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Preface

Permutation tests permit us to choose the test statistic best suited to the task
at hand. This freedom of choice opens up a thousand practical applications,
including many which are beyond the reach of conventional parametric sta-
tistics. Flexible, robust in the face of missing data and violations of assump-
tions, the permutation test is among the most powerful of statistical proce-
dures. Through sample size reduction, permutation tests can reduce the costs
of experiments and surveys.

This text on the application of permutation tests in biology, medicine,
science, and engineering may be used as a step-by-step self-guiding reference
manual by research workers and as an intermediate text for undergraduates
and graduates in statistics and the applied sciences with a first course in
statistics and probability under their belts.

Research workers in the applied sciences are advised to read through
Chapters 1 and 2 once quickly before proceeding to Chapters 3 through
8 which cover the principal applications they are likely to encounter in
practice.

Chapter 9 is a must for the practitioner, with advice for coping with real-
life emergencies such as missing or censored data, after-the-fact covariates,
and outliers.

Chapter 10 uses practical applications in archeology, biology, climatology,
education and social science to show the research worker how to develop
new permutation statistics to meet the needs of specific applications. The
practitioner will find Chapter 10 a source of inspiration as well as a practical
guide to the development of new and novel statistics.

The expert system in Chapter 11 will guide you to the correct statistic for
your application. Chapter 12, more “must” reading, provides practical advice
on experimental design and shows how to document the results of permuta-
tion tests for publication.

Chapter 13 describes techniques for reducing computation time; and a
guide to off-the-shelf statistical software is provided in an appendix.

The sequence of recommended readings is somewhat different for the stu-
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dent and will depend on whether he or she is studying the permutation tests
by themselves or as part of a larger course on resampling methods encom-
passing both the permutation test and the bootstrap resampling method.

This book can replace a senior-level text on testing hypotheses. I have also
found it of value in introducing students who are primarily mathematicians
to the applications which make statistics a unique mathematical science.
Chapters 1, 2, and 14 provide a comprehensive introduction to the theory.
Despite its placement in the latter part of the text, Chapter 14, on the theory
of permutation tests, is self-standing. Chapter 3 on applications also deserves
a careful reading. Here in detail are the basic testing situations and the basic
tests to be applied to them. Chapters 4, 5, and 6 may be used to supplement
Chapter 3, time permitting (the first part of Chapter 6 describing the Fisher
exact test is a must). Rather than skipping from section to section, it might be
best for the student to consider one of these latter chapters in depth—supple-
menting his or her study with original research articles.

My own preference is to parallel discussions of permutation methods with
discussion of a second resampling method, the bootstrap. Again, Chapters 1,
2, and 3—supplemented with portions of Chapter 14—are musts. Chapter 7,
on tests of dependence, is a natural sequel. Students in statistical computing
also are asked to program and test at least one of the advanced algorithms in
Chapter 12.

For the reader’s convenience, the bibliography is divided into four parts:
the first consists of 34 seminal articles; the second of two dozen background
articles referred to in the text that are not directly concerned with permuta-
tion methods; the third of 111 articles on increasing computational efficiency;
and a fourth, principal bibliography of 574 articles and books on the theory
and application of permutation techniques.

Exercises are included at the end of each chapter to enhance and reinforce
your understanding. But the best exercise of all is to substitute your own data
for the examples in the text.

My thanks to Symantek, TSSI, and Perceptronics without whose Grand-
View ® outliner, Exact ® equation generator, and Einstein Writer ® word pro-
cessor this text would not have been possible.

I am deeply indebted to Mike Chernick for our frequent conversations and
his many invaluable insights, to Mike Ernst, Alan Forsythe, Karim Hiriji,
John Ludbrook, Reza Modarres, and William Schucany for reading and com-
menting on portions of this compuscript and to my instructors at Berkeley
including E. Fix, J. Hodges, E. Lehmann, and J. Neyman.

P.G.
Huntington Beach, CA
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CHAPTER 1

A Wide Range of Applications

1.1. Permutation Tests

The chief value of permutation tests lies in their wide range of applications:

Permutation tests can be applied to continuous, ordered and categorical
data, and to values that are normal, almost normal, and non-normally dis-
tributed.

For almost every parametric and nonparametric test, one may obtain a
distribution-free permutation counterpart. The resulting permutation test is
usually as powerful as or more powerful than alternative approachs. And
permutation methods can sometimes be made to work when other statistical
methods fail (see Chapter 3 Section 3.4 and Chapter 10).

Permutation tests can be applied to homogeneous (text book) and to het-
erogeneous (real life) data when subpopulations are mixed together (see Sec-
tion 10.3), when covariables must be taken into account (see Sections 4.3, 6.5,
and 9.2), and when repeated measures on a single subject must be adjusted
for (Section 5.5). The ability of permutation methods to be adapted to real-
world situations is what led to my writing this book for the practitioner.

1.1.1. Applications

Permutation tests have been applied in cluster analysis [Hubert and Levin,
1976], Fourier analysis [Friedman and Lane, 1980], multivariate analysis
[Arnold, 1964; Mielke, 1986] and single-subject analysis [Kazdin, 1976];
(but see Kazdin [1980]). In anthropology [Fisher, 1936], agriculture [Kemp-
thorne, 1952], archaeology [Berry, Kvamme, and Mielke, 1985], atmo-
spheric science [Adderley, 1961; Tukey, Brillinger, and Jones, 1978], biology
[Howard, 1980], botany [Mitchell-Olds, 1986, 1987], ecology [Manly,
1983; Mueller and Altenberg, 1985], education [Manly, 1988], epidemiol-
ogy [Glass, Mantel, Gunz, and Spears, 1971], genetics [Karlin and Williams,
1984], geography [Royaltey, Astrachen, and Sokal, 1975], geology [Clark,
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19897}, medicine [Bross, 1964; Feinstein, 1973; McKinney, Young, Hartz
Bi-Fong Lee, 1989], molecular biology [Barker and Dayhoff, 1972;
Karlin, Ghandour, Ost, Tauare, and Korph, 1983], paleontology [ Marcus,
1969], sociology [Marascuilo and McSweeny, 1977] and reliability [Kalb-
fleisch and Prentice, 1980].

Permutation methods are relatively impervious to complications that de-
feat other statistical techniques. Outliers and “broad tails” may be defended
against through the use of preliminary rank or robust transformations, (Sec-
tion 9.3). Missing data often is corrected for automatically. Missing and cen-
sored data may affect the power of a permutation test, but not its existence or
exactness. A most powerful unbiased permutation test often works in cases
where a most powerful parametric test fails for lack of knowledge of some yet
unknown nuisance parameter [ Lehmann, 1986]; [Good 1989, 1991, 1992].

A major reason permutation tests have such a wide range of applications
is that they require only one or two relatively weak assumptions, e.g., that the
underlying distributions are symmetric, and/or the alternatives are simples
shifts in value. The permutation test can even be applied to finite populations
(see Section 2.4).

1.2. “I Lost the Labels”

Shortly after I received my doctorate in statistics, I decided that if I really
wanted to help bench scientists apply statistics I ought to become a scientist
myself. So back to school I went to learn all about physiology and aging in
cells raised in petri dishes.

I soon learned there was a great deal more to an experiment than the
random assignment of subjects to treatments. In general, 90%, of my effort
was spent in mastering various arcane laboratory techniques, 9%, in develop-
ing new techniques to span the gap between what had been done and what I
really wanted to do, and a mere 19 on the experiment itself. But the moment
of truth came finally—it had to if I were to publish and not perish—and I
succeeded in cloning human diploid fibroblasts in eight culture dishes: Four
of these dishes were filled with a conventional nutrient solution and four
held an experimental “life-extending” solution to which Vitamin E had been
added.

I waited three weeks with my fingers crossed—there is always a risk of
contamination with cell cultures—but at the end of this test period three
dishes of each type had survived. My technician and I transplanted the cells,
let them grow for 24 hours in contact with a radioactive label, and then fixed
and stained them before covering them with a photographic emulsion.

Ten days passed and we were ready to examine the autoradiographs. Two
years had elapsed since I first envisioned this experiment and now the results
were in: I had the six numbers I needed.
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Figure 1.1. Eight petri dishes, 4 containing standard medium, 4 containing standard
medium supplemented by Vitamin E. Ten cells innoculated in each dish.

“I’ve lost the labels,” my technician said as he handed me the results.

“What!?” Without the labels, I had no way of knowing which cell cultures
had been treated with Vitamin E and which had not.

“121, 118, 110, 34, 12, 22.” I read and reread these six numbers over and
over again. If the first three counts were from treated colonies and the last
three were from untreated, then I had found the fountain of youth. Other-
wise, I really had nothing to report.
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1.3. Five Steps to a Permutation Test

How had I reached that conclusion?

In succeeding chapters, you will learn to apply permutation techniques to
a wide variety of testing problems ranging from the simple to the complex. In
each case, you will follow the same five-step procedure that we follow in this
example:

1. Analyze the problem.

2. Choose a test statistic.

3. Compute the test statistic for the original labelling of the observations.

4. Rearrange (permute) the labels and recompute the test statistic for the
rearranged labels. Repeat until you obtain the distribution of the test
statistic for all possible permutations.

5. Accept or reject the hypothesis using this permutation distribution as a
guide.

1.3.1. Analyze the Problem

Let’s take a second, more formal look at the problem of the missing labels.
First, we identify the hypothesis and alternative of interest:

I wanted to assess the life-extending properties of a new experimental
treatment. To do this, I divided my cell cultures into two groups: one grown
in a standard medium and one grown in a medium containing Vitamin E. At
the conclusion of the experiment and after the elimination of several contami-
nated cultures, both groups consisted of three independently treated dishes.

My null hypothesis is that the growth potential of a culture will not be
affected by the presence of Vitamin E in the media. The alternative of interest
is that cells grown in the presence of Vitamin E would be capable of many
more cell divisions.

Under the null hypothesis, the labels “treated” and “untreated” provide no
information about the outcomes, as the observations are expected to have
more or less the same values in each of the two experimental groups. I am free
to exchange the labels.

1.3.2. Choose a Test Statistic

The next step in the permutation method is to choose a test statistic that
discriminates between the hypothesis and the alternative. The statistic I
chose was the sum of the counts in the group that had been treated with
Vitamin E. If the alternative is true this sum ought to be larger than the sum
of the observations in the untreated group. If the null hypothesis is true, that
is, if it doesn’t make any difference which treatment the cells receive, then the
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sums of the two groups of observations should be approximately the same.
One sum might be smaller or larger than the other by chance, but the two
shouldn’t be all that different.

1.3.3. Compute the Test Statistic

The third step in the permutation method is to compute the test statistic for
each of the possible relabellings. But to compute the test statistic for the data
as it had been labelled originally, I had to find the labels! Fortunately, I had
kept a record of the treatments independent of my technician. In fact, I had
deliberately not let my technician know which cultures were which in order
to ensure he would give them equal care in handling. As it happened, the first
three observations he showed me—121, 118, and 110 were those belonging
to the cultures that had received Vitamin E. The value of the test statistic for
the observations as originally labelled is 349: 121 + 118 + 110.

1.3.4. Rearrange the Observations
We now rearrange or permute the observations, randomly reassigning the six

labels, three “treated” and three “untreated,” to the six observations: for
example, treated, 121 118 34, and untreated, 110 12 22. In this rearrangement,

First Group Second Group Sum,

1. 121 118 110 34 22 12 349

2. 121 118 34 110 22 12 273

3. 121 110 34 118 22 12 265

4. 118 110 34 121 22 12 262

5. 121 118 22 110 34 12 261

6. 121 110 22 118 34 12 253

7. 121 118 12 110 34 22 251

8. 118 110 22 121 34 12 250

9. 121 110 12 118 34 22 243

10. 118 110 12 121 34 22 240
11. 121 34 22 118 110 12 177
12. 118 34 22 121 110 12 174
13. 121 34 12 118 110 22 167
14. 110 34 22 121 118 12 166
15. 118 34 12 121 110 22 164
16. 110 34 12 121 118 22 156
17. 121 22 12 118 110 34 155
18. 118 22 12 121 110 34 152
19. 110 22 12 121 118 34 144

20. 34 22 12 121 118 110 68
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the sum of the observations in the first (treated) group is 273. We repeat this

6\ 6.5.4 .
step until all °C, = ( 3> =371°" 20 distinct rearrangements have been

examined.

Five Steps to a Permutation Test

1) Analyze the problem
a) What is the hypothesis? What are the alternatives?
b) What distribution is the data drawn from?
¢) What losses are associated with bad decisions?
2) Choose a statistic which will distinguish the hypothesis from the alternative.
3) Compute the test statistic for the original observations.
4) Rearrange the observations
a) Compute the test statistic for the new arrangement
b) Compare the new value of test statistic with the value you obtained for the
original observations.
c) Repeat steps a) and b) until you are ready to make a decision.
5) Make a decision
Reject the hypothesis and accept the alternative if the value of the test statistic
for the observations as they were labelled originally is an extreme value in the
permutation distribution of the statistic. Otherwise, accept the hypothesis and
reject the alternative.

1.3.5. Make a Decision

The sum of the observations in the original Vitamin E treated group, 349, is
equaled only once and never exceeded in the twenty distinct random re-
labellings. If chance alone is operating, then such an extreme value is a rare,
only-one-time-in-twenty event. I reject the null hypothesis at the five percent
(1 in 20) significance level and embrace the alternative that the treatment
is effective and responsible for the difference I observed.

In using this decision procedure, I risk making an error and rejecting a true
hypothesis once in every twenty times. In this case, I did make just such an
error. I was never able to replicate the observed life-promoting properties of
Vitamin E in other repetitions of this experiment. Good statistical methods
can reduce and contain the probability of making a bad decision, but they
cannot eliminate the possibility.

1.4. What’s in a Name?

Permutation tests are also known as randomization, rerandomization and
exact tests. Historically, one may distinguish between Pitman’s notion of
the randomization test applicable only to the samples at hand, and Fisher’s
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idea of a permutation test which could be applied inductively to the larger
populations from which the samples are drawn, but few research workers
honor this distinction today. Gabriel and Hall [1983] use the term “re-
randomization” to distinguish between the initial randomization of treat-
ment assignments at the design phase and the subsequent “rerandomiza-
tions” which occur during the permutation analysis. In this book, we shall
use.the three names “permutation,” “randomization,” and “rerandomization”
interchangeably.

Most permutation tests provide “exact” significance levels. We define “ex-
act,” “significance level” and other important concepts in Section 2.2 and
establish the conditions under which permutation tests are exact and unbi-
ased. We reserve the name “exact test” for the classic Fisher’s test for 2 x 2
tables, studying this test and other permutation tests applied to categorical
data in Chapter 6.

The terms “distribution-free” and “nonparametric” often arise in connec-
tion with the permutation tests. “Distribution-free” means that the signifi-
cance level of the test is independent of the form of the hypothetical infinite
population from which the sample is drawn. Permutation tests are almost
but not quite “distribution-free” in that only one or two assumptions about
the underlying population(s) are required for their application. A preliminary
rank transformation often can ensure that the tests are distribution-free. Bell
and Doksum [1967] prove that all distribution-free tests of independence are
permutation tests.

“Non-parametric” means that the parametric form of the underlying popu-
lation distribution is not specified explicitly. It is probably safe to say that
ninety-nine percent of permutation tests are nonparametric and that ninety-
nine percent of common non-parametric tests are permutation tests in which
the original observations have been replaced by ranks. The sign test is one
notable exception.

1.4.1. Comparison with Other Tests

When the samples are very large, decisions based on parametric tests like the
t-test and the F usually agree with decisions based on the corresponding
permutation test. With small samples, the parametric test ordinarily is pre-
ferable IF the assumptions of the parametric test are satisfied completely.
The familiar “rank” tests are simply permutation tests applied to the ranks
of the observations rather than their original values, (see Sections 9.3 and
11.2).

1.4.2. Sampling from the Data at Hand

The two resampling methods—the permutation tests and the bootstrap—
have much in common. Both are computer intensive, and both are limited to
the data at hand.
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With the permutation test, you recompute the test statistic for all possible
relabelings of the combined samples. If the original samples contained the
observations 1, 2, 4 and 3, 5, 6, you would consider the relabelings 1, 2, 3 and
4,5,6;1,2,5 and 3, 4, 6 and so forth. With the bootstrap, you recompute
the test statistic for each of a series of samples with replacement taken
separately from each sample: thus, 1, 1,2 and 3,4,4;1,2,3and 5, 5, 5 and so
forth.

For some testing situations and test statistics, the bootstrap and the ran-
domization test are asymptotically equivalent [Romano, 1989; Robinson,
1987]. But often they yield quite different results, a point we make at length
in Sections 7.2 and 11.2.

When you analyze an experiment or survey with a parametric test—
Student’s t, for example—you compare the observed value of the test statistic
with the values in a table of its theoretical distribution, for example, in a table
of Student’s ¢ with eight degrees of freedom. Analyzing the same experiment
with a permutation test, you compare the observed value of the test statistic
with the set of what-if values you obtain by rearranging and relabeling the
data.

In view of all the necessary computations—the test statistic must be recom-
puted for each what-if scenario—it is not surprising that the permutation
test’s revival in popularity parallels the increased availability of high-speed
computers. Although, the permutation test was introduced by Fisher and
Pitman in the 1930, it represented initially a theoretical standard rather
than a practical approach. But with each new quantum leap in computer
speed, the permutation test was applied to a wider and wider variety of
problems. In earlier eras—the ‘50’s, the '60’s and the "70s—the permutation
test’s proponents, enthusiastic at first, would grow discouraged as, inevitably,
the number of computations proved too demanding for even the largest of the
then-available computing machines. But with today’s new and more powerful
generation of desktops, it is often faster to compute a p-value for an exact
permutation test than to look up an asymptotic approximation in a book of
tables.

With both the bootstrap and the permutation test, all significance levels are
computed on the fly. The statistician is not limited by the availability of
tables, but is free to choose a test statistic exactly matched to hypothesis and
alternative [ Bradley, 1968].

1.5. Questions
Take the time to think about the answers to these questions even if you don’t
answer them explicitly.

1. In the simple example analyzed in this chapter, what would the result have been if
you had used as your test statistic the difference between the sums of the first and
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second samples? the difference between their means? the sum of the squares of the
observations in the first sample? the sum of their ranks?

2. How was the analysis of my experiment affected by the loss of two of the cultures
due to contamination? Suppose these cultures had escaped contamination and
given rise to the observations 90 and 95; what would be the results of a permuta-
tion analysis applied to the new, enlarged data set consisting of the following
cell counts:

Treated 121 118 110 90
Untreated 95 34 22 12




CHAPTER 2

A Simple Test

“Actually, the statistician does not carry out this very tedious process but his
conclusions have no justification beyond the fact they could have been arrived
at by this very elementary method.”

R.A. Fisher, 1936, on permutation tests.

2.1. Properties of the Test

In this chapter, we consider the assumptions that underlie the permutation
test and take a look at some of the permutation test’s formal properties—its
significance level, power, and robustness. This first look is relatively non-
mathematical in nature. A formal derivation is provided in Chapter 14.

In the example of the missing labels in the preceding chapter, we intro-
duced a statistical test based on the random assignment of labels to treat-
ments. We showed this test provided a significance level of five percent, an
exact significance level, not an approximation. The test we derived is valid
under very broad assumptions. The data could have been drawn from a
normal distribution or they could have come from some quite different distri-
bution. All that is required for our permutation test comparing samples from
two populations to be valid is that under the null hypothesis the distribution
from which the data in the treatment group is drawn be the same as that from
which the untreated sample is taken.

This freedom from reliance on numerous assumptions is a big plus. The
fewer the assumptions, the fewer the limitations, and the broader the poten-
tial applications of a test. But before statisticians introduce a test into their
practice, they need to know a few more things about it:

How powerful a test is it? That is, how likely is it to pick up actual differ-
ences between treated and untreated populations? Is this test as powerful or
more powerful than the test we are using currently?

How robust is the new test? That is, how sensitive is it to violations in the
underlying assumptions and the conditions of the experiment?

10
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What if data is missing as it is in so many of the practical experiments we
perform? Will missing data affect the significance level of our test?

What are the effects of extreme values or outliers? In an experiment with
only five or six observations, it is obvious that a single extreme value can
mislead the experimenter. In Section 9.3 of this text, you will learn techniques
for diminishing the effect of extreme values.

Can we extend our results to complex experimental designs in which there
are several treatments at several different levels and several simultaneous
observations on each subject?

The answer to this last question, as the balance of this book will reveal
to you, is yes. For example, you can easily apply permutation methods to
studies in which you test a single factor at three or four levels simultaneously
(see Chapter 3, Section 5). You can also apply permutation methods to exper-
imental designs in which you control and observe the values of multiple
variables (Chapters 4 and 95).

The balance of this chapter is devoted to providing a theoretical basis for
all the preceding questions and answers.

2.2. Fundamental Concepts

Why do we elect to use one statistical procedure rather than another—a
permutation test, say, as opposed to a table of chi-square? If you’ve just
completed a course in statistics, you probably already know the answer. If it’s
been a year or so since you last looked at a statistics text, then you will find
this section helpful.

In this section, you are introduced in an informal way to the fundamental
concepts of variation, population and sample distributions, Type I and Type
I error, significance level, power, and exact and unbiased tests. Formal defi-
nitions and derivations are provided in Chapter 14.

2.2.1. Population and Sample Distributions

The two factors that distinguish the statistical from the deterministic ap-
proach are variation and the possibility of error. The effect of this variation
is that a distribution of values takes the place of a single, unique outcome.

I found Freshman Physics extremely satisfying: Boyle’s Law for example,
V = KT/P, with its tidy relationship between the volume, temperature and
pressure of a perfect gas. The problem was I could never quite duplicate this
law in the Freshman Physics laboratory. Maybe it was the measuring instru-
ments, my lack of familiarity with the equipment, or simple measurement
error—but I kept getting different values for the constant K.

By now, I know that variation is the norm—particularly in the clinical and
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biological areas. Instead of getting a fixed, reproducible V to correspond to a
specific T and P, one ends up with a distribution of values instead. But I also
know that, with a large enough sample, the mean and shape of this distribu-
tion are reproducible.

Figure 2.1a and 2.1b depict two such distributions. The first is a normal
distribution. Examining the distribution curve, we see that the normally-
distributed variable can take all possible values between —oo and + o0, but
most of the time it takes values that are close to its median (and mean) u. The

p(x)

\

T

px)

N WA A
I

Frequency

C

Figure 2.1. Distributions: a) normal distribution, b) exponential distribution, c) distri-
bution of values in a sample taken from a normal distribution.
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second is an exponential distribution; the exponentially-distributed variable
only takes positive values; the majority of the time these values are less than
its mean u, but on occasion they can be many times larger.

Both these distributions are limiting cases; they represent the aggregate
result of an infinite number of observations; thus the distribution curves are
smooth. The choppy histogram in Figure 2.1c is typical of what one sees with
a small, finite sample of observations—in this case, a sample of 25 observa-
tions taken from a normal distribution with mean u.

2.2.2. Two Types of Error

It’s usually fairly easy to reason from cause to effect—that is, if you have a
powerful enough computer. Get the right formula, Boyle’s Law, say, plug in
enough values to enough decimal places, and out pops the answer. The diffi-
culty with reasoning in the opposite direction, from effect to cause, is that
more than one set of causes can be responsible for precisely the same set of
effects. We can never be completely sure which set of causes is responsible.
Consider the relationship between sex (cause) and height (effect). Boys are
taller than girls. Right? So that makes this new 6’2" person in our lives ...
a starter on the women’s volleyball team.

In real life, in real populations, there are vast differences from person to
person. Some women are tall and some women are short. In Lake Wobegon
MN, all the men are good looking and all the children are brighter than
average. But in most other places in the world, there is a wide range of talent
and abilities. As a further example of this variation, consider that half an
aspirin will usually take care of one of my headaches while other people can
and do take two or three aspirins at a time and get only minimal relief.

Figure 2.2 depicts the results of an experiment in which two groups were
each given a “pain-killer.” The first group got buffered aspirin, the second
group received a new experimental drug. Each of the participants then pro-
vided a subjective rating of the effects of the drug. The ratings ranged from
“got worse,” to “much improved,” depicted on a scale of 0 to 4. Take a
close look at Figure 2.2. Does the new drug represent an improvement over
aspirin?

Those who took the new experimental drug do seem to have done better
on the average than those who took aspirin. Or are the differences we observe
in Figure 2.2 simply the result of chance? If it’s just a chance effect and we opt
in favor of the new drug, we’ve made an error. We also make an error if we
decide there is no difference and the new drug really is better. These decisions
and the effects of making them are summarized in Table 2.1.

We distinguish the two types of error because they have quite different
implications. For example, Fears, Tarone, and Chu [1977] use permutation
methods to assess several standard screens for carcinogenicity. Their Type 1
error, a false positive, consists of labeling a relatively innocuous compound
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drug ‘x’
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B

Figure 2.2. Response to treatment: self-rating by patient; a) asprin-treated group;
b) drug-‘x’-treated group.

Table 2.1a. Decision Making Under Uncertainty

Our Decision

The Facts No Difference Drug is better

No Difference Type I error
Drug is Better Type Il error

Table 2.1b. Decision Making Under Uncertainty

Fears et al.’s Decision

The Facts Nota carcinogen Compound a carcinogen

No effect Type I error
Carcinogen  Type Il error




2.2. Fundamental Concepts 15

as carcinogenic. Such an action means economic loss for the manufacturer
and the denial of the compound’s benefits to the public. Neither consequence
is desirable. But a false negative, a Type Il error, would mean exposing a
large number of people to a potentially lethal compound.

Because variation is inherent in nature, we are bound to make the occa-
sional error when we draw inferences from experiments and surveys, particu-
larly if, for example, chance hands us a completely unrepresentative sample.
When I toss a coin in the air six times, [ can get three heads and three tails,
but I can also get six heads. This latter event is less probable, but it is not
impossible. Does the best team always win?

We can’t eliminate the risk in making decisions, but we can contain it by
the correct choice of statistical procedure. For example, we can require that
the probability of making a Type I error not exceed 5% (or 1% or 10%) and
restrict our choice to statistical methods that ensure we do not exceed this
level. If we have a choice of several statistical procedures, all of which restrict
the Type I error appropriately, we can choose the method which leads to the
smallest probability of making a Type II error.

2.2.3. Significance Level and Power

In selecting a statistical method, statisticians work with two closely related
concepts, significance level and power. The significance level of a test, denoted
throughout the text by the Greek letter o, is the probability of making a Type
I error; that is, o is the probability of deciding erroneously on the alternative
when, in fact, the hypothesis is true. The power of a test, denoted throughout
the text by the Greek letter f, is the complement of the probability of making
a Type II error; that is, B is the probability of deciding on the alternative
when the alternative is the correct choice.

0 0 —»

Figure 2.3. Comparing power curves. For near alternatives, with 6 small, @, is the
more powerful test; for far alternatives, with 6 large, ¢, is more powerful. Thus neither
test is uniformly most powerful.



16 2. A Simple Test

The ideal statistical test would have a significance level « of zero and a
power f of 1, or 100%. But unless we are all-knowing, this ideal can not be
realized. In practice, we will fix a significance level a > 0, where « is the
largest value we feel comfortable with, and choose a statistic that maximizes
or comes closest to maximizing f the power. If a test at a specific significance
level « is more powerful against a specific alternative than all other tests at
the same significance level, we term it most powerful.

As we see in Figure 2.3, the power may depend upon the alternative. In
those instances when a test at a specific significance level is more powerful
against all alternatives than all other tests at the same significance level, we
term it uniformly most powerful.

The significance level and power may also depend upon how the values of
the variables we observe are distributed. Does the population distribution
follow a bell-shaped normal curve with the most frequent values in the center?
Or is the distribution something quite different? To protect our interests, we
may need to require that the Type I error be less than or equal to some
predetermined value for all possible distributions.

Which Test Should I Use?

Figure 2.4a depicts the power curve of two tests based on samples of size 6. In this
example, the ¢, is uniformly more powerful than ¢,, hence, using ¢, in preference
to ¢, will expose us to less risk. Figure 2.4b depicts the power curve of these same
two tests but using different size samples; the power curve of ¢, is still based on a
sample of size 6, but that of ¢, now is based on a sample of size 9. The two new
power curves coincide, revealing that the two tests now have equal risks. But it
would cost us 50% more observations if we were to use test 2 with its larger sample
size in place of test 1.

Moral: a more powerful test reduces the costs of experimentation while minimizing
the risk.

2.2.4. Exact, Unbiased Tests

In practice, we seldom know the distribution of a variable or its variance. We
usually want to test a compound hypothesis such as H: X has mean 0. This
latter hypothesis includes several simple hypotheses such as H;: X is normal
with mean 0 and variance 1; H,: X is normal with mean 0 and variance 1.2;
and H,: X has a gamma distribution with mean 0 and four degrees of freedom.

A test is said to be exact with respect to a compound hypothesis if the
probability of making a type I error is exactly « for each and every one of the
possibilities that make up the hypothesis. A test is said to be conservative, if
the type I error never exceeds a. Obviously, an exact test is conservative
though the reverse may not be true.
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Figure 2.4. Comparing power curves. a) equal sample sizes—the power curve of test
¢, dominates that of test ¢,. b) unequal sample sizes—the power curves of the two
tests coincide.

The importance of an exact test cannot be overestimated, particularly a
test that is exact regardless of the underlying distribution. If a test that is
nominally at level a is actually at level x, we may be in trouble before we start:
If y > a, the risk of a type I error is greater than we are willing to bear. If
x < o, then our test is suboptimal, and we can improve on it by enlarging its
rejection region. We return to these points again in Chapter 11, on choosing
a statistical method.

A test is said to be unbiased and of level « providing its power function g
satisfies the following two conditions:

p is conservative; that is, i, < a for every 0 that satisfies the hypothesis;
and

By = o for every 0 that is an alternative to the hypothesis.

That is, a test is unbiased if using the test you are more likely to re-
ject a false hypothesis than a true one. I find unbiasedness to be a natural
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and desirable principle, but not everyone shares this view; see, for example,
Suissa and Shuster [1984].

Faced with some new experimental situation, our objective always is to
derive a uniformly most powerful unbiased test if one exists. But, if we can’t
derive a uniformly most powerful test (and Figure 2.3 depicts just such a
situation) then we will look for a test which is most powerful against those
alternatives that are of immediate interest.

2.2.5. Exchangeable Observations

A sufficient condition for a permutation test to be exact and unbiased against
shifts in the direction of higher values is the exchangeability of the observa-
tions in the combined sample. The observations {X, Y,...,Z} are exchange-
able if the probability of any particular joint outcome, X + Y + Z = 6, for
example, is the same regardless of the order in which the observations are
considered [Lehmann 1986, p. 231]. Chapter 14, Section 1 provides a formal
derivation of this fundamental result. See, also, Draper et al. [1993].

Independent, identically distributed observations are exchangeable. So are
samples without replacement from a finite population (Polya urn models)
[Koch, 1982]. So are dependent normally distributed random variables {X;}
for which the variance of X; is a constant independent of i and the covariance
of X; and X; is a constant independent of i and j. An additional example of
dependent but exchangeable variables is given in Section 3.4.

Sometimes a simple transformation will ensure that observations are ex-
changeable. For example, if we know that X comes from a population with
mean p and distribution F(x — p) and an independent observation, Y, comes
from a population with mean v and distribution F(x — v), then the indepen-
dent variables X’ = X — pand Y’ = Y — v are exchangeable.

In deciding whether your own observations are exchangeable, and whether
a permutation test is applicable, the key question is the one we posed in the
very first chapter, Section 1.2.2.1:

Under the null hypothesis of no differences among the various experimen-
tal or survey groups, can we exchange the labels on the observations without
affecting the results?

The effect of a “no” answer to this question is discussed in Chapter 9.1
along with practical guidelines for the design and conduct of experiments and
surveys to ensure the answer is “yes.”

2.3. Which Test?

We are now able to make an initial comparison of the four types of statistical
tests—permutation, rank, bootstrap, and parametric.
Recall from Chapter 1 that with a permutation test, we:
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1. Choose a test statistic S(X)

2. Compute S for the original set of observations

3. Obtain the permutation distribution of S by repeatedly rearranging the
observations. With two or more samples, we combine all the observations
into a single large sample before we rearrange them.

4. Obtain the upper a-percentage point of the permutation distribution and
accept or reject the null hypothesis according to whether S for the original
observations is smaller or larger than this value.

If the observations are exchangeable then the resultant test is exact and
unbiased.

As noted in this chapter’s opening quotation from Fisher, although permu-
tation tests were among the very first statistical tests to be developed, they
were beyond the computing capacities of the 1930’s. One alternative, which
substantially reduces the amount of computation required, is the rank test.
To form a rank test (e.g., Mann—Whitney or Friedman’s test), we:

1. Choose a test statistic S.

2. Replace the original observations {X,;, i=1,...,I, j = 1,...,J} by their
ranks in the combined sample {R,, k = 1...1J}. As an example, if the
original observations are 5.2, 1, and 7, their ranks are 2, 1, and 3. Compute
S for the original set of ranks.

3. Obtain the permutation distribution of S by repeatedly rearranging the
ranks and recomputing the test statistic. Or, since ranks always take the
same values 1, 2, and so forth, take advantage of a previously tabulated
distribution.

4. Accept or reject the hypothesis in accordance with the upper a-percent-
age point of this permutation distribution.

In short, a rank test is simply a permutation test applied to the ranks of the
observations rather than their original values. If the observations are ex-
changeable, then the resultant rank test is exact and unbiased. Generally, a
rank test is less powerful than a permutation test, but see Section 9.3 for a
discussion of the merits and drawbacks of using ranks.

The bootstrap is a relatively recent introduction (circa 1970), primarily
because the bootstrap also is computation intensive. The bootstrap, like the
permutation test, requires a minimum number of assumptions and derives its
critical values from the data at hand.

To obtain a nonparametric bootstrap, we:

1. Choose a test statistic S(X).

2. Compute S for the original set of observations.

3. Obtain the bootstrap distribution of § by repeatedly resampling from the
observations. We need not combine the samples, but may resample sepa-
rately from each sample. We resample with replacement.

4. Obtain the upper a-percentage point of the bootstrap distribution and
accept or reject the null hypothesis according to whether S for the original
observations is smaller or larger than this value.
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Table 2.2. Comparison of Methods for Testing Equality of Means of

Two Populations

Permutation

Distribution-free methods

Rank
(e.g. Wilcoxon)

Nonparametric
Bootstrap

Parametric
(e.g. t-test)

Choose test
statistic

(e.g., sum of
observations in
first sample)

Calculate statistic

Are observations
exchangeable?

Derive permuta-
tion distribution
from combined
sample

Compare statistic
with percentiles
of distribution

Choose test
statistic

(e.g., sum of ranks
in first sample)

Convert to ranks
Calculate
statistic

Are observations
exchangeable?

Use table of
permutation
distribution of
ranks

Compare statistic
with percentiles
of distribution

Choose test
statistic

(e.g., difference
between means
of samples)

Calculate statistic

Are observations
independent?
With identical
parameters of
interest?

Derive bootstrap
distribution:
resample separ-
ately from each
sample

Compare statistic
with percentiles
of distribution

Choose test
statistic whose
distribution can
be derived
analytically

(e.g., Student’s ¢)

Calculate statistic

Are observations
independent?
Do they follow
specified
distribution?

Use tabulated
distribution

Compare statistic
with percentiles
of distribution

The bootstrap is neither exact nor conservative. Generally, but not always,
a nonparametric bootstrap is less powerful than a permutation test. One
exception to the rule is when we compare the variances of two populations
(see Section 3.4). If the observations are independent and from distributions
with identical values of the parameter of interest, then the bootstrap is
asymptotically exact [Liu, 1988]. And it may be possible to bootstrap when
no other statistical method is applicable, see Section 4.4.

To obtain a parametric test (.g, a t-test or an F-test), we:

1. Choose a test statistic, S, whose distribution F, may be computed and
tabulated independent of the observations.

2. Compute S for the observations X.

3. (This step may be skipped as the distribution F, is already known and
tabulated.)
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4. Compare S(X) with the upper a-percentage point of F, and accept or reject
the null hypothesis according to whether S(X) is smaller or larger than
this value.

If S is distributed as F;, then the parametric test is exact and, often, the
most powerful test available. In order for S to have the distribution F;, in
most cases the observations need to be independent and, with small samples,
identically distributed with a specific distribution, G;. If S really has some
other distribution, then the parametric test may lack power and may not be
conservative. With large samples, the permutation test is usually as powerful
as the most powerful parametric test [Bickel and Van Zwet, 1978]. If S is not
distributed as F,, it may be more powerful.

2.4. World Views

Parametric tests such as Student’s ¢ are based on a sampling model. Propo-
nents of this model envision a hypothetical population, infinite in size, whose
members take values in accordance with some fixed (if unknown) distribution
function. For example, normally distributed observations would be drawn
from a population whose values range from minus infinity to plus infinity in
accordance with a bell-shaped or normal curve. From this population, pro-
ponents claim, we can draw a series of values of independent, identically-
distributed random variables to form a random sample.

This view of the world is very natural to a trained mathematician, but does
it really correspond to the practical reality which confronts the physician, the
engineer, or the scientist?

Fortunately, we needn’t rely on the existence of a hypothetical infinite
population to form a permutation test [Welch, 1937]. The permutation tests
make every bit as much sense in a context which Lehmann [1986] terms
the randomization model in which the results are determined by the specific
set of experimental subjects and by how these subjects are assigned to
treatment.

Suppose that as a scientist you have done things or are contemplating
doing things to the members of some representative subset or sample of a
larger population—several cages of rats from the population of all geneti-
cally similar rats, several acres of land from the set of all similar acres, several
long and twisted rods from the set of all similarly-machined rods. Or, as
opposed to a sample, perhaps your particular experiment requires you to
perform the same tests on every machine in your factory, or on every avail-
able fossil, or on the few surviving members of what was once—before man
—a thriving species.

In these experiments, there are two sorts of variation: the variation within
an experimental subject over which you have little or no control—blood
pressure, for example, varies from hour to hour and day to day within a given
individual—and the variation between subjects over which you have even
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less control. Observations on untreated subjects take on values that vary
about a parameter y; which depends on the individual i who is being exam-
ined. Observations on treated subjects have a mean value y; + 6 where the
treatment effect J is confounded with the mean y; of the jth experimental
subject. How are we to tell if the differences between observations on treated
and untreated groups represent a true treatment effect or merely result from
differences in the two sets of subjects?

If we assign subjects to treatment categories at random, so that every per-
mutation of the labels is equally likely, the joint probability density of the
observations is

1 m n
(n +m) Xi = Hj; X;— M .. —0).
(n + m)! (j1,4§m+,.) 111 Iy H3) B f( K, )
Under the null hypothesis of no treatment effect, that is 6 = 0, this density
can be written as

1 m+n

(n + m)' (jl..ij+,.) 1=1—[1 f(xl ”],»)'

By randomizing the assignment of subjects to treatment, we provide a sta-
tistical basis for analyzing the results. And we can reduce (but not eliminate)
the probability, say, that all the individuals with naturally high blood pres-
sure end up in the treatment group.

Because we know that blood pressure is an important factor, one that
varies widely from individual to individual, we could do the experiment
somewhat differently, dividing the experimental subjects into blocks so as
to randomize separately within a “high” blood pressure group and a “low”
blood pressure group. But we may not always know in advance which factors
are important. Or, we may not be able to measure these factors until the date
of the experiment itself. Fortunately, as we shall see in Sections 4.3 and 9.2,
randomizing the assignment of subjects to treatment (or treatments to sub-
ject), also ensures that we are in a position to correct for significant cofactors
after the experiment is completed.

Using a permutation test to analyze an experiment in which we have ran-
domly assigned subjects to treatment is merely to analyze the experiment
in the manner in which it was designed.

2.5. Questions

1. a) Power. Sketch the power curve §(6) for one or both of the two-sample compari-
sons described in this chapter. (You already know two of the values for each
power curve. What are they?)

b) Using the same set of axes, sketch the power curve of a test based on a much
larger sample.
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Suppose that without looking at the data you
i) always reject;
ii) always accept; or
iii) use a chance device so as to reject with probability a.
For each of these three tests, determine the power and the significance level.
Are any of these three tests exact? Unbiased?

Decisions. Suppose you have two potentially different radioactive isotopes with
half-life parameters 4, and 4,, respectively. You gather data on the two isotopes
and, taking advantage of a uniformly-most-powerful-unbiased permutation test,
you reject the null hypothesis H: 4; = 4, in favor of the one-sided alternative
not H: 4; > 4,. What are you or the person you are advising going to do about
it? Will you need an estimate of 4,/4,? What estimate will you use? (Hint: See
Section 3.2 in the next chapter.)

Review some of the hypotheses you tested in the past. Distinguish your actions
after the test was performed from the conclusions you reached. (In other words,
did you do more testing? Rush to publication? Abandon a promising line of
research?) What losses were connected with your actions? Should you have
used a higher/lower significance level? Should you have used a more powerful
test or taken more/fewer observations? And, if you used a parametric test like
Student’s ¢ or Welch’s z, were all the assumptions for these tests satisfied?

The advertisement reads, “Safe, effective, faster than aspirin.” A picture of a
happy smiling woman has the caption, “My headache vanished faster than I
thought possible.” The next time you are down at the pharamacy, the new drug
is there at the same price as your favorite headache remedy. Would you buy it?
Why or why not? Do you think the ad is telling the truth? What makes you
think it is?

In the United States, in early 1995, a variety of government agencies and regula-
tions would almost guarantee the ad is truthful—or, if not, that it would not
appear in print a second time. Suppose you are part of the government’s regula-
tory team reviewing the evidence supplied by the drug company. Looking into
the claim of safety, you are told only “we could not reject the null hypothesis.”
Is this statement adequate? What else would you want to know?

Suppose, once again, you are a consumer with a spliting headache, but when
you go to buy the new drug, you discover it is twice the price of your favorite
remedy. The ad does promise it is faster than asprin; a footnote to the ad states
a statistically significant increase in speed was found in an FDA-approved
survey of 100 patients. Would you be willing to pay the difference in price for
the new drug? Why or why not?

If you aren’t satisfied with or are uncertain of your answers, you may want to

return to these questions as you proceed further into the text.



CHAPTER 3

Testing Hypotheses

In this chapter, you learn how to approach and resolve a series of testing
problems of increasing complexity; specifically, tests for location and scale
parameters in one, two, and k samples. You learn how to derive confidence
intervals for the unknown parameters. And you learn to increase the power
of your tests by sampling from blocks of similar composition.

3.1. One-Sample Tests
3.1.1. Tests for a Location Parameter

One of the simplest testing problems would appear to be that of testing for
the value of the location parameter of a distribution F(8) using a series of
observations x,, x,, ..., x, from that distribution. This testing problem is a
simple one if we can assume that the underlying distribution is symmetric
about the unknown parameter 6, that is, if

PriX<0—x}=F@—-x)=1—F@+x)=Pr{X>60+x}, forallx.

The normal distribution with its familiar symmetric bell-shaped curve,
and the double exponential, Cauchy, and uniform distribution are examples
of symmetric distributions. The difference of two independent observations
drawn from the same population also has a symmetric distribution, as you
will see when we come to consider experiments involving matched pairs in
Section 3.6.

Suppose we wish to test the hypothesis that § < 6, against the alternative
that @ > 6,. As in Chapter 1, we proceed in four steps:

First, we choose a test statistic that will discriminate between the hypothe-
sis and the alternative. As one possibility, consider the sum of the deviations
about ,. Under the hypothesis, positive and negative deviations ought to

24
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cancel and this sum should be close to zero or negative. Under the alterna-
tive, positive terms should predominate and this sum should be large. But
how large should the sum be for us to reject the hypothesis?

We saw in Chapter 2 that we can use the permutation distribution to
obtain the answer; but what should we permute? The principle of sufficiency
can help us here:

Suppose we had lost track of the signs (plus or minus) of the deviations. We
could attach new signs at random, selecting a plus or a minus with equal
probability. If we are correct in our hypothesis that the variables have a
symmetric distribution about 6,, the resulting values should have precisely
the same distribution as the original observations. The absolute values of the
observations are sufficient for regenerating the sample. (You’ll find more on
the topic of sufficiency in Sections 10.3 and 14.2 with regard to choosing a
test statistic.)

Under the alternative of a location parameter larger than 6,, randomizing
the signs of the deviations should reduce the sum from what it was originally;
as we consider one after another in a series of random reassignments, our
original sum should be revealed as an extreme value.

Before implementing this permutation procedure, we note that the sum of
Jjust the deviations with plus signs attached is related to the sum of all the
deviations by the formula:

{ Zol xX; = (in + leil)/z,

because the + 1’s get added twice, once in each sum on the right hand side of
the equation while the —1’s and |—1/’s cancel. Thus, we can reduce the
number of calculations by summing only the positive deviations.

As an illustration, suppose that 6, is 0 and that the original observations
are —1, 2, 3, 1.1, 5. Our first step is to compute the sum of the positive
deviations which is 11.1.

Among the 2 x 2 x 2 x 2 x 2 or 2° possible reassignments of plus and
minus signs are

+1, =2, 43, +1.1, +5

+1, +2, +3, + 1.1, +5
and

—1,-2,+3, +1.1, +5

Our third step is to compute the sum of the positive deviations for each
rearrangement. For the three rearrangements shown above, this sum would
be 10.1, 12.1 and 9.1 respectively.

Our fourth step is to compare the original value of our test statistic with its
permutation distribution. Only two of the 32 rearrangements have sums as
large as the sum, 11.1, of the original observations. Is 2/32 = 1/16 = .0625
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statistically significant? Perhaps or perhaps not. It all depends on the relative
losses we assign to type I and type II error and on the loss function—are
small differences of practical as well as statistical significance? Certainly, a
significance level of 0.0625 is suggestive. Suggestive enough that in this case
we might want to look at additional data or perform additional experiments
before accepting the hypothesis that 0 is the true value of 6.

3.1.2 Properties of the Test

Adopting the sampling model advanced in Section 2.4, we see the preceding
permutation test is applicable even if the different observations come from
different distributions—provided, that is, that these distributions are all sym-
metric and all have the same location parameter or median. (If these distribu-
tions are symmetric then if the mean exists, it is identical with the median.) If
you are willing to specify their values through the use of a parametric model,
the medians needn’t be the same! (See problem 6).

Most powerful test. Against specific normal alternatives, this permutation
test provides a most powerful unbiased test of the distribution-free hypo-
thesis H: 6 = 6, [Lehmann, 1986, p. 239]. For large samples, its power is
almost the same as Student’s t-test [Albers, Bickel, and van Zwet, 1976]. We
provide proofs of these and related results in Chapter 14.

Asymptotic consistency. What happens if the underlying distributions are
almost but not quite symmetric? Romano [1990] shows that the permutation
test for a location parameter is asymptotically exact provided the underlying
distribution has finite variance. His result applies whether the permutation
test is based on the mean, the median, or some statistical functional of the
location parameter. If the underlying distribution is almost symmetric, the
test will be almost exact even when based on as few as 10 or 12 observations.
See Section 13.7 for the details of a Monte Carlo procedure to use in deciding
when “almost” means “good enough.”

Capsule Summary

ONE-SAMPLE TEST H: mean/median = §,
K: mean/median # 6,

Assumptions

1) exchangeable observations

2) distributions F; symmetric about median

Transform Let X=X, — 0,
Test statistic

Sum of nonnegative X;
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3.1.3. Exact Significance Levels: A Digression

Many of us are used to reporting our results in terms of significance levels of
0.01, 0.05, or 0.10, and significance levels of 0.0625 or 0.03125 may seem
confusing at first. These “oddball” significance levels often occur with small
sample sizes. Five observations means just 32 possibilities and one extreme
observation out of 32 corresponds to .03125. Things improve as sample sizes
get larger. With seven observations, we can test at a significance level of .049.
Is this close enough to 0.05?

Lehmann [1986] describes a method called ‘‘randomization on the bound-
ary” for obtaining a significance level of exactly 5% (or exactly 1%, or exactly
10%,). But this method isn’t very practical. In the worst case, “on the bound-
ary,” you must throw a die or use some other chance device to make your
decision.

What is the practical solution? We agree with Kempthorne [1975, 1977,
1979]. Forget tradition. There is nothing sacred about a p-value of 59, or
10%. Report the exact significance level, whether it is .065 or .049. Let your
colleagues reach their own conclusions based on the losses they associate
with each type of error.

3.2. Confidence Intervals

The method of randomization can help us find a good interval estimate of the
unknown location parameter 6.

The set of confidence intervals are the duals of the corresponding tests of
hypotheses:

In the first step of our permutation test for the location parameter of a
single sample, we subtract 6, from each of the observations. We might test a
whole series of hypotheses involving different values for 8, until we find a 6,
such that as long as 6, > 6,, we accept the hypothesis, but if §, < 8, we reject
it. Then an 100 (1 — «)%, confidence interval for 6 is given by the interval
{6>6,}.

Suppose the original observations are —1, 2, 3, 1.1, and 5 and we want to
find a confidence interval that will cover the true value of the parameter
31nds of the time. In the first part of this chapter, we saw that {sth of the
rearrangements of the signs resulted in samples that were as extreme as these
observations. Thus, we would accept the hypothesis that 8 < 0 at the {sth
and any smaller level including the s5nd. Similarly, we would accept the
hypothesis that < —0.5 at the 35nd level, or even that 8 < —1 + ¢ where ¢
is an arbitrarily small but still positive number. But we would reject the
hypothesis that § < —1 — ¢ as after subtracting —1 — ¢ the transformed
observations are ¢, 3 +¢,4 + ¢ 2.1 + 6,6 + &

Our one-sided confidence interval is { — 1, 00} and we have confidence that
3Lnds of the time the method we’ve used yields an interval that includes the
true value of the location parameter 6.
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Our one-sided test of a hypothesis gives rise to a one-sided confidence
interval. But knowing that 6 is larger than — 1 may not be enough. We may
want to pin 8 down to a more precise two-sided interval, say that 0 lies
between —1 and +1.

To accomplish this, we need to begin with a two-sided test. Our hypothesis
for this test is that 6 = 6, against the two-sided alternatives that 6 is smaller
or larger than §,. We use the same test statistic—the sum of the positive
observations, that we used in the previous one-sided test. Again, we look at
the distribution of our test statistic over all possible assignments of the plus
and minus signs to the observations. But this time we reject the hypothesis
if the value of the test statistic for the original observations is either one
of the largest or one of the smallest of the possible values.

In our example, we don’t have enough observations to find a two-sided
confidence interval at the 33nd level, so we'll try to find one at the {2ths. The
lower boundary of the new confidence interval is still — 1. But what is the
new upper boundary? If we subtract 5 from every observation, we would
have the values —6, —3, —2, —3.9, —0; their sum is — 14.9. Only the current
assignment of signs to the transformed values, that is, only one out of the 32
possible assignments, yields this small a sum for the positive values. The
symmetry of the permutation test requires that we set aside another 35nd of
the arrangements at the high end. Thus we would reject the hypothesis that
6 = 5 at the 55 + 35 or {sth level. Consequently, the interval {—1,5} has a
L3th chance of covering the unknown parameter value.

These results are readily extended to a confidence interval for a vector of
parameters, 8, that underlies a one-sample, two-sample, or k-sample experi-
mental design with single- or vector-valued variables. In each case, the 100
(1 — «)% confidence interval consists of all values of the parameter vector 6
for which we would accept the hypothesis at level a. Remember, one-sided
tests produce one-sided intervals and two-sided tests produce two-sided con-
fidence intervals.

In deriving a confidence interval, we look first for a pivotal quantity or
pivot, Q(X4,...,X,,0), whose distribution is independent of the parameters of
the original distribution. One example is Q = X — v, where X is the sample
mean, and the {X;} i = 1, ..., n, are independent and identically distributed
as F(x — v). A second example is Q = X/o, where the {X;} are indepen-
dent and identically distributed as F(x/o). If the {X;} are independent with
the identical exponential distribution 1 — exp[ — At] (see problem 2 in Chap-
ter 2), then T =2) t,/A is a pivotal quantity whose distribution does not
depend on A. We can use this distribution to find an a and b such that

1
Pr(a < T < b) =1 — a. But then Pr{ZbZ ZaZti}_ 1 — a. We use
a pivotal quantity in Section 7.5 to derive a confidence interval for a regres-
sion coefficient.
For further information on deriving confidence intervals using the ran-
domization approach see Section 14.3, as well as Lehmann [1986, pp. 246—
263], Gabriel and Hsu [1983], John and Robinson [1983], Maritz [ 1981, p. 7,
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p- 25], and Tritchler [1984]. For a discussion of the strengths and weaknesses
of pivotal quantities, see Berger and Wolpert [1984].

3.2.1. Comparison with Other Tests

When a choice of statistical methods exists, the best method is the one that
yields the shortest confidence interval for a given significance level. Rob-
inson [1987] finds approximately the same coverage probabilities for three
sets of confidence intervals for the slope of a simple linear regression, based,
respectively, on 1) the standardized bootstrap; 2) parametric theory; and 3)
a permutation procedure.

Confidence Intervals and Rejection Regions

There is a close connection between the confidence intervals and the rejection
regions we’ve constructed. If A(0")is a 1 — « level acceptance region for testing the
hypothesis 8 = 8, and S(X) is a 1 — a level confidence interval for 6 based on the
vector of observations X, then for the confidence intervals defined here, S(X)
consists of all the parameter values §* for which X belongs to A(6*), while 4(0)
consists of all the values of the statistic x for which 6 belongs to S(x).

P{0eS(X)} = P{X e A®)} > 1 — .

In Section 14.3, we show that if A(0) is the acceptance region of an unbiased test,
the correct value of the parameter is more likely to be covered by the confidence
intervals we’ve constructed than is an incorrect value.

3.3. Two-Sample Comparisons
3.3.1. Location Parameters

We tested the equality of the location parameters of two samples in Chapter
1. Recall that we observed 121, 118, and 110 in the treatment group and 34,
12, and 22 in the control group. Our test statistic was the sum of the obser-
vations in the first group and we rejected the null hypothesis because the
observed value of this statistic, 349, was as large or larger than it would have
been in any of the (§) = 20 rearrangements of the data.

In Chapter 14, we show that a permutation test based on this statistic is
exact and unbiased against stochastically increasing alternatives of the form
K: F,[x] = F,[x — 8], 6 > 0. In fact, we show that this permutation test
is a uniformly most powerful unbiased test of the null hypothesis H: F, = F,
against normally distributed shift alternatives. Against normal alternatives
and for large samples, its power is equal to that of the standard ¢-test [Bickel
and van Zwet, 1978].

The permutation test offers the advantage over the parametric ¢-test that it
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is exact even for very small samples whether or not the observations come
from a normal distribution. The parametric t-test relies on the existence of a
mythical infinite population from which all the observations are drawn (see
Section 2.4). The permutation test is applicable even to finite populations
such as all the machines in a given shop or all the supercomputers in the
world.

3.3.2. An Example

Suppose we have two samples: The first, control sample takes values 0, 1, 2,
3, and 19. The second, treatment sample takes values 3.1, 3.5, 4, 5, and 6.
Does the treatment have an effect?

The answer would be immediate if it were not for the value 19 in the first
sample. The presence of this extreme value changes the mean of the first
sample from 1.5 to 5. To dilute the effect of this extreme value on the results,
we convert all the data to ranks, giving the smallest.observation a rank of 1,
the next smallest the rank of 2, and so forth. The first sample includes the
ranks 1, 2, 3, 4, and 10 and the second sample includes the ranks 5, 6, 7, 8, and
9. Is the second sample drawn from a different population than the first?

Let’s count. The sum of the ranks in the first sample is 20. All the re-
arrangements with first samples of the form 1, 2, 3, 4, k, where k is chosen
from {5, 6, 7, 8,9 or 10} have sums that are as small or smaller than that of
our original sample. That’s six rearrangements. The four rearrangements
whose first sample contains 1, 2, 3, 5, and a fifth number chosen from the set
{6, 7, 8, 9} also have smaller sums. That’s 6 + 4 = 10 rearrangements so
far.

Continuing in this fashion—we leave the complete enumeration as an
exercise—we find that 19 of the (1) = 252 possible rearrangements have
sums that are as small or smaller than that of our original sample. Two
samples this different will be drawn from the same population just under
eight percent of the time by chance.

Capsule Summary

TWO-SAMPLE TEST FOR LOCATION
H: mean/medians of groups differ by d,
K: mean/medians of groups differ by d > d,,

Assumptions
1) exchangeable observations
2) Fi(x) = F(x) = Fyx — d)

Transform X=X —do
Test statistic
Sum of observations in smallest sample
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3.4. Comparing Variances
3.4.1. The Permutation Approach

At first glance, the permutation test for comparing the variances of two popu-
lations would appear to be an immediate extension of the test we use for
comparing the location parameters in which we use the squares of the obser-
vations rather than the observations themselves. But these squares are actu-
ally the sum of two components, one of which depends upon the unknown
variance, the other upon the unknown location parameter. In symbols, where
EX represents the mathematical expectation of a variable X:

EX?=EX —p+u?=EX — > +2uEX — )+ u*> =c* + 0 + u*

A permutation test based upon the squares of the observations is appropriate
only if the location parameters of the two populations are known or are
known to be equal [Bailer, 1989].

Can’t we eliminate the effects of the location parameters by working with
the deviations about each sample mean? Alas, these deviations are inter-
dependent [Maritz, 1981]. The problem is illustrated in Figure 3.1. In the
sketch on the left, the observations in the first sample are both further from
the common center than either of the observations in the second sample, and
of the four possible rearrangements of four observations between two sam-
ples, this arrangement is the most extreme. In the sketch on the right, the
observations in the first sample have undergone a shift to the right; this shift
has altered the relative ordering of the absolute deviations about the com-
mon center, and at least one other rearrangement is more extreme.

Still, we needn’t give up; if the samples are equal in size, the observations
continuous, and the two populations differ by at most a shift under the
hypothesis, we can obtain an exact permutation test with just a few prelimi-
nary calculations. First, we compute the median for each sample; e.g., in the
sample of three values—1, 6, 7—the median is 6; if there is an even number
of observations in the sample, we take as median the arithmetic average of
the two observations that bracket the median. Second, we discard the median
value from each sample; if there is an even number of observations in a
sample then we discard one of the bracketing values. Last, we replace each

0—c—0 0 0—c

A B

Figure 3.1. Comparison of two samples: A original data, B after first sample is shifted
to the right. C common center, x—x first sample, 0—O0 second sample.



32 3. Testing Hypotheses

of the remaining observations by the square of its deviation about its sample
median. In the preceding example, with observations 1, 6, 7, we would be left
with the squared deviates 25 and 1.

Our test statistic T is the sum of the n — 1 squared deviations remaining in
the first sample: T, = 26 in our example. Its permutation distribution is ob-
tained by rearranging the 2(n — 1) deviations remaining in the combined
sample.

If under the null hypothesis the two populations differ only in their loca-
tion parameters, F,(x) = F,(x — d), and F is increasing over at least a semi-
infinite interval, then this permutation test is exact: For the n — 1 deviations
remaining in the first sample are mutually exchangeable as are the n — 1

Capsule Summary

TWO-SAMPLE TEST FOR VARIANCE
H: variances of populations are equal
K: a2 > 6?

Assumptions
1) independent observations

2) continuous observations
3) Fy(x) = Fy{x — d)

Transform Xj; = (X;; — Mdn,)
discard redundant deviate from each sample

Test statistic
Sum of X}; in smallest sample

deviations remaining in the second sample. The shift relation between the
two populations ensures that the two sets of deviations are jointly exchange-
able. Exactness follows.

Although there are several dozen alternate solutions to the problem of
comparing the variances of two populations (see, for example, the list in
Conover, Johnson and Johnson [1981]), in a recent series of computer simu-
lations, my friend Michael Chernick and I found that none are close to exact
for samples of under sixteen in size. The permutation test for comparing
variances is exact, powerful, and distribution free.

3.4.2. The Bootstrap Approach

In order to use permutation methods to compare the variances of two popu-
lations, we have to sacrifice two of the observations. The resultant test is
exact and distribution free, but it is not most powerful. A more powerful test
is provided by the bootstrap confidence interval for the variance ratio. To



3.5. k-Sample Comparisons 33

Table 3.1A. Significance levels for Variance Comparisons for
BC, method, Efron and Tibshirani [X: 1986].* For various
underlying distributions by sample size. 500 simulations.

6,6 88 8,12 12,8 12,12 15, 15

Ideal 50 50 50 50 50 50
normal (0, 1) 44 52 53 56 45 49
double (0, 1) 53 51 63 70 55 54
gamma (4. 1) 48 55 60 65 52 52
exponential 54 58 56 70 46 63

* X preceding a date, as in Efron, X:1986, refers to a supporting bibliography at
the end of the text which includes material not directly related to permutation
methods

Table 3.1B. Power as a Function of the Ratio of the Variances. For various
distributions and two samples each of size 8. Rejections in 500 Monte Carlo
simulations.

permutation test bootstrap*
¢ =0,/0, 1. 15 2 3. 4. 1. 1.5 2. 3. 4,
Ideal 50 500 SO 500
normal 52 185 312 438 483 52 190 329 444 482
double 55 153 215 355 439 53  151* 250* 379*% 433
gamma 44 158 255 411 462 49 165 288 426 464

exponential 51 132 224 323 389 54 150* 233* 344* 408

*bootstrap intervals shortened so actual significance level is 10%.

derive this test, we resample repeatedly with replacement, drawing indepen-
dently from the two original samples, until we have two new samples the
same size as the originals. Each time we resample, we compute the variances
of the two new independent subsamples and calculate their ratio. The resul-
tant bootstrap confidence interval is asymptotically exact [Efron, 1981] and
can be made close to exact with samples of as few as eight observations:
See Table 3.1A. As Table 3.1B shows, this bootstrap is more powerful than
the permutation test we described in the previous section. One caveat also
revealed in the table: this bootstrap is still only “almost” exact.

3.5. k-Sample Comparisons
3.5.1. F-Ratio

Just as Student’s ¢ is the classic parametric statistic for testing the hypothesis
that the means of two normal distributions are the same, so the F-ratio of the
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between-group variance to the within-group variance is the classic parame-
tric statistic for testing the hypothesis that the means of k normal distribu-
tions are the same [Welch, 1937; Pitman, 1937].

Explicitly, let X;;(j = 1,...,n;; i = 1,...,s) be independently distributed as
F(x — y;), and thus cxchangeable, and consider the hypothesis H: yu; = -+ =
U, and the alternative not H: y; # y; for some pair (i, j). Welch [1937] pro-
poses as test statistic

Yon(X;. — X.)* /(s — 1)

W= Sy @&, = X, =)

(3.5.1)

It is easy to see that W is invariant under transformations of scale or
origin. Lehmann [1986, p. 375] shows that against normal alternatives, and
among all similarly invariant tests, the parametric test based on W is a uni-
formly most powerful procedure.

If the X;; are normally distributed with a common variance, then under the
hypothcsw W has the F-distribution with s — 1, n — s degrees of freedom.
But we may not know or not be willing to assume that these observations
do come from a normal distribution. Since the observations are indepen-
dent and identically distributed, they are exchangeable and, whether or not
they are normally distributed, we can still obtain the permutation distribu-
tion of W. We examine all possible reassignments of the observations to the
various treatment groups subject to the restriction that the number of obser-
vations in each of the k groups remains unchanged. Our analysis is exact
if the experimental units were randomly assigned to treatment to begin
with.

In a sidebar, we’ve provided an outline of a computer program that uses a
Monte Carlo to estimate the significance level (see Section 13.2). This pro-
gram is applicable to any of the experimental designs we consider in this
chapter and the next. Our one programing trick is to pack all the observa-
tions into a single linear vector X = (X;1,. ., Xyn» Xiny+15-- s Xin +npo--+)
and then to permute the observations within the vector. If we have k samples,
we only need to select k — 1 of them when we rearrange the data. The kth
sample is left over automatically.

We need to write a subprogram to compute the test statistic but there’s
less work involved than the formula for W would suggest. As is the case
with the permutation equivalent of the t-statistic, we can simplify the cal-
culation of the test statistic by eliminating terms that are invariant under
permutation of the subscripts. For example, the within-group sum of squares
in the denominator of W may be written as two sums Y Y (X;; — X..)* and
> ny( 2, The first of these sums is invariant under permutatlon of the
subscrlpts Thc second, the between-groups sum of squares, already occurs
in the numerator. Our test statistic reduces to the between-groups sum of
squares
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Sidebar

Program for estimating permutation significance levels; for tips on optimization,
see Chapter 13.

Monte, the number of Monte Carlo simulations; try 400

So, the value of the test statistic for the unpermuted observations
S, the value of the test statistic for the rearranged observations
X[ 1, aone-dimensional vector that contain the observations
n[ 1, a vector that contains the sample sizes

N, the total number of observations

Main program
Get data
put all the observations into a single linear vector
Compute the test statistic S,
Repeat Monte times:
Rearrange the observations
Recompute the test statistic S
Compare S with S,
Print out the proportion of times S was equal to or larger than S,

Rearrange
Set s to the size of the combined sample
Start: Choose a random integer k from 0 to s — 1
Swap X[k] and X[s — 1]:

temp = X[k];
X[kl =X[s—-1]
X[s — 1] = temp.

Decrement s and repeat from start
Stop after you’ve selected all but one of the samples.

Get data
This user-written procedure gets all the data and packs it into a single long

linear vector X.

Compute stat
This user-written procedure computes the test statistic.

Yon(X;. — X.)?

with a corresponding reduction in the number of calculations.

The size and power of this test are robust in the face of violations of the
normality assumption providing that the {X; j = 1,...,n;} are samples from
distributions F(x — y;) where F is an arbitrary distribution with finite vari-
ance [Robinson, 1973, 1983]. However, the parametric version of the test is
almost as robust. The real value of the permutation approach comes when we
realize that we are not restricted to a permutation version of an existing
statistic but are free to choose a test statistic optimal for the problem at hand.
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3.5.2. Pitman Correlation

The F-ratio test and its permutation version offer protection against any and
all deviations from the null hypothesis of equality among treatment means.
As a result, they may offer less protection against some specific alternative
than some other test function(s). When we have a specific alternative in mind,
as is so often the case in biomedical research; for example, when we are
testing for an ordered dose response, the F-ratio may not be the statistic of
choice.

Frank, Trzos, and Good [1977] studied the increase in chromosome abnor-
malities and micronucleii as the dose of various known mutagens was in-
creased. Their object was to develop an inexpensive but sensitive biochemical
test for mutagenicity that would be able to detect even marginal effects. Thus
they were more than willing to trade the global protection offered by the
F-test for a statistical test that would be sensitive to ordered alternatives.

Fortunately, a most powerful unbiased test (and one that is also most
powerful among tests that are invariant to changes in scale) has been known
since the late 1930’s. Pitman [1937] proposes a test for linear correlation
using as test statistic

S= Zf [i1n;X;
where f[i] is any monotone increasing function. The simplest choice is
fli]=i

The permutation distributions of §; with f[i] = ai + b and S, with f[i] =
i are equivalent in the sense that if S, S,, are the values of these test statis-
tics corresponding to the same set of observations {x;}, then Pr(S; > S,,) =
Pr(S, > S,0).

Let us apply the Pitman approach to the data collected by Frank et al.
shown in Table 3.2. As the anticipated effect is proportional to the logarithm
of the dose, we take f[dose] = log[dose + 1].

(Adding a 1 to the dose keeps this function from blowing up at a dose of
zero.) There are four dose groups; the original data for breaks may be written
in the form

Table 3.2. Micronucleii in polychromatophilic
erythrocytes and chromosome alterations in the
bone marrow of mice treated with CY.

Dose Number of Micronucleii Breaks
(mg/kg) animals per 200 cells per 25 cells
0 4 0000 0112
5 5 11145 01235
20 4 0004 3577
80 5 235112 67899
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0112 01235 3577 67899
As log[0 + 1] = 0, the value of the Pitman statistic for the original data is

0+ 11+log[6] + 22*log[21] + 39=xlog[81] = 112.1. The only larger
values are associated with the small handful of rearrangements of the form

0012 11235 3577 67899
0011 12235 3577 67899
6011 12233 5577 67899
0012 11233 5577 67899
0112 01233 55877 67899
0112 01235 3567 77899
0012 11235 3567 77899
0011 12235 3567 77899
0011 12233 5567 77899
0012 11233 5567 77899
0112 01233 5567 77899

A statistically significant ordered dose response (x < 0.001) has been
detected. The micronucleii also exhibit a statistically significantly dose
response when we calculate the permutation distribution of § =
Y log[dose; + 1]n,X;.. To make the calculations, we took advantage of the
computer program we developed in Section 3.5.1; the only change was in the
subroutine used to compute the test statistic.

A word of caution: If we use some function of the dose other than
f[dose] = log[dose + 1], we might not observe a statistically significant
result. Our choice of a test statistic must always make biological as well as
statistical sense; see question 3 in Section 3.9.

3.5.3. Effect of Ties

Ties can complicate the determination of the significance level. Because of
ties, each of the rearrangements noted in the preceding example might actu-
ally have resulted from several distinct reassignments of subjects to treatment
groups and must be weighted accordingly. To illustrate this point, suppose
we put tags on the 1’s in the original sample

01* 1# 2 01235 3577 67899
The rearrangement
0012 11235 3577 67899

corresponds to the three reassignments
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001 2 1* 1# 235 3577 67899
001* 2 1 1# 235 3577 67899
00 1# 2 1 1* 235 3577 67899

The 18 observations are divided into four dose groups containing 4, 5, 4, and
5 observations respectively so that there are (, 45 5) possible reassignments

of observations to dose groups. Each reassignment has probability of

(s5%5)

occurring so the probability of the rearrangement

0012 11235 3577 67899

3

(s43%5s)

To determine the significance level when there are ties, weight each distinct
rearrangement by its probability of occurrence. This weighting is done auto-
matically if you use Monte Carlo sampling methods as is done in the com-
puter program we provide in section 3.5.1.

Capsule Summary

K-SAMPLE TEST
H: all distributions and, in particular,
all population means the same
K1: at least one pair of means differ
K2: the population means are ordered

Assumptions
1) exchangeable observations
2) Fij(x) = F(x — ;)

Transform None
Test statistic
K1: Y ny(X;. — X.)%
K2:) fliln X,

3.5.4. Linear Estimation

Pitman correlation may be generalized by replacing the fixed function f[i]
by an estimate é derived by a linear estimation procedure such as least
squares polynomial regression, kernel estimation, local regression, and
smoothing splines [Raz, 1990].
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Suppose the jth treatment group is defined by x;, a vector-valued design
variable (x; might include settings for temperature, humidity, and phosphor-
ous concentration). Suppose also that we may represent the ith observation
in the jth group by a regression model of the form

Y, = u(x;) + e, j=1,...,n

where e is an error variable with mean 0, and u(x) is a smooth regression
function (that is, for any x and ¢ sufficiently small, u(x + ¢) may be closely
approximated by the first-order Taylor expansion u(x) + be).

The null hypothesis is that pu(x) = u, a constant that does not depend on
the design variable x. As always, we assume that the errors e;; are exchange-
able so that all n! assignments of the labels to the observations that preserve
the sample sizes {n;} are equally likely.

Raz’s test statistic is @ = Y (fi(x;))* where {1 is an estimate of u derived by
a linear estimation procedure such as least squares polynomial regression,
kernel estimation, local regression, and smoothing splines.

This test may be performed using the permutation distribution of Q or, for
large samples, a gamma-distribution approximation. See also Section 7.3.

3.5.5. A Unifying Theory

The permutation tests for Pitman correlation and the two-sample compari-
son of means are really special cases of a more general class of tests that
take the form of a dot product of two vectors [Wald and Wolfowitz, 1943;
De Cani, P: 1979]. Let W = {W,,..., Wy} and Z = {Z,,..., Zy} be fixed sets
of number and let z = {z,,...,zy} be a random permutation of the elements
of Z. Then we may use the dot product of the vectors zand W, T = ) z;w;, to
test the hypothesis that the labelling is irrelevant. In the two-sample compari-
son, W is a vector of m 1’s followed by n 0’s. In Pitman correlation, W =
{f[1],..., f[N]} where f is a monotone function.

3.6. Blocking

Although the significance level of a permutation test may be “distribution-
free,” its power strongly depends on the underlying distribution.

Figure 3.2 depicts the effect of a change in the variance of the underlying
population on the power of the permutation test for the difference in two
means. As the variance increases, the power decreases. To get the most from
your experiments, reduce the variance.

One way to reduce the variance is to subdivide the population under study
into more homogeneous subpopulations and to take separate samples from
each. Suppose you were designing a survey on the effect of income level
on the respondents’ attitudes toward compulsory pregnancy. Obviously, the
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B(®)

Figure 3.2. Effect of the population variance on the power of a test of two means.
0=20,—0,.

views of men and women differ markedly on this controversial topic. It
would not be prudent to rely on randomization to even out the sex ratios in
the various income groups.

The recommended solution is to block the experiment, to interview, and to
report on, men and women separately. You would probably want to do the
same type of blocking in a medical study. Similarly, in an agricultural study,
you would want to distinguish among clay soils, sandy, and sandy-loam.

In short, whenever a population can be subdivided into distinguishable
subpopulations, you can reduce the variance of your observations and
increase the power of your statistical tests by blocking or stratifying your
sample.

Suppose we have agreed to divide our sample into two blocks—one for
men, one for women. If this is an experiment, rather than a survey, we would
then assign subjects to treatments separately within each block.

In a study that involves two treatments and ten experimental subjects, four
men and six women, we would first assign the men to treatment and then the
women. We could assign the men in any of (3) = 6 ways and the women in
any of (§) = 20 ways. That is, there are 6 x 20 = 120 possible random assign-
ments in all.

When we come to analyze the results of our experiment, we use the per-
mutation approach to ensure we analyze in the way the experiment was
designed. Our test statistic is a natural extension of that used for the two-
sample comparison [ Lehmann, 1986], pp. 233—4:

B (np+my)

S=3 Xpj
B=1 j=mp+1

(3.6.1)

where B is the number of blocks, two in the present example, and the inner
sum extends over the n, treated observations x,; within each block.

We compute the test statistic for the original data. Then, we rearrange the
observations at random within each block, subject to the restriction that the
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number of observations within each treatment category—the pair {n,, m,}—
remain constant.

We compute S for each of the 120 possible rearrangements. If the value of
S for the original data is among the 120« largest values, then we reject the
null hypothesis; otherwise we accept it.

3.6.1. Extending the Range of Applications

The resulting permutation test is exact and most powerful against normal
alternatives even if the observations on men and women have different distri-
butions [Lehmann, 1986]. As we saw in Section 2.3, all that is required is that
the subsets of errors be exchangeable.

The design need not be balanced. The test statistic S (equation 3.6.1) is a
sum of sums. Unequal sample sizes resulting from missing data or an inabil-
ity to complete one or more portions of the experiment will affect the analysis
only in the relative weights assigned to each subgrouping.

Warning: This remark applies only if the data is missing at random. If
treatment-related withdrawals are a problem in one of your studies, see
Entsuah [1990] for the details of a resampling procedure.

Blocking is applicable to any number of subgroups; in the extreme case,
that in which every pair of observations forms a distinct subgroup, we have
the case of matched pairs.

3.7. Matched Pairs

In a matched pairs experiment, we take blocking to its logical conclusion.
Each subject in the treatment group is matched as closely as possible by a
subject in the control group. For example, if a 45-year old black male hyper-
tensive is given a blood-pressure lowering pill, then we give a second simi-
larly-built 45-year old black male hypertensive a placebo. One member of
each pair is then assigned at random to the treatment group, and the other
member is assigned to the controls.

Assuming we have been successful in our matching, we will end up with a
series of independent pairs of observations (X;, ¥;) where the members of each
pair have been drawn from the distributions F;(x — v) and F{(x — v — J) re-
spectively. Regardless of the form of this unknown distribution, the differ-
ences Z; = Y, — X; will be symmetrically distributed about the unknown
parameter 6:

PrZ<z+d8)=Pr{Y —X<z+4}
=Pr{(Y-0v)— (X —v) <z + 6}
=(Pr{Y—v=2z+06+s}Pr{X —v=s}ds
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=[fz + 9f(s)ds
=[Pr{X—v=z+s}Pr{Y—v—5=s}ds
=Pr{X—-v)—(Y-v-9)<z}

=Pr{X -Y<z-0}
=Pr{Y-X>-z+4}
=Pr(Z>—-z+9)

This is precisely the case we considered at the beginning of this chapter and
the same readily computed permutation test is applicable.

This permutation test has the same properties of exactness, lack of bias,
and sensitivity under the same conditions as the one-sample test with the
following exception: If the observation on one member of a pair is missing,
then we must discard the remaining observation.

For an almost most powerful test when one member of the pair is cen-
sored, see Section 9.4. For an application of a permutation test to the case
where an experimental subject serves as her own control, see Shen and
Quade [1986].

Capsule Summary

MATCHED-PAIRS
H: distributions and, in particular, means/medians of the members of each pair
are the same
K: means/medians of the members of each pair differ by d > 0

Assumptions
1) independent observations
2) Fii(x) = Fy(x — d)

Transform z; = x; — xy;
Test statistic Sum of positive z;

3.8. Questions

1. Show that the following statistics lead to equivalent permutation tests for the
equality of two location parameters:
a) Y X,; (our original choice)
b) ¥ X,:/n, — Y X,,/n, (the difference of the sample means)

(szi/"z - ZX“/VH)

c) (the t-statistic).
VE Xy — X2+ Y (X — X)) m +n —2)




3.8. Questions 43

Hint: The sums () X,; + ) X,;), Q. X3; + ), X%) and the sample sizes n,, n, are
invariant under permutations.

2. In the example of Section 3.3.2, list all rearrangements in which the sum of the
ranks in the first sample is less than or equal to the original sum.

3. Use both the F-ratio and Pitman correlation to analyze the data for micronucleii
in Table 3.2. Explain the difference in results.

4. The following vaginal virus titres were observed in mice by H.E. Renis of the
Upjohn Company 144 hours after inoculation with Herpes virus type II (see
Good [1979] for complete details):

Saline controls 10000, 3000, 2600, 2400, 1500.
Treated with antibiotic 9000, 1700, 1100, 360., 1.

Is this a one-sample, two-sample, k-sample, or matched pairs study? Does treat-
ment have an effect?

Most authorities would suggest using a logarithmic transformation before ana-
lyzing this data. Repeat your analysis after taking the logarithm of each of the
observations. Is there any difference? Compare your results and interpretations
with those of Good [1979].

5. Using the logarithm of the viral titre, determine an approximate 90% confidence
interval for the treatment effect. (Hint: Keep subtracting a constant from the loga-
rithms of the observations on saline controls until you can no longer detect a
treatment difference.)

6. Suppose you make a series of I independent pairs of observations {x;, y;;i = 1...I}.
y; might be tensile strength and x; the percentage of some trace metal. You know
from your previous work that each of the y; has a symmetric distribution.

a) How would you test the hypothesis that for all i, the median of y; is x;? (Hint:
See 3.1.2)

b) Do you need to assume that the distributions of the {y;} all have the same
shape, ie., that they are all normal or all double exponential? Are the {y;}
exchangeable? Are the {z; = y; — x;}? {We return to these questions in Chapter
7.



CHAPTER 4

Experimental Designs

4.1. Introduction

In this chapter, we explore the use of permutation methods for analyzing the
results of complex experimental designs that may involve multiple control
variables, covariates, and restricted randomization.

4.2. Balanced Designs

The analysis of randomized blocks we studied in Chapter 3 can be general-
ized to very complex experimental designs with multiple control variables
and confounded effects. In this section, we consider the evaluation of main
effects and interactions in the two- and three-way univariate analysis of vari-
ance and in the Latin Square. Only balanced designs with the sample sizes
equal in all subcategories are considered here. Unbalanced designs are con-
sidered in Section 4.4.

What distinguishes the complex experimental design from the simple one-
sample, two-sample, and k-sample experiments we have considered so far is
the presence of multiple control factors.

For example, we may want to assess the simultaneous effects on crop yield
of hours of sunlight and rainfall. We determine to observe the crop yield X;;,
for I different levels of sunlight, i = 1, ..., I, and J different levels of rainfall,
j=1,...,J,and to make M observations at each factor combination, m = 1,
..., M. We adopt as our model relating the dependent variable, crop-yield
(the effect) to the independent variables of sunlight and rainfall (the causes)

Xijm =u + S; + rj + (Sr)ij + Sijm‘

In this model, terms with a single subscript like s;, the effect of sunlight, are
called main effects. Terms with multiple subscripts like sr;;, the residual and
nonadditive effect of sunlight and rainfall, are called interactions. The {g;, }
represent that portion of crop yield that can not be explained by the indepen-

44
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dent variables alone; these are variously termed the residuals, the errors, or
the model errors. To ensure the residuals are exchangeable so that permuta-
tion methods can be applied, the experimental units must be assigned at
random to treatment (see Section 4.2.4).

If we wanted to assess the simultaneous effect on crop yield of three factors
simultaneously—sunlight, rainfall, and fertilizer, say, we would observe the
crop yield X, for I different levels of sunlight, i = 1,..., I, J different levels
of rainfall, j =1, ..., J, and K different levels of fertilizer, k = 1, ..., K and
make M observations at each factor combination, m = 1, ..., M. Our model
would then be

Xijem =+ 5 + 15+ fio + (57);j + (e + (e + (5P)ijic + Eijim-

In this model we have three main effects, s;, 7;, and f;, three two-way
interactions, (sr);;, (S)u, ()i, @ single three-way interaction, (sr);;, and the
€ITOT LErMm &;jip-

Including the additive constant u in the model allows us to define all main
effects and interactions so they sum to zero,

Zsi = 0’

Y r);=0 for j=1,...,J,

i
and so forth. That is, under the null hypothesis of no effect of sunlight on
crop yield, each of the main effects s, = --- = s; = 0. Under the alternative,
the different terms s; represent deviations from a zero average, with the inter-
action term (sr);; representing the deviation from the sum s; + r;.

Clearly, when we have multiple factors, we must also have multiple test
statistics. In the preceding example, we require three separate tests and test
statistics for the three main effects s;, r;, and f;, plus four other statistical tests
for the three two-way and the one three-way interactions. Will we be able to
find statistics that measure a single intended effect without confounding it
with a second unrelated effect? Will the several test statistics be independent
of one another?

In the permutation analysis of an experimental design as in the parametric
analysis of variance, the answer is yes to both questions only if the design is
balanced, that is, if there are equal numbers of observations in each subcate-
gory, and if the test statistics are independent of one another.

In a balanced design, the permutation test has a three-fold advantage over
the parametric ANOVA: it is exact; it is not restricted by an assumption
of normality (although, it does require that the experimental errors be ex-
changeable; see Section 2.2); yet it is as powerful or more powerful than
parametric approach; see Scheffe 1959; Collier and Baker, 1966; and Brad-
bury, 1987.

In an unbalanced design, main effects will be confounded with interac-
tions so that the two cannot be tested separately, a topic we return to in
Section 4.4.
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4.2.1. Main Effects

In a k-way analysis with equal sample sizes M in each category, we can assess
the main effects using essentially the same statistics we would use for ran-
domized blocks. Take sunlight in the preceding example. If we have only two
levels of sunlight, then, referring to equation 3.6.1, our test statistic for the
effect of sunlight is

J K M
S=2 2 2 Xijkm 4.1)
j=1 k=1 m=1
If we have more than two levels of sunlight, our test statistic is
I J K
F2=% Y 2 (X — Xp) (4.2)
i=1 j=1 k=1
or
1 J K
F1= Z Z Z | X — Xojie| 4.3)

The dot . used as a subscript indicates that we have summed over the
corresponding subscript and then taken an average by dividing by the num-
ber of terms in that sum; thus

Xijk- Z Xijkm/ M.
The statistics F2 and F1 offer protection against a broad variety of shift
alternatives including
Ki:sy=5,>s83="""
Kyis,>5,>83="""
Kiyis, <s;>83=

As a result, they may not provide a most powerful test for any single one of
these alternatives. If we believe the effect to be monotone increasing, then, in
line with the thinking detailed in Section 3.5.2, we would use the Pitman
correlation statistic

||[\/]a.
||[\/]7<

R=3 3

To obtain the permutation distributions of the test statistics S, F2, F1, and
R, we permute the observations independently in each of the JK blocks
determined by a specific combination of rainfall and fertilizer. Exchanging
observations within a category corresponding to a specific level of sunlight
leaves the statistics S, F2, F1, and R unchanged. We can concentrate on
exchanges between categories, and the total number of rearrangements is

MI JK
()

f[l] ijk- jk') (44)
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We compute the test statistic (S, F1, or R) for each rearrangement, rejecting
the hypothesis that sunlight has no effect on crop yield only if the value of S
(or F1 or R) that we obtain using the original arrangement of the observa-
tions lies among the « most extreme of these values.

Of the two F-statistics, F1 is to be preferred to F2. F1 is as powerful or
more powerful for detecting location shifts and more powerful for detecting
concentration changes [ Mielke and Berry, 1983].

A third alternative to F1 and F2 is

nin; — 1)(X;. — X..)?

F= XJ: 2 (X — X;.)? “
k

[James X: 19517 which Hall [X: 1989] recommends for use with the bootstrap
when we can not be certain that the observations in the various categories all
have the same variance. In simulation studies with permutation tests and
variances that differed by an order of magnitude, I found F3 was inferior to
Fl1.

A final alternative to the statistics S, F1, and F2 is the standard F-ratio
statistic

i M(X,.. — X...)?
F ==t

4.6

(I — 1)6* (46
where 7 is our estimate of the variance of the errors ;. But if we use F, we
are forced to consider exchanges between as well as within blocks, thus ne-
gating the advantages of blocking as described in Section 3.6.

4.2.2. An Example

In this section, we apply the permutation method to determine the main
effects of sunlight and fertilizer on crop yield using the data from the two-
factor experiment depicted in Table 4.1a. As there are only two levels of
sunlight in this experiment, we use S (equation 4.1) to test for the main
effect. For the original observations, S = 23 + 55 + 75 = 153. One possible
rearrangement is shown in Table 4.1b in which we have interchanged the two
observations marked with an asterisk, the 5 and 6. The new value of S is 154.

As can be seen by a continuing series of straightforward hand calculations,
the test statistic, S, for the main effect of sunlight is as small or smaller than
it is for the original observations in only 8 out of the (§)® = 8000 possible
rearrangements. For example, it is smaller when we swap the 9 of the Hi-Lo
group for the 10 of the Lo-Lo group (the two observations marked with the
pound sign). As a result, we conclude that the effect of sunlight is statistically
significant.

The computations for the main effect of fertilizer are more complicated
—we must examine (5 3 ;)° rearrangements, and compute the statistic F1
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Table 4.1a. Effect of Sunlight and Fertilizer

on Crop Yield

Fertilizer
S LO MED HIGH
u LO 5 15 21
n 10 22 29
1 8 18 25
i
g HI 6 25 55
h 9 32 60
t 12 40 48

Table 4.1b. Effect of Sunlight and
Fertilizer. Data Rearranged

LO MED HIGH
LO 6* 15 21
10# 22 29
8 18 25
HI 5* 25 55
9# 32 60
12 40 48

for each. We use F1 rather than R because of the possibility that too much
fertilizer—the “High” level, might actually suppress growth. Only a com-
puter can do this many calculations quickly and correctly, so we adapted our
program from Section 3.5 to make them (see Sidebar). The estimated signifi-
cance level is .001 and we conclude that this main effect, too, is statistically
significant.

In this last example, each category held the same number of experimental
subjects. If the numbers of observations were unequal, our main effect would
have been confounded with one or more of the interactions (see Section 4.5).
In contrast to the simpler designs we studied in the previous chapter, missing
data will affect our analysis.

4.2.3. Interactions

To test the hypothesis of no interaction, we first eliminate row and column
effects by subtracting the row and column means from the original observa-
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Sidebar

Program for estimating significance level of the main effect of fertilizer on crop
yield in a balanced design

Set aside space for

Monte the number of Monte Carlo simulations

So the original value of test statistic

S test statistic for rearranged data

data {5, 10, 8, 15, 22, 18, 21, 29, 25, 6, 9, 12, 25, 32, 40, 55, 60, 48};
n=3 number of observations in each category

blocks = 2 number of blocks
levels =3  number of levels of factor

Main program
Get data
put all the observations into a single linear vector
Compute S, for the original observations
Repeat Monte times:
for each block
Rearrange the data in the block
Compute S
Compare S with S,
Print out the proportion of times S was larger than S,

Rearrange
Set s to the number of observations in the block
Start: Choose a random integer k from 0 to s — 1
Swap X[k] and X[s — 1]:
Decrement s and repeat from start
Stop after you've selected all but one of the samples.

Get data
user-written procedure gets data and packs it into a two-dimensional array in
which each row corresponds to a block.

Compute
I J

i=1 j=1
for cacil block
calculate the mean of that block
for each level within a block
calculate the mean of that block-level
calculate difference from block mean

tions. That is, we set
k= Xip — Xio. — X5+ X5

where by adding the grand mean, X..., we ensure the overall sum will be zero.
In the example of the effect of sunlight and fertilizer on crop yield, we are left



50 4. Experimental Designs

Table 4.2. Effect of Sunlight and Fertilizer
on Crop Yield. Testing for Nonadditive

Interaction
Fertilizer

g LO MED HIGH
u LO 4.1 -2.1 —11.2
n 9.1 4.1 -3.2
1 7.1 0.1 -72
i

g HI -9.38 -7 7.8
h —6.8 -0.7 12.8
t —-3.8 72 0.8

with the residuals shown in Table 4.2. The pattern of plus and minus signs in
this table of residuals suggests that fertilizer and sunlight affect crop yield
in a superadditive fashion. Note the minus signs associated with the mis-
matched combinations of a high level of sunlight and a low level of fertilizer
and a low level of sunlight with a high level of fertilizer. To encapsulate our
intuition in numeric form, we sum the deviates within each cell, square the
sum, and then sum the squares to form the test statistic

We compute this test statistic for each rerandomization of the 18 deviates
into six subsamples. In most cases, the values of the test statistic are close
to zero as the entries in each cell cancel. The value of the test statistic for our
original data, I = 2126.8, stands out as an exceptional value and we conclude
there is a significant interaction between sunlight and fertilizer (« < .003) in
addition to the separate, significant additive effects of sunlight and fertilizer.

We include our own test program as a Sidebar.

4.2.4. Designing an Experiment

All the preceding results are based on the assumption that the assignment of
treatments to plots (or subjects) is made at random. While it might be con-
venient to fertilize our plots as shown in Figure 4.1a, the result could be a
systematic bias, particularly if, for example, there is a gradient in dissolved
minerals from east to west across the field.

The layout adopted in Figure 4.1b, obtained with the aid of a computer-
ized random number generator, reduces but does not eliminate the effects
of this hypothetical gradient. Because this layout was selected at random,
the exchangeability of the error terms and, hence, the exactness of the cor-
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Sidebar

Program for estimating significance level of the interaction of sunlight and
fertilizer on crop yield based on the deviates from the additive model

Set aside space for

Monte the number of Monte Carlo simulations

So the original value of test statistic

S test statistic for rearranged data

data {5, 10, 8, 15, 22, 18, 21, 29, 25, 6, 9, 12, 25, 32, 40, 55, 60, 48};
deviates vector of deviates

n=3 number of observations in each category

blocks = 2 number of blocks
levels =3  number of levels of factor

Main program
Get data
Calculate the Deviates
Compute the test statistic S,
Repeat Monte times:
Rearrange the observations
Compute the test statistic S
Compare S with S,
Print out the proportion of times S was larger than S,

Compute

for each block
for each level
sum the deviates
square this sum
cumulate

Deviates
Xip=Xip— Xio.. — X+ X
Set aside space for level means, block means, and grand mean
for each level calculate mean
for each block
calculate mean
for each level
cumulate grand mean
for each block
for each level
calculate deviate from additive model
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Hi Med Lo
Hi Med Lo
Hi Med Lo

a

Hi Med Lo
Lo Lo Med
Hi Hi Med
b

Hi Med Lo
Lo Hi Med
Med Lo Hi

c

Figure 4.1. a) Systematic assignment of fertilizer levels to plots; b) random assign-
ment of fertilizer levels to plots; c) Latin Square assignment of fertilizer levels to plots.

responding permutation test is assured. Unfortunately, the layout of Fig-
ure 4.1a with its built-in bias can also result from a random assignment;
its selection is neither more nor less probable than any of the other (5 3 3)
possibilities.

What can we do to avoid such an undesireable event? In the layout of
Figure 4.1c, known as a Latin Square, each fertilizer level occurs once and
once only in each row and in each column; if there is a systematic gradient of
minerals in the soil, then this layout ensures that the gradient will have
almost equal impact on each of the three treatment levels. It will have an
almost equal impact even if the gradient extends from northeast to southwest
rather than from east to west, or north to south. I use the phrase “almost
equal” because a gradient effect may still persist. The design and analysis of
Latin Squares is described in the next section.

To increase the sensitivity of your experiments and to eliminate any sys-
tematic bias, I recommend you use the following three-step procedure during
the design phase:

1) List all the factors you feel may influence the outcome of your experiment.

2) Block all factors which are under your control; this process is described in
Section 3.6. You may want to use some of these factors to restrict the
scope of your experiment, e.g., eliminate all individuals under 18 and over
60.
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F Factor 1

a

(t: 1 2 3
o 1 A B C
r 2 B C A
2 3 C A B

Figure 4.2. A Latin Square.

3) Randomly assign units to treatment within each block. See also, Maxwell
and Cole [X: 1991].!

4.2.5. Latin Square

The Latin Square considered in Section 4.2.4 is one of the simplest examples
of an experimental design in which the statistician takes advantage of some
aspect of the model to reduce the overall sample size.

A Latin Square is a three-factor experiment in which each combination of
factors occurs once and once only. We can use a Latin Square as in Figure
4.2 to assess the effects of soil composition on crop yield:

In this diagram, Factor 1—gypsum concentration, for example, is increas-
ing from left to right; Factor 2 is increasing from top to bottom (or from
North to South); and the third factor, its varying levels denoted by the capital
letters A, B, and C, occurs in combination with the other two in such a way
that each combination of factors—row, column, and treatment—occurs once
and once only.

Because of this latter restriction, there are only 12 different ways in which
we can assign the varying factor levels to form a 3 x 3 Latin Square. Among
the other 11 designs are

1 2 3
1 A C B
2 B A C
3 C B A

and

1 C B A
2 B A C
3 A C B

1 X preceding a date, as in Cole [X: 1991] refers to a supplemental bibliography at the end of
the text which includes material not directly related to permutation methods.
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Let us assume we begin our experiment by selecting one of these twelve
designs at random and planting our seeds in accordance with the indicated
conditions.

Because there is only a single replication of each factor combination in a
Latin Square, we can not estimate the interactions. Thus, the Latin Square is
appropriate only if we feel confident in assuming that the effects of the vari-
ous factors are completely additive, that is, that the interaction terms are
zZero.

Our model for the Latin Square is

Xijk=,u+si+rj+f;‘+8ijk

where, as always in a permuation analysis, we assume that the errors g
are exchangeable. Our null hypothesis is H: s; = 5, = s5. If we assume an
ordered alternative, K: s; > 5, > s3, our test statistic for the main effect is
similar to the correlation statistic employed in equation 4.4:

R = i i(X;.. — X..)
i=1

or, equivalently, after eliminating the grand mean X... which is invariant
under permutations,
1
Rl - Z iXi.. = Xc.. - XA"
i=—1

We evaluate this test statistic both for the observed design and for each of
the twelve possible Latin Square designs that might have been employed in
this particular experiment. We reject the hypothesis of no treatment effect
only if the test statistic for the original observations is an extreme value.

For example, suppose we employed Design 1 and observed

21 28 17
14 27 19
13 18 23

Then 3y,.. = 58, 3y5.. = 65, 3yc.. = 57 and our test statistic R1 = —1. Had
we employed Design 2, then 3y,.. = 71, 3yg.. = 49, 3y... = 65, and our test
statistic R1 = — 6. With Design 3, 3y,.. = 57, 3yp.. = 65, 3yc. . = 58 and our
test statistic R1 = +1.

We see from the permutation distribution obtained in this manner that the
value of our test statistic for the design actually employed in the experiment,
R1 = —1, is an average value, not an extreme one. We accept the null hy-
pothesis and conclude that increasing the treatment level from A to B to C
does not significantly increase the yield.

4.2.6. Other Designs

If the three-step rule outlined in Section 4.2.4 leads to a more complex experi-
mental design than those considered here, consult Kempthorne [1955]; Wilk
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and Kempthorne [1956, 1957]; and Scheffe [1959]. To correct for variables
not under your control, see the next section.

4.3. Analysis of Covariance

4.3.1. Covariates Defined

Some variables that affect the outcome of an experiment are under our con-
trol from the very beginning—e.g., light and fertilizer. But we may only be
capable of measuring rather than controlling other equally influential vari-
ables, called covariates. Blood chemistry is an example of a covariate in a bio-
medical experiment. Various factors in the blood can affect an experimental
outcome, and most blood factors will be affected by a treatment, but few are
under our direct control.

In this section, we will discuss two methods for correcting for the effects of
covariates. The first, eliminating the functional relationship, is for use when
you know or suspect the nature of the functional relationship between the
observables and the covariates. The second method, restricted randomiza-
tion, is for use when the covariates take only a few discrete values and these
values can be used to restrict the randomization.

4.3.2. Eliminate the Functional Relationship

Gail, Tan, and Piantadosi [1988] recommend eliminating the effects of
covariates first and then applying permutation methods to the residuals.
For example, suppose the observation Y depends both on the treatment t;
(i=1,...,1) and on the p-dimensional vector of covariates X = (X!,..., X?),
that is

Y=p+1+XB+e

where Y, u, 7, and e are n x 1 vectors of observations, mean values, treatment
effects, and errors respectively, X is an n x p matrix of covariate values, and
B is a p x 1 vector of regression coefficients.

We would use least squares methods to estimate the regression coefficients
B after which we would apply the permutation methods described in the
preceding sections to the residuals Z = Y — X B

We use a similar approach in 4.2.3 in testing a two-factor model for a
significant interaction. In that example, as here, we assume that the individ-
ual errors are exchangeable. A further assumption in the present case is that
both the concomitant variables (the X’s) and the regression coefficients f are
unaffected by the treatment [Kempthorne, 1952, p. 160].

A distribution-free multivariate analysis of covariance in which the effects
of the treatments and the covariates are evaluated simultaneously is consid-
ered in the next chapter.
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4.3.3. Selecting Variables

Which covariates should be included in your model? Draper and Stoneman
[1966] describe a permutation procedure for selecting covariates using a for-
ward stepping rule:

The first variable you select should have the largest squared sample corre-
lation with the dependent variable y; thereafter, include the variable with the
largest squared partial correlation with y given the variables that have al-
ready been selected. You may use any standard statistics package to obtain
these correlations. Equivalently, you may select variables based on the maxi-
mum value of the square of the t-ratio for the regression coefficient of the
entering variable, the so-called “F to enter.” The problem lies in knowing
when to stop, that is, in knowing when an additional variable contributes
little beyond noise to the model.

Percentiles of the permutation distribution of the F-to-enter statistic can
be used to test whether variables not yet added to the model would be of
predictive value. Details for deriving the permutation distribution of this
statistic defined in terms of Householder rotations of the permuted variable
matrix are given in Forsythe et al. [1973].

4.3.4. Restricted Randomization

If the covariates take on only a few discrete values, e.g., smoker vs non-
smoker, or status 0, 1, or 2 we may correct for their effects by restricting the
rerandomizations to those whose design matrices match the original [Edg-
ington, 1983].

Consider the artificial data set in Table 4.3 adapted from Rosenbaum
[1984, p. 568]. To test the hypothesis that the treatment has no effect on the
response, we would use the sum of the observations in the treatment group
as our test statistic. The sum of 8 for the original observations is equaled or
exceeded in six of the (7) = 21 possible rerandomizations. This result is not
statistically significant.

Table 4.3. Data for Artificial Example

Subject Treatment Result Covariate

TOQmOQw»
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Now let us take the covariate into consideration. One member of the
original treatment group has a covariate value of 0, the other has a covariate
value of 1. We limit our attention to the 12 = ({)(3) possible rerandomiza-
tions in which the members of the treatment group have similar covariate
values. These consist of AB AG AH, CB CG CH, DB DG DH, EB EG EH.
With only one of the 12, that of AB the original observations, do we observe
a result sum as large as 8. This sum is statistically significant at the 0.1
level. Restricting the randomizations eliminates the masking effect of the
covariate and reveals the statistically significant effect of the treatment.

If the covariate varies continuously, it may still be possible to apply the
method of restricted randomizations by first subdividing the covariate’s
range into a few discrete categories. For example, if

x<—1 let x'=0
—1<x<1l let x'=1
1<x let x' =2

Rosenbaum [1984] suggests that with larger samples one should restrict
the randomizations so that a specific mean value of the covariate is attained,
rather than a specific set of values.

Subject to certain relatively weak assumptions, the method of restricted
randomizations can also be applied to after-the-fact covariates. (See Section
9.2)

4.4. Unbalanced Designs

The permutation test is not a panacea. Imbalance in the design will result in
the confounding of main effects with interactions. Consider the following
two-factor model for crop yield:

Xijk = ﬂ + Si + rj + Srij + sijk'
N, 1) | N(2,1)
N@21) | N@©1)

Now suppose that the observations in a two-factor experimental design are
normally distributed as in the preceding diagram taken from Cornfield and
Tukey [1956]. There are no main effects in this example—both row means
and both column means have the same expectations, but there is a clear
interaction represented by the two nonzero off-diagonal elements.

If the design is balanced, with equal numbers per cell, the lack of significant
main effects and the presence of a significant interaction should and will be
confirmed by our analysis. But suppose that the design is not in balance, that
for every ten observations in the first column, we have only one observation
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in the second. Because of this imbalance, when we use the statistic S’ (equa-
tion 4.1’), we will uncover a false “row” effect which is actually due to the
interaction between rows and columns. The main effect is said to be con-
founded with the interaction.

If a design is unbalanced as in the preceding example, we cannot test for a
“pure” main effect or a “pure” interaction. But we may be able to test for the
combination of a main effect with an interaction by using the statistic (S, F1'
or R’) that we would use to test for the main effect alone. This combined effect
will not be confounded with the main effects of other unrelated factors.

For 3-factor designs with unequal sample sizes, the test statistics for mixed
main/interaction effects are:

J K
S=% X _Z Xy ju 4.1)

J K I
F1'= Z Z Z el Koo — X jie| 4.3)
=lk=1ist
J K I
= g O = Xon) @4)
J=1 k=1 i=

4.4.1. Missing Combinations

If an entire factor-combination is missing, we may not be able to estimate or
test any of the effects. One very concrete example is an unbalanced design 1
encountered in the 1970’s:

Makinodan et al. [1976] studied the effects of age on the mediation of the
immune response. They measured the anti-SBRC response of spleen cells
derived from C57BL mice of various ages. In one set of trials, the cells were
derived entirely from the spleens of young mice, in a second set of trials, they
came from the spleens of old mice, and in a third they came from mixtures of
the two.

Let X; ;, denote the response of the kth sample taken from a population
of type i, j (i = 1 =j: controls; i = 2, j = 1: cells from young animals only;
i=1,j=2: cells from old animals only; i = 2 = j: mixture of cells from old
and young animals.) We assume that for lymphocytes taken from the spleens
of young animals,

Xogu=p+otes;
for the spleens of old animals,
Xize=pu—o+e

and for a mixture of p spleens from young animals and (1 — p) spleens from
old animals, where 0 < p < 1,
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Xoou=pPt+ )+ (1 —p)(u—a) =7+ e,
=pu+(1-2p)a—7y+ez,

where the e, ;, are independent values.

Makinodan knew in advance of his experiment that « > 0. He also knew
that the distributions of the errors e; ;, would be different for the different
populations. We can assume only that these errors are independent of one
another and that their medians are zero.

Makinodan wanted to test the hypothesis y = 0 as there are immediate
biological interpretations for the three alternatives: from y = 0 one may infer
independent action of the two cell populations; y < 0 means excess lympho-
cytes in young populations; and y > 0 suggests the presence of suppressor
cells in the spleens of older animals.

But what statistic are we to use to do the test? One possibility is

S=|X;,,.—pXi,.—(1=pXy ;.|

If the design were balanced, or we could be sure that the null effect u = 0, this
is the statistic we would use. But the design is not balanced, with the result
that the main effects (in which we are not interested) are confounded with the
interaction (in which we are).

It is small consolation that the standard parametric (ANOVA) approach
won’t work in this example either. Fortunately, another resampling method,
the bootstrap, can provide a solution.

Here is the bootstrap procedure:

Draw an observation at random and with replacement from the set
{x,1.4); label it x¥ ; ;. Similarly, draw the bootstrap observations x¥ , ; and
x% , ;from the sets {x, ,,} and {x, ,,}.

— py¥ *
Let z;=pxt,;+ (1 —p)x3,;—x%,;

Repeat this resampling procedure a thousand or more times, obtaining a
bootstrap estimate z; of the interaction each time you resample. Use the
resultant set of bootstrap estimates {z;} to obtain a confidence interval for y.
If 0 belongs to this confidence interval, accept the hypothesis of additivity;
otherwise reject.

One word of caution: unlike a permutation test, a bootstrap is exact only
for very large samples. The probability of a Type I error may be greater than
the significance level you specify.
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Sidebar
Mean DPFC response. Effect of pooled old BC3FL spleen cells on the anti-SRBC
response of indicator pooled BC3FL spleen cells. Data extracted from Makinodan
et al (1976). Bootstrap analysis.
Young Cells Ol1d Cells 172+ 12
5640 1150 7100
5120 2520 11020
5780 900 13065
4430 50
7230
Bootstrap sample 1: 5640 + 900 — 11020 —4480
Bootstrap sample 2: 5780 + 1150 — 11020 —4090
Bootstrap sample 2: 7230 + 1150 — 7100 1280
Bootstrap sample 600: 5780 + 2520 — 7100 1200

4.5. Clinical Trials
4.5.1. Avoiding Unbalanced Designs

In preceding sections, we tacitly assumed that the assignment of subjects to
treatment took place before the start of the experiment. We also assumed,
tacitly, that the assignment of subjects to treatment was double blind, that is,
neither the experimental subject nor the experimenter knew which treatment
the subject was receiving. (See Fisher [1951] and Feinstein [1972] for a
justification of this double blind approach.) But in a large clinical trial cover-
ing several hundreds, even thousands of patients in various treatment cate-
gories, not all of the subjects will be available prior to the start of treatment.
We even may have tabulated some of the results before the last of the patients
have enrolled in the experiment. If we let pure chance determine whether an
incoming patient is assigned to treatment or control, the trials may quickly
go out of balance and stay out of balance. On the other hand, if we insist on
keeping the experiment balanced at each stage, assigning subjects alternately
to treatment and placebo, a physician could crack the code, guesstimate the
next treatment assignment, and be influenced in her handling of a patient as
a result.

One solution [Efron, 1971] is to weight the probability of a particular
treatment assignment in accordance with the assignments that have already
taken place. For example, if the last subject was assigned to the control
group, we might increase the probability of assigning the current subject to
the treatment from % to 2. The assignment is still random—so no one can
crack the code, but there will be a tendency for the two groups—treatment
and control—to even out in size. Of course, Efron’s biased coin approach is
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only one of many possible restricted designs. A general form is provided in
Smith [X: 1984].

While the numbers of subjects in the various treatment groups will (in
theory) even out in the long run, in most cases they will still be unequal when
the experiment is completed, taking values {n;, i = 1,...,1}. Fortunately, we
may analyze this experiment as if these were the sample sizes we had intended
from the very beginning [Cox, 1982].

Following Hollander and Pena [1988], suppose there are R possible treat-
ments. Let T, = (Tj,..., Tig_,)' be the treatment assignment vector for the
jth patient; j = 1, ..., n. T;; is equal to 1 or 0 according to whether patient j
is or is not assigned to treatment i. Let x, = (x,,...,x,) be the vector of
patient responses (e.g., time to death, time to relapse). We want to test the
null hypothesis that the R treatments are equivalent. The randomization
distribution of the test statistic S, = (T3,..., T,)x, induced by the randomized
treatment allocation grows increasingly more complicated with increasing n.
Nevertheless, it may be determined by recursive means.

Smythe and Wei [1983] show that the permutation method can provide an
exact test in the case of two treatments. Their result is extended to k-treat-
ments by Wei, Smythe, and Smith [1986]. Algorithms for computing the
exact distribution of the test statistic, rather than an asymptotic approxima-
tion, are provided by Hollander and Pena [1988] and Mehta, Patel, and
Wei [1988].

4.5.2. Missing Data

A further and as yet unresolved problem in the analysis of clinical trials is the
dropping out of patients during the course of the investigation. When such
dropouts occur at random, we still may apply any of the standard permuta-
tion methods, that is if we are prepared to deal with confounded effects (see
Section 4.4). But what if the dropout rate is directly related to the treatment!
In a study of a medication guaranteed to lower cholesterol levels in the
blood, a midwest pharmaceutical company found itself without any patients
remaining in the treatment group. The medicine, alas, tasted too much like
sand coated with slimy egg whites and chalk dust.

In several less extreme cases, Entsuah [1990] shows that permutation
methods can be applied even if withdrawal is related to treatment, providing
we modify our scoring system to account for the dropouts. Entsuah studies
and compares the power of scoring systems based on functions of boun-
daries, endpoints, and time using either the ranks or the original observa-
tions. His results are specific to the applications he studied.

4.6. Very Large and Very Small Samples

When the sample sizes are very large, from several dozen to several hundred
observations per group, as they often are in clinical trials, the time required
to compute a permutation distribution can be prohibitive even if we are
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taking advantage of one of the optimal computing algorithms described in
Chapter 13. Fortunately, when sample sizes are large—and we refer here to
the size of the smallest sub-sample corresponding to a specific factor combi-
nation, not to the size of the sample as a whole, we can make use of an
asymptotic approximation in place of the exact permutation distribution.
A series of papers by Hoeffding [1951], Box and Anderson [1955], and
Kempthorne et al. [1961] support the replacement of the permutation distri-
bution of the F-statistic by the tabulated distribution of the F-ratio. This
approximation can often be improved on if we replace the observed values by
their corresponding ranks or normal scores. Sections 9.3 and 14.4 provide
additional discussion of these points.

With very small samples, the permutation distribution is readily calcu-
lated. But with few observations, the power of the test may well be too small
and we run the risk of overlooking a treatment effect that is of practical
significance. A solution in some cases is to take our observations in stages,
rejecting or accepting the null hypothesis at each stage only if the p-value of
the data is very large or very small. Otherwise, we continue to take more
observations.

4.7. Questions

1. Rewrite the computer program in Section 4.2.3 so it will yield the permutation
distributions of the three k-sample statistics. F1, F2, and R. Would you still accept/
reject the hypothesis if you used F2 or R in place of F1?

2. Confidence interval. Derive a 90%, confidence interval for the main effect of sun-
light using the crop yield data in Table 4.1. First, restate the model so as to make
clear what it is you are estimating:

X = 1+ 8; + fi + i + &5
with s, =—6 and s,=0.

Recall that we rejected the null hypothesis that 6 = 0. Suppose you add d =1 to
each of the observations in the low sunlight group and subtract d = 1 from each of
the observations in the high sunlight group. Would you still reject the null hypoth-
esis at the 90% level? If your answer is “yes” then d = 1 does not belong to the 90%;
confidence interval for 8. If your answer is “no” then d = 1 does belong. Experi-
ment (be systematic) until you find a value §, such that you accept the null hypoth-
esis whenever d > ;.

3. Covariate analysis. Suppose your observations obey the model:
Yo=p+ 5 +bX + &y

where the errors ¢;, are exchangeable. What statistic would you use to test if b = 0?
to test that s; = 0 for all i?
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4. Equality of the slopes of two lines. Suppose you observed samples from two popu-
lations and that

Yie =1 + b Xy + ep
Yo = Uyt by X + €

where the errors ¢, are exchangeable. What statistic would you use to test that
b, = b,, that is, that the effect of X on Y is the same in the two populations? See
Chapter 7.

5. Design an experiment. a) List all the factors that might influence the outcome of
your experiment. b) Write a model in terms of these factors. ¢) Which factors are
under your control? d) Which of these factors will you use to restrict the scope of
the experiment? €) Which of these factors will you use to block? f) Which of the
remaining factors will you neglect initially, that is, lump into your error term? g)
How will you deal with each of the remaining covariates? h) By correction? i) By
blocking after the fact? j) How many subjects will you observe in each subcategory?
k) Is the subject the correct experimental unit? 1) Write out two of the possible
assignments of subjects to treatment. m) How many possible assignments are there
in all?



CHAPTER 5

Multivariate Analysis

5.1. Introduction

The value of an analysis based on simultaneous observations on several
variables—height, weight, blood pressure, and cholesterol level, for example,
is that it can be used to detect subtle changes that might not be detectable,
except with very large, prohibitively expensive samples, were you to consider
only one variable at a time.

Any of the permutation procedures described in Chapters 3 and 4 can be
applied in a multivariate setting providing we can find a single-valued test
statistic which can stand in place of the multivalued vector of observations.

5.2. One- and Two-Sample Comparisons

5.2.1. Hotelling’s T?

One example of such a statistic is Hotelling’s T2, a straightforward general-
ization of Student’s ¢ to the multivariate case.

Suppose we have made a series of exchangeable vector-valued observa-
tions X; = {X;1, Xi3,--. ,,} fori=1,..., I Let X. denote the vector of
mean values {X X2, Xy}, and V the J x J covariance matrix; that is,
V,; is the covariance of X i and X,;. To test the hypothesis that the midvalue
ofX = 5 for all i, use

Hotelling’s T? = (X. — &)V 1(X. = &)T.

Loosely speaking, this statistic weighs the contribution of individual vari-
ables and pairs of variables in inverse proportion to their covariances. If the
variables in each observation vector are independent of one another (a rare
case, indeed), Hotelling’s T2 weighs the contributions of the individual vari-
ables in inverse proportion to their variances.

64
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The two-sample comparison is only slightly more complicated: Let n,,
X 14 N2, X ,. denote the sample size and vector of mean values of the first and
second samples respectively. We assume under the null hypothesis that the
two sets of vector-valued observations {X;} and {X ,;} come from the same
distribution (that is, the sample labels 1 and 2 are exchangeable). Let Vdenote
the pooled estimate of the common covariance matrix; as in the one-sample
case, V;; denotes the pooled covariance estimate of X;; and X,

n

& (kai - Xm-i)(kaj - Xm-j)

(N -2¥%= 3

To test the hypothesis that the midvalues of the two distributions are the
same, we could use the statistic

TZ = (fl - iz.)V_l(il. - X_:z.)T.

but then we would be forced to recompute the covariance matrix V and its
inverse ¥ ™! for each new rearrangement. To reduce the number of computa-
tions, Wald and Wolfowitz [1944] suggest a slightly different statistic T’ that
is a monotonic function of T (see Problem 3).

Let

2 1
Z lk]

i=1k

%=i Koas — U)X — U))

Let C be the matrix whose components are the ¢;;. Then
= (Xl - Xz.)c_l(Xl. - X2.)T.
As with all permutation tests we proceed in three steps:

(1) we compute the test statistic for the original observations;

(2) we compute the test statistic for all relabelings;

(3) we determine the percentage of relabelings that lead to values of the test
statistic that are as extreme or more extreme than the orginal value.

For the purpose of relabeling, each vector of observations on an individual
subject is treated as a single indivisible entity. When we relabel, we relabel on
a subject-by-subject basis so that all observations on a single subject receive
the same new label. If the original vector of observations on subject i consists
of k distinct observations on k different variables

(e, x2,...,x5

and we give this vector a new label p(i), then the individual observations
remain together as a unit, each with the new label:



66 5. Multivariate Analysis

Sidebar
Calculating the Wald-Wolfowitz variant of Hotelling’s T2 Blood Chemistry Data
from Werner et al. [X: 1970]
ID BC Albumin  Uric Acid
2381 N 43 54 Mean Albumin Uric Acid
1610 N 41 33 N 41.25 46.25
1149 N 39 50 Y 37.0 52.75
2271 N 42 48 Comb 39.125 49.5
Y-N —4.25 6.50
1946 Y 35 72 C
1797 Y 38 30 8.982 —21.071
575 Y 40 46 —21.071 196.571
39 Y 35 63
C—l
.1487 01594
Hotelling’s T2 01594 006796
=(—4.25 6.50)C™!(—4.25 6.50)T
= 2.092

1 2 k
(Xpeiys Xpiys - - -> Xpiy)

This approach to relabeling should be contrasted with the approach we
would use if we were testing for independence of the covariates (see Section
7.2).

Hotelling’s T2 is the appropriate statistic to use if you suspect the data has
a distribution that is close to that of the multivariate normal. Under the
assumption of multivariate normality, the power of the permutation version
of Hotelling’s T? converges with increasing sample size to the power of the
most powerful parametric test that is invariant under transformations of
scale.

The stated significance level of the parametric version of Hotelling’s T2
can not be relied on for small samples if the data are not normally distributed
[Davis, X: 1982]". As always, the corresponding permutation test yields an
exact significance level even if the errors are not normally distributed, provid-
ing that the errors are exchangeable from sample to sample.

Much of the theoretical work on Hotelling’s 72 has focused on the proper-
ties of the unconditional® permutation test in which the original observations
are replaced by ranks. Details of the asymptotic properties and power of the

! X preceding a date, as in Davis [X: 1982] refers to a supplemental bibliography at the end of
the text which includes material not directly related to permutation methods.

2 Recall from our discussion in Section 2.3 that whereas we must compute the permutation
distribution anew for each new set of observations, the permutation distribution of a set of ranks
is independent or unconditional of the actual values of the observations.
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unconditional test are given in Barton and David [1961], Chatterjee and
Sen [1964, 1966], and, most recently, Gill and Siotani [1987]. The effect
of missing observations on the significance level and power of the test is
studied by Servy and Sen [1987].

5.2.2. An Example

The following blood chemistry data are taken from Werner et al. [X: 1970].
The full data set is included with the BMDP statistical package. An asterisk
(*) denotes missing data.

6 7 8 9
200 43 98 54
600 35 * 72
243 41 104 33

50 38 9 30
227 39 * 50
220 40 107 46
305 42 103 48
220 35 88 63

1 2 3 4
2381 22 67 144
1946 22 64 160
1610 25 62 128
1797 25 68 150
1149 53 * 178

575 53 65 140
2271 54 66 158
39 54 60 170

< Z L2 Z <7

The variables are

. identification number

. age in years

height in inches

weight in pounds

uses birth control pills?
cholesterol level
albumin level

calcium level

uric acid level

N N R RN

A potential hypothesis of interest is whether birth-control pill usage has any
effect on blood chemistries. As the nature of such hypothetical effects very
likely depends upon age and years of use, before testing this hypothesis using
a permutation method, you might want to divide the data into two blocks
corresponding to young and old patients.

You could test several univariate hypotheses using the methods of Section
3.5; for example—the hypothesis that using birth control pills lowers the
albumin level in blood. You might want to do this now to see if you can
obtain significant results. As the sample sizes are small, the univariate obser-
vations may not be statistically significant. But by combining the observa-
tions that Werner and his colleagues made on several different variables to
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form a single multivariate statistic, you may obtain a statistically significant
result; that is, if taking birth control pills does alter blood chemistries.

Sidebar
Program for computing multivariate permutation statistics
#define length 119
# define control 60
# define variates 9

Set aside space for a multivariate array Data [length, variates]; and a vector of
sample sizes index[length];

Main program
Load (Data);
Compute statQ (Data, index);
repeat Nsim times
Rearrange Data,
Compute stat (Data, index);
record whether stat > = stat0;
print out the significance level of the test

Load
packs the data into a long matrix, each row of which corresponds to k observa-
tions on a single subject; the first n rows are the control group; the last m rows
are the treatment group. (a second use of this subroutine will be to eliminate
variables and subjects that will not be included in the analysis, e.g., to eliminate
all records that include missing data, and to define and select specific sub-
groups.)

Rearrange
randomly rearranges the rows of the Data array; the elements in each row are
left in the same order.

Compute
calculate the mean of each variable for each sample and store the results in a
2 by n array N;
calculate n by n array V of covariances for the combined sample and invert V;
matrix mult (Mean, W, *W);
matrix mult (W, Mean);
return T2

5.2.3. Doing the Computations

You don’t need to use all the dependent variables in forming Hotelling’s T2.
For example, you could just include albumin and uric acid levels as we have
in a sidebar. For each relabeling, you would need to compute four sample
means corresponding to the two variables and the two treatment groups.
And you would need to perform two successive matrix multiplications. I
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would not attempt these calculations without a computer and the appropri-
ate computer software: Werner et al.’s full data set includes 188 cases!

As in the univariate examples in Chapters 3 and 4, you need to program
and implement three procedures:

a) one to rearrange the stored data;
b) one to compute the T2 statistic;
¢) and one to compute the significance level.

Only the first of these procedures, devoted to rearranging the data, represents
a significant change from the simple calculations we performed in the uni-
variate case. In a multivariate analysis, we can’t afford to manipulate the
actual data; a simple swap could mean the exchange of nine or ten or even a
hundred different variables; so we rearrange a vector of indices that point to
the data instead. Here is a fragment of code in the C programming language
that does just that:

float Data [length, variates];
int index[length];

rearrange (index, length);

for (j = 0;j < ncontrol; j**) Mean [k] + = Data [index[ j], kJ;

5.2.4. Weighting the Variables

With several variables simultaneously lending their support to (or withhold-
ing their support from) a hypothesis or an alternative, should some variables
be given more weight than others? Or should all variables be given the same
importance?

In any multivariate application, whether or not you use Hotelling’s T2 as
the test statistic, you may want to “Studentize” the variables by dividing by
the covariance matrix before you begin.

Hotelling’s T? Studentizes the variables in the sense that it weights each
variable in inverse proportion to its standard deviation. (This is not quite
true if the variables are correlated; see below.) As a result, Hotelling’s T2 is
dimensionless; it will not matter if we express a vector of measurements in
feet rather than inches or miles. Variables whose values fluctuate widely from
observation to observation are given less weight than variables whose values
are essentially constant.

When we convert an observation on a variable to the corresponding rank
or normal score (see Section 9.3), we are also standardizing it. If we have
exactly the same number of observations on each variable—as would be the
case, for example, if all the observations on all the variables have been accu-
rately recorded and none are missing, then all ranked variables will have
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exactly the same variance. The problem of what emphasis to give each indi-
vidual variable is solved automatically.

Although we have standardized the variances in forming a rank test, we
must still divide by the covariances. When we divide by the covariance or,
equivalently in the case of ranks, by the correlation, we are discounting the
importance and reducing the effects of correlated or dependent variables. If
we have two perfectly-correlated variables—the testimony of a ventriloquist
and his dummy, say, then, clearly the second variable (or witness) has no
information to contribute beyond that which we have already received from
the first.

5.2.5. Interpreting the Results

The significance of T2 or some equivalent multivariate statistic still leaves
unanswered the question of which variables have led to the rejection of the
multivariate hypothesis. For a discussion of the problem of simultaneous
inference, see any text on multivariate methods, for example, Morrison [X:
1990]. My own preference on finding a significant result, a preference that
reflects my studies under Jerzy Neyman, is to search for a mechanistic, cause-
and-effect model that will explain the findings. In Chapters 7 through 10, we
consider some of the tests one might perform to verify or disprove such a
model.

5.2.6. Alternative Statistics

Hotelling’s T2 is designed to test the null hypothesis of no difference between
the distributions of the treated and untreated groups against alternatives that
involve a shift of the k-dimensional center of the multivariate distribution.
Although Hotelling’s T? offers protection against a wide variety of alterna-
tives, it is not particularly sensitive to alternatives that entail a shift in just
one of the dependent variables.

Boyett and Shuster [1977] show that a more powerful test against such
alternatives is based-on the permutation distribution of the test statistic

(- X))
max —— %"
1<j<k SE*

a statistic first proposed in a permutation context by Chung and Fraser
[1958], where SE* is a pooled estimate of the standard error of the mean of
the kth variable.

Let us apply this approach to the subsample of blood chemistry data we
studied in Section 5.2.1. We use a two-sided test so we may detect changes up
or down. For albumin, the absolute difference in means is 4.25 and the stan-
dard error is /8.982/2 = 1.498; for uric acid, the difference is 6.5, the stan-
dard error is 7.010. Our test statistic is 2.84, the larger of the two weighted
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differences. To determine whether this value is significant, we need to com-
pute the sample means, their differences, and the maximum difference after
weighting by our estimates of the standard errors for each of the (§) = 70
rearrangements of the two samples.

5.3. Runs Test

Friedman and Rafesky [1979] provide a multivariate generalization of the
Wald-Wolfowitz and Smirnov distribution-free two-sample tests used for
testing Fy = Fy against the highly nonspecific alternative Fy # Fy. In both
the univariate and the multivariate versions of these two-sample tests, one
measures the degree to which the two samples are segregated within the
combined sample. In the univariate version, one forms a single combined
sample, sorts and orders it, and then

a) counts the number of runs in the combined sample; or
b) computes the maximum difference in cumulative frequency of the two
types within the combined sample.

For example if x = (1,3,6) and y = (2,4, 5), the ordered combined sample
is 1,2,3,4,5, 6, that is, an x followed by y x yy x, and has five runs.

Highly segregated samples will give rise to a small number of runs (and a
large maximum difference in cumulative frequency), while highly interlaced
distributions will give rise to a large number of runs (and a very small differ-
ence in cumulative frequency). Statistical significance, that is, whether the
number of runs is significantly large, can be determined from the permutation
distribution of the test statistic.

To create a multivariate version of these tests, we must find a way to order
observations that have multiple coordinates. The key to this ordering is the
minimal spanning tree described by Friedman and Rafesky [1979]:

Each point in Figure 5.1A corresponds to a pair of observations, e.g. height
and weight, that were made on a single subject. We build a spanning tree
between these data points as in Figure 5.1B, by connecting the points so that
there is exactly one path between each pair of points, and so that no path
closes back on itself in a loop. Obviously, we could construct a large number
of such trees. A minimal spanning tree is one for which the sum of the lengths
of all the paths is a minimum. This tree is unique if there are no ties among
the N(N — 1)/2 interpoint distances.

Before computing the test statistic(s) in the multivariate case, we first con-
struct the minimal spanning tree for the combined sample. Once the tree is
complete, we can generate the permutation distribution of the runs statistic
through a series of random relabelings of the individual data points. After
each relabelling, we remove all edges for which the defining nodes originate
from different samples. Figure 5.1C illustrates one such result.



72 5. Multivariate Analysis

Although it can take a multiple of N x N calculations to construct the
minimal spanning tree for a sample of size N, each determination of the
multivariate runs statistic only takes a multiple of N calculations. For large
samples a normal approximation to the permutation distribution may be
used (see Section 14.4); the expected value and variance of the runs statistic
are the same as in the univariate case.

5.3.1. Which Statistic?

We’ve now considered three multivariate test statistics for testing hypotheses
based on one or two samples. Which one should we use? To detect a simulta-
neous shift in the means of several variables, use Hotelling’s T?; to detect a
shift in any of several variables, use the maximum ¢; and to detect an arbi-
trary change in a distribution (not necessarily a shift) use Friedman and
Rafesky’s multivariate runs test.

Tests proposed by van-Putten [1987] and Henze [1988] offer advantages
over Friedman-Rafesky in some cases.
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Figure 5.1. Building a minimal spanning tree.
From “Multivariate generalizations of the Wald—Wolfowitz and Smirnov two-sample
test,” by J.H. Friedman and L.C. Rafsky, Annals of Statistics; 1979; 7. 697-717.
Reprinted with permission from the Institute of Mathematical Statistics.

Continued next page.
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5.4. Experimental Designs

5.4.1. Matched Pairs

Puri and Shane [1970] study the multivariate generalization of paired com-
parisons in an incomplete blocks design (see Sections 3.6 and 3.7). Their
procedure is a straightforward generalization of the multivariate one-sample
test developed by Sen and Puri [1967]; (see also Sen [1967, 1969]).

For simplicity, suppose we have only a single block. As in Section 3.1, we
consider all possible permutations of the signs of the individual multivariate

observations. If {)Z 0 f’,} _is the p-dimensional vector of observations on the
ith matched pair, and Z, is the vector of differences (Z',...,ZP), then our
permutation set consists of vectors of differences of the form ((—1)'Z, ...,
(=1)"Z,) where —Z =(—2%,..., —2ZP).

Depending on the hypothesis and alternatives of interest, one may want to
apply an initial set of linear transformations to each separate coordinate, that
is, to replace Z’ by Z'/ = a; + b;Z’. Puri and Shane studied the case in which
the individual variables were replaced by their ranks, with each variable
being ranked separately.

5.4.2. Block Effects

When we have more than two treatments to compare, an alternative statistic
studied by Gerig [1969] is the multivariate extension of Friedman’s chi-
square test in which ranks take the place of the original observations creating
an unconditional permutation test.

The experimental units are divided into B blocks each of size I with the
elements of each block as closely matched as possible with respect to extrane-
ous variables. During the design phase, one individual from each block is
assigned to each of the I treatments. We assume that K (possibly) dependent
observations are made simultaneously on each subject. To test the hypothesis
of identical treatment effects against translation-type alternatives, we first
rank each individual variable separately within each block, ranking them
from 1 to I (smallest to largest). The rank totals T, are computed for each
treatment i and each variable (k). The use of ranks automatically rescales
each variable so that the variances (but not the covariances) are the same.

Let T denote the I x K matrix whose ikth component is T.;;,. Noting that
the expected value of T, is (K + 1)/2,let V denote the matrix whose compo-
nents are the sample covariances

5 1 k(k + 1)
[z S Ty Ty — EH U
1% b=1 i=1 4
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By analogy with Hotelling’s T2, the test statisticis TV ' TT [Gerig, 1969].
Gerig [1975] extends these results to include and correct for random co-
variates.

5.5. Repeated Measures

In many experiments, we want to study the development of a process over a
period of time, such as the growth of a tumor or the gradual progress of a
cure. If our observations are made by sacrificing different groups of animals
at different periods of time, then time is simply another variable in the anal-
ysis which we may treat as a covariate. But if all our observations are made
on the same subjects, then the multiple observations on a single individual
will be interdependent. And all the observations on a single subject must be
treated as a single multivariate vector.

We may ask at least three questions about the response profiles: (1) Are the
response profiles the same for the various treatments? (2) Are the response
profiles parallel? (3) Are the response profiles at the same level?

A “yes” answer to question 1 implies “yes” answers to questions (2) and
(3), but we may get a “yes” answer to 2 even when the answer to (3) is
“no”.

One simple test of parallelism entails computing the successive differences
Zj; = Xj 1 — X forj=1,2i=1,...,1 — 1 and then applying the methods
from Sections 5.2 or 5.3 to these differences. Of course, this approach is
applicable only if the observations on both treatments were made at identical
times.

To circumvent this limitation and to obtain a test of the narrower hypoth-
esis (1), we follow Koziol et al. [1981] and suppose there are N, subjects in
group i. Let X,‘j, t=1,2,...,T;and j=1, 2, ..., N, denote the observation
on the jth subject in Group i at time . Not all the X;; may be observed in
practice; we will only have observations for N, of the N, in the ith group at
time t. If X; is observed, let R}; be its rank among the N., available values at
time t. Set S;, = (N;,) Y. R,;.

If luck is with us so that all subjects remain with us to the end of the
experiment, then N, = N, for all ¢ and each i, and we may adopt as our

test statistic LN=ZNi§iTV‘1§i, where S, is a T x 1 vector with com-
i

ponents (S;;,S;5,...,87) and V is a T x T covariance matrix whose stth
component is

) I N

_ - i pi

v =N" Y ¥ RUR),
=1 /=1

This test statistic was proposed and investigated by Puri and Sen [1966,
1969, 1971].
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5.5.1. Missing Data

If we are missing data, and missing data is almost inevitable in any large
clinical study since individuals commonly postpone or even skip follow-up
appointments, then no such simplified statistic presents itself. Zerbe and
Walker [1977] suggest that each subject’s measurements first be reduced to a
vector of polynomial regression coefficients with time the independent vari-
able. The subjects needn’t have been measured at identical times or over
identical periods, nor does each subject need to have the same number of
observations. Only the number of coefficients (the rank of the polynomial),
needs to be the same for each subject. Thus, we may apply the equations of
Koziol et al. to these vectors of coefficients though we can not apply the
equations to the original data.

We replace the m, observations on the kth subject, {X,;,i = 1,...,m,} with
a set of J + 1 coefficients, {b,;, j =0,...,J}. While the m, may vary, the
number J is the same for every subject; of course, J < m for all k. The {b,;}
are chosen so that for all k and i,

Xii = bo + tuby + -+ + tiiby,

where the {t,;,i =0,...,m,} are the observation times for the kth subject.

This approach has been adopted by a number of practitioners including
Albert et al. [1982], Chapelle et al. [1982], Goldberg et al. [1980], and
Hiatt et al. [1983]. Multiple comparison procedures based on it include
Foutz et al. [1985] and Zerbe and Murphy [1986]. A SAS/IML program to
do the calculations is available [Nelson and Zerbe P:1988]".

5.5.2. Bioequivalence

Zerbe and Walker’s solution to the problem of missing data suggests a multi-
variate approach we may use with any time course data. For example, when
we do a bioequivalence study, we replace a set of discrete values with a
“smooth” curve. This curve is derived in one of two ways: 1) by numerical
analysis, 2) by modelling. The first yields a set of coefficients, the second a
set of parameter estimates. Either the coefficients or the estimates may be
treated as if they were the components of a multivariate vector and the
methods of this chapter applied to them.

Here is an elementary example: Suppose you observe the time course of a
drug in the urine over a period for which a linear model would be appropri-
ate. Suppose further that the chief virtue of your measuring system is its low
cost; the individual measurements are crude and imprecise. To gain precision,
you take a series of measurements on each patient about half an hour apart

! The P preceding a date, as in March, P: 1972, refers to a separate bibliography at the end of
the text devoted exclusively to computational methods.
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and use least squares methods to derive a best-fitting line for each patient.
That is, you replace the set of measurements {X;; } where i = 0 or 1 denotes
the drug, j =1, ..., J denotes the subject, and k=1, ..., K; denotes the
observation on a subject, with the set of vectors {Y;; = (a;;, b;;)} where g;; and
b;; are the intercept and slope of the regression line for the jth subject in the
ith treatment group.

Using the computer code in Section 5.2, you calculate the mean vector and
the covariance matrix for the {Y;;}, and compute Hotelling’s T2 for the origi-
nal observations and for a set of random arrangements. You use the resultant
permutation distribution to determine whether the time courses of the two
drugs are similar.

5.6. Questions

1. You can increase the power of a statistical test in three ways: a) making additional
observations, b) making more precise observations, ¢) adding covariates. Discuss
this remark in the light of your own experimental efforts.

2. You are studying a new tranquilizer which you hope will minimize the effects of
stress. The peak effects of stress manifest themselves between five and ten minutes
after the stressful incident, depending on the individual. To be on the safe side,
you’ve made observations at both the five- and ten-minute marks.

Subject pre-stress 5-minute 10-minute Treatment
A 9.3 11.7 10.5 Brand A
B 8.4 10.0 10.5 Brand A
C 7.8 104 9.0 Brand A
D 715 9.2 9.0 New drug
E 8.9 9.5 10.2 New drug
F 8.3 9.5 9.5 New drug

How would you correct for the pre-stress readings? Is this a univariate or a multi-
variate problem? List possible univariate and multivariate test statistics. Perform
the permutation tests and compare the results.

3. Show that if 7" is a monotonic function of T, then a test based on the permutation
distribution of T’ will accept or reject only if a permutation test based on T also
accepts or rejects.



CHAPTER 6

Categorical Data

6.1. Contingency Tables

In many experiments and in almost all surveys, many if not all of the results
fall into categories rather than being measurable on a continuous or ordinal
scale: e.g., male vs. female; black vs. Hispanic vs. oriental vs. white; in favor
vs. against vs. undecided. The corresponding hypotheses concern propor-
tions: “Blacks are as likely to be Democrats as they are to be Republicans.”
Or, “the dominant genotype ‘spotted shell’ occurs with three times the fre-
quency of the recessive.”

6.2. Fisher’s Exact Test

As an example, suppose on examining the cancer registry in a hospital, we
uncovered the following data which we put in the form of a 2 x 2 contin-
gency table:

Survived Died

Men 9 1 10
Women 4 10 14
13 11 24

There are two rows and two columns in this table for a total of four cells. The
four cell entries are 9, 1, 4, and 10. The 9 denotes the number of males who
survived, the 1 denotes the number of males who died, and so forth. The four
marginal totals or marginals are 10, 14, 13, and 11. The 10 is the total number
of men in the study, the 14 denotes the total number of women, and so forth.

78
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We see in this table an apparant difference in the survival rates for men and
women: Only 1 of 10 men died following treatment, but 10 of the 14 women
failed to survive. Is this difference statistically significant?

The answer is yes. Let’s see why, using the same line of reasoning that R.A.
Fisher advanced at the annual Christmas meeting of the Royal Statistical
Society in 1934. (After Fisher’s talk was concluded, incidentally, a seconding
speaker compared his talk to “the braying of the Golden Ass.” I hope you
will take more kindly to my own explanation.) The preceding contingency
table has several fixed elements—the total number of men in the survey, 10;
the total number of women, 14; the total number who died 11, and the total
number who survived 13. These totals are immutables; no swapping of labels
will alter the total number of individual men and women or bring back the
dead. But these totals do not determine the contents of the table as can be
seen from the two tables with identical marginal totals that are reproduced
below.

Survived Died

Men 10 0 10
Women 3 11 14
13 11 24

Survived Died

Men 8 2 10
Women 5 9 14
13 11 24

The first of these tables makes a strong case for the superior fitness of the
male, stronger even than our original observations. In the second table, the
survival rates for men and women are closer together than they were in our
original table.

Fisher would argue that if the survival rates were the same for both sexes,
then each of the redistributions of labels to subjects—that is, each of the N
possible contingency tables with these same four fixed marginals—is equally

likely, where
0 /113 11
N =
xZO < X ><10 — x)
_(13+11
“\ 10 )
How did we get this value for N? The component terms are taken from the
hypergeometric distribution:
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ECZICT) o

where n, m, t, and x occur as the indicated elements in the following 2 x 2
contingency table

CAT1 CAT 2

CATA x t—x t
CATB m-—x . .
m n m+n

In our example, m = 13, n = 11, and ¢ = 10, so that S = (}3) + 11(%?) of the
N tables are as or more extreme than our original table. But this is a very
small fraction of the total. A difference in survival rates as extreme as the
difference we observed in our original table is very unlikely to have occurred
by chance. Consequently, we reject the hypothesis that the survival rates
for the two sexes are the same and accept the alternative that, in this instance
at least, males are more likely to profit from treatment.

I have already noted that Fisher’s original presentation of this concept was
marked by acrimony and dissent. You may wonder what all the fuss was
about. Fisher’s exact test agrees asymptotically with the chi-square test based
on one degree of freedom, a fact that is no longer in dispute. But many of the
participants at the meeting raged over whether there should be three or four
degrees of freedom corresponding to the number of marginals or just one
degree as Fisher asserted. To learn more about this controversy, see Box
[X: 1978].

6.2.1. One-Tailed and Two-Tailed Tests

In the preceding example, we tested the hypothesis that survival rates do not
depend on sex against the alternative that men diagnosed as having cancer
are likely to live longer than women similarly diagnosed. We rejected the null
hypothesis because only a small fraction of the possible tables are as extreme
as the one we observed initially. This is an example of a one-tailed test. Or is
it? Wouldn’t we have been just as likely to reject the null hypothesis if we had
observed a table of the following form:

Survived Died

Men 0 10 10
Women 13 1 14
13 11 24
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Of course, we would have. In determining the significance level in the present
example, we should add together the total number of tables which lie in
either of the two extremes (tails) of the permutation distribution.

Recently, McKinney et al. [1989] reviewed some seventy plus articles that
had appeared in six medical journals. In over half these articles, Fisher’s
exact test had been applied improperly. Either a one-tailed test had been used
when a two-tailed test was called for or the authors of the paper simply
hadn’t bothered to state which test they had used.

When you design an experiment, decide at the same time whether you wish
to test your hypothesis against a two-sided or a one-sided alternative. A
two-sided alternative dictates a two-tailed test; a one-sided alternative dic-
tates a one-tailed test.

As an example, suppose we decide to do a follow-on study of the cancer
registry to confirm our original finding that men diagnosed as having tumors
live significantly longer than women similarly diagnosed. In this follow-on
study, we have a one-sided alternative. Thus, we will analyze it using a one-
tailed test rather than the two-tailed test we used in the original study.

6.2.2. Increasing the Power

Providing we are willing to randomize on the boundary (see Section 3.1.3),
Fisher’s exact test is uniformly most powerful among all unbiased tests for
comparing two binomial populations [Lehmann, 1986, pp. 151-162].

It is most powerful under any of the following four world views:

i) binomial sampling—one set of marginals in the contingency table is ran-
dom; the other set and the sum s = n + m are fixed,
ii) independent Poisson processes—all marginals and s are random,;
iii) multinomial sampling—all marginals are random and s fixed;
iv) an experiment in which sampling is replaced by the random assignment
of subjects to treatments—all marginals are fixed.

The power of Fisher’s test depends strongly on the composition of the
sample. A balanced sample, with equal numbers in each category is the most
desirable. If the sample is too unbalanced—for example, if 100 of the obser-
vations have the attribute A and only 1 has the attribute not A—it may not
be possible to determine if attribute B is independent of A.

If you have some prior knowledge about the frequency of A4 and B, then
Berkson has suggested and Neyman has proved it is better to select samples
of equal size from B and not B provided |py — 1/2| > |p, — 1/2|. The “blind
faith” method of selecting the sample at random from the population at large
is worse than taking equal-sized samples from either 4 and not 4 or B and
not B.

Studies of the power of Fisher’s exact test against various alternatives were
conducted by Haber [1987], and Irony and Pereira [1986].
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Although tables for determining the significance level of Fisher’s exact test
are available, in Finney [1948] and Latscha [1953] for example, these are
restricted to a few discrete p-values. Today, it is usually much faster to com-
pute a significance level than it is to look it up in tables. Beginning with
Leslie [1955], much of the subsequent research on Fisher’s exact test has
been devoted to developing algorithms that would speed up or reduce the
number of computations required to obtain a significance level.

As one rapid alternative to the hypergeometric distribution (equation 6.1),
we may use the recursive relationship provided by Feldman and Kluger
[1963]. With table entries (ay, by, co, do), define

_ (ag + bo)(ag + co)i(do + bo)!(do + co)!
°r Nlay'bylcyld,!

It is easy to see that

_ a;d;
Di+1 = b Di

i+1Ci+1

where g, = a; — i.

6.2.3. The Common Odds Ratio Test

Circumstances may compel us to gather data from several test sites, for ex-
ample, if we are studying the effects of treatment on a relatively rare disease.
We would like to know if we are justified in combining the results from the
several sites. The individual response probabilities to treatment may not be
and, in fact, needn’t be the same from site to site. What is essential if we
are to combine the results is that the odds ratios

__ T * (1 — m;y)
(1 — mp) Tig
be the same, where =, ,, 7;5 denote the true rates of response to treatments A

and Batsitei,i=1,..., L.
The ith site gives rise to the contingency table

¢

X; m; — x;
b m; — x|
To test the hypothesis ¢; = ¢, = - = ¢; = ¢ and, subsequently, to test

that ¢ = ¢,. Mehta, Patel, and Gray [1985] suggest we use the permutation
distribution of the statistic T = Y a,(x;), where

we= e (2) () (22}
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A microcomputer program to obtain confidence intervals for the common
odds ratio is described by Vollset and Hirji [P: 1991].

6.3. Unordered r x ¢ Contingency Tables
6.3.1. Choosing a Test Statistic

The principal issue in the analysis of a contingency table with (> 2) rows and
¢(=2) columns is deciding on an appropriate test statistic. Our discussion
parallels that of Agresti and Wackerly [1977]:

We can find the probabilities of any individual r x ¢ contingency table
through a straightforward generalization of the hypergeometric distribution
[Halter, 1969]. An r x ¢ contingency table consists of a set of frequencies
f={fip1<i<r1<j<c}withrow marginals {f;.,1 <i < r} and column
marginals {f.;,1 <j <c}.

Dy = Pr{fijlf;“,f'j} = Qf/Rf~ (6.2)
with
0= [1 [T 7.1
and

[

Ry = [T 1/
i=1 j=1
An obvious extension of Fisher’s exact test is the Freeman and Halton
[1951] test based on the proportion p of tables for -which p, is less than or
equal to the probability p, of the original table

p =2 1(p; < po)py

where the indicator I(A4) = 1 if A4 is true and 0 otherwise.

While this extension may be obvious, it is not as obvious that this exten-
sion offers any protection against the alternatives of interest. Just because
one table is less likely than another under the null hypothesis does not mean
it is going to be more likely under the alternative. As we shall see in Section
14.2.2, it is the likelihood ratio PX/P¥ that is decisive. For example, consider
the 1 x 3 contingency table f; f, f3, which corresponds to the multinomial
with probabilities p, + p, + ps = 1; the table whose entries are 1 2 3 argues
more in favor of the null hypothesis p, = p, = p, than of the ordered alterna-
tive p; > p, > pi.

The classic statistic for independence in a contingency table with r rows
and ¢ columns is

! The P preceding a date, as in March, P:1972, refers to a separate bibliography at the end of the
text devoted exclusively to computational methods.
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i i (u— Efy)*

i=1 j=1 Ef; T
Asymptotically this statistic has the chi-square distribution with (r — 1)-
(c — 1) degrees of freedom. But for any finite sample, the chi-square distribu-
tion is only an approximation to this statistic, an approximation that is
notoriously inexact for small and unevenly distributed samples. In practice,
it often is necessary to combine or eliminate categories to make the chi-
square approximation valid.

The permutation statistic p, = > I(x*> < x3)p, provides an exact test and
possesses all the advantages of the original chi-square. The distinction be-
tween the two approaches, as we observed in Section 2.3, is that with the
original chi-square we look up the significance level in a table, while with
the permutation statistic, we derive the significance level from the permuta-
tion distribution. With large samples, the two approaches are equivalent,
as the permutation distribution converges to the tabulated distribution (see
Chapter 14 of Bishop, Fienberg, and Holland [X: 1975]).

This permutation test has one of the original chi-square test’s disadvant-
ages: while it offers global protection against a wide variety of alternatives, it
offers no particular protection against any single one of them. The statistics
p and p, treat row and column categories symmetrically and no attempt is
made to distinguish between cause and effect. To address this deficiency,
Goodman and Kruskal [X: 1954] introduce an asymmetric measure of asso-
ciation for nominal scale variables called tau 7 which measures the propor-
tional reduction in error obtained when one variable, the “cause” or indepen-
dent variable, is used to predict the other, the “effect” or dependent variable.

Assuming the independent variable determines the row,

;fmj _fm-
" S Tm

where f,,; = max; f;; and f,,. = max; f;.

0 <7 < 1. 7 = 0 when the variables are independent: t = 1 when for each
category of the independent variables all observations fall into exactly one
category of the dependent. These points are illustrated in the following 2 x 3
tables:

3 6 9

6 12 18 =0

18 0 0

0 36 0 T=1

3 6 9

12 18 6 7 =0.166

A permutation test of independence is based upon the proportion of tables
for which t > 7o, p, = Y. I (t = 10)ps-
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Cochran’s Q provides an alternate test for independence. Suppose we have
I experimental subjects on each of whom we administer J tests. Let y;; = 1 or
0 denote the outcome of the jth test on the ith patient. Define

Ri=_=zl)’ij
C,-=;yi,-

C,— C.)?
0-2G=¢)

=0

Details of the calculation of the distribution of Cochran’s Q under the as-
sumption of independence are given in Patil [1975]. For a description of
other, alternative statistics for use in r x ¢ contingency tables, see Nguyen
[1985].

6.3.2. Examples

We illustrate many of these points in the following two examples. The first
example compares the chi-square approximation with the exact significance
levels of the permutation test. The second, the categorical analysis of multi-
variate data, underlines the need to consult original data sources rather than
summary tables.

6.3.2.1. EXACT SIGNIFICANCE LEVELS

Table 6.1 contains data on oral lesions in three regions of India derived from
Gupta et al. [X: 1980] by Mehta and Patel [1990]. We want to test the
hypothesis that the location of oral lesions is unrelated to geographical re-
gion. Possible test statistics include Freeman-Halton p, p,, and p,. This

Table 6.1. Oral Lesions in Three Regions of
India

. . Kerala Gujarat Andhra
Site of Lesion

Labial Mucosa 0
Buccal Mucosa 8
Commissure 0
Gingiva 0
Hard Palate 0
0
0
1
1

Soft Palate
Tongue

Floor of Mouth
Alveolar Ridge

O O = e e ek et e
_-—_—0 OO0 OO o

Note: Reprinted from the StatXact manual with permis-
sion from Cytel Software.
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Table 6.2. Three Tests of Independence

Statistic x? F-H LR
Exact p-value .0269 .0101 .0356
Tabulated p-value .1400 2331 .1060

Note: Reprinted from the StatXact manual with
permission from Cytel Software.

latter statistic is based on the log likelihood ratio

Y'Y filog(fuf-/fi-f):

We may calculate the exact significance levels of these test statistics by
deriving their permutation distributions or use asymptotic approximations
obtained from tables of the chi-square statistic. Table 6.2 taken from the
StatXact manual compares the various approaches.

The exact significance level varies from 1% to 3.5% depending on which
test statistic we select. The tabulated p-values vary from 119 to 23%. In one
instance, the Freeman—Halton statistic, the permutation test tells us the dif-
ferences among regions are significant at the 19 level; the chi-square ap-
proximation says no, they are insignificant even at the 20%, level. Which
answer is correct? That of the permutation test. With so many near-zero
entries in the original contingency table, the chi-square approximation is not
appropriate.

The results in Table 6.2 were obtained with the aid of the StatXact pro-
gram for the IBM-PC. See Section 12.2 for a further description of this in-
valuable program.

6.3.2.2. WHAT SHOULD WE RANDOMIZE?

Table 6.3A summarizes Clarke’s [ X: 1960, 1962] observations on the relation
between habitat and the relative frequencies of different varieties of C. ne-
moralis snail. It is tempting to analyze this table using the methods of the
preceding section. But before we can analyze a data set, we need to under-
stand how it was collected. In this instance, observers went to a series of
locations in southern England. At each location, they noted the type of
habitat—beechwoods, grasslands, and so forth, and the frequencies of each

Table 6.3A. Summary of Clarke’s [X: 1960, 1962] data on C. numorialis

Habitat N1 N2 N3 N4 N5 N6 N7 N8 N9 NI10 Ni11 Ni12
Beechwoods 9 1 34 26 0 46 8 59 126 6 40 115
Other deciduous 10 1 1 0 0 85 8 13 44 2 1 12
Fens 73 3 8 4 6 8 1 23 21 11 0o 22
Hedgerows 76 15 32 19 36 98 3 12 8 14 1 18
Grasslands 49 29 75 7 28 23 17 60 12 14 14 24
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of twelve different varieties of snail. The original findings are summarized in
Table 6.3B reproduced from Manly [1983]. Note that each row in this table
corresponds to a single multivariate observation.

Manly computed the chi-square statistic for the original data as summa-
rized in Table 6.3A. Then, using the information in Table 6.3B, he randomly
reassigned the location labels to different habitats, preserving the number of
locations at each habitat. For example, in one of the rearrangements, the four
locations Clipper Down Wood, Boarstall Wood, Hatford, Charlbury Hill
and only these four locations were designated as Fens. He formed a summary
table similar to 6.3A for each rearrangement and computed the chi-square
statistic for that table. He found the original value of the chi-square statistic
1757.9 was greater than any of the values he observed in each of 500 random
reassignments and concluded that habitat type has a significant effect on the
distribution of the various body types of the C. nemoralis snail.

Manly’s analysis combines multivariate and categorical techniques. It
makes optimal use of all the data because it takes into account how the data
were collected. Could Manly have used Table 6.3A alone to analyze the data?
No, because this table lacks essential information about interdependencies
among the various types of snail.

6.3.3. Underlying Assumptions

The assumptions that underlie the analysis of an r x ¢ contingency table are
the same as those that underlie the analysis of the r-sample problem. To see
this, note that a contingency table is merely a way of summarizing a set of N
bivariate observations. We may convert from this table to r distinct samples
by using the first or row observation as the sample or treatment label and the
second or column observation as the “value.” Keeping the marginals fixed
while we rearrange the labels ensures that the r sample sizes and the N
individual values remain unchanged.

As in the r-sample problem, the labels must be exchangeable under the null
hypothesis. This entails two assumptions: first, that the row and column
scores are mutually independent; and second, that the observations them-
selves are independent of one another. We as statisticians can only test the
first of these assumptions. We rely on the investigator to ensure that the
latter assumption is satisfied. (See question 3 at the end of this chapter.)

6.3.4. Speeding Up the Computations

We may speed up the computations of all the preceding statistics on noting
that Q, in equation 6.2 is invariant under permutations that leave the
marginals intact. Thus, we may neglect Q(x) in calculating the permutation
distribution and focus on R;' [March, P: 1972].
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We may use a recursive algorithm developed by Gail and Mantel
[P: 1977] to speed up the computations for r x 2 contingency tables. If
Ni(f.1; fi.r- .., fi.) denotes the number of tables with the indicated marginals,
then

Niwa(fos fro- s i finr) = Z N (fo = Js s s fi)

The algorithms we developed in Chapters 3 and 4 are much too slow, since
they treat each observation as an individual value.

Algorithms for speeding up the computations of the Freeman-Halton sta-
tistic in the general r x ¢ case are given in March [P: 1972], Gail and
Mantel [P: 1977], Mehta and Patel [P: 1983, 1986a, 1986b], and Pagano
and Halvorsen [P: 1981]. Details of the Mehta and Patel approach are given
in Section 13.4. An efficient method for generating r x ¢ tables with given
row and column totals is provided by Patefield [1981]. See also Agresti,
Wackerly and Boyett [1979] and Streitberg and Rohmed [P: 1986].

The power of the Freeman—Halton statistic in the r x 2 case is studied by
Krewski, Brennan, and Bickis [1984].

6.4. Ordered Contingency Tables
6.4.1. Ordered 2 x ¢ Tables

Ina 2 x ¢ table, test for an ordered alternative using Pitman correlation as
described in Section 3.5. The test statistic is Zg[ Jj1fi; where g is any mono-
tone increasing function.

6.4.2. Tables with More Than Two Rows and Two Columns

In an r x ¢ contingency table conditioned on fixed marginal totals, the out-
come depends only on the (r — 1)(c — 1) odds ratios

L DijDi+1,j+1

Y Pi,j+1Di+1,j
where p;; is the probability of an individual being classified in row i and
column j.

In a 2 x 2 table, conditional probabilities depend on a single odds ratio
and hence one- and two-tailed tests of association are easily defined. In an
r x ¢ table there are potentially two tails corresponding to each of the v =
(r — 1)(c — 1) odds ratios. Hence, an omnibus test for no association, e.g., y2,
might have as many as 2" tails.

Following Patefield [1982], we consider tests of the null hypothesis of no
association between row and column categories H: ¢;; = 1 for all i, j against
the alternative of a positive trend K: ¢;; > 1 for all i, j.
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A strong positive association in any 2 x 2 subtable will suggest that K
rather than H is true [Lehmann X: 1966].

As in the previous section, our discussion falls naturally into two parts:
1) choosing a test statistic, 2) enumerating .those tables which have a test
statistic greater than or equal in value to the test statistic for the original
table.

6.4.3. Which Statistic?

The two principal test statistics considered by Patefield [1982] are
Ay=n"t Z Z n;x.y;
i

for preassigned values of the row and column scores; and

A, = sup {n‘l ¥y n,-jx,-y,}
R 7

i

where the supremum is taken over all {x;, y;} satisfying the conditions

2 2 )
Ynx; =0, Yny=0, Ymxt=n. Yn;y’=n
X)X £ =X, YiSV: S S

Patefield finds that 4, has higher power than 4, when some but not all of
the ¢;; are close to unity, whereas 4; has higher power than A, when all the
¢,; are approximately equal.

The likelihood ratio test behaves like 4,; the Goodman and Kruskal test of
association behaves like 4.

At first glance, it would seem that the numerous statistical methods for
testing no association between a response (the rows) and K ordered cate-
gories (the columns) fall naturally into two groups: those which make use of
preassigned numerical values for the scores {x;,y;} and those that don’t—
e.g., rank tests. Graubard and Korn [1987] show this distinction is an illu-
sion—a rank is a score and, usually, it is far from an optimal one. Midrank
scores may be completely inappropriate. They advise you to assign a numeri-
cal score based on your best understanding of the relations between columns.
If the choice is not apparent, they advise equally spaced scores (1,2,...,n).
Always examine the midranks as scores to make sure they are reasonable
before using a rank test.

6.5. Covariates

The presence of a covariate adds a third dimension to a contingency table.
Bross [1964] studies the effects of treatment on the survival of premature
infants. His results are summarized in the following contingency table:
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Table 6.4. Effect of Treatment on
Survival of the Premature

Dead Recovered Total

Placebo 6 5 11
Treatment 2 12 14
8 17 25

These results, though suggestive, are not statistically significant.

Bross notes that survival is very much a function of a third, concomitant
variable—the birth weight of the child. A lower birth weight indicates greater
prematurity and, hence, greater odds against a child’s survival. An analysis of
treatment is out of the question unless, somehow, he can correct for the
effects of birth weight.

A solution we studied in earlier chapters is to set up an experiment in
which we study the effects of treatment in pairs that have been matched on
the basis of birth weight. But Bross’ study of the premature was not an
experiment; he could only observe, not control, birth weight.

Table 6.5 depicts his first nine observations, ordered by birth weight. The
last two columns of this table deserve explanation. The column headed NI
records the number of cases in which a child of lower birth weight treated
with ukinase recovered when an untreated child of higher birth weight died.
Such a result is to be expected under the alternative of a positive treatment
effect though it would occur only occasionally by chance under the null
hypothesis.

The column headed I records the number of cases in which a untreated
child of lower birth weight recovered when an child of higher birth weight
treated with ukinase died. Such an event or inversion would be highly un-
likely under the alternative.

Table 6.5. Effect of Treatment and Birth Weight
on Survival of the Premature

NI I
Weight Treatment Outcome TR/PL PL/TR
1.08 TR D
1.13 TR R 3
1.14 PL D
1.20 TR R 2
1.30 TR R 2
1.40 PL D
1.59 TR D
1.69 TR R 1
1.88 PL D
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As his test statistic, Bross adopts S = (NI — I)?/(NI + I). Note that NI = 8,
I =0and S = 8 for the original observations. Bross computes S for each of
the (3) possible rearrangements of the treatment labels—and only the labels
were changed while the pairing of birth weight with outcome was preserved.
None of the other rearrangements yield as large a value of S as the original
observations. Bross concludes that the treatment has a statistically significant
effect on survival of the premature.

6.6. Combinations of Tables

Another way to correct for the effects of a covariate is to divide the observa-
tions into blocks, so that the value of the covariate is approximately constant
within each block. Under the assumption that the odds ratio is the same for
each block, Mehta, Patel, and Gray [1985] provide a method for combining
the results from several 2 x 2 contingency tables.

For a review of the literature on higher-dimensional tables see Agresti
[1992].

6.7. Questions

1. 2 x 2 table. Referring to the literature of your own discipline, see if you can find a
case where a 2 x 2 table with at least one entry smaller than 7 gave rise to a
borderline p-value using the traditional chi-square approximation. Reanalyze this
table using Fisher’s exact test.

Did the original authors use a one-tailed or a two-tailed test? Was their choice
appropriate?

2. r x 2 table. Again, refer to the literature of your own discipline for an example
where the chi-square approximation was used. Do you feel the chi-square statistic
was appropriate? What statistic would you have used? Reanalyze the table using
the statistic you have chosen. Use all the computational shortcuts of Section 6.3.3.

3. Independence. If we were to question one respondent in the presence of another,
would their answers be independent? If we were to make observations on several
individuals in the same household, would these observations be independent? Crit-
icize your own past work.

4. Sample size. According to the Los Angeles Times, a recent report in the New
England Journal of Medicine states that a group of patients with a severe bacterial
infection of their blood stream who received a single intravenous dose of a gene-
tically altered antibody had a 30% death rate compared with a 499, death rate
for a group of untreated patients. How large a sample size would you require
using Fisher’s exact test to show that such a percentage difference was statistically
significant?

Before you start your calculations, determine whether you should be using a
one-tailed or a two-tailed test.



CHAPTER 7

Dependence

The title of this chapter, “dependence,” reflects our continuing emphasis on
the alternative rather than on the null hypothesis. As you discover anew in
this chapter, the permutation test is invaluable whether you wish to focus on
one or two specific hypotheses of dependence or provide protection against a
broad spectrum of alternatives.

In this chapter, we consider five models of dependence and contrast the
permutation approach to each with the bootstrap approach. You learn how
to apply permutation tests, tracing a real-life regression problem from start
to finish. And, of particular interest to economists, you learn methods for
testing for first- and higher-order correlations in stationary time series.

7.1. The Models

We consider five models of dependence in order of increasing complexity.

Model 1 (Independence): For all i, the pairs {X;, Y;} are independent and
identically distributed with joint probability P, and Py, Py, are the corre-
sponding marginal distributions. Having observed the pairs {X,,Y; i =
1,...,n}, we wish to test the hypothesis that P is the product probability
Py + Py. Model 1 is the simplest of the five models, requiring the fewest assump-
tions about the data; its primary interest is theoretical rather than applied.

Model 2 (Quadrant dependence): When X is positive, Y is more likely to be
positive, and vice versa. This model is appropriate when we have categorical
or partially ordered data.

Model 3 (Trend): Y, = G[X;] + {;fori =1, ..., n; where G is a monotone
function of the (single) preset variable X, and the {{;}, the errors or residuals
after the function G is used to predict Y, are exchangeable random variables
with zero expectations. G is a monotone increasing function of X, for exam-
ple, if x, > x, means that G[x,] > G[x,]. Having observed the pairs {X, Y;;

94
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i=1,...,n}, we wish to test the hypothesis that the distribution of Y is inde-
pendent of X versus the alternative that Y is stochastically increasing in X.
We have already encountered this model in Chapter 3, in testing for a dose
response.

Model 4 (Serial correlation): Y, = G[X, 1+ {;i= 1, ..., n; where G is a
continuous function of the (single) preset variable X in the sense that if X,
is “close” to X, then G[X;] is “close” to G[ X,], and the {; are independent
random variables with expectation 0. Having observed the pairs {X,, Y;;
i=1,...,n}, we wish to test the hypothesis that the distribution of Y is in-
dependent of X versus the alternative that Y depends on X through some
unknown G.

Model S5 (Known model): Y, = G[X,,f]+ ¢, i=1, ..., n where G is a
known (arbitrary) function of X a vector of preset values, f is a vector of
unknown parameters, and the {{;} are independent variables symmetrically
distributed about 0. Having observed {X;, Y;;i = 1,...,n}, we wish to test the
adequacy of some estimate /3 of 8, the true parameter value.

7.2. Testing for Independence
7.2.1. Independence

For Model 1, P is the product probability Py * Py; distribution-free bootstrap
and randomization tests in the spirit of Kolmogorov—Smirnov test statistics
are provided by Romano [1989]. Under the assumption that the pairs
{Y;, X;} are independent and identically distributed, Romano finds that the
bootstrap and the rerandomization test lead to almost the same confidence
intervals for very large sample sizes.

Against parametric alternatives, the most powerful and/or locally most
powerful tests are permutation tests based on the likelihood function [Bell
and Doksum, 1967].

7.2.2. Quadrant Dependence

In Model 2, no ordinal relationship is implied; X and Y may even take
categorical values, so that the problem reduces to that of analyzing a 2 x 2
contingency table. The most powerful permutation test and, not incidentally,
the most powerful unbiased test is Fisher’s exact test described in Section 6.2.

The bootstrap for the 2 x 2 contingency table may be determined entirely
on theoretical grounds without the need to resort to resampling. Estimates of
the probabilities P{Y > 0|X > 0}, and P{Y > 0|X < 0} are used to obtain
a confidence interval for the odds ratio. If this interval contains unity, we
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accept the null hypothesis of independence, otherwise we reject it in favor of
the alternative of quadrant dependence.

This model is occasionally used in practice while exploring the relationship
between X and Y, first transforming to the deviations about the sample mean,

X =X,-XY=Y-7

7.3. Testing for Trend

Consider an experiment in which you make two disparate observations on
each of a series of experimental subjects. For example, observing the birth
weight of an infant and its weight after one year; or the blood pressure and
caffeine intake of each of a series of adults. You wish to test the hypothesis
that the two variables vary independently against the alternative that there is
a positive dependence between them.,

More accurately, you wish to test the alternative of positive dependence
against the null hypothesis of independence. In formal terms, if X and Y are
the two variables, and Y, is the random variable whose distribution is the
conditional distribution of Y given that X = x, we want to test the null
hypothesis that Y, has the same distribution for all x, against the alternative
that if x" > x, then Y., is likely to be larger than Y,.

In Section 14.2, we show that Pitman’s correlation ) x;,y;, where x;, <
X(2) < *** X(n, provides a most powerful unbiased test against alternatives
with a bivariate normal density. As the sample size increases, the cutoff point
for Pitman’s test coincides with the cutoff point for the corresponding «
normal test based on the Pearson correlation coefficient.

Let’s apply this test to the weight and cholesterol levels taken from a subset
of the blood chemistry data collected by Werner et al. [X: 19707; the full data
set is included with the BMDP statistical package.

Wt Chol
144 200
160 600
128 243
150 50
178 227
140 220
158 305

170 220

Is there a trend in cholesterol level by weight? Reordering the data by weight
provides a clearer picture.
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Wt Chol
128 243
140 220
144 200
150 50
158 305
160 600
170 220

178 227

The cholesterol level does not appear to be related to weight; or, at least, it is
not directly related. Again, we can confirm our intuition by the permutation
test based on the statistic r.

But before we perform the test, what should we do about the subjects who
had cholesterol values of 50 and 600? Are these typographical errors, or a
misreading of the test results? Should we discard these values completely or
perhaps replace them by ranks? Chapter 9 is devoted to a discussion of these
and other alternatives for dealing with suspect data. In this chapter, we play
the data as it lays. For the original data, r = 128 x243 + --- + 178227 =
320,200, while r = 332,476 for the following worst-case permutation:

Wt Chol
128 50
140 200
144 220
150 220
158 227
160 243
170 305

178 600

Examining several more rearrangements, we easily confirm our eyeball intu-
ition that cholesterol level is not directly related to weight. The majority of
permutations of the data have sample correlations larger and more extreme
than that of our original sample. We accept the null hypothesis.

7.4. Serial Correlation

For Model 4, advocates of the permutation test can take advantage of the
(possible) local association between Y and X, reordering the X; so that

n—1
X, <+ £ X,, and adopting as test statistic M = Y (¥; — Y;,,)* [Wald and

i=i
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Wolfowitz, 1943; Noether, 1950; Maritz, 1981, p. 219]. We reject the null
hypothesis if the value of the statistic M for the original observations is less
than the ath percentile of the permutation distribution of M. Again, we need
not make specific assumptions about the nature of the association. If we can
make specific assumptions, then some other permutation test may recom-
mend itself. Ghosh [1954], for example, considers tests against the alterna-
tive of periodic fluctuations. Manly [1991] also considers a number of prac-
tical examples.

It is not clear what statistic, beyond that proposed by Romano for the
simpler Model 1, might be used as the basis of a bootstrap test of Model 4.
Of course, if we are prepared to specify the dependence function G explicitly,
as is the case in Model 5, we may apply bootstrap methods to the residuals
or to a suitable transformation thereof; see, for example, Stine [X: 1987].

7.4.1. An Example

To see a second illustration of the regression method (Model 3) while making
a novel application of the present model, let us consider a second example,
this time employing hypothetical data.

In Table 7.1, X represents the independent variable or cause, and Y repre-
sents the dependent variable or effect. Plotting Y versus X as in Figure 7.1
suggests a linear trend, and our permutation test for Model 3 confirms its
presence. Our next step is to formulate a specific model and to estimate its
parameters. The simplest model is a linear one Y =a + bX + & We can
estimate the coefficents a and b using the method of least squares.

S

X,

-

b= =4.5

R

X

a=y— bx =353,

<

where

Table 7.1. Exploring a Cause-Effect Relationship

X Y a+bxX residual rank a+bX +cX? residual
1 10.56 8.74 1.81 7 11.68 -1.12
2 15.28 14.15 1.12 6 14.57 .70
3 20.13 19.56 .56 5 18.31 1.82
4 22.26 24.98 —2.72 1 22.88 —-0.62
5 28.06 30.38 —2.32 2 28.29 —0.23
6 33.61 35.80 —2.18 3 34.53 —0.93
7 41.13 41.20 —0.08 4 41.62 —0.49
8 50.41 46.62 3.79 8 49.55 0.86
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50.41

1

10.56 —l'

X

Figure 7.1. Plotting the effect Y against values of the cause X.

Sxy = Z(xi - f)(yl - y)
Sxx = Z(xi - 2)2

But a simple model is not always the right model. Suppose we compare our
predictions from the linear model with the actual observations as in the
second and third columns of our table. The fourth column of this table, which
lists the differences between the predicted and observed values, attracts our
interest. Is there some kind of trend here also? Examining a plot of the
residuals in Figure 7.2, there does appear to be some sort of relationship
between the residuals and our variable X. We can confirm the existence
of this relationship by testing for serial correlation among the residuals. As a
preliminary aid to the intuition, examine the ranks of the residuals in the fifth
column of the table: 76 512 3 4 8. How likely is such a highly organized
sequence to occur by chance? The value of M for the original residuals is
39.45; not one of 400 random rearrangements yields a value of M this ex-
treme. The permutation test confirms the presence of a residual relationship
not accounted for by our initial first-order model.

Let’s try a second order model: Y = a + bX + c¢X? + ¢; the least squares
coefficients are Y = 9.6 + 1.6X + 0.42X?2; we’ve plotted the results in the
final columns of Table 7.1; note the dramatic reduction in the size of the
residuals; the second-order model provides a satisfactory fit to our data.

We could obtain bootstrap estimates of the joint distribution of X, Y by
selecting random pairs, but with far less efficiency. If we are willing and
justified in making additional assumptions about the nature of the trend
function and the residuals as in Model 5, then a number of more powerful
bootstrap tests may be formulated. While we remain in an exploratory phase,
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Figure 7.2. Plotting the residuals against values of the cause X after estimating and
subtracting the linear trend.

our best choice of a test procedure appears to be Pitman’s test followed
by the Wald and Wolfowitz test for serial correlation among the residuals.

74.2. Trend

We can test for a trend over time by using the Pitman correlation Y tX (),
where X (¢) is the value of X at time t [Wald and Wolfowitz, 1943]. In the
presence of a trend, the value of the test statistic should be more extreme than
1 — o« of the values ) m(t)X(r) where m is a permutation of the index set
{ti,....t,}.

We reach the same decision—accept or reject—whether we use the
original values of the index set, for example, the dates 1985, 1986,
1987 ... to compute our test statistic or rezero them firstasin 0, 1,2, ... . For
Yt —0X(@) =Y 1tX(#)—CY X(t), and the latter sum is invariant under
permutations of the index set.

7.4.3. First-Order Dependence

In a large number of economic and physical applications, we are willing to
accept the existence of a first-order dependence in time (or space) of the form
X+ 1)= f[r]1X(t) + e,., but we would like to be sure that second- and
higher-order interactions are zero or close to zero. That is, if we are trying to
predict X(t) and already know X(t — 1), we would like to be sure that no
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further information is to be gained from a knowledge of X (¢t — 2), X(¢t — 3),
and so forth.

Gabriel [X: 1962] generalizes the issue as follows: Define {x(i)} to be sth-
degree antedependent if the partial correlation p of x(i) and x(i — s — z — 1),
o, x(D)for x(i — 1),..., x(i — s — z) held constant is zero for all nonnegative
z.

To test the hypothesis H; that the {x(i)} are sth antedependent against the
alternative H,,, accept H, if
R=—-N

p—s—1 ’
In(1 — rivge1-i1,... i4s)

i=1
is small, where the {r?;;oi1.i+ ;+s) denote the partial correlations derived
s 1,..., i+s

from the original or permuted sample. We can assess R against its permuta-
tion distribution.

7.5. Known Models

In Model 5, we may be given the vector of parameters  or we may need to
estimate it. We consider the testing problem first. Confidence intervals for the
parameters are covered in Section 7.5.2.

7.5.1. Testing

Under the assumption of independent (but perhaps not identically distrib-
uted) symmetrically distributed residuals, we may form an unbiased permu-
tation test of the hypothesis F = G by permuting the signs of the deviations
d; = Y; — Gy(X;) to obtain the distribution of the statistic

M= Z+ dn(i)

where Y, ranges over the set for which d,;, > 0. A confidence interval for the
unknown B can be obtained using the method described in Section 7.5.2.

At least three bootstrap procedures complete for our attention: First, we
may resample from the residuals as we do in the case of censored matched
pairs (see Section 9.5) and test the hypothesis that the mean (or the median)
of the residuals is zero. The resultant test is inferior to the permutation test;
it is markedly inferior if the residuals have markedly different variances.

Second, we may resample from the {Y;, X;} and obtain a series of bootstrap
estimates f*; in this case, the d; need not be identically distributed. Or, third,
for each X;, we may resample from the d; to obtain a ¥/, and use the {Y;, X;}
to estimate f§; providing, that is, we can assume that the d; are identically
distributed. By resampling repeatedly, using one or the other of these latter
two methods, we may obtain a confidence region for f and thus a test for our
original hypothesis.
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Three points require additional clarification:

1) The method of estimation.

2) The confidence region. In some applications, for example, when the {X;}
are almost colinear, a “figure 8” may be more natural than an ellipsoid.
Can this region be optimized “against” specific alternatives?

3) The weighting to be given the various parameters. For large samples, a
normal approximation suggests the use of a covariance matrix for weight-
ing purposes. For small samples, the issue may not be resolvable.

As a result of these unresolved issues, bootstrap confidence intervals and
the associated tests of hypotheses for the generalized regression problem are
still a matter of considerable controversy.

For Model 5, the permutation test and the bootstrap may lead to quite
different results. While the boostrap can take advantage of the parametric
structure of a problem, (if one is known), the permutation test spares us the
necessity for making decisions about parameters concerning which we have
little or no information.

7.5.2. Confidence Intervals

In most cases, it is not enough to know that Y is dependent on X, we want to
know the specific nature of this dependence. As an example, suppose we have
satisfied ourselves that Model 3 (Trend) holds—that is Y; = G[X;] + (; for
i=1,...,n, where G is a monotone function of the (single) preset variable X,
G = a + bX, say and the {; are exchangeable random variables with zero
expectations. Having decided that b # 0, we would like to obtain a confi-
dence interval for b. First note that a permutation test of the hypothesis
H,: b = b, may be based on the Pitman correlation

inC?

where (¥ = y;—y.—x;by, i=1, ..., n are the deviations about the line
whose slope is b,.
Let 7 denote a permutation of the subscripts 1, ..., n and put b"[w] =

Y. x;Wey/ D, X7. For example,
b*[{%] = Z xng[i]/z x?.

We reject or accept H,, according to whether b'[{°] for the original, un-
permuted deviations is or is not an extreme value of the distribution of
b*[°].

We can obtain a confidence interval for b by following the trial and error
procedure described in Section 3.2. But there is a better way, due to Robinson
[1987]:

The least squares estimate of bis b = ¥ x; v/ 2 x7, so that b[(°] = b—b,
for the original, unpermuted deviations. Let {; = y; — y. — x;b;
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{0 =& + (b — bo)x;;
b [(°] = b™[{] + (b — by)b™[x];
{bo: b™[L°1 = b — bo} = {bo: b*[{] = (b — bo)(1 — b™[x])}
= {bo: b*[{1/(1 — b"[x] = b — by }.

b*[£1/(1 — b*[x]) is a pivotal quantity that does not depend on b,. The
desired confidence region is the interval between the kth and the
(n! — k + 1)th order statistics of this pivotal quantity where k = (nla/2).

7.6. Questions

1. a) Are the bootstrap and permutation tests against quadrant dependence equiva-
lent for very large samples?
b) Suppose you observed the contingency table

Republican Democrat
White 8 3
Black 3 8

Is race associated with political preference? Use both the bootstrap and Fisher’s
Exact test (Section 6.2) to make the inference.

2. In your own area of specialization, there is undoubtedly a controversy about the
nature of the association between some pair of variables. Which of the models, 1?
22, ..., 57 would be most appropriate for describing this association?

3. Adding platinum to a metallic coating will increase the mean time between failures.
But is it worth it? This will depend on the cost of platinum, the magnitude of the
effect, and the cost of a failure. Using the data in the following table and the
prediction equation MTBF = a + b(PT), obtain a confidence interval for the effect
b. Use both the trial and error method (Section 3.2) and the pivotal quantity
developed in Section 7.4.

Table 7.2. Effect of Platinum on MTBF
Grams Platinum per KG MTBF (Hours)

1 900
2 1000
5 1100
10 1300
15 1600

20 1800
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4. a) Table 7.3 records monthly sales for a two year period, taken from Makridakis,
Wheelwright, and McGee [1983]. Is there a seasonal trend?

Table 7.3. Monthly Sales as a Function of X
t X Sales t X Sales

0 116.44 202.66 12 129.85 260.51
1 119.58 23291 13 122.65 266.34
2 125.74 272.07 14 121.64 281.24
3 124.55 290.97 15 127.24 286.19
4 122.35 299.09 16 132.35 271.97
5 120.44 296.95 17 130.86 265.01
6 123.24 279.49 18 122.90 274.44
7 127.99 255.75 19 117.15 291.81
8 121.19 242.78 20 109.47 290.91
9 118.00 255.34 21 114.34 264.95
10 121.81 271.58 22 123.72 228.40
11 126.54 268.27 23 130.33 209.33

b) After eliminating the seasonal trend from the sales data in Table 1, is there a
significant upward trend in the remaining averages? Your test statistic is what
sum?

¢) The “X™ of Table 1 is actually advertising expenditures. Can a knowledge of
your advertising expenditures explain part of the trend in sales? What statistic
would you use to determine if sales do depend on advertising X.

d) Should you test this multivariate regression before eliminating the seasonal
trend? Would the sales in month i depend on the advertising expenditures in
month i? or the previous month i — 1? Or on those in several previous months?
What statistics would you use to resolve these issues?



CHAPTER 8

Clustering in Time and Space

In this chapter, you learn how to detect clustering in time and space and to
validate clustering models. We use the generalized quadratic form in its sev-
eral guises including Mantel’s U and Mielke’s multi-response permutation
procedure to work through a series of applications in atmospheric science,
epidemiology, ecology, and archeology.

8.1. The Generalized Quadratic Form
8.1.1. Mantel’'s U

Mantel’s U [Mantel, 1967] > 3" a;;b;; is perhaps the most widely used of all
multivariate statistics. In Mantel’s original formulation, a;; is a measure of
the temporal distance between items i and j, while b;; is a measure of the
spatial distance. As an example, suppose the pair (¢;, ;) represents the day ¢;
on which the ith individual in a study came down with cholera and [; =
(l;1,1;2) denotes her position in space. For all i, j set a;; = 1/(t; — t;) and

bij = 1/\/(’:'1 - ljl)z + (li2 - lj2)2

A large value for U would support the view that cholera spreads by conta-
gion from one household to the next. How large is large? As always, we
compare the value of U for the original data with the values obtained when
we fix the i’s but permute the j’s asin U' =YY a;;bi;)-

The generalized quadratic form has seen widespread application in anthro-
pology, archaeology [Klauber, 1971, 1975], ecology [Bryant, 1977; Doug-
las and Endler, 1982; Highton, 1977; Levin, 1977, Royaltey, Astrachen,
and Sokal, 1975; Ryman et al., 1980], education [Schultz and Hubert, 1976],
epidemiology [Alderson and Nayak, 1971; Fraumeni and Li, 1969; Glass and
Mantel, 1969; Klauber and Mustacchi 1970; Kryscio et al., 1973; Mantel and

105
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Bailar, 1970; Merrington and Spicer, 1969; Siemiatycki and McDonald, 1972;
Smith and Pike, 1976; Till et al., 1967], geography [Cliff and Ord, 1971, 1973,
1981; Hubert, 1978b; Hubert, Golledge, and Costanzo, 1981; Hubert et al.,
1984, 1985], management science [ Graves and Whinston, 19707, psychology
[Hubert and Schultz 1976; Hubert, 1978a, 1979], sociology [Hubert and
Baker, 1978], and systematics [Dietz, 1983; Gabriel and Sokal, 1969; Jones,
Selander, and Schnell, 1980, Selander and Kaufman, 1975; Sokal, 1979].

8.1.2. An Example

An ongoing fear among many parents is that something in their environment
—-asbestos or radon in the walls of their house, or toxic chemicals in their air
and ground water, will affect their offspring. Table 8.1 is extracted from data
collected by Siemiatycki and McDonald [1972] on congenital neural-tube
defects. Eyeballing the gradient along the diagonal of this table one might infer
that births of ancephalic infants occur in clusters. One could test this hypoth-
esis statistically using the methods of Chapter 6 for ordered categories, but a
better approach, since the exact time and location of each event is known, is
to use Mantel’s U. The question arises as to which measures of distance and
time we should employ. Mantel [1967] reports striking differences between
one analysis of epidemiologic data in which the coefficients are proportional
to the differences in position and a second approach (which he recommends)
to the same data in which the coefficients are proportional to the reciprocals
of these differences.! Using Mantel’s approach, a pair of infants born 5 kilo-
meters and 3 months apart contribute  *+ = 1/15 to the correlation. Summing
up the contributions from all pairs, then repeating the summing process for a
series of random rearrangements, Siemiatycki and McDonald conclude that
the clustering of ancephalic infants is not statistically significant.

Table 8.1. Incidents of pairs of
ancephalic infants by distance
and time months apart

km apart <1 <2 <4
<1 39 101 235
<5 53 156 364
<25 211 652 1516

! One further caveat: Mantel's U fails completely if the spatial distribution of the underlying
population is also changing with time [Roberson and Fisher, 1986].
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8.2. Applications

By appropriately restricting the values of a;; and b;;, the definition of Mantel’s
U can be seen to include several of the standard measures of correlation
including those usually attributed to Pearson, Pitman, Kendall, and Spear-
man [Hubert, 1985]. Mantel’s U has been rediscovered frequently, often
without proper attribution; see Whaley [1983]. In this section we consider
three diverse approaches to the problem of assessing the presence of clus-
tering in space and time. In each case, the permutation distribution of the
quadratic form is used to provide a baseline against which the behavior
of the observations may be assessed.

8.2.1. The MRPP Statistic

One such variant is the MRPP or multi-response permutation procedure
[Mielke, 1979] which is used in applications as diverse as the weather and the
spatial distribution of archaeological artifacts. The MRPP uses the permuta-
tion-distribution of between-object distances to determine whether a classifi-
cation structure has a nonrandom distribution in space or time. With large
samples, a Pearson type III curve based on the first three (or four) exact
moments may be used in place of the permutation distribution [Mielke,
Berry, and Brier, 1981].

An example of the application of the MRPP arises in the assignment of
antiquities (artifacts) to specific classes based on their spatial locations in an
archaeological dig. Presumably, the kitchen tools of primitive man—woks
and Cuisinarts—should be found together, just as a future archaeologist can
expect to find TV, VCR, and stereo side by side in a neolithic living room.

Following Berry et al. [1980, 1983], let Q = {w,,...,wy} designate a col-
lection of N artifacts within a site; let X, ..., X,; denote the r coordinates for
the site space for artifact w; let Sy, ..., 5,4, represent an exhaustive parti-
tioning of the N artifacts into g + 1 disjoint classes, (the g + 1st being re-
served for not-yet-classified items); and let n; be the number of artifacts in the
jth class.

Define the Euclidian distance between two artifacts,

r 1/2
5;',' = |:kzl (in - ij)2:|

Define the average between-artifact distance for all artifacts within the ith
class,

Ci ( z 51_]¢ ¢i(wj)s

where ¢;(w) is an indicator function that is 1 if w € S; and 0 otherwise.
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The test statistic is the weighted within-class average of these distances,

A= nC/K

TI.MQ

g
where K = ) n

i=1 N!
The permutation distribution associated with A is taken over all g+1—'

[T~
=1
allocations of the N artifacts to the g + 1 classes with the same numbers {n;}
assigned to each class.
Empirical power comparisons between MRPP rank tests and with other

rank tests are made by Tracy and Tajuddin [1985] and Tracy and Khan
[1990].

8.2.2. BW Statistic of Cliff and Ord, (1973)

As a second application of generalized correlation, suppose we want to mea-
sure the degree to which the presence of some factor in an area (or time
period) increases the chances that this factor will be found in a nearby area.

The BW statistic of Cliff and Ord [1973] is defined as ) Y ;;(x; — x;)*
where

= 1 if the ith area has the characteristic
X; i

= 0 otherwise

= 1if the ith and jth areas are adjacent

ij .
= 0 otherwise.

8.2.3. Equivalances

The generalized quadratic form has been rediscovered and redefined in many
different guises. Whaley [1983] shows that Mantel’s U and the BW statistic
are equivalent to the MRPP for testing purposes. A third equivalent example
is the k-dimensional runs test of Friedman and Rafsky [1979] studied in
Section 5.3.

8.3. Extensions

Mantel’s U is quite general in its application. The sets of coefficients {a;;} and
{b,;} need not represent positions or changes in time and space.
In a completely disparate application in sociology, Hubert and Schultz,
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[1976], observers studied k distinct variables in each of a large number of
subjects. Their object was to test a specific sociological model for the rela-
tionships among the variables. This time, the {a;;} in Mantel’s U are elements
of the k x k sample correlation matrix while the {b;;} are elements of an
idealized or theoretical correlation matrix derived from the model. A large
value of U supports the model, a small value rules against it.

8.3.1. Another Dimension

Vecchia and Iyer [1989] generalized the MRPP for use in the comparison of
several linear models. In the words of these authors, “Regarding algebraic
quantities useful to detect concentrations of points within distinct groups,
one might have asked: when are two points concurrent?. The answer, that they
coincide whenever the distance between them is zero motivates the definition
of the MRPP statistic in terms of interpoint distance.

“Extending this approach, for example, to the comparison of straight line
relations, the analogous geometric argument is that three points are colinear
only if their triangular area is zero.”

The statistic used in Vecchia and Iyer’s new test is a symmetric volume: a
real-valued function, symmetric in its n + 1 arguments, that is zero if and
only if the Euclidean volume of the simplex formed by the arguments is zero.
An immediate application for this statistic is assessing the consistency of
multiclinic designs. Some of this statistic’s asymptotic properties are consid-
ered in Vecchia and Iyer [1991].

8.4. Questions

1. Show that Pitman’s correlation is a special case of Mantel’s U.

2. List at least two applications for Vecchia and Iyer’s test.



CHAPTER 9

Coping with Disaster

In this chapter, you receive practical guidelines for coping with the many
catastrophes that confront the applied statistician:

* subjects who miss an appointment,

* subjects who disappear completely and mysteriously in the middle of an
experiment,

* incomplete questionnaires,

* covariates after the fact,

* outlying observations whose extreme and questionable values suggest they
may have been recorded incorrectly,

» off-scale and other censored values that can not be determined with
precision,

= and even studies that must be brought to a rapid and untimely conclusion
well in advance of the scheduled date.

9.1. Missing Data

The effects of missing data depend upon the nature of the study. In some
instances, for example, in the one-factor, k-sample comparison, missing data
has no effect upon the analysis other than to reduce the power of the test.
In other, more complex designs, missing data may result in an unbalanced
design in which several factors are confounded with one another. In most,
though not all, of these latter cases, no special statistical procedures are
required, providing we are careful in how we interpret the results. We must
identify which effects are confounded with one another, a main effect with an
interaction, say. In other studies (and one such example was examined in
Section 4.4.2,) we may have to abandon permutation procedures altogether
and consider using the bootstrap.

The majority of experimental designs belong to the correctable category.

110
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We proceed with the permutation analysis using a revised set of marginal
constraints that reflect the actual rather than the hoped-for sample sizes.
And in analyzing the results, we acknowledge that one or more higher-order
interactions may have contaminated the observed effects.

Consider an example we studied in Section 4.2, the effect of sunlight and
fertilizer on crop yield. Suppose that one of the observations in the low-
sunlight, medium-fertilizer group, the 22 noted in parenthesis in the table
below, is missing from the study.

Effect of Sunlight and Fertilizer
on Crop Yield

Fertilizer

LO MED HIGH

LO 5 15 21
10 (22) 29

8 18 25

HI 6 25 55
9 32 60

12 40 48

The test statistic for the main effect of sunlight S =23 + (15 +8) + 75 =
131 for these observations. Such an extremely low value is found in only a
small handful of the rearrangements in which we swap observations at ran-
dom between the low and high groups. The number of rearrangements after
correcting for the missing data item is (). The reduction from the hoped for
(8) rearrangements reduced the power of the test. But the reduction is irrele-
vant in this instance as we are rejecting the hypothesis. Had we accepted the
null hypothesis, we would have been forced to consider whether a larger
sample size might have enabled us to detect an effect.

A missing data item in only one of the groups means that the main effect
of sunlight is partially confounded with the interaction between sunlight and
fertilizer. But our common sense strengthened by a glance at the table tells us
that the confounding also is irrelevant in this instance.

The preceding discussion was based on the implicit assumption that drop-
outs occur at random. If the dropout rate is directly related to the treatment,
we must either abandon the study or modify our scoring system explicitly to
account for the dropout. See, for example, Entsuah [1990].

A further example of using the permutation distribution to cope with mis-
sing data is given in Section 10.2.6.
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9.2. Covariates After the Fact

After World War II, public policy makers in the United States did a slow
about-face on the dangers of tobacco smoke. The changes in policy acceler-
ated during the 1970’s. One moment it seemed the cigarette was the ultimate
symbol of masculinity and the next it was the primary cause of emphysema,
hypertension, lung cancer, and fetal defects. One month you could design
a 400-patient, six-week, 50-variable clinical study with the full support of a
Food and Drug Administration panel, and the next the panel would be asking
if you’d corrected for the smokers in the control group. Of course you hadn’t,
not then, not in those days.

Today, we know that smoking is harmful, but “cigarettes smoked per
week” is only one of hundreds of possible covariates. Regardless of how
many covariates you have controlled or matched in putting together a clini-
cal study, there are sure to be one or two more covariates that you didn’t
think of, that no one thought of, that no one could have envisioned—that is,
until the day after your 300-page report on the study was sent to the printers.

All is not lost, it is still possible to make a comparison among treatment
groups using the method of permutations by restricting the rerandomizations
to those with specific after-the-fact design matrices.

Using the method due to Rosenbaum [1984], described at length in Sec-
tion 4.3, we block the data into smokers and nonsmokers (or lemon eaters
and non-lemon-eaters), and then randomize separately within each block.

Restricting the number of randomizations may reduce the power of the
test. (It may also increase it by eliminating a source of variability; see Section
3.6.) As a result, we may need to add more subjects and an additional clinical
center to the study to justify and confirm any negative results.

9.2.1. Observational Studies

An extreme example of the use of an after-the-fact covariate comes when we
attempt to create matched pairs from two groups that were part of an obser-
vational study. In an observational study, the groupings themselves are after
the fact. The subjects are not randomly assigned to treatment or control but
are merely “observed” to belong to one group or the other. Through the
use of after-the-fact covariates, we hope to reduce or eliminate any built-in
biases.

An example provided by Rosenbaum [1988] is that of a study in humans
of the effect of vasectomy on the risk of myocardial infarction. Obviously, we
do not have the luxury (nor the authority, thankfully) to select a random
sample of patients for a mandatory vasectomy, but must analyze the data as
it lies. We can take advantage of concurrent data on obesity and smoking
history (both of which are known to affect the risk of myocardial infarac-
tion) to help us block the two samples so as to reduce the between-sample
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variance. See Rosenbaum [1988] for methods for dealing with imperfect
matching.

While no justification for the use of restricted randomization is required
when the covariates are built in to the experimental design, formal justifica-
tion for the use of Rosenbaum’s method after the fact requires us to make
three assumptions:

First, for all observations, the observed treatment assignment z (z = j if
the unit is assigned to treatment j) and the vector r = (r4,...,r;) of potential
responses to treatment of that unit are conditionally independent given the
vector of observed covariates. Second, regardless of the values taken by the
covariates, all treatment assignments are possible. And third, the conditional
probability e[ X] of receiving a particular treatment given a vector of ob-
served covariates X, follows a logistic model [Cox and Shell, 1989], that is

e[X] _
log {4(1 — e[X])} = BT f(X),

where f(X) is a known but arbitrary vector-valued function of X. Since f(X)
is arbitrary, this latter condition is not particularly restrictive.

All three of these assumptions are satisfied if the covariates did not affect the
treatment assignment. For example, obesity and smoking history would sat-
isfy these conditions if they were not factors in the patient/physician decision
to have or perform a specific treatment.

9.3. Outliers

Consider the set of observations 0, 1, 2, 3, 19. Does the 19 represent a genuine
response to treatment, the response we have been looking for, or is it an
outlier—a typographical error or a bad reading that will only lead us astray?
In the first case, we will want to utilize the data just as it is; in the second, we
will want to modify or perhaps even to discard the questionable reading.

Shall we deal with such outliers on a one-by-one basis? Or should we
establish a policy that will automatically adjust for and diminish the effect of
outliers? Ad hoc rejection of suspect data could lead to charges of bias.
A systematic policy can be adjusted for sample size and power determina-
tions.

We consider six policies here:

1) preserving the original data

2) Using ranks in place of the original observations, thus diminishing the
effects of outliers

3) Replacing the observations/ranks by scores derived from some standard
distribution, e.g., the order statistics of a standardized normal distribution

4) applying a robust tail-compression transformation to all the data
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5) censoring extreme observations
6) deleting extreme observations.

Whichever policy we elect, the permutation method will be more robust to
outliers than a test based on a parametric distribution. The influence func-
tions of a two-sample permutation test are always bounded above, even if the
influence functions of the corresponding parametric test are unbounded from
above and below [Lambert, 1981]. Our only concern need be the selection of
a test statistic that is both practical and optimal.

9.3.1. Original Data

“The Method of Randomization applied to the original observations produced
stunningly efficient tests which were dismally impractical.” [Bradley, 1968]

Despite these discouraging words from James V. Bradley, I almost always
make use of the original observations rather than their transform.

The exception that proves the rule is in my analysis of the Renis data
considered in problem 2 of Chapter 3 and in Good [1979]. In that study, I
used a preliminary logarithmic transformation, but it was to equalize the
variances in the two samples, not to eliminate large values.

The computational difficulties to which Bradley alluded have largely been
resolved through advances in computer technology between 1968 and today;
the efficiency of the permutation test remains. The power and high relative
efficiency of the permutation test comes from its use of exact values. Throw
away one of the observations or replace it with its rank or a trimmed value
and you reduce the power of the corresponding test. The gain in power
is particularly evident when there is a mixture of responders and nonre-
sponders [Good, 1979]; but see Boos and Browne [1986].

On the other hand, a single extreme observation often can have a dispro-
portionate effect. Given the observations 0, 1, 2, 3, 19, would you rather
guesstimate the population mean as 2 or 2.5 than estimate it using the sample
mean of 5? By taking ranks or applying some other tail-compressing trans-
formation to all the observations, we can “democratize” the data so that each
data item has a relatively equal influence upon the final calculation. (See also
Hampel et al. [X: 1986]).

9.3.2. Ranks

Suppose we have two samples: the first control sample takes values 0, 1, 2, 3,
15. The second treatment sample takes values 3.1, 3.5., 4., 5, and 6. Does the
second sample include larger values than the first?

When we rank the data giving the smallest observation a rank of 1, the
next smallest the rank of 2, and so forth, the first sample includes the ranks 1,
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2, 3, 4, 10 and the second sample includes the ranks 5, 6, 7, 8, 9. Does the
second sample include larger values than the first?

Applying the two-sample comparison described in Chapter 3.2 to the
ranked data, we conclude at the 10%; level that the second sample is signifi-
cantly larger. The sums of the ranks in the original first sample, 20, is as large
or larger in just 24 of the (') = 252 rearrangements.

Obviously, taking ranks diminishes the effects of outliers. Taking ranks has
a second advantage from the computational point of view: When we take
ranks, the results are unconditionally distribution free. As we are working
with the same values—the ranks, over and over regardless of the actual
values of the observations, we can tabulate the significance levels of our test
statistics (at least for small samples) and avoid lengthy computations. And we
may determine analytically when a sample of ranks is large enough that its
permutation distribution may be replaced by an asymptotic approximation.
It’s not surprising that much of the literature on distribution-free tests is
devoted to an analysis of the permutation distributions of ranked data.

The cost of using ranks is a loss of power, that is, a diminished probability
of detecting a real difference between the distributions under test. But it is not
a great loss. To achieve the same power as the permutation or parametric ¢-
test with very large samples, the Mann—Whitney test—a two-sample com-
parison that uses ranks in place of the original observations, requires only 3%,
or 4% more observations. Cheap, if the units are widgets; expensive, if the
units are patients or rare Rhesus monkeys.

9.3.3. Scores

If we are testing against normal alternatives, we can improve on the power of
the Mann-Whitney test by using normal scores in place of ranks.

In the general case, we replace the rank of the ith observation, r;, say, by
the expected value of the r;th largest value in a sample of n values drawn from
the distribution F, F~![r;/(n + 1)1, where F is our best guess of how the
observations are really distributed; (see also David [X: 1970], p. 65).

A good guess will produce an optimal test, and, sometimes, even a “bad”
guess can be close to optimum. For example, Chernoff and Savage [X: 1958]
show that the normal-scores test, in which ¢ is the Gaussian distribution, has
a minimum asymptotic efficiency of 1 relative to the usual ¢-test regardlesss
of the true underlying distribution.

Bell and Doksum [1965] provide detailed comparisons of the rank and
normal scores tests in a variety of settings. In Bell and Doksum [1967] they
provide conditions under which the normal-scores test is minimax.

Hajek and Sidak [1967] show that, in general, optimal scores for tests of
location are based on the scores

N

a(j) = ~L s

SEu])”
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where u = j(N + 1), and f and F are the density and cumulative distribution
functions, respectively, of the underlying distribution. For optimal rank tests
of scale, the scores are

F'[ulf'(F~'[u])

o
alj) FE L)

9.3.4. Robust Transformations

A robust transformation preserves sample values at the center of a distri-
bution while shrinking those in the tails. As one example [Maritz, 1981],
consider :

$w) = u/(1 + u?).

For u small, ¢(u) is approximately u. For u < 1, ¢(u) is a slowly increasing
function of u. If we replace x; by ¢(x;) in computing the mean, then large
values will make virtually no contribution to the total.

As a second example [Huber, X: 1972], take

¢(w) = (1 — exp[—u])/(1 + exp[—u]).

Again ¢(u) is approximately u for u small, and is bounded between 0 and 1.

In a complex experimental design, the transformation may be applied
to the residual rather than the original observation. For example, to test
whether Y = bX, one would apply ¢ to y' = y — bx, rather than to y.

If you are uncertain which transformation to use, you can reduce the effect
of extreme values in some cases simply by switching to a statistic based on
the absolute differences |x; — y;| in place of the squared differences (x; — y;)>.
The final choice should be dictated by your loss function (see Section 10.4).

If extreme values are unlikely, as is the case with normal alternatives, then
a robust transformation will have little or no effect on the power of a test. See
Maritz [1981] and Lambert [1985] for further discussion.

9.3.5. Censoring

Lambert [1985] offers a two-sample test that is both robust and powerful.
First, we order the data, so that

X< <Xmn and Y, < <Y,

To test against the alternative that the Y’s are larger on the average than the
X’s, we replace each X; and Y, that is less than k; = X4, by k; and each X;
and Y; that is greater than k, = Y4, by k,, and then carry out the usual
permutation test based on the sum of the observations in the first sample.
Note that the censoring values are determined by the data itself. Unfortu-
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nately, there can be more than one “right” choice for f; and f,, and the
computations are far from straightforward. One possible compromise is to
let ky = X5, and k, = Y,,_,, for samples of fifteen or less.

9.3.6. Discarding

The most extreme method of dealing with outliers is to discard them. Al-
though Welch and Guiterrez [1988] obtain narrower confidence intervals in
matched-pairs designs through the use of permutation applied to trimmed
means, there are two objections to this method. First, the resultant test is
unlikely to be exact (Theorem 3.3, [Romano, 1990]). Second, discarding data
reduces the power of the test. In Good [1991], I improve on the power of the
Welch-Guiterrez test by treating the outliers as if they were censored. My
approach is described in more detail in the next section.

9.4. Censored Data

We may not be able to make all our measurements with the same precision.

In a radioimmune assay, for example, the typical concentration curve has
a sigmoidal shape with flat regions at the two extremes. In the lower, flat
region of the curve, estimation is difficult, if not impossible. While binding
values elsewhere may be determined to one part in a billion, in this region
they merely are recorded as “below minimum.”

Here is a second example: In many clinical studies, it is neither possible nor
desirable to follow all patients to the end of their lifespans. Limiting the
duration of the study cuts the costs of observation and puts promising new
materials and processes into immediate service. But while some lifespans will
be known with precision, others can be noted only as “exceeded treatment
period.”

In each of these examples some of the data has been censored.

94.1. GAMP Tests

When observations are censored, the most powerful test typically depends on
the alternative, so that it is not possibie to obtain a uniformly most powerful
test.

Recently [Good, 1989, 1991, 1992], I found that by establishing a region
of indifference, it may be possible to obtain a permutation test that is close to
the most powerful test, “almost most powerful,” regardless of the underlying
parameter values.

Suppose we wish to perform a test of a hypothesis F against a series of
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alternatives Fy, F,, ... . To obtain a test that is globally almost most powerful
(GAMP), we proceed in three stages:

First, we use the likelihood ratio to obtain a locally most powerful unbi-
ased o-level test of the hypothesis F against the alternative F,. We repeat this
procedure for each alternative F; to obtain a family of rejection regions {R;}.

Next, we form two regions: (i) A rejection region R < () R; that contains

only events common to all the rejection regions of the preceding family; and
(ii) an acceptance region A that contains only events common to all the
acceptance regions.

Last, we construct a permutation test whose p-value is determined by
assigning each rearrangement of the data to one of three regions: rejection
(R), acceptance (A), or indifference (I). While we cannot determine the p-value
of their new test exactly, we can bound it:

Pr{R|X} <p<1-Pr{4|X}.

In Good [1992], I showed that GAMP’s exist when the joint loglikelihood
of the observations takes the particularly simple form S, * f(0) + N *g(f)
where Sy and N, are the sum of the uncensored observations and the number
of censored observations in the treatment sample, respectively, and f and
g are monotone functions of §. Examples include normally distributed, expo-
nentially distributed, and gamma distributed random variables subject to
type I censoring.

A permutation (or rerandomization) approach is utilized.

There are two distinct cases, which I term left- and right-censoring respec-
tively, though the actual directions—Ileft or right—will depend upon the
alternative. To fix ideas. suppose we have samples from two populations and
are testing a null hypothesis H: F, = F,, against stochastically larger alterna-
tives, K: F,(x) = F,(x — 8). With left-censoring, we can assign x a precise
value only if x > c; for example, radioimmune assay involves left-censoring.
With right-censoring, we can assign x a precise value only if x < c; for exam-
ple, reliability studies usually involve right-censoring.

To eliminate any dependence on the zero point of the underlying scale, we
transform the data before we derive the permutation distribution; from each
of the orginal observations we subtract X, the mean of the uncensored obser-
vations in the sample taken from G; X|; = X;; — Xy, fori=1,2,j=1,... s M3
and Sy, = 0 and the transformed observations are censored at ¢’ = ¢ — Xj,.
Next, we compute Sy, and N, for the original treatment sample; and per-
mute repeatedly, computing Sy and N, for each permuted sample.

With left-censoring, we assign a permutation to the rejection region R if
Sy = Sy, and Nc > Nc,. We assign it to the acceptance region A4 if Sy < Sy,
and N¢ < Nc,. We assign it to the indifference region otherwise.

With right-censoring, we impute the value ¢ to the censored observations.
Let k = N; — Nc,. We assign a permutation to the rejection region R if Sy +
kc > Sy,. We assign it to the acceptance region A4 if Sy + kc < Sy,. We assign
it to the indifference region otherwise.
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The indifference region is small enough in most instances to permit effec-
tive decision making [Good, 1989]. As the sample size increases, the GAMP
test converges in probability to a UMP unbiased test [Good, 1992]. In the
rare case where the result does lie in the indifference region, I recommend
taking additional observations.

The application of permutation methods to censored data was first sug-
gested by Kalbfleisch and Prentice [1980], who sampled from the permuta-
tion distribution of censored data to obtain estimates in a process akin to
bootstrapping.

For a survey of other permutation tests that have been applied to sensored
data, see Schemper [1984]. Conditional rank tests for randomly censored
survival data are described by Andersen et al. [1982] and Janssen [1991].

9.5. Censored Matched Pairs

As we showed in Chapter 3.6, the sensitivity of an experiment can be in-
creased through the use of matched pairs. But it may happen that an exact
observation can not be made for one or more subjects, the only available
information being that the required measurement is greater or less than some
known value. Often this censoring process is accidental, but in many toxicol-
ogy studies and reliability trials, it is a matter of deliberate design: the experi-
menter trades the cost of enrolling a larger number of subjects at the onset of
the experiment for a shortened study period.

Suppose z = y — x is the difference between the (transformed) observa-
tions on the two members of a pair, and that observations are not recorded
if they exceed C on the (transformed) scale. As noted by Sampford and
Taylor [X: 1959], any pair provides information on the distribution of z in
one of the following four forms:

(i) both y and x are observed, so that z is determined exactly;
(i) x is observed, but we only know that y exceeds C; thatis z > C — x, so
we say z is upper censored;
(iii) y is observed, but we only know that x exceeds C; thatis z < y — C, so
we say z is lower censored,
(v) both x and y exceed C, so that no information is available on z for this
pair; the sample size is effectively reduced.

While cases (ii) and (iii) provide less information than case (i), they are
not uninformative, and a variety of hypothesis testing methods have been
proposed for capitalizing on the information they provide. Recently [Good,
1991], 1 developed an “almost” most powerful distribution-free method
based strictly on the data at hand. To see how this method is applied, assume
that the first observation in each pair has the distribution F and the second
has the distribution G. The hypothesis, unless stated to the contrary, is that
F > G. The alternative is that F < G.
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9.5.1. GAMP Test

The GAMP test for matched pairs represents a simple extension of the
GAMP test for two independent samples derived in Good [1989, 1992].
Record U, the number of upper censored pairs in the original sample, and Z,
the sum of the uncensored z’s in the original sample. Randomize the observa-
tions, permuting the treatment labels within each pair, and let U’ and Z' be
the corresponding statistics for the permuted sample.

If U > U and Z' > Z, then assign the permuted sample to the rejection
region R.

If U' < U and Z’' < Z, then assign the permuted sample to the acceptance
region A.

Otherwise, assign the permuted sample to a region of indifference.

Repeat the randomization process for all possible permutations (or for a
suitably large number N of randomly selected permutations) and let fz, f,,
and f; be the frequency with which permutations are assigned to the rejec-
tion, acceptance, and indifference regions, respectively.

This method of construction ensures that the acceptance region A of the
GAMP test is contained in the acceptance regions of each of the most power-
ful a-level permutation tests of a simple hypothesis G = F = F* against the
simple alternative G* = G > F = F*. Similarly, the rejection region R of the
GAMP test is contained in the rejection regions of each of the most powerful
a-level permutation tests.

fr < p <N — f,, where p is the significance level of any member of the
family of most powerful permutation tests of a simple hypothesis against a
simple alternative. Thus, a test of the composite hypothesis F < G against the
composite alternative F > G based on the bounds defined by A and R is
globally almost most powerful, or GAMP.

In practice, an investigator using a GAMP will elect one of three courses
of action: 1) accept the null hypothesis, noting the bounds on the p level; 2)
reject the hypothesis in favor of a stochastically larger alternative: or, 3) in
order that p might be known with greater certainty, elect to take additional
observations. If you require exact significance levels to make power com-
parisons with other tests, you must randomize on the indifference region as
follows:

If fx is greater than the desired a-level, accept the null hypothesis. IfF N — f,
is less, reject. If neither condition holds, choose a random number Z =
U(0, 1) and reject the hypothesis if Z < (Na — fg)/(N — fz — f4), accepting it
otherwise.

9.5.2. Ranks

When data is heavily censored, you can improve on this method by replacing
the original observations with ranks. Two approaches suggest themselves: In
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the first, which I term “post-ranking,” compute the differences, z, for each
pair, then rank these differences in absolute value, dividing the highest ranks
among the censored observations. Denote by Z the sum of the ranks which
correspond to those pairs in which y is known to be larger than x. As in the
GAMP test, now randomize the observations, permuting the treatment la-
bels within each pair, and denote by Z’' the new rank sum. Assign this ran-
domization to R, I, or A according to whether Z’' >, =, or < than Z. As with
the GAMP test, reject H in favor of K if only a small proportion of re-
randomizations are assigned to R; randomize on the indifference region I to
obtain a test at a specific significance level p.

Post-ranking has the drawback that if, say, 2 is the censoring point, the
difference “censored — 1.99” is automatically assigned a higher rank than the
difference “1.99 — 0.” To avoid this difficulty, in a second approach, which I
term preranking, first rank the individual observations, again dividing the
highest ranks among the censored observations. Next, compute the differ-
ences of the ranks within each pair, and, as a third and final step, rank
the absolute values of the differences. The drawbacks of this second, pre-
ranked approach are computational: you must rank the data twice and you
must correct for ties during the second ranking.

When the underlying distribution is normal and censoring is heavy, the
preranked permutation test provides the greatest sensitivity [Good, 1991].

When the underlying distribution is normal and censoring is light, or when
the underlying distribution is exponential, the GAMP test is preferable.

The strength of the GAMP lies in its use of exact values rather than ranks
—thus its effectiveness with heavy-tailed distributions, like the exponential,
which have many extreme values. The GAMP is also the most readily com-
puted. Its weakness lies in its dependence on a region of indifference whose
size varies from sample to sample.

How long does it take to perform a randomization test? Using the
computational shortcuts described in Section 11.3, a comparison of 15
matched pairs with complete enumeration of all rerandomizations takes
twelve seconds on an 80386-based microcomputer without a floating-point
COProCessor.

9.5.3. One-Sample: Bootstrap Estimates

If you are willing to assume the underlying distribution(s) are symmetric,
then these methods for paired comparisons may also be applied to hypo-
theses based on a single sample. If censoring is one-sided, we are forced to
censor on the opposite side in order to obtain an exact test. If you are unwill-
ing to assume symmetry, and/or to throw away data through censoring, have
15 or more observations (30 would be better) and are willing to assume that
all observations are drawn from the same distribution, then you may apply
Efron’s [X: 1981] bootstrap method of extending the Kaplan—Meir estimates.
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9.6. Adaptive Tests

In an adaptive test [Hogg and Lenth, X: 1984], we compute several different
test statistics, but make use only of the one we estimate to be the most
powerful. For example, we could compute both a t-test and a robust test
based on an M-estimate and, after the fact, use the one which seems best
suited to the data. With some adaptive methods, the frequency of Type I
error may increase as a result of this selection procedure. But with Done-
gani’s method [1991] applied to two permutation tests, we can obtain a
single test that is both exact and equal in power asymptotically to the most
powerful of the two tests.

Let T}, and T, be the two tests and let ¢,, and c,, the “criteria”, be two
positive real functions defined on the vector of observations X such that if
¢1(X) < ¢,(X), then T, is preferable to T,. Suppose that large values of either
test statistic indicate a departure from the null hypothesis. Proceed in four
steps as follows:

1. Evaluate ¢,(X), c,(X) and let ‘opt’ refer to the index of the criterion having
the smaller value.
2. Partition the set, P, of all possible rearrangements of the data into two sets

P, = {n: ¢ (nX) < ¢,(nX)}
P, = {n: ¢,(nX) > c,(nX)}

3. Let H,, be the randomization distribution obtained by evaluating the

optimal test statistic T,, on each element of the set that contains the
original rearrangement. '

4. Reject the null hypothesis at the level « if T, ,, exceeds the 100-ath percen-

tile of H,,. In other words, if ¢,(x) < c,(X) restrict attention to those

rearrangements that are in P,.

Let N; denote the number of rearrangements in P,. Let C; denote the choice
of the statistic T;. Then

P{RIH} = P{RIH,C, }P{C,|H} + P{RIH,C,}P{C,|H]}
= a(N{/(N; + N;)) + a(N,/(N; + N,))
=a.

Donegani [1991] shows that this adaptive procedure is asymptotically
optimal and, in the case of matched pairs, that it is optimal with as few as
nine pairs of observations.

9.7. Questions

1. Prove that ranking the data will eliminate any distortions brought about by a
nonlinear measuring device. That is, prove that the ranks of the observations are
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invariant under any continuous, strictly increasing transformation. (We take ad-
vantage of this result in a multivariate analysis in which we use ranks to bring
several disparate variables together on a single common scale; see Section 5.2.)

2. Show that an exact one-sample permutation test for singly-censored data can exist
only if you deliberately censor the data from the other side.

e . .
3. Let xy, ..., x, be a sample from the exponential distribution with density 5e b,
b > 0. If you have a scintillation counter at hand, you can generate just such a
sample by recording the time elapsed between counts. Alternately, you may stand
on a street corner or at night club entrance and record the number of seconds
before the next redhead or the next BMW goes by. If you have access to a com-
puter, use its random number generator and take the logarithms of the random
numbers you generate. Guesstimate the mean waiting time, b, before you start.
Test your guesstimate (see Section 3.1) using a) the original observations, b) ranks,
¢) normal scores, and d) the data remaining after you’ve thrown out all observa-
tions that are three times the guesstimated value. Compare your results with the
different statistical procedures for samples of size 5, 6, and 7.



CHAPTER 10
Which Statistic? Solving the Insolvable

10.1. The Permutation Distribution

Many common statistical problems defy conventional parametric analysis
simply because of the distributions of the resultant test statistics are not well-
tabulated. Or, worse, we settle for a less-than-optimal statistic simply because
a table for the less-than-optimal statistic is readily available—the chi-square
statistic (Section 6.3.1) and its misapplication to sparse contingency tables is
one obvious example.

We need not settle for less than the best. Given a sufficiently powerful
computer and the time needed to perform the necessary calculations, we can
always obtain the permutation distribution of the statistic that best separates
the hypothesis from the alternative.

The freedom of choice provided by permutation methods creates its own
new set of problems. Given complete freedom in the selection of a test statis-
tic, which statistic are we to choose?

The purpose of this chapter is two-fold: 1) to describe a number of practical
applications in animal behavior, atmospheric science, education, epidemiol-
ogy, molecular genetics and sociology where permutation distributions have
provided new and more powerful solutions; and 2) to provide some gen-
eral rules to use in the derivation of test statistics for your own demanding
applications.

10.2. New Statistics
10.2.1. Nonresponders

In this section, we consider several new statistics designed specifically for use
in a permutation test. An elementary example is a statistic I proposed for use
when there is a response threshold, a common occurrence in pharmacologi-
cal studies [Good, 1979].

124
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We assume that X, ..., X,, the controls, are independent and identically
distributed with distribution F, while responders in the treatment group are
independent and identically distributed as G(x) = F(x — ¢). Unfortunately,
not every member of the treatment group is capable of responding to the
treatment; with the result that we are forced to test the hypothesis G = F
against contaminated alternatives of the form

G=pF(x—0)+ (1 —pF(x), with O0<p<1 (10.1)

The conventional statistics for the two-sample comparison—Student’s ¢ and
the Wilcoxon test—are subject to a loss of power in the presence of non-
responders. This reduction in power is due to two factors: 1) a decrease in the
absolute difference between the means of the two testing groups and 2) an
increase in the variance of the treatment sample. This last change is the key
to the selection of a new test statistic:

, nm
(n+m)

v(p)=p (X. =Y +(1-p)sy (10.2)

This new statistic has two components: the first is proportional to the differ-
ence (X. — Y.) in the means of the two samples, the second to Syz, the variance
of the treatment sample.

Barring the availability of an independent test for response, the p’ used
in equation (10.2) is at best only a guess as of the true p of equation
(10.1). In Good [1979], we find that using a value of p’' = 0.67 appears
to offer relatively good protection against a broad range of values of .
Boos and Browne [1986] question whether the gain in power is really
worth all the extra computation. An increase in power can mean a de-
crease in sample size with fewer experimental subjects placed at risk and a
shortened study time with more rapid dissemination of important results.
An increase in computation time puts the strain where it belongs—on the
computer.

10.2.2. Animal Movement

Let {(w;, x;), i = 1,...,n} denote a series of paired observations on the succes-
sive positions of two organisms in space. We would like to know if the
movements of the two organisms are independent or coordinated. The eco-
logical literature favors a test of independence based on the ratio of the actual
distance travelled to the distance from the starting point:

R, = z {Winy — W2 + (X0 — x:)%}

(w7 ) (10.3)
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Our own intuition suggests a more powerful test of the hypothesis of inde-
pendence would result from using either

*Z(Wi_xi)z
EDXCEED

the ratio of the successive distances of the two organisms from each other and
from the starting point, or

R (10.4)

_ Z(Wi+l —w) (X4 — Xp)
2 AwE + xP}

the traditional measure of correlation.

We also favor R, and R; on the grounds of simplicity. To compute the
permutation distribution of R, we need to rearrange both sets of movements
{w;} and {x;}. To compute the permutation distribution of R, or R, we only
need to rearrange one set of movements. Whatever statistic we chose, we may
use its permutation distribution to obtain a test of statistical significance.

R; (10.5)

10.2.3. The Building Blocks of Life

In a fascinating state-of-the-art biological application, DNA sequencing,
Karlin et al. [1983] use permutation methods to assess the significance of
certain repeated patterns of nucleic acids in several viruses.

DNA, the self-replicating molecule that is the basis of life on Earth, is
assembled from four specific nitrogenous bases—adenine, guanine, thymine,
and cytosine. The sequence in which these bases occur in the DNA molecule
determines the structure of the organism. The triplet of deoxyribonucelotides
guanine-adenine-cytosine leads to the production of the amino acid aspar-
gine, for example. At issue is whether certain repeated patterns involving
multiple copies of lengthy nucleotide sequences is also significant or merely
the result of chance. Studying the distribution of repeated patterns that result
when one randomly reassigns the labels on the nucleotides while preserving
the total numbers of each label, Karlin et al. conclude that the observed pat-
terns are statistically significant. Hasegawa, Krishino, and Yano [X: 1988]
approach an analogous problem in DNA sequencing using bootstrap meth-
ods. The unraveling of the biological significance of the patterns continues to
be an important research problem.

10.2.4. Model Validation

The general circulation models of the Earth’s atmosphere and oceans used in
weather- and current-prediction are of mind-boggling complexity, while the
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Figure 10.1. The geometric meaning of the trinity statistics SITES, SPRED and
SHAPE. The statistic SITES is essentially a dimensionless measure of the separation
of data swarm centroids, while SPRED is a dimensionless measure of the differences
in the root-mean-square radii of the swarms. The statistic SHAPE is a combined
measure of the time evolution of the data swarms (and their associated maps). Note:
From “The numerical model/reality intercomposition tests using small-sample statis-
tics,” by R.W. Priesendorfer and T.P. Barnett, which appeared in Journal of the
Atmospheric Sciences; 1983; 40: 1884—-96. Reprinted with permission from the Ameri-
can Meteorological Society.

available data is all too finite. Priesendorfer and Barnett [1983] confront the
problem of model-reality comparison studies for general circulation models
head on by developing their own triple of metrics. In Figure 10.1a, and b
which illustrates some of their concepts, the set D represents actual on-site
data while M corresponds to a computer-generated model.

Rerandomization is accomplished in two steps. First, the data from D and
M is combined into a single data set. Then, this combined set is repeatedly
subdivided at random into sets of the same size as the original D and M. The
resultant reference distributions for each of the three metrics are used to
assess the agreement of the model with reality.
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How good is the Priesendorfer-Barnett test? The answer to this question
illustrates the value of the permutation approach to the scientist and engineer
whose primary training is not in statistics. For the answer does not depend
on the abilities of Priesendorfer and Barnett as statisticians—the calculations
in their test are straightforward—but on their abilities as meteorologists and
oceanographers. Their test of statistical significance will be a good one, if
they have selected the appropriate metric and the appropriate variables.

10.2.5. Structured Exploratory Data Analysis

A further illustration of this principle is given by Karlin and Williams [1984]
in their use of permutation methods in a structured exploratory data analysis
(SEDA) of familial traits. A SEDA has four principal steps:

1) The data are examined for heterogeneity, discreteness, outliers, and so
forth, after which they may be adjusted for covariates (as in Section 4.3)
and the appropriate transform applied (as in Section 9.3).

2. A collection of summary SEDA statistics are formed from ratios of func-
tionals.

3) The SEDA statistics are computed for the original family trait values and
for reconstructed family sets formed by permuting the trait values within
or across families.

4) The values of the SEDA statistics for the original data are compared with
the resulting permutation distributions.

As one example of a SEDA statistic, consider the OBP, the Offspring-
Between-Parent SEDA statistic:

|0;; — (M; + F)/2|

13

~-M=z
M=

- (10.6)
Y IF — M|

In family i = 1, ..., I, F; and M, are the trait values of the father and mother
(the cholesterol levels in the blood of the father and mother, for example),
while Oj; is the trait value of the jth child, j = 1,.. ., K;.

To evaluate the permutation distribution of the OBP, we consider all per-
mutations in which the children are kept together in their respective family
units, while we either:

a) randomly assign to them a father and (separately) a mother; or

b) randomly assign to them an existing pair of spouses. The second of these
methods preserves the spousal interaction. Which method we choose will
depend upon the alternative(s) of interest.



10.2. New Statistics 129

It would be difficult to establish the distribution of these measures or any
other SEDA statistics analytically. To obtain the permutation distribution
for the OBP statistic, we merely substitute its formula (10.6) in place of the
compute subroutine in our sample program (Section 4.2).

10.2.6. Comparing Multiple Methods of Assessment

We are often forced to combine several methods of assessment; one obvious
example is in quality control; another is in grading students: is an “A” in
statistics equivalent to an “A” in Spanish? Direct comparisons are difficult, if
not impossible, when students are free to choose their own courses. Table
10.1, reproduced with permission from Manly [1988] illustrates some of the
problems associated with free choice: Missing data is one obvious problem.
A second, hidden problem is that there is no guarantee that a student who is
good in statistics will do equally well in Spanish.

The solution to both problems is to develop some kind of aggregate mea-
sure, compute this measure separately for each course, and then check to see
how the distribution of this measure is affected by random relabellings of the
students.

Table 10.2, also taken from Manly, illustrates the computation of just such
a measure for the course in F. (The names of the actual courses have been
changed to letters to protect the identities of overly-generous and overly-
stingy graders.) The students are arranged in Table 10.2 in order of increasing
mean grade. Each student’s mark in course F is subtracted from that stu-
dent’s mean grade and the differences are cumulated.

If the marks in the various subjects are comparable, then each random
rearrangement of an individual student’s marks is equally likely. For exam-
ple, under the null hypothesis, student 6, who we see from Table 10.1 received
marks of 75, 46, 45, and 64 in subjects 4, C, E, and F might just as easily have
received marks of 64, 45, 75, and 46 in those same subjects. Had this been the
case, the CUMSUM score for subject F would have been 67.2 rather than
85.2. By looking at all possible arrangements of each student’s marks, we
obtain a permutation distribution against which the CUMSUM score for the
original arrangement can be assessed.

If the original score does not represent an extreme value, we conclude that
the marking for subject F is consistent with the marking for the other sub-
jects.

If, on the other hand the original CUMSUM score does represent an
extreme value, our next step is to rescale the marks for subject F, subtracting
and/or dividing by a constant. We repeat the test procedure using the re-
scaled values. And, in a manner akin to the way in which we derive a confi-
dence interval (see Section 3.2), we continue testing and rescaling until all the
marks in all the courses have been brought into alignment. Then, we may
safely combine the assessments.
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Table 10.2. CUSUM calculations for the subject F
marks of Table 1*

Student F mark Mean Difference CUSUM

38 42 325 9.5 9.5
28 67 510 16.0 25.5
21 80 56.0 24.0 49.5
6 64 57.5 6.5 56.0
33 51 58.5 =75 48.5
24 80 723 1.1 56.2
55 90 74.0 16.0 72.2
64 92 79.0 13.0 85.2
19 92 — — —

* Student 19 only took subject F. There is therefore no comparison
possible with other subjects and no contribution to the CUSUM.
Note: From “The comparison and scaling of student assessment
marks in several subjects” by B.F.J. Manly which appeared in Ap-
plied Statistics; 1988; 37: 385-95.

Note: Reprinted with permission from the Royal Statistical Society

10.3. Going Beyond

At this point, you may already be thinking about several problems of your
own for which you would like to develop an optimal test statistic. The pur-
pose of this last section of this chapter is to provide you with the basic
principles of selection. While in Chapter 14 we consider a number of formal
derivations based on the likelihood ratio, our approach in this chapter is
more intuitive. The three essential concepts we consider are sufficiency,
invariance, and loss.

10.3.1. Sufficiency

A statistic T(X) is sufficient for a parameter 0 (or a set of parameters {6;}) if
the conditional distribution of X given T is independent of 6. Once we have
calculated the value of a sufficient statistic or statistics, we may be able to
throw away the original observations, for frequently, a sufficent statistic(s)
can provide us with all the information a sample has to offer.

An example we have already encountered is that of the order statistics
X1y < X2y < - < X If we know these order statistics, we know as much
about the unknown distribution as we would if we had the original observa-
tions in hand.

Another commonly encountered example is that of the mean of a sample
of independent, identically Poisson-distributed random variables, a statistic
which is sufficient for the mean of the underlying Poisson distribution. Like-
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wise the mean of a sample of normally-distributed random variables is suffi-
cient for the mean of the underlying normally-distributed population. But
there is distinction: in the first example, the Poisson, the sample mean pos-
seses all the information the sample has to offer with regard to the underlying
single-parameter distribution. A normal distribution depends on two param-
eters, the population mean and the population variance. We need to compute
both the sample mean and the sample variance to obtain all the information
a sample from a normal distribution has to offer.

In selecting a statistic to test a hypothesis about a population parameter 8,
look first at those statistics which are sufficient for 0.

10.3.2. Invariance

If your measurements are made in feet, would you expect to reach the same
conclusions as you would if your measurements were made in inches? What
if you discover after you report your results that you forgot to rezero the
measurement device so that each of your readings is off by exactly 0.0123
grams. Would you still believe that your decision to accept the hypothesis is
correct? If your answers to both these questions is an unconditional “yes,”
then you are already applying the principle of invariance, implicitly if not
explicitly.

Many statistical problems involve symmetries. In the examples we’ve con-
sidered so far, the observations are exchangeable, so that the order in whicn
we made these observations is irrelevant. Our test statistic(s) should and
do reflect this same symmetry. The sample mean and sample variance are
good examples of statistics that are symmetric in the underlying variables.
Symmetry and invariance are related. The mathematical expression of sym-
metry is invariance under a suitable group of transformations. In generating
an optimal test, look for test statistics that preserve the structure and symme-
try of a problem.

10.3.3. Losses

A statistical problem is defined by three elements:

1) the class P = (P,, 8 € Q) to which the probability distribution of the obser-
vations is assumed to belong;

2) the set D of possible decisions {d} one can make on observing X =
(Xl""’Xn),

3) the loss L(d,0), expressed in dollars, men’s lives or some other quanti-
fiable measure, that results when we make the decision d when 0 is
true.
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When you and I differ in our assessment of the loss function, we are likely
to differ in our assessment of the practical significance of Type I and Type 11
error and, hence, in our choice of test statistic.

The loss function should be a key factor in the selection of a statistical test.
Even when we don’t know the exact values taken by a loss function, we have
some idea about its form. In many testing situations, for example, in the
analysis of variance and in some matched pair applications, the traditional
test statistic (or discrepancy measure in Mehta and Patel’s terminology) is a
function of the square of the distance between the observed or estimated
values and the hypothesis. Yet the natural measure is the distance itself.
A statistical procedure that minimizes the expected value of the one may not
minimize the expected value of the other [Mielke and Berry, 1982, 1983].

The principal reason for using the square of the distance is that it yields a
maximum likelihood solution when the underlying distribution is normal.
An assumption of normality may or may not be justified while maximum
likelihood itself can only be justified on the grounds of convenience.

A second and more compelling reason for using the square of the distance
in the data space would be that the loss function, a discrepancy measure in
the parameter space, is also proportional to the square. But if we are uncer-
tain about the form of the loss function, wouldn’t it be more natural to utilize
a test statistic that is linear in both the data and parameter spaces? A first-
order statistic will be more robust than a second-order statistic in the face of
questionably large deviations [Dodge, 1987].

The permutation approach frees us to choose the test statistic that is best
suited to the problem at hand. If a second-order statistic is called for, we may
use it, and if a first-order statistic is more appropriate, we may take advan-
tage of it instead. Through the use of resampling methods we are free to
choose the statistic best suited to the problem.

Recall from Section 4.2 that if we have more than two levels of a factor, we
have a choice of at least three test statistics:

J K I
=% 2 2 N Xijg. — X-jk-)2 (10.7)

Jj=1 k=1 i=1

a second-order statistic;

J K 1
Fl= 21 kil Z el Xie. — X je.| (10.8)
j=1 k=1 i=1
a first-order statistic; and
J K I .
= Z, ; ; M f U1 (X — X i) (10.9)

With the permutation approach, we are free to select the optimal statistic in
accordance with both the alternatives of interest and the underlying loss
function.
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10.4. Likelihood Ratio

As we shall see in Chapter 14.2, the primary criteria for selecting a test
statistic is the likelihood ratio. We assign to our acceptance region those
values of our test statistic for which the likelihood under the hypothesis is
much greater than it is under the alternative and to the rejection region those
values which are much more likely under the alternative than they are under
the hypothesis.

To see this intuitively, suppose the variables can take only a countable
number of values, P{X = x} = pi(x)fori=0,1,....

The optimal test is obtained by finding a set of values S to form the rejec-
tion region for which the significance level

Y po(x) < (10.10)
xeS
and the power
Y. py(x)is a maximum. (10.11)

xeS

Which values of x should we include in §? Clearly, we should include those
values which contribute the least to the significance level while contributing
the most to the power. In other words, we should include those values of x
with the largest values of the likelihood ratio

) = P19, (10.12)
Po(x)
We extend this result to continuous distribution functions in Section 14.2
with the fundamental lemma of Neyman and Pearson.

The cutoff—that is, the precise definition of “largest” values—is deter-
mined by the significance level. Using the likelihood ratio, we show in Chap-
ter 14 that the same criteria which led to the ¢-statistic and the F-ratio for the
parametric analysis of two and k samples, respectively, leads to the use of
statistics equivalent to the ¢ and the F-ratio for the corresponding permuta-
tion analyses. In Chapter 6.2, the likelihood ratio is used to derive Fisher’s
exact test and to show that it is the most powerful unbiased test we can
use with a 2 x 2 contingency table.

10.4.1. Goodness of Fit and the Restricted Chi-Square

In the next example, that of an r x 1 contingency table. we can not derive a
most powerful test that will protect us against all alternatives, but we can use
the likelihood ratio to derive a most powerful test against those alternatives
which are of immediate interest. The approach lends itself to any set of data
for which we have knowledge of an underlying model.



136 10. Which Statistic? Solving the Insolvable

Suppose the hypothesis to be tested is that certain events (births, deaths,
accidents) occur randomly over a given time interval. If we divide this time
interval into m equal parts and p; denotes the probability of an event in the
ith subinterval, the null hypothesis becomes H: p, = 1/mfori = 1,..., m. Our

test statistic is
2 L 1 2
= mn v, ——| ,
X i; ' m

where v, is the relative frequency of occurrence in the ith interval.

0 1 2 3 n—1
Vo Uy Up-1

To determine whether this test statistic is large, small, or merely average, we
examine the distribution of 2 for all sets of frequencies {v;} that satisfy the
two conditions

)v,20 i=1,...,m;and

2) Yy =1

We reject the hypothesis if the fraction of tables for which y? < 3 is less than
a.

We can obtain a still more powerful test when we know more about
the underlying model and, thus, are able to focus on a narrower class of
alternatives.

Suppose, in contrast to the previous example, that we use the m categories
to record the results of n repetitions of a series of m — 1 trials, that is, we let
the ith category correspond to the number of repetitions which result in
exactly i — 1 successes. If our hypothesis is that the probability of success is
.5 in each individual trial, then the expected number of repetitions resulting
in exactly k successes is 7, [.5] = n(¥)(.5)™

If we proceed as we did in the preceding example, then our test statistic
would be

m (v — m[.5])?
Sl =y2 = _—
C=n Y TS

Such a test provides us with protection against a wide variety of alterna-
tives. But from the description of the problem we see that we can restrict
ourselves to alternatives for which

m[p] = n()(p)(1 — p"*. (10.14)

Fix, Hodges, and Lehmann [X: 1959] show that a more powerful test statistic
against such alternatives is

(10.13)

S=38 —38,,
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where

& (v — pilp))?

S,=min ) — ——="_ (10.15)
z p i; ~[p]

The parametric form of the distribution of § is difficult if not impossible to

obtain analytically except for very large sample sizes; as always, the permuta-

tion distribution is readily computed.

10.4.2. Censored Data

In Section 9.5, we use the likelihood ratio to derive a globally almost power-
ful test for use with censored data.

Kalbfleish and Prentice [1980] also use the likelihood ratio to obtain tests
for use against highly specific alternatives when the underlying distributions
are censored. The calculations are complex, so these authors suggest boot-
strapping from the permutation distribution as a computational shortcut.
Their test is appropriate when the parameters of the alternative are known
with some precision. Against global and unspecified alternatives, the GAMP
test described in Section 9.5 is to be preferred.

10.4.3. Logistic Regression

Finally, we use the likelihood ratio to derive a procedure which is of inesti-
mable value in the analysis of epidemiological data. One of the earliest appli-
cations of logistic regression is that of Pike, Casagrande and Smith [1975].
For each subject, we have a pair of observations, x; the length of exposure
and y; the apparent effect, where y, may be a vector of several variables. To
eliminate extraneous variation, we divide the data into blocks based on age,
duration of residence, marital status, and so forth. Each block may be further
subdivided into two not necessarily equal-sized groups—cases and controls.
We would like to know if the risk of exposure is the same for each group and
to estimate the relative risk.

Following Breslow and Day [1980, 1987], we condition the likelihood of
x given y on the set of exposures without regard to which are cases and which
are controls.

L(xjly;=1) I:[ (x;1;=10)

Z H L(xpjly; = 1) n L(Xg5|y; = 0)

neR j=1

:&-
II X

(10.16)

where R is the set of ("}™) possible reassignments = of case labels to subjects
and the likelihood
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pr(y|x)pr(x)
pr(y)

Assume that within a block, the observations satisfy the logistic regression
model, so that

L(x|y) =

expla + px]
1 + exp[a + px]

The conditional likelihood (10.1) reduces to
n 1
[1 exp[ ) ﬂkxn(j)k]
j=1 k=0
n 1
Z l_[ exp[ I—[ ﬁkxn(j)k:l
neR j=1 k=0

an expression which depends only on the relative risk parameters §, and B,

priylx} =

(10.17)

10.5. Questions

1. Suppose you wish to compare two groups of observations. Would it be better to
compare them using the two-sample comparison of Section 3.3 or the matched
pairs technique of 3.6? Is your decision rule an “always ...” or does it depend
on how the observations are dispersed and the relative importance of the co-
variates used to do the matching?

2. Suppose you have discarded the n original observations in the sample, keeping
only the n order statistics, when you obtain independent evidence that the data is
normally distributed: can you still compute the sample mean and variance?

3. Suppose you have multiple observations on each subject, some in feet, some in
inches, some in pounds. Should they all be transformed to a common unit of
reference before you begin your multivariate analysis? What transformation(s)
should you use?

4. What statistic(s) remain invariant under an arbitrary monotone increasing trans-
formation of the observations? Is this result relevant to the preceding question?

5. Ninety-nine percent of all scientists ignore the loss function and make do with a
predesignated significance level and a minimum power level against one or two
selected alternatives. Reconsider the statistical analyses you performed recently.
What was the loss function in each instance? Were the test statistics you selected
appropriate for this loss function?

6. a. Can the four k-sample statistics, F1, F2, F3, and R introduced in Section 4.2.2
be made equivalent to one another if we eliminate terms that are invariant under
permutations?

b. If your answer to the previous question is “no,” will there be data sets for which
tests based on F1, F2, and R lead to different conclusions?
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. How would you decide which of these statistics to use?
. Are you free to compute the permutation distributions of F1, F2, and R for a

specific data set and then choose the statistic which does the best job of proving
your point?

. Suppose you were an examiner at the FDA; how would you react to a sub-

mission the authors of which had done just that?

. If you were one of those authors, how would you justify your choice of test

statistic to an examiner at the FDA?

. Throughout this text, we have tried to justify our choice of statistic on the

grounds that the resuitant test was a) unbiased, b) most powerful, ¢) minimized
losses, or was d) invariant under transformations of location and scale. Do these
criteria satisfy your own instincts? What other criteria can you suggest?



CHAPTER 11

Which Test Should You Use?

In this chapter we provide you with an expert system for use in choosing an
appropriate testing technique. Your expert system comes to you in two ver-
sions—a professional’s handbook with detailed explanations of the choices,
and a short, “quick-reference” version at the end of the chapter.

11.1. Sources of Variation

A few preliminary definitions are required. First, we distinguish a parametric
from a nonparametric test:

To perform a parametric test, we must assume the observations come from
a probability distribution which has a specific parametric form. For example,
an observation, X, has the Poisson distribution with parameter 4 if the prob-
ability that X = kis A*exp[—A]/k!fork =0, 1,2,.... An observation, X, has
the normal distribution with location parameter yu and scale parameter o if
the probability density, h(x), is

o [ (x - u)z]
e LT 207 |

While there exist various techniques for verifying whether a set of observa-
tions does or does not have a Poisson or normal distribution, the following
heuristic definitions have proved of great value in practice:

An observation has the Poisson distribution if it is the cumulative result of
a large number of opportunities each of which has only a small chance of
occurring. For example, if we seed a small number of cells into a petri dish
that is divided into a large number of squares, the distribution of cells per
square follows the Poisson.

An observation has the Gaussian, or normal, distribution if it is the sum of
a large number of factors—each of which makes a very small contribution to

140
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the total. This explains why the mean of a large number, N, of observations,
N

X. =) X;/N, will be normally distributed even if the individual observa-
=1

tions X; come from quite different distributions.

By contrast, proportions and the ratios of variables or sums of variables
seldom have a normal distribution.

In many applications in economics and pharmacology where changes are
often best expressed in percentages, a variable may be the product of a large
number of variables each of which makes only a near unit contribution to the
total. Such a variable has the lognormal distribution and, because log[ [ x; =
Y log(x;), its logarithm has a normal distribution.

The normal distribution is easy to recognize. It is symmetrically distrib-
uted about the mean and falls off rapidly in the tails so there is only a small
probability of observing extremely large or extremely small values.

Many other distributions one encounters in practice—chi-square, Beta,
Student’s t and the F-ratio are all examples—may be derived from variables
which have the normal distribution. For example, if X has the normal distri-
bution with mean 0 and variance o2 then Y = (X/o)? has the chi-square
distribution with one degree of freedom.

Gamma distributions,

a-1_,-x/b

f(x|a,b) =

T@p*”

come into existence in complex systems where the failure of several simple
parallel components is necessary before the system fails to function.

The literature is replete with methods for determining whether observa-
tions are normally distributed. My own preference is to use a nonparametric
test and, preferably, a permutation test whenever there is the slightest doubt
as to the nature of the underlying distribution.

Of course, one may use a parametric test when:

1) You have a large number of observations ( >20) in each category; or

2) You have a very small number of observations in each category and the
assumptions underlying the corresponding parametric test may be relied
on.

For example, if we have only three observations with which to test the hy-
pothesis that the mean of a symmetric distribution is zero, the sample space
for the permutation test is limited to 2% or 8 rerandomizations. As a result,
we must randomize on the boundary except for significance levels that are
multiples of 1/8th. At all significance levels, a more powerful parametric test,
and (if we may rely on the normality of the observations) a uniformly most
powerful unbiased parametric test may be obtained directly from tables of
the t-statistic.
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11.2. Comparison with the Parametric Test and
the Bootstrap

These caveats aside, in most practical testing situations, we would advise the
reader to use a permutation test or, at least, to use the permutation distribu-
tion in place of the parametric distribution:

The permutation test is exact under relatively nonstringent conditions: in
the one-sample problem, the variables must have symmetric distributions; in
the two- and k-sample problem, the variables must be exchangeable among
the samples.

The permutation test provides protection against deviations from para-
metric assumptions, yet it is usually as powerful as the corresponding unbi-
ased parametric test even for small samples.

With two binomial or two Poisson populations, the most powerful un-
biased permutation test and the most powerful parametric test coincide.
With two normal populations, the most powerful unbiased permutation
test and the most powerful unbiased parametric test are asymptotically
equivalent.

Using the permutation test means you can choose the statistic that is best
adapted to your problem and to the alternatives of interest.

Consider a permutation test before you turn to a bootstrap. The bootstrap
is not exact except for quite large samples and, often, is not very power-
ful. But the bootstrap can sometimes be applied when the permutation test
fails: one example is interaction in an unbalanced design (Section 4.4) for
which neither an exact parametric test nor an exact permutation test can be
formulated.

11.3. A Guide to Selection

The initial division of this guide is into three groupings: categorical data,
discrete data, continuous data.

11.3.1. The Data Are in Categories

Examples include men vs. women, white vs. black vs. Hispanic vs. other; and
much improved vs. improved vs. no change vs. worse vs. much worse.

Only a single factor is involved.

You are testing the goodness of fit of a specific model. See Section 10.4.1.
Only two factors are involved. For example, sex vs. political party.

Each factor is at exactly two levels.
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There is a single table.

Use Fisher’s exact test (see Section 6.2).

There are several 2 x 2 tables.

Use odds’ ratio test (see Section 6.2.2).
One factor is at three or more levels.

This factor is not ordered as would be the case with a factor like race.
You want a test that provides protection against a broad variety of
alternatives.

Use the permutation distribution of the chi-square statistic (sec-
tion 6.3.1).
You wish to test against the alternative of a cause-effect dependence.
Use the permutation distribution of t (Freeman and Halton,
1958; see Section 6.3.1 for other possible tests).
This factor can be ordered.
Use Pitman correlation (see Section 3.5).
Both factors are at three or more levels.
Neither factor can be ordered.

The alternative is that the first factor is caused or affected by the

other.

Use the permutation distribution of Kendall’s tau or Cochran’s Q
(see Section 6.3).
A cause and effect relationship is not suspected.
Use the permutation distribution of the chi-square statistic (see
Section 6.3).
One factor can be ordered.
Assign scores to this factor based on your best understanding of its
effects on the second variable.

All the odds ratios are approximately equal.

Use 45 or the Goodman-Kruskal test (see Section 6.4).

Some but not all of the odds ratios are close to one.

Use 4, or the likelihood ratio test (see Chapter 6, Section 4).
A third covariate factor is present.
Use the method of Bross [1964]. See Section 6.5.

11.3.2. The Data Are Discrete, Taking the Values from the
Finite Set O, 1, ..., n or the Infinite Set 0, 1, 2, ....

Each sample consists of a fixed number of independent identically distributed
observations which can be either 0 or 1. (A set of trials each of which may
result in a success or a failure is one example.)

Only one or two samples are involved.
Use the parametric test for the binomial. See for example, Lehmann,
[1986] pp. 81, 154.
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More than two samples, but only one factor is involved.
Analyze as indicated above under categorical data.
More than one factor is involved.
Transform the data to equalize the variances. For each factor combi-
nation, take the arcsin of the square root of the proportion of observa-
tions that take the value 1. Analyze the results as indicated below
under continuous data.
Each sample consists of a set of independent identically distributed Pois-
son observations.
Only one or two samples are involved.
Use the parametric test for the Poisson. In the two-sample case, note
that the UMPU test uses the binomial distribution. See for example,
Lehmann [1986, pp. 81, 152].
More than two samples are involved.
Transform the data to equalize the variances by taking the square
root of each observation. Analyze as indicated below under continu-
ous data.
Each sample consists of a set of exchangeable observations whose distribu-
tion is unknown.
There is a single sample.
The data may be assumed to come from a symmetric distribution.
Use the permutation test for a location parameter that is described
in Chapter 3.1.
The data may not be assumed to come from a symmetric distribution.
Use the bootstrap described in Section 3.4. If you have only a few
subjects, consider using a multivariate approach (see Chapter 5).
There is more than one sample.
Use one of the permutation tests designed for data with continuous
distributions that is described in Chapters 3 and 4. Treat tied obser-
vations as separate distinct observations when you form rearrange-
ments. Be cautious in interpreting a negative finding; the significance
level may be too large simply because the test statistic can take on too
few distinct values.

11.3.3. The Data Are Continuous

How precise do our measurements have to be so that we may categorize
them as “continuous” rather than discrete? Should they be accurate to two
decimal places as in 1.02? or four as in 1.0203? To apply statistical procedures
for continuous variables, the observations need only be precise enough that
there are no or only a very few ties.

If you recognize that the data has the normal distribution,
a parametric test like Student’s ¢ or the F-ratio may be applicable. But
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you can protect yourself against deviations from normality by making
use of a permutation test based on the ¢ statistic or the F.
You have only a single sample.
You want to test that the location parameter has a specific value.
And you feel safe in assuming that the underlying distribution is sym-
metric about the location parameter.
Use the procedure described in Section 3.1.
If the distribution is not symmetric,
but has a known parametric form
apply the corresponding parametric test;
and does not have a known parametric form,
consider applying an initial transformation that will symmetrize
the data. For example, take the logarithm of data that undergoes
percentage changes. Be warned that such a transformation affects
the form of the loss function.
and/or bootstrap (see Section 3.4).
You want to test that the scale parameter has a specific value.
First, divide each observation by the hypothesized value of the scale
parameter. Then, apply one of the procedures noted above for testing
a location parameter.
You have two samples.
You want to test whether the scale parameters of the two populations
are equal.
You know the means/medians of the two populations or you know
that they are equal.
Use the permutation-distribution of the F-ratio based on the sample
variances (see Section 3.3.2).
You have no information about the means/medians of the two popu-
lations.
The sample sizes are equal.
Use the pivot-permutation test (Section 3.4).
Sample sizes are not equal.
Use the bootstrap (Section 3.4).
You want to test whether the location parameters of the two popula-
tions are equal.
If changes are proportional rather than additive, consider working
with the logarithms of the observations.
If the data are censored or you suspect outliers, see Chapter 9.
Each sample consists of measures taken on different subjects.
Use the two-sample comparison described in Section 3.3.
Two observations were made on each subject; these observations
are to be compared.
Use the matched-pair comparison described in Chapter 3, Sections
1 and 6.
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You have more than two samples
If changes are proportional rather than additive, consider working with
the logarithms of the observations.
If the data is censored or you suspect outliers, see Chapter 9.
A single factor distinguishes the various samples.
You can’t take advantage of other factors to block the samples.
The factor levels are not ordered.
Use the permutation distribution of an F-ratio (see Section 3.5).
The factor levels are ordered.
Use Pitman’s correlation (Section 3.5.2).

You can take advantage of other factors to block the samples.
Rerandomize on a block-by-block basis, then apply one of the tech-
niques described in Sections 3.6 and 3.7.

Multiple factors are involved.

One of the factors consists of repeated measurements made over time.
Treat the repeated measurements as components of a single multi-
variate vector. See Section 5.5.

All observations are exchangeable.

The experimental design is balanced.
All the factors are under your control.
Use one of the permutation techniques described in Section 4.2.
Not all the factors are under your control.
First, correct for the functional relation-ship among factors or
use restricted randomization as described in Section 4.3, then,
use one of the permutation techniques described in Section 4.2.
The experimental design is not balanced.
Some factors will be confounded. A book on experimental de-
sign such as that of Kempthorne [1952], can help you determine
which factors. Consider the bootstrap (see Section 4.4.2).

11.4. Quick Key
Categorical Data

Single factor, r = 1
Goodness of fit, 10.4.1.
Two factors, r = 2
c=2
single table
use Fisher’s exact test, 6.2
several 2 x 2 tables
use Zelen’s exact test, 6.2.2
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c>2.
not ordered
use C?or 1, 6.3
ordered
use Pitman correlation, 3.5.
Two factors, r > 2, ¢ > 2
not ordered
use 7, 0 =6.2, 6.3
ordered
use 4, or 45, 6.4
with covariate
use Bross method, 6.5.

Discrete Data

Binomial Data
one factor, one or two samples
see Lehmann [1986, pp. 81, 154]
one factor, more than two samples
see categorical data
more than one factor
see continuous data.
Poisson data
one or two samples.
see Lehmann [1986, pp. 81, 152]
more than two samples
see under continuous data.
Other exchangeable observations
one sample.
symmetric distribution
See 3.1
not symmetric
use bootstrap
more than one sample
transform data; see under continuous data.

Continuous Data

One sample
test of location parameter
symmetric distribution
See 3.1
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not symmetric
attempt to transform to some known parametric or symmetric
form
test of scale parameter
rescale and test as for location parameter.
Two samples
test equality of scale parameters
means/medians of the two populations are known or
are known to be equal
F-ratio of the sample variances, 3.3.2
otherwise
permute or bootstrap, 3.4
test equality of location parameters
samples not matched
two-sample comparison, 3.3
samples are matched
matched-pair comparison, 3.7, 3.1.
More than two samples
single factor
no blocking
levels not ordered
F-ratio, 3.5
levels ordered
Pitman correlation, 3.5.2
blocks
resample block by block, 3.6, 3.7
multiple factors
repeated measures
muitivariate analysis, 5.5
independent observations
balanced design
all factors under your control, 4.2
otherwise, correct as in 4.3,
then apply 4.2
unbalanced design
consult text on experimental design; consider bootstrap 4.4.2.



CHAPTER 12
Publishing Your Results

McKinney et al. [1989] report that more than half the published articles that
apply Fisher’s exact test do so improperly. Our own survey of some fifty
biological and medical journals supports their findings. This chapter pro-
vides you with a positive prescription for the successful application and pub-
lication of the results of resampling procedures. First, we consider the rules
you must follow to ensure that your data can be analyzed by statistical and
permutation methods. Then, we describe two commercially-available com-
puter programs that can perform a wide variety of permutation analyses.
Finally, we provide you with five simple rules to prepare your report for
publication.

12.1. Design Methodology

It’s never too late to recheck your design methodology. Recheck it now in the
privacy of your office rather than before a large and critical audience. All
hypothesis-testing methods rely on the independence and/or the exchange-
ability of the observations. Were your observations independent of one
another? What was the experimental unit? Were your subjects/plots assigned
at random to treatment? If not, how was randomization restricted? With
complex multifactor experiments, you need to list the blocking variables and
describe your randomization scheme.

12.1.1. Randomization in Assignment

Are we ever really justified in exchanging labels among observations? Con-
sider an experiment in which we give six different animals exactly the same
treatment. Because of inherent differences among the animals, we end up

149
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with six different measurements, some large, some small, some in between.
Suppose we arbitrarily label the first three measurements as “controls” and
the last three as “treatment.” These arbitrary labels are exchangeable and
thus the probability is one in 20 that the three “control” observations will all
be smaller than the three “treatment.” Now suppose we repeat the experi-
ment, only this time we give three of the animals an experimental drug and
three a saline solution. To be sure of getting a positive result, we give the
experimental drug to those animals who got the three highest scores in the
first experiment. Not fair, you say. Illegal! Illegitimate! No one would ever do
this in practice.

In the very first set of clinical data that was brought to me for statistical
analysis, a young surgeon described the problems he was having with his
chief of surgery. “I’ve developed a new method for giving arteriograms which
I feel can cut down on the necessity for repeated amputations. But my chief
will only let me try out the technique on patients that he feels are hopeless.
Will this affect my results?” It would and it did. Patients examined by the new
method had a very poor recovery rate. But, of course, the only patients who’d
been examined by the new method were those with a poor prognosis. The
young surgeon realized that he would not be able to test his theory until he
was able to assign patients to treatment at random.

Not incidentally, it took us three more tries until we got this particular
experiment right. In our next attempt, the chief of surgery—Mark Craig of
St Eligius in Boston—announced that he would do the “random” assign-
ments. He finally was persuaded to let me make the assignment using a table
of random numbers. But then he announced that he, and not the younger
surgeon, would perform the operations on the patients examined by the
traditional method to make sure “they were done right.” Of course, this
turned a comparison of methods into a comparison of surgeons and intent.

In the end, we were able to create the ideal “double blind” study: the young
surgeon performed all the operations, but the incision points were deter-
mined by his chief after examining one or the other of the two types of
arteriogram.

12.1.2. Choosing the Experimental Unit

The exchangeability of the observations is a sufficient condition for a permu-
tation test to be exact. It is also a necessary condition for the application of
any statistical test.

Suppose you were to study several pregnant animals that had been inad-
vertently exposed to radiation (or acid rain or some other undesirable pollut-
ant) and examine their offspring for birth defects. Let X;;i=1, ..., [;j =1,
..., n; denote the number of defects in the jth offspring of the ith parent; let

Y, = Z X;;i=1,...,  denote the number of defects in the ith litter. The {Y;}
Jj=1
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may be exchangeable; (we would have to know more about how the data
were collected). The {X;;} are not; the observations within a litter are interde-
pendent; what affects a parent affects all her offspring. In this experiment, the
litter is the correct experimental unit.

In a typical toxicology study, a pathologist may have to examine three to
five slides at each of fifteen to twenty sites in each of three to five animals just
to get a sample size of one.

12.2. Statistical Software for Exact
Distribution-Free Inference

StatXact® uses the algorithms developed by Mehta and Patel to help per-
form a wide variety of permutation tests for one and two samples, R x C
contingency tables, and stratified 2 x 2 and 2 x C contingency tables. The
two-sample procedures include stratified linear rank tests, Wilcoxon-Mann-
Whitney test, logrank and Wilcoxon-Gehan tests for censored survival data,
normal scores test, and trend test with equally spaced scores. The manual
incorporates many excellent examples from the literature.

LogXact® performs exact logistic regressions as described in Cox [1970].
(StatXact and LogXact are available for IBM-PC compatible microcom-
puters from Cytel Software, 137 Erie St, Cambridge MA 02139. 617/661-2011.)

Most commercially available statistical packages have some provision for
running Fisher’s exact test in the analysis of a 2 X 2 contingency table.
“Proc Freq” in SAS® uses the Mehta-Patel network algorithm to obtain
exact rejection levels for R x C contingency tables. See also Chen and
Dunlap [1993].

RT ¥ performs permutation tests on one- and two-samples (though fewer
than can be done in StatXact), plus analysis of variance, regression analysis,
matrix randomization tests, tests on spatial data, time series analysis, and
multivariate analysis using Wilk’s lambda statistic and Romesburg’s sum
of squares statistic E. Applications are drawn from Manly [1991]. (RT is
available for IBM-PC compatible microcomputers from West, 1406 South
Greeley Highway, Cheyenne WY 82007. 307/634-1756.)

TESTIMATE uses permutation distributions to provide one- and two-
tailed tests and the associated confidence intervals, tests for equivalence as
well as tests for difference, plus a variety of weighting methods and test
statistics for analyzing categorical data (see Section 6.3.1). (TESTIMATE is
available for IBM-PC compatible computers from idv, Wessobrunner Str. 6,
D-82131 Gauting/Munich Germany. 0049.89.8508001.)
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12.3. Preparing Manuscripts for Publication

You've laid the groundwork. You’ve done the experiment. You’ve completed
the analysis. Five simple rules can help you prepare your article for
publication:

1.

State the test statistic explicitly. Reproduce the formulae. If you cite a text,
for example, [Good, 1994], include the page number(s) on which the sta-
tistic you are using is defined.

. State your assumptions. Are your observations independent? Exchange-

able? Is the underlying distribution symmetric? Permutation tests can not
be employed without one or all of these essential assumptions. See Draper
et al. [1993], Gastwirth and Rubin [1971], and Hettmansperger [1984]
for discussions of this point.

. State which labels you are rearranging. Provide enough detail that any

interested reader can readily reproduce your results. In other words, re-
port your statistical procedures in the same detail you report your other
experimental and survey methodologies.

. State whether you are using a one-tailed or a two tailed-test. See Chapter

6, Section 2 for help in making a decision.

. a) If you detect a statistically significant effect, then provide a confidence

interval (see Section 3.2). Remember: an effect can be statistically signi-
ficant without being of practical or scientific significance.

b) If you do not detect a statistically significant effect, could a larger
sample or a more sensitive experiment have detected one? Consider
reporting the power of your test. (See Section 13.7.)



CHAPTER 13

Increasing Computational Efficiency

13.1. Five Techniques

With today’s high-speed computers, drawing large numbers of subsamples
with replacement (the bootstrap) or without (the permutation test) is no
longer a problem; unless and until the entire world begins computing re-
sampling tests. To prepare for this eventuality, and because computational
efficiency is essential in the search for more powerful tests, a secondary focus
of research in resampling today is the development of algorithms for rapid
computation.

There are five main computational approaches, several of which may be
and usually are employed in tandem:

1. The Monte Carlo, in which a sample of the possible rearrangements is
drawn at random and these samples are used in place of the complete
permutation distribution.

2. Rapid enumeration and selection algorithms, whose object is to provide a
rapid transition from one rearrangement to the next.

3. Branch and bound algorithms that eliminate the need to evaluate each
individual rearrangement.

4. Solutions through characteristic functions and fast Fourier transforms.

5. Asymptotic approximations, for use with sufficiently large samples.

In the following sections, we consider each of these approaches in turn.

13.2. Monte Carlo

Instead of examining all possible rearrangements, we can substantially re-
duce the computations required by examining only a small but representative
random sample [Dwass, 1957; Barnard, 1963]. In this process, termed a
“Monte Carlo,” we proceed in stages:
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1) We rearrange the data at random.

2) We compute the test statistic for the rearranged data and compare its
value with that of the statistic for the original sample.

3) We apply a stopping rule to determine whether we should continue sam-
pling, or whether we are already in a position to accept or reject.

The program fragments reproduced in Chapters 3—5 of this text use the
Monte Carlo approach. In the not necessarily optimal computer algorithm
introduced in those chapters, all the observations in all the subsamples are
loaded into a single linear vector, X = {X[0], X[1],...,X[N — 1]}. Then, a
random number is chosen from the set of integers 0, 1, ..., [ with [ = N — 1
initially. If the number we choose is i, X[i] is swapped with X[/] in a three-
step process:

temp := X[i];
X[L]:=X[-1];
X[1—-1]:= temp;

and ! is decremented. This process is repeated until we have rearranged the
desired number of observations and are ready to compute the test statistic for
the new rearrangement.

We don’t always need to reselect all N observations. For example, in a
two-sample comparison of means, with N = n + m, our test statistic only
makes use of the last m observations. Consequently, we only need to choose
m random numbers each time.

After we obtain the new value of the test statistic we compare it with the
value obtained for the original data. We continue until we have examined N
random rearrangements and N values of the test statistic. Typically, N is
assigned a value between 100 and 1600 depending on the precision that
is desired (see Section 13.2.2 and Marriott [1979]). Through the use of a
Monte Carlo, even the most complicated multivariate experimental design
can be analyzed in less than a minute on a desktop computer.

13.2.1. Stopping Rules

If a simple accept/reject decision is required, we needn’t perform all N calcu-
lations, but can stop as soon as it is obvious that we must accept or reject the
hypothesis at a specific level. In practice, I use a one-sided stopping rule
based on the 10%; level. Suppose in the first n rearrangements, we observe a
fraction H(n) with a value of the test statistic that is as or more extreme than
the value for the original observations. If H(n) > 0.1N, then we accept the
hypothesis at the 10% level. Otherwise, we continue until n = N and report
the exact percentage of rejections. Besag and Clifford [P: 1991] and Lock
[1991] describe two-sided sequential procedures in which the decision to
accept, reject, or continue is made after each rearrangement is examined.
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13.2.2. Variance of the Result

The resultant estimated significance level p is actually a binomial random
variable B(N, p), where N is the number of random rearrangements and p is
the true but still unknown value of the significance level. The variance of p is
p(1 — p)/N. If p is 10%, then using a sample of 81 randomly selected re-
arrangements provides a standard deviation for p is of 19;. A sample of 364
reduces the standard deviation to 0.25%.

The use of a variable in place of a fixed significance level results in a minor
reduction in the power of the test particularly with near alternatives [Dwass,
1957]. In most cases, this reduction does not appear to be of any practi-
cal significance; see Vadiveloo [1983]; Jockel [1986]; Bailer [1989];
Edgington [1987]; and Noreen [1989].

13.2.3. Cutting the Computation Time

The generation of random rearrangements creates its own set of computa-
tional problems.

Each time a data element is selected for use in the test statistic, two compu-
tations are required: 1) a random number is selected; and 2) two elements in
the combined sample are swapped.

The ideal futuristic computer will have a built-in random number genera-
tor—Tfor example, it might contain a small quantity of a radioactive isotope,
with the random intervals between decays producing a steady stream of
random numbers. This futuristic computer might also have a butterfly net-
work that would randomly swap ten or one hundred elements of an array in
a single pass.

Today, in the absence of such technology, any improvements in computa-
tion speed must be brought about through software. Little direct research has
been done in the area, although recently Baglivo et al. [1992] reported on
techniques for doing many of the repetitive computations in parallel. I did
some preliminary work in which I considered a sort of drunkard’s walk
through the set of rearrangements: the first rearrangement was chosen at
random; thereafter the program stumbled from rearrangement to rearrange-
ment swapping exactly two data elements at random each time. The results
were disappointing. Any savings in computation time per rearrangement
were more than offset by the need to sample four or five times as many
rearrangements to achieve the same precision in the result.

13.3. Rapid Enumeration and Selection Algorithms
If we are systematic and proceed in an orderly fashion from one rearrange-

ment to the next, we can substantially reduce the time required to examine a
series of rearrangements. Optimal algorithms for generating sequences of
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rearrangements are advanced by Walsh [1957]; Boothroyd [1967]; Plack-
ett [1968]; Yangimoto and Okimnoto [1969]; Boulton [1974]; Hancock
[1974]; Bitner, Ehrlich, and Rheingold [1976]; Akl [1981]; and Bissell
[1986]. See, for example, the review by Wright [1984]. Recent minimal
change algorithms include those of Berry [1982]; Lam and Sotchen [1982];
Nigam and Gupta [1984]; and Marsh [1987].

13.3.1. Matched Pairs

Sometimes we can reduce the number of computations that are required by
taking advantage of the structure inherent in the way we label or identify
individual permutations. In the case of paired comparisons, we readily enu-
merate each possible combination by running through the binary numbers
from 0 to 2" — 1, letting the Os and 1s in each number (obtained via successive
right shifts, a single machine language instruction in most computers) corre-
spond to positive and negative paired differences, respectively.

Censoring actually reduces the time required for enumeration. For if there
are n, censored pairs, then enumeration need only extend over the 2"
values that might be assumed by the uncensored pairs. In computing the
GAMP test for paired comparisons, it is easy to see that

Pr{U’ > U.AND.S > S} = Pr{U’ > U} »Pr{§' > S}.

U+L U
vz = 5 (1)

The remaining probability, Pr{S’ > S}, may be obtained by enumeration and
inspection.

13.4. Focus on the Tails: Branch and
Bound Algorithms

We can avoid examining all N! rearrangements, if we focus on the tails, using
the internal logic of the problem to deduce the number of rearrangements
that yield values of the test statistic that are as extreme or more extreme than
the original.

Green [1977] was the first to suggest a branch and bound method for use
in two-sample tests and correlation. Our description of Green’s method is
based on [De Cani, 19797

In the two-sample comparison described in Section 3.2, suppose our test

m
statistics, T,is ) X,), and that the observed value is T,. We seek P(T > Ty),
=1

the probability under the null hypothesis that a random value of T equals or
exceeds 7.
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Assume that the combined observations are arranged in descending order
X4, = X5 = -+ = Xy, To simplify the notation, let Z; denote the ith order
statistic X ;. If the labels (subscripts) on the X’s really are irrelevant (as they
would be under the null hypothesis) then T can be regarded as a random
sample of m of the observations selected at random without replacement
from the {Z}.

Suppose we have selected k such values, Z, , ..., Z; , k < m The maximum
attainable value of T is obtained by adding to Z; + -+ Z; the m—k
largest of the N — k remaining elements. Call this maximum T(l,...,[).
Similarly, the minimum attainable value of T is obtained by adding to
Z;, + -+ + Z;, the m — k smallest of the N — k remaining elements. Call this
minimum t(l,,...,1). Given l,, ..., I,, we can bound T:

tlgye. ) < T < Ty, k).

N —
There are ( k) sets of m elements of Z whose totals lie between the

given bounds.
If t(ly,..., ;) = Tp, then

If T, > T(,,...,1,), then

N—k\/(N
P(TzTo)Sl‘(m—k>/<m>

If T, lies between the bounds, or if we require an improved bound on
P(T > T,), then we can add a k + 1th element to the index set.

Our results apply equally to any test statistic of the form Y f[x,], where
=1

f is a monotone increasing function. Examples of such monotone functions
include the logarithm (when applied to positive values), ranks, and any of the
other robust transformations described in Chapter 9.

13.4.1. Contingency Tables

A large number of authors have joined in the search for a more rapid method
for enumerating the tail probabilities for Fisher’s exact test, including Leslie
[1955]; Feldman and Kluger [1963]; Good [1976]; Gail and Mantel [1977];
Pagano and Halvorsen [1981]; and Patefield [1981]. See, for example, the
review by Agresti [1993]. A quantum leap toward a more rapid method took
place with the publication of the network approach of Mehta and Patel
[1980]. Their approach is widely applicable, as we shall see below. It has
three principal steps:
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1. Representation of each contingency table as a path through a directed
acyclic network with nodes and arcs

2. An algorithm with which to enumerate the paths in the tail of the distribu-
tion without tracing more than a small fraction of those paths

3. Determination of the smallest and largest path lengths at each node.

Only the last of these steps is application specific.
Network algorithms have been developed for all of the following:

2 x C contingency tables; [Mehta and Patel, 1980]

R x C contingency tables; [Mehta and Patel, 1983]

the common odds ratio in several 2 x 2 contingency tables [ Mehta, Patel,
and Gray, 1985]

logistic regression; [ Hirji, Mehta, and Patel, 1987]

restricted clinical trials [ Mehta, Patel, and Wei, 1988]

linear rank tests and the Mantel-Haenszel trend test [Mehta, Patel, and
Senchaudhuri, 1988]

For simplicity, we focus in what follows on the 2 x C contingency table.

13.4.1.1. Network Representation

Define the reference set I' to be all possible 2 x k contingency tables (see
Chapter 6) with row marginals (m,n) and column marginals (t;,¢,,...,%).
Thus each table, x e T, is of the form

X; Xz ... X 0m
X] X5 ... X n
ty t, ... t N

For each table x € I', we may define a discrepancy measure
k
d(x) = Z ai(m;_q, x;)

and a probability

he) = €71 T iy, x)

where the part1a1 sum m; = Z x;., and the normalizing constant

cC=Y H A(mi_y, X;). Important special cases of d(x) and h(x) are

d(x) = ]_[ ax;

for linear rank tests and



13.4. Focus on the Tails: Branch and Bound Algorithms 159

o= 11(2)/()

for unordered contingency tables.
As in Section 6.3, our object is to compute the one-sided significance level
p =Y h(x), where R is the set on which d(X) > d,.
R

First, we represent I" as a directed acyclic network of nodes and arcs.
Following Mehta and Patel [1983], the network is constructed recursively in
k + 1 stages labelled 0, 1, 2, ..., k. The nodes at the jth stage are ordered
pairs (j,m;) whose first element is j and whose second is the partial sum of the
frequencies in the first j categories of the first row. If there is a total of 2
observations in the 1st category, then there will be three nodes at the first
stage (1,0), (1,1), (1, 2)—corresponding to the three possible distributions of
elements in this category.

Arcs emanate from the node (j, m;); each arc is connected to exactly one
successor node. Each path linking (0,0) with the terminal node (k, m) corre-
sponds to a unique contingency table. For example, the path

0,00 - (1,0) > (2,2) - (3,4 - (4.4

corresponds to the table

18]
oo
o
[\S]
S

The total number of paths in the network corresponds to the total number of
tables. We could count the total number of tables by tracing each of the
individual paths. But we can do better.

13.4.1.2. The Network Algorithm

Our goal in network terms is to quickly identify and sum all paths whose
lengths do not exceed d-h: for the original unpermuted table. Let I; = I'(j, m;)
denote the set of all paths from any node ( j, m;) to the terminal node (k, m). In
other words. I represents all possible completions of those tables in I' for
which the sum of the first j cells of row 1 is m;. Define the shortest path length

K
SP(j,m;) = min Z a;(m;_y, x;)

xel; i=j+1

and the longest path length

k
LP(j,m;) = max Z a(m;—y, x;).

xel; i=j+1
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Let L(PAST) denote the length of a path from (0, 0) to (j, m;). If this path is
such that

L(PAST) + LP(j,m)) <d-h,

then all similar subpaths from (0,0) to (j, m;) of equal or smaller length con-
tribute to the p value. This number can be determined by induction—the
details depend on the actual form of d and h, and thus we need not enumerate
the tables explicitly. if this path is such that

L(PAST) + SP(j,m;) > d-h,

then we can ignore it and all similar paths of equal or greater length—again,
without actually enumerating them.

If the path satisfies neither condition, then we extend it to a node at the
J + 1th stage, compute the new shortest and longest path lengths and repeat
the calculation.

The shortest and longest path lengths may be determined by dynamic
programming in a single backward pass through the network. Dynamic pro-
gramming is used by Mehta and Patel [1980] in their first seminal paper.
Their original approach can be improved upon in three ways:

1) by taking advantage of the structure of the problem;

2) by a Monte Carlo, randomly selecting the successor node at each stage;

3) by a Monte Carlo utilizing importance sampling, that is, weighting the
probabilities with which an available node is selected so as to reduce the
variance of the resultant estimate of p.

The three approaches can be combined: A highly efficient two-pass algo-
rithm for importance sampling using backward induction followed by for-
ward induction was developed by Mehta, Patel, and Senchaudhuri [1988].
Their new algorithm guarantees that all rearrangements sampled will lie
inside the critical region. A result of Joe [1988] also represents a substantial
increase in computational efficiency.

13.5. Characteristic Functions

As the sample size increases, the number of possible rearrangements increases
exponentially. For example, in the one-sample test of a location parameter
based on n observations, there are 2" possible rearrangements. When finding
the permutation distribution of a statistic that is a linear combination of
some function of the original observations, Pagano and Tritchler [1983]
show we can reduce the computation time from C,2" to C,n® where c is, we
hope, much less than n.

Their technique requires two steps: In the first, they determine the charac-
teristic function of the permutation distribution through a set of difference
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equations. This step requires 2Qm(m + n) complex multiplications and addi-
tions to find the characteristic function at Q points. In the second, they use
the basic theorem in Fourier series to invert the characteristic function and
determine or approximate the permutation distribution at U < Q different
points. This step requires 2Q log Q calculations. Q is normally chosen to be a
power of 2 (e.g., 256 or 512) so that one can take advantage of a fast Fourier
transform; the exact number will depend on the precision with which one
wants to estimate the significance level.

This method is chiefly of historic interest; branch and bound algorithms
offer greater computational efficiency, particularly when coupled with impor-
tance sampling. Vollset, Hirji, and Elashoff [P: 1991] found that the fast
Fourier transform method can result in considerable loss of numerical
accuracy.

13.6. Asymptotic Approximations
13.6.1. A Central Limit Theorem

The fundamental asymptotic result for the permutation distribution of the
two-sample test statistic for a location parameter was first stated by Madow
[1948] and formalized by Hoeffding [1951, 1952] who demonstrates conver-
gence of the distribution of the Studentized test statistic under the alternative
as well as under the null hypothesis.

Let T, = T(X 3, ..., X(,) be the test statistic and let u, and o2 be its first
and second moments respectively. Then the permutation distribution F, of
7:1 — Ky

an
ments of T, converges to ®, the Gaussian (normal) distribution function.

This result means that for sufficiently large samples, we can give our com-
puters a rest, at least temporarily, and approximate the desired p-value with
the aid of tables of the normal distribution. To use these tables, we need to
know the first and second moments of the permutation distribution. Occa-
sionally, with samples of moderate size, we may also need to know and use
the third and higher moments in order to obtain an accurate approximation.
Moments for the randomized block design are given by Pitman [1937] and
Welch [1937], for the Latin Square by Welch [1937]; for the balanced in-
complete block by Mitra [1961]; and for the completely randomized design
by Robinson [1983], and Bradbury [1988].

Extensions to, and refinements of, Hoeffding’s work are provided by
Silvey [1954, 1956], Dwass [1955], Motoo [1957], Erdos and Renyi
[1959], Hajek [1960, 1961], and Kolchin and Christyakov [1973]. Asympto-
tic results for rank tests are given in Jogdeo [1968] and Tardif [1981].
For further details of the practical application of asymptotic approximations

Z, = obtained by randomly rearranging the subscripts of the argu-
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to the analysis of complex experimental designs, see Lehmann [1986],
Kempthorne, Zyskind, Addelman, Throckmorton, and White [1961], and
Ogawa [1963].

13.6.2. Edgeworth Expansions

While the Gaussian distribution may provide a valid approximation to the
center of the permutation distribution, it is the tails (and the p-values of the
tails) with which we are primarily concerned. Edgeworth expansions give
good approximations to the tails in many cases. Edgeworth expansions for
the distribution function under both the alternative and the null hypothesis
have been obtained by Albers, Bickel, and Van Zwet [1976], Bickel and
Van Zwet [1978], Robinson [1978], and John and Robinson [1983].

Saddlepoint methods and large deviation results give still better approx-
imations in the tails. Saddlepoint approximations for the one- and two-
sample tests of location as suggested by Daniels [1955, 1958] are derived
by Robinson [1982]. Saddlepoint approximations for use with general linear
models for both the permutation distribution and the bootstrap are given by
Booth and Butler [1990].

13.6.3. Generalized Correlation

Test statistics for location parameters are almost always linear or first-order
functions of the observations. By contrast, test statistics for scale parameters,
the chi-square statistic, and the Mantel-Valand statistic for generalized cor-
relation are quadratic or second-order functions of the observations. Their
limiting distributions are not Gaussian but chi-square or a Pearson type III
distribution [Berry and Mielke, 1984, 1986, and Mielke and Berry, 1985].
Other asymptotic approximations for second-order statistics are given by
Shapiro and Hubert [1979], O’Reilly and Mielke [1980], and Ascher and
Bailar [1982].

13.7. Sample Size, Power, and Confidence Intervals

Suppose we are in the design stages of a study and we intend to use a per-
mutation test for the analysis. How large should our sample sizes be? Our
answer will depend on three things:

the alternative(s) of interest
the power desired at these alternatives
the significance level.
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A not unrelated question arises if we conclude an analysis by accepting the
null hypothesis. Does this mean the alternative is false or that we simply did
not have a large enough sample to detect the deviation from the null hypoth-
esis? Again, we must compute the power of the test for several alternatives
before we are able to reach a decision.

We estimate the power by drawing a series of K (simulated) random sam-
ples from a distribution similar to that which would hold under the alterna-
tive. For each sample, we perform the permutation test at the stated signifi-
cance level and record whether we accept or reject the null hypothesis. The
proportion of rejections becomes our estimate of the power of the test.

When designing a study, I use K = 100 until I am ready to fine tune the
sample size, when I switch to K = 400. I also study (estimate) the power for
at least two distinct alternatives.

For example, when testing the hypothesis that the observations are normal
with mean 0 against the alternative that they have a mean of at least 1, I will
sample from alternatives with at least two different variances: say, one with
variance equal to unity, and one with variance equal to 2, where 1 is my best
guess of the unknown variance, and 2 is a worst-case possibility.

When doing an after-the-fact analysis of the power, I use estimates of the
parameters based on the actual data. If the pooled sample variance is 1.5,
then I use a best guess of 1.5 and a worst case of 3 or even 4. 1 may end by
doing 8K N computations, where N is the average number of permutations I
inspect each time I perform the test.

With such a large number of calculations, it is essential that I take advan-
tage of one or more of the computational procedures described in Sections 2
through 6 of this chapter. Oden [1991] offers several recommendations.
Gabriel and Hsu [1983] describe an application-specific method for re-
ducing the number of computations required to estimate the power and de-
termine the appropriate sample size.

13.8. Some Conclusions

In the Monte Carlo, we compute the test statistic for a sample of the possible
rearrangements, and use the resultant sampling distribution and its percen-
tiles in place of the actual permutation distribution and its percentiles. The
drawback of this approach is that the resultant significance level p’ may
differ from the significance level p of a test based on the entire permutation
distribution. p’ is a consistant estimate of p with a standard deviation on the
order of Np(1 — p) where n is the number of rearrangements considered in
the Monte Carlo.

In the original Monte Carlo, the rearrangements are drawn with equal
probability. In a variant called importance sampling, the rearrangements are
drawn with weights chosen so as to minimize the variance. In some instances,
when combined with branch and bound techniques as in Mehta, Patel, and
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Senchaudhuri [1988], importance sampling can markedly reduce the number
of samples that are required. (See also Besag and Clifford [1989].)

A second drawback of the Monte Carlo is that selecting a random arrange-
ment is itself a time-consuming operation that can take several multiples of
the time required to compute the sample statistic. A current research focus is
on rapid enumeration and selection algorithms that can provide a fast transi-
tion from one rearrangement to the next. To date, all solutions have been
highly application-specific.

Branch and bound algorithms eliminate the need to evaluate each rear-
rangement individually. The network approach advanced by Mehta and Patel
can cut computation time by several orders of magnitude. STATXACT®,
a user-friendly program for IBM-PC compatible computers that uses the
Mehta-Patel approach is available from Cytel Software, 137 Erie St, Cam-
bridge MA 02139, 617/661-2011. STATXACT provides for two-sample
comparisons, the logrank test for censored survival data, the Fisher exact test
for 2 x 2 contingency tables, tests of R x C contingency tables, and tests for
stratified contingency tables. Newer versions of the program offer impor-
tance sampling as an option.

Solutions through characteristic functions are seldom of practical interest.
When subsamples are large—and it is the size of the subsample or block, not
the sample as a whole, that is the determining factor—an asymptotic approx-
imation should be considered. In my experience as an industrial statistician
with the pharmaceutical and energy industries, the opportunity to take ad-
vantage of an asymptotic approximation seldom arises. In preclinical work,
one seldom has enough observations. And in a clinical trial, though the
sample size is large initially, one is usually forced to divide the sample again
and again to correct for covariates. In practice, contingency tables always
have one or two empty cells. The errors in significance level that can result
from an inappropriate application of an asymptotic approximation are am-
ply illustrated in Table 6.4.

If you are one of the favored few able to take advantage of an asymptotic
approximation, you first will need to compute the mean and variance of the
permutation distribution. In some cases, you will also need to calculate and
use the third and fourth moments to increase the accuracy of the approxima-
tion. The calculations are different for each test, for details, consult the refer-
ences in the corresponding sections of this text.

13.9. Questions

1. Most microcomputer-based random number generators use multiplicative congru-
ence to produce a 16-bit unsigned integer between 0 and 2!5. Yet in the two-
sample comparison, for example, we only use one of the 15 bits, the least significant
bit, in selecting items for rearrangement. Could we use more of the bits? That is,
are some or all of the bits independent of one another? Write algorithm(s) that take
advantage of multiple bits.
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2. Apply the Mehta and Patel approach to the following 3 x 2 contingency table:

Compute the marginals for this table. Draw a directed graph in which each node
corresponds to a 3 x 2 table whose marginals are the same as those of the proceed-
ing table. Choose a test statistic (see Section 6.3). Identify those nodes which give
rise to a value of the test statistic less than that of the original table.

3. Suppose you are interested in the theoretical alternative

46 16  1/6
16 4/6 1/6

How big a sample size would you need to insure that the probability of detecting
this alternative was 809 at the 109/ significance level? (Hint: use a six-sided die to
simulate the drawing of samples.)



CHAPTER 14

Theory of Permutation Tests

In this chapter, we establish the underlying theory of permutation tests. The
content is heavily mathematical, in contrast to previous chapters, and a
knowledge of calculus is desirable.

14.1. Fundamental Concepts

In this section, we provide formal definitions for some of the concepts intro-
duced in Chapter 2, including distribution, power, exact, unbiased, and the
permutation test, itself.

14.1.1. Dollars and Decisions

A statistical problem is defined by three elements:

1) the class F = (F,, 8 € Q) to which the probability distribution of the obser-
vations belongs; for example, we might specify that this distribution is
unimodal, or symmetric, or normal;

2) the set D of possible decisions {d} one can make on observing X =
(X17""Xn)’

3) theloss L(d, 0), expressed in dollars, men’s lives or some other quantifiable
measure, that results when we make the decision d when @ is true.

A problem is a statistical one when the investigator is not in a position to
say that X will take on exactly the value x, but only that X has some proba-
bility P{A} of taking on values in the set A.

In this text, we’ve limited ourselves to two-sided decisions in which either
we accept a hypothesis, H, and reject an alternative, K; or we reject the
hypothesis, H, and accept the alternative, K.

One example is:

166
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H:0 <6,

K: 0> 6,.
In this example, we would probably follow up our decision to accept or reject
with a confidence interval for the unknown parameter 6. This would take the
form of an interval (6,,;,, 0...,) and a statement to the effect that the probabil-
ity that this interval covers the true parameter value is not less than 1 — a.
This use of an interval can rescue us from the sometimes undesirable “all or
nothing” dichotomy of hypothesis vs. alternative.

Another hypothesis/alternative pair which we considered in Section 3.6,

under “testing for a dose response,” is

H: 01 ="'=9J
K:6, <<,

In this example, we might want to provide a confidence interval for
max 6; — min 6;. Again, see Sections 3.2 and 7.4.

J J

Typically, losses, L, depend on some function of the difference between the
true (but unknown) value 6 and our best guess 8* of this value; L(0,0*) =
|6 — 6*| for example. In the first of the preceding examples, we might have

L@,d)y=6— 6, if6e Kandd = H,
L6,d) =10 if6e Handd =K,
L6,d)=0 otherwise.

Our objective is to come up with a decision rule, D, such that when we
average out over all possible sets of observations X, we minimize the asso-
ciated risk or expected loss,

R(8, D) = EL(0, D(X)).

Unfortunately, a testing procedure that is optimal for one value of the
parameter, 8, might not be optimal for another. This situation is illustrated in
Chapter 2, in Figure 2.4 with two decision curves that cross over each other.
The risk, R, depends on 8 and we don’t know what the true value of 6 is!
How are we to choose the best decision?

This problem is complex with philosophical as well as mathematical over-
tones; we refer the interested reader to the discussions in the first chapter of
Erich Lehmann’s book, Testing Statistical Hypotheses [1986]. Our own solu-
tion in selecting an optimal test is to focus on the principle of unbiasedness
discussed below in 14.1.3

14.1.2. Tests

A test, ¢, is simply a decision rule that takes values between 0 and 1. When
#(x) = 1, we reject the hypothesis and accept the alternative; when ¢(x) = 0,
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we accept the hypothesis and reject the alternative; and when ¢(x) = p, with
0 < p < 1, we flip a coin that has been weighted so that the probability is p
that it will come up heads, whence we reject the hypothesis, and 1 — p that it
will come up tails, whence we accept the hypothesis.

An a-level permutation test consists of a vector of N observations z, a
statistic T'[z], and an acceptance criterion A: R x R — [0, 1], such that for all
z, ¢(z) = 1 if and only if

W(z) = zn A(T[z], T[z]) < aN!

where II is the set of all possible rearrangements of the n + m observations.

14.1.3. Distribution Functions, Power, Exact, and
Unbiased Tests

The distribution function F(x) = Pr{X < x}; F(x) is nondecreasing on the
real line and 0 < F(x) < 1. If F is continuous and differentiable, then it has a
density f(x) such that [*_ f(z)dz = F(x).

We define the power f, of a test ¢ based on a statistic X as the expectation
of ¢: By(6) = E*¢(X) = [2, fdF,, where Fy is the distribution of X. Note that
B, is a function of the unknown parameter 6 (and, possibly, of other, nuisance
parameters as well). For the majority of the tests in this book, f,(0) =
Pr{¢ =1|6}.

If 0 satisfies the hypothesis, then B4(0) is the probability of making a Type
I error if 6 is true.

If 6 satisfies the alternative, then 1 — B,(6) is the probability of making a
Type 11 error if 6 is true.

A test, ¢, is said to be exact with respect to a set w of hypotheses if E¥¢ = a,
for all H € . A test is conservative under the same circumstances if E#¢ < a,
for all H € w. The use of an exact, and thus conservative, test guarantees that
the Type I error will be held at or below a predetermined level.

A test, ¢, is said to be unbiased and of level a providing that its power
function f satisfies

B4(0) < a if 0 satisfies the hypothesis
B4(0) = « if 0 satisfies one of the alternatives.

That is, using an unbiased test, ¢, you are more likely to reject a false hypoth-
esis than a true one.

14.1.4. Exchangeable Observations

Suppose that X, ..., X, are distributed as F(x), while Y, ..., ¥, are distrib-
uted as F(x — J), and that F has probability density f.
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A sufficient condition for a permutation test to be exact is the exchange-
ability of the observations [Lehmann, 1986, p. 231]. Let S(z) be the set of
points obtained from z = (xy,...,X,,, V1, - ., V) by permuting the coordinates
of z in all (n + m)! possible ways.

Theorem 1. If F is the family of all (n + m)-dimensional distributions with
probability densities, f, that are integrable and symmetric in their arguments,
and we wish to test alternatives of the form f(x(,...,Xpmy1 — 0,...,¥, — )
against the hypothesis that d = 0, a test ¢ is unbiased for all f € F if and only

if Y ¢@E)=an+mae

z'eS(z)

The proof of this result relies on the fact that the set of order statistics
constitute a complete sufficient statistic for F. See, for example, Lehmann
[1986, pp. 45-6, 143—4, 231]. Also see problem 2 in this Chapter. For more
on exchangeability, see Koch [1982], and Romano [1990].

14.2. Maximizing the Power

In this section, we set about deriving the most powerful unbiased test for the
two-sample testing problem. We will show that the two-sample test for a
location parameter is unbiased against stochastically increasing alternatives.
We define the likelihood ratio and restate, without proof, the fundamental
theorem of Neyman and Pearson. We apply this theorem to show that the
two-sample permutation test based on the sum of the observations is uni-
formly most powerful among unbiased tests against normal alternatives. Fi-
nally, we establish the intimate interdependence of confidence intervals and
hypothesis tests. We follow closely the derivations provided in Lehmann

[1986].

14.2.1. Uniformly Most Powerful Unbiased Tests

A family of cumulative distribution functions is said to be stochastically in-
creasing if the distributions are distinct and if 8 < 6’ implies Fy(x) > Fy(x)
for all x. One example is the location parameter family for which Fy(x) =
F(x —0). If X and X' have distributions Fy and F;, then P{X > x} <
P(X’ > x}, that is, X’ tends to have larger values than X. Formally, we
say that X' is stochastically larger than X.

Lemma 1. F,(x) < Fy(x) for all x only if there exist two nondecreasing func-
tions f, and f, and a random variable V such that f, < f, for all v and the
distributions of f, and f, are F, and F, respectively.

Proof. Set fi(y) = inf{x: F(x — 0) < y < Fi(x)}, i =0, 1. These functions are
nondecreasing and for f; = f, F, = F satisfy f[F(x)] < xand F[f(y)] > y for
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all x and y. Thus, y < F(x,) implies f(y) < f[F(xo)] < xo and f(y) < x,
implies F[ f(y)] < F(x,) implies y < F(x,).

Let V be uniformly distributed on (0, 1). Then P{ fi(V) < x} = P{V < F{(x)}
= F;(x) which completes the proof. []

We can apply this result immediately:

Lemma 2. Let X, ..., X,; Y;,..., Y, be samples from continuous distributions
F, G, and let [ X,..., X,; Y1,..., Y,] be a test such that a) whenever F = G,
its expectation is a; and b) y; <y; for 1 =1, ..., n implies ¢[x,,...,%Xp;
Viseoos V] S O0[Xy, s X3 V1, Yul- Then the expectation of ¢ is greater than
or equal to o for all pairs of distributions for which Y is stochastically larger
than X.

Proof. From our first lemma, we know there exist functions, f and g, and
independent random variables, V,, ..., V,.,, such that the distributions of
f(V;) and g(V;) are F and G respectively and f(z) < g(z) for all z.

ESLIfN),-. . (Vi f(V1)s s f()] = @
and
ESLfN),-- o, (V) g(V1)s...,9(V,)] = B.

From condition b) of the lemma, we see that § > « as was to be proved. []
We are now in a position to state the principal result of this section:

Theorem 2 (Unbiased). Let X, ..., X,; Y1, ..., Y, be samples from continuous
distributions F, G. Let B(F,G) be the expectation of the critical function ¢
defined in (14.1); that is, [ X,,..., X Y1,..., Y, 1 = 1 only if Y Y, is greater

than the equivalent sum in o of the " : " possible rearrangements. Then
B(F,F) = o and B(F, G) = a for all pairs of distributions for which Y is sto-
chastically larger than X; B(F, G) < a if X is stochastically larger than Y.

Proof. B(F, F) = a, follows from Theorem 1 and the definition of ¢. We can
apply our lemmas and establish that the two-sample permutation test is
unbiased if we can show that y; < y; for j = 1,..., n implies

¢[Xl,.. -,xm;yl"--’yn] < ¢[xl""’xm;y,1’-'-’y:n]-
¢ = 1 if sufficiently many of the differences

m+n m+n
d(TL’)= Z Zi— Z Zj,
i=m+1 i=m+1

are positive. For a particular permutation 7 = (j,,..., jusn)
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14 P

d(ﬂ') = Z Zs,- - Z z'i
i=1 i=m+1
where r; < - <r, denote those of the integers jys+1, ---5 jm+n that are less

than or equal to m, and s; < --* < s, denote those of the integers m + 1, ...,
m + n that are not included in the set (j,115-- - > Jm+n)-

If Yz, — Yz, is positive and y; <y, thatis z;<z; for i=m+1, ...,
m + n, then the difference ) z; — Y z,, is also positive; so that ¢(z’) > ¢(2).
But then we may apply the lemmas to obtain the desired result. The proof is
similar for the case in which X is stochastically larger than Y. []

14.2.2. The Fundamental Lemma

In Section 10.4, we showed that if the variables take only a countable number
of values, then the most powerful test of a simple hypothesis P, against a
simple alternative P, rejects the hypothesis in favor of the alternative only for
those values of x with the largest values of the likelihood ratio

— p1(x)
Po(x)

We can extend this result to continuous distribution functions with the aid of
the fundamental lemma of Neyman and Pearson:

r(x)

Theorem 3. Let P, and P; be probability distributions possessing densities p,
and p, respectively.
a) There exists a test ¢ and a constant k such that

Eo¢(X) =a
and

1 when p,(x) > kpo(x)

¢(X) = 0 when pl(x) > kpo(x)

b) A test that satisfies these conditions for some k is most powerful for
testing p, against p, at level o.

c) If ¢ is most powerful for testing p, against p, at level «, then for some k
it satisfies these conditions (except on a set that is assigned probability zero by
both distributions and unless there exists a test at a smaller significance level
whose power is 1).

A proof of this seminal lemma is given in Lehmann [1986, p. 74].

Let z denote a vector of n + m observations, and let S(z) be the set of points
obtained from z by permuting the coordinates z; (i = 1,...,n + m) in all
(n + m)! possible ways.

Among all the unbiased tests of the null hypothesis that two sets of obser-
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vations come from the same distribution, which satisfy the permutation
condition

Y é(')=an + m),
z' € 8(2)
which is the most powerful?

Let t=T(z) denote the corresponding set of order statistics
(zay < 22y < *** < Zz+m)- Lehmann [1986, p. 232] showed that the problem
of maximizing the power of a test ¢ subject to the permutation condition
against an alternative with arbitrary fixed density, h, reduces to maximizing

h(z)
zezs:m ¢(Z) ’ZS(z) h(Z’).

By the fundamental lemma of Neyman and Pearson, this expression is
maximized by rejecting the hypothesis and setting ¢(z) = 1 for those points z
of S(t) for which the ratio

h(z)/ Y. h(z) (14.1)
z' e S(t)
is largest. The most powerful unbiased a-level test is given by rejecting when
h(z) > C[T(z),«] and accepting when h(z) < C[T(z),«]. To achieve « exactly,
it may also be necessary to use a chance device and to reject with some
probability, y, if h(z) = C[T(z),«].

To carry out this test, we order the permutations according to the values
of the density h. We reject the hypothesis for the k largest of the values, where

k<an+m)! <k+1.

The critical value C depends on the sample through its order statistics T
and on the density h. Thus different distributions for X will give rise to
different optimal tests.

14.2.3. Samples from a Normal Distribution

In what follows, we consider three applications of the likelihood ratio: testing
for the equality of the location parameters in two populations, testing for the
equality of the variances, and testing for bivariate correlation.

Suppose that Z,, ..., Z,, and Z,.,, ..., Z,,,, are independent random
samples from normal populations N(y, 6%) and N( + 6,62). Then

h(z) = 2no)~N"2 exp[—%(i (z;—n)* + "im (zi—n— 5)2>].

j=m+1
1 n+m n+m
= (2na)™"? exp[—ﬁ( Y g—mP=20 Y (z—m+ néz)].
g~ \ j=1 j=m+1

Before substituting this expression in our formula, 14.1, we may eliminate
all factors which remain constant under permutations of the subscripts. These
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n+m
include 2ma)~®*™'2, n§(6 + ), and Z (z; — n)*. The resulting test rejects
n+m
when exp [6 Y :|> C[T(2),a] or, equlvalently, when the sum of the
j=m+1

observations in the treated sample Y  z; is large. This sum can take at most
(n + m)! possible values and our rejection region consists of the a(n + m)!
largest.

This permutation test is the same whatever the unknown values of # and ¢
and thus is uniformly most powerful against normally-distributed alterna-
tives among all unbiased tests of the hypothesis that the two samples come
from the same population.

14.2.4. Testing the Equality of Variances

As a second and elementary illustration of the likelihood ratio approach,
suppose we are given that z,, ..., z, are independent and identically normally
distributed with mean 0 and variance 62, N(0,62), and that z,_,, ..., Z,,., are
independent and identically normally distributed with mean 0 and variance
72, N(0,7%). We wish to test the hypothesis that 62 = 12 against the alterna-
tive that o> < 72,

Let 6 = 12/0?% and note that hypothesis and alternative may be rewritten as
H:0=1vsK:0> 1.

1 n 1 n+m
Then h(z) = 2n)~"+tm/2gmg " exp[——~ IR zf]
—(n+tm)/2n—n/2 1 C 2 o 2
= (2no) 0~"%exp ~52 ] Z Z+ Y oz
1 nt+m
= (2ng)~mtmI2g=n/2 exp[—?<(0 1) Z z} + Z ):I

Eliminating terms that are invariant under permutations of the combined
sample, such as the sum of the squares of all n + m observations, we are left
with the expression

1 n
exp[—ﬁ(ﬂ - 1);1 zf]
Our test statistic is the sum of the squares of the observations in the first
sample.
14.2.5. Testing for Bivariate Correlation

Suppose we have made N simultaneous observations on the pair of variables
X, Y and wish to test the alternative of positive dependence of Y on X against
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the null hypothesis of independence. In formal terms, if Y, is the random
variable whose distribution is the conditional distribution of Y given that
X = x, we want to test the null hypothesis that Y, has the same distribution
for all x, against the alternative that if x’ > x, then Y,. is likely to be larger
than Y,.

To find a most powerful test of this hypothesis that is unbiased against
alternatives with probability density h(z), we need to maximize the expression

h(z)
zezs:mﬂ) Y k)

z'eS(@)

For bivariate normal alternatives,

h(z) = 2mot /1 —p )exp|: 2(1A )]

1 & 2p & 1 &
whereA=272j;(xj—11)2+Ej;l(xj—n)(yj—V)+Wj;(yj—V)2-

Many of the sums that occur in this expression are invariant under permu-
tations of the subscripts j. These include the four sums Y xj, . y; Y. X7,
Y yjz. Eliminating all these invariant terms leaves us with the test statistic
F= 2 %iYai:

We evaluate this statistic both for the original data and for all n! permuta-
tions of the subscripts of the y’s, keeping the subscripts on the x’s fixed. We
reject the null hypothesis in favor of the alternative of positive dependence
only if the original value of the test statistic exceeds all but a9, of the values
for the rearrangements.

Reordering the x’s so that x(;, < x,) < ... < x,, we see that this test is
equivalent to using Pitman correlation (Section 3.5) to test the hypothesis of
the randomness of the y’s against the alternative of an upward trend.

14.3. Confidence Intervals

Let x = {X;,X,,...,X,} be an exchangeable sample from a distribution, F,,
which depends upon a parameter, § € Q. A family of subsets, S(x), of the
parameter space Q is said to be a family of confidence sets for § at level 1 — a
if
P{0eSX)}=>1—ua for all 0 € H(?').
The family is said to be unbiased if
P{0eSX)}<l—a for all 8 € Q — H(®).

The construction of a confidence set from a family of acceptance regions is
described in Chapter 3. The following theorem shows us this construction
can proceed in either direction.
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Theorem 4.1. For each @ € Q, let A(0') be the acceptance region of the level-a
test for H(@'): 0 = @, and for each sample point, x, let S(x) denote the set of
parameter values {0: x € A(6), 0 € Q}. Then S(x) is a family of confidence sets
for 8 at confidence level 1 — a.

4.2, If for all ', A(®) is UMPU for testing H(0') at level a against the
alternatives K (&), then for each 6 in Q, S(X) minimizes the probability

P{0 € S(X)} for all 6 € K(0')

among all unbiased level 1 — o family of confidence sets for 0.

Proof 4.1. By definition, 0 € S(x) if and only if x € A(6), hence Py{0 € S(X)} =
P{XeA@B)} =1 —a

Proof 4.2. If S*(x) is any other family of unbiased confidence sets. at level
1 — o and if 4*(0) = {x: 6 € S*(x)}, then

P{XeA*0)} = P{0 eS*x)} =1 —a for all 8 € H(#'),
and
P{XeA*@) =P{0eS*(X)} <1—a forallfeQ— H®),

so that A*(q’) is the acceptance region of a level-o unbiased test of H(&').
Since Ais UMPU,

P{X € A*(0)} > P,{X € A()} forall0eQ— H(B),

hence Pp{6 € S*(x)} > P,{0' € S(x)} for all 6 Q — H(¢'), as was to be
proved. (]

14.4. Asymptotic Behavior

A major reason for the popularity of the permutation tests is that with very
large samples their power is almost indistinguishable from that of the most
powerful parametric tests. To establish this result, we need to know some-
thing about the distribution of the permutation statistics as the sample size
increases without limit. Two sets of results are available to us. The first, due
to Wald and Wolfowitz [1947] and Hoeffding [1953] provides us with con-
ditions under which the limiting distribution is normal under the null hy-
pothesis; the second, due to Albers, Bickel, and Van Zwet [1976] and Bickel
and Van Zwet [1978] provides conditions under which this distribution is
normal for near alternatives.

14.4.1. A Theorem on Linear Forms

Let Sy = (Sy1>Sn2»---»Syy) and Uy = (uyy, s, ..., Uyy) be sequences of real
numbers and let sy, = Y sy;/N; uy. = Y uyj/N.
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The sequences Sy satisfy the condition W, if for all integers r > 2,
|Z(ij —sy.)|
Z [(ij - SN.)Z]'/Z

The sequences Sy, Uy jointly satisfy the condition H,, if for all integers
r>2,

W(Sy,r) = is bounded above for all n.

lim N2 *W(Sy, r)W(Uy,r) =0
N

The sequences Sy, Uy jointly satisfy the condition H,, if
for all integers r > 2,

max (sy; — Sy.)” max (uy; — uy.)
lim N .
N Z(ij —sy) Z(“Nj —uy)

For any value of N let X = (x,,x,,...,xy) be a chance variable whose
possible values correspond to the N! permutations of the sequence Ay =
(ai,a,,...,ay). Let each permutation of 4y have the same probability 1/N'!
and let E(Y) and SD(Y) denote the expectation and standard deviation of the
variable Y.

Theorem 5. Let the sequences Ay = (ay,a,,...,ay) and Dy =(d,,d,,...,dy)

for N=1, 2, ..., satisfy any of the three conditions W, H,, and H,. Let

the chance variable Ly be defined as Ly =Y d;x;. Then as N — 0,
t

1
Pr{Ly — E(Ly) < tSD(Ly) —»—f e %2 .
{ N N N} V/Zin e

A proof of this result for condition W is given in Wald and Wolfowitz
[1944]. The proof for conditions H, and H, is given in Hoeffding [1953].

This theorem applies to the majority of the tests we have already consid-
ered, including:

1) Pitman’s correlation ) da;;

2) the two-sample test with observations a,, ..., a,,,,; and d; equal to one if
i=1,..., mand zero otherwise,

3) Hotelling’s T with {a,;} and {a,;} the observations—both sequences must
separately satisfy the conditions of the theorem, and d; = 1/m for i =1,
..omdi=—1/mfori=m+1,...,m+n.

14.4.2. Asymptotic Efficiency

In this section, we provide asymptotic expansions to order N ! for the power
of the one- and two-sample permutation tests and compare them with the
asymptotic expansions for the most powerful parametric unbiased tests. The
general expansion takes the form
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by=1co+ c N2+ ¢, yN+0o(N7Y),

where the coefficients depend on the form of the distribution, the signifi-
cance level, and the alternative—but in both the one- and two-sample cases,
the expansions for the permutation test and the ¢-test coincide for all terms
through N~!. The underlying assumptions are: 1) the observations are inde-
pendent; 2) within each sample they are identically distributed; and 3) the two
populations differ at most by a shift, G(x) = F(x — §) where 6 > 0. S(p, F, 6)
and f(t, F, 6) are the power functions of the permutation test and the param-
etric t-test, respectfully (see Section 2.3). The theorem’s other restrictions
are technical in nature and provide few or no limitations in practice; e.g., the
significance level must lie between 0 and 1 and the distribution must have
absolute moments of at least 9th order. We state the theorem for the one-
sample case only.

Theorem 6. Suppose the distribution F is continuous and that positive numbers
C, D, and r > 8 exist such that [ |x|"dF[x] < Cand 0 < 5 < DN™'2, then if a
is neither 0 nor 1, there exists a B > 0 depending on C and D, and a b > 0
depending only on r such that | B(p, F,8) — B(t, F,8)| < BN,

Proof of this result and details of the expansion are given in Bickel and
Van Zwet [1976]. The practical implication is that for large samples the per-
mutation test and the parametric t-test make equally efficient use of the data.

Robinson [1989] finds approximately the same coverage probabilities for
three sets of confidence intervals for the slope of a simple linear regression
based, respectively, on: 1) the standardized bootstrap; 2) parametric theory;
and 3) a permutation procedure. Under the standard parametric assump-
tions, the coverage probabilities differ by o(n™'), and the intervals themselves
differ by O(n™!) on a set of probability 1 — O(n™?).

14.4.3. Exchangeability

The requirement that the observations be exchangeable can be relaxed at
least asymptotically for some one-sample and two-sample tests. Let X, ...,
X, be a sample from a distribution F that may or may not be symmetric. Let
R,(x,I1,) be the permutation distribution of the statistic 7,,(X4,...,X,) and
let r, denote the critical value of the associated permutation test; let J,(x, F)
be the unconditional distribution of this same statistic under F; and let ®
denote the standard normal distribution function.

Theorem 7 If F has mean 0 and finite variance 6* > 0, and T, = n**X then as
n— o,

sup, |R,(x,I1,) — J,(x, F)| = O with probability 1,
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and sup,. |R,(x,T1,) — ®(x/c)| — O with probability 1. Thus r, - oz,, with prob-
ability 1 and Ez[¢(R,)] — o.

A proof of this one-sample result is given in Romano [1990]; a similar
one-sample result holds for a permutation test of the median subject to some
mild continuity restrictions in the neighborhood of the median.

The two-sample case is quite different. Romano [1990] shows that if Fy
and F, have common mean y and finite variances ¢ and o7, respectively,
T,., = n¥*(X — Y), and m/n - A as n - oo, the unconditional distribution of
T,., is asymptotically Gaussian with mean 0 and variance 63 + (1 — A)o}/A
while the permutation distribution of T, , is asymptotically Gaussian with
mean 0 and variance o7 + (1 — A)o2/A. Thus, the two asymptotic distribu-
tions are the same only if either a) the variances of the two populations are
the same, or b) the sizes of the two samples are equal (whence 4 = 1).

Romano also shows that whatever the sample sizes, a permutation test for
the difference of the medians of two populations will not be exact, even
asymptotically (except in rare circumstances) unless the underlying distribu-
tions are the same.

14.5. Questions

1. Unbiased. The test ¢ = o is a great timesaver; you don’t have to analyze the data,
you don’t even have to gather data! All you have to do is flip a coin.
a) Prove that this test is unbiased.
b) Prove that a biased test cannot be uniformly most powerful.

2. Sufficiency. A statistic, T, is said to be sufficient for a family of distributions P =
{ P, 0 € Q} (or sufficient for ) if the conditional probability of an event given T = ¢
is independent of 6.
a) Let x;, ..., x, be independent, identically distributed observations from a
continuous distribution F;. Show that the set of order statistics T =
{x(1) < - < x4} 1s sufficient for 6.
b) Let x,, ..., x, be a sample from a uniform distribution U(0, 8), with density
h(x) = 1/6, that is, P(x < u) = u/0 for 0 < u < 0. Show that T = max(x,...,X,)
is sufficient for 6.
c) Let x,, ..., x, be a sample from the exponential distribution with density

1 . . .
—e~(~a% b > (. Show that the pair {min(x,,...,x,), Y. x;} is sufficient for 4, b.

3. Likelihood ratio.

a) Suppose that {X,,i=1,...,n} is N(p,¢?) and {Y;, i=1,...,m} is N(u1?).
Derive the most powerful unbiased permutation test for testing H: t?/o% = 1
against notH: 1*/o* = 2.

b) The times between successive decays of a radioactive isotope are said to follow
the exponential distribution, that is, the probability that an atom will not decay
until after an interval of length ¢ is 1 — exp[ —¢/4]. (A similar formula provides
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a first-order approximation to the time, ¢, you will spend waiting for the next
bus.) Suppose you had two potentially different isotopes with parameters 1,
and 2, respectively. Derive a UMPU permutation test for testing H: 1, = 4,,
against notH: A, > A,.

More generally, suppose that an item is reliable for a fixed period, b, after which
its reliability decays at a constant rate A. Then its lifetime has the exponential
density A7 exp[x — b]/4. What statistic would you use for testing that H: 1, =
A, against not H: 4, > 4,7 Is your answer the same as in 2b)? Why not? (Hint:
Look for sufficient statistics. Note that the problem remains invariant under an
arbitrary scale transformation applied to both sets of data. And see Section 3.4).



Bibliography

For your convenience, this bibliography is divided into four parts.

The first, main bibliography, is of the research literature on permutation
tests from the introduction of this straightforward approach to hypothesis
testing by E.J.G. Pitman and R.A. Fisher in the mid 1930s to the present date.
Each citation in this section is indexed in accordance with the nature of its
contribution—concept, (univariate) test, algorithm, multivariate (test) and so
forth.

A second, supporting bibliography, consists of articles we have cited in the
text but which are not articles on permutation per se.

Since so much of today’s research on permutation tests focuses on methods
of rapid computation, we include a third, separate bibliography on computa-
tional methods.

A final and fourth bibliography consists of those few papers which we
consider seminal both to an understanding of permutation tests and to the
development of the subsequent vast wealth of articles on the topic. We hope
every reader will select readings from this latter bibliography along with
articles which are specific to her own interests.

In forming these bibliographies, we restricted ourselves to material on
permutations and permutation tests which was directly related to hypothesis
testing and estimation. Although, strictly speaking, every rank test is a per-
mutation test, we did not include articles on rank tests in the bibliography
unless, as is the case with some seminal work on multivariate analysis, the
material is essential to an understanding of all permutation tests. Conference
proceedings are excluded, the expected exception being a seminal paper by
John Tukey which is available in no other form.

We have tried to be comprehensive, yet selective, and have personally read
all but three of the articles in the bibliography. We hope you will find this
bibliography of value in your work. We would appreciate your drawing to
our attention articles on the theory and application of permutation tests
which we may have excluded inadvertently.
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Branch and bound, see Algorithms

Case controls, see Observational study
Categorical data, 78, 94, 142
Category, 78, 142
Cause and effect, 13, 70
Cell culture, 2,9
Censored data, 117, 119, 137, 146, 156
Censoring, 116
Chance device, 27
Characteristic functions, 160
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serial correlation, 97
tests for, 94
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Typel, 13
Type II, 14
Euclidian distance, 107
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Experiment, 3, 13
Experimental designs
balanced, 44
balanced incomplete block, 161
double blind, 60
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Fisher’s exact test, 78, 143

power of, 81

Fourier analysis, 1
Friedman’s chi-square, 74
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GAMP test, 117
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simple vs. compound, 16
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Interdependent, 31
Invariance

of a problem, 179
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Kernel estimation, 38
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conditional, 138
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ratio, 83, 118, 132, 135, 171-174, 178

Linear
correlation, see Correlation
estimation, 38
form, 175
regression, see regression
statistic, 134
transformation, 74
Logistic regression, 137, 151, 158
Losses, 6, 23, 26, 133, 166

Main effect, 44
Management science, 106
Mantel’s U
applications, 105
equivalences, 107, 108
Marginals, 79, 83, 111
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Maximum likelihood, 134
Mean, 12, 30, 141
Median, 12, 30, 31, 42, 178
Medical applications, 2, 13, 55, 61, 67,
150
Methodology, design, 149
Minimal spanning tree, 71
Missing data, 61, 76, 110
Model validation, 126
Molecular biology, 2, 126
Moments, 161
Monotone function, 36, 39, 77, 157
Monte Carlo, 153, 163
Most powerful test, 15
Multivariate tests, 1
one-sample, 64
repeated measures, 75
two-sample, 65

Network representation, 158
Neyman-Pearson fundamental lemma,
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Nonlinear

device, 122

function, 101
Nonparametric test, 7
Nonresponders, 114, 124
Normal distribution, 12, 24, 172
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Null hypothesis, 4

Observational study, 56

Odds ratio, 82, 93, 158
One-sample problem, 24, 123
One-tailed or one-sided test, 27, 80
Order statistics, 132, 138, 169, 172
Ordered alternatives, 83

Qutliers 30, 113, 115

P-value, see Critical value
Paleontology, 2
Parameter

location, 25, 27

Index

scale, 145, 162
space, 134
Parametric test, 7, 19, 21, 23, 141
vs. permutation test, 20, 177
Path, 159
Permutation
distribution, 4, 25, 56, 81, 108, 126—
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rearrange, 4, 5, 25, 37, 66, 170
test procedure, 4, 19
Pharmacology, 76, 124, 141
Pitman correlation, 36, 39, 96, 100, 176
Pivotal quantity, 28, 103
Poisson see Distribution
Population see Sampling model
Power, 15, 21, 23
effect of blocking, 40
effect of covariates, 77
effect of design, 81
effect of sample size, 152, 163
as function of alternative, 15
for large samples, 26
for variance comparisons, 33
maximizing, 169
relation to Type II error, 168
versus cost of sampling, 125
Power curve, 15
Probability
density, 169
distribution, see Distribution
of false coverage, see Type I and Type
II errors
Proportion, 141
Psychology, 106

Quadrant dependence, 95
Quaderatic form, 105

Radioactivity, 23, 123, 178
Random

assignments, see Randomization

integer, 164

number, 164

rearrangement, 66

variable, 18, 21, 169

vector, 65
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Randomization
in experiments, 22, 34, 50
model, 21
on the boundary, 27, 120
rerandomization, 27
restricted, 56, 112
test, see Permutation test
Rank test, 19
Ranks, 30, 66, 121
Ratio, 141
Rearrange, see Permutation
Reassignments, see Permutation
Regression
coefficients, 55, 98, 103
forward stepping rule, 56
linear model, 39
logistic, 137, 151, 158
multivariate, 104
polynomial, 76
Reject, the hypothesis, 6
Rejection region, 29, 118
Reliability, 2, 118
Repeated measures, 75
Rerandomize, see Permutation
Resampling methods
with replacement, 18
without replacement, 4
Residuals, 45, 50
Response profile, 75
Risk, 167
Robust
test, 10, 35, 116
transformation, 116
Runs test, 71, 108

Sample
control sample 4, 125, 150
distribution, 13
size, 93, 162
unrepresentative, 15
with/without replacement, 18

Sampling model, 21

Screen, 13

Sensitivity of a test, 42, 52

Sequential test, 154

Serial correlation, 97

Shape, 12

Shift, 31, 72
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Significance

estimating, 155

level, 15, 23, 27, 33, 35
Simulation, 35
Simultaneous inference, 70
Single-subject analysis, 1
Sociology, 2, 106, 109
Software, 151, 155, 164
Spatial distribution, 108, 125, 151
Statistic, 4

first- vs. second-order, 134
Stochastic, 11
Stochastically increasing, 169
Stopping rule, 154
Stratify, 40
Studentize, 69
Student’s ¢, 42
Study time, 125
Sufficiency, 25, 132, 178
Sums of squares, 35
Survival data, 119, 151
Symmetric volume, 109
Symmetry, 24, 41, 133
Systematics, 106
Swap, 154

T-test, see Student’s ¢
Tail probabilities, 156, see also Critical
value

Test, 168
chi-square, 84
choosing, 8, 19, 29, 72, 83, 91, 139
Cochran’s Q, 85, 143
definition, 168
F-test, 33, 47, 22
Fisher’s exact, 143
Freeman and Halton, 83, 143
GAMP, 117
Goodman-Kruskal tau, 84, 143
Hotelling’s T, 64, 69, 176
likelihood ratio, 83, 143
location, for, 115
Mann-Whitney, 151
Mantel’s U, 105
MRPP, 107
nonparametric, 7
odds ratio, 82, 143
one-sample, 24
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Test (cont.)
one-tailed, 27, 80
parametric vs. non-parametric, 140
Pitman correlation, 36
pivot permutation, 32, 145
restricted chi-square, 135
runs, 71
scale, for, 145
shift, for a, 172
statistic, 4
student’s ¢, 8, 26, 42
tau, 84
two-tailed, 28
UMPU, 26, 169-174
Ties, 37, 144
Time series, 97, 151
Transformation
arcsin, 144
logarithmic, 43, 114, 145
rank, 7, 30, 115
rescale, 30, 31, 43, 74
robust, 116, 157
square root, 144
Tree, 71
Trend, 96
Toxicology, 13, 36, 151
Two-sample problem, 29, 156, 170,
176

Index

Two-tailed or two-sided test, 28, 80-81

Type I and I errors, 13-15

UMP test, 16

UMPU test, 119, 169
Unbalanced designs, 57
Unbiased, 17, 26, 178
Unconditional test, 68
Univariate hypothesis, 67

Variables, dependent, 69
Variance

between vs. within, 21

effect on power, 39

reducing between, 112

testing equality, 31
Variation, 11
Vector of observations, 65, 154
Virology, 43

Weighting variables, 69
Withdrawals, 41, 111

Zero point, 118



Springer Series in Statistics

(continued from p. ii}

Read/Cressie: Goodness-of-Fit Statistics for Discrete Multivariate Data.

Reinsel: Elements of Multivariate Time Series Analysis.

Reiss: A Course on Point Processes.

Reiss: Approximate Distributions of Order Statistics: With Applications to Non-
parametric Statistics.

Rieder: Robust Asymptotic Statistics.

Rosenbaum: Observational Studies.

Ross: Nonlinear Estimation.

Sachs: Applied Statistics: A Handbook of Techniques, 2nd edition.

Sédrndal/Swensson/Wretman: Model Assisted Survey Sampling.

Seneta: Non-Negative Matrices and Markov Chains, 2nd edition.

Shao/Tu: The Jackknife and Bootstrap.

Siegmund: Sequential Analysis: Tests and Confidence Intervals.

Tanner: Tools for Statistical Inference: Methods for the Exploration of Posterior
Distributions and Likelihood Functions, 2nd edition.

Tong: The Multivariate Normal Distribution.

Vapnik: Estimation of Dependences Based on Empirical Data.

Weerahandi: Exact Statistical Methods for Data Analysis.

West/Harrison: Bayesian Forecasting and Dynamic Models.

Wolter: Introduction to Variance Estimation.

Yaglom: Correlation Theory of Stationary and Related Random Functions I:
Basic Results.

Yaglom: Correlation Theory of Stationary and Related Random Functions II:
Supplementary Notes and References.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<


    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>


    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>


    /SKY <>

    /SUO <>
    /SVE <>
    /TUR <>

    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




