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Preface

Nowadays one can hardly find any field where statistics is not used. With a given
sample, one can infer about the population. The role of estimation and inferential
statistics remains pivotal in the study of statistics. Statistical inference is concerned
with problems of estimation of population parameters and test of hypotheses. In
statistical inference, drawing a conclusion about the population takes place on the
basis of a portion of the population. This book is written, keeping in mind the need
of the users, present availability of literature to cater to these needs, their merits and
demerits under a constantly changing scenario. Theories are followed by relevant
worked-out examples which help the user grasp not only the theory but also
practice them.

This work is a result of the experience of the authors in teaching and research
work for more than 20 years. The wider scope and coverage of the book will help
not only the students, researchers and professionals in the field of statistics but also
several others in various allied disciplines. All efforts are made to present the
“estimation and statistical inference”, its meaning, intention and usefulness. This
book reflects current methodological techniques used in interdisciplinary research,
as illustrated with many relevant research examples. Statistical tools have been
presented in such a manner, with the help of real-life examples, that the fear factor
about the otherwise complicated subject of statistics will vanish. In its seven
chapters, theories followed by examples will make the readers to find most suitable
applications.

Starting from the meaning of the statistical inference, its development, different
parts and types have been discussed eloquently. How someone can use statistical
inference in everyday life has remained the main point of discussion in examples.
How someone can draw conclusions about the population under varied situations,
even without studying each and every unit of the population, has been discussed
taking numerous examples. All sorts of inferential problems have been discussed, at
one place supported by examples, to help the students not only in meeting their
examination need and research requirement, but also in daily life. One can hardly
get such a compilation of statistical inference in one place. The step-by-step
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procedure will immensely help not only the graduate and Ph.D. students but also
other researchers and professionals. Graduate and postgraduate students,
researchers and the professionals in various fields will be the user of the book.
Researchers in medical and social and other disciplines will be greatly benefitted
from the book. The book would also help students in various competitive
examinations.

Written in a lucid language, the book will be useful to graduate, postgraduate
and research students and practitioners in diverse fields including medical, social
and other sciences. This book will also cater the need for preparation in different
competitive examinations. One can find hardly a single book, in which all topics
related to estimation and inference are included. Numerous relevant examples for
related theories are added features of this book. An introduction chapter and an
annexure are special features of this book which will help readers in getting basic
ideas and plugging the loopholes of the readers. Chapter-wise summary of the
content of the proposed book is presented below.

Estimation and Inferential Statistics

• Chapter 1: The chapter relates to introduction to the theory of point estimation
and inferential statistics. Different criteria for a good estimator are discussed.
The chapters also present real-life worked-out problems that help the reader
understand the subject. Compared to partial coverage of this topic in most books
on statistical inference, this book aims at elaborate coverage about the subject of
point estimation.

• Chapter 2: This chapter deals with different methods of estimation like least
square method, method of moments, method of minimum χ2 and method of
maximum likelihood estimation. Not all these methods are equally good and
applicable in all situations. Merits, demerits and applicability of these methods
have been discussed in one place, which otherwise have remained mostly dis-
persed or scattered in the competing literature.

• Chapter 3: Testing of hypotheses has been discussed in this chapter. This
chapter is characterized by typical examples in different forms and spheres
including Type A1 testing, which is mostly overlooked in many of the available
literature. This has been done in this book.

• Chapter 4: The essence and technique of likelihood ratio test has been discussed
in this chapter. Irrespective of the nature of tests for hypotheses (simple and
composite), this chapter emphasizes how easily the test could be performed,
supported by a good number of examples. Merits and drawbacks have also been
discussed. Some typical examples are discussed in this chapter that one can
hardly find in any other competing literature.
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• Chapter 5: This chapter deals with interval estimation, techniques of interval
estimation under different situations, problems and prospects of different
approaches of interval estimation has been discussed with numerous examples
in one place.

• Chapter 6: This chapter deals with non-parametric methods of testing
hypotheses. All types of non-parametric tests have been put together and dis-
cussed in detail. In each case, suitable examples are the special feature of this
chapter.

• Chapter 7: This chapter is devoted to the discussion of decision theory. This
discussion is particularly useful to students and researchers interested in infer-
ential statistics. In this chapter, attempt has been made to present the decision
theory in an exhaustive manner, keeping in mind the requirement and the
purpose of the reader for whom the book is aimed at. Bayes and mini-max
method of estimation have been discussed in the Annexure. Most of the
available literature on inferential statistics lack due attention on these important
aspects of inference. In this chapter, the importance and utilities of the above
methods have been discussed in detail, supported with relevant examples.

• Annexure: The authors feel that the Annexure portion would be an asset to
varied types of readers of this book. Related topics, proofs, examples, etc.,
which could not be provided in the text itself, during the discussion of various
chapter for the sake of maintenance of continuity and flow are provided in this
section. Besides many useful proofs and derivations, this section includes
transformation of statistics, large sample theories, exact tests related to binomial,
Poisson population, etc. This added section will be of much help to the readers.

In each chapter, theories are followed by examples from applied fields, which
will help the readers of this book to understand the theories and applications of
specific tools. Attempts have been made to familiarize the problems with examples
on each topic in a lucid manner. During the preparation of this book, a good number
of books and articles from different national and international journals have been
consulted. Efforts have been made to acknowledge and provide these in the bib-
liography section. An inquisitive reader may find more material from the literature
cited.

The primary purpose of the book is to help students of statistics and allied fields.
Sincere efforts have been made to present the material in the simplest and
easy-to-understand form. Encouragements, suggestions and help received from our
colleagues at the Department of Agricultural Statistics, Bidhan Chandra Krishi
Viswavidyalaya are sincerely acknowledged. Their valuable suggestions towards
improvement of the content helped a lot and are sincerely acknowledged. The
authors thankfully acknowledge the constructive suggestions received from the
reviewers towards the improvement of the book. Thanks are also due to Springer
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for the publication of this book and for continuous monitoring, help and suggestion
during this book project. The authors acknowledge the help, cooperation, encour-
agement received from various corners, which are not mentioned here. The effort
will be successful, if this book is well accepted by the students, teachers,
researchers and other users to whom this book is aimed at. Every effort has been
made to avoid errors. Constructive suggestions from the readers in improving the
quality of this book will be highly appreciated.

Mohanpur, Nadia, India Pradip Kumar Sahu
Santi Ranjan Pal
Ajit Kumar Das
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Introduction

In a statistical investigation, it is known that for reasons of time or cost, one may
not be able to study each individual element of the population. In such a situation, a
random sample should be taken from the population, and the inference can be
drawn about the population on the basis of the sample. Hence, statistics deals with
the collection of data and their analysis and interpretation. In this book, the problem
of data collection is not considered. We shall take the data as given, and we study
what they have to tell us. The main objective is to draw a conclusion about the
unknown population characteristics on the basis of information on the same char-
acteristics of a suitably selected sample. The observations are now postulated to be
the values taken by random variables. Let X be a random variable which describes
the population under investigation and F be the distribution function of X. There are
two possibilities. Either X has a distribution function of Fh with a known functional
form (except perhaps for the parameter h, which may be vector), or X has a
distribution function F about which we know nothing (except perhaps that F is, say,
absolutely continuous). In the former case, let H be the set of possible values of
unknown parameter h, then the job of statistician is to decide on the basis of
suitably selected samples, which member or members of the family Fh; h 2 Hf g
can represent the distribution function of X. These types of problems are called
problems of parametric statistical inference. The two principal areas of statistical
inference are the “area of estimation of parameters” and the “tests of statistical
hypotheses”. The problem of estimation of parameters involves both point and
interval estimation. Diagrammatically, let us show components and constituents of
statistical inference as in chart.
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Problem of Point Estimation

The problem of point estimation relates to the estimating formula of a parameter
based on random sample of size n from the population. The method basically
comprises of finding out an estimating formula of a parameter, which is called the
estimator of the parameter. The numerical value, which is obtained on the basis of a
sample while using the estimating formula, is called estimate. Suppose, for an
example, that a random variable X is known to have a normal distribution Nðl; r2Þ;
but we do not know one of the parameters, say l. Suppose further that a sample
X1;X2; . . .;Xn is taken on X. The problem of point estimation is to pick a statistic
T X1;X2; . . .;Xnð Þ that best estimates the parameter l. The numerical value of T
when the realization is x1; x2; . . .; xn is called an estimate of l, while the statistic T is
called an estimator of l. If both l and r2 are unknown, we seek a joint statistic
T ¼ U;Vð Þ as an estimate of l; r2ð Þ.
Example Let X1;X2; . . .;Xn be a random sample from any distribution Fh for which
the mean exists and is equal to h. We may want to estimate the mean h of distri-
bution. For this purpose, we may compute the mean of the observations
x1; x2; . . .; xn, i.e., say

�x ¼ 1
n

Xn
i¼1

xi:

This �x can be taken as the point estimate of h.

Example Let X1;X2; . . .;Xn be a random sample from Poisson’s distribution with
parameter k, i.e., P kð Þ, where k is not known. Then the mean of the observations
x1; x2; . . .; xn, i.e.,

�x ¼ 1
n

Xn
i¼1

xi

is a point estimate of k.
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Example Let X1;X2; . . .;Xn be a random sample from a normal distribution with
parameters l and r2, i.e., N l; r2ð Þ, where both l and r2 are unknown. l and r2 are
the mean and variance respectively of the normal distribution. In this case, we may
take a joint statistics �x; s2ð Þ as a point estimate of N l; r2ð Þ, where

�x ¼ 1
n

Xn
i¼1

xi ¼ sample mean

and

s2 ¼ 1
n� 1

Xn
i¼1

x1 � �xð Þ2 ¼ sample mean square.

Problem of Interval Estimation

In many cases, instead of point estimation, we are interested in constructing of a
family of sets that contain the true (unknown) parameter value with a specified
(high) probability, say 100 1� að Þ%. This set is taken to be an interval, which is
known as confidence interval with a confidence coefficient 1� að Þ and the tech-
nique of constructing such intervals is known as interval estimation.

Let X1;X2; . . .;Xn be a random sample from any distribution Fh. Let h xð Þ and
�h xð Þ be functions of x1; x2; . . .; xn. If P½h xð Þ\h\�h xð Þ� ¼ 1� a, then ðh xð Þ; �h xð ÞÞ is
called a 100 1� að Þ% confidence interval for h, whereas h xð Þ and �h xð Þ are,
respectively, called lower and upper limits for h.

Example Let X1;X2; . . .;Xn be random sample from N l; r2ð Þ, whereas both l
and r2 are unknown. We can find 100 1� að Þ% confidence interval of l. To esti-
mate the population mean l and population variance r2, we may take the observed
sample mean

�x ¼ 1
n

Xn
i¼1

xi

and the observed sample mean square

s2 ¼ 1
n� 1

Xn
i¼1

xi � �xð Þ2
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respectively. 100 1� að Þ% confidence interval of l is given by

�x� ta
2;n�1

sffiffiffi
n

p

where ta
2;n�1 is the upper a

2 point of the t-distribution with n� 1ð Þ d.f.

Problem of Testing of Hypothesis

Besides point estimation and interval estimation, we are often required to decide
which value among a set of values of a parameter is true for a given population
distribution, or we may be interested in finding out the relevant distribution to
describe a population. The procedure by which a decision is taken regarding the
plausible value of a parameter or the nature of a distribution is known as the testing
of hypotheses. Some examples of hypothesis, which can be subjected to statistical
tests, are as follows:

1. The average length of life l of electric light bulbs of a certain brand is equal to
some specified value l0.

2. The average number of bacteria killed by tests drops of germicide is equal to
some number.

3. Steel made by method A has a mean hardness greater than steel made by
method B.

4. Penicillin is more effective than streptomycin in the treatment of disease X.
5. The growing period of one hybrid of corn is more variable than the growing

period for other hybrids.
6. The manufacturer claims that the tires made by a new process have mean life

greater than the life of a tire manufactured by an earlier process.
7. Several varieties of wheat are equally important in terms of yields.
8. Several brands of batteries have different lifetimes.
9. The characters in the population are uncorrelated.

10. The proportion of non-defective items produced by machine A is greater than
that of machine B.

The examples given are simple in nature, and are well established and have
well-accepted decision rules.

Problems of Non-parametric Estimation

So far we have assumed in statistical inference (parametric) that the distribution of the
random variable being sampled is known except for some parameters. In practice, the
functional form of the distribution is unknown. Here, we are not concerned to the
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techniques of estimating the parameters directly, but with certain pertinent hypothesis
relating to the properties of the population, such as equalities of distribution, tests of
randomness of the sample without making any assumption about the nature of the
distribution function. Statistical inference under such a setup is called non-parametric.

Bayes Estimator

In case of parametric inference, we consider density function f x=hð Þ, where h is a
fixed unknown quantity which can take any value in parametric space H. In
Bayesian approach, it is assumed that h itself is a random variable and density f x=hð Þ
is the density of x for a given h. For example, suppose we are interested in estimating
P, the fraction of defective items in a consignment. Consider a collection of lots,
called superlots. It may happen that the parameter P may differ from lot to lot. In the
classical approach, we consider P as a fixed unknown parameter, whereas in
Bayesian approach, we say that P varies from lot to lot. It is random variable having
a density f Pð Þ, say. Bayes method tries to use this additional information about P.

Example Let X1; X2; . . .Xn be a random sample from PDF

f x; a; bð Þ ¼ 1
b a; bð Þ x

a�1 1� xð Þb�1; 0\x\1; a; b[ 0:

Find the estimators of a and b by the method of moments.

Answer
We know

E xð Þ ¼ l11 ¼
a

aþ b
and E x2

� � ¼ l12 ¼
a aþ 1ð Þ

aþ bð Þ aþ bþ 1ð Þ

Hence

a
aþ b

¼ x;
a aþ 1ð Þ

aþ bð Þ aþ bþ 1ð Þ ¼
1
n

Xn
i¼1

x2i

Solving, we get

bb ¼ x� 1ð Þ P
x2i � nx

� �P
xi � xð Þ2 and ba ¼ xbb

1� x

Example Let X1; X2; . . .Xn be a random sample from PDF

f x; h; rð Þ ¼ 1
hr

ffiffi
r

p e�x=hxr� 1j ; x[ 0; h[ 0; r[ 0
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Find estimator of θ and r by

(i) Method of moments
(ii) Method of maximum likelihood

Answer
Here

E xð Þ ¼ l11 ¼ rh ;E x2
� � ¼ l12 ¼ r rþ 1ð Þh2 and m1

1 ¼ x; m1
2 ¼

1
n

Xn
i¼1

x2i

Hence

rh ¼ x; r rþ 1ð Þh2 ¼ 1
n

Xn
i¼1

x2i

Solving, we get

br ¼ nx2Pn
i¼1

xi � xð Þ2
and bh ¼

Pn
i¼1

xi � xð Þ2

nx

(i) L ¼ 1
hnr

ffiffi
r

pð Þn e
�1

h

Pn
i¼1

xi Qn
i¼1

xr�1
i

(ii) log L ¼ �nr log h� n log
ffiffiffi
n

p � 1
h

Pn
i
xi þ r � 1ð ÞPn

i¼1
wgxi

Now,

@ log L
@h

¼ � nr
h

þ nx

h2
¼ 0 ) bh ¼ x

r

Or

@ log L
@r

¼ �n log h� n
@ log

ffiffi
r

p
@r

þ
Xn
i¼1

log xi

¼ n log r � n
s rð Þffiffi

r
p � n log xþ

Xn
i

log xi

It is, however, difficult to solve the equation

@ log L
@r

¼ 0
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and to get the estimate of r. Thus, for this example, estimators of θ and r are more
easily obtained by the method of moments than the method of maximum likelihood.

Example Find the estimators of α and β by the method of moments.

Proof We know

E xð Þ ¼ l11 ¼
aþ b
2

and V xð Þ ¼ l2
b� að Þ2
12

Hence

aþ b
2

¼ x and
b� að Þ2
12

¼ 1
n

Xn
i¼1

xi � xð Þ2

Solving, we get

ba ¼ x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
P

xi � xð Þ2
n

s
and bb ¼ xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
P

xi � xð Þ2
n

s

Example If a sample of size one be drawn from the PDF f x; bð Þ ¼
2
b2

b� xð Þ; 0\x\b find bb, the MLE of β and b� the estimator of β based on

method of moments. Show that bb is biased but b� is unbiased. Show that the

efficiency of bb with respect to b� is 2/3.

Solution
Here suppose

L ¼ 2

b2
b� xð Þ

Then

LogL ¼ Log2� 2 log bþ log b� xð Þ

Or

@ log L
@b

¼ � 2

b2
þ 1

b� x
¼ 0 ) b ¼ 2x

Now,

E xð Þ ¼ 2
b

Zb
0

bx� x2
� �

dx ¼ b
3
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Hence

b
3
¼ x ) b ¼ 3x

Thus the estimator of β based on method of moments is given as b� ¼ 3x. Now,

E bb� �
¼ 2� b

3
¼ 2b

3
6¼ b

E b�ð Þ ¼ 3� b
3
¼ b

Hence bb is biased but b� is unbiased.
Again

E x2
� � ¼ 2

b2

Zb
0

bx2 � x3
� �

dx ¼ b2

6

Therefore,

V xð Þ ¼ b2

6
� b2

9
¼ b2

18

Solving, we get

V b�ð Þ ¼ 9V xð Þ ¼ b2

9

V bb� �
¼ 4V xð Þ ¼ 2

9
b2

Hence

M bb� �
¼ V bb� �

þ E bb� �
� b

h i2
¼ 2

9
b2 þ 2

3
b� b

� �2

¼ 1
3
b2

Thus the efficiency of bb with respect to b� is 2/3.

Example Let x1; x2; . . . xnð Þ be a given sample of size n. It is to be tested whether
the sample comes from some Poisson distribution with unknown mean μ. How do
you estimate μ by the method of modified minimum chi-square?
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Solution
Let x1; x2; . . . xn be arranged in K groups such that there are ni observations with

x ¼ i; i ¼ rþ 1; . . .; rþ k � 2; nL observations x� r, and nu observations with
x	 rþ k � 1; so that the smallest and the largest values of x that are fewer are
pooled together and

nL þ
Xrþ k�2

i¼rþ 1

ni þ nu ¼ n

Let

piðlÞ ¼ Pðx ¼ iÞ ¼ e�uli

i!

pLðlÞ ¼ Pðx� rÞ ¼
Xn
i¼0

piðlÞ

puðlÞ ¼ Pðx	 rþ k � 1Þ ¼
X1

i¼rþ k�1

piðlÞ

Now, by using

Xk
i¼1

ni
piðhÞ

@piðhÞ
@hj

¼ 0 j ¼ 1; 2; . . .:p

We have

nL

Pr
i¼0

i
l � 1

� �
piðlÞPr

i¼0
piðlÞ

þ
Xrþ k�2

i¼rþ 1

ni
i
l
� 1

� �
þ nu

P1
i¼rþ k�1

i
l � 1

� �
piðlÞP1

i¼rþ k�1
piðlÞ

¼ 0

Since there is only one parameter, i.e., p ¼ 1 we get the only above equation.
Solving,we get

nl̂ ¼ nL

Pr
i¼0

ipiðlÞPr
i¼0

piðlÞ
þ

Xrþ k�2

i¼rþ 1

ini þ nu

P1
i¼rþ k�1

ipiðlÞP1
i¼rþ k�1

piðlÞ

¼ sum of all x0s

Hence l̂ is approximately the sample mean �x
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Example In general, we consider n uncorrelated observations y1; y2; . . .yn such that
EðyiÞ ¼ b1x1i þ b2x2i þ . . .. . .. . .. . .þ bkxki and V(yi) = r2; i ¼ 1; 2; . . .. . .; n; x1i ¼
18i; where b1; b2. . .. . .. . .. . .bk and r2 are unknown parameters. If Y and b� stand
for column vectors of the variables yi and parameters bj and if X ¼ ðxjiÞ be an
ðn� kÞ matrix of known coefficients xji the above equation can be written as

EðYÞ ¼ Xb� and V(e) = Eðee0Þ ¼ r2I

Where e ¼ Y � Xb� is an ðn� 1Þ vector of error random variable with EðeÞ ¼ 0 and
I is an ðn� nÞ identity matrix. The least square method requires that b0s be calculated
such that / ¼ ee0 ¼ ðY � Xb�Þ0 ðY � Xb�Þbe the minimum. This is satisfied when

@/
@b�

¼ 0 on 2X 0ðY � Xb�Þ ¼ 0

The least square estimators b0 s is thus given by the vector b̂� ¼ ðX 0XÞ�1X 0Y .

Example Let yi ¼ b1x1i þ b2x2i þ . . .. . .. . .. . .þ bkxki; i ¼ 1; 2; . . .. . .; n or
EðyiÞ ¼ b1x1i þ b2x2i; x1i ¼ 1 for all i. Find the least square estimates of b1 and b2.
Prove that the method of maximum likelihood and the method of least square are
identical for the case of normal distribution.

Solution
In matrix notation, we have

EðY) = Xb� whereX ¼
1 x21
1 x22
..
. ..

.

1 x2n

0BBB@
1CCCA; b� ¼ b1

b2

� �
and Y ¼

y1
y2
..
.

yn

0BBB@
1CCCA

Now,

b̂� ¼ ðX 0XÞ�1X 0Y

Here

X 0X ¼ 1 1 . . . 1

x21 x22 . . . x2n

� � 1 x21
1 x22

..

. ..
.

1 x2n

0BBBB@
1CCCCA ¼ n

P
x2iP

x2i
P

x22i

� �

X 0Y ¼
P

yiP
x2iyi

� �
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Then

b̂� ¼ 1

n
P

x22i � ðP x2iÞ2
P

x22i �P
x2i

�P
x2i n

� � P
yiP

x2iyi

� �
¼ 1

n
P

x22i � ðP x2iÞ2
P

x22i
P

yi �
P

x2i
P

x2iyi
�P

x2i
P

yi þ n
P

x2i
P

yi

� �
Hence

b̂2 ¼
n
P

x2i
P

yi �
P

x2i
P

yi
n
P

x22i � ðP x2iÞ2

¼
P

x2i
P

yi � n�x2�yP
x22i � n�x22

¼
P ðx2i � �x2Þðyi � �yÞP ðx2i � �x2Þ2

and

b̂1 ¼
P

x22i
P

yi �
P

x2i
P

x2iyi
n
P

x22i � ðP x2iÞ2

¼ �y
P

x22i � �x2
P

x2iyiP
x22i � n�x2

¼ �yþ �yn�x22 � �x2
P

x2iyiP
x22i � n�x22

¼ �y� �x2b̂2

Let yi be an independent Nðb1 þ b2xi; r
2Þ variate, i ¼ 1; 2; . . .. . .; n so that

EðyiÞ ¼ b1 þ b2xi: The estimators of b1 and b2 are obtained by the method of least
square on minimizing

/ ¼
Xn
i¼1

ðyi � b1 � b2xiÞ2

The likelihood estimate is

L ¼ 1ffiffiffiffiffiffi
2p

p
r

� �n

e
1

2r2

P
ðyi�b1�b2xiÞ2
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L is maximum when
Pn
i¼1

ðyi � b1 � b2xiÞ2 is minimum. By the method of

maximum likelihood we choose b1 and b2 such that
Pn
i¼1

ðyi � b1 � b2xiÞ2 ¼ / is

minimum. Hence both the methods of least square and maximum likelihood esti-
mator are identical.
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Chapter 1
Theory of Point Estimation

1.1 Introduction

In carrying out any statistical investigation, we start with a suitable probability
model for the phenomenon that we seek to describe (The choice of the model is
dictated partly by the nature of the phenomenon and partly by the way data on the
phenomenon are collected. Mathematical simplicity is also a point that is given
some consideration in choosing the model). In general, model takes the form of
specification of the joint distribution function of some random variables
X1; X2; . . . Xn (all or some of which may as well be multidimensional). According
to the model, the distribution function F is supposed to be some (unspecified)
member of a more or less general class F of distribution functions.

Example 1.1 In many situations, we start by assuming that X1; X2; . . . Xn are iid
(independently and identically distributed) unidimensional r.v’s (random variables)
with a common but unspecified distribution function, F1, say. In other words, the
model states that F is some member of the class of all distribution functions of the
form

Fðx1; x2; . . .; xnÞ ¼
Yn
i¼1

F1ðxiÞ:

Example 1.2 In traditional statistical practice, it is frequently assumed that
X1; X2 . . . Xn have each the normal distribution (but its mean and/or variance being
left unspecified), besides making the assumption that they are iid r.v’s.

In carrying out the statistical investigation, we then take as our goal, the task of
specifying F more completely than is done by the model. This task is achieved by
taking a set of observations on the r.v’s X1; X2; . . . ;Xn. These observations are the
raw material of the investigation and we may denote them, respectively, by
x1; x2; . . . ; xn. These are used to make a guess about the distribution function F,
which is partly unknown.

© Springer India 2015
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The process is called Statistical Inference, being similar to the process of inductive
inference as envisaged in classical logic. For here too the problem is to know the
general nature of the phenomenon under study (as represented by the distribution of
the r.v’s) on the basis of the particular set of observations. The only difference that in a
statistical investigation induction is achieved within a probabilistic framework.
Probabilistic considerations enter into the picture in three ways. Firstly, the model used
to represent the field of study is probabilistic. Second, certain probabilistic principles
provide the guidelines in making the inference. Third, as we shall see in the sequel, the
reliability of the conclusions also is judged in probabilistic terms.

Random Sampling
Consider a statistical experiment that culminate in outcomes x which are the values
assumed by a r.v. X. Let F be the distribution function of X. One can also obtain n
independent observations on X. This means that the n values observed as
x1; x2; . . . ; xn are assumed by the r.v. X [This can be obtained by replicating the
experiment under (more or less) identical conditions]. Again each xi may be
regarded as the value assumed by a r.v. Xi, i = 1 (1)n, where X1; X2; . . . Xn are
independent random variables with common distribution function F. The set
X1; X2; . . . Xn of iid r.v’s is known as a random sample from the distribution
function F. The set of values x1; x2; . . . ; xnð Þ is called a realization of the sample
X1; X2; . . .; Xnð Þ.
Parameter and Parameter Space
A constant which changes its value from one situation to another is knownpa-
rameter. The set of all admissible values of a parameter is often called the parameter
space. Parameter is denoted by θ (θ may be a vector). We denote the parameter
space by H.

Example 1.3

(a) Let y ¼ 2x þ h. Here, θ is a parameter and

H ¼ fh; � / \ h\ /g:

(b) Let x� bð1; pÞ. Here, p is a parameter and

H ¼ fp; 0\ p \ 1g:

(c) Let x�PðkÞ Here, λ is a parameter and

H ¼ fk; k [ 0g:

(d) Let x�Nðl0; r2Þ, μ0 is a known constant.
Here, σ is a parameter and H ¼ fr; r [ 0g:

(e) Let x�Nðl; r2Þ, both μ and σ are unknown.

Here, h ¼ l
r

� �
is a parameter and H ¼ l

r

� �
;�1\ l\1; r [ 0

� �
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Family of distributions
Let X �Fh where h e H. Then the set of distribution functions {Fθ, h e H} is called
a family of distribution functions.

Similarly, we define family of p.d.f’s and family of p.m.f’s.

Remark

(1) If functional form of Fθ is known, then θ can be taken as an index.
(2) In the theory of estimation, we restrict ourselves to the case H�Rk when k is

the number of unknown functionally unrelated parameters.

Statistic
A statistic is a function of observable random variable which must be free from
unknown parameter(s), that is a Borel measurable function of sample observations
X�

¼ x1; x2; . . . ; xnð Þ 2 Rn f : Rn ! Rk is often called a statistic.

Example 1.4 Let X1; X2 . . . Xn be a random sample from Nðl; r2Þ. ThusP
Xi;
P

X2
i ;
P

Xi;
P

X2
i

� �
each of these is a statistic.

Estimator and estimate
Any statistic which is used to estimate (or to guess) τ(θ), a function of unknown
parameter θ, is said to be an estimator of τ(θ). The experimentally determined value
of an estimator is called an estimate.

Example 1.5 Let X1; X2; . . .; X5 be a random sample from P(λ).
An estimator of λ is �X ¼ 1

5

P5
i¼1 Xi.

Suppose the experimentally determined values are X1 ¼ 1; X2 ¼ 4; X3 ¼ 2;
X4 ¼ 6 and X5 ¼ 0.

Then the estimate of λ is 1 þ 4 þ 2 þ 6 þ 0
5 ¼ 2:6.

1.2 Sufficient Statistic

In statistics, the job of a statistician is to interpret the data that he has collected and to
draw statistically valid conclusion about the population under investigation. But, in
many cases the raw data, which are too numerous and too costly to store, are not
suitable for this purpose. Therefore, the statistician would like to condense the data by
computing some statistics and to base his analysis on these statistics so that there is no
loss of relevant information in doing so, that is the statistician would like to choose
those statistics which exhaust all information about the parameter, which is contained
in the sample. Keeping this idea in mind, we define sufficient statistics as follows:

Definition Let X�
¼ X1;X2; . . . ;Xnð Þ be a random sample from Fh; h 2 Hf g.

A statistic TðX� Þ is said to be sufficient for θ [or for the family of distribution

Fh; h 2 Hf g] iff the conditional distribution of X�
given T is free from θ.
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Illustration 1.1 Suppose we want to study the nature of a coin. To do this, we
want to estimate p, the probability of getting head in a single toss. To estimate p,
n tosses are performed. Suppose the results are X1; X2; . . . ;Xn where

Xi ¼ 0 if tail appears
1 if head appears in ith tossð Þ:

�
Intuitively, it sums unnecessary to mention the order of occurrences of head. To

estimate p, it is enough to keep the record of the number of heads. So the statistic
T = ΣXi should be sufficient for p.

Again, conditional distribution of X1 ¼ x1; X2 ¼ x2; . . .;Xn ¼ xn given TðX� Þ ¼
t where t ¼ T X1 ¼ x1;X2 ¼ x2; . . . ;Xn ¼ xnð Þ is given by

PðX1 ¼ x1;X2 ¼ x2;...;Xn ¼ xn;T¼tÞ
PðT ¼ tÞ if T ¼ t

0 otherwise

(

¼
p

P
xi ð1�pÞn�

P
xi

n

t

� �
ptð1�pÞn�t

if T ¼ t

0 otherwise

8>>><>>>:
¼

1
n

t

� � if T ¼ t

0 otherwise

8><>:
which is free from parameter p.

So from definition of sufficient statistics, we observe that Σxi is a sufficient
statistic for p.

Illustration 1.2 Let X1; X2; . . .; Xn be a random samples from N(μ, 1) where μ
is unknown. Consider an orthogonal transformation of the form

y1 ¼
X1 þX2 þ � � � þXnp

n

and yk ¼
k � 1ð ÞXk � X1 þX2 þ � � � þXk�1ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k k � 1ð Þp ; k ¼ 2ð1Þn:

Clearly, y1 �Nð ffiffiffi
n

p
l; 1Þ and each of yk �Nð0; 1Þ:

Again, y1, y2,…, yn are independent.
Note that the joint distribution of y2; y3; . . .; yn does not involve μ, i.e. y2 ; . . .; yn

do not provide any information on μ. So to estimate μ, we use either the obser-
vations on X1; X2; . . . Xn or simply the observed value of y1. So any analysis based
on y1, is just as effective as the analysis that is based on all observed values on
X1; X2; . . . Xn. Hence, we can suggest that y1 is a sufficient statistic for μ.
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From the above discussion, we see that the conditional distribution of
y2; y3; . . .; ynð Þ given y1 is same as the unconditional distribution of
ðy2; y3; . . . ; ynÞ. Hence, the conditional distribution of X�

given y1 will be free from

μ.
Thus according to the definition of sufficient statistics, y1 will be a sufficient

statistic for μ.
However, this approach is not always fruitful. To overcome this, we consider a

necessary and sufficient condition for a statistic to be sufficient.
We first consider the Fisher–Neyman criterion for the existence of a sufficient

statistic for a parameter.
Let X�

¼ X1;X2; . . .;Xnð Þ be a random sample from a population with contin-

uous distribution function Fh; h 2 H. Let TðX� Þ be a statistic whose probability

density function is fgfTð x�Þ; hgg. Then TðX� Þ is a sufficient statistic for h iff the

joint probability density function f ð x� ; hÞ of X1;X2; . . .;Xn can be expressed as

f ðX� ; hÞ ¼ gfTð x�Þ; hghð x�Þ whose, for every fixed value of Tð x�Þ, hð x�Þ does not

depend upon h.

Example 1.5 Let X1;X2; . . .;Xn be a random sample from the distribution that has
probability mass function

f x; hð Þ ¼ hx 1� hð Þ1�x; x ¼ 0; 1; 0\ h\ 1. The statistic T X�

� �
¼Pn

i¼1 Xi has

the probability mass function

g t; hð Þ ¼ n!
t! n� tð Þ! h

t 1� hð Þn�t; t ¼ 0; 1; 2; . . .; n

Thus the joint probability mass function of X1;X2; . . .;Xn may be written

f x
� ; h

 �

¼ hx1 þ x2 þ ��� þ xn � 1� hð Þn� x1 þ x2 þ ��� þ xnð Þ

¼ n!
t! n� tð Þ! h

t 1� hð Þn�t� � � t! n� tð Þ!
n!

By Fisher–Neyman criterion, T X�

� �
¼ X1 þX2 þ � � � þXn is a sufficient

statistic for h. In some cases, it is quite tedious to find the p.d.f or p.m.f of a certain
statistic which is or is not a sufficient statistic for h. This problem can be avoided if
we use the following

Fisher–Neymann factorization theorem
Let X�

¼ X1; X2; . . . Xnð Þ be a random sample from a population with c.d.f.

Fh; h e H. Furthermore, let all X1; X2; . . . Xn are of discrete type or of continuous
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type. Then a statistic Tð x�Þ will be sufficient for θ or for Fh; h e Hf g iff the joint

p.m.f. or p.d.f. f ðX� ; hÞ, of X1; X2; . . . Xn can be expressed as

f ðX� ; 0Þ ¼ gfTðX� Þ; hg � hð x�Þ

where the first factor gfTð x�Þ; hg is a function of θ and x only through T( x� ) and for
fixed T( x� ) the second factor h( x� ) is free from θ and is non-negative.

Remark 1.1 When we say that a function is free from θ, we do not only mean that θ
does not appear in the functional form but also the domain of the function does not
involve θ.

e.g. the function

f ðxÞ ¼ 1=2; h� 1\ x\ hþ 1
0 otherwise

�
does depend upon θ.

Corollary 1.1 Let T X�

� �
be a sufficient statistic for θ and T 0 X�

� �
= ψ T X�

� �� �
be a one-to-one function of T. Then T 0 X�

� �
is also sufficient for the same

parameters θ.

Proof Since T is sufficient for θ, by factorization theorem, we have

f ð x� ; hÞ ¼ gfTð x�Þ; hg � hð x�Þ

Since the function T 0 x
�


 �
is one-to-one

f ð x� ; hÞ ¼ g w�1fT 0ð x�Þg; h
h i

hð x�Þ:
h

Clearly, the first factor of R.H.S. depends on h and x
� only through T 0ð x�Þ and

the second factor h( x� ) is free from θ and is non-negative.

Therefore, according to factorizability criterion, we can say that T 0ð x�Þ is also

sufficient for the same parameter θ.

Example 1.6 Let X1; X2; . . . Xn be a random sample from b(1, π). We show that 1/n
ΣXi is a sufficient statistic for π.
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P.m.f. of x is

fhðxÞ ¼ hXð1 � hÞ1�X if x ¼ 0; 1 ½h � p �
0 otherwise

�
where 0 \ h \ 1, i.e. the parameter space is H ¼ 0; 1ð Þ. Writing fhðxÞ in the
form

fhðxÞ ¼ C xð Þhxð1 � hÞ1�x with CðxÞ ¼ 1 if x ¼ 0; 1
0 Otherwise:

�
We find that joint p.m.f. of X1; X2; . . . Xn is

P
i
fh xið Þ ¼ hRXið1� hÞn�RXi P

i
CðxiÞ

¼ gh tð Þ h x1; x2; . . . xnð Þ ðSayÞ

where t ¼ Rxi; gh tð Þ ¼ htð1 � hÞn�t and h x1; x2; . . .; xnð Þ ¼ Q
i C xið Þ:

Hence, the factorization criterion is met by the joint distribution, implying that
T = ΣXi is sufficient for θ. So is T/n, the sample proportion of successes being
one-to-one correspondence with T.

Example 1.7 Let X1,…, Xn be a random sample from P(λ). We show that 1/n ΣXi is
a sufficient statistic for λ.

The p.m.f. of the Poisson distribution is

fhðxÞ ¼
e�hhx

x! if x ¼ 0; 1; 2. . .½h � k�
0 otherwise

�
where 0\ h /, i.e. H ¼ 0;/ð Þ

Let us write the p.m.f. in the form fhðxÞ ¼ CðxÞe�h hX

with CðxÞ ¼
1
x! if x ¼ 0; 1; 2; . . .
0 otherwise

�
We may represent the joint p.m.f. of X1; X2; . . . Xn as

P
i
fhðxiÞ ¼ e�nh h

P
Xi P

i
CðxiÞ

¼ ghðtÞhðx1; x2. . .xnÞ; ðSayÞ

where t ¼P xi; ghðtÞ ¼ e�nhht and hðx1; x2; . . .xnÞ ¼ P
i
CðxiÞ:
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The factorizability condition is thus observed to hold, so that T = ΣXi is sufficient
for θ; so is T/n ¼ X, the sample mean.

Example 1.8 Let X1; X2; . . . ;Xn be a random sample from Nðl; r2Þ. Show that
(i) if σ is known, ΣXi is a sufficient statistic for μ, (ii) if μ is known RðXi � lÞ2 is a
sufficient statistic for σ2, and (iii) if both μ and σ are unknown RXi; RX2

i

� �
is a

sufficient statistic for ðl; r2Þ.
Ans. (i) we may take the variance to be σ2 and the unknown mean to be μ,

varying over the space H ¼ � /;/ð Þ. Here, the joint p.d.f. of X1; X2; . . . ;Xn isQ
i

1
r
ffiffiffiffi
2p

p e�
1

2r2
ðxi�lÞ2

n o
¼ 1

r
ffiffiffiffiffiffi
2p

p� �n e� 1
2r2

P
i

ðxi�lÞ2

¼ e
�nð�x�lÞ2

2r2 e

�
P
i

ðxi��xÞ2

2r2 � 1

ðr ffiffiffiffiffi
2n

p Þn

8<:
9=;

¼ gl tð Þ � h x1; x2; . . .; xnð Þ; Sayð Þ

where t ¼ x; gl ðtÞ ¼ e�nð�X�lÞ2=2r2

and h x1; x2; . . . ; xnð Þ ¼ 1
r
ffiffiffiffi
2p

pð Þn e
� 1

2r2

P
xi�xð Þ2

Thus the factorizability condition holds with respect to T ¼ �X, the sample mean,
which is therefore sufficient for μ. So the sum is

P
i Xi

(ii) The unknown variance σ2 = θ, say, is supposed to vary over H ¼ 0; /ð Þ.
The joint p.d.f. of X1; X2; . . . Xn may be written as

Y
i

1

r
ffiffiffiffiffiffi
2p

p e�
1

2r2
ðxi�lÞ2

� �
¼ 1

ðr ffiffiffiffiffiffi
2p

p Þn e
�1
2r2

P
i

ðxi�lÞ2
¼ gh tð Þ h x1; x2. . . xnð Þ; say;

where t ¼P
i

xi � lð Þ2; gh tð Þ ¼ 1ffiffiffiffi
2p

p
rð Þn e

� 1
2r2

P
xi�lð Þ2

r2 � h and h x
�


 �
¼ 1. Hence, T ¼P Xi � lð Þ2 is a sufficient statistic for θ. So

is
S20 ¼ 1

n

P
i xi � lð Þ2, which is in this situation commonly used to estimates σ2.
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(iii) Taking the unknown mean and variance to be θ1 and θ2, respectively, we
now have for θ a vector θ = (θ1, θ2) varying over the parameter space (which is a
half-plane) H ¼ ðh1; h2Þ =� / \ h1 \ /; 0\ h2 \ /f g.

The jt. p.d.f. of X1; X2; . . . ;Xn may now be written as

Y
i

1ffiffiffiffiffiffiffiffiffiffi
2ph2

p e�
1

2h2
ðxi�h1Þ2

� �
¼ 1

ð2ph2Þ
n
2
e�

1
2h2

½nð�x�h1Þ2 þðn�1Þs2�

¼ gh t1; t2ð Þ hð x�Þ; say; where t1 ¼ x; t2 ¼ s2 ¼
X
i

xi � xð Þ2
.

n� 1ð Þ

gh t1; t2ð Þ ¼ 1

2ph2ð Þn2 e
� 1

2h2
½nð�x�h1Þ2 þðn�1Þs2� and h x

�


 �
¼ 1 :

The factorizability condition is thus observed to hold with regard to the statistics
T1 ¼ X, the sample mean and T2 ¼ s2, the sample variance.

Hence, X and s2 are jointly sufficient for θ1 and θ2, i.e. RXi;RX2
i

� �
is a joint

sufficient statistic for (μ, σ2).

Example 1.9 Let X1; X2; . . . ;Xn be a random sample from R(0, θ).
Show that XðnÞ ¼ max Xi

1� i� n
is a sufficient statistic for θ.

Ans.: The jt. p.d.f. of x1; x2;. . .; xn is

f x
�
; h


 �
¼

1
hn if 0\ xi \ h 8 i
0 otherwise

�
¼

1
hn if 0\ xðnÞ \ h

0 otherwise

�
¼ 1

hn
I 0;hð Þ xðnÞ

� �
where I a;bð Þ xð Þ ¼ 1 if a\ x\ b

0 otherwise

�
¼ gfxðnÞ; hg � hð x�Þ; say

where gfx nð Þ;hg ¼ 1
hn Ið0;hÞfxðnÞg & hð x�Þ ¼ 1.

Note that g{x(n), θ} is a function of θ and x
� only through x(n) whereas for fixed

xðnÞ; hð x�Þ is free from θ.

Hence, x(n) is a sufficient statistic for θ.

Example 1.10 Let X1; X2; . . . ;Xn be a random sample from R(θ1, θ2). Show that
fXð1Þ;XðnÞg is a sufficient statistic for θ = (θ1, θ2) where Xð1Þ ¼ min

1� i� n
Xi,

X nð Þ ¼ max
1 � i � n

Xi.
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Solution Joint p.d.f. of X1; X2; . . . ;Xn is

f x
�
; h


 �
¼

1
ðh2�h1Þn if h1 \ xi \ h2 8i
0 otherwise

(

¼
1

ðh2�h1Þn if h1 \ xð1Þ \ xðnÞ \ h2

0 otherwise

(

¼ 1
ðh2 � h1Þn I1ðh1;1Þfxð1ÞgI2ð�1;h2ÞfxðnÞg

where

I1ðh1;1Þfxð1Þg ¼ 1 if h1 \ x 1ð Þ \ /
0 otherwise

�

and I2ð� /; h2ÞfxðnÞg ¼ 1 if � / \ xn \ h2
0 otherwise

�
, i.e. f ð x� ; hÞ ¼ g½fxð1Þ; xðnÞg;

ðh1; h2Þ�h x
�


 �
where g½fxð1Þ; xðnÞg; ðh1; h2Þ� ¼ 1

h2�h1ð Þn I1ð01;/Þ x 1ð Þf gI2 �1;h2ð Þ

xðnÞ
� �

and h x
�


 �
¼ 1.

Note that g is a function of (θ1, θ2) and x
� only through {x(1), x(n)} where as for

fixed {x(1), x(n)}, h x
�


 �
is free from θ.

Hence, {x(1), x(n)} is a sufficient statistic for (θ1, θ2).

Example 1.11 Let X1; X2; . . .; Xn be a random sample from a population having
p.d.f.

f ðx; hÞ ¼ e�ðx� hÞ; x [ h
0 otherwise

�
Show that Xð1Þ ¼ min Xi

1� i� n
is a sufficient statistic for θ.

Solution The p.d.f. can equivalently be written as

f ðx;hÞ ¼ e�ðX�hÞ; xð1Þ [ h
0 otherwise

�
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Now, the joint p.d.f. of X1; X2; . . . ;Xn is

f ð x� ;hÞ ¼
e
�
P
i

ðxi�hÞ
; xð1Þ [ h

0 otherwise

8<:
f ð x� ; hÞ ¼ e

�
P
i

ðxi� hÞ
Iðh;/Þ xð1Þ

� �
where Iðh;/Þ xð1Þ

� � ¼ 1 if xð1Þ [ h

0 otherwise

�
¼ g fxð1Þ; hg : h x

�


 �
; say

where gfxð1Þ; hg ¼ e�
P

i
ðxi�hÞIðh;/Þ xð1Þ

� �
and h x

�


 �
¼ 1.

Note that g{x(i), θ} is a function of θ and x
�
only through x(1) and for fixed x(1), h

(x) is free from θ. Hence, according to factorizability criterion, x(1) is a sufficient
statistic for θ.

Note In the above three problems the domain of the probability density depends
upon the parameter h. In this situation, we should aware to apply Fisher–Neyman
factorization theorem and we should give proper consideration to the domain of the

function h x
�


 �
for every fixed value of T X�


 �
. In these situations, it is better to use

Fisher–Neyman criterion. Let us solve Example 1.10 by using Fisher–Neyman
criterion:

f xð Þ ¼ 1
h2 � h1

; h1 \ x\ h2

Let X 1ð Þ ¼ min
1� i� n

Xi ¼ y1; X nð Þ ¼ max
1� i� n

Xi ¼ y2

The joint p.d.f. of y1; y2 is

g y1; y2; h1; h2ð Þ ¼ n n� 1ð Þ
h2 � h1ð Þn y2 � y1ð Þn�2; h1 \ y1 \ y2 \ h2

The joint p.d.f. of X1;X2; . . .;Xn is

f x
�
; h1; h2


 �
¼ 1

h2 � h1ð Þn

¼ n n� 1ð Þ
h2 � h1ð Þn x nð Þ � x 1ð Þ

� �n�2 1

n n� 1ð Þ x nð Þ � x 1ð Þ
� �n�2

¼ g x nð Þ; x 1ð Þ; h1; h2
� �

h x
�


 �
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By the Fisher–Neyman criterion, x 1ð Þ; x nð Þ
� �

is a sufficient statistic for
h ¼ h1; h2ð Þ
Example 1.12 Let X �Nð0; r2Þ, show that Xj j is sufficient for σ.

Solution

f x; rð Þ ¼ 1ffiffiffiffiffiffiffiffi
2kr

p e�
X2

2r2 ; r [ 0

¼ 1ffiffiffiffiffi
2k

p
r
e�

Xj j2
2r2 � 1

¼ gðt; rÞ h xð Þ; h xð Þ ¼ 1

where g(t, σ) is a function of σ and x only through t ¼ xj j and for fixed t, h(x) = 1 is
free from σ.

Hence, by Fisher–Neymam factorization theorem, Xj j is sufficient for σ.
Example 1.13 Let X1; X2; . . . Xn be a random sample from a double-exponential
distribution whose p.d.f. may be taken as fh Xð Þ ¼ 1

2 exp � xi � hj jð Þ, and the
unknown parameter θ varies over the space H ¼ � /; /ð Þ.

In this case, the joint p.d.f. is
Q

i f h xið Þ ¼ 1
2n exp �Pi xi � hj j� �

.
For no single statistic T, it is now not possible to express the joint p.d.f. in the

form gθ(t) h(x1, x2, … xn).
Hence, there exists no statistic T which taken alone is sufficient for θ. The whole

set X1, X2, …, Xn, or the set X(1), X(2), … X(n), is of course sufficient.

Remarks 1.2 A single sufficient statistic does not always exist.
e.g. Let X1, X2,…, Xn be a random sample from a population having p.d.f.

f ðx;hÞ ¼
1
h; k h\ x\ ðkþ 1Þ h; k [ 0
0 otherwise

�
Here, no single sufficient statistic for θ exists. In fact, {x(1), xn)} is sufficient for

θ.

Remark 1.3 Not all functions for sufficient statistic are sufficient. For example, in

random sampling from N(μ, σ2), σ2 being known, X
2
is not sufficient for μ. (Is X

sufficient for μ2 ?)

Remark 1.4 Not all statistic are sufficient.
Let X1, X2 be a random sample from P(λ). Then X1 + 2X2 is not sufficient for λ,

because in particular, say

P X1 ¼ 0; X2 ¼ 1j X1 þ 2X2 ¼ 2f g ¼ P X1 ¼ 0; X2 ¼ 1 X1 þ 2X2 ¼ 2f g
P X1 þ 2X2 ¼ 2f g
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¼ PfX1 ¼ 0; X2 ¼ 1g
PfX1 ¼ 0; X2 ¼ 1gþPfX1 ¼ 2; X2 ¼ 0g

¼ e�k � e�k � k
e�k � e�k � kþ e�k � e�k � k22!

¼ 2
kþ 2 which depends upon λ.

Remarks 1.5 Let h ¼ ðh1; h2; . . .; hkÞ and T�
¼ T1; T2; . . . Tmð Þ. Further, let T�

be a sufficient statistic for h� . Then we cannot put any restriction on m, i.e. m ≥ k,

the number of parameters involved in the distribution. Even if m = k, then we
cannot say that Ti of T� is sufficient for θi of h� . It is better to say that (T1, T2, … Tm)

are jointly sufficient for (θ1, θ2, … θk).
Let X1, X2,…, Xn be a random sample from N(μ, σ2). Here, ΣXi and ΣXi

2 are
jointly sufficient for μ and σ2.

Remarks 1.6 The whole set of observations X�
¼ X1; X2; . . . ; Xnð Þ is always

sufficient for h� . But we do not consider this to be real sufficient statistic when

another sufficient statistic exists. There are a few situations where the whole set of
observations is a sufficient statistic. [As shown in the example of
double-exponential distribution].

Remarks 1.7 The set of all order statistics T{X(1), X(2), …, X(n)}, X(1) < X(2),
…, < X(n), is sufficient for the family.

Conditional distribution of ðX�=T ¼ tÞ ¼ 1
n! because for each T = t, we have n-

tuples of the form (x1, x2, … xn).

Remarks 1.8: Distribution admitting sufficient statistic Let X1, X2, …, Xn be a

random sample from f x
�
; h


 �
and T X�


 �
be a sufficient statistic for θ (θ is a scalar).

According to factorization theorem,X
i

log f xi; hð Þ ¼ log g ðT; hÞþ log hð x�Þ

Differentiating w.r.t. θ, we have

X
i

@ log f ðxi; hÞ
@h

¼ @ log gðT ; hÞ
@h

¼ GðT; hÞ; sayð Þ ð1:1Þ

Put a particular value of h in (1.1).

1.2 Sufficient Statistic 13



Then we have
Xn
i¼ 1

uðxiÞ ¼ GðTÞ ð1:2Þ

Now differentiating (1.1) and (1.2) w.r.t. xi, we have

@2 log f xi; hð Þ
@h@xi

¼ @G T ; hð Þ
@T

� @T
@xi

ð1:3Þ

@u xið Þ
@xi

¼ @G Tð Þ
@T

� @T
@xi

ð1:4Þ

(1.3) and (1.4) give us

@2 log f ðxi; hÞ
@h @xi

=
@uðxiÞ
@xi

¼ @G T ; hð Þ=@T
@G Tð Þ=@T 8i ð1:5Þ

Since the R.H.S. of (1.5) is free from xi, we can write

@GðT ; hÞ
@ T

¼ @ GðTÞ
@ T

k1ðhÞ
) GðT ; hÞ ¼ G Tð Þk1ðhÞþ k2ðhÞ

) @
P

i logf xi; hð Þ
@h

¼ G Tð Þk1ðhÞþ k2ðhÞ

)
X
i

log f xi; hð Þ ¼ G Tð Þ
Z

k1 hð Þdhþ
Z

k2 hð Þdhþ c x
�


 �
)

Y
i

f xi; hð Þ ¼ A x
�


 �
eh1G Tð Þ þ h2

where A x
�


 �
¼ a function of x

�

θ1 = a function of θ, and
θ2 = another function of θ.

Thus if a distribution is to have a sufficient statistic for its parameter, it must be
of the form

f ðx; hÞ ¼ eB1ðhÞuðxÞ þ B2ðhÞ þ RðxÞ: ð1:6Þ

(1.6) is known as Koopman form.

Example Show, by expressing a Poisson p.m.f. in Koopman form, that Poisson
distribution possesses a sufficient statistic for itsparameter k.
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Here, f ðx; kÞ ¼ e�kkx

x! ¼ e�kþ x log k�log x!

which is of the form eB1ðhÞuðxÞþB2ðhÞþRðxÞ.
Hence, there exists a sufficient statistic for k.
Completeness A family of distributions is said to be complete

if E g Xð Þ½ � ¼ 0 8 h 2 H
) P g xð Þ ¼ 0f g ¼ 1 8 h 2 H

A statistic T is said to be complete if family of distributions of T is complete.

Examples 1.14 (a) Let X1, X2,…, Xn be a random sample from b(1, π), 0 < π < 1.
Then T ¼ Pn

i¼ 1 Xi is a complete statistic.

As E g Tð Þ½ � ¼ 0 8 p 2 0; 1ð Þ

)
Xn
t¼ 0

g tð Þ n
t

� �
pt 1� pð Þn�t ¼ 0

) 1� pð Þn
Xn
t¼ 0

g tð Þ n
t

� � p
1� p


 �t
¼ 0 8 p 2 0; 1ð Þ

) g tð Þ ¼ 0 for t ¼ 0; 1; 2. . . n 8 p 2 0; 1ð Þ
) P g tð Þ ¼ 0f g ¼ 1 8 p

(b) Let X * N (0, σ2). Then X is not complete

as; E Xð Þ ¼ 0 ;P X ¼ 0ð Þ ¼ 1 8 r2

(c) If X �Uð0; hÞ, then X is a complete statistic [or R(0, θ)].
A statistic is said to be complete sufficient statistic if it is complete as well as

sufficient.
If (X1, X2,…, Xn) is a random sample from b (1, π), 0 < π < 1, then T ¼ P

Xi is
also sufficient. So T is a complete sufficient statistic where T ¼ P

Xi.

Minimal Sufficient Statistic
A statistic T is said to be minimal sufficient if it is a function of every other
sufficient statistics.

The sufficiency principle
A sufficient statistic for a parameter h is a statistic that, in a certain sense, captures
all the information about h contained in the sample. Any additional information in
the sample, besides the value of sufficient statistic, does not contain any more
information about h. These considerations lead to the data reduction technique
known as sufficiency principle.

If T X�

� �
is a sufficient statistic for h, then any inference about h should depend

on the sample X�
only through the value T X�

� �
, that is, if x

� and y
�
are two sample
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points such that T x
�


 �
¼ T y

�

� �
, then the inference about h should be the same

whether X�
¼ x

� or X�
¼ y

�
is observed.

Definition (Sufficient statistic) A statistic T X�

� �
is a sufficient statistic for h if the

conditional distribution of the sample X�
given the value of T X�

� �
does not depend

on h.

Factorization theorem: Let f x
�jh

 �

denote the joint pdf/pmf of a sample X�
.

A statistic T X�

� �
is a sufficient statistic for h iff 9 functions g tjhð Þ and h x

�


 �
such

that for all sample points X�
and all parameter values h,

f x
�jh

 �

¼ g tjhð Þh x
�


 �
Result: If T X�

� �
is a function of T 0 X�

� �
, then T 0 X�

� �
is sufficient which

implies that T X�

� �
is sufficient.

i.e. sufficiency of T 0 X�

� �
) sufficiency of T X�

� �
; a function of T 0 X�

� � �
Proof Let Bt0 jt0 2 s0f g and Atjt 2 sf g be the partitions induced by T 0 X�

� �
and

T X�

� �
, respectively. h

Since T X�

� �
is a function of T 0 X�

� �
, for t0 2 s0 ) Bt0 �At, for some 8t 2 s.

Thus Sufficiency of T 0 X�

� �
, Conditional distribution of X�

¼ x
� given T 0 X�

� �
¼ t0 is independent of h,

8t0 2 s0

, Conditional distribution of X�
¼ x

� given X�
2 Bt0 is independent of h, 8t0 2 s0

) Conditional distribution of X�
¼ x

� given X�
2 At (for some 8t 2 s) is inde-

pendent of h, 8t 2 s

, Conditional distribution of X�
¼ x

� given T X�

� �
¼ t is independent of h,

8t 2 s.
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, Sufficiency of T X�

� �
.

Sufficient statistic for an Exponential family of distributions:

Let X1;X2; . . .;Xn be i.i.d. observations from a pdf/pmf f xjh
� �

that belongs to

an exponential family given by

f xjh
� �

¼ h xð Þc h

� �
exp

Xk
i¼ 1

xi h

� �
ti xð Þ

 !

where h� ¼ h1; h2; . . .hdð Þ, d� k. Then

T X�

� �
¼

Xn
j¼ 1

t1 Xj
� �

; . . .;
Xn
j¼ 1

tk Xj
� � !

is a (complete) sufficient statistic for h� .

Minimal sufficient statistic
When we introduced the concept of sufficiency, we said that our objective was to
condense the data without losing any information about the parameter. In any
problem, there are, in fact, many sufficient statistics. In general, we have to consider
the choice between alternative sets of sufficient statistics. In a sample of n obser-
vations, we always have a set of n sufficient statistics [viz., the observations X�

¼
X1;X2; . . .;Xnð Þ themselves or the order statistics Xð1Þ;Xð2Þ; . . .;XðnÞ

� �
] for the

k 	 1ð Þ parameters of the distributions. For example, in sampling from N l;r2ð Þ
distribution with both l and r2 unknown, there are, in fact, three sets of jointly
sufficient statistic: the observations X�

¼ X1;X2; . . .;Xnð Þ, the order statistics

Xð1Þ;Xð2Þ; . . .;XðnÞ
� �

and �X; s2ð Þ. We naturally prefer the jointly sufficient statistic
�X; s2ð Þ since they condense the data more than either of the other two. Sometimes,
though not always, there will be a set of s \nð Þ statistics sufficient for the
parameters. Often s ¼ k but s may be <k also.

The question that we might ask is as follows: Does 9 a set of sufficient statistic
that condenses the data more than �X; s2ð Þ? The answer is there does not. The notion
that we are alluding to is of minimum set of sufficient statistics, which we label
minimal sufficient statistic. In other words, we have to ask: what is the smallest
number s of statistics that constitute a sufficient set in any problem? It may be said
in general that a sufficient statistic T may expected to be minimal sufficient if it has
the same dimensions (i.e. the same number of components) as h.
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Statistics and partition
It may be noted that every statistic induces a partition of �x. The same is true for a set
of statistics; a set of statistics induces a partition of �x. Loosely speaking, the
condensation of data that a statistic or a set of statistics exhibits can be measured by
the number of subsets in the partition induced by the statistic or a set of statistics. If
a set of statistics has fewer subsets (co-sets) in its induced partition than the induced
partition of another set of statistics, then we say that the first statistic condenses the
data more than the later. Still loosely speaking, a minimal sufficient set of statistics
is then a sufficient set of statistics that has fewer subsets (co-sets) in its partition
than the induced partition of any other set of sufficient statistics. So a set of
sufficient statistic is minimal if no other set of sufficient statistics condenses the data
more without losing sufficiency.

Thus T is minimal sufficient if any further reduction of data is not possible
without losing sufficiency, i.e. T is minimal sufficient if there does not exist a
function U ¼ w Tð Þ such that U is sufficient.

Definition (Minimal sufficient statistic) A sufficient statistic TðX� Þ is called minimal

sufficient if, for every other sufficient statistic T 0ðX� Þ, TðX� Þ is a function of T 0ðX� Þ.
To say that TðX� Þ is a function of T 0ðX� Þ simply means that if T 0ð x�Þ ¼ T 0ð y

�
Þ,

then Tð x�Þ ¼ Tð y
�
Þ. In terms of the partition sets, if Bt0 jt0 2 s0 are the partition sets

for T 0ðX� Þ and Atjt 2 T are the partition sets for TðX� Þ, then the above definition of

minimal sufficient statistic states that every Bt0 is a subset of some At. Thus, the
partition associated with a minimal sufficient statistic is coarsest possible partition
for a sufficient statistic, and a minimal sufficient statistic achieves the greatest
possible data reduction for a sufficient statistic.

Example Let Xi i ¼ I; 2; . . .; nð Þ� independent P hð Þ distribution. Then T ¼Pn
i¼ 1 Xi is sufficient for h and, in fact, it is minimal sufficient.
Since T ¼ Pn

i¼ 1 Xi is minimal sufficient; therefore, any further reduction of the
data is not possible without losing sufficiency, i.e. there does not exist a function
U ¼ w Tð Þ such that U is sufficient. Suppose that T is sufficient and if possible, 9 a
function

U ¼ w tð Þ3w t1ð Þ ¼ � � � ¼ w tkð Þ ¼ u:

Then

Ph T ¼ tjU ¼ u½ � ¼
ðnhÞti
ti !Pk

i¼ 1

ðnhÞti
ti !

if t ¼ ti i ¼ 1; 2; . . .; kð Þ

0 otherwise

8>><>>:
! depends on h ;
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so that U is not sufficient retaining sufficiency. Hence, T ¼ Pn
i¼ 1 Xi is minimal

sufficient statistic.

Remark 1 Since minimal sufficient statistic is a function of sufficient statistic,
therefore, a minimal sufficient statistic is also sufficient.

Remark 2 Minimal sufficient statistic is not unique since any one-to-one function of
minimal sufficient statistic is also a minimal sufficient statistic.

Definition of minimal sufficient statistic does not help us to find a minimal
sufficient statistic except for verifying whether a given statistic is minimal sufficient
statistic. Fortunately, the following result of Lehman and Scheffe (1950) gives an
easier way to find a minimal sufficient statistic.

Theorem Let f x
�jh

 �

be the pmf/pdf of a sample X�
. Suppose 9 a function

T X�

� �
3 for every two sample points x

� and y
�
, and the ratio of f x

�jh

 ��

f y
�
jh

� �
is constant as a function of h (i.e. independent of h) iff T x

�


 �
¼ T y

�

� �
. Then

T X�

� �
is minimal sufficient statistic.

Proof Let us assume f x
�jh

 �

[ 0; x
� 2 �x and h. First, we show that T X�

� �
is a

sufficient statistic. Let s ¼ t=t ¼ Tð x�Þ; x 2 �x
n o

be the image of �x under Tð x�Þ.
Define the partition sets induced by TðX� Þ as At ¼ x

�jT x
�


 �
¼ t

n o
. For each

At, choose and fix one element x� t
2 At. For any x

� 2 �x, x�Tð x�Þ
is the fixed element

that is in the same set At, as x
� . Since

x
� and x

�T x
�


 � are in the same set At,

T x
�


 �
¼ T x

�T x
�


 �0@ 1A and, hence, f x
�jh

 �,

f x
�T x

�


 �jh
0@ 1A is constant as a

function of h. Thus, we can define a function on �x by h x
�


 �
¼

f x
�jh

 �

f x
�T x�ð Þjh

� � and h

does not depend on h. h

Define a function on s by g tjhð Þ ¼ f x
� t
jh

� �
. Then

1.2 Sufficient Statistic 19



f ð x�jhÞ ¼
f x

�Tð x�Þ
jh

� �
f x

�jh

 �

f x
�Tð x�Þ

jh
� � ¼ gðtjhÞhð x�Þ and by factorization theorem, TðX� Þ

is sufficient for h. Now to show that TðX� Þ is minimal, let T 0ðX� Þ be any other

sufficient statistic. By factorization theorem, 9 functions g0 and h0 such that

f ð x�jhÞ ¼ g0 T 0ð x�Þjh

 �

h0ð x�Þ

Let x
� and y

�
be any two sample points with T 0ð x�Þ ¼ T 0ð y

�
Þ. Then

f ð x�jhÞ
f ð y

�
jhÞ ¼

g0ðT 0 x
�jhÞ h

0ð x�Þ
g0ðT 0 y

�
jhÞh0 y

�
¼

h0 x
�


 �
h0 y

�

� � :

Since this ratio does not depend on h, the assumptions of the theorem imply
Tð x�Þ ¼ Tð y

�
Þ. Thus Tð x�Þ is a function of T 0ð x�Þ and Tð x�Þ is minimal.

Example (Normal minimal sufficient statistic) Let X1;X2; . . .Xn be iid Nðl; r2Þ,
both l and r2 unknown. Let x� and y

�
denote two sample points, and let ð�x; s2x

�
Þ and

ð�y; s2y
�
Þ be the sample means and variances corresponding to the x

� and y
�
samples,

respectively. Then we must have

f x
�jl; r

2

 �

f y
�
jl; r2

� � ¼
2pr2ð Þ�n=2exp � n �x� lð Þ2 þ n� 1ð Þs2x

�

 ��
2r2ð Þ

� �
2pr2ð Þ�n=2exp � n �y� lð Þ2 þ n� 1ð Þs2y

�

 ��
2r2ð Þ

� �
¼ exp �n �x2 � �y2

� �þ 2nl �x� �yð Þ � n� 1ð Þ s2x
�
� s2y

�

� � ��
2r2

� �
This ratio will be constant as a function of l and r2 iff �x ¼ �y and s2x

�
¼ s2y

�
, i.e.

ð�x; s2x
�
Þ � ð�y; s2y

�
Þ. Then, by the above theorem, ð�X; s2Þ is a minimal sufficient

statistic for ðl; r2Þ.
Remark Although minimal sufficiency ) sufficiency, the converse is not neces-
sarily true. For a random sample X1;X2; . . .Xn from Nðl; lÞ distribution,Pn

i¼ 1 Xi;
Pn

i¼ 1 X
2
i

� �
is sufficient but not minimal sufficient statistic. In fact,
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Pn
i¼ 1 Xi and

Pn
i¼ 1 X

2
i are each singly sufficient for l;

Pn
i¼ 1 X

2
i being minimal.

(This particular example also establishes the fact that single sufficiency does not
imply minimal sufficiency.)

1.3 Unbiased Estimator and Minimum-Variance
Unbiased Estimator

Let X be a random variable having c.d.f. Fh; h 2 H. The functional form of Fθ is
known, but the parameter θ is unknown. Here, we wish to find the true value of θ on
the basis of the experimentally determined values x1, x2,…, xn, corresponding to a
random sample X1, X2,…, Xn from Fθ. Sine the observed values x1, x2, …, xn
change from one case to another, leading to different estimates in different cases, we
cannot expect that the estimate in each case will be good in the sense of having
small deviation from the true value of the parameter. So, we first choose an esti-
mator T of θ such that the following condition holds:

Pf T � hj j\ cg	Pf T 0 � hj j\ cg 8 h 2 H and 8 c ð1:7Þ

where T 0 is any rival estimator.
Surely, (1.7) is an ideal condition, but the mathematical handling of (1.7) is very

difficult. So we require some simpler condition. Such a condition is based on mean
square error (m.s.e.). In this case, an estimator will be best if its m.s.e. is least. In
other words, an estimator T will be best in the sense of m.s.e. if

EðT � hÞ2 �E T 0 � hð Þ2 8 h and for any rival estimator T 0 ð1:8Þ

It can readily be shown that there exists no T for which (1.8) holds. [e.g. Let θ0
be a value of θ and consider T 0 ¼ h0. Note that m.s.e. of T 0 at θ = θ0 is ‘0’, but m.s.
e. of T 0 for other values of θ may be quite large.]

To sidetrack this, we introduce the concept of unbiasedness.
Actually, we choose an estimator on the basis of a set of criteria. Such a set of

criteria must depend on the purpose for which we want to choose an estimator.
Usually, a set consists of the following criteria: (i) unbiasedness; (ii) mini-
mum-variance unbiased estimator; (iii) consistency, and (iv) efficiency.

Unbiasedness
An estimator T is said to be an unbiased estimator (u.e.) of h ½or cðhÞ� iff
E Tð Þ ¼ h ½or cðhÞ� 8h 2 H.

Otherwise, it will be called a biased estimator. The quantity b(θ, T) = Eθ (T) − θ
is called the bias. A function γ(θ) is estimable if it has an unbiased estimator.
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Let X1, X2,…, Xn be a random sample from a population with mean μ and

variance σ2. Then �X and s2 ¼ 1
n�1

Pn
i¼ 1 Xi � �Xð Þ2 are u.e’s of μ and σ2,

respectively.

Note

(i) Every individual observation is an unbiased estimator of population mean.
(ii) Every partial mean is an unbiased estimator of population mean.

(iii) Every partial sample variance [ e.g. 1
k�1

Pk
1 Xi � �Xkð Þ2 ; �Xk ¼ 1

k

Pk
1 Xi and

k < n] is an unbiased estimator of σ2.

Example 1.15 Let X1, X2,…, Xn be a random sample from N(μ, σ2). Then X and

s2 ¼ 1
n�1

Pn
1 Xi � �Xð Þ2 are u.e’s for μ and σ2, respectively. But estimator s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n�1

Pn
1 Xi � �Xð Þ2

q
is a biased estimator of σ.

The bias bðs; rÞ ¼ r
ffiffiffiffiffiffi
2

n�1

q
C n=2ð Þ C n�1

2

� �� ��1�1
h i

.

Remark 1.9 An unbiased estimator may not exist.

Example (a) Let X� b 1; pð Þ; 0\ p\ 1.
Then there is no estimator T(X) for which E T Xð Þf g ¼ p2 8 p 2 0; 1ð Þ
i.e. π2 is not estimable. Similarly, 1

p has no unbiased estimator.

(b) For
f ðx; hÞ ¼

m
x

� �
h�m
n�x

� �
h
n

� � ; x ¼ 0; 1; 2 . . . n

h ¼ m; mþ 1; . . .
then there is no unbiased estimator for θ.

Remark 1.10 Usually, unbiased estimator is not unique. Starting from two unbiased
estimators, we can construct an infinite number of unbiased estimators.

Example Let X1, X2,…, Xn be a random sample from P(λ). Then both �X and
s2 ¼ 1

n�1

Pn
1 ðXi � �XÞ2 are unbiased estimators of λ as mean = variance = λ for P(λ).

Let Ta ¼ a�Xþ ð1� aÞs2 ; 0� a� 1. Here, Ta is an unbiased estimator of λ.

Remark 1.11 An unbiased estimator may be absurd.

Example Let X �PðkÞ. Then T Xð Þ ¼ �2ð ÞX is an unbiased estimator of e−3λ since

E T Xð Þf g ¼
X
x

e�kkx

x!
ð�2Þx

¼ e�k
X
x

ð�2kÞx
x!

¼ e�k � e�2k ¼ e�3k:
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Note that T Xð Þ [ 0 for even X

\ 0 for odd X:

∴ T(X) which is an estimator of a positive quantity e�3k [ 0
� �

may occasionally be
negative.

Example Let X * P(λ). Construct an unbiased estimator of e�k.

Ans Let TðxÞ ¼ 1 if x ¼ 0

0; otherwise

(

) E T Xð Þf g ¼ 1 � P X ¼ 0ð ÞþO � PðX 6¼ 0Þ ¼ e�k 8k:

∴ T(X) is an unbiased estimator of e�k.

Remark 1.12 Mean square error of an unbiased estimator (i.e. variance of unbiased
estimator) may be greater than that of a biased estimator and then we prefer the
biased estimator.

EðT � hÞ2 ¼ E½T � E Tð Þþ fE Tð Þ � hg�2
¼ V Tð Þþ b2ðT ; hÞ where bðT ; hÞ ¼ E Tð Þ � h:

Let T1 be a biased estimator and T2 an unbiased estimator, i.e. E(T1) ≠ θ but
E(T2) = θ.

) MSE T1ð Þ ¼ V T1ð Þþ b2ðT1; hÞ
MSE T2ð Þ ¼ V T2ð Þ
if V T2ð Þ [ V T1ð Þþ b2ðT1; hÞ; then we prefer T1:

e.g. Let X1, X2,…, Xn be a random sample from N(μ, σ2). Then s2 ¼
1

n�1

P
i ðXi � �XÞ2 is an unbiased estimator of σ2. Clearly, 1

nþ 1

P
i ðXi � �XÞ2 ¼ n�1

nþ 1s
2

is a biased estimator of σ2.

As
n� 1ð ÞS2

r2
� v2n�1 ) V

ðn� 1ÞS2
r2

 �
¼ 2 n� 1ð Þ

) V s2
� � ¼ 2

n� 1
r4 ¼ MSE of s2:
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On the other hand, MSE of n�1
nþ 1 s

2 ¼ V n�1
nþ 1 s

2

 �

þ n�1
nþ 1 r

2 � r2

 �2

¼ n� 1
nþ 1

� �2 2
n� 1

r4 þ 4r4

nþ 1ð Þ2 ¼ 2r4

nþ 1ð Þ2 n� 1þ 2ð Þ ¼ 2r4

nþ 1
\

2r4

n� 1

⇒ MSE of s2 > MSE of n�1
nþ 1 s

2, i.e. MSE (Unbiased estimator) > MSE (biased
estimator).

Remark 1.13: Pooling of information Let Ti be an unbiased estimator of θ obtained
from the ith source, i = 1, 2 …, k. Suppose Ti’s are independent and V(Ti) = σi

2 < σ2

8i. Then �Tk ¼ 1
k ¼ T1 þ T2 þ � � � þ Tkð Þ is also an unbiased estimator of θ with

V Tk
� � ¼ 1

k2
Pk

1 r
2
i\

r2
k ! 0 as k !/.

The implication of this statement is that Tk gets closer and closer to the true
value of the parameter as k → ∝ (k becomes larger and larger).

On the other hand if Ti’s are biased estimator with common bias β, then Tk

approaches to the wrong value θ + β instead of the true value θ even if k → ∝.

Problem 1.1 Let X1, X2, …, Xn be a random sample from b 1; ^ð Þ.
Show that

(i) XðX�1Þ
nðn�1Þ is an unbiased estimator of ^2

(ii) Xðn�XÞ
nðn�1Þ is an unbiased estimator of ^ 1� ^ð Þ

where X = number of success in n tosses =
Pn

i¼ 1 Xi.

Minimum-VarianceUnbiased Estimator (MVUE)
Let U be the set of all u.e’s (T) of θ with E T2

� �
\ / 8h 2 H, and then an

estimator T0 2 U will be called a minimum-variance unbiased estimator (MVUE) of
θ{or γ(θ)} if V(T0) ≤ V(T) 8θ and for every T 2 U.

Result 1.1 Let U be the set of all u.e’s (T) of θ with E(T2) < ∝, 8θ 2 Θ.
Furthermore, let U0 be the class of all u.e’s (v) of ‘0’ {Zero} with E(v2) < ∝ 8θ, i.e.
U0 = {v: E(v) = 0 8θ and E(v2) < ∝].

Then an estimator T0 2 U will be an MVUE of θ iff

Cov T0; vð Þ ¼ E T0vð Þ ¼ 0 8 h; 8v 2 U0:

Proof Only if part Given that T0 is an MVUE of θ, we have to prove that

E T0vð Þ ¼ 0 8h; 8v 2 U0 ð1:9Þ

Suppose the statement (1.9) is wrong.
∴ E(T0v) ≠ 0 for some θ0 and for some v0 2 U0. h
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Note that for every real λ, T0 + λv0 is an u.e. of θ.
Again, T0 + λv0 2 U, as E(T0 + λv0)

2 < ∞
Now V00(T0 + λvo) = V00(T0) + λ2 E00(V

2
0) + 2λE(v0T0).

Choose a particular setting k ¼ � E00 T0v0ð Þ
E00 V2

0ð Þ assuming E00(v0
2) > 0

(If E00(v0
2) = 0 then P00(v0 = 0) = 1, and hence E00(T0v0) = 0)

We have V00ðT0 þ kv0Þ ¼ V00 T0ð Þ � E2
00ðTovoÞ
EoðV2

oÞ
\V00 T0ð Þ which contradicts the

fact that T0 is a minimum-variance unbiased estimator of θ.
(if part) It is given that Cov(T0v) = 0 8 θ, 8 v 2 U0. We have to prove that T0 is

an MVUE of θ. Let T be an estimator belonging to U, then (T0 − T) 2 U0.
∴ From the given condition, Cov(T0, T0 − T) = 0

) V T0ð Þ�Cov T0; Tð Þ ¼ 0 ) Cov T0;T
� � ¼ V T0ð Þ ð1:10Þ

Now, V T0�Tð Þ 	 0

) V T0ð ÞþV Tð Þ � 2 Cov T0; Tð Þ 	 0

) V T0ð ÞþV Tð Þ � 2 V T0ð Þ 	 0 by 1:10ð Þð Þ
) V Tð Þ 	 V T0ð Þ 8h 2 H:

Since T is an arbitrary member of U so that result.

Result 1.2 Minimum-variance unbiased estimator is unique.

Proof Suppose T1 and T2 are MVUE’s of θ.
Then

E T1 T1�T2ð Þf g ¼ 0 from Result 1.1ð Þ
) E T2

1

� � ¼ E T1T2ð Þ ) qT1T2
¼ 1

as V(T1) = V(T2) 8θ ⇒ T1 = βT2 + α with probability 1.
Now V T1ð Þ ¼ b2V T2ð Þ 8h ) b2 ¼ 1 ) b ¼ 1 ðas qT1T2

¼ 1Þ:
Again E T1ð Þ ¼ bE T2ð Þþ a 8h ) a ¼ 0
as E T1ð Þ ¼ E T2ð Þ ¼ h and b ¼ 1 ) P T1 ¼ T2ð Þ ¼ 1 h

Remark Correlation coefficient between T1 and T2 (where T1 is an MVUE of θ and
T2 is any unbiased estimator of θ) is always non-negative.

E T1 T1�T2ð Þf g ¼ 0 . . . from Result 1:1ð Þ
) Cov T1; T2ð Þ ¼ V T1ð Þ 	 0:
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Result 1.3 Let T1 be an MVUE of γ1(θ) and T2 be an MVUE of γ2(θ). Then
αT1 + βT2 will be an MVUE of αγ1(θ) + βγ2(θ).

Proof Let v be an u.e. of zero.
Then

E T1vð Þ ¼ 0 ¼ E T2vð Þ

Now

EfðaT1 þ bT2Þvg ¼ aE T1vð Þþ bE T2vð Þ ¼ 0

) ðaT1 þ bT2Þ is an MVUE of ac1ðhÞþ bc2ðhÞ:
h

Result 1.4: (Rao–Cramer inequality) Let X1, X2,…, Xn be a random sample from
a population having p.d.f. f ðx; hÞ; h 2 H. Assume that θ is a non-degenerate open
interval on the real line. Let T be an unbiased estimator of γ(θ). Again assume that
the joint p.d.f. f ð x� ; hÞ ¼ Qn

i¼ 1 f ðxi; hÞ
� �

of X�
¼ ðX1;X2; . . .;XnÞ satisfies the

following regularity conditions:

(a)
@f ð x� ;hÞ

@h exists

(b) @
@h

R
f ð x� ; hÞd x� ¼ R @f ð x� ;hÞ

@h d x�

(c) @
@h

R
T x

�


 �
f ð x� ; hÞd x� ¼ R

Tð x�Þ
@f ð x� ;hÞ

@h d x�
and

(d) 0 < I(θ) < ∝

where IðhÞ ¼ E
@ log f ðX� ;hÞ

@h

 �2
, information on θ supplied by the sample of size n.

Then

V Tð Þ	 c0ðhÞð Þ2
IðhÞ 8h:

Proof Since 1 ¼ R
Rn f ð x� ; hÞd x�

∴ We have from the condition (b)

O ¼
Z
Rn

@f x
� ; h

 �
@h

d x� ¼
Z
Rn

@ log f x
� ; h

 �

@h
f x

� ; h

 �

d x� ð1:11Þ

h
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Again, since T X�

� �
is an u.e. of γ(θ), we have from condition (c)

c0ðhÞ ¼
Z
Rn

Tð x�Þ
@ log f ð x� ; hÞ

@h
f ð x� ; hÞd x� ð1:12Þ

Now, (1.12)–(1.11). γ(θ) gives us

c0ðhÞ ¼
Z
Rn

½Tð x�Þ � cðhÞ�
@ log f ð x� ; hÞ

@h
f ð x� ; hÞd x�

¼ Cov TðX� Þ
�

;
@ log f ðX� ; hÞ

@h

)
:

From the result, [Cov(X, Y)]2 ≤ V(X) V(Y), we have

fc0ðhÞg2 ¼ Cov TðX� Þ;
@ log f ðX� ; hÞ

@h

)(" #2

�VfTðX� Þg � V
@ log f ðX� ; hÞ

@h

( )

¼ V TðX� Þ
� �

� E
@ log f ðX� ; hÞ

@h

 !2

as from 1:11ð Þ E
@ log f ðX� ; hÞ

@h
¼ 0

 !
¼ V T Xð Þf g � I hð Þ

) V Tð Þ 	 c0 hð Þf g2
I hð Þ ; 8 h:

h

Remark 1 If the variables are of discrete type, the underlying condition and the
proof of the Cramer–Rao inequality will also be similar, only the multiple integrals
being replaced by multiple sum.

Remark 2 For any set of estimators T, having expectation γ(θ),

MSE ¼ EðT � hÞ2 ¼ V Tð ÞþB2ðT; hÞ	 fc0 ðhÞg2
IðhÞ þB2ðT; hÞ ¼

½1þB0ðT; hÞ�2
IðhÞ þB2ðT; hÞ ½where cðhÞ ¼ hþBðT ; hÞ�:
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Remark 3 Assuming that f x
� ; h

 �

is differentiable not only once but also twice, we

have

0 ¼
Z
Rn

@2 log f ð x� ; hÞ
@h2

f ð x� ; hÞd x� þ
Z
Rn

@ log f ð x� ; hÞ
@h

( )2

f ð x� ; hÞd x�

) IðhÞ ¼ �E
@2 log f ð x� ; hÞ

@h2

( )
:

Remark 4 Since X1, X2,…, Xn are iid random variables,

IðhÞ ¼ �n E
@2 log f ð x� ; hÞ

@h2

( )
:

Remark 5 An estimator T for which the Cramer–Rao lower bound is attained is
often called a minimum-variance bound estimator (MVBE). In this case, we have

@ log f ð x� ; hÞ
@h

¼ kðhÞfT � cðhÞg:

Note that every MVBE is an MVUE, but the converse may not be true.

Remark 6 Distributions admitting an MVUE
A distribution having an MVUE of λ(θ) must satisfy
@ log f ðx;hÞ

@h ¼ kðhÞfT � cðhÞg. It is a differential equation. So

log f ðx; hÞ ¼ T
Z

kðhÞ dh�
Z

kðhÞ cðhÞdhþ cðxÞ

) f ðx; hÞ ¼ AeTh1 þ h2

where hi; i ¼ 1; 2 are functions of h and A ¼ ecðxÞ

Note If T be a sufficient statistic for θ, then

L ¼ gðT ; hÞ h x1; x2; . . . ; xnð Þ

or;
@ log L
@h

¼ @ log gðT;hÞ
@h

ð1:13Þ

which is a function of T and h.
Now the condition that T be an MVB unbiased estimator of h is that / ¼

@ log L
@h ¼ BðT�hÞ which is a linear function of T and h and V(T) = 1/B. Thus if there

exists an MVB unbiased estimator of h it is also sufficient. The converse is not
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necessarily true. Equation (1.13) may be a non-linear functions of T and h in which
case T is not an MVB unbiased estimator of h. Thus the existence of MVB unbiased
estimator implies the existence of a sufficient estimator, but the existence of suf-
ficient statistic does not necessarily imply the existence of an MVB unbiased
estimator. It also follows that the distribution possessing an MVB unbiased esti-
mator for its parameter can be expressed in Koopman form. Thus, when
L ¼ eA

0T þBðhÞþRðx1;x2;...xnÞ, T is an MVB unbiased estimator of h with variance
1=ð@A0

@h Þ, which is also MVB.

Example x1; x2; . . .; xn is a random sample from Nðl; 1Þ

Here, L ¼ 1ffiffiffiffi
2p

p

 �n

e
�1

2

Pn
i¼1

ðxi�lÞ2
¼ e

�1
2

Pn
i¼1

ðxi��xÞ2 þ n�x þ nl2�2nl�x

� �
�n

2 log 2p

Take A0T ¼ nl�x where T ¼ �x: MVB ¼ 1=ð@ðnlÞ@l Þ ¼ 1
n.

Example x1; x2; . . .; xn is a random sample from b(1, π) distribution.

Here,
L ¼ p

P
i
xið1� pÞn�

P
i
xi ¼ e

Pn
i¼1

xi

� �
log pþðn�

P
i

xiÞ logð1�pÞ
¼ en�x log p

1�pþ n logð1�pÞ:
Take ¼ A0T ¼ n log p

1�p�x where T ¼ �x ¼ k
n, k = number of successes in n trials.

MVB ¼ 1
�

@n log p
1�p

@p

� �
¼ pð1� pÞ

n
:

Remark 7 A necessary condition for satisfying the regularity conditions is that the
domain of positive p.d.f. must be free from h.

Example 1.16 Let X�U½0; h�, let us compute nE @logf ðx;hÞ
@h


 �2
which is n

h2
. So

Cramer–Rao lower bound, in this case, for the variance of an unbiased estimator of

h is h2

n (apparant).
Now, we consider an estimator. T ¼ nþ 1

n XðnÞ;XðnÞ ¼ maxðX1;X2;. . .;XnÞ: P.d.f.
of XðnÞ is fxðnÞ ðxÞ ¼ n x

h

� �n�1� 1h ; 0� x� h:

)E XðnÞ
� � ¼ n

hn

Zh
0

xndx ¼ n
hn

:
xnþ 1

nþ 1

35h

0

¼ n
nþ 1

h:

) T ¼ nþ 1
n XðnÞ is an unbiased estimator of θ. It can be shown that

VðTÞ ¼ h2

nðnþ 2Þ \
h2

n .
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This is not surprising because the regularity conditions do not hold here.

Actually, here @f ðx;hÞ
@h exists for h 6¼ x but not for θ = x since

f ðx; hÞ ¼ 1
h

if h	 x

¼ 0 if h\ x:

Result 1.5: Rao–Blackwell Theorem Let fFh; h 2 Hg be a family of distribution
functions and h be any estimator of cðhÞ in U which is the class of unbiased
estimators (h) with Ehðh2Þ\1 8h:. Let T be a sufficient statistic for the family
fFh; h 2 Hg. Then Eðh=TÞ is free from h and will be an unbiased estimator of cðhÞ.
Moreover, V Eðh=TÞf g�VðhÞ 8h; h 2 H:

The equality sign holds iff h ¼ Eðh=TÞ with probability ‘1’.

Proof Since T is a sufficient for the family fFh; h 2 Hg; conditional distribution of
h given T must be independent of h.

)Eðh=TÞ will be free from h.

Now; cðhÞ ¼ EðhÞ ¼ ET Eh=Tðh=TÞ
� � 8 h

i:e: cðhÞ ¼ E Eðh=TÞf g 8 h

) Eðh=TÞ is an unbiased estimator of cðhÞ.
Again we know that VðhÞ ¼ V EðhjTÞf gþE VðhjTÞf g

) VðhÞ	V EðhjTÞf g since VðhjTÞ	 0ð Þ

‘=’ holds iff VðhjTÞ ¼ 0:, i.e. iff h ¼ EðhjTÞ with probability ‘1’

Vðh Tj Þ ¼ Eh=T h� Eðh Tj Þf g2
h i

h
Result 1.6: Lehmann–Scheffe Theorem If T be a complete sufficientstatistic for θ
and if h be an unbiased estimator of cðhÞ, then EðhjTÞ will be an MVUE of cðhÞ.
Proof Let both h1; h2 2 U ¼ ½h : EðhÞ ¼ cðhÞ;Eðh2Þ\1�.

Then E Eðh1jTÞf g ¼ cðhÞ ¼ E Eðh2jTÞf g (from Result 1.5).
Hence, E Eðh1jTÞ � Eðh2jTÞf g ¼ 0. . .8h

) P Eðh1jTÞ ¼ Eðh2jTÞ
� � ¼ 1 * T is completeð Þ:

)EðhjTÞ is unique for any h 2 U.
Again, applying Result 1.5, we have V EðhjTÞf g�VðhÞ8 h 2 U: Now since

EðhjTÞ is unique, it will be an MVUE of cðhÞ. h

Remark 1.14 The implication of Result 1.5 is that if we are given an unbiased
estimator h, then we can improve upon h by forming the new estimatorEðhjTÞ
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based on h and the sufficient statistic T. This process of finding an improved
estimator starting from an unbiased estimator has been called Blackwellization.

Problem 1.2 Let X1;X2; . . .;Xn be a random sample from Nðl; r2Þ; r2 known. Let
cðlÞ ¼ l2.

(a) Show that the variance of any unbiased estimator of l2 cannot be less than
4l2r2

n

(b) Show that T ¼ X
2 � r2

n is an MVUE of l2 with variance 4l2r2

n þ 2r4
n .

Example 1.17 Let X �PðkÞ, then show that dðxÞ ¼ 1 if X ¼ 0
0 otherwise

�
is the only

unbiased estimator of cðkÞ ¼ e�k. Is it an MVUE of e�k ?

Answer
Let h(x) be an unbiased estimator of e�k ¼ h, say.

Then E h xð Þf g ¼ h 8h

)
X1
x¼0

h xð Þ h loge
1
h

� �x
x!

¼ h 8h

) h xð Þ ¼ 1 if x ¼ 0

0 if x 6¼ 0

�
) h xð Þ; i:e:; d xð Þ is the only unbiased estimator of e�k.
Here, unbiased estimator of e�k is unique and its variance exists. Therefore, d xð Þ

will be an MVUE of c kð Þ¼ e�k.

E h xð Þf g2¼ 1:P x ¼ 0ð Þþ 0:
X1
i¼1

P x ¼ ið Þ ¼ e�k \1
" #

Remark 1.15 MVUE may not be very sensible.

Example Let X1;X2; . . .;Xn be a random sample from N l; 1ð Þ, and then T ¼
X
2 � 1

n is an MVUE of l2. Note that X
2 � 1

n


 �
may occasionally be negative, so that

an MVUE of l2 is not very sensible in this case.

Remark 1.16 An MVUE may not exist even though an unbiased estimator does
exist.

Example Let
P X ¼ �1f g ¼ h and P X ¼ nf g ¼ 1� hð Þ2hn; n ¼ 0; 1; 2; . . .; 0\ h\ 1.
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No MVUE of θ exists even though an unbiased estimator of θ exists.

e.g. T Xð Þ ¼ 1 if X ¼ �1
0 otherwise

�
Bhattacharya system of Lower Bounds (Sankhya A (1946))
(Generalization of Cramer–Rao lower bound)
Regularity conditions

A family of distribution P ¼ f h xð Þ; h 2 Xf g is said to satisfy Bhattacharya
regularity conditions if

1. θ lies in an open interval Ω of real line R. Ω may be infinite;
2. @i

@hi
f h xð Þ exists for almost all x and 8h; i ¼ 1; 2;. . .k;

3:
@i

@hi

Z
f h xð Þdx ¼

Z
@i

@hi
f h xð Þdx 8h; i ¼ 1; 2. . .k; and

4. Vk
k hð Þ ¼ mij hð Þ� �
;

i ¼ 1; 2;. . .k
j ¼ 1; 2;. . .k

exists and is positive definite 8h where

mij hð Þ ¼ Eh
1

f h xð Þ
@i

@hi
f h xð Þ @ j

@h j f h xð Þ
 �

:

For i = 1, Bhattacharya regularity conditions ≡ Cramer–Rao regularity
conditions.

Theorem 1.1 Let P ¼ f h xð Þ; h 2 Xf g be a family of distributions satisfying
above-mentioned regularity conditions and g hð Þ be a real valued, estimable, and
k times differentiable function of θ. Let T be an unbiased estimator of g hð Þ satisfying
5. @

@hi
R
t xð Þf h xð Þdx ¼ R t xð Þ @

@hi
f h xð Þdx

Then

Varh Tð Þ 	 g0V�1g 8h

where

g0 ¼ g 1ð Þ hð Þ; g 2ð Þ hð Þ; . . .; g kð Þ hð Þ
n o

; g ið Þ hð Þ ¼ @i

@hi
g hð Þ
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Proof

Define bi x;hð Þ ¼ 1
f h xð Þ

@i

@hi
f h xð Þ

E bi x;hð Þ½ � ¼
Z

1
f h xð Þ

@i

@hi
f h xð Þ � f h xð Þdx ¼ 0

V bi x;hð Þ½ � ¼ E bi x;hð Þ½ �2¼ E
1

f h xð Þ
@i

@hi
f h xð Þ

 �2
¼ mii hð Þ

Cov bi; bj
� � ¼ mij hð Þ

Cov T;bið Þ ¼
Z

t xð Þ 1
f h xð Þ

@i

@hi
f h xð Þ : f h xð Þdx ¼ @i

@hi

Z
t xð Þf h xð Þdx ¼ g ið Þ hð Þ

Let R kþ 1ð Þx kþ 1ð Þ ¼ Disp

T

b1
b2
�
�
�
bk

0BBBBBBBBBBB@

1CCCCCCCCCCCA

¼

Vh Tð Þ g 1ð Þ hð Þ g 2ð Þ hð Þ . . . g kð Þ hð Þ
g 1ð Þ hð Þ m11 m12 . . . m1k
g 2ð Þ hð Þ m21 m22 . . . m21

� � � . . . . . .

� � � . . . . . .

g kð Þ hð Þ mk1 mk2 . . . mkk

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ Vh Tð Þ g0

g V

� �

Rj j ¼ Vj j Vh Tð Þ � g0V�1g
� �

as Rj j 	 0; Vj j 	 0

) Vh Tð Þ � g0V�1g	 0 i:e: Vh Tð Þ	 g0V�1g 8h:

Cor: For k ¼ 1 VhðTÞ	 g0ðhÞf g2
v11ðhÞ ¼ g0ðhÞf g2

IðhÞ = Cramer–Rao lower bound. h

Case of equality holds when
Pj j ¼ 0

)R
X
 �

\ kþ 1 or R
X
 �

� k; RðVÞ ¼ k R
X
 �

=rank of
Xh i

R
X
 �

	RðVÞ ) R
X
 �

¼ k:

1.3 Unbiased Estimator and Minimum-Variance Unbiased Estimator 33



Lemma 1.1 Let X ¼ x1; x2; . . .; xp
� �0

; DðXÞ ¼Pp
pP
is of rank rð� pÞ iff x1; x2; . . .; xp satisfies (p − r) linear restrictions of the

form

a11 x1 � Eðx1Þ
� �þ a12 x2 � Eðx2Þ

� �þ � � � þ a1p xp � EðxpÞ
n o

¼ 0

a21 x1 � Eðx1Þ
� �þ a22 x2 � Eðx2Þ

� �þ � � � þ a2p xp � EðxpÞ
n o

¼ 0

:

:

ap�r;1 x1 � Eðx1Þ
� �þ ap�r;2 x2 � Eðx2Þ

� �þ � � � þ ap�r;p xp � EðxpÞ
n o

¼ 0

with probability 1.
Put p = k + 1, r = k; x1¼ T , x2 ¼ b1; . . .; xp ¼ bk.
Then R Rð Þ ¼ k iff T ; b1; b2; . . .; bk satisfy one restriction with probability ‘1’ of

the form

a1 T � EðTÞf gþ a2 b1 � Eðb1Þf gþ � � � þ akþ 1 bk � EðbkÞf g ¼ 0

) a1 T � gðhÞf gþ a2b1 þ � � � þ akþ 1bk ¼ 0

) T � gðhÞ ¼ b1b1 þ b2b2 þ � � � þ bkbk ¼ b
�
0b
�

where b
�
0¼ ðb1; b2;. . .; bkÞ and b

�
¼ ðb1; b2; . . .; bk; Þ0.

Result
T � gðhÞ ¼ b0b with probability ‘1’ ) T � gðhÞ ¼ g0V�1 b with probability ‘1’.

Proof

T � gðhÞ ¼ b0b ) VhðTÞ ¼ g0V�1g

Consider Vh b0b� g0V�1b
� � ¼VhðT � g0V�1bÞ

¼VhðTÞþ g0V�1VðbÞV�1g� 2g0V�1CovðT ; bÞ

¼ g0V�1gþ g0V�1g� 2g0V�1g ¼ 0 ) b0b ¼ g0V�1b with probability ‘1’. h

A series of lower bounds: g0V�1g ¼ gð1Þ; gð2Þ; . . .; gðkÞ
� �

V�1

gð1Þ

gð2Þ

:

:

gðkÞ

0BBBBB@

1CCCCCA gives

nth lower bound ¼ gðnÞ0Vn
�1gðnÞ ¼ Dn; n ¼ 1; 2;::; k
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Theorem 1.2 The sequence Dnf g is a non-decreasing sequences, i.e. Dnþ 1 	Dn8n
Proof The (n+1)th lower bound Dnþ 1 ¼ g0nþ 1 Vnþ 1

�1gnþ 1 where

g0nþ 1 ¼ gð1ÞðhÞ; gð2ÞðhÞ; . . .; gðnÞðhÞ; gðnþ 1ÞðhÞ
n o

¼ g1n; g
nþ 1

� �

Vnþ 1 ¼

m11 m12 m1n m1;nþ 1
m21 m22 m2n m2;nþ 1
: : : :
: : : :
mn1 mn2:: mnn mn;nþ 1
mnþ 1;1 mnþ 1;2:: mnþ 1;n mnþ 1;nþ 1

0BBBBBB@

1CCCCCCA ¼ Vn mn
m0n mnþ 1;nþ 1

� �

where m0n ¼ mnþ 1;1 mnþ 1;2. . . mnþ 1;n


 �
.

Now Dnþ 1 ¼ g0nþ 1V
�1
nþ 1gnþ 1

¼ g0nþ 1C
0ðC0Þ�1V�1

nþ 1C
�1Cgnþ 1 for any non symmetric matrix Cnþ 1xnþ 1

¼ðCgnþ 1Þ0ðCVnþ 1C
0Þ�1ðCgnþ 1Þ

Choose C ¼
In o

�
�m0nV

�1
n 1

 !

) Cgnþ 1 ¼
In o

�
�m0nV

�1
n 1

 !
gn

gnþ 1

� �
¼ gn

gnþ 1 � m0nV
�1
n gn

� �

CVnþ 1C
0 ¼

In o
�

�m0nV
�1
n 1

 !
Vn mn
m0n mnþ 1;nþ 1;

 !
In �V�1

n mn
o
� 1

 !

¼
In o

�
�m0nV

�1
n 1

 !
Vn o

�
m0n mnþ 1;nþ 1 � m0nV

�1
n mn

 !
¼

Vn o
�

o
� Enþ 1;nþ 1

 !
hSince Vnþ 1 is positive definite, CVnþ 1C0 is also +ve definite

Enþ 1;nþ 1; [ 0; CVnþ 1C
0ð Þ�1 ¼

V�1
n o

�
o
� E�1

nþ 1;nþ 1

 !
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Then

Dnþ 1 ¼ gn; g
nþ 1 � m0nV

�1
n gn

� � V�1
n o

�
o
� E�1

nþ 1;nþ 1

0@ 1A g0n
gnþ 1 � m0nV

�1
n gn

� �

¼ gnVn
�1; gnþ 1 � m0nV

�1
n gn

� �
E�1
nþ 1;nþ 1

n o g0n
gnþ 1 � m0nV

�1
n gn

� �
¼ g0nVn

�1gn þ
gnþ 1 � m0nV

�1
n gn

� �
E�1
nþ 1;nþ 1

2

	 g0nVn
�1gn ¼ Dn

i.e. Dnþ 1 	 Dn:
If there exists no unbiased estimator T of gðhÞ for which V(T) attains the nth

Bhattacharya’s Lower Bound (BLB), then one can try to find a sharper lower bound
by considering the (n + 1)th BLB. In case the lower bound is attained at nth stage,
then Dnþ 1 ¼ Dn. However, Dnþ 1 ¼ Dn does not imply that the lower bound is
attained at the nth stage.

Example 1.18 X1;X2; . . .;Xn is a random sample from iid Nðh; 1Þ

f hðxÞ ¼ Const: e�
1
2

P
ðxi�hÞ2 ; gðhÞ ¼ h2

X�N h;
1
n

� �
i.e. EðXÞ ¼ h; VðXÞ ¼ 1

n

) EðX2Þ � E2ðXÞ ¼ 1
n
) EðX2Þ ¼h2 þ 1

n

) E X
2� 1

n

� �
¼ h2; T ¼X

2 � 1
n
:

@

@h
f hðxÞ ¼ Const: e�

1
2

P
ðxi�hÞ2 �

X
xi � hð Þ

b1 ¼
1

f hðxÞ
@

@h
f hðxÞ ¼

X
xi � hð Þ

b2 ¼
1

f hðxÞ
@2

@h2
f hðxÞ ¼

X
xi � hð Þ

n o2
�n

E b1ð Þ ¼ 0; E b2ð Þ¼ 0; E b21
� � ¼ n;

E b1b2ð Þ ¼ E
X

xi � hð Þ
n o3

� nE
X

xi � hð Þ
n o

¼ 0

E b22
� � ¼ E

X
xi � hð Þ

n o4
þ n2�2nE

X
xi � hð Þ

n o2

¼ 3n2 þ n2 � 2n � n ¼ 2n2
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V ¼ n 0
0 2n2

� �
) V�1 ¼

1
n 0
0 1

2n2

� �
g hð Þ ¼ h2; gð1Þ hð Þ ¼ 2h; gð2Þ hð Þ ¼ 2 )g0 ¼ ð2h; 2Þ

D2 ¼ g0V�1g ¼ 2h; 2ð Þ
1
n 0

0 1
2n2

 !
2h

2

� �
¼ 2h; 2ð Þ

2h=n
1�
n2

 !

¼ 4h2

n
þ 2

n2
:

n�X2 � v21;k; k ¼ nh2;V n�X2� � ¼ 2þ 4nh2;V �X2� � ¼ 2
n2

þ 4h2

n

 �
Lower bound is attained if b0b ¼ T � g hð Þ ¼ g0V�1b:

T � g hð Þ ¼ 2h; 2ð Þ
1
n 0

0 1
2n2

 ! P
xi � hð ÞP

xi � hð Þ½ �2�n

� �
¼ ð2h; 2Þ �x� h

1
2 �x� hð Þ2� 1

2n

� �
¼ 2h �x� hð Þþ �x� hð Þ2� 1

n

¼ �x� hð Þ 2hþ�x� hð Þ � 1
n
¼ �x2 � h2 � 1

n
:

Theorem 1.3 Let fhðxÞ is of the exponential, i.e.

fhðxÞ ¼ hðxÞek1ðhÞtðxÞþ k2ðhÞ such that k01ðhÞ 6¼ 0: ð1:14Þ

Then the variance of an unbiased estimator of gðhÞ; say bgðxÞ, attains the kth lower
bound but not ðk � 1Þth if bgðxÞ is a polynomial of degree k in t(x).

Proof If fhðxÞ is of form (1.14), then

@

@h
fhðxÞ ¼ fhðxÞ k01ðhÞtðxÞþ k02ðhÞ

� �
b1 ¼

1
fhðxÞ

@

@h
fhðxÞ ¼ k01ðhÞtðxÞþ k02ðhÞ

@2

@h2
fhðxÞ ¼ fhðxÞ k01ðhÞtðxÞ þ k02ðhÞ

� �2 þ k001ðhÞtðxÞþ k002ðhÞ
� �h i

b2 ¼
1

fhðxÞ
@2

@h2
fhðxÞ ¼ k01ðhÞtðxÞ þ k02ðhÞ

� �2 þ k001ðhÞtðxÞ þ k002ðhÞ
� �

h
Generally, bi ¼ 1

fhðxÞ
@i

@hi
fhðxÞ ¼ k01ðhÞtðxÞ þ k02ðhÞ

� �i þ Pi�1 tðxÞ; hf g
where Pi�1 tðxÞ; hf g ¼ a polynomial in t(x) of degree at most (i − 1).
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Let Pi�1 tðxÞ; hf g ¼Pi�1

j¼0
QijðhÞ:t jðxÞ

Then

bi ¼ k01ðhÞtðxÞþ k02ðhÞ
� �i þ Xi�1

j¼0

QijðhÞ:t jðxÞ

¼
Xi�1

j¼0

i

j

� �
k01ðhÞ
� � j

:t jðxÞ � k02ðhÞ
� �i�j þ

Xi�1

j¼0

QijðhÞ:t jðxÞ

¼ a polynomial in t xð Þ of degree i since k01ðhÞ 6¼ 0

ð1:15Þ

Condition of equality in BLB
Variance of bgðxÞ attains the kth BLB but not the ðk � 1Þth BLB iff

bgðxÞ ¼ a0ðhÞþ
Xk
i¼1

aiðhÞbi ð1:16Þ

with akðhÞ 6¼ 0:

Proof Only if part Given that bgðxÞ is of the form (1.16), we have to show that
ĝðxÞ is a polynomial of degree k in t(x). From (1.15), bi is a polynomial of degree
i in t(x). So by putting the value of bi in (1.16), we get ĝðxÞ as a polynomial of
degree k in t(x) since ak ¼ 0.

if part Given that h

ĝðxÞ ¼
Xk
j¼0

Cj � t jðxÞ

Ck 6¼ 0½ � ¼ a polynomial of degree k in t xð Þ
ð1:17Þ

It is sufficient to show that we can write ĝðxÞ in the form of (1.16)

a0ðhÞþ
Xk
i¼0

aiðhÞbi ¼ a0ðhÞþ
Xk
i¼0

aiðhÞ
Xi�1

j¼0

QijðhÞ � t jðxÞ

þ
Xk
i¼1

aiðhÞ
Xi
j¼0

i

j

 !
k01ðhÞ
� � j

t jðxÞ k02ðhÞ
� �i�j
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from (1.15)

¼
Xk
j¼0

t jðxÞ k01ðhÞ
� � jXk

i¼j

aiðhÞ
i

j

 !
k02ðhÞ
� �i�j þ

Xk�1

j¼0

t jðxÞ
Xk

i¼j þ 1

aiðhÞQij

¼ tkðxÞ k01ðhÞ
� �k

akðhÞ þ
Xi�1

j¼0

t jðxÞ k01ðhÞ
� � jXk

i¼j

aiðhÞ
i

j

 !
k02ðhÞ
� �i�j þ

Xk�1

j¼0

t jðxÞ
Xk

i¼j þ 1

aiðhÞQij hð Þ

¼ tkðxÞ k01ðhÞ
� �k

akðhÞ þ
Xi�1

j¼0

t jðxÞ k01ðhÞ
� � j

aj hð Þ þ
Xk
i¼jþ 1

aiðhÞ
i

j

 !
k01ðhÞ
� � j� k02ðhÞ

� �i�j þ Qij hð Þ
 !" #

ð1:18Þ

Equating coefficients of t j from (1.17) and (1.18), we get

Ck ¼ ak hð Þ k01ðhÞ
� �k

) ak hð Þ ¼ Ck

k01ðhÞ
� �k 6¼ 0 and

aj hð Þ ¼
Cj �

Pk
i¼j þ 1 ai hð Þ i

j

 !
k01ðhÞ
� � j� k02ðhÞ

� �i�j þ QijðhÞ
 !

k0ðhÞf g j

for j ¼ 0; 1; . . .; k � 1

As such a choice of aj hð Þ exists with ak hð Þ 6¼ 0, the result follows.

Result 1 If there exists an unbiased estimator of g hð Þ say ĝðxÞ such that ĝðxÞ is a
polynomial of degree k in t(x), then

Dk ¼ kth BLB to the variance of an unbiased estimator of g hð Þ ¼ Var gðxÞf g:
Result 2 If there does not exist any polynomial in t(x) which is an unbiased
estimator of g hð Þ, then it is not possible to find any unbiased estimator of g hð Þ
where variance attains BLB for some k.

1.4 Consistent Estimator

An estimation procedure should be such that the accuracy of an estimate increases
with the sample size. Keeping this idea in mind, we define consistency as follows.

Definition An estimator Tn is said to be (weakly) consistent for c hð Þ if for any two
positive numbers 2 and d there exists an n0 (depending upon 2, d) such that

Pr Tn � c hð Þj j � 2f g [ 1� d whenever n 	 n0 and for all h 2 H, i.e. if

Tn�!Pr cðhÞ as n ! 1
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Result 1.7 (Sufficient condition for consistency):
An estimator Tn will be consistent for c hð Þ if EðTnÞ ! c hð Þ and VðTnÞ ! 0 as

n ! 1.

Proof By Chebysheff’s inequality, for any 20 [ 0

Pr Tn � EðTnÞj j � 20f g [ 1� VðTnÞ
202 :

Now Tn � c hð Þj j � Tn � E Tnð Þj j þ E Tnð Þ � c hð Þj j
Tn � E Tnð Þj j � 20) Tn � c hð Þj j � 20 þ E Tnð Þ � c hð Þj j

hHence,

Pr Tn � c hð Þj j � 20 þ E Tnð Þ � c hð Þj jf g	 Pr Tn � EðTnÞ
�� ��� 20� �

[ 1

� VðTnÞ
202 : ð1:19Þ

Since E Tnð Þ ! c hð Þ and VðTnÞ ! 0 as n ! 1, for any pair of two positive
numbers 200; dð Þ, we can find an n0 (depending on 200; dð Þ) such that

E Tnð Þ ! c hð Þj j � 200 ð1:20Þ

and

VðTnÞ � 202 d ð1:21Þ

whenever n 	 n0. For such n0

Tn � cðhÞj j � 20 þ EðTnÞ � cðhÞj j ) Tn � cðhÞj j � 20 þ 200

and 1�V(TnÞ
202 	 1� d

ð1:22Þ

Now from (1.19) and (1.22), we have Pr Tn � c hð Þj j � 20 þ 200f g

	 Pr Tn � c hð Þj j � 20 þ E Tnð Þ � c hð Þj jf g [ 1� d:

Taking 2¼20 þ 200

) Pr Tn � c hð Þj j � 2f g [ 1� d whenever n	 n0
Since, 20 200 and d are arbitrary positive numbers, the proof is complete.
(It should be remembered that consistency is a large sample criterion)

Example 1.19 Let X1;X2; . . .;Xn be a random sample from a population mean l
and standard deviation r. Then Xn ¼ 1

n

P
i Xi is a consistent estimator of l.

Proof E Xn
� � ¼ l; V Xn

� � ¼ r2
n ! 0 as n ! 1. Sufficient condition of consistency

holds. )Xn will be consistent for l. h
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Alt
By Chebysheff’s inequality, for any 2

Pr Xn � l
�� ��� 2� �

[ 1� r2

n 22

Now for any d, we can find an n0 so that
Pr Xn � l
�� ��� 2� �

[ 1� d whenever n	 n0 (here d ¼ r2
n 22)

Example 1.20 Show that in random sampling from a normal population, the sample
mean is a consistent estimator of population mean.

Proof For any 2 [ 0ð Þ; Pr Xn � l
�� ��� 2� � ¼ Pr Zj j � 2 ffiffinp

r

n o

¼
Z2 ffiffinp

r

�2 ffiffinp
r

1ffiffiffiffiffiffi
2p

p e�
1
2t
2
dt where Z ¼Xn � l

r

ffiffiffi
n

p �N 0; 1ð Þ

h

Hence, we can choose an n0 depending on any two positive numbers 2 and d
such that

Pr �Xn � lj j � 2f g [ 1� d whenever n	 n0

)�Xn�!Pr l as n ! 1 )�Xn is consistent for l.

Example 1.21 Show that for random sampling from the Cauchy population with
density function

f x;lð Þ ¼ 1
p

1
1 þ x�lð Þ2 ;� 1\ x\1; the sample mean is not a consistent esti-

mator of l but the sample median is a consistent estimator of l.

Answer
Let X1;X2; . . .;Xn be a random sample from f x; lð Þ ¼ 1

p
1

1 þ x�lð Þ2 : It can be shown

that the sample mean �X is distributed as x.

) Pr Xn � l
�� ��� 2� � ¼ 1

p

Z2
�2

1
1 þ Z2dZ ¼ 2

p
tan�1 2 taking Z ¼X � l

� �
which is free from n.

Since this probability does not involve n, Pr Xn � l
�� ��� 2� �

cannot always be
greater than 1� d; and however large n may be.

It can be shown that for the sample median ~Xn;

E ~Xn
� � ¼ l þ 0

1
n

� �
; V ~Xn

� � ¼ 0
1
n

� �
þ p2

4n

1.4 Consistent Estimator 41



) Since E ~Xn
� �! l and V ~Xn

� �! 0 as n ! 1; sufficient condition for consistent
estimator holds. )~Xn; is consistent for l.

Remark 1.17 Consistency is essentially a large sample criterion.

Remark 1.18 Let Tn be a consistent estimator of c hð Þ and w yf g be a continuous
function. Then w Tnf g will be a consistent estimator of w c hð Þf g.
Proof Since Tn is a consistent estimator of c hð Þ; for any two +ve numbers 21 and d;
we can find an n0 such that h

Pr Tn � c hð Þj j � 21f g [ 1� d whenever n	 n0:
Now w Tnf g is a continuous function of Tn: Therefore, for any 2, we can choose

an 21 such that

Tn � c hð Þj j � 21) w Tnf g � w c hð Þf gj j � 2 :

) Pr w Tnf g � w c hð Þf gj j� 2f g	 Pr Tn � c hð Þj j � 21f g [ 1� d whenever
n 	 n0

i.e. Pr w Tnf g � w c hð Þf gj j � 2f g [ 1� d whenever n	 n0:

Remark 1.19 A consistent estimator is not unique
For example, if Tn is a consistent estimator of h, then for any fixed a and b
T 0
n ¼ n�a

n�b Tn is also consistent for h.

Remark 1.20 A consistent estimator is not necessarily unbiased, e.g. U : f x; hð Þ ¼
1
h ; 0\ x\ h; consistent estimator of h is X nð Þ ¼ max1� i� n Xi: But it is not
unbiased.

Remark 1.21 An unbiased estimator is not necessarily consistent, e.g.
f xð Þ ¼ 1

2 e
� x�hj j;�1\ x\1.

An unbiased estimator of h is X 1ð Þ þ X nð Þ
2 ; but it is not consistent.

Remark 1.22 A consistent estimator may be meaningless,

e.g. Let T 0
n ¼ 0 if n � 1010

Tn if n 	 1010

�
If Tn is consistent, then T 0

n is also consistent, but T 0
n is meaningless for any practical

purpose.

Remark 1.23 If T1 and T2 are consistent estimators of c1 hð Þ and c2 hð Þ; then
ið Þ T1 þ T2ð Þ is consistent for c1 hð Þ þ c2 hð Þ and

iið ÞT1T2 is consistent for c1 hð Þc2 hð Þ:
Proof (i) Since T1 and T2 are consistent for c1 hð Þ and c2 hð Þ; we can always choose
an n0 much that
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Pr T1 � c1 hð Þj j � 21f g [ 1� d1

and

Pr T2 � c2 hð Þj j � 22f g [ 1� d2

whenever n	 n0
21;22; d1; d2 are arbitrary positive numbers.

Now T1 þ T2 � c1 hð Þ � c2 hð Þj j � T1 � c1 hð Þj j þ T2 � c2 hð Þj j

� 21 þ 22 ¼2; sayð Þ
) Pr T1 þ T2 � c1 hð Þ � c2 hð Þj j � 2f g	 Pr T1 � c1 hð Þj j � 21; T2 � c2 hð Þj j � 22f g

	 Pr T1 � c1 hð Þj j � 21f g þ Pr T2 � c2 hð Þj j � 22f g � 1

*P ABð Þ	P Að Þ þ P Bð Þ � 1½ �

	 1� d1 þ 1� d2 � 1 ¼ 1� d1 þ d2ð Þ ¼ 1� d for n	 n0

)Pr T1 þ T2 � c1 hð Þ � c2 hð Þj j � 2f g [ 1� d for n	 n0

Hence, T1 þ T2 is consistent estimator of c1 hð Þ þ c2 hð Þ.
(ii) Again T1 � c1 hð Þj j � 21 and T2 � c2 hð Þj j � 22

) T1T2 � c1 hð Þc2 hð Þj j ¼ T1 � c1 hð Þf g T2 � c2 hð Þf g þ T2c1 hð Þ þ T1c2 hð Þ � 2c1 hð Þc2 hð Þj j
� T1 � c1 hð Þf g T2 � c2 hð Þf gj jþ c1 hð Þj j T2 � c2 hð Þj j þ c2 hð Þj j T1 � c1 hð Þj j
� 2122 þ c1 hð Þj j 22 þ c2 hð Þj j 21¼2 sayð Þ

) Pr T1T2 � c1 hð Þc2 hð Þj j � 2f g	 Pr T1 � c1 hð Þj j � 21; T2 � c2 hð Þj j � 22f g
	 Pr T1 � c1 hð Þj j � 21f g þ Pr T2 � c2 hð Þj j � 22f g � 1

	 1� d1 þ 1� d2 � 1 ¼ 1� d1 þ d2ð Þ ¼ 1� d whenever n 	 n0

) T1T2 is consistent for c1 hð Þc2 hð Þ: h

Example 1.22 Let X1; X2; . . .; Xn be a random sample from the distribution of X
for which the moments of order 2r ðl02rÞ exist. Then show that

(a) m0
r ¼ 1

n

Pn
1
Xr
i is a consistent estimator of l0r, and

(b) mr ¼ 1
n

P
Xi � �Xð Þr is a consistent estimator of lr. These can be proved using

the following results.
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As E m0
r

� � ¼ l0r and V m0
r

� � ¼ l02r � l02r
n

)V m0
r

� �! 0 as n ! 1 )m0
r is consistent for l

0
r and E mrð Þ ¼ lr þ 0 1

n

� �
V mrð Þ ¼ 1

n
l2r � l2r � 2rlr�1lr þ 1 þ r2l2r�1l2
� � þ 0

1
n2

� �
! 0 as n ! 1

)mr is consistent for lr:

(c) Also it can be shown that b1 and b2 are consistent estimators of b1 ¼ l23
l32

and

b2 ¼ l4
l22
:

1.5 Efficient Estimator

Suppose the regularity conditions hold for the family of distribution
f x; hð Þ; h 2 Hf g: Let an unbiased estimator of c hð Þ be T. Then the efficiency of T is

given by

c0 hð Þf g2.
I hð Þ

V Tð Þ

It is denoted by eff. (T)/or e(T). Clearly, 0� e Tð Þ� 1:
An estimator T will be called (most) efficient if eff(T) = 1. An estimator T of c hð Þ

is said to be asymptotically efficient if E Tð Þ ! c hð Þ and eff (T) ! 1 as n ! 1:
Let T1 and T2 be two unbiased estimators of c hð Þ. Then the efficiency of T1

relative to T2 is given by eff. T1=T2


 �
¼ V T2ð Þ

V T1ð Þ :

Remark 1.24 An MVBE will be efficient.

Remark 1.25 In many cases, MVBE does not exist even though the family satisfies
the regularity conditions. Again in many cases, the regularity conditions do not
hold. In such cases, the above definition fails. If MVUE exists, we take it as an
efficient estimator.

Remark 1.26 The efficiency measure has an appealing property of determining the
relative sample sizes needed to attain the same precision of estimation as measured
by variance.

e.g.: Suppose an estimator T1 is 80 % efficient and V T1ð Þ ¼ c
n ; where c depends

upon h. Then, V T0ð Þ ¼ 0:8 c
n : Thus the estimator based on a sample of size 80 will

be just as good as an estimator T1 based on a sample of size 100.
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Example 1.23 Let T1 and T2 be two unbiased estimators of h with efficiency e1 and
e2, respectively. If q denotes the correlation coefficient between T1 and T2, thenffiffiffiffiffiffiffiffiffi

e1e2
p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e1ð Þ 1� e2ð Þ

p
� q� ffiffiffiffiffiffiffiffiffi

e1e2
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e1ð Þ 1� e2ð Þ

p
Proof For any real ‘a’, T ¼ aT1 þ 1� að ÞT2 will also be an unbiased estimator of
h. Now

V Tð Þ ¼ a2V T1ð Þ þ 1� að Þ2V T2ð Þ þ 2a 1� að Þq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V T1ð ÞV T2ð Þ:

p
Suppose T0 be an MVUE of h with variance V0. Then V Tð Þ	V0

) a2
V0

e1
þ 1� að Þ2V0

e2
þ 2a 1� að Þq V0ffiffiffiffiffiffiffiffiffi

e1e2
p 	V0

) a2
1
e1

þ 1
e2

� 2qffiffiffiffiffiffiffiffiffi
e1e2

p
� �

� 2a
1
e2

� qffiffiffiffiffiffiffiffiffi
e1e2

p
� �

þ 1
e2

� 1
� �

	 0

) a�
1
e2
� qffiffiffiffiffiffi

e1e2
p

1
e1

þ 1
e2
� 2qffiffiffiffiffiffi

e1e2
p

 !2

þ
1
e2
� 1

1
e1

þ 1
e2
� 2qffiffiffiffiffiffi

e1e2
p

�
1
e2
� qffiffiffiffiffiffi

e1e2
p

1
e1

þ 1
e2
� 2qffiffiffiffiffiffi

e1e2
p

 !2

	 0

Taking a ¼
1
e2
� qffiffiffiffiffi

e1e2
p

1
e1

þ 1
e2
� 2qffiffiffiffiffi

e1e2
p , we get

1
e2

� 1
� �

1
e1

þ 1
e2

� 2qffiffiffiffiffiffiffiffiffi
e1e2

p
� �

� 1
e2

� qffiffiffiffiffiffiffiffiffi
e1e2

p
� �2

	 0

) �q2 þ 2q
ffiffiffiffiffiffiffiffiffi
e1e2

p � e1
e2

þ 1� e2ð Þ 1 þ e1
e2

� �
	 0

) q2 � 2q
ffiffiffiffiffiffiffiffiffi
e1e2

p � 1 þ e1 þ e2 � 0

) q� ffiffiffiffiffiffiffiffiffi
e1e2

pð Þ2� 1� e1ð Þ 1� e2ð Þ� 0

) q� ffiffiffiffiffiffiffiffiffi
e1e2

p�� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e1ð Þ 1� e2ð Þp

Hence, the result. h

Remark 1.27 The correlation coefficient between T and the most efficient estimator
is

ffiffiffi
e

p
where e is the efficiency of the unbiased estimator T. Put e2 ¼ e and e1 = 1 in

the above inequality; q� ffiffiffiffiffiffiffiffiffi
e1e2

p�� ��� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e1ð Þ 1� e2ð Þp

and easily we get the
result.
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Chapter 2
Methods of Estimation

2.1 Introduction

In chapter one, we have discussed different optimum properties of good point
estimators viz. unbiasedness, minimum variance, consistency and efficiency which
are the desirable properties of a good estimator. In this chapter, we shall discuss
different methods of estimating parameters which are expected to provide estima-
tors having some of these important properties. Commonly used methods are:

1. Method of moments
2. Method of maximum likelihood
3. Method of minimum v2

4. Method of least squares

In general, depending on the situation and the purpose of our study we apply any
one of the methods that may be suitable among the above-mentioned methods of
point estimation.

2.2 Method of Moments

The method of moments, introduced by K. Pearson is one of the oldest methods of
estimation. Let (X1, X2,…Xn) be a random sample from a population having p.d.f.
(or p.m.f) f(x,θ), θ = (θ1, θ2,…, θk). Further, let the first k population moments about
zero exist as explicit function of θ, i.e. l0r¼ l0r h1; h2; . . .; hkð Þ; r = 1, 2,…,k. In the
method of moments, we equate k sample moments with the corresponding popu-
lation moments. Generally, the first k moments are taken because the errors due to
sampling increase with the order of the moment. Thus, we get k equations
l0r h1; h2; . . .; hkð Þ;¼ m0

r; r = 1, 2,…, k. Solving these equations we get the method
of moment estimators (or estimates) as m0

r ¼ 1
n

Pn
i¼1 X

r
i (or m

0
r ¼ 1

n

Pn
i¼1 x

r
i ).
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If the correspondence between l0r and θ is one-to-one and the inverse function is
hi ¼ f i l

0
1; l

0
2; . . .; l

0
k

� �
, i = 1, 2,.., k then, the method of moment estimate becomes

ĥi ¼ f i m
0
1;m

0
2; . . .;m

0
k

� �
. Now, if the function fi() is continuous, then by the weak

law of large numbers, the method of moment estimators will be consistent.
This method gives maximum likelihood estimators when f(x, θ) = exp
(b0 + b1x + b2x

2 + ….) and so, in this case it gives efficient estimator. But the
estimators obtained by this method are not generally efficient. This is one of the
simplest methods. Therefore, these estimates can be used as a first approximation to
get a better estimate. This method is not applicable when the theoretical moments
do not exist as in the case of Cauchy distribution.

Example 2.1 Let X1;X2; . . .Xn be a random sample from p.d.f.
f x; a; bð Þ ¼ 1

b a;bð Þ x
a�1 1� xð Þb�1; 0\x\1; a; b[ 0: Find the estimators of a and

b by the method of moments.

Solution

We know E xð Þ ¼ l11 ¼ a
a þ b and E x2ð Þ ¼ l12 ¼ a a þ 1ð Þ

a þ bð Þ a þ b þ 1ð Þ :

Hence, a
a þ b ¼ �x; a a þ 1ð Þ

a þ bð Þ a þ b þ 1ð Þ ¼ 1
n

Pn
i¼1 x

2
i

By solving, we get b̂ ¼ �x� 1ð Þ
P

x2i � n�xð ÞP
ðxi ��xÞ2

and â ¼ �xb̂
1��x :

2.3 Method of Maximum Likelihood

This method of estimation is due to R.A. Fisher. It is the most important general
method of estimation. Let X� ¼ X1;X2; . . .;Xnð Þ denote a random sample with joint

p.d.f or p.m.f. f x
�
; h

� �
; h 2 H (θ may be a vector). The function f x

�
; h

� �
, con-

sidered as a function of θ, is called the likelihood function. In this case, it is denoted
by L(θ). The principle of maximum likelihood consists of choosing an estimate, say
ĥ; within the admissible range of θ, that maximizes the likelihood. ĥ is called the
maximum likelihood estimate (MLE) of θ. In other words, ĥ will be an MLE of θ if

L ĥ
� �

� L hð Þ8 h 2 H:

In practice, it is convenient to work with logarithm. Since log-function is a
monotone function, ĥ satisfies
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log L ĥ
� �

� log LðhÞ8 h 2 H:

Again, if log L hð Þ is differentiable within H and ĥ is an interior point, then ĥ will
be the solution of

@log L hð Þ
@hi

¼ o; i ¼ 1; 2; . . .; k; h�
k�1 = h1; h2; . . .; hkð Þ0 .

These equations are known as likelihood equations.

Problem 2.1 Let X1;X2; . . .;Xnð Þ be a random sample from b(m, p ), (m known).
Show that p̂¼ 1

mn

Pn
i¼1 Xi is an MLE of p.

Problem 2.2 Let X1;X2; . . .;Xnð Þ be a random sample from P (λ). Show that
k̂ ¼ 1

n

Pn
i¼1 Xi is an MLE of λ.

Problem 2.3 Let X1;X2; . . .;Xnð Þ be a random sample from N l; r2ð Þ. Show that
�X; s2

� �
is an MLE of l; r2ð Þ, where �X ¼ 1

n

Pn
i¼1 Xi and s2¼ 1

n

Pn
i¼1 Xi � �Xð Þ2:

Example 2.2 Let X1;X2; . . .;Xnð Þ be a random sample from a population having
p.d.f f x; hð Þ ¼ 1

2 e
� x�hj j; �1\x\1:

Show that the sample median ~X is an MLE of θ.

Answer

L hð Þ ¼ Const: e�
Pn

i¼1
xi�hj j

Maximization of L(θ) is equivalent to the minimization of
Pn

i¼1 xi � hj j: Now,Pn
i¼1 xi � hj j will be least when h ¼ ~X; the sample median as the mean deviation

about the median is least. ~X will be an MLE of θ.

Properties of MLE

(a) If a sufficient statistic exists, then the MLE will be a function of the sufficient
statistic.

Proof Let T be a sufficient statistic for the family f X� ; h
� �

; h 2 H
n o

By the factorisation theorem, we have
Qn

i¼1
f xi; hð Þ ¼ g T X�

� �
; h

n o
h X�

� �
:

To find MLE, we maximize g T x
�

� �
; h

n o
with respect to h. Since g T X�

� �
; h

n o

is a function of h and x
�
only through T X�

� �
; the conclusion follows immediately.h
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Remark 2.1 Property (a) does not imply that an MLE is itself a sufficient statistic.

Example 2.3 Let X1, X2,…,Xn be a random sample from a population having p.d.f.

f X� ; h
� �

¼ 1 8 h� x� hþ 1
0 Otherwise

:

�

Then, L hð Þ ¼ 1 if h�MinXi �MaxXi � hþ 1
0 Otherwise

:

�

Any value of θ satisfying MaxXi � 1� h�MinXi will be an MLE of θ. In
particular, Min Xi is an MLE of θ, but it is not sufficient for θ. In fact, here
MinXi;MaxXið Þ is a sufficient statistic.
(b) If T is the MVBE, then the likelihood equation will have a solution T.

Proof Since T is an MVBE,
@ log f X� ;h

� �

@h ¼ T � hð Þk hð Þ

Now,
@ log f X� ;h

� �

@h ¼ 0

) h¼ T * k hð Þ 6¼ 0½ �:

(c) Let T be an MLE of θ and d¼w hð Þ be a one-to-one function of θ. Then,
d¼w Tð Þ will be an MLE of d. h

Proof Since T is an MLE of θ, L T X�

� �n o
� L hð Þ8h;

Since the correspondence between θ and d is one-to-one, inverse function must
exist. Suppose the inverse function is h¼w�1 dð Þ:

Thus, L hð Þ ¼ L w�1 dð Þ� � ¼ L1 dð Þ (say)
Now,

L1 dð Þ ¼ L w�1 dð Þ� � ¼ L w�1 w T X�

� �

�

0
@

1
A

8
<
:

9
=
;

2
4

3
5¼ L T X�

� �n o
� L hð Þ ¼ L1 dð Þ.

Therefore, ‘d’ is an MLE of d.
(d) Suppose the p.d.f. (or p.m.f.) f(x, θ) satisfies the following regularity

conditions:

(i) For almost all x, @f x; hð Þ
@h ; @

2f x; hð Þ
@h2

; @
3f x; hð Þ
@h3

exists 8 h 2 H.

(ii) @f x; hð Þ
@h

			
			\A1 xð Þ; @2f x; hð Þ

@h2

			
			\A2 xð Þ and @3f ðx; hÞ

@h3

			
			\BðxÞ;

where A1(x) and A2(x) are integrable functions of x and
R1

�1
B xð Þf x; hð Þdx\M; a finite quantity

iii)
R1

�1
@ log f x; hð Þ

@h

� �2
f x; hð Þdx is a finite and positive quantity.

If ĥn is an MLE of θ on the basis of a sample of size n, from a population having
p.d.f. (or p.m.f.) f(x,θ) which satisfies the above regularity conditions, then
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ffiffiffi
n

p
ĥn � h

� �
is asymptotically normal with mean ‘0’ and variance

R1

�1
@ log f x; hð Þ

@h

� �2
f x; hð Þdx

� ��1

: Also, ĥn is asymptotically efficient and consistent.

(e) An MLE may not be unique. h

Example 2.4 Let f x; hð Þ ¼ 1 if h� x� hþ 1
0 Otherwise

:

�

Then, L hð Þ ¼ 1 if h� min xi � max xi � hþ 1
0 Otherwise

�

i.e. L hð Þ ¼ 1 if max xi � 1� h� min xi
0 Otherwise

�

Clearly, for any value of θ, say Ta ¼ a Maxxi � 1ð Þþ 1� að ÞMinxi; 0� a� 1;
L(θ) will be maximized. For fixed α, Ta will be an MLE. Thus, we observe that an
infinite number of MLE exist in this case.

(f) An MLE may not be unbiased.

Example 2.5

f x; hð Þ ¼
1
h if 0� x� h
0 Otherwise

:

�

Then, L hð Þ ¼
1
hn if max xi � h
0 Otherwise

:

�

From the figure, it is clear that the likelihood L(θ) will be the largest when
θ = Max Xi. Therefore Max Xi will be an MLE of θ. Note that E MaxXið Þ ¼
n

n þ 1 h 6¼ h: Therefore, here MLE is a biased estimator.
(g) An MLE may be worthless.

L(   )θ

Max Xi θ
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Example 2.6

f x; pð Þ ¼ px 1� pð Þ1�x; x¼ 0; 1; p 2 1
4
;
3
4

 �

Then; L pð Þ ¼ p if x ¼ 1
1� p if x ¼ 0

�
i.e. L pð Þ will bemaximized at p¼ 3

4 if x ¼ 1
p¼ 1

4 if x ¼ 0

�

Thus, T ¼ 2X þ 1
4 will be an MLE of θ.

Now, E Tð Þ ¼ 2p þ 1
4 6¼ p: Thus, T is a biased estimator of π.

MSE of T ¼ E T � pð Þ2

¼ E
2xþ 1

4
� p

 �2

¼ 1
16

E 2 x� pð Þþ 1� 2pf g2

¼ 1
16

E 4 x� pð Þ2 þ 1� 2pð Þ2 þ 4 x� pð Þ 1� 2pð Þ
n o

¼ 1
16

4p 1� pð Þþ 1� 2pð Þ2
n o

¼ 1
16

Now, we consider a trivial estimator d xð Þ ¼ 1
2.

MSE of d xð Þ ¼ 1
2 � p
� �2 � 1

16 = MSE of T 8p 2 1
4 ;

3
4

� �

Thus, in the sense of mean square error MLE is meaningless.
(h) An MLE may not be consistent

Example 2.7

f x; hð Þ ¼ hx 1� hð Þ1�x if h is rational
1� hð Þxh1�x if h is rational 0\h\1; x ¼ 0; 1:

�

An MLE of θ is ĥn ¼ �X. Here, ĥn is not a consistent estimator of h.
(i) The regularity conditions in (d) are not necessary conditions.

Example 2.8

f x; hð Þ ¼ 1
2
e� x�hj j;

�1\x\1
�1\h\1

Here, regularity conditions do not hold. However, the MLE (=sample median) is
asymptotically normal and efficient.

Example 2.9 Let X1;X2; . . .;Xn be a random sample from f x; a; bð Þ ¼
be�b x�að Þ; a� x\1 and b[ 0.

Find MLE’s of α, β.

52 2 Methods of Estimation



Solution

L a; bð Þ ¼ bne
�b

Pn
i¼1

xi�að Þ

loge L a; bð Þ ¼ n loge b� b
Xn

i¼1

xi � að Þ

@ log L
@b ¼ n

b �
P

xi � að Þ and @ log L
@a ¼ nb:

Now, @ log L
@a ¼ 0 gives us β = 0 which is nonadmissible. Thus, the method of

differentiation fails here.
Now, from the expression of L(α, β), it is clear that for fixed β(>0), L(α, β)

becomes maximum when α is the largest. The largest possible value of α is
X(1) = Min xi.

Now, we maximize L X 1ð Þ; b
� �

with respect to β. This can be done by consid-
ering the method of differentiation.

@ log L x 1ð Þ; b
� �

@b
¼ 0 ) n

b
�
X

xi �min xið Þ ¼ 0 ) b ¼ nP
xi �min xið Þ

So, the MLE of (α, β) is minxi; nP
xi�minxið Þ

� �
:

Example 2.10 Let X1;X2; . . .;Xn be a random sample from f x; a; bð Þ ¼
1

b�a; a� x� b
0; Otherwise

�

(a) Show that the MLE of (α, β) is (Min Xi, Max Xi).
(b) Also find the estimators of a and b by the method of moments.

Proof

að ÞL a; bð Þ ¼ 1
b� að Þn if a�Minxi\Maxxi � b ð2:1Þ

It is evident from (2.1), that the likelihood will be made as large as possible
when (β − α) is made as small as possible. Clearly, α cannot be larger than Min xi
and β cannot be smaller than Max xi; hence, the smallest possible value of (β − α) is
(Max xi − Min xi). Then the MLE’S of α and β are â ¼ Min xi and b̂ ¼ Max xi,
respectively.

(b) We know E xð Þ ¼ l11 ¼ a þ b
2 and V xð Þ ¼ l2 ¼ b� að Þ2

12

Hence, a þ b
2 ¼ �x and b� að Þ2

12 ¼ 1
n

Pn
i¼1 xi � �xð Þ2
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By solving, we get â ¼ �x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
P

xi��xð Þ2
n

q
and b̂ ¼ �xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
P

xi��xð Þ2
n

q

Successive approximation for the estimation of parameter

It frequently happens that the likelihood equation is by no means easy to solve.
A general method in such cases is to assume a trial solution and correct it by an
extra term to get a more accurate solution. This process can be repeated until we get
the solution to a sufficient degree of accuracy.

Let L denote the likelihood and h� be the MLE.

Then @ log L
@h

			
h¼h�

¼ 0. Suppose h0 is a trial solution of @ log L
@h ¼ 0

Then

0 ¼ @ log L
@h

			
h¼h�

¼ @ log L
@h

			
h¼h0

þ h� � h0ð Þ @2 log L
@h2

			
h¼h0

+ terms involving h� � h0ð Þ
with powers higher than unity.

) 0 ’ @ log L
@h

			
h¼h0

þ h� � h0ð Þ @2 log L
@h2

			
h¼h0

; neglecting the terms involving

h� � h0ð Þ with powers higher than unity.

) 0 ’ @ log L
@h

			
h¼h0

� h� � h0ð ÞI h0ð Þ; where I hð Þ ¼ �E @2 log L
@h2

� �
:

Thus, the first approximate value of θ is

h 1ð Þ ¼ h0 þ
@ log L
@h

			
h¼h0

I h0ð Þ

8
><
>:

9
>=
>;
:

Example 2.11 Let X1;X2; . . .;Xn be a random sample from f x; hð Þ ¼ 1
p 1 þ x� hð Þ2f g

Here, @ log f x; hð Þ
@h ¼ 2 x�hð Þ

1þ x�hð Þ2 ; and so the likelihood equation is
Pn

i¼1
xi � hð Þ

1 þ xi � hð Þ2 ¼ 0;

clearly it is difficult to solve for θ.
So, we consider successive approximation method.
In this case, I hð Þ ¼ n

2 :

Here, the first approximation is h 1ð Þ ¼ h0 þ 4
n

Pn
i¼1

xi � h0ð Þ
1 þ xi � h0ð Þ2 ;

h0 being a trial solution.
Usually, we take h0 = sample median.
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2.4 Method of Minimum v2

This method may be used when the population is grouped into a number of mu-
tually exclusive and exhaustive class and the observations are given in the form of
frequencies.

Suppose there are k classes and pi hð Þ is the probability of an individual
belonging to the ith class. Let f i denote the sample frequency. Clearly,Pk

i¼1 pi hð Þ ¼ 1 and
Pk

i¼1 f i ¼ n:
The discrepancy between observed frequency and the corresponding expected

frequency is measured by the Pearsonian v2, which is given by

v2 ¼ Pk
i¼1

f i � npi hð Þf g2
npi hð Þ ¼ P f 2i

npi hð Þ � n:

The principle of the method of minimum v2 consists of choosing an estimate of

θ, say ĥ, we first consider the minimum v2 equations @v2

@hi
¼ 0; i = 1, 2,…,r and

hi ¼ ith component of θ.
It can be shown that for large n, the min v2 equations and the likelihood

equations are identical and provides identical estimates.
The method of minimum v2, is found to be more troublesome to apply in many

cases, and has no improvement on the maximum likelihood method. This method
can be used when maximum likelihood equations are difficult to solve. In particular
situations, this method may be simple. To avoid the difficulty in minimum v2

method, we consider another measure of discrepancy, which is given by v02 ¼
Pk

i¼1
f i � npi hð Þf g2

f i
; v02 is called modified Pearsonian v2. Now, we minimize, instead

of v2, with respect to θ.
It can be shown that for large n the estimates obtained by min v2 would also be

approximately equal to the MLE’s. Difficulty arises if some of the classes are
empty. In this case, we minimize

v002 ¼
X

i:f i 6¼0

f i � npi hð Þf g2
f i

+ 2M;

where M = sum of the expected frequencies of the empty classes.

Example 2.12 Let x1; x2; . . .; xnð Þ be a given sample of size n. It is to be tested
whether the sample comes from some Poisson distribution with unknown mean l.
How do you estimate l by the method of modified minimum chi-square?

Solution

Let x1; x2; . . .; xn be arranged in k groups such that there are
ni observations with x ¼ i; i ¼ rþ 1; . . .; rþ k � 2
nL observations x� r
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nu observations with x� rþ k � 1 so that the smallest and the largest values of
x, which are fewer, are pooled together andnL þ

Prþ k�2
i¼rþ 1 ni þ nu ¼ n:

Let pi lð Þ ¼ P x ¼ ið Þ ¼ e�lli

i! , pL lð Þ ¼ P x� rð Þ ¼ Pr
i¼0 pi lð Þ and pu lð Þ ¼

P x� rþ k � 1ð Þ ¼ P1
i¼rþ k�1 pi lð Þ:

Now using
Pk

i¼1
ni

pi hð Þ
@pi hð Þ
@hj

¼ 0; j ¼ 1; 2; . . .p we have nL

Pr

i¼0
i
l�1ð Þpi lð ÞPr

i¼0
pi lð Þ þ

Prþ k�2
i¼rþ 1 ni

i
l � 1

� �
þ nu

P1
i¼rþ k�1

i
l�1ð Þpi lð ÞP1

i¼rþ k�1
pi lð Þ ¼ 0.

Since there is only one parameter, i.e. p ¼ 1 we get the only above equation. By
solving, we get

nl̂ ¼ nL

Pr

i¼0
ipi lð Þ

Pr

i¼0
pi lð Þ

þ
Xrþ k�2

i¼rþ 1

ini þ nu

P1

i¼rþ k�1
ipi lð Þ

P1

i¼rþ k�1
pi lð Þ

= sum of all x’s
Hence, l̂ is approximately the sample mean �x.

2.5 Method of Least Square

In the method of least square , we consider the estimation of parameters using some
specified form of the expectation and second moment of the observations. For
fitting a curve of the form y ¼ f x; b0; b1; . . .; bp

� �
to the data xi; yið Þ; i = 1, 2,…n,

we may use the method of least squares. This method consists of minimizing the
sum of squares.

S ¼Pn
i¼1 e

2
i , where ei¼ yi � f xi; b0; b1; . . .; bp

� �
; i = 1, 2,…,n with respect to

b0; b1; . . .; bp: Sometimes, we minimize
P

wie2i instead of
P

e2i . In that case, it is
called a weighted least square method.

To minimize S, we consider (p + 1) first order partial derivatives and get (p + 1)
equations in (p + 1) unknowns. Solving these equations, we get the least square
estimates of b0is.

In general, the least square estimates do not have any optimum properties even
asymptotically. However, in case of linear estimation this method provides good
estimators. When f xi; b0; b1; . . .; bp

� �
is a linear function of the parameters and the
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x-values are known, least square estimators will be BLUE. Again, if we assume that
e0is are independently and identically normally distributed, then a linear estimator of

the form a
0
�
b
�
will be MVUE for the entire class of unbiased estimators. In general,

we consider n uncorrelated observations y1; y2; . . .yn such that E yið Þ ¼
b1x1i þ b2x2i þ 	 	 	 þ bkxki:

V yið Þ ¼ r2; i ¼ 1; 2; . . .. . .; n; x1i ¼ 18i;

where b1; b2. . .. . .. . .bk and r2 are unknown parameters. If Y and b� stand for
column vectors of the variables yi and parameters bj and if X ¼ xji

� �
be an n� kð Þ

matrix of known coefficients xji then the above equation can be written as

E Yð Þ ¼ Xb�

V eð Þ ¼ E ee0ð Þ ¼ r2I

where e ¼ Y � Xb� is an n� 1ð Þ vector of error random variable with E eð Þ ¼ 0
and I is an n� nð Þ identity matrix. The least square method requires that b0s be such
calculated that / ¼ e0e ¼ Y � Xb�ð Þ0 Y � Xb�ð Þ be the minimum. This is satisfied
when

@/
@b�

¼ 0

Or; 2X 0 Y � Xb�ð Þ ¼ 0:

The least square estimators b 0s is thus given by the vector b̂� ¼ X 0Xð Þ�1X 0Y :

Example 2.13 Let yi ¼ b1x1i þ b2x2i þ ei ; i ¼ 1; 2; . . .. . .; n or E yið Þ ¼ b1x1i þ
b2x2i; x1i ¼ 1 for all i.

Find the least square estimates of b1 and b2. Prove that the method of maximum
likelihood and the method of least square are identical for the case of normal
distribution.

Solution

In matrix notation we have

E Yð Þ ¼ Xb�; where X ¼
1 x21
1 x22
..
. ..

.

1 x2n

0
BBB@

1
CCCA; b� ¼ b1

b2

 �
and Y ¼

y1
y2
..
.

yn

0
BBB@

1
CCCA
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Now,

b̂� ¼ X 0Xð Þ�1X 0Y

Here, X 0X ¼ 1 1 . . . 1
x21 x22 . . . x2n

 � 1 x21
1 x22
..
. ..

.

1 x2n

0
BBB@

1
CCCA ¼ n

P
x2iP

x2i
P

x22i

 �

X 0Y ¼
P

yiP
x2iyi

 �

) b̂� ¼ 1

n
P

x22i �
P

x2ið Þ2
P

x22i �P
x2i

�P
x2i n

 � P
yiP

x2iyi

 �

¼ 1

n
P

x22i �
P

x2ið Þ2
P

x22i
P

yi �
P

x2i
P

x2iyi
�P

x2i
P

yi þ n
P

x2i
P

yi

 �

Hence,

b̂2 ¼
n
P

x2i
P

yi �
P

x2i
P

yi
n
P

x22i �
P

x2ið Þ2 ¼
P

x2i
P

yi � n�x2�yP
x22i � n�x22

¼
P

x2i � �x2ð Þ yi � �yð Þ
P

x2i � �x2ð Þ2

b̂1 ¼
P

x22i
P

yi �
P

x2i
P

x2iyi
n
P

x22i �
P

x2ið Þ2

¼ �y
P

x22i � �x2
P

x2iyiP
x22i � n�x2

¼�yþ �yn�x22 � �x2
P

x2iyiP
x22i � n�x22

¼�y� �x2b̂2
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Let yi be an independent N b1 þ b2xi; r
2ð Þ variate, i ¼ 1; 2; . . .. . .; n so that

E yið Þ ¼ b1 þ b2xi: The estimators of b1 and b2 are obtained by the method of least
square on minimizing

/ ¼
Xn

i¼1

yi � b1 � b2xið Þ2

The likelihood estimate is

L ¼ 1ffiffiffiffiffiffiffiffi
2pr

p
 �n

e�
1

2r2

P
yi�b1�b2xið Þ2

L is maximum when
Pn

i¼1 yi � b1 � b2xið Þ2 is minimum. By the method of

maximum likelihood, we choose b1 and b2 such that
Pn

i¼1 yi � b1 � b2xið Þ2 ¼ / is
minimum. Hence, both the methods of least square and maximum likelihood
estimator are identical.

Example 2.14 Let X1;X2; . . .Xn be a random sample from p.d.f.
f x; h; rð Þ ¼ 1

hrC rð Þ e
�x=hxr�1; x[ 0; h[ 0; r[ 0:

Find estimator of h and r by

(i) Method of moments
(ii) Method of maximum likelihood

Answer

(i) Here, E xð Þ ¼ l11 ¼ rh; E x2ð Þ ¼ l12 ¼ r rþ 1ð Þh2

m1
1 ¼ �x; m1

2 ¼
1
n

Xn

i¼1
x2i

Hence, rh ¼ �x; r rþ 1ð Þh2 ¼ 1
n

Pn
i¼1 x

2
i

By solving, we get r̂ ¼ n�x2Pn

i¼1
xi ��xð Þ2 and ĥ ¼

Pn

i¼1
xi��xð Þ2

n�x

(ii) L ¼ 1
hnr C rð Þð Þn e

�1
h

Pn

i¼1
xi
Qn

i¼1
xr�1
i

log L ¼ �nr log h� n logC rð Þ � 1
h

Pn
i xi þ r � 1ð ÞPn

i¼1 log xi
Now, @ log L

@h ¼ � nr
h þ n�x

h2
¼ 0 ) ĥ ¼ �x

r
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@ log L
@r

¼ � n log h� n
@ logC rð Þ

@r
þ

Xn

i¼1

log xi

¼ n log r � n
C0 rð Þ
C rð Þ � n log�xþ

Xn

i

log xi

It is, however, difficult to solve the equation @ log L
@r ¼ 0 and to get the estimate of r.

Thus, for this example estimators of h and r are more easily obtained by the method
of moments than the method of maximum likelihood.

Example 2.15 If a sample of size one is drawn from the p.d.f f x; bð Þ ¼
2
b2

b� xð Þ; 0\x\b:

Find b̂, theMLEofb andb�, the estimator ofb based onmethod ofmoments. Show
that b̂ is biased, but b� is unbiased. Show that the efficiency of b̂ w.r.t. b� is 2/3.

Solution

L ¼ 2

b2
b� xð Þ

log L ¼ log 2� 2 log bþ log b � xð Þ
@ log L
@b

¼ � 2
b
þ 1

b� x
¼ 0 ) b ¼ 2x

Thus, the MLE of b is given by b
a
= 2x.

Now, E xð Þ ¼ 2
b2
R b
0 bx� x2ð Þdx ¼ b

3

Hence, b
3 ¼ x ) b ¼ 3x

Thus, the estimator of b based on method of moment is given by b� ¼ 3x:
Now,

E b̂
� �

¼ 2� b
3
¼ 2b

3
6¼ b

E b�ð Þ ¼ 3� b
3
¼ b

Hence, b̂ is biased but b� is unbiased.

60 2 Methods of Estimation



Again,

E x2
� � ¼ 2

b2

Zb

0

bx2 � x3
� �

dx ¼ b2

6

)V xð Þ ¼ b2

6
� b2

9
¼ b2

18

V b�ð Þ ¼ 9V xð Þ ¼ b2

2

V b̂
� �

¼ 4V xð Þ ¼ 2
9
b2

M b̂
� �

¼ V b̂
� �

þ E b̂
� �

� b
h i2

¼ 2
9
b2 þ 2

3
b� b

 �2

¼ 1
3
b2

Thus, the efficiency of b̂ with respect to b� is 2
3 :
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Chapter 3
Theory of Testing of Hypothesis

3.1 Introduction

Consider a random sample from an infinite or a finite population. From such a
sample or samples we try to draw inference regarding population. Suppose the form
of the distribution of the population is Fh which is assumed to be known but the
parameter h is unknown. Inferences are drawn about unknown parameters of the
distribution. In many practical problems, we are interested in testing the validity of
an assertion about the unknown parameter h. Some hypothesis is made regarding
the parameters and it is tested whether it is acceptable in the light of sample
observations. As for examples, suppose we are interested in introducing a high
yielding rice variety. We have at our disposal a standard variety having average
yield x quintal per acre. We want to know whether the average yield for the new
variety is higher than x. Similarly, we may be interested to check the claim of a tube
light manufacturer about the average life hours achieved by a particular brand.
A problem of this type is usually referred to as a problem of testing of hypothesis.
Testing of hypothesis is closely linked with estimation theory in which we seek the
best estimator of unknown parameter. In this chapter, we shall discuss the problem
of testing of hypothesis.

3.2 Definitions and Some Examples

In this section, some aspects of statistical hypotheses and tests of statistical
hypothesis will be discussed.

Let q ¼ p xð Þf g be a class of all p.m.f or p.d.f. In testing problem p xð Þ is
unknown, but ρ is known. Our objective is to provide more information about p xð Þ
on the basis of X ¼ x. That is, to know whether p xð Þ 2 q� � q:
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Definition 1 A hypothesis is a conjecture or assertion about p xð Þ. It is of two types,
viz., Null hypothesis (H) and alternative hypothesis (K).

Null hypothesis (H): A hypothesis that is tentatively set up is called null
hypothesis. Alternative to H is called Alternative hypothesis.

H and K are such that H \K ¼ u and H [K�q: We also write H as

H : p xð Þ 2 qH � q
andK asK : p xð Þ 2 qK � q

�
qH \ qK ¼ u and qH [ qK�q

Labeling of the distribution

Write q ¼ p xð Þ ¼ p x=h
� �

; h 2 H
� �

. Then ‘h’ is called the labelling parameter of the
distribution and ‘H’ is called the parameter space.

Example 3.1 X� bin m; pð Þ , X1;X2; . . .Xm are i.i.d Bernoulli (p) ) X ¼Pm
i¼1 Xi � bin m; pð Þ, m is known, h ¼ p, H ¼ 0; 1½ �; outcome space

�x ¼ 0; 1; 2; . . .mf g � 0; 1f gX 0; 1f gX. . .X 0; 1f g

p x=hð Þ ¼ m
x

� �
px 1� pð Þm�x Or p x

�
=h

	 

¼ p

Pm
i¼1

xi
1� pð Þ

m�
Pm
i¼1

xi

q ¼ m
x

� �
px 1� pð Þm�x; p 2 0; 1½ �

� �
is known but

m
x

� �
px 1� pð Þm�x is

unknown if p is unknown.

Example 3.2 Let X1;X2; . . .Xn1 are i.i.d P k1ð Þ and Y1; Y2; . . .Yn2 are i.i.d P k2ð Þ.
Also they are independent and n1 and n2 are known.
Now,

X ¼ X1;X2; . . .Xn1 ; Y1; Y2; . . .Yn2ð Þ; n ¼ n1 þ n2

�x ¼ 0; 1; . . .1f g½ �n1X 0; 1; . . .1f g½ �n2

h ¼ k1; k2ð Þ;H ¼ 0;1ð ÞX 0;1ð Þ ¼ k1; k2ð Þ : 0\k1; k2\1f g

p x=hð Þ ¼
Yn1

i¼1

p xi=k1ð Þ
Yn2

j¼1

p yj
�
k2

� � ¼ k
P

xi
1 k

P
yj

2Q
xi!

Q
yj!

e� n1k1 þ n2k2ð Þ

q ¼ p x=h
� �

; 0\k1; k2\1� �
is known but p x=h

� �
is unknown if h is unknown.

Example 3.3 X1;X2; . . .Xn are i.i.d N l; r2ð Þ. X ¼ X1;X2; . . .Xnð Þ; n	 1; h ¼ l; r2ð Þ
or lf g (if r2 is known) or r2

� �
(if l is known), H ¼ l; r2ð Þ :�

�1\l\1; r2 [ 0g or l : �1\l\1f g � R
0
or r2 : r2 [ 0

� �
:

�x ¼ Rn: n-dimensional Euclidean space.
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p x=hð Þ ¼ 2pð Þ�n=2r�ne
� 1

2r2

Pn
1

xi�lð Þ2
or

¼ 2pð Þ�n=2e
�1

2

Pn
1

xi�lð Þ2
; r2 ¼ 1 or

¼ 2pð Þ�n=2r�ne
� 1

2r2

Pn
1

x2i
; l ¼ 0: or

q ¼ p x=h
� �

;�1\l\1; r2 [ 0
� �

or

p x=h
� �

;�1\l\1� �
or

p x=h
� �

; r2 [ 0
� �

all are known but unknown is p x=h
� �

for fixed θ (Unknown).

Parametric set up

p xð Þ ¼ p x=hð Þ; h 2 H: Then we can find HH � Hð Þ and HK � Hð Þ such that

HH \HK ¼ / and pH ¼ p x=hð Þ; h 2 HHf g; pK ¼ p x=hð Þ; h 2 HKf g

So,

H : p 2 pH , H : h 2 HH

K : p 2 pK , K : h 2 HK :

Definition 2 Now a hypothesis H� is called

i. Simple if H� contains just one parametric point, i.e. H� specifies the distribution
p x=hð Þf g completely.

ii. Composite if H� contains more than one parametric point, i.e. H� cannot
specify the distribution p x=hð Þf g completely.

Example 3.4 X1;X2; . . .Xn are i.i.d N l; r2ð Þ: Consider the following hypothesis
H�ð Þ:
1. H� : l ¼ 0; r2 ¼ 1 : H� ) H�N 0; 1ð Þ
2. H� : l
 0; r2 ¼ 1
3. H� : l ¼ 0; r2 [ 0
4. H� : r2 ¼ r20
5. H� : lþ r ¼ 0

The first one is a simple hypothesis and the remaining are composite hypotheses.

Definition 3 Let x be the observed value of the random variable X with probability
model p x=hð Þ; h unknown. Wherever X ¼ x is observed, p x=hð Þ is a function of h
only and is called the likelihood of getting such a sample. It is simply called the
likelihood function and often denoted by L hð Þ or L h=xð Þ:
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Definition 4 Test It is a rule for the acceptance or the rejection of the null
hypothesis (H) on the basis of an observed value of X.

Definition 5 Non-randomized test

Let x be a subset of �x such that

X 2 x ) The rejection of H

X 2 �x� x ) The acceptance of H:

Then x is called the critical region or a test for H against K. Test ‘x’ means a
rule determined by x. Note that x does not depend on the random experiment (that
is on X). So it is called a non-randomized test.

Definition 6 Randomized test:

It consists in determining a function / xð Þ
such that

(i) 0
/ xð Þ
 1 8x 2 �x
(ii) H is rejected with probability / xð Þ whenever X ¼ x is observed.

Such a ‘/ xð Þ’ is called ‘Critical function’ or ‘test function’ or simply ‘test’ for
H against K. Here the function / xð Þ depends on the random experiment (that is on
X). So that name ‘randomised’ is justified.

e.g. (i) and (ii) ⇒ whenever X ¼ x is observed, perform a Bernoullian trial with
probability of success / xð Þ. If the trial results in success, reject H; otherwise H is
accepted. Thus / xð Þ represents the probability of rejection of H.

If / xð Þ is non-randomized with critical region ‘x’, then we have
x ¼ x : / xð Þ ¼ 1f g
�x� x ¼ x :/ xð Þ ¼ 0f g (Acceptance region).

Detailed study on Non-randomized test

If x is Non-randomized test then it implies H is rejected iff X 2 x. In many cases,
we get a statistic T ¼ T Xð Þ such that for some C or C1 and C2,

X 2 x½ � , X : T [C½ � or X : T\C½ � or X : T\C1 or : T [C2½ �; C1\C2:
Such a ‘T’ is called ‘test statistic’.

The event T [C½ � is called right tail test based on T.
The event T\C½ � is called left tail test based on T.
The event T\C1or T [C2½ � is called two tailed test based on ‘T’.

Sometimes C1 and C2 are such that P T\C1=hf g ¼ P T [C2=hf g8h 2 HH then
the test T\C1 or T [C2½ � is called equal-tail test based on T.
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Definition 7 Power Function
Let X be a random variable with p x=hð Þ as p.d.f or p.m.f of X, h 2 H; x 2 �x

Testing problem

H : h 2 HH versus K : h 2 HK HH \HK ¼ ;f g

Let x be a test for H against K.
Then the function given by

Px hð Þ ¼ Probability rejectingH under hf g:
¼ P X 2 x=hf g; h 2 H

is called power function (a function of h) of the test ‘x’
For a given h 2 HK , Px hð Þ is called the power of ‘x’ at h. For continuous case,

we have Px hð Þ ¼ R
x p x=hð Þdx and for discrete case we have Px hð Þ ¼ P

x p x=hð Þ:
A test ‘x’ is called size-α if

Px hð Þ
 a 8h 2 HH a : 0\a\1½ � ð3:1Þ

and it is called strictly size-α if

Px hð Þ
 a 8h 2 HH and Px hð Þ ¼ a for some h 2 HH ð3:2Þ

(3.1) , Sup
h2HH

Px hð Þ
 a and (3.2) , Sup
h2HH

Px hð Þ ¼ a:

The quantity Sup Px hð Þ; h 2 HHf g is called the size of the test. Sometimes ‘a’ is
called the level of the test ‘x’

Some Specific cases

(i) h: Real-valued; testing problem H : h ¼ h0 (Simple) or H : h
 h0
(Composite) against K : h[ h0; x: A test; Px hð Þ: Power function; Size of the
test: Px h0ð Þ or Sup

h
 h0

Px hð Þ
(ii) h ¼ h1; h2ð Þ : 2 component vector

Testing problem: H: h1 ¼ h01 (given) against K : h1 [ h01 (composite)

x: A test
Pw hð Þ: power function = Pw h1; h2ð Þ ¼ Pw h01; h2

� �
(at H) = A function of h2.

Thus, the power function (under H) is still unknown. The quantity sup
Pw h01; h2

� �
; h2

� 2 Space of h2g is known and is called the size of the test. For, e.g.
take N l; r2ð Þ distribution and consider the problem of testing H: l ¼ 0 against K:
l[ 0, then the size of the test is
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Sup Pw l; r2ð Þ�
l ¼ 0; 0\r2\1

n o
:

Example 3.5 X1;X2; . . .;Xn are i.i.d N l; r 2
0

� �
; H : l
 l0 against K : l[ l0.

x � X1;X2; . . .;Xnð Þ : �X[ l0 þ
r0ffiffiffi
n

p
� �

Pw hð Þ ¼ Pw lð Þ ¼ P �X[ l0 þ r0ffiffi
n

p
�
l

� �

¼ P
ffiffiffi
n

p
�X � lð Þ
r0

[ �
ffiffiffi
n

p
l� l0ð Þ
r0

þ 1 lj
� �

¼ P Z[ 1�
ffiffiffi
n

p
l� l0ð Þ
r0

Z �N 0; 1ð Þj
� �

¼ U

ffiffiffi
n

p
l� l0ð Þ
r0

� 1
� �

Size of x ¼ Sup
l
l0

Pw lð Þ ¼ Sup
l
 l0

U

ffiffiffi
n

p
l� l0ð Þ
r0

� 1
� �� �

¼ U �1ð Þ ¼ size of x for testingH : l ¼ l0:

Example 3.6

X1;X2; . . .;Xn are i.i.d N l; r 2
0

� �
.

H : l ¼ l0 against K : l[ l0.

x ¼ X1;X2; . . .;Xnð Þ : �X[ l0 þ
r0ffiffiffi
n

p sa

� �
;

a 2 0; 1ð Þ
U �sað Þ ¼ a

Pw l0ð Þ ¼ size of x for testingH

¼ P �X[ l0 þ
r0ffiffiffi
n

p sa l0j
� �

¼ P
ffiffiffi
n

p
�X � l0ð Þ
r0

[ sa l0j
� �

¼ P Z[ sa Zj �N 0; 1ð Þf g ¼ a:

) Test is exactly size 0a0:

Example 3.7 X1;X2; . . .;Xn are i.i.d. N l; r2ð Þ
H : l ¼ l0 against K : l[ l0

x : X1;X2; . . .;Xnð Þ; �X[ cf g ð3:3Þ

where ‘c’ is such that the test is of size 0.05.
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Pw l0ð Þ ¼ size of x for testingH ¼ P X[ c�
l0

n o

¼ P

ffiffiffi
n

p
X � l0
� �

r0
[

c� l0ð Þ ffiffiffi
n

p
r0

=l0

� �

¼ P Z[
c� l0ð Þ ffiffiffi

n
p

r0
=Z�N 0; 1ð Þ

� �
¼ 0:05 givenð Þ

) c� l0ð Þ ffiffiffi
n

p
r0

¼ s0:05 ’ 1:645 )c ¼ l0 þ
1:645r0ffiffiffi

n
p

ð3:4Þ

Test given (3.3) and (3.4) is strictly (exactly) of size 0.05.
(or, level of significance of the test is 0.05).

Example 3.8 X1 and X2 are i.i.d. according to (, Bernoulli (1, p)).

f x=p
	 


¼ px 1� pð Þx; x ¼ 0; 1

Testing problem, H : p ¼ 1
2 against K : p [ 1

2.
Consider the test x ¼ X1;X2ð Þ : X1 þX2 ¼ 2f g
Accept H if X1;X2ð Þ 62 x
Test statistic: T ¼ X1 þX2 � bin 2; pð Þ

Size of the test isP X1;X2ð Þ 2 x
�
p ¼ 1

2

� �
¼ P T ¼ 2

�
p ¼ 1

2

� �
¼ 1

2

� �2

¼ 0:25

If we take x ¼ X1;X2ð Þ : X1 þX2 ¼ 1; 2f g i.e. accept H if X1;X2ð Þ 62 x: We get

size ¼ 2: 1
2

� �2 þ 1
2

� �2¼ 0:75:
Let us take another test of the form:

x : Reject H if X1 þX2 ¼ 2
xB : Reject H if X1 þX2 ¼ 1 with probability 1

2
A: Accept H if X1 þX2 ¼ 0

Sample space ¼ 0; 1; 2f g ¼ xþxB þA

Size ¼ 1:P X1 þX2ð Þ ¼ 2f gþ 1
2
P X1 þX2 ¼ 1ð Þþ 0:P X1 þX2 ¼ 0ð Þ

¼ 0:25þ 0:25 ¼ 0:50

The test given above is called a randomized test.

Definition 8 Power function of a randomized test:
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Consider / xð Þ as a randomized test which is equivalent to probability of
rejection of H when the observed value of (X = x) and E as an Event of rejection of
H. Then P E X ¼ xjð Þ ¼ / xð Þ: Power function of / is

P/ hð Þ ¼ Probability Rejection of H under h using the function/f g
¼ P E=h

n o

¼
Z

�
P E=x; h

n o
� p x=h
� �

dx; whenX is continuous ð3:5Þ

¼
X

�
P E=x; h

n o
� p x=h
� �

; whenX is discrete ð3:6Þ

In case of (3.5), we get:

P/ hð Þ ¼
Z

�
/ xð Þ p x=h

� �
dx AsP E=x; h

	 

¼ P E=x

	 

¼ / xð Þ

	 


¼ Eh/ xð Þ

In case of (3.6), we get: P/ hð Þ ¼ P
�
/ xð Þ:p x=h

� � ¼ Eh/ xð Þ
In either case we have P/ hð Þ ¼ Eh/ xð Þ8h 2 H:

Special cases

1. Suppose / xð Þ takes only two values, viz. 0 and 1. In that case, we say / xð Þ is
non-randomized with critical region x ¼ x : / xð Þ ¼ 1f g.
In that case

P/ hð Þ ¼ 1:Ph / xð Þ ¼ 1f gþ 0:Ph / xð Þ ¼ 0f g
¼ Ph X 2 xf g ¼ Px hð Þ:

) / is generalization of x.
2. Suppose / xð Þ takes three values, viz 0, a and I according as

x 2 A; x 2 wB and x 2 x. In that case / xð Þ is called randomized test having the
boundary region WB. The power function of this test is
P/ hð Þ ¼ Ph X 2 xf g þ aPh X 2 wBf g.

(1) ) no need of post randomization: Non-randomised test.
(2) ) requires post randomization: randomized test.

Example 3.9 X1;X2; . . .;Xn are i.i.d. Bernoulli (1, p), n = 25. Testing problem:
H : p ¼ 1

2 against K : p 6¼ 1
2.
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Consider the following tests:

(1)
/ xð Þ ¼ 1 if

P25

1
xi [ 12

¼ 0 if
P15

1
xi 
 12

9
>>=
>>;

Non-randomized

(2)

/ xð Þ ¼ 1 if
P25

1
xi [ c

¼ a if
P25

1
xi ¼ c

¼ 0 if
P25

1
xi\c

9
>>>>>>>=
>>>>>>>;

Find c and a such that Ep¼1
2
/ xð Þ ¼ 0:05. Randomized if a 2 0; 1ð Þ and

Non-randomized if a ¼ 0 or 1. In case of (1), size = Ep¼1
2
/ xð Þ ¼

P
P25

1
xi [ 12jp ¼ 1

2

� �
¼ 0:50001:

In case of (2), we want to get (c, a) such that Ep¼1
2
/ xð Þ ¼ 0:05.

, Pp¼1
2

X25

1

xi [ c

( )
þ aPp¼1

2

X25

1

xi ¼ c

( )
¼ 0:05

By inspection we find that Pp¼1
2

P25
1 xi [ 17

n o
¼ 0:02237 and

Pp¼1
2

P25
1 xi [ 16

n o
¼ 0:0546. Hence, c = 17.

Now, a ¼ 0:05�Pp¼1
2

P15

1
xi [ c

� �

P
P25

1
xi¼c

� � ¼ 0:05�0:02237
0:03223 ¼ 0:8573:

Thus the test given by

/ xð Þ ¼ 1 if
X25

1

xi [ 17

¼ 0:8573 if
X25

1

xi ¼ 17

¼ 0 if
X25

1

xi\17

is randomized and of size 0.05.
But the test given by
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/ xð Þ ¼ 1 if
X25

1

xi 	 17

¼ 0 if
X25

1

xi\17

is non-randomized and of size 0.0546 (at the level 0.06).

Performance of x

Our object is to choose x such that Px hð Þ8h 2 HH and 1� Px hð Þð Þ8h 2 HK are as
small as possible. While performing a test x we reach any of the following
decisions:

I. Observe X = x, Accept H when θ actually belongs to HH : A correct decision.
II. Observe X = x, Reject H when θ actually belongs to HH : An incorrect

decision.
III. Observe X = x, Accept H when θ actually belongs to HK : An incorrect

decision.
IV. Observe X = x, Reject H when θ actually belongs to HK : A correct decision.

An incorrect decision of the type as stated in II above is called type-I error and
an incorrect decision of the type as stated in III above is called type-II error. Hence,
the performance of x is measured by the following:

(a) Size of type-I error = Probability {Type-I error} ¼ Sup
h2HH

P X 2 x=hf g ¼
Sup
h2HH

Px hð Þ

(b) Size of type-II error = Probability {Type-II error } ¼ P X 2 �x� xf g 8h 2 HK

¼ 1� Px hð Þ 8h 2 HK :

So we want to minimize simultaneously both the errors. In practice, it is not
possible to minimize both of them simultaneously, because the minimization of one
leads to the increase of the other.

Thus the conventional procedure: Choose ‘x’ such that, for a given a 2
0; 1ð Þ; Px hð Þ
 a 8h 2 HH and 1� Px hð Þ 8h 2 HK is as low as possible, i.e.,
Px hð Þ 8h 2 HK is as high as possible. ‘x’ satisfying above (if it exists) is called an
optimum test at the level α.

Suppose HH ¼ h0f g a single point set and HK ¼ h1f g a single point set.
The above condition thus reduces to: Px h1ð Þ = maximum subject to Px h0ð Þ
 a.

Definition 9

1. For testing H : h 2 HH against K: h ¼ h1 62 HH , a test ‘x0’ is said to be most
powerful (MP) level ‘α’ 2 0; 1ð Þ if
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Px0 hð Þ
 a8h 2 HH ð3:7Þ
and

Px0 h1ð Þ	Px h1ð Þ 8x satisfying ð3:7Þ ð3:8Þ
In particular, if H : h ¼ h0, (3.7) and (3.8) reduce to
Px0 h0ð Þ
 a andPx0 h1ð Þ	Px h1ð Þ 8x satisfying first condition.

2. A test ‘x0’ is said to be MP size-α, if Suph2HH
Px0 hð Þ ¼

a andPx0 h1ð Þ	Px h1ð Þ 8x satisfying Px hð Þ
 a8h 2 HH . Again if HH ¼ h0f g,
we get the above condition as Px0 h0ð Þ ¼ a and Px0 h1ð Þ	Px h1ð Þ8x satisfying
Px h0ð Þ
 a.

3. For testing H : h 2 HH against K : h 2 HK ; HK \HH ¼ /, a test ‘x0’ is said to
be Uniformly Most Powerful (UMP) level ‘α’ if

Px0 hð Þ
 a8h 2 HH ð3:9Þ

Px0 h1ð Þ	Px h1ð Þ8h1 2 HK and 8x satisfying (3.9). i.e. ‘x0’is said to be UMP
size-α if Sup

h2XH

Px0 hð Þ ¼ a andPx0 h1ð Þ	Px h1ð Þ 8h1 2 HK and 8x satisfying

Sup
h2XH

Px hð Þ
 a. Again if HH ¼ h0f g, the aforesaid conditions reduce to

(a) Px0 h0f g
 a and Px0 h1f g	Px h1f g 8h1 2 HK and8x satisfying Px h0f g
 a.
(b) Px0 h0f g ¼ a and Px0 h1f g	Px h1f g 8h1 2 HK and 8x satisfying Px h0f g
 a.

4. A test x� is said to be unbiased if (under testing problem: H : h ¼ h0 against
K : h ¼ h1; h1 6¼ h0ð Þ)
Px� h1ð Þ	Px� h0ð Þ (⇒power ≥ size), i.e. it is said to be unbiased size-α if
Px� h0ð Þ ¼ a and Px� h1ð Þ	 a. If K : h 2 HK is composite, the above relation
reduces to (A) Px� h1ð Þ	Px� h0ð Þ 8h1 2 HK ðBÞPx� h1ð Þ	 a8h1 2 HK where
a ¼ Px� h0ð Þ.

5. For testing H : h ¼ h0 against K : h 2 HK 6 3 h0, a test x� is said to be
Uniformly Most Powerful Unbiased (UMPU) size-α if
(i) Px� h0ð Þ ¼ a; (ii) Px� h1ð Þ	 a 8h1 2 HK and (iii) Px� h1ð Þ	Px h1ð Þ 8h1 2
HK 8x satisfying (i) and (ii).

3.3 Method of Obtaining BCR

The definition of most powerful critical region, i.e. best critical region (BCR) of
size α does not provide a systematic method of determining it. The following
lemma, due to Neyman and Pearson, provides a solution of the problem if we,
however, test a simple hypothesis against a simple alternative.

The Neyman–Pearson Lemma maybe stated as follows:
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For testing H : h ¼ h0 against K : h ¼ h1; h0; h1 2 H; h1 6¼ h0,
for some a 2 0; 1ð Þ, let x0 be a subset of �x. Suppose x0 satisfies the following

conditions:

(i) If x 2 x0; p x=h1

	 

	 kp x=h0

	 

Insidex0ð Þ

(ii) If x 2 �x� x0; p x=h1

	 

\kp x=h0

	 

Outsidex0ð Þ

(x: observed value of X) where k [ 0ð Þ is such that Px0 h0ð Þ ¼ a. Then
Px0 h1ð Þ	Px h1f g8x satisfying Px h0ð Þ
 a. That means ‘x0’ is a MP size-α test.

Proof (Continuous case)

Px0 h1ð Þ � Px h1ð Þ ¼
Z

x0

p x=h1

	 

dx�

Z

x

p x=h1

	 

dx

¼
Z

x0�x

p x=h1

	 

dxþ

Z

x0\x
p x=h1

	 

dx�

Z

x�x0

p x=h1

	 

dx�

Z

x\x0

p x=h1

	 

dx

¼
Z

x0�x

p x=h1

	 

dx�

Z

x�x0

p x=h1

	 

dx

ð3:10Þ
h

Now, x 2 x0 � x , x 2 inside x0 ) p x=h1

	 

	 kp x=h0

	 


)
Z

x0�x

p x=h1

	 

dx	 k

Z

x0�x

p x=h0

	 

dx

x 2 x� x0 , x 2 outside x0 ) p x=h1

	 

\kP x=h0

	 


)
Z

x�x0

p x=h1

	 

dx\k

Z

x�x0

P x=h0

	 

dx

Hence R.H.S of (3.10)

	 k
Z

x0�x

p x=h0

	 

dx�

Z

x�x0

p x=h0

	 

dx

2
4

3
5

¼ k
Z

x0

p x=h0

	 

dx�

Z

x

p x=h0

	 

dx

2
4

3
5

¼ k a�
Z

x

p x=h0

	 

dx

2
4

3
5 ¼ k a� Px h0ð Þ½ �

	 k a� að Þ ¼ 0 asPx h0ð Þ
 a:
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Hence we get Px0 h1ð Þ � Px h1ð Þ	 0

, Px0 h1ð Þ	Px h1ð Þ

(Similar result can be obtained for the discrete case replacing
R
byR)

Notes

1. Define Y ¼ p xjh1ð Þ
p xjh0ð Þ. If the random variable Y is continuous, we can always find a

k such that, for a 2 0; 1ð Þ P Y 	 k½ � ¼ a. If the random variable Y is discrete, we
sometimes find k such that P Y 	 k½ � ¼ a.
But, in most of the cases, we have (assuming that P Y 	 k½ � 6¼ a)
Ph0 Y 	 k1ð Þ\a andPh0 Y 	 k2ð Þ[ a; k1 [ k2 ) P Y 	 kð Þ ¼ að has no
solution).
In that case we get a non-randomized test 0x0

0 of level a given by

x0 ¼ x :
p xjh1ð Þ
p xjh0ð Þ 	 k1

� �
; Px0 h0ð Þ
 a:

In order to get a size-a test, we proceed as follows:

(i) Reject H if Y 	 k1
(ii) Accept H if Y\k2
(iii) Acceptance (or Rejection) depends on the random experiment whenever

Y ¼ k2.
Random experiment: when Y ¼ k2 is observed, perform a random experiment
with probability of success

P ¼ a ¼ a� Ph0 Y 	 k1f g
P Y ¼ k2f g :

If the experiment results in success reject H; otherwise accept H. Hence, we get
the following randomized test:

/0 xð Þ ¼ 1 if
p xjh1ð Þ
p xjh0ð Þ 	 k1

¼ a ¼ a� Ph0 Y 	 k1f g
Ph0 Y ¼ k2f g if

p x=h1ð Þ
p x=h0ð Þ ¼ k2

¼ 0 if
p x=h1ð Þ
p x=h0ð Þ\k2:

Test /0 xð Þ is obviously of size-a.
2. k ¼ 0 ) Px0 h1ð Þ ¼ 1 ) x0 is a trivial MP test.
3. If the test (x0) given by N–P lemma is independent of h1 2 Hk that does not

include h0, the test is UMP size-a.
4. Test (x0) is unbiased size-a.
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Proof x0 ¼ X : p xjh1ð Þ[ kp xjh0ð Þf g we want to show Px0 h1ð Þ	 a. Take k ¼ 0.
Then x0 ¼ X : p x=h1ð Þ[ 0f g. In that case Px0 h1ð Þ ¼ R

x0

p xjh1ð Þdx ¼
R

x:p xjh1ð Þ[ 0f g
p xjh1ð Þdx ¼ R

�x
p xjh1ð Þdx ¼ 1[ a.

) Test is trivially unbiased.
So throughout we assume that k[ 0.
Now

p xjh1ð Þ[ kp xjh0ð Þ As insidex0 : p xjh1ð Þ[ kp xjh0ð Þ½ �
)

Z

x0

p xjh1ð Þdx	 k
Z

x0

p xjh0ð Þdx ¼ ka

, Px0 h1ð Þ	 ka ð3:11Þ

Again

p xjh1ð Þ
 kp xjh0ð Þ As outsidex0 : p xjh1ð Þ
 kp xjh0ð Þ½ �
)

Z

x c
0

p xjh1ð Þdx
 k
Z

x c
0

p xjh0ð Þdx

, 1� Px0 h1ð Þ
 k 1� að Þ ð3:12Þ

(3.11) ÷ (3.12) ) Px0 h1ð Þ
1�Px0 h1ð Þ 	 a

1�a , Px0 h1ð Þ	 a:

) Test is unbiased.
Conclusion MP test is unbiased. Let x0 be a MP size-a test. Then, with

probability one, the test is equivalent to (assuming that p xjh1ð Þ
p xjh0ð Þ has continuous dis-

tribution under h0 and h1) x0 ¼ x : p xjh1ð Þ[ kp xjh0ð Þf g where k is such that
Px0 h0ð Þ ¼ a 2 0; 1ð Þ. h

Example 3.10 X1;X2; . . .Xn are i.i.d. N l; r20
� �

;�1\l\1; r0 = known. (without
any loss of generality take r0 ¼ 1).

X ¼ X1;X2; . . .Xnð Þ observed value of X ¼ x ¼ x1; x2; . . .; xnð Þ. To find UMP
size-a test for H : l ¼ l0 against K : l[ l0. Take any l1 [ l0 and find MP
size-a test for

H : l ¼ l0 against K : l ¼ l1;

Solution

p x=l

	 

¼ 1ffiffiffiffiffiffi

2p
p

� �n

e
�1

2

Pn
1

xi�lð Þ2
:
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Then

p x=l1

	 


p x=l0

	 
 ¼ e
1
2

Pn
1

xi�l0ð Þ2

e
1
2

Pn
1

xi�l1ð Þ2
¼ e

1
2

Pn
1

l1�l0ð Þ 2xi�l1�l0ð Þ

¼ en�x l1�l0ð Þ�n
2 l 2

1 �l 2
0ð Þ * �x ¼ 1

n

X
xi

� �

Hence, by N–P lemma, the MP size-a test is given by

x0 ¼ x : p x=l1

	 

[ kp x=l0

	 
n o
ð3:13Þ

where k is such that

Px0 l0ð Þ ¼ a ð3:14Þ

ð3:13Þ , x : en�x l1�l0ð Þ�n
2 l 2

1 �l 2
0ð Þ[ k

n o
ð3:15Þ

, x : �x[
loge k

n l1 � l0ð Þ þ
1
2

l1 þ l0ð Þ
� �

as l1 [ l0

, x : �x[ cf g; say ð3:16Þ

By (3.16),

ð3:14Þ , P �x[ c=l0

	 

¼ a

, P
ffiffiffi
n

p
�x� l0ð Þ
1

[
ffiffiffi
n

p
c� l0ð Þ
1

����l0
� �

¼ a

(X1;X2; . . .Xn are i.i.d N l0; 1ð Þ under H ) �X �N l0;
1
n

� �
under H)

, P Z[
ffiffiffi
n

p
c� l0ð ÞjZ �N 0; 1ð Þ� � ¼ a

) ffiffiffi
n

p
c� l0ð Þ ¼ sa

Z1

sa

N Zj 0; 1ð Þð Þdz ¼ a

2
4

3
5

, c ¼ l0 þ
1ffiffiffi
n

p sa ð3:17Þ

Test given by (3.16) and (3.17) is MP size-a for H : l ¼ l0 against
K : l ¼ l1 [ l0ð Þ.
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The test is independent of any μ1(>μ0). Hence it is UMP size-α for H : l ¼ l0
against K : l[ l0.

Observations

1. Power function of the test given by (3.16) and (3.17) is

Px0 lð Þ ¼ P X 2 x0jlð Þ ¼ Pr: �X[ l0 þ
saffiffiffi
n

p
����l

� �

¼ P Z[
ffiffiffi
n

p
l0 � lð Þþ sajZ�N 0; 1ð Þ� �

¼
Z1

sa�
ffiffi
n

p
l�l0ð Þ

N Zj 0; 1ð Þð Þdz

(Under any l : X1;X2; . . .;Xnð Þ are i.i.d. N l; 1ð Þ ) ffiffiffi
n

p
�x� lð Þ�N 0; 1ð Þ)

¼ 1� U sa �
ffiffiffi
n

p
l� l0ð Þ� �

:

Hence, for any fixed l [ l0ð Þ

Px0 lð Þ ! 1 as n ! 1 ð3:18Þ

and for any fixed l \l0ð Þ

Px0 lð Þ ! 0 as n ! 1 ð3:19Þ

(3.18) ) test is consistent against any l[ l0.

Definition 10

1. For testing H : h ¼ h0 against K : h ¼ h1, a test x (based on n observations) is
said to be consistent if the power Px h1ð Þ of the test tends to ‘1’ as n ! 1.

2. Px0 lð Þ ¼ 1� U sa �
ffiffiffi
n

p
l� l0ð Þð Þ which increases as l increases for fixed n.

) Px0 lð Þ[ 1� U sað Þ for all l[ l0
¼ 1� 1� að Þ ¼ a

) x0 is unbiased.
3. Px0 lð Þ\Px0 l0ð Þ for all l\l0

¼ a
) Power \a for any l\l0
That is, test x0 is biased for testing H : l ¼ l0 against K : l\l0.

4. From (3.15), if l1\l0, we get x0 to be equivalent to

x : �x\c0f g ð3:20Þ
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and Px0 l0ð Þ is equivalent to P �X\c0jl0f g ¼ a

) c0 ¼ l0 �
saffiffiffi
n

p ð3:21Þ
(by the same argument as before while finding c)
Test given by (3.20) and (3.21) is independent of any l1\l0. Hence it is UMP
size-a for H : l ¼ l0 against K : l\l0.

5. (i) UMP size-a for H : l ¼ l0 against K : l[ l0 is x0 ¼ x : �x[ l0 þ saffiffi
n

p
n o

(ii) UMP size-a test for H : l ¼ l0 against K : l\l0
is x 0

0 ¼ x : �x\l0 � saffiffi
n

p
n o

Clearly, x0 6¼ x 0
0 (xo is biased for H against l\l0 and x 0

0 is biased for
H against l[ l0).
There does not exist any test which is UMP for H : l ¼ l0 against
K : l 6¼ l0.

Example 3.11 X1;X2; . . .Xn are i.i.d. N l0; r
2ð Þ; r2 [ 0 and l0 is known (without

any loss of generality we take l0 ¼ 0)
X ¼ X1;X2; . . .;Xnð Þ, observed value = x ¼ x1; x2; . . .; xnð Þ
Testing problem: H : r ¼ r0 against K : r[ r0.
To find UMP size-a test for H against K : r[ r0 we take any r1 [ r0.

Solution

Here p x=r
� � ¼ 1

r
ffiffiffiffi
2x

p
	 
n

e
�1
2r2

Pn
i

x2i

Hence

p x=r1

	 


p x=r0

	 
 ¼ r0
r1

� �n

e
1
2

Pn
i

x 2i
1
r2
0
� 1

r2
1

� �

ð3:22Þ

By N–P lemma MP size-a test is given by

w0 ¼ x :
p x=r1

	 


p x=r0

	 
 [ k

8
<
:

9
=
; ð3:23Þ

where k [ 0ð Þ
is such that

Pw0 r0ð Þ ¼ a ð3:24Þ
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Now,
p x=r1

	 


p x=r0

	 
 [ k , r0
r1

	 
n
e
1
2

Pn
i

x 2i
1
r2
0
� 1

r2
1

� �

[ k [from (3.22)]

,
Xn

i

x 2i [
2 loge k
1
r20
� 1

r21

	 
�
n loge

r0
r1

	 
2

1
r20
� 1

r21

As r1 [ r0½ �

¼ c sayð Þ

ð3:25Þ

Hence (3.23) and (3.24) are equivalent to

w0 ¼ x :
Xn

i

x2i [ c

( )
ð3:26Þ

andP
Xn

i

x2i [ c=r0

( )
¼ a ð3:27Þ

Under any r2;X1;X2; . . .;Xn are i.i.d. N 0; r2ð Þ

)
Pn

i
x2i

r2
� v2n

Hence (3.27)

) c
r20

� v2n;a

Z1

v2n;a

1
C n=2ð Þ2n=2

� �
e
�y
2 y

n
2�1dy ¼ a

2
64

3
75

, c ¼ r20v
2
n;a ð3:28Þ

Thus the test given by

w0 ¼ x :
Xn

i

x2i [ r20v
2
n;a

( )
ð3:29Þ

is MP size-a for H : r ¼ r0 against K : r ¼ r1. Test is independent of any
r1 [ r0. Hence it is UMP size-a for H : r ¼ r0 against K : r1 [ r0
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Observations

1. Under any r20;

1
r20

Xn

i

x2i ¼ Yn � v2n

) E Ynð Þ ¼ n;V Ynð Þ ¼ 2n

Hence, from the asymptotic theory of v2, for large n under H
Yn�nffiffiffiffi

2n
p is asymptotically N 0; 1ð Þ.
So, for large n; w0 ¼ x : Yn�nffiffiffiffi

2n
p [ v2n;a�nffiffiffiffi

2n
p

n o

and
v2n;a�nffiffiffiffi

2n
p ’ sa i.e. v2n;a ’ sa

ffiffiffiffiffi
2n

p þ n

Thus, (3.29) can be approximated by

x0 ¼ x :
Xn

i¼1

x2i [ r 2
0 sa

ffiffiffiffiffi
2n

p
þ n

	 
( )

2. UMP size-α test for H : r2 ¼ r20 against K : r2 [ r20 is

w0 ¼ x :
Xn

i

x2i [ r20v
2
n;a

( )

UMP size-a test for H : r2 ¼ r20 against K : r2\r20 is

w� ¼ x :
Xn

i

x2i\r20v
2
n;1�a

( ) Z1

v2
n;ð1�aÞ

f ðv2nÞdv2n ¼ 1� a

2
664

3
775

Clearly, w0 6¼ w�. Hence there does not exist UMP test for H : r2 ¼ r20 against
K : r2 6¼ r20.

The power function of the test w0 is

Pw0 r2
� � ¼ P

Xn

i

x2i [ r20v
2
n;a

.
r2

( )
¼

Z1

r2
0

r2
v2n;a

f v2n
� �

dv2n

Clearly, Pw0 r2ð Þ increases as r2 increases.
Also Pw0 r2ð Þ
Pw0 r20

� � ¼ a 8r2 : r2 
 r20
Test is biased ) w0 cannot be recommended for H : r2 ¼ r20 against

K : r2\r20.
Similarly w� is biased (Here Pw� r2ð Þ increases as r2 decreases) and hence it

cannot be recommended for H : r2 ¼ r20 against K : r2 [ r20.
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Next observe that 1n
Pn

i
x2i is a consistent estimator of r2. That means, for fixed r2,

as n ! 11
n

Pn

i
x2i ! r2 in probability and

r20v
2
n;a

n ! r20. Thus if r2 [ r20, we get

Lt
n!1

P
Pn

i
x2i [ r20v

2
n;a

.
r2

� �
¼ 1 implying that the test w0 is consistent against

K : r2 [ r20.
Similarly the test w� is consistent against K : r2\r20

Example 3.12 Find the MP size-a test for H : X� 1ffiffiffiffi
2p

p e�X
2=2 against

K : X � 1
2 e

� Xj j

Answer MP size-a test is given by (Using N–P lemma)

x0 ¼ x : p x=Kð Þ[ kp x=Hð Þf g ð3:30Þ

where k is such that

Px0 Hð Þ ¼ a ð3:31Þ

Now,

p x=Kð Þ
p x=Hð Þ ¼

ffiffiffi
p
2

r
e
x2
2� xj j [ k

, loge

ffiffiffi
p
2

r
þ x2

2
� xj j[ loge k

, x2 � 2 xj j þ loge
p
2

	 

� 2 loge k

n o
[ 0

, x2 � 2 xj j þC[ 0 ð3:32Þ

Using (3.32), (3.31) is equivalent to

P x2 � 2 xj j þC[ 0=H
� � ¼ a ð3:33:Þ

Test given by (3.32) and (3.33.) is MP size-a.
To find ‘C’ we proceed as follows:

P x2 � 2 xj j þC[ 0=H
� � ¼ PH x2 � 2 xj j þC[ 0\x\0

� �þPH x2 � 2 xj j þC[ 0\x[ 0
� �

¼ PH x2 þ 2xþC[ 0\x\0
� �þPH x2 � 2xþC[ 0\x[ 0

� �
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Now, under H, X ∼ N(0, 1)

) PH x2 þ 2xþC[ 0\x\0
� � ¼ PH x2 � 2xþC[ 0\ x[ 0

� �

Thus (3.33) is equivalent to

PH x2 � 2xþC[ 0\ x[ 0
� � ¼ a

2
ð3:34Þ

Writing g xð Þ ¼ x2 � 2xþC ) g00 xð Þ ¼ 2 and g0 xð Þ ¼ 0 at x ¼ 1
) g xð Þ is minimum at x ¼ 1

) x2 � 2xþC[ 0\x[ 0
� � , x\x1 cð Þ or x[ x2 cð Þ

g(x)

x<0     x1(c)       x2 (c)  x>0

where x1 cð Þ\x2 cð Þ are the roots of

x2 � 2xþC ¼ 0

) x ¼ 2� ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� 4c

p

2
¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p

So, x1 cð Þ ¼ 1� ffiffiffiffiffiffiffiffiffiffiffi
1� c

p
and x2 cð Þ ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffi

1� c
p

Hence (3.34)

, PH 0\x\1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

pn o
þPH x[ 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� c

pn o
¼ a

2

, U 1�
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p	 

� 1
2
þ 1� U 1þ

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p	 

¼ a

2

, U 1þ
ffiffiffiffiffiffiffiffiffiffiffi
1� c

p	 

� U 1�

ffiffiffiffiffiffiffiffiffiffiffi
1� c

p	 

¼ 1� a

2
� 1
2
¼ 1� a

2
ð3:35Þ

Test given by (3.32) and (3.35) is MP size-a.

Example 3.13 Let X be a single observation from the p.d.f. p x=h
� � ¼ h

p � 1
h2 þ x2

; h[ 0.

Find the UMP size-a test for H : h ¼ h0 against K : h[ h0
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Answer Take any h1 [ h0 and consider the ratio

p x=h1ð Þ
p x=h0ð Þ ¼

h1
h0

� h
2
0 þ x2

h21 þ x2
¼ h1

h0
� h20 þ x2

h21 � h20
� �þ h20 þ x2

� �

¼ h1
h0

� 1

1þ h21�h20
h20 þ x2

	 
 ; which is a strictly increasing function of x2 i:e:; xj jð Þ:

Since h1 [ h0, hence we can find a ‘C’ such that

p x=h1ð Þ
p x=h0ð Þ [ k , xj j[C ð3:36Þ

where C is such that

P xj j[C=h0½ � ¼ a ð3:37Þ

,
Z1

C

h0
p
� dx

h20 þ x2
¼ a

2
, 1

p
tan�1 x

h0

� �� �1

C

¼ a
2

, 1
p

p
2
� tan�1 C

h0

� �� �
¼ a

2
, 1� 2

p
tan�1 C

h0

� �
¼ a ð3:38Þ

Test given by (3.36) and (3.38) is MP size-a. As the test is independent of any
h1 [ h0, it is UMP size-a for H : h ¼ h0 against K : h[ h0. Power function is
given by

Px0 hð Þ ¼ P Xj j[C=hf g ¼ 1�
ZC

�C

h

p h2 þ x2
� �dx

Example 3.14 X is a single observation from Cauchy p.d.f .f x=hð Þ ¼ 1
p x�hð Þ2 þ 1f g,

we are to find MP size-a test for H : h ¼ h0 against K : h ¼ h1 [ h0ð Þ.
Answer X�Couchy hð Þ ) Y ¼ X � h0 �Couchy h� h0 ¼ dð Þ. Hence H : h ¼
h0 , H : d ¼ 0 using Y-observation. So, without any loss of generality we take
H : h ¼ 0 and for the sake of simplicity we take h1 ¼ 1.

Here, by N–P lemma, MP test has the critical region x ¼
x : p x=h1ð Þ[ kp x=h0ð Þf g with Ph0 X 2 xð Þ ¼ a 2 0; 1ð Þ
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Here

p x=h1ð Þ
p x=h0ð Þ [ k , 1þ x2

1þ x� 1ð Þ2 [ k

, 1þ x2 [ k 1þ x2 � 2xþ 1
� �

, x2 1� kð Þþ 2kxþ 1� 2k[ 0 ð3:39Þ

Several cases

(a) k ¼ 1 , x[ 0, hence the size of the test is P X[ 0=h ¼ 0ð Þ ¼ 1
2.

(b) 0\k\1 if we write g xð Þ ¼ 1� kð Þx2 þ 2kxþ 1� 2kð Þ,
we have, g0 xð Þ ¼ 2 1� kð Þxþ 2k ¼ 0 ) x ¼ � k

1�k
g00 xð Þ ¼ 2 1� kð Þ[ 0, this means that the curve y ¼ g xð Þ has a minimum at
x ¼ � k

1�k.

Shape of the curve is:

Here x1\x2 are the roots of g xð Þ ¼ 0. Clearly, test is given by x\x1 or x[ x2
such that

P X\x1=h ¼ 0f gþP X[ x2=h ¼ 0f g ¼ a ð3:40Þ

We take those values of x1; x2 that satisfies (3.40). Eventually, it is not possible
to get x1; x2 for any given a. It exists for some specific values of a.

(c) If k[ 1, in that case g00 xð Þ ¼ 2 1� kð Þ\0, thus y ¼ g xð Þ has the maximum at
x ¼ � k

1�k

� �
[ 0. As shown in (b) above here also we can find x1 and x2 the

two roots of g xð Þ ¼ 0 and the test will be given by x[ x1 or x\x2 with
P x1\X\x2=h ¼ hf g ¼ a. Taking h1 ¼ 2, it can be shown that the MP test
for H : h ¼ 0 against h ¼ 2 is completely different. Hence based on single
observation there does not exist UMP test for H : h ¼ 0 against K : h[ 0
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Randomized Test Testing problem H : h ¼ h0 against K : h ¼ h1. If the ran-

dom variable Y ¼ p X=h1ð Þ
p X=h0ð Þ is continuous under h ¼ h0, we can always find k [ 0ð Þ

such that for a given a 2 0; 1ð Þ; Ph0 Y [ kð Þ ¼ a.
On the other hand, if the random variable Y is discrete under h ¼ h0, it may not be
always possible to find k such that, for a given a 2 0; 1ð Þ Ph0 Y [ kð Þ ¼ a. In that
case, we modify the non-randomized test x0 ¼ x : p x=h1ð Þ[ kp x=h0ð Þf g by using
following functions:

/0 xð Þ
¼ 1; if p x=h1ð Þ[ kp x=h0ð Þ
¼ a; if p x=h1ð Þ ¼ kp x=h0ð Þ
¼ 0; if p x=h1ð Þ\kp x=h0ð Þ

9
=
; ,

Y [ k
Y ¼ k
Y\k

8
<
:

9
=
; ð3:41Þ

where ‘a’ and ‘k’ are such that

Ph0 Y [ kf gþ aPh0 Y ¼ kf g ¼ a ð3:42Þ

The function given by (3.41) and (3.42) is called the randomized test corre-
sponding to non-randomized test x0. It states that, after observing Y i.e; Xð Þ

RejectH if Y [ k

AcceptH if Y\k

Perform random experiment with probability of success = a, if Y ¼ k.

Occurrence of success ) Rejection of H and
Occurrence of failure ) Acceptance of H.

Now we can show that the test given by (3.41) and (3.42) is MP size-a among all
tests / satisfying Eh0/ xð Þ
 a. Observe that /0 xð Þ ¼ 0 ) /0 xð Þ � / xð Þ� �	 08x :
p x=h1ð Þ[ kp x=h0ð Þ and /0 xð Þ ¼ 0 ) /0 xð Þ � / xð Þ� �
 08x : p x=h1ð Þ\kp x=h0ð Þ.
Hence, for all x, we have,

/0 xð Þ � / xð Þ� �
p x=h1ð Þ � kp x=h0ð Þ½ � 	 0

)
Z

/0 xð Þ � / xð Þ� �
p x=h1ð Þ � kp x=h0ð Þ½ �dx	 0

, Eh1/
0 xð Þ � Eh1/ xð Þ � kaþ kEh0/ xð Þ	 0

, Eh1/
0 xð Þ � Eh1/ xð Þ	 k a� Eh0/ xð Þð Þ	 0; As k[ 0 andEh0/ xð Þ
 a

, P/0 h1ð Þ	P/ h1ð Þ
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) /0 is MP size-a among all / : Eh0/ xð Þ
 a.

Example 3.15 X1;X2; . . .. . .;Xn are i.i.d according to f x=hð Þ ¼ hx 1� hð Þ1�x; x ¼
0; 1 To find UMP size-a test for H : h ¼ h0; against K : h[ h0.

Answer Take any h1 [ h0. To get MP size-a test for H : h ¼ h0; against
K : h ¼ h1, we consider the ratio

Y ¼ p x=h1ð Þ
p x=h0ð Þ ¼

Qn
i¼1 f xi=h1ð ÞQn
i¼1 f xi=h0ð Þ ¼

h
P

xi
1 1� h1ð Þn�

P
xi

h
P

xi
0 1� h0ð Þn�

P
xi

¼ 1� h1
1� h0

� �n h1 1� h0ð Þ
h0 1� h1ð Þ

� �s

where s ¼ P
xi. Observe that Y is a discrete r.v. under any h.

Hence by the N–P lemma, MP size-a test is given by

1; if Y [ k
/0 xð Þ ¼ a; if Y ¼ k

0; if Y\k

9
=
;

, 1� h1
1� h0

� �n h1 1� h0ð Þ
h0 1� h1ð Þ

� �s


 or	 k; ð3:43Þ

where ‘k’ and ‘a’ are such that Eh0/0 xð Þ ¼ a

, Ph0 Y [ kf gþ aPh0 Y ¼ kf g ¼ a; ð3:44Þ

Now,

1� h1
1� h0

� �n h1 1� h0ð Þ
h0 1� h1ð Þ

� �s


 or	 k

, n log
1� h1
1� h0

þ s log
h1 1� h0ð Þ
h0 1� h1ð Þ

� �

 or	 k0 k

0 ¼ loge k
h i

, s
 or	 k
0

log h1 1�h0ð Þ
h0 1�h1ð Þ

n o� n
log 1�h1

1�h0

log h1 1�h0ð Þ
h0 1�h1ð Þ

n o

¼ C; sayð Þ; As; h1 [ h0 ) log
h1 1� h0ð Þ
h0 1� h1ð Þ

� �
[ 0

� �
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Hence (3.43) and (3.44) are equivalent to

/0 xð Þ ¼
1; if s[C

a; if s ¼ C

0; if s\C

8
><
>:

9
>=
>;

ð3:45Þ

and

Ph0 s[Cf gþ aPh0 s ¼ Cf g ¼ a ð3:46Þ

Under any h, s ¼ Pn
1 Xi � bin n; hð Þ. Hence from (3.46) we have, either,

Ph0 s[Cf g ¼ a , Pn

cþ 1

n
s

� �
hs0 1� h0ð Þn�s¼ a ) a ¼ 0

or,

Ph0 s	Cf g\a\Ph0 s	Cf g

) a ¼ a�Pn
cþ 1

n
s

� �
hs0 1� h0ð Þn�s

n
c

� �
hc0 1� h0ð Þn�c

ð3:47Þ

Test given by (3.45) and (3.47) is MP size-a for H : h ¼ h0 against
K : h ¼ h1 [ h0ð Þ. Test is independent of any h1 [ h0ð Þ. Hence it is UMP size-a
for H : h ¼ h0 against K : h[ h0

Observation

1. For h1\h0 ) log h1 1�h0ð Þ
h0 1�h1ð Þ

n o
\0

In that case (3.43) and (3.44) are equivalent to

/� xð Þ ¼
1; if s\C�
a; if s ¼ C�
0; if s[C�

8
><
>:

9
>=
>;

andPh0 s\C�f gþ aPh0 s ¼ C�f g ¼ a:

We can get UMP for H : h ¼ h0 against K : h\h0 by similar arguments.
Obviously /0 6¼ /�. So there does not exist a single test which is UMP for
H : h ¼ h0 against K : h 6¼ h0

2. ByDeMoivre–Laplace limit theorem, for largen, S�nhffiffiffiffiffiffiffiffiffiffiffiffi
nh 1�hð Þ

p is approximatelyN(0, 1).

Hence, from (3.45) and (3.46), we get,

C � nh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh0 1� h0ð Þp ’ sa ) C ’ nh0 þ sa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh0 1� h0ð Þ

p

Then approximately size-a test is : Reject H if s[ nh0 þ sa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nh0 1� h0ð Þp

,
Accept H otherwise.
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3. Power function of test given by (3.45) and (3.46) is:

P hð Þ ¼ Eh/0 Xð Þ
¼ Ph S[ cf gþ aPh S ¼ cf g

¼
Xn

S¼cþ 1

n
s

� �
hs 1� hð Þn�s þ a n

c

� �
hc 1� hð Þn�c

Can be obtained using Biometrika table½ �

¼ 1� að Þ
Xn

S¼cþ 1

n
s

� �
hs 1� hð Þn�s þ a

Xn

S¼c

n
s

� �
hs 1� hð Þn�s

¼ 1� að ÞIh cþ 1; n� cð Þþ aIh c; n� cþ 1ð Þ;
Can be obtained using incomplete Beta function table½ �:

Observe, as Ih m; nð Þ is an increasing function of h, the Power function P hð Þ
increases with h.

Example 3.16 Let X be a single observation. To find MP size-a test for H :

X�R 0; 1ð Þ against K : X �R 1
2 ;

3
2

� �

Answer p x=Hð Þ ¼1; if 0\x\1
0; otherwise

p x=Kð Þ ¼1; if 1=2\ x\3=2
0; otherwise

As the ratio p x=Kð Þ=p x=Hð Þ is discrete, MP test for H against K is given by:

¼ 1 if; p x=Kð Þ[ kp x=Hð Þ
/0 xð Þ ¼ a; if p x=Kð Þ ¼ kp x=Hð Þ

¼ 0; if; p x=Kð Þ\kp x=Hð Þ

9
=
; ð3:48Þ

where ‘a’ and ‘k’ are such that

EH/0 xð Þ ¼ a ð3:49Þ

Taking

k\1; 0\x
 1
2
) p x=Kð Þ ¼ 0 and p x=Hð Þ ¼ 1

) p x=kð Þ\kp x=Hð Þ ) /0 xð Þ ¼ 0
1
2
\x\1 ) p x=Kð Þ ¼ p x=Hð Þ ¼ 1=2

) p x=Kð Þ[ kp x=Hð Þ ) /0 xð Þ ¼ 1

1
 x\
3
2
) p x=Kð Þ ¼ 1 and p x=Hð Þ ¼ 0

) p x=Kð Þ[ kp x=Hð Þ ) /0 xð Þ ¼ 1

3.3 Method of Obtaining BCR 89



So, for k\1, we get EH/0 Xð Þ ¼ 1:PH
1
2\X\1
� �þ 1:PH X 	 1ð Þ ¼ 1

2. Thus it
is a trivial test of size 0.5.

Taking k\1;

0\x
 1
2
) /0 xð Þ ¼ 0

1
2
\x\1 ) /0 xð Þ ¼ 0

1
 x
 3
2
) /0 xð Þ ¼ 1

9
>>>>>=
>>>>>;

EH/0 Xð Þ ¼ 0 and it is a trivial test of size 0:

Taking k ¼ 1;

o\x
 1
2 ) /0 xð Þ ¼ 0: we always accept H.

1
 x\ 3
2 ) /0 xð Þ ¼ 1: We always reject H.

1
2\x\1 ) p x=Kð Þ ¼ kp x=Hð Þ ) We perform a random experiment with

probability of success ‘a’ determined by EH/0 xð Þ ¼ a.

, a:PH
1
2
\X\1

� �
¼ a , a ¼ 2a

Thus the randomized test given by /0 xð Þ

¼ 0; if 0\x
 1
2

¼ 2a; if
1
2
\x\1

¼ 1; if1
 x\
3
2

9
>>>>>=
>>>>>;

isMP size-a test:

3.4 Locally MPU Test

The optimum region is obtained by the use of the following:
Generalization of N–P lemma.

Theorem 2 Let g0; g1; g2; . . .gm be mþ 1ð Þ non-negative integrable functions on
the sample space �x . Let x be any region such that

R
x gi xð Þdx ¼ Ci; i ¼ 1 1ð Þm

where Ci’s are all known numbers.
Suppose x0 be a subset of �x such that:

Inside x0 : g0 xð Þ[ Pm

1
kigi xð Þ;
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Outside x0 : g0 xð Þ
 Pm

1
kigi xð Þ, where k1; k2; . . .. . .km are so chosen that

R
x0

gi xð Þdx ¼ Ci; i ¼ 1 1ð Þm.
Then we have

R
x0

g0 xð Þdx	 R
x
g0 xð Þdx.

This is called generalized Neyman–Pearson Lemma.

Proof

Z

x0

g0 xð Þdx�
Z

x

g0 xð Þdx

¼
Z

x0�x

g0 xð Þdx�
Z

x�x0

g0 xð Þdx. . .. . .. . . 1ð Þ x0 � x ¼ x0 � x\x0 ¼ insidex0

x� x0 ¼ x� x\x0 ¼ outsidex0

� �

x 2 x0 � x ) g0 xð Þ[
Xm

1

kigi xð Þ

)
Z

x0�x

g0 xð Þdx	
Z

x0�x

Xm

1

kig xið Þ
( )

dx

¼
Xm

i¼1

ki

Z

x0�x

gi xð Þdx
8
<
:

9
=
;

x 2 x0 � x ) g0 xð Þ

Xm

1

kigi xð Þ

)
Z

x�x0

g0 xð Þdx

Z

x�x0

Xm

1

kigi xð Þ
( )

dx ¼
Xm

1

ki

Z

x�x0

gi xð Þdx
8
<
:

9
=
;

Hence L.H.S of (1)

Z

x0�x

g0 xð Þdx�
Z

x�x0

g0 xð Þdx	
Xm

i

ki

Z

x0�x

gi xð Þdx
8
<
:

9
=
;�

Xm

i

ki

Z

x�x0

gi xð Þdx
8
<
:

9
=
;

¼
Xm

i

ki

Z

x0�x

gi xð Þdx�
Z

x�x0

gi xð Þdx
2
4

3
5

¼
Xm

i

ki

Z

x0

gi xð Þdx�
Z

x

gi xð Þdx
2
4

3
5 ¼

Xm

i

ki Ci � Cið Þ ¼ 0

) Hence the proof. h
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Locally Best Tests

1. One-sided case: For the family pðx=hÞ; h 2 Hf g, sometimes we cannot find
UMP size-α test for H : h ¼ h0 against K : h[ h0 or h\h0.
For example, if X1;X2; . . .;Xnðn	 1Þ are i.i.d according to the p.d.f.

f ðx=hÞ ¼ 1
p

1

1þðx� hÞ2 ; ð�1\h\1;�1\x\1Þ

we cannot find UMP size-a test for H : h ¼ h0 against h[ h0 or h\h0.

In that case, we can find an e[ 0 for which there exists a critical region x0 such
that Px0ðh0Þ ¼ a and Px0ðhÞ	PxðhÞ8h : h0\h\h0 þ e and 8x : Pxðh0Þ ¼ a.

Construction Let pðx=hÞ be such that, for every x, d
dh pxðhÞ exists and is

continuous in the neighborhood of h0. Then we have, by mean value theorem, for
any h[ h0

PxðhÞ ¼ Pxðh0Þþ ðh� h0Þ d
dh

PxðhÞ
�

h¼h�
; h0\h�\h

¼ Pxðh0Þþ ðh� h0ÞP0
xðh�Þ; ðsayÞ ð3:50Þ

Similarly,

Px0ðhÞ ¼ Px0ðh0Þþ ðh� h0ÞP0
x0
ðh�Þ; ðsayÞ ð3:51Þ

Let x0 be such that Px0ðh0Þ ¼ a and P0
x0
ðh0Þ is maximum, i.e.

P0
x0
ðh0Þ	P0

xðh0Þ8x : Px0ðh0Þ ¼ a: Then comparing (3.50) and (3.51), we get an
e[ 0, such that PxcðhÞ	PxðhÞ8h : h0\h\h0 þ e. Such a x0 is called locally
most powerful size-α test for H : h ¼ h0 against h[ h0.

Now our problem is to choose x0 such that

Px0ðh0Þ ¼ a ,
Z

x0

pðx=h0Þdx ¼ a ð3:52Þ

and

P0
x0
ðh0Þ	P0

xðh0Þ ,
Z

x0

dpðx=hÞ
dh0

dx	
Z

x

dpðx=hÞ
dh0

dx

,
Z

x0

p0ðx=h0Þdx	
Z

x

p0ðx=h0Þdx

where x satisfies Pxðh0Þ ¼ a , R
x
pðx=h0Þdx ¼ a
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In the generalized N–P lemma, take m = 1 and set g0ðxÞ ¼ p0ðx=h0Þ,
g1ðxÞ ¼ pðx=h0Þ, C1 ¼ a, k1 ¼ k.

Then we get,

Insidex0 : p
0ðx=h0Þ[ kpðx=h0Þ

Outsidex0 : p
0ðx=h0Þ
 kpðx=h0Þ

)
ð3:53Þ

Finally,
R
x0

p0ðx=h0Þdx	
R
x
p0ðx=h0Þdx

where x0 and x satisfy

Px0ðh0Þ ¼ Pxðh0Þ ¼ a ð3:54Þ

Thus the test given by (3.53) and (3.54) is locally most powerful size-a for
H : h ¼ h0 against h[ h0.

Note If UMP test exists for H : h ¼ h0 against h[ h0 ) LMP test corre-
sponding to the said problem must be identical to the UMP test. But the converse
may not be true.

Example 3.17 X1;X2; . . .Xn are i.id Nðh; 1Þ. H : h ¼ h0 against h[ h0.
LMP test is provided by

x0 ¼ x : p0ðx=h0Þ[ kpðx=h0Þf g ð3:55Þ

where k is such that

Z

x0

pðx=h0Þdx ¼ a ð3:56Þ

It can be observed that

p0ðx=h0Þ[ kpðx=h0Þ
, 1

pðx=h0Þ p
0ðx=h0Þ[ k

, d
dh0

loge pðx=h0Þ½ �[ k

ð3:57Þ

Here pðx=hÞ ¼ ð2pÞ�n=2e�
1
2

P
ðxi�hÞ2

) log pðx=hÞ ¼ const.� 1
2

Xn

1

ðxi � hÞ2

) d logðx=h0Þ
dh0

¼ Pn

1
ðxi � h0Þ, hence by (3.57), (3.55)
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, x0 ¼ x : �x[ k0f g

and (3.56) , Ph0 �x[ k0f g ¼ a

, Ph0

ffiffiffi
n

p ð�x� h0Þ[
ffiffiffi
n

p ðk0 � h0Þ
� � ¼ a ) ffiffiffi

n
p ðk0 � h0Þ ¼ sa

i.e, k0 ¼ h0 þ 1ffiffi
n

p sa . Thus x0 , x0 ¼ x : �x[ h0 þ 1ffiffi
n

p sa
n o

which is identical to the UMP test for H : h ¼ h0 against h[ h0.

General case: Let X1;X2; . . .Xn be i.i.d with p.d.f f ðx=hÞ.
To find LMP for H : h ¼ h0 against h[ h0

Here pðx=hÞ ¼ Qn

i¼1
f ðxi=hÞ;

LMP test is given by the critical region:
x ¼ x : p0ðx=h0Þ[ kpðx=h0Þf g, where k such that Pxðh0Þ ¼ a
Now,

p0ðx=h0Þ[ kpðx=h0Þ , p0ðx=h0Þ
pðx=h0Þ [ k

, d log pðx=h0Þ
dh0

[ k pðx=hÞ[ 0½ �

, Pn

1

f 0ðxi=h0Þ
f ðxi=h0Þ [ k, ðsayÞ , Pn

1
yi [ k, where yi ¼ f 0ðxi=h0Þ

f ðxi=h0Þ .

Now, under H, y 0
i s is i.i.d with

Eh0fyig ¼
Z

f 0ðxi=h0Þ
f ðxi=h0Þ f ðxi=h0Þdx ¼

Z
f 0ðx=h0Þdx

¼ d
dh0

Z
f ðx=h0Þdx ¼ d

dh0
ð1Þ ¼ 0

Vh0fyig ¼
Z

f 0ðxi=h0Þ
f ðx=h0Þ

� �2

f ðx=h0Þdx

¼
Z

@ log f ðx=h0Þ
dh0

� �2

f ðx=h0Þdx

¼ Iðh0Þ Fisher0s information½ �:

Hence, by Central Limit Theorem, for large n,
Pn

1
yiffiffiffiffiffiffiffiffiffi

nIðh0Þ
p �Nð0; 1Þ, under H. So,

for large n, the above test can be approximated by
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x ¼ x :
Xn

i¼1

f 0ðxi=h0Þ
f ðxi=h0Þ [ sa

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nIðh0Þ

p
( )

:

Locally Best test: Two-sided case

For testing H : h ¼ h0 against h 6¼ h0 corresponding to the family pðx=hÞ; h 2 Hf g,
it is being known that (expect some cases) there does not exist any test which is
UMP for both sided alternatives. e.g. taking l ¼ 0 against l 6¼ 0 for Nðl; 1Þ and
taking r2 ¼ 1 against r2 6¼ 1 for Nð0; r2Þ etc.

In those cases, we can think of a test which is UMP in a neighbourhood of h0.
Thus a test ‘w0’ is said to be locally best (of size a) for H : h ¼ h0 against K : h 6¼ h0
if there exists an t[ 0 for which

(i) Pw0ðh0Þ ¼ a
(ii) PwðhÞ	 a 8h : jh� h0j\t and 8w satisfying (i).

Let pðx=hÞ be such that, for a chosen w

(i) P0
wðhÞ exists in the neighbourhood of h0;

(ii) P00
wðhÞ exists and is continuous at (in the neighbourhood) h0.

Then we have, by Taylor’s Theorem

PwðhÞ ¼ Pw0ðh0Þþ ðh� h0ÞP0
wðh0Þþ

ðh� h0Þ2
2!

P00
wðhkÞ;

h� � h0j\jh� h0j j

Let w0 be such that

(i) Pw0ðh0Þ ¼ a (size condition)
(ii) P0

w0
ðh0Þ ¼ 0 (Locally unbiased condition)

(iii) P00
w0
ðh0Þ is maximum

Then we can find an t[ 0 such that 8h : jh� h0j\t, We have
Pw0ðhÞ	PwðhÞ8w satisfying (i) and (ii).

Now PwðhÞ ¼ Pwðh0Þþ ðh � h0ÞP0
wðh0Þþ ðh�h0Þ2

2! P00
wðhk0Þþ g and g ! 0 as

h ! h0.
To get Pw0ðhÞ	PwðhÞ8h : jh� h0j\t we must have P00

w0
ðh0Þ	P00

wðh0Þ [due to
continuity of PwðhÞ].

Then w0 is called locally Most Powerful unbiased size-a test if

(i) Pw0ðh0Þ ¼ a
(ii) P0

w0
ðh0Þ ¼ 0:

(iii) P00
w0
ðh0Þ	P00

wðh0Þ8w satisfying (i) and (ii).
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Construction

Pwðh0Þ ¼
Z

w

p x=h0

	 

dx;P0

wðh0Þ ¼
Z

w

p0 x=h0

	 

dx;

P00
wðh0Þ ¼

Z

w

p00 x=h0

	 

dx:

Let us set in generalized N–P lemma

g0ðxÞ ¼ p00 x=h0

	 

; g1ðxÞ ¼ p x=h0

	 

; g2ðxÞ ¼ p0 x=h0

	 

;

c1 ¼ a; c2 ¼ 0

Then

w0 ¼ x : p00 x=h0

	 

[ k1p x=h0

	 

þ k2p

0 x=h0

	 
n o

where k1 and k2 are such that
R
w0

g1ðxÞdx ¼ a;
R
w0

g2ðxÞdx ¼ 0:

Then we have
R
w0

g0ðxÞdx	
R
w
g0ðxÞdx provided ‘w’ satisfies (i) and (ii).

, P00
w0
ðh0Þ	P00

wðh0Þ

Example 3.18 X1;X2; . . .Xn are i.i.d. Nðl; 1Þ. To find LMPU test for H : l ¼ l0
against K:l 6¼ l0:

Answer Here p x=h
� � ¼ 1ffiffiffiffi

2p
p

	 
n
e
�1
2

Pn
1

ðxi�lÞ2

p0 x=h
� � ¼ 1ffiffiffiffiffiffi

2p
p

� �n

nð�x� lÞe
�1
2

Pn
ðxi�lÞ2

¼ nð�x� lÞp x=h
� �

p00 x=h
� � ¼ nð�x� lÞ½ �2p x=h

� �� np x=h
� �

LMPU size-a test is

w0 ¼ x : p00 x=h0

	 

[ k1p x=h0

	 

þ k2p

0 x=h0

	 
n o Z

x0

pðx=h0Þdx ¼ a ð3:58Þ
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and

Z

x0

p0ðx=h0Þdx ¼ 0 ð3:59Þ

¼ x : nð�x� l0Þ½ �2�n[ k1 þ k2nð�x� l0Þ
n o

¼ x :
ffiffiffi
n

p ð�x� l0Þ
� �2 [ k01 þ k02

ffiffiffi
n

p ð�x� l0Þ
� �n o

¼ x : y2 [ k01 þ k02y
� �

;

y ¼ ffiffiffi
n

p ð�x� l0Þ�Nð0; 1Þ under H
(3.59) ⟺

Z

y2 [ k01 þ k02y

yNðy=0; 1Þdy ¼ 0 ð3:60Þ

Now the LHS of (3.60) is zero irrespective of choice of any ðk01; k02Þ since
Nðy=0; 1Þ is symmetrical about ‘0’.

Here, we can safely take k02 ¼ 0 without affecting size condition. Then our test
reduces to w0 : x : y2 [ k01

� � � x : jyj[ cf g and hence (3.58) is equivalent toR
jyj[ c

Nðy=0; 1Þdy ¼ a ) c ¼ sa=2

Then we obtain LMPU test for H : l ¼ l0 against l 6¼ l0.
A test which is locally most powerful and locally unbiased is called a Type A

test and corresponding critical region ‘w0’ is said to be Type-A critical region

3.5 Type A1 (�Uniformly Most Powerful Unbiased) Test

Let p x=h
� �

; h 2 H : Real parameter family of distributions.

Testing problem: H : h ¼ h0 against K : h 6¼ h0:
T Xð Þ ¼ T : Test statistic.

(i) Right tail test based on T is UMP for H : h ¼ h0 against h[ h0 (in most of the
cases)

(ii) Left tail test based on T is UMP for H : h ¼ h0 against h\h0 (in most of the
cases)

[As for example N l; 1ð Þ; N 0; r2ð Þ …. T ¼ P
xi; T ¼ P

x2i etc. and for
B n; pð Þ; T ¼ �x etc:]

There does not exist a single test which is UMP for H : h ¼ h0 against h 6¼ h0:
If p x=h

� �
has monotone likelihood ratio in T Xð Þ; i.e.

3.4 Locally MPU Test 97



p x=h1

	 


p x=h0

	 
 " T xð Þ for h1 [ h0; then (i) and (ii) are satisfied.

In that case, we try to choose a test w0 for which

(i) Pw0 h0ð Þ ¼ a
(ii) Pw0 hð Þ	 a8h 6¼ h0
(iii) Pw0 hð Þ	Pw hð Þ8h 6¼ h08w satisfying (i) and (ii)

Such a test is called UMPU size-a test for H : h ¼ h0 against h 6¼ h0:
Let p x=h

� �
be such that, for every test w;

d
dh Pw hð Þ½ � exists;
and

d
dh

Pw hð Þ½ � ¼ d
dh

Z

w

p x=hð Þdx ¼
Z

w

dp x=hð Þ
dh

dx ¼
Z

w

p0 x=hð Þdx ð3:61Þ

Then unbiasedness of a test

w ) d
dh0

Pw hð Þ ¼ 0 ð3:62Þ

Thus, if a testw0 satisfies (i), (ii) and (iii); under (3.61),w0 also satisfies (i) and (iii).
Test satisfying (i), (iii) and (3.62) is called type-A1 test.

For exponential distribution, if type-A1 test exists, then it must be unbiased. But
this is not true in general.

Construction Our problem is to get w0 such that

(i)
R
w0

p x=h0

	 

dx ¼ a;

(ii)
R
w0

p0 x=h0

	 

dx ¼ 0

(iii)
R
w0

p x=h
� �

dx	 R
w
p x=h
� �

dx 8w satisfying (i) and (ii) and 8h 6¼ h0

In generalized N–P Lemma, put g0 ¼ p x=h
� �

; g1 ¼ p x=h0

	 

; g2 ¼ p0 x=h0

	 

;

c1 ¼ 1; c2 ¼ 0.

Then, define w0 ¼ x : p x=h
� �

[ k1p x=h0

	 

þ k2p0 x=h0

	 
n o
and hence

R
w0

p x=h
� �

dx	 R
w
p x=h
� �

dx8w satisfying (i) and (ii) and 8h 6¼ h0:

For exponential distribution, it is always possible to have such region w0 (which
means type-A1 test exists).

Example 3.19 X1;X2;. . .;Xn are i.i.d. Nðl; 1Þ. We test H : l ¼ l0 against
K : l 6¼ l0
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pðx=hÞ ¼ ð2pÞ�n=2e
�1
2

Pn
xi�lð Þ2

p0ðx=hÞ ¼ ð2pÞ�n=2
Xn

i¼1

ðxi � lÞe
�1
2

Pn
i

ðxi�lÞ2
¼

Xn

i

ðxi � lÞpðx=hÞ

Then type-A1 region (test) is given by

w0 ¼ fx : pðx=hÞ[ k1pðx=h0Þþ k2nð�x� l0Þpðx=h0Þg

pðx=hÞ
pðx=h0Þ

¼ e
�1
2

P
ðxi�lÞ2

e
�1
2

P
ðxi�l0Þ2

¼ e
�n
2 ð�x�lÞ2

e
�n
2 ð�x�l0Þ2

¼ e
n
2ðl�l0Þ 2�x�ðl0 þlÞf g

) w0 ¼ fx : eðl�l0Þt [ k01 þ k02tgwhere t ¼
ffiffiffi
n

p ð�x� l0Þ
¼ fx : edi [ k01 þ k02tg

where k001 and k01 are such that
Z

w0

pðx=h0Þdx ¼ a;
Z

w0

nð�x� lÞpðx=h0Þdx ¼ 0

,
Z

wo

Nðt=0; 1Þdt ¼ a ð3:63Þ

,
Z

w0

tNðt=0; 1Þdt ¼ 0 ð3:64Þ

Writing gðtÞ ¼ edt � k01 � k02t we have g
0ðtÞ ¼ dedt � k02 and g

00ðtÞ ¼ d2edt [ 08t
) y ¼ gðtÞ has a single minimum (global minimum).
Now if we take a\0:5, because of (3.63) and since the distribution of t is sym-

metric about 0 underH0 our shape of the curve will be like as shown below. From the
graph, we observe that c1\c2; gðtÞ[ 0 for t\c1 and t[ c2 and gðtÞ
 0 otherwise.

y=g(t)

c1 c2 
t
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Hence w0 is equivalent to wo ¼ x : t\c1or t[ c2f g
(3.63) , R

t\c1;t[ c2

Nðt=0; 1Þdt ¼ a and (3.64)

,
Z

t\c1;t[ c2

tNðt=0; 1Þdt ¼ 0 ð3:65Þ

Now, as T �Nð0; 1Þ, we take w0 as

w0 ¼ fx : t\� c and t[ cg ð3:66Þ

where c is such that

Z

tj j[ c

Nðt=0; 1Þdt ¼ a ) c ¼ sa=2 ð3:67Þ

Here (3.65) is automatically satisfied. Hence test given by (3.66) and (3.67) is
type-A1 (which is UMPU).

Example 3.20

X1;X2; . . .. . .;Xn are i.i.d:Nð0; r2Þ:

Testing Problem, H : r2 ¼ r20 against K : r2 6¼ r20

pðx=hÞ ¼
1

r
ffiffiffiffiffiffiffi
2P

p
� �n

e
�1
2r2

Pn

i
x2i

p0ðx=hÞ ¼
Pn

i
x2i

r2
� n

0
BB@

1
CCA

1
2r2

pðx=hÞ

Thus,

w0 ¼ x : pðx=hÞ[ k1pðx=h0Þþ k2

Pn
i x

2
i

r20
� n

� �
1
2r20

p x=h0

	 
� �

¼ x :
pðx=hÞ
pðx=hoÞ

[ k01 þ k02tg; t ¼
Pn

i x
2
i

r20

(

As
pðx=hÞ
pðx=h0Þ

¼ r0
r

	 
n
e

Pn
i

x2
i

2r2
0

ð1�r2
0

r2
Þ
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w0 ¼ x :
r0
r

	 
n
e
d
2t [ k01 þ k02t

n o

Now as before the curve y ¼ gðtÞ ¼ r0
r

� �n
e
dt
2 � k01 � k02t has a single minimum.

Here P T [ 0=h
n o

¼ 1

) Shape of the curve g tð Þ will be as shown below

y = g(t)

d1 d2 t

which means there exists d1 and d2

such that w0 is equivalent to w0 ¼ x : t\d1 or t[ d2f g
Here d1 and d2 are such that

Z

w0

p x=h0

	 

dx ¼ a ,

Zd2

d1

fv2n tð Þdt ¼ 1� a ð3:68Þ

and

Z

w0

p0 x=h0

	 

dx ¼ 0 ,

Z

t\d1 or t[ d2

t � nð Þfv2n tð Þdt ¼ 0 ð3:69Þ

(3.69) ⇔
R

t\d1 or t[ d2

tfv2n tð Þdt ¼ n
R

t\d1 or d2

fv2n tð Þdt ¼ na, by (3.68)

,
Zd2

d1

tfv 2
n
tð Þdt ¼ 1� að Þn

,
Zd2

d1

fv 2
nþ 2

tð Þdt ¼ 1� að Þ ð3:70Þ

Thus UMPU (a type-A1) size a test is
x0 ¼ x : t\d1 or t[ d2f g such that

P d1\v 2
n \d2

� � ¼ 1� a andP d1\v 2
xþ 2\d2

� � ¼ 1� a:

Note in this example ) type A1 test , type-A test.
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Example 3.21 X1;X2; . . .;Xn are i.i.d with p x=h
� � ¼ he�hx. Find Type-A and Type-

A1 test for H : h ¼ h0 against h 6¼ h0.

Answer proceed as Examples 3.19 and 3.20 and hence get

x0 ¼ x :
Xn

1

Xi\c1 or
Xn

1

Xi [ c2

( )

where c1 and c2 are such that

P
c1
2h0

� 1\v 2
2n\

c2
2h0

� 1
� �

¼ 1� a and

P
c1
2h0

� 1\v 2
2nþ 2\

c2
2h0

� 1
� �

¼ 1� a:
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Chapter 4
Likelihood Ratio Test

4.1 Introduction

In the previous chapter we have seen that UMP or UMP-unbiased tests exist only
for some special families of distributions, while they do not exist for other families.
Further, computations of UMP-unbiased tests in K-parameter family of distribution
are usually complex. Neyman and Pearson (1928) suggested a simple method for
testing a general testing problem.

Consider X � p xjhð Þ, where h is a real parameter or a vector of parameters,
h 2 H:

A general testing problem is

H : h 2 H0 AgainstK : h 2 H1:

Here, H and K may be treated as the subsets of H. These are such that H \K ¼
/ and H [K �H. Given that X ¼ x; p xjhð Þ is a function of h and is called like-
lihood function. Likelihood test for H against K is provided by the statistic

L xð Þ ¼
Sup
h2H

p xjhð Þ
Sup

h2H[K
p xjhð Þ ;

which is called the likelihood ratio criterion for testing H against K. It is known that

(i) p xjhð Þ� 08h
(ii) Sup

h2H
p xjhð Þ� Sup

h2H[K
p xjhð Þ.

Obviously 0� L xð Þ� 1. The numerator in L xð Þ measures the best explanation
that the observation X comes from some population under H and the denominator
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measures the best explanation of X to come from some population covered under
H [K. Higher values of the numerator correspond to the better explanation of
X given by H compared to the overall best possible explanation of X, which results
in larger values in L xð Þ leading to acceptance of H. That is, L xð Þ would be larger
under H than under K. Indeed, smaller values of L xð Þ will lead to the rejection of
H. Hence, our test procedure is:

Reject H iff L xð Þ\C
and accept H otherwise,

where C is such that P L xð Þ\CjHf g ¼ a 2 0; 1ð Þ:
If the distribution of L xð Þ is continuous, then the size a is exactly attained and no

randomization on the boundary is needed. If the distribution is discrete, the size
may not attain a and one may require randomization. In this case, we have C from
the relation

P L xð Þ\CjHf g� a:

Here, we reject H if L xð Þ\C;
accept H if L xð Þ[C;
and reject with probability ‘a’ iff L xð Þ ¼ C.
Thus, we have P L xð Þ\CjHf gþ aP L xð Þ ¼ CjHf g ¼ a.
The likelihood ratio tests are useful, especially when h is a vector of parameters

and the testing involves only some of them. This test criterion is very popular
because of its computational simplicity. Moreover, this criterion proves to be a
powerful alternative for testing vector valued parameters that involve nuisance
parameters. Generally, the likelihood ratio tests result in optimal tests, whenever
they exist. An LR test is generally UMP, if an UMP test at all exists. In many cases
the LR tests are unbiased, although this is not universally true. However, it is
difficult to compute the exact null distribution of the test statistic L xð Þ in many
cases. Therefore, a study of large sample properties of L xð Þ becomes necessary
where maximum likelihood estimators follow normal distribution under certain
regularity conditions. We mention the following large sample property of the
likelihood ratio test statistic without proof.

Under H, the asymptotic distribution of �2 loge L xð Þ is distributed as v2 with
degrees of freedom equal to the difference between the number of independent
parameters in H and the number in H0.

Drawback: Likelihood ratio test is constructed completely by intuitive argu-
ment. So, it may not satisfy all the properties that are satisfied by a test obtained
from N–P theory; it also may not be unbiased.

4.1.1 Some Selected Examples

Example 4.1 Let X be a binomial b n; hð Þ random variable. Find the size-a likeli-
hood ratio test for testing H : h� h0 against K : h[ h0
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Solution Here, H0 ¼ h : 0� h� h0f g and H ¼ h : 0� h� 1f g.
The likelihood ratio test statistic is given as

L xð Þ ¼
Sup
h2H

p xjhð Þ
Sup
H[K

p xjhð Þ ¼
Sup
h� h0

p xjhð Þ
Sup
H

p xjhð Þ

¼
Sup
h� h0

n

x

� �
hx 1� hð Þn�x

Sup
H

n

x

� �
hx 1� hð Þn�x

The MLE of h for h 2 H is h
_ ¼ x

n.
For, h 2 H0, we have

h
_

H ¼ x
n
if

x
n
� h0

¼ h0 if
x
n
[ h0

Thus, we have

Sup
H

n

x

� �
hx 1� hð Þn�x ¼ n

x

� �
x
n

� �x
1� x

n

� �n�x

Sup
h� h0

n

x

� �
hx 1� hð Þn�x ¼

n

x

� �
x
n

� �x
1� x

n

� �n�x
if x

n � h0

n

x

� �
hx0 1� h0ð Þn�x if x

n [ h0

8>>><>>>:
So, L xð Þ ¼

1 if x
n � h0

hx0 1�h0ð Þn�x

x
nð Þx 1�x

nð Þn�x if x
n [ h0

(
It can be observed that L xð Þ� 1 when x[ nh0 and L xð Þ ¼ 1 when x� nh0. This

shows that L xð Þ is the decreasing function of x. Thus, L xð Þ\C iff x[C0 and the
likelihood ratio test rejects H0 if x[C0 where C0 is obtained as

Ph0 X[C0ð Þ ¼ a. Since X is a discrete random variable, C0 is obtained such that

Ph0 X[C0ð Þ � a\Ph0 X[C0 � 1ð Þ:
Example 4.2 Let X1; . . .;Xn be a random sample from a normal distribution with
mean l and variance r2. Find out the likelihood ratio test of

(a) H : l ¼ l0 aganistK : l 6¼ l0 when r2 is known.
(b) H : l ¼ l0 aganistK : l 6¼ l0 when r2 is unknown.
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Solution

(a) Here, H0 ¼ l0f g; H ¼ l : �1\l\1f g

p xjhð Þ ¼ p xjlð Þ ¼ 2pð Þ�n=2 r2
� ��n=2

e
� 1

2r2

Pn
i¼1

Xi�lð Þ2

The likelihood ratio test statistic is given as

L xð Þ ¼
Sup
H

p xjlð Þ
Sup
H [K

p xjlð Þ ¼
Sup
H0

p xjlð Þ
Sup
H

p xjlð Þ

The maximum likelihood estimate of l for l 2 H is �x.

So, Sup
H0

p xjlð Þ ¼ 2pð Þ�n=2 r2ð Þ�n=2e
� 1

2r2

Pn
i¼1

Xi�l0ð Þ2

and Sup
H

p xjlð Þ ¼ 2pð Þ�n=2 r2ð Þ�n=2e
� 1

2r2

Pn
i¼1

Xi��xð Þ2
:

This gives

L xð Þ ¼ e�
1

2r2

Pn

i¼1
Xi�l0ð Þ2

e�
1

2r2

Pn

i¼1
Xi��xð Þ2 ¼ e�

n
2r2

�x�l0ð Þ2

The rejection region L xð Þ\C gives

� n
2r2

�x� l0ð Þ2\C1

or;
ffiffiffi
n

p
�x� l0ð Þ
r

				 				[C2

Thus, the likelihood ratio test is given as

/ �xð Þ ¼ 1 if
ffiffi
n

p
�x�l0ð Þ
r

			 			[C2

0 Otherwise

(

where the constant C2 is obtained by the size condition

El0 / �xð Þ½ � ¼ a

or; Pl0

ffiffiffi
n

p
�x� l0ð Þ
r

				 				[C2


 �
¼ a
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Now, under H : l ¼ l0, the statistic
ffiffi
n

p
�x�l0ð Þ
r follows N 0; 1ð Þ distribution. Since

the distribution is symmetrical about 0, C2 must be the upper a=2—point of the
distribution. Finally, the test is given as

/ �xð Þ ¼ 1 if
ffiffi
n

p
�x�l0ð Þ
r

			 			[ sa=2
0 Otherwise

(

(b) Here, H0 ¼ l; r2ð Þ : l ¼ l0; r
2 [ 0

� 
H ¼ l; r2

� �
: �1\l\1; r2 [ 0

� 
In this case,

Sup
H0

p xjl; r2� � ¼ Sup
H0

1
2pr2

� �n=2
e
� 1

2r2

Pn
i¼1

Xi�lð Þ2

MLE of r2 given l ¼ l0 is given as

s20 ¼
1
n

Xn
i¼1

Xi � l0ð Þ2:

This gives Sup
H0

p xjl0; r2ð Þ ¼ 1
2ps 2

0

� �n=2
e�

n
2.

Further, Sup
H

p xjl; r2ð Þ ¼ Sup
l;r2

p xjl; r2ð Þ ¼ Sup
l;r2

p 1
2pr2
� �n=2

e�
1

2r2

Pn

i¼1
Xi�lð Þ2

The MLE of l and r2 are given as �x and 1
n

Pn
i¼1 Xi � �Xð Þ2¼ n�1ð Þ

n s2; where

s2 ¼ 1
n�1

Pn
i¼1 Xi � �Xð Þ2. We have,

Sup
l;r2

p xjl; r2� � ¼ 1

2p n�1ð Þ
n s2

 !n=2

e�
n
2

Hence, likelihood ratio test statistic is given as

L xð Þ ¼
1

2ps20

� ��n
2
e�

n
2

1
2p n�1ð Þ

n s2

� �n
2

e�n
2

¼ n� 1ð Þs2
ns20

� �n=2

¼ n� 1ð Þs2Pn
i¼1 Xi � l0ð Þ2

 !n=2
¼ n� 1ð Þs2

n �x� l0ð Þ2 þ Pn
i¼1 Xi � �Xð Þ2

" #n=2

¼ n� 1ð Þs2
n �x� l0ð Þ2 þ n� 1ð Þs2

" #n=2
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The LR critical region is given as

L xð Þ\C

or;
n �x� l0ð Þ2

s2
[C1

or;
ffiffiffi
n

p
�x� l0ð Þ
s

				 				[C2:

The likelihood ratio test is given as

/ �x; sð Þ ¼ 1 if
ffiffi
n

p
�x�l0ð Þ
s

			 			
0 otherwise

(
[C2;

where the constant C2 is obtained by the size condition

Pl0

ffiffiffi
n

p
�x� l0ð Þ
s

				 				[C2


 �
¼ a:

Now under H : l ¼ l0, the statistic
ffiffi
n

p
�x�l0ð Þ
s is distributed as, t with (n − 1) d.f

which is symmetric about 0. Hence, C2 ¼ ta
2;n�1. Finally, the test is given as

/ �x; sð Þ ¼ 1 if
ffiffi
n

p
�x�l0ð Þ
s

			 			
0 otherwise

(
[ ta

2;n�1

Example 4.3 X1;X2. . .Xn are i.i.d N l; r2ð Þ. Derive LR test for H : l� l0 against
K : l[ l0.
Answer h ¼ l; r2ð Þ; H ¼ h : �1\l\1; r2 [ 0

� 
Here, p x=hð Þ ¼ p x

�
l; r2

� � ¼ 2pð Þ�n
2 r2ð Þ�n

2e
� 1

2r2

Pn
1

Xi�lð Þ2

Likelihood ratio criterion

L xð Þ ¼
Sup
H

x
�
l; r2

� �
Sup
H[K

x=l; r2ð Þ ¼
Sup
l� l0

x
�
l; r2

� �
Sup
H

x=l; r2ð Þ H [K ¼ H ¼ l� l0ð Þ[ l[ l0ð Þ½ �

¼ p x
�
l̂H ; r̂

2
H

� �
p x=l̂; r̂2ð Þ

where l̂H ; r̂
2
H

� �
: MLE l; r2ð Þ under H

l̂; r̂2ð Þ: MLE of l; r2ð Þ under H [K (in the unrestricted case).
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For l; r2ð Þ 2 H [K, i.e. H, we have

l_ ¼ �x; r_
2 ¼ 1

n

Xn
1

xi � �xð Þ2¼ n� 1ð Þ
n

s2

For l; r2ð Þ 2 H, we have

l_H ¼ �x if �x� l0 and r̂
2
H ¼ n� 1

n
s2 if �x� l0

¼ l0 if �x[ l0 and r̂
2
H ¼ s20 ¼

1
n

Xn
1

xi � l0ð Þ2 if �x[ l0:

Thus, we have p x
.
l_; r̂2

� �
¼ 2pð Þ�n

2 n�1
n s2

� ��n
2 e

�n
2

p x
.
l_H ; r̂

2H
� �

¼ 2pð Þ�n
2

n� 1
n

s2
� ��n

2

e
�n
2 if �x� l0

¼ 2pð Þ�n
2 s20
� ��n

2e�
n
2 if �x[ l0

So, L xð Þ ¼ 1 if �x� l0

¼
n�1
n s2

s20

� �n=2
; if �x [ l0

Hence, we reject H if L xð Þ\C; where C \1ð Þ is such that

P L xð Þ\C=l ¼ l0f g ¼ a 2 0; 1ð Þ ð4:1Þ

,
n�1
n s2

s20

� �n=2
\C and�x[ l0

, n� 1ð Þs2
n� 1ð Þs2 þ n �x� l0ð Þ2

" #n=2
\C and�x[ l0

, 1þ n �x� l0ð Þ2
n� 1ð Þs2 [C0 and�x[ l0

,
ffiffiffi
n

p
�x� l0ð Þ
s

[C00 ð4:2Þ

Thus, (4.1) is , P
ffiffi
n

p
�x�l0ð Þ
s [C00

=l ¼ l0
n o

¼ a
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, P
ffiffiffi
n

p
�x� l0ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

1
xi��xð Þ2

n�1

r [C00
=l ¼ l0

8>><>>:
9>>=>>; ¼ a

) C00 ¼ ta;n�1

Hence, reject H iff
ffiffi
n

p
�x�l0ð Þ
s [ ta;n�1

) Test can be carried out by using students’ t-statistic.

Example 4.4 X1;X2. . .Xn are i.i.d N l; r2ð Þ;�1\l\1; r2 [ 0: Find the LR test
for

I. H : r2 ¼ r20 against K : r2 [ r20
II. H : r2 ¼ r20 against K : r2 6¼ r20

Answer I. h ¼ l; r2ð Þ

p x=l; r2
� � ¼ Likelihood function ¼ 2pð Þ�n=2 r2

� ��n=2
e
� 1

2r2

Pn
i¼1

xi�lð Þ2

¼ 2pð Þ�n=2 r2
� ��n=2

e�
1

2r2

P
xi��xð Þ2 þ n �x�lð Þ2½ �

Likelihood ratio is:

L xð Þ ¼
Supl;r2¼r20

p x
�
l; r2

� �
Supl;r2 �r20

p x=l; r2ð Þ ¼
p x
�
l̂H ;r

2
0

� �
p x=l̂; r̂2ð Þ ;

where l̂ = (MLE of l overall h : r2 � r20) = �x

r̂2 ¼ MLE of r2 ¼
n�1
n s2; if n�1

n s2 � r20
r20; if

n�1
n s2\r20

�
l̂H = MLE of l under H = �x

Hence we get, L xð Þ ¼
r20ð Þn=2e

� n�1ð ÞS2
2r2

0

n�1ð Þ
n s2ð Þ�n=2

e�
n
2
; if n�1

n s2 � r20

1; if n�1
n s2\r20

8>><>>:

110 4 Likelihood Ratio Test



Now we apply LR technique: reject H iff

L xð Þ\C: ð4:3Þ

where C (<1) is such that

P L xð Þ\C=Hf g ¼ a 2 0; 1ð Þ ð4:4Þ

1ð Þ ,
n�1
n s2

r20

� �n
2

e
� n�1ð Þs2

2r2
0 \C0 iff

n� 1ð Þs2
r20

� n

, u
n
2e�

u
2\C�� if u� n ð4:5Þ

Writing g uð Þ ¼ u
n
2e�

u
2; u� 0

g0 uð Þ ¼ n
2
u

n
2�1 	 e�u

2 � u
n
2

2
e�

u
2 ¼ 0

) n� u ¼ 0 , u ¼ n

The curve y = g(u) has a maximum and the shape of the curve is

g(u)=c' 

-1 u= n    u u0 

From the graph, it is clear that g uð Þ\C�� , u\u�1or u[ u0 where
0\u�1\n\u0:

Hence, (4.5) , u[ u0 and (4.4) , PH U[ u0ð Þ ¼ a

, P v2n�1 [ u0
�  ¼ a

As under H;

U� v2n�1


 �
) u0 ¼ v2n�1;a

Thus, LR test is: reject H if
Pn

i¼1 xi � �xð Þ2 [ r20v
2
n�1;a:

II. L xð Þ ¼
Supl;r2¼r2

0
p x=l;r2ð Þ

Supl;r2p x=l;r2ð Þ ¼ r20ð Þ�n 2=
e
� n�1ð Þs2

2r2
0

n�1
n s2ð Þ�n 2=

e�n=2
¼ K 	 un

2e�
u
2

Our test is to reject H if u
n
2e�

u
2\C0; where C0 is such that PH U

n
2e�

U
2\C0

n o
¼ a:

From the graph, we observe that the line y = C′ cuts the curve y = g(u) at two
points: u�1 and u0 such that 0\ u�1 \n\ u0. Hence, the test is equivalent to reject
H iff u\u�1 or u[ u0; where

PH v2n�1\u�1
� �þPH v2n�1 [ u0

� � ¼ a:
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Although v2 is not symmetric, for the matter of simplicity, equal error proba-
bilities a=2 are attached to both left-and right-sided critical regions. Thus, u�1 ¼
v2n�1;1�a

2
and u0 ¼ v2n�1;a2

.

Example 4.5 Let X1;X2; . . .Xn1 and Y1; Y2; . . .Yn2 be two independent samples drawn
from N l1; r

2
1

� �
and N l2; r

2
2

� �
; respectively. Find out the likelihood ratio test of

(a) H : r21 ¼ r22 against K : r21 [ r22
(b) H : r21 ¼ r22 against K : r21 6¼ r22; when l1 and l2 are unknown

(a) Here, h ¼ l1; l2;r
2
1; r

2
2

� �
H0 ¼ l1;l2; r

2
1; r

2
2

� �
: �1\l1; l2\1; r21 ¼ r22 ¼ r2 [ 0

� 
H ¼ l1; l2; r

2
1; r

2
2

� �
: �1\li\1; r2i [ 0; i ¼ 1; 2

� 
p x; y hjð Þ ¼ 2pð Þ�

n1 þ n2
2 r�n1

1 r�n2
2 e

� 1
2r2

1

Pn1
i¼1

Xi�l1ð Þ2� 1
2r2

2

Pn2
i¼1

yi�l2ð Þ2

L x; yð Þ ¼
Sup
h2H

p x; y hjð Þ
Sup

h2H[K
p x; y hjð Þ ¼

p x; y h
_

H

			� �
p x; y h

_
			� �

where h
_

H = MLE of h under H

h
_ ¼ MLE of h underH [K:

Under H, we obtain MLEs

l_1H ¼ �x; l_2H ¼ �y; r_
2
H ¼

P
xi � �xð Þ2 þ P

yi � �yð Þ2
n1 þ n2

Under H [K, MLEs are

l_1 ¼ �x;l_2 ¼ �y; r_
2
1 ¼ 1

n1

P
xi � �xð Þ2

r_
2
2 ¼ 1

n2

P
yi � �yð Þ2 if r

_2

1

r_
2

2

� 1

l_1 ¼ �x; l_2 ¼ �y; r_
2
H if r_

2

1

r
_2

2

\1

8>>>>><>>>>>:
Hence, p x; yjh_H

� �
¼ 2pð Þ�

n1 þ n2
2 r_

2
H

� ��n1 þ n2
2

e�
n1 þ n2

2

and p x; yjh_
� �

¼
2pð Þ�

n1 þ n2
2 r_

2
1

� ��n1
2

r_
2
2

� ��n2
2
e�

n1 þ n2
2 if r

_2

1

r_
2

2

� 1

2pð Þ�
n1 þ n2

2 r_
2
H

� ��n1 þ n2
2

e�
n1 þ n2

2 if r
_2

1

r_
2

2

\1

8>><>>:
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Therefore, L x; yð Þ ¼
r
_2

1

� �n1
2

r
_2

2

� �n2
2

r
_2

H

� �n1 þ n2
2

if r_
2

1

r_
2

2

� 1

1 if r
_2

1

r_
2

2

\1

8>>>><>>>>:

¼

P
xi��xð Þ2
n1

n on1=2 P
yi��yð Þ2
n2

n on2=2
P

xi��xð Þ2 þ
P

yi��yð Þ2
n1 þ n2

n oðn1 þ n2Þ=2 if

P
xi � �xð Þ2=n1P
yi � �yð Þ2=n2

� 1

1 if

P
xi � �xð Þ2=n1P
yi � �yð Þ2=n2

\1

8>>>>>>>><>>>>>>>>:

¼

n1 þ n2ð Þ
n1 þ n2

2

n
n1=2
1 n

n2=2
2

	

P
xi��xð Þ2P
yi��yð Þ2

� �n1=2
1þ
P

xi��xð Þ2P
yi��yð Þ2

� �n1 þ n2
2

if

P
xi � �xð Þ2=n1P
yi � �yð Þ2=n2

� 1

1 if

P
xi � �xð Þ2=n1P
yi � �yð Þ2=n2

\1

8>>>>>>>>>><>>>>>>>>>>:
Now, under the null hypothesis H : r21 ¼ r22 ¼ r2; consider the statistic

F ¼
P

xi � �xð Þ2.
n1 � 1ð ÞP

yi � �yð Þ2.
n2 � 1ð Þ

¼ s21
s22

�Fn1�1;n2�1:

On writing L xð Þ in terms of F, we have

L x; yð Þ ¼
n1 þ n2ð Þðn1 þ n2Þ=2

n
n1=2
1 n

n2=2
2

	
n1�1
n2�1F

� �n1=2
1þ n1�1

n2�1F

� �ðn1 þ n2Þ=2 if F� n1 n2�1ð Þ
n2 n1�1ð Þ

1 if F \ n1 n2�1ð Þ
n2 n1�1ð Þ

8>>>>><>>>>>:
Now we apply LR technique: reject

H iff L x; yð Þ\C ð4:6Þ

where C(<1) is such that
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P L x; yð Þ\C Hjf g ¼ a 2 0; 1ð Þ: ð4:7Þ

4:6ð Þ )
n1�1
n2�1F
� �n1=2

1þ n1�1
n2�1F

� �ðn1 þ n2Þ=2\C1 if F� n1 n2 � 1ð Þ
n2 n1 � 1ð Þ ;

where C1 is such that P
n1�1
n2�1F

� �n1=2

1þ n1�1
n2�1F

� �ðn1 þ n2Þ=2 \C1 and F� n1 n2�1ð Þ
n2 n1�1ð Þ

264
375 ¼ a:

Writing g Fð Þ ¼
n1�1
n2�1F

� �n1=2

1þ n1�1
n2�1F

� �ðn1 þ n2Þ=2

) g0 Fð Þ ¼ n1
2

n1 � 1
n2 � 1

F

� �n1
2�1

	 n1 � 1
n2 � 1

	 1þ n1 � 1
n2 � 1

F

� ��n1 þ n2
2

� n1 � 1
n2 � 1

F

� �n1
2 n1 þ n2

2
	

1þ n1 � 1
n2 � 1

F

� ��n1 þ n2
2 �1n1 � 1

n2 � 1
¼ 0

) n1 1þ n1 � 1
n2 � 1

F

� �
� n1 þ n2ð Þ n1 � 1

n2 � 1

� �
F ¼ 0

) F ¼ n1 n2 � 1ð Þ
n2 n1 � 1ð Þ

The curve g Fð Þ has single maximum at F ¼ n1 n2�1ð Þ
n2 n1�1ð Þ and the shape of the curve is

From the graph, we observe that g Fð Þ ¼ C1 and F� n1 n2�1ð Þ
n2 n1�1ð Þ

) F[ d0 [ n1 n1�1ð Þ
n2 n2�1ð Þ

� �
. The constant d0 is obtained by the size condition

Pr21¼r22
F[ d0f g ¼ a
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This gives d0 ¼ Fn1�1;n2�1;a

)LR test is given by/ x; yð Þ ¼ 1 if s21
s22
[Fn1�1;n2�1;a

0 otherwise

(

(b) Similarly, for testing H : r21 ¼ r22 against K : r21 6¼ r22 the LR test is equivalent
to

s21
s22
\d 1 or

s21
s22

[ d0:

These constants d 1 and d0 are obtained by the size condition

PH F\d 1f g ¼ PH F[ d0f g ¼ a=2

This gives d 1 ¼ Fn1�1;n2�1;1�a
2
and d0 ¼ Fn1�1;n2�1;a=2: The LR test is, there-

fore, given as

/ x; yð Þ ¼
1 if s21

s22
\Fn1�1;n2�1;1�a=2

or s21
s22
[Fn1�1;n2�1;a=2

0 otherwise

8>><>>:
Example 4.6 Let X1;X2; . . .;Xn1 and Y1; Y2; . . .Yn2 be two independent samples
drawn from N l1; r

2
1

� �
and N l2; r

2
2

� �
; respectively. Obtain the likelihood ratio test of

(a) H : l1 ¼ l2 against K : l1 6¼ l2 when r21 and r22 are known
(b) H : l1 ¼ l2 against K : l1 6¼ l2 when r21 ¼ r22 ¼ r2 but unknown
(c) H : l1 � l2 against K : l1\l2 when r21 ¼ r22 ¼ r2 but unknown

Solution

(a) Here, h ¼ l1; l2;r
2
1; r

2
2

� �
H0 ¼ l1 ¼ l2 ¼ lð Þ;�1\l\1f g
H ¼ l1; l2ð Þ;�1\li\1; i ¼ 1; 2f g

p x; yjhð Þ ¼ 2pð Þ�
n1 þ n2

2 r�n1
1 r�n2

2 e
� 1

2r2
1

Pn1
i¼1

Xi�l1ð Þ2� 1
2r2

2

Pn2
i¼1

yi�l2ð Þ2

ML estimators of l1 and l2 under H are given as
l_1 ¼ �x and l_2 ¼ �y
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Sup
l1;l2ð Þ2H

p x; yjhð Þ ¼ 2pð Þ�
n1 þ n2

2 r�n1
1 r�n2

2 e
� 1

2r2
1

Pn1
i¼1

xi��xð Þ2� 1
2r2

2

Pn2
i¼1

yi��yð Þ2

Under l 2 H0;

p x; yjlð Þ ¼ 2pð Þ�
n1 þ n2

2 r�n1
1 r�n2

2 e
� 1

2r2
1

Pn1
i¼1

Xi�lð Þ2� 1
2r2

2

Pn2
i¼1

yi�lð Þ2

On taking log, we get

log p x; yjlð Þ ¼ k � 1
2r21

X
xi � lð Þ2 � 1

2r22

X
yi � lð Þ2;

where k is a constant which is independent of l.
The ML estimator for l is obtained as

d
dl

log p x; yjlð Þ ¼ 0

) 1
r21

Xn1
1

xi � lð Þþ 1
r22

X
yi � lð Þ ¼ 0

) 1
r21

n1�xþ 1
r22

n2�y ¼ n1
r21

þ n2
r22

� �
l

) l_H ¼
n1�x
r21

þ n2�y
r22

n1
r21

þ n2
r22

¼
r21
n1
�yþ r22

n2
�x

r21
n1

þ r22
n2

:

This gives

Sup
l1;l2ð Þ2H0

p x; yjhð Þ ¼ 2pð Þ�
n1 þ n2

2 r�n1
1 r�n2

2 e
� 1

2r2
1

Pn1
i¼1

xi�l
_

H

� �2

� 1
2r2

2

Pn2
i¼1

yi�l
_

H

� �2

LR test L(x, y) is given as

L x; yð Þ ¼ e
� 1

2r2
1

P
xi��xð Þ2 þ n1 �x�l

_

H

� �2

 �

� 1
2r2

2

P
yi��yð Þ2 þ n2 �y�l

_

H

� �2

 �

e
� 1

2r2
1

P
xi��xð Þ2� 1

2r2
2

P
yi��yð Þ2

¼ e
� n1

2r2
1

�x�l
_

H

� �2

� n2
2r2

2
�y�l

_

H

� �2
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Now, �x� l_H

� �2
¼

r2
1

n1
�x��yð Þ

r2
1

n1
þ r2

2
n2

" #2

�y� l_H

� �2
¼

r22
n2

�y� �xð Þ
r21
n1

þ r22
n2

24 352

) n1
r21

ð�x� l_HÞ2 þ
n2
r22

ð�y� l_HÞ2 ¼ ð�x� �yÞ2 r21
n1

þ r22
n2

� ��1

Thus, L x; yð Þ ¼ e
�1

2

r2
1

n1
þ r2

2
n2

� ��1

�x��yð Þ2

The rejection region L x; yð Þ\C gives

� 1
2

r21
n1

þ r22
n2

� ��1

�x� �yð Þ2\C1

or;
�x� �yð Þ2
r21
n1

þ r22
n2

0@ 1A[C2

or;
�x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
							

							[C3

We know that under H : l1 ¼ l2;
�x��yffiffiffiffiffiffiffiffiffiffi
r2
1

n1
þ r2

2
n2

q � N(0, 1). Hence, the likelihood ratio

test has critical region

x ¼ x; yð Þ : �x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
							

							[C3

8><>:
9>=>;;

where C3 is such that

PH
�x� �yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21
n1

þ r22
n2

q
							

							[C3

264
375 ¼ a

This gives C3 ¼ sa
2
:
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Finally, the LR test is given as

/ �x;�yð Þ ¼
1 if j�x��yjffiffiffiffiffiffiffiffiffiffi

r2
1

n1
þ r2

2
n2

q [ sa
2

0 Otherwise

8<:
(b) Here h ¼ l1; l2; r

2
1; r

2
2

� �
H0 ¼ l; r2

� �
;�1\l\1; r2 [ 0

� 
H ¼ l1; l2; r

2
� �

;�1\li\1; r2 [ 0; i ¼ 1; 2
� 

For l1; l2; r
2ð Þ 2 H;

p x; yjl1;l2; r2
� � ¼ 1

2pr2

� �n1 þ n2
2

e
� 1

2r2

Pn1
1

xi�l1ð Þ2 þ
Pn2
1

yi�l2ð Þ2

 �

On taking log, we get

log p ¼ � n1 þ n2
2

log 2pr2
� �� 1

2r2
Xn1
1

xi � l1ð Þ2 þ
Xn2
1

yi � l2ð Þ2
" #

The ML estimators for l1;l2; r
2ð Þ 2 H are given as

d log p
dl1

¼ 0 ) l_1 ¼ �x

d log p
dl2

¼ 0 ) l_2 ¼ �y

d log p
dr2

¼ 0 ) r_
2 ¼

P
xi � �xð Þ2 þ P

yi � �yð Þ2
n1 þ n2

) Sup
l1;l2;r2ð Þ2H

p x; yjl1; l2; r2
� � ¼ 1

2p

� �n1 þ n2
2

r_
2

� �� n1 þ n2ð Þ
2

e�
1
2 n1 þ n2ð Þ

For l; r2ð Þ 2 H0;

p x; yjl; r2� � ¼ 1
2pr2

� �n1 þ n2
2

e
� 1

2r2

Pn1
1

xi�lð Þ2 þ
Pn2
1

yi�lð Þ2

 �

) log p ¼ � n1 þ n2
2

log 2pr2
� �� 1

2r2
Xn1
1

xi � lð Þ2 þ
Xn2
1

yi � lð Þ2
" #
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Now,

d log p
dl

¼ 0 ) l_H ¼ n1�xþ n2�y
n1 þ n2

d log p
dr2

¼ 0 ) r_
2
H ¼ 1

n1 þ n2

Xn1
1

xi � l_H

� �2
þ
Xn2
1

yi � l_H

� �2" #

¼ 1
n1 þ n2

Xn1
1

xi � �xð Þ2 þ n1 �x� l_H

� �2
þ
Xn2
1

yi � �yð Þ2 þ n2 �y� l_H

� �2" #

Here, �x� l_H

� �2
¼ �x � n1�x þ n2�y

n1 þ n2

� �2
¼ n2 �x��yð Þ

n1 þ n2

n o2

�y� l_H

� �2
¼ �y� n1�xþ n2�y

n1 þ n2

� �2

¼ n1 �y� �xð Þ
n1 þ n2

� �2

This gives

r_
2
H

� �
¼ 1

n1 þ n2

Xn1
1

xi � �xð Þ2 þ n1
n2 �x� �yð Þ
n1 þ n2

� �2

þ
Xn2
1

yi � �yð Þ2 þ n2
n1 �y� �xð Þ
n1 þ n2

� �2
" #

¼ 1
n1 þ n2

Xn1
1

xi � �xð Þ2 þ
Xn2
1

yi � �yð Þ2 þ n1n2
n1 þ n2

�x� �yð Þ2
" #

Therefore, Sup
l;r2ð Þ2H0

p x; yjl;r2ð Þ ¼ 1
2p

� �n1 þ n2
2 r_H

2
� �� n1 þ n2ð Þ

2
e�

1
2 n1 þ n2ð Þ

Hence we get,

L x; yð Þ ¼
Sup

l;r2ð Þ2H0

p x; yjl; r2ð Þ

Sup
l1;l2;r2ð Þ2H

p x; yjl1; l2;r2ð Þ

¼ r_
2

r_
2
H

 !n1 þ n2
2

¼
Pn1

1 xi � �xð Þ2 þ Pn2
1 yi � �yð Þ2Pn1

1 xi � �xð Þ2 þ Pn2
1 yi � �yð Þ2 þ n1n2

n1 þ n2
�x� �yð Þ2

¼ 1

1þ n1n2 �x � �yð Þ2

n1 þ n2ð Þ Pn1
1 xi � �xð Þ2 þ Pn2

1 yi � �yð Þ2
n o

2666664

3777775
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¼ 1

1þ �x��yð Þ2
1
n1

þ 1
n2ð Þ n1 þ n2�2ð Þ

Pn1
1

xi��xð Þ2 þ
Pn2

1
yi��yð Þ2f g

n1 þ n2�2ð Þ

266664
377775

We know, �X�N l1;
r2
n1

� �
and �Y �N l2;

r2
n2

� �
�X � �Y �N l1 � l2; r

2 1
n1

þ 1
n2

� �� �

Thus,
�X��Y� l1�l2ð Þ

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

� �r �N 0; 1ð Þ

Again, 1
r2
P

Xi � �Xð Þ2 � v2n1�1

and 1
r2
P

Yi � �Yð Þ2 � v2n2�1:

Therefore, 1
r2
P

Xi � �Xð Þ2 þ P
Yi � �Yð Þ2

h i
� v2n1 þ n2�2

Thus, under H : l1 ¼ l2;

t ¼
�X � �Yð Þ. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1
þ 1

n2
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r2
P

Xi � �Xð Þ2 þ P
Yi � �Yð Þ2

h i
1

n1 þ n2�2

r � tn1 þ n2�2;

or; t ¼ �x� �yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n1
þ 1

n2

� �
	 s2

r � n1 þ n2 � 2

where s2 ¼
P

xi ��xð Þ2 þ
P

yi ��yð Þ2
n1 þ n2�2 ¼ n1 � 1ð Þs21 þ n2 � 1ð Þs22

n1 þ n2 � 2

So, L x; yð Þ ¼ 1
1þ t2

n1 þ n2�2

Thus, the rejection region L x; yð Þ\C gives

1þ t2

n1 þ n2 � 2
[C1

or; t2 [C2

or; tj j[C3

Therefore, the LR test is given as tj j[C3;where C3 is obtained as
PH tj j[C3½ � ¼ a:
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This gives C3 ¼ tn1 þ n2�2; a=2: Hence, LR test is given as

/ x; yð Þ ¼
1 if �x��yj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1

þ 1
n2

� �
s

r [ tn1 þ n2 � 2;a=2

0 Otherwise

8><>:
(c) Proceeding similarly as in (b), for testing H : l1 � l2 against K : l1\l2 the

LR test is given as

/ x; yð Þ ¼
1 if �x��yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1

þ 1
n2

� �
s

r \� tn1 þ n2 � 2;a

0 Otherwise

8><>:
Example 4.7 Suppose xij �N li; r

2ð Þ; j ¼ 1 1ð Þni; i ¼ 1 1ð Þk independently. This is
one-way classified data.

We are to find LR test for H : l1 ¼ l2 ¼ 	 	 	 ¼ lk against K: l
0
i are not all equal.

Answer Here, h ¼ l1; l2; . . .lk; r
2ð Þ andH ¼ h : �1\li\1; i ¼ 1 1ð Þk;f

r2 [ 0g: Observe that H[K ¼ H: Likelihood functions ¼ p x=hð Þ ¼

2pð Þ�n 2= r�ne
� 1

2r2

Pk
1

Pni
1

xij�lið Þ2
; n ¼Pk

1 ni:

Likelihood ratio is L xð Þ ¼
Sup
h2H

p x=hð Þ
Sup
h2H

p x=hð Þ ¼
p x=hH

� �
p x=hð Þ ;

where h and hH are, respectively, the MLEs of h 2 Hð Þ and h 2 Hð Þ:
Now, h 2 H) MLEs are li ¼ �xi ¼ 1

ni

Pni
1
xij

as
@ log p x=h

� �
@li

¼ 0 ) li ¼ �xi


 �
r2 ¼ 1

n

Xk
1

Xni
1

xij � �xi
� �2¼ within S:S:

n
¼ W

n
: sayð Þ:

Here
@ log p x=h

� �
@r2

¼ 0 ) r2 ¼ 1
n

Xk
1

Xni
1

xij � �xi
� �2" #

Again h 2 H ) h ¼ l; r2ð Þ; where l is the common value of li ’s.
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Here, we have MLEs

lH ¼ 1
n

Xk
1

Xni
1

xij ¼ 1
n

Xk
1

ni�xi ¼ x; sayð Þ

r2H ¼ 1
n

Xk
1

Xni
1

xij � x
� �2 ¼ Total S:S:

n
¼ T

n

¼ 1
n

W þ
Xk
1

ni �xi � x
� �2" #

¼ W þB
n

B ¼
Xk
1

ni �xi � x
� �2 ¼ Between meansð Þ S:S

" #
:

Hence, we get p x ĥ
.� �

¼ 2pð Þ�n=2 rð Þ�ne�
n
2:

p x ĥH
.� �

¼ 2pð Þ�n 2= r̂Hð Þ�ne�
n
2

So, L xð Þ ¼ r̂2

r̂2H

� �n 2=
and therefore reject H iff L xð Þ\c;PH L xð Þ\cf g ¼

a 2 0; 1ð Þ 0\ c\ 1ð Þ

, r̂2H
r2

[ c0 , W þB
W

[ c0 , B
W

[ c00

, T� ¼
B=k � 1
W=n� k

[ c000

The size condition now reduces to PH T� [ c000f g ¼ a under H.
Under H, T� �F k � 1; n� kð Þ

)c000 ¼ Fa; k�1;n�kð Þ

So, our LR test is
B=k � 1
W=n� k

[Fa; k�1;n�kð Þ as rejection of H.

Note It is the same as ANOVA test.
Special case: (i) l ¼ l0 (given)

L xð Þ ¼ r̂2

r̂H 2

� �n=2
¼

Pk
1

Pni
1 xij � �xi
� �2Pk

1

Pni
1 xij � l0
� �2

" #n=2

¼ W

W þ Pk
1 ni �xi � l0ð Þ2

" #n=2
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Test reduces to reject H iff

T�� ¼
1
k

Pk
1 ni �xi � l0ð Þ2
W=ðn� kÞ

[Fa; k;n�kð Þ

(ii) Common value is unknown lð Þ but r2 ¼ r20 is known.

L xð Þ ¼
exp � 1

2r20

Pk
1

Pni
1

xij � ��x
� �2� �

exp � 1
2r20

Pk
1

Pni
1

xij � �xi
� �2� � ¼

exp � 1
2r20

ðBþWÞ
n o
exp � W

2r20

n o
¼ exp � B

2r20

� �
Hence LR test is: reject H iff

B
r20

[ v2a;k�1:

(iii) If min n1; n2; . . .; nkð Þ is large, we can approximate the distribution of
�2 log L xð Þ by v2—distribution with d.f. k − 1.

Note The above hypothesis is equivalent to homogeneity of k univariate normal
population.

Example 4.8

Suppose xij �N li; r
2
i

� �
; j ¼ 1 1ð Þni; i ¼ 1 1ð Þk independently:

Obtain the likelihood ratio test of H : r21 ¼ r22 ¼ r23 ¼ 	 	 	 ¼ r2k against K: not
all ri’s are equal.

Answer h ¼ l1;l2; . . .; lk; r
2
1; r

2
2; . . .; r

2
k

� �
H ¼ h : �1\li\1; r2i [ 0; i ¼ 1 1ð Þk� 

Likelihood function = p x=h
� � ¼ 2pð Þ�n=2Qk

i¼1
r2ið Þ

ni
2

Qk
i¼1 e

� 1
2r2

i

Pni
xij�lið Þ2

8<:
9=;; n ¼Pk ni


 �
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Now,
@ log p x=hð Þ

@li
¼ 0 ) �2

2r2i

Pni
j¼1 xij � li
� � �1ð Þ ¼ 0 ) l̂i ¼ �xi


 �
and

@ log p x=h
� �

@r2i
) �ni

2r2i
þ 1

2r4i

Xni
j¼1

xij � li
� �2¼ 0

) r̂2i ¼
1
ni

Xni
j¼1

xij � �xi
� �2 ¼ ni � 1

ni
s2i

Hence, for h 2 H we get p x
.̂
h

� �
¼ 2pð Þ�n=2Qk

i¼1 r̂2i
� ��ni

2

¼ Sup
h2H

p x=h
� �� �

Under H, p x=h
� �

reduces to

p x=h
� � ¼ 2pð Þ�n=2r�ne

� 1
2r2

Pk Pni
xij�lið Þ2

;

where from we get l_iH ¼ �xi and r_
2
H ¼ 1

n

Pk Pni
xij � �xi
� �2 ¼ 1

n

Pk
ni � 1ð Þs2i

Hence, Sup
h2H

p x=h
� � ¼ p x

.̂
hH

� �
¼ 2pð Þ�n=2 r̂2H

� ��n=2
e�n=2

Hence, likelihood ratio is

L xð Þ ¼ r̂2H
� ��n=2Qk
i¼1 r̂2ið Þ

�ni
2

¼
Qk

i¼1
ni�1ð Þs2i

ni

n oni
2

1
n

Pk
i¼1 ni � 1ð Þs2i

h in=2 :
The distribution of the statistic obtained in L xð Þ is difficult to calculate.

Therefore, we could only say about its asymptotic distribution, i.e. �2 loge L xð Þ:

So;�2 loge L xð Þ ¼ n loge

Pk
i¼1 ni � 1ð Þs2i

n
�
Xk
i¼1

ni loge
ni � 1ð Þ
ni

s2i

is distributed as v22k� kþ 1ð Þ¼k�1 for large ni’s.

It has been suggested by Bartlett (1937) that the above approximation to
Chi-square for large n can be improved if we replace the ML estimators of r2 ’s by
unbiased estimators, i.e. if we replace ni by ni � 1 and n by n − k in the above
expression. So,
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�2 loge L xð Þ ¼ n� kð Þ loge
Pk

i¼1 ni � 1ð Þs2i
n� k

�
Xk
i¼1

ni � 1ð Þ loge s2i

¼
Xk
i¼1

ni � 1ð Þ loge
s2

s2i
; where s2 ¼

Pk
i¼1 ni � 1ð Þs2iPk
i¼1 ni � 1ð Þ

Bartlett has also suggested that Chi-square approximation will hold goof for ni as
low as four or five if the above statistic is divided by t; where

t ¼ 1þ 1
3 k � 1ð Þ

Xk
i¼1

1
ni � 1

� 1Pk
i¼1 ni � 1ð Þ

" #

Hence, T ¼
PK

i¼1
ni�1ð Þ loges2s2

i
t � v2k�1

So, we reject H approximately at level a iff

T [ v2k�1;a

It is noted that the rapidity of convergence for this statistic T towards v2 is
greater than that of �2 loge L xð Þ:
Example 4.9 X1;X2. . .Xn are i.i.d. with density 1

r e
�1

r x�lð Þ for x� l: Find the LR
test for testing

I. H : l ¼ l0 against K: l 6¼ l0
II. H : r ¼ r0 against K: r 6¼ r0

Solution

I. Likelihood function

p x=l; r
� �

¼ 1
rn

e
�1

r

Pn
i

xi�lð Þ
if xi [ l8i

¼ 0 otherwise

MLEs of l and r are given as
l̂ ¼ y1; y1 ¼ 1st order statistic

r̂ ¼ 1
n

Pn
i¼1

yi � y1ð Þ; y1\y2 	 	 	\yn are the order statistics of x1; x2. . .; xn:

Then

Sup
l;r

p x=l; r

� �
¼ p x=̂l; r̂

� �
¼ r̂ð Þ�ne�n
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Under H, p x=l; r
� �

reduces to

p x=l0; r

� �
¼ r�ne

�1
r

Pn
i

xi�l0ð Þ

) MLE of r is r̂H ¼ 1
n

Pn
i

xi � l0ð Þ ¼ 1
n

Pn
i

yi � l0ð Þ

Then Sup
l;r2H

p x=l; r

� �
¼ p x=l0; r̂H

� �
¼ r̂Hð Þ�ne�n

Then likelihood ratio is given as

L xð Þ ¼
Sup
l;r2H

p x=l; r

� �
Sup
l;r

p x=l; r

� � ¼ r̂
r̂H

� �n

Now, reject H iff

L xð Þ\C ,
P

yi � y1ð ÞP
yi � l0ð Þ\c

,
P

yi � y1ð ÞP
yi � y1ð Þþ n y1 � l0ð Þ\c , n y1 � l0ð ÞP

yi � y1ð Þ [ c0

Under

H : l ¼ l0
n y1 � l0ð Þ=2P
yi � y1ð Þ=2n� 2

�F2;2n�2:

Hence, we reject H iff

T ¼
n=2 y1 � l0ð ÞP
yi � y1ð Þ= 2n� 2ð Þ

[Fa;2;2n�2

II. As earlier, it can be shown that the test has acceptance region as

c1\T ¼ 1
r0

Xn
i

yi � y1ð Þ\c2;
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where c1 and c2 are determined that

PH c1\v22n�2\c2
�  ¼ 1� a

PH c1\v22n\c2
�  ¼ 1� a

Example 4.10 Let X11;X21ð Þ; X12;X22ð Þ. . .; X1n;X2nð Þ be a random sample from a
bivariate normal distribution with means l1 and l2, variances r

2
1 and r22 and cor-

relation coefficient q. Find the likelihood ratio test of
H : q ¼ 0 against K : q 6¼ 0

Solution

Here, h ¼ l1;l2; r
2
1; r

2
2; q

� �
H ¼ l1; l2; r

2
1; r

2
2; q

� �
: �1\li\1; r2i [ 0;�1\q\1; i ¼ 1; 2

� 
H0 ¼ l1; l2; r

2
1; r

2
2; q

� �
: �1\li\1; r2i [ 0; q ¼ 0; i ¼ 1; 2

� 
In H, ML estimators for l1; l2; r

2
1; r

2
2 and q are

l_1 ¼ �x1; l
_

2 ¼ �x2; r
_2
1 ¼ 1

n

P
x1i � �x1ð Þ2; r_2

2 ¼ 1
n

P
x2i � �x2ð Þ2: and q

_ ¼P
x1i��x1ð Þ x2i��x2ð ÞP

x1i��x1ð Þ2
P

x2i��x2ð Þ2f g1=2
¼ r.

Thus,

Sup
h2H

p xjhð Þ ¼ 2pr_1r
_

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� ��n
e
� 1

2 1�r2ð Þ
nr̂2

1
r̂2
1
þ nr̂2

2
r̂2
2
�2r:n:r

h i
¼ 2pr_1r

_

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p� ��n
e�n

In Ho; ML estimators for l1; l2; r
2
1 and r22 are

l_1H ¼ �x1; l
_

2H ¼ �x2; r
_2
1H ¼ 1

n

X
x1i � �x1ð Þ2; r_2

2H ¼ 1
n

X
x2i � �x2ð Þ2

Thus, Sup
h2H

p xjhð Þ ¼ 2pr_1Hr
_

2H

� ��n
e
�1

2

nr̂2
1H

r̂2
1H

þ nr̂2
2H

r̂2
2H

h i

¼ 2pr_1Hr
_

2H

� ��n
e�n

Hence, the LR is given as

L xð Þ ¼
Sup
h2H0

p xjhð Þ
Sup
h2H

p xjhð Þ ¼ 1� r2
� �n=2
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The LR critical region is given as

L xð Þ\C

or; 1� r2
� �n=2

\C

or; 1� r2\C1

or; r2 [C2

or; rj j[C3;

where C3 is obtained as

PH rj j[C3½ � ¼ a

Thus, the test of H : q ¼ 0 against K : q 6¼ 0 is based on r, the distribution of the
sample correlation coefficient and its distribution for q ¼ 0 is symmetric about 0.

Thus, PH r\� C3½ � ¼ PH r[C3½ � ¼ a=2
Equivalently, the critical region for H : q ¼ 0 against K : q 6¼ 0 is

rj j ffiffiffiffiffiffiffiffiffiffiffin� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p [ k:

Since r
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffi
1�r2

p has the t-distribution with (n − 2) d.f. when q ¼ 0, the constant k is

given as

PH
rj j ffiffiffiffiffiffiffiffiffiffiffin� 2
pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p [ k


 �
¼ a:

This gives k ¼ tn�2;a=2:

Note For example, if n = 4 and a = 0.05 then

Z�c3

�1

1
2
dr ¼

Z1
c3

1
2
dr ¼ 0:025

gives C3 = 0.95. Hence, H is rejected at 5 % level of significance if r based on a
sample of size four is such that rj j[ 0:95:

Example 4.11 Let X1;X2; . . .;Xn be a random sample form density f xð Þ ¼
1
k e
�x=k; x[ 0; k[ 0: Find the likelihood ratio test ofH : k ¼ k0 against K : k 6¼ k0:
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Solution Here, h ¼ kð Þ;H ¼ k : k[ 0f g

H0 ¼ k : k ¼ k0f g
In H, MLE of k is k

_ ¼ �x
Thus, the LR test is

L xð Þ ¼
Sup
H0

p xjkð Þ
Sup
H

p xjkð Þ ¼
1
kno
e
�n�x
k0

1
�xn :e

�n
¼ �xn

kn0
e
�n�x
k0 :en

The rejection region L xð Þ\C gives

�xne�n�x=k0\C1;

writing g �xð Þ ¼ �xne
�n�x
k0 :

It shows that the curve y ¼ g �xð Þ has single maximum at �x ¼ k0 and the shape of
the curve is

The graph shows the critical regions 0\�x\d0 or d1\�x\1 corresponding to
the critical region L xð Þ\C: The constants d0 and d1 are obtained by the size
condition

PH d0\�x\d1½ � ¼ 1� a:

In this problem, X �G 1; kð Þ

Mx tð Þ ¼ 1� ktð Þ�1

) M�x tð Þ ¼ 1� kt
n

� ��n

Thus, �X�G n; kn
� �

; i.e. f �xð Þ ¼ 1
C nð Þ

n
k

� �n
e�

n�x
k 	 �xn�1:

One can find the values of d0 and d1 from the gamma distribution table under H0.
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Chapter 5
Interval Estimation

5.1 Introduction

Inpoint estimation when a random sample X1;X2; . . .;Xnð Þ is drawn from a popu-
lation having distribution function Fh and h is the unknown parameter (or the set of
unknown parameter). We try to estimate the parametric function c hð Þ by means of a
single value, say t, the value of a statistic T corresponding to the observed values
x1; x2; . . .; xnð Þ of the random variables X1;X2; . . .;Xnð Þ. This estimate may differ
from the exact value of c hð Þ in the given population. In other words, we take t as an
estimate of c hð Þ such that t� c hð Þj j is small with high probability. In the point
estimate we try to choose a unique point in the parameter space which can rea-
sonably be considered as the true value of the parameter. Instead of unique estimate
of the parameter we are interested in constructing a family of sets that contain the
true (unknown) parameter value with a specified (high) probability. In many
problems of statistical inference we are not interested only in estimating the
parameter or testing some hypothesis concerning the parameter, we also want to get
a lower or an upper bound or both, for the real-valued parameter. Here two limits
are computed from the set of observations, say t1 and t2 and it is claimed with a
certain degree of confidence (measured in probabilistic terms) that the true value of
c hð Þ lies between t1 and t2. Thus we get an interval ðt1; t2Þ which we expect would
include the true value of c hð Þ. So this type of estimation is called intervalestimation.
In this chapter we discuss the problem of interval estimation.

5.2 Confidence Interval

An interval depending on a random variable X is called a random interval. For
example, (X, 2X) is a random interval. Note that, 1

2 � X � 1 , X � 1 � 2X:
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A confidence interval (CI) of h is a random interval which covers the true value
of the parameter h with specified degrees of confidence (assurance). In other words,
a random interval I Xð Þ ¼ h Xð Þ; h Xð Þ� �

satisfying

Prh h 2 I X�

� �n o
� 1� a 8 h 2 H ð7:1Þ

will be a confidence interval for θ at confidence level (1 − α). If equality in (7.1)
holds then (1 − α) will be called confidence coefficient. h Xð Þ and h Xð Þ are the lower
and upper confidence limits respectively.

Let I Xð Þ ¼ h Xð Þ;1½ � be a random interval such that Prh h 2 I Xð Þf g ¼
Prh h � h Xð Þf g � 1� a 8 h 2 H: Then h Xð Þ is called the lower confidence bound
of θ at confidence level (1 − α). Similarly we can define upper confidence bound
h Xð Þ such that Prh h 2 I Xð Þf g ¼ Prh h� h Xð Þ� � � 1� a 8 h 2 H; corresponding

to a random interval I Xð Þ ¼ �a; h Xð Þ� �
:

Remark 1 In making the probability statement we do not mean θ is a random
variable. Indeed, θ is a constant. All that is meant here is that the probability is
(1 − α) that the random interval h Xð Þ; h Xð Þ� �

will cover θ whatever the true value
of θ may be. More specifically, it is asserted that about 100(1 − α)% statements of
the form h 2 h Xð Þ; h Xð Þ� �

should be correct.

Remark 2 In thepoint estimation, we choose an estimate, say bh xð Þ; on the basis of a
sample x

�
such that the difference bh x

�

� �
� h

���
��� is small with high probability. In other

words, in the point estimator we try to choose a unique point in the parameter space
which can reasonably be considered as the true value of theparameter. On the other

hand, in the interval estimation, we choose a subset of the parameter space, say I x
�

� �
;

on the basis of a sample x
�
which reasonably includes the true value of the parameter.

More specifically in interval estimation, we choose an interval I x
�

� �
; such that

Prh h 2 I x
�

� �n o
� 1� a 8 h:

5.3 Construction of Confidence Interval

Method I

A simple procedure for finding a confidence interval

Let T be a statistic and W T; hð Þ be a function of T and θ. Suppose the distribution of
W T; hð Þ is free from θ. Then it is always possible to choose two constants K1 and K2

K1 � K2ð Þ such that
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Pr w T; hð Þ\K1f g\a1 and Pr w T ; hð Þ [ K2f g\a2 where a1; a2 [ 0 and
a1 þ a2 ¼ a:

Hence Pr K1 �w T ; hð Þ�K2f g � 1� a1 þ a2ð Þ ¼ 1� a:
Suppose it is possible to convert the inequality K1 �w T ; hð Þ�K2 into the form

h Tð Þ� h� h Tð Þ:
Then Pr h Tð Þ� h� h Tð Þ� � � 1� a: This fact gives us a (1 −α) level confidence

interval for θ.

Example 5.1 Let X1;X2; . . .;Xn be a random sample form N l; r2ð Þ. Find 1� að Þ
level confidence interval for l when (i) r2 is known and (ii) when r2 is unknown.

Solution (i) Suppose r2 is known.

We take w T ; hð Þ ¼
ffiffi
n

p
�x�lð Þ
r which is an N 0; 1ð Þ variate. Hence the distribution of

w T ; hð Þ is independent of h. We can choose k1 and k2 from N 0; 1ð Þ such that

P s1�a1 �
ffiffiffi
n

p
�x� lð Þ
r

� sa2


 �
¼ 1� a1 þ a2ð Þ ¼ 1� a

So, �x� sa2
rffiffi
n

p ;�x� s1�a1
rffiffi
n

p
h i

is a 1� að Þ level confidence interval for l if r is

known.
(ii) Suppose r2 is unknown:

We take w T ; hð Þ ¼
ffiffi
n

p
�x�lð Þ
s which is student’s t statistic with d.f n� 1ð Þ where

s2 ¼ 1
n�1

P
xi � �xð Þ2: The distribution of w T ; hð Þ is independent of h. Again we

choose k1 and k2 using a t-distribution with (n − 1) d.f such that

P tn�1;1�a1 �
ffiffiffi
n

p
�x� lð Þ
s

� tn�1;a2


 �
¼ 1� a1 þ a2ð Þ ¼ 1� a

) P �x� tn�1;a2
sffiffiffi
n

p � l��x� tn�1;1�a1
sffiffiffi
n

p

 �

¼ 1� að Þ:

So �x� tn�1;a2
sffiffi
n

p ;�x� tn�1;1�a1
sffiffi
n

p
h i

is a 1� að Þ level confidence interval for l, if
r2 is unknown.

Example 5.2 Let X1;X2; . . .;Xn be a random sample from N l; r2ð Þ. Find 1� að Þ
level confidence interval for r2 when (i) l is known and (ii) l is unknown.

Solution (i) Suppose l is known.

We take w T ; hð Þ ¼
P

xi�lð Þ2
r2 which is distributed as v2 with n d.f. Thus its

distribution is independent of h. We can choose k1 and k2 from v2 distribution with
n d.f such that
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P v2n;1�a1 �
P

xi � lð Þ2
r2

� v2n;a2

" #
¼ 1� a1 þ a2ð Þ ¼ 1� a

) P

P
xi � lð Þ2
v2n;a2

� r2 �
P

xi � lð Þ2
v2n;1�a1

" #
¼ 1� a

Thus
P

xi�lð Þ2
v2n;a2

;

P
xi�lð Þ2

v2n;1�a1

� 
is 100(1 − a)% confidence interval of r2 when l is

known. (ii) Suppose l is unknown.

We take the function w T ; hð Þ ¼
P

xi��xð Þ2
r2 which is distributed as v2 with (n − 1)

d.f. This distribution is independent of h. Proceeding as in (i),P
xi��xð Þ2

v2n�1;a2

;

P
xi��xð Þ2

v2n�1;1�a1

� 
is 100 1� að Þ% confidence interval of r2 when l is

unknown.

Example 5.3 Let X1;X2; . . .;Xn be a random sample from density function f x hjð Þ ¼
1
h

� �
; 0\ x\ h: Find 100 1� að Þ% confidence interval of h.
Solution The likelihood function is L ¼ 1

hn. This is maximum when h is the
smallest; but h cannot be less than x nð Þ, the maximum of sample observations. Thus

h
_ ¼ x nð Þ:

The p.d.f of h
_

is given by

h h
_

� �
¼ nh

_n�1

hn
; 0\h

_

\h:

Let u ¼ x nð Þ
h ¼ h

_

h : so that g uð Þ ¼ nun�1; 0 < u < 1.
Thus the distribution of u is independent of h.
We find u1 and u2 such that

P u1 \ u\ u2½ � ¼ 1� a1 þ a2ð Þ ¼ 1� a

where
Ru1

0
g uð Þdu ¼ a1,

R1

u2

g uð Þdu ¼ a2

i.e. P u1\ h
_

h \u2


 �
¼ 1� a: ) P h

_

u2
\h\ h

_

u1


 �
¼ 1� a

Thus, maxXi
u2

; maxXi
u1

� �
is a 100 1� að Þ% confidence interval for h.

Example 5.4 X1;X2; . . .;Xn is a random sample from a G 1
h ; 1
� �

distribution having
p.d.f.
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f x/hð Þ ¼ 1
h
e�x=h; x � 0:

Find 100 1� að Þ% confidence interval of h.

Solution Let t =
Pn

i¼1
xi

h ¼ n�x
h which is a G(1, n) variate having p.d.f. g

(t) = 1
C nð Þ e

�ttn�1; 0� t\1:

Thus the distribution of t is independent of h. We find k1 and k2 such that

P k1\t ¼ n�x
h
\k2


 �
¼ 1� a1 þ a2ð Þ ¼ 1� a

where

Zk1

0

g tð Þdt ¼ a1;
Z1

k2

g tð Þdt ¼ a2

i.e.

P
n�x
k2

\h\
n�x
k1


 �
¼ 1� a

Method 2: Confidence based methods: A general approach:

Let T be a statistic and t1 hð Þ and t2 hð Þ be two quantities such that Pr T\t1 hð Þf g\a1
and Pr T [ t2 hð Þf g\a2; a1; a2 [ 0; a1 þ a2 ¼ a: The equation T ¼ t1 hð Þ and
T ¼ t2 hð Þ give us two curves as

θ(t) B(t,θ(t))

θ
2T = t (θ)

θ(t) A(t, θ(t))

Suppose t be the observed value of the statistic T. Draw a perpendicular at
T = t. It intersects the curves at A and B. Suppose the co-ordinates of A and B are
t; h tð Þð Þ and t; �h tð Þ� �

respectively. According to the construction

t1 hð Þ� T � t2 hð Þ , h tð Þ� h� �h tð Þ:

) Pr t1 hð Þ� T � t2 hð Þ½ � ¼ Pr h tð Þ� h� �h Tð Þ� � � 1� a:

This fact gives us 1� að Þ level Confidence Interval for h.
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Note 1: To avoid the drawing one may consider inverse interpolation formula.
Note 2: If the L.H.S’s of the Eq. (7.1) can be given explicit expression in terms of h
and if the equations can be solved for h uniquely, then roots are the confidence
limits for h at confidence level 1� að Þ.
Example 5.5 Let X1;X2; . . .;Xn be a random sample from density function f x hjð Þ ¼
1
h ; 0\x\h: Find 100 1� að Þ% confidence interval of h.

Solution The likelihood function is L ¼ 1
hn : This is maximum when h is the

smallest; but h cannot be less than x nð Þ; the maximum of sample observations. Thus

h
_ ¼ x nð Þ:

The p.d.f of h
_

is given by

h h
_

� �
¼ nh

_n�1

hn
; 0\h

_

\h:

We find k1 hð Þ and k2 hð Þ such that

P k1 hð Þ\h
_

\k2 hð Þ
h i

¼ 1� a1 þ a2ð Þ ¼ 1� a

where

Zk1ðhÞ

0

h ĥ
� �

dĥ = a1 ð7:2Þ

and

Zh

k2ðhÞ

h ĥ
� �

dĥ = a2 ð7:3Þ

From (7.2), ĥn

hn�k1 hð Þ
0 ¼ a1 or, k1 hð Þ ¼ h a1ð Þ1=n

From (7.3), ĥ
n

hn�hk2 hð Þ ¼ a2 or, 1 − k2 hð Þ½ �n
hn ¼ a2 or, k2 hð Þ ¼ h 1� a2ð Þ1=n. Therefore,

P ha1=n1 \h
_

\h 1� a2ð Þ1=n
h i

¼ 1� a or, P ĥ
1�a2ð Þ1=n \h\ ĥ

a1ð Þ1=n
h i

¼ 1� a:

Note We can get the confidence interval of h by the Method I which is given in
Example 5.3.

Large sample confidence interval: Let the asymptotic distribution of a statistic

Tn be normal with mean h and variance r2 hð Þ
n ; then Pr s1�a1 � Tn�hð Þ ffiffi

n
p

r hð Þ � sa2
n o

’
1� a1 þ a2 ¼ 1� a (say).

This fact gives us a confidence interval for h at confidence level 1� að Þ
approximately.
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Example 5.6 X1;X2; . . .;Xn is a large random sample from P kð Þ. Find the
100 1� að Þ% confidence interval for k.

Solution Likelihood function is L ¼ e�nkk
Pxi

x1!x2!:::::xn!

MLE of k ¼ k
_ ¼ �x

V k
_

� �
¼ 1

�E @2 log L
@k2

� � ¼ k
n

Thus, �x�kffiffiffiffiffiffi
k=n

p ! N 0; 1ð Þ as n ! 1

Hence P s1�a1\
�x�kffiffiffiffiffiffi
k=n

p \sa2


 �
¼ 1� a1 þ a2ð Þ ¼ 1� a

) P �x� sa2
ffiffiffiffiffiffiffi
�x=n

p
\l\�x� s1�a1

ffiffiffiffiffiffiffi
�x=n

ph i
¼ 1� a

using the approximation k ¼ k̂ ¼�x in the denominator. So 100 1� að Þ% confi-

dence interval for k is from �x� sa2

ffiffiffiffiffiffi
�x=n

q
to �x� s1�a1

ffiffiffiffiffiffi
�x=n

q
.

Method 3 Method based on Chebysheff’s inequality:
By Chebysheff’s inequality, Pr T � E Tð Þj �j erT½ � [ 1� 1

e2. Now setting 1�
1
e2 ¼ 1� a; we can construct confidence interval.

Example 5.7 Consider the problem of Example 5.3. Find the 100 1� að Þ% confi-
dence interval of h by using the method of Chebysheff’s inequality.

Solution

We have E h
_

� �
¼ n

nþ 1 h and E h
_ � h

� �2
¼ h2 2

nþ 1ð Þ nþ 2ð Þ
By applying Chebysheff’s inequality we get

P
h
_ � h
���

���
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þ

2

r
\ 2

2
64

3
75 [ 1� 1

22 :

Since h
_�!p h; we replace h by h

_

and for moderately large n,

P
h
_ � h
���

���

h
_

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þ

2

r
\ 2

2
64

3
75 [ 1� 1

22 :

Choosing 1� 1
22 ¼ 1� a or 2¼ 1ffiffi

a
p : we have
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P h
_ � 1ffiffiffi

a
p h

_

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þp \h\h

_þ 1ffiffiffi
a

p h
_

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þp

" #
[ 1� a

Again 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þ

p ’ 1
n for large n and the fact that h

_� h, we have

P h
_

\h\h
_

1þ 1
n

ffiffi
2
a

q� �h i
[ 1� a: Thus h

_ ¼ max xi; max xi 1þ 1
n

ffiffi
2
a

q� �� �
is an

approximate 1� a level confidence interval for h.

5.4 Shortest Length Confidence Interval
and Neyman’s Criterion

From the above discussion, it is clear that 1� að Þ level C.I is not unique. In fact,
infinite number of C.I’s can be constructed by simple method [Because the equation
a1 þ a2 ¼ a; a1 � 0; a2 � 0 has infinite number of solution for a1; a2ð Þ]. Again
for different choice of statistic, we get different confidence intervals. For example,
in r.s. from

f x; hð Þ ¼ 1
h
e�

x
h; 0\ x\1

2
P

Xi

v22n;a


 �
is a 1� að Þ level lower confidence bound for h

[As 2X
h � v22 )

2
P

Xi

h � v22n since M.g.f. of X = 1� thð Þ�1 ) M.g.f of
2X
h ¼ 1� 2tð Þ�1 = M.g.f. of v22].
On the other hand, a 1� að Þ level confidence bound for h based on X 1ð Þ ¼ minXi

i

is 2nX 1ð Þ
v22;a

.

So we need some optimality criteria to choose one of the 1� að Þ level confi-
dence intervals.

1. Shortest length confidence interval [Wilk’s criterion]

A 1� að Þ level confidence interval I hð Þ ¼ h Tð Þ; �h Tð Þ� �
based on T will be of

shortest length if the inequality
�h Tð Þ � h Tð Þ� �h� Tð Þ � h� Tð Þ; for all h holds for every other 1� að Þ level C.I.

h� Tð Þ; �h� Tð Þ� �
based on the same statistic T.

Example 5.8 On the basis of an r.s. from N l; r2ð Þ; r2 being unknown, a 1� að Þ
level C.I. for l based on �X is given by

�X � sa2
rffiffi
n

p ; �X � s1�a1
rffiffi
n

p
h i

; a1; a2 � 0 and a1 þ a2 ¼ a: The length of the

interval is sa2 � s1�a1ð Þ rffiffi
n

p :
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To find the shortest length confidence interval, we minimize sa2 � s1�a1ð Þ
subject to a1 þ a2 ¼ a; a1; a2 � 0:

Owing to the symmetry of the distribution
ffiffi
n

p
�x�lð Þ
r about ‘0’, the quantity sa2 �

s1�a1 will be a minimum when sa=2 ¼ �s1�a1 , i.e., when a1 ¼ a2 ¼ a=2: Thus the

shortest length 1� að Þ level C.I. for l based on �x is �x� sa=2
rffiffi
n

p ;�xþ sa=2
rffiffi
n

p
h i

:

Remarks Occasionally, the length of a C.I is a random quantity. In this case, we
minimize its expected length. e.g. In random sampling from N l; r2ð Þ; (both l and
r2 are unknown), a 1� að Þ level C.I for l is given by
�X � ta2;n�1

sffiffi
n

p ; �X � t1�a1;n�1
sffiffi
n

p
h i

: This length of the C.I is ta2;n�1 � t1�a1;n�1

h i
sffiffi
n

p :

which is a random quantity.
So, to find the shortest (expected) length C.I, we minimize

ta2;n�1 � t1�a1;n�1

h i
E sð Þffiffi

n
p subject to a1; a2 � 0 and a1 þ a2 ¼ a: Owing to the sym-

metry of tn�1 distribution about ‘0’, the minimum is attained at a1 ¼ a2 ¼ a=2:
Therefore the required shortest expected length confidence interval is
�X � ta=2;n�1

sffiffi
n

p ; �Xþ ta=2;n�1
sffiffi
n

p
h i

:

Example 5.9 Consider the problem discussed in Example 5.2. On the basis of a
random sample from N l; r2ð Þ; l being known, a 1� að Þ level CI for r2 is given byP

xi�lð Þ2
v2n;a2

;

P
xi�lð Þ2

v2n;1�a1


 �
, a1; a2 � 0 and a1 þ a2 ¼ a: The length of the interval is

1
v2n;1�a1

� 1
v2n;a2


 �P
Xi � lð Þ2 which has the expected value

1
v2n;1�a1

� 1
v2n;a2

" #
nr2:

We wish to minimize 1
v2n;1�a1

� 1
v2n;a2


 �
;

subject to
Rv22

v21

f v2ð Þdv2 ¼ 1� a; where v21 ¼ v2n;1�a1 ; v
2
2 ¼ v2n;a2 and f v2ð Þ is the

p.d.f. of a chi-square r.v. with n d.f.

Now let / ¼ 1
v21
� 1

v22
þ k

Rv22

v21

f v2ð Þdv2 � 1� að Þ
2
4

3
5

where k is a Lagrangian multiplier. We get
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d/

dv21
¼ � 1

v41
� kf v21

� � ¼ 0

d/
dv22

¼ 1
v42

þ kf v22
� � ¼ 0

)k ¼ �1
v41f v21

� � ¼ � 1
v42f v22

� �

Hence v21 and v22 are such that the equation

v41f v21
� � ¼ v42f v22

� �
is to be satisfied and

Zv22

v21

f v2
� �

dv2 ¼ 1� a:

It is very difficult to find the actual values of v21 and v
2
2. In practice, the equal tails

interval,
P

xi�lð Þ2
v2
n;a=2

;

P
xi�lð Þ2

v2
n;1�a=2


 �
, is used.

Similarly if l is unknown, the equal tail confidence interval,P
xi��xð Þ2

v2
n�1;a=2

;

P
xi��xð Þ2

v2
n�1;1�a=2


 �
, is employed.

Example 5.10 Consider the problem discussed in Example in 5.3. A 1� að Þ level
C.I. for h is given by

max xi
u2

;max xi
u1

� �
; a1; a2 � 0; a1 þ a2 ¼ a: The length L of the interval is

1
u1
� 1

u2

� �
max xi.

We minimize L subject to

Zu2

u1

nun�1du ¼ un2 � un1 ¼ 1� a

This implies 1� a\un2

) 1� að Þ1=n\u2 � 1

and
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dL
du2

¼ max xi
dL
du1

du1
du2

þ 1
u22

� 

¼ max xi � 1
u21

nun�1
2

nun�1
1

þ 1
u22

� 

¼ max xi
unþ 1
1 � unþ 1

2

u22u
nþ 1
1

\0;

so that the minimum occurs at u2 ¼ 1: When u2 ¼ 1; u1 ¼ a1=n: Thus a 1� a level

confidence interval is given by max xi;max xi
.
a1=n

� �
: This confidence interval has

the smallest length among all confidence intervals for h based on max xi

2. Neyman’s criterion

Let I1 Xð Þ and I2 Xð Þ be two 1� að Þ levelconfidence intervals for h. I1 Xð Þ will be
accurate (or shorter) than I2 Xð Þ if

Ph0 h 2 I1 Xð Þf g�Ph0 h 2 I2 Xð Þf g8h; h0 2 H; h 6¼ h0 h0 ¼ true valueð Þ

A 1� að Þ level C.I. I Xð Þ is said to be most accurate (UMA) (or shortest) if
Ph0 h 2 I Xð Þf g�Ph0 h 2 I� Xð Þf g8h; h0 2 H; h 6¼ h0 for any other 1� að Þ level C.I.
I� Xð Þ.

A 1� að Þ level C.I. I Xð Þ is said to be unbiased if,

Ph0 h 2 I Xð Þf g� 1� a ¼ Ph0 h0 2 I Xð Þf g8h; h0 2 H; h 6¼ h0

i.e. Probability (containing wrong value of θ) ≤ Probability (containing true
value of θ).

Implication An unbiased confidence interval includes true value more often than
it does contain wrong value.

A 1� að Þ level unbiased C.I. I Xð Þ is said to be most accurate amongst the class
of unbiased 1� að Þ level if Ph0 h 2 I Xð Þf g�Ph0 h 2 I� Xð Þf g8h; h0 2 H;h 6¼ h0 for
any other 1� að Þ level unbiased C.I. I� Xð Þ
Relation between non randomized test and confidence interval

Theorem 5.1 Suppose A h0ð Þ denoted the acceptance region of a level a test for
testing H0 : h ¼ h0

Define S x
�

� �
¼ h= x

�
2 A hð Þ

n o

Then S x
�

� �
will be a 1� að Þ level confidence interval for h.

Proof By the construction of S x
�

� �
, we have
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x
�
2 A hð Þ , h 2 S x

�

� �

)Ph h 2 S x
�

� �n o
¼ Ph x

�
2 A hð Þ

n o
� 1� a8h:

Note The implication of this theorem is that for a fixed x
�
, the confidence region

S x
�

� �
is that set of values h0 for which the hypothesis H0 : h ¼ h0 is accepted when

x
�
is the observed value of x

�

Theorem 5.2 Let S x
�

� �
be a 1� að Þ level confidence interval for h: Define A hð Þ ¼

x
�
=h 2 S x

�

� �n o
: Then A h0ð Þ will be an acceptance region of a level a

non-randomized test for testing H0 : h ¼ h0.

Proof By the construction of A hð Þ, we have

x
�
2 A hð Þ , h 2 S x

�

� �

)Ph x
�
2 A hð Þ

n o
¼ Ph h 2 S x

�

� �n o
� 1� a8h:

Relation between UMP non-randomized test and UMA confidence interval

Theorem 5.3 Suppose A h0ð Þ denoted the acceptance region of an UMP, level-a

non-randomized test for testing H0 : h ¼ h0. Define S x
�

� �
¼ h= x

�
2 A hð Þ

n o
. Then

S x
�

� �
will be an UMA 1� að Þ level confidence interval for h:

Proof By Theorem 5.1, it is clear that the level of set S x
�

� �
is 1� að Þ.

Consider another acceptance region A� h0ð Þ of a level a non-randomized test for
testing H0 : h ¼ h0

Let S� x
�

� �
¼ h= x

�
2 A� hð Þ

n o
, then the level of S� x

�

� �
is also 1� að Þ.

Since A hð Þ is the acceptance region of a UMP non-randomized test, we can write,

Ph0 x
�
2 A hð Þ

n o
�Ph0 x

�
2 A� hð Þ

n o
h 6¼ h0ð Þ

) Ph0 h 2 S x
�

� �n o
�Ph0 h 2 S� x

�

� �n o
8 h 6¼ h0ð Þh; h0 2 H

Since S� x
�

� �
is arbitrary the proof follows immediately.
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Theorem 5.4 Let S x
�

� �
be an UMA 1� að Þ level confidence interval for h. Define

A hð Þ ¼ x
�
=h 2 S x

�

� �n o
: Then A h0ð Þ will be an acceptance region of a level-a

UMP test for testing H0 : h ¼ h0.

Proof According to the construction of A hð Þ, A h0ð Þ will be the acceptance region of
a level-a non-randomized test for testing H0 : h ¼ h0.

Now corresponding to another 1� að Þ level C.I. S� x
�

� �
,

letA� hð Þ ¼ x
�
: h 2 S� x

�

� �n o
:

Then A� h0ð Þ will be also an acceptance region of a level-a non-randomized test
for testing H0 : h ¼ h0

Now since S x
�

� �
is an UMA 1� að Þ level C.I. for h,

Ph0 h 2 S x
�

� �n o
�Ph0 h 2 S� x

�

� �n o
8 h 6¼ h0ð Þh; h0 2 H; h 6¼ h0

) Ph0 x
�
2 A hð Þ

n o
�Ph0 x

�
2 A� hð Þ

n o

which implies that A h0ð Þ will be the acceptance region of level-a UMP
non-randomized test for testing H0 : h ¼ h0, since A� hð Þ is arbitrary.
Relation between UMPU non-randomized test and UMAU confidence interval

Theorem 3.5 Let A h0ð Þ be the acceptance region of an UMPU level-a

non-randomized test for testing H0 : h ¼ h0. Define S x
�

� �
¼ h= x

�
2 A hð Þ

n o
. Then

S x
�

� �
will be an UMAU 1� að Þ level confidence interval for h.

Proof According to construction of S x
�

� �
it will be a 1� að Þ level Confidence

Interval for h. Let S� x
�

� �
¼ h= x

�
2 A� hð Þ

n o
corresponding to any other accep-

tance region A� h0ð Þ of a level-a non-randomized test for testing H0 : h ¼ h0.
Now since A h0ð Þ is the acceptance region of a level-a UMPU non-randomized

testfor testing H0 : h ¼ h0

Ph0 x
�
2 A hð Þ

n o
�Ph0 x

�
2 A� h0ð Þ

n o
� 1� a8h; h0 2 H; h 6¼ h0

) Ph0 h 2 S x
�

� �n o
�Ph0 h 2 S� x

�

� �n o
� 1� a

i.e., S x
�

� �
is a UMAU 1� að Þ level C.I. for h, since A� h0ð Þ is arbitrary.
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Theorem 5.6 Let S x
�

� �
be an UMAU 1� að Þ level confidence interval for h.

Define A hð Þ ¼ x
�
=h 2 S x

�

� �n o
: Then A h0ð Þ will be an acceptance region of a

level-a UMPU test for testing H0 : h ¼ h0.

Proof According to the construction of A hð Þ, A h0ð Þ will be the acceptance region of
a level-a non-randomized test for testing H0 : h ¼ h0.

Now, corresponding to any other 1� að Þ level C.I. S� x
�

� �
for h,

let A� hð Þ ¼ x
�
=h 2 S� x

�

� �n o
; then A� hð Þ will also be an acceptance region of a

level-a non-randomized test for testing H0 : h ¼ h0.

Since S x
�

� �
is UMAU 1� að Þ level C.I.

)Ph0 h 2 S x
�

� �n o
�Ph0 h 2 S� x

�

� �n o
� 1� a8h; h0 2 H; h 6¼ h0

) Ph0 x
�
2 A hð Þ

n o
�Ph0 x

�
2 A� h0ð Þ

n o
� 1� a

i.e. A h0ð Þ will be an acceptance region of a level-a UMPU test for testing
H0 : h ¼ h0.

Example 5.11 Let X1;X2; . . .;Xn be a r.s. from R 0; hð Þ: The UMP level-a
non-randomized test for testing H0 : h ¼ h0 against h 6¼ h0 is given by the critical
region x nð Þ [ h0 or x nð Þ � h0

ffiffiffi
an

p
:

Let A hð Þ ¼ x
�

���h
ffiffiffi
an

p
\x nð Þ � h

n o

Define S x
�

� �
¼ hj x� 2 A hð Þ

n o

¼ hjh ffiffiffi
an

p
\x nð Þ � h

� �

¼ hjx nð Þ � h\
x nð Þffiffiffi
an

p
� �

Thus, by Theorem 5.3, S xð Þ ¼ hjx nð Þ � h\ x nð Þffiffi
an

p
n o

will be a 1� að Þ level UMA

confidence interval for h.
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Chapter 6
Non-parametric Test

6.1 Introduction

In parametric tests we generally assume a particular form of the population dis-
tribution (say, normal distribution) from which a random sample is drawn and we
try to construct a test criterion (for testing hypothesis regarding parameter of the
population) and the distribution of the test criterion depends upon the parent
population.

In non-parametric tests the form of the parent population is unknown. We only
assume that the population, from which a random sample is drawn, is continuous
and try to develop a test criterion whose distribution is independent of the popu-
lation distribution under the hypothesis under consideration. A non-parametric test
is concerned with the form of the population but not with any parametric value.

A test procedure is said to be distribution free if the statistic used has a distri-
bution which does not depend upon the form of the distribution of the parent
population from which the sample is drawn. So in such procedure assumptions
regarding the population are not necessary.

Note Sometimes the term ‘distribution free’ is used instead of non-parametric. But
we should make some distinction between them.

In fact, the terms ‘distribution free’ and ‘non-parametric’ are not synonymous.
The term ‘distribution free’ is used to indicate the nature of the distribution of the
test statistic whereas the term ‘non-parametric’ is used to indicate the type of
hypothesis problem investigated.

Advantages and disadvantages of non-parametric method over parametric
method

Advantages

(i) Non-parametric methods are readily comprehensible, very simple and easy to
apply and do not require complicated sample theory.
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(ii) No assumption is made about the form of frequency function of the parent
population from which the sample is drawn.

(iii) No parametric technique will be applicable to the data which are mere clas-
sification (i.e. which are measured in nominal scale), while non-parametric
method exists to deal with such data.

(iv) Since the socio-economic data are not, in general, normally distributed,
non-parametric tests have found applications in psychometry, sociology and
educational statistics.

(v) Non-parametric tests are available to deal with data which are given in ranks
or whose seemingly numerical scores have the strength of the ranks. For
example, no parametric test can be applied if the scores are given in grades
such as A, B, C, D, etc.

Disadvantages

(i) Non-parametric test can be used only if the measurements are nominal and
ordinal. Even in that case, if a parametric test exists it is more powerful than
the non-parametric test.
In other words, if all the assumptions of a statistical model are satisfied by the
data and if the measurements are of required strength, then non-parametric
tests are wasteful of time and data.

(ii) No non-parametric method exists for testing interactions in ANOVA model
unless special assumptions about the additivity of the model are made.

(iii) Non-parametric tests are designed to test statistical hypothesis only but not for
estimating parameters.

6.2 One-Sample Non-parametric Tests

In this section we consider the following one-sample non-parametric tests:

(i) Chi-square test
(ii) Kolmogorov–Smirnov test
(iii) Sign test
(iv) Wilcoxon signed-rank test
(v) Run test

6.2.1 Chi-Square Test (i.e Test for Goodness of Fit)

Let n sample observations are continuous measurements grouped in k class intervals
or observations themselves are frequency of k mutually exclusive events
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A1;A2; . . .;Ak such that S ¼ A1 þA2 þ � � � þAk is the space of the variable under
consideration. The form of the distribution is not known. We want to test Ho :
FðxÞ ¼ F0ðxÞ against: H1 : FðxÞ 6¼ F0ðxÞ. Here FoðxÞ is specified with all its
parameters.

Under H0 we can obtain the probability ðpiÞ of a random observation from F0 to
belong in the ith class Aiði ¼ 1; 2; . . .kÞ: The expected frequency in ith class is
ei ¼ npi for i ¼ 1; 2;. . .; k. These are compared with the observed frequencies xi.
Pearson suggested the statistic.

v2 ¼
Xk
i¼1

ðxi � npiÞ2
npi

:

If the agreement between the observed ðxiÞ and expected frequencies ðeiÞ is
close, then the differences ðxi � npiÞ will be small and consequently v2 will be
small. Otherwise it will be large. The larger the value of v2 the more likely is that
the observed frequencies did not come from the population under H0. This means
that the test is always right-sided. It can be shown that for large samples the
sampling distribution of v2 under H0 follows chi-square distribution with (k − 1) d.
f. The approximation holds good if every ei � 5. In case there are some ei\5, we
have to combine adjacent classes till the expected frequency in the combined class
is at least 5. Then k will be the actual number of classes used in computing v2. Thus
the null hypothesis H0 is rejected if Cal v2 [ v2a;k�1.

6.2.2 Kolmogrov–Smirnov Test

Let X1;X2; . . .;Xn be a sample from continuous distribution function FðxÞ. We are
to test H0 : FðxÞ ¼ F0ðxÞ 8 x against H1 : FðxÞ 6¼ F0ðxÞ for some x.

Suppose FnðxÞ is the sample (empirical) distribution function corresponding to
any given x; that is, if the number of observation � x is k, then

FnðxÞ ¼ k
n
:

Test statistic under H0 is given by

Dn ¼ Sup
x

jFnðxÞ � F0ðxÞj

which is known as Kolmogorov–Smirnov statistic.
The distribution of Dn does not depend on F0 as long as F0 is continuous. H0 is

rejected if Dn [Dn;a.
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Similarly, the one-sided KS statistics for one-sided alternatives are the
following:

(i) for the alternative H þ : FðxÞ�F0ðxÞ 8 x the appropriate statistic is

Dþ
n ¼ Sup

x
½FnðxÞ � F0ðxÞ�

(ii) for the alternative H� : FðxÞ�F0ðxÞ 8 x the appropriate statistic is

D�
n ¼ Sup

x
½F0ðxÞ � FnðxÞ�

The statistics Dþ
n and D�

n have the same distribution because of symmetry. The
test rejects H0 if Dþ

n [Dþ
n;a when alternative is FðxÞ�F0ðxÞ 8 x and rejects H0 if

D�
n [D�

n;a when alternative is FðxÞ�F0ðxÞ 8 x at the level a.

6.2.3 Sign Test

FðxÞ is continuous distribution function of the parent population, which is con-
tinuous. FðxÞ is unknown, from which we draw a random sample ðx1; x2; . . .; xnÞ.
We define fp ¼ pth order population quantile.

) Pr ½X� np� ¼ p i:e: Pr ½X � np � 0� ¼ p:

Assumption FðxÞ is continuous in the neighbourhood of fp. To test H0 : fp ¼ fp
0.

Case 1 H1 : np [ np
0

To perform the test we consider the number of positive quantities among
x1 � np

0� �
; x2 � np

0� �
; . . .; xn � np

0� �
. Sample values equal to np

0 are ignored.
Suppose S = total number of + signs, we note that, under H0

Pr½X � np
0 � 0� ¼ p

) Pr X � np
0 [ 0

� � ¼ 1� p ¼ q; say:

)UnderH0; S�Bðn; qÞ
Also, under H1; Pr X � n0p

h i
\p, i.e. Pr X � np

0 [ 0
� �

[ q. Suppose, under

H1; Pr X � n0p [ 0
h i

¼ q0 where q0 [ q.

)UnderH1; S�B n; q0ð Þ where q0 [ q.
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Hence a large value of S indicates the rejection of H0.

So the test is / Sð Þ ¼
1 if S [ s
a if S ¼ s
0 if S\ s

8<:
where ‘s’ and ‘a’ are such that

(I) Pr½S[ s=H0�\a� Pr½S� s=H0�
(II) EH0/ðSÞ ¼ a

From (I) we get s and from (II) a ¼ Pr S[ s=H0

� �þ a Pr S ¼ s=H0

� �
) a ¼ a� Pr S[ s=H0

� �
Pr S ¼ s=H0

� � :

Hence test is given by S[ s ) Rejection of H0

S\s ) Acceptance of H0

S ¼ s ) To draw a random number with probability of rejection ‘a’ and
probability of acceptance 1 − a.

Case 2

H2 ¼ np\np
0 or np ¼ np

0\np
0

Under H2

Pr½X � np
0� ¼ p

)Pr½X� np
0�[ p

or, Pr½X � np
0 � 0�[ p, i.e. Pr½X � np

0 [ 0�\1� p ¼ q.

Suppose under H2; Pr X � np
0 [ 0

� � ¼ q0 where q0\q.
) Under H2; S�Bðn; q0Þ where q0\q:
So a small value of S indicates the rejection of H0.

So our test is /ðSÞ ¼
1 if S\ s

a if S ¼ s

0 if S [ s

8><>:
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where ‘s’ and ‘a’ are such that

Pr S\s=H0

� �
\a� Pr S� s=H0

� �
and EH0/ðSÞ ¼ a

i.e: Pr S\s=H0

� �þ a Pr S ¼ s=H0

� � ¼ a or,

a ¼ a� Pr S\s=H0

� �
Pr S ¼ s=H0

� �
i.e. if S\s ) reject H0

S[ s ) accept H0

S ¼ s ) draw a random number with probability of rejection ‘a’ and probability
of acceptance (1 − a).

Large sample test

Under H0; S�Bðn; qÞ
) under H0 s ¼ S� nqffiffiffiffiffiffi

npq
p �Nð0; 1Þ

) x0 : s\�sa

Case 3 H3 : np 6¼ np
0

Under H3; Pr½X � np
0� 6¼ p ) Pr½X � np

0 [ 0� 6¼ q

Suppose under H3; Pr½X�np
0 [ 0� ¼ q0 where q0 6¼ q

) Under H3; S�Bðn; q0Þ where q0 6¼ q:
So a small or a large value of S indicates the rejection of H0. Here the test is

/ ðSÞ ¼

1 if S\s1
a1 if S ¼ s1
0 if s1 \ S \ s2
a2 if S ¼ s2
1 if S[ s2

8>>>><>>>>:
where s1 and s2 are such that

Pr S\s1=H0½ �\a1 � Pr S� s1=H0½ �;
Pr S[ s2=H0

� �
\a2 � Pr S� s2=H0

� �
and a1 þ a2 ¼ a. For simplicity we take a1 þ a2 ¼ a=2.

‘a1’ and ‘a2’ are such that

a=2 ¼ Pr S\s1=H0

� �þ a1 Pr S ¼ s1=H0

� �
) a1 ¼

a
2 � Pr½S\s1=H0�

Pr S ¼ s1½ �
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a
2
¼ Pr S[ s2=H0

� �þ a2 Pr S ¼ s2=H0

� �
) a2 ¼

a
2 � Pr S[ s2=H0½ �
Pr S ¼ s2=H0½ �

Thus, we reject H0 if S\s1 or S[ s2.
We accept H0 if s1\S\s2 and random or no conclusion if S ¼ s1 or S ¼ s2.
Large sample test: Under H0; S� Bðn; qÞ,
) underH0; s ¼ S�nqffiffiffiffiffiffi

npq
p �Nð0; 1Þ

x0 : jsj[ sa
2:

Note p ¼ 1
2 ; np ¼ n1

2
¼ median:

Under H0; S�B n; 12
� �

and then S is symmetric about n
2 : Therefore for two sided

test in case of Case 3,
n
2 � s1 ¼ s2 � n

2 ) s1 ¼ n� s2 and hence a1 ¼ a2:

6.2.4 Wilcoxon Signed-Rank Test

Another similar modification of the sign test is the Wilcoxon signed-rank test. This
is used to test the hypothesis that observations have come from symmetrical pop-
ulation with a common specified median, say, l0. Thus the problem is to test
H0 : l ¼ l0: The signed-rank statistic T þ is computed as follows:

1. Subtract l0 from each observation.
2. Rank the resulting differences in order of size, discarding sign.
3. Restore the sign of the original difference to the corresponding rank.
4. Obtain T þ , the sum of the positive ranks.

Similarly, T� is the sum of the negative ranks. Then under H0, we expect T þ

and T� to be the same. We also note that

T þ þ T� ¼
Xn
i¼1

i ¼ nðnþ 1Þ
2

:

The statistic T þ (or T�) is known as the Wilcoxon statistic. A large value of T þ

(or equivalently, a small value of T�) means that most of the large deviation from
l0 are positive and therefore we reject H0 in favour of the alternative H1 : l[ l0.

Thus the test rejects H0 at the level a if T þ\C1 when H1 : l\l0
if T þ [C2 when H1 : l[ l0
if T þ\C3 or T þ [C4 when H1 : l 6¼ l0
where C1;C2;C3 and C4 are such that
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P T þ\C1½ � ¼ a

P T þ [C2½ � ¼ a

P T þ\C3½ � þP T þ [C4½ � ¼ a:

6.2.5 Run Test

Suppose we have a set of observations ðX1;X2. . .;XnÞ. We are to test H0: The set of
observations are random against H1: They are not random.

We replace each observation either by ‘+’ or ‘−’ sign according as it is larger or
smaller than the median of the sample observations. Any observation equal to
median is simply discarded. A run is defined to be a sequence of values of the same
kind bounded by the values of other kind. We compute the total number of runs ‘r’.
Too many values of ‘r’ as well as too small values of ‘r’ give an indication of
non-randomness. Thus the test rejects H0 at the level a if r < r1 or r > r2 where r1
and r2 are such that

P r\r1½ � ¼ a=2;P r[ r2½ � ¼ a=2:

The one-sample run test is based on the order or sequence in which the indi-
vidual scores or observations originally were obtained.

Example 6.1 The theory predicts that the proportion of peas in the four groups A,
B, C and D should be 9:3:3:1. In an experiment among 556 peas, the numbers in the
four groups were 315, 108, 101 and 32. Does the experimental result support the
theory?

Solution If P1, P2, P3 and P4 be the proportions of peas in the four classes in the
whole population of peas, then the null hypothesis to be tested is

H0 : P1 ¼ 9
16

;P2 ¼ 3
16

;P3 ¼ 3
16

;P4 ¼ 1
16

The test statistic under H0 is given by

v2 ¼
Xk
i¼1

ðxi � np0i Þ2
np0i

with ðk � 1Þ d:f

¼
Xk
i¼1

x2i
np0i

� n
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The expected frequencies are

e1 ¼ np01 ¼ 556X
9
16

¼ 312:75

e2 ¼ np02 ¼ 556X
3
16

¼ 104:25

e3 ¼ np03 ¼ 556X
3
16

¼ 104:25

e4 ¼ np04 ¼ 556X
1
16

¼ 34:75

So, v2 ¼ 3152

312:75
þ 1082

104:25
þ 1012

104:25
þ 322

34:75
� 556

¼ 556:47� 556 ¼ 0:47 with 3 d:f:

From the table we have v20:05;3 ¼ 7:815. Since the calculated value of v2, i.e. 0.47
is less than the tabulated value, i.e. 7.815, it is not significant. Hence the null
hypothesis may be accepted at 5 % level of significance and we may conclude that
the experimental result supports the theory.

Example 6.2 Can the following sample be reasonably regarded as coming from a
uniform distribution on the interval (35,70): 36, 42, 44, 50, 64, 58, 56, 50, 37, 48,
52, 63, 57, 43, 39, 42, 47, 61, 53, 58? Use Kolmogorov–Smirnov test.

Solution Here we test H0 : FðxÞ ¼ F0ðxÞ for all x, where F0ðxÞ is the distribution
function of the uniform distribution on the interval (35,70). Now

F0 xð Þ ¼ 0 if x� 35

¼ x� 35
35

if 35\x\70

¼ 1 if x� 70

Rearranging the data in increasing order of magnitude, we have the following
results:

x F0ðxÞ F20ðxÞ F20 xð Þ � F0 xð Þj j
36 1/35 1/20 3/140

37 2/35 2/20 6/140

39 4/35 3/20 5/140

42 7/35 4/20 0

42 7/35 5/20 7/140

43 8/35 6/20 10/140

44 9/35 7/20 13/140

47 12/35 8/20 8/140

48 13/35 9/20 11/140

50 15/35 10/20 10/140
(continued)
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D20 ¼ Sup
x

F20ðxÞ � F0ðxÞj j ¼ 27
140

¼ 0:1929:

Let us take a ¼ 0:05: Then from the table D20;0:05 ¼ 0:294. Since
0.1929 < 0.294, we accept H0 at 5 % level of significance. So we can conclude that
the given data has come from a uniform distribution on the interval (35,70).

Example 6.3 The following data represent the yields of maize in q/ha recorded
from an experiment.

16.4, 19.2, 24.5, 15.4, 17.3, 23.6, 22.7, 20.9, 18.2
Test whether the median yield (M) is 20 q/ha.

Solution We test H0 : M ¼ 20 against H1 : M 6¼ 20. To test H0, we find the dif-
ference ðX � 20Þ and write their signs

�� þ ��þ þ þ�

Here n = 9 and r = number of ‘+’ sign = 4. This r will be binomial variate with
parameters n = 9 and p = 0.5.

To test H0 against H1 : M 6¼ 20 � H1 : p 6¼ 0:5; the critical region x will be
given by r� ra=2 and r� r0a=2, where r a=2 is the smallest integer and r0a=2 is the

largest integer such that

P r� ra=2
��H0

� � ¼ X9
x¼ra=2

9

x

� 	
1

2

� 	9

� a
2
¼ 0:025

i.e.,
Xra=2�1

x¼0

9

x

� 	
1

2

� 	9

� 0:975

and P r� r0a=2
���H0

h i
¼
Xr0a=2
x¼0

9

x

� 	
1

2

� 	9

� a
2
¼ 0:025

(continued)

50 15/35 11/20 17/140

52 17/35 12/20 16/140

53 18/35 13/20 19/140

56 21/35 14/20 14/140

57 22/35 15/20 17/140

58 23/35 16/20 20/140

58 23/35 17/20 27/140

61 26/35 18/20 22/140

63 28/35 19/20 21/140

64 29/35 20/20 24/140
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From the table we have ra=2 � 1 ¼ 7, i.e. ra=2 ¼ 8 and r0a=2 ¼ 1. Here

r0a=2 ¼ 1\r ¼ 4\ra=2 ¼ 8, so H0 is accepted at 5 % level of significance.

Example 6.4 For the problem given in Example 6.3, test H0 : M ¼ 20 against
H1 : M 6¼ 20 by using Wilcoxon signed-rank test.

Solution The differences Xi � 20 are

−3.6, −0.8, 4.5, −4.6, −2.7, 3.6, 2.7, 0.9, −1.8

The order sequence of numbers ignoring the sign and their ranks with original
signs are as follows:

0.8 0.9 1.8 2.7 2.7 3.6 3.6 4.5 4.6

−1 2 −3 4.5 −4.5 6.5 −6.5 8 −9

Thus, T þ = The sum of the positive ranks = 21 and T� = The sum of negative
ranks = 24.

We note that T þ þ T� ¼ nðnþ 1Þ
2 ¼ 45

To test H0 : M ¼ 20 against H1 : M 6¼ 20, the critical region ω will be given by
T þ [C4 and T þ\C3 at the level a. Here we take a ¼ 0:05:

From the table we have P½T þ [ 39� � 0:025 and

P½T þ\6� � 0:025

Since T þ ¼ 21 lies between 6 and 39 (table values), we accept H0. It means that
the median yield of maize is 20 q/ha.

Example 6.5 Test whether the observations
21, 19, 22, 18, 20, 24, 15, 32, 35, 28, 30 are random.

Solution We test H0 : The observation are random against H1 : The observations
are not random.

The sample values are arranged in increasing order.

15; 18; 19; 20; 21; 22; 24; 28; 30; 32; 35

) Median = 22
Each original observation is replaced by ‘+’ or ‘−’ sign according as it is larger

or smaller than the median, i.e. 22. Any observation equal to median is simply
discarded. Thus we have from the original observation

21 19 22 18 20 24 15 32 35 28 30

- - x - - + - + + + +
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Thus number of runs = r = 4, number of ‘+’ signs = n1 = 5 and number of ‘−’
signs = n2 = 5. From table for n1 = 5, n2 = 5 any observed r of 2 or less or of 10 or
more is in the region of rejection at 5 % level of significance. So H0 is accepted, i.e.
the observations are random.

Example 6.6 The males (M) and females (F) were queued in front of the railway
reservation counter in the order below

M F F M M M F M F F M M F M

Test whether the order of males and females in the queue was random.

Solution Here null hypothesis is
H0 : The order of males and females in the queue was random against
H1 : The order of males and females in the queue was not random.
For the given sequence,

M F F M M M F M F F M M F M

we have,

n1 = number of males = 8
n2 = number of females = 6
r = number of runs = 9

Since the observed value of r = 9 lies between the critical values 3 and 12, we
accept H0 at 5 % level of significance. It means that the order of males and females
in the queue was random.

6.3 Paired Sample Non-parametric Test

In this section we consider the following paired sample non-parametric tests:

(i) Sign test.
(ii) Wilcoxon signed-rank test.

6.3.1 Sign Test (Bivariate Single Sample Problem) or Paired
Sample Sign Test

Suppose we have a bivariate population with continuous distribution function
F(x,y) which is unknown but continuous. The ordinary sign test for the location
parameter of a univariate population is equally applicable to a paired sample
problem. This is the non-parametric version of paired ‘t’ test.
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We draw a random sample ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞ from F(x, y). To test
H0 : npðx� yÞ ¼ np

0 writing z ¼ x� y ) H0 : npðzÞ ¼ np
0, i.e. H0 : np ¼ np

0,
writing npðzÞ ¼ np.

Assumption z ¼ x� y is continuous in the neighbourhood of npðzÞ. Note that
Pr z� np
� � ¼ p ) Pr z�np [ 0

� � ¼ q; q ¼ 1� p. We define S = total number of

positive signs among z1 � np
0� �
; z2 � np

0� �
; . . .; zn � np

0� �
.

) UnderH0, Pr z�np
0 [ 0

� � ¼ q and S�Bðn; qÞ. Proceed for Case 1, Case 2
and Case 3 as worked out already in Sect. 6.2

Note Since npðx� yÞ is not necessarily equal to npðxÞ � npðyÞ, the paired sample
sign test is a test for the quantile difference (but not for the difference of the
quantiles), whereas the paired ‘t’ test is a test for the mean difference (and also for
the difference of the means).

6.3.2 Wilcoxon Signed-Rank Test

This is another test used on matched pairs. It is more powerful than the sign test
because it gives more weight to large numerical differences between the members
of a pair than to small differences. Under matched-paired samples, the differences
d within n paired sample values ðx1i; x2iÞ for i ¼ 1; 2; . . .; n are assumed to have
come from continuous and symmetric population differences. IfMd is the median of
the population of differences, then the null hypotheses is that Md ¼ 0 and the
alternative hypothesis is one of Md [ 0;Md\0 or Md 6¼ 0:

The observed differences di ¼ x1i � x2i are ranked in increasing order of abso-
lute magnitude and the sum of ranks is computed for all the differences of like sign.
The test statistic T is the smaller of these two rank-sums. Paris with di ¼ 0 are not
counted. On the null hypothesis, the expected value of the two ranks-sums would be
equal. If the positive rank-sum is the smaller and is equal to or less than the table
value, the null hypothesis will be rejected at the corresponding level of significance
a in favour of the alternative hypothesis thatMd [ 0. If the negative rank-sum is the
smaller, the alternative will be that Md\0. If a two-tailed test is required, the
alternative being that Md 6¼ 0, the given levels of significance should be doubled.

Example 6.7 For nine animals, tested under control conditions and experimental
conditions, the following values of a measured variable were observed:

Animal 1 2 3 4 5 6 7 8 9

Control (x1) 21 24 26 32 55 82 46 55 88

Experimental (x2) 18 9 23 26 82 199 42 30 62
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Test whether a significant difference exists between the medians, using (i) the
sign test and (ii) the Wilcoxon signed-ranks test.

Solution Let h be the median of the distribution of differences. Our null hypothesis
will be H0 : h ¼ 0 against H1 : h 6¼ 0.

(i) Let di ¼ x1i � x2i be the difference of the values under control and experi-
mental conditions.

di : 3; 15; 3; 6; �27; �117; 4; 25; 26

Here we have 7 ‘+’ signs among 9 non-zero values. Under Ho, number(r) of ‘+’
signs will follow a binomial distribution with parameters n = 9 and p = 0.5. To test
H0 : h ¼ 0 � H0 : p ¼ 0:5 against H1 : h 6¼ 0 � H1 : p 6¼ 0:5; the critical region x
will be given by r� ra=2 and r� r0a=2 where ra=2 is the smallest integer and r0a=2 is

the largest integer such that.

P r� ra=2
��H0

� � ¼ X9
x¼ra=2

9

x

� 	
1

2

� 	9

� a
2
¼ 0:025

i:e:;
Xra2�1

x¼0

9

x

� 	
1

2

� 	9

� 0:975

and P r� r0a=2
���H0

h i
¼
Xr0a=2
x¼0

9

x

� 	
1

2

� 	9

� a
2
¼ 0:025

From the table we get ra=2 � 1 ¼ 7 ) ra=2 ¼ 8 and r0a=2 ¼ 1: For our example
r = 7 which lies between ra=2ð¼8Þ and r0a=2ð¼1Þ: So H0 is accepted.

(ii) The observed differences di ¼ x1i � x2i are ranked in increasing order of
absolute magnitude and the sum of the ranks is computed for all the difference of
like sign. Thus

di 3 15 3 6 −27 −117 4 25 26

Rank 1.5 5 1.5 4 8 9 3 6 7

The test statistic T is the smaller of these two rank-sums (one for positive di and
one for negative di). Here T = 17. From the table, we reject H0 at a ¼ 0:05 if either
T > 39 or T < 6. Since T > 6 and < 39, we accept H0.
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6.4 Two-Sample Problem

Case 1 The two populations differ in location only:
We take two univariate populations with continuous distribution functions F1ðxÞ

and F2ðxÞ which are unknown but continuous.

Assumption The two populations differ only in location.
To test H0 : F1ðxÞ ¼ F2ðxÞ against H1 : F2ðxÞ is located to the right of F1ðxÞ ,

H0 : F1ðxÞ ¼ F2ðxÞ against H1 : F1ðxÞ�F2ðxÞ:
We draw a random sample x1; x2; . . .; xn1ð Þ of size n1 from the first population

and another sample xn1 þ 1; xn1 þ 2; . . .; xn1 þ n2ð Þ of size n2 from the second popula-
tion. We write, F1ðxÞ ¼ F2 ðxÞ and F2ðxÞ ¼ Fðx� dÞ, d is unknown location
parameter. So we are to test H0 : d ¼ 0 against H1 : d[ 0.

A. Wilcoxon–Mann Whitney Rank-Sum Test

We pooled the two samples and give them ranks. Suppose R1;R2; . . .;Rn1ð Þ and
Rn1 þ 1;Rn1 þ 2; . . .;Rn1 þ n2ð Þ be the ranks of the 1st and 2nd sample observations
respectively.

[Example (10,7,9,11,3), n1 ¼ 5 is sample 1 and (20,5,17,8), n2 ¼ 4 is the sample 2.

Ranks

3
#
1

\ 5
#
2

\ 7
#
3

\ 8
#
4

\ 9
#
5

\ 10
#
6

\ 11
#
7

\ 17
#
8

\ 20
#
9

) ðR1 ¼ 6;R2 ¼ 3;R3 ¼ 5;R4 ¼ 7;R5 ¼ 1Þ are the 1st sample ranks and ðR6 ¼
9;R7 ¼ 2;R8 ¼ 8;R9 ¼ 4Þ are the 2nd sample ranks.]

If there is any tie then the corresponding observation is ignored. Let
S1; S2; . . .; Sn2 be the ordered ranks of the 2nd sample observations, i.e.
S1 \ S1 \ . . .\ Sn2 .

[In the example above 2 < 4 < 8 < 9 ) R7 ¼ S1;R9 ¼ S2;R8 ¼ S3;R6 ¼ S4]

Define T = sum of the ranks of the 2nd sample observations ¼Pn2
j¼1

Rn1 þ j ¼
Pn2
j¼1

Sj

If H1 is true, then it is expected that the second sample observations are gen-
erally of higher ranks and hence T will be large. So a right tail test will be
appropriate here.

Hence for testing H0 : d ¼ 0 against H1 : d[ 0, x0 : T [ ta where ta is such
that Pr T [ ta=H0½ � � a. Similarly for H0 : d ¼ 0 against H2 : d\0, x0 : T\ta0

where ta0 is such that Pr T\ta0=H0½ � � a, and for H0 : d ¼ 0 against H3 : d 6¼
0;x0 : T\t1; T[ t2 where t1 and t2 are such that

P T\t1=H0½ � þP T [ t2=H0½ � � a:

Null distribution of T: Under H0 all the nð¼ n1 þ n2Þ, observations
x1; x2; . . .; xn1 ; xn1 þ 1; xn1 þ 2; . . .; xn1 þ n2 are i.i.d. so that the second sample ranks can
be considered as a random sample of size n2 without replacement from (1, 2,…,n).
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) l = population mean ¼ nþ 1
2 and r2 ¼ Variance ¼ n2�1

12 .

) E
T
n2

=H0

� 	
¼ l ¼ nþ 1

2
) EðT=H0Þ ¼ n2ðnþ 1Þ

2

V
T
n2

=H0

� 	
¼ n� n2

n� 1
� r

2

n2
¼ n1

n� 1
� n

2 � 1
12 � n2 ¼

n1ðnþ 1Þ
12 � n2

) VðT=H0Þ¼
n1n2ðnþ 1Þ

12
:

Hence, if n is large, under H0

s ¼ T�n2ðnþ 1Þ
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2ðnþ 1Þ=12
p asymptotically �Nð0; 1Þ

) For H0 : d ¼ 0 against H1 : d[ 0 ) x0 : s[ sa
H0 : d ¼ 0 against H2 : d\0 ) x0 : s\� sa

and H0 : d ¼ 0 against H3 : d 6¼ 0 ) x0 : jsj[ sa=2

Mann–Whitney

An alternative description of the test is more convenient.

Let gðxi; xn1 þ jÞ ¼
1 if xn1 þ j [ xi
0 otherwise i ¼ 1ð1Þn1

j ¼ 1ð1Þn2

8<:
U = no. of pairs in which 2nd sample observation is greater than 1st sample

observation

¼
Xn2
j¼1

Xn1
i¼1

gðxi; xn1 þ jÞ

¼Pn2
j¼1

Pn1
i¼1

gðRi;Rn1 þ jÞ; [no. of pairs in which 2nd sample ranks are greater than

1st sample ranks]

¼
Xn2
j¼1

Xn1
i¼1

gðRi; SjÞ

¼Pn2
j¼1

Pn1
i¼1

gðRi; SjÞ

 �

, ½Pn1
i¼1

gðRi; SjÞ=no. of 1st sample rankswhich are less than Sj]

¼
Xn2
j¼1

ðSj � 1Þ � ðj� 1Þ�  ¼
Xn2
1

ðSj � jÞ ¼ T� n2ðn2 þ 1Þ
2

) EðU=H0Þ = E(T/H0Þ�
n2ðn2 þ 1Þ

2
¼ n1n2

2
:
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VðU=H0Þ ¼ VðT=H0Þ ¼ n1n2ðnþ 1Þ
12

Hence, for large n, under H0

s ¼ U � n1n2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2ðnþ 1Þ
12

q �a Nð0; 1Þ

Therefore

(1) For H0 : d¼ 0 against H1 : d[ 0;x0 : s[ sa
(2) For H0 : d ¼ 0 against H2 : d\0;x0 : s\� sa
(3) For H0 : d ¼ 0 against H3 : d 6¼ 0;x0 : jsj[ sa=2

B. Mood’s Median Test

Here we test H0 : F1ðxÞ ¼ F2ðxÞ against H1 : F1ðxÞ�F2ðxÞ, i.e. H0 : d ¼ 0 against
H1 : d [ 0.

We draw a sample x1; x2; . . .; xn1ð Þ of size n1 from the 1st population and another
sample xn1 þ 1; xn1 þ 2; . . .; xn1 þ n2ð Þ of size n2 from the 2nd population.

We mix the two samples and arrange them in ascending order of magnitude. Say
xð1Þ \ xð2Þ \ � � �\ xðnÞ & xðmÞ ¼ combined sample median.

Define T ¼ total no: of 2nd sample size[ xðmÞ
¼ total no: of 2nd sample ranks[m

Here T is the test statistic.
Under H1, T would be too large and hence a right tail test is appropriate.
So for H1 : d[ 0 ) x0 : T [ ta where, ta is such that PH0 ½T � ta� � a
for H2 : d\0 ) x0 : T\ta0 where PH0 ½T � ta� � a and
for H3 : d 6¼ 0 ) x0 : T � t1 and T � t2 where t1, t2 are such that

PH0 ½T � t1� þPH0 ½T � t2� � a.
Null distribution of T: We want to get PðT ¼ t=H0Þ.
Note that the totality of the pooled ranks (1, 2,.., n) is comprised of two subsets:

f1; 2; . . .;mg and fm þ 1;m þ 2; . . .; ng. Under H0, the second sample ranks
represent a random sample without replacement of size n2 from the entire set. Since
T = no. of 2nd sample ranks exceeding m, the probability that there will be just
t number of members from 2nd subset in the random sample of size n2 is given by
the hypergeometric law:

) P T ¼ t=H0ð Þ ¼
n� m

t

� 	
m

n2 � t

� 	
n

n2

� 	
) EðT=H0Þ ¼ n2ðn� mÞ

n
andVðT=H0Þ ¼ n1n2mðn� mÞ

n2ðn� 1Þ :
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As n ! 1; mn ’ 1
2 and then EðT=H0Þ ’ n2

2 and VðT=H0Þ ’ n1n2
4n .

) For large n, under H0

s ¼ T � n2=2ffiffiffiffiffiffiffin1n2
4n

p a
�
N 0; 1ð Þ

) forH1 : d[ 0 ) x0 : s[ sa
forH1 : d\0 ) x0 : s\� sa
and for H3 : d 6¼ 0 ) x0 : jsj[ sa=2:

Case II The two populations differ in every respect, i.e. with respect to location,
dispersion, skewness, kurtosis, etc.

C. Wald–Wolfowitz Run test

H0 : F1ðxÞ ¼ F2ðxÞ against H1 : F1ðxÞ 6¼ F2ðxÞ
Here also we arrange the combined sample in ascending order xð1Þ \
xð2Þ \ . . .\ xðnÞ.

Suppose ðR1; . . .;Rn1Þ be the ranks of the 1st sample observation and
ðRn1 þ 1; . . .;Rn1 þ n2Þ be the ranks of the 2nd sample observation. According to the
ordered arrangement,

we write za ¼ 0 if xðaÞ comes from 1st sample
= 1 if xðaÞ comes from 2nd sample.

We note that, 1st sample can be written as xðR1Þ; xðR2Þ; . . .; xðRn1Þ
� 

and the 2nd

sample can be written as xðRn1 þ 1Þ; xðRn1 þ 2Þ; . . .; xðRn1 þ n2Þ
n o

.

) za ¼ 0 if a 2 R1;R2; . . .Rn1ð Þ
¼ 1 if a 2 Rn1 þ 1;Rn2 þ 2; . . .Rn1 þ n2ð Þ:

So z1; z2; . . .; zn is a sequence of 0’s and 1’s and are determined by
ðR1;R2; . . .;RnÞ. Let U = number of ‘0’ runs and V = number of ‘1’ runs and
W = U + V = total number of runs.

Here W is our test statistic.
The idea is that if the populations are identical, then the 1st sample and 2nd

sample ranks would get thoroughly mixed up, i.e. the runs of ‘0’ and ‘1’ would be
mixed up thoroughly, i.e. W would be too large. On the other hand, if the two
populations are not identical, i.e. if H0 is not true, then the arrangement of runs
will be patching. So x would be too small. Hence a left tail test would be
appropriate.
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Hence x0 : W �xa where xa is such that PH0 W �xa½ � � a. It can be shown
that under H0

Pr U ¼ u;V ¼ v½ � ¼

0 if u � vj j � 2
n1�1
u�1ð Þ n2�1

v�1ð Þ
n

n1

� 	 if u � vj j ¼ 1

2 n1�1
u�1ð Þ n2�1

v�1ð Þ
n

n1

� 	 if u � v ¼ 0

8>>>>>>>>><>>>>>>>>>:
) PH0 W ¼ 2m½ � ¼ PH0 u ¼ m; v ¼ mf g ¼ 2 n1�1

m�1

� � n2�1
m�1

� �
n

n1

� 	 and

PH0 ½W ¼ 2mþ 1� ¼PH0fu ¼ m; v ¼ mþ 1gþPH0fu ¼ mþ 1; v ¼ mg

¼
n1 � 1

m� 1

� 	
n2 � 1

m

� 	
þ n1 � 1

m

� 	
n2 � 1

m� 1

� 	
n

n1

� 	
It can be shown that EðW=H0Þ ¼ 2n1n2

n þ 1;

VðW=H0Þ ¼ 2n1n2
nðn� 1Þ

2n1n2
n

� 1
� 	

:

For large n1 and n2, under H0

s ¼ W � EH0ðWÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VH0ðWÞp �a Nð0; 1Þ: ð6:1Þ

(Note: Since U and V are not independent, so the traditional CLT for W = U + V is
not applicable here. Still (6.1) is true here as shown by Wald and Wolfowitz using
Strilings’ approximation). We write k1 ¼ n1

n and k2 ¼ n2
n ) k1 þ k2 ¼ 1

) EðW=H0Þ ¼ 2nk1k2 þ 1 ’ 2nk1k2 andVðW=H0Þ ’ 4nk21k
2
2:

Then s ¼ W�2nk1k2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4nk1

2k2
2

p a
�

N 0; 1ð Þ

x0 : s� � sa:

D. Kolmogorov–Smirnov test

Let X1;X2; . . .;Xn1 be from F1 and Xn1 þ 1;Xn1 þ 2; . . .;Xn be from F2. We are to test
H0 : F1ðxÞ ¼ F2ðxÞ8x against
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H1 : F1ðxÞ�F2ðxÞ8x;F1ðxÞ[F2ðxÞ for some x
Or, H2 : F1ðxÞ�F2ðxÞ8x;F1ðxÞ\F2ðxÞ for some x
Or, H3 : F1ðxÞ 6¼ F2ðxÞ8x; for some x.
Let ‘#’ symbol implies the number of cases satisfying a stated condition.

F1n1ðxÞ ¼
#xa � x; a ¼ 1; 2; . . .; n1

n1

F2n2ðxÞ ¼
#xb � x; b ¼ n1 þ 1; n1 þ 2; ::; n2

n2

Test statistic

Dþ
n1;n2 ¼ Sup

x
F1n1ðxÞ � F2n2ðxÞf g for H1

D�
n1;n2 ¼ Sup

x
F2n2ðxÞ � F1n1ðxÞf g for H2

Dn1;n2 ¼ Sup
x

jF1n1ðxÞ � F2n2ðxÞj

¼max Dþ
n1;n2 ;D

�
n1;n2

n o
for H3

Let 2nd sample ranks be Rn1 þ 1; . . .;Rn and ordered ranks be S1\S2\::\Sn2 .
Similarly for 1st sample ranks areR1;R2; . . .;Rn1 and ordered ranks are S

0
1\S02::\S0n1 .

Then Dþ
n1;n2 ¼ Sup

x
F1n1ðxÞ � F2n2ðxÞf g ¼ max

i¼0;1;::;n1
Sup

Xs0
i
� x\S0

i
þ 1

F1n1ðxÞ � F2n2ðxÞf g

¼ max max
i¼1;::;n1

i
n1

� S0i � i
n2

� 	
; 0


 �
:

Similarly, D�
n1;n2 ¼ max 0; max

j¼1;::;n2

j
n2
� Sj�j

n1

� �
 �
:

Dn1;n2 ¼ max Dþ
n1;n2 ;D

�
n1;n2

n o
:

Under H0, D is uniform and Dþ ;D� and D are distribution free. [Under H0,

distribution of ðs1; s2; . . .sn2Þ; ðs01; s02; s03; . . .s0n1Þ
n o

is independent of (F1 = F2)].

Critical region: under H0, we expect that D
+, D− and D are very small. Hence right

tailed test based on D’s would be appropriate.

Asymptotic distribution

For one-sided test PH0

ffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

q
Dþ

n1;n2 � z

� �
! 1� e�2z2 as min ðn1; n2Þ! 1; z[ 0

Practically we find a z such that e�2z2 ¼ a and reject H0 if
ffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

q
(observed

Dþ
n1;n2 ) � z.
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For two sided test PH0

ffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

q
Dn1;n2 � z

� �
! 1� 2

P1
i¼1

ð�1Þi�1e�2i2z2 as min

ðn1; n2Þ ! 1:

Advantages of K–S test over Homogeneity v2 test are as follows

1. K–S test is applicable to ungrouped data, while v2 is applicable to grouped data
only.

2. Under H0 K–S is exactly distribution free, while v2 is asymptotically distribu-
tion free.

3. K–S test is consistent against any alternative, while v2 is so for specific alter-
native only.

Example 6.8 Twelve 4-year-old boys and twelve 4-year-old girls were observed
during two 15 min play sessions and each child’s play during these two periods was
scored as follows for incidence and degree of aggression:

Boys : 86; 69; 72; 65; 113; 65; 118; 45; 141; 104; 41; 50

Girls : 55; 40; 22; 58; 16; 7; 9; 16; 26; 36; 20; 15

Test the hypothesis that there were sex differences in the amount of aggression
shown, using (a) the Wald-Wolfowitz runs test, (b) the Mann–Whitney–Wilcoxon
test and (c) the Kolmogorov–Smirnov test.

Solution We want to test H0 : incidence and degree of aggression are the same in
four-year olds of both sexes against H1 : four-year-old boys and four-year-old girls
display differences in incidence and degree of aggression.

(a) Wald–Wolfowitz runs test

We combine the scores of boys (B’s) and girls (G’s) in a single-ordered series, we
may determine the number of runs of G’s and B’s. The ordered series is given below.

Score 7 9 15 16 16 20 22 26 36 40 41 45 50 55 58

Groups G G G G G G G G G G B B B G G

Runs _________________1___________________________ ____2_____ __3___

Score 65 65 69 72 86 104 113 118 141

Groups B B B B B B B B B

Runs __________________4______________________

Each run is underlined and we observe that r = 4.
From the table for n1 = 12, n2 = 12, we reject H0 at a ¼ 0:05 if r� 7. Since our

value of r is smaller than 7, we may reject H0. So we can conclude that boys and
girls display differences in aggression.
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G

G
G
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G
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B

B
G
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B

B
B
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B

B
B

B
B
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1
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(b) Mann–Whitney–Wilcoxon test

The pooled sample and the ranks are given below:
The sum of the ranks for the observations corresponding to the boys is

R1 ¼ 11þ 12þ 13þ 16:5þ 16:5þ 18þ 19þ 20þ 21þ 22þ 23þ 24 ¼ 216

and that for girls is

R2 ¼ 1þ 2þ 3þ 4:5þ 4:5þ 6þ 7þ 8þ 9þ 10þ 14þ 15 ¼ 84

The smaller rank-sum is 84. This corresponds to girls.
Hence

U ¼ n1n2 þ n2ðn2 þ 1Þ
2

� R2

¼ 144þ 78� 84 ¼ 138

Or, equivalently,

U ¼ n1n2 þ n1ðn1 þ 1Þ
2

� R1

¼ 144þ 78� 216 ¼ 6

The test statistic is given by the smaller of the two quantities. Here U = 6. The
other value of U can be obtained from the relation U0 = n1n2 − U = 144 – 6 = 138.
The critical value of U for a two-tailed test at a = 0.05 and n1 ¼ n2 = 12 is 37. The
observed U = 6 is less than the table value. Hence it is significant at 5 % level.
Hence H0 is rejected.

(c) Kolmogorov–Smirnov test

The scores of the boys and girls are presented in two frequency distributions shown
below:

Score (x) No. of boys No. of girls F12ðxÞ G12ðxÞ jF12ðxÞ � G12ðxÞj
7–20 0 6 0 6/12 6/12

21–34 0 2 0 8/12 8/12

35–48 2 2 2/12 10/12 8/12

49–62 1 2 3/12 12/12 9/12

63–76 4 0 7/12 12/12 5/12

77–90 1 0 8/12 12/12 4/12

91–104 1 0 9/12 12/12 3/12

105–118 2 0 11/12 12/12 1/12

119–132 0 0 11/12 12/12 1/12

133–146 1 0 12/12 12/12 0
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D12;12 ¼ SupjF12ðxÞ � G12ðxÞj ¼ 9=12. From the table, the critical value for
n1 ¼ n2 ¼ 12 at level a ¼ 0:05 is D12;12;05 ¼ 6=12. Since D12;12 [D12;12;0:5, we
reject H0.

6.5 Non-parametric Tolerance Limits

We draw a random sample ðX1;X2; . . .;XnÞ from a distribution with distribution
function F(x) which is continuous. We define functions of sample observations
L ¼ Lðx1; x2; . . .; xnÞ and U ¼ Uðx1; x2; . . .; xnÞ such that L < U.

If Pr PrðL�X �UÞ� b½ � ¼ c ð6:2Þ

then the interval (L,U) is called 100 b% tolerance interval with tolerance coefficient
c. L and U are called lower and upper tolerance limits respectively. If the deter-
mination of c does not depend upon F then the limit (L,U) are called non-parametric
(distribution free) tolerance limits. We note that, (6.2) can be written as,

Pr FðUÞ � FðLÞ� bf g ¼ c ð6:3Þ

that is a tolerance interval (L,U) for a continuous distribution having c.d.f. F
(x) with tolerance coefficient c is a random interval such that the probability is c that
the area between the endpoints of the interval (L,U) is at least a certain pre-assigned
quantity ‘b’.

If L and U are two-order statistics say xðrÞ and xðsÞ, (r < s), then (6.3) is
equivalent to Pr FðxðsÞÞ � FðxðrÞÞ � b

�  ¼ c.
Wilks has shown that the order statistics provide non-parametric tolerance limits,

while it is Robbins who has shown that it is only the order statistics which provide
distribution free tolerance limits.

Determination of Tolerance Limits

Joint distribution of xðrÞ; xðsÞ is

g xðrÞ; xðsÞ
�  ¼ n!

ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! FðxðrÞÞ
� �r�1

FðxðsÞÞ � FðxðrÞÞ
� �s�r�1 1� FðxðsÞÞ

� �n�s
f ðxðrÞÞf ðxðsÞÞ; xðrÞ\xðsÞ

Putting U ¼ FðxðrÞÞ andV ¼ FðxðsÞÞ we get,

gðu; vÞ ¼ n!
ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! u

r�1ðv� uÞs�r�1ð1� vÞn�s; 0\u\v\1:
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Again we put
U ¼ W

V � U ¼ Y
) U ¼ W

V ¼ W þ Y ;
0\y\1

0\W\1� y:

) gðw; yÞ ¼ n!
ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ!w

r�1ys�r�1ð1� w� yÞn�s

) gðyÞ ¼ n!
ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! y

s�r�1
Z1�y

0

wr�1ð1� w� yÞn�sdw

¼ n!
ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! y

s�r�1
Z1
0

ð1� yÞr�1tr�1ð1� yÞn�sð1� tÞn�sð1� yÞdt

¼ n!
ðr � 1Þ!ðs� r � 1Þ!ðn� sÞ! y

s�r�1ð1� yÞnþ r�s
Z1
0

tr�1ð1� tÞn�sdt

¼ Cðnþ 1Þ
Cðs� rÞCðnþ r � sþ 1Þ y

s�r�1ð1� yÞnþ r�s

¼ 1
bðs� r; nþ r � sþ 1Þ y

s�r�1ð1� yÞnþ r�s; 0\y\1:

) Pr FðxðsÞÞ � FðxðrÞÞ � b
� � ¼ c

, Pr y� b½ � ¼ c , Pr y� b½ � ¼ 1� c

i:e:
Zb
0

gðyÞdy ¼ 1� c

i:e:

Rb
0
ys�r�1ð1� yÞnþ r�sdy

bðs� r; nþ r � sþ 1Þ ¼ 1� c

i:e: Ibðs� r; nþ r � sþ 1Þ ¼ 1� c ð6:4Þ

For given b; c and n we choose r and s satisfying (6.4) such that r + s = n + 1
that is xðrÞ and xðsÞ are symmetrically placed.

Particular case: r = 1, s = n; Then (6.4) ) Ibðn� 1; 2Þ ¼ 1� c

i:e: 1� c ¼

Rb
0
tn�2ð1� tÞdt
bððn� 1Þ; 2Þ

i:e: 1� c ¼ bn�1

n� 1
� bn

n

� 	
=
Cðn� 1ÞCð2Þ

Cðnþ 1Þ

¼ nbn�1 � ðn� 1Þbn
nðn� 1Þ nðn� 1Þ

) 1� c ¼ nbn�1ð1� bÞþ bn
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that is 1� c ’ nbn�1ð1� bÞ as 0\b\1 and n ! 1. So for large ‘n’,
1� c ’ nbn�1ð1� bÞ:

For given b and c, one can find n from this relationship.

Alternative

For Bin(n,p), we know

Xc
x¼0

n

x

 !
pxqn�x ¼Iqðn� c; cþ 1Þ

¼1� Ipðcþ 1; n� cÞ

Then 6:4ð Þ ) c ¼1� Ibðs� r; nþ r � sþ 1Þ

¼
Xs�r�1

x¼0

n

x

 !
bxð1� bÞn�x:

So for given n, b and c we can find s and r such that xðrÞ and xðsÞ are sym-
metrically placed.

6.6 Non-parametric Confidence Interval for nP

Suppose F(x) is continuous and a random sample ðx1; x2; . . .; xnÞ is drawn from it.
np is the p-th order quantile. So P X � np

� � ¼ p. Define XðrÞ and XðsÞ as the rth and

sth order statistics, r < s. Then XðrÞ;XðsÞ
� �

is said to be 100(1 − α)% confidence

interval for np if

Pr XðrÞ � np �XðsÞ
� � ¼ 1� a ð6:5Þ

Now; Pr XðrÞ � np �XðsÞ
� � ¼ Pr np �XðsÞ

� �� Pr np �XðrÞ
� �

¼ Pr XðsÞ � np
� �� Pr XðrÞ � np

� �
¼ 1� Pr XðsÞ\np

� �� 1þ Pr XðrÞ\np
� �

¼ Pr XðrÞ\np
� �� Pr XðsÞ\np

� �
¼ Pr at least r of the observations \np

� �
� Pr at least s of the observations \np

� �
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¼
Xs�1

x¼r

n

x

 !
pxð1� pÞn�x ð6:6Þ

¼
Xs�1

x¼0

n

x

 !
pxð1� pÞn�x �

Xr�1

x¼0

n

x

 !
pxð1� pÞn�x

¼ 1� Ipðs; n� sþ 1Þ � 1þ Ipðr; n� rþ 1Þ
¼ Ipðr; n� rþ 1Þ � Ipðs; n� sþ 1Þ

Since, Pr XðrÞ � np �XðsÞ
� � ¼ 1� a, so r and s are such that

1� a ¼ Ipðr; n� rþ 1Þ � Ipðs; n� sþ 1Þ ð6:7Þ

Given a and n, the selection of r and s satisfying (6.7) is not unique. We select
that pair of r and s for which (s − r) is minimum.

For symmetrically placed order statistics xðrÞ and xðsÞ, we select that pair of (r,
s) such that r + s = n + 1 ⇒ s − 1 = n − r.

) From 6:7ð Þ 1� a ¼
Xn�r

r

n

x

 !
pxð1� pÞn�x

:

From this relation one can find r and hence s = n + 1 − r.

Note If in (6.7) the exact probability ð1� aÞ is not attained then we choose that
pair of r and s such that

Pr XðrÞ � np �XðsÞ
� �� 1� a i:e: Ip r; n� rþ 1ð Þ � Ip s; n� sþ 1ð Þ� 1� a:

Non-parametric confidence interval for n1=2 (=median) using sign test

The sign test technique can be applied to obtain a class interval estimate for the
unknown population median n1=2. Suppose Xð1Þ;Xð2Þ; . . .;XðnÞ be the order statis-

tics. We consider the testing problem H0 : n1=2 ¼ n0 against H1 : n1=2 6¼ n0:

Define; S ¼ total no: of þ ve signs among XðiÞ � n0
� �8i ¼ 1 1ð Þn

The ordinary sign test is

/ðsÞ ¼

1 if s\s1
a1 if s ¼ s1
0 if s1\s\s2
a2 if s ¼ s2
1 if s[ s2

8>>>><>>>>:
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where s1 and s2 are such that

Pr � s\s1=H0½ �\ a
2
� Pr � s� s1=H0½ �

Pr � s[ s2=H0½ �\ a
2
� Pr � s� s2=H0½ �

9>=>; ð6:8Þ

Also a1 and a2 are such that a1 ¼
a
2�Pr s\s1=H0½ �
P½s¼s1=H0� and a2 ¼

a
2�Pr s[ s2=H0½ �
P½s¼s2=H0�

We accept H0 if s1\s\s2 and so

Pr s1\s\s2½ � ¼ 1� a

i:e:; Pr s1 þ 1� s� s2 � 1½ � ¼ 1� a ð6:9Þ

In order to obtain a confidence interval for n1=2 we need only to translate the

inequality in the LHS of (6.9) to an equivalent statement involving the order
statistics and n1=2. We have seen earlier that 1� a ¼ Pr XðrÞ � np �XðsÞ

� �
¼ Ps�1

x¼r

n

x

 !
pxð1�pÞn�x

.

Now, for

p ¼ 1
2
; 1� a ¼ Pr XðrÞ � n1=2 �XðsÞ

� � ¼Xs�1

x¼r

n

x

 !
1
2

� 	n

¼ Pr r� S� s� 1½ � as S�B n;
1
2

� 	
under H0:

) Pr XðrÞ � n1=2 �XðsÞ
� � ¼ Pr r� S� s� 1½ � ¼ 1� a ð6:10Þ

Comparing (6.9) and (6.10), we can write

Pr Xðs1 þ 1Þ � n1
2
�Xðs2Þ

h i
¼ 1� a

) 100ð1� aÞ% C.I. for n1=2 using sign test is Xðs1 þ 1Þ;Xðs2Þ
� � ¼ Xðs1 þ 1Þ;Xðn�s1Þ

� �
fsince S is symmetric about n=2; n2 � s1 ¼ s2 � n=2


For large samples, (6.9) is equivalent to
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Pr
s1 þ 1� n=2ffiffiffiffiffi

n=4
p � S� n

2ffiffiffiffiffi
n=4

p � s2 � 1� n
2ffiffiffiffiffi

n=4
p" #

¼ 1� a

or, Pr
s1 þ 1� n=2 � 0:5ffiffiffiffiffi

n=4
p � s� s2 � 1� n

2 þ 0:5ffiffiffiffiffi
n=4

p" #
¼ 1� a

) s1 þ 1� n=2 � 0:5ffiffiffiffiffi
n=4

p ¼ �sa=2 and
s2 � 1� n

2 þ 0:5ffiffiffiffiffi
n=4

p ¼ sa=2

i:e: s1 ¼ n=2 � 0:5�
ffiffiffiffiffi
n=4

p
sa=2 & s2 ¼ n=2þ 0:5þ

ffiffiffiffiffi
n=4

p
sa=2 ð6:11Þ

So, 100ð1� aÞ% C.I. for n1=2 using sign test is

Xðs1 þ 1Þ;Xðs2Þ
� � ¼ Xðs1 þ 1Þ;Xðn�s1Þ

� �
where s1 and s2 are given by (6.11).

6.7 Combination of Tests

When several tests of the same hypothesis H0 are made on the basis of independent
sets of data, it is quite likely that some of the tests will dictate rejection of the
hypothesis (at the chosen level of significance) while the others will dictate its
acceptance. In such a case, one would naturally like to have a means of combining
the results of the individual tests to reach a firm, overall decision. While one may
well apply the same test to the combined set of data, what we are envisaging is a
situation where only the values of the test statistics used are available.

Let us denote by Ti the statistic used in making the ith test (say, for i = 1, 2,...,k).
Commonly T1; T2; . . .; Tk will be statistics defined in the same way (like v2

statistics or t-statistics), but with varying sampling distributions simply because
they are based on varying sample sizes. To fix ideas, let us assume that in each case
the test requires that H0 be rejected if, and only if, the observed value of the
corresponding statistic be too large. Consider, in this situation, the probabilities
yi ¼ Pr Ti [ ti=H0½ �, for i = 1,2,…,k.

Provided Ti has a continuous distribution under H0, say with probability density

function giðtÞ, so that yi ¼
R1
ti

giðtÞdt; where ti is a randomly taken value of Ti, yi has

the rectangular distribution over the interval [0,1] under H0 and hence �2 loge yi

has the v2 distribution with df = 2. Consequently Pk ¼ �2
Pk
i¼1

loge yi has, under H0,

the v2 distribution with 2k degrees of freedom. This statistic is used as the test
statistic for making the combined test. One would reject H0 if, and only if, the
observed value of Pk exceeds v2a;2k.
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The case where each individual test requires rejection of H0 if, and only if, the
observed value of the corresponding test statistic is too small, or the case where
each individual test requires rejection of H0 if, and only if, the observed value of the
test statistic is either too large or too small, is to be similarly dealt with. The reason
is that, if Ti have continuous distributions under H0, then ui ¼ Pr Ti\ti=H0½ � and
vi ¼ Pr jTij [ jtij=H0½ � are also rectangularly distributed over (0,1). This implies

that the statistic Pk to be appropriate to these situations, viz., Pk ¼ �2
Pk
i¼1

loge ui

and Pk ¼ �2
Pk
i¼1

loge vi, are also distributed as v2 statistics with df = 2k under H0. In

each of these cases also, the overall decision will be to reject H0 if, and only if, the
observed value of the respective Pk exceeds v2a;2K .

Example 6.9 In order to test whether the mean height ðlÞ of a variety of paddy
plants, when fully grown, is 60 cm, or less than 60 cm, five experimenters made
independent (student’s) t-tests with their respective data. The probabilities of the t-
statistics (with the appropriate df in each case) to be less than their respective
observed values are 0.023, 0.061, 0.07, 0.105 and 0.007. If the tests are made at 5 %
level, then the hypothesis H0 : l ¼ 60 cm, has to be accepted in three cases out of
the five.

In order to combine the results of the 5 tests, we note that log yi, for i = 1, 2, 3, 4
and 5, are �2:36173; �2:78533; �2:23045; �1:02119 and �3:84510, respectively. Hence for

the data,
P5
i¼1

loge ui ¼ �10þ 2:24380 ¼ �7:75620, so that Pk ¼ �P5
1
2 loge ui ¼

2:30259 	 15:5124 ¼ 35:719.
This is to be compared with v2:05;10 ¼ 18:307 and v2:01;10 ¼ 23:205: Since the

observed value of Pk exceeds the tabulated values, the combined result of the
experimenter’s tests leads to the rejection of H0 at both 5 % and the 1 % level. In
other words, in the light of all 5 experimenters’ data, we may conclude that the
mean height at the variety of paddy plant is less than 60 cm.

6.8 Measures of Association for Bivariate Samples

A. Spearman’s rank correlation coefficient

In many situations, the individuals are ranked by two judges or the measurements
taken for two variables are assigned ranks within the samples independently. Now it
is desired to know the extent of association between the ranks. The method of
calculating the association between ranks was given by Charles Edward Spearman
in 1906 and is known as Spearman’s rank correlation.

Let X1; Y1ð Þ; X2; Y2ð Þ; . . .; Xn; Ynð Þ: be a sample from a bivariate population. If
the sample values X1;X2; . . .;Xn and Y1; Y2; . . .; Yn are each ranked from 1 to n in
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increasing order of magnitude separately and if the X’s and Y’s have continuous
distribution functions, we get a unique set of rankings. The data will then reduce to
n pairs of ranking. Let us write

R1a ¼ Rank of Xa; a ¼ 1; 2; . . .; n:

R2a ¼ Rank of Ya; a ¼ 1; 2; . . .; n:

Pearsonian coefficient of correlation between the ranks R1a’s and R2a’s is called
the Spearman’s rank correlation coefficient rs which is given by

rs ¼
Pn

a¼1 ðR1a � �R1ÞðR2a � �R2ÞPn
a¼1 ðR1a � �R1Þ2

Pn
a¼1 ðR2a � �R2Þ2

n o1=2

¼
12
Pn
a¼1

R1a � nþ 1
2

� �
R2a � nþ 1

2

� �
nðn2 � 1Þ

If for n individuals, Da ¼ R1a � R2a, is the difference between ranks of the ath
individual for a ¼ 1; 2; . . .; n, the formula for Spearman’s rank correlation is

rs ¼ 1�
6
Pn
i¼1

D2
a

nðn2 � 1Þ :

The value of rs lies between −1 and +1. If X, Y are independent then EðrsÞ ¼ 0.
Also Population Spearman’s rank correlation coefficient, i.e. qs ¼ 0 ) EðrsÞ ¼ 0:
Kendall in 1962 derived the frequency function of rs and gave exact critical value
rs. But the approximate test of rs which is the same as t-test for Pearsonian cor-
relation coefficient is good enough for all practical purposes. Here we test H0 :
qs ¼ 0 against H1 : qs 6¼ 0. The test statistic

t ¼ rs
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffi
1�r2s

p has (n − 2) d.f. The decision about H0 is taken in the usual way. For

large samples under H0, the random variable Z ¼ rs
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
has approximately a

standard normal distribution. The approximation is good for n� 10.

B. Kendall’s rank correlation coefficient

Kendall’s rank correlation coefficient τ is suitable for the paired ranks as in case of
Spearman’s rank correlation. Let X1; Y1ð Þ; X2; Y2ð Þ; . . .; Xn;Ynð Þ be a sample from a
bivariate population.

For any two pairs Xi; Yið Þ and Xj; Yj
� �

we say that the relation is perfect con-
cordance if
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Xi\Xj whenever Yi\Yj or Xi [Xj whenever Yi [ Yj and that the relation is
perfect discordance if Xi [Xj whenever Yi\Yj or Xi\Xj whenever Yi [ Yj.

Let pc and pd be the probability of perfect concordance and of perfect discor-
dance respectively defined by

pc ¼P ðXj � XiÞðYj � YiÞ[ 0
� �

and pd ¼P ðXj � XiÞðYj � YiÞ\0
� �

:

The measure of association between the random variables X and Y defined by

s ¼ pc � pd

is known as Kendall’s tau ðsÞ
It is noted that

s ¼ 0 if X and Y are independent.
= +1 if X and Y be in prefect concordance.
= −1 if X and Y be in prefect discordance.

We now need to find an estimate of s from the sample.
Using sample observations, Kendall’s measure of association becomes

T ¼ 1

n

2

 ! Xn
1� i\j� n

X
sðxj � xiÞsðyj � yiÞ ð6:12Þ

where sðrÞ ¼ 1 if r[ 0

¼ 0 if r ¼ 0

¼� 1 if r\0
Naturally E s xj � xi

� �
sðyj � yiÞ

� � ¼ pc � pd ¼ s
The statistic T defined in (6.12) is known as Kendall’s sample tau ðsÞ coefficient.

The procedure for calculating T consists of the following steps:

Step 1: Arrange the rank of the first set (X) in ascending order and rearrange the
ranks of the second set (Y) in such a way that n pairs of rank remain the same.
Step 2: After operating Step 1, the ranks of X are in natural order. Now we are left
to determine how many pairs of ranks on the set Y are in their natural order and how
many are not. A number is said to be in natural order if it is smaller than the
succeeding number and is coded as +1 and also if it is greater than its succeeding
number then it will not be taken in natural order and will be coded as −1. In this

way all
n
2

� 	
pairs of the set (Y) will be considered and assigned the values +1

and −1.
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Step 3: Find the sum ‘S’ of all the coded values.
Step 4: The formula for Kendall’s rank correlation coefficient-T is

T ¼ S

n
2

� 	 ¼ Actual value
Maximum possible value

¼ 2S
nðn� 1Þ

Here we test H0 : s ¼ 0 against H1 : s 6¼ 0. Thus we reject H0 if the observed
value of jT j[ ta=2 where P jT [ ta=2jH0

� � ¼ a. The values of ta are given in the
table for selected values of n and a. Values for 4� n� 10 are tabulated by Kendall.

It can be shown that EðTÞ ¼ s and VðTÞ ¼ 4ðn�2Þ
9nðn�1Þ þ 1�s2

n
2

� 	. If n ! 1 under

H0 : s ¼ 0, 3
ffiffi
n

p
2 T �Nð0; 1Þ and we can test the independence of x and y.

Remark An important difference between T and rs is that T provides an unbiased
estimate of s, whereas rs is not an unbiased estimate of qs:

Example 6.10 Following are the ranks awarded to seven debators in a competition
by two judges.

Debators A B C D E F G

Ranks by judge I (x) 3 2 1 6 7 4 5

Ranks by judge II (y) 5 6 3 7 4 2 1

Compute (i) Spearmen’s rank correlation coefficient ðrsÞ and Kendall’s sample
tau coefficient (T) and test their significance.

Solution (i) First we find di ¼ xi � yi8i which are
d : −2 −4 −2 −1 3 2 4
Also,

P7
i¼1 d

2
i ¼ 54

thus rs ¼ 1 � 6
P

d2i
nðn2�1Þ ¼ 1 � 6	54

7	48 ¼ 0:036

To test H0 : qs ¼ 0 against H1 : qs 6¼ 0, the statistic

t5 ¼ rs
ffiffiffiffiffiffiffiffiffiffiffi
n� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2s

p ¼ 0:036
ffiffiffiffiffiffiffiffiffiffiffi
7� 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð0:036Þ2

q ¼ 0:080

From the table, t0.025,5 = 2.571. Calculated value of |t| = 0.080 < 2.571, hence we
accept H0. It means there is a dissociation between the ranks awarded by two
judges.
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(ii) We write below ranks of x in natural order and ranks of y correspondingly

x 1 2 3 4 5 6 7

y 3 6 5 2 1 7 4

For this problem, n = 7
For S, take the rank 3 and give +1 or −1 value for all pairs with subsequent ranks

of y. 3 < 6, give a number +1; 3 < 5, again +1; 3 > 2, give a number −1 and so on.
Then choose 6 and take the pairs (6,5), (6,2), (6,1), (6,7) and (6,4) and continue the
process till we reach the last pair (7,4). Proceeding in this manner,

S = (+1 +1 –1 –1 +1 +1) + (–1 –1 –1 +1 –1) + (–1 –1 +1 –1) + (–
1 +1 +1) + (+1 +1) + (–1)

= 2 – 3 – 2 + 1 + 2 – 1 = –1
Thus T ¼ S

n

2

 ! ¼ �1	 2
7	 6 ¼ �0:048

To test the significance of T, we test
H0 : s ¼ 0 against H1 : s 6¼ 0.
From the table, for n = 7 we have t0.025 = 0.62. Since |T| = 0.048 < 0.62, we

accept H0. It reveals that there is no association between the ranks awarded by two
judges.

Example 6.11 A random sample of 12 couples showed the following distribution of
heights (in inches):

Couple no. 1 2 3 4 5 6 7 8 9 10 11 12

Husband
height

80 70 73 72 62 65 74 71 63 64 68 67

Wife height 72 60 76 62 63 46 68 71 61 65 66 67

(a) Compute rs and T.
(b) Test the hypothesis that the heights of husband and wife are independent using

rs as well as T. In each case use the normal approximation.

Solution (a) The heights of husband and wife are each ranked from 1 to 12 in
increasing order of magnitude separately and let us denote their ranks by xi and yi
respectively (i = 1,2, …, 12).

xi : 12 7 10 9 1 4 11 8 2 3 6 5
yi : 11 2 12 4 5 1 9 10 3 6 7 8
di ¼ xi � yi : 1 5 �2 5 �4 3 2 �2 �1 �3 �1 �3X

d2i ¼ 108:
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Thus rs ¼ 1� 6
P

d2i
nðn2�1Þ ¼ 1� 6	 108

12	 143 ¼ 0:6224

We write below the ranks of x in natural order and ranks of y correspondingly

xi : 1 2 3 4 5 6 7 8 9 10 11 12
yi : 5 3 6 1 8 7 2 10 4 12 9 11

Total number of scores =
n
2

� 	
¼ 12	 11

2 ¼ 66

Actual score = S = 3 + 6 + 3 + 8 + 1 + 2 + 5 + 0 + 3 – 2 + 1 = 30 (procedure for
calculations of S is explained in Example 6.10 (ii))

Thus, T ¼ 30
60 ¼ 0:4545

(b) To test H0 : qs ¼ 0 against H1 : qs 6¼ 0, the approximate test statistic is

Z ¼ rs
ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p

¼ 0:6224	
ffiffiffiffiffi
11

p
¼ 2:06�Nð0; 1Þ

Since Cal |Z|, i.e., 2.06 > Z0.025 = 1.96, hence we reject H0.
It means that the heights of husband and wife are not independent.
To test H0 : s ¼ 0 against H1 : s 6¼ 0, the approximate test statistic is

Z ¼ 3
2

ffiffiffi
n

p� �
T ¼ 3

2

ffiffiffiffiffi
12

p� �
0:4545 ¼ 2:36�Nð0; 1Þ

Since Cal |Z|, i.e., 2.36 > Z0.025 = 1.96, hence we reject H0. Hence we can
conclude that there is an association between the heights of husband and wife.
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Chapter 7
Statistical Decision Theory

7.1 Introduction

In this chapter we discuss the problems of point estimation, hypothesis testing and
interval estimation of a parameter from a different standpoint.

Before we start the discussion, let us first define certain terms commonly used in
statistical inerence problem and decision theory. Let X1;X2; . . .;Xn denote a ran-
dom sample of size n from a distribution that has the p.d.f. f(x, θ), where θ is an
unknown state of nature or an unknown parameter and H is the set of all possible
values of θ, i.e. parameter space (known).

To make some inference about θ, i.e. to take some decisions or action about θ,
the statistician takes an action on the basis of the sample point x1; x2; . . .; xnð Þ.

Let us define

� ¼ the set of all possible actions for statistician action spaceð Þ
� to choose an action a from �:

So, θ = true state of nature and a = action taken by the statistician.
The value L(θ, a) is the loss incurred by taking action ‘a’ when θ is true.

Equivalently, it is a measure of the degree of undesirability of choosing an action
‘a’ when θ is true and this gives a preference pattern over ɶ for given θ, i.e. the
smaller the loss the better the action under θ. L(θ, a) is a real-valued function on Θ x
ɶ = Loss function. Thus (Θ, ɶ, L) is the basic element in our discussion.

Example 7.1 Let θ = average life length of electric bulbs produced in a factory and
H ¼ 0;1ð Þ:
Point estimation of θ

To estimate the value of θ ≡ to choose one value from 0;1ð Þ; so a ¼ 0;1ð Þ.
Observe life lengths of some randomly selected bulbs.
Define L(θ, a) = h� að Þ2 = squared error loss function
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(or) = h� aj j = absolute error loss function
(or) = w hð Þ h� að Þ2 = weighted squared error loss function where
w hð Þ = a known function of θ.
Desired nature of (L, θ) graph should be a convex function with minimum at θ

and increasing in h� aj j.

Testing of hypothesis of θ

To test H0 : h� h0 (a given value of θ) against

H1 : h[ h0

� ¼ a0; a1f g where a0 = accept H0 and a1 = accept H1. Here, simple (0–1) loss
function is as

a0 a1
h� h0 0 1
h[ h0 1 0

or, assigned value loss function is as
a0 a1

h� h0 l00 l01
h[ h0 l10 l11

9
=
;

l00\l01
l11\l10

or, a 0� xð Þ type loss function is as
a0 a1

h� h0 0 x1ðhÞ
h[ h0 x2ðhÞ 0

9
=
;

w1 hð Þ "
w2 hð Þ "

in
in

h0 � h
h� h0

Interval estimation

Here, we are to choose one interval from 0;1ð Þ.

So; � ¼ The set of all possible intervals of 0;1ð Þ
¼ a1; a2ð Þ:

L h; að Þ ¼ 1
0

�
if
if
h 62 a
h 2 a

or, may be L h; að Þ ¼ a2 � a1 ¼ length of the interval.

L(θ,a)

θ
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Let R ¼ A random experiment performed

X ¼ Random outcomes of the experiment ¼ Random variable or vector

x ¼ Observed value of X

�x ¼ Sample space

The probability distribution of X depends on θ, (say)

Ph : Ph X 2 A½ � or; Fh xð Þ ¼ Ph X � x½ �
or; f h xð Þ ¼ p.d.f or p.m.f of X:

The statistician observes the value x of X to take his decision. If X = x is observed
the statistician takes an action d xð Þ 2 �, d xð Þ : �x ! �
where

d xð Þ ¼ A decision rule in its simplest form

¼ A non-randomized decision rule:

If d(x) = action taken; loss incurred under h ¼ L h; d xð Þð Þ. If d(x) = decision rule,
then loss incurred (under θ) ¼ L h; d xð Þð Þ (random quantity) = a real-valued random
variable. Expected loss (under θ) ¼ EhL h; d xð Þð Þ ¼ Rd hð Þ = risk of d(x) under θ.

) Rd hð Þ : h 2 H ! Risk function of d xð Þ:

Let us restrict to rule d(x) for which Rd hð Þ\18h and let D = the set of all such
d(x)’s. Rd hð Þ gives a preference pattern D for given θ. The smaller the risk the better
is the decision rule d(x).

Thus, H; �; Lð Þ !X H; D;Rð Þ
Example 7.2 Point estimation of real h : � ¼ H

d(x): �x ! ɶ(Θ); d(x) = point estimator of θ.
For squared error loss Rd hð Þ ¼ Eh d xð Þ � hð Þ2¼ MSE of d(x) under θ.

Example 7.3 � ¼ a0; a1f g; ai ¼ accept Hi, i = 0, 1,

d xð Þ : �x ! a0;a1
� �

�x0 ¼ x : d xð Þ ¼ a0f g ¼ acceptance region

�x1 ¼ x : d xð Þ ¼ a1f g ¼ rejection region

) d xð Þ ¼ a0 if x 2 �x0
a1 if x 2 �x1

�x0 and �x1 are disjoint and �x0þ�x1¼ �x
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For ð0�1Þ loss if h 2 H0;Rd hð Þ ¼ Ph d xð Þ ¼ a1f g
¼ Ph X 2 �x1f g
¼ Probability of first kind of error:

If h 2 H1;Rd hð Þ ¼ Ph d xð Þ ¼ a0f g ¼ Ph X 2 �x0f g
¼ 1� Ph X 2 �x1f g ¼ Probability of type 2 error:

Interval estimation of real θ

ɶ = set of all possible intervals of H.

d xð Þ : �x ! �

d xð Þ ¼ d1 xð Þ; d2 xð Þð Þ

L h; að Þ ¼ 1

0

�
if

if

h 62 a

h 2 a

Then Rd hð Þ ¼ Ph h 62 d xð Þf g ¼ 1� Ph h 2 d xð Þf g
If L h; að Þ ¼ a2 � a1
then Rd hð Þ ¼ Eh d2 xð Þ � d1 xð Þ½ � = Expected length of d(x).
Thus, (Θ, ɶ, L) = Basic element of a statistical decision problem.
X = observable random variable; for each x, d xð Þ 2 �, i.e. d : �x ! �
d(x) = a non-randomized decision rule.

Rd hð Þ ¼ Eh L h; d xð Þð Þð Þ ¼ Risk of d xð Þ

D = the set of all non-randomized decision rules (with finite risks 8h)
Randomized Decision Rules

Randomized action

Example 7.4 Let H ¼ h1; h2f g; ɶ ¼ a1; a2; a3f g and

Loss function as h1
h2

a1
1
4

a2
4
1

a3
3
3

Neither a1 nor a2 is better than a3 for every value of h. Now define an action

a� : a� ¼ a1 with probability
1
2

¼ a2 with probability
1
2
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The expected loss for a� is

L h1; a�ð Þ ¼ 1
2
L h1; a1ð Þþ 1

2
L h1; a2ð Þ ¼ 2:5

L h2; a�ð Þ ¼ 1
2
L h2; a1ð Þþ 1

2
L h2; a2ð Þ ¼ 2:5

Thus a� is to be preferred to a3 both under h1 and h2. Such an a� is called
randomized action.

Generally, by randomized action a� we mean actually a probability distribution
over ɶ and loss due to a randomized action a� is

L h; a�ð Þ ¼ EL h; zð Þ where z is a random variable with probability distribution a�

over ɶ.

Advantages of considering randomized actions

1. Extends the class of actions, i.e. allows more flexibility for the statistician.
2. The set of all randomized actions is convex, i.e. if a�1; a

�
2 are two randomized

actions, then for every 0� a� 1; aa�1 þ 1� að Þa�2 is also a randomized action
with L h; aa�1 þ 1� að Þa�2

� � ¼ aL h; a�1
� �þ 1� að ÞL h; a�2

� �
.

We shall consider only randomized actions a� for which L h; a�ð Þ is finite 8h and
shall denote by ɶ* the set of all such randomized actions.

Note Clearly ɶ � ɶ* because a non-randomized action ‘a’ ≡ A probability dis-
tribution over ɶ degenerate at the point ‘a’.

First definition of randomized decision rule

Let X = observable random variable
x = observed value of X
For each x, let d xð Þ 2 ɶ*, i.e. d : �x ! ɶ*

d ¼ d xð Þ = a (behavioural) randomized decision rule.
Rd hð Þ ¼ Risk of d at h ¼ EhL h; d xð Þð Þ
We shall consider only behavioural rules d for which Rd hð Þ is finite 8h and shall

denote by D as the class of all such behavioural rules. Clearly, D�D.

Example 7.5 Test of hypothesis problem H0 : h 2 H0 against H1 : h 2 H1.

� ¼ a0; a1f g; ai ¼ acceptHi; i ¼ 0; 1; . . .

A typical randomized action a� ¼ /
where / = probability of accepting H1

1� / = probability of accepting H0; 0�/� 1.

A typical behavioural decision rule: d ¼ d xð Þ ¼ / xð Þ
where / xð Þ ¼ probability of accepting H1 for X ¼ x
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1� / xð Þ ¼ probability of accepting H0 for X ¼ x

0�/ xð Þ� 1. For 0–1 loss, L h; a�ð Þ ¼ / � 1þ 1� /ð Þ � 0 ¼ / for h 2 H0

L h; a�ð Þ ¼ / � 0þ 1� /ð Þ � 1 ¼ 1� / for h 2 H1

R/ hð Þ ¼Eh/ xð Þ for h 2 H0

¼Eh 1� / xð Þ½ � for h 2 H1

Second definition of randomized decision rule

Let X = observable random variable; x = observed value of X.
D = the set of all non-randomized decision rules.

d ¼ A probability distribution overD

¼ A randomized mixedð Þ decision rule with Rd hð Þ ¼ ERz hð Þ ¼ Risk of d at hwhere

Z ¼ A random variable with probability distribution d overD:

Example 7.6 � ¼ a1; a2f g �x ¼ x1; x2f g
D ¼ d1; d2; d3; d4f g

d1 : d1 x1ð Þ ¼ a1; d1 x2ð Þ ¼ a1
d2 : d2 x1ð Þ ¼ a2; d2 x2ð Þ ¼ a2
d3 : d3 x1ð Þ ¼ a1; d3 x2ð Þ ¼ a2
d4 : d4 x1ð Þ ¼ a2; d4 x2ð Þ ¼ a1

A typical mixed decision rule is d ¼ p1; p2; p3; p4ð Þ
pi 	 0 8 i ¼ 1 1ð Þ4, P

4

1
pi ¼ 1 where

pi ¼ probability of choosing non-randomized rule di

Rd hð Þ ¼
X4

i¼1

piRdi hð Þ:

We shall consider only mixed rules d for which Rd hð Þ is finite 8h and shall
denote by D� as the class of all such mixed decision rules. Clearly, D�D� since a
non-randomized rule d = a probability distribution over D degenerate at d.

First mode of randomization:

ðH;�; LÞ ! ðH;��; LÞ!X H;D;Rð Þ
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Second mode of randomization:

ðH;�; LÞ!X ðH;D; LÞ ! H;D�;Rð Þ
Note The two modes of randomization can be considered to be equivalent in the
sense that given any d 2 D� one can find a d� 2 D with Rd hð Þ ¼ Rd� hð Þ 8h and
conversely.

Example 7.7 � ¼ a1; a2f g, �x ¼ x1; x2f g
D ¼ d1; d2; d3; d4f g as defined earlier.

A typical d 2 D� is d ¼ p1; p2; p3; p4ð Þ; pi 	 0 for i = 1(1)4,
P4

1
pi ¼ 1, where

pi ¼ probability of choosing di.

D� ¼ p1; p2; p3; p4ð Þ
.
pi 	 08i;

X
pi ¼ 1

n o

A typical d� 2 D is d� ¼ /1;/2ð Þ; 0�/1;/2 � 1, where /i ¼ / xið Þ = probabil-
ity of taking action a1 if X ¼ xi;

1� /i ¼ probability of taking action a2 if X ¼ xi:

D ¼ /1;/2ð Þ=0�/1;/2 � 1f g

If one chooses a d 2 D�,

a1 is chosen with probability p1 þ p3
a2 is chosen with probability 1� p1 þ p3ð Þ ¼ p2 þ p4

�
for X ¼ x1

a1 is chosen with probability p1 þ p4
a2 is chosen with probability 1� p1 þ p4ð Þ ¼ p2 þ p3

�
for X ¼ x2

Thus, d can be considered to be equivalent to a d� 2 D with /1 ¼ p1 þ p3,
/2 ¼ p1 þ p4.

Similarly, a d� 2 D can be considered to be equivalent to a d ¼ D� with
p1 þ p3 ¼ /1, p1 þ p4 ¼ /2.

Advantages of considering randomized rules

1. Extends the class of decision rules, i.e. allows more flexibility to the statistician
2. The set of all randomized rules is convex, i.e. if d1; d2 2 D (or D�) then

ad1 þ 1� að Þd2 2 D (or D�).

For every 0� a� 1 and Rad1 þ 1�að Þd2 hð Þ ¼ aRd1 hð Þþ 1� að ÞRd2 hð Þ8h.
Thus, h 2 H; a 2 �; L h; að Þ; H;�; Lð Þ
X = observable random variable
P ¼ Ph=h 2 Hf g ¼ family of probability distribution of X
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d(x) = a non-randomized decision rule
D = the class of all non-randomized decision rules
d Xð Þ = a behavioural or randomized decision rule
D = the class of all behavioural rules
D� = the class of all randomized rules
D and D� are equivalent classes.
We shall hereafter denote both D and D� as D.

Note D 
 D
Let d 2 D, Rd hð Þ = risk function of d; h 2 H.
Goodness of a d is measured by risk function.

A natural ordering of decision rules
Let d1; d2 2 D

1. d1 is said to be equivalent to d2 d1 � d2ð Þ if Rd1 hð Þ ¼ Rd2 hð Þ 8h 2 H
2. d1 is at least as good as d2 d1 	 d2ð Þ if Rd1 hð Þ�Rd2 hð Þ 8h 2 H
3. d1 is said to be better than d2 d1 [ d2ð Þ if Rd1 hð Þ�Rd2 hð Þ 8h 2 H with strict

inequality for at least one θ.

Note

1. d1 	 d2 ) either d1 [ d2, or d1 � d2
d1 [ d2 ) d1 	 d2

2. d1 [ d2; d2 [ d3 ) d1 [ d3, similarly for 	 case
3. It may so happen that neither d1 [ or	ð Þd2 nor d2 [ or	ð Þd1. In such case d1

and d2 are non-comparable. Thus [ or	ð Þ gives a partial ordering of rules
2 D

Example 7.8 X �N h; 1ð Þ
To estimate h;H ¼ � ¼ �1;1ð Þ:
L h; að Þ ¼ h� að Þ2¼ squared error loss. For any real constant C, let dc Xð Þ ¼

CX ¼ A non-randomized rule (Fig. 7.1).

Rdc Xð Þ ¼ Eh CX � h½ �2¼ Eh C X � hð Þ � h 1� Cð Þ½ �2

¼ C2Eh X � hð Þ2 þ h2 1� Cð Þ2�2C 1� Cð Þh � Eh X � hð Þ
¼ C2 þ h2 1� Cð Þ2

dR

cdR

(   )

(   )

(   )

(   )

1

2

dR

1dR

θ

θ

θ
θ

θFig. 7.1
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For C = 1, Rd1 hð Þ ¼ 1 8h.
For C > 1, Rdc hð Þ[ 1 ¼ Rd1 hð Þ 8h ) d1 [ dc
If C ¼ 1

2 ; Rd1=2 hð Þ ¼ 1
4 þ h2

4

Here neither d1 [ d1=2, nor d1=2 [ d1
Hence d1 and d1=2 are non-comparable.

Admissibility of Decision Rules

Definition A d 2 D is said to be an admissible decision rule if there does not exist
any d0 2 D such that d0 [ d. Otherwise d is said to be inadmissible, i.e. d is said to
be an inadmissible rule if there exists a d0 2 D such that d0 [ d.

In the above example, for any C > 1, dc is inadmissible as d1 [ dc.

Note Admissibility is the minimum requirement for any reasonably good decision
rule though the criterion is of negative nature.

7.2 Complete and Minimal Complete Class of Decision
Rules

Definition Let C(�D) be a class of decision rules. C is said to be a complete class
of decision rule if given any d 62 C such that a d0 2 C exists such that d0 [ d
(Fig. 7.2).
C is said to be minimal complete if

(i) C is complete and
(ii) No proper sub-class of C is complete.

Significance

If a complete class of C is available one can restrict to this class only for finding a
reasonable decision rule and thus reduce the problem.

A minimal complete class, if exists, provides maximal reduction to this extent.

Note A minimal complete class does not necessarily exist.

Some relationship between a complete (or a minimal complete) class and the
class of all admissible rules

Let A = the class of all admissible rules.

Result 1 For any complete class C, A�C, i.e. any complete class C contains all
admissible rules.

Fig. 7.2
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Proof Let d 2 A. If possible let d 62 C. So there exists a d0 2 C such that d0 [ d )
d is inadmissible, which is a contradiction as we have assumed d is an admissible
rule. So d 2 A ) d 2 C, i.e. A�C. h

Result 2 If A is complete, then A is minimal complete.

Proof Assume A is complete. Result 1 ) No proper sub-class of A can be com-
plete. Hence A is minimal complete. h

Result 3 If a minimal complete class C exists, then C � A.

Proof Let C be a minimal complete class. Then C is complete. By Result 1, A�C.
So it is enough to prove that C�A. Suppose this is not true. Then there exists a d0
such that d0 2 C but

d0 62 A ð7:1Þ

This will imply that there exists a d1 2 C such that

d1 [ d0 ð7:2Þ

(Since d0 62 A, i.e. d0 is inadmissible. Hence, there exists a d such that d[ d0. If
d 2 C, take d ¼ d1. If d 62 C, there exists a d1 2 C such that d1 [ d[ d0. Thus, in
all cases there exists a d1 2 C such that d1 [ d0).

Let us define C1 ¼ C � d0f g.

Let us defineC1 ¼ C � d0f g:Then it follows thatC1 is also complete ð7:3Þ

(Let d 62 C1 h

Case 1 d ¼ d0. By (7.2), there exists a d1 2 C and hence d1 2 C1 such that
d1 [ d0:

Case 2 d 6¼ d0. Then d 62 C, so there exists a d0 2 C such that d0 [ d:
A: d0 ¼ d0. By (7.2), there exists a d1 2 C and hence 2 C1 such that

d1 [ d0 [ d.
B: d0 6¼ d0. d

0 2 C1. Hence, there exists a d0 2 C1 such that d0 [ d:
Thus, given any d 62 C1 in all cases there will exist a d

0 2 C1 such that d0 [ d )
C1 is complete)

Now (7.3) contradicts that C is minimal complete and hence (7.1) must be false
) C�A: So C � A.

Result 2 + Result 3 gives us ) A minimal complete class exists iff A is complete
and in this case C � A.

Corollary 1 A minimal complete class, if it exists, is unique.

Proof Let C = a minimal complete class. C � A which is unique. h
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Corollary 2 Let C be a minimal complete class and let d 2 C. Then if d0 � d, d0

also 2 C.

Proof C � A, d 2 C , d 2 A. d0 � d ) d0 also 2 A and hence 2 C. h

Corollary 3 If d is admissible and d0 � d then d0 is also admissible.

Essential complete class and minimal essential complete class

Definition Let C �Dð Þ be a class of decision rules. Then C is said to be an essential
complete class if given any d 62 C there exists a d0 2 C such that d0 	 d.

C is said to be minimal essential complete class if

(i) C is essential complete; and (ii) No proper sub-class of C is essential complete.

Note A complete class C is also essential complete since d0 [ d ) d0 	 d.

Result 1 Let A = the class of all admissible rules and C = an essential complete
class.

If d 2 A but 62 C, then there exists a d0 � d such that d0 2 C (and hence 2 A).

Proof Let d 2 A but 62 C. Then there exists a d0 2 C such that d0 	 d. But as d 2 A,
it is impossible that d0 [ d. So, d0 � d. h

Result 2 Let C be minimal essential complete and let d 2 C. If d0 � d, then d0 62 C.

Proof If possible, let d0 2 C. Define C0 ¼ C � d0f g then C0 will be also essential
complete. This contradicts that C is minimal essential complete. Hence d0 62 C. h

Note Let D1ð�DÞ be a class of decision rules. D1 is said to be an equivalent class
if all rules 2 D1 are equivalent to each other, but no rule 2 D�D1 is equivalent to
a rule 2 D1. Then D can be considered as the disjoint union of some equivalent
classes.

Then,

(i) If C = a min. complete class then C does or does not entirely contain an
equivalent class (by Corollary 2)

(ii) If C = a minimal essential complete class then C contains at most one rule
from each equivalent class (by Result 2)

Further if d 2 C and in C, d is replaced by d0 � d, then resultant class is also
minimal essential complete.

So,

(a) A minimal complete class � A minimal essential complete class (by (i) and
(ii) above)

(b) A min. essential complete class is not necessarily unique. (by 2nd part of
(ii) above).
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If C be a complete class such that C contains no proper essentially complete
sub-class, then C is minimal complete and is also minimal essential complete.

Example 7.9 Examples of complete and essential complete class

(1) Essential completeness of the class of rules based on a sufficient statistic:

Let d � d xð Þ 2 D. For such x, d xð Þ is a probability distribution over ɶ. T = t(x) = a
statistic. d is said to be based on T if d xð Þ is a function of t(x), i.e. d xð Þ ¼ d x0ð Þ
whenever t xð Þ ¼ t x0ð Þ.

Such a rule can be denoted by d Tð Þ: T is said to be a sufficient statistic if the
conditional probability distribution of X given T is the same 8h.

Let T = a sufficient statistic and D0 = the class of rules based on T.

Lemma 1 For any d 2 D, there exists a d0 2 D0 such that d0 � d: [Cor. D0 is an
essential complete class]

Proof Let d 2 D
For each given value t of T we define a probability distribution d0 tð Þ over ɶ as

follows:
Observe the value of a random variable X 0 having the probability distribution the

same as the conditional probability distribution of X given T = t (which is inde-
pendent of h) and then if X 0 ¼ x0 choose an action a 2 ɶ according to the proba-
bility distribution d x0ð Þ. h

Clearly, d0 Tð Þ ¼ a decision rule based on T, i.e. 2 D0.
Also, L h; d0 tð Þð Þ ¼ E L h; d xð Þð Þ=T ¼ tf g

) Rd0 hð Þ ¼ EhL h; d Tð Þð Þ ¼ EhE L h; d0 xð Þð Þ=Tf g

¼ EhL h; d xð Þð Þ ¼ Rd hð Þ i:e:; d0 � d

Thus, given any d 2 D we can find a d0 2 D0 D0 such that d0 � d.

(2) Essential completeness of the class of non-randomized rules for convex
(strictly convex) loss. Let Rk ¼ k-dimensional real space. S�Rk .

S is said to be a convex subset if for any two x
�
; y
�
2 S and for any 0� a� 1,

a x
�
þ 1� að Þ y

�
also 2 S (Fig. 7.3).

x y x y
S 

(a) (b)

Convex Non-Convex

~~~~

Fig. 7.3
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Let S = a convex subset of Rk.

f x
�

� 	
¼ a real-valued function defined on S (Fig. 7.4).

f x
�

� 	
is said to be a convex function if for any two x

�
; y
�
2 S and for any

0� a� 1,

f a x
�
þ 1� að Þ y

�


 �
� af x

�

� 	
þ 1� að Þf y

�


 �
ð7:4Þ

If strict inequality holds in (7.4) whenever x
�
6¼ y

�
, f x

�

� 	
is said to be strictly

convex.

Examples 7.10
f xð Þ ¼ x2; ex;|fflffl{zfflffl}

Strictly convex

xj j;
convex

x 2 R1

Lemma 2 (Jensen’s inequality) Let S = a convex subset of Rk; f x
�

� 	
¼ a

real-valued convex function defined on S. Let Z� ¼ a random variable, such that

P Z� 2 S
h i

¼ 1 and E Z�

� 	
exists. Then (i) E Z�

� 	
2 S; (ii) Ef Z�

� 	
	 f E Z�

� 	

If f is strictly convex, then strict inequality holds in (ii) unless the distribution of
Z� is degenerate.

Let ɶ = a convex subset of Rk . The loss function L h; að Þ is said to be convex (or
strictly convex) if for each given h, L h; að Þ is a convex (or strictly convex) function
of a.

Fig. 7.4
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Example 7.11

� ¼ R1; L h; að Þ ¼ h� að Þ2
#

Strictly convex

or h� aj j
#

convex

Let d 2 D. For each x, d xð Þ is a probability distribution over ɶ. Let Zx ¼ a
random variable with probability distribution d xð Þ over ɶ.

We assume that Ezx exists for each

x 2 �x ð7:5Þ
Let D = the class of all non-randomized rules D�D.

Lemma 3 Let ɶ = a convex subset of Rk and the loss function be convex. Then for
each d 2 D satisfying (7.5) there exists a d0 2 D; viz, d0 xð Þ ¼ EZx such that
d0 	 d. If the loss function is strictly convex, then d0 [ d unless d itself 2 D.

Corollary 1 Let ɶ = a convex subset of Rk , the loss function be strictly convex and
every d 2 D satisfying (7.5), then D (=the class of all non-randomized rules) is
essential complete.

Proof of Lemma 3 Let d 2 D
d xð Þ ¼ a probability distribution over ɶ. For each x, Zx ¼ a random variable

with probability distribution d xð Þ. Define d0 xð Þ ¼ EZx. By (i) of Lemma 2, d0 xð Þ 2
ɶ 8x, i.e. d0 ¼ d0 xð Þ 2 D. Also, by (ii) of Lemma 2 L h; d0 xð Þð Þ ¼ L h;EZxð Þ�
EL h; Zxð Þ ¼ L h; d xð Þð Þ.

) Rd0 hð Þ ¼ EhL h; d0 xð Þð Þ�Eh L; h; d xð Þð Þ ¼ Rd hð Þ8h
) d0 	 d

ð7:6Þ

If the loss function is strictly convex, strict inequality holds in (7.6) for at least
one h unless Zx-distribution is degenerate, i.e. 8x except possibly for x 2 A such
that Ph x 2 A½ � ¼ 0 8h, in which case it means that d itself 2 D ) d0 [ d unless d
itself 2 D h

Corollary 2 Let ɶ = a convex subset of Rk , the loss function is strictly convex and
every d 2 D satisfying (7.5). Let T be a sufficient statistic and D0 = the class of
non-randomized rules based on T, D0 �D. Then D0 is essential complete
(complete).

Proof Let d 2 D.
D0 = the class of all randomized decision rules based on T. By Lemma 1, there

exists a d0 ¼ d0 Tð Þ 2 D0 such that d0 � d. For each t, d0 Tð Þ is a probability dis-
tribution over ɶ. Define Zt ¼ a random variable with probability distribution d0 tð Þ
and d0 tð Þ ¼ EZt. As in proof of Lemma 3, d0 tð Þ 2 ɶ, i.e. d0 ¼ d0 Tð Þ 2 D0 and
d0 	 d0([ d0 for strictly convex loss function unless d0 2 D; � d). Thus, given
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any d 2 D, there exists a d0 2 D0 such that d0 	 d (> d for strictly convex loss
function unless d 2 D0).

)D0 is essential complete (complete). h

Note On the condition stated by (7.5)
Let d 2 D, Zx ¼ a random variable with probability distribution d xð Þ over ɶ.

L h; d xð Þð Þ ¼ EL h; Zxð Þ which exists for each x and h. This in many cases implies
(7.5) holds.

Example 7.12 k ¼ 1; L h; að Þ ¼ h� að Þ2 ɶ ¼ R1

EL h; Zxð Þ ¼ E h� Zxð Þ2 exists 8x and 8h
) EZx exists 8x.

L h; að Þ ¼ h� aj j

EL h; Zxð Þ ¼ E Zx � hj j 	E Zxj j � h

i.e. E Zxj j � hþE Zx � hj j:
Thus E Zx � hj j exists 8x and 8h ) (7.5) holds.
For K	 2, ɶ = ¼ Rk ¼ X

L h� ; a�

� 	
¼

Xk

i¼1

ai � hij j2¼ a
�
� h�



2

EL h� ; Zx�


 �
¼ E Zx�

� h�


 which exists 8x and 8h ) (7.5) holds.

Proposition Suppose for some h
L h; að Þ	C1 aj j þC2 for some C1 [ 0ð Þ;C2. Then EL h; Zxð Þ exists 8x ) (7.5)

holds.
This fact gives a sufficient condition on loss function for (7.5) to hold (Fig. 7.5).

Rao-Blackwell Theorem

Let T = a sufficient statistic.
D = the class of random values.
D0 = the class of random vales based on T.
D = the class of non-random values.

L(θ,a) 

1             2
c a +c

Fig. 7.5
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D0 = the class of non-random values based on T.

Let d 2 D satisfyE d xð Þ=T ¼ tð Þ exists ð7:7Þ

Lemma 4 (Rao-Blackwell Theorem) Let ɶ be a convex subset of Rk and let the
loss function be convex. For any d 2 D satisfying (7.7), there exists a d0 2 D0, viz,
d0 tð Þ ¼ E d xð Þ=T ¼ tð Þ. If the loss function be strictly convex d0 [ d unless d itself
2 D0.

Proof d0 tð Þ ¼ E d xð Þ=T ¼ tð Þ is independent of h.

L h; d0 tð Þð Þ ¼ L h;E d xð Þ=T ¼ tð Þð Þ
�E L h; d xð Þ=T ¼ tð Þf g by Lemma 2:

) Rd0 hð Þ ¼ EhL h; d0 Tð Þð Þ�EhE L h; d xð Þ=T ¼ tð Þf g
¼ EhL h; d xð Þð Þ ¼ Rd hð Þ 8h
) d0 	 d

If L is strictly convex, ‘=’ in the above inequality 8h
iff d is a function of t, i.e. d itself 2 D0 implying that d0 [ d unless d itself

2 D0. h

Corollary Let ɶ be a convex subset of Rk and the loss function be convex. Let
every d 2 D satisfy (7.6) and every d 2 D satisfy (7.7), then D0 is essential com-
plete. If the loss function be strictly convex, D0 is complete.

Proof Let d 2 D
By Lemma 3, there exists a d 2 D such that d	 d. Also, by Lemma 4 there exists a
d0 2 D such that d0 	 d	 d. Thus given any d 2 D, there exists a d0 2 D0 such
that d0 	 d ) D0 is essentially complete. If the loss function is strictly convex
d0 [ d unless d itself 2 D0 ) D0 is complete. h

Note on condition (7.7) For every d 2 D, Rd hð Þ ¼ EhL h; d xð Þð Þ exists 8h.
This generally implies that Eh d xð Þð Þ exists 8h.
) E d xð Þ=T ¼ tð Þ exists, i.e. (7.7) holds.

Example 7.13 To estimate a real parameter h;X ¼ ɶ ¼ �1;1ð Þ

L h; að Þ ¼ h� að Þ2

Rd hð Þ ¼ Eh d xð Þ � hð Þ2 exists 8h ) Eh d xð Þð Þ exists 8h ) (7.7) holds.
Similarly, it can be shown for absolute error loss L h; að Þ ¼ h� aj j

Proposition Let for some h, L h; að Þ	C1 aj j þC2 for some constant C1 [ 0ð Þ and
C2.
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Then Rd hð Þ exists 8h ) Eh d xð Þð Þ exists ) (7.7) holds. Thus the proposition
gives a sufficient condition on loss function for (7.7) to hold.

7.3 Optimal Decision Rule

d1 	 d2 if Rd1 hð Þ�Rd2 hð Þ 8h and it is a natural partial ordering of decision rules.
d0 2 D is said to be best or optimal if d0 	 d 8 d 2 D, but generally such an optimal
rule does not exist.

Example To estimate a real parameter h, X ¼ � ¼ �1;1ð Þ. Let
L h; að Þ ¼ h� að Þ2. If possible, suppose there exists a best rule, say d0. Consider
any given value of h, say h0 and define d0 xð Þ ¼ h0 8x. Clearly, Rd0 h0ð Þ ¼ 0 )
Rd0 h0ð Þ ¼ 0 where d0 	 d0. Since h0 is arbitrary we must have Rd0 hð Þ ¼ 0; 8h
which is generally impossible.

) generally there does not exist a best rule.
So to find a reasonably good decision rule we need some additional principles.

Two such principles are generally followed:

(i) Restriction principle
(ii) Linear ordering principle

Restriction principle Put some reasonable restrictions on decision rules, i.e.
consider a reasonable restricted sub-class of decision rules having good overall
performances and then try to find a best in this restricted sub-class.

Two restriction criteria often used are

(i) Unbiasedness and
(ii) Invariance

Linear ordering principle

For every d replace the risk function by a representative number and then compare
the rules in terms of these representative numbers.

If representative number of d1 � representative number of d2, then we prefer d1
to d2. d0 is considered to be optimal if representative number of d0 � representative
number of d 8 d 2 D.

Thus a linear ordering principle � is a way of specifying representative number

Note Any linear ordering principle should not disagree with partial ordering
principle, i.e. if d1 	 d2 we must have representative number of d1 � as repre-
sentative number of d2.

Two linear ordering principles that are used in general are

(i) Bayes principle
(ii) Minimax principle
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Bayes Principle Let X may be finite or countable
s hð Þ : h 2 X ! a suitable weight function over X. s hð Þ	 0 8h and P

h2X
s hð Þ ¼ 1.

Take representative number as weighted average risk

¼
X

h2X
s hð ÞRd hð Þ ¼ r s; dð Þ

s hð Þ ¼ a p:m:f of a discreteð Þ distribution overX

¼ prior p:m:f of h:

r s; dð Þ ¼Bayes risk of dwith respect to s:

If X ¼ a non-degenerate interval of Rk ,
s hð Þ = p.d.f of a (continuous) distribution over X.
Bayes risk of d ¼ r s; dð Þ ¼ R

X
Rd hð Þs hð Þdh.

d0S are compared with respect to r s; dð Þ, i.e. if r s; d1ð Þ� r s; d2ð Þ, then d1 is
preferred to d2. A d0 2 D is considered to be optimum if it minimizes r s; dð Þ with
respect to d 2 D. Such a d0 is called a Bayes rule with respect to prior s.

Definition A rule d0 2 D is said to be a Bayes rule with respect to a prior s if it
minimizes Bayes risk (w.r.t. s) r s; dð Þ w.r.t. d 2 D, i.e. if r s; d0ð Þ ¼ inf

d21
r s; dð Þ.

Note

1. A Bayes rule may or may not exist. If it exists, inf � min.
2. A Bayes rule depends on prior s.
3. A Bayes rule, even if exists, may not be unique.
4. Bayes principle does not disagree with partial ordering principle, i.e.

Rd1 hð Þ�Rd2 hð Þ 8h ) r s; d1ð Þ� r s; d2ð Þ whatever be s.

Minimax principle

For a d 2 D, representative number is taken as
Sup
h2X

Rd hð Þ ¼ Max: Risk that may be incurred due to choice of d. d1 is preferred

to d2 if Sup
h2X

Rd1 hð Þ� Sup
h2X

Rd2 hð Þ.
d0 is considered to be optimum if it minimizes Sup

h2X
Rd hð Þ with respect to d 2 D.

Such a d0 is called a “Minimax Rule”.

Definition A rule d0 2 D is said to be a minimax rule if it minimizes Sup
h2X

Rd hð Þ
with respect to d 2 D, i.e. if

Sup
h2X

Rd0h ¼ inf
d2D

Sup
h2X

Rdh.
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Notes

1. A minimax rule may or may not exist.
2. A minimax rule does not involve any prior s.
3. A minimax rule, even if exists, may not be unique.
4. Minimax principle doesn’t disagree with partial ordering principle

i.e.Rd1 hð Þ�Rd2 hð Þ 8h
) Sup

h2X
Rd1 hð Þ� Sup

h2X
Rd2 hð Þ

7.4 Method of Finding a Bayes Rule

s = a given prior.
To find a Bayes rule d0 with respect to s � to find a rule d0 that minimizes Bayes

risk r s; dð Þ with respect to d.

Proposition If a Bayes rule d0 with respect to a given prior s exists, then there
exists a non-randomized rule d0 which is Bayes with respect to s.

Implication For finding a Bayes rule, we can without any loss of generality con-
sider non-randomized rules only.

Proof Let d0 be a Bayes rule with respect to s. d0 may be considered as a prob-
ability distribution over D (=the class of non-randomized rules).

Let Z = a random variable with probability distribution d0 over D. Then

r s; d0ð Þ ¼ Ezr s; zð Þ ð7:8Þ

[Let X be finite or countable. r s; d0ð Þ ¼ P
h2X

s hð ÞRd0 hð Þ ¼ P
h2X

s hð ÞEzRz hð Þ

¼ Ez

X

h2X
s hð ÞRz hð Þ assuming that it is permissibleð Þ

¼ Ezr s; zð Þ

Similarly, we can show if when X ¼ a non-degenerate interval of Rk].

Now d0 is Bayes ) r s; d0ð Þ� r s; dð Þ 8 d 2 D

) r s; d0ð Þ� r s; dð Þ 8d 2 D asD�D

) r s; d0ð Þ� r s; zð Þ 8 values of z:
) r s; d0ð Þ�Ezr s; zð Þ ¼ r s; d0ð Þ

ð7:9Þ
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by (7.8).
We must have equality in (7.9), and consequently Z must 2 D0 with probability

1, where D0 ¼ d=d 2 D;r s; dð Þ ¼ r s; d0ð Þf g. h

Consider any d0 2 D0,
then r s; d0ð Þ ¼ r s; d0ð Þ ¼ inf

d2D
r s; dð Þ (since d0 is Bayes)

) d0 is also Bayes. This proves the Proposition.

Note It is clear from the proof that

(1) A randomized Bayes rule = A probability distribution over D0; i.e. the class of
non-randomized Bayes rules.

(2) If a non-randomized Bayes rule is unique, i.e. D0 consists of a single d0, then a
Bayes rule is unique and is d0.

Method of finding Bayes rule

s hð Þ ¼ a prior distribution of h.
To minimize r s; dð Þ with respect to d 2 D,
Without any loss of generality we may restrict to non-randomized rules only. So

we are to minimize r s; dð Þ with respect to d 2 D.
Let X be countable and �x be also countable (If �x is an open interval of Rk,

replace Σ by
R
).

Then for any d 2 D

r s; dð Þ ¼
X

h2X
s hð ÞRd hð Þ ¼

X

h2X
s hð Þ

X

x2�x
p x=hð ÞL h; d xð Þð Þ

¼
X

x2�x

X

h2X
s hð Þp x=hð ÞL h; d xð Þð Þ

ð7:10Þ

assuming it is permissible.
Suppose there exists a d0 ¼ d0 xð Þ such that for each x, d0 xð Þ minimizesP

h2X
s hð Þp x=hð ÞL h; d xð Þð Þ with respect to d xð Þ 2 ɶ.

Then clearly, d0 minimizes (7.10) w.r.t. d 2 D ) d0 is Bayes rule with respect
to s.

p x=hð Þ ¼ conditional p:m:f of X given h.
s hð Þ ¼ marginal p:m:f of h.
p x=hð Þs hð Þ ¼ Joint p:m:f of X and h.

p xð Þ ¼
X

h2X
p x=hð Þs hð Þ ¼ marginal p:m:f of X:

q h=xð Þ ¼ p x=hð Þs hð Þ
p xð Þ ¼ conditional Posteriorð Þ p:m:f: of h givenX ¼ x

if p xð Þ[ 0 p xð Þ ¼ 0 , s hð Þp x=hð Þ ¼ 08h 2 X½ �.
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To minimize
P
h2X

s hð Þp x=hð ÞL h; d xð Þð Þ with respect to d xð Þ 2 ɶ

, to min. p xð Þ P
h2X

q h=xð ÞL h; d xð Þð Þ with respect to d xð Þ 2 ɶ.

, min
P
h2X

q h=xð ÞL h; d xð Þð Þ w.r.t. d xð Þ 2 ɶ.

(It is conditional (posterior) loss given X = x), i.e. E L h; d xð Þð Þ=X ¼ xf g.
Thus if there exists a d0 � d0 xð Þ such that for each x, d0 xð Þ gives min

E L h; d xð Þð Þ=X ¼ xf g ¼ Conditional posteriorð Þ loss givenX ¼ x w:r:t: d xð Þ 2 �:

Then d0 is a Bayes rule.
If the minimizing d0 xð Þ is unique for each x, then d0 is the unique Bayes rule.
[Let X be an open interval of Rk and �x be also an open interval of Rk

(If �x is countable, replace Σ by
R
)

Then for any d 2 D

r s; dð Þ ¼
Z

X

s hð ÞRd hð Þd hð Þ

¼
Z

X

s hð Þ
Z

�x
p x=hð ÞL h; d xð Þð Þdx

2
4

3
5dh

¼
Z

U

Z

X

s hð Þp x=hð ÞL h; d xð Þð Þdhdx

ð7:11Þ

(assuming this to be permissible)
Suppose there exists a d0 � d0 xð Þ such that for each x, d0 xð Þ minimizeR

X
s hð Þp x=hð ÞL h; d xð Þð Þdh with respect to d xð Þ 2 �.

Then clearly, d0 minimizes (7.11) with respect to d 2 D ) d0 is Bayes rule with
respect to s.

p x=hð Þ ¼ conditional p:d:f of Xgiven h.
s hð Þ ¼ marginal p:d:f of h
p x=hð Þs hð Þ ¼ Joint p:d:f of Xand h.
p xð Þ ¼ R

X
s hð Þp x=hð Þdh ¼ marginal p:d:f of X:

q h=xð Þ ¼ p x=hð Þs hð Þ
p xð Þ ¼ conditional posteriorð Þ p:d:f of h given X = x, if p xð Þ[ 0.

To minimize
R
X
s hð Þp x=hð ÞL h; d xð Þð Þdh with respect to d xð Þ 2 �

, min. p xð Þ R
X
q h=xð ÞL h; d xð Þð Þdh with respect to d xð Þ 2 �

, min.
R
X
q h=xð ÞL h; d xð Þð Þdh with respect to d xð Þ 2 �

which is to min conditional (posterior) loss given X = x.
i.e. E L h; d xð Þð Þ=X ¼ xð Þ.
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Thus if there exists a d0 � d0 Xð Þ such that for each x, d0 xð Þ min
E L h; d xð Þð Þ=X ¼ xf g = conditional (posterior) loss given X = x with respect to
d xð Þ 2 ɶ then d0 is a Bayes rule.

If the minimizing d0 xð Þ is unique for each x, then d0 is unique Bayes rule]
Summary To min r s; dð Þ with respect to d 2 D

r s; dð Þ ¼ EhRd hð Þ
¼ EhEX=hL h; d xð Þð Þ *RdðhÞEX=hL h; d xð Þð Þ

h i

¼ EXEh=XL h; d xð Þð Þ min for eachX ¼ x with respect to d xð Þ 2 �

If d0 xð Þ is the minimizing, then d0 ¼ d0 xð Þ is Bayes rule.

Applications

1 Estimation of a real parameter h for squared error loss. To estimate a real
parameter h where X ¼ ɶ ¼ R1 or an open interval of it.

L h; að Þ ¼ h� að Þ2, s hð Þ ¼ a prior p.d.f of h
To min. E L h; d xð Þð Þ=X ¼ xf g ¼ R

X
h� d xð Þð Þ2q h=xð Þdh w.r.t. d xð Þ 2 �.

Clearly, minimizing d0 xð Þ is given by

d0 xð Þ ¼ E h=X ¼ x

� 	
¼

Z

X

hq h=xð Þdh ¼

R
X
hp h=xð Þs hð Þdh

R
X
s hð Þp h=xð Þdh

Thus, here unique Bayes rule is d0 where

d0 xð Þ ¼ Mean of the posterior distribution of h givenX ¼ x:

Example 7.14

X �R 0; hð Þ; 0\h\1

To estimate h under squared error loss
Let s hð Þ ¼ prior p:d:f of h ¼ he�h; h[ 0

p x=hð Þ ¼ 1
h
; 0\x\h
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q h=xð Þ ¼ conditional P:d:f of h givenX ¼ x

¼ e�h

R1

x
e�hdh

; x\h\1

¼ e�h
�
e�x

Mean of the posterior distribution of h given (X = x) ¼
R1
x

he�hdh

e�x

¼
�he�h 1

xj þ
R1
x

e�hdh

e�x ¼ xe�x þ e�x

e�x ¼ xþ 1.
Thus unique Bayes estimator of h w.r.t. s is d0 xð Þ ¼ X þ 1.

Example 7.15 X �Bin n; hð Þ, n given, 0\h\1
To estimate h under squared error loss.

p x=hð Þ ¼ n
x


 �
hx 1� hð Þn�x; x ¼ 0; 1; . . .; n

Let s hð Þ ¼ prior p:d:f of h

¼ 1
B a; bð Þ h

a�1 1� hð Þb�1; a; b[ 0

¼ Beta prior

q h=xð Þ ¼ posterior distribution of h givenX ¼ x

¼
n

x


 �
1

B a;bð Þ h
xþ a�1 1� hð Þn�xþb�1

n

x


 �
1

B a;bð Þ
R1

0
hxþ a�1 1� hð Þn�xþ b�1dh

¼ 1
B xþ a; n� xþ bð Þ h

xþ a�1 1� hð Þn�xþb�1; 0\h\1:

d0 xð Þ ¼ mean of posterior distribution of h given X ¼ xð Þ

¼ 1
B xþ a; n� xþ bð Þ

Z1

0

hxþ a 1� hð Þn�xþb�1dh

¼ B xþ aþ 1; n� xþ bð Þ
B xþ a; n� xþ bð Þ ¼ xþ a

aþ bþ n
:

Thus the unique Bayes estimator of h w.r.t. Beta a; bð Þ prior is d0 xð Þ ¼ Xþ a
nþ aþ b.
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Particular case if a ¼ 1; b ¼ 1 s hð Þ ¼ 1 80\h\1, i.e. uniform prior.
Unique Bayes estimator is Xþ 1

nþ 2 :

Example 7.16 Let X � Poisson (h), 0\h\1
To estimate h under squared error loss.
To find Bayes estimator w.r.t. Þ prior.
i.e. s hð Þ1 e�ahhb�1; h	 0
Let s hð Þ ¼ Ke�ahhb�1; h	 0

as
R1

0
s hð Þdh ¼ 1 ) K Þb

ab ¼ 1 ) K ¼ ab

Þb

p x=hð Þ ¼ e�h h
x

x!
; x ¼ 0; 1; . . .

q h=xð Þ ¼
e�hhx

x!
ab

Þ ðbÞ e
�ahhb�1

ab

Þ bð Þ :
1
x!

R1

0
e� 1þ að Þhhxþb�1dh

¼ e� 1þ að Þh:hxþ b�1

Þ xþ bð Þ 1þ að Þxþ b

d0 xð Þ ¼ 1þ að Þxþb

Þ xþ bð Þ

Z1

0

e� 1þ að Þhhxþ bdh

¼ 1þ að Þxþ b

Þ xþ bð Þ � Þ xþ bþ 1ð Þ
1þ að Þxþbþ 1 ¼

xþ b
1þ a

) Unique Bayes estimator of h w.r.t. Þ prior is

d0 xð Þ ¼ xþ b
1þ a

:

Notes

1. d0 xð Þ is also (unique) Bayes if L h; að Þ ¼ c h� að Þ21 h� að Þ2, c = a given
constant

2. If a sufficient statistic T exists we may consider rules based on T only (because
of essential completeness of rules based on T) and then may find Bayes rule
based on T.

Example 7.17 X ¼ X1;X2; ::;Xnð Þ; X1;X2; ::;Xn i.i.d. �N h; 1ð Þ �1\h\1
To estimate h under squared error loss.
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T ¼ X ¼ min. Sufficient statistic �N h; 1n
� �

.

s hð Þ :¼ h�N 0; r2ð Þ; r2 [ 0ð Þ is known.

p t=hð Þs hð Þ ¼ Cont: e�
n
2 t�hð Þ2 � e�h

2
=2r2

¼ Cont: e�
n
2t
2 � e�h2

2 nþ 1
r2

� �
þ nht

¼ cont: e
�n

2t
2 þ n2r2 t2

2 nr2 þ 1ð Þ � e�
nr2 þ 1
2r2

h� nr2

nr2 þ 1
t

� 	2

q h=tð Þ ¼ Posterior p:d:f of h given t

¼ Const.e
�n

2t
2 þ n2r2 t2

2 nr2 þ 1ð Þ � e�
nr2 þ 1
2r2

h� nr2

nr2 þ 1
t

� 	2

Const.e
�n

2t
2 þ n2r2 t2

2 nr2 þ 1ð Þ R e
�nr2 þ 1

2r2
h� nr2

nr2 þ 1
t

� 	2

¼ Const.e
�nr2 þ 1

2r2
h� nr2

nr2 þ 1
t

� 	2

) given t; h�N
nr2

nr2 þ 1
t;

r2

nr2 þ 1


 �

Posterior mean ¼ Kx; K ¼ nr2
nr2 þ 1 :

) (Unique) Bayes estimator of h ¼ Kx ¼ d0 xð Þ
Also, Min. Bayes risk = Bayes risk of d0 ¼ EhEx=h d0 � hð Þ2

¼ ExEh=x d0 � hð Þ2¼ Ex
r2

nr2 þ 1
¼ r2

nr2 þ 1

Applications

2. Estimation of a real h under weighted squared error loss: h ¼ a real parameter.
To estimate h, X ¼ � ¼ some interval of R1

Let L h; að Þ ¼ w hð Þ h� að Þ2; w hð Þ[ 0
d0 be Bayes if for each x, d0 xð Þ minimizes

Eh=X¼xw hð Þ h� d xð Þð Þ2¼
Z

w hð Þ h� d xð Þð Þ2q h=xð Þdh

with respect to d xð Þ 2 �

Clearly, d0 xð Þ ¼
R

hw hð Þq h=xð ÞdhR
w hð Þq h=xð Þdh .
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Example 7.18 X �Bin n; hð Þ, n known, 0\h\1

To estimate h with L h; að Þ ¼ h�að Þ2
h 1�hð Þ ¼ w hð Þ h� að Þ2

where w hð Þ ¼ 1
h 1�hð Þ

Let s hð Þ ¼ 1 80\h\1; i.e. uniform prior.

q h=xð Þ ¼
n
x


 �
hx 1� hð Þn�x

n
x


 �R
hx 1� hð Þn�xdh

¼ hx 1� hð Þn�x

B xþ 1; n� xþ 1ð Þ ; 0\h\1

d0 xð Þ ¼
R
hw hð Þq h=xð ÞdhR
w hð Þq h=xð Þdh ¼

R1

0
h 1
h 1�hð Þ � hx 1�hð Þn�x

B xþ 1;n�xþ 1ð Þ dh

R1

0

1
h 1�hð Þ � hx 1�hð Þn�x

B xþ 1;n�xþ 1ð Þ dh

¼

R1

0
hx 1� hð Þn�x�1dh

R1

0
hx�1 1� hð Þn�x�1dh

¼ B xþ 1; n� xð Þ
B x; n� xð Þ

¼ x
n
; for x ¼ 1; 2; ::; n� 1

For x ¼ 0;
Z

w hð Þ h� d0 0ð Þð Þ2 q h=x ¼ 0ð Þdh1
Z1

0

h� cð Þ2h�1 1� hð Þn�1dh

¼ finite if c ¼ 0 by taking d0 0ð Þ ¼ c½ �
¼ 1 if c 6¼ 0

)
Z

w hð Þ h� d0 0ð Þð Þ2 q h=x ¼ 0ð Þdh is min for d0 0ð Þ ¼ 0 ¼ x
n
:

Similarly, for x = n,
R
w hð Þ h� d0 0ð Þð Þ2q h=x ¼ nð Þdh is min for d0 nð Þ ¼ 1 ¼ x

n
Thus for every x ¼ 0; 1; 2; . . .; n; d0 xð Þ ¼ x

n minimizesR
w hð Þ h� d0 xð Þð Þ2q h=xð Þdh with respect to d xð Þ 2 �

) d0 xð Þ ¼ x
n ¼ minimum variance unbiased estimator or maximum likelihoodð

estimator of hÞ is unique Bayes rule.

Application

3. Estimation of a real h under absolute error loss. To estimate h ¼ a real
parameter, X ¼ � some interval of R1

Let L h; að Þ ¼ h� aj j
d0 ¼ d0 Xð Þ be Bayes if for each x d0 xð Þ minimizes Eh=X¼x h� d xð Þj j with respect

to d xð Þ 2 �
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Clearly, d0 xð Þ = median of the posterior distribution of h given X = x. If the
median of the posterior distribution is unique, then d0 is the unique Bayes rule.

Example 7.19 X ¼ X1;X2; . . .;Xnð Þ, X1;X2; . . .;Xn i.i.d. �N h; 1ð Þ;�a\h\a

To estimate h under absolute error loss, without loss of any generality we restrict
to rules based on T ¼ X. Let s hð Þ : h�N 0; r2ð Þ; r2 [ 0ð Þ known.

Median of posterior distribution of h given t ¼ kx; k ¼ nr2
nr2 þ 1

) Uniqueð Þ Bayes estimator of h is kx.

Application

4. Estimation of function of h:

To estimate g hð Þ ¼ a real-value function of h.

� ¼ X� ¼ the set of possible values of g hð Þ

Let L h; að Þ ¼ g hð Þ � að Þ2! squared error loss.
d0 be Bayes if it minimizes Eh=X¼x g hð Þ � d xð Þf g2 with respect to d xð Þ 2 ӕ for

each given x. Clearly, d0 xð Þ ¼ Eh=x¼x g hð Þf g
) d0 xð Þ ¼ Eh=x g hð Þf g is (unique) Bayes.
Similarly, we can find it for weighted squared error loss or for absolute error

loss.

Example 7.20 X ¼ X1;X2ð Þ; Xi’s independent and Xi �Bin ni; hið Þ; where n1; n2
known, 0\h1; h2\1; h ¼ h1; h2ð Þ

To estimate g hð Þ ¼ h1 � h2 under squared error loss.
s hð Þ : h1; h2 independent, hi �R 0; 1ð Þ; i ¼ 1; 2

q h=xð Þ ¼
n1
x1


 �
h1

x1 1� h1ð Þn1�x1 n2
x2


 �
h2

x2 1� h2ð Þn2�x2

R1

0

R1

0

n1
x1


 �
h1

x1 1� h1ð Þn1�x1 n2
x2


 �
h2

x2 1� h2ð Þn2�x2dh1dh2

¼ hx11 1� h1ð Þn1�x1hx22 1� h2ð Þn2�x2

B x1 þ 1; n1 � x1 þ 1ð ÞB x2 þ 1; n2 � x2 þ 1ð Þ ; 0\h1; h2\1:

i.e. posterior distribution of h is, h1; h2 independent and hi �B xi þ 1;ð
ni � xi þ 1Þ; i ¼ 1; 2

d0 xð Þ ¼ Eh=x h1 � h2ð Þ ¼ Eh1=x h1ð Þ � Eh2=x h2ð Þ
¼ x1 þ 1

n1 þ 2
� x2 þ 1
n2 þ 2
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Thus (unique) Bayes estimator of h1 � h2 is

d0 Xð Þ ¼ X1 þ 1
n1 þ 2

� X2 þ 1
n2 þ 2

:

7.5 Methods for Finding Minimax Rule

I. Geometric or Direct Method

We find geometrically or directly a rule d0 such that

Sup
h2X

Rd0 hð Þ ¼ inf
d2D

Sup
h2X

Rd hð Þ:

Let X ¼ h1; h2; . . .; hkf g; d 2 D; S = risk set

y
�
¼ risk point of d

Sup
h2X

Rd hð Þ ¼ max
1� j� k

yj

Two risk points y
1ð Þ

�
; y

2ð Þ

�
may be considered to be equivalent if

max
1� j� k

yj
ð1Þ ¼ max

1� j� k
yj
ð2Þ:

A risk point y0
�

is said to be a minimax point if max
1� j� k

yj0 ¼ inf
y
�
2S

max
1� j� k

yj:

If y0
�
is a minimax point and d0 is a rule with risk point y0

�
, then d0 is minimax.

For any real C, let Qc ¼ Q c;c;::;cð Þ ¼ y
�

�
yj � c8j ¼ 1; 2; ::k

� �
:

All risk points lying on the boundary of a Qc are equivalent points (Figs. 7.6 and
7.7).

Equalizer line z1=z2

(c,c)

Qc

Fig. 7.6
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(For any such point y
�
, max yj = c)

Let C0 ¼ inf C=Qc \ S 6¼ /f g:
Any risk point 2 boundary of Qc0 is a minimax point. Any rule d0 with risk point

y0�
is minimax.

Notes

1. If S does not contain its boundary points, a minimax rule may not exist.
2. A minimax point may not be unique

(1,0) 

All Minimax
Points

(2,1)

(2,0)

(1,1)

S

Minimax Point

Equivalent points
S

Fig. 7.7

7.5 Methods for Finding Minimax Rule 209



3. A minimax point does not necessarily lie on the equalizer line (Figs. 7.8 and 7.9).

Example 7.20 Let X ¼ h1; h2f g � ¼ a1; a2f g
Loss is (0–1). �x ¼ 0; 1; 2; . . .f g
Ph1 X ¼ x½ � ¼ 0 if x = 0

¼ 1
2x

if x	 1

(1,0) 

All Minimax 

(2,1)

(2,0)

(1,1)

S

S 

C0 

Minimax Points 

Fig. 7.8
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Ph2 X ¼ x½ � ¼ 1
2xþ 1 ; x ¼ 0; 1; . . .

Let d 2 D: d a2=xð Þ ¼ d xð Þ d a1=xð Þ ¼ 1� d xð Þ
0� d xð Þ� 1

y1 ¼ Rd h1ð Þ ¼
X1

x¼1

d xð Þ � Ph1 X ¼ xð Þ

y2 ¼ Rd h2ð Þ ¼
X1

x¼0

1� d xð Þf g � Ph2 X ¼ xð Þ

¼ 1� d 0ð Þ � 1
2
� 1
2

X1

x¼1

d xð Þ 1
2x

To find d xð Þ such that y1 ¼ y2 ¼ 1
3 we take

d xð Þ ¼ 1
3

8x	 1; d 0ð Þ ¼ 1

C0

=Minimax Point

S

Fig. 7.9
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Thus, a minimax rule is given as

d a2=0ð Þ ¼ 1 d a1=0ð Þ ¼ 0

d a2=xð Þ ¼ 1
3

d a1=xð Þ ¼ 2
3
; x ¼ 1; 2; . . .

Example 7.21

X ¼ h1 ¼ 1
4
; h2 ¼ 1

2

� �

� ¼ a1 ¼ 1
4
; a2 ¼ 1

2

� �

Loss matrix:
a1 a2

h1 1 4
h2 3 2

Let X ¼ 0 with probability h

¼ 1 with probability 1� hð Þ

�
h ¼ h1; h2

Then D ¼ d1; d2; d3; d4f g
d1 0ð Þ ¼ d1 1ð Þ ¼ a1; d2 0ð Þ ¼ d2 1ð Þ ¼ a2; d3 0ð Þ ¼ a1 but d3 1ð Þ ¼ a2 and

d4 0ð Þ ¼ a2 but d4 1ð Þ ¼ a1
Rd1 h1ð Þ ¼ 1;Rd1 h2ð Þ ¼ 3; Rd2 h1ð Þ ¼ 4;Rd2 h2ð Þ ¼ 2

Rd3 h1ð Þ ¼ 1
4
� 1þ 3

4
� 4 ¼ 3

1
4

Rd3 h2ð Þ ¼ 1
2
� 3þ 1

2
� 2 ¼ 2

1
2

Rd4 h1ð Þ ¼ 1
4
� 4þ 3

4
� 1 ¼ 1

3
4

Rd4 h2ð Þ ¼ 1
2
� 2þ 1

2
� 3 ¼ 2

1
2

) S0 ¼ the set of risk points of all non-randomized rules

¼ 1; 3ð Þ; 4; 2ð Þ; 3
1
4
; 2

1
2


 �
; 1

3
4
; 2

1
2


 �� �
:

If y2 ¼ my1 þC using = lined points m ¼ � 2
9, c ¼ 26

9

Here to find a minimax rule means to find a rule with risk point 26
11 ;

26
11

� �

(Fig. 7.10)
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Let d 2 D. For X = x

d ¼ a1 with probability d xð Þ
¼ a2 with probability 1� d xð Þ

Let d 0ð Þ ¼ u; d 1ð Þ ¼ v, d ffi u; vð Þ; 0� u; v� 1

d a1=0ð Þ ¼ u; d a1=1ð Þ ¼ v

d a2=0ð Þ ¼ 1� u; d a2=1ð Þ ¼ 1� v:

Rd h1ð Þ ¼ 1
4

u � 1þ 1� uð Þ � 4f gþ 3
4

v � 1þ 1� vð Þ4f g

¼ 1
4

16� 3u� 9vð Þ

Rd h2ð Þ ¼ 1
2

u � 3þ 1� uð Þ � 2f gþ 1
2

v � 3þ 1� vð Þ2f g

¼ 1
2

uþ vþ 4ð Þ

Rd h1ð Þ ¼ Rd h2ð Þ ¼ 26
11

) 1
4

16� 3u� 9vð Þ ¼ 26
11

) uþ 3v ¼ 24
11

ð7:12Þ

and
1
2

uþ vþ 4ð Þ ¼ 26
11

) uþ v ¼ 8
11

ð7:13Þ

(4,1)
Minmax point= 

Fig. 7.10
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(7.12), (7.13) gives the unique solution u = 0, v ¼ 8
11 :

Thus, the unique minimax rule is given as

d a1=0ð Þ ¼ 0; d a2=0ð Þ ¼ 1; d a1=1ð Þ ¼ 8
11

; d a2=1ð Þ ¼ 3
11

:

Note The unique minimax rule is purely randomized. Thus, unlike Bayes rules, a
minimax rule may be purely randomized, i.e. although a minimax rule exists, no
non-randomized rule is minimax.
Alternative (direct/or Algebraic approach)

Let us take the same Example 7.21 (Fig. 7.11)

Sup
h2X

Rd hð Þ ¼ max Rd h1ð Þ;Rd h2ð Þf g ¼ 1
4

16 � 3u � 9vð Þ

if 1
4 16� 3u� 9vð Þ	 1

2 uþ vþ 4ð Þ, i.e. if 5uþ 11v� 8 and ¼ 1
2 uþ vþ 4ð Þ if

1
2 uþ vþ 4ð Þ	 1

4 16� 3u� 9vð Þ, i.e. if 5uþ 11v	 8
Let D1 ¼ d � u; vð Þ=5uþ 11v� 8f g

D2 ¼ d � u; vð Þ=5uþ 11v[ 8f g ) D1 þD2 ¼ D

For d 2 D1, Sup
h2X

Rd hð Þ ¼ 16� 3u� 9v
4

Now Inf
d2D1

Sup
h2H

Rd hð Þ ¼ Inf
0� u; v� 1
5uþ 11v� 8

16�3u�9v
4

� �

¼ inf
0� u� 1

inf
0� v� 8�5u

11

16� 3u� 9v
4


 �
¼ inf

0� u� 1

1
4

16� 3u� 9 8� 5uð Þ
11

� �

2
D

1
D

D
3
11

8
11

v    

u    

Fig. 7.11
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¼ inf
0� u� 1

1
4

12uþ 104ð Þ ¼ 104
44

¼ 26
11

and inf attained for u = 0, v ¼ 8� 5:0
11 ¼ 8

11

Similarly, inf
d2D2

Sup
h2H

Rd hð Þ ¼ 26
11, which is for u = 0, v ¼ 8

11

Finally, inf
d2D

Sup
h2H

Rd hð Þ

¼ min inf
d2D1

Sup
h2H

Rd hð Þ; inf
d2D2

Sup
h2X

Rd hð Þ
� �

¼ 26
11

and inf is attained if u = 0, v ¼ 8
11.

Thus, the unique minimax rule is given as u = 0, v ¼ 8
11

i.e. d a1=0ð Þ ¼ 0; d a2=0ð Þ ¼ 1; d a1=1ð Þ ¼ 8
11 ; d a2=1ð Þ ¼ 3

11

II. Use of Bayes rule

A rule d0 is said to be an equalizer rule if Rd0 hð Þ ¼ Const 8h 2 X.

Result 1 If an equalizer rule d0 is Bayes (w.r.t some prior s), then d0 is minimax. If
d0 is unique Bayes (w.r.t. s), then d0 is unique minimax (and hence admissible).

Proof Rd0 hð Þ ¼ c 8h ) Sup
h2H

Rd0 hð Þ ¼ c and r s; d0ð Þ ¼ c

Minimaxiety: If possible let d0 be not minimax, so there exists a d1 such that

Sup
h2H

Rd1 hð Þ\ Sup
h2H

Rd0 hð Þ ¼ c

) Rd1 hð Þ� Sup
h2H

Rd1 hð Þ ¼ c8h

) r s; d1ð Þ\c ¼ r s; d0ð Þ

But this contradicts that d0 is Bayes w.r.t. s. Hence, d0 is minimax.

Unique minimaxiety

If possible let d0 be not unique minimax. So there exists another d1 which is also
minimax, i.e. there exists another d1 such that

Sup
h2H

Rd1ðhÞ ¼ Sup
h2H

Rd1 hð Þ ¼ c

) Rd1 hð Þ� Sup
h2H

Rd1 hð Þ ¼ c8h

) r s; d1ð Þ� c ¼ r s; d0ð Þ

i.e. r s; d1ð Þ ¼ r s; d0ð Þ (* d0 is Bayes w.r.t. s)
) d1 is also Bayes w.r.t s, but this contradicts that d0 is unique Bayes w.r.t. s.
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Hence d0 is unique minimax.

Example 7.22 Let
X ¼ 1 with probabilityh

¼ 0 with prob 1� h: 0\h\1
To estimate θ under squared error loss.
Let d xð Þ ¼ a non-randomized rule.
Let d 1ð Þ ¼ u; d 0ð Þ ¼ v; 0\u; v\1.

d � u; vð Þ

Equalizer rule Rd hð Þ ¼ h u� hð Þ2 þ 1� hð Þ v� hð Þ2

¼ h2 1þ 2v� 2uð Þþ h u2 � v2 � 2v
� �þ v2

The rule is equalizer iff 1þ 2v� 2u ¼ 0; or,

u ¼ 1þ 2v
2

ð7:14Þ

and u2 � v2 � 2v ¼ 0 or 1þ 2vð Þ2
4 � v2 � 2v ¼ 0 (using 7.14)

Or 1
4 � v ¼ 0 ) v ¼ 1

4 ) u ¼ 3
4

Thus, the only equalizer non-randomized rule is

d 1ð Þ ¼ 3
4
; d 0ð Þ ¼ 1

4
:

Bayes rule: Let s ¼ a prior distribution
E hð Þ ¼ m1 and E h2

� � ¼ m2

) r s; dð Þ ¼ ERd hð Þ ¼ m2 1þ 2v� 2uð Þþm1 u2 � v2 � 2v
� �þ v2

Now @r s;dð Þ
@u ¼ 0 ) �2m2 þ 2m1u ¼ 0 ) u ¼ m2

m1

@r s; dð Þ
@v

¼ 0 ) 2m2 � 2m1v� 2m1 þ 2v ¼ 0

) v ¼ m1 � m2

1� m1

Thus, the unique Bayes rule w.r.t. s is

d 1ð Þ ¼ m2

m1
; d 0ð Þ ¼ m1 � m2

1� m1
wherem1 ¼ E hð Þ;m2 ¼ E h2

� �

Hence, the equalizer non-randomized rule is unique Bayes w.r.t. a s such that
m2
m1

¼ 3
4 and

m1 �m2
1�m1

¼ 1
4.

) m1 ¼ 1
2 and m2 ¼ 3

8.
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[For example, let s ¼ B 1
2 ;

1
2

� �
prior α = β m1 ¼ a

a þ b ¼ 1
2 and m2 ¼

a a þ 1ð Þ
a þ bð Þ a þ b þ 1ð Þ ¼ 3

8 and the equalizer non-randomized rule is unique Bayes w.r.t.

B 1
2 ;

1
2

� �
prior].

Thus the non-randomized rule d0 1ð Þ ¼ 3
4 ; d0 0ð Þ ¼ 1

4 is equalizer as well as
unique Bayes (w.r.t some prior) ) d0 Xð Þ is minimax (unique).

Example 7.23

X�Bin n; hð Þ; n known and 0\h\1

To estimate h under squared error loss.

sab ¼ B a; bð Þ prior a; b[ 0

The unique Bayes rule w.r.t. sab is

dab Xð Þ ¼ X þ a
nþ aþ b

Rd
ab

hð Þ ¼ Eh
X þ a

nþ aþ b
� h

� �2

¼ Eh x� nhð Þ � h aþ bð Þþ af g2
nþ aþ bð Þ2

*Eh x� nhð Þ ¼ 0½ � ) Eh x� nhð Þ2 þ h2 aþ bð Þ2 þ a2 � 2ha aþ bð Þ
nþ aþ bð Þ2

*Eh x� nhð Þ2¼ nh 1� hð Þ
h i

)
h2 aþ bð Þ2�n
n o

þ h n� 2a aþ bð Þf gþ a2

nþ aþ bð Þ2

dab is equalizer iff

aþ bð Þ2¼ n
2a aþ bð Þ ¼ n

�
, a ¼

ffiffi
n

p
2

b ¼
ffiffi
n

p
2

Thus the rule

d ffiffi
n

p
2 ;

ffiffi
n

p
2
Xð Þ ¼ X þ

ffiffi
n

p
2

nþ ffiffiffi
n

p

is equalizer as well as unique Bayes (w.r.t B
ffiffi
n

p
2 ;

ffiffi
n

p
2

� 	
prior). Hence

Xþ
ffiffiffi
n

p
=2

nþ ffiffi
n

p is the

unique minimax estimator of h.
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Example 7.24 Let X �Bin n; hð Þ; n be known 0\h\1

To estimate h under loss function L h; að Þ ¼ h� að Þ2
h 1� hð Þ

Let d0 Xð Þ ¼ X
n ; Rd0

hð Þ ¼ Eh
X
n � hð Þ2

h 1�hð Þ ¼ 1
n 8h

i.e. d0 is an equalizer rule.
Also, d0 is unique Bayes w.r.t. R(0,1) prior.
Hence d0 Xð Þ ¼ X

n is the unique minimax estimator of h.

Result 2 If an equalizer rule d0 is extended Bayes, then it is minimax.

Example 7.25 X1;X2; . . .;Xn i.i.d�N h; 1ð Þ; �1\h\1
To estimate h under squared error loss. Let d0 ¼ X; Rd0

hð Þ ¼ 1
n 8h, i.e. d0 is

equalizer. Also, d0 is extended Bayes. Hence X is minimax.

Proof of Result 2

Rd0
hð Þ ¼ c 8h

So, Sup
h2H

Rd0
hð Þ ¼ c ) r s; d0ð Þ ¼ c 8s:

Also, d0 is extended Bayes
) given any 2 [ 0; there exists a prior s2 such that

c ¼ r s2; d0ð Þ� inf
d2D

r s2; dð Þþ 2
or; inf

d2D
r s2; dð Þ	 c� 2 ð7:15Þ

if possible let d0 be not minimax.
So there exists a d1 such that

Sup
h2H

Rd1
hð Þ\ Sup

h2H
Rd0

hð Þ ¼ c ð7:16Þ

(7.16) implies there exists an 2 such that

Sup
h2H

Rd1
hð Þ\c� 2

) Rd1
hð Þ\c� 2 8h; sinceRd hð Þ� Sup

h2H
Rd hð Þ

) r s; d1ð Þ\c� 2 whatever be s:

) inf
d2D

r s; dð Þ\c� 2 whatever be s

ð7:17Þ

* inf
d2D

r s; dð Þ� r s; d1ð Þ
� �

(7.17) contradicts (7.15). Hence d0 must be minimax. h
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Result 3 Let d0 be such that

(i) Rd0 hð Þ� c 8h for some real constant c.
(ii) d0 is Bayes (unique Bayes) w.r.t. a prior s0 such that r s0; d0ð Þ ¼ c

Then d0 is minimax (unique minimax).

Corollary 1 Let d0 be such that
ðiÞ0 Rd0 hð Þ ¼ c 8h (This is in fact Result 1)
ðiiÞ0 d0 is Bayes (unique Bayes) w.r.t. a prior s0.
Then d0 is minimax (unique minimax). ðiÞ0; ðiiÞ0 ) ið Þ; iið Þ

Corollary 2 Let d
^
0 be such that

ðiÞ0 Rd0 hð Þ ¼ c 8h 2 H0 �Hð Þ
� c 8h 2 H�H0

ðiiÞ0 d0 is Bayes (unique Bayes) w.r.t. a s0 such that Pr h 2 H0f g ¼ 1
Then d0 is minimax (unique minimax)
ðiÞ0; ðiiÞ0; ) ðiÞ; ðiiÞ

Note For H0 ¼ H, Corollary 2 ) Corollary 1

Proof of Result 3 For any d and any s,

Sup
h2X

Rd hð Þ	 r s; dð Þ ð7:18Þ

As Rd hð Þ� Sup
h2H

Rd hð Þ8h ) r s; dð Þ� Sup
h2H

Rd hð Þ
� �

For d ¼ d0 and s ¼ s0; (7.18)

) r s0; d0ð Þ� Sup
h2H

Rd0 hð Þ by (ii) ð7:19Þ

Also ið Þ ) Sup
h2H

Rd0 hð Þ� c ð7:20Þ

(7.19), (7.20)

) Sup
h2H

Rd0 hð Þ ¼ c ð7:21Þ
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So, minimaxiety of d0:

For any; d; Sup
h2H

Rd hð Þ	 r s0; dð Þ by 7:18ð Þ

	 r s0; d0ð Þ Since; d0 is Bayes w:r:t: s0ð Þ
¼ c by iið Þð Þ
¼ Sup

h2H
Rd0 hð Þ by 7:21ð Þ

) d0 is minimax.
Unique minimaxiety of d0: For any d 6¼ d0ð Þ

Sup
h2X

Rd hð Þ	 r s0; dð Þ by 7:18ð Þð Þ

[ r s0; d0ð Þ ðSince d0 is unique Bayes w:r:t:s0Þ
¼ c by iið Þð Þ
¼ Sup

h2X
Rd0 hð Þ by 7:21ð Þ

Thus Sup
h2X

Rd hð Þ[ Sup
h2X

Rd0 hð Þ
8d 6¼ d0ð Þ ) d0 is unique minimax. h

Example 7.26 Let X �Bin n; h1ð Þ n be known.
Y �Bin n; h2ð Þ 0\h1; h2\1; h1; h2 are unknown.

To estimate h1 � h2 under squared error loss, we can expect a rule of the form
aX + bY + c to be minimum. However, no rule of this form is an equalizer rule. So
Result 1 (or Corollary 1) cannot be applied. But Corollary 2 can be applied as
follows:

Step 1: To find an equalizer Bayes rule in some H0 �Hð Þ. Let
H0 ¼ h1; h2=0\h1; h2\1; h1 þ h2 ¼ 1f g. Restricting to H0, let us write h1 ¼ h;
h2 ¼ 1� h.

Thus, we have,
X �Bin n; hð Þ
Y �Bin n; 1� hð Þ
or n� Y �Bin n; hð Þ

3
75 independent:

Without any loss of generality we may restrict ourselves to rules based on
Z ¼ X þ n� Yð Þ�Bin 2n; hð Þ (Sufficient statistic)

If X �Bin n; hð Þ, an equalizer and unique Bayes (w.r.t. Bin
ffiffi
n

p
2 ;

ffiffi
n

p
2

� 	
prior)

estimator of h under squared error loss is Xþ
ffiffi
n

p
2

nþ ffiffi
n

p .

If Z �Bin 2n; hð Þ; an equalizer and unique Bayes (w.r.t. Bin
ffiffiffiffi
2n

p
2 ;

ffiffiffiffi
2n

p
2

� 	
prior)

estimator of h under squared error loss is Z þ
ffiffiffi
2n

p
2

2nþ ffiffiffiffi
2n

p .
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To estimate now h1 � h2 ¼ 2h� 1; consider the following:

Lemma Under squared error loss, if d0 is an equalizer Bayes (unique) estimator of
g hð Þ, then d�0 ¼ ad0 þ b is an equalizer Bayes (unique) estimator of
g� hð Þ ¼ ag hð Þþ b.

Proof For any estimator d of g hð Þ we can define an induced estimator, viz. d� ¼
ad0 þ b of g� hð Þ ¼ ag hð Þþ b and vice versa.

Under squared error loss, Rd hð Þ ¼ a2Rd� hð Þ

r s; dð Þ ¼ a2r s; d�ð Þ

Hence, d0 is equalizer ) d� ¼ ad0 þ b is equalizer. h

d0 is Bayes (unique) w.r.t. s ) d�0 ¼ ad0 þ b is Bayes (unique).
By the Lemma, an equalizer Bayes (unique) estimator of 2h� 1 is

2 zþ
ffiffiffiffi
2n

p
2

� 	

2nþ ffiffiffiffiffi
2n

p ¼ 2ðX � YÞ
2nþ ffiffiffiffiffi

2n
p

Thus, if we restrict to H0, an equalizer Bayes (unique) estimator of h1 � h2 is
2 X�Yð Þ
2nþ ffiffiffiffi

2n
p ¼ d0(say)

Step 2: Rd0 h1; h2ð Þ� c 8 h1; h2ð Þ 2 H where c ¼ Rd0 h1; h2ð Þ for h1; h2ð Þ 2 H0.

Proof For h1; h2ð Þ 2 H

Rd0 h1; h2ð Þ ¼ Eh1;h2
2 X � Yð Þ
2nþ ffiffiffiffiffi

2n
p � h1 � h2ð Þ

� �2

¼ Eh 2 X � nh1ð Þ � 2 Y � nh2ð Þ �
ffiffiffiffiffi
2n

p
h1 � h2ð Þ

n o2
�

2nþ
ffiffiffiffiffi
2n

p� 	2

¼ 4Eh X � nh1ð Þ2 þ 4Eh Y � nh2ð Þ2 þ 2n h1 � h2ð Þ2

2nþ ffiffiffiffiffi
2n

p� �2

¼ 2h1 1� h1ð Þþ 2h2 1� h2ð Þ þ h1 � h2ð Þ2

1þ ffiffiffiffiffi
2n

p� �2 ¼ Numerator
Dinominator

:

Now Numerator ¼ 2h1 þ 2h2 � h 2
1 � h 2

2 � 2h1h2

¼ 1� 1� h1 � h2f g2 � 1
0 ¼ 0 holds iff h1 þ h2 ¼ 1

Hence,
Rd0 h1; h2ð Þ ¼ 1

1þ ffiffiffiffiffi
2n

p� �2 ¼ c 8 h1; h2ð Þ 2 H0

\c 8 h1; h2ð Þ 2 H�H0

h
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By Corollary 2, Step 1 + Step 2 gives us d0 ¼ 2 X�Yð Þ
2nþ ffiffiffiffi

2n
p is the unique minimax

estimator of h1 � h2.

Result 4 Let d0 be such that

(i) Rd0 hð Þ� c 8h 2 H, c = a real constant
(ii) There exists a sequence of Bayes rules dnf g w.r.t. sequence of priors snf g

such that r sn; dnf g ! c. Then d0 is a minimax.

Proof For any d and any s,

Sup
h2H

Rd hð Þ	 r s; dð Þ ð7:22Þ

(as was in the Proof of Result 3) h

(7.22) ) For any d,

Sup
h2H

Rd hð Þ	 r sn; dð Þ	 r sn; dnð Þ ! c by iið Þ

ðSince; dn is Bayes w:r:t: sn priorÞ ð7:23Þ

For d ¼ d0
(7.23) ) Sup

h2H
Rd0 hð Þ	 c and also condition ið Þ ) Sup

h2H
Rd0 hð Þ� c

) Sup
h2H

Rd0 hð Þ ¼ c ð7:24Þ

Then (7.23), (7.24) ) for any d,

Sup
h2H

Rd hð Þ	 c ¼ Sup
h2H

Rd0 hð Þ

i.e. d0 is minimax.

Example 7.27 Let X1;X2; ::;Xn i.i.d �N h; 1ð Þ;�1\h\1
To estimate h under squared error loss,
Let d0 ¼ X; Rd0 hð Þ ¼ 1

n 8h
(i) is satisfied with c ¼ 1

n.

Let sr : N 0; r2ð Þ prior
dr ¼ Bayes estimator of h w.r.t. sr ¼ nr2

1 þ nr2 X

r sr; drð Þ ¼ r2
1 þ nr2 ! 1

n ¼ c as r2 ! 1
Thus (ii) is satisfied.
Hence d0 ¼ X is minimax.
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Example 7.28 Let X � Poisson (θ), 0 < θ < α.

To estimate θ with L h; að Þ ¼ h� að Þ2
h .

(Apply Result 4 to prove that d0 ¼ X is minimax)

Hint Rd0 hð Þ ¼ Eh X� hð Þ2
h ¼ 1 ) (i) is satisfied with c = 1. Take

sab hð Þ1e�ah � hb�1; 0\h\1. dab Xð Þ ¼ Bayes estimator of h w.r.t. sab ¼
xþ b�1
1þ a r sab; dab

� � ! 1 ¼ c as a ! 0, b ! 1. Hence d0 ¼ X is minimax.

Other Methods: Use of Cramer-Rao inquality.

Result 1 If an equalizer rule d0 is admissible, then d0 is minimax.

Proof Rd0 hð Þ ¼ c 8h ) Sup
h2H

Rd0 hð Þ ¼ c.

If possible let d0 be not minimax. Then there exists a d1 such that
Sup
h2H

Rd1 hð Þ\ Sup
h2H

Rd0 hð Þ ¼ c

) Rd1 hð Þ\C ¼ Rd0 hð Þ 8h ð7:25Þ

(7.25)) d1 [ d0; which contradicts that d0 is admissible. Hence, d0 is minimax.
To estimate a real-valued parameter h under squared error loss. H ¼ an open
interval of R1. Without any loss of generality we can restrict ourselves to
non-randomized rules only (since the loss function is convex). h

Let d Xð Þ ¼ a non-randomized rule.

bd hð Þ ¼ Eh d Xð Þð Þ � h ¼ Bias of d Xð Þ

ByC--R inequality Rd hð Þ ¼ MSEh d Xð Þð Þ
¼ b2d hð ÞþVh d Xð Þð Þ
	 b2d hð Þþ 1þ b0d hð Þ� �2

.
I hð Þ 8h

¼ Cd hð Þ sayð Þ

I hð Þ ¼ Fisher's information function:

Result 2 Let d0 be a non-randomized rule such that

(i) MSE of d0 attains C–R lower bound, i.e.

Rd0 hð Þ ¼ Cd0 hð Þ 8h
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(ii) For any non-randomized rule d1,

Cd1 hð Þ�Cd0 hð Þ 8h
) bd1 hð Þ ¼ bd0 hð Þ 8h

Then d0 is admissible.
If further, d0 is equalizer, then d0 is minimax.

Proof Result I ) proves that it is minimax h

Proof of admissibility If possible let d0 be inadmissible.
Then there exists a d1 such that

Rd1 hð Þ�Rd0 hð Þ 8hwith strict inequality for at least one h ð7:26Þ

(7.26) ⇒

Cd1 hð Þ�Rd1 hð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} � Rd0 hð Þ ¼ Cd0 hð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} 8h ð7:27Þ

by C–R inequality and by (i)
(7.27) ⇒

bd1 hð Þ ¼ bd0 hð Þ 8h by iið Þ

) Cd1 hð Þ ¼ Cd0 hð Þ 8h ð7:28Þ

(7.27) and (7.28) ⇒

Cd0 hð Þ�Rd1 hð Þ�Rd0 hð Þ ¼ Cd0 hð Þ 8h ð7:29Þ

We must have equality in (7.29) everywhere, implying that Rd1 hð Þ ¼ Rd0 hð Þ8h:
Thus, strict inequality in (7.26) cannot hold for any h, i.e. there cannot be any d1
such that d1 [ d0.

Hence d0 is admissible. h

Example 7.29 Let x1; x2. . .xn i.i.d �N h; 1ð Þ;�1\h\1. To estimate h under
squared error loss.

�X is sufficient ) it is enough to restrict to n.r. rules based on �X only.
Let d0 ¼ d0 �Xð Þ ¼ �X.
Rd0 hð Þ ¼ 1

n 8 h, i.e. d0 is equalizer.
Also, bd0 hð Þ ¼ 0 8 h, i.e. d0 is unbiased.

Rd0 hð Þ ¼ Cd0 hð Þ ¼ 1
n
8 h
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i.e. condition (i) of Result 2 is satisfied [Here I hð Þ ¼ n].
Let d ¼ d �Xð Þ be any n.r rule based on �X.

Lemma Cd hð Þ�Cd0 hð Þ 8 h.
) bd hð Þ ¼ 0 8 h, i.e. d is also unbiased.
Lemma ) Condition (ii) of Result 2 is also satisfied.
Hence, (i) d0 is admissible.
(ii) d0 is minimax.
Also, (iii) d0 is unique minimax.
[Proof of (iii): Let d1 ¼ d1 xð Þ be another minimax rule.
Then

Sup
h2H

Rd1 hð Þ ¼ Sup
h2H

Rd0 hð Þ ¼ 1
n
¼ Cd0 hð Þ

) Cd1 hð Þ�Rd1 hð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl} � Sup
h2H

Rd1 hð Þ ¼ Cd0 hð Þ8h

By C–R inequality
) Cd1 hð Þ�Cd0 hð Þ 8 h ) bd1 hð Þ ¼ 0 8 h (By Lemma).
) d1 is an unbiased estimator of h. But since �X is complete d0 is the unique

unbiased estimator of h; i.e., d1 ¼ d0, Hence d0 ¼ �X is the unique minimax esti-
mator of h]

Proof of Lemma Writing bd hð Þ ¼ b hð Þ
Let Cd hð Þ�Cd0 hð Þ ¼ 1

n 8 h

i:e:; b2 hð Þþ 1þ b0 hð Þf g2
.
n� 1=n 8 h ð7:30Þ

ð7:30Þ ) b0 hð Þ� 0 8 h i:e:; b hð Þ is non-increasing ð7:31Þ

½as 7:30ð Þ) 1
n
þ 2b0 hð Þ

n
� b2 hð Þþ 1þ b0 hð Þf g2

.
n� 1=n

) 2b0 hð Þ
n

� 0 ) b0 hð Þ� 0�

Also 7:30ð Þ ) b2 hð Þþ 2b0 hð Þ� 0 ð7:32Þ

½As 7:30ð Þ)nb2 hð Þþ b02 hð Þþ 2b0 hð Þ� 0

)b2 hð Þþ 2b0 hð Þ� nb2 hð Þþ b02 hð Þþ 2b0 hð Þ� 0�

Now 7:32ð Þ ) � b0 hð Þ
b02 hð Þ 	

1
2 8 h such that b hð Þ 6¼ 0
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Or
d
dh

b�1 hð Þ	 1
2

8 h such that b hð Þ 6¼ 0 ð7:33Þ

7:31ð Þ; 7:33ð Þ ) b hð Þ ! 0 as h ! �1 ð7:34Þ

Finally (7.31), (7.34) ) b hð Þ ¼ 0 8 h, which proves the Lemma. h

7.6 Minimax Rule: Some Theoretical Aspects

A statistical decision problem � A game between statistician and nature.

H ¼ the set of possible actions for nature:

� ¼ the set of possible actions for statistician:

L h; að Þ ¼ Loss to the statisticianð Þ if the statistician chooses an action ‘a’ and
nature chooses an action ‘h’.

A randomized action for the statistician = a probability distribution over ɶ.
The statistician observes the value of a r.v. X. If X = x is observed, the statistician

chooses a randomized action d xð Þ.

d xð Þ ¼ a randomized rule for statistician:

s ¼ a prior distribution: ¼ a probability distribution overH:

¼ a randomized action for the nature:
If the statistician chooses a randomized rule d and the nature chooses a ran-

domized action s, then the statistician’s expected loss is
c s; dð Þ ¼ Bayes risk of d w:r:t: s.

Result 1 For any d 2 D,
Sup
h2H

Rd hð Þ ¼ Sup
s2H�

c s; dð Þ where H� = the set of all possible s’s.

Proof

Rd hð Þ� Sup
h2H

Rd hð Þ 8 h

) c s; dð Þ� Sup
h2H

Rd hð Þ 8 s

) Sup
s2H�

c s; dð Þ� Sup
h2H

Rd hð Þ
ð7:35Þ

Consider a prior s0 which chooses a particular value h with probability 1.
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Then r s0; dð Þ ¼ Rd hð Þ
Hence, Sup

s2H�
r s; dð Þ	 r s0; dð Þ ¼ Rd hð Þ 8 h

Thus Rd hð Þ� Sup
s2H�

r s; dð Þ 8 h

) Sup
h2H

Rd hð Þ� Sup
s2H�

r s; dð Þ ð7:36Þ

(7.35), (7.36) ) Sup
h2H

Rd hð Þ ¼ Sup
s2H�

r s; dð Þ, hence the proof.

A rule d0 is minimax if it minimizes

Sup
h2X

Rd hð Þw:r:t d 2 D

Or; Sup
s2H�

c s; dð Þw:r:t d 2 D by Result 1½ �

i.e. if Sup
s2H�

r s; dð Þ ¼ Inf
d2D

Sup
s2H�

r s; dð Þ ¼ �m (say)

�m ¼ Upper value of the game:

Thus, if a statistician chooses a minimax rule d0, his expected loss is at most �m
whatever be the action chosen by nature.

Similarly, a prior s0 is said to be a maximum rule for the nature or a least
favourable prior for the statistician if s0 maximizes inf

d
r s; dð Þw:r:t s, i.e. if

inf
d
r s0; dð Þ ¼ Sup

s
inf
d
r s; dð Þ ¼ m ðSay)

m ¼ Lower value of the game:

If nature chooses a least favourable s0, then expected loss (of the statistician) is
at least m whatever be the rule the statistician chooses. h

Result 2 m��m

Proof

r s; dð Þ� Sup
s

r s; dð Þ 8 s; d

) inf
d
r s; dð Þ� inf

d
Sup
s

r s; dð Þ ¼ �m 8 s

) Sup
s

inf
d
r s; dð Þ��m

) m��m

The statistical game is said to have a value m if m ¼ �m ¼ m, h
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Result 3 if the statistical game has a value and a least favourable prior s0 and a
minimax rule d0 exists, then d0 is Bayes w.r.t. s0.

Proof m ¼ inf
d
r s0; dð Þ� r s0; d0ð Þ� Sup

s
r s; d0ð Þ ¼ �m

If m ¼ �m, then ‘=’ must hold every where implying
inf
d
r s0; dð Þ ¼ r s0; d0ð Þ ) d0 is Bayes w.r.t. s0. h

Minimax theorem LetH be finite and the risk set S be bounded below. Then the
statistical game will have a value and a least favourable prior s0 exists.

If further, S is closed from below an admissible minimax rule d0 exists and d0
Bayes w.r.t. s0.

Thus if H is finite and S is bounded below as well as closed from below, then

(i) A minimax rule exists
(ii) An admissible minimax rule exists and
(iii) A minimax rule is Bayes (w.r.t least favourable prior s0).

Result 4 Suppose there exists a rule d0 such that

(i) Rd0 hð Þ� c 8 h
(ii) d0 is Bayes w.r.t. some s0 and r s0; d0ð Þ ¼ c,

then

(a) d0 is minimax
(b) s0 is least favourable prior.

Proof

(a) Proved earlier
(b) To show inf

d
r s0; dð Þ	 inf

d
r s; dð Þ 8 s ðbÞ

Now (i) ) r s; d0ð Þ� c 8 s
) inf

d
r s; dð Þ� r s; d0ð Þ� c ¼ r s0; d0ð Þ ¼ inf

d
r s0; dð Þ 8 s by iið Þ

This proves (b). h

7.7 Invariance

Many statistical decision problems are invariant w.r.t. some transformations of X. In
such case it seems reasonable to restrict to decision rules, which are also invariant
w.r.t. similar transformations. Such a decision rule is called an invariant decision
rule and in many problems a best rule exists within the class of invariant rules.
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Example 7.30 X �N h; 1ð Þ;�1\h\1
We are to estimate h under the squared error loss.
Suppose one considers a transformation of X, viz., X 0 ¼ X þ c, c = a given

constant and considers the problem of estimating h0 ¼ hþ c on the basis of
X 0 �N h0; 1ð Þ under the squared error loss.

For an action ‘a’ for the first problem, there is an action a0 ¼ aþ c for the second
problem and vice versa with L h; að Þ ¼ L h0; a0ð Þ. Thus the two problems may be
considered to be equivalent in the sense that ðH; ɶ, L)� ðH0; ɶ′, L′).

Now let d ¼ d Xð Þ ¼ a reasonable estimator of h on the basis of X. Then
d X 0ð Þ ¼ d Xþ cð Þ should be a reasonable estimator of h0 on the basis of X 0. Also, if
d xð Þ ¼ a reasonable estimate of h on the basis of X ¼ x then d xð Þþ c should be a
reasonable estimate for h0. The two estimates are identical if

d xþ cð Þ ¼ d xð Þþ c ð7:37Þ

An estimator d Xð Þ is said to be a location invariant or an equivariant if (7.37)
holds 8x8c.

d Xð Þ is an equivariant estimator iff d Xð Þ ¼ X þK ¼ dK Xð Þ (say) for some
constant K.

[If d Xð Þ ¼ X þK, then (7.37) is satisfied 8x8c. Let (7.37) be satisfied 8x8c. For
c ¼ �x, ðiÞ ) d0 ¼ dðxÞ � x; or d xð Þ ¼ xþK, K ¼ dð0Þ Rdk hð Þ ¼
E X þK � hð Þ2¼ 1þK2 which is minimum when K = 0. Thus
Rd0 hð Þ�Rdk hð Þ8h8K.

) d0 Xð Þ ¼ X is the best within the class of equivariant estimators.]

Invariant statistical decision problems

ðH; ɶ, L) X = a r.v. and x = observed value of X 2 �x (=sample space)
Ph = A probability distribution over �x depending on h.
P ¼ Ph=h 2 Hf g = family of probability distribution.
A statistical decision problem � H; a; Lð Þ andP,
Groups of transformation of X(or �x)
Y ¼ gðXÞ = a transformation of X
gðxÞ ¼ a single valued function of x.
g : �x ! �x�, g = a transformation on �x
We assume that g is measurable so that g(x) is an r.v. g is said to be an onto

transformation if the range of g(x) is �x, i.e. �x� is �x.
g is said to be 1:1 if gðx1Þ ¼ gðx2Þ ) x1 ¼ x2.

Example 7.31 �x ¼ R1; gðxÞ ¼ xþ c; c ¼ a real constant. This g is 1:1 and onto.
The identity transformation e is defined as eðxÞ ¼ x. Let g1; g2 be two trans-

formations on �x. Then the composition of g2; g1, denoted by g2g1 is defined as
g2g1ðxÞ ¼ g2 g1ðxÞ½ �.
Example 7.32 �x ¼ R1

g1ðxÞ ¼ xþ c1 and g2ðxÞ ¼ c2, c1, c2 are real constants. g1g2ðxÞ ¼ xþ c1 þ c2
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Clearly, g1g2g3 ¼ g1ðg2g3Þ ¼ ðg1g2Þg3
Also ge ¼ eg ¼ g
If g is a transformation on �x, then the inverse transformation of g, denoted by

g�1, is the transformation g such that
gg�1 ¼ g�1g ¼ e.
In the example, g�1

1 ðxÞ ¼ x� c1.

Note g�1 exists iff g is 1:1 and onto.
Let G = a class of transformation on �x

Definition G is called a group of transformations if G is closed under the com-
positions and inverses, i.e. if

i. g1; g2 2 G ) g2g1 2 G
ii. g 2 G ) g�1 2 G.

Note Let G be a group of transformations, then every g 2 G is 1:1 and onto (since
g�1 exists).

Also, the identity transformation e always 2 G [if g 2 G, then g�1 2 G,
e ¼ g�1g 2 G].

Example 7.33 �x ¼ R1

gcðxÞ ¼ xþ c; c ¼ a real constant.
Let G ¼ gc=�1\c\1f g

gc1 ; gc2 2 G ) gc1gc2 2 G Asgc1gc2ðxÞ ¼ xþ c1 þ c2; c1 þ c2 ¼ c½ �

gc 2 G ) g�1
c 2 G Asg�1

c ðxÞ ¼ xþð�cÞ� �

Hence, G is a group of transformation which is Additive or Location group.

Example 7.34 �x ¼ R1, gcðxÞ ¼ cx where c = a positive real constant

gc1gc2ðxÞ ¼ c1c2x

g�1
c ðxÞ ¼ 1

c
x

Let G ¼ ge=0\c\1f g

gc1 ; gc2 2 G ) gc1gc2 2 G

gc 2 G ) g�1
c 2 G
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Thus G is a group of transformations.
These are multiplicative or group under scale transformation.

Example 7.35 �x ¼ R1, ga;b ¼ aþ bx

G ¼ ga;b=�1\a\1; 0\b\1� �

G is a group transformation.
It is a group under both location and scale transformation.

Example 7.36 �x ¼ 0; 1; 2. . .nf g
Let gðxÞ ¼ n� x

G ¼ e; gf g

eg ¼ g 2 G; g�1ðxÞ ¼ x ¼ eðxÞ 2 G

Also e�1 2 G [Trivially]
Hence, G is a group of transformation.

Example 7.37 �x ¼ x1; x2; x3; . . .. . .xnð Þ
�x0 = The set of possible values of xi

�x ¼ �x0x�x0x. . .. . .. . .:x�x0
Let i ¼ i1; i2; i3; . . .. . .inð Þ be a permutation of 1; 2. . .n
Let gi xð Þ ¼ xi1 ; xi2 . . .. . .xinð Þ

G ¼ gi=i 2 the set of all possible permutation of 1; 2. . .nð Þf g

G is a group of transformations. It is a permutation group.
The invariance of a statistical decision problem is considered to be w.r.t a given

group transformations G on �x:

Invariance of P Let G = a given group of transformations on �x:
Definition P ¼ Ph=h 2 Hf g is said to be invariant w.r.t G if for any g 2 G and any
h 2 H i:e:; anyPh 2 Pð Þ there exists a unique h0 2 H (i.e. a unique Ph0 2 P) such
that probability distribution of y ¼ g xð Þ is Ph0 when the probability distribution of
X is Ph.

This unique h0 determined by g and h is denoted by g hð Þ.
Example 7.38 X �Nðh; 1Þ;�1\h\1

P ¼ fNðh; 1Þ=�1\h\1g

Let G ¼ fgc =�1\c\1g where gc ðxÞ ¼ xþ c
If X �Nðh; 1Þ then Y ¼ gc ðxÞ�Nðhþ c ¼ h0; 1Þ
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h0 is uniquely determined by c and h:
Thus P is invariant under G with
�gcðhÞ ¼ hþ c:

Example 7.39 X � expðhÞ; 0\h\1
P.d.f of X under h is 1

h e
�x

h; x[ 0

P ¼ fexpðhÞ=0\h\1g

Let G ¼ fgc=0\c\1g where gcðxÞ ¼ cx
If X� expðhÞ, then gcðxÞ� expðchÞ, i.e. ch ¼ h0: h0 is uniquely determined by

c and h. Thus P is invariant under G with �gcðhÞ ¼ ch:

Example 7.40 Let X �Binðn; hÞ, n known, 0\h\1

P ¼ fBinðn; hÞ=0\h\1g

Let G = a group of transformations on �x ¼ fe; gg where gðxÞ ¼ n� x
If X �Binðn; hÞ then eðxÞ�Binðn; h ¼ h0Þ and gðxÞ�Binðn; 1� h ¼ h0Þ
h0 is uniquely determined by h and member of G. Thus P is invariant under

G with �eðhÞ ¼ h; �gðhÞ ¼ 1� h:

Invariance of loss function

Let G = a group of transformations on �x
Let P be invariant w.r.t G with induced group of transformations on H as
�G ¼ f�g=g 2 Gg:
Definition The loss function L is said to be invariant w.r.t G if for each g 2 G and
each a 2 �, there exists a unique a0 2 � such that

Lðh; aÞ ¼ Lð�gðhÞ; a0Þ 8h 2 H:

This unique a0 determined by g and ‘a’ is denoted by �gðaÞ:
Example 7.41 X �Nðh; 1Þ;�1\h\1

G ¼ fgc=�1\c\1g; gc ¼ xþ c

P is invariant w.r.t
G with �G ¼ f�gc=�1\c\1g; �gcðhÞ ¼ cþ h:

To estimate h under Lðh; aÞ ¼ ðh� aÞ2
For any gc 2 G; a 2 �, there is an a0 ¼ aþ c 2 �
such that Lðh; aÞ ¼ Lð�gcðhÞ; a0Þ 8h 2 X:
a0 is uniquely determined by a and c. Hence the loss function is invariant w.r.t G.
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Example 7.42 X � expðhÞ; 0\h\1

G ¼ fgc=0\c\1g; gcðxÞ ¼ cx

P is invariant w.r.t. G with
�G ¼ f�gc=0\c\1g, �gcðhÞ ¼ ch:

To estimate h with Lðh; aÞ ¼ 1� a
h

� �2

For a0 ¼ ca, Lðh; aÞ ¼ Lð�gcðhÞ; a0Þ 8h 2 X:
This a0 is uniquely determined by a and c. Hence the loss function is invariant w.

r.t. G.

Example 7.43 X �Binðn; hÞ, 0\h\1

G ¼ fe; gg; eðxÞ ¼ x; gðxÞ ¼ n� x

P is invariant w.r.t. G with
�G ¼ f�e; �gg, �eðhÞ ¼ h, �gðhÞ ¼ 1� h:

To estimate h under squared error loss.
Then Lðh; aÞ ¼ Lð�eðhÞ; a0Þ where a0 ¼ a
and Lðh; aÞ ¼ Lð�gðhÞ; a0Þ where a0 ¼ 1� a: a0 is uniquely determined by a

member of G. Thus L is invariant w.r.t. G.
Invariance of a statistical decision problem:
A statistical decision problem � ðH;�; LÞ and P
G = A group of transformation of �x.

Definition A Statistical decision problem is said to be invariant under G if
(i) P is invariant under G
and (ii) L is invariant under G.
Thus as already shown

i. X�Nðh; 1Þ to estimate h under squared error loss

G ¼ fge=�1\c\1g; geðxÞ ¼ xþ c

the problem is invariant under G.

ii: X� expðhÞ; 0\h\1
To estimate h under Lðh; aÞ ¼ 1� a

h

� �2
; geðxÞ ¼ cx the problem is invariant

under G.
iii. X�Binðn; hÞ; n is known, 0\h\1

To estimate h under squared error loss with G ¼ fe; gg
e(x) = x, g(x) = n − x, the problem is invariant under G.

Example 7.44 X �Nðl; r2Þ;�1\l\1; r2 [ 0
To test H0 : l� 0 against H1 : l[ 0, i.e. h 2 H0 against h 2 H1
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H0 ¼ fh ¼ ðl; r2Þ=l� 0g

H1 ¼ fh ¼ ðl; r2Þ=l[ 0g;H ¼ H0 þH1

Let G ¼ fge=0\c\1g; gcðxÞ ¼ cx
= A group of transformation on �x

X �Nðl; r2Þ

) gcðxÞ�Nðc l; c2r2Þ 2 P

P is invariant under G with �gcðhÞ� ðc l; c2r2Þ h 2 Hi ,
Note �geðhÞ 2 Hi; i ¼ 0; 1; 2; . . .. . .:ðiÞ

i.e. both P0 and P1 are invariant under G
where Pi ¼ fPh=h 2 Hig; i ¼ 0; 1:
Also, Lðh; aÞ ¼ Lð�gcðhÞ; a0iÞ; i ¼ 0; 18h 2 H by (i)
⇒ Loss is invariant under G

Note To test H0 : h 2 H0 against H1 : h 2 H1;H0;H1, disjoint, H0 þH1 ¼ H

a ¼ fa0; a1g; ai ¼ acceptHi:

Let the loss function be 0–Li
Let G = a group of transformation on �x

P ¼ fPh=h 2 Hg;Pi ¼ fPh=h 2 Hig

Let both P0 and P1 be invariant under G, then P is invariant under G.
Also, h 2 Hi , �gðhÞ 2 Hi; i ¼ 0; 1
Hence, Lðh; aiÞ ¼ Lð�gðhÞ; aiÞ; i ¼ 0; 18h 2 H
L is invariant under G
A test of hypothesis problem (with 0–Li loss) is said to be invariant under G if

both P0 and P1 are invariant under G.

Invariant decision rule

Let G = a group of transformation on �x. The problem is invariant under G with
corresponding group of induced transformations on H and a.

a0 a1
h 2 H0 0 L0
h 2 H1 L1 0
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Let g 2 G

Let dðXÞ ¼ a be reasonable n.r. rule for the original problem. dðgðxÞÞ should be
a reasonable rule for the transformed problem. Also if for X = x, dðxÞ 2 � is a
reasonable action for the original problem, then for gðXÞ ¼ gðxÞ; ~gðdðXÞÞ should be
a reasonable action in the transformed problem.

These two agree if dðgðxÞÞ ¼ ~gðdðxÞÞ. . .. . .:ðiiÞ
A non-randomized rule is said to be an invariant non-randomized rule if

(ii) holds 8x 2 �x8g 2 G.
We thus get a class of n.r. decision rules as
DI = the class of invariant n.r. rules.
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Appendix

A.1 Exact Tests Related to Binomial Distribution

A.1.1 We have an infinite population for which π = unknown proportion of indi-
viduals having certain character, say A. We are to test H0 : p ¼ p0.

For doing this we draw a sample of size n. Suppose x = no. of individuals in the
sample have character A. The sufficient statistic x is used for testing H0 : p ¼ p0.
Suppose x0 is the observed value of x. Then x� bin n; pð Þ.

(a) H1 : p[ p0;x0 : P½x� x0=H0� � a i:e:;
P
x� x0

n

x

 !
px0ð1� p0Þn�x � a

(b) H2 : p\p0;x0 : P½x� x0=H0� � a i:e:;
P
x� x0

n

x

 !
px0ð1� p0Þn�x � a

(c) H3 : p 6¼ p0; where p0 ¼ 1
2 may be of our interest.

x0 : P x� n
2

��� ���� d0=H0

h i
� a

i:e:; P x� n
2
þ d0=H0

h i
þP x� n

2
� d0=H0

h i
� a

i:e:;
X

x� n
2þ d0

n

x

 !
1
2

� �n

þ
X

x� n
2�d0

n

x

 !
1
2

� �n

� awhere d0 ¼ x0 � n
2

��� ���
Note

(1) For other values of π0 the exact test cannot be obtained as binomial distri-
bution is symmetric only when p ¼ 1

2.
(2) For some selected n and π the binomial probability sums considered above are

given in Table 37 of Biometrika (Vol. 1)

© Springer India 2015
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A.1.2 Suppose we have two infinite populations with π1 and π2 as the unknown
proportion of individuals having character A. We are to test H0 : p1 ¼ p2.

To do this we draw two samples from two populations having sizes n1 and n2.
Suppose x1 and x2 as the random variables denoting the no. of individuals in the 1st
and 2nd samples with character A.

To test H0 : p1 ¼ p2 we make use of the statistics x1 and x2 such that x1 þ x2 ¼ x
(constant), say.

Under H0 : p1 ¼ p2 ¼ p (say),

f ðx1Þ ¼ p:m:f: of x1 ¼
n1

x1

 !
px1ð1� pÞn1�x1

f ðx2Þ ¼ p:m:f: of x2 ¼
n2

x2

 !
px2ð1� pÞn2�x2

f ðxÞ ¼ p:m:f: of x ¼ n1 þ n2
x

� �
pxð1� pÞn1 þ n2�x:

The conditional distribution of x1 given x has p.m.f.

f ðx1=xÞ ¼

n1
x1

 !
n2
x2

 !
n1 þ n2

x

� � , which is hypergeometric and independent of p.

Suppose the observed values of x1 and x are x10 and x0 respectively.

(a) H1 : p1 [ p2; x0 : P½x1 � x10=x ¼ x0� � a

i:e:;
X

x1 � x10

n1
x1

 !
n2

x0 � x1

� �
n1 þ n2

x0

� � � a

(b) H2 : p1\p2; x0 : P½x1 � x10=x ¼ x0� � a

i:e:;
X

x1 � x10

n1
x1

 !
n2

x0 � x1

� �
n1 þ n2

x0

� � � a
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(c) H3 : p1 6¼ p2; exact test is not available.
Note The above probabilities can be obtained from the tables of hypergeometric

distributions (Standard University Press).

A.2 Exact Tests Related to Poisson Distribution

A.2.1 Suppose we have a Poisson population with unknown parameter k. We draw
a random sample x1; x2; . . .; xnð Þ of size n from this population. Here, we are to test
H0 : k ¼ k0.

To develop a test we make use of the sufficient statistic y ¼Pn
i¼1 xi; which is

itself distributed as Poisson with parameter nk. The p.m.f. of y under H0 is therefore

f ðyÞ ¼ e�nk0 ðnk0Þy
y! ; y ¼ 0; 1; 2. . .

Suppose y0 is the observed value of y.

(a) H1 : k[ k0; x0 : P½y� y0=k ¼ k0� � a

i:e:;
X
y� y0

e�nk0 ðnk0Þy
y!

� a:

(b) H2 : k\k0; x0 : P½y� y0=k ¼ k0� � a

i:e:;
X
y� y0

e�nk0 ðnk0Þy
y!

� a:

(c) H3 : k 6¼ k0: exact test is not available.

Note These probabilities may be obtained from Table 7 of Biometrika (Vol. 1)
A.2.2 Suppose we have two populations Pðk1Þ and Pðk2Þ. We draw a random

sample x11; x12; . . .; x1n1ð Þ of size n1 from Pðk1Þ and another random sample
x21; x22; . . .; x2n2ð Þ of size n2 from Pðk2Þ. We are to test H0 : k1 ¼ k2 ¼ k (say).
Here we note that y1 ¼

Pn1
i¼1 x1i �Pðn1k1Þ and y2 ¼

Pn2
i¼1 x2i �Pðn2k2Þ.

To develop a test we shall make use of the sufficient statisticsy1 and y2 but shall
concentrate only on those for which y ¼ y1 þ y2 = constant. Under H0 the p.m.f. of
y1; y2 and y are

f ðy1Þ ¼ e�n1k ðn1kÞy1
y1!

; f ðy2Þ ¼ e�n2k ðn2kÞy2
y2!

and f ðyÞ ¼ e�ðn1 þ n2Þk ðn1 þ n2Þkf gy
y!
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The conditional distribution of y1 given y has the p.m.f. as

f ðy1=yÞ ¼
e�n2kðn2kÞy�y1

ðy�y1Þ! �e�n1kðn1kÞy1
y1!

e�ðn1 þ n2Þk ðn1 þ n2Þkf gy
y!

¼ y!
y1!y2!

ny11 n
y2
2

ðn1 þ n2Þy

¼
y

y1

 !
n1

n1 þ n2

� �y1

1� n1
n1 þ n2

� �y2

� bin y;
n1

n1 þ n2

� �
free of k:

So this may be regarded as sufficient statistic. Suppose the observed values of y1
and y are y10 and y0 respectively. We consider the conditional p.m.f. f ðy1=y0Þ for
testing H0.

(a) H1 : k1 [ k2;x0 : P½y1 � y10=y ¼ y0� � a

i:e:;
X

y1 � y10

y0
y1

 !
n1

n1 þ n2

� �y1 n2
n1 þ n2

� �y0�y1

� a

(b) H2 : k1\k2; x0 : P½y1 � y10=y ¼ y0� � a

i:e:;
X

y1 � y10

y0
y1

 !
n1

n1 þ n2

� �y1 n2
n1 þ n2

� �y0�y1

� a:

(c) H3 : k 6¼ k0: exact test is not available.

A.3 A Test for Independence of Two Attributes

In many investigations one is faced with the problem of judging whether two
qualitative characters, say A and B, may be said to be independent. Let us denote the
forms of A by Ai i ¼ 1ð1Þkf g and the forms of B by Bj j ¼ 1ð1Þlf g, and the prob-
ability associated with the cell AiBj in the two-way classification of the population
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by pij. The probability associated with Ai is then pi0 ¼
P

j pij and that associated
with Bj is p0j ¼

P
i pij. We show the concerned distribution in the following table:

A B Total

B1 B2 …. Bj …. Bl

A1 p11 p12 …. pij …. p1l p10
A2 p21 p22 …. p2j …. p2l p20
. . . . . .

. . . . . .

Ai pi1 pi2 …. pij …. pil pi0
. . . . . .

. . . . . .

Ak pk1 pk2 …. pkj …. pkl pk0
Total p01 p02 …. p0j …. p0l 1

where pij ¼ P A ¼ Ai;B ¼ Bj
� � � 8ði; jÞ

pi0 ¼ P A ¼ Aið Þ and p0j ¼ P B ¼ Bj
� �

We are to test H0 : A and B are independent , H0 : pij ¼ pi0 � p0j 8ði; jÞ
To do this we draw a random sample of size n. Let nij = observed frequency for

the cell AiBj. The marginal frequency of Ai is ni0 ¼
P

j nij and that of Bj is
n0j ¼

P
i nij. Note that the joint p.m.f. of nij is multinomial, i.e.

f nij;
i ¼ 1ð1Þk
j ¼ 1ð1Þl

	
pij;

i ¼ 1ð1Þk
j ¼ 1ð1Þl

� �
¼ n!Q

i

Q
j ðnijÞ!

Y
i

Y
j

ðpijÞnij :

Under H0 : pij ¼ pio � poj8ði; jÞ

f nij;
i ¼ 1ð1Þk
j ¼ 1ð1Þl

� �
¼ n!Q

i

Q
j ðnijÞ!

Y
i

ðpioÞnio
Y
j

ðpojÞnoj

f ðni0Þ ¼ n!Q
i ðni0Þ!

Y
i

ðpi0Þni08i ¼ 1ð1Þk

f ðn0jÞ ¼ n!Q
j ðn0jÞ!

Y
j

ðp0jÞn0j8j ¼ 1ð1Þl

The conditional distribution of nij keeping marginals fixed is, under

H0;
f ðnijÞ

f ðni0Þf ðn0jÞ ¼
Q

i
ðni0Þ!

Q
j
ðn0jÞ!

n!
Q

i

Q
j
ðnijÞ!
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This may be used for testing H0. Keeping marginal frequencies fixed we change
the cell-frequencies and calculate the corresponding probabilities. If the sum of the
probabilities � a, then we reject H0.

A.4 Problems Related to Univariate
Normal Distribution

Suppose we have a normal population with mean l and standard deviation r. We
draw a random sample x1; x2; . . .; xnð Þ of size n from this population. Here x ¼
1
n

Pn
1 xi; s

2 ¼ 1
n

P
i ðxi � �xÞ2 and s02 ¼ 1

n� 1

P
i ðxi � �xÞ2.

A.4.1 To test H0 : l ¼ l0.

Case I r known: we note that
ffiffi
n

p ðx�lÞ
r �Nð0; 1Þ

Under H0 ; s ¼
ffiffi
n

p ðx�l0Þ
r �Nð0; 1Þ:

H1 : l[ l0;x0 : s[ sa
H2 : l\l0;x0 : s\�sa
H3 : l 6¼ l0;x0 : jsj[ sa=2

100ð1� aÞ% confidence interval for l (when H0 is rejected) is �x	 rffiffi
n

p sa=2
� �

Case II r unknown: Here we estimate r by s’ and
ffiffi
n

p ðx� lÞ
s0 � tn�1.

Under H0 t ¼
ffiffi
n

p ðx�l0Þ
s0 � tn�1:

H1 : l[ l0;x0 : t[ ta;n�1

H2 : l\l0;x0 : t\�ta;n�1

H3 : l 6¼ l0;x0 : jtj[ ta 2= ;n�1

100ð1� aÞ% confidence interval for l is �x	 s0ffiffi
n

p ta=2; n� 1
� �

A.4.2 To test H0 : r ¼ r0:

Case I l known: we know
P

ðxi �lÞ2
r2 � v2n, under H0; v2 ¼

P
ðxi �lÞ2
r20

� v2n.

H1 : r[ r0; x0 : v
2 [ v2a;n

H2 : r\r0; x0 : v
2\v21�a;n

H3 : r 6¼ r0; x0 : v
2 [ v2a=2;n
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or,

v2\v21�a=2;n

P v21�a=2;n\
P ðxi � lÞ2

r2
\v2a=2;n

" #
¼ 1� a

i:e:; P

P ðxi � lÞ2
v2a=2;n

\r2\
P ðxi � lÞ2
v21�a=2;n

" #
¼ 1� a

)100ð1� aÞ% confidence interval for r2 when l is known isP
ðxi�lÞ2
v2
a=2;n

;

P
ðxi�lÞ2

v2
1�a=2;n

 �
.

Case II l unknown: we know
P

ðxi ��xÞ2
r2 � v2n�1 under H0; v2 ¼

P
ðxi��xÞ2
r20

� v2n�1

H1 : r[ r0; x0 : v
2 [ v2a;n�1

H2 : r\r0; x0 : v
2\v21�a;n�1

H3 : r 6¼ r0; x0 : v
2 [ v2a=2;n�1:

or,

v2 [ v21�a=2;n�1

P v21�a=2;n�1\
P ðxi � �xÞ2

r2
\v2a=2;n�1

" #
¼ 1� a

i:e., P
P ðxi � �xÞ2
v2a=2;n�1

\r2\
P ðxi � �xÞ2
v21�a=2;n�1

" #
¼ 1� a

) 100ð1� aÞ% confidence interval for r2 when l is unknown isP
ðxi��xÞ2

v2
a=2;n�1

;

P
ðxi��xÞ2

v2
1�a=2;n�1

 �
.

A.5 Problems Relating Two Univariate Normal
Distributions

Suppose we have two independent populations Nðl; r21Þ and Nðl2; r22Þ. We draw a
random sample x11; x12; . . .; x1n1ð Þ of size n1 from the first population and another
random sample x21; x22; . . .; x2n2ð Þ of size n2 from the second population.
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Now, we have for the 1st and the 2nd samples

�x1 ¼ 1
n1

Xn1
i¼1

x1i and �x2 ¼ 1
n2

Xn2
i¼1

x2i

s021 ¼ 1
n1 � 1

Xn1
i¼1

x1i � �x1ð Þ2 s022 ¼ 1
n2 � 1

Xn2
i¼1

x2i � �x2ð Þ2

respectively.
(I) H0 : 11l1 þ 12l2 ¼ 13:

Case I r1; r2 known:

We find that
11�x1 þ 12�x2 � ð11l1 þ 12l2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

121r
2
1

n1
þ 122r

2
2

n2

s �Nð0; 1Þ

Under H0; s ¼ 11�x1 þ 12�x2 � 13ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121r

2
1

n1
þ 122r

2
2

n2

s �Nð0; 1Þ

)H1 : 11l1 þ 12l2 [ 13;x0 : s[ sa
H2 : 11l1 þ 12l2\13;x0 : s\�sa
H3 : 11l1 þ 12l2 6¼ 13;x0 : jsj[ sa=2

Also, ð1� aÞ100% confidence interval for 11l1 þ 12l2ð Þ is

11�x1 þ 12�x2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121r

2
1

n1
þ 122r

2
2

n2

s
�sa=2

24 35
Case II r1; r2 unknown:

Fisher’s t-test: We assume r1 ¼ r2 ¼ r, say.

r2 is estimated by ðn1�1Þs021 þðn2�1Þs022
ðn1 þ n2�2Þ ¼ s02 say

Also,
11�x1 þ 12�x2 � ð11l1 þ 12l2Þ

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121
n1

þ 122
n2

s � tn1 þ n2 � 2

Under H0; t ¼ 11�x1 þ 12�x2 � 13

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121
n1

þ 122
n2

s � tn1 þ n2�2

This t is known as Fisher’s t when 11 ¼ 1, 12 ¼ �1.
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H1 : 11l1 þ 12l2 [ 13; x0 : t[ ta;n1 þ n2�2

H2 : 11l1 þ 12l2\13; x0 : t\� ta;n1 þ n2�2

H3 : 11l1 þ 12l2 6¼ 13; x0 : jtj[ t
a=2;n1 þ n2�2

Also 100(1 − α)% confidence interval for 11l1 þ 12l2 is

11�x1 þ 12�x2 	 s0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
121
n1

þ 122
n2

s
ta=2;n1 þ n2�2

0@ 1A:

Note–I The above procedure may also be applicable when r1 and r2 are not

equal provided 1� r21
r22

��� ���\ 0.4—theoretical investigation in this area verifies this.

Note–II when homoscedasticity assumption r1 ¼ r2 is not tenable then we
require the alternative procedure and the corresponding problem is known as the
Fisher-Behren problem.

Note–III For 11 ¼ 1 and 12 ¼ �1 we get the test procedure for the difference
between the two means. Also for testing the ratio of the means, i.e. for testing
H0 :

l1
l2
¼ k; say, we start with ð�x1 � k�x2Þ.

(II) H0 :
r1
r2
¼ n0 :

Case I l1; l2 known:
1
n1

P
ðx1i�l1Þ2

1
n1

P
ðx2i�l2Þ2

: 1
r2
1

r2
2

� � �Fn1;n2

) Under H0; F ¼
P

ðx1i�l1Þ2=n1P
ðx2i�l2Þ2=n2

: 1
n20
�Fn1;n2

H1 :
r1
r2

[ n0; x0 : F[Fa;n1;n2

H2 :
r1
r2

\n0; x0 : F\F1�a;n1;n2

H3 :
r1
r2

6¼ n0; x0 : F[Fa=2;n1;n2 or; F\F1�a=2;n1;n2 :

Also, P F1�a=2;n1;n2\
P

ðx1i�l1Þ2=n1P
ðx2i�l2Þ2=n2

:
r22
r21
\Fa=2;n1;n2

 �
¼ 1� a

Or, P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
P

ðx1i � l1Þ2
n1
P

ðx2i �l2Þ2Fa=2;n1 ;n2

r
\ r1

r2
\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2
P

ðx1i � l1Þ2
n1
P

ðx2i �l2Þ2F1�a=2;n1 ;n2

r �
¼ 1� a

This provides the 100ð1� aÞ% confidence interval for r1
r2

when l1; l2 are
known.
Case II l1; l2 unknown:

We have
1

n1�1

P
ðx1i��x1Þ2

1
n2�1

P
ðx2i��x2Þ2 :

1
r2
1

r2
2

� � �Fn1�1;n2�1
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i:e:;
s021
s022

:
r22
r21

�Fn1�1;n2�1

under H0; F ¼ s021
s022
: 1e2o

�Fn1�1;n2�1

)H1 :
r1
r2

[ n0;x0 : F[Fa;n1�1;n2�1

H2 :
r1
r2

\n0;x0 : F\F1�a;n1�1;n2�1

H3 :
r1
r2

6¼ n0;x0 : F[Fa=2;n1�1;n2�1 or F\F1�a=2;n1�1;n2�1:

Also, P F1�a=2;n1�1;n2�1\
s021
s022
: 1

r1
r2

� �2 \Fa=2;n1�1;n2�1

264
375 ¼ 1� a

Or, P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s021
s022 Fa=2;n1�1;n2�1

r
\ r1

r2
\

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s021

s022 F1�a=2;n1�1;n2�1

r �
¼ 1� a

i.e., 100ð1� aÞ% confidence interval for r1
r2
, when l1; l2 are unknown, is

s01
�
s02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fa=2;n1�1;n2�1

q ;

s01
�
s02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1�a=2;n1�1;n2�1

q
264

375:

A.6 Problems Relating to Bivariate Normal
Distributions

Suppose in a given population the variables x and y are distributed in the bivariate
normal form N2ðlx;ly; rx; ry; qÞ. Let ðx1; y1Þ; ðx2; y2Þ; . . .; ðxn; ynÞ be the values of
x and y observed in a sample of size n drawn from this population. We shall
suppose that the n pairs of sample observations are random and independent. We
shall also assume that all the parameters are unknown.

We have for the sample observations

x ¼ 1
n

X
i

xi; y ¼ 1
n

X
i

yi; s
02
x ¼ 1

n� 1

X
i

ðxi � xÞ2;

s02y ¼ 1
n� 1

X
i

ðyi � yÞ2; and rxy ¼
1

n�1

P
i ðxi � xÞ2ðyi � yÞ2

s0xs0y

246 Appendix



(1) To test H0 : q ¼ 0:

We know when q ¼ 0; t ¼ r
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffi
1�r2

p � tn�2

H1 : q[ 0; x0 : t[ ta;n�2

H2 : q\0; x0 : t[ � ta;n�2

H3 : q 6¼ 0; x0 : jtj[ ta=2;n�2

Note For testing q ¼ q0ð6¼0Þ, exact test is difficult to get as for q 6¼ 0 the
distribution of r is complicated in nature. But for moderately large n one can use the
large sample test which will be considered later.

(2) H0 : lx � ly ¼ n0

Define z ¼ x� y ) lz ¼ lx � ly i.e., we are to test H0 : lz ¼ n0. Also

note that
ffiffi
n

p ðz�lzÞ
s0z

� tn�1 where s02z ¼ 1
n�1

P
i ðzi � �zÞ2 ¼ s02x þ s02y � 2s0xy

s0xy ¼ 1
n�1

P
i ðxi�xÞ2ðyi�yÞ2. Under H0; t ¼

ffiffi
n

p ðz�n0Þ
s0z

� tn�1:

For H1 : lx�ly[ n0;x0 : t[ ta;n�1

H2 : lx�ly\n0; x0 : t\� ta;n�1

H3 : lx�ly 6¼ n0; x0 : jtj[ ta=2;n�1

Also, 100ð1� aÞ% confidence interval for lz ¼ lx � ly is �z	 s0zffiffi
n

p ta=2;n�1

� �
(3) H0 :

lx
ly
¼ g0 : we write g¼ lx

ly
.

To test H0 : g ¼ g0, we take z ¼ x�gy ) lz ¼ lx � gly ¼ 0.
z ¼ x� gy = a function of g.
s02z ¼ s02z þ g2s02y � 2gs0xy = a function of g.

Now,
ffiffi
n

p ðz�lzÞ
s0z

� tn�1: i:e:;
ffiffi
n

p
�z

s0z
� tn�1ð*lz ¼ 0Þ

Under H0; t ¼
ffiffi
n

p
�z0

s0z0
� tn�1 where �z0 ¼ x� g0�y

s02z0 ¼ s02x þ g0s
02
y � 2g0s

0
xy

So for H1 :
lx
ly
[ g0; x0 : t[ ta;n�1

H2 :
lx
ly

\g0; x0 : t\� ta;n�1

H3 :
lx
ly

6¼ g0; x0 : jtj[ ta=2;n�1:
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Again P �ta=2;n�1\
ffiffi
n

p
�z

s0z
\ta=2;n�1

h i
¼ 1� a

i.e., P
ffiffi
n

p
�z

s0z

��� ���\ta=2;n�1

h i
¼ 1� a or P wðgÞ\0½ � ¼ 1� a.

Solving the equation wðgÞ ¼ n�z2
s02z

� ta=2;n�1
� �2¼ 0 which is a quadratic equation

in g, one can get two roots g1 and g2ð[ g1Þ. Now if wðgÞ is a convex function and
g1 and g2 are real, then P g1\g\g2½ � ¼ 1� a. If wðgÞ is a concave function, then
P g\g1; g[ g2½ � ¼ 1� a. But if g1and g2 be imaginary then from the given sample
100ð1� aÞ%Confidence interval does not exist.

(4) Test for the ratio n ¼ rx
ry
:

We write u ¼ xþ ny; v ¼ x� ny

)Covðu; vÞ ¼ r2x � n2r2y ) quv ¼ 0

Then, ruv
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffiffi
1�r2uv

p � tn�2

where ruv ¼
1
n

P
ðui��uÞðvi��vÞ
susv

= a function of n. We are to test H0 :
rx
ry
¼ n0 , i.e.

H0 : n ¼ n0.

) under H0, t ¼ r0uv
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffiffi
1�r0 2uv

p � tn� 2

where r0uv ¼ value of ruv under n ¼ n0.
For H1 : n[ n0;x0 : t[ ta;n�2

H2 : n\n0;x0 : t\�ta;n�2

H3 : n 6¼ n0;x0 : jtj[ ta=2;n�2:

Also, P �ta=2;n�2\ ruv
ffiffiffiffiffiffi
n�2

pffiffiffiffiffiffiffiffiffi
1�r2uv

p \ta=2;n�2

 �
¼ 1� a

Solving the equation wðnÞ ¼ r2uvðn�2Þ
1�r2uv

� t2a=2;n�2 ¼ 0, (which is a quadratic in n)

one can get two roots n1 and n2ð[ n1Þ. If these roots are real and wðnÞ is a convex
function, then Pðn1\n\n2Þ ¼ 1 � a. Again if wðnÞ is concave,
Pðn\n1; n[ n2Þ ¼ 1 � a. But if n1 and n2 are not real, then 100ð1� aÞ%
Confidence interval does not exist so far as the given sample is concerned.

(5) rx; ry; q are known:

H0 : lx ¼ l0x ; ly ¼ l0y against H1 : H0 is not true. We know that

Qðx; yÞ ¼ 1
1� q2

x� lx
rx

� �2

�2q
x� lx
rx

� �
y� ly
ry

� �
þ y� ly

ry

� �2
" #

� v22

ðx; yÞ�N2 lx; ly;
r2x
n
;
r2y
n
; q

 !

)Qðx; yÞ ¼ n
1� q2

x � lx
rx

� �2

�2q
x � lx
rx

� �
y � ly
ry

� �
þ y � ly

ry

� �2
" #

� v22
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Under H0,

v2 ¼ n
1� q2

x� l0x
rx

� �2

�2q
x� l0x
rx

� �
y� l0y
ry

 !
þ y� l0y

ry

 !2
24 35� v22

Hence, the critical region is x0 : v2 [ v2a;2.

A.7 Problems Relating to k-Univariate Normal
Distributions

Suppose there are k-populations Nðl1;r21Þ;Nðl2; r22Þ; . . .Nðlk; r2kÞ. We draw a
random sample of size ni from the ith population with ni (� 2 for at least one i).

Define
xij ¼ jth observation of ith sample, i = 1,2,...,k; j = 1,2,..., ni
�xi ¼ ith sample mean ¼ 1

ni

Pni
j¼1 xij

s02i ¼ ith sample variance ¼ 1
ni�1

Pni
j¼1 xij � �xi
� �2

(I) We are to test H0 : l1 ¼ l2 ¼ � � � ¼ lkð¼lÞ, say against H1. There is at least
one inequality in H0.

Assumption r1 ¼ r2 ¼ � � � ¼ rkð¼rÞ say.
Note that �xi �N li;

r2
ni

� �
)
ffiffiffi
ni

p
�xi�lið Þ
r �Nð0; 1Þ 8i and are independent.

Also, ðni�1Þs02i
r2 � v2ni�1 (�xi and s0i are independent.)

Under H0Xk
i¼1

ni �xi � lð Þ2
r2

� v2k

and
Xk
i¼1

ni � 1ð Þs02i
r2

� v2n�k

�
these two v2 are independent.

But the unknown l is estimated by

l̂ ¼ 1
n

X
ni�xi ¼ �xðsayÞ; n ¼

X
i

ni

) Under H0;
Pk

i¼1 ni �xi � �xð Þ2 � r2v2k�1 and
Pk

i¼1 ni � 1ð Þs02i � r2v2n�k.

) Under H0; F ¼
P

ni �xi � �xð Þ2=k � 1P
i ðni � 1Þs02i =n� k

�Fk�1;n�k .

x0 : F[Fa;k�1;n�k. If H0 is rejected, then we may be interested to test H0: li ¼
lj against H1 : li 6¼ lj8ði; jÞ.
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�xi � �xj
� ��N li � lj; r

2 1
ni

þ 1
nj

� �� �
) �xi � xj � ðli � ljÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni
þ 1

nj

q �Nð0; 1Þ

Unknown r2 is estimated by r̂2 ¼
P

ðni�1Þs02i
n� k ¼ s02, say ) �xi�xjð Þ�ðli�ljÞ

s0
ffiffiffiffiffiffiffiffi
1
ni
þ 1

nj

p � tn�k.

) under H0; t ¼ �xi�xjð Þ
s0
ffiffiffiffiffiffiffiffi
1
ni
þ 1

nj

p � tn�k:

)x0 : jtj[ ta=2;n�k . Also, 100ð1� aÞ% confidence interval for li � lj
� �

is

�xi�xj
� �	 s0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ni
þ 1

nj

q
ta=2;n�k

n o
.

(II)Bartlett’s test To test H0 : r1 ¼ r2 ¼ � � � ¼ rkð¼ rÞ, say against H1: There
is at least one inequality in H0.

Define ci ¼ ni � 1 and c ¼Pk
i¼1 ci ¼ n� k. Bartlett’s test statisticM is such that

M ¼ c loge
Xk
i¼1

cis
02
i

c

( )
�
Xk
i¼1

ci loge s
02
i

Under H0 M� v2k�1 (approximately) provided none of ci is small. For small
samples M0 ¼ M

1þ c1
3ðk�1Þ

n o � v2k�1 under H0 where c1 ¼
Pk

i¼1
1
ci
� 1

c and

x0 : M0 [ v2a;k�1:

A.8 Test for Regression

Suppose the sample values of x and y are arranged in arrays of y according to the
fixed values of x as given below:

x1 x2 . . . xi . . . xk
y1 y21 . . . yi1 . . . yk1
y12 y22 . . . yi2 yk2
: : . . .
: :
: :
y1n1 y2n1 yini . . . yknk
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Define �yi0 ¼ 1
ni

Pni
j¼1 yij; �y00 ¼ 1

n

P
i ni�yi0 ¼ �y

x ¼ 1
n

X
i

nixi; n ¼
X
i

ni

e2yx ¼
P

i nið�yi0 � �y00Þ2P
i

P
j ð�yij � �y00Þ2

eyx ¼ þ
ffiffiffiffiffiffi
e2yx

q
¼ sample correlation ratio:

r ¼
1
n

P
i

P
j ðyij � �y00Þ xi � xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

P
i

P
j ðyij � �y00Þ2

n o
1
n

P
i ni xi � xð Þ2

n or
We assume yij

�
xi �N1ðli; r2Þ , i.e. Eðyij

�
xiÞ ¼ li:.

(I) Test for regression: H0 There does not exist any regression of y on x.

, H0 : l1 ¼ l2 ¼ � � � ¼ lk:

Define g2yx ¼ VðEðy=xÞÞ
VðyÞ ; gyx ¼ þ

ffiffiffiffiffiffi
g2yx

q
¼ population correlation ratio.

) To test H0 is equivalent to test H0 : g2yx ¼ 0 against H1 : g2yx [ 0
We note thatX

i

X
j

ðyij � �y00Þ2 ¼
X
i

X
j

ðyij � �yi0Þ2 þ
X
i

nið�yi0 � �y00Þ2

Under H0

SSB ¼ e2yx
X
i

X
j

ðyij � �y00Þ2 ¼
X
i

nið�yi0 � �y00Þ2 � r2 � v2k�1

SSw ¼ 1� e2yx
� �X

i

X
j

ðyij � �y00Þ2 ¼
X
i

X
j

ðyij � �yi0Þ2 � r2:v2n�k

) Under H0 :F ¼ e2yx=ðk�1Þ
ð1�e2yxÞ=n�k

�Fk�1;n�k: F ¼ SSB=ðk�1Þ
SSW=n�k

h i
)x0 : F[Fa;k�1;n�k:

(II) If H0 is rejected then we may be interested in testing whether the regression
is linear, i.e. we are to test

H0 : li ¼ aþ bxi 8i
H1 : li 6¼ aþ bxi
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We note that, e2yx
P

i

P
j ðyij � �y00Þ2 ¼

P
i nið�yi0 � �y00Þ2

Also, r2
P

i

P
j ðyij � �y00Þ2 ¼

P
i

P
j
ðyij��y00Þ xi�xð Þ

n o
P

i
ni xi�xð Þ2

2

¼ b̂2
P

ni xi�xð Þ2

where b̂ ¼
P

i

P
j
ðyij��y00Þ xi�xð ÞP
i
ni xi�xð Þ2

) e2yx � r2
� �P

i

P
j ðyij � �y00Þ2 ¼

P
i nið�yi0 � �y00Þ2 � b̂2

P
i ni xi�xð Þ2 � r2:v2k�2 under

H0.

Also, e2yx
P

i

P
j ðyij � �y00Þ2 and e2yx � r2

� �P
i

P
j ðyij � �y00Þ2 are independent.

) under H0; F ¼ e2yx�r2ð Þ=ðk�2Þ
ð1�e2yxÞ=n�k

�Fk�2;n�k

)x0 : F[Fa;k�2;n�k

A.9 Tests Relating to Simple Linear
Regression Equation

Regression of y on x is established and it is linear, i.e. Eðy=xÞ ¼aþ bx; say

)Eðy=x ¼ xiÞ ¼ aþ bxi; i ¼ 1 1ð Þn:
y=x�Nðaþ bx; r2Þ

Least square (LS) regression line is given by Y = a + bx, where a, b are the LS

estimates of α and β, i.e. a ¼ y� bx and b ¼
P

ðyi��yÞ xi�xð ÞP
xi�xð Þ2 ¼ Sxy

Sxx
:

)y �N aþ b�x; r
2

n

� �
and b�N b; r

2

Sxx

� �
. Also they are independent.

) ‘a’ is normal with EðaÞ ¼ EðyÞ � xEðbÞ ¼ a.

VðaÞ ¼ VðyÞþ x2VðbÞ ¼ r2

n
þ x2

r2

Sxx
¼ r2

nsxx
Sxx þ nx2
� � ¼ r2

nsxx

X
x2i

� �
i.e., a�N a; r2 1

n þ �x2
Sxx

� �� �
H01 : a ¼ a0 : under H01, t ¼ a� a0

r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ �x2

Sxx

s � tn�2

where r̂2 ¼P yi � a� bxið Þ2=ðn� 2Þ
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) H11 : a[ a0;x0 : t[ ta;n�2

H21 : a\a0;x0 : t\�ta;n�2

H31 : a 6¼ a0;x0 : jtj[ ta=2;n�2:

Also, 100ð1� aÞ% confidence interval for a is a	 r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n þ �x2

Sxx

q
ta=2; n� 2

� �
:

H02 : b ¼ b0 : under H02; t ¼ ðb�b0Þ
ffiffiffiffiffi
Sxx

p
r̂ � tn�2

) H12 : b[ b0; x0 : t[ ta;n�2

H22 : b\b0; x0 : t\�ta;n�2

H32 : b 6¼ b0; x0 : jtj[ ta=2;n�2:

Also, 100ð1� aÞ% confidence interval for b is

b	 r̂ffiffiffiffiffiffi
Sxx

p � ta=2;n�2

� �
H03 : a ¼ a0; b¼b0 : Covða; bÞ ¼ Cov (y� bx; bÞ

¼ �xVðbÞ ¼ � x
r2

Sxx
:

)
a

b

 !
�N2

a

b

 !
;

r2
P

x2i
nSxx

� r2�x
Sxx

� r2�x
Sxx

r2
Sxx

 !( )

i.e.,
a

b

 !
�N2

a

b

 !
; r2
nSxx

P
x2i ��x � n

��x � n n

� �( )

Let
r2

nSxx

P
x2i ��x � n

��x � n n

� �
¼
X �

)
a � a

b � b

 !0X�1 a � a

b � b

 !
� v22:

Now,
P�1 ¼ adj

P
j
P

j ¼
r2
nSxx

n nx
nx

P
x2i

� �
r2
nSxxð Þ2 n

P
x2i � n2�x2ð Þ
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¼ nSxx
r2nSxx

n nx

nx
P

x2i

� �
¼ 1

r2
n nx

nx
P

x2i

� �

)
a� a

b� b

 !0X�1 a� a

b� b

 !
¼ 1

r2
a� a

b� b

 !0
n nx

nx
P

x2i

� � a� a

b� b

 !
) nða� aÞ2 þ 2nxða� aÞðb� bÞþ ðb� bÞ2

X
x2i

h i
� r2v22

Again,
Pn

1 ðyi � a� bxiÞ2 � r2 � v2n�2
) under H03,

F ¼
nða�a0Þ2 þ 2nxða� a0Þðb� b0Þþ ðb� b0Þ2

P
x2i

n o.
2P ðyi � a� bxiÞ2

.
ðn� 2Þ

�F2;n�2

)w0 : F[Fa;2;n�2:

A.10 Tests Relating to Multiple and Partial
Correlation Coefficient

Suppose x
�
px1 �Np l

�
;
Ppxp

� �
q1:23...p = population multiple correlation coefficient of X1 on X2;X3; . . .;Xp

r1:23...p = sample multiple correlation coefficient of X1 on X2;X3; . . .;Xp based on
a sample of size n ð� pþ 1Þ

¼ 1� jRj
R11

� �1=2
where R ¼

1 r12 r13 . . . r1p
1 r23 . . . r1p

. . . . . .

. . . . . .
1

0BBBB@
1CCCCA and R11 = cofactor of r11

in R.

If q1:23...p ¼ 0 then F ¼ r21:23...p=ðp�1Þ
ð1�r21:23...pÞ

�
ðn�pÞ

�Fp�1;n�p.

To test
H0 : q1:23...p ¼ 0 against H1 : q1:23...p [ 0

)w0 : F[Fa;p�1;n�p:

q12:34 ...p = population partial correlation coefficient of X1 and X2 eliminating the
effect of X3; . . .;Xp.
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r12:34 ...p = sample partial correlation coefficient of X1andX2 eliminating the effect
of X3; . . .;Xp

¼ � R12ffiffiffiffiffiffiffiffiffiffi
R11R22

p . If q12:34 ...p then

t ¼ r12:34...p
ffiffiffiffiffiffiffiffiffiffiffi
n� p

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212:34...p

q � tn�p

Thus for testing H0 : q12:34 ...p ¼ 0 against

H1 : q12:34 ...p [ 0; x0 : t[ ta;n�p

H2 : q12:34 ...p\0; x0 : t\� ta;n�p

H3 : q12:34 ...p 6¼ 0; x0 : jtj[ ta=2;n�p:

A.11 Problems Related to Multiple Regression

We consider a set of variables y; x1; x2; . . .; xp
� �

, where y is stochastic and
x1; x2; . . .; xp
� �

are nonstochastic. Let the multiple regression of y on x1; x2; . . .; xp be

E y
�
x1; x2; . . .; xp

� � ¼ b0 þ b1x1 þ b2x2::þ bpxp ðA:1Þ

where b0; b1; b2; bp are constants. In fact,
bi = partial regression coefficient of y on xi eliminating the effects of

xj; j 6¼ i ¼ 1; 2;. . .p:
Define riy ¼ Cov(xi; yÞ;rij ¼ Cov(xi; xjÞ; ryy ¼ vðyÞ; qiy ¼ correlation of

ðxi; yÞ; qij ¼ correlation of ðxi; xjÞ; i ¼ 1; 2; ::p and j ¼ 1 1ð Þp
We write r�

px1

ð1Þ
¼ ðr1y; r2y; . . .; rpy; Þ0

Ppxp ¼
r11 r12 . . . r1p
r21 r22 . . . r2p
. . . . . . . . . . . .
rP1 rP2 . . . rpp

0BB@
1CCA = variance-covariance matrix of x1; x2; ::; xp

We write

Xpþ 1xpþ 1

0
¼

ryy ry1 ry2��� ryp
r1y r11 r12��� r1p
r2y r21 r22��� r2p
. . . . . . . . . . . .
rpy rp1 rp2��� rpp

0BBBB@
1CCCCA

¼
ryy r�

0
ð1Þ

r�ð1Þ
P pxp

0@ 1A = variance–covariance matrix of y, x1; x2; . . .; xp.
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Similarly, we write

qpþ 1xpþ 1
0 ¼

qyy qy1 qy2��� qyp
q1y q11 q12��� q1p
q2y q21 q22��� q2p
. . . . . . . . . . . .
qpy qp1 qp2��� qpp

0BBBB@
1CCCCA = correlation matrix of y,

x1; x2; . . .; xp.
Now,

P
0

�� �� ¼ product of the diagonal element of
P

0

� �
q0j j

¼ ðryyr11r22. . .rppÞ q0j j

) q0j j ¼
P

0j j
ðryyr11r22...rppÞ. Also,

Pj j ¼ ðr11r22. . .rppÞx Cofactor of qyy in q0.

) Cofactor of qyy in q0 ¼
Pj j

r11r22...rpp

) q2y:12...p ¼ 1� q0j j
Cofactor of qyy in q0

¼ 1�
P

0

�� ���ðryyr11r22. . .rppÞPj j�ðr11r22. . .rppÞ ¼ 1�
P

0

�� ��
ryy
Pj j

¼ 1�
ryy � r�

0
ð1Þ
P�1 r�ð1Þ

ryy
¼

r0ð1Þ
P�1 rð1Þ
ryy

¼
r0ð1Þb�
ryy

as b
�
¼
X�1

r�ð1Þ
:

) q2y:12...p ¼
r�
0
ð1Þ

b
�

ryy
¼

b
�
0P b

�
ryy

; b
�
¼
X�1

r�ð1Þ
)
X

b
�
¼ r�ð1Þ

) r�
0
ð1Þ

b
�
¼ b

�
0X b

�

 �

Suppose we are given the set of observations

ya; x1a; x2a; . . .; xpa
� �

; a ¼ 1ð1Þn; n[ pþ 1:

Define �xi ¼ 1
n

Pn
a¼1 xia; Sij ¼

Pn
a¼1 xia � �xið Þ xja � �xj

� �
Siy ¼

Xn

a¼1
xia � �xið Þ ya � �yj

� �
: 8i; j ¼ 1ð1Þp

Spxp ¼
S11 S12 . . . S1p
S21 S22 . . . S2p
. . . . . . . . . . . .
Sp1 Sp2 . . . Spp

0BB@
1CCA which is positive definite.

Estimated regression equation of y on x1; x2; . . .; xp is y ¼ b̂0 þ b̂1x1 þ
b̂2x2 þ � � � þ b̂pxp
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where b̂0; b̂1; b̂2; . . .; b̂p are the solutions of the following normal equations:

S1y ¼ b̂1S11 b̂2S12 þ � � � þ b̂pS1p
S2y ¼ b̂1S21 b̂2S22 þ � � � þ b̂pS2p
. . . . . . . . .
Spy ¼ b̂1Sp1 b̂2Sp2 þ � � � þ b̂pSpp

9>>>=>>>; ðA:2Þ

and b̂0 ¼ y� b̂1�x1 � b̂2�x2 � � � � � b̂p�xp
We write y

�
nx1 ¼ ðy1; y2; . . .; ynÞ0

Knxp ¼
x11 � �x1 x21 � �x2 . . . xp1 � �xp
x12 � �x1 x22 � �x2 . . . xp2 � �xp

. . . . . . . . . . . .
x1n � �x1 x2n � �x2 . . . xpn � �xp

0BB@
1CCA

b̂
�
px1 ¼ b̂1; b̂2; ::; b̂p

� �0
Note that Siy ¼

Pn
a¼1 xia � �xið Þya; (A.2) reduces to

S b̂
�
¼ K 0 y

�
) b̂

�
¼ S�1K 0 y

�

) b̂1; b̂2; . . .; b̂p are linear functions of y1; y2; . . .; yn which are normal.

) b̂
�
�Np E b̂

� �
;D b̂

�

� �� �
Now, b̂

�
¼ S�1K 0 y

�
¼ S�1K 0 y

�
� �y2

�

� �
where 2

�
¼ ð1; 1; . . .; 1Þ0 andK 02

�
¼ 0

�

)E b̂
�

� �
¼ S�1K 0E y

�
� �y2

�

� �
EðyaÞ ¼ b0 þ b1x1a þ � � � þ bpxpa

EðyÞ ¼ b0 þ b1�x1 þ � � � þ bp�xp

Eðya � yÞ¼b1ðx1a � �x1Þþ � � � þ bpðxpa � �xpÞ

E y
�
� �y2

�

� �
¼ E

y1 � �y

y2 � �y

:

yn � �y

0BBB@
1CCCA ¼ K b

�
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)E b̂
�

� �
¼ S�1K 0K b̂

�
¼ S�1Sb

�
¼ b

�
*K 0K ¼ S½ �

D b̂
� �

¼ S�1K 0r2InKS�1 ¼ r2S�1K 0KS�1 ¼ r2S�1SS�1 ¼ r2S�1

) b̂
�
¼ S�1K 0 y

�
�Np b

�
; r2S�1

� �
We write S�1 ¼ Sij

� �� �
)Vðb̂iÞ ¼ r2Sii

and

Cov b̂i; b̂j
� �

¼ r2Sij 8i; j ¼ 1ð1Þp
) b̂i �N1 bi; r

2Sii
� �

i ¼ 1ð1Þp

Again, b̂0 ¼ y � b̂1�x1 � b̂2�x2 � b̂p�xp

)E b̂0
� �

¼ EðyÞ�
Xp
i¼1

E b̂i
� �

�xi ¼ b0 þ
Xp
i¼1

bi�xi

 !
�
Xp
i¼1

bi�xi ¼ b0

V b̂0
� �

¼ V y�
X

b̂i�xi
� �

¼ V y� x
�
0 b̂
�

� �
; �x

�
0 ¼ �x1;�x2; . . .;�xp

� �
¼ r2

n þ �x
�
0D b̂

�

� �
�x
�
(as �y and b̂

�
are independent)

¼ r2

n
þ �x

�
0r2S�1 �x

�
¼ r2

1
n
þ �x

�
0S�1 �x

�

 �
:

Thus b̂0 is also a linear combination of normal variables.

) b̂0 �N1 b0; r
2 1

n
þ �x

�
0S�1 �x

�

 �� �
Again Y ¼ b̂0 þ

Pp
1
b̂ixi; ) Y �N1 EðYÞ;VðYÞð Þ

where EðYÞ ¼ E b̂0
� �

þ P
E b̂i
� �

xi ¼ b0 þ
P

bixi ¼ nx; (say)
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VðYÞ ¼ V b̂0 þ
Xp
i¼1

b̂ixi

 !
¼ V �y�

X
i

b̂i�xi þ
X
i

b̂ixi

" #

¼ V �yþ
X
i

b̂i xi � �xið Þ
" #

¼ Vð�yÞþV
X
i

b̂i xi � �xið Þ
 !

¼ r2

n
þ
Xp
1

Xp
1

xi � �xið Þ xj � �xj
� �

Cov b̂i; b̂j
� �

¼ r2

n
þ
Xp
1

Xp
1

xi � �xið Þ xj � �xj
� �

r2Sij ¼ r2
1
n
þ x

�
� �x

� �0
S�1ð x

�
� �xÞ

 �
)Y �N1 b0 þ

X
bixi ¼ nx; r

2 1
n
þ x

�
� �x

� �0
S�1ð x

�
� �xÞ

 �� �
To get different test procedures r2 is estimated as

r̂2 ¼ 1
n� p� 1

Xp
a¼1

ya � b̂0 � b̂1x1a þ . . .þ b̂pxpa
� �2

¼ 1
n� p� 1

Xn
a¼1

ya � �yð Þ �
X
i

b̂i xia � �xið Þ
( )2

¼ 1
n� p� 1

Syy �
Xn
a¼1

X
i

X
j

b̂ib̂j xia � �xið Þ xia � �xjð Þ
" #

¼ 1
n� p� 1

Syy �
X
i

X
j

b̂ib̂jSij

" #
¼ 1

n� p� 1
Syy � b̂

�
0
S b̂
�

 �

(Note that q2y:12:::p ¼
b
�
0P b

�
ryy

)

(1) H01 : b1 ¼ b2 ¼ � � � ¼ bp ¼ 0
) x1; x2; . . .; xp are not worthwhile in predicting y.

* q2y:12...p ¼
b̂
�
0P

b̂
�

ryy
) b1 ¼ b2 ¼ � � � ¼ bp ¼ 0 ) q2y:12...p ¼ 0

So the problem is to test H01 : q2y:12...p ¼ 0 against H1 : q2y:12...p [ 0

Now Syy 1� r2y:12...p
� �

¼ Syy � b̂
�
0P

b̂
�

¼
Xn
a¼1

ya � b̂0 � b̂1x1a � � � � � b̂pxpa
� �

� r2v2n�p�1
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Also, Syyr2y:12...p ¼ b̂
�
0
S b̂
�
¼ Syy � Syy � b̂

�
0
S b̂
�

� �
) Syy ¼ Syy � b̂

�
0
S b̂
�

� �
þ Syyr

2
y:12...p

Syy � r2v2n�1 ) Syyr
2
y:12...p � r2v2p

)F1 ¼
r2y:12...p

.
p

1� r2y:12...p
� �.

n� 1� pð Þ
�Fp;n�p�1

)x0 : F1 [Fa;p;n�p�1

(2) H0 : b0 ¼ b against H1 : b0 6¼ b

Under H0; t ¼ b̂0 � b

r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ �x

�
0S�1 �x

�

r � tn�p�1

where r̂2 ¼ 1
n�p�1 Syy � b̂

�
0
S b̂
�

 �
¼ S02y:12...p, say

and b̂0 ¼ y�
X

b̂ixi ¼ y� x
�
0 b̂
�

x0 : tj j[ ta=2;n�p�1

(3) H0 : bi ¼ b0i against H1 : bi 6¼ b0i 8i ¼ 1ð1Þp

b̂i �N1 bi; r
2Sii

� �
Under H0; t ¼ b̂i�b0i

r̂
ffiffiffiffi
Sii

p � tn�p�1:

x0 : tj j[ ta=2;n�p�1

100ð1� aÞ% confidence interval for bi is

b̂i 	 r̂
ffiffiffiffiffi
Sii

p
ta=2;n�p�1

� �
(4) H0 : bi � bj ¼ d0 against H1 : bi � bj 6¼ d0: 8i 6¼ j ¼ 1ð1Þp

b̂i � b̂j �N1 bi � bj; r
2 Sii þ Sjj � 2Sij
� �� �

) under H0; t ¼ b̂i�b̂jð Þ�d0

r̂
ffiffiffiffiffiffiffiffiffiffiffi
Sii þ Sjj

p
�2Sij

� tn�p�1
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)x0 : tj j[ ta=2;n�p�1

100ð1� aÞ% confidence interval for bi � bj
� �

is

b̂i � b̂j
� �

	 r̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sii þ Sjj � 2Sij

p
ta=2;n�p�1

� �
(5) H0 : EðYÞ ¼ nx ¼ n0

Under H0; t ¼ Y�n0

r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
nþ x

�
� �x

�

� �0
S�1 x

�
� �x

�

� �r � tn� p� 1

x0 : tj j[ ta=2;n�p�1:

100ð1� aÞ% confidence interval for nx is

Y 	 r̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
þ x

�
� �x

�

� �0
S�1 x

�
� �x

�

� �r
ta=2;n� p� 1

 !

where Y ¼ b̂0 þ
Pp

i¼1 b̂ixi

A.12 Distribution of the Exponent
of the Multivariate Normal Distribution

Let x
�
px1 �Np l

�
px1;
Ppxp

� �
;

P
is positive definite.

The p.d.f. of x
�
is

f x
�

� �
¼ 1

2pð Þp=2 ffiffiffiffiffiffiffiffiPj jp e
�1

2 x
� � l

�

� �0P�1
x
� � l

�

� �
;

�1\xi\1
�1\li\1 and 0\ri\1

Qð x
�
Þ ¼ ð x

�
� l

�
Þ0
X�1ð x

�
� l

�
Þ

Since
P

is positive definite, there exists a nonsingular matrix Vpxp such thatP�1 ¼ VV 0:
) Qð x

�
Þ ¼ ð x

�
� l

�
Þ0VV 0ð x

�
� l

�
Þ ¼ y

�
0 y
�
where y

�
¼ V 0ð x

�
� l

�
Þ
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¼
Xp
i¼1

y2i :

Jj j ¼ @ x1; x2; . . .; xp
� �

@ y1; y2; . . .; ynð Þ
���� ���� ¼ 1

Vj j ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiP�1�� ��q ¼

ffiffiffiffiffiffiffiffiffiffiX��� ���r

) p.d.f. of y
�
is f ð y

�
Þ ¼ 1

ð2pÞp=2
ffiffiffiffiffiffiffiffiPj jp e

�1
2 y�

0 y
�
� ffiffiffiffiffiffiffiffiPj jp

¼ 1

ð2pÞp=2
e
�1

2

PP
1

y21
:

Now y1; y2; . . .; yp are i.i.d Nð0; 1Þ

)
Xp
1

y2i � v2p; i.e.,Qð x
�
Þ� v2p

If we now want to find the distribution of Q
ð x
�
Þ ¼ x

�
0P�1 x, since

P
is

positive definite, there exists a non-singular matrix Vpxp such that
P�1 ¼ VV 0.

)Q
ð x
�
Þ ¼ x

�
0VV 0x ¼ z

�
0 z
�
where Z� ¼ V 0 x

�
.

Here also Jj j ¼ ffiffiffiffiffiffiffiffiPj jp
.

)ð x
�
�l

�
Þ0
X�1ð x

�
�l

�
Þ¼ ð x

�
�l

�
Þ0VV 0ð x

�
�l

�
Þ

¼ V 0 x
�
�V 0l

�

� �0
Ip V 0 x

�
�V 0l

�

� �
¼ z

�
� V 0l

�

� �0
Ip z

�
� V 0l

�

� �

) f ðzÞ ¼ 1

ð2pÞp=2
e
�1

2 z
�
�V 0 l

�

� �0
Ip z

�
�V 0 l

�

� �

) z1; z2; . . .; zp are normal with common variance unity but with means given by

E z
�

� �
¼ V 0l

�
.

)
Pp

1 z
2
i � non-central v2p with non-centrality parameter V 0l

�

� �0
V 0l

�

� �
¼

l
�
0VV 0l

�
¼ l

�
0P�1 l.
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A.13 Large Sample Distribution of Pearsonian
Chi-Square

Events A1 A2 …. Ai …… Ak Total

Probability P1 P2 …. Pi …… Pk 1

Frequency n1 n2 …. ni …… nk n

) f n1; n2; . . .; nkð Þ ¼ n!Q
i ni!

Yk
i¼1

pnii

ni �Bin n; pið Þ

Pearsonian chi-square statistic is v2 ¼Pk
i¼1

ni � npið Þ2
npi

Using Stirling’s approximation to factorials

f n1; n2; . . .; nkð Þ ’
ffiffiffiffiffiffi
2p

p
e�nnnþ

1
2Qk

1

ffiffiffiffiffiffi
2p

p
e�nin

ni þ 1
2

i

Yk
1

pnii

¼ nnþ
1
2
Qk

1 p
ni
i

2pð Þk�1
2
Qk

1 n
ni þ 1

2
i

¼
ffiffiffi
n

p

2pð Þk�1
2
Q ffiffiffiffiffiffi

npi
p

Yk
1

npi
ni

� �ni þ 1
2

) logef n1; n2; . . .; nkð Þ ’ Cþ
Xk
i¼1

ni þ 1
2

� �
logc

npi
ni

� �
ðA:3Þ

where C ¼ loge
ffiffi
n

p

2pð Þk�1
2
Qk

1

ffiffiffiffiffi
npi

p

 �
We write di ¼ ni�npiffiffiffiffiffiffiffi

npiqi
p ; qi ¼ 1� pi
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) ni ¼ npi þ di
ffiffiffiffiffiffiffiffiffiffi
npiqi

p ) ni
npi

¼ 1þ di

ffiffiffiffiffiffi
qi
npi

r
) npi

ni
¼ 1þ di

ffiffiffiffiffiffi
qi
npi

r� ��1

) logef n1; n2; . . .; nkð Þ¼ C �
Xk
1

npi þ
1
2
þ di

ffiffiffiffiffiffiffiffiffiffi
npiqi

p� �
logc 1þ di

ffiffiffiffiffiffi
qi
npi

r� �

¼ C �
Xk
1

npi þ
1
2
þ di

ffiffiffiffiffiffiffiffiffiffi
npiqi

p� �
di

ffiffiffiffiffiffi
qi
npi

r
� d2i qi
2npi

þ d3i q
3=2
i

3 npið Þ3=2
� � � �

0@ 1A;

Provided di
ffiffiffiffiffi
qi
npi

q��� ���\1

¼ C �
Xk
1

di
ffiffiffiffiffiffiffiffiffiffi
npiqi

p þ 1
2
di

ffiffiffiffiffiffi
qi
npi

r
� 1
2
d2i qi �

1
4
d2i

qi
npi

þ d2i qi þ
d3iffiffiffi
n

p � � �ð Þ þ � � �
� �

¼ C �
Xk
1

di
ffiffiffiffiffiffiffiffiffiffi
npiqi

p þ 1
2
di

ffiffiffiffiffiffi
qi
npi

r
þ 1
2
d2i qi �

1
4
d2i

qi
npi

þ d3iffiffiffi
n

p � � �ð Þ
� �

� � � ðA:4Þ

Note that
P

di
ffiffiffiffiffiffiffiffiffiffi
npiqi

p ¼Pk
1 ni � npið Þ ¼ n� n ¼ 0;

we assume that d3i ¼ 0
ffiffiffi
n

pð Þ i:e:; d3iffiffi
n

p ! 0; diffiffi
n

p ! 0 ) d2i
n ! 0

) All the terms in the R.H.S of (A.4) tends to zero except 1
2 d

2
i qi , thus (A.4)

implies

loge f ’ C � 1
2

Xk
1

d2i qi ) f ’ eC � e�1
2

Pk

1
d2i qi

) f ’
ffiffiffi
n

p

2pð Þk�1
2
Qk

1
ffiffiffiffiffiffi
npi

p e�
1
2

Pk

i¼1

ni�npið Þ2
npi

¼ 1

2pð Þk�1
2
ffiffiffiffiffi
pk

p e�
1
2

Pk

i¼1

ni�npið Þ2
npi :

1Qk�1
1

ffiffiffiffiffiffi
npi

p ðA:5Þ

We note that
Pk

1 ni � npið Þ ¼ 0
i.e., nk � npk ¼ �Pk�1

1 ni � npið Þ

)
Xk
i¼1

ni � npið Þ2
npi

¼
Xk�1

i¼1

ni � npið Þ2
npi

þ nk � npkð Þ2
npk
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¼
Xk�1

1

ni � npið Þ2
npi

þ
Pk�1

1 ni � npið Þ
n o2

npk
ðA:6Þ

We use the transformation n1; n2; . . .; nk�1ð Þ ! x1; x2; . . .; xk�1ð Þ
where xi ¼ ni�npiffiffiffiffiffi

npi
p ; i ¼ 1 lð Þk � 1:

Jj j ¼ @ n1; n2; . . .; nk�1ð Þ
@ x1; x2; . . .; xk�1ð Þ
���� ���� ¼ Diag

ffiffiffiffiffiffiffi
np1

p
. . .

ffiffiffiffiffiffiffiffiffiffiffi
npk�1

p� ��� ��
¼
Yk�1 ffiffiffiffiffiffi

npi
p

(A.6) )Pk
1

ni�npið Þ2
npi

¼Pk�1
1 x2i þ

Pk�1

1

ffiffiffiffiffi
npi

p
xi

� �2
npk

¼
Xk�1

1

x2i þ
1
pk

Xk�1

1

pix
2
i þ

Xk�1

i 6¼j¼1

X ffiffiffiffiffiffiffiffi
pipj

p
xixj

" #

¼
Xk�1

1

1þ pi
pk

� �
x2i þ

Xk�1

i6¼j¼1

X ffiffiffiffiffiffiffiffipipj
p
pk

xixj

¼ x
�
0A x

�

where

Ak�1xk�1 ¼
1þ p1

pk

ffiffiffiffiffiffiffi
p1p2

p
pk

ffiffiffiffiffiffiffi
p1p3

p
pk

. . .
ffiffiffiffiffiffiffiffiffiffi
p1pk�1

p
pk

1þ p2
pk

ffiffiffiffiffiffiffi
p2p3

p
pk

. . .
ffiffiffiffiffiffiffiffiffiffi
p2pk�1

p
pk

. . . . . .
1þ pk�1

pk

0BBB@
1CCCA

¼
1þ a21 a1a2 a1a3. . . a1ak�1

a1a2 1þ a22 a2a3. . . a2ak�1

. . . . . .
a1ak�1 a2ak�1 a3ak�1 1þ a2k�1

0BB@
1CCA where ai ¼

ffiffiffiffi
pi
pk

q
8i ¼ 1 1ð Þk � 1

Now

Aj j ¼ a1a2::ak�1ð Þ
a1 þ 1

a1
a2 a3. . . ak�1

a1 a2 þ 1
a2

a3. . . ak�1

. . .: . . . . . . . . .
a1 a2 a3 ak�1 þ 1

ak�1

��������
��������;

Rows
ai

� �

Appendix 265



¼ a1a2 � � � ak�1ð Þ2

1þ 1
a21

1 1. . . 1

1 1þ 1
a22

1. . . 1

1 1 1þ 1
a23

1
. . . . . . . . . . . .
1 1 1 1þ 1

a2k�1

������������

������������

¼
a21 þ 1 a21 . . . a21
a22 a22 þ 1 . . . a22
. . . . . . . . .
a2

k�1
a2

k�1
. . . a2

k�1
þ 1

��������
�������� (ith row X a2i )

¼
1þ Pk�1

1 a2i 1þ Pk�1
1 a2i . . . 1þ Pk�1

1 a2i
a22 1þ a22 . . . a22
. . . . . . . . .
a2

k�1
a2

k�1
. . . 1þ a2

k�1

��������
�������� (1st row R1 ¼

P
Ri =

sum of all rows)

¼ 1þ
Xk�1

1
a2i

� �
¼

1 1 . . . 1
a22 a22 þ 1 . . . a22
. . . . . . . . .
a2

k�1
a2

k�1
. . . 1þ a2

k�1

��������
��������;

¼ 1þ Pk�1
1 a2i

� �
¼

1 1 . . . 1
0 1 . . . 0
. . .: . . .: . . . . . .
0 0 . . . 1

��������
��������;

¼ 1þ
Xk�1

a2i ¼ 1þ
Xk�1

1

pi
pk

¼
Pk
1
pi

pk
¼ 1

pk

) (A.5) ) f x1; x1; . . .; xk�1ð Þ ¼ 1

2pð Þk�1
2
ffiffiffiffi
pk

p e
�1

2 x�
0A x� 1Qk�1

1

ffiffiffiffiffi
npi

p Jj j

¼
ffiffiffiffiffiffi
Aj jp

2pð Þk�1
2

e
�1

2 x�
0A x�

¼ 1

2pð Þk�1
2
Pj j1=2 e

�1
2 x�

0P�1
x� where A�1 ¼P :
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Since
P�1 is positive definite therefore there exists a non-singular V such thatP�1 ¼ VV 0.

) x
�
0P�1 x

�
¼ x

�
0vv0 x

�
¼ y

�
0 y
�
where y

�
¼ v0 x

�
.

Using transformation x1; x2; . . .; xk�1ð Þ ! y1; y2; . . .; yk�1ð Þ

Jj j ¼ 1
Vj j ¼

X��� ���1=2
) f y1; y2; . . .; yk�1ð Þ ¼ 1

2pð Þk�1
2
e
�1

2y�
0y
� ) y1; y2; . . .; yk�1 are i.i.d. N(0, 1)

) y
�
0 y
�
� v2k�1

) x
�
0X�1

x
�
� v2k�1 )

Xk
i¼1

ni � npið Þ2
npi

� v2k�1

Note This approximate distribution is valid if di
ffiffiffiffiffi
qi
npi

q��� ���\1

i.e., d2i qi\npi ) if d2i\
npi
qi

, i.e. if Maxd2i\
npi
qi

Again di ¼ ni�npiffiffiffiffiffiffiffi
npiqi

p , using normal approximation the effective range of di is (−3, 3)

)d2i � 9

i.e.,

Maxd2i ¼ 9

So the approximate distribution will be valid if 9\ npi
qi
, i.e. if npi [ 9 1� pið Þ ,

i.e. if npi [ 9. So the approximation is valid if the expected frequency for each
event is at least 10.

Again, if we consider the effective range of di as (−2, 2), then the approximation
is valid if the expected frequency for each event is at least 5.

It has been found by enquiry that if the expected frequencies are greater than 5
then the approximation is good enough.

If the expected frequencies of some classes be not at least 5 then some of the
adjacent classes are pooled such that the expected frequencies of all classes after
coalition are at least 5. If k
 be the no. of classes after coalition, thenPk


i¼1
n
i �np
ið Þ2

np
i
� v2k
�1;

where n
i ¼ observed frequency after coalition,
np
i ¼expected frequency after coalition.
Uses of Pearsonian-v2:
(1) Test for goodness of fit:
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Classes Probability Frequency

A1 p1 n1
A2 p2 n2
.
.
.

.

.

.

.

.

.

Ai pi ni
: : :

Ak pk nk
Total 1 n

We are to test H0 : pi ¼ p0i � 8i
Under H0; expected frequencies are np0i : We assume np0i � 58i.
) Under H0;

Pk
i¼1

ni�np0ið Þ2
np0i

� v2k�1

i.e.
Pk

i¼1
n2i
np0i

� n� v2k�1:

i.e. v2 ¼Pk
i¼1

O2

E � n� v2k�1

where O = observed frequency (ni)
E = Expected frequency (np0i )

)x0 : v
2 [ v2a;k�1

Note Suppose the cell probabilities p1; p2; . . .; pk depend on unknown parame-
ters h�

s�1 ¼ h1; h2; . . .; hsð Þ0 and suppose ĥ� be an efficient estimator of h� . ThenPk
i¼1

ni�npið ĥ�Þ
n o2

npi ĥ�

� � � v2k�1�sð Þ:

(2) Test for homogeneityof similarly classified populations

Classes Population

P1 P2 ………. Pj ………. Pl

A1 p11 p12 ………. p1j ………. p1l
A2 p21 p22 ………. p2j ………. p2l
.
.

.

.
.
.

……….
……….

.

.
……….
……….

.

.

Ai pi1 pi2 pij pij
.
.
.

.

.
.
.

.

.

.

.

.

Ak pk1 pk2 pkj pkl
Total 1 1 ………. 1 ………. 1
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where pij ¼ the probability that an individual selected from jth population will
belong to ith class.

We are to test H0 : pi1 ¼ pi2 ¼ � � � ¼ pil ¼ pisayð Þ 8i ¼ 1 1ð Þk. To do this we
draw a sample of size n and classify as shown below:

Classes Population Total

P1 P2 …. Pj …. Pl

A1 n11 n12 n1j n1l n10
A2 n21 n22 n2j n2l n20
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

Ai ni1 ni2 nij nil ni0
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.

Ak nkl nk2 …. nkj …. nkl nk0
Total n01 n01 …. n0j …. n0l n

For the jth population the Pearsonian chi-square statistic is

Xk
i¼1

nij � n0jpij
� �2

n0jpij
� v2k�1ð Þ � 8j ¼ 1 1ð Þ1

)
Xl
j¼1

Xk
i¼1

nij � n0jpij
� �2

n0jpij
� v21 k�1ð Þ

) Under H0; v2 ¼Pl
j¼1

Pk
i¼1

nij�n0jpif g2

n0jpi
� v21 k�1ð Þ

pi’s are unknown and they are estimated by p̂i ¼ ni0
n 8i ¼ 1 1ð Þk:

) under H0; v2 ¼P1
j¼1

Pk
i¼1

nij�n0jni0
nf g

n0j
ni0
n

� v21 k�1ð Þ� k�1ð Þ ¼ v2k�1ð Þ l�1ð Þ
as the d.f. will be reduced by (k − 1) since we are to estimate any (k − 1) of
p1; p2; . . .; pk as

Pk
1 pi ¼ 1:

)x0 : v
2 [ v2a; k�1ð Þ 1�1ð Þ
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(3) Test for independenceof two attributes

A B Total

B1 B2 ………. Bj ………. Bl

A1 p11 p12 ………. p1j ………. p1l p10
A2 p21 p22 ………. p2j ………. p2l p20
.
.

.

.
.
.

……….
……….

.

.
……….
……….

.

.
.
.

Ai pi1 pi2 pij pi1 pi0
.
.

.

.
.
.

.

.
.
.

.

.

Ak pk1 pk2 pkj pkl pk0
Total p01 p02 ………. p0j ………. p0l 1

We are to test
H0 : A and B are independent, i.e. to test

H0 : pij ¼ pi0xp0j 8 i; jð Þ

To do this we draw a sample of size n and suppose the sample observations be
classified as shown below:

A B Total

B1 B2 ………. Bj ………. Bl

A1 n11 n12 ………. n1j ………. n1l n10
A2 n21 n22 ………. n2j ………. n2l n20
.
.

.

.
.
.

……….
……….

.

.
……….
……….

.

.
.
.

Ai ni1 ni2 nij nil ni0
.
.

.

.
.
.

.

.
.
.

.

.

Ak nk1 nk2 nkj nkl nk0
Total n01 n02 ………. n0j ………. n0l n

P n11; . . .; nklð Þ ¼ n!Q
i

Q
j nij!
� �Y

i

Y
j

pij
� �nij

E nij
� � ¼ npij;
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i ¼ 1 1ð Þk; j ¼ 1 1ð Þ1:

)
X
i

X
j

nij � npij
� �2

npij
�a v2k1�1

Under H0; v2 ¼P
i

P
j

nij�npi0p0jð Þ2
npi0p0j

�a v2k1�1

Now, unknown pi0 and p0j are estimated by
p̂i0 ¼ ni0

n and p̂0j ¼ n0j
n

) under H0; v2 ¼P
i

P
j

nij�ni0n0j
nð Þ2

ni0n0j
n

�a v2k1�1ð Þ� kþ 1�2ð Þ

�a v2k�1ð Þ 1�1ð Þ

i.e., v2 ¼ n
P
i

P
j

n2
ij

ni0n0j
� n �a v2k�1ð Þ 1�1ð Þ

)x0 : v
2 [ v2a; k�1ð Þ 1�1ð Þ:

Particular cases: (i) l = 2

A B Total

B1 B2

A1 a1 b1 T1
A2 a2 b2 T2
. . . .

Ai ai bi Ti
. . . .

Ak ak bk Tk
Total Ta Tb n

Here,

v2 ¼
Xk
1

ai � TiTa
n

� �2
TiTa
n

þ
Xk
1

bi � TiTb
n

� �2
TiTb
n

Now, bi � TiTb
n ¼ Ti � ai � Ti n�Tað Þ

n
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¼ Ti � ai � Ti þ TiTa

n
¼ � ai � TiTa

n

� �
) v2 ¼ n

Xk
1

ai � TiTa

n

� �2 1
Ta

þ 1
Tb

� �
1
Ti

¼ n
Xk
1

ai � TiTa

n

� �2 n
TiTaTb

¼ n2

TaTb

Xk
1

a2i
T i

þ TiT2
a

n2
� 2

aiTa

n

� �

¼ n2

TaTb

Xk
1

a2i
T i

þ T2
a

n2
n� 2

Ta

n
Ta

" #

¼ n2

TaTb

Xk
1

a2i
T i

� T2
a

n2

" #

This formula or its equivalent v2 ¼ n2
TaTb

Pk
1
b2i
Ti
� T2

b
n2

h i
will be found more con-

venient for computational purpose.

x0 : v
2 [ v2a;k�1

(ii) k = 2, l = 2:

A B Total

B1 B2

A1 a b a + b

A2 c d c + d

Total a + c b + d n = a + b + c + d

Here,

v2 ¼
a� a þ bð Þ a þ cð Þ

n

� �2

a þ bð Þ a þ cð Þ
n

þ
b � a þ bð Þ b þ dð Þ

n

� �2

a þ bð Þ b þ dð Þ
n

þ
c � c þ dð Þ a þ cð Þ

n

� �2

c þ dð Þ a þ cð Þ
n

þ
d � c þ dð Þ b þ dð Þ

n

n o2

c þ dð Þ b þ dð Þ
n

Now, a� a þ bð Þ a þ cð Þ
n ¼ 1

n a a þ b þ c þ dð Þ � aþ bð Þ a þ cð Þ½ � ¼ ad� bc
n

Similarly; b� a þ bð Þ b þ dð Þ
n ¼ � ad� bc

n ; c � c þ dð Þ a þ cð Þ
n ¼ � ad� bc

n

and d � b þ dð Þ c þ dð Þ
n ¼ ad� bc

n
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)v2 ¼ ad � bcð Þ2
n

1
aþ bð Þ aþ cð Þ þ

1
aþ bð Þ bþ dð Þ þ

1
cþ dð Þ aþ cð Þþ

1
cþ dð Þ bþ dð Þ

 �
¼ ad � bcð Þ2

n
n

aþ bð Þ aþ cð Þ bþ dð Þ þ
n

aþ cð Þ cþ dð Þ bþ dð Þ
 �

¼ ad � bcð Þ2n
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ

This turns out to be much easier to apply.

Corrections for continuity

We know that for the validity of the v2-approximation it is necessary that the
expected frequency in each class should be sufficiently large (say > 4). When
expected frequencies are smaller we pool some of the classes in order to satisfy this
condition. However, it should be apparent that this procedure should be ruled out in
case of 2 × 2 table. For 2 × 2 table the following two methods of correction may be
applied.

(I) Yates’ correction: Yates has suggested a correction to be applied to the
observed frequencies in a 2 × 2 table in case any expected frequency is found to be

too small. This is done by increasing or decreasing the frequencies by half 1=2
� �

in

such a way that the marginal totals remain unaltered.
Case 1 Say ad < bc

A B Total

B1 B2

A1 aþ 1
2 b� 1

2
a + b

A2 c� 1
2 dþ 1

2
c + d

Total a + c b + d a + b + c + d

Here, aþ 1
2

� �
dþ 1

2

� �� b� 1
2

� �
c� 1

2

� � ¼ ad � bcð Þþ n
2

¼ � ad � bcj j þ n
2 ¼ � ad � bcj j � n

2

� �
(since ad − bc < 0)

Case 2 If ad > bc

A B Total

B1 B2

A1 a� 1
2 bþ 1

2
a + b

A2 cþ 1
2 d � 1

2
c + d

Total a + c b + d a + b + c + d
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Here, a� 1
2

� �
d � 1

2

� �� bþ 1
2

� �
cþ 1

2

� �
¼ ad � bcð Þ � n

2

¼ ad � bcj j � n
2

) For both the cases v2 ¼ n ad�bcj j�n
2½ �2

aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ :

(ii) Dandekar’s correction: A slightly different method suggested by V.N.
Dandekar involves the calculation of v20;v

2
1 and v2�1 for the observed 2 × 2

configuration

where v20 ¼ n ad�bcð Þ2
aþ bð Þ cþ dð Þ aþ cð Þ bþ dð Þ

v21 = the chi-square obtained by decreasing the smallest frequency by ‘1’ keeping
marginal totals fixed and

v2�1 = the chi-square obtained by increasing the smallest frequency by ‘1’
keeping the marginal totals fixed.

Then the test statistic is given by

v2 ¼ v20 �
v20 � v2�1

v21 � v2�1
v21 � v20
� �

:

A.14 Some Convergence Results

Definition 1 A sequence of random variables Xnf g; n ¼ 1; 2; . . .; is said to be
convergent in probability to a random variable X if for any 2 [ 0; however small,

P Xn � Xj j\ 2f g ! 1 as n ! 1

and we write it as Xn�!P X: If X is degenerate, i.e. a constant, say c, then this
convergence is known as WLLN.

Definition 2 Let Xnf g; n ¼ 1; 2;. . . be a sequence of random variables having
distribution functions Fn xð Þf g and X be a random variable having distribution
functionF xð Þ: If Fn xð Þ ! F xð Þ as n ! 1 at all continuity points of F xð Þ , then we

say Xn converges in law to X and we write it as Xn�!L X: i.e., the asymptotic

distribution of Xn is nothing but the distribution of X.
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Result 1(a): If Xn �!P X and g xð Þ be a continuous function for all x, then

g Xnð Þ�!P g Xð Þ:
Result 1(b): If Xn �!P C and g xð Þ is continuous in the neighbourhood of C, then

g Xnð Þ�!P g Cð Þ:
Result 2(a):

Xn �!P X ) Xn�!L X

Xn �!P C , Xn�!L C

Result 2(b): Xn�!L X ) g Xnð Þ�!L g xð Þ if g be a continuous function.

Result 3: Let Xnf g and Ynf g be sequences of random variables such that Xn�!L X

and Yn�!P C; where X is a random variable and C is a constant, then

(a) Xn þ Yn�!L XþC; (b) XnYn�!L XC;

(c) Xn
Yn
�!L X

C ; if C 6¼ 0 and

(d) XnYn�!P 0; if C = 0.

Theorem 1 Let Tnf gbe a sequence of statistics such thatffiffiffi
n

p
Tn � hð Þ�!L X �N 0; r2 hð Þð Þ:If g nð Þbe a function admitting g0 nð Þin the neigh-

bourhood of h, then
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ�!L Y �N 0; r2 hð Þg02 hð Þð Þ:

Proof By mean value theorem

g Tnð Þ¼ g hð Þþ Tn � hð Þ g0 hð Þþ 2nf g… (A) where 2n! 0 as Tn ! h. Since
2n! 0 as Tn ! h; we can determine a d[ 0; for any small positive quantity g;
such that Tn � hj j\g ) 2nj j\d:

)P Tn � hj j\gf g�P 2nj j\df g ðA:7Þ

i.e., P 2nj j\df g�P �g\Tn � h\gf g

¼ P � ffiffiffi
n

p
g\

ffiffiffi
n

p
Tn � hð Þ\ ffiffiffi

n
p

g
� �

!
Z1
�1

1ffiffiffiffiffiffi
2p

p
r hð Þ e

� x2

2r2 hð Þ
dx ¼ 1

Appendix 275



)P 2nj j\df g ! 1 as n ! 1

) 2n �!P 0 ðA:8Þ

Again;
ffiffiffi
n

p
Tn � hð Þ�!L X�N 0; r2 hð Þ� � ðA:9Þ

Combining (A.8) and (A.9) and using result 3(d), we can write

ffiffiffi
n

p
Tn � hð Þ 2n �!P 0 ðA:10Þ

Again, (A) givesffiffiffi
n

p
g Tnð Þ � g hð Þð Þ � ffiffiffi

n
p

Tn � hð Þg0 hð Þ ¼ ffiffiffi
n

p
Tn � hð Þ 2n

i.e. Xn � Yn ¼
ffiffiffi
n

p
Tn � hð Þ 2n �!P 0

where Xn ¼
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ and Yn ¼

ffiffiffi
n

p
Tn � hð Þg0 hð Þ i:e: Xn � Yn�!P 0

ðA:11Þ

Also; Yn ¼
ffiffiffi
n

p
Tn � hð Þg0 hð Þ�!L Y �N 0; r2 hð Þg02 hð Þ� � ðA:12Þ

Combining (A.11) and (A.12) and using result 3(a),

Yn þ Xn � Ynð Þ�!L Y þ 0 , i.e. Xn�!L Y

i.e.,
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ�!L Y �N 0; g02 hð Þr2 hð Þð Þ

i.e.,
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ �a N 0; g02 hð Þr2 hð Þð Þ

Note 1 If Tn �a N 0; r
2 hð Þ
n

� �
; then g Tnð Þ �a N g hð Þ; g02 hð Þ r2 hð Þ

n

� �
provided g nð Þ

be a continuous function in the neighbourhood of h admitting the1st derivative.

Note 2
ffiffi
n

p
g Tnð Þ�g hð Þð Þ
g0 Tnð Þ �a N 0; r2 hð Þð Þ; provided g0 nð Þ is continuous.

Proof
ffiffi
n

p
g Tnð Þ�g hð Þð Þ
g0 hð Þ �a N 0; r2 hð Þð Þ

Since Tn�!P h and g0 nð Þ is continuous

) g0 Tnð Þ�!P g0 hð Þ ) g0 hð Þ
g0 Tnð Þ�!

P
1

)
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ
g0 Tnð Þ ¼

ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ
g0 hð Þ � g0 hð Þ

g0 Tnð Þ
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As first part of the R.H.S converges in law to X�N 0; r2 hð Þð Þ and the second
part converges in probability to 1,

) their product converges in law to N 0; r2 hð Þð Þ:
Note 3 Further if r 1ð Þ is continuous, then

ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ
g0 Tnð Þr Tnð Þ �a N 0; 1ð Þ:

Proof
ffiffi
n

p
g Tnð Þ�g hð Þð Þ

g0 Tnð Þr Tnð Þ ¼
ffiffi
n

p
g Tnð Þ�g hð Þð Þ
g0 Tnð Þr hð Þ

r hð Þ
r Tnð Þ

By note-2,
ffiffi
n

p
g Tnð Þ�g hð Þð Þ
g0 Tnð Þr hð Þ �a N 0; 1ð Þ

Also, Tn�!P h and r nð Þ is continuous

r Tnð Þ�!P r hð Þ ) r hð Þ
r Tnð Þ�!

P
1:

)
ffiffiffi
n

p
g Tnð Þ � g hð Þð Þ
g0 Tnð Þr Tnð Þ �!L N 0; 1ð Þ

Generalization of theorem 1
Theorem 2

Let T� n
¼

T1n
T2n
�
�
Tkn

0BBBB@
1CCCCA for n¼ 1; 2. . .:

8>>>><>>>>:

9>>>>=>>>>; be a sequence of statistics such that

ffiffiffi
n

p
T� n

� h�

� �
¼

ffiffiffi
n

p
T1n � h1ð Þffiffiffi

n
p

T2n � h2ð Þ
�
�ffiffiffi

n
p

Tkn � hkð Þ

0BBBB@
1CCCCA �a Nk 0

�
;
Pkxk h�

� �� �
;where

P
h�

� �
¼

rij h�

� �� �
:

Let g . . .ð Þ be a function of k variables such that it is totally differentiable. Then

ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�!L X �N1 0;V h�

� �� �
where V h�

� �
¼Pk

i

Pk
j
@g
@hi

@g
@hj

rij h�

� �
j
; @g@hi ¼

@g
@Tin

i
T� n

¼h�
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Proof Since g is totally differentiable, so by mean value theorem,

g T� n

� �
¼ g h�

� �
þ
Xk
i¼1

Tin � hið Þ @g
@hi

þ 2n T� n
� h�

���� ���� ðA:13Þ

where 2n! 0 as Tin ! hi 8 i ¼ 1 1ð ÞK:
) For any given small g[ 0 we can find a d[ 0; however small, such that

Tin � hij j\g ) 2nj j\d

) P 2nj j\df g�P Tin � hij j\gf g ! 1

as
ffiffiffi
n

p
Tin � hið Þ �a N

)Tin�!P hi and 2n �!P 0

Again
ffiffiffi
n

p
Tin � hið Þ �a N

) ffiffiffi
n

p
T� n

� h�

���� ���� ¼ n
Pk

1 Tin � hið Þ2
n o1=2

has an asymptotic distribution.

Suppose
ffiffiffi
n

p
T� n

� h�

���� �����!L Y

)
ffiffiffi
n

p
T� n

� h�

���� ����� 2n �!P 0

) (A.13) implies
ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
� ffiffiffi

n
p Pk

1 Tin � hið Þ @g
@hi

¼ffiffiffi
n

p 2n T� n
� h�

���� �����!P 0

i.e., Yn � Xn�!P 0

where Yn ¼
ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
and Xn ¼

ffiffiffi
n

p Pk
1 Tin � hið Þ @g

@hi

We note that Xn; being linear function of normal variables
ffiffiffi
n

p
Tin � hið Þ; i ¼

1 1ð ÞK; will be asymptotically normal with mean 0 and variance =Pk
i

Pk
j
@g
@hi

@g
@hj

rij hð Þ ¼ V h�

� �
i.e.,

Xn�!L X �N 0;V h�

� �� �
) Yn � Xnð ÞþXn�!L X �N 0;V h�

� �� �
i.e., Yn�!L X �N 0;V h�

� �� �
i.e.,

ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�a N 0;V h�

� �� �
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A.15 Large Sample Standard Errors
of Sample Moments

We have F xð Þ a continuous c.d.f. We draw a random sample x1; x2; . . .; xnð Þ from it.
We have

l0r ¼ E Xrð Þ; l01 ¼ l
lr ¼ E X � l01

� �r¼ E X � lð Þr
�

and the sample moments as

m0
r ¼ 1

n

Pn
1
xri ;m

0
1 ¼ �x

m0
r ¼ 1

n

P
xi � lð Þr

mr ¼ 1
n

P
xi � �xð Þr

8>>><>>>:
(i) To find E m0

r

� �
; V m0

r

� �
; Cov m0

r;m
0
s

� �
E m0

r

� � ¼ 1
n

Xn
1

E xri
� � ¼ 1

n

Xn
1

l0r ¼ l0r

Cov m0
r;m

0
s

� � ¼ E m0
rm

0
s

� �� l0rl
0
s

¼ 1
n2

E
X

xri
� � X

xsi
� �n o

� l0rl
0
s

¼ 1
n2

X
E xrþ s

i

� �þ XX
i 6¼j

E xri
� �

xsj
� �n o" #

� l0rl
0
s

¼ l0rþ s � l0rl
0
s

n

)V m0
r

� � ¼ 1
n

l02r � l02r
� �

)
ffiffiffi
n

p
m0

r � l0r
� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l02r � l02r

p �!L N 0; 1ð Þ

This fact can be used for testing of hypothesis related to l0r:
For r = 1, ffiffiffi

n
p

m0
1 � l01

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l02 � l021

p ¼
ffiffiffi
n

p
�x� lð Þ
r

�!L N 0; 1ð Þ:
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Since the sample s.d s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 xi � �xð Þ2

q
is consistent estimator of r;

s�!P r, i.e. r
s �!

P
1

)
ffiffiffi
n

p
�x� lð Þ
s

¼
ffiffiffi
n

p
�x� lð Þ
r

� r
s
�!L N 0; 1ð Þ

(ii) To find E m0
r

� �
; V m0

r

� �
; Cov m0

r ;m
0
s

� �
:

m0
r ¼

1
n

Xn
i¼1

xi � lð Þr; )E m0
r

� � ¼ lr

E m0
rm

0
s

� � ¼ 1
n2

E
Xn
i¼1

xi � lð Þr
 ! Xn

i¼1

xi � lð Þs
 !

¼ 1
n2

Xn
1

E xi � lð Þrþ s þ
XXn

i 6¼j¼1

E xi � lð ÞrE xj � l
� �s" #

¼ 1
n2

nlrþ s þ n n� 1ð Þlrls
� �

¼ 1
n

lrþ s þ n� 1ð Þlrls
� �

)Cov m0
r ;m

0
s

� � ¼ 1
n

lrþ s þ n� 1ð Þlrls
� �� lrls

¼ 1
n

lrþ s � lrls
� �

)V m0
r

� � ¼ 1
n

l2r � l2r
� �

We note that, m0
r ¼ 1

n

Pn
i¼1 xi � lð Þr ¼ 1

n

Pn
i Zi

where Zi ¼ xi � lð Þr;E Zið Þ ¼ lr and V Zið Þ ¼ l2r � l2r

For x1; x2; . . .xn i.i.d ) Z1; Z2; . . .Zn are also i.i.d

)
ffiffiffi
n

p
�Z � lrð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2r � l2r
p �!L N 0; 1ð Þ:

That is,
ffiffi
n

p
m0

r�lrð Þffiffiffiffiffiffiffiffiffiffiffi
l2r�l2r

p �a N 0; 1ð Þ
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(iii) To find E mrð Þ; V mrð Þ; Cov mr;msð Þ :

mr ¼ 1
n

Xn
i¼1

xi � �xð Þr ¼ 1
n

X
xi � lð Þ � �x� lð Þ½ �r

¼ 1
n

X
xi � lð Þ � 1

n

X
�x� lð Þ

 �r
¼ 1

n

X
Xi � lð Þ � m0

1

� �r
¼ 1

n
xi � lð Þr� r

1

� �
xi � lð Þr�1�m0

1 þ . . .þ
Xn
1

�1ð Þr�1 r

r � 1

� �
xi � lð Þm0r�1

1 þ �1ð Þrm0r
1

" #

¼ m0
r �

r

1

� �
m0

r�1m
0
1 þ � � � þ �1ð Þrm0r

1

¼ g m0
1;m

0
2. . .m

0
r

� � ¼ g m�
0

� �

We have observed that
ffiffiffi
n

p
m0

j � lj
� �

�a N 0; l2j � l2j

� �
8 j ¼ 1 1ð Þr

)
ffiffiffi
n

p
m�

0 � l
�

� �
¼ ffiffiffi

n
p

m0
1 � l1

m0
2 � l2
�
�

m0
r � lr

0BBBB@
1CCCCA �a Nr 0

�
;
X

rxr
� �

where
P rxr ¼ rij l

�

� �� �
and rij l

�

� �
¼ Cov

ffiffiffi
n

p
m0

i � li
� �

;
ffiffiffi
n

p
m0

j � lj
� �� �

¼ nCov m0
i ;m

0
j

� �
¼ liþ j � lilj
� �

So by Theorem 2,

ffiffiffi
n

p
g m�

0
� �

� g l
�

� �� �
�a N 0;V l

�

� �� �
where V l

�

� �
¼Pr

i¼1

Pr
j¼1

dg
dli

� �
dg
dlj

� �
rij l

�

� �
; dg

dli
¼ dg

dm0
i

� �
m�

0¼l
�
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g l1; l2; . . .lrð Þ ¼ lr �
r

1

� �
lr�1l1 þ � � � þ �1ð Þrlr1 ¼ lr

dg
dl1

¼ dg
dm0

i

� �
m�

0¼l
�

¼ �rlr�1

dg
dlr

¼ dg
dm0

r

� �
m�

0¼l
�

¼ 1 and
dg
dli

¼ 0 8 i ¼ 2 1ð Þr � 1

)V l
�

� �
¼ dg

dl1

� �2

r11 l
�

� �
þ dg

dlr

� �2

rrr l
�

� �
þ 2

dg
dl1

� �
dg
dlr

� �
r1r l

�

� �
¼ r2l2r�1 l2 � l21

� �þ l2r � l2r
� �þ 2 �rlr�1ð Þ lrþ 1 � l1lr

� �
¼ r2l2r�1l2 þ l2r � l2r

� �� 2rlr�1lrþ 1

)
ffiffiffi
n

p
mr � lrð Þ �a N 0;V l

�

� �� �
i.e.,

mr �a N lr;
V l

�

� �
n

0BB@
1CCA

In particular,

for r ¼ 2; m2 ¼ s2 �a N l2 ¼ r2; l4�l22
n

� �
, i.e. s2 �a N r2; l4�r4

n

� �
for r ¼ 3; m3 �a N l3;

9l32 þ l6�l23�6l2l4
n

� �
for r ¼ 4; m4 �a N l4;

16l23l2 þl8�l24�8l3l5
n

� �
Again, if sampling is from normal distribution N l; r2ð Þ then l3 ¼ l5 ¼ � � � ¼ 0

and l2r ¼ 2r � 1ð Þ 2r � 3ð Þ. . .3:1 r2r

i.e.,
l4 ¼ 3r4; l6 ¼ 15r6; l8 ¼ 105r8.

) s2 �a N r2;
2r4

n

� �
m3 �a N 0;

6r6

n

� �
m4 �a N 3r4;

96r8

n

� �
:

282 Appendix



Thus,
ffiffi
n

p
s2�r2ð Þ
r2 �a N 0; 2ð Þ and as s2�!P r2;

ffiffi
n

p
s2�r2ð Þ
s2 �a N 0; 2ð Þ and this can be

used for testing hypothesis regarding r2:
Note For testing H0 : r1 ¼ r2

s1 �a N r1;
r21
2n1

� �
and s2 �a N r2;

r22
2n2

� �
) s1 � s2 �a N r1 � r2;

r21
2n1

þ r22
2n2

� �
Under H0;

s1�s2
r
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2n1
þ 1

2n2

p �a N 0; 1ð Þ where unknown r is estimated as

r̂ ¼ n1s1 þ n2s2
n1 þ n2

:

(iv) Cov mr;�xð Þ ¼ Cov mr;m0
1 þ l

� �
�x ¼ 1

n

Pn
i¼1

xi � lð Þþ l ¼ m0
1 þ l

 �
¼ Cov m0

r ;m
0
1

� �� rlr�1V m0
1

� �
¼ 1

n
lrþ 1 � rlr�1

l2
n

¼ 1
n

lrþ 1 � rlr�1l2
� �

Cov m2;�xð Þ ’ 1
n l3 ¼ 0 if the sampling is from N l; r2ð Þ:

Note The exact expression for Cov m2;�xð Þ ¼ n�1
n2 l3:

(v) Large sample distribution of C.V.

v ¼
ffiffiffiffiffiffi
m2

p
m0

1
¼ g m2;m

0
1

� �
; say

¼ g T1n; T2nð Þ ¼ g T� n

� �
where T� n

¼ T1n
T2n

� �
¼ m2

m0
1

� �
Writing

h� ¼ h1
h2

� �
¼ l2

l01

� �
we observed that

ffiffiffi
n

p
T� n

� h�

� �
¼ ffiffiffi

n
p m2 � l2

m0
1 � l01

� �
�a N2 0;

Pð Þ
where

P ¼ rij h�

� �� �
¼ l4 � l22 l3

l3 l2

� �
If g h�

� �
¼ g l2; l

0
1

� � ¼ ffiffiffiffi
l2

p
l01

¼ V ; Population C.V., then by Theorem 2,ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�a N 0;V h�

� �� �
, i.e.

ffiffiffi
n

p
v� Vð Þ �a N 0;V h�

� �� �
where V h�

� �
¼ dg

dh1

� �2
r11 h�

� �
þ dg

dh2

� �2
r22 h�

� �
þ 2 dg

dh1

� �
dg
dh2

� �
r12 h�

� �
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Now, dg
dh1

¼ 1
2
ffiffiffiffi
l2

p
l01
; r11 h�

� �
¼ l4 � l22

dg
dh2

¼ �
ffiffiffiffiffi
l2

p
l021

; r22 h�

� �
¼ l2; r12 h�

� �
¼ l3

V h�

� �
¼ 1

4l2l
02
1

l4 � l22
� �þ l2

l041
l2 �

1ffiffiffiffiffi
l2

p
l01

ffiffiffiffiffi
l2

p
l021

l3

¼ l4 � l22
4l2l

02
1

þ l22
l041

� l3
l031

¼ l4 � l22
4l22

þV2 � l3
l2l

0
1

� �
V2

If the sampling is from N l; r2ð Þ; l2 ¼ r2; l3 ¼ 0; l4 ¼ 3r4; then

V h�

� �
¼ 3r4 � r4

4r4
þV2

� �
V2 ¼ 1

2
þV2

� �
V2 ¼ V2 1þ 2V2ð Þ

2

Thus
ffiffiffi
n

p
v� Vð Þ �a N 0;

V2 1þ 2V2ð Þ
2

� �
:

(vi) Large sample distribution of skewness

Sample skewness = g1 ¼ m3

m3=2
2

¼ g m3;m2ð Þ ¼ g T� n

� �
¼ g

T1n
T2n

� �
where T1n ¼ m3 and T2n ¼ m2:

We define, h� ¼ h1
h2

� �
¼ l3

l2

� �
) g h�

� �
¼ l3

l3=22

¼ c1

We know,
ffiffiffi
n

p
T� n

� h�

� �
¼ ffiffiffi

n
p m3 � l3

m2 � l2

� �
�a N2 0;

Pð Þ

where
P2�2 ¼ rij h�

� �� �
¼ l6 � l23 þ 9l32 � 6l4l2 l5 � 4l2l3

l5 � 4l2l3 l4 � l22

� �
) By Theorem 2,

ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�a N 0;V h�

� �� �
i.e.,

ffiffiffi
n

p
g1 � c1ð Þ �a N 0;V h�

� �� �
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where V h�

� �
¼ dg

dh1

� �2
r11 h�

� �
þ dg

dh2

� �2
r22 h�

� �
þ 2 dg

dh1

� �
dg
dh2

� �
r12 h�

� �
Now, dg

dh1
¼ 1

l23=2
; dg

dh2
¼ � 3

2
l3
l5=22

)V h�

� �
¼ 1

l32
l6 � l23 þ 9l32 � 6l4l2
� �þ 9

4
l23
l52

l4 � l22
� �� 3

1

l
3=2
2

l3

l
5=2
2

l5 � 4l2l3ð Þ

¼ l6 � l23 þ 9l32 � 6l4l2
l32

þ 9
4
l23 l4 � l22
� �

l52
� 3l3 l5 � 4l2l3ð Þ

l42

If the sampling is from N l; r2ð Þ then l2 ¼ r2;l3 ¼ l5 ¼ 0;l4 ¼ 3r4,
l6 ¼ 15r6:

)V h�

� �
¼ 15þ 9� 18ð Þr6

r6
¼ 6

)
ffiffiffi
n

p
g1 � c1ð Þ �a N 0; 6ð Þ

(vii) Large sample distribution of Kurtosis

Sample Kurtosis = g2 ¼ m4
m2

2
� 3 ¼ g m4;m2ð Þ ¼ g T� n

� �
¼ g

T1n
T2n

� �
where T1n ¼ m4 and T2n ¼ m2:

Let h� ¼ h1
h2

� �
¼ l4

l2

� �
) g h�

� �
¼ l4

l22
� 3 ¼ c2

We know,
ffiffiffi
n

p
T� n

� h�

� �
¼ ffiffiffi

n
p m4 � l4

m2 � l2

� �
�a N2 0

�
;
P� �

where
P2�2 ¼ rij h�

� �� �
¼ l8 � l24 þ 16l23l2 � 8l3l5 l6 � l4l2 � 4l23

l6 � l4l2 � 4l23 l4 � l22

� �
) By Theorem 2,

ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�a N 0;V h�

� �� �
i.e.,

ffiffiffi
n

p
g2 � c2ð Þ �a N 0;V h�

� �� �
where V h�

� �
¼ dg

dh1

� �2
r11 h�

� �
þ dg

dh2

� �2
r22 h�

� �
þ 2 dg

dh1

� �
dg
dh2

� �
r12 h�

� �
Now dg

dh1
¼ 1

l22
and dg

dh2
¼ � 2l4

l32
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V h�

� �
¼ l8 � l24 þ 16l23l2 � 8l3l5

l42
þ 4l24 l4 � l22

� �
l62

� 4l4 l6 � l4l2 � 4l23
� �

l52

Now, if the sampling is from N l; r2ð Þ

l2 ¼ r2; l3 ¼ l5 ¼ l7 ¼ 0; l4 ¼ 3r4; l6 ¼ 15r6 and l8 ¼ 105r8

)V h�

� �
¼ 96þ 4:9 3� 1ð Þ � 4:3 15� 3ð Þ ¼ 24

)
ffiffiffi
n

p
g2 � c2ð Þ �a N 0; 24ð Þ

(viii) Large sample distribution of bivariate moments

Let F x; yð Þ be c.d.f from which a random sample x1; y1ð Þ; x2; y2ð Þ; . . . xn; ynð Þ is
drawn.

We define, m0
rs ¼ 1

n

P
xri y

s
i ; l

0
rs ¼ E XrYsð Þ

m0
10 ¼

1
n

X
xi ¼ �x; l010 ¼ E Xð Þ ¼ lx

m0
01 ¼

1
n

X
yi ¼ �y; l001 ¼ E Yð Þ ¼ ly

m0
rs ¼

1
n

Xn
1

xi � l010
� �r

yi � l001
� �s ¼ 1

n

Xn
1

xi � lxð Þr yi � ly
� �s

mrs ¼ 1
n

Xn
1

xi � �xð Þr yi � �yð Þs ¼ 1
n

Xn
1

xi � m0
10

� �r
yi � m0

01

� �s
lrs ¼ E X � lxð Þr Y � ly

� �s¼ E X � l010
� �r

Y � l001
� �s

E m0
rs

� � ¼ 1
n

Xn
1

E xri y
s
i

� � ¼ 1
n

X
l0rs ¼ l0rs

E m0
rsm

0
uv

� � ¼ 1
n2

E
X

xri y
s
i

� � X
xui y

v
i

� �n o
¼ 1

n2
E
Xn
1

xrþ u
i ysþ v

i þ
XXn

i 6¼j¼1

xri y
s
i x

u
j y

v
j

( )

¼ 1
n2

nl0rþ u;sþ v þ n n� 1ð Þl0rsl0uv
h i

¼ l0rþ u;sþ v þ n� 1ð Þl0rsl0uv
n
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)Cov m0
rs;m

0
uv

� � ¼ 1
n

l0rþ u;sþ v þ n� 1ð Þl0rsl0uv
� �

� l0rsl
0
uv

¼ 1
n

l0rþ u;sþ v � l0rsl
0
uv

h i
)V m0

rs

� � ¼ 1
n

l02r;2s � l02rs
� �

E m0
rs

� � ¼ 1
n

X
E xi � l010
� �r

yi � l001
� �s ¼ lrs

E m0
rsm

0
uv

� � ¼ 1
n2

E
X

xi � l010
� �r

yi � l001
� �s� � X

xi � l010
� �u

yi � l001
� �v� �

¼ 1
n2

nlrþ u;sþ v þ n n� 1ð Þlrsluv
� �

¼ 1
n

lrþ u;sþ v þ n� 1ð Þlrsluv
� �
)Cov m0

rs;m
0
uv

� � ¼ 1
n

lrþ u;sþ v � lrsluv
� �

)V m0
rs

� � ¼ 1
n

l2r;2s � l2rs
� �

mrs ¼ 1
n

Xn
1

xi � �xð Þr yi � �yð Þs

¼ 1
n

Xn
1

xi � l010
� �� �x� l010

� �� �r
yi � l001
� �� �y� l001

� �� �s
Since �x� l010 ¼ 1

n

Pn
1 xi � l010
� � ¼ m0

10 and �y� l001 ¼ 1
n

Pn
1 yi � l001
� � ¼ m0

01

)mrs ¼ 1
n

Xn
1

xi � l010
� �� m0

10

� �r
yi � l001
� �� m0

01

� �s
¼ 1

n

Xn
1

xi � l010
� �r� r

1

� �
xi � l010
� �r�1

m0
10 þ � � � þ �1ð Þrm0r

10

� �
yi � l001
� �s� s

1

� �
yi � l001
� �s�1

m0
01 þ . . .þ �1ð Þsm0s

01

� �
¼ 1

n

Xn
1

xi � l010
� �r

yi � l001
� �s� r

1

� �
xi � l010
� �r�1

yi � l001
� �s

m0
10 �

s

1

� �
xi � l010
� �r

yi � l001
� �s�1

m0
01

�
þ r

1

� �
s

1

� �
xi � l010
� �r�1

yi � l001
� �s�1

m0
10m

0
01 � � � þ �1ð Þrþ s m0

10

� �r
m0

01

� �s�
¼ m0

rs �
r

1

� �
m0

r�1;sm
0
10 �

s

1

� �
m0

r;s�1m
0
01 þ

r

1

� �
s

1

� �
m0

r�1;s�1m
0
10m

0
01 þ � � � þ �1ð Þrþ s m0

10

� �r
m0

01

� �s
¼ g m0

ij; i ¼ 0 1ð Þr; j ¼ 0 1ð Þs; i; jð Þ 6¼ 0; 0ð Þ
� �

)mrs ¼ g m�
0

� �
;
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, say where m�
0 ¼

m0
10

m0
01
�
�

m0
rs

0BBBB@
1CCCCA

rþ 1ð Þ sþ 1ð Þ�1f gX1

Using the expansion in Taylor’s series

mrs ¼ g m0
ij; i ¼ 0 1ð Þr; j ¼ 0 1ð Þs; i; jð Þ 6¼ 0; 0ð Þ

� �
¼ g lij; i ¼ 0 1ð Þr; j ¼ 0 1ð Þs; i; jð Þ 6¼ 0; 0ð Þ� �þ Xr

i¼0

Xs
j¼0

i;jð Þ6¼ 0;0ð Þ

m0
ij � lij

� � dg
dm0

ij

 !
m�

0¼l
�

þ � � �

where l
�
¼ l10;l01; � � � ; lrsð Þ1

¼ lrs þ
P
i

P
j

ði;jÞ6¼ð0;0Þ

ðm0
ij � lijÞ @g

@m0
ij

� �
m�

0¼l
�

as l01 ¼ l10 ¼ 0ð Þ

Now @g
@m0

10

� �
m�

0¼l
�

¼ �rlr�1;s

@g
@m0

01

� �
m�

0¼l
�

¼ �slr;s�1

@g
@m0

rs

� �
m�

0¼l
�

¼ 1 and
@g
@m0

ij

 !
m�

0¼l
�

¼ 08i ¼ 0 1ð Þr; j ¼ 0 1ð Þs

i; jð Þ ¼ 0; 0ð Þ; r; sð Þ; 0; 1ð Þ; 1; 0ð Þ:
)mrs ¼ lrs þ m0

10 � l10
� � �rlr�1;s

� �þ m0
01 � l01

� � �slr;s�1

� �þ m0
rs � lrs

� �
1

)mrs ¼ m0
rs � rlr�1;sm

0
10 � slr;s�1m

0
01

)E mrsð Þ ¼ E m0
rs

� �� rlr�1;sE m0
10

� �� slr;s�1E m0
01

� �
¼ lrs

288 Appendix



Cov mrs;muvð Þ ¼ Cov m0
rs � rlr�1;sm

0
10 � slr;s�1m

0
01

� �
; m0

uv � ulu�1;vm
0
10 � vlu;v�1m

0
01

� �� �
¼ Cov m0

rs;m
0
uv

� �� ulu�1;vCov m0
rs;m

0
10

� �� vlu;v�1Cov m0
rs;m

0
01

� �� rlr�1;sCov m0
10;m

0
uv

� �
þ rulr�1;slu�1;vV m0

10

� �þ rvlr�1;slu;v�1Cov m0
10;m

0
01

� �� slr;s�1Cov m0
01;m

0
uv

� �
þ uslr;s�1lu�1;vCov m0

01;m
0
10

� �þ svlr;s�1lu;v�1V m0
01

� �
¼ 1

n

lrþ u;sþ v � lrsluv � ulu�1;vlrþ 1;s � vlu;v�1lr;sþ 1 � rlr�1;sluþ 1;v þ rulr�1;slu�1;vl20 þ rvlr�1;slu;v�1l11

� slr;s�1lu;vþ 1 þ uslr;s�1lu�1;vl11 þ svlr;s�1lu;v�1l02

" #

)V mrsð Þ ¼ 1
n

l2r;2s � l2rs þ r2l2r�1;sl20 þ s2l2r;s�1l02 � 2rlr�1;slrþ 1;s � 2slr;s�1lr;sþ 1þ 2rslr�1;slr;s�1l11
h i

)V m20ð Þ ¼ 1
n

l40 � l220
� �

;Cov m20;m02ð Þ ¼ 1
n
l22 � l20l02½ �

V m02ð Þ ¼ 1
n

l04 � l202
� �

;Cov m20;m11ð Þ ¼ 1
n
l31 � l20l11½ �

V m11ð Þ ¼ 1
n

l22 � l211
� �

;Cov m02;m11ð Þ ¼ 1
n
l13 � l02l11½ �

Sample correlation r ¼ m11ffiffiffiffiffiffiffiffiffiffiffi
m20m02

p ¼ g m
�

� �
¼ g Tnð Þ; say

where m
� ¼ m20;m02;m11ð Þ0 and Tn�

¼ T1n; T2n; T3nð Þ0¼ m20;m02;m11ð Þ0

)
ffiffiffi
n

p
Tn�

� h�

� �
�a N3 0

�
;
X

3�3
� �

i.e., ) ffiffiffi
n

p
m
� � l

�

� �
�a N3 0

�
;
P� �

where h� ¼
h1
h2
h3

0@ 1A ¼
l20
l02
l11

0@ 1A ¼ l
�

and
P ¼ rij

�
hð Þ� � ¼ l40 � l220 l22 � l20l02 l31 � l20l11

l04 � l202 l13 � l02l11
l22 � l211

0@ 1A
q ¼ l11ffiffiffiffiffiffiffiffiffiffiffiffiffi

l20l02
p ¼ g lð Þ

�
¼ g hð Þ

�ffiffiffi
n

p
g T� n

� �
� g h�

� �� �
�a N 0;V h�

� �� �
i.e.,

ffiffiffi
n

p
r � qð Þ �a N 0;V h�

� �� �
where V h�

� �
¼P3

i¼1

P3
j¼1

@g
@hi

� �
@g
@hj

� �
rij h�

� �
and @g

@hi

� �
¼ @g

@Tin

� �
T� n

¼h�
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i:e:V h�

� �
¼ @g

@h1

� �2

r11 h�

� �
þ @g

@h2

� �2

r22 h�

� �
þ @g

@h3

� �2

r33 h�

� �
þ 2

@g
@h1

� �
@g
@h2

� �
r12 h�

� �
þ 2

@g
@h1

� �
@g
@h3

� �
r13 h�

� �
þ 2

@g
@h2

� �
@g
@h3

� �
r23 h�

� �
¼ q2

l22
l211

þ 1
4

l40
l220

þ l04
l202

þ 2
l22

l20l02

� �
� l31

l11l20
þ l13

l11l02

� � �

If the sampling is from N2 l1; l2; r
2
1; r

2
2; q

� �
then

l40 ¼ 3r41; l04 ¼ 3r42; l11 ¼ qr1r2; l22 ¼ r21r
2
2 1þ 2q2
� �

l13 ¼ 3qr1r32; l31 ¼ 3qr31r2; l20 ¼ r21; l02 ¼ r22

Using these values in the expression of V h�

� �
; we get

V h�

� �
¼ 1� q2
� �2

)
ffiffiffi
n

p
r � qð Þ �a N 0; 1� q2

� �2� �
i.e., r �a N q;

1�q2ð Þ2
n

� �
This result can be used for testing hypothesis regarding q.

(i) H0 : q ¼ q0; under H0 : s ¼
ffiffi
n

p
r�q0ð Þ

1�q20
�a N 0; 1ð Þ

(ii) H0 : q1 ¼ q2 ¼ q; sayð Þ; r1 �a N q1;
1�q21ð Þ2
n1

� �
; r2 �a N q2;

1�q22ð Þ2
n2

� �

) r1 � r2 �a N q1 � q2;
1� q21
� �2

n1
þ 1� q22
� �2

n2

 !

Under H0;s ¼ r1�r2

1�q2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1
þ 1

n2

� �r �a N 0; 1ð Þ

If q is unknown then it is estimated by q̂ ¼ n1r1 þ n2r2
n1 þ n2

If q is known, then the efficiency of the test will be good enough, but if it is
unknown then the efficiency will be diminished. We can use the estimate of q only
when the sample sizes are very very large. Otherwise, we transform the statistic so
that its distribution is independent of q.
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A.16 Transformation of Statistics

If a sequence of statistics Tnf g for estimating h are such that
ffiffiffi
n

p
Tn � hð Þ �a

N 0; r2 hð Þð Þ; then for large samples the normal distribution can be used for testing
hypothesis regarding h if r2 hð Þ is independent of h. Otherwise, it may be necessary
to transform the statistic Tn such that the new statistic g Tnð Þ has an asymptotic
variance independent of h. This is known as transformation of statistics. Another
important advantage of such transformation is that in many cases the distribution of
g Tnð Þ tends more rapidly to normality than Tn itself, so that large sample tests can
be made even for moderately large sample sizes. Also, in analysis of variance,
where the assumption of homoscedasticity is made, such transformation of statistics
may be useful.

A general formula We know that, if Tnf g is a sequence of statisticsffiffiffi
n

p
Tn � hð Þ �a N 0; r2 hð Þð Þ; then ffiffiffi

n
p

g Tnð Þ � g hð Þð Þ �a N 0; g02 hð Þr2 hð Þð Þ provided
g �ð Þ is a function admitting 1st derivative and g0 hð Þ 6¼ 0:

By equating the standard deviation g0 hð Þr hð Þ to a constant c, we get the dif-
ferentiated equation

dg hð Þ ¼ c
r hð Þ dh

Solving this equation we get, g hð Þ ¼ R c
r hð Þ dhþ k; where k is the constant of

integration. Using this formula and suitably choosing c and k we can obtain a
number of transformations of statistics of different important cases.
I. sin−1 transformationof the square root of the binomial proportion

We know
ffiffiffi
n

p
p� Pð Þ �a N 0;P 1� Pð Þ ¼ r2 Pð Þð Þ: We like to have a function g �ð Þ

such that
ffiffiffi
n

p
g pð Þ � g Pð Þð Þ �a N 0; c2ð Þ where c is independent of P.

From the differentiated equation, we have

g Pð Þ ¼
Z

c
r Pð Þ d Pð Þþ k

¼ c
Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P 1� Pð Þp d Pð Þþ k ¼ c:2hþ k

¼ c:2 sin�1
ffiffiffi
P

p
þ k where sin2 h ¼ P

� �
Now selecting c ¼ 1

2 and k ¼ 0; we have g Pð Þ ¼ sin�1
ffiffiffi
P

p
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) g pð Þ ¼ sin�1
ffiffiffi
P

p
and

ffiffiffi
n

p
sin�1 ffiffiffi

p
p � sin�1

ffiffiffi
P

p� � �a N 0; c2 ¼ 1
4

� �
i.e.,

sin�1 ffiffiffi
p

p� � �a N sin�1
ffiffiffi
P

p
;
1
4n

� �
This fact can be used for testing hypothesis regarding P.
Note Ascomble (1948) has shown that a slightly better transformation assuming

more stability in variance is sin�1

ffiffiffiffiffiffiffiffi
pþ 3

8n
1þ 3

4n

r
which has asymptotic variance 1

4nþ 2 :

Uses: (i) H0 : P ¼ P0

Under H0; s ¼ sin�1 ffiffiffi
p

p � sin�1 ffiffiffiffiffi
P0

p� �
2
ffiffiffi
n

p �a N 0; 1ð Þ
w0 : sj j[ sa=2 where H1 : P 6¼ P0:

Interval estimate of P

Pr �sa=2 � 2
ffiffiffi
n

p
sin�1 ffiffiffi

p
p � sin�1

ffiffiffi
P

p� �
� sa=2

h i
¼ 1� a

i.e., Pr sin2 sin�1 ffiffiffi
p

p � sa=2
2
ffiffi
n

p
� �

�P� sin2 sin�1 ffiffiffi
p

p þ sa=2
2
ffiffi
n

p
� �h i

¼ 1� a

(ii) H0 : P1 ¼ P2 ¼Pð Þsay

sin�1 ffiffiffiffiffi
p1

p �a N sin�1 ffiffiffiffiffi
P1

p
;
1
4n1

� �
sin�1 ffiffiffiffiffi

p2
p �a N sin�1 ffiffiffiffiffi

P2
p

;
1
4n2

� �
) sin�1 ffiffiffiffiffi

p1
p � sin�1 ffiffiffiffiffi

p2
p� � �a N sin�1 ffiffiffiffiffi

P1
p � sin�1 ffiffiffiffiffi

P2
p

;
1
4n1

þ 1
4n2

� �
Under H0;

s ¼ sin�1 ffiffiffiffiffi
p1

p � sin�1 ffiffiffiffiffi
p2

p� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4n1

þ 1
4n2

q �a N 0; 1ð Þ

)w0 : sj j[ sa=2 if H1 : P1 6¼ P2:
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If H0 is accepted then to find the confidence interval for P:

csin�1
ffiffiffi
P

p
¼ 4n1 � sin�1 ffiffiffiffiffi

p1
p þ 4n2 sin�1 ffiffiffiffiffi

p2
p

4n1 þ 4n2
¼ n1 sin�1 ffiffiffiffiffi

p1
p þ n2 sin�1 ffiffiffiffiffi

p2
p

n1 þ n2

E csin�1
ffiffiffi
P

p� �
¼ n1 sin�1 ffiffiffiffiffi

P1
p þ n2 sin�1 ffiffiffiffiffi

P2
p

n1 þ n2
¼ sin�1

ffiffiffi
P

p
AsP1 ¼ P2 ¼ P½ �

V csin�1
ffiffiffi
P

p� �
¼ n21 � 1

4n1
þ n22 � 1

4n2

n1 þ n2ð Þ2 ¼ 1
4 n1 þ n2ð Þ

)csin�1
ffiffiffi
P

p
�a N sin�1

ffiffiffi
P

p
;

1
4 n1 þ n2ð Þ

� �
Pr �sa=2 � csin�1

ffiffiffi
P

p
� sin�1

ffiffiffi
P

p� �
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2ð Þ

p
� sa=2

h i
¼ 1� a

) Pr sin2 csin�1
ffiffiffi
P

p
� sa=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2ð Þp !

�P� sin2 csin�1
ffiffiffi
P

p
þ sa=2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 þ n2ð Þp !" #

¼ 1� a:

If H0 is rejected, then to find the confidence interval for the difference P1 � P2ð Þ:
Since sin�1 ffiffiffiffiffi

p1
p �a N sin�1 ffiffiffiffiffi

P1
p

; 1
4n1

� �
)Pr sin2 sin�1 ffiffiffiffiffi

p1
p � sa=2

2
ffiffiffiffiffi
n1

p
� �

�P1 � sin2 sin�1 ffiffiffiffiffi
p1

p þ sa=2
2
ffiffiffiffiffi
n1

p
� � �

¼ 1� a

i.e., P Að Þ ¼ 1� a where A ¼ L1 �P1 �U1f g having L1 ¼ sin2ð sin�1 ffiffiffiffiffi
p1

p � sa=2
2
ffiffiffiffi
n1

p Þ

U1 ¼ sin2 sin�1 ffiffiffiffiffi
p1

p þ sa=2
2
ffiffiffiffiffi
n1

p
� �

Similarly, sin�1 ffiffiffiffiffi
p2

p �a N sin�1 ffiffiffiffiffi
P2

p
; 1
4n2

� �
and Pr L2 �P2 �U2f g ¼ 1� a

where

L2 ¼ sin2 sin�1 ffiffiffiffiffi
p2

p � sa=2
2
ffiffiffiffiffi
n2

p
� �

U2 ¼ sin2 sin�1 ffiffiffiffiffi
p2

p þ sa=2
2
ffiffiffiffiffi
n2

p
� �

i.e., P Bð Þ ¼ 1� a where B ¼ L2 �P2 �U2f g
As P ABð Þ�P Að ÞþP Bð Þ � 1

)Pr L1 �P1 �U1; L2 �P2 �U2f g� 1� að Þþ 1� að Þ � 1

)Pr L1 � U2 �P1 � P2 �U1 � L2f g� 1� 2að Þ:
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(iii) H0 : P1 ¼ P2 ¼ � � � ¼ Pk ¼ Pð Þ say

sin�1 ffiffiffiffi
pi

p �a N sin�1 ffiffiffiffiffi
Pi

p
;
1
4ni

� �
; i ¼ 1 1ð Þk

) under H0;
Pk

i¼1 sin�1 ffiffiffiffi
pi

p � sin�1
ffiffiffi
P

p� �2
4ni � v2kcsin�1

ffiffiffi
P

p ¼
P

ni sin�1 ffiffiffipipP
ni

and thusv2 ¼Pk
i¼1 sin�1 ffiffiffiffi

pi
p � csin�1

ffiffiffi
P

p� �2
4ni � v2x�1

If H0 is accepted, then to find the interval estimate of P:

E csin�1
ffiffiffi
P

p� �
¼
P

ni sin�1 ffiffiffiffiffi
Pi

pP
ni

¼
P

ni sin�1
ffiffiffi
P

pP
ni

¼ sin�1
ffiffiffi
P

p
* P1 ¼ P2 ¼ � � � ¼ Pk ¼ P½ �

V csin�1
ffiffiffi
P

p� �
¼
P

n2i � 1
4niP

nið Þ2 ¼ 1
4
P

nið Þ

)csin�1
ffiffiffi
P

p
�a N sin�1

ffiffiffi
P

p
;

1
4
P

nið Þ
� �

Pr sin2 csin�1
ffiffiffi
P

p
� sa=2

2
ffiffiffiffiffiffiffiffiffiffiP

ni
p !

�P� sin2 csin�1
ffiffiffi
P

p
þ sa=2

2
ffiffiffiffiffiffiffiffiffiffiP

ni
p !" #

¼ 1� a

II Square root transformation of Poisson variate

If X �P kð Þ; then E Xð Þ ¼ V Xð Þ ¼ k

We know, X � kð Þ �a N 0; k ¼ r2 kð Þð Þ: We would like to have a function g(.)
such that g Xð Þ � g kð Þ �a N 0; c2ð Þ where c2 is independent of k.

g kð Þ ¼ c
R dk

r kð Þ þ k ¼ c
R dkffiffi

k
p þ k ¼ c2

ffiffiffi
k

p þ k:

Taking k = 0 and c = 1/2, g kð Þ ¼ ffiffiffi
k

p

) g Xð Þ ¼ ffiffiffiffi
X

p
and c2 ¼ 1

4 ; )
ffiffiffiffi
X

p � ffiffiffi
k

p� �
�a N 0; 14

� �
i.e.,

ffiffiffiffi
X

p �a N
ffiffiffi
k

p
; 14

� �
:

Uses: (i) H0 : k ¼ k0
Under H0; s ¼ 2

ffiffiffiffi
X

p � ffiffiffiffiffi
k0

p� � �a N 0; 1ð Þ
w0 : sj j[ sa=2 where H1 : k 6¼ k0
Interval estimate of k:

P �sa=2 � 2
ffiffiffiffi
X

p
�

ffiffiffi
k

p� �
� sa=2

h i
¼ 1� a

)P
ffiffiffiffi
X

p
� 1
2
sa=2

� �2

� k�
ffiffiffiffi
X

p
þ 1

2
sa=2

� �2
" #

¼ 1� a
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(ii) H0 : k1 ¼ k2 ¼ kð Þ;Say
ffiffiffiffiffi
X1

p �a N
ffiffiffiffiffi
k1

p
;
1
4

� �
;

ffiffiffiffiffi
X2

p �a N
ffiffiffiffiffi
k2

p
;
1
4

� �
)

ffiffiffiffiffi
X1

p � ffiffiffiffiffi
X2

p� � �a N
ffiffiffiffiffi
k1

p
�

ffiffiffiffiffi
k2

p
;
1
2

� �
) Under H0; s ¼ ffiffiffiffiffi

X1
p � ffiffiffiffiffi

X2
p� �

2 �a N 0; 1ð Þ
w0 : sj j[ sa=2 if H1 : k1 6¼ k2:
If H0 is accepted, then to find the confidence interval for k:

cffiffiffi
k

p
¼ 4� ffiffiffiffiffi

X1
p þ 4� ffiffiffiffiffi

X2
p

4þ 4
¼

ffiffiffiffiffi
X1

p þ ffiffiffiffiffi
X2

p
2

E cffiffiffi
k

p� �
¼

ffiffiffi
k

p þ ffiffiffi
k

p

2
¼

ffiffiffi
k

p
*

ffiffiffiffiffi
k1

p
¼

ffiffiffiffiffi
k2

p
¼

ffiffiffi
k

ph i
V

cffiffiffi
k

p� �
¼

1
4 þ 1

4

4
¼ 1

8

So cffiffiffikp �a N
ffiffiffi
k

p
; 18

� �
) Probability �sa=2 � cffiffiffi

k
p

�
ffiffiffi
k

p� � ffiffiffi
8

p
� sa=2

 �
¼ 1� a

) Probability cffiffiffi
k

p
� sa=2ffiffiffi

8
p

� �2

� k� cffiffiffi
k

p
þ sa=2ffiffiffi

8
p

� �2
" #

¼ 1� a

If H0 is rejected, then to find the confidence interval for the difference k1 � k2ð Þ :
Since

ffiffiffiffiffi
X1

p �a N
ffiffiffiffiffi
k1

p
; 14

� �
) Probability

ffiffiffiffiffi
X1

p � sa=2
2

� �2
� k1 �

ffiffiffiffiffi
X1

p þ sa=2
2

� �2 �
¼ 1� a

i.e. P Að Þ ¼ 1� a where A ¼ L1 � k1 �U1f g where L1 ¼
ffiffiffiffiffi
X1

p � sa=2
2

� �2
and

U1 ¼
ffiffiffiffiffi
X1

p þ sa=2
2

� �2
Similarly,

ffiffiffiffiffi
X2

p �a N
ffiffiffiffiffi
k2

p
; 14

� �
) Probability

ffiffiffiffiffi
X2

p � sa=2
2

� �2
� k2 �

ffiffiffiffiffi
X2

p þ sa=2
2

� �2 �
¼ 1� a

i.e. P Bð Þ ¼ 1� a where B ¼ L2 � k2 �U2f g having L2 ¼
ffiffiffiffiffi
X2

p � sa=2
2

� �2
;

U2 ¼
ffiffiffiffiffi
X2

p þ sa=2
2

� �2
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As, P ABð Þ�P Að ÞþP Bð Þ � 1

) Probability L1 � k1 �U1;L2 � k2 �U2f g� 1� að Þþ 1� að Þ � 1

) Probability L1 � U2 � k1 � k2 �U1 � L2f g� 1� 2a

(iii) H0 : k1 ¼ k2 ¼ � � � ¼ kk ¼ kð Þsay
ffiffiffiffiffi
Xi

p �a N
ffiffiffiffi
ki

p
;
1
4

� �
; i ¼ 1 1ð Þk

) under H0;
Pk

i¼1

ffiffiffiffiffi
Xi

p � ffiffiffiffi
ki

p� �2 � 4� v2kffîffiffi
k

p ¼
P ffiffiffi

Xi
p
k and then

v2 ¼
Xk

i¼1

ffiffiffiffiffi
Xi

p �
ffîffiffi
k

p� �2
� 4� v2k�1

w0 : v
2 [ v2a;k�1:

If H0 is accepted, then to find the interval estimate of k : E
ffîffiffi
k

p� �
¼P ffiffiffi

ki
p

k ¼
P ffiffi

k
p

k ¼ ffiffiffi
k

p
Ask1 ¼ k2 ¼ � � � ¼ kk ¼ k½ �

V cffiffiffi
k

p� �
¼
P

V
ffiffiffiffiffi
Xi

p� �
k2

¼ 1
4k

)cffiffiffikp
�a N

ffiffiffi
k

p
;
1
4k

� �
)s ¼ cffiffiffi

k
p

�
ffiffiffi
k

p� � ffiffiffiffiffi
4k

p
�N 0; 1ð Þ

)Probability �sa=2 � cffiffiffi
k

p
�

ffiffiffi
k

p� �
2
ffiffiffi
k

p
� sa=2

 �
¼ 1� a

) Probability cffiffiffi
k

p
� s

a=2

2
ffiffiffi
k

p
� �2

� k� cffiffiffi
k

p
þ s

a=2

2
ffiffiffi
k

p
� �2

" #
¼ 1� a

Note It can be shown that

E
ffiffiffiffi
X

p� �
¼

ffiffiffi
k

p
þ 0

1ffiffiffi
k

p
� �

V
ffiffiffiffi
X

p� �
¼ 1

4
þ 0

1
k

� �

whereas E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ 3=8

q� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 3=8

q
þ 0 1ffiffi

k
p
� �

and V
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ 3=8

q� �
¼ 1

4 þ 0 1
k2

� �
:
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Comparing V
ffiffiffiffi
X

p� �
and V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ 3=8

q� �
we observe that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xþ 3=8

q
is better

transformation than
ffiffiffiffi
X

p
.

III Logarithmic transformation of sample variance for N l; r2ð Þ

s2 ¼ 1
n� 1

X
xi � �xð Þ2

E s2ð Þ ¼ r2 and V s2ð Þ ’ 2r4
n

Also E S2ð Þ ! r2 and V S2ð Þ ’ 2r4
n for S2 ¼

P
xi��xð Þ2
n

) s2 �a N r2;
2r4

n

� �
We like to get a function g �ð Þ such that g s2ð Þ �a N g r2ð Þ; c2ð Þ where c2 is

independent of r2.

g r2
� � ¼ Z cffiffiffiffiffi

2r4
n

q dr2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
2

Z
dr2

r2

s

¼ c

ffiffiffi
n
2

r
loge r

2 þ k

Choosing k ¼ 0 and c ¼
ffiffi
2
n

q
. We get g r2ð Þ ¼ loge r

2

) g s2
� � ¼ loge s

2 �a N loge r
2;
2
n

� �
Uses: (i) H0 : r2 ¼ r20
Under H0; s ¼

ffiffi
n
2

p
log s2 � log r 2

0

� ��N 0; 1ð Þ
w0 : sj j[ sa=2 if H1 : r2 6¼ r20:
Interval estimate of r2 is given as

Probability �sa=2 �
ffiffiffi
n
2

r
log s2 � log r2
� �� sa=2

 �
¼ 1� a

i.e., Probability elog s2�
ffiffi
2
n

p
sa=2 � r2 � elog s2 þ

ffiffi
2
n

p
sa=2

h i
¼ 1� a.

(ii) H0 : r21 ¼ r22 ¼r2ð Þsay
Under H0 : s ¼ log s21�log s22ffiffiffiffiffiffiffiffiffi

2
n1
þ 2

n2

p �a N 0; 1ð Þ
w0 : sj j � sa=2 if H1 : r21 6¼ r22:
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If H0 is accepted, thus the interval estimate of the common variance r2 can be
obtained by thedlog r2 where dlog r2 ¼

n1
2 log s

2
1 þ n2

2 log s
2
2

n1
2 þ n2

2

¼ n1 log s21 þ n2 log s22
n1 þ n2

:

E dlog r2� �
¼ log r2 and V dlog r2� �

¼ 2
n1 þ n2

dlog r �a N log r2;
2

n1 þ n2

� �
)Probability e

dlog r2�
ffiffiffiffiffiffiffiffi

2
n1 þ n2

p
sa=2 � r2 � e

dlog r2 þ
ffiffiffiffiffiffiffiffi

2
n1 þ n2

p
sa=2

 �
¼ 1� a:

If H0 is rejected, then the confidence interval for r21 � r22
� �

can be obtained in
the following way:

Probability e
log s21�

ffiffiffi
2
n1

p
sr=2 � r21 � e

log s21 þ
ffiffiffi
2
n1

p
sa=2

 �
¼ 1� a

i.e., P Að Þ ¼ 1� a where A ¼ L1 � r21 �U1
� �

having L1 ¼ e
log s21�

ffiffiffi
2
n1

p
sa=2

U1 ¼ e
log s21 þ

ffiffiffi
2
n1

p
sa=2

Also, Probability e
log s22�

ffiffiffi
2
n2

p
sa=2 � r22 � e

log s22 þ
ffiffiffi
2
n2

p
sa=2

 �
¼ 1� a

i.e., P Bð Þ ¼ 1� a where B ¼ L2 � r22 �U2
� �

As P ABð Þ�P Að ÞþP Bð Þ � 1

)Probability L1 � r21 �U1; L2 � r22 �U2
� �� 1� að Þþ 1� að Þ � 1

Or Probability L1 � U2 � r21 � r22 �U1 � L2
� �� 1� 2a

(iii) H0 : r21 ¼ r22 ¼ � � � ¼ r2k ¼r2ð Þsay

loge s
2
i �a ¼ N loge r

2
i ;
2
ni

� �
) under H0;

Pk
i¼1 loge s

2
i � dlog r2

� �2
n1
2 �a v2k�1

where dloge r2 ¼
P

ni loge s
2
iP

ni
;

)w0 : v
2 [ v2a;k�1
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If H0 is accepted, then the interval estimate of r2 can be obtained as follows:

dloge r2 �a N loge r
2;

2P
ni

� �

)Probability �sa=2 �
cloger2 � loge r

2ffiffiffiffiffiffiffiffiffi
2P
ni

q � sa=2

264
375 ¼ 1� a

So, Probability e
dloge r2�

ffiffiffiffiffiffiffiffi
2P
ni

q
sa=2

� r2 � e
dloge r2 þ

ffiffiffiffiffiffiffiffi
2P
ni

q
sa=2

24 35 ¼ 1� a:

IV Logarithmic transformation of sample s.d.

s �a N r;
r2

2n

� �
We like to get a g �ð Þ such that g sð Þ �a N g rð Þ; c2ð Þ where c2 is independent of r.
g rð Þ ¼ R c

r=
ffiffiffiffiffi
2n

p dr ¼ ffiffiffiffiffi
2n

p
c loge rþ k: Choosing c ¼ 1ffiffiffiffi

2n
p and k ¼ 0. We have

g rð Þ ¼ loge r
) g sð Þ ¼ loge s �a N loge r;

1
2n

� �
:

We may use this result for testing hypothesis related to r.

V Z-transformation of sample correlation coefficient from N2 l1; l2; r
2
1; r

2
2; q

� �
:

E rð Þ� q and V rð Þ� 1�q2ð Þ2
n

) r �a N q;
1� q2ð Þ2

n

 !
:

We like to get a function g �ð Þ such that g rð Þ is asymptotically normal with
variance independent of q:

) g qð Þ ¼ ffiffiffi
n

p Z
c

1� q2
dp ¼ ffiffiffi

n
p

c
1
2
loge

1þ q
1� q

þ k

We choose c ¼ 1ffiffi
n

p and k = 0 and then

) g qð Þ ¼ 1
2
loge

1þ q
1� q

¼ tan h�1q ¼ n; sayð Þ

) g rð Þ ¼ 1
2
loge

1þ r
1� r

¼ tan h�1r ¼ Z; sayð Þ
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)Z ¼ g rð Þ �a N n;
1
n

� �
:

Note Putting Z � n ¼ y; the distribution of y may be derived using the distri-
bution of r. The first four moments were found by Fisher and later they were revised
by Gayen (1951).

In fact E Zð Þ ¼ nþ q
2 n�1ð Þ þ 0 1

n2
� �

l2 Zð Þ ¼ 1
n� 1

þ 4� q2

2 n� 1ð Þ2 þ 0
1
n3

� �
Now, 1

n�3 ¼ 1
n�1ð Þ n�3

n�1ð Þ ¼
1

n�1ð Þ 1� 2
n�1ð Þ ¼

1
n�1 1� 2

n�1

� ��1

¼ 1
n� 1

1þ 2
n� 1

þ 4

n� 1ð Þ2 þ 0
1
n3

� �" #

¼ 1
n� 1

þ 2

n� 1ð Þ2 þ 0
1
n3

� �
Again, l2 Zð Þ ¼ 1

n�1 þ 2
n�1ð Þ2 �

q2

2 n�1ð Þ2 þ 0 1
n3
� �

¼ 1
n� 3

� q2

2 n� 1ð Þ2 þ 0
1
n3

� �
) l2 Zð Þ ’ 1

n� 3

In fact, V Zð Þ ’ 1
n for large n

’ 1
n�3 for moderately large n:

) For moderately large n;

Z ¼ tan h�1r ¼ 1
2
loge

1þ r
1� r

�a N n;
1

n� 3

� �
where n ¼ tan h�1q ¼ 1

2 loge
1þ q
1�q :

Uses: (i) H0 : q ¼ q0 against H1 : q 6¼ q0
, H0 : n ¼ n0 against H1 : n 6¼ n0 where n0 ¼ 1

2 loge
1þq0
1�q0

) Under H0; s ¼ Z � n0ð Þ ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p �a N 0; 1ð Þ

w0 : sj j � sa=2
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Also, the 100 1� að Þ% confidence interval for q is given as

Probability �sa=2 �
ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
Z � nð Þ� sa=2

h i
¼ 1� a

Probability Z � sa=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p � n� Z þ sa=2ffiffiffiffiffiffiffiffiffiffiffi
n� 3

p
 �

¼ 1� a

) Probability e
2 Z� sa=2ffiffiffiffiffi

n�3
p

� �
� 1þ q

1� q
� e

2 Z þ sa=2ffiffiffiffiffi
n�3

p
� �" #

¼ 1� a

i.e., Probability e
2 Z�

sa=2ffiffiffiffiffi
n�3

p

� �
�1

e
2 Z�

sa=2ffiffiffiffiffi
n�3

p

� �
þ 1

� q� e
2 Zþ

sa=2ffiffiffiffiffi
n�3

p

� �
�1

e
2 Z þ

sa=2ffiffiffiffiffi
n�3

p

� �
þ 1

264
375 ¼ 1� a

(ii) H0 : q1 ¼ q2 ¼ qð Þ;say

, H0 : n1 ¼ n2 ¼nð Þ say

Z1 ¼ tanh�1 r1 �a N n1;
1

n1 � 3

� �
Z2 ¼ tanh�1 r2 �a N n2;

1
n2 � 3

� �
) Z1 � Z2ð Þ �a N n1 � n2;

1
n1 � 3

þ 1
n2 � 3

� �
Under H0; s ¼ Z1�Z1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n1�3þ 1

n2�3

p �a N 0; 1ð Þ; )w0 : sj j � sa=2 if H1 : q1 6¼ q2

If H0 is accepted 100 1� að Þ%confidence interval for n is given as

Ẑ ¼ n1 � 3ð ÞZ1 þ n2 � 3ð ÞZ2
n1 � 3ð Þþ n2 � 3ð Þ ¼ n1 � 3ð ÞZ1 þ n2 � 3ð ÞZ2

n1 þ n2 � 6

E Ẑ
� � ¼ n ¼ 1

2
loge

1þ q
1� q

V Ẑ
� � ¼ 1

n1 þ n2 � 6

) Probability Ẑ � sa=2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n2 � 6
p � 1

2
loge

1þ q
1� q

� Ẑþ sa=2
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 þ n2 � 6
p

 �
¼ 1� a:

We can get 100 1� að Þ% confidence interval from this.
If H0 is rejected, then 100 1� 2að Þ% confidence interval can be obtained as

follows:
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Probability
e
2 Z1�

sa=2ffiffiffiffiffiffi
n1�3

p
� �

� 1

e
2 Z1�

sa=2ffiffiffiffiffiffi
n1�3

p
� �

þ 1

� q1 �
e
2 Z1 þ

sa=2ffiffiffiffiffiffi
n1�3

p
� �

� 1

e
2 Z1 þ

sa=2ffiffiffiffiffiffi
n1�3

p
� �

þ 1

264
375 ¼ 1� a

Or, P Að Þ ¼ 1� a where A ¼ L1 � q1 �U1f g having L1 ¼ e
2 Z1�

sa=2ffiffiffiffiffiffi
n1�3

p
� �

�1

e
2 Z1�

sa=2ffiffiffiffiffiffi
n1�3

p
� �

þ 1

U1 ¼ e
2 Z1 þ

sa=2ffiffiffiffiffiffi
n2�3

p
� �

� 1

e
2 Z1 þ

sa=2ffiffiffiffiffiffi
n2�3

p
� �

þ 1

Similarly we get P Bð Þ ¼ 1� a where B ¼ L2 � q2 �U2f g and

L2 ¼ e
2 Z2�

sa=2ffiffiffiffiffiffi
n2�3

p
� �

�1

e
2 Z2�

sa=2ffiffiffiffiffiffi
n2�3

p
� �

þ 1

and U2 ¼ e
2 Z2 þ

sa=2ffiffiffiffiffiffi
n2�3

p
� �

�1

e
2 Z2 þ

sa=2ffiffiffiffiffiffi
n2�3

p
� �

þ 1

As P ABð Þ�P Að ÞþP Bð Þ � 1

)Probability L1 � q1 �U1; L2 � q2 �U2f g� 1� að Þþ 1� að Þ � 1

)Probability L1 � U2 � q1 � q2 �U1 � L2f g� 1� 2að Þ:

(iii) H0 : q1 ¼ q2 ¼ � � � ¼ qk ¼qð Þ

, H0 : n1 ¼ n2 ¼ � � � ¼ nk ¼nð Þ

Zi ¼ 1
2
loge

1þ ri
1� ri

�a N ni;
1

ni � 3

� �
Under H0;v2 ¼

Pk
1 ni � 3ð Þ Zi � n̂

� �2
�a v2k�1where n̂ ¼

P
ni�3ð ÞZiP
ni�3ð Þ

w0 : v
2 [ v2a;k�1

If H0 is accepted, then 100 1� að Þ%confidence interval for n (Subsequently for
q) can be obtained as follows:

E n̂
� �

¼ n; V n̂
� �

¼ 1P
ni � 3k

)Probability �sa=2 �
X

ni � 3k
� �

n̂� n
� �

� sa=2
h i

¼ 1� a

This will provide us for interval estimate of n and thus for q.
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