O  from 
an invariance point of view. A sufficient statistic is (3, A), where % is 
N , , , ( p , ( l / N ) Z ) ,  R = n S  is W,(n,Z) with n = N -  I ,  and 2 and A are 
independent. Consider the general linear group St(m, R )  of m X m nonsin- 
gular real matrices acting on the space Rm X S, of pairs (3, A )  by 

(6) %+ BZ, A +  BAB', BE@t(m,  R). 

(S,,, denotes, as always, the set of positive definite m X m  matrices.) The 
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corresponding induced group of transformations [also 8t'( m,  R)] on the 
parameter space (also R"' X S,,,) of pairs ( p ,  Z) is given by 

Inourrunt Tests und Some Applicutions 

and it is clear that the problem of testing H:y = O  against K : k Z O  is 
invariant under flt(m, R), for the family of distributions of (X, A )  is 
invariant and the null and alternative hypotheses are unchanged. Our next 
problem is to find a maximal invariant under the action of Bt(rn ,R)  on 
R"' X S,,, given by (6) or (7). This is done in the following theorem. 

THEOREM 6.3.3. Under the group G!?(rn, A )  of transformations (7) on 
Rm X $I,, a maximal invariant is 

( P ( p , 2 ) = p t I : - ' p .  

Prooj First note that for BEQt?(m, R), 

+ ( B p ,  B C B ' ) = ~ ' B ' ( B Z B ' ) - ' B ~ = I ~ ' Z - ' ~ ~ = ( P ( ~ , X ) ,  

so that +(p, C) is invariant. To show that it is maximal invariant, suppose 
that 

that is 

Then 

so that, by Vinograd's theorem (Theorem A9.5) there exists an orthogonal 
m X m matrix H such that 

HZ- ' /2p = r-'/27. 

Putting B = Y1/2HZ-1/2, we then have Bp = 7 and B Z B ' =  I' so that 
( p ,  2)--(7, r) (mod&(m, R ) ] .  Hence $I is a maximal invariant, and the 
proof is complete. 

As a consequence of this theorem, T 2  = N % ' S - ' z  is a maximal invariant 
statistic under the group gt(rn, R )  acting on the sample space R" X S,,, of 
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the sufficient statistic. From Theorem 3.2.13 we know that the distribution 
of (n-m+l)T2/nrn is Fm,n-, , ,+l(S),  where n = N - 1  and S=Np'Z-lp. 
Considering only invariant tests we can assume a value of T 2  is observed 
from this distribution. In terms of the noncentrality parameter S we are now 
testing H :  S =O against K: 6 >O. The Neyman-Pearson lemma, applied to 
the noncentral F density function given in Theorem 1.3.6, says that in the 
class of tests based on T 2  the most powerful test of size a of H: S = O  
against a simple alternative K,: 6 = 6, (>O) is to reject H if 

where A, is chosen so that the test has size a. Using the series expansion for 
the , F ,  function in (8), i t  is easy to see that it is an increasing function of 
( T 2 / n ) (  I + T 2 / n ) - l  and hence of T 2 .  Hence the inequality (8) is equivalent 
to T 2  2 c,, where c, is given by (2) so that the size of the test is a. Since this 
test is the same for all alternatives 6, it is a uniformly most powerful 
invariant test. Summarizing, we have: 

THEOREM 6.3.4. Under the group @( rn, R) of transformations given by 
(6) a uniformly most powerful invariant test of size a of H: p =O against 
K: p #O is to reject H if T 2  = N X ' S - ' % 2 c a ,  where c, is given by (2). 

Before looking at another testing problem note that the T 2  statistic can 
be used to construct confidence regions for the mean vector p.  Let XI,. . . , X,,, 
be independent N,,,(p, Z) random vectors giving rise to the sample mean 
vector x and sample covariance matrix S. These are independent; 
p )  is Nm(O, 2 )  and nS is WJn, 2 )  with n = N - 1. From Theorem 6.3. I 
[with X replaced by N ' / ' ( X - p )  and p replaced by 01 it follows that 
( n  - m + 1)T2/nrn has the Fm,n-m,.l distribution, where T 2  = N(%- 
p)'S- '(x - p).  Thus, defining c,  by (2). we have 

from which it follows that the random ellipsoid defined by 

has a probability of 1 - a of containing p and hence the region 
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for observed x and S, is a confidence region for p with confidence 
coefficient 1 - a. 

The T 2  statistic can also be used to test whether the mean vectors of two 
normal distributions with the same covariance matrix are equal. Let 
XI, ..., X N ,  be a random sample from the N,,,(p,,Z) distribution, and let 
Y,, , . .,YN, be a random sample from the Nm(p2, 2) distribution. The sample 
mean and covariance matrix formed from the X's will be denoted by % and 
S,, and from the Y's by and S,. The problem here is to test that the two 
population mean vectors are equal, that is, to test H: p ,  = p 2 ,  against the 
alternative, K : p , f p , .  It is a simple matter to construct a T 2  statistic 
appropriate for this task. First, let A, = n,S,, A, = n2S,, where n,  = N, - 1 
(i = 1.2); then A, is Wm(n,, 2 )  and A, is Wm(n2* Z), and hence A = A, f A, 
is W,,(n, f n,, 2). Now put S = ( n ,  + n , ) - . ' A ,  the pooled sample covariance 
matrix, so that ( n l  4- n2)S is Wn,(nl -I- n, ,  2). This is independent of %-P 
and the distribution of 

lnuuriunt Tests und Some Applications 

From Theorem 6.3.1 (with X replaced by [ N, N2 /( N, + N2)]'12(% - v), p by 
[N,IV,/( N, + N2)]'/2(p, - p a )  and n by n ,  + n , )  i t  follows that if 

then 

where 

When the null hypothesis H: p ,  = p 2  is true the noncentrality parameter S is 
zero so that ( n l  + n2 - m + I)T2/[rn(nl + n2) j  is Fm,,,,+n2.-mt I. €fence a 
test of size Q of H against K is to reject H if 
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where F,:,n,+n2-m+l(a) denotes the upper l0OaS point of the Fm,n,+nl-m+l 
distribution. It should also be clear that a T 2  statistic can be used to 
construct confidence regions for p ,  - p2 (see Problem 6.3). 

Now let us look at the test of equality of two mean vectors just described 
from the point of view of invariance. It is easy to check that a sufficient 
statistic is (R,V, A), where x is N,,,(pl,(l/IVl)X), l7 is IV, , , (p t r ( l /N2)Z) ,  A 
is Wnl(nl + n2, Z), and these are all independent. Consider the ujfine group 
of transformations 

(14) &.e(m, R)= ((B,c); B E @ t ( m ,  R),cER") 

acting on the space R" X R" X S,,, of triples (xlvl A )  by 

(15) (B,c)(X,v,A)=(BX+c, Bi'+c, BAB'), 

where the group operation is 

The corresponding induced group of transformations [also &E(m, R ) ]  on the 
parameter space (also R" X R m  X S,) of triples (pl, p2 ,  2) is given by 

Clearly the problem of testing H: p I  = p 2  against &:ll f p ,  is invariant 
under @t(m,  R), for the family of distributions of (X,Y, A )  is invariant, as 
are the null and alternative hypotheses. A maximal invariant under the 
group &e(m, R) acting on the sample space of the sufficient statistic is 

the proof of this is similar to that of Theorem 6.3.3 and is left as an exercise 
(see Problem 6.2). We know from (1 1) that the distribution of (n l  + n2 - 

( p ,  - p2)'I:-'(pI - p2) .  Considering only invariant tests we can assume 
that T 2  is observed from this distribution. In terms of the noncentrality 
parameter 6 we are now testing H: 6 =O against K: S >O. Exactly as in the 
proof of Theorem 6.3.4 there exists a uniformly most powerful invariant test 
which rejects H for large values of T2. The result is summarized in the 
following theorem. 

m +  1)T2/[m(nl +n2)I is F m , n , + f i 2 - m + l ( 6 ) ,  where S=INlN2/(Nl+ N2)1* 
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THEOREM 6.3.5. Under the group @ t ( m ,  R) of transformations given 
by (15) a uniformly most powerful invariant test of size a of H: p,  = p z  
against X: pr # p 2  is to reject H if 

where c, is given by (13). 

There are many other situations for which a T2 statistic is appropriate. 
We will indicate one more. A generalization of the first problem considered, 
that is, of testing p =0, is to test the null hypothesis H: Cp =0, where C is a 
specified p X m matrix of rank p, given a sample of size N = n + 1 from the 
N,, , (p ,Z)  distribution. Let and S denote the sample mean vector and 
covariance matrix; then N'/2C)S is N'(N'/2Cp, CZC') and nCSC' is 
W,(n,CZC'), and these are independent. In Theorem 6.3.1 making the 
transformations X- N ' / * c X ,  z + CZC', p -, N ' / ~ c ~ ,  s -* CSC', m --, p 
shows that 

T2 n - p i - l  
I1 P is F p . , r p + l ( 6 h  I. 

with 8 = Np'C'(CZC')-'Cp, where 

T2 = N%'C'(CSC')-'C%. 

When the null hypothesis H: Cp =O is true the noncentrality parameter 6 is 
zero, and hence a test of size a is to reject N i f  

where ~ , f l - , + , ( a )  is the upper 100a% point of the F p , f l - p + l  distribution. 
This test is a uniformly most powerful invariant test (see Problem 6.6) and 
the likelihood ratio test (see Problem 6.8). 

There are many other situations for which a TZ statistic is appropriate; 
some of these appear in the problems. For a discussion of applications of 
the T2 statistic, useful references are Anderson (1958), Section 5.3, and 
Kshirsagar (1972), Section 5.4. 

We have seen that the test described by (2) for testing H: p = O  against 
K: p #O on the basis of N =  n -t- 1 observations from the N,,,(p, 2 )  distribu- 
tion is both the uniformly most powerful invariant and the likelihood ratio 
test. It has also a number of other optimal properties. I t  is uniformly most 
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powerful in the class of tests whose power function depends only on 
p’Z-’p, a result due to Simaika (1941). The test is also admissible, a result 
established by Stein (1956b), and Kiefer and Schwartz (1965). Kariya (1981) 
has also demonstrated a robustness property of this T 2  test. Let X be an 
N X m  random matrix with a density function h and having rows 
x’,,x>, ..., x;, let C,.,, be the class of all density functions on R”” [with 
respect to Lebesgue measure (dX)], and let Q be the set of nonincreasing 
convex functions from [O,oo) to [O,oo). For pE R m  and XES, define a 
class of density functions on R““ by 

Clearly, if X i s  N(lp’, l , . , @ X ) ,  where l = ( l ,  1, ..., l)’ERN, then the density 
function h of X belongs to CN,(p,X). If f ( X p , Z ) E C N m ( p , 2 . )  then 
mixtures of the form 

also belong to CN,,,(p, Z), where G is a distribution function on ( 0 , ~ ) .  
From this result i t  follows that C,,(p, 2) contains such elliptical distribu- 
tions as the Nm-variate r distribution and contaminated normal distribution 
(see Section 1.5). Kariya (198 1) considered the problem of testing H :  h E 
CN,(O, 2) against K :  h E C,,(p, Z), with p ZO, and showed that the T 2  
test is a uniformly most powerful invariant test, and that the null distribu- 
tion of T 2  is the same as that under normality. For a discussion of other 
properties the reader is referred to Giri (1977), Section 7.2, and the 
references therein. 

P R O B L E M S  

6.1. The Grassmann manifold Gksr  is the set of all k dimensional sub- 
spaces in R“ (with n = k + r ) .  When R” is transformed by the orthogonal 
group O ( n )  [x-. Hx; HE O(n)]. a subspace p is transformed as p -, Hp, 
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where Hp denotes the subspace spanned by the transforms Ifx of the 
vectors x E  p. 

(a) Show that O(n)  acts transitively on Gk,r .  
(b) Let p o  be the subspace of R“ spanned by the first k coordinate 

vectors. Show that the isotropy subgroup at po is 

Invuriunr Tests ctnd Some Apphcurions 

H , E O ( n - k )  I I 
(c) Find the coset corresponding to a point p € Gks r .  

6.2. Let XI,. . . X,, be independent Nm(p I ,  2 )  random vectors and 
YI, ..., YN2 be independent 2 )  randoin vectors. Let x, Sx,v ,  S, 
denote the respective sample mean vectors and sample covariance matrices, 
and put S=(nl  f n,)-l(n,S,-t- n,S,), where n, = N, - I ,  i = 1,2. Consider 
the group &t (m,  R) given by (14) of Section 6.3 acting on the space o f  the 
sufficient statistic (ZIT, S) by 

Show that a maximal invariant under this group is 

Consider the problem of testing H : p l  = p 2  against K : p l  # p 2 .  
Show that the test which rejects H for large values of T 2  is a 
uniformly most powerful invariant test under the group Bt‘(m, R). 

6.3. Suppose that XI ,..., X N ,  is a random sample from the N,, , (p , .Z)  
distribution and that YI,...,YN2 is a random sample from the N , ( p , , C )  
distribution. Show how a T 2  statistic may be used to construct a confidence 
region for p,  - p2 with confidence coefficient 1 -- a. 

6.4. Let XII,...lXtN, be a random sample from the N,,,(p,, Z) distribution, 
with i = I ,  . . . , p .  Construct a T’ statistic appropriate for testing the null 
hypothesis H: zp= p,p, = p,  where aI , .  .. ,ap arc specified numbers and p is 
a specified vector. 

6.5. Let XI, ..., X,, be a random sample from the N,,,(pI,Z,) distribution 
and YI, ..., YN, be a random sample from the Nn,(p2,  2,) distribution. Here 
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the covariance matrices Z, and Z2 are unknown and unequal. The problem 
of testing H: p ,  = p 2  against K: p ,  # p 2  is called the multivariate Behrens- 
Fisher problem. 

(a) Suppose N , =  N,= N. Put Z , = X ,  -Y, so that Z ,,..., 2, are 
independent N J p ,  - p2, Z, + 2,) random vectors. From 
Z,, , . . ,Z, construct a T 2  statistic appropriate for testing H 
against K. What is the distribution of T2? How does this differ 
from the distribution of T 2  when it is known that Z, = Z,? 

(b) Suppose N, < N2. Put 

( i =  1,  ..., N , ) .  

Show that 

and that Z, ,  . . . ,Z,, are independently normally distributed. 
Using Z,, ..., Z,,,,, construct a TZ statistic appropriate for testing 
H against K. What is the distribution of T2? How does this 
differ from the distribution of T2 when it is known that 2, = X2? 

6.6. Given a sample XI, ..., X,, from the N J p ,  X) distribution consider 
the problem of testing H :  Cp = O  against K: Cp fO, where C is a specified 
p X m matrix of rank p .  Put C = B[I , :OJH,  where BE Gf?( p, R )  and HE 
O( m) and let Y, = HX,, i = I , .  . . , N, then Y,, . . . , YN are independent N,( w, r), 
where v = H p  and r = HZ H’. Put 

and partition u, w, A ,  and I’ as 

where u, and w ,  are p X I ,  Y2 and v2 are ( m  - p ) X  1, A , ,  and I-, , are p X p, 
and A,, and I?,, are (m - p )  X ( m  - p). Testing the null hypothesis H: Cp =O 
is equivalent to testing the null hypothesis H: u, =O. A sufficient statistic is 
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(v, A),  where v is N m ( v , ( l / N ) r ) ,  A is W,(n, r) with n = N- I ,  and 
A are independent. Consider the group of transformations 

and 

c= (t ) E R‘“, c2E R”’--p , 1 
acting on the space of the sufficient statistic by (B,c) (v ,  A ) = (  B y  -tc, BAB‘). 

(a) Show that the problem of testing 11: uI = O  against K: vI ZO is 
invariant under G. 

(b) Prove that v ; A A ‘ v l  is a maximal invariant under G. 
(c) Put T 2 =  N ~ ~ S ~ l ~ l ,  where S,, = n - ’ A l l .  Show that the test 

which rejects H for large values of T2 is the uniformly most 
powerful invariant test under the group G. What is the distribu- 
tion of T2?  

(d) Let 

I N  s,=- 2 (X1-%)(X1-%)’. 
( = I  

Show that CS,C’= BS,,B‘ and hence that, in terms of the 
original saniple XI, ..., X N ,  

T = N k’( CS,C’) - ‘CX. 

6.7. Let XI,’ ..., XN be independent N J p ,  2 )  random vectors, where p = 
( p , ,  . . . , p , , , ) ‘ ,  and consider testing the null hypothesis If: p ,  = . + .  L- p,,,. 

(a) Specify an (m - 1)X m matrix C of rank m - I such that the null 
hypothesis is equivalent to Cp =O. 

(b) Using the result of Problem 6.6 write down a T 2  statistic 
appropriate for testing H. 

(2) The matrix C chosen in part (a), above, is clearly not unique. 
Show that any such matrix must satisfy C1=0, where 1= 
( ] , I , , . . , ] ) ’ €  R”’, and show that the T 2  statistic in part (b), 
above, does not depend upon the choice of C.  

6.8. Show that the T2 test of Problem 6.6 for testing H: C p  = O  against 
K: C p  # O  is the likelihood ratio test. 
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6.9. Let X l , . . . , X N  be independent N,,,(p, X) random vectors and consider 
testing the null hypothesis H: p = ke, where e is a specified non-null vector 
and k is unknown, i.e., the null hypothesis says that p is proportiond to e. 
(The case when e=1=(1,1, ... $1)‘ is treated in Problem 6.7.) Let C be an 
( m  - 1)X m matrix of rank m - 1 such that H is equivalent to Cp =O; 
clearly C must satisfy Ce=O. The T 2  statistic appropriate for testing H is 

TZ = NX’C’(CSC’)-’C%, 

where % and S are the sample mean vector and covariance matrix. Put 
A = nS, where n = N - 1, and define 

Show that Ee=O and that rank ( I 3 ) S m  - 1. Show that this implies that 
I3 = DC for some m X ( m  - I )  matrix D and use the fact that E is symmetric 
to conclude that B = C‘EC where E is a symmetric (m - 1) X ( m  - 1) matrix. 
Hence show that 

Using this show that 

This demonstrates that T 2  does not depend upon the choice of the matrix C 
and gives a form which may be calculated directly, once e is specified. 

6.10. Suppose that XI, ... ,XN are independent N,,,(p, X) random vectors. 
Partition p as p = (p i ,  p i ,  pi)’ ,  where p ,  is m ,  X 1, p 2  is m2 X I ,  and p 3  is 
m3 X 1, with m, + m2 + m, = nt. It is known that p, =O. 

(a) Derive the likelihood ratio statistic for testing N: p2 =O against 
K: p2 # O  and find its distribution. 

(b) Find a group of transformations which leaves the testing problem 
invariant and show that the likelihood ratio test is a uniformly 
most powerful invariant test. 

6.11. Let F denote the class of spherically symmetric density functions 
(with respect to Lebesgue measure on R”), i.e., fE F * I(%)= f( Hx) for all 
x E  Rm, HEO(m), and let F ( C )  denote the class of elliptical density func- 
tions given by f E F(Z) 3 f(x) = (det 2)-1’2h(x’XC-’n) for some funtion h 
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on (0,oo). Let X be an m X 1 random vector with density function h and 
consider the problem of testing H,: h E F against K: h E F ( Z ) ,  where C #= 
021, is a fixed positive definite m X m matrix. 

(a) Show that this testing problem is invariant under the group of 

Inourrutit Tests and Some Applicrrtions 

transformations 

X h a X  

for a>O. 
(b) Show that a maximal invariant is (p(x)=llxll-~’x. 
(c) Show that under H,,  +(x) has the same distribution for all h €  F. 
(d) Show that under K, y = $(x) has density function. 

with respect to the uniform measure on S,,, = ( x  E R“’; x’x = 1 }, 
so that under K, $(x) has the same distribution for all h E QX). 

(e) Show that the test which rejects Ho for small values of 

x’z- ‘x 
x’x 

is a uniformly most powerful invariant test (King, 1980). 



CHAPTER 7 

Zonal Polynomials and 
Some Functions of Matrix Argument 

7.1. INTRODUCTION 

Many noncentral distributions in classical multivariate analysis involve 
integrals, over orthogonal groups or Stiefel manifolds with respect to an 
invariant measure, which cannot be evaluated in closed form. We have 
already met such a distribution in Theorem 3.2.18, where it was shown that 
if the m X m random matrix A has the W,(n, X) distribution then the joint 
density function of the latent roots I,, . . . , I ,  of A involves the integral 

where L =diag(l,,. . .,/,,,) and ( d H )  represents the invariant measure on the 
group O(m) of orthogonal m X m matrices, normalized so that the volume 
of O(m) is unity (see the discussion preceding Theorem 3.2.17). This 
integral depends on Z only through its latent roots A , ,  ..., A,,, and i t  is easy 
to see that it is a symmetric function of / ,,..., I ,  and of A ,  ,..., Ant, To 
evaluate the integral an obvious approach is to expand the exponential in 
the integrand as an infinite series and attempt to integrate term by term. 
This is very difficult to carry out in general, unless one chooses the “right” 
symmetric functions to work with. I t  can be done, but first we need to 
develop some theory. We will return to this example in Chapter 9. 

Let us see what types of results we might hope for by comparing a 
familiar univariate distribution with its multivariate counterpart. Suppose 
that a =X‘X, where X is N,(p, l,,); then the random variable a has the 
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noncentral xi(&) distribution with 6 = p’p, and density function (see Theo- 
rem 1.3.4) 

Now suppose that A = Z’Z, where Z is N ( M ,  Z,,@I,); that is, E ( Z ) =  M 
and the elements of the n X m  matrix 2 are independent and normally 
distributed with unit variance. If M = O ,  A has the WJn, I , )  distribution 
(recall Definition 3.1.3) with density function 

which reduces to the first line of ( I )  when m = 1. When M ZO the distribu- 
tion of A is called noncentral Wishart and it  is clear (use invariance) that 
this depends on M only through a “noncentrality matrix” A = M’M. More- 
over, the noncentral Wishart density function must reduce to ( I )  when 
m =  1. This being the case, we might hope that there is a “natural” 
generalization of the noncentral part 

of the density function ( I )  when S is replaced by A and a is replaced by A.  I t  
seems reasonable to anticipate that e-’/’ would be generalized by etr( - ! A )  
and that the real problem will be to generalize the function, which has 
:&a as its argument, 10 a function which has aAA as its argument. Recall 
that 

so that if the argument x is to be replaced by a matrix X (with the 
generalized function remaining real-valued), what is needed is a generaliza- 
tion of the powers x k  of x when x is replaced by a matrix X. This is the role 
played by zonal polynomials, which are symmetric polynomials in the latent 
roots of X. The general theory of zonal polynomials was developed in a 
series of papers by James (1960, 1961a,b, 1964, 1968, 1973, 1976) and 
Constantine (1963, 1966). Zonal polynomials are usually defined using the 
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group representation theory of 8f!(m, R), the general linear group. The 
theory leading up to this definition is, however, quite difficult from a 
technical point of view, and for a detailed discussion of the group theoretic 
construction of zonal polynomials the reader is referred to Farre11 (1976) 
nd the papers of James and Constantine cited above, particularly James r 1961b). Rather than outline a course in group representation theory, here 

we will start from another definition for the zonal poiynomials which may 
appear somewhat arbitrary but probably has more pedagogic value. It 
should be emphasized that the treatment here is intended as an introduction 
to zonal polynomials and related topics. This is particularly true in Sections 
7.2.1 and 7.2.2, where a rather informal approach is apparent. [For yet 
another approach, see an interesting paper by Saw (1977).] 

7.2 .  ZONAL POLYNOMIALS 

7.2.1. Definition and Construclion 

The zonal polynomials of a matrix are defined in terms of partitions of 
positive integers. Let k be a positive integer; a partition K of k is written as 
K =( k , ,  k , ,  . . .), where Z,k, = k, with the convention unless otherwise stated, 
that k ,  2 k ,  2 . - , where k , ,  k,,  . . . are non-negative integers. We will order 
the partitions of k lexicographically; that is, if tc= (k l ,k2 ,  ...) and A =  
( I , ,  /,,...) are two partitions of k we will write K >  X if k ,  >i f  for the first 
index i for which the parts are unequal. For example, if k =6, 

Now suppose that K =(k ,,.. . ,km) and X = ( l , , .  . .,/,,,) are two partitions of k 
(some of the parts may be zero) and let y , ,  . . . .ym be m variables. If IC > X we 
will say that the monomial yf l . .  .yi*i is of higher weigh! than the monomial 

We are now ready to define a zonal polynomial. Before doing so, recall 
from the discussion in Section 7.1 that what we would like is a generaliza- 
tion of the function / k ( x ) = x k ,  which satisfies the differential equation 
x*f,”(x)= k ( k  - 1 ) ~ ~ .  Bearing this in mind may help to make the following 
definition seem a little less arbitrary. It is based on papers by James in 1968 
and 1973. 

DEFINITION 7.2.1. Let Y be an m X rn symmetric matrix with latent 
rootsyl,. . . .ym and let K =(k,,. . . , k m )  be a partition of k into not more than 
m parts, The zonal polynomial of Y corresponding to K ,  denoted by Cs( Y). 

up.. .y$. 
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is a symmetric, homogeneous polynomial of degree k in the latent roots 
y I ,  . . . ,ynI such that: 

Zotiul Po!vnoniiuls utrd Funcnotrs ./ Murrrx Argwiieiit 

(i) The term of highest weight in C,(Y)  isy;kl...y,:n*; that is, 

( 1 )  
where d, is a constant. 

C,(Y)=duy,kl . . . y ~ ” i +  terms of lower weight, 

(ii) C,( Y )  is an eigenjuncrion of the differential operator A, given by 

/ + I  

(iii) As K varies over all partitions of k the zonal polynomials have unit 
coefficients in the expansion of (tr Y ) $  that is, 

(3) (tr Y ) ~  = ( y, + a * + y,,, l k  = c,( Y I. 
U 

We will now comment on various aspects of this definition. 

Remark 1. By a symmetric, homogeneous polynomial of degree k in 
y,,.. .J, we mean a polynomial which is unchanged by a permutation of the 
subscripts and such that every term in the polynomial has degree k. 

For example, if m = 2 and k = 3, 

is a symmetric, homogeneous polynomial of degree 3 in y I  and y2. 

The zonal polynomial C,( Y) is a function only of the latent 
roots y , ,  . , . J,,, of Y and so could be written, for example. as C,(y,, . .. ,y,,,). 
However, for many purposes it is more convenient to use the matrix 
notation of the definition; see, for example, Theorem 7.2.4 later. 

By saying that C,( Y) is an eigenfunction of the differential 
operator A given by (2) we mean that 

Remark 2. 

Remark 3, 

A y C,( Y ) z= .C,( Y ) , 

where a is a constant which does not depend on y I ,  ...,y, (but which can 
depend on K )  and which is called the eigenvalue of A corresponding to 
C,( Y ) .  This constant will be found in Theorem 7.2.2. 
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It has yet to be established that Definition 7.2.1 is not 
vacuous and that indeed there exists a unique polynomial in yI,  . . . ,ym 
satisfying all the conditions of this definition. Basically what happens is that 
condition (i), along with the condition that C,( Y) is a symmetric, homoge- 
neous polynomial of degree k, establishes what types of terms appear in 
iCa( Y). The differential equation for C,, Y) provided by (ii) and Theorem 
7.2.2 below then gives recurrence relations between the coefficients of these 
terms which determine C,( Y) uniquely up to some normalizing constant. 
The normalization is provided by condition (ui), and this is the only role 
this condition plays. At this point i t  should be stated that no general 
formula for zonal polynomials is known; however, the above description 
provides a general algorithm for their calculation. We will illustrate the steps 
involved with concrete examples later. Before doing so, let us find the 
eigenvalue implicit in condition (ii). 

THEOREM 7.2.2. The zonal polynomial C,( Y )  corresponding to the par- 
tition K = ( k , , ,  . .,k,,,) of k satisfies the partial differential equation 

Remark 4. 

(4) 

where A, is given by (2) and 

( 5 )  

[Hence the eigenvalue a in Remark 3 is a = P# + k(m - I).) 
By conditions (i) and (ii) i t  suffices to show that Proo/: 

A , ~ f l  . . . y ; m  = [ p r + k ( m  -1)]yf1...y;~~+termsof lower weight. 

By straightforward differentiation i t  is seen that 

m 

J f i  

A , y f l . .  .y i -  = y f l . ,  .yi* 

Since 
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it follows that 
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1 m m - l  

k,? - k -t 2 k,(  m - i )  +terms of lower weight. 
r = l  

Noting that 

In - I m m 

2 k , ( m - - i ) =  2 k i ( m - i ) = k m -  2 ik, 
r = I  !=I  i = l  

we then have 

A y ~ l k l . . . y ~ n i = ~ k ' . . . y ~ m  2 k , ( k f  - i ) + k ( m - 1 )  -ttermsof lowerweight, 
L l  

and the proof is complete. 

Before proceeding further i t  is worth pointing out explicitly two conse- 
quences of Definition 7.2.1. The first is that if m = 1, condition (iii) becomes 
y k  = C(k,( Y )  so that the zonal polynomials of a matrix variable are analo- 
gous to powers of a single variable. The second consequence is that if @ is a 
constant then the fact that C,(Y) is homogeneous of degree k implies that 

We will now illustrate how Definition 7.2.1 can be used to construct an 
algorithm for calculating zonal polynonlials by using i t  to find explicit 
formulas corresponding to the values k = I, 2, and 3. We will express these 
zonal polynomials in terms of the monomial symmetric functions. If K = 
( k , ,  . . . ,k,), the monomial symmetric function of y , ,  . . . ,ym corresponding to 
K is defined as 

c,< PY 1 = PkC,( Y ) .  

where p is the number of nonzero parts in the partition K and the surnma- 
tion is over the distinct permutations (i,, . . ., i,J of p different integers from 
the integers 1,. . . , nz. Hence 

M,( Y )  = yFl.. .y;m +symmetric terms. 
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Thus, for example, 

and so on. 

k = 1:  When k = 1 there is only one partition K =(1) so, by condition (iii), 
CY (I)( ) =t rY=y ,+  - . .  + ~ , , , = M ( ~ , ( Y ) .  

k - =2: When k = 2  there are two zonal polynomials corresponding to the 
partitions (2) and ( I ,  1) of the integer 2. Using condition (i) and the fact that 
the zonal polynomials are symmetric and homogeneous of degree 2 we have 

for some constant p, and 

By condition (iii) we have 

and equating coefficients of M(z,( Y )  and M(,, I,( Y )  on both sides shows that 

4,) = 1, d(1, I )  = 2 - PI 
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so that 

and 

The constant is now found using the differential equation for q 2 , ( Y ) .  
Since p(2, =2(2 -  1)=2,  Theorem 7.2.2 shows that q2)( Y )  satisfies the par- 
tial differential equation 

( 7 )  A Y q 2 , (  Y )  = 2mq*, (  Y), 

where A, is the differential operator given by (2). It is easily verified that 

AvJy* , (  Y )  = 2 m 4 2 , (  y 1 + 2q1. I ) (  0 

and 

and hence substitution of (6)  in (7 )  yields 

Equating coefficients of M(l,l)( Y )  on both sides then gives /3 = 2 / 3 .  Hence 
the two zonal polynomials corresponding to k = 2 are 

and 

m3: When k = 3  there are three zonal polynomials corresponding to the 
partitions (3), (2 ,  I), and ( I ,  1 , l ) ;  we will indicate how these can be evaluated, 
leaving the details as an exercise. Conditions (i) and (iii) of Definition 7.2.1, 
togerher with the symmetric homogeneous nature of the zonal polynonlials, 



Since pt3) = 3(3 - 1)=6, Theorem 7.2.2 shows that q3)( Y )  satisfies the par- 
tial differential equation 

(10) ArC,3JY)=3(m + 1)53) (Y) .  

Substituting for C,,!(Y) from (8) in (lo), using the differential relations (9), 
and equating coefficients of M(2,1) (  Y )  and M,,,,,,,( Y )  on both sides then 
gives p = 3 / 5  and y = 2 / 5 .  Since ~ ( ~ . , ) = 2 ( 2 -  I ) +  l(1-2)=1, the partial 
differential equation given by Theorem 7.2.2 for C&(Y) is 

( 1 1 )  A &  I)( Y )  =(3m - 2 ) % d  Y). 

Substituting for C(2, ,)( Y) from (a), with P =3/5, in (1  I ) ,  using the differen- 
tial relations (9), and equating coefficients of M(l, ,, I)( Y )  on both sides then 
gives S = 18/5. Hence the three zonal polynomials of degree 3 are 
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and 

I n  general, it should now be apparent that the differential equation for 
CK( Y )  gives rise to a recurrence relation between the Coefficients of the 
monomial symmetric functions i n  C,( Y); once the coefficient of the term of 
highest weight is given, the other coefficients are uniquely determined by the 
recurrence relation. We will state a general result, due to James (1968). Let x 
be a partition of k; condition (i) of Definition 7.2.1 and the fact that the 
zonal polynomial CK( Y) is symmetric and homogeneous of degree k show 
that CK( Y )  can be expressed in terms of the monomial symmetric functions 
as 

where the c,,~ are constants and the summation is over all partitions A of k 
with A 5 K (that is, A is below or equal to K in the lexicographical ordering). 
Substituting this expression (1  3) in the partial differential equation 

and equating coefficients of like monomial symmetric functions on both 
sides leads to a recurrence relation for the coefficients, namely, 

where A=(l,,...,l,,,) and p = ( / , , . . . , l ; + t ,  ..., l , - t , . . . , lm) For i = l  ,...,I, 
such that, when the parts of the partition p are arranged in descending 
order, p is above X and below or equal to K in the lexicographical ordering. 
The summation in (14) is over all such p ,  including possibly, nondescending 
ones, and any empty sum is taken to be zero. This recurrence relation 
determines CK( Y) uniquely once the coefficient of the term of highest weight 
is given. Using condition (iii) of Definition 7.2.1 i t  follows that for ~ = ( k )  
the coefficient of the term of highest weight in C,, , (Y)  is unity; that is, 
c ( , ) , ( ~ )  = 1. This determines all the other coefficients c ( ~ ) , ~  in the expansion 
(13) of C(,J Y) in terms of monomial symmetric functions. These determine, 
in turn, the coefficient of the term of highest weight in q,- Y), and once 
this is known, the recurrence relation gives all the other coefficients, and so 
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on. The reader can readily verify that the general recurrence relation (14) 
gives the coefficients of the monomial symmetric functions found earlier in 
the expressions for the zonal polynomials of degree k = 1, 2, and 3. We will 
look at one further example, namely, k =4. Here there are five zonal 
polynomials, corresponding to the partitions (4). (3, I ) ,  (2,2), (2, I ,  I ) ,  and 
' ( I ,  1, I ,  1). Consider the zonal polynomial C(4)( Y). Using (13) this can be 
written in terms of the monomial symmetric functions as 

I 

where we have used the fact that c ~ ~ ) , ( ~ )  = 1. Consider the coefficient c ( ~ ) , ( ~ ,  I ) .  

Putting K =(4), A =(3,1) in (14) and using p14) = 12, p(3,1) = 5  gives 

The coefficient c ( ~ ) ~ ( ~ . ~ ,  comes from the partitions (3 , l )  and (4) and, since 
p(2, 2) = 2, i t  is 

The coefficient ~ ( 4 ) , ( 2 , ~ , 1 )  comes from the partitions (3, l,O), ( 3 , O .  I ) ,  and 
(2,2,0) and, since 4 2 , 1 , 1 )  = - 1 ,  it is 



and condition (iii) of Definition 7.2.1, in conjunction with the expression 
( 1  5 )  for C(.,)( Y ), shows that ~ ( 3 :  I )  = 24/7. The recurrence relation (14) 
then determines the other coefficients in (16); the remaining computations 
for k = 4 are left as an exercise (see Problem 7.1). 

Without delving deeply into the details we will give two properties of 
zonal polynomials which can be proved using the recurrence relation (14). 
They are consequences of the following lemma. 

LEMMA 7.2.3. Let the coefficients c.,~ be given by (13) and suppose that 
K is a partition of k intop nonzero parts. If the partition h of k has less than 
p nonzero parts and h < K then c ~ , ~  =O. 

Rather than giving a tedious algebraic proof, we will illustrate the lemma 
with an example. The partition K =(4,1, I ,  1) of k =7 is followed in the 
lexicographical ordering by two partitions with less than four parts, namely, 
(3 .3 , l )  and (3,2,2). Considering first A =(3,3, l ) ,  the recurrence relation 
(14) immediately shows that c , , ~ = O  because there are no partitions p 
satisfying h < p 5 K [see the discussion following (14)J. Now taking h = 
(3,2,2), the coefficient c ~ , ~  comes from the partition (3,3,1) so that 

where p =(3,3, I ) ,  and it has just been established that cW,+ =O. 

following corollary. 

COROLLARY 7.2.4. 

The two aforementioned properties of zonal polynomials are given in the, 
I 

- (i) I f  the rn X m symmetric matrix Y has rank r ,  so that y, , . I  = - - * - 
y,, =0, and if K is a partition of k into more than r parts, then 
C,( Y ) = 0. 
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(ii) If Y is a positive definite matrix ( Y  >O) then CK( Y)>O. 

Proof. To prove (i), write CK( Y) as 

Now note that MA( Y ) = O  if the number of nonzero parts in h is greater than 
or equal to the number of nonzero parts in K ,  while if the reverse is true then 
c , , ~  = O  by Lemma 7.2.3. Part (ii) is proved by noting that the monomial 
symmetric functions are positive when Y>O, and the coefficients c ~ , ~  
generated by the recurrence relation (14) are non-negative. 

Zonal polynomials have so far been defined only for symmetric matrices. 
The definition can be extended: if Y is symmetric and X is positive definite 
then the latent roots of XY are the same as the latent roots of X1/2YX1/2 
and we define CK( XY) as 

(17) CK( X U ) =  C,( X ' / 2 Y X ' / 2 ) .  

As stated earlier there is no known general formula for zonal polynomi- 
als. Expressions are known for some special cases (see James, 1964, 1968). 
One of these special cases is when Y = I,,,. Although we will not derive the 
result here, it is worth stating. If the partition K of k hasp nonzero parts, the 
value of the zonal polynomial at I ,  is given by 

where 

with ( a ) ,  = a(a + I )  ...( a + k - I),(a), = 1. For a proof of this result the 
reader is referred to Constantine (1963). Although no general formula is 
known, the recurrence relation (14) enables the zonal polynomials to be 
computed quite readily. The coefficients cK, A of the monomial symmetric 
functions MA( Y) in CK( Y) obtained from (14) are given in Table 1 to k = 5 .  
They have been tabulated to k = 12 by Parkhurst and James ( I  974) in terms 
of the sums of powers of the latent roots and in terms of the elementary 



Table 1. Coefficients of monomial symnietric functions MA( Y) in the zonal 
polynomial C,( Y )  

k = 2  - 

1 2/3 
0 4/3 

I 4/7 18/35 12/35 8/35 
0 24/7 16/7 88/21 32/7 
0 0 16/5 32/15 16/5 
0 0 0 16/3 64/5 
0 0  0 0 16/5 

k = 5  

1 5/9 10/21 20/63 
0 40/9 8/3 46/9 
0 0 48/7 32/7 
0 0  0 10 
0 0  0 0 
0 0  0 0 
0 0  0 0 

2 / 7  
4 

I76/2 I 
20/3 
32/3 

0 
0 

G [ , I , I )  ( i , l , 1 , i , l )  
4/21 8/63 
14/3 40/9 
64/7 80/7 
130/7 200/7 

16 32 
80/7 800/21 

0 16/3 

238 
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symmetric functions of the roots. For larger values of k tabulation of zonal 
polynomials seems prohibitive in terms of space; indeed, for k = 12, there 
are already 77 zonal polynomials corresponding to the 77 partitions of 12. 
However, the recurrence relation (14) has been used as the basis of a 
subroutine due to McLaren (1976) which calculates the coefficients c ~ , ~ ,  and 
which is readily available. An alternative method of calculating zonal 
polynomials by computing sums of products of moments of independent 
normal random variables has been given by Kates (1980). 

7.2.2 A Fundamental Properly 

Many results about zonal polynomials are proved with the help of a 
fundamental identity which has to do  with averaging over the orthogonal 
group. This is given fater in Theorem 7.2.5. Before getting to this we will 
look a little more closely at the differential form A,, used in Definition 7.2.1 
and at some related topics. 

(19) (ds)2=tr(X-IdXX-IdX) 

Let X be an m X m positive definite matrix and put 

where dX=(dx,,) .  This is a (metric) differential form on the space S,,, of 
nr X m positive definite matrices which is invariant under the congruence 
transformation 

for L E  Gt(m, R), the group of m X m nonsingular real matrices. For then 
dX 4 L dXL‘, so that 

(2 1 ) tr( X - I d X X -  I d X )  -* tr(( L XL‘) - I  L dXL’ (  L XL’) - ’ L dX L’) 

= tr( X- dXX-’ dX). 

Now, put n = m(m + 1)/2 and let x be the n X 1 vector 

x = ( x I I ,  XIZ,. * * .XIm, xz2,. f * . X Z m  1 * rXmm) ’  

consisting of the distinct elements in X. For notational convenience, relabel 
the components of x as xl , .  . .,x,. The differential form (ds)* is a quadratic 
form in the elements of the vector of differentials dx and can be written as 

(22) (ds)’ = tr( X- I d X X -  I dX) = dx’G(x) dx ,  
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where G(x) is an n X n nonsingular symmetric matrix. The reader is encour- 
aged to write out G(x)  explicitly in the case ni = 2  (see Problem 7.2). Now 
define the differential operator A*, by 

(23) Ah*,=detG(x)-’/2 e [ d e t C ( x ) ’ / 2  g(x)”- 
/ = I  1 = l  

where G(x) - ’  =(g(x)”). Denoting by a/ax the n X 1 vector with compo- 
nents dldx,, we can write A: as 

This differential operator has the property that, like ( d ~ ) ~ ,  i t  is invariant 
under the congruence transformation (20) for L E Gt( m,  R); that is, 

To show this, put Z =  LXL‘, let z be the 11 X 1 vector of distinct elements of 
Z formed similarly to x, and write 

where TI, (a function of t) is an n X n  nonsingular matrix. I t  is easily 
verified that 

so that 

Since (cis)’ is invariant under the transformation X .-. LXL‘= 2 i t  follows 
that 

(28) dx‘C(x)dx=dz’C(z)dz= dx’T-G(T,x)T,dx, 

where we have used (21), (26), and the fact that d z =  TL d x .  This implies 
that 

(29) G( TLx) = Ti- ’ G ( x )  T i  ’ ; 
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that is, under the transformation X -, LXL' the matrix C(x) defined by (22) 
is transformed as 

By virtue of (24), (26), (27) and (29) it follows that 

A*, = AtXt .  

at a 
= det G( T,x) - ax T' [ (det G( T,x)) '"G ( TLx) - I Tt- I G] 

=det T,detG(x)- --[T''(det a' T ; ' ) ( d e t C ( x ) ) ' / 2 T , G ( x ) - ' ~ ~ T ~ - ' ~  
ax 

= det C( x ) - ' I 2 E  [ (det C(x))'/'C(x) - I  $1 

proving the invariance of the differential operator A*,. 
What does the operator A, of Definition 7.2.1 have to do with A:? To 

answer this, let us see how A: is transformed when we make a transforma- 
tion from X to its latent roots and vectors. Put X =  HYH' where HE O(m)  
and Y =diag(y,,. . .,y,,,). In terms of H and Y the invariant differential form 
( d ~ ) ~  given by (19) can be written 

(dSj2 = tr( X- ' ~ x x - '  d ~ )  

= tr[HY-* H'(dHYH' + H d Y H '  + HY dH')HY-' H'  

* ( d H  Y H ' f  H d Y H ' f  HYdH')] 

On multiplying the terms on the right side and using the fact that the matrix 
H'dH is skewsymmetric ( H d H  = - dH'H), this becomes 

( ds)2 = tr( Y-'dY T ' d Y )  -2tr( d O Y -  ' d  O Y )  +2tr( d Q  d 0), 

where dO =(dB,,) denotes the matrix H d H ,  or equivalently 
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Putting dy=(dy, ,..., dy,,,)‘ and dO=(dd, , ,dd ,  ,,,.., ddm-I,m)) (so that 
d o  contains the distinct elements of d O  = H’dH), we then have 

where 

0 
Y”; * 

2 
2(Ym-, - Y m )  

Y w -  IYm 

In terms of the partial derivatives a/ayl ,  a/ae,,, the operator A> is 

’ a ’  

a 
ae 

A> = -det G(y)  

Substituting for G(y) and simplifying, this is 

where A ,  is the differential operator ( 2 )  used in Definition 7.2.1 and E ,  is 
the Euler operator 

(33) 
a 

E , =  ZV,,,. 
i = I  



Zonul Polynomruls 243 

Hence, apart from this latter operator, A y  is the part of A&. concerned 
with the roots y I ,  ...,ym. Now, 

because the zonal polynomials are functions only of the latent roots and, 
since any homogeneous polynomial of degree k in y , ,  . . . ,ye, is an eigenfunc- 
tion of E ,  with eigenvalue k, it follows that 

(34) E,C,(Y)=kC,(Y) .  

Hence the effect of the operator A> on C,( X) is 

(35) A%Ca ( X = A$ ,G( Y) 

where we have used (32), (4), (34), and the fact that C,( Y )  is a function only 
of Y. In fact, we could have defined the zonal polynomial C,( X )  for X>O in 
terms of the operator A; rather than A y .  Here the definition would be that 
C,( X)( = C,( Y)) is a symmetric homogeneous polynomial of degree k in the 
latent roots y, ,  ...,ym of X satisfying conditions (i) and (iii) of Definition 
7.2.1 and such that C,( A') is an eigenfunction of the differential operator 
A;. The eigenvalue of A; corresponding to C,(X) is, from (35). equal to 
p, + f k ( m  + 1). This defines the zonal polynomials for positive definite 
matrices X, and since they are polynomials in the latent roots of X their 
definition can be extended to arbitrary (complex) symmetric matrices, and 
then to nonsymmetric matrices using (17). 

We started out to prove a fundamental property of zonal polynomials. 
This is given in the following theorem. 

THEOREM 7.2.5. If X, is a positive definite m X m  matrix and X, is a 
symmetric rn X m matrix, then 

where ( d H )  is the normalized invariant measure on O(m) .  
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Proo/. Consider the integral on the left side of (36) as B function of X,, 
say, I,( X 2 ) .  Clearly I,( X 2 ) =  I,(QX2Q‘) for all Q€ U ( m )  so that A( X,) is a 
symmetric function of X2;  in fact, a symmetric homogeneous polynomial of 
degree k.  Suppose that X, is positive definite and apply the differential 
operator A>* to A( X,). This gives 

where L = X,’I2H. Using the invariance (25 )  of the operator A* this is the 
same as 

where we have used (35) and the definition off,( Xz). By definition, f,( Xz) 
must then be a multiple of the zonal polynomial Ca( Xz),  f,( X2)= A&( X,). 
Putting X, = I,,, and using the fact that f,(I,, ,)= C,( X,) shows that A, = 
Ca(X,)/Ca(I,,,). This proves (36) for X 2 > 0 ,  and the desired result then 
follows for all (complex) symmetric X, by analytic continuation. 

Theorem 7.2.5 plays a vital role in the evaluation of many integrals 
involving zonal polynomials. Some such integrals will be looked at in the 
next subsection. 

We will now indicate the approach to zonal polynomials through group 
representation theory. Let Vk be the vector space of homogeneous poly- 
nomials $I( X) of degree k in the n = m(m + 1)/2 different elements of the 
m X m positive definite matrix X. Corresponding to any congruence 
transformation 
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we can define a linear transformation of the space V, by 

+ + T( L )+ : ( T( L )+ )( X ) = qJ( L- ' X L  - 1') .  

This transformation defines a representation of the real linear group C@(m, R) 
in the vector space V,; that is, the mapping L 4 T( L )  is a homomorphism 
from OC(m, R) to the group of linear transformations of V,. To see this, 
note that 

for all X and 4 so that 

T( Ll L, 1 = T( I L, 1. 

Continuing, a subspace V'C V, is invariant if 

T( L ) v ' C  v' 

for all L E G t ( m ,  R). If, in addition, V' contains no proper invariant 
subspaces, i t  is called an irreducible invariant subspace. The way in which 
the zonal polynomials arise is this. It can be shown that the space Vk (which 
is obviously invariant) decomposes into a direct sum of irreducible invariant 
subspaces V, 

V, = a3 V,, 
U 

w h e r e ~ = ( k ~ , k , ,  ..., k , ) ,k l  Z k , ?  * . .  2 k , r O ,  runs over all partitionsof 
k into not more than m parts. The polynomial (trX),E V, then has a unique 
decomposition 

(tr x ) k  = I: c,( x) 
I( 

into polynomials Cu( X ) E  V , ,  belonging to the respective invariant sub- 
spaces. The polynomial Cu( X) is the zonal polynomial corresponding to the 
partition K; it is a symmetric homogeneous polynomial of degree k in the 
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latent roots of X. The way in which we defined zonal polynomials in 
Definition 7.2.1 simply exploits a property that arises from the group 
representation theory. Because of its group-theoretic nature it is known that 
C,( X) must be an eigenfunclion of a certain differential operator called the 
Laplace-Beltrami operator. This is precisely the operator A*, given by (24) 
and, as we have seen, it leads directly to the operator A,, used in Definition 
7.2.1 when we write X =  HYH‘. For proofs, references, and much more 
detail, the reader is referred to James (1961b, 1964, 1968). 

7.2.3. Some Basic Integrals 

In this section we will evaluate some basic integrals involving zonal poly- 
nomials. The results here are due to Constantine (1963, 1966). Our starting 
point is the following lemma. 

LEMMA 7.2.6. If Y=diag(y,, ...,y,,,) and X = ( x , , )  is an m X m  positive 
definite matrix then 

+terms of lower weight in they 3, 

where K = ( k l , . , . , k n l )  and d,  is the coefficient of the term of highest weight 
in C,( a )  [see (i) of Definition 7.2. I]. 

Proo/. 
can write 

If A is an m X m symmetric matrix with latent roots u l , .  ..,a,,, we 

(38) C,( A )  = d,afl. - a> +terms of lower weight 

(since C,(A) is symmetric in a l ,  . . . , a,) 
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where 5 denotes the j t h  elementary symmetric function of a , ,  . . . ,a,; that is, 

(39) 

r,,, = a,  . - - a, 

Now, ~ e ~ ~ l l , , * . . . l k  denote the k X k matrix formed from A by deleting all but 
the i , ,  . . . ,i,th rows and columns and define the function tr,( a )  by 

trk( A )  = 2 det 4 1 , 1 2  . l k .  

I I l l  Cf* ... < / k  5 m 
(40) 

I t  is an easy matter to show that [see (xiii) of the Appendix, Section A71 

'I =t r , (A ) ,  

and using this in (38) gives 

c,(A) = d,  tr,(A 1'1- '2 tr2(A ) k 2 - k 3 -  + - tr,(A + - - 

Now, putting A = XU, so that a,, = x , , 4 ,  we have 

which completes the proof. 

A particular type of constant, called a generalized hypergeometric coejji- 
cienr, will appear in the integrals that follow. If ~ = ( k , ,  ..., k,,,) and a is a 
complex number we define (a), by 
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where(a) ,=cu(a+l)-- . (a+k-l) , (a) ,=I .  If Re(a)>f(m-I )  it isclear 
that 
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where r,,( a) is the multivariate gamma function (see Section 2.1.2). 

THEOREM 7.2.7. 
Re( Z)>O and let Y be a symmetric m X m matrix. Then 

Let 2 be a complex symmetric m X m matrix with 

=(a),I',,,(a)(det Z ) - " C , (  YiT-') 

for Re(a)> f ( m  - I ) .  [Note that when K =(O), then C, 
(43) reduces to the result of Theorem 2.1.1 1 .] 

I and ( a ) ,  3 I ,  and 

Proof, We will first prove the result for the special case Z =  I,,,. In this 
case it  has to be shown that 

Let f( Y) denote the integral on the left side of (44); for any HE O ( m )  we 
have 

(45) f ( H Y H ' ) = \  etr(- X)(det X ) P - ( m + ' ) / 2  C,( XHYH') (dX) .  
x>o 

Putting U = H'XH, so that (ti(/)=( dX), this last integral becomes 

so that f is a symmetric function of Y. Because of (45) and (46) we get, on 
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integrating with respect to the normalized invariant measure ( d H )  on O(m), 

where the last line follows from Theorem 7.2.5. From this we see that 

(47) 

Since this is a symmetric homogeneous polynomial in the latent roots of Y it 
can be assumed without loss of generality that Y is diagonal, Y =  
diag( y , ,  . . . J,,,). Using (i) of Definition 7.2. I i t  then follows that 

where K = ( k  I , .  . . ,A,,,).  On the other hand, using the result of Lemma 7.2.6 
we get 

a - ( m  + I ) / 2  
= d,y:l . .  . y i m /  etr( - X)(det X) 

X > O  

.xt,'-''det[ 'I' 'I2] k 1 -  k, . . . (det X)&'"( dX) 
X2I x22 

+ terms of lower weight. 
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To evaluate this last integral, put X =  TI' where T is upper-triangular with 
positive diagonal elements. Then 
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and, from Theorem 2.1.9, 

so that 

X 2 " ( d T ) +  * ' *  

where the last line follows from (42). Equating coefficients of y : l .  * . y $ m  in 
(48) and (49) then shows that 

and using this in (47) gives 

f (  y 1 = t Q ) K  rrn t Q KK( y 1 I 

which establishes (44) and hence (43) for Z = I,,,. 
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Now consider the integral (43) when Z>O is real. Putting V =  Z ' / 2 X Z 1 / 2  
so that ( d V )  =(det Z)("+ dX),  the left side of (43) becomes 

which is equal to 

(a),r,,(a)(det Z)-"C,( Y Z - ' )  

by (44). Thus the theorem is true for real Z >O, and it follows for complex Z 
with Re( Z)>O by analytic continuation. 

An interesting consequence of Theorem 7.2.7 is that a zonal polynomial 
has a reproductive property under expectation taken with respect to the 
Wishart distribution. This is made explicit in the following corollary. 

COROLLARY 7.2.8. If A is W,(n, 21) with n > m  - 1 and B is an arbi- 
trary symmetric m X m (fixed) matrix then 

ProoJ: This follows immediately by multiplying C,( AD) by the W,,,(n, 21) 
density function for A given by Theorem 3.2.1 and integrating over A > O  
using Theorem 7.2.7 with Z= fI:-', X =  A ,  Y = B, and a = n / 2 .  

Taking B = I,,, in Corollary 7.2.8 shows that, if A is Wn,(n, Z), then 

In particular, taking K = ( I )  we have q, ,(A)=trA so that 

E ( t rA)=n t rZ ,  

a result we already know since E( A)=  nZ. In general, if 1,. . . . , I,, denote the 
latent roots of A and K =(I, I , . . . ,  1)  is a partition of k then 

C,( A )  = d , / , .  . .Ik + terms of lower weight 

= dsrk(A) .  

where rk( A )  is the k th elementary symmetric function of I,, . . . ,I,,, [see (39)]. 
Similarly, for ~ = ( l ,  ..., I) ,  

Ca( ' = drrk( ) 
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where ~~(2’) is the kth elementary symmetric function of the latent roots 
h ,,,.., A, of 2. Corollary 7.2.8 then shows that 

for k = I ,  ..., m. 

mensional Laplace transforms. 
A common method for evaluating integrals involves the use of rnultidi- 

DEFINITION 7.2.9. If j( X) is a function of the positive definite m X m 
matrix X, the Laplace transform of j( X) is defined to be 

where 2 = U + iV is a complex symmetric matrix, U and V are real, and i t  is 
assumed that the integral is absolutely convergent in the right half-plane 
Re( Z)= U > Un for some positive definite Uo. 

The Laplace transform g( Z)  of f( X) given in Definition 7.2.9 is an 
analytic function of 2 in the half-plane Re(Z)>Un. If g(Z)  satisfies the 
conditions 

(53) 

and 

(54) 

where the integrals are over the space of all real symmetric matrices I/, then 
the inverse formula 

holds. Here the integration is taken over Z = U + iV,  with U > Un and fixed 
and V ranging over all real symmetric rn X nt matrices. Equivalently, given a 
function g(2) analytic in Re(Z)>U,, and satisfying (53) and (54), the 
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inversion formula ( 5 5 )  defines a function I( X) in X > O  which has g( 2) as 
its Laplace transform. 

The integrals (52) and (55) represent generalizations of the classical 
Laplace transform and inversion formulas to which they reduce when m = 1. 
For more details and proofs in the general case the reader is referred to 
Herz (1955), page 479, and the references therein. For our purposes we will 
often prove that a certain equation is true by showing that both sides of the 
equation have the same Laplace transform and invoking the uniqueness of 
Laplace transforms. 

Two examples of Laplace transforms have already been given. Theorem 
2.1.1 I (with 2-I = 2 2 )  shows that the Laplace transform of 

fl( X) = (det X ) a - ( m + 1 ) ' 2  [Re(a )>Hm - 91 

is 

while Theorem 7.2.7 (with Y = I,) shows that the Laplace transform of 

is 

g2( 2) = ( Q ), rm( a ) (  det 2) - "C,( Z- I ) .  

To apply the inversion formula (59 ,  it would have to be shown that g l (Z)  
and g2( 2) satisfy conditions (53) and (54). This has been done for g,( Z) by 
Herz (1955) and for g2(Z) by Constantine (1963) and the reader is referred 
to these two papers for details. The inversion formula applied, for example, 
to g2( 2) shows that 

An important analog of the beta function integral is given in the 
following theorem. 
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THEOREM 7.2.10. 
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If Y is a symmetric m X m matrix then 

for Re(a)>i (m-l ) ,  R e ( b ) > f ( m - I ) .  

as in the proof of Theorem 7.2.7, 
Proof: Let I( Y) denote the integral on the left side of (57); then, exactly 

/ ( Y ) = / ( t l Y H ' )  for all H E O ( m ) ,  

and hence 

It remains to be shown that 

(using Theorem 7.2.7) 



Zonul Polvnorntals 255 

In the inner integral put X = W - ' / 2 U W - ' / 2  with Jacobian ( d X ) =  
(det W ) - ( m + t ) / 2 ( d U ) ;  then 

( d V )  (on putting V =  W -  U )  b - ( m  + 1)/2 

= ( ' ) K  '#W( a ) q( ' m (  ' 3 

where the last line follows Theorems 7.2.7 and Definition 2.1.10. This 
establishes (59) and completes the proof. 

We have previously noted in Corollary 7.2.8 that a zonal polynomial has 
a reproductive property under expectation taken with respect to the Wishart 
distribution. A similar property also holds under expectation taken with 
respect to the multivariate beta distribution as the following corollary 
shows. 

COROLLARY 7.2.1 1. If the matrix U has the Beta,(fn,, $ n 2 )  distribu- 
tion of Definition 3.3.2 and B is a fixed m X m symmetric matrix then 

Proof. This follows immediately by multiplying C,(UB) by the 
BetaJfn,, in,) density function for U given by Theorem 3.3.1 and in- 
tegrating over O< U < I,,, using Theorem 7.2.10. 

Taking B = I,,, in Corollary 7.2. I I shows that if U is BetaJtn,, in,) then 

In particular, taking the partition K =( 1, I , .  . . , I )  of k shows that 

( m ) 9  (62) E[r*(u) l=  ( n ,  + n , ) ( n ,  + n 2  - I ) .  . * (n, +n, - k  + 1) k 
n, (n , - l ) .  * * ( n , - k + l )  
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where rk (U)  is the kth elementary syntrnetric function of the latent roots 
uI, ... ,urn of U. The term 

on the right side is the k th elementary symmetric function of the roots of 
I", * 

Our next result is proved with the help of the following lemma which is 
similar to Lemma 7.2.6 and whose proof is left as an exercise (sce Problem 
7.5). 

LEMMA 7.2.12. If Z=diag(z,, ..., z , , )  and Y = ( y , , )  is an m X m positive 
definite matrix then 

+ terms of lower weight in the z 's, 

where K = ( k  I , .  . . , k,,,). 
The following theorem should be compared with Theorem 7.2.7. 

THEOREM 7.2.13. Let Z be a complex symmetric m X ni matrix with 
Re( Z)>O.  Then 

for Re(a)>k,+f (m-1) ,  whereK=(kI ,kz,  ..., k.,). 

First suppose that Z > O  is real. Let j( Z) denote the integral on 
the left side of (64) and make the change of variables X =  2 - ' / 2 Y Z - ' / 2 ,  
with Jacobian (dX)=(det Z)- (m' t  ' ) / ' (dY) ,  to give 

Prooh 

CM( Y-'Z)(dY)(det Z ) - " .  (I - ( m +  I)/2 
(65) I( 2) = 1 etr( - Y)(det Y )  

Y >(I 

Then, exactly as in the proof of Theorem 7.2.7, 



Zonul Polynomruls 251 

Assuming without loss of generality that Z=diag(z,, ..., r,,), it then follows, 
using (i) of Definition 7.2. I ,  that 

On the other hand, using the result of Lemma 7.2.12 in (65) gives 

/(Z)=(detZ)-"d,r,kl ... z> o-( rn+l ) /2  

+terms of lower weight. 

To evaluate this last integral put Y = T'T where T is upper-triangular with 
positive diagonal elements; then 

I l l  

det Y =  n r: 
, = I  

and, from Theorem 2.1.9, 

ni 

, = I  
(dY)=2'" f l  f:+I-'(dT). 
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Equating coefficients of z : ~ .  . . t t ~  in (67) and (68) then gives 

using this in (65) establishes the desired result for real Z>O,  and it follows 
for complex 2 with Re(Z)>O by analytic continuation. 

7.3. H Y P E R G E O M E T R I C  FUNCTIONS OF MATRIX 
A R G U M E N T  

Many distributions of random matrices, and moments of test statistics, can 
be expressed in terms of functions known as hypergeometric junclions oj 
matrix argument, which involve series of zonal polynomials. These funclions 
occur often in subsequent chapters. 

Hypergeometric functions of a single variable have been introduced in 
Definition 1.3.1 as infinite power series. By analogy with this definition we 
will define hypergeometric functions of matrix argument. 

DEFINITION 7.3. I .  The hypergeometric functions of matrix argument 
are given by 

where 2, denotes summation over all partitions K = ( k , ,  ..., k,,,), k ,  2 . 1 
k,  20, of k ,  CK( X )  is the zonal polynomial of X corresponding to K and the 
generalized hypergeometric coefficient (a), is given by 

where (a ) ,  = a( a + I ) .  . . ( a  + k - I), ( = 1. Here X, the argument of the 
function, is a complex symmetric m X m matrix and the parameters a,, h, are 
arbitrary complex numbers. No denominator parameter b, is allowed to be 
zero or an integer or half-integer sf(m - 1) (otherwise some of the de- 
nominators in the series will vanish). If  any numerator parameter a, is a 
negative integer, say, a, = - n,  then the function is a polynomial of degree 
mn, because for k 2 mn + 1, ( a ,  ), = ( - n) ,  = 0. The series converges for all 
X if p S q ,  it converges for (I XI/< I if p = q + I ,  where ll XI1 denotes the 
maximum of the absolute values of the latent roots of X ,  and, unless i t  
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terminates, it diverges for all X f O  if p > 9 f 1. Finally, when m = 1 the 
series (1) reduces to the classical hypergeometric function of Definition 
1.3.1. 

Two special cases of ( I )  are 

(3) 

where the second line follows from (iii) of Definition 7.2.1, and 

(IlXll<l) CA x )  123 

1F,(a; X)= x Z ( . > q -  
k = O  n 

(4) 

=det(I,, - 

a result which will be proved later in Corollary 7.3.5. Hence the IF, series is 
a generalization of the usual binomial series. 

We will see in later chapters that the hypergeometric functions given by 
Definition 7.3.1 appear in the density functions of matrix variates. The 
density functions of latent roots involve hypergeometric functions with two 
matrices as arguments. These are given by the following definition. 

DEFINITION 7.3.2. The hypergeometric functions with the symmetric 
m X m matrices X and Y as arguments are given by 

( 5 )  p F ~ m ) ( a l ,  ..., a,; b ,  ,..., bq; X, Y )  

it  is clear from Definition 7.3.2 that the order of X and Y is unimportant, 
that i s  

P 4  F('")(a, ,..., a,; bl,...,bq; X ,  Y ) = p F ~ m ) ( u l ,  ..., a,; b , ,  ..., bq; Y, X). 

Also, if one of the argument matrices is the identity this function reduces to 
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the one-matrix function of Definition 7.3.1; that is 
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( 6 )  pF~m)(ul,...,up;bl ,..., h4; X ,  Im)=pFq(aI,. . . ,crp; b ,  ,..., bq: X )  

The two-matrix functions pFq("l)  can be obtained from the one-matrix 
function pF4 by averaging over the orthogonal group O( m ) ,  as the following 
theorem shows. 

THEOREM 7.3.3. If X is a positive definite m X m matrix and I' is a 
symmetric m X m matrix, then 

= P 4  F(*')(uI ,..., a,; b ,  ,..., by; X, Y )  

where ( d H )  denotes the normalized invariant measure on O(m). 

ing term by term using Theorem 7.2.5. 
Proo/. The result is immediate by expanding the integrand and integral- 

I t  was shown in Lemma 1.3.3 that the Laplace transform of a classical 
F function is a p +  IFq function. A similar result is true in the matrix case. 

THEOREM 7.3.4. If 2 is a complex m X m  symmetric matrix with 
Re( Z)>O and Y is a symmetric m X m matrix then 

P Q  

o - ( m  1. I)/2 
(8) J etr( - XZ)(det X) pFq(ul ,..., up;  b ,  ,..., bq; X ) ( d X )  

X>O 

and 

(9) 

lX,:tr( - XZ)(det X)a"n'")'2 P 4  F("'(U,  ,..., ap,  61, ..., bq; XI Y ) ( d X )  

= r,(a)(det Z ) - ~ , , + ~ F ~ ~ ) ( ~  ,,..., u p ,  a :  6 ,  ,..., 6,; T I ,  Y )  

for p < q ,  Re(a)>f(m-l) ;  or p = q ,  Re(u)>f(m-l) ,  IIZ-'II<I (IIYII 
s I) .  

Both (8) and (9) are immediately proved by expanding the ,,Fq 
functions in the integrands and integrating term by term using Theorem 
7.2.7. 

Prook 
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The generalization (4) of the binomial series is an immediate conse- 
quence. 

COROLLARY 7.3.5. 

,&(a; Z)=det ( In , -Z)-"  (IlZll<l) 
Prooj Replacing 2 by 2-' in (8), then making the change of variables 

X = Zt/2UZ'/z with Jacobian ( d X ) =  (det Z)(m+1)/2(dU).  and using 
,F,(ZU)=etr(ZU), gives 

I Fu( a;  2) = - etr( - U)(det etr( ZU)( d U )  
rm(a)  U > O  

=det ( l -  Z)-", 

where the last line follows from Theorem 2.1.1 1. 

Theorem 7.3.4 shows that one can go from the ,, Fq function to the ,,+ , Fq 
function by means of a Laplace transform (see Definition 7.2.9). There is 
also an inverse Laplace transformation which enables the Fq+ I functions to 
be found from the ,,Fq functions. Although we will not use the results 
explicitly in this book, we will state them for the sake of completeness. They 
a re 

P 4  F ( a ,  ,... ,a,,; b l , .  . . ,bq; Z - ' ) ( d Z )  

and 

,,Fim)( a l , .  .. ,ap; b , , .  . . ,bq, 2- I ,  Y )( d Z )  

=(det X) b - ( m  + 1)/2 pF,~)(al,...rup; bl,,..,bq, b; X, Y), 
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where the integrals are taken over all matrices 2 = U, + iV for fixed positive 
definite U, and I/ arbitrary real symmetric. The reader can readily check 
that both (10) and (11)  follow by expanding the pFb functions in the 
integrands and integrating term by term using (56) of Section 7.2. 

The hypergeometric functions of one-matrix argument were first intro- 
duced by Herz (1955), who started with the function ,,F,( X)=etr( X) and 
then defined the general system of functions pFq by means of the Laplace 
and inverse Laplace transforms (8) and (10). The zonal polynomial expan- 
sion for these functions given by Definition 7.3.1 was found by Constantine 
( 1963). 

7.4. 
FUNCTIONS 

SOME RESULTS ON SPECIAL HYPERGEOMETRIC 

The hypergeometric functions of matrix argument which will occur in the 
distribution theory of subsequent chapters are ,F0, ,F0, , F I ,  and * F I .  
We have already seen that 

X) = etr( X )  

and 

,F,(u; X )  = det(l-- X )  

The other three functions are, however, nontrivial. In this section we will 
derive some properties of these particular hypergeometric functions which 
will be useful later. The results here are due to Herz (1955). 

Our first theorem gives a special integral representation for a ,F ,  
function which will be useful in the derivation of the noncentrul Wishart 
distribution in Chapter 10. The proof here is due to James. 

THEOREM 7.4.1. If X is an m X n  real matrix with m r n  and H =  
(HI : H2]E O(n) where H I  is n X tn then 

where ( d H )  denotes the normalized invariant measure on O( n) .  

Pruuh It can be assumed without loss of generality in the proof that X 
has rank m (why?), so that XX'>O. Proving that (1) is true is equivalent to 
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establishing that 

(2) 

holds. The proof constructed here consists of showing that both sides of (2) 
have identical Laplace transforms. The Laplace transform of the left side of 
(2) is 

m -  

on using Theorems 2.1.14 and 2.1.15. The first integral in the last line is over 
the space of m X n matrices X of rank m. Assuming Z>O is real, put 
X =  Z-'/*Y with Jacobian (dX)=(det Z)-"I2(dY) (from Theorem 2.1.4) 
and interchange the order of integration of Y and H to give 

(3) 

g , ( Z ) =  z L ( n ) / ; t r (  ( 4 4  - YY'+ Z-1/2YHI)(dY)(dH)(det Z ) - " l 2  

since 

1 
-etr[ ,,nin/2 - ( Y - M )( Y - M))] 

is the density function of a matrix Y having the N( M, { l , , ,@Ifl)  distribution 
(see Theorem 3.1.1). Thus g l ( Z )  is equal to (3) for real Z>O, and by 
analytic continuation i t  equals (3) for complex symmetric 2 with Re(Z)>O. 
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Turning now to the right side of (2), the Laplace transform is 

g2( Z )  = 1 etr( - XX'Z)det( XX')'" - 01; ; (4n;  W r ) ( d ( X X ' ) )  
X X ' 2 0  

by Theorem 7.3.4. But the zonal polynomial expansion for IFl makes i t  
clear that 

so that 

which is equal to gl(Z). The desired result now follows by uniqueness of 
Laplace transforms. 

The next theorem generalizes two well-known integrals for the classical 
"confluent" hypergeometric function I Fi and the Gaussian hypergeometric 
function 2 F i .  

THEOREM' 7.4.2. The ,Fl function has the integral representiitinn 

( W ,  
u - ( m t I ) / Z  *det( I - Y)"- 

valid for all symmetric X ,  Re(u)>:(m - I), Re(c)> J ( m  - I) ,  and 
Re( c - a)> $ ( m  - I ) ,  and the F, function has the integral representation 

( 5 )  
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ProoJ To prove (4) expand 

and integrate term by term using Theorem 7.2.10. To prove (5 )  expand 

det(l- XY)- '= ,F0(b :  XY) 

and integrate term by term using Theorem 7.2.10. 

function has already been given 
by (17) of Section 5.1.3. This relation, and others, are generalized in the 
following theorem. 

The Euler relation for the classical 

THEOREM 7.4.3, 

(6) 

(7) 

I Fl ( a ; c ;  X ) = etr( X) I Fl ( c  - a ; c ;  - X ) 

Fl( a ,  b; c;  X) = det( I - X ) -  '*FI ( c  - a ,  b;  c ;  - X( I - X)-') 

= det( I - X ) " " -  "FI( c - a ,  c - 6; c ;  X). 

In the classical case m = l  the relation for IF,  is usually called the 
Kummer relation and those for Fl the Euler relations. In the matrix case 
they can be established with the help of the integrals in Theorem 7.4.2; the 
proof is left as an exercise (see Problem 7.6). 

Finally, let us note the confluence relations 

h-ca 

and 

which are an immediate consequence of the zonal polynomial expansions. 
Similar relations obviously also hold for the corresponding hypergeometric 
functions of two matrix arguments. 
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We have derived most of the integral results that we need concerning 
zonal polynomials and hypergeometric fiinctions. Others will be derived in 
later chapters as the need arises. 

7 . 5 .  PARTIAL DIFFERENTIAL EQUATIONS FOR 
HYPERGEOMETRIC FUNCTIONS 

It will be seen that many density functions arid moments can be expressed 
in terms of hypergeometric functions of matrix argument. Generally speak- 
ing, the zonal polynomial series for these functions converge extremely 
slowly and methods for approximating them have received a great deal of 
attention. One way of obtaining asymptotic results involves the use of 
differential equations for the hypergeometric functions; this method will be 
explained and used in subsequent chapters. 

Differential equations satisfied by the classical hypergeometric functions 
are well-known; indeed, these functions are commonly defined as solutions 
of differential equations [see, for example, Erdklyi et al. (1953a)I. In this 
section we will give partial differential equations, from Muirhead (1970a) 
and Constantine and Muirhead (l972), satisfied by some hypergeometric 
functions of matrix argument. These differential equations will be expressed 
in terms of a number of differential operators in the latent rootsy,, . ..,y,, of 
the m X rn symmetric matrix Y. The first of these is 

J # l  

introduced in Definition 7.2.1. It  was shown in Theorem 7.2.2 that 

where ~ = ( k , ,  ... , k m )  is a partition of k arid 

(3) 
m 

pK = 2 k , ( k i  - i ) .  
( = I  

The other operators needed for the moment are 

(4) 
, + , a  

E , =  I: Y,ay,' 
r = l  
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and 

J # i  

The operator E, has also appeared previously in (33) of Section 7.2.2 and its 
effect on CK( Y )  is given by 

(7) E,CK( Y ) =  kCK( Y ) .  

To find the effect of the differential operators E ,  and 6, on C K ( Y )  we 
introduce the generalized binomial expansion 

where the inner summation is over all partitions u of the integer s. This 
defines the generalized binomial coefficients 

This generalization of the usual binomial expansion 

k 

s =o 

was introduced by 
nomial coefficients 

Constantine (1966), who tabulated the generalized bi- 
to k =4. These are given in Table 2. They have been 

tabulated to k =8 by Pillai and Jouris (1969). Now, corresponding lo the 
partition ~ = ( k ~ ,  ..., k m )  of k ,  let 

(9) K ,  =(&I 9 -. 9 k l -  I 9 k l  4- 1 9  k l +  I 9 * * * ~k,,) 

and 

whenever these partitions of k + I and k - 1 are admissible, that is whenever 
their parts are in non-increasing order. The following properties of the 
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Table 2. Generalized binomial coefficients (:) 
k = l  k =2 

K 

Source: Reproduced from Constantine (1966) with the kind permission of the Institute of 
Mathematical Statistics. 

generalized binomial coefficients are readily established: 

(i) ( (i)) = I  for all K .  

( i i )  ( ( 7 ) )  = k for any partition K of k. 

( i i i )  (:) =O if the partition u has more non-zero parts than K .  

(iv) ( E ) = O i f K > v .  

(v) I f  K and u are both partitions of k then 
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(vi) If K is a partition of k and u is a partition of k - I then ( j ) i+O only 
if u = K(’)  for some i .  

The effects of the operators cy and 6, on C,( Y) are given in the following 
lemma. 

LEMMA 7.5.1. 

and 

where the summations are over all i such that d‘) is admissible. 

Prouj To prove (1 I )  first note that, by (8). 

+ terms involving higher powers of A .  

Hence 

C,(hI+ Y ) - C , ( Y )  
XC,( 1 )  

= lim 
h - 0  

To prove (12). it is easily established that 

(13) 6, = H E Y A Y  - A Y E Y )  

(see Problem 7.9), and then (12) follows by applying E,, A,, to C,( Y ) .  
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Two further sets of preliminary results are needed before we give 
differential equations for some one-matrix hypergeometric functions. These 
are contained in the following two lemmas. 

LEMMA 7.5.2. Lets, = ,V; -1- . - t yk, wherey ,,..., ym are the latent roots 
of the symmetric m X m matrix Y. Then 

and 

where pN is given by (3). 

Proof. To prove (14) we have 

where we have used 

sr' =( tr  Y ) k  = I: C,( Y). 
U 

Applying the operator A y - (m - 1 ) E y  to both sides of 

gives (15), and applying E y  to both sides of (15) and collecting coefficients 
of CN( Y) using (15) gives (16); the details are straightforward. 

LEMMA 7.5.3. 
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Proof: We will sketch the proofs and the reader can fill in the details. 
Applying E, to both sides of (17) and equating coefficients of C,( Y )  gives 
( 1  8). Applying 6, to both sides of (14) and collecting coefficients of C,( Y) 
using (14) gives (19). Applying 6, to both sides of (15) and collecting 
coefficients of C,( Y )  using (14), (15), ( 16), (1  8), and (19) gives (20). 

We have now gathered enough ammunition to attack the problem of 
establishing differential equations for some one-matrix hypergeometric 
functions. We will start with the *<, function. The classical ,F,(a, b; c; x )  
function satisfies the second order differential equation 

d’F dF 
dx dx x (  1 - X ) T  + [c - ( a  + b + I ) x ]  - = UbF; 

see, for example, Erdtlyi et al. (1953a), p. 56. In the matrix case a 
generalization of this is provided by the following theorem. 

THEOREM 7.5.4. The function ,F,(a,  6; c; Y )  satisfies the partial dif- 
ferential equation 

(21) 

6 ,F -t [ c - 4 ( m - I )] E,F - A ,F - [ a  + b + 1 - 3 ( m - I ) ]  E,F = mabF. 

Moreover, it is the unique solution subject to the condition that F has the 
form 

m 

where the coefficients a, are independent of m. 

Prooj I t  can be readily verified that substituting the series 

m 

F ( Y ) =  2 2a.,C,(Y) ( ~ , o , = l )  
k = O  u 

(22) 

in the differential equation (21), applying each of the component differential 
operators to C,(Y), and then equating coefficients of C,(Y) on both sides 
gives 

=[mab + ka + kb + p, + f k ( m  + I]]C,( / ) a , .  
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This is a recurrence relation for the coefficients a,. We have to show that 
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is a solution of (23). Since 

(a ) , ,  = ( 4 u [ a + k f  - - H i -  I ) ] ,  

the problem reduces to showing that 

= ( k  -t I)[  mab + p, + ka + kb + f k( M + 1 )I CK( I ). 

This, however, is B direct consequence of Lemma 7.5.3. 

Then (23) becomes 
To establish the uniqueness claim, first put ar = & / ( c ) , ,  where /I(o, = 1. 

and hence the /I, do not depend on c. Now, from (18) of Section 7.2 we have 

where 

- (2k ) ! f lp , , (2k f  -2k ,  - i + j )  
x ,  - 

H,P=,(2kl + p - i ) !  

with p being the number of nonzero parts of the partition K .  Note that x ,  is 
defined for all partitions and is independent of m; the fact that Cu( I,,,)=O if 
K is a partition into more than m parts follows by noting that ( i m ) ,  G O .  
Since 
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the recurrence relation (24) for the / IK  becomes 

= (2k + 1) [ ma6 + ka + kb + pK + j k ( m  + 1 I] x ,PK.  

There are no restrictions here on the number of nonzero parts of K ,  and the 
summation is over all I such that K,  is admissible. Now assume that the /3, 
(and hence the a,) are independent of m. Equating coefficients of m on 
both sides of (25) gives 

and equating constant terms gives 

As K runs over all partitions of k (26) and (27) give equations in all the 
unknowns /3 corresponding to partitions of k + I ,  since any partition of 
k + 1 can be expressed as K ,  for some i and some partition K of k. The 
equations (26) and (27) determine the PK uniquely. With /I(o)= I ,  (26) gives 
f l ( i )  = ab. Next, with K = ( I ) ,  (26) gives 

and (27) gives 

Solving these gives 

and 

In general, letting N ( k )  denote the number of partitions of k ,  (26) and (27) 
give 2 N ( k )  equations in the N(k + 1) unknowns corresponding to the 
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partitions of k + 1. Since 2 N ( k ) ?  N(k + I )  there are more equations than 
unknowns. We know the equations are consistent since they are satisfied by 
/3 ,=(a) , (h) , /k! .  It is a straightforward matter to show that the 2 N ( k ) X  
N(k f 1) matrix of coefficients formed from the left sides of (26) and (27) 
has rank N(k + 1) so that the equations have a unique solution. 

Using Theorem 7.5.4 it is possible to prove a much stronger result than 
the one given there. The next theorem shows that the 2Fl function is the 
unique solution of a syslem of partial differential equations. 

Zotul Po!vnomiuls und Functions oj Matrix Argument 

THEOREM 7.5.5. The function 2F,(a, b; c; Y )  is the unique solution of 
each of the rn partial differential equations 

subject to the conditions that 

(a) F is a symmetric function of yI,. . . ,y,, and 

(b) F is analytic at Y=O, and F(O)= I .  

Proo/. We will sketch the proof, which is lengthy. More complete details 
may be found in Muirhead (1970a). First note that any function which 
satisfies each of the m partial differential equations (28) also satisfies the 
equation obtained by summing them. It  is readily verified that this sum is 

S y F + [ c - f ( m - l ) ] s y F - A y F - [ a - I -  b f I - ~ ( m - l ) ] E , F = m a b F .  

This is the differential equation of Theorem 7.5.4, and i t  is shown there that 
2F,(u,  6;  c; Y) is the unique solution of this subject to F having the form 

where the coefficients a, are independent of m. I t  suffices to show that the 
differential equations (28) have the same unique solution which can be 
expressed in the form (29). 
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We first demonstrate that the m equations (28) have the same unique 
solution subject to conditions (a) and (b)  by transforming to a system of 
equations in terms of the elementary symmetric functions r, =X,"= 
r2 = X y < , y , ~ j ,  . . . , r, = ~ I J J ~  . . . y,, ofy,, . . . , ym. Let r/") for j  = 1,2, . . . , 
m - 1 denote thejth elementeary symmetric function formed from y1 , . . . , y,,,, 
omitting yi. Defining ro = I#) = 1, we have 

(30) 5 = y15(:)l + 5 ( ! )  ( j = 1, .  . . ,M - 1). 

Using this, i t  follows that 

and 

Substituting these in (28) and using (30), we find that the system (28) 
becomes 

nr 

+ 2 { [ c - f ( j - I ) ]  q(?l + ( a  + b + I - 4 j ) p  - ( a  + b + I)5} 
J = I  

aF 
a - -abF=O ( i =  I ,  ..., m), 

a5 

where a$) = a$) and, for p I v ,  

rp+v- ,  for 1 l j S p  

0 fo rp<  j 5 u  
for v C j S p  + u r p i v - ,  

for p + Y < j .  

- 1 0 

a$) = 

Any solution of (31) satisfies condition (a). In (31) we can equate coeffi- 
cients of s?), to zero for j =  I ,  ..., m, giving the system of differential 
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equations 
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aF + [ u + b + I - 4 ( j - I ) ]  - a5.- I 

( j =  I ,  ..., m ) .  

Now we put 

with y(0,. . .,O)= 1. Next, we introduce dictionary ordering for the coeffi- 
cients y ( j , ,  ...&) on the basis of the indices arranged in the order 
jnI, jm- 1 9  . . . ,J2,  j l .  Substituting (33) in (32) with j =  m gives a recurrence 
relation which expresses y ( j , ,  . . . ,jm) in terms of coefficients whose last 
index is less than j,,,, and by iteration y( j , , .  . . , jm) can then be expressed in 
terms of coefficients whose last index is zero. Putting = O  in the equation 
(32) with j = m  - 1, we can then express coefficients of the form 
y( j , , .  , .,jn,- 110) in terms of coefficients of the form y ( t , ,  . . . , tn l  ..2,0,0). By 
repeating this procedure, all coefficients can be expressed in terms of 
y(0 ,..., 0), which is 1. Hence all the coefficients y(  j , , . .  . , Jn I )  in (33) are 
uniquely determined by the recurrence relations, and condition (b) is 
satisfied. Since each differential equation in (31) gives rise to the same 
system (32), i t  follows that each equation in the system (28) has the same 
unique solution F subject to conditions (a) and (b). 

Next, note: that the coefficients in the system (32) do not involve m 
explicitly so that the coefficients y ( j l , .  . . ,jm) obtained from the recurrence 
relations will be functions of a, b, c, and j, but will be independent of M .  In 
fact, since r,, SO for h > rn the system (32) can be formally extended to hold 
for all i = 1,2, ... and the upper lirnit on the summations can be dropped. 
The coefficients y in (33) are thus defined for any number of indicesj,, . . . ,j,, 
and are completely indeperident of m. Now, the series (33) could be 



Partial Dvferential Equaltons for Hypergeometric Functions 277 

rearranged as a series of zonal polynomials 

00 

F =  I: Z%C,(Y) ,  q o ) = I .  
k = O  a 

(34) 

Since the zonal polynomials when expressed in terms of the elementary 
symmetric functions r l , .  . . ,rm do not explicitly depend on m ,  the coefficients 
a, will be functions of a, b, c, and K but not m. Since C,(Y)GO for any 
partition into more than m nonzero parts, the a, can be defined for 
partitions into any number of parts and are completely independent of m. 
Hence the unique solution of (28) subject to (a) and (b) can be expressed as 
(34), where the coefficients a, are independent of m,  and the proof is 
complete. 

Theorem 7.5.5 also yields systems of partial differential equations satis- 
fied by the I F ,  and Fl functions. These are given in the following theorem. 

THEOREM 7.5.6. The function ,F,(a;  c; Y) is the unique solution of each 
of the m partial differential equations in the system 

( i =  I , .  ..,m), 

and the function 
differential equations in the system 

( c ;  Y )  is the unique solution of each of the m partial 

I r n  Y, c - f ( m - I ) + -  -=- 
2 , = , Y I  v, 

( i =  1, ..., m ) ,  

subject to the conditions that 

(a) F is a symmetric function of y , ,  ...,y,, and 

(b) F is analytic at Y =0, and F(O)= 1. 
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Pmot Proofs similar to the proof of Theorem 7.5.5 can be constructed. 
However, the results follow directly from Theorem 7.5.5 using the con- 
fluence relations given by (8) and (9) of Section 7.4. Theorem 7.5.5 shows 
that subject to (a) and (b), the function ,F , (a ,h;  c ; ( l / b ) Y )  is the unique 
solution of each equation in the system 

Letting b -, 00, ,F1(a, b; c ; ( l / b ) Y ) -  IFl(a; c; U) and the system ( 3 7 )  tends 
to ( 3 5 ) .  Similarly, since ,F , (a;  c ; ( l / a ) Y ) - . , F , ( c ;  Y )  as a -+ 00 the system 
(36) can be obtained using (35) .  

We now turn to the two-matrix hypergeometric functions given by 
Definition 7.3.2. To give differential equations satisfied by these functions 
we need to introduce two further differential operators, namely, 

and 

(see Problem 7.10). In order to obtain the effects of these operators on 
C,( Y )  we need the fallowing lemma. 

LEMMA 7.5.7. 

[Note that this reduces to (18) of Lemma 7.5.3 when YL- I,,,.] 
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Prook From Theorem 7.3.3 we have 

Let x, ,  ..., x,,, denote the latent roots of X and apply the operator E ~ =  

Z,a/ax, to both sides to give, with the help of (1 I), 

(42) tr( H YH') etr( XH Y H')(  d H )  
a m  ) 

Using (41) to evaluate the left side of (42), this becomes 

Equating coefficients of C K ( X ) / C N ( I )  on both sides gives (40) and com- 
pletes the proof. 

The effects of y y  and q u  on CK( Y )  are given in the following lemma. 

LEMMA 7.5.8. 

(43) 

and 

Prmk To prove (43), apply the operator A,, to both sides of (40) and 
simplify using (40). To prove (44), apply A v  and y y  to C,( Y) and use (43). 
The details are straightforward and are left to the reader. 

The results we have established enable us to give differential equations 
for some two-matrix hypergeometric functions. These results are from 
Constantine and Muirhead (1972). In what follows, X and Y are symmetric 
m X m matrices with latent roots x , , .  . .,xm and y,,. . .,ym, respectively. We 
start with the 2F{"1) function. 
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THEOREM 7.5.9. The function 2F,(")(a, 6; c; XI Y )  is the unique solu- 
tion of the partial differential equation 

(45) 

6 , F + [ c -  ~ ( r n - I ) ] ~ ~ F - f ~ i + b - f ( r n  - I ) ]y ,F-~luF=a6F( t r  Y )  

subject to the condition that F has the series expansion 

where F(O,O)=I; that is, a(O)= I .  

Pro05 Substitute the series (46) in the differential equation (49 ,  apply 
each of the component differential operators to their respective zonal 
polynomials, and compare coefficients first of C,( X )  and then of C,( Y )  on 
both sides. I t  can readily be verified that this gives rise to the following 
recurrence relation for the a,: 

(47) 

(k + 1" + 4 - f(i - I)]a,, = [a + ki - f(i - l ) ] [ b  + ki -- b(i -- 1 )]aK. 

The condition a(,) = 1 used in (47) determines the a, uniquely as 

and the proof is complete. 

Theorem 7.5.9 yields partial differential equations for many other two- 
matrix hypergeometric functions. These are given in the following corollary. 

COROLLARY 7.5.10. 

(i) ,F,'m)(a; c; A', Y) satisfies the differential equation 

6,F + [c- i (m - 1)].9xxF- yVF= aF(tr Y). 

(ii) oF,(m)(c; XI Y )  satisfies the differential equation 

A .F + [ c - f ( m -- I ) ]  e,F = F( tr Y ) . 
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(iii) , F ~ " ' ) ( a ;  X, Y )  satisfies the differential equation 

SxF - ayyF - qyF = iu(m - l)F(tr Y). 

(iv) o&(ml( X, Y )  satisfies the differential equation 

SxF- y,F = I,u(m - l)F(tr Y). 

Proot (i) follows from Theorem 7.5.9 via the confluence 

Similarly (ii) follows from (i) by confluence. Putting b = c =(m - 1)/2 in 
Theorem 7.5.9 gives (iii), and putting a = c=(m - 1)/2 in (i) gives (iv). 

7.6. G E N E R A L I Z E D  LAGWERRE POLYNOMIALS 

Having generalized the classical hypergeometric functions to functions of 
matrix argument, i t  is interesting to ask whether other classical special 
functions can be similarly generalized. The answer is that many of them can 
and have been, and the interested reader is referred to the references in 
Muirhead ( 1978). After the hypergeometric functions, the functions which 
appear to be most useful in multivariate analysis are generalizations of the 
classical Laguerre polynomials, which have been studied by Herz (1955) and 
Constantine (1966). The generalized Laguerre polynomials will be used in 
Sections 10.6.2, 10.6.4, and 11.3.4. 

Let us first recall some facts about the classical Laguerre polynomials, 
one of the classical orthogonal polynomials. The Laguerre polynomial L.X(x) 
is given by 

for y > - 1. Various normalizations are used; here L]I is normalized so that 
the coefficient of x k  is (- Obviously L l ( x )  is a polynomial of degree k 
in x, and the LX are orthogonal on x >O with respect to the weight function 
e-"xY; in fact, 
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The basic generating function for the Li is 

For proofs and other properties the reader is referred to Rainville (1967), 
Chapter 12, and ErdClyi et al. (1953b), Chapter 10. It should be noted that 
the polynomial in these references is Lj!(x) /k!  in our notation. 

Each term in (1) has been generalized previously. In  defining the hyper- 
geometric functions of matrix argument, the powers of the variable were 
replaced by zonal polynomials and the coefficients ( by generalized 
hypergeometric coefficients (a), given by (2) of Section 7.3. The binomial 
coefficients have been generalized by the generalized binomial coefficients 
which appear in the generalized binomial expansion given by (8) of Section 
7.5. Taking our cue from these we will proceed from the following defini- 
tion, which should be compared with ( I ) .  

DEFINITION 7.6.1. The generalized Laguerre polynomial L,Y( X )  of an 
m X m symmetric matrix X corresponding to the partition K of k is 

where the inner summation is over all partitions u of the integer .F and, 
throughout this section, 

p =  $ ( m  + 1). 

Clearly L:( X) is a symmetric polynomial of degree k in the latent roots of 
X. Note that 

The following theorem gives the Laplace transform of (det X)uL,Y( X )  and 
is useful in the derivation of further results. 

THEOREM 7.6.2. If 2 is an m X m  symmetric matrix with Re(Z)>O 
then 

(6) etr( - XZ)(det X)'L:( X)( d X )  
X 20 

= ( y + p ), r,( y + p ) (det Z ) - - p ~ , (  I - z-- I )  



Generutired Loguerre Polynomruls 283 

Proof: Substituting the right side of (4) for L:( X) in the integrand, and 
integrating using Theorem 7.2.7 shows that the left side of (6) is equal to 

using (8) of Section 7.5, and the proof is complete. 

Our next result generalizes the generating function relation (3). 

THEOREM 7.6.3. If X > O ,  then 

(7) det(I-2)-7-PoFJ'")(- X , Z ( Z - Z ) - ' )  

Proof: The proof consists of considering both sides of (7) as functions 
of X and showing that they have the same Laplace transforms. First, 
multiply both sides of (7) by (det X)r; we then must show that 

(8) det( I - Z)-Y-P(det X)roFd'")( - X, Z (  I - 2)- I )  

The Laplace transform of the left side of (8) is 

g,( W)=det( I - Z)-'-'/ etr( - XW)(det X)' 
x >o 

.o  Fi"J'( - x, z( I - z ) - I)( dX ) 

= det( I - 2) - --'r',,,( y + p)(det W)  - ' y + p ;  - W- I ,  Z( I - Z)-') 
by Theorem 7.3.4 

= r , , , ( y + p ) ( d e t W ) - Y - P d e t ( l - Z ) - Y - P  

I - 7 - P  det(I+ H'W-'HZ(I - Z ) -  ) ( d H ) ,  

using Theorem 7.3.3 and Corollary 7.3.5 
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=r, , r (y+p)(detW)--Y-P det(f - Z +  N’W-lHZ)-T-P(dH) 

The Laplace transform of the right side of (8) is 

which is equal to g,( W ) .  The desired result now follows by uniqueness of 
Laplace transforms. 

The integral expression for Lz(X)  in the next theorem is actually how 
Constantine ( 1966) defined the generalized Laguerre polynomials. 

THEOREM 7.6.4. If X is a symmetric m X m matrix then 

[ y  > - 1 ; p =( m + l)/2]. 

A proof of this result can be constructed by showing that both sides of 
(9) have the same Laplace transforms; the details are very similar to those in 
the proof of Theorem 7.6.3 and are left as an exercise (see Problem 7.18). 

The final result we will present is the generalization of the orthogonality 
relation (2). Note that the following theorem says that the Laguerre poly- 
nomials are orthogonal with respect to a Wishart density function. 
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THEOREM 7.6.5. L;S( X) and L:( X) are orthogonal on X>O with respect 
to the weight function 

W( X)=etr(-  X)(det X ) ' ,  

unless K = u. Specifically, 

1 if K = u  m + l  
and p = -  0 if K # U  2 '  8.0 = ( 

ProoJ. From the generating function (7) we have 

( 1 1 )  d e t ( I - Z ) - Y - P  etr(-XHZ(I-Z)- 'H')(dH) L( nr 

Multiply both sides by etr( - X)(det X ) T , (  X), where u is a partition of 
any integer s, and integrate over X > O .  The left side of ( 1  I )  becomes 

( 12) det( I - 2)- '- '1 / O(n1) x > o  
etr( - X (  I + HZ( I - Z ) - ' W ) )  

(det X)'C,( X)( d X ) (  d H )  

-det( I + HZ( I - Z)  -IN') -- ' -"( dN) C,( I - 2 )  

by Theorem 7.2.7 

= r m ( Y  + P N Y  + P).C.(I - Z )  

= r n , ( y + p ) ( y + p ) , ( -  I)'C,(Z)+termsof lowerdegree. 



206 Zotiul Polvrromiuls mid Functions of Mutrix Argument 

The right side of ( I  1) becomes 

m 

“(’) I etr( - X)(det X)’C,( X)L,Y( X ) ( d X ) .  
( 1 3 )  2o C,( I ) k !  x z o  

Comparing coefficients of C,( 2) on both sides shows that 

ett( - X)(det x)’c,( X)L,’( x ) ( ~ x ) = o  L o  
for k 2 s, unless K = o, so that L,Y( X) is orthogonal to all Laguerre poly- 
nomials of lower degree. Since, from Definition 7.6.1, 

L,Y( X) = ( - 1)”C,( X) + terms of lower degree 

i t  also follows that L;I( X) is orthogonal to all Laguerre polynomials LX( X) 
of the same degree unless K = o, Putting K = o and comparing coefficients of 
C,( 2) in ( 12) and ( 13) gives 

etr( - X)(det X)’C,( - X ) L ; (  X)( d X )  I X  =-0 

=s!c,(l)r,,(Y + P ) ( Y + P ) , ,  

from which it follows that 

since 

L3( X )  = C,( - X) + terms of lower degree which integrate to zero. 

PROBLEMS 

7.1. Using the recurrence relation given by (14) of Section 7.2 compute 
the coefficients of the monomial synimetric functions in all zonal 
polynomials of degree k =4 and k = 5.  
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7.2. Let 

be a 2 x 2  positive definite matrix and put x = ( x l r x 2 , x j ) ’ ;  then 

d X = [  and d x = ( d x , , d x , , d x , ) ’ .  
d x ,  

(a) Show that the 3 X 3 matrix G ( x )  satisfying 

tr( X- I d X X -  I d X )  = dx‘G(x)  d x  

is 

G(x)= I - 2 x 2 x 3  2 ( x , x , + x : )  

(b) Let At ,  be the differential operator given by (23) or (24) of 
Section 7.2. Express A: in terms of 

d - a 2  a 2  

ax; axlax, axi a 

- 

(c) Put 

where L =( I i , )  is a 2 x 2  nonsingular matrix, and put z=(z , ,  z2, z3)’. 
Find the 3 x 3  matrix TL such that z=TLx, and verify directly that 
G( TLx) = TL- ‘G(x)TL ’. 

7.3. If g,( Z) and gz( Z) are the Laplace transforms off,( X) and f2( X) (see 
Definition 7.2.9) prove that gl( Z)g2( 2 )  is the Laplace transform of the 
convolution 
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7.4. Use the result of Problem 7.3 to prove Theorem 7.2.10 for Y >O. 
[Hint: Let j (  Y) denote the integral on the left side of (57) of Section 
7.2 and show that/(Y)=/(I)C,(Y)/C,(I). Putting X =  Y - 1 / 2 V Y - 1 / 2  
in the integral gives 

Now take Laplace transforms of both sides using the result of Prob- 
lem 7.3 to evaluate the transform of the right side, and solve the 
resulting equation for /( I )/Cu( I ).] 
7.5. Prove Lemma 7.2.12. 
[Hint: Note that if A - l  has latent roots a, ,  ..., alil then 

where r, is the k th elementary symmetric function of a,, . . .,a,,,. Now use 
the fact that tj =det A - I  trm.-,( A ) ;  see (xiv) of Section A7.1 

7.6. Prove Theorem 7.4.3. 

7.7. Show that 

7.8. Suppose that HI E V k , m ,  i.e., H I  is m x k with H;H, =: f k .  Let (dH,) be 
the normalized invariant measure on vk,,, so that jV ,  ( d ~ , ) =  I .  If  x i s  an  
m X m positive definite matrix prove that 

7.9. 

7.10. Verify (39) of Section 7.5. 

7.11. Calculate all the generalized binomial coefficients (E) for partitions K 

of k = 1 , 2 , 3 .  

Prove (13) of Section 7.5. 



Problems 289 

7.12. Prove that 

where K is a partition of k and the summation is over all partitions u of s. 

7.13. Prove that 

[Hint: Start with Z : ~ , x , a / a x , C , ( x ) = k C K ( X ) ,  put X = ( I +  Y ) ,  substitute 
the generalized binomial expansion of C,(I + Y), and equate coefficients of 

7.14. Prove that 
'K( )/',( I )'I 

[ H i n t :  Use the result of Problem 7.7.1 
7.15. Prove that 

[Hint: Use the Kummer relation of Theorem 7.4.3 and the result of Problem 

7.16. I t  is sometimes useful to express a product of two zonal polynomials 
in terms of other zonal polynomials (see, e.g., the proof of Lemma 10.6.1). 
Define constants g,", by 

7.14.) 

' O (  )'T( ) = 2 g,"TCK( ) 
a 

where u is a partition of s, T is a partition of t ,  and K runs over all partitions 
of k = s + t .  

(a) Find all constants g for partitions of s =2, t = 1. 
(b) Prove that 
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/Hint :  Use the result of Problem 7.7, expand etr(Y) as a zonal 
polynomial series, and equate coefficients of CK( Y )  on both sides.] 
7.17. I f  Y =diag(y,, y 2 )  prove that 

[Hint: Show that the right side satisfies the partial differential equations of 
Theorem 7.5.6.1 
Using the confluence relations given by (8) and (9) of Section 7.4, obtain 
similar expressions for , F,( a; c; Y )  and F,( c; Y ) .  
7.18. Prove Theorem 7.6.4. 
7.19. Prove that 

for X > O ,  Z > O , y > - I , p = f ( r n + I ) .  

7.20. Prove that 

for X>O,  IIZII<I, y > - I , p = t ( r n + I ) .  

7.21. Prove that 



CHAPTER 8 

Some Standard Tests on Covariance 
Matrices and Mean Vectors 

8.1. INTRODUCTION 

In this chapter we examine some standard likelihood ratio tests about the 
parameters of multivariate normal distributions. The null hypotheses con- 
sidered in this chapter are 

H :  Z, = X, = - . = 2, 
H :  X = h I,,, 
H : I : = Z ,  (Section 8.4), and 
H: Z =  Z,, p = p o  

(Section 8.2), 
(Section 8.3), 

(Section 8.5). 

In each instance the likelihood ratio test is derived and invariance and 
unbiasedness properties are established. Moments of the test statistics are 
obtained and used to find asymptotic null and non-null distributions. The 
likelihood ratio test statistics are also compared briefly with other possible 
test statistics. 

There are a number of other null hypotheses of interest about mean 
vectors and covariance matrices. Some of these will be treated later. These 
include testing equality of p mean vectors (Section 10.7). testing equality of 
p normal populations (Section 10.8), and testing independence of k sets of 
variables (Section 1 1.2). 

8.2. TESTING EQUALITY OF r COVARIANCE MATRICES 

8.2.1. The Likelihood Ratio Statistic and Invariance 

In this section we consider testing the null hypothesis that the covariance 
matrices of r normal distributions are equal, given independent samples 
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from these r populations. Let X,l,...,Xl,,,,. be independent N,,,(pi, Z,) ran- 
dom vectors ( i  = I , .  . . , r )  and consider testing the null hypothesis 

Some Stundurd Tests on Coouriuntr Matrices and Meun Vectors 

against the alternative K which says that H is not true. In H the common 
covariance matrix is unspecified, as are the mean vectors. The assumption of 
equal covariance matrices is important in multivariate analysis of variance 
and discriminant analysis, as we shall see in Chapter 10. Let %, and A,  be, 
respectively, the mean vector and the matrix of sums of squares and 
products formed from the ith sample; that is, 

J =  I 

and put 

The likelihood ratio test of H, first derived by Wilks (1932), is given in the 
following theorem. 

THEOREM 8.2. I .  The likelihood ratio test of size a of the null hypothesis 
H: 2, = - - . = Z, = Z, with I: unspecified, rejects H if A -C c,, where 

and c, is  chosen so that the size of the test is a. 

Prm& Apart from a multiplicative constant the likelihood function 
based on the r independent samples is [see, for example, (8) of Section 3.11. 

r 

r = l  

r 

I .= I 

(2) ~( ILl , . . . , IL , ,~ l , . . . ,Z , )= n L,(IL, ,Z,)  

= n ((det Zr)-N”2etr( - fZ;IA,) 

*exP[- tq(% - P i y Z ; ‘ ( ~ r - P l ) ] ] .  
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The.likelihood ratio statistic is 

When the parameters are unrestricted, maximizing the likelihood is equiva- 
lent to maximizing each of the likelihoods in the product (2 )  and hence the 
denominator in (3) is 

(4) 

where 2, = N,- 'A,. When the null hypothesis H: X, = - * =X, = Z  is true, 
the likelihood function is, from (2) 

r 

L(%, , .. , ,%,, el,. . . , k r )  = e-mN/2 n ( N,-mNJ2(det 
, = I  

f . ( p  ,,..., p,,X ,..., X)=(detZ)-N/2etr(  - f X - ' A )  

( = I  

which is maximized when pi=%,  and X = N - ' A .  Hence the numerator in 
(3) is 

Using (4) and ( 5 )  in (3) then gives 

and the likelihood ratio test rejects H for small values of A,  completing the 
proof. 

We now look at the problem of testing equality of covariance matrices 
from an invariance point of view. Because it is somewhat simpler we will 
concentrate here on the case r =2, where - -  we are testing H 2, = Z2 against 
K: 2 ,  ZZ,. A sufficient statistic is (X,,X2, A, .  A2) .  Consider the group of 
nonsingular transformations 
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- .- 
acting on the space R"' X R" X S,,, X S,, of points (X,,X,, A , ,  A,) by 

where the group operation is 

The corresponding induced group of transformations (also G )  on the 
parameter space of points ( p , ,  p Z ,  Z,, 2,) is given by 

( 7 )  (B,c,~)(~~,c~,Z,,Z,)=(B~, +C,Bpz+d, B C I B ' , B ~ ~ B ' )  

and - -  the testing problem is invariant under G, for the family of distributions 
of (X,,X2, A , ,  A,) is invariant, as are the null and alternative hypotheses. 
Our next problem is to find a maximal invariant. 

THEOREM 8.2.2. Under the group G of transformations (7) a maximal 
invariant is(8',...,8,,,), where8,?8,Zz rS,(>O) are thelaterit rootsof 
Z,Z;'. 

Pruuj Let 

First note that + is invariant, for the latent roots of 

( B Z I B ' ) ( B Z ~ B ' ) ' - ' =  BZ: I 2  2 - I B - l  

are the same as those of Z,Z,'. To show it is maximal invariant suppose 
that 

+(PI9 P2.&9 2, )= +(71,T2 9 r,, r; 1; 

that is, Z,Z,' and rlI';' have the same latent roots (S,,...,8,). By 
Theorem A9.9 there exist nonsingular matrices B ,  and B, such that 

BIZl B;  = A ,  B , Z 2 B ;  = I,,,, 

B 2 r l  Bi A ,  B2r2 B; = I, ,  

where 

A =diag( 6,, . . . ,a,,,). 
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Then 

and 

where 

B = B, ' B , .  

Putting c=  - B p ,  + and 

we then have 

so that 

Hence (a, ,  . . . ,am) is a maximal invariant, and the proof is complete. 

As a consequence of this theorem a maximal invariant under the group G 
acting on the sample space of the sufficient statistic (X,,X,, A, ,  A,) is 
( I,,. .. ,f,), wheref, 2 /2 1 . - 2 f , (>O)  are the latent roots of A , A ; ' .  Any 
invariant test depends only on f,, ...,f,, and, from Theorem 6.1.12, the 
distribution of f,, ...,f, depends only on 61,...,8,,,, the latent roots of 
2,Z;'. This distribution will be given explicitly in Theorem 8.2.8. Note that 
the likelihood ratio test is invariant, for 

- -  
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so that A is a function off,, ...,jm. In terms of the latent roots of z’,Z,’ the 
null hypothesis is equivalent to 

There is no uniformly most powerful invariant test and many other func- 
tions of f,, , . . ,f, in addition to A have been proposed as test statistics. Some 
of these will be discussed in Section 8.2.8. For the most part, however, we 
will concentrate on the likelihood ratio approach. 

8.2.2. 

The likelihood ratio test of Theorem 8.2.1 has the defect that, when the 
sample sizes iV,,...,Nr are not all equal, it is biased; that is, the probability 
of rejecting H when H is false can be smaller than the probability of 
rejecting H when H is true. This was first noted by Brown (1939) when 
m = 1 (in which case the equality of r normal variances is being tested). We 
will establish the biasedness for general m using an argument due to Das 
Gupta (1969) for the case of r = 2  populations. This involves the use of the 
following lemma, 

LEMMA 8.2.3. Let Y be a random variable and 6(>0) a constant such 
that S( N, - l)Y/( N, - 1) has the FN, ,, N , - ,  distribution, with N, c= N2, and 
let 

Unbiusedness and the Mod$ed Likelihood Ratio Test 

Then there exists a constant X ( A  C 1) independent of k such that 

p(6)>/3(1) for all ~ E ( X ,  I). 

Proo/. Since the region 

is equivalent to yz 5 YI y I ,  where 

(9) 
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it follows by integration of the FNI- I ,  N,- I density function that 

where 

Differentiating with respect to 6 gives 

> 
I t  then follows that @'(a) 0 according as 

Using (9) we then have that /l'( 6)  0 according as 

where 

and h < I. It now follows from (10) that there exists 6, such that p'( 8 )  $0 

according as 6 5 &, where 6, < 1, Now, since the h c t i o n  g(x) = (1 + Ax)/( I 
+ x)" is increasing in x we have g( y ,  )> g( y2);  from (10) this implies that 
P'(h)<O. Hence S , < X < l .  Consequently B(S)>@(l) for ail S E ( X , I ) ,  
where h does not depend on k .  

We are now in a position to demonstrate that the likelihood ratio test for 
testing equality of two covariance matrices is biased. First note that reject- 
ing H for small values of A given by (8) is equivalent to rejecting H for 
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small values of 

A2N,""fiNj"' N1 - (det A ,  ) N'(det A ) N 1  - 
N n l N  det(A,+A,)N1+N'  ' 

V =  

THEOREM 8.2.4. For testing H: C, = Z, against K: 2, # 2', the likeli- 
hood ratio test having the critical region V:: k is biased. 

Using an obvious invariance argument we can assume without 
loss of generality for power calculations that Z, = l,,, and 2, = A, where A is 
diagonal. In particular, take 

A=diag(6,1, ..., 1 ) .  

Prooj: 

Let A ,  = ( u ! j ) )  and A, =(a:;)),  and define the random variable Z by 

Then Z is independent of the first factor on the right side of (12), and its 
distribution does not depend on 6 (use Theorem 3.2.10). Putting Y =  ui\j/u{:) 
so that 6-'( N,  - I)Y/( N ,  - 1) is f",... ,, ,,,*-. ,, the first factor on the right side 
of (12) is Y N l / (  1 + Y)Nl - t  '2. Lemma 8.2.3 then shows that the power of the 
likelihood ratio test is less than its size if S-'E(X,l), where h is given by 
( I  I), and the proof is complete. 

Although unbiascdness is in no sense an optimal property, i t  is certainly 
a desirable one. It turns out that by modifying the likelihood ratio statistic 
slightly an unbiased test can be obtained. The modified likelihood ratio 
statistic, suggested by Bartlett (1937). is defined to be 

where n, = N, - I and n =X:=!n ,  = N - r. Note that A* is obtained from A 
by replacing the sample sizes N, by the corresponding degrees of freedom n,. 
This is exactly the likelihood ratio statistic that is obtained by working with 
the likelihood function of XI, .  . . ,C, specified by the joint marginal density 
function of A, , . .  . ,A,  (a product of Wishart densities), rather than the 
likelihood function specified by the original normally distributed variables. 
The modified likelihood ratio test then rejects H: 2, = . - . = Z, for small 
enough values of A*. The unbiasedness of this test was established in the 
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univariate case m = 1 by Pitman (1939). If, in addition, r =2, this test is a 
uniformly most powerful unbiased test. The unbiasedness for general m and 
r was proved by Perlman (1980). Although his elegant proof is too lengthy 
to reproduce here, we will establish the unbiasedness for the case r = 2  using 
an argument due to Sugiura and Nagao (1968). 

THEOREM 8.2.5. For testing H: 2, = 2, against K: 2, # 2,  the modified 
likelihood ratio test having the critical region 

(det A ,)nt/2(det A 2 ) i ' 2 / 2  

det( A ,  + A,)"/ '  ( A , ,  A , ) ;  A >o, A ,  >o, 

is unbiased. 

Proof: Using invariance we can assume without loss of generality that 
Z, = lm and 2, = A ,  where A =diag(6,, ..., 6,). The probability of the 
rejection region under K is 

where 

cllr, = [ 2 n r n / *  rm( 4 4  - I .  

Now make the transformation A ,  = U,, A, = Ui1/2UzU1'/2,  where U , 1 / 2  is the 
positive definite symmetric square root of U , ,  so that U l i / 2 U , i / 2  = U,. Then 

( dA I )( dA , ) = (det U, ) ( n ' +  I)/'( dU, )( db',). 

and 

- n / 2  
.det( A- '  + U2) (dU,) ,  
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using Theorem 2.1.9. Now put U, = A -  1 / 2 V A - 1 / 2 ,  with (dU,)= 
(det A ) - ( n ' + t ) / 2 ( d V ) ,  so that 

Sonre Slundurd Tests on Coouncmre Mutrrces and Meun Vectors 

Putting C2 =( V; Y>O, ( I ,  V )  E C ) ,  so that C, = C, when H is true (Le., 
when A = I ) ,  i t  then follows that 

det( I -I- V)- ' i ' 2 (  d V )  

- 
c, - c, n c-, Jvc c, - c, n c2 

Now, for V E  C, - C, 17 C2 we have 

and for Y E  C, - C ,  n C, 
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since 

this is easily proved by making the transformation W =  A-1/2VA-1/2 in the 
integral on the left. We have used the fact that 

[because this integral is bounded above by d-'P,(C)], from which i t  follows 
that for any subset C* of C ,  

this implies that 

which has been used implicitly above. We have thus shown that PK(C)? 
PH(C) and the proof is complete. 

8.2.3. Central Moments oj the Modi$ed Likelihood Ratio Statistic 

Information about the distribution of the modified likelihood ratio statistic 
A* can be obtained from a study of its moments. In this section we find the 
moments for general r when the null hypothesis H: 2, = . - .  =Z, is true. 
For notational convenience, define the statistic 

where n = Z:= ,n , .  The moments of W are given in the following theorem. 
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THEOREM 8.2.6. When ff: 2, = . - = Z, is true, the h th moment of tV 
is 

ProoJ Let 2 denote the common covariance matrix, so that the A, are 
independent Wm(ni, Z) matrices ( i  = 1, ..., r ) .  There is no loss of generality 
in assuming that I: = I,,,, since W is invariant under the group of transfor- 
mations A,  3 BA,B‘,  where B E  @(m,  R). Hence, 

where 

where A =El=; , A ,  and the A,  have independent W,[n,( 1 + h), l,] distribu- 
t ions( i=l ,  ..., r). HenceA is H$, [n( l+h) ,  I,,,jso that, using(l5)of Section 
3.2, 

Substituting buck in (17) and using (16) then gives the desired result. 

The moments of W may be used to obtain exact expressions for the 
distribution of W, and hence A*. Briefly the approach used is as follows. 
The M e l h  transform of a function f ( x ) ,  defined for x >O, is 
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a function of the complex variable s. The function f ( x )  is called the inuerse 
Mellin transform of M ( s ) ;  see, for example, ErdClyi et al. (1954), Chapter 6. 
If X is a positive random variable with density function f ( x ) ,  the Mellin 
transform M(s) gives the (s - I)th moment of X. Hence Theorem 8.2.6 gives 
the Mellin transform of W evaluated at  s = h + I ;  that is, 

M ( h  + I ) =  E(  W " ) .  

The inverse Mellin transform gives the density function of W. There is, of 
course, nothing special about the central moments here; given the non- 
central moments (when H is not true) the noncentral distribution of W can 
be obtained using the inverse Mellin transform approach. It turns out that 
exact distributions of many of the likelihood ratio criteria that we will look 
at, including W, can be expressed via this method in terms of two types of 
special functions known as G and H functions. For work in this direction 
the interested reader is referred to Khatri and Srivastava (1971), Pillai and 
Nagarsenker (1972), Mathai and Saxena (1978), and to useful survey papers 
by Pillai (1976, 1977) and references therein. Although theoretically inter- 
esting, we will not go into this further because in general the exact density 
functions of likelihood ratio statistics in multivariate analysis are so com- 
plicated that they appear to be of limited usefulness. It  should be mentioned 
that there are often some special cases for which the distributions are quite 
tractable. Rather than list these, however, we will concentrate on asymptotic 
distributions; these turn out to be simple and easy to use. 

8.2.4. 
Statistic 

In this section we derive an asymptotic expansion for the distribution of A* 
as all sample sizes increase. We put n,  = kin  ( i  = I , .  .. , r ) ,  where xr= , k ,  = 1 
and assume that k, >O and that n+m.  The general theory of likelihood 
ratio tests [see, e.g., Rao (1973), Chapter 6) shows that when the null 
hypothesis H: 8, = * * = 2, is true, the asymptotic distribution as n -, 00 of 
- 2 log A (and - 210g A*) is x; ,  where 

f =  number of independent parameters estimated in the full parameter 
space - number of independent parameters estimated under the null 
hypothesis 

The Asymptotic Null Distribution of the Modified Likelihood Ratio 

= r m + $ r m ( m +  ~ ) - [ r m + i m ( m + ~ ) ]  

= f m ( m  + l ) ( r  - I ) .  
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It  turns out, however, that in this situation and many others convergence to 
the asymptotic xz distribution can be improved by considering a particular 
multiple of -2IogA*. We will first outline the general theory and then 
specialize to the modified likelihood ratio statistic A*, For a much more 
detailed treatment than the one given here, the reader should refer to Box 
(l949), to whom the theory is due, and to Anderson (1958). Section 8.6. 
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Consider a random variable 2 (05 25 1) with moments 

where 

P n 

and K is a constant such that E( Z o ) =  1. In our applications we will have 
xk = u k n ,  y, = b,n, where and b, are constant and n is the asymptotic 
variable, usually total sample size or a simple function of it. Hence we will 
write O( n )  for O( x , )  and O( y,). Now, from (l8),  the characteristic function 
of -2plog2, where p ( O s p  5 I )  for the moment is arbitrary, is 

Putting 

it then follows that the cumulant generating function 'k( I )  of - 2plog 2 can 
be written as 
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where 

(23) 

and we have used the fact that -g(O)=logK because sl(O)=O. We now 
expand the log gamma functions in \ k ( t )  for large x k  and 4. For this we 
need the following asymptotic expansion due to Barnes [see Erdblyi et al. 
(l953a), page 48): 

(24) i o g r ( t  + u ) = ( z  + u - +)iogt  - t +; 1 0 g 2 ~  

B A a )  t-, + - + ( - I )  / + I  - 4 + I ( a ) t - /  +- 
1.2 / ( / + I )  

+ O( t -'- ' ) ( I  = I ,  2 ,3 , .  . . , larg z I -= w ). 

In (24), B,(a) is the Bernoulli polynomial of degree j ,  defined as the 
coefficient of t J / j !  in the expansion of re"'(e' - l ) - ' ;  that is, 

(25) 

The first few Bernoulli polynomials are [see Erdelyi et al. (1953a), page 36) 

Using (24) to expand the log gamma functions in g ( f )  and g(0) for large x k  
and y, we obtain, after some simplification 

(27) 
I 

'k( I )  = - $/log( 1 - 2 i f )  + q,[ ( 1  -2ir)-" - I ]  + O( n-'-"), 
a = l  
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where 
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1 4 P 

k = l  j = I  

and 

If  I - p  is not small for large n i t  follows from (21) that Pk and tJ arc of 
order n; for (27)  to be valid we take p to depend on n so that 1 - p = O( K I ) .  

If  we take p =  1, I =  1 and use the fact that oi =O(n- ’ ) ,  ( 2 7 )  becomes 

U( t ) = - $Jog( 1 - z i t )  + O( n - I ) .  

Exponentiating gives the characteristic function of - 2 log Z as 

+ ( I ) = (  1 - 2 i f ) - ” * [  1 + O( n- I ) ] .  

Using the fact that ( 1  - 2 i l ) - f / *  is the characteristic function of the x; 
distribution, it follows that P ( - 2 l o g Z ( x ) =  P ( ~ $ 5 x ) + O ( n - ‘ ) ,  so that 
the error or remainder term is of order t i - ‘ .  The point of allowing a value of 
p other than unity is that the term of order n-’ in the expansion for 
P( - 2plog Z 5, x)  can be made to vanish. Taking I = I in (27) and using the 
fact that B,(a)= u 2  - a + 8 we have for the cumulant generating function 

q(r)= -t/log(t - 2 i t ) + w l [ ( i - 2 i t ) -  I -  I ]  - i - O ( i i ~ ~ ~ ) ,  

of -2plog2, 

where j is given by (28)  and 
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on using (21). If we now choose the value of p to be 

it  then follows that w ,  GO. With this value of p we then have 

+(r)=(l-~ir)-"'[ I -I- ~ ( n - z ) ] ,  

and hence 

(31) P( -2plog zsx)= P ( x ;  5= x )  + O( n - 2 ) .  

This means that if the x ;  distribution is used as an approximation to the 
distribution of -2plog2,  the error involved is of order n-2 .  If we also 
include the term of order n-2  we have, from (27) with wI =0, 

*( r ) = - Jiflog( 1 - 2ir ) + w2[ ( I - 2it 1- * - I] + O( n -3 1, 

so that 

(32) 

P (  -2piog 21. x ) =  P( x; 5 x )  + w2[ P (  x5+4 5 x ) -  P (  x: ~ x ) ]  + ~ ( n - 3 ) .  

We now return to the modified likelihood ratio statistic A* for testing 
H: Xi = . - = 2,. Putting n ,  = &,n, where z:= ,&, = 1, it follows from Theo- 
rem 8.2.6 that 

(33) 

where K is a constant not involving h.  Comparing this with (It!), we see that 
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it has the same form withp=m; q = r m ;  v , = f n ;  q,= - t ( j -  1); xk = f n k , ,  
with k = ( i - I ) m + I  ,..., im ( i = I  ,..., r ) ; &  = - j ( j - - I ) ,  with k =  j ,  
m - t  j l . . . l ( r - l ) m + j  ( j = l ,  ..., m).  
$he degrees of freedom in the limiting x 2  distribution are, from (28), 

m m 

= r  2 ( j - I ) -  2 ( j - I ) t m ( r - I )  

= ( r - 1 ) ( ~ m ( m + I ) - m ) + m ( r - I )  

= t m ( m + l ) ( r - i ) ,  

J ' I  J =  I 

as previously noted. The value of p which makes the term of order n"' 
vanish in the asymptotic expansion of the distribution of -2plog A* is, 
from (30), 

= I -  
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With this value of p the term of order nT2 in the expansion is, from (32), 
(29) and (26) 

which, after lengthy algebraic manipulation, reduces to 

(36) 

-6(r-l)[n(I-p)]'  
m ( m + l )  

w2 = 
4 8 t n d 2  

Now define 

(37) 

which we will use as the asymptotic variable, and put 

(38) 

y = MZo, 

We now have obtained the following result. 

THEOREM 8.2.7. When the nu11 hypothesis H: 2, = * * * = X, is true the 
distribution of -2plogA*, where p is given by (35), can be expanded for 
large M = pn as 

wherej  = m(m + 1Xr - 1)/2 and y is given by (38). 
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An approximate test of size a of €1 based on the modified likelihood ratio 
statistic is to reject H if -2plogA">c,(a),  where c,(u) denotes the upper 
100a% point of the distribution. The error in this approximation is of 
older n - 2 ,  More accurate p-values can be obtained using the term of order 
n - *  from Theorem 8.2.7. For a detailed discussion of this and other 
approximations to the distribution of A*, the interested reader is referred to 

Table 3. Upper 5 percentage points of -2log A*,  where A* is the 
modified likelihood ratio statistic for testing equality of r covariaiicc 
matrices (equal sample sizes)" 

3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
25 
30 
35 
40 
45 
50 
55 
60 

I20 

m = 2  
2 3 4 5  

12.19 18.70 24.55 30.09 
10.70 16.65 22.00 27.07 
9.97 15.63 20.73 25.56 
9.53 15.02 19.97 24.66 
9.24 14.62 19.46 24.05 
9.04 14.33 19.10 23.62 
8.88 14.1 I 18.83 23.30 
8.76 13.94 18.61 23.05 
8.67 13.81 18.44 22.84 
8.59 13.70 18.31 22.68 
8.52 13.60 18.19 22.54 
8.47 13.53 18.09 22.43 
8.42 13.46 18.01 22.33 

8.35 13.35 17.87 22.16 
8.32 13.31 17.82 22.10 
8.28 13.27 17.77 22.04 
8.26 13.23 17.72 21.98 
8.17 13.10 17.56 21.78 
8.11 13.01 17.45 21.65 
8.07 12.95 17.37 21.56 
8.03 12.90 17.31 21.49 
8.01 12.87 17.27 21.44 
7.99 12.84 17.23 21.40 
7.97 12.82 17.20 21.36 
7.Y6 12.80 17.18 21.33 
7.89 12.69 17.05 21.18 

8.38 13.40 17.94 22.24 

M = 3  
2 3 4 5 

22.41 35.00 46.58 57.68 
19.19 30.52 40.95 50.95 
17.57 28.24 38.06 47.49 
16.59 26.84 36.29 45.37 
15.93 25.90 35.10 43.93 
15.46 25.22 34.24 42.90 
15.1 I 24.71 33.59 42.1 1 
14.83 24.31 33.08 41.50 
14.61 23.99 32.67 41.00 
14.43 23.73 32.33 40.60 
14.28 23.50 32.05 40.26 
14.15 23.32 31.81 39.97 
14.04 23.16 31.60 39.72 
13.94 23.02 31.42 39.50 
13.86 22.89 31.27 39.31 
13.79 22.79 31.13 39.15 
13.72 22.69 31.00 39.00 
13.48 22.33 30.55 38.44 
13.32 22.10 30.25 38.09 
13.21 21.94 30.04 37.83 
13.13 21.82 29.89 37.65 
13.07 21.73 29.77 37.51 
13.02 21.66 29.68 37.39 
12.98 21.60 29.60 37.30 
12.94 21.55 29.54 37.23 
12.77 21.28 29.20 36.82 

I_ 

'liere, r =number of covariance matrices; n =one less than common sample size; 
m =number of variables. 
Source: Adapted from Davis and Field (1971) and Lee et al. (1977), with thc kind 
permission of the Commonwealth Scientific and Industrial Research Organization 
(C.S.I.R.O.). Australia, North-Holland Publishing Company, and the authors. 
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6 
7 
8 
9 

10 
I I  
12 
13 
14 
I5 
16 
17 
18 
19 
20 
25 
30 
35 
40 
45 
50 
5 5  
60 
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Table 3 (Confinued) 

m = 4  

2 3 4  5 

35.39 56.10 75.36 93.97 
30.07 48.63 65.90 82.60 
27.31 44.69 60.90 76.56 
25.61 42.24 51.77 72.77 
24.45 40.56 55.62 70.17 
23.62 39.34 54.05 68.27 
22.98 38.41 52.85 66.81 
22.48 37.67 51.90 65.66 
22.08 37.08 51.13 64.73 
21.75 36.59 50.50 63.96 
21.47 36.17 49.96 63.31 
21.23 35.82 49.51 62.75 
21.03 35.52 49.12 62.28 
2036 35.26 48.77 61.86 
20.70 35.02 48.47 61.49 
20.56 34.82 48.21 61.17 
20.06 34.06 41.23 59.98 
19.74 33.58 46.60 59.22 
19.52 33.25 46.17 58.69 
19.36 33.01 45.85 58.30 
19.23 32.82 45.61 58.00 
19.14 32.67 45.42 57.77 
19.06 32.55 45.26 57.58 
18.99 32.45 45.13 57.42 
18.64 31.92 44.44 56.57 

__. 

m = 5  - 
2 3 4 5 

51.14 81.99 
43.40 71.06 
39.29 65.15 
36.70 61.39 
34.92 58.78 
33.62 56.85 
32.62 55.37 
31.83 54.19 
31.19 53.23 
30.67 52.44 
30.21 51.76 
29.83 51.19 
29.51 50.69 
29.22 50.26 
28.97 49.88 
28.05 48.49 
27.48 47.61 
27.09 47.01 
26.81 46.57 
26.59 46.24 
26.42 45.98 
26.28 45.77 
26.17 45.59 
25.57 44.66 

110.92 
97.03 
89.45 
84.62 
81.25 
78.75 
76.83 
75.30 
74.05 
73.02 
72. I4 
7 I .39 
70.74 
70. I7 
69.67 
67.85 
66.7 1 
65.92 
65.35 
64.91 
64.56 
64.28 
64.05 
62.83 

138.98 
122.22 
1 13.03 
107.17 
I 03.06 
100.03 
97.68 
95.8 I 
94.29 
93.02 
9 I .95 
91.03 
90.24 
89.54 
88.93 
86.70 
85.29 
84.33 
83.62 
83.08 
82.66 
82.3 I 
82.03 
80.52 

Box (1949), Davis (1971), Davis and Field (l97l), and Krishnaiah and Lee 
(1979). The upper 5 percentage points of the distribution of - 210g A* have 
been tabulated for equal sample sizes ( n , = n , ,  with i = l ,  ..., r )  and for 
various values of m and r by Davis and Field (1971) and Krishnaiah and 
Lee ( 1  979); some of these are given in Table 3. 

8.2.5. 
r = 2  

Noncen tral Moments of the Modi/ied Likelihood Ratio Statistic when 

In this section we will obtain the moments in general of A* for the case 
r = 2  where the equality of two covariance matrices is being tested. These 
will be used in the next section to obtain asymptotic expansions for the 
non-null distribution of A* from which the power of the modified likelihood 
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ratio test can be computed. Recall that when r =2 
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nTnl/2 m n a / 2  W=h*. n2 
(40) nmn/2 

- (det A,)n'/2(det A 2 ) n 2 / 2  -- 
det( A ,  + A 2 ) " / *  

w h e r e / , 1 f 2 1 . . -  2 i m ( > O )  arc the latent roots of A , A ; ' .  We start by 
giving the joint distribution of t,,...,Apr in the following theorem due to 
Constantine (see James, 1964). 

THEOREM 8.2.8. If A, i s  Wm(n,, X,), A, is Wm(n,, Z2), with n ,  > m - I ,  
n , > m - l ,  and A ,  and A2 are independent then the joint probability 
density function of/l,...,fm, the latent roots of A , A ; ' ,  is 

where n = n , + n 2 ,  F=diag(j,,.-.,jm), A=diag(6,, ..., with 8, ,..., a,,, 
being the latent roots of Z,X;', and ,FJ'") is a two-matrix hypergeornetric 
function (see Section 7.3). 

Proo/. Using a (by now) familiar invariance argument, we can assume 
without loss of generality that Z, = A  and Z2 = In,, The joint density 
function of A ,  and A, is then 

Now make the transformation 
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and note that the latent roots of A I A , '  are the latent roots of $'. The 
Jacobian is given by 

(dA,)( dA,)= (det U)'mf1'/2(det ~ ) - ' " ' i ' ( d V ) ( d ~ ) ,  

and hence the joint density function of P and U is 

. (det I ] ) ( n - m - 1 ) / 2  (det F)-("Z f m + 1 ) / 2  

Integrating this over U > 0 using Theorem 2.1.1 1 then shows that I? has the 
density function 

Using Theorem 3.2.17 it now follows that the joint density function of 
/,, . . . ,fm may be expressed in the form 

The desired result (41) is now obtained using Corollary 7.3.5 and Theorem 
7.3.3. 

The null distribution of f I , .  . . ,fm (that is, the distribution when 2, = 2,) 
follows easily from Theorem 8.2.8. 

COROLLARY 8.2.9. When C, = 2, the joint density function of f l , .  . . ,fm, 

the latent roots of A , A ; ' ,  is 

(43) 
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Proof: When X, = 2, we have A = I,,, and the I&(m) function in (41) is 

- n / 2  =det( 1 + F )  
m 

r = l  

completing the proof. 

The alert reader will recall that the null distribution (43) of j,, . , , ,fm has 
already been essentially derived in Theorem 3.3.4, where the distribution of 
the latent roots ul, , . . ,u, , ,  of A , ( A ,  + A , ) - '  is given. Corollary 8.2.9 follows 
immediately from Theorem 3.3.4 011 putting4 = u , / (  1 - u,) .  

The zonal polynomial series for the hypergeometric function in (41) may 
not converge for all values of A and F, but the integral in (42) is well-defined. 
A convergent series can be obtained using the following result of Khatri 
( 1967). 

LEMMA 8.2.10. 

where A is any non-negative number such that the zonal polynoniial series 
for the function on the right converges for all I;: 

Proof: Since 

- n / 2  -det[ I - ( I - A- ' A - ' ) H (  A F)( I 4- X F ) -  IN '1 , 

the desired result follows by integrating over O( m).  

We now turn our attention to the moments of the statistic W defined by 
(40). a multiple of the modified likelihood ratio statistic A*. These can be 
expressed in terms of the l F I  one-matrix hypergeometric function (see 
Sections 7.3 and 7.4) as the following theorem due to Sugiura (1969a) shows, 
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THEOREM 8.2.1 I .  The hth moment of W is 

~ ( d e t A ) " ' " 2 2 F l ( f n h , f n l ( l + h ) ; f n ( l + h ) ;  I - A ) ,  

Proof: Let 8 be a random matrix having the density function 

- f n ;  I - A - ' ,  F( I + F)-') ( F > O ) .  

The latent rootsfI, .. . , fm of A,A;I  have the same distribution as the latent 
roots of F, as shown by Theorem 8.2.8 and Lemma 8.2.10 (with X = 1). 
Hence the h th moment of 

p / 2  
w =  n =(det E)" ' /2det(I  + F ) - " l 2  

r = l  ( 1 + / ; ) " / 2  

is given by 

det( I + F ) -  n( I + h ) / 2  1 0  F ( " ) ( f n ;  I - A - ' ,  F ( I + F ) - I ) ( d F ) .  

Putting U =( I + F)'-1/28'( I + P)-1/2 and using the zonal polynomial series 
for IF$"t), we get 

det( I + E ) -  n(l + h ) / 2  I F J m ' ( f ~ ;  I - A - ' ,  F ( I + F ) - ' ) ( d F ) .  
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(Here we are assuming that rnaxJ/l-t3,-'/<l, i.e., Inax,&, =a,>+. This 
restriction can be dropped at the end.) Using Theorem 7.2.10 to evaluate 
this integral gives 

00 

*(det 

The desired result now follows on using the Euler relation given in Theorem 
7.4.3. 

As mentioned earlier these moments could be used in principle to obtain 
exact expressions for the distribution of W, see, for instance, Khatri and 
Srivastava (1971). We concentrate here on asymptotic distributions. 

8.2.6. Asymptotic Non -null Distributions of the Modified Likelihood Ratio 
Statistic when r = 2 

The power function of the modified likelihood ra!io test of size a is 
P(-2plogA*lk:JS,, ..., 6,), where p is given by (35) and k: is the upper 
100a% point of the distribution of -2plog A +  when H :  2, = Z2 is true. 
This is a function of the latent roots 8, , . , , ,8 , , ,  of 2,2; '  (and, of course, n , ,  
n,, and m).  We have already seen that an approximation fork: is c,(a) ,  the 
upper lOOa% point of the x j  distribution, with / = r n ( m  t 1)/2. In this 
section we investigate ways of approximating the power function. 

The asymptotic non-null distribution of a likelihood ratio statistic (or, in  
this case, a modified one) depends in general upon the type of alternative 
being considered. Here we will consider three different alternatives. To 
discuss these, we must recall the notation introduced in Section 8.2.4. Put 
n, = k,n with k, > O  ( i  = 1,2), where k, + k ,  = 1, and assume that n -+OD. 
Instead of using n as the asymptotic variable, we will use M = p n ,  11s in 
Theorem 8.2.7. We will consider asymptotic distributions of -2plog A* as 
M-+OO. 



Tesring Equality of r Cwuriance Mumces 3 I7 

The three alternatives discussed here are 

and 

K&: 

where 0 is a fixed matrix. The alternative K is referred to as a fixed (or 
general) alternative, while K ,  and K L  are sequences of local alternatives 
since they approach the null hypothesis H: Z, =Z2  as M -, do. I t  is more 
convenient to express these alternative hypotheses in terms of the matrix 
A =diag(G,, ..., 6,) of latent roots of Z,Z;'; they are clearly equivalent to 

K :  A#I , , , ,  

K,: A = I , , , + - G .  I 
M 

and 

where 52 is a fixed diagonal matrix, 52 =diag(a,, ..., a,,,). 
The asymptotic distributions of A* are different for each of these three 

cases. We will first state the results and prove and expand on them later. 
Under the fixed alternative K the asymptotic distribution as M -. bo of 

(det A)" 
det( k , A  + k, I )  

2 log A *  + log M 1/2 

is N(0, T ' ) ,  where 

6, - 1 2 

T 2 = f W z  r = l  i ( k , & + k , )  * 

This normal approximation could be used for computing approximate 
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powers of the modified likelihood ratio test for large deviations from the 
null hypothesis N: A = I. Note, however, that the asymptotic variance 
7' 4 0  as all 8, -+ 1 so that the normal approximation can not be expected to 
be much good for alternatives close to I. This is where the sequences of focal 
alternatives K M  and K& give more accurate results. Under the sequence K M  
of local alternatives the asymptotic distribution of - 2 p  log A* is x ; ,  where 
f =  m(m + 1)/2, the same as the asymptotic distribution when II is true. 
For the sequence K& of local alternatives, under which A -+ I at a slower 
rate than under KM, the asymptotic distribution of -2plog A *  is non- 
central x ; ( u ) ,  where the noncentrality parameter is u = k,k,  trQ2/2. 

Asymptotic expansions for the distributions in these three cases can be 
obtained as in Section 8.2.4 from expansions of the characteristic functions 
for large M. When H is not true, however, the characteristic functions 
involve a tF l  function of matrix argument (see Theorem 8.2.1 1) which must 
also be expanded asymptotically. There are a number of methods available 
for doing this; in this section we will concentrate on an approach which uses 
the partial differential equations of Theorem 7.5.5 satisfied by the 2Fl 
function. The first correction term will be derived in asymptotic series for 
the distributions under each of the three alternatives. Under K and K& this 
term is of order M - ' / 2 ,  while under K M  it is of order Ad.-'. 

We consider first the general alternative K: A + I. Define the random 
variable Y by 
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(45 1 y =  - (det A)" 
det(k,A+ k,I) ' 

- 2 p  logA*fM1/210g M1/2 

and note that the asymptotic mean of ( - - 2 p / M )  log A *  is 
-log((det A)kI/det(k,A + k, l ) ]  and its asymptotic variance is of order 
M- ' ,  so that Y has, asymptotically, zero mean and constant variance. The 
characteristic function of Y is 

g( M, I ,  A ) =  E(e"")  

rrM1/' 

) E (  A+ - 2 r r p / M " '  

where W is given by (40). Using Theorem 8.2.11 to evaluate this last 
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expectation then shows that g( M ,  I ,  A )  can be expressed in the form 

3 I9 

where 

with 

then 

Here g ( M , f , A )  has been written in terms of the asymptotic variable 
M = p n .  Using (24) to expand the gamma functions for large M ,  it is a 
straightforward task to show that 

An expansion for G2( M I  1, A), the other factor in g( M ,  1, A), follows from 
the following theorem, where for convenience we have put R = I - A =  
diag(r,, . . . ,rm). 
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THEOREM 8.2.12. The function G2( M, I, I - H) defined by (48) can be 
expanded as 

(51) G 2 ( M , t , 1 -  R ) = e x p ( - k , k 2 u 2 r 2 ) [ l + ~ + ~ ( ~ - ~ ) ] ,  

where 

(52) Q , ( R ) = - ~ i r k , k 2 ( l f 4 ~ 2 ) a z + ~ ( i r ) 3 k l k 2 ( k l - k 2 ) u ,  

- 2( it )'k :k :u4 - -1 k k2ifa 

with 

(53) 
qJ 

m 

u,-tr[R(I-k,R)-'] '= 2 --. 
r - l  ( 1 - k 1 q ) '  

Prooh We outline a proof using the partial differential equations satis- 
fied by the ' F I  function. From Theorern 7.5.5 the function 

' F I (  -irM'/*,+k,M- M'/'k,ir t yI; jA4- M1l2ir + E , ;  R), 

which is part of G2( M, I ,  I - R), is the unique solution of the system of 
partial differential equations 

( j = 1 ,  ..., rn) 

subject to the conditions that F be a symmetric function of r , , . .  . ,r,, which 
is analytic at R "0, with F(O)= I .  From this system a system of differential 
equations satisfied by the function H( R)GlogC,( M, I, I - R) can be ob- 
tained. The energetic reader can verify, after lengthy but straightforward 
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algebraic manipulation, that this system is 

The function H( R )  is the unique solution of each of these partial differen- 
tial equations, subject to the conditions that H( R )  be a symmetric function 
of rl ,  ..., r,,, which is analytic at R = O  with H(O)=O. In (54) we now 
substitute the series 

where (a) Q k ( R )  is symmetric in r , ,  . . . ,I-,,, and (b) Qk(0)=O fork =0,1,2, . .  ., 
and equate coefficients of like powers of M on both sides. Equating the 
coefficients of M shows that Qo( R )  satisfies the system 

2 k I k , t 2 5  
( j = l  ,..., m ) .  aQo - - _ -  

( 1 - 4 ~ 5 ) ~  

Integrating with respect to t j  and using conditions (a) and (b) gives 

( 5 5 )  Q o = -  k,k2u2t2,  

where u2 is defined by (53). Equating the coefficients of Mi/ '  on both sides 
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of (54) and using ( 5 5 )  yields the system for QI( R) as 
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the solution of which subject to conditions (a) and (b) is the function QI( H) 
given by (52). We now have 

G2( M ,  r ,  I - R )  =exp if( R )  

An asymptotic expansion to order M -  ‘ I 2  of the distribution of Y is an 
immediate consequence of Theorem 8.2.12. 

THEOREM 8.2.13. Under the fixed alternative K: A # I ,  the distribution 
function of the random variable Y given by (45) can be expanded asymptot- 
ically up to terms of order M - ‘ i 2  as 

(56) P ( 5 x ) = @( x )  + - [ u x)  - a&(‘)( x )] -t O( M - I )  

where 9 and # denote the standard normal distribution and density 
functions respectively, and 

(57) 

( 5 8 )  a ,  = - [ k l k 2 (  27 u2 + u;)-M(~H + l ) ] ,  

I 
M l / 2  

r = 4 k k2a2 , 

I 

(59 )  



Testing Equuli[v o/r Coouriuncv Murrices 323 

with 

1-6, 
' J =  , = I  ' ( k , 6 , + k 2 )  

ProoJ Putting R = I - A in Theorem 8.2.12 and using (50) and (46) 
shows that g ( M ,  t / 7 ,  A), the characteristic function of Y / T ,  can be ex- 
panded as 

g ( M , r / 7 , A ) = e - i * / 2 [ 1 +  P , ( h ) / M ' / ' + O ( M - ' ) ] ,  

where 

with ul and a, given by (58) and (59). The desired result (56)  now follows by 
straightforward inversion of this characteristic function, where we use 

We now turn our attention to the sequence of local alternatives 

where B = diag( o I,. , , , q,,) is fixed. Under K, the characteristic function of 
-- 2p log A *  is, using Theorem 8.2.1 I ,  

(60) +( M ,  z, a )  = E( A*-2 ' fp )  

= (&"') ' 'mME( W - m )  

=+(M,r,O)G,(M,r,Q), 

where 

(61) 

I - & , A 4 1 1  

G3( M ,  I ,  Q)=det( I + ;i7Sl) 

I 
- ~ i r , f k , ~ ( 1 - 2 i r ) + y , ; f ~ ( 1 - 2 i r ) + & , ;  -=a)  
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with yI and el given by (49), and +(M, r ,O)  is the characteristic function of 
-2plogh" when His true (9=0) ,  obtained from (33) by putting r = 2  and 
h = -2p i r .  From Theorem 8.2.7 we know that 
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(62) $J(M,I,O)=(l-2ir)-"* +0(M-2), 

where f = m(m -t 1)/2. It remains to expand G,{M,  I ,  a )  for large M. 
Because i t  will be useful in another context (see Section 11.2.6) we will 
generalize the function G,( M, I, 0) a little by introducing some more 
parameters. The term of order M-I will be found i n  an asymptotic 
expansion of the function 

1 aoM' a1 

(63) G(M,D)=det( I-t ED) 

where a,, p,, y,, el ( i  =O, 1) are arbitrary parameters independent of M and 
nonzerq for i = O .  Note that G , ( M , t , Q )  is the special case of G ( M , n )  
obtained by p u t t i n g a , = - k , i r , a l = O , ~ o = - i r , ~ l = O , y o = ~ k , ( l - 2 i r ) , ~ o  
= f(1-2ir) and letting yI and t l  be given by (49). Later we will see that 
with different values of the parameters G ( M . 8 )  is also part of another 
characteristic function of interest. The following theorem gives the term of 
order M -  in an asymptotic expansion of G( M, 52). 

THEOREM 8.2.14. The function G( M, Q) defined by (63) has the expan- 
sion 

where 

with 
In 

OJ =tr  8J= 2 w;. 
I -= I 
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A proof similar to that of Theorem 8.2.12 can be constructed 
here. Starting with the system of partial differential equations satisfied by 
the Fl function in G( M, 8 )  a system for the function H( M, Q) = log G( M, Q) 
can be readily derived. This is found to be 

ProoJ 

The function H ( M , Q )  is the unique solution of each of these partial 
differential equations subject to the condition that H ( M ,  S a )  be a symmetric 
function of uI, ... ,a,,, which is analytic at Q = O  with H(M,O)=O. In (66) we 
subs ti tu  te 
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where (a) P,,(51) is symmetric in w ,, . . . ,am and (b) Pk(0) = 0 for k = 0, I ,  2,. . . 
Equating coefficients of M on both sides gives 

( j =  I ,  ..., m) apo - P O Y O  - -ao - - -  
Eo 

the unique solution of which is, subject to conditions (a) and (b), 

where uI = tr(51). Similarly, equating constant terms on both sides and using 
(67) gives a system of equations for P,, the solution of which subject to (a) 
and (b) is the function P,(51) given by (65). Hence 

G( M, 51) =expH( M, 51) 

which is the desired result. 

- 2p log A* under K, now follows easily, 

THEOREM 8.2.15. 

An asymptotic expansion to order M-' of the distribution function of 

Under the sequence of local alternatives 

the distribution function of -2plogA* can be expanded as 

(68) 
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Proo/. In Theorem 8.2.14 put a o = -  k,it. al=O, Po= -it, &=O, 
yo = i k l (  I - 2ir), and to = Q( I - 2ir), and let yI and E ,  be given by (49); it 
then follows, using the resulting expansion and (62) in (60), that the 
characteristic function 4~(  M, t ,  52) of -2plogA* under K ,  has the expan- 
sion 

+ ( M , t . Q ) = ( l - 2 i t )  I+- k1k202 -- 1) + O( M -  I , ] .  
-'I2[ 4M ( 1-2it 

Inverting this expansion term by term, using the fact that ( I  - 2it)-'l2 is the 
characteristic function of the x :  distribution, gives (68) and completes the 
proof. 

Finally, we consider the other sequence of local alternatives KL: A = I + 
(l/M'/*)SZ, under which A -+ Z at a slower rate than under K,. In this case 
the characteristic function of -2plog A* can be written from (60) as 

The following theorem gives the term of order M-' / '  in an expansion for 
G,( M ,  t ,  M-II2Q) .  

THEOREM 8.2.16. The function G,(M,  t ,  M - 1 / 2 5 2 )  defined by (63) can 
be expanded as 

where 

with a, = 27; ,to/. 
The partial differential equation argument used in the proofs of 

Theorems 8.2.12 and 8.2.14 should be familiar to the reader by now. The 
function H( M, Q)=logG,( M, r ,  1 W - ' / ~ 6 2 )  is the unique solution of each 

Proo/. 
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differential equation in the system 

(72) 

1 1 + uf [ ( $ k I - it + k , i t )  4- ( y I + 1 - 3 ( m - 1 ) 

subject to H ( 0 )  being a symmetric function of u l ,  ...,a,,,, analytic at S2=0 
with H ( O ) = O .  Substituting 

in (72) and equating coefficients, first of M and then M ’ i 2 ,  yields differen- 
tial equations for To( 0) and TI( $2). the solutions of which are 

and the function Tl(Q) given by (71). Exponentiation of H to give G,  then 
completes the proof. 
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An expansion of the distribution of -2plogA+ under K& is an im- 
mediate consequence. 

THEOREM 8.2.17. Under the sequence of local alternatives K;: A = I + 
( l/M'/')lC2 the distribution function of - 2plog A* can be expanded in 
terms of noncentral x 2  probabilities as 

(73) 

where J = m( m + 1)/2, Y = 4 k Ik,a,  and aj = tr 52' = xy! '0;. 

Using Theorem 8.2.16 and (62) in (69) shows that the character- 
istic function +( M ,  r ,  M - ' I Z Q )  of -2plog A* under K L  has the expansion 

Proof: 

where 7',(52) is given by (71). The desired expansion (73) is obtained by 
inverting this term by term using the fact that e x p [ ~ i t k , k 2 a 2 / ( l - 2 i t ) ] ( 1  - 
2ir)- ' l2  is the characteristic function of the noncentral x:( v )  distribution, 
where the noncentrality parameter is Y = 4k,k2u2. 

For actual power calculations and for further terms in the asymptotic 
expansions presented here, the interested reader should see Sugiura (1969a, 
1974), Pillai and Nagarsenker (l972), and Subrahmaniam (1975). Expan- 
sions of the distribution of the modified likelihood ratio statistic A* in the 
more general setting where the equality of r covariance matrices is being 
tested have been derived by Nagao (1970, 1974). 

8.2.7. 
Statistic for Elliptical Samples 

I t  is important to understand how inferences based on the assumption of 
multivariate normality are affected if this assumption is violated. In this 

The Asymptotic Null Distribution of the Modi/ied Likelihood Ratio 
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section we sketch the derivation of the asymptotic null distribution of A* 
for testing H: 2, = 2, when the two samples come from the same elliptical 
distribution with kurtosis parameter K (see Section 1.6). 

When testing H the modified likelihood ratio statistic (assuming normal- 
ity) is 

A* = (det S,)n'/2(det S,)"z/2 

(det S ) @  
9 

where S, and S, are the two sample covariance matrices and S =  n--'(nlSl 
+n2S2), w i t h n = n , f n , .  Letn,=k,n( i=1,2) ,  withk, + k , = I , a n d  write 
S, = 2, +(nk,)- ' / 'Zi ,  where 2, denotes the common value of XI and 2,. 
Then -210g A *  has the following expansion when H is true: 

Now assume that the two samples are drawn from the same elliptical 
distribution with kurtosis parameter K. Wc can then write 

-210gA* 
1 + K  

=v'v -t op( n - I / * ) ,  

where 

with z, =vec(Z,') ( i =  l,2); see Problem 8.2(a). 
The asymptotic distribution of v, as n -+ 00, is N,,,1(0, V), where 

(74) 

with 

in 

Imz+  (E,,@E,',) 
I , J = l  
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and El, being an m X  m matrix with 1 in the ( i ,  j )  position and 0's 
elsewhere; see Problem 8.2(b). The rank of Vis f= im(m + I ) .  Let a,, ..., a, 
denote the nonzero latent roots of V and let HE O(m2) be such that 

H V H =  

a1 0 

0 

0 0 

= D .  

Putting u= Hv we then have 

where the asymptotic distribution of u is N,p(O, D). Summarizing, we have 
the following result. 

THEOREM 8.2.18. Consider the modified likelihood ratio statistic A* 
(assuming normality) for testing H: 2, = 2,. If the two samples come from 
the same elliptical distribution with kurtosis parameter K then the asymp- 
totic null distribution of -210g A*/( I + K )  is the distribution of zf= ,a, X,, 
where J=  fm(m + I ) ,  XI,. .., X, are independent x :  variables, and a,, . . . ,a, 
are the nonzero latent roots of the matrix V given by (74). 

Three points are worth noting. First, if K is unknown and is estimated by a 
consistent estimate I? then the limiting null distribution of -210g A*/(l + k )  
is the same as that of -2logA*/(I+~) .  Second, if the two samples are 
normally distributed we have K = O  and the asymptotic covariance matrix V 
is equal to P which is idempotent. This shows that -2logA* has an 
asymptotic xisfn,+ I),2 distribution, a result derived previously in Section 
8.2.4. Third, the asymptotic distribution of -2logA*/( 1 + K )  may differ 
substantially from x$, , ,+ , ) ,~ ,  suggesting that the test based on A* should 
be used with great caution, if at all, if the two samples are non-normal. 

8.2.8. Other Test Statistics 

We have been concentrating on the likelihood and modified likelihood ratio 
statistics, but a number of other invariant test statistics have also been 
proposed for testing the null hypothesis H: 2 ,  = 2,. In terms of the latent 
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roots fI > * * 1 fm of A,A; '  these include 
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m 

as well as the largest and smallest roots f, and /,. Both the statistic 

(a multiple of the modified likelihood ratio statistic A*) and L, are special 
cases of a more general class of statistics defined for arbitrary a and b by 

det( A,A;  
L ( a ,  b )  = 

det(Z+ A I A ; ' ) *  

Various properties of this class of statistics have been investigated by Pillui 
and Nagarsenker (1972) and Das Gupta and Giri (1973). 

If H is true the roots A should be close to n l / n 2  and any statistic which 
measures the deviation of the f ;  from n l / n 2  (regardless of sign) could be 
used for testing H against all alternatives K: A #I , .  Both W and L, fall 
into this category, as does a test based on both /, and f,. If we consider the 
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one-sided alternative 

then i t  is reasonable to reject H in favor of K, if the latent rootsf,, . . .,f, of 
A , A;  ’ are “large” in some sense. Hence in this testing problem we reject H 
for large values of L , ,  L,, and 1, and for small values of L,. A comparison 
of the powers of these four one-sided tests was carried out by Pillai and 
Jayachandran (1968) for the bivariate case m =2. They concluded that for 
small deviations from H ,  or for large deviations but when 6, and 6, are 
close, the test based on L, appears to be generally better than that based on 
L,, while L, is better than L , .  The reverse ordering appears to hold for large 
deviations from H with 6, - 8, large. The largest root f, has lower power 
than the other three statistics except when 8, is the only deviant root. 

In most circumstances i t  is unlikely that one knows what the alternatives 
are, so i t  is probably more sensible to use a test which has reasonable power 
properties for all alternatives such as the modified likelihood test, or a test 
which rejects H for large values of L, (Nagao, 1973a), or one which rejects 
H if f, > f:, f, < f: (Roy, 1953). Asymptotic distributions of L, have been 
derived by Nagao (1973a, 1974). For reviews of other results concerning 
these tests, the reader is referred to Pillai (1976, 1977) and Giri (1977). 

8.3. THE SPHERICITY TEST 

8.3.1. The Likelihood Ratio Statistic; Invariance and Unbiasedness 

Let XI, .  . .,X, be independent N,,,(p, Z) random vectors and consider 
testing the null hypothesis If: Z = hl,,, against the alternative K: Z Z Xi,,,, 
where A is unspecified. The null hypothesis H is called the hypothesis of 
sphericity since when it is true the contours of equal density in the normal 
distribution are spheres. We first look at this testing problem from an 
invariance point of view. A sufficient statistic is (x, A ) ,  where 

%=N-’ x X, and A =  2 (X,-%)(Xt-%)f,  
N N 

r = l  r = l  

Considel the group of transformations given by 

( 1 )  g . - ,aHR+b  and A-+a2HAH’,  
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where u # 0, HE O( nt), and b E: R"; this induces the transformations 
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on the parameter space and it is clear that the problem of testing H against 
K is invariant under this group, for the family of distributions of (%, A )  is 
invariant, as are the null and alternative hypotheses. The next problem is to 
find a maximal invariant under the action of this group. This is done in the 
next theorem whose proof is straightforward and left as an exercise (see 
Problem 8.6). 

THEOREM 8.3.1. Under the group of transformations (2) a maximal 
invariant is 

where A ,  2 A, 1 a * .  ?A, (>O) are the latent roots of 2. 
As a consequence of this theorem a maximal invariant under the group of 

transformations (1) of the sample space of the sufficient statistic (%, A )  is 
( a , / a , , . . . , a ~ l ~ , / ~ m ) ,  where a ,  > a 2 >  * . *  >a,>O are the latent roots of 
the Wishart matrix A. Any invariant test statistic can be written in terms of 
these ratios and from Theorem 6.1.12 the distribution of the u,/a, , ,  ( i  = 
I , .  . . ,m - 1) depends only on A,  /A, ( i  = I , ,  . . ,m - 1). There is, however, no 
uniformly most powerful invariant test and the choice now of a particular 
test may be somewhat arbitrary. The most commonly used invariant test in 
this situation is the likelihood ratio test, first derived by Mauchly (1940); 
this is given in the following theorem. 

THEOREM 8.3.2. Let XI, ..., X,,, be independent N,,,(p, 2 )  random vec- 
tors and put 

N 
A = nS= 2 (X, - Q(X, - % ) I  ( n  = N - 1 ) .  

r = l  

The likelihood ratio test of size a of N:  2 = A I,, where A is unspecified, 
rejects H if 

where k ,  is chosen so that the size of the test is a. 
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Proof: Apart from a multiplicative constant the likelihood function is 

see, for example, (8) of Section 3. I .  The likelihood ratio statistic is 

SUP,. R m . h > o L ( ~ ,  A',) 
SUPfiER"'.I>OL(P, 2) * 

A =  (4) 

The denominator in (4) is 

supL(p, X)= L(%, e)= NmN/2e-mN/2(det 
c.  z 

( 5 )  

- m N / 2  =( Z t r A )  1 e-mN/2 

Using ( 5 )  a m  (6) in (4) we then get 

det A 

( AtrA)"  

1 \ 2 / N =  = v. 

The likelihood ratio test is to reject H if the likelihood ratio statistic A is 
small; noting that this is equivalent to rejecting H if V is small completes 
the proof. 

The statistic 

(7) 
det A 

( i t r A ) m  
V =  
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is commonly called the ellipticity statistic; note that 

Some Stundurd Tests on Coouriunce Mutrices urrd Meun Yeclors 

where a l , .  , . ,urn are the latent roots of A and I,, . . . , Im are the latent roots of 
the sample covariance matrix S = n- IA ,  so that 

that is, to the arithmetic 
mean. If the null hypothesis H is truc it is clear that V should be close to 1. 
Note also that V is invariant, for 

is the ratio of the geometric mean of 

Obviously, in order to determine the constant k, in Theorcm 8.3.2 and to 
calculate powers of the likelihood ratio test we need to know the distribu- 
tion of V. Some distributional results will be obtained in a moment. Before 
getting to these we will demonstrate that the likelihood ratio test has the 
satisfying property of unbiasedness. This is shown in the following theorem, 
first proved by Gleser (1966). The proof given here is due to Sugiura and 
Nagao (1968). 

THEOREM 8.3.3. For testing N: X = X l r n  against K :  2 ' f  XI,,, where X is 
an unspecified positive number, the likelihood ratio test having the rejection 
or critical region 

is unbiased. 
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Proof: By invariance we can assume without loss of generality that 
C = diag( A ,, . . . ,A,,,). The probability of the rejection region C under K can 
be written 

where cm,# = [2m" /21 'm($n) ] -1  and n = N- 1. Putting U = Z - 1 / 2 A Z - ' / 2  
this becomes 

Now put U = v1  ,Vo where Vo is the symmetric matrix given by 

(9) 

I t  is easily verified that 

( dU ) = u;('"+ ' ) I2-  do, I (dVo) 

(i.e., the Jacobian is u;;(~+')/~-'),  so that 

where we have used the fact that the region C is invariant for the transfor- 
mation U- cU for any c>O and have integrated with respect to u, ,  from 0 
to 00. Now let 

C*= { Vo >O; Vo has the form (9) and Z'/2VoZ1/2E C) . 
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Then, putting 6 =2mfl/2r()mn)c,,,, we have 

=0, 

where we have used the fact that 

this is easily proved by making the transformation W, I= A;-1Zi /2V,Z1/2  in 
the integral on the left side. We have thus shown that 

w3-, , (c) ;  

(i,e., that the likelihood ratio test is unbiased), and the proof is complete. 

Along the same lines it is worth mentioning a somewhat stronger result. 
With h , ~  ... >A, being the latent roots of Z, Carter and Srivastava 
(1977) have proved that the power function of the likelihood ratio test, 
PK(C), where C is given by (8). is a monotone nondecreasing function of 
a k = X k / X k + ,  for any k ,  l S k ~ m - -  1, while the remaining m - 2  ratios 
6 , = X , / h , , , , w i t h i = l 1  ..., m-l , i#k ,a rehe ldf ixed .  

Finally we note here that testing the null hypothesis of sphericity is 
equivalent to testing the null hypothesis H: I' = XI',, where I;, is a known 
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positive definite matrix, given independent observations yI , .  . . , yN distrib- 
uted as N,,,(T, r). To see this, let B be an m X m nonsingular matrix 
[ B ~ @ f ( m ,  R ) ]  such that B r , B ' = f , ,  and put p = B 7 ,  Z = N B ' ,  X,=By, 
(with i = 1,. . ,,N). Then X,,, . .,X, are independent NJp, I:) vectors and 
the null hypothesis becomes H :  I: = Xf,,,. It  is easily verified that, in terms of 
the y-variables, the ellipticity statistic is 

det( 'A,,) 

[ tr( TOi'A,.)] ' 
V =  

where 

8.3.2. 

Information about the distribution of the ellipticity statistic V can be 
obtained from a study of its moments. In order to find these we will need 
the distribution of trA, where A is W,,,(n, 2). When m = 2  this is a mixture 
of gamma distributions, as we saw in Problem 3.12. In general it can be 
expressed as an infinite sum of the zonal polynomials introduced in Chapter 
7. The result is given in the following theorem, from Khatri and Srivastava 
(1971). 

THEOREM 8.3.4. If A is W,,,(n, Z) with n > rn - 1 the distribution func- 
tion of trA can be expressed in the form 

Moments of the Likelihood Ratio Statistic 

" I  
P( t rA~x)=det (h- ' I : ) - " '2  2 zP( S f )  

k =O 

where O <  X coo is arbitrary. The second summation is over all partitions 
K = ( k l , k  2 r . . . , k , ) ,  k 1 2  r k , , , r O  of the integer k ,  C,(.) is the zonal 
polynomial corresponding to K ,  and 

m 
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with 

( X ) k  - x ( x  + I ) .  * * ( x  4- k - 1). 

Prooj The moment generating function of trA is 

+(I)= E[etr(tA)I 

= (det 2)-"/'det( 2- I -211) -"'2 

=det( I -2rC)-"",  

where the integral is evaluated using Theorem 2.1.1 I .  In order to invert this 
moment-generating function it helps to expand it in terms of recognizable 
moment generating functions. For O< X < a0 write 

- n / Z  
(p( I ) = det( I - 2 r C ) 

=(I-2fX)-"""det(h- '~)-"~2det[ I- - ( I -  1 An-I)] - n / 2  
1 -2rX 

where the last equality follows by Corollary 7.3.5. The zonal polynomial 
expansion for the IF, function [see (4) of Section 7.3) converges only if the 
absolute value of the maximum latent root of the argument matrix i s  less 
than 1. Hence if h and f satisfy 

where II X II denotes the maximum of the absolute values of the latent roois 
of X, we can write 

($n),C,( I -- Ax-- 1 )  
( 12) +( r ) = ( I - 2r X ) - ""/' det( A- I Z ) -- "I2 2 

/ c = ~  6 ( 1 - 2 1 h ) ' k !  

Using the fact that ( I  -2 rA) - '  is the moment-generating function of the 
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gamma distribution with parameters r and 2A and density function 

the moment-generating function (12) can be inverted term by term to give 
the density function of trA as 

(14) 

( u  >O), 

valid for O< X < 00. Integrating with respect to u from 0 to x then gives the 
expression ( 1  1) for P(trA I x )  and the proof is complete. 

The parameter A in ( 1  1) is open to choice; a sensible thing to do is to 
choose h so that the series converges rapidly. We will not go into the 
specifics except to say that a value that appears to be close to optimal is 
h = 2 h , A m / ( X ,  +A,,), where X I  and A, are respectively the largest and 
smallest latent roots of 2. For details see Khatri and Srivastava (1971) and 
the references therein. Note that when C = XI,,, Theorem 8.1.13 reduces to 

that is, A- ' trA has the x i , ,  distribution, a result previously derived in 
Theorem 3.2.20. 
We now return to the problem of finding the moments of the ellipticity 

statistic V. These are given in the following theorem, also from Khatri and 
Srivastava (1971). 

THEOREM 8.3.5. If V=det A/[(I/m)trA]'", whereA is Wm(n,Z)  (with 
n =- m - I ) ,  then 

(15) 

r( fmtl)rm( ;II + h )  
E (  v h )  = mmh 

r(4mn + m h ) r , ( j n )  

where A (O< A < 00) is arbitrary. 
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Pron/. Using the WJn, C) density function and the definition of V we 
have 

where the matrix A in this last expectation has the W,(n + 2 h ,  Z) distribu- 
tion. In this case i t  follows from Theorem 8.1.3 [see (14)j that the density 
function of trA can be expressed as 

. Z ( f n + h ) , C , ( I - A Z - l ) ,  
K 

where O<h<co and g,Ju)  denotes the gamma (u ,  6) density function 
given by (13). Using the fact that the (- mh)th moment of the gamma 
distribution with parameters inin 4- mh + k and 2A is (2h)-"'hl-( fmn + 
k ) / r ( f m n  + rnh + k ) ,  we find that, 

2 (Jn + h),C,( I -  Ax-'). 
U 

Substituting this in (16) gives the desired result and completes the proof. 

the null hypothesis N: I: = A/, is true. 

COROLLARY 8.3.6. 
V are given by 

The expression (15) for the moments of V simplifies considerably when 

When 2 = hl,,, the. moments of the ellipticity statistic 
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The moments of Y may be used to obtain exact expressions for the 
density function using the Mellin transform approach described briefly in 
Section 8.2.3. For work in this direction, see Khatri and Srivastava (1971). 
Except in some special cases the exact distributions are extremely com- 
plicated, and we prefer here to concentrate on asymptotic distributions. 

8.3.3. 

Replacing h in Corollary 8.3.6 by nh/2, where n = N - 1, shows that when 
H :  Z = X I m  is true, the h th moment of W = V"/' = AnIN is 

The Asymptotic Ntrll Disrribution of the Likelihood Ratio Statistic 

(18) E(  W )  = E( V"k/2)  

where K is a constant not involving h. This has the same form as (18) of 
Section8.2.4, withp=l;  q = m ; x , = j n ; ~ , = - ) ( k - I ) ,  with&=]  ,..., m; 
y I  = fmn; q1 =O. The degrees of freedom in the limiting xz distribution are, 
from (28) of Section 8.2.4, 

= f ( m + 2 ) ( r n -  I ) .  

The value of p which makes the term of order n-I vanish in the asymptotic 
expansion of the distribution of - 2plog W is, from (30) of Section 8.2.4, 

m 

k = l  

2 m 2 + m + 2  = I -  
6mn ' 
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With this value of p it is then found, using (29) of Section 8.2.4, that 

( rn - 1 )( rn - 2)( m -t 2)( 2 m 3  + 6 m 2  + 3m + 2) 
288m 2 r ~  'p' 

w2 = (21 1 

Hence we have obtained the following result, first given explicitly by 
Anderson ( I  958), Section 10.7.4. 

THEOREM 8.3.7. When the null hypothesis H: 2 = X l ,  is true, the distri- 
bution function of -2plog W, where p is given by (20), can be expanded for 
large M = prr as 

n 
P (  - 2 p l o g W ~ x ) =  P(  - n p l o g V s x ) =  P (  - 2 z p l o g  A 5.) 

wheref=(m +2)(m - 1)/2 and ~ = ( n p ) ~ u ,  = M 2 u 2 ,  with w2 given by (21). 
Table 4, taken from Nagarsenker and Pillai ( 1  973a), gives the lower 5 and 

I percentage points of the distribution of V.  

8.3.4. Asymptotic Non-Null Distributioris oj  
the Likelihood Ratio Statistic 

The power function of the likelihood ratio test of size a is P( - nplog I/> 
&:lh,,  ..., A,,,), where p is given by (20) and k: denotes the upper IOOcvS 
point of the distribution of - nptog Y when H: 2 = h l ,  is true. This is a 
function of the latent roots A, ,  ..., A,,, of Z. We have seen that an approxi- 
mation for k: is c,(a), the upper l0OaS point of the x; distribution, with 
f = (rn + 2)( m - l)/2. In this section we investigate ways of approximating 
the power function. 

We noted earlier, in Section 8.2.6, that the asymptotic non-null distribu- 
tions of likelihood ratio statistics depend upon the type of alternative being 
considered. Here again we consider three alternatives: a fixed alternative 
K: 2 # A],,,, and two sequences of focal alternatives expressed in terms of 
the asymptotic variable M = pn as 

K,: 1 z = A (  I ,  + a )  
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Table 4. Lower 5 and 1 percentage points of the ellipticity statistic Y for testing 
sphericity (I: = A I)‘: a z.05 

N\nt 4 5 6 7 8 9 10 
5 0.049528 
6 0.023866 0.042578 
7 0.01687 
8 0.03866 
9 0.06640 

10 0.09739 
I I 0.1297 
12 0.1621 
13 0.1938 
14 0.2244 
I5 0.2535 
16 0.2812 
17 0.3074 
18 0.3321 
19 0.3533 
20 0.3772 
22 0.4173 
24 0.4530 
26 0.4848 
28 0.5134 
30 0.5390 
34 0.5833 
42 0.6508 
50 0.6998 
60 0.7447 
80 0.8037 
100 0.8406 
140 0.8842 
200 0.9179 
300 0.9447 

0.0‘1262 0.0’7479 
0.O2640O 0.0’4267 0.052284 
0.0 I650 
0.031 10 
0.049 I9 
0.06970 
0.091 74 
0. I 146 
0. I378 
0.1608 
0. I835 
0.2058 
0.2273 
0.2482 
0.2876 
0.3240 
0.3575 
0.3882 
0.4 I64 
0.4663 
0.5453 
0.6046 
0.6603 
0.7354 
0.7835 
0.84 I3 
0.8868 
0.9234 

0.022553 0.0’1473 0.067219 
0.027004 0.0’9434 0.045149 0.0‘2326 
0.01435 
0.02433 
0.03653 
0.0505 I 
0.06583 
0.082 10 
0.09900 
0.1 163 
0. I337 
0.1511 
0. I854 
0.2185 
0.2501 
0.2800 
0.308 I 
0.3594 
0.4442 
0.5106 
0.5749 
0.664 I 
0.7228 
0.7948 
0.8525 
0.8996 

0.022950 0.033631 0.041817 0.0’7722 
0.0’6524 0.0*1233 0.0’1397 0.0’6455 
0.0 I I79 
0.01 870 
0.027 I2 
0.03682 
0.0476 I 
0.05927 
0.07161 
0.08446 
0.1111 
0.1383 
0. I654 
0. I920 
0.2 I78 
0.2665 
0.3515 
0.421 1 
0.49 I0 
0.5916 
0.6597 
0.7453 
0.8153 
0.8734 

0.022924 0.0’51 14 0.045370 
0.0’56 13 0.0’1 295 0.0’2 I07 
0.029379 0.022629 0.0’5667 
0.01423 
0.0201 I 
0.02693 
0.03460 
0.04299 
0.06 I54 
0.08 I78 
0.1030 
0.1248 
0.1467 
0. I898 
0.2697 
0.3389 
0.41 12 
0.5 I96 
0.5955 
0.6935 
0.775 7 
0.8452 

0.024616 
0.02 73 14 
0.0 I074 
0.0 I489 
0.0 I973 
0.03 I29 
0.04494 
0.06022 
0.07667 
0.09392 
0.1296 
0.2006 
0.2660 
0.3376 
0.4499 
0.53 17 
0.6405 
0.7342 
0.8151 

0.0’12 I4 
0.0 22235 
0.023692 
0.0 25630 
0.0 ’ 807 1 
0.01448 
0.02282 
0.03287 
0.04435 
0.05698 
0.08468 
0.1444 
0.2035 
0.27 I5 
0.3840 
0.4694 
0.5870 
0.6913 
0.7833 

“Here, m =number of variables; H =sample size 
Source: Reproduced from Nagarsenker and Pillru (1973a) with the kind permission of Academic 
Press, Inc., and the authors. 

and 

where Q is a fixed matrix. By invariance we can assume that both Z and !J 
are diagonal, with D = diag( w , ,  . . . ,om). The asymptotic distributions are 
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Table 4 (Continued): a = .01 

N \ m  4 5 6 7 8 9 10 

5 0.0’3665 
6 0.0’6904 0.069837 
7 0.025031 0.0’2184 0.062970 
8 0.01503 
9 0.03046 

10 0.05010 
I 1  0.07258 
12 0.09679 
13 0.1218 
14 0.1471 
15 0.1721 
16 0.1966 
17 0.2204 
18 0.2434 
19 0.2655 
20 0.2867 
22 0.3264 
24 0.3626 
26 0.3956 
28 0.4257 
30 0.4531 
34 0.5013 
42 0.5769 
50 0.6331 
60 0.6856 
80 0.7558 

100 0.8006 
140 0.8541 
200 0.8961 
300 0.9297 

0.0’1828 0.047187 0.0’8604 
0.0’6123 0.0’6758 0.0‘2424 
0.01361 0.022498 0.0’2520 
0.024 I6 0.026033 0.02 10 I7 
0.03730 0.01 148 0.0’2646 
0.05248 0.01880 0.0’5369 
0.069 I5 0.02782 0.0’ 9296 
0.08685 0.03830 0.01444 
0. I05 I 8  0.04998 0.02073 
0. I239 0.0626 I 0.02807 
0.1426 0.07595 0.03635 
0. I6 I3 0.08982 0.0454 I 
0. I797 0.1040 0.055 I4  
0.2 I56 0. I330 0.076 I2 
0.2497 0. I620 0.09845 
0.2819 0.1904 0.1215 
0.3120 0.2180 0.1447 
0.3402 0.2445 0.1677 
0.3910 0.2940 0.2125 
0.4741 0.3789 0.2939 
0.5383 0.4475 0.3632 
0.6001 0.5157 0.4348 
0.6852 0.6129 0.5408 
0.7407 0.6782 0.6144 
0.8085 0.7598 0.7088 
0.X626 0.8262 0.7874 
0.9066 0.881 I 0.8535 

0.0’2760 
0.0’8306 0.089216 
O.O4Y438 0.0’2879 0.0’3573 
(1.0~4 120 0.043544 0.051004 
0.021 149 0.0’1663 0.041332 
0.0’2476 0.034943 0.046681 
0.0’4516 0.0’1 I26 0.0’2108 
0.02 7343 0.0’2160 0.035065 
0.01 OY8 0.023669 0.0 10 I 8  
0.01542 0.025707 0.0’1804 
0.02062 0.028300 0.0’2914 
0.02652 0.01 146 0.0*4386 
0.040 I7 0.01 940 0.02 8498 
0.05580 0.02933 0.0142 1 
0.07287 0.04095 0.02 145 
0.09092 0.05392 0,03007 
0. I096 0.06795 0.03989 
0.1475 0.09805 0.0623 I 
0.2211 0.1611 0.1136 
0.2876 0.222 1 0. I67 I 
0.3594 0.29 12 0.23 I I 
0.4705 0.4034 0.34 I 1 
0.5505 0.4879 0.4275 
0.6562 0.6028 0.5495 
0.7465 0.7040 0.6605 
0.8239 0.7927 0.7600 

different for these three cases. We first look at the two sequences of local 
alternatives. 

THEOREM 8.3.8. (a) Under the sequence of local alternatives K,: Z = 
h ( l ,  i - ( l / M ) O ) ,  the distribution function of - Mlog Vcan be expanded as 
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(b) Under the sequence of local alternatives K,$: 2 = A [ I ,  +(I/M1/2)!2], 
the distribution function of - Mlog V can be expanded as 

P( - Mlog v r  x )  = P[ x; ( s ) l  X I  

+ O( M -  1 ) .  

Here /= f(m +2)(m - I) ,  a, =tr flJ and in (b) the noncentrality parameter 
is 6 = +(a2 - o: /m) .  

ProoJ Both (a) and (b) can be proved by expanding the characteristic 
function of - Mlog V. Here only a proof of (a) will be presented. Using 
Theorem 8.3.5, the characteristic function of - Mlog V under K M  is 

(23) @( M, t ,  a)= E( V-""') 

G(  M ,  1 ,  Q ) ,  

where 

(24) 

with 

2m2 + m +2  
e = f ( n - M ) = t n ( 1 - p ) =  12m , 

and + ( M ,  r,O) is the Characteristic function of - MlogV when H is true 
(a =O), obtained from Corollary 8.3.6 by putting h = - Mit. From Theorem 
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8.3.7 we know that 
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where f =  $ ( m  + 2 ) ( m  - 1). Consider next the determinant term in (23). 
Taking logs and expanding gives 

1 
M = - a ,  + - ( :a2 - & a , )  + O( M -  2 ) ,  

where aJ = tr  QJ, and hence 

It  remains to expand the function G( M, f ,  42) for large M. The reader may 
recall that a partial differential equation approach was used in Section 8.2.6 
for a similar problem. Here, however, although G slightly resembles a 2 F l  
function, no differential equation is known for it. One way of expanding G ,  
and the method which will be used here, is to expand each term in the series 
and then sum. This amounts to fornially rearranging the series in terms of 
powers of M-I .  It is easily verified that 

. [ I  - -1 I +o( M - - 2 ) )  
1 -2 i t  

and that, with ~ = ( k  ,,..., k,,), 

(28)  
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where 

Multiplying (27) and (28) and substituting in (24) then gives 

1 
mN 

+ - [ k (  k - 1) + 2 k m ~ ]  + O( M-*) 

where 

We now sum, using the fact that 

and applying the formulas 

and 

m 

k = O  a 

2 xk-=etr(R)trR Ca(R) 
k! 

k = O  a 

which were proved in Lemma 7.5.2. Also needed is the formula 

(33) 
k = O  I 

which is readily established by applying the differential operator E = 
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Z;:, r, a/ar, to (3 I) .  We get 

We now use 

in (34) and multiply the resulting expansion by the expansions (25)  and (26) 
to give 

Inverting this expansion for the characteristic function of - Mlog V then 
establishes (a). Part (b) can be proved in a similar way, although the details 
are nowhere near as straightforward. 

Finally, we consider the asymptotic distribution of the likelihood ratio 
statistic under general alternatives. This is given in the following theorem, 
whose proof is omitted. 

THEOREM 8.3.9. Under the fixed alternative K: I: # X I  the distribution 
of the random variable 

det Z 
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can be expanded as 

where @(x) and + ( x )  denote the standard normal distribution and density 
functions, respectively, and 

T~ =2m(r2  - I )  

a,  = $ , ( m 2  + m - 2 t 2 )  

a2 = - [ 2 r ,  -31 ,  + I --3(12 - I ) ~ ] .  2m 

3 T 3  

with 

For derivations and further terms in the asymptotic expansions presented 
in this section, the interested reader should see Sugiura (1969b), Nagao 
(1970, 1973b) and Khatri and Srivastava (1974). 

8.3.5. 
an Elliptical Sample 

As an attempt to understand the effect of non-normality on the distribution 
of V we examine what happens when the sample comes from an elliptical 
distribution. In 

The Asymptotic Null Distribution of the Likelihood Ratio Statistic for 

det S 

where S is the sample covariance matrix, we substitute S =  X ( l m  + n-'/2Z). 
Then, when H: 2 = A I ,  is true, - n log V can be expanded as 

m m 

= 2 z;++ r, ( z , r - z ) 2 - k o p ( n - ~ ' * )  

=u'Bu+ 0,J n - ' l 2 ) ,  

r < j  r = l  
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where 
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m 
Z=(z:,), Z - m - '  - 2 Z l , ,  

r = l  

and 

with l= ( l ,  ..., l ) '€Rm. Now suppose that the sample is drawn from an 
elliptical distribution with kurtosis parameter K. The asymptotic distribution 
of u, as n -, 00, is Nm(m+ 1,/2(0,  I'), where 

Since BrB=( l+K)B and rank (BI ' )=f(m--- l ) (m+2) i t  follows that the 
asymptotic distribution of - nlog V/(I+ K )  is x;,,,- , ) ( m + 2 ) , 2 .  We sum- 
marize this result in the following theorem. 

THEOREM 8.3.10. If the sample is drawn from an elliptical distribution 
with kurtosis parameter K then the asymptotic distribution of - ti lug V / (  1 3. 
K), when H: Z = A l ,  is true, is x ~ ~ . - ~ ) ( ~ , + ~ ) / ~ .  

When the sample is normally distributed K =0, and this result agrees with 
that derived in Section 8.3.3. Note also that K can be replaced by a 
consistent estimate without affecting the asymptotic distribution. A Monte 
Carlo study carried out by C. M. Waternaux (unpublished) indicates that 
the usual test statistic - nlogV should be used with extreme caution, if at 
all, for testing H: Z = I,,, when the underlying population is elliptical with 
longer tails than the normal distribution. For example 200 samples of size 
N =200 drawn from a six-variate contaminated normal distribution with 
(I = 2, E = .3, and Z = I6 gave an observed significance level for the test based 
on - nlog V ,  of 508, for a nominal value of 5%. On the other hand, a test 
based on -(nlogV)/(I + k ) ,  where k is a consistent estimate of K, yielded 
an observed significance level of 7.58 for the same noniinal level of 5%. 
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8.3.6. Other Test Statistics 

A number of the other invariant test statistics have been proposed for 
testing the null hypothesis H: C = XI,,,. These include the two statistics 

the ratio of the largest to the smallest latent root of A, and 

The null hypothesis is rejected if either of these statistics is large enough. 
Note that a test based on L, is equivalent to a test based on 

The exact null distribution of L ,  has been given by Sugiyama (1970) as a 
complicated series involving zonal polynomials, and i t  has been further 
studied by Waikar and Schuurmann (1973) and Krishnaiah and Schuur- 
mann (1974); in these last two papers upper percentage points of the 
distribution may be found. The test based on L, has the optimal property of 
being a locally best (most powerful) invariant test. What this means is that 
for every X > O  and for every other invariant test L (say) there is a 
neighborhood N ( A I , )  of XI,,, such that the power of L, is no less than the 
power of L. For a proof of this and for distributional results associated with 
L,, the reader is referred to John (1971 1972) and Sugiura (1972b). No 
extensive power comparisons of the tests based on V, L,, and L, (and 
others) have been carried out. In view of the fact that the asymptotic 
nonnull distributions of L, are similar to those of V(see Sugiura (1972b), i t  
seems unlikely that there is much difference between these two. 

8.4. 
A SPECIFIED MATRIX 

TESTING THAT A COVARIANCE MATRIX EQUALS 

8.4.1. 

Let X ,, . . . , X be independent N,( p ,  Z) random vectors and consider 
testing the null hypothesis H: Z = Z,, where 2, is a specified positive 

The Likelihood Ratio Tesr and Invariance 
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definite matrix, against K: I: # 2,. An argument similar to that used at the 
end of Section 8.3.1 shows that this is equivalent to testing H: C = I against 
K: Z # 1, Ali results in this section will be written in terms of the iatter 
formulation. 

We first look at this testing problem from an invariance point of view. 
Consider the affine group of transformations 

Some Stundurd Tests on Covuriance Mutrices and Meun Vectors 

(a subgroup of the full affine group &e(m, R) given 9 (14) of Section 6.3) 
acting on the sample space of the sufficient statistic (X, A ) ,  where 

N N 

( = I  1 ' 1  

%=N--' 2 X, and A =  ( X ~ - X ) ( X , - - % ) ~ ,  

by 

(2) X- H % + C  and A + H A H I .  

The induced group of transformations on the parameter space is given by 

(3) p +  Hp+e and 2- HL"' ,  

and the testing problem is invariant, for the family of distributions of ( g ,  A )  
is invariant, as are the null arid alternative hypotheses. A maximal invariant 
is given in the following theorem. 

THEOREM 8.4.1. Under the group of transformations (3) a maximal 
invariant is ( A l ,  ..., A,,,), w h e r e A I r A 2 r  . * .  ? A f n  (>O) are the lutelit roots 
of 2. 

Let $(p,Z)=(A,, ..., A,,,), and first note that +(p ,2 ' )  is in- 
variant, because for HE O(m), H2H' and I: have the same latent roots. To 
show it  is maximal invariant, suppose that 

Proof: 

(P(Pl 2)- $(Ts r>,  
i.e., 2 and r have the same latent roots A ,,... ,A,,,. Choose H,E U(m), 
I f 2 €  U ( m )  such that H , Z H ;  = A, H , r H ;  = 13, where 

A =diag(A ,,..., A,,,). 
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where 

Putting c= - Hp + 7,  we then have 

H p  +c= r and H Z H ’ =  

and the proof is complete. 

It follows from this that a maximal invariant under the group @f*(m, R )  
acting on the sample space of the sufficient statistic (3, A )  is ( a , ,  ..., a,,,), 
where a ,  > . * - > a,,, >O are the latent roots of the Wishart matrix A .  Any 
invariant test depends only on al,  ..., a,,,, and from Theorem 6.1.12 the 
distribution of a, ,  . . .,a,,, depends only on X ,,.. .,A,, the latent roots of X. 
This has previously been noted in the discussion following Theorem 3.2.18. 
The likelihood ratio test, given in the following theorem due to Anderson 
(1958), is an invariant test. 

THEOREM 8.4.2. The likelihood ratio test of size a of H: X = I,,, rejects 
If if A 5 c,, where 

(4) 
m N / 2  

A = ( 5 )  etr( - fA)(det 

and c, is chosen so that the size of the test is a. 

Proof: The likelihood ratio statistic is 

( 5 )  

where 

L ( p ,  C)=(det C)-”2etr( -&Z-’A)exp[ - f N ( K - p ) f Z - ’ ( x - p ) ]  

The numerator in ( 5 )  is found by putting p =%, and the denominator by 
putting p =%, I: = N - ‘ A .  Substitution of these values gives the desired 
result. 
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8.4.2. 

The likelihood ratio test given in Theorem 8.4.2 is biased. This is well 
known in the case m = I and was established in general by Das Cupla 
(1969) with the help of the following lemma. 

LEMMA 8.4.3. Let Y be a random variable and u2 > O  a constant such 
that Y / 0 2  has the x: distribution. For r >O, let 

Some Staartdurd Tests on Cooaricmce Matrices and Meart Vectors 

Unbiasedness and the Mod$ed Likelihood Ratio Test 

p ( o 2 ) =  P[ ~ ' e x p (  - 4 Y ) Z  lu']. 

Then 

Proof. Since the region 

is  equivalent to y I  5 Y 5 y2, where 

( 6 )  Y ;  exp( - 1 YI ) = Y2'exP( - iY2 ) = k 9 

it follows by integration of the x: density function that 

where C =[2p/2r(jp)]- I .  Differentiating with respect to u2 gives 

i.e., according as 

(7) 

Using (6) the right side of (7) is easily seen to be 2 r / p ,  and the proof is 
complete. 
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The following corollary is an immediate consequence. 

COROLLARY 8.4.4. With the assumptions and notation of Lemma 8.4.3, 
/I( u 2, decreases monotonically as I u2 - 1 I increases, if 2r = p. 

We are now in a position to demonstrate that the likelihood ratio test is 
biased. Note that rejecting H for small values of A is equivalent to rejecting 
H for small values of 

(8) V=etr( -fA)(det 

THEOREM 8.4.5. For testing H: 2 = I against K: 2 # I, the likelihood 
ratio test having the critical region VC c is biased. 

ProoJ By invariance we can assume without loss of generality that 
2 =diag(A,, ..., A,). The matrix A =(a , , )  has the W,(n, 2 )  distribution, 
with n = N - 1. Write 

Now, the random variables det A / l I ~ ! ' = , a , ,  and a,, (with i = I ,  ...,tn) are all 
independent, the first one having a distribution which does not depend on 
( A , ,  ..., A,), while a r r / X I  is xf, (see the proof of Theorem 5.1.3). From 
Lemma 8.4.3 i t  follows that there exists a constant A*,€( I ,  N/n) such that 

P [ ali2exp( - t a,, ) 5 k I A, = I J < P[ ati2exp( - 4 a, ) 2 k I x , = x 2 J 

for any k. The desired result now follows when we evaluate P( V 2  c )  by 
conditioning on a ,  ,,. . . ,a,,,.- 

By modifying the likelihood ratio statistic slightly, an unbiased test is 
obtained. The modified likelihood ratio statistic is 

I and det A / I I z  , a,,. 

(9) 
m n / 2  

A*=(;) etr( - fA)(det 

and is obtained from A by replacing the sample size N by the degrees of 
freedom n. This is exactly the likelihood ratio statistic that is obtained by 
working with the likelihood function for Z specified by the Wishart density 
for A instead of the likelihood function specified by the original normally 
distributed sample. The modified likelihood ratio test then rejects H: C = I 
for small enough values of A', or equivalently, of 

(10) V+=etr( - tA)(det A)"". 
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That this test is unbiased is a consequence of the stronger result in the 
following theorem, from Nagao (1967) and Das Gupta (1969). 

THEOREM 8.4.6. The power function of the modified likelihood ratio 
test with critical region VYSC increases monotonically as JX, - 11 increases 
for each i = l ,  ..., m. 

Proo/: Corollary 8.4.4 shows that P[a:;/,2exp( - ~ a , , , , ) S  k lhm] in- 
creases monotonically as IX, - 11 increases. The desired result now follows 
using a similar argument to that used in the proof of Theorem 8.4.5. 

Sotile Stundurd Tests on Cmuriunce Mutrices and Meun Yecrcirs 

8.4.3. Moments of the Modfieti Likelihood Ratio Statistic 

Distributional results associated with A* can be obtained via a study of its 
moments given by Anderson (1958). 

THEOREM 8.4.7. The hth moment of the modified likelihood ratio sta- 
tistic A* given by (9) is 

Prooj Using the W,(n, X) density function, the definition of A*, and 
Theorem 2. I .9 we have 

completing the proof. 

COROLLARY 8.4.8. 
moment of A* is 

When the null hypothesis H: 22 = 1 is true the hth 
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These null moments have been used by Nagarsenker and Pillai (1973b) to 
derive expressions for the exact distribution of A*. These have been used to 
compute the upper 5 and 1 percentage points of the distribution of 
-21og A* for m = 4(1)10 and various values of n. The table of percentage 
points in Table 5 is taken from Davis and Field (1971). 

8.4.4. 
Likelihood Ratio Statistic 

The null moments of A* given by Corollary 8.4.8 are not of the form (18) of 
Section 8.2.4. Nevertheless, i t  is still possible to find a constant p so that the 
term of order n-I vanishes in an asymptotic expansion of the distribution of 
-2plogA*. The result is given in the following theorem. 

THEOREM 8.4.9. When the null hypothesis H: I: = I is true the distribu- 
tion of - 2plog A* can be expanded as 

The Asymptotic Null Distribution of the Modified 

where 

2m2 +3m - I 
tin( m + 1) 

(13) p = l -  , M = p n ,  / = f m ( m + l )  

and 

m 

288( m + 1) 
(2m'+6m3 + m z  - 12m - 13). Y== 

Proot With M = pn = n -(2m2 +3m - 1)/6(m 4- I ) =  n - a, say, the 
characteristic function of -2plog A *  is, from Corollary 8.4.8, 

(14) 

The desired result is an immediate consequence of expanding each of the 
terms in log g,( I )  for large M ,  where (24) of Section 8.2.4 is used to expand 
the gamma functions. 
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Table 5. Upper 5 and 1 percentage points of -2bg A*, where A *  is the modified 
likelihood ratio statistic for testing that a covariance matrix equals a specified matrix" 

2 

5% 1% 

8.9415 13.001' 
8.7539 12.723 
8.6 19X I2.524t 
8.5193 12.376 
8.44 I I 12.2601 

8.3786 12.168' 
8.3274 12.093: 
n.2847 12.0301 
8.2486 I1 9771 
R.2177 I 1.932: 

R. 1909 I I 893; 

8.1283 I I.ROI! 

R 1674 11.85Pt 
R.1467 I1.82H! 

'1.IIIH 11.7774 

3.0970 11.7557 
3.0835 I 1.7361 
1.0713 I I 7183 

3.0500 I.6X71 

LO406 1.6734 
3,0319 1.6608 
1.0239 1.6490 
1.0164 11.6382 
I.OOY5 11.6280 

1.9809 11.5864 
I 9597 11.5554 
r.9432 11.5314 
'.9301 11.5124 

3.0602 I ,7020 

f.9106 I 1.4840 

'3624 11.413Y 
'3147 11.3449 

3 

5 %  1 %  

15.805 21.229 
15.1854 20.358 
14.7676 19.7756 
14.4663 19.3571 
14.2387 19.0434 

14.0605 18.7992 
13.9173 18.602Y 
12.7995 18.442 I 
13.7010 18.3078 
13.6174 18.1940 

13.5456 18 0964 
13.4832 18.01 16 
13.4284 17.9373 
13.3800 17.8718 
13.3369 17.8134 

13.2983 17.76 I I 
13.2634 17.7141 
13.2319 17.6715 
13.2032 17.6327 
13. I769 17 5973 

13.1529 17.5648 
13. I307 17.5349 
13.1 102 17.5073 
13.0912 17.4817 
13.0735 17.4579 

13.0012 17.3606 
12.9478 17.2887 
12.9067 17.2335 
2.8741 17.I89X 
2.8257 17. I24Y 

2.7071 16.9660 
2.5916 16.8119 

- 4 

5% I% 

24.06 30.75 
23.002 29.32 
22.278 28.357 
21.749 27.651 

21.3456 27.1268 
21.0276 26.7102 
20.7702 26.3743 
20.5576 26.0975 
20.3789 25.8655 

20.2266 25.6681 
20.0953 25.4982 
IY.9808 25.3503 
19.8801 25.2204 
19.7909 25.1054 

19.7 I I 3  25.0029 
19.6398 24.9109 
IY.5753 24.8279 
19.5167 24.7527 
19.4633 24.684 1 

19.4144 24.6214 

19.3281 24.5107 
19.2899 34.4617 
19.2543 24.4 I62 

19.1094 24.2307 
19.0029 24.0946 
IX.Y214 23.9906 

18.7617 23.7870 

8.5300 23.4922 
8.3070 23.2093 

19.36~5 24.5638 

18.8570 23.9085 

5 

5% I %  

32.47 39.97 
31.36 38.55 

30.549 37.51 
29.922 36.710 
29.424 36.079 
29.0182 35.567 
28.6812 35.1435 

28.3967 34.7866 

27.9425 34.2185 
27.7582 33.9886 
27.5958 33.7862 

21.45 14 22.6066 
27.3224 33.4461 
27.2062 33.3018 
27.1011 33.1713 
27.0056 33.0529 

26.9184 32.Y44H 

26.7650 32.7547 
26.6971 32.6707 
26.6342 32.5930 

26.3788 32.2774 
16. I924 32.0474 
l6.0503 3 1.8723 
!5.93X4 31.7345 
!5.7734 31.5315 

!5.3751 31.0424 
!4.9Y58 30.5779 

28. I 532 34.48 1 8  

26.8385 32.8458 

6 

5% I% - 

42.08 
40.92 48.96 
40.02 4784 
39.303 46.96 
38.714 46.234 

38.222 45.632 
17.806 45.122 
17.4475 44.686 
37. I365 44.3069 
36.8638 43.9754 

t6.6227 43.6827 
16.4(lHO 43 4224 
16.2155 43.1892 
16.0420 42.9792 
15.8847 42.7~90 

15.7415 42.6160 
15.6106 42.4579 
I5 4904 42.3128 
15.3797 42.1793 
15.2774 42.0559 

14.8635 41.5575 
14.5632 4 I. I965 
14.3353 40.9229 
:4. I565 40.7083 

3.2642 39.6405' 
2.6705 38.9321 I 
'3.8937 40.3935, 
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9 

5% I% 

76.86 
75.72 86.11 
74.75 84.97 

73.90 83.99 
73.16 83.13 
72.502 82.37 
71.918 81.697 
71.394 81.092 

70.922 80.548 
70.494 80.054 
70 104 79.605 
69.747 19. I95 
69.4190 78.818 

68.1134 77.3197 
67. I852 76.2565 
66.4910 75.4625 
65.952 I 74.8466 
65.1694 73.9533 

63.3356 71.8646 

61.6562 69.9568 

- 
111 - 
n 

15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 
45 
50 
60 

20 

- 

00 - 

10 

5% I %  

91.28 

90.06 101.30 
89.01 100.08 
88.08 99.02 
87.25 98.08 
86.52 97.23 

85.855 96.48 
85.258 95.799 
84.716 95.181 
84.22 I 94.6 I 8  
83.768 94.103 

81.9731 92.064 
80.7067 90.628: 
79.7646 89.562‘ 
79.0361 88.7381 
77.9823 87.5481 

75.5328 84.788! 

72.3 I I 5  82.292 I 

7 I 8 

59.38 

58.41 
57.60 
56.911 
56.318 
55.801 

55.348 
54.947 
54.5889 
54.2678 
53.9780 

53.7151 
53.4756 
53.2563 
53.0549 
52.8693 

52.1228 
51.5856 
51.1804 
50.8637 
50.400R 

49.3019 

48.2782 

5% I% I 5% I %  

64.94 

63.66 
62.60 
61.71 
60.95 
60.290 

59.714 
59.206 
58.754 
58.350 
57.986 

57.6573 
57.3580 
57.0847 
56.8340 
56.6032 

55.6790 
55.0172 
54.5197 
54. I32 I 
53.5669 

52.2325 

50.9985 

50 70 

49.90 
49.22 I 
48.645 
48.149 
47.716 

47.336 
46.9982 
46.697 I 
46.4266 
46. I823 

45.9605 
45.7582 
45.5730 
4 5.402 7 
45.2456 

44.6 I 3 3  
44. I575 
43.8132 
43.5440 
43.1499 

42.2 I25 

41.3371 

73.39 
72.14 
71.08 
70.19 
69.41 

68.733 
68.138 
67.609 
67. I37 
66.712 

66.328 
65.9787 
65.6601 
65.3681 
65.0996 

64.0253 
63.2576 
62.68 I 2  
62.2325 
61 5790 

60.0394 

58.6 I92 

“Here, 
Source: Reproduced from Davis and Field (1971) with the kind permission of 
the Commonwealth Scientific and Industrial Research Organization (C.S.I.R.O.), 
Australia, and the authors. 

=number of variables; n =sample sire minus one. 

36 I 
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This expansion was given by Davis (1971), who also derived further 
terms and used his expansion to compute upper percentage of the distribu- 
tion of -2IogA+; see also Korin (1968) for earlier calculations. Nagar- 
senker and Pillai (1973b) have compared exact percentage points with the 
approximate ones of Davis and Korin; i t  appears that the latter are quite 
accurate. 

8.4.5. 
Likelihood Ratio Statistic 

The power function of the modified likelihood ratio test of size a is 
P(-ZpJogA*rk,+JA, ,  ..., A,), wherepisgiven by(13)and kX is theupper 
lOOa% point of the null distribution of -2plogA*. This is a function of 
A , ,  . . . ,A,, the latent roots of C. An approximation for k,+ is c,( a), the upper 
100a4g point of the x;  distribution with f = j m ( m  + 1). The error in this 
approximation is of order M-*,  where M = pn.  Here we give approxima- 
tions to the power function. 

Asyniptotic Non-Null Distributions of the Modvied 

We consider the three different alternatives 

where 51 is a fixed matrix. By invariance it can be assumed without loss of 
generality that both L’ and s1 are diagonal, Z=diag(A,, ..., A , )  and S1= 
diag( w ,, . . . , w,,,). Here K is a fixed alternative and K,, K;t, are sequences of 
local alternatives. We consider first these latter two. 

THEOREM 8.4.10. (a) Under the sequence of local alternatives K M :  
2 = I +( I / M ) a  the distribution function of -2plog A *  can be expanded 
as 

+ O( i v - 2 ) .  

where 

f = ~ m ( m + l ) ,  M = p n ,  o,=trQJ. 
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(b) Under the sequence of local alternatives KL: X =  I +(1/M’/2)0 the 
distribution function of - Zplog  A* can be expanded as 

P( -2p l0g  A * I x ) =  P( X ;  (6)s X )  + - P 
6M I / ’  

*[ (x;+4(6)> x )  - 3 P (  x ? + 2 ( 6 ) 5  x)  + 2 P (  x ;  ( 8 ) s  X)] + o w -  I ) *  

where aJ = tr 0’ and the noncentrality parameter is & = 4a2. 

characteristic function of - Zplog A* is, from Theorem 8.4.7, 
Proot As to part (a), under the sequence of alternatives K, the 

s (~m=g, (o  2 i t p  I M(I - 2 1 1 ) / 2  + a / 2  ’ 
det( I - - -0) 

1 - 2 i l p  M 

where a = n - M and gl(t) is the characteristic function of - 2 p l o g  A* 
given by (14). Using the formula 

trz2 + t r ~ 3  + - . (15) -1ogdet I--Z =-trZ+- 
1 1 

( k ) M  2 M 2  3 M 3  

to expand the determinant terms gives 

whence the desired result. 
As to part (b) under the sequence of alternatives K$ the characteristic 

function of - 2 p l o g A *  is g(r, M ’ 1 2 0 ) ,  using the above notation. Again, 
using (15) this is expanded as 

and inversion completes the proof. 

statistic under fixed alternatives. 
We turn now to the asymptotic behavior of the modified likelihood ratio 
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THEOREM 8.4.1 1. Under the fixed alternative K: Z f I the distribution 
of the random variable 

Y = M - ' / 2 (  -2plog A* - M[tr( Z - I)-logdet C]} 

may be expanded as 

where @ ( x )  and + ( x )  denote the standard normal distribution and density 
functions, respectively, and 

7 2  =2  tr(z - I ) ~  

c, = -m(m + 1) 
3 
7 

4 

7' 
c, = - ( & - I  + 2 r ,  -312),  

with 

t, = tr CJ. 

The proof follows on using Theorem 8.4.7 to obtain the characteristic 
function of Y / T  and expanding this for large M. The details are left as an 
exercise (see Problem 8.8). 

The expansions in this section are similar to ones given by Sugiura 
(l969a, b) for the distribution of -2log A* (not -2plog A*). Sugiura also 
gives further terms in his expansions, as well as some power calculations. 

8.4.6. 
Statistic for an Elliptical Sample 

Here we examine how the asymptotic null distribution of A* is affected 
when the sample is drawn from an elliptical distribution. In 

The Asymptotic Null Distribution of the Modified Likelihood Ratio 

A* = emn/2etr( - inS)(det S ) " / * ,  

where S is the sample covariance matrix, we substitute S = I,,, + n- ' /2Z .  
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Then when H: I: = I,,, is true, -210g A* can be expanded as 

- 2 log A* = 4 tr( Z 2 )  + O,( n- ' I 2  ) 

=u'u+O,(n-'/*) 

where u' = ( z , ,  /21/2,. . . , ~,,,,,,/2~/~, z , ~ ,  . . . t lm, zz3,. . . ,z,- I, ,). Now sup- 
pose that the observations are drawn from an elliptical distribution with 
kurtosis parameter K .  Then the asymptotic distribution of u, as n -.. bo, is 
IV ,n (m+ 1,/2(01 r), where 

with l = ( l , , . , , l ) ' € R ' " .  The latent roots of I' are I + ~ + i n t ~  and I + K  
repeated - f ( m  - I)(m +2) times. Diagonalizing r by an orthogonal matrix 
and using an obvious argument establishes the result given in the following 
theorem. 

THEOREM 8.4.12. If the sample is drawn from an elliptical distribution 
with kurtosis parameter K then the asymptotic distribution of -210g A*/ 
( 1  + K )  is the distribution of the random variable 

where XI is x: ,  X2 is x ~ ~ , - ~ ) ( , , , + ~ ) / ~ ,  and X, and X2 are independent. 

When K = O  this result reduces to the asymptotic distribution of -210g A* 
under normality, namely, x & , ~ + ~ ) / ~ .  The further that K is away from zero 
the greater the divergence of the asymptotic distribution from xi( , , ,+  so 
great care should be taken in using the test based on A* for non-normal 
data. 

8.4.7. Other Test Statistics 

In addition to the modified likelihood ratio test a test based on a, and a,, 
the largest and smallest latent roots of A,  was proposed by Roy (1957). The 
test is to reject H: C = l,,, if a, >a: or a,, <a:. Various methods for 
choosing a:. a:, have been suggested; see Thompson (1962). Hanumara and 
Thompson (1968), and Clem et al, (1973). An alternative test, rejecting for 
large values of a ,  alone, was examined by Sugiyama (1972) and Muirhead 
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(1974). Further discussion of this test may be found in Section 9.7. Sugiurrr 
(1972b) and John (1971) have shown that for testing H : 2 = = 1  against 
K,,: Zr I the test which rejects H for large values of tr  A is locally best 
invariant. 

Sonw Srundurd Trsr5 on Coourrunce Mumcrs and Meun Vecivrs 

8 . 5 .  TESTlNG SPECIFIED VALUES FOR T H E  M E A N  
VECTOR AND C O V A R I A N C E  MATRIX 

8.5. I .  

Let XI,. . . , X, be independent N,( p ,  2) random vectors and consider 
testing the null hypothesis H: p = po, Z = Zo against K: p # po or I: J; Z,. 
An argument similar to that used at the end of Section 8.3.1 shows that this 
is equivalent to testing H: p =0, I: = I,. We will express all results in this 
section in terms of this latter formulation. 

It is clear that this testing problem is invariant under the orthogonal 
group O(m) acting on the space of the sufficient statistic (g ,  A).  where 

The Likelihood Ratio Test 

N N 

%= N-’ 2 X,, A =  2’ (X, -X)(X, -%)’, 
r = l  J = l  

by 

( 1 )  g+ H g ,  A -  HAH‘ [ N E O ( m ) ]  

The induced group of transformations on the parameter space is given by 

( 2 )  p - H p ,  I : - I I C t I ’ .  

Various invariants under the transformation (2) include p’p, p%p, p’2 - ‘p ,  
and (A,,,..,A,,,), the latent roots of Z. The problem of finding a maximal 
invariant is left as an exercise (see Problem 8.10). 

The likelihood ratio test is given in the following theorem from T. W. 
Anderson (1958). 

THEOREM 8.5.1. The likelihood ratio test of size (Y of 11: p =0, Z = I,,, 
rejects H if A 5 c,, where 

(3)  (det A)”’etr( - fA)exp( - 3 N R ‘ f S ) .  

Prooj, The likelihood ratio statistic is 

L(O.1)  
SUP,,&(P, 9 ’ A =  (4) 
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where 

L ( p ,  2)=(de t  X)-N/Zetr( - iX-IA)exp[ - j l V ( % - p ) ' X - ' ( % - p ) ]  

The denominator in (4) is found by putting p =% and X = N-'A ,  and the 
desired result is immediate. 

The unbiasedness of the likelihood ratio test has been established by 
Sugiura and Nagao (1  968) and Das Gupta ( 1969). The proof given here is 
due to Sugiura and Nagao. 

THEOREM 8.5.2. For testing H: p =0, Z = 1 against K: p f O  or X # I, 
the likelihood ratio test having ihe critical region 

C =  {(x, A ) ; % E R " ,  A>O,(det A)""etr(--A)exp(-iN%'%)Ik,} 

is unbiased. 

Proo/. Without loss of generality it can be assumed that B =  
diag(Al, ..., A",). The probability of the critical region under K can be 
written 

where 

cm," = [ 2 m " / Z r m ( f n ) ] - I  and n = N- 1. 

Now put U =  Z - ' / 2 A Z - ' / 2  and ~ = Z - ' / * ( ~ - p ) ;  then 

( d Z ) (  dA) = (det 2)'"'' 2)'2( d v ) (  dU) 

and 

where 
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Note that when H is true the region C* is equal to C. I t  follows that, with 

Some Siundurd Tesu on Covariance Matrices and Mean Vectors 

Now, for (V, V )  E C - C n C* we have 

- N / 2  etr[ - 4 ( V + N vv’)] s k,(det L/ ) , 

while for (Y, V)E C* - C f l  Cc 

etr[- t(L/-t Nw’)] >k , , (de tU) -”* ,  

and hence 

= 0, 

since 

This is easily seen by making the transformation 
- 
Z=ZWt;+p,  V = C ‘ / 2 1 / X ‘ / 2  

in the integral on the left. We have thus shown that 

P K W ?  P, , (C) .  

and the proof is complete. 
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8.5.2. 

Distributional results associated with A can be obtained from the moments. 

THEOREM 8.5.3. The hth moment of A is 

Moments of the Likelihood Ratio Statistic 

exp( - f N h ~ ' [ l - h ( Z - ' + h l ) - ' ] ~ ) .  

where n = N- 1. 

Proof. Using the independence of A and x we have 

a /  R m  exp[ - ~(ji-lr)'~-l(ji-Ir)-f~h~'j~](d~) 

The first integral on the right is equal to 

while the second integral can be written as 

where this last expectation is taken with respect to % distributed as 



370 Some Srundurd Tests on Coouriunce Mutrices und Meun Vectors 

Since 

(9) E[exp( - NhX'p) ]  =exp[ - Nhp'p + f N h 2 p ' ( 2 - '  + h l ) -  Ip] 

(see, for example, Theorem 1.2.5), the desired result now follows by sub- 
stitution of (9 )  in (81, then of (7) and (8) in (6). 

COROLLARY 8.5.4. When the null hypothesis 11: p =0, I: = 1 is true, 
the h th moment of A is 

I 

These null moments have been used by Nagarsenker and Pillai (1974) to 
derive expressions for the exact distribution of A and hence to compute the 
upper 5 and 1 percentage points of the distribution of - 2 l o g A  for 
m =2(1)6 and N=4( 1)20, 20(2)40,40(5)100. These are given in Table 6. 

8.53- 
the Likelihood Ratio Statistic 

The null moments of A given in Corollary 8.5.4 are not of the form (18) of 
Section 8.2.4. However it is still possible to find a constant p so that the 
term of order N - '  vanishes in an asymptotic expansion of the distribution 
of -2plogA, as the following theorem from Davis (1971) shows. The proof 
is very similar to that of Theoreni 8.4.9 and is left as an exercise (see 
Problem 8. I 1). 

THEOREM 8.5.5. When the null hypothesis H: p =0, 2 = In, is true, the 
distribution of -2plogA can be expanded as 

The Asymplniic Null Distribution of 

( I  1) P( -2pl0g A SX)= P(x: SX)+ Y [ t ) ( ~ j + ~  5 ~ ) -  P ( x :  SX)]  

-t o( w), 
where 

(12) 

and 

2m2 +9m + I 1 
p = l -  M = p N ,  / = f m ( m + 3 ) ,  

6N(m+3)  ' 

m (2m4 -I- 18m3 +49m2 +36m - 13). 
= 288( m + 3) 



Table 6. Upper 5 and 1 percentage points of -2log A,  where A is the 
likelihood ratio statistic for testing specified values for the mean vector and 
covariance matrix' : a = .05 

N b  2 3 4 5 6 

4 
5 
6 
7 
8 

9 
10 
I I  
12 
13 

14 
15 
16 
17 
18 

19 
20 
22 
24 
26 

2R 
30 
32 
34 
36 

38 
40 
45 
50 
55 
60 
65 
70 
75 
80 

85 
90 
95 

I 0 0  

17.38 I 
15.352 
14.318 
13.689 
13.265 

12.960 
12.729 
12.549 
12.404 
12.285 

12.186 
12.101 
2.029 
I .  966 
1.91 I 

I .862 
1.819 
1.745 
1.684 

1 I .633 

11.591 
1 1.554 
I 1 S22 
1 1.494 
I I .469 

11.447 
I I .427 
11.386 
11.353 
1 1.327 

1 I .305 
I 1.286 
11.271 
1 1.257 
I 1.245 

1 I .235 
1 1.225 
11.217 
11.210 

27.706 
24.43 I 
22.7 13 
2 I .646 

20.9 I5 
20.382 
19.975 
19.655 
19.396 

19.181 
19.002 
18.848 
18.716 
18.60 1 

18.499 
18.410 
18.258 
18.134 
18.03 1 

17.944 
17.870 
17.806 
17.750 
17.70 1 

17.657 
17.618 
17.536 
17.47 I 
17.419 

17.375 
17.339 
17.308 
17.28 I 
11.258 

17.237 
17.219 
17.203 
17.188 

39.990 
35.307 

31.190 
30.080 
29.26 I 
28.63 I 
28.131 

27.723 
27.384 
27.098 
26.854 
26.642 

26.457 
26.294 
26.0 I9 
25.797 
25.614 

25.460 
25.329 
25.2 I5 
25.1 17 
25.030 

24.954 
24.885 
24.142 
24.630 
24.539 

24.465 
24.402 
24.348 
24.302 
24.262 

24.227 
24. I96 
24. I68 
24. I43 

32.787 
54.26 I 
48.039 

44.6 10 
42.400 
40.843 
39.683 
38.782 

38.06 1 
37.470 
36.977 
36.559 
36.200 

35.614 
35.157 
34.790 
34.489 

34.237 
34.023 
33.840 
33.681 
33.541 

33.4 I7 
33.307 
33.079 
32.900 
32.155 

32.636 
32.537 
32.452 
32.379 
32.316 

32.261 
32.2 I 1 

35.888 

70.475 

62.660 
58.222 
55.321 
53.254 
5 I .698 

50.480 
49.499 
48.691 
48.013 
47.436 

46.938 
46.504 
45.785 
45.2 I2 
44.745 

44.357 
44.029 
43.748 
43.505 
43.292 

43.105 
42.938 
42.594 
42.324 
42.107 

4 I .929 
41.780 
4 1.654 
4 1.546 
41.451 

37 I 



4 
5 
6 
7 
8 

9 
10 
I I  
I2 
13 

14 
I5 
16 
17 
18 

19 
20 
22 
24 
26 

28 
30 
32 
34 
36 

38 
40 
45 
50 
55 

60 
65 
70 
75 
80 

85 
90 
95 

100 

Table 6 (Continued): a = .O I - 
N\m 2 3 4 5 6 

24.087 
21.114 
19.625 
8.729 
8.129 

7.700 
7.377 
7. I25 
6.923 
6.758 

16.620 
16.503 
16.403 
16.316 
16.239 

16. I72 
16.1 12 
16.010 
15.927 
15.857 

15.798 
15.747 
15.703 
15.665 
15.63 I 

15.60 I 
15.574 
15.517 
15.473 
15.436 

15.406 
15.381 
15.359 
15.341 
15.324 

15.310 
15.297 
15.286 
15.276 

36.308 
3 I .682 
29.318 
27.87 I 

26.890 
26. I80 
25.642 
25.219 
24.878 

24.597 
24.361 
24.161 
23.988 
23.838 

23.706 
23.589 
23.392 
23.23 1 
23.098 

22.986 
22.890 
22.807 
22.734 
22.671 

22.614 
22.564 
22.458 
22.375 
22.307 

22.252 
22.205 
22. I65 
22.13 I 
22.101 

22.074 
22.05 1 
22.030 
22.01 I 

50.5 I2 
44.073 
40.7 I3 

38.62 I 
37. I84 
36.133 
35.320 
34.692 

34. I76 
33,748 
33.388 
33.080 
32.814 

32.582 
32.378 
32.035 
31.758 
3 I .529 

3 1.337 
31.174 
3 1.033 
30.91 I 
30.803 

30.708 
30.623 
30.447 
30.308 
?O. I96 

30. I03 
30.025 
29.959 
29.903 
29.853 

29.810 
29.77 I 
29.737 
29.706 

66.728 
58.348 

53.885 
5 I .063 

47.650 
46.53 I 

45.639 
44.91 I 
44.305 
43.793 
43.353 

43.973 
42.639 
42.083 
4 I .637 
4 I .272 

40.967 
40.708 
40.486 
40.294 
40.125 

39.976 
39.844 
39.568 
39.353 
39.179 

39.036 
38.9 I6 
38.815 
38.727 
38.65 I 

38.585 
38.526 

49. I (n) 

84.937 

74.530 
68.874 
65.244 
62.690 
60.784 

59.302 
58. I14 
57.139 
56.324 
55.63 I 

55.035 
54.5 I7 
53.658 
52.977 
52.422 

51.961 
5 1.573 
5 1.240 
50.953 
50.70 I 

50.480 
50.284 
49.877 
49.559 
49.303 

49.094 
48.9 I9 
48.770 
48.643 
48.532 

~~ ~ 

"Here, m = number of variables; N =sample size. 
Source: Reproduced from Nagarsenker and Pillai (1974) with the kind periiiissioii of 
Academic Press, Inc., and the authors. 
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8.5.4. Asymptotic Non-Null Distributions of 
the Likelihood Ratio Statistic 

Here we consider the asymptotic distributions of -2plogA under the three 
different alternatives 

K : p # O  or Z f i , , , ,  

and 

where M = p N ,  with p given by (12), and Q is a fixed matrix assumed 
diagonal without loss of generality. The two sequences of local alternatives 
K ,  and K L  are considered first. 

THEOREM 8.5.6. (a) Under the sequence of local alternatives 

the distribution function of -2plogA can be expanded as 

(13) P( -2plog h 5 x)=  P( x;  5 x)  4- q ~ ( u 2  +27’7)[ P( x;+2 5 X )  
1 

- P( x; I x ) ]  + o( W 2 ) ,  

where/= t m ( m  + 3), M = p N ,  and 0, = tr Q2. 

(b) Under the sequence of local alternatives 

the distribution function of -2plogA can be expanded as 

(14) 

P( -2pl0g A I x)= P( x j (6 )S  X )  + - 1 [(+ + ~ T ’ Q T ) P (  X ; + ~ ( S ) S X )  6M ‘ I 2  

- (3u,  +67’Q7)P( X ? + ~ ( ~ ) S X )  +(2u3 + 3 ~ ’ Q r ) P ( x ; ( 8 ) S x ) ]  + O( M - I ) ,  

where u, = tr Q J  and the noncentrality parameter is 6 = 40, + 7‘7. 
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Proot As to part (a), under the sequence of alternatives K, the 
characteristic function of - 2plog A is, from Theorem 8.5.3, 

(15) g(197, Q t ) =  R , ( t ) & ! 2 ( 1 . 7 ,  Q ) ,  

where gl(t) is the characteristic function of -2plogh when N is true 
obtained from Corollary 8.5.4 by putting h = --2itp, and 

(16) 

with a = N - M .  From Theorem 8.5.5 it follows that 

The ratio of determinants in g, can be expanded, as in the proof of Theorem 
8.4.9, as 

(18) 

1 - M I /  

det( 1 f xS1) 
M( I - 2 i r ) / 2  b e / 2  In) 

where u2 = tr 9’. The exponential term in g2 can be expanded as 

(19) 

T’T + O( M - 2 ) .  
it 

( I  - 2 i t ) M  
= I +  
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Multiplication of (l7), (18). and (19) then shows that 

g( I, 7 ,  a )  = ( I - 2ir ) -’I2[ 1 + - 1 ( u2 + 27’7) ( - 1)  + O ( M - ’ ) ] ,  4M 

and inverting this completes the proof, 

function of -2plogA is g(r,  
here is expanded as 

As to part (b), under the sequence of alternatives K;t, the characteristic 
M1I2S2).  The ratio of determinants 

(see the proof of Theorem 8.4. lo), while the exponential term has the 
expansion 

Putting these together gives 

whence the desired result. 

The next theorem describes the asymptotic behavior of the likelihood 
ratio statistic under fixed alternatives. 

THEOREM 8.5.7. Under the alternative K: p f O  or 2, = I, the distribu- 
tion of the random variable 

(20) Y=M-1/2{-2plogA-M[tr(I:-I)-logdetX+p’p]} 

may be expanded as 

I 
6M1/’ 

P ( 8’ 52 x ) = a( x ) - - [ cl$( x )  + CZ$‘Z’( x )] + O( M- I ) ,  

where @(x) and $(x) denote the standard normal distribution and density 
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functions respectively and 

P 2  = 2  tr( I: - 1 ) 2  +4p'Cp, 

3 
P c, = -m(m +3) ,  

with 

t, = tr ZJ. 

The proof follows on using Theorem 8.5.3 to obtain the characteristic 
function of Y/p and expanding this for large M in the usual way. The 
details are left as an exercise (see Problem 8.12). 

The expansions in these last two theorems are similar to ones given by 
Sugiura (1969a,b) for the distribution of -21og A (not -2plog A). Sugiura 
also gives further terms in his expansions. 

PROBLEMS 

8.1. Let W be the statistic given by (14) of Section 8.2 when r = 2 ,  Le., for 
testing H: 2, = 2,. Using the null moments of W given in Theorem 11.2.6, 
show that, when m = 2, W has the same distribution as Xn I( 1 -- x)"2  Y * I  ' " 2 ,  where 
Xis  beta(nl - 1, n2 - l), Y is beta@, + n2 - 2, I), andXand Yare independent. 

8.2. For testing H: 2 ,  = 2, the modified likelihood ratio statistic is (assum- 
ing normality) 

A* = (det S,)*'/2(det S2)"2'2 

(det S)"" 
I 

where S, and S2 are the two sample covariance matrices and S = n-.  '( n ,SI 
+n2S2), with n = n ,  + n 2 .  Suppose that H is true, and let X, denote the 
common value of X I  and 2,. Let n ,  = k , n  ( i  = 1,2), with k, + k, = 1 ,  and 
suppose n 3 00. Put 2, =(nk,) ' /2(S,  - X,), with i = 1,2. (See Section 8.2.7.) 

(a) Show that 

- 2 log A* = p'p + 0,,(n-1'2), 
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where 

withz,=vec(Z,')(i=1,2) 
(b) Suppose that the two samples are drawn from the same elliptical 

distribution with kurtosis parameter K.  Show that as n 4 do the 
asymptotic distribution of v = ( I  + K ) - I / , ~  is NJO, V), where 

with 

and E,, being an m X m matrix with 1 in position ( i ,  j )  and 0's 
elsewhere. 
[Hint: Use the result of Problem 3.3.1 Show that the rank of V is 
j = t m ( m  + 1) and deduce the asymptotic distribution of 
- 2 log A*/( I + K )  given in Theorem 8.2.18. 

I f  A ,  is a non-negative definite m X m matrix and A,  is a positive 8.3. 
definite m X m matrix prove that for all a€ R" 

where!, and fm are the largest and smallest latent roots of A , A ; ' ,  respec- 
tively. 

8.4. Suppose that A ,  is Wm(n,, 2 , )  and A, is Wm(n,, Z,) and A ,  and A,  
are independent. Let /, and fm be the largest and smallest latent roots of 
A , A ; ' ,  respectively. Using the result of Problem 8.3 prove that 

and 

where d l ,  ..., am are the latent roots of C,X;'. 
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[Hint: Use an initial invariance argument to express the problem in terms of 
the maximal invariant (d , , ,  ..,&).I 
8.5. Consider a sample of size N, from a N,,,(p,, Z,) distribution ( i  = 1,2,3). 

(a) Show that the likelihood ratio statistic for testing H,: 2, = 2, = 
X,, given 2 ,  = Z,, is 

det(A, + A2)(Nl+N2"2(det A , ) ~ " '  - 
( N ,  4 N 2 - l  N 2 ) / 2  

A. = 
det( A ,  + A,  At- A 2 )  

(b) Let A ,  be the likelihood ratio statistic for testing If,: C, = X, (see 
Theorem 8.2.1). Show that A, and A ,  are independently distrib- 
uted when Z, = Z, = 2,. 

8.6. Prove Theorem 8.3. i ,  

8.7. Let V be the ellipticity statistic given by (7) of Section 8.3 for testing 
H: Z = h f , , , .  

(a) Show that when rn = 2  and H is not necessarily true the distribu- 
tion function of V can be expressed in the form 

where I,( a, p )  denotes the incomplete beta function and d ,  is the 
negative binomial probability 

dk = ( - I)& ( -k+n) p"/'( 1 - p ) ( k  = 0, I , .  . . 

with p = 4 h l h 2 / ( X ,  + A,),, where A ,  and A,  are the latent roots 
or z. 
[Hint: Show that 

and use the result of Problem 3.12 to evaluate the expectation on 
the right.] 
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(b) From (a) it follows that when m = 2  and H is true, V is beta 
( j ( n - I ) , l ) ) .  Show also that V ' I 2  is beta(n- l , l )  and -(n- 
1)logV is x: .  

8.8. Prove Theorem 8.4.1 1. 

8.9. Suppose that X,,.. , ,XN is a random sample from the N,,,(p,X) 
distribution. Derive the likelihood ratio statistic for testing H: p =0, C = 
ozI , ,  where u z  >O is unspecified, and find its moments. Show also that the 
likelihood ratio test is unbiased. 

8.10. Show that a maximal invariant under the group of transformations 
(2) of Section 8.5 is ( A ,  ,..., A,, P p ) ,  where h ,,..., A,,, are the latent roots of 
I: and P E O ( m )  is such that PXP'= A =diag(A,, ..., A,,,). 
8.11. Prove Theorem 8.5.5. 

8.12. Prove Theorem 8.5.7. 



'CHAPTER 9 

Principal Components 
and Related Topics 

9.1. INTRODUCTION 

In  many practical situations observations are taken on a large number of 
correlated variables and in such cases i t  is natural to look at various ways in 
which the dimension of the problem (that is, the number of variables being 
studied) might be reduced, without sacrificing too much of the information 
about the variables contained in the covariance matrix. One such explora- 
tory data-analytic technique, developed by Hotelling (1933), is principal 
components analysis. In this analysis the coordinate axes (representing the 
original variables) are rotated to give a new coordinate system representing 
variables having certain optimal variance properties, This is equivalent to 
making a special orthogonal transformation of the original variables. The 
first principal component (that is, the first variable in the transformed set) is 
the normalized linear combination of the original variables with maximum 
variance; the second principal coinponen t is the normalized linear combina- 
tion having maximum variance out of all linear combinations uncorrelated 
with the first principal component, and so on. Hence principal components 
analysis is concerned with attempting to characterize or explain the variabil- 
ity in a vector variable by replacing it by a new variable with a smaller 
number of components with large variance. 

It will be seen in Section 9.2 that principal components analysis is 
concerned fundamentally with the eigenstructure of covariance matrices, 
that is, with their latent roots and eigenvectors. The coefficients in the first 
principal component are, in fact, the components of the normalized eigen- 
vector corresponding to the largest latent root, and the variance of the first 
principal component is this largest root. A common and often valid crili- 
cism of the technique is that it is not invariant under linear transformations 
3mo 
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of the variables since such transformations change the eigenstructure of the 
covariance matrix. Because of this, the choice of a particular coordinate 
system or units of measurement of the variables is very important; principal 
components analysis makes much more sense if all the variables are mea- 
sured in the same units. If they are not, it is often recommended that 
principal components be extracted from the correlation matrix rather than 
the covariance matrix; in this case, however, questions of interpretation 
arise and problems of inference are exceedingly more complex [see, for 
example, T. W. Anderson (1963)], and will not be dealt with in this book. 

This chapter is concerned primarily with results about the latent roots 
and eigenvectors of a covariance matrix formed from a normally distributed 
sample. Because of the complexity of exact distributions (see Sections 9.4 
and 9.7) many of the results presented are asymptotic in nature. In  Section 
9.5 asymptotic joint distributions of the latent roots are derived, and these 
are used in Section 9.6 to investigate a number of inference procedures, 
primarily from T. W. Anderson (1963), of interest in principal components 
analysis. In  Section 9.7 expressions are given for the exact distributions of 
the extreme latent roots of the covariance matrix. 

9.2. POPULATION PRINCIPAL COMPONENTS 

Let X be an m X l  random vector with mean p and positive definite 
covariance matrix X. Let A ,  2 A, 2 LA, (>O) be the latent roots of Z 
and let H =[h,. . , h,] be an m X m orthogonal matrix such that 

(1) H ’ Z H  = A = diag( A , ,  . . .,A,), 
so that h, is an eigenvector of 2: corresponding to the latent root A,. Now 
put U= H’X=(U,  ,..., U,)‘; then Cov(U)= A,  so that U ,,..., U, are all 
uncorrelated, and Var(y)= A,, i = 1,. . . ,m. The components U,, . . . , U, of U 
are called the principal components of X. The first principal component is 
W, = h; X and its variance is A,;  the second principal component is U, =h;X, 
with variance A,; and so on. Moreover, the principal components have the 
following optimality property. The first principal component U, is the 
normalized linear combination of the components of X with the largest 
possible variance, and this maximum variance is A,; then out of all normal- 
ized linear combinations of the components of X which are uncorrelated 
with U,, the second principal component U, has maximum variance, namely, 
A,, and so on. In general, out of all normalized linear combinations which 
are uncorrelated with U,, . . . ,Uk- I ,  the kth principal component uk has 
maximum variance A,, with k = I, ..., m. We will prove this assertion in a 
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moment. First note that the variance of an arbitrary linear function a ’ X  of 
X is V a r ( a ’ X ) = a ‘ Z a  and that the condition that a’X be iincorrelated with 
the ith principal component V, =h;X is 

Principul Compneiits und Relured Topics 

O=Cov( a ‘ X , h : X )  

= a‘L’h, 

= A,  a’hi ,  

since Zh,  = A,h, ,  so that a must be orthogonal to h,. The above optimality 
property of the principal components is a direct consequence of the follow- 
ing theorem. 

THEOKEM 9.2.1. Let H=[h,, . . . ,h , ]  E O ( m )  be such that 

WZH= A =diag(AI, ..., A,), 

where A ,  L. . -  > A m .  Then 

A,= max a‘ZaFh;Zlh , .  
a‘a= I 
u’h. =O 

, = I ,  .... k - - I  

Proof. First note that with p = H ‘ a = ( & ,  ...,& 1’ we have 

As a consequence, if a’a = I ,  so that p’p = I ,  

with equality when p =( I , O , .  . . , O)’, i.e., when a =hi.  Hence 

A ,  = max a ‘ C a = L ; Z h I .  
a’u = I 

Next, the condition that a‘h, = O  is equivalent to P’lf’h,  =O, that is, to 
0, = 0 so that, when this holds and when a ’ a  = p’p = I we have 
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with equality when p = ( O ,  1.0, ..., O)’,  i.e., when a = h 2 .  Hence 

X - max a’Za=h;Zh2.  - n’p=I 

The rest of the proof follows in exactly the same way. 

of Z are distinct, the orthogonal matrix H 
which diagonalizes Z is unique up to sign changes of the first element in  
each column so that the principal components U, =h:X, i =  I ,  ..., m, are 
unique up to sign changes. If the latent roots are not all distinct, say 

If the latent roots A ,  

- . . . = A m ,  A w l  > A,,,, , = * * ‘ = X m , + m 2  > * * > Am, + . . , + m,- , + I - A , = .  . .=  
- ‘  , \ 

6, 61 4 

so that 8, is a latent root of multiplicity m,, j = I , .  . . ,Y,  with x;= Im, = m, 
then i f  HE O(m) diagonalizes Z: so does the orthogonal matrix 

PI 
p2 

0 
* -  

say, where PI E O( m, ), i = 1 , .. , , r ,  and hence the principal components are 
not unique. This, of course, does not affect the optimality property in terms 
of variance discussed previously. 

If the random vector X has an elliptical distribution with covariance 
matrix Z, the contours of equal probability density are ellipsoids and the 
principal components clearly represent a rotation of the coordinate axes to 
the principal axes of the ellipsoid. If Z has multiple latent roots (it is easy to 
picture Z = h 12),  these principal axes are not unique. 

Recall from Section 9. I that what a principal components analysis 
attempts to do is “explain” the variability in X. To do this, some overall 
measure of the “total variability” in X is required; two such measures are 
t r  2 and det I:, with the former being more commonly used since det I: has 
the disadvantage of being very sensitive to any small latent roots even 
though the others may be large. Note that in transforming to principal 
components these measures of total variation are unchanged, for 

rn 

t r Z = t r H ’ Z H = t r A =  z X I  
r = l  
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and 
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m 

de tZ=de tH 'CH=de tA= fl A, .  
r = l  

Note also that A,  + * - - + Ak is the variance of the first k principal compo- 
nents; in a principal components analysis the hope is that for some small k, 
A ,  -t - a . 4- A, is close to tr Z. I f  this is so, the first k principal components 
explain most of the variation in X and the remaining m -  k principal 
components contribute little, since these have small variances. Of course, in  
most practical situations, the covariance matrix 2 is unknown, and hence so 
are its roots and vectors. The next section deals with the estimation of 
principal components and their variances. 

9 . 3 .  SAMPLE PRINCIPAL COMPONENTS 

Suppose that the random vector X has the N,,,(p, Z) distribution and let 
X ,, . . . , X,,, be a random sample of size N = n 4- I on X. Let S be the sample 
covariance matrix given by 

N 
A = n S =  I: (XI --%)(X,--%)' 

, = I  

and let I, > > I ,  be the latent roots of S. These are distinct with 
probability one and are estimates of the latent roots A ,  2 ... ?A,,, of 2. 
Recall that A, , .  . . ,A, are the variances of the population principal compo- 
nents. Let Q=[q l...q,] be an m X m orthogonal matrix such that 

( 1 )  Q'SQ = L Ediag( I,, . . , , l ,  ), 

so that q, is the normalized eigenvector of S corresponding to the latent root 
I,; it represents an estimate of the eigenvectot h, of 2 given by the ith 
column of an orthogonal matrix H satisfying ( I )  of Section 9.2. The satnple 
principal components are defined to be the components U ,  , . , . , q,, of U = Q'X. 
These are estimates of the population principal components given by 
U =  H'X. 

If we require that the first element in each column of H be non-negative 
the representation Z =  HAH' is unique if the latent roots A,, ..., Anl of Z are 
distinct. Similarly, with probability one, the sample covariance matrix S has 
the unique representation S = QLQ', where the first element in each column 
of Q is nonnegative. The maximum likelihood estimates of A ,  and h, are 
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then, respectively, A,  = nl, /N and h, =q, for i = I,.  . . ,m; that is, the maxi- 
mum likelihood estimates of A and H are A = ( n / N ) L  and &= Q. Note 
that h, is an eigenvector of the maximum likelihood estimate 2 = ( n / N ) S  of 
2,  corresponding to the latent root f i , .  If, on the other hand, I: has multiple 
roots then the maximum likelihood estimate of any multiple root is obtained 
by averaging the corresponding latent roots of 2 and the maximum likeli- 
hood estimate of the corresponding columns of H is not unique. These 
assertions are proved in the following theorem (from T. W. Anderson, 
1963). 

THEOREM 9.3.1. Suppose that the population covariance matrix I: has 
latent roots 6, > * >ar with multiplicities m,, ..., mr,  respectively, and 
partition the orthogonal matrices H and Q as 

H = [ H , : H 2 : .  . . : H , ] ,  Q = [ Q,;Q2:.  . .  . . :Qr] ,  

where HI and Q, are m X m ,  matrices. Then the maximum likelihood 
estimate of 6, is 

where 0, is the set of integers m, + . + + m,-, + 1,. . . ,m I + * . + m,; and a 
maximum likelihood estimate of HI is h, = Q,P,,, where pi, is any m, X m, 
orthogonal matrix such that the first element in each column of A, is 
nonnegative. 

Pro06 For notational simplicity we will give a proof in the case where 
there is one multiple root; the reader can readily generalize the argument 
that follows. Suppose, then, that the latent roots of Z are 

that is, the largest k roots are distinct and the smallest root X has multiplic- 
ity m - k .  Ignoring the constant the likelihood function is [see (8) of Section 
3.1) 

L ( p ,  Z)= (det L1)-N'2etr( - fX-'A)exp[ - $ N ( g - p ) ' C - ' ( % - p ) ] ,  

where A = nS. For each X, L ( p ,  2) is maximized when p =%, so it remains 
to maximize the function 

(3) g(C)=log L ( z ,  X)= - iNlogdet Z - itr(2-',4). 
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Putting X = HA H’ and A =  nS= nQLQ’ where A =diag(A,, . . . ,Ak, A,. . . ,A), 
L =diag(l,, ..., l m )  and H and Q are orthogonal, t h i s  becomes 
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k 

g( Z)= - +N 2 log A, - f N ( m  - k)logA - f n  tr( HA- ‘H‘QLQ‘) 
, = I  

k 
= - f N  log A,  - !N(m - k)logA --in tr(A-’P’LP), 

, = I  

where P = Q ’ H E  O( m). 

and write A as 
Now partition P as P =[PI : P,], where P, is m X k and P2 is m X ( m  - k), 

where A ,  =diag(hl, ..., A,), so that A ,  contains the distinct latent roots of 
Z. Then 

where we have used the fact that P2 Pi = I - PI Pi. Hence 

k m 

g ( z ) = - t N  2 l o g A , - f N ( m - k ) l o g A - $  I, 
r = l  I = I  

(4) 

It is a straightforward matter to show that if U=diag(u,, ..., u,)  with 
u , > . . . > u , > O a n d  V=diag(o ,,..,, u”,), w i t h o l > . - - > u m > O ,  then for 
all P , E  Vk,,, ,  the Stiefel manifold of m X k matrices PI with P;P ,  = I,, 

k 

tr(UP,’VP,)s 2 u,u,,  
, = I  



with equality only at the 2k  m X k matrices of the form 

(see Problem 9.4). Applying this result to the trace term in (4) with 
U = h - ' I k  - A;' and V =  L, i t  follows that this term is maximized with 
respect to P ,  when PI has the form (3, and the maximum value is 

Since P is orthogonal i t  follows that the function g(Z) is maximized with 
respect to P when P has the form 

- C l  . o  * .  

I-[ . . . . .  o . ; . ? - . i * . ]  : p22 

for any P,,EO(m- k ) ,  and then H=Qk gives a maximum likelihood 
estimate of H .  We now have, from (4) and (6) ,  

- f N( - k ) log A .  

Straightforward differentiation now shows that the values of A, and A which 
maximize this are 

n 
( i = l ,  ..., k) 

(8) N 

and 

( 9 )  

completing the proof. 
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Tractable expressions for the exact moments of the latent roots of S are 
unknown, but asymptotic expansions for some of these have been found by 
Lawley (1956). Lawley has shown that if A, is a distinct latent root of Z the 
mean and variance of I, can be expanded for large n as 

and 

9.4. 
ROOTS OF A SAMPLE COVARIANCE M A T R I X  

T H E  J O I N T  DISTRIBUTION O F  T H E  LATENT 

In this and the following section we will derive expressions for the exact and 
asymptotic joint distributions of the latent roots of a covariance matrix 
formed from a normal sample. Let I ,  > * * . > I m  be the latent roots of the 
sample covariance matrix S,  where A = nS has the Wm(n, 2) distribution. 
Recall that these roots are estimates of the variances of the population 
principal components. The exact joint density function of I,, . . , , I,, can be 
expressed in terms of the two-matrix ,,Fo hypergeometric function intro- 
duced in Section 7.3, having an expansion in terms of zonal polynomials. 
The result is given in the following theorem (from James, 1960). 

THEOREM 9.4.1. 
Then the joint density function of 
expressed in the form 

Let nS have the W,(n ,  Z) distribution, with n > m - 1. 
the latent roots of S, can be 
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where L =diag(ll, ..., l m )  and 

Proo/. From Theorem 3.2.18 the joint density function of I,, . . . ,Im is 

where ( d H )  is the normalized invariant measure on O(m).  (Note that in 
Theorem 3.2.18 the I, are the latent roots of A = nS so that I, there must be 
replaced by nil.) The desired result now follows from (3) using Theorem 
7.3.3 and the fact that 

[see (3) of Section 7.31. 

I t  was noted in the discussion following Theorem 3.2.18 that the density 
function of I,, . . . , I , ,  depends on the population covariance matrix 2 only 
through its latent roots. The zonal polynomial expansion (2) makes this 
obvious, since CK( 2-l) is a symmetric homogeneous polynomial in the 
latent roots of X-I. We also noted in Corollary 3.2.19 that when Z = hl,, 
the joint density function of the sample roots has a particularly simple form. 
For completeness we will restate the result here. 

COROLLARY 9.4.2. When X = X l m  the joint density function of the 
latent roots Ilr...,lm of the sample covariance matrix S is 

(4) 
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The proof of this is a direct consequence of either ( I )  or (3), or it follows 
from Corollary 3.2.19 by replacing I, there by nl,. 

The distribution of the sample latent roots when Z =  A f ,  given by 
Corollary 9.4.2 is usually referred to as the null distribution; the distribution 
given in Theorem 9.4.1 for arbitrary positive definite 2 is called the non-null 
(or noncentral) distribution. If  we write S as S=QLQ‘, where the first 
element in each column of QE O ( m )  is non-negative, in the null case when 
Z=Af,,, the matrix Q, whose columns are the eigenvectors of S, has the 
conditional Haar invariant distribution (as noted in the discussion following 
Corollary 3.2.19). that is, the distribution of an orthogonal m X m niatrix 
having the invariant distribution on O(m) conditional on the first element 
in each column being non-negative. Moreover the matrix Q is independently 
distributed of the latent roots I, , . . . , In,.  Neither of these statements remains 
true in the non-null case. 

9 . 5 .  
R O O T S  OF A S A M P L E  C O V A R I A N C E  M A T R I X  

A S Y M P T O T I C  DISTRIBUTIONS O F  T H E  L A T E N T  

The joint density function of the latent roots lI , . . . , l , , ,  of the sample 
covariance matrix S given by Theorem 9.4.1 involves the hypergeonietric 
function oFd’”)( - i n L ,  2 -  I )  having an expansion in terms of zonal poly- 
nomials. If  n is large, this zonal polynomial series converges very slowly i n  
general. Moreover, i t  is difficult to obtain from this series any feeling for the 
behavior of the density function or an understanding of how the sample and 
population latent roots interact with each other. It often occurs i n  practical 
situations that one is dealing with a large sample size (so that n is large) and 
it  makes sense to ask how the Ofi(m) function behaves usymptoticully for 
large n. It turns out that asymptotic representations for this function can be 
written in terms of elementary functions and sheds a great deal of light on 
the interaction between the sample and population roots. 

The zonal polynomial expansion for O F $ m )  given by (2) of Section 8.4 
does not lend itself easily to the derivation of asymptotic results. Integral 
representations are generally the most useful tool for obtaining asymptotic 
results in analysis, so that here we will work with the integral 

and examine its asymptotic behavior as n + 00. To do this we will make use 
of the following theorem, which gives a multivariate extension o f  Laplace’s 
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method for obtaining the asymptotic behavior of integrals. In this theorem, 
and subsequently, the notation " a - b  for large n" means that a / b  -+ I as 
n+oo. 

THEOREM 9.5.1. Let D be a subset of RP and let Jand g be real-valued 
functions on D such that: 

(i) j h a s  an absolute maximum at an interior point of D and/(E)>O; 

(ii) there exists a k 2 0  such that g(x)f(x)k is absolutely integrable on 
D ;  

(iii) all partial derivatives 

(i, j =  l,...,p) - a 2f af and - 
ax, ax, ax, 

exist and are continuous in a neighborhood N(t) of & 
(iv) there exists a constant y < 1 such that 

(v) g is continuous in a neighborhood of 6 and g([)#O. 
Then, for large n, 

where A([) denotes the Hessian of - log f, namely, 

For a rigorous proof of this very useful theorem, due originally to Hsu 
(1948), the reader is referred to Glynn (1977, 1980). The basic idea in the 
proof involves recognizing that for large n the major contribution to the 
integral will arise from a neighborhood of ( and expanding f and g about [. 
We will sketch a heuristic proof. Write 



392 Prittccpal Cunrpottetrrs and Reluted Topics 

In a neighborhood N(4) of 4, iog/(x)-logf([) is approximately equal to 
- &X - t)'O(&')(x - 6, g(x) is approximately equal to g(&, and then, using 
(iv), n can be chosen sufficiently large so that the integral over D - N ( 6 )  is 
negligible and hence the domain of integration can be extended to RP. Thus 
for large n ,  

Let us now return to the problem of finding the asymptotic behavior of 
the function in Theorem 9.4.1. It turns out that this depends funda- 
mentally on the spread of the latent roots of the covariance matrix X. 
Different asymptotic results can be obtained by varying the multiplicities of 
these roots. Because it is somewhat simpler to deal with, we will first look at  
the case where the m latent roots of I: are all distinct. The result is given in 
the following theorem, from G. A. Anderson (1965), where it is assumed 
without loss of generality that 2 is diagonal (since the oFJ"') function is a 
function only of the latent roots of the argument matrices). 

THEOREM 9.5.2. 
A ,  > - . . >A,,, >O iind I, =- . -  > I , , ,  >O then, for large n ,  

If Z=diag(A ,,..., A,) and L=diag(l,, ..., I,,,), where 

where 

Pruoj The proof is messy and disagreeable, in that i t  involves a lot of 
tedious algebraic manipulation; the ideas involved are, however, very sim- 
ple. We will sketch the proof, leaving some of the details to the reader. The 
basic idea here is to write the ,Fdm) function as a multiple integral to which 
the result of Theorem 9.5.1 caii be applied. First, write 
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Here ( d H )  is the normalized invariant measure on O(m); it is a little more 
convenient to work in terms of the unnormalized invariant measure 

in 

j - = J  

( H ' d H ) =  h h;dh, 

(see Sections 2.1.4 and 3.2.5), equivalent to ordinary Lebesgue measure, 
regarding the orthogonal group O(m) as a point set in Euclidean space of 
dimension $m( rn - 1). These two measures are related by 

( d H ) =  r m ( t m )  ( I J ~ ~ H )  
2"7+/2 

[see (20) of Section 3.2.51, so that 

w v  rm( f m 1 
2mPm2/2 

o F p y  - fnL, z-')= ( 6 )  

where 

(7) 

Note that this integral has the form 

In order to apply Theorem 9.5.1 there are two things to be calculated, 
namely, the maximum value off( H) and the value of the Hessian of - log f 
at the maximum. Maximizingf(H) is equivalent to minimizing 

and it is a straightforward matter to show that for all H E  O(m),  

m I 

(9) 
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with equality if and only if H is one of 

(110) 

the 2m matrices of the form 

- 1  * I  
(see Problem 9.3). The function j ( f I )  thus has a maximum of 
exp[ - $zr! ,(/'/A,)] at each of the 2"' matrices (10). Theorem 9.5.1 assumes 
just one maximum point. The next step is to split O ( m )  up into 2"' disjoint 
pieces, each containing exactly one of the matrices (lo), and to recognize 
that the asymptotic behavior of each of the resulting integrals is the same. 
Hence for large r i ,  

where N( I W l )  is a neighborhood of the identity matrix I, 011 the orthogonal 
manifold O(m). Because the determinant of a matrix is a continuow 
function of the elements of the matrix we can assume that N ( I W l )  contains 
only proper orthogonal matrices H (Lea, det H = 1). This is important in the 
next step, which involves calculating the Hessian of -log/, evaluated at 
H =  f n I ,  This involves differentiating l o g j  twice with respect to the elements 
of H. This is complicated by the fact that H has m2 elements but only 
+ m ( m  - I )  functionally independent ones. It  helps at this stage to work in 
terms of a convenient parametrization of H. Any proper orthogonal m X m 
matrix H can be expressed as 

(12) ff =cxp(U)= I, +u+ f u2 + hU'+ * * ' , 

where U is an nr X m skew-symmetric matrix (see Theorem A9. I I) .  The 
t m ( m  - 1) elements of U provide a parametrization of H. The mapping 
H -, I/ is a mapping from O + ( m ) -  R"' t" ' - ' ) /2 ,  where 0 ' ( m )  is the sub- 
group of O(m) consisting of proper orthogonal matrices. The image of 
O + (  m )  under this mapping is a bounded subset of fVrn- I)'*. The Jacobian 
of this transformation is given by 
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where O(u:,) denotes terms in the u,, which are at least of order r (see 
Problem 9.1 I). Under the transformation H =exp(U), N( I,,,) is mapped 
into a neighborhood of U =O, say, N*(U =O), so that, using (13) in (1 I) ,  we 

get 

(14) 

1 ( 1 1 ) - 2 ~ ’ /  [f(exp(U))]”(I +higher-order terms in U )  n du,,. 
N*( u = 0 )  l < J  

Put 

to calculate the Hessian, note that 

and 

so that in order to find the Hessian A of -log /= - +, we have to 
differentiate the elements of H =exp(U) at most twice and set U=O. Thus 
to calculate A we can use 

I t  is then a simple matter to show that, at U =0, 

and 
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so that, at U =0, the Hessian is 
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Hence applying Theorem 9.5.1 with p = i m ( m  - 1) to (14) shows that, for 
large n ,  

and 
and 

substituting this asymptotic result for I ( n )  in (6) gives the desired result 
completes the proof. 

Substituting the asymptotic formula (4) for ?!irn) back in ( I )  of Section 
9.4 gives an asymptotic representation for the joint density function of the 
sample roots I,, . . . , I ,  under the assumption that the population roots 
h l ,  ..., A,,l are all distinct. The result is, however, of somewhat limited use for 
statistical inference in principal components. One of the most commonly 
used procedures used in principal components analysis is to test whether the 
q smallest latent roots of I: are equal, If they are then the variation in the 
last q dimensions is spherical and, if their common value is small compared 
with the other m - q  roots, then most of the variation in the sample is 
explained by the first m - q  principal components, and a reduction in 
dimensionality is achieved by considering only these components. We will 
investigate such a test later in Section 9.6; as a first step it makes sense to 
find an asymptotic representation for the ,,&(’’’) function (and hence for the 
density function of I , , . . , , / , )  under the null hypothesis that the smallest q 
latent roots of I: are equal. Before doing this we need some preliminary 
results. First recall from Section 2.1.4 that if  HIE Vk,,,, the Stiefel manifold 
of m X k matrices with orthonormal columns, and we choose any m X( m - 
k )  matrix H ,  (a function of H I )  so that H = [ H , : H , ] E O ( m )  then the 
unnormalized invariant measure on vk. is 

where H=[h,  ,..., hk:hk+,...hm], and from Theorem 2.1.15, 
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We will need the result contained in the following useful lemma given by 
Constantine and Muirhead (1976); given a function f ( H )  of an m X m 
orthogonal matrix i t  enables us to first integrate over the last m - k columns 
of H, the first k columns being fixed, and then to integrate over these k 
columns. 

LEMMA 9.5.3. 

where H = [ H , : H , ] ,  H I  is m X k and G = G ( H , )  is any m X ( m  - k) matrix 
with orthonormal columns orthogonal to those of HI (so that GG'= Im - 

Prooh For fixed H I ,  the manifold K,, say, spanned by the columns of 
H ,  can be generated by orthogonal transformations of any fixed matrix G 
chosen so that [ H , : G ]  is orthogonal; that is, any H,€ X, can be written as 
H ,  = G K ,  and as H2 runs over '&, K runs over O ( m - k ) ,  and the 
relationship is one-to-one. Writing 

HI H i ) .  

H = [  HI: H2]= [hl . .  . hkjhk+ I . .  . h,,] 

and 

K =[k l .  .. km-&] 
we have 

dhk+, =Gdk, ( j = l ,  ..., m - k )  

for fixed G. Now 
m 

l - = J  

(H'dH)= A h;dh, 

k m - k  k nt - k 

k n t - k  k m - k  

i <  j J = I  l = I  i <  j 

k # I - k  k nt - k 

= h;dh, A A k;G'dh, A dk;G'Gdk, 

=( H;dH,)( K'dK), 
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using (15). This transformation of the measure (H’dl f  ) is to be interpreted 
as: first integrate over K for fixed H , ,  and then integrate over MI. 

Ehe following theorem, from James ( 1969). gives the asymptotic behavior 
of the function in Theorem 9.4.1 under the assumption or null 
hypothesis that the largest k latent roots of 2 are distinct and the stiiallest 
q = m - k roots are equal. When rn =: k it yields the result of Theorem 9.5.2 
as a special case. Again, it is assumed without loss of generality that X is 
diagonal. 

THEOREM 9.5.4. If Z = diag( A,, . . . ,A, , A , .  . . ,A), where 

and the smallest root A is of multiplicity m - k, and L =diag(i,, ..., I ” , ) ,  
where I ,  > . * - >I,,, >O, then, for large n, 

(19) 

where 

and 

Prook The proof is similar to that of Theorem 9.5.2 but complicated by 
the fact that t: has a multiple root. First, as in the proof of Theorem 9.5.2, 
write 
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where 

Z = [  'I 1, Z,=diag(A, ,..., A,) 0 x f m - k  

and H = [ H I :  H2], where HI is m X k. Then 

tr( 2- ' H ' L H )  = tt( C; ' H ~ L H , )  + tt( A - ' H ;  LH, ) 

=tr[(Z;l - ~ - I I , ) H ; L H , ] + ~ ~ ( ~ - ' L ) ,  

where we have used 

tr( A- 'H;LH,)=~~(~- 'LH,H;) 

and the fact that H, Hi = f - H I  H ; .  Hence 

Applying Lemma 9.5.3 to this last integral gives 

.( K ' d K ) (  H / d H , ) .  

The integrand here is not a function of K, and using Corollary 2. I .  16 we can 
integrate with respect to K to give 

where 

(26) J( n ) = / etr [ - 4 n ( Z ; ' - A- I f  ) H;LH,] ( H; dH, ) , 
vh .  no 
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The proof from this point on becomes very similar to chat of Theorem 9.5.2 
(and even more disagreeable algebraically), and we will merely sketch it. 
Th,e integral J ( n )  is of the form 

so that in order to apply Theorem 9.5.1 to find the asymptotic behavior of 
J ( n )  we have to find the maximum value of f ( H , )  and the Hessian of 
- logf at the maximum. Maxiinizingf is equivalent to maximizing 

+( H , ) =  tr[ (A-11-  z ; ~ ) H ; L H , ]  

and, from Problem 9.4, it follows that for all HIE Vk, ,,I, 

a k  k r  

with equality if and Only if H I  is one of the 2k matrices of the form 

Arguing as in the proof of TIieoreni 8.4.4 i t  follows that 

where 

denotes a neighborhood of the matrix 
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on the Stiefel manifold Vk,". Now let [HI:-] be an m X m  orthogonal 
matrix whose first k columns are HI. In the neighborhood above a parame- 
trization of HI is given by [see James (1969)] 

where U,, is a k X k skew-symmetric matrix and U,, is k X ( m  - k ) .  The 
Jacobian of this transformation (cf. (13)] is given by 

I k  
and the image of N( [ I) under this transformation is a neighborhood, 

say, N*, of Ull =0, U12 =O. Hence 

To calculate the Hessian A of -logf, put 

substitute for the h,,'s in terms of the elements of I/,, and U12, and evaluate 
A =det( - az+/au,,au,,) at Ull  =O and U,, =O. We will omit the messy 
details. An application of Theorem 9.5.1 then gives the asymptotic behavior 
of J ( n )  for large n as 

where c,, and d,, are given by (20) and (21). Substituting this forJ(n) in (25) 
and then the resulting expression for I(n) in (22) gives the desired result on 
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noting the easily proved fact that 

Priticipuf Conipmieiils mid Heluted Topics 

,FJ”y - inL, Z) 
- 1  l- h ( l 1 ,  L ,  2) 

The precise ineaning of Theorem 9.5.4 is that, given €10, there exists 
no = no(e, Z, L) such that 

C ; E  for all n I n , ,  

where h( n, L ,  2) denotes the right side of (19). I t  is clear from the form of 
h(ri, I,,  2) that this does not hold uniformly in L or 2; that is, ) l o  cannot be 
chosen independently of L and X. However, i t  is possible to prove that i t  
does hold uniformly on any set of I,, . . . ,I,,, (I, > . - > I,,, >O) and 
A l , . . , , A k , A  ( A , >  > A , > A > O )  such that the 1,’s are bounded away 
from one another and from zero, as are A , ,  ..., A & ,  A .  The proof of this 
requires a more sophisticated version of Theorem 9.5.1 given by Glynn 
(1980). 

in ( 1 )  of Section 
9.4 yields an asymptotic representation for the joint density function of the 
sample roots I,, . . . ,I,,, when the population roots satisfy (18). The result is 
summarized in the following theorem. 

Substitution of tfic asymptotic behavior (19) for 

THEOREM 9.5.5. Let l , , . . . , l , , ,  be the latent roots of the sample covari- 
ance matrix S formed from a sample of size N = j t  + 1 ( n  2 m )  from the 
A’,,,@, 2 )  distribution, and suppose the latent roots A,,.. . ,A,,,  of Z satisfy 

(30) A , >  . * a  > A k > X & + , =  =A,, ( = A > O ) .  

Then for large n an asymptotic representation for the joint density function 
of 11 ,  ..., I,,, is 

(31) 
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where 

k . n ~ ; ( n - n i +  1 ) / 2 ~ - ( m - k ) ( t i - k ) / 2  

, = I  

T h s  theorem has two interesting consequences. 

COROLLARY 9.5.6. Suppose that the latent roots of I: satisfy (30). For 
large n an asymptotic representation for the conditional density function of 
l k + , , . . . , l m ,  the q = m  - k smallest roots of S, given the k largest roots 
I , ,  . . , , I , ,  is proportional to 

(33) 

Note that this asymptotic conditional density function does not depend 
on A,, . , . ,A,, the k largest roots of z. Hence by conditioning on I , ,  . . , , I ,  the 
effects of these k largest population roots can be eliminated, at least 
asymptotically. In this sense I,, . . . , I ,  are asymptotically suflicient for 
A , , . ,  .,A,. We can also see in (33) that the influence of the largest k sample 
roots I, ( i  = I , .  . . , k) in the asymptotic conditional distribution is felt through 
linkage factors of the form ( I ,  - I J ) ' l 2 .  

COROLLARY 9.5.7. Suppose the latent roots of 2 satisfy 

A ~ > ' " > h k > h k + ~ = . " = X r n  ( = h > O ) ,  

and put 

(34) 

Then the limiting joint density function of x l r . .  . ,x ,  as n -+ 00 is 

where q = m - k and +( .) denotes the standard normal density function. 
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This can be proved by making the change of variables (34) in (31) and 
letting n -+ 00. The details are left to the reader. Note that this shows that if 
A ,  is a distinct population root then x ,  is asymptotically independent of xJ 
fot j # i and the limiting distribution of x ,  is standard normal. This result 
was first observed by Girshick (1939) using the asymptotic theory of 
maximum likelihood estimates. In the more complicated case when Z has 
multiple roots the definitive paper is that of T. W. Anderson (1963); 
Corollary 9.5.7 is a special case of a more general result of Anderson dealing 
with many multiple roots, although the derivation here is different. 

I t  is interesting to look at the maximum likelihood estimates of the 
population latent roots obtained from the marginul distribution of the 
sample roots (rather than from the original normally distributed sample). 
The part of the joint density function of involving the population 
roots is 

which we will call the marginal likelihood function. When the population 
roots are all distinct (i.e., I, == - * >I,,, >O), Theorem 9.5.2 can be used to 
approximate this for large n ,  giving 

(37) L*- K *  L ,  L, ,  

where 

and K is a constant (depending on n,  I ,  ,..., I,, but not on A ,  ... A, and 
hence irrelevant for likelihood purposes). The values of the A ,  which 
maximize L ,  are 

&,=I,  ( i = l ,  ..., m ) ,  

that is, the usual sample roots. We have already noted in (10) of Section 9.3 
that these are biased estimates of the A,, with bias terms of order n - , .  
However, using the factor L ,  in the estimation procedure gives a bias 
correction. It is easy to show that the values of the A,  which maximize L ,  L,  
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are 

J # I  

These estimates utilize information from other sample roots, adjacent ones 
of course having the most effect, and using (10) of Section 9.3 it follows 
easily that 

(39) E ( ~ , ) = A ,  + O ( n - 2 )  ( i = 1 ,  ..., r n )  

so that their bias terms are of order n-'. This result was noted by G. A. 
Anderson ( 1  965). 

We have concentrated in this section on asymptotic distributions associ- 
ated with the latent roots of a covariance matrix. The method used (Theo- 
rem 9.5.1) to derive these asymptotic distributions is useful in a variety of 
other situations as well. For further results and various extensions, particu- 
larly in the area of asymptotic expansions, the interested reader is referred to 
Muirhead (1978) and the references therein. We will conclude this section 
by stating without proof a theorem about the asymptotic distributions of the 
eigenvectors of S. 

THEOREM 9.5.8. Suppose that the latent roots of Z are A ,  1 - - 2 A, > 
0, and let h, . . . h, be the corresponding normalized eigenvectors. Let 
q,, . . .,qm be the normalized eigenvectors of the sample covariance matrix S 
corresponding to the latent roots I, > - - 1 > I ,  >O.  If A, is a distinct root 
then, as n -* 00, n'I2(q, - h,) has a limiting m-variate normal distribution 
with mean 0 and covariance matrix 

m 

" h h' r=x,  2 J J  
/ " I  @,-A,) 
I f 1  

and is asymptotically independent of I,. 

For a proof of this result the reader is referred to T. W. Anderson (1963). 

9.6. SOME INFERENCE PROBLEMS 
I N  PRINCIPAL COMPONENTS 

In Section 8.3 we derived the likelihood ratio test of sphericity, that is, for 
testing the null hypothesis that all the latent roots of Z are equal. If this 
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hypothesis is accepted we conclude that the principal components all have 
the same variance and hence contribute equally to the total variation, so 
that no reduction in dimension is achieved by transforming to principal 
components. If the null hypotliesis is rejected i t  is possible, for example, that 
the m - I smallest roots are equal. If this is true and if their common value 
(or an estimate of it) is small compared with the largest root then most of 
the variation in the sample is explained by the first principal component, 
giving a substantial reduction in dimension. Hence i t  is reasonable to 
consider the null hypothesis that the m - I smallest roots of 2 are equal. If 
this is rejected, we can test whether the m - 2 smallest roots are cqual, and 
so on. In practice then, we test sequentially the null  hypotheses 

fork=O,I ,  ..., m - 2 ,  w h e r e A , r . . .  rX,>OarethelatentrootsofX We 
saw in Section 8.3 that the likelihood ratio test of 

is based on the statistic 

where I, > - - >I,,,  are the latent roots of the sample covariance matrix S, 
and a test of asymptotic size a is to reject H, if 

where c(a; r )  denotes the upper 100a% point of the x :  distribution. When 
testing equality of a subser of latent roots the likelihood ratio statistic looks 
much the same as V,, except that only those sample roots corresponding to 
the population roots being tested appear in the statistic. This is demon- 
strated in the following theorem from T. W. Anderson, (1963). 

THEOREM 9.6.1. Given a sample of size N from the N,(p ,  2) distribu- 
tion, the likelihood ratio statistic for testing the null hypothesis 

€Ik: A k +  I = * * = A,,, (= A ,unknown) 
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is Ak = v ; N / ~ ,  where 

(4) 

Proof. This follows directly from the proof of Theorem 9.3.1. When f f k  
is true, the maximum value of the likelihood function is obtained from (7), 
(8), and (9) of Section 9.3 as 

where n = N - I ,  and 

are the maximum likelihood estimates of the A, and h under Hk. Substitut- 
ing for these in ( 5 )  gives the maximum of the likelihood function under Hk 
as 

When p and I: are unrestricted the maximum value of the likelihood 
function is given by 

so that the likelihood ratio statistic for testing Hk is given by 

I l k  = 

= vy2, 

where Vk is given by (4). Rejecting Hk for small values of h k  is equivalent to 
rejecting H,, for small values of vk, and the proof is complete. 



408 Principul Coniponenrs und Reluted Topics 

Let us now turn our attention to the asymptotic distribution of the 
statistic Vk when the null hypothesis I l k  is true. I t  is convenient to put 
q = m - k a n d  

. n1 

the average of the smallest q latent roots of S, so that 

The general theory of likelihood ratio tests shows that, as n-*oo, the 
asymptotic distribution of -nlogV, is x ~ ~ + ~ , ~ ~ - ~ ) / ~  when I{,, is true. An 
improvement over - nlog Vk is the statistic 

suggested by Bartlett (1954). This should be compared with the test given by 
(3), to which it reduces when k =O, i.e., q = n i .  A further refinement in the 
multiplying factor was obtained by Lawley (1956) and James (1969). We 
will now indicate the approach used by James. 

We noted in the discussion following Corollary 9.5.6 that when Ifk is true 
the asymptolic conditional density function of / k +  . , Im, the q smallest 
latent roots of S, given the k largest roots 1 1 ,  ..., l k ,  does not depend on 
XI,  ..., h k ,  the k largest roots of C. In a test of Ifk these k largest roots are 
nuisance parameters; the essential idea of James is that the effects of these 
nuisance parameters can be eliminated, at least asymptotically, by testing 
Hk using this conditional distribution. 

If we put 

1, u, = T 
'4 

( i  = k + 1 ,. . . , m )  (7) 

in the asymptotic conditional density function of t k + l , . . . , t m ,  given ti, ..., I k  
in Corollary 9.5.6, then the asymptotic density function of u k + i , .  ..,u ,,,-.. I ,  

conditional on I,, . . . ,Ik, i4, follows easily as 

k m in 
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wherer,=/,/i,fori=l, ..., k, and K,isaconstant.Note that ~ ( m = k + , u , = 4  
and that 

(9) 

Put Tk = -logyk so that the limiting distribution of nTk is x ~ ~ + ~ ~ ~ ~ - , ) / ~  
when Hk is true. The appropriate multiplier of Tk can be obtained by 
finding its expected value. For notational convenience, let E, denote expec- 
tation taken with respect to the conditional distribution (8) of uk+ ,, . . . ,urn- 
given I , ,  . . . , I , ,  !q and let EN denote expectation taken with respect to the 
“null” distribution 

m m 
n - k - 4 - - 1 ) / 2  n ( u ,  - u,), 

k + l  
K, n 

r = k + l  

where K, is constant, obtained from (8) by ignoring the linkage factor 

The following theorem gives the asymptotic result of Lawley (1956) together 
with the additional information about the accuracy of the x2 approximation 
provided by the means due to James (1969). 

THEOREM 9.6.2. When the null hypothesis Hk is true the limiting distri- 
bution, as n -+ 60, of the statistic 
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Prooh We will merely sketch the details of the proof. First note that 

We can interchange the order of differentiation and integration in (13) 
because in a neighborhood of 11 = O  

ni 

r = k + l  I - k  t I 

Hence, in order to find E,IT') we will first obtain 

This can obviously be done by finding 

Now, when Hk is true, 

1 - u, = op ( n - ' 1 2  ) 

so that 

( r ,  - u , ) ' / 2  =( r, - I ) ' / *  ( I + - :,y2 
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Since Z~!, , l ( l  - U, ) = 0, we get 

k nt 

where q = m - k and 

k i; 
- 2  2 ‘  

a= 2 -- 
2 

1 = ~  ( r t - l )  ! = I  (ir--iq) (17) 

Substituting (16) in (15) i t  is seen that we need to evaluate 

This problem is addressed in the following lemma. 

LEMMA 9.6.3. 

where 

Proo/: Since u, = lt/iq for i = k + I , .  . . ,M, it follows that 

t = k + l  k + l  



4 I1 

The "null" distribution of I ,+  I , .  . . , I ,  is the same as the distribution of the 
latent roots of a 4 X q  covariance matrix S such that ( n - k ) S  has the 
W,(n-k ,h l , )  distribution, so that we will regard Ik+,, ..., /, as the latent 
roots of S. All subsequent expectations involving I, for i = k + I ,  ..., m are 
taken with respect to this distribution. Put n ' = n - k ;  then ( n ' / X ) S  is 
Wq(n', I , )  and hence by Theorem 3.2.7, (n ' /h)trS = ( n ' / X ) 4 j q  is xi. , ,  from 
which it follows easily that 

Prcnciput Cornponetits und Heluted Topics 

where (x), = x(x + 1) - . ( x  -t r - 1). Furthermore (see the proof of Theo- 
rem 3-2-20), iq is independent of  uI, i = k + 1,. . . ,m, and hence 

where we have used the fact that 

Two of the expectations on the right side of (21) can be evaluated using 
(20); it remains to calculate the other two. Now 

m 

i = k - + I  
fl I l=de tS  

and 

m 

the sum of second-order ( 2 x 2 )  principal minors of S. Since the principal 
minors all give the same expectation, we need only find the expectation 
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involving the first one, 

d =det[ X I 2  ‘I‘ s22 ‘I2], 

and multiply by 

the number of them. Put (n’ /X)S=T‘T,  where T = ( t , , )  is a q X q  upper- 
triangular matrix; by Theorem 3.2.14, the r t  are independent xi.-,+ I 
random variables ( i  = I , .  , . ,q),  from which it  is easy to verify that 

E(  1 ; )  = E[(detS)h] 
i = k + l  

and 

(23) 

Substituting (20), (22), and (23) for the expectations on the right side of (21) 
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then gives 

( i n ’ +  h ) ( f n ’ -  f + h ) q 2  

( f n ’q  -t y h ) ( f n ’ y  + qji + I )  

= ( q )  w - k - l t 2 h  
2 n - k + 2 / y + 2 h ’  

which completes the proof of the lemma. 

from ( l5 ) ,  (16), and Lemma 9.6.3 that 
Returning now to our outline of the proof of Theorem 9.6.2 i t  follows 

with 

I t  - k - I + 2h 

n - k  +-  + 2 h  
- I  

2 I Y 

Using (13) we have 

( 2 5 )  

= - EA(0)- 7 ad + 0 ( n -  3 ) .  

n 
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where d=(q-l)(9+2)/2 and a is given by (17). But -&(O)=EN(Tk), 
and in the case of the null distribution (where / k +  ,,. . . ,lm are regarded as the 
latent roots of a q X q sample covariance matrix S such that (n - k)S is 
W,(n - k ,  hl , ) )  we know from Section 8.3 that [n - k - (2q2 + q +2)/6q]Tk 
has an asymptotic x: distribution as n -+ 00, and the means agree to O(nW2)  
so that 

+ 0(~-3)). d 

n - k - ( 2 q 2 + q + 2 ) / 6 q  
- E;(o) = 

Substituting this in (25) then gives 

ad 
Eo(Tk)= n - k - ( 2 q 2 + q + 2 / 6 q )  n 2  

d --+o(n-3), 

from which it follows that if pk is the statistic defined by (1 1) then 

E,( pk ) = d + o( n - 2  ) 

and the proof is complete. 

size a of the null hypothesis 
It follows from Theorem 9.5.2 that if n is large an approximate test of 

Hk:hk+i= * ' *  = h ,  

is to reject Hk if pk > c(a; ( q  +2)(q - 1)/2), where pk is given by ( I  I), 
q = m  - k  and c(a; r )  is the upper IOOaS point of the xs distribution. 
Suppose that the hypotheses Hk, k =O, 1,. . . ,m - 1 are tested sequentially 
and that for some k the hypothesis H k  is accepted and we are prepared to 
conclude that the q = m - k smallest latent roots of I: are equal. If their 
common value is X and A is negligible (compared with the other roots) we 
might decide to ignore the last q principal components and study only the 
first k components. One way of deciding whether X is negligible, suggested 
by T. W. Anderson (1963), is to construct a one-sided confidence interval. 
An estimate of h is provided by 

m 

iq=9-I  I , ,  
r = k + l  

and it is easy to show, from Corollary 9.5.7 for example (see Problem 9.6), 
that as n -., 00 the asymptotic distribution of ( f~q) ' /~ ( [ ,  - X ) / h  is standard 
normal N(0, I). Let z, be the upper lOoa% point of the N ( 0 , l )  distribution, 
that is, such that @( z,)= 1 - a, where @( .) denotes the stan,dard normal 
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distribution function. Then asymptotically, 

which leads to a one-sided confidence interval for A ,  namely, 

with asymptotic confidence coefficient I-a. If the upper limit of this 
confidence interval is sufficiently small we might decide that h is negligible 
and study only the first k principal components. It is also worth noting in 
passing that if we assume that A,  is a distinct latent root the asymptotic 
normality of ( t1 /2 ) ’ /~ (1 ,  - X,)/A,  guaranteed by Corollary 9.5.7 can be 
used to test the null hypothesis that A, is equal to some specified value and 
to construct confidence intervals for A,. 

Even if we cannot conclude that some of the smallest latent roots of Z 
are equal, it still may be possible that the variation explained by the last 
9 = m - k principal components, namely Z&.,. , h i .  is small compared with 
the total variation 2;L lAf ,  in which case we might decide to study only the 
first k principal components. Thus it is of interest to consider the null 
hypothesis 

where h (OC h < 1) is a number to be specified by the experimenter. This can 
be tested using the statistic 

m m k m 

M A E  2 i , - h ~ l , = - h ~ i , + ( l - h )  I,. 
r = k + - I  1 - 1  I =I r = k  t I 

Assuming the latent roots of Z are distinct, Corollary 9.5.7 shows that the 
limiting distribution as n -, 00 of 
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is normal with mean 0 and variance 

k m 

Replacing A, by 1, ( i  = I ,  ..., m )  in T ~ ,  this result can be used to construct an 
approximate test of Hk+ and to give confidence intervals for 

m m 

I: 4 - h  2 A,. 
r = k + l  ( = I  

Finally, let us derive an asymptotic test for a given principal component 
(also from T. W. Anderson, 1963). To be specific we will concentrate on the 
first component. Let H** be the null hypothesis that the vector of coeffi- 
cients h, of the first principal component is equal to a specified m X 1 vector 
hq, i.e., 

H**:h , =ho ,, hq’hq=I. 

Recall that h, is the eigenvector of 2 corresponding to the largest latent root 
A, ;  we will assume that A ,  is a disrincr root. A test of H** can be 
constructed using the result of Theorem 9.5.8, namely, that if q ,  is the 
normalized eigenvector of the sample covariance matrix S correspond- 
ing to the largest latent root I, of S then the asymptotic distribution of y=  
n’/’(q, - h l )  is N,,,(O, r), where 

with H2 =[h,. . . h,,, J and 
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Note that the covariance matrix I' in this asymptotic distribution is singular, 
as is to be expected. Put z=  B - ' H ; y ;  then the limiting distribution of 2 is 
N,,- ](0, In-,), and hence the limiting distribution of 2'2 is x : , - ~ .  Now note 
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that 

Z ' Z = ~ ' H , B - ~ H ; ~  

and the matrix of this quadratic form in y is 

(26) 

A '  
A m  

- -  

Putting A =diag(A,, ..., A,) and using 



and 
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H ,  H; = I - h,h; 

(26) becomes 

Hence the limiting distribution of 

is x i , - , .  Since S, S-I, and I, are consistent estimates of Z, Z-l, and A, ,  
they can be substituted for Z, X-', and A ,  in (27) without affecting the 
limiting distribution. Hence, when If**: hi  =ht is true, the limiting distribu- 
tion of 

is x i -  ,. I t  follows that a test of H*+ of asymptotic size a is to reject H** if 
W > c ( a ;  m - I ) ,  where c(a;  ni - 1) is the upper IOOaSg point of the x i -  , 
distribution. 

It should be pointed out that most inference procedures in principal 
components analysis are quite sensitive to departures from normality of the 
underlying distribution. For work in this direction the interested reader 
should see Waternaux (1976) and Davis (1977). 
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9.7. 
ROOTS OF A SAMPLE COVARIANCE MATRIX 

DISTRIBUTIONS OF THE EXTREME LATENT 

In theory the marginal dislribution of any latent root of the sample 
covariance matrix S, or of any subset of latent roots, can be obtained from 
the joint density function given in Theorem 9.4.1 by integrating with respect 
to the roots not under consideration. In general the integrals involved are 
not particularly tractable, even in the null case (I: = Al,,,)  of Corollary 9.4.2. 
A number of techniques have been developed in order to study the marginal 
distributions, and for a discussion of these the interested reader is referred 
to two useful surveys by Pillai (1976, 1977). We will concentrate here on the 
largest and smallest roots since expressions for their marginal distributions 
can be found using some of the theory presented in Chapter 7. 

An expression for the distribution function of the largest root of S 
follows from the following theorem due to Constantine ( 1963). 

THEOREM 9.7.1. If  A is W,(n,L' )  ( n > m -  I )  and Sa is an m X m  
positive definite matrix (0 >O) then the probability that Sa - A is positive 
definite ( A  < $I) is 

where 

Proo/: Using the W,(n. Z) density function for A ,  i t  follows that 



Distributions o/ the Extreme Lutent Roots o ja  Sample Couartunce Mutrix 42 I 

Putting A = Q21/2Xh1i/2 so that (dA)=(det Q)(m+' ) /2 (dX) ,  this becomes 

*CK( - fP'/2C-'91/2X)(dX), 
where we have used the fact that 

k = O  K tc: 

Using Theorem 7.2.10 to evaluate this last integral we get 

and the proof is complete. 

It is worth noting here that for m 2 2 ,  P( A c P)# 1 - P( A > Q) because 
the set of A where neither of the relations A C Q nor A > Q holds is not of 
measure zero. 

If S is the sample covariance matrix formed from a sample of size 
N = n + I from the Nm(p, Z) distribution then A = nS is Wm(n, 2 )  and an 
expression for the distribution function of the largest latent root of S 
follows immediately from Theorem 9.7.1. The result is given in the following 
corollary. 

COROLLARY 9.7.2. If I ,  is the largest latent root of S, where A = nS is 
Wn,(n, 2). then the distribution function of I ,  can be expressed in the form 

(3) 
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Proofi Note that the inequality I, <x  is equivalent to S C x i ,  i.e., to 
A < n x l .  The result then follows by putting 8 = nxl in Theorem 9.7.1. 

The problem of finding the distribution of the smallest latent root of S is 
more difficult. In the case when r = 4 ( n  - m - 1) is a positive integer, an 
expression for the distribution function in terms of a finite series of zonal 
polynomials follows from the following result of Khatri (1972). 

THEOREM 9.7.3. Let A be Wm(n, 2 )  (with n > m  - I) ,  and let D be an 
m X m positive definite matrix (B  >O). If r = f ( n  - m - 1) is a positive 
integer then 

where 2: denotes summation over those partitions K =( k I , .  . . , k , , )  of k with 
k ,  S r .  

Proof. In 

etr(- j 2 - i ~ )  
1 

P ( A > Q ) =  
2mfl/2rm( $n)(det 2)"12 * > Q  

. (det A) (#  - 

put A = B 2 \ j 2 ( 1 +  X ) Q ' / 2  with (dA)=(detQ)(" ")/*(dX) to get 

( 5 )  

Now det(l  + X - l ) ( f l - m - ' ) / 2  can be expanded in terms of zonal polynomi- 
als, and the series terminates because r =(n - nt - 1)/2 is a positive integer. 
By Corollary 7.3.5 
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because (- r)K = 0 is any part of K greater than r. Using this in ( 5 )  gives 

For each partition ~ = ( k , ,  ..., k , )  in this sum we have k , S r ;  the desired 
result follows easily on using Theorem 7.2.13 to evaluate the last integral. 

An immediate consequence of Theorem 9.7.3 is an expression for the 
distribution function of the smallest latent root of the sample covariance 
matrix S. 

COROLLARY 9.7.4. If I, is the smallest latent root of S, where A = nS is 
W J n ,  2) and if r = $ ( u  - m - 1) is a positive integer then 

mr ca( 4 n x 2  - 1 )  

k !  ' 
P, ( I ,  > x ) = etr ( - f 11x2 - I ) 2 * 

k = Q  I 

(6) 

where 2: denotes summation over those partitions K =( k, ,  . . . , k,) of k with 
k, S r .  

Proof. Note that the inequality I, > x  is equivalent to S > x I ,  i.e., to 
A > nxl ,  and put D = n x l  in Theorem 9.7.3. 

In principle the distributional results in Corollaries 9.7.2 and 9.7.4 could 
be used to test hypotheses about I: using statistics which are functions of the 
largest latent root I, or the smallest latent root I,. Consider, for example, 
the null hypothesis H: X = I,. The likelihood ratio test was considered in 
Section 8.4; an alternative test of size a based on the largest root I ,  is to 
reject H if I ,  > / (a;  m,  n), where / (a;  n, m )  is the upper lOOaS point of the 
distribution of I, when I: = I,,,, that is, such that P,jI,  >/(a; m, n))= a. The 
power function of this test is then, 

which depends on 2 only through its latent roots. These percentage points 
and powers could theoretically be computed using the distribution function 
for I, given in Corollary 9.7.2, and this has actually been done by Sugiyama 
(1972) for m =2 and 3. In general, however, this approach poses severe 
computational problems because the zonal polynomial series (2) for the 'F, 
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hypergeometric function converges very slowly, even for sinall n and m. I f  n 
is large and A,, the largest root of C, is a distinct root an approximate test 
based on I ,  can be constructed using the asymptotic norinality of t i ' / 2 ( I i  - 
A , )  guaranteed by Corollary 9.5.7. If n is small or moderate further terins in 
an asymptotic series can be used to get more accurate approximations; see 
Sugiura (1973b), Muirhead and Chikuse (1975b), and Muirhead (1974) for 
work in this direction. If A ,  is not a distinct latent root of Z the asymptotic 
distribution of I, is considerably more complicated (see Corollary 9.5.7). 
We will give it explicitly when Z =  XI,,, and in = 2  and 3, leaving the 
details as an exercise (see Problem 9.7). The distribution function of I ,  = 
( n  /2)'/*( I, - A)/A can be expanded when X = XI, as 

and when C = A I, as 

(8) 

where +( - )  and @ ( a )  denote, respectively, the density and distribution 
function of the standard normal distribution. Further terms in asymptotic 
series for these two distribution functions may be found in Muirhead 
( 1974). 

Since the exact distributions of the extreme roots I ,  and I, are computa- 
tionally difficult and their asymptotic distributions depend fundamentally 
on the eigenstructure of C, it is occasionally useful t o  have quick, albeit 
rough, approximations for their distribution functions. 'The bounds in the 
following theorem could be used for this purpose. 

THEOREM 9.7.5. If I, and I,,, are the largest and smallest latent roots of 
S, where nS is W,,(n, zl), then 

(9) 

and 

where A,, . . . ,A, are the latent roots of 21. 
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Proof. Let H E O ( m )  be such that 

H ‘ Z H =  A=diag(A ,,..., A;), 

and put S* = H’SH so that nS* is W,( n ,  A). Since S and S* have the same 
latent roots, I, and I ,  are the extreme latent roots of S*. We have already 
seen in Theorem 9.2.1 that for all a€ R” with a’a = 1 we have 

and a similar proof can be used to show that 

Taking a to be the vectors (1,O. . . . ,O)’, (0,l , O , .  . . ,Oy, and so on, then shows 
that 

and 

where S*=(s;). By Theorem 3.2.7 the random variables ns:/A, have 
independent xf, distributions for i = 1,. . , ,m so that, using (1 1) and (12), 

P ( I ,  5 x)s P(max(s:, ,. . .,s:,,,)~ x )  

m 

i = l  
= n P ( s j : S x )  

m 

r = l  

nx 
= n 

and 

m 

r = l  
= n P ( s j : I x )  

m 

i =  I 

nx 
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9.1. Suppose that the m X 1 random vector X has covariance matrix 

1 

P 
z = u 2  . I: P 

P 
I 

P 

P 
P 

P 

... 

... 

... 

(a) Find the population principal components and their variances. 
(b) Suppose a sample of size N =  n + I is taken on X, and let 

ir, =q’, X be the first sample principal component. Write q I  = 
(qll,...,~l,,,)’, so that 

m 

lii = 2 9iiX, .  
1 : I  

Using Theorem 9.5.8, show that the covariance matrix i n  the 
asymptotic distribution of n ’ / * q ,  is I‘ = ( y l , ) ,  where 

and 
- + ( m  - l)Pl(l- P )  

m ’p2 
Yi, = ( i 7 t  j ) .  

Why would you expect the covariances to be negative? 

9.2. Let Z be a m X m positive definite covariance matrix, and consider the 
problem of approximating Z by an m X m matrix r of rank r obtained by 
minimizing 

I”’ IIZ-I’II= [ ,Il 2 ,Il 2 ( 0 1 , - y , , ) 2  

(a) Show that 

112’ - r II * -- tr( A - P)( A - P ) ’ ,  
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(b) Using (a), show that the matrix r of rank r which minimizes 
II Z - I‘ll is 

r =  2 A,h,h;, 
r 

r = l  

where H =[hl,. . . , h,,,]. 

9.3. Prove that if A =diag( a , , .  . . ,a,,,), a ,  > a,  =- . . + > a,,, >O, and E = 
diag(b ,,.. .,b,,,), O< 6 ,  < b, -= - . - < b,,,, then for all HE O(m), 

m 

tr( B H A H ’ ) ~  arbr 
r = l  

with equality if and only if H has the form H =diag( 5 1, & 1,. . , , 2 1). 

9.4. Let A =diag(a,,.. . ,a,,,), with a, a2 > - 9 .  >a,,, >O, and E = 
diag(h,, ..., b k ) ,  with b,>b,>  >b,>O. Show that for all H , E V k s , ,  

k 
t r ( E H ; A H , ) s  2 a,6, 

r = l  

with equality if and only if H I  has the form 

H I  = 

) I  0 

0 + I  . . . .  ‘ * . . . .  
L 0 

9.5. Obtain Corollary 9.5.7 from Theorem 9.5.5 

9.6. Let i, = ~ - ‘ x E , +  , l r ,  where q = m - k and /A+ , > . . - >I,,, are the q 
smallest latent roots of a sample covariance matrix S. Suppose that A ,  the 
smallest latent root of Z, has multiplicity q. Prove that as n + o o  the 
asymptotic distribution of (n9/2Az)1/2( jq - A )  is N(0,l). 

9.7. Establish equations (7)  and (8) of Section 9.7. 

9.8. Suppose that the latent roots A ,  > . ’ >A,,, of Z are all distinct; let I, 
be the largest latent root of S, and put x ,  = ( n / 2 ) ‘ / 2 ( 1 , / A ,  - 1). 

(a) Using Corollary 9.7.2 show that 
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where p = f ( m  f l), R = diag(r,,. . . ,rm), with r, = [ f ~  + 
( f ~ ) ' / ~ x ] t , ,  z , = h l / X ,  ( i = l ,  ..., m ) .  (Note that t l  = I  is a 
dummy variable.) 

(b) Starting with the partial differential equations of Theorem 7.5.8 
satisfied by the , F ,  function, find a system satisfied by P ( x ,  < x )  
in terms of derivatives with respect to x, z2,. . . ,t,,,. 

(c) Assuming that P ( x ,  < x )  has an expansion of the form 

Q i  Qz P ( x ,  < x)=@(  x ) +  - 4- - + * 
,,1/2 n , 

use the differential equations obtained in (b) and the boundary 
conditions P ( x ,  <w)= I ,  P ( x ,  < - w)=O to show that 

where +( x )  denotes the standard normal density function. 

9.9. Let XI, ..., X N  be independent N,(p,  2 )  random variables. Find the 
likelihood ratio statistic A for testing that the smallest (I = m - k latent 
roots of Z are equal to a specified value A,, and the asymptotic distribution 
of -2logA. 
9.10. Suppose that X is N,,,(p, Z), where L: = I'+ u21,,,, with I' being a 
non-negative definite matrix of rank r .  Let A ,  2 - * 2 A, > O  be the latent 
roots of I: and y, 1 . . . 2 y, >O be the nonzero latent roots of 1'. 

(a) Show that A, = y, + u 2  (with i = i , . .  . , r )  and A, = u (withj 1= r + 
I , .  . . ,m). How are the latent vectors of Z and I' related? 

(b) Given a sample of size N on X, find the maximum likelihood 
estimate of u2. 

9.11. Let H=[h ,  ... h , ]  be a proper orthogonal m X m matrix and write 
H =exp(U), where U is an m X.m skew-symmetric matrix. Establish equa- 
tion (13) of Section 9.5. 



CHAPTER 10 

The Multivariate 
Linear Model 

10.1. INTRODUCTION 

In this chapter we consider the multivariate linear model. Before introduc- 
ing this we review a few results about the familiar (univariate) linear model 
given by 

Y = X p + e ,  

where y and e are n X 1 random vectors, X is a known n X p matrix of rank 
p (the full-rank case), and p is a p X 1 vector of unknown parameters 
(regression coefficients). The vector y is a vector of n observations, and e is 
an error vector. Under the assumption that e is N,(0,u21,,), where u 2  is 
unknown [i.e., the errors are independent N(0, a2)  random variables]: 

(i) the maximum likelihood estimates of p and u 2  are 

and 

1 
n 

62=- (y -X@) ' (y -X#) ;  

(ii) (6, a 2 )  is sufficient for (0 ,~ ' ) ;  
(iii) the maximum likelihood estimates 6 and d 2  are independent; 6 is 

Np(p,02(X'X)- I )  and n 6 2 / u 2  is x i - p ;  and 
(iv) the likelihood ratio test of the null hypothesis H :  Cp =0, where C is 
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a known r X p matrix of rank r ,  rejects H for large values of 

When H is true F has the e,"-,, distribution. Proofs of these 
assertions, which should be familiar to the reader, may be found, 
for example, in Graybill (1961), Searle (1971), and Seber (1977). 

The multivariate linear model generalizes this model in the sense that i t  
allows a vector of observations, given by the rows of a matrix Y, to 
correspond to the rows of the known matrix X. The multivariate model 
takes the form 

where Y and E are n X m random matrices, X is a known n X p matrix, and 
B is an unknown p X m matrix of parameters called regression coefficients. 
We will assume throughout this chapter that X has rank p ,  that n 2 m + p, 
and that the rows of the error matrix E are independent NJO, 2) random 
vectors. Using the notation introduced in Chapter 3, this means that E is 
N(0,  I,,SC) so that Y is N ( X B ,  I,lQDC). We now find the maximum likeli- 
hood estimates of 5 and C and show that they are sufficient. 

THEOREM 10.1.1. If Y is N ( X B ,  I,,@Z) and n ? m + p  the maximum 
likelihood estimates of B and 2: are 

and 

(4) 
I e = ;( Y - X&)t (  Y -  XB). 

Moreover ( k e )  is sufficient for (a, 2). 
ProoJ. Since Y is N( XB, I,lQZ) the density function of Y is 

(2n)-'""'*(det Z)-"'2ctr[ - f( Y - XIB)Z--'( Y - XIB)']. 

Noting that X'(Y - Xb) = 0, it follows that the likelihood function can be 



written (ignoring the constant) as 

This shows immediately that (&$) is sufficient for (5,Z). That 6 and 2 
are the maximum likelihood estimates follows using a proof similar to that 
of Theorem 3.1.5. 

The next theorem shows that the maximum likelihood estimates are 
independently distributed and gives their distributions. 

THEOREM 10.1.2. I f  Y is N( XB, I , @ Z )  the maximum likelihood esti- 
mates b and 2, given by (3) and (4), are independently distributed; 6 is 
N [ B , ( X ' X ) - ' @ C ]  and n e  is W,(n - p ,  2).  

Pro08 Let H be an n X ( n  - p)  matrix such that 

X'H =o, HW= 

so that the columns of H form an orthogonal basis for R(X) ' - ,  the 
orthogonal complement of the range of X. Hence HH'= I ,  - X( X'X)-'X'. 
Now, put Z = H'Y,( n - p X m); then 

2'2 = Y'HH'Y = Y'( I ,  - x( x'x)-'X') Y = n e .  

The distribution of the matrix [;I=[ (x'x)-'x' . . H".  * .]Y 

is normal with mean .[;.I=[ (x'x)-'x' . . ..; . . . ] M e [  ... B 

0 

The covariance matrix is (see the example following Lemma 2.2.2) 
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Hence 6 is N(B,(X’X)- ’@Z),  Z is N(O,1 , , - ,8X)  and b and Z are 
independent. Since t i e =  Z’Z i t  follows from Definition 3.1.1 that I#$ is 
W,( n - p, Z), and the proof is complete. 

Note that the Wishart density for n 2  exists only if  n z m  f y .  When 
n < m + p Z has rank n - p and n$ = Z’Z is singular. 

10.2. A G E N E R A L  T E S T I N G  PROBLEM: 
C A N O N I C A L  FORM, I N V A R I A N C E ,  A N D  
T H E  L I K E L I H O O D  R A T I O  T E S T  

In this section we consider testing the null hypothesis H: CB =0, where C is 
a known r X p matrix of rank r ,  against the alternative K: CBZO. This null 
hypothesis H is often referred to as the general lineur hyporhesis. With 
various choices for the matrix C this incorporates inany hypotheses of 
interest. For example, partition B as 

where B, is r X m and B, is ( p  - r ) X  m.  The null hypothesis that 8, =0  is 
the same as CB =O, with C = [ I , :  01. As a second example suppose that 
y,,, ..., y,,,, are independent N J p , ,  Z) random vectors ( i  = 1 ,..., p)  and 
consider testing that p I = * - = p,,. This model, the single classification 
model. can be written in the form Y =  XB + E with 

Y =  , x= 

. . .  . . . ... . . . .  
I 0 0 O ... .*. 0 01 

O 1  
0 I 0 ... 
* . .  . . . ... . 
s . .  

0 1 0 .., 0 
. . .  . . . . . . . . . .  

. . .  . . . . . . . . . .  
0 0 0 ... 1 
O O O * * -  !I 
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Here Y is  n X m ,  with n=X,P=,9,, X is n X  p, B is p X m ,  and E is 
N(0,  I , , @ Z ) .  The hypothesis that the means are equal can be expressed as 
CB=O with 

- 
1 0 .., 0 - 1  1_1: 0 1 ... 0 - I  

0 0 ... 1 - 1  

Here C is r X  p with r = p -  1. 
Returning to our general discussion we will see that by transforming the 

variables and parameters in the model Y =  X B +  E the problem can be 
assumed to be in the following form: 

Let 

[where Yr is r X m,  YT is ( p  - r ) X  m, and Y; is ( n  - p ) X  m ]  be a random 
matrix whose rows are independent m-variate normal with common covari- 
ance matrix Z and expectations given by 

E (  Y: ) = M, * E ( YT ) = M2 , E( Y;) = 0. 

The null hypothesis H: CB =O is equivalent to H: M, =O. This form of the 
testing problem is generally referred to as the canonical form. 

We now verify that we can express the problem in this particular form. 
First. write 

where Q € O ( n )  and D E @ t ( p ,  R). Note that if Q is partitioned as Q =  
[ Q ,  ; Q 2 ] ,  where Q ,  is n X p and Q2 is n X ( n  - p),  then X = Q , D  and the 
columns of Q ,  form an orthogonal basis for the range of X. Now write 
CD-' = E [ I , : O ] P ,  where E E  Gf(r,  R) and PE O( p), and transform Y to 
Y* defined by 

Y*=[' 0 1"-p  ]Q'Y 
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The rows of Y* are independently normal with covariance matrix 2 and the 
expectation of Y* is 

where M = PDB. Partitioning Y* and M as 

where Y: and M, are r X m ,  Y$ and M2 are ( p - r ) X m ,  and Yf is 
( n  - p )  X m, we then have 

E ( Y ? ) = M , ,  E ( Y ; ) = M , ,  E(Y,*)=O. 

The null hypothesis H: CB =O is equivalent to 

0 = CD-' DIB = E [  I , :  01 PDB, 

[ I , : O ] M = O ;  hence M,=O. 

This form of the testing problem is due to Roy (1957) and T. W. Anderson 
( 1958). 

We now express the maximum likelihood estimates of B and C in terms 
of the transformed variables. First note that, if P E O (  p)  is partitioned as 
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where PI  is r X p and P2 is ( p  - r ) X  p, then 

and 

where we have used 

Q;Q,  = I ,  Q;Q2 =0,  PIP,'= I ,  P, Pi =O. 

The matrix version of the numerator of the F ratio in (1) of Section 10.1 is 

These quantities are often summarized in a generalization of the usual 
Analysis of Variance table, called a Multivariate Analysis of Variance table 
(or MANOVA table) in which the sums of squares are replaced by matrices 
of sums of squares (S.S.) and sums of products (S.P.). 
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MANOVA Table 

Source of Variation Degrces of 
due to freedom S.S. and S.P. Expectation 

Regression or inodcl r A = Y;’u;, rX + M;M, 
Deviations or error n - p B = Y:’Y$ = n e  ( n  - P I X  

Total (corrected) -(P - r )  U;,’Y;, f Y;’Y: 
= Y’Y - Y;’Y,+ 

The matrices A and B defined as 

are called the matrices due to the hypothesis and due to error, respectively. 
We have already seen in Theorem 10.1.2 that B is W,,( n - p ,  X) and hence 
E ( B ) = ( n  - p)X. We will see later that in general the matrix A has what is 
called a noncentral Wishart distribution (central when H: MI = O  is true). 
Here we find its expectation. We have A = Y:’Y:, where Y:  is N( MI, l r @ X ) .  
Since Y : -  MI is M ( O , / , @ Z )  it follows that ( Y r -  M,)‘(Y: - M I )  is 
W,( r ,  Z), so that 

rX = E [ (  Y: - MI)’( Y: - M I ) ]  

= E( Y:’Y: - Y?‘M, - M;Y:  + M ; M ,  ) 

= E (  Y:’Y:) - M ; M ,  - M ; M ,  + M ; M ,  

= E (  y;L’y;c) - M;M,. 

Hence 

( 5 )  E (  A ) =  rX + MiM,. 
Note that when H is true, MI =0, so that both A and B, divided by their 
respective degrees of freedom, provide unbiased estimates of X. In  the 
univariate case m = I the ratio of these mean squares has the Csn-,, 
distribution when H is true. 

We next look at our testing problem from an invariance point of view. 
We have independent matrices Y:, Yf, YT. where 

Y? is N ( M , , f , @ X ) ,  Y: is N ( M ~ , ~ ~ - ~ @ Z ) ,  

Y; is N ( O , I ~ - , , @ X ) ,  
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and the null hypothesis is H: MI = O .  The joint density function of Y:, Y;, 
and Y; is 

(6) (2a)-"'"/2(det 2)-'"* 

.etr( - f ~ - ' [ (  Y: - M,)'( Y: - M, ) + ( Y? - M~)'( Y; - M,)+ YT'YT] ) ,  

from which it is apparent that a sufficient statistic is ( Y r ,  Y;, B), with 
B = rn = ne. With Mm, ,, denoting the space of rn x n real matrices, 
consider the group of transformations 

acting on the space of the sufficient statistic by 

where the group operation is 

(9) ( r , ,  E , ,  N,)(r2, E, ,  N , ) = ( ~ ' , I ' ~ ,  E l & ,  N&;+ W .  
The corresponding induced group of transformations on the parameter 
space of points (MI ,  M,, 2) is given by 

(10) (I-, E, N ) (  M,, M,, Z)=(  r M , E ' ,  M,E'+ N, EXE') 

and the problem of testing H: MI =O against K: M I  # O  is invariant under 
G. A maximal invariant is given in the following theorem. 

THEOREM 10.2.1. Under the group G of transformations (8) a maximal 
invariant is (jl,.,,,L), wheres=rank (Y;CB-'Y;C') and/ ,>  > f , > O  are 
the nonzero latent roots of Y:B-'YT'. 

ProoJ. Let 

+(y : ,  y:, B ) = ( f , , . . . , L ) .  

First note that + is invariant, for the latent roots of 

are the same as those of Y:B-'Y:'. To show that it is maximal invariant, 
suppose that 

+(Y;C, v ,  B)=cP(Z?,  z;, F), 



r 
f l  0 

H,Y:B'-'Y:'H; = H2Z:F-*Z:'H; = 

- 0  0- 

Hence 

with 

Z :  = I'YrE' 

Note that EBE'= I;: Putting N = 2; - Y2E' we then have 

so that 

(U:, Y;C, B ) - (  Z f ,  Z;, F)(mod G ) .  

Hence ( f l , .  . . , A )  is a maximal invariant and the proof is complete. 

As a consequence of this theorem any invariant test depends only on 
j , , .  . . ,/, and, from Theorem 6.1.12, the distribulion off,, . . . , f ,  depends only 
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on the nonzero latent roots of M,Z-’M;. Note that 

(11) s =rank(Y:B-’Y:’) 

=min(r, m ) .  

Note also that when r = 1 and Y: =y:‘, M I  =m;, both 1 X m, then a 
maximal invariant is/, =y:’B-Iyf, a multiple of Hotelling’s T 2  statistic (see 
Theorem 6.3.1). We have already seen in Theorem 6.3.4 that the test which 
rejects H: m, =O for large values of y:’B-’yf is a uniformly most powerful 
invariant test of H: m, =O a ainst K: m, 20. Note also that when rn = 1 (the 

latent root of 
univariate case) and B = n  E = n d 2  the maximal invariant is the nonzero 

1 - YrY;’, 
n(i2 

namely, 

which is a multiple of the usual F ratio used for testing H: M, =O [see ( I )  of 
Section 10.1]. The test based on this is also uniformly most powerful 
invariant (Problem 10.1). 

In general, however, there is no uniformly most powerful invariant test 
and many functions of the latent roots of Y:B-’Y:’ have been proposed as 
test statistics. The likelihood ratio test statistic (from Wilks, 1932), given in 
the following theorem, is one such statistic. 

THEOREM 10.2.2. The likelihood ratio test of size a of H: M, = O  against 
K: M, # O  rejects H if A I cm, where 

(det B)n’2 

det( A + B)”” 
A =  

with A = Yr’Y:, B = Y?’YT, and c, is chosen so that the size of the test is a. 

Apart from a multiplicative factor the likelihood function based 
on the independent matrices Yr, Y;, and u;l, where Y: is N ( M , ,  1,.@2), YT 
is N( M2,  Z,-,.@Z) and YT is N(O,l,,-.,,@X) is [see (6)] 

Proof. 

L(  MI,  M,, 2) = (det Z)- “’2etr{ - f X - l [ (  y;z - ikf,)’( yr - MI) 

4- (Y,+ - M2)’( Y,. - M , )  + Y,s’u;l:l). 
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The likelihood ratio statistic is 

s‘PMMl,PL(oI M 2 r  z, 
A =  

M~ ~ I: L(M,l  M p Z )  
(rW 

When MI = O  the likelihood function is maximized when M2 = Y; and 

1 I 
n 

I: = ; ( Y:‘Y, + V’Y;) = - ( A  + B )  

so that the numerator in (12) is 

I - r / 2  

(13) L ( 0, Y: , ( A + A ) ) = det [ ( A + H )] e - n n n / 2 1  

When the parameters are unrestricted the likelihood function is maximized 
when 

so that the denominator in (12) is 

Using (13) and (14) in (12) then gives 

(det B)”” 

det( A 4- A)’”* ’ 
A =  

and the likelihood ratio test rejects If for small values of A ,  completing the 
proof. 

For notational convenience, define the statistic 

The likelihood ratio test is equivalent to rejecting H: MI =O for small values 
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of W. Note that this is an invariant test for 

det B 
det( Y:'Y: + B) 

W =  

=det( I + Y:B--'Y;')-'  

= n ( 1 + . 0 - ' ,  
r = l  

where s =min(r, m)=rank(Y:B-'Y:') and!, 2 - - .  2 L  >O are the nonzero 
latent roots of Y:B-'y;C'. The distribution of W will be discussed in detail 
in Section 10.5. Other invariant test statistics include 

S 

T:=trAB-I= 2 1; 
r = l  

called the generalized T,* statistic and suggested by Hotelling (1947) and 
Lawley (1938), 

V=t rA(A+B)- l=  - J,  
r = l  l + i '  

proposed by Pillai (1955), and f , ,  the largest latent root of YFB-IY:', 
suggested by Roy ( I  953). Distributional results associated with these statis- 
tics will be given in Section 10.6. The joint distribution off,, . . . ,L is given in 
Section 10.4 and can be used as a starting point for deriving distributional 
results about these statistics. Before getting to this we need to introduce the 
noncentral Wishart distribution, which is the distribution of the matrix 
A = Yr'Y;". This is done in the next section. 

10.3. T H E  N O N C E N T R A L  WISHART DISTRIBUTION 

The noncentral Wishart distribution generalizes the noncentral x 2  distribu- 
tion in the same way that the usual or central Wishart distribution gener- 
alizes the x 2  distribution. It  forms a major building block for noncentral 
distributions. 

DEFINITION 10.3.1. If A =  Z'Z, where the n X m matrix Z is N( M ,  I,,@ 
Z) then A is said to have the noncentral Wishart distribution with n degrees 
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of freedom, covariance matrix 2, and matrix of noncentrality parameters 
S2 = Z-IM'M. We will write that A is Wn,(n, X, 9). 

Note that when M=O, so that $2 =0, A is W,(n, 2) (i.e., central Wishart), 
and when tn = I with C = g2, A / u 2  is ,y:(S), with 6 = M'MJ(J~.  We have 
already seen in ( 5 )  of Section 10.2 thiit 

E ( A ) =  nZ + M'M = nZ + ZQ. 
When n < m ,  A is singular and the W,(n,X,Q) distribution does not 

have a density function. The following theorem, which gives the density 
function of A when n 1 m,  should be compared with Theorem 1.3.4, giving 
the noncentral x 2  density function. 

THEOREM 10.3.2. If the n X rn matrix Z is N( M, I,,SZ) with n 2 m then 
the density function of A = 2'2 is 

1 

2mn/21'm( fn)(det 2)'12 
(1) 

etr( - ~ Q ) , F , (  f n ;  t S 2 x - I ~ )  ( A  >o), n - m - 1)/2 .etr( - fZ-'A)(det A)' 

where S2 = X-IM'M. 
Proof. The density of Z is 

( 2 ~ )  - m"'2(det 2) - n'2etr( - 42 ' Z ' Z )  etr( - 42.- 'M'M) etr( Z-'M'Z)( d Z ) .  

Put Z =  HIT, where H, is n X m, with lf;li, = f,,, and T being upper- 
triangular. Then A = 2'2 = T'T and, from Theorem 2. I .  14, 

so that the density becomes 

2- '" ' (2~)-" '"/~(det Z)--""etr( - fZ- 'Z'Z)etr(  - 4Z- 'M'M) 

Now integrate with respect to HIE Vm,n, the Stiefel manifold of n X m 
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matrices with orthonormal columns. From Lemma 9.5.3 we have 

Using Theorem 7.4.1 to evaluate this last integral then gives 

where Q = Z-IM'M, A = T'T, and the proof is complete. 

I t  should be noted that, although n is an integer (2 m )  in the derivation 
of the noncentral Wishart density function of Theorem 10.3.2, the function 
(1 )  is still a density function when n is any real number greater than m - 1, 
so our definition of the noncentral Wishart distribution can be extended to 
cover noninteger degrees of freedom n, for n > m - I .  

The noncentral Wishart distribution was first studied in detail by T. W. 
Anderson (l946), who obtained explicit forms of the density function when 
rank (GI)= 1,2. Weibull (1953) found the distribution when rank ( Q ) = 3 .  
Herz (1955) expressed the distribution in terms of a function of matrix 
argument, and James (1961a) and Constantine (1963) gave the zonal poly- 
nomial expansion for it. 

Recall that if A is Wl(n,  u2, 8 )  then A / 0 2  is x:(S), so that the character- 
istic function of A is 

The following theorem generalizes this result. 
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THEOKEM 10.3.3. 
A is 

I f  A is W,,(n, 2,  Q )  then the characteristic function of 

where 

I ' = ( y , J ) i ,  j = 1 ,  ..., m ,  with ~ ~ / = ( l + S , , ) e , ~ , 8 / , = 0 , , ,  

and a,, is the Kronecker delta, 

1 if i = j  

= { o if if j .  

Prooj The characteristic function of A can be written as 

There are two cases to consider. 
(i) First, suppose that n is a postive integer and write A = 2'2 when Z is 

N(M,1,@Z), and Q = X - ' M ' M .  Let z,, ..., z n  be the columns of 2' and 
mll...,m,, be the columns of M'; then zI,...,zn are independent, z, is 
Nnr(ml, Z), and A = Z'Z =x;= Iz,z;. Hence 
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Put y, = X - ' / ' z J ;  then yJ is A',,,(?, I,,,) with 5 = 2-'/*rnf, and 

Let H E  O ( m )  be such that 

HX1/2TZ1/2H'=diag( A , ,  . . . ,A,,,)= DA, 

where XI, ... ,A,,, are the latent roots of Z'/2K21/2. Put u, = Hy, then uf is 
N,,,(v,, I,,,) with 5 = H ~ J  and 

where uf =(ufl ,  ..., u~,,,)'. Then 

where = ( V I I , .  . . , vf,,,)' and we have used the fact that the u:k are indepen- 
dent x : ( v $ )  random variables. The desired result now follows by noting 
that 

n m  n n (l-ihk)=det(I,,,-iDA)" 
j = l  & = I  

=det( I,,, - iZ1/zI'Z1/2)n 

=det(I- XX)", 

=etr( - +z-'M'M) 

=etr( - fQ), 
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and 

I; etr [ ~ M ' M I :  '(X I - ir) 'Zl] 

= etr[ +Q( I - i r z )  .- '3. 
(ii) Now suppose that n is any real number with n > m - I .  Then A has 

the density function (1) so that 

P I (  f n ;  w - 'A)( dA) . (&( A)'" - m - I ) / Z  

and the desired result then follows using Theorem 7,3.4. 

The characteristic function can be used to derive various properties of the 
noncentral Wishart distribution. The following theorems should be com- 
pared with Theorems 3.2.4, 3.2.5, and 3.2.8, the central Wishart analogs. 

THEOREM 10.3.4. If the m X m matrices A' ,  ..., Ar art. all independent 
andA,is  &:,(n . ,Z,52 , ) , i= lI  ..., r ,  thenxj=,A,is  Wm(n,Z,52), w i t t i n =  
X:=,n,  and P=&:,,St,. 

ProuJ The characteristic function of z : = , A ,  is the product of the 
characteristic functions of A l , .  . . ,A ,  and hence, with the notation of Theo- 
rem 10.3.3, is 

which is the characteristic function of the W , ( n ,  Z, St) distribution. 
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THEOREM 10.3.5. If the n X m matrix 2 is N ( M ,  I, ,QZ) and P is k X m 
of rank k then 

PZ'ZP' is Wk(nr PXP',(PXP')-'PM'MP') 
Proofi Note that P Z Z P ' = (  ZP')'( ZP')  and ZP' is N( MP', I , ,@PZP');  

the desired result is now an immediate consequence of Definition 10.3.1. 

THEOREM 10.3.6. If A is Wm(n, 2, Q), where n is a positive integer and 
a (#O) is an m X 1 fixed vector, then a'Aa/a'Ca is x i ( & ) ,  with 6 = 
a'XQa/a'Za. 

Proof: From Theorem 10.3.5 the distribution of a'Aa is 
W,(n, a'Za, a'XQa/u'Xa), which is the desired result. 

Many other properties of the central Wishart distribution can be readily 
generalized to the noncentral Wishart. Here we will look at just two more. 
Recall that if A is W , ( n ,  Z) then the moments of the generalized variance 
det A are given by [see (14) of Section 3.21 

In the noncentral case the moments are given in the following result due to 
Herz (1955) and Constantine (1963). 

THEOREM 10.3.7. If A is Wm(n, Z,n) with n I m  
*t 

(Note that this is a polynomial of degree mr if r is a positive integer.) 

Proofi Using the noncentral Wishart density function, and Theorem 
7.3.4 gives 

etr( - t Q )  
E[(det A)"] = etr( - f2-h) 

2""/'rm(fn)(det Z)"l2 -!4 >o 

The desired result now follows using the Kummer relation in Theorem 7.4.3. 
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The moments of def A can be used to obtain asymptotic distributions. 
For work in this direction see Problems 10.2, 10.3, and 10.4. 

The next theorem generalizes Bartlet t's decomposition (Theorem 3.2.14) 
when the noncentrality matrix has rank 1. 

THEOREM 10.3.8. Let the n X rn ( n  2 m )  matrix Z be N ( M ,  l,t@/,t,), 
where M=[m,,O ,..., 01, so that A=Z 'Z  is W f l t ( n , I , Q ) ,  with 52=  
diag(m;m,,O, ..., 0). Put A =  T'T, where T is an upper-triangular matrix with 
positive diagonal elements. Then the elements lV(  1 5 i 5 j 5 m )  of T are all 
independent, t:, is ,y:(S) with S = mirn,, ti is x,,- .k I ( i  = 2, . . . , m), and t i j  
is N(0,l) ( 1 5 i < j 5 in) .  

Proo/. With Q having the above form, the density of A is 

Since A = T'T we have 

m 

and, from Theorem 2.1.9 

so that the joint density function of the I,, ( 1  5 i 5 j 5 m )  can be written in 
the form 
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where 6 =m',m,, which is the product of the marginal density functions for 
the elements of T stated in the theorem. 

10.4. 
I N  M A N O V A  

J O I N T  DISTRIBUTION OF T H E  L A T E N T  ROOTS 

In this section we return to distribution problems associated with multi- 
variate linear models. We saw in Section 10.2 that invariant test statistics for 
testing the general linear hypothesis H: MI = O  against K: MI f O  are func- 
tions of/I, ...,/s, where $=rank (YTB-'Y:')=min(r,m) and /,? q - 0  "f, 
are the nonzero latent roots of Y:ff- 'Y:' .  Here YT is an r X m matrix 
having the N( MI, Ir@C) distribution, ff is W,(n - p,  X), and YT and B are 
independent. We are assuming throughout that n ? m + p  so that the 
distribution of B is nonsingular. There are two cases to be considered, 
namely s = m and s = r .  

Case I: r T m  

In this case rank (Y:B-'Y:')= m and fl 2 2/, ( > O )  are the nonzero 
latent roots of Y;CB-'Y;' or, equivalently, the latent roots of AB-I ,  where 
A = Y:'Y:. The distribution of A is W,(r, 2, Q ) ,  with Q = Z--'M;M,. The 
distribution of f l ,  . . . ,J, will follow from the next theorem, which is a 
generalization of the noncentral F distribution and should be compared 
with Theorem 1.3.6. 

THEOREM 10.4.1. Let 2 and d be independent, where A is W,(r, I, 0) 
and B is We(" - p ,  I) with r 5 m,  n - p 2 m. Then the density function of 
the matrix F = A'/'B- I,$/* i S 

( 1 )  e t r ( - ~ ~ ) l ~ l ( ~ ( n + ~ - ~ ) ; ~ ~ ; ~ ~ ~ ( ~ + ~ ) - ' )  

Proo/: The joint density of A and B is 
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Now make the change of variables P = /i'/2d- I,$/', U = 2 so that 

(&)((Is) = (det U ) ( m  (detP)- '" '  " ( d U ) ( d p ) .  

The joint density of U, p is then 

" F d h  a f i u ) ( d u )  
n + r - p - -  m - I)/' etr[-f( l+f i - ' )U](detU) '  

rmM. -+ r - P ) 1  = 2ni(n+r-p)/2det( I + $-- I ) - ("  + r - ~ ) / 2  

' IF,( $( n + r - p ) ;  ; r ;  jSz( f + $- 1 )  -- ') 

(from Theorem 7.3.4) gives the stated marginal density function for f? 

This theorem is used to find the distribution of the latent rootsf,, . . . , J , ,  
due to Constantine (1963). 

THEOREM 10.4.2. I f  A = Y,'"Y;C and B = YT'YT, where Yf and Y;L are 
r X m and ( n  - p ) X  m matrices independently distributed as N( M,, I,QDZ') 
and N(0,  fn-,,QD2), respectively, with r 2 m,  n - p 2 m, then the joint den- 
sity function of{', ...& the latent roots of AB-' is 

where F=diag( j l , .  . . and = X - ' M ; M , .  

Putting U =  Y f x - ' / 2 ,  V = Y , * Z - ' / z ,  and M * =  M , Z - ' / 2  i t  fol- 
lows that U and V are independent, U is N( M*, f r @ f m ) ,  V is N(0,  fn-p@I,,,), 

Proo/. 
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and f I , .  . . , fm are the latent root of A&', where k= U'U and 8 = V'V, or 

tively, WJr ,  I , a )  and W,(n- p ,  I)  where a=M*'M*= Z- ' I2M'M I 1  2 7 ' 1 2 .  

The proof is completed by making the transformation F =  HFH in Theo- 
rem 10.4.1 and integrating over HE O(m) using Theorems 3.2.17 and 7.3.3., 
noting that the latent roots W ~ , . . . , W , , ,  of f l = X ' M ; M ,  are the same as 
those of B. 

The reader should note that the distribution of f l y . .  . ,fm depends only on 
a,, ..., am, the latent roots of fl = C-'M;M,. [Some of these, of course, may 
be zero. The number of nonzero roots is q n k  ( M J - ' M ; ) . ]  This is because 
the nonzero roots form a maximal invariant under the group of transforma- 
tions discussed in Section 10.2. 

The null distribution of f,,..,,fm, i.e., the distribution when MI =0, 
follows easily from Theorem 10.4.2 by putting 51 =O. 

COROLLARY 10.4.3. If A is Wm(r, Z), B is Wm(n - p, Z), with r 2 m, 
n - p 2 m, and A and B are independent then the joint density function of 
f ,,..., fm, the latent roots of AB-I,  is 

equivalently of E =  A'/*B-'A'/ ifr . The distributions of k and B are, respec- 

( f l  == * - > f ,  >O). 

It  is worth noting that the null distribution (3) of f l , .  . . , f ,  has already 
been essentially derived in Theorem 3.3.4, where the distribution of the 
latent roots u l ,  . . . , u, of A(A + B)-' is given. Corollary 10.4.3 follows 
immediately from Theorem 3.3.4 on putting nl  = r, n2 = n - p, andl; = ui /  
(1 - Ui). 

Case 2: r < m  

In this case rank (Y:B-'Y:')=r and f l Z  Z f ,  (>O) are the latent 
roots of Y:B-'Y:' or, equivalently, the nonzero latent roots of AB-' where 
A = YF'Y:. The distribution of A is noncentral Wishart, but it  does not have 
a density function. The distribution of f l ,.. . ,f, in this case will follow from 
the following theorem (from James, 1964), which gives what is sometimes 
called the "studentized Wishart" distribution. 

THEOREM 10.4.4. If A = YT'Y: and B = Y:'Y:, where Y: and Y: are 
independent r X m and (n - p ) X  m matrices independently distributed as 
N( M I ,  l , @ X )  and N(0, I n - p @ 2 ) ,  respectively, with n - p 2 m 2 r ,  then the 
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density function of p = Y: B -  I Y;C' is 

(4) 

di 

etr( - 10) , F,(  4 (n + r - p ) ;  4 tn ;  &OF( I + F ) -  I )  

where 0 = MIZ-'M;. 

Putting U = Y ; * Z - 1 / 2 ,  V =  Yj*Z:-1/2 and M*= M1Z-'I2,  i t  fol- 
lows that U and V are independent, U is N( M*, f r@f , , , ) ,  V is N(0, f ,z . .p@I, , , ) ,  
and F =  U( V'V)- - 'U' .  Now put 

Proot 

where HI is m X r with orthonormal columns ( H i H ,  = Ir), T is r X r 
upper-triangular and 11, is any tn X ( m  - r)  matrix such that H -[HI : H,) 
is orthogonal. Then 

[:I F =  [T': 01 H'( V ' V ) - ' H  

= T'B-. IT, 

where Z = V H  and 8-' denotes the r X r matrix formed by the first r rows 
and columns of ( Z ' Z ) - ' .  The distribution of 2'2 is W,(n - p, I,,,) and, 
from Theorem 3.2.10, the distribution of B is W,(n + r - p - m, f,). The 
joint density of U and d is 

2 -I(  n i- r - p  - m ) / 2  

(27r)-"lr'*etr[ - f ( U -  M*) ' (U-  M*)] ew( - 1 B )  
r,Mn + r  - P - m)J 

Since U' = HIT,  where H I  E Vr,m, the Stiefel manifold of m x r matrices with 
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orthonormal columns, we have from Theorem 2. I .I4 that 

( d l l )  = 2-'det( T'T)'"- r - ' ) / z (  d(  T'T)) (  H i d H , )  

so that the joint density becomes 

Now integrate with respect to HIE c,m. The same argument as that used in 
the proof of Theorem 10.3.2 shows that 

and hence the joint density of T'T and B is 

2 - r( n + r -p )/ 2 
( m - r  - 1)/2 etr( - $ T'T) det( TIT) 

r)[$(n + r - P - m)Jr,(Jim) 

Now put P= T'B-'T, G = T'T with Jacobian given by 

(d( T'T) ) (dB)  =(det G)(rf "/2(det F ) - ( r + ' ) ( d F ) ( d G ) .  

The joint density of and G is then 

jm; aM*M*'G)etr( - f M*'M*)(det F )  +-P + * + *r + <dO<dC>. 
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Integrating with respect to G using 

--2'(" t r - p ) / Z r  - ( n  1 . r  - p ) / 2  - J $ ( n  + r  - p)]det( I -t PI) 

. ' ~ , ( f ( n + r - p ) ; f m ; . ~ ~ * ' ~ * ' ( ~ +  P I ) - ' )  

then gives the stated marginal density function for F. 
The distribution of f l , .  . . ,/,, the latent roots of YrB- I Yr' can be easily 

obtained from Theorem 10.4.4 and is now given. 

THEOREM 10.4.5. If B is W,(n-p,Z)  and A=Y: 'Yr ,  where Yr is 
N ( M , , l r @ Z )  and is independent of 8, and n - ~ > m > r  then the joint 
density function of J, ,  . . . ,A,  the latent roots of F =  YI*E-'Yf' or, equiva- 
lently, the nonzero latent roots of A B - I ,  is 

( 5 )  etr( - 40) I ~ ' ( r ) (  4 ( n  + r - p 1; +In; 0, F( I + F ) -  I )  

*(I-,=-* >/," 

where F=diag(/,, ...,f,) and 0 = M I Z ' - ' M ; .  

O ( r )  using Theorems 3.2.17 and 7.3.3 gives the desired result. 
Proof. Putting E =  HFH' in Theorem 10.4.4 and integrating over IfE 

Putting W = O  in Theorem 10.4.5 gives the null distribution of fl ,  . . . ,A. 
COROLLARY 10.4.6. If A is W,,(r,  Z), B is W;,(n - p, Z), with n - p L 
m 2 r ,  and A and B are independent then the joint density function of 
jI, ....A, the nonzero latent roots of AB-I ,  is 

Let us now compare the distributions of the latent roots obtained in the 
two cases n - p 2 m ,  r 2 m and n - p 2 m 2 r ,  i.e., compare Theorem 10.4.2 
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with Theorem 10.4.5 and Corollary 10.4.3 with Corollary 10.4.6. When 
r = m they agree, and i t  is easy to check that the distributions in Case 2 
( n  - p L m 2 r )  can be obtained from the distributions in Case 1 ( n  - p 2 
m,  r 2 m )  by replacing m by r ,  r by m and n - p by n + r - p - m ,  i.e., by 
making the substitutions 

(7) m + r ,  r - m ,  n - p - + n + r - p - m .  

One consequence of this is that the distribution of any invariant test statistic 
(i.e., function of the 4 )  in Case 2 can be obtained from its distribution in 
Case I by using the substitution rule (7). In what follows we will concentrate 
primarily on Case 1. 

10.5. DISTRIBUTIONAL RESULTS FOR THE 
LIKELIHOOD RATIO STATISTIC 

10.5.1. Moments 

In this section we return to the likelihood statistic for testing H: M ,  =O 
against K: M, f O .  In Section 10.2 it was shown that the likelihood ratio test 
rejects H for small values of 

where A is W,(r, 2, a), B is W,(n - p, X) and Q = X - ' M ; M , .  We will 
assume here that n - p 2 m, r 2 m. In terms of the latent roots f,, . . . , fm of 
AB-' the test statistic is W = n , Z l ( l  +/;)-I. The momenls of Ware given 
in the following theorem due to Constantine (1963). 

THEOREM 10.5.1. The h th moment of W, when n - p 2 m, r 2 m ,  is 

( 1 )  
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Prool: From Theorem 10.4.2 we have 

and using the zonal polynomial series for the IFl function gives 

(n + 211 - p  - m - 1) /2  .det( I - U )  I Fl( f ( n  + r - p ) ;  j r ;  4 sw )( d~ ) 

Using Theorem 7.2.10 to evaluate this integral shows that 
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The desired result (1) now follows on using the Euler relation given in 
Theorem 7.4.3. 

The moments of W when H: M I  =O is true are obtained by putting Sl =O. 

COROLLARY 10.5.2. When M I  =O (Lee, Sl =O) the moments of W are 
given by 

It is worth emphasizing again that the expression for the moments given 
here assume that r 2 m. When r < m the moments can be obtained using the 
substitution rule given by (7) of Section 10.4. 

I0.5.2. Null Distribution 

When the null hypothesis H: M I  =O is true, the likelihood ratio statistic W 
has the same distribution as a product of independent beta random vari- 
ables. The result is given in the following theorem. 

THEOREM 10.5.3. When H: M, =O is true and r 2 m, n - p 2 m, the 
statistic W has the same distribution as flz,K, where Vl, ..., Vm are 
independent random variables and V; is beta(+(n - p - i + l) ,  f r ) .  

We have W=n:!.l(l - u,),  where u I ,  ..., u, are the latent roots 
of A( A + B ) - ' .  The distribution of uI,. . ., u,, given in Theorem 3.3.3 with 
nl = r and n, = n - p ,  is the distribution of the latent roots of a matrix U 
having the Beta,,,(ir, i ( n  - p)) distribution, so that W=det ( l -  U ) .  The 
distribution of I - U is Beta,(f(n - p), J r ) .  Putting 1 - U = T'T, where 
T = ( t , , )  is upper-triangular gives W = fly= I f $  from Theorem 3.3.2 the 
are independent beta ($(n - p - i + l ) ,  f r )  random variables, and the proof 
is complete. 

This result can, of course, also be obtained from the moments of W given 
in Corollary 10.5.2 by writing these as a product of moments of beta 
random variables. When r S m ,  the distribution of W is obtained from 
Theorem 10.5.3 using the substitution rule given by (7) of Section 10.4 and 
is given in the following corollary. 

COROLLARY 10.5.4. When n - p 2 m 2 r ,  W has the same distribution 
as n:=,K, where Vl, . . . ,K are independent and V; is be t a ($ (n+r -p -  
m - i + l ) , $ m ) .  

ProoJ 
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Let us look briefly at two special cases. When m = I, Theorem 10.5.3 
shows that W has the beta(i(n - p),  f r )  distribution or, equivalently, 

I - W n - p  
W r  

is &,n-p.  This is the usual Fstatistic for testing H: M, =O in the univariate 
setting. When r = I ,  Corollary 10.5.4 shows that W has the beta(f(n + 1 - p 
- m),  f m )  distribution or, equivalently, 

I - W n + l - p - m  
W t?I 

is F,,,, , - p - m .  This is the null distribution of Hotelling's T z  statistic given 
in Theorem 6.3.1. 

I n  general i t  is not a simple matter to actually find the density function 
of a product of independent beta random variables. For some other special 
cases the interested reader should see T. W. Anderson (1958). Section 8.5.3, 
Srivastava and Khatri (1979), Section 6.3.6, and Problem 10.12. 

10.5.3. The Asymptotic Null Distribution 

Replacing h in Corollary 10.5.2 by n h / 2  shows that the h th null moment of 
the likelihood ratio statistic A = W"/* is 

(3) E (  A*) = E (  W n h I 2 )  

m 

where K is a constant not involving h. This has the same form as ( 1  8) of 
Section 8.2.4, where there we put 

p = m ,  9 = m ,  x k = f n ,  y , = j n ,  € , = i ( i - k - p ) ,  q j = 4 ( 1 - - j + r - p )  

( k , j =  1,  ..., m ) .  
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The degrees of freedom in the limiting x 2  distribution are, from (28) of 
Section 8.2.4, 

m 

f = - 2  2 E k -  Z: q j  
[&:I j = l  ] 

= rm. 

The value of p which makes the term of order n- '  vanish in the asymptotic 
expansion of the distribution of -2plogA is, from (30) of Section 8.2.4 

(4) 

. in 

- - 1 - r  2: ( - r + 2 k + 2 p )  

- - I  - , [ p - r  + f ( m  + r  + I)], 

2fn & = I  

1 

With this value of p it is then found, using (29) of Section 8.2.4, that 

mr(m2 + r 2  - 5 )  
w2 = 

48( Pn l2 
Hence we have the following result, first given explicitly by T. W. Anderson 
( I  958), Section 8.6.2. 

THEOREM 10.5.5. When the null hypothesis H: M I  =O is true the distri- 
bution function of -2plog A, where p is given by (4), can be expanded for 
large N = pn as 

( 6 )  

P (  - 2pl0g A S X )  = P( - Nlog WC X )  

where/= mr and y =(np) '02 = N2w2, with w2 given by (5). 

Lee ( 1  972) has shown that in an asymptotic series in terms of powers of 
N-' for the distribution function of -2plog A only terms of even powers in 
N-' are involved. For a detailed discussion of this and other work on the 
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distribution of A the interested reader is referred to T. W. Anderson (l958), 
Rao (1951), Schatzoff (1966a), Pillai and Gupta (1969), Lee (1972), and 
Krishnaiah and Lee (1979). 

Tables of upper lOOa% points of -2plogA = - NlogW= - - [ n  - p - 
*( m - r + 1)llog W for a=.100, .O50, .025, and .005 have been prepared for 
various values of In, r ,  and n - p by Schatzoff (1966a), Pillai and Gupta 
(1969), Lee (1972), and Davis (1979). These are reproduced in Table 9 
which is given at the end of the book. The function tabulated is a 
multiplying factor C which when multiplied by the x l , ,  upper 1OOa% point 
gives the upper 100a% point of -Nlog W. Each table represents a particular 
( m ,  r )  combination, with arguments M = n - p - m -!- 1 and significance 
level a. Note that since the distribution of W when n - p > m ? r  is 
obtained from the distribution when n - p 2 m, r 2 m by making the sub- 
stitutions 

m - r ,  r d m ,  n - p - n 4 - r - p - m ,  

i t  follows that m and r are interchangeable in the tables. 

10.5.4. Asymptotic Non-null Distributions 

The power function of the likelihood ratio test of size a is P( -2plog A 2 
k : ] ~ , ,  ..., urn), where p is given by (4) and k,* denotes the upper 10Oa% 
point of the distribution of - 2plog A when H: Q =O is true. This depends 
on 52 only through its latent roots o, 2 * 2 a,,, (20) so that in this section, 
without loss of generality, i t  will be assumed that is diagonal, $2- 
diag(u ,, . . . ,un,). Here we investigate ways of approximating the power 
function. 

We consider first the general alternative K: 0 #O. From Theorem 10.5.1 
the characteristic function of -2plogA under K is 

where g ( N ,  t , O )  is the characteristic function of -2plog A when M is true, 
obtained from (2) by putting h = -2 i rp  and n = N t p - r + f ( m  -t r 3- I ) ,  
and 

(8) G( N ,  I ,  a )  = I Fl ( - i f N ;  f N (  1 - 2ir )  + 4 ( r + M + 1 ) ; - fa). 



Drsrriburionul Resulis jor the Ltkelrhood Rofro Srarrsrrc 461 

From Theorem 10.5.5 we know that 

g ( N ,  t , 0) = ( 1 - 2 it ) - r’2 + O( N - * ) . (9) 

The following theorem gives the term of order N-‘ in an expansion for 
G( N ,  t ,  W. 
THEOREM 10.5.6. The function G ( N ,  t ,  Q) defined by (8) can be ex- 
panded as 

where oJ = trSP = z;l= pi and 

Proof. The proof given here is based on the partial differential equa- 
tions satisfied by the IFl function. Using Theorem 7.5.6 the function 
H( N, 0)= logG( N ,  I ,  Q) is found to satisfy the system of partial differential 
equations 

l h e  function H ( N , O )  is the unique solution of each of these partial 
differential equations subject to the condition that H( N, S2) be a symmetric 
function of w , ,  ..., w,,, which is analytic at 0 = 0  with H(N,O)=O.  In (12) we 
substitute 

where (a) Pk(0 )  is symmetric in w l , . . . , w m  and (b) Pk(0)=O for k =  
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0, I ,2, . . , . Equating coefficients of N on both sides gives 

( I  - -2 i : ) -= i :  apo ( j = l ,  .... m ) ,  
awJ 

the unique solution of which is, subject to conditions (a) and (b), 

where a, = tr Q. Equating constant terms and using 
for P , ( Q )  as 

it - it 
w 

1 -- - - - ( r + m + l )  
2 (1-2ir) ' ( 1 - 2 i t ) '  ' 

( 1  3 )  yields the system 

( j =  1,  ..., m ) ,  

the solution of which is the function P , ( Q )  given by ( I  I ) .  Hence 

G (  N, I ,  9 )  =exp N( N, a )  

=exp[Po(n)l[ I - t - 7  + O ( N 4 ) ] ,  

and the proof is complete. 

An asymptotic expansion to order N-" of the distribution function of 
- 2 p  log A under K now follows easily. 

THEOREM 10.5.7. Under the fixed alternative K: Q f O  the distribution 
function of -2plog A can be expanded for large N = pn as 

(14) P( -2pl0g A 5 x ) =  P( x ; (  0,)s X )  

1 
+ - 4N { ( m  f r + l)a,P(X;+2(9 I-) 

- [ ( m  + r + I ) O I  - a21 p (  x;+'I(a,)s .) 

- 0 2  P (  X&s(a,) 5 x )  ) + O( 

where / = mr and 0, = :rQJ, 
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Using (9) and (10) in (7) shows that the characteristic function of Proot 
- 2 p  log A has the expansion 

where P , ( O )  is given by ( 1  I). The desired expansion (14) is obtained by 
inverting this term by term. 

A different limiting distribution for the likelihood ratio statistic can be 
obtained by assuming that Q = O( n). Under this assumption the noncentral- 
ity parameters are increasing with n. A situation where this assumption is 
reasonable is the multivariate single classification model introduced briefly 
at the beginning of Section 10.2 and which will be considered in more detail 
in Section 10.7. In the notation of Section 10.2 the noncentrality matrix 52 
turns out to have the form 

where ji = n-’X,!=,qtpi, n = Z,!,,q,. Hence if p t  = O( I )  and q, -, m for fixed 
9, / n  ( i  = 1,. . . , p )  it follows that 8 = O( n). We will consider therefore the 
sequence of alternatives KN: 9 = NA, where N = p n  and A is a fixed matrix. 
Without loss of generality A can be assumed diagonal, A=diag(S,, ..., 6,). 
Define the random variable Y by 

(15) Y = -2p N 1/2 log A - N’/ ’ log  det( I + A), 

and note that asymptotically Y has zero mean and constant variance. The 
characteristic function of Y is, using Theorem 10.5.1, 

where 
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and 

(18) C,(N,r ,A)=det(f+A) - " ' ~ 1 1  

* I F,( - i l N 1 I 2 ;  JIN - i r N ' / 2  t ( m  + r + 1); - tNA). 

Using (24) of Section 8.2 to expand the gamma functions for large N it is 
straightforward to show that 

rniit c,( N, I ) =  1 + - + O( N q .  
(19) N1/2  

An expansion for C2( M, t ,  A )  is given in the following theorem. 

THEOREM 10.5.8. The function C,(M,r, A )  defined by (18) can be 
expanded as 

where 

r 2  = - 2 S 2  - 4 S l ,  

and 

with 

m -6 J 

s , = = t r [ ( I + A ) - ' - I ] ' =  2 (3) 1+s, - 
& = I  

A proof of this theorem similar to that of Theorem 8.2.12 can be 
constructed using the partial differential equations satisfied by the , F, 
hypergeometric function. The details are left as an exercise (see Prohlem 
10.13). 

An asymptotic expansion to order N-"/' of the distribution of Y is an 
immediate consequence of Theorem 10.5.8. 

THEOREM 10.5.9. Under the sequence of alternatives K,: Q =  NA the 
distribution function of the random variable Y given by (15) can be 
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expanded for large N = pn as 

where @ and + denote the standard normal distribution and density 
functions respectively, and 

with 

I 

s,= i (2). 
r = l  

Proof: From (19) and (20) it follows that h( IV, r / 7 ,  A), the characteristic 
function of Y / T ,  can be expanded as 

with a, and a ,  given by (22) and (23). The desired result now follows by 
term by term inversion. 

Further terms in the asymptotic expansions presented here have been 
obtained by Sugiura and Fujikoshi (1969), Sugiura (l973a), and Fujikoshi 
( 1973). 

10.6. O T H E R  TEST STATISTICS 

10.6.1. Introduction 

In t h i s  section we will derive some distributional results associated with 
three other invariant statistics used for testing the general linear hypothesis. 
In terms of the latent roots /, > - > fm of A B - ’ ,  where A is Wm(r, Z,Q) 
and B is independently W , (  n - p ,  Z) ( r  1 m, n - p h m), the three statistics 
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are T;=X:lm_,/,, V = 2 E l / , ( I + A ) - . ' ,  and f l ,  the largest root. The null 
hypothesis is rejected for large values of these statistics. 

10.6.2. The T: Siaiisiic 

The T t  statistic given by To2 = X$ I 4 was proposed by Lawley (1938) and 
by Hotelling (1947) in connection with a problem dealing with the air-testing 
of bombsights. Here we derive expressions for the exact and asymptotic 
distributions of T:. 

An expression for the density function of T: in the general (noncentral) 
situation (n#O) has been obtained by Constantine (1966) as a series 
involving the generalized Laguerre polynomials introduced in Section 7.6. 
We will outline the derivation here. In this we will need the following lemma 
which provides an estimate for a Laguerre polynomial and which is useful 
for examining convergence of series involving Laguerre polynomials. 

LEMMA 10.6.1. If Id!( X) denotes the generalized Laguerre polynoniial 
of the m X m symmetric matrix X corresponding to the partition K of k (see 
Definition 7.6. I )  then 

Pro06 We first assume that p = - j. From Theorem 7.6.4 

while from Theorem 7.4.1 

so that 

Hence 
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where the integral on the right is evaluated using Theorem 7.2.7. This 
establishes ( I )  for /3 = - 8. To prove i t  for general p > - 1, we use the 
identity 

(3) 

where the summation is over all partitions T of I and Y of n such that 
t + n = k and g:, is the coefficient of CK( Y) in Cr( Y)CY( Y);  that is, 

(4) 

To establish the identity (3) we start with the generating function given in 
Theorem 7.6.3 for the Laguerre polynomials, namely, 

where p = f ( m  + 1). Multiplying both sides by det( I - Y ) - p + v  the left side 
becomes 

which by Theorem 7.6.3 is equal to 

The coefficient of CK(y), the term of degree k in Y, is Lf(X)IC,(Z)R!. The 
right side becomes 

which, using the zonal polynomial expansion for det( I - Y ) - p + 7  (Corollary 
7.3.5) is equal to 
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The term of degree k in Y here is 

where I + n = k, and using (4) this is 

Equating coefficients of C,( Y )  in ( 5 )  and (6) hence establishes the identity 
(3). Now put y = - in (3) and use the estimate (2) for L; 'I2( X) to get 

( t m ) ,  
(7) I ~ ~ ( X ) l , k ! C , ( l ) e t r ( X )  z 2 Z(P++) , , ! , lK : , , .  

i t i i z k  T Y 

It is easily seen that the sum on the right is the coefficient of C,( Y )  in the 
expansion of 

det( - y)- ' f l '  '/"det( 1 - y ) - . m / 2  det ( l -  Y ) - ( ' + - ~ )  

Q, 

= 2 x ( p + p ) , %  [where p = j ( m - k l ) ] .  
k = O  a 

Hence the sum on the right side of (7) is equal to ( P + p ) , / k ! ,  and the 
proof is complete. 

We are now in a position to derive an expression for the probability 
density function of T;, valid over the range 0 5  x < I .  The result is given in  
the next theorem. 

THEOREM 10.6.2. If A is Wm(r, C , Q ) ,  B is W , ( n - p ,  2) and A and B 
are independent ( n  -- p 1 m,  r 2 m )  then the density function of T ,  = 
tr A B-. ' can be expressed as 

where y = i ( r  - m - 1). 



Other Test Staftsrrcs 469 

Proot By invariance i t  can be assumed without loss of generality that 
X = I and $2 =diag( w , ,  . , . , w",). The joint density function of A and B is 

.etr( - JA)etr( - )B)(det A)' r -  m - I ) / Z  (detB)'"-P-m-1)/2 

Hence the Laplace transform of fT;(x), the density function of G2, is 

g( l )=Jm/T; (x )e - - 'Xdx  0 

= E[etr( - r A B - ' ) ]  

2-m(r+ n - p ) / 2  

r m (  fr r m  [ f ( n - P >I 
etr( - js1) - - 

0 F[ (4c N A ) (  dA )( dB) .  . ( det A ) ( r  - - I ) / 2  

Integrating over A >O using Theorem 7.3.4 then gives 

N o  tractable expression for this last integral is known. However, we will see 
that we can perform the Laplace inversion first and then integrate over B. 
First note that if h(S2) denotes the integral in (9) then h(HWf')= h(S2) for 
any H E O ( m )  [i.e., h(S2) is a symmetric function of a]; hence replacing s1 
by HQH' and integrating over O(m) with respect to (dH), the normalized 
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invariant measure on O( m),  we get 

where y = i ( r  - m - I )  and we have used Theorem 7.6.3. By Lemma 10.6.1, 
the series in (10) is dominated tcrmwise by the series 

Hence for B fixed, R e ( t ) = c  sufficiently large the series in (10) can be 
integrated term by term with respect to 1, since this is true for 

Using the easily proved fact that the Laplace transform of 
~ " ' / * + ~ - ' ( i l m r ) ~ ~ ( f ~ r )  is t -mr/2-k,  it then follows that inversion of g( t )  
yields an expression for/,p(x), the density function of T:, as 
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Again using Lemma 10.6.1 the series in ( I  1) is dominated termwise by the 
series 

and, since ( f r ) , / ( i m r ) k  5 1 for all m, this series is dominated termwise by 
the series 

Hence the series in (1 I )  may be integrated term by term for I x I <  1 using 
Theorem 7.2.7 to give (8) and complete the proof. 

An expression for the null density function of q2 is obtained by putting 
Q =O. 

COROLLARY 10.6.3. When Q =O the density function of T: is 

(12) 

Prooj Putting 52 = O  in Theorem 10.6.2 and using 

L:(o)=( jr)KcK( I ) [ Y = j ( r  - m - I)] 

[see ( 5 )  of Section 7.6) completes the proof. 

from Theorem 10.6.2 and Corollary 10.6.3 by making the substitutions 
I t  is worth remarking that the distribution of T,* for r < m is obtained 

m - r ,  r + m ,  n - p 4 n + r - p - m .  

In view of the complexity of the exact distribution of q2, approximations 
appear more useful. In a moment we will look at the asymptotic null 
distribution (as n -, ao) of T:. Before doing so we need to introduce another 
function of matrix argument. The reader will recall the ,F, confluent 
hypergeometric function of matrix argument introduced in Sections 7.3 and 
7.4. As in the univariate case there is another type of confluent function q, 
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with an m X m  symmetric matrix X as argument, defined by the integral 
representation 

valid for Re( X ) > O ,  Re(a)>f (m - 1). I t  will be shown later that this 
function satisfies the same system of partial differential equations as the 
function ,F l (a ;  c; X), namely, the system given in Theorem 7.5.6. First we 
obtain 9 as a limiting function from the 2F, Gaussian hypergeometric 
function. 

LEMMA 10.6.4. 

( 14) lim Fl( a, b;  c ;  I .- cX- I )  = (det X)%( b,  b - a + $( , t i  + 1 )  ; X) 
c-Q)  

Prooj From Tlieorem 7.4.2 we have 

Pulling S = Y( f - Y )- I this becomes 

.det( I + s)" - ' dct( I + C S X -  I ) -"( d ~ )  

Putting 2 = CS and then letting c -t oo gives 

1 h - ( m  + I ) / 2  lim Fl ( a ,  6 ; c ; I - c X -  I )  = - ,:t r( - 2 )( det 2) 
c - Q )  rnI( b ) 

.det(f + ZX-')-"(dZ) 
=(det X ) * 9 ( b ,  b - a  + $ ( m  + 1); X), 
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where the last line follows by putting U = Z X - '  and using (13). This 
completes the proof. 

We now give a system of partial differential equations satisfied by \k; 
note that the system in the following theorem is the same as the system for 
I Fl given in Theorem 7.5.6. 

THEOREM 10.6.5. The function * ( a ,  c; X) is a solution of each of the 
partial differential equations 

where x,,. ..,xm are the latent roots of X. 

F,(a,  6;  c; I - cX-') satisfies the system 
Prooh Using Theorem 7.5.5 i t  is readily found that (det X ) - h  

( i =  I ,  ..., m). 

Letting c -, 00 the system (16) tends to the system 

(17) 

which by Lemma 10.6.4 must be satisfied by 'k(6,b - a + f( m + I ) ;  X). 
Noting that this is exactly the system satisfied by ,F,(b; 6 - a -t j ( m  + 1); X) 
(see Theorem 7.5.6) completes the proof. 
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We now return to the T: statistic and show that the Laplace transform 
G , ( r )  of the null density function of ( n  - p)T: can be expressed in terms of 
the function 9. For convenience put no = n - p. Using Corollary 10.4.3 we 
have 

(18) G,(t)=E[etr(  - n , r A R - ' ) ]  

where the last line follows from (13). Note that G,(O)= 1 because G , ( t ) =  
E[e t r ( -n , tAB- ' ) j .  Now let us find the limit of G, ( r )  as no -+GO. Putting 
T =  4noF in the last integral of (18) gives 

Letting no = n - p -.. 00 then gives 

(19) lim G , ( t ) = -  * / etr[ - (  1 +2r)T](det T)( ' -  m - ' ) / 2  
110-+41 rm(ir )  T>U 

- m 1 / 2  =(1+2r)  . 
Since ( I  +2r)-r '" /2  is the Laplace transform of the x:,,~ density function it  
follows that the asymptotic null distribution of noTt as no -+ QO is x;,, the 
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same as the asymptotic distribution of the likelihood ratio statistic (see 
Theorem 10.5.5). An asymptotic expansion for the distribution of noGz can 
be obtained from an asymptotic expansion for G , ( r ) .  Because it will be 
useful in another context (see Section 10.6.3), we will generalize the function 
G , ( r )  a little. The term of order nG2 will be found in an asymptotic 
expansion of the function 

where a, fi are arbitrary parameters independent of no and E is either + 1 or 
- 1. Note that G, ( f )  is the special case of G( R) obtained by putting a = i r ,  
f l =  i ( m  + I ) ,  e = 1 ,  and R = 2 t I .  The following theorem gives an expansion, 
to terms of order no2, of logG( R ) .  

THEOREM 10.6.6. The function log G( R), where G( R )  is given by (20), 
has the expansion 

log G( R ) = alog det( I - Y )  + a + + O( n, 3 ,  
nv ni 

(21) 

where Y = I - ( I + e R ) - ' ,  

(22) Q~ =fea[o~+(2a+l )a2 -4po l ] ,  

and 

(23) 

- 80: - 24(2a + 2p + I )u,02 - 8(4a2 + 6a/3 + 6a + 3p + 4) u3 

+6(2a+6@ + 1)o: +6( 1243 +4p2 +2a+6p +3)u2 

-48P201], 

with a, = tr Y'. 

ProuJ The proof outlined here uses the partial differential equations 
satisfied by the 9 function. From Theorem 10.6.5 it follows that G ( R )  
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satisfies each partial differential equation in the system 

where r , ,  . . . ,rm are the latent roots of R .  An argument similar to that used in 
deriving (20) shows that 

lim G( R ) = det( 1 f E R ) -  a 
No-.a3 

=det( I - Y ) " ,  

where Y = I - ( I  + E R ) - ' ,  Changing variables from R to Y and writing 

G (  R)=det( I - Y)"expN( Y )  

it is found that H( Y) satisfies the system 

+ p - f ( m  - I ) - fEIIO - y,[ p - f ( M i  - 5 )  + 2 a J 1 

( i  = l , . .  .,m), 

where y,, . . . ,y, are the latent roots of Y. In (25) we now substitute 
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where (a) Q k ( Y )  is symmetric in y I ,  ...,ym and (b) Qk(0)=O for k =  
I ,  2,. . . . Equating constant terms on both sides gives 

whose solution, subject to (a) and (b), is the function Q I  given by (22). 
Equating the coefficients of n o ’  on both sides gives 

P - f ( m  - 1) - y,  ( P  - f ( m  - 5 )  + 2a)  

Using QI and its derivatives in (25)  and then integrating gives the function 
Qz given by (23) and the proof is complete. 

An asymptotic expansion of the null distribution of n0G2 now follows 
readily from Theorem 10.6.6. 

THEOREM 10.6.7. The null distribution function of n,G2 can be ex- 
panded as 

where no = n - p; then 

a. = r - m - I ,  

u1 = -2r ,  

a, = m + r + 1, 

b o = 3 m 3 r - 2 m 2 ( 3 r 2 - 3 r + 4 ) + 3 m ( r 3 - 2 r 2 + 5 r - 4 ) - 4 ( ~ r 2 - 3 r - ~ ) ,  
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(28)  

h ,  = 12mr2( m - r + I ) ,  

6 2 = - 6 [ m 3 r + 2 m 2 r - 3 m r ( r 2 +  1)-4r(2r + I ) ]  

b , = - 4 [ m 2 ( 3 r 2 + 4 ) f 3 m ( r 3  + r 2 + 8 r + 4 ) + 8 ( 2 r 2 + 3 r + 2 ) ] ,  

b4=3[m3r  + 2 m 2 ( r 2 + r  + 4 ) + m ( r ’ + 2 r 2  + 2 1 r  +20)  

+4(2r2  +5r  + 5 ) ] .  

ProoJ Putt ingn=fr ,P=;(m + l), E =  1, and R=2 t I in  Theorem 10.6.6 
yields an expansion for logG,( r ) ,  where G,(r  ) is the Laplace transform of 
the density function of given by (18). Note that with R =2tI we have 
Y = ( 2 r / l + 2 r ) I  so that 

uj=try ,=(  - ) ’ m = (  2r I - - )  1 ’  m. 
13-21 1 +2f 

Exponentiation of the resulting expansion gives 

G,( I ) = (  I +21)  

1 4 +y rm 2 b , ( l + 2 r ) - ’ f O ( n ; J )  , 
96n, , =O 

where the a, and b, are given by (28). ‘The desired result now follows by 
inverting this expansion. 

The term of order n i 3  in the expansion (27) is also implicit in Muirhead 
(l970b); see also Ito (1956), Davis (1968). and Fujikoshi (1970). Asymptotic 
expansions for the distribution function of noq; in the non-null case in 
terms of noncentral x2 distributions have been obtained by Siotani (l957), 
(1971), 110 (1960), Fujikoslu (1970), and Muirhead (1972b). Percentage 
points of the null distribution of To2 may be found in Pillai and Sampson 
(1959), Davis (1970, 1980), and Hughes and Saw (1972). For further 
references concerning distributional results for T: see the survey papers by 
Pillai (1976, 1977). 
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10.6.3. The V Statistic 

The statistic 

m r  

was suggested by Pillai (1955, 1956). Its exact non-null distribution over the 
range Oe V <  1 has been found by Khatri and Pillai (1968) as a complicated 
zonal polynomial series. Here we will concentrate on the asymptotic null 
distribution as n -, 00. 

We start by finding the Laplace transform G2(t )  of the null density 
function of n,V, whete n o  = n - p .  Putting u, = I; /( 1 3- 1;) (with i = 1,. . . ,m) ,  
we have V=Z,.l= Iu, and u l ,  ..., urn as the latent roots of a matrix U having 
the Beta,(fr, f n , )  distribution (see the discussion -following Corollary 
10.4.3). Hence 

(29) G2(2)= E[etr( - n,rU)]  

where Theorem 7.4.2 has been used to evaluate this integral. This result has 
been given by James (1964). Note that as no -, 00 

- m r / 2  
G 2 ( t )  -, IF,( f r ;  - 2 t l ) = (  1 + 2 1 )  , 

and hence the limiting null distribution of n,V is x:,. The following 
theorem gives an asymptotic expansion for the distribution of noV. 

THEOREM 10.6.7. The null distribution function of n,V can be ex- 
panded as 
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where no = n - p ;  then 

co = r - m - 1 ,  

c ,  = 2 ( m  + I ) ,  

c2 = - ( r  + m t I), 

d , = ~ m ’ r - 2 m 2 ( ~ r z - 3 r + 4 ) + 3 m ( r ’ - 2 r 2 + ~ r - 4 ) - 4 ( 2 r 2 - 3 r  - I ) ,  

(31)  

d, = - I2mr[ nI2 - nt( r -2) - ( r  - I)], 

dz  =6[3m3r + 2 m 2 ( 3 r f 4 ) - m ( r 3  -7r - 1 6 ) + 4 ( r + 2 ) ] ,  

d ,  = - 4 [ 3 m ’ r - ~ n t 2 ( 3 r 2 + 6 r + 1 6 ) + 3 ~ ( r 2 $ - 9 r + 1 2 ) + 4 ( r 2 + 6 r + 7 ) ] ,  

d ,  = 3 [ m3r + 2m ’( r 4- r + 4 )  + m ( r ’ + 2rZ + 2 1 r 4- 20)  + 4( 2r2 + 5r i- S)] , 

Proo/. From Theorem 7.5.6 i t  follows that the function 
,F,(a; 8 - f e n , ;  f t t o R )  satisfies the same system of partial differential equa- 
tions (24) as the function C ( R )  given by (20). Hence an expansion for 
log G 2 ( t )  follows from Theorem 10.6.6 by putting a = f r ,  fi  = f r ,  E = - 1 and 
R = - 2t l .  Exponentiation of this expansion yields 

2 

G,( I ) = ( I 4- 2r) - n“’2 

where the uJ and h, are given by (31). The expansion (30) iiow follows by 
inversion of (32). 

The term of order no3 in the expansion is also implicit in Muirhead 
(1970b); see also Fujikoshi (1970) and Lee (1971b). Asymptotic expansions 
for the distribution function of rr,V in the non-null case have been obtained 
by Fujikoshi (1970) and Lee (1971b). For further references concerning 
distributional results for V the interested reader is referred to the survey 
papers of Pillai (1976, 1977). 
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10.64. The Largest Root 

Roy (1953) proposed a test of the general linear hypothesis based on f,, the 
largest latent root of A B - ' .  The following theorem due to Khatri (1972) 
gives the exact distribution of f, in a special case as a finite series of 
Laguerre polynomials. 

THEOREM 10.6.8. I fA is Wn,(r ,2 ,Q) ,  B is W , ( n - p , Z ) ( r r m , n - p  
2 m )  and A and B are independent and if t = +( n - p - m - 1) is an integer 
then the distribution function of f,, the largest latent root of AB- ', may be 
expressed as 

(33) 

where y = f( r - m - 1) and 2: denotes summation over those partitions 
K =(k,, ..., k m )  of k with largest part k, 51. 

Without loss of generality it can be assumed that Z = 1 and 52 is 
diagonal. Noting that the region!, 5 x is equivalent to the region B > ( I / x ) A ,  
with A >O, we have, by integration of the joint density function of A and B, 

Proof: 

Let J denote the inner integral in (34); putting T =  B - ( I / x ) A  in this yields 

(35) J = /T,:tr( - 4 T)det(  T +  : A )  '(dT)etr( - % A )  1 

where t =)(n - p  - m  - 1). Now 

det( T f  : A ) '  

can be expanded in terms of zonal polynomials and the series terminates 
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because f is a positive integer. We have 

because (- t ) ,  G O  if any part of K is greater than I .  Using this in (35) gives 

etr( - tT)(det  T ) ' C , ( A T - ' ) ( d T ) .  

Putting X-' = A'/2T-'A'/2 with (dT)=(det A ) ( " c ' ) / 2 ( d X )  gives 

2 z*(-l)a(-;) I k  
I I +(m -t 1)/2 J =etr( - Z A ) ( d e t  A )  k! k = O  R 

elr( - + A X )  (det X)'C,( X - ' ) (  d X )  
* . L o  

For each partition K == (kl, . . . , k,) in this sum we have k,  I t;  using 
Theorem 7.2.13 to evaluate this last integral gives 

Using this in (34) we get 
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Putting 

1 x + l  
u=-- A ,  2 x  

this then becomes 

and the desired result now follows on using Theorem 7.6.4 to evaluate this 
last integral. 

An expression for the null distribution function of fl follows by putting 
52 =O and using 

M O )  = (WI[CI[( I ) .  

This gives the following corollary. 

COROLLARY 10.6.9. When 0 =O and t = i ( n  - p - m - I )  is a positive 
integer, the distribution function of fI is 

A quick approximation to the distribution function of fl is the upper 
bound in the following theorem. 

THEOREM 10.6.10. 

where w I , .  . . , w,,, are the latent roots of 51;. 

Proof: By invariance it can be assumed that 2 = I and = 
diag(ul, ...,a,,,). Putting A =(a, , )  and B=(b, , ) ,  it then follows that the a,, 
and the b,, are all independent, with 4, having the x i - p  distribution and 
a,i having the x; (w, )  distribution (from Corollary 10.3.5). Hence the 
( n  - p)u,,/rb,, have independent c+n-p(q) distributions ( i  = 1, ..., m). We 
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now use the fact that for all a€ Rm, 

(see Problem 10.15). Taking a to be the vectors ( l , O , .  . , ,O)' ,  ( O , I , O , ,  , , ,O)', 
and so on, shows that 

Hence 

This upper bound is exact when m = I ;  some calculations by Muirhead 
and Chikuse (1975b) when m = 2  in the linear case when w2 = O  indicate that 
as a quick approximation to the exact probability the bound (38) appears 
quite reasonable. 

Upper percentage points off, (in the null case) have been given by Heck 
(1960). Pillai and Bantegui (1959), and Pillai (1964, 1965, 1967). For further 
papers concerned with f, the interested reader is referred to the surveys of 
Pillai (1976, 1977). 

10.6.5. Power Comparisons 

Power comparisons of the four tests we have considered, namely, tests based 
on W, Tt, V, and f l ,  have been carried out by a number of authors (see 
Mikhail, 1965; Schatzoff, 1966b; Pillai and Jayachandrm, 1967; Fujikoshi, 
1970; and Lee, 1971b). The consensus is that the differences between W, 
q2, and V are very slight; if the w,'s are very unequal then T: appears to he 
more powerful than W, and W more powerful than V. The reverse is true if 
the q ' s  are close. This conclusion was reached by Pillai and Jayachandran 
(1  967) when m = 2 and by Fujikoshi (1970) for m = 3 and Lee (197 1 b) for 
m =3,4. Lee (1971b) further notes that in the region tr 51 =constant, the 
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power of V varies the most while that of T: is most nearly constant; the 
power of W is intermediate between the two. Pillai and Jayachandran (1967) 
have noted that in general the largest root J, has lower power than the other 
tests when there is more than one nonzero noncentrality parameter 0,. 

The tests based on W, T:, V, and fI are all unbiased. For details the 
interested reader is referred to Das Gupta et al. (1964) and to Perlman and 
Olkin (1980). Perlman and Olkin have shown that if uI , , . . ,um denote the 
latent roots of A ( A  + B ) - ’  then any test whose acceptance region has the 
form ( g (  u I ,  . . . , u,) 5 c), where g is nondecreasing in each argument, is 
unbiased. 

10.7. T H E  SINGLE CLASSIFICATION MODEL 

10.7. I .  Introduction 

The multivariate single classification or one-way analysis of variance model 
is concerned with testing the equality of the mean vectors of p m-variate 
normal distributions with common covariance matrix 2,  given independent 
samples from these distributions. Here we examine this model in order to 
illustrate some of the foregoing theory and because it leads naturally into 
the area of multiple discriminant analysis. 

Let Y,~, . ..,y,,,, be independent Nm(p,, Z) random vectors ( i  = 1 ,..., p). I t  
was noted at the beginning of Section 10.2 that this model can be written in 
the form Y = X5 + E with 

a’= [PI.. . p p ]  * 

X =  

1 0 ... 0 
. .  . .  . .  
I 0  0 
0 1  0 
. .  * .  . .  
0 1  0 
. .  . .  . .  
0 0  1 . .  . .  . .  
0 0  1 
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Here Y is n X m, with n = z,!=191, X is n X p ,  B is p X m, and E is 
N(0 ,  ln€3Z).  The null hypothesis 

J { : p ,  2= . , . “ p p  

is equivalent to H :  CB=O, with the ( p  .- 1)X p matrix C being 

1 0 ... 0 - 1  

c=[o 0 0  1 ; - ::I. 
I t  is useful for the reader to follow the steps given in Section 10.2 involved 
in reducing this model to canonical form. Here we will give the final result, 
leaving the details as an exercise. 

Let 

I 41 l P  

4i , = I  n I = !  
jl =-  2 Y I J  and j = -  2 q l j l ,  

so that j ,  is the sample mean of the q, observations in the ith sample 
( i  = I , .  . . , p )  and 5 is the sample mean of all observations. The niatrices due 
to the hypothesis and error (usually called the between-classes and within- 
classes matrices) are, respectively, 

and 

These matrices are, of course, just matrix generalizations of the usual 
between-classes and within-classes sums of squares that occur in the analysis 
of variance table for the univariate single classification model. The matrices 
A and B are independently distributed: B is W,,(n - p,  Z) and A is 
W , (  p - I ,  2, a),  where the noncentrality matrix is 

(3) Sa=Z-’ q I ( p i - f i ) ( p i - - j i ) ’  with ji=, 2 y,p,. 
I P  P 

r = l  ( = I  
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The null hypothesis H : p ,  = ... = p p  is equivalent to 11:52=0. See the 
accompanying MANOVA table. 

Variation d.f. S.S. & S.P. Distribution Expectation 
~ ~~ 

Between classes p - I A W m ( p - l , 2 , 5 2 )  ( p - I ) Z + X Q  
Within classes n - p B W , ( n - P , a  ( n - P P  

Total (corrected) n - 1 A + B 

We have noted in Section 10.2 that invariant test statistics for testing H 
are functions of the nonzero latent roots of AB-I .  The likelihood ratio test 
rejects H for small values of 

(4) W =  detB = ii ( ] + A ) - , ,  
det(A+B) r = ~  

where s =min( p - 1, rn) andf, 2 - - - 2 f, >O are the nonzero latent roots of 
AB-I .  The distributions of these roots and of W have been derived in 
Sections 10.4 and 10.5. It is also worth noting that the diagonal elements of 
the matrices in the MANOVA table are the appropriate entries in the 
univariate analysis of variance, i.e., if p ,  = ( p l , , .  . .,pl,,,)' (with i = I,.. , , p )  
then the analysis of variance table for testing. 

is as shown in the tabulation, with A =(a ,J) ,  B=(b,,) ,  Z=(a i j ) .  Here aJJ 
and bjJ are independent, b,/aJj is x i - p ,  and, if Hj* is true, aJJ/a,j is ~ f - ~  so 
that 

the usual ratio of mean squares, has the c-l,n-p distribution when H: is 
true. If the null hypothesis H that the mean vectors are all equal is rejected 
looking at the univariate tables for j = I , . .  . ,M can often provide useful 
information as to why H has been rejected. It should, however, be remem- 
bered that these m F-tests are not independent. 

Variation d.f. S.S. 

Between classes P - '  ' J I  
Within classes n - p  4 J  

Total (corrected) n - 1  aJJ + 'JJ 
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10.7.2. Multiple Discriminant Analysis 

Suppose now that the null hypothesis 

is rejected and we conclude that there are differences between the mean 
vectors. An interesting question to ask is: Is there a linear combination I‘y of 
the variables which “best” discriminates between the p groups? To answer 
this, suppose that a univariate single classification analysis is performed on 
an arbitrary linear combination I’y of the original variables. The data are 
given in the accompanying table. All the random variables in this table are 

Group 1 Group 2 Group p 

I’Y I I I’Y2 I ”Yp I 

independent and the observations in group i are a random sample of size q, 
from the N(I’p,,I’ZI) distribution. The analysis of variance table for testing 
equality of the means of these p normal distributions, i.e., for testing 

is shown next. 

Variation d.f. S.S. Distribution Expectation 

Between-classes p - 1 I’Al (l’X1)x;- I (  6 )  ( p - 1)I‘Zl +I’mi 
Within-classes n - p I’D1 (I’XI)X : - p  ( n  - p)I’z’I 

Total (corrected) n - 1 I’( A -t B)I 

In th is table A and B are the between-classes and within-classes matrices 
given by (1 )  and (2) which appear in the multivariate analysis of variance. 
The noncentrality parameter in the noncentral x 2  distribution for l‘Al/l’Xl 
is 

(see Theorem 10.3.5). Let us now ask: What vector I best discriminates 
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between the p groups in the sense that it maximizes 

i.e., maximizes the ratio of the between-classes S.S. to the within-classes 
S.S.? We attack this problem by differentiatingf(1). We have 

2dI‘Al 2(I’AI)( dl’BI)  df= - - 
I’BI (I’Bl)* 

and equating coefficients of dl’ to zero gives 

or, equivalently, 

( A  - f(l)S)l=O. 

This equation has a nonzero solution for I if and only if  

(7) det( A - /(I)B)=O. 

The nonzero solutions of this equation are f, > * * . == f,, the nonzero latent 
roots of AB-l ,  where s =min( p - 1,  m). The distributions of these roots 
and functions of them have been derived in Sections 10.4, 10.5, and 10.6. 
Corresponding to the root let I, be of a solution of 

(8) ( A  - i B ) l /  =o. 

The vector 1, corresponding to the largest root f, gives what is often called 
the principal discriminant function I; y. The vectors I, corresponding to the 
other roots 1; give “subsidiary” discriminant functions Iiy, i =2,.  , . ,s. The 
vectors I I , .  . . ,I, are, of course, all orthogonal to one another. The roots 
f l . .  . . ,A provide a measure of the discriminating ability of the discriminant 
functions I’,y,. . . , l iy.  We have shown that I ,  maximizes the ratio 

and the maximum value isfl. Then out of all vectors which are orthogonal 
to I,, I, maximizesf(1) and the maximum value is&, and so on. 
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The next question to be answered is: How many of the discriminant 
functions are actually useful? 1t is of course possible that some of the roots/; 
are quite small compared with the larger ones, in which case it  is natural to 
claim that most of the discrimination, at least for practical purposes, can be 
achieved by using the first few discriminant functions. The problem now is 
to decide how many of the roots /; are significantly large. 

Let us write the equation 

det( A - j B ) = O  

in the form 

where 

(10) 9 =(n - p - m - 1)j- p + 1. 

Now note that ( n  - p - M - l)B-'A -( p - I)I, is an unbiased estimate of 
the noncentrality matrix 51 given by (3). This is easily seen from the 
independence of A and B, using 

E ( B - ' ) = ( n - p - m -  I ) - - ? P ,  

E ( A ) = (  p - I ) L :  + xs2. 

Consequently the solutions t of (9) are cstimates of the solutions w of 

i.e., they are estimates of the latent roots of the noncentrality matrix a. Let 
a) 1 - .  . t a,,, 2 0  be the latent roots of sd, and 9, 2 - . . 2 G,,, be the latent 
roots of ( n - p - m -  I ) B - ' A - ( p  -l)I, , , .  If the rank of D is k then 
ok + I - + 6 . = a,,, = O  and their estimates O,, I,.  * a ,  9,, should also be close 
to zero, at least if n is large. Since 

- 

(12) h , = ( n - - p - - m -  l),\i-p k 1, 

the discriminating ability of the discriminant functions I',y,. . . , rSy can be 
measured by the G,. We can then say that a discriminant function Iiy is not 
useful for discrimination if 9, is not significantly different from zero. Hence, 
in practice, determining the rank of the noncentrality matrix 51 is important. 
This is, in fact, the dimension of the space in which the p group means lie. 
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To see this note that, using (9, 

=rank[p, - j i . . . p p  -ji]. 

Testing the null hypothesis that thep mean vectors are equal is equivalent to 
testing 

H,: st =o. 

If  this is rejected it  is possible that the m - I smallest roots of D are zero 
[i.e., rank(51)= I], in which case only the principal discriminant function I; y 
is useful for discrimination. Hence i t  is reasonable to consider the null 
hypothesis that the m - 1 smallest roots of 51 are zero. If this is rejected we 
can test whether the m - 2  smallest roots are zero, and so on. In practice 
then, we test the sequence of null hypotheses 

f o r k = O , I ; . - , m - I ,  where@,> 2 o m 2 0 a r e  thelatentrootsofll. We 
have seen in Section 10.2 that the likelihood ratio test of H,: 51 = O  is based 
on the statistic 

where s = min( p - I ,  m )  andf, > - * > >O are the nonzero latent roots of 
A B - I .  The likelihood ratio test of Hk is based on the statistic 

w,= Ii ( I + & ) - ’ ;  
, = & + I  

see, for example. T. W. Anderson (195 1) and Fujikoshi (1974a). In order to 
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derive the asymptotic null distribution of wk we will first give an asyniptotic 
representation for the joint density function of l,,. . . ,h; this is done in the 
next subsection. 

10.7.3. Asymptotic Distributions oj Latent Roots in MA NOVA 

Here we consider the asymptotic distribution of the latent roots of AB--'  for 
large sample size n. We will assume now that p 2 m + 1 so that, with 
probability I ,  AB- '  has m nonzero latent roots/, > * . . > L,, 10. It is a little 
easier, from the point of view of notation, to consider the latent roots 
1 > u ,  > . . > u,, >O of A( A + B ) - ' ;  these two sets of roots are related by 
= uI/( 1 - u , ) ,  For convenience we will put 

(16) nI = p -  1, t i2  = n  - p ,  

so that n ,  and n2 are, respectively, the degrees of freedom for the between- 
classes and within-classes entries in the MANOVA table and n, l m ,  
n , r m .  From Theorem 10.4.2 (with r = n l ,  U = F ( I + F ) - . ' )  the joint 
density function of uI,. . . , u,, is 

( 17) etr( - 4Q) F,"")( f ( n  I + I I  2 )  ; f n I ; 52, LI ) 

( 1  =- 1 4 ,  > - ' * > u,,, >O), 

where U=diag(u,, ..., u,). The noncentrality matrix Q is given by (3). I f  
p l = O ( l )  and y1-+0o for fixed y,/n ( i = l , . . , , p ) ,  it follows that Q=O(t i ) .  
Hence a reasonable approach from an asymptotic viewpoint is to put 
52 = n 2 0 ,  where 0 is a fixed matrix, and let t t2 -, co. Because the density 
function (17) depends only on the latent roots of 52, both Q and 0 can be 
assumed diagonal without loss of generality: 

8=diag(8  ,,..., a,,,), 8 , r  . . .  r8 , , z r0  

The null hypothesis Hk: W L +  I = * 9 * = urn =O is equivalent lo 11,: 8, I = 
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. a = 8, =O. The following theorem due to Glynn (1977, 1980) gives the 
asymptotic behavior of the ,F,C'") function in (17) when this null hypothesis 
is true. 

THEOREM 10.7.1. If U=diag(u,,. , , ,urn)  with 1 > uI > . - - > u, >O 
and 0=diag(B,, ..., 8,) with 8 , >  - * -  > B k > B k + , =  =8,,,=0 then, as 
n 2  +oo, 

(19) ,F:m)(t(nl  + n 2 ) ;  t n , ;  t n , @ , U )  

where 

and 

- k ti / 2,, ( k / 2)( n - m + I / 2 + k / 2) 2' k / 2) (2  m - k / 2  - 3n 2 - t i  - 3/ 2 )  r 
2 k (  f I ) rk(!?m 

rk[$(nl + n 2 ) ] w k ( k + 1 ) / 4  
Kt,> = 

The proof is somewhat similar to those of Theorems 9.5.2 and 9.5.3 but 
even more messy and disagreeable. The basic idea is to express the 
function as a multiple integral to which the result of Theorem 9.5.1 can be 
applied. We will sketch the development of this multiple integral; for the 
rest of the analysis, involving the maximization of the integrand and the 
calculation of the Hessian term, the interested reader should see Glynn 
(1980). First, write 
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Here (dlf) is the normalized invariant measure on O( m ) ;  i t  is convenient to 
work in terms of the unnornialized invariant measure 

nl 

( H ' d H ) =  A bJ'db, 
i i J  

(see Sections 2.1.4 and 3.2.5). These two measures are related by 

( d H ) =  I : " o m )  ( H'dlf), 
2mn m / 2 

so that 

where 

Now partition 8 and H as 

. = [ @ I  '1 Q ,  =diag( 8 , ,  . . . ,8,  ) 
0 0 '  

and H =[ HI : H , ] ,  where HI is m X k ,  H ,  is m X ( m  - k ) .  Then 

Applying Lemma 9.5.3 to this last integral gives 

f n , ; f n ,@ , H p H ,  )( K'dK )( H ;  dH, ). 

The integrand here is not a function of K ,  and using Corollary 2.1.14 we can 
integrate with respect to K to give 
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where 

Now, for n, + n2  > k - 1 the ,F,  function in this jntegrand may be ex- 
pressed as the Laplace transform of a ,F,  function; using Theorem 7.3.4 we 
obtain 

where Xis a k X k positive definite matrix. Using the integral representation 
for the ,FI function given in Theorem 7.4.1 and transforming to the 
unnormalized measure (Q'dQ) on O(n,) now shows that 

where 

where Q E  O(n,)  is partitioned as Q=[QI : Q 2 ]  with Q, being n, X k and the 
0 matrix in [X'/28~/2H;Ui/2:0] is the k X ( n ,  -k) zero matrix. Applying 
Lemma 9.5.3 and Corollary 2.1. I4 to the integral involving Q gives 

where 
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Now put X=fn2G'V2G, where V=diag(o,, ..., 0 , )  with 0,) - . .  > v k > o  
and G E O ( k ) .  Using the Jacobian in the proof of Theorem 3.2.17, this 
integral then becomes 

where 

where 

f(x)=etr( - 4  Yz +IYGQ1/2G'E;U'/2:0]Yl)det Y ,  

k 

The easy part of the proof is over. The integral (22) is in the right form for 
an application of Theorem 9.5.1. In order to use this to find the asymptotic 
behavior of I , ( n , )  as n 2  -t oc, we have to find the maximum value of /(x) 
and the Hessian of -log f at the maximum. This has been done by Glynn 
(1  980), to whom the reader is referred for details. 
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Glynn (1980) has proved a stronger result than that stated in Theorem 
10.7.1, namely, that the asymptotic approximation stated there holds uni- 
formly on any set of u, , .  . . , u,, and O, ,  . . . ,O, such that the ui's are strictly 
bounded away from one another and from 0 and I ,  and the 8,'s are bounded 
and are bounded away from one another and from 0. 

Substitution of the asymptotic behavior (19) for IF,(m) in (17) yields an 
asymptotic representation for the joint density function of the sample roots 
u l r . .  . , u,. This result is summarized in the following theorem. 

THEOREM 10.7.2. An asymptotic representation for large n 2  of the joint 
density function of the latent roots I > yI > . 9 > u, >O of A ( A  + B)-I 
when $2 = n 2 0  with 

Q=diag(B,, ..., 8,) ( 8 , > -  > 8 k k > 8 k + l =  * . .  =8,=0) 

is 

where 

with K,,2 given by (21). 

This theorem has two interesting consequences. 
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COROLLARY 10.7.3. Under the conditions of Theorem 10.7.2 the 
asymptotic conditional density function for large n 2  of u,, , I,. . . , unI,  the 
q = rn - k smallest latent roots of A( A + B ) - ' ,  given the k largest roots 
u I ,  ... , u k ,  is 

tu1--u,)5 
1 4  J 

where K is a constant. 

Note that this asymptotic conditional density function does not depend 
on B I ,  ..., Bk,  the k nonzero population roots. Hence by conditioning on 
u I ,  ..., uk the effects of these k population roots can be eliminated, at least 
asymptotically. In this sense u I , .  . . , uk are asymptotically sufficient for 
O , , .  . . ,B , .  We can also see in (26) that the influence of the k largest sample 
roots ul,. . . ,uk in the asymptotic conditional distribution is felt through 
linkage factors of the form ( u ,  - u J ) ' i 2 .  

COROLLARY 10.7.4. Assuine that the conditions of Theorem 10.7.2 
hold and put 

ii + 

u, 
(for i = l ,  ..., k )  

nzu, 
XI = - I - UJ 

(for j = k  + I ,  ..., m),  

Then the limiting joint density function of xl,..,,xm as n ,  -+ 00 is 

where q = rn - k and I$( .) denotes the standard norinal density function. 
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This result, due originally to Hsu (1941a), can be proved by making the 
change of variables (27) in (23) and letting n 2  + 00. Note that this shows 
that if 8, is a distinct nonzero population root then x ,  is asymptotically 
independent of x, for j # i  and the limiting distribution of x, is standard 
normal. Note also that xk+ ,, . . . , x ,  (corresponding to the q’s  equal to zero) 
are dependent and their asymptotic distribution is the same as the distri- 
bution of the roots of a q X q matrix having the W&n, - k, lo)  distribution. 

For other asymptotic approaches to the distribution of the latent roots 
u , ,  . . . ,urn the interested reader is referred to Constantine and Muirhead 
(1976), Muirhead (1978), and Chou and Mpirhead (1979). 

10.7.4. Determining the Number 01 Useful Discriminant Functions 

It was noted in Section 10.7.2 that i t  is of interest to test the sequence of 
null hypotheses 

for k = O , l ,  ..., m-1, where w , >  9 . .  T w m 1 0  are the latent roots of the 
noncentrality matrix Q. If Hk is true then the rank of is k and this is the 
number of useful discriminant functions. The likelihood ratio test rejects Hk 
for small values of the statistic 

where f ,  > - - .  > f ,  >O are the latent roots of AB-I and 1 > uI > * >urn 
>O are the latent roots of A ( A  + B ) - ’ .  We are assuming here, as in the last 
subsection, that n I  1 m and n2 1 m,  where n ,  = p - 1 and n 2  = n - p are the 
between-classes and within-classes degrees of freedom, respectively. The 
asymptotic distribution as n2 -, 00 of - n210gWk is X:m-.k)(n,-k) when Hk is 
true. An improvement over - n210gWk is the statistic -[n2 + f ( n ,  - m - 
1)Jlog wk suggested by Bartlett (1947). The multiplying factor here is exactly 
that given by Theorem 10.5.5, where it was shown that - [ n 2  + j( n ,  - m - 
I)]log W, has an asymptotic distribution when H,: 8 =O is true, A 
further refinement in the multiplying factor was obtained by Chou and 
Muirhead (1979) and Glynn (1980). We will now indicate their approach. 
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We noted in Corollary 10.7.3 that the asymptotic conditional density 
function of U k + I ,  ..., u, given u I , .  . . , u k  is 

k tn 

where 4 = m - k and K is a constant. Put 

so that the limiting distribution of nzTk is X : m - k ) ( n l - k )  when l j k  is true. The 
appropriate multiplier of ?k can be obtained by finding its expected value. 
For notational convenience Iet E, denote expectation taken with respect to 
the conditional distribution (30) o f  u k + , ,  ..., um given ulr...,uk and let EN 
denote expectation taken with respect to the “null” distribution 

obtained from (30) by ignoring the linkage factor 

This distribution is just the distribution of the latent roots of a q X 4 matrix 
U having the Beta4( + ( n ,  - k ) ,  - f ( n ,  - k ) )  distribution (see Theorem 3.3.4). 
The following theorem gives the asymptotic distribution of the likelihood 
ratio statistic with additional information about the accuracy of the x 2  
approximation. 

THEOREM 10.7.5. When the null hypothesis Hk is true the asymptotic 
distribution as n z  3 00 of the statistic 
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Prooj We will sketch the proof, which is rather similar to that of 
Theorem 9.6.2. First note that, with Tk defined by (31), 

so that, in order to find E,(Tk) we will first obtain 

This can obviously be done by finding 

(37) 

Now, when Hk is true we can write 

where 

(39) 
k 

a =  u, ' ,  
, = I  

Substituting (38) in (37) i t  is seen that we need to evaluate 

This problem is addressed in the following lemma. 

LEMMA 10.7.6. 
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where 

(42) Eo(h)=EN[exp( -hTk)]. 

Prooj Let ui = 1 - U k + ,  ( i  = I ,  ..., m - k ) .  The null distribution of 
U , , . . . , U ~ , ~ - ~  is the same as the distribution of the latent roots of a q X q  
( q  = tn - k )  matrix V = ( u l J )  having the Beta,(f(n, - k ) ,  Ji(n, - k ) )  distri- 
bution. Note that 

nl x uj = tr( I ,  - V )  
j = k + l  

Since the diagonal elements of I ,  - V all have the same expectation, we need 
only find the expectation of the first element A = 1 - u , ,  and multiply the 
result by m - k .  Put V=T’T,  where T = ( l , , )  is a q X q upper-triangular 
matrix. By Theorem 3.3.3, t,l,...,tq4 are all independent and rif has a 
beta(f(n,-k-i-t I) ,  f(n,-k))distribution, and A=I--r: , .  Hence 

in - k m - k  

r = l  

It is easily shown that 

and hence 

completing the proof of the lemma. 
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Returning to our outline of the proof of Theorem 10.7.5, it follows from 
(36),  (37), (38), and Lemma 10.7.6 that 

(43) 

where 

(44) 

with 

(45) 
a ( m  - k ) ( n ,  - k) 

2( n ,  + n * -2k  + 2 h )  * 
f ( h ) = l -  

Using (3% we have 

a ( m  - k ) ( n ,  - k) 
= - E g o ) -  + o(Q). 

(n, +n, -2k)2 

But - Ei(O)= EN(Tk) ,  and in the case of the null distribution we know that 
[ n 2  - k + j (n l  - m - l)]Tk has an asymptotic x:,,,-,)(,,,-,) distribution and 
the means agree to O(n;*) so that 

(47) 

Hence it follows that 

( m  - k N n ,  - k )  
n 2  - k + % ( n l  - m - I ) +  a+ O( n;’) ’ (48) EA Tk ) = 

from which it is seen that if L, is the statistic defined by (33) then 

E,( L , ) = ( m  - k ) ( n ,  - k ) +  o(n;2), 

and the proof is complete. 
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The multiplying factor in Theorem 10.7.5 is approximately that suggested 
by Bartlett (1947), namely, n 2  + f ( n l  - m - I ) ,  if the observed values of 
u, ,  . . , , u k  are all close to 1; in this case a is approximately equal to k. 

I t  follows from Theorem 10.7.5 that if n 2  is large an approxirnate test of 
size a of the null hypothesis 

Hk:Wk.I= * * *  =W, , ,=o 

is to reject Hk if Lk > c(a ; (m - k ) ( n ,  - k)), where L, is given by (33) and 
c(a;  r )  is the upper 100a‘k; point of the x; distribution. 

Let us now suppose that the hypotheses Hk, k =0,1,. . . ,rn - 1 are tested 
sequentially and that for some k the hypothesis Hk is accepted and we are 
prepared to conclude that there are k useful discriminant functions 
I’,y, ..., I;y, where ll,..,,lk are solutions of (8) associated with the largest k 
latent roots /, , . . . Jk of A B -  ’. How should a new observation yo be assigned 
to one of thep groups? Let L = [ l  l...ik]’ and put x o =  Lyo ,x ,  = L y , ,  ..., x p  
=Ljp. The distance between yo and j ,  based on the new system of 
coordinates I , .  ..., l k  is 

J, = I1 x - x , I I  i := 1 , . . . ,p  . 

A simple classification rule is then to assign yo to the i th group if xo is closer 
to x ,  than to any other x,, i.e., if 

d,  =: min( ( I ,  ,. . . ,d,,).  

10.7.5. Discrimination Between Two Groups 

In Section 10.7.2 we noted that the number of discriminant functions is 
equal to s =min( p - 1, m ) ,  where p denotes the number of groups and m 
the number of variables in each observation. Hence whenp = 2  there is only 
one discriminant function. The reader can readily check that the nonzero 
latent root of AB-‘I is 

where yI and j;, are the sample means of the two groups. A solution of the 
equation ( A  - f lB)l ,  =O is 

(50) 1, =s-Y j1 - j2 ) *  

where S = ( n  - 2 ) - ’ B  ( n  = qI  + q 2 ) ,  which is unbiased lor Z. The discrimi- 
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nant function is then 

This is an estimate of a population discriminant function due to Fisher 
( 1  936) which is appropriate when all the parameters are known and which 
can be obtained in the following way. Suppose we have a new observation yo 
which belongs to one of the two populations. The problem is to decide 
which one. If yo belongs with the i t h  group, i.e., is drawn from the Nm(p,, 2 )  
population, then its density function is 

f;(yo)=(2*)-“’*(det Z)-1’2exp[ - )(yo - -p i )Z - ’ (y0  - p , ) ]  ( i  = 1,2). 

An intuitively appealing procedure is to assign yo to the Nm(pI ,  Z) popula- 
tion if the likelihood function corresponding to this population is large 
enough compared with the likelihood function corresponding to the 
Nm(p2, C) population, i.e., if 

where c is a constant. This inequality is readily seen to be equivalent to 

The function 

is called Fisher’s discriminant function. If 

yo is assigned to the N,,,(pI, Z) population; otherwise, to the Nm(p2, 2) 
population. There are, of course, two errors associated with this classifica- 
tion rule. The probability that yo is misclassified as belonging to the 
Nm(p,, 2) population when it belongs to the N,,,(pI, X) population is 

( 5 5 )  *I  = & , , X ) ( b l  -C2)’x-1Yo<kl) 
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where 

(56)  d 2 ” ( P ,  --P2)’I:-YPI-P2). 

This follows because if yo is N,,,(pIII:) then (pl -p2)IX-‘yo is N ( ( p ,  - 
p2)(I:-’pl, d2) .  The number d is a measure of the distance between p i  and 
p2 suggested by Mahalanobis (1930). Similarly the probability that yo is 
misclassified as belonging to the N,,,(pll 2 )  population when it belongs to 
the N,,(p2, 2 )  population is 

(57) a2= &,&I - P 2 ) ‘ 2 - 1 Y 0 w  

Suppose now we assume that a, =a2, i.e., that the probabilities of the two 
misclassification errors are equal. It then follows that 

(58 )  kl =+(PI -P2)’I:-1(PI +P2)1 

and substituting this value for k, in a, and a2 we have 

(59 )  aI = a2 = a( - i d ) ,  

which is a decreasing function of d. Hence the procedure is to compute 
Fisher’s discriminant function g(y,) given by (53) and to assign yo to the 
N,,,(p,. Z) population if g(yo)L k, and to the N,,(p2, Z) population if 

In most practical situations the parameters pI, pz ,  and Z are unknown 
g(Yo )< k I * 

and have to be estimated. A reasonable estimate of g(y,) is 

in which p , ,  pl l  and I: have been replaced by unbiased estimates. This is 
the (sample) discriminant function introduced at the beginning of this 
subsection [see (SO)] and which arises from the theory of Section 10.7.2. The 
constant k ,  given by (58) can be similarly estimated by 

(61) dl = H Y 1  - - Y 2 ) ‘ W ? l  + j i 2 ) ,  

so that the procedure is now to assign yo to the N,,,(p,, 2) population if  the 
statistic 
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is 20 and to the N,,,(p2, 2) population if W(y,)<O. The statistic W(y,) was 
suggested by T. W. Anderson (1958) and is known as Anderson’s classifica- 
tion statistic. The probability of misclassification is no longer the same 
because &yo) is no longer normal and kLI is random. A great deal of work 
has been done on the problem of estimating probabilities of misclassifica- 
tion associated with the classification statistic W(y,,) and other procedures. 
We will not delve into this problem; the interested reader is referred to a 
review of such work in Kshirsagar (1972), Chapter 6. I t  is, however, worth 
pointing out that the asymptotic distribution of W(y,), as q 1  and q2 400, is 
normal with variance equal to d 2 .  The mean is (pl - p2)’Z-IpI - k ,  if yo 
belongs to the N,( p , , Z) population and ( H I - p 2)‘C- ’p - k I if yo belongs 
to the N,,,(p2, 2) population. Hence asymptotically the probability of mis- 
classification is the same as before. 

The subjects of discriminant analysis and classification have been very 
widely studied. For various approaches and generalizations as to these 
subjects useful references are T. W, Anderson (1958). Chapter 6; Kshirsagar 
(1972), Chapters 6 and 9; and Srivastava and Khatri (1979), Chapter 8. 

10.8. TESTING EQUALITY O F p  NORMAL 
POPULATIONS 

10.8.1. 

In Section 10.7 we considered the problem of testing whether the mean 
vectors of p normal distributions are equal under the assumption that the 
distributions have a common covariance matrix. A closely related problem 
arises when we drop this assumption and test the null hypothesis 

The Likelihood Ratio Statistic and Moments 

i.e. that the p rn-variate normal distributions are identical. We are given 
Y , ~  ,..., Y , ~ , ,  a random sample from the N,,,(pi, X i )  distribution ( i =  1 ,..., p). 
The null hypothesis treated in Section 10.7 is 

H,: p , = . . . - p ,  - (given C I = . . . = C p ) ,  

and the likelihood ratio statistic for testing Ho is (see Theorem 10.2.2) 

(det B)”” 

det( A + B)N’2 
A, = 
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where 

and 

(3) 

with 

Now recall from Section 8.2 that the likelihood ratio statistic for testing the 
null hypothesis 

H,: 2 ,  = * ' * = zp 

is 

(4) 

where 

and B=Z':=IB,, as in (3). The likelihood ratio statistic for testing H is the 
product of A 1  and A ,  and is given in the following theorem from Wilks 
( 1932). 

THEOREM 10.8.1. The likelihood ratio statistic for testing 



Tefrrng Equultiy oJp Normul Popututians 509 

is 

where A, B, and B, are given by (2), (3), and (9, respectively. 

formed from the p independent normal samples. Then 
Prooj. Let L(pI ,..., p,,, C, ,..., Zp) denote the likelihood function 

supL(p 1 . .  . ,PI X I . .  * ,Z) 

where A, and A ,  are the likelihood ratio statistics for testing the null 
hypothesis H, and H I .  The desired result now follows by substituting the 
values of A. and A ,  given by ( I )  and (4). 

It  follows that the likelihood ratio test of H rejects H for small values of 
the statistic 

(7) 

T. W. Anderson (1958), Section 10.3, suggested the use of a modified test 
statistic A* in which the sample sizes N, are replaced by n,  = N, - 1 and N is 
replaced by n = 2;.:, ,n, = N - p, i.e., 



5 10 

However, Perlman (1980) has shown that it is the likelihood ratio test itself, 
not the modified test, which is unbiased for testing H. 

The moments of A are very difficult to obtain explicitly, except in some 
special cases. The following theorem gives the moments when the covariance 
matrices are all assumed equal. 

THEOREM 10.8.2. When Z, = = Z, (= X) the hth moment of A is 

The Mulhariaie Lineur Model 

where 

with 

Proo/; The matrices B, have independent Wm(nr, 2 )  distributions ( i =  
I ,  . . . , p ) ,  where n, = N, - 1, and the matrix A is independently distributed as 
W,,( p - I, Z, a) ,  where 51 is given by (10) (see Section 10.7). Hence 
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where 

Consequently, 

where now the B, have independent W,(n,(l + h ) +  h, 2 )  distributions 
( i  = 1 , .  . . , p )  and are independent of A which is W,(p- I ,  2,  $2). Hence, 
from Theorem 10.3.3, the matrix A = A + Zf= B, is W,( N( 1 + h )  - I ,  C, 51) 
so that, using Theorem 10.3.6 we have 

. , F 1 ( j N h ;  f N ( l + h ) - 4 ;  - 4 5 1 )  

and the proof is complete. 

COROLLARY 10.8.3. When the null hypothesis H :  p ,  = * - p,,, Z, - 
= 2, is true the lrth moment of A is - - .. .  
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10.8.2. 

Putting N, = k , N  where zp=Ik, == 1 i t  follows from Corollary 10.8.3 that 
when H is true 

7he Mulriouriure l incur Mode/ 

The Asymptotic Null Distribution of the Likelihood Rutio Stutistic 

(12) 

where K is a constant not involving h. This has the same form as (18) of 
Section 8.2, where weputp=m, q = mp, y j = j N ,  q j = - + j ( j =  1, .  . . , m): 

x k = i N k , ,  k = ( i - l ) m t l ,  ..., in1 ( i = l ,  ..., p )  

& = - i j ,  k -  j , m +  j ,..., ( p - l ) r n + j  ( j = 1 ,  ..., m ) .  

The degrees of freedom in the liniiting x 2  distribution are, using (28) of 
Section 8.2, 

,= I  , = I  j = l  

= f m ( p - -  l ) ( m + 3 ) .  

The value of p which makes the term of order N-I vanish in the asymptotic 
expansion of the distribution of -2plog A is, using (30) of Section 8.2 
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The term of order N - *  can also be obtained by the theory of Section 8.2 
giving the following result. 

THEOREM 10.8.4. When the null hypothesis H: p ,  = * - = pp,  2, = 
* .  * = Z,, is true the distribution of -2plogA, where p is given by (14), can 
be expanded for large M = piv as 

where/=fm(p-I)(m+3) and 

6m(m+I)(m+2)(m+3) 

A similar type of expansion, including the term of order was given 
by T. W. Anderson (1958), Section 10.5, but for his modified likelihood 
ratio statistic, 

An approximate test of size a of H is to reject H if -2plog A > c, (a), 
where c, ( a )  denotes the upper lOOa$ point of the x!  distribution. The 
error in this approximation is of order 

The modified likelihood ratio statistic A* given by (8) has been studied 
more extensively than A. Chang et al. (1977) have calculated the upper 5 
percentage points of the distribution of -21ogA* for n , = n ,  ( i = l  , . . . , p ) ,  
p=2(1)8,m=1(1)4.ThesearegiveninTable7, in whichM,=n,-m. 

10.8.3. An Asymptotic Non-null Distribution of the Likelihood Ratio Statistic 

The power function of the likelihood ratio test of size a is P( -2plog A 2 k: 
Ipl ,..., p p ,  I: ,,..., Z,,) where p is given by (14) and kX denotes the upper 
lOOu$ point of the distribution of -2plog A when H is true. We will now 
derive the asymptotic distribution of -2plogA in a special case. We 
consider the sequence of local alternatives 

K, : ( i  = 1 ,. . . , p )  



Table 7. Upper 5 percentage points of -2logA*, where A* is the 
modified likelihood ratio statistic for testing equality of p normal 
populations (equal sample sizes)' 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
I5 
16 
17 
I8 
19 
20 
25 
30 

6.96 
6.68 
6.52 
6.42 
6.36 
6.3 I 
6.27 
6.24 
6.21 
6.19 
6.18 
6.16 
6.15 
6. I4 
6.13 
6.12 
6.12 
6.11 
6.10 
6.10 
6.08 
6.06 

10.39 
10. I3 
9.99 
Y.89 
9.83 
9.78 
9.75 
9.72 
9.69 
Y.68 
9.66 
9.65 
9.64 
9.63 
9.62 
Y.61 
9.60 
9.60 
9.59 
9.59 
9.57 
9.56 

13.42 
13.18 
13.04 
12.96 
12.90 
12.85 
12.82 
12.80 
12.78 
12.76 
12.75 
12.73 
12.72 
12.7 I 
12.71 
12.70 
12.70 
12.69 
12.68 
12.68 
12.66 
12.65 

16.26 
16.03 
15.91 
15.83 
15.78 
15.74 
15.7 I 

15.67 
15.65 
15.64 
15.63 
15.62 
15.62 
15.6 I 
l5.6U 
15.59 
15.59 
15.59 
15.58 
15.57 
15.56 

I 5.68 

m =2  - 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
I2 
13 
14 
I5 
16 
17 
18 
19 
20 
25 
30 

15.74 
14. I9 
13.41 
12.94 
12.63 
12.41 
12.24 
12.12 
12.01 
11.93 
11.86 
11.79 
11.74 
11.69 
11.66 
11.63 
11.59 
I \ S6 
11.54 
11.52 
11.43 
11.37 

24.25 
22.26 
2 I .27 
20.67 
20.28 
20.00 
19.78 
19.62 
IY.49 
19.38 
19.29 
19.22 
19.15 
19.09 
19.04 
19.00 
18.96 
18.93 
I 8.90 
18.87 
18.76 
18.69 

p = 4  p = 5  

19.00 
18.78 
18.66 
18.59 
18.54 
18.51 
18.48 
18.46 
18.45 
18.43 
18.42 
18.4 1 
18.40 
18.40 
18.39 
18.39 
1 8 . 3 ~  
18.38 
18.37 
18.37 
18.36 
IH.35 

p = 6  

21.66 
21.45 
2 I .34 
21.27 
21.23 
21.19 
21.17 
21.15 
21.14 
21.13 
21.12 
21.1 I 
21.10 
21.10 
2 I .09 
21.09 
21 09 
2 1.08 
21.08 
2 I .08 
2 I .07 
21.06 

p = 7  

24.26 
24.06 
23.95 
23.89 

23 83 
23.80 
23.79 
23.78 
23.77 
23.76 
23.75 
23.75 
23.75 
23.74 
23.74 
23.73 
23.73 
23.73 
23.72 
23.72 
23.71 

23.85 

p = 8  

32.03 
29.63 
28.46 
27.75 
27.29 
26.Y6 
26.71 
26.51 
26.36 
26.24 
26. I3 
26.04 
25.97 
25.90 
25.84 
25.79 
25.75 
25.72 
25.67 
25.65 
25.52 
25.44 

39.46 
36.70 
35.33 
34.53 
34.00 
33.62 
33.34 
33.12 
32.94 
32.81 
32.69 
32.58 
32.50 
32.43 
32.36 
32.3 I 
32.26 
32.21 
32. I7 
32. I4 
32.00 
3 I .90 

46.70 
43.56 
42.02 
41.12 
40.52 
40.10 
39.79 
39.54 
39.35 
39.19 
39.06 
38.95 
38.86 
38.77 
38.70 
38.64 
38.59 
38.54 
38.49 
38.45 
38.29 
38.19 

53.78 
50.29 
48.58 
47.58 
46.92 
46.46 
46. I I 
45.84 
45.63 
45.46 
45.3 I 
45.19 
45.09 
44.99 
44.92 
44.85 
44.79 
44.73 
44.69 
44.64 
44.47 
44.36 

60 77 
56.9 1 
55.04 
53.95 
53.22 
52.7 I 
52.34 
52.04 
51.81 
5 I .62 
5 I .47 
51.34 
51.23 
51.13 
5 I .04 
50.97 
50.90 
50.M 
50.79 
50.74 
50.55 
50.43 
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m = 3  

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 
17 
I8 
19 
20 
25 
30 

4, 

- 
M,, p = 2  p = 3  p = 4  p = 5  p = 6  p = 7  p = 8  

27.27 42.89 57.37 71.35 85.01 98.45 111.75 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 
I5 
16 
17 
18 
19 
20 
25 
30 

23.95 38.43 51.87 
22.26 35.15 49.05 
21.22 34.75 47.33 
20.53 33.80 46.17 
20.03 33.12 45.33 
19.66 32.60 44.69 
19.35 32.20 44.20 
19.12 31.88 43.80 
18.92 31.61 43.47 
18.76 31.39 43.20 
18.62 31.20 42.97 
18.50 31.03 42.76 
18.40 30.90 42.59 
18.31 30.77 42.44 
18.22 30.66 42.31 
18.15 30.56 42.18 
18.09 30.48 42.07 
18.03 3039 41.98 
17.98 30.32 41.89 
17 78 30.05 41.55 
17.64 29.86 41 33 

64.83 77.51 89.99 
61.51 73.68 85.67 
59.47 71.35 83.03 
58.10 69.78 81.27 
57.1 I 68.64 79.98 
56.37 67.79 79.03 
55.79 67.12 78.27 

54.93 66.15 77 18 
54.61 65.77 76.77 
54.31 65.46 76.41 
54.10 65.20 76 I I 
53.90 64.97 75.85 
53.72 64.75 75.62 
53.56 64.58 75.42 
53.42 64.42 75.24 
53.29 64.27 75.08 
53.18 64 14 74.94 
53 08 64.03 74.81 
52.69 63.58 7430 
5241 63.26 73.96 

55.32 66.58 77.68 

41.57 
36.13 
33.21 
3 I .50 
30 28 
29.40 
26 72 
28 19 
27 76 
27.41 
27. I 1 
26.85 
26.64 
26 45 
26.28 
26. I3 
26.01 
25.88 
25.77 
25.68 
25.30 
25.05 

66.34 
58.85 
54.89 
52.42 
50 72 
49.48 
48.53 
47.78 
47.17 
46.67 
46.25 
45.89 
45.58 
45.3 I 
45 06 

44.66 
44.50 
44.34 
44.20 
43.67 
43.30 

44.86 

89.52 
80. I 5  
75.18 
72.07 
69.94 
68.37 
67. I8 
66 24 

64.84 
64.3 I 
63.86 
63.46 
63.13 
62.83 
62.56 
62.32 
62.10 
61.92 
61.74 
6 I .06 
60.59 

65.48 

I 11.98 
100.78 
94.85 
91.13 
88.58 
86.71 
85.28 
84. I6 
83 24 
82 49 
81.85 
81.31 
80.84 
80 43 
80.08 
79.75 
79.48 
79.23 
78.99 
78.78 
77.98 
77.43 

134.0 I 
121.03 
114 I5 
109 84 
106.86 
I 04.70 
103.04 
101.74 
100 68 
99.80 
99.08 
98.44 
97.90 
97.44 
97.02 
96.65 
96.32 
96.03 
95.76 
95.52 
94.58 
93.94 

I55 75 
141.02 
133.18 
128.28 
124.92 
122.47 
120.57 
119.10 
117.91 
116.91 
116.07 
115.36 
I14 75 
114.22 
I 13.74 
I 13.32 
I 12.95 
I 12.62 
112.32 
I 12.04 
110.99 
110.26 

102.31 
97.5 I 
94.58 
92 62 
91.20 
90.13 
89.31 
88.64 
88.09 
87.64 
87.25 
86.91 
86.62 
86.36 
86.15 
85.94 
85.76 
85.60 
85.45 
84.90 
84.52 

p = 8  

177.24 
160.76 
15203 
146.54 
142.79 
140.05 
137.94 
136.28 
134.95 
133 84 
132.90 
132.11 
131.43 
130.83 
130.30 
129.83 
129.42 
129.04 
128 71 
128.40 
127.23 
126.42 

"Here. p =number of populations: ni =nuinher of variables; t i , ,  =one less than 
common sample size (11" = n, :  I = I ,  * p ) ;  M,, = n,, - ni 

Soune. Reproduced from Chang et al. (1977) with the kind permission of North- 
Holland Publishing Company and the authors. 
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under which the covariance matrices arc all equal and the mean vectors 
approach a common value. 

As beforeweassume that N, = k,Nwithk,>O(i= 1, . . . , p )  and z p = , k ,  = I 
and let M = pN -+ 00. Using Theorem 10.8.2 the characteristic function of 
- 2 p l o g  A under KN may be expressed as 

The Muiirvariuie Lineur Model 

(17) +,,,(I; 0)  = + N (  I ;  O),F,( - Mil; iM( I - 2 i r )  -t- a; - 4S-l) 

where 

P 

, = I  
Q=X-’ z 8,6,’, 

a = j ( N - m ) - f  

and + N ( ~ ; O )  is the characteristic function of -2plogA when H is true, 
obtained from (12) by putting h = -2 i tp .  From Theorem 10.8.4 we know 
that 

wheref= i m ( p -  I ) (m i - 3 ) .  An asymptotic expansion for the ,F, function 
in (17) was obtained in Theorem 10.5.6, where we there replace N by M and 
r by 4a- m - 1. Theorem 10.5.6 then shows that 

where 5 = irW and 
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Hence +N( I; 0) can be expanded as 

Inverting this gives the following theorem. 

THEOREM 10.8.5. Under the sequence of local alternatives KN given by 
(16), the distribution function of -2p log A can be expanded for large 
M = p N  as 

1 
(23) P(  -2pl0g A 5 x)=  P(  x j (  U , ) ~ X )  + 4~ ( 4auIP(x7+,( 0 , )s  X )  

-I4au, -a2Ip(x;+4(B,)-) 

- u,P( x ; + 6 ~ ~ l ~ ~ x ) )  + O w -  ,), 

where f = f( p - l)m(m + 3), u, = tr W, with Q and a given by (18) and (19). 

For Anderson's modified statistic a similar expansion has been obtained 
by Fujikoshi (1970) and an expansion in terms of normal distributions has 
been obtained by Nagao (1972). 

PROBLEMS 

10.1. In the univariate linear model consider testing H : C p = O  against 
K: Cfl#O, where C is a specified p X r matrix of rank r. Show that the test 
which rejects H for large values of the statistic F given by ( I )  of Section 10.1 
is a uniformly most powerful invariant test. 

10.2. Suppose that A = nS has the W,(n, C , Q )  distribution. Show that as 
n --t 00 the asymptotic distribution of (n/2m)'/210g(det S/det C) is N(0, I) 
(see Fujikoshi, 1968). 

10.3. Suppose that A = nS has the W,(n, Z, Q) distribution, where 52 = n A  
with A a fixed m X m matrix. Show that as n -, 00 the asymptotic distri- 
bution of 

n ' l 2 (  $-det(I+A)) 

is N(O,2det( I + A)'trI( I +2A)(  I f A)-2]}. 
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10.4. Suppose that A = nS has the W,,( n ,  2,O) distribution, where 6t = 
n' / 'A ,  with A a fixed rn X m matrix. Show that as n -. 00 the asymptotic 
distribution of 

is N(0, I )  (see Fujikoshi, 1970). 

10.5. If A is Wm(n, Z, Q) show that the characteristic function of trA is 

~ [ e x p ( i r t r ~ ) ]  = d e t ( l - 2 i r ~ ) - ~ / ' e t r [  - j6t + ~ o ( I  - 2 i r ~ ) - ' ]  

10.6. Using the result of Problem 10.5, show that if A = nS is w, , (n ,  2, Q )  
then as n --.) 00 the asymptotic distribution of 

[ *] 'I2 ( t rS  - tr Z) 

is N ( 0 , l )  (see Fujikoshi, 1970). 

10.7. If A = n S  is W,(n,X,Q) and P=nA,  wher. A is 
matrix, show that as n 4 cx) the asymptotic distribution of 

fixed tn X m 

n 
]"*[trS - tr Z( I + A)] 

is N(O.1). 
10.8. If the n X m matrix Z is N( M, I , @ Z ) ,  so that A = Z'Z is Wnl(n, Z, Q )  
with 51 = Z-IM'M, prove that 

Cov(vec( A ) )  = ( 1,,,2 + K )[ n( ZSX) + z@( M'M ) + ( M'M ) @Z J , 

where K is the commutation matrix defined in Problem 3.2. 

10.9. If A is Wm(n, Z,O) with n > m - I show that the density function of 
wI, ..., w,,,, the latent roots of Z-',4, is 
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where W=diag( w , , .  . . , w,,,). Why does this distribution depend only on the 
latent roots of Q? 

10.10. If A is W,(n, Z, 9) where A,  Z, Si? are partitioned as 

where A , , ,  Zll, and a,, are k X k ,  show that the marginal distribution of A , ,  

10.11. Suppose that the n X m ( n  1 m )  matrix Z is N( M, ln@I,,,), where 
M=[m,O ... 01, so tha tA=Z’Zis  W , ( n , l , Q ) ,  withO=diag(m;m,,O ,..., 0). 
Partition A as 

is w,cn, Z,,, ~ ~ I ( Z , , 9 , , +  ZIZQ,,)). 

1 m - l  

and put A,,.,  =A, ,  - a;’al2a’,,. Prove that: 

(a) A,,., is Wm-l(n- l , l , , , - l )  and is independent of aI2 and 
011. 

(b) The conditional distribution of a,2 given a , ,  is 

(c) a, ,  is &a), with 6 =m’,m,. 
(See Theorem 3.2.10.) 
10.12. Consider the moments of the likelihood ratio statistic W given by 
( 2 )  of Section 10.5. Using the duplication formula 

~ r n - , ( O ~ ~ l , ~ f n - , ) .  

r (a+ i )r (~+f )=n1 /22-2ar (2~+  I ) ,  

show that, when m is even, m = 2 k  say, these moments can be written as 

Hence, show that W has the same distribution as n,”, ,q2, where U,, . . . , U, 
are independent and t( is beta(n - p + 1 -2J, r ) .  Show also that if m is odd, 
m =2k  + I ,  W has the same distribution as l l ;k=,~2Y,+, ,  where Y,, ..., Y,,, 
are independent, with Y, having the beta(n - p + 1 -2 i ,  r )  distribution 
( i = l ,  ..., k )  and Y,,, having the be ta ( ) (n-p+l -m) ,+r )  distribution. 
10.13. Prove Theorem 10.5.8. 
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10.14. Let T,: = tr(AB-’), where A and B are independent with A having 
the Wn,(r, 2.Q) distribution and B having the W,(n - p, 2) distribution 
(see Section 10.6.2), with r 2 m, I? - p 2 m. Using the joint density function 
of A and B show that if n - p 2 2 k  + m - I the k tli moment of T i  is 

where the summation is over all partitions K of k.  

10.15. IfL, is the smallest latent root of A B -  ’, where A is W,,(r, 2,Q) and 
B is independently W,( n - p ,  Z), show that 

where a,, ..., a, are the latent roots of Q. [Hint :  Use the result of Problem 
8.3.1 

10.16. For the single classification model of Section 10.7 show that the 
steps involved in reducing it to canonical form (see Section 10.2) lead 10 the 
between-classes and within-classes matrices A and B given by ( I )  and (2) of 
Section 10.7. Show also that the noncentrality matrix B is given by (3) of 
Section 10.7. 

10.17. Obtain Corollary 10.7.4 from Theorem 10.7.2. 

10.18. The generalized MANOVA model (GMANOVA) (Potthoff and 
Roy, 1964; Gleser and Olkin, 1970; Fujikoshi, 1974b; Kariya, 1978). Let Y 
be a n X in matrix whose rows have independent m-viiriate normal distri- 
butions with unknown covariance matrix 9 and where 

E( Y)” X,BX,; 

Here X, is a known 11 X p matrix of rank p I n ;  X, is a known q X m matrix 
of rank q 5 m; and B is a p X q matrix of unknown parametcrs. This is 
known as the GMANOVA model. When X, = I,,,, q = m,  i t  reduces to the 
classical MANOVA model introduced in Section 10.1. When p = 1, X, = 1 
= ( I ,  I , .  . . , I)’, the model is usually called the “growth curves” model. 

Consider the problem of testing the null hypothesis W: X,B X, = O  against 
K: X,B X, #0, where X, is a known u X p matrix of rank u 5 p and X, is a 
known q X u matrix of rank o 5 q. 

(a) Show that by transforming Y the problem can be expressed in 
the following canonical form: Let 2 be a random n X m matrix 
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whose rows have independent nwariate normal distributions 
with covariance matrix 2, partitioned as 

q - u  u m - q  

The null hypothesis H :  X3BX4 = O  is equivalent to H :  OI2  = O .  
[Hint :  Write 

where HIE O( n), H,E O( m), L I E  Qe( p, R), L2€ &?(q, R), and 
Put 

Express E( Y*),Cov( Y*) in terms of 5* and **. Next, write 

x,L;j = L , [ I , :  0 1 4 ,  p x 4  = H4[ .el L,,  

where H , E O ( p ) ,  H4E0(4), L,ESt'(u, R), L , E S t ( o ,  R), and 
Put 

Show that 

E(Z)=[@ 0 0 01 n - p  , 
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where 0 = H3(B*H4. Partitioning 0 as 

01, 0 1 2  " 
@=[  0,, B , 2 ] r - u 9  

q - v  v 

show that N: 4 5 4  =O is equivalent to H: O , ,  =O. Letting 2 
be the covariance matrix of each of the rows of Z, express X in 
terms of *+.I 

(b) Put 

Show that a sufficient statistic is (Zl,  B), where B = Z,'Z2. 
State the distributions of Z, and B. 

(c) Partition B and Z as 

f?=[ i:: B22 B 2 3 ]  , Z = [  ::: 2; &,] Ill u q . 

For ease of notation, put m, = q - v,  m,  = v ,  m3 = m - q so 
that B,] and Z,, are In, X m, matrices, and put n ,  = i l l  n 2  I= IJ - 
u. Consider the group of transformations 

4 - u  
8 1 2  B,3 q - "  212 213 

23, 2 3 2  23, 
m -. q 

B31 B32 B33 
q - v  v 111 ''I q - v  v m - q  

acting, on the sample space of the sufficient statistic by 
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This transformation induces the transformation 

in the parameter space. Show that the problem of testing 
H: 8,, = O  against K: Q12 #O is invariant under G. 

(d) Prove that, if n1 5 m 2 ,  p r m , ,  a maximal invariant in the 
sample space under the group G is g ( Z , ,  B ) =  
(gl(z,, w, g,(Z,. B ) )  where 

(Hint: First show that gl(Z,, B) and g,(Z,, B) are invariant. 
Next, consider any invariant function h ( Z , ,  B), i.e., any h 
satisfying 

h ( 2, , B ) = h ( ZI A + F,  A’BA ) 

for all ( A ,  F)E G. It suffices to show that h ( Z , ,  B) depends 
on (Z,, B) only through g,(Z,, E )  and g2(Zl, E ) .  First, note 
that there exists a matrix 

with q , ~ Q t ( m , ,  R) (i=1,2,3), such that E-’=TT’. (Why?) 
Let 

H=[ HI, 0” 7 0 4, 
where H , , E O ( m , )  ( i =  1,2,3), be an arbitrary orthogonal 
m X m matrix, and put A,, = TH. Then A, has the same form 
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as the matrix A in (c), and for all F of the form given in (c) and 
all N of the form above 

This shows that h ( Z , ,  B) depends on (Zl, B) only through 
Z,A , ,+  F. By writing this matrix out, show that F can be 
chosen so that h ( Z , ,  B) is a function only of the matrices 

Now show that and H,, can be chosen so that 

and 

(e) Prove that a maximal invariant in the parameter space under 
the group induced by G is 

( f )  Show that the problem of testing H: Q,, = O  against K: Q I 2  +O 
is also invariant under the larger group of transformations 
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acting on the sample space of the sufficient statistic by 

(Q, A .  F )  
( Z , ,  B )  4 (QZ,A + F, A'BA). 

(The group G is isomorphic to the subgroup 
((Ip, A, F ) ; ( A ,  F)EG) of the group G I . )  

(g) A tractable maximal invariant under G* in the sample space is 
difficult to characterize. Show, however, that a maximal in- 
variant in the parameter space under the group induced by G* 
is (aI,.,.,6,,,), where 6 , r  ?a,,, are the latent roots of the 
matrix A given in (e). 

(h) Show that the likelihood ratio statistic for testing H: 9,, = O  
against K: Q,, f O  is A = W " l 2 ,  where 

(i) Show that the statistic W in (h) can be expressed in the form 

det B2, . 
W =  

det( X'X+ B 2 2 . 3 )  * 

where B,, = B,, - 8 2 3  B,;'B,, and 

X = ( I +  Z13Bc'Z;3)-1'2(Z12 - z13&'832). 

Show also that W is invariant under the group G*. 
Show that, given (Z13, B,,), the conditional distribution of Xis 
N ( ( I +  2 ,3B~'Z;3) -1 /2Q12 ,  I , , ,@Z2 , .3 ) ,  where Z,, 3 = Z,, - 
&,Z,'&,. Show also that 8 2 2 . 3  is W,Jn - p - m 3 ,  Z22,3) 
and that B22.3 is independent of X and Z,3BG'Zi3. 

(k) When the null hypothesis H 0,, = O  is true, X'X is 
W,,Cn,, 2 2 2 . 3 ) .  Using Corollary 10.5.2, write down the null 
moments of W and use Theorem 10.5.5 to approximate the 
null distribution of A .  [The moments of W under K: O , ,  # O  
can be expressed in terms of a ,F2 hypergeometric function 
having the matrix -;A as argument, where A is given in (e). 
For a derivation, as well as for asymptotic non-null distri- 
butions, see Fujikoshi (1  974b).] 

0)  



CHAPTER 11 

Testing Independence 
Between k Sets of Variables and 
Canonical Correlution Analysis 

1 1 . 1 ,  INTRODUCTION 

In this chapter we begin in Section 11.2 by considering how to test the null 
hypothesis that k vectors, jointly normally distributed, are independent. The 
likelihood ratio test is derived and central moments of the test statistic are 
obtained, from which the null distribution and the asymptotic null distribu- 
tion are found. For k =2  noncentral moments of the test statistic are given 
and used to find asymptotic non-null dislributions. 

Testing independence between two sets of variables is very closely related 
to an exploratory data-analytic technique known as canonical correlation 
analysis, which is considered in Section 11.3. This technique is concerned 
with replacing the variables in the two sets by new variables, some of which 
are highly correlated; in essence it is concerned with reducing the correla- 
tion structure between the two sets of variables to the simplest possible form 
by means of linear transformations on each. 

11.2. 
OF VARIABLES 

TESTING INDEPENDENCE OF k SETS 

11.2.1. 

In this section we consider testing the null hypothesis that k vectors, jointly 
normally distributed, are independent. Suppose that X is N,,,(c(, 2) and that 

5 26 

The Likelihood Ratio Statistic and Inoariance 

Aspects of Multivanate Statistical Theow 
ROBE I. MUlRHEAD 

Copyright 8 1982.2WS by John Wiley & Sons. I ~ C .  
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X, p and Z are partitioned as 

x'=(x; xi.. . xi), p'= (pip;.. . p i )  

and 

z=  

where X I  and p ,  are m, X 1 and Z,, is m, X m, ( i  = l,.. , ,k ) ,  with Zfi= I m, = m. 
We wish to test the null hypothesis H that the subvectors X,,  ..., X k  are 
independent, i.e., 

H : Z , , = O  ( i ,  j = 1 ,  ..., k ; i # j ) ,  

against the alternative K that H is not true. Let and S be, respectively, the 
sample mean vector and covariance matrix formed from a sample of 
N = n + 1 observations on X, and let A = nS and partition %, and A as 

where 5, is m, X 1 and A,, is m, X m,. The likelihood ratio test of H (from 
Wilks, 1935) is given in the following theorem. 

THEOREM 11.2.1. The likelihood ratio test of level a for testing the null 
hypothesis H of independence rejects H if A 5 c,, where 

(det 
A =  

and c, is chosen so that the significance level of the test is a. 

Proof: 

L ( p ,  X)=(detZ)-N/2etr( - f c - ' A ) e x p [ - : N ( ~ - p ) ) ' C - ' ( ~ - p ) ]  

Apart from a multiplicative constant the likelihood function is 
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and 
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supL(p, Z)= L(%, $)= NmN/2e-~ntN/2(det 
P9= 

where 2 = K I A .  When the null hypothesis H is true Z has the form 

c=x*= (3) 9 

0 0  .- 

so that the likelihood function becomes 

where 

L, ( p ,  , z,,) = (ciet c,, 1- N’2 etr( - ‘A,, )  

- p , ) ‘ ~ ,  I ( % ,  - p , ) ] .  ,exp[ - 

Hence i t  follows that 

k 

I = ]  

- - ~ m N / 2 ~ - t n N / 2  n (det A l i ) - N / 2 ,  

where el, = N “A,,.  Consequently, the likelihood ratio statistic is 

and the likelihood ratio test rejects H for small values of A ,  completing the 
proof. 
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We now look at the problem of testing independence from an invariance 
point of view. Because of its importance and because i t  is more tractable we 
will concentrate here on the case k = 2  where we are testing the indepen- 
dence of XI (ml X I )  and X, (m, X I ) ,  Le., we are testing H: 2,, =O against 
K: Z,, #O. We will assume, without loss - -  of generality, that m ,  5 m,. A 
sufficient statistic is (x, A )  where F=(X;,X2) and 

A = [ : : :  ::] 
Consider the group of transformations 

(4) G = { ( B ,  c); B = diag( BI I ,  B2,),  B,, E Qt( m, , R ) ( i  = 1,2), c E Rm) 

acting on the space Rm X 5, of points (3, A )  by 

( 5 )  (B,c) (%,  A ) = (  E%+c, BAB') 

1.e.. - x-, B%+c,  A,, 4 B,,A,,BA ( i ,  j =  1 ~ 2 ) .  

The corresponding induced group of transformations (also G) on the 
parameter space of points ( p ,  2) is given by 

( 6 )  ( B , c ) ( a ,  C ) = ( B p  +c, BXB'), 

and the testing problem is invariant under G, for the family of distributions 
of (x, A )  is invariant as are the null and alternative hypotheses. 

THEOREM 11.2.2. Under the group of transformations (6) a maxima1 
invariant is ( p : , p i ,  . . . ,p2  ) where ( IL )p :2p iL  * . .  l p i ,  (20) are the 

[Some of these may be zero; the maximum 
number of nonzero roots is rank (C,,).] 

Prooj: Let 1 $ ( ~ , 2 ) = ( p : ,  . . . , p i , ) .  First note that + is invariant, for the 
latent roots of 

Our next problem is to find a maximal invariant. 

latent roots of X;1X,,Z;2 " I  X2,. ' 

( Bl I21 I I ) - '( B ,  ,XI2 4 2  B 2 2 2 2 2  4 2  ) - 7 B22Z21 B;  I ) 

= B;; 'Z , 'X1 ,Z , 'X2 ,B; ,  

are the same as those of Z~1C12Z,,'X,1. To show it is maximal invariant, 
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suppose 
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+ (a,  X I =  +b> r> 
i.e., 

x ; ~ z ~ ~ c ~ ~ ~ z ~ ,  and ri1r12r,j1r21 
have the same latent roots p:, . . . ,& or, equivalently, (x,'/2z12z,'/2) 
(Z,l/2Z I2 Z-1/2)' 22 and (r;1/2r121';1/2) ( ~ , ; 1 ~ 2 1 ' 1 2 1 ' ~ 1 ~ 2 ) '  have the same 
latent roots p:,...,&. By Theorem A9.10 there exist HEO(ml)  and 
Q E O ( m z )  such that 

IfX,l/2Z X-.I/ZQ'= p' 
I2 22 

where 

I;[ PI  * . (  

0 

Putting D I l  = HC,1/2 and D,, =QX;21/2r it  then follows that D l12 , ,D; l  = 
I,,,,, D22Z22D;2= I,,,>, and L)l12121~;z = P. Hence with D=diag(D,,, D Z 2 )  
we have 

(7) 

A similar argument shows that there exist nonsingular m ,  X m ,  and rh2 X m2 
matrices El l  and EZ2,  respectively, such that 

where E = diag( El I , E22) .  Hence r = E -  'DCD'&'- I = BZ B', where 
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Putting c= - Bp + T,  we then have 

( B , c ) ( P ,  Z ) = ( T ,  r). 
Hence ( p i , .  . . , p i , )  is a maximal invariant, and the proof is complete. 

As a consequence of this theorem a maximal invariant under the group G 
acting on the sample space of the sufficient statistic (%,A) is (r:,...,r;,), 
where r,'-> >rdl>O are the latent roots of A;1,412A;IA21. Any in- 
variant test depends only on $ ,..., r i l  and, from Theorem 6.1.12, the 
distribution of r:, . . . ,rd, depends only on t p:, , . . ,p2 . Their positive square 
roots r l  ,..., r,,,, and p I  ,..., p,,,, are called, respectively, the sample and 
population canonical correlation coeflicients. Canonical correlation analysis is 
a technique aimed at investigating the correlation structure between two sets 
of variables; we will examine this in detail in Section 11.3. Note that the 
likelihood ratio test of Theorem 11.2.1 is invariant, for 

1. 

'=( detA,,detA,, de tA  ) N / 2  

nr . 
= ri ( 1  - '1*y2, 

( = I  

so that A is a function of r:, , . ,,ril, In terms of the population canonical 
correlation coefficients the null hypothesis is equivalent to 

H: p ,  = * * * = pn,, =o. 

We have already studied the case k =2, m ,  = I ;  here rl  = R and p ,  = 
are, respectively, the sample and multiple correlation coefficients between 
XI and the m 2  = m - 1 variables in X,. In Theorem 6.2.2 it was shown that 
the likelihood ratio test of H: R=O against K: ZfO is a uniformly most 
powerful invariant test under the group G. In general, however, there is no 
uniformly most powerful invariant test and other functions of r:, . , , ,r,", in 
addition to A have been proposed as test statistics. Some of these will be 
discussed in Section 11.2.8. 

The likelihood ratio test was shown by Narain (1950) to be unbiased. For 
the case k =2, Anderson and Das Gupta (1964) established a somewhat 
stronger result, namely, that the power function of the likelihood ratio test 
increases monotonically as each population canonical correlation coefficient 
p, increases; see also Perlman and Olkin (1980). 
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11.2.2. 
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Central Moments OJ the Likelihood Ratio Statistic 

Information about the distribution of the likelihood ratio statistic A can be 
obtained from a study of its moments. In this section we find the moments 
for general k when the null hypothesis H :  Z,, =O ( i ,  j = 1,. . . , k ,  i # j )  is 
true. For notational convenience we define the statistic 

The moments of I.Y are given in the following theorem. 

THEOREM 11.2.3. When H is true, the k th  moment of W is 

(9) 

where n =  N - 1. 

Prooj When H is true, Z has the form Z* given by (3). There is no loss 
of generality in assuming that Z* = I,,, since W is invariant under the group 
of transformations 2- BCB‘, where B=diag(B,,, . . . I  B,,), with B,,€ 
ge(mi, R), i = 1, . . . , k. Hence, with c,,,. = [2mn/2r,& n)]-l we have 

k 

E ( W h ) = c m , . /  1 (detA,,)-‘hctr(-jA)(det A ) 0 1 + 2 h - ’ n - . I ) / 2  ( d 4  
A z O l = = l  

where the matrix A in this last expectation has the Wnl( n + 2 h ,  1,”) distribu- 
tion. Consequently, A ,  ,,. . . , Akk are independent, and Ai l  is Wm, ( n  + 2h, I, , , ) ,  
i = 1,. k ,  so that, using (15) of Section 3.2, 

k 

E ( W h ) =  c m * n  fl E[(det 
C m , n + 2 h  i = l  

and the proof is complete. 
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11.2.3. The Null Distribution of the Likelihood Ratio Statistic 

When the null hypothesis H is true, the statistic W has the same distribution 
as a product of independent beta random variables. The result is given in 
the following theorem. 

THEOREM 11.2.4. When H is true, W has the same distribution as 

where the y ,  are independent random variables and <, is beta(f(n + 1 - 
my - j), t m : )  with m: =zS I m,. 

Proof. Starting with the result of Theorem 11.2.3 we have 

Since the hth moment of a random variable having the beta( a, p )  distribu- 
tion is r ( a + h ) r ( a + p ) / r ( a ) r ( a + P + h ) ,  it follows that 

k m. 

E ( W h ) =  fi E(V,,h) 
, = 2 / = 1  

where y ,  has the beta(-f(n + 1 - tn: - j), i m : )  distribution. Because W is 
bounded its moments uniquely determine its distribution, and the proof is 
complete. 

The important case k =2, where the independence of two sets of varia- 
bles is being tested, merits special attention. In this case the hth moment of 
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W is 

These moments have exactly the same form as the moments of the statistic 
W used for testing the general linear hypothesis given in Corollary 10.5.2, 
where there we make the substitutions 

m -, m , ,  r -, m 2 ,  n - p + N -  m2 - I .  
It hence follows from Theorem 10.5.3, or from the moments (lo), that W 
has the same distribution as , V,, where V,,. . . , V,,, are independent, with 
C: having the beta(f(N - m2 - i ) ,  fm, )  distribution. If, in  addition, m ,  = 
l , m 2 = m - l ,  thisshows that Whas the beta(j(N-m),f(m-1))distribu- 
tion. In this case W =  I - R2,  where R is the sample multiple correlation 
coefficient between XI and the variables in X,, so that the result agrees with 
Theorem 5.2.2. 

In general it is not an easy matter to find expressions for the probability 
density function of W. For some special cases the interested redder is 
referred to T. W. Anderson (1958), Section 9.4.2, and Srivastava and Khatri 
(1979), Section 7.5.3. 

11.2.4. 

Replacing h in Theorem 11.2.3 by f N h  shows that when H is true the hth 
moment of A = W N I 2  is 

The Asymptotic Null Distribution of the Likelihood Ratio Stutistic 
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where K is a constant not involving h. This has the same form as (18) of 
Section 8.2.4 withp = m, q = m, xI = fN, = - 4 1  ( I  = 1, . . . , m), yI = 4N, qJ 
= - f j ( j = 1,. . . , m,; i = 1,. . . , k ) .  The degrees of freedom in the limiting x 2  
distribution are, from (28) of Section 8.2.4, 

1 P 

f = - 2  2 2 v J - f ( q - P )  
(12) [/:I J = I  

m k mi 

4 1 - 2  2 j  
1 s t  f = l  J = l  

The value of p (not to be confused with the population canonical 
correlation coefficient p , )  which makes the term of order n-' vanish in the 
asymptotic expansion of the distribution of -2plogA is, from (30) of 
Section 8.2.4, 

6N m2- 2 m:) I r = l  

With this value of p it is then found, using (29) of Section 8.2.4, that the 
term of order Nh2 in the expansion is 

(14) 

Hence we have the following result (from Box, 1949). 
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THEOREM 11.2.5. When the null hypothesis H: Z,, = O  ( i ,  j =  1 ,..., k ,  i 
Z J ) ,  is true the distribution function of -2plogh.  where p is given by 
( 1 3 ,  can be expanded for large M = p N as 

(15) P( -2pl0g A 5 x ) =  P( - Nplog W S  X )  

whereiis given by (12) and y ~ ( N p ) ~ o ~  = M 2 0 2 ,  with o2 given by (14). 

In the important case k = 2 we have 1 = m,m2;  then 

and the resulting expansion for the distribution function of -2plogA 
agrees with that in Theorem 10.5.5, where we make the substitutions 

(17) m - r r n , ,  r - + m 2 ,  n - N ,  p + m 2 + 1 ,  N - M .  

An approximate test of significance level a is to reject H if - 2p log A > 
c / (a ) ,  where c / ( a )  denotes the upper 1OOa% point of the x; distribution. 
‘The error in the approximation is of order N - 2 .  

For the case k =2, Table 9 gives upper IOa% points of the distribution 
of -2plogA for a=.I, .05, .025, and -005, after the substitutions (16) and 
M + N - mi - rn2 have been made. The function tabulated is a multiplying 
factor C which when multiplied by c,,,, (a), the upper IOOaS point of the 
x:, m I  distribution, gives the upper IOOak point of -2plogA. 

kor testing independence between k >2 sets of variables Davis and Field 
(1971) have prepared tables of upper 100a‘k: points of -2plogA for 
a = .05, .O1 and for various values of the m,, i = 1,. . . ,k. These are repro- 
duced in Table 8. The function tabulated is a multiplying factor C which 
when multiplied by the upper lOOa% point of the x: distribution, where! is 
given by (12), yields the upper lOOa% point of -2plog A .  (A “partition” in 
the table gives the values of m , ,  m 2 ,  m3 ,....) 

11.2.5. 

In this section we will obtain the moments in general of A for the case k = 2  
where the independence of two subvectors X,,X, of sizes mi X 1, m2 X I 

Noncentral Moments ojthe Likelihood Ratio Stutistic when k = 2 



Table 8. x 2  adjustments to the likelihood ratio statistic for testing independence: 
factor C for upper percentiles of - Zplog A (see Section 11.2.4)'' 

~ 

Partitions 2. I ,  I 3 , I .  I 2.2,l 4,1, I 3,2, I Partitions 
N 5% 1% 5% 1 %  5% I %  5% 1% 5% 1% N 

5 1.07 1.08 132 I . 4 0  1.29 5 
6 1.034 1.042 1.12 1.152 1.109 1.13 6 
7 1.020 1.025 1.067 1.0813 1.058 1.071 1.18 1.21 1.15 1.18 7 
8 1.0135 1.0168 1.042 1.0509 1.036 1.044 1.100 1.12 1.083 1.10 8 
9 1.0097 1.01 19 1.0291 1.0350 1.0250 1.0300 1.0646 1.077 1.0536 1.063 9 

10 1.0072 1.0089 I0213 1.0256 1.0182 1.0218 1.0454 1.054 1.0376 1.044 10 
I I  1.0056 1.0069 1.0162 1.0195 1.0139 1.0166 1.0338 1.0399 1.0279 1.033 I I  
I 2  1.0045 1.0055 1.0128 1.0154 1.0110 1.0131 1.0261 1.0308 1.0216 1.0252 I 2  
13 1.0037 1.0045 1.0104 1.0124 1.0088 1.0105 1.0209 1.0245 1.0172 1.0201 13 
14 1.0031 1.0038 1.0086 1.0103 1.0073 1.0087 1.0170 1.0200 1.0140 1.0163 14 

I5 1.0026 1.0032 1.0072 1.0086 1.0061 1.0073 1.0142 1.0166 1.0117 1.0136 15 
16 1.0022 1.0027 1.0061 1.0073 1.0052 1.0062 1.0120 1.0141 1.0099 1.0115 16 
17 1.0019 1.0024 1.0053 1.0063 1.0045 1.0053 1.0103 1.0120 10084 1.0098 17 
I R  1.0177 1.0021 1.0046 1.0055 1.0039 1.0046 1.0089 1.0104 1.0073 1.0085 18 
19 1.0015 1.0018 1.0040 1.0048 1.0034 1.0041 1.0078 1.0091 1.0064 1.0074 19 

20 1.0013 1.0016 1.0036 1.0043 1.0030 1.0036 1.0069 1.0080 1.0056 I0065 20 
21 1.0012 1.0014 1.0032 1.0038 1.0027 1.0032 1.0061 1.0072 1.0050 1.0058 21 
22 1.001 I 1.0013 1.0029 1.0034 1.0024 1.0029 1.0055 1.0064 1.0045 1.0052 22 
23 1.0010 1.0012 1.0026 1.0031 1.0022 1.0026 1.0049 1.0058 1.0040 1.0047 23 
24 1.0009 1.0011 1.0023 1.0028 1.0020 1.0024 1.0044 1.0052 1.0036 1.0042 24 

25 1.0008 1.0010 1.0021 1.0026 1.0018 1.0021 1.0040 1.0047 1.0033 1.0038 25 
30 1.0005 1.0007 1.0014 1.0017 1.0012 1.0014 1.0027 1.0031 1.0022 1.0025 30 
35 1 .004 1.0005 1.0010 1.0012 1.0009 1.0010 1.0019 1.0022 1.0015 1.0018 35 
40 I 0 0 0 3  l.oOO4 1.0008 1.0009 1.0006 1.0008 1.0014 1.0016 1.0011 1.0013 40 
45 1.0002 1.0003 l.oOO6 1.0007 1.0005 1.0006 1.0011 1.0013 1.0009 1.0010 45 

50 1.0002 1.0002 1.0005 l.oOO6 1.0004 1.0005 1.0009 1.0010 1.0007 1.0008 50 
55 1.OOO1 1.0002 1.0004 1.0005 1.0003 1.0004 1.0007 1.0008 1.0006 1.0007 55 
60 1.0001 1.0001 1.0003 l.oOO4 1.003 1.0003 1.0oO6 1.0007 1.0005 l.oOO6 60 

I20 l.m l.m 1.0001 1.0001 1.0001 1.0001 1.0001 1.0002 1.0001 1.0001 I20  
00 l.m 1.m l.m 1.oooo l.m 1.oooo l.m l.m 1.oooo l.m 00 

x;  11.0705 15.0863 14.0671 18.4753 15.5073 20.0902 16.9190 21.6660 19.6751 24.7250 x f  
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Table 8 (Continued) 

Partitions 14 15 16 I’ lR Partitions 
N 5% I% 5% I %  5 %  I% 5 %  1 %  5% 1 %  N - 
6 
7 
8 

9 
10 
I I  
I2 
13 

14 
I5 
16 
17 
18 

19 
20 
21 
22 
23 

24 
25 
30 
35 
40 

50 
60 
90 

I20 
a3 

-- 
I .034 
I .02 I 
I0136 

I .0097 
I .0073 
I .IN56 
I .0045 
1.0037 

1.003 I 
I .0026 
I .0022 
1.0019 
1.0017 

1.0015 
1.0013 
I0012 
1.0011 
1.0010 

I .0009 
I .0008 
I BOO5 
1.0004 
I0003 

1.0002 
I OOOI 
1.oO01 
I .oooo 
I .oooo 

.- 
I043 
1.0255 
1.0169 

1.0120 
I .0089 
I .W69 
I .0055 
I .0045 

I .0037 
I .0032 
I .0027 
1.0023 
1.0020 

1.0018 
1.0016 
1.0014 
1.0013 
1.0012 

1.0010 
1.0010 
I .OM6 
1.0005 
1.0003 

I .0002 
I . o o I  
1.0001 
I .oooo 
I .OO(W) 

l . I I 5  
1.062 
1.039 

1.0267 
1.0195 
1.0149 
1.01 18 
I .0095 

1.0079 
I .0066 
1.0056 
1.0048 
1.0042 

I .0037 
I0033 
1.0029 
1.0026 
1.0024 

I .002 I 
I .0020 
1.0013 
I .000Y 
1.0007 

1.0004 
1.0003 
I.MX)I 
1.0001 
I .oooo 

1.14 
I .ox 
I .047 

1.032 
1.0233 
1.0177 
1.0139 
1.01 I2 

I .0093 
I .0078 
I .0066 
1.0057 
I .0049 

1.0043 
1.0038 
1.0034 
I .003 I 
I .W28 

I .OO25 
1.0023 
1.0015 
1.001 I 
I .o008 

1.0005 
1.0003 
1.0001 
I.000I 
I .oooo 

1.055 
I ,0386 
I .0288 
1.0223 
1.0178 

1.0145 
1.0121 
1.0102 
I.0088 
1.0076 

1.0066 
I .MI59 
I .GO52 
1.0047 
I .0042 

1.0038 
1.0035 
I 0023 
1.0016 
1.0012 

1.007 
1.0005 
I .0002 
1.0001 
I .oOOo 

1.06 
I .045 
1.033 
I .026 
1.0205 

1.0167 
1.0139 
1.01 17 
1.0101 
I .0087 

I .OW6 
I .0067 
I .0060 
1.0053 
1.0048 

1.0043 
1.0039 
1.0026 
1.0018 
1.0014 

I .o008 
1.0006 
I .oO02 
1.ooo1 
10000 

1.10 
I07 
1.049 
1.037 
1.0293 

1.0236 
1.0195 
1.0163 
1.0139 
1.0120 

1.0104 
1.0092 
I .008 1 
1.0072 
1.0065 

I .0059 
1.0053 
1.0035 
1 .OO25 
1.0018 

10011 
I .oou 
1.0003 
I .ooo2 
1 .oooo 

1.12 
I .08 
1.057 
I .043 
1.033 

1.027 
1,0220 
1.0184 
1.0157 
1.0135 

1.01 17 
1.0103 
1.0091 
I .008 I 
1.0073 

1.0066 
1.0060 
1.0039 
1.0027 
1.0020 

I.0012 
I .O008 
I .0004 
I .0002 
I .oo 

1.12 
I .08 
I .059 
1.045 

1.036 
I .0293 
I .0243 
1.0205 
1.0176 

I0152 
1.0133 
1.01 17 
1.0104 
1.0093 

1.0084 
1.0076 
I .004Y 
1.0035 
I .0026 

1.0016 
1.0010 
I .OW4 
I.0002 
I .oOOo 

6 
7 
8 

9 
1.13 10 
1.09 I I 
1.07 12 
1.051 I3 

I 040 14 
1.033 15 
1.027 16 
f.0229 17 
I O l Y 5  18 

1.0169 19 
1.0148 20 
1.0130 21 
1.0116 22 
1.0103 23 

1.0093 24 
1.0084 25 
1.0054 30 
1.0038 35 
10028 40 

1.0017 50 
1.0012 60 
1.0005 90 
1.0003 120 
1.oooo 03 

x j  12.5916 16.81 I9 18.3070 23.2093 24.9958 30.5779 32.6705 38.9321 41.3372 411.2782 x j  
~~ 

“Hcre, nt r- number of variables; N = sample size; n ~ ,  =number of variables in I th set, I = I , .  . . , k 
partition= m i ,  m2,  m,, . . ; 

level for -2plog A 
level for x of j degrees of freedoill ’ 

C=-- 

Source: Reproduced from Davis and Ficld (IY71) with the kind permission of the Conimon- 
wealth Scientific and Industrial Research Organization (C.S.I.R.O), Australia. and the authors. 
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(m, + m ,  = m) is being tested. These will be used in the next section to 
derive asymptotic non-null distributions of A. We assume without loss of 
generality that m, I m,. Recall that in this case 

where r:, . . . ,r,f,, the squares of the sample canonical correlation coeffi- 
cients, are the latent roots of Ai;?4,,A;;'A,,. The hth moment of W can be 
expressed in terms of the , Fl one-matrlr hypergeometric function (see 
Sections 7.3 and 7.4), as the following thearem from Sugiura and Fujikoshi 
( 1969) shows. 

THEOREM 11.2.6. The hth moment of W is 

-det(l-  P 2 ) " ' 2 2 F , ( j n ,  i n ;  fn + h ;  P 2 ) ,  

where n = N - 1 and P 2  =diag(p:.. . . , p i , ) ,  with p:, . . . ,pi , ,  the squares of 
the population canonical correlation coefficients, being the latent roots of 

We start with the Wm(n, X) distribution for A. By invariance (see 
the proof of Theorem 11.2.2) we can assume without loss of generality that 

2 n ' 2 I 2  G 2 '  22 I .  

Proof. 

PI 0 1 

where 
partition 2 as 2 = [ Y : X ] ,  where Y is n X nr, and X is n X m,. Then 

is m, X m , .  Write A as A=Z'Z where Z is N(0, l n @ X )  and 

and W = llz, ( I  - r12), where r : , .  . . ,r:, are the latent roots of 
(Y'Y)- 'Y'X(  X'X)-'X'Y, i.e., the solutions of the equation 

(19) det( Y'X( X'X)-'X'Y - r2Y'Y)=0. 
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We first condition on X. The conditional distribution of Y given X is 
N( XZ,'Z,,, I,,@@), where 

~ f ,  = z,, - x , ~ x ; ~ ~ c , ,  = I - PP=diag( I - p:  ,..., 1 - p i , , )  

= ( l - P Z )  

and 

CGlZ,, = P I .  

Hence the conditional density function of Y given X is 

(2 ) - ''@I I / 2 det( I - P2)--"/2etr[ - i@-l( Y - xF')'( Y- XP')]. 
Now X is n X m ,  of rank m2 (with probability 1) and so there exists 
IlC O( n )  such that 

HX=[ ;I 1, 
where XI is a nonsingular m2 X m2 matrix. Putting T =  HY equation (19) 
becomes 

Partitioning T as 

T = [  . y ] ,  U 

where U is m2 X m, and Vis  ( n  - m2)X n , ,  (20) becomes 

(21) det( U'LI - r2( U'U + VY)) = 0. 
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Under the above transformations we have 

=tr@-l (T-[  x;']) '( T - [  XI ' 0 . 1 )  B' 

=trQ,- [ . . .h. . .I" , . .h. . . ]  I U - X , P '  U - X , P '  

and hence the conditional density function of U and Y given X is 

(2r)-"""'det( I - P2)-""etr[ - h@-'(U - XIP')'(U - X , P ' ) ]  

.etr( - j @ - ' V ' V ) .  

This. shows that, conditional on X ,  U and V are independent, U is 
N( XIP', I,,,,@@) and V is N(0,  In-m2@@), and hence, given X ,  V'V is 
Wm,(n - m,, a), U'U is noncentral W,,(m,, @, Q ) ,  where the noncentrality 
matrix Q is 

and VU, V'V are independent. In terms of U and V the statistic W is 

This is the same as the likelihood ratio criterion for testing the general linear 
hypothesis (see Section 10.2) and hence the conditional moments of W given 
X'X can be obtained from Theorem 10.5.1, where we put r = m,, m = m,, 
n - p = n - m,. This gives 
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Since the matrix X ' X  is W,,l(n, 1 )  i t  now follows that 

E( Wh)= €[ E [  Wh[ XX]] 

r,,,, [ ; ( n  - m2 ) + h] rm,( f n ) 2 -"lnl 12 

rm,[ i ( n  - m 2 ) r , ( h  + h )  r,,&n) X ' X > O  -1 - -- 

.etr( - iX'X)(dei X'X)'" - m 2 - ' ) ' 2  

. , F , ( h ; j n + h ;  - ) @ - ' i j x ' x F ' ) ( d ( ~ ' ~ ) )  

where the integral has been evaluated using Theorem 7.3.4. The desired 
result now follows if we use the Euler relation of Theorem 7.4.3, namely, 

, F , ( h , f n ;  i n  t h ;  -@-IFF') 

=det(f +CP-"Fp')-n'22Fl(i.n,~n;fn+ / I ;  Cp-'pE''(Z+CP-'FP')-'), 

and note that 

so that 

and 

11.2.6. Asymproric Non-null Distributions of the Likelihood Rnlio 
Stutistic when k = 2 

The power function of the likelihood ratio test of level a is P( - 2 p l o g  A > 
k:),  where p is given by (16) and k,* is the upper 100a% point of t,he 
distribution of - 2pIogA when ti: Z,, = O  is true. This is a function of 



Testing Independence oj  k Sets oj Variahles 543 

plr . . . ,p~, , ,  2 the latent roots of 2;1212CG1221. (We are assuming, as in the 
previous section, that m ,  5 m2.) It has been shown that an approximation 
for k,* is c,(a), the upper lOOa% point of the x j  distribution, with 
f =  mintZ.  The error in this approximation is of order JV-~,  where M = p N .  
In this section we investigate ways of approximating the power function. 

Letting P2 =diag(p:,. . . , p i , ) ,  we consider the three different alternatives 

K: P 2 # 0 ,  

and 

I 
M 2  

K L :  P z =  - Q ,  

where Q=diag(o,, ..., w,,,,) is fixed. Here K is a fixed alternative and 
K,, K; are sequences of local alternatives. We begin by looking at the 
asymptotic distribution of -2plog A under the sequence K M .  

THEOREM 11.2.7. Under the sequence of local alternatives K,: P 2  = 
( l / M ) Q  the distribution function of -2plogh can be expanded as 

(22) P( -2pl0gA Ix)= P( x; ( u l ) I  X )  

wheref=m,m,, a,=trQJ=w{+ +a&, andm=m,+m, .  

Theorem 11.2.6, 
Prooh Under K M  the characteristic function of -2plogA is, using 
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where 
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with S = f ( m  + I), and +( M, 1,0) is the characteristic function of - 2 p  log A 
when H is true (12 =lo) obtained from (10) by putting h = - Mit. From 
Theorem 11.2.5 we know that 

(25 )  +( M, I , O )  =2 ( 1  -2ir )-''2 + O( M - ~  ), 

where / = m l m 2 .  I t  remains to expand G ( M , t , G )  for large M. This has 
already been done in Theorem 8.2.14. If we there put ao=& F yo= i, 
a, = P I  = yI = e, = 48, eo = i( 1 -2i/), and replace Q by - Q, Theorem 8.2.14 
shows that G( M, t, Q )  may be expanded as 

2( rn + l )u l  
(26) G(M,t,Q)=exp - ( * 'fp;,, ) [ I  - [ a2 + ( m  + 1 )al - I - 2 i 1  

2u,-(m+l)u1 

(1 -2 i t )2  
-I- - 

where u, = lr QJ. Multiplying (25) and (26) then gives an expansion for the 
characteristic function $J( M, 1, 0) which when inverted term by term gives 
(22) and completes the proof. 

We consider next the sequence of local alternatives K,&: P2 =( I/M2)0 
under which P2 +O at a faster rate than under K,. In this case the 
characteristic function of -2plogA can be written from (23) as 

The partial differential equations of Theorem 7.5.5 can be used to 
expand C ( M ,  I ,  M'-IO) for large M (as, for example, in the proofs of 
Theorems 8.2.12 and 8.2.14). It is readily found that 

+ O( M - 2 ) ,  
G( M , r , ; Q ) = l +  1 i tu,  

hf( 1 - 2 i t )  
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where uI = tr a. Multiplying (25) and (28) and inverting the resulting 
expansion then gives the following result. 

THEOREM 11.2.8. Under the sequence of local alternatives K&: P2 = 
( I/M2)Sl the distribution function of -2plog A can be expanded as 

(29) P(  - 2p log A 5 x ) = P (  X ;  5 x ) + 2~ dl 

. [ P ( x ; + 2  5 x ) -  P ( x ;  5 x)] + O( it,-’), 
where f = m l m 2  and uI =tra .  

variable Y by 
Finally, we consider the general alternative K :  P 2  ZO. Define the random 

+ M’/’logdet(Z- P ‘ ) .  
- 2 p l 0 g h  Y =  MI/’ 

where 

and 

(33) G , ( M , ~ ,  I J * ) = ~ F , ( - M ’ / ’ ~ ~ ,  - M ’ / ’ i t ; f ( M + 8 ) - M 1 / ’ i i ;  P’), 

where 6 = tfm, + 112’ + 1). Using (24) of Section 8.2 to expand the gamma 
functions for large M it is straightforward to show that 

(34) 
m,m,il 

G l ( M ,  t ) = l +  - MI/’ + O ( M - ’ ) .  

A function very similar to G2( M ,  1, P 2 )  has been expanded for large M in 
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Theorem 8.2.12. The same technique used there shows that 
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(35) 
G2(M, t ,P2 )=exp( -2~2u , )  

where a, =trP2J.  Putting r 2  =4a, it then follows from (34) and (35) that 
g ( M ,  t/T, P 2 ) ,  the characteristic function of Y / r ,  can be expanded as 

(36) 

Inverting this expansion then gives the following result. 

THEOREM 11.2.9. Under the fixed alternative K: P2 ZO, llie distribu- 
tion function of the random variable Y given by (30) can be expanded as 

(37) 

mlm2 4 

r 7 
[ -+( X )  4- 7 (a, - u2)+(')( x ) ]  f O( M.-  I ) .  

where @ and + denote the standard normal distribution and density 
functions, respectively, and u, = trP2', r 2  =4u,. 

For further terms in the asymptotic expansions presented here the 
interested reader should see Sugiura (1969a), Sugiura and Fujikoshi (1969), 
Lee (1971a), and Muirhead (1972a). For work in the more general setting 
where the independence of k >2 sets of variables is being tested see Nagao 
(1972). 

11.2.7. 
Stacistic for Elliptical Samples 

In order to understand the effect of non-normality on the distribution of A 
we examine the asymptotic null distribution of A for testing 

The Asymptotic Null Distribution of the Likelihood Ratio 

H :  2=2*=diag(Z:,,,  C,, ,..., Z,,), 
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where Z,, is m, X m,, when the sample comes from an elliptical distribution. 
This null hypothesis, of course, does not specify independence between the 
k sets of variables unless the sample is normally distributed. We have 

- (det S)”” - (det A)”” 

n (det A,,)”’2 
k 

A =  9 

n (det Sir)”/2 
r = l  r = l  

where S = n-?4 is the sample covariance matrix partitioned similarly to A 
as in (1). Writing S = C* + N - ’ l 2 2  and partitioning 2’ similarly to A and S, 
the statistic -210g A can be expanded when H is true as 

k 

- 210g A = 2 tr( Z,J2; ’ZJr2; I )  + Op( 
i-= J 

k 

= 2 z;J(  21r@xJJ)- ‘z,, + OP( N- ‘/2), 
l < J  

where z , ~  =vec(Z,’,). Now assume that the observations are drawn from an 
elliptical distribution with kurtosis parameter K,  in which case the zIJ’s 
( i  -= j )  are all asymptotically independent and the asymptotic distribution, 
as N -, 00, of zrJ  is N,,,,, (O,( 1 + K)( Zl ,8Z,J)) .  This leads immediately to the 
following result. 

THEOREM 11.2.10. Let A be the likelihood ratio statistic for testing 
H: Z=Z*=diag(C,,, ..., Z,,), assuming normality. If the sample is drawn 
from an elliptical distribution with kurtosis parameter K then the asymptotic 
null distribution of -2(Iog A)/( I + K )  is x;,  where 

k k 

/= 2 m,mJ=f 
i <  J 

Two points are worth noting. First, if the sample is normally distributed 
K =0, and this result agrees with that derived in Section 11.2.4. Secondly, if 
K is unknown and is estimated by a consistent estimate ri then the limiting 
null distribution of -2(IogA)/( 1 + I?) is also x;. Monte Carlo studies 
carried out by Muirhead and Waternaux (1980) for the case k = 2  indicate 
that the usual test statistic -21ogA should be used with extreme care, if at 
all, for testing H: Z = Z* when the underlying population is elliptical with 
longer tails than the normal distribution. For example, 200 samples of size 
N = 100 drawn from the elliptical 7-variate t distribution on 5 degrees of 
freedom ( m ,  =3, m2 =4) when L: = I7 gave an observed significince level 
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for the test hased on -210gA, of 56% for a nominal level of 10%. On the 
other hand, a test based on -2(IogA)/(l+i), where 2 is a consistent 
estimate of K, yielded an observed significance level of 10.5% for the same 
nominal level of 10%. For further details about the Monte Carlo study, and 
for a method of estimating )I the interested reader is referred to Muirhead 
and Waternaux (1980). 

11.2.8, Other Test Statistics 

A number of other invariant test statistics have been proposed when k = 2  
for testing the null hypothesis H: Z,, =O. In terms of the latent roots 
r: > - . . > r:, of S;'SI2SG1S2, these include 

and 

and the largest root r:. We reject H for large values of these three statistics. 
A comparison of the powers of the tests based on A, L,, L,, and r: was 
carried out by Pillai and Jayachandran (1968) for the case m I = 2 .  They 
concluded that for small deviations from H ,  or for large deviations when pf 
and p; are close, the test based on L, appears to have higher power than 
that based on A ,  while A has higher power than L,. The reverse ordering 
appears to hold for large deviations from H with pf - p i  large. The largest 
root r: has lower power than the other three except when p:  is the only 
deviant root. 

An expression for the distribution function of r: will be obtained in 
Section 11.3.4. Asymptotic expansions for the distributions of L ,  and L ,  
have been obtained by Lee (1971a). For a survey of other results concerning 
these tests the reader is referred to Pillai (1976, 1977). 

11.3. CANONICAL CORRELATION ANALYSIS 

11.11. Introduction 

When observations are taken on a larBe number of correlated variables it is 
natural to look at various ways in which the number of variables might be 
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reduced without sacrificing too much information. When the variables are 
regarded as belonging to a single set of variables a principal components 
analysis (Chapter 9) is often insightful. When the variables fall naturally 
into two sets an important exploratory technique is canonical correlation 
analysis, developed by Hotelling (1936). This analysis is concerned with 
reducing the correlation structure between two sets of variables X and Y to 
the simplest possible form by means of linear transformations on X and Y. 
The first canonical variables UI, V,  are the two linear functions U, = a ; X ,  Vl 
=p;Y having the maximum correlation subject to the condition that 
Var(U,)=Var(V,)= I ;  the second canonioal variables U2, V, are the two 
linear functions U2 = a; X ,  V2 = &Y having maximum correlation subject to 
the conditions that U2 and V2 are uncorrelated with both U, and V, and 
have unit variance, and so on. When the two sets of variables are large it is 
often the case that the first few canonical variables exhibit high correlations 
compared with the remaining canonical variables. When this occurs it is 
natural, at least as an exploratory device, to restrict attention to the first few 
canonical variables. In essence, then, canonical correlation analysis is con- 
cerned with attempting to characterize the correlation structure between two 
sets of variables by replacing them with two new sets with a smaller number 
of variables which are pairwise highly correlated. 

1 I .  3.2. 
and Canonical Variables 

Suppose that X and Y are, respectively, p X 1 and q X I random vectors 
having covariance matrix 

Population Canonical Correlation Coefficients 

where Z,, is p X  p and 2,, is q X q .  We will assume without loss of 
generality that p 5 4 .  Let k =rank(Z12). From Theorem A9.10 there exist 
HE O( p), QE O( q )  such that 

where 
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with pl ,  . . . , pk ( 1  2 pI 2 * - 2 pk > 0) being the positive square roots of 
p i ,  . . . , p i ,  the nonzero latent roots of Z, 'Z12Z~21Z2 , .  Putting 

(4) L ,  = H X , ~ ~ ,  L ~ = Q x ; ~ / ~ ,  

i t  then follows that 

( 5 )  L , C , , L ;  = Ip, L,Z2,L;  = I, and L,Z' , ,L;  = j .  

Putting U= L,X, V =  L,Y so that 

where L = diag( L , ,  L 2 ) ,  we then have 

(7) cov( ; ) = L x L ' = [ ! p  P' Iq 'I. 
Hence, by means of linear transformations on X and Y the correlation 
structure implicit in the covariance matrix C has been reduced to a form 
involving only the parameters p , , .  . . ,Pk. This reduction has already been 
carried out in Theorem 11.2.2. The parameters pl,. . .,pk whose squares are 
the nonzero latent roots of Z;'Cl2X~'Z2, or, equivalently, the nonzero 
latent roots of Z~1Z2,Z, 'Z12, arc called the population canonical correla- 
tion coefficients. The covariance matrix (7) of U,V is called a canonical 
form for Z under the group of transformations 

Z - BZ'B', 

where B=diag(B,,, 4,) with B , ,  and B,, being nonsingular p X p and 
q X q matrices, respectively, since i t  involves only a maximal invariant under 
the group (see Theorem 11.2.2). Letting U'=(U, ,U2,  ...,L$) and V'= 
(V, ,  ..., Vq) the variables y, y. are called the i th canonical variables, i =  
I , .  . . , p .  That these variables have the optimal correlation properties men- 
tioned in Section 11.3.1 will be established later. Note that, from ( 5 )  

(8) L l x , 2 Z G 1 ~ 2 1 ~ ;  = (LIZ12 G N L22224 1-Y L222, t'l) 

= PIqP' 

= PP'= diag( pi, . .  . ,p ; ,o , .  . .,o) ( p x p ) .  
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Hence, if L; =[I,  ... I,] it follows that I, ( i = l ,  ..., k )  is a solution of the 
equation 

normalized so that I ;Z , , l ,= l .  If the pi's are distinct I , ,  ..., l k  are unique 
apart from sign. Similarly, 

so that if Li=[lT ... I:] it follows that I: ( i = l ,  ..., k )  is a solution of the 
equation 

( 1  1) ( ~ 2 , X i 1 ~ , ,  - pfZ2,)I: =o, 

normalized so that l:tZ221: = 1. Again, if the p,'s are distinct It, ..., 1: are 
unique apart from sign. Once the signs have been set for I , ,  ..., l k  they are 
determined for IT,. . . , I :  by the requirement that 

which follows from (5).  Note also that 

so that 

and 

(15) Z,,I, =O ( i  = k + I , . .  . , p ) ,  

and similarly, since 
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i t  follows that 
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and 

In one matrix equation (14) and (17) become 

- P A ,  ‘I2 ]( ::)=O ( i = l , . . . , k ) .  
=,I - P J n  

The canonical variables have the following optimality property. The first 
canonical variables U, = I ;  X, V1 = IY’Y are linear combinations of the com- 
ponents of X and Y, respectively, with unit variance having the largest 
possible correlation, and this correlation is p , ;  then out of all linear 
combinations of the components of X and Y which are uncorrelated with 
both U, and V, and have unit variance the second canonical variables are 
most highly correlated, and the correlation is p 2 ,  and so on. I n  general, out 
of all linear combinations of X and Y with unit variance which are 
uncorrelated with every one of Ul,.. ., U,- ,, V,, ... , 5- ,, the j t h  canonical 
variables U,, < have maximum correlation pi, j = I , .  . . ,k. We will prove this 
assertion in a moment. First note that the correlation between two arbitrary 
linear functions a‘X and P‘Y with unit variance is 

The condition that a’X be uncorrelated with U, =l:X is 

( 2 ) )  O =  a ’ X l l l l  

using ( I  7), and hence 

(22) O= a’X,21: 

so that a ‘ X  and V; =I:’Y are uncorrelated. Similarly the condition that P’Y 
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be uncorrelated with V; =I:’Y is 

using (14), and hence 

(24) 0 = 1: z I2 P , 

so that P’Y and =I:X are uncorrelated. The above optimality property of 
the canonical variables is a consequence of the following theorem. 

THEOREM 11.3.1. Let Z be partitioned as in (1) where Zl2 has rank k 
and let pi, . . . , p i  ( p I I  ?p,>O) be the nonzero latent roots of 
Z;1Z,22;2122,. Then 

(25) pi =supa‘ZJ3 =l;Xl2I;, 

where the supremum is taken over all a€ RP, PE Rq satisfying af2,,a = I ,  
p’222fl=1, a’21,1r=0, p’Z221:=0 ( i = 1 ,  . . .J-  1). 

Putting y = Zl(’a and 6 = Xbg2P we have Proof. 

by the Cauchy-Schwan inequality. Now from (4) and (10) we have 

so that 

where bt,...,bp are the columns of Q‘. Using this in (26). together with 
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y’y = 1 ,  we have 

1 i = k + l  

From (12) we have l’,X121t = p , ,  and hence 

pI =supa‘ZlzP =I’,X,,lf, 

where the supremum is taken over all a€ RP, PE R9 with a’Zl,a= 1, 
f3’Cz2p = 1. Note that from (12) this is attained when =I: = 2&21/2bl and 
a =I, = X f i 1 / * h l ,  where h l , . , . , h p  are the columns of H .  Next,  again putting 
y = X:(’a, 6 = Z\<2j3, we have by the same argument 

Now, when j3’X2,17 = O  we have 6’bl = O  and hence 

5 pz[ (6’b2)’ + * - + ( B’b,)2] 

5 Pz. 
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From (12) we have l’J121; = p 2 ,  where l$Zlt l l  =h;ht =O. Hence 

pz =supa’Z1,P =1;2,,1+2, 

where the supremum is taken over all a E R P ,  P E R 4  with a’xIta=l, 
P’Z,,fl= I ,  a ’ZIII t  =0, P‘Z,,l~ =O. The rest of the proof follows using a 
similar and obvious argument. 

I t  is worth noting that the canonical correlation coefficients can be 
interpreted as multiple correlation coefficients. From (8) we have 

pf = I;.z 2c x 21’1 I 

Noting that Z,,I, is the vector of covariances between tl, =l:X and Y and 
that Var(U,)=I;Z,,I, this shows that pI is the multiple correlation cofficience 
between y and Y. A similar argument also shows that pI is the multiple 
correlation coefficient between V; =I:’Y and X. 

1 I .3.3. Sample Canonical Correlation Coelficienrs 
and Canonical Variables 

In most practical applications the covariance matrix Z is unknown, and 
hence so are the canonical correlations and canonical variables. These then 
have to be estimated. Suppose that 2 is the maximum likelihood estimate of 
2 formed from a sample of size N observations on (X’,Y’)’ drawn from a 
NP+@, X) distribution, and put A = N e  and S =  n-’A where n = N - 1 .  
Partition A and S similarly to 2 as 

where A I and S, , are p X p and A, and S,, are q X q, Assuming, as before, 
t h a t p s q ,  let rf, ...,< be the latent roots of S;’St2Sz;1S21 ( 1 > r f >  > 
rp‘ > O ) .  (These are the same as the latent roots of A;1A12A;1A2,.)  These are 
distinct and nonzero with probability I and are estimates of the latent roots 
of 2;’2122;1X21 (some of which may be zero). Their positive square roots 
r l ,  . . . , rp( I > r ,  > - * * > rp >O) are called the sample canonical correlation 
coefficients. The i th  population canonical variables q =I:X, Y,  = IY’Y are 
estimated by 4 =iiX, V; =i:’Y, called the ith sample canonical variables, 
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where i, and i f  satisfy equations similar to those satisfied by 1, and 1: with Z 
replaced by S and p, by r,. Hence from (9), i,, for i = I , .  . . , p ,  is a solution of 
the equation 

(28) (s,2sg1s2, - r l Z ~ , , y l  =o,  

normalized so that i’,S, ,I, = 1. Similarly, from ( I  I ) ,  i: is a solution of 

normalized so that iy’S22i: = 1. Equations (14), (17), (18), and (19) become, 
respectively, 

and 

Note that r, is the sample multiple correlation coefficient between r / ;  and Y, 
and also between and X. 

Tractable expressions for the exact moments of r , ,  . . . , rp arc unknown but 
asymptotic expansions for some of these have been found by Lawley (1959). 
If k =rank(C,,) and pf is a simple nonzero latent root of 2’;;’Z,,2,Z1Z2, 
then 

(34) 

and 

(35) Var( r , )  = 
n 
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11.3.4. 

We have noted in Section 11.2 that invariant test statistics used for testing 
the hypothesis of independence between two vectors of dimensions p and q, 
respectively ( p 5 q) ,  are functions of the squares of the sample canonical 
correlation coefficients r f , .  . . , r i .  The exact joint distribution of r:, . . . , r i  
can be expressed in terms of the two-matrix F hypergeometric function 
introduced in Section 7.3, having an expansion in terms of zonal polynomi- 
als. The result is given in the following theorem due to Constantine (1963). 

Dislribulions 01 the Sample Canonical Correlation Coeflicienrs 

2. I 

THEOREM 11.3.2. Let A have the W,+,(n, Z) distribution where p s q ,  
n 2 p + q and Z and A are partitioned as in ( I )  and (27). Then the joint 
probability density function of r:, ..., r i ,  the latent roots of A; 'A , ,Ag 'A2 , ,  
is 

P 

where pi,  . . . , p i  are the latent roots of Z,'X,,Z,'Z,, (some of which may 
be zero), P z  =diag(p: ,..., p,'), and R2 =diag(r: ,..., r i ) .  

Most of the work involved in the proof has already been carried 
out in the proof of Theorem 11.2.6. In  that proof with m ,  = p ,  m 2  = q, we 
saw that r:,  . . . , r i  are the solutions of the equation 

(37) det(U'U- rZ(U'U+ V'V) )=O.  

Proofi 

We also saw that, conditional on X ' X ,  which is W9(n,Zq),  the random 
matrices U'U and V'V are independent, with U'U having the Wp(q, a, S Z )  
distribution and Y'V having the W,(n - q, a) distribution, where cf, = I - P2 
and 
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with 
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2 Hence conditional on X'X the density function of the latent roots r:, . . . ,rp 
of (U'U)(U'U+ V'V) ' . '  follows from the density function of the latent roots 
f,, ...,/, of(U'U)(Y'V)-'giveninTheorein 10.4.2 byputtingf;=r12/(1 -r12), 
r = q ,  n - p = n  - 4, m = p ,  and is 

etr( - ~ Q P - l P X ' , ~ P ' ) l ~ . ~ r ) ( i l n ;  f q ;  ~(P-IPx'xP', R ' )  

P 

Multiplying this by the Wq(n, l q )  density function for X'X gives the joint 
density function of r : , . .  ,,$ and X'X as 

We now integrate with respect to X'X using Theorem 7.3.4 to show 
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The desired result now follows if we note that 

so that 

and that 

The reader should note that the distribution of r f ,  . . . ,rp' depends only on 
p:, . . . ,pp" [Some of these may be zero. The number of nonzero p, is rank 
(Z,,).] This is because the nonzero p: form a maximal invariant under the 
group of transformations discussed in Section 1 I .2.1. 

The null distribution of r f , .  . . , r - ,  i.e., the distribution when p: = - - = 
p; =O ( X 1 2  =0) follows easily from Theorem 11.3.2 by putting P 2  =O. 

COROLLARY 11.3.3. 
the latent roots of A,'A,,A;'A,,, is 

When P 2  =O the joint density function of r f , .  . . ,rp 2 , 

It is worth noting that the null distribution (38) could also have been 
derived using Theorem 3.3.4. In the proof of Theorem 11.3.2 we noted that 
r: ,..., rp2 are the latent roots of U'U(U'U+ V'V) - ' ,  where, if P2 =0, U'U 
and V'V are independent, U'U is W,(q, f,), and V'V is Wp(n - q, I ) .  
Corollary 11.3.3 then follows immediately from Theoren 3.3.4 on putting 
n ,  = q, n 2  = n - q, and m = p. 

In theory the marginal distribution of any single canonical correlation 
coefficient, or of any subset of r: ,..., r i  can be obtained from Theorem 
1 1.3.2. In general, however, the integrals involved are not particularly 
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tractable, even in the null case of Corollary 1 I .3.3. The square of the largest 
sample canonical correlation coefficient r: is of some interest as this can be 
used for testing independence (see Section 11.2.8). In the case when t = 
i - (n  - p - q - 1) is a positive integer an expression can be obtained for the 
distribution function of r: as a finite series of zonal polynomials. The result 
is given in the following theorem due to Constantine. 

THEOREM 11.3.4. Suppose that the assumptions of Theorem 11.3.2 hold 
and that I = { ( n  - p - q - 1)  is a positive integer. Then the distribution 
function of r: may be expressed as 

(33) 

where 

Here Z* denotes summation over those partitions K = ( k , ,  , . . ,k,,) of k with 
largest part k, 5 I ;  

( 3  
is the generalized binomial coefficient defined by (8) of Section 7.5; and 
(a ) ,  is the generalized hypergeonietric coefficient given by (2) of Section 7.3. 

As in the proof of Theorem 1 1.3.2 we start with r:, . . . , r i  being 
the latent roots of U'U(U'U + VV)- ' where, conditional on X'X, which is 
WJn, iq), U'U and V'V are independent with VU being W,(q, 4.Q) and 
V'V being W,(n - q, a), where @ = I - P2, 52 = (o-'PX'Xp', and 

Proof: 
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Hence, conditional on X'X, the distribution function of the largest latent 
root r: of VU(U'U + V'V)-' follows from the distribution function of the 
largest root f, of ( V U ) ( V ' V ) - '  given in Theorem 10.6.8 by replacing x 
there by x/( I - x )  and putting r = q, n - p = n - q, m = p. This shows that 

(40) P ( r f  5 x I X' X) = x p q / 2  etr [ - 4 ( I - x ) Q - ' P x ' x P  J 
PI 

2 r ,*L:(-fxcD-'PX'xP')  k! , 
k = O  K 

where y = f( q - p - 1) and L: denotes the Laguerre polynomial correspond- 
ing to the partition K of k (see Section 7.6). To find the unconditional 
distribution function of r: we multiply (40) by the W4(n, I q )  density 
function for X'X and integrate with respect to X'X. This gives 

etr[ - i X ' X (  1+(1 -x)p'@-'p)]det( X'X)'"- q - 1 ) / 2  

*L,'( - j x @ - ' B x l x B ' ) ( d (  YX)). 

Using the zonal polynomial series for L,' (see (4) of Section 7.6) this 
becomes 
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where the integral has been evaluated using Theorem 7.2.7. The desired 
result now follows on noting that 
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and that 

l l / 2  
det ( l+(1-x)P~$- 'P) -" '2=  n P (3) I -p2 

r = l  1-xp, 

When pI = . . = pp = O  the distribution function of r: in Theorem I I .3.4 
simplifies considerably. 

COROLLARY 11.3.4. Whenp ,=  - . .  = p p = O a n d t = i ( n - p - 4 - 1 ) i s  
a positive integer, the distribution function of r: may be expressed as 

11.3.5. Asymptotic Distributions of the Sample Canonicid 
Correlation Coefficients 

The F:P) function in the density function of r:, . . , ,r; coriverges very 
slowly for large n and it is difficult to obtain from the zonal polynomial 
series any feeling for the behavior of the density function or an understand- 
ing of how the sample and population canonical correlation coefficients 
interact with each other. It makes sense to ask how the zF,(P) function 
behaves asymptotically for large n. It turns out that an asymptotic represen- 
tation for the function involves only elementary functions and tells a great 
deal about the interaction between the sample and population coefficients. 

One of the most commonly used procedures in canonical correlation 
analysis is to test whether the smallest p - k population canonical correla- 
tion coefficients are zero. If they are, then the correlation structure between 
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the two sets of variables is explained by the first k canonical variables and a 
reduction in dimensionality is achieved by considering these canonical 
variables as new variables. We will investigate such a test later in Section 
1 1.3.6. The following theorem gives the asymptotic behavior of the 2F,(P) 
function under the null hypothesis that the smallest p -  k population 
canonical correlation coefficients are zero. 

THEOREM 11.3.5. >r,' > O  
andP2=diag ( p i  ,..., pi.0 ,..., 0) ( p x p ) ,  where I > p : > . . . p i > O  then, 
asn-+oo, 

If R 2  =diag(r: ,..., I,'), where r: > 

(42) 

k n  

where 

(43) c, , = ( r,2 - 52) ( pf - pf ) ( i  = 1,. . . , k; j = I , .  . . , p  ) 

and 

For a proof of this theorem the interested reader is referred to Glynn and 
Muirhead (1978) and Glynn (1980). The proof involves writing the 2F,(P) 
function as a multiple integral and applying the result of Theorem 9.5.1. 
The multiple integral is similar to (22) of Section 10.7.3 for the 
function but involves even more steps. 

Substitution of the asymptotic behavior (42) for 2 ! / P )  in (36) yields an 
asymptotic representation for the joint density function of r:, . , , , r i .  The 
result is summarized in the following theorem. 

THEOREM 11.3.6. An asymptotic representation for large n of the joint 
density function of r:, . . . , r i  when the population canonical correlation 
coefficients satisfy 
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where 

with K, given by (44). 

This theorem has two interesting consequences. 

COROLLARY 11.3.7. Under the conditions of Theorem 11.3.6 the 
asymptotic conditional density function for large n of r i+  ,, . . . ,r;, the 
squares of the smallest p - k sample canonical correlation coefficients, given 
the k largest coefficients r:, . . , ,r:, is 

P 

k + l  

where K is a constant. 
Note that this asymptotic conditional density function does not depend 

on pil...lpi, the nonzero population coefficients, so that r f  l...,ri are 
asymptotically sufficient for p i , .  . . ,pk .  2 
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COROLLARY 11.3.8. Assume that the conditions of Theorem 11.3.6 
hold and put 

(49) x,=ntj2 (for j =  k + I  ,..., p ) .  

Then the limiting joint density function of x,, . . . , xp  as n -, 00 is 

P P 

where +( 3 )  denotes the standard normal density function. 

This result, due originally to P. L. Hsu (1941b), can be proved by making 
the change of variables (49) in (46) and letting n --L 00. Note that this shows 
that asymptotically the x,’s corresponding to distinct nonzero p, ’s  are 
marginally standard normal, independent of all x,, !+ i ,  while the x,’s 
corresponding to zero population canonical correlation coefficients are 
non-normal and dependent, and their asymptotic distribution is the same as 
the distribution of the latent roots of a ( p  - k ) X (  p - k) matrix having the 
WP-,(q - k ,  I p - k )  distribution. 

It is interesting to look at the maximum likelihood estimates of the 
population coefficients obtained from the marginal distribution of the 
sample coefficients. The part of the joint density function of r:, . . , ,rp 
involving the population coefficients is, from Theorem 1 1.3.2, 

2 

P 

L*= i = l  n ( 1  - pf)”’22F/J”( in, f n ;  f q ;  P 2 ,  R2 L 

called the marginal likelihood function. When the population coefficients 
are all disinct and nonzero ( 1  > p i  > - > pp >O), Theorem 11.3.5 (with 
k = p )  can be used to approximate L* for large n, giving 

(52)  L*- K * L i L 2  
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where 

and K is a constant (depending on n ,  r: ,..., r:, but not on p ,,..., pp and 
hence irrelevant for likelihood purposes). The values of the p, which 
maximize L ,  are 

pi = /; c;. = I , . .  . , p ) ,  

i.e., the usual maximum likelihood estimates. The values of the pi  which 
maximize L I L2 are 

( i ‘ l ,  . . . , p ) .  

These estimates utilize information from other sample coefficients, adjacent 
ones having the most effect. It is natural to apply Fisher’s z transformation 
in the canonical correlation case. Lawley (1959) noted that, as estimates of 
the parameters L, = tanh-’pi, the statistics z ,  = tanh-lr, fail to stabilize the 
mean and variance to any marked extent. In fact t, has a bias term of order 
n - I .  The estimate 

fares much better. Substituting (53) for 8, in (54) it is easily shown that 

and using (34) and (35) the mean and variance of 2, are 

(56) E ( f , ) = & + O ( n - * )  
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and 

(57) 
1 

Var(i,)=- +o(n-2). n 

Hence Fisher’s z transformation applied to the maximum marginal likeli- 
hood estimates 8, not only stabilizes the variance to order n-I but also 
provides a correction for bias. 

I I.3.6. 

In Section 11.2 we derived the likelihood ratio test of independence of two 
sets of variables X and Y where X is p X I and Y is q X I ,  p 5 q, i.e., for 
testing the null hypothesis that p I  = * - -  =p,=O (C,,=O). If this is 
accepted there are clearly no useful canonical variables. If i t  is rejected i t  is 
possible that p, > p2 = - - - = pp = O  (rank (XI , )=  I], in which case only the 
first canonical variables are useful. If this is tested and rejected, we can test 
whether the smallest p - 2 population canonical correlation coefficients are 
zero, and so on. In practice, then, we test the sequence of null hypotheses 

Determining the Number of Useful ,Canonical Variables 

Hk : pk+ I = * * * = pp =o 

for k =0, 1,. . . . p  - 1. We saw in Section 1 I .2 that the likelihood ratio test of 
H,: pI = - - = pp = O  is based on the statistic 

P 

r = l  
w,= n ( I - r l z )  

where r:, . . . , r i  ( 1  > r: > * > r i  > O )  are the squares of the sample canoni- 
cal correlation coefficients and a test of asymptotic level a is to reject H, if 

where c,(a) is the upper l0OaS point of the x ;  distribution, with f = pq. 
Fujikoshi (1974a) has shown that the likelihood ratio test of Hk rejects Hk 
for small values of the statistic 

(59) 

The asymptotic distribution as n + w of - n log W, is ,y& - hXq - k) when Hk 
is true. An improvement over - n log w, is the statistic -[n - J(p + q + 
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I)]log Wk suggested by Bartlett (1938, 1947). The multiplying factor here is 
the same as that in ( 5 8 )  used for testing Ifo. A further refinement to the 
multiplying factor was obtaincd by Lawley (1959) and Glynn and Muirhead 
(1978). We will now indicate the approach taken by Glynn and Muirhead. 

We noted in Corollary 11.3.7 that the asymptotic conditional density 
function of rk”, I , .  . . , r i  given r f , .  . . , r i  is 

(60) 

where K is a constant. Put 

so that the asymptotic distribution of nTk is x : ~ - ~ ) ( ~ - ~ )  when If, is true. 
The appropriate multiplier of 7k can be obtained by finding its expected 
value. If we let E, denote expectation taken with respect to the conditional 
distribution (60) of r i +  . ,r;, given r:, . . , ,r,‘, the following theorem gives 
the asymptotic distribution of the likelihood ratio statistic and provides 
additional information about the accuracy of the x 2  approxirnation. 

THEOREM 11.3.9. When the null hypothesis t / k  is true the asymptotic 
distribution of the statistic 

Proo/. The conditional distribution (60) is the same as the distribution 
given by (30) of Section 10.7.4, where we put 

u,=r ,  2 , m = p ,  n , = q ,  n 2 = n - y .  

The theorem now follows by making these substitutions in Theorem 10.7.5. 
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It follows from Theorem 11.3.9 that if n is large an approximate test of 
level a of Hk is to reject Hk if Lk > c,(a), the upper IOOa% point of the x:  
distribution, with r =( p - k) (q  - k). 

It should be noted that this test, like the test of independence between 
two sets of variables, is extremely sensitive to departures from normality. If 
i t  is believed that the distribution being sampled is elliptical with longer tails 
than the normal distribution, a much better procedure is to adjust the test 
statistic for nonzero kurtosis. For work in this direction the interested 
reader is referred to Muirhead and Waternaux (1980). 

PROBLEMS 

11.1. Let W be the statistic defined by (8) of Section 11.2 for testing 
independence between k sets of variables. Show that when k = 3, m 2  = m ,  = 1 
the null density function of W can be expressed for all m, in the form 

[ H i n t :  With the help of the result of Problem 5.1 I(b) find the hth moment 
of this density function and show that i t  agrees with the hth moment of W 
given in the proof of Theorem 1 1.2.4 (see Consul, t967).] 

11.2. Let X b e p x l ,  Y b e q x l  ( p s q ) ,  and suppose that 

c*v( ;) = 

1 a ... a : P P ... P 
a 1 ... a : P  P * - .  P 

a a ... 1 : p /3 ... p 
p p ... p 1 y ... Y 
p p ... p : y 1 ... Y 

p /3 ... p : y y ... 1 

a .  . .  
. . . . . . . . . . . . . . . . . . . . . . . . .  
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Find both the canonical correlation coefficients between X and Y and the 
canonical variables. 

11.3, Let b, be the maximum marginal likelihood estimates of the ith 
population canonical correlation coefficient p,, i = 1,. . . , p ,  given by (53) of 
Section 11.3 (assuming 1 > pI > - * - > pp > O ) .  Putting 2, = tanh.-'p,, show 
that 

~ ( f , ) = [ , + ~ ( n - ~ ) ,  Var ( i , )=n+O(n-2 ) ,  1 

where I, = tanhK' p,. 

11.4. (a) Let M=(x,y;xEH"',yEH"',x#O,y#O,x'y=O}. If X is an 
m X m positive definite matrix with latent roots A ,  2 - * 2 A,, > O  and 
associated latent vectors xI,  ... ,x,,,,x~x, = 1, i =  1 ,..., m,x:x, = O  ( i  # j), 
prove that 

and that 

when x = x I  + x m  and y = x I  -x,. 
(b) Suppose X is partitioned as 

where XI, is p X p and X Z 2  is q X q with p + q = m. The largest canonical 
correlation coefficient is 

where the supremum is taken over all a€ RP, PE Rq with a'Xlla=l, 
P'Z2,P = 1. Show that 
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where A ,  2 - a - 2 A, PO are the latent roots of C. 
(c) For the covariance matrix 

where 12 pI 2 . . 1 pp 20, show that the largest and smallest Latent roots 
are A ,  = 1 + p,  and A, = 1 - p, .  This shows that the inequality in (b) is sharp 
(see Eaton, 1976). 

11.5. Suppose that X ( p  X 1) and Y ( q  X 1) are jointly distributed with 
p 5 q, and let p , ,  . . . ,pp be the population canonical correlation coefficients 

Suppose that r extra variables, given by the components of 
z ( r  X I), are added to the q set, forming the vector Y* =(Y' : 2')'. 
Let uI,  ..., up (al  1 ... ?up)  be the population canonical corre- 
lation coefficients between X and Y*. Show that 

u,'p, ( i = l ,  . . . , p ) .  

Suppose that the r extra variables in Z are added to the p set, 
forming the vector X* = ( X  : Z')'. Assume p + r 5 9 .  Let 
a,, . . .,a,,+, be the canonical correlation coefficients between X* 
and Y. Show that 

S , L ~ ,  ( i = l ,  ..., p )  

(see Chen, 1971). This shows that the addition of extra variables 
to either set of variables can never decrease any of the canoncial 
correlation coefficients. 

11.6. Obtain Corollary 11.3.8 from Theorem 11.3.6. 

11.7. Suppose that X,, ..., X N  is a random sample from the IV,(p,Z) 
distribution, where Z =(qj) .  Let R = ( q j )  be the sample correlation matrix 
formed from XI, ..., X N .  Show that the likelihood ratio statistic for testing 
the null hypothesis H: u,, =O for all i # j against the alternative hypothesis 
K: a,, # O  for exactly one unspecified pair ( i ,  j), is 

Moran ( I  980). 



APPENDIX 

Some Matrix Theory 

A I .  INTRODUCTION 

In this appendix we indicate the results in matrix theory that are needed in 
the rest of the book. Many of the results should be familiar to the reader 
already; the more basic of these are not proved here. Useful references for 
matrix theory are Mirsky (1959 ,  Bellman (1970), and Graybill (1969). Most 
of the references to the appendix earlier in the text concern results involving 
matrix factorizations; these are proved here. 

A2.  DEFINITIONS 

A p X q  matrix A is a rectangular array of real or complex numbers 
a , , ,  a , * , .  ,. ,app, written as 

so that a,, is the element in the ith row and j t h  column. Often A is written 
as A =(u,,). We will assume throughout this appendix that the elements of a 
matrix are real, although many of the results stated hold also for complex 
matrices. If p = q A is called a square matrix of order p. If q = 1 A is a 
column uector, and if p =  1 A is a row vecfor. If aij=O for i = l ,  . . . , p ,  
j = 1 ,... ,q, A is called a zero matrix, written A =0, and if  p = q,  a,, = 1 for 
i = 1,. . . ,p and aij = 0 for i # j then A is called the identity matrix of order 
p, written A = I or A = Ip. The diagonul elements of a p X p matrix A are 
aI I. a22,. . . , app. 
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The transpose of a p X q matrix A,  denoted by A’, is the q X p matrix 
obtained by interchanging the rows and columns of A,  i.e., if A=(a, , )  then 
A’=(a,,). If A is a square matrix of order p it is called symmetric if A = A’ 
and skew-symmetric if A = - A’. If A is skew-symmetric then its diagonal 
elements are zero. 

A p X p matrix A having the form 

so that all elements below the main diagonal are zero, is called upper- 
triangular. If all elements above the main diagonal are zero i t  is called 
lower-triangular. Clearly, if A is upper-triangular then A’ is lower-triangular. 
If A has the form 

so that all elements off the main diagonal are zero, i t  is called diagonal, and 
is often written as 

A = diag( a, I , .  . . , app ). 

The sum of  two p X q matrices A and B is defined by 

A + B = ( a , , + b , , ) .  

If A is p X q and B is 4 X r (so that the number of columns of A is equal to 
the number of rows of B )  then the product of A and B is the p X r matrix 
defined by 

The product of a matrix A by a scalar a is defined by 

aA = ( aa,,). 
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The following properties are elementary, where, if products are involved, it 
is assumed that these are defined: 

A +( - I )A  =O 
(AB) ’=  A’A’ 
(A’)’ = A 
( A +  B) ’= A‘+ B’ 
A( B C ) = (  A E ) C  

( A +  B ) C =  AC+ BC 
A1 = A .  

A( B t- C ) =  A B + AC 

A p X p matrix A is called orrhogonol if AA‘= Ip and idempotent if A’ = A .  
If A = ( a , , )  is a p X q  matrix and we write 

A , ,  = (u , , ) ,  i -  1,  ..., k ; j = l ,  ..., / 

A,, “ ( a , , ) ,  i = l , . .  . , k ,  j = I  + 1 ,..., q 

A 2 , = ( u , , ) , i = k  + l , . . . , p ; j = l , , . . , /  

A,, =(u, , ) ,  i = k t I ,..., p ; j =  I +  1 ,..., q 

then A can be expressed as 

and is said to bepuriifioned inlo submatrices A, , ,  A, , ,  A,, and A,,, Clearly 
if  B is a p X q matrix partitioned similarly to A as 

where B , ,  is k XI, B I Z  is k X ( q  -/), B,, is ( p -  k ) X / a n d  B2, is ( p  - k ) X  
( 9  - /), then 
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Also, if C is a q X r matrix partitioned as 

where C,, is / X m ,  C,, is / X ( r - m ) ,  C,, is ( 9 - I ) X m ,  and C,, is 
( 9  - / ) X ( r  - m),  then it is readily verified that 

A3. DETERMINANTS 

The dererminanf of a square p X p matrix A ,  denoted by det A or / A [ ,  is 
defined by 

det A = E,,alJ,aZJ2.. . .,aPJr 
n 

where C, denotes the summation over all p! permutations R = ( j , , .  . . , J p )  of 
( I , .  . . , p )  and en = + 1 or - 1 according as the permutation n is even or odd. 
The following are elementary properties of determinants which follow 
readily from the definition: 

(i) If every element of a row (or column) of A is zero then det A =O. 

(ii) det A =det A’. 

(iii) If all the elements in any row (or column) of A are multiplied by a 
scalar a the determinant is multiplied by a. 

(iv) det(aA)=aPdet A. 

(v) If B is the matrix obtained from A by interchanging any two of its 
rows (or columns), then det B = -det A. 

(vi) If two rows (or columns) of A are identical, then det A =O. 

(vii) If 

b , , + c , ,  b , , + c , , ,  ..*, b , , + C l ,  

aPP I* A = [  a22 9 ..., 

u p 2  1 ... , I 

so that every element in the first row of A is a sum of two scalars, 
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then 

A similar result holds for any row (or column). Hence i f  every 
element in ith row (or column) of A is the sum of n t e rm then 
det A can be written as the sum of n determinants. 

(viii) If B is the matrix obtained from A by adding to the elements of its 
i th row (or column) a scalar multiple of the corresponding ele- 
ments of another row (or column) then det B =det A.  

The result given in the following theorem is extremely useful. 

THEOREM A3.1. If A and B are both p X p matrices then 

det(AA)=(det A)(det B )  

Proo/. From the definition 

where B ( k l ,  ..., k p )  denotes the p X p matrix whose ith row is the k,th row 
of B. By property (vi) d e t B ( k ,  ,..., k,)=O i f  any two of the integers 
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k,, . . . , k, are equal, and hence 

P P I' 

det(AB)= 2 - . .  2 detB(k ,,..., k,) 
k l = l  k , = I  

k , # k , #  . . '  Zk, 

By property (v) it follows that 

det B( k ,  ,. . . , k p )  = E,det B ,  

where E, = + 1 or - 1 according as the permutation a = ( k , , . .  . ,kp) of 
(1,. , . , p )  is even or odd. Hence 

det(AB)= XE,,( fi u i k , )  .det B , r = l  

= (det A )(det B ) .  

A number of useful results are direct consequences of this theorem. 

THEOREM A3.2. I f  A , ,  ..., A,, are all p X p matrices then 

det( A I A 2.. .A ,  ) = (det A , )(det A ) . , . (det A ,, ) . 

This is easily proved by induction on n.  

THEOREM A3.3. If A is p X p ,  det(AA')?O. 

This follows from Theorem A3.1 and property (ii). 

THEOREM A3.4. 
9 X q then 

If A , ,  is p X p ,  A, ,  is p X q, A,, is q X p ,  and A,, is 

det [ A" ''1 = det [ A" A" ] = (det A, , )(det A 1, 
22 A21 22 

Proo/. It is easily shown that 

det[ '' 0 A22 ]=detA2, 

anu 

det[ :y]=det A , , .  
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Then from Theorem A3. I ,  

det[ :::]=det[ I’ O A  :,ldet[ ’dl :y]=(det Al,)(det A Z 2 ) .  

Similarly 

det[ i l l  A” ] =det[ 11 det[ ,‘. ] = (dct All)(det A 2 2 ) ,  
21 22  2 1  A 2 1  

THEOREM A3.5. If A is p X 9 and B is 9 X p then 

det( Ip  + A B )  =det( I9 + BA) .  

Prooj We. can write 

I,,+ A B  A A IP  [ 0 I q ] = [ ? B  1 9 ] [  B 

so that 

( 1 )  

Similarly 

det( lp + A B )  =det [ JB 4. 

so that 

det (Iq + BA) = det [-I.. 4- 
Equating ( I )  and (2) gives the desired result, 

Two additional results about determinants are used often. 

(ix) If T is m X m triangular (upper or lower) then det T=ny!&. 

(x) If H is an orthogonal matrix then det H = t 1. 
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A4.  MINORS AND COFACTORS 

If A =(a,,) is a p X p matrix the minor of the element aIJ is the determinant 
of the matrix MI, obtained from A by removing the ith row andjth column. 
The cojucfor of a,,, denoted by ail’ is 

alJ =( - I)l+’det MIJ. 

I t  is proved in many matrix theory texts that det A is equal to the sum of the 
products obtained by multiplying each element of a row (or column) by its 
cofactor, i.e., 

P 

detA= 2 aIJcu,, ( i = l ,  . . . ,p) 
J = I  

A principal minor of A is the determinant of a matrix obtained from A by 
removing certain rows and the same numbered columns of A. In general, if 
A is a p X q matrix an r-square minor of A is a determinant of an r X r 
matrix obtained from A by removing p - r  rows and q-r columns. 

A 5 .  INVERSE OF A MATRIX 

If A =(a,,) is p X p, with det A fO, A is calied a nunsingular matrix. In this 
case there is a unique matrix B such that A B  = Zp. The i - j t h  element of B is 
given by 

cuJJ 

det A ’ blJ = - 

where aJ, is the cofactor of aJi. The matrix B is called the inoerse of A and is 
denoted by A - I .  The following basic results hold: 

(i) AA - I  = A - I A  = I. 

(ii) ( A - I)’ = (A’)  - I. 

(iii) If A and Care nonsingularp X p matrices then ( A C ) - ’  = C-’A- ’ .  

(iv) det(A-’)=(det A ) - ’ .  

(v) If A is an orthogonal matrix, A - ’  = A‘. 
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(vi) If A = diag( u , I,. . . , upp ) with a,, # 0 ( i  = 1,. . . , p )  then A - = 
diag( a;', . . . , u;;). 

(vii) If T is an rn X m upper-triangular nonsingular matrix then T-I is 
upper-triangular and its diagonal elements are I,; I, i = 1,. . . , in .  

The following result is occasionally useful. 

THEOREM A5 I .  Let A and B be nonsingular p X p and y X y matrices, 
respectively, and let C be p X y and D be q X p. Put P = A + CBD. Then 

Prooj Premultiplying the right side of ( I )  by P gives 

( A + CBD) [ A - I - A - 'CB( B + BDA - ICB)-'BDA - I] 
=I-CB(E+ BDA-'CB)~~'EDA~'+CEDA-' 

- CBDA- ICB( B + BDA - I c B ) - '  BDA - I 

= I + CB [ E - I - ( I + DA - 'CB ) ( B + EDA - 'CB ) - I ]  EDA - 

=l+CB[B- I -  B - l ( B C  BDA-'CB)(B+BDA-'CO)-']BDA-' 

= I ,  

completing the proof. 

matrix A in terms of the submatrices of A .  
The next theorem gives the elements of the inverse of a partitioned 

THEOREM A5.2. 
Partition A and B as 

Let A be a p X p nonsingular matrix, and let B = A-I. 

whereA,, and B , ,  are k x k ,  A,, and B,, are k X ( p - k ) ,  A,, and B,, are 
( p - k ) X k  and A,, is ( p - k ) X ( p - k ) ;  assume that A,, and A,, are 
nonsingular. Put 
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Then 

B , ,  =A,. ’ , ,  B,,=A,!,,  B ,2= -A;1A1 ,A; ! ( ,  

B z l = -  A,?1,IA,f2. 

Proof. The equation AB = I leads to the following equations: 

From (6) we have BZl  = - A ~ 1 A 2 1 B l l  and substituting this in (4) gives 
A I I B , ,  - A , , A ~ ’ A , , B , ,  = I so that B , ,  = A;; !2 .  From ( 5 )  we have B,, = 
- A ~ ’ A l , B 2 2 r  which when substituted in (7) gives A,, B,, - A,,A,’A,,B,, 
= 1 so that BZ2 = A&’,,.  

The determinant of a partitioned matrix is given in the following theo- 
rem. 

THEOREM A5.3. Let A be partitioned as in ( I )  and let A , , . ,  and A, ,  I 

be given by (3). 

(a) If A,, is nonsingular then 

det A =det A,,det 

(b) If A , ,  is nonsingular then 

det A =det A,,det A,,.,  

Proof. To prove (a) note that if 

then 
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(This was demonstrated in Theorem 1.2.10.) Hence 

det(CAC’) =(det C)(det A)(det C’)=det A =det A ,  I .  ,det A,, , 

where we have used Theorems A3.2 and A3.4. The proof of (6) is similar. 

A6.  R A N K  OF A MATRIX 

If A is a nonzero p X q matrix it is said to have rank r ,  written rank( A)=  r ,  
i f  at least one of its r-square minors is different from zero while every 
( r  + I)-square minor (if any) is zero. If A =O it is said to have rank 0. 
Clearly if  A is a nonsingular p X p matrix, rank(A)= p .  The following 
properties can be readily established: 

(i) rank( A)=rank( A’). 
(ii) If A is p X q, rank(A)smin( p ,  q). 

(iii) If A is p X 4, B is q X r,  then 

rank( AB)lmin[rank( A),rank( B ) ] ,  

(iv) I f  A and B are p X q, then 

rank( A + B)srank(A)+rank(  B). 

(v) I f  A is P X P, B is p X (7, C is q X q, and A and C are nonsingular, 
then 

rank( A BC) = rank( 8 ) .  

(vi) If A is p X 4 and B is q X r such that AB =0, then 

rank( B ) 5  q -rank(A). 

A7.  LATENT ROOTS A N D  L A T E N T  VECTORS 

For a p X p matrix A the chamferistic equarion of A is given by 

( 1 )  det( A - A I p ) = O .  

The left side of ( I )  is a polynomial of degree p in h so that this equation has 
exactly p roots, called the latent roots (or characteristic roots or eigenvalues) 



I-urent ROOIS md Latent Veclors 583 

of A. These roots are not necessarily distinct and may be real, or complex, 
or both. If X i  is a latent root of A then 

det(A-X,l)=O 

so that A - A l l  is singular. Hence there is a nonzero vector x, such that 
( A  - A, I ) x ,  = 0, called a latent vector (or characteristic vector or eigenvector) 
of A corresponding to A,. The following three theorems summarize some 
very basic results about latent roots and vectors. 

THEOREM A7.1. If B = CAC-', where A, B and C are all p X p, then A 
and B have the same latent roots. 

Prooj Since 

we have 

det(E-AI)=detCdet(A-Al)detCL'=det(A-hl)  

so that A and E have the same characteristic equation. 

THEOREM A7.2. If A is a real symmetric matrix then its latent roots are 
all real. 

Proof: Suppose that a + ifl is a complex latent root of A, and put 

B = [ ( u + i p ) I  - ~][(a-ip)l - A]=(*]- A > ~  +P'I .  

E is real, and singular because (a + $ ) I  - A is singular. Hence there is a 
nonzero real vector x such that B x = O  and consequently 

O=x'Ex =x'( al  - A)'x + f12x'x 

= x'( al  - A)'(  al - A ) x  + PZX'X. 

Since x'(a1- A) ' (a l -  A)x>O and x'x>O we must have /3 =0, which 
means that no latent roots of A are complex. 

THEOREM A7.3. If A is a real symmetric matrix and A,  and A, are two 
distinct latent roots of A then the corresponding latent vectors x, and x, are 
orthogonal. 
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Proot Since 

Ax,  = A , K , ,  Axj =A,xJr 

i t  follows that 

x; Ax,  = A,x:x,, x: Ax, = A,x:x,. 

Hence ( A ,  - A,)x:x, ”0, so that x;x, =O. 
Some other properties of latent roots and vectors are now summarized. 

(i) The latent roots of A and A’ are the same. 

(ii)  If A has latent roots A , , . , . , A p  then A - k /  has latent roots 
A ,  - k , .  . . ,Ap - k and kA has latent roots kA, , .  . ., kA,. 

(iii) If  A=diag(u, ,..., a , )  then al, ..., up  are the latent roots of A and 
the vectors (l,O,. . . ,O) ,  (0, I , .  . .,O),. . .,(O,O,. . ., 1) are associated 
latent vectors. 

(iv) If A and R are p X p and A is nonsingular then the latent roots of 
A B  and RA are the same. 

(v) I f  A, ,  ..., A, are the latent roots of the nonsingular matrix A then 

(vi) If A is an orthogonal matrix ( A N =  I )  then all its latent roots 
have absolute value I .  

(vii) If A is symmetric i t  is idempotent ( A 2  = A )  i f  and only if its latent 
roots are 0’s and 1’s. 

(viii) I f  A isp X q the nonzero latent roots of AA’ and A’A are the same. 

(ix) If T is triangular (upper or lower) then the latent roots of 7 are 
the diagonal elements. 

(x) I f  A has a latent root A of multiplicity r there exist r orthogonal 
latent vectors corresponding to A. The set of linear combinations 
of these vectors is called the lutent space corresponding to A. If A, 
and Aj are two different iatent roots their corresponding latent 
spaces arc orthogonal. 

An expression for the characteristic polynomial p (  A )  = det( A - A Ip) can 
be obtained in terms of the principal minors of A.  Let A,l , lz , , , , , lk  be the k X k 
matrix formed from A by deleting all but rows and columns numbered 
I , ,  . . . , i , ,  and define the k th trace of A as 

A - - l  , ,..., Ap’are the latent rootsofA-I. 

trk(A)= ~ l s , ,<12 . . .< l*~Pde t  ,..., 1; 
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The first trace (k = 1) is called the trace, denoted by tr(A), so that 
tr(A)=Zf= ,a , , .  This function has the elementary properties that tr(A)= 
tr(A’) and if C is p X q, D is q X  p then tr(CD)=tr(DC). Note also 
that tr,,,(A)=det(A). Using basic properties of determinants i t  can be 
readily established that: 

(xi) p(A)=det(A - XZ,)=C[=,(- A)’tr,-,(A) [tr,(A)= I]. 
Let A have latent roots A , ,  . . . , A p  so that 

p(A) = (-1)J’ 2 (A - hi). 
i =  I 

Expanding this product gives 

where 5( A ,, . . . , A p )  denotes the j th elementary symmetric funclioti 
of h ,,..., A,, given by 

(xii) p (  A )= Z[=,( - A )‘rp- k ( A  . . ,A, 1. 

r (  A ,  ,.. . , A p )  = 2 ~ l l h 2 . . . ~ l , *  

I s i I< r l<  . . .  < r , S p  

Equating coefficients of Ak in (xi) and (xii) shows that 

(xiii) r k ( h l , .  . . , A p ) =  trk(A). 
It is worth noting that p ( h )  can also be written as 

p ( X ) = (  - X)’det Adet(A-’ - A - I I )  

P 

k = Q  
=(-X)’detA z ( - A - l ) k t r p - k ( A - l )  

and equating coefficients of hk here and in (xii) gives 

(xiv) trk( A -‘)=det A - I  trp-k( A) .  

A8.  POSITIVE DEFINITE MATRICES 

A p X p symmetric matrix A is called positive (negative) definite if x’Ax>O 
(KO) for all vectors x f  0; this is commonly expressed as A >O ( A  KO). It is 
called positive (negative) semidefinite if x ’ A x 2 O  (SO) for all x Z 0 ,  written 
as A 20 ( S O ) .  I t  is called non-negutioe definite if A >O or A 20, i.e., if 
x’Ax>O for all x, and non-positive definite if A <O or A SO. 

We now summarize some well-known properties about positive definite 
matrices. 
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( i )  A is positive definite i f  and only if det A l ,  > O  for i = 1 ,..., p ,  
where A,, , , , , ,  is the i X i matrix consisting of the first i rows and 
columns of A.  

(ii) If  A >O then A- '>O.  

(iii) A symmetric matrix is positive definite (non-negative definite) if 
and only if all of its latent roots are positive (non-negative). 

(iv) For any matrix B, BB'rO.  

(v) If A is non-negative definite then A is nonsingular if and only if 
A >O. 

(vi) I f A > O i s p X p a n d  B i s q X p ( 9 S p ) o f r a n k r  then BAB'>OiP 
r = q and BAB'ZO i f  r C q. 

(vii) I f  A 10, B > O ,  A - B >O then B -  - A - I > O  and det A >det B. 
(viii) If  A XI and B>O then det(A + B ) r d e t  A +det B. 

(ix) If A 1 0  and 

whereA,, isa squarematrix, thenA,, >O and A , ,  - A,2A,1A,l >O. 

A9.  SOME M A T R I X  FACTORIZATIONS 

Before looking at matrix factorizations we recall the Gram-Schmidt ortho- 
gonalization process which enables us to construct an orthonormal basis of 
R"' given any other basis xI,x2, ..., xm of R". We define 

Y I  = X I  

4 x 2  
YiY,  

Y;x, y;x, 
y3 =x3 - I Y 2  - --yt 

Y2Y2 Y i Y I  

yz =x2 -- --y1 

......... ................. .. 

and put z, =[ l/(y,'yi)'/2]yl, with i = 1,. .. ,m. Then z,,. . . ,z, form an ortho- 
normal basis for Rm. Our first matrix factorization utilizes this process. 
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THEOREM A9.1. If A is a real m X m matrix with real latent roots then 
there exists an orthogonal matrix H such that H'AH is an upper-triangular 
matrix whose diagonal elements are the latent roots of A. 

Let A,, ..., Am be the latent roots of A and let x t  be a latent 
vector of A corresponding to A,. This is real since the latent roots are real. 
Let x 2  ,..., x, be any other vectors such that x l r x 2  ,..., x, form a basis for 
Rm. Using the Gram-Schmidt orthogonalization process, construct from 
x I , .  . . , x, an orthonormal basis given as the columns of the orthogonal 
matrix HI, where the first column h,  is proportional to x, ,  so that h, is also 
a latent vector of A corresponding to A, .  Then the first column of AH, is 
Ah, = X,h,,  and hence the first column of H i A H ,  ish,H;h,.  Since this is the 
first column of A I H ; H l = A , I , ,  i t  is (A,,O, ..., 0)'. Hence 

Proot 

where A ,  is (m - I ) X ( m  - 1). Since 

det(A - A I ) = ( A ,  -A)det(A, - A l )  

and A and H ; A H ,  have the same latent roots, the lalent roots of A,  are 
A 2 ,  ..., Am. 

Now, using a construction similar to that above, find an orthogonal 
(m- l )X(m-1)  matrix H2 whose first column is a latent vector of A,  
corresponding to A *. Then 

where A, is ( m - 2 ) x ( m - 2 )  with latent roots h3 , . . . ,Xm.  

ort hogonai matrix 
Repeating this procedure an additional m -3 times we now define the 

and note that H A H  is upper-triangular with diagonal elements equal to 
A , , .  ..'A,,. 

An immediate consequence of this theorem is given next. 
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THEOREM A9.2. if A is a real symmetric m X m matrix with latent roots 
A l , . . , , A m  there exists an orthogonal rn X m  matrix H such that 

(2) H’AH = D = diag( A,, . . . , A m ) .  

If H =[hl,. . . , h,] then Ir, is a latent vector of A corresponding to the latent 
root A,. Moreover, if  Al, ..., An, are all distinct the representation (2) is 
unique up to sign changes in the first row of H. 

Proof: As in the proof of Theorem A9.1 there exists an orthogonal 
m X m matrix H I  such that 

N;AN, = [: ::I- 
where A*, ..., A, are the latent roots of A , .  Since H i A H ,  is symmetric i t  
follows that B ,  =O. Similarly each B, in the proof of Theorem A9.I is zero 
( i =  I ,  ..., m -  I), and hence the matrix H given by ( I )  satisfies H‘AH- 
diag(Al, ..., A,,,). Consequently, A h ,  =A,h, so that 11, is a latent vector of A 
corresponding to the latent root A,.  Now suppose that we also have 
Q’AQ= D for a orthogonal matrix Q. ‘Then PI)= DP with P = Q’If. If 
P =( p,,) i t  follows that pIJA, = plJA, and, since A ,  # A,, p , ,  = O  for i f  J. 

Since P is orthogonal i t  must then have the form P = diag( * 1, -L 1 , .  . . , -C I ) ,  
and H = QP. 
THEOREM A9.3. If A is a non-negative definite m X m matrix then there 
exists a non-negntive definite m X nt matrix, written as such that 
A = ~ 1 / 2 ~ 1 / 2 .  

Proof: Let H be an orthogonal matrix such that H’AH= D, where 
D=diag(A,, ..., A,) with A l , . . , , A m  being the latent roots of A .  Since A is 
non-negative definite, A ,  2 0 for i = 1, .  . . , m .  Putting D112 = 
diag(A’/2,...,Alm/2), we have D t / 2 D 1 / 2  = D. Now define the matrix At’’’ by 
A’/* = HD1/211’. Then A ’ / ,  is non-negative definite and 

~ 1 / 2 ~ 1 / 2  = I I D ~ / ~ H ’ ~ I D ~ / ~ I ~ ’  = H D I / ~ D V ~ ~ ~ ’ =  H D H ‘ =  A .  

The term A’/’ in Theorem A9.3 is called a non-negative definite square 
root of A. If A is positive definite A ‘ / ,  is positive definite and is called the 
positive definite square root of A. 

THEOREM A9.4. If A is an m X m non-negative definite matrix of rank r 
then : 

(i) There exists an m X r matrix B of rank r such that A = BB’. 
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(ii) There exists an m X m nonsingular matrix C such that 

A = C [  '1 C'. 
0 0  

Pro05 As for statement (i), let D, =diag(A,,...,A,) where Al,.,.,Ar are 
the nonzero latent roots of A,  and let H be an m X m orthogonal matrix 
such that H'AH = diag( A,, . . . ,A,,O,. . , ,O) .  Partition H as H =[ H I  : H 2 ] ,  
where HI is m X r and H ,  is m X( m - r); then 

Putting DI/' =diag(h'(2,...,X'/2), we then have 

where B = H I  D:/' is m X r of rank r. 

columns are the columns of the matrix B in (i). Then 
As for statement (ii), let C be an m X ni nonsingular matrix whose first r 

The following theorem, from Vinograd (1950). is used often in the text. 

THEOREM A9.5. Suppose that A and B are real matrices, where A is 
k X in and B is k X n ,  with m I n .  Then AA'= BB' if and only if there exists 
an m X n matrix H with HH'= I,,, such that A H =  B. 

Proo/. First suppose there exists an m X n matrix H with HH'= I,?# such 

Now suppose that AA'= BB'. Let C be a k X k nonsingular matrix such 
that A H  = B.  Then BB'= AHH'A'= AA'. 

that 

[5 #' AA'= BB'= C 

(Theorem A9.4), where rank (AA')=  r. Now put D = C - ' A ,  E = C - ' B  and 
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partition these as 

where D ,  is r X m ,  U, is ( k - r ) X m ,  E l  is r X n ,  and E, is ( k - r ) X n .  
Then 

and 

which imply that E l  E ; =  D ,  D ;  = I ,  and 0, =O, E,  = O ,  so that 

Now let E2 be an ( 1 1  - r ) X  n matrix such that 

is an n X n orthogonal matrix, and choose an ( n  - r )  X m matrix 6, and an 
( n  - r ) X ( n  - m )  matrix b3 such that 

is an n X n orthogonal matrix. Then 

and 
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and hence 

E = [ D : 01 fi'E = [ D : O ] Q ,  

where Q = D'g is n X n orthogonal. Partitioning Q as 

where His  m x n and P is (n - m) x n, we then have HH' = I,,, and 

c - 1 ~  = E = D H ~  c - 1 ~ ~  

so that B = AH, completing the proof. 

The next result is an immediate consequence of Theorem A9.5. 

THEOREM A9.6. Let A be an n X m  real matrix of rank m ( n r m ) .  
Then : 

(i) A can be written as A = H I  B, where H ,  is n X m with H ; H ,  = In, 
and B is m X m positive definite. 

(ii) A can be written as 

where H is n X n orthogonal and B is m X m positive definite. 

Proof: As for statement (i), let B be the positive definite square root of 
the positive definite niatrix A'A (see Theorem A9.3), so that 

A'A = B 2  = B'B. 

By Theorem A9.5 A can be written as A = H,B,  where H ,  is n X m with 

As for statement (ii), let H I  be the matrix in (i) such that A = H , B  and 
choose an n X ( n  - m )  matrix H2 so that H = [ H ,  : H 2 J  is n X n orthogonal. 
Then 

H ; H ,  = I,. 

We now turn to decompositions of positive definite matrices in terms of 
triangular matrices. 
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THEOREM A9.7. If A is an m X 1 ) ~  positive definite matrix then there 
exists a unique m X m upper-triangular matrix T with positive diagonal 
elements such that A = T’T. 

An induction proof can easily be constructed. The stated result 
holds trivially for m = 1. Suppose the result holds for positive definite 
matrices of size m - I. Partition the m X m matrix A as 

Proof: 

where A , ,  is ( m  - I ) X ( m  - I). By the induction hypothesis therc exists a 
unique ( m  - I )X(m - I )  upper-triangular matrix T , ,  with positive diagonal 
elements such that A , ,  = T;,T, , .  Now suppose that 

where x is ( m  - 1)X 1 and y E  HI. For this to hold we must have x =  
(Til)-1a,2, and thcn 

- -  I y 2 = a 2 2 - x ’ x = a 2 2 - a ’ , 2 T ; ; 1 ( T ~ , )  a12==a22 -a’,2A;;1a,2. 

Note that this is positive by (ix) of Section A8, and the unique 
satisfying this i sy  =(a22 -a’,2A,Iw,2)1/2. 

Y’O 

THEOREM A9.8. If A is an n X m real matrix of rank m ( t i  2 m )  then A 
can be uniquely written as A = HIT,  where H I  is n X m with H ; H ,  = l,,, and 
T is m X m upper-triangular with positive diagonal elements. 

Since A’A is m X m  positive definite it follows from Theorem 
A9.7 that there exists a unique m X m upper-triangular matrix with positive 
diagonal elements such that A’A = T’T. By Theorem A9.5 there exists an 
n X m matrix H I  with H;tl,  = I,,, such that A = /f,T. Note that HI is unique 
because T is unique and rank( T )  = M. 

THEOREM A9.9. I f  A is an m X M positive definite matrix and B is an 
m X m symmetric matrix there exists an m X m nonsingular matrix L such 
that A =  LL’ and tl= LDL’, where D=diag(dl ,..., d,,,), with d, ,..., d,,, 
being the latent roots of A-IB. If B is positive definite and Jlr. . . ,d, , ,  are all 
distinct, L is unique. up to sign changes in the first row of L.  

Let A ’ / *  be the positive definite square root of A (see Theorem 
A9.3). so that A = A 1 / 2 A 1 / 2 .  By Theorern A9.2 there exists an m X m 

Prooj: 

Proof: 



Some Mumx Fuctorrzurtotrs 593 

orthogonal matrix H such that A - ’ / 2 B A - ‘ / 2  = HDH’, where D = 
diag(d,, ,..,d,,,). Putting L =  A’/’H, we now have LL‘= A and B =  LDL‘. 
Note that d ,,..., d, are the latent roots of A-IB. 

Now suppose that B is positive definite and the d, are all distinct. 
Assume that as well as A = LL’ and B = LDL’ we also have A = MM’ and 
B = MDM’, where M is m X m nonsingular. Then (M- ‘L)( M -  ‘L)’= 

M -  ‘L  is orthogonal and QD = DQ. If Q =(9, , )  we then have q,,d, = q,,d, 
so that q,, =O for i # j .  Since Q is orthogonal it must then have the form 
Q =diag(? I ,  2 1,. . ., 2 l), and L = MQ. 

THEOREM A9.10. If A is an m X n real matrix (m 5 n )  there exist an 
m X m orthogonal matrix H and an n X n orthogonal matrix Q such that 

M- ‘LLfM- I /  = M- ‘ A M -  It = M- ‘MM’M’ - I - - 1, so that the matrix Q = 

where d, 2 0  for i = 1,. . . , m  and d:,. . .,d:, are the latent roots of A X .  

Let H be an orthogonal m X m matrix such that AA’= H’D2N, 
where D 2  =diag(d: ,..., d i ) ,  with 6,220 for i =  1 ,..., m because AA‘ is 
non-negative definite. Let D =diag(d,, . . . ,dm)  with d, 20 for i = 1,. . . ,111;  

then AA’=(H‘D)(H’D)’,  and by Theorem A9.5 there exists an m X n  
matrix Qt with Q,Q; = 1, such that A = H’DQ,. Choose an ( n  - m ) X  n 
matrix Q2 so that the n X n matrix 

Proo/. 

Q = [  Q! 
Q2 

is orthogonal; we now have 

A =  H’DQ, = H ’ [ D : O ] Q  

so that HAQ’=[D:O],  and the proof is complete, 
The final result given here is not a factorization theorem but gives a 

representation for a proper orthogonal matrix H (i.e., det H =  I )  in terms of 
a skew-symmetric matrix. The result is used in Theorem 9.5.2. 

THEOREM A9. I 1. If H is a proper m X m orthogonal matrix (det H = 1) 
then there exists an m X m skew-symmetric U such that 

1 1 
2! H =exp(U) zz I + I/ + - U * + 3 U 3  + . . - . 
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Proo/. Suppose H is a proper orthogonal matrix of odd size, say, 
m =2k f 1; it can then be expressed as 

H = Q ’  

cos8, -sine, 

sin 8 ,  cos 8,  
0 

cos -sin 8, 

sin 8, cos 8, 
0 

0 

0 0  0 0  I . .  

0 

0 
0 0 

0 

cos 0, -sin 8, 0 
sin 8, cos 8, 0 
0 0  1 

Q, 

where Q is rn X m orthogonal and -. n < 8, I n ,  with i = 1 , .  . . , k  (see, e.g., 
Bellman, 1970,p.65). (I f  m = 2 k ,  the last row and column are deleted.) Putting 

o - 8 ,  0 
8,  0 0 0 

o -e2  0 
82 0 0 

o -ek o 
ek o o 

0 

0 0 0 0 ’ * .  0 0  0 

we then have 0 = exp( Q ’ H Q )  = exp( U ), where U = Q’HQ is skew-symmetric. 
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Admissible estimate, 122 
Affine group, 217 
Asymptotic covariance matrix for sample 

covariance matrix, 19,20,42,90, 
91.113 

Asymptotic distributions: 
canonical correlation coefficients, 

correlation coefficient, 157-160 
determinant of noncentral Wishart matrix, 

Flsher’st, 159, 160, 185 
generalized variance, 102,103,517, 

518 
latent root: 

563-565 

517,518 

in MANOVA. 497,498 
of sample covariance matrix, 116, 

402,403,424 

matrix, 405 
latent vectors of sample covariance 

likelihood ratio statistics, 304-307 
multiple correlation coefficient, 179-1 85 
sample covariance matrix, 19,42,43,90, 

sample mean vector, 15 
scatter coefficient, 151 
trace of noncentral Wkhart matrix, 

T’, statistic, 477 

see also specific testing methods 

91 

518 

’ V statistic, 479,480 

Asymptotic expansion of gamma function, 
102,305 

Bartlett decomposition: 
noncentral Wtshart matrix, 448 
Wishart matrix, 99 

Behrens-Fisher problem, 220, 

Bernoulli polynomfal, 305 
Beta distribution. see Multivariate beta 

22 1 

distribution 

Canonical correlation coefficients: 
determining number of useful canonical 

distribution of largest coefficient, 560, 

distributions: 

variable, 567-569 

562 

asymptotic, 563-565 
conditional, 564 
joint, 557,559 

Fisher’s z ,  566,567 
likelihood function, 565,566 
moments, 556 
population, 531,550 
sample, 531,555 
sufficiency, 564 

Canonical variables: 
determining number of useful canonical 

variables, 567-569 
optimality property, 552 
population, 550 
sample, 555 

Central limit theorem, 15 
Characteristic functions: 

elliptical distribution, 34 
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multivariate normal distribution, 

noncentral Wishart distribution, 444 
trace of noncentral Wishart matrix, 

trace of Wishart matrix, 115 
Wishart distribution, 87 

5 

518 

Characteristic roots, see Latent roots of 

Characteristic vectors, see Latent vectors of 

Characterizations of normal distribution, 

Classification and discrimination: 

a matrix 

a matrix 

14,35,36 

Anderson's classification statistic, 
507 

classifying into one of p normal popula- 
tions, 504 

classifying into one of two normal popula- 
tions, 505-507 

determining number of useful discrimi- 
nant functions, 490,491,499-504 

discriminant function, 489 
discriminating between p normal 

errors of misclassification, 505,506 
Fisher's discriminant function, 505 
Mahalanobis distance between two 

principal discriminant function, 489 
subsldiary discriminant functions, 

populations, 488492 

populations, 506 

489 
Commutation matrix, 90 
Compound normal distribution, 33 
Conditional distribution : 

elliptical, 36 
Haar invariant, 107 
latent roots, 403,498 
normal, 12 
Wishart, 93 

472 
Confluent hypergeomctric function, 264, 

Congruence transformation, 239 
Contaminated normal distribution, 

Convergence in probability, 18 
Correlation coefficient: 

33 

asymptotic distributions, 157-160 
canonical, see Canonical correlation 

coef ficcn t B 

confidence intervals, 163,164 
distribution: 

in general for normal sample, 
151-155 

in independence case, 146, 147 
]%her's z ,  159, 160 
geometrical interpretation, 147 
invariance, 200,204,206 
likelihood ratio test, 160, 189. 190 
inaximurn likelihood estimate, 144 
minimum variance unbiased estimate, 

moments, 148,155-157 
multiple, see Multiple correlation 

population, 144 
sample, 144 
testing hypotheses, 160-164 
uniformly most powerful invariant test, 

157 

coefficient 

161-163,206 
Correlation matrix : 

asymptotic distribution of scatter 
coefficient, 151 

distribution in independence case, 
14 8 

population, 34 
sample, 148 
scatter coefficient, 150 

Coset space, 198 
Covariance, 2,3 
Covariance matrix: 

asymptotic distribution, 19,42,43, 
113 

decision-theoretic estimation, 128-1 36 
definition, 2 
distribution, 80, 86 
elliptical distribution, 34 
generalized variance, 100 
inadmissibility of sample, 129, 135 
latent roots, see Principal components 
maximum likelihood estimate, 83 
normal distribution, 5 
positive definiteness of sample, 82,83 
sample, 16,80 
sufficiency, 83 
tests of hypotlieses, see specific testin$ 

methods 
unbiasedness, 16 

dofinition, 40,41 
Cumulahts: 
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elliptical distribution, 41 
kurtosis, 4 1 
normal distribution, 41  
skewness, 41  

Density function, see Distributions 
Determinant of a matrix, 575 
Determinant of Wishart or covariance 

Differential, 5 1 

239 

matrix, see Generalized variance 

form on positive definite matrices, 

of a matrix, 56 
operator, 228,240,266,267,278 

Direct product of matrices, see Kronecker 

Discriminant analysis, see Classification 

Discriminant function, see Classification 

Distance between two populations, 506 
Distributions: 

product of matrices 

and discrimination 

and discrimination 

asymptotic, see Asymptotic distributions 
canonfcal correlation coefficients, 557 ,  

compound normal, 33 
contaminated normal, 33,49 
correlation coefficient, 145-147 
ellptical, 34 
extreme latent roots of sample covariance 

generalized variance, 100 
Haar invariant, 72 
inverted Wishart, 97, 113, 114 
largest canonical correlation 

coefficient, 560, 562 
largest latent root in MANOVA, 481, 

483 
latent roots: 

559 

(Wishart) matrix, 421,423 

of A, A;’, where A,, A, are 
independent Wishart matrices, 
312,313 

in MANOVA, 449455 
Likelihood ratio statistics, see specific 

multiple correlatlon coefficient, 167-179 
multivariate beta, 108-1 12 
multivariate normal, 5 
multivariate t ,  33,48,49 
noncentral chi-squared, 22-24 

testing methods 

noncentral F. 24-26 
noncentral Wishart, 441449 
radius of spherical distribution, 37 
sample covariance matrix, 80,82,86 
sample mean, 14 
singular normal, 9 
spherical, 32 
studentized Wishart, 451,452 
trace of Wishart matrix, 107, 115.339 
i- statistic, 98, 21 1 

uniform on unit sphere, 37 
V statistic, 479 
Wishart, 82,85-108 

statistic, 468,471 

Duplication formula for gamma function, 
154 

Eigenfunction of a differential operator, 

Eigenvalue: 
228 

of a differential operator, 228 
vector of a matrix, see Latent roots of 

a matrix; Latent vectors of a matrix 
Elementary symmetric functions, 247 
Ellipsoid of constant density, 10,11, 

Elliptical distribution: 
43 

characteristic function, 34 
conditional distribution, 36 
correlation matrix, 34 
covariance matrix, 34 
cumulants, 41  
definition, 34 
density function, 34 
distribution of normal Likelihood ratio 

statistics for elliptical samples, 331, 
352,365,547 

kurtosis, 41  
marginal distributions, 34 
mean vector, 34 
properties, 34-40 
skewness, 41  

Ellipticity statistic, 108, 336 
Equivalence under a group, 197 
Euler relation, 156, 265 
Exterior differential form, 54 
Exterior product, 52 

Fisher’s z: 
asymptotic distributions, 159, 160, 185 
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canonical correlation coefficients, 566, 

correlation coefficient, 159, 160 
moments, 190 
multiple correlation coefficient, 185 
use in testing problems, 163, 187 

567 

Gamma function: 
asymptotic expansion, 102.305 
duplication formula, 154 
multivariate, 6 1-63 

Gaussian hypergeometric function, 20, 

Generalized binomial coefficient, 267, 

Generalized binomial expansion, 267 
Generalized hypcrgeometric coefficient, 

Generalized hypergeometric function, 

264 

268 

247,248 

20. See ulso Hypergeometric 
function 

Generalized inverse of a matrix, 12 
Generalized Laguerre polynomials: 

bound, 466 
definition, 282 
generating functions, 283,290 
Laplace transform, 282 
orthogonality with respect to Wishart 

distribution, 285 
uses in distribution theory, 468,481, 

561 

520-525 
Generalized MANOVA (CMANOVA). 

Generalized P, see P test 
Generalized TI,, see Multivariate linear 

Generalized variance: 
model 

asymptotic dlstribution. 102. 103,517, 

decision-theoretic estimation, J 43 
definition, 100 
distribution, 100 
formed from noncentral Wishart matrix, 

moments, 101,447 

518 

447 

General linear group, 200 
General lincar hypothesis, 432434. See 

ulso Multivariate linear model 
General linear model, see Multivariate 

linear model 

GMANOVA, see Generalized MANOVA 
Grassmann manifold, 219,220 
Group represenlation, 245 
Group of transformations. 197 
Growth curves model, 520 

Haar invariant measure, 72,107 
Higher weight, see Monomial 
Homogeneous polynomial, 228 
Homogeneous space, 198 
Hotelling-Lawley q ,  see Multivariate 

linear model 
Hotelling’s TI, see TI test 
Hypergeonietric coefficient, 247, 248 
Hypergeometric function: 

asymptotic behavior, 392, 398,493, 
563 

classical, 20 
integrals, 21,22, 151,260,261,262, 

264 
inverse Laplace transforms, 261 
Laplace transforms, 260 
matrix argument, 258,472 
partial differential equations, 271-281, 

two matrices, 259 
473 

ldempotent matrix, 574 
Inadmissibility: 

sample covariance matrix, 129, 135 
sample mean vector, 123 
unbiased estimate of precision matrix, 

140 
Inadmissible estimate, 122 
Independence: 

normal variables, 8 
sample mean vector and covariance 

matrix, 80 
tests, see Correlation coefficient; Multiple 

correlation coefficient; Testing 
independence of k sets of variables 

Invariancu: 
of family of distributions, 

invarianl estimate, 129, 130 
invariant function under a group of 

transformations, 197 
invariant test, 205 
maximal invariant, 197 
of testing problem, 204 

201 
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Lexicographical ordering of partitions, 

Likelihood function: 

565,566 

221 

canonical correlation coefficients, 

correlation coefficient, 190 
latent roots of covariance matrix, 

marginal, 190 
parameters of normal distribution, 

404 

83 
Likelihood ratio test: 

asymptotic distribution, 304-307 
see also Correlation coefficient; 

Multiple correlation coefficient; 
Multivariate linear model; TI test; 
spedflc testitig methods 

Linear combination of normal variables, 
5.6, 14 

Linear hypothesis, see General linear 
hypothesis 

Linear model, see Multivariate linear model 
Locally best invariant tcst, 353, 366 
Loss function, 122 

uniformly most powerful invariant test, 

uses of, see Canonical correlation 
197,205 

coefficients; Correlation coefficient; 
Multivariate linear model, test; 
specific tesffttg methods 

Invariant differential form, 68,69 
Invariant measure: 

orthogonal group, 68,69 
Stiefel manifold, 70 

Invariant subspace, 245 
lnvariant test, 205 
Inverse: 

Laplace transform, 252,253 
of matrix, 579 

Inverted Wishart distribution, 97 
Irreducible subspace, 245 
Isotropy subgroup, 198 

Jacobian of transformation, 50-67 
differential, 51.56 
exterior differential form, 54 
exterior product, 52 
linear differential form, 51 

James-Stein estimate of mean vector, 
123-128 

Kernel of a matrix, 1 I 
Kronecker product of matrices, 73-76 
Kummer relation, 265 
Kurtosis, 41 

Laguerre polynomial, see Generalized 

Laplace-Beltrami operator, 246 
Laplace’s method for Integrals, 11 6,391, 

Laplace transform, 252,253 
Largest root, see Multivariate linear 

Latent root distributions, see Asymptotic 

Latent roots of a matrix, 582 
Latent vectors: 

Laguerre polynomials 

392 

model 

distributions; Distributions 

of a matrix, 583 
of a Wishart matrix, see Asymptotic 

distributions; Principal 
components 

Lawley-Hotelling statistic, see 
Multivariate linear model 

Mahalanobis distance, 506 
MANOVA, see Multivariate linear model 
Marginal distribution: 

elliptical, 34 
noncentral Wishart, 519 
normal, 7 
Wishart, 92 

characteristic equation, 582 
Characteristic polynominl, 582,584 
cofactor, 579 
commutation, 90, 113 
determinant, 575 
diagonal, 573 
direct product, 73 
factorization theorems, 586-593 
idempotent, 574 
identity, 572 
inverse, 579 
kernel, 11 
Kronecker product, 73 
latcnt root, 582 
latent space, 584 
latent vector, 583 
minor, 579 

Matrix: 
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negative definite, 585 
negative semidefinite, 585 
non-negative definite, 3,585 
non-positive definite, 585 
nonsingular, 579 
null space, 1 1  
orthogonal, 574 
partitioned, 574 
positive definite, 3, 585 
positive scmideflnite, 585 
principal minor, 579 
product, 573 
range, I1 
rank, 582 
skew-symmetric, 573 
square, 572 
square root, 588 
sum, 573 
symmetric, 573 
trace, 584, 585 
transposc, 573 
triangular, 573 
vec, 17,74,76 

Maximum likelihood estimatea, see Correla- 
tion coefficlent; Covariance matrix; 
Mean vector; Multiple correlation 
coefficient; Regression coefficients 

Mean vector: 
asymptotic distribution, 15 
confidence region, 215,216,220 
dccision-theoretic estimation, 122-128, 

141,142 
definition, 2 
distribution, 14,80 
elliptical distribution, 34 
inadmissibility, 123 
James-Stein estimate, 123-128 
maximum likelihood estimate, 

83 
normal distribution, 5 
sample, 14 
sufficiency, 83 
test of hypothesis, when covariance 

testing equality of several mean vectors, 

tests of hypotheses, when covariance 
matrix is unknown, see P test 

unbiasedness, 15, 80 
MeUin transform, 302 

matrix is known, 27 

5 4 0-5 4 2 

Minimax estimate: 
covariance matrix, 133 
mean vector, 127 
precision matrlx, 141 

canonical correlation coefficients, 

correlation coefficient, 148, 156-157 
elliptical distribution, 34.41 
latent roots of sample covwiance matrix, 

multiple correlation coefficient, 171, 

noncentral Wishrrt distribution, 436, 

normal distrlbution, S,41 

Wishart distribution, 90 
see also specgic resting methods 

highcr weight ordering, 227 
symmetric function, 230 

Power function 

Moments: 

55 6 

388 

177-179 

518 

statistic, 520 

Monomial: 

Monotonicity of power functions, see 

Moltipb correlation coefficient: 
approximation to distribution, 

asymptotic distributions, 179-1 85 
confidence intervals, 187 
distribution: 

177 

in general for normal sample, 

in independence case, 167-171 
171-179 

Fisher’s I ,  185 
geometrical interpretation, 170 
invariance, 206-21 1 
likelihood ratio test, 186, 193 
maxinium likelihood estimate, 167 
minimum variance unbiased estimate, 

moments, 171, 177-179 
population, 164-167 
sample, 167 
testing hypotheses, 185-187 
uniformly most powerful invariant test, 

179 

210 

Classification ond discrimination 

220,221 

Multiple discriminant analysis, see 

M ultivariatc Behrens-Fisher problem, 
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asymptotic null distribution, 479, 

Laplace transform of null density 
480 

function, 479 
Multivariate normal distribution: 

bivariate, 10, 11 
characteristic function, 5 
characterizations, 14, 35, 36 
conditional distributions. 12, 13 
cumulants, 41 
decision-theoretic estimation of 

definition, 5 
density function, 9 
independence in marginal distributions, 

linear combinations of independent 

linear transformations of normal 

marjginal distribution, 7 
maximum likelihood estimation of 

parameters, 83 
properties, 5-14 
random sample, 14,80 
singular, 9 

parameters, 121-141 

8 

normal variables, 6, 14 

variables. 6 

Multivariate t distribution, 33,48,49 

Noncentral chi-squared distribution, 22-24, 

Noncentral F distribution, 24-26,46 
Noncentral Wishart distribution, 441449 

45,46 

asymptotic distributions: 
of determinant, 517,518 
of trace, 5 18 

Bartlett decomposition, 448 
characteristic function, 444 
definition, 441443 
density function, 442 
distribution of latent roots, 5 18 
marginal distribution, 519 
moments, 436,518 

properties, 442449 
of determinant, 447 

Non-negative definite matrix, 3,585 
Non-positive definite matrix, 585 
Nonsingular matrix, 579 
Normal distribution, see Multivariate 

normal distribution 
Null space of matrix, 11 

Multivariate beta distribution, 108-112 
decomposition into beta distributions, 

110,119 
definition, 110 
density function, 109 
distribution of latent roots, 112 

Multivariate central limit theorem, 15 
Multivariate cumulants, 4 0 4 2  
Multivariate gamma function, 61-63 
Multivariate linear model, 429-507 

asymptotic distributions of latent roots, 

canonical form, 433-434 
conditional distribution of latent roots, 

discriminant analysis, see Classification 

distribution: 

491,498 

498 

and discrimination 

of latent roots, 449455 
of maximum Likelihood estimates, 

431 
general lincar hypothesis, 432-434 
invariance, 436439 
largest root, 481-484 

approximation to distribution, 

distribution, 481,483 

asymptotic non-null distributions. 

asymptotic null distribution, 459 
moments, 455,457 
null distribution, 457,458,519 
percentage points, 595-649 

maximum likelihood estimates, 430 
multivariate analysis of variance 

(MANOVA), 435,436 
powcr comparisons, 484,485 
regression coefficients. 430 
single classification model, 432,485- 

sufficiency, 430,498 
1;: statistic, 466478 

483 

likelihood ratio statistic, 439 

460465 

487 

asymptotic null distribution, 477 
distribution, 468,471 
Laplace transform of null density 

function, 474 
moments, 520 

unbiasedness, 485 
V statistic, 479.480 
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One-way analysis of variance, see 
Single classification model 

Orbit, 197 
Orthogonal group: 

definition, 67 
invariant measure, 68 
volume, 69,71 

OrthoBonal matrix, 574 

Partial correlation coefficient, 187- 
189 

distribution, 188 
maximum likeliliood estimate, 

188 
population, 188 
samplc, 188 
testing hypotheses, 188, 189 

Partitioned matrix, 574 
Partitlon of positive integer, 227 
Pillai's V statistic, see Multivariate linear 

Positive definite matrix, 3,585 
Positive semidefinite matrix, 585 
Power comparisons: 

model 

tcsts of equality of covariance matrices, 

tests of general linear hypothesfs, 484, 

tests of independence, 548 

monotonicity, 338, 358,531 
sphericity test, 344 
test: 

333 

485 

Power function: 

that correlation coefficient is zero, 

that covariance matrix equals a specified 

for equality of several normal popula- 

for equality of two covariance niatrirxs, 

of general linear hypothesis, 460 
of independence between two sets of 

for mean when covariance matrix is 

thut multiple correlation coefficient is 

of specified values for moan vector and 

160,161 

matrix, 362 

tions, 368 

316 

variables, 531,542 

known, 27 

zero, 186 

covariance matrix, 373 

unbiasedness of tcsts, see Multivariate 
linear model; speclflc testing methods 

P test for mean, 99 

inadmissibility of unbiased estimate, 140 
unbiased estimate, 136 

Precision matrix: 

Principal axes of ellipsoids of constant 

Principal components, 380425 
density, 43 

approximations for distributions of 
extreme latent roots of sample 
covariance matrix, 424 

asymptotic distribution: 
of latent roots of sample covariance 

of latent vectors of sample covariance 

asymptotic sufficiency of sample roots, 

bias correction for sample roots, 405 
conditional distributions of latent roots, 

dctermining number of useful principal 

distribution: 

matrix, 116,402,403,424 

matrix, 405 

403 

403 

components, 406,415 

of extreme latciit roots of sample 
covariance matrix, 421,423 

of latent roots of sample covariance 
matrix, 106, 107, 388,389 

of latcnt vectors of sample covariance 
matrix, 107 

inference problems, 405419 
likelihood function, 404 
likelihood ratio test of cquality of 

subset of latent roots of 
covariance matrix, 406,407 

maxiinurn likelihood estimates, 384, 
385 

moments of latent roots of sample 
covariance matrix, 388 

optimal variance property, 381,382 
population, 381 
sample, 384 
tasting a specified value for a principal 

variances of principal components, 
coniponent, 417419 

381 
Probability mcasurc: 

on orthogonal group, 72 
on Stiefel manifold, 72 



Index 671 

asymptotic null distribution for normal 
sample, 344 

invariance, 334 
moments, 341,342 
percentage points, 345, 346 
unbiasedness, 336 

locally best invariant test, 353 
other test statistics, 353 

Square foot of matrix, 588 
Stiefel manifold: 

definition, 67 
invariant measure, 70 
volume, 70 

Studentized Wishart distribution, 451,452 
Sufficiency : 

asymptotic-sufficiency of latent roots, 

maximum likelihood estlmates in 

sample mean vector and covariance 

403,498,564 

MANOVA, 430 

matrix, 83 
Surface area: 

orthogonal group, 68,71 
Stiefel manifold, 70 
unit sphere, 72 

Symmetric matrix. 573 
Symmetric polynomial, 228 

Quadratic forms: 
distributions, 26-32 
independence, 47 
involving noncentral Wishart matrix, 

involving Wishart matrix, 93,96 
447 

Range of a matrix, I I 
Rank of a matrix, 582 
Regression coefficients, 13,429,430 

distribution, 431 
inference, see Multivariate linear model 
maximum likelihood estimation, 430 
sufficiency, 430 

Regression function, 13, 165 
Risk function, 122 
Roy’s largest root, see Multivariate linear 

model 

Samples from a multivariate normal dis- 
tribution, 79-85 

Scatter coefficient, 150,151 
Single classification model, 432,485- 

487 
between-classes matrix, 486 
discriminant analysis, see Classification 

and discrimination 
MANOVA table, 487 
testing equality of  several mean vectors 

when common covariance matrix is 
unknown, 487 

within-classes matrix, 486 
Singular normal distribution, 9 
Skewness, 41 
Skew-symmetric matrix, 573 
Spherlcal distribution: 

definition, 32 
distribution : 

of radius and angles, 36, 37 
o f t  statistic for spherically distributed 

sample, 40 
generation, 33 
see also Elliptical distribution 

Sphericity test, 333-353 
ellipticity statistic, 336 
likelihood ratio statistic, 334 

asymptotic non-null distributions, 
344-35 1 

asymptotic null distribution for 
elliptical sample, 351, 352 

Testing covariance matrix equab specified 
matrix, 353-366,423 

likelihood ratio statistic, 355 
biasedness, 357 
invariance, 354 

modified likelihood ratio statistic, 
35 7 

362-364 
asymptotic non-null distrlbutions. 

asymptotic null distribution for 
elliptical sample, 364, 365 

asymptotic null distribution for normal 
sample, 359 

moments, 358 
monotonicity of power function, 

percentage points, 360,361 
unbiasedness, 358 

other test statistics, 365,423 
locafly best invariant test, 366 

35 8 

Testing covariance matrix is proportional to 
specified matrix, see Sphericity test 
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Testing equality of r covariance matrices, 

distribution of latent roots of A, A*-' , 

likelihood ratio tcst, 292 

29 1-333 

312, 313 

biasedners, 298 
invariance when r = 2, 293-296 

niodificd likelihood ratio test, 298 
asymptotic non-null distributions when 

r = 2, 316-329 
asymptotic null dlstribution for 

elliptical samples, 329-331 
asymptotic null distribution for normal 

samples, 309 
central moments, 302 
noncentral moments wlicn r = 2, 315 
perccntagc points, 310, 31 1 
unbiasedness, 299 

other test statistics, 331, 332 
power compirisons, 333 

Testing equality of sevcral mean vectors, 
see Single classification model 

Testing cquality of several normal popula- 
tions, 507-51 7 

likelihood ratio statistic, 508, 509 
asymptotic non-null distribution, 51 7 
asymptotic null distribution, 51 3 
moments, 5 10,s 11 
percentage points, 514,515 
unbiasedness, 510 

Testing independence of k sets of variablcs, 
526-548 

likclihood ratio statistic, 527 
asymptotic non-null distributions when 

asymptotic null distribution for 

asymptotic null distribution for normal 

canonical correlation cocfficients, 

central moments, 532 
invariance, 529.531 
noncentral moments when k = 2, 

null distribution, 533,534 
percentage points. 536-538 
unbiascdness, 531 

k 2,542-546 

elliptical samples, 547 

samples, 536 

531 

539 

other test statistics, 548 
powcr comparisons. 548 

Testing number of useful canonical vari- 
ables, see Canonical correlation coef- 
ficicnts 

Testing nunibcr of useful discriminant 
functions. see Classification and 
discrimination 

Testing number of useful principal com- 
ponents, see Principal components 

Testing specified values for mcin vector and 
covariance matrix, 366-376 

Likelihood ratio statistic, 366 
asymptotic non-null distributions, 373- 

asymptotic null distribution, 370 
invariancc, 366 
moments, 369, 370 
porcentagc points, 371,372 
unbiascdness, 367 

376 

Tests of hypotheses, see Canonical cor- 
relation cocfficients; Corrclation 
coefficient; Classification and dis- 
crimination; T:ishcr's z ;  Cencrai 
tincar hypothesis; Mean vector; Multi- 
variate linear model; Partial corrcla- 
tion coefficient; Principal components; 
P tcst ; spen'/lc testing methods 

Total variability, 383 
Trace of matrix, 584,585 

asymptoticdistributions of trace of non- 

distribution of trace of Wishart matrix, 
ccntral Wishart matrb,  518 

107,115 
Transitive action of a group, 198 
Triangular matrix, 573 
P test: 

confidcnce rcgions, 215, 216, 220 
distribution, 98, 21 1 
invariance, 213-215,217,218 
likelihood ratio tests, 212,218, 222 
robustness property, 219 
tcsting that components of mcamvector 

arc all equal, 222 
testing equality of two means: 

when covariance matrices arc uncqual, 

when common covariance matrix is 

tcsting hypotheses about mean vector 

220,221 

unknown, 216.218,220 

wbcn covariance matrix is unknown, 
99, 212-215 
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independencc of marginal distributions, 
92 

inverted. 97 
latent roots, 103 
marginal distribution, 92 
moments, 90, 11 2, 1 13 
noncentral, see Noncentral Wishart 

distribution 
pro per ties, 8 7 - 1 08 
quadratic forms, 93,96 

testing that linear functions of com- 
ponents of mean vector are zero, 
218 

uniformly most powerful invariant tests, 
215.218 

Uniform distribution : 
on ellipsoid, 48,49 
on unit sphere, 37, 38 

Vec of a matrix, 17,74,76 
Vinograd’s theorem, 589 
Volume: 

orthogonal group, 69.71 
Stiefel manifold, 70 

V Statistic, see Multivariate Linear 
model 

Wishart distribution: 
asymptotic distribution, 90, 

Bartlett decomposition, 99 
characteristic function, 87 
conditional distributions, 93 
definition, 82,87 
density function, 62,85 
distribution: 

91 

of extreme latent roots, 421,423 
of latent roots, 106,107,115,388, 

of latent vectors, 107 
of trace, 107, 339 

389 

generalized variance, 100-103 

z, see Fisher’s z 
Zonal polynomials, 227-258 

algorithm, 229-236 
average over orthogonal group, 243 
construction, 229-236 
definition, 227,228,237 
expectation: 

with respect to Beta distribution, 255 
with respect to Wishart distribution, 

group representation genesis, 244-246 
identity matrix, 237 
integrals, 243, 248-258 
Laplace-Beltrami operator, 246 
Laplace transform, 253 
partial differential equation, 229 
properties, 236-258 
recurrence relation for coefficients, 234 
tables, 237, 238 
use : 

25 1 

in hypergeometric functions, 258 
in Laguerre polynomials, 282 




