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Prefazione

Viviamo nella società dell’informazione. Non passa giorno senza che questa
frase ci sia ricordata da giornali, televisioni, Internet. Non passa giorno sen-
za che veniamo bombardati di cifre riguardanti gli elementi più disparati del
nostro sistema sociale: andamento dei prezzi, livello di disoccupazione, gradi-
mento nei confronti di questo o quel partito politico. Non passa giorno senza
che ci siano forniti i risultati di “sondaggi” riguardanti i più vari aspetti del
nostro vivere sociale.

Questa formidabile mole di numeri che ci vengono forniti in dosi sempre
più massicce, però, genera spesso scetticismo. Come stabilire quando l’infor-
mazione fornita può definirsi “corretta”? Come evitare di fornire numeri molto
lontani dalla realtà che si pretende di rappresentare, e su cui si pretende di
informare i cittadini?

Questo libro si occupa della corretta acquisizione e dell’uso efficiente di
un tipo molto importante di informazione: l’informazione statistica. Con una
certa semplificazione, e con qualche imprecisione, l’acquisizione dell’informa-
zione statistica ha luogo tramite l’osservazione di una o più caratteristiche di
interesse (status occupazionale, partito politico per cui si intende votare, etc.)
sulle unità di una popolazione di riferimento.

Un elemento critico del processo di acquisizione dei dati è costituito dal
fatto che molto spesso le popolazioni di riferimento sono composte da un
numero molto elevato di unità, la cui osservazione completa richiederebbe
costi e tempi proibitivi. Per tale ragione si ricorre a processi di acquisizione
dei dati basati sull’osservazione di una parte delle unità della popolazione, la
quale costituisce un campione.

L’idea-guida del presente libro è sostanzialmente una: sia il processo di
selezione del campione che l’uso dei dati corrispondenti devono essere volti ad
ottenere la massima efficienza. È questo obiettivo a spingere la trattazione
verso regole di selezione del campione di tipo “scientifico”, fondate sul calcolo
delle probabilità. Solo in questo caso, infatti, è possibile studiare in modo
corretto cosa si intenda per “uso efficiente dei dati statistici”.
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Questo volume è dedicato in larga misura agli aspetti di base del campio-
namento da popolazioni finite. Vengono stabilite le basi logiche del campiona-
mento e ne vengono studiati i principali sviluppi elementari. L’unica fonte di
errore statistico è dovuta al fatto che non si osservano tutte le unità della po-
polazione, ma solo una parte. Ad esso seguirà un successivo volume dedicato
a tematiche più avanzate, generate (prevalentemente ma non esclusivamente)
sia dal fatto che a volte può essere impossibile osservare alcune delle unità
del campione e/o è possibile effettuare solo osservazioni affette da errori, sia
dal fatto che spesso l’interesse verte sulla costruzione di modelli statistici per
i dati concretamente osservati.

L’approccio espositivo seguito consiste nel procedere dal particolare al ge-
nerale, partendo da aspetti il più possibile elementari, che vengono poi “com-
plicati” per renderli via via più aderenti alle concrete situazioni applicati-
ve. Molti ragionamenti vengono prima basati su esempi concreti e poi su
aspetti teorici che, se forniti in prima battuta, potrebbero rendere un po’
ostica la comprensione di aspetti chiave. A questo proposito si sottolinea
l’importanza degli esempi basati su dati (tutti disponibili sulla pagina web
http://extras.springer.com), i quali non sono solo un utile complemento alla
teoria, ma una vera e propria chiave di accesso al “ragionamento statistico”.
Lo stesso ruolo è anche svolto da molti degli esercizi proposti.

Il libro si rivolge sia a studenti universitari di corsi di laurea con una
robusta componente quantitativa (Scienze Statistiche, Economia, etc.), sia a
ricercatori in campo economico o sociale che utilizzano il metodo statistico. Il
livello complessivo della trattazione è, per quanto possibile, elementare. L’u-
nico pre-requisito richiesto per accedere a gran parte degli argomenti trattati
è un corso elementare di statistica con elementi introduttivi di calcolo delle
probabilità e inferenza statistica, come quelli impartiti nelle lauree triennali
di Economia e Scienze Politiche. Non strettamente necessario, anche se uti-
le, è un corso elementare di matematica, modellato sui corsi di matematica
generale dei corsi di laurea in Economia.

Questo volume è prevalentemente destinato alle lauree triennali. Nella no-
stra esperienza, i Capitoli 1–7, la Sezione 8.6, i Capitoli 9–11 costituiscono il
materiale per un corso di 32–36 ore in una laurea triennale di taglio statistico.
L’aggiunta del Capitolo 12, di ampie parti del Capitolo 14 (lo stimatore di
Horvitz-Thompson, in sostanza) e di alcune sezioni del Capitolo 15 (disegni di
Poisson, di Poisson condizionato e di Pareto) copre un corso standard di cam-
pionamento di 48 ore, sempre per una laurea triennale di taglio statistico. Lo
stesso materiale è stato anche usato, a vari livelli, in corsi di laurea e di Master
in Facoltà di Economia. Alcune parti dei Capitoli 14 (stimatori di tipo cali-
brazione), 15 (disegno bilanciato) e gran parte del materiale sugli errori non
campionari e sui modelli statistici per dati campionari (oggetto di trattazione
in un successivo volume) sono invece destinati alle lauree specialistiche.

Le parti (sezioni o interi capitoli) con asterisco sono più avanzate, e non
vengono utilizzate, in generale, nell’ambito delle lauree triennali. Alcune di
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esse sono usate in lauree specialistiche, mentre altre sono state incluse in
quanto di diretto interesse applicativo.

Molti degli esempi proposti nel volume si basano su dataset disponibili
presso la pagina web http://extras.springer.com.

Nello scrivere il presente libro abbiamo contratto parecchi debiti di gra-
titudine. Il Dott. Mauro Scanu ha letto l’intero volume, indicando parecchi
errori e fornendo utili suggerimenti. I Proff. Ludovico Piccinato, Marco Riani,
Paola Vicard hanno letto ampie parti del volume, fornendo spunti e consi-
derazioni di grande interesse. Utili suggerimenti sono stati anche forniti dal
Prof. Francesco Battaglia. Naturalmente, di errori e omissioni residui sono
responsabili i soli autori.

Roma, febbraio 2012 Pier Luigi Conti
Daniela Marella
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14.2.6 Ruolo delle probabilità di inclusione sull’efficienza

dello stimatore di Horvitz-Thompson nei disegni ad
ampiezza effettiva costante . . . . . . . . . . . . . . . . . . . . . . . . . 346

14.2.7 Applicazioni a popolazioni con struttura a grappolo . . . . 351
14.2.8 Efficienza dello stimatore di Horvitz-Thompson:

aspetti teorici∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
14.3 Variazioni sul tema: stimatore alle differenze generalizzate . . . . 361
14.4 Vecchie glorie un po’ in disarmo: lo stimatore

di Hansen-Hurwitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
14.5 Largo ai giovani: qualche idea di base sugli stimatori di tipo

calibrazione∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
14.5.1 Calibrazione con una variabile ausiliaria . . . . . . . . . . . . . . 369
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1

Aspetti generali sul campionamento da

popolazioni finite

1.1 Rilevazioni censuarie e rilevazioni campionarie

La necessità di informazioni statistiche sempre più accurate e disponibili in
tempi rapidi costituisce indubbiamente uno degli aspetti salienti delle società
moderne. Tali informazioni sono molto spesso acquisibili solo mediante rileva-
zioni statistiche, che consistono (almeno in prima approssimazione) nelle atti-
vità di raccolta ed elaborazione di dati statistici riguardanti specifici insiemi di
elementi, detti “popolazioni finite”. Gli esempi in proposito sono numerosissi-
mi. Ad es., il nostro obiettivo potrebbe essere quello di ottenere informazioni
sulle aziende operanti in uno o più settori di attività economica e sul loro
fatturato, sugli individui di una data comunità (nazionale, regionale, etc.) e
sul loro status lavorativo (occupati, disoccupati, etc.), sulle famiglie residenti
in una data area geografica e su aspetti legati alle loro abitudini di consumo
e ai loro redditi, sui cittadini aventi diritti politici e sulla loro disponibilità a
votare un certo partito politico. Solo se resi disponibili con tempestività, tali
dati possono soddisfare le specifiche esigenze, sia conoscitive che decisionali,
di istituzioni pubbliche e organismi privati.

La risposta a tali esigenze molto di rado può venire da rilevazioni censuarie,
in cui si osservano tutti gli elementi di una data popolazione. In genere le
popolazioni di interesse sono costituite da numerosi elementi, per cui la sola
raccolta dei dati (senza contare le successive fasi di elaborazione) richiederebbe
un gran dispiego di mezzi, disponibilità finanziarie assai ingenti, e tempi di
esecuzione inevitabilmente lunghi.

Nei casi di censimenti demografici e socio-economici riguardanti un’intera
nazione, le rilevazioni censuarie non possono che essere intraprese pubblica-
mente dal rispettivo stato, e condotte istituzionalmente dal relativo ufficio sta-
tistico nazionale. Tali rilevazioni totali sono svolte, in ogni paese, con cadenza
temporale regolare (in genere decennale), e tendono a rimanere circoscritte
alle sole informazioni socio-demografiche ed economiche di interesse generale.

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 1, © Springer-Verlag Italia 2012
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Altre informazioni statistiche totali di carattere pubblico sono regolar-
mente raccolte come indiretto sottoprodotto di attività di registrazione e di
controllo della Pubblica Amministrazione (statistiche amministrative). I dati
statistici che ne derivano sono spesso del tutto insoddisfacenti sia sotto il pro-
filo della tempestività, in quanto in genere si rendono disponibili quando non
sono più utili, che sotto quello della qualità del (sotto-)prodotto offerto. Se
soddisfano condizioni di attendibilità, tali statistiche amministrative possono
essere utilizzate per analisi storiche retrospettive e per elaborare modelli pre-
visionali da impiegare per prevedere il presente sulla base del passato, anche se
sul presente sarebbe sempre meglio indagare direttamente tramite rilevazioni
statistiche.

Quanto sopra osservato motiva il ricorso a rilevazioni campionarie (o par-
ziali), in cui si osserva solo una parte (in genere piccola) della popolazio-
ne oggetto di interesse. La parte della popolazione osservata è denominata
campione, che è inteso come un rappresentante della popolazione complessiva.

Rispetto alle rilevazioni totali, quelle parziali presentano alcuni fondamen-
tali vantaggi.

– Hanno tempi di esecuzione assai più rapidi, e quindi permettono di disporre
con relativa tempestività dei dati statistici e delle relative elaborazioni.

– Hanno costi assai più contenuti. Le rilevazioni censuarie su larga scala im-
pegnano in genere un gran numero di rilevatori, e quindi hanno costi soste-
nibili quasi soltanto da enti pubblici ad esse preposti. Per questa ragione
molte rilevazioni censuarie sono state dismesse e sostituite da rilevazio-
ni parziali. Ad es., il censimento dell’industria e servizi 2010 è consistito
in realtà in una rilevazione parziale. Nessun paese dell’Unione Europea
conduce più “vere” rilevazioni censuarie di fenomeni di natura economica.

– Forniscono dati in genere più accurati. Le rilevazioni campionarie, osser-
vando soltanto una frazione ridotta della popolazione, possono utilizzare
pochi rilevatori molto ben addestrati, e forniscono risultati affidabili. Per
contro, le indagini censuarie, avendo bisogno di molti rilevatori, tenderan-
no spesso ad usare anche personale poco addestrato e non qualificato, che
probabilmente rileverà i dati in maniera poco accurata. Inoltre, le indagi-
ni censuarie, trattando grosse moli di dati, sono più esposte ad errori di
trascrizione, codifica, etc., che abbassano ulteriormente la qualità dei dati
prodotti. Per questa ragione i pochi censimenti effettuati prevedono spesso
una rilevazione parziale a posteriori per il controllo della qualità dei dati.

In alcuni casi è la natura stessa dell’indagine che determina il tipo di
rilevazione da utilizzare. Ad esempio, nel controllo statistico della qualità è la
natura del processo di misurazione che, comportando la distruzione dell’unità
che si osserva, obbliga il ricorso ad una rilevazione campionaria (ad es. durata
di accensione di una lampadina).

Le rilevazioni campionarie, d’altra parte, hanno un inconveniente di rilie-
vo: il campione (parte di popolazione osservata) potrebbe essere un pessimo
rappresentante della popolazione totale, e quindi fornire risultati di scarsa
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utilità, o addirittura controproducenti. Molta attenzione va quindi posta al
modo in cui il campione è scelto, ossia alla regola di selezione delle unità che
formano il campione stesso. In ogni caso, a fronte dello svantaggio dianzi men-
zionato, le rilevazioni campionarie presentano tanti e tali vantaggi rispetto a
quelle censuarie che la pratica del campionamento è ormai diffusissima nei più
svariati settori, e si può affermare che la gran parte delle rilevazioni statistiche
comunemente effettuate sono di tipo campionario.

1.2 Linee metodologiche di una rilevazione statistica

Qui di seguito sono brevemente delineate le linee metodologiche essenziali di
una rilevazione statistica (censuaria o campionaria).

– Una rilevazione riguarda un insieme finito di elementi individuali (detti
anche unità di osservazione, o unità elementari), i quali costituiscono una
popolazione finita. Gli elementi che compongono una popolazione sono ben
definite entità, fisicamente esistenti.

– Sulle unità elementari che costituiscono una popolazione sono definiti uno
o più caratteri oggetto di interesse. In corrispondenza di ogni unità ele-
mentare ciascun carattere si manifesta con una determinata modalità. Una
rilevazione statistica ha in genere l’obiettivo di studiare il “modo di ma-
nifestarsi” del(i) carattere(i) di interesse sulla popolazione di riferimento.
Molto spesso le modalità di un carattere sono riassunte mediante oppor-
tune sintesi descrittive (come media, varianza, o altro), le quali enucleano
aspetti particolarmente significativi del modo in cui uno o più caratteri
si manifestano in una popolazione. Tali sintesi descrittive costituiscono
dei parametri statistici di interesse. Un obiettivo importantissimo di una
rilevazione statistica è quello di ottenere informazioni su tali parametri.

– L’accesso agli elementi (unità elementari) che costituiscono una popola-
zione è realizzato tramite una lista, che può essere vista come un “mecca-
nismo” che ad ogni unità elementare della popolazione associa una unità
di campionamento della lista. Non necessariamente le unità elementari
coincidono con le unità di campionamento.

– Dalla lista di unità viene selezionato un suo sottoinsieme, denominato cam-
pione. Un ingrediente di fondamentale importanza, ovviamente, è rappre-
sentato dalla regola con cui il campione è selezionato dalla popolazione. In
particolare, nel seguito si concentrerà l’attenzione sulle regole di selezione
di tipo probabilistico, le quali si basano sull’idea di selezionare il campione
in accordo con una legge di probabilità determinata in fase di progetta-
zione della rilevazione. La regola di selezione del campione è in genere
denominata disegno (o piano) campionario.

– Alle unità di campionamento che formano il campione effettivamente se-
lezionato corrispondono alcune delle unità di osservazione (elementi) della
popolazione. Queste ultime costituiscono gli elementi della popolazione ef-
fettivamente campionati. Come già rimarcato, il ruolo primario delle unità
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di campionamento è proprio quello di permettere l’accesso alle unità di
osservazione della popolazione. Per gli elementi (unità di osservazione) se-
lezionati nel campione, si osservano le modalità dei caratteri oggetto di
interesse. L’osservazione di tali modalità è realizzata tramite un qualche
processo di misurazione. Nei casi più comuni lo strumento di misura usato
in questo processo è il questionario, ossia un elenco di domande alle quali
gli individui selezionati devono fornire risposta. Un aspetto assai delicato
ed importante è la messa a punto del questionario, in genere realizzata tra-
mite un’indagine pilota. Le modalità osservate degli individui del campione
vengono registrate, e costituiscono i dati campionari.

– I dati campionari vengono usati per calcolare delle stime dei parametri di
interesse (medie, varianze, coefficienti di correlazione e di regressione, e
altro ancora).

Una rilevazione censuaria può essere vista come caso particolare di rilevazione
campionaria, in cui si selezionano (e osservano) tutte le unità elementari della
popolazione.

Per illustrare meglio quanto sopra esposto, è opportuno ricorrere ad un
esempio: la rilevazione delle forze di lavoro effettuata dall’Istituto Nazionale
di Statistica (ISTAT). La rilevazione è di tipo campionario, ed ha cadenza
trimestrale. La popolazione di riferimento è costituita da tutti gli individui re-
sidenti in Italia, inclusi quelli temporaneamente residenti all’estero, ed esclusi
quelli che vivono abitualmente all’estero e i membri permanenti delle convi-
venze (ospizi, caserme, istituti religiosi, brefotrofi, etc.). Tali individui sono
quindi le unità elementari (di osservazione) che formano la popolazione.

Degli individui componenti la popolazione interessano principalmente ca-
ratteristiche quali l’appartenenza alle forze di lavoro, lo status occupazionale,
e (molto) altro ancora. Gli individui vengono distinti in due categorie: gli
appartenenti alle forze di lavoro, distinti a loro volta in (a) occupati e, (b)
disoccupati, e (c) “non appartenenti alle forze di lavoro”. Gli occupati sono
tutti coloro che, oltre ad avere un’età di almeno 15 anni, possiedono una delle
seguenti caratteristiche:

a1. hanno effettuato una o più ore lavorative retribuite (o non retribuite
se prestate in un’impresa familiare) nella settimana di riferimento della
rilevazione;

a2. hanno un’attività lavorativa, anche se durante la settimana di riferimento
della rilevazione non hanno lavorato.

Vengono invece classificati come disoccupati tutti gli individui (di almeno
15 anni di età) non occupati che sono in cerca di occupazione, in quanto in
possesso di una delle seguenti caratteristiche:

b1. hanno effettuato almeno un’azione di ricerca “attiva” di lavoro nelle quat-
tro settimane che precedono la rilevazione e sono immediatamente dispo-
nibili (entro due settimane) ad accettare un lavoro, qualora venga loro
offerto;
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b2. hanno già trovato un lavoro che inizierà nelle settimane successive alla
rilevazione (non oltre tre mesi).

Gli individui appartenenti alle categorie (a1), (a2), (b1), (b2) costituiscono le
forze di lavoro, mentre i rimanenti formano le non forze di lavoro.

I parametri di interesse sono in questo caso grandezze quali l’ammontare
(numero di individui) delle forze di lavoro, il tasso di disoccupazione (uguale al
rapporto tra disoccupati e totale delle forze di lavoro), e (molto) altro ancora.

L’accesso alla popolazione degli individui avviene tramite la lista delle
famiglie, che costituiscono quindi le unità di campionamento. Si noti come le
unità di campionamento, in questo caso, siano diverse da quelle elementari di
osservazione. In effetti, ogni famiglia è un aggregato (un grappolo in termini
tecnici) di unità elementari.

Il disegno campionario (regola di selezione delle famiglie) è di tipo proba-
bilistico. L’idea di base è piuttosto semplice, e consiste in una procedura a due
stadi. Si considerano in primo luogo le province italiane. Per ogni provincia
si determina, con procedura ad hoc, una soglia dimensionale demografica. I
comuni con una popolazione residente al di sopra della soglia vengono denomi-
nati “auto-rappresentativi”, mentre quelli con una popolazione al di sotto della
soglia sono “non auto-rappresentativi”. I comuni di ogni provincia che non so-
no auto-rappresentativi, inoltre, vengono suddivisi in gruppi (strati) omogenei
rispetto al peso demografico. La procedura di selezione delle famiglie è a due
stadi, e può essere sintetizzata come segue:

– al primo stadio, per ogni provincia si selezionano: (i) tutti i comuni auto-
rappresentativi; (ii) da ogni strato (di comuni non auto-rappresentativi)
in cui la provincia è suddivisa, due comuni non-autorappresentativi;

– dalle liste anagrafiche dei comuni scelti al primo stadio, si seleziona un
campione di famiglie.

Per gli individui che formano le famiglie selezionate nel campione si osser-
vano le modalità dei caratteri di interesse. L’osservazione avviene mediante
la somministrazione di un questionario, il quale costituisce un vero e proprio
strumento di misura per il fenomeno oggetto di indagine. Per ogni individuo a
cui è sottoposto il questionario si registrano le caratteristiche di appartenenza
o meno alle forze di lavoro, status occupazionale, e (molto) altro ancora. In
questo modo, vengono costruiti i dati campionari prodotti dalla rilevazione.

I dati campionari vengono usati per produrre stime, a vari livelli territoriali
(provinciale, regionale, nazionale) di parametri quali la consistenza delle forze
di lavoro, il tasso di disoccupazione, etc.

La rilevazione delle forze di lavoro è ripetuta con cadenza trimestrale.
Tuttavia, in ogni trimestre non viene ripetuto l’intero processo di selezione
di comuni e famiglie. Infatti ogni famiglia selezionata viene osservata per due
trimestri consecutivi, esce temporaneamente dal campione per altri due tri-
mestri, e viene di nuovo osservata nei due trimestri successivi. I comuni auto-
rappresentativi sono sempre presenti nel campione, mentre quelli non auto-
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rappresentativi vengono sostituiti quando non sono più in grado di fornire
nuove famiglie al campione.

1.3 Popolazioni, etichette, modalità etichettate

Consideriamo una popolazione finita U = {u1, . . . , uN} composta da N unità
elementari u1, . . . , uN . Queste saranno sempre assunte identificabili: ad ognu-
na di esse può essere assegnata un’etichetta che la identifica univocamente .
Per semplicità, assumiamo che all’unità (elementare) ui sia associata l’etichet-
ta i. In vista della corrispondenza biunivoca tra unità di osservazione (reali)
e etichette, risulta equivalente parlare dell’unità ui e dell’unità di etichetta i.
Per brevità, e senza perdita di generalità, si identificherà d’ora in avanti ogni
unità elementare con la propria etichetta, e si userà la locuzione abbreviata
unità i in luogo di quella completa unità di etichetta i. In forza della corri-
spondenza dianzi stabilita, l’insieme delle N etichette IN = {1, . . . , N} verrà
d’ora in poi considerato come popolazione di riferimento.

Per ogni unità i sono definite le modalità di uno o più caratteri. Per sempli-
cità, faremo prevalentemente riferimento al caso di un solo carattere, essendo
pressoché immediata l’estensione a più caratteri.

Dato un carattere Y, indichiamo con yi la modalità da esso assunta in
corrispondenza dell’unità i. Per il momento, assumeremo che non vi siano
errori di misurazione: se l’unità i è inclusa nel campione, la modalità yi può
essere osservata senza errore.

L’osservazione completa (o osservazione etichettata, o modalità etichettata)
dell’unità i è la coppia (i, yi), ossia la coppia costituita dall’unità e dalla
corrispondente modalità. Essa conserva l’informazione relativa non solo alla
modalità osservata, ma anche all’unità a cui si riferisce, e costituisce il dato
statistico di base.

Per l’intera popolazione, sono definite le N coppie (osservazioni etichet-
tate) (i, yi), i = 1, . . . , N . Esse sono equivalenti al vettore (colonna, per
convenzione) Y N = (y1 · · · yN )T , la cui componente i-ma è la modalità yi del-
l’unità i. In questo modo, il vettore Y N è costituito da modalità etichettate,
contenenti l’informazione relativa non solo alle modalità del carattere Y, ma
anche alle unità corrispondenti.

Il vettore Y N è il parametro della popolazione, in quanto individua univo-
camente il modo in cui il carattere Y si manifesta nella popolazione. La cono-
scenza di Y N , ossia l’osservazione (senza errore) delle componenti del vettore
Y N porta ad una perfetta conoscenza delle modalità con cui il carattere Y si
manifesta su tutte le unità della popolazione di interesse.

Nei casi reali, il parametro della popolazione Y N è in genere incognito.
Indicheremo con ΩN l’insieme di tutti i “valori” che Y N può assumere. L’in-
sieme ΩN è lo spazio dei parametri. Il caso tipico (anche se tutt’altro che
esclusivo) è quello in cui ogni modalità yi è un numero reale, per cui Y N è
un qualunque punto di IRN : ΩN = IRN .
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Come anticipato, un parametro statistico (di interesse) θ è una funzione
delle modalità che costituiscono il vettore Y N . In simboli: θ = θ(Y N ) =
θ(y1, . . . , yN ). Esempi molto semplici, ma importanti, di parametri statistici
sono la media della popolazione, per la quale si userà sempre il simbolo μy

μy =
1
N

N∑
i=1

yi (1.1)

e la varianza della popolazione, per la quale verrà impiegato il simbolo σ2
y

σ2
y =

1
N

N∑
i=1

(yi − μy)2 =
1
N

N∑
i=1

y2
i − μ2

y. (1.2)

Esempio 1.1 (Popolazioni dicotomiche). Un caso speciale molto impor-
tante è quello in cui si vuole studiare la presenza/assenza di un attributo A
sulle unità della popolazione. In questo caso il carattere Y assume le due sole
modalità 1 e 0, indicanti rispettivamente la presenza e l’assenza dell’attributo
A. In simboli:

yi =
{

1 se l′unità i possiede l′attributoA
0 altrimenti per ciascuna unità i = 1, . . . , N.

Lo spazio dei parametri ΩN è l’insieme {0, 1}N delle N -ple le cui componenti
sono uguali a 0 o a 1. Indichiamo con NA il numero di unità della popola-
zione che presentano l’attributo A, e sia PA = NA/N la proporzione di unità
della popolazione che presentano l’attributo A. La media μy si riduce alla
proporzione ϑA:

μy =
1
N

N∑
i=1

yi =
NA

N
= PA.

Tenendo poi conto che y2
i = yi, la varianza σ2

y è uguale a:

σ2
y =

1
N

N∑
i=1

y2
i − μ2

y =
1
N

N∑
i=1

yi − P 2
A = PA − P 2

A = PA(1 − PA). ��

Nel caso in cui i caratteri di interesse siano due o più, l’approccio è del
tutto simile. Per semplicità di notazione, ci limitiamo al caso di due caratteri
X , Y. In corrispondenza di un’unità i si ha ora la coppia di modalità (xi, yi),
assunte rispettivamente da X e da Y, i = 1, . . . , N .

Le modalità etichettate dell’unità i sono date dalla terna (i, xi, yi), co-
stituita dall’unità e dalla corrispondente coppia di modalità dei due ca-
ratteri X , Y. Esattamente come nel caso precedente, essa contiene l’infor-
mazione relativa sia alle modalità, sia all’unità a cui si riferiscono. Per la
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popolazione IN sono pertanto definite le N terne (osservazioni etichetta-
te) (i, xi, yi), i = 1, . . . , N . Esse sono equivalenti ai due vettori (colonna)
Y N = (y1 · · · yN)′, XN = (x1 · · ·xN)′, o, il che è lo stesso, alla matrice (per
convenzione di N righe e due colonne) (XN , Y N).

Parametri statistici di interesse sono funzioni delle modalità che costitui-
scono la matrice (XN , Y N ). Esempi molto semplici di parametri di interesse,
oltre a quelli univariati già introdotti, sono la covarianza tra i due caratteri
nella popolazione in esame:

σxy =
1
N

N∑
i=1

(xi − μx) (yi − μy) =
1
N

N∑
i=1

xi yi − μx μy

e il loro coefficiente di correlazione lineare

ρxy =
σxy

σx σy

in cui la notazione è quella introdotta in (1.1) e (1.2).

1.4 Popolazioni suddivise in sottopopolazioni

Una popolazione IN può essere suddivisa in M sottoinsiemi distinti di unità,
ognuno dei quali costituisce una sua sottopopolazione. Indichiamo con

– I1
N1

la prima sottopopolazione, di N1 unità;
– I2

N2
la seconda sottopopolazione, di N2 unità;

· · · · · ·
– IM

NM
la M -ma sottopopolazione, di NM unità.

Dal punto di vista insiemistico, le M sottopopolazioni Ig
Ng

, g = 1, . . . , M , co-
stituiscono una partizione della popolazione IN : ogni unità di IN deve necessa-
riamente appartenere ad uno e uno sola delle sottopopolazioni in cui IN è sud-
divisa. Formalmente questo significa che l’unione delle varie sottopopolazioni
ricostruisce la popolazione totale:

I1
N1

∪ I2
N2

∪ · · · ∪ IM
NM

= IN

e che le sottopopolazioni non hanno unità in comune (sono due a due
disgiunte):

Ig
Ng

∩ Ih
Nh

= ∅ per ciascun g �= h; g, h = 1, . . . , M.

Chiaramente, si deve avere N1 + · · ·+ NM = N . Indichiamo con wg = Ng/N

il peso della sottopopolazione g-ma (g = 1, . . . , M). È immediato verificare
che valgono le seguenti due relazioni:

0 � wg � 1 per ogni g = 1, . . . , M ; w1 + · · ·+ wM = 1.
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Per comodità di notazione, ciascuna unità della popolazione può essere
identificata tramite una doppia etichetta (g, i), in cui:

– g (= 1, . . . , M) indica l’etichetta che identifica la sottopopolazione;
– i (= 1, . . . , Ng) identifica l’unità nell’ambito della sottopopolazione a cui

appartiene.

Coerentemente con questa simbologia, sia ygi la modalità dell’unità i
(= 1, . . . , Ng) della sottopopolazione g-ma (g = 1, . . . , M), e siano

μyg =
1

Ng

Ng∑
i=1

ygi ; g = 1, . . . , M

σ2
yg =

1
Ng

Ng∑
i=1

(ygi − μyg)2 ; g = 1, . . . , M

rispettivamente la media e la varianza del carattere Y nella sottopopolazione
g-ma. La successiva proposizione riassume le proprietà essenziali della media
e della varianza di Y quando la popolazione è suddivisa in sottopopolazioni.

Proposizione 1.1. Valgono i seguenti due risultati:

– la media della popolazione è pari alla media delle medie delle sottopopola-
zioni (ponderate con i pesi delle stesse):

μy =
M∑

g=1

wg μyg ; (1.3)

– la varianza della popolazione è uguale alla somma (a) della media del-
le varianze delle sottopopolazioni e (b) della varianza delle medie delle
sottopopolazioni (sempre ponderate con i propri pesi):

σ2
y =

M∑
g=1

wg σ2
yg +

M∑
g=1

wg (μyg − μy)2. (1.4)

Dimostrazione. La dimostrazione della (1.3) è immediata:

μy =
1
N

M∑
g=1

Ng∑
i=1

ygi

=
M∑

g=1

Ng

N

⎧⎨⎩ 1
Ng

Ng∑
i=1

ygi

⎫⎬⎭
=

M∑
g=1

wg μyg .
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Per quanto riguarda la (1.4), è sufficiente osservare che:

σ2
y =

1
N

M∑
g=1

Ng∑
i=1

(ygi − μy)2

=
1
N

M∑
g=1

Ng∑
i=1

{(ygi − μyg) + (μyg − μy)}2

=
1
N

M∑
g=1

⎧⎨⎩
Ng∑
i=1

(ygi − μyg)2 +
Ng∑
i=1

(μyg − μy)2

+2 (μyg − μy)
Ng∑
i=1

(ygi − μyg)

⎫⎬⎭
=

M∑
g=1

Ng

N

⎧⎨⎩ 1
Ng

Ng∑
i=1

(ygi − μyg)2

⎫⎬⎭ +
M∑

g=1

Ng

N
(μyg − μy)2

=
M∑

g=1

wg σ2
yg +

M∑
g=1

wg (μyg − μy)2. ��

1.5 Liste di unità di campionamento

Come già accennato nella Sezione 1.2, l’accesso alla popolazione di unità di
osservazione avviene tramite una lista (frame) di unità di campionamento
(sampling units). In generale, una lista è un qualunque meccanismo che per-
mette di accedere alle unità della popolazione e di osservarle. Le singole entità
che compongono la lista sono le unità di campionamento, in contrapposizione
alle unità di osservazione della popolazione, su cui sono definite le modalità
del(i) carattere(i) oggetto di interesse. Tramite un’opportuna regola di selezio-
ne si sceglie un campione di unità di campionamento, e tramite esse si accede
alle corrispondenti unità di osservazione della popolazione.

Esempi molto semplici di liste che permettono l’accesso a popolazioni quali
quelle degli individui residenti in Italia, delle aziende, etc. sono di seguito
riportati:

– Anagrafe delle famiglie (per comune).
– Liste elettorali (per comune o per sezione elettorale).
– Elenchi degli abbonati alla rete di telefonia fissa (per comune). La loro

copertura della popolazione è assai elevata, benché un pò erosa dalla diffu-
sione dei telefoni cellulari. Ad ogni modo, la disponibilità di elenchi su CD
favorisce tanto la formazione sistematica di campioni quanto il contatto di
individui tramite telefono.
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– Lista degli studenti iscritti a scuole pubbliche di tutti gli ordini (per scuola
o per facoltà universitaria).

– Albi professionali provinciali previsti per professionisti di varie categorie
(medici, avvocati, attuari, commercialisti, etc.).

– Archivi ufficiali quali il registro delle imprese fornito dalla Unione del-
le Camere di Commercio Italiane. Queste liste sono diventate nel tempo
sempre piuttosto obsolete e non molto attendibili, specie a fini di selezione
di un campione di aziende. Recentemente si è iniziato a integrarle con liste
quali quelle delle Pagine Gialle (comunque abbastanza lacunose), di azien-
de produttrici di energia elettrica, e con le liste dell’INPS (costruite per
fini previdenziali). Sempre per quanto riguarda le imprese che operano sul
territorio italiano, la lista più completa è indubbiamente l’archivio ASIA
utilizzato dall’ISTAT.

– Liste di unità territoriali amministrative di vario tipo, quali comuni,
aziende sanitarie locali, distretti scolastici, distretti elettorali, sezioni di
censimento, etc.

– Liste di organi vari, quali scuole, ospedali, agenzie bancarie, enti pubblici,
etc.

Il caso più semplice, in linea di principio, è quello in cui nella lista sono
elencate le unità di osservazione della popolazione, le quali coincidono con le
unità di campionamento. In questo caso la selezione di unità di osservazione
può avvenire direttamente dalla lista delle corrispondenti unità di campiona-
mento, per cui si parla di campionamento diretto di unità della popolazione.
Idealmente, una lista per il campionamento diretto dovrebbe identificare (ad
es. tramite una etichetta) tutte le unità della popolazione. Inoltre, una volta
che un’unità viene scelta, dovrebbe permettere di localizzarla e di contattarla.
Requisiti addizionali importanti sono i seguenti:

– ogni unità della popolazione dovrebbe comparire una sola volta nella lista;
– nella lista dovrebbero comparire solo le unità della popolazione.

Non sempre i requisiti sopra elencati sono soddisfatti. Consideriamo ad
esempio un’azienda produttrice di programmi televisivi, che vuole decidere
se lanciare o meno un nuovo canale di tv via cavo specializzato in program-
mi per giovani e giovanissimi (cartoni animati, programmi di giochi, telefilm,
programmi musicali, etc.). L’azienda deve in primo luogo valutare il proprio
mercato potenziale, ed in particolare deve avere un’idea di quante famiglie
sono disposte ad abbonarsi al canale, e a quale prezzo. La popolazione di ri-
ferimento, in questo caso, è quella delle famiglie residenti in Italia ed in cui
vi sia almeno un bambino o un ragazzo (tali famiglie sono le nostre unità di
osservazione). Un’idea molto semplice potrebbe essere quella di: (a) selezio-
nare un campione di famiglie italiane con almeno un bambino o un ragazzo;
(b) accertare la disponibilità delle famiglie del campione a sottoscrivere un
abbonamento, e a quali condizioni economiche. Gli elenchi telefonici fornisco-
no una lista per il campionamento diretto, su cui si possono fare le seguenti
osservazioni. (i) Non tutte le famiglie che vivono in Italia possiedono il te-
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lefono, per cui la nostra lista non contiene tutte le unità della popolazione.
Per le famiglie di interesse (quelle con bambini) si tratta tutto sommato di un
problema abbastanza marginale, in quanto il numero di famiglie con bambini
che non possiedono telefono fisso può essere considerato piccolo. (ii) Vi sono
famiglie con due o più numeri telefonici, per cui vi sono unità (famiglie) che
compaiono due o più volte nella lista. (iii) Non in tutte le famiglie dell’elen-
co telefonico vi è (almeno) un bambino o un ragazzo. Questo significa che la
nostra lista contiene (molte) unità che non fanno parte della popolazione di
interesse.

La disponibilità di liste per il campionamento diretto di unità (di osserva-
zione) della popolazione non è, tutto sommato, molto frequente nella pratica
applicativa. Spesso le unità di campionamento non coincidono con quelle di
osservazione, nel senso che possono essere “più grandi” (ogni unità di campio-
namento è composta da più unità di osservazione) o “più piccole” (ogni unità
di osservazione è composta da più unità di campionamento).

Un esempio molto semplice in proposito è quello, già accennato nella Se-
zione 1.2, della rilevazione ISTAT delle forze di lavoro. La popolazione di
riferimento è quella degli individui residenti in Italia, che sono le unità di os-
servazione. L’accesso a tale popolazione avviene tramite la lista delle famiglie,
che sono quindi le unità di campionamento. Più in dettaglio, tramite una op-
portuna procedura si seleziona un campione di famiglie, e si osservano tutti
gli individui appartenenti alle famiglie selezionate. In questo caso ogni unità
di campionamento è composta da più unità di osservazione.

Un esempio in cui succede esattamente l’opposto è quello riportato in Särn-
dal e altri (1993), che riguarda l’indagine sui redditi delle famiglie svedesi. La
popolazione di interesse è quella delle famiglie residenti in Svezia, le quali
sono le unità di osservazione. Ora, in Svezia non esiste una lista affidabile
delle famiglie residenti, mentre esiste una buona lista degli individui residen-
ti. Pertanto, come unità di campionamento vengono usati gli individui, che
permettono di identificare le famiglie a cui appartengono, e di osservare il cor-
rispondente reddito. Chiaramente, in questo caso ogni unità di osservazione è
costituita da più unità di campionamento.

Un caso speciale molto importante di unità di campionamento è quello
delle unità areali. Queste sono di particolare importanza (e utilità) quando
le unità di osservazione della popolazione di interesse si trovano in un dato
territorio. Per accedere ad esse si può allora pensare di (i) suddividere il terri-
torio in aree (che quindi sono le unità di campionamento); (ii) selezionare un
campione di unità territoriali; (iii) osservare (alcune delle o tutte le) unità che
vivono nelle aree campione. Questo modo di procedere è particolarmente utile
quando non si dispone di una lista delle unità di osservazione, oppure quan-
do liste di unità sono disponibili solo separatamente per area territoriale. Un
esempio in proposito è la rilevazione ISTAT delle forze di lavoro, in cui il terri-
torio italiano è suddiviso in province, e ogni provincia in gruppi di comuni. Li-
ste di famiglie sono disponibili separatamente per ogni comune, mentre è molto
più difficile (per ragioni di tempo e di costo) avere una lista completa delle
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famiglie italiane. Pertanto, risulta conveniente selezionare un campione di co-
muni, e poi utilizzare le liste comunali per selezionare un campione di famiglie.

A questo punto, siamo in grado di distinguere tra popolazione obiettivo e
popolazione da lista. La popolazione obiettivo (target population) è l’insieme
di tutte le unità (di osservazione) che formano la popolazione di riferimento,
sulla quale si vogliono raccogliere informazioni. La popolazione da lista (frame
population) è invece l’insieme di tutte le unità di osservazione a cui si può
accedere (e che possono quindi essere osservate) tramite la lista delle unità di
campionamento. Il caso ideale è ovviamente quello in cui la popolazione da
lista coincide con quella obiettivo. Rispetto alla popolazione obiettivo la lista
deve possedere le seguenti caratteristiche:

– completezza: deve contenere tutte le unità della popolazione obiettivo;
– aggiornamento: non deve contenere unità estranee, duplicazioni e ogni

unità deve essere distinguibile dalle altre e individuabile.

Quando ciò non accade, si è in presenza di imperfezioni di lista (frame
imperfections; Fig. 1.1). In linea di principio, le principali imperfezioni di lista
sono di tre tipi.

– Sottocopertura. Si ha quando la popolazione obiettivo contiene unità che
non sono nella popolazione da lista. Un qualunque campione non con-
terrà nessuna di queste unità, che non hanno quindi alcuna possibilità di
essere osservate. In altre parole, una parte della popolazione obiettivo vie-
ne trascurata, con seri rischi di effetti distorsivi se le sue caratteristiche
differiscono dalla parte della popolazione obiettivo su lista.

– Sovracopertura. Si ha quando la popolazione da lista contiene unità che
non sono nella popolazione obiettivo. Il rischio che si corre in questo caso
è di osservare unità che non interessano, con dispendio di tempo e risorse
materiali.

– Duplicazioni. Si hanno quando una stessa unità compare più volte nella
lista. Imperfezioni dovute a duplicazioni sorgono principalmente quando
la lista delle unità di campionamento è costruita a partire da due o più

Campione

Popolazione obiettivoSottocopertura

Popolazione
da lista

Sovracopertura

Fig. 1.1 Imperfezioni di lista (sottocopertura e sovracopertura)
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“sottoliste”, che potrebbero avere unità in comune. Anche di questo fatto
bisogna tener conto se si vuole avere una corretta idea di come estendere
all’intera popolazione i risultati osservati nel campione.

La coincidenza tra popolazione obiettivo e popolazione da lista non sempre
(anzi, abbastanza raramente) ha luogo in pratica. È però di fondamentale
importanza che le imperfezioni di lista siano di entità lieve. Gravi imperfezioni
di lista (soprattutto per la sottocopertura) possono condurre a conclusioni
fuorvianti per quel che riguarda la popolazione obiettivo.

1.6 Rilevazioni statistiche e indagini statistiche

Per evitare futuri equivoci, ci sembra a questo punto opportuno distinguere
l’aspetto più esteso di indagine statistica da quello più ristretto di rilevazione
statistica, al quale faremo riferimento d’ora in avanti.

1. Per rilevazione statistica (totale o campionaria) intenderemo l’attività che,
rivolta alla produzione di dati statistici, percorre le seguenti fasi.
– Piano di raccolta dei dati unitari. Richiede la definizione degli obiet-

tivi dell’indagine, dei mezzi e metodi per attuarla e dei relativi tempi
e costi. In questa fase vanno specificati elementi chiave quali la popo-
lazione di riferimento, i caratteri e i parametri di interesse, la lista (o
le liste) delle unità di campionamento, le informazioni a priori sulla
popolazione (inclusi eventualmente alcuni caratteri noti da rilevazioni
precedenti), il disegno di campionamento (ossia la regola di selezione
delle unità campionarie), le procedure per l’osservazione dei caratteri
di interesse (formulazione del questionario, specificazione del tipo di
intervista, etc.), gli stimatori da usare.

– Messa a punto e controllo del piano di raccolta dati. Questa fase (se
prevista) viene effettuata tramite una indagine pilota che consente di
mettere a punto il questionario, scoprire eventuali problemi nelle liste
di campionamento, nella rilevazione, etc.

– Raccolta dei dati. Viene selezionato il campione (se la rilevazione è cam-
pionaria), e sono osservate le modalità delle unità campionate. L’opera-
zione fondamentale svolta in questa fase consiste nella misurazione delle
modalità dei caratteri di interesse, in genere tramite somministrazione
di un questionario agli intervistati.

– Sistemazione e prima elaborazione dei dati. I dati osservati vengono
preparati per analisi successive. Ciò richiede l’esecuzione di una serie
di operazioni, quali la codifica dei dati osservati, la loro trascrizione su
supporto informatico e controllo logico di coerenza dei dati (editing),
l’integrazione di dati mancanti (dovuti ad intervistati che non hanno
fornito nessuna risposta, o non hanno risposto ad alcune domande del
questionario), etc.
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– Riduzione parametrica dei dati. In questa fase vengono calcolate le sti-
me dei parametri di interesse della popolazione, cos̀ı come delle misure
di precisione di tali stime. Spesso vengono anche eseguite ulteriori ana-
lisi quali il confronto di sottogruppi di unità della popolazione, l’analisi
di eventuali relazioni statistiche (regressione, correlazione, connessione
e altro) tra caratteri, etc.

2. Per indagine statistica intenderemo l’attività più completa che, dopo le
fasi di:
– progettazione di una ricerca statistica;
– acquisizione delle informazioni occorrenti (stime) in base ai risultati

di una rilevazione statistica (pianificata ed eseguita nell’ambito della
stessa ricerca o svolta da altre istituzioni);

procede alle seguenti ulteriori fasi:
– analisi statistiche di ipotesi (in genere tramite test statistici) in merito

all’indagine;
– modellizzazione descrittiva e operativa (costruzione di un modello

teorico e suo uso a fini previsivi) per il fenomeno oggetto di indagine.

Mentre un’indagine statistica ha in genere un fine ben preciso, che esige un
contenuto spesso molto specifico dei dati da osservare, una rilevazione statisti-
ca svolta come rilevazione a sé stante è progettata come indagine statistica di
servizio (o generale), ovvero destinata a fornire parametri strutturali di base
che permettano ai ricercatori di approfondire proprie analisi e modellizzazioni
nell’ambito di proprie indagini statistiche. Un esempio in proposito è fornito
dalla rilevazione delle forze di lavoro. Essa fornisce da un lato parametri (tas-
so di disoccupazione, ammontare e composizione delle forze di lavoro, etc.)
utili per studiare l’andamento del mercato del lavoro e per valutare l’effetto
di politiche economiche. Dall’altro, i dati forniti dalla rilevazione delle forze di
lavoro sono ampiamente usati da ricercatori per verificare teorie economiche
sul mercato del lavoro, per analizzare e prevedere (assieme eventualmente ad
altri dati) l’andamento della domanda e dell’offerta di lavoro, etc.

1.7 Fonti di errore e distorsioni

Nelle operazioni effettuate in ogni rilevazione statistica, e soprattutto in quelle
su larga scala, vi è la possibilità di errori e distorsioni che possono grandemente
influenzare i risultati che si ottengono. Qui di seguito viene effettuata una
breve discussione delle principali categorie di tali errori e distorsioni.

1. Distorsioni ed errori nel campione. In questa categoria sono inclusi le di-
storsioni e gli errori che dipendono da imprecisioni di lista (già discusse in
precedenza) e dal processo di selezione delle unità del campione.
– La più grave fonte di distorsione dovuta a imprecisioni di lista è quella

dovuta a sottocopertura: alcune delle unità della popolazione obiettivo
non compaiono nella popolazione da lista, e quindi non possono esse-
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re selezionate nel campione. Chiaramente, questo potrebbe essere un
difetto potenzialmente molto grave, che potrebbe produrre distorsio-
ni dovute al trascurare sistematicamente una parte della popolazione.
Inoltre, anche se trascurabile a livello di intera popolazione, la sotto-
copertura potrebbe essere rilevante quando si esaminano singole sotto-
popolazioni. Un’altra fonte di possibili distorsioni, di cui bisogna tener
conto in fase di costruzione di stime, è la presenza di duplicazioni. Que-
sto accade soprattutto quando la lista di campionamento deriva dalla
fusione di più liste aventi unità in comune. Per quanto riguarda la so-
vracopertura della lista, invece, questa non ha di per sé effetti distorsivi.
Tuttavia, può portare a contattare unità che non interessano la rile-
vazione, con un conseguente dispendio di risorse che potrebbero essere
utilmente impiegate.

– Gli errori campionari sono tutti gli errori dovuti all’osservare soltanto
una parte della popolazione. Questo tipo di errore è ineliminabile nelle
rilevazioni campionarie, ma può essere grandemente ridotto attraverso
la scelta della numerosità campionaria, della regola di selezione delle
unità che costituiscono il campione e dello stimatore.

2. Distorsioni ed errori nel processo di acquisizione dei dati. Le principali
fonti di errori, a questo livello, sono gli errori di misurazione e le mancate
risposte.
– Gli errori di misurazione consistono nel fatto che non si osservano esat-

tamente le modalità dei caratteri oggetto di interesse, in quanto le os-
servazioni contengono errori di misura. Questi sono dovuti a svariate
ragioni. Anzitutto, l’intervistato potrebbe (intenzionalmente o meno)
fornire risposte errate; questo può accadere, ad es., in indagini sul red-
dito, o su argomenti “delicati”, quali consumi di droga o alcool, etc. In
secondo luogo, il questionario potrebbe essere poco chiaro, o potreb-
be essere l’intervistatore a formulare la domanda in modo erroneo, o
trascrivere in maniera errata la risposta. Ancora, l’intervistatore po-
trebbe influenzare l’intervistato in modo da distorcerne la risposta. In
ogni caso, gli errori di misurazione sono una fonte molto seria di er-
rore, e potrebbero avere effetti molto seri sulla qualità delle stime dei
parametri della popolazione.

– Le mancate risposte si hanno quando l’intervistato è irreperibile, oppure
non vuole rispondere o non è in grado di rispondere ad alcune o a tutte
le domande del questionario. Le distorsioni dovute a mancate risposte
sono particolarmente gravi, e possono inficiare grandemente i risultati
di un’indagine. Di esse bisogna tener conto con grande attenzione nella
fase di costruzione di stime dei parametri.

3. Errori nell’elaborazione dei dati. Si tratta degli errori dovuti alle operazioni
di codifica e trascrizione dei dati su supporto informatico, di errori non
rilevati nella fase di editing, nell’integrazione dei dati mancanti, etc.
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1.8 Come non progettare una rilevazione campionaria

Gli errori a cui è soggetta una rilevazione vanno sempre tenuti ben presenti,
perchè, come sottolineato più volte, possono addirittura inficiarne i risultati.
Un esempio celebre è quello dell’indagine promossa dal Literary Digest. Nel-
le elezioni presidenziali statunitensi del 1936 molti giornali organizzarono un
sondaggio presso il corpo elettorale della popolazione finalizzato alla previsio-
ne dei risultati delle elezioni. La sfida avvenne tra il candidato repubblicano
Alfred M. Landon e quello democratico Franklin. D. Roosevelt. La nota rivi-
sta Literary Digest, che aveva correttamente previsto i risultati delle quattro
elezioni presidenziali americane precedenti (1920, 1924, 1928, 1932) ricorrendo
a sondaggi d’opinione, previde che Alfred M. Landon avrebbe ottenuto il 55%
dei voti contro il 41% del presidente in carica, Franklin D. Roosevelt.

Nella indagine condotta dal Literary Digest 10 milioni di fac-simile di
schede elettorali furono inviate per posta a nominativi estratti dagli elen-
chi telefonici e dai registri automobilistici. Dei 10 milioni circa 2.4 milioni
risposero al sondaggio. Malgrado l’enormità della numerosità del campione
l’esito delle elezioni sment̀ı completamente il pronostico. Franklin D. Roose-
velt divenne presidente con il 61% delle preferenze contro il 37% del candidato
repubblicano. Il clamoroso errore distrusse la credibilità della rivista che cessò
la pubblicazione nel 1938.

L’errore nella previsione commesso dal Literary Digest è essenzialmente
riconducibile a due cause principali:

– Distorsione dovuta alla selezione del campione (errore di sottocopertura).
Il Literary Digest aveva compilato la lista della popolazione utilizzata per
l’estrazione del campione sfruttando gli elenchi degli abbonati telefonici
e dei proprietari di automobili. Tali elenchi sovrarappresentavano i ceti
più abbienti, che tendevano a votare prevalentemente repubblicano, e sot-
torappresentavano la popolazione dei votanti del partito democratico. In
termini formali, la popolazione da lista (elettori che disponevano di telefo-
no e di automobile) differiva sostanzialmente dalla popolazione obiettivo
(tutti gli elettori).

– Distorsione dovuta alle mancate risposte. Il basso tasso di risposta com-
binato con la distorsione dovuta ai non rispondenti aveva completamente
falsato i risultati della rilevazione. Un tasso di risposta del 24% è troppo
basso per ottenere risultati attendibili dei parametri di interesse della po-
polazione a meno che non sia possibile assumere che i 7.6 milioni di non
rispondenti abbiano la stessa opinione dei rispondenti. Nella pratica delle
indagini campionarie, non è lecito in generale assumere che i rispondenti
siano simili ai non rispondenti.

L’iniziale distorsione presente nel campione è stata accentuata dal fatto che le
persone appartenenti ai ceti più abbienti e che tendevano ad essere sostenitori
di Landon erano anche più propensi a rispondere al sondaggio. D’altra parte
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anche se tutti gli elettori appartenenti al campione avessero risposto, non si
sarebbe annullata la distorsione dovuta alla sottocopertura.

Contemporaneamente al sondaggio della Literary Digest, George Gallup,
utilizzando un campione di poche migliaia di americani, predisse correttamen-
te la vittoria di Roosevelt. Quindi un campione grande non sempre fornisce
risultati più attendibili di un campione di dimensione più esigua. Non è im-
portante solo la dimensione del campione, ma ancor più la sua composizione.
In conclusione, nel caso del Literary Digest il campione, pur numericamente
enorme, non si rivelò rappresentativo della popolazione a causa dell’inade-
guatezza delle liste utilizzate per la sua estrazione. A tale effetto, si combina
l’effetto distorsivo dovuto al fenomeno dell’autoselezione dei rispondenti.

1.9 Campionamento non probabilistico

La distinzione principale che occorre effettuare sul concetto di campione è
quella tra campione probabilistico e non probabilistico.

Si parla di campione probabilistico quando la selezione del campione av-
viene sulla base di una legge di probabilità (disegno campionario) nota a priori
perché prefissata dallo statistico in fase di progettazione della rilevazione. Per
poter effettuare un campionamento probabilistico è fondamentale disporre del-
la lista di unità che costituiscono la popolazione oggetto di studio. Le unità
della popolazione sono selezionate dalla lista secondo un meccanismo casuale,
e ogni unità della popolazione ha una probabilità nota e non nulla di essere
inclusa nel campione.

Sono non probabilistici i campioni che non soddisfano la precedente condi-
zione. Nel campionamento non probabilistico la scelta delle unità campionarie
viene effettuata sulla base di criteri di comodo e di praticità e/o sulla base di
informazioni a priori relative alle caratteristiche della popolazione di interesse.
Nonostante questi metodi non escludano la possibilità di ottenere stime accu-
rate delle grandezze di interesse della popolazione (medie, proporzioni, etc.),
è impossibile valutare la precisione delle stime. Il campionamento non proba-
bilistico non consente di valutare l’accuratezza dei risultati ottenuti a livello
campionario, e le loro (eventuali) relazioni con le corrispondenti grandezze a
livello di popolazione.

Supponiamo ad esempio di voler effettuare un sondaggio per valutare la
qualità del servizio di mensa di una scuola. A questo scopo si decide di in-
tervistare i primi 100 studenti che si presentano alla mensa. Chiaramente
il campione selezionato non ha nulla di casuale essendo costruito in modo
accidentale. Nel campionamento probabilistico il concetto di casualità è stret-
tamente connesso a quello di probabilità: selezionare le unità a caso non vuol
dire selezionarle “a casaccio”, ma bens̀ı selezionarle secondo una procedura
predefinita e casualizzata in modo controllata dallo statistico.

Nel campionamento probabilistico la condizione di casualità è una con-
dizione necessaria per poter ricondurre alla popolazione, attraverso la teo-
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ria della probabilità, i risultati ottenuti dal campione con un certo grado di
affidabilità.

Il campionamento non probabilistico è utilizzato nelle indagini in cui non
è disponibile una lista di unità da cui estrarre il campione o il costo di co-
struzione di tale lista è proibitivo, e nelle indagini in cui si vuole contenere il
costo di raccolta delle informazioni. Metodi di campionamento non probabi-
listici includono (tra gli altri) il campionamento ragionato, il campionamento
per quote, e il campionamento a valanga.

Nel campionamento ragionato la scelta delle unità da includere nel cam-
pione è affidata al giudizio di un esperto. Ad esempio, con riferimento ad una
regione italiana supponiamo di voler stimare una determinata caratteristica e
che un esperto scelga tre città della regione da cui collezionare i dati su cui
basare la stima. L’idea alla base della scelta dell’esperto è che nelle tre città si
riscontrino comportamenti analoghi a quelli dell’intera popolazione, cos̀ı che
possano in buona misura “rappresentarla”. Chiaramente, poiché la scelta delle
unità campionarie non si basa su criteri di casualità bens̀ı sulla competenza
dell’esperto, il metodo manca di oggettività. La rappresentatività del campio-
ne selezionato dipende fortemente dal livello di conoscenza che l’esperto ha
della popolazione oggetto di studio.

Il campionamento per quote è frequentemente utilizzato nelle indagini di
mercato e nei sondaggi di opinione a causa dei tempi rapidi di realizzazione
e dei costi ridotti. Nel campionamento per quote la popolazione viene suddi-
visa in gruppi omogenei sulla base di variabili strutturali legate alla variabile
di interesse (ad esempio: sesso, età, area geografica, etc.). Dopo aver ricava-
to il peso percentuale di ogni classe, il totale delle unità nel campione viene
suddiviso tra le classi in modo da rispecchiare le proporzioni esistenti nel-
la popolazione. Lo scopo è riprodurre nel campione (relativamente ai gruppi
formati) la struttura della popolazione. Si perviene in questo modo alla de-
finizione delle quote, cioé del numero di interviste che ciascun intervistatore
deve effettuare in ciascuna classe.

La caratteristica fondamentale del campionamento per quote è che la scel-
ta delle persone da intervistare è completamente demandata all’intervistatore.
Chiaramente, la soggettività del criterio di selezione delle unità campionarie
da parte dell’intervistatore va a svantaggio della rappresentatività del campio-
ne. Per esempio, l’intervistatore potrebbe scegliere di intervistare le persone
appartenenti a determinate zone della città per lui più facilmente raggiungi-
bili, le persone più disponibili, le persone appartenenti alla cerchia dei propri
conoscenti, evitando di selezionare gli abitanti dei quartieri periferici lontani
dalla propria residenza e/o gli abitanti ai piani superiori delle abitazioni.

A volte si cerca di limitare l’arbitrarietà dell’intervistatore introducendo
dei vincoli nella scelta delle unità da intervistare, quali ad esempio l’obbligo
di compiere prestabiliti itinerari, il divieto di inserire nel campione più unità
(individui) facenti parte di uno stesso nucleo abitativo, etc.

Vale la pena sottolineare che nel campionamento per quote gli effetti pro-
vocati dalle mancate risposte delle unità contattate dall’intervistatore non
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sono controllabili, poiché l’intervistatore completerà sempre il numero di in-
terviste assegnategli contattando nuove persone. Quindi se da una parte è
possibile eliminare facilmente le mancate risposte dall’altra si ha l’illusione di
eliminarne gli effetti distorsivi sulle stime dei parametri di interesse. Si osservi
che le persone che accettano di rispondere potrebbero differire da quelle che
non rispondono, con la conseguente introduzione di seri effetti distorsivi.

Il campionamento a valanga o a palla di neve è utilizzato soprattutto nelle
indagini sociologiche che affrontano temi sensibili (omosessualiatà, consumo di
droga o alcool, etc.), o nelle indagni su popolazioni rare i cui componenti sono
in gran parte ignoti e di difficile reperibilità (clandestini, senzatetto, etc.).
Tale campionamento consiste nello scegliere un gruppo iniziale di persone,
dalle quali poi risalire ad altre unità appartenenti alla stessa popolazione.
Ad esempio, in un’indagine sugli immigrati, si contattano alcuni immigrati
clandestini, e poi a fine intervista si chiede loro di indicare i nomi di altri
clandestini di loro conoscenza.

Come sottolineato in precedenza, la condizione che ogni unità della popo-
lazione sia caratterizzata da una probabilità nota e non nulla di essere inclusa
nel campione riveste un ruolo fondamentale nell’approccio al campionamen-
to probabilistico, ma nella pratica delle indagini campionarie possono esistere
delle ragioni che non ne consentono l’applicabilità. Tali metodi assumono, nel-
l’ambito del campionamento da popolazioni finite, una posizione intermedia
tra il campionamento probabilistico e il campionamento non probabilistico.
Tra questi metodi ricordiamo il campionamento cut-off, in cui alcuni elemen-
ti della popolazione di interesse sono deliberatamente esclusi dalla selezione
campionaria. Chiaramente, il ricorso a tale procedura, che può condurre a
distorsioni anche molto gravi dei risultati, è giustificato solo nelle seguenti
condizioni:

1. costi eccessivi dovuti alla costruzione di una lista di campionamento per
l’intera popolazione in relazione al piccolo guadagno di efficienza che si
può ottenere;

2. gli effetti distorsivi sui risultati possono considerarsi trascurabili.

Il campionamento cut-off è generalmente utilizzato quando la distribuzione
della variabile di interesse nella popolazione è fortemente asimmetrica e non
esiste una lista di campionamento affidabile per le “piccole unità. Tali popola-
zioni sono tipiche delle indagini sulle imprese, in cui una proporzione elevata
della popolazione è costituita da piccole imprese (caratterizzate da pochi di-
pendenti) il cui contributo al valore della variabile di interesse (ad esempio il
fatturato) è modesto, e poche grandi imprese. In tali casi si può decidere di
escludere dalla selezione del campione le piccole imprese. Si osservi che tale
procedura è sconsigliata quando si ha la possibilità di costruire una lista di
campionamento della popolazione ad un costo non eccessivo.
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Campionamento probabilistico

2.1 Disegni campionari: definizione e proprietà di base

In questo e nei successivi paragrafi ci porremo nelle condizioni ideali in cui vi
sia perfetta coincidenza tra popolazione obiettivo e popolazione da lista. La
notazione che useremo sarà quella del Capitolo 1, in cui si identificano le unità
con le loro etichette. Come già detto, se il parametro della popolazione Y N

fosse noto, si potrebbe calcolare il valore che assume un qualunque parametro
statistico di interesse. L’osservazione di tutte le modalità y1, . . . , yN , ossia
l’esecuzione di un censimento, è possibile solo in pochi casi eccezionali. La
regola è invece quella delle rilevazioni campionarie, in cui si segue uno schema
di base di questo tipo:

1. si seleziona un sottoinsieme di unità della popolazione;
2. si osservano le modalità delle unità in 1;
3. si usano le osservazioni in 2 per cercare di ottenere una qualche “ragione-

vole approssimazione” di uno o più parametri statistici di interesse.

Definizione 2.1. Un campione s è un qualunque insieme di unità della po-
polazione IN . Lo spazio dei campioni S è l’insieme di tutti i campioni che si
considerano.

L’ingrediente decisivo, ovviamente, è il meccanismo, la regola, di selezione
del campione. Le più importante regole di selezione di unità della popola-
zione sono quelle di tipo probabilistico, in cui chi progetta la rilevazione (“lo
statistico”) fissa uno schema probabilistico di selezione delle unità. D’ora in
avanti useremo il termine disegno campionario, senza altre specificazioni, per
indicare proprio schemi di selezione di unità di tipo probabilistico prefissati
dallo statistico.

Definizione 2.2. Un disegno campionario (probabilistico) è una coppia
(S, p(·)) in cui S è uno spazio dei campioni, e p(·) è una distribuzione di

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 2, © Springer-Verlag Italia 2012
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probabilità su S, la quale soddisfa le condizioni:

0 < p(s) � 1 per ogni s ∈ S;
∑
s∈S

p(s) = 1.

Un disegno campionario è:

– con ripetizione se in almeno un campione s in S una stessa unità compare
più di una volta;

– ordinato se vi sono almeno due campioni s1, s2 di S formati dalle stesse
unità, ma poste in ordine differente.

Una distinzione importante nell’ambito dei disegni campionari è quella tra
disegni campionari informativi e non informativi. In questo volume saranno
considerati unicamente disegni campionari non informativi. Ciò significa che
la probabilità con cui il campione viene estratto p(s) non dipende dai valori
della variabile di interesse Y associati alle unità della popolazione.

Per distinguere insiemi ordinati e non ordinati, d’ora in avanti adotteremo
una semplice convenzione. Useremo le parentesi tonde per indicare insiemi
ordinati (ovvero sequenze), e le parentesi graffe per indicare insiemi non ordi-
nati. Ad es., {1, 2} indica l’insieme non ordinato formato dalle unità 1, 2, che
quindi è perfettamente equivalente all’insieme {2, 1}. Con il simbolo (1, 2)
indicheremo invece l’insieme ordinato (coppia) formato dalle unità 1, 2. Esso
è differente da (2, 1), in quanto i suoi elementi sono posti in ordine diverso.

Esempio 2.1. Si consideri una popolazione di N = 7 unità: I7 = {1, 2, . . . , 7}.
Supponiamo poi che lo spazio dei campioni sia formato dagli otto campioni:

s1 = (1, 2, 3), s2 = (1, 2, 4), s3 = (5, 6), s4 = (7),
s5 = (6, 5), s6 = (1, 2, 2, 3), s7 = (3, 1, 2), s8 = (3, 1, 1, 2)

con le seguenti probabilità

p(s1) = 0.1, p(s2) = 0.15, p(s3) = 0.15, p(s4) = 0.05,

p(s5) = 0.2, p(s6) = 0.05, p(s7) = 0.1, p(s8) = 0.2.

Si tratta di un disegno campionario ordinato (in quanto, ad es., i due cam-
pioni s1, s7 sono formati dalle stesse unità ma poste in ordine diverso) e con
ripetizioni (perché ad es. nel campione s8 l’unità 1 compare due volte). ��

Esempio 2.2. Consideriamo una popolazione di N = 7 unità: I7 = {1, 2, . . . , 7}.
Lo spazio dei campioni è formato dai sei campioni:

s1 = {1, 2}, s2 = {1, 3}, s3 = {4}, s4 = {2, 3, 5}, s5 = {6, 7}, s6 = {4, 5, 7}

con le seguenti probabilità

p(s1) = 0.15, p(s2) = 0.2, p(s3) = 0.1, p(s4) = 0.1, p(s5) = 0.15, p(s6) = 0.3.

Si tratta di un disegno campionario non ordinato e senza ripetizioni. ��
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La numerosità campionaria n(s) di un campione s è pari al numero delle
unità (non necessariamente distinte) che formano il campione s. La numerosità
campionaria effettiva ν(s) di un campione s è invece il numero di unità distinte
che formano il campione s. Chiaramente, si ha sempre ν(s) � n(s). Inoltre, è
ν(s) = n(s) se e solo se nel campione s non vi sono ripetizioni.

Esempio 2.3. Si consideri l’Esempio 2.1. Il campione s6 ha una numerosità
uguale a 4, ma una numerosità effettiva pari a 3. In simboli: n(s6) = 4,
ν(s6) = 3. ��

L’ampiezza media di un disegno campionario, indicata con n, è il numero
medio di unità contenute nei campioni. In simboli:

n = E[n(s)] =
∑
s∈S

n(s) p(s).

Similmente, l’ampiezza media effettiva di un disegno campionario, indicata
con ν, è il numero medio di unità distinte contenute nei campioni:

ν = E[ν(s)] =
∑
s∈S

ν(s) p(s).

Chiaramente, è sempre ν � n. Inoltre, l’uguaglianza ν = n vale se e solo se il
disegno campionario è senza ripetizioni.

Esempio 2.4. Si consideri una popolazione di N = 5 unità: I5 = {1, 2, 3,
4, 5}, e si supponga che lo spazio dei campioni sia formato dai sette campioni:

s1 = (1, 2, 1), s2 = (1, 1, 2, 2), s3 = (1, 4), s4 = (4, 5, 3),
s5 = (3, 4, 1, 1), s6 = (3, 4, 5, 4, 3), s7 = (4, 1)

con le seguenti probabilità

p(s1) = 0.1, p(s2) = 0.3, p(s3) = 0.1, p(s4) = 0.2,

p(s5) = 0.2, p(s6) = 0.05, p(s7) = 0.05.

Si tratta di un disegno campionario ordinato e con ripetizioni. Le numero-
sità dei campioni, e le corrispondenti numerosità effettive sono qui di seguito
riportate:

n(s1) = 3, n(s2) = 4, n(s3) = 2, n(s4) = 3, n(s5) = 4, n(s6) = 5, n(s7) = 2;
ν(s1) = 2, ν(s2) = 2, ν(s3) = 2, ν(s4) = 3, ν(s5) = 3, ν(s6) = 3, ν(s7) = 2.

L’ampiezza media e l’ampiezza media effettiva sono rispettivamente eguali a:

n = 3 0.1 + 4 0.3 + 2 0.1 + 3 0.2 + 4 0.2 + 5 0.05 + 2 0.05
= 3.45;

ν = 2 0.1 + 2 0.3 + 2 0.1 + 3 0.2 + 3 0.2 + 3 0.05 + 2 0.05
= 2.45. ��
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La riduzione r(s) di un campione s è l’insieme (non ordinato) delle sue
unità distinte. Poiché le unità che compongono la riduzione r(s) sono le unità
distinte di s, è immediato concludere che la numerosità di r(s) è null’altro che
la numerosità effettiva di s: n(r(s)) = ν(s).

Dato un disegno campionario (S, p(·)), supponiamo di far corrispondere
ad ogni campione “originario” s ∈ S la sua riduzione r(s). Ciò che si ottiene
è un nuovo disegno campionario (S∗, p∗(·)), la riduzione di (S, p(·)), in cui:

– lo spazio dei campioni S∗ è l’insieme di tutte le riduzioni dei campioni
di S:

S∗ = {s∗ = r(s); s ∈ S};

– ogni campione s∗ di S∗ ha probabilità pari alla somma delle probabilità
dei campioni “originali” s di S la cui riduzione è s∗. In simboli, posto
C(s∗) = {s ∈ S : r(s) = s∗}, si ha:

p∗(s∗) =
∑

s∈C(s∗)

p(s).

Esempio 2.5. Consideriamo il disegno campionario dell’Esempio 2.1, e co-
struiamo la sua riduzione. Lo spazio dei campioni ridotto S∗ è formato dai
campioni:

s∗1 = {1, 2, 3}, s∗2 = {1, 2, 4}, s∗3 = {5, 6}, s∗4 = {7}.

Essendo poi

C(s∗1) = {s1, s6, s7, s8}, C(s∗2) = {s2}, C(s∗3) = {s3, s5}, C(s∗4) = {s4}

si può anche scrivere:

p∗(s∗1) = p(s1) + p(s6) + p(s7) + p(s8) = 0.1 + 0.05 + 0.1 + 0.2 = 0.45,

p∗(s∗2) = p(s2) = 0.15,

p∗(s∗3) = p(s3) + p(s5) = 0.15 + 0.2 = 0.35,

p(s∗4) = p(s4) = 0.05. ��

Un disegno campionario è ad ampiezza costante se tutti i campioni hanno
la stessa numerosità n. In simboli: n(s) = n per ogni s ∈ S. Un disegno
campionario è invece ad ampiezza effettiva costante se tutti i campioni hanno
la stessa numerosità effettiva ν . In simboli: ν(s) = ν per ogni s ∈ S.

Esempio 2.6. Sia I6 = {1, . . . , 6} una popolazione finita di N = 6 unità. Il
disegno campionario in cui S è formato dai campioni

s1 = (1, 2, 2), s2 = (1, 3, 2), s3 = (1, 4, 6), s4 = (4, 5, 3)
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con le seguenti probabilità

p(s1) = 0.2, p(s2) = 0.3, p(s3) = 0.25, p(s4) = 0.25

è ad ampiezza contante n = 3, in quanto tutti i campioni sono formati da tre
unità. Esso non è però ad ampiezza effettiva costante, poiché ad esempio è
ν(s1) = 2 e ν(s4) = 3.

Invece, il disegno campionario in cui i campioni che formano S sono

s1 = (1, 3), s2 = (2, 6, 6), s3 = (5, 4, 5), s4 = (5, 5, 1)

con probabilità

p(s1) = 0.25, p(s2) = 0.35, p(s3) = 0.25, p(s4) = 0.15,

è ad ampiezza effettiva costante ν = 2, poiché tutti i campioni sono formati
da due unità distinte. Esso non è ad ampiezza costante, essendo n(s1) = 2 e
n(s2) = 3. ��

2.2 Implementazione di disegni campionari mediante
schemi: brevi cenni

Se definire in maniera teorica un disegno campionario è semplice, la selezione
effettiva, nella pratica applicativa, di un campione in base ad un dato disegno
campionario non sempre è agevole (anzi, lo è piuttosto di rado).

In linea di principio, se il numero di campioni è “piccolo”, si può pensare
di enumerare i campioni e di sceglierli mediante generazione di un nume-
ro pseudo-casuale. Precisamente, si supponga che lo spazio dei campioni sia
composto da k campioni: S = {s1, . . . , sk}. In primo luogo, i campioni vanno
elencati nel modo seguente.

Campione Probabilità Probabilità cumulate

s1 p(s1) P1 = p(s1)
s2 p(s2) P2 = p(s1) + p(s2)
s3 p(s3) P3 = p(s1) + p(s2) + p(s3)
· · · · · · · · ·
sk p(sk) Pk = p(s1) + p(s2) + · · · + p(sk) = 1

Si genera poi un numero casuale U , con distribuzione uniforme nell’in-
tervallo [0, 1], e, posto P0 = 0, si procede secondo lo schema riportato qui
sotto:

– se P0 � U � P1 si seleziona s1;
– se P1 < U � P2 si seleziona s2;
– se P2 < U � P3 si seleziona s3;
– · · ·
– se Pk−1 < U � Pk si seleziona sk.
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Poiché il campione sj, j = 1, . . . , k è scelto se e solo se Pj−1 < U � Pj, la
probabilità di selezionare sj è pari a:

Pr(Selezionare sj) = Pr(Pj−1 < U � Pj)
= Pj − Pj−1

= p(s1) + · · ·+ p(sj) − (p(s1) + · · ·+ p(sj−1))
= p(sj)

qualunque sia j = 1, . . . , k.
Il metodo sopra esposto è molto semplice, ma ha un sostanziale difetto:

richiede l’enumerazione dei campioni dello spazio S. Ora, se il numero dei pos-
sibili campioni S è “piccolo”, elencarli tutti non presenta particolari difficoltà.
Spesso, però, l’elencare tutti i possibili campioni può essere un’operazione im-
proba, o impossibile. Ad esempio, si consideri una popolazione di N = 1000
studenti e si supponga di voler selezionare un campione di n = 100 di essi, in
base ad un disegno (il disegno semplice, come si vedrà nel prossimo capitolo)
che attribuisce ad ogni sottoinsieme di 100 dei 1000 studenti la stessa proba-
bilità di essere selezionato. Il numero di possibili campioni è

(
1000
100

)
. Usando

la formula di Stirling (log n! ≈ n logn − n + 1
2 logn + 1

2 log 2π), si vede che(
1000
100

)
≈ e321 > 100000000000000000000000000000000000000000000000000 · · ·

un numero troppo grande anche per essere solo scritto. Questo significa che
in molti casi pratici, e specialmente in quelli che coinvolgono popolazioni nu-
merose, il metodo di selezione sopra esposto, e basato sul preventivo elenco di
tutti i possibili campioni, è improponibile.

Nella gran parte dei casi, per selezionare un campione vengono usate pro-
cedure che prendono il nome di schemi campionari, o algoritmi di campiona-
mento. Si tratta di metodi sostanzialmente ad hoc, che cercano di selezionare
un campione da un dato disegno senza enumerare tutti i campioni dell’insieme
S, in quanto quest’operazione, nella stragrande maggioranza dei casi concre-
ti, è troppo onerosa sul piano computazionale. In questo caso si dice, con
un neologismo brutto ma efficace, che uno schema campionario implementa il
corrispondente disegno.

La motivazione principale che sottende l’uso di schemi campionari sta pro-
prio nel fatto che consentono di selezionare un campione in base ad un dato
disegno, e, soprattutto, sono facilmente realizzabili mediante programmi in-
formatici. Per il momento non approfondiamo oltre il discorso; l’argomento
verrà ripreso, ad un livello più avanzato, nei Capitoli 12 (dedicato ad aspetti
generali relativi a disegni a probabilità variabili) e 15 (dedicato a specifici
disegni campionari a probabilità variabili, di particolare utilità sul piano ap-
plicativo). Aspetti generali sugli schemi campionari, peraltro utili più da un
punto di vista teorico che applicativo, sono nel volume Cassel e altri (1977)
(pp. 15–16). Molto più moderno, ed anche molto più utile, è il volume di Tillé
(2006), interamente dedicato alla costruzione di schemi di campionamento.
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2.3 Dati campionari etichettati

Per ciascuna delle unità della popolazione selezionate nel campione s, si os-
servano le corrispondenti modalità del carattere Y di interesse. Alla fine del
processo di osservazione, si ottiene il campione di modalità etichettate, formato
dalle coppie

(unità campionarie, modalità).

Formalmente, il campione di modalità etichettate y(s) è costituito dalle coppie
(i, yi), per tutte le unità i del campione s. In simboli, si ha

y(s) = {(i, yi); i ∈ s}

se il campione s è un insieme, ed analoga espressione se è una sequenza (cioè
se sono presenti ripetizioni e/o ordine). In ogni caso, y(s) contiene tutti i dati
statistici ottenuti mediante la rilevazione campionaria.

Esempio 2.7. Si consideri il disegno campionario dell’Esempio 2.1, e si
supponga che le modalità delle unità della popolazione siano le seguenti:

y1 = 25, y2 = 32, y3 = 25, y4 = 51, y5 = 28, y6 = 28, y7 = 34.

Se si seleziona il campione s1, il corrispondente campione di modalità etichet-
tate è

y(s1) = ((1, 25), (2, 32), (3, 25)).

Se invece si seleziona s6, si ha

y(s6) = ((1, 25), (2, 32), (2, 32), (3, 25)).

Si noti come le due modalità etichettate (1, 25) e (3, 25) siano da considerarsi
differenti in quanto, pur essendo la stessa la modalità del carattere Y (25 in
ambedue i casi) è diversa l’unità a cui questa si riferisce. ��

È importante sottolineare che y(s) contiene le modalità campionarie eti-
chettate: per ogni modalità yi è presente anche l’unità i a cui essa si riferisce.
In questo modo, nei dati campionari y(s) è sempre presente il collegamento
tra unità campionate e modalità corrispondenti. Le modalità non sono sem-
plici numeri (o attributi), ma recano con sé l’informazione relativa alle unità
a cui si riferiscono.

Parallelamente alla riduzione del campione di unità, si può costruire il
corrispondente campione di modalità etichettate ridotto, per il quale si userà
la notazione y(r(s)):

campione di unità : s → riduzione : r(s)
campione di modalità etichettate : y(s) → riduzione : y(r(s)).
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In altre parole, il campione di modalità etichettate ridotto è l’insieme delle
modalità etichettate delle unità campionarie distinte. In simboli:

y(r(s)) = {(i, yi); i ∈ r(s)}.

Esempio 2.8. Si consideri ancora l’Esempio 2.7. Come già visto, è y(s6) =
((1, 25), (2, 32), (2, 32), (3, 25)). Essendo poi la riduzione di s6 eguale a
r(s6) = {1, 2, 3}, il corrispondente campione di modalità etichettate ridot-
to risulta: y(r(s6)) = {(1, 25), (2, 32), (3, 25)}. Allo stesso modo, si vede
facilmente che y(r(s1)) = {(1, 25), (2, 32), (3, 25)}, in quanto i due campioni
s1, s6 possiedono la stessa riduzione. ��

Una questione importante riguarda l’eventuale differenza di contenuto in-
formativo tra y(s) e y(r(s)). Il campione ridotto y(r(s)) differisce da quello
“originale” y(s) solo perché in quest’ultimo vi sono unità osservate più volte
(ripetizioni) e/o perché le unità stesse sono ordinate. Intuitivamente, l’osser-
vare più volte la modalità di una stessa unità non porta nessuna informazione
aggiuntiva rispetto all’osservarla una sola volta. Alla fine, ciò che realmente
si osserva è soltanto l’unità con la corrispondente modalità. Pertanto, le ri-
petizioni non portano nessuna informazione aggiuntiva. Osservare una stessa
unità una, due o più volte è perfettamente identico dal punto di vista dell’in-
formazione che si ottiene. Una considerazione simile vale per l’ordine con cui le
unità campionarie sono osservate. Osservare le stesse unità, ma con un ordine
diverso, è equivalente dal punto di vista dell’informazione che si ottiene.

Il succo di quanto finora detto è che ripetizioni e ordine sono irrilevanti
per quanto riguarda l’informazione fornita dai dati campionari. Ciò che è
realmente importante sono le unità campionarie distinte e non ordinate, e
le corrispondenti modalità. Formalmente, questo significa che il campione di
modalità etichettate “originario” y(s) e la sua riduzione y(r(s)) hanno lo
stesso contenuto informativo. L’utilizzare y(r(s)) come dati statistici in luogo
di y(s) non porta a nessuna perdita di informazione. Poiché ripetizioni e
ordine sono irrilevanti, d’ora in avanti si considereranno (quasi) esclusivamente
disegni campionari senza ripetizioni e non ordinati.

Gli argomenti usati in questa sezione poggiano essenzialmente sull’intui-
zione. Su un piano più formale, il risultato fondamentale che giustifica quanto
detto finora è che y(r(s)) è una statistica sufficiente minimale. Questo risul-
tato verrà esposto più avanti, nella parte dedicata ai princip̂ı di inferenza da
popolazioni finite (Capitolo 13).

2.4 Inferenza da popolazioni finite e inferenza da
modello: due approcci a confronto

La teoria dell’inferenza da popolazioni finite presenta profonde differenze ri-
spetto alla teoria dell’inferenza “da modello”. Nella teoria dell’inferenza da
modello il carattere Y è rappresentato da una variabile aleatoria a cui risulta
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associata una distribuzione di probabilità f(y; θ) di forma nota dipendente da
un parametro incognito θ. In tale impostazione le osservazioni campionarie
(y1, . . . , yi, . . . , yn) rappresentano una realizzazione di una variabile casuale
(Y1, . . . ,Yi, . . . ,Yn) costituita da n variabili aleatorie indipendenti ed iden-
ticamente distribuite (i.i.d.) e con la stessa distribuzione di Y. Assumendo
l’ipotetica ripetibilità del processo di generazione dei dati sotto condizioni
identiche, il campionamento avviene direttamente dal processo generatore dei
dati stesso. Il riferimento è chiaramente ad una popolazione infinita. L’o-
biettivo è stimare il parametro incognito θ attraverso la definizione di una
opportuna funzione delle osservazioni campionarie (denominata stimatore)
t(Y1, . . . , Yi, . . . , Yn).

Nella teoria dell’inferenza da popolazioni finite su cui si fonda il presente
volume si assume che la popolazione sia composta da un numero finito di unità
statistiche sulle quali sia possibile osservare il carattere di interesse Y. I valori
che Y assume sulle unità della popolazione sono quantità costanti e i parametri
oggetto di inferenza sono valori sintetici che descrivono aspetti significativi del
modo di manifestarsi del carattere nella popolazione (ad esempio, la media di
Y, la varianza di Y, etc.). L’unica fonte di aleatorietà nella teoria dell’inferenza
da popolazioni finite risiede nella probabilità che le unità della popolazione
hanno di entrare a far parte del campione ossia nella probabilità con cui i
diversi campioni della popolazione possono essere selezionati. Tali probabilità
variano a seconda del disegno di campionamento adottato.

Anche in questo contesto l’obiettivo è stimare il parametro incognito at-
traverso uno stimatore, ma le sue proprietà si ricavano ipotizzando di poter
selezionare dalla popolazione finita tutti i possibili campioni secondo il disegno
di campionamento prefissato.

2.5 Stimatori e loro proprietà

Nei capitoli successivi ci si concentrerà principalmente sui problemi di stima
della media della popolazione. Per questa ragione nella presente sezione si
introduce brevemente la nozione di stimatore di un parametro di interesse, e
se ne definiscono alcune proprietà.

Una statistica campionaria T = t(y(s)) è una funzione del campione di
modalità etichettate (ossia dei dati statistici osservati su base campionaria).
Il dominio di t(·) è, in generale, l’insieme {y(s); s ∈ S} di tutti i campioni di
modalità osservabili. Poiché il campione di unità è essenzialmente una variabile
aleatoria, che assume come valori i singoli s ∈ S con probabilità p(s), anche
T = t(y(s)) è una variabile aleatoria. Esempi molto semplici di statistiche
campionarie sono:

– T =
∑

i∈s yi ammontare campionario (somma delle modalità delle unità
campionarie);

– T = y(r(s)) campione ridotto di modalità etichettate;
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– T = ν(s) ampiezza campionaria effettiva;
– T = maxi∈s yi massimo campionario.

In generale, il problema di stima puntuale che ci troviamo ad affrontare
può essere descritto in modo molto semplice. Supponiamo che il parametro
di interesse sia θ = θ(Y N ). Indichiamo poi con Θ l’insieme dei possibili va-
lori che può assumere il parametro statistico θ(Y N), al variare di Y N in
ΩN . Sulla base dei dati campionari, ossia sulla base del campione di modalità
etichettate y(s), bisogna produrre una qualche ragionevole “approssimazione
numerica” di θ. Tale obiettivo è raggiunto mediante l’uso di uno stimatore,
ovvero di un’opportuna funzione dei dati campionari. Precisamente, uno sti-
matore θ̂ = θ̂(y(s)) di θ è una funzione dei dati campionari che ad ogni y(s)
associa un possible valore dell’incognito parametro θ. In termini equivalenti,
uno stimatore T di θ è una statistica campionaria a valori in Θ. Ovviamente,
essendo il campione s aleatorio, lo stimatore θ̂ è una variabile aleatoria.

Il termine stimatore non dovrebbe essere confuso con il termine stima,
anche se spesso nella pratica i due termini sono utilizzati come sinonimi. Lo
stimatore rappresenta una variabile aleatoria funzione dei dati campionari, il
cui valore varia al variare del campione nello spazio campionario; la stima è
il valore che lo stimatore assume in corrispondenza del campione osservato.

Se θ viene stimato con θ̂, si commette in generale un errore di stima, pari
a θ̂ − θ. In assenza di altre fonti di errore e distorsioni, tale errore viene de-
nominato errore campionario poiché deriva dalla parzialità dell’osservazione,
cioè dalla circostanza che stiamo osservando solo una parte della popolazione.
In corrispondenza dello specifico campione s, si avrà un errore di stima pari a

θ̂(y(s)) − θ(Y N).

Uno stimatore, ovviamente, è tanto migliore quanto più piccolo è l’errore di
stima corrispondente. Poiché θ̂ è una variabile aleatoria, l’errore di stima stesso
è una variabile aleatoria. Per misurare la qualità di uno stimatore è quindi
necessario adottare una qualche misura di sintesi dell’errore di stima, che:

– sia nulla se e solo se l’errore di stima è identicamente nullo per ogni
campione s di S;

– sia tanto più grande quanto più alta è la probabilità di campioni che
portano a “grandi” errori di stima.

La misura di sintesi più usata, ed alla quale faremo sempre riferimento, è
l’errore quadratico medio (Mean Squared Error nella terminologia anglosasso-
ne) di θ̂:

MSE(θ̂) = E[(θ̂ − θ)2] =
∑
s∈S

(θ̂(y(s)) − θ(Y N ))2 p(s). (2.1)
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Come messo in evidenza dalla (2.1), l’errore quadratico medio di uno
stimatore dipende da tre elementi:

– la forma funzionale dello stimatore;
– il disegno campionario usato;
– le modalità yi delle unità della popolazione, ovvero il parametro Y N della

popolazione.

Di questi tre elementi, i primi due sono scelti dallo statistico che progetta la
rilevazione campionaria. Il terzo, invece, è fuori dal controllo dello statistico.
In un certo senso, Y N è deciso dalla natura. Il compito dello statistico è
quindi quello di scegliere una coppia (disegno campionario, stimatore) che dia
luogo ad un errore quadratico medio “piccolo”, per quanto possibile. Si osservi
che essendo il parametro della popolazione Y N incognito, l’errore quadratico
medio MSE(θ̂) non può essere calcolato in pratica, numericamente.

In generale, non è difficile vedere dalla (2.1) che se si vuole stimare un
parametro θ = θ(Y N), e se θ̂ è un suo stimatore, si ha

MSE(θ̂) = 0 per ogni Y N ∈ ΩN

soltanto se

θ̂(y(s)) = θ(Y N ) per ogni s ∈ S, Y N ∈ ΩN .

Come conseguenza, si ha che (Esercizio 2.6) non esiste uno stimatore il cui
errore quadratico medio sia più piccolo di quello di ogni altro stimatore dello
stesso parametro.

In vista di questo risultato, e dell’ampiezza della classe di tutti gli sti-
matori di un parametro θ, un approccio molto naturale per la ricerca di un
“buono” stimatore è quello di limitarsi ai soli stimatori che soddisfino qualche
condizione aggiuntiva. La più semplice è che lo stimatore θ̂ sia corretto, ossia
che il suo valore atteso (sullo spazio dei campioni) sia esattamente uguale al
parametro di interesse θ che si vuole stimare. In simboli:

E[θ̂] = θ(Y N )

qualunque sia il parametro della popolazione Y N , o, equivalentemente,∑
s∈S

θ̂(y(s)) p(s) = θ(Y N )

qualunque sia Y N in ΩN .
Esattamente come nel caso dell’errore quadratico medio, il valore atteso

di uno stimatore dipende da tre elementi: a. la forma funzionale dello stima-
tore; b. il disegno campionario usato; c. il parametro Y N della popolazione.
Da questa semplice osservazione discende che uno stesso stimatore può essere
distorto se usato con un dato disegno, e corretto se usato con un differente
disegno. La correttezza, quindi, non è una proprietà “intrinseca” di uno stima-
tore, ma è piuttosto legata alla coppia (disegno campionario, stimatore) che
si utilizza. Tale coppia è in genere denominata strategia di campionamento.
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Quanto detto significa che il giudizio su uno stimatore deve essere emesso va-
lutando l’intera strategia campionaria (disegno campionario, stimatore), ossia
la procedura che ha condotto alla formazione della stima ottenuta.

Esempio 2.9. Sia I4 = {1, 2, 3, 4} una popolazione di N = 4 unità, e sia Y 4

il corrispondente vettore di modalità. Consideriamo poi il disegno campionario
in cui lo spazio dei campioni è formato da:

s1 = {1, 2}, s2 = {1, 3}, s3 = {1, 4}, s4 = {2, 3},
s5 = {2, 4}, s6 = {3, 4} (2.2)

con le seguenti probabilità:

p(s1) = p(s2) = · · · = p(s6) = 1/6.

Come stimatore della media della popolazione, μy, consideriamo poi la
media campionaria:

ys =
1
2

∑
i∈s

yi

ossia la media delle modalità delle unità campionarie. Impiegato in coppia con
il disegno sopra definito, lo stimatore ys è corretto. Infatti:

E [ys] =
∑
s∈S

ys p(s)

= ys1
p(s1) + · · ·+ ys6

p(s6)

=
1
6

{
y1 + y2

2
+

y1 + y3

2
+

y1 + y4

2
+

y2 + y3

2
+

y2 + y4

2
+

y3 + y4

2

}
=

y1 + y2 + y3 + y4

4
= μy.

Fermo restando lo stimatore ys, consideriamo adesso un secondo disegno
campionario, in cui lo spazio dei campioni è ancora (2.2), ma in cui i campioni
hanno le seguenti probabilità:

p(s1) = p(s2) = p(s3) = 1/10, p(s4) = p(s5) = 2/10, p(s6) = 3/10.

In questo caso ys è distorto, in quanto:

E [ys] = ys1 p(s1) + · · ·+ ys6 p(s6)

=
1
10

{
y1 + y2

2
+

y1 + y3

2
+

y1 + y4

2

}
+

2
10

{
y2 + y3

2
+

y2 + y4

2

}
+

3
10

y3 + y4

2

=
3y1 + 5y2 + 6y3 + 6y4

20
�= μy. ��
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La distorsione di uno stimatore θ̂, indicata con il simbolo B(θ̂), è pari alla
differenza tra il valore atteso di θ̂ e il parametro θ da stimare. In simboli:

B(θ̂) = E[θ̂] − θ.

La varianza di uno stimatore θ̂, indicata con il simbolo V (θ̂), è invece
pari a:

V (θ̂) = E
[
(θ̂ − E[θ̂])2

]
=
∑
s∈S

(θ̂(y(s)) − E[θ̂])2p(s).

È appena il caso di menzionare che, per ben noti risultati, si può scrivere
V (θ̂) = E[θ̂2] − (E[θ̂])2.

Un risultato fondamentale riguarda la decomposizione dell’errore quadra-
tico medio di uno stimatore θ̂ nella somma di due termini: la varianza di θ̂ e
il quadrato della sua distorsione.

Proposizione 2.1. Se θ̂ è uno stimatore del parametro θ, si ha

MSE(θ̂) = V (θ̂) + B(θ̂)2 . (2.3)

Dimostrazione. In primo luogo, osserviamo che:

MSE(θ̂) = E[(θ̂ − θ)2]

= E
[
{(θ̂ − E[θ̂]) + (E[θ̂]− θ)}2

]
= E

[
{(θ̂ − E[θ̂]) + B(θ̂)}2

]
= E

[
{(θ̂ − E[θ̂])2 + B(θ̂)2 + 2B(θ̂) (θ̂ − E[θ̂])

]
= E

[
(θ̂ − E[θ̂])2

]
+ E

[
B(θ̂)2

]
+ 2B(θ̂)E

[
θ̂ − E[θ̂]

]
. (2.4)

Essendo poi E[B(θ̂)2] = B(θ̂)2 e E[θ̂ − E[θ̂]] = E[θ̂] − E[θ̂] = 0, dalla (2.4)
segue la (2.3). ��

Come conseguenza dell’uguaglianza (2.3), si ha che se uno stimatore è
corretto, il suo errore quadratico medio si riduce alla sua varianza.

Il restringersi a considerare solo stimatori corretti porta spesso a notevoli
semplificazioni, ma può anche portare ad un prezzo da pagare in termini di
efficienza: potrebbero esistere stimatori distorti con errore quadratico medio
più piccolo di quello dello stimatore corretto che si considera. Inoltre, an-
che se uno stimatore è corretto le stime campionarie corrispondenti a tutti i
possibili campioni selezionabili secondo il prefissato piano di campionamento
differiranno (in positivo o in negativo) dal parametro di interesse θ. Quindi le
stime presenteranno una variabilità intorno a θ. Se tale variabilità è elevata è
del pari elevata la probabilità che la stima ottenuta da un campione casuale
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risulti anche molto diversa dal parametro di interesse della popolazione. Al
contrario, se la variabilità è piccola la distribuzione campionaria è non solo
centrata ma anche concentrata intorno a θ. Di conseguenza, è alta la probabi-
lità di selezionare casualmente campioni a cui corrispondono stime prossime
a θ.

Esempio 2.10. Consideriamo ancora l’Esempio 2.9. Essendo ys corretto, il
suo errore quadratico medio è uguale alla sua varianza: MSE(ys) = V (ys).
Quest’ultima è pari a:

V (ys) = E[y2
s − E[ys])

2]
= E[y2

s ]− E[ys]
2

=
∑
s∈S

y2
s − μ2

y

=
1
6

{(
y1 + y2

2

)2

+
(

y1 + y3

2

)2

+
(

y1 + y4

2

)2

+
(

y2 + y3

2

)2

+
(

y2 + y4

2

)2

+
(

y3 + y4

2

)2
}

−
(

y1 + y2 + y3 + y4

4

)2

=
1
6

{
3
4
(y2

1 + y2
2 + y2

3 + y2
4)

+2
(

y1y2 + y1y3 + y1y4 + y2y3 + y2y4 + y3y4

4

)}
−y2

1 + y2
2 + y2

3 + y2
4

16
− y1y2 + y1y3 + y1y4 + y2y3 + y2y4 + y3y4

8

=
1
3

{
y2
1 + y2

2 + y2
3 + y2

4

4
−
(

y1 + y2 + y3 + y4

4

)2
}

=
σ2

y

3

essendo

σ2
y =

1
4

4∑
i=1

(yi − μy)2 =
y2
1 + y2

2 + y2
3 + y2

4

4
−
(

y1 + y2 + y3 + y4

4

)2

la varianza della popolazione. ��

Esempio 2.11. Si consideri l’Esempio 2.10. Lo stimatore ys è ora distorto,
con distorsione pari a:

B(ys) =
3y1 + 5y2 + 6y3 + 6y4

20
− y1 + y2 + y3 + y4

4
=

−2y1 + y3 + y4

20
. (2.5)
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La varianza di ys è invece eguale a:

V (ys) = E[y2
s ] − E[ys]

2 =
∑
s∈S

y2
s − μ2

y

=
1
10

(
y1 + y2

2

)2

+
1
10

(
y1 + y3

2

)2

+
1
10

(
y1 + y4

2

)2

+
2
10

(
y2 + y3

2

)2

+
2
10

(
y2 + y4

2

)2

+
3
10

(
y3 + y4

2

)2

−
(

3y1 + 5y2 + 6y3 + 6y4

20

)2

. (2.6)

La somma di (2.6) e del quadrato di (2.5) fornisce l’errore quadratico medio
di ys. ��

L’errore quadratico medio MSE(θ̂) di uno stimatore θ̂ (o la varianza V (θ̂)
nel caso in cui θ̂ sia corretto) misura l’imprecisione di θ̂ in termini assoluti.
Spesso è importante misurare tale imprecisione in termini relativi, calcolando

il rapporto percentuale tra
√

MSE(θ̂) e il valore (assoluto) del parametro che
si vuole stimare: √

MSE(θ̂)

|θ| 100. (2.7)

In particolare, quando lo stimatore θ̂ è corretto si ha θ = E[θ̂] e MSE(θ̂) =
V (θ̂), per cui la (2.7) si riduce al coefficiente di variazione di θ̂ . In simboli:

CV (θ̂) =

√
V (θ̂)

|E[θ̂]|
100

purché il valore atteso al denominatore non sia nullo.
La selezione di un campione di unità, l’osservazione delle corrispondenti

modalità, e la costruzione di stimatori dei parametri di interesse non esauri-
scono il lavoro dello statistico. Infatti, ogni stima di un parametro va sempre
accompagnata da una stima del suo grado di “bontà”, di “affidabilità”. Co-
me detto dianzi, la principale misura di quanto “buono” o “cattivo” sia uno
stimatore è costituita dal suo errore quadratico medio, il quale dipende dal-
l’intero vettore Y N delle modalità di tutte le unità della popolazione. Non è
quindi possibile calcolare realmente il valore che esso assume. Lo sarebbe solo
se Y N fosse noto, il che non accade mai nella pratica applicativa. In effetti,
se Y N fosse noto non ci sarebbe nessun motivo di ricorrere ad una rilevazione
campionaria.

Se non è possibile dire quale sia il valore dell’errore quadratico medio di uno
stimatore, è però in genere possibile stimarlo sulla base dei dati campionari
disponibili. Pertanto, ogni volta che si costruisce una stima di un parametro
incognito, bisogna anche produrre una stima del suo errore quadratico medio.
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Se poi lo stimatore che si utilizza è corretto, il suo errore quadratico medio
coincide con la sua varianza, e quindi stimare il suo errore quadratico medio
equivale a stimare la sua varianza.

Quanto detto nella presente sezione rende chiaro il ruolo centrale svolto,
nell’ambito del campionamento da popolazioni finite, dalle regole di selezione
dei campioni di tipo probabilistico, ossia dai disegni campionari. In effetti,
solo quando la scelta del campione è attuata mediante un disegno campiona-
rio è possibile studiare in termini quantitativi, precisi, il comportamento di
uno stimatore. Solo in questo caso, infatti, ha senso il calcolo del suo errore
quadratico medio.

Quando la scelta del campione di unità non è attuata mediante un disegno
campionario controllato dallo statistico, non si è in grado di assegnare un
valore alle probabilità p(s) dei diversi campioni, e spesso non si è neanche
in grado di elencare, neppure in linea puramente concettuale, tutti i possibili
campioni dell’insieme S. In questi casi perde di significato il riferirsi all’errore
quadratico medio di uno stimatore come misura di quanto “buono” o “cattivo”
esso sia. Infatti, quando o non si è in grado di esplicitare lo spazio S dei
campioni, o quando non si conoscono i valori assunti dalle probabilità p(s) dei
diversi campioni, l’errore quadratico medio di uno stimatore non è calcolabile
né stimabile, neppure nel caso (che ovviamente non si verifica mai nella pratica
applicativa) in cui siano note le modalità yi delle unità della popolazione.

Queste considerazioni chiariscono a sufficienza il perché, nella presente
trattazione, verrà data la massima enfasi alle regole di selezione di campioni
di unità basate su disegni campionari. Esse sono le sole regole di selezione
controllate dallo statistico, e quindi le sole regole di selezione per le quali ha
senso studiare le performance di stimatori di parametri di interesse e stimarne
l’errore quadratico medio.

Nella pratica applicativa vengono a volte (in effetti abbastanza spesso)
usate regole di selezione dei campioni non controllate dallo statistico. Un
esempio molto semplice sono i sondaggi di opinione effettuati in trasmissioni
televisive, in cui si invitano i telespettatori a telefonare ad un dato numero
(o a inviare un sms, o un messaggio di e-mail), e a rispondere ad una o più
domande. In questi casi le unità del campione si autoselezionano. Esse non
sono scelte mediante una procedura controllata dello statistico, e non si è
in grado di dire né quali siano i possibili campioni osservabili (lo spazio dei
campioni), né quali siano le loro probabilità. In tali casi, a rigore non si è in
grado di dire nulla sull’errore quadratico medio di stimatori di parametri di
interesse, e quindi le stime campionarie hanno un valore molto limitato, quasi
nullo. Solo stime campionarie ottenute mediante regole di selezione delle unità
controllate dallo statistico (ossia mediante veri disegni campionari) hanno
valore sostanziale. Ciò accade, come già affermato, per una ragione molto
semplice. Solo per esse è possibile:

– studiare le proprietà di stimatori di parametri di interesse;
– stimare i loro errori quadratici medi.
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2.6 Intervalli di confidenza

Accanto a stime puntuali come quelle brevemente esposte nella sezione pre-
cedente, è spesso di interesse fornire delle stime intervallari, in cui non si
costruisce un’unica stima di un parametro di interesse, ma un intervallo di
“plausibili stime” del parametro stesso.

In generale, siano T1 = t1(y(s)), T2 = t2(y(s)) due statistiche campionarie,
tali che t1(y(s)) � t2(y(s)) qualunque sia il campione (di modalità) y(s). Ha
senso in questo caso considerare l’intervallo [T1, T2]. I suoi estremi sono, come
detto, funzioni dei dati campionari. Si tratta quindi di due variabili aleatorie,
il che giustifica il riferirsi a [T1, T2] come ad un intervallo aleatorio. Diremo
che [T1, T2] è un intervallo di confidenza al livello 1 − α se esso contiene il
parametro di interesse θ = θ(Y N) con probabilità 1 − α, qualunque sia il
valore di θ, cioè qualunque sia Y N in ΩN . Ora, la probabilità che l’intervallo
aleatorio [T1, T2] racchiuda θ(Y N) è pari alla somma delle probabilità di tutti
i campioni s tali che t1(y(s)) � θ(Y N) � t2(y(s)). In simboli, detto E =
{s ∈ S : t1(y(s)) � θ(Y N) � t2(y(s))} l’insieme dei campioni (di unità)
tali che θ(Y N ) è racchiuso nell’intervallo di estremi t1(y(s)), t2(y(s)), si può
formalmente scrivere

Pr(T1 � θ(Y N) � T2) =
∑
s∈E

p(s). (2.8)

Dalla (2.8) si desume anche che [T1, T2] è un intervallo di confidenza al livello
1− α per θ = θ(Y N) se∑

s∈E

p(s) = 1 − α qualunque sia Y N ∈ ΩN .

Spesso, i due estremi T1, T2 sono costruiti a partire da uno stimatore θ̂
di θ. Supponiamo che θ sia uno stimatore corretto di θ = θ(Y N), e siano poi
q1, q2 due quantità tali che

Pr
(
q1 � θ̂ − θ(Y N) � q2

)
= 1 − α qualunque sia Y N ∈ ΩN . (2.9)

La (2.9) si può riscrivere come

Pr
(
θ̂ − q2 � θ(Y N) � θ̂ − q1

)
= 1 − α qualunque sia Y N ∈ ΩN

e quindi, per T1 = θ̂ − q2, T2 = θ̂ − q1, si vede subito che [θ̂− q2, θ̂ − q1] è un
intervallo di confidenza per θ al livello 1 − α.

In generale, le due quantità q1, q2 che compaiono nella (2.9) sono deter-
minate dalla distribuzione di probabilità dello stimatore θ̂, la quale dipende
da Y N . Pertanto gli stessi q1, q2 devono dipendere da Y N , e non sono di
conseguenza calcolabili. Una soluzione a questa impasse si basa sull’idea di
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approssimare la distribuzione di probabilità dello stimatore θ̂. L’approssima-
zione più semplice e utile è quella normale. Se V (θ̂) indica la varianza di θ̂, la
distribuzione di probabilità di

θ̂ − θ√
V (θ̂)

viene approssimata con una normale standard, N(0, 1). Non discutiamo qui
della validità e dei limiti di questa approssimazione. Ad ogni modo, indicando
con zα/2 il valore tale che Pr(N(0, 1) � zα/2) = α/2, si ha in via approssimata

Pr

⎛⎝−zα/2 �
θ̂ − θ√
V (θ̂)

� zα/2

⎞⎠ = 1 − α

ovvero

Pr

(
θ̂ − zα/2

√
V (θ̂) � θ(Y N ) � θ̂ + zα/2

√
V (θ̂)

)
= 1 − α qualunque sia Y N ∈ ΩN .

Quindi, l’intervallo [
θ̂ − zα/2

√
V (θ̂), θ̂ + zα/2

√
V (θ̂)

]
(2.10)

è un intervallo di confidenza (approssimato) per θ al livello 1 − α.
La varianza V (θ̂), come detto più volte nella Sezione 2.4, dipende dall’in-

tero vettore Y N delle modalità di tutte le unità della popolazione, e quindi, a
meno di casi eccezionali, è incognita. Un’idea naturale è ovviamente quella di
stimarla sulla base dei dati campionari. Se V̂ (θ̂) è un opportuno stimatore di
V (θ̂), l’idea di base consiste nell’approssimare la distribuzione di probabilità di

θ̂ − θ√
V̂ (θ̂)

(2.11)

con una normale standard, N(0, 1). Il sottrarre allo stimatore θ̂ il suo valore

atteso θ, e il dividere il tutto per
√

V̂ (θ̂) è in genere detto studentizzazione di

θ̂. Sostituendo V (θ̂) con V̂ (θ̂) nella (2.10), si ha che[
θ̂ − zα/2

√
V̂ (θ̂), θ̂ + zα/2

√
V̂ (θ̂)

]
(2.12)

è ancora un intervallo di confidenza approssimato per θ al livello 1 − α. La
frase “V̂ (θ̂) sia un opportuno stimatore di V (θ̂)” è imprecisa e vaga. Nei casi
più importanti vedremo di volta in volta la forma che assume V̂ (θ̂).
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Esercizi

2.1. Sia I6 = {1, . . . , 6} una popolazione finita di N = 6 unità, e si consideri
il seguente disegno campionario:

s1 = (1, 1), s2 = (1, 5, 6), s3 = (1, 1, 2, 1), s4 = (6, 5, 1),
s5 = (2, 1, 3), s6 = (2, 3, 1, 2), s7 = (4, 3, 1), s8 = (2, 3),
s9 = (3, 2), s10 = (1, 4, 3), s11 = (3, 4, 1), s12 = (1, 1, 1);

p(s1) = p(s2) = · · · = p(s12) =
1
12

.

a. Calcolare l’ampiezza media e l’ampiezza media effettiva di questo disegno.
b. Costruire la sua riduzione.
c. Costruire un disegno campionario ordinato e senza ripetizioni la cui

riduzione sia identica a quella del disegno dell’esercizio.

2.2. Provare che se (S, p) è un disegno campionario e (S∗, p∗) è la sua ri-
duzione, l’ampiezza media effettiva di (S, p) è uguale all’ampiezza media di
(S∗, p∗).

Suggerimento. Tenere conto che se s∗ ∈ S∗, allora p∗(s∗) =
∑

s∈C(s∗) p(s), e che

valgono le ralazioni
∑

s∗∈S∗ n(s∗)p∗(s∗) =
∑

s∗∈S∗ n(s∗)
{∑

s∈C(s∗) p(s)
}

e n(s∗) =

ν(s).

2.3. Costruire la riduzione del disegno campionario dell’Esempio 2.4.

2.4. Con riferimento all’Esempio 2.7 (vds. anche Esempio 2.1), determinare i
campioni di modalità etichettate y(s1), . . . , y(s8).

2.5. Con riferimento all’Esempio 2.7, determinare i campioni di modalità
etichettate ridotti y(r(s1)), . . . , y(r(s8)).

2.6. Preso un arbitrario vettore ZN ∈ ΩN , costruire lo stimatore di θ =
θ(Y N):

θ̂Z = θ(ZN) ∀ s ∈ S.

a. Verificare che MSE(θ̂Z ) = 0 se Y N = ZN .
b. Dedurre dal punto a. che se θ̂∗ è uno stimatore di θ con errore quadra-

tico medio più piccolo di quello di ogni altro stimatore di θ, deve essere
MSE(θ̂∗) = 0 qualunque sia Y N ∈ ΩN .

Suggerimento. Se MSE(θ̂∗) �MSE(θ̂Z ) qualunque sia Y N ∈ ΩN , per Y N = Z N si

deve avere MSE(θ̂∗) = 0. Ripetendo il ragionamento per tutti i vettori Z N in ΩN ,

cioè per ogni possibile stimatore θ̂Z che è possibile costruire, si ha il risultato.

c. Dedurre dal punto b. che non esiste uno stimatore di θ con errore qua-
dratico medio più piccolo di quello di ogni altro stimatore del parametro
stesso, qualunque sia Y N ∈ ΩN .
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2.7. Data una popolazione finita di N = 4 unità, e posto Y 4 = (y1 , y2, y3, y4),
si supponga di voler stimare la media μy = (y1 + y2 + y3 + y4)/4. Il dise-
gno campionario (S, p) che si utilizza è tale che lo spazio dei campioni è
formato da:

s1 = {1, 2, 3}, s2 = {1, 2, 4}, s3 = {2, 3, 4}, s4 = {1, 3, 4}

con probabilità

p(s1) = 0.25, p(s2) = 0.25, p(s3) = 0.2, p(s4) = 0.3.

Si considerino poi i due stimatori t1, t2 di μy definiti nel modo seguente:

t1(y(s1)) =
y1 + y2 + y3

3
, t1(y(s2)) =

y1 + y2 + y4

3
,

t1(y(s3)) =
y2 + y3 + y4

3
, t1(y(s4)) =

y1 + y3 + y4

3
;

t2(y(s1)) =
y1 + 2y2 + 3y3

6
, t2(y(s2)) =

y1 + 2y2 + 4y4

7
,

t2(y(s3)) =
2y2 + 3y3 + 4y4

9
, t2(y(s4)) =

y1 + 3y3 + 4y4

8
.

Calcolare E[t1], V (t1), MSE(t1), E[t2], V (t2), MSE(t2).

2.8. Data una popolazione finita di N = 20 unità, si consideri un disegno
campionario in cui lo spazio dei campioni è formato dai campioni:

s1 = (1, 11), s2 = (2, 12), s3 = (3, 13), s4 = (4, 14), s5 = (5, 15),
s6 = (6, 16), s7 = (7, 17), s8 = (8, 18), s9 = (9, 19), s10 = (10, 20)

con probabilità

p(s1) = 0.1, p(s2) = 0.1, p(s3) = 0.025, p(s4) = 0.025, s5 = 0.25,

p(s6) = 0.25, p(s7) = 0.025, p(s8) = 0.025, p(s9) = 0.1, p(s10) = 0.1.

Costruire, in base a quanto svolto nella Sezione 2.2, uno schema che imple-
menta questo disegno.
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Disegno campionario semplice

3.1 Il disegno semplice senza ripetizione

3.1.1 Definizione del disegno semplice senza ripetizione

Il disegno campionario semplice senza ripetizione (disegno ssr, d’ora in avanti)
è probabilmente il più importante tra tutti i disegni campionari, sia per l’uti-
lizzo diretto che se ne fa, sia perché entra come costituente essenziale di disegni
campionari più complessi, (disegno stratificato, disegno a due stadi, etc.).

Sia IN = {1, . . . , N} una popolazione finita di N unità. Il disegno ssr di
numerosità n (1 � n � N) è definito come segue:

− lo spazio dei campioni è l’insieme di tutte le combinazioni senza ripetizio-
ni di classe n delle N unità della popolazione (ogni campione è uno dei
possibili sottoinsiemi di n delle N unità della popolazione);

− tutti i campioni hanno la stessa probabilità di essere selezionati.

Formalmente, detto CN,n l’insieme di tutte le combinazioni senza ripetizio-
ne di n delle N unità della popolazione, e tenendo conto che vi sono in totale(

N
n

)
di tali combinazioni, si ha:

S = CN,n; p(s) =
1(
N
n

) per ogni s ∈ CN,n.

Usando le definizioni date nella sezione precedente, si vede subito che il
disegno ssr è non ordinato, senza ripetizioni, e ad ampiezza effettiva costante n.

Esempio 3.1. Per una popolazione di N = 5 unità, I5 = {1, . . . , 5}, consi-
deriamo un disegno ssr di numerosità n = 3. Lo spazio dei campioni è formato
dai

(
5
3

)
= 10 seguenti campioni:

s1 = {1, 2, 3}, s2 = {1, 2, 4}, s3 = {1, 2, 5}, s4 = {1, 3, 4}, s5 = {1, 3, 5},
s6 = {1, 4, 5}, s7 = {2, 3, 4}, s8 = {2, 3, 5}, s9 = {2, 4, 5}, s10 = {3, 4, 5}

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 3, © Springer-Verlag Italia 2012
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ciascuno dei quali ha probabilità

p(s1) = · · · = p(s10) =
1(
5
3

) =
1
10

. ��

3.1.2 Simmetria totale del disegno semplice senza
ripetizione

La proprietà probabilmente più importante del disegno ssr è la sua simmetria
totale. Per introdurre questa nozione, partiamo da un facile esempio.

Esempio 3.2. Due statistici devono estrarre un campione ssr di n = 2 unità
da una popolazione di N = 3 individui, Antonio (A), Bruno (B), Carlo (C).
Il primo statistico assegna a Antonio l’etichetta 1, a Bruno l’etichetta 2, a
Carlo l’etichetta 3, e costruisce il corrispondente disegno ssr. Il secondo sta-
tistico, invece, assegna a Carlo l’etichetta 1, a Antonio l’etichetta 2, a Bruno
l’etichetta 3, e costruisce anch’egli il corrispondente disegno ssr. I due disegni
campionari sono mostrati nella Tabella 3.1.

Tabella 3.1 Disegni campionari costruiti dai due statistici

Disegno 1 Disegno 2

Campioni Probabilità Campioni Probabilità
Etichette Unità Etichette Unità

{1, 2} {A, B} 1/3 {1, 2} {A, C} 1/3
{1, 3} {A, C} 1/3 {1, 3} {B, C} 1/3
{2, 3} {B, C} 1/3 {2, 3} {A, B} 1/3

I due disegni campionari sono identici, per cui il diverso modo in cui i
due statistici hanno assegnato le etichette alle unità della popolazione non ha
avuto alcuna influenza sul disegno campionario. ��

Quanto descritto nell’Esempio 3.1 vale del tutto in generale: il disegno
ssr non dipende dal modo in cui le etichette sono assegnate alle unità della
popolazione. In qualunque modo si effettui l’assegnazione delle etichette alle
unità, il disegno ssr rimane invariato. Poiché ogni possibile modo di assegnare
le etichette {1, . . . , N} alle unità della popolazione equivale a permutare le
etichette stesse, si può affermare, in termini equivalenti, che il disegno ssr resta
identico comunque si permutino le etichette delle unità della popolazione.
Questa caratteristica, che denomineremo simmetria totale, è la proprietà più
importante del disegno ssr. Essa ci dice, in buona sostanza, che l’assegnare
ad un’unità l’una o l’altra delle etichette {1, . . . , N}, non altera il modo in
cui l’unità stessa è trattata. L’ovvia conclusione è che il disegno ssr tratta allo
stesso modo tutte le unità della popolazione.
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3.1.3 Implementazione del disegno semplice senza
ripetizione

La selezione di un campione ssr è facile da realizzare, e quasi tutti i più
comuni package statistici (R, S-PLUS, SPSS, etc.) contengono procedure per
l’implementazione del disegno ssr. Qui di seguito sono forniti due semplici
algoritmi per implementare il disegno ssr, molto facili da usare.

Algoritmo 1.

− Passo 1. Generare N numeri aleatori U1, . . ., UN (uno per ogni
unità della popolazione) con distribuzione uniforme in [0, 1].
Andare al Passo 2.

− Passo 2. Ordinare le N unità della popolazione da quella con
il valore U più piccolo a quella con il valore U più grande.
Andare al Passo 3.

− Passo 3. Prendere le n unità corrispondenti agli n valori U
più piccoli. Esse formano un campione ssr di n unità della
popolazione.

Algoritmo 2.
Definire N numeri B1, . . ., BN e due numeri (interi) t, i. Se

x è un numero reale, porre �x
 = più piccolo numero intero � x.

− Passo 0. Inizializzazione. Porre B1 = 0, . . ., BN = 0, i = 0,
t = 0. Andare al Passo 1.

− Passo 1. Se t = n andare al Passo 3. Altrimenti, generare un
numero U aleatorio con distribuzione uniforme in [0, 1], porre
i = �N U
 e andare al Passo 2.

− Passo 2. Se Bi = 0 porre Bi = 1, incrementare t di 1 e tornare
al Passo 1. Se invece Bi = 1, tornare al Passo 1.

− Passo 3. Arresto. Le unità del campione sono quelle con eti-
chette corrispondenti agli indici i tali che Bi = 1.

3.2 Stima della media della popolazione: la media
campionaria

Il problema principale che affronteremo in questo capitolo è la stima della
media della popolazione:

μy =
1
N

N∑
i=1

yi.

Sia

σ2
y =

1
N

N∑
i=1

(yi − μy)2 =
1
N

N∑
i=1

y2
i − μ2

y
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la varianza della popolazione, e sia

S2
y =

1
N − 1

N∑
i=1

(yi − μy)2 =
N

N − 1
σ2

y

la varianza della popolazione “corretta” con il denominatore N −1. Si osservi
che per N abbastanza grande (dell’ordine di poche centinaia, o poche migliaia,
di unità) è (N − 1)/N ≈ 1, per cui è S2

y ≈ σ2
y. A meno di casi eccezionali,

nella pratica applicativa il sostituire S2
y con σ2

y è virtualmente privo di effetti.
Indichiamo al solito con y(s) = {yi; i ∈ s} il campione di modalità eti-

chettate (dati campionari). Il modo più naturale per definire uno stimatore
di un parametro incognito θ = θ(Y N ) è quello di applicare alle n osservazioni
campionarie yi la stessa funzione θ(·) che definisce il parametro di interesse
nella popolazione. Resta in tal modo definito lo “stimatore conforme” di θ. Di
conseguenza, lo stimatore conforme di μy è la media campionaria:

ys =
1
n

∑
i∈s

yi.

In questa sezione sono studiate con un certo dettaglio le proprietà della
media campionaria, ed in particolare la sua media e la sua varianza. Per
facilitare tale studio, introduciamo la funzione indicatrice di presenza/assenza
dell’unità i (∈ IN ) nel campione s (∈ CN,n):

δ(i; s) =
{

1 se i ∈ s
0 se i /∈ s

.

Con questa convenzione, si può scrivere

ys =
1
n

N∑
i=1

yi δ(i; s). (3.1)

Nella successiva proposizione viene mostrato che il valore atteso di ys è
uguale alla media della popolazione, ovvero che ys è uno stimatore corretto
di μy.

Proposizione 3.1. Se il disegno campionario è ssr, la media campionaria è
uno stimatore corretto della media della popolazione:

E [ys] = μy. (3.2)

Dimostrazione. Usando l’espressione (3.1) della media campionaria, si può
scrivere in primis:

E [ys] = E

[
1
n

N∑
i=1

yi δ(i; s)

]

=
1
n

N∑
i=1

yi E[δ(i; s)]. (3.3)
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In secondo luogo, si ha

E[δ(i; s)] =
∑
s∈S

p(s) δ(i; s)

=
1(
N
n

)∑
s∈S

δ(i; s).

Nella
∑

s∈S δ(i; s) si somma un 1 per ogni campione s contenente l’unità i (solo
per questi campioni, infatti, è δ(i; s) = 1). Essa è perciò uguale al numero di
campioni contenenti l’unità i, ossia al numero di combinazioni senza ripetizioni
contenenti i, che è pari a

(
N − 1
n − 1

)
. Quindi:

E[δ(i; s)] =

(
N − 1
n − 1

)
(

n
N

) =
n

N
. (3.4)

Inserendo la (3.4) nella (3.3) si ottiene

E [ys] =
1
n

N∑
i=1

yi
n

N

=
1
N

N∑
i=1

yi

= μy

ossia la (3.2). ��

Un’osservazione importante: poiché δ(i; s) assume solo i valori 1 o 0 a
seconda che il campione s contenga o meno l’unità i, il suo valore atteso è
pari a

E[δ(i; s)] = 0×Pr(δ(i; s) = 0) + 1×Pr(δ(i; s) = 1) = Pr(δ(i; s) = 1) =
n

N
.

Esso rappresenta la probabilità di selezionare un campione contenente l’u-
nità i. Come si vedrà nel Capitolo 12, si tratta della probabilità di inclusione
dell’unità i.

Essendo ys corretto, il suo errore quadratico medio coincide con la sua
varianza: MSE(ys) = V (ys). Il calcolo di quest’ultima, non difficile, è svolto
nella successiva proposizione.

Proposizione 3.2. Se il disegno campionario è ssr, la varianza della media
campionaria è pari a:

V (ys) =
(

1
n
− 1

N

)
S2

y . (3.5)
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Dimostrazione. Usando ancora l’espressione (3.1), si ha anzitutto:

V (ys) = E

⎡⎣( 1
n

∑
i∈s

yi − μy

)2
⎤⎦

= E

⎡⎣( 1
n

∑
i∈s

(yi − μy)

)2
⎤⎦

= E

⎡⎣( 1
n

N∑
i=1

(yi − μy) δ(i; s)

)2
⎤⎦

= E

⎡⎣ 1
n2

N∑
i=1

N∑
j=1

(yi − μy) (yj − μy) δ(i; s)δ(j; s)

⎤⎦
= E

[
1
n2

N∑
i=1

(yi − μy)2 δ(i; s)2

+
1
n2

N∑
i=1

N∑
j=1

j �=i

(yi − μy) (yj − μy) δ(i; s)δ(j; s)

⎤⎥⎥⎦
=

1
n2

N∑
i=1

(yi − μy)2 E[δ(i; s)]

+
1
n2

N∑
i=1

N∑
j=1

j �=i

(yi − μy) (yj − μy)E[δ(i; s)δ(j; s)] (3.6)

in quanto δ(i; s)2 = δ(i; s). Si è già visto che E[δ(i; s)] = n/N . Inoltre, per
ogni coppia i, j di unità distinte si ha

E[δ(i; s)δ(j; s)] =
∑
s∈S

p(s) δ(i; s)δ(j; s)

=
1(
N
n

)∑
s∈S

δ(i; s)δ(j; s).

Nella ∑
s∈S

δ(i; s)δ(j; s)

si somma un 1 per ogni campione s contenente sia l’unità i che l’unità j, in
quanto soltanto per questi campioni il prodotto δ(i; s)δ(j; s) è uguale a 1.
Pertanto, la somma in questione è uguale al numero di combinazioni senza
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ripetizioni contenenti sia i che j, che è noto essere uguale a
(

N − 2
n − 2

)
. Ne

consegue che:

E[δ(i; s) δ(j; s)] =

(
N − 2
n − 2

)
(

N
n

) =
n(n − 1)
N(N − 1)

. (3.7)

Usando la (3.7) in (3.6) si ottiene infine

V (ys) =
1
n2

N∑
i=1

(yi − μy)2
n

N
+

1
n2

N∑
i=1

N∑
j=1

j �=i

(yi − μy) (yj − μy)
n(n − 1)
N(N − 1)

=
1

nN

N∑
i=1

(yi − μy)2 +
1
n

n − 1
N(N − 1)

N∑
i=1

(yi − μy)
N∑

j=1

j �=i

(yj − μy)

=
1
n

σ2
y +

1
n

n − 1
N(N − 1)

⎛⎝ N∑
i=1

(yi − μy)

⎧⎨⎩
N∑

j=1

(yj − μy) − (yi − μy)

⎫⎬⎭
⎞⎠

=
1
n

σ2
y +

1
n

n − 1
N(N − 1)

⎧⎨⎩
N∑

i=1

(yi − μy)
N∑

j=1

(yj − μy) −
N∑

i=1

(yi − μy)2

⎫⎬⎭
=

1
n

σ2
y

+
1
n

n − 1
N − 1

⎧⎨⎩
N∑

i=1

(yi − μy)

⎛⎝ 1
N

N∑
j=1

(yj − μy)

⎞⎠− 1
N

N∑
i=1

(yi − μy)2

⎫⎬⎭
=

1
n

σ2
y − 1

n

n − 1
N − 1

σ2
y

=
1
n

N − n

N − 1
σ2

y

=
(

1
n
− 1

N

)
S2

y . ��

La relazione (3.5) mostra che la varianza della media campionaria, nel
disegno ssr, dipende solo dalla varianza della popolazione, dalla numerosità
campionaria, e da quella della popolazione. Essa si può anche riscrivere come:

V (ys) =
1
n

S2
y (1 − f) (3.8)

dove f = n/N è la frazione sondata (o frazione di campionamento), cioè
la frazione della popolazione soggetta a osservazione campionaria. Nella gran
parte dei casi pratici, quando f è piccolo, diciamo dell’ordine del 5% o meno,
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di fatto il termine 1 − f (detto fattore di correzione per popolazione finita)
è virtualmente trascurabile nella formula (3.8). In tali casi, la numerosità
della popolazione non ha praticamente nessuna influenza sulla varianza di ys.
Ad esempio se da una popolazione di 10000 unità si estrae un campione ssr
di numerosità 100, si ha f = 100/10000 = 0.01. La media campionaria ha
varianza

V (ys) =
1

100
S2

y (1 − 0.01) = 0.0099S2
y. (3.9)

Se invece un campione ssr di ampiezza 100 viene estratto da una popolazione
di 10000000 di unità, a parità di valore di S2

y si ha

V (ys) =
1

100
S2

y(1 − 0.00001) = 0.01S2
y . (3.10)

Il rapporto tra (3.10) e (3.9) è pari a 1.01, per cui, a parità di varianza S2
y ,

campionare 100 unità da una popolazione di 10000000 di unità anziché da una
di 10000 unità fa aumentare la varianza della media campionaria (all’incirca)
dell’1%.

Se l’effetto della numerosità della popolazione su V (ys) è, nella gran parte
dei casi, pressoché trascurabile, lo stesso non si può dire degli altri due termini,
S2

y e n. In particolare, fermi restando N e S2
y , sui quali non si ha alcuna

influenza, dalla (3.5) si vede che al crescere della numerosità campionaria n
la V (ys) decresce alla velocità di 1/n. In altri termini, V (ys) è dell’ordine di
1/n.

La varianza dello stimatore ys esprime in termini assoluti la variabilità
di ys intorno a μy. Si tratta quindi di una misura assoluta dell’imprecisione
di ys nello stimare μy. In molti casi è di interesse disporre anche di una
misura relativa, che esprima l’imprecisione di ys in termini della media μy da
stimare. Ad esempio, si supponga che la varianza della media campionaria
sia V (ys) = 100, cos̀ı che

√
V (ys) = 10. Se si dovesse stimare una media

μy = 1000, ys verrà giudicato uno stimatore “preciso”, perché l’errore di stima
che in media si commetterebbe sarebbe dell’ordine della centesima parte di
μy, e quindi “piccolo” rispetto a μy. Ma se fosse μy = 1, la media campionaria
ys sarebbe uno stimatore estremamente impreciso, in quanto l’errore di stima
sarebbe in media dieci volte più grande di μy.

La più semplice misura relativa è il coefficiente di variazione di ys, pari a

CV (ys) =

√
V (ys)
|μy|

100 =

√
1
n
− 1

N

Sy

|μy|
100. (3.11)

3.3 Stima della varianza

Benché gran parte della nostra trattazione si concentri sulla stima (con diversi
disegni campionari) della media di una popolazione, questa non è il solo para-
metro di interesse in rilevazioni campionarie. In diversi casi è anche di interesse
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cercare di ottenere informazioni sulla variabilità della popolazione oggetto di
studio. Poiché il principale indice di variabilità è la varianza, ci si concentrerà
esclusivamente sul problema della sua stima sulla base dei dati campionari. I
risultati ottenuti fino ad ora permettono in effetti di costruire facilmente uno
stimatore della varianza corretta della popolazione, S2

y . Definiamo varianza
campionaria corretta la quantità

ŝ2
y =

1
n − 1

∑
i∈s

(yi − ys)
2. (3.12)

Il primo risultato della presente sezione è che la (3.12) è uno stimatore non
distorto di S2

y . Più avanti, verrà affrontato il problema di stimare la varianza
della media campionaria, V (ys).

Proposizione 3.3. Se il disegno campionario è ssr, la varianza campionaria
corretta è uno stimatore corretto della varianza corretta della popolazione:

E[ŝ2
y] = S2

y . (3.13)

Dimostrazione. In primo luogo, osservando che∑
i∈s

(yi − ys)
2 =

∑
i∈s

{(yi − μy) − (ys − μy)}2

=
∑
i∈s

{
(yi − μy)2 + (ys − μy)2 − 2(ys − μy)(yi − μy)

}
=
∑
i∈s

(yi − μy)2 + n(ys − μy)2 − 2(ys − μy)
∑
i∈s

(yi − μy)

=
∑
i∈s

(yi − μy)2 − n(ys − μy)2

ŝ2
y si può riscrivere come

ŝ2
y =

n

n − 1

(
1
n

∑
i∈s

(yi − μy)2 − (ys − μy)2
)

. (3.14)

Usando gli stessi calcoli della Proposizione 3.2, si ha poi

E

[
1
n

∑
i∈s

(yi − μy)2
]

=
1
N

N∑
i=1

(yi − μy)2

=
N − 1

N
S2

y . (3.15)

Inoltre, è evidente che

E
[
(ys − μy)2

]
= V (ys) =

(
1
n
− 1

N

)
S2

y
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per cui dalle (3.14), (3.15) si ottiene

E[ŝ2
y] =

n

n − 1

{(
1 − 1

N

)
S2

y −
(

1
n
− 1

N

)
S2

y

}
=

n

n − 1

(
1 − 1

n

)
S2

y

= S2
y

il che completa la dimostrazione della (3.13). ��

Naturalmente, dalla Proposizione 3.3 discende subito che

σ̂2
y =

N − 1
N

ŝ2
y =

N − 1
N

1
n − 1

∑
i∈s

(yi − ys)
2

è uno stimatore corretto della varianza σ2
y della popolazione. Il termine (N −

1)/N è essenzialmente un fattore correttivo dovuto al fatto che la popolazione
di riferimento è finita, di numerosità N . Naturalmente, a meno che N non
sia piccolo, si ha (N − 1)/N ≈ 1, da cui σ̂2

y ≈ ŝ2
y .

Come sottoprodotto della Proposizione 3.3 si ottiene uno stimatore cor-
retto della varianza della media campionaria. È appena il caso di sottolinea-
re l’importanza di questo risultato, in quanto, essendo ys corretto (quando
usato con il disegno ssr), quello che si ottiene è uno stimatore corretto del
suo errore quadratico medio (l’importanza di questo fatto è sottolineata nella
Sezione 2.4).

Proposizione 3.4. Se il disegno campionario è ssr, la quantità:

V̂ =
(

1
n
− 1

N

)
1

n − 1

∑
i∈s

(yi − ys)
2 (3.16)

è uno stimatore corretto di V (ys).

Dimostrazione. È un’immediata conseguenza di (3.5) e (3.13). ��

I risultati finora ottenuti ci permettono anche di stimare il coefficiente
di variazione della media campionaria. Tenendo conto dell’espressione (3.11),
uno stimatore di CV (ys) è il seguente:

ĈV =

√
V̂

|ys|
100. (3.17)

Come si vede dalla (3.17), sia il numeratore che il denominatore di ĈV di-
pendono dal campione s, quindi in generale variano al variare del campione
stesso. Questo fa s̀ı che il calcolo del valore atteso di ĈV non sia cos̀ı semplice
come quelli visti finora. In generale, non è difficile verificare che ĈV è uno
stimatore distorto del coefficiente di variazione CV (ys).
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3.4 Approssimazione normale nel disegno ssr e intervalli
di confidenza per la media della popolazione

Se si utilizza l’approssimazione normale si possono anche costruire intervalli
di confidenza approssimati per la media della popolazione. L’idea di base, già
accennata nella Sezione 2.6, è quella di approssimare l’effettiva distribuzione
di probabilità della media campionaria studentizzata

Z =
ys − μy√

V̂
(3.18)

con una normale standard N(0, 1). Se zα/2 è il valore tale che Pr(N(0, 1) �
zα/2) = α/2, si ha in via approssimata

Pr

(
−zα/2 �

ys − μy√
V̂
� zα/2

)
= 1 − α

ossia

Pr
(
ys − zα/2

√
V̂ � μy � ys + zα/2

√
V̂
)

= 1 − α.

Ne consegue che l’intervallo[
ys − zα/2

√
V̂ , ys + zα/2

√
V̂
]

(3.19)

è un intervallo di confidenza approssimato per la media μy della popolazione
al livello 1 − α.

Esempio 3.3. Nel file stature.txt sono riportati numeri di matricola, ses-
so e statura di una popolazione fittizia di N = 1570 studenti universitari.
I numeri di matricola sono inventati, e gli altri dati sono generati mediante
simulazione. La statura media della popolazione è μy = 172.8, e la varianza è
pari a σ2

y = 59.9. Da questa popolazione bisogna selezionare un campione di
n = 50 unità, e costruire un intervallo di confidenza, al livello 0.95, per la me-
dia della popolazione. Immaginiamo di etichettare le unità con numeri interi,
da 1 a 1570. Le etichette delle unità campionarie sono qui sotto riportate:

992 1062 1265 1112 487 987 1289 1170 1296 942 97 329 1391 455 311 906
1403 661 1090 1127 1417 537 632 662 1400 11 347 850 275 1361 178 291 1385
916 695 723 965 1272 1521 905 584 399 1288 238 159 561 1064 1465 71 973.

I corrispondenti dati campionari sono riportati nel file campstature.txt. La
media campionaria è ys = 172.76, e la varianza campionaria corretta risulta
eguale a ŝ2

y = 34.06. Lo stimatore V̂ (3.16) assume in questo caso il valore
0.66. Tenendo infine conto che z0.025 = 1.96, si conclude che l’intervallo[

172.76− 1.96
√

0.66, 172.76 + 1.96
√

0.66
]

= [171.17, 174.35]

è un intervallo di confidenza per μy al livello (approssimato) 0.95. ��
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La validità dell’intervallo di confidenza (3.19) merita qualche precisazione. Il suo
fondamento teorico poggia sul teorema limite centrale per il campionamento ssr
da popolazioni finite; l’articolo-chiave in questa direzione è quello di Hájek (1960).
Le condizioni di regolarità sono non difficili, ma piuttosto “astratte”, in quanto
richiedono che sia la numerosità della popolazione che quella del campione tendano
all’infinito, seppure con velocità diversa. Immaginiamo di avere una successione di
popolazioni INν , ν = 1, 2, . . ., di numerosità Nν, ν = 1, 2, . . .. Indichiamo yiν la
modalità dell’unità ima della popolazione INν , i = 1, . . . , Nν , ν = 1, 2, . . ., e siano

μyν =
1

Nν

Nν∑
i=1

yiν , S2
yν =

1

Nν − 1

Nν∑
i=1

(yiν − μyν)2

rispettivamente la media e la varianza corretta della popolazione INν .
Dalla popolazione INν si seleziona, mediante campionamento ssr, un campione

di nν unità, ν = 1, 2, . . .. Indichiamo con yν la media campionaria. Per ε positivo,
sia poi Eνε l’insieme delle unità di INν tali che

|yiν − μyν | > ε
√

nν(1 − fν)Sν

con fν = nν/Nν . Si può dimostrare che se:

– Nν e nν tendono all’infinito al crescere di ν;
– Nν − nν tende all’infinito al crescere di ν;

– limν→∞
(

1
Nν

8
∑

i∈Eνε
(yiν − μyν)2

)
/S2

yν = 0 per ogni ε > 0

allora

lim
ν→∞

Pr

(
yν − μyν√

V (yν)
� z

)
= Pr(N(0, 1) � z) per ogni z reale. (3.20)

Si può anche provare che, sotto condizioni aggiuntive (la più importante delle quali
è che esistano i limiti limν→∞ μyν , limν→∞ S2

yν , e che il secondo limite sia positivo),
il limite (3.20) continua a valere se la varianza della media campionaria V (yν ) è

sostituita con la sua stima campionaria V̂ .

In pratica, l’approssimazione normale su cui si basa l’intervallo di confiden-
za (3.19) è valida purché sia la numerosità campionaria n, sia la differenza
N − n tra numerosità della popolazione e numerosità del campione, siano
“sufficientemente grandi”. Ciò ha luogo quando la numerostà del campione
da un lato è “grande”, ma dall’altro è “abbastanza piccola” rispetto alla nu-
merosità della popolazione. Spesso viene fornito il numero “magico” n = 30
come valore di soglia per la numerosità campionaria, a partire dal quale è
lecito usare l’approssimazione normale. Per la verità, non è cos̀ı semplice ri-
spondere alla domanda: “A partire da quale numerosità campionaria è valida
l’approssimazione normale?” Molto dipende dall’asimmetria della popolazio-
ne. Se la popolazione è vicina alla simmetria, una numerosità campionaria
n = 30 è probabilmente bastevole per usare l’approssimazione normale. Se
però la popolazione è fortemente asimmetrica, è necessario usare una nu-
merosità campionaria molto maggiore. I successivi esempi chiariscono questo
punto.
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Fig. 3.1 Istogramma delle stature di una popolazione di 1570 studenti

Esempio 3.4. Consideriamo la popolazione di 1570 studenti del file
stature.txt dell’Esempio 3.3. In Fig. 3.1 è riportato l’istogramma delle
stature. L’indice di asimmetria

γy =
1
N

N∑
i=1

(
yi − μy

σy

)3

(3.21)

risulta pari a 0.18. Si tratta quindi di una popolazione solo moderatamente
asimmetrica, molto vicina a una situazione di simmetria, fatto confermato
anche visivamente dalla Fig. 3.1.

Per questa popolazione si è considerato un disegno ssr di numerosità
n = 30. Per studiare la distribuzione di probabilità della media studentiz-
zata (3.18), sono stati generati, sempre mediante simulazione, 1000 campioni
ssr indipendenti, per ognuno dei quali è stato calcolato il rapporto (3.18). Il
relativo istogramma, mostrato in Fig. 3.2, fornisce una buona approssimazio-
ne della distribuzione di probabilità della (3.18). Chiaramente, in questo caso
l’uso dell’approssimazione normale per la distribuzione di probabilità della
media studentizzata (3.18) è perfettamente valido. ��
Esempio 3.5. Nel file cultura.txt sono riportate le spese annue per attività
culturali di 1500 famiglie. Si tratta di dati ottenuti modificando opportuna-
mente dati reali rilevati, nel corso di vari anni, da studenti della Facoltà di
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Fig. 3.2 Distribuzione di probabilità della media campionaria studentizzata (n=30)
per la popolazione di Fig. 3.1
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Fig. 3.3 Istogramma delle spese per attività culturali di 1500 famiglie
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Fig. 3.4 Distribuzione di probabilità della media campionaria studentizzata (n=30,
50, 70) per la popolazione di Fig. 3.3

Scienze Statistiche dell’Università di Roma “La Sapienza”. In Fig. 3.3 è ripor-
tato l’istogramma delle spese per attività culturali. Questo carattere, eviden-
temente, ha una distribuzione molto asimmetrica. La media della popolazione
è μy = 702.5, e la deviazione standard è σy = 592.6. Si tratta di una popola-
zione con alta variabilità (il coefficiente di variazione è del 84%, con un grande
gruppo di famiglie che ha spese relativamente contenute, ed un gruppo non
trascurabile con spese alte. L’indice di asimmetria γ (3.21) assume un valore
1.3, il che evidenzia la forte asimmetria positiva della popolazione.

La Fig. 3.4 raffigura la distribuzione di probabilità (ottenuta simulando
1000 campioni indipendenti) della media campionaria studentizzata, rispetti-
vamente per campioni di numerosità (a) n = 30, (b) n = 50, (c) n = 70.

La presenza di una forte asimmetria peggiora, rispetto al caso dell’esempio
precedente, l’approssimazione normale. In particolare, questa diviene accetta-
bile solo per una numerosità campionaria n = 70. ��
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3.5 Un importante caso speciale: la stima di proporzioni

La stima di proporzioni può essere trattata come caso particolare di stima
della media di una popolazione. Supponiamo di essere interessati a stima-
re la proporzione di unità della popolazione che possiedono un determinato
attributo, diciamo A. Come già fatto nell’Es. 1.1, poniamo in questo caso:

yi =
{

1 se l′unità i possiede l′attributoA
0 altrimenti per ciascuna unità i = 1, . . . , N.

Indichiamo con NA il numero di unità della popolazione che possiedono l’at-
tributo A, e con PA la proporzione di unità della popolazione che possiedono
A. Come già visto, dalla relazione NA =

∑N
i=1 yi discende che

PA =
NA

N
=

1
N

N∑
i=1

yi = μy.

La varianza della popolazione, inoltre, è pari a

σ2
y = PA(1 − PA).

Se indichiamo ora con nA il numero di unità del campione che possiedono
l’attributo A, e con p̂A = nA/n la proporzione di unità campionarie che
possiedono A, vale l’ovvia relazione

nA =
∑
i∈s

yi

dalla quale discende che:

p̂A =
nA

n
=

1
n

∑
i∈s

yi = ys

ovvero la media campionaria coincide con la proporzione di unità campionarie
che possiedono l’attributo A.

A questo punto è facile particolarizzare i risultati ottenuti nelle Sezioni 3.2
e 3.3. In primo luogo, p̂A è uno stimatore corretto di PA:

E[p̂A] = PA.

Tenendo poi conto che S2
y = N

N−1σ2
y, dalla (3.5) si ottiene la relazione:

V (p̂A) =
(

1
n
− 1

N

)
N

N − 1
PA(1 − PA)

=
N − n

N − 1
PA(1 − PA)

n
. (3.22)
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Naturalmente, a meno che N non sia molto piccolo si ha N − 1 ≈ N , per cui
la (3.22) si riduce a

V (p̂A) ≈
(

1
n
− 1

N

)
PA(1 − PA).

L’uguaglianza (3.22) evidenzia che per PA = 0 o PA = 1 si ha V (p̂A) = 0.
In sostanza questo significa che V (p̂A) assume valori molto piccoli nei casi
estremi in cui la proporzione PA da stimare assume valori prossimi a 0 o a 1.
Apparentemente, questo ragionamento sembrerebbe suggerire che l’uso della
proporzione campionaria p̂A per stimare PA fornisce risultati molto precisi
quando quest’ultima è o molto piccola, o molto grande. Le cose stanno però
in modo diverso se si valuta l’errore di stima in termini relativi, ossia se si fa
riferimento al coefficiente di variazione di p̂A. Questo risulta pari a:

CV (p̂A) =

√
V (p̂A)

E[p̂A]

=

√
N − n

n(N − 1)

√
PA(1 − PA)

PA

=

√
N − n

n(N − 1)

√
1

PA
− 1. (3.23)

La (3.23) evidenzia che:

1. se PA cresce verso 1, CV (p̂A) tende a 0;
2. se PA decresce verso 0, CV (p̂A) tende all’infinito.

L’asserzione 1 mette in evidenza che la proporzione campionaria p̂A dà risul-
tati molto precisi, non solo in termini assoluti ma anche relativi, quando la
proporzione PA da stimare è molto grande. Invece, sempre in termini relativi,
p̂A fornisce cattivi risultati quando la proporzione PA da stimare è piccola,
prossima a zero. Intuitivamente, la stima di una proporzione PA “piccola” è
un problema assai difficile in quanto, a meno che la numerosità campionaria
n non sia molto alta, con elevata probabilità si osservano nel campione solo
pochissime unità che possiedono l’attributo A.

La Proposizione 3.4 suggerisce uno stimatore corretto di V (p̂A). Tenendo
conto (come facilmente si vede) che

1
n

∑
i∈s

(yi − ys)
2 = p̂A(1 − p̂A)

dalla (3.16) si ha che

V̂ =
(

1
n
− 1

N

)
1

n − 1

∑
i∈s

(yi − ys)
2

=
(

1
n
− 1

N

)
n

n − 1
p̂A(1 − p̂A) (3.24)
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è uno stimatore corretto di V (p̂A). Naturalmente, a meno che la numerosità
campionaria n non sia piccola, si ha n − 1 ≈ n, per cui per lo stimatore V̂
vale l’approssimazione

V̂ ≈
(

1
n
− 1

N

)
p̂A(1 − p̂A). (3.25)

Dai risultati della Sezione 3.4, infine, è possibile costruire un interval-
lo di confidenza approssimato per PA. Particolarizzando infatti la (3.19), e
lasciando per il resto invariata la notazione già usata, si ha che l’intervallo[

p̂A − zα/2

√
V̂ , p̂A + zα/2

√
V̂
]

(3.26)

è un intervallo di confidenza approssimato per PA al livello 1−α, con V̂ dato
dalla (3.24). Per quanto riguarda l’accuratezza dell’intervallo di confidenza
(3.26), valgono considerazioni abbastanza simili a quelle svolte nella Sezio-
ne 3.4. Per approfondimenti e ulteriori considerazioni, si rinvia al volume di
Cochran (1977) (pp. 57-59).

Esempio 3.6. Con riferimento ai dati contenuti nel file cultura.txt (cfr.
Esempio 3.5), si vuole stimare, sulla base di un campione ssr di numerosità
n = 100, la proporzione di individui che spendono ogni anno per cultura più
di 1000 Euro.

Per ognuna delle 1500 unità della popolazione, poniamo yi = 1 se l’unità
i spende più di 1000 Euro, e yi = 0 in caso contrario (i = 1, . . . , 1000). Nel
file spese+1000.txt sono riportati i dati per l’intera popolazione. Il numero
totale di unità della popolazione che spendono annualmente più di 1000 Euro
è NA = 356; la proporzione di unità della popolazione che spendono più di
1000 Euro è PA = 0.237. La varianza è pari a PA(1 − PA) = 0.181.

Dalla popolazione è selezionato, come detto all’inizio, un campione di
n = 100 unità. L’elenco delle unità campionarie, con i relativi dati osser-
vati, è riportato nel file campione1.txt. Il numero di unità del campione che
spendono ogni anno più di 1000 Euro è nA = 22, cos̀ı che la corrispondente
proporzione campionaria è p̂A = 22/100 = 0.22. La stima della varianza di
p̂A, ottenuta in base alla (3.24), è V̂ = 0.00185. Pertanto, un intervallo di
confidenza per PA, al livello approssimato 0.95, è il seguente:[

0.22− 1.96
√

0.0018, 0.22 + 1.96
√

0.0018
]

= [0.137, 0.303].

Se si usa la formula approssimata (3.25), si ottiene una stima V̂ = 0.00183,
e quindi un intervallo di confidenza per PA praticamente uguale al precedente.

��
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3.6 Regola di estensione per la stima di parametri lineari

I risultati ottenuti per la stima della media della popolazione valgono per
parametri di interesse molto più generali: i parametri lineari. Un parametro
θ = θ(Y N ) è un parametro lineare se per ogni unità i della popolazione è
definita una funzione ti(·) (a valori reali) tale che si può scrivere:

θ =
1
N

N∑
i=1

ti(yi). (3.27)

Le N funzioni t1(·), . . . , tN (·) non hanno tutte necessariamente la stessa
forma.

Ovviamente, la media campionaria è una caso speciale di parametro linea-
re, con ti(yi) = yi per ogni i = 1, . . . , N . Qui di seguito sono riportati alcuni
altri semplici esempi di parametri lineari.

− Ammontare del carattere Y nella popolazione. Se si pone ti(yi) = Nyi, si
ha θ = 1

N

∑N
i=1 Nyi =

∑N
i=1 yi, che è l’ammontare del carattere Y nella

popolazione di riferimento.
− Momento kmo (dall’origine) del carattere Y. Se si pone ti(yi) = yk

i , si ha
θ = 1

N

∑N
i=1 yk

i = momento kmo di Y.
− Funzione di ripartizione del carattere Y. Per ogni fissato y reale, la funzione

di ripartizione di Y nel punto y è definita come:

F (y) =
# di unità della popolazione tali che yi � y

N
.

Anche F (y) si può esprimere come parametro lineare. Poniamo infatti

ti(yi) =
{

1 se yi � y
0 se yi > y

per ciascuna unit à i = 1, . . . , N.

La
∑N

i=1 ti(yi) somma tanti 1 quante sono le unità i tali che yi � y, e tanti 0
quante sono le unità i tali che yi > y. Ne consegue che:

N∑
i=1

ti(yi) = # di unità della popolazione tali che yi � y

per cui si può scrivere:

θ =
1
N

N∑
i=1

ti(yi) = F (y).

Ritornando agli aspetti generali riguardanti la stima di un parametro li-
neare, se per ogni unità i della popolazione si pone zi = ti(yi), resta definito
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un nuovo carattere Z, che assume le N modalità z1, . . . , zN . La sua media,
nella popolazione di riferimento, è pari a

μz =
1
N

N∑
i=1

zi

=
1
N

N∑
i=1

ti(yi)

= θ (3.28)

e la sua varianza corretta

S2
z =

1
N − 1

N∑
i=1

(zi − μz)2

=
1

N − 1

N∑
i=1

(ti(yi) − θ)2 . (3.29)

La stima di θ, come mostrato dalla (3.28), può essere vista come un problema
di stima di una media. Se si utilizza il disegno ssr, un suo stimatore corretto
è la media campionaria delle zi, che si può scrivere come:

θ̂ = zs

=
1
n

∑
i∈s

zi

=
1
n

∑
i∈s

ti(yi). (3.30)

Usando i risultati ottenuti nella Sezione 3.2 e la (3.28), è immediato vedere
che lo stimatore (3.30) è uno stimatore corretto di θ:

E[θ̂] = E[zs] = μz = θ. (3.31)

Sempre da risultati noti, e tenendo conto della (3.29), la varianza di θ̂ è pari a

V (θ̂) =
(

1
n
− 1

N

)
S2

z

=
(

1
n
− 1

N

){
1

N − 1

N∑
i=1

(ti(yi) − θ)2
}

. (3.32)

La regola di costruzione dello stimatore (3.30) è detta regola di estensione.
Usando i risultati ottenuti nelle precedenti sezioni, è anche facile stimare la
(3.32), e costruire un intervallo di confidenza approssimato per θ.
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Esempio 3.7. Come già detto all’inizio di questa sezione, se ti(yi) = Nyi il
parametro θ diviene l’ammontare del carattere Y: θ =

∑N
i=1 yi. Lo stimatore

corretto (3.30) assume in questo caso la forma:

θ̂ =
1
n

∑
i∈s

Nyi = Nys. (3.33)

La varianza dello stimatore (3.33) può essere anche valutata direttamente,
senza ricorrere alla formula generale (3.32). È infatti immediato verificare che

V (θ̂) = V (Nys) = N2V (ys) = N2

(
1
n
− 1

N

)
S2

y .

Naturalmente, in questo caso uno stimatore non distorto della varianza di θ̂
è semplicemente:

V̂ (θ̂) = N2

(
1
n
− 1

N

)
ŝ2
y (3.34)

con ŝ2
y dato dalla (3.12).

Si consideri, a titolo di esemplificazione numerica, la popolazione di 1500
famiglie del file cultura.txt, da cui si è selezionato un campione ssr di
n = 100 unità. I dati campionari sono riportati nel file campione1.txt. Si
vuole stimare l’ammontare delle spese annue sostenute dalle famiglie per at-
tività culturali. La media campionaria del carattere “spese annue per attività
culturali” è ys = 662.433 (Euro). Essendo N = 1500, lo stimatore (3.33)
assume il valore θ̂ = 1500 × 662.43 = 993649.5 (Euro). Come stima del-
la varianza di θ̂, usando la (3.34) e tenendo conto che ŝ2

y = 324270.96, si ha
V̂ (θ̂) = 6809690160. Usando questi risultati, e tenendo conto che z0.05 = 1.645,
si ricava facilmente che un intervallo di confidenza per θ al livello (approssi-
mato) 0.90 è [851829, 1135470]. ��

3.7 Popolazioni multivariate: stima di covarianze

I risultati ottenuti fino ad ora si estendono abbastanza facilmente anche al
caso di popolazioni su cui si osservano due o più caratteri. Per semplicità ci
limitiamo qui al caso di due soli caratteri, in quanto l’estensione a più di due
caratteri è molto semplice.

Supponiamo che sulle unità della popolazione di riferimento siano definite
le modalità di due caratteri, diciamo X , Y. La situazione è essenzialmente
quella descritta nella Sezione 1.3. Indichiamo con (xi, yi) le modalità assunte
rispettivamente da X e da Y in corrispondenza dell’unità ima della popola-
zione. Indichiamo inoltre con μx, μy, S2

x, S2
y le medie e le varianze (corrette)

rispettivamente di X , Y. Se s è il campione di unità selezionate, i dati sta-
tistici campionari sono rappresentati dal campione di modalità (etichettate)
(x(s), y(s)) = {(xi, yi); i ∈ s}.
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La stima di parametri univariati, quali le medie μx, μy, non presenta dif-
ficoltà: basta applicare quanto svolto nelle Sezioni 3.2, 3.3. Molto più inte-
ressante, nel presente contesto, è cercare di stimare la covarianza tra i due
caratteri in esame:

σxy =
1
N

N∑
i=1

(xi − μx) (yi − μy) =
1
N

N∑
i=1

xi yi − μx μy.

Analogamente a quanto visto nella Sezione 3.3, otterremo questo risultato
come sottoprodotto della covarianza tra medie campionarie . Precisamente,
consideriamo le due medie campionarie:

xs =
1
n

∑
i∈s

xi, ys =
1
n

∑
i∈s

yi

e, analogamente alla Sezione 3.2, sia

Sxy =
1

N − 1

N∑
i=1

(xi − μx)(yi − μy)

la covarianza corretta tra X e Y.
Conosciamo già valori attesi e varianze di xs, ys. Nella successiva propo-

sizione è calcolata la covarianza tra xs e ys.

Proposizione 3.5. Se il disegno campionario è ssr, la covarianza tra xs e ys

è pari a:

C (xs, ys) =
(

1
n
− 1

N

)
Sxy . (3.35)

Dimostrazione. La tecnica è esattamente la stessa della Proposizione 3.2, per
cui la dimostrazione verrà svolta solo per sommi capi. In primo luogo, essendo
E[xs] = μx e E[ys] = μy, si ha C(xs, ys) = E[(xs − μx)(ys − μy)] e usando la
(3.1) si può scrivere:

E[(xs − μx)(ys − μy)]

= E

⎡⎣( 1
n

N∑
i=1

(xi − μx) δ(i; s)

)⎛⎝ 1
n

N∑
j=1

(yj − μy) δ(j; s)

⎞⎠⎤⎦
= E

⎡⎣ 1
n2

N∑
i=1

N∑
j=1

(xi − μx)(yj − μy) δ(i; s) δ(j; s)

⎤⎦
=

1
n2

N∑
i=1

(xi − μx)(yi − μy)E[δ(i; s)]

+
1
n2

N∑
i=1

N∑
j=1

j �=i

(xi − μx)(yj − μy)E[δ(i; s) δ(j; s)]. (3.36)
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La (3.36) è esattamente della stessa forma della (3.6), ad esclusione del fatto
che i termini del tipo (yi − μy)2 e (yi − μy) (yj − μy) sono rispettivamente
sostituiti da termini (xi − μx) (yi − μy) e (xi − μx) (yj − μy). Ad ogni modo,
gli stessi calcoli della Proposizione 3.2 portano alla (3.35). ��

La covarianza tra medie campionarie (3.35) ha una struttura praticamente
identica a quella della varianza della media campionaria (3.5). L’unica diffe-
renza è che il termine S2

y è ora sostituito da Sxy . Naturalmente, valgono anco-
ra le considerazioni già fatte a proposito di V (xs). In particolare, il valore di
C(xs, ys) è principalmente determinato da n e da Sxy, mentre in genere la nu-
merosità N della popolazione ha un’influenza pressoché trascurabile. Inoltre,
dati N e Sxy, C(xs, ys) è dell’ordine di grandezza di 1/n.

Procedendo in maniera simile a quanto visto nella Sezione 3.3, si è ora in
grado di costruire uno stimatore corretto di Sxy. Analogamente alla (3.12),
definiamo covarianza campionaria corretta la quantità

ŝxy =
1

n − 1

∑
i∈s

(xi − xs)(yi − ys). (3.37)

Nella Proposizione 3.6 dimostriamo che (3.12) è uno stimatore non distorto
di Sxy.

Proposizione 3.6. Se il disegno campionario è ssr, la covarianza campiona-
ria corretta è uno stimatore corretto della covarianza corretta della popolazio-
ne:

E[ŝxy] = Sxy . (3.38)

Dimostrazione. In primo luogo, analogamente alla Proposizione 3.3 si ha∑
i∈s

(xi − xs)(yi − ys) =
∑
i∈s

{(xi − μx) − (xs − μx)} {(yi − μy) − (ys − μy)}

=
∑
i∈s

{(xi − μx)(yi − μy) − (xi − μx)(ys − μy) − (yi − μy)(xs − μx)

+(xs − μx)(ys − μy)}
=
∑
i∈s

(xi − μx)(yi − μy) − n(xs − μx)(ys − μy) − n(xs − μx)(ys − μy)

+n(xs − μx)(ys − μy)

=
∑
i∈s

(xi − μx)(yi − μy) − n(xs − μx)(ys − μy)

per cui ŝxy si può riscrivere come

ŝxy =
n

n − 1

(
1
n

∑
i∈s

(xi − μx)(yi − μy) − (xs − μx)(ys − μy)

)
.
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Usando gli stessi calcoli della Proposizione 3.2, e tenendo conto che E[δ(i; s)] =
n/N , si ha poi

E

[
1
n

∑
i∈s

(xi − μx)(yi − μy)

]
=

1
N

N∑
i=1

(xi − μx)(yi − μy)

=
N − 1

N
Sxy.

Essendo infine

E [(xs − μx)(ys − μy)] = C(xs, ys) =
(

1
n
− 1

N

)
Sxy

è immediato verificare, ripetendo verbatim gli stessi calcoli della Proposizione
3.3, che vale la (3.38). ��

Dalla Proposizione 3.6 si trae che

σ̂xy =
N − 1

N
ŝxy =

N − 1
N

1
n − 1

∑
i∈s

(xi − xs)(yi − ys)

è uno stimatore corretto della covarianza σxy. Il termine correttivo (N−1)/N ,
dovuto al fatto che la popolazione di riferimento ha numerosità finita N , è in
genere trascurabile a meno che N non sia molto piccolo ((N −1)/N ≈ 1), per
cui si ha σ̂xy ≈ ŝxy.

Esempio 3.8. Come esempio numerico consideriamo ancora la popolazione
di 1500 famiglie del file cultura.txt. Da essa si è selezionato un campione ssr
di n = 100 unità, i cui dati sono riportati nel file campione1.txt. Un modo
molto semplice per valutare l’associazione tra spese per attività culturali e
reddito disponibile potrebbe consistere nello stimare la covarianza tra questi
due caratteri. Sulla base dei dati campionari, è immediato verificare che lo
stimatore σ̂xy assume il valore 5972950.52 (si osservi che, nel caso in esame,
è σxy = 6762093.71). ��

3.8 Stima di rapporti

Un problema che di frequente si incontra nella pratica applicativa è quello di
stimare un rapporto tra due grandezze. Per capire come sorga questo proble-
ma, si consideri la popolazione di 1500 famiglie degli Esempi 3.4–3.7, in cui
si osservano il numero di componenti, il reddito netto e le spese per attività
culturali di ciascuna famiglia. Accanto alla spesa media familiare, una gran-
dezza di interesse è la spesa media individuale, data dal rapporto tra la spesa
totale sostenuta dall’intera popolazione e il numero totale di individui della
popolazione stessa. In simboli:

spesa media individuale =

∑1500
i=1 spesa della famiglia i∑1500

i=1 numero di componenti della famiglia i
. (3.39)



3.8 Stima di rapporti 65

La costruzione di uno stimatore della (3.39) è un caso speciale di stima di
rapporto, che può essere formalmente descritto nei termini che seguono. Data
una popolazione finita di N unità, supponiamo che siano definiti due caratteri,
X , Y. Indichiamo, al solito, con xi, yi le modalità assunte rispettivamente da
X , Y in corrispondenza della unità ima della popolazione. Il problema è quello
di stimare il rapporto:

R =
∑N

i=1 yi∑N
i=1 xi

=
1
N

∑N
i=1 yi

1
N

∑N
i=1 xi

=
μy

μx
(3.40)

in cui μx, μy sono rispettivamente le medie di Y e di X nell’intera popolazione.
Come evidenziato dalla (3.40), il quoziente R non è altro che il rapporto tra
le medie dei due caratteri Y e X .

Supponiamo di selezionare un campione s sulla base di un disegno ssr di
ampiezza n. Per ogni unità campionaria, si osservano le modalità xi, yi dei
due caratteri. Uno stimatore “naturale” di R, suggerito dall’intuizione, è il
rapporto tra le medie campionarie dei due caratteri:

R̂ =
ys

xs
=

1
n

∑
i∈s yi

1
n

∑
i∈s xi

. (3.41)

La distribuzione di probabilità dello stimatore (3.41) è molto difficile da
studiare, per una semplice ragione: sia il numeratore che il denominatore di
R̂ variano al variare del campione s. Questo fa s̀ı che, in generale, non si
possano usare i metodi impiegati per studiare media e varianza della media
campionaria. Quello che faremo nel seguito è cercare di ottenere un’espressione
approssimata sia per la distorsione di R̂, sia per la sua varianza e per il suo
errore quadratico medio.

Proposizione 3.7. Se il disegno campionario è ssr di numerosità n, valgono
le seguenti relazioni:

E[R̂] ≈ R (3.42)

V (R̂) ≈
(

1
n
− 1

N

)
S2

y + R2S2
x − 2RSxy

μ2
x

(3.43)

MSE(R̂) ≈
(

1
n
− 1

N

)
S2

y + R2S2
x − 2RSxy

μ2
x

. (3.44)

Prima di dimostrare la Proposizione 3.7, è bene discutere brevemente l’ordine
di grandezza degli errori di approssimazione insiti nelle (3.42) - (3.44). Come
risultarà chiaro dal seguito della presente sezione, gli errori di approssimazio-
ne in (3.42) - (3.44) sono tanto più piccoli quanto più grande è la numerosità
campionaria n. Più precisamente, per la (3.42) l’errore di approssimazione è
dell’ordine di grandezza di 1/n, mentre per le (3.43), (3.44) è di ordine più
piccolo di 1/n. Questo significa che al crescere di n l’errore di approssimazio-
ne in (3.42) decresce alla velocità di 1/n, mentre gli errori in (3.43), (3.44)
decrescono più rapidamente di 1/n.
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Dimostrazione. Anzitutto, si può scrivere

R̂ − R =
ys

xs
− R

=
ys − Rxs

xs

=
ys − Rxs

μx
+ (ys − Rxs)

(
1
xs

− 1
μx

)
. (3.45)

In secondo luogo, con uno sviluppo di Taylor nel punto μx si ottiene

1
xs

=
1
μx

− 1
μ2

x

(xs − μx) + Resto (3.46)

dove il termine Resto è di ordine inferiore a (xs −μx). Dalla (3.45) e (3.46) si
ha pertanto

R̂ = R +
ys − Rxs

μx

(
1 − 1

μx
(xs − μx) + Resto

)
. (3.47)

Al crescere di n, la varianza di xs tende a 0, per cui la distribuzione di
probabilità di xs tende a concentrarsi attorno a μx. Equivalentemente, xs−μx

tende con alta probabilità a diventare sempre più piccolo, a concentrarsi at-
torno a 0. Per n “abbastanza grande”, quindi, il termine xs − μx tende a
diventare piccolo, e “trascurabile” rispetto a 1. Lo stesso vale per Resto, che
è di ordine inferiore rispetto a xs − μx. Questo significa che per n “sufficien-
temente grande” il termine (xs − μx)/μ2

x + Resto può essere trascurato nella
(3.47), e si può scrivere in via approssimata

R̂ ≈ R +
ys − Rxs

μx
. (3.48)

Dalla (3.48) si ottiene in primis

E[R̂] ≈ R +
E[ys] − RE[xs]

μx

= R +
μy − Rμx

μx

= R ,
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il che prova la (3.42). Per quanto concerne le (3.43), (3.44), è sufficiente
osservare che, sempre per la (3.48),

V (R̂) ≈ V

(
R +

ys − Rxs

μx

)
=

1
μ2

x

V (ys − Rxs)

=
1
μ2

x

{V (ys) + R2V (xs) − 2RC(xs, ys)}

=
1
μ2

x

(
1
n
− 1

N

)
(S2

y + R2S2
x − 2RSxy)

e che

MSE(R̂) = V (R̂) + (E[R̂] − R)2

≈ 1
μ2

x

(
1
n
− 1

N

)
(S2

y + R2S2
x − 2RSxy) + (R − R)2

=
1
μ2

x

(
1
n
− 1

N

)
(S2

y + R2S2
x − 2RSxy). ��

Per valutare, sia pure in modo rozzamente euristico, l’ordine di grandezza di xs−μx,
calcoliamo il valore atteso di |xs − μx|. Si ha:

E [|xs − μx|] �
√

E [(xs − μx)2] =
√

V (ys) =

√(
1

n
− 1

N

)
Sx

per cui xs − μx è essenzialmente di ordine 1/
√

n. Il termine Resto, come detto, è di
ordine inferiore a xs − μx, per cui

Resto = quantit à di ordine inferiore a
1√
n

.

Complessivamente, la (3.47) si può riscrivere come

R̂ = R +
ys − Rxs

μx

(
1 + quantit à di ordine

1√
n

)
.

Poiché anche ys − Rxs è di ordine 1/
√

n (basta tener conto che il suo valore
atteso è nullo, e ripetere parola per parola il ragionamento fatto per xs − μx) dalla
(3.47) si ottiene

R̂ = R +
ys − Rxs

μx
+ quantit à di ordine

1

n
. (3.49)

Tenendo conto di quanto sopra detto, dalla (3.49) si ottiene

E[R̂] = R + quantità dell′ordine di
1

n
.
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Per quanto riguarda la varianza di R̂, si può provare (Esercizio 3.12) che

V (R̂) =

(
1

n
− 1

N

)
S2

y + R2S2
x − 2RSxy

μ2
x

+ quantità di ordine
1√
n3

.

Infine, dai risultati finora visti si ottiene (Esercizio 3.13) la seguente relazione per

l’errore quadratico medio di R̂:

MSE(R̂) =

(
1

n
− 1

N

)
S2

y + R2S2
x − 2RSxy

μ2
x

+ quantità di ordine
1√
n3

.

La (3.43) si può anche esprimere in forma differente, più semplice. In effetti, da

S2
y + R2S2

x − 2RSxy

=
1

N − 1

N∑
i=1

{(yi − μy)2 + R2(xi − μx)2 − 2R(yi − μy)(xi − μx)}

=
1

N − 1

N∑
i=1

{(yi − μy) − R(xi − μx)}2

=
1

N − 1

N∑
i=1

(yi − Rxi)2

si ha subito la seguente espressione, equivalente alla (3.43):

V (R̂) ≈
(

1
n
− 1

N

)
1
μ2

x

{
1

N − 1

N∑
i=1

(yi − Rxi)2
}

. (3.50)

L’espressione approssimata (3.50) può essere anche utilizzata per costrui-
re uno stimatore di V (R̂). Con gli stessi ragionamenti della Sezione 3.3, e
sostituendo gli incogniti R, μx rispettivamente con R̂ e xs, si può costruire il
seguente stimatore di V (R̂):

V̂ (R̂) =
(

1
n
− 1

N

)
1
x2
s

{
1

n − 1

∑
i∈s

(yi − R̂xi)2
}

. (3.51)

Un’espressione alternativa dello stimatore (3.51) è fornita nell’Esercizio 3.14.
Usando infine l’approssimazione normale, si possono anche costruire in-

tervalli di confidenza approssimati per il parametro di interesse R. Usando la
solita notazione, infatti, è immediato verificare che[

R̂ − zα/2

√
V̂ (R̂), R̂ + zα/2

√
V̂ (R̂)

]
è un intervallo di confidenza per R, al livello (approssimato) 1 − α.
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Esempio 3.9. Si consideri la popolazione di 1500 famiglie del file cultura.txt
(cfr. Esempio 3.5). Da tale popolazione viene selezionato un campione ssr di
n = 30 famiglie, di cui si osservano reddito annuo (carattere X ) e spese an-
nue per attività culturali (carattere Y). Le etichette delle famiglie-campione,
assieme ai relativi redditi e spese, sono riportati qui sotto.

Etichetta unità Reddito annuo (xi) Spese attiv. culturali (yi) yi − R̂xi

1059 38900.00 8.09 –676.56
1100 43500.00 1244.10 478.5
1120 16800.00 25.80 –269.88
1147 71300.00 2516.20 1261.32
1261 54100.00 365.80 –586.36
1347 26800.00 509.90 38.22
1359 17800.00 178.00 –135.28
1389 32000.00 320.00 –243.2
1393 49000.00 490.00 –372.4
1407 45100.00 467.10 –326.66
1441 64500.00 1612.50 477.3

22 31000.00 310.00 –235.6
240 38000.00 802.20 133.4
274 43100.00 1303.90 545.34
320 37100.00 384.20 –268.76
396 39000.00 780.00 93.6
399 40800.00 816.00 97.92
448 21300.00 316.00 –58.88
599 74900.00 2621.50 1303.26
633 18300.00 189.50 –132.58
643 17600.00 78.40 –231.36
67 35400.00 185.90 –437.14

732 24700.00 521.00 86.28
733 24800.00 131.30 –305.18
743 44200.00 1528.30 750.38
750 53500.00 732.10 –209.5
756 63100.00 941.00 –169.56
821 29100.00 611.80 99.64
866 32700.00 74.10 –501.42
966 38700.00 345.90 –335.22

Le media campionaria del reddito è xs = 38903.33 (Euro), mentre la spesa
media campionaria per attività culturali è pari a ys = 686.57. Questo implica
che lo stimatore della frazione di reddito mediamente devoluta in spese per
attività culturali è eguale a

R̂ =
ys

xs
=

686.57
38903.33

= 0.0176

ovvero è del 1.76%.
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Per costruire un intervallo di confidenza per R, iniziamo con l’osservare
che

1
29

∑
i∈s

(yi − R̂xi)2 = 233855.9

da cui si ottiene√
V̂ (R̂) =

√(
1
30

− 1
1599

)
233855.9
38903.332

= 0.002248 .

Pertanto, tenendo conto che z0.005 = 2.576, si ottiene per R l’intervallo di
confidenza, approssimato al livello 0.99, [0.0118, 0.02339] = [1.18%, 2.33%].

��

3.9 L’effetto del disegno: aspetti di base∗

L’effetto del disegno svolge un ruolo importante in diversi problemi propri
del campionamento da popolazioni finite, tra cui, come si vedrà nei capitoli
successivi, la scelta del numero di unità del campione. Nella presente sezione ci
limiteremo soltanto ad una trattazione di base. Aspetti più avanzati saranno
invece considerati nei capitoli successivi.

Supponiamo di voler stimare la media μy di una popolazione finita. Una
metodologia molto semplice, trattata a fondo nelle precedenti sezioni consiste
nell’usare la coppia (disegno semplice senza ripetizione, media campionaria).
Indichiamo con n la numerosità del campione, e con V (ys; ssr) la varianza
della media campionaria. Consideriamo poi un secondo disegno campionario
(S, p), che seleziona lo stesso numero n di unità elementari, e un secondo
stimatore t della media della popolazione. Una qualunque coppia (disegno
campionario, stimatore) costituisce una strategia campionaria. Indichiamo con
MSE(t; p) l’errore quadratico medio dello stimatore t quando usato in coppia
con il disegno (S, p).

L’effetto del disegno (design effect: Kish (1965)) è definito come

Deff (p, t) =
MSE(t; p)
V (ys; ssr)

. (3.52)

L’interesse della (3.52) è che permette di valutare la maggiore o mino-
re efficienza della strategia (disegno (S, p), stimatore t) rispetto alla coppia
(disegno ssr, media campionaria). Come già sottolineato, per aver senso il
confronto deve essere effettuato a parità di numero di unità elementari che
formano il campione. Inoltre, la nozione di effetto del disegno può facilmente
estendersi anche alla stima di parametri differenti dalla media campionaria.

L’effetto del disegno (3.52) è una misura della precisione persa o guadagna-
ta dall’utilizzo del disegno (S, p) rispetto ad un disegno semplice senza ripe-
tizione. Poiché l’effetto del disegno dipende sia dal disegno di campionamento
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che dallo stimatore utilizzato, è evidente che in una stessa rilevazione stime re-
lative a parametri diversi della popolazione (media, totale, proporzione, etc.)
possono essere caratterizzate da effetti del disegno diversi.

Se l’effetto del disegno (3.52) è minore di 1 (cos̀ı che MSE(t; p) <
V (ys; ssr)) si ha un guadagno di precisione rispetto al campionamento casua-
le semplice. Viceversa, se la (3.52) è maggiore di 1 (MSE(t; p) < V (ys; ssr))
si ha una perdita di precisione. Quanto più la quantità (3.52) è superiore
a uno, tanto più la strategia campionaria basata sul disegno semplice senza
ripetizione è preferibile alla strategia ((S, p), t).

Un concetto strettamente connesso a quello dell’effetto del disegno è quel-
lo di dimensione campionaria efficace. Formalmente, se la quantità Deff (p, t)
data dalla (3.52) è nota, ad esempio perché si conosce l’effetto del disegno da
una realizzazione precedente dell’indagine o si ricava da un’indagine simile, si
ha che la dimensione campionaria (denominata dimensione campionaria effi-
cace) affinché la strategia (disegno ssr, media campionaria) sia caratterizzata
dallo stesso livello di precisione della strategia (disegno (S, p), stimatore t)
con numerosità campionaria n. In simboli:

neff (p, t) =
n

Deff (p, t)
. (3.53)

3.10 Il disegno semplice con ripetizione

Il disegno campionario semplice con ripetizione (disegno scr, d’ora in avanti)
di dimensione n è definito come segue:

– lo spazio dei campioni è l’insieme di tutte le n-ple ordinate di unità non
necessariamente distinte (disposizioni con ripetizione) della popolazione;

– tutti i campioni hanno la stessa probabilità di essere selezionati (equipro-
babilità dei campioni).

Due campioni sono considerati distinti se contengono unità diverse o se,
pur contenendo le stesse unità, sono caratterizzati da un ordine di selezione
diverso.

Lo spazio S dei campioni (di unità) è l’insieme di tutte le disposizioni con
ripetizioni di classe n) del tipo (i1, i2, . . . , in), in cui i1 è la prima unità del
campione, i2 è la seconda unità del campione, e cos̀ı via. Inoltre, i1, i2, . . . , in
possono essere unità qualunque della popolazione, senza altre specificazioni.
In modo appena più formale, questo significa che

S = IN × IN × · · · × IN︸ ︷︷ ︸
n volte

= In
N .

Per quanto riguarda le probabilità dei campioni, se s = (i1, i2, . . . , in)
si ha

p(s) =
1
N

1
N

. . .
1
N

=
1

Nn
.
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In termini intuitivi, è come se si effettuassero n “prove”; nella prima prova si
seleziona i1, la prima unità del campione, nella seconda prova si seleziona i2,
la seconda unità del campione, e cos̀ı via. I risultati delle diverse prove sono
indipendenti, hanno identica distribuzione, e sono tali che

Pr(ik = i) =
1
N

(3.54)

per ciascuna unità i = 1, . . . , N e per ciascuna prova k = 1, . . . , n.
Si vede subito che il disegno scr è ordinato, con ripetizioni, e ad ampiezza

effettiva non costante. Infatti, poiché sono ammesse le ripetizioni, si ha sempre
ν(s) � n(s). L’uguaglianza si verifica se e solo se nel campione s non vi sono
ripetizioni.

Nel campionamento semplice con ripetizione si ammette la possibilità che
una qualunque unità della popolazione possa entrare più di una volta nel cam-
pione. Di conseguenza, con tale piano di campionamento è possibile selezionare
anche campioni di numerosità n superiore alla numerosità della popolazione
oggetto di studio. Nella pratica delle indagini il campionamento è sempre ef-
fettuato senza ripetizione. Infatti, se una unità è selezionata due volte nel
campione, l’unità stessa sarà osservata una sola volta, e i dati ad essa relativi
saranno duplicati in sede di elaborazione. Fissata la dimensione del campione,
le ripetizioni comportano chiaramente una perdita di informazione rispetto al-
la possibilità di disporre di dati relativi a unità differenti. D’altra parte, nel
campionamento da popolazioni finite la distinzione tra “con” e “senza” ripeti-
zione diventa irrilevante quando la numerosità della popolazione N è elevata
in quanto la probabilità di selezionare due o più volte una stessa unità risulta
prossima a zero.

Indichiamo ora con yik la modalità dell’unità selezionata nella prova
k (= 1, . . . , n). Come conseguenza della (3.54), anche le variabili alea-
torie yi1 , yi2 , . . . , yin sono indipendenti e hanno la stessa distribuzione di
probabiltà. Essa è riassunta in Tabella 3.2.

Tabella 3.2 Distribuzione delle variabili aleatorie nel disegno scr per la prova kma

ik Probabilità yik

1 1/N y1

2 1/N y2

· · · · · · · · ·
i 1/N yi

· · · · · · · · ·
N 1/N yN
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In particolare, dalla Tabella 3.2 si vede subito che

E [yik ] =
1
N

N∑
i=1

yi

= μy per ciascun k = 1, . . . , n; (3.55)

V (yik) =
1
N

N∑
i=1

(yi − μy)2

= σ2
y per ciascun k = 1, . . . , n. (3.56)

Le (3.55), (3.56) mostrano che la variabile aleatoria yik (modalità dell’u-
nità osservata nella prova kma) ha media e varianza uguali a quelle della
popolazione; inoltre, i1, . . ., in sono indipendenti.

Per quanto riguarda la stima della media μy della popolazione, uno
stimatore “molto naturale” è la media campionaria, definita come

ys =
1
n

∑
i∈s

yi =
1
n

n∑
k=1

yik .

Come mostrato nella successiva proposizione, se il disegno è di tipo scr la
media campionaria è uno stimatore corretto della media della popolazione, e
la sua varianza è pari alla varianza della popolazione divisa per la numerosità
campionaria.

Proposizione 3.8. Se il disegno campionario è scr, il valore atteso della
media campionaria è pari a:

E (ys) = μy (3.57)

e la sua varianza è eguale a

V (ys) =
σ2

y

n
. (3.58)

Dimostrazione. Per quanto riguarda la (3.57), è sufficiente tener conto che,
per la (3.55), si ha

E [ys] = E

[
1
n

n∑
k=1

yik

]

=
1
n

n∑
k=1

E [yik ]

=
1
n

n∑
k=1

μy

= μy.
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Essendo poi le yik indipendenti, dalla (3.56) segue che

V (ys) = V

(
1
n

n∑
k=1

yik

)

=
1
n2

n∑
k=1

V (yik )

=
1
n2

n∑
k=1

σ2
y

=
σ2

y

n
. ��

Usando infine le stesse idee della Proposizione 3.3 è facile vedere che la
varianza campionaria corretta

ŝ2
y =

1
n − 1

∑
i∈s

(yi − ys)
2

è uno stimatore corretto della varianza della popolazione.

Proposizione 3.9. Se il disegno campionario è scr, la varianza campionaria
corretta è uno stimatore corretto della varianza della popolazione:

E[ŝ2
y] = σ2

y. (3.59)

Di conseguenza, è immediato verificare che

V̂ =
ŝ2
y

n
(3.60)

è uno stimatore corretto di V (ys).
Prima di concludere si deve notare che poiché il valore osservato su una

generica unità i del campione è assimilabile alla determinazione di una varia-
bile aleatoria yik , alle n unità campionarie sono associate n variabili aleatorie
(Yi1 , . . . , Yik , . . . , Yin) indipendenti e identicamente distribuite (i.i.d.). Que-
sta situazione è tipica del’inferenza statistica “classica” da modello. Si noti
come, in effetti, in questa sezione siano stati ricavati risultati fondamentali
dell’inferenza statistica classica relativi allo stimatore media campionaria in
caso di campionamento con osservazioni i.i.d. da popolazioni infinite.
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Esercizi

3.1. Si consideri una popolazione finita di N = 5 unità, le cui unità possiedono
modalità y1 = 7, y2 = 4, y3 = 5, y4 = 2, y5 = 8.

a. Scrivere tutti i campioni ssr di numerosità n = 3, con le corrispondenti
probabilità.

b. Per ognuno dei campioni al punto a., calcolare la media campionaria ys.
Verificare quindi che si tratta di uno stimatore corretto della media della
popolazione, e calcolarne la varianza.

c. Per ognuno dei campioni al punto a. calcolare la varianza campionaria
corretta ŝ2

y, e verificare che è uno stimatore corretto di S2
y .

3.2. Calcolare la probabilità che un campione ssr di numerosità n (da una
popolazione di N unità) contenga: a. l’unità i; b. la coppia i, j di unità (j �= i).

3.3. Da una popolazione di N = 5876 famiglie si seleziona un campione ssr
di 27 famiglie, di cui si registra il numero di componenti. I dati ottenuti sono
qui sotto riportati:

3, 1, 2, 4, 3, 1, 4, 4, 3, 1, 4, 2, 1, 3, 3, 5, 4, 3, 2, 2, 4, 1, 5, 5, 4, 2, 4.

a. Stimare il numero totale di individui della popolazione.
b. Costruire un intervallo di confidenza per il numero di persone nella

popolazione, al livello 0.99.

3.4. Selezionare dalla popolazione di 1500 famiglie del file cultura.txt un
campione ssr di ampiezza n = 100. Per i due caratteri “reddito netto disponibi-
le annuo” e “spese annue in attività culturali”, calcolare la media campionaria
e la varianza campionaria corretta, e costruire un intervallo di confidenza per
μy al livello 0.99.

3.5. Data una popolazione di N = 3 unità, si consideri un disegno ssr di
ampiezza n = 3, e si definisca lo stimatore di μy:

μ̂(y(s)) =

⎧⎨⎩ (y1 + 2y2)/3 se s = {1, 2}
(2y1 + y3)/3 se s = {1, 3}
(y2 + 2y3)/3 se s = {2, 3}

.

Provare che si tratta di uno stimatore corretto di μy, e calcolare la sua
varianza.

3.6. Supposto che la media μy della popolazione sia nota, si consideri il
seguente stimatore della varianza σ2

y:

σ̃2
c =

1
n

∑
i∈s

(yi − μy)(yi − c)

essendo c un numero reale arbitrario.
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a. Provare che σ̃2
c è uno stimatore corretto di σ2

y, qualunque sia c reale.
b. Calcolare la varianza di σ̃2

c .

Suggerimento. Usare la regola di estensione con ti(yi) = (yi − μy)(yi − c).

c. Verificare che l’efficienza di σ̃2
c è massima se c = (

∑N
i=1(yi − μy)3/N)/

σ2
y + μy.

3.7. In un centro di calcolo per studenti vi sono in totale 100 PC. Per con-
trollare lo stato delle tastiere, i due tecnici del centro decidono di procedere
in questo modo.

– Tecnico 1: osserva tutte le 100 tastiere del centro di calcolo, e registra il
fatto che 45 tastiere hanno tutti i tasti funzionanti.

– Tecnico 2: osserva un campione ssr di 16 tastiere, e per ognuna di esse
registra il numero di tasti mal funzionanti. I dati che egli ottiene sono qui
sotto riportati:

1, 3, 0, 0, 1, 1, 2, 0, 1, 2, 0, 1, 2, 0, 3, 0.

a. Stimare il numero totale di tasti mal funzionanti usando solo i dati del
tecnico 2.

b. Stimare il numero totale di tasti mal funzionanti usando sia i dati del
tecnico 1 che quelli del tecnico 2.

c. Quale delle due stime ci si aspetta che sia più precisa?

3.8. Da una lista di 2560 studenti iscritti alla Facoltà di Scienze Statistiche si
seleziona un campione ssr di numerosità n = 90. Di essi, 40 hanno conseguito
nella prova di esame di Tecniche di campionamento un voto inferiore a 25/30,
mentre 50 hanno conseguito un voto almeno pari a 25/30.

a. Stimare la proporzione PA di studenti che, nella popolazione di riferimento,
ha conseguito un voto almeno pari a 25/30.

b. Costruire un intervallo di confidenza per PA al livello 0.90.

3.9. Due aspiranti sindaci, Romolo e Remo, si contendono la vittoria in un
comune di 5000 elettori. Per essere eletti, bisogna guadagnare un numero di
voti superiore al 50% degli elettori. Per valutare le proprie possibilità di vitto-
ria, Romolo fa selezionare campione ssr di 300 elettori. 200 degli intervistati
dichiarano che voteranno per lui.

a. Costruire un intervallo di confidenza, al livello 0.95, per la proporzione di
elettori che voteranno per Romolo.

b. Il portavoce dello staff di Romolo afferma che “sulla base dei dati campio-
nari, c’è una netta evidenza che Romolo verrà eletto”. Siete d’accordo?

3.10. Si consideri una popolazione finita di N = 7 unità, le quali possiedono
modalità y1, . . . , y7. Da tale popolazione si (i) vuole selezionare un campione
di n = 4 unità, e (ii) con i dati da esso forniti stimare la media μy = (y1 +
· · ·+ y7)/7 della popolazione.
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a. Lo statistico Pietro propone che si usi un disegno ssr per selezionare le 4
unità del campione, e la media campionaria per stimare μy.

b. Lo statistico Paolo propone che:
– per selezionare le unità campionarie si usi un disegno campionario in

cui lo spazio dei campioni è formato da

s1 = {1, 2, 4, 7}, s2 = {1, 2, 5, 6}, s3 = {1, 3, 4, 6},
s4 = {1, 3, 5, 7}, s5 = {2, 3, 4, 5}, s6 = {2, 3, 6, 7},
s7 = {4, 5, 6, 7}

con

p(s1) = p(s2) = · · · = p(s7) =
1
7
;

– per stimare la media della popolazione sia impiegata la media campio-
naria.

Quale delle due proposte è da preferire?

3.11. Si supponga di voler stimare la funzione di ripartizione F (y) (con y
fissato) di una popolazione finita di numerosità N (cfr. Sezione 3.6). Dalla
popolazione si estrae un campione ssr di numerosità n. Provare che:

a. lo stimatore ottenuto con la regola di estensione (cfr. Sezione 3.6) assume
la forma

F̂n(y) =
# di unità del campione s tali che yi � y

n
;

b. lo stimatore F̂n(y) è corretto, e la sua varianza è uguale a
(

1
n
− 1

N

)
F (y)

(1 − F (y)).

3.12. Con riferimento alla(3.49), provare che V (R̂) = V (ys − Rxs)/μ2
x +

quantità di ordine 1/
√

n3.

Suggerimento. V (R̂) = E[((ys − Rxs)/μx + quantità di ordine 1/n)2] = V ((ys −
Rxs)/μx) + quantità di ordine 1/

√
n × quantità di ordine 1/n.

3.13. Dedurre dall’Esercizio 3.12 che MSE(R̂) = V (ys −Rxs)/μ2
x + quantità

di ordine 1/
√

n3.

3.14. Provare che lo stimatore (3.51) si può anche esprimere come

V̂ (R̂) =
(

1
n
− 1

N

)
1
x2
s

{ŝ2
y + R̂2ŝ2

x − 2R̂ŝxy}.

Suggerimento. Usare le (3.12), (3.37) nella (3.43).
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3.15. Da una popolazione di N = 3400 aziende agricole si seleziona, mediante
campionamento ssr, un campione di ampiezza n = 31. Per ciascuna azienda-
campione si osservano le modalità di due caratteri: la superficie posseduta X
(in are) e quella effettivamente utilizzata Y (sempre in are). I dati ottenuti
sono qui di seguito riportati.

Sup. posseduta 28792 1800 5153 940 102984 13255 4048 700 95 423 2100

Sup. utilizzata 11986 1700 4083 300 77805 10250 4018 600 95 239 2090

Sup. posseduta 850 18585 6697 163770 950 15690 22 1200 8500 619

Sup. utilizzata 820 18370 6500 30509 880 15622 20 200 8300 447

Sup. posseduta 52000 20600 5084 18900 5000 948 460 185 20 4230

Sup. utilizzata 25000 19300 4354 16050 4900 685 340 120 20 4080

Stimare la proporzione di superficie posseduta che viene mediamente utilizza-
ta, e costruire per tale grandezza un intervallo di confidenza al livello 0.90.



4

Scelta della numerosità campionaria nel

campionamento semplice

4.1 Aspetti introduttivi

Fino ad ora è sempre stata assunta come data a priori la numerosità campio-
naria. Ora, in una qualunque rilevazione statistica la numerosità del campione
che si utilizza è uno degli elementi più importanti, per diverse ragioni.

1. La numerosità campionaria, come visto nel Capitolo 3, ha una diretta
influenza sulla precisione della stima della media della popolazione. In
effetti, dalla relazione

MSE(ys) = V (ys) =
(

1
n
− 1

N

)
S2

y

si arguisce subito che quanto più elevata è la numerosità campionaria n,
tanto più piccolo è l’errore quadratico medio della media campionaria ys,
e quindi tanto più preciso è ys. Da questo punto di vista, conviene sce-
gliere una numerosità campionaria elevata, in modo da avere una buona
precisione di stima.

2. Selezionare unità di una popolazione e (soprattutto) osservare le loro mo-
dalità è un’operazione costosa. Poiché le risorse finanziarie disponibili per
effettuare una rilevazione statistica sono in genere limitate, dal punto di
vista dei costi conviene che la numerosità campionaria sia piccola.

I due requisiti 1, 2 sono in contrasto tra loro. Nel prosieguo di questo
capitolo adotteremo un approccio che farà (quasi esclusivamente) riferimento
al requisito 1 di precisione di stima. Solo nella Sezione 4.2 verrà brevemente
delineato un approccio che cerca di inserire i requisiti 1 e 2 in un’unica funzione
che combina assieme precisione di stima e costo di rilevazione.

L’idea-guida su cui si fonda gran parte del presente capitolo può essere
riassunta in maniera molto semplice. Supponiamo di voler stimare la media
μy di una popolazione, e di selezionare un campione ssr di numerosità n. Come
stimatore di μy consideriamo la media campionaria ys. Lo stimare μy con ys

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 4, © Springer-Verlag Italia 2012
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comporta un errore di stima, pari (in valore assoluto) a |ys − μy|. Il primo
elemento da esplicitare è il margine di errore che si considera tollerabile. In
dettaglio, si deve fissare un valore di soglia t � 0 tale che:

− gli errori di stima al di sotto di t sono considerati “tollerabili”;
− gli errori di stima al di sopra di t sono considerati “non tollerabili”.

Il valore da dare a t dipende dal tipo di indagine che si conduce, e, in generale,
viene fissato dallo statistico.

L’obiettivo ideale sarebbe quello di riuscire a determinare la numerosità
campionaria in modo che l’errore di stima non sia mai superiore alla soglia t.
Questo, però, è di fatto impossibile, e per una ragione molto semplice. Poiché
la media campionaria è una variabile aleatoria, tale sarà anche l’errore di
stima |ys−μy|. I valori che essa assume dipendono, in generale, dalle modalità
yi, che sono incognite. Tutto quello che si può pretendere è che la variabile
aleatoria |ys−μy| sia al di sotto della soglia t con una data probabilità, diciamo
1−α. Anche quest’ultima grandezza viene fissata dallo statistico che pianifica
l’indagine campionaria.

Ricapitolando, il requisito 1 è formalizzato richiedendo che l’errore di stima
non ecceda una soglia t con una probabilità almeno pari a 1 − α. In simboli:

Pr(errore di stima � t) � 1 − α (4.1)

con t e α prefissati in sede di pianificazione della rilevazione. L’idea di base,
molto semplice e naturale, è quella di determinare (e usare) la più picco-
la numerosità campionaria che assicura la (4.1). Ovviamente, quest’ultima
equivale a

Pr(errore di stima > t) � α (4.2)

per cui la minima numerosità campionaria per cui vale la (4.1) è uguale alla
più piccola numerosità campionaria per cui si ha la (4.2).

In quasi tutto il presente capitolo, come accennato all’inizio, non si farà
riferimento al costo di rilevazione in fase di determinazione della numerosità
campionaria da utilizzare. Questo non significa però che la considerazione dei
costi sia irrilevante. Al contrario, essi giocano un ruolo decisivo. In genere, per
effettuare una rilevazione campionaria viene fissato un budget, diciamo C, che
rappresenta il massimo ammontare spendibile per la rilevazione, e costituisce
un limite economico invalicabile. Se la numerosità campionaria determinata
in modo che valga la (4.1) (o la (4.2), che è lo stesso) comporta una spesa
superiore a C, significa che sono stati fissati dei requisiti di precisione di
rilevazione incompatibili con il vincolo economico. In tal caso sarà necessario
o fissare dei nuovi requisiti di precisione, meno stretti dei precedenti, oppure
dedicare alla rilevazione campionaria maggiori risorse finanziarie.
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4.2 Scelta della numerosità campionaria per la stima di
proporzioni

Il caso più semplice da affrontare è quello della stima di una proporzione. La
situazione è quella già descritta nella Sezione 3.5. Sia PA la proporzione di
unità della popolazione che possiedono l’attributo A, e sia p̂A la corrispondente
proporzione campionaria di unità che possiedono l’attributo A. Come già visto
nella Sezione 3.5, p̂A è essenzialmente una media campionaria, e se il disegno
usato è ssr di ampiezza n si ha E[p̂A] = PA e V (p̂A) = {(N − n)/(N − 1)}
PA(1 − PA)/n.

Conformemente a quanto detto nella precedente sezione, il problema è ora
quello di determinare la numerosità campionaria n in maniera tale che l’errore
(assoluto) di stima |p̂A−PA| sia superiore ad una soglia t con una probabilità
non maggiore di α. In altre parole, bisogna determinare il più piccolo n tale
che

Pr (|p̂A − PA| > t) � α (4.3)

con t > 0 e α fissati a priori. Per semplificare la trattazione, si può usare
l’approssimazione normale per la distribuzione di probabilità di p̂A. Precisa-
mente, assumeremo che la distribuzione di probabilità di p̂A sia approssimata
da una normale di media PA e varianza {(N − n)/(N − 1)}PA(1 − PA)/n.
Questo equivale ad assumere che la v.a. standardizzata

p̂A − PA√
N−n
N−1

PA(1−PA)
n

abbia, in via approssimata, distribuzione normale standard N(0, 1). Con
questo tipo di approssimazione si ha

Pr (|p̂A − PA| > t) = Pr

⎛⎝∣∣∣∣∣∣ p̂A − PA√
N−n
N−1

PA(1−PA)
n

∣∣∣∣∣∣ > t√
N−n
N−1

PA(1−PA)
n

⎞⎠
= Pr

(
|N(0, 1)| >

√
nt√

PA(1 − PA)

√
N − 1
N − n

)

= 2Pr

(
N(0, 1) >

√
nt√

PA(1 − PA)

√
N − 1
N − n

)

a causa della simmetria della distribuzione normale. Con l’approssimazione
introdotta, la (4.3) diventa:

Pr

(
N(0, 1) >

√
nt√

PA(1 − PA)

√
N − 1
N − n

)
� α

2
(4.4)
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e il problema è quello di determinare il più piccolo valore di n per cui vale la
(4.4). Usando la consueta simbologia, si ha

Pr
(
N(0, 1) > zα/2

)
=

α

2
(4.5)

e dal confronto tra (4.4) e (4.5) si desume che la (4.4) vale se e solo se

√
nt√

PA(1 − PA)

√
N − 1
N − n

� zα/2. (4.6)

In altri termini, il più piccolo n per cui vale la (4.4) è null’altro che il più
piccolo n per cui vale la (4.6). Ma questo significa che deve valere la relazione

√
nt√

PA(1 − PA)

√
N − 1
N − n

= zα/2

dalla quale si ricava

nt2

PA(1 − PA)
=

N − n

N − 1
z2
α/2

e quindi

n =
N

N−1z2
α/2

t2

PA(1−PA) +
z2

α/2

N−1

=
PA(1−PA)z2

α/2

t2

1 + 1
N

(
PA(1−PA)z2

α/2

t2 − 1
) . (4.7)

Il valore di n espresso dalla (4.7) dipende da t, α, PA(1−PA), e da N . Ora, è
facile verificare che la (4.7) possiede il seguente comportamento (Esercizio 4.1):

– decresce al crescere di t;
– decresce al crescere di α (si osservi che zα/2 decresce al crescere di α);
– cresce al crescere di PA(1 − PA);
– cresce al crescere di N (purché sia PA(1 − PA)z2

α/2/t2 > 1).

Queste affermazioni sono conformi all’intuizione. Infatti, un piccolo valore
di t significa ammettere quasi solo errori di stima piccoli, e ciò è possibile solo
al prezzo di un’elevata numerosità campionaria. Nello stesso modo, in vista
della (4.2), un piccolo valore di α significa essere disposti ad accettare errori
di stima elevati solo con bassa probabilità, e questo, ancora, è possibile solo
per numerosità campionarie abbastanza elevate. Infine, il termine PA(1−PA)
è la varianza della popolazione, dalla quale, come visto, dipende la varianza
di p̂A (si ricordi che p̂A è una media campionaria). Quanto più elevata è
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PA(1−PA), tanto più alta è la varianza di p̂A, e quindi tanto più è impreciso
lo stimatore p̂A. Affinché p̂A raggiunga un dato livello di precisione, sarà
necessario utilizzare un’elevata numerosità campionaria.

La (4.7) dipende principalmente da t, da α, e da PA, mentre è molto meno
forte l’influenza della numerosità N della popolazione, almeno quando questa
è abbastanza grande. Un’idea di questo fatto è data dalla Tabella 4.1, in cui
sono riportate le numerosità campionarie ottenute dalla (4.7) per differenti
valori di PA, α, t, N .

Il termine PA(1−PA) è incognito, in quanto è incognito PA (dopotutto, si
tratta proprio del parametro da stimare). Per dare alla formula (4.7) un’utilità
pratica, è necessario disporre di una stima preliminare di PA, diciamo pA0, da

Tabella 4.1 Numerosità campionarie per diversi valori di PA, α, t, N

PA = 0.1

α = 0.01 α = 0.05

N t = 0.025 t = 0.05 t = 0.1 t = 0.025 t = 0.05 t = 0.1

3000 725 221 59 467 132 34

5000 802 228 59 498 135 34

10000 872 233 59 524 136 34

50000 938 238 59 547 138 34

100000 947 238 59 550 138 34

∞ 956 239 60 553 138 35

PA = 0.3

α = 0.01 α = 0.05

N t = 0.025 t = 0.05 t = 0.1 t = 0.025 t = 0.05 t = 0.1

3000 1279 470 133 903 291 79

5000 1542 502 136 1026 303 79

10000 1823 528 137 1143 313 80

50000 2134 551 139 1258 321 81

100000 2181 554 139 1274 322 81

∞ 2230 557 139 1291 323 81

PA = 0.5

α = 0.01 α = 0.05

N t = 0.025 t = 0.05 t = 0.1 t = 0.025 t = 0.05 t = 0.1

3000 1409 544 157 1016 341 93

5000 1734 586 161 1176 357 94

10000 2098 622 163 1332 370 95

50000 2521 655 165 1490 381 96

100000 2586 659 166 1513 383 96

∞ 2654 664 166 1537 384 96
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usare al posto di PA nella (4.7). La stima preliminare pA0 proviene da infor-
mazioni extra-campionarie disponibili sulla popolazione oggetto di studio. Ad
esempio, potrebbe essere una stima ottenuta con un “piccolo” campione (ssr)
appositamente selezionato dalla popolazione (campione pilota) o mediante
una rilevazione campionaria in un periodo precedente, un valore congetturale
fornito da esperti, o altro ancora. Discuteremo più approfonditamente questi
aspetti nella Sezione 4.3.

Se non si dispone di una stima preliminare di PA, una posizione cautelativa
(ed anche un po’ pessimista) consiste nel sostituire a PA(1−PA) il suo valore
massimo. Tenendo conto della proprietà c, si è in questo modo garantiti che,
qualunque sia il valore di PA, la (4.4) è soddisfatta.

In assenza di informazioni di qualunque tipo, questo significa sostituire a
PA(1−PA) il massimo valore che esso può assumere, al variare di PA. È facile
provare (Esercizio 4.2) che tale valore massimo è pari a 1/4. Chiaramente la
scelta cautelativa comporta una numerosità campionaria più elevata rispetto
a quella che si otterrebbe in presenza di informazioni a priori.

In questo modo si ottiene il seguente valore per la numerosità campionaria:

nmax =
z2

α/2

4t2

1 + 1
N

(
z2

α/2

4t2 − 1
) . (4.8)

Se la numerosità N della popolazione è abbastanza elevata, il termine

1
N

(
z2
α/2

4t2
− 1

)

è praticamente trascurabile, per cui la (4.8) si riduce a

n′
max =

z2
α/2

4t2
. (4.9)

In vista della proprietà d., la (4.9) è essenzialmente il massimo valore che può
assumere la (4.8), al variare di N .

Talvolta, è noto a priori che la proporzione PA non può superare una dato
valore πA0: PA � πA0. Se πA0 � 1/2, allora si verifica facilmente (Esercizio 4.3)
che il valore massimo di PA(1 − PA) è πA0(1 − πA0). Simili considerazioni si
possono fare se è noto a priori che PA � πA0. In tutti questi casi, è assai facile
modificare la (4.8) per determinare la numerosità campionaria da utilizzare.

Esempio 4.1. Consideriamo ancora la popolazione di 1500 unità del file
cultura.txt, già vista nel Capitolo 3. Si vuole stimare (similmente a quanto
visto nel capitolo precedente) la proporzione di individui che spendono ogni
anno per cultura più di 1000 Euro. L’obiettivo è che l’errore di stima non
superi il 5% con probabilità almeno pari al 98%. Questo significa che deve
essere t = 0.05 e 1 − α = 0.98, ossia α = 0.02.
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In assenza di informazioni su PA, e dato che la numerosità della popolazio-
ne è piuttosto contenuta, la numerosità campionaria da usare va determinata
in base alla (4.8). Essendo zα/2 = z0.01 = 2.326, si ottiene

n =
2.3262

4× 0.052

1 + 1
1500

(
2.3262

4× 0.052 − 1
) = 398.

Questa numerosità campionaria può essere ridotta non poco se si possie-
dono informazioni extra-campionarie. Supponiamo che sia noto a priori che
non più del 30% delle famiglie della popolazione spenda più di 1000 euro per
attività culturali. Questo significa che PA � 0.3, e in tal caso il valore massimo
del prodotto PA(1−PA) è 0.3(1−0.3) = 0.21. Utilizzando questo valore nella
(4.7), si ottiene

n =
0.21× 2.3262

0.052

1 + 1
1500

(
0.21× 2.3262

0.052 − 1
) = 349. ��

Fino ad ora si è determinato n in maniera tale che l’errore assoluto di stima
|p̂A −PA| non superi una data soglia con probabilità (almeno) 1−α. A volte,
però, è di maggior interesse che sia l’errore relativo |p̂A −PA|/PA a soddisfare
tale requisito. In altre parole si vuole determinare n in modo tale che

Pr

( |p̂A − PA|
PA

> u

)
� α.

Questa relazione si può riscrivere come

Pr (|p̂A − PA| > uPA) � α

e il suo confronto con la (4.3) mostra che è esattamente dello stesso tipo, con
uPA al posto di t. Con gli stessi ragionamenti che hanno portato alla (4.7),
semplicemente sostituendo t con uPA, si ottiene per n il valore

n =

(
1

PA
− 1
)

z2
α/2

u2

1 + 1
N

{(
1

PA
− 1
)

z2
α/2

u2 − 1
} . (4.10)

Ovviamente, essendo PA incognito, per poter utilizzare in pratica la (4.10)
occorre disporre di una sua stima preliminare, o comunque di una qualche
informazione a priori che consenta di delimitarne il valore massimo e/o il
minimo. Osserviamo inoltre che, per le stesse ragioni ricordate dianzi, la (4.10)
è una funzione crescente di 1/PA − 1, ossia è una funzione decrescente di PA.

Esempio 4.2. Si consideri ancora la popolazione di 1500 unità del file
cultura.txt (cfr. Esempio 4.1). Si vuole stimare la proporzione di indivi-
dui che spendono ogni anno per cultura più di 1000 Euro, in maniera tale
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che che l’errore di stima non superi il 25% di PA, con probabilità almeno pari
al 95%. Si supponga anche di sapere, ad esempio da indagini precedenti, che
almeno il 5% delle famiglie della popolazione spendono ogni anno più di 1000
Euro in attività culturali.

Formalmente, bisogna determinare n in modo tale che

Pr (|p̂A − PA| � 0.15PA) � 0.95

con u = 0.25 e α = 0.05, e noto che PA � 0.05. Come detto, la (4.10) è una
funzione decrescente di PA, per cui raggiunge il suo massimo per PA = 0.05.
Pertanto, il valore di n richiesto, tenendo conto che z0.025 = 1.96, sarà

n =

(
1

0.05
− 1
)

1.962

0.252

1 + 1
1500

{(
1

0.05 − 1
)

1.962

0.252 − 1
} = 657. ��

4.3 Scelta della numerosità campionaria per la stima di
medie

Il problema della scelta della numerosità campionaria per stimare la media
μy di un generico carattere si tratta, in linea di principio, in maniera simile
a quanto visto nel caso di proporzioni. Al solito, supponiamo che il disegno
usato sia ssr, e che per stimare μy si impieghi la media campionaria ys. L’errore
(assoluto) di stima è pari a |ys−μy|. L’obiettivo è sempre quello di determinare
la numerosità campionaria n in modo tale che |ys − μy| sia al di sotto di una
soglia t con probabilità (almeno) pari a 1 − α. In simboli:

Pr (|ys − μy| > t) � α (4.11)

con t > 0 e α prefissati. Anche adesso, per rendere le cose sufficientemente
semplici, si approssima la distribuzione di probabilità di ys con una normale
di media μy e varianza (1/n − 1/N)S2

y . Ovviamente, ciò equivale a dire che,
in via approssimata, la v.a. standardizzata

ys − μy√(
1
n
− 1

N

)
S2

y

abbia distribuzione normale standard N(0, 1). Similmente a quanto visto nella
sezione precedente si ha allora, posto f = n/N (si ricordi che f è la frazione
sondata),

Pr (|ys − μy| > t) = Pr

⎛⎝∣∣∣∣∣∣ ys − μy√(
1
n − 1

N

)
S2

y

∣∣∣∣∣∣ > t√(
1
n − 1

N

)
S2

y

⎞⎠
= Pr

(
|N(0, 1)| > t

√
n√

1 − fSy

)
= 2Pr

(
N(0, 1) > t

√
n√

1 − fSy

)
.
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L’uso dell’approssimazione normale, quindi, porta a riscrivere la (4.11) come:

Pr

(
N(0, 1) > t

√
n√

1 − fSy

)
� α

2
. (4.12)

Il problema da risolvere consiste nell’individuare il più piccolo valore di n
per cui vale la (4.12). Gli stessi ragionamenti già fatti nel caso di proporzioni
mostrano che deve valere la relazione

t

√
n√

1 − fSy
� zα/2 (4.13)

per cui il più piccolo n per cui vale la (4.12) coincide con il più piccolo n per
cui vale la (4.13). Si può quindi scrivere

t

√
n√

1 − fSy
= zα/2

da cui, con pochi facili calcoli, si ottiene

n =
z2

α/2

t2
S2

y

1 + 1
N

z2
α/2

t2 S2
y

. (4.14)

È anche immediato verificare che per N “grande” il termine (zα/2/t)2S2
y/N

diviene virtualmente trascurabile, per cui la (4.14) si riduce a n = (zα/2/t)2S2
y .

Per la (4.14) si possono fare commenti quasi identici a quelli della Sezione
4.2. In particolare, è immediato verificare che il valore di n dato dalla (4.14)
decresce al crescere di t e di α, mentre cresce al crescere di S2

y e di N . Esatta-
mente come nel caso della stima di proporzioni, peraltro, la dipendenza della
(4.14) dalla numerosità N della popolazione è abbastanza limitata, mentre
molto più accentuata è la sua dipendenza da t, α, S2

y

Naturalmente, per poter effettivamente usare la (4.14) è necessario cono-
scere S2

y , ovvero, in sostanza, la varianza della popolazione. Questo tipo di
conoscenza, purtroppo, è in genere molto raro (ed anche poco realistico), per
cui è necessario mettere in atto qualche accorgimento per stimare S2

y , o per-
lomeno per fornire una sua approssimazione. In questa direzione di lavoro vi
sono diverse possibilità.

– Si può stimare S2
y con un campione preliminare ssr di numerosità np abba-

stanza piccola. È questa la tecnica del campione pilota, usata abbastanza
spesso per rilevazioni campionarie su scala medio-grande. Il grande vantag-
gio che deriva dall’uso di un campione pilota è che esso fornisce informazioni
preliminari non solo per stimare S2

y , ma più in generale utili per mettere
a punto la rilevazione vera e propria. Lo svantaggio principale dell’uso del
campione pilota sta nel suo costo, in genere tutt’altro che trascurabile, che
limita il campo di applicazione del metodo.
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– Si possono usare, se disponibili, stime ottenute da rilevazioni precedenti
sulla stessa popolazione, o su popolazioni simili. Questa tecnica ha il van-
taggio di essere economica e facile da applicare. Tuttavia, va usata con
cautela, per due ragioni. In primo luogo, bisogna sempre fare attenzione
alla qualità della rilevazione statistica da cui è tratta la stima preliminare
di S2

y . Se la rilevazione è basata su un cattivo disegno, o se ha prodotto dati
di bassa qualità (ad esempio con severi errori di misura, o molte mancate
risposte), anche la stima di S2

y sarà scadente. In secondo luogo, il riferirsi
a stime condotte su popolazioni ritenute “simili” a quella di interesse va
valutato con cautela, perché potrebbero esservi in realtà differenze anche
rilevanti. Questo metodo può anche essere usato per scegliere la numerosità
del campione pilota, ad es. scegliendo np pari ad una frazione “piccola” (di-
ciamo tra il 5% e il 15%) del valore di n che si otterrebbe usando la (4.14)
con S2

y stimato da rilevazioni precedenti o da popolazioni “simili” a quel-
la di interesse. Una volta stabilito np, si procederebbe come specificato al
punto a.

– A volte si dispone di informazioni a priori che consentono di costruire
almeno una limitazione superiore per S2

y . Il caso più facile è quello in cui
sia noto il campo di variazione del carattere Y di interesse. Ad esempio, se
è noto che a � yi � b per ogni unità i della popolazione, si può dimostrare
(Esercizio 4.6) che σ2

y � (b − a)2/4, da cui S2
y = Nσ2

y/(N − 1) � {(b −
a)2/4}/, {N/(N−1)}. A meno che N non sia piccolo, al solito, si ha N/(N−
1) ≈ 1, per cui si può in pratica usare la disuguaglianza S2

y � (b− a)2/4, e
approssimare S2

y con il suo limite superiore (b−a)2/4. Ovviamente, questo
tipo di risultato è utile soltanto se la differenza b−a non è particolarmente
grande. Un valore molto grande di b − a, infatti, darebbe luogo ad un
valore di (b − a)2/4 grande, e quindi porterebbe ad un’approssimazione
per eccesso di S2

y molto rozza. Questa, a sua volta, fornirebbe un valore di
n eccessivamente elevato, e quindi farebbe lievitare i costi di rilevazione.
Anche questo metodo può essere usato solo per scegliere la numerosità np

del campione pilota, esattamente come detto al punto precedente.

Esempio 4.3. Si consideri la popolazione di 1570 studenti del file
stature.txt. Si vuole stimare la statura media della popolazione in modo
che l’errore di stima sia non superiore a 1.5 cm. con probabilità almeno 0.92.
Usando la notazione dianzi introdotta, questo significa (se le stature sono
misurate in cm.) che t = 1.5 e α = 0.08, da cui z0.04 = 1.751.

L’uso diretto della formula (4.14) è impossibile, in quanto non si conosce la
varianza corretta S2

y della popolazione. Una prima idea, semplice da attuare,
potrebbe essere quella di basarsi sul campo di variazione delle stature. A meno
di casi estremi assai speciali, quasi tutti gli individui della popolazione avranno
stature comprese, diciamo, tra 160 e 190 cm.. È quindi ragionevole assumere
che a = 160 e b = 190, da cui (b − a)2/4 = 225. L’uso dell’approssimazione
S2

y ≈ 225, però, è del tutto fuori luogo, in quanto il vero valore di S2
y è 59.89.

Se si determinasse la numerosità campionaria n, tramite la (4.14), ponendo
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S2
y = 225, si otterrebbe un valore

n =
1.7512

1.52 225

1 + 1
1570

1.7512

1.52 225
= 257

in effetti piuttosto elevato, di oltre tre volte superiore a quello che si otterrebbe
usando il vero valore di S2

y .
Più utile, in questo caso, è il ricorso ad un campione pilota per stimare S2

y .
Nel caso in esame si è selezionato un campione iniziale di n = 24 studenti, di
cui si sono misurate le stature (in cm.). I dati ottenuti sono qui sotto riportati.

Matricola Statura Matricola Statura Matricola Statura Matricola Statura

AB2383 174 AB1822 174 AB1088 156 AB1223 158
AB1410 170 AB1112 171 AB1132 163 AB1983 157
AB1482 158 AB1811 170 AB1336 181 AB2069 168
AB2363 180 AB1912 172 AB1833 162 AB1303 182
AB1575 186 AB0970 166 AB2385 176 AB1107 167
AB1926 171 AB1230 171 AB1672 165 AB2288 175

Da tale campione si ottiene una varianza campionaria corretta ŝ2
y = 66.91.

Usando tale valore nella (4.14) si ha una numerosità campionaria finale pari a

n =
1.7512

1.52 66.91

1 + 1
1570

1.7512

1.52 66.91
= 86

molto più piccola della precedente.
A questo punto, quel che si fa nella pratica applicativa è di selezionare

dalla popolazione, sempre mediante disegno ssr, altre 86 − 24 = 62 unità
(differenti da quelle del campione pilota), e di osservarne le stature. In questo
modo, si arriva ad un campione di n = 86 unità. Questo modo di procedere
è accettabile solo in via approssimata, in quanto non è teoricamente corretto.
La ragione di ciò è insita nel fatto che i dati del campione pilota sono usati
due volte: per determinare la numerosità del campione finale, e come parte
dei dati del campione finale stesso. Questo implica che il numero di unità che
fanno parte del campione finale (nel nostro caso 86) dipende dalle modalità di
alcune delle unità del campione stesso (quelle del campione pilota). A stretto
rigore, il campione finale non potrebbe essere considerato come un campione
ssr. Tuttavia, a livello approssimato, si può lavorare come se esso fosse un
campione ssr di 86 unità della popolazione. ��

Similmente a quanto detto nel caso di stima di proporzioni, spesso è di
interesse che l’errore relativo |ys − μy|/μy sia più grande di una data soglia u
con probabilità non superiore a α. Formalmente, questo significa che bisogna
determinare n in modo tale che

Pr

(∣∣∣∣ys − μy

μy

∣∣∣∣ > u

)
� α.
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Se si riscrive questa relazione come

Pr (|ys − μy| > u|μy|) � α

si desume subito che essa è esattamente dello stesso tipo della (4.11), con u|μy|
al posto di t. Sostituendo t con u|μy| nella (4.14), si ottiene per n il valore

n =

z2
α/2

u2

S2
y

μ2
y

1 + 1
N

z2
α/2

u2

S2
y

μ2
y

. (4.15)

Si noti che il termine S2
y/μ2

y è pari a (N/(N−1))σ2
y/μ2

y = (N/(N−1))CV (y)2 ,
essendo CV (y) = Sy/|μy| il coefficiente di variazione della popolazione. A
meno che N non sia piccolo, si ha quindi S2

y/μ2
y ≈ CV (y)2 , per cui la (4.15)

si può riscrivere come

n =
z2

α/2

u2 CV (y)2

1 + 1
N

z2
α/2

u2 CV (y)2
. (4.16)

Essendo il coefficiente di variazione CV (y) in genere incognito, valgono per la
(4.16) le stesse considerazioni già fatte per la (4.14). Per maggiori approfon-
dimenti sulla stima preliminare di S2

y o di CV (y) con un campione pilota si
rinvia al volume di Cochran (1977), pp. 78–81.

Esempio 4.4. Consideriamo la popolazione di 1570 studenti del file
stature.txt (cfr. Esempio 4.3). Questa volta si vuole stimare la statura me-
dia della popolazione, in modo che l’errore di stima sia non superiore al 1%
della statura media della popolazione, con probabilità almeno 0.999. Usando la
notazione precedente, deve essere u = 0.01 e α = 0.001, da cui z0.0005 = 3.291.
Per avere qualche informazione sul coefficiente di variazione della popolazione,
facciamo riferimento ai dati del campione pilota dell’Esempio 4.3. Da esso si
ottiene ŝy = 8.18, ys = 169.71, e quindi un coefficiente di variazione campio-
nario ĈV (y) = 0.048. Utilizzando questo valore nella (4.16), si ottiene che il
campione finale deve avere una numerosità almeno pari a

n =
3.2912

0.012 0.0482

1 + 1
1570

3.2912

0.012 0.0482
= 215. ��

4.4 Scelta della numerosità campionaria con approccio
decisionale*

Come già accennato nella Sezione 4.1, la numerosità campionaria ha influenza
diretta su due elementi, entrambi decisivi per una rilevazione statistica. Da
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un lato, la rilevazione dovrebbe produrre stime accurate, ovvero con piccolo
errore quadratico medio. Quanto più elevato è n, tanto più precisi sono gli
stimatori utilizzati. Da questo punto di vista, accrescere il più possibile la
numerosità campionaria è ovviamente conveniente. D’altro canto, un’elevata
numerosità campionaria comporta alti costi di rilevazione. Dal punto di vista
dei costi, pertanto, conviene usare una numerosità campionaria più piccola
possibile.

L’idea di base dell’approccio decisionale consiste nel combinare assieme
questi due elementi in un’unica funzione, che esprima in termini numerici
l’utilità complessiva che ha, per la rilevazione campionaria, una data nume-
rosità n. L’assunto di base, implicito, è che vi siano due elementi di costo per
una rilevazione campionaria, entrambi i quali possono essere perfettamente
specificati.

1. Un costo CS(n) che deriva dal fatto che si osserva non tutta la popola-
zione, ma solo un suo campione di numerosità n. In altri termini, CS(n)
rappresenta il “costo” dovuto all’imprecisione di stima. Poiché all’aumen-
tare della numerosità campionaria aumenta (in genere) la precisione di
stima, si può assumere che CS(n) decresce al crescere di n.

2. Un costo CR(n) di osservazione di n unità campionarie. Ovviamente,
CR(n) cresce al crescere di n.

I due elementi CS(n), CR(n) vengono poi combinati in un’unica funzione
di “costo totale”, CT (n) = CS(n) + CR(n). L’idea di base, molto naturale, è
di usare la numerosità campionaria n che minimizza il costo totale CT (n).

La difficoltà maggiore consiste nello specificare in modo esplicito gli ele-
menti che concorrono al costo totale. Per quanto riguarda il costo di osser-
vazione CR(n) di n unità, è ragionevole assumere, perlomeno nei casi più
semplici, che esso sia del tipo:

CR(n) = c0 + c1n (4.17)

dove c0 è un costo fisso e c1 è il costo che si deve sostenere per osservare
un’unità.

Molto più difficile è esplicitare il costo CS(n) derivante dall’imprecisione di
stima. In casi molto semplici si può assumere che sia proporzionale all’errore
quadratico medio dello stimatore usato, ys. In simboli:

CS(n) = γMSE(ys) = γ

(
1
n
− 1

N

)
S2

y (4.18)

dove γ è una costante di proporzionalità positiva.
Combinando assieme le (4.17) e (4.18) si ottiene la funzione di costo totale:

CT (n) = CS(n) + CR(n) = γ

(
1
n
− 1

N

)
S2

y + c0 + c1n. (4.19)
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È facile verificare (Esercizio 4.9) che il valore di n che rende minima la (4.19)
è dato da

n =
√

γ

c1
Sy . (4.20)

Naturalmente, per calcolare effettivamente il valore di n dato dalla (4.20)
è necessario disporre perlomeno di una stima preliminare di Sy.

Come osservazione conclusiva, è da rimarcare che l’approccio decisionale
alla determinazione della numerosità campionaria, benché elegante e poten-
zialmente di grande importanza, è molto di rado usato in pratica. La ragione
principale consiste nel fatto che è in generale estremamente difficile specificare,
anche solo in maniera approssimata, tutti gli elementi di costo che intervengo-
no in una rilevazione statistica, ed in particolare quelli dovuti all’imprecisione
di stima.

Esercizi

4.1. Provare che valgono le asserzioni a.–d. della Sezione 4.2.

Suggerimento. La funzione f(x) = x/(1 + a(x − 1)), 0 < a < 1, x � 0, cresce al
crescere di x. La funzione g(x) = b/(1 + (b − 1)x), b > 1, x � 0 cresce al crescere
di x.

4.2. Verificare che il massimo valore che può assumere PA(1 − PA) è 1/4.

Suggerimento. La funzione f(x) = x(1− x) è massima per x = 1/2.

4.3. Provare che se PA � πA0, con πA0 � 0.5, allora il valore massimo di
PA(1 − PA) è πA0(1 − πA0).

4.4. Per valutare la presenza di errori di stampa in un libro di 752 pagine, si
decide di selezionare un campione ssr di pagine, e di rilevare gli errori in essa
contenuti. L’interesse è nella stima della frazione PA di pagine che contengono
errori di stampa. Da informazioni sulla precedente edizione del libro, è noto
che la frazione di pagine con errori non è superiore al 15%. D’altra parte,
il tipo di processo produttivo usato non garantisce che meno del 5% delle
pagine contengano errori. Determinare la numerosità campionaria n in modo
che l’errore di stima di PA sia non superiore a 0.05 con probabilità (almeno)
pari a 0.95.

4.5. Un politico concorre alle elezioni in un collegio di 50000 elettori. Per va-
lutare le sue chance di vittoria, decide di effettuare un sondaggio campionario,
mediante campionamento ssr. Sulla base dell’andamento delle passate elezioni,
e da informazioni avute dalle sezioni di partito, il politico ritiene ragionevole
assumere che avrà almeno il 20% dei voti. Determinare la numerosità campio-
naria n in modo che l’errore di stima non superi di più del 10% la frazione di
elettori che voteranno per il politico, con probabilità almeno pari a 0.9.
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4.6. Provare che se a � yi � b per ogni i = 1, . . . , N , allora σ2
y � (b − a)2/4.

Suggerimento. Si ha σ2
y �

∑
i(yi − (a+ b)/2)2/N , e |yi − (a+ b)/2| può al più essere

uguale a (b − a)/2.

4.7. Con riferimento alla popolazione di 1500 famiglie del file cultura.txt,
determinare la numerosità che dovrebbe avere un campione ssr se si vuole
stimare la spesa media per attività culturali con un errore assoluto non supe-
riore a 100 Euro con probabilità (almeno) pari a 0.9. In assenza di informazioni
sulla varianza della popolazione, usare un campione pilota.

4.8. Uno psicologo vuole studiare l’abilità linguistica di bambini di 6 anni.
A questo scopo decide di selezionare un campione ssr da una popolazione
scolastica di 2534 bambini. Ogni unità del campione è sottoposta ad un test,
il cui risultato è un numero compreso tra 1 (abilità minima) e 5 (abilità
massima). L’obiettivo è la stima del punteggio medio μy della popolazione
dei 2534 bambini. Determinare la numerosità campionaria necessaria affinché
l’errore di stima non superi il 10% di muy, con probabilità pari almeno a 0.9.

4.9. Provare che il valore di n che minimizza la (4.19) è n =
√

γ/c1 Sy .



5

Stima con il metodo della regressione

5.1 L’uso di caratteri ausiliari: aspetti di base

In linea di principio, come più volte sottolineato, disegno campionario e sti-
matore(i) usati in una rilevazione campionaria sono scelti dallo statistico che
progetta la rilevazione. Tale scelta, ovviamente, è effettuata in modo da as-
sicurare agli stimatori usati un’alta efficienza, ovvero un errore quadratico
medio piccolo. La scelta del disegno e degli stimatori dipende non solo (com’è
ovvio) dal tipo di problema oggetto di studio, ma anche dalle informazioni
a priori che si posseggono sulla popolazione di interesse. Supponendo, come
sempre si farà nella presente trattazione, che il problema essenziale sia la stima
della media della popolazione, ci si è fino ad ora esclusivamente concentrati
sulla strategia campionaria (disegno semplice, media campionaria). Si tratta
della più elementare tra le strategie campionarie, utile principalmente quando
non si è in possesso di informazioni a priori sulla popolazione di interesse.
Il disegno ssr tratta infatti “alla pari”, in maniera simmetrica, tutte le unità
della popolazione. Inoltre, la media campionaria è il più semplice stimatore
della media della popolazione che si possa immaginare. La disponibilità di
informazioni a priori può intervenire a vari livelli, in quanto le informazioni
stesse possono essere usate per modificare o lo stimatore usato, o il disegno
campionario, o entrambi.

Naturalmente, è necessario in primo luogo precisare cosa si intende per
“informazioni a priori sulla popolazione di interesse”. Vi sono in effetti molti
differenti tipi di informazioni che possono essere in possesso dello statistico
che progetta una rilevazione campionaria. Qui si considererà un tipo molto
semplice di informazione a priori, consistente nella conoscenza delle modalità
di un carattere X . Precisamente, si supporrà che siano note, per tutte le unità
della popolazione, le modalità xi, i = 1, . . . , N , di un carattere ausiliario X .
Ovviamente, questo implica che sono anche noti tutti i parametri statistici

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 5, © Springer-Verlag Italia 2012
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dipendenti solo da X , quali la media

μx =
1
N

N∑
i=1

xi,

la varianza (anche nella versione “corretta”)

σ2
x =

1
N

N∑
i=1

(xi − μx)2, S2
x =

N

N − 1
σ2

x =
1

N − 1

N∑
i=1

(xi − μx)2

o altro ancora.
L’informazione ausiliaria rappresentata dalla conoscenza delle modalità di

X può essere utilizzata sia nella costruzione del disegno campionario, sia nella
costruzione dello stimatore permettendo di migliorare, a parità di numerosità
campionaria, l’efficienza dei risultati.

Nel presente capitolo sfrutteremo tale informazione esclusivamente a livello
di stima. In altre parole, è noto il vettore XN delle modalità etichettate di X
per tutte le unità della popolazione.

Il disegno che si adotterà sarà ancora quello semplice senza ripetizione.
Invece, si introdurranno nuovi tipi di stimatori, dipendenti non solo dalle mo-
dalità campionarie di Y (come accade, ad es., per la media campionaria), ma
anche dalle modalità di X . L’idea di base è di sfruttare l’eventuale dipendenza
(correlazione) tra X e Y per ottenere uno stimatore di μy più efficiente della
media campionaria ys.

Esempi in cui è noto un carattere ausiliario X sono abbastanza frequenti
nella pratica applicativa. Si supponga ad esempio di voler stimare la spesa
media sostenuta dalle famiglie che vivono in una regione per l’educazione
scolastica dei figli. Le liste anagrafiche forniscono non solo un elenco delle
famiglie, ma anche, per ognuna di esse, il numero di componenti e le relazioni
di parentela. Un caso che si verifica spesso, poi, è quello in cui X è lo stesso
carattere Y rilevato sulla popolazione in un periodo precedente.

5.2 Lo stimatore alle differenze

In questa sezione si introduce un primo stimatore che sfrutta la conoscenza del
carattere ausiliario X , e le cui proprietà sono molto semplici da studiare: lo
stimatore alle differenze. Esso è importante non solo di per sé, ma soprattutto
perché fornisce la base logica per l’introduzione dello stimatore per regressione.

Sia s un campione di numerosità n ottenuto mediante disegno ssr. In cor-
rispondenza di ciascuna unità campionaria i, siano yi, xi rispettivamente le
modalità etichettate di Y e di X , e siano

ys =
1
n

∑
i∈s

yi, xs =
1
n

∑
i∈s

xi

le corrispondenti medie campionarie.
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Se c è una costante reale arbitraria, lo stimatore alle differenze μ̂d, c è
definito come

μ̂d, c = ys − c(xs − μx).

Si noti che l’applicazione di tale stimatore non richiede che siano realmente
noti i valori xi per tutte le unità della popolazione, ma unicamente il valore
della media μx, e le modalità xi per le sole unità campionarie.

Proposizione 5.1. Se il disegno campionario è ssr, lo stimatore alle diffe-
renze μ̂d, c è uno stimatore corretto della media della popolazione:

E [μ̂d, c] = μy. (5.1)

La varianza di μ̂d, c è pari a

V (μ̂d, c) =
(

1
n
− 1

N

)
(S2

y + c2S2
x − 2cSxy). (5.2)

Dimostrazione. Per provare la (5.1) basta osservare che, essendo il disegno
ssr, si ha

E [μ̂d, c] = E [ys − c(xs − μx)]
= E [ys] − c (E [xs]− μx)
= μy − c(μx − μx)
= μy.

Per quanto riguarda la varianza di μ̂d, c, usando le Proposizioni 3.2, 3.5 si
può scrivere

V (μ̂d, c) = V (ys − c(xs − μx))
= V (ys − cxs)
= V (ys) + c2V (xs) − 2cC(xs, ys)

=
(

1
n
− 1

N

)
S2

y + c2

(
1
n
− 1

N

)
S2

x − 2c

(
1
n
− 1

N

)
Sxy

da cui segue subito la (5.2). ��

Come detto, la costante c è arbitraria. Ovviamente, conviene scegliere il
valore di c che rende massima l’efficienza dello stimatore μ̂d, c, ossia il valore
di c che minimizza la sua varianza. Derivando la (5.2) rispetto a c, si ha

dV (μ̂d, c)
dc

=
(

1
n
− 1

N

)
(2cS2

x − 2Sxy)

da cui

dV (μ̂d, c)
dc

= 0 se e solo se cS2
x − Sxy = 0.
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Tenendo anche conto che la derivata seconda di V (μ̂d, c) è positiva, il valore
di c che rende minima la (5.2) è pari a:

c =
Sxy

S2
x

=
σxy

σ2
x

= by/x

ovvero al coefficiente di regressione (nella popolazione) di Y rispetto a X . Con
la posizione c = by/x, lo stimatore alle differenze assume la forma

μ̂d, by/x
= ys − by/x(xs − μx). (5.3)

La sua varianza, in questo caso, è eguale a

V (μ̂d, by/x
) =

(
1
n
− 1

N

){
S2

y +
S2

xy

S4
x

S2
x − 2

Sxy

S2
x

Sxy

}

=
(

1
n
− 1

N

)
S2

y

(
1 −

S2
xy

S2
xS2

y

)

=
(

1
n
− 1

N

)
S2

y (1 − ρ2
xy)

dove

ρxy =
σxy

σxσy
=

Sxy

SxSy

è il coefficiente di correlazione lineare tra X e Y. Essendo −1 � ρxy � 1, si ha
0 � ρ2

xy � 1, da cui:

V (μ̂d, by/x
) �

(
1
n
− 1

N

)
S2

y = V (ys)

e l’uguaglianza tra le due varianze ha luogo se solo se ρxy = 0, ossia se e solo se
i due caratteri sono incorrelati. In ogni altro caso, lo stimatore alle differenze
“ottimale” (5.3) è più efficiente della media campionaria. La differenza tra
V (ys) e V (μ̂d, by/x

) è tanto più grande quanto più elevato è, in valore assoluto,
ρxy, ossia quanto più forte è il legame lineare tra i due caratteri X e Y. Se la
correlazione è perfetta, ρxy = ±1, la varianza dello stimatore alle differenze è
nulla.

Per capire in maniera un po’ più approfondita la struttura dello stimatore (5.3),
consideriamo la retta di regressione, nella popolazione, di Y rispetto a X : y =
ay/x + by/x x, con by/x = Sxy/S2

x e ay/x = μy − by/xμx. Tra le modalità yi, xi dei
due caratteri Y , X sussiste la relazione:

yi = ay/x + by/x xi + ei, i = 1, . . . , N

in cui i termini ei = yi − ay/x − by/x xi, i = 1, . . . , N sono gli errori. Per come il
coefficiente ay/x è definito, si vede subito che le yi si possono scrivere come:

yi = μy + by/x(xi − μx) + ei, i = 1, . . . , N
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da cui discende che

ei = (yi − μy) − by/x(xi − μx), i = 1, . . . , N. (5.4)

Le media degli errori nella popolazione è zero:

μe =
1

N

N∑
i=1

ei = 0.

Inoltre, è anche facile verificare (Esercizio 5.2) che la covarianza (corretta) tra gli
errori e le X è nulla:

Sxe =
1

N − 1

N∑
i=1

(xi − μx)ei = 0 (5.5)

e che, come conseguenza, la varianza dell’errore è pari a

S2
e =

1

N − 1

N∑
i=1

(ei − μe)
2

=
1

N − 1

N∑
i=1

e2
i

= S2
y − b2y/xS2

x

= S2
y(1− ρ2

xy). (5.6)

La relazione (5.6) mostra che la varianza dello stimatore alle differenze “ottima-
le” (5.3) si può scrivere come:

V (μ̂d, by/x
) =

(
1

n
− 1

N

)
S2

e

e quindi che essa dipende essenzialmente dai termini di errore della regressione
lineare di Y rispetto a X . Quanto più piccoli sono gli errori ei (in valore assoluto),
tanto più piccola è la loro varianza S2

e , tanto più efficiente è μ̂d, by/x
. La massima

efficienza si raggiunge quando gli errori ei sono tutti nulli. In tal caso si ha infatti
S2

e = 0, per cui μ̂d, by/x
è identicamente uguale alla media μy da stimare. È quasi

superfluo sottolineare che S2
e è tanto più piccola quanto più grande è ρ2

xy , e che si
ha S2

e = 0 se e solo se il coefficiente di correlazione ρxy è uguale a 1 o a −1, per cui
si ritrova per questa via quanto detto in precedenza.

5.3 Lo stimatore per regressione

Lo stimatore alle differenze “ottimale” (5.3), pur avendo eccellenti proprietà,
presenta un sostanziale difetto che ne limita enormemente la portata appli-
cativa: richiede che il coefficiente di regressione by/x sia noto. Ora, in quasi
tutti i casi di interesse applicativo tale quantità è incognita, per cui μ̂d, by/x

non può essere utilizzato. L’idea di base per rimediare a questo inconveniente
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è semplice: stimare by/x su base campionaria. Il più semplice stimatore di by/x

è il coefficiente di regressione campionario di Y rispetto a X :

b̂y/x =
ŝxy

ŝ2
x

=
1

n−1

∑
i∈s(xi − xs) (yi − ys)

1
n−1

∑
i∈s(xi − xs)2

. (5.7)

Sostituendo b̂y/x a by/x nella (5.3), si ha lo stimatore per regressione di μy:

μ̂reg = ys − b̂y/x(xs − μx). (5.8)

Dello stimatore per regressione si può anche dare un’interpretazione dif-
ferente, ma equivalente. Sia y = ay/x + by/xx la retta di regressione di Y
rispetto a X nella popolazione. Come ben noto, si ha by/x = Sxy/S2

x e
ay/x = μy − by/xμx, per cui vale la relazione μy = ay/x + by/xμx. Se si
conoscessero esattamente i coefficienti di regressione ay/x e by/x, a partire
da μx si potrebbe determinare esattamente la media μy. Il problema è che
ay/x e by/x non sono noti. L’idea, molto naturale, è quella di stimarli su base
campionaria. Tramite gli n dati campionari {(xi, yi); i ∈ s}, si può costruire
la retta di regressione campionaria di Y rispetto a X : y = ây/x + b̂y/xx, con
ây/x = ys− b̂y/xxs e b̂y/x definito nella (5.7). Per x = μx si ottiene lo stimatore
per regressione:

ây/x + b̂y/x μx = ys − b̂y/x(xs − μx) = μ̂reg.

Pertanto, μ̂reg è null’altro che l’ordinata della retta di regressione campionaria
(di Y rispetto a X ) corrispondente all’ascissa μx (vds. Fig. 5.1).

Il calcolo esatto del valore atteso e della varianza dello stimatore per re-
gressione (5.8) è estremamente difficile, in quanto sia il numeratore che il
denominatore di b̂y/x variano al variare del campione s. Pertanto, a meno di
casi molto speciali, il valore atteso di b̂y/x non è uguale a by/x, cos̀ı come il
valore atteso di b̂y/x(xs − μx) non è uguale a zero. Nella prossima sezione
studieremo, in modo approssimato e con metodi simili a quelli usati per la
stima del rapporto tra due medie, il valore atteso e la varianza dello stimatore
per regressione.

Esempio 5.1. Si supponga di voler stimare la produzione di grano di una
certa regione, e di non disporre di un elenco delle aziende agricole presenti
nella regione stessa. Questa situazione è piuttosto comune in molti paesi in via
di sviluppo, in cui non vi sono anagrafi di imprese. Una soluzione semplice ed
economica potrebbe essere quella di ripartire la regione in parcelle di territorio
delle stesse dimensioni, e di riprendere foto aeree delle stesse. Tali foto aeree
dovrebbero permettere di determinare la proporzione di ogni parcella coltivata
a grano, e quindi fornirebbero anche una valutazione della produzione di grano
di ogni parcella. In questo modo si potrebbe calcolare la produzione media
di grano delle parcelle, la quale, moltiplicata per il numero di parcelle in



5.3 Lo stimatore per regressione 101

cui è suddivisa la regione, permetterebbe di valutare la produzione totale di
grano della regione. Questo approccio (usato, in diverse varianti, nella pratica
applicativa) ha il pregio dell’estrema economicità di rilevazione. L’elemento
più problematico consiste nel fatto che il calcolo della produzione delle diverse
parcelle ottenuto mediante foto aeree è rozzo e soggetto ad errori. Per questa
ragione è opportuno selezionare in una seconda fase un campione di parcelle,
ognuna delle quali viene esaminata da un esperto in grado di fornire una
valutazione della corrispondente produzione di grano. L’osservazione diretta
di esperti fornisce quasi sempre valutazioni molto accurate della produzione
di grano delle diverse parcelle, ma d’altra parte è molto costosa, per cui il
relativo campione ha numerosità esigua.

Lo stimatore per regressione permette di combinare sia i dati ottenuti
da foto aeree, sia quelli provenienti da osservazione diretta a terra. Per ca-
pire meglio questo punto, facciamo riferimento ad un esempio numerico. Il
file grano.txt contiene, per un complesso di N = 2500 parcelle di terre-
no, le valutazioni della produzione di grano (in quintali) ottenute da foto
aeree e da osservazione a terra, che indichiamo rispettivamente con xi e yi,
i = 1, . . . , 2500. I valori xi sono noti, cos̀ı come la media μx. Dei valori yi si
osserva invece un campione ssr di ampiezza n = 20. I dati ottenuti sono qui
sotto riportati.

Etichetta i Ril. aerea xi (q.li) Ril. a terra yi (q.li)

1744 16 26
1823 26 34
1351 39 33
2031 57 48
1846 53 44
920 68 46
51 44 42

106 71 53
545 12 10
844 61 45

2188 22 27
798 36 32
529 45 37
562 46 40
440 41 31

2380 120 100
2370 32 30
1967 44 45
2432 0 8
1289 49 41

Le medie campionarie di Y e X sono pari a ys = 38.60 e xs = 44.10.
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Fig. 5.1 Stimatore per regressione per un campione di n = 20 parcelle

Inoltre, da

ŝ2
x =

1
19

∑
i∈s

(xi − xs)2 = 654.94,

ŝxy =
1
19

∑
i∈s

(xi − xs) (yi − ys) = 457.09

si deduce che b̂y/x = 457.09/654.94 = 0.698. Pertanto, lo stimatore per
regressione è pari a

μ̂reg = 38.60− 0.698 (44.10− 41.12) = 35.51.

In Fig. 5.1 è rappresentato graficamente, per l’esempio in esame, il modo in
cui lo stimatore per regressione di μy è costruito a partire dai dati campionari.

��

Un punto molto importante riguarda le circostanze in cui è realmente op-
portuno usare lo stimatore per regressione (5.8) anziché la media campionaria.
In maniera tutto sommato ovvia, ed anche un po’ vaga, si può dire μ̂reg va
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usato al posto di ys nei casi in cui ci si attende da esso una maggiore effi-
cienza di stima. La costruzione di μ̂reg vista sopra consente di dare un senso
lievemente più preciso a questa affermazione. L’idea di fondo su cui si basa
lo stimatore per regressione è di sfruttare la (eventuale) relazione lineare che,
a livello di popolazione, intercorre tra i caratteri di interesse Y e ausiliario
X . Quanto più forte è questa relazione, tanto migliore sarà il comportamento
di μ̂reg in termini di efficienza. La relazione lineare tra Y e X è misurata dal
coefficiente di correlazione lineare ρxy , per cui si può concludere che l’uso dello
stimatore μ̂reg è opportuno se si può ragionevolmente assumere che il coef-
ficiente di correlazione lineare tra Y e X sia, in valore assoluto, abbastanza
alto. Quello che conta per assicurare allo stimatore per regressione (5.8) delle
buone caratteristiche di efficienza è che vi sia una forte relazione lineare tra
Y e X . Quando si ha ragione di ritenere che Y e X abbiano un debole legame
lineare l’uso dello stimatore (5.8) è fuori luogo, in quanto la sua efficienza
potrebbe essere più bassa di quella della media campionaria ys.

Una seconda considerazione piuttosto importante riguarda la numerosità
campionaria. A meno che il coefficiente di correlazione lineare tra Y e X non
sia molto elevato in valore assoluto, lo stimatore per regressione non forni-
sce risultati apprezzabili quando la numerosità campionaria è molto piccola.
Uno studio empirico su questo punto è in un lavoro di Rao (1969), in cui si
analizza, con metodi di simulazione di tipo Monte Carlo, il comportamento
dello stimatore per regressione in otto popolazioni naturali, per numerosità
campionarie “piccole”, dell’ordine di n = 12 o meno.

La discussione appena svolta si basa tutta sulla formalizzazione delle relazioni di di-
pendenza che sussistono tra Y e X . Un modo naturale, quasi ovvio, di formalizzare
e studiare la struttura delle relazioni di dipendenza tra Y e X consiste nell’usare un
modello di superpopolazione , in si cui assume che le yi non siano semplici numeri,
ma piuttosto realizzazioni di variabili aleatorie Yi, legate alle xi da un modello di
regressione lineare Yi = a + bxi + Ui, essendo Ui la variabile aleatoria “errore di
regressione”. Si rientra in questo modo nell’ambito “classico” dei modelli di regres-
sione lineare. L’approccio basato su modelli di superpopolazione è ampiamente usato
nel campionamento da popolazioni finite. Dato il livello elementare della presente
trattazione, per il momento ci accontentiamo solo di questi brevi cenni.

5.4 Distorsione e varianza approssimate dello stimatore
per regressione

L’obiettivo di questa sezione è di studiare, in modo approssimato, il valore
atteso e la varianza dello stimatore per regressione (5.8). La tecnica usata
per studiare questo problema è molto simile a quella usata nella Sezione 3.8
per studiare in modo approssimato valore atteso e varianza del rapporto di
due medie campionarie. Il risultato principale che si otterrà è riassunto nella
seguente proposizione.
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Proposizione 5.2. Se il disegno campionario è ssr di numerosità n, valgono
le seguenti relazioni:

E[μ̂reg] ≈ μy (5.9)

V (μ̂reg) ≈
(

1
n
− 1

N

)
S2

y (1 − ρ2
xy) (5.10)

MSE(μ̂reg ) ≈
(

1
n
− 1

N

)
S2

y (1 − ρ2
xy). (5.11)

Gli errori di approssimazione presenti nelle (5.9) - (5.11) sono tanto più
piccoli quanto più grande è la numerosità campionaria n. Come verificheremo
più avanti, per la (5.9) l’errore di approssimazione è dell’ordine di grandezza
di 1/n, mentre per le (5.10), (5.11) è di ordine più piccolo di 1/n. Al crescere
di n, pertanto, l’errore di approssimazione in (5.9) decresce alla velocità di
1/n, mentre gli errori in (5.10), (5.11) decrescono più rapidamente di 1/n.
Questo significa che la Proposizione 5.2 fornisce indicazioni effettivamente
utili solo se la numerosità campionaria n è “grande”. Per valori piccoli di n,
le grandezze E[μ̂reg], V (μ̂reg), MSE(μ̂reg ) possono divergere anche in misura
considerevole dai loro valori approssimati che figurano nelle (5.9) - (5.11).

Dimostrazione. Per studiare, sia pure in modo approssimato, le proprietà dello
stimatore per regressione, iniziamo con l’osservare che vale la relazione

b̂y/x =
1

n−1

∑
i∈s yi(xi − xs)

1
n−1

∑
i∈s(xi − xs)2

=
1

n−1

∑
i∈s{μy + by/x(xi − μx) + ei}(xi − xs)

1
n−1

∑
i∈s(xi − xs)2

=
1

n−1

{
μy

∑
i∈s(xi − xs) + by/x

∑
i∈s(xi − μx)(xi − xs) +

∑
i∈s ei(xi − xs)

}
1

n−1

∑
i∈s(xi − xs)2

=
1

n−1

{
by/x

∑
i∈s xi(xi − xs) +

∑
i∈s ei(xi − xs)

}
1

n−1

∑
i∈s(xi − xs)2

= by/x +
1

n−1

∑
i∈s ei(xi − xs)

1
n−1

∑
i∈s(xi − xs)2

= by/x +
ŝxe

ŝ2
x

(5.12)

in cui, come conseguenza dei risultati delle Sezioni 3.3 e 3.7,

ŝ2
x =

1
n − 1

∑
i∈s

(xi − xs)2, ŝxe =
1

n − 1

∑
i∈s

ei(xi − xs)

sono stimatori corretti rispettivamente di S2
x e di Sxe = 0 (5.6).
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Si può dimostrare (si veda, ad esempio, Herzel (1982)) che E[(ŝ2
x−S2

x)2] =
V (ŝ2

x) è dell’ordine di grandezza di 1/n. Ragionando in modo euristico, non
rigoroso, questo implica che (ŝ2

x−S2
x)2 è esso stesso dell’ordine di 1/n, e quindi

che (ŝ2
x − S2

x) è dell’ordine di grandezza di 1/
√

n. Nello stesso modo, si vede
che anche (ŝxe − Sxe) = ŝxe è dell’ordine di grandezza di 1/

√
n. Dalla (5.12)

si conclude quindi che vale la seguente relazione:

b̂y/x − by/x =
quantità di ordine 1√

n

S2
x + quantità di ordine 1√

n

= quantità di ordine
1√
n

. (5.13)

A sua volta, tenendo anche conto che il termine (xs − μx) è dell’ordine di
grandezza di 1/

√
n, la (5.13) permette di concludere che lo stimatore per

regressione si può esprimere come

μ̂reg = ys −
(

by/x + quantità di ordine
1√
n

)
(xs − μx)

= ys − by/x(xs − μx) + (xs − μx) × quantità di ordine
1√
n

= ys − by/x(xs − μx) + quantità di ordine
1
n

. (5.14)

Dalla (5.14) è immediato ricavare la (5.9):

E[μ̂reg] = E
[
ys − by/x(xs − μx)

]
+ E

[
quantità di ordine

1
n

]
= μy + quantità di ordine

1
n

.

Usando infine la (5.14) e considerazioni simili a quelle sopra viste, è facile
verificare (Esercizi 5.3, 5.4) che

V (μ̂reg) =
(

1
n
− 1

N

)
S2

y(1 − ρ2
xy) + quantità di ordine più piccolo di

1
n

;

MSE(μ̂reg) =
(

1
n
− 1

N

)
S2

y(1 − ρ2
xy) + quantità di ordine più piccolo di

1
n

.

��

5.5 Stima della varianza dello stimatore per regressione

Come sempre accade quando si stima un parametro (nel nostro caso, la media
della popolazione) è necessario anche fornire una stima dell’errore quadrati-
co medio dello stimatore utilizzato. Le relazioni (5.10), (5.11) ci dicono che
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la varianza e l’errore quadratico medio di μ̂reg si approssimano esattamente
nello stesso modo, per cui è sufficiente stimare la varianza di μ̂reg per avere
uno stimatore del suo errore quadratico medio. Dall’espressione approssimata
(5.10) si ha la relazione

V (μ̂reg) ≈
(

1
n
− 1

N

)
S2

y (1 − S2
xy/(S2

xS2
y))

=
(

1
n
− 1

N

){
S2

y − b2
y/xS2

x

}
.

Sostituendo a S2
y , S2

x, by/x i corrispondenti stimatori ŝ2
y, ŝ2

x, b̂y/x, si ha il
seguente stimatore di V (μ̂reg):

V̂ (μ̂reg) =
(

1
n
− 1

N

){
ŝ2
y − b̂2

y/xŝ2
x

}
. (5.15)

Un’espressione alternativa dello stimatore (5.15) è fornita nell’Esercizio 5.5.
Se si usa l’approssimazione normale per la distribuzione di probabilità

di μ̂reg, si possono anche costruire intervalli di confidenza approssimati per
la media della popolazione. Con la consueta notazione, infatti, è pressoché
immediato verificare che[

μ̂reg − zα/2

√
V̂ (μ̂reg), μ̂reg + zα/2

√
V̂ (μ̂reg)

]
è un intervallo di confidenza per la media μy della popolazione, al livello
(approssimato) 1 − α.

Esempio 5.2. Consideriamo ancora l’Esempio 5.1. Come già visto, è ŝ2
x =

654.94, ŝxy = 457.09, by/x = 0.698. Inoltre, è facile verificare che ŝ2
y = 343.62,

per cui come stima di V (μ̂reg) avremo la seguente:

V̂ (μ̂reg) =
(

1
20

− 1
2500

){
343.62− 0.6982654.94

}
= 1.217.

Per un livello di confidenza 1−a = 0.96 si ha dalle tavole della distribuzione
normale standard z0.02 = 2.054, da cui segue che l’intervallo[

35.51− 2.054
√

1.217, 35.51 + 2.054
√

1.217
]

= [33.24, 37.78]

è un intervallo di confidenza approssimato al livello 0.96 per la media μy della
popolazione. ��
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Esercizi

5.1. Verificare che lo stimatore μ̂d, c è più efficiente della media campionaria
purché sia 0 < c < by/x se by/x > 0, e by/x < c < 0 se by/x < 0.

5.2. Provare la relazione (5.5).

Suggerimento. Dalla (5.4) discende che
∑N

i=1(xi−μx)ei =
∑N

i=1(xi −μx)(yi −μy)−
by/x

∑N
i=1(xi − μx)2.

5.3. Verificare che V (μ̂reg) =
(

1
n
− 1

N

)
S2

y(1 − ρ2
xy) + quantità di ordine più

piccolo di 1
n
.

Suggerimento. Usare la (5.14), e tenere conto che V (quantità di ordine 1
n
) e C(ys −

by/x(xs − μx), quantità di ordine 1
n
) sono di ordine più piccolo di 1/n.

5.4. Verificare che MSE(μ̂reg) = V (μ̂reg) + quantità di ordine più piccolo
di 1

n .

5.5. Verificare che vale la relazione:

V̂ (μ̂reg) =
(

1
n
− 1

N

)
1

n − 1

∑
i∈s

{(yi − ys) − b̂y/x(xi − xs)}2.

5.6. Un agricoltore vuole valutare la produzione media di mele di un frutteto,
in cui vi sono in totale N = 150 meli. Per ogni albero si può dare sia una
valutazione “ad occhio” della quantità di mele prodotte (xi), sia una valuta-
zione precisa (yi) ottenuta cogliendo le mele dell’albero e pesandole. In base
alle valutazioni ad occhio su tutti gli alberi del frutteto, si ha che ogni albero
dovrebbe produrre una quantità media di mele pari a 46 kg. Viene poi selezio-
nato un campione ssr di n = 18 meli, di ognuno dei quali si pesa la produzione
di mele. I risultati sono riportati nella tabella qui di seguito.

Peso ad occhio xi Peso effettivo yi Peso ad occhio xi Peso effettivo yi

(kg) (kg) (kg) (kg)

41 41 39 36
37 39 51 54
42 46 44 50
46 40 55 54
48 51 42 40
45 43 50 47
40 35 43 41
52 54 53 53
46 48 49 50

a. Stimare μy mediante lo stimatore per regressione.
b. Basandosi sul risultato in (i), costruire un intervallo di confidenza per μy

al livello 0.95.



6

Stima con il metodo del quoziente

6.1 Aspetti di base: definizione dello stimatore per
quoziente

Lo stimatore per quoziente è, come struttura logica, simile a quello per re-
gressione. Poniamoci esattamente nelle condizioni del Capitolo 5, ovvero sup-
poniamo che siano note le modalità x1, . . . , xN che un carattere ausiliario
X assume in corrispondenza delle unità della popolazione. Indichiamo con
μx =

∑N
i=1 xi/N la media del carattere X nella popolazione. L’obiettivo, co-

me al solito, è quello di stimare la media μy del carattere Y. In tutto il presente
capitolo si assumerà che il disegno di campionamento è quello semplice senza
ripetizione.

Rispetto a quanto assunto nel Capitolo 5, supponiamo di disporre di un’in-
formazione aggiuntiva: la retta di regressione di Y rispetto a X passa per l’o-
rigine. Tenendo conto che tale retta deve anche passare per il punto (μx, μy),
se μx �= 0 (come sempre implicitamente assumeremo d’ora in avanti) questo
significa che essa ha equazione del tipo:

y =
μy

μx
x = Rx (6.1)

in cui R = μy/μx è il rapporto tra la media di Y e quella di X . Dalla (6.1) si
ricava subito l’ovvia relazione

μy = Rμx. (6.2)

Se R fosse noto, si potrebbe calcolare esattamente μy usando la (6.2). Essendo
R incognito, l’idea di base è quella di usare la relazione (6.2) a livello campio-
nario, stimando R tramite il rapporto tra la media campionaria di X e quella
di Y:

R̂ =
ys

xs
.

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 6, © Springer-Verlag Italia 2012
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Si ottiene in questo modo lo stimatore per quoziente di μy, definito come:

μ̂q = R̂ μx =
ys

xs
μx. (6.3)

Per quanto riguarda l’uso dello stimatore per quoziente, una domanda
molto naturale, pressoché scontata, è la seguente: “Quando è opportuno usare
lo stimatore per quoziente? La risposta a tale quesito è in sostanza insita nella
costruzione dello stimatore stesso.

1. La prima condizione che deve essere verificata è che la retta di regressione
di Y rispetto a X , almeno in via approssimata, passi per l’origine. Quanto
più si è vicini a condizioni di questo tipo, tanto più alta è l’efficienza dello
stimatore per quoziente.

2. In secondo luogo, vale una considerazione simile a quella fatta per lo stima-
tore per regressione: lo stimatore per quoziente fornisce risultati tanto mi-
gliori quanto più il carattere oggetto di interesse Y e il carattere ausiliario
X sono correlati.

Queste due condizioni possono essere riassunte dicendo che, in termini di
efficienza, lo stimatore per quoziente fornisce buoni risultati quando tra i due
caratteri Y e X intercorre una relazione di approssimata proporzionalità.

Al limite, se tra le modalità di Y e quelle di X vi fosse una relazione di esat-
ta proporzionalità, si avrebbe yi = R xi per ogni unità i della popolazione, e
quindi ys = R xs. A sua volta, questo implicherebbe che R̂ = R, e quindi μ̂q =
μy. In altri termini, se Y e X sono esattamente proporzionali, lo stimatore per
quoziente diviene identicamente uguale alla media μy da stimare.

Queste considerazioni portano in modo semplice ad una importante con-
clusione: quanto più si è vicini ad una situazione di proporzionalità tra le yi e
le xi, tanto migliore è la precisione di stima dello stimatore per quoziente. È
questo il criterio-guida che porta a scegliere di usare lo stimatore per quozien-
te per stimare μy. Se, in base alle informazioni a priori di cui si dispone, si
può ragionevolmente assumere di essere abbastanza vicini ad una situazione di
quasi-proporzionalità tra le modalità dei caratteri Y e X , l’uso dello stimatore
per quoziente (6.3) è opportuno. Se però questo tipo di assunzione non può
essere sostenuta, è preferibile non usare lo stimatore per quoziente, in quanto
potrebbe dar luogo a severi errori di stima.

A meno che non si sia del tutto sicuri della validità delle assunzioni a
priori su cui si basa la scelta dello stimatore per quoziente, è spesso necessa-
rio valutare, sia pure rozzamente, la validità di tali assunzioni sulla base dei
dati campionari. Un modo molto semplice di operare consiste nello studiare i
residui. Posto ŷi = R̂ xi, definiamo i residui campionari rispetto alla retta di
equazione ŷ = R̂ x come:

êi = yi − ŷi = yi − R̂ xi, i ∈ s. (6.4)

Su un diagramma cartesiano rappresentiamo poi le coppie (xi, êi), per tutte le
n unità del campione s. Se sono valide le assunzioni 1, 2, è intuitivo attendersi
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che la media campionaria dei residui sia approssimativamente pari a zero:
ês =

∑
i∈s êi/n ≈ 0. Il primo controllo da effettuare riguarda pertanto il

valore di ês, che dovrebbe risultare abbastanza prossimo a zero.
Un’analisi molto più fine della precedente riguarda la retta di regressione

campionaria (dei minimi quadrati) dei residui êi rispetto alle xi. Sotto le
assunzioni 1, 2, essa dovrebbe approssimativamente coincidere con l’asse delle
ascisse. Si osservi che quando ciò accade si ha automaticamente ês ≈ 0. Il
secondo tipo di controllo da effettuare riguarda quindi la retta di regressione
campionaria delle êi rispetto alle xi, che dovrebbe risultare prossima all’asse
delle ascisse.

Se le analisi sopra illustrate validano le assunzioni 1, 2, si può usare lo
stimatore per quoziente (6.3) con ragionevoli aspettative di buona efficienza.

Esempio 6.1. Un botanico vuole valutare l’età di una foresta di N = 426
alberi. Per determinare l’età di un albero vi è un metodo preciso, consistente
nel contare il numero di anelli concentrici del fusto (ogni anello corrisponde
ad un anno). Questo metodo, però, ha il fondamentale difetto di richiedere il
taglio della pianta. Un metodo di valutazione dell’età di un albero più semplice
e incruento, ma molto meno accurato, consiste nel misurare il diametro del
fusto di un albero. L’intuizione suggerisce che il diametro di un fusto dovrebbe
essere grosso modo proporzionale al numero di anelli del fusto stesso. Per
valutare l’età media degli alberi della foresta si potrebbe quindi adottare la
procedura qui sotto descritta.

– Si misurano i diametri di tutti gli alberi della foresta. In questo modo resta
definito, sulla popolazione di alberi, un carattere ausiliario noto.

– Si seleziona un campione ssr di alberi, di cui si contano gli anelli.

Come già accennato, è ragionevole ammettere che vi sia una relazione di
approssimata proporzionalità tra età e diametro degli alberi. Risulta quindi
sensato utilizzare lo stimatore per quoziente per stimare l’età media μy degli
alberi della foresta.

Il file alberi.txt contiene, per gli N = 426 alberi della foresta, sia il
diametro (in cm.) che l’età (in anni). Indichiamo rispettivamente con xi e yi,
i = 1, . . . , 426, queste due quantità. I valori xi sono noti per tutti gli alberi,
cos̀ı come la loro media μx = 27.23. Dei valori yi si osserva invece un campione
ssr di ampiezza n = 24. I dati ottenuti sono qui sotto riportati.
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Etichetta i Diametro xi (cm.) Età yi (anni) ŷi = R̂ xi Residui êi = yi − ŷi

270 24.1 76 95.195 −19.195
288 23.9 98 94.405 3.595
344 40.6 164 160.37 3.63
302 25.7 109 101.515 7.485
133 32.5 125 128.375 −3.375
268 25.4 113 100.33 12.67
350 31.2 114 123.24 −9.24
318 19.1 72 75.445 −3.445
352 20.6 85 81.37 3.63
256 22.6 100 89.27 10.73
27 34.5 142 136.275 5.725
90 22.9 94 90.455 3.545
378 31.2 122 123.24 −1.24
124 30.5 125 120.475 4.525
85 31.0 118 122.45 −4.45

246 24.1 90 95.195 −5.195
381 19.6 73 77.42 −4.42
180 32.5 116 128.375 −12.375
296 29.2 124 115.34 8.66
306 26.2 98 103.49 −5.49
385 26.7 113 105.465 7.535
146 31.0 127 122.45 4.55
172 25.4 91 100.33 −9.33
380 31.5 123 124.425 −1.425

Le medie campionarie di Y e X sono rispettivamente ys = 108.83 e xs =
27.58, cos̀ı che si ha

R̂ =
108.83
27.58

= 3.95.

I dati campionari possono essere usati per validare l’assunzione di appros-
simata proporzionalità tra Y e X , come illustrato in precedenza. La media
campionaria dei residui è pari a es = −0.121, e quindi molto prossima a zero.
Per quanto riguarda la retta di regressione dei residui rispetto ai diametri, essa
è rappresentata in Fig. 6.1; il coefficiente angolare è pari a 0.022, e l’intercetta
a −0.73.

Chiaramente, tale retta è quasi coincidente con l’asse delle ascisse. Tut-
to ciò permette di affermare che, in via approssimata, vi è una relazione di
quasi-proporzionalità tra diametri ed età degli alberi, e giustifica l’uso dello
stimatore per quoziente, che risulta pari a

μ̂q = R̂ μx = 3.95× 27.23 = 107.56.

In Fig. 6.2 è rappresentato graficamente il modo in cui lo stimatore per
quoziente è costruito a partire dalla retta di equazione ŷ = R̂ x.
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Fig. 6.1 Retta di regressione dei residui rispetto ai diametri degli alberi

Fig. 6.2 Stimatore per quoziente per un campione di n = 24 alberi
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È interessante osservare che, a fronte di un valore della media della popo-
lazione pari a μy = 107.5, la media campionaria ys è pari a 108.83, e quindi
sovrastima μy. Tramite la relazione di quasi-proporzionalità tra età e diame-
tri degli alberi, lo stimatore per quoziente, che assume il valore μ̂q = 107.56,
corregge in larga parte questa sovrastima. ��

6.2 Distorsione e varianza approssimate dello stimatore
per quoziente

Se il disegno usato per selezionare le unità campionarie è di tipo ssr, lo sti-
matore per quoziente (6.3) è distorto. In effetti, come già visto nel Capitolo 3
a proposito della stima di un rapporto di due medie, si ha

E[R̂] = E

[
ys

xs

]
�= E[ys]

E[xs]
=

μy

μx
= R

e quindi

E[μ̂q] = E[R̂ μx] = E[R̂] μx �= Rμx = μy.

Della distorsione B(μ̂q) (= E[μ̂q] − μy) dello stimatore per quoziente si
può anche fornire la seguente espressione esatta (vds. Esercizio 6.1 per la
dimostrazione):

B(μ̂q) = −C(R̂, xs). (6.5)

L’espressione (6.5), benché molto elegante, è in pratica di scarsa utilità,
in quanto impossibile da calcolare esplicitamente. Risulta quindi molto più
utile, perlomeno nel caso del campionamento ssr, cercare di fornire un’espres-
sione approssimata della distorsione e dell’errore quadratico medio dello sti-
matore per quoziente, sulla falsariga di quanto già visto per lo stimatore per
regressione.

Essendo μ̂q = R̂ μx, le proprietà dello stimatore per quoziente dipendono
sostanzialmente da quelle di R̂ = ys/xs. In via approssimata, media e varianza
di R̂ sono già state studiate nella Sezione 3.8. Si possono quindi sfruttare i
risultati già ottenuti. In particolare, dalla Proposizione 3.7 è immediato far
discendere i seguenti risultati.

Proposizione 6.1. Se il disegno campionario è ssr di numerosità n, valgono
le seguenti relazioni:

E[μ̂q] = E[R̂] μx ≈ R μx = μy (6.6)

V (μ̂q) = V (R̂)μ2
x ≈

(
1
n
− 1

N

)
{S2

y + R2S2
x − 2RSxy} (6.7)

MSE(μ̂q) = V (R̂)μ2
x ≈

(
1
n
− 1

N

)
{S2

y + R2S2
x − 2RSxy}. (6.8)
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L’ordine di grandezza degli errori delle approssimazioni (6.6) – (6.8) dipende dal-

l’ordine di grandezza degli errori che si commettono approssimando E[R̂], V (R̂),

MSE(R̂). Questo è già stato studiato nella Sezione 3.8. Da questa discende subi-
to che:

E[μ̂q] = μy + quantità di ordine
1

n

V (μ̂q) =

(
1

n
− 1

N

)
{S2

y + R2S2
x − 2RSxy} + quantità di ordine più piccolo di

1

n

MSE(μ̂q) =

(
1

n
− 1

N

)
{S2

y + R2S2
x − 2RSxy} + quantità di ordine più piccolo di

1

n
.

La formula (6.8) permette di valutare, sia pure in modo approssimato, il
guadagno (o la perdita) di efficienza che l’uso dello stimatore per quozien-
te comporta rispetto alla media campionaria, fermo restando che il disegno
campionario è ssr. Si ha infatti:

MSE(ys) − MSE(μ̂q) ≈
(

1
n
− 1

N

) {
S2

y − (S2
y + R2S2

x − 2RSxy)
}

=
(

1
n
− 1

N

)
(2RSxy − R2S2

x)

=
(

1
n
− 1

N

)
RSx

(
2

Sxy

SxSy
Sy − RSx

)
=
(

1
n
− 1

N

)
RSx (2ρxySy − RSx) (6.9)

essendo ρxy il coefficiente di correlazione lineare tra X e Y. Dalla (6.9) risulta
chiaro che lo stimatore per quoziente è più efficiente della media campionaria
se e solo se 2ρxySy − RSx � 0, ovvero se e solo se

ρxy �
RSx

2 Sy
=

Sx/μx

2Sy/μy
=

CV (x)
2 CV (y)

dove CV (x) e CV (y) sono rispettivamente il coefficiente di variazione di X e
quello di Y.

6.3 Stima della varianza dello stimatore per quoziente

Dalla formula della varianza approssimata (in effetti sarebbe più corretto par-
lare di errore quadratico medio approssimato) dello stimatore per quoziente si
può anche dare un’espressione alternativa. Per rendere più semplice il risultato
finale conviene partire da quanto ottenuto nella Sezione 3.8, ed in particolare
dalla relazione

S2
y + R2S2

x − 2RSxy =
1

N − 1

N∑
i=1

(yi − Rxi)2



116 6 Stima con il metodo del quoziente

dalla quale discende che

V (μ̂q) ≈
(

1
n
− 1

N

)
1

N − 1

N∑
i=1

(yi − Rxi)2. (6.10)

La (6.10) suggerisce un semplice stimatore di V (μ̂q), ottenuto sostituendo
l’incognito rapporto R = μy/μx con la sua “controparte campionaria” R̂ =
ys/xs. Si ha in questo modo lo stimatore

V̂ (μ̂q) =
(

1
n
− 1

N

)
1

n − 1

∑
i∈s

(yi − R̂xi)2

=
(

1
n
− 1

N

)
1

n − 1

∑
i∈s

ê2
i (6.11)

in cui le quantità êi = yi − R̂xi sono i residui introdotti in precedenza (vds.
(6.4)). Per altri stimatori di V (μ̂q), e per qualche sintetica nota sul loro
confronto, si rinvia al volume di Cochran (1977), pp. 155–156.

Dalla (6.11), usando la solita approssimazione normale per la distribuzione
di probabilità di μ̂q, si possono anche costruire intervalli di confidenza (ap-
prossimati) per la media della popolazione. Indicando con zα il quantile di
ordine α della distribuzione normale standard, è immediato verificare che[

μ̂q − zα/2

√
V̂ (μ̂q), μ̂q + zα/2

√
V̂ (μ̂q)

]
è un intervallo di confidenza per la media μy della popolazione, al livello
(approssimato) 1 − α.

Esempio 6.2. Consideriamo ancora l’Esempio 6.1. In questo caso, la stima
della varianza di μ̂q (6.11) assume il valore:

V̂ (μ̂q) =
(

1
24

− 1
426

)
1
23

24∑
i=1

ê2
i = 2.40.

Sulla base di questa stima, non è difficile costruire intervalli di confidenza
per μy. A titolo di esempio, costruiamo un intervallo di confidenza per μy al
livello 0.95. Essendo z0.025 = 1.96, si ha che[

107.56− 1.96
√

2.40, 107.56 + 1.96
√

2.40
]

= [104.52, 110.60]

è un intervallo di confidenza approssimato per μy, di livello 0.95. ��

6.4 Stimatore di tipo media di rapporti∗

Lo stimatore per quoziente (6.3) è essenzialmente basato su un rapporto tra
medie campionarie. Una semplice idea alternativa per costruire uno stimatore
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che sfrutti la conoscenza del carattere ausiliario X potrebbe essere quella di
basarsi su una media di rapporti yi/xi. Per semplificare un po’ la trattazio-
ne, definiamo sulle N unità della popolazione un nuovo carattere Z il quale,
in corrispondenza dell’unità i, assume modalità zi = yi/xi (i = 1, . . . , N).
Usando la consueta simbologia, siano

μz =
1
N

N∑
i=1

zi, σ2
z =

1
N

N∑
i=1

(zi − μz)2, σxz =
1
N

N∑
i=1

(xi − μx) (zi − μz)

la media e la varianza di Z, e la covarianza tra X e Z. Siano inoltre, come al
solito,

S2
z ==

1
N − 1

N∑
i=1

(zi − μz)2, Sxz =
1

N − 1

N∑
i=1

(xi − μx) (zi − μz).

L’idea di base per costruire uno stimatore di μy basato su una media di
rapporti è quella di partire dalla media campionaria delle zi, moltiplicata per
μx:

t = μx zs = μx
1
n

∑
i∈s

zi = μx
1
n

∑
i∈s

yi

xi
. (6.12)

Essendo il disegno usato di tipo ssr, il valore atteso di zs è uguale a μz, e
quindi si può scrivere

E[t] = μxE[zs] = μx μz.

Tenendo conto che yi = xi zi, ne consegue che la distorsione dello stimatore t
(6.12) è pari a:

B(t) = E[t]− μy

= μx μz − μy

=

(
1
N

N∑
i=1

xi

) (
1
N

N∑
i=1

zi

)
− 1

N

N∑
i=1

yi

= −
{

1
N

N∑
i=1

xi zi −
(

1
N

N∑
i=1

xi

) (
1
N

N∑
i=1

zi

)}
= −σxz. (6.13)



118 6 Stima con il metodo del quoziente

Ora, come noto (vds. in particolare la Sezione 3.7), uno stimatore corretto di
σxz è il seguente:

σ̂xz =
N − 1

N

1
n − 1

∑
i∈s

(xi − xs) (zi − zs)

=
N − 1

N

n

n − 1
1
n

∑
i∈s

(xi − xs) (zi − zs)

=
N − 1

N

n

n − 1

(
1
n

∑
i∈s

xi zi − xs zs

)

=
N − 1

N

n

n − 1
(ys − xs zs)

per cui dalla (6.13) segue la relazione

E

[
N − 1

N

n

n − 1
(ys − xs zs)

]
= σxz = −B(t). (6.14)

La (6.14) è di fondamentale importanza per costruire uno stimatore cor-
retto di μy a partire dalla media di rapporti t (6.12). Infatti, consideriamo il
nuovo stimatore di μy:

μ̂HR = t +
N − 1

N

n

n − 1
(ys − xs zs) = μx zs +

N − 1
N

n

n − 1
(ys − xs zs) (6.15)

noto in letteratura come stimatore di Hartley-Ross. La sua più importante
proprietà è la correttezza:

E [μ̂HR] = μx E [zs] + E

[
N − 1

N

n

n − 1
(ys − xs zs)

]
= μx μz + σxz

= μy − σxz + σxz

= μy.

La costruzione dello stimatore (6.15) sottende un importante principio,
che è bene mettere nel dovuto rilievo. Si consideri un generico stimatore θ̂ di
un parametro θ, e si supponga che B(θ̂) = E[θ̂] − θ sia la sua distorsione. Si
supponga poi di essere in grado di costruire uno stimatore corretto B̂ della
distorsione di θ̂: E[B̂] = B(θ̂). Allora, il nuovo stimatore θ̃ = θ̂ − B̂ è uno
stimatore corretto di θ. In sostanza, questo è quel che è stato fatto nella pre-
sente sezione, in cui t svolge il ruolo dello “stimatore iniziale” θ̂, e −σ̂xz è uno
stimatore corretto della distorsione di t. Un’applicazione di questo principio
è presentata nell’Esercizio 6.4.
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Esercizi

6.1. Provare la relazione (6.5).

Suggerimento. B(μ̂q) = −(E[R̂ xs] − E[R̂] E[xs]).

6.2. Provare che vale la disuguaglianza |B(μ̂q)| �
√

V (R̂)V (xs).

Suggerimento. Usare la (6.5) e la disuguaglianza di Schwarz.

6.3. Si consideri una popolazione di N = 5 unità, sulle quali sono definiti
un carattere di interesse Y ed un carattere ausiliario X . Le modalità dei due
caratteri sono qui sotto riportate.

Unità i 1 2 3 4 5

Valori xi 2 6 2 3 5

Valori yi 10 31 11 14 23

a. Enumerare tutti i campioni ssr di n = 3 unità della popolazione, e per
ognuno di essi calcolare il valore assunto dallo stimatore per quoziente μ̂q .

b. Calcolare esattamente il valore atteso, la varianza e l’errore quadratico
medio dello stimatore μ̂q .

c. Confrontare l’errore quadratico medio dello stimatore μ̂q con quello della
media campionaria xs.

6.4. Lo stimatore per prodotto di μy è definito come

μ̂p =
xs ys

μx
.

a. Verificare che μ̂p è uno stimatore distorto di μy, con distorsione

B(μ̂p) =
1
μx

(
1
n
− 1

N

)
Sxy.

b. Provare che

μ̂pc = μ̂p −
1
μx

(
1
n
− 1

N

)
ŝxy

è uno stimatore corretto di μy.

6.5. Si consideri la popolazione del file cultura.txt, in cui sono riportate
(oltre ad altri dati) le spese annue per attività culturali di N = 1500 famiglie
(carattere Y di interesse) e il numero di componenti di ciascuna famiglia (ca-
rattere ausiliario X , da considerare noto a priori). L’obiettivo è di stimare la
spesa media annua μy sostenuta dalle famiglie per attività culturali.
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a. Selezionare un campione ssr di n = 60 famiglie della popolazione, di cui si
osservano numero di componenti e spese per attività culturali.

b. Stimare μy tramite lo stimatore per quoziente.
c. Stimare la varianza dello stimatore per quoziente costruito al punto b.
d. Costruire un intervallo di confidenza (approssimato) per μy al livello 0.96.
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Disegno campionario stratificato I

7.1 Motivazioni e aspetti di base

La costruzione degli stimatori di regressione e quoziente si basa sulla dispo-
nibilità di informazioni ausiliarie sulla popolazione oggetto di studio, ed in
particolare sulla conoscenza di un carattere ausiliario. Questi due stimatori
sono stati studiati rispettivamente nei Capitoli 5, 6, fermo restando il tipo
di disegno campionario usato, di tipo ssr. Questo, però, non è l’unico modo
di sfruttare informazioni ausiliarie. Come già accennato all’inizio del Capito-
lo 5, le informazioni ausiliarie possono anche essere usate, in alcuni casi, per
costruire un disegno campionario che non sia quello ssr. È questo, per l’ap-
punto, il caso del disegno stratificato. Per comprendere meglio le idee di base
del disegno stratificato, iniziamo con un semplice esempio.

Esempio 7.1. Nel file stature.txt, già usato più volte nel Capitolo 3, sono
riportati numeri di matricola, sesso e statura di una popolazione di N =
1570 studenti universitari. La statura media della popolazione è pari a μy =
172.80, e la varianza a σ2

y = 59.9. Nella popolazione vi sono in totale 750
femmine e 820 maschi. La statura media delle femmine e quella dei maschi
sono rispettivamente pari a

μy fem = 168.26, μy mas = 177.00

e tra queste e la media μy intercorre la relazione (cfr. Sezione 1.4):

μy =
750
1570

μy fem +
820
1570

μy mas. (7.1)

Per stimare μy selezioniamo un campione di n = 100 unità mediante di-
segno ssr, e calcoliamo la corrispondente media campionaria. Il campione se-
lezionato è contenuto nel file campstature_ssr.txt, e la media campionaria
corrispondente è ys = 171.98.

Come già messo in evidenza, l’efficienza, la precisione della media campio-
naria, quando usata con il disegno ssr, dipende da due elementi: la numero-

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 7, © Springer-Verlag Italia 2012
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sità n del campione e la varianza σ2
y della popolazione. La media campionaria

è tanto meno precisa quanto più elevata è la varianza della popolazione.
Nel nostro caso, la variabilità delle stature che si osserva nella popolazione

di studenti dipende da due fattori: (a) la diversità di stature di studenti dello
stesso sesso; (b) la diversità di stature di studenti di sesso diverso. In effetti,
la statura degli studenti maschi è mediamente superiore a quella delle femmi-
ne, e questo comporta una conseguenza rilevante: vi è molta più omogeneità
tra le stature di studenti dello stesso sesso che tra quelle di studenti della
popolazione complessiva. Pertanto, all’imprecisione della media campionaria
contribuisce il fatto che si campiona dalla popolazione totale dei 1570 studenti,
in cui si trovano sia maschi che femmine e con stature assai disomogenee.

Un’idea molto naturale per conseguire una maggior precisione di stima, a
parità di numerosità campionaria, potrebbe essere quella di estrarre separata-
mente un campione di maschi ed uno di femmine, e nello stimare da un lato la
statura media degli studenti maschi, e dall’altro quella delle femmine. Questo,
ovviamente, richiede che si disponga di una lista dei soli studenti maschi, e di
una dei soli studenti femmine da cui selezionare i due campioni. Per rendere
confrontabili i risultati con quanto ottenuto usando il disegno ssr si devono
selezionare, in totale, 100 unità. Per il momento non disponiamo di linee gui-
da per scegliere quanti studenti maschi e quante femmine campionare, per cui
scegliamo, arbitrariamente, di selezionare:

− un campione ssr di n = 48 delle 750 unità della sottopopolazione degli
studenti femmine;

− un campione ssr di n = 52 delle 820 unità della sottopopolazione degli
studenti maschi.

I relativi dati campionari sono contenuti, rispettivamente, nei file
campione_f.txt e campione_m.txt. Le corrispondenti medie campionarie
sono rispettivamente uguali a

ys fem = 168.29, ysmas = 176.98 (7.2)

e costituiscono stime rispettivamente di μy fem e μy mas.
Il problema è ora quello di combinare le due stime (7.2) per ottenere una

stima di μy. Un’idea molto semplice è quella di fare riferimento alla (7.1), con
μy fem e μy mas rimpiazzati rispettivamente da ys fem e ys mas. Si ottiene in
questo modo la stima:

750
1570

ys fem +
820
1570

ys mas = 172.80.

La stima ora ottenuta è più precisa della media campionaria, a parità
di numero di unità campionarie. Questo, come sopra accennato, è dovuto al
fatto che le sottopopolazioni degli studenti dello stesso sesso sono molto più
omogenee di quella totale di tutti gli studenti, e quindi si possono ottenere
stime precise di μy fem e μy mas anche con poche unità campionarie. ��
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Supponiamo che la popolazione totale IN sia divisa in M sottopopolazioni,
o strati , rispettivamente di numerosità N1, N2, . . . , NM , con N1 + N2 +
· · ·+ NM = N . I princip̂ı di base sono già stati introdotti nella Sezione 1.4.
Indichiamo con I1

N1
, I2

N2
, . . . , IM

NM
gli M strati, e sia wg = Ng/N il peso dello

strato g-mo (g = 1, . . . , M). Chiaramente, valgono le relazioni

0 � wg � 1 per ogni g = 1, . . . , M ;
M∑

g=1

wg = 1.

Ogni unità della popolazione è ora identificata da una doppia etichetta
(g, i), in cui:

– g (= 1, . . . , M) indica lo strato a cui appartiene l’unità;
– i (= 1, . . . , Ng) identifica l’unità nell’ambito dello strato di appartenenza.

Sempre in conformità con quanto detto nella Sezione 1.4, indicheremo con ygi

la modalità dell’unità i (= 1, . . . , Ng) dello strato g-mo (g = 1, . . . , M), e
con

μyg =
1

Ng

Ng∑
i=1

ygi, σ2
yg =

1
Ng

Ng∑
i=1

(ygi − μyg)2 ; g = 1, . . . , M

rispettivamente la media e la varianza del carattere di interesse Y nello stra-
to g-mo. Come mostrato nella Proposizione 1.1, valgono le due seguenti,
fondamentali relazioni

μy =
M∑

g=1

wg μyg, σ2
y =

M∑
g=1

wg σ2
yg +

M∑
g=1

wg (μyg − μy)2. (7.3)

L’idea di base del disegno campionario stratificato è elementare. Esso con-
siste nel selezionare, mediante disegno ssr e indipendentemente da uno strato
all’altro,

– un campione ssr s1 di numerosità n1 dallo strato 1;
– un campione ssr s2 di numerosità n2 dallo strato 2;

· · ·
– un campione ssr sM di numerosità nM dallo strato M .

Il “campione totale” s è formato dagli M “sottocampioni” s1, . . . , sM , cia-
scuno relativo ad uno degli strati. In simboli:

s = (s1, s2, . . . , sM ) (7.4)

e la sua numerosità è n = n1 + n2 + · · ·+ nM .
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Del disegno stratificato non è difficile dare una descrizione formale specificando
esattamente sia lo spazio dei campioni che le probabilità dei vari campioni.

La (7.4) mette in evidenza che in un campione stratificato le prime n1 unità
provengono dal primo strato, le successive n2 unità provengono dal secondo strato, e
cos̀ı via fino alle ultime nM unità, che provengono dallo strato M -mo. Ogni campione
stratificato si può vedere quindi come una combinazione di classe n delle unità
della popolazione, con il vincolo che n1 unità provengano dallo strato I1

N1
, . . ., nM

provengano dallo strato IM
NM

. Lo spazio dei campioni S del disegno stratificato è
quindi l’insieme C(N1 , ..., NM );(n1, ..., nM ) di tutte queste combinazioni. In simboli:

S = C(N1, ..., NM );(n1, ..., nM )

= CN1,n1 × · · · × CNM ,nM

= XM
g=1CNg,ng .

In secondo luogo, poiché il generico sg è un campione ssr di ng unità di Ig
Ng

, si
avrà

p(sg) =
1(

Ng

ng

) per ogni sg ∈ CNg ,ng ; g = 1, . . . , M.

Essendo inoltre gli M sottocampioni s1, . . . , sM indipendenti, si conclude che

p(s) = p(s1) p(s2) · · · p(sM )

=
1(

N1
n1

)(
N2
n2

)
· · ·
(

NM

nM

)

per ogni campione s dello spazio S dei campioni.

7.2 Stima della media di una popolazione

La costruzione di uno stimatore della media μy si basa su considerazioni molto
semplici, simili in linea di principio a quelle dell’Esempio 7.1. Il sottocampio-
ne sg è un campione ssr di numerosità ng dello strato Ig

Ng
, g = 1, . . . , M .

Pertanto, come stimatore della media μyg dello strato stesso, si può utilizzare
la media campionaria:

yg =
1
ng

∑
i∈sg

ygi.

Si hanno in tal modo M stime y1, . . . , yM , una per la media di ogni strato.
Tali stime devono poi essere ricombinate per produrre una stima della media
μy dell’intera popolazione. Per ricombinarle usiamo la prima delle (7.3). Si
ottiene in questo modo lo stimatore:

μ̂str =
M∑

g=1

wg yg. (7.5)
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Le proprietà dello stimatore (7.5) sono studiate nella Proposizione 7.1. Per
comodità di notazione, indicheremo con

S2
yg =

1
Ng − 1

Ng∑
i=1

(ygi − μyg)2 =
Ng

Ng − 1
σ2

yg ; g = 1, . . . , M

la varianza corretta dello strato g-mo (g = 1, . . . , M).

Proposizione 7.1. Se il disegno campionario è stratificato, μ̂str è uno stima-
tore corretto della media della popolazione:

E [μ̂str] = μy (7.6)

e la sua varianza è pari a

V (μ̂str) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg . (7.7)

Dimostrazione. Il sottocampione sg è selezionato dallo strato g-mo mediante
disegno ssr, per cui, usando risultati noti, si ha

E
[
yg

]
= μyg, V

(
yg

)
=
(

1
ng

− 1
Ng

)
S2

yg; g = 1, . . . , M. (7.8)

Usando la prima delle (7.8) si prova la correttezza di (μ̂str):

E [μ̂str] = E

[
M∑

g=1

wg yg

]

=
M∑

g=1

wg E
[
yg

]
=

M∑
g=1

wg μyg

= μy.

Per quanto riguarda la varianza, essendo i sottocampioni s1, . . . , sM indi-
pendenti, anche le medie campionarie y1, . . . , yM sono indipendenti, e quindi
le loro covarianze sono nulle. Ne consegue che

V (μ̂str) = V

(
M∑

g=1

wg yg

)

=
M∑

g=1

w2
g V

(
yg

)
=

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg

ossia la (7.7). ��
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Usando risultati noti per il disegno ssr, è anche facile costruire uno
stimatore corretto della varianza di μ̂str. Sia

ŝ2
yg =

1
ng − 1

∑
i∈sg

(ygi − yg)
2

la varianza campionaria corretta dello strato g-mo (g = 1, . . . , M). Come
conseguenza della Proposizione 3.3, si ha

E
[
ŝ2
yg

]
= S2

yg; g = 1, . . . , M

e quindi è immediato provare la seguente proposizione.

Proposizione 7.2. Se il disegno campionario è stratificato, lo stimatore

V̂ (μ̂str) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
ŝ2
yg (7.9)

è uno stimatore corretto di V (μ̂str):

E
[
V̂ (μ̂str)

]
=

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg = V (μ̂str).

La costruzione di intervalli di confidenza, infine, procede lungo linee si-
mili a quelle sviluppate nei capitoli precedenti. Se le numerosità campionarie
di strato, n1, . . . , nM sono sufficientemente grandi, le medie campionarie di
strato y1, . . . , yM avranno distribuzione approssimativamente normale. Ne
consegue che anche μ̂str =

∑M
g=1 wg yg ha distribuzione approssimata di tipo

normale, con media μy e varianza V (μ̂str). Ragionando esattamente come nei
capitoli precedenti, e sostituendo l’incognita V (μ̂str) con la sua stima (7.9), si
ha che

μ̂str − μy√
V̂ (μ̂str)

ha distribuzione approssimata di tipo normale standard. Detto pertanto, come
al solito, zα il quantile di ordine α della distribuzione normale standard, è
immediato verificare che[

μ̂str − zα/2

√
V̂ (μ̂str), μ̂str + zα/2

√
V̂ (μ̂str)

]
è un intervallo di confidenza per μy, al livello approssimato 1 − α.

Esempio 7.2. Si consideri ancora la popolazione di 1570 unità del file
stature.txt. Si è già visto che μ̂str = 172.80. Le varianze campionarie
(corrette) di strato sono uguali (con la notazione già usata nell’Esempio 7.1) a

S2
y fem = 39.25, S2

y mas = 54.33 ,
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per cui lo stimatore (7.9) risulta pari a

V̂ (μ̂str) =
(

750
1570

)2( 1
48

− 1
750

)
ŝ2
y fem +

(
820
1570

)2 ( 1
52

− 1
820

)
ŝ2
y mas

= 0.44.

Tenendo infine conto che z0.005 = 2.576, un intervallo di confidenza
approssimato per μy al livello 1 − α = 0.99 è il seguente[

172.80− 2.576
√

0.44, 172.80 + 2.576
√

0.44
]

= [171.09, 174.51] . ��

La teoria di base del campionamento stratificato è molto semplice. In ef-
fetti, si tratta poco più che di un’applicazione di concetti già ampiamente
illustrati a proposito del disegno ssr. Vi sono però alcuni importanti punti da
trattare, che verranno studiati in questo e nel successivo capitolo, e che sono
qui di seguito brevemente elencati.

– Allocazione delle osservazioni agli strati. Data la numerosità campionaria
totale n, quante unità bisogna selezionare da ciascuno strato? In altre
parole, in che modo scegliere n1, . . . , nM una volta che sia dato n? È
questo il problema dell’allocazione delle unità campionarie ai vari strati.
Detta ag = ng/n la proporzione di unità campionarie allocate allo strato
g-mo, si tratta in sostanza di stabilire i valori da assegnare a a1, . . . , aM

(notare che le ag sono tutte non negative, e che a1 + · · ·+ aM = 1).
– Scelta della numerosità campionaria n.
– Definizione degli strati. La definizione effettiva degli strati da impiegare

richiede di decidere sia il numero degli strati, sia di stabilire qualche criterio
per la loro costruzione.

7.3 Campionamento stratificato proporzionale

Il campionamento stratificato proporzionale è il più semplice tra i disegni
campionari di tipo stratificato. Esso prevede che le numerosità campionarie
di strato siano proporzionali ai pesi degli strati:

ng = n wg, g = 1, . . . , M. (7.10)

In un certo senso, l’idea su cui si basa la regola di allocazione proporzionale
(7.10) è di costruire una “versione ridotta” della popolazione. Infatti, la (7.10)
equivale a

ng

n
=

Ng

N
; g = 1, . . . , M

da cui si evince che le proporzioni delle numerosità campionarie dei diver-
si strati rispetto alla numerosità campionaria totale sono uguali alle corri-
spondenti proporzioni a livello di popolazione. In simboli: ag = wg, g =
1, . . . , M .
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Nel caso speciale del disegno stratificato proporzionale lo stimatore (7.5)
assume una forma particolarmente semplice, in quanto si riduce alla media
campionaria. Per mostrare questo fatto basta osservare che, per la (7.10),

μ̂str =
M∑

g=1

wg yg =
M∑

g=1

ng

n

1
ng

∑
i∈sg

ygi =
1
n

M∑
g=1

∑
i∈sg

ygi

= ys.

Anche la varianza dello stimatore stimatore (7.5), nel caso di allocazione
proporzionale, assume una forma semplice. Si ha infatti, usando la (7.7) e
tenendo conto che wg = Ng/N = ng/n,

V (μ̂str; prop) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg

=
(

1
n
− 1

N

) M∑
g=1

wgS
2
yg . (7.11)

Lo scopo della stratificazione, come più volte asserito, è essenzialmente
quello di produrre un’efficienza di stima superiore a quella che si ottiene
con il disegno semplice. Per una data numerosità campionaria totale n, l’ef-
ficienza dello stimatore μ̂str dipende dalle numerosità campionarie di strato
n1, . . . , nM . In generale non è affatto detto che, a parità di numerosità totale
n del campione, un qualsiasi disegno stratificato produca risultati migliori del
disegno ssr. Un caso in cui ciò frequentemente accade è proprio quello del dise-
gno proporzionale. Per precisare questa affermazione è necessario confrontare,
a parità di numerosità campionaria n, la varianza di μ̂str, quando usato con
il disegno stratificato proporzionale, con la varianza della media campionaria
quando usata con il disegno ssr. Utilizzando i risultati della Sezione 1.4 è facile
verificare (Esercizio 7.1) che vale la relazione

V (ys; ssr) = V (μ̂str; prop)

+
(

1
n
− 1

N

)
N

N − 1

{
M∑

g=1

wg(μyg − μy)2 − 1
N

M∑
g=1

(1 − wg)S2
yg

}
. (7.12)

Pertanto, il disegno stratificato proporzionale fornisce, in termini di efficienza
di stima, risultati migliori del disegno ssr se e solo se

M∑
g=1

wg(μyg − μy)2 − 1
N

M∑
g=1

(1 − wg)S2
yg > 0

ovvero se e solo se
M∑

g=1

wg(μyg − μy)2 >
1
N

M∑
g=1

(1 − wg)S2
yg. (7.13)
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La (7.13) vale in genere se le numerosità di strato Ng sono “grandi”, cos̀ı che
tale è anche la numerosità totale N della popolazione. In questo caso il termine
1/N assume valori molto piccoli, prossimi a zero, per cui, a meno di casi
eccezionali, anche il termine

∑
g(1 − wg)S2

yg/N assumerà un valore piccolo,
tipicamente minore di

∑
g wg(μyg − μy)2. Ora, nella stragrande maggioranza

dei casi che si incontrano nelle applicazioni le numerosità campionarie di strato
sono abbastanza grandi da giustificare l’assunzione

∑
g(1 − wg)S2

yg/N ≈ 0,
per cui in genere il disegno stratificato proporzionale fornisce risultati migliori
del disegno ssr a parità di numerosità campionaria.

Esempio 7.3. Non tutti i disegni stratificati, come detto, producono stime
più efficienti di quello ssr. Mostriamo questo fatto con un semplice esempio. Si
consideri una popolazione di N = 2000 unità, con varianza corretta S2

y = 2600.
Se si seleziona un campione ssr di numerosità n = 90, e si usa la media
campionaria ys per stimare la media μy della popolazione, la sua varianza
sarà pari (con ovvia notazione) a

V (ys; ssr) =
(

1
90

− 1
2000

)
2600 = 27.59.

Supponiamo ora che la popolazione sia suddivisa in tre strati, rispettiva-
mente di numerosità N1 = 1400, N2 = 400, N3 = 200. I pesi di strato sono
w1 = 0.7, w2 = 0.2, w3 = 0.1. Supponiamo anche che le varianze (corrette) di
strato siano pari rispettivamente a S2

y1 = 1500, S2
y2 = 4000, S2

y3 = 5000, da
cui

∑
g wg S2

yg = 2350.
Se dalla popolazione si estrae un campione stratificato proporzionale di

numerosità totale n = 90, cos̀ı che n1 = n w1 = 63, n2 = n w2 = 18, n3 =
n w3 = 9, si ha

V (μ̂str; prop) =
(

1
90

− 1
2000

)
2350 = 24.94.

Se invece dalla popolazione si estrae un campione stratificato sempre di
numerosità totale n = 90, ma che seleziona da ogni strato lo stesso numero di
unità: n1 = n2 = n3 = 30 (allocazione uniforme) , si ha

V (μ̂str; unif) =
3∑

g=1

(
1
ng

− 1
Ng

)
w2

gS
2
yg

=
1
30

3∑
g=1

w2
gS

2
yg − 1

2000

3∑
g=1

wg S2
yg

=
945
30

− 2350
2000

= 30.325.

A parità di numerosità campionaria, in questo caso si ha V (μ̂str; prop) <
V (ys; ssr) < V (μ̂str; unif). ��
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7.3.1 L’effetto del disegno

I risultati sopra ottenuti possono essere espressi in termini di effetto del di-
segno, introdotto nel Capitolo 3. Si consideri un disegno stratificato di nu-
merosità totale n. La varianza dello stimatore μ̂str, data dalla (7.7), dipende
dall’allocazione del campione negli M strati. Se l’allocazione è proporziona-
le, allora μ̂str = ys e la varianza (7.7) diventa pari alla (7.11). L’effetto del
disegno è quindi pari a

Deff (str prop, ys) =
V (ys; prop)
V (ys; ssr)

≈
∑M

g=1 wgS
2
yg∑M

g=1 Wg(S2
yg + (μyg − μy)2)

(7.14)

dove si è usata l’approssimazione
∑

g(1−wg)S2
yg/N ≈ 0. A meno che le medie

di strato non siano tutte uguali (e quindi uguali alla media della popolazione),
l’effetto del disegno sarà sempre minore di 1. Ciò significa che la stratificazione
proporzionale implica un guadagno di precisione rispetto a un campionamento
casuale semplice. Tale guadagno risulterà tanto più elevato quanto più elevata
è la differenza tra le medie di strato. Se ad esempio Deff (str prop, ys) = 0.7,
si ha una riduzione della varianza del 30% rispetto ad un campionamento
casuale semplice. Di conseguenza, la dimensione campionaria efficace risulta
pari a

neff (str prop, ys) =
n

0.7
= 1.43× n.

Questo significa che se si utilizzasse un campionamento casuale semplice al
posto di un campionamento stratificato proporzionale, sarebbe necessario
estrarre un campione di 1.43× n unità per ottenere la stessa precisione.

L’allocazione proporzionale garantisce una precisione almeno pari a quella
del campionamento semplice senza ripetizione, come sottolineato dalla (7.14).
Spesso, però, nelle rilevazioni campionarie si impone la necessità di ricorrere a
un campionamento stratificato con allocazione non proporzionale. Per esem-
pio, poiché i costi di raccolta delle informazioni possono differire da strato
a strato, gli strati con un maggior costo di rilevazione saranno caratterizzati
da una frazione di campionamento inferiore a quella che si avrebbe nel caso
proporzionale. Questo punto sarà esaminato nella sezione successiva.

Spesso, poi, tra gli obiettivi di indagini campionarie vi è quello di forni-
re stime caratterizzate da un certo livello di precisione per particolari grup-
pi di unità (sottopopolazioni) denominati domini di studio. Tali esigenze di
precisione portano spesso ad abbandonare l’allocazione proporzionale.

Situazione siffatte implicano che in alcuni strati è necessario allocare più
unità di quelle previste da una allocazione proporzionale, e in altri meno
unità. Il guadagno in precisione che caratterizza un’allocazione proporziona-
le non necessariamente si verifica in un’allocazione non proporzionale, come
evidenziato nell’Es. 7.3 e nel successivo Es. 7.4.
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Esempio 7.4. Supponiamo per semplicità che S2
yg = S2

y per ciascuno stra-
to g = 1, . . . , M , e che il fattore di correzione per popolazioni finite sia
trascurabile: (1 − ng/Ng) ≈ 1. L’ipotesi S2

yg = S2 implica che:

– le varianze di strato siano costanti;
– le medie di strato siano approssimativamente uguali μyg = μy per ogni

g = 1, . . . , M .

In tali condizioni l’effetto del disegno assume la forma

Deff (str, μ̂str) =
V (μ̂str; str)
V (ys; ssr)

≈ n

M∑
g=1

W 2
g

ng
(7.15)

e questa quantità non è necessariamente minore di 1. Si considerino ad esem-
pio due strati della popolazione che contengono rispettivamente il 70% e il
30% delle unità della popolazione stessa. Formalmente w1 = 2.33 × w2, con
w2 = 0.3. Allo scopo di ottenere stime delle medie dei due strati caratterizza-
te dallo stesso livello di precisione supponiamo di estrarre campioni di eguale
numerosità: n1 = n2 = 1000. Applicando la (7.15) si ricava un effetto del
disegno Deff (str, μ̂str) = 1.16 e una dimensione campionaria efficace pari a

neff (str, μ̂str) = 2000/1.16 = 1724.

La richiesta di ottenere stime caratterizzate dallo stesso livello di precisione
in ogni strato impone la selezione di un campione totale pari a n1 + n2 =
2000, mentre a livello di popolazione sarebbe stato possibile ottenere la stessa
precisione con un campionamento casuale semplice di 1724 unità. ��

7.4 Disegno stratificato ottimale

7.4.1 Allocazione di Neyman

Il disegno proporzionale fornisce una semplice regola per scegliere le numero-
sità campionarie n1, . . . , nM dei singoli strati una volta fissata la numerosità
campionaria totale n. Ora, questa non è la sola regola di allocazione delle
unità campionarie ai diversi strati. Un criterio di allocazione molto intuitivo
potrebbe essere quello di scegliere n1, . . . , nM (sempre fissato n) in modo da
rendere massima l’efficienza di stima della media della popolazione, ossia in
modo da minimizzare la varianza dello stimatore μ̂str.

Sulla base della (7.7), la varianza di μ̂str si può scrivere come

V (μ̂str) =
M∑

g=1

w2
g

1
ng

S2
yg −

M∑
g=1

w2
g

1
Ng

S2
yg =

M∑
g=1

w2
gS

2
yg

ng
− 1

N

M∑
g=1

wg S2
yg
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in cui il termine
∑

g wg S2
yg/N non dipende da n1, . . . , nM . Pertanto, minimiz-

zare rispetto a n1, . . . , nM la V (μ̂str) equivale a minimizzare il solo termine∑
g w2

gS
2
yg/ng. La conseguenza di tutto questo è che il problema di minimiz-

zare V (μ̂str), fissato n = n1 + · · · + nM , si può riscrivere come problema di
minimo vincolato nel modo seguente:{

minimizzare :
∑M

g=1

w2
gS2

yg

ng

con il vincolo :
∑M

g=1 ng = n
. (7.16)

Proposizione 7.3. La soluzione del problema di ottimo (7.16) è del tipo:

ng = n
wg Syg∑M

h=1 wh Syh

; g = 1, . . . , M. (7.17)

Dimostrazione. Per risolvere il problema (7.16) si può usare la tecnica dei
moltiplicatori di Lagrange. La funzione Lagrangiana assume la forma

L(n1, . . . , nM λ) =
M∑

g=1

w2
gS2

yg

ng
+ λ

(
M∑

g=1

ng − n

)
(7.18)

dove λ è il moltiplicatore di Lagrange. Derivando la (7.18) rispetto a n1, . . . ,
nM , λ e annullando le derivate si ottengono le M + 1 equazioni

∂L
∂ng

= −
w2

gS2
yg

n2
g

+ λ = 0 da cui segue che

ng =
1√
λ

wg Syg; g = 1, . . . , M (7.19)

∂L
∂λ

=
M∑

g=1

ng − n = 0 da cui segue che
M∑

g=1

ng = n. (7.20)

Sommando membro a membro le (7.19) e sfruttando la (7.20) si ha poi la
relazione

1√
λ

M∑
g=1

wg Syg =
M∑

g=1

ng = n

da cui si desume che

√
λ =

1
n

M∑
g=1

wg Syg. (7.21)

Inserendo infine la (7.21) nella (7.19) si ottiene la (7.17). ��

Il disegno campionario stratificato in cui le numerosità dei campioni dei
diversi strati sono quelle previste dalla (7.17) è detto disegno stratificato con
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allocazione di Neyman, o, in breve, campione di Neyman. Se si fa riferimento
alle quantità ag = ng/n introdotte nella Sezione 7.3, vale la relazione: ag =
wg Syg/

∑M
h=1 wh Syh, g = 1, . . . , M .

Fissata la numerosità campionaria totale n, il campione di Neyman se-
leziona da ciascuno strato un numero di unità tanto più elevato quanto
più:

– è elevato wg, ossia è alto il numero di unità che compongono lo strato;
– è elevato Syg, ovvero è alta la variabilità dello strato.

Questo fatto è del tutto intuitivo, in quanto gli strati di cui è più difficile
stimare la media, e che quindi richiedono un più elevato numero di unità cam-
pionarie, sono quelli di maggior variabilità, con unità più eterogenee. Quanto
più elevato è il grado di eterogeneità dello strato, tanto maggiore è il numero
di unità da selezionare.

Se le varianze di strato sono tutte uguali si ha Sy1 = · · · = SyM , per cui il
campione di Neyman si riduce a quello proporzionale. Quanto maggiore è la
diversità tra le varianze degli strati, tanto più il campione di Neyman differirà
da quello proporzionale.

Se si usa il campione di Neyman, la varianza dello stimatore μ̂str assume
il valore

V (μ̂str; Ney) =
M∑

g=1

{
w2

gS2
yg

/
n

wg Syg∑M
h=1 wh Syh

}
− 1

N

M∑
g=1

wg S2
yg

=
1
n

(
M∑

g=1

wg Syg

)2

− 1
N

M∑
g=1

wg S2
yg . (7.22)

A parità di numerosità totale n, il campione di Neyman conferisce allo
stimatore μ̂str un’efficienza maggiore rispetto al disegno proporzionale. In
altre parole, vale la relazione:

V (μ̂str; Ney) � V (μ̂str; prop).

Inoltre, l’uso del campione di Neyman porta vantaggi di efficienza tanto
maggiori rispetto al proporzionale quanto più i termini Sy1, . . . , SyM sono
differenti tra loro.

Esempio 7.5. Consideriamo il file cultura.txt, già visto nel Capitolo 3, in
cui sono riportate, per una popolazione di 1500 famiglie, l’ampiezza del nucleo
familiare, il titolo di studio del capofamiglia, il reddito annuo disponibile (in
Euro), le spese annue (in Euro) per attività culturali (teatro, cinema, libri e
riviste, visite a muse, mostre, etc.).

Per semplificare la trattazione supponiamo di conoscere a priori, per cia-
scuna famiglia, solo il titolo di studio del capofamiglia. Supponiamo inoltre
che l’interesse verta sulla stima della spesa media annua per attività culturali.
La media è μy = 702.5, e la deviazione standard (corretta) Sy = 592.6.
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Tabella 7.1 Caratteristiche degli strati di una popolazione di 1500 unità

Strato Numerosità Peso Media Deviazione Prodotto
g Ng wg μyg standard Syg wg Syg

1 – Media inferiore 835 0.56 413.6 317.8 177.97
2 – Media superiore 395 0.26 814.0 548.1 142.51
3 – Laurea 270 0.18 1431.6 625.4 112.57

1500 1 433.05

Tabella 7.2 Pesi campionari di strato (ag = ng/n)

Strato Allocazione proporzionale Allocazione di Neyman Allocazione uniforme

1 0.56 0.41 0.3
2 0.26 0.33 0.3
3 0.18 0.26 0.3

È logico ritenere che le spese per attività culturali siano legate al titolo
di studio del capofamiglia. Al crescere di questo, presumibilmente si spenderà
di più in attività culturali. Per questa ragione formeremo gli strati sulla base
del titolo di studio del capofamiglia, che quindi viene usato come carattere di
stratificazione . Ogni strato sarà formato da tutte le famiglie con lo stesso titolo
di studio del capofamiglia. Si hanno in totale tre strati, di cui numerosità, pesi,
medie e deviazioni standard (corrette) sono riportate in Tabella 7.1.

Come era lecito attendersi, le medie di strato crescono al crescere del
titolo di studio. È interessante osservare che anche le deviazioni standard degli
strati crescono al crescere del titolo di studio. Una situazione di questo tipo
si riscontra assai di frequente nella pratica applicativa: gli strati con i valori
più grandi del carattere di interesse sono quelli di più alta variabilità.

In Tabella 7.2 sono invece riportate le quantità a1 = n1/n, a2 = n2/n,
a3 = n3/n, nei tre casi di allocazione proporzionale, di Neyman e uniforme
(da ogni strato si estrae lo stesso numero di unità). Come si vede, l’allocazione
di Neyman è piuttosto diversa da quella proporzionale, a causa delle differenti
varianze degli strati.

Le quantità
∑

g wgS
2
yg e

(∑
g wg Syg

)2

sono rispettivamente pari a
205086.3 e 187532.3. Per valutare il guadagno di efficienza che si ottiene me-
diante la stratificazione, abbiamo calcolato le varianze di μstr con le tre alloca-
zioni proporzionale, di Neyman e uniforme, per diverse numerosità campiona-
rie totali n. Queste sono poi confrontate con la varianza della media campiona-
ria ys usata in coppia con il disegno ssr. I risultati sono riportati in Tabella 7.3.

In questo caso l’uso della stratificazione porta notevoli vantaggi rispetto
a quanto si ottiene con il disegno ssr. Infatti, lo stimatore μ̂str usato con il
disegno stratificato proporzionale ha, a parità di ampiezza del campione, una



7.4 Disegno stratificato ottimale 135

Tabella 7.3 Varianze per disegni ssr e stratificato (allocazione proporzionale,
uniforme, di Neyman)

n V (ys; ssr) V (μ̂str; prop) V (μ̂str; unif) V (μ̂str; Ney)
(1 ) (2 ) (3 ) (4 )

50 6789.4 3965.0 3743.1 3613.9
75 4448.2 2597.8 2449.8 2363.7
100 3277.6 1914.1 1803.2 1738.6
150 2107.0 1230.5 1156.5 1113.5
200 1521.8 888.7 833.2 800.9
300 936.5 546.9 509.9 488.4

n (1)−(2)
(1)

× 100 (1)−(3)
(1)

× 100 (1)−(4)
(1)

× 100

50 41.6% 44.9% 46.8%
75 41.6% 44.9% 46.9%
100 41.6% 45.0% 47.0%
150 41.6% 45.1% 47.2%
200 41.6% 45.2% 47.4%
300 41.6% 45.6% 47.9%

varianza del 41.6% più piccola di quella della media campionaria ys usata con
il disegno ssr (si ricordi che in questo caso è μ̂str = ys). Ulteriori vantag-
gi di efficienza (tutto sommato abbastanza contenuti) si ottengono usando il
campione di Neyman. Si osservi che, contrariamente a quel che accade nell’E-
sempio 7.3, la regola di allocazione uniforme fornisce risultati migliori di quella
proporzionale. Questo dipende dal fatto che nel presente esempio l’allocazio-
ne uniforme è più “simile” a quella di Neyman di quanto lo sia l’allocazione
proporzionale. ��

Nel problema di ottimo che genera la formula di Neyman (7.17) non è
stato posto il vincolo che le numerosità campionarie degli strati non superino
le corrispondenti numerosità degli strati stessi. In altre parole, non sono stati
posti i vincoli ng � Ng per tutti gli strati g = 1, . . . , M . Ciò implica che
per qualche strato la formula (7.17) può produrre un valore di ng maggiore di
Ng, il che è assurdo. Un esame attento della (7.17) suggerisce che il problema
sorge in pratica quando le varianze degli strati sono molto diverse tra loro, e
la numerosità campionaria totale n è “grande”.

Per ovviare al problema segnalato occorre modificare la formula di Ney-
man. In primo luogo, iniziamo con l’osservare che il primo strato in cui, usando
la (7.17), si ha ng > Ng , è null’altro che il primo strato in cui il rapporto ng/Ng

è maggiore di 1. Essendo

ng

Ng
=

n

Ng

wg Syg∑M
h=1 wh Syh

=
n

N
∑M

h=1 wh Syh

Syg , g = 1 . . . , M
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il più alto valore di ng/Ng corrisponde allo strato con il più grande valore di
Syg, ossia allo strato con varianza più grande. Per semplicità di trattazione
assumeremo d’ora in poi di ordinare gli strati da quello con varianza più
grande a quello con varianza più piccola, cos̀ı che Sy1 � Sy2 � · · · � SyM .
Questo significa che il primo strato in cui, in base alla (7.17), si ha ng > Ng

è lo strato 1, il secondo è lo strato 2, e cos̀ı via.
Non appena si ha n1 > N1 si campionano tutte le unità dello strato 1, e si

ripartisce la residua numerosità campionaria totale n−N1 tra i restanti strati
2, . . . , M con la regola di Neyman ristretta agli strati stessi. In altre parole,
si considerano numerosità campionarie di strato del tipo:

n1,1 = N1; ng,1 = (n − N1)
wg Syg∑M

h=2 wh Syh

, g = 2, . . . , M.

Questa regola di allocazione vale ovviamente finché ng,1 � Ng , g = 2, . . . , M .
Non appena risulta n2,1 > N2, le numerosità campionarie di strato saranno
del tipo:

n1,2 = N1; n2,2 = N2; ng,2 = (n − N1 − N2)
wg Syg∑M

h=3 wh Syh

, g = 3, . . . , M,

e cos̀ı via. Questo tipo di aggiustamento viene effettuato fino a quando
le numerosità campionarie di strato risultano tutte inferiori (o uguali) alle
corrispondenti ampiezze degli strati stessi.

Esempio 7.6. Si consideri una popolazione finita di N = 2000 unità, sud-
divise in tre strati di numerosità rispettivamente N1 = 400, N2 = 1000,
N3 = 600. Si supponga anche che le deviazioni standard (corrette) degli strati
siano Sy1 = 1200, Sy2 = 500, Sy3 = 100. Gli strati sono già ordinati da quello
con varianza massima a quello con varianza minima, per cui non c’è bisogno
di riordinarli e rinumerarli.

Poiché i pesi degli strati sono w1 = 0.2, w2 = 0.5, w3 = 0.3, si ha w1 Sy1 =
240, w2 Sy2 = 250, w3 Sy3 = 30, da cui

∑3
g=1 wg Syg = 520. Se la numerosità

campionaria è n, in base alla (7.17) le numerosità campionarie di strato devono
essere del tipo:

n1 =
240
520

n = 0.462 n, n2 =
250
520

n = 0.480 n, n3 =
30
520

n = 0.058 n. (7.23)

Le (7.23) non valgono per ogni numerosità campionaria n, ma solo per
valori di n tali che ng � Ng . Come detto, il primo strato in cui è ng > Ng

è quello con varianza più grande, ossia il primo. In effetti, si ha n1 � 400
se e solo se 0.462 n � 400, cioè se e solo se n � 866. Per n � 867 si ha
invece 0.462 n � 401. Applicando i ragionamenti sopra svolti, per n � 867
l’allocazione di Neyman effettiva sarà del tipo:
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n1,1 = 400

n2,1 =
250

250 + 30
(n − 400) = 0.893 (n− 400)

n3,1 =
30

250 + 30
(n − 400) = 0.107 (n− 400). (7.24)

Le (7.24) non vale per tutte le n � 867, ma solo fino a quando n2,1 � N2,
ovvero fino a quando 0.893 (n − 400) � 1000. Questo significa che le (7.24)
valgono solo per 867 � n � 1520. Per n � 1521 l’allocazione di Neyman
effettiva sarà invece

n1,2 = 400
n2,2 = 1000

n3,1 =
30
30

(n − 400− 1000) = n − 1400. ��

7.4.2 Allocazione ottima per una data funzione di costo

Le considerazioni che hanno portato al campione di Neyman possono anche
essere usate nel caso in cui non sia fissato il numero totale di unità campiona-
rie, ma piuttosto l’ammontare massimo spendibile per effettuare la rilevazione
statistica. Supponiamo che l’ammontare di denaro a disposizione per effettua-
re la rilevazione (mediante un disegno stratificato) sia pari a C, e che il costo
di rilevazione si possa dividere in due parti:

− un costo fisso c0;
− un costo variabile dipendente dal numero di unità che si campionano da

ogni strato.

Per quanto riguarda la parte variabile del costo di rilevazione (che ovvia-
mente è la più importante) si può assumere che il costo di campionamento e
osservazione di un’unità dello strato g-mo sia pari a cg, cos̀ı che per selezionare
ng unità si deve sostenere un costo pari a cg ng. Il costo totale di rilevazione
è quindi eguale a:

c0 +
M∑

g=1

cg ng.

Un criterio molto naturale per stabilire le numerosità campionarie degli
strati è quello di determinare n1, . . . , nM in modo da rendere minima la
varianza V (μ̂str), con il vincolo che il costo di rilevazione sia C. Formalmente,
si ha il seguente problema di minimo vincolato{

minimizzare :
∑M

g=1

w2
gS2

yg

ng

con il vincolo : c0 +
∑M

g=1 cg ng = C
. (7.25)



138 7 Disegno campionario stratificato I

Proposizione 7.4. La soluzione del problema di ottimo (7.25) assume la
forma

ng = (C − c0)
wg Syg/

√
cg∑M

h=1

√
ch wh Syh

; g = 1, . . . , M. (7.26)

Dimostrazione. La determinazione della soluzione del problema (7.25) è del
tutto simile a quella del problema (7.16). In primo luogo, la funzione Lagran-
giana è del tipo

L(n1, . . . , nM λ) =
M∑

g=1

w2
gS2

yg

ng
+ λ

(
c0 +

M∑
g=1

cg ng − C

)
.

Calcolando le sue derivate rispetto a n1, . . . , nM , λ e annullando tali derivate,
si ottengono le equazioni

∂L
∂ng

= −
w2

gS2
yg

n2
g

+ λcg = 0 da cui

√
cg Syg wg =

√
λ cg ng; g = 1, . . . , M (7.27)

∂L
∂λ

= c0 +
M∑

g=1

cg ng − C = 0 da cui
M∑

g=1

cg ng = C − c0. (7.28)

Sommando membro a membro le (7.27) e sfruttando la (7.28) si ha poi la
relazione

M∑
g=1

√
cg wg Syg =

√
λ

M∑
g=1

cgng =
√

λ(C − c0)

da cui si ottiene

√
λ =

1
C − c0

M∑
g=1

√
cg wg Syg. (7.29)

Dalle (7.27) e (7.29) è a questo punto facile ottenere la (7.26). ��

Se le numerosità campionarie di strato sono scelte in base alla (7.26), la
dimensione totale del campione sarà pari a

n =
M∑

g=1

ng = (C − c0)

∑M
g=1 wg Syg/

√
cg∑M

g=1

√
cg wg Syg

.

Pertanto, se si fa riferimento riferimento alle quantità ag = ng/n si ha in
questo caso: ag = wg Syg/

√
cg/

∑M
h=1 wh Syh/

√
ch, g = 1, . . . , M .
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È facile verificare (Esercizio 7.2) che se i costi di selezione e osservazione
dai diversi strati sono tutti uguali (c1 = · · · = cM ), la (7.26) si riduce all’usuale
allocazione di Neyman.

Per determinare il campione ottimo in base alla nostra funzione di costo
non sono posti i vincoli ng � Ng , g = 1, . . . , M . Questo significa che è neces-
sario aggiustare la formula (7.26) similmente a quanto fatto per il campione
di Neyman.

7.4.3 Considerazioni sul caso in cui le varianze degli
strati siano incognite

Per poter utilizzare l’allocazione di Neyman (7.17) (ma gli stessi argomenti
valgono per il campione ottimo di costo dato) è necessario conoscere le quan-
tità Sy1, . . . , SyM , ossia, in sostanza, le varianze degli strati. Questo è un
punto assai delicato in quanto il caso più frequente è quello in cui le varianze
di strato sono incognite.

In assenza di informazioni extra-campionarie sulle varianze di strato, si
potrebbe pensare di usare un metodo a due fasi per ottenere una stima pre-
liminare di Sy1, . . . , SyM . Precisamente, data la numerosità totale n si può
procedere nel modo seguente.

– Fase 1. Scelta una numerosità campionaria iniziale np < n, si selezio-
na dalla popolazione un campione stratificato proporzionale, con numero-
sità campionarie di strato del tipo np1 = np w1, . . . , npM = np wM . Sulla
base di tale campione si possono ottenere (secondo quanto esposto nella
Sezione 7.2) delle stime ŝ2

p y1, . . . , ŝ2
p yM rispettivamente di S2

y1, . . . , S2
yM .

– Fase 2. Si calcolano le numerosità campionarie di Neyman in cui però al
posto delle incognite Sy1, . . . , SyM si usano le loro stime ŝp y1, . . . , ŝp yM .
In altre parole, si calcolano le quantità

ng = n
wg ŝp yg∑M

h=1 wh ŝp yh

; g = 1, . . . , M (7.30)

e si usano queste come numerosità campionarie di strato. Poiché dal gene-
rico strato g sono già selezionate npg unità (g = 1, . . . , M), verranno da
esso selezionate ulteriori ng −npg unità “residue”, in modo che le ampiezze
campionarie degli strati siano quelle previste dalla (7.30).

Per quanto riguarda la numerosità campionaria np, essa dovrebbe essere
abbastanza piccola, ma comunque tale da fornire stime abbastanza accurate
delle varianze di strato. In genere la scelta di np avviene sulla base di consi-
derazioni di costo. Molto comune è il caso in cui si prende np pari al 10% o
al 20% dell’ampiezza campionaria totale n.

Usando la procedura a due fasi sopra descritta la formula della varianza
(7.22) non è più valida, sia perché non si usano le “vere” varianze di strato, sia
perché le numerosità campionarie (7.30) dipendono dal campione selezionato
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nella prima fase, e quindi dagli stessi dati campionari. Quest’ultimo fatto
implica che neanche la (7.7) rappresenta, a stretto rigore, la varianza di μ̂str.
Essa si può usare solo a titolo di approssimazione della vera V (μ̂str). Per le
stesse ragioni, la (7.9) non è più uno stimatore corretto di V (μ̂str). Ad ogni
modo, si continuerà anche in questo caso a stimare V (μ̂str) con la (7.9).

L’utilizzo della procedura a due fasi del tipo sopra descritto ha effettiva-
mente senso soltanto quando ci si aspetta che l’allocazione ottimale produ-
ca un netto miglioramento di efficienza rispetto all’allocazione proporzionale.
Ora, vi sono due casi in cui questo di sicuro accade. Il primo è quello in cui
i costi di osservazione delle unità sono molto diversi da uno strato all’altro,
ed è fissata la spesa totale C da sostenere per la rilevazione campionaria. In
questo caso i valori delle cg possono rendere le numerosità campionarie che si
ottengono dalla regola di allocazione ottimale della Sezione 7.4.2 molto diverse
da quelle basate sull’allocazione proporzionale, con una conseguente sensibile
diminuzione della varianza di μ̂str. Il secondo caso è quello in cui è noto che le
varianze di strato sono molto diverse tra loro. L’uso dell’allocazione ottimale
(campione di Neyman) può risultare molto vantaggioso rispetto all’allocazione
proporzionale. Naturalmente, queste considerazioni vanno fatte tenendo ben
presente che non si usano i veri valori delle Syg, ma solo delle loro stime da
campione pilota, che da esse possono differire non poco. Il ricorso a valori non
adeguati per le varianze di strato può condurre ad una perdita di precisione
delle stime rispetto al campionamento casuale semplice.

Esempio 7.7. Consideriamo ancora la popolazione dell’Esempio 7.5, e suppo-
niamo di voler selezionare un campione stratificato di n = 250 unità. Per cerca-
re di approssimare l’allocazione di Neyman si può procedere con il meccanismo
a due fasi sopra descritto.

Nella prima fase selezioniamo un campione pilota, di tipo stratificato pro-
porzionale, di numerosità np = 50. Le numerosità campionarie di strato del
campione pilota sono indicate qui di seguito:

np1 = 0.56× 50 = 28, np2 = 0.26× 50 = 13, np3 = 0.18 × 50 = 9.

I dati campionari ottenuti sono contenuti nei file cp1.txt, cp2.txt,
cp3.txt. Come stime delle deviazioni standard di strato abbiamo le seguenti:

ŝp y1 = 278.9, ŝp y2 = 542.4, ŝp y3 = 488.5.

Sulla base di questi risultati, nella seconda fase calcoliamo le numerosità
campionarie di strato con la formula di Neyman, in cui le Syg sono rimpiazzate
dalle ŝp yg. Si ha:

n1 =
0.56× 278.9

0.56× 278.9 + 0.26× 542.4 + 0.18× 488.5
× 250 = 101,

n2 =
0.26× 542.4

0.56× 278.9 + 0.26× 542.4 + 0.18× 488.5
× 250 = 92,

n3 =
0.18× 488.5

0.56× 278.9 + 0.26× 542.4 + 0.18× 488.5
× 250 = 57.
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Rimangono da estrarre 73 unità “residue” dallo strato 1, 79 unità “residue”
dallo strato 2, e 48 unità “residue” dallo strato 3. I file cr1.txt, cr2.txt,
cr3.txt contengono i dati campionari residui, e i file ct1.txt, ct2.txt,
ct3.txt contengono i dati campionari totali, rispettivamente per lo strato
1, lo strato 2, e lo strato 3.

Le medie e le varianze campionarie di strato, relativamente ai campioni
“totali”, sono riportate qui di seguito:

y1 = 390.2, y2 = 839.0, y3 = 1333.4; ŝ2
y1 = 93271.1, ŝ2

y2 = 290508.2,

ŝ2
y3 = 450855.0 .

Da esse si ottiene la seguente stima della media della popolazione:

μ̂str = w1 y1 + w2 y2 + w3 y3

= 0.56× 390.2 + 0.26× 839.0 + 0.18× 1333.4
= 676.7 .

Per stimare V (μ̂str) usiamo infine la (7.9), che è pari a

V̂ (μ̂str) =
(

1
n1

− 1
N1

)
w2

1ŝ
2
y1 +

(
1
n2

− 1
N2

)
w2

2 ŝ
2
y2 +

(
1
n3

− 1
N3

)
w2

3ŝ
2
y3

=
(

1
101

− 1
835

)
× 0.562 ×93271.1 +

(
1
92

− 1
395

)
× 0.262 ×290508.2

+
(

1
57

− 1
270

)
× 0.182 × 450855.0

= 620.5 . ��

7.5 Scelta della numerosità campionaria

Nella sezione precedente si è ampiamente trattato del problema dell’alloca-
zione delle unità campionarie ai vari strati, data la numerosità campionaria
totale n. Come risulta chiaro dalla trattazione precedente, questo equivale a
scegliere le quantità ag = ng/n, g = 1, . . . , M , dato n. Nella presente sezione
verrà brevemente trattato il problema della scelta di n.

Se è fissato l’ammontare totale C di denaro disponibile per effettuare la
rilevazione, la numerosità campionaria sarà da esso determinata. Infatti, dati
i valori di a1, . . . , aM , e ricordando che ng = n ag, il costo di rilevazione è
pari a

c0 +
M∑

g=1

cg ng = c0 + n

M∑
g=1

cg ag.
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Poiché tale costo deve essere uguale a C, deve valere la relazione c0 +
n
∑

g cg ag = C, dalla quale si desume che

n =
C − c0∑M
g=1 cg ag

.

Se invece la struttura dei costi di rilevazione non è chiaramente specificata,
oppure se non è fissato un tetto massimo di spesa C, bisogna percorrere altre
strade. La più semplice è quella di procedere sulla falsariga di quanto già visto
per il disegno ssr.

In primo luogo, dati a1, . . . , aM la varianza dello stimatore μ̂str si può
scrivere come

V (μ̂str) =
M∑

g=1

w2
g

(
1

n ag
− 1

N wg

)
S2

yg

=
1
n

M∑
g=1

w2
gS

2
yg

ag
− 1

N

M∑
g=1

wg S2
yg =

1
n

V − 1
N

V0 (7.31)

dove, per comodità di notazione, si è posto V =
∑M

g=1

w2
gS2

yg

ag
, e V0 =∑M

g=1 wg S2
yg.

L’obiettivo è quello di determinare la numerosità campionaria totale n in
maniera tale che l’errore assoluto di stima |μ̂str − μy| sia superiore ad una
soglia t con probabilità pari a α, con t, α fissati a priori. In simboli:

Pr (|μ̂str − μy| > t) = α. (7.32)

Per quanto riguarda la distribuzione di probabilità di μ̂str, essa verrà ap-
prossimata con una normale di media μy e varianza (7.31). Questo significa
che la v.a. standardizzata

μ̂str − μy√
1
n

V − 1
N

V0

ha in via approssimata distribuzione normale standard N(0, 1). La (7.32) si
può allora riscrivere come

Pr (|μ̂str − μy| > t) = Pr

⎛⎝ |μ̂str − μy|√
1
n V − 1

N V0

>
t√

1
n V − 1

N V0

⎞⎠
≈ Pr

⎛⎝|N(0, 1)| >
t√

1
n V − 1

N V0

⎞⎠
= 2Pr

⎛⎝N(0, 1) >
t√

1
n V − 1

N V0

⎞⎠
= α
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da cui si trae la relazione

Pr

⎛⎝N(0, 1) >
t√

1
n V − 1

N V0

⎞⎠ =
α

2
. (7.33)

Usando i soliti ragionamenti (e i soliti simboli), dalla (7.33) si desume che

t√
1
n V − 1

N V0

= zα/2

da cui, con facili passaggi, si ottiene la seguente espressione per la numerosità
campionaria:

n =
z2

α/2

t2
V

1 + 1
N

z2
α/2

t2 V0

. (7.34)

Per N “grande” il termine (zα/2/t)2V0/N è pressoché trascurabile, per cui la
(7.34) si riduce a n = (zα/2/t)2 V .

Per poter effettivamente usare la (7.34) è necessario disporre di informa-
zioni sulle S2

yg , ossia, in buona sostanza, sulle varianze degli strati. In assenza
di tali informazioni si può utilizzare la tecnica del campione pilota descrit-
to nella Sezione 7.4.3. Al termine della prima fase, sulla base delle stime
ŝ2
p y1, . . . , ŝ2

p yM si costruiscono stime di V e V0, le quali vengono poi usate
nella (7.34). Naturalmente, la seconda fase del metodo descritto nella Sezione
7.4.3 rimane invariata.

Esempio 7.8. Consideriamo ancora la popolazione di 1500 famiglie dell’E-
sempio 7.5, e supponiamo di conoscere le varianze (corrette) degli strati.
L’obiettivo è quello di determinare la numerosità campionaria n in modo
che l’errore assoluto di stima |μ̂str − μy| sia superiore a 40 Euro con pro-
babilità 0.05. Questo significa, con i simboli in precedenza adottati, che
t = 40, α = 0.05, zα/2 = z0.025 = 1.96. Dall’Esempio 7.5 già sappiamo che
V =

∑
g wg S2

yg = 205068.3. Se si adotta l’allocazione di Neyman, essendo

ag = wg Syg/
∑

h wh Syh, si ha V =
(∑

g wg Syg

)2

= 187532.3. Dalla (7.34)
si ricava pertanto una numerosità campionaria pari a:

n =
1.962

402 × 187532.3

1 + 1
1500 × 1.962

402 × 205068.3
= 339 . ��

Esempio 7.9. Se nell’Esempio precedente non si hanno informazioni sulle va-
rianze di strato, per scegliere n si può utilizzare la tecnica del campione pilota.
Nel presente caso usiamo i risultati già descritti nell’Esempio 7.7, relativi ad
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un campione pilota con np = 50. La regola di allocazione usata è ancora quel-
la di Neyman, ma con le “vere” deviazioni standard Syg sostituite dalle loro
stime ŝp yg ottenute grazie al campione pilota. Le due quantità V0, V possono
essere stimate nel modo seguente

V̂p0 =
3∑

g=1

wg ŝ2
p yg

= 163002.2,

V̂p =

(
3∑

g=1

wg ŝp yg

)2

= 148331.3 .

Dalla (7.34) si ricava pertanto una numerosità campionaria richiesta pari a:

n =
1.962

402 × 148331.3

1 + 1
1500 × 1.962

402 × 163002.2
= 339 . ��

Come alternativa al metodo di scelta di n dianzi descritto, ci si può basare
sull’effetto del disegno, introdotto nel Capitolo 3. Dati a1, . . . , aM , l’effetto
del disegno è pari a:

Deff (str, μ̂str) =
V (μ̂str; str)
V (ys; ssr)

=
1
n

V − 1
N

V0(
1
n − 1

N

)
S2

y

.

Se, sulla base di precedenti rilevazioni o di un campione pilota, è noto a
priori il valore di Deff (str, μ̂str) (o almeno una sua stima sufficientemente
accurata) ci si può basare su di esso per scegliere la numerosità campionaria
n. Il procedimento è molto semplice, e consta di due fasi:

– fissati i valori di t e di α, si determina la numerosità campionaria nssr

necessaria affinché, con un disegno di tipo semplice senza ripetizioni, sia
Pr(|ys − μy| > t) = α, secondo le linee esposte nel Capitolo 4;

– si calcola n = nssr Deff (str, μ̂str), che fornisce la numerosità campionaria
richiesta.

7.6 Alcuni princip̂ı di base per la costruzione di strati

L’obiettivo di base della stratificazione di una popolazione, come più volte
rimarcato, è quello di formare gruppi di unità il più possibile omogenei dal
punto di vista del carattere Y oggetto di interesse. Gli strati, in altre parole,
dovrebbero essere formati da unità con modalità y “simili” . Questo significa
che ci dovrebbe essere poca variabilità dentro gli strati, e che il grosso della
variabilità del carattere Y dovrebbe essere tra gli strati, ossia tra le medie
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degli strati stessi. Per raggiungere un simile obiettivo la situazione ideale è
quella in cui le modalità y sono note per le unità della popolazione. In tal
caso, il primo strato potrebbe essere formato dalle unità con le modalità y
più piccole, il secondo strato dalle unità con modalità y intermedie, e cos̀ı
via. Formalmente, questo significa stabilire dei “punti di taglio” (cutpoint)
b1, . . . , bM−1, e definire gli strati nel modo seguente:

− strato 1: insieme delle unità i con modalità yi � b1;
− strato 2: insieme delle unità i con modalità b1 < yi � b2;

· · ·
− strato M − 1: insieme delle unità i con modalità bM−2 < yi � bM−1;
− strato M : insieme delle unità i con modalità yi > bM−1.

Il problema è (ovvio!) che le modalità del carattere Y sono incognite. Do-
potutto, se le conoscessimo non avremmo alcun bisogno di ricorrere ad una
rilevazione campionaria. Per questa ragione, la costruzione di strati è in genere
effettuata tramite caratteri statistici ausiliari, in genere denominati, visto il
contesto, caratteri di stratificazione . L’idea di base è molto semplice: a valori
simili dei caratteri di stratificazione dovrebbero corrispondere valori simili del
carattere di interesse Y. In tal modo, la formazione degli strati sulla base delle
variabili di stratificazione dovrebbe produrre strati abbastanza omogenei dal
punto di vista della variabile di interesse Y. Affinché questo modo di proce-
dere sia efficace, è necessario che vi sia uno stretto legame tra i caratteri di
stratificazione e quello di interesse. Nel caso di legami deboli o assenti, la stra-
tificazione della popolazione sarebbe del tutto inutile, in quanto produrrebbe
strati di forte disomogeneità e quindi scarsamente utili. Questo è un punto
assai importante in quanto, in genere, la suddivisione di una popolazione in
strati richiede un lavoro assai oneroso, in termini di tempo e di costi, per
reperire i caratteri di stratificazione e raggruppare le unità della popolazione
stessa in base ai loro valori. Questo significa che vale la pena effettuare il
lavoro di stratificazione soltanto quando si è ragionevolmente sicuri che esso
produca un buon guadagno in termini di efficienza di stima.

La scelta dei caratteri di stratificazione è un problema assai rilevante, ed
è ovviamente legata al tipo di rilevazione che si effettua. Spesso le unità della
popolazione sono entità fisicamente esistenti in un dato territorio, che ven-
gono stratificate sulla base di un criterio di contiguità territoriale. Questo si
applica soprattutto al caso in cui le unità da campionare sono entità quali
comuni o ripartizioni sub-comunali, per le quali si può ritenere che la vici-
nanza territoriale costituisca un fattore di omogeneità rispetto al carattere Y
di interesse. Inoltre (e questo non è un fatto da poco) la formazione di strati
di unità fisicamente “vicine” facilita sia la selezione che l’osservazione del-
le unità, riducendo i costi di rilevazione. L’osservazione di unità fisicamente
vicine, infatti, richiede tempi più contenuti rispetto al caso di unità sparse
sul territorio, e consente (in parecchi casi) un miglior utilizzo del personale
addetto alla rilevazione. Altre volte le unità della popolazione vengono rag-
gruppate sulla base di caratteri di struttura, che si suppone abbiano influenza
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sul carattere di interesse. È del tutto ovvio che i caratteri di struttura usati
dipendono dal tipo di rilevazione che si effettua, in quanto dovrebbero essere
legati al carattere di interesse Y. Per esempio, in indagini sull’atteggiamento
dei consumatori nei confronti di certi prodotti le unità (individui o famiglie)
vengono spesso raggruppate sulla base di caratteri quali sesso, fascia di età,
numero di componenti, condizioni socio-economiche, etc..

Il numero degli strati dipende da parecchi differenti elementi. In generale,
si può dire che quanto maggiore è l’informazione a priori di cui si dispone
per stratificare la popolazione, tanto maggiore è il numero degli strati che ha
senso considerare. Se l’informazione di cui si dispone è scarsa o poco affida-
bile, gli strati costruiti in base ad essa daranno poche garanzie in termini di
omogeneità interna. Solo quando si dispone di informazioni a priori precise ha
senso costruire un numero elevato di strati. Tuttavia, l’aumento del numero
di strati se da una parte comporta un aumento del grado di omogeneità degli
strati stessi, dall’altra implica una riduzione delle numerosità campionarie di
strato ng con un conseguente aumento nella variabilità delle stime.

Esempio 7.10. Nel seguito viene brevemente descritto uno studio, svolto nel
1973, sull’atteggiamento degli automobilisti di Birmingham (UK), volto in
particolare (ma non esclusivamente) a valutare l’uso di cinture di sicurezza.
Gli aspetti principali della rilevazione sono descritti in Golder e Yeomans
(1973).

Non essendo disponibile una lista degli automobilisti (al massimo, con costi
e tempi elevati, si poteva ottenere una lista di possessori di automobili), la
loro selezione fu attuata con una procedura a più stadi, e secondo un criterio
territoriale. La città di Birmingham è composta da 39 circoscrizioni (ward), a
loro volta suddivise in distretti (district polling). Lo schema di selezione, come
detto, è per stadi successivi, di seguito brevemente descritti:

– al primo stadio si seleziona un campione di circoscrizioni;
– da ciascuna delle circoscrizioni selezionate al primo stadio si estrae un

campione di distretti;
– da ciascuno dei distretti selezionati al secondo stadio si seleziona un

campione di famiglie;
– ciascuna delle famiglie selezionate al terzo stadio viene contattata, e si

intervistano tutti gli automobilisti che la compongono.

Nel seguito ci si concentrerà sul primo stadio di selezione, quello relativo
alle circoscrizioni. L’idea di base è di suddividere le circoscrizioni in strati, e di
selezionare da ciascuno strato un campione ssr di circoscrizioni. Un buon gua-
dagno di efficienza dovrebbe ottenersi costruendo strati quanto più possibile
omogenei dal punto di vista del comportamento degli automobilisti. Questo
significa determinare, sulla base delle informazioni a priori disponibili sulla
popolazione, che bisogna isolare dei caratteri di stratificazione sulla base dei
quali formare gruppi omogenei di circoscrizioni. I caratteri usati sono tredici,
elencati in Tabella 7.4 (la classe sociale 1 indica la più alta, e la 5 la più bassa).
Di essi sono anche riportati la media e la deviazione standard.
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Tabella 7.4 Variabili usate per stratificare le circoscrizioni

Carattere Media Deviazione

standard

X1 = Famiglie con una o più automobili (%) 39.15 11.68

X2 = Numero medio di automobili per 100 famiglie 44.56 14.23

X3 = Famiglie – proprietari di casa (%) 38.77 19.09

X4 = Famiglie – inquilini di case enti pubblici (%) 41.36 23.21

X5 = Famiglie – inquilini di case private (%) 17.26 10.73

X6 = Famiglie – classi sociali 1 e 2 (%) 12.44 6.91

X7 = Famiglie – classe sociale 3 (%) 54.92 5.50

X8 = Famiglie – classi sociali 4 e 5 (%) 32.49 8.66

X9 = Popolazione di età 15–24 anni (%) 15.85 1.58

X10 = Popolazione di età 25–44 anni (%) 24.13 2.10

X11 = Popolazione di età 45–64 anni (%) 26.23 5.47

X12 = Popolazione di età 65 anni e oltre (%) 10.87 2.50

X13 = Popolazione femminile (%) 50.62 1.63

Considerazioni basate su un’analisi statistica multivariata condotta sui
dati disponibili hanno portato alla decisione di considerare cinque strati. La
formazione degli strati viene effettuata aggregando le circoscrizioni con valori
“simili” dei caratteri di stratificazione di Tabella 7.4. Sul piano formale si è
utilizzata una procedura di cluster analysis. Detta xji la modalità del carattere
Xj per l’unità i (j = 1, . . . , 13, i = 1, . . . , N), e detta μjg la media del
carattere Xj nello strato g-mo (g = 1, . . . , 5), si è usato un semplice algoritmo
iterativo. Ad ogni iterazione si considera un’unità (circoscrizione), la quale è
attribuita al gruppo g per il quale la quantità∑

j

(xji − μjg)2

è minima. La procedura continua fino a che non vi è nessuno spostamento
di unità da un gruppo all’altro, o fino a che non sia raggiunto un prefissato
numero di iterazioni. I gruppi formati in questo modo costituiscono gli strati
del primo stadio di campionamento.

Come osservazione generale, la stratificazione mediante procedure di clu-
ster analysis si rivela particolarmente utile quando si hanno parecchi caratteri
di stratificazione, tutti in varia misura influenti sul carattere di interesse. Na-
turalmente, molta attenzione va posta sia sul metodo utilizzato per la cluster
analysis, sia sull’eliminazione dell’effetto dell’unità di misura sui caratteri di
stratificazione, ad es. mediante la loro preventiva standardizzazione. ��
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7.7 Stima della varianza della popolazione∗

Finora ci siamo occupati della stima della media μy della popolazione. Essa,
d’altra parte, non è il solo parametro di interesse in rilevazioni campionarie
(anche se certamente è il più importante). Un problema di un certo rilievo è
quello della stima della varianza σ2

y della popolazione. L’obiettivo della presen-
te sezione è la costruzione di uno stimatore corretto di σ2

y, quando il disegno
campionario è di tipo stratificato.

In primo luogo, iniziamo con l’osservare che la varianza σ2
y si può scrivere nella

forma:

σ2
y =

1

N

M∑
g=1

Ng∑
i=1

(ygi − μy)2 =
1

N

M∑
g=1

Ng∑
i=1

y2
gi − μ2

y

=

M∑
g=1

Ng

N

⎛⎝ 1

Ng

Ng∑
i=1

y2
gi

⎞⎠− μ2
y

=

M∑
g=1

wg μ2g − μ2
y (7.35)

dove si è posto

μ2g =
1

Ng

Ng∑
i=1

y2
gi, g = 1, . . . , M.

Da risultati noti validi per il disegno ssr discende che

m2g =
1

ng

∑
i∈sg

y2
gi

è uno stimatore corretto di μ2g , qualunque sia g = 1 . . . , M . Ne consegue che

m2 =

M∑
g=1

wg m2g (7.36)

è uno stimatore corretto di
∑

g wg μ2g .
Rimane da costruire uno stimatore corretto del quadrato della media della

popolazione, μ2
y . A questo proposito osserviamo che, essendo μ̂str corretto, si ha

V (μ̂str) = E
[
μ̂2

str

] − E [μ̂str]
2 = E

[
μ̂2

str

] − μ2
y

da cui discende che

μ2
y = E

[
μ̂2

str

] − V (μ̂str). (7.37)

Ora, uno stimatore corretto di V (μ̂str) è lo stimatore V̂ (μ̂str) costruito nella Sezione
7.2, (7.9). Inoltre, uno stimatore corretto di E

[
μ̂2

str

]
è di sicuro μ̂2

str. Sulla base della
(7.37) si conclude che

μ̂2
y = μ̂2

str − V̂ (μ̂str). (7.38)

Usando a questo punto la (7.35) abbiamo provato la seguente proposizione.
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Proposizione 7.5. Se il disegno campionario è stratificato, lo stimatore

σ̂2
y = m2 − μ̂2

y (7.39)

con m2 e μ̂2
y dati rispettivamente dalle (7.36), (7.38), è uno stimatore corretto

di σ2
y.

Lo stimatore (7.39) presenta una caratteristica negativa, che vale la pena
mettere in rilievo. In alcuni casi, può assumere valori negativi. Si tratta di
un evidente difetto, in quanto il parametro da stimare, σ2

y, è non negativo.
L’usare uno stimatore che, seppur con piccola probabilità, può assumere an-
che valori minori di zero è un po’ un controsenso. Questo aspetto negativo è
generato dal voler costruire uno stimatore corretto. In tal caso la condizione
di non distorsione dello stimatore ha come conseguenza che esso (sia pure con
probabilità presumibilmente “piccola”) può anche assumere valori negativi.

Una possibile alternativa allo stimatore (7.39) si può costruire osservando
che la varianza della popolazione, σ2

y, si può scrivere come:

σ2
y =

1
N

M∑
g=1

Ng∑
i=1

(ygi − μy)2 (7.40)

=
M∑

g=1

wg

⎧⎨⎩ 1
Ng

Ng∑
i=1

(ygi − μy)2

⎫⎬⎭ . (7.41)

Ora, la media μy che compare nella (7.41) si può stimare con μ̂str. Inoltre,
la quantità

∑
(ygi − μy)2/Ng che compare entro parentesi nella (7.41) si può

stimare con il suo “corrispondente campionario”, pari a:

1
ng

∑
i∈sg

(ygi − μ̂str)2, g = 1, . . . , M.

Ne segue che come stimatore intuitivo della varianza σ2
y della popolazione si

può considerare il seguente:

σ̂2
str y =

M∑
g=1

wg

⎧⎨⎩ 1
ng

∑
i∈sg

(ygi − μ̂str)2

⎫⎬⎭ . (7.42)

Lo stimatore (7.42) è distorto. D’altra parte, esso è sempre non negativo,
per cui in diverse circostanze si fa preferire allo stimatore (7.39).
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Esercizi

7.1. Provare la relazione (7.12).

Suggerimento. Tenere conto che

S2
y =

N

N − 1

{
M∑

g=1

wg
Ng − 1

Ng
S2

yg +

M∑
g=1

wg(μyg − μy)2
}

,

e che

N

N − 1

M∑
g=1

wg
Ng − 1

Ng
S2

yg =

(
1 +

1

N − 1

) M∑
g=1

wg

(
1 − 1

Ng

)
S2

yg

=
M∑

g=1

wg S2
yg +

1

N − 1

M∑
g=1

wg
Ng − 1

Ng
S2

yg − 1

N − 1

M∑
g=1

wg
N − 1

Ng
S2

yg.

7.2. Provare che se c1 = · · · = cM la (7.26) si riduce alla (7.17).

7.3. Una popolazione è suddivisa in quattro strati, rispettivamente di nume-
rosità N1 = 500, N2 = 1000, N3 = 1200, N4 = 150. Le medie di strato μyg

sono incognite, ma si può ritenere, in prima approssimazione, che μy2 = 2 μy1,
μy3 = 3 μy1, e μy4 = 5 μy1. Anche le varianze di strato sono incognite ma, a
titolo di prima approssimazione si può assumere che siano proporzionali alle
medie di strato: Syg = cost μyg , g = 1, . . . , 4, essendo cost un’opportuna co-
stante. Determinare l’allocazione di Neyman per una numerosità campionaria
n = 60.

7.4. Nell’esercizio precedente si assuma che il costo di osservazione di un’unità
campionaria sia di 13 Euro negli strati 1 e 2, di 5 Euro nello strato 3, e di 8 Euro
nello strato 4. Assumendo un costo fisso iniziale nullo (c0 = 0), determinare
l’allocazione ottima quando per effettuare la rilevazione è stanziato un budget
di 350 Euro.

7.5. Le aziende di un settore industriale sono stratificate sulla base del numero
di addetti, secondo lo schema seguente. Per ogni strato sono anche riportati
la media μyg e la deviazione standard corretta Syg del fatturato annuo delle
aziende (in migliaia di Euro).

Addetti Aziende μyg Syg

1–5 890 1700 38
6–20 406 50000 225

21–100 91 190000 450
101– 18 1200000 1700

Confrontare, per un campione di numerosità n = 120, la varianza dello
stimatore μ̂str con allocazione uniforme, proporzionale, e di Neyman.
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7.6. Nella formula della varianza con allocazione di Neyman, il termine(∑
g wg Syg

)2

è più piccolo di
∑

g wg S2
yg (perché?). Pertanto, per n gran-

de di ha che V (μ̂str; Ney) < 0, un fatto privo di senso. A cosa è dovuto
questo fatto?

7.7. Si consideri una popolazione finita, e si supponga di selezionare da essa:

– un campione stratificato proporzionale di n = 100 unità;
– un campione stratificato di Neyman di n = 100 unità.

Sulla base dei due campioni si costruiscono due intervalli di confidenza per
μy, entrambi di livello 1− α. Quale dei due ci si aspetta che abbia lunghezza
minore?

7.8. Si consideri la popolazione di 1570 studenti dell’Esempio 7.1. Calcolare,
per una numerosità campionaria n = 100, la varianza di μ̂str nei due casi di
allocazione proporzionale e di Neyman.

7.9. Per la popolazione di 1570 studenti dell’Esempio 7.1 determinare, nel caso
di allocazione proporzionale, la numerosità campionaria necessaria affinché
l’errore assoluto di stima |μ̂str−μy| sia maggiore di 2 cm. con probabilità pari
a 0.1.

7.10. Da una popolazione di N unità suddivisa in M strati rispettivamente
di numerosità N1, . . . , NM , si seleziona un campione stratificato con nume-
rosità camponarie di strato n1, . . . , nM . Come stimatore di μy si consideri il
seguente:

μ̂ =
M∑

g=1

cg yg

essendo c1, . . . , cM delle costanti arbitrarie.

a. Calcolare E[μ̂].
b. Provare che μ̂ è corretto se e solo se c1 = w1, . . . , cm = wM .
c. Calcolare l’errore quadratico medio di μ̂.
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Disegno campionario stratificato II

8.1 Stratificazione ottimale: aspetti introduttivi

Un problema molto importante, alla base dell’utilizzo del disegno stratifica-
to, è la costruzione degli strati. Alcuni princip̂ı fondamentali sono già stati
messi in evidenza nella Sezione 7.6. Il punto chiave è che gli strati dovrebbe-
ro essere quanto più possibile omogenei, ossia formati da unità con modalità
simili del carattere di interesse Y. L’obiettivo di questa sezione è quello di
fornire alcuni approfondimenti su questo importante problema. Ovviamente,
un problema connesso è quello della scelta del numero degli strati. Va da sé,
infatti, che quanto più numerosi sono gli strati, tanto maggiore sarà la loro
omogeneità. Per semplificare le cose, nella presente sezione assumeremo fissato
il numero M di strati. Problemi legati alla scelta di M saranno discussi nella
Sezione 8.2.

Lo schema di esposizione che seguiremo è semplice. Inizieremo con as-
sunzioni estremamente restrittive, utili non tanto per la loro immediata uti-
lità applicativa, quanto perché dai risultati che si ottengono si hanno indi-
cazioni utili sulle modifiche da apportare per applicare in pratica i risultati
stessi.

Una volta stabilito il numero di strati in cui suddividere la popolazione,
l’idea di base per costruire gli strati stessi è molto semplice: essi dovrebbero
rendere minima la varianza dello stimatore μ̂str. In particolare, se si usa l’al-
locazione di Neyman la suddivisione della popolazione in M strati dovrebbe
essere effettuata in modo da rendere minima la

V (μ̂str; Ney) =
1
n

(
M∑

g=1

wg Syg

)2

− 1
N

M∑
g=1

wg S2
yg .

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 8, © Springer-Verlag Italia 2012
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Se N è sufficientemente grande, il termine
∑

g wg S2
yg/N si può trascurare, per

cui minimizzare V (μ̂str; Ney) equivale (in via approssimata) a minimizzare

1
n

(∑
g

wg Syg

)2

il che, a sua volta, equivale a minimizzare
∑

g wg Syg .

8.1.1 Teoria di base: le equazioni di Dalenius∗

Per iniziare, assumiamo che il carattere di interesse Y sia noto, e che ab-
bia distribuzione assolutamente continua sull’intervallo (ymin , ymax), essendo
ymin la più piccola modalità di Y e ymax la più grande. Sia fY (y) la funzio-
ne di densità di Y. In queste condizioni, suddividere la popolazione in strati
significa (come detto nella Sezione 7.6) determinare M − 1 “punti di taglio”
l1, . . . , lM−1, e nel definire gli strati nel modo seguente:

– strato 1: insieme delle unità i con modalità ymin � yi � l1;
– strato 2: insieme delle unità i con modalità l1 < yi � l2;

· · ·
– strato M : insieme delle unità i con modalità lM−1 < yi � ymax.

I punti l1, . . . , lM−1 vanno determinati in modo da rendere minima la

M∑
g=1

wg Syg. (8.1)

Per comodità di notazione poniamo l0 = ymin, lM = ymax. Valgono le
seguenti, fondamentali relazioni:

wg =
∫ lg

lg−1

fY (y) dy , g = 1, . . . , M ;

μyg =
1

wg

∫ lg

lg−1

y fY (y) dy , g = 1, . . . , M ;

S2
yg =

1
wg

∫ lg

lg−1

(y − μyg)2 fY (y) dy

=
1

wg

∫ lg

lg−1

y2 fY (y) dy − μ2
yg , g = 1, . . . , M.

Proposizione 8.1. I valori di l1, . . . , lM−1 che minimizzano la (8.1) soddi-
sfano le equazioni

S2
yg + (lg − μyg)2

Syg
=

S2
y g+1 + (lg+1 − μy g+1)2

Sy g+1
, g = 1, . . . , M − 1. (8.2)
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Dimostrazione. I punti l1, . . . , lM−1 si ricavano risolvendo le equazioni:

∂

∂ lg

(
M∑

h=1

wh Syh

)
= 0, g = 1, . . . , M − 1. (8.3)

Ora, nella somma che compare in (8.3) solo wg Syg e wg+1 Sy g+1 dipendono
da lg , per cui si ha

∂

∂ lg

(
M∑

h=1

wh Syh

)
=

∂wg Syg

∂ lg
+

∂wg+1 Sy g+1

∂ lg

e le (8.3) diventano

∂wg Syg

∂ lg
+

∂wg+1 Sy g+1

∂ lg
= 0 , g = 1, . . . , M − 1. (8.4)

Per calcolare le derivate parziali in (8.4) iniziamo con il calcolare le derivate
(rispetto a lg) di wg, wg μyg , wg S2

yg , pari a:

∂ wg

∂ lg
=

∂

∂ lg

{∫ lg

lg−1

fY (y) dy

}
= fy(lg); (8.5)

∂ wg μyg

∂ lg
=

∂

∂ lg

{∫ lg

lg−1

yfY (y) dy

}
= lg fy(lg);

∂ wg S2
yg

∂ lg
=

∂

∂ lg

{∫ lg

lg−1

y2fY (y) dy − 1
wg

(wg μyg)2
}

=
∂

∂ lg

{∫ lg

lg−1

y2fY (y) dy

}
− 1

w2
g

{
wg

∂ (wg μyg)2

∂ lg
− (wg μyg)2

∂ wg

∂ lg

}
= l2g fY (lg) − 1

w2
g

{
2 w2

g μyg
∂ wg μyg

∂ lg
− w2

g μ2
yg fY (lg)

}
= l2g fY (lg) − 2 lg μyg fY (lg) + μ2

yg fY (lg)

= fY (lg) (lg − μyg)2. (8.6)

Tenendo poi conto che

∂ (wg Syg)2

∂ lg
= 2 wg Syg

∂ wg Syg

∂ lg
da cui segue che

∂ wg Syg

∂ lg
=

1
2 wg Syg

∂ (wg Syg)2

∂ lg

e che

∂ (wg Syg)2

∂ lg
= wg

∂ wg S2
yg

∂ lg
+ wg S2

yg

∂ wg

∂ lg



156 8 Disegno campionario stratificato II

dalla (8.6) si ottiene

∂ wg Syg

∂ lg
=

1
2 wg Syg

{
wg fY (lg) (S2

yg + (lg − μyg)2) + wg S2
yg fY (lg)

}
=

1
2 Syg

fY (lg) {S2
yg + (lg − μyg)2}. (8.7)

Nello stesso modo si prova che

∂ wg+1 Sy g+1

∂ lg
= − 1

2 Sy g+1
fY (lg)

{
S2

y g+1 + (lg − μy g+1)2
}

. (8.8)

Dalle (8.4), (8.7), (8.8) si ottengono subito le (8.2). ��

Le equazioni (8.2) sono essenzialmente dovute a Dalenius (1950).

8.1.2 Equazioni di Dalenius basate su un carattere
ausiliario∗

Le equazioni di Dalenius (8.2) non hanno, di fatto, nessuna applicabilità diret-
ta, in quanto presuppongono che la distribuzione (di frequenza) del carattere
di interesse Y (nella popolazione di riferimento) sia nota e assolutamente con-
tinua (ossia dotata di densità). Dei due punti deboli il primo è di gran lunga il
più grave. Se la distribuzione di Y è nota, perché ricorrere ad una rilevazione
campionaria? D’altra parte, la Proposizione 8.1 si rivela molto utile sul piano
applicativo quando è noto un carattere ausiliario X , fortemente correlato con
Y. In questo caso si può pensare di stratificare le unità della popolazione sulla
base delle modalità x1, . . . , xN di X , usato in qualche modo come “surroga-
to” di Y. Questo significa, in sostanza, cercare di definire gli strati in modo
da rendere minima la quantità

M∑
g=1

wg Sxg . (8.9)

L’idea di base dietro questo procedimento, dettata direttamente dall’intuizio-
ne, è che la correlazione (che si spera forte) tra X e Y dovrebbe fare in modo
che minimizzare la (8.9) porti ad una stratificazione della popolazione assai
simile a quella che si avrebbe minimizzando la (8.1).

I risultati che si ottengono utilizzando un carattere ausiliario X sono del
tutto simili a quelli già visti nella sezione precedente. Supponiamo, per sempli-
cità di trattazione, che X abbia, nella popolazione di interesse, distribuzione
assolutamente continua con funzione di densità fX(x) definita nell’intervallo
(xmin, xmax), dove xmin è la più piccola modalità di X , e xmax la più grande.
Posto t0 = xmin, tM = xmax, l’idea di base, ricalcata sulla precedente sezione,
è quella di prendere M − 1 punti t1, · · · , tM−1 dell’intervallo (xmin, xmax), e
di definire gli strati come segue:
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− strato 1: insieme delle unità i con modalità t0 � xi � t1;
· · ·

− strato M : insieme delle unità i con modalità t(M−1) < xi � tM .

I punti t1, . . . , tM−1 vanno determinati in modo da soddisfare le equazio-
ni (8.2), ma con medie e varianze di strato riferite al carattere ausiliario X
anziché a Y. In altri termini, e usando un’ovvia notazione, t1, . . . , tM−1 sono
determinati sulla base delle relazioni

S2
xg + (tg − μxg)2

Sxg
=

S2
x g+1 + (tg+1 − μx g+1)2

Sx g+1
, g = 1, . . . , M − 1. (8.10)

In generale, equazioni (non lineari) del tipo (8.10), (8.2) sono assai difficili da
risolvere.

Nel seguito esamineremo diversi adattamenti e approssimazioni utili per
le applicazioni.

8.1.3 Regole approssimate per la stratificazione ottima∗

Quanto detto nella sezione precedente mostra come sia di primaria importanza
cercare soluzioni approssimate delle (8.10). Una delle più importanti è quella
dovuta a Dalenius e Hodges (1959), esposta in questa sezione.

Se gli strati sono abbastanza numerosi, la densità fX(x) si può considerare
all’incirca costante in ogni strato. Formalmente, si può scrivere:

fX(x) ≈ fxg per ogni tg−1 < x � tg, g = 1, . . . , M ,

da cui:

wg =
∫ tg

tg−1

fX(x) dx ≈ fxg (tg − tg−1), g = 1, . . . , M ; (8.11)

μxg =
1

wg

∫ tg

tg−1

x fX(x) dx

=
1

tg − tg−1

∫ tg

tg−1

x dx

=
1
2

(tg + tg−1), g = 1, . . . , M ;

S2
xg =

1
wg

∫ tg

tg−1

(x − μxg)2 fX(x) dx

≈ 1
tg − tg−1

∫ tg

tg−1

(
x − tg + tg−1

2

)2

dx

=
1
12

(tg − tg−1)2, g = 1, . . . , M ;

Sxg ≈ 1√
12

(tg − tg−1), g = 1, . . . , M. (8.12)
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Poniamo adesso

Dg =
∫ tg

tg−1

√
fX(x) dx, g = 1, . . . , M. (8.13)

Data la fX(x), la somma dei termini Dg è fissata, e pari a

K =
∫ tM

t0

√
fX(x) dx (8.14)

in quanto
M∑

g=1

Dg =
M∑

g=1

∫ tg

tg−1

√
fX(x) dx =

∫ tM

t0

√
fX(x) dx = K. (8.15)

Se fX(x), come assunto in precedenza, è all’incirca costante su tutto
l’intervallo (tg−1, tg), fX(x) ≈ fxg per tg−1 < x � tg, si ha

Dg ≈
∫ tg

tg−1

√
fxg dx

=
√

fxg (tg − tg−1) , g = 1, . . . , M

e quindi, usando anche le (8.11), (8.12), valgono le relazioni

wg Sxg ≈ 1√
12

fxg (tg − tg−1)2

≈ 1√
12

D2
g , g = 1, . . . , M. (8.16)

Da queste approssimazioni discende subito che la (8.9) si approssima nel
modo seguente

M∑
g=1

wg Sxg ≈ 1√
12

M∑
g=1

D2
g

e dunque minimizzare la (8.9) equivale a minimizzare la
∑M

g=1 D2
g . In vista

delle (8.15), (8.14), la somma delle Dg deve soddisfare il vincolo D1 + · · · +
DM = K (K fissato). Formalmente, per determinare t1, . . . , tM−1 bisogna
risolvere il seguente problema di minimo vincolato:{

minimizzare :
∑M

g=1 D2
g

con il vincolo :
∑M

g=1 Dg = K
. (8.17)

Usando la solita tecnica dei moltiplicatori di Lagrange, è immediato verificare
(Esercizio 8.1) che la soluzione del problema di minimo (8.17) prevede valori
Dg tutti uguali: D1 = · · · = DM = K/M . Ricordando la (8.13), ciò significa
scegliere t1, . . . , tM−1 in maniera tale che le quantità∫ tg

tg−1

√
fX(x) dx , g = 1, . . . , M
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siano tutti uguali. È questa la celebre regola cum
√

f di Dalenius e Hodges
(1959). Essa si basa sull’assunzione che la distribuzione di frequenza del ca-
rattere X nella popolazione possieda una densità fX(x). In pratica, questo
non accade mai. La popolazione di riferimento è finita, composta da N unità,
e il carattere X non può che essere discreto. In questo caso il ruolo di densità
di X è svolto dal suo istogramma. In pratica, l’intervallo (xmin, xmax) viene
suddiviso in H intervalli uguali; in generale H va scelto in modo da essere
molto più grande di M (numero degli strati). Per l’intervallo h-mo, sia fh la
frequenza relativa delle modalità di X nell’intervallo h-mo (h = 1, . . . , H).
L’altezza dell’istogramma (e quindi la densità) nella classe h-ma è ovviamente
fh/((xmax −xmin)/H). Gli M strati vengono formati aggregando classi conti-
gue, a partire dalla coda sinistra dell’istogramma. La regola cum

√
f stabilisce

che le classi consecutive vanno aggregate in modo che la somma delle
√

fh in
ogni strato sia approssimativamente costante, e quindi approssimativamente
uguale a

∑H
h=1

√
fh/M .

Esempio 8.1. Nel file impr80.txt sono riportati dati relativi ad una popo-
lazione di 385 aziende manifatturiere (numero di dipendenti, fatturato, flusso
di cassa, etc.) per l’anno 1980. Si tratta essenzialmente di dati reali, disponi-
bili al sito web ftp://elsa.berkeley.edu/users/bhhall/pub/data/. In particolare,
nei dati di questo esempio si considerano solo imprese con non più di 1500
addetti.

Supponiamo di conoscere il numero di addetti di ogni azienda. Grandezze
quali fatturato, flusso di cassa, etc., presentano una correlazione abbastanza
forte con il numero di dipendenti, che può essere perciò usato come carattere
di stratificazione. La sua distribuzione è mostrata in Fig. 8.1, che riporta il
relativo istogramma.

Fig. 8.1 Istogramma del numero di occupati di 385 aziende
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Tabella 8.1 Stratificazione con regola cum
√

f

Classe occupati h Frequenza
√

fh Classe occupati h Frequenza
√

fh

(migliaia) relativa fh (migliaia) relativa fh

0.0000 − 0.0375 1 0.0052 0.072 0.7500 − 0.7875 21 0.0312 0.1765
0.0375 − 0.0750 2 0.0156 0.1248 0.7875 − 0.8250 22 0.0208 0.1441
0.0750 − 0.1125 3 0.0338 0.1838 0.8250 − 0.8265 23 0.0182 0.1348
0.1125 − 0.1500 4 0.0519 0.2279 0.8265 − 0.9000 24 0.0390 0.1974
0.1500 − 0.1875 5 0.0338 0.1838 0.9000 − 0.9375 25 0.0156 0.1248
0.1875 − 0.2250 6 0.0338 0.1838 0.9375 − 0.9750 26 0.0156 0.1248
0.2250 − 0.2625 7 0.0468 0.2162 0.9750 − 1.0125 27 0.0208 0.1441
0.2625 − 0.3000 8 0.0182 0.1348 1.0125 − 1.0500 28 0.0260 0.1612
0.3000 − 0.3375 9 0.0338 0.1838 1.0500 − 1.0875 29 0.0238 0.1529
0.3375 − 0.3750 10 0.0338 0.1838 1.0875 − 1.1250 30 0.0260 0.1612
0.3750 − 0.4125 11 0.0390 0.1974 1.1250 − 1.1625 31 0.0130 0.1140
0.4125 − 0.4500 12 0.0364 0.1907 1.1625 − 1.2000 32 0.0208 0.1441
0.4500 − 0.4875 13 0.0468 0.2162 1.2000 − 1.2375 33 0.0026 0.0510
0.4875 − 0.5250 14 0.0364 0.1907 1.2375 − 1.2750 34 0.0104 0.1019
0.5250 − 0.5625 15 0.0260 0.1612 1.2750 − 1.3125 35 0.0130 0.1140
0.5625 − 0.6000 16 0.0208 0.1441 1.3125 − 1.3500 36 0.0182 0.1348
0.6000 − 0.6375 17 0.0442 0.2101 1.3500 − 1.3875 37 0.0182 0.1348
0.6375 − 0.6750 18 0.0208 0.1441 1.3875 − 1.4250 38 0.0156 0.1248
0.6750 − 0.7125 19 0.0234 0.1529 1.4250 − 1.4265 39 0.0156 0.1248
0.7125 − 0.7500 20 0.0234 0.1529 1.4265 − 1.5000 40 0.0130 0.1140

Supponiamo di voler costruire, in totale, M = 4 strati. In Tabella 8.1
sono riportate le grandezze che intervengono nella costruzione effettiva degli
strati, avendo diviso l’intervallo [0, 1.5] in H = 40 classi di occupati ciascuna
di ampiezza 0.0375. Per convenzione, ogni classe include il suo estremo destro
ma non quello sinistro. Con una certa approssimazione (non molta, per la
verità), il numero di occupati in migliaia viene trattato come una variabile
continua pur non essendolo realmente.

Essendo
∑40

h=1

√
fh = 6.1351, la regola cum

√
f prevede che la somma delle√

fh in ogni strato sia (approssimativamente) uguale a 6.1351/4 = 1.5338.
Dalla (8.1) si deduce facilmente che

9∑
h=1

√
fh = 1.5114,

17∑
h=10

√
fh = 1.4942,

27∑
h=18

√
fh = 1.4964,

40∑
h=28

√
fh = 1.6335

e quindi i 4 strati che si ottengono dalla regola cum
√

f sono i seguenti:

− strato 1: insieme delle imprese fino a 337 dipendenti;
− strato 2: insieme delle imprese con più di 337 e non oltre 637 dipendenti;
− strato 3: insieme delle imprese con più di 637 e non oltre 1012 dipendenti;
− strato 4: insieme delle imprese con più di 1012 e non oltre 1500 dipendenti.

��
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La regola cum
√

f stabilisce in sostanza che t1, . . . , tM−1 vanno scelti in
modo che le grandezze∫ tg

tg−1

√
fX(x) dx ≈

√
fxg (tg − tg−1)

siano costanti, e quindi che siano costanti le fxg (tg − tg−1)2. Usando la (8.16),
questo equivale a richiedere che i prodotti

wg Sxg, g = 1, . . . , M

siano costanti.
In letteratura vi sono diverse metodi approssimati di stratificazione otti-

male, alternative alla regola cum
√

f . Una delle più semplici è la regola di
Ekman (1959), la quale stabilisce di scegliere t1, . . . , tM−1 in modo che siano
costanti le grandezze

wg (tg − tg−1), g = 1, . . . , M. (8.18)

Poiché la distribuzione del carattere X è discreta, in genere le (8.18) potranno
essere solo approssimativamente costanti. Inoltre, la regola di Ekman equivale
a rendere (approssimativamente) costanti le quantità Ng(tg − tg−1).

Se fX(x) ≈ fxg si ha, in vista delle (8.11), (8.12), (8.16), wg (tg −
tg−1) ≈ wg Sxg/

√
12, per cui anche la regola di Ekman, in via largamente

approssimata, può essere considerata pressoché equivalente alla regola cum√
f .

Per altri contributi alla teoria della stratificazione ottima si rinvia ai lavori
di Serfling (1968), Singh (1971), Hedlin (2000). Confronti tra i diversi metodi
di stratificazione basati su dati reali sono in Cochran (1961) Hess e altri (1966).
Da questi lavoro emerge come la regola di Ekman abbia un comportamento
lievemente migliore della cum

√
f . Le buone caratteristiche della regola di

Ekman sono anche confermate in Murthy (1967), anche se è da rimarcare
che nel confronto effettuato da questo autore non viene considerata la regola
cum

√
f . Si tratta comunque di conclusioni di portata non decisiva, in quanto

basati solo su pochi insiemi di dati reali.
Contrariamente a quel che accade per la regola cum

√
f , la regola di Ekman

è molto più difficile da applicare in pratica. Per la sua implementazione è quasi
sempre necessario procedere per via numerica. Qui di seguito è brevemente
indicato un semplice algoritmo per il calcolo di t1, . . . , tM−1. Esso richiede
la specificazione a priori di un numero δ > 0 “piccolo” (tolleranza), nonché
di un valore iniziale xmin � τ � xmin per t1. Nel seguito, indicheremo anche
con N(t) il numero di unità della popolazione con modalità xi � t, e porremo
F (t) = N(t)/N .

− Passo 0. Inizializzazione. Porre τ1 = τ, l = xmin, u = xmax.
Andare al Passo 1.

− Passo 1. Calcolare E1 = (τ1 − xmin) × F (τ1). Andare al Passo 2.
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− Passo 2. Determinare τ2, . . . , τM−1 tali che, posto Eg = (τg−τg−1)
× (F (τg) − F (τg−1)), sia |Eg − E1| < δ per ogni g = 2, . . . , M − 1.
Se questi valori non esistono (perché si trova τg � xmax per
qualche g), modificare τ1 come τ1 = τ1/2, porre u = τ1, e tor-
nare al Passo 1; altrimenti, andare al Passo 3.

− Passo 3. Calcolare EM = (xmax − τM−1)× (1−F (τM−1)). Se EM −
E1 > δ andare al Passo 4. Se E1−EM > δ andare al Passo 5. Se
|EM − E1| � δ andare al Passo 6.

− Passo 4. Porre l = τ1, e modificare τ1 ponendo τ1 = (l + u)/2.
Andare al Passo 1.

− Passo 5. Porre u = τ1 e modificare τ1 ponendo τ1 = (l + u)/2.
Andare al Passo 1.

− Passo 6. Stop. Porre t1 = τ1, . . . , tM−1 = τM−1.

Esempio 8.2. Consideriamo la popolazione di 385 imprese del file impr80.txt
(Esempio 8.1). L’obiettivo è di costruire M = 4 strati usando la regola di Ek-
man. Per semplicità di calcolo, e similmente all’Esempio 8.1, si considerano
H = 40 classi di occupati ciascuna di ampiezza 0.0375. Il termine δ è qui scelto
pari a 0.015, mentre il valore iniziale τ è posto pari a 0.675. Usando l’algorit-
mo precedentemente illustrato, si ha che t1 = 0.338, t2 = 0.675, t3 = 1.05, a
cui corrispondono valori wg (tg − tg−1) del tipo:

w1 (t1 − t0) = 0.09, w2 (t2 − t1) = 0.102, w3 (t3 − t2) = 0.087,

w4 (t4 − t3) = 0.085.

I quattro strati che si ottengono dalla regola cum
√

f sono qui di seguito
riportati. Si tratta di strati quasi uguali a quelli ottenuti nell’Esempio 8.1
usando la regola cum

√
f :

– strato 1: insieme delle imprese fino a 338 dipendenti;
– strato 2: insieme delle imprese con più di 338 e non oltre 675 dipendenti;
– strato 3: insieme delle imprese più di 675 e non oltre 1050 dipendenti;
– strato 4: insieme delle imprese più di 1050 e non oltre 1500 dipendenti.

��

Dopo che la popolazione è stata suddivisa in strati, rimane da risolvere
il problema dell’allocazione delle n unità campionarie negli M strati. Un ap-
proccio molto semplice consiste nell’usare l’allocazione di Neyman in cui le
incognite S2

yg sono sostituite con le corrispondenti varianze di strato S2
xg del

carattere X . Formalmente, dallo strato g si seleziona (mediante disegno ssr)
un numero di unità pari a:

ng = n
wg Sxg∑M

h=1 wh Sxh

, g = 1, . . . , M.

Questo tipo di approccio fornisce risultati tanto migliori quanto più le Sxg sono
dei “buoni sostituti” delle Syg . Questo, in genere, accade se i due caratteri X ,
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Y sono fortemente correlati. In alternativa all’allocazione di Neyman basata
sulle Sxg si può usare la procedura in due fasi descritta nella Sezione 7.4.3.

In alcune circostanze si hanno popolazioni altamente asimmetriche, in cui
molte unità presentano modalità abbastanza piccole, mentre poche unità han-
no modalità molto grandi, e quindi sono particolarmente importanti nel de-
terminare la media (o l’ammontare) del carattere oggetto di interesse. Un
esempio molto comune è quello del campionamento di imprese delle quali sia
noto a priori il numero di occupati, che quindi può essere usato come carat-
tere di stratificazione (cfr. Esempio 8.1). Accade spesso che la popolazione sia
composta di una miriade di imprese medio-piccole, e di poche imprese gran-
di o grandissime, determinanti per lo studio dell’intera popolazione. In questi
casi la procedura standard consiste nel suddividere la popolazione in M strati,
tali che:

− lo strato M -mo è formato dalle unità “più grandi”, che vengono tutte
incluse nel campione (unità “auto-rappresentative”);

− i restanti M − 1 strati sono formati dalle restanti unità, e da ognuno di
essi viene selezionato un campione ssr.

Si tratta, in pratica, di un disegno stratificato in cui le unità di uno strato
vengono osservate tutte. Il problema della costruzione di strati ottimale, in
questo ambito, è affrontato in Lavallée e Hidiroglou (1988), Hidiroglou e Sri-
nath (1993), Rivest (2002). Per un’applicazione (una delle molte, in verità) si
rinvia al lavoro di Slanta e Krenzke (1990).

In chiusura di sezione è da sottolineare che un elemento decisivo nella
stratificazione basata su un carattere ausiliario è il tipo di relazione di (in-
ter)dipendenza che esso possiede con il carattere di interesse. Questo punto
è stato più volte sfiorato nelle sezioni precedenti, anche se non si è mai fat-
to esplicito riferimento ad un modello di superpopolazione che formalizzi tale
(inter)dipendenza . In questo tipo di modelli (a cui si è già fatto brevemente
riferimento nel Capitolo 5) si assume che le yi non siano semplici numeri, ma
realizzazioni di variabili aleatorie Yi, legate alle xi da un modello statistico di
(inter)dipendenza. In realtà, una parte molto importante della moderna teoria
della stratificazione si basa proprio su modelli di questo tipo (Särndal e al-
tri (1993)). Dato il livello molto elementare di questa parte non proseguiamo
oltre in questa direzione.

8.2 Considerazioni sul numero degli strati

8.2.1 Aspetti di base

Una questione di notevole importanza, ed a cui si è dedicato assai poco spazio
nel capitolo precedente, è quella relativa al numero di strati da costruire . In
effetti, nella costruzione degli strati ottimali svolta nelle sezioni precedenti si
è sempre assunto dato il numero M di strati.



164 8 Disegno campionario stratificato II

Intuitivamente, un aumento del numero M di strati dovrebbe permette-
re la costruzione di strati più omogenei dal punto di vista delle modalità y,
e quindi dovrebbe portare ad una maggiore efficienza complessiva dello sti-
matore μ̂str. Da questo punto di vista, pertanto, converrebbe prendere un
numero di strati quanto più possibile elevato, compatibilmente con la nu-
merosità campionaria totale n. L’obiettivo della presente sezione è quello di
fornire qualche precisazione, basata più sull’intuizione che sul formalismo, di
questa affermazione.

Gli strati, come detto nelle sezioni precedenti, sono costruiti prendendo
unità con modalità “vicine” del carattere di stratificazione X . La varianza
dello stimatore μ̂str dipende essenzialmente dalla varianza di Y negli strati,
cioè dalla “disomogeneità” delle yi all’interno degli strati. Questa, a sua volta,
dipende da due fattori: la variabilità delle modalità di X all’interno degli
strati, e la variabilità delle yi corrispondenti ad ogni specifica modalità di X .
In altre parole, due unità di uno stesso strato possono avere differenti valori
yi sia perché ad esse corrispondono differenti modalità di X (variabilità di Y
dovuta a quella di X ), sia perché esse possono essere diverse anche a parità
di modalità di X (variabilità residua di Y).

Se si accresce il numero degli strati, tenderà a diminuire il numero di
modalità distinte di X in ciascuno strato. Quindi, tenderà a ridursi la varianza
di X negli strati. Ciò che resta sostanzialmente invariata, invece, è la varianza
residua di Y. Pertanto, l’aumentare il numero di strati diminuisce la variabilità
di Y all’interno degli strati quasi soltanto perché riduce la parte di variabilità
di Y dovuta a X ; la varianza residua di Y, invece, a meno di casi specialissimi
non viene ridotta accrescendo il numero degli strati. Questo spiega (o almeno
dovrebbe spiegare) perché in parecchi casi non conviene prendere un numero
di strati molto alto. Quando si accresce il numero di strati oltre un certo
limite non si ottengono significativi vantaggi, perché la parte di varianza di
strato di Y dovuta a X , già molto piccola, diminuisce di pochissimo. Diviene
invece preponderante la variabilità residua, che però non è intaccata in misura
significativa da incrementi del numero di strati.

8.2.2 Qualche risultato teorico∗

Le affermazioni precedenti posso essere precisate un po’ meglio, anche se è
necessario complicare non poco la notazione. Per semplificare le cose suppo-
niamo, come in precedenza, che il carattere di interesse Y e quello di stratifi-
cazione X possiedano densità, rispettivamente fY (y) e fX(x). Questo ovvia-
mente non è vero nella pratica, ma serve a semplificare la notazione. Essendo
la popolazione di riferimento finita, i caratteri Y, X sono discreti. Per ripor-
tarsi a questo caso basta sostituire densità con frequenze relative e integrali
con somme.

Indichiamo con fY |X(y |x) la densità di Y condizionata al valore x di X .
Detto in termini assai rozzi, questa è la densità di Y quando ci si restringe
alle sole unità la cui modalità di X è x. Sia inoltre μy(x) la media di Y
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condizionatamente alla modalità x di X :

μy(x) =
∫

y fY |X(y |x) dy

e sia S2
y (x) la varianza di Y subordinatamente a x:

S2
y (x) =

∫
(y − μy(x))2fY |X(y |x) dy.

Come ben noto, valgono le due relazioni

μy =
∫

μy(x) fX(x) dx, (8.19)

S2
y =

∫
(μy(x) − μy)2 fX(x) dx +

∫
S2

y(x) fX(x) dx. (8.20)

Gli strati sono formati come descritto nelle Sezioni 8.1.2, 8.1.3, di cui si
lascia invariata la notazione. Lo strato g-mo è formato dalle unità con modalità
x nell’intervallo di estremi tg−1, tg (g = 1, . . . , M). Se restringiamo X allo
strato g-mo, la sua densità diventa pari (sempre usando la notazione della
Sezione 8.1.3) fX(x)/wg. Dalle (8.19), (8.20), “ristrette” allo strato g-mo si
ricavano pertanto le seguenti ulteriori relazioni:

μyg =
1

wg

∫ tg

tg−1

μy(x) fX(x) dx, (8.21)

S2
yg =

1
wg

∫ tg

tg−1

(μy(x) − μyg)2 fX(x) dx +
1

wg

∫ tg

tg−1

S2
y(x) fX(x) dx. (8.22)

Per ottenere risultati espliciti sono necessarie a questo punto alcune
assunzioni supplementari, qui di seguito riportate:

– gli M strati hanno tutti la stessa ampiezza: tg − tg−1 = (xmax −xmin)/M ,
g = 1, . . . , M ;

– il disegno campionario è di tipo stratificato proporzionale: ng = n wg,
g = 1, . . . , M ;

– la funzione di regressione di Y rispetto a X è lineare: μy(x) = αy/x+βy/x x;
– la varianza di Y condizionatamente a x è costante (omoscedasticità):

S2
y(x) = S2

e .

Con le ipotesi fatte, le (8.19), (8.20), (8.21), (8.22) si riscrivono come:

μy = αy/x + βy/x μx

μyg =
1

wg

∫ tg

tg−1

(αy/x + βy/x x) fX(x) dx

= αy/x + βy/x μxg
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S2
yg =

1
wg

∫ tg

tg−1

{αy/x + βy/x x − (αy/x + βy/x μx)}2 fX(x) dx

+
1

wg

∫ tg

tg−1

S2
e fX(x) dx

= β2
y/x

1
wg

∫ tg

tg−1

(x − μxg)2 fX(x) dx + S2
e

1
wg

∫ tg

tg−1

fX(x) dx

= β2
y/x S2

xg + S2
e

essendo μxg e S2
xg rispettivamente la media e la varianza di X nello strato

g-mo. Ne consegue che la varianza dello stimatore μ̂str risulta pari a

V (μ̂str) =
(

1
n
− 1

N

) M∑
g=1

wgS
2
yg

=
(

1
n
− 1

N

) M∑
g=1

wg

(
β2

y/x S2
xg + S2

e

)

=
(

1
n
− 1

N

) {
β2

y/x

M∑
g=1

wg S2
xg + S2

e

}
. (8.23)

La (8.23) mette in evidenza che solo il termine
∑

g wg S2
xg è effettivamente

“sensibile” alla stratificazione, mentre il termine S2
e non è in alcun modo

intaccato dall’aver suddiviso la popolazione in strati. Non è neanche difficile
vedere in che modo

∑
g wg S2

xg diminuisce al crescere del numero di strati.
Come ben noto, la varianza di un carattere è non superiore a un quarto del
suo campo di variazione al quadrato. Questo significa che in ogni strato vale la
disuguaglianza S2

xg � (tg − tg−1)2/4. Sfruttando anche l’ipotesi che gli strati
hanno tutti la stessa ampiezza, ne consegue che S2

xg � (xmax−xmin)2/(4M2),
da cui:

V (μ̂str; prop) �
(

1
n
− 1

N

) {
β2

y/x

(xmax − xmin)2

4M2
+ S2

e

}
. (8.24)

La (8.24) mostra un fatto molto importante: al crescere del numero degli
strati, il termine

β2
y/x

(xmax − xmin)2

4M2
(8.25)

decresce come il quadrato del numero degli strati stessi, e quindi diventa
rapidamente piccolo al crescere di M . In genere, basta un valore non elevato
di M per rendere il termine (8.25) tanto piccolo da poter essere considerato
“trascurabile” rispetto a S2

e , che invece diviene preponderante nel determinare
V (μ̂str). Ulteriori incrementi del numero di strati, non modificando in alcun
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modo il termine S2
e , riducono di pochissimo V (μ̂str), e quindi sono inutili agli

effetti pratici.
Si può anche dire qualcosa in più sul guadagno che si ha usando il disegno

stratificato (proporzionale) rispetto al disegno ssr (quando usato in coppia con
la media campionaria). In generale, confrontare V (μ̂str; prop) e V (ys; ssr)
in modo da mettere in evidenza il ruolo svolto dal numero M degli strati è
tutt’altro che agevole. Tale confronto è però semplice se si confrontano i valori
massimi delle varianze di μ̂str e di ys. Dalle due relazioni S2

y = β2
y/x S2

x + S2
e

e S2
x � (xmax − xmin)2/4 si deduce infatti che S2

y � (xmax − xmin)2/4 + S2
e .

Usando quindi le approssimazioni

S2
x ≈ (xmax − xmin)2

4
, S2

y ≈ (xmax − xmin)2

4
+ S2

e

si ottiene

V (μ̂str; prop)
V (ys; ssr)

≈
β2

y/x
S2

x

M2 + S2
e

S2
y

=
ρ2

yx
S2

y

M2 + S2
y (1 − ρ2

xy)
S2

y

=
ρ2

yx

M2
+ (1 − ρ2

xy) (8.26)

essendo ρxy il coefficiente di correlazione lineare tra X e Y. La (8.26) è ot-
tenuta, con considerazioni e ipotesi in parte diverse, in Cochran (1977) (pp.
132–134). Ad ogni modo, la relazione (8.26) mette in evidenza che il vantag-
gio che si ottiene usando il disegno stratificato (proporzionale, basato su un
carattere di stratificazione X ) rispetto a quello ssr dipende essenzialmente dal
termine ρ2

xy/M2, quantità che decresce rapidamente a 0 al crescere di M . Que-
sto conferma quanto detto in precedenza, ovvero che a meno di casi speciali
(valori molto alti di ρ2

xy), il vantaggio di efficienza che si ottiene aumentando il
numero di strati diventa rapidamente trascurabile. Questa asserzione è corro-
borata anche dalle elaborazioni numeriche in Tabella 8.2, in cui sono riportati
i valori assunti dalla (8.26) in corrispondenza a differenti valori di ρ2

xy e M .
Per concludere, un paio di osservazioni. In primo luogo, tra le ipotesi fatte

vi è quella che il disegno campionario sia di tipo proporzionale. Risultati simili
valgono anche in altri casi, come ad esempio quando si usa l’allocazione di
Neyman. In secondo luogo, approssimare le varianze S2

xg , S2
x con i loro valori

massimi (pari rispettivamente a (xmax − xmin)2/(4M2) e (xmax − xmin)2/4)
significa usare implicitamente una relazione del tipo S2

xg = S2
x/M2. Questo

tipo di relazione tra varianze di strato e varianza totale è valida in molti
casi, che coinvolgono popolazioni di forma assai differente (Esercizio 8.5). Per
approfondimenti si rinvia al lavoro di Cochran (1961).
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Tabella 8.2 Valori di V (μ̂str; prop)/V (ys; ssr) ottenuti dalla (8.26)

M
ρ2

xy
2 3 3 5 6 10 20 ∞

0.30 0.775 0.733 0.719 0.712 0.708 0.703 0.701 0.700
0.40 0.700 0.644 0.625 0.616 0.611 0.604 0.601 0.600
0.50 0.625 0.556 0.531 0.52 0.514 0.505 0.501 0.500
0.75 0.438 0.333 0.297 0.280 0.271 0.258 0.252 0.250
0.9 0.325 0.200 0156 0.136 0.125 0.109 0.102 0.100
0.95 0.288 0.156 0.109 0.08 0.076 0.060 0.052 0.050
0.99 0.258 0.120 0.072 0.050 0.038 0.020 0.012 0.01

8.3 Il problema dell’allocazione nel caso di più caratteri
di interesse

Fino ad ora si è sempre supposto che l’interesse della rilevazione statistica sia
nella stima della media di un carattere statistico di interesse. Questo, però,
è un caso abbastanza raro nelle applicazioni. Molto spesso vi sono k caratte-
ri di interesse, diciamo Y1, . . . , Yk. Questo complica non poco la notazione.
Supponiamo, al solito, che la popolazione sia suddivisa in M strati, rispettiva-
mente di numerosità N1, . . . , NM (e pesi w1 = N1/N, . . . , wM = NM/N). In
generale, indichiamo con yjgi la modalità che il carattere Yj (j = 1, . . . , k) as-
sume in corrispondenza dell’unità i (=1, . . . , Ng) dello strato g (=1, . . . , M).
Indichiamo poi con

μjg =
1

Ng

Ng∑
i=1

yjgi, S2
jg =

1
Ng − 1

Ng∑
i=1

(yjgi − μjg)2;

g = 1, . . . , M ; j = 1, . . . , k

rispettivamente la media e la varianza corretta del carattere Yj nello strato
g-mo, e con

μj =
M∑

g=1

wg μjg; j = 1, . . . , k

la media di Yj nell’intera popolazione.
Se si vogliono stimare le k medie μ1, . . . , μk, è naturale considerare i k

stimatori

μ̂str,j =
M∑

g=1

wg yjg

dove, con la solita notazione, yjg è la media campionaria del carattere Yj nello
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strato g-mo. Naturalmente, valgono le relazioni

E [μ̂str,j] = μj , V (μ̂str,j) =
M∑

g=1

(
1
ng

− 1
Ng

)
S2

jg j = 1, . . . , k.

Il problema dell’allocazione delle unità campionarie quando si hanno più
caratteri è molto più complicato rispetto al caso di un solo carattere. Suppo-
niamo infatti che sia fissata la numerosità campionaria totale n. Se n1, . . . , nM

sono scelti in modo da rendere minima la varianza di μ̂str,j, non è affatto det-
to che siano automaticamente minimizzate anche le varianze degli altri k − 1
stimatori μ̂str,h, con h �= j. Anzi, in generale questo non accade. In sostanza,
pertanto, se si devono stimare le medie di k caratteri non esiste un’allocazio-
ne delle unità campionarie nei diversi strati che minimizzi simultaneamente
le varianze dei k stimatori μ̂str,1, . . . , μ̂str,k.

In casi come quello appena delineato vi sono diversi modi per uscire
dall’impasse. Una prima possibilità, che è poi la più frequente sul piano opera-
tivo, è quella di identificare il carattere principale di interesse, e nell’allocare
le unità campionarie in maniera ottimale rispetto ad esso. In effetti, se è vero
che nelle indagini campionarie concrete si rilevano parecchi caratteri di inte-
resse, è anche vero che essi non sono tutti ugualmente interessanti. Il caso più
comune è quello in cui vi è un carattere di speciale interesse, che giustifica
l’effettuazione di una rilevazione campionaria. È questo il carattere principale
della rilevazione. Accanto ad esso, vi sono poi altri caratteri che, pur se di
interesse, sono in qualche modo “secondari”. In casi come questo la soluzio-
ne comune è quella di allocare le unità negli strati in modo da minimizzare
la varianza dello stimatore μ̂str della media del carattere principale. Questo,
in realtà, è un principio che vale non solo per il problema dell’allocazione.
Sia la scelta della numerosità campionaria totale n che la costruzione degli
strati possono essere effettuati facendo esclusivamente riferimento al carattere
principale della rilevazione.

Quando in una rilevazione campionaria non vi è un unico carattere princi-
pale, il discorso fatto in precedenza viene meno. In questi casi, una soluzione
semplice al problema dell’allocazione può essere quella di utilizzare un dise-
gno stratificato proporzionale. Una semplice alternativa, spesso considerata in
letteratura (per la verità più sul piano teorico che nelle concrete applicazioni)
è quella di far riferimento ad una media ponderata delle varianze degli stima-
tori μ̂str,j, j = 1, . . . , k. Sul piano formale, bisogna stabilire k pesi q1, . . . , qk,
tali che

qj � 0 per ogni j = 1, . . . , k;
k∑

j=1

qj = 1

e, dato n, determinare n1, . . . , nM in modo da minimizzare la quantità

V =
k∑

j=1

qj V (μ̂str,j) =
k∑

j=1

qj

{
M∑

g=1

(
1
ng

− 1
Ng

)
w2

g S2
jg

}
. (8.27)
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Invertendo l’ordine di somma, è immediato verificare (Esercizio 8.6) che

k∑
j=1

qj

{
M∑

g=1

(
1
ng

− 1
Ng

)
w2

g S2
jg

}
=

M∑
g=1

w2
g V 2

g

ng
− 1

N

M∑
g=1

wg V 2
g (8.28)

con

V 2
g =

k∑
j=1

qj S2
jg , g = 1, . . . , M. (8.29)

Il problema di minimizzare la (8.27), con n1+ · · ·+nM = n, si può riformulare
quindi nel modo seguente:{

minimizzare :
∑M

g=1

w2
gV 2

g

ng

con il vincolo :
∑M

g=1 ng = n
. (8.30)

Usando esattamente la stessa tecnica della Sezione 7.4.1, è immediato
verificare (Esercizio 8.7) che la soluzione del problema (8.30) è del tipo:

ng = n
wg Vg∑M

h=1 wh Vh

; g = 1, . . . , M. (8.31)

Il punto più debole di questo approccio è nel modo in cui i pesi andrebbe-
ro scelti. In linea di principio, il peso qj rappresenta l’importanza relativa del
carattere Yj. In questo modo, però, la soluzione (8.31) dipende dalle unità di
misura usate per i diversi caratteri. Ad es., misurare le stature in centimetri
anziché in metri moltiplica la corrispondente varianza per un fattore 10000,
e quindi modifica i valori delle numerosità campionarie ottimali (8.31). Un
possibile modo per ovviare a questo difetto consiste nel rendere i pesi inver-
samente proporzionali alle deviazioni standard dei corrispondenti caratteri.
In questo modo, però, viene meno il significato stesso dei pesi. Per ulteriori
approfondimenti su questo punto si rinvia al volume Cicchitelli e altri (1992).

8.4 Stimatori di tipo quoziente nel campionamento
stratificato

Fino ad ora in coppia con il disegno stratificato è stato sempre utilizzato lo
stimatore μ̂str, di cui sono state studiate le proprietà. Vi sono però circostanze
in cui può essere vantaggioso usare stimatori di tipo differente, che incorporano
informazioni ausiliarie. Il caso più semplice è quello in cui tali informazioni
siano rappresentate da un carattere X le cui modalità siano note a priori su
tutte le unità della popolazione. Per evitare confusioni con la notazione usata
nei paragrafi precedenti, sottolineiamo subito che il carattere ausiliario X a
cui qui si fa riferimento non è lo stesso usato come carattere di stratificazione.
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Per quanto riguarda il carattere di interesse Y, la notazione è esattamente
quella usata fino ad ora. Per quanto attiene al carattere ausiliario X , sia xgi la
modalità che esso assume in corrispondenza dell’unità i (= 1, . . . , Ng) dello
strato g (= 1, . . . , M). Indichiamo poi con

μxg =
1

Ng

Ng∑
i=1

xgi, S2
xg =

1
Ng − 1

Ng∑
i=1

(xgi − μxg)2,

Sxy g =
1

Ng − 1

Ng∑
i=1

(xgi − μxg) (ygi − μyg)

rispettivamente la media, la varianza corretta di X e la covarianza corretta
tra X e Y nello strato g-mo (g = 1, . . . , M).

Se dalla popolazione si seleziona un campione stratificato s = (s1, . . . , sM ),
in cui il sottocampione sg dello strato g-mo ha numerosità ng, sia infine

xg =
1
ng

∑
i∈sg

xgi

la media campionaria di X nello strato g-mo.

8.4.1 Stimatore per quoziente separato

Lo stimatore μ̂str si fonda su un approccio molto semplice:

– stimare le medie μy1, . . . , μyM di Y separatamente strato per strato,
tramite le corrispondenti medie campionarie y1, . . . , yM ;

– ricombinare le M stime in (i) per ottenere una stima di μy.

Alla base dello stimatore per quoziente separato vi è un’idea elemen-
tare: cercare di usare il carattere ausiliario X per migliorare le stime di
μy1, . . . , μyM che si ottengono tramite le medie campionarie y1, . . . , yM . Se
tra i due caratteri Y e X intercorre, in via approssimata, una relazione di
“quasi-proporzionalità” all’interno di ciascuno strato, si può pensare di sti-
mare μyg con uno stimatore per quoziente (ristretto allo strato g-mo) del
tipo

μ̂q g =
yg

xg
μxg, g = 1, . . . , M. (8.32)

Gli M stimatori (8.32) vanno poi ricombinati assieme, per produrre una
stima della media μy della popolazione. Per effettuare tale ricombinazione,
seguiamo esattamente lo stesso approccio che porta allo stimatore μ̂str. L’u-
nica differenza è che ora si hanno gli M stimatori μ̂q 1, . . . , μ̂q M anziché le
medie campionarie di strato y1, . . . , yM . Si ha in questo modo lo stimatore
per quoziente separato, che assume la forma:

μ̂q sep =
M∑

g=1

wg μ̂q g . (8.33)
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Le proprietà dello stimatore per quoziente separato (8.33) si ottengono
facilmente a partire da quelle dello stimatore quoziente visto nel Capitolo 6.
Poniamo:

Rg =
μyg

μxg
, R̂g =

yg

xg
; g = 1, . . . , M

cos̀ı che si può scrivere

μ̂q sep =
M∑

g=1

wg R̂g μxg.

Essendo E[R̂g] �= Rg, si ha che E[μ̂q g] �= μyg, e quindi lo stimatore (8.33)
è distorto. La sua varianza esatta, inoltre, non è esprimibile in forma esplicita
(tranne casi eccezionali). Come conseguenza di quanto visto nel Capitolo 6, se
le numerosità campionarie di strato n1, . . . , nM sono sufficientemente grandi
si può scrivere

E[μ̂q g] = E[R̂g] μxg ≈ Rg μxg = μyg ;

V (μ̂q g) = V (R̂g)μ2
xg ≈

(
1
ng

− 1
Ng

) {
S2

yg + R2
g S2

xg − 2 Rg Sxy g

}
;

MSE(μ̂q g) = MSE(R̂g)μ2
xg ≈

(
1
ng

− 1
Ng

) {
S2

yg + R2
g S2

xg − 2 Rg Sxy g

}
.

De queste relazioni si ottiene facilmente la seguente proposizione.

Proposizione 8.2. Se il disegno campionario è stratificato valgono le seguenti
relazioni:

E[μ̂q sep] =
M∑

g=1

wg E[μ̂q g ] ≈
M∑

g=1

wg μyg = μy;

V (μ̂q sep) =
M∑

g=1

w2
g V (μ̂q g)

≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

) {
S2

yg + R2
g S2

xg − 2 Rg Sxy g

}
;

MSE(μ̂q sep) ≈ V (μ̂q sep)

≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

) {
S2

yg + R2
g S2

xg − 2 Rg Sxy g

}
.

Sulla base dei risultati del Capitolo 6 non è difficile costruire uno stimato-
re della varianza (e quindi dell’errore quadratico medio) dello stimatore quo-
ziente separato. Infatti, procedendo come nella Sezione 6.3 è facile verificare
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che:

S2
yg + R2

g S2
xg − 2 Rg Sxy g =

1
Ng − 1

Ng∑
i=1

(ygi + Rg xgi)2

per cui si può scrivere:

V (μ̂q g) ≈
(

1
ng

− 1
Ng

)
1

Ng − 1

Ng∑
i=1

(ygi + Rg xgi)2.

Procedendo lungo le linee della Sezione 6.3, come “ragionevole” stimatore di
V (μ̂q g) si può fare riferimento a

V̂ (μ̂q g) =
(

1
ng

− 1
Ng

)
1

ng − 1

∑
i∈sg

(ygi − R̂g xgi)2.

In definitiva, quindi, come stimatore della varianza (ed anche dell’errore
quadratico medio) di μ̂q g avremo il seguente:

V̂ (μ̂q g) =
M∑

g=1

w2
g V̂ (μ̂q g)

=
M∑

g=1

w2
g

(
1
ng

− 1
Ng

) ⎧⎨⎩ 1
ng − 1

∑
i∈sg

(ygi − R̂g xgi)2

⎫⎬⎭ . (8.34)

Utilizzando poi l’approssimazione normale per la distribuzione di proba-
biltà dello stimatore per quoziente separato, sulla base della (8.34) è facile
costruire un intervallo di confidenza approssimato per μy.

Prima di concludere, vale la pena ritornare brevemente sugli aspetti logici
riguardanti l’appropriatezza dello stimatore per quoziente separato. Si è già
detto che esso fornisce risultati buoni se tra i due caratteri Y e X intercorre
una relazione approssimata di “quasi-proporzionalità” all’interno di ciascuno
strato. Ciò è grosso modo equivalente a richiedere che, all’interno di ogni
strato, la retta di regressione di Y rispetto a X passi approssimativamente per
l’origine. In questo caso, come visto nel Capitolo 6, il coefficiente di regressione
di Y rispetto a X nello strato g-mo è proprio uguale a Rg = μyg/μxg. Dal
momento che le quantità Rg sono stimate separatamente in ogni strato (con le
R̂g), lo stimatore μ̂q sep non richiede nessuna ipotesi aggiuntiva. Le quantità
Rg possono essere uguali o differenti, ma ciò ha scarsa rilevanza sulla qualità
dello stimatore μ̂q sep, dal momento che essi sono stimati separatamente in
ogni strato.

8.4.2 Stimatore per quoziente combinato

Lo stimatore per quoziente separato (8.33) si basa essenzialmente sull’uso dello
stimatore per quoziente a livello di singoli strati. Un’alternativa abbastanza
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semplice è quella di usare le idee di base del metodo del quoziente a livello
dello stimatore μ̂str. Come più volte sottolineato nel Capitolo 6, lo stimatore
per quoziente μ̂q nel caso di campionamento ssr ha una struttura del tipo

μ̂q =
ys

xs
μx =

(
stima di

μy

μx

)
× μx. (8.35)

Il fatto che nella (8.35) compaiono le medie campionarie ys, xs dipende solo
dal fatto che, essendo il disegno campionario di tipo ssr, esse sono usate come
stimatori “naturali” rispettivamente di μy e μx.

Se il disegno campionario è di tipo stratificato, come stimatori “naturali”
di μy e μx si possono usare rispettivamente:

μ̂str y =
M∑

g=1

wg yg, μ̂str x =
M∑

g=1

wg xg

per cui come stimatore di R = μy/μx si farà riferimento a:

R̂str =
μ̂str y

μ̂str x
. (8.36)

Usando sempre la struttura di base (8.35) si ottiene lo stimatore per
quoziente combinato:

μ̂q com = R̂str μx

=

∑M
g=1 wg yg∑M
g=1 wg xg

μx. (8.37)

Lo studio delle proprietà esatte dello stimatore (8.37) è complicato, in
quanto l’avere al denominatore lo stimatore μ̂str x, che varia al variare dei
dati campionari, fa s̀ı che il valore atteso di μ̂q com non sia (esclusi alcuni casi
eccezionali) esprimibile in forma esplicita. Alcuni risultati si possono ottenere
usando lo stesso approccio del Capitolo 6. In particolare, usando la notazione
in (8.36), è facile vedere (Esercizio 8.8) che la distorsione di μ̂q com assume la
seguente espressione:

B(μ̂q com) = −C(R̂str, μ̂str x). (8.38)

Per numerosità campionarie totali n abbastanza “grandi”, usando sostan-
zialmente gli stessi argomenti già adoperati sia nel Capitolo 6 che per lo sti-
matore quoziente separato si ha che E[R̂str] è approssimativamente uguale a
R = μy/μx. Si può quindi enunciare la seguente proposizione.
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Proposizione 8.3. Se il disegno campionario è stratificato valgono le seguenti
relazioni:

E[μ̂q com] = E
[
R̂str

]
μx ≈ R μx = μy; (8.39)

V (μ̂q com) ≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

){
S2

yg + R2 S2
xg − 2 RSxy g

}
; (8.40)

MSE(μ̂q sep) ≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

){
S2

yg + R2 S2
xg − 2 RSxy g

}
. (8.41)

Dimostrazione. Gli argomenti sono gli stessi usati per il disegno ssr. Si può
anzitutto scrivere

R̂str − R =
μ̂str y − R μ̂str x

μ̂str x

=
μ̂str y − R μ̂str x

μx
+ (μ̂str y − Rμ̂str x)

(
1

μ̂str x
− 1

μx

)
.

Con uno sviluppo di Taylor nel punto μx si ottiene poi

1
μ̂str x

=
1
μx

+ Resto ≈ 1
μx

da cui segue, in definitiva, che

R̂str ≈ R +
μ̂str y − R μ̂str x

μx

e quindi

μ̂q com ≈ μy + μ̂str y − Rμ̂str x. (8.42)

Dalla (8.42) si ha subito:

E [μ̂q com] ≈ μy + E [μ̂str y] − R E [μ̂str x]
= μy + (μy − Rμx)
= μy

ossia la (8.39).
Per quanto concerne la (8.40), è sufficiente osservare che, sempre per la

(8.42), si può scrivere

μ̂q com ≈ μy +
M∑

g=1

wg (yg − R xg)
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da cui si ottiene

V (μ̂q com) ≈ V

(
M∑

g=1

wg (yg − R xg)

)

=
M∑

g=1

w2
g V (yg − R xg)

=
M∑

g=1

w2
g {V (yg) + R2 V (xg) − 2 RC(V (yg, yg)}

=
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
{S2

yg + R2 S2
xg − 2 RSxy g}.

Infine, la (8.41) è una immediata conseguenza di (8.39) e (8.40). ��

La (8.40) suggerisce anche il seguente stimatore della varianza di μ̂q com:

V̂ (μ̂q com) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

){
ŝ2
yg + R̂2

str ŝ2
xg − 2 R̂str ŝxy g

}

dove R̂str è dato dalla (8.36), e

ŝ2
yg =

1
ng − 1

∑
i∈sg

(ygi − yg)
2, ŝ2

xg =
1

ng − 1

∑
i∈sg

(xgi − xg)2, (8.43)

ŝxy g =
1

ng − 1

∑
i∈sg

(xgi − xg) (ygi − yg), (8.44)

(con g = 1, . . . , M) sono rispettivamente la varianze campionarie corrette di
Y e X e la covarianza campionaria corretta tra Y e X , nello strato g-mo.

Per quanto attiene all’efficienza dei due stimatori per quoziente separa-
to e combinato, essa dipende da due fattori: i rapporti Rg = μyg/μxg tra le
medie di strato, e le numerosità campionarie di strato ng. Lo stimatore per
quoziente separato, in generale, fornisce risultati tanto migliori quanto più i
rapporti Rg assumono valori “simili”. Se si ha ragione di ritenere che i rappor-
ti Rg assumono valori di molto differenti nei diversi strati, lo stimatore μ̂q com

avrà un’efficienza anche parecchio inferiore a μ̂q sep. D’altra parte, non è da
trascurare il ruolo delle numerosità campionarie ng. Se queste sono piccole, i
rapporti campionari R̂g = yg/xg forniranno in genere stime piuttosto impre-
cise delle Rg, cos̀ı che l’efficienza dello stimatore per quoziente separato tende
a degradarsi. In tali condizioni sarà quindi preferibile usare lo stimatore per
quoziente combinato.
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8.5 Stimatori per regressione nel campionamento
stratificato

In maniera del tutto simile a quanto fatto nel precedente paragrafo, si possono
introdurre gli stimatori per regressione separato e combinato. Supponiamo
sempre che vi sia un carattere X le cui modalità siano note a priori su tutte
le unità della popolazione. La notazione che useremo qui è esattamente la
stessa usata nel paragrafo precedente. Inoltre, indicheremo con:

by/x g =
Sxy g

S2
xg

il coefficiente di regressione di Y rispetto a X nello strato g-mo (g =
1, . . . , M).

Dalla popolazione viene selezionato un campione stratificato s = (s1, . . . ,
sM), in cui il sottocampione sg dello strato g-mo ha numerosità ng. In aggiunta
alle grandezze introdotte nel paragrafo precedente (in particolare, le (8.43),
(8.44)) indichiamo con

b̂y/x g =
ŝxy g

ŝ2
xg

, g = 1, . . . , M

il coefficiente di regressione campionario di Y rispetto a X nello strato g
(= 1, . . . , M).

8.5.1 Stimatore per regressione separato

Lo stimatore per regressione separato, che d’ora in avanti indicheremo con
μ̂reg sep si fonda su un approccio del tutto simile a quello che porta, nel caso di
disegno ssr, allo stimatore di regressione “usuale”. Infatti, nel caso di disegno
campionario stratificato, un’estensione del tutto naturale dello stimatore alle
differenze introdotto nel Capitolo 5 è il seguente:

μ̂gd sep =
M∑

g=1

wg {yg − cg (xg − μxg)} (8.45)

dove c1, . . . , cM sono arbitrari numeri reali. Non è difficile verificare (Eser-
cizio 8.9) che μ̂gd sep è uno stimatore corretto di μy, e che la sua varianza è
pari a

V (μ̂gd sep) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
{S2

yg + c2
g S2

xg − 2 cg Sxy g}. (8.46)

Un criterio molto naturale per scegliere c1, . . . , cM consiste nell’assegnare
ad essi i valori che rendono minima la (8.46), in modo da avere la massima
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efficienza di stima. È immediato verificare (Esercizio 8.10) che tali valori ot-
timali sono i coefficienti di regressione di Y rispetto a X nei diversi strati. In
simboli:

c1 = by/x 1, . . . , cM = by/x M .

I coefficienti by/x g sono incogniti, per cui questa strada non è realmente
percorribile. Tuttavia, si può pensare di stimarli su base campionaria, tramite
i corrispondenti coefficienti di regressione campionaria b̂y/x g . Si ottiene in
questo modo lo stimatore per regressione separato, che assume la forma:

μ̂reg sep =
M∑

g=1

wg {yg − b̂y/x g (yg − μyg)}

=
M∑

g=1

wg μ̂reg g (8.47)

in cui

μ̂reg g = yg − b̂y/x g (yg − μyg), g = 1, . . . , M

è lo stimatore per regressione “usuale” della media μyg dello strato g-mo. La
(8.47) mostra che lo stimatore per regressione separato è null’altro che una
media (ponderata con pesi wg) degli stimatori per regressione delle medie dei
diversi strati in cui è suddivisa la popolazione.

Le proprietà dello stimatore per regressione separato (8.47) si ottengono
in modo simile a quanto visto per lo stimatore per quoziente separato. Sia

ρxy g =
Sxy g

Sxg Syg

il coefficiente di correlazione lineare tra X e Y nello strato g. Come conse-
guenza di quanto visto nel Capitolo 5 (e in particolare della Proposizione 5.2)
si ha che

E[μ̂reg g ] ≈ μyg ;

V (μ̂reg g) ≈
(

1
ng

− 1
Ng

)
S2

yg(1 − ρ2
xy g);

MSE(μ̂reg g) ≈
(

1
ng

− 1
Ng

)
S2

yg(1 − ρ2
xy g).

Pertanto, è facile provare la seguente proposizione.
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Proposizione 8.4. Se il disegno campionario è stratificato valgono le seguenti
relazioni:

E[μ̂reg sep] =
M∑

g=1

wg E[μ̂reg g] ≈
M∑

g=1

wg μyg = μy;

V (μ̂reg sep) =
M∑

g=1

w2
g V (μ̂reg g) ≈

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg(1 − ρ2
xy g);

MSE(μ̂reg sep) ≈ V (μ̂reg sep) ≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg(1 − ρ2
xy g).

Non è neanche difficile costruire uno stimatore della varianza (e quindi
dell’errore quadratico medio) dello stimatore per regressione separato. Pro-
cedendo infatti come nella Sezione 5.5, come stimatore di V (μ̂reg sep) si può
usare:

V̂ (μ̂reg g) =
(

1
ng

− 1
Ng

) (
ŝ2
yg − b̂2

y/x g ŝ2
xg

)
.

Utilizzando la Proposizione 8.4, come stimatore di V (μ̂reg sep) (e di
MSE(μ̂reg sep)) si ha il seguente:

V̂ (μ̂reg g) =
M∑

g=1

w2
g V̂ (μ̂reg g) =

M∑
g=1

w2
g

(
1
ng

− 1
Ng

) (
ŝ2
yg − b̂2

y/x gŝ
2
xg

)
.

8.5.2 Stimatore per regressione combinato

Come visto nel Capitolo 5, lo stimatore di regressione è stato costruito a
partire dallo stimatore alle differenze μ̂d, c = ys − c(xs − μx), determinando
dapprima il valore di c che minimizza la varianza di μ̂d, c, e poi stimando tale
quantità sulla base dei dati campionari. Lo stimatore di regressione combinato
può essere costruito a partire da considerazioni del tutto simili. Il punto di
partenza è costituito dal seguente stimatore di μy:

μ̂gd c = μ̂str y − c (μ̂str y − μx) =
M∑

g=1

wg (yg − c (xg − μx)) (8.48)

essendo c una arbitraria costante reale. Lo stimatore (8.48) può essere visto
come un caso speciale dello stimatore (8.45), in cui c1, . . . , cM sono tutti
uguali. È facile provare (Esercizio 8.11) che lo stimatore μ̂gd c è corretto, e che
la sua varianza è pari a

V (μ̂gd c) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)(
S2

yg + c2 S2
xg − 2 c Sxy g

)
. (8.49)
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Per quanto riguarda la costante c, una scelta molto naturale consiste nello
scegliere il valore che rende minima la varianza dello stimatore (8.48), ovvero
che ne massimizza l’efficienza. Indichiamo con bo tale valore. È immediato
verificare (Esercizio 8.12) che esso risulta pari a

bo =

∑M
g=1 w2

g

(
1

ng
− 1

Ng

)
Sxy g∑M

g=1 w2
g

(
1

ng
− 1

Ng

)
S2

xg

. (8.50)

Il valore effettivamente assunto dalla (8.50) è incognito, in quanto dipende
dalle incognite quantità Sxy g (oltre che da S2

xg). Sostituendo alle Sxy g e S2
xg

le loro controparti campionarie, pari rispettivamente a ŝxy g , ŝ2
xg , si ottiene la

seguente stima campionaria di bo:

b̂o =

∑M
g=1 w2

g

(
1

ng
− 1

Ng

)
ŝxy g∑M

g=1 w2
g

(
1

ng
− 1

Ng

)
ŝ2
xg

. (8.51)

Sostituendo infine nella (8.48) a c il valore b̂o dato dalla (8.51) si ottiene lo
stimatore per regressione combinato:

μ̂reg com =
M∑

g=1

wg (yg − b̂o (xg − μx)) . (8.52)

Lo stimatore (8.52) è distorto, e lo studio delle sue proprietà esatte as-
sai complicato. Tuttavia, un suo studio approssimato non presenta difficoltà
di rilievo. Usando la stessa tecnica della Proposizione 8.3, se la numerosità
campionaria n è sufficientemente elevata, si può scrivere in via approssimata
b̂o ≈ bo, e quindi anche

μ̂reg com ≈
M∑

g=1

wg (yg − bo (xg − μx)).

Usando in buona sostanza gli stessi argomenti già adoperati per lo stimatore
quoziente combinato, si ottiene quindi la seguente proposizione.

Proposizione 8.5. Se il disegno campionario è stratificato valgono le seguenti
relazioni:

E[μ̂reg com] ≈ E

[
M∑

g=1

wg (yg − bo (xg − μx))

]
= μy;

V (μ̂reg com) ≈ V

(
M∑

g=1

wg (yg − bo (xg − μx))

)

=
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)(
S2

yg + b2
o S2

xg − 2 bo Sxy g

)
; (8.53)
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MSE(μ̂reg com) ≈ V (μ̂reg com)

≈
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)(
S2

yg + b2
o S2

xg − 2 bo Sxy g

)
.

L’espressione approssimata (8.53) suggerisce infine il seguente stimatore
di V (μ̂reg com):

V̂ (μ̂reg com) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)(
ŝ2
yg + b̂2

o ŝ2
xg − 2 b̂o ŝxy g

)
.

Per quanto riguarda l’efficienza dei due stimatori per regressione separato
e combinato, iniziamo con l’osservare che, posto

qg =
w2

g

(
1

ng
− 1

Ng

)
S2

xg∑M
h=1 w2

h

(
1

nh
− 1

Nh

)
S2

xh

; g = 1, . . . , M

e tenendo conto che by/x g = Sxy g/S2
xg, la (8.50) si può scrivere come

bo =
M∑

g=1

qg by/x g .

In altri termini, bo è una media dei coefficienti di regressione nei diversi strati,
ponderati con i pesi qg. Tenendo poi conto che

b2
y/x g S2

xg = by/x g Sxy g,
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
Sxy g

= bo

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

xg

dalle Proposizioni 8.4, 8.5 si desume subito la seguente relazione:

V (μ̂reg com) − V (μ̂reg sep) ≈
{

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

xg

}

×
{

M∑
g=1

qg b2
y/x g − b2

o

}

=

{
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

xg

}

×
M∑

g=1

qg (by/x g − bo)2. (8.54)
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La (8.54) mostra che la differenza V (μ̂reg com) − V (μ̂reg sep) è sempre (in
via approssimata) non negativa, e quindi che V (μ̂reg sep) è più piccola di
V (μ̂reg com). Lo stimatore per regressione separato è quindi più efficiente di
quello combinato. Quest’affermazione va presa cum grano salis, per una fonda-
mentale ragione: le espressioni usate per le varianze degli stimatori μ̂reg com e
μ̂reg sep sono valide solo in via approssimata. In generale, quindi, se le numero-
sità di strato sono abbastanza piccole, l’approssimazione usata per V (μ̂reg sep)
può essere anche molto cattiva, e quindi la conclusione a cui si è giunti è del
tutto fuorviante. Come linea guida si può affermare che se le numerosità cam-
pionarie di strato sono piccole, o se i coefficienti by/x g assumono valori simili
nei diversi strati, sarà preferibile usare lo stimatore per regressione combinato.
Se invece i coefficienti by/x g sono molto diversi tra loro, a meno che le nume-
rosità campionarie di strato siano piccole, è preferibile usare lo stimatore per
regressione separato.

8.6 Post-Stratificazione

8.6.1 Aspetti di base

Per poter usare un disegno di tipo stratificato è necessario conoscere a
priori quali unità formino gli strati in cui è suddivisa la popolazione (pre-
stratificazione). La post-stratificazione viene impiegata quando questa infor-
mazione non è disponibile, ma si conosce solo quante unità formano ciascuno
strato. Per sapere a quale strato appartenga un’unità è necessario osservare
l’unità stessa.

Formalmente, ciò che è noto sono solo le numerosità N1, N2, . . ., NM dei
diversi strati. Non sono invece noti i valori della variabile di stratificazione
usata (o delle variabili di stratificazione, se ne sono usate più di una). Que-
sti ultimi sono osservabili solo sulle unità del campione. Pertanto, solo dopo
aver osservato un’unità campionaria è possibile conoscere il relativo strato di
appartenenza.

In tali condizioni la soluzione più immediata consiste nel ricorrere al cam-
pionamento casuale semplice, e nell’utilizzare successivamente, a livello di sti-
ma, l’informazione relativa al carattere di stratificazione. Dopo aver estratto
il campione, oltre alla variabile di interesse Y si osserva anche lo strato a cui
appartiene ciascuna delle unità del campione. Tale stratificazione a posteriori
viene utilizzata come strumento ausiliario indiretto per l’inferenza.

Sia s il campione di ampiezza n selezionato dalla popolazione secondo
un disegno ssr, e, come detto, supponiamo di conoscere, da fonti censuarie
o amministrative, la dimensione Ng degli strati della popolazione. Il cam-
pione s può essere suddiviso in M sottocampioni (post-strati campionari)
s = (s1, . . . , sM). Il generico sottocampione sg (g = 1, . . . , M) di numero-
sità ng è formato da tutte le unità campionarie che appartengono allo strato
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g. Denotiamo inoltre con n = (n1, . . . , nM ) la M -pla delle numerosità dei
sottocampioni. Chiaramente, è n1 + · · ·+ nM = n.

Si osservi che essendo le numerosità dei sottocampioni note solo dopo
l’estrazione del campione, la M -pla n = (n1, . . . , nM) è la determinazione di
una variabile aleatoria.

Supponiamo, per il momento, che il campione s contenga almeno un’u-
nità di ciascuno strato, cos̀ı che i numeri n1, . . ., nM sono tutti positivi. Lo
stimatore post-stratificato della media della popolazione μy è dato da

μ̂ps =
M∑

g=1

wgyg (8.55)

dove yg e wg = Ng/N rappresentano rispettivamente la media campionaria e
il peso dello strato g-esimo.

Esempio 8.3. Si consideri ancora l’Esempio 7.1, in cui si fa riferimento alla
popolazione di N = 1570 studenti universitari del file stature.txt; nel file
stesso sono riportati numero di matricola, sesso e statura di ciascun studen-
te. Convenzionalmente lo strato 1 è quello degli studenti maschi, e lo strato
2 quello degli studenti femmine. Supponiamo di non sapere, a priori, quali
studenti siano maschi e quali femmine, ma solo che nella popolazione vi sono
N1 = 820 maschi e N2 = 750 femmine. I pesi degli strati sono rispettivamente
w1 = 0.52, w2 = 0.48. Inoltre, la statura media dei maschi, nella popolazione,
è μy1 = 177.00, mentre quella delle femmine è μy2 = 168.26. La statura media
generale è μy = 172.80.

Per stimare la statura media μy si seleziona un campione ssr di n = 100
studenti, di cui si osserva non solo la statura, ma anche il sesso. I dati cam-
pionari sono riportati nel file campstature_ssr.txt. La media campionaria
è ys = 171.98. Si è in presenza di una sottostima, in quanto μy = 172.80.

Ora, nel campione si osservano n1 = 47 maschi e n2 = 53 femmine. Si
tratta di un campione un po’ “sbilanciato”, in quanto contiene il 47% di
maschi (contro il 52% nella popolazione) e il 53% di femmine (contro il 48%
nella popolazione). Poiché i maschi sono mediamente più alti delle femmine,
ci si può attendere che lo sbilanciamento del campione contribuisca a far
sottostimare la statura media della popolazione.

Le medie campionarie dei due sottocampioni dei maschi e delle femmine
sono rispettivamente pari a

y1 = 175.87, y2 = 168.53

cos̀ı che lo stimatore post-stratificato è eguale a

μ̂ps = 0.52× 175.87 + 0.48× 168.53 = 172.34.

Una parte della sottostima della media campionaria è stata quindi corretta da
μ̂ps. Se si osservano i valori delle medie campionarie e delle numerosità cam-
pionarie di strato, è facile accorgersi che la media campionaria ys sottostima
μy per due ragioni:
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1. il sottocampione dei maschi sottostima la corrispondente media di strato,
in quanto è y1 = 175.87 contro μy1 = 177.00;

2. nel campione vi sono più femmine che maschi (53% contro 47%), mentre
nella popolazione accade il contrario (48% contro 52%).

La post-stratificazione elimina in questo caso la causa 2 di sottostima,
mentre ovviamente nulla può per la 1. ��

Prima di studiare formalmente le proprietà dello stimatore (8.55), sono
necessarie alcune precisazioni. Il difetto principale della post-stratificazione
riguarda la mancanza di controllo sulla allocazione campionaria n che può
condurre a una o alcune numerosità di strato ng nulle o molto piccole. In
particolare, se qualcuna delle ng è nulla perde di senso la corrispondente media
campionaria yg, e quindi lo stimatore post-stratificato non può essere definito
come in (8.55). Per ovviare a tale inconveniente si ricorre al collassamento
degli strati che consiste nel riunificare post-strati campionari vuoti o poveri con
post-strati più consistenti. Chiaramente il collassamento implica una riduzione
del numero di strati operativi, dando vita ad una stratificazione meno fine di
quella originaria.

8.6.2 Proprietà elementari dello stimatore
post-stratificato

Per studiare le proprietà dello stimatore post-stratificato è in primo luogo
necessario studiare le proprietà del numero di unità campionarie dei diversi
strati, ossia della variabile aleatoria n = (n1, . . . , nM ). La probabilità di ot-
tenere una data M -pla (n1, . . . , nM ) è la somma delle probabilità di tutti i
campioni che contengono n1 unità del primo strato, n2 unità del secondo stra-
to, . . ., nM unità dello strato M -mo. Poiché ciascun campione ha probabilità
1/
(
N
n

)
, la probabilità della M -pla n = (n1, . . . , nM ) è:

Pr(n1, . . . , nM )

=
# di campioni contenti n1 unità dello strato 1, . . . , nM dello strato M(

N
n

)
=

(
N1
n1

)
· · ·
(
NM

nM

)(
N
n

) .

La probabilità di un campione s condizionata a n = (n1, . . . , nM ) è quindi

Pr(s |n) =
Pr(s, n)
Pr(n)

=
Pr(s)
Pr(n)

=
1(

N1
n1

)
· · ·
(
NM

nM

) (8.56)
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se il campione s contiene n1 unità dello strato 1, . . ., nM unità dello strato M ,
mentre è uguale a 0 in caso contrario. Condizionatamente a n = (n1, . . . , nM ),
s è quindi equivalente ad un campione stratificato in cui si selezionano n1

unità dello strato 1, . . ., nM unità dello strato M . Attenzione: il disegno usa-
to per selezionare s è di tipo ssr. Il condizionamento rispetto a n implica
il “restringersi” ai soli campioni s = (s1, . . . , sM) che contengono n1 unità
dello strato 1, . . ., nM unità dello strato M . Questi non sono tutti i pos-
sibili campioni che può produrre il disegno ssr. Il condizionamento, in un
certo senso, “riduce” lo spazio dei campioni (e ne modifica di conseguenza la
probabilità).

Procedendo condizionatamente a n, ed assumendo che le numerosità cam-
pionarie di strato siano tutte positive (ng > 0 per ciascuno strato g) è im-
mediato provare la seguente proposizione, dove con i simboli Es[ |n] e Vs[ |n]
si indicano rispettivamente il valore atteso e la varianza rispetto al disegno
campionario, ma condizionatamente alla “configurazione” n = (n1, . . . , nM ).

Proposizione 8.6. Se n è tale che n1 > 0, . . ., nM > 0, condizionatamente
a n, yps è uno stimatore corretto della media della popolazione:

Es [μ̂ps |n] = μy (8.57)

e la sua varianza è pari a

Vs(μ̂ps |n) =
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg. (8.58)

Dimostrazione. Per provare la (8.57) basta osservare che, per la (8.56),

Es[μ̂ps |n] = Es

[
M∑

g=1

wgyg

∣∣∣∣∣n
]

=
M∑

g=1

wg E[yg |n]

=
M∑

g=1

wgμyg

= μy.

Per quanto riguarda la varianza (condizionata) dello stimatore post-stratifi-
cato, sempre dalla (8.56) si ricava che

Vs(μ̂ps |n) =
M∑

g=1

w2
gVs(yg |n)

=
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg

che è l’usuale formula della varianza per campioni stratificati. ��
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La stima della varianza condizionata (8.58) è molto semplice, in quanto
basta sostituire le S2

yg in (8.58) con le corrispondenti varianze campionarie
corrette di strato.

Lo studio delle proprietà non condizionate dello stimatore μ̂ps richiede
alcune complicazioni formali, dovute al modo in cui μ̂ps è definito nel ca-
so di campioni che non contengono unità di uno o più strati. La tecnica di
collassamento degli strati porta ad uno stimatore distorto.

Per capire perché μ̂ps è distorto quando non contiene nessuna unità di
uno strato, supponiamo che sia n1 = 0, cos̀ı che nel campione s non vi sono
unità dello strato 1. Supponiamo invece che vi siano unità dello strato 2. Il
collassamento dei due strati 1, 2 consiste nel formare un unico “macro-strato”
collassato di peso w̃ = w1 + w2, e di media μ̃ = w1

w1+w2
μy1 + w2

w1+w2
μy2.

Per stimare μ̃ viene usata la media campionaria del “macro-strato”, che però,
essendo n1 = 0, è del tipo

1
n2

∑
i∈s2

yi

e quindi non contiene mai unità dello strato 1. Essa non può quindi essere in
alcun modo un stimatore corretto di μ̃. Per la distorsione (non condizionata)
di μ̂ps in un caso speciale si veda l’Esercizio 8.13.

Ad ogni modo, poiché per n “abbastanza grande” la probabilità che una o
più delle numerosità campionarie di strato siano nulle diventa sostanzialmente
trascurabile, in via approssimata lo stimatore μ̂ps è corretto anche non condi-
zionatamente, e sempre in via approssimata si può calcolare la sua varianza.
I relativi risultati sono riportati nella successiva Proposizione 8.7.

Proposizione 8.7. μ̂ps è uno stimatore approssimativamente corretto della
media della popolazione:

E [μ̂ps] ≈ μy (8.59)

e la sua varianza è in via approssimata pari a

V (yps) ≈
(

1
n
− 1

N

) M∑
g=1

wgS
2
g +

1
n2

M∑
g=1

(1 − wg)S2
yg . (8.60)

Dimostrazione. Le espressioni approssimate (8.59), (8.60) si ottengono, come
detto, considerando trascurabile la probabilità che una o più delle ng sia pari a
0. Indichiamo con Es[ |n] e Vs[ |n] rispettivamente il valore atteso e la varianza
rispetto al disegno campionario condizionatamente a n = (n1, . . . , nM ), e
con En, Vn rispettivamente media e varianza rispetto alla distribuzione di
probabilità delle numerosità n1, . . ., nM . Si ha

E[μ̂ps] = En [Es ( μ̂ps |n)]
≈ En [Es ( μ̂ps |n) |n1 > 0, . . . , nM > 0]
= En[μy |n1 > 0, . . . , nM > 0]
= μy.
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La varianza non condizionata si ricava in modo simile scrivendo

V (μ̂ps) = En [Vs(μ̂ps |n)] + Vn (Es[μ̂ps |n)))
≈ En [Vs(μ̂ps |n) |n1 > 0, . . . , nM > 0]

+Vn (Es[μ̂ps |n)) |n1 > 0, . . . , nM > 0) . (8.61)

Essendo il secondo termine della (8.61) pari a zero come conseguenza della
(8.57), si ottiene

V (μ̂ps) ≈ En [Vs(μ̂ps |n) |n1 > 0, . . . , nM > 0]

= En

[
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg

∣∣∣∣∣n1 > 0, . . . , nM > 0

]

=
M∑

g=1

w2
g

(
E

[
1
ng

∣∣∣∣ng > 0
]
− 1

Ng

)
S2

yg

=
(

1
n
− 1

N

) M∑
g=1

wgS
2
g +

1
n2

M∑
g=1

(1 − wg)S2
yg

dove per E(n−1
g |nq > 0) si utilizza l’approssimazione di Stephan (Cochran,

1977)

E

[
1
ng

∣∣∣∣ng > 0
]
≈ 1

nwg
− 1

n2wg
+

1
n2w2

g

. ��

Nella (8.60) il primo termine coincide con la varianza di un campionamen-
to stratificato con allocazione proporzionale. Il secondo termine è dovuto alla
casualità delle numerosità ng, la quale introduce una ulteriore fonte di va-
riabilità nello stimatore. Tale termine può essere trascurato se la numerosità
campionaria n è sufficientemente grande.

L’uso dello post-stratificazione richiede la conoscenza dei pesi wg = Ng/N ,
desumibili da dati censuari o amministrativi, che generalmente risultano non
aggiornati. Se i pesi utilizzati ug si differenziano dai pesi veri wg, allora lo
stimatore

μ̂u =
M∑

g=1

ug yg (8.62)

risulterà diverso dallo stimatore (8.55). Inoltre la distorsione di yu sarà pari a

E(yu|n) − μy =
M∑

g=1

(ug − wg)μyg . (8.63)

Di conseguenza, se i pesi sono poco attendibili nascono dubbi sul reale va-
lore della post-stratificazione poichè in alcune situazioni l’incremento della
distorsione potrebbe compensare l’eventuale riduzione nella varianza.
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A differenza della stratificazione, nella post-stratificazione le variabili ausi-
liarie possono essere scelte in relazione alle variabili di interesse i cui parametri
si vogliono stimare allo scopo di massimizzare il guadagno in precisione. Ciò
si rivela particolarmente utile nelle indagini multiscopo in cui numerose sono
le variabili di interesse.

8.6.3 Approfondimenti sugli approcci condizionato e
non condizionato

I risultati delle Proposizioni 8.6 e 8.7 evidenziano che il principale problema
nello studio della post-stratificazione riguarda il tipo di approccio (condizio-
nato o non condizionato) da utilizzare per valutare le proprietà dello stimatore
μ̂ps. Essendo lo stimatore (8.55) (almeno in via approssimata) corretto in en-
trambi gli approcci il problema riguarda essenzialmente la scelta della varianza
a cui fare riferimento.

Poiché a seguito della post-stratificazione delle unità campionarie il dise-
gno iniziale (ssr) viene apparentemente modificato in un disegno stratificato,
la questione teorica da affrontare è se per valutare le proprietà dello stimatore
(8.55) bisogna far riferimento al campionamento stratificato o al campiona-
mento semplice senza ripetizione. Nel primo caso si opererà condizionatamente
alle numerosità dei post-strati e la varianza di riferimento sarà la (8.58). Nel
secondo caso si considererà anche la variabilità dovuta alla casualità di n e la
varianza di riferimento sarà la (8.60).

A favore dell’approccio condizionato c’è l’osservazione che una volta estrat-
to il campione, la distribuzione dei campioni di numerosità n con allocazione
n diversa da quella osservata è irrilevante per la stima, e di conseguenza la
variabilità campionaria di n non deve essere considerata perché l’elemento
condizionante è solo strumento e non oggetto diretto di inferenza.

Inoltre poiché la varianza non condizionata è costante qualunque sia
l’allocazione campionaria, dall’utilizzo della (8.60) si ricaverebbe la stessa
precisione indipendentemente dalla configurazione di n. Ciò è chiaramente
controintuitivo.

A favore dell’approccio non condizionato vi è invece l’osservazione che
la varianza non condizionata (8.60) riveste un ruolo decisivo quando, nella
progettazione di nuove indagini, è necessario effettuare una scelta tra strategie
campionarie alternative.

A seguito di questa affermazione, procediamo a confrontare, a parità di
numerosità campionaria n, la performance di μ̂ps con quella della media cam-
pionaria usata con il disegno ssr. Prima della estrazione del campione il con-
fronto deve essere effettuato utilizzando l’approccio non condizionato. Dalla
formula approssimata (8.60) risulta chiaramente che per campioni grandi ci si
può attendere dalla post-stratificazione un guadagno di efficienza rispetto al
campionamento casuale semplice. Tale guadagno di efficienza è comparabile
con quello derivante da una stratificazione con allocazione proporzionale.
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Dopo l’estrazione del campione il confronto deve essere effettuato condi-
zionatamente all’allocazione campionaria realizzatasi. A tale scopo occorre
innanzitutto valutare le proprietà dello stimatore media campionaria all’in-
terno dell’approccio post-stratificato. Si osservi che la media campionaria può
essere scritta nel seguente modo

ys =
1
n

M∑
g=1

∑
i∈sg

ygj =
M∑

g=1

(ng

n

)
yg.

Condizionatamente a n, si ha

E [ys |n] =
M∑

g=1

ng

n
μyg

per cui lo stimatore ys, che è non distorto sotto un campionamento casuale ssr,
diventa distorto all’interno dell’approccio post-stratificato. La sua distorsione
è pari a

E [ys |n]− μy = −
M∑

g=1

μyg

(
Ng

N
− ng

n

)
.

La distorsione della media campionaria è nulla se vale una delle due seguenti
affermazioni:

– il campione è distribuito proporzionalmente tra gli strati: ng/n = Ng/N
per ogni g = 1, . . . , M (sotto queste condizioni l’errore quadratico medio
si riduce alla varianza condizionata (8.58));

– μyg è costante in tutti i post-strati campionari.

Poiché la media campionaria ys risulta distorta, bisogna procedere al
calcolo del suo errore quadratico medio condizionato:

MSE(ys |n) = V (ys |n) + (E(ss |n) − μy)2

=
M∑

g=1

(ng

n

)2
(

1 − ng

Ng

)
S2

yg

ng
+

{
M∑

g=1

μyg

(
Ng

N
− ng

n

)}2

. (8.64)

Confrontando l’errore quadratico medio MSE(ys |n) con la varianza dello
stimatore post-stratificato (8.58), si ha che

MSE(ys |n)− V (μ̂ps |n) =

{
M∑

g=1

μyg

(
Ng

N
− ng

n

)}2

+
M∑

g=1

{(ng

n

)2

−
(

Ng

N

)2
}(

1 − ng

Ng

)
S2

yg

ng
. (8.65)
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Il segno della (8.65) dipende dalla allocazione campionaria n, dalle medie
e dalle varianze dei post-strati. In conclusione non possiamo affermare che
uno stimatore è uniformemente migliore dell’altro; ogni situazione deve essere
esaminata separatamente. Questa conclusione è valida per tutti i campioni
stratificati, siano essi pre-stratificati o post-stratificati. In molti casi la post-
stratificazione fornisce risultati migliori del disegno ssr a parità di numerosità
campionaria. Inoltre, va sottolineato che la post-stratificazione protegge le in-
ferenze dall’utilizzo di campioni “sbilanciati” caratterizzati da configurazioni
campionarie n estreme. In particolare, il ricorso alla post-stratificazione può
ridurre la distorsione dovuta sia alla non rappresentatività del campione sia
alla presenza di mancate risposte.

Esercizi

8.1. Verificare che la soluzione del problema di minimo (8.17) è la seguente:
Dg = K/M per ogni g = 1, . . . , M .

Suggerimento. Usare la tecnica dei moltiplicatori di Lagrange, con funzione Lagran-
giana del tipo L(D1, . . . , DM ; λ) =

∑
g D2

g − 2λ (
∑

g Dg − K).

8.2. (Stratificazione ottimale con allocazione proporzionale) Nella Sezione
8.1.1 si è supposto che l’allocazione delle unità campionarie negli strati sia
quella di Neyman. Supponendo di usare un’allocazione proporzionale, prova-
re che i valori di l1, . . . , lM−1 che minimizzano V (μ̂str; prop) soddisfano le
relazioni:

lg =
μyg + μy g+1

2
, g = 1, . . . , M − 1.

Suggerimento. Bisogna determinare l1, . . . , lM−1 in modo da rendere minima la∑
g wgS

2
yg. Usando la stessa notazione della Sezione 8.1.1, si ha

∂ wg S2
yg

∂ lg
= l2g fY (lg) − 2 lg μyg fY (lg) + fY (lg)μ2

yg

∂ wg+1 S2
y g+1

∂ lg
= −l2g fY (lg) + 2 lg μy g+1 fY (lg) − fY (lg)μ2

y g+1

da cui
∂

∂ lg

(∑
g

wg S2
yg

)
= fY (lg) (μyg − μy g+1) {2 lg + (μyg + μy g+1)},

g = 1, . . . , M.

8.3. Usando le ipotesi e la notazione della Sezione 8.1.3, provare che i va-
lori di t1, . . . , tM−1 che minimizzano la

∑
g wg S2

yg sono ottenuti, in via
approssimata, in modo tale che le quantità∫ tg

tg−1

3
√

fX(x) dx

siano costanti.
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Suggerimento. Se fX(x) ≈ fxg nello strato g-mo, si ha

∑
g

wg S2
xg ≈ 1

12

∑
g

(∫ tg

tg−1

3
√

fX(x) dx

)3

.

8.4. Con riferimento alla popolazione di 385 aziende dell’Esempio 8.1, suddi-
videre tale popolazione in M = 2 strati in modo che la

∑
g wg Sxg sia minima.

Confrontare il risultato con quello che si ottiene usando (a) la regola cum
√

f ,
e (b) la regola di Ekman.

8.5. Verificare che, nelle ipotesi della Sezione 8.2, se il carattere X ha distri-
buzione uniforme in (xmin, xmax) e se gli strati hanno tutti la stessa ampiezza
(xmax − xmin)/M , allora vale la relazione S2

xg = S2
x/M2.

8.6. Verificare che vale la relazione (8.28).

8.7. Verificare che la soluzione del problema di ottimo vincolato (8.30) è data
dalla (8.31).

Suggerimento. Usare la tecnica dei moltiplicatori di Lagrange, con funzione Lagran-

giana del tipo: L(n1, . . . , nM λ) =
∑M

g=1

w2
gV 2

g

ng
+ λ

(∑M
g=1 ng − n

)
.

8.8. Provare che vale la relazione (8.38).

Suggerimento. B(μ̂q com) = −(E[R̂str μ̂q com] − E[R̂str] E[μ̂q com]).

8.9. Provare che (8.45) è uno stimatore corretto di μy, e che la sua varianza
è pari alla (8.46).

Suggerimento. V (μ̂gd sep =
∑M

g=1 w2
g V (yg − cg xg) =

∑M
g=1 w2

g {V (yg) + c2
g V (xg) −

2 cg C(yg , xg)}.
8.10. Verificare che i valori di c1, . . . , cM che minimizzano la (8.46) sono del
tipo cg = by/x g, g = 1, . . . , M .

Suggerimento. Il valore di cg che rende minima la S2
yg + c2

g S2
xg − 2 cg Sxy g è pari a

Sxy g/S2
xg = by/x g .

8.11. Provare che (8.48) è uno stimatore corretto di μy, e che la sua varianza
è pari alla (8.49).

Suggerimento. V (μ̂gd c =
∑M

g=1 w2
g V (yg − c xg) =

∑M
g=1 w2

g {V (yg) + c2 V (xg) −
2 c C(yg, xg)}.
8.12. Verificare che il valore di c che rende minima la (8.49) è (8.50).

Suggerimento. Derivare la (8.49) rispetto a c e annullare la derivata.

8.13. Si consideri una popolazione suddivisa in M = 2 strati, e sia s un
campione ssr di n unità. Con la solita notazione, si consideri lo stimatore

μ̂ps =

⎧⎨⎩w1y1 + w2y2 se n1 > 0, n2 > 0
y1 se n2 = 0
y2 se n1 = 0

.
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a. Provare che

E[μ̂ps] = μy1 Pr(n2 = 0) + μy2 Pr(n1 = 0) + μy (1 − Ps(n1 = 0)
− Pr(n2 = 0)).

b. Verificare che

Pr(n1 = 0) =

(
N2
n

)(
N
n

) , P r(n2 = 0) =

(
N1
n

)(
N
n

) .

c. Concludere dai punti precedenti che E[μ̂ps] �= μy.
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Disegno campionario a grappolo con uguali

probabilità di selezione

9.1 La nozione di “grappolo”: aspetti di base e notazione

Nei disegni campionari finora presi in esame si è sempre assunto che è da-
ta una lista di unità elementari (unità di rilevazione) della popolazione, e
che la procedura di selezione del campione agisca direttamente su tali unità.
Nella terminologia introdotta nella Sezione 1.5, le unità di campionamento
coincidono con le unità di osservazione.

In molte rilevazioni campionarie questo non accade. Molto frequente è
invece il caso in cui le unità di campionamento sono aggregati, grappoli di
unità di rilevazione. Nel seguito useremo come equivalenti i termini “grappoli”
e “unità primarie” .

Un caso molto importante in cui la considerazione di grappoli sorge in ma-
niera “naturale” è quello in cui non si ha una lista delle unità elementari (di
rilevazione) della popolazione, ma solo una lista di unità primarie. Si supponga
ad esempio che una casa produttrice di giocattoli voglia effettuare una inda-
gine campionaria per verificare il livello di gradimento di alcuni suoi prodotti.
La popolazione obiettivo è quella dei bambini della fascia di età per la quale
l’azienda produce i propri giocattoli. Ora, in generale non esiste, o comunque
non è accessibile, una lista di bambini da cui selezionare un campione. Vi sono
però altre possibilità. Ad esempio, si potrebbe pensare di selezionare un cam-
pione di famiglie, e poi di intervistare i bambini delle famiglie selezionate. In
alternativa, si potrebbe anche selezionare un campione di classi scolastiche, e
intervistare tutti i bambini delle classi selezionate. Nel primo caso le unità di
campionamento sono le famiglie, ciascuna delle quali include un certo numero
di bambini (eventualmente nessuno), e che quindi può essere vista come un
grappolo di bambini. Nel secondo caso le unità di campionamento sono clas-
si scolastiche, ciascuna delle quali, similmente, può essere considerata come
un grappolo di unità elementari. Questo semplice esempio si presta a diverse
considerazioni.

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 9, © Springer-Verlag Italia 2012
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1. Il considerare grappoli consente di ovviare all’inconveniente dovuto alla
non disponibilità di una lista di unità elementari. Tutto ciò di cui si ha
bisogno è una lista di grappoli, spesso non difficile da reperire.

2. Per una stessa popolazione possono esistere diversi tipi di grappoli di unità
elementari. Il tipo di grappolo usato come unità di campionamento dipende
da elementi quali la disponibilità di una lista, la facilità di accesso e il
relativo costo, etc.

L’idea di base del disegno campionario a grappolo con uguali probabilità
di selezione, in estrema sintesi, è molto semplice: si seleziona, con disegno ssr,
un campione di grappoli e si osservano tutte le unità elementari dei grappoli
campionati.

9.1.1 Simbologia utilizzata

D’ora in avanti supporremo che nella popolazione vi siano M grappoli, formati
rispettivamente da N1, N2, . . ., NM unità elementari. Esattamente come nel
caso di popolazioni ripartite in strati, ogni unità elementare è individuata da
una doppia etichetta (g, i), con:

− g(= 1, . . . , M) è il grappolo a cui l’unità appartiene;
− i(= 1, . . . , Ng) indica l’unità nell’ambito del grappolo di appartenenza.

Indicheremo poi con wg = Ng/N il peso del grappolo g-mo (g = 1, . . . , M).
La notazione introdotta è identica a quella usata per gli strati. Dal punto

di vista formale, in effetti, non vi è praticamente nessuna differenza tra strati
e grappoli. Sia gli strati che i grappoli sono insiemi, aggregati di unità elemen-
tari, che costituiscono una partizione della popolazione (ogni unità elementare
appartiene ad uno e un solo grappolo/strato). Dal punto di vista sostanziale,
statistico, le differenze sono invece enormi. Nel disegno campionario stratifica-
to le unità di campionamento sono quelle elementari, che vengono selezionate
separatamente per ciascuno strato. È quindi necessario disporre, per ogni stra-
to, di una lista di unità elementari. Nel caso del disegno a grappolo, invece, le
unità di campionamento sono i grappoli. Non è quindi necessario disporre, a
priori, di una lista delle unità elementari nei diversi grappoli. Ciò di cui si ha
bisogno è: (a) una lista dei grappoli da cui la popolazione è formata; (b) una
lista delle unità elementari dei soli grappoli campionati.

Sia ygi la modalità dell’unità i (= 1, . . . , Ng) del grappolo g (= 1, . . . , M),
e con

μyg =
1

Ng

Ng∑
i=1

ygi, S2
yg =

1
Ng − 1

Ng∑
i=1

(ygi − μyg)2 ; g = 1, . . . , M

rispettivamente la media e la varianza corretta del carattere di interesse Y nel
grappolo g-mo. Per semplificare la notazione, per ogni grappolo g poniamo
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poi

zg = M wg μyg =
M

N

Ng∑
i=1

ygi ; g = 1, . . . , M. (9.1)

Per quanto riguarda la media della popolazione, vale la seguente relazione:

μy =
M∑

g=1

wg μyg

=
1
M

M∑
g=1

M wg μyg

=
1
M

M∑
g=1

zg . (9.2)

La (9.2) mette in evidenza un fatto molto importante: la media μy del carat-
tere di interesse Y nella popolazione può essere espressa come una semplice
media delle quantità z1, . . . , zM (9.1).

9.1.2 Il disegno campionario a grappolo

Come già anticipato, l’idea di base del disegno campionario a grappolo è molto
semplice: si seleziona, mediante campionamento ssr, un campione gm di m
degli M grappoli totali, e si osservano le modalità di tutte le unità elementari
dei grappoli campionati. Formalmente, lo spazio dei campioni è l’insieme CM,m

di tutte le combinazioni senza ripetizione di m degli M grappoli. Ciascuna di
tali combinazioni ha probabilità

p(gm) =
1(
M
m

) per ogni gm ∈ CM,m.

Sempre sul piano formale, questo significa che i nostri dati campionari sono
le modalità

ygi, per ciascuna unit à i = 1, . . . , Ng e per tutti i grappoli g in gm.

Sulla base dei dati campionari è possibile calcolare, in particolare, le medie,
le varianze e le quantità zg (9.1) per tutti i grappoli del campione gm.

Il disegno a grappolo è per molti aspetti simile al disegno ssr. La principale
differenza consiste nel fatto che nel disegno ssr le unità di campionamento
coincidono con quelle elementari, mentre nel disegno a grappolo si campionano
grappoli di unità elementari. Lo schema qui di seguito riportato mette in luce
tale corrispondenza.
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Disegno ssr Disegno a grappolo

Unità di campionamento Unità elementari i Grappoli g

Numero totale di unità di N M
campionamento

Quantità da stimare 1
N

∑N
i=1 yi

1
M

∑M
g=1 zg

Numero di unità campionate n m

Spazio dei campioni CN,n CM,m

Probabilità dei campioni 1/
(

N
n

)
1/
(

M
m

)
Quantità osservate nel campione yi zg

9.2 Stima della media della popolazione

Sulla base della (9.2) e delle corrispondenze con il disegno ssr evidenziate nella
sezione precedente, l’intuizione suggerisce di stimare la media μy della popo-
lazione con la media campionaria delle zg. Si ha in questo modo lo stimatore
a grappolo:

μ̂gr = media campionaria delle zg

=
1
m

∑
g∈gm

zg

=
1
m

∑
g∈gm

M wg μyg. (9.3)

Le proprietà dello stimatore (9.3) sono studiate nella Proposizione 9.1. Per
comodità di notazione, indichiamo con

S2
b =

1
M − 1

M∑
g=1

(zg − μy)2 (9.4)

la varianza delle quantità zg nella popolazione (corretta con un denominatore
M − 1 anziché M).

Proposizione 9.1. Se il disegno campionario è a grappolo, μ̂gr è uno stima-
tore corretto della media della popolazione:

E [μ̂gr ] = μy (9.5)

e la sua varianza è pari a

V (μ̂gr) =
(

1
m

− 1
M

)
S2

b . (9.6)

Dimostrazione. È sufficiente tenere conto che μ̂gr è la media campionaria delle
zg, e che il campione gm di grappoli è selezionato con disegno semplice senza
ripetizione. ��
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La quantità S2
b è la varianza (corretta) delle quantità z1, . . . , zM nella

popolazione dei grappoli. Detto

Tg =
Ng∑
i=1

ygi = Ng μyg, g = 1, . . . , M

il totale (l’ammontare) del carattere Y nel grappolo g-mo, valgono le relazioni

zg =
M

N
Ng μyg =

M

N
Tg , g = 1, . . . , M

dalle quali discende che

S2
b = V arianza di z1, . . . , zm =

(
M

N

)2

× (V arianza di T1, . . . , Tm) . (9.7)

Le due relazioni (9.6) e (9.7) ci dicono che l’errore quadratico medio (e
quindi l’efficienza) dello stimatore μ̂gr dipende essenzialmente da due elementi:

1. la variabilità dei totali dei grappoli;
2. il numero di grappoli campionati.

La 1 è tutto sommato ovvia: quanti più grappoli si campionano, tanto
migliore è la stima della media della popolazione che si ottiene. Molto più
interessante è invece la 2. Il termine S2

b che determina la varianza di μ̂gr

è proporzionale alla varianza dei totali T1, . . . , TM . Quanto più T1, . . . , TM

sono “simili” tra loro, tanto più piccola è S2
b , e quindi tanto più efficiente è

lo stimatore μ̂gr . In altri termini, la coppia (disegno campionario a grappolo,
stimatore μ̂gr) fornisce stime tanto migliori quanto più bassa è la variabilità
dei totali dei grappoli.

Per quanto riguarda la stima della varianza (9.6), si possono ancora usare
risultati ben noti per il disegno ssr. Le stesse idee su cui si basa la stima della
varianza della media campionaria nel disegno ssr portano infatti a considerare
la varianza campionaria corretta delle zg :

ŝ2
b =

1
m− 1

∑
g∈gm

(zg − μ̂gr)2. (9.8)

Come semplice adattamento della Proposizione 3.3, è immediato verificare
che lo stimatore (9.8) è uno stimatore corretto della (9.4).

Proposizione 9.2. Se il disegno campionario è a grappolo, ŝ2
b è uno stimatore

corretto della varianza S2
b :

E
[
ŝ2
b

]
= S2

b .

Infine, dalla Proposizione 9.2 è pressoché immediato trarre uno stimatore
corretto di V (μ̂gr).
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Proposizione 9.3. Se il disegno campionario è a grappolo, la quantità

V̂gr =
(

1
m

− 1
M

)
ŝ2
b (9.9)

è uno stimatore corretto della varianza V (μ̂gr) (9.6).

Esempio 9.1. Il comune di Statlandia non possiede anagrafe, per cui non
esiste una lista delle famiglie (e tantomeno degli individui) in esso residenti.
Tutto ciò che è noto è che a Statlandia vi sono in totale 128 palazzi, ciascuno di
8 appartamenti. I palazzi sono identificati da un numero intero compreso tra 1
e 128; gli appartamenti di ciascun palazzo da un numero intero compreso tra 1
e 8. Poiché ciascuna famiglia vive in uno e un solo appartamento, a Statlandia
risiedono in totale 1024 famiglie. Ciò fornisce, in linea di principio, anche un
modo per etichettare le famiglie. Infatti, ciascuna famiglia è identificata da
una doppia etichetta, del tipo (numero del palazzo, numero di appartamento
nel palazzo).

Nel file fam2051.txt sono riportati i dati relativi alle famiglie del comune
di Statlandia, e rilevati il 30 giugno 2051. In totale, sono riportati i valori di 27
variabili. Il significato di ciascuna variabile, e la relativa codifica, è riportato
nel file istruzioni_fam2051.txt.

Supponiamo di essere interessati alla stima del reddito medio da lavoro
(nell’anno 2050) delle famiglie di Statlandia, le quali sono quindi le unità
elementari. Poiché non si dispone di una lista delle famiglie, effettuare un
campionamento ssr direttamente su di esse è impossibile. D’altra parte, per
la nostra indagine si può utilizzare la lista dei 128 palazzi, i quali possono
essere visti come grappoli di famiglie. Ciascun grappolo, nel presente caso, è
composto da 8 famiglie.

Un’idea molto naturale è quella di effettuare un campionamento a grap-
polo, selezionando un campione ssr di grappoli (palazzi), e osservando tutte le
famiglie che risiedono in ciascuno dei grappoli campionati. Nel caso in esame
vi sono M = 128 grappoli, ciascuno composto da L = 8 unità elementari di os-
servazione (famiglie). I redditi totali relativi ad un campione di m = 9 grappoli
sono riportati nel file camp91.txt. In Tabella 9.1 sono riportate le grandezze
necessarie per costruire lo stimatore μ̂gr e per stimare la sua varianza.

Come stima del reddito medio da lavoro della popolazione si ha quindi la
seguente:

μ̂gr =
1
9

(z3 + z11 + · · · + z126) = 54537.5.

Per quanto riguarda invece la stima della varianza di μ̂gr , essa assume il valore:

V̂gr =
(

1
9
− 1

128

)
1
8

∑
(zg − μ̂gr)2 = 211288510.9 . ��
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Tabella 9.1 Costruzione degli stimatori μ̂gr e V̂gr

Grappolo zg (zg − μ̂gr)
2

3 128415.6 5457977354

11 127251.1 5287271261

32 61240.0 44933560.6

52 50836.1 13700176.9

64 43987.4 111305137.5

79 33500.0 442576406.3

87 25725.0 830160156.3

94 19881.3 1201055664

126 0.0 2974338906

La costruzione di intervalli di confidenza, infine, si basa su argomenti del
tutto simili a quelli usati nei capitoli precedenti. Se il numero m di grap-
poli campionati è sufficientemente grande, lo stimatore μ̂gr ha distribuzione
approssimata di tipo normale, con media μy e varianza V (μ̂gr). Ragionando
esattamente come nei capitoli precedenti, e sostituendo l’incognita V (μ̂gr) con
la sua stima (9.9), si ha che la distribuzione di probabilità di

μ̂gr − μy√
V̂gr

(9.10)

ha distribuzione approssimata di tipo normale standard. Detto pertanto, come
al solito, zα il quantile di ordine α della distribuzione normale standard, è
immediato verificare che[

μ̂gr − zα/2

√
V̂gr, μ̂gr + zα/2

√
V̂gr

]
(9.11)

è un intervallo di confidenza per μy, al livello approssimato 1 − α.

Esempio 9.2. Consideriamo ancora l’Esempio 9.1. Essendo m = 9, il numero
di grappoli campionati è molto probabilmente troppo piccolo perché la (9.10)
abbia, con buona approssimazione, distribuzione normale standard. Tutta-
via, a puro titolo di esempio numerico costruiamo l’intervallo (9.11) al livello

di confidenza 0.95. Essendo
√

V̂ (μ̂gr) = 14535.8 e z0.025 = 1.96, si ha che
l’intervallo

[54537.5− 1.96 14535.8, 54537.5 + 1.96 14535.8] = [26049.5, 83025.5]

è un intervallo di confidenza approssimato per μy al livello 0.95. Come si vede,
si tratta di un intervallo estremamente ampio, principalmente a causa del
basso numero di grappoli campionati. Questo, tra l’altro, rende difficilmente
difendibile l’approssimazione normale usata per la (9.10). ��
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9.3 Un importante caso speciale: grappoli della stessa
dimensione

Un caso speciale molto importante è quello in cui gli M grappoli sono tutti
formati dallo stesso numero L di unità:

N1 = N2 = · · · = NM = L.

In questo caso si ha infatti N = M L, per cui i pesi wg sono tutti uguali

wg =
L

N
=

1
M

, g = 1, . . . , M.

Di conseguenza, le quantità zg (9.1) si riducono alle medie dei grappoli:

zg = μyg , g = 1, . . . , M

e lo stimatore μ̂gr diviene la media campionaria delle medie dei grappoli:

μ̂gr =
1
m

∑
g∈gm

μyg

la quale coincide ovviamente con la media campionaria

1
mL

∑
g∈gm

Ng∑
i=1

ygi.

La varianza di μ̂gr si presta a considerazioni di interesse. In primo luogo,
dalla Proposizione 1.1 e dalla (1.4), tenendo conto che tutte le quantità wg

sono uguali a 1/M , si ha la relazione:∑
g

∑
i

(ygi − μy)2 =
∑

g

∑
i

(μyg − μy)2 +
∑

g

∑
i

(ygi − μyg)2

= L
∑

g

(μyg − μy)2 +
∑

g

∑
i

(ygi − μyg)2 . (9.12)

La quantità

D2
y =

∑
g

∑
i

(ygi − μy)2

è la devianza totale per la popolazione. Invece, le due quantità

D2
b = L

∑
g

(μyg − μy)2, D2
w =

∑
g

∑
i

(ygi − μyg)2

sono rispettivamente la devianza tra i grappoli e la devianza nei grappoli. La
(9.12) si può riscrivere come

D2
y = D2

b + D2
w .
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Dalla relazione

S2
b =

1
L (M − 1)

D2
b

e dalla (9.6) si deduce facilmente che l’efficienza dello stimatore μ̂gr dipende
dalla devianza tra i grappoli: quanto più piccola è D2

b , tanto più piccola è
V (μ̂gr). Si ha quindi l’esatto contrario di quanto accade per il campionamento
stratificato, in cui l’efficienza dello stimatore μ̂str è tanto più elevata quanto
più piccola è la devianza negli strati (e quindi quanto più grande è la varianza
tra gli strati).

In altre parole nel campionamento a grappolo la situazione ideale è che
tutti i grappoli in cui risulta suddivisa la popolazione siano più eterogenei
possibile al loro interno. Al limite, se ciascun grappolo fosse una copia ridotta
della popolazione allora sarebbe sufficiente estrarne uno solo per avere la stessa
informazione che si otterrebbe da una indagine completa.

Definiamo il coefficiente di correlazione intra-classi come:

ρic = 1 − L

L − 1
D2

w

D2
y

. (9.13)

Poiché, per la (9.13), è 0 � D2
w

D2
y
� 1, si avrà

− 1
L − 1

� ρic � 1 . (9.14)

In particolare, ρic assume il suo massimo valore, 1, quando D2
w = 0, ossia

quando D2
b = D2

y . L’uguaglianza D2
w = 0 significa che non vi è variabilità nei

grappoli, ossia che tutte le unità elementari di uno stesso grappolo hanno lo
stesso valore della variabile Y di interesse. È questo il caso di massima omoge-
neità nei grappoli. All’opposto, ρic assume il suo valore minimo, −1/(L − 1),
quando D2

w = D2
y, ossia quando D2

b = 0. Quest’ultima uguaglianza ha luogo
quando le medie dei grappoli sono tutte uguali, il che corrisponde alla minima
omogeneità nei grappoli stessi.

In forza delle considerazioni sopra riportate, il coefficiente di correlazio-
ne intra-classi può essere considerato come una misura dell’omogeneità dei
grappoli da cui è formata la popolazione. Un’espressione alternativa per ρic è
riportata nell’Esercizio 9.3.

Per quanto riguarda il termine S2
b (9.4), è facile provare (Esercizio 9.2) che

se i grappoli hanno tutti la stessa numerosità L vale la relazione

S2
b =

M L − 1
(M − 1)L2

S2
y (1 + (L − 1) ρic) (9.15)

in cui

S2
y =

1
M L − 1

∑
g

∑
i

(ygi − μy)2 =
1

M L − 1
D2

y
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è la varianza corretta della popolazione. Sulla base della (9.15) è facile provare
il seguente risultato.

Proposizione 9.4. Se il disegno campionario è a grappolo, e se i grappoli
sono tutti costituiti dallo stesso numero L di unità elementari, si ha

V (μ̂gr) =
(

1
mL

− 1
M L

)
M L − 1

(M − 1)L
S2

y (1 + (L − 1) ρic). (9.16)

Dimostrazione. È sufficiente tener conto che, per le (9.15), (9.6) si ha:

V (μ̂gr) =
(

1
m

− 1
M

)
S2

b

=
(

1
m

− 1
M

)
M L − 1

(M − 1)L2
S2

y (1 + (L − 1) ρic)

=
(

1
mL

− 1
M L

)
M L − 1

(M − 1)L
S2

y (1 + (L − 1) ρic). ��

Nel caso in cui L sia piccolo rispetto a N = M L, come spesso accade in
pratica, si ha in via approssimata M L− 1 ≈ (M − 1)L, e quindi dalla (9.16)
si trae la relazione approssimata

V (μ̂gr) ≈
(

1
mL

− 1
M L

)
S2

y (1 + (L − 1) ρic). (9.17)

L’interesse dell’espressione (9.17) sta nel fatto che essa permette di con-
frontare, in termini molto semplici, l’efficienza della coppia (disegno ssr, me-
dia campionaria) con quella della coppia (disegno a grappolo, stimatore μ̂gr).
Naturalmente, affinché un confronto di questo tipo abbia senso, deve essere
effettuato a parità di unità elementari campionate. Detto n tale numero, si
supporrà quindi che n = mL (ovviamente è anche N = M L). È facile vedere,
con ovvia simbologia, che vale la relazione:

V (μ̂gr ; grap)
V (ys; ssr)

≈
(

1
n
− 1

N

)
S2

y (1 + (L − 1) ρic)(
1
n − 1

N

)
S2

y

= 1 + (L − 1) ρic. (9.18)

L’esame della (9.18) permette di osservare che se il coefficiente di corre-
lazione intra-classi ρic è positivo, si ha (in via approssimata) V (ys; ssr) <
V (μ̂gr ; grap), e quindi l’uso del disegno semplice senza ripetizione fornisce (a
parità di numerosità campionaria) risultati migliori rispetto a quello a grappo-
lo. Se invece il coefficiente di correlazione intra-classi ρic è negativo, il disegno
a grappolo è da preferirsi a quello semplice.

A prima vista, questo risultato sembrerebbe sfavorire il disegno a grappolo,
in quanto dalla relazione (9.14) appare chiaro che ben difficilmente ρic assume
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valori negativi. Tuttavia, è da rimarcare che spesso il disegno ssr è, a parità
di numerosità campionaria, molto più costoso di quello a grappolo. Ciò è do-
vuto al fatto che molto spesso i grappoli sono composti da unità fisicamente
“vicine”, e quindi vi è un considerevole risparmio di costi nell’osservarle. A
parità di costo di rilevazione, quindi, il disegno a grappolo permette spesso di
osservare più unità elementari rispetto al disegno ssr, e questo potrebbe ren-
dere la varianza V (μ̂gr; grap) più piccola di V (ys; ssr). Per approfondimenti
su questo punto si rinvia all’Esercizio 9.4.

Esempio 9.3. Consideriamo una scuola di M = 100 classi e supponiamo che
ogni classe sia composta da L = 25 studenti. Il carattere di interesse è il
numero di libri letto dagli studenti, di cui si vuole stimare la media sulla
popolazione dei 2500 studenti. Supponiamo che D2

y = 4410 e D2
b = 393.

Supponiamo di stimare il numero medio di libri letti sulla base di un
campione a grappolo composto da 15 classi. In ciascuna classe selezionata il
numero medio di libri letto risulta pari alle seguenti quantità:

1.84 2.16 1.80 1.96 1.48 1.96 2.16 1.64
2.44 1.56 1.88 2.24 2.04 1.04 0.96.

Lo stimatore a grappolo assume di conseguenza il valore

μ̂gr = 1.82

e la sua varianza è pari a

V (μ̂gr) = 0.009 .

Supponiamo inoltre di stimare il numero medio di libri letto sulla base
di un campione casuale semplice senza ripetizione della stessa dimensione
n = mL = 375. La media campionaria risulta pari a

ys = 1.94

e la sua varianza è data da

V (ys) = 0.004 .

A parità di numerosità campionaria, in questo caso si ha che V (ys; ssr) <
V (μ̂gr ; grap). Notiamo che essendo il coefficiente di correlazione intra-classi
pari a ρic = 0.05, la correlazione positiva implica una perdita di precisione
del campionamento a grappolo rispetto al campionamento casuale semplice.
Formalmente, a parità di numerosità campionaria, da

V (μ̂gr; grap)
V (ys; ssr)

≈ 2

si desume che il campionamento casuale semplice risulta circa due volte più
preciso del campionamento a grappolo. ��
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La (9.18) fornisce l’effetto del disegno nel caso di disegno a grappolo con
grappoli di eguale ampiezza, e si può ovviamente riscrivere come:

Deff (grap, ys) = 1 + (L − 1)ρic (9.19)

essendo ρic il coefficiente di correlazione intra-classi.

9.4 Grappoli di diversa numerosità e stima per quoziente

Le proprietà dello stimatore μ̂gr (9.3) sono state studiate nella Sezione 9.2
in maniera del tutto generale, sia nel caso in cui i grappoli hanno la stessa
numerosità, sia quando le loro numerosità sono differenti. Quest’ultimo caso
merita però un esame più accurato.

Come si è già avuto modo di osservare, l’efficienza dello stimatore μ̂gr

è essenzialmente legata alla variabilità dei totali T1, . . . , TM dei grappoli.
Quanto più bassa è tale variabilità, ossia quanto più “simili” sono i totali dei
diversi grappoli, tanto più efficiente è lo stimatore μ̂gr.

Ora, l’esperienza pratica mostra che in parecchi casi di interesse i totali T1,
. . ., TM dei grappoli esibiscono un’alta variabilità. Questo accade soprattutto
nei casi in cui i grappoli hanno numerosità N1, . . . , NM molto differenti, men-
tre le loro medie μy1, . . . , μyM sono simili. Essendo i totali Tg pari a Ng μyg,
g = 1, . . . , M , l’effetto finale sarà un’alta variabilità di T1, . . . , TM .

Esempio 9.4. In una facoltà di Scienze Statistiche sono impartiti quattro
corsi di Matematica 1, a classi rispettivamente di 10, 50, 25, 15 studenti.
All’esame finale, tutti gli studenti conseguono lo stesso voto: 25.

Uno statistico vuole stimare il voto medio conseguito dagli studenti della
facoltà, e decide di effettuare un campionamento a grappolo, in cui i grappoli
sono le classi e il numero di grappoli campionati è pari a due. Come stimatore
della media della popolazione decide poi di usare μ̂gr. Chiaramente, nel nostro
caso è N = 100, M = 4, m = 2. Le medie dei grappoli, cos̀ı come la media
della popolazione, sono pari a 25. Le numerosità dei grappoli, i pesi, i totali e
i valori zg sono riportati in Tabella 9.2.

Tabella 9.2 Valori Ng, wg, μyg, Tg

Grappolo g Numerosità Ng Peso wg Media μyg Totale Tg Quantità zg

1 10 0.1 25 250 10

2 50 0.5 25 1250 50

3 25 0.25 25 625 25

4 15 0.15 25 275 15

In Tabella 9.3 sono invece enumerati tutti i possibili campioni di m = 2
grappoli, e per ciascuno di essi è calcolato il valore assunto dallo stimatore μ̂gr .
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Tabella 9.3 Valori di μ̂gr per campioni di m = 2 grappoli

Grappoli campionati Stima μ̂gr

{1, 2} 10+50
2

= 30

{1, 3} 10+25
2 = 17.5

{1, 4} 10+15
2

= 12.5

{2, 3} 50+25
2 = 37.5

{2, 4} 50+15
2

= 32.5

{3, 4} 25+15
2 = 20

Il valore atteso di μ̂gr è pari a μy = 25, mentre la sua varianza è uguale a:

V (μ̂gr) =
(

1
2
− 1

4

) {
1
3

4∑
g=1

(zg − μy)2
}

= 79.2.

La Tabella 9.3 mostra chiaramente come lo stimatore μ̂gr fluttui molto
attorno al suo valore atteso μy = 25, in conseguenza dell’alta variabilità dei
totali Tg dei grappoli. Per alcuni campioni μ̂gr assume valori estremamente
bassi, mentre per altri campioni μ̂gr ha valori inaccettabilmente elevati. ��

In situazioni di questo tipo lo stimatore μ̂gr ha un’alta varianza, e quindi
un’efficienza estremamente limitata. Ciò motiva la ricerca di qualche stima-
tore alternativo, che possa fornire risultati migliori quando le numerosità dei
grappoli sono molto variabili.

9.4.1 Stimatore per quoziente

Come mostrato nell’Esempio 9.4, lo stimatore μ̂gr è particolarmente inefficien-
te quando i totali dei grappoli sono molto variabili in conseguenza di un’alta
variabilità delle loro numerosità, mentre le medie dei grappoli sono relativa-
mente stabili. Ora, questo equivale a dire che i totali dei grappoli possono
essere considerati, in via largamente approssimata, proporzionali alle relative
numerosità:

Tg ≈ cost Ng , g = 1, . . . , M. (9.20)

Tenendo presenti i ragionamenti svolti nella Sezione 6.1, la (9.20) suggeri-
sce di stimare μy tramite uno stimatore di tipo quoziente, in cui il ruolo della
variabile ausiliaria X è svolto dalla numerosità dei grappoli:

xg = Ng, g = 1, . . . , M.
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Essendo

μx =
1
M

∑
g=1

MNg =
N

M

si ha in tal modo lo stimatore di μy:

μ̂qgr =
1
m

∑
g∈gm

zg

1
m

∑
g∈gm

xg

μx

=
μ̂gr

1
m

∑
g∈gm

Ng

N

M

=
1
M

μ̂gr
1
m

∑
g∈gm

wg

=
1
M

μ̂gr

wm
(9.21)

dove si è posto

wm =
1
m

∑
g∈gm

wg = media campionaria dei pesi dei grappoli.

Esempio 9.5. Consideriamo ancora l’Esempio 9.4, e costruiamo lo stimato-
re μ̂qgr . In Tabella 9.4 sono enumerati tutti i possibili campioni di m = 2
grappoli; per ciascuno di essi sono calcolati i valori di μ̂gr , wm, e μ̂qgr .

Tabella 9.4 Valori di μ̂gr per campioni di m = 2 grappoli

Grappoli campionati Stima μ̂gr wm μ̂qgr

{1, 2} 10+50
2

= 30 0.1+0.5
2

= 0.3 1
4

30
0.3

= 25

{1, 3} 10+25
2 = 17.5 0.1+0.25

2 = 0.175 1
4

17.5
0.175 = 25

{1, 4} 10+15
2 = 12.5 0.1+0.15

2 = 0.125 1
4

12.5
0.125 = 25

{2, 3} 50+25
2 = 37.5 0.5+0.25

2 = 0.375 1
4

37.5
0.375 = 25

{2, 4} 50+15
2 = 32.5 0.5+0.15

2 = 0.325 1
4

32.5
0.325 = 25

{3, 4} 25+15
2 = 20 0.25+0.15

2 = 0.2 1
4

20
0.2 = 25

L’uso dello stimatore di tipo quoziente μ̂qgr porta, nel presente esempio,
a risultati nettamente migliori rispetto a quelli che si ottengono con μ̂gr . La
ragione per cui questo accade è molto semplice. Nel nostro esempio i totali
dei grappoli sono proporzionali alle numerosità dei grappoli stessi. In queste
condizioni, mentre lo stimatore μ̂gr fornisce risultati tanto peggiori quanto più
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alta è la variabilità delle numerosità dei grappoli, lo stimatore μ̂qgr fornisce
risultati buoni, in quanto tale variabilità è controbilanciata dalla media cam-
pionaria wm presente al denominatore. ��

In via approssimata, il valore atteso e la varianza dello stimatore μ̂qgr

possono essere ricavati seguendo le stesse linee già sviluppate nella Sezione
6.2 per lo stimatore per quoziente. È sufficiente tenere conto che il disegno
campionario è in effetti un disegno ssr sui grappoli, e che al posto dei valori
yi, xi si hanno rispettivamente zg e Ng , cos̀ı che è:

R =
1
M

∑
g zg

1
M

∑
g Ng

=
M

N
μy. (9.22)

I risultati della successiva Proposizione 9.5 sono un facile adattamento di
quelli della Proposizione 6.1 e della (6.10).

Proposizione 9.5. Se il disegno campionario è a grappolo, si ha:

E [μ̂qgr ] ≈ μy; (9.23)

V (μ̂qgr) ≈
(

1
m

− 1
M

) {
1

M − 1

M∑
g=1

(
zg − M

N
Ng μy

)2
}

. (9.24)

Usando i risultati della Sezione 6.3 è anche facile, infine, costruire uno
stimatore della varianza di μ̂qgr . Detta infatti

R̂ =
1
m

∑
g∈gm

zg

1
m

∑
g∈gm

Ng

=
1
N

μ̂gr

wm

la “controparte campionaria” del rapporto R introdotto nella (9.22), è intui-
tivo fare riferimento a

V̂qgr =
(

1
m

− 1
M

) {
1

m− 1

∑
g∈gm

(
zg − R̂Ng

)2
}

=
(

1
m

− 1
M

) {
1

m− 1

∑
g∈gm

(
M wg μyg −

μ̂gr

wm
wg

)2
}

(9.25)

come stimatore di V (μ̂qgr) (9.24).

9.4.2 Considerazioni sull’efficienza dello stimatore per
quoziente

L’espressione approssimata (9.24) permette di effettuare utili considerazioni
sull’efficienza dello stimatore μ̂qgr . Infatti, una piccola rielaborazione della
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(9.24) conduce alla seguente relazione:

V (μ̂qgr) ≈
(

1
m

− 1
M

) {
1

M − 1

M∑
g=1

(
M wg μyg −

M

N
Ng μy

)2
}

=
(

1
m

− 1
M

) {
1

M − 1

M∑
g=1

(M wg μyg − M wg μy)2
}

=
(

1
m

− 1
M

) {
M2

M − 1

M∑
g=1

w2
g (μyg − μy)2

}
. (9.26)

Dalla (9.26) appare chiaro che la varianza di μ̂qgr è tanto più piccola quanto
più piccolo è il termine:

1
M − 1

M∑
g=1

w2
g (μyg − μy)2

ovvero quanto più bassa è la variabilità delle medie μyg dei grappoli. Ciò
significa, in sostanza, che lo stimatore quoziente μ̂qgr è tanto più efficiente
quanto più le medie dei grappoli tendono ad essere “simili” tra loro.

9.5 La progettazione di un disegno campionario a
grappolo

Il campionamento a grappolo, come già si è avuto modo di osservare, è di
frequente utilizzato, soprattutto perché spesso permette di osservare unità
“vicine” nello spazio, con vantaggi notevoli di tempo e di costo di rilevazio-
ne. In effetti, accade spesso che i grappoli siano formati da unità elementari
contigue, la cui osservazione è in genere molto più economica rispetto a quan-
to accade nel caso di disegno ssr, in cui le unità campionarie sono assai più
“sparse”.

9.5.1 Scelta della dimensione dei grappoli: qualche
considerazione

A volte i grappoli sono suggeriti in modo naturale dall’oggetto della rileva-
zione. Altre volte, invece, il decidere di effettuare una rilevazione campionaria
mediante disegno a grappolo implica che si devono risolvere due fondamenta-
li problemi: (a) il numero M dei grappoli in cui suddividere la popolazione;
(b) il numero di unità elementari da cui sono formati i grappoli. Nel seguito
supporremo sempre che i grappoli abbiano tutti la stessa numerosità L, per
cui i due problemi (a), (b) sono equivalenti (ogni grappolo contiene L = N/M
unità elementari).
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Da un punto di vista intuitivo, quanto più elevato è il numero di unità
che formano un grappolo, tanto maggiore è la variabilità del grappolo stesso.
In altre parole, quanto più grande è L, tanto maggiore è la variabilità nei
grappoli. Tenendo presente la relazione (9.13), e la simbologia usata nella
Sezione 9.3, quanto detto equivale ad affermare che quanto più grande è L (e
quindi quanto più piccolo è M), tanto più grande sarà il termine:

D2
w =

∑
g

∑
i

(ygi − μyg)2

e tanto più piccolo sarà il termine

D2
b = L

∑
g

(μyg − μy)2.

Quanto finora detto, d’altra parte, significa che quanto più grande è L,
tanto più piccolo tende ad essere il termine S2

b (9.4) che compare nella varianza
dello stimatore μ̂gr . Da questo punto di vista è quindi vantaggioso scegliere
un valore di L elevato, ossia pianificare grappoli formati da parecchie unità
elementari. Tuttavia, questo si scontra con altre due considerazioni altrettanto
importanti.

1. In grappoli “grandi” sono presenti anche unità elementari “lontane”, e
questo accresce il costo di osservazione per unità elementare.

2. Più grandi sono i grappoli, più piccolo è il numero di grappoli che, a parità
di costo di rilevazione, entrano nel campione. In altre parole, quanto più
grande è L, tanto più piccolo è m, e ciò tende a far crescere la varianza
di μ̂gr.

In generale, scegliere la numerosità L dei grappoli, e quindi anche il numero
M = N/L dei grappoli da cui la popolazione è formata, è un compito difficile,
che richiede la disponibilità di informazioni a priori sulla popolazione oggetto
di studio, ed in particolare sulla variabilità del carattere di interesse. In linea di
principio, l’idea è quella di usare le informazioni di cui si dispone per costruire:

1. una relazione che lega L e S2
b ;

2. una funzione di costo che lega L e m al budget disponibile per la rilevazione

e di usare le relazioni in 1, 2 per determinare il valore di L che, per un prede-
terminato costo di indagine, rende massima l’efficienza dello stimatore μ̂gr .

Tale approccio, benché molto intuitivo, richiede sia una notevole esperienza
statistica, sia una grossa dose di informazioni empiriche, provenienti o da
altre indagini su popolazioni “simili” a quella oggetto di studio, o da indagini
effettuate nel passato sulla stessa popolazione. Un esempio di questo approccio
è offerto nel volume di Cochran (1977), pp. 243–246.

9.5.2 Scelta del numero di grappoli del campione

Un secondo problema di considerevole importanza riguarda la scelta del
numero m di grappoli da campionare.
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La strada più semplice è quella di procedere in maniera simile a quanto
già fatto per il disegno stratificato. L’obiettivo è quello di determinare la
numerosità campionaria m in maniera tale che l’errore assoluto di stima |μ̂gr−
μy| sia superiore ad una soglia t con probabilità pari a α, con t, α fissati a
priori. In simboli:

Pr (|μ̂gr − μy| > t) = α. (9.27)

La distribuzione di probabilità di μ̂gr verrà approssimata con una normale
di media μy e varianza (9.6). Ciò implica che la v.a. standardizzata

μ̂gr − μy√(
1
m − 1

M

)
S2

b

ha in via approssimata distribuzione normale standard N(0, 1). Ne consegue
che la (9.27) si può rielaborare nel modo seguente

Pr (|μ̂gr − μy| > t) = Pr

⎛⎝ |μ̂gr − μy|√(
1
m − 1

M

)
S2

b

>
t√(

1
m − 1

M

)
S2

b

⎞⎠
≈ Pr

⎛⎝|N(0, 1)| >
t√(

1
m

− 1
M

)
S2

b

⎞⎠
= 2Pr

⎛⎝N(0, 1) >
t√(

1
m − 1

M

)
S2

b

⎞⎠
= α

da cui si ottiene la relazione

Pr

⎛⎝N(0, 1) >
t√(

1
m

− 1
M

)
S2

b

⎞⎠ =
α

2
. (9.28)

Usando ragionamenti già visti nei capitoli precedenti, dalla (9.28) discende
che

t√(
1
m

− 1
M

)
S2

b

= zα/2

da cui, con pochi passaggi, si ottiene la seguente espressione per il numero di
grappoli del campione:

m =
z2

α/2

t2
S2

b

1 + 1
M

z2
α/2

t2 S2
b

. (9.29)
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Per M “grande” il termine (zα/2/t)2S2
b /M è sostanzialmente trascurabile, per

cui la (9.29) si riduce a m = (zα/2/t)2 S2
b .

L’uso effettivo della (9.29) implica che si deve conoscere S2
b , ossia la va-

rianza tra i grappoli. In assenza di una tale informazione si può utilizzare una
tecnica simile a quella del campione pilota descritta nella Sezione 4.3. L’idea
di base è molto semplice. Si seleziona un campione iniziale (a grappolo) di
numerosità abbastanza piccola, e con cui si stima S2

b ; tale stima verrà poi
usata in (9.29) in luogo della “vera” S2

b . In alternativa si possono usare, se
disponibili, stime ottenute da rilevazioni precedenti sulla stessa popolazione,
o su popolazioni simili.

Un metodo alternativo, simile nella sostanza a quello esposto nel Capitolo 7
per il disegno stratificato, è basato sull’effetto del disegno (vds. Capitolo 3).
Per ragioni di semplicità ci si limiterà nel seguito al caso in cui le numero-
sità dei grappoli sono tutte uguali a L, cos̀ı che μ̂gr coincide con la media
campionaria ys.

Come già visto nella (9.19), si ha

Deff (grap, ys) =
V (ys; grap)
V (ys; ssr)

≈ 1 + (L − 1) ρic.

Se, sulla base di precedenti rilevazioni o di un campione pilota, è noto a
priori il valore di Deff (grap, ys) (o almeno una sua stima sufficientemente
accurata) ci si può basare su di esso per scegliere la numerosità campionaria
n. Il procedimento consta di due fasi:

– fissati i valori di t e di α, si determina la numerosità campionaria nssr

necessaria affinché sia Pr(|ys − μy| > t) = α, secondo le linee esposte nel
Capitolo 4;

– si calcola m = nssr

L
Deff (grap, ys), che fornisce il numero di grappoli

campionari richiesto.

Esercizi

9.1. Sia n =
∑

g∈gm
Ng il numero di unità elementari osservate con un

campionamento a grappolo. Provare che:

a. E[n] = m
M N

b. V (n) =
(

1
m − 1

M

) {
m2

M

∑M
g=1

(
Ng − N

M

)2}
.

Suggerimento. n = 1
m

∑
g∈gm

mNg.

9.2. Provare che vale la relazione (9.15).

Suggerimento. Tenere conto che D2
b = D2

y − D2
w = D2

y − L−1
L

(1 − ρic)D
2
y =

D2
y

1
L

(1 + (L − 1)ρic), e che S2
b =

D2
b

L(M−1)
.
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9.3. Provare che il coefficiente di correlazione intra-classi si può esprimere
nella forma:

ρic =
1

M L (L−1)

∑
g

∑
i

∑
j �=i(ygi − μy) (ygj − μy)

1
M L

∑
g

∑
i(ygi − μy)2

.

Suggerimento. Tenere conto che
∑

g(μyg − μy)2 =
∑

g{
∑

i(ygi − μy)}2/L2 =

{∑g

∑
i(ygi−μy)

2+
∑

g

∑
i

∑
j �=i(ygi−μy) (ygj−μy)}/L2, da cui D2

w = (L−1)D2
y/L

−∑g

∑
i

∑
j �=i(ygi − μy) (ygj − μy)/L.

9.4. Si consideri una popolazione di N unità elementari, raggruppate in M
grappoli ciascuno di numerosità L. Supponiamo poi che il costo di osservazione
di un’unità elementare sia pari a c se si una il disegno ssr, e che sia pari a c/k,
con k � 1, se si usa il disegno a grappolo. Fissato il budget totale C0 per la
rilevazione, si hanno due possibilità:

a. campionare mediante disegno ssr n = C0/c unità elementari;
b. campionare mediante disegno a grappolo C0/(k c) = k n unità elementari.

La b. richiede la selezione di m = k n/L grappoli, per cui si suppone che
tale numero sia intero.

Supponendo il numero totale N di unità “grande”, cos̀ı che 1/N ≈ 0,
verificare che a parità di costo di rilevazione si ha

V (ys; ssr)
V (μ̂gr ; grap)

≈ k

1 + (L − 1) ρic

cos̀ı che la strategia b. è preferibile ad a. se k > 1 + (L − 1)ρic.

9.5. Una società di controllo di gestione deve valutare il numero medio di
errori presenti in una serie di 10000 documenti contabili. Ogni documento
contabile contiene 200 voci, ciascuna delle quali può o meno contenere un
errore.

Si selezionano, con campionamento ssr, 100 documenti contabili, e si os-
serva che: (i) in 2 documenti ci sono 5 voci errate; (ii) in 3 documenti ci
sono 2 voci errate; (iii) in 5 documenti vi è 1 voce errata; (iv) nei restanti 90
documenti non ci sono errori.

a. Considerando ogni documento contabile come un grappolo di 200 voci, sti-
mare il numero medio di errori per documento contabile nella popolazione.

b. Stimare la varianza della stima in a.
c. Stimare il numero totale di voci errate nella popolazione di 10000 docu-

menti contabili, e costruire una stima della varianza di tale stimatore.
d. Stimare il numero di documenti privi di errori nella popolazione.

9.6. Un naturalista vuole valutare il numero di piante di una data specie che
vivono in un’area (quadrata) di 100 m2 . L’esame attento di 1 m2 di superficie
richiede 15 minuti di lavoro, e il naturalista può lavorare per non oltre 10 ore.
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In via (molto) approssimata si può assumere che in una superficie di h m2

ci si attendono in media c h piante, con una varianza pari a c hr, essendo r, c
numeri reali positivi.

Il naturalista deve scegliere tra le seguenti due strategie di campionamento.

(i) Campionare mediante ssr 40 parcelle di 1 m2 di terreno, contare il nume-
ro di piante che vivono in ciascuna parcella, e stimare il numero totale
di piante come: 10000 × media campionaria di piante per m2.

(ii) Suddividere il terreno in 2500 grappoli, ciascuno formato da 4 parcelle
da 1 m2, contare il numero di piante in ciascun grappolo, e stimare il
numero totale di piante come: 10000 × stimatore a grappolo del numero
medio di piante per m2.

Provare che: (a) se r = 1 le due strategie sono equivalenti; se r > 1 è
preferibile la strategia (i); se r < 1 è preferibile la strategia (ii).

Suggerimento. La varianza dello stimatore (i) è uguale, in via approssimata, a(
1
40 − 1

10000

)× c 100002. Sempre in via approssimata, la varianza dello stimatore

(ii) è pari a
(

1
10

− 1
2500

)× c 4r

42 100002 .

9.7. Il sindaco di Frascati è in allarme, in quanto ha appreso che la vicina
città di Roma vuole costruire, proprio vicino al confine tra i due comuni, un
parcheggio per pullman turistici che inquinano e appesantiscono il traffico.

Per avere un’idea di cosa pensa la propria cittadinanza, il nostro sindaco
decide di fare effettuare un’indagine campionaria. Viene selezionato un cam-
pione ssr di 100 delle 4000 famiglie di Frascati, e ad ogni famiglia viene chiesto
di specificare: (a) il numero di adulti, e (b) il numero di adulti contrari alla
costruzione del parcheggio. In totale, vengono in questo modo intervistate 260
persone adulte, 234 delle quali si dichiarano contrarie al parcheggio.

Sulla base dei risultati dell’indagine, il sindaco convoca una conferenza
stampa e afferma che:

(i) sulla base di una seria indagine statistica, si è stimato che il 90% degli
individui adulti di Frascati sono contrari alla costruzione del parcheggio;

(ii) la varianza della proporzione stimata in (i) si può stimare pari a 0.9
(1 − 0.9)/260 = 0.00035, e quindi l’indagine è molto affidabile.

Siete d’accordo, da un punto di vista statistico, con le affermazioni del sindaco?

9.8. In un quartiere vi sono 800 edifici, ciascuno identificato da via e numero
civico. In ogni edificio vi è un certo numero di appartamenti (variabile da
edificio a edificio), in ciascuno dei quali vive una famiglia. In totale il numero
di famiglie che vivono nel quartiere è 16000. Si seleziona, mediante disegno
ssr, un campione di m = 20 edifici di cui si riportano nella tabella che segue
in numero di famiglie residenti e il reddito totale (somma dei redditi delle
famiglie residenti).
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Numero di famiglie Reddito totale Numero di famiglie Reddito totale

(Euro) (Euro)

18 35000 14 28000

24 50000 24 49000

26 51000 18 35000

15 31000 42 83000

30 63000 50 105000

32 62000 20 38000

36 75000 46 91000

25 49000 32 65000

18 38000 14 30000

20 43000 26 50000

a. Calcolare lo stimatore μ̂gr del reddito medio per famiglia.
b. Stimare V (μ̂gr).
c. Calcolare μ̂qgr . Spiegare, sulla base dei dati campionari, perché μ̂qgr < μ̂gr .

Suggerimento. Che tipo di relazione suggeriscono i dati campionari?
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Disegno campionario sistematico

10.1 Aspetti di base

Il disegno campionario sistematico è spesso usato in pratica, in quanto è in
genere visto come un’alternativa semplificata del disegno ssr.

Per introdurre il campionamento sistematico, iniziamo con un semplice
esempio.

Esempio 10.1. Si consideri una popolazione di N = 20 unità, da cui si vuo-
le trarre un campione di n = 5 unità. Si può pensare di usare la seguente
procedura di selezione.

Si considerano le prime 4 unità della popolazione, e si seleziona una di esse
con probabilità 1/4:

– se si seleziona l’unità 1, il campione sarà s1 = {1, 5, 9, 13, 17};
– se si seleziona l’unità 2, il campione sarà s2 = {2, 6, 10, 14, 18};
– se si seleziona l’unità 3, il campione sarà s3 = {3, 7, 11, 15, 19};
– se si seleziona l’unità 4, il campione sarà s4 = {4, 8, 12, 16, 20}.

Lo spazio dei campioni è pertanto composto dai seguenti quattro campioni:

S = {s1 = {1, 5, 9, 13, 17}, s2 = {2, 6, 10, 14, 18},
s3 = {3, 7, 11, 15, 19}, s4 = {4, 8, 12, 16, 20}}

e ciascuno di essi ha probabilità 1/4 di essere selezionato:

p(s1) = p(s2) = p(s3) = p(s4) =
1
4
.

Rispetto al disegno ssr vi sono differenze rilevanti, ma anche punti di con-
tatto. La principale differenza è che nel disegno ssr lo spazio dei campioni è
formato da tutte le combinazioni senza ripetizione di 5 delle 20 unità della
popolazione. In questo caso, invece, sono presenti solo alcune di tali combina-
zioni. Il principale punto di contatto con il disegno ssr, invece, è costituito dal
fatto che tutti i campioni hanno la stessa probabilità di essere selezionati. ��

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 10, © Springer-Verlag Italia 2012
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In generale, consideriamo una popolazione di N unità, da cui si vuole
selezionare un campione di numerosità n. Supponiamo anche, per semplicità,
che M = N/n sia intero (il caso N/n non intero sarà discusso più avanti);
tale quantità è il passo di campionamento. Il disegno campionario sistematico
di passo M è una facile estensione di quanto visto nell’Esempio 10.1, ed è di
seguito descritto.

Si considerano le prime M unità della popolazione, e si seleziona una di
esse con probabilità 1/M :

− se si seleziona l’unità 1, il campione sarà s1 = {1, 1 + M, 1 + 2 M, . . . ,
1 + (n − 1)M};

− se si seleziona l’unità 2, il campione sarà s2 = {2, 2 + M, 2 + 2 M, . . . ,
2 + (n − 1)M};
. . .

− se si seleziona l’unità M, il campione sarà sM = {M, M + M, M +
2 M, . . . , M + (n − 1)M} = {M, 2 M, 3 M, . . . , N}.
Per quanto riguarda il disegno campionario, la sua struttura è chiara. Lo

spazio dei campioni è formato dagli M campioni s1, s2, . . . , sM :

S = {{1, 1 + M, 1 + 2 M, . . . , 1 + (n − 1)M} ,

{2, 2 + M, 2 + 2 M, . . . , 2 + (n − 1)M}, . . . , {M, 2 M, 3 M, . . . , N}}

e ciascuno di essi ha probabilità 1/M di essere selezionato:

p(s1) = p(s2) = . . . = p(sM ) =
1
M

.

Differenze ed analogie con il disegno ssr sono evidenti. La differenza di ba-
se, in generale, è che i campioni selezionabili mediante disegno ssr sono tutte le(

N
n

)
combinazioni senza ripetizioni di n delle N unità della popolazione. Nel

disegno sistematico, invece, solo M = N/n di tali combinazioni sono effettiva-
mente selezionabili. Questo significa che nel disegno ssr lo spazio dei campioni
è più “ricco”, composto da un maggior numero di campioni, rispetto al dise-
gno sistematico. Inoltre, a differenza del campionamento casuale semplice nel
campionamento sistematico solo la prima unità è scelta casualmente, mentre
le altre sono determinate in modo automatico. Ciò semplifica notevolmente la
procedura di estrazione del campione. La principale analogia tra i due disegni
campionari, invece, è che in entrambi i casi tutti i campioni dello spazio dei
campioni hanno la medesima probabilità di essere selezionati 1/

(
N
n

)
per il

disegno ssr, 1/M = n/N per il disegno sistematico.
Il disegno sistematico è in sostanza uno speciale tipo di disegno a grappolo,

come di seguito descritto.

– I grappoli sono gli insiemi di unità:
{1, 1+M, 1+2 M, . . . , 1+(n−1)M}, {2, 2+M, 2+2 M, . . . , 2+(n−1)M},
. . ., {M, 2 M, 3 M, . . . , N}.
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Questo significa che tutti i grappoli sono composti da n unità, e vi sono
in totale M = N/n grappoli. Con la simbologia introdotta nel precedente
capitolo, questo significa che L = n.

– Si seleziona un solo grappolo: m = 1.

Quanto sopra detto vale soltanto nel caso in cui la numerosità N della
popolazione sia un multiplo della numerosità n del campione, cos̀ı che M =
N/n è un numero intero. Tuttavia, non sempre nella pratica tale condizione è
soddisfatta. Per ovviare a tale inconveniente sono stati proposti diversi rimedi.

Una prima idea è quella di prendere M uguale al più piccolo intero mag-
giore o uguale a N/n, e di considerare M grappoli, di cui M − 1 formati da n
unità, e uno da N − n (M − 1) unità. Il modo in cui i grappoli sono costruiti
e selezionati è del tutto simile a quello in precedenza descritto.

Si osservi che se N non è multiplo di n lo spazio dei campioni è costituito
da campioni di numerosità diversa. Un modo per ovviare a tale inconveniente
è quello di considerare la lista delle unità della popolazione come circolare al
fine di selezionare un campione della numerosità prestabilita. Ciò significa che
se si arriva alla fine della lista si riparte dall’inizio allo scopo di ottenere la
numerosità campionaria prefissata. In questo caso si parla di campionamen-
to sistematico circolare. Formalmente, tale metodo consiste nel prendere M
uguale al più piccolo intero maggiore o uguale a N/n, e nell’“ampliare” la
popolazione considerando n M unità secondo lo schema seguente.

Unità della popolazione ampliata Unità della popolazione originale

1 1
2 2
· · · · · ·
N N

N + 1 1
N + 2 2
· · · · · ·

n M nM − N

La popolazione ampliata viene poi suddivisa in M grappoli di n unità
secondo il solito meccanismo, e viene selezionato un grappolo.

Esempio 10.2. Si consideri una popolazione di N = 27 unità, da cui si vuole
trarre un campione sistematico di n = 7 unità. In questo caso si ha

M = più piccolo intero � 27
7

= 4

e pertanto i grappoli in cui si suddivide la popolazione sono i seguenti:

s1 = {1, 5, 9, 13, 17, 21, 25}, s2 = {2, 6, 10, 14, 18, 22, 26},
s3 = {3, 7, 11, 15, 19, 23, 27}, s4 = {4, 8, 12, 16, 20, 24}.
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Ognuno di essi, inoltre, ha probabilità 1/4 di essere selezionato. Di fatto,
si procede come già visto, ossia:

Si seleziona una delle prime quattro unità, in modo che ciascuna abbia
probabilità 1/4 di essere selezionata:

– se si seleziona l’unità 1, si osserva il campione s1 = {1, 5, 9, 13, 17, 21, 25};
– se si seleziona l’unità 2, si osserva il campione s2 = {2, 6, 10, 14, 18, 22, 26};
– se si seleziona l’unità 3, si osserva il campione s3 = {3, 7, 11, 15, 19, 23, 27};
– se si seleziona l’unità 4, si osserva il campione s4 = {4, 8, 12, 16, 20, 24}.

��
L’inconveniente di questo metodo è che non produce campioni tutti della

stessa numerosità n. Per particolari valori di N e n, uno dei campioni potrebbe
essere composto da un numero molto piccolo di unità.

Esempio 10.3. Si consideri una popolazione di N = 26 unità da cui si vuole
estrarre, con un disegno sistematico, un campione di n = 7 unità. Si ha in
primo luogo

M = più piccolo intero � 26
7

= 4,

per cui è n M = 28. La popolazione ampliata e quella originale sono riportate
nello schema qui sotto.

Unità della popolazione ampliata Unità della popolazione originale

1 1
2 2

· · · · · ·
26 26
27 1
28 2

A questo punto, come detto, si opera usando la popolazione ampliata come
se fosse la popolazione da cui selezionare il campione sistematico. Questo
significa procedere nel seguente modo.

Si seleziona una delle prime quattro unità (della popolazione ampliata), in
modo che ciascuna abbia probabilità 1/4 di essere selezionata:

− se si seleziona l’unità 1, si osserva il campione (grappolo) di unità della po-
polazione ampliata {1, 5, 9, 13, 17, 21, 25}, che corrisponde al campione
{1, 5, 9, 13, 17, 21, 25} della popolazione originale;

− se si seleziona l’unità 2, si osserva il campione (grappolo) di unità del-
la popolazione ampliata {2, 6, 10, 14, 18, 22, 26}, che corrisponde al
campione {2, 6, 10, 14, 18, 22, 26} della popolazione originale;

− se si seleziona l’unità 3, si osserva il campione (grappolo) di unità del-
la popolazione ampliata {3, 7, 11, 15, 19, 23, 27}, che corrisponde al
campione s3 = {3, 7, 11, 15, 19, 23, 1} della popolazione originale;
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− se si seleziona l’unità 4, si osserva il campione (grappolo) di unità della
popolazione ampliata {4, 8, 12, 16, 20, 24, 28}, che corrisponde al cam-
pione {4, 8, 12, 16, 20, 24, 2} della popolazione originale. ��

10.2 Stima della media della popolazione: risultati di
base

Il problema della costruzione di uno stimatore della media della popolazione
può essere trattato in maniera molto semplice tenendo conto che il disegno
sistematico è un caso particolare di disegno a grappolo, in cui si seleziona
un solo grappolo. Per ragioni di semplicità supporremo che M = N/n sia
intero. Molti dei risultati che si otterranno saranno comunque validi anche se
si adottano gli schemi sistematici modificati (nel caso N/n non intero) visti
nella sezione precedente. In ogni caso, per trattare il problema della stima
della media della popolazione è sufficiente particolarizzare al caso m = 1 i
risultati ottenuti nel capitolo precedente.

In primo luogo, gli M = N/n grappoli in cui è suddivisa la popolazione
possono essere indicati nel modo seguente.

Grap- Unità dei grappoli Medie dei grappoli Valori zg

poli

1 s1 = {1, 1 + M, . . . , 1 + (n − 1) M} μy1 =
y1+y1+M +···+y1+(n−1) M

n z1 = μy1

2 s2 = {2, 2 + M, . . . , 2 + (n − 1) M} μy2 =
y2+y2+M +···+y2+(n−1) M

n
z2 = μy2

· · · · · · · · · · · ·
g sg = {g, g + M, . . . , g + (n − 1)M} μy1 =

yg+yg+M +···+yg+(n−1) M

n
zg = μyg

· · · · · · · · · · · ·
M sM = {M,2 M, . . . , N} μyM = yM+y2 M +···+yN

n
z1 = μyM

Se si seleziona il grappolo g-mo, lo stimatore μ̂gr si riduce a:

μ̂gr = μyg

=
Somma delle yi con i ∈ sg

n
= Media campionaria delle yi

= ys (10.1)

ossia alla media campionaria, per la quale useremo il simbolo ys già impiegato
nel Capitolo 3.

Le proprietà dello stimatore (10.1) sono studiate nella Proposizione 10.1,
che è semplicemente ottenuta particolarizzando la Proposizione 9.1 al caso
m = 1. Per rendere più comoda la notazione, indichiamo con

S2
b =

1
M − 1

M∑
g=1

(μyg − μy)2 (10.2)
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la varianza (corretta con il denominatore M − 1) delle medie μyg nella
popolazione.

Proposizione 10.1. Se il disegno campionario è sistematico, la media cam-
pionaria ys è uno stimatore corretto della media della popolazione:

E [ys] = μy (10.3)

e la sua varianza è pari a

V (ys) =
(
1 − n

N

)
S2

b . (10.4)

La varianza (10.4) si può studiare un po’ più in dettaglio tramite il coeffi-
ciente di correlazione intra-classi ρic introdotto nella Sezione 9.3. Esattamente
come nella Sezione 9.3, consideriamo le quantità

D2
y =

N∑
i=1

(yi − uy)2, D2
b = n

M∑
g=1

(μyg − μy)2

e

D2
w =

M∑
g=1

{
(yg − μyg)2 + (yg+M − μyg)2 + · · ·+ (yg+(n−1) M − μyg)2

}
ovvero, rispettivamente, la devianza totale, la devianza tra i grappoli e la
devianza nei grappoli. Il coefficiente di correlazione intra-classi è pari a:

ρic = 1 − n

n − 1
D2

w

D2
y

.

Indicando come al solito con S2
y = D2

y/(N − 1) la varianza corretta della
popolazione, dalla Proposizione 9.4 discende che vale la relazione:

V (ys) =
(

1
n
− 1

N

)
N − 1
N − n

S2
y (1 + (n − 1) ρic) . (10.5)

Se N è grande rispetto a n si ha N − n ≈ N − 1, e quindi la (10.5) può
essere approssimata nel modo seguente:

V (ys) ≈
(

1
n
− 1

N

)
S2

y (1 + (n − 1) ρic) . (10.6)

La (10.6) permette di confrontare facilmente l’efficienza della coppia (di-
segno ssr, media campionaria) con quella della coppia (disegno sistematico,
media campionaria), a parità di numerosità campionaria n. Si ha la relazione:

V (ys; sist)
V (ys; ssr)

≈ 1 + (n − 1) ρic (10.7)
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la quale si può scrivere in termini di effetto del disegno come:

Deff (sist, ys) ≈ 1 + (n − 1) ρic . (10.8)

Dalla (10.7) si evince che se il coefficiente di correlazione intra-classi ρic

è negativo, si ha (in via approssimata) V (ys; sist) < V (ys; ssr), e quin-
di l’uso del disegno sistematico garantisce (in via approssimata) un’efficienza
di stima superiore rispetto a quella ottenibile con il disegno semplice senza
ripetizione. La disuguaglianza contraria vale invece se ρic assume un valore
positivo. In queste condizioni, notiamo che anche un piccolo valore del coef-
ficiente di correlazione intra-classi può provocare un forte incremento nella
varianza (10.6) a causa del fattore (n − 1), con una conseguente minore ef-
ficienza del campionamento sistematico rispetto al campionamento casuale
semplice senza ripetizione.

Esempio 10.4. Nel file agenzie02.txt sono riportati il valore delle vendite
e l’utile lordo (entrambi in milioni di Euro) di 100 agenzie immobiliari che
operano nella provincia di Roma. Si tratta di una popolazione di N = 100
unità, di cui si vuole stimare il valore medio delle vendite, μy. In particolare,
nella popolazione è μy = 16.6, S2

y = 80.6.
Se si usa un disegno ssr con numerosità n = 20, la varianza e il coefficiente

di variazione della media campionaria ys sono rispettivamente uguali a:

V (ys; ssr) =
(

1
20

− 1
100

)
80.6 = 3.2;

CV (ys; ssr) =
3.2
16.6

100 = 19.3%.

Confrontiamo questo risultato con quello che si avrebbe usando un disegno
sistematico, sempre di numerosità n = 20. In totale si hanno M = 100/20 = 5
grappoli (campioni), le caratteristiche dei quali sono qui di seguito elencate.

Le devianze totale (D2
y), nei grappoli (D2

w) e tra i grappoli (D2
b ) sono qui

sotto riportate

D2
y = 7978.5, D2

w = 7862.5, D2
b = 116.0.

Tabella 10.1 Caratteristiche dei grappoli per la popolazione di agenzie immobiliari

Grappolo Unità Media Devianza

1 {1, 6, 11, , · · · , 96} 15.1 1003.9

2 {2, 7, 12, , · · · , 97} 18.2 1970.2

3 {3, 8, 13, , · · · , 98} 16.5 1973.2

4 {4, 9, 14, , · · · , 99} 15.9 1422.6

5 {5, 10, 15, , · · · , 100} 17.3 1492.6
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Esse danno luogo ad un coefficiente di correlazione intra-classi pari a

ρic = 1 − 20
19

7862.5
7978.5

= −0.04.

Essendo il valore di ρic negativo, si può affermare che il disegno sistematico
dà risultati migliori, in termini di efficienza, rispetto al disegno ssr. Questo
è confermato anche dal calcolo della varianza e del coefficiente di variazione
di ys

V (ys; sist) =
(

1
20

− 1
100

)
99
80

80.6 (1− 19 × 0.04) = 0.96;

CV (ys; sist) =
0.96
16.6

100 = 5.8%

i quali mostrano che in questo caso il disegno sistematico comporta un notevole
guadagno di efficienza rispetto al disegno ssr. ��

10.3 Efficienza di stima con disegno sistematico

Come già sottolineato, il disegno sistematico può essere considerato come un
caso particolare di quello a grappolo. È quindi soggetto, in linea di principio, a
considerazioni simili per quanto riguarda l’efficienza di stima della media della
popolazione. Vi sono però diverse peculiarità che vale la pena sottolineare.

I grappoli (campioni) propri del campionamento sistematico non sono, in
genere, gruppi di unità legate da un qualche vincolo di contiguità spaziale o
di altra natura. La loro natura dipende essenzialmente dal modo in cui le eti-
chette sono assegnate alle unità della popolazione. Modi diversi di assegnare
le etichette alle unità della medesima popolazione possono portare a valori
completamente diversi della varianza V (ys; sist). Pertanto, l’efficienza di sti-
ma che si ottiene usando un disegno di tipo sistematico dipende strettamente
dal modo in cui le etichette sono assegnate alle unità della popolazione, ossia,
in termini equivalenti, al modo in cui le unità sono ordinate prima di pro-
cedere all’estrazione del campione. Questo punto è illustrato nel successivo
Esempio 10.5.

Esempio 10.5. Nel file spese_anziani.xls sono riportate diverse variabili
relative a 250 comuni (i cui nomi sono di fantasia). Ciascun comune è iden-
tificato da un codice di tre cifre. I comuni sono raggruppati in 12 distretti
(anch’essi con nomi di fantasia, e con codice numerico da 1 a 12), i quali a
loro volta formano tre regioni (sempre con nomi di fantasia, e con codice nu-
merico da 1 a 3). La variabile di interesse, di cui si vuole stimare la media,
è la spesa (media) per anziano sostenuta nell’anno 2011. Per ciascun comune
sono note a priori la popolazione residente e la spesa per anziani sostenuta
nell’anno 2009.
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Per stimare la spesa media per anziani sostenuta nel 2011, consideriamo
in primo luogo un disegno campionario sistematico, di numerosità n = 25. Vi
sono quindi, in totale, M = 10 grappoli, ciascuno dei quali è uno dei possibili
campioni selezionabili. Per quanto riguarda l’assegnazione delle etichette alle
unità, sono stati considerati quattro diversi criteri di ordinamento:

– nome del comune: i comuni sono ordinati alfabeticamente sulla base del
proprio nome, e le etichette sono assegnate di conseguenza (al primo co-
mune della graduatoria alfabetica viene assegnata l’etichetta 1, al secondo
l’etichetta 2, e cos̀ı via);

– codice del comune: i comuni sono ordinati sulla base del proprio codice
numerico, e le etichette sono assegnate di conseguenza;

– popolazione del comune: i comuni sono ordinati sulla base della popolazione
residente, e le etichette sono assegnate di conseguenza;

– spesa per anziani nel 2009: i comuni sono ordinati sulla base della propria
spesa (media) per anziano sostenuta nel 2009, e le etichette sono assegnate
di conseguenza.

Intuitivamente, l’usare come criterio di ordinamento il nome del comune è
pressoché equivalente ad assegnare casualmente le etichette ai comuni. Consi-
derazioni abbastanza simili si possono fare per l’ordinamento in base ai codici
dei comuni, anche se in genere codici “simili” indicano la vicinanza geografica
dei comuni corrispondenti. Poiché è ragionevole pensare che le spese sostenu-
te nel 2011 siano (molto) correlate positivamente con quelle del 2009, è lecito
ritenere che l’ordinare i comuni sulla base della spesa per anziano del 2009
dovrebbe grosso modo (anche se non esattamente) portare ad assegnare le
etichette più piccole ai comuni con spesa (nel 2011) più bassa, e le etichette
più grandi ai comuni con spesa (sempre nel 2011) più alta. Infine, l’ordinare i
comuni sulla base della popolazione porta a risultati non facilmente prevedi-
bili, in quanto legati alle relazioni tra spesa per anziano nel 2011 e livello di
popolazione.

In Fig. 10.1 sono rappresentati grafici in cui in ascissa compaiono le
etichette dei comuni, e in ordinata la spesa (media) per anziano nel 2011.

I grafici sono molto diversi, ma mostrano tutti un aspetto interessante.
Molto grossolanamente, i comuni possono dividersi in due categorie: quella
dei comuni di spesa medio-bassa (all’incirca tra i 5000 e i 6000 Euro annui
per anziano), e quelli di spesa medio-alta (all’incirca tra i 15000 e i 17000
Euro per anziano). Inoltre, è chiara l’alta correlazione positiva tra spesa per
anziano nel 2009 e nel 2011.

In Tabella 10.2 sono riportate le medie campionarie per i 10 campioni (di
n = 25 comuni) del disegno sistematico, con i quattro criteri di ordinamento
sopra elencati. Nella stessa tabella sono anche riportati devianza totale, de-
vianze nei grappoli e tra i grappoli, e coefficiente di correlazione intra-classi,
che nel caso in esame ha come valore minimo possible −1/24 = −0.042, e
come valore massimo 1. Nella stessa tabella sono anche riportati valore at-
teso, varianza e deviazione standard della media campionaria sia quando il
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Fig. 10.1 Grafici spesa media per anziano del 2011

disegno è sistematico, sia quando è ssr. In quest’ultimo caso, ovviamente, la
varianza della media campionaria non dipende dal modo in cui le etichette
sono assegnate ai comuni.

Il disegno sistematico consente un guadagno di efficienza molto modesto
rispetto al disegno ssr quando i comuni sono ordinati per nome, e un pò più
marcato quando sono ordinati per codice. Questo è conforme all’intuizione che
assegnare le etichette sulla base dei nomi è molto vicino ad una assegnazione
puramente casuale, per cui i risultati sono tutto sommato comparabili (lieve-
mente migliori nel nostro caso) a quelli che si ottengono con il disegno ssr.
L’ordinamento dei comuni sulla base della popolazione produce invece un’ef-
ficienza minore di quella che si ha con il disegno ssr. Infine, ordinare i comuni
sulla base della spesa per anziano del 2009 produce invece un notevolissimo
guadagno di efficienza, come si vede sia dall’esame delle deviazioni standard,
sia dal coefficiente di correlazione intra-classi (pari a −0.039).

È interessante cercare di capire a cosa sia dovuto un tale guadagno di
efficienza. Ordinare i comuni sulla base della spesa per anziano del 2009 è
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Tabella 10.2 Confronto disegni sistematico e ssr – stima spesa media per anziani

Disegno sistematico

Campioni Ordinamento per

Nome comune Codice comune Popolazione Spesa 2009

1 11682 10994 10003 11064

2 10815 11453 10912 11113

3 10375 12097 13137 11186

4 11049 10603 10113 11447

5 10460 12856 11177 11372

6 11776 11954 11725 11517

7 12044 11745 13615 11695

8 13639 10556 9865 11826

9 12298 11346 13022 11782

10 10835 11369 11404 11971

Dev. totale D2
y 7583897917 7583897917 7583897917 7583897917

Dev. tra grappoli D2
b 226984103 111402003 420433053 22588403

Dev. nei grappoli D2
w 7356913814 7472495914 7163464864 7561309514

Coeff. corr. intra-classi ρic –0,01 –0,026 0,016 –0,039

Disegno sistematico – stimatore media campionaria

Valore atteso 11497 11497 11497 11497

Varianza 907936 445608 1681732 90354

Deviazione standard 953 668 1297 301

Disegno ssr – stimatore media campionaria

Valore atteso 11497

Varianza 1096467

Deviazione standard 1047

quasi equivalente ad ordinarli sulla base della spesa per anziano del 2011.
Ogni campione di 25 comuni, a causa di questo tipo di ordinamento, conterrà
sia comuni con un livello di spesa basso/medio, sia comuni con un livello di
spesa medio/alto. In altri termini, i campioni sono “ben equilibrati” nella
composizione, e la media di ciascuno di essi è vicina a quella di tutti i 250
comuni. Lo stesso non necessariamente accade nel caso del disegno semplice.
Queste considerazioni sono illustrate graficamente in Fig. 10.2. ��

Dall’esempio precedente possono trarsi alcune considerazione sull’efficienza
di stima che può ottenere con il disegno sistematico. Se i valori della varia-
bile oggetto di indagine sono ordinati casualmente allora il campionamento
sistematico equivale, in termini di efficienza, ad un campionamento casuale
semplice. Per la dimostrazione formale, si veda l’Esercizio 10.1.
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Fig. 10.2 Campioni sistematico e ssr – esempio spesa anziani 2011

Se invece i dati della variabile oggetto di indagine sono disposti in ordine
crescente o decrescente, allora il campionamento sistematico può avere un’ef-
ficienza di stima maggiore di quella del campionamento casuale semplice. In
particolare, se l’eterogeneità della popolazione viene colta dal passo di campio-
namento generando un campione costituito da elementi molto diversi tra loro
(alcuni con valori y “piccoli” e altri con valori y “grandi”), il campionamento
sistematico risulta migliore del campionamento casuale semplice. Sotto tale
condizione il campione rappresenta in qualche misura un’“immagine ridotta”
della popolazione, poiché sarà costituito da unità in cui la variabile d’indagine
assume valori piccoli, medi ed elevati in proporzione simile alla popolazione.
Si veda in proposito la Fig. 10.3.

Il campionamento sistematico può d’altro canto fornire risultati peggiori
del campionamento casuale semplice se i valori della variabile di interesse
presentano un andamento ciclico. In questa circostanza, se la ciclicità viene
colta dal passo di campionamento il campione sarà costituito da elementi
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Fig. 10.3 Campione sistematico con valori y crescenti

Fig. 10.4 Campione sistematico con valori y ciclici

molto simili tra loro, come appare in Fig. 10.4. In generale per popolazioni
caratterizzate da periodicità il passo di campionamento non deve coincidere
con il periodo o con un suo multiplo.

Esempio 10.6 (Trend lineare). Un caso speciale di popolazione con mo-
dalità yi ordinate è quello di trend lineare, in cui si assume che i valori della
variabile Y siano legati alle etichette delle unità corrispondenti dalla seguente
relazione lineare

yi = a + bi per ciascuna unit à i = 1, . . . , N (10.9)

con a, b numeri reali. La media μy della popolazione è pari a

μy =
1
N

N∑
i=1

yi =
1
N

N∑
i=1

(a + bi) = a +
b

N

N∑
i=1

i = a +
b

N

N(N + 1)
2

= a + b
N + 1

2
(10.10)
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in quanto (Esercizio 10.2) la somma dei primi N numeri interi è pari a N(N +
1)/2. In modo simile, è facile vedere che la varianza della popolazione assume
la forma:

σ2
y =

1
N

N∑
i=1

(
a + bi − a − b

N + 1
2

)2

=
b2

N

N∑
i=1

(
i − N + 1

2

)2

= b2

{
1
N

N∑
i=1

i2 −
(

N + 1
2

)2
}

= b2

(
1
N

N(N + 1)(2N + 1)
6

− (N + 1)2

4

)
= b2(N + 1)

{
2N + 1

6
− N + 1

4

}
= b2(N + 1)

N − 1
12

= b2 N2 − 1
12

essendo la somma dei quadrati dei primi N numeri naturali eguale a N(N +1)
(2N +1)/6 (Esercizio 10.3). La varianza corretta della popolazione è pertanto
pari a

S2
y =

N

N − 1
σ2

y

=
N

N − 1
b2 N2 − 1

12

= b2 N(N + 1)
12

. (10.11)

Se si seleziona dalla popolazione un campione semplice senza ripetizione
di numerosità n, la varianza della media campionaria risulta uguale, con ovvia
simbologia, a:

V (ys; ssr) =
(

1
n
− 1

N

)
b2 N(N + 1)

12
. (10.12)

Supponiamo ora che M = N/n sia intero, e consideriamo un disegno siste-
matico di ampiezza n (e passo M). Gli M campioni del disegno sistematico
possono essere scritti come

si = {i, i + M, i + 2M, . . . , i + (n − 1)M}, i = 1, . . . , M (10.13)
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e ad essi corrispondono le modalità etichettate

a + bi, a + b(i + M), a + b(i + 2M), . . . , a + b(i + (n − 1)M) . (10.14)

Dalla (10.14) discende che al campione si corrisponde una media campionaria

ysi
=

a + bi + a + b(i + M) + a + b(i + 2M) + . . . + a + b(i + (n − 1)M)
n

= a +
b

n

⎛⎝ni + M

n−1∑
j=0

j

⎞⎠
= a + bi +

bM

n

n−1∑
j=1

j

= a + bi +
bM

n

n(n − 1)
2

= a + bi +
(n − 1)bM

2
(10.15)

sempre come conseguenza dell’Esercizio 10.2.
La varianza della media campionaria, se il disegno è sistematico, diventa

V (ys; sist) =
1
M

M∑
i=1

(ysi
− μy)2

=
1
M

M∑
i=1

{
a + bi +

(n − 1)bM
2

− a − b

(
N + 1

2

)}2

=
1
M

M∑
i=1

(
a + bi + b

nM

2
− b

M

2
− a − b

N

2
− b

2

)2

=
b2

M

M∑
i=1

(
i − M + 1

2

)2

= b2

{
1
M

M∑
i=1

i2 −
(

M + 1
2

)2
}

= b2

{
1
M

M(M + 1)(2M + 1)
6

− (M + 1)2

4

}
= b2 M2 − 1

12
avendo ancora sfruttato l’Esercizio 10.3.

Il rapporto delle due varianze (10.16), (10.12) risulta pertanto pari a

V (ys; sist)
V (ys; ssr)

=
M + 1
N + 1

< 1 (10.16)
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e quindi si conclude che, a parità di numerosità campionaria n, il disegno
sistematico fornisce nel caso in esame un’efficienza di stima maggiore rispetto
al disegno semplice. ��

In conclusione i vantaggi del campionamento sistematico sono essenzial-
mente di due tipi.

1. Se i valori della variabile di interesse Y sono disposti casualmente, il cam-
pionamento sistematico è assimilabile in tutto e per tutto a quello ca-
suale semplice. Rispetto al campionamento casuale semplice è più facile
da implementare poiché richiede l’utilizzazione di un meccanismo casuale
soltanto per la selezione della prima unità.

2. È più efficiente di quello casuale semplice se le unità della popolazione
possono essere ordinate secondo i valori di una variabile ausiliaria che
risulta correlata con la variabile di interesse, come illustrato in precedenza.

10.4 Stima della varianza della media campionaria

Il campionamento sistematico, benché intuitivo e facile da eseguire, presenta
uno svantaggio assai rilevante rispetto al disegno semplice senza ripetizione.
Poiché si basa sull’osservazione di uno solo dei grappoli in cui è suddivisa la
popolazione (m = 1), esso non permette di costruire uno stimatore corretto
della varianza V (ys).

Se le etichette sono assegnate alle unità in modo casuale, il disegno si-
stematico (Esercizio 10.1) è sostanzialmente equivalente al disegno semplice
senza ripetizione. Una pratica comune, in tal caso, consiste nello stimare V (ys)
esattamente come visto per il disegno ssr, ossia tramite lo stimatore:

V̂ =
(

1
n
− 1

N

)
ŝ2
y (10.17)

essendo

ŝ2
y =

1
n − 1

∑
i∈s

(yi − ys)
2

la varianza campionaria corretta. In maniera del tutto analoga vengono anche
costruiti intervalli di confidenza per μy

In generale, lo stimatore (10.17) è distorto se le etichette non sono asse-
gnate casualmente alle unità. Differenti stimatori della varianza (10.4) sono
studiati nel volume di Wolter (2007); ad eccezione di casi particolari riguar-
danti la struttura della popolazione, si tratta comunque di stimatori distorti.
Dato il livello elementare della presente trattazione non proseguiamo ulterior-
mente in questa direzione, limitandoci a presentare uno stimatore della (10.4)
nell’Esercizio 10.4.
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Esempio 10.7. Si consideri ancora la popolazione con trend lineare dell’E-
sempio 10.6, in cui si assume che yi = a + bi, i = 1, . . . , N . Per il campione
si = {i, i+M, i+2M, . . . , i+(n− 1)M}, alle cui unità corrispondono valori
yi del a + b(i + jM), j = 0, 1, . . . , n − 1, la media campionaria è pari alla
(10.15). La varianza campionaria corretta assume pertanto la forma:

ŝ2
i =

1
n − 1

{
(yi − ys)

2 + (yi+M − ys)
2 + · · ·+ (yi+(n−1)M − ys)

2
}

=
1

n − 1

n−1∑
j=0

(yi+jM − ys)
2

=
1

n − 1

n−1∑
j=0

{
a + b(i + jM) −

(
a + bi +

(n − 1)bM
2

)}2

=
b2M2

n − 1

n−1∑
j=0

(
j − n − 1

2

)2

=
b2M2

n − 1

⎛⎝n−1∑
j=0

j2 − n
(n − 1)2

4

⎞⎠
=

b2M2

n − 1

(
n(n − 1)(2(n − 1) + 1)

6
− n

(n − 1)2

4

)
= nb2M2

(
2n − 1

6
− n − 1

4

)
= nb2M2 4n − 2 − 3n + 3

12

= n(n + 1)
b2M2

12

ovvero ha lo stesso valore per tutti i campioni s1, . . ., sM . Lo stimatore (10.17)
è quindi eguale a

V̂ =
(
1 − n

N

)
(n + 1)

b2M2

12
(10.18)

qualunque sia il campione s1, . . ., sM . Anche il suo valore atteso, ovviamente,
è eguale alla (10.18). ��

Esercizi

10.1. Data una popolazione di N unità u1, . . . , uN , si supponga di scegliere
in modo “casuale” una permutazione di (1, . . . , N), in modo tale che ognu-
na delle N ! permutazioni ha la stessa probabilità di essere selezionata. Se
(i1, . . . , iN) è la permutazione scelta, all’unità ui1 viene data etichetta 1,
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all’unità ui2 etichetta 2, e cos̀ı via. Una volta assegnate le etichette, si sup-
ponga di scegliere dalla popolazione un campione sistematico di n unità (con
M = N/n intero). Provare che il campione contiene n qualunque unità della
popolazione con probabilità 1/

(
N
n

)
.

Suggerimento. Alle etichette {i, i+M, . . . , i+(n−1)M} viene assegnato un sottoin-
sieme di n qualsiasi unità della popolazione, e tutti i sottoinsiemi hanno la stessa
probabilità di essere assegnati alle etichette in questione.

10.2. Provare che
∑n

j=1 j = n(n + 1)/2.

Suggerimento. 1+2+3+· · ·+n = (1+n)+(2+(n−1))+(3+(n−2))+· · ·+(n+1) =

(n + 1) + (n + 1) + (n + 1) + · · · + (n + 1).

10.3. Provare che
∑n

j=1 j2 = n(n + 1)(2n + 1)/6.

Suggerimento.
∑n−1

j=1 j3 =
∑n

j=1(j − 1)3 =
∑n

j=1(j
3 − 3j2 + 3j − 1), da cui n3 =

3
∑n

j=1 j2 − 3n(n + 1)/2 + n.

10.4. Per il generico campione si (10.13) (i = 1, . . . , M), si definisca lo
stimatore di V (ys):

V̂d =
(

1
n
− 1

N

)
1

2(n − 1)

n−1∑
j=1

(yi+jM − yi+(j−1)M )2.

Provare le seguenti affermazioni.

a. Se l’assegnazione delle etichette alle unità è casuale, si ha

E[V̂d] =
(

1
n
− 1

N

)
S2

y .

Suggerimento. Se l’assegnazione delle etichette alle unità è casuale, yi+jM , yi+(j−1)M

può essere una qualunque coppia di unità distinte della popolazione; ognuna di
tali coppie ha probabilità 1/(N(N − 1)), per cui è E[(yi+jM − yi+(j−1)M )2] =∑N

i=1

∑N
j=1(yi − yj)

2/(N(N − 1)) = 2S2
y .

b. Sotto l’ipotesi di trend lineare (10.9) si ha

E[V̂d] =
(

1
n
− 1

N

)
b2M2

2
.

Suggerimento.
∑n−1

j=1 (yi+jM −yi+(j−1)M )2/(n−1) = b2M2 qualunque sia il campione
si, i = 1, . . . , M .

10.5. Una popolazione è formata da N = 16 unità, con etichette i = 1, . . .,
16, e con valori y del tipo yi = i, i = 1, . . ., 16. Si considerino le seguenti due
opzioni per la selezione di un campione di n = 4 unità.

– Campionamento sistematico. Si suddivide la popolazione negli M = 4
grappoli {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}, e si se-
leziona casualmente uno di essi. Si stima la media della popolazione con
la media campionaria.
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– Campionamento stratificato. Si suddivide la popolazione negli M = 4 stra-
ti {1, 5, 9, 13}, {2, 6, 10, 14}, {3, 7, 11, 15}, {4, 8, 12, 16}, e si selezio-
na casualmente una unità per ciascuno strato. Si stima la media della
popolazione con la media campionaria.

Quale delle due opzioni è preferibile?

10.6. Per diventare ricco Pinocchio deve seppellire i suoi 5 denari nel cam-
po dei miracoli, che ha superficie 100 m2. Divide quindi il campo in parcelle
quadrate di lato 1 m, e le numera secondo lo schema di seguito riportato.

Seppellisce quindi una moneta in ciascuno dei quadrati 5, 25, 45, 65, 85. Il
gatto e la volpe, che non sanno né quanti denari abbia seppellito Pinocchio, né
che schema abbia seguito, sono incerti sul da farsi. Il tempo a loro disposizione
permette di scavare non più di 10 parcelle di terreno. Il gatto propone di
selezionare le 10 parcelle da scavare mediante disegno sistematico. La volpe
propone invece di selezionare le 10 parcelle da scavare mediante disegno ssr.
Quale delle due strategie è preferibile?
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Disegno campionario a due stadi semplici

11.1 Aspetti di base e notazione

In molti casi di interesse la popolazione si può pensare strutturata in grappoli,
i quali potrebbero essere formati da parecchie unità elementari. Se si effettua
un campionamento a grappolo, basta campionare pochi grappoli per avere
un numero anche molto elevato di unità elementari. Ad esempio, si supponga
di voler stimare il tasso di disoccupazione della popolazione di una città. Le
unità elementari di rilevazione sono i singoli individui (diciamo di età 14–65
anni). In maniera molto semplice, si può pensare ad essi come raggruppati in
grappoli, ciascuno dei quali è costituito da tutti gli individui che vivono in una
stessa strada o piazza. Selezionare un campione di strade/piazze e osservare
tutti gli individui che vivono negli edifici corrispondenti è un’operazione poco
conveniente in quanto, a meno che la numerosità campionaria non sia molto
grande, basteranno poche strade/piazze per raggiungere parecchie centinaia
o migliaia di individui.

Ciò, come facilmente si intuisce, può avere conseguenze anche molto nega-
tive sull’efficienza di stima della media della popolazione. Un possibile rimedio
consiste nel non osservare tutte le unità elementari dei grappoli selezionati,
ma solo una parte di esse. È questa l’idea-guida del disegno campionario a
due stadi. In particolare, in questo capitolo ci occuperemo esclusivamente del
disegno a due stadi semplici. Esso parte, in buona sostanza, dalle stesse pre-
messe del disegno a grappolo. Anche in questo caso il punto di partenza è
una popolazione suddivisa in grappoli di unità elementari. Tuttavia, rispetto
al disegno a grappolo, si ha un passo di campionamento aggiuntivo, nel senso
che:

− dalla popolazione si seleziona, mediante disegno ssr, un campione di
grappoli;

− da ciascuno dei grappoli selezionati si seleziona, sempre mediante disegno
ssr, un campione di unità elementari.

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 11, © Springer-Verlag Italia 2012
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Chiaramente, il primo passo è identico a quello del disegno a grappolo.
Tuttavia, non si osservano tutte le unità elementari dei grappoli scelti, ma
solo un loro campione. Tale campione è ottenuto selezionando da ciascuno dei
grappoli scelti un campione ssr di unità elementari.

La simbologia utilizzata è la stessa del Capitolo 9. Supporremo cioè che
nella popolazione vi siano M grappoli, formati rispettivamente da N1, N2, . . .,
NM unità elementari. Ciascuna unità elementare è individuata da una doppia
etichetta (g, i), in cui g (= 1, . . . , M) è il grappolo a cui l’unità appartiene,
e i (= 1, . . . , Ng) indica l’unità all’interno del grappolo di appartenenza. Si
indicherà poi con wg = Ng/N il peso del grappolo g-mo (g = 1, . . . , M).

Se ygi è la modalità dell’unità i (= 1, . . . , Ng) del grappolo g (= 1, . . . , M),
sempre seguendo la notazione in precedenza introdotta, si indicheranno con

μyg =
1

Ng

Ng∑
i=1

ygi, S2
yg =

1
Ng − 1

Ng∑
i=1

(ygi − μyg)2 ; g = 1, . . . , M

rispettivamente la media e la varianza corretta del carattere di interesse Y nel
grappolo g-mo. Per ogni grappolo g poniamo infine

zg = M wg μyg =
M

N

Ng∑
i=1

ygi ; g = 1, . . . , M (11.1)

cos̀ı che, sempre similmente a quanto visto nei capitoli precedenti, la media
della popolazione può essere espressa come:

μy =
1
M

M∑
g=1

zg. (11.2)

L’idea di base del disegno campionario a due stadi semplici è elementare.

– I stadio. Si seleziona, mediante campionamento ssr, un campione gm di m
degli M grappoli totali;

– II stadio. Da ciascun grappolo g ∈ gm scelto al primo stadio si seleziona,
mediante disegno ssr, un campione sg di ng unità elementari.

Fissato il campione gm dei grappoli di primo stadio, la selezione di unità
elementari avviene in modo indipendente nei diversi grappoli, cos̀ı che gli m
campioni sg, g ∈ gm, sono indipendenti dato gm.

Formalmente, ciascun campione di unità elementari si può scrivere come:

s = {sg; g ∈ gm} = {(g, i) ∈ sg; g ∈ gm}.

Lo spazio dei campioni è pertanto l’insieme⋃
gm∈CM,m

{
×
g∈gm

CNg ,ng

}
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Fig. 11.1 Differenza tra disegno campionario a grappolo e a due stadi

e ciascun campione ha probabilità

P ({sg; g ∈ gm}) = P (gm)P ({sg; g ∈ gm} |gm)

=
1(
M
m

) ∏
g∈gm

1(
Ng

ng

)

dove
P (gm) =

1(
M
m

)
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è la probabilità di selezionare al primo stadio il campione gm di grappoli,
mentre la

P ({sg; g ∈ gm} |gm) =
∏

g∈gm

1(
Ng

ng

)

è la probabilità di selezionare al secondo stadio il campione {sg; g ∈ gm} di
unità elementari, condizionata all’aver scelto al primo stadio il campione gm

di grappoli.

Il disegno campionario a due stadi semplici comprende, come casi speciali, sia
il disegno a grappolo che quello stratificato. In dettaglio, il disegno a grappolo
si ottiene ponendo nel secondo stadio n1 = N1, . . . , nM = NM , ossia sele-
zionando tutte le unità elementari dei grappoli selezionati al primo stadio. Il
disegno stratificato, invece, si ottiene considerando i grappoli come strati, e
ponendo m = M al primo stadio, ovvero selezionando tutti i grappoli da cui
è formata la popolazione.

11.2 Considerazioni sul numero totale di unità
elementari

In generale, se ng è il numero di unità elementari selezionato dal grappolo
g (scelto al primo stadio), il numero totale di unità elementari scelte con un
disegno a due stadi (numerosità campionaria, per brevità) è pari a:

ntot =
∑

g∈gm

ng. (11.3)

Se le ng sono date a priori, prima che venga selezionato il campione gm

dei grappoli di primo stadio, la (11.3) non è costante, a meno che le ng non
siano tutte uguali, ossia a meno che da ogni grappolo di primo stadio non si
selezioni lo stesso numero di unità elementari. In ogni altro caso, ntot dipende
da quali grappoli sono selezionati al primo stadio, ossia da quali grappoli è
composto gm. Posto ag = mng, g = 1, . . . , m, si vede facilmente che

ntot =
1
m

∑
g∈gm

mng =
1
m

∑
g∈gm

ag

ovvero ntot è la media campionaria dei numeri a1, . . . , aM . Tenendo anche
conto che il campione di grappoli gm è selezionato con un disegno ssr, si ha
quindi

E [ntot] =
1
M

M∑
g=1

ag =
m

M
(n1 + n2 + · · ·+ nM ). (11.4)

Poiché il numero totale di unità campionarie selezionate, ntot non è costan-
te, non è possibile fissare a priori il numero totale n di unità da selezionare.
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L’unica eccezione è quella in cui da ciascun grappolo si selezionano n/m unità
elementari, cos̀ı che n1 = · · · = nM = n/m, e ntot = n qualunque sia il
campione gm di grappoli selezionati al primo stadio.

Esempio 11.1. Si supponga che la popolazione sia formata da M = 4 grap-
poli, rispettivamente di N1 = 100, N2 = 300, N3 = 100; N4 = 200 unità
elementari. Si supponga inoltre che il disegno di campionamento sia a due
stadi, e tale che:

− al primo stadio si selezionano m = 2 grappoli;
− dal grappolo 1 vengano selezionate n1 = 10 unità, dal grappolo 2 n2 = 30

unità, dal grappolo 3 n3 = 10 unità, e dal grappolo 4 n4 = 20 unità.

Nella Tabella 11.1 sono riportate le numerosità campionarie per i diversi
campioni di grappoli selezionabili al primo stadio.

Tabella 11.1 Numerosità campionarie per disegno a due stadi

Campione gm di I stadio Numerosità campionaria ntot

{1, 2} 10 + 30 = 40
{1, 3} 10 + 10 = 20
{1, 4} 10 + 20 = 30
{2, 3} 30 + 10 = 40
{2, 4} 30 + 20 = 50
{3, 4} 10 + 20 = 30

Il numero medio di unità campionarie elementari selezionate è pari a 2 ×
(10 + 30 + 10 + 20)/4 = 35. ��

Se si vuole prefissare la numerosità campionaria ntot pari a n, e non si
vuole selezionare da ogni grappolo lo stesso numero di unità elementari, si
deve agire in maniera completamente differente: il numero di unità elemen-
tari da selezionare da ciascun grappolo deve dipendere dal campione gm dei
grappoli di primo stadio. Siano p1, . . . , pM M numeri positivi (arbitrari, per
il momento), tali che p1 + · · ·+pM = 1. Se si vuole che ntot = n qualunque sia
il campione gm dei grappoli scelti al primo stadio, allora da ciascun grappolo
g ∈ gm si deve scegliere un numero di unità elementari pari a:

ng = n
pg∑

h∈gm
ph

, g ∈ gm. (11.5)

Si osservi che quanto più grande è pg , tanto più grande è ng .
Per quanto riguarda i termini p1, . . . , pM , una scelta abbastanza naturale

(anche se non l’unica) consiste nel porre pg = wg, g = 1, . . . , M . Inoltre, se
p1 = · · · = pM (= 1/M), allora da ogni grappolo si estrae lo stesso numero di
unità, pari a n/m.
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Esempio 11.2. Consideriamo la popolazione dell’Es. 11.1, formata da M = 4
grappoli, rispettivamente di N1 = 100, N2 = 300, N3 = 100; N4 = 200 unità
elementari. Supponiamo anche che il disegno campionario sia a due stadi, e
tale che al primo stadio si selezionano m = 2 grappoli. Supponiamo inoltre
che p1 = 0.2, p2 = 0.3, p3 = 0.2, p4 = 0.3, e che si voglia una numerosità
campionaria n = 40.

Nella Tabella 11.2 sono riportate le numerosità campionarie per i diversi
campioni di grappoli selezionabili al primo stadio.

Tabella 11.2 Numerosità campionarie per disegno a due stadi (n = 40)

Campione gm di I stadio Numerosità campionarie di II stadio

{1, 2} n1 = 40 × 0.2
0.2+0.3

= 16 n2 = 40 × 0.3
0.2+0.3

= 24

{1, 3} n1 = 40 × 0.2
0.2+0.2

= 20 n3 = 40 × 0.2
0.2+0.2

= 20

{1, 4} n1 = 40 × 0.2
0.2+0.3 = 16 n4 = 40 × 0.3

0.2+0.3 = 24

{2, 3} n2 = 40 × 0.3
0.3+0.2

= 24 n3 = 40 × 0.2
0.3+0.2

= 16

{2, 4} n2 = 40 × 0.3
0.3+0.3

= 20 n4 = 40 × 0.3
0.3+0.3

= 20

{3, 4} n3 = 40 × 0.2
0.2+0.3

= 16 n4 = 40 × 0.3
0.2+0.3

= 24

��
Nel seguito ci si concentrerà prevalentemente sul caso in cui n1, . . . , nM

sono fissati a priori, più semplice sul piano degli sviluppi formali.

11.3 Stima della media della popolazione

Sulla base della (11.2) non è difficile costruire uno stimatore della media della
popolazione. Nel caso del campionamento a grappolo l’osservazione di tutte
le unità elementari dei grappoli selezionati permette di calcolare le medie μyg

di tali grappoli, e quindi le quantità zg = M wg μyg. La media campiona-
ria di queste ultime porta ad uno stimatore “naturale” della media μy della
popolazione.

Nel caso di disegno a due stadi questo non è possibile, in quanto essendo
osservati solo campioni di unità dei grappoli di primo stadio, non è possibile
calcolare le medie di tali grappoli. Un modo intuitivo per ovviare a tale incon-
veniente è quello di stimare le medie dei grappoli campionati al primo stadio
con le corrispondenti medie campionarie. In simboli, se gm è il campione di
grappoli selezionati al primo stadio, e se da ogni grappolo g ∈ gm si estrae un
campione sg di unità elementari, indichiamo con

yg =
1
ng

∑
i∈sg

ygi, g ∈ gm

la media campionaria del grappolo g. L’idea di base per stimare la media della
popolazione, come già detto, consiste nello stimare le medie dei grappoli di
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primo stadio con le corrispondenti medie campionarie, e quindi nel costruire
uno stimatore simile a quello già visto nel caso di campionamento a grappolo,
ma contenente appunto le medie campionarie in questione. Si ottiene in questo
modo lo stimatore della media della popolazione:

μ̂2st =
1
m

∑
g∈gm

Mwgyg. (11.6)

Le proprietà dello stimatore (11.6) sono delineate nelle successive propo-
sizioni. Lo stimatore (11.6) è corretto sia quando le numerosità ng di secondo
stadio sono fissate a priori (e quindi ntot è in generale variabile), sia quan-
do sono scelte in base alla (11.5) (e quindi ntot = n fissato). Nel seguito,
indicheremo con

μ̂gr =
1
m

∑
g∈gm

zg =
1
m

∑
g∈gm

Mwgμyg (11.7)

lo stimatore della media della popolazione basato su un disegno a grappolo
(in cui, quindi, nel secondo stadio si osservano tutte le unità elementari dei
grappoli scelti al primo stadio). Per semplicità indicheremo con il suffisso I il
primo stadio di campionamento, e con II il secondo stadio di campionamento.

Proposizione 11.1. Se il disegno campionario è a due stadi semplici, lo
stimatore μ̂2st possiede le seguenti due proprietà:

– il suo valore atteso (rispetto al II stadio) condizionato al campione di
grappoli scelti al primo stadio è pari allo stimatore a grappolo (11.7):

EII [μ̂2st |gm] = μ̂gr ; (11.8)

– il valore atteso non condizionato è uguale alla media della popolazione:

EI, II [μ̂2st] = μy (11.9)

ossia μ̂2st è uno stimatore corretto della media della popolazione.

Dimostrazione. Per provare la (11.8) è sufficiente tenere conto che il condizio-
nare rispetto al campione gm di primo stadio permette di trattare i grappoli g
in gm come fissati. Pertanto, sono fissate anche le numerosità campionarie ng,
g ∈ gm di secondo stadio. Poichè la selezione di unità elementari dai grappoli
g di gm avviene mediante campionamento ssr, si ha E[yg |gm] = μyg per tutti
i grappoli g ∈ gm. Quindi, si conclude che:

EII [μ̂2st | gm] = EII

[
1
m

∑
g∈gm

Mwgyg | gm

]

=
1
m

∑
g∈gm

MwgEII[yg |gm]

=
1
m

∑
g∈gm

Mwgμyg

ovvero la (11.8).
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Per quanto riguarda la (11.9), è sufficiente usare la correttezza dello stima-
tore (11.7) (rispetto al primo stadio di campionamento) e una ben nota pro-
prietà della media condizionata (la media della media condizionata è uguale
alla media non condizionata):

EI, II [μ̂2st] = EI [EII (μ̂2st |gm)] = EI [μ̂gr]
= μy. ��

Il calcolo della varianza dello stimatore μ̂2st è più complicato, e dipende
dal criterio con cui sono determinate le numerosità campionarie ng di se-
condo stadio. In questa sezione ci concentreremo esclusivamente sul caso in
cui n1, . . . , nM sono fissate a priori. Con la stessa notazione del Capitolo 9,
indichiamo con

S2
b =

1
M − 1

M∑
g=1

(zg − μy)2 (11.10)

la varianza corretta delle quantità zg nella popolazione dei grappoli (con
denominatore M − 1 anziché M).

Proposizione 11.2. Se il disegno campionario è a due stadi semplici con
numerosità ng di secondo stadio fissate a priori, si ha

VI, II (μ̂2st) =
(

1
m

− 1
M

)
S2

b +
M

m

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg. (11.11)

Dimostrazione. Usando una ben nota proprietà di scomposizione della varian-
za (la varianza totale è pari alla somma della varianza della media condizionata
e della media della varianza condizionata) si ha anzitutto:

VI, II (μ̂2st) = VI (EII [μ̂2st | gm]) + EI [VII (μ̂2st | gm)] . (11.12)

I due termini nel membro di destra della (11.12) possono essere calcolati
separatamente. Per quanto riguarda il primo di essi, dalla (11.8) si ha:

VI (EII [μ̂2st | gm]) = VI (μ̂gr) =
(

1
m

− 1
M

)
S2

b . (11.13)

Per quanto riguarda invece il termine EI [VII (μ̂2st | gm)], tenendo conto
che fissato gm i campioni di secondo stadio sg, g ∈ gm sono indipendenti e
ssr, si ha in primis

VII (μ̂2st | gm) = VII

(
1
m

∑
g∈gm

Mwgyg

∣∣∣∣∣ gm

)

=
1

m2

∑
g∈gm

M2w2
gVII

(
yg | gm

)
=

1
m2

∑
g∈gm

M2w2
g

(
1
ng

− 1
Ng

)
S2

yg.



11.3 Stima della media della popolazione 243

Posto poi

dg =
M2

m
w2

g

(
1
ng

− 1
Ng

)
S2

yg , g = 1, . . . , M

e tenendo conto che il disegno di primo stadio è ssr sui grappoli, si ottiene

EI [VII (μ̂2st | gm)] = EI

[
1
m

∑
g∈gm

dg

]

=
1
M

M∑
g=1

dg

=
1
M

M∑
g=1

M2

m
w2

g

(
1
ng

− 1
Ng

)
S2

yg

=
M

m

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg (11.14)

Sommando infine le (11.13) e (11.14) si ottiene la varianza (11.11). ��
La stima della varianza dello stimatore μ̂2st, sempre nel caso in cui le

numerosità campionarie dei grappoli n1, . . . , nM siano fissate a priori, è ab-
bastanza complessa. La costruzione di uno stimatore corretto di V (μ̂2st) è
effettuata “per gradi” nella successiva Proposizione 11.3. Sia

ŝ2
yg =

1
ng − 1

∑
i∈sg

(ygi − yg)2, g ∈ gm (11.15)

la varianza campionaria corretta del grappolo g-mo, e poniamo:

V̂1 =
1

m − 1

∑
g∈gm

(Mwgyg − μ̂2st)2; (11.16)

V̂2 =
1
m

∑
g∈gm

w2
g

(
1
ng

− 1
Ng

)
ŝ2
yg ; (11.17)

V̂2st =
(

1
m

− 1
M

)
V̂1 + MV̂2. (11.18)

Proposizione 11.3. Se il disegno campionario è a due stadi semplici con
numerosità ng di secondo stadio fissate a priori, si ha

EII

[
V̂1

∣∣∣ gm

]
=

1
m − 1

∑
g∈gm

(Mwgμyg − μ̂gr)2 + mVII (μ̂2st |gm) ; (11.19)

EI, II

[
V̂1

]
= S2

b + mEI [VII ( μ̂2st |gm)] ; (11.20)

EI, II

[
V̂2

]
=

m

M2
EI [VII ( μ̂2st |gm)] ; (11.21)

EI, II

[
V̂2st

]
= V (μ̂2st). (11.22)
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Dimostrazione. Per provare la (11.19), iniziamo con l’osservare che∑
g∈gm

(Mwgyg − μ̂2st)2 =
∑

g∈gm

(Mwgyg − μ̂gr)2 − m(μ̂2st − μ̂gr)2

da cui si ottiene, tenendo conto della (11.8),

EII

[
V̂1

∣∣∣ gm

]
=

1
m − 1

EII

[ ∑
g∈gm

(Mwgyg − μ̂gr)2
∣∣∣∣∣ gm

]
− m

m − 1
EII

[
(μ̂2st − μ̂gr)2

∣∣ gm

]
=

1
m − 1

∑
g∈gm

EII

[
(Mwgyg − μ̂gr)2

∣∣ gm

]
− m

m − 1
VII ( μ̂2st |gm)

=
1

m − 1

∑
g∈gm

{
VII

(
Mwgyg

∣∣ gm

)
+ (EII [Mwgyg |gm] − μ̂gr)2

}
− m

m − 1
VII ( μ̂2st |gm)

=
1

m − 1

∑
g∈gm

(Mwgμyg − μ̂gr)2 +
1

m − 1
VII

( ∑
g∈gm

Mwyyg

∣∣∣∣∣ gm

)
− m

m − 1
VII ( μ̂2st |gm)

=
1

m − 1

∑
g∈gm

(Mwgμyg − μ̂gr)2 +
m2

m − 1
VII

(
1
m

∑
g∈gm

Mwyyg

∣∣∣∣∣gm

)
− m

m − 1
VII ( μ̂2st | gm)

=
1

m − 1

∑
g∈gm

(Mwgμyg − μ̂gr)2 +
m2

m − 1
VII ( μ̂2st |gm)

− m

m − 1
VII ( μ̂2st |gm)

=
1

m − 1

∑
g∈gm

(Mwgμyg − μ̂gr)2 + mVII ( μ̂2st | gm)

ovvero la (11.19). La (11.20) è una conseguenza immediata della (11.19) e del
fatto che, come visto nel Capitolo 9,

EI

[
1

m− 1

∑
g∈gm

(Mwgμyg − μ̂gr)2
]

= S2
b .

La (11.21) si prova immediatamente osservando che EII[ŝ2
yg |gm] = S2

yg e ripe-
tendo gli stessi calcoli fatti in precedenza. Infine, la (11.22) è una conseguenza
immediata delle (11.20), (11.21). ��
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Esempio 11.3. Come nell’Es. 9.1, consideriamo il file fam2051.txt, in cui
sono riportati i dati relativi al comune di Statlandia. Le unità elementari sono
famiglie, le quali sono raggruppate in edifici (grappoli), ciascuno formato da 8
famiglie. In totale vi sono M = 128 grappoli (edifici). I pesi dei grappoli sono
tutti uguali, e pari a 1/128: wg = 1/128, g = 1, . . . , 128. Le variabili nel file
fam2051.txt sono 27; il significato di ciascuna di esse, e la corrispondente co-
difica, è riportato nel file istruzioni_fam2051.txt.Qui siamo interessati alla
stima della media del reddito totale percepito dalle famiglie nell’anno 2050.
Non essendo disponibile una lista delle famiglie, si effettua un campionamento
a due stadi in cui:

− al primo stadio si selezionano m = 10 grappoli;
− al secondo stadio, da ciascuno dei grappoli campionati al primo stadio si

selezionano 4 famiglie.

In Tabella 11.3 sono riportate le grandezze necessarie per costruire lo
stimatore μ̂2st e per stimare la sua varianza.

Come stima del reddito medio da lavoro della popolazione si ha:

μ̂2st =
1
10

(y3 + y9 + · · · + y112) = 63497.

Per quanto riguarda invece la stima della varianza di μ̂2st, da

V̂1 =
1
9

∑
(Mwgyg − μ̂2st)2 = 1743971458,

V̂2 =
1
10

∑ 1
1282

(
1
4
− 1

8

)
ŝ2
yg = 434

si ottiene

V̂2st =
(

1
10

− 1
128

)
V̂1 + 128V̂2 = 160827921. ��

Tabella 11.3 Costruzione degli stimatori μ̂2st e V̂2st

Grappoli Unità elementari yg (= Mwgyg) ŝ2
yg (Mwgyg − μ̂2st)

2

3 1 2 7 8 148835 37958463 7282488906
9 1 3 5 8 108228 100958489 578667080

22 3 4 6 7 87553 100958489 578667080
35 1 6 7 8 69305 4624795 33729960
51 1 4 5 6 59883 14103536 13059189
62 2 3 5 6 47976 5628365 240901441
91 1 2 6 8 35814 35401826 1279010051
95 3 4 5 6 25868 21805223 1415941641

108 2 5 6 7 26814 145331844 1345642489
112 1 2 4 5 24697 197800671 1505440000
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I risultati della proposizione precedente consentono anche di costruire
stimatori corretti dei due termini

S2
b =

1
M − 1

M∑
g=1

(Mwgμyg − μy)2,
M∑

g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg .

In dettaglio, è facile verificare (Esercizio 11.1) che

E

[
V̂1 −

M

m
V̂2

]
= S2

b ; (11.23)

E
[
MV̂2

]
=

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg . (11.24)

La costruzione di intervalli di confidenza per μy, infine, segue linee del tut-
to simili a quelle dei capitoli precedenti. Se il numero m di grappoli campionati
al primo stadio è sufficientemente grande, e se il numero di unità elementa-
ri selezionate al secondo stadio da ciascuno dei grappoli di primo stadio è
abbastanza grande, lo stimatore μ̂2st ha distribuzione approssimata di tipo
normale, con media μy e varianza V (μ̂2st). Con gli stessi ragionamenti dei
capitoli precedenti, e sostituendo l’incognita V (μ̂2st) con la sua stima (11.18),
si ha che la distribuzione di probabilità di

μ̂2st − μy

V̂2st

(11.25)

ha distribuzione approssimata di tipo normale standard. Detto pertanto, come
al solito, zα il quantile di ordine α della distribuzione normale standard, è
immediato verificare che[

μ̂2st − zα/2

√
V̂2st, μ̂2st + zα/2

√
V̂2st

]
(11.26)

è un intervallo di confidenza per μy al livello approssimato 1 − α.

Esempio 11.4. Consideriamo ancora l’Esempio 11.3. Visto l’esiguo numero
di famiglie selezionate da ogni grappolo, l’approssimazione normale per la
(11.25) non sarà probabilmente molto accurata. Ad ogni modo, a puro titolo
di esempio numerico costruiamo l’intervallo (11.26) al livello di confidenza

0.95. Essendo
√

V̂2st = 12682 e z0.025 = 1.96, si ha che l’intervallo

[63497− 1.96 12682, 63497 + 1.96 12682] = [38641, 88353]

è un intervallo di confidenza approssimato per μy al livello 0.95. ��
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11.4 Caso speciale: grappoli della stessa numerosità

11.4.1 Aspetti di base

Esattamente come nel caso di disegno a grappolo, un caso speciale molto im-
portante, e che merita una trattazione separata, è quello in cui gli M grappoli
sono tutti formati dallo stesso numero L di unità:

N1 = N2 = · · · = NM = L.

Chiaramente si ha N = M L, e i pesi wg sono tutti pari a 1/M :

wg =
L

N
=

1
M

, g = 1, . . . , M.

Le quantità zg in (11.1) sono pertanto pari alle medie dei grappoli:

zg = μyg, g = 1, . . . , M.

In queste circostanze, è ragionevole prendere le numerosità campionarie
dei grappoli tutte uguali, ponendo:

n1 = n2 = · · · = nM = l.

Il numero totale di unità elementari campionate, pertanto, è costante, ed
eguale a:

ntot =
∑

g∈gm

l = ml = n. (11.27)

Lo stimatore (11.6) si riduce alla media campionaria, in quanto:

μ̂2st =
1
m

∑
g∈gm

M
1
M

yg

=
1
m

∑
g∈gm

1
l

∑
i∈sg

ygi

=
1

ml

∑
g∈gm

∑
i∈sg

ygi

= ys.

La varianza di μ̂2st assume una forma molto semplificata. Usando infatti
le stesse argomentazioni del Capitolo 9, valgono le due relazioni

S2
b =

1
M − 1

M∑
g=1

(μyg − μy)2 (11.28)

S2
w =

M∑
g=1

1
M

S2
yg =

1
M(L − 1)

M∑
g=1

L∑
i=1

(ygi − μyg)2 (11.29)



248 11 Disegno campionario a due stadi semplici

dove la (11.28) è la varianza tra i grappoli, e la (11.29) è la varianza nei
grappoli. La (11.11) si riduce quindi a:

V (μ̂2st) =
(

1
m

− 1
M

)
S2

b +
M

m

M∑
g=1

1
M2

(
1
l
− 1

L

)
S2

yg

=
(

1
m

− 1
M

)
S2

b +
(

1
ml

− 1
mL

)
S2

w . (11.30)

Per quanto riguarda la stima della varianza di μ̂2st, valgono ovviamente
i risultati già visti nella sezione precedente. Lo stimatore (11.18) assume ora
una forma semplificata (Esercizio 11.2), ovvero:

V̂2st =
(

1
m

− 1
M

)
1

m − 1

∑
g∈gm

(yg − μ̂2st)2 +
(

1
ml

− 1
mL

)
1
M

∑
g∈gm

ŝ2
yg . (11.31)

I risultati ottenuti fino ad ora permettono anche di ottenere stimatori
corretti delle due varianze S2

b e S2
w. In particolare, posto

ŝ2
b =

1
m − 1

∑
g∈gm

(yg − μ̂2st)2 −
(

1
ml

− 1
mL

) ∑
g∈gm

ŝ2
yg , (11.32)

ŝ2
w =

1
m

∑
g∈gm

ŝ2
yg (11.33)

è facile verificare (Esercizio 11.3) che valgono le relazioni

E
[
ŝ2
b

]
= S2

b ; (11.34)

E
[
ŝ2
w

]
= S2

w . (11.35)

11.4.2 L’effetto del disegno

Una componente rilevante dell’effetto del disegno è dovuta alla presenza di
grappoli di unità elementari. Per semplicità ci limiteremo al caso di grappoli
tutti composti da L unità elementari. Il disegno considerato è esattamente
quello visto in precedenza, ossia a due stadi con selezione di m grappoli al
primo stadio, e di l unità elementari da ciascuno di essi. Come già rimarcato,
lo stimatore μ̂2st si riduce alla media campionaria: μ̂2st = ys. La sua varianza,
inoltre, è data dalla (11.30).

Assumendo che il fattore di correzione per popolazioni finite al primo sta-
dio sia trascurabile, si può facilmente dimostrare (Esercizio 11.8) che l’effetto
del disegno risulta pari a

Deff (2st, ys) ≈ 1 + (l − 1)ρic (11.36)

dove ρic è il coefficiente di correlazione intra-classi introdotto nel Capitolo 9.
Se l = L il disegno a due stadi si riduce a quello a grappolo, e la (11.36) di
riduce all’effetto del disegno a grappolo.
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Se i grappoli fossero formati casualmente, allora ρic ≈ 0 e il disegno a due
stadi (a parità di numero totale di unità campionarie) sarebbe essenzialmente
equivalente a quello semplice senza ripetizioni. Poiché in molti casi i grappo-
li non vengono formati da chi estrae il campione, ma sono piuttosto gruppi
preesistenti di unità della popolazione, generalmente ρic risulta positivo in
quanto le unità all’interno di uno stesso grappolo tendono in genere ad essere
più simili rispetto a unità di grappoli differenti. Ciò implica che il termine
Deff (2st, ys) risulta generalmente maggiore di 1, e quindi il campionamento
a due stadi comporta una perdita di precisione rispetto ad un campionamento
casuale semplice senza ripetizioni. Viceversa, un valore negativo del coefficien-
te di correlazione intra-classi comporta un effetto del disegno minore di uno,
e quindi un incremento in precisione del campionamento a due stadi rispetto
al campionamento casuale semplice.

La (11.36) mostra che per una data dimensione complessiva del campio-
ne (n = lm) l’effetto del disegno decresce al decrescere della dimensione dei
campioni di secondo stadio. Se da una parte la riduzione della dimensione
campionaria comporta una diminuzione dell’effetto del disegno, dall’altra oc-
correrà aumentare il numero di grappoli estratti, con un conseguente aumen-
to dei costi di rilevazione dovuti alla dispersione territoriale delle unità del
campione.

Esempio 11.5. Con riferimento alla (11.36), supponiamo che la popolazione
sia suddivisa in 80 grappoli di dimensione 500. Supponiamo inoltre di estrarre
un campione casuale semplice di m = 10 grappoli, e da ciascuno di essi un
campione casuale semplice di l = 100 unità. Si hanno in totale n = ml = 1000
osservazioni campionarie. Sia inoltre ρic = 0.01. L’effetto del disegno risulterà
allora pari a 2. Ciò significa che il disegno semplice risulta circa due volte
più preciso di quello a due stadi della stessa dimensione. Chiaramente, affin-
ché la formula (11.36) sia utilizzabile, è necessario stimare preliminarmente la
quantità ρic. Un’alternativa pratica consiste nell’utilizzo di stime provenienti
da precedenti indagini riguardanti la stessa variabile o variabili simili. L’ef-
fetto del disegno ci permette di stimare la dimensione che dovrebbe avere un
campione casuale semplice per raggiungere la stessa precisione di quello a due
stadi. Formalmente:

neff(2st, ys) =
1000

2
= 500. (11.37)

La (11.37) mostra che gli stessi risultati, in termini di precisione della stima,
che abbiamo ottenuto con un campione a due stadi di 1000 unità si sarebbero
potuti ottenere con un campione casuale semplice di sole 500 unità. ��

Le indagini campionarie, soprattutto quelle svolte nell’ambito della stati-
stica ufficiale, utilizzano generalmente disegni campionari complessi, caratte-
rizzati da due o più stadi di campionamento, dalla stratificazione delle unità
statistiche, dalla presenza di unità raggruppate in grappoli. Spesso, in ag-
giunta, la selezione delle unità di primo o dei successivi stadi è effettuata con
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disegni di tipo non semplice, a probabilità variabile (essi verranno presentai
nei Capitoli 12, 15). La complessità del disegno campionario provoca degli ef-
fetti sulla variabilità campionaria delle stime, che vengono valutati dall’effetto
del disegno. Esso rappresenta quindi l’effetto cumulativo sulla precisione delle
stime di aspetti del disegno, quali stratificazione, presenza di grappoli, utilizzo
di probabilità variabili di selezione.

Se ad esempio il disegno è caratterizzato dalla presenza sia di strati sia di
grappoli di unità, non possiamo affermare a priori se l’effetto del disegno sarà
maggiore o minore di 1. Infatti, se da una parte la stratificazione tende ad
aumentare la precisione delle stime, dall’altra la presenza di grappoli di unità
tende a diminuirla.

11.5 Stima nel caso di numerosità totale costante∗

Nel caso in cui le numerosità campionarie dei grappoli vengano scelte in base
alla (11.5), la struttura della varianza dello stimatore μ̂2st è più complicata.
In dettaglio, vale la seguente proposizione.

Proposizione 11.4. Se il disegno campionario è a due stadi semplici, μ̂2st

con numerosità ng di secondo stadio scelte in base alla (11.5), si ha

VI (EII [μ̂2st | gm]) =
(

1
m

− 1
M

)
S2

b ; (11.38)

EI [VII (μ̂2st | gm)] =
M

n

(
1
m

− 1
M

) M∑
g=1

w2
gS

2
yg +

1
n

(
1
m

− 1
M

) M∑
g=1

w2
g

pg
S2

yg

− M

mN

M∑
g=1

wgS
2
yg; (11.39)

VI, II (μ̂2st) =
(

1
m

− 1
M

)
S2

b +
M2

n(M − 1)

(
1
m

− 1
M

) M∑
g=1

w2
gS

2
yg

− M

mN

M∑
g=1

wgS
2
yg +

1
n

M(m− 1)
m(M − 1)

M∑
g=1

w2
g

pg
S2

yg . (11.40)

Dimostrazione. La varianza di μ̂2st si può ancora scomporre in base alla
(11.12), e il primo termine del membro di destra della (11.12) resta invariato:

VI (EII [μ̂2st | gm]) = VI (μ̂gr) =
(

1
m

− 1
M

)
S2

b .
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Per quanto riguarda la (11.39), si ha in primo luogo

VII (μ̂2st | gm)

=
1

m2

∑
g∈gm

M2w2
g

(
1
ng

− 1
Ng

)
S2

yg

=
1
m

∑
g∈gm

M2

m
w2

g

S2
yg

ng
− 1

m

∑
g∈gm

M2

m
w2

g

S2
yg

Ng

=
1
m

∑
g∈gm

M2

mn

w2
g

pg
S2

yg

(∑
g∈gm

pg

)
− 1

m

∑
g∈gm

M2

mN
wgS

2
yg

=
M2

n

(
1
m

∑
g∈gm

w2
g

pg
S2

yg

) (
1
m

∑
g∈gm

pg

)
− M2

mN

(
1
m

∑
g∈gm

wgS
2
yg

)

da cui, posto

ug =
w2

g

pg
S2

yg, g = 1, . . . , M (11.41)

tg = wgS
2
yg , g = 1, . . . , M (11.42)

si vede che

VII (μ̂2st | gm) =
M2

n

(
1
m

∑
g∈gm

ug

) (
1
m

∑
g∈gm

pg

)
− M2

mN

(
1
m

∑
g∈gm

tg

)
.

Complessivamente, si ha quindi

EI [VII (μ̂2st | gm)] =
M2

n
EI

[(
1
m

∑
g∈gm

ug

) (
1
m

∑
g∈gm

pg

)]

− M2

mN
EI

[
1
m

∑
g∈gm

tg

]
. (11.43)

Tenendo infine conto che il disegno di primo stadio è ssr, che le quantità
che appaiono nella (11.43) sono medie campionarie di grandezze dipendenti
dai grappoli, e usando i risultati del Capitolo 3 (Sez. 3.7), si conclude che

M2

mN
EI

[
1
m

∑
g∈gm

tg

]
=

M2

mN

1
M

M∑
g=1

tg

=
M

mN

M∑
g=1

wgS
2
yg (11.44)
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e

M2

n
EI

[(
1
m

∑
g∈gm

ug

) (
1
m

∑
g∈gm

pg

)]

=
M2

n

{
CI

(
1
m

∑
g∈gm

ug,
1
m

∑
g∈gm

pg

)
+ EI

[
1
m

∑
g∈gm

ug

]
EI

[
1
m

∑
g∈gm

pg

]}

=
M2

n

{(
1
m

− 1
M

)
1

M − 1

M∑
g=1

ug

(
pg − 1

M

)
+

1
M2

M∑
g=1

ug

}

=
M2

n(M − 1)

(
1
m

− 1
M

) M∑
g=1

w2
gS2

yg +
M(m − 1)
m(M − 1)

M∑
g=1

w2
g

pg
S2

yg (11.45)

da cui si ottiene subito la (11.39). La (11.11), infine, è un’immediata conse-
guenza di (11.38), (11.39). ��

Per quanto riguarda la stima della varianza (11.11), valgono esattamente
le considerazioni già fatte nella Sezione 11.3. Non è infatti difficile provare
(Esercizio 11.4) che se si definiscono V̂1, V̂2, V̂2st rispettivamente come in
(11.16), (11.17), (11.18), la Proposizione 11.3 continua a valere anche ora, pur
di sostituire la (11.14) con la (11.39), e di usare per VI II (μ̂2st) l’espressione
(11.11). Del tutto simile a quella della Sezione 11.3, infine, è la costruzione di
intervalli di confidenza per μy.

11.6 Grappoli di diversa numerosità e stimatore per
quoziente

Il caso di grappoli di differente numerosià merita un’analisi un po’ più appro-
fondita di quella svolta fino ad ora, in quanto si presta a considerazioni del
tutto simili a quelle svolte per il disegno a grappolo. Per semplicità ci limi-
teremo al caso in cui il numero di unità elementari da selezionare da ciascun
grappolo sia fissato a priori. La varianza dello stimatore μ̂2st, come appare
dalla (11.11), dipende da S2

b =
∑M

g=1(Mwgμyg − μy)2/(M − 1), ovvero dalla
varianza (corretta) dei termini Mw1μy1, . . . , MwmμyM . Detto

Tg = Ngμyg =
Ng∑
i=1

ygi

l’ammontare del carattere Y nel grappolo gmo, dalla relazione Mwgμyg =
M
N Tg si vede subito che:

S2
b = V arianza di (Mw1μy1, . . . , MwMμyM )

≈
(

M

N

)2

× (V arianza di T1, . . . , TM ).



11.6 Grappoli di diversa numerosità e stimatore per quoziente 253

La varianza di μ̂2st dipende quindi dalla varianza degli ammontari T1, . . . , TM

dei grappoli. Quanto più grande è la loro variabilità, tanto più grande è il
termine S2

b , e quindi tanto più piccola è l’efficienza di μ̂2st. Si tratta di un
discorso praticamente identico a quello già svolto per il campionamento a
grappoli, e che quindi si presta a sviluppi e conclusioni simili.

Esattamente come nel caso del disegno a grappolo (e del relativo stimatore
μ̂gr), lo stimatore μ̂2st è altamente inefficiente quando i totali dei grappoli sono
molto variabili come conseguenza di un’alta variabilità delle loro numerosità
Ng, mentre le medie μyg dei grappoli sono abbastanza stabili. Questo equivale
a dire che i totali dei grappoli possono essere considerati, con molta approssi-
mazione, proporzionali alle relative numerosità: Tg ≈ cost Ng , g = 1, . . . , M ,
essendo cost un’opportuna costante di proporzionalità. L’esperienza empirica
mostra che in molti casi di interesse questo è proprio ciò che accade: i totali
T1, . . . , TM dei grappoli possiedono un’alta variabilità, ma soprattutto a cau-
sa della variabilità delle loro numerosità N1, . . . , NM ; le medie μy1, . . . , μyM ,
per converso, sono relativamente “simili” l’una all’altra.

Per ovviare alla scarsa efficienza che lo stimatore μ̂2st ha in casi come quello
sopra descritto, è necessario mettere a punto un qualche stimatore alternativo,
che possa fornire risultati migliori quando le numerosità dei grappoli sono
molto variabili in presenza di medie dei grappoli stabili.

L’idea di base è di procedere esattamente come nel caso del disegno a grap-
polo (Sezione 9.4), costruendo uno stimatore di tipo quoziente in cui il ruolo
di variabile ausiliaria è svolto dalla numerosità Ng dei grappoli. Formalmente,
poniamo per ciascun grappolo g

xg = Ng, g = 1, . . . , M.

La media di questa nuova variabile è pari a:

μx =
1
M

M∑
g=1

Ng =
N

M
.

In questo modo, si ha lo stimatore di “tipo quoziente” di μy:

μ̂q2st =
1
m

∑
g∈gm

Mwgyg

1
m

∑
g∈gm

xg

μx

=
μ̂2st

1
m

∑
g∈gm

Ng

N

M

=
1
M

μ̂2st
1
m

∑
g∈gm

wg

=
1
M

μ̂2st

wm
(11.46)

dove si è posto

wm =
1
m

∑
g∈gm

wg = media campionaria dei pesi dei grappoli.
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Lo stimatore (11.46) ha un’efficienza (molto) superiore a quella dello sti-
matore μ̂2st proprio nei casi in cui le medie dei grappoli sono “simili”, mentre
le numerosità Ng sono molto diverse tra loro. Ciò accade in quanto lo sti-
matore μ̂q2st tende a controbilanciare la variabilità delle numerosità Ng dei
grappoli con la media campionaria wm al denominatore.

Le proprietà dello stimatore μ̂q2st possono essere ottenute, in via approssi-
mata, adattando la tecnica già vista nel caso del disegno a grappolo. Usando le
stesse considerazioni già svolte per il disegno a grappolo, si può approssimare
il termine μ̂q2st − μy nel seguente modo:

μ̂q2st − μy =
1
M

μ̂2st

wm
− μy =

μ̂2st − Mwmμy

Mwm

=
1

Mwm

(
1
m

∑
g∈gm

Mwgyg − Mμy
1
m

∑
g∈gm

wg

)

=
1

Mwm

(
1
m

∑
g∈gm

Mwg(yg − μy)

)

≈ 1
m

∑
g∈gm

Mwg(yg − μy) (11.47)

con wm ≈ ∑M
g=1 wg/M = 1/m. Le proprietà (approssimate) di μ̂q2st sono

riassunte nella successiva proposizione.

Proposizione 11.5. Se il disegno campionario è a due stadi semplici, con
n1, . . . , nM fissati a priori, si ha:

EII [ μ̂q2st | gm] = μ̂qgr (11.48)
EI,II [μ̂q2st] ≈ μy (11.49)

VI,II(μ̂q2st) ≈
(

1
m

− 1
M

) {
M2

M − 1

M∑
g=1

w2
g (μyg − μy)2

}

+
M

m

M∑
g01

w2
gS

2
yg (11.50)

dove μ̂qgr = 1
M

μ̂gr/wm è lo stimatore di tipo quoziente introdotto nella Sezione
9.4 nel caso di disegno a grappolo.

Dimostrazione. La (11.48) si dimostra facilmente osservando che

EII [ μ̂q2st |gm] =
1
M

EII

[
μ̂2st

wm

∣∣∣∣ gm

]
=

1
M

EII [ μ̂2st |gm]
wm

=
1
M

μ̂gr

wm

= μ̂qgr .
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Per quanto riguarda il valore atteso approssimato di μ̂q2st, si ha poi

EI,II [μ̂q2st − μy] ≈ EI,II

[
1
m

∑
g∈gm

Mwg(yg − μy)

]

= EI

[
EII

(
1
m

∑
g∈gm

Mwg(yg − μy)

∣∣∣∣∣ gm

)]

= EI

[
1
m

∑
g∈gm

Mwg

(
EII

[
yg

∣∣gm

]
− μy

)]

= EI

[
1
m

∑
g∈gm

Mwg(μyg − μy)

]

=
1
M

M∑
g=1

Mwg(μyg − μy)

=
M∑

g=1

wgμyg − μy

= 0

da cui la (11.49).
Per quanto riguarda infine la varianza approssimata dello stimatore μ̂q2st,

inziamo con l’osservare che

VI,II(μ̂q2st) = VI (EII [ μ̂q2st |gm]) + EI [VII ( μ̂q2st |gm)]
= VI (μ̂qgr) + EI [VII ( μ̂q2st |gm)] . (11.51)

Il primo termine che compare al membro di destra della (11.51) è pari (vds.
Sezione 9.4) a

VI (μ̂qgr) ≈
(

1
m

− 1
M

)
M2

M − 1

M∑
g=1

w2
g(μyg − μy)2. (11.52)

Per il secondo termine, invece, osserviamo che

VII ( μ̂q2st | gm) ≈ VII

(
1
m

∑
g∈gm

Mwg(yg − μy)

∣∣∣∣∣gm

)

=
1

m2

∑
g∈gm

M2w2
gVII

(
yg

∣∣gm

)
=

M2

m2

∑
g∈gm

w2
g

(
1
ng

− 1
Ng

)
S2

yg
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da cui

EI [VII ( μ̂q2st | gm)] ≈ M2

m
EI

[
1
m

∑
g∈gm

w2
g

(
1
ng

− 1
Ng

)
S2

yg

]

=
M

m

M∑
g=1

w2
g

(
1
ng

− 1
Ng

)
S2

yg . (11.53)

Sommando infine (11.52) e (11.53), si ottiene la (11.50). ��

Sulla base dei risultati precedenti, non è difficile costruire uno stimatore
della varianza approssimata di μ̂q2st. Con la stessa notazione della Sezione
11.3, è infatti intuitivo fare riferimento a

V̂q2st =
(

1
m

− 1
M

)
M2

m − 1

∑
g∈gm

w2
g

(
yg − μ̂q2st

)2 +
M2

m2

∑
g∈gm

w2
gŝ

2
yg . (11.54)

Per quanto riguarda l’efficienza dello stimatore V̂q2st, valgono considerazio-
ni del tutto simili a quelle svolte nel caso del disegno campionario a grappolo.
Dall’espressione (11.50) appare chiaro che la varianza di μ̂q2st è tanto più
piccola quanto più piccolo è il termine

∑M
g=1 w2

g (μyg − μy)2 /(M − 1), ossia
quanto più bassa è la variabilità delle medie μyg dei grappoli. In sostanza,
lo stimatore per quoziente μ̂qgr è tanto più efficiente quanto più le medie dei
grappoli tendono ad essere “simili” tra loro.

11.7 Il problema della scelta del numero di grappoli e di
unità elementari

Esattamente come nel caso del disegno a grappolo, il campionamento a due
stadi è di frequente utilizzato in quanto le unità elementari di uno stesso grap-
polo sono fisicamente “vicine”, e la loro osservazione non richiede di sostenere
grossi costi di spostamento. Talvolta i grappoli sono suggeriti in modo natura-
le dall’oggetto della rilevazione. Altre volte, invece, vi è anche la possibilità di
scegliere sia il numero M dei grappoli in cui viene suddivisa la popolazione, sia
il numero di unità elementari da cui sono formati i grappoli. Su questo punto
sono necessarie alcune considerazioni. Per semplicità ci si riferirà a caso in cui
i grappoli sono tutti composti dallo stesso numero L di unità elementari, per
cui se è dato il numero totale N = ML di unità elementari della popolazio-
ne, scegliere L equivale a scegliere M . Ovviamente, la scelta dovrebbe essere
effettuata in modo da rendere quanto più piccola possibile la varianza dello
stimatore μ̂2st, che nel caso in esame è data dalla (11.30). Da un punto di
vista intuitivo, quanto più grande è M tanto più piccolo S2

b . Tuttavia, come
visto nella Sezione 9.3, vale la relazione approssimata S2

y ≈ S2
b + S2

w, dalla
quale discende che, fissato S2

y , quanto più grande è M tanto più grande è S2
w .
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Vi è quindi un trade-off per la scelta di M , in quanto per rendere “piccola”
la prima parte della (11.30) conviene scegliere M piccolo, mentre per rendere
piccola la seconda parte della (11.30) conviene scegliere M grande. Per impo-
stare formalmente il problema della scelta di M , m e l si potrebbe assumere
un opportuno legame tra L (= N/M) e S2

w, e un vincolo sul costo totale di
rilevazione. Poiché, tranne in casi eccezionali, i legami tra L e S2

w sono molto
difficili da esplicitare, nel seguito ci si accontenterà di un obiettivo molto meno
ambizioso (ma più realistico): dati i grappoli in cui è suddivisa la popolazione,
si devono scegliere sia il numero m di grappoli da selezionare al primo stadio,
e del numero di unità elementari da selezionare al secondo stadio. Purtroppo,
a causa delle diverse grandezze da scegliere, questo problema non può essere
impostato in maniera elementare prefissando l’errore massimo ammissibile di
stima e la probabilità con cui si supera tale errore. Nel seguito si seguirà una
strada completamente diversa, basata sulla minimizzazione della varianza di
stima subordinatamente ad opportuni vincoli sul costo della rilevazione.

11.7.1 Grappoli tutti della stessa numerosità

Nel caso in cui la popolazione sia suddivisa in M grappoli tutti della stessa
numerosità L, come già detto, è abbastanza naturale (benché non ottimale)
selezionare da ciascuno degli m grappoli di primo stadio lo stesso numero
l di unità elementari. Il problema consiste nello scegliere m e l. Come si
vede facilmente a partire dalla (11.30), la varianza dello stimatore μ̂2st si può
esprimere in questo caso come:

V (μ̂2st) =
1
m

{
S2

b − S2
w

L
+

S2
w

l

}
− S2

b

M
. (11.55)

L’idea di base è quella di minimizzare la (11.55), subordinatamente ad
un qualche vincolo sul costo totale di rilevazione. La più semplice funzione
di costo è del tipo C = c1m + c2ml dove c1 è il costo di “contatto” per un
grappolo, e c2 è il costo di osservazione di un’unità elementare. Se C0 è il
budget a disposizione per la rilevazione, si ha quindi il vincolo:

c1m + c2ml = C0. (11.56)

L’idea di base per scegliere m e l è molto semplice: bisogna determinare i valori
di m e l che minimizzano la (11.55), subordinatamente al vincolo (11.56).
Poiché il termine S2

b /M non dipende né da m, né da l, il problema di minimo
vincolato da risolvere diviene:{

minimizzare : 1
m

{
S2

b − S2
w

L + S2
w

l

}
con il vincolo : c1m + c2ml = C0

. (11.57)
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Usando il metodo dei moltiplicatori di Lagrange, e assumendo che S2
b −

S2
w/L > 0 è facile provare (Esercizio 11.5) che i valori ottimi di l e m sono

eguali a:

l∗ =
1√

S2
b /S2

w − 1/L

√
c1

c2
, m∗ =

C0

c1 + l∗c2
. (11.58)

In generale, se da ciascun grappolo di secondo stadio si selezionano l unità
elementari, il vincolo di budget in (11.56) implica che m = C0/(c1 + lc2). La
varianza di μ̂2st è pertanto pari a:

V (μ̂2st) =
c1 + lc2

C0

(
S2

b − S2
w

L
+

S2
w

l

)
− S2

b

M
. (11.59)

In particolare, ponendo l = l∗, m = m∗ nella (11.59) si ottiene il valore ottimo
della varianza dello stimatore μ̂2st.

Nella pratica i valori di S2
b e S2

w sono in genere incogniti. In tal caso si
possono seguire diverse strade. In primo luogo, è da osservare che il valore
ottimo di V (μ̂2st) è relativamente poco sensibile rispetto a l, almeno per un
buon range di valori di l. In altre parole, se l non si discosta di molto dal suo
valore ottimo l∗, si ha solo un piccolo aumento di V (μ̂2st). Pertanto, anche
una conoscenza largamente approssimata dei valori del rapporto S2

b /S2
w può

condurre ad una buona scelta di l (e di conseguenza di m). Ciò è mostrato
nel successivo esempio.

Esempio 11.6. Si considerino ancora i dati del file fam2051.txt, già visti
negli Es. 9.1 e 11.1. La popolazione è composta da famiglie (unità elementari),
raggruppate in edifici (grappoli) ciascuno composto da L = 8 famiglie; in
totale, vi sono M = 128 grappoli. In particolare, si consideri la variabile
“reddito totale nell’anno 2050”. Le varianze nei grappoli e tra i grappoli sono
rispettivamente pari a: S2

b = 1343095048, S2
w = 117345278, cos̀ı che S2

b /S2
w =

11.45.
Per quanto riguarda la funzione di costo, assumiamo che c1 = 50c2, c2 =

1, e che il budget totale sia C0 = 2000. Il valore ottimo della numerosità
campionaria nei grappoli (ossia del numero di unità elementari da selezionare
da ciascun grappolo di primo stadio) è pari a

l∗ =
1√

11.45− 1/8

√
50 ≈ 2

e di conseguenza il numero ottimo di grappoli-campione di primo stadio è

m∗ =
2000
52

≈ 38.

La corrispondente varianza dello stimatore μ̂2st è pari a:

V ∗(μ̂2st) =
52

2000

(
1343095048− 117345278

8
+

117345278
2

)
− 1343095048

128
≈ 25571658. (11.60)
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Tabella 11.4 Varianza di μ̂2st per diversi valori di l

l V (μ̂2st) 100 ×
(

V (μ̂2st)
V ∗(μ̂2st)

− 1
)

2 25571658 0.0
3 25746932 0.6
4 26166677 2.3
5 26684208 4.3
6 27250634 6.5
7 27844999 8.9
8 28456826 11.3

Nella successiva Tabella 11.4 sono riportati i valori di V (μ̂2st) per l =
2 − 8(1) (e per i corrispondenti valori di m = 2000/(50 + l), naturalmente),
nonché le differenze relative rispetto all’ottimo (11.60).

Come appare evidente, la varianza di μ̂2st è sempre molto vicina all’ottimo;
in molti casi non supera l’ottimo del 5%, ed anche nel caso peggiore è dell’11%
superiore all’ottimo. ��

Una strada alternativa consiste nello stimare S2
b e S2

w mediante un campio-
ne pilota. L’idea-guida è elementare. Mediante un disegno a due stadi semplici,
si seleziona al primo stadio un campione ssr di mp grappoli, da ciscuno dei
quali si seleziona un campione ssr di lp unità elementari. Si stimano poi S2

b

e S2
w rispettivamente con gli stimatori (11.34) e (11.35). Infine, si stimano i

valori ottimi di l e m con:

l̂∗ =
1√

ŝ2
b/ŝ2

w − 1/L

√
c1

c2
, m∗ =

C0

c1 + l̂∗c2

.

I valori di mp, lp dovrebbero essere “piccoli”, ma tuttavia in grado di forni-
re stime sufficientemente accurate di S2

b e S2
w . Ulteriori approfondimenti su

questo ed altri aspetti sono nel volume di Cochran (1977), pp. 283–285.
In chiusura, un’ultima considerazione. L’idea di selezionare da ciascun

grappolo di primo stadio lo stesso numero di unità elementari è basata sull’in-
tuizione e sulla semplicità, ma non ha nessuna particolare giustificazione dal
punto di vista dell’ottimalità della varianza dello stimatore μ̂2st. Un’idea al-
ternativa è quella di scegliere il numero di unità da selezionare dai grappoli in
modo da rendere minima la varianza dello stimatore μ̂2st. Quest’impostazione
verrà usata nel prossimo paragrafo, con riferimento al caso in cui i grappoli
non hanno tutti necessariamente la stessa numerosità. Ovviamente, come ca-
so speciale, si può trattare anche il caso di grappoli tutti formati dallo stesso
numero di unità elementari.

11.7.2 Grappoli di diversa numerosità∗

Nel caso di grappoli di differente numerosità, l’approccio è abbastanza simile
a quello seguito in precedenza, anche se i risultati sono meno nitidi. Suppo-
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niamo, al solito, che debbano essere stabiliti a priori n1, . . . , nM , ovvero che
debba essere stabilito a priori il numero di unità da selezionare da ciascun
grappolo. Per semplicità di notazione poniamo

nsum = n1 + n2 + · · ·+ nM

pg =
ng

nsum
; g = 1, . . . , M

cos̀ı che

ng = nsum pg; g = 1, . . . , M

con la condizione

p1 + p2 + · · ·+ pM = 1. (11.61)

Il problema di scegliere m, n1, . . . , nM equivale, ovviamente, al problema
di scegliere m, nsum, p1, . . . , pM , con il vincolo (11.61).

La varianza dello stimatore μ̂2st risulta pari a:

V (μ̂2st) =
(

1
m

− 1
M

)
S2

b +
M

m

M∑
g=1

w2
g

(
1

pgnsum
− 1

Ng

)
S2

yg

=
(

1
m

− 1
M

)
S2

b +
M

mnsum

M∑
g=1

w2
g

pg
S2

yg − M

mN

M∑
g=1

wgS
2
yg

=
1
m

{
S2

b − M

N

M∑
g=1

wgS
2
yg +

M

nsum

M∑
g=1

w2
g

pp
S2

yg

}
− 1

M
S2

b . (11.62)

L’idea di base è molto semplice, e sostanzialmente simile a quella già usata
nella sezione precedente: minimizzare la varianza (11.62), subordinatamente
al vincolo (11.61) e ad un oppurtuno vincolo sul costo della rilevazione. Per
quanto riguarda quest’ultimo, indichiamo con:

− c1: costo di “contatto” per un grappolo;
− c1: costo di “inserimento in lista” per un’unità elementare;
− c2: costo di osservazione di un’unità elementare.

Nel caso di grappoli tutti della stessa numerosità il costo cl di inserimento
in lista è assente in quanto per i diversi grappoli si sfrutta sostazialmente la
stessa lista. Il costo di rilevazione è ora del tipo C = c1m +

∑
g∈gm

ngc2 +∑
g∈gm

Ngcl, e chiaramente dipende dal campione gm di primo stadio. Il costo
medio di rilevazione è pari (Esercizio 11.6) a:

E[C] = mc1 +
m

M
nsumc2 +

m

M
Ncl. (11.63)

Se C0 è il budget a disposizione per la rilevazione, si pone il seguente vincolo
sul costo medio:

mc1 +
m

M
nsumc2 +

m

M
Ncl = C0. (11.64)

Il problema da risolvere è quello della minimizzazione della varianza
(11.62) subordinatamente ai vincoli (11.61), (11.64).
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Scelta ottima di nsum, m

Supponiamo per il momento che i valori di p1, . . . , pM nella (11.62) siano dati
(la scelta dei valori ottimi di p1, . . . , pM verrà affrontata in seguito). Bisogna
minimizzare tale varianza rispetto a nsum e m, subordinatamente al vincolo
(11.64). Il termine S2

b /M si può trascurare, in quanto non dipende né da m,
né da nsum. Pertanto, il problema di minimo vincolato da risolvere è del tipo:{

minimizzare : 1
m

{
S2

b − M
N

∑M
g=1 wgS

2
yg + M

nsum

∑M
g=1

w2
g

pg
S2

yg

}
con il vincolo : mc1 + m

M nsumc2 + m N
M cl = C0

. (11.65)

È facile provare (Esercizio 11.7) che i valori ottimi di nsum e m sono
rispettivamente eguali a:

n∗
sum =

√√√√ ∑M
g=1

w2
g

pg
S2

yg

1
M S2

b − 1
N

∑M
g=1 wgS2

yg

√
Mc1 + Ncl

c2
; (11.66)

m∗ =
C0

c1 + n∗
sum

M
c2 + N

M
cl

. (11.67)

Scelta ottima di p1, . . ., pM

Bisogna adesso determinare i valori ottimi di p1, . . . , pM . Poiché l’unica parte
della varianza (11.62) che dipende da p1, . . . , pM è il termine

∑M
g=1

w2
g

pp
S2

yg ,
per determinare i valori ottimi di p1, . . . , pM bisogna risolvere il seguente
problema di minimo vincolato{

minimizzare :
∑M

g=1

w2
g

pg
S2

yg

con il vincolo : p1 + · · ·+ pM = 1
. (11.68)

Si tratta di un problema quasi identico a quello dell’allocazione ottimale
nel disegno stratificato. Usando le medesime tecniche, si ricava che i valori
ottimi di p1, . . . , pM sono pari a:

p∗g =
wgSyg∑M

h=1 whSyh

; g = 1, . . . , M. (11.69)

Si vede facilmente che se si pone p1 = p∗1, . . ., pM = p∗M , i valori ottimi di
nsum e m divengono pari a:

n∗∗
sum =

∑M
g=1 wgSyg√

S2
b

M − 1
N

∑M
g=1 wgS2

yg

√
Mc1 + Ncl

c2
; (11.70)

m∗∗ =
C0

c1 + n∗∗
sum

M c2 + N
M cl

. (11.71)
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Considerazioni sull’applicabilità dei risultati ottenuti

I valori ottimi (11.69), (11.70), (11.71) dipendono dalle quantità wg (che po-
trebbero in alcuni casi essere incognite) e S2

yg (che sono praticamente sempre
incognite). Metodi per ovviare almeno in parte a questo inconveniente sono
brevemente delineati nel seguito.

In primo luogo, se non si hanno informazioni sulle varianze S2
yg dei grappoli

è giocoforza rinunciare ai pesi ottimi (11.69), e ripiegare su soluzioni “ragione-
voli”. Se sono note le numerosità Ng dei grappoli, si potrebbe porre pg = wg,
oppure pg = 1/M (quest’ultima scelta non necessita della conoscenza dei ter-
mini wg, ed inoltre fornisce una numerosità campionaria costante). Se anche
le numerosità Ng dei grappoli sono incognite a priori, e possono essere cono-
sciute solo contattando i grappoli (ciò accade non di rado), la scelta pg = 1/M
appare assai ragionevole.

Se si scelgono valori di pg non ottimali, i valori di nsum, m da utilizzare
sono dati rispettivamente dalle (11.66), (11.67). Purtroppo, essi dipendono
dalle incognite varianze dei grappoli, S2

yg . Questo inconveniente può essere
almeno in parte superato mediante la tecnica del campione pilota. L’idea-
guida è simile a quella già descritta nel caso di grappoli tutti della stessa
numerosità. Tramite un disegno a due stadi semplici, si seleziona al primo
stadio un campione ssr di mp grappoli, da ciascuno dei quali si seleziona un
campione ssr di np,g unità elementari (ad esempio, ma non necessariamente, da
ciascun grappolo del campione pilota si potrebbe selezionare lo stesso numero
di unità elementari). Indichiamo con yp g ŝ2

p yg rispettivamente le medie e le
varianze campionarie dei grappoli del campione pilota. Si stima poi S2

b con lo
stimatore che appare al membro di sinistra della (11.23) (che indichiamo con
ŝ2
p b), e si stimano

∑
g w2

gS2
yg/pg,

∑
g wgS

2
yg rispettivamente con

M

mp

∑
g

w2
g

pg
ŝ2
p yg,

M

mp

∑
g

wgŝ
2
p yg. (11.72)

Infine, si stimano i valori ottimi di nsum e m con:

n̂∗
sum =

√√√√ M
mp

∑
g

w2
g

pg
ŝ2
p yg

1
M ŝ2

p b − M
mpN

∑
g wgŝ2

p yg

√
Mc1 + Ncl

c2
; (11.73)

m̂∗ =
C0

c1 + n̂∗
sum

M c2 + N
M cl

. (11.74)

Sia il numero mp di grappoli del campione pilota che i corrispondenti
campioni di unità elementari dovrebbero essere “piccoli”, ma tuttavia in grado
di fornire stime sufficientemente accurate in (11.73), (11.74).
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11.8 Campionamento a due stadi con stratificazione
delle unità primarie∗

In rilevazioni statistiche concrete, come già anticipato nella discussione sull’ef-
fetto del disegno, il disegno a due stadi è spesso combinato con altri disegni
campionari, come quello stratificato. Un importante esempio è quello delle
forze di lavoro, in cui il ruolo di grappoli (unità primarie) è svolto dai comuni.
Questi sono preventivamente raggruppati in strati (formati su base sia demo-
grafica che geografica). Da ciascuno strato vengono in primo luogo selezionati
alcuni comuni (in genere con un disegno non di tipo ssr); in secondo luogo, da
ciascun comune selezionato è estratto un campione di famiglie, dei cui membri
viene rilevato lo status occupazionale. Un disegno di questo tipo è null’altro
che un esempio di piano di campionamento a due stadi, in cui i grappoli sono
suddivisi in strati. In ciascuno strato si effettua, in modo indipendente, un
campionamento a due stadi, cui al primo stadio sono selezionati grappoli, e
al secondo unità elementari.

Formalmente, si consideri una popolazione suddivisa in H strati. Nel ge-
nerico strato h vi sono Mh grappoli (h = 1, . . . , H). A sua volta, il grappolo
gmo dello strato hmo è formato da Nhg unità elementari (g = 1, . . . , Mh;
h = 1, . . . , H). Nel seguito si adotterà la seguente simbologia, un po’ pesante
ma necessaria:

– Nh· =
∑Mh

g=1 Nhg : numero di unità elementari dello strato h (h = 1, . . . , H);

– whg = Nhg

Nh· : peso del grappolo g nello strato h (g = 1, . . . , Mh; h =
1, . . . , H);

– N =
∑H

h=1 Nh· =
∑H

h=1

∑Mh

g=1 Nhg : numero totale di unità elementari
della popolazione;

– ωh = Nh·
N : peso dello strato h nella popolazione (h = 1, . . . , H).

È immediato verificare che valgono le seguenti relazioni

Mh∑
g=1

whg = 1 per ogni h = 1, . . . , H;

H∑
h=1

ωh = 1.

Indichiamo poi yhgi la modalità che il carattere di interesse Y assume
in corrispondenza dell’unità elementare i del grappolo g dello strato h (i =
1, . . . , Nhg ; g = 1, . . . , Mh; h = 1, . . . H), e con:

– μyhg = 1
Nhg

∑Nhg

i=1 yhgi: media del grappolo g dello strato h (g = 1, . . . , Mh;
h = 1, . . . H);

– S2
yhg = 1

Nhg−1

∑Nhg

i=1 (yhgi − μyhg)2: varianza corretta del grappolo g dello
strato h (g = 1, . . . , Mh; h = 1, . . . H);
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– μyh· = 1
Nh·

∑Mh

g=1

∑Nhg

i=1 yhgi: media dello strato h (h = 1, . . . , H);

– μy = 1
N

∑H
h=1

∑Mh

g=1

∑Nhg

i=1 yhgi media della popolazione.

Tra le varie medie sopra definite sussistono alcune relazioni fondamentali,
di seguito riportate:

μyh· =
1

Nh·

Mh∑
g=1

Nhg∑
i=1

yhgi =
Mh∑
g=1

Nhg

Nh·

⎧⎨⎩ 1
Nhg

Nhg∑
i=1

yhgi

⎫⎬⎭ =
Mh∑
g=1

whgμyhg ; (11.75)

μy =
1
N

H∑
h=1

Mh∑
g=1

Nhg∑
i=1

yhgi =
H∑

h=1

Nh·
N

⎧⎨⎩
Mh∑
g=1

Nhg

Nh·

⎛⎝ 1
Nhg

Nhg∑
i=1

yhgi

⎞⎠⎫⎬⎭
=

H∑
h=1

ωh

{
Mh∑
g=1

whgμyhg

}
=

H∑
h=1

ωhμyh· (11.76)

La (11.75) mostra che la media del grappolo hmo è esprimibile come media
delle medie dei grappoli che lo compongono. La (11.76) mostra che la media
della popolazione è esprimibile come media delle medie degli strati in cui è
suddivisa.

Il disegno campionario a due stadi (semplici) con stratificazione delle unità
primarie si realizza in modo molto semplice, qui di seguito descritto.

– I stadio. Da ciascuno stato h si seleziona, in modo indipendente, un
campione ssr gmh di mh grappoli (h = 1, . . . , H).

– II stadio. Da ogni grappolo g ∈ gmh scelto al primo stadio in ciascuno
degli strati si seleziona, mediante disegno ssr, un campione shg di nhg

unità elementari. I campioni shg di unità elementari appartenenti a strati
diversi sono indipendenti. Inoltre, campioni di unità elementari di grappoli
di uno stesso strato h sono indipendenti dato gmh .

Sia ora

yhg =
1

nhg

∑
i∈shg

yhgi

la media campionaria del grappolo g dello strato h. Come immediata esten-
sione di quanto svolto nelle precedenti sezioni, come stimatore (corretto) della
media μyh dello strato h si può fare riferimento a

μ̂2sth =
1

mh

∑
g∈gmh

Mhwhgyhg (11.77)

cos̀ı che come stimatore corretto della media μy della popolazione si ha:

μ̂2st;str =
H∑

h=1

ωh μ̂2sth. (11.78)



Esercizi 265

Per quanto riguarda la varianza di (11.78), è immediato verificare (Eser-
cizio 11.9) che

V (μ̂2st;str)

=
H∑

h=1

ω2
hV (μ̂2sth)

=
H∑

h=1

ω2
h

{(
1

mh
− 1

Mh

)
S2

bh +
Mh

mh

Mh∑
g=1

w2
hg

(
1

nhg
− 1

Nhg

)
S2

yhg

}
(11.79)

essendo

S2
bh =

1
Mh − 1

Mh∑
g=1

(Mhwhgμyhg − μyh·)
2
. (11.80)

La stima della varianza (11.80), infine, non presenta difficoltà di rilievo.
Un suo stimatore corretto, immediata estensione di quanto svolto nelle sezioni
precedenti, è proposto nell’Esercizio 11.10.

Esercizi

11.1. Verificare che valgono le (11.23), (11.23).

11.2. Verificare che nel caso in cui (i) i grappoli hanno tutti la stessa nume-
rosità L, e (ii) da ciascun grappolo vengono selezionate l unità elementari, lo
stimatore (11.18) si riduce a (11.31).

11.3. Verificare che valgono le (11.34), (11.35).

11.4. Verificare che nel caso di disegno a due stadi semplici con numerosità
costante, lo stimatore (11.18) è uno stimatore corretto di (11.11).

11.5. Provare che il problema di minimo vincolato (11.57) ha come soluzione
(11.58).

Suggerimento.Posto per semplicità a = S2
b −S2

w/L e b = S2
w , la funzione Lagrangiana

assume la forma L = (a+b/l)/m+λ(m(c1+c2l)−C0). Da ∂L/∂l = −b(ml2)+λmc2 =
0, ∂L/∂m = −(a + b/l)/m2 + λ(c1 + c2l) = 0 si ottengono rispettivamente le due
equazioni λm2 = b/(c2l

2), λm2 = (a+b/l)/(c1+c2 l), chie forniscono il valore ottimo
di l. Dal vincolo si ottiene poi il valore ottimo di m.

11.6. Provare la relazione (11.63).

11.7. Provare che il problema di minimo vincolato (11.65) ha come soluzione
(11.70), (11.71).

Suggerimento. Usare gli stessi argomenti dell’Esercizio 11.4.
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11.8. Verificare la relazione (11.36).

11.9. Verificare la relazione (11.79).

11.10. Detta

ŝ2
yhg =

1
nhg − 1

∑
i∈shg

(yhgi − yhg)2

la varianza campionaria corretta del grappolo g dello strato h, si definiscano
le seguenti quantità:

V̂1h =
1

mh − 1

∑
g∈gmh

(Mhwhgyhg − μ̂2sth)2;

V̂2h =
1

mh

∑
g∈gmh

w2
hg

(
1

nhg
− 1

Nhg

)
ŝ2
yhg ;

V̂2sth =
(

1
mh

− 1
Mh

)
V̂1h + MhV̂2h.

a. Verificare che V̂2sth è uno stimatore corretto di V (μ̂2sth).
b. Verificare che

V̂2st;str =
H∑

h=1

ω2
h V̂2sth

è uno stimatore corretto della (11.79).
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Disegni campionari a probabilità variabile

12.1 Aspetti generali. Probabilità di inclusione

La nozione generale di disegno campionario, cos̀ı come quelle di numerosità
e di numerosità effettiva, sono già state fornite nel Capitolo 2. I disegni di
campionamento visti fino ad ora, pur essendo composti da campioni che non
hanno tutti necessariamente la stessa probabilità di selezione, hanno una ca-
ratteristica comune: sono riconducibili al disegno semplice senza ripetizione
(ssr), nel senso che sono sostanzialmente suoi “derivati”. In effetti, è evidente
come i disegni di campionamento stratificato, a grappolo, a due stadi semplici,
sono essenzialmente varianti del disegno ssr. In questo capitolo e nei succes-
sivi, invece, ci si concentrerà su disegni campionari non riconducibili a quello
semplice, che verranno per brevità denominati disegni a probabilità variabile.
Essi presentano importanti problemi di implementazione, in generale di non
agevole soluzione. D’altra parte, disegni campionari a probabilità variabile
sono ampiamente usati nella pratica applicativa.

Per lo studio di disegni campionari a probabilità variabile riveste impor-
tanza fondamentale la nozione di probabilità di inclusione. Consideriamo un
generico disegno campionario (S , p(·)). La probabilità di inclusione (del primo
ordine) dell’unità i è la probabilità di selezionare un campione s ∈ S conte-
nente l’unità i (= 1, . . . , N). L’inclusione di una data unità i nel campione s
può essere espressa attraverso il ricorso alla variabile indicatrice

δ(i; s) =
{

1 se i ∈ s
0 se i /∈ s

(12.1)

la quale assume il valore 1 se il campione s contiene l’unità i almeno una
volta, e il valore 0 altrimenti. Si osservi che ciò implica che l’indicatore (12.1)
non dipende dal numero di volte in cui il campione contiene l’unità i. L’unico
elemento che determina il valore di δ(i; s) è l’appartenenza o meno dell’unità
i al campione s.

Tenendo conto che il campione s contiene l’unità i se e solo se δ(i; s) = 1,
la probabilità di inclusione dell’unità i è null’altro che la probabilità che la

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 12, © Springer-Verlag Italia 2012
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v.a. δ(i; s) assuma il valore 1. In simboli, se si indica con πi la probabilità di
inclusione del primo ordine dell’unità i, si ha

πi = Pr(δ(i; s) = 1). (12.2)

Chiaramente, dalla (12.2) si desume che la probabilità di inclusione πi si
ottiene sommando le probabilità di tutti i campioni dello spazio campionario
che contengono l’unità i. In simboli, detto Si = {s ∈ S : s � i} l’insieme dei
campioni in S che contengono l’unità i, si può scrivere

πi =
∑
s∈Si

p(s). (12.3)

In modo analogo è possibile definire la probabilità che due unità distinte i, j
siano incluse nel campione, denominata probabilità di inclusione del secondo
ordine e indicata con πij. Anche la probabilità πij può essere espressa in
termini delle variabili indicatrici. Infatti, il campione s contiene le due unità
distinte i, j se e solo se si ha simultaneamente δ(i; s) = 1 e δ(j; s) = 1. D’altra
parte, è facile vedere che

δ(i; s) = 1 e δ(j; s) = 1 se e solo se δ(i; s) δ(j; s) = 1

ossia il campione s contiene la coppia i, j di unità distinte se e solo se il
prodotto dei due indicatori δ(i; s) e δ(j; s) è pari a 1. Pertanto, si può scrivere

πij = Pr(δ(i; s) δ(j; s) = 1). (12.4)

Anche in questo caso vale una relazione simile alla (12.3). Detto Sij il sottoin-
sieme dello spazio campionario costituito da tutti i campioni che contengono
le unità (i, j) (Sij = {s ∈ S : s � (i, j)}), si ha:

πij =
∑
s∈Sij

p(s). (12.5)

È immediato verificare dalla (12.4) che vale la relazione (di simmetria)
πij = πji.

La nozione di probabilità di inclusione del secondo ordine si può anche
estendere a coppie di unità coincidenti. In effetti, se j = i si ha δ(i; s) δ(j; s) =
δ(i; s)2 = δ(i; s) (perché δ(i; s) assume i valori 1 o 0, che elevati al quadrato
sono ancora rispettivamente pari a 1 e 0); di conseguenza

πii = Pr(δ(i; s)2 = 1) = Pr(δ(i; s) = 1) = πi. (12.6)

Esempio 12.1. Riprendiamo l’Esempio 2.2. del Capitolo 2, in cui si considera
una popolazione di N = 7 unità: I7 = {1, 2, . . . , 7}. Lo spazio dei campioni è
formato dai sei campioni:

s1 = {1, 2}, s2 = {1, 3}, s3 = {4}, s4 = {2, 3, 5}, s5 = {6, 7}, s6 = {4, 5, 7}
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con le seguenti probabilità:

p(s1) = 0.15, p(s2) = 0.2, p(s3) = 0.1, p(s4) = 0.1, p(s5) = 0.15, p(s6) = 0.3.

Le probabilità di inclusione del primo ordine delle unità sono:

π1 =
∑
s∈S1

p(s) = p(s1) + p(s2) = 0.15 + 0.2 = 0.35

π2 =
∑
s∈S2

p(s) = p(s1) + p(s4) = 0.15 + 0.1 = 0.25

π3 =
∑
s∈S3

p(s) = p(s2) + p(s4) = 0.2 + 0.1 = 0.3

π4 =
∑
s∈S4

p(s) = p(s3) + p(s6) = 0.1 + 0.3 = 0.4

π5 =
∑
s∈S5

p(s) = p(s4) + p(s6) = 0.1 + 0.3 = 0.4

π6 =
∑
s∈S6

p(s) = p(s5) = 0.15

π7 =
∑
s∈S7

p(s) = p(s5) + p(s6) = 0.15 + 0.3 = 0.45.

In modo simile si possono calcolare le probabilità di inclusione del secondo
ordine. ��

La nozione di probabilità di inclusione è definita per disegni campionari
del tutto generali, con o senza ripetizioni, ordinati o non ordinati. Tuttavia,
ci si può ridurre a considerare solo disegni non ordinati e senza ripetizioni, in
quanto è facile provare che la riduzione di un qualsiasi disegno campionario
possiede le stesse probabilià di inclusione del disegno di partenza. Questo
risultato, semplice ma importante, è provato nella successiva proposizione.

Proposizione 12.1. Se (S, p(·)) è un disegno campionario, e se (S∗, p∗(·))
è la sua riduzione, i due disegni campionari hanno le stesse probabilità di
inclusione.

Dimostrazione. Ci limitiamo per brevità alle sole probabilità di inclusione
del primo ordine, in quanto per quelle del secondo ordine vale un discor-
so praticamente identico. La notazione è identica a quella del Capitolo 2.
Siano πi, π∗

i le probabilità di inclusione dell’unità i rispettivamente nel dise-
gno “originario” e in quello ridotto. Preso un qualunque s∗ ∈ S∗, sia inoltre
C(s∗) = {s ∈ S : r(s) = s∗} l’insieme dei campioni “originari” aventi s∗

come riduzione. Infine, siano Si e S∗
i rispettivamente l’insieme dei campio-

ni “originari” e di quelli “ridotti” contenenti l’unità i. Chiaramente, vale la
relazione

S∗
i = {r(s); s ∈ Si} (12.7)
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dalla quale discende che

π∗
i =

∑
s∗∈S∗

i

p(s∗)

=
∑

s∗∈S∗
i

⎧⎨⎩ ∑
s∈C(s∗)

p(s)

⎫⎬⎭
=
∑
s∈Si

p(s)

= πi. ��

Esempio 12.2. Consideriamo il disegno campionario dell’Esempio 2.1, in cui
si ha una popolazione di N = 7 unità: I7 = {1, 2, . . . , 7}. Lo spazio dei
campioni sia formato dagli otto campioni:

s1 = (1, 2, 3), s2 = (1, 2, 4), s3 = (5, 6), s4 = (7),
s5 = (6, 5), s6 = (1, 2, 2, 3), s7 = (3, 1, 2), s8 = (3, 1, 1, 2)

con le seguenti probabilità

p(s1) = 0.1, p(s2) = 0.15, p(s3) = 0.15, p(s4) = 0.05,

p(s5) = 0.2, p(s6) = 0.05, p(s7) = 0.1, p(s8) = 0.2.

Le probabilità di inclusione del primo ordine sono uguali a

π1 = = p(s1) + p(s2) + p(s6) + p(s7) + p(s8) = 0.1 + 0.15 + 0.05 + 0.1 + 0.2
= 0.6

π2 = p(s1) + p(s2) + p(s6) + p(s7) + p(s8) = 0.1 + 0.15 + 0.05 + 0.1 + 0.2
= 0.6

π3 = p(s1) + p(s6) + p(s7) + p(s8) = 0.1 + 0.05 + 0.1 + 0.2 = 0.45
π4 = p(s2) = 0.15
π5 = p(s3) + p(s5) = 0.15 + 0.2 = 0.35
π6 = p(s3) + p(s5) = 0.15 + 0.2 = 0.35
π7 = p(s4) = 0.05.

La riduzione di questo disegno campionario è stata costruita nell’Esempio
2.5. Lo spazio dei campioni ridotto S∗ è formato dai campioni:

s∗1 = {1, 2, 3}, s∗2 = {1, 2, 4}, s∗3 = {5, 6}, s∗4 = {7}

con probabilità

p∗(s∗1) = 0.45, p∗(s∗2) = 0.15, p∗(s∗3) = 0.35, p(s∗4) = 0.05.
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Le probabilità di inclusione calcolate in base al disegno campionario ridotto
sono pari a

π∗
1 = p∗(s∗1) + p∗(s∗2) = 0.45 + 0.15 = 0.6

π∗
2 = p∗(s∗1) + p∗(s∗2) = 0.45 + 0.15 = 0.6

π∗
3 = p∗(s∗1) = 0.45

π∗
4 = p∗(s∗2) = 0.15

π∗
5 = p∗(s∗3) = 0.35

π∗
6 = p∗(s∗3) = 0.35

π∗
7 = p∗(s∗4) = 0.05

e chiaramente coincidono con le πi. ��

In forza della Proposizione 12.1 nel seguito si assumerà sempre, senza
perdita di generalità, che il disegno di campionamento sia non ordinato e
senza ripetizioni.

In generale è possibile definire anche probabilità di inclusione di ordine
superiore al secondo ma poiché queste rivestono un ruolo meno importante
nell’ambito dell’inferenza da popolazioni finite il loro calcolo verrà tralasciato.

Le proprietà delle variabili indicatrici δ(i; s) sono riassunte nella seguente
proposizione.

Proposizione 12.2. Dato un generico disegno di campionamento (S, p(·)),
e per i = 1, . . . , N valgono le seguenti proprietà

E[δ(i; s)] = πi; (12.8)
V [δ(i; s)] = πi(1 − πi); (12.9)
E[δ(i; s) δ(j; s)] = πij; (12.10)

C[δ(i; s), δ(j; s)] = πij − πiπj. (12.11)

Dimostrazione. Per provare (12.8), (12.9) è sufficiente osservare che δ(i; s),
fissata l’unità i, è una v.a. di Bernoulli, che assume i due valori 1, 0
rispettivamente con probabilità πi e 1 − πi. Si ha quindi

E[δ(i; s)] = 1 × Pr(δ(i; s) = 1) + 0 × Pr(δ(i; s) = 0) = πi

e analogamente

V [δ(i; s)] = E[δ(i; s)2] − {E[δ(i; s)]}2

= E[δ(i; s)] − π2
i

= πi − π2
i

= πi(1 − πi).
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Per quanto riguarda le (12.10), (12.11), notiamo che il prodotto δ(i; s)δ(j; s)
definisce una nuova variabile indicatrice che assume valore pari a uno se e
solo se entrambe le unità i e j sono incluse nel campione, ciò implica che
E[δ(i; s)δ(j; s)] = πij. Da tale risultato discende che

E[δ(i; s) δ(j; s)] = πij

C[δ(i; s), δ(j; s)] = E[δ(i; s)δ(j; s)] − E[δ(i; s)]E[δ(j; s)]
= πij − πiπj.

Chiaramente il segno di tali covarianze dipenderà dalle caratteristiche del
disegno campionario. ��

I risultati della Proposizione 12.2 possono anche essere posti in forma
vettoriale. Definiamo il vettore di N elementi (uno per ogni unità della
popolazione)

δ(s) =

⎡⎢⎢⎣
δ(1; s)
δ(2; s)
· · ·

δ(N ; s)

⎤⎥⎥⎦ (12.12)

in cui ciascuna componente è l’indicatore di presenza-assenza della corrispon-
dente unità nel campione s. La conoscenza del vettore δ(s) equivale alla co-
noscenza del campione s. Le componenti di δ(s) pari a 1 corrispondono alle
unità presenti nel campione s, mentre le componenti pari a 0 corrispondono
alle unità non presenti in s.

Indichiamo con

π =

⎡⎢⎢⎣
π1

π2

· · ·
πN

⎤⎥⎥⎦ (12.13)

il vettore delle probabilità di inclusione del primo ordine, e con

Π =

⎡⎢⎢⎣
π11 π12 · · · π1N

π21 π22 · · · π2N

· · · · · · · · · · · ·
πN1 πN2 · · · πNN

⎤⎥⎥⎦ =

⎡⎢⎢⎣
π1 π12 · · · π1N

π12 π2 · · · π2N

· · · · · · · · · · · ·
π1N π2N · · · πN

⎤⎥⎥⎦ (12.14)

la matrice delle probabilità di inclusione del secondo ordine.
Come conseguenza della Proposizione 12.2 il valore del vettore δ(s) è pari

a π:

E[δ(s)] = π. (12.15)

Indicando poi con δ(s)′ il trasposto del vettore δ(s), la (12.10) si può scrivere
in forma matriciale come

E[δ(s)δ(s)′] = Π. (12.16)
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Infine, la (12.11) si può esprimere in forma matriciale poiché la matrice di
varianze e covarianze di δ(s) è pari a Π − ππ′. In simboli:

E[(δ(s) − E[δ(s)]) (δ(s) − E[δ(s)])′] = Π − ππ′. (12.17)

Nel prosieguo, se non diversamente specificato, considereremo disegni cam-
pionari con probabilità di inclusione del primo ordine strettamente positive.
Formalmente

πi > 0 per ciascuna unit à i = 1, . . . , N. (12.18)

Ciò significa che ogni elemento della popolazione ha la possibilità di entrare
a far parte del campione. Notiamo che se oltre alla condizione (12.18) il dise-
gno possiede anche probabilità di inclusione del secondo ordine strettamente
positive, formalmente

πij > 0 ∀i, j ∈ U(i �= j)

il disegno è detto misurabile . Come vedremo la nozione di misurabilità di un
disegno riveste una notevole importanza per l’esistenza di stimatori corretti
della varianza.

12.2 Proprietà delle probabilità di inclusione

Consideriamo un generico disegno di campionamento (S, p(·)). L’ampiezza
media di un disegno campionario, indicata con n, è il numero medio di unità
contenute nei campioni. In simboli:

n = E[n(s)] =
∑
s∈S

n(s) p(s).

Similmente, l’ampiezza media effettiva di un disegno campionario, indicata
con ν, è il numero medio di unità distinte contenute nei campioni:

ν = E[ν(s)] =
∑
s∈S

ν(s) p(s).

Chiaramente, è sempre ν � n. Inoltre, l’uguaglianza ν = n vale se e solo se
il disegno campionario è senza ripetizioni. Le relazioni che legano l’ampiezza
media effettiva di un disegno alle probabilità di inclusione sono illustrate nella
seguente proposizione.

Proposizione 12.3. Dato un generico disegno di campionamento (S, p(·)),
le probabilità di inclusione del primo e secondo ordine soddisfano le seguenti
proprietà

N∑
i=1

πi = ν; (12.19)
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N∑
i=1

N∑
j=1

j �=i

πij = V [ν(s)] + ν(ν − 1); (12.20)

dove V [ν(s)] rappresenta la varianza della variabile aleatoria ν(s).

Dimostrazione. Per provare la (12.19) è sufficiente osservare che

N∑
i=1

δ(i; s) = ν(s) . (12.21)

da cui si ottiene subito
N∑

i=1

πi =
N∑

i=1

E[δ(i; s)] = E

[
N∑

i=1

δ(i; s)

]
= E[ν(s)] .

Per provare la (12.20) basta usare la relazione (conseguenza della (12.21))

N∑
i=1

N∑
j=1

j �=i

δ(i; s) δ(j; s) =
N∑

i=1

δ(i; s)

⎧⎪⎪⎨⎪⎪⎩
N∑

j=1

j �=i

δ(j; s)

⎫⎪⎪⎬⎪⎪⎭
=

N∑
i=1

δ(i; s)

⎧⎨⎩
N∑

j=1

δ(j; s) − δ(i; s)

⎫⎬⎭
=

N∑
i=1

δ(i; s) {ν(s)− δ(i; s)}

= ν(s)
N∑

i=1

δ(i; s) −
N∑

i=1

δ(i; s)2

= ν(s)2 − ν(s) (12.22)

dalla quale si ottiene

N∑
i=1

N∑
j=1

j �=i

πij =
N∑

i=1

N∑
j=1

j �=i

E[δ(i; s) δ(j; s)]

= E

⎡⎢⎢⎣ N∑
i=1

N∑
j=1
j �=i

δ(i; s) δ(j; s)

⎤⎥⎥⎦
= E[ν(s)2] − E[ν(s)]
= V [ν(s)] + ν(ν − 1). ��
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Se il disegno campionario è ad ampiezza effettiva costante, formalmente
ν(s) = ν per ogni s ∈ S (e quindi anche ν = ν), allora vale anche la seguente
ulteriore proprietà.

Proposizione 12.4. Dato un generico disegno di campionamento (S, p(·)) ad
ampiezza effettiva costante ν, le probabilità di inclusione del secondo ordine
soddisfano la seguente relazione:

N∑
j=1

j �=i

πij = (ν − 1)πi; i = 1, . . . , N. (12.23)

Dimostrazione. Usando le stesse considerazioni che portano alla (12.22), os-
serviamo in primo luogo che se tutti i campioni hanno lo stesso numero ν di
unità distinte si ha

N∑
j=1

j �=i

δ(i; s) δ(j; s) = δ(i; s)
N∑

j=1

j �=i

δ(j; s)

= δ(i; s)

⎧⎨⎩
N∑

j=1

δ(j; s) − δ(i; s)

⎫⎬⎭
= δ(i; s){ν − δ(i; s)}
= ν δ(i; s) − δ(i; s)
= (ν − 1)δ(i; s) (12.24)

da cui si ottiene

N∑
j=1

j �=i

πij =
N∑

j=1

j �=i

E[δ(i; s) δ(j; s)]

= E

⎡⎢⎢⎣ N∑
j=1

j �=i

δ(i; s) δ(j; s)

⎤⎥⎥⎦
= E[(ν − 1)δ(i; s)]
= (ν − 1)πi . ��

Se il disegno di campionamento è senza ripetizioni allora le proposizioni
12.3 e 12.4 si applicano all’ampiezza media n. Inoltre nel caso in cui il disegno
sia anche ad ampiezza costante vale il seguente risultato.
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Proposizione 12.5. Se il disegno campionario è senza ripetizioni (ν(s) =
n(s) per ogni s ∈ S) e ad ampiezza costante (n(s) = n per ogni s ∈ S) allora
valgono le seguenti relazioni

N∑
i=1

πi = n;
N∑

i=1

N∑
j=i

j �=i

πij = n(n − 1);
N∑

j=1

j �=i

πij = (n − 1)πi . (12.25)

Dimostrazione. È una conseguenza delle proposizioni 12.3, 12.4. ��

12.3 Probabilità di inclusione per disegni campionari
“semplici”

In questa sezione vengono forniti esempi di calcolo delle probabilità di in-
clusione per alcuni disegni campionari particolarmente importanti, legati al
disegno semplice.

Esempio 12.3 (Disegno semplice senza ripetizione). In un campiona-
mento casuale semplice senza ripetizione (ssr) la probabilità di inclusione del
primo ordine per una generica unità i della popolazione è data da

πi =
∑
s∈Si

p(s) =

(
N − 1
n − 1

)
(

N
n

) =
n

N
(12.26)

per i = 1, . . . , N , essendo esattamente pari a
(

N − 1
n − 1

)
i campioni s dello

spazio campionario che includono l’unità i. Analogamente per le probabilità
di inclusione del secondo ordine si ricava che

πij =
∑
s∈Sij

p(s) =

(
N − 2
n − 2

)
(

N
n

) =
n(n − 1)
N(N − 1)

(12.27)

essendo esattamente pari a
(

N − 2
n − 2

)
i campioni dello spazio campionario

che includono contemporaneamente le unità i e j (con i �= j). Notiamo che
nel campionamento semplice senza ripetizione tutte le unità della popolazione
hanno la stessa probabilità di inclusione del primo ordine (pari alla frazione
sondata). Se il disegno campionario presenta tale caratteristica si definisce
autoponderante. ��
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Esempio 12.4 (Disegno semplice con ripetizione). In un campionamen-
to casuale semplice con ripetizione (scr) la probabilità di inclusione del primo
ordine per una generica unità i della popolazione è data da

πi = 1 −
(

1 − 1
N

)n

. (12.28)

Tale probabilità si calcola facilmente osservando che un campione non contiene
l’unità i se e solo se è una disposizione senza ripetizione di classe n delle N −1
unità IN \ {i}. Si ha quindi

πi = 1 − Pr(s �/ i)

= 1 − (N − 1)n

Nn

da cui la (12.28).
In modo analogo si ricavano le probabilità di inclusione del secondo ordine

per i �= j:

πij = 1 − Pr(s �/ i) − Pr(s �/ j) + Pr({s �/ i} ∩ {s �/ j})

= 1 − (N − 1)n

Nn
− (N − 1)n

Nn
+

(N − 2)n

Nn

= 1 − 2
(

1 − 1
N

)n

+
(

1 − 2
N

)n

. (12.29)

Inoltre sulla base della Proposizione 12.3, l’ampiezza media effettiva ν di un
disegno semplice con ripetizione risulta pari a

ν =
N∑

i=1

πi

=
N∑

i=1

[
1 −

(
1 − 1

N

)n]

= N

[
1 −

(
1 − 1

N

)n]
. (12.30)

��

Esempio 12.5 (Disegno campionario stratificato). In un disegno di cam-
pionamento stratificato le probabilità di inclusione si ricavano applicando ad
ogni strato della popolazione i risultati ottenuti per il campionamento casua-
le semplice senza ripetizione (Esempio 12.3). Poiché l’unità i dello strato g
è contenuta nel campione s se e solo se è contenuta nel “sottocampione” sg
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dello strato g, la sua probabilità di inclusione del primo ordine è pari, con
ovvia notazione, a

π(g)i = Pr(i ∈ sg)

=
∑

sg∈Sgi

p(s)

=

(
Ng − 1
ng − 1

)
(

Ng

ng

)
=

ng

Ng
(12.31)

con Sgi = {sg ∈ CNg,ng : sg � i}.
Per il calcolo delle probabilità di inclusione del secondo ordine occorre

distinguere a seconda che le unità i e j appartengano allo stesso strato g
oppure a strati diversi, rispettivamente g, g

′
. Con lo stesso ragionamento usato

per la probabilità di inclusione del primo ordine, nel primo caso si ricava che

π(g)ij = Pr((i, j) ∈ sg)

=
∑

sg∈Sgij

p(s)

=

(
Ng − 2
ng − 2

)
(

Ng

ng

)
=

ng(ng − 1)
Ng(Ng − 1)

(12.32)

dove Sgij = {sg ∈ CNg,ng : sg � (i, j)}. Se invece le unità appartengono a due
strati distinti, essendo indipendenti i “sottocampioni” sg, sg′ , si ricava che

π(gg
′
)ij = Pr((i ∈ sg) ∩ (j ∈ sg

′ ))

= Pr(i ∈ sg)Pr(j ∈ sg′ )

=
ngng′

NgNg′
. (12.33)

��
Esempio 12.6 (Disegno campionario a grappolo). In un disegno cam-
pionario a grappolo la probabilità di inclusione per l’unità i del grappolo g è
data, con notazione simile a quella usata nell’esempio precedente, da

π(g)i = Pr(g ∈ gm)

=
m

M
. (12.34)
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Infatti, poiché tutte le unità dei grappoli campionati entrano a far parte
del campione, la probabilità di inclusione del primo ordine per l’unità i del
grappolo g è uguale alla probabilità di inclusione del grappolo g.

Per il calcolo delle probabilità di inclusione del secondo ordine occorre
distinguere a seconda che le unità i e j appartengano allo stesso grappolo
oppure a grappoli diversi. Nel primo caso si ricava che

π(g)ij = Pr(g ∈ gm)

=
m

M
. (12.35)

Analogamente se invece le unità i, j appartengono rispettivamente ai due
grappoli distinti g e g

′
, si ottiene

π(gg′ )ij = Pr((g, g
′
) ∈ gm)

=
m(m − 1)
M(M − 1)

. (12.36)

��

Esempio 12.7 (Disegno campionario a due stadi semplici). In un di-
segno campionario a due stadi semplici la probabilità di inclusione dell’unità
i del grappolo g è data dalla

π(g)i = Pr(g ∈ gm)Pr(i ∈ sg |gm)

=
m

M

ng

Ng
(12.37)

in cui Pr(g ∈ gm) rappresenta la probabilità di selezione del grappolo g (al
primo stadio), mentre Pr(i ∈ sg |gm) è la probabilità che l’unità i apparte-
nente al grappolo g sia estratta al secondo stadio di campionamento, essendo
stato selezionato al primo stadio il grappolo g. Per quanto riguarda le pro-
babilità di inclusione del secondo ordine, occorre distinguere a seconda che le
unità i e j appartengano allo stesso grappolo g oppure a due diversi grappoli
g, g

′
. Nel primo caso si ricava che

π(g)ij = Pr(g ∈ gm)Pr((i, j) ∈ sg |gm)

=
m

M

ng(ng − 1)
Ng(Ng − 1)

. (12.38)

Se invece le unità appartengono a grappoli distinti, rispettivamente g e g
′
, si

ottiene

π(gg′)ij = Pr((g, g
′
) ∈ gm)Pr(i ∈ sg |gm)Pr(j ∈ sg′ |gm)

=
m(m − 1)
M(M − 1)

ng

Ng

ng′

Ng′
. (12.39)

��
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Esempio 12.8. Un disegno sistematico in cui i campioni hanno tutti la stessa
numerosità n e il rapporto M = N/n è un numero intero equivale ad un
disegno a grappolo con M grappoli tutti della stessa numerosità n, e ciascuno
formato dalle unità

{g, g + M, g + 2M, . . . , g + (n − 1)M}; g = 1, . . . , M.

Ciascuna unità ha probabilità di inclusione del primo ordine pari a 1/M =
n/N . Due unità distinte i, j hanno probabilità di inclusione del secondo or-
dine pari a n/N se appartengono allo stesso grappolo, e pari a 0 altrimenti.
Osservando che due unità i, j appartengono allo stesso grappolo se e solo se
|i − j| è un multiplo di M , cioè se e solo se |i − j|/M è intero, si può quindi
scrivere

πi =
n

N
; πij =

{
n
N se

|i−j|
M è intero

0 altrimenti
. ��

12.4 Estensioni immediate dei disegni campionari
semplici: disegni ppswr e ppswor. Disegno di
Midzuno-Lahiri

In generale, la scelta del disegno campionario va legata all’efficienza della ri-
sultante stima del parametro della popolazione, e da questo punto di vista
non può essere disgiunta dal problema della scelta dello stimatore da utiliz-
zare. Questo aspetto sarà evidente nei Capitoli 14, 15, soprattutto quando si
studieranno disegni legati allo stimatore di Horvitz-Thompson. L’obiettivo di
questa sezione è invece molto più limitato, e riguarda l’introduzione di alcuni
disegni campionari che da un lato possono essere visti come immediate esten-
sioni dei disegni semplici con e senza ripetizioni (disegni ppswr e ppswor), e
dall’altro permettono di acquisire un minimo di familiarità con disegni di tipo
“non semplice”.

12.4.1 Disegno campionario ppswr

Supponiamo che per ciascuna unità i della popolazione IN sia assegnato, in
un qualche modo, un numero pi positivo che ne misura l’“importanza” (size).
Più grande pi, più “importante” l’unità i. Per convenzione, e senza perdita di
generalità, assumeremo che p1 + p2 + · · ·+ pN = 1.

Il disegno scr, introdotto nel Capitolo 3, si basa su un’idea elementare:
si effettuano n prove indipendenti, in ciascuna delle quali si seleziona con
uguale probabilità 1/N una delle unità della popolazione. L’idea-guida del
disegno ppswr (probability proportional to size with replacement) è un’imme-
diata estensione: si effettuano n prove indipendenti, in ciascuna delle quali
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si seleziona una delle unità della popolazione; in ciascuna prova l’unità i ha
probabilità pi di essere selezionata.

Lo spazio dei campioni S è l’insieme di tutte le n-ple ordinate (disposizioni
con ripetizione) (i1, i2, . . . , in) di n unità della popolazione. In simboli:

S = IN × IN × · · · × IN︸ ︷︷ ︸
n volte

= In
N .

Un campione s = (i1, i2, . . . , in) ha probabilità pari al prodotto delle
probabilità di selezione delle singole unità che lo compongono:

p(s) = pi1pi2 · · ·pin .

Com’è immediato constatare, il disegno scr corrisponde al caso speciale in
cui p1 = · · · = pN = 1

N .
Con ragionamenti simili a quelli descritti per il disegno semplice con ripe-

tizione si possono calcolare le probabilità di inclusione del primo e del secondo
ordine. Si ha:

πi = 1 − (1 − pi)n, i = 1, . . . , N ; (12.40)
πij = 1 − (1 − pi)n − (1 − pj)n + (1 − pi − pj)n, i �= j = 1, . . . , N. (12.41)

12.4.2 Disegno campionario ppswor

Il punto di partenza del disegno ppswor (probability proportional to size wi-
thout replacement) è sostanzialmente identico a quello del disegno ppswr. Per
ciascuna unità i della popolazione è assegnato un numero pi positivo che ne
misura l’importanza. Anche qui, senza perdita di generalità, si assume che
p1 + p2 + · · ·+ pN = 1.

Come visto nel Capitolo 3, il disegno ssr si basa sull’idea di effettuare
n prove (non indipendenti), in ciascuna delle quali si seleziona con uguale
probabilità una delle unità della popolazione; l’unità selezionata in una prova
non può essere selezionata in nessuna delle prove successive.

Una generalizzazione immediata, che porta a disegno ppswor, consiste nel-
l’effettuare n prove (non indipendenti), in ciascuna delle quali si seleziona una
delle unità della popolazione. In ciascuna prova l’unità i ha probabilità di
essere selezionata proporzionale a pi. Inoltre, l’unità selezionata in una prova
non può essere selezionata in nessuna delle prove successive.

Lo spazio dei campioni S è l’insieme di tutte le n-ple ordinate (i1, i2, . . . ,
in) di unità distinte della popolazione. In altre parole, S è l’insieme DN,n delle
disposizioni senza ripetizione di classe n delle unità della popolazione.

Un campione s = (i1, i2, . . . , in) ha probabilità di essere selezionato pari a

p(s) = pi1
pi2

1−pi1
· · · pin

1−pi1−···−pin−1
.

Ovviamente, il disegno ssr corrisponde al caso speciale in cui p1 = · · · =
pN = 1

N
.
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Il calcolo delle probabilità di inclusione del primo e del secondo ordine non
è agevole, e non vi è una semplice formula per esprimerle. Per il caso speciale
n = 2 si rinvia all’Esercizio 12.7.

12.4.3 Disegno di Midzuno-Lahiri

Anche il punto di partenza per la costruzione del disegno di Midzuno-Lahiri
è simile a quello dei disegni ppswr e ppswor. L’assunzione di base è che per
ciascuna unità i della popolazione IN sia dato un numero pi positivo che
ne misura l’“importanza” (size). Senza perdita di generalità si assumerà che
p1 + p2 + · · ·+ pN = 1.

Consideriamo uno schema di n “prove”, in ciascuna delle quali si seleziona
un’unità della popolazione, cos̀ı definito.

1. Nella prima prova si seleziona un’unità della popolazione, in modo che
l’unità i abbia probabilità pi di essere selezionata.

2. Dopo aver escluso dalla popolazione l’unità selezionata nella prima prova,
si seleziona dalla popolazione “residua” un campione ssr di n − 1 unità.
Formalmente, se i è selezionata nella prima prova, nelle successive n − 1
prove si seleziona un campione ssr di n − 1 unità da IN \ {i}.
Il disegno di Midzuno-Lahiri è ottenuto mediante la riduzione dei campioni

ottenuti dallo schema dianzi specificato, ovvero privando tali campioni dell’or-
dine di selezione delle unità (le ripetizioni sono ovviamente assenti). Lo spazio
dei campioni e le probabilità dei campioni sono ricavate nell’Esercizio 12.8.

Il calcolo dele probabilità di inclusione del primo e del secondo ordine è
piuttosto agevole. Per quanto riguarda quelle del primo ordine, si ha

πi = Pr

(
(i selezionata 1

◦
prova) ∪

(
i selezionata in una delle
altre n − 1 prove

))
= pi +

N∑
j=1

j �=i

Pr

(
(j selezionata 1

◦
prova) ∩

(
i selezionata nelle
altre n − 1 prove

))

= pi +
N∑

j=1

j �=i

pj Pr

(
i selezionata in un campione
ssr di n − 1 unit à di IN \ {j})

)

= pi +
N∑

j=1

j �=i

pj
n − 1
N − 1

=
N − n

N − 1
pi +

n − 1
N − 1

. (12.42)

Per quanto riguarda invece due unità distinte i, j, esse possono essere
selezionate solo in uno dei seguenti tre casi:
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– nella prima prova si seleziona i, e in una delle altre n−1 prove si seleziona j;
– nella prima prova si seleziona j, e in una delle altre n−1 prove si seleziona i;
– nella prima prova si seleziona una qualsiasi unità k �= i, j, e in due delle

altre n − 1 prove si selezionano i, j.

Ragionando come per le probabilità di inclusione del primo ordine, si può
pertanto scrivere:

πij = pi
n − 1
N − 1

+ pj
n − 1
N − 1

+
N∑

k=1
k �=i, j

pk
(n − 1)(n − 2)
(N − 1)(N − 2)

= pi
n − 1
N − 1

+ pj
n − 1
N − 1

+ (1 − pi − pj)
(n − 1)(n − 2)
(N − 1)(N − 2)

=
(N − n)(n − 1)
(N − 1)(N − 2)

(pi + pj) +
(n − 1)(n − 2)
(N − 1)(N − 2)

. (12.43)

Tra probabilità di inclusione del primo e del secondo ordine sussiste un’in-
teressante disuguaglianza. È infatti facile provare (Esercizio 12.9) che vale la
relazione:

πij � πiπj se i �= j. (12.44)

12.5 Interpretazione geometrica dei disegni campionari∗

I disegni campionari possiedono un’interessante interpretazione geometrica,
utile anche per meglio comprendere aspetti relativi alla loro implementazio-
ne. Come già detto in precedenza, la conoscenza del campione s equivale alla
conoscenza del vettore δ(s) le cui componenti sono gli indicatori di presenza-
assenza delle unità della popolazione nel campione s. Il vettore δ(s) è un
vettore a N componenti ciascuna delle quali è uguale a 1 o a 0. Geometrica-
mente, δ(s) è un vertice dell’ipercubo [0, 1]N N -dimensionale di lato unitario e
vertici opposti (0, 0, . . . , 0) e (1, 1, . . . , 1). Nella Fig. 12.1, tratta (con qualche
variante) da Tillé (2006), è rappresentato il caso N = 3.

A ciascun campione s ∈ S corrisponde un vertice δ(s) dell’ipercubo [0, 1]N .
Pertanto, selezionare un campione s equivale a selezionare un “valore” del
vettore δ(s), che a sua volta equivale a selezionare uno dei vertici dell’ipercubo
[0, 1]N . In simboli:

Si seleziona il campione s
se e solo se

si seleziona il vettore δ(s)
se e solo se

si seleziona il vertice dell′ipercubo [0, 1]N corrispondente a δ(s).
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Dato un disegno campionario (S, p(·)), i campioni s ∈ S di proba-
bilità positiva corrispondono ai vertici dell’ipercubo [0, 1]N effettivamente
selezionabili. L’ampiezza effettiva del campione

ν(s) =
N∑

i=1

δ(i; s)

è null’altro che il numero di componenti di δ(s) pari a 1. In particolare, se il
disegno è ad ampiezza effettiva costante n, i soli vertici di [0, 1]N selezionabili
sono quelli in cui n coordinate sono uguali a 1, e N − n sono uguali a 0.

Il vettore π delle probabilità di inclusione del primo ordine

π =
∑
s∈S

δ(s) p(s)

è una combinazione lineare convessa dei vertici dell’ipercubo [0, 1]N corri-
spondenti ai campioni s ∈ S. Ogni vertice ha un peso pari alla probabilità del
campione a cui corrisponde.

Esempio 12.9. Si consideri una popolazione di N = 3 unità, I3 = {1, 2, 3},
e si supponga che i campioni siano

s1 = {1, 2}, s2 = {1, 3}, s3 = {2, 3} (12.45)

con probabilità

p(s1) = 0.2, p(s2) = 0.3, p(s3) = 0.5.

La rappresentazione geometrica di questo disegno campionario è in Fig. 12.1.
Il vettore delle probabilità di inclusione del primo ordine è uguale a

π =

⎡⎣ 0.5
0.7
0.8

⎤⎦
ed è un punto del triangolo di vertici⎡⎣ 1

1
0

⎤⎦ ,

⎡⎣ 1
0
1

⎤⎦ ,

⎡⎣ 0
1
1

⎤⎦ . ��

12.6 Quanto è “casuale” un campione casuale? Entropia
di disegni campionari∗

La procedura di selezione del campione adottata in tutta la presente trattazio-
ne è di tipo probabilistico, nel senso che il campione è selezionato in base ad
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Fig. 12.1 Interpretazione geometrica di un disegno campionario

una legge di probabilità (il disegno campionario) nota a priori perché decisa
dallo statistico. In questo senso si parla di “campione casuale”. In connessione
con questa nozione, sorge spontanea una domanda: “È possibile misurare il
grado di casualità di un campione?”

La nozione di casualità non è propria dello specifico campione osservato,
quanto piuttosto della procedura con cui esso è scelto, ossia della legge di
probabilità in base alla quale è stato selezionato. Pertanto, quel che ha effet-
tivamente senso misurare è il “grado di casualità” di un disegno campionario.
Intuitivamente, un disegno campionario è tanto più “casuale” quanto più si è
incerti sul campione effettivamente selezionato. Pertanto, in termini equiva-
lenti, ma di più facile intelligibilità, l’obiettivo è quello di misurare il “grado
di incertezza” derivante dalla selezione di un campione mediante un disegno
campionario.

La più importante misura di incertezza è l’entropia, definita come

H = −
∑
s∈S

p(s) logp(s) = −E[logp(s)]. (12.46)

Se p(s) = 0, si adotterà d’ora in poi la convenzione 0 ×∞ = 0.
È facile vedere che H assume solo valori non negativi (H � 0), e che H = 0

se e solo se vi è un unico campione s di probabilità 1. Un disegno di questo tipo
è detto ragionato (purposive). Esso è totalmente privo di incertezza, in quanto
è perfettamente noto a priori quale sarà il campione selezionato. Lievemente
più complicato è determinare il valore massimo di H . Fissato lo spazio S
dei campioni di unità, e detto |S| il numero di campioni in S, è comunque
facile provare (come conseguenza dell’Esercizio 12.14) che l’entropia H assume
valore massimo se tutti i campioni in S hanno la stessa probabilità di essere
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selezionati: P (s) = 1/|S| per ciascun s ∈ S. Sul piano intuitivo, è questo
il caso in cui si è massimamente incerti sul campione che sarà selezionato.
In particolare, se l’insieme S dei campioni selezionabili è la famiglia CN,n di
tutti i sottoinsiemi di n unità distinte delle N che compongono la popolazione
(famiglia delle combinazioni senza ripetizione di classe n), allora il disegno
campionario di massima entropia è quello semplice senza ripetizione.

L’incertezza sul risultato della selezione di un campione mediante un di-
segno campionario può anche essere interpretata in termini di “ricchezza” del
disegno campionario. Un disegno campionario (S, p(·)), in altri termini, è tan-
to più ricco quanto più “ampio” è lo spazio dei campioni (di unità) S, e quanto
più tali campioni sono selezionabili con probabilità tra loro “vicine”.

Esempio 12.10. Si consideri una popolazione finita I3 = {1, 2, 3} composta
da N = 3 unità, e siano (S1, p1(·)), (S2, p2(·)) due disegni campionari definiti
come:

S1 = S2 = {s1, s2, s3}; s1 = {1, 2}, s2 = {1, 3}, s3 = {2, 3}
p1(s1) = 0.8, p1(s2) = 0.1, p1(s3) = 0.1;
p2(s1) = 0.4, p2(s2) = 0.3, p2(s3) = 0.3.

Il disegno (S1, p1(·)) ha entropia

H1 = −(0.8 log 0.8 + 0.1 log0.1 + 0.1 log0.1) = 0.636

mentre il disegno (S2, p2(·)) ha entropia

H2 = −(0.4 log 0.4 + 0.3 log0.3 + 0.3 log 0.3) = 1.088.

Il fatto che H2 sia più grande di H1 non è sorprendente, in quanto è intuiti-
vamente evidente che l’incertezza relativa al campione selezionato è maggiore
per il disegno (S2, p2(·)) che per (S1, p1(·)). ��

A parità di caratteristiche, quali l’insieme S dei campioni selezionabili, le
probabilità di inclusione del primo e del secondo ordine, la facilità di imple-
mentazione mediante algoritmi numericamente efficienti, etc., è in generale
preferibile usare un disegno campionario con elevata entropia. Per fornire un
argomento intuitivo a supporto di quest’affermazione, consideriamo il seguente
esempio.

Esempio 12.11. Si consideri una popolazione finita I4 = {1, 2, 3, 4} di
N = 4 unità, di cui indichiamo con y1, y2, y3, y4 le modalità etichettate.
Supponiamo di dover stimare la media μy = (y1 + y2 + y3 + y4)/4 della popo-
lazione. In assenza di informazioni a priori, una scelta molto naturale consiste
nel selezionare un campione mediante un disegno (semplice senza ripetizione
di numerosità n = 2) (S1, p1(·)), definito da:

S1 = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}};
p1({1, 2}) = p1({1, 3}) = · · · = p1({3, 4}) = 1

6
.

Tutte le unità hanno probabilità di inclusione del primo ordine pari a 1/2.
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In questo caso la media campionaria ys =
∑

i∈s yi/2 è uno stimatore cor-
retto della media della popolazione. Per esaminare più da vicino il comporta-
mento dello stimatore ys, consideriamo la Tabella 12.1, in cui sono riportati i
valori di ys corrispondenti ai diversi campioni, e le relative probabilità.

Tabella 12.1 Costruzione dello stimatore ys per il disegno (S1, p1(·))

Campione Probabilità ys

{1, 2} 1/6 y1+y2
2

{1, 3} 1/6 y1+y3
2

{1, 4} 1/6 y1+y4
2

{2, 3} 1/6 y2+y3
2

{2, 4} 1/6 y2+y4
2

{3, 4} 1/6 y3+y4
2

Supponiamo ora di disporre a priori di un’informazione aggiuntiva, ovve-
ro che le unità 1, 2 hanno valori y molto simili tra loro, e che le unità 3, 4
hanno anch’esse valori y molto simili, anche se assai diversi dai precedenti.
Per semplificare un po’, si può ammettere che y1 e y2 siano uguali e “piccoli”,
mentre y3 e y4 siano uguali e “grandi”. Mantenendo una numerosità campio-
naria n = 2, conviene in questo caso limitarsi ai soli campioni che contengono
una tra le unità 1, 2 e una tra le unità 3, 4. Un disegno di campionamento
ragionevole per questa situazione è quello di seguito riportato, indicato con
(S2, p2(·)).

S2 = {{1, 3}, {1, 4}, {2, 3}, {2, 4}};
p2({1, 3}) = p2({1, 4}) = p2({2, 3} = p2({2, 4}) = 1

4 .

Anche questo disegno ha ampiezza effettiva costante n = 2, e dà a tutte le
unità della popolazione probabilità di inclusione 1/2. Anche in questo caso la
media campionaria è uno stimatore corretto della media della popolazione. Il
suo comportamento è riassunto nella Tabella 12.2.

È facile verificare che il primo disegno ha entropia H1 = 1.79, mentre il
secondo disegno ha entropia H2 = 1.49.

Se l’informazione a priori y1 = y2 “piccoli”, y3 = y4 “grandi” è corretta,
e se si stima la media della popolazione con la media campionaria, il disegno
(S2, p2(·)) fornisce risultati migliori di (S1, p1(·)), in quanto, come indicato
nella successiva Tabella 12.3, fornisce sempre il “vero valore” di μy.

La maggior efficienza di stima, in questo caso, è quindi ottenuta usando un
disegno campionario (S2, p2(·)) di entropia più piccola di quella del disegno
(S1, p1(·)).
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Tabella 12.2 Costruzione dello stimatore ys per il disegno (S2, p2(·))

Campione Probabilità ys

{1, 3} 1/4 y1+y3
2

{1, 4} 1/4 y1+y4
2

{2, 3} 1/4 y2+y3
2

{2, 4} 1/4 y2+y4
2

Tabella 12.3 Caratteristiche dello stimatore ys per i disegni (S1, p1(·)), (S2, p2(·))
nel caso y1 = y2 “piccoli”, y3 = y4 “grandi”

Disegno (S1, p1(·)) Disegno (S2, p2(·))
Campione Probabilità Stima ys Campione Probabilità Stima ys

{1, 2} 1/6 Sottostima

{1, 3} 1/6 OK {1, 3} 1/4 OK

{1, 4} 1/6 OK {1, 4} 1/4 OK

{2, 3} 1/6 OK {2, 3} 1/4 OK

{2, 4} 1/6 OK {2, 4} 1/4 OK

{3, 4} 1/6 Sovrastima

Supponiamo ora che l’informazione a priori y1 = y2 “piccoli”, y3 = y4

“grandi”, sulla base della quale si è costruito il disegno (S2, p2(·)), sia scor-
retta. Cosa succede in questo caso? Per essere concreti, consideriamo ancora i
due disegni di campionamento (S1, p1(·)), (S2, p2(·)), ma supponiamo adesso
che y1 = y3 siano “piccoli”, e che y2 = y4 siano “grandi”. Le caratteristiche
della media campionaria ys sono riassunte nella successiva Tabella 12.4.

Tabella 12.4 Caratteristiche dello stimatore ys per i disegni (S1, p1(·)), (S2, p2(·))
nel caso y1 = y3 “piccoli”, y2 = y4 “grandi”

Disegno (S1, p1(·)) Disegno (S2, p2(·))
Campione Probabilità Stima ys Campione Probabilità Stima ys

{1, 2} 1/6 OK

{1, 3} 1/6 Sottostima {1, 3} 1/4 Sottostima

{1, 4} 1/6 OK {1, 4} 1/4 OK

{2, 3} 1/6 OK {2, 3} 1/4 OK

{2, 4} 1/6 Sovrastima {2, 4} 1/4 Sovrastima

{3, 4} 1/6 OK
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Se si usa il disegno (S1, p1(·)) si ha con probabilità 2/3 una stima esatta-
mente uguale alla media della popolazione, e con probabilità 1/3 si commette
un (serio) errore di stima (sottostima o sovrastima). Se invece si usa il disegno
(S2, p2(·)) si ha con probabilità 1/2 una stima esattamente uguale alla media
della popolazione, e con probabilità 1/2 si commette un (serio) errore di stima
(sottostima o sovrastima). Quindi, se da un lato il disegno (S2, p2(·)) fornisce
risultati migliori di (S1, p1(·)) quando è corretta l’informazione a priori usata
per la sua costruzione, dall’altro fornisce risultati peggiori quando tale infor-
mazione non trova riscontro nella realtà. La ragione per cui ciò accade è che
il disegno (S1, p1(·)) è più “ricco” di (S2, p2(·)), in quanto il relativo spazio
dei campioni comprende anche i campioni {1, 2}, {3, 4}, e con probabilità di
selezione non trascurabili. La presenza di tali campioni, e la corrispondente
maggior ricchezza dello spazio dei campioni (di unità), in un certo senso, fa in
modo che le caratteristiche dello stimatore ys non siano troppo negativamente
influenzate da casi in cui le informazioni a priori sulla popolazione sono scor-
rette, e molto lontane dalla realtà. La maggior entropia del disegno (S1, p1(·))
è quindi una forma di “protezione” delle proprietà dello stimatore ys rispetto
a popolazioni “estreme” (molto divergenti dalle informazioni a priori di cui si
dispone), garantendo allo stimatore stesso una certa robustezza. D’altra parte
tale robustezza è ottenuta al prezzo di una minore efficienza nei casi in cui le
informazioni a priori sulla popolazione risultano corrette. ��

Quel che emerge dall’Esempio 12.11 porta ad alcune considerazioni di ca-
rattere generale. Supponiamo di disporre di informazioni a priori sulla popola-
zione di interesse. Esattamente come nell’Es. 12.11, tali informazioni possono
essere utilizzate per la costruzione di un disegno campionario. In genere, tale
disegno è caratterizzato da una bassa entropia, in quanto dà probabilità di
selezione alta ai campioni coerenti con l’informazione stessa, e probabilità di
selezione molto piccola ai restanti campioni. Se l’informazione a priori utiliz-
zata si rivela corretta, si avrà un’alta efficienza di stima. D’altra parte, nel caso
in cui essa si riveli scorretta, si è esposti a gravi errori di stima. La maggior
efficienza è quindi ottenuta a prezzo di una scarsa robustezza.

Un disegno campionario ad alta entropia è invece un disegno “ricco di cam-
pioni”, nel senso che vi saranno “molti” campioni con probabilità di selezione
“vicine” tra loro e abbastanza alte, e “pochi” campioni con probabilità di es-
sere selezionati “piccola” (compatibilmente con eventuali vincoli riguardanti
grandezze quali le probabilità di inclusione del primo e/o del secondo ordine, o
altro ancora). A causa di questa sua caratteristica, un disegno ad alta entropia
garantisce una forma di robustezza di stima nel caso di popolazione “lontana”
dalle informazioni a priori di cui si dispone. Da questo punto di vista, un’alta
entropia del disegno campionario è una caratteristica positiva, desiderabile.
Vi è ovviamente il rovescio della medaglia: la maggior robustezza è ottenuta
al prezzo di uno sfruttamento meno efficiente delle informazioni a priori sulla
popolazione di interesse.
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12.7 Calcolo approssimato delle probabilità di inclusione
del secondo ordine

In molti disegni campionari di uso concreto, specialmente in quelli che verran-
no esposti nel Capitolo 15, il calcolo delle probabilità di inclusione può essere
estremamente complicato. In linea di principio, a meno di casi speciali, il cal-
colo delle probabilità di inclusione richiede l’enumerazione dei campioni dello
spazio S, e questo è quasi sempre troppo oneroso sul piano computazionale.
In linea di principio, questa difficoltà sussiste per il calcolo delle probabilità
di inclusione sia del primo che del secondo ordine. Tuttavia, per ragioni che
saranno chiare nel Capitolo 15, questo problema riguarda soprattutto il cal-
colo di quelle del secondo ordine. Per questa ragione è di notevole interesse
cercare una qualche forma approssimata per le πij.

La più semplice tra le varie approssimazioni per πij proposte in lettera-
tura è la seguente (introdotta in cfr. Hájek (1981) per alcuni speciali disegni
campionari)

πij ≈ πi πj

(
1 − (1 − πi) (1 − πj)

d

)
(12.47)

dove si è posto

d =
N∑

i=1

πi (1 − πi).

L’ipotesi di base è che il valore di d sia “grande”.
Il pregio maggiore della (12.47) è indubbiamente la sua semplicità. La

sua accuratezza, però, non è sempre delle migliori. In generale, l’approssi-
mazione (12.47) fornisce risultati tanto migliori quanto più elevata è l’en-
tropia del disegno campionario: più alta è l’entropia, migliore è la qualità
dell’approssimazione.

Esempio 12.12. Se il disegno campionario è semplice senza ripetizione si ha
πi = n

N , πij = n (n−1)
N (N−1) , e

d =
N∑

i=1

n

N

(
1 − n

N

)
= n

(
1 − n

N

)
.

Si può quindi scrivere

πi πj

(
1 − (1 − πi) (1 − πj)

d

)
=

n2

N2

(
1 − 1 − n

N

n

)
=

n

N

{
n

N

(
1 − 1

n
+

1
N

)}
=

n

N

{
n − 1
N − 1

+
1
N

(
n

N
− n − 1

N − 1

)}
=

n (n − 1)
N (N − 1)

+
1
N

n

N

N − n

N (N − 1)
.
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La quantità

err =
1
N

n

N

N − n

N (N − 1)

è l’errore di approssimazione. è facile vedere che valgono le due disuguaglianze

0 < err <
1

N2

per cui in questo caso l’approssimazione (12.47) è accurata. ��

Una delle fonti di inaccuratezza dell’approssimazione (12.47) è che in generale non
è detto che soddisfi la relazione, valida per disegni ad ampiezza effettiva costante n,

N∑
j=1

j �=i

πij = (n − 1)πi per ciascuna unit à i = 1, . . . , N. (12.48)

Essendo
πij = E[δ(i; s) δ(i; s)] = C(δ(i; s), δ(i; s)) + πi πj

cercare un’approssimazione per πij equivale ovviamente a cercare un’approssimazio-
ne per la covarianza

Δij = C(δ(i; s), δ(i; s)) (12.49)

la quale, se il disegno è ad ampiezza effettiva costante n, deve soddisfare la relazione
(equivalente alla (12.48))

N∑
j=1

j �=i

Δij = −πi(1 − πi) per ciascuna unit à i = 1, . . . , N. (12.50)

Un’idea semplice ma efficace (cfr. Hájek (1981), pp. 24–26) consiste nell’appros-
simare Δij con un prodotto:

Δij ≈ Δa
ij = −ci cj (12.51)

dove c1, . . . , cN sono numeri positivi che soddisfano le (12.50). D’ora in avanti,
porremo

C =

N∑
i=1

ci; d =

N∑
i=1

πi(1− πi)

e supporremo (per ragioni che saranno chiare tra poco) che sia d � 3/4.
Per soddisfare le (12.50), i numeri ci devono essere tali che

−πi(1 − πi) = ci

N∑
j=1

j �=i

cj = ci(C − ci)
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ossia

c2
i − C ci + πi(1 − πi) = 0; per ciascuna unit à i = 1, . . . , N. (12.52)

Le (12.52) sono equazioni di secondo grado, ciascuna delle quali ha le due soluzioni

ci =
C

2
±
√

C2

4
− πi(1 − πi).

La soluzione C/2+
√

C2/4 − πi(1 − πi) è però impossibile (Esercizio 12.16), per cui
i numeri ci sono tali che

ci =
C

2
−
√

C2

4
− πi(1 − πi) per ciascuna unit à i = 1, . . . , N. (12.53)

Per determinare completamente i numeri ci bisogna calcolare C. Sommando le
(12.53) rispetto a i, si ha

C =
CN

2
−

N∑
i=1

√
C2

4
− πi(1 − πi)

che equivale a

C − 2

N − 2

N∑
i=1

√
C2

4
− πi(1 − πi) = 0. (12.54)

L’equazione (12.54) non può essere risolta esplicitamente. è necessario invece
ricorrere ad un metodo numerico. Il più semplice è il metodo delle bisezioni, di
seguito descritto.

Per l’implementazione del metodo delle bisezioni è necessario partire da due numeri
Cs, Cd (facilmente determinabili per tentativi) tali che

Cs − 2

N − 2

N∑
i=1

√
C2

s

4
− πi(1 − πi) < 0, Cd − 2

N − 2

N∑
i=1

√
C2

d

4
− πi(1 − πi) > 0.

− Passo 0. Inizializzazione. Porre sx = Cs, dx = Cd, e fissare una so-

glia δ > 0 ‘‘piccola’’. Andare al Passo 1.

− Passo 1. Se |dx − sx| < δ andare al Passo 3. Altrimenti, porre C =
(sx + dx)/2 e andare al Passo 2.

− Passo 2. Calcolare

C − 2

N − 2

N∑
i=1

√
C2

4
− πi(1 − πi).

Se tale quantità è maggiore di 0, porre dx = C e andare al Passo 1.

Se invece è minore di 0, porre sx = C e andare al Passo 1.

− Passo 3. Arresto. Prendere il valore C = (sx + dx)/2 come soluzione

dell’equazione (12.54).
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Qualunque sia l’algoritmo numerico (bisezioni o altro) usato per risolvere l’equa-
zione (12.54), esso permette in ogni caso di determinare i numeri c1, . . . , cN i quali,
tramite la (12.51), consentono di approssimare le probabiltà di inclusione πij con

πij ≈ πa
ij = πi πj − ci cj . (12.55)

Si può anche dimostrare (cfr. Hájek (1981)) che per d “grande” l’approssimazione
(12.55) si riduce alla forma semplificata (12.47). Inoltre, anche in questo caso la
qualità dell’approssimazione è legata all’entropia del disegno campionario, nel senso
che per disegni campionari a bassa entropia l’approssimazione (12.55) darà risultati
cattivi, mentre per disegni ad alta entropia fornirà risultati buoni.

Esempio 12.13. Se il disegno campionario è semplice senza ripetizione si ha, come
già visto, πi = n

N
e πij = n (n−1)

N (N−1)
. In questo caso è evidente che c1 = · · · = cN = c,

per cui è anche C = N c. L’equazione (12.52) assume la forma

c2(N − 1) =
n

N

(
1− n

N

)
da cui si desume che

ci cj = c2 =
1

N − 1

n

N

(
1 − n

N

)
.

Si ha pertanto:

πa
ij = πi πj − ci cj =

( n

N

)2 − 1

N − 1

n

N

(
1 − n

N

)
=

n (n − 1)

N (N − 1)

ossia l’approssimazione (12.55) fornisce il valore esatto delle probabilità di inclusione
del secondo ordine. ��

Per altri esempi che coinvolgono la (12.55) si rinvia a Hájek (1981) (pp. 90–91)
e Bondesson e altri (2006).

12.8 Implementazione di disegni campionari: aspetti
generali

Un aspetto molto importante legato all’uso dei disegni campionari è la loro
implementazione, ovvero l’effettiva selezione di un campione in base a quel
disegno. Affinché un disegno campionario possa realmente essere utilizzato è
necessario disporre di un qualche schema, di un qualche algoritmo numeri-
camente efficiente per la sua implementazione. Come visto nel Capitolo 2, il
metodo in linea di principio più semplice per implementare un disegno campio-
nario è quello dell’inversione della funzione di ripartizione. Purtroppo, come
già scritto ed esemplificato, esso non è quasi mai numericamente efficiente, in
quanto si basa sull’enumerazione dei campioni, operazione in genere talmente
lunga e onerosa da essere praticamente irrealizzabile.

Qui di seguito vengono brevemente esaminate alcune tipologie di algo-
ritmi (schemi) per l’implementazione di disegni campionari. Per semplicità
ci si limiterà esclusivamente a disegni non ordinati e senza ripetizioni. Per
una trattazione completa, e decisamente brillante, si rinvia al volume di Tillé
(2006).
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12.8.1 Schemi basati su estrazioni successive

Questo tipo di schemi si applica esclusivamente a disegni ad ampiezza costante
n, e si basa su n “prove” in ciascuna delle quali si “estrae” un’unità della
popolazione. Se (S, p(·)) è un disegno ad ampiezza effettiva costante n lo
schema più semplice di estrazioni successive è di seguito descritto. Indicheremo
con d

d =

⎡⎢⎢⎣
d1

d2

· · ·
dN

⎤⎥⎥⎦ (12.56)

un vettore a N componenti in cui ciascun elemento di è uguale o a 0, o a 1.
Inoltre, indicheremo con 0 un vettore a N componenti tutte uguali a 0.

− Passo 1. Inizializzazione. Porre d = 0, t = 1. Andare al Pas-
so 2.

− Passo 2. Se t > n andare al Passo 4. Altrimenti, per ciascuna
unità i della popolazione, calcolare

pi =

⎧⎨⎩
0 se di = 1

1
n−t+1

Pr

(
δ(i; s) = 1 |δ(k; s) = 1 per tutte le unità k

tali che dk
= 1
)

e porre P0 = 0, Pi = p1 + p2 + · · · + pi per i = 1, 2, . . . , N. Andare
al Passo 3.

− Passo 3. Generare una variabile aleatoria U con distribuzione
uniforme in [0, 1]. Se Pi−1 � U < Pi selezionare l’unità i e por-
re di = 1. Incrementare t di 1. Andare al Passo 2.

− Passo 4. Arresto. Il campione s è formato dalle n unità i tali
che di = 1.

Ad esempio, nel disegno semplice senza ripetizione (ssr) è facile verificare
che pi è uguale a (n− t + 1)/(N − t + 1) se di = 0, cos̀ı che l’algoritmo sopra
descritto è semplicissimo da implementare.

Lo schema basato su estrazioni successive non è necessariamente nume-
ricamente efficiente, in quanto il calcolo delle probabilità pi può richiedere
l’enumerazione dei campioni dell’insieme S.

Lo schema di estrazioni successive può essere facilmente esteso al caso di
disegni ordinati e/o con ripetizioni, ferma restando un’ampiezza campionaria
costante. Sono ad esempio di questo tipo gli schemi brevemente delineati per
implementare i disegni ppswor, ppswr, e di Midzuno-Lahiri.

12.8.2 Schemi basati su algoritmi sequenziali

L’idea di base degli schemi di tipo sequenziale è quella di effettuare una “pro-
va” per ciascuna unità della popolazione. Il risultato di tale prova può essere
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o l’inclusione dell’unità nel campione, o la sua non inclusione. Al solito, per
ragioni di semplicità ci limiteremo esclusivamente a disegni campionari non
ordinati e senza ripetizioni.

Dato il disegno campionario (S, p(· · ·)), consideriamo le N variabili in-
dicatrici δ(1; s), . . ., δ(N ; s). Consideriamo inoltre N quantità d1, . . ., dN ,
ognuna delle quali può essere uguale a 0 oppure a 1. In simboli:

d1 = 0, 1; d2 = 0, 1, . . . , dN = 0, 1.

Infine, per ogni unità i (= 1, . . . , N) e per ogni possibile scelta dei valori di
d1, . . . , dN poniamo

Si(d1, . . . , di) = Insieme dei campioni s ∈ S tali che δ(1; s)
= d1, . . . δ(i; s) = di.

Ad es., S1(1) è l’insieme dei campioni s che contengono l’unità 1, S1(0) è l’in-
sieme dei campioni s che non contengono l’unità 1, S3(1, 0, 1) è l’insieme dei
campioni s che contengono l’unità 1, non contengono l’unità 2, e contengono
l’unità 3.

Poniamo infine

q1(d1) = Pr(δ(1; s) = d1) =
{

π1 se d1 = 1
1 − π1 se d1 = 0

e in generale, per ciascuna delle altre unità i = 2, . . . , N ,

qi(di) = Pr(δ(i; s) = di |δ(1; s) = d1, . . . , δ(i − 1; s) = di−1)

=
{

Pr(δ(i; s) = 1 |δ(1; s) = d1, . . . , δ(i − 1; s) = di−1) se di = 1
Pr(δ(i; s) = 0 |δ(1; s) = d1, . . . , δ(i − 1; s) = di−1) se di = 0 .

Naturalmente, è qi(0) = 1−qi(1). La probabilità condizionata qi(1) può essere
interpretata come probabilità di inclusione dell’untà i condizionata ai valori
di δ(1 , s), . . ., δ(i − 1 , s), ossia all’aver incluso nel campione le unità dalla 1
alla i − 1 tali che d = 1, e al non aver incluso nel campione le unità dalla 1
alla i − 1 tali che d = 0. In termini espliciti, qi(di) è pari a

qi(di) =

∑
s∈Si(d1, ..., di)

p(s)∑
s∈Si−1(d1, ..., di−1) p(s)

.

L’algoritmo sequenziale di selezione del campione, descritto qui di seguito,
si basa su un principio semplicissimo. Si “mettono in fila” le unità, dalla 1
alla N . L’unità 1 è selezionata con probabilità pari alla propria probabilità di
inclusione, l’unità 2 è selezionata con probabilità pari alla propria probabilità
di inclusione condizionata all’aver incluso o meno l’unità 1 nel campione, e
cos̀ı via.

− Passo 1. Inizializzazione. Porre i = 1, d1 = 0, . . ., dN = 0.
Andare al Passo 2.
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− Passo 2. Se i > N andare al Passo 4. Altrimenti, calcolare
qi(1), qi(0), e andare al Passo 3.

− Passo 3. Generare una variabile aleatoria U con distribuzione
uniforme in [0, 1]. Se U � qi(1), porre di = 1; altrimenti porre
di = 0. Incrementare i di 1. Andare al Passo 2.

− Passo 4. Arresto. Il campione s selezionato è formato dalle
unità i tali che di = 1.

La validità dell’algoritmo sequenziale è semplicissima da provare (Eserci-
zio 12.10), basta tener conto della relazione

p(s) = q1(d1) q2(d2) · · · qN(dN). (12.57)

L’efficienza computazionale dell’algoritmo di tipo sequenziale dipende dal-
la facilità o difficoltà di calcolo delle probabilià condizionate qi(di). Se ta-
le calcolo richiede l’enumerazione dei campioni, l’efficienza computazionale è
ovviamente bassa.

A titolo di esempio osserviamo infine che nel caso del disegno semplice con
ripetizione si ha

qi(di) =

{
n−∑i−1

j=1 dj

N−i+1
se di = 1

1 − n−∑i−1
j=1 dj

N−i+1 se di = 0
, i = 1, 2, . . . , N.

12.8.3 Schemi basati su algoritmi accettazione/rifiuto

Gli schemi di tipo accettazione/rifiuto, spesso usati per implementare dise-
gni campionari, si basano su un’idea molto semplice: selezionare in maniera
“indiretta” un campione da un disegno (S1, p1(·)), nel seguente modo.

− Si genera un campione s da un dato disegno campionario (S2, p2(·)), da
cui è “facile” selezionare campioni.

− Se il campione s soddisfa un’opportuna condizione, allora viene “accetta-
to” come campione selezionato dal disegno (S1, p1(·)). Naturalmente, la
condizione che il campione s deve soddisfare deve essere tale da garanti-
re che i campioni accettati possano essere considerati come selezionati da
(S2, p2(·)).
Nel seguito vengono brevemente esposti due dei principali algoritmi di

accettazione/rifiuto. Il primo di essi è l’algoritmo di accettazione condiziona-
ta. Supponiamo di voler selezionare un campione dal disegno (S1, p1(·)), e
supponiamo che il disegno (S2, p2(·)) sia tale che S1 ⊆ S2, e che

p2(s |s ∈ S1) = p2(s) per ciascun campione s ∈ S1. (12.58)

Chiaramente, la probabilità condizionata p2(s |s ∈ S1) che appare in (12.58)
si scrive come

p2(s |s ∈ S1) =
p2(s)∑

s′∈S1
p2(s′)

.
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L’algoritmodi accettazione condizionata, di seguito descritto, è molto semplice
e intuitivo.

− Passo 1. Inizializzazione. Generare un campione s da (S2, p2(·)).
Andare al Passo 2.

− Passo 2. Se s ∈ S1, andare al Passo 1. Altrimenti, andare al Pas-
so 3.

− Passo 3. Arresto. Accettare il campione s come selezionato dal
disegno (S1, p1(·)).
L’algoritmo di accettazione condizionata seleziona ovviamente campioni

dalla distribuzione condizionata p2(s |s ∈ S1). La sua validità poggia sulla
relazione (12.58).

Si considerino, a titolo di esempio, i disegni campionari semplici senza e
con ripetizioni (rispettivamente ssr e scr), ambedue di numerosità n. Chiara-
mente, il disegno ssr è null’altro che la riduzione del disegno (S1, p1(·)), in cui
S1 è l’insieme delle disposizioni con ripetizione (n-ple ordinate) di n unità della
popolazione, e ogni disposizione ha probabilità 1/{N (N −1) · · · (N −n+1)}.
Per selezionare un campione mediante disegno ssr è sufficiente selezionare un
campione da (S1, p1(·)), e privare tale campione dell’ordine. Il disegno scr
svolge qui il ruolo di (S2, p2(·)). Chiaramente, si ha S1 ⊂ S2. È facile veri-
ficare (Esercizio 12.11) che vale la relazione (12.58), per cui per generare un
campione ssr basta generare un campione scr e verificare che le unità che lo
compongono siano tutte differenti. Come estensione immediata, si può verifi-
care che per selezionare un campione con disegno ppswor è sufficiente generare
un campione con disegno ppswr, e verificare che le unità che lo compongono
siano tutte distinte.

L’algoritmo di accettazione condizionata è tanto più efficiente quanto più
alta è la probabilità che mediante (S2, p2(·)) si generi un campione apparte-
nente a S1. Tale probabilità definisce il tasso di accettazione (acceptance rate)
dell’algoritmo, ed è pari a:

AR =
∑
s∈S1

p2(s). (12.59)

Nell’esempio del disegno ssr sopra considerato è immediato constatare che

AR =
N (N − 1) · · · (N − n + 1)

Nn
=
(

1 − 1
N

) (
1 − 2

N

)
· · ·
(

1 − n − 1
N

)
.

Un altro algoritmo di tipo accettazione/rifiuto spesso usato è l’algoritmo
di rigetto. Supponiamo di voler selezionare un campione dal disegno (S, p1(·)),
e supponiamo di disporre di un disegno (S, p2(·)) tale che vi è una costante
B nota per cui si ha

p1(s) � p2(s) per ciascun campione s ∈ S. (12.60)

L’algoritmo di rigetto è descritto qui di seguito.
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− Passo 1. Inizializzazione. Generare un campione s da (S, p2(·)).
Andare al Passo 2.

− Passo 2. Generare una variabile aleatoria U con distribuzione
uniforme in [0, 1]. Se U � p1(s)

B p2(s)
andare al Passo 3. Altrimen-

ti, andare al Passo 1.
− Passo 3. Arresto. Accettare il campione s come selezionato dal

disegno (S, p1(·)).
Ovviamente, è B > 1. Il numero di volte in cui è necessario generare

campioni al Passo 1 per arrivare ad un’accettazione al Passo 2 è il numero di
cicli dell’algoritmo. La validità del metodo di rigetto è provata qui di seguito.

La probabilità di accettare un dato campione s al Passo 1 è pari a:

Pr(Accettazione |Il campione generato è s) = Pr

(
U � p1(s)

B p2(s)

)
=

p1(s)

B p2(s)
(12.61)

per cui la probabilità di generare un dato campione s e immediatamente accettarlo
in un ciclo è uguale a

Pr(Generare il campione s immediatamente accettato)

= Pr(Generare il campione s)Pr(Accettazione |Il campione generato è s)

= p2(s)
p1(s)

B p2(s)

=
p1(s)

B
(12.62)

mentre la probabilità di generare un campione qualsiasi e di accettarlo in un ciclo è
pari a

Pr(Generare un campione immediatamente accettato)

=
∑
s∈S

Pr(Generare il campione s immediatamente accettato)

=
∑
s∈S

p1(s)

B

=
1

B
. (12.63)

Come immediata estensione, è facile vedere che la probabilità che siano necessari
n cicli per generare e accettare un dato campione s è

Pr(Necessari n cicli per generare e accettare il campione s)

= Pr(Rifiuti nei primi n − 1 cicli)

× Pr(Al ciclo n − mo si genera il campione s immediatamente accettato)

=

(
1 − 1

B

)n−1
p1(s)

B
. (12.64)
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Come conseguenza di quanto scritto fino ad ora, la probabilità di generare con lo
schema di rigetto è data da

Pr(Si genera il campione s)

=

∞∑
n=1

Pr(Necessari n cicli per generare e accettare il campione s)

=
∞∑

n=1

(
1 − 1

B

)n−1
p1(s)

B

= p1(s) (12.65)

ossia il campione s può effettivamente essere considerato come selezionato tramite
il disegno (S, p1(·)).

La probabilità di generare e accettare un campione in un ciclo è una misu-
ra molto importante dell’efficienza numerica del metodo di rigetto, poiché quanto
più alta è tale probabilità, tanto più rapido è l’algoritmo a generare un campione
con le caratteristiche desiderate. In genere il termine p1(s)/(B p2(s)) è detto tasso
di accettazione condizionato (conditional acceptance rate) ed è indicato con il sim-
bolo CAR(s), mentre 1/B è il tasso di accettazione non condizionato (conditional
acceptance rate), ed è indicato con il simbolo AR.

Una caratteristica assai importante dello schema di rigetto, e che sarà util-
mente sfruttata nel Capitolo 15 per selezionare campioni mediante un disegno
di Poisson condizionato, è che per essere messo in pratica non è necessa-
rio conoscere esattamente le probabilità p1(s). Ad esempio, potrebbe essere
p1(s) = c q(s), con c costante non necessariamente nota esplicitamente, e con
le q(s) positive ma non necessariamente aventi somma 1. In questo caso (Eser-
cizio 12.13) l’algoritmo di rigetto si applica esattamente come nei Passi 1-3,
purché sia nota una costante B tale che q(s) � B p2(s), e purché al Passo 2
l’accettazione di s avvenga se U � q(s)/(B p2(s)).

Esercizi

12.1. Consideriamo una popolazione finita di ampiezza N = 4, I4 = {1, 2, 3, 4}.
Supponiamo poi che lo spazio dei campioni sia formato dai seguenti quattro
campioni:

s1 = (1, 2), s2 = (1, 3), s3 = (2, 3), s4 = (1, 2, 3); s5 = (1, 3, 4)

con le seguenti probabilità

p(s1) = 0.25, p(s2) = 0.3, p(s3) = 0.2, p(s4) = 0.1, p(s5) = 0.15.

a. Calcolare la probabilità di inclusione di primo e secondo ordine per tutte
le unità della popolazione.
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b. Calcolare E(ns) nei seguenti modi:
– utilizzando la definizione diretta;
– utilizzando la formula che esprime E(ns) in funzione delle probabilità

di inclusione di primo ordine.

12.2. Consideriamo una popolazione finita U di dimensione N e sia p(s) un
disegno il cui spazio campionario costituito da N + 1 campioni risulta cos̀ı
cosituito:

– N campioni di dimensione pari a 1, ogni campione contiene una unità della
popolazione;

– 1 campione di dimensione N contenente tutte le unità della popolazione.

Supponiamo inoltre che il disegno campionario sia equiprobabile.

a. Qual è la probabilità di inclusione della generica unità i?
b. Qual è la dimensione campionaria attesa?

12.3. Data una popolazione finita di N = 6 unità, I6 = {1, 2, 3, 4, 5, 6}, si
consideri il disegno campionario determinato dallo schema seguente:

– si seleziona una delle tre unità 1, 2, 3, rispettivamente con probabilità 0.5,
0.25, 0.25;

– se si seleziona l’unità 1, il campione è s1 = {1, 6}; se si seleziona l’unità 2, il
campione è s2 = {2, 5}; se si seleziona l’unità 3, il campione è s2 = {3, 4}.

Descrivere lo spazio dei campioni S e le probabilità dei campioni s ∈ S.
Calcolare inoltre le probabilità di inclusione del primo e del secondo ordine
delle unità della popolazione.

12.4. Data una popolazione finita di N = 5 unità, I5 = {1, 2, 3, 4, 5}, si
considerino i 5 numeri

p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.2, p5 = 0.2.

Si consideri poi il disegno campionario definito dal seguente schema:

– si seleziona una delle cinque unità 1, 2, 3, 4, 5 rispettivamente con
probabilità p1, p2, p3, p4, p5;

– se al passo 1 si è selezionata l’unità i, si seleziona l’unità j �= i con
probabilità pj/(1 − pi).

Descrivere lo spazio dei campioni S e le probabilità dei campioni s ∈ S.
Calcolare inoltre le probabilità di inclusione del primo e del secondo ordine
delle unità della popolazione.

12.5. Si consideri ancora la popolazione finita di N = 5 unità dell’Esercizio
12.4, e i 5 numeri

p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.2, p5 = 0.2.
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Si consideri poi il disegno campionario definito dal seguente schema:

– si seleziona una delle cinque unità 1, 2, 3, 4, 5 rispettivamente con
probabilità p1, p2, p3, p4, p5;

– se al passo 1 si è selezionata l’unità i, dalla popolazione restante I5 \ {i}
si seleziona un campione semplice senza ripetizione di due unità distinte.

Le unità selezionate sono quindi tre, tutte distinte. Descrivere lo spazio dei
campioni S e le probabilità dei campioni s ∈ S. Calcolare inoltre le probabilità
di inclusione del primo e del secondo ordine delle unità della popolazione.

12.6. Data una popolazione finita di N = 7 unità, I7 = {1, 2, 3, 4, 5, 6, 7},
si considerino i 7 numeri

π0
1 = 0.3, π0

2 = 0.2, π0
3 = 0.5, π0

4 = 0.2, π0
5 = 0.4, π0

6 = 0.3, π0
7 = 0.1.

Si consideri poi il disegno campionario definito dal seguente schema:

– si genera un numero aleatorio U con distribuzione uniforme in [0, 1];
– se 0 � U � π0

1 si seleziona l’unità 1; se π0
1 < U � π0

1 + π0
2 si seleziona

l’unità 2; se π0
1 + π0

2 < U � π0
1 + π0

2 + π0
3 si seleziona l’unità 3;

– se 1 < U +1 � 1+π0
4 si seleziona l’unità 4; se 1+π0

4 < U +1 � 1+π0
4 +π0

5

si seleziona l’unità 5; se 1+π0
4 +π0

5 < U +1 � 1+π0
4 +π0

5 +π0
6 si seleziona

l’unità 6; se 1 + π0
4 + π0

5 + π0
6 < U + 1 � 1 + π0

4 + π0
5 + π0

6 + π0
7 si seleziona

l’unità 7.

Ciascun campione è evidentemente composto da n = 2 unità. Calcolare le
probabilità di inclusione del primo e del secondo ordine.

12.7. Dato un disegno ppswor di numerosità n = 2, provare che:

πi = pi

⎧⎪⎪⎨⎪⎪⎩1 +
N∑

j=1

j �=i

pj

1 − pj

⎫⎪⎪⎬⎪⎪⎭ i = 1, . . . , N ;

πij = pipj
2 − pi − pj

(1 − pi)(1 − pj)
i �= j = 1, . . . , N.

12.8. Provare che nel disegno di Midzuno-Lahiri (riduzione dello schema della
Sezione 12.4.3) lo spazio dei campioni è S = CN,n, e ciascun campione ha
probabilità

p(s) =
1(

N − 1
n − 1

)∑
i∈s

pi, s ∈ CN,n.

Suggerimento. La combinazione senza ripetizione s è ottenuta estraendo nella prima
prova una qualsiasi unità i ∈ s, e nelle altre n − 1 prove le restanti n− 1 unità di s.
Quindi: p(s) =

∑
i∈s pi

1(
N − 1
n − 1

) .
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12.9. Provare la disuguaglianza (12.44).

12.10. Dato un campione s formato con l’algoritmo sequenziale, provare la
relazione (12.57).

12.11. Verificare che se (1) S1 è l’insieme delle disposizioni con ripetizione di
n unità della popolazione e ogni disposizione s ∈ S1 ha probabilità 1/{N (N −
1) · · · (N − n + 1)}, e (2) (S2, p2(·)) è il disegno semplice con ripetizione, vale
la relazione (12.58).
Suggerimento. Si ha p2(s) = 1/Nn, e

∑
s∈S1

p2(s) = N (N − 1) · · · (N − n + 1)/Nn.

12.12. Verificare che se (S1, p1(·)) è il disegno ppswr e (S2, p2(·)) è il disegno
ppswor, vale la relazione (12.58).

12.13. Si supponga p1(s) = c q(s), con c costante non necessariamente nota
esplicitamente, e con le q(s) positive ma non necessariamente aventi somma
1. Si assuma anche che vi sia nota una costante B tale che q(s) � B p2(s).
Provare che se al Passo 2 dell’algoritmo di rigetto l’accettazione di s avviene
se U � q(s)/(B p2(s)), l’algoritmo stesso genera campioni da (S, p1(· · ·)), con
un tasso di accettazione non condizionato AR = 1/(B c).

12.14. Sia X una variabile aleatoria, che assume i k valori x1, x2, . . ., xk

rispettivamente con probabilità p1, p2, . . ., pk, e sia H = −
∑

pj logpj la sua
entropia. Provare che H è massima se p1 = p2 = · · · = pk = 1/k.

Suggerimento. Usare la tecnica dei moltiplicatori di Lagrange, con il vincolo∑
j pj = 1.

12.15. Sia (S, p(·)) un disegno campionario, e sia (S∗, p∗(·)) la sua riduzione.
Provare che (S, p(·)) ha entropia più grande di quella di (S∗, p∗(·)).

12.16. Con riferimento alle (12.53), provare le seguenti affermazioni.

a. Al più uno dei numeri ci può essere uguale a C/2 +
√

C2/4− πi(1 − πi).

Suggerimento. Se ci = C/2+
√

C2/4 − πi(1 − πi) e cj = C/2+
√

C2/4 − πj(1 − πj),
allora ci > C/2, cj > C/2, da cui l’assurda conclusione ci + cj > C.

b. Se d � 3/4, non può essere ci = C/2 +
√

C2/4− πi(1 − πi) neanche per
un solo indice i.

Suggerimento. Dalla disuguaglianza tra media geometrica e media aritmetica si ha,
per j �= i,

√
C2/4 − πj(1 − πj) � C/2 − πj(1 − πj)/C, da cui cj � πj(1 − πj)/C.

Sommando rispetto a j �= i si ha quindi C − ci � (d − 1/4)/c, da cui, se d � 3/4,
C− ci � 1/(2 C). D’altra parte, dalla (12.52) si ha C − ci = πi(1−πi)/ci � 1/(4 ci),
e quindi ci � C/2, che contraddice ci > C/2.



13

Princip̂ı di base dell’inferenza statistica basata

sul disegno campionario∗

13.1 La funzione di verosimiglianza

Nella teoria dell’inferenza statistica un ruolo di primo piano è svolto dalla
funzione di verosimiglianza. È quindi di un certo interesse studiare se e in che
misura il relativo quadro concettuale possa essere adattato al campionamento
da popolazioni finite. Prima di iniziare la vera e propria trattazione, è da
sottolineare che l’approccio fino ad ora seguito è basato sul disegno, nel senso
che: (i) le modalità yi non sono generate da alcun modello; (ii) l’unica fonte
di aleatorietà, di incertezza, è quella dovuta alla selezione del campione di
unità, la quale è regolata da un disegno (probabilistico) di campionamento.

Il quadro di riferimento è quello del Capitolo 2. Indichiamo con Y N il
parametro della popolazione (vettore delle modalità etichettate delle unità),
e con ΩN l’insieme dei possibili “valori” di Y N . Al solito, con (S, p(·)) deno-
tiamo il disegno di campionamento. Con il simbolo y(s) indicheremo invece
il campione di modalità etichettate, ossia l’insieme delle coppie (i, yi), per
tutte le unità i del campione s. In simboli:

y(s) = {(i, yi); i ∈ s}.

Detta poi r(s) la riduzione di s (insieme delle unità distinte di s, ognuna delle
quali compare una sola volta), si indicherà con

y(r(s)) = {(i, yi); i ∈ r(s)}

l’insieme dei dati campionari ridotti. Intuitivamente, y(r(s)) è ottenuto da
y(s) togliendo le “cose inutili”, ossia le ripetizioni di unità (e delle corrispon-
denti modalità etichettate) e l’ordine con cui queste sono osservate.

Sia ora Y ′
N = (y′1 . . . y′N)T una qualunque “punto” di ΩN , ossia uno

dei “possibili valori” del parametro della popolazione. Diremo che Y ′
N è

compatibile con i dati campionari y(s) se:

yi = y′i per ogni i ∈ s (13.1)

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 13, © Springer-Verlag Italia 2012
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ovvero se per tutte le unità del campione la modalità effettivamente osservata
coincide con quella corrispondente del parametro della popolazione.

Diremo invece che Y ′
N è compatibile con i dati campionari ridotti y(r(s)) se:

yi = y′i per ogni i ∈ r(s) (13.2)

ovvero se per tutte le unità distinte del campione la modalità effettivamente
osservata coincide con quella corrispondente del parametro della popolazione.

È evidente che la compatibilità/incompatibilità di Y ′
N con y(s) non di-

pende né dalle ripetizioni (se un’unità compare più volte, ha sempre la stessa
modalità), né dall’ordine. Pertanto, Y ′

N è compatibile con y(s) se e solo se è
compatibile con y(r(s)).

Esempio 13.1. Si consideri una popolazione di N = 4 unità, I4 = {1, 2, 3, 4},
da cui si seleziona un campione mediante un disegno (S, p(·)) definito da

S = {s1, s2, s3, s4}
s1 = (1, 2, 1), s2 = (2, 1), s3 = (3, 4), s4 = (2, 4)
p(s1) = 0.1, p(s2) = 0.3, p(s3) = 0.2, p(s4) = 0.4.

Si tratta evidentemente di un disegno con ripetizioni. La sua riduzione è il
disegno (S∗, p∗(·)) definito da

S∗ = {s∗1, s∗2, s∗3}
s∗1 = {1, 2}, s∗2 = {3, 4}, s3 = {2, 4}

p∗(s∗1) = 0.4, p∗(s∗2) = 0.2, p∗(s∗3) = 0.4.

Si noti che r(s1) = r(s2) = s∗1.
Chiaramente, y(s1) è compatibile con Y ′

N se e solo se y′1 = y1, e y′2 = y2,
indipendentemente da quante volte le unità 1, 2 compaiano nel campione. In
altre parole, y(s1) è compatibile con Y ′

N se e solo se y(s∗1) è compatibile con
Y ′

N . ��
Se si indica con c(y(s), Y ′

N ) l’indicatore di compatibilità/incompatibilità
di Y ′

N con i dati campionari y(s):

c(y(s), Y ′
N) =

{
1 se Y ′

N è compatibile con y(s)
0 altrimenti

(13.3)

e con c(y(r(s)), Y ′
N ) l’indicatore di compatibiltà/incompatibiltà di Y ′

N con
i dati campionari ridotti y(r(s)):

c(y(r(s)), Y ′
N) =

{
1 se Y ′

N è compatibile con y(r(s))
0 altrimenti

(13.4)

è immediato verificare, come conseguenza di quanto sopra detto, che i due
indicatori c(y(s), Y ′

N) e c(y(r(s)), Y ′
N) coincidono:

c(y(s), Y ′
N) = c(y(r(s)), Y ′

N ) qualunque sia Y ′
N ∈ ΩN . (13.5)
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La funzione di verosimiglianza, che ha come argomento il parametro Y ′
N ,

è definita come la probabilità di osservare i dati campionari y(s) quando il
parametro della popolazione è Y ′

N . In simboli:

L(Y ′
N ) = Pr(y(s); Y ′

N); Y ′
N ∈ ΩN . (13.6)

Ora, se Y ′
N è compatibile con i dati y(s), questi sono osservati se e solo se

dalla popolazione è selezionato il campione s. Se Y ′
N non è compatibile con i

dati y(s), questi non possono in nessun caso essere osservati. Si ha quindi

Pr(y(s); Y ′
N) =

{
p(s) se Y ′

N è compatibile con y(s)
0 altrimenti

= p(s) c(y(s), Y ′
N). (13.7)

Usando (13.6) e (13.7), la funzione di verosimiglianza si può quindi scrivere
come:

L(Y ′
N) = p(s) c(y(s), Y ′

N); Y ′
N ∈ ΩN . (13.8)

La (13.8) mette in evidenza un fatto molto importante: la funzione di
verosimiglianza assume solo due valori: uno (p(s)) per tutti i possibili Y ′

N

compatibili con i dati y(s), e l’altro (0) per tutti i possibili Y ′
N non com-

patibili con i dati y(s). Quindi, la funzione di verosimiglianza discrimina i
parametri Y ′

N compatibili con i dati campionari da quelli non compatibili,
ma non discrimina tra i diversi parametri Y ′

N compatibili con i dati y(s)
campionari. La verosimiglianza L(Y ′

N) ha quindi una forma piatta, in quanto
rappresenta come ugualmente verosimili tutti i possibili parametri Y ′

N della
popolazione compatibili con i dati y(s) osservati a livello campionario. Que-
sta forma rende praticamente inutile L(Y ′

N ) per fini di inferenza statistica. In
termini un pò diversi, ma equivalenti, la forma piatta della funzione di verosi-
miglianza mostra un fatto pressoché scontato: in assenza di ipotesi aggiuntive,
l’osservare le modalità (etichettate) delle unità campionarie non dice nulla sul-
le unità che non fanno parte del campione. La forma piatta della funzione di
verosimiglianza è conseguenza di due fattori:

1. il disegno campionario è non informativo, nel senso che le probabilità
p(s) dei campioni dipendono dalle unità che li compongono, ma non dalle
corrispondenti modalità yi;

2. i dati campionari sono raccolti nella forma di modalità etichettate, nel sen-
so che viene conservata l’informazione relativa alle unità a cui si riferiscono
le modalità osservate in y(s).

Se venisse meno anche uno solo degli elementi 13.1, 13.1, verrebbe anche
meno la (13.8). Per ulteriori approfondimenti sulla funzione di verosimiglianza
nel campionamento da popolazioni finite si rinvia al volume Cassel e altri
(1977).
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13.2 Sufficienza e minimalità

13.2.1 Statistiche sufficienti

Come già visto nel Capitolo 2, una statistica campionaria (statistica, per bre-
vità) T = t(y(s)) è una qualunque funzione dei dati campionari. Se si “di-
menticano” i dati campionari y(s), e si “ricorda” solo il valore t(y(s)) della
statistica T , si effettua ovviamente un “riassunto” dei dati stessi.

Intuitivamente, ogni procedura di inferenza statistica dovrebbe basarsi su
(almeno) due principi di base.

1. Ci si dovrebbe basare, per ragioni di economicità e sinteticità, su un rias-
sunto dei dati campionari, ossia su una opportuna statistica. Quanto più
sintetico è il riassunto, tanto meglio è soddisfatta questa esigenza.

2. Il riassunto dei dati campionari y(s) (ossia la statistica su di essi calcolata)
dovrebbe conservare tutta l’informazione che essi forniscono sul parametro
della popolazione.

Le statistiche che soddisfano i requisiti 13.2.1, 13.2.1 sono dette statistiche
sufficienti. In via intuitiva, una statistica T = t(y(s)) è sufficiente se riassume
tutta l’informazione che i dati campionari sono in grado di fornire sul parame-
tro della popolazione. In altre parole, T è sufficiente se una volta noto il valore
t(y(s)), la conoscenza dei dati campionari y(s) non fornisce nessuna informa-
zione aggiuntiva sul parametro della popolazione. Ora, i dati campionari y(s)
forniscono informazioni sul parametro della popolazione solo perché la loro
distribuzione di probabilità dipende dal parametro stesso, come si vede dalla
(13.7). Quindi, in termini formali, una statistica T è sufficiente se la distribu-
zione di probabilità dei dati campionari y(s), condizionata al valore t(y(s))
assunto da T , non dipende dal parametro della popolazione. In simboli:

T sufficiente significa che Pr(y(s) |T = t(y(s));
Y ′

N) non dipende da Y ′
N . (13.9)

Un risultato di base per riconoscere statistiche sufficienti è il teorema di
fattorizzazione di Fisher-Neyman (cfr. Cox e Hinkley (1974)). Una statistica
T = t(y(s)) è sufficiente (per il parametro della popolazione) se e solo se
la probabilità Pr(y(s); Y ′

N) dei dati campionari può essere fattorizzata nel
prodotto (i) di una funzione che dipende sono dal valore t(y(s)) di T e dal
parametro Y ′

N della popolazione per (ii) una funzione che non dipende da
Y ′

N . In simboli:

Pr(y(s); Y ′
N) = g(t(y(s)); Y ′

N)h(y(s)). (13.10)

Proposizione 13.1. La riduzione y(r(s)) dei dati campionari è una statistica
sufficiente per il parametro Y ′

N della popolazione.
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Dimostrazione. In primo luogo, dalla (13.7) e (13.5) si ha

Pr(y(s); Y ′
N) = p(s) c(y(s), Y ′

N)
= p(s) c(y(r(s)), Y ′

N). (13.11)

Basta a questo punto usare il teorema di fattorizzazione di Fisher-Neyman
ponendo nella (13.10) g(t(y(s)); Y ′

N ) = c(y(r(s)), Y ′
N ) e h(y(s)) = p(s). ��

13.2.2 In che misura una statistica riassume i dati
campionari? Partizioni indotte da statistiche

Data una statistica T = t(y(s)), sia T = {t(y(s)); s ∈ S} l’insieme dei valori
che può assumere al variare del campione s in S (e fissati y1, . . ., yN ). Per
ciascuno “valore possibile” t ∈ T indichiamo con T−1(t) l’insieme dei dati
campionari y(s) che “producono” il valore t. In simboli:

T−1(t) = {y(s) : t(y(s)) = t}.

Ovviamente, ciascun T−1(t) è un sottoinsieme dello spazio dei campioni di
modalità etichettate y(S) = {y(s); s ∈ S}. La famiglia di insiemi (sottoinsiemi
di y(S))

PT = {T−1(t); t ∈ T }
= {{y(s) : t(y(s)) = t}; t ∈ T }

è la partizione di y(S) indotta da T . In Fig. 13.1 è rappresentata graficamente
una partizione indotta.

Fig. 13.1 Partizione indotta dalla statistica T
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Esempio 13.2. Si consideri una popolazione finita I3 = {1, 2, 3} composta
da N = 3 unità, e sia (S, p(·)), un disegno campionario (ordinato e con
ripetizioni) definito come:

S = {s1, s2, s3, s4, s5, s6}
s1 = (1, 1, 2), s2 = (1, 2, 1), s3 = (1, 3), s4 = (2, 1, 2), s5 = (3, 2), s6 = (3, 1)
p(s1) = 0.2, p(s2) = 0.1, p(s3) = 0.1; p(s4) = 0.1, p(s5) = 0.3, p(s6) = 0.2.

I campioni di modalità etichettate (dati campionari) sono elencati di seguito:

y(s1) = ((1, y1), (1, y1), (2, y2)), y(s2) = ((1, y1), (2, y2), (1, y1)),
y(s3) = ((1, y1), (3, y3)), y(s4) = ((2, y2), (1, y1), (2, y2)),

y(s5) = ((3, y3), (2, y2)), y(s6) = ((3, y3), (1, y1)).

La statistica T definita da:

t(y(s1)) = t1 = ((1, y1), (2, y2)); t(y(s2)) = t1 = ((1, y1), (2, y2));
t(y(s3)) = t2 = ((1, y1), (3, y3)); t(y(s4)) = t1 = ((1, y1), (2, y2));
t(y(s5)) = t3 = ((3, y3), (2, y2)); t(y(s6)) = t4 = ((3, y3), (1, y1))

induce la partizione di y(S), PT = {T−1(t1), T−1(t2), T−1(t3), T−1(t4)}
definita da

T−1(t1) = {y(s1), y(s2), y(s4)}; T−1(t2) = {y(s3)};
T−1(t3) = {y(s5)}; T−1(t4) = {y(s6)}.

Posto infine, per ciascun t = t1, t2, t3, t4,

γ(T−1(t), Y ′
N ) = più grande valore di c(y(s), Y ′

N ), con y(s) ∈ T−1(t)
ζ(t) = somma delle p(s) per tutti i campioni s tali che T (y(s))

= t

è facile vedere che vale la relazione

Pr(T = t; Y ′
N ) = γ(T−1(t), Y ′

N)ζ(t)

da cui, usando il teorema di fattorizzazione di Fisher-Neyman, segue subito
la sufficienza di T . ��

La nozione di partizione indotta da una statistica permette di capire con
facilità il significato dell’affermazione: “Una statistica è un riassunto dei da-
ti campionari”. Riassumere i dati campionari y(s) con il valore t(y(s)) = t
assunto dalla statistica T significa che tutti i “punti” (dati campionari) dell’in-
sieme T−1(t) vengono sostituiti dal valore t. In altre parole, tutti i campioni
di modalità etichettate y(s) in T−1(t) sono equivalenti, in quanto forniscono
lo stesso valore t della statistica T .
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Fig. 13.2 Partizioni indotte dalle statistiche T (meno fine) e U (più fine)

Questa semplice osservazione permette anche di chiarire “in che misura”
una statistica riassume i dati campionari. Consideriamo due statistiche T , U ,
le quali assumono valori rispettivamente in T , U , e indichiamo con PT , PU le
corrispondenti partizioni indotte. Diremo che PU è più fine di PT (o che PT è
meno fine di PU ) se ogni insieme U−1(u) è contenuto in un insieme T−1(t). In
maniera equivalente, si può dire che la partizione indotta da T è meno fine di
quella indotta da U se per ogni coppia di campioni (di modalità etichettate)
tali che u(y(s1)) = u(y(s2)) si ha anche t(y(s1)) = t(y(s2)). In termini grafici,
ciò è illustrato in Fig. 13.2. Ad ogni modo, una statistica riassume tanto più
i dati campionari quanto meno fine è la partizione y(S) che induce.

Esempio 13.3. Si consideri ancora l’Esempio 13.2, e si definisca la statistica
U come:

u(y(s1)) = 1; u(y(s2)) = 1; u(y(s3)) = 2;
u(y(s4)) = 3; u(y(s5)) = 4; u(y(s6)) = 5.

Ragionando come nell’Esempio 13.2, si vede subito che anche U è sufficiente
per il parametro della popolazione.

La statistica U induce la partizione di y(S):

PU = {U−1(1), U−1(2), U−1(3), U−1(4), U−1(5)}

definita da

U−1(1) = {y(s1), y(s2)}; U−1(2) = {y(s3)}; U−1(3) = {y(s4)};
U−1(4) = {y(s5)}; U−1(5) = {y(s6)}.
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Chiaramente, PU è più fine della partizione PT dell’Esempio 13.3. Que-
sto ha una conseguenza importante: la statistica T può essere espressa come
funzione di U . Per rendersene conto basta osservare che:

T = t1 se U = 1
T = t1 se U = 3
T = t2 se U = 2
T = t3 se U = 4
T = t4 se U = 5 .

Se si definisce quindi la funzione f(U) nel modo seguente:

f(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t1 se U = 1
t1 se U = 3
t2 se U = 2
t3 se U = 4
t4 se U = 5

si vede subito che T = f(U). ��

Quanto evidenziato alla fine dell’Es. 13.3 vale del tutto in generale: se una
statistica U induce una partizione più fine di quella indotta dalla statistica T ,
allora è possibile esprimere T come funzione di U . Per la dimostrazione di
questo semplice fatto si rinvia all’Esercizio 13.1. L’idea della dimostrazione è
comunque semplicissima: se U induce una partizione più fine di quella indot-
ta da T , allora T assume lo stesso valore per tutti i campioni (di modalità
etichettate) in U−1(u).

La nozione di partizione indotta da una statistica permette anche di chia-
rire un altro punto importante. Due statistiche U , V , pur essendo differenti in
quanto assumono valori diversi, possono indurre la stessa partizione di y(S).
In questo caso esse sono equivalenti, in quanto riassumono nello stesso modo i
dati campionari (vds. Es. 13.4). Ragionando come in precedenza, è chiaro che
se PU e PV coincidono, è possibile sia esprimere U in funzione di V che V in
funzione di U . Pertanto, U e V sono in corrispondenza biunivoca. In simboli:

PU = PV se solo se U e V sono in corrispondenza biunivoca.

Esempio 13.4. Si consideri ancora l’Esempio 13.3, e si definisca la statistica
V come:

v(y(s1)) = 100; v(y(s2)) = 100; v(y(s3)) = 10;
v(y(s4)) = 5; v(y(s5)) = 9; v(y(s6)) = 4.

La partizione di y(S) indotta da V ,

PV = {V −1(4), V −1(5), U−1(9), U−1(10), U−1(100)}
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è definita da

V −1(4) = {y(s6)}; V −1(5) = {y(s4)}; V −1(9) = {y(s5)};
V −1(10) = {y(s3)}; V −1(100) = {y(s1), y(s2)}.

Essa coincide con la partizione indotta da U : PV = PU .
È infine immediato verificare che U e V sono in corrispondenza biunivoca.

Basta definire la funzione f(U) come:

f(u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
100 se u = 1
10 se u = 2
5 se u = 3
9 se u = 4
4 se u = 5

e verificare che V = f(U), U = f−1(V ). ��

13.2.3 Statistiche sufficienti minimali

La proprietà di sufficienza può facilmente essere enunciata in termini di parti-
zione indotta. Infatti, la (13.9) equivale a dire che T è sufficiente se e solo se la
distribuzione di probabilità dei dati campionari “ristretta” a ciascun insieme
T−1(t) non dipende dal parametro Y ′

N della popolazione.
La nozione di partizione indotta permette anche di risolvere un importante

problema. In generale, vi sono più statistiche sufficienti per il parametro della
popolazione (si vedano in proposito gli Esempi 13.2, 13.3). Sorge quindi il
problema di quale di esse scegliere per riassumere i dati. Coerentemente con
quanto detto nelle sezioni precedenti, risulta naturale scegliere la statistica
sufficiente che riassume “il più possibile” i dati campionari. In termini un
po’ più formali, l’idea è quella di scegliere la statistica sufficiente che induce
la partizione meno fine di y(S). Essa è detta statistica sufficiente minimale.
Chiaramente, questo equivale a dire che la statistica sufficiente minimale è
una statistica sufficiente che può essere espressa come funzione di ogni altra
statistica sufficiente. A sua volta, questo equivale a dire che una statistica
sufficiente T = t(y(s)) è minimale se per ogni altra statistica sufficiente U =
u(y(s)) la relazione u(y(s1)) = u(y(s2)) implica che t(y(s1)) = t(y(s2)).

Proposizione 13.2. La riduzione y(r(s)) dei dati campionari è una statistica
sufficiente minimale per il parametro Y ′

N della popolazione.

Dimostrazione. La sufficienza di y(r(s)) è già stata dimostrata. Per provare
la sua minimalità basta mostrare che se T = t(y(s)) è una qualunque altra
statistica sufficiente, e se per due campioni s1, s2 si ha t(y(s1)) = t(y(s2)),
allora è anche y(r(s1)) = y(r(s2)).

Se T è sufficiente per Y ′
N , si ha anzitutto, dal teorema di fattorizzazione

di Fisher-Neyman, che

Pr(y(s1); Y ′
N ) = g(t(y(s1)); Y ′

N)h(y(s1)) (13.12)
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e similmente, essendo anche t(y(s1)) = t(y(s2)),

Pr(y(s2); Y ′
N) = g(t(y(s2)); Y ′

N)h(y(s2))
= g(t(y(s1)); Y ′

N)h(y(s2)). (13.13)

Si osservi che h(y(s1)) > 0, h(y(s2)) > 0, perché in caso contrario il membro
di destra della (13.12) e della (13.13) sarebbe identicamente nullo, per tutti i
possibili valori Y ′

N . Da ciò discende l’uguaglianza

Pr(y(s2); Y ′
N )

h(y(s2))
=

Pr(y(s1); Y ′
N)

h(y(s1))

da cui segue che

Pr(y(s2); Y ′
N ) = Pr(y(s1); Y ′

N)
h(y(s2))
h(y(s1))

e quindi, usando la (13.11),

p(s1) c(y(r(s2)), Y ′
N) = p(s2) c(y(r(s1)), Y ′

N)
h(y(s2))
h(y(s1))

. (13.14)

La (13.14) mostra che c(y(r(s1)), Y ′
N) = 1 ogni volta che c(y(r(s2)), Y ′

N)
= 1, e c(y(r(s1)), Y ′

N) = 0 ogni volta che c(y(r(s2)), Y ′
N) = 0. In altre

parole, deve essere

c(y(r(s1)), Y ′
N) = c(y(r(s2)), Y ′

N) qualunque sia Y ′
N ∈ ΩN . (13.15)

Dalla (13.15) è facile desumere che y(r(s1)) coincide con y(r(s2)), e questo
completa la dimostrazione. ��

Le Proposizioni 13.1, 13.2 mettono in evidenza due fatti importantissimi:

1. le ripetizioni e l’ordine non danno nessuna informazione aggiuntiva rispet-
to a quella fornita dalle unità campionarie distinte e dalle corrispondenti
modalità etichettate;

2. la riduzione dei dati campionari è il massimo riassunto dei dati campionari
stessi che non fa perdere informazione.

L’affermazione 13.2.3, già introdotta in via intuitiva nel Capitolo 2, trova
la sua giustificazione formale nella Proposizione 13.1. L’affermazione 13.2.3,
invece, è una diretta conseguenza della Proposizione 13.2.

Un’ultima osservazione prima di concludere. La proprietà di sufficienza,
ed in particolare quella di sufficienza minimale, di una statistica T dipendono
dalla partizione PT indotta da T . In particolare, ogni statistica T che induce la
stessa partizione della riduzione dei dati campionari è essa stessa sufficiente
minimale (ed è in corrispondenza biunivoca con y(r(s))).
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13.3 Perché bisogna basare l’inferenza su statistiche
sufficienti minimali: il teorema di Rao-Blackwell

Il discorso svolto nelle sezioni precedenti mostra che il riassumere i dati cam-
pionari mediante la loro riduzione conserva interamente l’informazione fornita
dai dati stessi. Risulta quindi naturale basare l’inferenza (in particolare, ma
non solo, la stima della media della popolazione) sulla riduzione y(r(s)). A
questo punto sorge però una questione. Cosa accade se non si riassumono i
dati campionari con una statistica sufficiente minimale e ci si basa sui dati
originari y(s), eventualmente contenenti ripetizioni e/o ordine? La risposta è
fornita dal teorema di Rao-Blackwell, di seguito enunciato e provato.

Proposizione 13.3. (Teorema di Rao-Blackwell) Sia θ̂ uno stimatore del
parametro θ = θ(Y N), e sia T una statistica sufficiente per il parametro della
popolazione. Posto:

θ̂∗ = E[θ̂ |T ] (13.16)

valgono le tre seguenti relazioni

E[θ̂∗] = E[θ̂]; (13.17)

V (θ̂∗) � V (θ̂); (13.18)

MSE(θ̂∗) �MSE(θ̂). (13.19)

In (13.18) e (13.19) il segno = vale se e solo se θ̂∗ = θ̂ con probabilità 1. In
tutti gli altri casi vale la disuguaglianza stretta <.

Dimostrazione. La (13.17) è una conseguenza immediata di una ben nota
proprietà della media condizionata: il valore atteso della media condizionata
è uguale al valore atteso non condizionato.

La disuguaglianza (13.18) è una semplice conseguenza della formula di
decomposizione della varianza, dalla quale si ha

V (θ̂) = V (E[θ̂ |T ]) + E[V (θ̂ |T )]

= V (θ̂∗) + E[V (θ̂ |T )]

e quindi, essendo V (θ̂ |T ) � 0, segue la (13.18). In particolare, il segno = vale
se e solo se V (θ̂ |T ) = 0 con probabilità 1, ossia se e solo se θ̂ = E[θ̂ |T ] con
probabilità 1.

Infine, la (13.19) segue dalla relazione

MSE(θ̂) = V (θ̂) + (E[θ̂] − θ)2

e dalle (13.17), (13.18). ��
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Prima di discutere il significato del teorema di Rao-Blackwell, è necessaria
qualche osservazione. In primo luogo, la condizione che T sia una statistica
sufficiente serve a far s̀ı che il valore atteso condizionato E[θ̂ |T ] dipenda solo
dai dati campionari, e non dall’intero parametro della popolazione. Questo
è proprio ciò che accadrebbe se T non fosse sufficiente. In secondo luogo, se
la statistica T fosse sufficiente ma non minimale, si potrebbe riapplicare la
(13.16), ottenendo un nuovo stimatore migliore di quello di partenza. Quindi,
l’unica statistica sufficiente che vale la pena considerare in (13.16) è quella
minimale.

Il significato del teorema di Rao-Blackwell è molto semplice. Se uno stima-
tore θ̂ non è funzione della statistica sufficiente minimale, si può costruire un
suo miglioramento calcolando la sua media condizionata rispetto alla statisti-
ca sufficiente minimale, come appare in (13.16). L’operazione che porta da θ̂

a θ̂∗ è detta Rao-Blackwellizzazione di θ̂. In sostanza, si ha una dicotomia: (i)
se uno stimatore θ̂ non è funzione della statistica sufficiente minimale, allora
può essere migliorato tramite la (13.16); (ii) se lo stimatore θ̂ è già funzio-
ne della statistica sufficiente minimale, allora la (13.16) non porta a nessun
miglioramento, in quanto è θ̂∗ = θ̂ (l’operazione di Rao-Blackwellizzazione
riproduce lo stimatore di partenza). Poiché la statistica sufficiente minimale
è null’altro che l’insieme dei dati campionari (etichettati) privati di ripetizio-
ne e ordine, la dicotomia si può leggere come segue: (i) se uno stimatore θ̂
dipende dalle ripetizioni e/o dall’ordine con cui le unità sono osservate nel
campione, allora può essere migliorato tramite la (13.16); (ii) se lo stimatore
θ̂ non dipende né dalle ripetizioni e né dall’ordine, allora è già funzione della
statistica sufficiente minimale, e non può essere migliorato tramite la (13.16).

Esempio 13.5. Sia IN = {1, . . . , N} una popolazione finita di numerosità N ,
e si consideri un disegno semplice con ripetizione di numerosità n. Lo spazio
dei campioni è l’insieme di tutte le n-ple ordinate (disposizioni con ripetizione
di classe n) di unità della popolazione: S = IN × · · · × IN ; ogni campione
ha probabilità 1/Nn. Si noti che questo disegno è totalmente simmetrico, nel
senso che se si scambiano tra loro (tecnicamente, se si permutano) le etichette
delle unità della popolazione, il disegno rimane inalterato. Esattamente come
accade per il disegno semplice senza ripetizione, il disegno campionario tratta
“alla pari”, in modo simmetrico, tutte le unità della popolazione.

Come stimatore della media della popolazione consideriamo la media
campionaria

ys =
1
n

∑
i∈s

yi. (13.20)

Lo stimatore ys non dipende dall’ordine in cui le unità si presentano nel
campione, ma dipende dalle ripetizioni. Ogni yi è sommata in (13.20) tan-
te volte quante la corrispondente unità compare nel campione s. Pertanto,
ys è migliorabile usando il teorema di Rao-Blackwell. Per costruire la Rao-
Blackwellizzazione di ys, indichiamo con ν(s) il numero di unità distinte in
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s (numero di unità in r(s)), e sia n(i; s) il numero di volte in cui l’unità i
compare nel campione s. Vale l’ovvia relazione:∑

i∈r(s)

n(i; s) = n. (13.21)

Inoltre, si può scrivere

ys =
1
n

∑
i∈r(s)

yi n(i; s). (13.22)

Per il calcolo della media condizionata di ys rispetto a y(r(s)), osserviamo
in primo luogo che

E[ys |y(r(s))] = E

⎡⎣ 1
n

∑
i∈r(s)

yi n(i; s)

∣∣∣∣∣∣y(r(s))

⎤⎦
=

1
n

∑
i∈r(s)

E[yi n(i; s) |y(r(s))]

=
1
n

∑
i∈r(s)

yi E[n(i; s) |r(s)]. (13.23)

Ragionando per simmetria, è poi facile vedere che i valori attesi E[n(i; s) |r(s)]
sono uguali per tutte le unità i ∈ r(s). Indicando con n il loro valore comune,
si ha cioè

E[n(i; s) |r(s)] = n per ciascun i ∈ r(s). (13.24)

Usando contemporaneamente (13.21) e (13.24) si ottiene quindi

n =
∑

i∈r(s)

n = ν(s)n

da cui segue che n = n/ν(s), e quindi

E[n(i; s) |r(s)] =
n

ν(s)
per ciascun i ∈ r(s). (13.25)

Inserendo infine la (13.25) in (13.23) si ottiene:

E[ys |y(r(s))] =
1
n

∑
i∈r(s)

yi
n

ν(s)

=
1

ν(s)

∑
i∈r(s)

yi

= yr(s) media campionaria per le unità distinte. ��
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13.4 Non esistenza dello stimatore corretto di varianza
minima

Nelle sezioni precedenti si è cercato di riportare l’inferenza da popolazioni
finite nell’alveo generale della teoria dell’inferenza statistica, introducendo la
statistica sufficiente minimale. Se il problema è quello di stimare un parame-
tro θ = θ(Y N ), l’obiettivo ideale sarebbe quello di costruire uno stimatore
“ottimo” secondo un qualche criterio.

Come già visto nel Capitolo 2, uno stimatore di minimo errore quadratico
medio non esiste, e non solo nell’inferenza da popolazioni finite. È necessario
quindi ripiegare su un obiettivo più modesto ma anche più ragionevole. La
risposta “classica” della teoria della stima puntuale è quella di limitarsi ai
soli stimatori corretti di θ, e di cercare tra essi, se esiste, quello di varianza
uniformemente minima (UMVUE = Uniformly Minimum Variance Unbiased
Estimator). Il risultato principale in questa direzione, nella statistica classica,
è il teorema di Lehmann-Scheffé, il quale stabilisce condizioni (sufficienti) sotto
cui esiste lo UMVUE.

Una statistica sufficiente T è completa se l’unica funzione h(T ) (a valori
reali) tale che

E[h(T )] = 0 per ciascun Y N ∈ ΩN (13.26)

è quella identicamente nulla. In simboli:

E[h(T )] = 0 per ciascun Y N ∈ ΩN implica che h(T ) ≡ 0.

Non è difficile verificare che se una statistica sufficiente T è completa, allora
è anche minimale.

Il teorema di Lehmann-Scheffé stabilisce che se (i) esiste uno stimatore
corretto di θ e (ii) T è una statistica sufficiente completa, allora esiste anche
lo stimatore corretto di varianza uniformemente minima di θ. Non è difficile
verificare (Esercizio 13.7) che se T è sufficiente completa e se θ̂ è un qualsiasi
stimatore corretto di θ, allora lo stimatore corretto di varianza uniformemente
minima di θ si può ottenere mediate Rao-Blackwellizzazione di θ̂. In simboli:

Se T è sufficiente completa e E[θ̂] = θ allora E[θ̂ |T ] è UMV UE. (13.27)

La Proposizione 13.4 contiene un risultato negativo, ovvero che la statistica
sufficiente minimale y(r(s)) non è completa.

Proposizione 13.4. La statistica sufficiente minimale y(r(s)) non è com-
pleta.
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Dimostrazione. Basta costruire una funzione h(y(r(s))) non identicamente
nulla ma avente valore atteso pari a 0 qualunque sia il parametro Y N della
popolazione. Consideriamo a questo proposito la funzione:

h(y(r(s))) =
{ 1

π1
se 1 ∈ r(s)

− 1
1−π1

se 1 �∈ r(s)

=
1
π1

δ(1; r(s)) − 1
1 − π1

(1 − δ(1; r(s)))

la quale è non identicamente uguale a 0. Tuttavia, il suo valore atteso

E[h(y(r(s)))] =
1
π1

E[δ(1; r(s))] − 1
1 − π1

(1 − E[δ(1; r(s))])

=
1
π1

π1 −
1

1 − π1
(1 − π1)

= 0 per ciascun Y N ∈ ΩN

è identicamente nullo. Tenendo infine conto che una statistica sufficiente com-
pleta, se esiste, è anche minimale, la dimostrazione è completata. ��

Un’osservazione importante. La dimostrazione della Proposizione 13.4
sfrutta in modo decisivo il fatto che i dati campionari ridotti sono moda-
lità etichettate, ovvero modalità che conservano l’informazione sull’unità a cui
si riferiscono. Se le modalità campionarie venissero private delle etichette, ov-
vero se si “ricordassero” solo i valori yi, i ∈ s, e si “dimenticassero” le unità
di riferimento, la dimostrazione della Proposizione 13.4 verrebbe meno.

L’esistenza di una statistica sufficiente completa è una condizione suffi-
ciente ma non necessaria per l’esistenza di uno stimatore corretto di varianza
uniformemente minima. Prima di enunciare e provare tale risultato è bene
far riferimento al seguente esempio, che chiarisce l’elegante e semplice idea di
base della dimostrazione (cfr. Basu (1971)).

Esempio 13.6. Sia IN = {1, . . . , N} una popolazione finita di numerosità N ,
e si consideri un disegno ssr di numerosità n. Il problema è quello di stimare la
media della popolazione, μy =

∑N
i=1 yi/N . Dato un arbitrario vettore aN =

[a1, a2, . . . , aN ], sia μa =
∑N

i=1 ai/N . In particolare, se aN = Y N , cioè se
yi = ai per ciascuna unità i della popolazione, la media μy si riduce a μa. Si
consideri poi, con ovvia simbologia, lo stimatore di μy

ta =
1
n

∑
i∈s

yi −
1
n

∑
i∈s

ai + μa

= ys − as + μa (13.28)

in cui ys è la media campionaria delle yi, e as è la media campionaria delle ai.
Se il disegno è ssr si ha E[ys] = μy, E[as] = μa, per cui è anche E[ta] = μy

comunque si scelga il vettore aN . Inoltre, se il parametro della popolazione,
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Y N , coincide con aN si ha μy = μa e ta = μa, per cui, in questo caso spe-
ciale, lo stimatore ta è identicamente uguale al parametro da stimare. La sua
varianza, di conseguenza, è nulla. In simboli:

E[ta] = μy qualunque siano Y N ∈ IRN e aN ∈ IRN ;
se Y N = aN allora μy = μa, ta ≡ μy, V (ta) = 0.

Indichiamo infine con Du la classe di tutti gli stimatori (corretti) del tipo
(13.28), al variare di aN in IRN . In simboli:

Du = {ta = ys − as + μa; aN ∈ IRN}.

Se esistesse uno stimatore corretto t∗ di μy di varianza uniformemente
minima, esso dovrebbe avere varianza più piccola di un qualunque stimatore
ta della classe Du. Dovrebbe in altre parole potersi scrivere

V (t∗) � V (ta) qualunque siano Y N ∈ IRN e aN ∈ IRN . (13.29)

Ma per Y N = aN si ha V (ta) = 0, e quindi dalla (13.29) si trae che

V (t∗) = 0 se Y N = aN , qualunque sia aN ∈ IRN

il che equivale a scrivere

V (t∗) = 0 qualunque sia Y N ∈ IRN . (13.30)

Chiaramente, la (13.30) può aver luogo solo se t∗ coincide sempre con la
media μy della popolazione, qualunque sia il campione s, il che è impossibile.
La conclusione è quindi che se il disegno è ssr non esiste lo stimatore corretto
di varianza uniformemente minima di μy. ��

Proposizione 13.5. Sia IN = {1, . . . , N} una popolazione finita di nume-
rosità N , da cui si seleziona un campione mediante un disegno (S, p(·)).
Detto θ = θ(Y N) il parametro di interesse, non esiste lo stimatore corretto di
varianza uniformemente minima di θ.

Dimostrazione. La dimostrazione usa le stesse idee dell’Esempio 13.6. Sia
θ̂(y(s)) uno stimatore corretto di θ. Dato un arbitrario vettore aN = [a1, a2,
. . . , aN ], sia θ(aN ) il valore assunto da θ quando Y N = aN . Poniamo inoltre
a(s) = {(i, ai) i ∈ s} l’insieme dei valori etichettati ai corrispondenti alle
unità del campione s.

Si definisca poi lo stimatore di θ:

θ̂a = θ̂(y(s)) − θ̂(a(s)) + θ(aN ). (13.31)

Essendo θ̂ corretto rispetto al disegno (S, p(·)), si ha E[θ̂(y(s))] = θ(Y N ),
E[θ̂(a(s))] = θ(aN ), per cui è anche E[ta] = θ(Y N) qualunque sia il vettore
aN . Inoltre, se il parametro della popolazione, Y N , coincide con aN si ha
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θ(Y N) = θ(aN ) e θ̂a ≡ θ(aN ). Ne consegue che se Y N = aN , la varianza di
θ̂a è pari a 0. Si può scrivere, in sintesi,

E[θ̂a] = θ(Y N) qualunque siano Y N ∈ ΩN e aN ∈ ΩN ;

se Y N = aN allora θ(Y N ) = θ(aN ), θ̂a ≡ θ(Y N ), V (θ̂a) = 0.

Indichiamo infine con Du la classe di tutti gli stimatori (corretti) del tipo
(13.31), al variare di aN in IRN . In simboli:

Du = {θ̂a = θ̂(y(s)) − θ̂(a(s)) + θ(aN ); aN ∈ IRN}.

Se esistesse uno stimatore corretto θ̂∗ di θ di varianza uniformemente mi-
nima, esso dovrebbe avere varianza più piccola di un qualunque stimatore θ̂a

della classe Du:

V (θ̂∗) � V (θ̂a) qualunque siano Y N ∈ ΩN e aN ∈ ΩN . (13.32)

Ma se Y N = aN si ha V (θ̂a) = 0, per cui dalla (13.32) discende che

V (θ̂∗) = 0 se Y N = aN , qualunque sia aN ∈ ΩN

che equivale a

V (θ̂∗) = 0 qualunque sia Y N ∈ ΩN . (13.33)

La (13.33) può verificarsi soltanto se θ̂∗ coincide sempre con θ(Y N), qualunque
siano il campione s e Y N in ΩN . Ma questo è impossibile, per cui non esiste
lo stimatore corretto di varianza uniformemente minima di θ(Y N ). ��

Esattamente come la Proposizione 13.4, anche la Proposizione 13.5 si basa
sull’assunzione che i dati campionari consistano di modalità etichettate. Que-
st’ipotesi è fondamentale per costruire l’insieme di valori etichettati a(s). Se
cadesse l’ipotesi che i dati campionari consistano di modalità etichettate, ca-
drebbe anche la dimostrazione della Proposizione 13.5. Per ulteriori risultati
sull’esistenza di stimatori corretti di varianza uniformemente minima in casi
speciali si rinvia al volume di Cassel e altri (1977).

13.5 La nozione di ammissibilità di stimatori e strategie

La non esistenza di uno stimatore ottimo nella classe degli stimatori corretti (e
neanche in classi più ristrette: Cassel e altri (1977)) sposta l’interesse verso la
ricerca di stimatori con proprietà “ragionevolmente buone”. In questa direzio-
ne un requisito minimale, ma intuitivamente rilevante, che dovrebbe possedere
uno stimatore è quello di non essere peggiore di nessun altro stimatore, per-
lomeno all’interno di una determinata classe. Questo porta all’introduzione
della nozione di ammissibilità.



320 13 Princip̂ı di base dell’inferenza statistica basata sul disegno campionario∗

Data una popolazione finita di N unità, si supponga di selezionare da essa
un campione mediante un disegno (S, p(·)). Per il momento assumeremo tale
disegno fissato. Sia T una classe di stimatori di un parametro θ = θ(Y N).

1. Uno stimatore θ̂0 in T è non migliore di uno stimatore θ̂1 in T (equiva-
lentemente, θ̂1 è non peggiore di θ̂0) se

MSE(θ̂1) � MSE(θ̂0) qualunque sia Y N ∈ ΩN . (13.34)

2. Uno stimatore θ̂0 in T è peggiore di uno stimatore θ̂1 in T (equivalente-
mente, θ̂1 è migliore di θ̂0, o anche θ̂1 domina θ̂0) se

MSE(θ̂1) � MSE(θ̂0) qualunque sia Y N ∈ ΩN ; (13.35)

MSE(θ̂1) < MSE(θ̂0) per almeno un Y N ∈ ΩN . (13.36)

Gli errori quadratici medi in (13.34)-(13.36) sono calcolati, come detto,
rispetto ad un prefissato disegno di campionamento.

Quando si sceglie uno stimatore di θ in una classe T di stimatori,un requi-
sito molto naturale, e per molti aspetti minimale, è che nella classe T non vi
sia nessuno stimatore migliore di quello scelto. Questo porta alla nozione di
ammissibilità. Uno stimatore θ̂0 in T è ammissibile nella classe T di stimatori
(sempre rispetto ad un fissato disegno campionario) se non esiste in T nessuno
stimatore migliore di θ̂0.

L’ammissibilità di uno stimatore è effettivamente un requisito molto debole
per uno stimatore, ma tuttavia importante. Una conseguenza immediata del
teorema di Rao-Blackwell è che tutti gli stimatori che non dipendono dalla
statistica sufficiente minimale y(r(s)) non sono ammissibili. Il teorema di
Rao-Blackwell va anche un passo in avanti, in quanto mostra che se θ̂ non è
funzione di y(r(s)), allora è peggiore di E[θ̂ |y(r(s))]. In altre parole, il teorema
di Rao-Blackwell insegna a riconoscere stimatori che non sono ammissibili,
anche se nulla dice sull’ammissibilità o meno di E[θ̂ |y(r(s))].

Nelle definizioni precedenti, come più volte sottolineato, il disegno campio-
nario (S, p(·)) è assunto fissato. Tuttavia, lo statistico sceglie la coppia (stima-
tore, disegno campionario) ossia la strategia di campionamento ((S, p(·)), θ̂).
Le nozioni dianzi introdotte possono facilmente estendersi a strategie. Nel
seguito si indicherà con ST una classe di strategie di campionamento.

1. La strategia ((S0, p0(·)), θ̂0) in ST è non migliore della strategia ((S1, p1(·)),
θ̂1) in ST (equivalentemente, ((S1, p1(·)), θ̂1) è non peggiore di ((S0, p10(·)),
θ̂0)) se

MSE1(θ̂1) � MSE0(θ̂0) qualunque sia Y N ∈ ΩN , (13.37)

dove MSE0(θ̂0) (MSE1(θ̂1)) indica l’errore quadratico medio di θ̂0 (θ̂1)
calcolato rispetto al disegno (S0, p0(·)) ((S1, p1(·))).
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2. La strategia ((S0, p0(·)), θ̂0) in ST è peggiore della strategia ((S1, p1(·)), θ̂1)
in ST (equivalentemente, ((S1, p1(·)), θ̂1) è migliore di ((S0, p0(·)), θ̂0),
o anche ((S1, p1(·)), θ̂1) domina ((S0, p0(·)), θ̂0)) se

MSE1(θ̂1) � MSE0(θ̂0) qualunque sia Y N ∈ ΩN ; (13.38)

MSE1(θ̂1) < MSE0(θ̂0) per almeno un Y N ∈ ΩN . (13.39)

La nozione di ammissibilità di stimatori si estende facilmente a strategie.
Una strategia ((S0, p0(·)), θ̂0) in ST è ammissibile nella classe ST di strategie
se non esiste in ST nessuna strategia migliore di ((S0, p0(·)), θ̂0).

13.6 La tecnica di contrazione di stimatori

La tecnica di contrazione (shrinkage) di un stimatore è stata introdotta da
Stein (1956) come metodo per migliorare il vettore delle medie campionarie
per la stima del vettore dei valori attesi di una distribuzione multinormale di
dimensione maggiore di 2, ed ha ricevuto da allora notevole attenzione in sta-
tistica. Qui tale tecnica verrà brevemente presentata; nel capitolo successivo
verrà applicata al miglioramento dello stimatore di Horvitz-Thompson.

Dato un disegno campionario (S, p(·)), sia θ̂ uno stimatore corretto di un
parametro θ = θ(Y N) di interesse: E[θ̂] = θ. Detta V (θ̂) la varianza di θ̂,
si consideri come stimatore alternativo a θ̂ lo stimatore definito nel seguente
modo:

θ̂sh = c θ̂ (13.40)

dove c è un numero reale. Lo stimatore (13.40) è distorto con errore quadratico
medio pari a

MSE(θ̂sh) = V (θ̂) + (E[θ̂sh] − θ)2

= c2 V (θ̂) + (c − 1)2θ2 . (13.41)

Chiaramente, lo stimatore θ̂sh rappresenta un miglioramento dello stimatore
iniziale θ̂ per quei valori di c che rendono negativa la differenza tra i due errori
quadratici medi:

f(c) = MSE(θ̂sh) − MSE(θ̂) < 0 . (13.42)

I valori di c che soddisfano la (13.42) sono interni all’intervallo che ha co-
me estremi le due soluzioni dell’equazione in c di secondo grado f(c) = 0.
Formalmente:

θ2 − V (θ̂)

θ2 + V (θ̂)
< c < 1 .
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Lo stimatore θ̂sh = c θ̂, con |c| < 1, è detto “stimatore per contrazione”
(shrinkage) di θ. Il valore ottimo del numero c si ricava minimizzando l’errore
quadratico medio di θ̂sh. A tale scopo, uguagliando a zero la derivata rispetto
a c della (13.41), si ottiene l’equazione

∂MSE(θ̂sh)
∂θ

= 2 c V (θ̂) + 2 (c − 1) θ2 = 0 (13.43)

che fornisce il valore

copt =
θ2

θ2 + V (θ̂)
=

θ2

E[θ̂2]
. (13.44)

Come detto, ogni valore copt � c < 1 è tale che MSE(θ̂sh) < V (θ̂). Il
vantaggio massimo, ovviamente, si ottiene prendendo c = copt. Vi è però
un problema. I valori di θ e di E[θ̂2] dipendono dall’intero parametro Y N

della popolazione, che è incognito. Pertanto, lo stesso valore di copt in (13.44)
dipende da Y N , e quindi non è calcolabile. In simboli:

copt = copt(Y N ).

L’idea è allora quella di prendere il massimo valore di copt(Y N), rispetto a
tutti i possibili valori del parametro Y N della popolazione. In altre parole,
l’idea è quella di calcolare:

c∗ = max
YN∈ΩN

copt(Y N )

= max
YN∈ΩN

θ2

E[θ̂2]

=
1

minYN∈ΩN

E[θ̂2]
θ2

(13.45)

=
1

1 + minYN∈ΩN

V (θ̂)
θ2

. (13.46)

Quanto detto è illustrato in Fig. 13.3.
Chiaramente, ogni valore c∗ � c < 1 è tale che l’errore quadratico medio di

θ̂sh = c θ̂ è più piccolo di quello di θ̂. Ancora una volta, il vantaggio massimo
si ottiene prendendo c = c∗. Ad esso corrisponde lo stimatore:

θ̂hs∗ = c∗ θ̂. (13.47)

Per quanto riguarda il valore di c∗, due sono le possibilità:

– c∗ = 1: in questo caso lo stimatore (13.47) coincide con θ̂, e la tecnica di
contrazione non dà nessun miglioramento;

– c∗ < 1: in questo caso lo stimatore (13.47) è migliore di θ̂, nel senso che
possiede un errore quadratico medio più piccolo.



13.6 La tecnica di contrazione di stimatori 323

Fig. 13.3 Contrazione dello stimatore θ̂

Un’analisi un po’ più dettagliata della relazione (13.46) consente di capire
meglio quando si verifica il caso c∗ = 1. Infatti, è evidente che c∗ = 1 se e solo
se per ciascun possibile valore del parametro di interesse θ esiste uno “speciale”
Ỹ N tale che θ(Ỹ N) = θ e V (θ̂) = 0. Si osservi che quest’ultima uguaglianza,
essendo θ̂ corretto, equivale (con ovvia simbologia) a θ̂(ỹ(s)) = θ(Ỹ N ) (= θ)
qualunque sia il campione s.

Esempio 13.7. Si consideri una popolazione finita di N = 3 unità, di cui si
deve stimare la media μy = (y1 +y2 +y3)/3. Il disegno campionario è definito
come segue:

S = {s1, s2, s3, s4, s5, s6};
s1 = {1}, s2 = {2}, s3 = {3}, s4 = {1, 2}, s5 = {1, 3}, s6 = {2, 3};
p(s1) = 1/9, p(s2) = 1/9, p(s3) = 1/9, p(s4) = 2/9, p(s5) = 2/9,

p(s6) = 2/9.

Per stimare la media μy, si consideri pi lo stimatore

μ̂ =
3
5

∑
i∈s

yi. (13.48)
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Tabella 13.1 Valori dello stimatore μ̂ per i campioni s1, . . . , s6

Campione Probabilità μ̂

{1} 1/9 3
5
y1

{2} 1/9 3
5
y2

{3} 1/9 3
5y3

{1, 2} 2/9 3
5
(y1 + y2)

{1, 3} 2/9 3
5
(y1 + y3)

{2, 3} 2/9 3
5 (y2 + y3)

È immediato verificare che lo stimatore μ̂ è corretto. Con pochi facili
calcoli, inoltre, si ha che:

E[μ̂2] =
1
9
× 9

25
× (y2

1 + y2
2 + y2

3) +
2
9
× 9

25
× (2y2

1 + 2y2
2 + 2y2

3 + 2y1y2 + 2y1y3 + 2y2y3)

=
1
9

{
27
25

(y2
1 + y2

2 + y2
3) +

18
25

(y1 + y2 + y3)2
}

=
27

9 × 25
(y2

1 + y2
2 + y2

3) +
18
25

μ2
y

da cui si ottiene

E[μ̂2]
μ2

y

=
27
25

y2
1 + y2

2 + y2
3

(y1 + y2 + y3)2
+

18
25

.

In base alla (13.45), bisogna ora minimizzare il termine

g(y1, y2, y3) =
E[μ̂2]

μ2
y

=
27
25

y2
1 + y2

2 + y2
3

(y1 + y2 + y3)2
+

18
25

. (13.49)

Derivando la (13.49) rispetto a y1, y2, y3 e annullando tali derivate, si ha

∂g

∂y1
=

54
25

{
y1 (y1 + y2 + y3)2 − (y1 + y2 + y3) (y2

1 + y2
2 + y2

3)
}

(y1 + y2 + y3)4
= 0

∂g

∂y2
=

54
25

{
y2 (y1 + y2 + y3)2 − (y1 + y2 + y3) (y2

1 + y2
2 + y2

3)
}

(y1 + y2 + y3)4
= 0 (13.50)

∂g

∂y3
=

54
25

{
y3 (y1 + y2 + y3)2 − (y1 + y2 + y3) (y2

1 + y2
2 + y2

3)
}

(y1 + y2 + y3)4
= 0
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e l’unica soluzione delle (13.50) è, come facilmente si vede,

y1 = y2 = y3 = μy. (13.51)

Dalla (13.51) si ricava che

min
E[μ̂2]
μ2

y

=
27
25

3 μ2
y

9 μ2
y

+
18
25

=
27
25

da cui si ottiene, in base alla (13.45)

c∗ =
25
27

.

Usando infine la (13.47), si conclude che lo stimatore

μ̂hs∗ =
25
27

μ̂

ha errore quadratico medio più piccolo di μ̂. ��

Esempio 13.8. Si consideri una popolazione finita di N = 3 unità, di cui
si deve stimare la media μy = (y1 + y2 + y3)/3. Il disegno campionario è di
seguito specificato:

S = {s1, s2};
s1 = {1}, s2 = {2, 3};

p(s1) = 1/2, p(s2) = 1/2.

Per stimare la media μy, si consideri poi lo stimatore

μ̂ =
2
3

∑
i∈s

yi

=
{

2
3 y1 se s = s1
2
3 (y2 + y3) se s = s1 .

(13.52)

Si vede subito che lo stimatore (13.52) è corretto. Inoltre, si ha

E[μ̂2] =
1
2
× 4

9
× y2

1 +
1
2
× 4

9
× (y2 + y3)2

=
2
9
{
y2
1 + (y2 + y3)3

}
.

Il rapporto E[μ̂2]/μ2
y raggiunge il suo valore minimo, pari a 1, per

y1 = 3
2

μy, y2 = 3
4

μy, y3 = 3
4

μy
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cos̀ı che

c∗ =
1

min(E[μ̂2]/μ2
y)

= 1.

Pertanto, usando la (13.47) si ha che lo stimatore μ̂hs∗ = c∗μ̂ coincide
con μ̂. La tecnica di contrazione, in questo caso, non riesce a migliorare lo
stimatore μ̂. ��

Esempio 13.9. Consideriamo un disegno semplice senza ripetizione di am-
piezza n e supponiamo di voler stimare la media della popolazione. L’ap-
plicazione della tecnica di contrazione alla media campionaria ys porta alla
minimizzazione della seguente quantità

E[y2
s]

μ2
y

=
V (ys) + μ2

y

μ2
y

= 1 +
V (ys)

μ2
y

= 1 +

(
1
n − 1

N

)
S2

y

μ2
y

(13.53)

dove S2
y è la varianza corretta della popolazione. Ora, qualunque sia μy, se

y1 = y2 = · · · = yN = μy si ha S2
y = 0. Quindi, il valore minimo della (13.53) è

min
YN∈IRN

E[y2
s]

μ2
y

= 1.

Ne consegue, per la (13.45), che c∗ = 1. La tecnica di contrazione, in questo
caso, non riesce a migliorare la media campionaria. ��

Esempio 13.10. Consideriamo un disegno semplice con ripetizione di am-
piezza n e supponiamo di voler stimare la media μy della popolazione. Co-
me stimatore “iniziale” di μy consideriamo la media campionaria delle unità
distinte introdotta nell’Esempio 13.5:

yr(s) =
1

ν(s)

∑
i∈r(s)

yi.

Come visto, yr(s) è un stimatore corretto di μy.
L’applicazione della tecnica di contrazione a yr(s) porta alla minimizzazio-

ne della seguente quantità:

E[y2
r(s)]

μ2
y

=
V (yr(s)) + μ2

y

μ2
y

= 1 +
V (yr(s))

μ2
y

. (13.54)
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Qualunque sia la media μy della popolazione, se y1 = y2 = · · · = yN = μy

si ha yr(s) = μy, e quindi V (ys) = 0. Ne consegue che il valore minimo della
(13.54) è 1:

min
YN∈IRN

E[y2
r(s)]

μ2
y

= 1

e che, per la (13.45), deve essere c∗ = 1. La tecnica di contrazione non riesce
dunque a migliorare la media campionaria delle unità distinte. ��

Esercizi

13.1. Provare che se una statistica U induce una partizione più fine di quella
indotta dalla statistica T , allora è possibile esprimere T come funzione di U .

Suggerimento. Se la partizione indotta da U è più fine di quella indotta da T , allora
T assume lo stesso valore per tutti gli y (s) ∈ U−1(u), per ciascun u ∈ U . Detto tu

tale valore, basta porre f(u) = tu, u ∈ U , e osservare che T = f(U).

13.2. Con riferimento all’Esempio 13.2, provare che la statistica V = v(y(s))
definita da

v(y(s1)) = v(y(s2)) = v(y(s4)) = 0; v(y(s3)) = v(y(s6)) = 1; v(y(s5)) = 2

è sufficiente minimale.

13.3. Data una popolazione finita IN = {1, 2, . . . , N} di N unità, si suppon-
ga fissato a priori per ogni unità un numero pi > 0, con p1 +p2 + · · ·+pN = 1.
Si consideri un disegno campionario (ppswor) (S, p(·)), in cui S è l’insieme
delle disposizioni senza ripetizione di classe 2 delle unità della popolazione;
ogni campione s ∈ S è quindi rappresentabile come coppia ordinata (i1, i2),
dove i1 e i2 sono rispettivamente la prima e la seconda unità del campione
(i1 �= i2). Il campione s = (i1, i2) ha probabilità p(s) = pi1pi2/(1 − pi1). In
sostanza, la prima unità del campione è selezionata con probabilità pi1 e la
seconda, data la prima, con probabilità pi2/(1 − pi1).

a. Verificare che t1 = yi1/(Npi1) è uno stimatore corretto della media della
popolazione.

b. Se r(s) = {i, j}, mostrare che

E[t1 |y(r(s))] =
1
N

{
yi

pi

1 − pj

2 − pi − pj
+

yj

pj

1 − pi

2 − pi − pj

}
.

13.4. Con riferimento all’Esercizio 13.3, si ponga

t2 =
1
N

(
yi1 + yi2

1 − pi1

pi2

)
.
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a. Verificare che t = (t1 + t2)/2 è uno stimatore corretto della media della
popolazione.

b. Se r(s) = {i, j}, mostrare che

E[t |y(r(s))] =
1
N

{
yi

pi

1 − pj

2 − pi − pj
+

yj

pj

1 − pi

2 − pi − pj

}
.

13.5. Data una popolazione finita IN = {1, 2, . . . , N} di N unità, si consideri
il disegno campionario (S, p(·)) qui sotto specificato.

– S è l’insieme delle disposizioni senza ripetizioni di classe 3 delle unità della
popolazione; ogni campione s ∈ S è rappresentabile come terna ordinata
(i1, i2, i3), dove i1, i2, i3 sono rispettivamente la prima, la seconda, la
terza unità del campione (i1 �= i2 �= i3);

– il generico campione s = (i1, i2, i3) ha probabilità p(s) = 1
N(N−1)(N−2)

.
a. Provare che

t = 0.2yi1 + 0.5yi2 + 0.2yi3

è uno stimatore corretto della media della popolazione.
b. Provare che la Rao-Blackwellizzazione di t è lo stimatore media cam-

pionaria.

13.6. Data una popolazione finita IN = {1, 2, . . . , N} di N unità, si suppon-
ga assegnato a priori per ogni unità un numero pi > 0, con p1+p2+· · ·+pN =
1. Si consideri il disegno campionario (ppswr) (S, p(·)), qui sotto specificato.

– S = IN × IN × IN è l’insieme delle disposizioni con ripetizione di classe 3
delle unità della popolazione; ogni campione s ∈ S è quindi rappresentabile
come terna ordinata (i1, i2, i3), dove i1, i2, i3 sono rispettivamente la
prima, la seconda, la terza unità del campione (i1, i2, i3 ∈ IN).

– Il campione s = (i1, i2, i3) ha probabilità p(s) = pi1pi2pi3 . In pratica ven-
gono effettuate tre “prove indipendenti”, in ognuna delle quali si seleziona
un’unità campionaria in modo tale che l’unità i ha probabilità pi di essere
selezionata.
a. Verificare che lo stimatore (di Hansen-Hurwitz)

tHH =
1

3N

{
yi1

pi1

+
yi2

pi2

+
yi3

pi3

}
è uno stimatore corretto della media della popolazione.

b. Se r(s) = {i, j}, mostrare che

E[tHH |y(r(s))] =
1

3N

{
yi

pi
+

yj

pj
+

yi + yj

pi + pj

}
.

Suggerimento. r(s) = {i, j} significa che il campione è l’uno o l’altro tra (i, i, j),
(i, j, i), (j, i, i) (ciascuno ha probabilità p2

i pj), (i, j, j), (j, i, j), (j, j, i) (ciascuno
ha probabilità pip

2
j).
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13.7. Verificare la relazione (13.27).

Suggerimento. Se T è sufficiente completa, vi può essere solo uno stimatore corretto
di θ che è funzione di T . Inoltre, una statistica sufficiente completa è anche minimale.
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Stimatori lineari della media della popolazione

14.1 Stimatori lineari: aspetti introduttivi

In questo capitolo ci si occuperà principalmente dei problemi di stima della
media della popolazione, μy =

∑N
i=1 yi/N . Si accennerà inoltre, molto bre-

vemente, anche al problema della stima del totale, θ =
∑N

i=1 yi = Nμy. A
meno che non venga espressamente detto il contrario, nel seguito si assumerà
sempre che il disegno campionario sia non ordinato e senza ripetizioni. In caso
contrario è sufficiente passare alla riduzione del disegno stesso.

La classe fondamentale di stimatori a cui si farà riferimento è quella de-
gli stimatori lineari. L’idea di fondo su cui si basano gli stimatori lineari è
semplicissima: poiché la media della popolazione è una combinazione lineare
delle yi per tutte le unità della popolazione, si adotta come sua stima una
combinazione lineare delle yi per le sole unità campionarie. Uno stimatore (di
μy) è lineare se può essere scritto nella forma

t = c0s +
1
N

∑
i∈s

cisyi. (14.1)

Il termine c0s è l’intercetta dello stimatore, mentre i numeri cis, i ∈ s, rap-
presentano i pesi delle unità campionarie nello stimatore (14.1). In termini
intuitivi, il peso dell’unità i può essere pensato come il numero di unità della
popolazione “rappresentate” dall’unità i del campione. I pesi cis delle unità
campionarie i ∈ s possono dipendere in generale sia dalle unità campionarie
che dal campione s, nel senso che una stessa unità i può ricevere un peso
diverso a seconda del campione s a cui appartiene. L’intercetta c0s può in
generale dipendere dal campione s selezionato.

Uno stimatore (di μy) è lineare omogeneo se è lineare con intercetta nulla,
ossia se può essere scritto come

t =
1
N

∑
i∈s

cisyi. (14.2)

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 14, © Springer-Verlag Italia 2012
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Come in precedenza accennato, se si confrontano gli stimatori (14.1), (14.2)
con il parametro della popolazione da stimare

μy =
1
N

N∑
i=1

yi (14.3)

si vede che, prescindendo dalla eventuale presenza dell’intercetta, la (14.1), la
(14.2) e la (14.3) hanno struttura del tutto simile. La differenza sostanziale
è che in (14.3) ogni unità della popolazione compare con un peso pari a 1,
mentre in (14.1) e (14.2) ogni unità del campione compare con un peso cis,
i ∈ s. Questa osservazione permette di fornire un’interpretazione euristica dei
pesi che compaiono negli stimatori (14.1) e (14.2): cis si può pensare come il
numero di unità della popolazione rappresentate dall’unità i del campione s.

Gli stimatori (14.1) e (14.2) possono anche essere scritti introducendo gli
indicatori di presenza/assenza delle unità nel campione. Posto

δ(i; s) =
{

1 se i ∈ s
0 se i /∈ s

uno stimatore lineare si può scrivere come

t = c0s +
1
N

N∑
i=1

cisδ(i; s)yi (14.4)

mentre uno stimatore lineare omogeneo si può scrivere come

t =
1
N

N∑
i=1

cisδ(i; s)yi. (14.5)

Esempio 14.1 (Media campionaria). Sia IN = {1, . . . , N} una popola-
zione finita di numerosità N , e si consideri un disegno (S, p(·)), non ordinato
e senza ripetizioni. Detto n(s) il numero di unità nel campione s, la media
campionaria (introdotta nel caso di disegno ssr) assume la forma

ys =
1

n(s)

∑
i∈s

yi

=
1
N

∑
i∈s

N

n(s)
yi (14.6)

da cui si desume che si tratta di uno stimatore lineare omogeneo di μy. I pesi
delle unità sono tutti uguali, e pari a N/n(s). Questo tipo di peso è supportato
da una semplice intuizione: ogni unità del campione “rappresenta” N/n(s)
unità della popolazione. Chiaramente, in questo caso i pesi dipendono dal
campione s, ma non dalle unità i.
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Se il disegno campionario è ad ampiezza costante (n(s) = n, come accade
ad es. nel disegno ssr) la (14.6) si riduce a

1
n

∑
i∈s

yi.

In questo caso speciale i pesi campionari sono tutti pari a N/n, e non dipen-
dono né dalle unità i, né dal campione s. ��

Esempio 14.2 (Stimatore per quoziente). Data una popolazione finita
IN = {1, . . . , N} di numerosità N , assumiamo che siano note le modalità xi

assunte da una variabile X su tutte le unità della popolazione; di conseguenza,
è anche nota la media μx =

∑N
i=1 xi/N di X nella popolazione. Si consideri

un disegno (S, p(·)), non ordinato e senza ripetizioni, e si indichi al solito
con n(s) il numero di unità nel campione s. Lo stimatore per quoziente di μy

assume la forma

μ̂q =
ys

xs
μx (14.7)

dove ys è la media campionaria della yi e xs è la media campionaria delle xi.
Se si riscrive lo stimatore per quoziente come

μ̂q =
1
N

∑
i∈s

Nμx

n(s)xs
yi per ciascun i ∈ s (14.8)

si vede subito che si tratta di uno stimatore lineare omogeneo di μy. I pesi
delle unità campionarie sono tutti uguali, e pari a

cis =
Nμx

n(s)xs
. (14.9)

Essendo Nμx l’ammontare del carattere ausiliario X nella popolazione e
n(s)xs =

∑
i∈s xi l’ammontare di X nel campione, si evince subito la logi-

ca alla base dei pesi (14.9). Ogni unità del campione riceve un peso tanto
più grande quanto più grande è l’ammontare di X nella popolazione rispetto
all’ammontare di X nel campione.

Come messo in evidenza nel Capitolo 6, lo stimatore per quoziente è di-
storto se il disegno utilizzato è di tipo semplice senza ripetizione. Ciò non
esclude che usato con altri disegni possa essere corretto. In particolare, se si
usa il disegno di Midzuno-Lahiri (cfr. Cap. 12) con pi = xi/(Nμx), si vede
facilmente che μ̂q è uno stimatore corretto di μy (cfr. Esercizio 14.2). ��

Esempio 14.3 (Stimatore per regressione). Consideriamo ancora la si-
tuazione dell’Esempio 14.2. Con l’usuale simbologia, lo stimatore per regres-
sione di μy assume la forma

μ̂reg = ys − b̂y/x(xs − μx) (14.10)
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dove b̂y/x è il coefficiente di regressione campionario di Y rispetto a X :

b̂y/x =
ŝxy

ŝ2
x

=
1

n−1

∑
i∈s(xi − xs) (yi − ys)

1
n−1

∑
i∈s(xi − xs)2

.

È immediato verificare (Esercizio 14.1) che lo stimatore per regressione
può essere riscritto nella forma

μ̂reg =
1
N

∑
i∈s

N

{
1

n(s)
−
∑

i∈s(xi − xs)(xs − μx)∑
i∈s(xi − xs)2

}
yi (14.11)

da cui si deduce che si tratta di uno stimatore lineare omogeneo di μy con
pesi

cis = N

{
1

n(s)
−
∑

i∈s(xi − xs)(xs − μx)∑
i∈s(xi − xs)2

}
. ��

Il valore atteso dello stimatore (14.1) è studiato nella seguente proposizio-
ne.

Proposizione 14.1. Sia t è uno stimatore lineare. Si ha allora

E[t] = E[c0s] +
1
N

N∑
i=1

E[cis δ(i; s)] yi. (14.12)

Inoltre, t è corretto se e solo se

E[c0s] = 0; E[cis δ(i; s)] = 1 per ciascun i = 1, . . . , N. (14.13)

Dimostrazione. Per la dimostrazione della (14.12) basta usare l’espressione
(14.4), dalla quale si ottiene subito la (14.12).

Per quanto riguarda la (14.13), osserviamo in primo luogo che t è corretto
se e solo se

E[c0s] +
1
N

N∑
i=1

E[cis δ(i; s)]yi =
1
N

N∑
i=1

yi per ciascun Y N ∈ ΩN

ovvero se e solo se

E[c0s] +
1
N

N∑
i=1

(E[cis δ(i; s)] − 1)yi = 0 per ciascun Y N ∈ ΩN . (14.14)

Chiaramente, la (14.14) può aver luogo se e solo se

E[c0s] = 0; E[cis δ(i; s)] − 1 = 0 per ciascun i = 1, . . . , N

ossia se e solo se vale la (14.13). ��
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In chiusura, qualche osservazione sul problema della stima dell’ammontare
θ =

∑
yi = Nμy del carattere Y nella popolazione. Se t è uno stimatore lineare

di μy, allora θ̂ = Nt è uno stimatore lineare di θ. Le proprietà di θ̂ possono
facilmente ottenersi a partire da quelle di t. In particolare, si vede subito che
E[θ̂] = NE[t], e che θ̂ = Nt è uno stimatore corretto dell’ammontare se e solo
se t è uno stimatore corretto della media μy.

14.2 Un sempreverde del campionamento: lo stimatore
di Horvitz-Thompson

14.2.1 Definizione e proprietà di base

Lo stimatore di Horvitz-Thompson (cfr. Horvitz e Thompson (1952)) è
probabilmente il più importante tra gli stimatori lineari della media della
popolazione. Esso è definito come:

tHT =
1
N

∑
i∈s

1
πi

yi (14.15)

dove πi è la probabilità di inclusione (del primo ordine) dell’unità i.
Dalla (14.15) è facile desumere alcune proprietà elementari di tHT . In

primo luogo, si tratta di uno stimatore lineare omogeneo di μy. I pesi sono
pari a

cis =
1
πi

per ciascun s ∈ S e i = 1, . . . , N (14.16)

e quindi dipendono solo dalle unità, ma non dai campioni. Una stessa unità,
in campioni diversi, riceve sempre lo stesso peso. È anche da rimarcare che
il peso dell’unità i è il reciproco della sua probabilità di inclusione, ovvero
il reciproco della probabilità che tra le unità del campione vi sia i. Il peso
1/πi della generica unità i è spesso denominato coefficiente di riporto all’uni-
verso, ed è inversamente proporzionale alla probabilità di selezione dell’unità
i. Ciò significa che se per esempio πi = 0.02 allora 1/πi = 50, e nello sti-
matore (14.16) è come se l’unità i rappresentasse 50 unità della popolazione.
Tale ponderazione delle osservazioni campionarie propria dello stimatore di
Horvitz-Thompson rappresenta un correttivo della diversa probabilità che le
varie unità hanno di figurare nel campione. In linea di principio, tendono a
essere più rappresentate nel campione le modalità yi delle unità i che possie-
dono una probabilità di inclusione più alta, e ad essere meno rappresentate
nel campione le modalità yi delle unità i che possiedono una probabilità di in-
clusione più bassa. I pesi dello stimatore di Horvitz-Thompson rappresentano
una forma di “bilanciamento” di questo fatto.

Le proprietà più semplici dello stimatore di Horvitz-Thompson sono ri-
portate nella successiva Proposizione 14.2. Prima di enunciarla (e dimostrar-
la) osserviamo che, esattamente come per gli stimatori lineari del paragrafo
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precedente, lo stimatore tHT si può scrivere nella forma

tHT =
1
N

N∑
i=1

1
πi

δ(i; s) yi (14.17)

dove δ(i; s) è il solito indicatore di presenza/assenza dell’unità i nel campione.

Proposizione 14.2. Se il disegno campionario (S, p(·)) è tale che πi > 0 per
tutte le unità della popolazione, lo stimatore tHT (14.15) possiede le seguenti
proprietà:

– è uno stimatore corretto della media della popolazione:

E[tHT ] = μy qualunque sia Y N ∈ ΩN ; (14.18)

– è l’unico stimatore lineare omogeneo corretto di μy i cui pesi dipendono
solo dall’unità i ma non dal campione s (ovvero sono tali che cis = ci);

– la sua varianza assume la forma

V (tHT ) =
1

N2

N∑
i=1

N∑
j=1

yi

πi

yj

πj
Δij (14.19)

con

Δij = πij − πiπj; i, j = 1, . . . , N. (14.20)

Dimostrazione. Per la (14.18) basta osservare che

E[tHT ] = E

[
1
N

N∑
i=1

1
πi

δ(i; s) yi

]

=
1
N

N∑
i=1

1
πi

E[δ(i; s)] yi

=
1
N

N∑
i=1

1
πi

πiyi

= μy. (14.21)

Per quanto riguarda la proprietà di unicità dello stimatore di Horvitz-
Thompson, uno stimatore lineare omogeneo della forma

t =
1
N

N∑
i=1

ci δ(i; s) yi (14.22)
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è corretto se e solo se

1
N

N∑
i=1

yi = E [t]

=
1
N

E

[
N∑

i=1

ci δ(i; s) yi

]

=
1
N

N∑
i=1

ci E[δ(i; s)] yi

=
1
N

N∑
i=1

ci πi yi. (14.23)

Ma la (14.23) può aver luogo se e solo se

ci πi = 1 per ciascun i = 1, . . . , N (14.24)

ossia se e solo se c1 = 1/πi. In questo caso lo stimatore (14.22) si riduce allo
stimatore di Horvitz-Thompson di μy.

Infine, per quanto riguarda la varianza dello stimatore di Horvitz-Thomp-
son, si ha

V (tHT ) = V

(
1
N

N∑
i=1

1
πi

δ(i; s) yi

)

=
1

N2

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

(
yi

πi

)2

V (δ(i; s)) +
N∑

i=1

N∑
j=1

j �=i

yi

πi

yj

πj
C(δ(i; s), δ(j; s))

⎫⎪⎪⎬⎪⎪⎭
=

1
N2

⎧⎪⎪⎨⎪⎪⎩
N∑

i=1

(
yi

πi

)2

(πi − π2
i ) +

N∑
i=1

N∑
j=1

j �=i

yi

πi

yj

πj
(πij − πiπj)

⎫⎪⎪⎬⎪⎪⎭
=

1
N2

N∑
i=1

N∑
j=1

yi

πi

yj

πj
(πij − πiπj). ��

Se il disegno campionario è ad ampiezza effettiva costante, si può anche
fornire un’espressione alternativa della varianza dello stimatore di Horvitz-
Thompson della media della popolazione, utile soprattutto per stimare la va-
rianza stessa. Formalmente vale la seguente proposizione (cfr. Yates e Grundy
(1953)).
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Proposizione 14.3. Se il disegno campionario è ad ampiezza effettiva co-
stante n, la varianza dello stimatore tHT si può scrivere come:

V (tHT ) =
1

2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2

(πiπj − πij)

= − 1
2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2

Δij (14.25)

con Δij dato dalla (14.20).

Dimostrazione. È sufficiente osservare che

1
2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2

(πiπj − πij)

=
1

N2

N∑
i=1

N∑
j=1

(πij − πiπj)
yi

πi

yj

πj
− 1

N2

N∑
i=1

N∑
j=1

(πij − πiπj)
(

yi

πi

)2

=
1

N2

N∑
i=1

N∑
j=1

(πij − πiπj)
yi

πi

yj

πj
− 1

N2

N∑
i=1

(
yi

πi

)2 N∑
j=1

(πij − πiπj)

=
1

N2

N∑
i=1

N∑
j=1

(πij − πiπj)
yi

πi

yj

πj

in quanto

N∑
j=1

(πij − πiπj) =
N∑

j=1

πij − πi

N∑
j=1

πj

= nπi − nπi

= 0. ��

14.2.2 Costruzione dello stimatore di
Horvitz-Thompson per disegni campionari “semplici”

Lo stimatore di Horvitz-Thompson comprende come casi particolari molti
degli stimatori elementari studiati nei capitoli precedenti.

Esempio 14.4 (Media campionaria nel disegno ssr). Data una popola-
zione IN = {1, . . . , N} di numerosità N , supponiamo di selezionare da essa
un campione s di numerosità n mediante disegno ssr. Come già visto nel Ca-
pitolo 12, le probabilità di inclusione del primo ordine sono πi = n/N per
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tutte le unità della popolazione. Lo stimatore di Horvitz-Thompson assume
pertanto la forma:

tHT =
1
N

∑
i∈s

1
n/N

yi

=
1
n

∑
i∈s

yi

= ys

ossia si riduce all’usuale media campionaria. ��

Esempio 14.5 (Disegno campionario stratificato). Supponiamo che la
popolazione sia suddivisa in M strati, rispettivamente di N1, . . ., NM unità
(elementari). Indichiamo poi, al solito, con sg (g = 1, . . . , M) il sottocam-
pione di ng unità (elementari) selezionate dallo strato g-mo (g = 1, . . . , M)
mediante disegno ssr. Le probabilità di inclusione del primo ordine, calcolate
nel Capitolo 12, sono eguali a π(g)i = ng/Ng per ciascuna unità dello strato
g-mo, e per tutti gli strati g (g = 1, . . . , M).

Lo stimatore di Horvitz-Thompson assume, con la notazione usata nel caso
stratificato, la forma

tHT =
1
N

M∑
g=1

∑
i∈sg

1
π(g)i

ygi

=
M∑

g=1

Ng

N

⎧⎨⎩ 1
ng

∑
i∈sg

ygi

⎫⎬⎭
=

M∑
g=1

wgyg

= μ̂str

ovvero si riduce al “solito” stimatore introdotto nel Capitolo 7. ��

Esempio 14.6 (Disegno campionario a grappolo “semplice”). Suppo-
niamo che la popolazione sia composta da M grappoli, rispettivamente di
N1, . . ., NM unità elementari. Nel caso di disegno a grappolo (con uguali
probabilità di selezione dei grappoli), la probabilità di inclusione del primo
ordine dell’unità elementare i del grappolo g, calcolata nel Capitolo 12, è pari
a π(g)i = m/M , dove m è il numero di grappoli selezionato (mediante disegno
ssr).

Detto, come al solito, gm il campione di grappoli selezionato, i dati sta-
tistici osservati saranno {ygi; i = 1, . . . , Ng ; g ∈ gm}. Lo stimatore di
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Horvitz-Thompson assume pertanto la forma

tHT =
1
N

∑
g∈gm

Ng∑
i=1

1
π(g)i

ygi

=
1
m

∑
g∈gm

M
Ng

N

⎧⎨⎩ 1
Ng

Ng∑
i=1

ygi

⎫⎬⎭
=

1
m

∑
g∈gm

Mwgμyg

= μ̂gr

e quindi è null’altro che lo stimatore introdotto nel Capitolo 9. ��

Esempio 14.7 (Disegno campionario a due stadi semplici). Supponia-
mo ancora che la popolazione sia composta da M grappoli, rispettivamente di
N1, . . ., NM unità elementari, e che il disegno di selezione delle unità sia a due
stadi semplici. La probabilità di inclusione del primo ordine dell’unità elemen-
tare i del grappolo g, calcolata nel Capitolo 12, è pari a π(g)i = m/M ng/Ng,
dove m è il numero di grappoli selezionato (mediante disegno ssr) al primo
stadio, e ng è il numero di unità elementari selezionate al secondo stadio dal
grappolo g-mo, a sua volta selezionato al primo stadio.

Detti, come al solito, gm il campione di grappoli selezionato al primo
stadio, e sg, g ∈ gm i campioni di unità elementari selezionate al secondo stadio
di campionamento, i dati statistici osservati saranno {ygi; i ∈ sg; g ∈ gm}.
Lo stimatore di Horvitz-Thompson assume quindi la forma:

tHT =
1
N

∑
g∈gm

∑
i∈sg

1
π(g)i

ygi

=
1
m

∑
g∈gm

M
Ng

N

⎧⎨⎩ 1
ng

∑
i∈sg

ygi

⎫⎬⎭ =
1
m

∑
g∈gm

Mwgyg

= μ̂2st

e quindi è lo stimatore introdotto nel Capitolo 11. ��

14.2.3 Stima della varianza dello stimatore di
Horvitz-Thompson: risultati esatti

Il problema della stima della varianza dello stimatore di Horvitz-Thompson è
un problema di notevole importanza, anche se purtroppo, per molti aspetti,
non possiede una soluzione del tutto soddisfacente. Una prima idea per co-
struire uno stimatore non distorto della (14.19) consiste nell’usare idee simili
a quelle già utilizzate per la stima della media della popolazione. Formalmen-
te, la media della popolazione μy =

∑
i yi/N è null’altro che una funzione
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lineare di y1, . . ., yN ; per stimarla si è fatto ricorso ad una funzione lineare
dei dati campionari. La varianza (14.19) è una funzione quadratica di y1, . . .,
yN ; per stimarla è allora naturale utilizzare una funzione quadratica dei dati
campionari. Nella successiva Proposizione 14.4 viene costruito lo stimatore di
V (tHT ) originariamente proposto in Horvitz e Thompson (1952). La condi-
zione essenziale su cui si basa la Proposizione 14.4 è che tutte le coppie i, j di
unità distinte abbiano probabilità di inclusione del secondo ordine positiva. Se
πij = 0, nessun campione conterrà simultaneamente le unità i e j, e quindi non
sarà possibile costruire un stimatore corretto di V (tHT ). È quello che accade,
per esempio, nel disegno sistematico, per il quale si rinvia all’Esercizio 14.3.

Proposizione 14.4. Sotto la condizione πij > 0 per ogni coppia di unità
i,j (condizione di misurabilità del disegno) uno stimatore non distorto della
varianza di uno stimatore lineare è il seguente

V̂HT (tHT ) =
1

N2

∑
i∈s

∑
j∈s

yi

πi

yj

πj

Δij

πij
. (14.26)

Dimostrazione. Basta osservare che

E[V̂HT (tHT )] =
1

N2
E

⎡⎣∑
i∈s

∑
j∈s

yi

πi

yj

πj

Δij

πij

⎤⎦
=

1
N2

E

⎡⎣ N∑
i=1

N∑
j=1

yi

πi

yj

πj

Δij

πij
δ(i; s)δ(j; s)

⎤⎦
=

1
N2

N∑
i=1

N∑
j=1

yi

πi

yj

πj

Δij

πij
E[δ(i; s)δ(j; s)]

=
1

N2

N∑
i=1

N∑
j=1

yi

πi

yj

πj

Δij

πij
πij

= V (tHT ) . (14.27)

��

Lo stimatore (14.26), pur essendo corretto, ha una caratteristica poco in-
vidiabile: può assumere valori negativi. Per alcuni particolari valori yi, e per
qualche particolare campione s, potrebbe aversi V̂HT (tHT ) < 0.

Esempio 14.8. Si consideri una popolazione finita di N = 3 unità, dalla
quale si seleziona un campione di n = 2 unità. Il disegno campionario è qui
sotto specificato:

S = {{1, 2}, {1, 3}, {2, 3}}
p({1, 2}) = 0.1, p({1, 3}) = 0.45, p({2, 3}) = 0.45.
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Le probabilità di inclusione del primo e del secondo ordine sono rispettiva-
mente eguali a:

π1 = 0.55, π2 = 0.55, π3 = 0.9; π12 = 0.1, π13 = 0.45, π23 = 0.45.

Se il campione selezionato è {1, 2}, lo stimatore (14.26) è eguale a

V̂HT (tHT ) =
1
9

{
y2
1

π2
1

π1 − π2
1

π1
+

y2
2

π2
2

π2 − π2
2

π2
+ 2

y1

π1

y2

π2

π12 − π1π2

π12

}
=

1
9

{
y2
1

(
1
π2

1

− 1
π1

)
+ y2

2

(
1
π2

2

− 1
π2

)
+ 2y1y2

(
1

π1π2
− 1

π12

)}
=

1
9
{
1.49 y2

1 + 1.49 y2
1 − 13.38 y1y2

}
. (14.28)

In particolare, per y1 = y1 = 9 la (14.28) è pari a –95.22. ��

A peggiorare le cose, c’è anche il fatto che in generale non è agevole for-
nire una condizione sufficiente sul disegno campionario che assicuri la non
negatività dello stimatore (14.26).

Per le ragioni sopra menzionate, è opportuno cercare di costruire uno sti-
matore alternativo a (14.26). Un approccio promettente consiste nell’utilizzare
l’espressione (14.25), che ovviamente vale solo per disegni ad ampiezza effet-
tiva costante. Ciò porta allo stimatore di Yates-Grundy (14.29) (cfr. Yates e
Grundy (1953)).

Proposizione 14.5. Se il disegno campionario è a dimensione effettiva co-
stante, e se πij > 0 per ogni coppia i, j di unità distinte uno stimatore corretto
di V (tHT ) (14.25) è dato da

V̂Y G(tHT ) =
1

2N2

∑
i∈s

∑
j∈s

(
yi

πi
− yj

πj

)2
πiπj − πij

πij
. (14.29)

Dimostrazione. La correttezza dello stimatore (14.29) si dimostra immedia-
tamente osservando che:

E[V̂Y G(tHT )] = E

⎡⎣ 1
2N2

∑
i∈s

∑
j∈s

(
yi

πi
− yj

πj

)2
πiπj − πij

πij

⎤⎦
=

1
2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2
πiπj − πij

πij
E[δ(i; s)δ(j; s)]

=
1

2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2
πiπj − πij

πij
. ��
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L’espressione (14.29) dello stimatore di Yates-Grundy di V (tHT ) suggeri-
sce una semplice condizione sufficiente che ne garantisce la non negatività. Se:

πij � πiπj per tutte le coppie di unit à distinte
i, j della popolazione (14.30)

allora lo stimatore di Yates-Grundy (14.29) è sempre non negativo.

Esempio 14.9. Si consideri ancora l’Esempio 14.8, in cui V̂HT (tHT ) può
essere negativo. Essendo

π1π2 = 0.3025, π1π3 = π2π3 = 0.495

la condizione (14.30) è soddisfatta, e lo stimatore V̂Y G(tHT ) assume solo valori
non negativi. ��

14.2.4 Stima della varianza dello stimatore di
Horvitz-Thompson: risultati approssimati

I metodi di approssimazione delle probabilità di inclusione del secondo ordine
permettono di fornire utili approssimazioni della varianza dello stimatore di
Horvitz-Thompson, cos̀ı come utili espressioni per suoi stimatori approssimati.

Se per le probabilità di inclusione del secondo ordine si usa la più semplice
approssimazione sviluppata nella Sezione 12.7

πij ≈ πi πj

(
1 − (1 − πi) (1 − πj)

d

)
si ha, sempre in via approssimata,

Δij ≈ −πi (1 − πi)πj (1 − πj)
d

con d =
∑

i πi (1 − πi). Pertanto, la (14.25) si scrive, in via approssimata,
come

V (tHT ) ≈ 1
2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2
πi (1 − πi)πj (1 − πj)

d
. (14.31)

Posto

A =
N∑

i=1

yi
1 − πi

d

è facile verificare (Esercizio 14.16) che
N∑

i=1

(
yi

πi
− A

)2
πi (1 − πi)

d

=
1
2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2
πi (1 − πi)

d

πj (1 − πj)
d

(14.32)
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da cui discende, in forza della (14.31), che

V (tHT ) ≈ 1
N2

N∑
i=1

(
yi

πi
− A

)2

πi (1 − πi). (14.33)

La costruzione di uno stimatore approssimativamente corretto della (14.33)
procede senza particolari difficoltà. Tenendo infatti conto che stimatori cor-
retti di

∑
i yi (1 − πi) e di

∑
i π1(1 − πi) sono rispettivamente∑

i∈s

yi

πi
(1 − πi),

∑
i∈s

(1 − πi)

come stimatore (distorto ma approssimativamente corretto) di A si può far
riferimento al seguente

Â =
∑
i∈s

yi

πi
(1 − πi)

/∑
i∈s

(1 − πi). (14.34)

Come stimatore (distorto ma approssimativamente corretto) dell’espressione
approssimata (14.33) si può quindi usare il seguente

V̂AP1(tHT ) =
1

N2

∑
i∈s

(
yi

πi
− Â

)2

(1 − πi) (14.35)

con Â dato dalla (14.34). Lo stimatore (14.35) è sostanzialmente equivalente
ad uno proposto da Deville (vds. Tillé (2006), p. 141).

Considerazioni simili si possono fare se si usa l’approssimazione πij ≈ πa
ij = πi πj −

ci cj (in genere migliore della precedente), sempre sviluppata nella Sezione 12.7.
Essendo Δij ≈ δa

ij = −ci cj , e posto C = c1 + · · · + cN , si ha anzitutto

V (tHT ) ≈ 1

2N2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2

ci cj

=
1

2N2

N∑
i=1

N∑
j=1

(
C yi

πi
− C yj

πj

)2

ci cj (14.36)

da cui, posto

B =

N∑
i=1

yi

πi
ci

si ottiene

V (tHT ) ≈ 1

N2

N∑
i=1

(
C yi

πi
− B

)2
ci

C
. (14.37)
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Come stimatore corretto di B si può usare

B̂ =
∑
i∈s

yi

π2
i

ci

da cui, con lo stesso tipo di ragionamento già svolto in precedenza, si perviene allo
stimatore (distorto ma approssimativamente corretto) della (14.37)

V̂AP2(tHT ) =
1

N2

∑
i∈s

(
C yi

πi
− B̂

)2
ci

C πi
. (14.38)

Naturalmente, per la validità delle espressioni approssimate di V (tHT ) for-
nite nella presente sezione, e per i relativi stimatori, vale quanto già detto
per le approssimazioni delle probabilità di inclusione del secondo ordine. Le
approssimazioni (14.33), (14.37), e i corrispondenti stimatori (14.35), (14.38),
forniscono risultati tanto migliori quanto più elevata è l’entropia del disegno
campionario utilizzato.

Per un trattamento più esaustivo della costruzione di stimatori approssi-
mati della varianza dello stimatore di Horvitz-Thompson si rinvia al volume
di Tillé (2006), e all’articolo di Matei e Tillé (2005).

14.2.5 Stimatore di Horvitz-Thompson dell’ammontare
di un carattere

Nella proposizione 14.2 si è dimostrato che lo stimatore di Horvitz-Thompson
tHT è uno stimatore corretto della media della popolazione, con varianza data
dalla (14.19). È immediato estendere tale risultato all’ammontare totale di un
carattere in una popolazione. Formalmente, poiché l’ammontare è dato dal
prodotto tra la numerosità della popolazione e la media della popolazione
stessa

θ =
N∑

i=1

yi = Nμy, (14.39)

lo stimatore di Horvitz-Thompson dell’ammontare si ottiene moltiplicando N
per lo stimatore di Horvitz-Thompson della media

θ̂HT = N tHT =
∑
i∈s

1
πi

yi. (14.40)

Dai risultati ottenuti per lo stimatore di Horvitz-Thompson della media è
facile trarre i seguenti risultati.

Proposizione 14.6. Lo stimatore θ̂HT dato dalla (14.40) è uno stimatore
corretto del totale della popolazione

E(θ̂HT ) = t (14.41)



346 14 Stimatori lineari della media della popolazione

con varianza pari a

V (θ̂HT ) =
N∑

i=1

N∑
j=1

(πij − πiπj)
yi

πi

yj

πj
. (14.42)

Uno stimatore corretto della (14.42) è

V̂HT (θ̂HT ) =
∑
i∈s

∑
j∈s

yi

πi

yj

πj

Δij

πij
. (14.43)

Se poi il disegno campionario è ad ampiezza effettiva costante, la varianza
di θ̂HT può alternativamente scriversi come

V (θ̂HT ) =
1
2

N∑
i=1

N∑
j=1

(
yi

πi
− yj

πj

)2

(πiπj − πij) (14.44)

e un suo stimatore corretto è il seguente

V̂Y G(θ̂HT ) =
1
2

∑
i∈s

∑
j∈s

(
yi

πi
− yj

πj

)2
πiπj − πij

πij
. (14.45)

Dimostrazione. È una immediata conseguenza delle Proposizioni 14.2, 14.4,
14.5. ��

14.2.6 Ruolo delle probabilità di inclusione
sull’efficienza dello stimatore di Horvitz-Thompson
nei disegni ad ampiezza effettiva costante

A determinare la varianza dello stimatore di Horvitz-Thompson, e quindi la
sua efficienza, concorrono ovviamente tre elementi:

– il disegno campionario;
– la forma funzionale dell stimatore;
– il vettore Y N delle modalità del carattere sulle unità della popolazione.

Mentre c è incognito allo statistico, e sostanzialmente “deciso dalla natu-
ra”, gli altri due elementi sono oggetto di una precisa scelta da parte dello
statistico. È quindi di interesse studiare quale tipo di disegno, se esiste, mas-
simizza l’efficienza dello stimatore tHT , ossia minimizza la sua varianza. Il
ragionamento è semplice. Se il disegno campionario è ad ampiezza effettiva
costante n, allora tHT ha varianza nulla, e quindi efficienza massima, quando
le probabilità di inclusione risultano proporzionali ai valori della variabile di
interesse Y: πi = cost yi, con cost costante opportuna. Per verificare ciò, os-
serviamo che se πi = cost yi e se tutti i campioni hanno lo stesso numero n di
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unità distinte, dalla relazione π1 + · · ·+ πN = n deve aversi:

n =
N∑

i=1

πi

= cost
N∑

i=1

yi

= cost N μy

da cui si ricava cost = n/(Nμy), e quindi

πi =
n

Nμy
yi per ciascun i = 1, . . . , N. (14.46)

Con probabilità di inclusione del primo ordine (14.46), ed ampiezza effet-
tiva costante n, lo stimatore di Horvitz-Thompson di μy diviene pari a

tHT =
1
N

N∑
i=1

Nμy

nyi
yi δ(i; s)

=
μy

n

N∑
i=1

δ(i; s)

=
μy

n
n

= μy per ciascun campione s. (14.47)

La (14.47) mostra che lo stimatore tHT è identicamente uguale alla media
μy della popolazione, e quindi, in forza della sua correttezza, la sua varianza
deve essere uguale a 0. Scegliere probabilità di inclusione del primo ordine
(14.46), ed una numerosità campionaria effettiva costante, rende quindi lo
stimatore di Horvitz-Thompson esattamente uguale al parametro da stimare.
Si osservi che sul piano intuitivo le probabilità di inclusione “ottime” (14.46)
sono “grandi” per le unità con valori yi “grandi”, mentre sono “piccole” per
le unità con valori yi “piccoli”.

Dato che i valori di Y sono incogniti, le probabilità di inclusione “otti-
mali” (14.46) non possono essere calcolate. Tuttavia, se sono noti i valori xi,
i = 1, . . . , N di una variabile ausiliaria X correlata con la variabile di inte-
resse Y, si può pensare di sfruttare questi valori per una buona scelta delle
probabilità di inclusione. Ad es., se X è positivamente correlata con Y, si può
pensare di assegnare probabilità di inclusione “grandi” alle unità con valori xi

“grandi” (perché questi sono presumibilmente associati a valori yi “grandi”),
e probabilità di inclusione “piccole” alle unità con valori xi “piccoli” (perché
questi sono presumibilmente associati a valori yi “piccoli”). Un esempio (uno
dei molti!) di disegno campionario che soddisfa questo requisito è il disegno
di Midzuno-Lahiri con pi = xi/

∑N
j=1 xj (cfr. Capitolo 12).
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Una scelta più precisa, e migliore, si può effettuare nel caso, importante
nelle applicazioni, in cui tra le variabili di interesse Y e ausiliaria X sussista
una relazione di approssimata proporzionalità:

yi

xi
≈ costante, i = 1, . . . , N. (14.48)

In questo caso scegliere probabilità di inclusione del primo ordine proporzio-
nali alle xi significa, in forza della (14.48), che esse sono anche approssima-
tivamente proporzionali alle yi. Detta μx la media di X nella popolazione,
se vale la (14.48) una buona scelta delle probabilità di inclusione del primo
ordine consiste nel porle eguali a

πi =
nxi∑N
j=1 xj

=
nxi

N μx
. (14.49)

Il rapporto xi/
∑N

j=1 xj rappresenta la dimensione relativa dell’unità i.
Un disegno di campionamento in cui le probabilità di inclusione del primo

ordine sono scelte con il criterio (14.49) è detto πpps (inclusion probabilities
proportional to size).

L’utilizzo di un disegno campionario a probabilità variabili, e che assegna
ad ogni unità della popolazione una probabilità di inclusione proporzionale
al valore di una variabile ausiliaria (nota per tutte le unità della popolazio-
ne) dovrebbe garantire, qualora si sia non lontani dalla (14.48), una buona
efficienza dello stimatore di Horvitz-Thompson. Usare a livello di definizione
del disegno campionario l’informazione derivante dalla conoscenza della va-
riabile ausiliaria X indurrà una diminuzione della varianza degli stimatori dei
parametri di interesse, conducendo alla definizione di stimatori più efficienti
rispetto a quelli ottenibili da una selezione mediante disegno semplice.

Chiaramente per ogni unità della popolazione si deve avere πi � 1. No-
tiamo che tale condizione è certamente soddisfatta per n = 1; se n > 1, e in
corrispondenza di un valore elevato di xi, la (14.49) potrebbe portare a valori
πi > 1 per qualche unità della popolazione. In tali condizioni l’unità dovrà
essere inclusa con certezza nel campione. Formalmente, si porrà πi = 1 per
tutte le unità i tali che nxi �

∑N
j=1 xj, e si ricalcoleranno le probabilità di

inclusione delle restanti unità come

πi = (n − nA)
xi∑N

j=1j /∈A
xj

; i = 1, . . . , N ; i /∈ A

dove A è l’insieme delle unità della popolazione tali che nxi �
∑N

j=1 xj, e nA

il numero di tali unità.
L’efficienza dello stimatore di Horvitz-Thompson ha destato parecchio

dibattito nella letteratura statistica. Un esempio pittoresco, e illuminante,
sul perché in alcune circostanze esso possa condurre a risultati pessimi è il
seguente, dovuto a Basu (1971).
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Esempio 14.10 (Elefanti del circo; Basu (1971)). Il proprietario di un
circo deve imbarcare i suoi 50 elefanti, e quindi ha bisogno di una stima del
loro peso totale. Poiché pesare un elefante è un’operazione lunga e difficile,
il proprietario decide di pesare solo un elefante. Quale dei 50 scegliere? Gli
elefanti erano stati pesati tre anni addietro, e dal relativo elenco dei pesi il
proprietario del circo scopre che Sambo, un elefante di taglia media, aveva un
peso praticamente pari al peso medio dei 50 elefanti. Poiché nel frattempo gli
elefanti non sono cambiati di molto, il proprietario ritiene che Sambo abbia
ancora un peso grosso modo pari alla media dei 50 elefanti del circo. Pertanto,
egli propone di prendere Sambo, pesarlo, e stimare il peso totale di tutti gli
elefanti come segue:

peso Sambo × 50.

Lo statistico del circo, però, è molto critico verso questa scelta. In primo
luogo, egli afferma che non è corretto usare un disegno campionario ragionato,
che dà probabilità di inclusione 1 a Sambo, e 0 a tutti gli altri elefanti. Meglio
invece un disegno campionario in cui Sambo ha probabilità 99/100 di essere
scelto, e ciascuno degli altri 49 ha probabilità 1/4900. Una volta utilizzato,
questo disegno campionario seleziona (naturalmente!) Sambo. Il proprietario
del circo, contento del risultato, pensa di stimare il peso totale dei 50 elefanti
moltiplicando per 50 il peso di Sambo. Ma anche qui lo statistico ha da ridire.
A suo avviso è meglio usare lo stimatore di Horvitz-Thompson, che possiede
molte belle proprietà. Se ad essere scelto è Sambo, il peso totale dei 50 elefanti
è stimato pari a:

peso Sambo × 100
99

.

Il proprietario del circo è molto perplesso. Per questa ragione chiede allo
statistico come avrebbe stimato il peso totale dei 50 elefanti se ad essere
selezionato fosse stato Jumbo, decisamente una taglia forte. Anche qui la
risposta dello statistico è netta. Usando lo stimatore di Horvitz-Thompson, il
peso totale dei 50 elefanti è stimato pari a:

peso Jumbo × 4900.

Il diverso comportamento del proprietario del circo e dello statistico è
illustrato in Fig. 14.1.

Inutile dire che subito dopo aver formulato la sua proposta lo statistico ha
dovuto cercare un altro lavoro. ��

L’Esempio 14.10 è stato interpretato come “distruttivo” per lo stimatore
di Horvitz-Thompson. In realtà, esso mostra una cosa piuttosto nota nel-
la pratica applicativa: lo stimatore di Horvitz-Thompson può dare risultati
assurdi se le probabilità di inclusione del primo ordine non hanno nessun
legame con i valori yi. Nell’Esempio 14.10 l’uso “ottimale” dello stimatore
di Horvitz-Thompson richiederebbe di dare agli elefanti probabilità di inclu-
sione (e di selezione, visto che ci si basa su un campione di n = 1 unità)
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Sambo

Jumbo

Quanto pesano i 50 elefanti del circo?

Idea del proprietario del circo

Idea dello statistico

ERRORE DI STIMA “PICCOLO”

GRAVE SOTTOSTIMA

GRAVE SOVRASTIMA

Scegliere l’elefante Sambo

Stima peso totale = peso Sambo × 50

Se è selezionato Sambo

Stima peso totale = peso Jumbo × 4900

Se è selezionato Jumbo

Stima peso totale = peso Sambo × 100
99

Scegliere “casualmente” uno degli elefanti, in modo che Sambo
abbia probabilità  100  di essere scelto, e ciascuno degli altri probabilità  4900

99 1

Fig. 14.1 Esempio degli elefanti del circo
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proporzionali al peso degli elefanti stessi. Jumbo, l’elefante taglia forte, do-
vrebbe avere la probabilità di inclusione più alta. Sambo, l’elefante taglia
media, dovrebbe avere una probabilità di inclusione decisamente più piccola.
Naturalmente, non essendo disponibili i pesi attuali degli elefanti, ma solo
quelli di tre anni addietro, un buon disegno campionario da usare in cop-
pia con lo stimatore di Horvitz-Thompson dovrebbe prevedere probabilità di
inclusione degli elefanti proporzionali al loro peso di tre anni fa. Questo è
appunto ciò che non ha fatto lo statistico. Da un lato egli ha scelto un dise-
gno campionario che favorisce nettamente la selezione dell’“elefante medio”,
ma dall’altro ha usato uno stimatore (quello di Horvitz-Thompson) del tut-
to inadatto a tale disegno. Infatti, lo stimatore di Horvitz-Thompson è non
distorto, ma ha in questo caso una varianza elevatissima, e quindi conduce
facilmente ad errori di stima molto ampi. L’errore dello statistico, in sostan-
za, consiste nell’aver scelto una strategia di campionamento (coppia disegno,
stimatore) sostanzialmente sbagliata. Per converso, la metodologia del pro-
prietario del circo prevede uno stimatore distorto, ma con una distorsione che,
sulla base delle informazioni a priori note, dovrebbe esser piccola. Essendo la
varianza di stima nulla, in questo caso l’errore di stima sarà presumibilmente
piccolo.

14.2.7 Applicazioni a popolazioni con struttura a
grappolo

Una delle applicazioni più importanti dello stimatore di Horvitz-Thompson
riguarda la stima della media di popolazioni in cui le unità elementari sono
raggruppate in grappoli (unità primarie). Il substrato generale è quello dei
Capitoli 9, 11, e degli Esempi 12.6, 12.7.

Supponiamo che la popolazione sia divisa in M grappoli, rispettivamente
di N1, . . ., NM unità elementari, e indichiamo al solito con wg = Ng/N il peso
del grappolo g (= 1, . . . , M). Indichiamo inoltre con μyg, S2

yg rispettivamente
la media e la varianza corretta del grappolo g (= 1, . . . , M), e poniamo

zg = Mwg
Tg

Ng
; g = 1, . . . , M

dove Tg è l’ammontare (il totale) del carattere Y nel grappolo g (= 1, . . . , M).
Vale l’ovvia relazione

μy =
1
M

M∑
g=1

zg .

I disegni campionari esposti nel Capitolo 9 (disegno a grappolo) e nel Ca-
pitolo 11 (disegno a due stadi semplici) prevedono la selezione di m grappoli
mediante disegno semplice senza ripetizione. Questa scelta non è certo l’unica
possibile, né è sempre la più opportuna. Vi sono parecchie situazioni, come
evidenziato nella Sezione 9.4, in cui le numerosità N1, . . ., NM dei grappoli



352 14 Stimatori lineari della media della popolazione

sono molto differenti, ma le loro medie μy1, . . ., μyM possono essere ragione-
volmente pensate come “molto simili”. In questo caso sono i totali T1, . . ., TM

dei grappoli ad essere molto diversi tra loro e approssimativamente propor-
zionali alle numerosità dei grappoli stessi. Naturalmente, per come i termini
zg e wg sono definiti, questo equivale a dire che le zg sono molto variabili, e
approssimativamente proporzionali ai pesi wg dei grappoli. I pesi wg, quindi
svolgono il ruolo di misura di importanza dei grappoli. I grappoli più “impor-
tanti” sono quelli di peso più elevato, cioè composti da un più alto numero
di unità. In altre parole, i pesi dei grappoli svolgono qui il ruolo di variabile
ausiliaria che misura l’importanza, la dimensione dei grappoli stessi.

In situazioni di questo tipo un’alternativa vantaggiosa al campionamento
semplice dei grappoli consiste nell’usare un disegno che dia ai grappoli proba-
bilità di inclusione proporzionale al peso wg, fermo restando il numero m di
grappoli selezionati. In termini più formali, detta π(g) la probabilità di inclu-
sione del grappolo g (1, . . . , M), il disegno di selezione dei grappoli dovrebbe
soddisfare la condizione

π(g) = mwg; g = 1, . . . , M. (14.50)

Si tratta, in sostanza, di un disegno di tipo πpps (inclusion probabilities pro-
portional to size). Naturalmente si assume che le (14.50) siano tutte � 1. Se
qualcuna di esse fosse > 1, occorre porla pari a 1 e procedere come delineato
nella sezione precedente.

Stimatore di Horvitz-Thompson in disegni πpps a grappolo

Nel caso di disegno a grappolo, si seleziona un campione gm di m grappo-
li distinti, in maniera tale che le probabilità di inclusione del primo ordine
dei grappoli siano del tipo (14.50). Si osservano inoltre tutte le unità ele-
mentari dei grappoli selezionati, cos̀ı che i dati campionari sono {ygi; i =
1, . . . , Ng ; g ∈ gm}. In questo modo, sono anche osservate le medie μyg e le
quantità zg dei grappoli campionati. Inoltre, l’unità elementare i del grappolo
g ha probabilità di inclusione del primo ordine:

π(g)i = π(g) = mwg ; g = 1, . . . , M.

Se poi si indica con π(gg
′
) la probabilità di inclusione del secondo ordine

della coppia g, g
′
di grappoli, la coppia i, j di unità elementari, rispettivamente

dei grappoli g, g
′
, ha probabilità di inclusione:

π(gg
′
)ij =

{
π(g)ij = mwg se g

′
= g

π(gg
′
) se g

′ �= g
.

Lo stimatore di Horvitz-Thompson della media della popolazione, μy,
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assume in questo caso la forma

tHT =
1
N

∑
g∈gm

Ng∑
i=1

1
π(g)i

ygi

=
1
N

∑
g∈gm

1
mwg

Ng∑
i=1

ygi

=
1
N

∑
g∈gm

1
mwg

N wg μyg

=
1
m

∑
g∈gm

μyg (14.51)

ossia si riduce alla media campionaria delle medie dei grappoli.
Nel caso speciale in cui i totali T1, . . ., TM dei grappoli sono esattamen-

te proporzionali alle numerosità dei grappoli stessi, lo stimatore (14.51) è
esattamente uguale alla media μy della popolazione.

Infine, è facile verificare (Esercizio 14.6) che la varianza dello stimatore
(14.51) è pari a

V (tHT ) =
1

m2

M∑
g=1

M∑
g
′
=1

μyg μyg
′ (π(gg

′
) − wgwg

′ ). (14.52)

Stimatore di Horvitz-Thompson in disegni πpps a due stadi

Un’utile alternativa al disegno campionario a grappolo precedentemente de-
scritto consiste nell’introdurre un secondo stadio di campionamento, in cui si
selezionano unità elementari dai grappoli scelti al primo stadio. Precisamente,
si considera un disegno campionario del seguente tipo.

– I stadio. Si seleziona un campione gm di m grappoli distinti, mediante un
disegno che dia al generico grappolo g probabilità di inclusione del primo
ordine π(g) pari alla (14.50).

– II stadio. Da ciascun grappolo g ∈ gm scelto al primo stadio si seleziona,
mediante disegno ssr, un campione sg di ng unità elementari. Il numero
di unità elementari da selezionare da ciascun grappolo è assunto fissato a
priori.

La logica che sostiene questo disegno, anch’esso di tipo πpps, è pratica-
mente identica a quella del disegno a grappolo in precedenza definito. I pesi
wg svolgono il ruolo di misura di importanza dei grappoli, nel senso che svol-
gono lo stesso ruolo di una variabile ausiliaria che misura l’importanza, la
dimensione dei grappoli. Questo tipo di disegno, come il precedente, dovreb-
be garantire una buona efficienza allo stimatore di Horvitz-Thompson di μy
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nel caso in cui i totali T1, . . ., TM dei grappoli siano molto diversi tra loro e
approssimativamente proporzionali alle numerosità dei grappoli stessi.

I dati campionari sono del tipo:

{ygi; i ∈ sg; g ∈ gm}.

Poiché il secondo stadio di campionamento è semplice senza ripetizione,
l’unità elementare i del grappolo g ha probabilità di inclusione del primo
ordine

π(g)i = π(g)
ng

Ng
= mwg

ng

Ng
; i = 1, . . . , Ng; g = 1, . . . , M.

Se poi si denota con π(gg
′
) la probabilità di inclusione del secondo ordine,

al primo stadio, della coppia g, g
′

di grappoli, la coppia i, j di unità elemen-
tari, rispettivamente dei grappoli g, g

′
, ha probabilità di inclusione, con ovvia

simbologia, pari a:

π(gg′)ij =

{
π(g)ij = mwg

ng(ng−1)
Ng(Ng−1) se g

′
= g

π(gg′ )
ng

Ng

n
g
′

N
g
′ se g

′ �= g
.

La costruzione dello stimatore di Horvitz-Thompson della media della
popolazione è molto semplice. Si ha:

tHT =
1
N

∑
g∈gm

∑
i∈sg

1
π(g)i

ygi

=
1
N

∑
g∈gm

1
mwg

∑
i∈sg

Ng

ng
ygi

=
1
N

∑
g∈gm

1
mwg

N wg

⎧⎨⎩ 1
ng

∑
i∈sg

ygi

⎫⎬⎭
=

1
m

∑
g∈gm

yg (14.53)

essendo

yg =
1
ng

∑
i∈sg

ygi; g ∈ gm

la media campionaria del grappolo g selezionato al primo stadio.



14.2 Un sempreverde: lo stimatore di Horvitz-Thompson 355

Il calcolo della varianza dello stimatore (14.53) può essere facilmente ef-
fettuato a partire dalle probabilità di inclusione del primo e del secondo or-
dine dianzi calcolate. Usando anche un approccio diretto simile a quello del
Capitolo 11, è ad ogni modo facile vedere (Esercizio 14.7) che:

V (tHT ) =
1

m2

M∑
g=1

M∑
g
′
=1

μyg μyg
′ (π(gg

′
) − wgwg

′ )

+
M∑

g=1

mwg

(
1
ng

− 1
Ng

)
S2

yg (14.54)

dove

S2
yg =

1
Ng − 1

Ng∑
i=1

(ygi − μyg)2; g = 1, . . . , M

è la varianza corretta del grappolo g.

14.2.8 Efficienza dello stimatore di Horvitz-Thompson:
aspetti teorici∗

Si è già visto in precedenza che per garantire buone proprietà di efficienza allo
stimatore di Horvitz-Thompson è necessario che il disegno di campionamento
abbia ampiezza effettiva costante, e che le probabilità di inclusione del primo
ordine siano, in via approssimata, proporzionali alle modalità yi. L’obiettivo di
questa sezione è quello di approfondire ed estendere questi risultati, studiando
in via teorica l’efficienza dello stimatore di Horvitz-Thompson.

Poiché non esiste uno stimatore corretto di varianza uniformemente mini-
ma di μy, ci si concentrerà principalmente sulla proprietà di ammissibilità di
tHT . Dato un qualunque disegno (S, p(·)), non necessariamente ad ampiezza
effettiva costante, sia Up,μy l’insieme di tutti gli stimatori corretti della media
μy rispetto al disegno (S, p(·)). In altre parole, ogni stimatore t in Up,μy è
tale che

E[t] =
∑
s∈S

t(y(s)) p(s) = μy.

Il primo risultato riguarda l’ammissibilità dello stimatore di Horvitz-
Thompson nella classe Up,μy .

Proposizione 14.7. Qualunque sia il disegno campionario (S, p(·)), lo sti-
matore di Horvitz-Thompson di μy è ammissibile nella classe Up,μy .

Dimostrazione. Vds. Cassel e altri (1977), p. 55. ��

La Proposizione 14.7 ci dice, in sostanza, che qualunque sia il disegno
campionario adottato lo stimatore di Horvitz-Thompson della media della
popolazione non può essere “uniformemente peggiore” di nessun altro stima-
tore corretto della media stessa. Si tratta di un buon risultato teorico, che
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stabilisce una proprietà per certi aspetti minimale. I limiti della Proposizione
14.7 sono due. In primo luogo lo stimatore di Horvitz-Thompson è confronta-
to solo con altri stimatori corretti di μy. Cosa accade se si considerano anche
stimatori distorti? In secondo luogo, il confronto con altri stimatori corretti è
effettuato a parità di disegno campionario. Tuttavia, se si cambia lo stimatore
potrebbe risultare logico cambiare anche il disegno campionario. Risulta quin-
di di notevole interesse effettuare il confronto non semplicemente a livello di
stimatori, ma di strategie, cioè di coppie (Disegno , Stimatore). Incominciamo
da quest’ultimo punto.

Indichiamo con ST Un, μy la classe di tutte le strategie (S, p(·)), t) tali che:

– il disegno (S, p(·)) è ad ampiezza effettiva costante n;
– t è un stimatore corretto rispetto al disegno (S, p(·)).

Proposizione 14.8. Se il disegno campionario (S, p(·)) è ad ampiezza effetti-
va costante n, la strategia (S, p(·)), tHT ) è ammissibile nella classe ST Un, μy .

Dimostrazione. Vds. Cassel e altri (1977), p. 62. ��

La Proposizione 14.8 ci dice, in pratica, che l’usare una strategia formata
dallo stimatore di Horvitz-Thompson e da un qualsiasi disegno ad ampiez-
za effettiva costante n non dà risultati uniformemente peggiori di nessun’al-
tra strategia che utilizza un qualunque disegno campionario con ampiezza
effettiva costante n e un qualunque stimatore corretto (rispetto al disegno,
ovviamente).

Per quanto riguarda il confronto dello stimatore di Horvitz-Thompson
della media della popolazione con altri stimatori distorti, a parità di di-
segno campionario, la questione è un po’ più articolata. Dato un disegno
(S, p(·)), indichiamo con Ap,μy l’insieme di tutti gli stimatori (corretti o di-
storti) della media μy. Il risultato di base sull’ammissibilità dello stimatore di
Horvitz-Thompson nella classe Ap,μy è contenuto nella seguente proposizione.

Proposizione 14.9. Se il disegno campionario (S, p(·)) è ad ampiezza ef-
fettiva costante, lo stimatore di Horvitz-Thompson di μy è ammissibile nella
classe Ap,μy .

Dimostrazione. Vds. Godambe e Joshi (1965). ��

La Proposizione 14.9 stabilisce che se il disegno campionario è ad ampiez-
za effettiva costante, non esiste nessuno stimatore, sia esso distorto o corretto,
sempre migliore di quello di Horvitz-Thompson. Si tratta, in pratica, di un’e-
stensione della Proposizione 14.7. La condizione che il disegno campionario sia
ad ampiezza effettiva costante è essenziale, ed in generale irrinunciabile. Per
studiare in dettaglio questo fatto, consideriamo l’applicazione della tecnica
di contrazione allo stimatore tHT . In generale, la sua applicazione fornirà un
nuovo stimatore

tsh∗ = c∗ tHT (14.55)
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dove c∗ è un numero reale definito da

c∗ =
1

minYN∈IRN E[t2HT ]/μ2
y

=
1

1 + minYN∈IRN V (t2HT )/μ2
y

. (14.56)

Se il disegno è ad ampiezza effettiva costante, si ha

min
YN∈IRN

V (tHT )
μ2

y

= 0 (14.57)

in quanto, qualsiasi sia la media μy della popolazione, prendendo (similmente
a (14.46))

yi =
N

n
μy πi per ciascun i = 1, . . . , N (14.58)

si ha
∑

i yi/N = μy, e

tHT (y(s)) = μy per ciascun campione s (14.59)

il che, naturalmente, equivale a V (tHT ) = 0, e quindi a c∗ = 1. Questo,
però, significa che tsh∗ = tHT , ossia che la tecnica di contrazione non produ-
ce alcun miglioramento dello stimatore di Horvitz-Thompson. Detto in altri
termini, nel caso di disegno ad ampiezza effettiva costante lo stimatore di
Horvitz-Thompson tHT non è migliorabile con la tecnica di contrazione per-
ché qualunque sia la media μy della popolazione esiste sempre uno speciale
vettore (parametro della popolazione) Y N che fornisce μy come media, e che
rende lo stimatore tHT identicamente uguale a μy, e quindi a varianza nulla.

Lo stesso ragionamento non è possibile se il disegno campionario è ad am-
piezza effettiva non costante. In generale, ad eccezione di pochi casi “banali”,
per un generico valore di μy non esiste uno speciale vettore Y N che fornisce
μy come media, e che rende lo stimatore tHT identicamente uguale a μy. Ma
questo significa che

min
YN∈IRN

V (tHT )
μ2

y

> 0

e quindi c∗ < 1. Ne consegue che lo stimatore tsh∗ = c∗ tHT è migliore di tHT .
Il successivo esempio illustra questo punto.

Esempio 14.11 (Contrazione dello stimatore tHT nel disegno scr).
Supponiamo che il disegno sia semplice con ripetizione, cos̀ı che le probabilità
di inclusione del primo e del secondo ordine, calcolate nel Capitolo 12, sono
rispettivamente pari a

πi = 1 −
(

1 − 1
N

)n

= α per ciascuna unit à i = 1, . . . , N ; (14.60)

πij = 1 − 2
(

1 − 1
N

)n

+
(

1 − 2
N

)n

= β per ciascuna coppia di unit à distinte (14.61)
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essendo n la numerosità campionaria. Detta come al solito r(s) la riduzione del
campione s, e usando la simbologia introdotta in (14.60), (14.61), lo stimatore
di Horvitz-Thompson di μy assume la forma:

tHT =
1
N

∑
i∈r(s)

1
πi

yi

=
1

N α

∑
i∈r(s)

yi (14.62)

e si ha

E(t2HT ) =
1

N2

N∑
i=1

N∑
j=1

yi

πi

yj

πj
πij

=
1

N2α

N∑
i=1

y2
i +

1
N2

β

α2

N∑
i=1

N∑
j=1

j �=i

yiyj

=
1

N2

α − β

α2

N∑
i=1

y2
i +

1
N2

β

α2

N∑
i=1

N∑
j=1

yiyj

=
1

N2

α − β

α2

N∑
i=1

y2
i +

1
N2

β

α2

(
N∑

i=1

yi

)2

.

Da questa espressione si ricava che:

E[t2HT ]
μ2

y

=
1

N2
α−β
α2

∑N
i=1 y2

i + 1
N2

β
α2

(∑N
i=1 yi

)2

1
N2

(∑N
i=1 yi

)2

=
α − β

α2

∑N
i=1 y2

i(∑N
i=1 yi

)2 +
β

α2
. (14.63)

Per minimizzare la (14.63) basta derivarla rispetto a y1, . . . , yN e annullare
le derivate. Si ha:

∂(E[t2HT ]/μ2
y)

∂yi
=

α − β

α2

⎧⎪⎨⎪⎩
2yi

(∑N
j=1 yj

)2

− 2
(∑N

j=1 yj

)(∑N
j=1 y2

j

)
(∑N

j=1 yj

)4

⎫⎪⎬⎪⎭
= 0 (14.64)

per ciascun i = 1, . . . , N , per cui le N equazioni (14.64) hanno come soluzione

y1 = y2 = · · · = yN
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che ovviamente equivale a

yi = μy per ciascun i = 1, . . . , N. (14.65)

Dalla (14.65) si desume la relazione

min
YN∈IRN

E[t2HT ]
μ2

y

=
N α + N(N − 1)β

(N α)2

da cui, tenendo anche conto che

N α =
N∑

i=1

πi = ν

N(N − 1)β =
N∑

i=1

N∑
j=1

j �=i

πij = V (ν(s)) + ν(ν − 1)

essendo ν(s) l’ampiezza effettiva del campione s, ν la sua media e V (ν(s)) la
sua varianza, si ottiene infine

min
YN∈IRN

E[t2HT ]
μ2

y

= 1 +
V (ν(s))

ν2 (14.66)

e quindi

c∗ =
1

1 + V (ν(s))
ν2

. (14.67)

Dalla (14.66) si vede con facilità che c∗ < 1. Pertanto, lo stimatore

tsh∗ = c∗ tHT (14.68)

con c∗ dato dalla (14.67), è migliore dello stimatore di Horvitz-Thompson
tHT .

È interessante confrontare questo risultato con quello dell’Esempio 13.10,
dove si è mostrato che la media campionaria delle unità distinte, yr(s), non
è migliorabile con la tecnica di contrazione. Malgrado questo sia un punto
a favore di yr(s), non si può affermare che esso sia migliore dello stimatore
di Horvitz-Thompson (14.62), in quanto la Proposizione 14.7 stabilisce che
nessuno stimatore corretto di μy può essere migliore di quello di Horvitz-
Thompson. ��

Tra i casi “banali” di disegni campionari ad ampiezza effettiva non costante
ma tali che lo stimatore di Horvitz-Thompson non è migliorabile con la tecnica
di contrazione ve ne sono alcuni molto importanti. Di seguito sono forniti
alcuni esempi in proposito.
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Esempio 14.12 (Disegno a grappolo “semplice”). Consideriamo ancora
l’Esempio 14.6, in cui si è costruito lo stimatore di Horvitz-Thompson per
un disegno a grappolo “semplice” (ossia con uguali probabilità di selezione
dei grappoli). Usando la stessa notazione dell’Esempio 14.6, lo stimatore di
Horvitz-Thompson assume la forma

tHT =
1
m

∑
g∈gm

Mwgμyg. (14.69)

Per verificare se tHT è migliorabile con la tecnica di contrazione, bisogna
calcolare:

min
E[t2HT ]

μ2
y

= min
V (tHT ) + 1

μ2
y

= 1 + min
V (tHT )

μ2
y

. (14.70)

Ora, dato un qualsiasi valore di μy, se si considerano i valori

ygi =
μy

M wg
, i = 1, . . . , Ng ; g = 1, . . . M

si ha che la loro media è μy, e che μyg = μy/(M wg) per ciascun grappolo
g = 1, . . . , M , per cui è anche

tHT = μy per ciascun campione gm.

Ma ciò significa che per questa “speciale popolazione” si ha V (tHT ) = 0, da
cui, usando la (14.70),

min
E[t2HT ]

μ2
y

= 1

e c∗ = 1. In questo caso lo stimatore di Horvitz-Thompson non è migliorabile
con la tecnica di contrazione. Lo stesso tipo di risultato vale anche nel caso di
disegno a grappolo πpps, in cui lo stimatore di Horvitz-Thompson della media
assume la forma (14.51) (vds. Esercizio 14.8). ��
Esempio 14.13 (Disegno a due stadi semplici). Consideriamo ancora
l’Esempio 14.7, in cui si è costruito lo stimatore di Horvitz-Thompson per
un disegno a due stadi semplici. Con la notazione in precedenza usata, lo
stimatore di Horvitz-Thompson assume la forma

tHT =
1
m

∑
g∈gm

Mwgyg. (14.71)

È facile vedere che qualunque sia la media μy la stessa “popolazione spe-
ciale” dell’Esempio 14.12 possiede μy come media, e rende nulla la varianza
dello stimatore di Horvitz-Thompson. Ma questo significa che c∗ = 1, per cui
lo stimatore di Horvitz-Thompson non è migliorabile con la tecnica di con-
trazione. Lo stesso tipo di risultato vale anche nel caso di disegno a due stadi
πpps, in cui lo stimatore di Horvitz-Thompson della media assume la forma
(14.53) (vds. Esercizio 14.9). ��
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14.3 Variazioni sul tema: stimatore alle differenze
generalizzate

Sia s un campione di numerosità n ottenuto mediante un prefissato disegno
campionario (S, p(·)). In corrispondenza di ogni unità i della popolazione, sia
poi y0

i (i = 1, . . . , N) un arbitrario numero reale (noto). In linea di principio,
y0

i dovrebbe essere, per quanto possibile, una “approssimazione” dell’incognita
modalità yi del carattere di interesse Y. Indichiamo con

μ0 =
1
N

N∑
i=1

y0
i

la media dei numeri y0
1 , . . . , y0

N .
L’idea alla base dello stimatore alle differenze generalizzate è di utilizzare

i valori y0
1, . . . , y0

N per costruire una stima delle media μy della popolazione.
Il punto di partenza consiste nell’osservare che questa può essere scritta come

μy =
1
N

N∑
i=1

yi

=
1
N

N∑
i=1

y0
i +

1
N

N∑
i=1

(yi − y0
i )

= μ0 +
1
N

N∑
i=1

ei

= μ0 + μe (14.72)

dove si è posto

ei = yi − y0
i , i = 1, . . . , N ;

μe =
1
N

N∑
i=1

ei.

Chiaramente, la media μ0 dei valori y0
i è nota, mentre la media μe del-

le differenze ei = yi − y0
i è incognita. L’idea alla base dello stimatore alle

differenze generalizzate è quella di stimare μe utilizzando uno stimatore di
Horvitz-Thompson. Formalmente

tgd = μ0 +
1
N

∑
i∈s

1
πi

(yi − y0
i )

= μ0 +
1
N

N∑
i=1

1
πi

(yi − y0
i ) δ(i; s) . (14.73)
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Ribadiamo che il primo termine della (14.73) è una quantità fissa, costante
e indipendente dal campione, mentre il secondo termine è uno stimatore di
Horvitz-Thompson applicato alle differenze yi−y0

i . In sostanza, quindi, a meno
della costante additiva μ0, lo stimatore alle differenze generalizzate (14.73) è
sostanzialmente uno stimatore di tipo Horvitz-Thompson. In simboli:

tgd = μ0 + tHTe (14.74)

dove

tHTe =
1
N

∑
i∈s

1
πi

ei (14.75)

=
1
N

∑
i∈s

1
πi

(yi − y0
i )

è lo stimatore di Horvitz-Thompson di μe.
A causa della (14.75), lo stimatore (14.73) eredita le sue proprietà da quelle

dello stimatore di Horvitz-Thompson.
Le proprietà dello stimatore (14.73) sono riassunte nella seguente propo-

sizione.

Proposizione 14.10. Lo stimatore alle differenze generalizzate tgd è uno
stimatore corretto della media della popolazione:

E [tgd] = μy. (14.76)

La varianza di tgd è pari a

V (tgd) =
1

N2

N∑
i=1

N∑
j=1

yi − y0
i

πi

yj − y0
j

πj
(πij − πiπj). (14.77)

Dimostrazione. È sufficiente usare la (14.75) e le ben note proprietà dello
stimatore di Horvitz-Thompson. ��

Per quanto riguarda la stima della varianza di tgd, basta ovviamente
applicare i risultati già visti per la stima della varianza dello stimatore di
Horvitz-Thompson.

Dalla (14.77) è evidente che lo stimatore alle differenze generalizzate è tan-
to più efficiente quanto più le differenze ei risultano prossime allo zero per ogni
unità della popolazione. Quindi lo scopo è usare valori y0

i tali che le differenze
ei = yi −y0

i risultino “piccole”. Un’idea molto semplice consiste nell’utilizzare
valori y0

i proporzionali ai valori xi (i = 1, . . . , N) di una variabile ausiliaria
X nota per tutte le unità della popolazione. Formalmente:

y0
i = c xi, i = 1, . . . , N
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dove c è una costante di proporzionalità. In questo caso lo stimatore alle
differenze generalizzate può essere scritto come

tgd =
1
N

N∑
i=1

y0
i +

1
N

∑
i∈s

(yi − y0
i )

πi

=
1
N

N∑
i=1

cxi +
1
N

∑
i∈s

(yi − cxi)
πi

= c μx +
1
N

∑
i∈s

yi

πi
− c

1
N

∑
i∈s

xi

πi

=
1
N

∑
i∈s

yi

πi
− c

(
1
N

∑
i∈s

xi

πi
− μx

)
= tHTy − c(tHTx − μx) (14.78)

dove

tHTy =
1
N

∑
i∈s

yi

πi
, tHTx =

1
N

∑
i∈s

xi

πi

sono gli stimatori di Horvitz-Thompson rispettivamente di μy e μx.
Sulla base della (14.78) lo stimatore alle differenze generalizzate è dato

dalla differenza tra stimatore di Horvitz-Thompson tHTy della media della
popolazione e un termine di aggiustamento pari a c(tHTx − μx).

È facile infine provare (Esercizio 14.13) che sotto un disegno semplice
senza ripetizione di ampiezza n si ottiene lo stimatore alle differenze della
Sezione 5.2.

14.4 Vecchie glorie un po’ in disarmo: lo stimatore di
Hansen-Hurwitz

Data una popolazione finita di N unità, si consideri un disegno campionario
(ordinato e con ripetizioni) di tipo ppswr di ampiezza n, introdotto nella Se-
zione 12.4.1. Ad ogni unità i della popolazione è associato a priori un numero
pi (i = 1, . . . , N), che ne esprime in qualche modo l’“importanza”. Lo spazio
S dei campioni di unità è l’insieme di tutte le n-ple ordinate (disposizioni con
ripetizioni di classe n) del tipo (i1, i2, . . . , in), in cui i1 è la prima unità del
campione, i2 è la seconda unità del campione, e cos̀ı via. Inoltre, i1, i2, . . . , in
possono essere unità qualsiasi della popolazione, senza alcuna limitazione o
vincolo. In modo più formale, questo significa, come già detto, che

S = IN × IN × · · · × IN︸ ︷︷ ︸
n volte

= In
N .
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Per quanto riguarda le probabilità dei campioni, se s = (i1, i2, . . . , in) si ha

p(s) = pi1pi2 · · ·pin .

In termini un po’ più intuitivi, è come se si effettuassero n “prove”; nella
prima prova si seleziona i1, la prima unità del campione, nella seconda prova
si seleziona i2, la seconda unità del campione, e cos̀ı via. I risultati delle
diverse prove sono indipendenti, hanno identica distribuzione, e sono tali che,
per ciascuna prova k = 1, . . . , n,

Pr(ik = i) = pi per ogni unit à i = 1, . . . , N. (14.79)

Indichiamo poi con yik la modalità dell’unità selezionata nella prova k
(= 1, . . . , n). Come conseguenza della (14.79), anche le variabili aleatorie
yi1 , yi2 , . . . , yin sono indipendenti e hanno la stessa distribuzione di probabi-
lità. Ne consegue che sono indipendenti e identicamente distribuite anche le
variabili aleatorie

yi1

Npi1

,
yi2

Npi2

, . . . ,
yin

Npin

.

Le distribuzioni di probabilità delle variabili dianzi introdotte sono descrit-
te nella Tabella 14.1.

Tabella 14.1 Distribuzione delle variabili aleatorie nel disegno ppswr per la prova
kma

ik Probabilità yik

yik
Npik

1 p1 y1
y1

Np1

2 p2 y2
y2

Np2

· · · · · · · · · · · ·
i pi yi

yi
Npi

· · · · · · · · · · · ·
N pN yN

yN
NpN

In particolare, dalla Tabella 14.1 si ricava facilmente (Esercizio 14.14) che

E

[
yik

Npik

]
=

y1

Np1
p1 +

y2

Np2
p2 + · · ·+ yN

NpN
pN

=
1
N

N∑
i=1

yi

= μy per ciascun k = 1, . . . , n; (14.80)
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V

(
yik

Npik

)
=

N∑
i=1

(
yi

Npi
− μy

)2

pi (14.81)

=
1

2N2

N∑
i=1

N∑
j=1

(
yi

pi
− yj

pj

)2

pi pj

per ciascun k = 1, . . . , n. (14.82)

Lo stimatore di Hansen-Hurwitz della media μy della popolazione è definito
come

tHH =
1
n

∑
i∈s

yi

Npi
(14.83)

=
1
n

n∑
k=1

yik

Npik

. (14.84)

Le (14.83) e (14.84) sono perfettamente equivalenti. In particolare, dalla
(14.83) risulta evidente che tHH non è altro che la media campionaria del-
le quantità yi/(Npi). La (14.84) mette inoltre in evidenza che le quantità
yi/(Npi) sono realizzazioni di variabili aleatorie indipendenti e identicamente
distribuite. Quest’osservazione si rivela utile per lo studio delle proprietà dello
stimatore di Hansen-Hurwitz, riportate nella proposizione successiva.

Proposizione 14.11. Lo stimatore di Hansen-Hurwitz è corretto

E[tHH ] = μy (14.85)

e la sua varianza è pari a

V (tHH) =
1
n

N∑
i=1

(
yi

Npi
− μy

)2

pi. (14.86)

Inoltre, uno stimatore corretto di V (tHH) è il seguente

V̂ (tHH) =
1

n − 1

∑
i∈s

(
yi

Npi
− tHH

)2

. (14.87)

Dimostrazione. Basta tener conto che le variabili aleatorie yi1/(Npi1), . . . ,
yin/(Npi1) sono indipendenti e identicamente distribuite, con media e va-
rianza rispettivamente pari a (14.80) e (14.81), e che tHH è la loro media
campionaria. Si ha:

E[tHH ] =
1
n

n∑
k=1

E

[
yik

Npik

]
= μy
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V (tHH) =
1
n2

n∑
k=1

V

(
yik

Npik

)

=
1
n

N∑
i=1

(
yi

Npi
− μy

)2

pi.

Per la (14.87), infine, basta tener conto che

V̂HH =
1

n − 1

n∑
k=1

(
yik

Npik

− tHH

)2

per cui V̂ (tHH) è null’altro che la varianza campionaria corretta per un cam-
pione composto da n variabili aleatorie indipendenti e identicamente distri-
buite. ��

Esempio 14.14. Nel caso speciale in cui

p1 = p2 = · · · = pN =
1
N

il disegno ppswr si riduce al classico disegno campionario semplice con ripe-
tizione (scr). Essendo Npi = 1, lo stimatore di Hansen-Hurwitz si riduce alla
media campionaria

tHH = 1
n

∑
i∈s yi = ys.

La Proposizione 14.11 mette in evidenza (come già visto nel Capitolo 3) che
ys (usata con il disegno scr) è uno stimatore corretto della media μy della
popolazione, e che la sua varianza è pari a

V (tHH) = V (ys) = 1
nσ2

y

essendo σ2
y =

∑N
i=1(yi − μy)2/N la varianza della popolazione. ��

L’espressione della varianza dello stimatore di Hansen-Hurwitz mette in
evidenza un fatto importante, utile per la scelta delle probabilità pi di selezione
delle unità. Infatti, dalla (14.86) e dalla (14.82) si vede facilmente che

V (tHH) =
1
n

⎧⎨⎩ 1
2N2

N∑
i=1

N∑
j=1

(
yi

pi
− yj

pj

)2

pi pj

⎫⎬⎭ (14.88)

e la (14.88) è pari a 0 se le probabilità di selezione pi soddisfano la relazione

pi =
yi

Nμy
per ciascun i = 1, . . . , N. (14.89)
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La (14.89) mette in evidenza un fatto importante: lo stimatore di Hansen-
Hurwitz ha massima efficienza quando le probabilità di selezione pi sono pro-
porzionali alle modalità yi. Si tratta di un risultato simile a quello visto nella
Sezione 14.2.6 per lo stimatore di Horvitz-Thompson, benché in quel caso
fossero coinvolte le probabilità di inclusione πi, che sono diverse dalle pi.

Naturalmente, scegliere le probabilità di selezione (14.89) richiede la co-
noscenza delle modalità yi del carattere di interesse, che sono incognite. Un
ripiego ragionevole consiste nello scegliere probabilità pi proporzionali ai valori
di una variabile ausiliaria X . In simboli:

pi =
xi

Nμx
per ciascun i = 1, . . . , N. (14.90)

Tale scelta dà risultati tanto migliori quanto più le modalità xi della varia-
bile ausiliaria sono “vicine” ad una situazione di proporzionalità rispetto alle
modalità yi della variabile di interesse. Al limite, se fosse yi/xi = costante, le
(14.90) coinciderebbero con le (14.89)

Malgrado le molte proprietà positive, lo stimatore di Hansen-Hurwitz soffre
di un serio inconveniente che ne ha limitato fortemente l’uso: dipende dalle
ripetizioni delle unità campionarie, e quindi è migliorabile per il Teorema di
Rao-Blackwell. Detta y(r(s)) la riduzione dei dati campionari, lo stimatore

t∗ = E[tHH |y(r(s))] (14.91)

è più efficiente di tHH . Purtroppo, ad eccezione del caso p1 = · · · = pN =
1/N , per il quale si rinvia all’Esempio 13.5, non è facile costruire lo stimatore
(14.91). Il caso di campioni di numerosità n = 3 è trattato nell’Esercizio 13.6.

Una delle applicazioni più interessanti dello stimatore di Hansen-Hurwitz
è ai disegni a grappoli e a due stadi, in cui la selezione dei grappoli avviene
mediate disegno ppswr con probabilità di selezione pari ai pesi dei grappoli
stessi. Ciò è illustrato nei successivi esempi.

Esempio 14.15 (Disegno a grappolo ppswr). Si consideri una popolazio-
ne suddivisa in M grappoli, rispettivamente di N1, . . . , NM unità elementari.
Siano inoltre, come al solito, wg = Ng/N e μyg rispettivamente il peso e la
media del grappolo g (= 1, . . . , M). Un processo di selezione dei grappoli mol-
to semplice consiste nel selezionare m grappoli mediante disegno ppswr con
probabilità di selezione dei grappoli pg = wg, e nell’osservare tutte le unità ele-
mentari dei grappoli selezionati. Detto gm il campione di grappoli selezionato,
e tenendo conto che μy =

∑
g M wg μyg/M , lo stimatore di Hansen-Hurwitz

di μy assume la forma:

tHHgr =
1
m

∑
g∈gm

M wg μyg

M wg

=
1
m

∑
g∈gm

μyg . (14.92)
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È facile verificare che lo stimatore tHHgr è corretto, con varianza

V (tHHgr) =
1

2m

M∑
g=1

M∑
g
′
=1

(
μyg − μyg

′
)2

. ��

Esempio 14.16 (Disegno a due stadi ppswr). Una facile variante del di-
segno campionario a grappolo ppswr consiste nell’introdurre un secondo stadio
di campionamento, in cui si selezionano unità elementari dai grappoli scelti al
primo stadio. Precisamente, si considera un disegno campionario del seguente
tipo.

– I stadio. Si seleziona un campione gm di m grappoli (non necessariamen-
te distinti), mediante un disegno ppswr che dia al generico grappolo g
probabilità di selezione pg = wg.

– II stadio. Da ciascun grappolo g ∈ gm scelto al primo stadio si seleziona,
mediante disegno ssr, un campione sg di ng unità elementari. Il numero
di unità elementari da selezionare da ciascun grappolo è assunto fissato a
priori.

La costruzione di uno stimatore di tipo Hansen-Hurwitz della media della
popolazione è molto semplice. Si ha:

tHH2st =
1
m

∑
g∈gm

yg (14.93)

dove

yg =
1
ng

∑
i∈sg

ygi; g ∈ gm

è la media campionaria del grappolo g selezionato al primo stadio.
Dalla relazione (immediata da verificare)

E[tHH2st |gm] = tHHgr

con tHHgr dato dalla (14.92), si vede subito che tHH2st è corretto. La sua
varianza, facilmente calcolabile con un approccio diretto simile a quello del
Capitolo 11 (Esercizio 14.15) è pari a:

V (tHH2st) =
1

2m

M∑
g=1

M∑
g′=1

(
μyg − μyg′

)2

+
M∑

g=1

(
1
ng

− 1
Ng

)
S2

yg wg (14.94)

dove

S2
yg =

1
Ng − 1

Ng∑
i=1

(ygi − μyg)2; g = 1, . . . , M

è la varianza corretta del grappolo g. ��
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14.5 Largo ai giovani: qualche idea di base sugli
stimatori di tipo calibrazione∗

14.5.1 Calibrazione con una variabile ausiliaria

Come visto a proposito dello stimatore di Horvitz-Thompson, una scelta “ra-
gionevole” delle probabilità di inclusione πi consiste nel prenderle proporzio-
nali ai valori di una variabile ausiliaria, il più possibile “vicina”, a sua volta,
ad un legame di approssimata proporzionalità con la variabile di interesse.
In questo modo, la variabile ausiliaria viene usata sia per costruire il disegno
campionario di selezione delle unità, sia per costruire lo stimatore (di Horvitz-
Thompson) di μy. Tuttavia, questo non è l’unico modo di utilizzare variabili
ausiliarie per stimare la media della variabile di interesse. Ad esempio, anche
gli stimatori per quoziente e per regressione usano una variabile ausiliaria (in-
dipendentemente dal tipo di disegno campionario adottato, che può o meno
essere di tipo ssr).

Gli stimatori di tipo calibrazione sono stati introdotti abbastanza di re-
cente come tentativo di tener conto esplicitamente, in fase di stima, delle
informazioni derivanti dalla conoscenza di una o più variabili ausiliarie note.
In questa sezione ci si limiterà soltanto a fornire alcune idee di base sugli
stimatori per calibrazione. Una trattazione più dettagliata, basata su un mo-
dello statistico che espliciti in che modo la variabile di interesse Y dipende
dalle variabili ausiliarie note, sarà fornita nella parte riguardante i modelli di
superpopolazione.

L’idea di base dell’approccio basato sulla calibrazione può essere esposta in
modo molto semplice. Supponiamo di disporre di informazioni ausiliarie con-
sistenti nella conoscenza di un carattere ausiliario X , correlato con il carattere
di interesse Y, e di cui:

− è nota la media μx =
∑N

i=1 xi/N ;
− sono noti i valori xi assunti in corrispondenza delle unità campionarie.

Si osservi che se i valori xi sono noti per tutte le unità della popola-
zione (come in genere accade in pratica) le due assunzioni precedenti sono
soddisfatte.

Se s è il campione di unità selezionate, sia

tHTy =
1
N

∑
i∈s

1
πi

yi

lo stimatore di Horvitz-Thompson di μy, e sia

tHTx =
1
N

∑
i∈s

1
πi

xi

il corrispondente stimatore di Horvitz-Thompson di μx.
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Se tHTx è “lontano” da μx, e se Y è correlato abbastanza fortemente con
X , è ragionevole attendersi che anche tHTy sia “lontano” da μy. L’idea di base
è allora quella di stimare μy con uno stimatore lineare

tly =
1
N

∑
i∈s

cis yi (14.95)

che soddisfi i seguenti due requisiti.

1. La stima della media della variabile X ottenuta applicando i pesi finali cis

ai dati {xi; i ∈ s} deve uguagliare la media della popolazione μx. Tale
vincolo è denominato vincolo di calibrazione. Formalmente

tlx =
1
N

∑
i∈s

cis xi = μx. (14.96)

2. I pesi finali cis sono il più possibile “vicini” a quelli base 1/πi del-
lo stimatore di Horvitz-Thompson determinati sulla base del disegno di
campionamento.

Naturalmente, il requisito 2 richiede di definire una distanza tra i pesi cis

e le 1/πi. La distanza adottata è la seguente:

∑
i∈s

(cis − 1
πi

)2
qi

πi

(14.97)

dove qi sono numeri positivi arbitrari.
La determinazione dei pesi finali cis che definiscono lo stimatore (14.95)

richiede quindi la soluzione del seguente problema di ottimo vincolato:{
minimizzare :

∑
i∈s

(cis− 1
πi

)2

qi
πi

con il vincolo : 1
N

∑
i∈s cis xi = μx.

(14.98)

Proposizione 14.12. La soluzione del problema di minimo vincolato (14.98)
è costituita dai pesi:

cis =
1
πi

− tHTx − μx

1
N

∑
i∈s

qix2
i

πi

qixi

πi
. (14.99)

Dimostrazione. Il problema di minimo vincolato (14.98) si risolve con il
metodo dei moltiplicatori di Lagrange. La funzione Lagrangiana assume la
forma

L =
∑
i∈s

(cis − 1
πi

)2
qi

πi

− 2λ

(∑
i∈s

cis xi − Nμx

)
(14.100)
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dove λ è il moltiplicatore di Lagrange. Derivando la (14.100) rispetto a cis e
annullando tali derivate, si ha

∂L
∂cis

= 2
cis − 1

πi

qi

πi

− 2λxi = 0

che equivale a

cis =
1
πi

+ λ
qixi

πi
. (14.101)

Moltiplicando ambo i membri della (14.101) per xi, si ha

cis xi =
xi

πi
+ λ

qix
2
i

πi
. (14.102)

Usando infine il vincolo di calibrazione (14.96), dalla (14.102) si ottiene

μx =
1
N

∑
i∈s

cis xi = tHTx +
λ

N

∑
i∈s

qix
2
i

πi

da cui

λ =
μx − tHTx

1
N

∑
i∈s

qix2
i

πi

e quindi la (14.99). Si osservi infine che il peso finale può essere espresso come
prodotto tra il peso base e un fattore correttivo. ��

L’uso dei pesi (14.99) porta allo stimatore per calibrazione di μy, definito
come

tcal =
1
N

∑
i∈s

⎧⎨⎩ 1
πi

− tHTx − μx

1
N

∑
j∈s

qjx2
j

πj

qixi

πi

⎫⎬⎭ yi

=
1
N

∑
i∈s

1
πi

yi −
1
N

∑
i∈s

qixi

πi
yi

1
N

∑
i∈s

qix2
i

πi

(tHTx − μx)

= tHTy −
1
N

∑
i∈s

qixi

πi
yi

1
N

∑
i∈s

qix2
i

πi

(tHTx − μx). (14.103)

Intuitivamente, lo stimatore (14.103) “aggiusta”, “calibra” lo stimatore
di Horvitz-Thompson tHTy con un termine che dipende dalla differenza tra
tHTx e μx, ossia dalla “distanza” tra lo stimatore di Horvitz-Thompson di
μx, tHTx e l’ effettiva μx. Quanto più grande è (in positivo o in negativo) la
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differenza tra tHTx e μx, tanto più grande sarà l’aggiustamento. Il “fattore di
aggiustamento” è rappresentato dal rapporto

1
N

∑
i∈s

qixi

πi
yi

1
N

∑
i∈s

qix2
i

πi

in cui il numeratore è lo stimatore di Horvitz-Thompson di
∑N

i=1 qi xi yi/N ,
mentre il denominatore è lo stimatore di Horvitz-Thompson di

∑N
i=1 qi x2

i /N .

Esempio 14.17. Si supponga che qi = 1/xi per ciascuna unità della popola-
zione. Si ha allora

1
N

∑
i∈s

qi xi

πi
yi =

1
N

∑
i∈s

1
πi

yi = tHTy

1
N

∑
i∈s

qi x2
i

πi
=

1
N

∑
i∈s

1
πi

xi = tHTx

per cui lo stimatore per calibrazione si riduce a

tcal = tHTy − tHTy

tHTx
(tHTx − μx)

=
tHTy

tHTx
μx. (14.104)

Si tratta, in sostanza, di una versione generalizzata del classico stimatore per
quoziente. Se poi il disegno campionario è semplice senza ripetizione lo sti-
matore di Horvitz-Thompson si riduce alla media campionaria, e lo stimatore
(14.104) diventa proprio lo stimatore per quoziente. ��

Esempio 14.18. Consideriamo ancora l’Esempio 14.17, e assumiamo che la
variabile ausiliaria X sia tale che xi = 1 per ciascuna unità della popolazione,
cos̀ı che è anche μx = 1. Di fatto, non si tratta di una “vera” informazione
ausiliaria. Il vincolo di calibrazione (14.96) assume la forma:

1
N

∑
i∈s

cis = 1

che equivale a ∑
i∈s

cis = N. (14.105)

Se si interpreta il peso cis come il numero di unità della popolazione rappre-
sentate dall’unità i del campione s, allora la somma

∑
i∈s cis rappresenta il

numero totale di unità della popolazione rappresentate dalle unità del cam-
pione s. Il vincolo (14.105) ci dice che il numero totale di unità rappresentate
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da quelle campionarie deve essere eguale all’effettivo numero di unità della
popolazione.

Se si assume anche qi = 1 per tutte le unità della popolazione, lo stimatore
di calibrazione (14.104) diviene

tcal =

∑
i∈s

1
πi

yi∑
i∈s

1
πi

. (14.106)

Si tratta di uno stimatore di tipo quoziente generalizzato introdotto da Hájek
(1971), in cui i pesi dello stimatore hanno la forma:

cis = N

⎛⎝ 1
πi

/∑
j∈s

1
πj

⎞⎠ per ciascun i ∈ s. ��

14.5.2 Calibrazione con più variabili ausiliarie

Le idee della precedente sezione possono facilmente essere estese al caso di
più variabili ausiliarie. Supponiamo date p variabili ausiliarie X1, . . ., Xp, e
indichiamo con xik il valore che la variabile Xk assume in corrispondenza
dell’unità i (i = 1, . . . , N ; k = 1, . . . , p). Indichiamo inoltre con

μxk =
1
N

N∑
i=1

xik; k = 1, . . . , p (14.107)

la media della variabile Xk (k = 1, . . . , p).
Nel seguito si assumerà che le p medie (14.107) siano note, e che i valori xik

siano noti per tutte le unità campionarie. Non è necessario, a questo stadio,
assumere i valori xik noti per tutte le unità della popolazione.

Le idee che hanno portato allo stimatore per calibrazione nella sezione pre-
cedente rimangono sostanzialmente invariate. Il problema è quello di costruire
uno stimatore lineare di μy del tipo (14.95), in modo tale che (i) sia minima
la distanza (14.97), e (ii) siano soddisfatti i p vincoli di calibrazione

1
N

∑
i∈s

cis xik = μxk ; k = 1, . . . , p. (14.108)

La determinazione dei pesi cis che definiscono lo stimatore (14.95) richiede
quindi la soluzione del seguente problema di ottimo vincolato:{

minimizzare :
∑

i∈s

(cis− 1
πi

)2

qi
πi

con i vincoli : 1
N

∑
i∈s cis xik = μxk ; k = 1, . . . , p.

(14.109)
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Per agevolare la soluzione del problema (14.109) è opportuno ricorrere ad
una notazione vettoriale. Siano

tHTxk =
1
N

∑
i∈s

1
πi

xik, tlxk =
1
N

∑
i∈s

cisxik; k = 1, . . . , p

rispettivamente lo stimatore di Horvitz-Thompson e lo stimatore lineare
(14.95) di μxk (k = 1, . . . , p), e siano

tHTx =

⎡⎢⎢⎣
tHTx1

tHTx2

· · ·
tHTxp

⎤⎥⎥⎦ , tlx =

⎡⎢⎢⎣
tlx1

tlx2

· · ·
tlxp

⎤⎥⎥⎦ , μx =

⎡⎢⎢⎣
μx1

μx2

· · ·
μxp

⎤⎥⎥⎦
i vettori (a p componenti) rispettivamente degli stimatori di Horvitz-Thomp-
son tHTxk , degli stimatori lineari (14.95), e delle medie μxk (k = 1, . . . , p).
Indichiamo inoltre con

xi. =

⎡⎢⎢⎣
xi1

xi2

· · ·
xip

⎤⎥⎥⎦ ; i = 1, . . . , N

il vettore (a p componenti) dei valori assunti dalle variabili ausiliarie in
corrispondenza dell’unità i. Valgono le ovvie relazioni:

1
N

∑
i∈s

1
πi

xi. = tHTx,
1
N

∑
i∈s

cisxi. = tlx.

Proposizione 14.13. La soluzione del problema di minimo vincolato (14.109)
è costituita dai pesi:

cis =
1
πi

− (tHTx − μx)′
(

1
N

∑
i∈s

qi

πi
(xi.x′

i.)

)−1
qi

πi
xi.. (14.110)

Dimostrazione. Il problema di minimo vincolato (14.109) si risolve con il
metodo dei moltiplicatori di Lagrange. La funzione Lagrangiana è pari a

L =
∑
i∈s

(cis − 1
πi

)2
qi

πi

− 2λ′(tlx − μx) (14.111)

dove λ è il vettore dei p moltiplicatori di Lagrange λ1, . . . , λp. Derivando la
(14.111) rispetto ai termini cis, e annullando tali derivate, si ha

∂L
∂cis

= 2
cis − 1

πi

qi

πi

− 2λ′xi. = 0
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da cui si ottiene

cis =
1
πi

+
qi

πi
λ′xi.. (14.112)

Il valore di λ in (14.112) si calcola utilizzando i vincoli di calibrazione. Precisa-
mente, moltiplicando ambo i membri della (14.112) per (1/N)xi. e sommando
rispetto alle unità del campione, si ha

tlx = tHTx +
1
N

∑
i∈s

qi

πi
λ′xi.xi.

da cui, tenendo conto dei p vincoli di calibrazione tlx = μx e della relazione

(λ′xi.)xi. = (x′
i.λ)xi. = xi.(x′

i.λ) = (xi.x′
i.)λ

si ottiene

μx = tHTx +

(
1
N

∑
i∈s

qi

πi
xi.x′

i.

)
λ

e quindi

λ =

(
1
N

∑
i∈s

qi

πi
xi.x′

i.

)−1

(μx − tHTx). (14.113)

Sostituendo la (14.113) nella (14.112) si ottiene facilmente la (14.110). ��
Lo stimatore per calibrazione di μy, basato sui pesi (14.110), assume la

forma:

tcal = tHTy − (tHTx − μx)′
(∑

i∈s

qi

πi
(xi.x′

i.)

)−1(∑
i∈s

qi

πi
xi.yi

)
. (14.114)

Esempio 14.19 (Post-stratificazione). Supponiamo che la popolazione sia
suddivisa in M strati, rispettivamente di N1, . . . , NM unità; al solito, indi-
cheremo con wg = Ng/N il peso dello strato g (= 1, . . . , M). Assumiamo
inoltre di conoscere i numeri N1, . . . , NM , ma non quali unità compongono
gli strati. È questa, come già visto nel Capitolo 8, la situazione tipica della
post stratificazione. Sulle unità della popolazione definiamo poi le M variabili
di appartenenza /non appartenenza ai diversi strati. Formalmente, poniamo

xig =
{

1 se l ′unit à i appartiene allo strato g
0 altrimenti ; i = 1, . . . , N ; g = 1, . . . , M

e definiamo i vettori (a M componenti, di cui una eguale a 1 e le altre a 0)

xi. =

⎡⎢⎢⎣
xi1

xi2

· · ·
xiM

⎤⎥⎥⎦ ; i = 1, . . . , N .
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Sia inoltre sg (g = 1, . . . , M) il sottocampione formato dalle unità del
campione s appartenenti allo strato g, cos̀ı che il campione “totale” s può
essere scritto come (s1, s2, . . . , sM). Per semplicità supporremo che ognuno dei
sottocampioni sg contenga almeno un’unità, ossia che il campione s contenga
almeno un’unità di ciascuno strato.

Per determinare i pesi che definiscono lo stimatore per calibrazione (14.95),
iniziamo con l’osservare che i vincoli di calibrazione si scrivono come

1
N

∑
i∈sg

cis = wg; g = 1, . . . , M

ovvero ∑
i∈sg

cis = Ng ; g = 1, . . . , M. (14.115)

Interpretando il peso cis come il numero di unità della popolazione “rappresen-
tate” dall’unità campionaria i, il termine

∑
i∈sg

cis è null’altro che il numero
di unità dello strato g rappresentate da quelle del campione s. I vincoli di
calibrazione (14.115) ci dicono che il numero di unità di ciascuno strato rap-
presentate da quelle del campione deve essere uguale al numero effettivo di
unità dello strato stesso. In questo senso l’operazione di calibrazione equivale
ad una post-stratificazione.

In secondo luogo, con ovvia notazione valgono le seguenti relazioni:

μx =

⎡⎢⎢⎣
w1

w2

· · ·
wM

⎤⎥⎥⎦ , tHTx =
1
N

⎡⎢⎢⎣
∑

i∈s1
1
πi∑

i∈s2
1
πi

· · ·∑
i∈sM

1
πi

⎤⎥⎥⎦ , tHTy =
1
N

M∑
g=1

∑
i∈sg

1
πi

yi.

Per la costruzione effettiva dello stimatore di calibrazione è necessaria
qualche ulteriore osservazione. In primo luogo, se l’unità i appartiene allo
strato g il prodotto xi.x′

i. è una matrice quadrata M × M , in cui il g-mo
elemento è uguale a 1 e tutti gli altri sono pari a 0. Posto qi = 1 per ciascuna
unità della popolazione, ne consegue che

∑
i∈s

qi

πi
(xi.x′

i.) =
M∑

g=1

∑
i∈sg

1
πi

(xi.x′
i.)

=

⎡⎢⎢⎢⎢⎢⎣
1
/∑

i∈s1
1
πi

0 · · · 0

0 1
/∑

i∈s2
1
πi

· · · 0
· · · · · · · · · · · ·
0 0 · · · 1

/∑
i∈sM

1
πi

⎤⎥⎥⎥⎥⎥⎦
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e

∑
i∈s

qi

πi
xi.yi =

M∑
g=1

∑
i∈sg

1
πi

xi.yi =

⎡⎢⎢⎣
∑

i∈s1
1
πi

yi∑
i∈s2

1
πi

yi

· · ·∑
i∈sM

1
πi

yi

⎤⎥⎥⎦
da cui si ottiene

tcal = tHTy − (tHTx − μx)′
(∑

i∈s

qi

πi
(xi.x′

i.)

)−1(∑
i∈s

qi

πi
xi.yi

)

=
1
N

M∑
g=1

∑
i∈sg

1
πi

yi −
1
N

M∑
g=1

∑
i∈sg

1
πi

yi +
M∑

g=1

wg

∑
i∈sg

1
πi

yi∑
i∈sg

1
πi

=
1
N

M∑
g=1

∑
i∈sg

1
πi

(
Ng∑

i∈sg

1
πi

)
yi. (14.116)

La forma dello stimatore per calibrazione (14.116) è particolarmente
significativa, e merita alcuni commenti. Essendo i pesi cis pari a

cis =
1
πi

(
Ng∑

i∈sg

1
πi

)
per ciascuna unit à campionaria dello strato g (14.117)

lo stimatore (14.116) “aggiusta” i propri pesi essenzialmente in modo da realiz-
zare una post-stratificazione mediante il soddisfacimento dei vincoli (14.115).
Questa interpretazione è rafforzata da una semplice considerazione. Il termine
1/πi è il peso che il disegno di campionamento assegna all’unità i. Il termine
Ng/

∑
i∈sg

1
πi

è invece un “fattore di aggiustamento”, che modifica i pesi da
disegno in modo da soddisfare i vincoli di calibrazione, ossia in modo da post
stratificare le unità campionarie. I pesi (14.117) hanno quindi una struttura
del tipo

Peso assegnato dal disegno
all ′unit à i × Fattore di aggiustamento

per la post -stratificazione . ��

Esempio 14.20 (Tabelle di contingenza con vincoli sulle margina-
li). Si supponga che sulle unità della popolazione siano definiti due carat-
teri discreti A, B, aventi modalità categoriali rispettivamente A1, . . . , AH ,
B1, . . . , BK . Per ciascuna unità della popolazione definiamo poi le H + K
variabili

xA
ih =

{
1 l ′unit à i possiede modalit à Ah

0 altrimenti ;

xB
ik =

{
1 l ′unit à i possiede modalit à Bk

0 altrimenti

(i = 1, . . . , N ; h = 1, . . . , H; k = 1, . . . , K).
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Supponiamo inoltre di voler stimare la proporzione di unità della popo-
lazione che possiedono una qualsiasi coppia (Ah, Bk) di modalità dei due
caratteri (h = 1, . . . , H; k = 1, . . . , K). Se si definiscono le HK variabili di
interesse

yihk = xA
ih xB

ik =
{

1 l ′unit à i possiede modalit à Ah e Bk

0 altrimenti

(i = 1, . . . , N ; h = 1, . . . , H; k = 1, . . . , K) le proporzioni da stimare sono

Phk =
1
N

N∑
i=1

yihk =
Nhk

N
; h = 1, . . . , H; k = 1, . . . , K (14.118)

essendo Nhk il numero di unità che possiedono le modalità Ah e Bk.
Lo stimatore di Horvitz-Thompson di Phk è uguale a

P̂ HT
hk =

1
N

∑
i∈s

1
πi

yihk; h = 1, . . . , H; k = 1, . . . , K. (14.119)

Supponiamo ora che siano note le proporzioni

Ph. =
K∑

k=1

Phk; h = 1, . . . , H

di unità che possiedono le modalità A1, . . . , AH , e le proporzioni

P.k =
H∑

h=1

Phk; k = 1, . . . , K

di unità che possiedono le modalità B1, . . . , BK .
Se indichiamo con P̂ cal

hk lo stimatore per calibrazione di Phk, dovranno
essere soddisfatti i vincoli

H∑
h=1

P̂ cal
hk = Ph., h = 1, . . . , H (14.120)

K∑
k=1

P̂ cal
hk = P.k, k = 1, . . . , K. (14.121)

Gli stimatori P̂ cal
hk , per h = 1, . . . , H, k = 1, . . . , K possono essere co-

struiti lungo le linee indicate in precedenza. Nel caso in cui le qi siano tutte
eguali a 1 e le stime P̂ HT

hk siano tutte positive, è però possibile percorrere
una strada alternativa, molto interessante, basata sull’algoritmo di Iterative
Proportional Fitting (IFP) di seguito brevemente descritto.

− Passo 0. Inizializzazione. Porre t = 0 e P̂
(0)
hk = P̂ HT

hk , per h =
1, . . . , H, k = 1, . . . , K. Fissare un ‘‘livello di soglia di ar-
resto’’ δ > 0.
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− Passo 1. Aggiustamento delle marginali di riga. Porre

P̂
(t+1)
hk = P̂

(t)
hk

Ph.∑K
k=1 P̂

(t)
hk

per h = 1, . . . , H, k = 1, . . . , K. Incrementare t di 1 e andare al
Passo 2.

− Passo 2. Aggiustamento delle marginali di colonna. Porre

P̂
(t+1)
hk = P̂

(t)
hk

P.k∑H
h=1 P̂

(t)
hk

per h = 1, . . . , H, k = 1, . . . , K. Incrementare t di 1 e andare al
Passo 3.

− Passo 3. Verifica della condizione di arresto. Se

|P̂ (t)
hk − P̂

(t−2)
hk | < δ

per ciascun h = 1, . . . , H, k = 1, . . . , K, andare al Passo 4. Al-
trimenti, andare al Passo 1.

− Passo 4. Arresto. Porre P̂ cal
hk = P̂

(t)
hk per ciascun h = 1, . . . , H,

k = 1, . . . , K.
��

Esempio 14.21 (Stimatore per regressione). Supponiamo che il disegno
campionario sia semplice senza ripetizione (cos̀ı che πi = n/N), e sia X una
variabile ausiliaria con media μx nota, ed i cui valori xi siano (almeno) os-
servati sulle unità campionarie. Lo stimatore di Horvitz-Thompson di μy è
uguale, ovviamente, alla media campionaria ys. Per adottare il simbolismo
usato in precedenza, definiamo le due variabili X1, X2 come

xi1 = 1, xi2 = xi; i = 1, . . . , N.

Chiaramente, le medie di queste due variabili (sull’intera popolazione) sono
μx1 = 1 e μx2 = μx.

Se cis sono i pesi dello stimatore per calibrazione, devono essere soddisfatti
i vincoli:

1
N

∑
i∈s

cis = 1,
1
N

∑
i∈s

cisxi = μx.

Per quanto concerne la costruzione dello stimatore per calibrazione, osservia-
mo anzitutto che i vettori (a due componenti) xi. sono del tipo

xi. =
[

1
xi

]
; i = 1, . . . , N
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cos̀ı che si ha(
1
n

∑
i∈s

xi.x′
i.

)−1(
1
n

∑
i∈s

xi. yi

)
=

[
ys − b̂y/xxs

b̂y/x

]
essendo

b̂y/x =
∑

i∈s xi yi/n − xsys∑
i∈s x2

i /n − x2
s

il coefficiente di regressione campionario di Y rispetto a X .
Lo stimatore tcal assume la forma

tcal = ys − b̂y/x(xs − μx)

e si riduce quindi al classico stimatore per regressione introdotto nel Capito-
lo 5. ��

Esercizi

14.1. Provare che lo stimatore per regressione si può scrivere nella forma
(14.11).

14.2. Provare che lo stimatore per quoziente è corretto se si usa un disegno
di Midzuno-Lahiri con pi = xi/(Nμx).

14.3. Mostrare che se il disegno campionario è di tipo sistematico, non esiste
nessuno stimatore corretto di V (tHT ) della forma:

V̂ =
∑
i∈s

∑
j∈s

cij
yi

πi

yj

πj

essendo cij opportuni coefficienti numerici.

14.4. Provare che se πij > 0 per tutte le coppie i, j di unità distinte, l’unico
stimatore corretto di V (tHT ) della forma:

V̂ =
1

N2

∑
i∈s

∑
j∈s

cij
yi

πi

yj

πj

si ottiene per cij = Δij/πij.

14.5. Data una popolazione finita di N unità, si considerino due caratteri
X , Y, che assumono rispettivamente le modalità x1, . . ., xN e y1, . . ., yN .
Dette μx, μy le medie dei due caratteri, si considerino i loro stimatori di
Horvitz-Thompson

tHTx =
1
N

∑
i∈s

1
πi

xi, tHTy =
1
N

∑
i∈s

1
πi

yi.
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Provare che la covarianza tra tHTx e tHTy è uguale a

C(tHTx, tHTy) =
1

N2

N∑
i=1

N∑
j=1

xi

πi

yj

πj
Δij

con Δij = πij − πiπj.

14.6. Provare la relazione (14.52).

14.7. Provare la relazione (14.54).

14.8. Provare che lo stimatore (14.51) non è migliorabile con la tecnica di
contrazione.

14.9. Provare che lo stimatore (14.53) non è migliorabile con la tecnica di
contrazione.

14.10. (Stimatore di Horvitz-Thompson per disegni unicluster) Un
disegno campionario (S, p(·)) è detto unicluster se i campioni in S sono due
a due disgiunti, ossia se S = {s1, s2, . . . , sK} con sj ∩ sl = ∅ per ogni j �= l,
j, l = 1, . . . , K. Il più importante tipo di disegno unicluster è il disegno
sistematico. Verificare che per questo tipo di disegno lo stimatore di Horvitz-
Thompson di μy non è migliorabile con la tecnica di contrazione.

14.11. (Stimatore di Horvitz-Thompson e disegno di Bernoulli) Dato
un (arbitrario) numero 0 < p < 1, siano B1, . . . , BN N variabili aleatorie
indipendenti, identicamente distribuite, e tali che Pr(Bi) = 1 = p, Pr(Bi =
0) = 1 − p, per ciascun i = 1, . . . , N . Si consideri il disegno campionario
definito da δ(i; s) = Bi per ciascun i = 1, . . . , N (l’unità i è inclusa nel
campione s se e solo se Bi = 1).

a. Verificare che πi = p per ciascun i = 1, . . . , N , e che pij = p2 per ciascun
j �= i.

b. Verificare che lo stimatore di Horvitz-Thompson di μy,

tHT =
1

Np

N∑
i=1

yi δ(i; s),

ha varianza

V (tHT ) =
1

N2

1 − p

p

N∑
i=1

y2
i .

c. Verificare che il rapporto E[t2HT ]/μ2
y = 1 + V (tHT )/μ2

y, qualunque sia μy

fissato, raggiunge il suo valore minimo per y1 = y2 = · · · = yN (= μy).
d. Verifiare che il valore ottimo della costante di contrazione è c∗ = Np

(N−1)p+1 .
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14.12. Siano X , Y due caratteri di interesse, di cui si vogliono stimare le
medie μx, μy, e siano

tHTx =
1
N

∑
i∈s

1
πi

xi, tHTy =
1
N

∑
i∈s

1
πi

yi

i corrispondenti stimatori di Horvitz-Thompson. Verificare che la loro cova-
rianza è eguale a:

C(tHTx, tHTy) =
1

N2

N∑
i=1

N∑
j=1

xi

πi

yj

πj
(πij − πiπj).

14.13. Dimostrare che nel caso di disegno ssr di ampiezza n, e se y0
i = cxi per

ciascun i = 1, . . . , N , lo stimatore alle differenze generalizzate ha (con ovvia
simbologia) varianza pari a

V (tgd) =
(

1
n
− 1

N

)
(S2

y + S2
x − 2Sxy). (14.122)

14.14. Provare le relazioni (14.81), (14.82).

14.15. Verificare la relazione (14.94).
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Costruzione di disegni campionari con

preassegnate caratteristiche

15.1 Aspetti introduttivi. Qualità “desiderabili” di
disegni campionari

L’obiettivo di questo capitolo è quello di esporre alcuni disegni campionari
che possiedono “buone” proprietà, che li rendono particolarmente importanti
per le loro potenzialità applicative. Una particolare attenzione sarà dedicata
agli aspetti algoritmici, in particolare per quel che riguarda la definizione di
schemi computazionalmente efficienti per selezionare campioni di unità sul-
la base di un dato disegno di campionamento (implementazione del disegno
campionario). Si tratta di un punto molto importante, in quanto l’uso effet-
tivo di un disegno campionario è legato in modo indissolubile alla possibilità
di implementarlo in modo numericamente efficiente, ossia alla possibilità di
selezionare in modo numericamente efficiente un campione.

La scelta di un disegno campionario non è un problema a sé stante, ma va
sempre visto in coppia con la scelta dello stimatore del parametro di interesse
(o degli stimatori dei parametri di interesse). Ha quindi più senso parlare di
scelta di una strategia di campionamento, ossia di una coppia (disegno, stima-
tore). Se l’obiettivo è quello di stimare un certo parametro, il criterio-guida
dovrebbe essere quello di scegliere una strategia di campionamento altamen-
te efficiente, ossia caratterizzata da un “piccolo” errore quadratico medio di
stima.

In questo capitolo largo spazio sarà dedicato a disegni campionari da uti-
lizzare in coppia con lo stimatore di Horvitz-Thompson della media della po-
polazione. Come già si è avuto modo di chiarire, per garantire buone proprietà
di efficienza allo stimatore di Horvitz-Thompson è necessario che il disegno
di campionamento abbia ampiezza effettiva costante, e che le probabilità di
inclusione del primo ordine siano, in via approssimata, proporzionali alle mo-
dalità yi. Essendo queste ultime incognite, di fatto si useranno probabilità
di inclusione del primo ordine proporzionali alle modalità xi di una variabi-
le ausiliaria X , come descritto nella Sezione 14.2.5. Quanto più tra le yi e

Conti P. L., Marella D.: Campionamento da popolazioni finite. Il disegno campionario.
DOI 10.1007/978-88-470-2577-6 15, © Springer-Verlag Italia 2012



384 15 Costruzione di disegni campionari con preassegnate caratteristiche

le xi sussiste una relazione “vicina” alla proporzionalità, tanto migliore sarà
questa scelta. Indicheremo con π0i tali probabilità di inclusione “desiderate”.
Chiaramente, detta n la numerosità campionaria, ciò significa porre π0i = 1
per tutte le unità i tali che nxi/

∑N
j=1 xj � 1, e ricalcolare le probabilità di

inclusione delle restanti unità come

π0i = (n − nA)
xi∑N

j=1j /∈A
xj

; i = 1, . . . , N ; i /∈ A

essendo A l’insieme delle unità della popolazione tali che nxi/
∑N

j=1 xj � 1,
e nA il numero di tali unità. In questo modo, alla fine si avranno probabilità
di inclusione “desiderate” π0i tutte minori o uguali a 1 e la cui somma è pari
a n.

Per garantire buone proprietà di efficienza allo stimatore di Horvitz-
Thompson della media della popolazione, il disegno campionario dovrebbe
avere (almeno) le seguenti due caratteristiche.

C1. Ampiezza effettiva costante n.
C2. Probabilità di inclusione del primo ordine pari a quelle desiderate π01,

. . ., π0N .

Naturalmente, vi sono anche altre proprietà che un disegno dovrebbe pos-
sedere. Ad esempio, le probabilità di inclusione del secondo ordine dovrebbero
essere calcolabili in modo efficiente almeno in via approssimata, in modo da
poter stimare la varianza dello stimatore di Horvitz-Thompson; inoltre, tale
stimatore dovrebbe essere non negativo. Requisiti aggiuntivi rispetto a C1 e
C2 sono elencati di seguito.

C3. Varianza dello stimatore di Horvitz-Thompson “piccola”.
C4. Probabilità di inclusione del secondo ordine calcolabili in modo numeri-

camente efficiente, almeno in via approssimata. Questo requisito è im-
portante per stimare la varianza dello stimatore di Horvitz-Thompson.
Da questo punto di vista, le probabilità di inclusione del secondo ordine
dovrebbero soddisfare la disuguaglianza πij � πiπj per tutte le coppie di
unità distinte i, j, in modo che lo stimatore di Yates-Grundy di V (tHT )
sia non negativo.

C5. Il disegno campionario dovrebbe possedere un’entropia “sufficientemente
grande”, in modo da avere una certa robustezza di stima nel caso di
popolazione “non troppo vicina” alla situazione ideale in cui le yi sono
proporzionali alle xi.

Non tutti i requisiti C1–C5 possono essere simultaneamente soddisfatti in
modo esatto. Ad esempio, per quanto riguarda C3 è possibile verificare (Eser-
cizio 15.1) che tra tutti i disegni ad ampiezza effettiva costante e prefissate
probabilità di inclusione del primo ordine, non ne esiste uno che rende minima
la varianza dello stimatore di Horvitz-Thompson V (tHT ). Quindi, il requisito
C3 in assoluto non è realmente perseguibile nel senso di determinare le pro-
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babilità di inclusione del secondo ordine che rendono minima la varianza dello
stimatore di Horvitz-Thompson.

La proprietà C5 (entropia “grande”) è importante non solo di per sé,
ma anche perché permette di costruire approssimazioni “ragionevoli” delle
probabilità di inclusione del secondo ordine, cos̀ı come della varianza V (tHT ).

Di schemi campionari per la selezione di campioni con preassegnate ca-
ratteristiche ne esistono moltissimi in letteratura, e non è nostro obiettivo
fornire neanche un loro sommario elenco. Il lettore interessato può consultare
i volumi di Brewer e Hanif (1983) e di Chaudhuri e Vos (1988). Ci si limiterà
essenzialmente a descrivere alcuni dei più importanti schemi di campionamen-
to, cercando di mettere in evidenza gli aspetti algoritmici legati al loro uso
effettivo. Un’eccellente monografia dedicata a questi aspetti è il bel volume di
Tillé (2006).

15.2 Disegni campionari di Poisson e di Bernoulli

15.2.1 Il disegno campionario di Poisson

Un disegno di campionamento con probabilità variabili e avente struttura
molto semplice è il disegno di Poisson. Siano p1, . . . , pN N numeri tali che

0 < pi � 1 per ciascuna unit à i = 1, . . . N ;
p1 + · · ·+ pN = 1.

Nel disegno campionario di Poisson si assume che le variabili indicatrici
δ(i; s) sono indipendenti e tali che

P (δ(i, s) = 1) = pi per ciascuna unit à i = 1, . . . , N. (15.1)

Per quanto riguarda lo spazio dei campioni, poiché ciascun indicatore δ(i; s)
può assumere in modo indipendente i valori 0, 1, lo spazio campionario è
costituito dai 2N sottoinsiemi di {1, . . . , N}. Inoltre, un qualunque campione
s ha probabilità

p(s) = Pr(δ(i; s) = 1 per i ∈ s; δ(i; s) = 0 per i /∈ s)

=

{∏
i∈s

pi

}{∏
i/∈s

(1 − pi)

}

=
N∏

i=1

p
δ(i; s)
i (1 − pi)1−δ(i; s). (15.2)

La (15.2) può anche scriversi nella forma

p(s) = Cpo

N∏
i=1

ω
δ(i; s)
i (15.3)
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dove si è posto

ωi =
pi

1 − pi
per ciascuna unit à i = 1, . . . , N (15.4)

Cpo =
N∏

i=1

(1 − pi). (15.5)

Il calcolo delle probabilità di inclusione del primo e del secondo ordine è
semplicissimo. Dalla (15.1) si ha in primo luogo:

πi = pi per ciascuna unit à i = 1, . . . , N. (15.6)

Dall’indipendenza delle δ(i; s) si ha poi:

πij = Pr(δ(i; s) = 1 δ(j; s) = 1)
= Pr(δ(i; s) = 1)Pr(δ(j; s) = 1)
= pi pj (15.7)

per ogni coppia i, j di unità distinte.
Le relazioni appena trovate permettono di risolvere con molta facilità un

importante problema: “Quali valori devono assumere p1, . . . , pN in modo
che le probabilità di inclusione del primo ordine siano esattamente uguali
a π01, . . . , π0N?” Dalla (15.6) risulta immediato che si deve porre:

p1 = π01, p2 = π02, . . . , pN = π0N . (15.8)

In altri termini, per soddisfare il requisito C2 è sufficiente scegliere i numeri
p1, . . . , pN in base alla (15.8). Con questa scelta, le probabilità di inclusione
del secondo ordine sono : πij = π0i π0j per tutte le coppie i, j di unità distinte.

Molto facile è anche la generazione di un campione in base al disegno
di Poisson, che si può realizzare mediante un facile schema sequenziale. È
sufficiente generare N variabili aleatorie U1, . . ., UN indipendenti e tutte con
distribuzione uniforme in [0, 1]. Se Ui � pi l’unità i entra a far parte del
campione (e si pone δ(i; s) = 1); se Ui > pi l’unità i non entra a far parte
del campione (e si pone δ(i; s) = 0).

Un’ultima proprietà positiva, e importante, del disegno di Poisson riguarda
la sua entropia. È infatti possibile dimostrare (Esercizio 15.2) che tra tutti i
disegni campionari non ordinati, senza ripetizioni, e con prefissate probabilità
di inclusione del primo ordine π01, . . . , π0N , il disegno di Poisson è quello di
entropia massima. Il requisito C5 è quindi soddisfatto.

Malgrado tutte le proprietà che possiede, il disegno di Poisson ha un difet-
to che lo rende praticamente inutilizzabile assieme allo stimatore di Horvitz-
Thompson: dà luogo a campioni di dimensione variabile, da 0 a N . In par-
ticolare, n(s) = 0 corrisponde al caso δ(i; s) = 0 per tutte le unità della
popolazione (ed ha luogo con probabilità

∏
(1− πi)N), mentre n(s) = N cor-

risponde al caso δ(i; s) = 1 per tutte le unità della popolazione (ed ha luogo
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con probabilità (
∏

πN
i ). Formalmente, la numerosità campionaria è pari a

n(s) =
N∑

i=1

δ(i; s). (15.9)

Sulla base dei risultati introdotti nel Capitolo 12 si può facilmente dimostrare
che il valore atteso e la varianza della numerosità campionaria n(s) sono nel
nostro caso pari a

E[n(s)] =
N∑

i=1

pi; (15.10)

V (n(s)) =
N∑

i=1

pi(1 − pi). (15.11)

La distribuzione di probabilità di n(s) è quella della somma di N variabili
indipendenti di Bernoulli, ma non aventi la stessa distribuzione di probabilità
(a meno che non sia p1 = · · · = pN). Ad ogni modo, detta CN,n la famiglia di
tutti i sottoinsiemi di n unità della popolazione (combinazioni senza ripetizioni
di classe n), è facile vedere che

Pr(n(s) = n) =
∑

s∈CN,n

p(s) = Cpo

∑
s∈CN,n

N∏
i=1

ω
δ(i; s)
i (15.12)

con i numeri ωi definiti in (15.4). Purtroppo, a meno di casi speciali, quest’e-
spressione non si può semplificare.

Per quanto riguarda il comportamento dello stimatore di Horvitz-Thomp-
son tHT della media della popolazione, la sua varianza assume una forma
particolarmente semplice in forza della (15.7). È infatti facile verificare (Eser-
cizio 15.3) che se il disegno campionario è di Poisson, con pi = π0i, lo stima-
tore di Horvitz-Thompson della media della popolazione (che ovviamente è
corretto) ha varianza

V (tHT ) =
1

N2

∑
i∈U

1 − π0i

π0i
y2

i . (15.13)

Dall’espressione (15.13) si desume facilmente che in questo caso lo stimatore
di Horvitz-Thompson è migliorabile con la tecnica di contrazione (per dettagli
si veda l’Esercizio 15.4). Purtroppo, quindi, il disegno di Poisson è del tutto
fuori luogo nell’ambito di strategie di campionamento che usano lo stimatore
di Horvitz-Thompson. Affinché questo stimatore possa, almeno in via poten-
ziale, fornire buoni risultati, è necessario limitarsi solo a disegni campionari
ad ampiezza effettiva costante.
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15.2.2 Il disegno campionario di Bernoulli

Il disegno campionario di Bernoulli è un caso particolare di quello di Poisson,
in cui i numeri π01 sono tutti uguali. Formalmente, si pone p1 = · · · = pN = p,
con 0 < p < 1. Si tratta anche in questo caso di un disegno non or-
dinato, senza ripetizioni, e ad ampiezza variabile. Anche qui, lo stimatore
di Horvitz-Thompson di μy è migliorabile con la tecnica della contrazione
(Esercizio 14.11).

Alcune proprietà del disegno di Bernoulli sono interessanti, e meritano
di essere messe in rilievo. In primo luogo, gli indicatori δ(1; s), . . . , δ(N ; s),
oltre ad essere indipendenti hanno anche la stessa distribuzione di probabilità
(di Bernoulli di parametro p). Ne consegue che la numerosità campionaria
n(s) =

∑N
i=1 δ(i; s) ha distribuzione binomiale di parametri (N, p). In simboli

Pr(n(s) = n) =
(

N
n

)
pn(1 − p)N−n; n = 0, 1, . . . , N. (15.14)

È anche interessante studiare il disegno di Bernoulli condizionato alla nu-
merosità campionaria. Formalmente, esso è definito considerando solo i cam-
pioni di numerosità n, e calcolando la corrispondente probabilità condizionata
p(s |n(s) = n). Se ci si restringe ai soli campioni s di n unità, lo spazio dei
campioni si riduce ovviamente a CN,n, la famiglia di tutte le combinazioni
senza ripetizione di n unità della popolazione (o equivalentemente, la famiglia
di tutti i sottoinsiemi di n unità). In base al disegno di Bernoulli, un campione
s di n unità ha probabilità

p(s) =

{
N∏

i=1

pδ(i; s)

}{
N∏

i=1

(1 − p)1−δ(i; s)

}
= pn(1 − p)N−n.

La probabilità del campione s condizionata al numero n di unità che lo
compongono è quindi

p(s |n(s) = n) =
p(s)

Pr(n(s) = n)

=
pn(1 − p)N−n(

N
n

)
pn(1 − p)N−n

=
1(
N
n

) per ciascun campione s ∈ CN,n . (15.15)

Dalla (15.15) si conclude pertanto che il disegno di Bernoulli condizionato al
numero di unità campionarie si riduce al disegno semplice senza ripetizione.
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15.3 Il disegno campionario di Sampford

15.3.1 Aspetti introduttivi e di base

Il disegno campionario di Sampford (1967) presenta notevole importanza nel-
l’ambito del campionamento, a causa delle proprietà che possiede. L’obiettivo,
come già rimarcato, è quello di costruire un disegno che possieda almeno le
proprietà C1, C2 viste in precedenza.

Siano dati N numeri p1, . . . , pN , tali che

0 < pi � 1 per ciascuna unit à i = 1, . . . N ;
p1 + · · ·+ pN = n.

Il disegno campionario di Sampford è definito da: (a) uno spazio dei cam-
pioni (di unità) eguale alla famiglia di tutti i sottoinsiemi di n unità della
popolazione: S = CN,n; (b) probabilità dei campioni pari a:

p(s) = As

{
N∏

i=1

p
δ(i; s)
i (1 − pi)1−δ(i; s)

}(
N∑

i=1

(1 − pi)δ(i; s)

)
(15.16)

essendo As un’opportuna costante, tale da soddisfare la condizione che la
somma (rispetto a s in CN,n) delle (15.16) sia pari a 1.

La (15.16) si può anche scrivere in una forma alternativa. Se, similmente
al disegno di Poisson, poniamo

ωi =
pi

1 − pi
per ciascuna unit à i = 1, . . . , N (15.17)

la (15.16)

p(s) = Cs

{
N∏

i=1

ω
δ(i; s)
i

}(
N∑

i=1

(1 − pi)δ(i; s)

)

= Cs

{
N∏

i=1

ω
δ(i; s)
i

}(
n −

N∑
i=1

piδ(i; s)

)
(15.18)

dove Cs è un’opportuna costante tale che la somma delle (15.18) sia eguale
a 1.

Il calcolo esplicito della costante Cs è tutt’altro che semplice, in quanto
richiede l’uso di relazioni combinatorie non banali. Sia CN,m la classe di tutte
le combinazioni senza ripetizioni di m (= 0, 1, . . . , N) unità della popolazione
IN , e siano D0 = 1 e

Dm =
∑

c∈CN,m

⎛⎝ N∏
j=1

ω
δ(j; c)
j

⎞⎠ (15.19)
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essendo, come al solito

δ(j; c) =
{

1 se j ∈ c
0 se j /∈ c

.

È possibile provare (Esercizio 15.5) che vale la relazione

Cs =
1∑n

t=1 t Dn−t
. (15.20)

Usando poi le quantità definite nell’Esercizio 15.5, è facile provare (Eserci-
zio 15.6) che il disegno di Sampford ha probabilità di inclusione del primo
ordine eguali a p1, . . . , pN . In simboli:

πi = pi per ciascuna unit à i = 1, . . . , N. (15.21)

Questa relazione permette di risolvere in maniera facile il (solito) problema:
“Quali valori devono assumere p1, . . . , pN in modo che le probabilità di inclu-
sione del primo ordine siano esattamente uguali a π01, . . . , π0N?” La (15.21)
mostra che per avere le probabilità di inclusione “desiderate” π01, . . . , π0N è
sufficiente porre

pi = π0i per ciascuna unit à i = 1, . . . , N. (15.22)

Il calcolo delle probabilità di inclusione del secondo ordine è piuttosto
impegnativo, anche se non troppo difficile. Date due unità distinte i, j, sia
CN−2,m(i, j) la classe di tutte le combinazioni senza ripetizioni di m unità
della popolazione IN privata di i e j (IN \ {i, j}). Poniamo inoltre

Dm(i, j) =
∑

c∈CN−2,m(i, j)

(
N∏

k=1

ω
δ(k; c)
k

)
. (15.23)

Si può verificare (Esercizio 15.7) che le probabilità di inclusione del secondo
ordine per il disegno di Sampford sono eguali a

πij = Cs ωi ωj

n∑
t=2

(t − pi − pj)Dn−t(i, j). (15.24)

Le probabilità di inclusione del secondo ordine dipendono dai termini
Dm(i, j) in (15.24). Per calcolarli, non c’è bisogno di enumerare le combi-
nazioni di CN−2,m(i, j). Infatti, è facile provare (Esercizio 15.8) che vale la
relazione:

Dm =
1
m

m∑
r=1

(−1)r−1

(
N∑

i=1

ωr
i

)
Dm−r (15.25)
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con D0 = 1. Usando anche la relazione (semplice conseguenza della (b)
dell’Esercizio 15.7)

Dm(i, j) = Dm − (ωi + ωj)Dm−1(i, j) − ωiωjDm−2(i, j) (15.26)

con D0(i, j) = 1, è facile calcolare le (15.24) senza enumerare combinazioni,
in modo quindi abbastanza efficiente sul piano computazionale.

Esempio 15.1. Nel caso di numerosità campionaria n = 2 si ottengono in
modo facile risultati espliciti. Ogni campione è un sottoinsieme di due unità
della popolazione, cos̀ı che in totale vi sono N (N−1)/2 campioni. Se indichia-
mo con π01, . . . , π0N le probabilità di inclusione del primo ordine desiderate,
il generico campione s = {i, j} ha probabilità

p(s) = Cs

{
(1 − π0i)

π0i π0j

(1 − π0i)(1 − π0j)
+ (1 − π0j)

π0j π0i

(1 − π0j)(1 − π0i)

}
= Cs π0i π0j

{
1

1 − π0i
+

1
1 − π0j

}
.

Il calcolo della costante Cs può essere effettuato direttamente, senza usare
le formule sviluppate in precedenza. Si ha:

∑
s∈S

p(s) = Cs

N∑
i=1

∑
j>i

π0i π0j

{
1

1 − π0i
+

1
1 − π0j

}

=
Cs

2

N∑
i=1

N∑
j=1

j �=i

π0i π0j

{
1

1 − π0i
+

1
1 − π0j

}

= Cs

N∑
i=1

N∑
j=1

j �=i

π0i

1 − π0i
π0j

= Cs

N∑
i=1

(2 − π0i)
π0i

1 − π0i

e tale quantità è pari a 1 solo se

Cs =
1∑N

i=1(2 − π0i) π0i

1−π0i

. (15.27)

Infine, per quanto riguarda le probabilità di inclusione del secondo ordine,
usando la (15.27) è immediato verificare, con ovvia simbologia, che

πij = p({i, j})

=
π0i π0j∑N

i=1(2 − π0i) π0i

1−π0i

{
1

1 − π0i
+

1
1 − π0j

}
.
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È facile verificare (Esercizio 15.9) che vale la relazione πij � πi πj per tutte
le coppie di unità distinte della popolazione. ��

Giova sottolineare, in chiusura, che il calcolo delle probabilità di inclusione
del secondo ordine è molto semplificato se si usa l’espressione approssimata
πa

ij sviluppata nella Sezione 12.7, la quale fornisce risultati molto buoni nel
caso dello schema di Sampford.

Esempio 15.2. Si considerino una popolazione di N = 10 unità, e una nu-
merosità campionaria n = 5. Le probabilità di inclusione del primo ordine
desiderate, esattamente come in Sampford (1967) e Hájek (1981), p. 90, sono:
π01 = 0.9, π02 = 0.7, π03 = 0.65, π04 = 0.55, π05 = 0.5, π06 = 0.5, π07 = 0.4,
π08 = 0.35, π09 = 0.25, π010 = 0.2. Chiaramente, si ha:

d =
10∑

i=1

π0i(1 − π0i) = 2.09.

Per approssimare le probabilità di inclusione del secondo ordine è neces-
sario calcolare le quantità ci, le quali risultano pari a:

c1 = 0.0613, c2 = 0.1525, c3 = 0.1670, c4 = 0.1840, c5 = 0.1861,

c6 = 0.1861, c7 = 0.1776, c8 = 0.1670, c9 = 0.1344, c10 = 0.1130.

Tabella 15.1 Valori esatti πij delle probabilità di inclusione del secondo ordine –
disegno di Sampford

0.9000 0.6212 0.5752 0.4840 0.4387 0.4387 0.3489 0.3044 0.2163 0.1726
0.6212 0.7000 0.4303 0.3573 0.3217 0.3217 0.2526 0.2191 0.1539 0.1222
0.5752 0.4303 0.6500 0.3271 0.2940 0.2940 0.2301 0.1992 0.1396 0.1106
0.4840 0.3573 0.3271 0.5500 0.2407 0.2407 0.1871 0.1616 0.1126 0.0890
0.4387 0.3217 0.2940 0.2407 0.5000 0.2152 0.1668 0.1438 0.1000 0.0790
0.4387 0.3217 0.2940 0.2407 0.2152 0.5000 0.1668 0.1438 0.1000 0.0790
0.3489 0.2526 0.2301 0.1871 0.1668 0.1668 0.4000 0.1106 0.0766 0.0604
0.3044 0.2191 0.1992 0.1616 0.1438 0.1438 0.1106 0.3500 0.0658 0.0517
0.2163 0.1539 0.1396 0.1126 0.1000 0.1000 0.0766 0.0658 0.2500 0.0355
0.1726 0.1222 0.1106 0.0890 0.0790 0.0790 0.0604 0.0517 0.0355 0.2000

Tabella 15.2 Valori approssimati πa
ij delle probabilità di inclusione del secondo

ordine

0.9000 0.6206 0.5748 0.4837 0.4386 0.4386 0.3491 0.3048 0.2168 0.1730
0.6206 0.7000 0.4295 0.3569 0.3216 0.3216 0.2529 0.2195 0.1545 0.1228
0.5748 0.4295 0.6500 0.3268 0.2939 0.2939 0.2303 0.1996 0.1400 0.1111
0.4837 0.3569 0.3268 0.5500 0.2408 0.2408 0.1873 0.1618 0.1128 0.0892
0.4386 0.3216 0.2939 0.2408 0.5000 0.2153 0.1669 0.1439 0.1000 0.0790
0.4386 0.3216 0.2939 0.2408 0.2153 0.5000 0.1669 0.1439 0.1000 0.0790
0.3491 0.2529 0.2303 0.1873 0.1669 0.1669 0.4000 0.1103 0.0761 0.0599
0.3048 0.2195 0.1996 0.1618 0.1439 0.1439 0.1103 0.3500 0.0650 0.0511
0.2168 0.1545 0.1400 0.1128 0.1000 0.1000 0.0761 0.0650 0.2500 0.0348
0.1730 0.1228 0.1111 0.0892 0.0790 0.0790 0.0599 0.0511 0.0348 0.2000
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Nella Tabella 15.1 sono riportate le probabilità di inclusione del secon-
do ordine esatte, mentre nella Tabella 15.2 sono riportate le probabilità di
inclusione del secondo ordine approssimate. Benché la numerosità della popo-
lazione (e di conseguenza il valore di d) non siano elevati, i valori approssimati
πa

ij sono assai vicini a quelli effettivi πij. ��

15.3.2 Implementazione del disegno di Sampford

Esistono diversi algoritmi (schemi) per l’implementazione del disegno di Sam-
pford. Il più semplice è sicuramente lo schema multinomiale (uno schema di
accettazione condizionata, in sostanza) di seguito esposto.

− Passo 0. Inizializzazione. Porre m = 0, B1 = 0, . . ., BN = 0.
− Passo 1. Scegliere un’unità della popolazione, in maniera ta-

le che l’unità i abbia probabilità pi/n di essere selezionata.
Se si sceglie l’unità i, porre Bi = 1. Incrementare m di 1, e
andare al Passo 2.

− Passo 2. Se m = n andare al Passo 4. Se invece m < n, sce-
gliere un’unità dalla popolazione in modo tale che l’unità i
abbia probabilità

Pi =
pi

1−pi∑N
j=1

pj

1−pj

; i = 1, . . . , N

di essere selezionata. Andare al Passo 3.
− Passo 3. Se si è scelta l’unità i ed è Bi = 1, andare al Pas-

so 0.
Altrimenti, porre Bi = 1, incrementare m di 1, e andare al
Passo 2.

− Passo 4. Arresto. Il campione s è formato dalle n unità i tali
che Bi = 1.

Uno schema alternativo di implementazione del disegno di Sampford, ba-
sato su un algoritmo di rigetto di campioni di Pareto, è sviluppato nell’Eser-
cizio 15.13.

15.4 Il disegno campionario di tipo Pareto

Il disegno campionario di tipo Pareto, introdotto in Rosén (1997a), Rosén
(1997b), pur se possiede solo in via approssimata i “requisiti desiderabili”
elencati nella Sezione 15.1, ha un’importante proprietà: è estremamente sem-
plice da implementare. Per questa ragione, e per il fatto che è usato come
“schema accessorio” per implementare anche altri disegni campionari, esso
viene esposto nella presente sezione.
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15.4.1 Aspetti essenziali di base

Si considerino N numeri positivi λ1, . . . , λN , tali che 0 < λi < 1 e
N∑

i=1

λi = n.

La selezione di un campione di numerosità n mediante disegno di Pareto
consiste dei seguenti passi.

− Passo 1. Si generano N variabili aletaorie U1, . . . , UN indipen-
denti, ciascuna con distribuzione uniforme in [0, 1].

− Passo 2. Si calcolano le quantità

Qi =
Ui

1−Ui

λi

1−λi

, i = 1, . . . , N.

− Passo 3. Si ordinano le quantità Q1, . . . , QN dalla più piccola
alla più grande. Per convenzione, indicheremo Q1:N la più
piccola tra le Qi, con Q2:N la seconda più piccola tra le Qi,
e cosı̀ via, fino a QN:N che è la più grande tra le Qi. Si ha
quindi

Q1:N < Q2:N < · · · < QN:N .

− Passo 4. Il campione s è formato dalle n unità con i valori Qi

più piccoli. Formalmente, l’unità i entra a far parte del cam-
pione s se il corrispondente Qi è uno tra Q1:N, Q2:N, . . .,
Qn:N.

I passi 1-4 chiariscono bene un punto importante: selezionare un campione
s con lo schema di tipo Pareto è estremamente semplice. Due sono, però, i
problemi da risolvere.

Pa 1. Dati gli n numeri λ1, . . . , λN , quali valori assumono le probabilità di
inclusione del primo ordine π1, . . . , πN? Lo stesso quesito vale per le
probabilità di inclusione del secondo ordine.

Pa 2. Quali valori devono assumere λ1, . . . , λN in modo che le probabilità di
inclusione del primo ordine assumano i valori desiderati π01, . . . , π0N?

I due quesiti sono ovviamente legati, nel senso che rispondere all’uno porta
implicitamente a rispondere all’altro. Qui ci accontenteremo di dare soltanto
una risposta approssimata. Qualche approfondimento sul calcolo esatto delle
probabilità di inclusione sarà fornito più avanti.

Incominciamo a rispondere al quesito Pa 2. Date le probabilità di inclusio-
ne desiderate, π01, . . . , π0N , come mostrato in Bondesson e altri (2006), una
buona approssimazione per i valori λi consiste nel porre:

λi

1 − λi
= c

π0i

1 − π0i
exp

{
− 1

d2
π0i (1 − π0i)

(
π0i −

1
2

)}
,

i = 1, . . . , N (15.28)
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essendo c una costante di proporzionalità, tale che λ1 + · · ·+ λN = n, e

d =
N∑

i=1

π0i(1 − π0i).

Il valore che deve assumere la costante c nella (15.28) non è in genera-
le determinabile esplicitamente, ma va calcolato per via numerica. Tuttavia,
l’effettiva determinazione di c è sostanzialmente inutile. Infatti, essendo c una
costante positiva, dividere le variabili Ui/(1 − Ui) per i termini

c
πi

1 − πi
exp

{
− 1

d2
π0i (1 − π0i)

(
π0i −

1
2

)}

o dividerle per

π0i

1 − π0i
exp

{
− 1

d2
π0i (1 − π0i)

(
π0i −

1
2

)}

non cambia il loro ordine. In altre parole, nel Passo 2 si può porre

Qi =
Ui

1−Ui

π0i

1−π0i
exp

{
− 1

d2 π0i (1 − π0i)
(
π0i − 1

2

)} , i = 1, . . . , N

e procedere come indicato nei passi successivi.
Una semplificazione si ottiene per valori “grandi” di d. In tal caso si ha

infatti 1/d2 ≈ 0, da cui

exp
{
− 1

d2
π0i (1 − π0i)

(
π0i −

1
2

)}
≈ 1

e quindi si può scrivere λi ≈ π0i.
Per quanto concerne, infine, le probabilità di inclusione del secondo ordi-

ne, risultati abbastanza soddisfacenti si ottengono tramite l’approssimazione
sviluppata nella Sezione 12.7.

Un caso molto speciale è quello in cui λ1 = λ2 = · · · = λN . È infatti
facile verificare (Esercizio 15.10) che in questo caso il disegno di tipo Pareto
si riduce a quello semplice senza ripetizione.
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Esempio 15.3. Si consideri la popolazione di N = 10 unità dell’Esempio
15.2, in cui la numerosità campionaria è n = 5 e le probabilità di inclusione
del primo ordine desiderate sono π01 = 0.9, π02 = 0.7, π03 = 0.65, π04 = 0.55,
π05 = 0.5, π06 = 0.5, π07 = 0.4, π08 = 0.35, π09 = 0.25, π010 = 0.2. Come già
visto, si ha d =

∑
i π0i(1 − π0i) = 2.09.

Le quantità al membro di destra della (15.28), a meno della costante c,
risultano nel caso in esame pari ai valori riportati in Tabella 15.3.

Le corrispondenti probabilità di inclusione del primo ordine effettive, cal-
colate numericamente, sono riportate in Tabella 15.4. Come si vede, si tratta
di valori vicinissimi a quelli delle probabilità di inclusione desiderate.

Nella Tabella 15.5 sono riportate le probabilità di inclusione del secondo
ordine effettive, sempre calcolate per via numerica.

I valori approssimati πa
ij delle probabilità di inclusione del secondo ordine,

ottenuti usando l’approccio delineato nella Sezione 12.7, sono riportati in Ta-
bella 15.2. Come si può osservare, l’approssimazione πij ≈ πa

ij è abbastanza
soddisfacente. ��

Tabella 15.3 Valori di λi/(1 − λi) calcolati con la (15.28)

i 1 2 3 4 5 6 7 8 9 10

λi
1−λi

8.926 2.311 1.843 1.219 1.00 0 1.000 0.670 0.543 0.337 0.253

Tabella 15.4 Probabilità di inclusione effettive del primo ordine

i 1 2 3 4 5 6 7 8 9 10

πi 0.9001 0.7002 0.6502 0.5502 0.5003 0.5503 0.3995 0.3498 0.2497 0.1997

Tabella 15.5 Valori esatti πij delle probabilità di inclusione del secondo ordine –
disegno di Pareto

0.9001 0.6215 0.5756 0.4843 0.4390 0.4390 0.3487 0.3043 0.2160 0.1724
0.6215 0.7002 0.4307 0.3575 0.3220 0.3218 0.2523 0.2191 0.1537 0.1220
0.5756 0.4307 0.6502 0.3273 0.2943 0.2942 0.2298 0.1991 0.1395 0.1104
0.4843 0.3575 0.3273 0.5502 0.2409 0.2410 0.1870 0.1616 0.1125 0.0888
0.4390 0.3220 0.2943 0.2409 0.5003 0.2153 0.1667 0.1438 0.1000 0.0790
0.4390 0.3218 0.2942 0.2410 0.2153 0.5003 0.1665 0.1438 0.0997 0.0789
0.3487 0.2523 0.2298 0.1870 0.1667 0.1665 0.3995 0.1105 0.0764 0.0603
0.3043 0.2191 0.1991 0.1616 0.1438 0.1438 0.1105 0.3498 0.0656 0.0515
0.2160 0.1537 0.1395 0.1125 0.1000 0.0997 0.0764 0.0656 0.2497 0.0354
0.1724 0.1220 0.1104 0.0888 0.0790 0.0789 0.0603 0.0515 0.0354 0.1997
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15.4.2 Approfondimenti: probabilità dei campioni nel
disegno di Pareto∗

Lo spazio dei campioni (di unità) nel disegno di Pareto è ovviamente l’in-
sieme CN,n di tutte le combinazioni senza ripetizione di classe n delle unità
della popolazione. Per quanto riguarda la determinazione delle probabilità dei
campioni, iniziamo con l’osservare che se s è il campione di cui si vuole deter-
minare la probabilità, allora una delle unità i di s deve corrispondere all’n-mo
valore Q ordinato, Qn:N , mentre le altre n − 1 unità possiedono valori Q più
piccoli. In altre parole, vale la seguente equivalenza logica:

Il campione selezionato è s se e solo se:

Qi = Qn:N per un′unit à i ∈ s, e
Qj < Qi per le altre unit à ∈ s, j �= i, e
Qk > Qi per tutte le unit à k /∈ s.

Si può quindi scrivere

p(s) =∑
i∈s

Pr(Qi = Qn:N ; Qj < Qi per j ∈ s, j �= i; Qk > Qi per k /∈ s). (15.29)

La determinazione effettiva della (15.29) richiede qualche complicazione
aggiuntiva. In primo luogo, detta fQi la funzione di densità della variabile
aleatoria Qi, dalla (15.29) si evince subito che

p(s) =
∑
i∈s

∫ +∞

−∞
Pr(Qj < y per j ∈ s, j �= i; Qk > y per k /∈ s) fQi(y) dy

=
∑
i∈s

∫ +∞

−∞
Pr(Qj < y per j ∈ s, j �= i)Pr(Qk > y per k /∈ s) fQi (y) dy

=
∑
i∈s

∫ +∞

−∞

⎧⎪⎪⎨⎪⎪⎩
∏
j∈s

j �=i

Pr(Qj < y)

⎫⎪⎪⎬⎪⎪⎭
{∏

k/∈s

Pr(Qk > y)

}
fQi (y) dy. (15.30)

Posto

ϑi =
λi

1 − λi
, per ciascuna unit à i = 1, . . . , N (15.31)

è facile verificare (Esercizio 15.11) che

Pr(Qi � y) =
ϑi y

1 + ϑi y
, y � 0 (15.32)
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da cui discende che fQi (y) = ϑi/(1 + ϑi y)2 (per y � 0), e quindi, usando la
(15.30)

p(s) =
∑
i∈s

∫ ∞

0

⎧⎪⎪⎨⎪⎪⎩
∏
j∈s
j �=i

ϑj y

1 + ϑj y

⎫⎪⎪⎬⎪⎪⎭
{∏

k/∈s

1
1 + ϑk y

}
ϑi

(1 + ϑi y)2
dy

=

⎧⎨⎩∏
j∈s

ϑj

⎫⎬⎭∑
i∈s

∫ ∞

0

{
N∏

k=1

1
1 + ϑk y

}
yn−1

1 + ϑi y
dy

=

⎧⎨⎩
N∏

j=1

ϑ
δ(j; s)
j

⎫⎬⎭
{

N∑
i=1

δ(i; s)
∫ ∞

0

(
N∏

k=1

1
1 + ϑk y

)
yn−1

1 + ϑi y
dy

}

= Cpa

⎧⎨⎩
N∏

j=1

ϑ
δ(j; s)
j

⎫⎬⎭
{

N∑
i=1

δ(i; s)
∫ ∞

0

(
N∏

k=1

1 + ϑk

1 + ϑk y

)
yn−1

1 + ϑi y
dy

}

=

⎛⎝ N∏
j=1

λ
δ(j; s)
j (1 − λj)1−δ(j; s)

⎞⎠ {
N∑

i=1

gi δ(i; s)

}
(15.33)

con

gi =
∫ ∞

0

(
N∏

k=1

1 + ϑk

1 + ϑk y

)
yn−1

1 + ϑi y
dy; i = 1, . . . , N. (15.34)

La (15.33) si può anche scrivere come

p(s) = Cpa

⎧⎨⎩
N∏

j=1

ϑ
δ(j; s)
j

⎫⎬⎭
{

N∑
i=1

gi δ(i; s)

}
(15.35)

avendo posto

Cpa =
N∏

k=1

1
1 + ϑk

.

Le costanti g1, . . . , gN si possono ricavare esplicitamente per via analitica,
benché la loro espressione sia complicata e non molto adatta al calcolo nu-
merico. Piú semplice, e tutto sommato più conveniente, è il loro calcolo per
via numerica. In alternativa, un’espressione approssimata dovuta a Bondesson
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e altri (2006), che in genere produce buoni risultati, è la seguente:

gi ≈ (1 − λi)
√

2 π γi exp
{

1
2

γ2
i λ2

i

}
(15.36)

dove si è posto

γ2
i =

1
L + λi(1 − λi)

, i = 1, . . . , N

L =
N∑

i=1

λi (1 − λi).

Si osservi che per L “grande” si ha γ2
i ≈ 0, e quindi gi ≈ 1 − λi.

Dalla (15.35) sarebbe in linea di principio possibile, benché computazio-
nalmente difficile, calcolare le probabilità di inclusione esatte del primo e
del secondo ordine. Qualche cenno in proposito è nell’Esercizio 15.13. Per
approfondimenti si rinvia al lavoro di Bondesson (2010).

15.5 Il disegno campionario di Poisson condizionato

15.5.1 Aspetti introduttivi e di base

Il disegno di Poisson condizionato nasce essenzialmente come “correzione” del
maggior difetto del disegno di Poisson: la numerosità campionaria variabile.
In questa sezione ci limiteremo ad un’esposizione molto succinta del disegno di
Poisson condizionato. Per una trattazione approfondita si rinvia al Capitolo 7
del volume di Hájek (1981).

Si considerino N numeri τ1, . . . , τN , tali che

0 < τi < 1 per ciascuna unit à i = 1, . . . , N.

Il disegno di Poisson condizionato è definito dalle seguenti due specificazioni.

– lo spazio dei campioni è l’insieme CN,n di tutte le combinazioni senza
ripetizioni di classe n;

– ciascun campione s ∈ CN,n ha probabilità

p(s) = Apc

N∏
i=1

τ
δ(i; s)
i (1 − τi)1−δ(i; s) (15.37)

dove Aps è una costante opportuna, tale che la somma delle (15.37) sia uguale
a 1.

Se, in modo simile a quanto fatto in precedenza, si definiscono i numeri

ηi =
τi

1 − τi
per ciascuna unit à i = 1, . . . , N (15.38)
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la (15.37) si riscrive in forma equivalente come

p(s) = Cpc

N∏
i=1

η
δ(i; s)
i (15.39)

essendo la costante Cpc tale da rendere pari a 1 la somma delle (15.39). A
meno di casi molto speciali, essa non è calcolabile esplicitamente.

Un disegno di Poisson condizionato è normalizzato se:

τ1 + τ2 + · · ·+ τN = n.

Il termine “disegno di Poisson condizionato” deriva dal fatto che se s è un
campione di n unità selezionato mediante il disegno di Poisson introdotto in
precedenza, si ha

p(s |n(s) = n) =
p(s)

Pr(n(s) = n)

=
Cpo

∏N
i=1

(
pi

1−pi

)δ(i; s)

Cpo

∑
s∈CN,n

∏N
i=1

(
pi

1−pi

)δ(i; s)
=

∏N
i=1

(
pi

1−pi

)δ(i; s)

∑
s∈CN,n

∏N
i=1

(
pi

1−pi

)δ(i; s)

=
∏N

i=1 ω
δ(i; s)
i∑

s∈CN,n

∏N
i=1 ω

δ(i; s)
i

per ciascun campione s ∈ CN,n

ossia proprio la (15.39), con pi al posto di τi e, di conseguenza, ωi in luogo
di ηi.

Una proprietà rimarchevole del disegno di Poisson condizionato riguarda la
sua entropia. Come conseguenza del suo legame con il disegno di Poisson “non
condizionato”, non è difficile verificare che tra tutti i disegni campionari non
ordinati, senza ripetizioni, ad ampiezza effettiva costante n e con prefissate
probabilità di inclusione del primo ordine, il disegno di Poisson condizionato
è quello di entropia massima.

Benché concettualmente semplice, il disegno di Poisson condizionato pre-
senta diversi aspetti che vanno chiariti, per renderne possibile l’applicazione.
Essendo in generale πi �= τi (al contrario di quel che accade per i disegni di
Sampford e di Poisson), il primo punto critico riguarda il calcolo delle probabi-
lità di inclusione. Il secondo punto, poi, riguarda l’implementazione del disegno
di Poisson condizionato, ovvero la costruzione di uno schema numericamente
efficiente per la selezione di un campione.

Per quanto riguarda le probabilità di inclusione, due sono, al solito, i
problemi da risolvere.

Pc 1. Dati gli n numeri τ1, . . . , τN quali valori assumono le probabilità
di inclusione del primo ordine π1, . . . , πN? Lo stesso discorso vale,
ovviamente, per le probabilità di inclusione del secondo ordine.
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Pc 2. Quali valori devono assumere τ1, . . . , τN in modo che le probabilità di
inclusione del primo ordine assumano i valori desiderati π01, . . . , π0N?

I due quesiti sono ovviamente legati, nel senso che rispondere all’uno porta
implicitamente a rispondere all’altro. Qui ci accontenteremo di dare soltanto
una risposta approssimata.

Probabilità di inclusione: calcolo approssimato

In questa parte daremo una semplice approssimazione delle probabilità di
inclusione del primo ordine del disegno di Poisson, che ci consentirà di forni-
re una soluzione semplice, nell’ordine, ai problemi Pc 2 e Pc 1. Dette, come
sempre, π01, . . . , π0N le probabilità di inclusione del primo ordine desiderate,
poniamo

d =
N∑

i=1

π0i(1 − π0i). (15.40)

L’idea di base è di prendere i numeri τi in modo che sia soddisfatta la relazione

τi

1− τi
= c

π0i

1 − π0i
exp

{
1 − π0i

d

}
per ciascuna unit à i = 1 . . . , N (15.41)

essendo c una costante tale che sia 0 < τi � 1 e τ1 + · · ·+ τN = n. Con questa
scelta dei numeri τi, e tenendo presente la (15.38), la (15.39) diventa

p(s) = Cpc

{
N∏

i=1

(
π0i

1 − π0i

)δ(i; s)
}

exp

{
1
d

N∑
i=1

(1 − π0i) δ(i; s)

}

= C̃pc

{
N∏

i=1

(
π0i

1 − π0i

)δ(i; s)
}

exp

{
1
d

N∑
i=1

(1 − π0i) (δ(i; s) − π0i)

}
con C̃pc costante di proporzionalità opportuna. D’altra parte, con un semplice
sviluppo di Taylor si ha

exp

{
1
d

N∑
i=1

(1 − π0i) (δ(i; s) − π0i)

}
= 1 +

1
d

N∑
i=1

(1 − π0i) (δ(i; s) − π0i) + · · ·

≈ 1 +
1
d

N∑
i=1

(1 − π0i) (δ(i; s) − π0i)

=
1
d

N∑
i=1

(1 − π0i) δ(i; s).

Pertanto, la scelta (15.41) produce un disegno di Poisson condizionato in cui
le probabilità dei campioni sono in via approssimata proporzionali a{

N∏
i=1

(
π0i

1 − π0i

)δ(i; s)
}

N∑
i=1

(1 − π0i) δ(i; s) .
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D’altra parte, la (15.18) mostra che le probabilità dei campioni del disegno
di Sampford, con pi = π0i sono esattamente proporzionali agli stessi fattori.
Pertanto, con la scelta (15.41) il disegno di Poisson condizionato può essere
approssimato con un disegno di Sampford in cui pi = π0i. Poiché quest’ultimo
ha probabilità di inclusione esattamente uguali alle π0i, si conclude che lo
scegliere valori τi che soddisfano la (15.41) produce un disegno di Poisson in
cui le probabilità di inclusione del primo ordine sono approssimativamente
uguali ai valori desiderati π01, . . . , π0N .

Per determinare un po’ più esplicitamente i numeri τi sulla base della
(15.41), iniziamo con l’osservare che tale relazione equivale a

τi = c (1 − τi)
π0i

1 − π0i
exp

{
1 − π0i

d

}
da cui si ottiene

τi =
π0i

1−π0i
exp

{
1−π0i

d

}
1
c + π0i

1−π0i
exp

{
1−π0i

d

} per ciascuna unit à i = 1, . . . , N. (15.42)

La costante c si ricava in modo che sia soddisfatta la relazione τ1+· · ·+τN = n,
che nel nostro caso si riscrive come

N∑
i=1

π0i

1−π0i
exp

{
1−π0i

d

}
1
c + π0i

1−π0i
exp

{
1−π0i

d

} = n. (15.43)

Purtroppo quest’equazione non è risolvibile per via analitica. Occorre utiliz-
zare un qualche metodo numerico, come ad esempio il metodo delle bisezioni,
che si applica in maniera simile a quanto illustrato nella Sezione 12.7.

Quanto sopra esposto fornisce non solo una soluzione approssimata al pro-
blema di determinare i numeri τi in modo che il disegno di Poisson condi-
zionato abbia le desiderate probabilità di inclusione π0i, ma anche, sia pur
sempre in via approssimata, al problema Pc 2. Dati τ1, . . . , τN , invertendo le
relazioni (15.41) si ottiene

πi

1 − πi
= c′

τi

1 − τi
exp

{
−1 − τi

T

}
per ciascuna unit à i = 1, . . . , N

essendo c′ un’opportuna costante tale che π1 + · · · + πN = n, essendo T =∑
i τi(1−τi). La determinazione effettiva delle probabilità di inclusione πi, che

richiede anche il calcolo esplicito della costante c′, si può effettuare seguendo
le stesse linee indicate per il calcolo dei termini τi dati i valori π01, . . . , π0N .

Se il termine d =
∑

i π0i(1−π0i) è “grande”, si ha (1−π0i)/d ≈ 0, e quindi

exp
{

1 − π0i

d

}
≈ 1.

In questo caso la (15.41) fornisce la semplicissima relazione τi = π0i.
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Le idee di base per l’approssimazione (15.42) sono in Bondesson e altri
(2006). Per un approccio differente, che conduce ad una diversa approssima-
zione (che comunque, per d grande, si riduce a τi = π0i), si rinvia al volume
di Hájek (1981), p. 72.

Per quanto riguarda le probabilità di inclusione del secondo ordine, un’ap-
prossimazione che nel caso del disegno di Poisson condizionato fornisce buoni
risultati è quella sviluppata nella Sezione 12.7.

Esempio 15.4. Si consideri la popolazione di N = 10 unità dell’Esempio
15.2, in cui la numerosità campionaria è n = 5 e le probabilità di inclusione
del primo ordine desiderate sono π01 = 0.9, π02 = 0.7, π03 = 0.65, π04 = 0.55,
π05 = 0.5, π06 = 0.5, π07 = 0.4, π08 = 0.35, π09 = 0.25, π010 = 0.2. Si ha
d =

∑
i π0i(1 − π0i) = 2.09.

I valori dei coefficienti τi, calcolati in base alla (15.42), sono riportati in
Tabella 15.6.

Le probabilità di inclusione del primo ordine effettive sono riportate in
Tabella 15.7. I loro valori sono pressoché identici a quelli desiderati.

Nella Tabella 15.8 sono riportate le probabilità di inclusione del secondo
ordine effettive, calcolate per via numerica.

Tabella 15.6 Valori di τi calcolati con la (15.42)

i 1 2 3 4 5 6 7 8 9 10

τi 0.880 0.679 0.633 0.544 0.500 0.500 0.411 0.366 0.273 0.224

Tabella 15.7 Probabilità di inclusione effettive del primo ordine

i 1 2 3 4 5 6 7 8 9 10

πi 0.8989 0.6998 0.6499 0.5501 0.5000 0.5500 0.4000 0.3500 0.2506 0.2007

Tabella 15.8 Valori esatti πij delle probabilità di inclusione del secondo ordine –
disegno di Poisson condizionato

0.8989 0.6205 0.5747 0.4836 0.4380 0.4380 0.3483 0.3038 0.2160 0.1725
0.6205 0.6998 0.4306 0.3576 0.3218 0.3218 0.2523 0.2187 0.1538 0.1220
0.5747 0.4306 0.6499 0.3273 0.2940 0.2940 0.2300 0.1990 0.1394 0.1107
0.4836 0.3576 0.3273 0.5501 0.2404 0.2404 0.1873 0.1614 0.1128 0.0894
0.4379 0.3218 0.2941 0.2407 0.5000 0.2150 0.1669 0.1438 0.1002 0.0793
0.4381 0.3218 0.2941 0.2407 0.2150 0.5000 0.1669 0.1438 0.1002 0.0793
0.3483 0.2523 0.2230 0.1873 0.1669 0.1669 0.4000 0.1109 0.0771 0.0609
0.3038 0.2187 0.1990 0.1614 0.1438 0.1438 0.1109 0.3500 0.0664 0.0523
0.2160 0.1538 0.1394 0.1128 0.1002 0.1002 0.0771 0.0664 0.2506 0.0363
0.1725 0.1220 0.1107 0.0894 0.0794 0.0794 0.0609 0.0523 0.0363 0.2007
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I valori approssimati πa
ij delle probabilità di inclusione del secondo ordi-

ne, ottenuti usando l’approccio delineato nella Sezione 12.7, sono quelli della
Tabella 15.2. L’approssimazione πij ≈ πa

ij è soddisfacente. ��

Probabilità di inclusione: calcolo esatto∗

Può essere di interesse anche notevole, soprattutto per valori moderati o pic-
coli di d =

∑
i π0i(1−π0i), cercare di calcolare i valori esatti delle probabilità

di inclusione del primo e del secondo ordine. In questa sezione sviluppere-
mo alcune semplici relazioni ricorsive, che si prestano ad un’efficiente calcolo
numerico delle probabilità di inclusione. La tecnica e il simbolismo sono abba-
stanza simili a quelli usati per studiare le proprietà del disegno di Sampford.
Per varianti e approfondimenti, si rinvia al volume di Tillé (2006), pp. 79–88,
e all’articolo Bondesson (2010).

Dati gli N numeri τ1, . . . , τN , tutti compresi tra 0 e 1, consideriamo il
disegno di Poisson condizionato di numerosità n da essi individuato. Rispetto
al simbolismo usato nelle precedenti sezioni è necessario introdurre una (lie-
ve) complicazione nella notazione, dovuta al fatto che è necessario inserire
esplicitamente nei simboli la numerosità campionaria. Detto sn un generico
campione (combinazione senza ripetizione di n unità della popolazione), la
sua probabilità di selezione, come risulta dalla (15.39) è pari a

p(n)(sn) = C(n)
pc

N∏
k=1

η
δ(k; sn)
k .

La probabilità di inclusione del primo ordine dell’unità i, indicata con π
(n)
i , è

eguale a

π
(n)
i =

∑
sn∈CN,n

δ(i; sn) p(n)(sn). (15.44)

Parallelamente, consideriamo il disegno di Poisson condizionato, sempre
definito da τ1, . . . , τN , ma di numerosità campionaria n − 1. Detto sn−1

un generico campione (combinazione senza ripetizione di n − 1 unità della
popolazione), la sua probabilità di selezione è

p(n−1)(sn−1) = C(n−1)
pc

N∏
k=1

η
δ(k; sn−1)
k .

La probabilità di inclusione del primo ordine dell’unità i, indicata con π
(n−1)
i ,

è invece

π
(n−1)
i =

∑
sn−1∈CN,n−1

δ(i; sn−1) p(n−1)(sn−1). (15.45)
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Non è difficile verificare (Esercizio 15.12) che vale la relazione:

π
(n)
i =

C
(n)
pc

C
(n−1)
pc

ηi

(
1 − π

(n−1)
i

)
per ciascuna unit à i = 1, . . . N. (15.46)

Per sfruttare appieno la (15.46) occorre determinare il rapporto C
(n)
pc /

C
(n−1)
pc . Dalla (15.46) discende che

n =
N∑

i=1

π
(n)
i =

C
(n)
pc

C
(n−1)
pc

N∑
j=1

ηj (1 − π
(n−1)
j )

da cui si ottiene

C
(n)
pc

C
(n−1)
pc

=
n∑N

j=1 ηj (1 − π
(n−1)
j )

e quindi

π
(n)
i = n

ηi (1 − π
(n−1)
i )∑N

j=1 ηj (1 − π
(n−1)
j )

per ciascuna unit à i = 1, . . . , N. (15.47)

Le N relazioni (15.47) forniscono uno schema ricorsivo numericamente effi-
ciente per il calcolo delle π

(n)
i . Partendo infatti da

π
(0)
i = 0 per ciascuna unit à i = 1, . . . , N ;

π
(1)
i = n

ηi∑N
j=1 ηj

per ciascuna unit à i = 1, . . . , N

è facile calcolare successivamente le π
(2)
i , π

(3)
i , . . . fino ad arrivare alla

numerosità campionaria n.
In maniera simile si può costruire una relazione ricorsiva per il calcolo

delle probabilità di inclusione del secondo ordine. Esattamente con la stesso
approccio sopra utilizzato, non è difficile verificare (Esercizio 15.13) che

π
(n)
ij =

π
(n)
i

1 − π
(n−1)
i

(π(n)
j − π

(n−1)
ij ) (15.48)

da cui, partendo da espressioni ovvie per π
(0)
ij , π

(1)
ij , π

(2)
ij , e dopo aver calcolato

le probabilità di inclusione del primo ordine, è immediato l’uso della (15.48)
per il calcolo delle π

(n)
ij .

In linea di principio, i risultati ottenuti consentono anche di rispondere
al quesito Pa 2. Per brevità non affronteremo questo problema, rinviando il
lettore al volume di Tillé (2006).
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15.5.2 Implementazione del disegno di Poisson
condizionato

Per l’implementazione di un disegno di Poisson condizionato esistono diversi
metodi, di cui esamineremo alcuni dei più importanti. Nel seguito considerere-
mo un disegno di Poisson condizionato con probabilità dei campioni date dalla
(15.39), in cui ηi = τi/(1−τi) e 0 < τi � 1 per tutte le unità della popolazione.

Il metodo di implementazione più semplice consiste nello sfruttare il legame
che il disegno di Poisson condizionato ha con il disegno di Poisson. L’idea
di fondo è banale: si genera un campione in base ad un disegno di Poisson
con Pr(δ(i; s) = 1) = τi. Se il campione s generato ha numerosità n lo si
accetta come campione di un disegno di Poisson condizionato, altrimenti lo si
rifiuta e si ripete la procedura. Si tratta quindi di un algoritmo di accettazione
condizionata, di seguito brevemente descritto.

− Passo 1. Porre m = 0; δ(1; s) = · · · = δ(N ; s) = 0; i = 1. Andare
al Passo 2.

− Passo 2. Se i > N andare al Passo 4. Se m > n andare al Pas-
so 1. Altrimenti andare al Passo 3.

− Passo 3. Generare un numero U con distribuzione uniforme in
[0, 1].
Se U � τi porre δ(i; s) = 1. Incrementare m di 1. Incrementare
i di 1. Andare al Passo 2.

− Passo 4. Se m < n o se m > n andare al Passo 1. Se m = n:
stop. Il campione s è formato dalle n unità i tali che δ(i, s)
= 1.

Per rendere il più conveniente possibile l’algoritmo dianzi esposto occorre
che sia massima la probabilità di avere un campione di Poisson di numerosità
n. Si può dimostrare (cfr. Tillé (2006)) che questo accade quando τi+· · ·+τN =
n, ossia quando il disegno di Poisson condizionato è normalizzato.

L’algoritmo di selezione sopra esposto non è particolarmente efficiente sul piano com-
putazionale. Un’utile alternativa, in genere computazionalmente assai vantaggiosa,
consiste in un algoritmo di rigetto basato sulla generazione di un campione a partire
dal disegno di Pareto. Per costruire l’algoritmo si osservi in primis che usando la no-
tazione introdotta nella sezione precedente, per λi = τi e ηi = τi/(1−τi), e se si indi-
cano rispettivamente con ppc(s) e ppa(s) le probabilità dei campioni rispettivamente
nel disegno di Poisson condizionato e in quello di Pareto, si ha

ppc(s) = Cpc

(
N∏

i=1

η
δ(i; s)
i

)

= C′
pc

(
N∏

i=1

τ
δ(i; s)
i (1 − τi)

1−δ(i; s)

)
= C′

pc q(s)
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ppa(s) = Cpa

(
N∏

i=1

η
δ(i; s)
i

) (
N∑

k=1

gk δ(k; s)

)

=

(
N∏

i=1

τ
δ(i; s)
i (1 − τi)

1−δ(i; s)

) (
N∑

k=1

gk δ(k; s)

)

= q(s)

(
N∑

k=1

gk δ(k; s)

)

con Cpc, C′
pc, Cpa costanti opportune, gk dato dalla (15.34) (e in via approssimata

dalla (15.36)), e

q(s) =

N∏
i=1

τ
δ(i; s)
i (1− τi)

1−δ(i; s).

Posto quindi

B =
1

Somma degli n pi ù piccoli gk

si ha

B

(
N∑

k=1

gk δ(k; s)

)
� 1

qualunque sia il campione s, per cui dalle relazioni precedenti si ottiene

q(s) � B ppa(s)

q(s)

B ppa(s)
=

1

B
∑N

k=1 gk δ(k; s)

per ciascun campione s. Utilizzando quanto detto al termine delle Sezione 12.8.3, si
può generare un campione da un disegno di Poisson condizionato in base al seguente
algoritmo di rigetto.

− Passo 1. Inizializzazione. Generare un campione s da un disegno di

Pareto con λ1 = τ1, . . ., λN = τN. Andare al Passo 2.

− Passo 2. Generare una variabile aleatoria U con distribuzione uni-

forme in [0, 1]. Se

U � 1

B
∑N

k=1 gk δ(k; s)

andare al Passo 3. Altrimenti, andare al Passo 1.

− Passo 3. Arresto. Accettare il campione s come selezionato dal dise-

gno di Poisson condizionato.

Le stesse idee possono anche essere usate per costruire uno schema di rigetto che
implementa il disegno di Sampford. Si veda in proposito L’Esercizio 15.14.
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15.6 Schemi di tipo scissorio∗

Gli schemi di tipo scissorio (splitting) svolgono un ruolo non trascurabile nella
costruzione di disegni campionari, sia sul piano teorico, in quanto si basano
su un’idea semplice ed efficace, sia sul piano applicativo. Qui ci limiteremo
solo a qualche cenno essenziale, rinviando il lettore curioso all’ottimo volume
di Tillé (2006).

L’idea di base degli schemi scissori è semplice: ad ogni passo si scinde il
vettore delle N probabilità di inclusione in due o più parti vettori, fino ad arri-
vare ad un vettore composto solo da elementi pari a 0 oppure a 1. Gli elementi
uguali a 1 corrispondono alle unità che fanno parte del campione, mentre quelli
pari a 0 corrispondono alle unità che non fanno parte del campione. Per ragio-
ni di semplicità, si partirà da metodi che scindono il vettore delle probabilità
di inclusione in due sole parti, per poi passare a metodi più generali.

15.6.1 Schemi di scissione in due parti del vettore delle
probabilità di inclusione∗

Se π01, . . ., π0N sono le n probabilità di inclusione del primo ordine desiderate,
con n = π01 + · · ·+ π0N intero, definiamo il vettore iniziale

π0 =

⎡⎢⎢⎣
π01

π02

· · ·
π0N

⎤⎥⎥⎦ .

L’algoritmo di scissione in due vettori è di seguito esposto.

− Passo 0. Inizializzazione. Porre t = 0, π(0) = π0 Andare al
Passo 1.

− Passo 1. Se πi(t) = 0, 1 per ciascuna unità i = 1, . . . , N, andare
al Passo 4. Altrimenti, andare al Passo 2.

− Passo 2. Scissione. Prendere due vettori a N componenti,
π1(t), π2(t)

π1(t) =

⎡⎢⎢⎣
π1

1(t)
π1

2(t)
· · ·

π1
N(t)

⎤⎥⎥⎦ , π2(t) =

⎡⎢⎢⎣
π2

1(t)
π2

2(t)
· · ·

π2
N(t)

⎤⎥⎥⎦
tali che

0 � π1
i (t) � 1, 0 � π2

i (t) � 1 per ciascuna unit à i = 1, . . . , N ;∑N
i=1 π1

i (t) =
∑N

i=1 π2
i (t) = n

e un numero reale 0 � α(t) � 1 tale che

α(t)π1(t) + (1 − α(t))π2(t) = π(t).

Andare al Passo 3.
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− Passo 3. Scelta casuale. Scegliere il vettore π1(t) con proba-
bilità α(t), e il vettore π2(t) con probabilità 1 − α(t). Porre
il vettore scelto pari a π(t + 1):

π(t + 1) =
{

π1(t) con probabilità α(t)
π2(t) con probabilità 1 − α(t) .

Incrementare t di 1. Andare al Passo 1.
− Passo 4. Arresto. Il campione s scelto è definito da δ(i; s) =

πi(t) per ciascuna unità i = 1, . . . , N.

La validità dei metodi di tipo scissorio poggia su due semplici considera-
zioni. In primo luogo, poiché si ha

N∑
i=1

πi(t) = n, per qualunque t = 1, 2, . . .

è evidente che il campione s generato ha ampiezza n. In secondo luogo, da

E[π(t + 1) |π(t), π(t − 1), . . . , π(0)] = E[π(t + 1) |π(t)]
= α(t)π1(t) + (1 − α(t))π2(t)
= π(t)

si desume che E[π(t)] = π0. Detto quindi δ(s) il vettore degli N indicatori
δ(i; s) dianzi definiti, si ha

E[δ(s)] = π0

ovvero π0 è il vettore delle probabilità di inclusione del primo ordine.
In generale gli schemi di tipo scissorio sono molto semplici, e non difficili

da programmare. Hanno però un difetto: a parte casi speciali, è molto diffi-
cile calcolare esattamente le probabilità di inclusione del secondo ordine. A
peggiorare le cose si aggiunge il fatto spiacevole che alcune probabilità di in-
clusione del secondo ordine possono essere nulle; più in generale, è l’entropia
dei disegni campionari corrispondenti a schemi scissori ad essere spesso bas-
sa. Ciò rende poco o per nulla accurate le approssimazioni delle probabilità
di inclusione del secondo ordine viste nella Sezione 12.7. Un rimedio (par-
ziale) all’inconveniente della presenza di probabilità di inclusione del secondo
ordine nulle consiste nel porre in ordine casuale le probabilità di inclusione
π01, . . . , π0N nel vettore π0. In termini un po’ più formali, si prende una
permutazione “casuale” (i1, . . . , iN) di (1, . . . , N), in cui i1, . . . , iN sono N
interi distinti, ciascuno dei quali può essere pari a 1, 2, . . ., N . Si definisce il
vettore π0 come

π0 =

⎡⎢⎢⎣
π0i1

π0i2

· · ·
π0iN

⎤⎥⎥⎦ .
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Si applica poi lo schema scissorio sopra esposto, fino ad arrivare al vettore
“finale” (composto da n elementi uguali a 1 e N − n elementi pari a 0)

π(t) =

⎡⎢⎢⎣
πi1(t)
πi2(t)
· · ·

πiN (t)

⎤⎥⎥⎦ .

Si riordinano infine gli elementi di π(t) in senso opposto rispetto a quanto
fatto all’inizio, formando il campione s sulla base degli indicatori δ(i1; s) =
πi1(t), δ(i2; s) = πi2(t), e cos̀ı via. Questo modo di procedere fa in modo
che le probabilità di inclusione del secondo ordine siano tutte positive, e in
generale accresce l’entropia del disegno campionario. Tuttavia, non dice nulla
sul calcolo effettivo delle probabilità di inclusione del secondo ordine.

Algoritmo del pivot

Una delle applicazioni dell’algoritmo di scissione è l’algoritmo del pivot. Esso
si basa sullo scindere il vettore delle probabilità di inclusione in due vettori,
modificando ad ogni passo solo due dei suoi elementi. In generale, all’iterazione
t-ma indichiamo con i, j due unità della popolazione tali che 0 < πi(t) < 1 e
0 < πj(t) < 1. Se πi(t) + πj(t) > 1, poniamo

π1
k(t) =

⎧⎨⎩ πk(t) se k �= i, j
1 se k = i
πi(t) + πj(t) − 1 se k = j

, π2
k(t) =

⎧⎨⎩πk(t) se k �= i, j
1 se k = j
πi(t) + πj(t) − 1 se k = i

(15.49)

α(t) =
1 − πj(t)

2 − πi(t) − πj(t)
.

Se invece πi(t) + πj(t) < 1, poniamo

π1
k(t) =

⎧⎨⎩πk(t) se k �= i, j
πi(t) + πj(t) se k = i
0 se k = j

, π2
k(t) =

⎧⎨⎩πk(t) se k �= i, j
0 se k = i
πi(t) + πj(t) se k = j

(15.50)

α(t) =
πi(t)

πi(t) + πj(t)
.

Nel primo caso viene scelto un vettore con un elemento uguale a 1, mentre
nel secondo caso viene scelto un vettore con un elemento uguale a 0. È facile
verificare (Esercizio 15.15) che in entrambi i casi si ha

α(t)π1(t) + (1 − α(t))π2(t) = π(t). (15.51)

Inoltre, è anche facile verificare che la somma delle componenti di π(t) è pari
a n. Poiché ad ogni iterazione almeno un elemento πi(t) diventa pari a 0 o a 1,
l’algoritmo termina al più in N iterazioni. Di seguito è fornita una descrizione
dell’algoritmo per passi successivi.
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− Passo 0. Inizializzazione. Porre t = 0, π(0) = π0. Andare al
Passo 1.

− Passo 1. Se πi(t) = 0, 1 per ciascuna unità della popolazione,
andare al Passo 6. Altrimenti, andare al Passo 2

− Passo 2.(Scelta di due unità) Prendere i più piccoli indici i,
j tali che 0 < πi(t) < 1, 0 < πj(t) < 1. Se πi(t) + πj(t) > 1 andare
al Passo 3. Altrimenti, andare al Passo 4.

− Passo 3. Definire π1(t), π2(t), α(t) come in (15.49). Andare al
Passo 5.

− Passo 4. Definire π1(t), π2(t), α(t) come in (15.50). Andare al
Passo 5.

− Passo 5. Scelta casuale. Scegliere il vettore π1(t) con proba-
bilità α(t), e il vettore π2(t) con probabilità 1 − α(t). Porre
il vettore scelto pari a π(t + 1). Incrementare t di 1. Andare
al Passo 1.

− Passo 6. Arresto. Il campione s scelto è definito da δ(i; s) =
πi(t) per ciascuna unità i = 1, . . . , N.

Questa procedura ha il difetto di produrre alcune delle probabilità di inclu-
sione del secondo ordine pari a 0. L’inconveniente può essere ovviato mediante
una permutazione casuale delle π0i, come sopra indicato. Molto più compli-
cato è il calcolo delle probabilità di inclusione del secondo ordine, a meno di
non ricorrere alle approssimazioni (in questo caso di dubbia qualità) della Se-
zione 12.7. Per ulteriori considerazioni sul tema si rinvia all’articolo di Deville
e Tillé (1998).

Esempio 15.5. Consideriamo ancora la popolazione di N = 10 unità del-
l’Esempio 15.2, con n = 5 e le probabilità di inclusione del primo ordine
desiderate sono π01 = 0.9, π02 = 0.7, π03 = 0.65, π04 = 0.55, π05 = 0.5,
π06 = 0.5, π07 = 0.4, π08 = 0.35, π09 = 0.25, π010 = 0.2.

L’uso dell’algoritmo del pivot senza permutazione iniziale delle unità pro-
duce le probabilità di inclusione del secondo ordine riportate in Tabella 15.9.

Tabella 15.9 Valori esatti πij delle probabilità di inclusione del secondo ordine –
algoritmo del pivot

0.9000 0.6003 0.5498 0.4764 0.4458 0.4482 0.3595 0.3147 0.2249 0.1801
0.6003 0.7000 0.3503 0.3302 0.3378 0.3447 0.2785 0.2447 0.1748 0.1402
0.5498 0.3503 0.6500 0.2931 0.3102 0.3187 0.2581 0.2271 0.1623 0.1298
0.4764 0.3302 0.2931 0.5500 0.2062 0.2454 0.2111 0.1911 0.1366 0.1094
0.4458 0.3378 0.3102 0.2062 0.5000 0.1428 0.1680 0.1702 0.1216 0.0974
0.4482 0.3446 0.3187 0.2454 0.1428 0.5000 0.1249 0.1640 0.1172 0.0938
0.3595 0.2785 0.2581 0.2111 0.1680 0.1249 0.4000 0.0875 0.0625 0.0500
0.3147 0.2447 0.2271 0.1911 0.1702 0.1640 0.0875 0.3500 0.0000 0.0000
0.2249 0.1748 0.1623 0.1366 0.1216 0.1172 0.0625 0.0000 0.2500 0.0000
0.1801 0.1402 0.1298 0.1094 0.0974 0.0938 0.0500 0.0000 0.0000 0.2000
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Tabella 15.10 Valori esatti πij delle probabilità di inclusione del secondo ordine –
algoritmo del pivot con permutazione casuale delle unità

0.9000 0.6212 0.5760 0.4848 0.4392 0.4392 0.3486 0.3043 0.2149 0.1703
0.6220 0.7000 0.4333 0.3595 0.3231 0.3231 0.2514 0.2169 0.1506 0.1201
0.5760 0.4333 0.6500 0.3291 0.2947 0.2947 0.2284 0.1963 0.1378 0.1095
0.4848 0.3595 0.3291 0.5500 0.2392 0.2392 0.1858 0.1610 0.1125 0.0891
0.4392 0.3231 0.2947 0.2392 0.5000 0.2125 0.1664 0.1441 0.1008 0.0798
0.4392 0.3231 0.2947 0.2392 0.2125 0.5000 0.1664 0.1441 0.1008 0.0798
0.3486 0.2514 0.2284 0.1858 0.1664 0.1664 0.4000 0.1126 0.0784 0.0618
0.3043 0.2169 0.1963 0.1610 0.1440 0.1440 0.1126 0.3502 0.0678 0.0534
0.2149 0.1506 0.1378 0.1125 0.1008 0.1008 0.0784 0.0678 0.2500 0.0364
0.1703 0.1201 0.1095 0.0891 0.0798 0.0798 0.0618 0.0534 0.0364 0.2000

Alcune delle πij sono uguali a zero, un fatto negativo per due ragioni. In
primo luogo, non esiste uno stimatore corretto della varianza dello stimatore
di Horvitz-Thompson. In secondo luogo, questo disegno ha un’entropia picco-
la. L’approssimazione πa

ij delle πij sviluppata nella Sezione 12.7 produce, di
conseguenza, risultati tutt’altro che buoni.

L’effettuare una permutazione casuale delle unità prima di applicare l’al-
goritmo del pivot, e il successivo “riordinamento inverso” dopo la selezione
del campione, aumenta la “casualità” del disegno campionario, ossia la sua
entropia. Le probabilità di inclusione del primo ordine delle unità restano
ovviamente le stesse. Le probabilità di inclusione del secondo ordine sono
riportate in Tabella 15.10.

Come è immediato verificare, le probabilità πij sono tutte positive. Inoltre,
migliora di parecchio la qualità dell’approssimazione πa

ij ≈ πij. ��

15.6.2 Schemi di scissione in H parti del vettore delle
probabilità di inclusione∗

Una generalizzazione molto facile degli schemi in cui si scinde in due parti il
vettore della probabilità di inclusione è quella in cui la scissione avviene in H
parti, con H intero arbitrario. L’algoritmo di scissione in H vettori è esposto
qui sotto.

− Passo 0. Inizializzazione. Porre t = 0, π(0) = π0. Andare al
Passo 1.

− Passo 1. Se πi(t) = 0, 1 per ciascuna unità i = 1, . . . , N, andare
al Passo 4. Altrimenti, andare al Passo 2.

− Passo 2. Scissione. Prendere H vettori a N componenti, π1(t),
. . ., πH(t)

π1(t) =

⎡⎢⎢⎣
π1

1(t)
π1

2(t)
· · ·

π1
N(t)

⎤⎥⎥⎦ , . . . , πH(t) =

⎡⎢⎢⎣
πH

1 (t)
πH

2 (t)
· · ·

πH
N (t)

⎤⎥⎥⎦
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tali che

0 � π1
i (t) � 1, . . . , 0 � πH

i (t) � 1 per ciascuna unit à i = 1, . . . , N ;∑N
i=1 π1

i (t) = · · · = ∑N
i=1 πH

i (t) = n

e H numeri reali 0 � α1(t) � 1, . . ., 0 � αH(t) � 1 tali che

α1(t) + · · ·+ αH(t) = 1

e

α1(t)π1(t) + · · ·+ αH(t)πH(t) = π(t).

Andare al Passo 3.
− Passo 3. Scelta casuale. Scegliere il vettore π1(t) con proba-

bilità α1(t), . . ., il vettore πH(t) con probabilità αH(t). Por-
re il vettore scelto pari a π(t + 1):

π(t + 1) =

⎧⎨⎩π1(t) con probabilità α1(t)
· · · · · ·
πH(t) con probabilità αH(t)

.

Incrementare t di 1. Andare al Passo 1.
− Passo 4. Arresto. Il campione s scelto è definito da δ(i; s) =

πi(t) per ciascuna unità i = 1, . . ., N.

La validità dei metodi di scissione in H vettori si prova esattamente come
nel caso di due vettori. Anche qui, i punti deboli sono la difficoltà di calcolare
le probabilità di inclusione del secondo ordine e il fatto che in parecchi casi
alcune di esse possono essere nulle.

Schema di Brewer

Una delle più importanti applicazioni dello schema generale di scissione è lo
schema di Brewer, che si basa su una scissione del vettore delle probabilità
di inclusione in N vettori. In generale, partendo da π(1) = π0, il generico
vettore π(t) ha t−1 elementi pari a 1, e i rimanenti N − t+1 proporzionali a
π0i. Per semplificare la sua costruzione è necessario definire preventivamente
un vettore

d =

⎡⎢⎢⎣
d1

d2

· · ·
dN

⎤⎥⎥⎦
ciascuna componente del quale è pari o a 0, o a 1. Dato t, t− 1 dei termini di

sono uguali a 1 e N − t + 1 sono uguali a 0. Formalmente, si ha:

πi(t) = di + (1 − di) ct π0i, per ciascuna unit à i = 1, . . . , N (15.52)
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dove ct è una costante di proporzionalità tale che la somma delle (15.52) sia
pari a n. È facile verificare (Esercizio 15.16) che la costante ct è pari a

ct =
n − t + 1

n −
∑N

j=1 dj π0j

. (15.53)

A partire da π(t) vengono costruiti gli N vettori π1(t), . . ., πN (t), in cui
il generico πk(t) ha pari a 1 le componenti in cui di = 1 e la k-ma, mentre
tutte le altre sono proporzionali alle π0i. Ciò significa che:

πk
i (t) =

{
1 se i = k
di + (1 − di) ct+1 π0i se i �= k

(15.54)

dove la costante di proporzionalità ct+1, tale che la somma delle (15.54) sia
pari a n, è eguale a

ct+1 =
n − t

n − π0k −∑N
j=1 dj π0j

. (15.55)

La probabilità di scegliere il generico vettore πk(t) è definita come

αk(t) =
1
S

(1 − dk)
π0k(n − π0k −∑N

j=1 dj π0j)

n − π0k(n − t + 1) −∑N
j=1 dj π0j

, k = 1, . . . , N (15.56)

con

S =
N∑

k=1

(1 − dk)
π0k(n − π0k −∑N

j=1 dj π0j)

n − π0k(n − t + 1) −∑N
j=1 dj π0j

.

Si osservi che se di = 1 è αi(t) = 0. Poiché la somma delle componenti del
vettore α1(t)π1(t) + · · ·+ αN(t)πN(t) è ovviamente pari a n, per verificare la
validità del metodo basta provare che

π1
i (t)α1(t) + · · ·+ πN

i (t)αN(t) = πi(t) (15.57)

per ciascuna unità della popolazione. Ora, se di = 1 la (15.57) è pari a 1. Se
invece di = 0, la (15.57) risulta uguale (Esercizio 15.17) a

1
S

{
π0i (n − π0i −

∑
dj π0j)

n − (n − t + 1)π0i −
∑

dj π0j

+
N∑

k=1
k �=i

(1 − dk)
π0k (n − π0k −∑ dj π0j)

n − (n − t + 1)π0k −∑ dj π0j

(n − t)π0i

n − π0k −∑ dj π0j

}

= c′π0i (15.58)
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con c′ costante opportuna. Dalla (15.58) si desume che il vettore α1(t)π1(t)+
· · ·+ αN(t)πN (t) ha esattamente la stessa struttura di π(t). Poiché la som-
ma delle sue componenti è pari a n, se ne desume che c′ = ct, il che prova
completamente la validità del metodo.

Lo schema di Brewer può essere posto in forma algoritmica nel modo
seguente.

− Passo 0. Inizializzazione. Porre t = 1, π1(t) = · · · = πN (t) =
π0, α1(t) = · · · = αN(t) = 0, d1 = · · · = dN = 0. Andare al Passo
1.

− Passo 1. Se t − 1 = n andare al Passo 5. Se t − 1 < n andare al
Passo 2.

− Passo 2. Scissione. Incrementare t di 1. Costruire gli N vet-
tori π1(t), . . ., πN(t). Andare al Passo 3.

− Passo 3. Probabilità di scelta. Calcolare le N probabilità
(15.56). Andare al Passo 4.

− Passo 4. Scelta. Scegliere uno dei vettori π1(t), . . ., πN (t)
rispettivamente con probabilità α1(t), . . ., αN(t). Se si sce-
glie il vettore πk(t) porre dk = 1. Andare al Passo 1.

− Passo 5. Arresto. Il campione s è formato dalle unità i tali
che di = 1.

Lo schema di Brewer può anche essere visto come schema di n prove (itera-
zioni) successive. Ad ogni prova si seleziona, con probabilità (15.56), una delle
unità della popolazione tali che dk = 0; se i è l’unità scelta, si pone di = 1.

Per quanto riguarda le probabilità di inclusione del secondo ordine, il loro
calcolo non è semplice. In Brewer (1975) viene fornita una formula ricorsiva,
piuttosto pesante dal punto di vista computazionale. In alternativa, si possono
usare le approssimazioni sviluppate nella Sezione 12.7.

Esempio 15.6. Nel caso di numerosità campionaria n = 2 lo schema di
Brewer assume una forma molto semplice. I campioni sono combinazioni senza
ripetizione di classe 2 delle unità della popolazione, e il generico s = {i, j}
(tenendo conto che selezionare il campione {i, j} significa che i è selezionata
per prima e j per seconda o viceversa) ha probabilità

p(s) =
1∑N

k=1
π0k(2−π0k)
2 (1−π0k)

{
π0i (2 − π0i)
2 (1− π0i)

π0j

2 − π0i
+

π0j (2 − π0j)
2 (1 − π0j)

π0i

2 − π0j

}

=
1∑N

k=1(2 − π0k) π0k

1−π0k

π0i π0j

(
1

1 − π0i
+

1
1 − π0j

)
.

Il confronto con i risultati dell’Esempio 15.1 mostra che per n = 2 il disegno
di Brewer coincide con quello di Sampford. ��

Esempio 15.7. Consideriamo di nuovo la popolazione di N = 10 unità del-
l’Esempio 15.2, con n = 5 e con probabilità di inclusione del primo ordine
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Tabella 15.11 Valori esatti πij delle probabilità di inclusione del secondo ordine –
schema di Brewer

0.9000 0.6231 0.5770 0.4845 0.4392 0.4392 0.3489 0.3045 0.2156 0.1716
0.6231 0.7000 0.4305 0.3569 0.3220 0.3220 0.2525 0.2188 0.1533 0.1212
0.5770 0.4305 0.6500 0.3267 0.2942 0.2942 0.2299 0.1992 0.1395 0.1098
0.4845 0.3569 0.3267 0.5500 0.2408 0.2408 0.1862 0.1612 0.1129 0.0890
0.4390 0.3220 0.2942 0.2408 0.5000 0.2155 0.1665 0.1435 0.0994 0.0788
0.4390 0.3220 0.2942 0.2408 0.2155 0.5000 0.1665 0.1445 0.0994 0.0788
0.3489 0.2525 0.2299 0.1862 0.1665 0.1665 0.4000 0.1107 0.0771 0.0603
0.3045 0.2188 0.1992 0.1612 0.1440 0.1440 0.1107 0.3500 0.0663 0.0520
0.2156 0.1533 0.1395 0.1129 0.0996 0.0996 0.0772 0.0663 0.2500 0.0357
0.1716 0.1212 0.1097 0.0890 0.0787 0.0787 0.0603 0.0520 0.0357 0.2000

desiderate π01 = 0.9, π02 = 0.7, π03 = 0.65, π04 = 0.55, π05 = 0.5, π06 = 0.5,
π07 = 0.4, π08 = 0.35, π09 = 0.25, π010 = 0.2.

L’uso dello schema di Brewer porta alle probabilità di inclusione del
secondo ordine riportate in Tabella 15.11.

Dal confronto con quanto visto negli esempi precedenti, l’approssimazione
πa

ij ≈ πij fornisce buoni risultati. ��

15.7 Schemi di tipo sistematico∗

Gli schemi di tipo sistematico hanno un discreto interesse pratico, a causa
della loro semplicità. Qui ci limiteremo al più semplice di essi proposto da
Madow (1949); per approfondimenti si rinvia al volume di Tillé (2006), e ai
relativi riferimenti bibliografici.

Indichiamo come al solito con π01, . . . , π0N le probabilità di inclusione del
primo ordine desiderate, tali che π01 + · · ·+π0N = n. Consideriamo inoltre le
somme cumulate:

P0 = 0, P1 = π01, P2 = π01 + π02, . . . , PN = π01 + · · ·+ π0N = n.

Lo schema sistematico di Madow è esposto qui di seguito in forma algoritmica.

− Passo 0. Inizializzazione. Calcolare le N + 1 quantità P0, P1,
. . .PN. Andare al Passo 1.

− Passo 1. Generare una variabile aleatoria U con distribuzione
uniforme in [0, 1]. Calcolare gli n numeri U, U +1, U +2, . . .,
U + n − 1. Andare al Passo 2.

− Passo 2. Scelta. Includere nel campione s le unità i tali che

Pi−1 < U + k � Pi con k = 0, 1, . . . , n − 1.

Per verificare la validità dello schema dianzi illustrato, osserviamo che
k < U + k < k + 1. Inoltre, essendo

0 = P0 < P1 < · · · < Pi−1 < Pi < Pi+1 < · · · < PN = n
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Fig. 15.1 Schema sistematico di Madow

e tenendo conto che ciascun intervallo (Pi−1, Pi] ha lunghezza 0 < π0i < 1,
ogni numero U + k appartiene esattamente a uno e uno solo degli intervalli
(Pi−1, Pi]. Ciò è anche illustrato in Fig. 15.1.

Se poi k e j sono due interi distinti (sempre compresi tra 0 e n− 1) le due
quantità U+j e U+k apparterranno a due differenti intervalli. Di conseguenza,
i campioni selezionati con lo schema sistematico sopra descritto hanno tutti
numerosità n.

Per calcolare le probabilità di inclusione del primo ordine iniziamo con l’os-
servare che se per Pi−1 e Pi vi sono solo due possibilità, illustrate in Fig. 15.2:

A. per un qualche intero k si ha k − 1 � Pi−1 < Pi < k;
B. per un qualche intero k si ha Pi−1 < k − 1 � Pi < k.

Nel caso A. si ha (essendo U + k − 1 uniforme in [k − 1, k])

πi = Pr(Pi−1 � U + k − 1 < Pi) = Pi − Pi−1 = π0i. (15.59)

Nel caso B. si ha invece (essendo U +k−2 uniforme in [k−2, k−1] e U +k−1
uniforme in [k − 1, k])

πi = Pr(Pi−1 � U + k − 2 < k − 1) + Pr(k − 1 � U + k− < Pi)
= k − 1 − Pi−1 + Pi − (k − 1) = π0i. (15.60)

Fig. 15.2 Inclusione dell’unità i nel campione
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Dalla (15.59) e (15.60) si conclude che la probabilità di inclusione dell’unità i
è esattamente π0i.

Le probabilità di inclusione del secondo ordine sono studiate in Connor
(1966). Posto

Pij =
{∑j−1

k=i π0k se i < j

n −∑i−1
k=j π0k se i > j

�Pij� = più grande intero � Pij

aij = Pij − �Pij�

si ha

πij = min{max(0, π0i − aij), π0j}
+min{π0i, max(0, aij + π0j − 1)} , i < j. (15.61)

Il difetto principale dello schema sistematico appena esposto è che molte
delle probabilità di inclusione del secondo ordine possono essere uguali a zero.
All’inconveniente si può ovviare eseguendo una permutazione casuale delle
unità della popolazione prima di applicare il metodo, e un “riordinamento
inverso” delle unità stesse dopo la selezione del campione. Ovviamente, questo
modo di procedere rende molto più complicato il calcolo delle πij. D’altra
parte, esso migliora spesso la qualità dell’approssimazione πa

ij sviluppata nella
Sezione 16.6.

Esempio 15.8. Si consideri la popolazione di N = 10 unità dell’Esempio
15.2. Le probabilità di inclusione del primo ordine desiderate sono π01 = 0.9,
π02 = 0.7, π03 = 0.65, π04 = 0.55, π05 = 0.5, π06 = 0.5, π07 = 0.4, π08 = 0.35,
π09 = 0.25, π010 = 0.2, e la numerosità campionaria è n = 5.

L’uso dello schema sistematico di Madow, senza permutazione casuale delle
unità della popolazione, porta alle probabilità di inclusione del secondo ordine
riportate in Tabella 15.12.

Tabella 15.12 Valori esatti πij delle probabilità di inclusione del secondo ordine –
schema sistematico di Madow

0.9000 0.6000 0.5500 0.5500 0.4000 0.5000 0.3000 0.3500 0.2500 0.1000
0.6000 0.7000 0.3500 0.3500 0.4000 0.3000 0.3000 0.3500 0.0500 0.1000
0.5500 0.3500 0.6500 0.2000 0.4500 0.2000 0.4000 0.0500 0.2000 0.2000
0.5500 0.3500 0.2000 0.5500 0.0500 0.5000 0.0000 0.3000 0.2500 0.0000
0.4000 0.4000 0.4500 0.0500 0.5000 0.0000 0.4000 0.1000 0.0000 0.2000
0.5000 0.3000 0.2000 0.5000 0.0000 0.5000 0.0000 0.2500 0.2500 0.0000
0.3000 0.3000 0.4000 0.0000 0.4000 0.0000 0.4000 0.0000 0.0000 0.2000
0.3500 0.3500 0.0500 0.3000 0.1000 0.2500 0.0000 0.3500 0.0000 0.0000
0.2500 0.0500 0.2000 0.2500 0.0000 0.2500 0.0000 0.0000 0.2500 0.0000
0.1000 0.1000 0.2000 0.0000 0.2000 0.0000 0.2000 0.0000 0.0000 0.2000
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Tabella 15.13 Valori esatti πij delle probabilità di inclusione del secondo ordine –
schema sistematico di Madow con permutazione casuale delle unità

0.9000 0.6222 0.5775 0.4872 0.4411 0.4411 0.3490 0.3050 0.2126 0.1645
0.6222 0.7000 0.4413 0.3652 0.3273 0.3273 0.2485 0.2105 0.1408 0.1155
0.5775 0.4413 0.6500 0.3349 0.2975 0.2975 0.2229 0.1864 0.1337 0.1085
0.4872 0.3652 0.3349 0.5500 0.2342 0.2342 0.1808 0.1594 0.1134 0.0901
0.4411 0.3273 0.2975 0.2342 0.5000 0.2028 0.1654 0.1456 0.1039 0.0822
0.4411 0.3273 0.2975 0.2342 0.2028 0.5000 0.1654 0.1456 0.1039 0.0822
0.3490 0.2485 0.2229 0.1808 0.1654 0.1654 0.4000 0.1182 0.0842 0.0659
0.3050 0.2105 0.1864 0.1594 0.1456 0.1456 0.1182 0.3500 0.0728 0.0566
0.2126 0.1408 0.1337 0.1134 0.1039 0.1039 0.0842 0.0728 0.2500 0.0349
0.1645 0.1155 0.1085 0.0901 0.0822 0.0822 0.0659 0.0566 0.0349 0.2000

Alcune delle probabilità di inclusione del secondo ordine sono pari a zero,
come già segnalato. Inoltre, l’approssimazione sviluppata nella Sezione 12.7
fornisce risultati piuttosto cattivi.

Nel caso in cui si effettui una permutazione casuale delle unità della po-
polazione, le probabilità di inclusione del secondo ordine sono quelle della
Tabella 15.13. Si osservi come le πij siano tutte positive, e come l’approssi-
mazione πij ≈ πa

ij della Sezione 12.7 dia risultati soddisfacenti. ��

15.8 Disegno campionario bilanciato∗

15.8.1 Definizione e aspetti di base∗

Il disegno campionario di tipo bilanciato si basa su un’idea molto semplice:
se sono disponibili a priori una o più variabili ausiliarie note sull’intera po-
polazione, il disegno campionario dovrebbe essere tale che le stime delle loro
medie a livello campionario coincidano con le medie effettive a livello di po-
polazione. La logica di base è molto semplice: se il campione fornisce delle
“buone” stime delle medie delle variabili ausiliarie, e se queste sono correlate
con la variabile di interesse, anche la stima campionaria di quest’ultima do-
vrebbe essere “buona”. Il primo tentativo di campionamento bilanciato è nel
lavoro di Gini e Galvani (1929), dove, detto in termini moderni, si costrùı un
campione ragionato di 29 dei 214 distretti amministrativi in cui l’Italia era
allora suddivisa. Un’analisi empirica basata sui dati del censimento del 1921,
tuttavia, mostrò che i risultati delle stime ottenute su base campionaria erano
buoni per le variabili di interesse molto correlate con quelle usate per costruire
il campione, ma non buoni per altre variabili. Un esordio non certo incorag-
giante! Il metodo fu fortemente criticato da Neyman (1934), ma a ben vedere
le principali critiche di Neyman riguardavano il fatto che il campione fosse
ragionato, ma non toccavano direttamente l’idea del “bilanciare” il disegno
campionario sulla base di variabili ausiliarie. Detto in altri termini, anche se
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all’epoca non era chiaro, il punto debole della proposta di Gini e Galvani stava
nell’uso di un disegno campionario estremo di tipo ragionato, ma non nell’i-
dea di bilanciamento tout court. Più di recente, Royall e Herson (1973) hanno
fortemente sottolineato l’importanza del bilanciamento di un disegno campio-
nario. Poiché all’epoca non esistevano metodi computazionalmente efficienti
per costruire disegni bilanciati, essi proposero l’uso del disegno semplice senza
ripetizione, che dovrebbe permettere una sorta di “bilanciamento in media”.
Il primo algoritmo realmente efficiente e di utilizzo generale è il metodo del
cubo: Deville e Tillé (2004), Deville e Tillé (2005), Tillé (2006), Cap. 8.

La notazione che useremo in questa sezione è simile a quella introdotta per
gli stimatori di tipo calibrazione. Si considerino p variabili ausiliarie X1, . . .,
Xp, e sia xik il valore che la variabile Xk assume in corrispondenza dell’unità
i (i = 1, . . . , N ; k = 1, . . . , p).

Nel seguito si assumerà che i valori xik siano noti per tutte le unità della
popolazione, per cui sono anche note le medie

μxk =
1
N

N∑
i=1

xik; k = 1, . . . , p (15.62)

delle variabili X1, . . . , Xp.
D’ora in avanti si assumerà sempre che il disegno campionario considera-

to sia non ordinato e senza ripetizioni. L’idea alla base del campionamento
bilanciato, come dianzi accennato, è quella di utilizzare le variabili Xk per la
selezione del campione. Formalmente, l’obiettivo è selezionare un campione in
cui le stime delle medie delle variabili ausiliarie siano uguali alle medie effet-
tive delle variabili stesse. Se (come sempre d’ora in poi) si fa riferimento allo
stimatore di Horvitz-Thompson, il requisito che si richiede di soddisfare ad
un disegno bilanciato è

1
N

∑
i∈s

1
πi

xik = μxk , k = 1, . . . , p (15.63)

per ciascun campione s dello spazio S. Chiaramente, la (15.63) equivale a
richiedere che il disegno campionario sia tale che gli stimatori di Horvitz-
Thompson delle medie delle variabili ausiliarie abbiano varianza nulla:

V (tHT, xk) = 0, k = 1, . . . , p (15.64)

dove si è posto

tHT, xk =
1
N

∑
i∈s

1
πi

xik, k = 1, . . . , p. (15.65)

Chiaramente l’idea sottostante al campionamento bilanciato è che se la
condizione (15.63) è soddisfatta e le variabili ausiliarie Xk sono fortemente
correlate con Y, allora anche la stima di μy risulterà vicina alla “vera” media
della popolazione μy.
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Alla luce della definizione sopra data è evidente che il campionamento
bilanciato può essere visto come una restrizione dello spazio campionario,
in quanto soltanto i campioni che soddisfano la condizione (15.63) hanno
probabilità di selezione positiva. Formalmente, lo spazio S dei campioni (di
unità) è

S = {s : tHT, xk = μxk , k = 1, . . . , p} .

Esempio 15.9. Se si usa un’unica variable ausiliariaX che per ciascuna unità
i assume un valore pari alla probabilità di inclusione dell’unità stessa:

xi = πi per ciascuna unit à i = 1, . . . N

allora si ha∑
i∈s

1
πi

xi = n(s) = ampiezza (effettiva) del campione s

N∑
i=1

xi =
N∑

i=1

πi = n = ampiezza media (effettiva) campionaria

per cui la (15.63) equivale a richiedere che

n(s) = n per ciascun campione s

ovvero che il disegno campionario sia ad ampiezza effettiva costante. ��

Esempio 15.10. Si consideri un’unica variabile ausiliaria di bilanciamento
che per tutte le unità della popolazione assume valore xi = 1. La condizione
di bilanciamento (15.63) si può scrivere come∑

i∈s

1
πi

= N per ciascun campione s. (15.66)

Come già detto nel capitolo precedente, il peso da disegno 1/πi si può inter-
pretare come il numero di unità della popolazione “rappresentate” dall’unità
campionaria i. Pertanto, si ha∑

i∈s

1
πi

= numero di unità della popolazione rappresentate
da quelle del campione s.

La (15.66) equivale a richiedere che il numero di unità della popolazione rap-
presentate da quelle di ciascun campione sia uguale al numero effettivo di
unità della popolazione, che è una condizione piuttosto intuitiva.

Questo esempio può anche essere interpretato in modo lievemente diffe-
rente. La quantità ∑

i∈s

1
πi
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è null’altro che lo stimatore di Horvitz-Thompson del numero totale N di
unità della popolazione. La (15.66) richiede quindi che per ciascun campione
esso coincida con il numero effettivo di unità della popolazione. ��

Esempio 15.11. Anche la stratificazione può essere vista come una forma
speciale di bilanciamento. Si supponga infatti che la popolazione di interesse
sia suddivisa in M strati, rispettivamente di N1, N2, . . ., NM unità. Per facilità
di scrittura, in questo caso le unità della popolazione saranno etichettate con
i numeri 1, 2, . . ., N , e non con la solita doppia etichetta del tipo (strato,
etichetta di unità nello strato). Definiamo poi M variabili D1, . . ., DM , tali
che per ciascuna unità della popolazione la variabile Dg assume il valore 1 se
l’unità appartiene allo strato g, e il valore 0 in caso contrario. Si tratta, in
sostanza, degli indicatori di appartenenza delle unità agli strati. In simboli:

dig =
{

1 se l ′unit à i appartiene allo strato g
0 altrimenti ; g = 1, . . . , M ; i = 1, . . . , N.

Tenendo conto che
∑

i dig = Ng, le equazioni di bilanciamento assumono la
forma: ∑

i∈s

dig

πi
= Ng; g = 1, . . . , M (15.67)

essendo
∑

i∈s dig/πi lo stimatore di Horvitz-Thompson del numero di unità
dello strato g. La (15.67) mostra quindi che le equazioni di bilanciamento im-
plicano che lo stimatore di Horvitz-Thompson del numero di unità di ciascuno
strato sia eguale al numero di unità dello strato stesso.

Detto sg = {i ∈ s : dig = 1} il sottocampione di s formato dalle unità
dello strato g, le (15.67) si riscrivono come∑

i∈sg

1
πi

= Ng; g = 1, . . . , M. (15.68)

Nel caso speciale in cui le probabilità di inclusione delle unità di ciascuno
strato g siano tutte uguali ad uno stesso numero, diciamo π(g), se si indica con
n(sg) il numero di unità campionarie dello strato g le (15.68) si riducono a

n(sg) = πg Ng; g = 1, . . . , M

ossia il disegno campionario è sostanzialmente di tipo stratificato. ��

In parecchi casi l’equazione di bilanciamento (15.63) può non essere esat-
tamente soddisfatta. In tali circostanze è necessario procedere alla selezione
di un campione approssimativamente bilanciato, ossia di un campione che
soddisfi con buona approssimazione la (15.63).
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Esempio 15.12. Supponiamo che N = 6, e che πi = 1/2 per ciascuna unità
della popolazione. Consideriamo due variabili ausiliarie di bilanciamento, X1,
X2, definite nel modo seguente:

xi1 = πi = 1
2 , i = 1, . . . , 6; (15.69)

x1 2 = x2 2 = x3 2 = 1, x4 2 = x5 2 = x6 2 = 3. (15.70)

La (15.69) implica che il disegno campionario debba avere ampiezza effettiva
costante n = 3. Essendo poi le probabilità di inclusione del primo ordine tutte
uguali, lo stimatore di Horvitz-Thompson si riduce alla media campionaria
(di un campione di n = 3 unità). La variabile ausiliaria X2 ha media μx2 = 2,
ma, in conseguenza della (15.70), non può esserci nessun campione di 3 unità
tale che la sua media campionaria sia pari a 2. Il problema è dovuto, in
buona sostanza, al fatto che sia la numerosità della popolazione che quella del
campione sono molto piccole. ��

Esempio 15.13. Si consideri il file spese_anziani.xls, già visto nell’Esem-
pio 10.5 del Capitolo 10, e in cui sono riportate diverse variabili relative a
250 comuni. La variabile di interesse, di cui si vuole stimare la media, è la
spesa (media) per anziano sostenuta nell’anno 2011. Per ciascun comune so-
no note a priori la popolazione residente e la spesa per anziani sostenuta
nell’anno 2009.

Per la selezione di un campione di n = 20 comuni consideriamo i disegni,
tutti di tipo bilanciato, di seguito elencati.

BS1. Disegno bilanciato con ampiezza costante n = 20, probabilità di inclu-
sione del primo ordine tutte uguali e variabile di bilanciamento spesa
media per anziano sostenuta nell’anno 2009.

BS2. Disegno bilanciato con ampiezza costante n = 20, probabilità di inclu-
sione del primo ordine proporzionali alla popolazione residente e va-
riabile di bilanciamento spesa media per anziano sostenuta nell’anno
2009.

BS3. Disegno bilanciato con ampiezza costante n = 20, probabilità di in-
clusione del primo ordine proporzionali alla spesa media per anzia-
no sostenuta nell’anno 2009, e variabile di bilanciamento popolazione
residente.

BS4. Disegno bilanciato con ampiezza costante n = 20, probabilità di inclu-
sione del primo ordine tutte uguali, e variabili di bilanciamento spesa
media per anziano sostenuta nell’anno 2009 e popolazione residente.

BS5. Disegno con ampiezza costante n = 20, probabilità di inclusione del
primo ordine proporzionali alla spesa media per anziano sostenuta
nell’anno 2009.

In Tabella 15.14 sono riportate le varianze dello stimatore della spe-
sa media per anziano nel 2011, per ciascuno dei cinque disegni campionari
considerati.
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Tabella 15.14 Deviazioni standard dello stimatore di Horvitz-Thompson per i
disegno campionari BS1–BS5

Disegno campionario Varianze stimatore di Horvitz-Thompson

BS1 72374.1
BS2 976993.4
BS3 14395.2
BS4 88145.9
BS5 13596.9

Il disegno con il comportamento peggiore è BS2, in cui le probabilità di
inclusione del primo ordine dei comuni sono proporzionali alla corrispondente
popolazione. Questo fatto si comprende bene se si fa riferimento alla Fig. 15.3,
in cui in ascissa è riportata la popolazione dei comuni, e in ordinata il livello
di spesa media per anziano nel 2011. Come subito si vede, i due caratteri sono
molto lontani da una situazione di proporzionalità, cos̀ı che lo scegliere pro-
babilità di inclusione del primo ordine proporzionali al livello di popolazione
determina una scarsissima efficienza dello stimatore di Horvitz-Thompson.

A rafforzare questa considerazione, è da rimarcare la debole correlazione
tra i due caratteri spesa media per anziano nel 2011 e livello di popolazione,
pari appena a −0.09.

Fig. 15.3 Grafico della spesa media per anziano nel 2011 vs livello di popolazione
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Fig. 15.4 Grafico della spesa media per anziano nel 2011 vs spesa media per anziano
nel 2009

La scelta di usare probabilità di inclusione proporzionali alla spesa media
per anziano nel 2009 fornisce invece risultati molto buoni, sia che non si usi
la popolazione come variabile di bilanciamento (disegno BS3), sia che la si
usi come variabile di bilanciamento (disegno BS5). Ciò si comprende bene se
si considera la Fig. 15.4, in cui in ascissa è riportato il livello di spesa media
per anziano nel 2009, e in ordinata quello nel 2011. Dalla figura appare chiaro
come i due caratteri siano molto vicini ad una situazione di proporzionalità,
per cui usare probabilità di inclusione del primo ordine proporzionali alla
spesa media per anziano del 2009 si rivela una scelta molto efficace. Per la
stessa ragione, tale variabile fornisce risultati migliori se usata per costruire
le probabilità di inclusione piuttosto che come variabile di bilanciamento (con
probabilità di inclusione costanti), come accade nei disegni BS1, BS4. ��

15.8.2 Il metodo del cubo∗

Il metodo del cubo è il principale algoritmo per la selezione di un campione
mediante un disegno bilanciato. La sua denominazione deriva dalla rappresen-
tazione geometrica di un disegno campionario. Come visto nel Capitolo 12, un
campione (non ordinato, senza ripetizioni) può essere rappresentato tramite
il vettore delle N variabili indicatrici

δ(s) = (δ(1; s), δ(2; s), . . . , δ(N ; s)). (15.71)
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Geometricamente ogni vettore δ(s) può essere visto come uno dei 2N vertici
dell’ipercubo N -dimensionale [0, 1]N . Ogni vettore δ(s) identifica un vertice
dell’ipercubo [0, 1]N , e di conseguenza il corrispondente campione s.

L’interpretazione geometrica dei disegni campionari è già stata studiata
nel Capitolo 12. Un disegno campionario caratterizzato da probabilità di in-
clusione πi, i = 1, . . . , N , assegna una probabilità p(δ(s)) = p(s) di selezione
a ogni vertice dell’ipercubo, in maniera tale che∑

s∈S
p(s) δ(s) = π (15.72)

essendo π il vettore delle probabilità di inclusione. Geometricamente un di-
segno campionario porta ad esprimere il vettore π come una combinazione
lineare convessa dei vertici (di probabilità positiva) dell’ipercubo [0, 1]N . Di
conseguenza, selezionare un campione significa scegliere un vertice dell’iper-
cubo a partire da un vettore π, in modo tale da soddisfare l’equazione di
bilanciamento (15.63).

Per capire un po’ meglio il significato geometrico delle (15.63), definiamo
la matrice p × N (in cui ogni riga si riferisce ad una variabile e ogni colonna
ad un’unità):

A =

⎡⎢⎢⎣
x11
π1

x21
π2

· · · xN1
πN

x12
π1

x22
π2

· · · xN2
πN

· · · · · · · · · · · ·
x1p

π1

x2p

π2
· · · xNp

πN

⎤⎥⎥⎦ . (15.73)

Le p equazioni (15.63), come facilmente si vede, possono essere scritte come

A δ(s) = Aπ

ossia come

A (δ(s) − π) = 0p (15.74)

essendo 0p un vettore di p numeri 0. Quindi, geometricamente le equazio-
ni di bilanciamento stabiliscono che il vettore δ(s) deve appartenere ad un
sottospazio lineare (affine) di IRN di dimensione N − p. Precisamente, detto

KerA = {u ∈ IRN : Au = 0p}

il nucleo (kernel) della matrice A, il vettore δ(s) deve essere tale che δ(s)−π
appartiene a KerA.

Il metodo del cubo si compone di due fasi: la fase di volo e la fase di at-
terraggio. Nella fase di volo si sceglie, in maniera “casuale”, un vettore δ(s)
tale che δ(s) − π appartenga a KerA. Tale vettore non ha necessariamente
componenti tutte uguali a 0 o a 1. Nella fase di atterraggio si rilassano i vincoli
delle equazioni di bilanciamento in modo da ottenere un vettore a componenti
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0 o 1. Un’ultima notazione prima di esporre il metodo del cubo. Si tratta, in
sostanza, di uno schema che implementa un disegno in cui le probabilità di
inclusione del primo ordine sono prefissate, e vanno anche soddisfatti i vinco-
li di bilanciamento. Con tale metodo il calcolo delle probabilità di inclusione
del secondo ordine è un problema numericamente quasi insormontabile. Buoni
risultati, comunque, sono offerti sia dalle approssimazioni sviluppate nel Capi-
tolo 12, sia dalle corrispondenti approssimazioni della varianza dello stimatore
di Horvitz-Thompson.

Fase di volo

La fase di volo, come anticipato, genera un vettore δ(s) che soddisfi sia le
equazioni di bilanciamento (15.74) che la (15.72) (necessaria per rispettare
il vincolo sulle probabilità di inclusione del primo ordine). Qui di seguito è
brevemente presentato l’algoritmo principale per l’implementazione della fase
di volo.

− Passo 0. Inizializzazione. Porre t = 0, π(0) = π. Andare al
Passo 1.

− Passo 1. Generare (casualmente o meno) un vettore u(t) �= 0p

appartenente a KerA e avente componenti u1(t), . . ., uN(t) tali
che ui(t) = 0 se πi(t) è intero. Se u(t) ha componenti tutte
uguali a 0 andare al passo 4. Altrimenti, andare al Passo 2.

− Passo 2. Calcolare i numeri λ∗
1(t), λ∗

2(t) come:

λ∗
1(t) = pi ù grande valore di λ1 (t) tale che 0p � π(t) + λ1(t)u(t) � 1p

λ∗
2(t) = pi ù grande valore di λ2 (t) tale che 0p � π(t) − λ2(t)u(t) � 1p

essendo 1p un vettore di p componenti tutte uguali a 1, ed
essendo le disuguaglianze tra vettori intese come valide com-
ponente per componente. Si osservi che λ∗

1(t) > 0, λ∗
2(t) > 0. An-

dare al Passo 3.
− Passo 3. Scegliere

π(t + 1) =
{

π(t) + λ∗
1(t)u(t) con probabilità q(t)

π(t) − λ∗
2(t)u(t) con probabilità 1 − q(t)

con q(t) = λ∗
2(t)

λ∗
1(t)+λ∗

2(t)
. Incrementare t di 1 e andare al Passo 1.

− Passo 4. Arresto. Stop: porre δ̃ = π(t).

Come mostrato in Deville e Tillé (2004), il vettore δ̃ ha valore atteso pari
al vettore π delle probabilità di inclusione del primo ordine, ed inoltre soddisfa
le equazioni di bilanciamento (15.74). Le componenti del vettore δ̃ sono tutte
comprese tra 0 e 1 ed al più p di esse non sono uguali né a 0, né a 1. Se questo
accade, è necessario passare alla fase di atterraggio. Altrimenti, basta porre
δ(s) = δ̃ e la generazione del campione s è completa.
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Prima di passere a discutere brevemente la fase di atterraggio, un’ultima
notazione. Il Passo 1 è molto oneroso sul piano computazionale. Un algoritmo
computazionalmente per la sua realizzazione è nel lavoro di Chauvet e Tillé
(2006).

Fase di atterraggio

La fase di atterraggio si rende necessaria quando il vettore δ̃ ottenuto nella
fase di volo non ha tutte le componenti uguali a 0 o a 1, ma contiene qualche
elemento 0 < δ̃i < 1. L’idea di fondo della fase di atterraggio è quella di
rilassare i vincoli di bilanciamento, in modo da ottenere nella fase di volo un
vettore δ̃ a componenti pari a 0 o 1. Di seguito sono elencati i più semplici
metodi di atterraggio.

– Eliminazione di vincoli. Questo metodo consiste nel dare un ordine di
importanza ai vincoli, e nell’eliminare gli stessi partendo da quello meno
importante. Ogni volta che si elimina un vincolo, si rieffettua la fase di
volo, fino a quando non si giunge ad un vettore δ̂ a componenti tutte pari
a 0 o a 1.

– Minimizzazione di funzione di costo - 1. Dato il vettore δ̃ ottenuto al
termine della fase di volo, si considerano le sue componenti non uguali né
a 0 e né a 1, che in generale saranno in numero di q � p. Si costruiscono
poi tutti i vettori (in totale sono 2q costruiti a partire da δ̃ e ponendo
uguali a 0 o a 1 tutte le sue componenti che non soddisfano tale requisito.
Formalmente, si costruiscono i vettori δ̃

j
, j = 1, . . ., 2q tali che δ̃j

i = δ̃i

se δ̃i è pari a 0 o a 1, e δ̃j
i ∈ {0, 1} se 0 < δ̃i < 1, con i = 1, . . ., N .

Ciascuno dei vettori δ̃
j

corrisponde ad un campione sj, j = 1, . . . , 2q. Sia
tjHT, xk

il valore dello stimatore di Horvitz-Thompson di μxk calcolato in
corrispondenza del campione sj . Il costo di sj è definito come

C(sj) =
p∑

k=1

∣∣∣∣∣ t
j
HT, xk

− μxk

μxk

∣∣∣∣∣ .

L’idea di base è di scegliere “casualmente” uno tra s1, . . ., s2q , in modo che
il generico sj abbia probabilità p̃(sj) di essere selezionato. Le probabilità
p̃(sj) sono determinate in modo da minimizzare il costo atteso∑

j

C(sj) p̃(sj)

e in modo da soddisfare i vincoli∑
j

p̃(sj) = 1

∑
j

δ̃j
i p̃(sj) = δ̃i; i = 1, . . . , N.
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– Minimizzazione di funzione di costo - 2. Si tratta di un metodo simi-
le al precedente, ma si richiede anche che il campione selezionato abbia
ampiezza (effettiva) pari a n = π1 + · · ·+ πN .

Per approfondimenti sul metodo del cubo si rinvia a Deville e Tillé (2004),
Tillé (2006), Cap. 8.

15.9 L’utilizzo di R nel campionamento da popolazioni
finite

R è un software statistico scaricabile gratuitamente dalla R home-page,
http://www.r-project.org. R è programma Open Source, ognuno può avere
accesso al suo codice interno ed, eventualmente, proporne modifiche. La ca-
ratteristica principale di R è la sua modularità: tutte le sue funzioni sono
contenute in dei pacchetti ad ognuno dei quali è dedicato un compito speci-
fico. La distribuzione di base di R include un certo numero di pacchetti che
sono necessari per un funzionamento minimale del sistema, ogni altro pac-
chetto non presente nella versione di R può essere installato digitando nella
console di R il comando

install.packages(“nome del pacchetto”).

Nell’ambito della teoria del campionamento da popolazioni finite Tillé e
Matei (2009) hanno sviluppato il pacchetto sampling in cui sono implemen-
tati diversi disegni di campionamento e diversi metodi di stima. Se si vuole
installare il pacchetto sampling durante una sessione di R bisogna digitare
nella console di R il comando

install.packages(“sampling”).

Una volta installato il pacchetto è necessario richiamare il pacchetto all’interno
della sessione di lavoro attraverso il comando

library(sampling).

Se si vogliono reperire informazioni specifiche sul contenuto del pacchetto
sampling basterà digitare

library(help=sampling)

o in alternativa
help(package=sampling).

Tali comandi causano l’apertura di una finestra che riporta tutte le funzioni
e i dataset specifici del pacchetto. Per ottenere informazioni su una funzione
del pacchetto basterà digitare nel prompt il comando

help(nome funzione).
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Ad esempio se si vogliono informazioni sulla funzione srswor che consente
la selezione di un campione secondo un disegno semplice senza ripetizione
basterà digitare nel prompt

help(srswor).

Un campione casuale semplice può essere selezionato usando la funzione sr-
swor per un campionamento senza ripetizione e srswr per un campionamento
con ripetizione. Per quanto riguarda i disegni di campionamento a probabilità
variabili alcuni dei disegni implementati nel pacchetto sono elencati di seguito:

– disegno di Brewer, implementato nella funzione UPbrewer ;
– disegno di massima entropia, implementato nella funzione UPmaxentropy ;
– disegno di Midzuno-Lahiri, implementato nella funzione UPmidzuno;
– metodo del pivot, implementato nella funzione UPpivotal ;
– disegno di tipo Pareto, implementato nella funzione UPopips;
– disegno di Poisson, implementato nella funzione UPpoisson;
– disegno sistematico, implementato nella funzione UPsystematic;
– disegno di Sampford, implementato nella funzione UPsampford.

È inoltre possibile selezionare un campione utilizzando:

– un disegno stratificato, con probabilità di inclusione uguali o diverse;
– un disegno a grappolo, con probabilità di inclusione uguali o diverse;
– un disegno a due o più stadi di campionamento, con probabilità di

inclusione uguali o diverse in ogni stadio.

Nel pacchetto sampling sono anche implementate funzioni che consentono il
calcolo delle probabilità di inclusione del secondo ordine per il disegno di
massima entropia, il disegno di Midzuno, il disegno sistematico.

Il pacchetto sampling consente inoltre la selezione di un campione bilan-
ciato attraverso il metodo del cubo; l’algoritmo è implementato nella funzione
samplecube.

Per quanto riguarda i metodi di stima, le funzioni HTestimator e HTstra-
ta consentono di stimare, rispettivamente con disegno semplice e con disegno
stratificato, il totale della popolazione utilizzando lo stimatore di Horvitz-
Thompson. Con riferimento a stimatori che si basano sull’utilizzo di infor-
mazione ausiliarie lo stimatore per quoziente è implementato nelle funzioni
ratioest,ratioest strata, e lo stimatore di regressione è implementato nelle fun-
zioni regest, regest strata (rispettivamente per il disegno ssr e per quello stra-
tificato). Il pacchetto consente inoltre sia il calcolo dei pesi per la definizione
dello stimatore calibrato attraverso la funzione calib sia il calcolo dello stima-
tore calibrato e della sua varianza attraverso l’utilizzo della funzione calest.
La post stratificazione è implementata nella funzione poststrata, e lo stimatore
post stratificato è calcolato usando la funzione postest.
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Esercizi

15.1. Siano (S1, p1(·)) (S2, p2(·)) due disegni campionari ad ampiezza ef-
fettiva costante n, e si indichino con π

(1)
i , π

(2)
i , π

(1)
ij π

(2)
ij le loro probabilità

di inclusione, rispettivamente del primo e del secondo ordine. Si indichino
inoltre con V1(tHT ), V2(tHT ) le corrispondenti varianze dello stimatore di
Horvitz-Thompson di μy.

a. Provare che se π
(1)
1 = π

(2)
1 , . . ., π

(1)
N = π

(2)
N , e se V1(tHT ) � V2(tHT ) per

qualche vettore Y N , allora deve essere V1(tHT ) � V2(tHT ) per qualche
altro vettore Y N .

Suggerimento. Detta Ψ1 la matrice N ×N di elementi π
(1)
ij /(π

(1)
i π

(1)
j )−1, e detta Ψ2

la matrice N × N di elementi π
(2)
ij /(π

(2)
i π

(2)
j ) − 1, si ha V1(tHT ) = Y ′

NΨ1Y N/N2, e

V2(tHT ) = Y ′
NΨ2Y N/N2. Se fosse V1(tHT ) � V2(tHT ) per ogni vettore Y N ∈ IRN ,

si avrebbe Y ′
N (Ψ2 − Ψ1)Y N � 0 per ogni Y N ∈ IRN , cos̀ı che la matrice Ψ2 − Ψ1

sarebbe semidefinita positiva. I suoi autovalori, quindi, sarebbero tutti non negativi.
D’altra parte, se π

(1)
i = π

(2)
i , i = 1, . . . , N , la matrice Ψ2−Ψ1 ha diagonale principale

composta da N zeri, e quindi anche i suoi autovalori devono essere uguali a zero
(perché?). Ma allora anche gli altri elementi di Ψ2−Ψ1 dovrebbero essere tutti nulli.

b. Dedurre da a. che non esiste nessun disegno ad ampiezza effettiva costante
e con prefissate probabilità di inclusione del primo ordine che rende mi-
nima la varianza dello stimatore di Horvitz-Thompson della media della
popolazione.

15.2. Provare che tra tutti i disegni campionari non ordinati, senza ripetizioni,
e con prefissate probabilità di inclusione del primo ordine π01, . . . , π0N , il
disegno di Poisson è quello di entropia massima.

Suggerimento.Bisogna minimizzare la quantità
∑

s∈S p(s) log p(s), subordinatamen-
te ai vincoli

∑
s∈S p(s) = 1,

∑
s∈S δ(i; s) p(s) = π0i, i = 1, . . . , N . La funzione

Lagrangiana assume la forma: L =
∑

s∈S p(s) log p(s)−∑N
i=1 λi(

∑
s∈S δ(i; s) p(s)−

π0i) − λN+1(
∑

s∈S p(s) − 1). Derivando rispetto a p(s) e annullando le derivate,

si ha poi ∂L/∂p(s) = log p(s) + 1 −∑N
i=1 λiδ(i; s) − λN+1 = 0, da cui log p(s) =

cost +
∑N

i=1 λiδ(i; s), e quindi p(s) = p(δ(1; s), . . . , δ(N ; s)) = C
∏N

i=1 θ
δ(1; s)
i , es-

sendo θi = exp(λi), e C una costante opportuna. Quest’ultima relazione mostra che
le variabili aleatorie δ(1; s) sono indipendenti, e quindi il disegno deve essere di Pois-
son. Poiché deve anche essere Pr(δ(i; s) = π0i/(1− π0i), si conclude che θi = π0i, e
C = Cpo.

15.3. Verificare che per il disegno campionario di Poisson lo stimatore di
Horvitz-Thompson tHT ha varianza (15.13).

15.4. (Stimatore di Horvitz-Thompson con disegno di Poisson) Da-
to un disegno di Poisson con probabilità di inclusione del primo ordine
π01 . . . , π0N , si consideri lo stimatore tHT di Horvitz-Thompson di μy.
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a. Verificare che il rapporto E[t2HT ]/μ2
y = 1 + V (tHT )/μ2

y, qualunque sia
μy fissato, raggiunge il suo valore minimo per yi = Kπ0i/(1 − π0i), i =

1, . . . , N , con K = μy/
(

1
N

∑N
i=1

π0i

1−π0i

)
.

b. Verificare che il valore ottimo della costante di contrazione è

c∗ =
N∑

i=1

π0i

1 − π0i

/(
1 +

N∑
i=1

π0i

1 − π0i

)
.

15.5. (Costante di normalizzazione per il disegno di Sampford) Con
riferimento al disegno di Sampford, si definiscano le seguenti grandezze:

a. CN−1,m(i): classe di tutte le combinazioni senza ripetizioni di m unità di
tutta la popolazione IN privata di i, IN \ {i}.

b. g(n, r, i) =
∑

c∈CN,n−r(i)

{∏N
j=1 ω

δ(j; c)
j

}(
n − rpi −

∑N
k=1 pkδ(k; c)

)
.

c. h(n, r, i) =
∑

c∈CN,n−r (i)

{∏N
j=1 ω

δ(j; c)
j

}(∑N
k=1(1 − pk)δ(k; c)

)
.

d. Dm(i) =
∑

c∈CN−1,m(i)

{∏N
j=1 ω

δ(j; c)
j

}
.

Provare le seguenti relazioni.

a. g(n, r, i) = r(1 − pi)Dnr(i) + h(n, r, i).
b. h(n, r, i) =

∑
c∈CN−1,n−r (i)

∑
k∈c pk

(∏
j∈c; j �=k ωj

)
.

c. h(n, r, i) = g(n, r + 1, i) + rπ0iDn−r−1(i).

Suggerimento. La quantità al secondo membro di (b) è la somma di tutti i prodotti
del tipo pk(ωj1 · · ·ωjn−r−1 ), con j1 �= · · · �= jn−r−1 �= k indici in IN \ {i}.

d. Dm(i) = Dm − ωiDm−1(i).
e. g(n, r, i) = g(n, r + 1, i) + r(1 − pi)Dn−r; r = 0, 1, . . .

Suggerimento. Usare c e d.

f. Usando la condizione iniziale g(n, n, i), verificare che vale la relazione
g(n, r, i) = (1 − pi)

∑n
t=r tDn−r .

g. Verificare la relazione (15.20).

Suggerimento. Aggiungere alla popolazione un’unità fittizia N + 1 con pN+1 = 0,
e osservare che

∑
s∈CN,n

p(s) = Cs g(n, 0, N + 1). Applicare quindi la relazione al

punto f .

15.6. (Probabilità di inclusione del primo ordine nel disegno di
Sampford) Provare la (15.21).

Suggerimento. Usando le grandezze introdotte nell’Esercizio 15.5, osservare che πi =
Cs ωi g(n, 1, i).
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15.7. (Probabilità di inclusione del secondo ordine nel disegno di
Sampford) Si consideri la quantità

Ψij =
∑

c∈CN−2,n−2(i, j)

{
N∏

k=1

ω
δ(k; c)
k

}(
n − pi − pj −

N∑
l=1

plδ(l; c)

)

e si supponga di aggregare le due unità i, j in un’unica unità α. La numerosità
della risultante popolazione è N − 1, e si ha pα = pi + pj, ωα = pα/(1 − pα).
Siano inoltre g′, D′ definite rispettivamente come g, D nell’Esercizio 15.5,
ma relativamente alla nuova popolazione di N − 1 unità. Provare le seguenti
relazioni.

a. Ψij = g′(n, 2, α) + pαD′
n−2(α).

b. D′
n−t = D′

n−t(α) + ωαD′
n−t−1(α) per t < n − 1 (e con D′

0(α) = 1).
c. Ψij =

∑n
t=2(t − pα)D′

n−t(α) =
∑n

t=2(t − pi − pj)Dn−t(i, j).
d. πij = Cs ωi ωj Ψij.
e. Sulla base delle (a) − (d), provare la (15.24).

15.8. Provare la relazione (15.25).

Suggerimento. Dalla (d) dell’Esercizio 15.5 si ha

N Dm −
N∑

i=1

Dm(i) =

m∑
r=1

(−1)r+1(ωr
1 + · · · + ωr

N )Dr.

Inoltre,
∑N

i=1 Dm(i) è una somma di prodotti del tipo ωj1 · · ·ωjm , e la combinazione
{j1, . . . , jm} compare (una volta) in N − n insiemi CN−1,m(i).

15.9. Provare che nel disegno di Sampford con n = 2 vale la relazione πij �
π πj per i �= j.

15.10. Provare che se λ1 = λ2 = · · · = λN , il disegno di Pareto si riduce a
quello semplice senza ripetizione.

Suggerimento. Le variabili aleatorie Q1, . . . , QN sono indipendenti e identicamente
distribuite, cos̀ı che Qi è uguale all’una o all’altra tra Q1:N , . . . , QN :N con la stessa
probabilità.

15.11. Verificare la relazione (15.32).

Suggerimento. Pr(Qi � y) = Pr(Ui/(1 − Ui) � ϑi y) = Pr(Ui � ϑi y/(1 + ϑi y)) =
ϑi y/(1 + ϑi y) se y � 0.

15.12. Siano

– CN−1,n−1(i): classe di tutte le combinazioni senza ripetizioni di n−1 unità
di tutta la popolazione IN privata di i, IN \ {i};

– CN,n−1(i): classe di tutte le combinazioni senza ripetizioni di n − 1 unità
di IN contenenti i.

Provare la relazione (15.46).
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Suggerimento. Tenere conto che

π
(n)
i = ηi C(n)

pc

∑
sn−1∈CN−1,n−1(i)

(
N∏

k=1

η
δ(k; sn−1)

k

)

= ηi
C

(n)
pc

C
(n−1)
pc

⎧⎨⎩ ∑
sn−1∈CN,n−1

(
C(n−1)

pc

N∏
k=1

η
δ(k; sn−1)

k

)

−
∑

sn−1∈CN,n−1(i)

(
C(n−1)

pc

N∏
k=1

η
δ(k; sn−1)

k

)⎫⎬⎭ .

15.13. Si considerino un disegno di Poisson condizionato di numerosità n, de-
finito dai numeri τ1, . . . , τN , e un disegno di Pareto, sempre di numerosità n,
con λ1 = τ1, . . ., λN = τN . Si indichino rispettivamente con p

(n)
pc (s) e p

(n)
pa (s)

le probabilità dei campioni rispettivamente nel disegno di Poisson condizio-
nato e in quello di Pareto; si indichino inoltre con π

(n)
pc,i, π

(n)
pc,ij, π

(n)
pa,i, π

(n)
pa,ij le

probabilità di inclusione del primo e del secondo ordine. Provare che vale la
relazione

π
(n)
pa,i =

∑N
k=1 gk π

(n)
pc,ik∑N

k=1 gk π
(n)
pc,k

, i = 1, . . . , N.

Suggerimento. Usare la relazione

p(n)
pa (s) =

C
(n)
pa

C
(n)
pc

p(n)
pa (s)

(
N∑

k=1

gk δ(k; s)

)

con C
(n)
pa , C

(n)
pc costanti opportune, tali che

C
(n)
pa

C
(n)
pc

= 1

/
N∑

k=1

gk π
(n)
pc,k .

15.14. Si considerino un disegno di Sampford di numerosità n, definito dai
numeri p1, . . . , pN , e un disegno di Pareto, sempre di numerosità n, con λ1 =
p1, . . ., λN = pN . Si indichino rispettivamente con ps(s) e ppa(s) le probabilità
dei campioni rispettivamente nel disegno di Sampford condizionato e in quello
di Pareto. Posto B = max((1 − p1)/g1, . . . , (1 − pN)/gN), verificare che lo
schema di rigetto basato sul generare un campione di Pareto e accettarlo se
U �

∑N
i=1(1 − pi) δ(i; s)/

∑N
i=1 gi δ(i; s) produce un campione di Pareto.

Suggerimento. Se q(s) =
∏N

i=1 p
δ(i; s)
i (1−pi)

1−δ(i; s), si ha ps(s) = As q(s)
∑

(1−pi)
δ(i; s), e ppa(s) = q(s)

∑
gi δ(i; s), da cui q(s)

∑
(1−pi) δ(i; s) � B q(s)

∑
gi δ(i; s)

se
∑

(1 − pi) δ(i; s) � B
∑

gi δ(i; s), il che accade se B � (1 − pi)/gi per ciascun
i = 1, . . . , N .

15.15. Provare la relazione (15.51).
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15.16. Provare la relazione (15.53).

15.17. Provare la relazione (15.58).

15.18. Dato un disegno campionario di Bernoulli con dimensione campionaria
attesa pari a Np = n, si consideri lo stimatore di Horvitz-Thompson della
media della popolazione. Mostrare che l’effetto del disegno è pari a

deff(B, tHT ) ≈
(

1 +
1

CV 2
y

)
(15.75)

dove CVy è il coefficiente di variazione di Y nella popolazione.

Suggerimento. Utilizzare la relazione

N∑
i=1

y2
i = NS2

y

(
1 − 1

N
+

1

CV 2
y

)
. (15.76)
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Hájek, J.: Sampling from a finite popolation. Marcel Dekker, New York (1981)
Hedlin, D.: A procedure for stratification by an extended Ekman rule. Journal

of Official Statistics 16, 15–29 (2000)
Herzel, A.: On mean values and unbiased estimators in simple random sam-

pling. Statistica, 315–350 (1982)
Hess, I., Sethi, V. K., Balakrishnan, T.R.: Stratification: A practical investiga-

tion. Journal of the American Statistical Association (1966)
Hidiroglou, M. A., Srinath, K. P.: Problems associated with designing sub-

annual surveys. Journal of Business & Economic Statistics 11, 397–404
(1993)

Horvitz, D.G., Thompson, D. J.: A generalisation of sampling without replace-
ment from a finite universe. Journal of the American Statistical Association
47, 663–685 (1952)

Kish, L.: Survey Sampling. Wiley, New York (1965)
Lavallée, P., Hidiroglou, M. A.: On the stratification of skewed populations.

Survey Methodology 14, 33–43 (1988)



Bibliografia 439

Madow, W.G.: On the theory of systematic sampling, ii. Annals of Mathema-
tical Statistics 20, 333–354 (1949)
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