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Preface 

Permutation tests permit us to choose the test statistic best suited to the task 
at hand. This freedom of choice opens up a thousand practical applications, 
including many which are beyond the reach of conventional parametric sta­
tistics. Flexible, robust in the face of missing data and violations of assump­
tions, the permutation test is among the most powerful of statistical proce­
dures. Through sample size reduction, permutation tests can reduce the costs 
of experiments and surveys. 

This text on the application of permutation tests in biology, medicine, 
science, and engineering may be used as a step-by-step self-guiding reference 
manual by research workers and as an intermediate text for undergraduates 
and graduates in statistics and the applied sciences with a first course in 
statistics and probability under their belts. 

Research workers in the applied sciences are advised to read through 
Chapters 1 and 2 once quickly before proceeding to Chapters 3 through 
8 which cover the principal applications they are likely to encounter in 
practice. 

Chapter 9 is a must for the practitioner, with advice for coping with real­
life emergencies such as missing or censored data, after-the-fact covariates, 
and outliers. 

Chapter 10 uses practical applications in archeology, biology, climatology, 
education and social science to show the research worker how to develop 
new permutation statistics to meet the needs of specific applications. The 
practitioner will find Chapter 10 a source of inspiration as well as a practical 
guide to the development of new and novel statistics. 

The expert system in Chapter 11 will guide you to the correct statistic for 
your application. Chapter 12, more "must" reading, provides practical advice 
on experimental design and shows how to document the results of permuta­
tion tests for publication. 

Chapter 13 describes techniques for reducing computation time; and a 
guide to off-the-shelf statistical software is provided in an appendix. 

The sequence of recommended readings is somewhat different for the stu-

v 



vi Preface 

dent and will depend on whether he or she is studying the permutation tests 
by themselves or as part of a larger course on resampling methods encom­
passing both the permutation test and the bootstrap resampling method. 

This book can replace a senior-level text on testing hypotheses. I have also 
found it of value in introducing students who are primarily mathematicians 
to the applications which make statistics a unique mathematical science. 
Chapters 1, 2, and 14 provide a comprehensive introduction to the theory. 
Despite its placement in the latter part ofthe text, Chapter 14, on the theory 
of permutation tests, is self-standing. Chapter 3 on applications also deserves 
a careful reading. Here in detail are the basic testing situations and the basic 
tests to be applied to them. Chapters 4, 5, and 6 may be used to supplement 
Chapter 3, time permitting (the first part of Chapter 6 describing the Fisher 
exact test is a must). Rather than skipping from section to section, it might be 
best for the student to consider one of these latter chapters in depth-supple­
menting his or her study with original research articles. 

My own preference is to parallel discussions of permutation methods with 
discussion of a second resampling method, the bootstrap. Again, Chapters 1, 
2, and 3-supplemented with portions of Chapter 14-are musts. Chapter 7, 
on tests of dependence, is a natural sequel. Students in statistical computing 
also are asked to program and test at least one of the advanced algorithms in 
Chapter 12. 

For the reader's convenience, the bibliography is divided into four parts: 
the first consists of 34 seminal articles; the second of two dozen background 
articles referred to in the text that are not directly concerned with permuta­
tion methods; the third of 111 articles on increasing computational efficiency; 
and a fourth, principal bibliography of 574 articles and books on the theory 
and application of permutation techniques. 

Exercises are included at the end of each chapter to enhance and reinforce 
your understanding. But the best exercise of all is to substitute your own data 
for the examples in the text. 

My thanks to Symantek, TSSI, and Perceptronics without whose Grand­
View® outliner, Exact® equation generator, and Einstein Writer® word pro­
cessor this text would not have been possible. 

I am deeply indebted to Mike Chernick for our frequent conversations and 
his many invaluable insights, to Mike Ernst, Alan Forsythe, Karim Hiriji, 
John Ludbrook, Reza Modarres, and William Schucany for reading and com­
menting on portions of this compuscript and to my instructors at Berkeley 
including E. Fix, J. Hodges, E. Lehmann, and J. Neyman. 

P.G. 
Huntington Beach, CA 



Contents 

Preface .................................................... . 

1. A Wide Range of Applications ............................ . 
1.1 Permutation Tests .................................. . 
1.2 "I Lost the Labels" .................................. . 
1.3 Five Steps to a Permutation Test ...................... . 
1.4 What's in a Name? .................................. . 
1.5 Questions 

2. A Simple Test .......................................... . 
2.1 Properties of the Test ................................ . 
2.2 Fundamental Concepts .............................. . 
2.3 Which Test? ....................................... . 
2.4 Wodd Views ....................................... . 
2.5 Questions ......................................... . 

3. Testing Hypotheses ..................................... . 
3.1 One-Sample Tests ................................... . 
3.2 Confidence Intervals ................................ . 
3.3 Two-Sample Comparisons ........................... . 
3.4 Comparing Variances ............................... . 
3.5 k-Sample Comparisons .............................. . 

Sidebar: Computing the significance level 
3.6 Blocking .......................................... . 
3.7 Matched Pairs ..................................... . 
3.8 Questions ......................................... . 

4. Experimental Designs ................................... . 
4.1 Introduction ....................................... . 

v 

1 
1 
2 
4 
6 
8 

10 
10 
11 
18 
21 
22 

24 
24 
27 
29 
31 
33 

39 
41 
42 

44 
44 

vii 



Vlll Contents 

4.2 Balanced Designs ..................................... 44 
Sidebars: Computing the significance level 

4.3 Analysis of Covariance ................................ 55 
4.4 Unbalanced Designs .................................. 57 
4.5 Clinical Trials ........................................ 60 
4.6 Very Large and Very Small Samples ..................... 61 
4.7 Questions ........................................... 62 

5. Multivariate Analysis ..................................... 64 
5.1 Introduction ......................................... 64 
5.2 One- and Two-Sample Comparisons ..................... 64 

Sidebar: Computing the significance level 
5.3 Runs Test ........................................... 71 
5.4 Experimental Designs ................................. 74 
5.5 Repeated Measures ................................... 75 
5.6 Questions ........................................... 77 

6. Categorical Data ......................................... 78 
6.1 Contingency Tables ................................... 78 
6.2 Fisher's Exact Test .................................... 78 
6.3 Unordered r x c Contingency Tables .................... 83 
6.4 Ordered Contingency Tables ........................... 90 
6.5 Covariates ........................................... 91 
6.6 Combinations of Tables ............................... 93 
6.7 Questions ........................................... 93 

7. Dependence ............................................. 94 
7.1 The Models .......................................... 94 
7.2 Testing for Independence .............................. 95 
7.3 Testing for Trend ..................................... 96 
7.4 Serial Correlation ..................................... 97 
7.5 Known Models ....................................... 101 
7.6 Questions ........................................... 103 

8. Clustering in Time and Space .............................. 105 
8.1 The Generalized Quadratic Form ....................... 105 
8.2 Applications ......................................... 107 
8.3 Extensions ........................................... 108 
8.4 Questions ........................................... 109 



Contents IX 

9. Coping with Disaster ..................................... 110 
9.1 Missing Data ........................................ 110 
9.2 Covariates After the Fact .............................. 112 
9.3 Outliers ............................................. 113 
9.4 Censored Data ....................................... 117 
9.5 Censored Matched Pairs ............................... 119 
9.6 Adaptive Tests ....................................... 122 
9.7 Questions ........................................... 122 

10. Which Statistic? Solving the Insolvable ...................... 124 
10.1 The Permutation Distribution ......................... 124 
10.2 New Statistics ....................................... 124 
10.3 Going Beyond ...................................... 132 
10.4 Likelihood Ratio .................................... 135 
10.5 Questions .......................................... 138 

11. Which Test Should You Use? .............................. 140 
11.1 Sources of Variation ................................. 140 
11.2 Comparison with the Parametric Test and the Bootstrap ... 142 
11.3 A Guide to Selection ................................. 142 
11.4 Quick Key .......................................... 146 

12. Publishing Your Results. . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. 149 
12.1 Design Methodology ................................. 149 
12.2 Statistical Software for Exact Distribution-Free Inference .. 151 
12.3 Preparing Manuscripts for Publication .................. 151 

13. Increasing Computational Efficiency ........................ 153 
13.1 Five Techniques ..................................... 153 
13.2 Monte Carlo ........................................ 153 
13.3 Rapid Enumeration and Selection Algorithms ............ 155 
13.4 Focus on the Tails: Branch and Bound Algorithms ........ 156 
13.5 Characteristic Functions .............................. 160 
13.6 Asymptotic Approximations ........................... 161 
13.7 Sample Size, Power, and Confidence Intervals ............ 162 
13.8 Some Conclusions ................................... 163 
13.9 Questions .......................................... 164 

14. Theory of Permutation Tests 
14.1 Fundamental Concepts 

166 
166 



x Contents 

14.2 Maximizing the Power ............................... 169 
14.3 Confidence Intervals ................................. 174 
14.4 Asymptotic Behavior ................................. 175 
14.5 Questions .......................................... 178 

Bibliography ................................................ 180 
Bibliography Part 1: Randomization ........................ 181 
Bibliography Part 2: Supporting ............................ 212 
Bibliography Part 3: Computational Methods ................ 214 
Bibliography Part 4: Seminal Articles ........................ 219 

Index ...................................................... 221 



CHAPTER 1 

A Wide Range of Applications 

1.1. Permutation Tests 

The chief value of permutation tests lies in their wide range of applications: 
Permutation tests can be applied to continuous, ordered and categorical 

data, and to values that are normal, almost normal, and non-normally dis­
tributed. 

For almost every parametric and nonparametric test, one may obtain a 
distribution-free permutation counterpart. The resulting permutation test is 
usually as powerful as or more powerful than alternative approachs. And 
permutation methods can sometimes be made to work when other statistical 
methods fail (see Chapter 3 Section 3.4 and Chapter 10). 

Permutation tests can be applied to homogeneous (text book) and to het­
erogeneous (real life) data when subpopulations are mixed together (see Sec­
tion 10.3), when covariables must be taken into account (see Sections 4.3,6.5, 
and 9.2), and when repeated measures on a single subject must be adjusted 
for (Section 5.5). The ability of permutation methods to be adapted to real­
world situations is what led to my writing this book for the practitioner. 

1.1.1. Applications 

Permutation tests have been applied in cluster analysis [Hubert and Levin, 
1976], Fourier analysis [Friedman and Lane, 1980], multivariate analysis 
[Arnold, 1964; Mielke, 1986] and single-subject analysis [Kazdin, 1976]; 
(but see Kazdin [1980]). In anthropology [Fisher, 1936], agriculture [Kemp­
thorne, 1952], archaeology [Berry, Kvamme, and Mielke, 1985], atmo­
spheric science [Adderley, 1961; Tukey, Brillinger, and Jones, 1978], biology 
[Howard, 1980], botany [Mitchell-Olds, 1986, 1987], ecology [Manly, 
1983; Mueller and Altenberg, 1985], education [Manly, 1988], epidemiol­
ogy [Glass, Mantel, Gunz, and Spears, 1971], genetics [Karlin and Williams, 
1984], geography [Royaltey, Astrachen, and Sokal, 1975], geology [Clark, 

1 



2 1. A Wide Range of Applications 

1989J, medicine [Bross, 1964; Feinstein, 1973; McKinney, Young, Hartz 
Bi-Fong Lee, 1989J, molecular biology [Barker and Dayhoff, 1972; 
Karlin, Ghandour, Ost, Tauare, and Korph, 1983J, paleontology [Marcus, 
1969J, sociology [Marascuilo and McSweeny, 1977J and reliability [Kalb­
fleisch and Prentice, 1980]. 

Permutation methods are relatively impervious to complications that de­
feat other statistical techniques. Outliers and "broad tails" may be defended 
against through the use of preliminary rank or robust transformations, (Sec­
tion 9.3). Missing data often is corrected for automatically. Missing and cen­
sored data may affect the power of a permutation test, but not its existence or 
exactness. A most powerful unbiased permutation test often works in cases 
where a most powerful parametric test fails for lack of knowledge of some yet 
unknown nuisance parameter [Lehmann, 1986J; [Good 1989, 1991, 1992]. 

A major reason permutation tests have such a wide range of applications 
is that they require only one or two relatively weak assumptions, e.g., that the 
underlying distributions are symmetric, and/or the alternatives are simples 
shifts in value. The permutation test can even be applied to finite populations 
(see Section 2.4). 

1.2. "I Lost the Labels" 

Shortly after I received my doctorate in statistics, I decided that if I really 
wanted to help bench scientists apply statistics I ought to become a scientist 
myself. So back to school I went to learn all about physiology and aging in 
cells raised in petri dishes. 

I soon learned there was a great deal more to an experiment than the 
random assignment of subjects to treatments. In general, 90% of my effort 
was spent in mastering various arcane laboratory techniques, 9% in develop­
ing new techniques to span the gap between what had been done and what I 
really wanted to do, and a mere 1% on the experiment itself. But the moment 
of truth came finally-it had to if I were to publish and not perish-and I 
succeeded in cloning human diploid fibroblasts in eight culture dishes: Four 
of these dishes were filled with a conventional nutrient solution and four 
held an experimental "life-extending" solution to which Vitamin E had been 
added. 

I waited three weeks with my fingers crossed-there is always a risk of 
contamination with cell cultures-but at the end of this test period three 
dishes of each type had survived. My technician and I transplanted the cells, 
let them grow for 24 hours in contact with a radioactive label, and then fixed 
and stained them before covering them with a photographic emulsion. 

Ten days passed and we were ready to examine the auto radiographs. Two 
years had elapsed since I first envisioned this experiment and now the results 
were in: I had the six numbers I needed. 
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Figure 1.1. Eight petri dishes, 4 containing standard medium, 4 containing standard 
medium supplemented by Vitamin E. Ten cells innoculated in each dish. 

"I've lost the labels," my technician said as he handed me the results. 
"What!?" Without the labels, I had no way of knowing which cell cultures 

had been treated with Vitamin E and which had not. 
"121, 118, 110,34, 12,22." I read and reread these six numbers over and 

over again. If the first three counts were from treated colonies and the last 
three were from untreated, then I had found the fountain of youth. Other­
wise, I really had nothing to report. 
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1.3. Five Steps to a Permutation Test 

How had I reached that conclusion? 
In succeeding chapters, you will learn to apply permutation techniques to 

a wide variety of testing problems ranging from the simple to the complex. In 
each case, you will follow the same five-step procedure that we follow in this 
example: 

1. Analyze the problem. 
2. Choose a test statistic. 
3. Compute the test statistic for the original labelling of the observations. 
4. Rearrange (permute) the labels and recompute the test statistic for the 

rearranged labels. Repeat until you obtain the distribution of the test 
statistic for all possible permutations. 

5. Accept or reject the hypothesis using this permutation distribution as a 
guide. 

1.3.1. Analyze the Problem 

Let's take a second, more formal look at the problem of the missing labels. 
First, we identify the hypothesis and alternative of interest: 

I wanted to assess the life-extending properties of a new experimental 
treatment. To do this, I divided my cell cultures into two groups: one grown 
in a standard medium and one grown in a medium containing Vitamin E. At 
the conclusion of the experiment and after the elimination of several contami­
nated cultures, both groups consisted of three independently treated dishes. 

My null hypothesis is that the growth potential of a culture will not be 
affected by the presence of Vitamin E in the media. The alternative of interest 
is that cells grown in the presence of Vitamin E would be capable of many 
more cell divisions. 

Under the null hypothesis, the labels "treated" and "untreated" provide no 
information about the outcomes, as the observations are expected to have 
more or less the same values in each of the two experimental groups. I am free 
to exchange the labels. 

1.3.2. Choose a Test Statistic 

The next step in the permutation method is to choose a test statistic that 
discriminates between the hypothesis and the alternative. The statistic I 
chose was the sum of the counts in the group that had been treated with 
Vitamin E. If the alternative is true this sum ought to be larger than the sum 
of the observations in the untreated group. If the null hypothesis is true, that 
is, if it doesn't make any difference which treatment the cells receive, then the 
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sums of the two groups of observations should be approximately the same. 
One sum might be smaller or larger than the other by chance, but the two 
shouldn't be all that different. 

1.3.3. Compute the Test Statistic 

The third step in the permutation method is to compute the test statistic for 
each of the possible relabellings. But to compute the test statistic for the data 
as it had been labelled originally, I had to find the labels! Fortunately, I had 
kept a record of the treatments independent of my technician. In fact, I had 
deliberately not let my technician know which cultures were which in order 
to ensure he would give them equal care in handling. As it happened, the first 
three observations he showed me-121, 118, and 110 were those belonging 
to the cultures that had received Vitamin E. The value of the test statistic for 
the observations as originally labelled is 349: 121 + 118 + 110. 

1.3.4. Rearrange the Observations 

We now rearrange or permute the observations, randomly reassigning the six 
labels, three "treated" and three "untreated," to the six observations: for 
example, treated, 12111834, and untreated, 110 1222. In this rearrangement, 

First Group Second Group Sum! 

1. 121 118 110 34 22 12 349 
2. 121 118 34 110 22 12 273 
3. 121 110 34 118 22 12 265 
4. 118 110 34 121 22 12 262 
5. 121 118 22 110 34 12 261 
6. 121 110 22 118 34 12 253 
7. 121 118 12 110 34 22 251 
8. 118 110 22 121 34 12 250 
9. 121 110 12 118 34 22 243 

10. 118 110 12 121 34 22 240 
11. 121 34 22 118 110 12 177 
12. 118 34 22 121 110 12 174 
13. 121 34 12 118 110 22 167 
14. 110 34 22 121 118 12 166 
15. 118 34 12 121 110 22 164 
16. 110 34 12 121 118 22 156 
17. 121 22 12 118 110 34 155 
18. 118 22 12 121 110 34 152 
19. 110 22 12 121 118 34 144 
20. 34 22 12 121 118 110 68 
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the sum of the observations in the first (treated) group is 273. We repeat this 

step until all 6C 3 = (6) = 63.5.4 = 20 distinct rearrangements have been 
3 .2.1 

examined. 

Five Steps to a Permutation Test 

1) Analyze the problem 
a) What is the hypothesis? What are the alternatives? 
b) What distribution is the data drawn from? 
c) What losses are associated with bad decisions? 

2) Choose a statistic which will distinguish the hypothesis from the alternative. 
3) Compute the test statistic for the original observations. 
4) Rearrange the observations 

a) Compute the test statistic for the new arrangement 
b) Compare the new value of test statistic with the value you obtained for the 

original observations. 
c) Repeat steps a) and b) until you are ready to make a decision. 

S) Make a decision 
Reject the hypothesis and accept the alternative if the value of the test statistic 
for the observations as they were labelled originally is an extreme value in the 
permutation distribution of the statistic. Otherwise, accept the hypothesis and 
reject the alternative. 

1.3.5. Make a Decision 

The sum of the observations in the original Vitamin E treated group, 349, is 
equaled only once and never exceeded in the twenty distinct random re­
labellings. If chance alone is operating, then such an extreme value is a rare, 
only-one-time-in-twenty event. I reject the null hypothesis at the five percent 
(1 in 20) significance level and embrace the alternative that the treatment 
is effective and responsible for the difference I observed. 

In using this decision procedure, I risk making an error and rejecting a true 
hypothesis once in every twenty times. In this case, I did make just such an 
error. I was never able to replicate the observed life-promoting properties of 
Vitamin E in other repetitions of this experiment. Good statistical methods 
can reduce and contain the probability of making a bad decision, but they 
cannot eliminate the possibility. 

1.4. What's in a Name? 

Permutation tests are also known as randomization, rerandomization and 
exact tests. Historically, one may distinguish between Pitman's notion of 
the randomization test applicable only to the samples at hand, and Fisher's 
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idea of a permutation test which could be applied inductively to the larger 
populations from which the samples are drawn, but few research workers 
honor this distinction today. Gabriel and Hall [1983] use the term "re­
randomization" to distinguish between the initial randomization of treat­
ment assignments at the design phase and the subsequent "rerandomiza­
tions" which occur during the permutation analysis. In this book, we shall 
use.the three names "permutation," "randomization," and "rerandomization" 
interchangeably. 

Most permutation tests provide "exact" significance levels. We define "ex­
act," "significance level" and other important concepts in Section 2.2 and 
establish the conditions under which permutation tests are exact and unbi­
ased. We reserve the name "exact test" for the classic Fisher's test for 2 x 2 
tables, studying this test and other permutation tests applied to categorical 
data in Chapter 6. 

The terms "distribution-free" and "non parametric" often arise in connec­
tion with the permutation tests. "Distribution-free" means that the signifi­
cance level of the test is independent of the form of the hypothetical infinite 
population from which the sample is drawn. Permutation tests are almost 
but not quite "distribution-free" in that only one or two assumptions about 
the underlying population(s) are required for their application. A preliminary 
rank transformation often can ensure that the tests are distribution-free. Bell 
and Doksum [1967] prove that all distribution-free tests of independence are 
permutation tests. 

"Non-parametric" means that the parametric form of the underlying popu­
lation distribution is not specified explicitly. It is probably safe to say that 
ninety-nine percent of permutation tests are nonparametric and that ninety­
nine percent of common non-parametric tests are permutation tests in which 
the original observations have been replaced by ranks. The sign test is one 
notable exception. 

1.4.1. Comparison with Other Tests 

When the samples are very large, decisions based on parametric tests like the 
t-test and the F usually agree with decisions based on the corresponding 
permutation test. With small samples, the parametric test ordinarily is pre­
ferable IF the assumptions of the parametric test are satisfied completely. 
The familiar "rank" tests are simply permutation tests applied to the ranks 
of the observations rather than their original values, (see Sections 9.3 and 
11.2). 

1.4.2. Sampling from the Data at Hand 

The two resampling methods~the permutation tests and the bootstrap~ 
have much in common. Both are computer intensive, and both are limited to 
the data at hand. 
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With the permutation test, you recompute the test statistic for all possible 
relabelings of the combined samples. If the original samples contained the 
observations 1, 2, 4 and 3, 5, 6, you would consider the relabelings 1, 2, 3 and 
4,5,6; 1,2, 5 and 3, 4, 6 and so forth. With the bootstrap, you recompute 
the test statistic for each of a series of samples with replacement taken 
separately from each sample: thus, 1, 1, 2 and 3, 4, 4; 1, 2, 3 and 5, 5, 5 and so 
forth. 

For some testing situations and test statistics, the bootstrap and the ran­
domization test are asymptotically equivalent [Romano, 1989; Robinson, 
1987]. But often they yield quite different results, a point we make at length 
in Sections 7.2 and 11.2. 

When you analyze an experiment or survey with a parametric test­
Student's t, for example-you compare the observed value of the test statistic 
with the values in a table of its theoretical distribution, for example, in a table 
of Student's t with eight degrees of freedom. Analyzing the same experiment 
with a permutation test, you compare the observed value of the test statistic 
with the set of what-if values you obtain by rearranging and relabeling the 
data. 

In view of all the necessary computations-the test statistic must be recom­
puted for each what-if scenario-it is not surprising that the permutation 
test's revival in popularity parallels the increased availability of high-speed 
computers. Although, the permutation test was introduced by Fisher and 
Pitman in the 1930's, it represented initially a theoretical standard rather 
than a practical approach. But with each new quantum leap in computer 
speed, the permutation test was applied to a wider and wider variety of 
problems. In earlier eras-the '50's, the '60's and the '70s-the permutation 
test's proponents, enthusiastic at first, would grow discouraged as, inevitably, 
the number of computations proved too demanding for even the largest of the 
then-available computing machines. But with today's new and more powerful 
generation of desktops, it is often faster to compute a p-value for an exact 
permutation test than to look up an asymptotic approximation in a book of 
tables. 

With both the bootstrap and the permutation test, all significance levels are 
computed on the fly. The statistician is not limited by the availability of 
tables, but is free to choose a test statistic exactly matched to hypothesis and 
alternative [Bradley, 1968]. 

1.5. Questions 

Take the time to think about the answers to these questions even if you don't 
answer them explicitly. 

1. In the simple example analyzed in this chapter, what would the result have been if 
you had used as your test statistic the difference between the sums of the first and 
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second samples? the difference between their means? the sum of the squares of the 
observations in the first sample? the sum of their ranks? 

2. How was the analysis of my experiment affected by the loss of two of the cultures 
due to contamination? Suppose these cultures had escaped contamination and 
given rise to the observations 90 and 95; what would be the results of a permuta­
tion analysis applied to the new, enlarged data set consisting of the following 
cell counts: 

Treated 
Untreated 

121 
95 

118 
34 

110 
22 

90 
12 



CHAPTER 2 

A Simple Test 

"Actually, the statistician does not carry out this very tedious process but his 
conclusions have no justification beyond the fact they could have been arrived 
at by this very elementary method." 
R.A. Fisher, 1936, on permutation tests. 

2.1. Properties of the Test 

In this chapter, we consider the assumptions that underlie the permutation 
test and take a look at some of the permutation test's formal properties-its 
significance level, power, and robustness. This first look is relatively non­
mathematical in nature. A formal derivation is provided in Chapter 14. 

In the example of the missing labels in the preceding chapter, we intro­
duced a statistical test based on the random assignment of labels to treat­
ments. We showed this test provided a significance level of five percent, an 
exact significance level, not an approximation. The test we derived is valid 
under very broad assumptions. The data could have been drawn from a 
normal distribution or they could have come from some quite different distri­
bution. All that is required for our permutation test comparing samples from 
two populations to be valid is that under the null hypothesis the distribution 
from which the data in the treatment group is drawn be the same as that from 
which the untreated sample is taken. 

This freedom from reliance on numerous assumptions is a big plus. The 
fewer the assumptions, the fewer the limitations, and the broader the poten­
tial applications of a test. But before statisticians introduce a test into their 
practice, they need to know a few more things about it: 

How powerful a test is it? That is, how likely is it to pick up actual differ­
ences between treated and untreated populations? Is this test as powerful or 
more powerful than the test we are using currently? 

How robust is the new test? That is, how sensitive is it to violations in the 
underlying assumptions and the conditions of the experiment? 

10 
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What if data is missing as it is in so many of the practical experiments we 
perform? Will missing data affect the significance level of our test? 

What are the effects of extreme values or outliers? In an experiment with 
only five or six observations, it is obvious that a single extreme value can 
mislead the experimenter. In Section 9.3 of this text, you will learn techniques 
for diminishing the effect of extreme values. 

Can we extend our results to complex experimental designs in which there 
are several treatments at several different levels and several simultaneous 
observations on each subject? 

The answer to this last question, as the balance of this book will reveal 
to you, is yes. For example, you can easily apply permutation methods to 
studies in which you test a single factor at three or four levels simultaneously 
(see Chapter 3, Section 5). You can also apply permutation methods to exper­
imental designs in which you control and observe the values of multiple 
variables (Chapters 4 and 5). 

The balance of this chapter is devoted to providing a theoretical basis for 
all the preceding questions and answers. 

2.2. Fundamental Concepts 

Why do we elect to use one statistical procedure rather than another-a 
permutation test, say, as opposed to a table of chi-square? If you've just 
completed a course in statistics, you probably already know the answer. If it's 
been a year or so since you last looked at a statistics text, then you will find 
this section helpful. 

In this section, you are introduced in an informal way to the fundamental 
concepts of variation, population and sample distributions, Type I and Type 
II error, significance level, power, and exact and unbiased tests. Formal defi­
nitions and derivations are provided in Chapter 14. 

2.2.1. Population and Sample Distributions 

The two factors that distinguish the statistical from the deterministic ap­
proach are variation and the possibility of error. The effect of this variation 
is that a distribution of values takes the place of a single, unique outcome. 

I found Freshman Physics extremely satisfying: Boyle's Law for example, 
V = KT/P, with its tidy relationship between the volume, temperature and 
pressure of a perfect gas. The problem was I could never quite duplicate this 
law in the Freshman Physics laboratory. Maybe it was the measuring instru­
ments, my lack of familiarity with the equipment, or simple measurement 
error-but I kept getting different values for the constant K. 

By now, I know that variation is the norm-particularly in the clinical and 
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biological areas. Instead of getting a fixed, reproducible V to correspond to a 
specific T and P, one ends up with a distribution of values instead. But I also 
know that, with a large enough sample, the mean and shape of this distribu­
tion are reproducible. 

Figure 2.la and 2.lb depict two such distributions. The first is a normal 
distribution. Examining the distribution curve, we see that the normally­
distributed variable can take all possible values between -00 and +00, but 
most of the time it takes values that are close to its median (and mean) J.l.. The 

p(x) 

~~~===-__ +-____ -L ____ -L ____ ~ ____________ x 

A 

6 

5 

;>, 4 

I : 
c 

p(x) 

p(t) := 0 

B 

Figure 2.1. Distributions: a) normal distribution, b) exponential distribution, c) distri­
bution of values in a sample taken from a normal distribution. 
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second is an exponential distribution; the exponentially-distributed variable 
only takes positive values; the majority of the time these values are less than 
its mean J.l, but on occasion they can be many times larger. 

Both these distributions are limiting cases; they represent the aggregate 
result of an infinite number of observations; thus the distribution curves are 
smooth. The choppy histogram in Figure 2.lc is typical of what one sees with 
a small, finite sample of observations-in this case, a sample of 25 observa­
tions taken from a normal distribution with mean J.l. 

2.2.2. Two Types of Error 

It's usually fairly easy to reason from cause to effect-that is, if you have a 
powerful enough computer. Get the right formula, Boyle's Law, say, plug in 
enough values to enough decimal places, and out pops the answer. The difli­
culty with reasoning in the opposite direction, from effect to cause, is that 
more than one set of causes can be responsible for precisely the same set of 
effects. We can never be completely sure which set of causes is responsible. 
Consider the relationship between sex (cause) and height (effect). Boys are 
taller than girls. Right? So that makes this new 6'2" person in our lives ... 
a starter on the women's volleyball team. 

In real life, in real populations, there are vast differences from person to 
person. Some women are tall and some women are short. In Lake W obegon 
MN, all the men are good looking and all the children are brighter than 
average. But in most other places in the world, there is a wide range of talent 
and abilities. As a further example of this variation, consider that half an 
aspirin will usually take care of one of my headaches while other people can 
and do take two or three aspirins at a time and get only minimal relief. 

Figure 2.2 depicts the results of an experiment in which two groups were 
each given a "pain-killer." The first group got buffered aspirin, the second 
group received a new experimental drug. Each of the participants then pro­
vided a subjective rating of the effects of the drug. The ratings ranged from 
"got worse," to "much improved," depicted on a scale of 0 to 4. Take a 
close look at Figure 2.2. Does the new drug represent an improvement over 
aspirin? 

Those who took the new experimental drug do seem to have done better 
on the average than those who took aspirin. Or are the differences we observe 
in Figure 2.2 simply the result of chance? If it's just a chance effect and we opt 
in favor of the new drug, we've made an error. We also make an error if we 
decide there is no difference and the new drug really is better. These decisions 
and the effects of making them are summarized in Table 2.1. 

We distinguish the two types of error because they have quite different 
implications. For example, Fears, Tarone, and Chu [1977] use permutation 
methods to assess several standard screens for carcinogenicity. Their Type I 
error, a false positive, consists of labeling a relatively innocuous compound 
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Figure 2.2. Response to treatment: self-rating by patient; a) asprin-treated group; 
b) drug-'x'-treated group. 

Table 2.1a. Decision Making Under Uncertainty 

The Facts 

No Difference 
Drug is Better 

Our Decision 

No Difference Drug is better 

Type I error 
Type II error 

Table 2.1b. Decision Making Under Uncertainty 

The Facts 

No effect 
Carcinogen 

Fears et al.'s Decision 

Not a carcinogen Compound a carcinogen 

Type I error 
Type II error 
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as carcinogenic. Such an action means economic loss for the manufacturer 
and the denial of the compound's benefits to the public. Neither consequence 
is desirable. But a false negative, a Type II error, would mean exposing a 
large number of people to a potentially lethal compound. 

Because variation is inherent in nature, we are bound to make the occa­
sional error when we draw inferences from experiments and surveys, particu­
larly if, for example, chance hands us a completely unrepresentative sample. 
When I toss a coin in the air six times, I can get three heads and three tails, 
but I can also get six heads. This latter event is less probable, but it is not 
impossible. Does the best team always win? 

We can't eliminate the risk in making decisions, but we can contain it by 
the correct choice of statistical procedure. For example, we can require that 
the probability of making a Type I error not exceed 5% (or 1 % or 10%) and 
restrict our choice to statistical methods that ensure we do not exceed this 
level. If we have a choice of several statistical procedures, all of which restrict 
the Type I error appropriately, we can choose the method which leads to the 
smallest probability of making a Type II error. 

2.2.3. Significance Level and Power 

In selecting a statistical method, statisticians work with two closely related 
concepts, significance level and power. The significance level of a test, denoted 
throughout the text by the Greek letter 0:, is the probability of making a Type 
I error; that is, 0: is the probability of deciding erroneously on the alternative 
when, in fact, the hypothesis is true. The power of a test, denoted throughout 
the text by the Greek letter [3, is the complement of the probability of making 
a Type II error; that is, [3 is the probability of deciding on the alternative 
when the alternative is the correct choice. 
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Figure 2.3. Comparing power curves. For near alternatives, with () small, CfJz is the 
more powerful test; for far alternatives, with () large, CfJ, is more powerful. Thus neither 
test is uniformly most powerful. 
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The ideal statistical test would have a significance level IX of zero and a 
power p of 1, or 100%. But unless we are all-knowing, this ideal can not be 
realized. In practice, we will fix a significance level IX > 0, where IX is the 
largest value we feel comfortable with, and choose a statistic that maximizes 
or comes closest to maximizing p the power. If a test at a specific significance 
level IX is more powerful against a specific alternative than all other tests at 
the same significance level, we term it most powerful. 

As we see in Figure 2.3, the power may depend upon the alternative. In 
those instances when a test at a specific significance level is more powerful 
against all alternatives than all other tests at the same significance level, we 
term it uniformly most powerful. 

The significance level and power may also depend upon how the values of 
the variables we observe are distributed. Does the population distribution 
follow a bell-shaped normal curve with the most frequent values in the center? 
Or is the distribution something quite different? To protect our interests, we 
may need to require that the Type I error be l~ss than or equal to some 
predetermined value for all possible distributions. 

Which Test Should I Use? 

Figure 2.4a depicts the power curve of two tests based on samples of size 6. In this 
example, the ¢Jl is uniformly more powerful than ¢J2, hence, using ¢Jl in preference 
to ¢J2 will expose us to less risk. Figure 2.4b depicts the power curve of these same 
two tests but using different size samples; the power curve of ~1 is still based on a 
sample of size 6, but that of ¢J2 now is based on a sample of size 9. The two new 
power curves coincide, revealing that the two tests now have equal risks. But it 
would cost us 50% more observations if we were to use test 2 with its larger sample 
size in place oftest 1. 

Moral: a more powerful test reduces the costs of experimentation while minimizing 
the risk. 

2.2.4. Exact, Unbiased Tests 

In practice, we seldom know the distribution of a variable or its variance. We 
usually want to test a compound hypothesis such as H: X has mean O. This 
latter hypothesis includes several simple hypotheses such as H 1: X is normal 
with mean 0 and variance 1; H2 : X is normal with mean 0 and variance 1.2; 
and H 3: X has a gamma distribution with mean 0 and four degrees of freedom. 

A test is said to be exact with respect to a compound hypothesis if the 
probability of making a type I error is exactly IX for each and everyone ofthe 
possibilities that make up the hypothesis. A test is said to be conservative, if 
the type I error never exceeds IX. Obviously, an exact test is conservative 
though the reverse may not be true. 
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Figure 2.4. Comparing power curves. a) equal sample sizes-the power curve of test 
({Jl dominates that of test ({J2. b) unequal sample sizes-the power curves of the two 
tests coincide. 

The importance of an exact test cannot be overestimated, particularly a 
test that is exact regardless of the underlying distribution. If a test that is 
nominally at level IX is actually at level X, we may be in trouble before we start: 
If X > IX, the risk of a type I error is greater than we are willing to bear. If 
X < IX, then our test is suboptimal, and we can improve on it by enlarging its 
rejection region. We return to these points again in Chapter 11, on choosing 
a statistical method. 

A test is said to be unbiased and of level IX providing its power function P 
satisfies the following two conditions: 

P is conservative; that is, Pe ::s; IX for every () that satisfies the hypothesis; 
and 

Pe ~ IX for every () that is an alternative to the hypothesis. 

That is, a test is unbiased if using the test you are more likely to re­
ject a false hypothesis than a true one. I find unbiasedness to be a natural 
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and desirable principle, but not everyone shares this view; see, for example, 
Suissa and Shuster [1984]. 

Faced with some new experimental situation, our objective always is to 
derive a uniformly most powerful unbiased test if one exists. But, if we can't 
derive a uniformly most powerful test (and Figure 2.3 depicts just such a 
situation) then we will look for a test which is most powerful against those 
alternatives that are of immediate interest. 

2.2.5. Exchangeable Observations 

A sufficient condition for a permutation test to be exact and unbiased against 
shifts in the direction of higher values is the exchangeability of the observa­
tions in the combined sample. The observations {X, Y, ... , Z} are exchange­
able if the probability of any particular joint outcome, X + y + Z = 6, for 
example, is the same regardless of the order in which the observations are 
considered [Lehmann 1986, p. 231]. Chapter 14, Section 1 provides a formal 
derivation of this fundamental result. See, also, Draper et al. [1993]. 

Independent, identically distributed observations are exchangeable. So are 
samples without replacement from a finite population (Poly a urn models) 
[Koch, 1982]. So are dependent normally distributed random variables {Xi} 
for which the variance of Xi is a constant independent of i and the covariance 
of Xi and Xj is a constant independent of i and j. An additional example of 
dependent but exchangeable variables is given in Section 3.4. 

Sometimes a simple transformation will ensure that observations are ex­
changeable. For example, if we know that X comes from a population with 
mean J.1 and distribution F(x - J.1) and an independent observation, Y, comes 
from a population with mean v and distribution F(x - v), then the indepen­
dent variables X' = X - J.1 and Y' = Y - v are exchangeable. 

In deciding whether your own observations are exchangeable, and whether 
a permutation test is applicable, the key question is the one we posed in the 
very first chapter, Section 1.2.2.1: 

Under the null hypothesis of no differences among the various experimen­
tal or survey groups, can we exchange the labels on the observations without 
affecting the results? 

The effect of a "no" answer to this question is discussed in Chapter 9.1 
along with practical guidelines for the design and conduct of experiments and 
surveys to ensure the answer is "yes." 

2.3. Which Test? 

We are now able to make an initial comparison of the four types of statistical 
tests-permutation, rank, bootstrap, and parametric. 

Recall from Chapter 1 that with a permutation test, we: 
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1. Choose a test statistic S(X) 
2. Compute S for the original set of observations 
3. Obtain the permutation distribution of S by repeatedly rearranging the 

observations. With two or more samples, we combine all the observations 
into a single large sample before we rearrange them. 

4. Obtain the upper ex-percentage point of the permutation distribution and 
accept or reject the null hypothesis according to whether S for the original 
observations is smaller or larger than this value. 

If the observations are exchangeable then the resultant test is exact and 
unbiased. 

As noted in this chapter's opening quotation from Fisher, although permu­
tation tests were among the very first statistical tests to be developed, they 
were beyond the computing capacities of the 1930's. One alternative, which 
substantially reduces the amount of computation required, is the rank test. 
To form a rank test (e.g., Mann-Whitney or Friedman's test), we: 

1. Choose a test statistic S. 
2. Replace the original observations {Xij' i = 1, ... , I, j = 1, ... , J} by their 

ranks in the combined sample {Rk' k = l...IJ}. As an example, if. the 
original observations are 5.2, 1, and 7, their ranks are 2, 1, and 3. Compute 
S for the original set of ranks. 

3. Obtain the permutation distribution of S by repeatedly rearranging the 
ranks and recomputing the test statistic. Or, since ranks always take the 
same values 1, 2, and so forth, take advantage of a previously tabulated 
distribution. 

4. Accept or reject the hypothesis in accordance with the upper ex-percent­
age point of this permutation distribution. 

In short, a rank test is simply a permutation test applied to the ranks of the 
observations rather than their original values. If the observations are ex­
changeable, then the resultant rank test is exact and unbiased. Generally, a 
rank test is less powerful than a permutation test, but see Section 9.3 for a 
discussion of the merits and drawbacks of using ranks. 

The bootstrap is a relatively recent introduction (circa 1970), primarily 
because the bootstrap also is computation intensive. The bootstrap, like the 
permutation test, requires a minimum number of assumptions and derives its 
critical values from the data at hand. 

To obtain a nonparametric bootstrap, we: 

1. Choose a test statistic S(X). 
2. Compute S for the original set of observations. 
3. Obtain the bootstrap distribution of S by repeatedly resampling from the 

observations. We need not combine the samples, but may resample sepa­
rately from each sample. We resample with replacement. 

4. Obtain the upper ex-percentage point of the bootstrap distribution and 
accept or reject the null hypothesis according to whether S for the original 
observations is smaller or larger than this value. 
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Table 2.2. Comparison of Methods for Testing Equality of Means of 
Two Populations 

Distribution-free methods 

Rank Nonparametric Parametric 
Permutation (e.g. Wilcoxon) Bootstrap (e.g. t-test) 

Choose test Choose test Choose test Choose test 
statistic statistic statistic statistic whose 

distribution can 
be derived 
analytically 

(e.g., sum of (e.g., sum of ranks (e.g., difference (e.g., Student's t) 
observations in in first sample) between means 
first sample) of samples) 

Calculate statistic Convert to ranks Calculate statistic Calculate statistic 
Calculate 
statistic 

Are observations Are observations Are observations Are observations 
exchangeable? exchangeable? independent? independent? 

With identical Do they follow 
parameters of specified 
interest? distribution? 

Derive permuta- Use table of Derive bootstrap Use tabulated 
tion distribution permutation distribution: distribution 
from combined distribution of resampie separ-
sample ranks ately from each 

sample 

Compare statistic Compare statistic Compare statistic Compare statistic 
with percentiles with percentiles with percentiles with percentiles 
of distribution of distribution of distribution of distribution 

The bootstrap is neither exact nor conservative. Generally, but not always, 
a non parametric bootstrap is less powerful than a permutation test. One 
exception to the rule is when we compare the variances of two populations 
(see Section 3.4). If the observations are independent and from distributions 
with identical values of the parameter of interest, then the bootstrap is 
asymptotically exact [Liu, 1988]. And it may be possible to bootstrap when 
no other statistical method is applicable, see Section 4.4. 

To obtain a parametric test (e.g, a t-test or an F-test), we: 

1. Choose a test statistic, S, whose distribution Fs may be computed and 
tabulated independent of the observations. 

2. Compute S for the observations X. 
3. (This step may be skipped as the distribution Fs is already known and 

tabulated.) 
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4. Compare S(X) with the upper (X-percentage point of Fs and accept or reject 
the null hypothesis according to whether S(X) is smaller or larger than 
this value. 

If S is distributed as Fs , then the parametric test is exact and, often, the 
most powerful test available. In order for S to have the distribution Fs' in 
most cases the observations need to be independent and, with small samples, 
identically distributed with a specific distribution, Gs • If S really has some 
other distribution, then the parametric test may lack power and may not be 
conservative. With large samples, the permutation test is usually as powerful 
as the most powerful parametric test [Bickel and Van Zwet, 1978]. If S is not 
distributed as F., it may be more powerful. 

2.4. World Views 

Parametric tests such as Student's t are based on a sampling model. Propo­
nents of this model envision a hypothetical population, infinite in size, whose 
members take values in accordance with some fixed (if unknown) distribution 
function. For example, normally distributed observations would be drawn 
from a population whose values range from minus infinity to plus infinity in 
accordance with a bell-shaped or normal curve. From this population, pro­
ponents claim, we can draw a series of values of independent, identically­
distributed random variables to form a random sample. 

This view of the world is very natural to a trained mathematician, but does 
it really correspond to the practical reality which confronts the physician, the 
engineer, or the scientist? 

Fortunately, we needn't rely on the existence of a hypothetical infinite 
population to form a permutation test [Welch, 1937]. The permutation tests 
make every bit as much sense in a context which Lehmann [1986] terms 
the randomization model in which the results are determined by the specific 
set of experimental subjects and by how these subjects are assigned to 
treatment. 

Suppose that as a scientist you have done things or are contemplating 
doing things to the members of some representative subset or sample of a 
larger population-several cages of rats from the population of all geneti­
cally similar rats, several acres of land from the set of all similar acres, several 
long and twisted rods from the set of all similarly-machined rods. Or, as 
opposed to a sample, perhaps your particular experiment requires you to 
perform the same tests on every machine in your factory, or on every avail­
able fossil, or on the few surviving members of what was once-before man 
-a thriving species. 

In these experiments, there are two sorts of variation: the variation within 
an experimental subject over which you have little or no control-blood 
pressure, for example, varies from hour to hour and day to day within a given 
individual-and the variation between subjects over which you have even 



22 2. A Simple Test 

less control. Observations on untreated subjects take on values that vary 
about a parameter f.1i which depends on the individual i who is being exam­
ined. Observations on treated subjects have a mean value f.1j + (j where the 
treatment effect (j is confounded with the mean f.1j of the jth experimental 
subject. How are we to tell if the differences between observations on treated 
and untreated groups represent a true treatment effect or merely result from 
differences in the two sets of subjects? 

If we assign subjects to treatment categories at random, so that every per­
mutation of the labels is equally likely, the joint probability density of the 
observations is 

1 m n 

( + )' . ~ f1 f(Xi - f.1j) f1 f(Xi - f.1jm+i - (j). n m. (}, .. .. 1m+n) 1=\ ,=\ 

Under the null hypothesis of no treatment effect, that is (j = 0, this density 
can be written as 

1 m+n 

-~, . ~ f1 f(x\ - f.1jJ 
(n + m). (}' .... Jm+n) 1=\ 

By randomizing the assignment of subjects to treatment, we provide a sta­
tistical basis for analyzing the results. And we can reduce (but not eliminate) 
the probability, say, that all the individuals with naturally high blood pres­
sure end up in the treatment group. 

Because we know that blood pressure is an important factor, one that 
varies widely from individual to individual, we could do the experiment 
somewhat differently, dividing the experimental subjects into blocks so as 
to randomize separately within a "high" blood pressure group and a "low" 
blood pressure group. But we may not always know in advance which factors 
are important. Or, we may not be able to measure these factors until the date 
of the experiment itself. Fortunately, as we shall see in Sections 4.3 and 9.2, 
randomizing the assignment of subjects to treatment (or treatments to sub­
ject), also ensures that we are in a position to correct for significant cofactors 
after the experiment is completed. 

Using a permutation test to analyze an experiment in which we have ran­
domly assigned subjects to treatment is merely to analyze the experiment 
in the manner in which it was designed. 

2.5. Questions 

1. a) Power. Sketch the power curve P(O) for one or both of the two-sample compari­
sons described in this chapter. (You already know two of the values for each 
power curve. What are they?) 

b) Using the same set of axes, sketch the power curve of a test based on a much 
larger sample. 
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c) Suppose that without looking at the data you 
i) always reject; 

ii) always accept; or 
iii) use a chance device so as to reject with probability IX. 
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For each of these three tests, determine the power and the significance level. 
Are any of these three tests exact? Unbiased? 

2. a) Decisions. Suppose you have two potentially different radioactive isotopes with 
half-life parameters A\ and A2 , respectively. You gather data on the two isotopes 
and, taking advantage of a uniformly-most-powerful-unbiased permutation test, 
you reject the null hypothesis H: A\ = A2 in favor of the one-sided alternative 
not H: A\ > A2 • What are you or the person you are advising going to do about 
it? Will you need an estimate of AdA2? What estimate will you use? (Hint: See 
Section 3.2 in the next chapter.) 

b) Review some of the hypotheses you tested in the past. Distinguish your actions 
after the test was performed from the conclusions you reached. (In other words, 
did you do more testing? Rush to publication? Abandon a promising line of 
research?) What losses were connected with your actions? Should you have 
used a higher/lower significance level? Should you have used a more powerful 
test or taken more/fewer observations? And, if you used a parametric test like 
Student's t or Welch's z, were all the assumptions for these tests satisfied? 

3. a) The advertisement reads, "Safe, effective, faster than aspirin." A picture of a 
happy smiling woman has the caption, "My headache vanished faster than I 
thought possible." The next time you are down at the pharamacy, the new drug 
is there at the same price as your favorite headache remedy. Would you buy it? 
Why or why not? Do you think the ad is telling the truth? What makes you 
think it is? 

b) In the United States, in early 1995, a variety of government agencies and regula­
tions would almost guarantee the ad is truthful-or, if not, that it would not 
appear in print a second time. Suppose you are part of the government's regula­
tory team reviewing the evidence supplied by the drug company. Looking into 
the claim of safety, you are told only "we could not reject the null hypothesis." 
Is this statement adequate? What else would you want to know? 

c) Suppose, once again, you are a consumer with a spliting headache, but when 
you go to buy the new drug, you discover it is twice the price of your favorite 
remedy. The ad does promise it is faster than asprin; a footnote to the ad states 
a statistically significant increase in speed was found in an FDA-approved 
survey of 100 patients. Would you be willing to pay the difference in price for 
the new drug? Why or why not? 
If you aren't satisfied with or are uncertain of your answers, you may want to 

return to these questions as you proceed further into the text. 



CHAPTER 3 

Testing Hypotheses 

In this chapter, you learn how to approach and resolve a series of testing 
problems of increasing complexity; specifically, tests for location and scale 
parameters in one, two, and k samples. You learn how to derive confidence 
intervals for the unknown parameters. And you learn to increase the power 
of your tests by sampling from blocks of similar composition. 

3.1. One-Sample Tests 

3.1.1. Tests for a Location Parameter 

One of the simplest testing problems would appear to be that of testing for 
the value of the location parameter of a distribution F(9) using a series of 
observations Xl' x 2 , ••• , Xn from that distribution. This testing problem is a 
simple one if we can assume that the underlying distribution is symmetric 
about the unknown parameter 9, that is, if 

Pr{X ~ 9 - x} = F(9 - x) = 1 - F(9 + x) = Pr{X ~ 9 + x}, for all x. 

The normal distribution with its familiar symmetric bell-shaped curve, 
and the double exponential, Cauchy, and uniform distribution are examples 
of symmetric distributions. The difference of two independent observations 
drawn from the same population also has a symmetric distribution, as you 
will see when we come to consider experiments involving matched pairs in 
Section 3.6. 

Suppose we wish to test the hypothesis that 9 ~ 90 against the alternative 
that 9 > 90 • As in Chapter 1, we proceed in four steps: 

First, we choose a test statistic that will discriminate between the hypothe­
sis and the alternative. As one possibility, consider the sum of the deviations 
about 90 . Under the hypothesis, positive and negative deviations ought to 

24 
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cancel and this sum should be close to zero or negative. Under the alterna­
tive, positive terms should predominate and this sum should be large. But 
how large should the sum be for us to reject the hypothesis? 

We saw in Chapter 2 that we can use the permutation distribution to 
obtain the answer; but what should we permute? The principle of sufficiency 
can help us here: 

Suppose we had lost track of the signs (plus or minus) of the deviations. We 
could attach new signs at random, selecting a plus or a minus with equal 
probability. If we are correct in our hypothesis that the variables have a 
symmetric distribution about eo, the resulting values should have precisely 
the same distribution as the original observations. The absolute values of the 
observations are sufficient for regenerating the sample. (You'll find more on 
the topic of sufficiency in Sections 10.3 and 14.2 with regard to choosing a 
test statistic.) 

Under the alternative of a location parameter larger than eo, randomizing 
the signs of the deviations should reduce the sum from what it was originally; 
as we consider one after another in a series of random reassignments, our 
original sum should be revealed as an extreme value. 

Before implementing this permutation procedure, we note that the sum of 
just the deviations with plus signs attached is related to the sum of all the 
deviations by the formula: 

I Xi = (IX i + Ilx;I)!2, 
{x,>O} 

because the + 1's get added twice, once in each sum on the right hand side of 
the equation while the -l's and 1-11's cancel. Thus, we can reduce the 
number of calculations by summing only the positive deviations. 

As an illustration, suppose that eo is 0 and that the original observations 
are -1, 2, 3, Ll, 5. Our first step is to compute the sum of the positive 
deviations which is 11.1. 

Among the 2 x 2 x 2 x 2 x 2 or 25 possible reassignments of plus and 
minus signs are 

and 

+ 1, -2, +3, + Ll, +5 

+ 1, +2, +3, + 1.1, +5 

-1, -2, +3, + Ll, +5 

Our third step is to compute the sum of the positive deviations for each 
rearrangement. For the three rearrangements shown above, this sum would 
be 10.1, 12.1 and 9.1 respectively. 

Our fourth step is to compare the original value of our test statistic with its 
permutation distribution. Only two of the 32 rearrangements have sums as 
large as the sum, 1Ll, of the original observations. Is 2/32 = 1/16 = .0625 
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statistically significant? Perhaps or perhaps not. It all depends on the relative 
losses we assign to type I and type II error and on the loss function-are 
small differences of practical as well as statistical significance? Certainly, a 
significance level of 0.0625 is suggestive. Suggestive enough that in this case 
we might want to look at additional data or perform additional experiments 
before accepting the hypothesis that 0 is the true value of e. 

3.1.2 Properties of the Test 

Adopting the sampling model advanced in Section 2.4, we see the preceding 
permutation test is applicable even if the different observations come from 
different distributions-provided, that is, that these distributions are all sym­
metric and all have the same location parameter or median. (If these distribu­
tions are symmetric then if the mean exists, it is identical with the median.) If 
you are willing to specify their values through the use of a parametric model, 
the medians needn't be the same! (See problem 6). 

Most powerful test. Against specific normal alternatives, this permutation 
test provides a most powerful unbiased test of the distribution-free hypo­
thesis H: e = eo [Lehmann, 1986, p. 239]. For large samples, its power is 
almost the same as Student's t-test [Albers, Bickel, and van Zwet, 1976]. We 
provide proofs of these and related results in Chapter 14. 

Asymptotic consistency. What happens if the underlying distributions are 
almost but not quite symmetric? Romano [1990] shows that the permutation 
test for a location parameter is asymptotically exact provided the underlying 
distribution has finite variance. His result applies whether the permutation 
test is based on the mean, the median, or some statistical functional of the 
location parameter. If the underlying distribution is almost symmetric, the 
test will be almost exact even when based on as few as 10 or 12 observations. 
See Section 13.7 for the details of a Monte Carlo procedure to use in deciding 
when "almost" means "good enough." 

Capsule Summary 

ONE-SAMPLE TEST H: mean/median = eo 
K: mean/median #- eo 

Assumptions 
1) exchangeable observations 
2) distributions F; symmetric about median 

Transform 
Test statistic 

Let X; = Xl - eo 

Sum of nonnegative X; 
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3.1.3. Exact Significance Levels: A Digression 

Many of us are used to reporting our results in terms of significance levels of 
0.01, 0.05, or 0.10, and significance levels of 0.0625 or 0.03125 may seem 
confusing at first. These "oddball" significance levels often occur with small 
sample sizes. Five observations means just 32 possibilities and one extreme 
observation out of 32 corresponds to .03125. Things improve as sample sizes 
get larger. With seven observations, we can test at a significance level of .049. 
Is this close enough to 0.05? 

Lehmann [1986] describes a method called "randomization on the bound­
ary" for obtaining a significance level of exactly 5% (or exactly 1 %, or exactly 
10%). But this method isn't very practical. In the worst case, "on the bound­
ary," you must throw a die or use some other chance device to make your 
decision. 

What is the practical solution? We agree with Kempthorne [1975, 1977, 
1979]. Forget tradition. There is nothing sacred about a p-value of 5% or 
10%. Report the exact significance level, whether it is .065 or .049. Let your 
colleagues reach their own conclusions based on the losses they associate 
with each type of error. 

3.2. Confidence Intervals 

The method of randomization can help us find a good interval estimate of the 
unknown location parameter e. 

The set of confidence intervals are the duals of the corresponding tests of 
hypotheses: 

In the first step of our permutation test for the location parameter of a 
single sample, we subtract eo from each of the observations. We might test a 
whole series of hypotheses involving different values for eo until we find a e1 

such that as long as eo ;::: e1 , we accept the hypothesis, but if eo < e1 we reject 
it. Then an 100 (1 - oc)% confidence interval for e is given by the interval 
{e>e1 }· 

Suppose the original observations are - 1, 2, 3, 1.1, and 5 and we want to 
find a confidence interval that will cover the true value of the parameter 
~~nds of the time. In the first part of this chapter, we saw that /6th of the 
rearrangements of the signs resulted in samples that were as extreme as these 
observations. Thus, we would accept the hypothesis that e :s; 0 at the /6th 
and any smaller level including the 312nd. Similarly, we would accept the 
hypothesis that e :s; - 0.5 at the 312 nd level, or even that e :s; - 1 + e where e 
is an arbitrarily small but still positive number. But we would reject the 
hypothesis that e :s; -1 - e as after subtracting -1 - e the transformed 
observations are e, 3 + e,4 + e, 2.1 + e, 6 + e. 

Our one-sided confidence interval is { -1,00} and we have confidence that 
~~nds of the time the method we've used yields an interval that includes the 
true value of the location parameter e. 
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Our one-sided test of a hypothesis gives rise to a one-sided confidence 
interval. But knowing that 0 is larger than -1 may not be enough. We may 
want to pin 0 down to a more precise two-sided interval, say that 0 lies 
between - 1 and + 1. 

To accomplish this, we need to begin with a two-sided test. Our hypothesis 
for this test is that 0 = 00 against the two-sided alternatives that 0 is smaller 
or larger than 00 • We use the same test statistic-the sum of the positive 
observations, that we used in the previous one-sided test. Again, we look at 
the distribution of our test statistic over all possible assignments of the plus 
and minus signs to the observations. But this time we reject the hypothesis 
if the value of the test statistic for the original observations is either one 
of the largest or one of the smallest of the possible values. 

In our example, we don't have enough observations to find a two-sided 
confidence interval at the ~~nd level, so we'll try to find one at the t~ths. The 
lower boundary of the new confidence interval is still - 1. But what is the 
new upper boundary? If we subtract 5 from every observation, we would 
have the values - 6, - 3, - 2, - 3.9, -0; their sum is -14.9. Only the current 
assignment of signs to the transformed values, that is, only one out of the 32 
possible assignments, yields this small a sum for the positive values. The 
symmetry of the permutation test requires that we set aside another l2nd of 
the arrangements at the high end. Thus we would reject the hypothesis that 
o = 5 at the l2 + l2 or /6 th level. Consequently, the interval { - 1, 5} has a 
t~th chance of covering the unknown parameter value. 

These results are readily extended to a confidence interval for a vector of 
parameters, 0, that underlies a one-sample, two-sample, or k-sample experi­
mental design with single- or vector-valued variables. In each case, the 100 
(1 - IX)% confidence interval consists of all values of the parameter vector 0 
for which we would accept the hypothesis at level IX. Remember, one-sided 
tests produce one-sided intervals and two-sided tests produce two-sided con­
fidence intervals. 

In deriving a confidence interval, we look first for a pivotal quantity or 
pivot, Q(X 1' ... ,Xn, 0), whose distribution is independent of the parameters of 
the original distribution. One example is Q = X - v, where X is the sample 
mean, and the {Xi} i = 1, ... , n, are independent and identically distributed 
as F(x - v). A second example is Q = X/u, where the {Xi} are indepen­
dent and identically distributed as F(x/u). If the {Xi} are independent with 
the identical exponential distribution 1 - exp[ -At] (see problem 2 in Chap­
ter 2), then T = 2 L tJA is a pivotal quantity whose distribution does not 
depend on A. We can use this distribution to find an a and b such that 

Pr(a < T < b) = 1 - IX. But then pr{2b~ti < A < 2a~tJ = 1 - IX. We use 

a pivotal quantity in Section 7.5 to derive a confidence interval for a regres­
sion coefficient. 

For further information on deriving confidence intervals using the ran­
domization approach see Section 14.3, as well as Lehmann [1986, pp. 246-
263], Gabriel and Hsu [1983], John and Robinson [1983], Maritz [1981, p. 7, 



3.3. Two-Sample Comparisons 29 

p. 25], and Tritchler [1984]. For a discussion of the strengths and weaknesses 
of pivotal quantities, see Berger and Wolpert [1984]. 

3.2.1. Comparison with Other Tests 

When a choice of statistical methods exists, the best method is the one that 
yields the shortest confidence interval for a given significance level. Rob­
inson [1987] finds approximately the same coverage probabilities for three 
sets of confidence intervals for the slope of a simple linear regression, based, 
respectively, on 1) the standardized bootstrap; 2) parametric theory; and 3) 
a permutation procedure. 

Confidence Intervals and Rejection Regions 

There is a close connection between the confidence intervals and the rejection 
regions we've constructed. If A(O') is a 1 - IX level acceptance region for testing the 
hypothesis 0 = 0', and S(X) is a 1 - IX level confidence interval for 0 based on the 
vector of observations X, then for the confidence intervals defined here, S(X) 
consists of all the parameter values 0* for which X belongs to A(O*), while A(O) 
consists of all the values of the statistic x for which 0 belongs to S(x). 

P8{O E S(X)} = P8{X E A(O)} ~ 1 - IX. 

In Section 14.3, we show that if A(O) is the acceptance region of an unbiased test, 
the correct value of the parameter is more likely to be covered by the confidence 
intervals we've constructed than is an incorrect value. 

3.3. Two-Sample Comparisons 

3.3.1. Location Parameters 

We tested the equality of the location parameters of two samples in Chapter 
1. Recall that we observed 121, 118, and 110 in the treatment group and 34, 
12, and 22 in the control group. Our test statistic was the sum of the obser­
vations in the first group and we rejected the null hypothesis because the 
observed value of this statistic, 349, was as large or larger than it would have 
been in any of the (~) = 20 rearrangements of the data. 

In Chapter 14, we show that a permutation test based on this statistic is 
exact and unbiased against stochastically increasing alternatives of the form 
K: F2 [x] = Fl[x - 15], 15 > O. In fact, we show that this permutation test 
is a uniformly most powerful unbiased test of the null hypothesis H: F2 = Fl 
against normally distributed shift alternatives. Against normal alternatives 
and for large samples, its power is equal to that of the standard t-test [Bickel 
and van Zwet, 1978]. 

The permutation test offers the advantage over the parametric t-test that it 
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is exact even for very small samples whether or not the observations come 
from a normal distribution. The parametric t-test relies on the existence of a 
mythical infinite population from which all the observations are drawn (see 
Section 2.4). The permutation test is applicable even to finite populations 
such as all the machines in a given shop or all the supercomputers in the 
world. 

3.3.2. An Example 

Suppose we have two samples: The first, control sample takes values 0, 1, 2, 
3, and 19. The second, treatment sample takes values 3.1, 3.5, 4, 5, and 6. 
Does the treatment have an effect? 

The answer would be immediate if it were not for the value 19 in the first 
sample. The presence of this extreme value changes the mean of the first 
sample from 1.5 to 5. To dilute the effect of this extreme value on the results, 
we convert all the data to ranks, giving the smallest observation a rank of 1, 
the next smallest the rank of 2, and so forth. The first sample includes the 
ranks 1,2,3,4, and lO and the second sample includes the ranks 5, 6, 7, 8, and 
9. Is the second sample drawn from a different population than the first? 

Let's count. The sum of the ranks in the first sample is 20. All the re­
arrangements with first samples of the form 1, 2, 3, 4, k, where k is chosen 
from {5, 6, 7, 8, 9 or lO} have sums that are as small or smaller than that of 
our original sample. That's six rearrangements. The four rearrangements 
whose first sample contains 1, 2, 3, 5, and a fifth number chosen from the set 
{6, 7, 8, 9} also have smaller sums. That's 6 + 4 = 10 rearrangements so 
far. 

Continuing in this fashion-we leave the complete enumeration as an 
exercise-we find that 19 of the esO) = 252 possible rearrangements have 
sums that are as small or smaller than that of our original sample. Two 
samples this different will be drawn from the same population just under 
eight percent of the time by chance. 

Capsule Summary 

TWO-SAMPLE TEST FOR LOCATION 
H: mean/medians of groups differ by do 
K: mean/medians of groups differ by d > do 

Assumptions 
1) exchangeable observations 
2) FIi(x) = F(x) = F2i (X - d) 

Transform X'ii = Xli - do 
Test statistic 

Sum of observations in smallest sample 
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3.4. Comparing Variances 

3.4.1. The Permutation Approach 

31 

At first glance, the permutation test for comparing the variances of two popu­
lations would appear to be an immediate extension of the test we use for 
comparing the location parameters in which we use the squares of the obser­
vations rather than the observations themselves. But these squares are actu­
ally the sum of two components, one of which depends upon the unknown 
variance, the other upon the unknown location parameter. In symbols, where 
EX represents the mathematical expectation of a variable X: 

EX2 = E(X - /1 + /1)2 = E(X - /1)2 + 2/1E(X - /1) + /12 = (J2 + 0 + /12. 

A permutation test based upon the squares of the observations is appropriate 
only if the location parameters of the two populations are known or are 
known to be equal [Bailer, 1989]. 

Can't we eliminate the effects of the location parameters by working with 
the deviations about each sample mean? Alas, these deviations are inter­
dependent [Maritz, 1981]. The problem is illustrated in Figure 3.1. In the 
sketch on the left, the observations in the first sample are both further from 
the common center than either of the observations in the second sample, and 
of the four possible rearrangements of four observations between two sam­
ples, this arrangement is the most extreme. In the sketch on the right, the 
observations in the first sample have undergone a shift to the right; this shift 
has altered the relative ordering of the absolute deviations about the com­
mon center, and at least one other rearrangement is more extreme. 

Still, we needn't give up; if the samples are equal in size, the observations 
continuous, and the two populations differ by at most a shift under the 
hypothesis, we can obtain an exact permutation test with just a few prelimi­
nary calculations. First, we compute the median for each sample; e.g., in the 
sam pIe of three val ues-l, 6, 7 - the median is 6; if there is an even n umber 
of observations in the sample, we take as median the arithmetic average of 
the two observations that bracket the median. Second, we discard the median 
value from each sample; if there is an even number of observations in a 
sample then we discard one of the bracketing values. Last, we replace each 

I 

x c x x-c x 

O-c-O O---O-c 

A B 

Figure 3.1. Comparison of two samples: A original data, B after first sample is shifted 
to the right. C common center, x-x first sample, 0-0 second sample. 
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of the remaining observations by the square of its deviation about its sample 
median. In the preceding example, with observations 1,6, 7, we would be left 
with the squared deviates 25 and 1. 

Our test statistic T is the sum of the n - 1 squared deviations remaining in 
the first sample: To = 26 in our example. Its permutation distribution is ob­
tained by rearranging the 2(n - 1) deviations remaining in the combined 
sample. 

If under the null hypothesis the two populations differ only in their loca­
tion parameters, Fl (x) = F2(x - 15), and F is increasing over at least a semi­
infinite interval, then this permutation test is exact: For the n - 1 deviations 
remaining in the first sample are mutually exchangeable as are the n - 1 

Capsule Summary 

TWO-SAMPLE TEST FOR VARIANCE 
H: variances of populations are equal 
K: crl > crt 

Assumptions 
1) independent observations 
2) continuous observations 
3) Fli(x) = F2 ;(x - d) 

Transform X;j = (Xij - Mdn;)2 
discard redundant deviate from each sample 

Test statistic 
Sum of X;j in smallest sample 

deviations remaining in the second sample. The shift relation between the 
two populations ensures that the two sets of deviations are jointly exchange­
able. Exactness follows. 

Although there are several dozen alternate solutions to the problem of 
comparing the variances of two populations (see, for example, the list in 
Conover, Johnson and Johnson [1981]), in a recent series of computer simu­
lations, my friend Michael Chernick and I found that none are close to exact 
for samples of under sixteen in size. The permutation test for comparing 
variances is exact, powerful, and distribution free. 

3.4.2. The Bootstrap Approach 

In order to use permutation methods to compare the variances of two popu­
lations, we have to sacrifice two of the observations. The resultant test is 
exact and distribution free, but it is not most powerful. A more powerful test 
is provided by the bootstrap confidence interval for the variance ratio. To 
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Table 3.1A. Significance levels for Variance Comparisons for 
BCa method, Efron and Tibshirani [X: 1986].* For various 
underlying distributions by sample size. 500 simulations. 

6,6 8,8 8,12 12,8 12,12 15, 15 

Ideal 50 50 50 50 50 50 
normal (0,1) 44 52 53 56 45 49 
double (0, 1) 53 51 63 70 55 54 
gamma (4.1) 48 55 60 65 52 52 
exponential 54 58 56 70 46 63 

• X preceding a date, as in Efron, X:1986, refers to a supporting bibliography at 
the end of the text which includes material not directly related to permutation 
methods 
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Table 3.1B. Power as a Function of the Ratio ofthe Variances. For various 
distributions and two samples each of size 8. Rejections in 500 Monte Carlo 
simulations. 

permutation test bootstrap* 

r/J = (12/(11 1. 1.5 2. 3. 4. 1. 1.5 2. 3. 4. 

Ideal 50 500 50 500 
normal 52 185 312 438 483 52 190 329 444 482 
double 55 153 215 355 439 53 151* 250* 379· 433 
gamma 44 158 255 411 462 49 165 288 426 464 
exponential 51 132 224 323 389 54 150* 233* 344* 408 

• bootstrap intervals shortened so actual significance level is 10"1.. 

derive this test, we resample repeatedly with replacement, drawing indepen­
dently from the two original samples, until we have two new samples the 
same size as the originals. Each time we resample, we compute the variances 
of the two new independent subsamples and calculate their ratio. The resul­
tant bootstrap confidence interval is asymptotically exact [Efron, 1981] and 
can be made close to exact with samples of as few as eight observations: 
See Table 3.1A. As Table 3.1B shows, this bootstrap is more powerful than 
the permutation test we described in the previous section. One caveat also 
revealed in the table: this bootstrap is still only "almost" exact. 

3.5. k-Sample Comparisons 

3.5.1. F-Ratio 

Just as Student's t is the classic parametric statistic for testing the hypothesis 
that the means of two normal distributions are the same, so the F -ratio of the 
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between-group variance to the within-group variance is the classic parame­
tric statistic for testing the hypothesis that the means of k normal distribu­
tions are the same [Welch, 1937; Pitman, 1937]. 

Explicitly, let Xij (j = 1, ... , ni ; i = 1, ... , s) be independently distributed as 
F(x - IlJ, and thus exchangeable, and consider the hypothesis H: 111 = ... = 
Ils, and the alternative notH: Ili #- Ilj for some pair (i,j). Welch [1937J pro­
poses as test statistic 

(3.5.1 ) 

It is easy to see that W is invariant under transformations of scale or 
origin. Lehmann [1986, p. 375J shows that against normal alternatives, and 
among all similarly invariant tests, the parametric test based on W is a uni­
formly most powerful procedure. 

If the Xij are normally distributed with a common variance, then under the 
hypothesis, W has the F-distribution with s - 1, n - s degrees of freedom. 
But we may not know or not be willing to assume that these observations 
do come from a normal distribution. Since the observations are indepen­
dent and identically distributed, they are exchangeable and, whether or not 
they are normally distributed, we can still obtain the permutation distribu­
tion of W We examine all possible reassignments of the observations to the 
various treatment groups subject to the restriction that the number of obser­
vations in each of the k groups remains unchanged. Our analysis is exact 
if the experimental units were randomly assigned to treatment to begin 
with. 

In a sidebar, we've provided an outline of a computer program that uses a 
Monte Carlo to estimate the significance level (see Section 13.2). This pro­
gram is applicable to any of the experimental designs we consider in this 
chapter and the next. Our one programing trick is to pack all the observa­
tions into a single linear vector X = (Xll"",X1n"X1n,+1"",X1n,+n2"") 
and then to permute the observations within the vector. If we have k samples, 
we only need to select k - 1 of them when we rearrange the data. The kth 
sample is left over automatically. 

We need to write a subprogram to compute the test statistic but there's 
less work involved than the formula for W would suggest. As is the case 
with the permutation equivalent of the t-statistic, we can simplify the cal­
culation of the test statistic by eliminating terms that are invariant under 
permutation of the subscripts. For example, the within-group sum of squares 
in the denominator of W may be written as two sums ~])Xij - X .. )2 and 
I ni(Xi. - X.y. The first of these sums is invariant under permutation of the 
subscripts. The second, the between-groups sum of squares, already occurs 
in the numerator. Our test statistic reduces to the between-groups sum of 
squares 



3.5. k-Sample Comparisons 35 

Sidebar 

Program for estimating permutation significance levels; for tips on optimization, 
see Chapter 13. 

Monte, the number of Monte Carlo simulations; try 400 
So, the value of the test statistic for the unpermuted observations 
S, the value of the test statistic for the rearranged observations 
X[ ], a one-dimensional vector that contain the observations 
n[ ], a vector that contains the sample sizes 
N, the total number of observations 

Main program 
Get data 

put all the observations into a single linear vector 
Compute the test statistic So 
Repeat Monte times: 

Rearrange the observations 
Recompute the test statistic S 
Compare S with So 

Print out the proportion of times S was equal to or larger than So 

Rearrange 
Set s to the size of the combined sample 
Start: Choose a random integer k from 0 to s - 1 

Swap X[k] and X[s - 1]: 
temp = X[k]; 
X[k] = X[s - 1]; 
X[s - 1] = temp. 

Decrement s and repeat from start 
Stop after you've selected all but one of the samples. 

Get data 
This user-written procedure gets all the data and packs it into a single long 

linear vector X. 

Compute stat 
This user-written procedure computes the test statistic. 

with a corresponding reduction in the number of calculations. 
The size and power of this test are robust in the face of violations of the 

normality assumption providing that the {Xij; j = 1, ... , nJ are samples from 
distributions F(x - ]li) where F is an arbitrary distribution with finite vari­
ance [Robinson, 1973, 1983]. However, the parametric version of the test is 
almost as robust. The real value of the permutation approach comes when we 
realize that we are not restricted to a permutation version of an existing 
statistic but are free to choose a test statistic optimal for the problem at hand. 
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3.5.2. Pitman Correlation 

The F-ratio test and its permutation version offer protection against any and 
all deviations from the null hypothesis of equality among treatment means. 
As a result, they may offer less protection against some specific alternative 
than some other test function(s). When we have a specific alternative in mind, 
as is so often the case in biomedical research; for example, when we are 
testing for an ordered dose response, the F-ratio may not be the statistic of 
choice. 

Frank, Trzos, and Good [1977] studied the increase in chromosome abnor­
malities and micronucleii as the dose of various known mutagens was in­
creased. Their object was to develop an inexpensive but sensitive biochemical 
test for mutagenicity that would be able to detect even marginal effects. Thus 
they were more than willing to trade the global protection offered by the 
F-test for a statistical test that would be sensitive to ordered alternatives. 

Fortunately, a most powerful unbiased test (and one that is also most 
powerful among tests that are invariant to changes in scale) has been known 
since the late 1930's. Pitman [1937] proposes a test for linear correlation 
using as test statistic 

S = I/[i]niXi 

where I[i] is any monotone increasing function. The simplest choice is 
I[i] = i. 

The permutation distributions of Sl with l[i] = ai + band Sz with I[i] = 

i are equivalent in the sense that if SlO' S20 are the values of these test statis­
tics corresponding to the same set of observations {x;}, then Pr(Sl > SlO) = 

Pr(S2 > S20). 
Let us apply the Pitman approach to the data collected by Frank et al. 

shown in Table 3.2. As the anticipated effect is proportional to the logarithm 
of the dose, we take I [dose] = log [dose + 1]. 

(Adding a 1 to the dose keeps this function from blowing up at a dose of 
zero.) There are four dose groups; the original data for breaks may be written 
in the form 

Table 3.2. Micronucleii in polychromatophilic 
erythrocytes and chromosome alterations in the 
bone marrow of mice treated with C Y. 

Dose Number of Micronucleii Breaks 
(mgjkg) animals per 200 cells per 25 cells 

0 4 0000 o 1 1 2 
5 5 1 1 145 o 1 235 

20 4 0004 3 577 
80 5 2 3 5 11 20 6 7 899 
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o 1 1 2 o 1 235 3 5 7 7 6 7 899 

As 10g[0 + 1] = 0, the value of the Pitman statistic for the original data is 

o + 11 * log[6] + 22 * log[21] + 39 * log[81] = 112.1. The only larger 
values are associated with the small handful of rearrangements of the form 

001 2 1 123 5 3 577 6 7 8 9 9 
o 0 1 1 1 223 5 3 5 7 7 6 7 8 9 9 
o 0 1 1 1 2 2 3 3 5 577 6 7 8 9 9 
o 0 1 2 1 1 233 5 577 6 7 8 9 9 
o 1 1 2 o 1 2 3 3 5 5 7 7 6 7 8 9 9 
o 1 1 2 o 1 2 3 5 3 567 7 7 8 9 9 
o 0 1 2 1 123 5 3 567 7 7 899 
o 0 1 1 12235 3 567 7 7 8 9 9 
o 0 1 1 12233 5 5 6 7 7 7 8 9 9 
o 0 1 2 1 123 3 5 5 6 7 77899 
o 1 1 2 o 1 233 5 5 6 7 77899 

A statistically significant ordered dose response (a < 0.001) has been 
detected. The micronucleii also exhibit a statistically significantly dose 
response when we calculate the permutation distribution of S = 
~)og[dosei + l]ni X i •• To make the calculations, we took advantage of the 
computer program we developed in Section 3.5.1; the only change was in the 
subroutine used to compute the test statistic. 

A word of caution: If we use some function of the dose other than 
f[dose] = log [dose + 1], we might not observe a statistically significant 
result. Our choice of a test statistic must always make biological as well as 
statistical sense; see question 3 in Section 3.9. 

3.5.3. Effect of Ties 

Ties can complicate the determination of the significance level. Because of 
ties, each of the rearrangements noted in the preceding example might actu­
ally have resulted from several distinct reassignments of subjects to treatment 
groups and must be weighted accordingly. To illustrate this point, suppose 
we put tags on the 1 's in the original sample 

o 1* 1# 2 o 1 235 3 5 7 7 6 7 8 9 9 

The rearrangement 

001 2 1 123 5 3 577 6 7 8 9 9 

corresponds to the three reassignments 
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o 0 1 2 
o 0 1* 2 
o 0 1 # 2 

1*1#235 
1 1# 235 

1* 2 3 5 

3 577 
3 577 
3 5 7 7 

3. Testing Hypotheses 

6 7 899 
6 7 899 
6 7 899 

The 18 observations are divided into four dose groups containing 4, 5, 4, and 
5 observations respectively so that there are (4l~ 5) possible reassignments 

of observations to dose groups. Each reassignment has probability ( 118 of 
4 5 4 5) 

occurring so the probability of the rearrangement 

001 2 1 123 5 3 577 6 7 899 

is 
3 

(4 l~ 5)' 

To determine the significance level when there are ties, weight each distinct 
rearrangement by its probability of occurrence. This weighting is done auto­
matically if you use Monte Carlo sampling methods as is done in the com­
puter program we provide in section 3.5.1. 

Capsule Summary 

K-SAMPLE TEST 
H: all distributions and, in particular, 

all population means the same 
K 1: at least one pair of means differ 
K2: the population means are ordered 

Assumptions 
1) exchangeable observations 
2) Fij(x) = F(x - I1j) 

Transform None 
Test statistic 

Kl: I nj(Xj. - x.f 
K2: If[i]njXj. 

3.5.4. Linear Estimation 

Pitman correlation may be generalized by replacing the fixed function I[i] 
by an estimate ~ derived by a linear estimation procedure such as least 
squares polynomial regression, kernel estimation, local regression, and 
smoothing splines [Raz, 1990]. 
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Suppose the jth treatment group is defined by Xj' a vector-valued design 
variable (Xj might include settings for temperature, humidity, and phosphor­
ous concentration). Suppose also that we may represent the ith observation 
in the jth group by a regression model of the form 

1]; = Ji(xj ) + ej;, j = 1, ... , n 

where e is an error variable with mean 0, and Ji(x) is a smooth regression 
function (that is, for any x and /: sufficiently small, Ji(x + /:) may be closely 
approximated by the first-order Taylor expansion Ji(x) + b/:). 

The null hypothesis is that Ji(x) = Ji, a constant that does not depend on 
the design variable x. As always, we assume that the errors ej; are exchange­
able so that all n! assignments of the labels to the observations that preserve 
the sample sizes {nj } are equally likely. 

Raz's test statistic is Q = L (A(X)2 where A is an estimate of Ji derived by 
a lineaJ;' estimation procedure such as least squares polynomial regression, 
kernel estimation, local regression, and smoothing splines. 

This test may be performed using the permutation distribution of Q or, for 
large samples, a gamma-distribution approximation. See also Section 7.3. 

3.5.5. A Unifying Theory 

The permutation tests for Pitman correlation and the two-sample compari­
son of means are really special cases of a more general class of tests that 
take the form of a dot product of two vectors EWald and Woifowitz, 1943; 
De Cani, P: 1979]. Let W = {WI"'" WN} and Z = {ZI"",ZN} be fixed sets 
of number and let Z = {ZI"",ZN} be a random permutation of the elements 
of Z. Then we may use the dot product of the vectors Z and W, T = LZ;Wj, to 
test the hypothesis that the labelling is irrelevant. In the two-sample compari­
son, W is a vector of m l's followed by nO's. In Pitman correlation, W = 
{J[I], ... ,fEN]} where f is a monotone function. 

3.6. Blocking 

Although the significance level of a permutation test may be "distribution­
free," its power strongly depends on the underlying distribution. 

Figure 3.2 depicts the effect of a change in the variance of the underlying 
population on the power of the permutation test for the difference in two 
means. As the variance increases, the power decreases. To get the most from 
your experiments, reduce the variance. 

One way to reduce the variance is to subdivide the population under study 
into more homogeneous subpopulations and to take separate samples from 
each. Suppose you were designing a survey on the effect of income level 
on the respondents' attitudes toward compulsory pregnancy. Obviously, the 
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~(e) 

o 

Figure 3.2. Effect of the population variance on the power of a test of two means. 
() = ()1 - ()2· 

views of men and women differ markedly on this controversial topic. It 
would not be prudent to rely on randomization to even out the sex ratios in 
the various income groups. 

The recommended solution is to block the experiment, to interview, and to 
report on, men and women separately. You would probably want to do the 
same type of blocking in a medical study. Similarly, in an agricultural study, 
you would want to distinguish among clay soils, sandy, and sandy-loam. 

In short, whenever a population can be subdivided into distinguishable 
subpopulations, you can reduce the variance of your observations and 
increase the power of your statistical tests by blocking or stratifying your 
sample. 

Suppose we have agreed to divide our sample into two blocks-one for 
men, one for women. If this is an experiment, rather than a survey, we would 
then assign subjects to treatments separately within each block. 

In a study that involves two treatments and ten experimental subjects, four 
men and six women, we would first assign the men to treatment and then the 
women. We could assign the men in any of (t) = 6 ways and the women in 
any of (g) = 20 ways. That is, there are 6 x 20 = 120 possible random assign­
ments in all. 

When we come to analyze the results of our experiment, we use the per­
mutation approach to ensure we analyze in the way the experiment was 
designed. Our test statistic is a natural extension of that used for the two­
sample comparison [Lehmann, 1986], pp. 233-4: 

B (nb+mb) 

S = L L Xbj (3.6.1) 
b=l j=mb+1 

where B is the number of blocks, two in the present example, and the inner 
sum extends over the nb treated observations Xbj within each block. 

We compute the test statistic for the original data. Then, we rearrange the 
observations at random within each block, subject to the restriction that the 
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number of observations within each treatment category-the pair {nb' mb}­
remain constant. 

We compute S for each of the 120 possible rearrangements. If the value of 
S for the original data is among the 120cx largest values, then we reject the 
null hypothesis; otherwise we accept it. 

3.6.1. Extending the Range of Applications 

The resulting permutation test is exact and most powerful against normal 
alternatives even if the observations on men and women have different distri­
butions [Lehmann, 1986]. As we saw in Section 2.3, all that is required is that 
the subsets of errors be exchangeable. 

The design need not be balanced. The test statistic S (equation 3.6.1) is a 
sum of sums. Unequal sample sizes resulting from missing data or an inabil­
ity to complete one or more portions of the experiment will affect the analysis 
only in the relative weights assigned to each subgrouping. 

Warning: This remark applies only if the data is missing at random. If 
treatment-related withdrawals are a problem in one of your studies, see 
Entsuah [1990J for the details of a resampling procedure. 

Blocking is applicable to any number of subgroups; in the extreme case, 
that in which every pair of observations forms a distinct subgroup, we have 
the case of matched pairs. 

3.7. Matched Pairs 

In a matched pairs experiment, we take blocking to its logical conclusion. 
Each subject in the treatment group is matched as closely as possible by a 
subject in the control group. For example, if a 45-year old black male hyper­
tensive is given a blood-pressure lowering pill, then we give a second simi­
larly-built 45-year old black male hypertensive a placebo. One member of 
each pair is then assigned at random to the treatment group, and the other 
member is assigned to the controls. 

Assuming we have been successful in our matching, we will end up with a 
series of independent pairs of observations (Xi' Y;) where the members of each 
pair have been drawn from the distributions 'Fi(x - v) and Fi(x - v - b) re­
spectively. Regardless of the form of this unknown distribution, the differ­
ences Zi = Y; - Xi will be symmetrically distributed about the unknown 
parameter 15: 

Pr(Z::;; z + b) = Pr{Y - X::;; z + b} 

= Pr{(Y - v) - (X - v)::;; z + b} 

= S Pr {Y - v = z + 15 + s} Pr {X - v = s} ds 
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= J f(z + s)f(s) ds 

= JPr{X - v = z + s}Pr{Y - v - <5 = s} ds 

= Pr{(X - v) - (Y - v - <5):$; z} 

= Pr{X - Y:$; z - <5} 

= Pr{Y - X ~ -z + <5} 

= Pr(Z ~ - z + (5) 

This is precisely the case we considered at the beginning of this chapter and 
the same readily computed permutation test is applicable. 

This permutation test has the same properties of exactness, lack of bias, 
and sensitivity under the same conditions as the one-sample test with the 
following exception: If the observation on one member of a pair is missing, 
then we must discard the remaining observation. 

For an almost most powerful test when one member of the pair is cen­
sored, see Section 9.4. For an application of a permutation test to the case 
where an experimental subject serves as her own control, see Shen and 
Quade [1986]. 

Capsule Summary 

MATCHED-PAIRS 
H: distributions and, in particular, means/medians of the members of each pair 

are the same 
K: means/medians of the members of each pair differ by d > 0 

Assumptions 
1) independent observations 
2) Fli(X) = F2i(X - d) 

Transform Zi = Xli - X2i 
Test statistic Sum of positive Zi 

3.8. Questions 

1. Show that the following statistics lead to equivalent permutation tests for the 
equality of two location parameters: 
a) LX2i (our original choice) 
b) LX2;/n2 - LXli/n l (the difference of the sample means) 

c) (LX2;/n2 - LXli/nd (the t-statistic). 
J(L(X2i - X 2.)2 + L(XIi - X 1.)2)/(m + n - 2) 
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Hint: The sums (LX2i + LXii), (LXii + LxiJ and the sample sizes nt, n2 are 
invariant under permutations. 

2. In the example of Section 3.3.2, list all rearrangements in which the sum of the 
ranks in the first sample is less than or equal to the original sum. 

3. Use both the F-ratio and Pitman correlation to analyze the data for micronuc1eii 
in Table 3.2. Explain the difference in results. 

4. The following vaginal virus tit res were observed in mice by H.E. Renis of the 
Upjohn Company 144 hours after inoculation with Herpes virus type II (see 
Good [1979] for complete details); 

Saline controls 
Treated with antibiotic 

10000, 3000, 2600, 2400, 1500. 
9000, 1700, 1100, 360., 1. 

Is this a one-sample, two-sample, k-sample, or matched pairs study? Does treat­
ment have an effect? 

Most authorities would suggest using a logarithmic transformation before ana­
lyzing this data. Repeat your analysis after taking the logarithm of each of the 
observations. Is there any difference? Compare your results and interpretations 
with those of Good [1979]. 

5. Using the logarithm of the viral titre, determine an approximate 90% confidence 
interval for the treatment effect. (Hint: Keep subtracting a constant from the loga­
rithms of the observations on saline controls until you can no longer detect a 
treatment difference.) 

6. Suppose you make a series of I independent pairs of observations {Xi,Yi; i = 1 .. . I}. 
Yi might be tensile strength and Xi the percentage of some trace metal. You know 
from your previous work that each of the Yi has a symmetric distribution. 
a) How would you test the hypothesis that for all i, the median of Yi is Xi? (Hint: 

See 3.1.2.) 
b) Do you need to assume that the distributions of the {yd all have the same 

shape, i.e., that they are all normal or all double exponential? Are the {y;} 
exchangeable? Are the {z; = Y; - x;}? {We return to these questions in Chapter 
7.) 



CHAPTER 4 

Experimental Designs 

4.1. Introduction 

In this chapter, we explore the use of permutation methods for analyzing the 
results of complex experimental designs that may involve multiple control 
variables, covariates, and restricted randomization. 

4.2. Balanced Designs 

The analysis of randomized blocks we studied in Chapter 3 can be general­
ized to very complex experimental designs with multiple control variables 
and confounded effects. In this section, we consider the evaluation of main 
effects and interactions in the two- and three-way univariate analysis of vari­
ance and in the Latin Square. Only balanced designs with the sample sizes 
equal in all subcategories are considered here. Unbalanced designs are con­
sidered in Section 4.4. 

What distinguishes the complex experimental design from the simple one­
sample, two-sample, and k-sample experiments we have considered so far is 
the presence of multiple control factors. 

For example, we may want to assess the simultaneous effects on crop yield 
of hours of sunlight and rainfall. We determine to observe the crop yield X/jm 

for I different levels of sunlight, i = 1, ... , I, and J different levels of rainfall, 
j = 1, ... , J, and to make M observations at each factor combination, m = 1, 
... , M. We adopt as our model relating the dependent variable, crop-yield 
(the effect) to the independent variables of sunlight and rainfall (the causes) 

X jjm = J.l + Sj + rj + (sr)ij + 8jjm. 

In this model, terms with a single subscript like Sj, the effect of sunlight, are 
called main effects. Terms with multiple subscripts like srij, the residual and 
nonadditive effect of sunlight and rainfall, are called interactions. The {8jjm } 

represent that portion of crop yield that can not be explained by the indepen-

44 
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dent variables alone; these are variously termed the residuals, the errors, or 
the model errors. To ensure the residuals are exchangeable so that permuta­
tion methods can be applied, the experimental units must be assigned at 
random to treatment (see Section 4.2.4). 

If we wanted to assess the simultaneous effect on crop yield of three factors 
simultaneously-sunlight, rainfall, and fertilizer, say, we would observe the 
crop yield Xijkm for I different levels of sunlight, i = 1, ... , I, J different levels 
of rainfall, j = 1, ... , J, and K different levels of fertilizer, k = 1, ... , K and 
make M observations at each factor combination, m = 1, ... , M. Our model 
would then be 

X ijkm = Ji + Si + rj + J". + (sr)ij + (S)ik + (r)jk + (sr)ijk + eijkm' 

In this model we have three main effects, Si' rj , and J"., three two-way 
interactions, (sr)ij, (S)ik' (r)jk' a single three-way interaction, (sr)ijk' and the 
error term eijkm' 

Including the additive constant Ji in the model allows us to define all main 
effects and interactions so they sum to zero, 

LSi=O, 

L (sr)ij = 0 for j = 1, ... , J, 
i 

and so forth. That is, under the null hypothesis of no effect of sunlight on 
crop yield, each of the main effects Sl = ... = Sf = O. Under the alternative, 
the different terms Si represent deviations from a zero average, with the inter­
action term (sr)ij representing the deviation from the sum Si + rj. 

Clearly, when we have multiple factors, we must also have multiple test 
statistics. In the preceding example, we require three separate tests and test 
statistics for the three main effects Si> rj' and Jk> plus four other statistical tests 
for the three two-way and the one three-way interactions. Will we be able to 
find statistics that measure a single intended effect without confounding it 
with a second unrelated effect? Will the several test statistics be independent 
of one another? 

In the permutation analysis of an experimental design as in the parametric 
analysis of variance, the answer is yes to both questions only if the design is 
balanced, that is, if there are equal numbers of observations in each subcate­
gory, and if the test statistics are independent of one another. 

In a balanced design, the permutation test has a three-fold advantage over 
the parametric ANOVA: it is exact; it is not restricted by an assumption 
of normality (although, it does require that the experimental errors be ex­
changeable; see Section 2.2); yet it is as powerful or more powerful than 
parametric approach; see Scheffe 1959; Collier and Baker, 1966; and Brad­
bury, 1987. 

In an unbalanced design, main effects will be corifounded with interac­
tions so that the two cannot be tested separately, a topic we return to in 
Section 4.4. 
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4.2.1. Main Effects 

In a k-way analysis with equal sample sizes M in each category, we can assess 
the main effects using essentially the same statistics we would use for ran­
domized blocks. Take sunlight in the preceding example. If we have only two 
levels of sunlight, then, referring to equation 3.6.1, our test statistic for the 
effect of sunlight is 

J K M 

S = L L L X 1jkm (4.1) 
j=1 k=1 m=1 

If we have more than two levels of sunlight, our test statistic is 

I J K 

F2 = L L L (Xijk . - X.jkY (4.2) 
i=1 j=1 k=1 

or 
I J K 

Fl = L L L IXijk · - X.jk·1 (4.3) 
i=1 j=1 k=1 

The dot . used as a subscript indicates that we have summed over the 
corresponding subscript and then taken an average by dividing by the num­
ber of terms in that sum; thus 

M 

X ijk . = L Xijkm/M. 
m=1 

The statistics F2 and Fl offer protection against a broad variety of shift 
alternatives including 

K 2 : S1 > S2 > S3 = .. . 

K3: S1 < S2 > S3 = .. . 

As a result, they may not provide a most powerful test for any single one of 
these alternatives. If we believe the effect to be monotone increasing, then, in 
line with the thinking detailed in Section 3.5.2, we would use the Pitman 
correlation statistic 

I J K 

R = L L L f[i] (Xijk . - x. jk .) (4.4) 
i=1 j=1 k=1 

To obtain the permutation distributions of the test statistics S, F2, Fl, and 
R, we permute the observations independently in each of the J K blocks 
determined by a specific combination of rainfall and fertilizer. Exchanging 
observations within a category corresponding to a specific level of sunlight 
leaves the statistics S, F2, Fl, and R unchanged. We can concentrate on 
exchanges between categories, and the total number of rearrangements is 

( MI )JK 
M ... M 
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We compute the test statistic (S, Fl, or R) for each rearrangement, rejecting 
the hypothesis that sunlight has no effect on crop yield only if the value of S 
(or Fl or R) that we obtain using the original arrangement of the observa­
tions lies among the CI. most extreme of these values. 

Of the two F-statistics, Fl is to be preferred to F2. Fl is as powerful or 
more powerful for detecting location shifts and more powerful for detecting 
concentration changes [Mielke and Berry, 1983]. 

A third alternative to Fl and F2 is 

(4.5) 

[James X: 1951] which Hall [X: 1989] recommends for use with the bootstrap 
when we can not be certain that the observations in the various categories all 
have the same variance. In simulation studies with permutation tests and 
variances that differed by an order of magnitude, I found F3 was inferior to 
Fl. 

A final alternative to the statistics S, Fl, and F2 is the standard F-ratio 
statistic 

I 

L Mi(Xi·· - X ... f 
F = _i=_l ___ --,.--_ 

(l- 1)0-2 
(4.6) 

where 0-2 is our estimate of the variance of the errors 8 ijk • But if we use F, we 
are forced to consider exchanges between as well as within blocks, thus ne­
gating the advantages of blocking as described in Section 3.6. 

4.2.2. An Example 

In this section, we apply the permutation method to determine the main 
effects of sunlight and fertilizer on crop yield using the data from the two­
factor experiment depicted in Table 4.la. As there are only two levels of 
sunlight in this experiment, we use S (equation 4.1) to test for the main 
effect. For the original observations, S = 23 + 55 + 75 = 153. One possible 
rearrangement is shown in Table 4.1 b in which we have interchanged the two 
observations marked with an asterisk, the 5 and 6. The new value of Sis 154. 

As can be seen by a continuing series of straightforward hand calculations, 
the test statistic, S, for the main effect of sunlight is as small or smaller than 
it is for the original observations in only 8 out of the (~)3 = 8000 possible 
rearrangements. For example, it is smaller when we swap the 9 of the Hi-Lo 
group for the 10 of the Lo-Lo group (the two observations marked with the 
pound sign). As a result, we conclude that the effect of sunlight is statistically 
significant. 

The computations for the main effect of fertilizer are more complicated 
-we must examine (3 ~ 3)2 rearrangements, and compute the statistic Fl 
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Table 4.1a. Effect of Sunlight and Fertilizer 
on Crop Yield 

Fertilizer 

LO MED HIGH s 
u LO 5 15 21 
n 10 22 29 
I 8 18 25 

g HI 6 25 55 
h 9 32 60 

12 40 48 

Table 4.1 b. Effect of Sunlight and 
Fertilizer. Data Rearranged 

LO MED HIGH 

LO 6* 15 21 
10# 22 29 
8 18 25 

HI 5* 25 55 
9# 32 60 

12 40 48 

for each. We use F1 rather than R because of the possibility that too much 
fertilizer-the "High" level, might actually suppress growth. Only a com­
puter can do this many calculations quickly and correctly, so we adapted our 
program from Section 3.5 to make them (see Sidebar). The estimated signifi­
cance level is .001 and we conclude that this main effect, too, is statistically 
significant. 

In this last example, each category held the same number of experimental 
subjects. If the numbers of observations were unequal, our main effect would 
have been confounded with one or more of the interactions (see Section 4.5). 
In contrast to the simpler designs we studied in the previous chapter, missing 
data will affect our analysis. 

4.2.3. Interactions 

To test the hypothesis of no interaction, we first eliminate row and column 
effects by subtracting the row and column means from the original observa-
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Sidebar 

Program for estimating significance level of the main effect of fertilizer on crop 
yield in a balanced design 

Set aside space for 
Monte the number of Monte Carlo simulations 
So the original value of test statistic 
S test statistic for rearranged data 
data {5, 10,8,15,22,18,21,29,25,6,9,12,25,32,40,55,60, 48}; 
n = 3 number of observations in each category 
blocks = 2 number of blocks 
levels = 3 number of levels of factor 

Main program 
Get data 

put all the observations into a single linear vector 
Compute So for the original observations 
Repeat Monte times: 

for each block 
Rearrange the data in the block 

Compute S 
Compare S with So 

Print out the proportion of times S was larger than So 

Rearrange 
Set s to the number of observations in the block 
Start: Choose a random integer k from 0 to s - 1 

Swap X[k] and Xes - 1]: 
Decrement s and repeat from start 

Stop after you've selected all but one of the samples. 

Get data 

49 

user-written procedure gets data and packs it into a two-dimensional array in 
which each row corresponds to a block. 

Compute 
1 J 

Fl = L L IXij' - X.j.1 
i=1 j=l 

for each block 
calculate the mean of that block 
for each level within a block 

calculate the mean of that block-level 
calculate difference from block mean 

tions. That is, we set 

X;jk = X ijk - Xi .. - X. j . + X ... ; 

where by adding the grand mean, X ... , we ensure the overall sum will be zero. 
In the example of the effect of sunlight and fertilizer on crop yield, we are left 
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Table 4.2. Effect of Sunlight and Fertilizer 
on Crop Yield. Testing for Nonadditive 
Interaction 

Fertilizer 

LO MED HIGH s 
u LO 4.1 -2.1 -11.2 
n 9.1 4.1 -3.2 

7.1 0.1 -7.2 

g HI -9.8 -7.7 7.8 
h -6.8 -0.7 12.8 

-3.8 7.2 0.8 

with the residuals shown in Table 4.2. The pattern of plus and minus signs in 
this table of residuals suggests that fertilizer and sunlight affect crop yield 
in a superadditive fashion. Note the minus signs associated with the mis­
matched combinations of a high level of sunlight and a low level of fertilizer 
and a low level of sunlight with a high level of fertilizer. To encapsulate our 
intuition in numeric form, we sum the deviates within each cell, square the 
sum, and then sum the squares to form the test statistic 

I = it jt Ctl X;jkY 
We compute this test statistic for each rerandomization of the 18 deviates 

into six subsamples. In most cases, the values of the test statistic are close 
to zero as the entries in each cell cancel. The value of the test statistic for our 
original data, I = 2126.8, stands out as an exceptional value and we conclude 
there is a significant interaction between sunlight and fertilizer (oc < .003) in 
addition to the separate, significant additive effects of sunlight and fertilizer. 

We include our own test program as a Sidebar. 

4.2.4. Designing an Experiment 

All the preceding results are based on the assumption that the assignment of 
treatments to plots (or subjects) is made at random. While it might be con­
venient to fertilize our plots as shown in Figure 4.1a, the result could be a 
systematic bias, particularly if, for example, there is a gradient in dissolved 
minerals from east to west across the field. 

The layout adopted in Figure 4.1 b, obtained with the aid of a computer­
ized random number generator, reduces but does not eliminate the effects 
of this hypothetical gradient. Because this layout was selected at random, 
the exchangeability of the error terms and, hence, the exactness of the cor-
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Sidebar 

Program for estimating significance level of the interaction of sunlight and 
fertilizer on crop yield based on the deviates from the additive model 

Set aside space for 
Monte the number of Monte Carlo simulations 
So the original value of test statistic 
S test statistic for rearranged data 
data {5, 10,8, 15,22, 18,21,29,25,6,9, 12,25,32,40,55,60, 48}; 
deviates vector of deviates 
n = 3 number of observations in each category 
blocks = 2 number of blocks 
levels = 3 number of levels offactor 

Main program 
Get data 
Calculate the Deviates 
Compute the test statistic So 
Repeat Monte times: 

Rearrange the observations 
Compute the test statistic S 
Compare S with So 

Print out the proportion of times S was larger than So 

Compute 

itJl Ct Xiky 

for each block 
for each level 

sum the deviates 
square this sum 
cumulate 

Deviates 
Xijk = X ijk - Xi ... - X. j. + X ... 

Set aside space for level means, block means, and grand mean 
for each level calculate mean 
for each block 

calculate mean 
for each level 

cumulate grand mean 
for each block 

for each level 
calculate deviate from additive model 

51 



52 

Hi 
Hi 
Hi 

a 

Hi 
Lo 
Hi 

b 

Hi 
Lo 
Med 

c 

Med 

Med 

Med 

Med 

Lo 
Hi 

Med 

Hi 
Lo 

Lo 
Lo 
Lo 

Lo 
Med 

Med 

Lo 
Med 

Hi 

4. Experimental Designs 

Figure 4.1. a) Systematic assignment of fertilizer levels to plots; b) random assign­
ment offertilizer levels to plots; c) Latin Square assignment offertilizer levels to plots. 

responding permutation test is assured. Unfortunately, the layout of Fig­
ure 4.1a with its built-in bias can also result from a random assignment; 
its selection is neither more nor less probable than any of the other b ~ 3) 
possibilities. 

What can we do to avoid such an undesireable event? In the layout of 
Figure 4.1c, known as a Latin Square, each fertilizer level occurs once and 
once only in each row and in each column; if there is a systematic gradient of 
minerals in the soil, then this layout ensures that the gradient will have 
almost equal impact on each of the three treatment levels. It will have an 
almost equal impact even ifthe gradient extends from northeast to southwest 
rather than from east to west, or north to south. I use the phrase "almost 
equal" because a gradient effect may still persist. The design and analysis of 
Latin Squares is described in the next section. 

To increase the sensitivity of your experiments and to eliminate any sys­
tematic bias, I recommend you use the following three-step procedure during 
the design phase: 

1) List all the factors you feel may influence the outcome of your experiment. 
2) Block all factors which are under your control; this process is described in 

Section 3.6. You may want to use some of these factors to restrict the 
scope of your experiment, e.g., eliminate all individuals under 18 and over 
60. 
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F Factor 1 
a 
c 1 2 3 
t 

1 A B C 0 
r 2 B C A 
2 3 C A B 

Figure 4.2. A Latin Square. 

3) Randomly assign units to treatment within each block. See also, Maxwell 
and Cole [X: 1991]. 1 

4.2.5. Latin Square 

The Latin Square considered in Section 4.2.4 is one of the simplest examples 
of an experimental design in which the statistician takes advantage of some 
aspect of the model to reduce the overall sample size. 

A Latin Square is a three-factor experiment in which each combination of 
factors occurs once and once only. We can use a Latin Square as in Figure 
4.2 to assess the effects of soil composition on crop yield: 

In this diagram, Factor I-gypsum concentration, for example, is increas­
ing from left to right; Factor 2 is increasing from top to bottom (or from 
North to South); and the third factor, its varying levels denoted by the capital 
letters A, B, and C, occurs in combination with the other two in such a way 
that each combination of factors-row, column, and treatment-occurs once 
and once only. 

Because of this latter restriction, there are only 12 different ways in which 
we can assign the varying factor levels to form a 3 x 3 Latin Square. Among 
the other 11 designs are 

1 2 3 
1 A C B 
2 B A C 
3 C B A 

and 

1 C B A 
2 B A C 
3 A C B 

1 X preceding a date, as in Cole [X: 1991] refers to a supplemental bibliography at the end of 
the text which includes material not directly related to permutation methods. 
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Let us assume we begin our experiment by selecting one of these twelve 
designs at random and planting our seeds in accordance with the indicated 
conditions. 

Because there is only a single replication of each factor combination in a 
Latin Square, we can not estimate the interactions. Thus, the Latin Square is 
appropriate only if we feel confident in assuming that the effects of the vari­
ous factors are completely additive, that is, that the interaction terms are 
zero. 

Our model for the Latin Square is 

X ijk = Jl. + Si + rj + h + Gijk 

where, as always in a permuation analysis, we assume that the errors Gijk 

are exchangeable. Our null hypothesis is H: Sl = S2 = S3' If we assume an 
ordered alternative, K: Sl > S2 > S3' our test statistic for the main effect is 
similar to the correlation statistic employed in equation 4.4: 

3 

R = L i(Xi .. - X ... ) 
i=l 

or, equivalently, after eliminating the grand mean X ... which is invariant 
under permutations, 

1 

Rl = L iXi .. = Xc .. - XA .. 
i=-l 

We evaluate this test statistic both for the observed design and for each of 
the twelve possible Latin Square designs that might have been employed in 
this particular experiment. We reject the hypothesis of no treatment effect 
only if the test statistic for the original observations is an extreme value. 

For example, suppose we employed Design 1 and observed 

21 
14 
13 

28 
27 
18 

17 
19 
23 

Then 3YA .. = 58, 3YB" = 65, 3yc .. = 57 and our test statistic R 1 = -1. Had 
we employed Design 2, then 3YA" = 71, 3YB" = 49, 3yc .. = 65, and our test 
statistic Rl = -6. With Design 3, 3YA" = 57, 3YB" = 65, 3yc .. = 58 and our 
test statistic R 1 = + 1. 

We see from the permutation distribution obtained in this manner that the 
value of our test statistic for the design actually employed in the experiment, 
R 1 = -1, is an average value, not an extreme one. We accept the null hy­
pothesis and conclude that increasing the treatment level from A to B to C 
does not significantly increase the yield. 

4.2.6. Other Designs 

If the three-step rule outlined in Section 4.2.4 leads to a more complex experi­
mental design than those considered here, consult Kempthorne [1955]; Wilk 
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and Kempthorne [1956, 1957]; and Scheffe [1959]. To correct for variables 
not under your control, see the next section. 

4.3. Analysis of Covariance 

4.3.1. Covariates Defined 

Some variables that affect the outcome of an experiment are under our con­
trol from the very beginning-e.g., light and fertilizer. But we may only be 
capable of measuring rather than controlling other equally influential vari­
ables, called covariates. Blood chemistry is an example of a covariate in a bio­
medical experiment. Various factors in the blood can affect an experimental 
outcome, and most blood factors will be affected by a treatment, but few are 
under our direct control. 

In this section, we will discuss two methods for correcting for the effects of 
co variates. The first, eliminating the functional relationship, is for use when 
you know or suspect the nature of the functional relationship between the 
observables and the covariates. The second method, restricted randomiza­
tion, is for use when the covariates take only a few discrete values and these 
values can be used to restrict the randomization. 

4.3.2. Eliminate the Functional Relationship 

Gail, Tan, and Piantadosi [1988] recommend eliminating the effects of 
covariates first and then applying permutation methods to the residuals. 
For example, suppose the observation Y depends both on the treatment 1:i 

(i = 1, ... , I) and on the p-dimensional vector of covariates X = (Xl, ... , XP), 
that is 

Y = Il + 1: + Xp + e 

where Y, Il, 1:, and e are n x 1 vectors of observations, mean values, treatment 
effects, and errors respectively, X is an n x p matrix of covariate values, and 
p is a p x 1 vector of regression coefficients. 

We would use least squares methods to estimate the regression coefficients 
p after which we would apply the permutation methods described in the 
preceding sections to the residuals Z = Y - X p. 

We use a similar approach in 4.2.3 in testing a two-factor model for a 
significant interaction. In that example,as here, we assume that the individ­
ual errors are exchangeable. A further assumption in the present case is that 
both the concomitant variables (the X's) and the regression coefficients pare 
unaffected by the treatment [Kempthorne, 1952, p. 160]. 

A distribution-free multivariate analysis of covariance in which the effects 
of the treatments and the covariates are evaluated simultaneously is consid­
ered in the next chapter. 
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4.3.3. Selecting Variables 

Which covariates should be included in your model? Draper and Stoneman 
[1966] describe a permutation procedure for selecting covariates using a for­
ward stepping rule: 

The first variable you select should have the largest squared sample corre­
lation with the dependent variable y; thereafter, include the variable with the 
largest squared partial correlation with y given the variables that have al­
ready been selected. You may use any standard statistics package to obtain 
these correlations. Equivalently, you may select variables based on the maxi­
mum value of the square of the t-ratio for the regression coefficient of the 
entering variable, the so-called "F to enter." The problem lies in knowing 
when to stop, that is, in knowing when an additional variable contributes 
little beyond noise to the model. 

Percentiles of the permutation distribution of the F -to-enter statistic can 
be used to test whether variables not yet added to the model would be of 
predictive value. Details for deriving the permutation distribution of this 
statistic defined in terms of Householder rotations of the permuted variable 
matrix are given in Forsythe et al. [1973]. 

4.3.4. Restricted Randomization 

If the covariates take on only a few discrete values, e.g., smoker vs non­
smoker, or status 0, 1, or 2 we may correct for their effects by restricting the 
rerandomizations to those whose design matrices match the original [Edg­
ington, 1983]. 

Consider the artificial data set in Table 4.3 adapted from Rosenbaum 
[1984, p. 568]. To test the hypothesis that the treatment has no effect on the 
response, we would use the sum of the observations in the treatment group 
as our test statistic. The sum of 8 for the original observations is equaled or 
exceeded in six of the (i) = 21 possible rerandomizations. This result is not 
statistically significant. 

Table 4.3. Data for Artificial Example 

Subject Treatment Result Covariate 

A 1 6 1 
B 1 2 0 
C 0 5 1 
D 0 4 1 
E 0 3 1 
G 0 1 0 
H 0 0 0 
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Now let us take the covariate into consideration. One member of the 
original treatment group has a covariate value of 0, the other has a covariate 
value of 1. We limit our attention to the 12 = (1)(i) possible rerandomiza­
tions in which the members of the treatment group have similar covariate 
values. These consist of AB AG AH, CB CG CH, DB DG DH, EB EG EH. 
With only one of the 12, that of AB the original observations, do we observe 
a result sum as large as 8. This sum is statistically significant at the 0.1 
level. Restricting the randomizations eliminates the masking effect of the 
covariate and reveals the statistically significant effect of the treatment. 

If the covariate varies continuously, it may still be possible to apply the 
method of restricted randomizations by first subdividing the covariate's 
range into a few discrete categories. For example, if 

x < -1 let x' = ° 
-1 < x < 1 let x' = 1 

1 < x let x I = 2. 

Rosenbaum [1984] suggests that with larger samples one should restrict 
the randomizations so that a specific mean value of the covariate is attained, 
rather than a specific set of values. 

Subject to certain relatively weak assumptions, the method of restricted 
randomizations can also be applied to after-the-fact covariates. (See Section 
9.2.) 

4.4. Unbalanced Designs 

The permutation test is not a panacea. Imbalance in the design will result in 
the confounding of main effects with interactions. Consider the following 
two-factor model for crop yield: 

N(0,1) N(2,1) 

N(2,1) N(0,1) 

Now suppose that the observations in a two-factor experimental design are 
normally distributed as in the preceding diagram taken from Cornfield and 
Tukey [1956]. There are no main effects in this example-both row means 
and both column means have the same expectations, but there is a clear 
interaction represented by the two nonzero off-diagonal elements. 

If the design is balanced, with equal numbers per cell, the lack of significant 
main effects and the presence of a significant interaction should and will be 
confirmed by our analysis. But suppose that the design is not in balance, that 
for every ten observations in the first column, we have only one observation 
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in the second. Because of this imbalance, when we use the statistic S' (equa­
tion 4.1'), we will uncover a false "row" effect which is actually due to the 
interaction between rows and columns. The main effect is said to be con­

founded with the interaction. 
If a design is unbalanced as in the preceding example, we cannot test for a 

"pure" main effect or a "pure" interaction. But we may be able to test for the 
combination of a main effect with an interaction by using the statistic (S', Fl' 
or R') that we would use to test for the main effect alone. This combined effect 
will not be confounded with the main effects of other unrelated factors. 

For 3-factor designs with unequal sample sizes, the test statistics for mixed 
main/interaction effects are: 

J K (njk+mjk) 

S' = L L L X 1jkl (4.1') 
j=l k=l l=mJk+1 

J K 1 

Fl' = L L L nijklXijk' - X.jk.1 (4.3') 
j=l k=l i=l 

J K 1 

R' = L L L f[i]nijk(Xijk , - X. jk .) (4.4') 
j=l k=l i=l 

4.4.1. Missing Combinations 

If an entire factor-combination is missing, we may not be able to estimate or 
test any of the effects. One very concrete example is an unbalanced design I 
encountered in the 1970's: 

Makinodan et al. [1976] studied the effects of age on the mediation of the 
immune response. They measured the anti-SBRC response of spleen cells 
derived from C57BL mice of various ages. In One set of trials, the cells were 
derived entirely from the spleens of young mice, in a second set of trials, they 
came from the spleens of old mice, and in a third they came from mixtures of 
the two. 

Let Xi,j,k denote the response of the kth sample taken from a population 
of type i, j (i = 1 = j: controls; i = 2, j = 1: cells from young animals only; 
i = 1, j = 2: cells from old animals only; i = 2 = j: mixture of cells from old 
and young animals.) We assume that for lymphocytes taken from the spleens 
of young animals, 

X 2,1.k = Jl. + (X + e2,l,k' 

for the spleens of old animals, 

X 1,2,k = Jl. - (X + e1,2,k> 

and for a mixture of p spleens from young animals and (1 - p) spleens from 
old animals, where 0 ~ p ~ 1, 
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X 2,2,k = p(JI. + oc) + (1 - p)(JI. - oc) - y + e2,2,k 

= JI. + (1 - 2p)oc - y + e2,2,k, 

where the ei,j,k are independent values. 
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Makinodan knew in advance of his experiment that oc > O. He also knew 
that the distributions of the errors ei,j,k would be different for the different 
populations. We can assume only that these errors are independent of one 
another and that their medians are zero. 

Makinodan wanted to test the hypothesis y = 0 as there are immediate 
biological interpretations for the three alternatives: from y = 0 one may infer 
independent action of the two cell populations; y < 0 means excess lympho­
cytes in young populations; and y > 0 suggests the presence of suppressor 
cells in the spleens of older animals. 

But what statistic are we to use to do the test? One possibility is 

s = IX2,2,. - pX1,2,. - (1 - P)X2,l,.I. 

If the design were balanced, or we could be sure that the null effect JI. = 0, this 
is the statistic we would use. But the design is not balanced, with the result 
that the main effects (in which we are not interested) are confounded with the 
interaction (in which we are). 

It is small consolation that the standard parametric (ANOV A) approach 
won't work in this example either. Fortunately, another resampling method, 
the bootstrap, can provide a solution. 

Here is the bootstrap procedure: 
Draw an observation at random and with replacement from the set 

{x 2 ,l,k}; label it X!.l,j. Similarly, draw the bootstrap observations Xt2,j and 
X!.2,j from the sets {X1,2,k} and {X2,2,k}. 

Let Zj = PXt2,j + (1 - P)X!.l,j - X!.2,j. 

Repeat this resampling procedure a thousand or more times, obtaining a 
bootstrap estimate Zj of the interaction each time you resample. Use the 
resultant set of bootstrap estimates {Zj} to obtain a confidence interval for y. 
If 0 belongs to this confidence interval, accept the hypothesis of additivity; 
otherwise reject. 

One word of caution: unlike a permutation test, a bootstrap is exact only 
for very large samples. The probability of a Type I error may be greater than 
the significance level you specify. 
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Sidebar 

Mean DPFC response. Effect of pooled old BC3FL spleen cells on the anti-SRBC 
response of indicator pooled BC3FL spleen cells. Data extracted from Makinodan 
et al (1976). Bootstrap analysis. 

Young Cells 
5640 
5120 
5780 
4430 
7230 

Old Cells 
1150 
2520 
900 

50 

1/2 + 1/2 
7100 

11020 
13065 

Bootstrap sample 1: 5640 + 900 - 11020 
Bootstrap sample 2: 5780 + 1150 - 11020 
Bootstrap sample 2: 7230 + 1150 - 7100 

-4480 
-4090 

1280 

Bootstrap sample 600: 5780 + 2520 - 7100 1200 

4.5. Clinical Trials 

4.5.1. Avoiding Unbalanced Designs 

In preceding sections, we tacitly assumed that the assignment of subjects to 
treatment took place before the start of the experiment. We also assumed, 
tacitly, that the assignment of subjects to treatment was double blind, that is, 
neither the experimental subject nor the experimenter knew which treatment 
the subject was receiving. (See Fisher [1951] and Feinstein [1972] for a 
justification of this double blind approach.) But in a large clinical trial cover­
ing several hundreds, even thousands of patients in various treatment cate­
gories, not all of the subjects will be available prior to the start of treatment. 
We even may have tabulated some of the results before the last of the patients 
have enrolled in the experiment. If we let pure chance determine whether an 
incoming patient is assigned to treatment or control, the trials may quickly 
go out of balance and stay out of balance. On the other hand, if we insist on 
keeping the experiment balanced at each stage, assigning subjects alternately 
to treatment and placebo, a physician could crack the code, guesstimate the 
next treatment assignment, and be influenced in her handling of a patient as 
a result. 

One solution [Efron, 1971] is to weight the probability of a particular 
treatment assignment in accordance with the assignments that have already 
taken place. For example, if the last subject was assigned to the control 
group, We might increase the probability of assigning the current subject to 
the treatment from t to i. The assignment is still random-so no one can 
crack the code, but there will be a tendency for the two groups-treatment 
and control-to even out in size. Of course, Efron's biased coin approach is 
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only one of many possible restricted designs. A general form is provided in 
Smith [X: 1984]. 

While the numbers of subjects in the various treatment groups will (in 
theory) even out in the long run, in most cases they will still be unequal when 
the experiment is completed, taking values {ni' i = 1, ... , I}. Fortunately, we 
may analyze this experiment as if these were the sample sizes we had intended 
from the very beginning [Cox, 1982]. 

Following Hollander and Pena [1988], suppose there are R possible treat­
ments. Let 1j = (1jl'" ., 1JR-d' be the treatment assignment vector for the 
jth patient; j = 1, ... , n. 1ji is equal to 1 or 0 according to whether patient j 
is or is not assigned to treatment i. Let xn = (Xl"'" xn)' be the vector of 
patient responses (e.g., time to death, time to relapse). We want to test the 
null hypothesis that the R treatments are equivalent. The randomization 
distribution of the test statistic Sn = (Tl , ... , T,,)xn induced by the randomized 
treatment allocation grows increasingly more complicated with increasing n. 
Nevertheless, it may be determined by recursive means. 

Smythe and Wei [1983] show that the permutation method can provide an 
exact test in the case of two treatments. Their result is extended to k-treat­
ments by Wei, Smythe, and Smith [1986]. Algorithms for computing the 
exact distribution of the test statistic, rather than an asymptotic approxima­
tion, are provided by Hollander and Pena [1988] and Mehta, Patel, and 
Wei [1988]. 

4.5.2. Missing Data 

A further and as yet unresolved problem in the analysis of clinical trials is the 
dropping out of patients during the course of the investigation. When such 
dropouts occur at random, we still may apply any of the standard permuta­
tion methods, that is if we are prepared to deal with confounded effects (see 
Section 4.4). But what if the dropout rate is directly related to the treatment! 
In a study of a medication guaranteed to lower cholesterol levels in the 
blood, a midwest pharmaceutical company found itself without any patients 
remaining in the treatment group. The medicine, alas, tasted too much like 
sand coated with slimy egg whites and chalk dust. 

In several less extreme cases, Entsuah [1990] shows that permutation 
methods can be applied even if withdrawal is related to treatment, providing 
we modify our scoring system to account for the dropouts. Entsuah studies 
and compares the power of scoring systems based on functions of boun­
daries, endpoints, and time using either the ranks or the original observa­
tions. His results are specific to the applications he studied. 

4.6. Very Large and Very Small Samples 

When the sample sizes are very large, from several dozen to several hundred 
observations per group, as they often are in clinical trials, the time required 
to compute a permutation distribution can be prohibitive even if we are 
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taking advantage of one of the optimal computing algorithms described in 
Chapter 13. Fortunately, when sample sizes are large-and we refer here to 
the size of the smallest sub-sample corresponding to a specific factor combi­
nation, not to the size of the sample as a whole, we can make use of an 
asymptotic approximation in place of the exact permutation distribution. 
A series of papers by Hoeffding [1951], Box and Anderson [1955], and 
Kempthorne et al. [1961] support the replacement of the permutation distri­
bution of the F-statistic by the tabulated distribution of the F-ratio. This 
approximation can often be improved on if we replace the observed values by 
their corresponding ranks or normal scores. Sections 9.3 and 14.4 provide 
additional discussion of these points. 

With very small samples, the permutation distribution is readily calcu­
lated. But with few observations, the power of the test may well be too small 
and we run the risk of overlooking a treatment effect that is of practical 
significance. A solution in some cases is to take Our observations in stages, 
rejecting or accepting the null hypothesis at each stage only if the p-value of 
the data is very large or very small. Otherwise, we continue to take more 
observations. 

4.7. Questions 

1. Rewrite the computer program in Section 4.2.3 so it will yield the permutation 
distributions of the three k-sample statistics. FI, F2, and R. Would you still accept/ 
reject the hypothesis if you used F2 or R in place of Fl? 

2. Confidence interval. Derive a 90% confidence interval for the main effect of sun­
light using the crop yield data in Table 4.1. First, restate the model so as to make 
clear what it is you are estimating: 

X ikl = f.1 + Si + h + Shk + eikl, 

with SI = -(j and S2 = (j. 

Recall that we rejected the null hypothesis that (j = O. Suppose you add d = 1 to 
each of the observations in the low sunlight group and subtract d = 1 from each of 
the observations in the high sunlight group. Would you still reject the null hypoth­
esis at the 90% level? If your answer is "yes" then d = 1 does not belong to the 90% 
confidence interval for (j. If your answer is "no" then d = 1 does belong. Experi­
ment (be systematic) until you find a value (jo such that you accept the null hypoth­
esis whenever d > (jo. 

3. Covariate analysis. Suppose your observations obey the model: 

Y;k = f.1 + Si + bXk + eik , 

where the errors e ik are exchangeable. What statistic would you use to test if b = O? 
to test that Si = 0 for all i? 
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4. Equality of the slopes of two lines. Suppose you observed samples from two popu­
lations and that 

Ylk = 111 + blXk + elk' 

Y2k = 112 + b2 X k + eib 

where the errors eik are exchangeable. What statistic would you use to test that 
bl = b2 , that is, that the effect of X on Y is the same in the two populations? See 
Chapter 7. 

5. Design an experiment. a) List all the factors that might influence the outcome of 
your experiment. b) Write a model in terms of these factors. c) Which factors are 
under your control? d) Which of these factors will you use to restrict the scope of 
the experiment? e) Which of these factors will you use to block? f) Which of the 
remaining factors will you neglect initially, that is, lump into your error term? g) 
How will you deal with each of the remaining covariates? h) By correction? i) By 
blocking after the fact? j) How many subjects will you observe in each subcategory? 
k) Is the subject the correct experimental unit? I) Write out two of the possible 
assignments of subjects to treatment. m) How many possible assignments are there 
in all? 



CHAPTER 5 

Multivariate Analysis 

5.1. Introduction 

The value of an analysis based on simultaneous observations on several 
variables-height, weight, blood pressure, and cholesterol level, for example, 
is that it can be used to detect subtle changes that might not be detectable, 
except with very large, prohibitively expensive samples, were you to consider 
only one variable at a time. 

Any of the permutation procedures described in Chapters 3 and 4 can be 
applied in a multivariate setting providing we can find a single-valued test 
statistic which can stand in place of the multi valued vector of observations. 

5.2. One- and Two-Sample Comparisons 

5.2.1. Hotelling's T2 

One example of such a statistic is Hotelling's T2, a straightforward general­
ization of Student's t to the multivariate case. 

Suppose we have made a series of exchangeable vector-valued observa-
tions Xi = {Xn ,Xi2 , ... ,XiJ }, for i = 1, ... , I. Let i. denote the vector of 
mean values {X. 1 ,X.2, ... ,X.J }, and V the J x J covariance matrix; that is, 
Vij i.!! the Jovariance of Xki and Xkj' To test the hypothesis that the midvalue 
of Xi = e for all i, use 

Hotelling's T2 = (i. - e)V-l(i. - e)T. 
Loosely speaking, this statistic weighs the contribution of individual vari­

ables and pairs of variables in inverse proportion to their covariances. If the 
variables in each observation vector are independent of one another (a rare 
case, indeed), Hotelling's T2 weighs the contributions of the individual vari­
ables in inverse proportion to their variances. 

64 
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The two-sample comparison is only slightly more complicated: Let n 1 , 

it 1.; n2 , it 2. denote the sample size and vector of mean values of the first and 
second samples respectively. We assume under the null hypothesis that the 
two sets of vector-valued observations {it li} and {it 2;} come from the same 
distribution (that is, the sample labels 1 and 2 are exchangeable). Let Vdenote 
the pooled estimate of the common covariance matrix; as in the one-sample 
case, V;j denotes the pooled covariance estimate of Xw and X 2kj, 

To test the hypothesis that the midvalues of the two distributions are the 
same, we could use the statistic 

but then we would be forced to recompute the covariance matrix V and its 
inverse V- 1 for each new rearrangement. To reduce the number of computa­
tions, Wald and Wolfowitz [1944] suggest a slightly different statistic T'that 
is a monotonic function of T (see Problem 3). 

Let 

2 ftm 

Cij = L L (Xmki - Ui)(Xmkj - ll.i) 
m=l k=l 

Let C be the matrix whose components are the cij. Then 

12 -+ -+ -1 -+ -+ T T = (X 1. - X 2.)C (X 1. - X 2.) . 

As with all permutation tests we proceed in three steps: 

(1) we compute the test statistic for the original observations; 
(2) we compute the test statistic for all relabelings; 
(3) we determine the percentage of relabelings that lead to values of the test 

statistic that are as extreme or more extreme than the orginal value. 

For the purpose of relabeling, each vector of observations on an individual 
subject is treated as a single indivisible entity. When we relabel, we relabel on 
a subject-by-subject basis so that all observations on a single subject receive 
the same new label. If the original vector of observations on subject i consists 
of k distinct observations on k different variables 

(xi, xf,···, xt) 

and we give this vector a new label p(i), then the individual observations 
remain together as a unit, each with the new label: 
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Sidebar 

Calculating the Wald-W olfowitz variant of Hotelling's T2 Blood Chemistry Data 
from Werner et al. [X: 1970] 

ID BC Albumin Uric Acid 
2381 N 43 54 Mean 
1610 N 41 33 N 
1149 N 39 50 Y 
2271 N 42 48 Comb 

Y-N 
1946 Y 35 72 C 
1797 Y 38 30 
575 Y 40 46 
39 Y 35 63 

C-1 

Hotelling's T2 
= (-4.25 6.50)C 1( -4.25 6.50)T 
= 2.092 

( 12k ) 
Xp(i)' Xp(i)"'" Xp(i) 

Albumin Uric Acid 
41.25 46.25 
37.0 52.75 
39.125 49.5 

-4.25 6.50 

8.982 -21.071 
- 21.071 196.571 

.1487 .01594 

.01594 .006796 

This approach to relabeling should be contrasted with the approach we 
would use if we were testing for independence of the co variates (see Section 
7.2). 

Hotelling's T2 is the appropriate statistic to use if you suspect the data has 
a distribution that is close to that of the multivariate normal. Under the 
assumption of multivariate normality, the power of the permutation version 
of Hotelling's T2 converges with increasing sample size to the power of the 
most powerful parametric test that is invariant under transformations of 
scale. 

The stated significance level of the parametric version of Hotelling's T2 
can not be relied on for small samples if the data are not normally distributed 
[Davis, X: 1982r. As always, the corresponding permutation test yields an 
exact significance level even ifthe errors are not normally distributed, provid­
ing that the errors are exchangeable from sample to sample. 

Much of the theoretical work on Hotelling's T2 has focused on the proper­
ties of the unconditional2 permutation test in which the original observations 
are replaced by ranks. Details of the asymptotic properties and power of the 

I X preceding a date, as in Davis [X: 1982] refers to a supplemental bibliography at the end of 
the text which includes material not directly related to permutation methods. 

2 Recall from our discussion in Section 2.3 that whereas we must compute the permutation 
distribution anew for each new set of observations, the permutation distribution of a set of ranks 
is independent or unconditional of the actual values of the observations. 
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unconditional test are given in Barton and David [1961], Chatterjee and 
Sen [1964, 1966], and, most recently, Gill and Siotani [1987]. The effect 
of missing observations on the significance level and power of the test is 
studied by Servy and Sen [1987]. 

5.2.2. An Example 

The following blood chemistry data are taken from Werner et al. [X: 1970]. 
The full data set is included with the BMDP statistical package. An asterisk 
(*) denotes missing data. 

1 2 3 4 5 6 7 8 9 
2381 22 67 144 N 200 43 98 54 
1946 22 64 160 Y 600 35 * 72 
1610 25 62 128 N 243 41 104 33 
1797 25 68 150 Y 50 38 96 30 
1149 53 * 178 N 227 39 * 50 
575 53 65 140 Y 220 40 107 46 

2271 54 66 158 N 305 42 103 48 
39 54 60 170 Y 220 35 88 63 

The variables are 

1. identification number 
2. age III years 
3. height in inches 
4. weight in pounds 
5. uses birth control pills? 
6. cholesterol level 
7. albumin level 
8. calcium level 
9. uric acid level 

A potential hypothesis of interest is whether birth-control pill usage has any 
effect on blood chemistries. As the nature of such hypothetical effects very 
likely depends upon age and years of use, before testing this hypothesis using 
a permutation method, you might want to divide the data into two blocks 
corresponding to young and old patients. 

You could test several univariate hypotheses using the methods of Section 
3.5; for example-the hypothesis that using birth control pills lowers the 
albumin level in blood. You might want to do this now to see if you can 
obtain significant results. As the sample sizes are small, the univariate obser­
vations may not be statistically significant. But by combining the observa­
tions that Werner and his colleagues made on several different variables to 
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form a single multivariate statistic, you may obtain a statistically significant 
result; that is, if taking birth control pills does alter blood chemistries. 

Sidebar 

Program for computing multivariate permutation statistics 
# define length 119 
# define control 60 
# define variates 9 

Set aside space for a multivariate array Data [length, variates]; and a vector of 
sample sizes index [length]; 

Main program 
Load (Data); 
Compute statO (Data, index); 
repeat Nsim times 

Rearrange Data; 
Compute stat (Data, index); 
record whether stat > = statO; 

print out the significance level of the test 

Load 
packs the data into a long matrix, each row of which corresponds to k observa­
tions on a single subject; the first n rows are the control group; the last m rows 
are the treatment group. (a second use of this subroutine will be to eliminate 
variables and subjects that will not be included in the analysis, e.g., to eliminate 
all records that include missing data, and to define and select specific sub­
groups.) 

Rearrange 
randomly rearranges the rows of the Data array; the elements in each row are 
left in the same order. 

Compute 
calculate the mean of each variable for each sample and store the results in a 

2 by n array N; 
calculate n by n array V of covariances for the combined sample and invert V; 
matrix mult (Mean, W, *w); 
matrix mult (w, Mean); 
return T'2 

5.2.3. Doing the Computations 

You don't need to use all the dependent variables in forming Hotelling's T2. 
For example, you could just include albumin and uric acid levels as we have 
in a sidebar. For each relabeling, you would need to compute four sample 
means corresponding to the two variables and the two treatment groups. 
And you would need to perform two successive matrix multiplications. I 
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would not attempt these calculations without a computer and the appropri­
ate computer software: Werner et al.'s full data set includes 188 cases! 

As in the univariate examples in Chapters 3 and 4, you need to program 
and implement three procedures: 

a) one to rearrange the stored data; 
b) one to compute the T2 statistic; 
c) and one to compute the significance level. 

Only the first of these procedures, devoted to rearranging the data, represents 
a significant change from the simple calculations we performed in the uni­
variate case. In a multivariate analysis, we can't afford to manipulate the 
actual data; a simple swap could mean the exchange of nine or ten or even a 
hundred different variables; so we rearrange a vector of indices that point to 
the data instead. Here is a fragment of code in the C programming language 
that does just that: 

float Data [length, variates]; 
int index[length]; 

rearrange (index, length); 

for (j = O;j.( ncontrol;j++) Mean [k] += Data [index[j], k]; 

5.2.4. Weighting the Variables 

With several variables simultaneously lending their support to (or withhold­
ing their support from) a hypothesis or an alternative, should some variables 
be given more weight than others? Or should all variables be given the same 
importance? 

In any multivariate application, whether or not you use Hotelling's T2 as 
the test statistic, you may want to "Studentize" the variables by dividing by 
the covariance matrix before you begin. 

Hotelling's T2 Studentizes the variables in the sense that it weights each 
variable in inverse proportion to its standard deviation. (This is not quite 
true if the variables are correlated; see below.) As a result, Hotelling's T2 is 
dimensionless; it will not matter if we express a vector of measurements in 
feet rather than inches or miles. Variables whose values fluctuate widely from 
observation to observation are given less weight than variables whose values 
are essentially constant. 

When we convert an observation on a variable to the corresponding rank 
or normal score (see Section 9.3), we are also standardizing it. If we have 
exactly the same number of observations on each variable-as would be the 
case, for example, if all the observations on all the variables have been accu­
rately recorded and none are missing, then all ranked variables will have 
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exactly the same variance. The problem of what emphasis to give each indi­
vidual variable is solved automatically. 

Although we have standardized the variances in forming a rank test, we 
must still divide by the covariances. When we divide by the covariance or, 
equivalently in the case of ranks, by the correlation, we are discounting the 
importance and reducing the effects of correlated or dependent variables. If 
we have two perfectly-correlated variables-the testimony of a ventriloquist 
and his dummy, say, then, clearly the second variable (or witness) has no 
information to contribute beyond that which we have already received from 
the first. 

5.2.5. Interpreting the Results 

The significance of T2 or some equivalent multivariate statistic still leaves 
unanswered the question of which variables have led to the rejection of the 
multivariate hypothesis. For a discussion of the problem of simultaneous 
inference, see any text on multivariate methods, for example, Morrison [X: 
1990]. My own preference on finding a significant result, a preference that 
reflects my studies under Jerzy Neyman, is to search for a mechanistic, cause­
and-effect model that will explain the findings. In Chapters 7 through 10, we 
consider some of the tests one might perform to verify or disprove such a 
model. 

5.2.6. Alternative Statistics 

Hotelling's T2 is designed to test the null hypothesis of no difference between 
the distributions of the treated and untreated groups against alternatives that 
involve a shift of the k-dimensional center of the multivariate distribution. 
Although Hotelling's T2 offers protection against a wide variety of alterna­
tives, it is not particularly sensitive to alternatives that entail a shift in just 
one of the dependent variables. 

Boyett and Shuster [1977] show that a more powerful test against such 
alternatives is based· on the permutation distribution of the test statistic 

(xl. - X~.) 

l~~;k SEk 

a statistic first proposed in a permutation context by Chung and Fraser 
[1958], where SEk is a pooled estimate of the standard error of the mean of 
the kth variable. 

Let us apply this approach to the subsample of blood chemistry data we 
studied in Section 5.2.1. We use a two-sided test so we may detect changes up 
or down. For albumin, the absolute difference in means is 4.25 and the stan­
dard error is J8.982/2 = 1.498; for uric acid, the difference is 6.5, the stan­
dard error is 7.010. Our test statistic is 2.84, the larger of the two weighted 
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differences. To determine whether this value is significant, we need to com­
pute the sample means, their differences, and the maximum difference after 
weighting by our estimates of the standard errors for each of the (!) = 70 
rearrangements of the two samples. 

5.3. Runs Test 

Friedman and Rafesky [1979] provide a multivariate generalization of the 
Wald-Wolfowitz and Smirnov distribution-free two-sample tests used for 
testing Fx = Fy against the highly nonspecific alternative Fx =F Fy. In both 
the univariate and the multivariate versions of these two-sample tests, one 
measures the degree to which the two samples are segregated within the 
combined sample. In the univariate version, one forms a single combined 
sample, sorts and orders it, and then 

a) counts the number of runs in the combined sample; or 
b) computes the maximum difference in cumulative frequency of the two 

types within the combined sample. 

For example if x = (1,3,6) and y = (2,4,5), the ordered combined sample 
is 1, 2, 3, 4, 5, 6, that is, an x followed by y x yy x, and has five runs. 

Highly segregated samples will give rise to a small number of runs (and a 
large maximum difference in cumulative frequency), while highly interlaced 
distributions will give rise to a large number of runs (and a very small differ­
ence in cumulative frequency). Statistical significance, that is, whether the 
number of runs is significantly large, can be determined from the permutation 
distribution of the test statistic. 

To create a multivariate version of these tests, we must find a way to order 
observations that have multiple coordinates. The key to this ordering is the 
minimal spanning tree described by Friedman and Rafesky [1979]: 

Each point in Figure 5.IA corresponds to a pair of observations, e.g. height 
and weight, that were made on a single subject. We build a spanning tree 
between these data points as in Figure 5.1B, by connecting the points so that 
there is exactly one path between each pair of points, and so that no path 
closes back on itself in a loop. Obviously, we could construct a large number 
of such trees. A minimal spanning tree is one for which the sum of the lengths 
of all the paths is a minimum. This tree is unique if there are no ties among 
the N(N - 1)/2 interpoint distances. 

Before computing the test statistic(s) in the multivariate case, we first con­
struct the minimal spanning tree for the combined sample. Once the tree is 
complete, we can generate the permutation distribution of the runs statistic 
through a series of random relabelings of the individual data points. After 
each relabelling, we remove all edges for which the defining nodes originate 
from different samples. Figure 5.le illustrates one such result. 
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Although it can take a multiple of N x N calculations to construct the 
minimal spanning tree for a sample of size N, each determination of the 
multivariate runs statistic only takes a multiple of N calculations. For large 
samples a normal approximation to the permutation distribution may be 
used (see Section 14.4); the expected value and variance of the runs statistic 
are the same as in the univariate case. 

5.3.1. Which Statistic? 

We've now considered three multivariate test statistics for testing hypotheses 
based on one or two samples. Which one should we use? To detect a simulta­
neous shift in the means of several variables, use Hotelling's T2; to detect a 
shift in any of several variables, use the maximum t; and to detect an arbi­
trary change in a distribution (not necessarily a shift) use Friedman and 
Rafesky's multivariate runs test. 

Tests proposed by van-Putten [1987] and Henze [1988] offer advantages 
over Friedman-Rafesky in some cases. 
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Figure 5.1. Building a minimal spanning tree. 
From "Multivariate generalizations of the Wald-Wolfowitz and Smirnov two-sample 
test," by J.H. Friedman and L.c. Rafsky, Annals of Statistics; 1979; 7: 697-717. 
Reprinted with permission from the Institute of Mathematical Statistics. 

Continued next page. 
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5.4. Experimental Designs 

5.4.1. Matched Pairs 

5. Multivariate Analysis 

Puri and Shane [1970] study the multivariate generalization of paired com­
parisons in an incomplete blocks design (see Sections 3.6 and 3.7). Their 
procedure is a straightforward generalization of the multivariate one-sample 
test developed by Sen and Puri [1967]; (see also Sen [1967, 1969]). 

For simplicity, suppose we have only a single block. As in Section 3.1, we 
consider all possible permutations of the signs of the individual multivariate 
observations. If {Xi' ¥;} is the p-dimensional vector of observations on the 
ith matched pair, and ii is the vector of differences (Zl, ... ,ZP), then our 
permutation set consists of vectors of differences of the form ({ -1}i1 Zl' ... , 
(_l)inZn) where -Z = (_Zl, ... , -ZP). 

Depending on the hypothesis and alternatives of interest, one may want to 
apply an initial set oflinear transformations to each separate coordinate, that 
is, to replace zj by Z· i = aj + bjZi . Puri and Shane studied the case in which 
the individual variables were replaced by their ranks, with each variable 
being ranked separately. 

5.4.2. Block Effects 

When we have more than two treatments to compare, an alternative statistic 
studied by Gerig [1969] is the multivariate extension of Friedman's chi­
square test in which ranks take the place of the original observations creating 
an unconditional permutation test. 

The experimental units are divided into B blocks each of size I with the 
elements of each block as closely matched as possible with respect to extrane­
ous variables. During the design phase, one individual from each block is 
assigned to each of the I treatments. We assume that K (possibly) dependent 
observations are made simultaneously on each subject. To test the hypothesis 
of identical treatment effects against translation-type alternatives, we first 
rank each individual variable separately within each block, ranking them 
from 1 to I (smallest to largest). The rank totals T.i(k) are computed for each 
treatment i and each variable (k). The use of ranks automatically rescales 
each variable so that the variances (but not the covariances) are the same. 

Let T denote the I x K matrix whose ikth component is T.i(k)' Noting that 
the expected value of T.i(k) is (K + 1)/2, let V denote the matrix whose compo­
nents are the sample covariances 

[ 
B 1 k{k + 1)2J 
b~ i~ 1'"i(S) 1'"i(/) - 4 

V., = n{k - 1) . 
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By analogy with Hotelling's T2, the test statistic is TV- 1 TT [Gerig, 1969]. 
Gerig [1975] extends these results to include and correct for random co­
variates. 

5.5. Repeated Measures 

In many experiments, we want to study the development of a process over a 
period of time, such as the growth of a tumor or the gradual progress of a 
cure. If our observations are made by sacrificing different groups of animals 
at different periods of time, then time is simply another variable in the anal­
ysis which we may treat as a covariate. But if all our observations are made 
on the same subjects, then the multiple observations on a single individual 
will be interdependent. And all the observations on a single subject must be 
treated as a single multivariate vector. 

We may ask at least three questions about the response profiles: (1) Are the 
response profiles the same for the various treatments? (2) Are the response 
profiles parallel? (3) Are the response profiles at the same level? 

A "yes" answer to question 1 implies "yes" answers to questions (2) and 
(3), but we may get a "yes" answer to 2 even when the answer to (3) is 
"no". 

One simple test of parallelism entails computing the successive differences 
Zj,i = Xj ,i+1 - Xj,i for j = 1,2; i = 1, ... , 1- 1 and then applying the methods 
from Sections 5.2 or 5.3 to these differences. Of course, this approach is 
applicable only if the observations on both treatments were made at identical 
times. 

To circumvent this limitation and to obtain a test of the narrower hypoth­
esis (1), we follow Koziol et al. [1981] and suppose there are Ni subjects in 
group i. Let X;j' t = 1, 2, ... , T; and j = 1, 2, ... , Ni denote the observation 
on the jth subject in Group i at time t. Not all the X;j may be observed in 
practice; we will only have observations for Nit of the Ni in the ith group at 
time t. If X;j is observed, let R:j be its rank among the N. t available values at 
time t. Set Sit = (Nit )-lIRtj. 

If luck is with us so that all subjects remain with us to the end of the 
experiment, then Nit = Ni for all t and each i, and we may adopt as our 
test statistic LN = I NiSrV- 1 S;, where S; is a T x 1 vector with com­

i 

ponents (Sil' Si2, ... ,SiT) and V is a TxT covariance matrix whose stth 
component is 

I N; 

N - 1 " " Ri Ri vst = L..- L..- sj tj' 
i=l j=l 

This test statistic was proposed and investigated by Puri and Sen [1966, 
1969, 1971]. 



76 5. Multivariate Analysis 

5.5.1. Missing Data 

If we are missing data, and missing data is almost inevitable in any large 
clinical study since individuals commonly postpone or even skip follow-up 
appointments, then no such simplified statistic presents itself. Zerbe and 
Walker [1977] suggest that each subject's measurements first be reduced to a 
vector of polynomial regression coefficients with time the independent vari­
able. The subjects needn't have been measured at identical times or over 
identical periods, nor does each subject need to have the same number of 
observations. Only the number of coefficients (the rank of the polynomial), 
needs to be the same for each subject. Thus, we may apply the equations of 
Koziol et al. to these vectors of coefficients though we can not apply the 
equations to the original data. 

We replace the mk observations on the kth subject, {Xkj , i = 1, ... , md with 
a set of J + 1 coefficients, {bki, j = O, ... ,J}. While the mk may vary, the 
number J is the same for every subject; of course, J < mk for all k. The {bkJ 
are chosen so that for all k and i, 

Xkj == bkO + tkjbkj + ... + tfjbkJ , 

where the {tkj , i = 0, ... , mk} are the observation times for the kth subject. 
This approach has been adopted by a number of practitioners including 

Albert et al. [1982], Chapelle et al. [1982], Goldberg et al. [1980], and 
Hiatt et al. [1983]. Multiple comparison procedures based on it include 
Foutz et al. [1985] and Zerbe and Murphy [1986]. A SAS/IML program to 
do the calculations is available [Nelson and Zerbe P:1988Ji. 

5.5.2. Bioequivalence 

Zerbe and Walker's solution to the problem of missing data suggests a multi­
variate approach we may use with any time course data. For example, when 
we do a bioequivalence study, we replace a set of discrete values with a 
"smooth" curve. This curve is derived in one of two ways: 1) by numerical 
analysis, 2) by modelling. The first yields a set of coefficients, the second a 
set of parameter estimates. Either the coefficients or the estimates may be 
treated as if they were the components of a multivariate vector and the 
methods of this chapter applied to them. 

Here is an elementary example: Suppose you observe the time course of a 
drug in the urine over a period for which a linear model would be appropri­
ate. Suppose further that the chief virtue of your measuring system is its low 
cost; the individual measurements are crude and imprecise. To gain precision, 
you take a series of measurements on each patient about half an hour apart 

1 The P preceding a date, as in March, P: 1972, refers to a separate bibliography at the end of 
the text devoted exclusively to computational methods. 
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and use least squares methods to derive a best-fitting line for each patient. 
That is, you replace the set of measurements {Xijk } where i = 0 or 1 denotes 
the drug, j = 1, ... , J denotes the subject, and k = 1, ... , K j denotes the 
observation on a subject, with the set of vectors {l'ij = (aij, bi)} where aij and 
bij are the intercept and slope of the regression line for the jth subject in the 
ith treatment group. 

U sing the computer code in Section 5.2, you calculate the mean vector and 
the covariance matrix for the {Y;j}' and compute Hotelling's T2 for the origi­
nal observations and for a set of random arrangements. You use the resultant 
permutation distribution to determine whether the time courses of the two 
drugs are similar. 

5.6. Questions 

1. You can increase the power of a statistical test in three ways: a) making additional 
observations, b) making more precise observations, c) adding covariates. Discuss 
this remark in the light of your own experimental efforts. 

2. You are studying a new tranquilizer which you hope will minimize the effects of 
stress. The peak effects of stress manifest themselves between five and ten minutes 
after the stressful incident, depending on the individual. To be on the safe side, 
you've made observations at both the five- and ten-minute marks. 

Subject pre-stress 5-minute lO-minute Treatment 

A 9.3 11.7 10.5 Brand A 
B 8.4 10.0 10.5 Brand A 
C 7.8 10.4 9.0 Brand A 
D 7.5 9.2 9.0 New drug 
E 8.9 9.5 10.2 New drug 
F 8.3 9.5 9.5 New drug 

How would you correct for the pre-stress readings? Is this a univariate or a multi­
variate problem? List possible univariate and multivariate test statistics. Perform 
the permutation tests and compare the results. 

3. Show that if T' is a monotonic function of T, then a test based on the permutation 
distribution of T' will accept or reject only if a permutation test based on T also 
accepts or rejects. 



CHAPTER 6 

Categorical Data 

6.1. Contingency Tables 

In many experiments and in almost all surveys, many if not all of the results 
fall into categories rather than being measurable on a continuous or ordinal 
scale: e.g., male vs. female; black vs. Hispanic vs. oriental vs. white; in favor 
vs. against vs. undecided. The corresponding hypotheses concern propor­
tions: "Blacks are as likely to be Democrats as they are to be Republicans." 
Or, "the dominant genotype 'spotted shell' occurs with three times the fre­
quency of the recessive." 

6.2. Fisher's Exact Test 

As an example, suppose on examining the cancer registry in a hospital, we 
uncovered the following data which we put in the form of a 2 x 2 contin­
gency table: 

Men 
Women 

Survived Died 

9 
4 

13 

1 
10 
11 

10 
14 
24 

There are two rows and two columns in this table for a total of four cells. The 
four cell entries are 9, 1, 4, and 10. The 9 denotes the number of males who 
survived, the 1 denotes the number of males who died, and so forth. The four 
marginal totals or marginals are 10, 14, 13, and 11. The lOis the total number 
of men in the study, the 14 denotes the total number of women, and so forth. 

78 
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We see in this table an apparant difference in the survival rates for men and 
women: Only 1 of 10 men died following treatment, but 10 of the 14 women 
failed to survive. Is this difference statistically significant? 

The answer is yes. Let's see why, using the same line of reasoning that R.A. 
Fisher advanced at the annual Christmas meeting of the Royal Statistical 
Society in 1934. (After Fisher's talk was concluded, incidentally, a seconding 
speaker compared his talk to "the braying of the Golden Ass." I hope you 
will take more kindly to my own explanation.) The preceding contingency 
table has several fixed elements-the total number of men in the survey, 10; 
the total number of women, 14; the total number who died 11, and the total 
number who survived 13. These totals are immutables; no swapping oflabels 
will alter the total number of individual men and women or bring back the 
dead. But these totals do not determine the contents of the table as can be 
seen from the two tables with identical marginal totals that are reproduced 
below. 

Men 
Women 

Men 
Women 

Survived Died 

10 
3 

13 

o 
11 
11 

Survived Died 

8 
5 

13 

2 
9 

11 

10 
14 
24 

10 
14 
24 

The first of these tables makes a strong case for the superior fitness of the 
male, stronger even than our original observations. In the second table, the 
survival rates for men and women are closer together than they were in our 
original table. 

Fisher would argue that if the survival rates were the same for both sexes, 
then each of the redistributions of labels to subjects-that is, each of the N 
possible contingency tables with these same four fixed marginals-is equally 
likely, where 

How did we get this value for N? The component terms are taken from the 
hypergeometric distribution: 
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(6.1) 

where n, m, t, and x occur as the indicated elements in the following 2 x 2 
contingency table 

CAT A 
CATB 

CAT 1 

x 
m-x 

m 

CAT 2 

t-x 

n m+n 

In our example, m = 13, n = 11, and t = 10, so that S = m) + 11e93 ) of the 
N tables are as or more extreme than our original table. But this is a very 
small fraction of the total. A difference in survival rates as extreme as the 
difference we observed in our original table is very unlikely to have occurred 
by chance. Consequently, we reject the hypothesis that the survival rates 
for the two sexes are the same and accept the alternative that, in this instance 
at least, males are more likely to profit from treatment. 

I have already noted that Fisher's original presentation of this concept was 
marked by acrimony and dissent. You may wonder what all the fuss was 
about. Fisher's exact test agrees asymptotically with the chi-square test based 
on one degree of freedom, a fact that is no longer in dispute. But many of the 
participants at the meeting raged over whether there should be three or four 
degrees of freedom corresponding to the number of marginals or just one 
degree as Fisher asserted. To learn more about this controversy, see Box 
[X: 1978]. 

6.2.1. One-Tailed and Two-Tailed Tests 

In the preceding example, we tested the hypothesis that survival rates do not 
depend on sex against the alternative that men diagnosed as having cancer 
are likely to live longer than women similarly diagnosed. We rejected the null 
hypothesis because only a small fraction of the possible tables are as extreme 
as the one we observed initially. This is an example of a one-tailed test. Or is 
it? Wouldn't we have been just as likely to reject the null hypothesis if we had 
observed a table of the following form: 

Men 
Women 

Survived Died 

o 
13 
13 

10 
1 

11 

10 
14 
24 
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Of course, we would have. In determining the significance level in the present 
example, we should add together the total number of tables which lie in 
either of the two extremes (tails) of the permutation distribution. 

Recently, McKinney et al. [1989] reviewed some seventy plus articles that 
had appeared in six medical journals. In over half these articles, Fisher's 
exact test had been applied improperly. Either a one-tailed test had been used 
when a two-tailed test was called for or the authors of the paper simply 
hadn't bothered to state which test they had used. 

When you design an experiment, decide at the same time whether you wish 
to test your hypothesis against a two-sided or a one-sided alternative. A 
two-sided alternative dictates a two-tailed test; a one-sided alternative dic­
tates a one-tailed test. 

As an example, suppose we decide to do a follow-on study of the cancer 
registry to confirm our original finding that men diagnosed as having tumors 
live significantly longer than women similarly diagnosed. In this follow-on 
study, we have a one-sided alternative. Thus, we will analyze it using a one­
tailed test rather than the two-tailed test we used in the original study. 

6.2.2. Increasing the Power 

Providing we are willing to randomize on the boundary (see Section 3.1.3), 
Fisher's exact test is uniformly most powerful among all unbiased tests for 
comparing two binomial populations [Lehmann, 1986, pp. 151-162]. 

It is most powerful under any of the following four world views: 

i) binomial sampling-one set of marginals in the contingency table is ran-
dom; the other set and the sum s = n + m are fixed; 

ii) independent Poisson processes-all marginals and s are random; 
iii) multinomial sampling-all marginals are random and s fixed; 
iv) an experiment in which sampling is replaced by the random assignment 

of subjects to treatments-all marginals are fixed. 

The power of Fisher's test depends strongly on the composition of the 
sample. A balanced sample, with equal numbers in each category is the most 
desirable. If the sample is too unbalanced-for example, if 100 of the obser­
vations have the attribute A and only 1 has the attribute not A-it may not 
be possible to determine if attribute B is independent of A. 

If you have some prior knowledge about the frequency of A and B, then 
Berkson has suggested and Neyman has proved it is better to select samples 
of equal size from B and not B provided IpB - 1/21 > IpA - 1/21. The "blind 
faith" method of selecting the sample at random from the population at large 
is worse than taking equal-sized samples from either A and not A or Band 
not B. 

Studies of the power of Fisher's exact test against various alternatives were 
conducted by Haber [1987], and Irony and Pereira [1986]. 
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Although tables for determining the significance level of Fisher~ exact test 
are available, in Finney [1948J and Latscha [1953J for example, these are 
restricted to a few discrete p-values. Today, it is usually much faster to com­
pute a significance level than it is to look it up in tables. Beginning with 
Leslie [1955J, much of the subsequent research on Fisher's exact test has 
been devoted to developing algorithms that would speed up or reduce the 
number of computations required to obtain a significance level. 

As one rapid alternative to the hypergeometric distribution (equation 6.1), 
we may use the recursive relationship provided by Feldman and Kluger 
[1963]. With table entries (ao, bo, Co, do), define 

It is easy to see that 

where ai = ao - i. 

6.2.3. The Common Odds Ratio Test 

Circumstances may compel us to gather data from several test sites, for ex­
ample, if we are studying the effects of treatment on a relatively rare disease. 
We would like to know if we are justified in combining the results from the 
several sites. The individual response probabilities to treatment may not be 
and, in fact, needn't be the same from site to site. What is essential if we 
are to combine the results is that the odds ratios 

rA. = niB * (1 - niA) 
• (1 - niB) niA 

be the same, where nw niB denote the true rates of response to treatments A 
and B at site i, i = 1, ... , 1. 

The ith site gives rise to the contingency table 

Xi mi-xi 

To test the hypothesis tPl = tP2 = ... = tPI = tP and, subsequently, to test 
that tP = tPo. Mehta, Patel, and Gray [1985J suggest we use the permutation 
distribution of the statistic T = L ai(xi), where 

ai(xi) = -IOg{ (::) (:D/(:; :~)}, 
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A microcomputer program to obtain confidence intervals for the common 
odds ratio is described by Vollset and Hirji [P: 1991].1 

6.3. Unordered r x c Contingency Tables 

6.3.1. Choosing a Test Statistic 

The principal issue in the analysis of a contingency table with r( ~ 2) rows and 
c( ~ 2) columns is deciding on an appropriate test statistic. Our discussion 
parallels that of Agresti and Wackerly [1977]: 

We can find the probabilities of any individual r x c contingency table 
through a straightforward generalization of the hypergeometric distribution 
[Halter, 1969]. An r x c contingency table consists of a set of frequencies 
f = {lii,1 ::;; i ::;; r; 1 ::;;j::;; c} with row marginals {h., 1 ::;; i ::;; r} and column 
marginals {I.j' 1 ::;;j::;; c}. 

Pf = Pr{hAh·.!j} = Qf/Rf · (6.2) 

with 
r c 

Qf = nh·! nfNf.! 
i=l j=l 

and 

An obvious extension of Fisher's exact test is the Freeman and Halton 
[1951] test based on the proportion P of tables for cwhich Pf is less than or 
equal to the probability Po of the original table 

P = L I(Pf ::;; PO)Pf 

where the indicator I(A) = 1 if A is true and 0 otherwise. 
While this extension may be obvious, it is not as obvious that this exten­

sion offers any protection against the alternatives of interest. Just because 
one table is less likely than another under the null hypothesis does not mean 
it is going to be more likely under the alternative. As we shall see in Section 
14.2.2, it is the likelihood ratio pK/pH that is decisive. For example, consider 
the 1 x 3 contingency table fd2f3' which corresponds to the multinomial 
with probabilities Pi + P2 + P3 = 1; the table whose entries are 1 2 3 argues 
more in favor of the null hypothesis Pi = P2 = P3 than ofthe ordered alterna­
tive Pi > P2 > P3' 

The classic statistic for independence in a contingency table with r rows 
and c columns is 

1 The P preceding a date, as in March, P:1972, refers to a separate bibliography at the end of the 
text devoted exclusively to computational methods. 
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x2 = I t (fij - Ek)2. 
i=1 j=1 E!ij 

Asymptotically this statistic has the chi-square distribution with (r - 1)· 
(c - 1) degrees of freedom. But for any finite sample, the chi-square distribu­
tion is only an approximation to this statistic, an approximation that is 
notoriously inexact for small and unevenly distributed samples. In practice, 
it often is necessary to combine or eliminate categories to make the chi­
square approximation valid. 

The permutation statistic Px = L I(X2 :$; X~)Pf provides an exact test and 
possesses all the advantages of the original chi-square. The distinction be­
tween the two approaches, as we observed in Section 2.3, is that with the 
original chi-square we look up the significance level in a table, while with 
the permutation statistic, we derive the significance level from the permuta­
tion distribution. With large samples, the two approaches are equivalent, 
as the permutation distribution converges to the tabulated distribution (see 
Chapter 14 of Bishop, Fienberg, and Holland [X: 1975J). 

This permutation test has one of the original chi-square test's disadvant­
ages: while it offers global protection against a wide variety of alternatives, it 
offers no particular protection against any single one of them. The statistics 
P and Px treat row and column categories symmetrically and no attempt is 
made to distinguish between cause and effect. To address this deficiency, 
Goodman and Kruskal [X: 1954J introduce an asymmetric measure of asso­
ciation for nominal scale variables called tau t which measures the propor­
tional reduction in error obtained when one variable, the "cause" or indepen­
dent variable, is used to predict the other, the "effect" or dependent variable. 

Assuming the independent variable determines the row, 

L!mj - !m. 
t = ..:.j-::---_=__-

/.. - !m. 

where!mj = maxi!ijand!m. = maxi!i. 
o :$; t :$; 1. t = 0 when the variables are independent: t = 1 when for each 

category of the independent variables all observations fall into exactly one 
category of the dependent. These points are illustrated in the following 2 x 3 
tables: 

3 6 9 
6 12 18 r=O 

18 0 0 
0 36 0 r = 1. 

3 6 9 
12 18 6 r = 0.166 

A permutation test of independence is based upon the proportion of tables 
for which t > to, Pt = LI (or ~ to)Pf. 
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Cochran's Q provides an alternate test for independence. Suppose we have 
I experimental subjects on each of whom we administer J tests. Let Yij = 1 or 
o denote the outcome of the jth test on the ith patient. Define 

I 

Ri = L Yij 
j=1 

I 

Cj = L Yij 
i=1 

Details of the calculation of the distribution of Cochran's Q under the as­
sumption of independence are given in Patil [1975]. For a description of 
other, alternative statistics for use in r x c contingency tables, see Nguyen 
[1985]. 

6.3.2. Examples 

We illustrate many of these points in the following two examples. The first 
example compares the chi-square approximation with the exact significance 
levels of the permutation test. The second, the categorical analysis of multi­
variate data, underlines the need to consult original data sources rather than 
summary tables. 

6.3.2.1. EXACT SIGNIFICANCE LEVELS 

Table 6.1 contains data on oral lesions in three regions ofIndia derived from 
Gupta et al. [X: 1980J by Mehta and Patel [1990]. We want to test the 
hypothesis that the location of oral lesions is unrelated to geographical re­
gion. Possible test statistics include Freeman-Halton p, Pl.' and P;.. This 

Table 6.1. Oral Lesions in Three Regions of 
India 

Kerala Gujarat Andhra 
Site of Lesion 
Labial Mucosa 0 0 
Buccal Mucosa 8 1 8 
Commissure 0 1 0 
Gingiva 0 1 0 
Hard Palate 0 1 0 
Soft Palate 0 1 0 
Tongue 0 1 0 
Floor of Mouth 0 
Alveolar Ridge 0 

Note: Reprinted from the StatXact manual with permis-
sion from Cytel Software. 
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Table 6.2. Three Tests of Independence 

Statistic 
Exact p-value 
Tabulated p-value 

x2 

.0269 

.1400 

F-H 
.0lOl 
.2331 

LR 
.0356 
.lO60 

Note: Reprinted from the StatXact manual with 
permission from Cytel Software. 

latter statistic is based on the log likelihood ratio 

Llj'ijlog(fij!./fi.!j)· 

We may calculate the exact significance levels of these test statistics by 
deriving their permutation distributions or use asymptotic approximations 
obtained from tables of the chi-square statistic. Table 6.2 taken from the 
StatXact manual compares the various approaches. 

The exact significance level varies from 1% to 3.5% depending on which 
test statistic we select. The tabulated p-values vary from 11% to 23%. In one 
instance, the Freeman-Halton statistic, the permutation test tells us the dif­
ferences among regions are significant at the 1 % level; the chi-square ap­
proximation says no, they are insignificant even at the 20% level. Which 
answer is correct? That of the permutation test. With so many near-zero 
entries in the original contingency table, the chi-square approximation is not 
a ppropria teo 

The results in Table 6.2 were obtained with the aid of the StatXact pro­
gram for the IBM-PC. See Section 12.2 for a further description of this in­
valuable program. 

6.3.2.2. WHAT SHOULD WE RANDOMIZE? 

Table 6.3A summarizes Clarke's [X: 1960, 1962] observations on the relation 
between habitat and the relative frequencies of different varieties of C. ne­
moralis snail. It is tempting to analyze this table using the methods of the 
preceding section. But before we can analyze a data set, we need to under­
stand how it was collected. In this instance, observers went to a series of 
locations in southern England. At each location, they noted the type of 
habitat-beechwoods, grasslands, and so forth, and the frequencies of each 

Table 6.3A. Summary of Clarke's [X: 1960, 1962] data on C. numorialis 

Habitat Nl N2 N3 N4 N5 N6 N7 N8 N9 NlO N11 N12 

Beechwoods 9 1 34 26 0 46 8 59 126 6 40 115 
Other deciduous lO 1 1 0 0 85 8 13 44 2 1 12 
Fens 73 3 8 4 6 89 1 23 21 11 0 22 
Hedgerows 76 15 32 19 36 98 3 12 8 14 1 18 
Grasslands 49 29 75 7 28 23 17 60 12 14 14 24 
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of twelve different varieties of snail. The original findings are summarized in 
Table 6.3B reproduced from Manly [1983]. Note that each row in this table 
corresponds to a single multivariate observation. 

Manly computed the chi-square statistic for the original data as summa­
rized in Table 6.3A. Then, using the information in Table 6.3B, he randomly 
reassigned the location labels to different habitats, preserving the number of 
locations at each habitat. For example, in one of the rearrangements, the four 
locations Clipper Down Wood, Boarstall Wood, Hatford, Charlbury Hill 
and only these four locations were designated as Fens. He formed a summary 
table similar to 6.3A for each rearrangement and computed the chi-square 
statistic for that table. He found the original value of the chi-square statistic 
1757.9 was greater than any of the values he observed in each of 500 random 
reassignments and concluded that habitat type has a significant effect on the 
distribution of the various body types of the C. nemoralis snail. 

Manly's analysis combines multivariate and categorical techniques. It 
makes optimal use of all the data because it takes into account how the data 
were collected. Could Manly have used Table 6.3A alone to analyze the data? 
No, because this table lacks essential information about interdependencies 
among the various types of snail. 

6.3.3. Underlying Assumptions 

The assumptions that underlie the analysis of an r x c contingency table are 
the same as those that underlie the analysis of the r-sample problem. To see 
this, note that a contingency table is merely a way of summarizing a set of N 
bivariate observations. We may convert from this table to r distinct samples 
by using the first or row observation as the sample or treatment label and the 
second or column observation as the "value." Keeping the marginals fixed 
while we rearrange the labels ensures that the r sample sizes and the N 
individual values remain unchanged. 

As in the r-sample problem, the labels must be exchangeable under the null 
hypothesis. This entails two assumptions: first, that the row and column 
scores are mutually independent; and second, that the observations them­
selves are independent of one another. We as statisticians can only test the 
first of these assumptions. We rely on the investigator to ensure that the 
latter assumption is satisfied. (See question 3 at the end of this chapter.) 

6.3.4. Speeding Up the Computations 

We may speed up the computations of all the preceding statistics on noting 
that Qf in equation 6.2 is invariant under permutations that leave the 
marginals intact. Thus, we may neglect Q(x) in calculating the permutation 
distribution and focus on Rjl [March, P: 1972]. 
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We may use a recursive algorithm developed by Gail and Mantel 
[P: 1977] to speed up the computations for r x 2 contingency tables. If 
Ni(f1 ;f1""',J;,) denotes the number of tables with the indicated marginals, 
then 

Ni+df1 ;fl"'" '/;"/;+1') = L N;(f1 - j;f1"'" ,/;.). 
j 

The algorithms we developed in Chapters 3 and 4 are much too slow, since 
they treat each observation as an individual value. 

Algorithms for speeding up the computations of the Freeman-Halton sta­
tistic in the general r x e case are given in March [P: 1972], Gail and 
Mantel [P: 1977], Mehta and Patel [P: 1983, 1986a, 1986b], and Pagano 
and Halvorsen [P: 1981]. Details of the Mehta and Patel approach are given 
in Section 13.4. An efficient method for generating r x e tables with given 
row and column totals is provided by Patefield [1981]. See also Agresti, 
Wackerly and Boyett [1979] and Streitberg and Rohmed [P: 1986]. 

The power of the Freeman-Halton statistic in the r x 2 case is studied by 
Krewski, Brennan, and Bickis [1984]. 

6.4. Ordered Contingency Tables 

6.4.1. Ordered 2 x c Tables 

In a 2 x c table, test for an ordered alternative using Pitman correlation as 
described in Section 3.5. The test statistic is Lg[n!lj where g is any mono­
tone increasing function. 

6.4.2. Tables with More Than Two Rows and Two Columns 

In an r x e contingency table conditioned on fixed marginal totals, the out­
come depends only on the (r - l)(e - 1) odds ratios 

A. .. = PijPi+1,j+1 
'I'IJ 

Pi,j+1Pi+1,j 

where Pij is the probability of an individual being classified in row i and 
columnj. 

In a 2 x 2 table, conditional probabilities depend on a single odds ratio 
and hence one- and two-tailed tests of association are easily defined. In an 
r x e table there are potentially two tails corresponding to each of the v = 
(r - l)(e - 1) odds ratios. Hence, an omnibus test for no association, e.g., X2 , 

might have as many as 2v tails. 
Following Patefield [1982], we consider tests of the null hypothesis of no 

association between row and column categories H: ¢ij = 1 for all i, j against 
the alternative of a positive trend K: ¢ij ~ 1 for all i, j. 
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A strong positive association in any 2 x 2 subtable will suggest that K 
rather than H is true [Lehmann X: 1966]. 

As in the previous section, our discussion falls naturally into two parts: 
1) choosing a test statistic, 2) enumerating .those tables which have a test 
statistic greater than or equal in value to the test statistic for the original 
table. 

6.4.3. Which Statistic? 

The two principal test statistics considered by Patefield [1982J are 

),,3 = n- l L L nijxiYj 
i j 

for preassigned values of the row and column scores; and 

)"2 = sup {n- l L L nijXiYj} 
R i j 

where the supremum is taken over all {Xi' Yj} satisfying the conditions 

Lni'Xi = 0, Ln.jYj = 0, Lni.xt = n .. , Ln.jyJ = n .. ; 

Xl :5: X2 :5: ... :5: Xr ; YI:5: Y2 :5: ... :5: Yc; 

Patefield finds that ),,2 has higher power than ),,3 when some but not all of 
the rPij are close to unity, whereas ),,3 has higher power than ),,2 when all the 
rPij are approximately equal. 

The likelihood ratio test behaves like ),,2; the Goodman and Kruskal test of 
association behaves like ),,3' 

At first glance, it would seem that the numerous statistical methods for 
testing no association between a response (the rows) and K ordered cate­
gories (the columns) fall naturally into two groups: those which make use of 
preassigned numerical values for the scores {xi,Yj} and those that don't­
e.g., rank tests. Graubard and Korn [1987J show this distinction is an illu­
sion-a rank is a score and, usually, it is far from an optimal one. Midrank 
scores may be completely inappropriate. They advise you to assign a numeri­
cal score based on your best understanding of the relations between columns. 
If the choice is not apparent, they advise equally spaced scores (1,2, ... , n). 
Always examine the midranks as scores to make sure they are reasonable 
before using a rank test. 

6.5. Covariates 

The presence of a covariate adds a third dimension to a contingency table. 
Bross [1964J studies the effects of treatment on the survival of premature 
infants. His results are summarized in the following contingency table: 
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Table 6.4. Effect of Treatment on 
Survival of the Premature 

Dead Recovered Total 

Placebo 
Treatment 

6 
2 
8 

5 
12 
17 

11 
14 
25 

6. Categorical Data 

These results, though suggestive, are not statistically significant. 
Bross notes that survival is very much a function of a third, concomitant 

variable-the birth weight of the child. A lower birth weight indicates greater 
prematurity and, hence, greater odds against a child's survival. An analysis of 
treatment is out of the question unless, somehow, he can correct for the 
effects of birth weight. 

A solution we studied in earlier chapters is to set up an experiment in 
which we study the effects of treatment in pairs that have been matched on 
the basis of birth weight. But Bross' study of the premature was not an 
experiment; he could only observe, not control, birth weight. 

Table 6.5 depicts his first nine observations, ordered by birth weight. The 
last two columns of this table deserve explanation. The column headed N I 
records the number of cases in which a child of lower birth weight treated 
with ukinase recovered when an untreated child of higher birth weight died. 
Such a result is to be expected under the alternative of a positive treatment 
effect though it would occur only occasionally by chance under the null 
hypothesis. 

The column headed I records the number of cases in which a untreated 
child of lower birth weight recovered when an child of higher birth weight 
treated with ukinase died. Such an event or inversion would be highly un­
likely under the alternative. 

Table 6.5. Effect of Treatment and Birth Weight 
on Survival of the Premature 

NI I 
Weight Treatment Outcome TR/PL PL/TR 

1.08 TR D 
1.13 TR R 3 
1.14 PL D 
1.20 TR R 2 
1.30 TR R 2 
1.40 PL D 
1.59 TR D 
1.69 TR R 
1.88 PL D 
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As his test statistic, Bross adopts S = (NI - /f/(NI + I). Note that NI = 8, 
I = 0 and S = 8 for the original observations. Bross computes S for each of 
the (~) possible rearrangements of the treatment labels-and only the labels 
were changed while the pairing of birth weight with outcome was preserved. 
None of the other rearrangements yield as large a value of S as the original 
observations. Bross concludes that the treatment has a statistically significant 
effect on survival of the premature. 

6.6. Combinations of Tables 

Another way to correct for the effects of a covariate is to divide the observa­
tions into blocks, so that the value of the covariate is approximately constant 
within each block. Under the assumption that the odds ratio is the same for 
each block, Mehta, Patel, and Gray [1985] provide a method for combining 
the results from several 2 x 2 contingency tables. 

For a review of the literature on higher-dimensional tables see Agresti 
[1992]. 

6.7. Questions 

1. 2 x 2 table. Referring to the literature of your own discipline, see if you can find a 
case where a 2 x 2 table with at least one entry smaller than 7 gave rise to a 
borderline p-value using the traditional chi-square approximation. Reanalyze this 
table using Fisher's exact test. 

Did the original authors use a one-tailed or a two-tailed test? Was their choice 
appropriate? 

2. r x 2 table. Again, refer to the literature of your own discipline for an example 
where the chi-square approximation was used. Do you feel the chi-square statistic 
was appropriate? What statistic would you have used? Reanalyze the table using 
the statistic you have chosen. Use all the computational shortcuts of Section 6.3.3. 

3. Independence. If we were to question one respondent in the presence of another, 
would their answers be independent? If we were to make observations on several 
individuals in the same household, would these observations be independent? Crit­
icize your own past work. 

4. Sample size. According to the Los Angeles Times, a recent report in the New 
England Journal of Medicine states that a group of patients with a severe bacterial 
infection of their blood stream who received a single intravenous dose of a gene­
tically altered antibody had a 30% death rate compared with a 49% death rate 
for a group of untreated patients. How large a sample size would you require 
using Fisher's exact test to show that such a percentage difference was statistically 
significant? 

Before you start your calculations, determine whether you should be using a 
one-tailed or a two-tailed test. 



CHAPTER 7 

Dependence 

The title of this chapter, "dependence," reflects our continuing emphasis on 
the alternative rather than on the null hypothesis. As you discover anew in 
this chapter, the permutation test is invaluable whether you wish to focus on 
one or two specific hypotheses of dependence or provide protection against a 
broad spectrum of alternatives. 

In this chapter, we consider five models of dependence and contrast the 
permutation approach to each with the bootstrap approach. You learn how 
to apply permutation tests, tracing a real-life regression problem from start 
to finish. And, of particular interest to economists, you learn methods for 
testing for first- and higher-order correlations in stationary time series. 

7.1. The Models 

We consider five models of dependence in order of increasing complexity. 
Modell (Independence): For all i, the pairs {Xi' Yj} are independent and 

identically distributed with joint probability P, and Px , Py are the corre­
sponding marginal distributions. Having observed the pairs {Xi' Yj; i = 
1, ... , n}, we wish to test the hypothesis that P is the product probability 
Px * Py. Modell is the simplest ofthe five models, requiring the fewest assump­
tions about the data; its primary interest is theoretical rather than applied. 

Model 2 (Quadrant dependence): When X is positive, Y is more likely to be 
positive, and vice versa. This model is appropriate when we have categorical 
or partially ordered data. 

Model 3 (Trend): Yj = G[Xa + (i for i = 1, ... , n; where G is a monotone 
function of the (single) preset variable X, and the {(J, the errors or residuals 
after the function G is used to predict Y, are exchangeable random variables 
with zero expectations. G is a monotone increasing function of X, for exam­
ple, if Xl > X2 means that G[XIJ > G[X2J. Having observed the pairs {Xi> Yj; 

94 
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i = 1, ... , n}, we wish to test the hypothesis that the distribution of Y is inde­
pendent of X versus the alternative that Y is stochastically increasing in X. 
We have already encountered this model in Chapter 3, in testing for a dose 
response. 

Model 4 (Serial correlation): ~ = G[X;J + ~j i = 1, ... , n; where G is a 
continuous function of the (single) preset variable X in the sense that if Xl 
is "close" to X 2 then G[X;J is "close" to G[X2J, and the (j are independent 
random variables with expectation O. Having observed the pairs {Xj,~; 
i = 1, ... , n}, we wish to test the hypothesis that the distribution of Y is in­
dependent of X versus the alternative that Y depends on X through some 
unknown G. 

Model 5 (Known model): ~ = G[Xj,PJ + (j i = 1, ... , n where G is a 
known (arbitrary) function of X a vector of preset values, P is a vector of 
unknown parameters, and the {(j} are independent variables symmetrically 
distributed about O. Having observed {Xj' ~; i = 1, ... , n}, we wish to test the 
adequacy of some estimate P of p, the true parameter value. 

7.2. Testing for Independence 

7.2.1. Independence 

For Modell, P is the product probability Px * Py; distribution-free bootstrap 
and randomization tests in the spirit of Kolmogorov-Smirnov test statistics 
are provided by Romano [1989]. Under the assumption that the pairs 
{~, XJ are independent and identically distributed, Romano finds that the 
bootstrap and the rerandomization test lead to almost the same confidence 
intervals for very large sample sizes. 

Against parametric alternatives, the most powerful and/or locally most 
powerful tests are permutation tests based on the likelihood function [Bell 
and Doksum, 1967J. 

7.2.2. Quadrant Dependence 

In Model 2, no ordinal relationship is implied; X and Y may even take 
categorical values, so that the problem reduces to that of analyzing a 2 x 2 
contingency table. The most powerful permutation test and, not incidentally, 
the most powerful unbiased test is Fisher's exact test described in Section 6.2. 

The bootstrap for the 2 x 2 contingency table may be determined entirely 
on theoretical grounds without the need to resort to resampling. Estimates of 
the probabilities P{Y > 0IX > O}, and P{Y > 0IX < O} are used to obtain 
a confidence interval for the odds ratio. If this interval contains unity, we 
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accept the null hypothesis of independence, otherwise we reject it in favor of 
the alternative of quadrant dependence. 

This model is occasionally used in practice while exploring the relationship 
between X and Y, first transforming to the deviations about the sample mean, 
X; = Xi - X, 1';' = 1'; - y. 

7.3. Testing for Trend 

Consider an experiment in which you make two disparate observations on 
each of a series of experimental subjects. For example, observing the birth 
weight of an infant and its weight after one year; or the blood pressure and 
caffeine intake of each of a series of adults. You wish to test the hypothesis 
that the two variables vary independently against the alternative that there is 
a positive dependence between them. 

More accurately, you wish to test the alternative of positive dependence 
against the null hypothesis of independence. In formal terms, if X and Yare 
the two variables, and y" is the random variable whose distribution is the 
conditional distribution of Y given that X = x, we want to test the null 
hypothesis that Yx has the same distribution for all x, against the alternative 
that if x' > x, then Yx" is likely to be larger than Yx ' 

In Section 14.2, we show that Pitman's correlation ~>(i)Yi' where xl!) ::;; 

X(2) ::;; ••• x(n)' provides a most powerful unbiased test against alternatives 
with a bivariate normal density. As the sample size increases, the cutoff point 
for Pitman's test coincides with the cutoff point for the corresponding oc 
normal test based on the Pearson correlation coefficient. 

Let's apply this test to the weight and cholesterol levels taken from a subset 
of the blood chemistry data collected by Werner et al. [X: 1970J; the full data 
set is included with the BMDP statistical package. 

Wt Chol 

144 200 
160 600 
128 243 
150 50 
178 227 
140 220 
158 305 
170 220 

Is there a trend in cholesterol level by weight? Reordering the data by weight 
provides a clearer picture. 
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Wt Chol 

128 243 
140 220 
144 200 
150 50 
158 305 
160 600 
170 220 
178 227 

The cholesterol level does not appear to be related to weight; or, at least, it is 
not directly related. Again, we can confirm our intuition by the permutation 
test based on the statistic r. 

But before we perform the test, what should we do about the subjects who 
had cholesterol values of 50 and 600? Are these typographical errors, or a 
misreading of the test results? Should we discard these values completely or 
perhaps replace them by ranks? Chapter 9 is devoted to a discussion of these 
and other alternatives for dealing with suspect data. In this chapter, we play 
the data as it lays. For the original data, r = 128 * 243 + ... + 178 * 227 = 
320,200, while r = 332,476 for the following worst-case permutation: 

Wt Chol 

128 50 
140 200 
144 220 
150 220 
158 227 
160 243 
170 305 
178 600 

Examining several more rearrangements, we easily confirm our eyeball intu­
ition that cholesterol level is not directly related to weight. The majority of 
permutations of the data have sample correlations larger and more extreme 
than that of our original sample. We accept the null hypothesis. 

7.4. Serial Correlation 

For Model 4, advocates of the permutation test can take advantage of the 
(possible) local association between Y and X, reordering the Xi so that 

n-l 

Xl ~ ... ~ X n , and adopting as test statistic M = L (Y; - Y;+l)2 [Wald and 
i=i 
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Wolfowitz, 1943; Noether, 1950; Maritz, 1981, p. 219]. We reject the null 
hypothesis if the value of the statistic M for the original observations is less 
than the ath percentile of the permutation distribution of M. Again, we need 
not make specific assumptions about the nature of the association. If we can 
make specific assumptions, then some other permutation test may recom­
mend itself. Ghosh [1954], for example, considers tests against the alterna­
tive of periodic fluctuations. Manly [1991] also considers a number of prac­
tical examples. 

It is not clear what statistic, beyond that proposed by Romano for the 
simpler Modell, might be used as the basis of a bootstrap test of Model 4. 
Of course, if we are prepared to specify the dependence function G explicitly, 
as is the case in Model 5, we may apply bootstrap methods to the residuals 
or to a suitable transformation thereof; see, for example, Stine [X: 1987]. 

7.4.1. An Example 

To see a second illustration of the regression method (Model 3) while making 
a novel application of the present model, let us consider a second example, 
this time employing hypothetical data. 

In Table 7.1, X represents the independent variable or cause, and Y repre­
sents the dependent variable or effect. Plotting Y versus X as in Figure 7.1 
suggests a linear trend, and our permutation test for Model 3 confirms its 
presence. Our next step is to formulate a specific model and to estimate its 
parameters. The simplest model is a linear one Y = a + bX + c. We can 
estimate the coefficents a and b using the method of least squares. 

b = SXY = 4.5 
Sxx 

a = y - b-x = 3.53, 

where 

Table 7.1. Exploring a Cause-Effect Relationship 

X y a+bX residual rank a+bX +cX2 residual 

to.56 8.74 1.81 7 11.68 -1.12 
2 15.28 14.15 1.12 6 14.57 .70 
3 20.13 19.56 .56 5 18.31 1.82 
4 22.26 24.98 -2.72 1 22.88 -0.62 
5 28.06 30.38 -2.32 2 28.29 -0.23 
6 33.61 35.80 -2.18 3 34.53 -0.93 
7 41.13 41.20 -0.08 4 41.62 -0.49 
8 50.41 46.62 3.79 8 49.55 0.86 
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Figure 7.1. Plotting the effect Y against values of the cause X. 

SXY = L (Xi - X)(Yi - Y) 

Sxx = L (Xi - X)2. 
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But a simple model is not always the right model. Suppose we compare our 
predictions from the linear model with the actual observations as in the 
second and third columns of our table. The fourth column of this table, which 
lists the differences between the predicted and observed values, attracts our 
interest. Is there some kind of trend here also? Examining a plot of the 
residuals in Figure 7.2, there does appear to be some sort of relationship 
between the residuals and our variable X. We can confirm the existence 
of this relationship by testing for serial correlation among the residuals. As a 
preliminary aid to the intuition, examine the ranks of the residuals in the fifth 
column of the table: 7 6 5 1 2 3 4 8. How likely is such a highly organized 
sequence to occur by chance? The value of M for the original residuals is 
39.45; not one of 400 random rearrangements yields a value of M this ex­
treme. The permutation test confirms the presence of a residual relationship 
not accounted for by our initial first-order model. 

Let's try a second order model: Y = a + bX + cX2 + 8; the least squares 
coefficients are Y = 9.6 + 1.6X + 0.42X 2 ; we've plotted the results in the 
final columns of Table 7.1; note the dramatic reduction in the size of the 
residuals; the second-order model provides a satisfactory fit to our data. 

We could obtain bootstrap estimates of the joint distribution of X, Y by 
selecting random pairs, but with far less efficiency. If we are willing and 
justified in making additional assumptions about the nature of the trend 
function and the residuals as in Model 5, then a number of more powerful 
bootstrap tests may be formulated. While we remain in an exploratory phase, 
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Figure 7.2. Plotting the residuals against values of the cause X after estimating and 
subtracting the linear trend. 

our best choice of a test procedure appears to be Pitman's test followed 
by the Wald and Wolfowitz test for serial correlation among the residuals. 

7.4.2. Trend 

We can test for a trend over time by using the Pitman correlation I tX(t), 
where X(t) is the value of X at time t EWald and Wolfowitz, 1943]. In the 
presence of a trend, the value of the test statistic should be more extreme than 
1 - IX of the values I n(t)X(t) where n is a permutation of the index set 
{t1, ... ,tn }. 

We reach the same decision-accept or reject-whether we use the 
original values of the index set, for example, the dates 1985, 1986, 
1987 ... to compute our test statistic or rezero them first as in 0, 1,2, .... For 
I(t - C)X(t) = ItX(t) - CIX(t), and the latter sum is invariant under 
permutations of the index set. 

7.4.3. First-Order Dependence 

In a large number of economic and physical applications, we are willing to 
accept the existence of a first-order dependence in time (or space) of the form 
X(t + r) = f[r]X(t) + et +t but we would like to be sure that second- and 
higher-order interactions are zero or close to zero. That is, if we are trying to 
predict X(t) and already know X(t - 1), we would like to be sure that no 
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further information is to be gained from a knowledge of X(t - 2), X(t - 3), 
and so forth. 

Gabriel [X: 1962] generalizes the issue as follows: Define {x(i)} to be sth­
degree antedependent if the partial correlation p of x(i) and x(i - s - z - 1), 
... , x(l) for x(i - 1), ... , x(i - s - z) held constant is zero for all nonnegative 
z. 

To test the hypothesis Hs that the {x(i)} are sth antedependent against the 
alternative Hs+1' accept Hs if 

p-s-l 

R = -N L In(1 - r~i+s+l'i+l •...• i+s) 
i=1 

is small, where the {ri~i+s+l'i+l ..... i+s) denote the partial correlations derived 
from the original or permuted sample. We can assess R against its permuta­
tion distribution. 

7.5. Known Models 

In Model 5, we may be given the vector of parameters /3 or we may need to 
estimate it. We consider the testing problem first. Confidence intervals for the 
parameters are covered in Section 7.5.2. 

7.5.1. Testing 

Under the assumption of independent (but perhaps not identically distrib­
uted) symmetrically distributed residuals, we may form an unbiased permu­
tation test of the hypothesis F = G jJ by permuting the signs of the deviations 
di = li - G jJ(Xi ) to obtain the distribution of the statistic 

M=L+d"(i) 

where L+ ranges over the set for which d"(i) ;;::: O. A confidence interval for the 
unknown /3 can be obtained using the method described in Section 7.5.2. 

At least three bootstrap procedures complete for our attention: First, we 
may resample from the residuals as we do in the case of censored matched 
pairs (see Section 9.5) and test the hypothesis that the mean (or the median) 
of the residuals is zero. The resultant test is inferior to the permutation test; 
it is markedly inferior if the residuals have markedly different variances. 

Second, we may resample from the { Y;, X;} and obtain a series of bootstrap 
estimates /3*; in this case, the di need not be identically distributed. Or, third, 
for each Xi' we may resample from the di to obtain a Y;', and use the {Y;',Xi } 

to estimate /3; providing, that is, we can assume that the di are identically 
distributed. By resampling repeatedly, using one or the other of these latter 
two methods, we may obtain a confidence region for /3 and thus a test for our 
original hypothesis. 
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Three points require additional clarification: 

1) The method of estimation. 
2) The confidence region. In some applications, for example, when the {X;} 

are almost colinear, a "figure 8" may be more natural than an ellipsoid. 
Can this region be optimized "against" specific alternatives? 

3) The weighting to be given the various parameters. For large samples, a 
normal approximation suggests the use of a covariance matrix for weight­
ing purposes. For small samples, the issue may not be resolvable. 

As a result of these unresolved issues, bootstrap confidence intervals and 
the associated tests of hypotheses for the generalized regression problem are 
still a matter of considerable controversy. 

For Model 5, the permutation test and the bootstrap may lead to quite 
different results. While the boostrap can take advantage of the parametric 
structure of a problem, (if one is known), the permutation test spares us the 
necessity for making decisions about parameters concerning which we have 
little or no information. 

7.5.2. Confidence Intervals 

In most cases, it is not enough to know that Y is dependent on X, we want to 
know the specific nature of this dependence. As an example, suppose we have 
satisfied ourselves that Model 3 (Trend) holds-that is Y; = G[X;J + 'i for 
i = 1, ... , n, where G is a monotone function of the (single) preset variable X, 
G = a + bX, say and the 'i are exchangeable random variables with zero 
expectations. Having decided that b :1= 0, we would like to obtain a confi­
dence interval for b. First note that a permutation test of the hypothesis 
Ho: b = bo may be based on the Pitman correlation 

LXi'? 
where ,? = Yi - y. - XibO, i = 1, ... , n are the deviations about the line 
whose slope is boo 

Let 1t denote a permutation of the subscripts 1, ... , n and put b"[w] = 

LXiW,,[ij/Lxf. For example, 

b"[,O] = LXi'~[ij/Lxf. 

We reject or accept Ho according to whether bl[,O] for the original, un­
permuted deviations is or is not an extreme value of the distribution of 
b"[,Ol 

We can obtain a confidence interval for b by following the trial and error 
procedure described in Section 3.2. But there is a better way, due to Robinson 
[1987): 

The least squares estimate of b is 6 = LXjY;/Lxf, so that bl[,O] = 6 - bo 
for the original, unpermuted deviations. Let ei = Yi - y. - x j 6; 
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(? = ei + (b - bO)Xi; 

b"[(O] = b"[e] + (b - bo)b"[x]; 

{bo: b"[(O] ~ b - bo} = {bo: b"[C] ~ (b - boHl - b"[x])} 

= {bo: b"[C]/(l - b"[x] ~ b - bo}. 
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b"[e]/(l - b"[x]) is a pivotal quantity that does not depend on boo The 
desired confidence region is the interval between the kth and the 
(n! - k + l)th order statistics of this pivotal quantity where k = (n!cx/2). 

7.6. Questions 

1. a) Are the bootstrap and permutation tests against quadrant dependence equiva­
lent for very large samples? 

b) Suppose you observed the contingency table 

White 
Black 

Republican 

8 
3 

Democrat 

3 
8 

Is race associated with political preference? Use both the bootstrap and Fisher's 
Exact test (Section 6.2) to make the inference. 

2. In your own area of specialization, there is undoubtedly a controversy about the 
nature of the association between some pair of variables. Which of the models, 1? 
2?, ... , 5? would be most appropriate for describing this association? 

3. Adding platinum to a metallic coating will increase the mean time between failures. 
But is it worth it? This will depend on the cost of platinum, the magnitude of the 
effect, and the cost of a failure. Using the data in the following table and the 
prediction equation MTBF = a + b(PT), obtain a confidence interval for the effect 
b. Use both the trial and error method (Section 3.2) and the pivotal quantity 
developed in Section 7.4. 

Table 7.2. Effect of Platinum on MTBF 

Grams Platinum per KG 

1 
2 
5 

10 
15 
20 

MTBF (Hours) 

900 
1000 
1100 
1300 
1600 
1800 
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4. a) Table 7.3 records monthly sales for a two year period, taken from Makridakis, 
Wheelwright, and McGee [1983]. Is there a seasonal trend? 

Table 7.3. Monthly Sales as a Function of X 

X Sales X Sales 

0 116.44 202.66 12 129.85 260.51 
1 119.58 232.91 13 122.65 266.34 
2 125.74 272.07 14 121.64 281.24 
3 124.55 290.97 15 127.24 286.19 
4 122.35 299.09 16 132.35 271.97 
5 120.44 296.95 17 130.86 265.01 
6 123.24 279.49 18 122.90 274.44 
7 127.99 255.75 19 117.15 291.81 
8 121.19 242.78 20 109.47 290.91 
9 118.00 255.34 21 114.34 264.95 

10 121.81 271.58 22 123.72 228.40 
11 126.54 268.27 23 130.33 209.33 

b) After eliminating the seasonal trend from the sales data in Table 1, is there a 
significant upward trend in the remaining averages? Your test statistic is what 
sum? 

c) The "X" of Table 1 is actually advertising expenditures. Can a knowledge of 
your advertising expenditures explain part of the trend in sales? What statistic 
would you use to determine if sales do depend on advertising X. 

d) Should you test this multivariate regression before eliminating the seasonal 
trend? Would the sales in month i depend on the advertising expenditures in 
month i? or the previous month i-I? Or on those in several previous months? 
What statistics would you use to resolve these issues? 



CHAPTER 8 

Clustering in Time and Space 

In this chapter, you learn how to detect clustering in time and space and to 
validate clustering models. We use the generalized quadratic form in its sev­
eral guises including Mantel's U and Mielke's mUlti-response permutation 
procedure to work through a series of applications in atmospheric science, 
epidemiology, ecology, and archeology. 

8.1. The Generalized Quadratic Form 

8.1.1. Mantel's U 

Mantel's U [Mantel, 1967] L L aijbij is perhaps the most widely used of all 
multivariate statistics. In Mantel's original formulation, aij is a measure of 
the temporal distance between items i and j, while bij is a measure of the 
spatial distance. As an example, suppose the pair (ti, 'i) represents the day ti 
on which the ith individual in a study came down with cholera and 'i = 
Oil' 'i2) denotes her position in space. For all i,j set aij = 1/(ti - tj) and 

bij = 1/JOil - Ijd2 + Oi2 - Ij2)2 

A large value for U would support the view that cholera spreads by conta­
gion from one household to the next. How large is large? As always, we 
compare the value of U for the original data with the values obtained when 
we fix the i's but permute the j's as in U' = L L aijbi7t(j). 

The generalized quadratic form has seen widespread application in anthro­
pology, archaeology [Klauber, 1971, 1975], ecology [Bryant, 1977; Doug­
las and Endler, 1982; Highton, 1977; Levin, 1977; Royaltey, Astrachen, 
and Sokal, 1975; Ryman et aI., 1980], education [Schultz and Hubert, 1976], 
epidemiology [Alderson and Nayak, 1971; Fraumeni and Li, 1969; Glass and 
Mantel, 1969; Klauber and Mustacchi 1970; Kryscio et aI., 1973; Mantel and 
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Bailar, 1970; Merrington and Spicer, 1969; Siemiatycki and McDonald, 1972; 
Smith and Pike, 1976; Till et aI., 1967], geography [Cliff and Ord, 1971, 1973, 
1981; Hubert, 1978b; Hubert, Golledge, and Costanzo, 1981; Hubert et aI., 
1984,1985], management science [Graves and Whinston, 1970], psychology 
[Hubert and Schultz 1976; Hubert, 1978a, 1979], sociology [Hubert and 
Baker, 1978], and systematics [Dietz, 1983; Gabriel and Sokal, 1969; Jones, 
Selander, and Schnell, 1980; Selander and Kaufman, 1975; Sokal, 1979]. 

8.1.2. An Example 

An ongoing fear among many parents is that something in their environment 
-asbestos or radon in the walls of their house, or toxic chemicals in their air 
and ground water, will affect their offspring. Table 8.1 is extracted from data 
collected by Siemiatycki and McDonald [1972] on congenital neural-tube 
defects. Eyeballing the gradient along the diagonal of this table one might infer 
that births of ancephalic infants occur in clusters. One could test this hypoth­
esis statistically using the methods of Chapter 6 for ordered ca~egories, but a 
better approach, since the exact time and location of each event is known, is 
to use Mantel's U. The question arises as to which measures of distance and 
time we should employ. Mantel [1967] reports striking differences between 
one analysis of epidemiologic data in which the coefficients are proportional 
to the differences in position and a second approach (which he recommends) 
to the same data in which the coefficients are proportional to the reciprocals 
of these differences.! Using Mantel's approach, a pair of infants born 5 kilo­
meters and 3 months apart contribute t *! = 1/15 to the correlation. Summing 
up the contributions from all pairs, then repeating the summing process for a 
series of random rearrangements, Siemiatycki and McDonald conclude that 
the clustering of ancephalic infants is not statistically significant. 

Table 8.1. Incidents of pairs of 
ancephalic infants by distance 
and time months apart 

km apart 

<1 
<5 
<25 

<1 

39 
53 

211 

<2 

101 
156 
652 

<4 

235 
364 

1516 

lOne further caveat: Mantel's U fails completely if the spatial distribution of the underlying 
population is also changing with time [Roberson and Fisher, 1986]. 
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8.2. Applications 

By appropriately restricting the values of aij and bij , the definition of Mantel's 
U can be seen to include several of the standard measures of correlation 
including those usually attributed to Pearson, Pitman, Kendall, and Spear­
man [Hubert, 1985]. Mantel's U has been rediscovered frequently, often 
without proper attribution; see Whaley [1983]. In this section we consider 
three diverse approaches to the problem of assessing the presence of clus­
tering in space and time. In each case, the permutation distribution of the 
quadratic form is used to provide a baseline against which the behavior 
of the observations may be assessed. 

8.2.1. The MRPP Statistic 

One such variant is the MRPP or multi-response permutation procedure 
[Mielke, 1979] which is' used in applications as diverse as the weather and the 
spatial distribution of archaeological artifacts. The MRPP uses the permuta­
tion-distribution of between-object distances to determine whether a classifi­
cation structure has a nonrandom distribution in space or time. With large 
samples, a Pearson type III curve based on the first three (or four) exact 
moments may be used in place of the permutation distribution [Mielke, 
Berry, and Brier, 1981]. 

An example of the application of the MRPP arises in the assignment of 
antiquities (artifacts) to specific classes based on their spatial locations in an 
archaeological dig. Presumably, the kitchen tools of primitive man-woks 
and Cuisinarts-should be found together, just as a future archaeologist can 
expect to find TV, VCR, and stereo side by side in a neolithic living room. 

Following Berry et al. [1980, 1983], let n = {Wl'" "WN} designate a col­
lection of N artifacts within a site; let Xli' ... , X ri denote the r coordinates for 
the site space for artifact Wi; let Sl' ... , Sg+l represent an exhaustive parti­
tioning of the N artifacts into g + 1 disjoint classes, (the g + 1st being re­
served for not-yet-classified items); and let nj be the number of artifacts in the 
jth class. 

Define the Euclidian distance between two artifacts, 

Define the average between-artifact distance for all artifacts within the ith 
class, 

where (Mw) is an indicator function that is 1 if WE Si and 0 otherwise. 
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The test statistic is the weighted within-class average of these distances, 

9 

where K = L ni 

9 

L\ = L niUK 
i=l 

The per~~~ation distribution associated with L\ is taken over all g+~! 
TI nil 
i=l 

allocations of the N artifacts to the g + 1 classes with the same numbers {nJ 
assigned to each class. 

Empirical power comparisons between MRPP rank tests and with other 
rank tests are made by Tracy and Tajuddin [1985] and Tracy and Khan 
[1990]. 

8.2.2. BW Statistic of Cliff and Ord, (1973) 

As a second application of generalized correlation, suppose we want to mea­
sure the degree to which the presence of some factor in an area (or time 
period) increases the chances that this factor will be found in a nearby area. 

The BW statistic of Cliff and Ord [1973] is defined as LLbij(x i - X j )2 

where 

= 1 if the ith area has the characteristic 
X· 

I = 0 otherwise 

= 1 if the ith and jth areas are adjacent 
b·· 

I} = 0 otherwise. 

8.2.3. Equivalances 

The generalized quadratic form has been rediscovered and redefined in many 
different guises. Whaley [1983] shows that Mantel's U and the BW statistic 
are equivalent to the MRPP for testing purposes. A third equivalent example 
is the k-dimensional runs test of Friedman and Rafsky [1979] studied in 
Section 5.3. 

8.3. Extensions 

Mantel's U is quite general in its application. The sets of coefficients {aij } and 
{bij} need not represent positions or changes in time and space. 

In a completely disparate application in sociology, Hubert and Schultz, 
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[1976], observers studied k distinct variables in each of a large number of 
subjects. Their object was to test a specific sociological model for the rela­
tionships among the variables. This time, the {aij} in Mantel's U are elements 
of the k x k sample correlation matrix while the {bd are elements of an 
idealized or theoretical correlation matrix derived from the model. A large 
value of U supports the model, a small value rules against it. 

8.3.1. Another Dimension 

Vecchia and Iyer [1989] generalized the MRPP for use in the comparison of 
several linear models. In the words of these authors, "Regarding algebraic 
quantities useful to detect concentrations of points within distinct groups, 
one might have asked: when are two points concurrent? The answer, that they 
coincide whenever the distance between them is zero motivates the definition 
of the MRPP statistic in terms of interpoint distance. 

"Extending this approach, for example, to the comparison of straight line 
relations, the analogous geometric argument is that three points are colinear 
only if their triangular area is zero." 

The statistic used in Vecchia and Iyer's new test is a symmetric volume: a 
real-valued function, symmetric in its n + 1 arguments, that is zero if and 
only if the Euclidean volume of the simplex formed by the arguments is zero. 
An immediate application for this statistic is assessing the consistency of 
multiclinic designs. Some of this statistic's asymptotic properties are consid­
ered in Vecchia and Iyer [1991]. 

8.4. Questions 

1. Show that Pitman's correlation is a special case of Mantel's U. 

2. List at least two applications for Vecchia and Iyer's test. 



CHAPTER 9 

Coping with Disaster 

In this chapter, you receive practical guidelines for coping with the many 
catastrophes that confront the applied statistician: 

* subjects who miss an appointment, 
* subjects who disappear completely and mysteriously in the middle of an 

experiment, 
* incomplete questionnaires, 
* covariates after the fact, 
* outlying observations whose extreme and questionable values suggest they 

may have been recorded incorrectly, 
* off-scale and other censored values that can not be determined with 

precision, 
* and even studies that must be brought to a rapid and untimely conclusion 

well in advance of the scheduled date. 

9.1. Missing Data 

The effects of missing data depend upon the nature of the study. In some 
instances, for example, in the one-factor, k-sample comparison, missing data 
has no effect upon the analysis other than to reduce the power of the test. 
In other, more complex designs, missing data may result in an unbalanced 
design in which several factors are confounded with one another. In most, 
though not all, of these latter cases, no special statistical procedures are 
required, providing we are careful in how we interpret the results. We must 
identify which effects are confounded with one another, a main effect with an 
interaction, say. In other studies (and one such example was examined in 
Section 4.4.2,) we may have to abandon permutation procedures altogether 
and consider using the bootstrap. 

The majority of experimental designs belong to the correctable category. 
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We proceed with the permutation analysis using a revised set of marginal 
constraints that reflect the actual rather than the hoped-for sample sizes. 
And in analyzing the results, we acknowledge that one or more higher-order 
interactions may have contaminated the observed effects. 

Consider an example we studied in Section 4.2, the effect of sunlight and 
fertilizer on crop yield. Suppose that one of the observations in the low­
sunlight, medium-fertilizer group, the 22 noted in parenthesis in the table 
below, is missing from the study. 

Effect of Sunlight and Fertilizer 
on Crop Yield 

Fertilizer 

LO MED HIGH 

LO 5 15 21 
10 (22) 29 
8 18 25 

HI 6 25 55 
9 32 60 

12 40 48 

The test statistic for the main effect of sunlight S = 23 + (15 + 8) + 75 = 
131 for these observations. Such an extremely low value is found in only a 
small handful of the rearrangements in which we swap observations at ran­
dom between the low and high groups. The number of rearrangements after 
correcting for the missing data item is es7 ). The reduction from the hoped for 
e9S) rearrangements reduced the power of the test. But the reduction is irrele­
vant in this instance as we are rejecting the hypothesis. Had we accepted the 
null hypothesis, we would have been forced to consider whether a larger 
sample size might have enabled us to detect an effect. 

A missing data item in only one of the groups means that the main effect 
of sunlight is partially confounded with the interaction between sunlight and 
fertilizer. But our common sense strengthened by a glance at the table tells us 
that the confounding also is irrelevant in this instance. 

The preceding discussion was based on the implicit assumption that drop­
outs occur at random. If the dropout rate is directly related to the treatment, 
we must either abandon the study or modify our scoring system explicitly to 
account for the dropout. See, for example, Entsuah [1990]. 

A further example of using the permutation distribution to cope with mis­
sing data is given in Section 10.2.6. 
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9.2. Covariates After the Fact 

After World War II, public policy makers in the United States did a slow 
about-face on the dangers of tobacco smoke. The changes in policy acceler­
ated during the 1970's. One moment it seemed the cigarette was the ultimate 
symbol of masculinity and the next it was the primary cause of emphysema, 
hypertension, lung cancer, and fetal defects. One month you could design 
a 400-patient, six-week, 50-variable clinical study with the full support of a 
Food and Drug Administration panel, and the next the panel would be asking 
if you'd corrected for the smokers in the control group. Of course you hadn't, 
not then, not in those days. 

Today, we know that smoking is harmful, but "cigarettes smoked per 
week" is only one of hundreds of possible covariates. Regardless of how 
many covariates you have controlled or matched in putting together a clini­
cal study, there are sure to be one or two more co variates that you didn't 
think of, that no one thought of, that no one could have envisioned-that is, 
until the day after your 300-page report on the study was sent to the printers. 

All is not lost, it is still possible to make a comparison among treatment 
groups using the method of permutations by restricting the rerandomizations 
to those with specific after-the-fact design matrices. 

Using the method due to Rosenbaum [1984], described at length in Sec­
tion 4.3, we block the data into smokers and nonsmokers (or lemon eaters 
and non-lemon-eaters), and then randomize separately within each block. 

Restricting the number of randomizations may reduce the power of the 
test. (It may also increase it by eliminating a source of variability; see Section 
3.6.) As a result, we may need to add more subjects and an additional clinical 
center to the study to justify and confirm any negative results. 

9.2.1. Observational Studies 

An extreme example of the use of an after-the-fact covariate comes when we 
attempt to create matched pairs from two groups that were part of an obser­
vational study. In an observational study, the groupings themselves are after 
the fact. The subjects are not randomly assigned to treatment or control but 
are merely "observed" to belong to one group or the other. Through the 
use of after-the-fact covariates, we hope to reduce or eliminate any built-in 
biases. 

An example provided by Rosenbaum [1988] is that of a study in humans 
of the effect of vasectomy on the risk of myocardial infarction. Obviously, we 
do not have the luxury (nor the authority, thankfully) to select a random 
sample of patients for a mandatory vasectomy, but must analyze the data as 
it lies. We can take advantage of concurrent data on obesity and smoking 
history (both of which are known to affect the risk of myocardial infarac­
tion) to help us block the two samples so as to reduce the between-sample 
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variance. See Rosenbaum [1988] for methods for dealing with imperfect 
matching. 

While no justification for the use of restricted randomization is required 
when the covariates are built in to the experimental design, formal justifica­
tion for the use of Rosenbaum's method after the fact requires us to make 
three assumptions: 

First, for all observations, the observed treatment assignment z (z = j if 
the unit is assigned to treatment j) and the vector r = (r l' ... , r J) of potential 
responses to treatment of that unit are conditionally independent given the 
vector of observed covariates. Second, regardless of the values taken by the 
covariates, all treatment assignments are possible. And third, the conditional 
probability e[X] of receiving a particular treatment given a vector of ob­
served co variates X, follows a logistic model [Cox and Shell, 1989], that is 

{ e[X]} T 
log (1 _ e[X]) = P f(X), 

where f(X) is a known but arbitrary vector-valued function of X. Since f(X) 
is arbitrary, this latter condition is not particularly restrictive. 

All three of these assumptions are satisfied if the covariates did not affect the 
treatment assignment. For example, obesity and smoking history would sat­
isfy these conditions if they were not factors in the patient/physician decision 
to have or perform a specific treatment. 

9.3. Outliers 

Consider the set of observations 0,1,2,3,19. Does the 19 represent a genuine 
response to treatment, the response we have been looking for, or is it an 
outlier-a typographical error or a bad reading that will only lead us astray? 
In the first case, we will want to utilize the data just as it is; in the second, we 
will want to modify or perhaps even to discard the questionable reading. 

Shall we deal with such outliers on a one-by-one basis? Or should we 
establish a policy that will automatically adjust for and diminish the effect of 
outliers? Ad hoc rejection of suspect data could lead to charges of bias. 
A systematic policy can be adjusted for sample size and power determina­
tions. 

We consider six policies here: 

1) preserving the original data 
2) Using ranks in place of the original observations, thus diminishing the 

effects of outliers 
3) Replacing the observations/ranks by scores derived from some standard 

distribution, e.g., the order statistics of a standardized normal distribution 
4) applying a robust tail-compression transformation to all the data 
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5) censoring extreme observations 
6) deleting extreme observations. 

Whichever policy we elect, the permutation method will be more robust to 
outliers than a test based on a parametric distribution. The influence func­
tions of a two-sample permutation test are always bounded above, even if the 
influence functions of the corresponding parametric test are unbounded from 
above and below [Lambert, 1981]. Our only concern need be the selection of 
a test statistic that is both practical and optimal. 

9.3.1. Original Data 

"The Method of Randomization applied to the original observations produced 
stunningly efficient tests which were dismally impractical." [Bradley, 1968] 

Despite these discouraging words from James V. Bradley, I almost always 
make use of the original observations rather than their transform. 

The exception that proves the rule is in my analysis of the Renis data 
considered in problem 2 of Chapter 3 and in Good [1979]. In that study, I 
used a preliminary logarithmic transformation, but it was to equalize the 
variances in the two samples, not to eliminate large values. 

The computational difficulties to which Bradley alluded have largely been 
resolved through advances in computer technology between 1968 and today; 
the efficiency of the permutation test remains. The power and high relative 
efficiency of the permutation test comes from its use of exact values. Throw 
away one of the observations or replace it with its rank or a trimmed value 
and you reduce the power of the corresponding test. The gain in power 
is particularly evident when there is a mixture of responders and nonre­
sponders [Good, 1979]; but see Boos and Browne [1986]. 

On the other hand, a single extreme observation often can have a dispro­
portionate effect. Given the observations 0, 1, 2, 3, 19, would you rather 
guesstimate the population mean as 2 or 2.5 than estimate it using the sample 
mean of 5? By taking ranks or applying some other tail-compressing trans­
formation to all the observations, we can "democratize" the data so that each 
data item has a relatively equal influence upon the final calculation. (See also 
Hampel et al. [X: 1986]). 

9.3.2. Ranks 

Suppose we have two samples: the first control sample takes values 0, 1, 2, 3, 
15. The second treatment sample takes values 3.1, 3.5.,4., 5, and 6. Does the 
second sample include larger values than the first? 

When we rank the data giving the smallest observation a rank of 1, the 
next smallest the rank of 2, and so forth, the first sample includes the ranks 1, 



9.3. Outliers 115 

2, 3, 4, 10 and the second sample includes the ranks 5, 6, 7, 8, 9. Does the 
second sample include larger values than the first? 

Applying the two-sample comparison described in Chapter 3.2 to the 
ranked data, we conclude at the 10% level that the second sample is signifi­
cantly larger. The sums of the ranks in the original first sample, 20, is as large 
or larger in just 24 of the (15°) = 252 rearrangements. 

Obviously, taking ranks diminishes the effects of outliers. Taking ranks has 
a second advantage from the computational point of view: When we take 
ranks, the results are unconditionally distribution free. As we are working 
with the same values-the ranks, over and over regardless of the actual 
values of the observations, we can tabulate the significance levels of our test 
statistics (at least for small samples) and avoid lengthy computations. And we 
may determine analytically when a sample of ranks is large enough that its 
permutation distribution may be replaced by an asymptotic approximation. 
It's not surprising that much of the literature on distribution-free tests is 
devoted to an analysis of the permutation distributions of ranked data. 

The cost of using ranks is a loss of power, that is, a diminished probability 
of detecting a real difference between the distributions under test. But it is not 
a great loss. To achieve the same power as the permutation or parametric (­
test with very large samples, the Mann-Whitney test-a two-sample com­
parison that uses ranks in place of the original observations, requires only 3% 
or 4% more observations. Cheap, if the units are widgets; expensive, if the 
units are patients or rare Rhesus monkeys. 

9.3.3. Scores 

If we are testing against normal alternatives, we can improve on the power of 
the Mann-Whitney test by using normal scores in place of ranks. 

In the general case, we replace the rank of the ith observation, ri, say, by 
the expected value of the rith largest value in a sample ofn values drawn from 
the distribution F, F- 1 [r;/(n + 1)], where F is our best guess of how the 
observations are really distributed; (see also David [X: 1970], p. 65). 

A good guess will produce an optimal test, and, sometimes, even a "bad" 
guess can be close to optimum. For example, Chernoff and Savage [X: 1958] 
show that the normal-scores test, in which rP is the Gaussian distribution, has 
a minimum asymptotic efficiency of 1 relative to the usual (-test regardlesss 
of the true underlying distribution. 

Bell and Doksum [1965] provide detailed comparisons of the rank and 
normal scores tests in a variety of settings. In Bell and Doksum [1967] they 
provide conditions under which the normal-scores test is minimax. 

Hajek and Sidak [1967] show that, in general, optimal scores for tests of 
location are based on the scores 

. f'(F-1 [u]) 
a(;)= - f(F l[U]) , 
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where u = j(N + 1), and f and F are the density and cumulative distribution 
functions, respectively, of the underlying distribution. For optimal rank tests 
of scale, the scores are 

9.3.4. Robust Transformations 

A robust transformation preserves sample values at the center of a distri­
bution while shrinking those in the tails. As one example [Maritz, 1981], 
consider 

tP(u) = u/(l + u2 ). 

For u small, tP(u) is approximately u. For u < 1, tP(u) is a slowly increasing 
function of u. If we replace Xi by tP(x;) in computing the mean, then large 
values will make virtually no contribution to the total. 

As a second example [Huber, X: 1972], take 

tP(u) = (1 - exp[ -u])/(l + exp[ -u]). 

Again tP(u) is approximately u for u small, and is bounded between 0 and 1. 
In a complex experimental design, the transformation may be applied 

to the residual rather than the original observation. For example, to test 
whether Y = bX, one would apply tP to y' = y - bx, rather than to y. 

If you are uncertain which transformation to use, you can reduce the effect 
of extreme values in some cases simply by switching to a statistic based on 
the absolute differences IXi - y;l in place of the squared differences (Xi - Yi)2. 
The final choice should be dictated by your loss function (see Section 10.4). 

If extreme values are unlikely, as is the case with normal alternatives, then 
a robust transformation will have little or no effect on the power of a test. See 
Maritz [1981] and Lambert [1985] for further discussion. 

9.3.5. Censoring 

Lambert [1985] offers a two-sample test that is both robust and powerful. 
First, we order the data, so that 

X(1) < ... < X(n) and 1(1) < ... < 1(m) 

To test against the alternative that the Y's are larger on the average than the 
X's, we replace each Xi and 1] that is less than k1 = X(nfJl) by k1 and each Xi 

and 1] that is greater than k2 = 1(nfJ2) by k2' and then carry out the usual 
permutation test based on the sum of the observations in the first sample. 
Note that the censoring values are determined by the data itself. Unfortu-
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nately, there can be more than one "right" choice for Pl and P2' and the 
computations are far from straightforward. One possible compromise is to 
let kl = X(2) and k2 = Y(m-l) for samples of fifteen or less. 

9.3.6. Discarding 

The most extreme method of dealing with outliers is to discard them. Al­
though Welch and Guiterrez [1988] obtain narrower confidence intervals in 
matched-pairs designs through the use of permutation applied to trimmed 
means, there are two objections to this method. First, the resultant test is 
unlikely to be exact (Theorem 3.3, [Romano, 1990]). Second, discarding data 
reduces the power of the test. In Good [1991], I improve on the power of the 
Welch-Guiterrez test by treating the outliers as if they were censored. My 
approach is described in more detail in the next section. 

9.4. Censored Data 

We may not be able to make all our measurements with the same precision. 
In a radioimmune assay, for example, the typical concentration curve has 

a sigmoidal shape with flat regions at the two extremes. In the lower, flat 
region of the curve, estimation is difficult, if not impossible. While binding 
values elsewhere may be determined to one part in a billion, in this region 
they merely are recorded as "below minimum." 

Here is a second example: In many clinical studies, it is neither possible nor 
desirable to follow all patients to the end of their lifespans. Limiting the 
duration of the study cuts the costs of observation and puts promising new 
materials and processes into immediate service. But while some lifespans will 
be known with precision, others can be noted only as "exceeded treatment 
period." 

In each of these examples some of the data has been censored. 

9.4.1. GAMP Tests 

When observations are censored, the most powerful test typically depends on 
the alternative, so that it is not possibie to obtain a uniformly most powerful 
test. 

Recently [Good, 1989, 1991, 1992], I found that by establishing a region 
of indifference, it may be possible to obtain a permutation test that is close to 
the most powerful test, "almost most powerful," regardless of the underlying 
parameter values. 

Suppose we wish to perform a test of a hypothesis F against a series of 
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alternatives F l , F2 , ••• • To obtain a test that is globally almost most powerful 
(GAMP), we proceed in three stages: 

First, we use the likelihood ratio to obtain a locally most powerful unbi­
ased IX-level test of the hypothesis F against the alternative Fl. We repeat this 
procedure for each alternative F; to obtain a family of rejection regions {RJ 

Next, we form two regions: (i) A rejection region R £: n R; that contains 
; 

only events common to all the rejection regions of the preceding family; and 
(ii) an acceptance region A that contains only events common to all the 
acceptance regions. 

Last, we construct a permutation test whose p-value is determined by 
assigning each rearrangement of the data to one of three regions: rejection 
(R), acceptance (A), or indifference (I). While we cannot determine the p-value 
of their new test exactly, we can bound it: 

Pr{RIX} ::;; p::;; 1 - Pr{AIX}. 

In Good [1992J, I showed that GAMP's exist when the joint loglikelihood 
of the observations takes the particularly simple form Su * f«(}) + Nc * g«(}) 
where Su and Nc are the sum of the uncensored observations and the number 
of censored observations in the treatment sample, respectively, and f and 
9 are monotone functions of (). Examples include normally distributed, expo­
nentially distributed, and gamma distributed random variables subject to 
type I censoring. 

A permutation (or rerandomization) approach is utilized. 
There are two distinct cases, which I term left- and right-censoring respec­

tively, though the actual directions-left or right-will depend upon the 
alternative. To fix ideas. suppose we have samples from two populations and 
are testing a null hypothesis H: F2 = Fl , against stochastically larger alterna­
tives, K: F2 (x) = FI (x - 15). With left-censoring, we can assign x a precise 
value only if x ~ c; for example, radioimmune assay involves left-censoring. 
With right-censoring, we can assign x a precise value only if x ::;; c; for exam­
ple, reliability studies usually involve right-censoring. 

To eliminate any dependence on the zero point of the underlying scale, we 
transform the data before we derive the permutation distribution; from each 
of the orginal observations we subtract Xu the mean of the uncensored obser­
vations in the sample taken from G; X;j = Xij - Xu, for i = 1, 2,j = 1, ... , n;; 
and S~o = 0 and the transformed observations are censored at c' = c - Xu. 
Next, we compute Suo and Nco for the original treatment sample; and per­
mute repeatedly, computing Su and Nc for each permuted sample. 

With left-censoring, we assign a permutation to the rejection region R if 
Su ~ Suo and Nc ~ Nco. We assign it to the acceptance region A if Su < Suo 
and Nc ::;; Nco. We assign it to the indifference region otherwise. 

With right-censoring, we impute the value c to the censored observations. 
Let k = Nc - Nco. We assign a permutation to the rejection region R if Su + 
kc ~ Suo. We assign it to the acceptance region A if Su + kc < Suo. We assign 
it to the indifference region otherwise. 
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The indifference region is small enough in most instances to permit effec­
tive decision making [Good, 1989]. As the sample size increases, the GAMP 
test converges in probability to a UMP unbiased test [Good, 1992]. In the 
rare case where the result does lie in the indifference region, I recommend 
taking additional observations. 

The application of permutation methods to censored data was first sug­
gested by Kalbfleisch and Prentice [1980], who sampled from the permuta­
tion distribution of censored data to obtain estimates in a process akin to 
bootstrapping. 

For a survey of other permutation tests that have been applied to sensored 
data, see Schemper [1984]. Conditional rank tests for randomly censored 
survival data are described by Andersen et al. [1982] and Janssen [1991]. 

9.5. Censored Matched Pairs 

As we showed in Chapter 3.6, the sensitivity of an experiment can be in­
creased through the use of matched pairs. But it may happen that an exact 
observation can not be made for one or more subjects, the only available 
information being that the required measurement is greater or less than some 
known value. Often this censoring process is accidental, but in many toxicol­
ogy studies and reliability trials, it is a matter of deliberate design: the experi­
menter trades the cost of enrolling a larger number of subjects at the onset of 
the experiment for a shortened study period. 

Suppose z = y - x is the difference between the (transformed) observa­
tions on the two members of a pair, and that observations are not recorded 
if they exceed C on the (transformed) scale. As noted by Sampford and 
Taylor [X: 1959], any pair provides information on the distribution of z in 
one of the following four forms: 

(i) both y and x are observed, so that z is determined exactly; 
(ii) x is observed, but we only know that y exceeds C; that is z > C - x, so 

we say z is upper censored; 
(iii) y is observed, but we only know that x exceeds C; that is z < y - C, so 

we say z is lower censored; 
(v) both x and y exceed C, so that no information is available on z for this 

pair; the sample size is effectively reduced. 

While cases (ii) and (iii) provide less information than case (i), they are 
not uninformativ~, and a variety of hypothesis testing methods have been 
proposed for capitalizing on the information they provide. Recently [Good, 
1991], I developed an "almost" most powerful distribution-free method 
based strictly on the data at hand. To see how this method is applied, assume 
that the first observation in each pair has the distribution F and the second 
has the distribution G. The hypothesis, unless stated to the contrary, is that 
F ~ G. The alternative is that F < G. 
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9.5.1. GAMP Test 

The GAMP test for matched pairs represents a simple extension of the 
GAMP test for two independent samples derived in Good [1989, 1992]. 
Record U, the number of upper censored pairs in the original sample, and Z, 
the sum of the uncensored z's in the original sample. Randomize the observa­
tions, permuting the treatment labels within each pair, and let U' and Z' be 
the corresponding statistics for the permuted sample. 

If U' ~ U and Z' ~ Z, then assign the permuted sample to the rejection 
region R. 

If U' ~ U and Z' < Z, then assign the permuted sample to the acceptance 
region A. 

Otherwise, assign the permuted sample to a region of indifference. 
Repeat the randomization process for all possible permutations (or for a 

suitably large number N of randomly selected permutations) and let fR' fA, 
and II be the frequency with which permutations are assigned to the rejec­
tion, acceptance, and indifference regions, respectively. 

This method of construction ensures that the acceptance region A of the 
GAMP test is contained in the acceptance regions of each of the most power­
ful a-level permutation tests of a simple hypothesis G = F = F* against the 
simple alternative G* = G > F = F*. Similarly, the rejection region R of the 
GAMP test is contained in the rejection regions of each of the most powerful 
a-level permutation tests. 

fR ~ P ~ N - fA' where p is the significance level of any member of the 
family of most powerful permutation tests of a simple hypothesis against a 
simple alternative. Thus, a test of the composite hypothesis F ~ G against the 
composite alternative F> G based on the bounds defined by A and R is 
globally almost most powerful, or GAMP. 

In practice, an investigator using a GAMP will elect one of three courses 
of action: 1) accept the null hypothesis, noting the bounds on the p level; 2) 
reject the hypothesis in favor of a stochastically larger alternative: or, 3) in 
order that p might be known with greater certainty, elect to take additional 
observations. If you require exact significance levels to make power com­
parisons with other tests, you must randomize on the indifference region as 
follows: 

If fR is greater than the desired a-level, accept the null hypothesis. If N - fA 
is less, reject. If neither condition holds, choose a random number Z = 
U(O, 1) and reject the hypothesis if Z ~ (Na - fR)/(N - fR - fA)' accepting it 
otherwise. 

9.5.2. Ranks 

When data is heavily censored, you can improve on this method by replacing 
the original observations with ranks. Two approaches suggest themselves: In 
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the first, which I term "post-ranking," compute the differences, Z, for each 
pair, then rank these differences in absolute value, dividing the highest ranks 
among the censored observations. Denote by Z the sum of the ranks which 
correspond to those pairs in which y is known to be larger than x. As in the 
GAMP test, now randomize the observations, permuting the treatment la­
bels within each pair, and denote by Z' the new rank sum. Assign this ran­
domization to R, 1, or A according to whether Z' >, =, or < than Z. As with 
the GAMP test, reject H in favor of K if only a small proportion of re­
randomizations are assigned to R; randomize on the indifference region I to 
obtain a test at a specific significance level p. 

Post-ranking has the drawback that if, say, 2 is the censoring point, the 
difference "censored - 1.99" is automatically assigned a higher rank than the 
difference "1.99 - 0." To avoid this difficulty, in a second approach, which I 
term preranking, first rank the individual observations, again dividing the 
highest ranks among the censored observations. Next, compute the differ­
ences of the ranks within each pair, and, as a third and final step, rank 
the absolute values of the differences. The drawbacks of this second, pre­
ranked approach are computational: you must rank the data twice and you 
must correct for ties during the second ranking. 

When the underlying distribution is normal and censoring is heavy, the 
pre ranked permutation test provides the greatest sensitivity [Good, 1991]. 

When the underlying distribution is normal and censoring is light, or when 
the underlying distribution is exponential, the GAMP test is preferable. 

The strength of the GAMP lies in its use of exact values rather than ranks 
-thus its effectiveness with heavy-tailed distributions, like the exponential, 
which have many extreme values. The GAMP is also the most readily com­
puted. Its weakness lies in its dependence on a region of indifference whose 
size varies from sample to sample. 

How long does it take to perform a randomization test? Using the 
computational shortcuts described in Section 11.3, a comparison of 15 
matched pairs with complete enumeration of all rerandomizations takes 
twelve seconds on an 80386-based microcomputer without a floating-point 
coprocessor. 

9.5.3. One-Sample: Bootstrap Estimates 

If you are willing to assume the underlying distribution(s) are symmetric, 
then these methods for paired comparisons may also be applied to hypo­
theses based on a single sample. If censoring is one-sided, we are forced to 
censor on the opposite side in order to obtain an exact test. If you are unwill­
ing to assume symmetry, and/or to throwaway data through censoring, have 
15 or more observations (30 would be better) and are willing to assume that 
all observations are drawn from the same distribution, then you may apply 
Efron's [X: 1981] bootstrap method of extending the Kaplan-Meir estimates. 
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9.6. Adaptive Tests 

In an adaptive test [Hogg and Lenth, X: 1984], we compute several different 
test statistics, but make use only of the one we estimate to be the most 
powerful. For example, we could compute both a t-test and a robust test 
based on an M-estimate and, after the fact, use the one which seems best 
suited to the data. With some adaptive methods, the frequency of Type I 
error may increase as a result of this selection procedure. But with Done­
gani's method [1991] applied to two permutation tests, we can obtain a 
single test that is both exact and equal in power asymptotically to the most 
powerful of the two tests. 

Let T1 , and T2 be the two tests and let c1 , and C2' the "criteria", be two 
positive real functions defined on the vector of observations X such that if 
C1 (X) < c2 (X), then T1 is preferable to T2 • Suppose that large values of either 
test statistic indicate a departure from the null hypothesis. Proceed in four 
steps as follows: 

1. Evaluate C1 (X), c2 (X) and let 'opt' refer to the index of the criterion having 
the smaller value. 

2. Partition the set, P, of all possible rearrangements of the data into two sets 

P1 = {n:: c 1 (n:X) < c2(n:X)} 

P2 = {n:: c1 (n:X) > C2(n:X)} 

3. Let HOPI be the randomization distribution obtained by evaluating the 
optimal test statistic T"pl on each element of the set that contains the 
original rearrangement. 

4. Reject the null hypothesis at the level (1. if T"PI exceeds the lOO-(1.th percen­
tile of HOPI' In other words, if c1(x) < c2 (X) restrict attention to those 
rearrangements that are in Pl' 

Let Ni denote the number of rearrangements in Pi' Let Ci denote the choice 
of the statistic 7;. Then 

P{RIH} = P{RIH,CdP{C1IH} + P{RIH,C2 }P{C2 IH} 

= (1.(Nd(N1 + N2 )) + (1.(N2 /(N1 + N2 )) 

=(1.. 

Donegani [1991] shows that this adaptive procedure is asymptotically 
optimal and, in the case of matched pairs, that it is optimal with as few as 
nine pairs of observations. 

9.7. Questions 

1. Prove that ranking the data will eliminate any distortions brought about by a 
nonlinear measuring device. That is, prove that the ranks of the observations are 
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invariant under any continuous, strictly increasing transformation. (We take ad­
vantage of this result in a multivariate analysis in which we use ranks to bring 
several disparate variables together on a single common scale; see Section 5.2.) 

2. Show that an exact one-sample permutation test for singly-censored data can exist 
only if you deliberately censor the data from the other side. 

3. Let XI, ... , x. be a sample from the exponential distribution with density ~e-X/b, 
b > O. If you have a scintillation counter at hand, you can generate just such a 
sample by recording the time elapsed between counts. Alternately, you may stand 
on a street corner or at night club entrance and record the number of seconds 
before the next redhead or the next BMW goes by. If you have access to a com­
puter, use its random number generator and take the logarithms of the random 
numbers you generate. Guesstimate the mean waiting time, b, before you start. 
Test your guesstimate (see Section 3.1) using a) the original observations, b) ranks, 
c) normal scores, and d) the data remaining after you've thrown out all observa­
tions that are three times the guesstimated value. Compare your results with the 
different statistical procedures for samples of size 5, 6, and 7. 



CHAPTER 10 

Which Statistic? Solving the Insolvable 

10.1. The Permutation Distribution 

Many common statistical problems defy conventional parametric analysis 
simply because of the distributions of the resultant test statistics are not well­
tabulated. Or, worse, we settle for a less-than-optimal statistic simply because 
a table for the less-than-optimal statistic is readily available-the chi-square 
statistic (Section 6.3.1) and its misapplication to sparse contingency tables is 
one obvious example. 

We need not settle for less than the best. Given a sufficiently powerful 
computer and the time needed to perform the necessary calculations, we can 
always obtain the permutation distribution of the statistic that best separates 
the hypothesis from the alternative. 

The freedom of choice provided by permutation methods creates its own 
new set of problems. Given complete freedom in the selection of a test statis­
tic, which statistic are we to choose? 

The purpose of this chapter is two-fold: 1) to describe a number of practical 
applications in animal behavior, atmospheric science, education, epidemiol­
ogy, molecular genetics and sociology where permutation distributions have 
provided new and more powerful solutions; and 2) to provide some gen­
eral rules to use in the derivation of test statistics for your own demanding 
applications. 

10.2. New Statistics 

10.2.1. N onresponders 

In this section, we consider several new statistics designed specifically for use 
in a permutation test. An elementary example is a statistic I proposed for use 
when there is a response threshold, a common occurrence in pharmacologi­
cal studies [Good, 1979]. 

124 
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We assume that Xl' ... , X n , the controls, are independent and identically 
distributed with distribution F, while responders in the treatment group are 
independent and identically distributed as G(x) = F(x - J). Unfortunately, 
not every member of the treatment group is capable of responding to the 
treatment; with the result that we are forced to test the hypothesis G = F 
against contaminated alternatives of the form 

G = pF(x - J) + (1 - p)F(x), with 0 < p ::;; 1 (10.1) 

The conventional statistics for the two-sample comparison-Student's t and 
the Wilcoxon test-are subject to a loss of power in the presence of non­
responders. This reduction in power is due to two factors: 1) a decrease in the 
absolute difference between the means of the two testing groups and 2) an 
increase in the variance of the treatment sample. This last change is the key 
to the selection of a new test statistic: 

v(p) = p' ( nm ) (X. - Y.)2 + (1 - p')S; 
n+m 

(10.2) 

This new statistic has two components: the first is proportional to the differ­
ence (X. - Y.) in the means of the two samples, the second to S;, the variance 
of the treatment sample. 

Barring the availability of an independent test for response, the p' used 
in equation (10.2) is at best only a guess as of the true p of equation 
(10.1). In Good [1979], we find that using a value of p' = 0.67 appears 
to offer relatively good protection against a broad range of values of n. 
Boos and Browne [1986] question whether the gain in power is really 
worth all the extra computation. An increase in power can mean a de­
crease in sample size with fewer experimental subjects placed at risk and a 
shortened study time with more rapid dissemination of important results. 
An increase in computation time puts the strain where it belongs-on the 
computer. 

10.2.2. Animal Movement 

Let {(Wi' x;), i = 1, ... , n} denote a series of paired observations on the succes­
sive positions of two organisms in space. We would like to know if the 
movements of the two organisms are independent or coordinated. The eco­
logical literature favors a test of independence based on the ratio of the actual 
distance travelled to the distance from the starting point: 

R _ L {(Wi+! - WY + (Xi+l - X;)2} 
1 - L {wr + xl} (10.3) 
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Our own intuition suggests a more powerful test of the hypothesis of inde­
pendence would result from using either 

R _ I (Wi - xy 
2 - I {wr + xf} (10.4) 

the ratio of the successive distances of the two organisms from each other and 
from the starting point, or 

R _ I (Wi+! - W i )(Xi+l - x;) 
3 - I {wr + xr} 

the traditional measure of correlation. 

(10.5) 

We also favor R2 and R3 on the grounds of simplicity. To compute the 
permutation distribution of R l' we need to rearrange both sets of movements 
{Wi} and {xJ To compute the permutation distribution of R2 or R3, we only 
need to rearrange one set of movements. Whatever statistic we chose, we may 
use its permutation distribution to obtain a test of statistical significance. 

10.2.3. The Building Blocks of Life 

In a fascinating state-of-the-art biological application, DNA sequencing, 
Karlin et al. [1983] use permutation methods to assess the significance of 
certain repeated patterns of nucleic acids in several viruses. 

DNA, the self-replicating molecule that is the basis of life on Earth, is 
assembled from four specific nitrogenous bases-adenine, guanine, thymine, 
and cytosine. The sequence in which these bases occur in the DNA molecule 
determines the structure of the organism. The triplet of deoxyribonucelotides 
guanine-adenine-cytosine leads to the production of the amino acid aspar­
gine, for example. At issue is whether certain repeated patterns involving 
multiple copies of lengthy nucleotide sequences is also significant or merely 
the result of chance. Studying the distribution of repeated patterns that result 
when one randomly reassigns the labels on the nucleotides while preserving 
the total numbers of each label, Karlin et al. conclude that the observed pat­
terns are statistically significant. Hasegawa, Krishino, and Yano [X: 1988] 
approach an analogous problem in DNA sequencing using bootstrap meth­
ods. The unraveling of the biological significance of the patterns continues to 
be an important research problem. 

10.2.4. Model Validation 

The general circulation models of the Earth's atmosphere and oceans used in 
weather- and current-prediction are of mind-boggling complexity, while the 
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Figure 10.1. The geometric meaning of the trinity statistics SITES, SPRED and 
SHAPE. The statistic SITES is essentially a dimensionless measure of the separation 
of data swarm centroids, while SPRED is a dimensionless measure of the differences 
in the root-mean-square radii of the swarms. The statistic SHAPE is a combined 
measure of the time evolution of the data swarms (and their associated maps). Note: 
From "The numerical model/reality intercom position tests using small-sample statis­
tics," by R.W. Priesendorfer and T.P. Barnett, which appeared in Journal of the 
Atmospheric Sciences; 1983; 40: 1884-96. Reprinted with permission from the Ameri­
can Meteorological Society. 

available data is all too finite. Priesendorfer and Barnett [1983] confront the 
problem of model-reality comparison studies for general circulation models 
head on by developing their own triple of metrics. In Figure lO.la, and b 
which illustrates some of their concepts, the set D represents actual on-site 
data while M corresponds to a computer-generated model. 

Rerandomization is accomplished in two steps. First, the data from D and 
M is combined into a single data set. Then, this combined set is repeatedly 
subdivided at random into sets of the same size as the original D and M. The 
resultant reference distributions for each of the three metrics are used to 
assess the agreement of the model with reality. 



128 10. Which Statistic? Solving the Insolvable 

How good is the Priesendorfer-Barnett test? The answer to this question 
illustrates the value ofthe permutation approach to the scientist and engineer 
whose primary training is not in statistics. For the answer does not depend 
on the abilities of Priesendorfer and Barnett as statisticians-the calculations 
in their test are straightforward-but on their abilities as meteorologists and 
oceanographers. Their test of statistical significance will be a good one, if 
they have selected the appropriate metric and the appropriate variables. 

10.2.5. Structured Exploratory Data Analysis 

A further illustration of this principle is given by Karlin and Williams [1984] 
in their use of permutation methods in a structured exploratory data analysis 
(SEDA) of familial traits. A SEDA has four principal steps: 

1) The data are examined for heterogeneity, discreteness, outliers, and so 
forth, after which they may be adjusted for co variates (as in Section 4.3) 
and the appropriate transform applied (as in Section 9.3). 

2. A collection of summary SEDA statistics are formed from ratios of func­
tionals. 

3) The SEDA statistics are computed for the original family trait values and 
for reconstructed family sets formed by permuting the trait values within 
or across families. 

4) The values of the SEDA statistics for the original data are compared with 
the resulting permutation distributions. 

As one example of a SEDA statistic, consider the OBP, the Offspring­
Between-Parent SEDA statistic: 

N Ki 

L I IOii - (Mi + FJ/21 
i i 

N (10.6) 

IIFi-Md 
i 

In family i = 1, ... , I, Fi and Mi are the trait values of the father and mother 
(the cholesterol levels in the blood of the father and mother, for example), 
while Oij is the trait value of the jth child, j = 1, ... , Ki • 

To evaluate the permutation distribution of the OBP, we consider all per­
mutations in which the children are kept together in their respective family 
units, while we either: 

a) randomly assign to them a father and (separately) a mother; or 
b) randomly assign to them an existing pair of spouses. The second of these 

methods preserves the spousal interaction. Which method we choose will 
depend upon the alternative(s) of interest. 
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It would be difficult to establish the distribution of these measures or any 
other SEDA statistics analytically. To obtain the permutation distribution 
for the OBP statistic, we merely substitute its formula (10.6) in place of the 
compute subroutine in our sample program (Section 4.2). 

10.2.6. Comparing Multiple Methods of Assessment 

We are often forced to combine several methods of assessment; one obvious 
example is in quality control; another is in grading students: is an "A" in 
statistics equivalent to an "A" in Spanish? Direct comparisons are difficult, if 
not impossible, when students are free to choose their own courses. Table 
10.1, reproduced with permission from Manly [1988] illustrates some of the 
problems associated with free choice: Missing data is one obvious problem. 
A second, hidden problem is that there is no guarantee that a student who is 
good in statistics will do equally well in Spanish. 

The solution to both problems is to develop some kind of aggregate mea­
sure, compute this measure separately for each course, and then check to see 
how the distribution of this measure is affected by random relabellings of the 
students. 

Table 10.2, also taken from Manly, illustrates the computation of just such 
a measure for the course in F. (The names of the actual courses have been 
changed to letters to protect the identities of overly-generous and overly­
stingy graders.) The students are arranged in Table 10.2 in order of increasing 
mean grade. Each student's mark in course F is subtracted from that stu­
dent's mean grade and the differences are cumulated. 

If the marks in the various subjects are comparable, then each random 
rearrangement of an individual student's marks is equally likely. For exam­
ple, under the null hypothesis, student 6, who we see from Table 10.1 received 
marks of 75,46,45, and 64 in subjects A, C, E, and F might just as easily have 
received marks of 64,45, 75, and 46 in those same subjects. Had this been the 
case, the CUMSUM score for subject F would have been 67.2 rather than 
85.2. By looking at all possible arrangements of each student's marks, we 
obtain a permutation distribution against which the CUMSUM score for the 
original arrangement can be assessed. 

If the original score does not represent an extreme value, we conclude that 
the marking for subject F is consistent with the marking for the other sub­
jects. 

If, on the other hand the original CUM SUM score does represent an 
extreme value, our next step is to rescale the marks for subject F, subtracting 
and/or dividing by a constant. We repeat the test procedure using the re­
scaled values. And, in a manner akin to the way in which we derive a confi­
dence interval (see Section 3.2), we continue testing and rescaling until all the 
marks in all the courses have been brought into alignment. Then, we may 
safely combine the assessments. 
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Table 10.2. CUSUM calculations for the subject F 
marks of Table 1 * 
Student Fmark Mean Difference CUSUM 

38 42 32.5 9.5 9.5 
28 67 51.0 16.0 25.5 
21 80 56.0 24.0 49.5 

6 64 57.5 6.5 56.0 
33 51 58.5 -7.5 48.5 
24 80 72.3 7.7 56.2 
55 90 74.0 16.0 72.2 
64 92 79.0 13.0 85.2 
19 92 

* Student 19 only took subject F. There is therefore no comparison 
possible with other subjects and no contribution to the CUSUM. 
Note: From "The comparison and scaling of student assessment 
marks in several subjects" by B.FJ. Manly which appeared in Ap­
plied Statistics; 1988; 37: 385-95. 
Note: Reprinted with permission from the Royal Statistical Society 

10.3. Going Beyond 

At this point, you may already be thinking about several problems of your 
own for which you would like to develop an optimal test statistic. The pur­
pose of this last section of this chapter is to provide you with the basic 
principles of selection. While in Chapter 14 we consider a number of formal 
derivations based on the likelihood ratio, our approach in this chapter is 
more intuitive. The three essential concepts we consider are sufficiency, 
invariance, and loss. 

10.3.1. Sufficiency 

A statistic T(X) is sufficient for a parameter e (or a set of parameters {e;}) if 
the conditional distribution of X given T is independent of e. Once we have 
calculated the value of a sufficient statistic or statistics, we may be able to 
throwaway the original observations, for frequently, a sufficent statistic(s) 
can provide us with all the information a sample has to offer. 

An example we have already encountered is that of the order statistics 
X(l) ::; X(2) ::; ••• ::; x(n)' If we know these order statistics, we know as much 
about the unknown distribution as we would if we had the original observa­
tions in hand. 

Another commonly encountered example is that of the mean of a sample 
of independent, identically Poisson-distributed random variables, a statistic 
which is sufficient for the mean of the underlying Poisson distribution. Like-
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wise the mean of a sample of normally-distributed random variables is suffi­
cient for the mean of the underlying normally-distributed population. But 
there is distinction: in the first example, the Poisson, the sample mean pos­
seses all the information the sample has to offer with regard to the underlying 
single-parameter distribution. A normal distribution depends on two param­
eters, the population mean and the population variance. We need to compute 
both the sample mean and the sample variance to obtain all the information 
a sample from a normal distribution has to offer. 

In selecting a statistic to test a hypothesis about a population parameter e, 
look first at those statistics which are sufficient for e. 

10.3.2. Invariance 

If your measurements are made in feet, would you expect to reach the same 
conclusions as you would if your measurements were made in inches? What 
if you discover after you report your results that you forgot to rezero the 
measurement device so that each of your readings is off by exactly 0.0123 
grams. Would you still believe that your decision to accept the hypothesis is 
correct? If your answers to both these questions is an unconditional "yes," 
then you are already applying the principle of in variance, implicitly if not 
explicitly. 

Many statistical problems involve symmetries. In the examples we've con­
sidered so far, the observations are exchangeable, so that the order in whicn 
we made these observations is irrelevant. Our test statistic(s) should and 
do reflect this same symmetry. The sample mean and sample variance are 
good examples of statistics that are symmetric in the underlying variables. 
Symmetry and invariance are related. The mathematical expression of sym­
metry is invariance under a suitable group of transformations. In generating 
an optimal test, look for test statistics that preserve the structure and symme­
try of a problem. 

10.3.3. Losses 

A statistical problem is defined by three elements: 

1) the class P = (Pe, e E Q) to which the probability distribution of the obser­
vations is assumed to belong; 

2) the set D of possible decisions {d} one can make on observing X = 
(Xl'···' X n ), 

3) the loss L(d, e), expressed in dollars, men's lives or some other quanti­
fiable measure, that results when we make the decision d when e is 
true. 
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When you and I differ in our assessment of the loss function, we are likely 
to differ in our assessment of the practical significance of Type I and Type II 
error and, hence, in our choice of test statistic. 

The loss function should be a key factor in the selection of a statistical test. 
Even when we don't know the exact values taken by a loss function, we have 
some idea about its form. In many testing situations, for example, in the 
analysis of variance and in some matched pair applications, the traditional 
test statistic (or discrepancy measure in Mehta and Patel's terminology) is a 
function of the square of the distance between the observed or estimated 
values and the hypothesis. Yet the natural measure is the distance itself. 
A statistical procedure that minimizes the expected value of the one may not 
minimize the expected value of the other [Mielke and Berry, 1982, 1983]. 

The principal reason for using the square of the distance is that it yields a 
maximum likelihood solution when the underlying distribution is normal. 
An assumption of normality mayor may not be justified while maximum 
likelihood itself can only be justified on the grounds of convenience. 

A second and more compelling reason for using the square ofthe distance 
in the data space would be that the loss function, a discrepancy measure in 
the parameter space, is also proportional to the square. But if we are uncer­
tain about the form of the loss function, wouldn't it be more natural to utilize 
a test statistic that is linear in both the data and parameter spaces? A first­
order statistic will be more robust than a second-order statistic in the face of 
questionably large deviations [Dodge, 1987]. 

The permutation approach frees us to choose the test statistic that is best 
suited to the problem at hand. If a second-order statistic is called for, we may 
use it, and if a first-order statistic is more appropriate, we may take advan­
tage of it instead. Through the use of resampling methods we are free to 
choose the statistic best suited to the problem. 

Recall from Section 4.2 that if we have more than two levels of a factor, we 
have a choice of at least three test statistics: 

(10.7) 

a second-order statistic; 

(10.8) 

a first-order statistic; and 
J K 1 

R = L L L nijt![i](Xijk • - X. jk .) (10.9) 
j=l k=l i=l 

With the permutation approach, we are free to select the optimal statistic in 
accordance with both the alternatives of interest and the underlying loss 
function. 
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10.4. Likelihood Ratio 

As we shall see in Chapter 14.2, the primary criteria for selecting a test 
statistic is the likelihood ratio. We assign to our acceptance region those 
values of our test statistic for which the likelihood under the hypothesis is 
much greater than it is under the alternative and to the rejection region those 
values which are much more likely under the alternative than they are under 
the hypothesis. 

To see this intuitively, suppose the variables can take only a countable 
number of values, Pi{X = x} = Pi(X) for i = 0, 1, .... 

The optimal test is obtained by finding a set of values S to form the rejec­
tion region for which the significance level 

(10.10) 

and the power 

L PI (x) is a maximum. (10.11) 
xeS 

Which values of x should we include in S? Clearly, we should include those 
values which contribute the least to the significance level while contributing 
the most to the power. In other words, we should include those values of x 
with the largest values of the likelihood ratio 

( ) _ Pl (x) 
r x - Po(x)' (10.12) 

We extend this result to continuous distribution functions in Section 14.2 
with the fundamental lemma of Neyman and Pearson. 

The cutoff-that is, the precise definition of "largest" values-is deter­
mined by the significance level. Using the likelihood ratio, we show in Chap­
ter 14 that the same criteria which led to the t-statistic and the F-ratio for the 
parametric analysis of two and k samples, respectively, leads to the use of 
statistics equivalent to the t and the F-ratio for the corresponding permuta­
tion analyses. In Chapter 6.2, the likelihood ratio is used to derive Fisher's 
exact test and to show that it is the most powerful unbiased test we can 
use with a 2 x 2 contingency table. 

10.4.1. Goodness of Fit and the Restricted Chi-Square 

In the next example, that of an r x 1 contingency table. we can not derive a 
most powerful test that will protect us against all alternatives, but we can use 
the likelihood ratio to derive a most powerful test against those alternatives 
which are of immediate interest. The approach lends itself to any set of data 
for which we have knowledge of an underlying model. 
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Suppose the hypothesis to be tested is that certain events (births, deaths, 
accidents) occur randomly over a given time interval. If we divide this time 
interval into m equal parts and Pi denotes the probability of an event in the 
ith subinterval, the null hypothesis becomes H: Pi = 11m for i = 1, ... , m. Our 
test statistic is 

m ( 1)2 
X2 = mn L Vi - - , 

i=1 m 

where Vi is the relative frequency of occurrence in the ith interval. 

o 2 3 n-l 

To determine whether this test statistic is large, small, or merely average, we 
examine the distribution of X2 for all sets of frequencies {v;} that satisfy the 
two conditions 

1) Vi;;:: 0 i = 1, ... , m; and 
2) LVi = 1. 

We reject the hypothesis if the fraction of tables for which X2 :$; X5 is less than 
IX. 

We can obtain a still more powerful test when we know more about 
the underlying model and, thus, are able to focus on a narrower class of 
alternatives. 

Suppose, in contrast to the previous example, that we use the m categories 
to record the results of n repetitions of a series of m - 1 trials, that is, we let 
the ith category correspond to the number of repetitions which result in 
exactly i - 1 successes. If our hypothesis is that the probability of success is 
.5 in each individual trial, then the expected number of repetitions resulting 
in exactly k successes is 1l:k[.5] = n(k)(.5r. 

If we proceed as we did in the preceding example, then our test statistic 
would be 

SI = X2 = n f (Vk - 1l:k[.5])2 
k=1 1l:k[·5] 

(10.13) 

Such a test provides us with protection against a wide variety of alterna­
tives. But from the description of the problem we see that we can restrict 
ourselves to alternatives for which 

(10.14) 

Fix, Hodges, and Lehmann [X: 1959] show that a more powerful test statistic 
against such alternatives is 
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where 

S . ~ (Vi - Pi[P])2 
2=mm ~ 

p i=l n;[p] 
(10.15) 

The parametric form of the distribution of S is difficult if not impossible to 
obtain analytically except for very large sample sizes; as always, the permuta­
tion distribution is readily computed. 

10.4.2. Censored Data 

In Section 9.5, we use the likelihood ratio to derive a globally almost power­
ful test for use with censored data. 

Kalbfleish and Prentice [1980] also use the likelihood ratio to obtain tests 
for use against highly specific alternatives when the underlying distributions 
are censored. The calculations are complex, so these authors suggest boot­
strapping from the permutation distribution as a computational shortcut. 
Their test is appropriate when the parameters of the alternative are known 
with some precision. Against global and unspecified alternatives, the GAMP 
test described in Section 9.5 is to be preferred. 

10.4.3. Logistic Regression 

Finally, we use the likelihood ratio to derive a procedure which is of inesti­
mable value in the analysis of epidemiological data. One of the earliest appli­
cations of logistic regression is that of Pike, Casagrande and Smith [1975]. 
For each subject, we have a pair of observations, Xi the length of exposure 
and Yi the apparent effect, where Yi may be a vector of several variables. To 
eliminate extraneous variation, we divide the data into blocks based on age, 
duration of residence, marital status, and so forth. Each block may be further 
subdivided into two not necessarily equal-sized groups-cases and controls. 
We would like to know if the risk of exposure is the same for each group and 
to estimate the relative risk. 

Following Breslow and Day [1980, 1987], we condition the likelihood of 
X given Y on the set of exposures without regard to which are cases and which 
are controls. 

n m n L(xjlYj = 1) n L(xjl j = 0) 
j=l j=l (10.16) n m 

L n L(xlt(j)IYj = 1) n L(xlt(j)IYj = 0) 
ltERj=l j=l 

where R is the set of (n:m) possible reassignments n of case labels to subjects 
and the likelihood 
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L(xly) = pr(ylx)pr(x) 
prey) 

Assume that within a block, the observations satisfy the logistic regression 
model, so that 

pr{Ylx} = exp[a + px] 
1 + exp[a + px] 

The conditional likelihood (10.1) reduces to 

J] exp [kto PkXn(j)k] 

JR J] exp[ll PkXn(j)k] 
(10.17) 

an expression which depends only on the relative risk parameters Po and Pl' 

10.5. Questions 

1. Suppose you wish to compare two groups of observations. Would it be better to 
compare them using the two-sample comparison of Section 3.3 or the matched 
pairs technique of 3.6? Is your decision rule an "always ... " or does it depend 
on how the observations are dispersed and the relative importance of the co­
variates used to do the matching? 

2. Suppose you have discarded the n original observations in the sample, keeping 
only the n order statistics, when you obtain independent evidence that the data is 
normally distributed: can you still compute the sample mean and variance? 

3. Suppose you have multiple observations on each subject, some in feet, some in 
inches, some in pounds. Should they all be transformed to a common unit of 
reference before you begin your multivariate analysis? What transformation(s) 
should you use? 

4. What statistic(s) remain invariant under an arbitrary monotone increasing trans­
formation of the observations? Is this result relevant to the preceding question? 

5. Ninety-nine percent of all scientists ignore the loss function and make do with a 
predesignated significance level and a minimum power level against one or two 
selected alternatives. Reconsider the statistical analyses you performed recently. 
What was the loss function in each instance? Were the test statistics you selected 
appropriate for this loss function? 

6. a. Can the four k-sample statistics, Fl, F2, F3, and R introduced in Section 4.2.2 
be made equivalent to one another if we eliminate terms that are invariant under 
permutations? 

b. If your answer to the previous question is "no," will there be data sets for which 
tests based on Fl, F2, and R lead to different conclusions? 
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c. How would you decide which of these statistics to use? 
d. Are you free to compute the permutation distributions of Fl, F2, and R for a 

specific data set and then choose the statistic which does the best job of proving 
your point? 

e. Suppose you were an examiner at the FDA; how would you react to a sub­
mission the authors of which had done just that? 

f. If you were one of those authors, how would you justify your choice of test 
statistic to an examiner at the FDA? 

g. Throughout this text, we have tried to justify our choice of statistic on the 
grounds that the resuitant test was a) unbiased, b) most powerful, c) minimized 
losses, or was d) invariant under transformations of location and scale. Do these 
criteria satisfy your own instincts? What other criteria can you suggest? 



CHAPTER 11 

Which Test Should You Use? 

In this chapter we provide you with an expert system for use in choosing an 
appropriate testing technique. Your expert system comes to you in two ver­
sions-a professional's handbook with detailed explanations of the choices, 
and a short, "quick-reference" version at the end of the chapter. 

11.1. Sources of Variation 

A few preliminary definitions are required. First, we distinguish a parametric 
from a non parametric test: 

To perform a parametric test, we must assume the observations come from 
a probability distribution which has a specific parametric form. For example, 
an observation, X, has the Poisson distribution with parameter A. if the prob­
ability that X = k is A. k exp[ - A.]/k! for k = 0, 1,2, .... An observation, X, has 
the normal distribution with location parameter Jl and scale parameter u if 
the probability density, h(x), is 

1 [(X - Jl)2] 
fou exp - 2u2 • 

While there exist various techniques for verifying whether a set of observa­
tions does or does not have a Poisson or normal distribution, the following 
heuristic definitions have proved of great value in practice: 

An observation has the Poisson distribution if it is the cumulative result of 
a large number of opportunities each of which has only a small chance of 
occurring. For example, if we seed a small number of cells into a petri dish 
that is divided into a large number of squares, the distribution of cells per 
square follows the Poisson. 

An observation has the Gaussian, or normal, distribution if it is the sum of 
a large number of factors-each of which makes a very small contribution to 

140 
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the total. This explains why the mean of a large number, N, of observations, 
N 

X. = L XiN , will be normally distributed even if the individual observa­
j=l 

tions Xj come from quite different distributions. 
By contrast, proportions and the ratios of variables or sums of variables 

seldom have a normal distribution. 
In many applications in economics and pharmacology where changes are 

often best expressed in percentages, a variable may be the product of a large 
number of variables each of which makes only a near unit contribution to the 
total. Such a variable has the lognormal distribution and, because log n Xi = 
L log(x i ), its logarithm has a normal distribution. 

The normal distribution is easy to recognize. It is symmetrically distrib­
uted about the mean and falls off rapidly in the tails so there is only a small 
probability of observing extremely large or extremely small values. 

Many other distributions one encounters in practice-chi-square, Beta, 
Student's t and the F -ratio are all examples-may be derived from variables 
which have the normal distribution. For example, if X has the normal distri­
bution with mean 0 and variance a2 then Y = (X/a)2 has the chi-square 
distribution with one degree of freedom. 

Gamma distributions, 

_ 1 a-l -x/b 
f(xla,b) - r(a)bax e 

come into existence in complex systems where the failure of several simple 
parallel components is necessary before the system fails to function. 

The literature is replete with methods for determining whether observa­
tions are normally distributed. My own preference is to use a nonparametric 
test and, preferably, a permutation test whenever there is the slightest doubt 
as to the nature of the underlying distribution. 

Of course, one may use a parametric test when: 

I) You have a large number of observations (~20) in each category; or 
2) You have a very small number of observations in each category and the 

assumptions underlying the corresponding parametric test may be relied 
on. 

For example, if we have only three observations with which to test the hy­
pothesis that the mean of a symmetric distribution is zero, the sample space 
for the permutation test is limited to 23 or 8 rerandomizations. As a result, 
we must randomize on the boundary except for significance levels that are 
multiples of 1/8th. At all significance levels, a more powerful parametric test, 
and (if we may rely on the normality of the observations) a uniformly most 
powerful unbiased parametric test may be obtained directly from tables of 
the t-statistic. 
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11.2. Comparison with the Parametric Test and 
the Bootstrap 

These caveats aside, in most practical testing situations, we would advise the 
reader to use a permutation test or, at least, to use the permutation distribu­
tion in place of the parametric distribution: 

The permutation test is exact under relatively nonstringent conditions: in 
the one-sample problem, the variables must have symmetric distributions; in 
the two- and k-sample problem, the variables must be exchangeable among 
the samples. 

The permutation test provides protection against deviations from para­
metric assumptions, yet it is usually as powerful as the corresponding unbi­
ased parametric test even for small samples. 

With two binomial or two Poisson populations, the most powerful un­
biased permutation test and the most powerful parametric test coincide. 
With two normal populations, the most powerful unbiased permutation 
test and the most powerful unbiased parametric test are asymptotically 
equivalent. 

Using the permutation test means you can choose the statistic that is best 
adapted to your problem and to the alternatives of interest. 

Consider a permutation test before you turn to a bootstrap. The bootstrap 
is not exact except for quite large samples and, often, is not very power­
ful. But the bootstrap can sometimes be applied when the permutation test 
fails: one example is interaction in an unbalanced design (Section 4.4) for 
which neither an exact parametric test nor an exact permutation test can be 
formulated. 

11.3. A Guide to Selection 

The initial division of this guide is into three groupings: categorical data, 
discrete data, continuous data. 

11.3.1. The Data Are in Categories 

Examples include men vs. women, white vs. black vs. Hispanic vs. other; and 
much improved vs. improved vs. no change vs. worse vs. much worse. 

Only a single factor is involved. 
You are testing the goodness of fit of a specific model. See Section 10.4.1. 

Only two factors are involved. For example, sex vs. political party. 
Each factor is at exactly two levels. 
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There is a single table. 
Use Fisher's exact test (see Section 6.2). 

There are several 2 x 2 tables. 
Use odds' ratio test (see Section 6.2.2). 

One factor is at three or more levels. 
This factor is not ordered as would be the case with a factor like race. 

You want a test that provides protection against a broad variety of 
alternatives. 

Use the permutation distribution of the chi-square statistic (sec­
tion 6.3.1). 

You wish to test against the alternative of a cause-effect dependence. 
Use the permutation distribution of r (Freeman and Halton, 
1958; see Section 6.3.1 for other possible tests). 

This factor can be ordered. 
Use Pitman correlation (see Section 3.5). 

Both factors are at three or more levels. 
Neither factor can be ordered. 

The alternative is that the first factor is caused or affected by the 
other. 

Use the permutation distribution of Kendall's tau or Cochran's Q 
(see Section 6.3). 

A cause and effect relationship is not suspected. 
Use the permutation distribution of the chi-square statistic (see 
Section 6.3). 

One factor can be ordered. 
Assign scores to this factor based on your best understanding of its 
effects on the second variable. 

All the odds ratios are approximately equal. 
Use .13 or the Goodman-Kruskal test (see Section 6.4). 

Some but not all of the odds ratios are close to one. 
Use .12 or the likelihood ratio test (see Chapter 6, Section 4). 

A third covariate factor is present. 
Use the method of Bross [1964]. See Section 6.5. 

11.3.2. The Data Are Discrete, Taking the Values from the 
Finite Set 0, 1, ... , n or the Infinite Set 0, 1,2, .... 

Each sample consists of a fixed number of independent identically distributed 
observations which can be either 0 or 1. (A set of trials each of which may 
result in a success or a failure is one example.) 

Only one or two samples are involved. 
Use the parametric test for the binomial. See for example, Lehmann, 
[1986] pp. 81, 154. 
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More than two samples, but only one factor is involved. 
Analyze as indicated above under categorical data. 

More than one factor is involved. 
Transform the data to equalize the variances. For each factor combi­
nation, take the arcsin of the square root of the proportion of observa­
tions that take the value 1. Analyze the results as indicated below 
under continuous data. 

Each sample consists of a set of independent identically distributed Pois­
son observations. 

Only one or two samples are involved. 
Use the parametric test for the Poisson. In the two-sample case, note 
that the UMPU test uses the binomial distribution. See for example, 
Lehmann [1986, pp. 81, 152]. 

More than two samples are involved. 
Transform the data to equalize the variances by taking the square 
root of each observation. Analyze as indicated below under continu­
ous data. 

Each sample consists of a set of exchangeable observations whose distribu­
tion is unknown. 

There is a single sample. 
The data may be assumed to come from a symmetric distribution. 

Use the permutation test for a location parameter that is described 
in Chapter 3.1. 

The data may not be assumed to come from a symmetric distribution. 
Use the bootstrap described in Section 3.4. If you have only a few 
subjects, consider using a multivariate approach (see Chapter 5). 

There is more than one sample. 
Use one of the permutation tests designed for data with continuous 
distributions that is described in Chapters 3 and 4. Treat tied obser­
vations as separate distinct observations when you form rearrange­
ments. Be cautious in interpreting a negative finding; the significance 
level may be too large simply because the test statistic can take on too 
few distinct values. 

11.3.3. The Data Are Continuous 

How precise do our measurements have to be so that we may categorize 
them as "continuous" rather than discrete? Should they be accurate to two 
decimal places as in 1.02? or four as in 1.0203? To apply statistical procedures 
for continuous variables, the observations need only be precise enough that 
there are no or only a very few ties. 

If you recognize that the data has the normal distribution, 
a parametric test like Student's t or the F-ratio may be applicable. But 
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you can protect yourself against deviations from normality by making 
use of a permutation test based on the t statistic or the F. 

You have only a single sample. 
You want to test that the location parameter has a specific value. 

And you feel safe in assuming that the underlying distribution is sym­
metric about the location parameter. 

Use the procedure described in Section 3.1. 
If the distribution is not symmetric, 

but has a known parametric form 
apply the corresponding parametric test; 

and does not have a known parametric form, 
consider applying an initial transformation that will symmetrize 
the data. For example, take the logarithm of data that undergoes 
percentage changes. Be warned that such a transformation affects 
the form of the loss function. 
and/or bootstrap (see Section 3.4). 

You want to test that the scale parameter has a specific value. 
First, divide each observation by the hypothesized value of the scale 
parameter. Then, apply one of the procedures noted above for testing 
a location parameter. 

You have two samples. 
You want to test whether the scale parameters of the two popUlations 
are equal. 

You know the means/medians of the two popUlations or you know 
that they are equal. 

Use the permutation-distribution of the F-ratio based on the sample 
variances (see Section 3.3.2). 

You have no information about the means/medians of the two popu­
lations. 

The sample sizes are equal. 
Use the pivot-permutation test (Section 3.4). 

Sample sizes are not equal. 
Use the bootstrap (Section 3.4). 

You want to test whether the location parameters of the two popula­
tions are equal. 

If changes are proportional rather than additive, consider working 
with the logarithms of the observations. 
If the data are censored or you suspect outliers, see Chapter 9. 
Each sample consists of measures taken on different subjects. 

Use the two-sample comparison described in Section 3.3. 
Two observations were made on each subject; these observations 
are to be compared. 

Use the matched-pair comparison described in Chapter 3, Sections 
1 and 6. 



146 11. Which Test Should You Use? 

You have more than two samples 
If changes are proportional rather than additive, consider working with 
the logarithms of the observations. 
If the data is censored or you suspect outliers, see Chapter 9. 
A single factor distinguishes the various samples. 

You can't take advantage of other factors to block the samples. 
The factor levels are not ordered. 

Use the permutation distribution of an F-ratio (see Section 3.5). 
The factor levels are ordered. 

Use Pitman's correlation (Section 3.5.2). 
You can take advantage of other factors to block the samples. 

Rerandomize on a block-by-block basis, then apply one of the tech­
niques described in Sections 3.6 and 3.7. 

Multiple factors are involved. 
One of the factors consists of repeated measurements made over time. 

Treat the repeated measurements as components of a single multi­
variate vector. See Section 5.5. 

All observations are exchangeable. 
The experimental design is balanced. 

All the factors are under your control. 
Use one of the permutation techniques described in Section 4.2. 

Not all the factors are under your control. 
First, correct for the functional relation-ship among factors or 
use restricted randomization as described in Section 4.3, then, 
use one of the permutation techniques described in Section 4.2. 

The experimental design is not balanced. 
Some factors will be confounded. A book on experimental de­
sign such as that of Kempthorne [1952J, can help you determine 
which factors. Consider the bootstrap (see Section 4.4.2). 

11.4. Quick Key 

Categorical Data 

Single factor, r = 1 
Goodness of fit, 10.4.1. 

Two factors, r = 2 
c=2 

single table 
use Fisher's exact test, 6.2 

several 2 x 2 tables 
use Zelen's exact test, 6.2.2 
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c > 2. 
not ordered 

use C2 or 'r, 6.3 
ordered 

use Pitman correlation, 3.5. 
Two factors, r > 2, c > 2 

not ordered 
use 'r, Q = 6.2,6.3 

ordered 
use A,2 or A,3' 6.4 

with covariate 
use Bross method, 6.5. 

Discrete Data 

Binomial Data 
one factor, one or two samples 

see Lehmann [1986, pp. 81, 154] 
one factor, more than two samples 

see categorical data 
more than one factor 

see continuous data. 
Poisson data 

one or two samples. 
see Lehmann [1986, pp. 81, 152] 

more than two samples 
see under continuous data. 

Other exchangeable observations 
one sample. 

symmetric distribution 
See 3.1 

not symmetric 
use bootstrap 

more than one sample 
transform data; see under continuous data. 

Continuous Data 

One sample 
test of location parameter 

symmetric distribution 
See 3.1 
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not symmetric 
attempt to transform to some known parametric or symmetric 
form 

test of scale parameter 
rescale and test as for location parameter. 

Two samples 
test equality of scale parameters 

means/medians of the two populations are known or 
are known to be equal 

F -ratio of the sample variances, 3.3.2 
otherwise 

permute or bootstrap, 3.4 
test equality of location parameters 

samples not matched 
two-sample comparison, 3.3 

samples are matched 
matched-pair comparison, 3.7, 3.1. 

More than two samples 
single factor 

no blocking 
levels not ordered 

F-ratio,3.5 
levels ordered 

Pitman correlation, 3.5.2 
blocks 

resample block by block, 3.6, 3.7 
multiple factors 

repeated measures 
muitivariate analysis, 5.5 

independent observations 
balanced design 

all factors under your control, 4.2 
otherwise, correct as in 4.3, 
then apply 4.2 

unbalanced design 
consult text on experimental design; consider bootstrap 4.4.2. 



CHAPTER 12 

Publishing Your Results 

McKinney et al. [1989] report that more than half the published articles that 
apply Fisher's exact test do so improperly. Our own survey of some fifty 
biological and medical journals supports their findings. This chapter pro­
vides you with a positive prescription for the successful application and pub­
lication of the results of resampling procedures. First, we consider the rules 
you must follow to ensure that your data can be analyzed by statistical and 
permutation methods. Then, we describe two commercially-available com­
puter programs that can perform a wide variety of permutation analyses. 
Finally, we provide you with five simple rules to prepare your report for 
publication. 

12.1. Design Methodology 

It's never too late to recheck your design methodology. Recheck it now in the 
privacy of your office rather than before a large and critical audience. All 
hypothesis-testing methods rely on the independence and/or the exchange­
ability of the observations. Were your observations independent of one 
another? What was the experimental unit? Were your subjects/plots assigned 
at random to treatment? If not, how was randomization restricted? With 
complex multifactor experiments, you need to list the blocking variables and 
describe your randomization scheme. 

12.1.1. Randomization in Assignment 

Are we ever really justified in exchanging labels among observations? Con­
sider an experiment in which we give six different animals exactly the same 
treatment. Because of inherent differences among the animals, we end up 
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with six different measurements, some large, some small, some in between. 
Suppose we arbitrarily label the first three measurements as "controls" and 
the last three as "treatment." These arbitrary labels are exchangeable and 
thus the probability is one in 20 that the three "control" observations will all 
be smaller than the three "treatment." Now suppose we repeat the experi­
ment, only this time we give three of the animals an experimental drug and 
three a saline solution. To be sure of getting a positive result, we give the 
experimental drug to those animals who got the three highest scores in the 
first experiment. Not fair, you say. Illegal! Illegitimate! No one would ever do 
this in practice. 

In the very first set of clinical data that was brought to me for statistical 
analysis, a young surgeon described the problems he was having with his 
chief of surgery. "I've developed a new method for giving arteriograms which 
I feel can cut down on the necessity for repeated amputations. But my chief 
will only let me tryout the technique on patients that he feels are hopeless. 
Will this affect my results?" It would and it did. Patients examined by the new 
method had a very poor recovery rate. But, of course, the only patients who'd 
been examined by the new method were those with a poor prognosis. The 
young surgeon realized that he would not be able to test his theory until he 
was able to assign patients to treatment at random. 

Not incidentally, it took us three more tries until we got this particular 
experiment right. In our next attempt, the chief of surgery-Mark Craig of 
St Eligius in Boston-announced that he would do the "random" assign­
ments. He finally was persuaded to let me make the assignment using a table 
of random numbers. But then he announced that he, and not the younger 
surgeon, would perform the operations on the patients examined by the 
traditional method to make sure "they were done right." Of course, this 
turned a comparison of methods into a comparison of surgeons and intent. 

In the end, we were able to create the ideal "double blind" study: the young 
surgeon performed all the operations, but the incision points were deter­
mined by his chief after examining one or the other of the two types of 
arteriogram. 

12.1.2. Choosing the Experimental Unit 

The exchangeability of the observations is a sufficient condition for a permu­
tation test to be exact. It is also a necessary condition for the application of 
any statistical test. 

Suppose you were to study several pregnant animals that had been inad­
vertently exposed to radiation (or acid rain or some other undesirable pollut­
ant) and examine their offspring for birth defects. Let Xij i = 1, ... , I; j = 1, 
... , ni denote the number of defects in the jth offspring of the ith parent; let 

"i 

~ = L Xij i = 1, ... , I denote the number of defects in the ith litter. The {~} 
j=l 
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may be exchangeable; (we would have to know more about how the data 
were collected). The {XiJ are not; the observations within a litter are interde­
pendent; what affects a parent affects all her offspring. In this experiment, the 
litter is the correct experimental unit. 

In a typical toxicology study, a pathologist may have to examine three to 
five slides at each of fifteen to twenty sites in each of three to five animals just 
to get a sample size of one. 

12.2. Statistical Software for Exact 
Distribution-Free Inference 

StatX act Jr uses the algorithms developed by Mehta and Patel to help per­
form a wide variety of permutation tests for one and two samples, R x C 
contingency tables, and stratified 2 x 2 and 2 x C contingency tables. The 
two-sample procedures include stratified linear rank tests, Wilcoxon-Mann­
Whitney test, logrank and Wilcoxon-Gehan tests for censored survival data, 
normal scores test, and trend test with equally spaced scores. The manual 
incorporates many excellent examples from the literature. 

LogX actJl performs exact logistic regressions as described in Cox [1970]. 
(StatXact and LogXact are available for IBM-PC compatible microcom­
puters from Cyte1 Software, 137 Erie St, Cambridge MA 02139.617/661-2011.) 

Most commercially available statistical packages have some provision for 
running Fisher's exact test in the analysis of a 2 X 2 contingency table. 
"Proc Freq" in SASJ! uses the Mehta-Patel network algorithm to obtain 
exact rejection levels for R x C contingency tables. See also Chen and 
Dunlap [1993]. 

RT If performs permutation tests on one- and two-samples (though fewer 
than can be done in StatX act), plus analysis of variance, regression analysis, 
matrix randomization tests, tests on spatial data, time series analysis, and 
multivariate analysis using Wilk's lambda statistic and Romesburg's sum 
of squares statistic E. Applications are drawn from Manly [1991]. (RT is 
available for IBM-PC compatible microcomputers from West, 1406 South 
Greeley Highway, Cheyenne WY 82007. 307/634-1756.) 

TESTIMA TE uses permutation distributions to provide one- and two­
tailed tests and the associated confidence intervals, tests for equivalence as 
well as tests for difference, plus a variety of weighting methods and test 
statistics for analyzing categorical data (see Section 6.3.1). (TESTIMA TE is 
available for IBM-PC compatible computers from idv, Wessobrunner Str. 6, 
D-82131 Gauting/Munich Germany. 0049.89.8508001.) 
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12.3. Preparing Manuscripts for Publication 

You've laid the groundwork. You've done the experiment. You've completed 
the analysis. Five simple rules can help you prepare your article for 
publication: 

1. State the test statistic explicitly. Reproduce the formulae. If you cite a text, 
for example, [Good, 1994], include the page number(s) on which the sta­
tistic you are using is defined. 

2. State your assumptions. Are your observations independent? Exchange­
able? Is the underlying distribution symmetric? Permutation tests can not 
be employed without one or all of these essential assumptions. See Draper 
et al. [1993J, Gastwirth and Rubin [1971J, and Hettmansperger [1984J 
for discussions of this point. 

3. State which labels you are rearranging. Provide enough detail that any 
interested reader can readily reproduce your results. In other words, re­
port your statistical procedures in the same detail you report your other 
experimental and survey methodologies. 

4. State whether you are using a one-tailed or a two tailed-test. See Chapter 
6, Section 2 for help in making a decision. 

5. a) If you detect a statistically significant effect, then provide a confidence 
interval (see Section 3.2). Remember: an effect can be statistically signi­
ficant without being of practical or scientific significance. 

b) If you do not detect a statistically significant effect, could a larger 
sample or a more sensitive experiment have detected one? Consider 
reporting the power of your test. (See Section 13.7.) 



CHAPTER 13 

Increasing Computational Efficiency 

13.1. Five Techniques 

With today's high-speed computers, drawing large numbers of subsamples 
with replacement (the bootstrap) or without (the permutation test) is no 
longer a problem; unless and until the entire world begins computing re­
sampling tests. To prepare for this eventuality, and because computational 
efficiency is essential in the search for more powerful tests, a secondary focus 
of research in resampling today is the development of algorithms for rapid 
computation. 

There are five main computational approaches, several of which may be 
and usually are employed in tandem: 

1. The Monte Carlo, in which a sample of the possible rearrangements is 
drawn at random and these samples are used in place of the complete 
permutation distribution. 

2. Rapid enumeration and selection algorithms, whose object is to provide a 
rapid transition from one rearrangement to the next. 

3. Branch and bound algorithms that eliminate the need to evaluate each 
individual rearrangement. 

4. Solutions through characteristic functions and fast Fourier transforms. 
5. Asymptotic approximations, for use with sufficiently large samples. 

In the following sections, we consider each of these approaches in turn. 

13.2. Monte Carlo 

Instead of examining all possible rearrangements, we can substantially re­
duce the computations required by examining only a small but representative 
random sample [Dwass, 1957; Barnard, 1963]. In this process, termed a 
"Monte Carlo," we proceed in stages: 
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1) We rearrange the data at random. 
2) We compute the test statistic for the rearranged data and compare its 

value with that of the statistic for the original sample. 
3) We apply a stopping rule to determine whether we should continue sam­

pling, or whether we are already in a position to accept or reject. 

The program fragments reproduced in Chapters 3-5 of this text use the 
Monte Carlo approach. In the not necessarily optimal computer algorithm 
introduced in those chapters, all the observations in all the subsamples are 
loaded into a single linear vector, X = {X[O],X[l], ... ,X[N - I]}. Then, a 
random number is chosen from the set of integers 0, 1, ... , I with I = N - 1 
initially. If the number we choose is i, X[i] is swapped with X[I] in a three­
step process: 

temp:= XCi]; 

XCi] := X[I - 1]; 

X[I - 1] := temp; 

and I is decremented. This process is repeated until we have rearranged the 
desired number of observations and are ready to compute the test statistic for 
the new rearrangement. 

We don't always need to reselect all N observations. For example, in a 
two-sample comparison of means, with N = n + m, our test statistic only 
makes use of the last m observations. Consequently, we only need to choose 
m random numbers each time. 

After we obtain the new value of the test statistic we compare it with the 
value obtained for the original data. We continue until we have examined N 
random rearrangements and N values of the test statistic. Typically, N is 
assigned a value between 100 and 1600 depending on the precision that 
is desired (see Section 13.2.2 and Marriott [1979]). Through the use of a 
Monte Carlo, even the most complicated multivariate experimental design 
can be analyzed in less than a minute on a desktop computer. 

13.2.1. Stopping Rules 

If a simple accept/reject decision is required, we needn't perform all N calcu­
lations, but can stop as soon as it is obvious that we must accept or reject the 
hypothesis at a specific level. In practice, I use a one-sided stopping rule 
based on the 10% level. Suppose in the first n rearrangements, we observe a 
fraction H(n) with a value of the test statistic that is as or more extreme than 
the value for the original observations. If H(n) > O.lN, then we accept the 
hypothesis at the 10% level. Otherwise, we continue until n = N and report 
the exact percentage of rejections. Besag and Clifford [P: 1991] and Lock 
[1991] describe two-sided sequential procedures in which the decision to 
accept, reject, or continue is made after each rearrangement is examined. 
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13.2.2. Variance of the Result 

The resultant estimated significance level p is actually a binomial random 
variable B(N, p), where N is the number of random rearrangements and p is 
the true but still unknown value of the significance level. The variance of p is 
p(1 - p}/N. If p is 10%, then using a sample of 81 randomly selected re­
arrangements provides a standard deviation for p is of 1 %. A sample of 364 
reduces the standard deviation to 0.25%. 

The use of a variable in place of a fixed significance level results in a minor 
reduction in the power of the test particularly with near alternatives [Dwass, 
1957]. In most cases, this reduction does not appear to be of any practi­
cal significance; see Vadiveloo [1983J; Jockel [1986J; Bailer [1989J; 
Edgington [1987J; and Noreen [1989]. 

13.2.3. Cutting the Computation Time 

The generation of random rearrangements creates its own set of computa­
tional problems. 

Each time a data element is selected for use in the test statistic, two compu­
tations are required: 1) a random number is selected; and 2) two elements in 
the combined sample are swapped. 

The ideal futuristic computer will have a built-in random number genera­
tor-for example, it might contain a small quantity of a radioactive isotope, 
with the random intervals between decays producing a steady stream of 
random numbers. This futuristic computer might also have a butterfly net­
work that would randomly swap ten or one hundred elements of an array in 
a single pass. 

Today, in the absence of such technology, any improvements in computa­
tion speed must be brought about through software. Little direct research has 
been done in the area, although recently Baglivo et al. [1992J reported on 
techniques for doing many of the repetitive computations in parallel. I did 
some preliminary work in which I considered a sort of drunkard's walk 
through the set of rearrangements: the first rearrangement was chosen at 
random; thereafter the program stumbled from rearrangement to rearrange­
ment swapping exactly two data elements at random each time. The results 
were disappointing. Any savings in computation time per rearrangement 
were more than offset by the need to sample four or five times as many 
rearrangements to achieve the same precision in the result. 

13.3. Rapid Enumeration and Selection Algorithms 

If we are systematic and proceed in an orderly fashion from one rearrange­
ment to the next, we can substantially reduce the time required to examine a 
series of rearrangements. Optimal algorithms for generating sequences of 
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rearrangements are advanced by Walsh [1957]; Boothroyd [1967]; Plack­
ett [1968]; Yangimoto and Okimnoto [1969]; Boulton [1974]; Hancock 
[1974]; Bitner, Ehrlich, and Rheingold [1976]; Akl [1981]; and Bissell 
[1986]. See, for example, the review by Wright [1984]. Recent minimal 
change algorithms include those of Berry [1982]; Lam and Sotchen [1982]; 
Nigam and Gupta [1984]; and Marsh [1987]. 

13.3.1. Matched Pairs 

Sometimes we can reduce the number of computations that are required by 
taking advantage of the structure inherent in the way we label or identify 
individual permutations. In the case of paired comparisons, we readily enu­
merate each possible combination by running through the binary numbers 
from 0 to 2n - 1, letting the Os and Is in each number (obtained via successive 
right shifts, a single machine language instruction in most computers) corre­
spond to positive and negative paired differences, respectively. 

Censoring actually reduces the time required for enumeration. For if there 
are nc censored pairs, then enumeration need only extend over the 2(n-nc) 

values that might be assumed by the uncensored pairs. In computing the 
GAMP test for paired comparisons, it is easy to see that 

Pr{U' ~ U. AND. S' ~ S} = Pr{U' ~ U} * Pr{S' ~ S}. 

Pr{U' ~ U} = UtL (U + L)/· 2U+L. 
k=U k 

The remaining probability, Pr{S' ~ S}, may be obtained by enumeration and 
inspection. 

13.4. Focus on the Tails: Branch and 
Bound Algorithms 

We can avoid examining all N! rearrangements, if we focus on the tails, using 
the internal logic of the problem to deduce the number of rearrangements 
that yield values of the test statistic that are as extreme or more extreme than 
the original. 

Green [1977] was the first to suggest a branch and bound method for use 
in two-sample tests and correlation. Our description of Green's method is 
based on [De Cani, 1979]: 

In the two-sample comparison described in Section 3.2, suppose our test 
m 

statistics, T, is L X,,(i)' and that the observed value is To. We seek P(T~ To), 
/=1 

the probability under the null hypothesis that a random value of T equals or 
exceeds To. 
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Assume that the combined observations are arranged in descending order 
X(l) ~ X(2) ~ ••• ~ X(N)' To simplify the notation, let Zi denote the ith order 
statistic X(i)' If the labels (subscripts) on the X's really are irrelevant (as they 
would be under the null hypothesis) then T can be regarded as a random 
sample of m of the observations selected at random without replacement 
from the {Z;}. 

Suppose we have selected k such values, ZI" ... , ZIk ' k < m The maximum 
attainable value of T is obtained by adding to ZI , + ... + ZIk the m - k 
largest of the N - k remaining elements. Call this maximum T(/ 1 , ••• , Ik)' 
Similarly, the minimum attainable value of T is obtained by adding to 
ZI , + ... + Zh the m - k smallest of the N - k remaining elements. Call this 
minimum t(ll,"" Ik ). Given 11"", Ik , we can bound T: 

(N-k) There are m _ k sets of m elements of Z whose totals lie between the 

given bounds. 
Ift(ll,···,lk ) ~ To, then 

If To lies between the bounds, or if we require an improved bound on 
P(T ~ To), then we can add a k + lth element to the index set. 

m 

Our results apply equally to any test statistic of the form L f[X"(i)]' where 
1=1 

f is a monotone increasing function. Examples of such monotone functions 
include the logarithm (when applied to positive values), ranks, and any of the 
other robust transformations described in Chapter 9. 

13.4.1. Contingency Tables 

A large number of authors have joined in the search for a more rapid method 
for enumerating the tail probabilities for Fisher's exact test, including Leslie 
[1955]; Feldman and Kluger [1963]; Good [1976]; Gail and Mantel [1977]; 
Pagano and Halvorsen [1981]; and Patefield [1981]. See, for example, the 
review by Agresti [1993]. A quantum leap toward a more rapid method took 
place with the publication of the network approach of Mehta and Patel 
[1980]. Their approach is widely applicable, as we shall see below. It has 
three principal steps: 
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1. Representation of each contingency table as a path through a directed 
acyclic network with nodes and arcs 

2. An algorithm with which to enumerate the paths in the tail of the distribu­
tion without tracing more than a small fraction of those paths 

3. Determination of the smallest and largest path lengths at each node. 

Only the last of these steps is application specific. 
Network algorithms have been developed for all of the following: 

2 x C contingency tables; [Mehta and Patel, 1980] 
R x C contingency tables; [Mehta and Patel, 1983] 
the common odds ratio in several 2 x 2 contingency tables [Mehta, Patel, 

and Gray, 1985] 
logistic regression; [Hirji, Mehta, and Patel, 1987] 
restricted clinical trials [Mehta, Patel, and Wei, 1988] 
linear rank tests and the Mantel-Haenszel trend test [Mehta, Patel, and 

Senchaudhuri, 1988] 

For simplicity, we focus in what follows on the 2 x C contingency table. 

13.4.1.1. Network Representation 

Define the reference set r to be all possible 2 x k contingency tables (see 
Chapter 6) with row marginals (m, n) and column marginals (t1' t2, ... , tk). 
Thus each table, x E r, is of the form 

X~ n 

For each table x E r, we may define a discrepancy measure 

k 

d(x) = L ai(mi- 1 , Xi) 
i=l 

and a probability 
k 

h(x) = C-1 n Ai(mi-1, Xi) 
i=l 

j 

where the partial sum mj = L Xi., and the normalizing constant 
k i=l 

C = L n Ai(mi-1, xJ Important special cases of d(x) and h(x) are 
xer i=l 

k 

d(x) = n aixi 
i=l 

for linear rank tests and 
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h(x) = Ii (ti)j(N) 
.=1 Xi m 

for unordered contingency tables. 
As in Section 6.3, our object is to compute the one-sided significance level 

P = L h(x), where R is the set on which d(X) :2: do. 
R 

First, we represent r as a directed acyclic network of nodes and arcs. 
Following Mehta and Patel [1983], the network is constructed recursively in 
k + 1 stages labelled 0, 1, 2, ... , k. The nodes at the jth stage are ordered 
pairs (j, m) whose first element is j and whose second is the partial sum of the 
frequencies in the first j categories of the first row. If there is a total of 2 
observations in the 1st category, then there will be three nodes at the first 
stage (1,0), (1,1), (1, 2)-corresponding to the three possible distributions of 
elements in this category. 

Arcs emanate from the node (j, mj); each arc is connected to exactly one 
successor node. Each path linking (0,0) with the terminal node (k, m) corre­
sponds to a unique contingency table. For example, the path 

(0,0) --+ (1,0) --+ (2,2) --+ (3,4) --+ (4,4) 

corresponds to the table 

o 
2 
2 

2 
o 
2 

2 
o 
2 

o 
2 
2 

4 
4 

The total number of paths in the network corresponds to the total number of 
tables. We could count the total number of tables by tracing each of the 
individual paths. But we can do better. 

13.4.1.2. The Network Algorithm 

Our goal in network terms is to quickly identify and sum all paths whose 
lengths do not exceed d·h: for the original unpermuted table. Let Ij = r(j, mj) 
denote the set of all paths from any node (j, mj ) to the terminal node (k, m). In 
other words. Ij represents all possible completions of those tables in r for 
which the sum of the first j cells of row 1 is mj. Define the shortest path length 

k 

SP(j, mj) = min L ai(mi- 1, x;) 
xerj i=j+1 

and the longest path length 

k 

LP(j, mj ) = max L ai(mi-1, x;). 
xerj i=j+1 
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Let L(P AST) denote the length of a path from (0,0) to (j, mj)' If this path is 
such that 

L(PAST) + LP(j, mj) :::;; d· h, 

then all similar subpaths from (0,0) to (j, mj) of equal or smaller length con­
tribute to the p value. This number can be determined by induction-the 
details depend on the actual form of d and h, and thus we need not enumerate 
the tables explicitly. if this path is such that 

L(PAST) + SP(j,mj) ~ d'h, 

then we can ignore it and all similar paths of equal or greater length-again, 
without actually enumerating them. 

If the path satisfies neither condition, then we extend it to a node at the 
j + 1 th stage, compute the new shortest and longest path lengths and repeat 
the calculation. 

The shortest and longest path lengths may be determined by dynamic 
programming in a single backward pass through the network. Dynamic pro­
gramming is used by Mehta and Patel [1980] in their first seminal paper. 
Their original approach can be improved upon in three ways: 

1) by taking advantage ofthe structure of the problem; 
2) by a Monte Carlo, randomly selecting the successor node at each stage; 
3) by a Monte Carlo utilizing importance sampling, that is, weighting the 

probabilities with which an available node is selected so as to reduce the 
variance of the resultant estimate of p. 

The three approaches can be combined: A highly efficient two-pass algo­
rithm for importance sampling using backward induction followed by for­
ward induction was developed by Mehta, Patel, and Senchaudhuri [1988]. 
Their new algorithm guarantees that all rearrangements sampled will lie 
inside the critical region. A result of Joe [1988] also represents a substantial 
increase in computational efficiency. 

13.5. Characteristic Functions 

As the sample size increases, the number of possible rearrangements increases 
exponentially. For example, in the one-sample test of a location parameter 
based on n observations, there are 2" possible rearrangements. When finding 
the permutation distribution of a statistic that is a linear combination of 
some function of the original observations, Pagano and Tritchler [1983] 
show we can reduce the computation time from C1 2" to C2 nc where c is, we 
hope, much less than n. 

Their technique requires two steps: In the first, they determine the charac­
teristic function of the permutation distribution through a set of difference 
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equations. This step requires 2Qm(m + n) complex multiplications and addi­
tions to find the characteristic function at Q points. In the second, they use 
the basic theorem in Fourier series to invert the characteristic function and 
determine or approximate the permutation distribution at V < Q different 
points. This step requires 2Q log Q calculations. Q is normally chosen to be a 
power of 2 (e.g., 256 or 512) so that one can take advantage of a fast Fourier 
transform; the exact number will depend on the precision with which one 
wants to estimate the significance level. 

This method is chiefly of historic interest; branch and bound algorithms 
offer greater computational efficiency, particularly when coupled with impor­
tance sampling. Vollset, Hirji, and Elashoff [P: 1991] found that the fast 
Fourier transform method can result in considerable loss of numerical 
accuracy. 

13.6. Asymptotic Approximations 

13.6.1. A Central Limit Theorem 

The fundamental asymptotic result for the permutation distribution of the 
two-sample test statistic for a location parameter was first stated by Madow 
[1948] and formalized by Hoeffding [1951, 1952] who demonstrates conver­
gence of the distribution of the Studentized test statistic under the alternative 
as well as under the null hypothesis. 

Let T" = T(X(1)"'" X(n») be the test statistic and let Jl.n and u; be its first 
and second moments respectively. Then the permutation distribution Fn of 

Zn = T" - Jl.n obtained by randomly rearranging the subscripts of the argu-
Un 

ments of T" converges to <1>, the Gaussian (normal) distribution function. 
This result means that for sufficiently large samples, we can give our com­

puters a rest, at least temporarily, and approximate the desired p-value with 
the aid of tables of the normal distribution. To use these tables, we need to 
know the first and second moments of the permutation distribution. Occa­
sionally, with samples of moderate size, we may also need to know and use 
the third and higher moments in order to obtain an accurate approximation. 
Moments for the randomized block design are given by Pitman [1937] and 
Welch [1937], for the Latin Square by Welch [1937]; for the balanced in­
complete block by Mitra [1961]; and for the completely randomized design 
by Robinson [1983], and Bradbury [1988]. 

Extensions to, and refinements of, Hoeffding's work are provided by 
Silvey [1954, 1956], Dwass [1955], Motoo [1957], Erdos and Renyi 
[1959], Hajek [1960, 1961], and Kolchin and Christyakov [1973]. Asympto­
tic results for rank tests are given in Jogdeo [1968] and Tardif [1981]. 
For further details of the practical application of asymptotic approximations 
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to the analysis of complex experimental designs, see Lehmann [1986], 
Kempthorne, Zyskind, Addelman, Throckmorton, and White [1961], and 
Ogawa [1963]. 

13.6.2. Edgeworth Expansions 

While the Gaussian distribution may provide a valid approximation to the 
center of the permutation distribution, it is the tails (and the p-values of the 
tails) with which we are primarily concerned. Edgeworth expansions give 
good approximations to the tails in many cases. Edgeworth expansions for 
the distribution function under both the alternative and the null hypothesis 
have been obtained by Albers, Bickel, and Van Zwet [1976], Bickel and 
Van Zwet [1978], Robinson [1978], and John and Robinson [1983]. 

Saddlepoint methods and large deviation results give still better approx­
imations in the tails. Saddlepoint approximations for the one- and two­
sample tests of location as suggested by Daniels [1955, 1958] are derived 
by Robinson [1982]. Saddlepoint approximations for use with general linear 
models for both the permutation distribution and the bootstrap are given by 
Booth and Butler [1990]. 

13.6.3. Generalized Correlation 

Test statistics for location parameters are almost always linear or first-order 
functions of the observations. By contrast, test statistics for scale parameters, 
the chi-square statistic, and the Mantel-Val and statistic for generalized cor­
relation are quadratic or second-order functions of the observations. Their 
limiting distributions are not Gaussian but chi-square or a Pearson type III 
distribution [Berry and Mielke, 1984, 1986, and Mielke and Berry, 1985]. 
Other asymptotic approximations for second-order statistics are given by 
Shapiro and Hubert [1979], O'Reilly and Mielke [1980], and Ascher and 
Bailar [1982]. 

13.7. Sample Size, Power, and Confidence Intervals 

Suppose we are in the design stages of a study and we intend to use a per­
mutation test for the analysis. How large should our sample sizes be? Our 
answer will depend on three things: 

the alternative(s) of interest 
the power desired at these alternatives 
the significance level. 
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A not unrelated question arises if we conclude an analysis by accepting the 
null hypothesis. Does this mean the alternative is false or that we simply did 
not have a large enough sample to detect the deviation from the null hypoth­
esis? Again, we must compute the power of the test for several alternatives 
before we are able to reach a decision. 

We estimate the power by drawing a series of K (simulated) random sam­
ples from a distribution similar to that which would hold under the alterna­
tive. For each sample, we perform the permutation test at the stated signifi­
cance level and record whether we accept or reject the null hypothesis. The 
proportion of rejections becomes our estimate of the power of the test. 

When designing a study, I use K = 100 until I am ready to fine tune the 
sample size, when I switch to K = 400. I also study (estimate) the power for 
at least two distinct alternatives. 

For example, when testing the hypothesis that the observations are normal 
with mean 0 against the alternative that they have a mean of at least 1, I will 
sample from alternatives with at least two different variances: say, one with 
variance equal to unity, and one with variance equal to 2, where 1 is my best 
guess of the unknown variance, and 2 is a worst-case possibility. 

When doing a:n after-the-fact analysis of the power, I use estimates of the 
parameters based on the actual data. If the pooled sample variance is 1.5, 
then I use a best guess of 1.5 and a worst case of 3 or even 4. 1 may end by 
doing 8KN computations, where N is the average number of permutations I 
inspect each time I perform the test. 

With such a large number of calculations, it is essential that I take advan­
tage of one or more of the computational procedures described in Sections 2 
through 6 of this chapter. Oden [1991] offers several recommendations. 
Gabriel and Hsu [1983] describe an application-specific method for re­
ducing the number of computations required to estimate the power and de­
termine the appropriate sample size. 

13.8. Some Conclusions 

In the Monte Carlo, we compute the test statistic for a sample of the possible 
rearrangements, and use the resultant sampling distribution and its percen­
tiles in place of the actual permutation distribution and its percentiles. The 
drawback of this approach is that the resultant significance level p' may 
differ from the significance level p of a test based on the entire permutation 
distribution. p' is a consistant estimate of p with a standard deviation on the 
order of Np(1 - p) where n is the number of rearrangements considered in 
the Monte Carlo. 

In the original Monte Carlo, the rearrangements are drawn with equal 
probability. In a variant called importance sampling, the rearrangements are 
drawn with weights chosen so as to minimize the variance. In some instances, 
when combined with branch and bound techniques as in Mehta, Patel, and 
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Senchaudhuri [1988J, importance sampling can markedly reduce the number 
of samples that are required. (See also Besag and Clifford [1989].) 

A second drawback of the Monte Carlo is that selecting a random arrange­
ment is itself a time-consuming operation that can take several multiples of 
the time required to compute the sample statistic. A current research focus is 
on rapid enumeration and selection algorithms that can provide a fast transi­
tion from one rearrangement to the next. To date, all solutions have been 
highly application-specific. 

Branch and bound algorithms eliminate the need to evaluate each rear­
rangement individually. The network approach advanced by Mehta and Patel 
can cut computation time by several orders of magnitude. STATXACT®, 
a user-friendly program for IBM-PC compatible computers that uses the 
Mehta-Patel approach is available from Cytel Software, 137 Erie St, Cam­
bridge MA 02139, 617/661-2011. STATXACT provides for two-sample 
comparisons, the logrank test for censored survival data, the Fisher exact test 
for 2 x 2 contingency tables, tests of R x C contingency tables, and tests for 
stratified contingency tables. Newer versions of the program offer impor­
tance sampling as an option. 

Solutions through characteristic functions are seldom of practical interest. 
When subsamples are large-and it is the size of the subsample or block, not 
the sample as a whole, that is the determining factor-an asymptotic approx­
imation should be considered. In my experience as an industrial statistician 
with the pharmaceutical and energy industries, the opportunity to take ad­
vantage of an asymptotic approximation seldom arises. In preclinical work, 
one seldom has enough observations. And in a clinical trial, though the 
sample size is large initially, one is usually forced to divide the sample again 
and again to correct for covariates. In practice, contingency tables always 
have one or two empty cells. The errors in significance level that can result 
from an inappropriate application of an asymptotic approximation are am­
ply illustrated in Table 6.4. 

If you are one of the favored few able to take advantage of an asymptotic 
approximation, you first will need to compute the mean and variance of the 
permutation distribution. In some cases, you will also need to calculate and 
use the third and fourth moments to increase the accuracy of the approxima­
tion. The calculations are different for each test, for details, consult the refer­
ences in the corresponding sections of this text. 

13.9. Questions 

1. Most microcomputer-based random number generators use multiplicative congru­
ence to produce a 16-bit unsigned integer between 0 and 215. Yet in the two­
sample comparison, for example, we only use one ofthe 15 bits, the least significant 
bit, in selecting items for rearrangement. Could we use more of the bits? That is, 
are some or all of the bits independent of one another? Write algorithm(s) that take 
advantage of multiple bits. 
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2. Apply the Mehta and Patel approach to the following 3 x 2 contingency table: 

3 
1 

1 
2 

o 
1 

Compute the marginals for this table. Draw a directed graph in which each node 
corresponds to a 3 x 2 table whose marginals are the same as those of the proceed­
ing table. Choose a test statistic (see Section 6.3). Identify those nodes which give 
rise to a value of the test statistic less than that of the original table. 

3. Suppose you are interested in the theoretical alternative 

4/6 
1/6 

1/6 
4/6 

1/6 
1/6 

How big a sample size would you need to insure that the probability of detecting 
this alternative was 80% at the 10% significance level? (Hint: use a six-sided die to 
simulate the drawing of samples.) 



CHAPTER 14 

Theory of Permutation Tests 

In this'chapter, we establish the underlying theory of permutation tests. The 
content is heavily mathematical, in contrast to previous chapters, and a 
knowledge of calculus is desirable. 

14.1. Fundamental Concepts 

In this section, we provide formal definitions for some of the concepts intro­
duced in Chapter 2, including distribution, power, exact, unbiased, and the 
permutation test, itself. 

14.1.1. Dollars and Decisions 

A statistical problem is defined by three elements: 

1) the class F = (Fe, () E Q) to which the probability distribution of the obser­
vations belongs; for example, we might specify that this distribution is 
unimodal, or symmetric, or normal; 

2) the set D of possible decisions {d} one can make on observing X = 

(Xl"" ,Xn), 

3) the loss L(d, (}), expressed in dollars, men's lives or some other quantifiable 
measure, that results when we make the decision d when () is true. 

A problem is a statistical one when the investigator is not in a position to 
say that X will take on exactly the value x, but only that X has some proba­
bility P {A} of taking on values in the set A. 

In this text, we've limited ourselves to two-sided decisions in which either 
we accept a hypothesis, H, and reject an alternative, K; or we reject the 
hypothesis, H, and accept the alternative, K. 

One example is: 

166 
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H: ° ~ 00 

K: ° > °0 • 

167 

In this example, we would probably follow up our decision to accept or reject 
with a confidence interval for the unknown parameter 0. This would take the 
form of an interval (Omin, Omax) and a statement to the effect that the probabil­
ity that this interval covers the true parameter value is not less than 1 - 0(. 

This use of an interval can rescue us from the sometimes undesirable "all or 
nothing" dichotomy of hypothesis vs. alternative. 

Another hypothesis/alternative pair which we considered in Section 3.6, 
under "testing for a dose response," is 

H: 01 = ... = OJ 

K: 01 < ... < OJ. 

In this example, we might want to provide a confidence interval for 
max OJ - min OJ. Again, see Sections 3.2 and 7.4. 

j j 

Typically, losses, L, depend on some function of the difference between the 
true (but unknown) value ° and our best guess 0* of this value; L(O, 0*) = 
10 - 0* I for example. In the first of the preceding examples, we might have 

L(O, d) = ° -00 

L(O, d) = 10 

L(O, d) = 0 

if ° E K and d = H, 

if 0 E Hand d = K, 

otherwise. 

Our objective is to come up with a decision rule, D, such that when we 
average out over all possible sets of observations X, we minimize the asso­
ciated risk or expected loss, 

R(O, D) = EL(O,D(X». 

Unfortunately, a testing procedure that is optimal for one value of the 
parameter, 0, might not be optimal for another. This situation is illustrated in 
Chapter 2, in Figure 2.4 with two decision curves that cross over each other. 
The risk, R, depends on 0 and we don't know what the true value of ° is! 
How are we to choose the best decision? 

This problem is complex with philosophical as well as mathematical over­
tones; we refer the interested reader to the discussions in the first chapter of 
Erich Lehmann's book, Testing Statistical Hypotheses [1986]. Our own solu­
tion in selecting an optimal test is to focus on the principle of unbiasedness 
discussed below in 14.1.3 

14.1.2. Tests 

A test, <p, is simply a decision rule that takes values between 0 and 1. When 
<p(x) = 1, we reject the hypothesis and accept the alternative; when <p(x) = 0, 
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we accept the hypothesis and reject the alternative; and when ~(x) = p, with 
o < p < 1, we flip a coin that has been weighted so that the probability is p 
that it will come up heads, whence we reject the hypothesis, and 1 - p that it 
will come up tails, whence we accept the hypothesis. 

An (X-level permutation test consists of a vector of N observations z, a 
statistic T[z], and an acceptance criterion A: R x R -+ [0, 1], such that for all 
z, ~(z) = 1 if and only if 

W(z) = L A(T[z], T[nz]) :::;; (XN! 
"en 

where II is the set of all possible rearrangements of the n + m observations. 

14.1.3. Distribution Functions, Power, Exact, and 
Unbiased Tests 

The distribution Junction F(x) = Pr{X :::;; x}; F(x) is nondecreasing on the 
real line and 0 :::;; F(x) :::;; 1. If F is continuous and differentiable, then it has a 
density J(x) such that J~'cXl J(z) dz = F(x). 

We define the power P; of a test ~ based on a statistic X as the expectation 
of~: P;«(}) = E9~(X) = J~aJdF9' where F9 is the distribution of X. Note that 
p; is a function of the unknown parameter () (and, possibly, of other, nuisance 
parameters as well). For the majority of the tests in this book, P;«(}) = 
Pr{~= 11(}}. 

If (} satisfies the hypothesis, then P;«(}) is the probability of making a Type 
I error if () is true. 

If () satisfies the alternative, then 1 - P;«(}) is the probability of making a 
Type II error if () is true. 

A test,~, is said to be exact with respect to a set W of hypotheses if EH~ = (X, 
for all HEW. A test is conservative under the same circumstances if EH~ :::;; (X, 
for all HEW. The use of an exact, and thus conservative, test guarantees that 
the Type I error will be held at or below a predetermined level. 

A test, ~, is said to be unbiased and of level (X providing that its power 
function P satisfies 

P;«(}) :::;; (X if () satisfies the hypothesis 

P;«(}) ;;:: (X if () satisfies one of the alternatives. 

That is, using an unbiased test, ~, you are more likely to reject a false hypoth­
esis than a true one. 

14.1.4. Exchangeable Observations 

Suppose that Xl' ... , Xn are distributed as F(x), while Yl , ... , Y" are distrib­
uted as F(x - b), and that F has probability density f 
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A sufficient condition for a permutation test to be exact is the exchange­
ability of the observations [Lehmann, 1986, p. 231]. Let S(z) be the set of 
points obtained from z = (Xl' ... ' xm, Y1' ... ' Yn) by permuting the coordinates 
of z in all (n + m)! possible ways. 

Theorem 1. If F is the family of all (n + m)-dimensional distributions with 
probability densities, f, that are integrable and symmetric in their arguments, 
and we wish to test alternatives of the form f(x 1, ... ,xm'Y1 - b, ... ,Yn - b) 
against the hypothesis that b = 0, a test tP is unbiased for all f E F if and only 
if L tP(z') = cx(n + m)! a.e. 

z'eS(z) 

The proof of this result relies on the fact that the set of order statistics 
constitute a complete sufficient statistic for F. See, for example, Lehmann 
[1986, pp. 45-6, 143-4,231]. Also see problem 2 in this Chapter. For more 
on exchangeability, see Koch [1982], and Romano [1990]. 

14.2. Maximizing the Power 

In this section, we set about deriving the most powerful unbiased test for the 
two-sample testing problem. We will show that the two-sample test for a 
location parameter is unbiased against stochastically increasing alternatives. 
We define the likelihood ratio and restate, without proof, the fundamental 
theorem of Neyman and Pearson. We apply this theorem to show that the 
two-sample permutation test based on the sum of the observations is uni­
formly most powerful among unbiased tests against normal alternatives. Fi­
nally, we establish the intimate interdependence of confidence intervals and 
hypothesis tests. We follow closely the derivations provided in Lehmann 
[1986]. 

14.2.1. Uniformly Most Powerful Unbiased Tests 

A family of cumulative distribution functions is said to be stochastically in­
creasing if the distributions are distinct and if () < ()' implies Fe(x) ~ F~(x) 
for all x. One example is the location parameter family for which Fe(x) = 
F(x - ()). If X and X' have distributions Fe and F~, then P{X > x} ~ 
P(X' > x}, that is, X' tends to have larger values than X. Formally, we 
say that X' is stochastically larger than X. 

Lemma 1. F1 (x) ~ Fo(x) for all x only if there exist two nondecreasing func­
tions fo and f1 and a random variable V such that fo ~ f1 for all v and the 
distributions of fo and f1 are Fo and F1 respectively. 

Proof. Set .t;(y) = inf{ x: Fi(X - 0) ~ y ~ Fi(x)}, i = 0, 1. These functions are 
nondecreasing and for .t; = J, Fi = F satisfy f[F(x)] ~ x and F[f(y)] ~ Y for 
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all x and y. Thus, y ::;;; F(xo) implies f(y) ::;;; f[F(xo)] ::;;; Xo and f(y) ::;;; Xo 

implies F[f(y)] ::;;; F(xo) implies y ::;;; F(xo). 
Let V be uniformly distributed on (0, 1). Then P{.t;(V) ::;;; x} = P{V::;;; Fi(X)} 

= Fi(x) which completes the proof. D 

We can apply this result immediately: 

Lemma 2. Let Xl' ... , Xm; Y1 , ••. , Y,. be samples from continuous distributions 
F, G, and let (,b[X1, ... ,Xm ; Y1 , ... , Y,.] be a test such that a) whenever F = G, 
its expectation is oc; and b) Yi::;;; Y; for 1 = 1, ... , n implies (,b[x1, ... ,xm; 

Yl,"" Yn] ::;;; (,b[x1,···, xm; y~, ... ,y~]. Then the expectation of (,b is greater than 
or equal to oc for all pairs of distributions for which Y is stochastically larger 
than X. 

Proof. From our first lemma, we know there exist functions, f and g, and 
independent random variables, V1 , ••• , Vm+n ' such that the distributions of 
f(V;) and g(V;) are F and G respectively and f(z) ::;;; g(z) for all z. 

and 

From condition b) of the lemma, we see that P > oc as was to be proved. D 

We are now in a position to state the principal result of this section: 

Theorem 2 (Unbiased). Let Xl' ... , Xm; Y1 , ••• , Y,. be samples from continuous 
distributions F, G. Let P(F, G) be the expectation of the critical function (,b 
defined in (14.1); that is, (,b[X 1'" ., Xm; Y1 , ... , Y,.] = 1 only if L lj is greater 

than the equivalent sum in oc of the (n : m) possible rearrangements. Then 

P(F, F) = oc and P(F, G) ~ oc for all pairs of distributions for which Y is sto­
chastically larger than X; P(F, G) ::;;; oc if X is stochastically larger than Y. 

Proof. P(F, F) = oc, follows from Theorem 1 and the definition of (,b. We can 
apply our lemmas and establish that the two-sample permutation test is 
unbiased if we can show that Yj ::;;; yj for j = 1, ... , n implies 

(,b = 1 if sufficiently many of the differences 

m+n m+n 

d(n) = L Zi - L Zj; 
i;m+l i;m+l 

are positive. For a particular permutation n = (j 1, ... , jm+n)' 
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p p 

d(n) = L zs, - L zr, 
i=l i=m+1 

where r1 < ... < rp denote those of the integers jm+1' ... , jm+n that are less 
than or equal to m, and Sl < ... < sp denote those of the integers m + 1, ... , 
m + n that are not included in the set (jm+!"" ,jm+n)' 

If L zs, - L zr, is positive and Yi ~ y;, that is Zi ~ z; for i = m + 1, ... , 
m + n, then the difference L z~, - L zr, is also positive; so that /fo(z') ~ /fo(z). 
But then we may apply the lemmas to obtain the desired result. The proof is 
similar for the case in which X is stochastically larger than Y. 0 

14.2.2. The Fundamental Lemma 

In Section lOA, we showed that ifthe variables take only a countable number 
of values, then the most powerful test of a simple hypothesis Po against a 
simple alternative P1 rejects the hypothesis in favor of the alternative only for 
those values of x with the largest values of the likelihood ratio 

( ) _ P1 (x) 
r x - Po(x). 

We can extend this result to continuous distribution functions with the aid of 
the fundamental lemma of Neyman and Pearson: 

Theorem 3. Let Po and P1 be probability distributions possessing densities Po 
and P1 respectively. 

a) There exists a test /fo and a constant k such that 

and 

1 
/fo(x) = 0 

Eo/fo(X) = IX 

when P1 (x) > kpo(x) 
when P1 (x) > kpo(x). 

b) A test that satisfies these conditions for some k is most powerful for 
testing P1 against Po at level IX. 

c) If /fo is most powerful for testing P1 against Po at level IX, then for some k 
it satisfies these conditions (except on a set that is assigned probability zero by 
both distributions and unless there exists a test at a smaller significance level 
whose power is 1). 

A proof of this seminal lemma is given in Lehmann [1986, p. 74]. 
Let Z denote a vector of n + m observations, and let S(z) be the set of points 

obtained from Z by permuting the coordinates Zi (i = I, ... , n + m) in all 
(n + m)! possible ways. 

Among all the unbiased tests of the null hypothesis that two sets of obser-
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vations come from the same distribution, which satisfy the permutation 
condition 

L ifJ(ZI) = oc(n + m)!, 
z'eS(z) 

which is the most powerful? 
Let t = T(z) denote the corresponding set of order statistics 

(Z(l) < Z(2) < ... < z(n+m»). Lehmann [1986, p. 232] showed that the problem 
of maximizing the power of a test ifJ subject to the permutation condition 
against an alternative with arbitrary fixed density, h, reduces to maximizing 

h(z) 
L ifJ(z) L h( ')" 

zeS(/) Z 
z' eS(/) 

By the fundamental lemma of Neyman and Pearson, this expression is 
maximized by rejecting the hypothesis and setting ifJ(z) = 1 for those points z 
of S(t) for which the ratio 

h(Z)/ L h(ZI) 
z' eS(/) 

(14.1) 

is largest. The most powerful unbiased oc-Ievel test is given by rejecting when 
h(z) > C[T(z), oc] and accepting when h(z) < C[T(z), oc]. To achieve oc exactly, 
it may also be necessary to use a chance device and to reject with some 
probability, y, if h(z) = C[T(z), oc]. 

To carry out this test, we order the permutations according to the values 
of the density h. We reject the hypothesis for the k largest of the values, where 

k ~ oc(n + m)! ~ k + 1. 

The critical value C depends on the sample through its order statistics T 
and on the density h. Thus different distributions for X will give rise to 
different optimal tests. 

14.2.3. Samples from a Normal Distribution 

In what follows, we consider three applications of the likelihood ratio: testing 
for the equality of the location parameters in two populations, testing for the 
equality of the variances, and testing for bivariate correlation. 

Suppose that Zl' ... , Zm and Zm+l' ... , Zn+m are independent random 
samples from normal populations N(1'/, (J2) and N(1'/ + <5, (J2). Then 

[ 1 (m n+m )] h(z) = (2n(JfN/2 exp --2 2 L (Zj - 1'/)2 + . L (Zj - 1'/ - <5)2 . 
(J )=1 )=m+l 

Before substituting this expression in our formula, 14.1, we may eliminate 
all factors which remain constant under permutations of the subscripts. These 
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lI+m 
include (2ncrf(n+m)/2, n<5(<5 + ,,), and L (Zj - ,,)2. The resulting test rejects 

when exp [<5 j~t:l Zj] > C[T(z),a] ~r:l equivalently, when the sum of the 

observations in the treated sample LZj is large. This sum can take at most 
(n + m)! possible values and our rejection region consists of the a(n + m)! 
largest. 

This permutation test is the same whatever the unknown values of" and cr 
and thus is uniformly most powerful against normally-distributed alterna­
tives among all unbiased tests of the hypothesis that the two samples come 
from the same population. 

14.2.4. Testing the Equality of Variances 

As a second and elementary illustration of the likelihood ratio approach, 
suppose we are given that Z l' ... , ZII are independent and identically normally 
distributed with mean 0 and variance cr2, N(O,cr2), and that ZII+l, ... , Zm+1I are 
independent and identically normally distributed with mean 0 and variance 
r2, N(O, r2). We wish to test the hypothesis that cr2 = r2 against the alterna­
tive that cr2 < r2. 

Let f} = r2/cr2 and note that hypothesis and alternative may be rewritten as 
H: f} = 1 vs K: f} > 1. 

[ 1 II 1 lI+m ] 
Then h(z) = (2nf(lI+m)/2cr-mr-lIexp --2 L zJ + -2 L zJ 

2cr j=l 2r j=m+1 

[ 1 (" lI+m)] = (2ncrf(lI+m)/2f}-1I/2 exp - -2 f) L zJ + L zJ 
2r j=l j=m+1 

[ 1 ( II lI+m)] = (2ncrf(lI+m)/2f}-1I/2 exp --2 (f) - 1) L zJ + L zJ . 
2r j=l j=l 

Eliminating terms that are invariant under permutations of the combined 
sample, such as the sum of the squares of all n + m observations, we are left 
with the expression 

exp [-212(f} - 1) t zJ]. 
r J=l 

Our test statistic is the sum of the squares of the observations in the first 
sample. 

14.2.5. Testing for Bivariate Correlation 

Suppose we have made N simultaneous observations on the pair of variables 
X, Yand wish to test the alternative of positive dependence of Yon X against 
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the null hypothesis of independence. In formal terms, if y" is the random 
variable whose distribution is the conditional distribution of Y given that 
X = x, we want to test the null hypothesis that Yx has the same distribution 
for all x, against the alternative that if x' > x, then Yx' is likely to be larger 
than Y". 

To find a most powerful test of this hypothesis that is unbiased against 
alternatives with probability density h(z), we need to maximize the expression 

h(z) 
L t/J(z) L h( ')" 

zeS(r) Z 
z'eS(r) 

For bivariate normal alternatives, 

h(z) = (21tO"T.J!=P2)-n exp [ - 2(1 ~ p2)] 

1 n 2p n 1 n 
where A = -2 L (Xj - 11)2 + - L (Xj - 11)(Yj - v) + -2 L (Yj - V)2. 

20" j=l O"T j=l 2T j=l 

Many of the sums that occur in this expression are invariant under permu­
tations of the subscripts j. These include the four sums LXj, LYj, LX], 
LyJ. Eliminating all these invariant terms leaves us with the test statistic 
r = L XjY,,(j)' 

We evaluate this statistic both for the original data and for all n! permuta­
tions of the subscripts of the y's, keeping the subscripts on the x's fixed. We 
reject the null hypothesis in favor of the alternative of positive dependence 
only if the original value of the test statistic exceeds all but ex% of the values 
for the rearrangements. 

Reordering the x's so that x(1) ~ X(2) ~ ••• ~ x(n)' we see that this test is 
equivalent to using Pitman correlation (Section 3.5) to test the hypothesis of 
the randomness of the y's against the alternative of an upward trend. 

14.3. Confidence Intervals 

Let x = {X1 ,X2 , ••• ,Xn } be an exchangeable sample from a distribution, Fe, 
which depends upon a parameter, fJ E n. A family of subsets, S(x), of the 
parameter space n is said to be a family of confidence sets for fJ at level 1 - ex 
if 

PeW E S(X)} ~ 1 - ex 

The family is said to be unbiased if 

PeW E S(X)} ~ 1 - 0( 

for all fJ E H(fJ'). 

for all fJ E n - H(fJ'). 

The construction of a confidence set from a family of acceptance regions is 
described in Chapter 3. The following theorem shows us this construction 
can proceed in either direction. 
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Theorem 4.1. For each 0' E Q, let A(O') be the acceptance region of the level-ex 
test for H(O'): 0 = 0', and for each sample point, x, let Sex) denote the set of 
parameter values {o: x E A(O), 0 E Q}. Then Sex) is a family of corifidence sets 
for 0 at confidence level 1 - ex. 

4.2. If for all 0', A(O') is UMPU for testing H(O') at level ex against the 
alternatives K(O'), then for each 0' in Q, SeX) minimizes the probability 

for all 0 E K(O') 

among all unbiased level 1 - ex family of corifidence sets for O. 

Proof4.1. By definition, 0 E Sex) if and only if x E A(O), hence P8 {O E SeX)} = 
P8 {X E A(O)} ~ 1 - ex. 

Proof 4.2. If S*(x) is any other family of unbiased confidence sets at level 
1 - ex and if A*(O) = {x: 0 E S*(x)}, then 

P8 {X E A*(O')} = P8 {O' E S*(x)} ~ 1 - ex for all 0 E H(O'), 

and 

for all 0 E Q - H(O'), 

so that A*(q') is the acceptance region of a level-ex unbiased test of H(O'). 
Since A is UMPU, 

for all 0 E Q - H(O'), 

hence P8 {O' E S*(x)} ~ P8 {O' E Sex)} for all 0 E Q - H(O'), as was to be 
proved. D 

14.4. Asymptotic Behavior 

A major reason for the popularity of the permutation tests is that with very 
large samples their power is almost indistinguishable from that of the most 
powerful parametric tests. To establish this result, we need to know some­
thing about the distribution of the permutation statistics as the sample size 
increases without limit. Two sets of results are available to us. The first, due 
to Wald and Wolfowitz [1947] and Hoeffding [1953] provides us with con­
ditions under which the limiting distribution is normal under the null hy­
pothesis; the second, due to Albers, Bickel, and Van Zwet [1976] and Bickel 
and Van Zwet [1978] provides conditions under which this distribution is 
normal for near alternatives. 

14.4.1. A Theorem on Linear Forms 

Let SN = (SN1' SNZ,"" SNN) and UN = (U N1 ' UNZ , .. ·, UNN ) be sequences of real 
numbers and let SN. = LSNj/N; UN. = LuNj/N. 
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The sequences SN satisfy the condition W, if for all integers r > 2, 

1~)SNi - sN.),1 . b d d b l" II W(SN, r) = L [( )z]'/z IS oun e a ove lor a n. 
sNi - SN. 

The sequences SN' UN jointly satisfy the condition Hl , if for all integers 
r > 2, 

lim N,/Z-l W(SN' r) W(UN, r) = 0 
N 

The sequences SN, UN jointly satisfy the condition Hz, if 
for all integers r > 2, 

max (sNi - SN.)' max (UNi - UN.>' 
lim N i ~i ;-:-__ -----:-:::-
N L(SNi - SN.)' L(uNi - UN.)' 

For any value of N let X = (xl,xz, ... ,XN) be a chance variable whose 
possible values correspond to the N! permutations of the sequence AN = 
(al>az, ... ,aN). Let each permutation of AN have the same probability liN! 
and let E(Y) and SD(Y) denote the expectation and standard deviation of the 
variable Y. 

Theorem 5. Let the sequences AN = (al>az, .. ·,aN) and DN = (dl,dz, ... ,dN) 
for N = 1, 2, ... , satisfy any of the three conditions W, Hl , and Hz. Let 
the chance variable LN be defined as LN = L djxj. Then as N -+ 00, 

1 f' Pr{LN - E(LN) < tSD(LN)} -+ ~ e-xz/z dx. 
v 21t -00 

A proof of this result for condition W is given in Wald and Wolfowitz 
[1944]. The prooffor conditions Hl and Hz is given in Hoeffding [1953]. 

This theorem applies to the majority of the tests we have already consid­
ered, including: 

1) Pitman's correlation Ldjaj; 
2) the two-sample test with observations al> ... , am+,,; and dj equal to one if 

i = 1, ... , m and zero otherwise, 
3) Hotelling's T with {alj} and {aZi} the observations-both seque~s must 

separately satisfy the conditions of the theorem, and d j = 11m for i = 1, 
... , m; dj = -lin for i = m + 1, ... , m + n. 

14.4.2. Asymptotic Efficiency 

In this section, we provide asymptotic expansions to order N-l for the power 
of the one- and two-sample permutation tests and compare them with the 
asymptotic expansions for the most powerful parametric unbiased tests. The 
general expansion takes the form 
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bN = Co + c 1N-1/2 + C2,NN-1 + o(N-1), 

where the coefficients depend on the form of the distribution, the signifi­
cance level, and the alternative-but in both the one- and two-sample cases, 
the expansions for the permutation test and the t-test coincide for all terms 
through N-1• The underlying assumptions are: 1) the observations are inde­
pendent; 2) within each sample they are identically distributed; and 3) the two 
populations differ at most by a shift, G(x) = F(x - 15) where 15 ~ O. P(p, F, 15) 
and P(t, F, 15) are the power functions of the permutation test and the param­
etric t-test, respectfully (see Section 2.3). The theorem's other restrictions 
are technical in nature and provide few or no limitations in practice; e.g., the 
significance level must lie between 0 and 1 and the distribution must have 
absolute moments of at least 9th order. We state the theorem for the one­
sample case only. 

Theorem 6. Suppose the distribution F is continuous and that positive numbers 
C, D, and r > 8 exist such that f Ixlr dF[x] ~ C and 0 ~ 15 ~ DN-1/2, then if IX 

is neither 0 nor 1, there exists a B > 0 depending on C and D, and a b > 0 
depending only on r such that IP(p, F, 15) - P(t, F, 15)1 ~ BN-1/b• 

Proof of this result and details of the expansion are given in Bickel and 
Van Zwet [1976]. The practical implication is that for large samples the per­
mutation test and the parametric t-test make equally efficient use of the data. 

Robinson [1989] finds approximately the same coverage probabilities for 
three sets of confidence intervals for the slope of a simple linear regression 
based, respectively, on: 1) the standardized bootstrap; 2) parametric theory; 
and 3) a permutation procedure. Under the standard parametric assump­
tions, the coverage probabilities differ by o(n-1 ), and the intervals themselves 
differ by O(n-l) on a set of probability 1 - O(n-1 ). 

14.4.3. Exchangeability 

The requirement that the observations be exchangeable can be relaxed at 
least asymptotically for some one-sample and two-sample tests. Let Xl' ... , 
X" be a sample from a distribution F that mayor may not be symmetric. Let 
R,,(x, II,,) be the permutation distribution of the statistic T,,(X 1'" ., X,,) and 
let r" denote the critical value of the associated permutation test; let Jix, F) 
be the unconditional distribution of this same statistic under F; and let <I> 
denote the standard normal distribution function. 

Theorem 7 If F has mean 0 and finite variance (12 > 0, and T" = nl/2X then as 
n -+ 00, 

sup", I R,,(x, II,,) - J,,(x, F) I -+ 0 with probability 1, 
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and supx I Rn(x, IIn) - <D(x/u)l-+ 0 with probability 1. Thus rn -+ UZa , with prob­
ability 1 and EF[tP(Rn)] -+ (X. 

A proof of this one-sample result is given in Romano [1990]; a similar 
one-sample result holds for a permutation test of the median subject to some 
mild continuity restrictions in the neighborhood of the median. 

The two-sample case is quite different. Romano [1990] shows that if Fx 
and Fy have common mean Jl and finite variances ui and ui, respectively, 
Tm,n = nl/2(X - Y,), and m/n -+ A. as n -+ 00, the unconditional distribution of 
Tm,n is asymptotically Gaussian with mean 0 and variance ui + (1 - A.)uNA. 
while the permutation distribution of Tm,n is asymptotically Gaussian with 
mean 0 and variance ui + (1 - A.)ui/A.. Thus, the two asymptotic distribu­
tions are the same only if either a) the variances of the two populations are 
the same, or b) the sizes of the two samples are equal (whence A. = 1). 

Romano also shows that whatever the sample sizes, a permutation test for 
the difference of the medians of two populations will not be exact, even 
asymptotically (except in rare circumstances) unless the underlying distribu­
tions are the same. 

14.5. Questions 

1. Unbiased. The test t/J == ex is a great timesaver; you don't have to analyze the data; 
you don't even have to gather data! All you have to do is flip a coin. 
a) Prove that this test is unbiased. 
b) Prove that a biased test cannot be uniformly most powerful. 

2. Sufficiency. A statistic, T, is said to be sufficient for a family of distributions P = 
{Pe, () En} (or sufficient for ()) ifthe conditional probability of an event given T = t 
is independent of (). 
a) Let Xl' ... , x. be independent, identically distributed observations from a 

continuous distribution Fe. Show that the set of order statistics T = 
{X(l) < ... < x(l)} is sufficient for (). 

b) Let Xl' ... , X. be a sample from a uniform distribution U(O, (}), with density 
h(x) = 1/(}, that is, P(x ~ u) = u/(} for 0 ~ u ~ (). Show that T = max(x l , ... , x.) 
is sufficient for (). 

c) Let Xl' ... , X. be a sample from the exponential distribution with density 

~e-(X-.)/b, b > O. Show that the pair {min(xI"",x.),Lx;} is sufficient for a, b. 
b 

3. Likelihood ratio. 
a) Suppose that {Xi' i = 1, ... ,n} is N(/J,u2 ) and {Y;, i = 1, ... ,m} is N(/J,T2 ). 

Derive the most powerful unbiased permutation test for testing H: T2/U2 = 1 
against notH: T2/U2 = 2. 

b) The times between successive decays of a radioactive isotope are said to follow 
the exponential distribution, that is, the probability that an atom will not decay 
until after an interval of length t is 1 - exp[ -t/A]' (A similar formula provides 
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a first-order approximation to the time, t, you will spend waiting for the next 
bus.) Suppose you had two potentially different isotopes with parameters A1 
and A2 respectively. Derive a UMPU permutation test for testing H: A1 = A2, 
against notH: A1 > A2 • 

c) More generally, suppose that an item is reliable for a fixed period, b, after which 
its reliability decays at a constant rate A. Then its lifetime has the exponential 
density r 1 exp[x - b]/A. What statistic would you use for testing that H: A1 = 
A2, against not H: A1 > A2? Is your answer the same as in 2b)? Why not? (Hint: 
Look for sufficient statistics. Note that the problem remains invariant under an 
arbitrary scale transformation applied to both sets of data. And see Section 3.4). 



Bibliography 

For your convenience, this bibliography is divided into four parts. 
The first, main bibliography, is of the research literature on permutation 

tests from the introduction of this straightforward approach to hypothesis 
testing by E.J.G. Pitman and R.A. Fisher in the mid 1930s to the present date. 
Each citation in this section is indexed in accordance with the nature of its 
contribution-concept, (univariate) test, algorithm, multivariate (test) and so 
forth. 

A second, supporting bibliography, consists of articles we have cited in the 
text but which are not articles on permutation per se. 

Since so much of today's research on permutation tests focuses on methods 
of rapid computation, we include a third, separate bibliography on computa­
tional methods. 

A final and fourth bibliography consists of those few papers which we 
consider seminal both to an understanding of permutation tests and to the 
development of the subsequent vast wealth of articles on the topic. We hope 
every reader will select readings from this latter bibliography along with 
articles which are specific to her own interests. 

In forming these bibliographies, we restricted ourselves to material on 
permutations and permutation tests which was directly related to hypothesis 
testing and estimation. Although, strictly speaking, every rank test is a per­
mutation test, we did not include articles on rank tests in the bibliography 
unless, as is the case with some seminal work on multivariate analysis, the 
material is essential to an understanding of all permutation tests. Conference 
proceedings are excluded, the expected exception being a seminal paper by 
John Tukey which is available in no other form. 

We have tried to be comprehensive, yet selective, and have personally read 
all but three of the articles in the bibliography. We hope you will find this 
bibliography of value in your work. We would appreciate your drawing to 
our attention articles on the theory and application of permutation tests 
which we may have excluded inadvertently. 

180 



BIBLIOGRAPHY PART 1: 

Randomization 

Adamson P; I Hajimohamadenza, M Brammer and IC Campbell. Intrasynatosomal 
free calcium concentration is increased by phobol esters via a 1,4-dihydro-pyridine­
sensitive (I-type) CA2 +. European J Pharmacy; 1989; 162: 59-66. 
application. 

Adderley EE. Nonparametric methods of analysis applied to large-scale seeding ex­
periments. J Meteor; 1961; 18: 692-694. 
application. 

Agresti A. Categorical Data Analysis. New York: John Wiley & Sons; 1990. 
xtab. 

Agresti A. A survey of exact inference for contingency tables. Statistical Science; 1992; 
7: 131-177. 
xtab/concept algorithm/review. 

Agresti A; JB Lang and C Mehta. Some empirical comparisons of exact, modified 
exact, and higher-order asymptotic tests of independence for ordered categorical 
variables. Commun Statist-Simul; 1993; 22: I-IS. 
cross-tab/Monte Carlo. 

Agresti A; CR Mehta and NR Patel. Exact inference for contingency tables with 
ordered categories. J Am Stat Assoc, 1990; 85: 453-458. 

Agresti A; D Wackerly and JM Boyett. Exact conditional tests for cross-classifica­
tions: approximations of attained significance levels. Psychometrika; 1979; 44: 75-
83. 
tests. 

Agresti A; D Wackerly. Some exact conditional tests of independence for R x C 
cross-classification tables. Psychometrika; 1977; 42: 111-126. 
algorithm/independence. 

Albers W; PJ Bickel and WR Van Zwet. Asymptotic expansions for the power of 
distribution-free tests in the one-sample problem. Annal Stat; 1976; 4: 108-156. 
power/asymptotic. 

Albert A; JP Chapelle, C Huesghem, GE Kulbertus and EK Harris. Advanced Inter­
pretation of Clinical Laboratory Data. C Huesghem, A Albert and ES Benson. New 
York: Marcel Dekker; 1982. 

Alderson MR; R Nayak. A study of space-time clustering in Hodgkin's disease in the 
Manchester Region. Brit J Prev Soc Med; 1971; 25: 168-73. 

Alroy J. 1994. "Permutation tests for the presence of phylogenetic structure: an edito­
rial." Systematics Biology 43: 430-437. 

Andersen PK; 0 Borgan, R Gill and N Keiding. Linear nonparametric tests for 
comparison of counting processes with applications to censored survival data. Int 



182 

Statist Rev; 1982; 50: 219-58. 
censor/survival. 

Bibliography Part 1: Randomization 

Andres AM. A review of classic non-asymptotic methods for comparing two propor­
tions by means of independent samples. Commun Statist-Simul; 199; 20: 551-
583. 
xtab/power. 

Armitage P. Statistical Methods in Medical Research. New York: John Wiley & Sons; 
197I. 
Fisher's exact. 

Arnold HJ. Permutation support for multivariate techniques. Biometrika; 1964; 51: 
65-70. 
multivariate. 

Ascher S, J Bailar. Moments of the Mantel-Valand procedure. J Statist Comput Simul; 
1982; 14: 101-11I. 
asymptotic. 

Baglivo J; D Olivier, and M Pagano. Methods for the analysis of contingency tables 
with large and small cell counts. J Am Statist Assoc, 1988; 83: 1006-1013. 
algorithm/xtab. 

Bahadur, RR; M Raghavachari. Some asymptotic properties of likelihood ratios on 
general sample spaces. in E LeCam and L Neyman Eds. Sixth Berkeley Symposium 
of Mathematical Statistics and Probability. Berkeley CA: University of California 
Press; 1970: 129-152. 
theory. 

Bailer, A John. Testing variance equality with randomization tests. J Statist Comput 
Simul; 1989; 31: 1-8. 

Baker FB, RO Collier. Some empirical results on variance ratios under permutation 
in the completely randomized design. J Am Statist Assoc; 1966; 61: 813-820. 
p-dist. 

Baker FB; LJ Hubert. Inference procedures for ordering theory. J Educ Statist; 1977; 
2: 217-233. 
p-dist 

Barbella P; L Denby and JM Glandwehr. Beyond exploratory data analysis: The 
randomization test. Math Teacher; 1990; 83: 144-49. 
concept. 

Barber WC; MV Dayhoff. Atlas of Protein Sequence and Structure. Washington DC: 
National Biomedical Research Foundation; 1972. 
application. 

Barnard GA. Conditionality versus similarity in the analysis of 2 x 2 tables. in Essays 
in Honor of CR Rao. Amsterdam: N Holland; 1982: 59-65. 
xtab/concept. 

Barnard GA. Discussion of paper by MS Bartlett. J Roy Statist Soc B; 1963; 25: 
294. 
estimating p. 

Barton DE; FN David. The random intersection of two graphs. Research papers in 
statistics. FN David. New York: Wiley; 1966. 
p-dist. 

Barton DE; FN David. Randomization basis for multivariate tests. Bull Int Statist 
Inst; 1961; 39: 455-467. 
multivariate. 

Barton DE; FN David, E Fix, M Merrington and P Mustacchi. Tests for space-time 
interaction and a power transformation. From Lucien LeCam. Proceedings 5th 
Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: Uni­
versity of California Press; 1967; IV. 
clusters. 



Bibliography Part 1: Randomization 183 

Basu D. Discussion of Joseph Berkson's paper "In dispraise ofthe exact test". J Statist 
Plan lrifer; 1979; 3: 189-192. 
xtab/concept. 

Basu D. On the relevance of randomization in data analysis (with discussion). in 
Survey Sampling and Measurement. NK Namboodiri, Ed. New York: Academic 
Press; 1978: 267-339. 
concept/limits. 

Basu D. Randomization analysis of experimental data: The Fisher randomization 
test. J Am Statist Assoc; 1980; 75: 575-582. 

Bedrick KE; Hill JR. Outlier tests for logistic regression: a conditional approach. 
Biometrika; 1990; 77: 815-827. 
logistic regression. 

Bell CB; KA Doksum. Distribution-free tests of independence. Annals Math Statist; 
1967; 38: 429-446. 
independence/concept/theory. 

Bell CB; KA Doksum. Some new distribution free statistics. Annals Math Statist; 
1965; 36: 203-214. 

Bell CB; JF Donoghue. Distribution-free tests of randomness. Sankhya A; 1969; 31: 
157-176. 
time-series/stationarity /theory. 

Bell CP; PK Sen. Randomization Procedures. Nonparametric Methods. PR Krish­
naiah and PK Sen, Editors. Amsterdam: North-Holland; 1984; 4: 1-30. 
concept/review. 

Berkson J. Do the marginals of the 2 x 2 table contain relevant information respect­
ing the table proportions? J Statist Prob lriference; 1979; 3: 193-7. 
concept/xtab. 

Berkson 1. In dispraise ofthe exact test. J Stat Plan lrif; 1978,2: 27-42. 
xtab/concept. 

Berry KJ; KL Kvamme, and PWjr Mielke. Improvements in the permutation test for 
the spatial analysis of the distribution of artifacts into classes. Am Antiquity; 1983; 
48: 547-553. 
application. 

Berry KJ; KL Kvamme, and PWjr Mielke. Permutation techniques for the spatial 
analysis of the distribution of artifacts into classes. Am Antiquity; 1980; 45: 55-
59. 
application. 

Berry KJ; PWjr Mielke, and RKW Wary. Approximate MRPP p-values obtained 
from four exact moments. Commun Statist B; 1986; 15: 581-589. 
MRPP /algorithm. 

Berry KJ; PWjr Mielke. Computation of finite population parameters and approxi­
mate probability values of multi-response permutation procedures (MRPP). 
Commun Statist B; 1983; 12: 83-107. 
multivariate. 

Berry KJ; PWjr Mielke. Computation of exact probability values for multiresponse 
permutation procedures (MRPP). Commun Stat B; 1984; 13: 417-432. 
algorithm/multivariate. 

Berry KJ; PWjr Mielke. Computation of exact and approximate probability values 
for a matched-pairs permutation test. Commun Statist B; 1985; 14: 229-248. 
algorithmjmatched-pairs/sign test. 

Berry KJ; PWjr Mielke, and SG Helmericks. Exact confidence limits for proportions. 
Educat Psych Measure; 1988; 48: 713-716. 
confidence limits/proportions. 

Berry KJ; PWjr Mielke. A measure of association for nominal independent variables. 
Educat Psych Measure. 1992; 52: 895-98. 



184 Bibliography Part 1: Randomization 

Besag J; P. Clifford. Generalized Monte Carlo significance tests. Biometrika; 1989; 76: 
633-42. 

Besag J; PJ Diggle. Simple Monte Carlo tests for spatial pattern. App Stat; 1977; 25: 
327-333. 

Besag JE. Some methods of statistical analysis for spatial data. Bull Int Statist Inst; 
1978; 47: 77-92. 
application. 

Bickel PM; WR Van Zwet. Asymptotic expansion for the power of distribution free 
tests in the two-sample problem. Annal Statist; 1978; 6: 987-1004 (corr 1170-1171). 
power. 

Bickel PJ. A distribution free version of the Smirnov two-sample test in the multi­
variate case. Annals Math Statist; 1969; 40: 1-23. 
multivariate/conditional p-dist. 

Birch MV. The detection of partial association. J Roy Statist Soc B; 1964/5; 26/27: I 
313-324 II 1-124. 
xtab. 

Birnbaum ZW. Computers and unconventional test statistics. in Reliability and Bio­
metry. F Presham and RJ Serfing Eds. Philadelphia: SIAM; 1974. 

Boess FG; Balasuvramanian, MJ Brammer and IC Campbell. Stimulation ofmuscar­
inic acetylcholine receptors increases synaptosomal free calcium concentration by 
protein kinase-dependent opening of L-type calcium channels. J Neurochem; 1990; 
55: 230-236. 
application. 

Boik RJ. The Fisher-Pitman permutation test: a non-robust alternative to the normal 
theory F-test when variances are heterogeneous. British J Math Stat Psych; 1987; 
40: 26-42. 
misuse. 

Boos DD; C Browne. Testing for a treatment effect in the presence of nonresponders. 
Biometrics; 1986; 42: 191-197. 
misusejWilcoxon/power/nonresponders. 

Booth JG; RW Butler. Randomization distributions and saddlepoint approximations 
in general linear models. Biometrika; 1990; 77: 787-796. 
saddlepointjbootstrap. 

Box GEP; SL Anderson. Permutation theory in the development of robust criteria 
and the study of departures from assumptions. J Roy Statist Soc B; 1955; 17: 1-34 
(with discussion). 
p-dist/tests. 

Boyd MN; PK Sen. Union intersection tests for ordered alternatives in ANOCOV A. 
J Amer Statist Assoc; 1986; 81: 526-32. 
covariate/design. 

Boyett JM; JJ Shuster. Nonparametric one-sided tests in multivariate analysis with 
medical applications. J Amer Statist Assoc; 1977; 72: 665-668. 
application/multivariate. 

Bradbury IS. Analysis of variance vs randomization tests: a comparison (with discus­
sion by White and Still). Brit J Math Stat Psych; 1987; 40: 177-195. 
p-group/robust/design. 

Bradbury IS. Approximations to permutation distributions in the completely ran­
domized design. Commun Statist T-M A; 1988; 17: 543-55. 
asymptotic. 

Bradley JV. Distribution Free Statistical Tests. New Jersey: Prentice-Hall; 1968. 
concept/tests. 

Bradley RA; S Elton. Perspectives from a weather modification experiment. Commun 
Statist A; 1980; 9: 1941-61. 
application. 



Bibliography Part 1: Randomization 185 

Breslow NE; NE Day. I. Analysis of Case Control Studies. II. Design and Analysis of 
Cohort Studies. New York: Oxford University Press; 1980, 1987. 
test/p-distjestimation/logistic models. 

Brockwell PJ; PWjr Mielke. Asymptotic distributions of matched-pair permutation 
statistics based on distance measures. Austral J Statist; 1984; 26: 30-38. 
asymptotic/rank tests/matched-pairs. 

Brockwell PJ; PWjr Mielke, and J Robinson. On non-normal invariance princi­
ples for mUlti-response permutation procedures. Austral J Statist; 1982; 24: 33-
41. 
theory. 

Bross IDJ. Taking a covariable into account. J Am Statist Assoc; 1964; 59: 725-
736. 
application/covariate. 

Brown BM. Cramer-von Mises distributions and permutation tests. Biometrika; 1982; 
69: 619-624. 

Brown BM; TP Hettmansperger. Affine invariant rank methods in the bivariate loca­
tion model. J Roy Statist Soc B; 1987; 49: 301-310. 
rankjbivariate/location/application. 

Brown CC; TR Fears. Exact significance levels for multiple binomial testing with 
applications to carcinogenicity screens. Biometrics; 1981; 37: 763-774. 
exact/simultaneous inference. 

Bryant EH. Morphometric adaptation of the housefly, Musa domestica L., in the 
United States. Evolution; 1977; 31: 580-596. 
application/cluster. 

Buckland ST; PH Garthwaite. Quantifying precision of mark-recapture estimates 
using the bootstrap and related methods. Biometrics; 1991; 47: 225-268. 

Buonaccorsi JP. A note on confidence intervals for proportions in finite populations. 
Amer Stat; 1987; 41: 215-218. 

Busby DG. Effects of aerial spraying of fenithrothion on breeding white-throated 
sparrows. J Appl Ecology; 1990; 27: 745-755. 
application. 

Buse A; NK Dastoor. The power of two exact tests for structural change in the 
presence of heteroscedascity. Commun Statist A. 1993; 22: 2239-57. 

Cade BS; RW Hoffman. Winter use of Douglas-fir forests by blue grouse in Colorado. 
J Wildlife Man; 1990; 27: 743-755. 
application. 

Casagrande JJ; MC Pike, PG Smith. The power function of the exact test for com­
paring two binomial distributions. App Statist; 1978; 27: 176-181. 
power/exact test/cross-tabulation. 

Chapelle JP; A Albert, JP Smeets, C Heusghem, and HE Kulberts. Effect of the 
hyptoglobin phenotype on the size of a mycocardial infarct. New Eng J Med; 1982; 
307: 457-463. 

Chatterjee SK; PK Sen. Calcutta Statist Assoc Bull; 1973; 22: 13-50. 
robust. 

Chatterjee SK; PK Sen. Nonparametric tests for the bivariate two-sample location 
problem. Calcutta Statist Assoc Bull; 1964; 13: 18-58. 
locationjbivariate. 

Chatterjee SK; PK Sen. Nonparametric tests for the multivariate, multisample loca­
tion problem. Essays in Probability and Statistics in memory of SN Roy. RC Bose et 
al. Eds. Chapel Hill NC: University of North Carolina Press; 1966. 
tests/m ultivar. 

Chen XR. Large sample theory of permutation tests in the case of a randomized block 
design. J Wuhan University, Natural Science Edition; 1983; 4: 1-12. 
clt. 



186 Bibliography Part 1: Randomization 

Chen XR. Two problems of linear permutation statistics. Acta Math Appl Sinica; 
1981; 4: 342-355. 
concept. 

Chen XR. A two-sample permutation test with heterogeneous blocks. Wuhan Daxue 
Xuebao; 1980; 4: 1-14. 
test/exact. 

Chernoff H, IR Savage. Asymptotic normality and efficiency of certain nonparametric 
test statistics. Annal Math Statist; 29. 

Chung JH; DAS Fraser. Randomization tests for a multivariate two-sample problem. 
J Am Statist Assoc; 1958; 53: 729-735. 

Churchill GA. 1994. "Emperical threshold values for quantitative tract mapping." 
Genetics 138: 963-97l. 

Clark RM. A randomization test for the comparison of ordered sequences. M athem 
Geol; 1989; 21: 429-442. 
application/chose. 

Cliff AD; JK Ord. Evaluating the percentage points of a spatial autocorrelation coeffi­
cient. Geog Analysis; 1971; 3: 51-62. 
cluster. 

Cliff AD; JK Ord. Spatial Autocorrelation. London: Pion; 1973. 
application. 

Cliff AD; JK Ord. Spatial Processes: Models and Applications. London: Pion Ltd; 
1981. 
space-time/application. 

Cohen A. Unbiasedness of tests for homogeneity. Annal Statist; 1987; 15: 805-816. 
theory. 

Collier RO jr; FB Baker. The randomization distribution of F-ratios for the split-plot 
design-an empirical investigation. Biometrika; 1963; 50: 431-438. 
p-dist/design/simulation. 

Collier RO,jr; FB Baker. Some Monte Carlo results on the power ofthe F-test under 
permutation in the simple randomized block design. Biometrika; 1966; 53: 199-
203. 
simulation/power/design. 

Collins MF. A permutation test for planar regression. Austral J Statist; 1987; 29: 
303-308. 

Conlon M; RG Thomas. AS280, Power function for Fisher's exact test. Applied Statis­
tics; 1993; 42: 258-260. 

Conover WJ. Practical Nonparametric Statistics. New York: John Wiley & Sons; 
1971. 

Constanzo CM; LJ Hubert and RG Golledge. A higher moment for spatial statistics. 
Geographical Analysis; 1983; 15: 347-35l. 
application/moments. 

Conti PL. Oscillation measures as randomness tests. Metron. 1991; 49: 373-86. 
Cornfeld J. A statistical problem arising from retrospective studies. Proceedings of 3rd 

Berkeley Symposium on Mathematical Statistics and Probability. J. Neyman. Ed. 
Berkeley: University of California Press; 1956; 4: 135-138. 

Cornfield J. On samples from finite populations. J Am Statist Assoc; 1944; 39: 236-
239. 
concept. 

Cornfield J; JW Tukey. Average values of mean squares in factorials. Annal Math 
Statist; 1956; 27: 907-949. 
p-dist/concept/design. 

Cory-Slechta DA. Exposure duration modalities, the effects oflow-Ievellead on fixed 
interval performances. Neurotoxicology; 1990; 11: 427-442. 
application. 



Bibliography Part 1: Randomization 187 

Cory-Slechta DA; B Weiss and C Cox. Tissue distribution of Pb in adult vs old rats: 
a pilot study. Toxicology; 1989; 59: 139-150. 
application. 

Cotton JW. Even better than before. Contemp Psychol; 1973, 18: 168-169. 
Cox DF; 0 Kempthorne. Randomization tests for comparing survival curves. Bio­

metrics; 1963; 19: J07-317. 
test/application. 

Cox DR. Interpretation of nonadditivity in Latin Square. Biometrika; 1958; 45: 69-
73. 
design. 

Cox DR. A note on weighted randomization. Annal Math Statist; 1956; 27: 1144-
1150. 
p-dist/design. 

Cox DR. A remark on randomization in clinical trials. Utilitas Math; 1982; 21A: 
242-252. 
concept/application/clinical trials/restriction. 

Cox DR; PAW Lewis. The Statistical Analysis of Series of Events. New York: Wiley 
& Sons; 1966. 
independence. 

Cox DR; EJ Shell. Analysis of Binary Data 2 Ed. London: Chapman-Hall; 1989. 
xtab. 

Cox MAA; RL Plackett. Small samples in contingency tables. Biometrika; 1980; 67: 
1-13. 
algorithm/xtab. 

Crump KS, KB Howe, and RL Kodell. Permutation tests for detecting teratogenic 
effects. Krewski D; C Franklin, editors. Statistics in Toxicology. New York: Gordon 
and Breach Science Publishers; 1990: 347-375. 
choice/teratogenic/application. 

D' Abadie C; F Proschan. Stochastic versions of rearrangement inequalities. YL Tong, 
Editor. Inequalities in Statistics and Probability. Hayward CA: IMS, 1984: 4-12. 
algorithm. 

D' Agostino RB; W Chase and A Belanger. The appropriateness of some common 
procedures for testing the equality of two independent binomial populations. Am 
Statistician; 1988; 42: 198-202. 

Daniels HE. Relation between measures of correlation in the universe of sample 
permutations. Biometrika; 1944; 33: 129-135. 
p-dist/dependence. 

Dansie BR. A note on permutation probabilities. J Roy Statist Soc B; 1983; 45: 22-24. 
p-dist. 

David FN. Measurement of diversity. Proceedings 6th Berkeley Symposium; 1971; 1: 
631-648. 

David FN; DE Barton. Combinatorial Chance. New York: Hafner; 1962. 
concept. 

David FN; DE Barton. Two space-time interaction tests for epidemicity. Brit J Pre­
vent and Soc Med; 1966; 20: 44-48. 
clustering. 

Davis A W. On certain ratio statistics in weather modification experiments. Techno­
metrics; 1979; 21: 283-290. 
p-dist/power/application. 

Davis AW; TP Speed. An Edgeworth expansion for the distribution of the F-ratio 
under the randomization model for the randomized block design. SS Gupta and JO 
Berger. Statistical Decision Theory and Related Topics. New York: Springer Verlag; 
1988; 2: 119-129. 
asymptotic. 



188 Bibliography Part 1: Randomization 

Davis LJ. Exact tests for 2 x 2 contingency tables. Am Statistician; 1986; 40: 139-140. 
xtab. 

Denker M; ML Puir. Asymptotic behavior of multi-response permutation proce­
dures. Adv Appl Math; 1988; 9: 200-210. 
asymptotic/MMRP. 

Dennis AS; JR Miller, DE Cain, RL Schwaller. Evaluation by Monte Carlo tests 
of effects of cloud seeding on growing season rainfall in North Dakota. J App 
Meteorol, 1975; 14: 959-964. 
application. 

Deutsch SJ; BW Schmeiser. The power of paired sample t-tests. Naval Res Logistics 
Quar; 1982; 29: 635-649. 
power/theory. 

Deutsch ST, BW Schmeiser. The computation of the component randomization test 
for paired comparisons. J Quality Technol; 1983; 15: 94-98. 
matched pairs. 

Diaconis P; B Efron. Computer intensive methods in statistics. Scientific American; 
1983; 48: 116-130. 
tests. 

Diaconis P; RL Graham. Spearman's footrule as a measure of disarray. J Roy Statist 
Soc B; 1972; 39: 262-268. 
metric. 

Dietz EJ. Permutation tests for the association between two distance matricies. Sys­
temic Zool; 1983; 32: 21-26. 
Mantel/application. 

Diggle PJ. Statistical Analysis of Spatial Point Patterns. London: Academic Press; 
1983. 
application. 

Donegani, M. An adaptive and powerful test. Biometrika; 1991; 78: 930-933. 
adaptive/matched-pairs. 

Donegani M. Asymptotic and approximate distribution of a statistic obtained by re­
sampling with and without replacement. Statist and Probab Lett; 1991; 11: 181-183. 
bootstrap. 

Donner A. Odds ratio inference with dependent data: a relationship between two 
procedures. Biometrika; 74: 609-613. 
xtab. 

Doolittle RF. Similar amino acid sequences: chance or common ancestory. Science; 
1981; 214: 149-159. 
application. 

Douglas ME; JA Endler, Quantitative matrix comparisons in ecological and evolu­
tionary investigations. J Theoret Bioi; 1982; 99: 777-795. 
Mantel/application. 

Draper D; JS Hodges, CL Mallows and D Pregibon. Exchangeability and data 
analysis (with discussion). J Roy Statist Soc A. 1993; 156: 9-28. 

Draper NR, DM Stoneman. Testing for the inclusion of variables in linear regression 
by a randomization technique. Technometrics; 1966; 8: 695-699. 
trend. 

Dwass M. Modified randomization tests for non-parametric hypotheses. Annal Math 
Statist; 1957; 28: 181-187. 
algorithm/power/Monte Carlo. 

Dwass M. On the asymptotic normality of some statistics used in nonparametric 
tests. Annal Math Statist; 1955; 26: 334-339. 

Easterling RG. Randomization and statistical inference. Commun Statist; 1975; 4: 
723-735. 
power. 



Bibliography Part 1: Randomization 189 

Edelman D. Bounds for a nonparametric t-table. Biometrika; 1986,73: 242-243. 
Eden T; F Yates. On the validity of Fisher's z test when applied to an actual sample 

of non normal data. J Agric Sci; 1933; 23: 6-16. 
Edgington ES. Approximate randomization tests. J Psych; 1969; 72: 143-149. 

concept/restricted. 
Edgington ES. Hypothesis testing without fixed levels of significance. J Psych; 1970; 

76: 109-115. 
concept. 

Edgington ES. Overcoming obstacles to single-subject experimentation. J Educ 
Statist; 1980; 5: 261-267. 
single-subject. 

Edgington ES. Randomization tests. J Psych; 1964; 57: 445-449. 
review. 

Edgington ES. Randomization tests for one-subject operant experiments. J Psych; 
1975;90:57-68 
concept. 

Edgington ES. Randomization tests for predicted trends. Canad Psych Rev; 1975; 16: 
49-53. 
trend test. 

Edgington ES. Randomization Tests. New York: Marcel Dekker; 1980, 1987. 
tests/review. 

Edgington ES. The role of permutation groups in randomization tests. J Educ Stat; 
1983; 8: 121-145. 
concept. 

Edgington ES. Statistical inference and nonrandom samples. Psychol Bull; 1966; 66: 
485-487. 
concept. 

Edgington ES. Statistics and single-case analysis. Miltersen, RM Eisler, and PM 
Miller. Progress in Behavior Modification. New York: Academic Press; 1984; 16. 
single-case. 

Edgington ES. Validity of randomization tests for one-subject experiments. J Educ 
Stat; 1980; 5: 235-251. 
test/repeated measures. 

Edgington ES; G Ezinga. Randomization tests and outlier scores. J Psych; 1978; 99: 
259-262. 
concept/robust. 

Edgington ES; AP Gore. Randomization tests for censored survival distributions. 
Biometrical J; 1986; 28: 673-681. 
censored. 

Edgington ES; AR Strain. A computer program for randomization tests for predicted 
trends. Behav Res Meth and Instrum; 1976; 8: 470-470. 
trends/program. 

Edgington ES; AR Strain. Randomization tests: computer time requirements. J 
Psycho I; 1973; 85: 89-95. 
algorithm. 

Efron B. Forcing sequential experiments to be balanced. Biometrika; 1971; 58: 403-
417. 
clinical trials. 

Efron B. Three examples of computer intensive statistical inference. Sankhya A; 1988; 
50: 338-362. 
restricted. 

Elliot RD; KJ Brown. The Santa Barbara II project-downwind effects. International 
Conference on Weather Modification; Preprint: 179-184. 
application/comparison of tests. 



190 Bibliography Part 1: Randomization 

Entsuah AR. Randomization procedures for analyzing clinical trend data with treat­
ment related withdrawals. Commun Statist A; 1990; 19: 3859-3880. 
missing/clinical/choose/application. 

Erdos P; A Renyi. On a central limit theorem for samples from a finite population. 
Publ Math [nst Hung Acad Sci; 1959; 4: 49-6l. 
clt. 

Fan CT; ME Muller and I Rezucha. Development of sampling plans by using sequen­
tial (item by item) selection techniques and digital computers. J Am Statist Assoc; 
1962; 57: 387-402. 
algorithm. 

Fang KT. The limit distribution of linear permutation statistics and its applications. 
Acta Math Appl Sinica; 1981; 4: 69-82. 
clt. 

Faris PD; RS Sainsbury. The role of the Pontis Oralis in the generation of RSA 
activity in the hippocampus of the guinea pig. Psychol and Behav; 1990; 47: 1193-
1199. 
application. 

Farrar DA; KS Crump. Exact statistical tests for any carcinogenic effect in animal 
assays. Fund Appl Toxicol; 1988; 11: 652-663. 
combinations of tests/application. 

Farrar DA; KS Crump. Exact statistical tests for any carcinogenic effect in animal 
assays. II age adjusted tests. Fund Appl Toxicol; 1991; 15: 710-721. 
combinations of tests/application. 

Fears TR; RE Tarone and KC Chu. False-positive and false-negative rates for carcin­
ogenicity screens. Cancer Research; 1977; 37: 1941-1945. 
exact/application. 

Feinstein AR. Clinical Biostatistics. St Louis: Mosby; 1972. 
application. 

Feinstein AR. Clinical biostatistics XXIII. The role of randomization in sampling, test­
ing, allocation, and credulous idolatry (part 2). Clinical Pharm; 1973; 14: 989-1009. 
concept. 

Finch PD. Description and analogy in the practice of statistics (with disc). Biometrika; 
1979; 66: 195-205. 
exploratory/concept/rank tests. 

Finney DJ. Fisher-Yates test of significance in 2 x 2 contingency table. Biometrika; 
1948; 35: 145-156. 
cross-tab. 

Fisher, RA. Coefficient of racial likeness and the future of craniometry. J Royal 
Anthrop Soc; 1936; 66: 57-63. 
p-dist/concept. 

Fisher, RA. The Design of Experiments 6th Ed. New York: Hafner; 1951. 
concepti p-dist. 

Fisher RA. The logic of inductive inference (with discussion). J Roy Statist Soc A; 
1934; 98: 39-54. 
exact test/concept. 

Fisher RA. Statistical Methods for Research Workers. Edinburgh: Oliver & Boyd; 1936. 
concept. 

Ford RD; LV Colom and BH Bland. The classification of medial septum-diagonal 
band cells as theta-on or theta-off in relation to hippo campal EEG states. Brain 
Research; 1989; 493: 269-282. 
application. 

Forsythe AB; L Engleman, and R Jennrich. A stopping rule for variable selection in 
multivariate regression. J Am Statist Assoc; 1973, 68: 75-77. 
regression/ p-dist. 



Bibliography Part 1: Randomization 191 

Forsythe AB; HS Frey. Tests of significance from survival data. Computers and 
Biomed Res; 1970; 3: 124-132. Monte Carlo. 

Foutz RN; DR Jensen, and GW Anderson. Multiple comparisons in the randomiza­
tion analysis of designed experiments with growth curve responses. Biometrics; 
1985; 41: 29-37. 
application/growth curve/multiple comparisons. 

Foutz RV. A method for constructing exact tests from test statistics that have un­
known null distributions. J Statist Comput Simul; 1980; 10: 187-193. 
concept. 

Foutz RV. Simultaneous randomization tests. Biometrical J; 1984; 26: 655-653. 
multiple comparisons. 

Frank, D; RJ Trzos, and P Good. Evaluating drug-induced chromosome alterations. 
Mutation Res; 1978; 56: 311-317. 
application. 

Fraser DW. Clustering of disease in population units: an exact test and its asymptotic 
version. Amer J Epidemiol; 1983, 118: 732-739. 
choice/application. 

Fraumeni JF; FP Li. Hodgkin's disease in childhood: an epidemiological study. J Nat 
Cancer Inst; 1969; 42: 681-691. 
Mantel/application. 

Freedman D; D Lane. The empirical distribution of Fourier coefficients. Annal Statist; 
1980; 8: 1244-1251. 
p-dist. 

Freedman D; D Lane. Nonstochastic interpretation of reported significance levels. 
J Bus Econ Stat; 1983, 1: 292-298. 
covariate/design. 

Freedman L. Using permutation tests and bootstrap confidence limits to analyze 
repeated events data. Controlled Clinical Trials; 1989; 10: 129-141. 
application/repeated measures. 

Freedman GH; JH Halton. Note on an exact treatment of contingency, goodness of 
fit, and other problems of significance. Biometrika; 1951; 38: 141-149. 

Friedman JH, LC Rafsky. Multivariate generalizations of the Wald-Wolfowitz and 
Smirnov two-sample test. Annal Statist; 1979; 7: 697-717. 

Fu YX; Arnold J. A table of exact sample sizes for use with Fisher's exact test for 
2 x 2 tables. Biometrics. 1992; 48: 1103-12. 

Gabriel KR. Some statistical issues in weather experimentation. Commun Statist A; 
1979; 8: 975-1015. 
application/restrictedfhistorical regression/multiple comparisons. 

Gabriel KR; P Feder. On the distribution of statistics suitable for evaluating rainfall 
simulation experiments. Technometrics; 1969; 11: 149-160. 
application. 

Gabriel KR; WJ Hall. Rerandomization inference on regression and shift effects: 
Computationally feasible methods. J Am Statist Assoc; 1983; 78: 827-836. 
confidence-intervals/algorithm. 

Gabriel KR; CF Hsu. Evaluation of the power of rerandomization tests, with appli­
cation to weather modification experiments. J Am Statist Assoc; 1983; 78: 766-
775. 
power/application. 

Gabriel KR; RR Sokal. A new statistical approach to geographical variation analysis. 
Systematic Zoology; 1969; 18: 259-70. 
Mantel. 

Gail MH; WY Tan, and S. Piantadosi. Tests for no treatment effect in randomized 
clinical trials. Biometrika; 1988; 75: 57-64. 
covariate/design. 



192 Bibliography Part 1: Randomization 

Gans LP; CA Robertson. Distributions of Goodman and Kruskal's Gamma and 
Spearman's Rho in 2 x 2 tables for small and moderate sample sizes. J Am Statist 
Assoc; 1981; 76: 942-946. 
exact test/cross-tab/Monte Carlo. 

Geary RC. Metron; 1927; 7: 83. 
concept. 

Gerig TM. A multivariate extension of Friedman's chi-square test. J Am Statist Assoc; 
1969; 64: 1595-1608. 
multivariate/ranks/design. 

Gerig TM. A multivariate extension of Friedman's chi-square test with random co­
variates. J Am Statist Assoc; 1975; 70: 443-447. 
application/asymptotic/design/multivariate/covariate. 

Ghosh MN. Asymptotic distributions of serial statistics and applications to non­
parametric tests of hypotheses. Annal Math Statist; 1954; 25: 218-251. 
asymptotic/independence/power. 

Gill DS; M Siotani. On randomization in the multivariate analysis of variance. J 
Statist Plan lrifer; 1987; 17: 217-226. 
design/MANOV A/Wilk's statistic/p-dist. 

Glass AG; N Mantel. Lack of time-space clustering of childhood leukemia, Los Ange­
les County 1960-64. Cancer Research; 1969; 29: 1995-2001. 
Mantel/application. 

Glass AG; N Mantel, FW Gunz, and GFS Spears. Time-space clustering of childhood 
leukemia in New Zealand. J Nat Cancer lnst; 1971; 47: 329-336. 
application. 

Glick BJ. Tests for space-time clustering used in cancer research. Geographical Analy; 
1979; 11: 202-208. 
concept. 

Goldberg P; F Leffert, M Gonzales, L Gorgenola, and GO Zerbe. Intraveneous ami­
nophylline in asthma: A comparison of two methods of administration in children. 
Am J of Diseases and Children; 1980; 134: 12-18. 
application. 

Good 11. On the analysis of symmetric Dirichlet distributions and their mixtures to 
contingency tables. Annal of Statist; 1976; 4: 1159-89. 
tails/xtab. 

Good P. Almost most powerful tests for composite alternatives. Communications in 
statistics-theory and methods; 1989; 18: 1913-1925. 
application/test. 

Good P. Most powerful tests for use in matched pair experiments when data may be 
censored. J Statist Comp Simul; 1991; 38: 57-63. 
matched-pairs/power/algorithm/censored/bootstrap. 

Good P. Review of Edgington's Randomization Tests. J Statist Comput Simul; 1980; 
11: 157-160. 

Good P; P Kemp. Almost most powerful test for censored data. Randomization; 1969; 
2: 25-33. 
application/censored. 

Good, PI. Detection of a treatment effect when not all experimental subjects respond 
to treatment. Biometrics; 1979; 35: 483-489. 
application/robust. 

Good PI. Globally almost powerful tests for censored data. Nonparametric Statistics; 
1992; 1: 253-262. 
censored data/test/concepts. 

Goodall DW. Contingency tables and computers. Praximetric; 1968; 9: 113-
119. 
xtab/program. 



Bibliography Part 1: Randomization 193 

Graubard BI; EL Korn. Choice of column scores for testing independence in ordered 
2 by K contingency tables. Biometrics; 1987; 43: 471-476. 
choice/ordered classifications/xtabs. 

Graves GW, AB Whinston. An algorithm for the quadratic assignment probability. 
Management Science; 1970; 17: 453-471. 
algorithm/Mantel. 

Green BF. Review of Edgington's Randomization Tests. J Am Statist Assoc; 1981; 76: 495. 
review. 

Haber M. A comparison of some conditional and unconditional exact tests for 2 x 2 
contingency tables. Commun Statist A; 1987; 18: 147-156. 
power/xtab. 

Hack HRB. An empirical investigation into the distribution of the F -ratio in samples 
from two non-normal populations. Biometrika; 1958; 45: 260-265. 
robust/simulation/p-dist. 

Hajek J. Asymptotic normality of simple linear rank statistics under alternatives. 
Annal Math Statist; 1968; 39: 325-346. 
cit/power. 

Hajek J. Limiting distributions in simple random sampling from a finite population. 
Publ Math Inst Hung Acad Sci; 1960; 5: 361-374. 
cit. 

Hajek 1. Some extensions of the Wald-Wolfowitz-Noether theorem. Annal Math 
Statist; 1961; 32: 506-523. 
cit. 

Hajek J; Z Sidak. Theory of Rank Tests. New York: Academic Press; 1967. 
p-dist/ranks. 

Halter JH. A rigorous derivation of the exact contingency formula. Proc Cambridge 
Phil Soc; 65: 527-530. 
xtab/exact test/p-dist. 

Hampel FR, EM Ronchetti, PJ Rousseeuw, WA Stahel. Robust Statistics; The 
Approach Based on Influence Functions. New York: John Wiley; 1966. 
robust/flaws and misuse. 

Henery R1. Permutation probabilities for gamma random variables. J Appl Probab; 
1983; 20: 822-834. 
gamma. 

Henze N. A multivariate two-sample test based on the number of nearest neighbor 
coincidence. Annal Statist; 1988; 16: 772-783. 
multivariate. 

Hiatt WR; DC Fradl, GO Zerbe, RL Byyny, and AS Niels. Comparative effects of 
selective and nonselective beta blockers on the peripheral circulation. Clinic Phar­
macology and Therapeutics; 1983: 34: 12-18. 
application. 

Highton R. Comparison of microgeographic variation in morphological and elec­
trophoretic traits. Hecht MK, Steer WC, & B Wallace, editors. Evolutionary Biol­
ogy. New York: Plenum; 1977; 10: 397-436. 
Mantel/application. 

Hirji KF; CR Mehta, and NR Patel. Computing distributions for exact logistic regres­
sion. J Am Statist Assoc; 1987; 82: 1110-1117. 
algorithm/p-dist. 

Hirji KF; CR Mehta, and NR Patel. Exact inference for matched case-control studies. 
Biometrics; 1988; 44: 803-814. 
case-control. 

Ho ST; LHY Chen. An Lp bound for the remainder in a combinatorial central limit 
theorem. Annal Probability; 1978; 6: 231-249. 
asymptotic/theory. 



194 Bibliography Part 1: Randomization 

Hoeffding, W. Combinatorial central limit theorem. Annal Math Statist; 1951; 22: 
556-558. 
clt. 

Hoeffding W. The large-sample power oftests based on permutations of observations. 
Annal Math Statist; 1952; 23: 169-192. 
power. 

Hollander M; E Pena. Nonparametric tests under restricted treatment assignment 
rules. J Am Statist Assoc; 1988; 83: 1144-1151. 
tests/restricted/algorithm. 

Hollander; M; J Sethuraman. Testing for agreement between two groups of judges. 
Biometrika; 1978; 65: 403-412. 
application/correlation. 

Hollander M; DA Wolfe. Nonparametric Methods in Statistics. New York: Wiley; 1973. 
concept/tests. 

Hope ACA. A modified Monte Carlo significance test procedure. J Roy Statist Soc B; 
1968; 30: 582-598. 
test. 

Howard, M (pseud); P Good. Randomization in the analysis of experiments and 
clinical trials. American Laboratory; 1981; 13: 98-102. 
review. 

Huber PJ. A robust version of the probability ratio test. Annal Math Statist; 1965; 36: 
1753-1758. 
robust. 

Hubert LJ. Assignment Methods in Combinatorial Data Analysis. NY: Marcel Dekker, 
1987. 
cluster. 

Hubert LJ. Combinatorial data analysis: Association and partial association. Psycho­
metrika; 1985; 50: 449-467. 
correlation/partial correlation/spatial dist. 

Hubert U. Evaluating object set partitions. J Verbal Learn Behavior; 1976; 15: 459-470. 
p-dist/classification. 

Hubert U. Generalized proximity function comparisons. Brit J Math Stat Psych; 
1978a; 31: 179-192. 
Mantel/application. 

Hubert U. Generalized concordance. Psychometrika; 1979a; 44: 3-20. 
matrix concordance/multivariate 0-1. 

Hubert LJ. Matching methods in the analysis of cross-classification. Psychometrika; 
1979b; 44: 21-41. 
scale agreement. 

Hubert LJ. Nonparametric tests for patterns in geographic variation: possible gener­
alizations. Geog Anal; 1978b; 10: 86-88. 
Mantel. 

Hubert U. Seriation using asymmetric proximity measures. Brit J Math Stat Psych; 
1976; 29: 32-52. 
dependence/application. 

Hubert U; FB Baker. Analyzing distinctive features confusion matrix. J Educ Statist; 
1977a, 2: 79-98. 
concept. 

Hubert LJ; FB Baker. The comparison and fitting of given classification schemes. J 
Math Psychol; 1977b; 16: 233-253. 
Mantel. 

Hubert U; FB Baker. Data analysis by single-link and complete-link hierarchical 
clustering. J Educ Statist; 1976; 1:87-111. 
test/p-dist. 



Bibliography Part 1: Randomization 195 

Hubert LJ; FB Baker. Evaluating the conformity of sociometric measurements. Psy­
chometrika; 1978; 43: 31-42. 
application. 

Hubert LJ; RG Golledge, and CM Costanzo. Analysis of variance procedures based 
on a proximity measure between subjects. Psych Bull; 1982; 91: 424-430. 
Mantel/design. 

Hubert LJ; RG Golledge, and CM Costanzo. Generalized procedures for evaluating 
spatial autocorrelation. Geog Anal; 1981; 13: 224-233. 
application. 

Hubert LJ; RG Golledge, CM Costanzo, and N Gale. Measuring association between 
spatially defined variables: An alternative procedure. Geog Anal; 1985; 17: 36-46. 
Spatial autocorrelation. 

Hubert LJ; RG Golledge, CM Costanzo, N Gale, and WC Halperin. Nonparametric 
tests for directional data. Bahrenberg G, Fischer M & P Nijkamp, editors. Recent 
developments in spatial analysis: Methodology, measurement, models. Aldershot UK: 
Gower; 1984: 171-190. 
Mantel/spatial analysis. 

Hubert LJ; JR Levin. General statistical framework for assessing categorical clus­
tering in free recall. Psych Bull; 1976; 83: 1072-1080. 
application/p-distjclassification. 

Hubert LJ; JR Levin. Inference models for categorical clustering. Psych Bull; 1976; 83: 
878-887. 
xtab. 

Hubert LJ; J Schultz. Maximum likelihood paired comparison ranking and quadratic 
assessment. Biometrika; 1975, 62: 655-660. 
algorithm. 

Hubert LJ; J Schultz. Quadratic assignment as a general data analysis strategy. Brit 
J Math Stat Psych; 1976; 29: 190-241. 
Mantel. 

Ingenbleek JF. Tests simultanes de permutation des rangs pour bruit-blanc multi­
varie. Statist Anal Donnees; 1981; 6: 60-65. 
simultaneous/tests/multivariate. 

Irony TZ; CAB Pereira. Exact tests for equality of two proportions: Fisher vs Bayes. 
J Statist Comput Simul; 1986; 25: 83-114. 
concept/xtab/significance level/power. 

Iyer HK; K Berry, and PWJr Mielke. Computation of finite population parameters 
and approximate probability values for multi-response randomized block permuta­
tion procedures (MRPP). Commun Statist B; 1983; 12: 479-499. 
MRPP /multivariate/moments. 

Jackson DA. Ratios in acquatic sciences: Statistical shortcomings with mean depth 
and the morphoedaphic index. Canad J Fisheries and Acquatic Sci; 1990; 47: 1788-
1795. 
application/concept. 

Janssen A. Conditional rank tests for randomly censored data. Annals of Statistics; 
1991; 19: 1434-1456. 
censor. 

Jennrich RI. A note on the behaviour of the log rank permutation test under unequal 
censoring. Biometrika: 1983; 70: 133-137. 
flaws. 

Jennrich RI. Some exact tests for comparing survival curves in the presence of un­
equal right censoring. Biometrika; 1584; 71: 57-64. 
conditional. 

Jin MZ. On the multisample pemutation test when the experimental units are nonuni­
form and random experimental errors exist. J System Sci Math Sci; 1984; 4: 117-



196 

127, 236-243. 
tests. 

Bibliography Part 1: Randomization 

Jockel KH. Finite sample properties and asymptotic efficiency of Monte Carlo tests. 
Annal Statistics; 1986; 14: 336-347. 
power/Monte Carlo. 

Jogdeo K. Asymptotic normality in nonparametric methods. Annal Math Statist; 
1968; 39: 905-922. 
asymptotic/rank/U -statistics/theory. 

John RD; Robinson J. Edgeworth expansions for the power of permutation tests. 
Annal of Statistics; 1983; 11: 625-631. 
power. 

John RD, J Robinson. Significance levels and confidence intervals for randomization 
tests. J Statist Comput and Simul; 1983; 16: 161-173. 
confidence intervals. 

Johnson NL. Theoretical considerations regarding HRB Hack's system of random­
ization for crossclassifications. Biometrika; 1958; 45: 265-266. 
xtab. 

Jones JS; RK Selander, and GD Schnell. Bioi J Linnean Society; 1980; 14: 359. 
Mantel/application. 

Kalbfleisch JD. Likelihood methods and nonparametric tests. J Am Statist Assoc; 
1978; 73: 167-170. 
marginallikelihood/p-dist. 

Kalbfleisch JD; RL Prentice. Statistical Analysis of Failure Time Data. New York: 
John Wiley & Sons; 1980. 

Kanjo AI. An exact test for NBUE class of survival functions. Commun Statist A. 
1993; 22. 

Karlin S; G Ghandour, F Ost, S Tauare, and K Korph. New approaches for com­
puter analysis of DNA sequences. Proc Nat Acad Sci, USA; 1983; 80: 5660-5664. 

Karlin S; PT Williams. Permutation methods for the structured exploratory data 
analysis (SEDA) offamilial trait values. Amer J Human Genetics; 1984; 36. 
application/choice. 

Kazdin AE. Obstacles in using randomization tests in single-case experiments. J Educ 
Statist; 1980; 5: 253-260. 
repeated measures/misuse. 

Kazdin AE. Statistical analysis for single-case experimental designs. in Single-Case 
Experimental Design: Strategies for Studying Behavioral Change. M Hersen and 
DH Barlow, Eds. New York: Pergamon; 1976. 
concept/repeated measures. 

Keller-McNulty S; JJ Higgens. Effect of tail weight and outliers on power and type I 
error of robust permutation tests for location. Commun Stat- Theory and Methods; 
1987; 16: 17-35. 
robust/power. 

Kelly ME. Application of the theory of combinatorial chance to the estimation of 
significance of clustering in free recall. Brit J Math Stat Psych; 1973; 26: 270-280. 
applic. 

Kempthome O. Comments on paper by PD Frich. Biometrika; 1979; 66: 206-207. 
concept. 

Kempthome O. Design and Analysis of Experiments. New York: Wiley; 1952. 
p-dist/tests. 

Kempthome O. In dispraise of the exact test: reactions. J Statist Plan Infer; 1979; 3: 
199-213. 
xtab/concept. 

Kempthome O. Inference from experiments and randomization. A Survey of Statisti­
cal Design and Linear Models. JN Srivastava, Editor. Amsterdam: North Holland; 



Bibliography Part 1: Randomization 

1975: 303-332. 
concept. 

197 

Kempthome O. The randomization theory of experimental inference. J Am Statist 
Assoc; 1955; 50: 946-967. 
concept/p-dist. 

Kempthome o. Some aspects of experimental inference. J Am Statist Assoc; 1966; 61: 
11-34. 
concept. 

Kempthome O. Why randomize? J Statist Plan Infer; 1977; 1: 1-26. 
concept. 

Kempthome 0; TE Doerfler. The behavior of some significance tests under experi­
mental randomization. Biometrika; 1969; 56: 231-248. 
power/rank/confidence intervals. 

Kempthome 0; G Zyskind, S Addelman, T Throckmorton, and R White. Analysis of 
variance procedures: Report ARL149, Aeronautical Research Laboratory, USAF; 
1961. 
asymptotic/p-dist/design. 

Kendall MG; A Stuart, and JK Ord. Advanced Theory of Statistics. London: Charles 
Griffin & Co; 1977 (4th Edition). 
design. 

Khan KA; DS Tracy. Fourth exact moment results for MRPP tests with 2 or 3 
treatments. Commun Statist A; 1991; 20: 3863-3877. 

Klauber MR. Space-time clustering tests for more than two samples. Biometrics; 1975; 
31: 719-726. 
application/p-dist. 

Klauber MR. Two-sample randomization tests for space-time clustering. Biometrics; 
1971; 27: 129-142. 
application/p-dist. 

Klauber MR; Mustacchi. Space-time clustering of childhood leukemia in San Fran­
cisco. Cancer Research; 1970; 30: 1969-1973. 
Mantel/application. 

Kleinbaum DB; LL Kupper, and LE Chambless. Logistic regression analysis of epi­
demiologic data: theory and practice. Commun Statist A; 1982; 11: 485-547. 

Koch G (ed). Exchangeability in Probability and Statistics. North Holland: Amster­
dam: 1982. 

Kolchin VF; VP Christyakov. On a combinatorial central limit theorem. Theor Prob 
& Appl; 1973; 18: 728-739. 

Koziol JA; DA Maxwell, M Fukushima, A Colmer, and YH Pilch. A distribution-free 
test for tumor-growth curve analyses with applications to an animal tumor immu­
notherapyexperiment. Biometrics; 1981; 37: 383-390. 
multivariate/application/p-dist. 

Krewski D; J Brennan, and M Bickis. The power of the Fisher permutation test in 2 
by k tables. Commun Stat B; 1984; 13: 433-448. 
x-tab/power/application. 

Kryscio RJ; MH Meyers, SI Prusiner, HW Heise, and BW Christine. The space-time 
distribution of Hodgkin's disease in Connecticut, 1940-1969. J Nat Cancer Inst; 
1973; 50: 1107-1110. 
Mantel/application. 

Kulinskay A. Large sample results for permutation tests of association. Commun 
Statist- TM. 1994; 23: 10-18. 

Lachin JM. Properties of sample randomization in clinical trials. Controlled Clinical 
Trials; 1988; 9: 312-326. 

Lachin IN. Statistical properties of randomization in clinical trials. Controlled Clini­
cal Trials; 1988; 9: 289-311. 



198 Bibliography Part 1: Randomization 

Lambert D. Influence functions for testing. J Am Statist Assoc; 1981; 76: 649-657. 
flaws and misuse/theory. 

Lambert, D. Qualitative robustness of tests. J Am Statist Assoc; 1982; 77: 352-
357. 
flaws and misuse/theory. 

Lambert D. Robust two-sample permutation tests. Annal of Statist; 1985; 13: 606-
625. 
test/ro bust. 

Lambert D; WJ Hall. Asymptotic lognormality of p-values. Annal of Statist 1982; 10: 
44-A64. 
theory. 

Latscha R. Tests of significance in a r x r contingency table; extension of Finney's 
table. Biometrika: 1953; 40: 74-86. 
xtab/table. 

Lee ML T. Tests of independence against LR dependence in ordered contingency 
tables. Topics in Statistical Dependence. HW Block, AR Sampson, TH Savits. 
Hayward CA: IMS; 1990; 16: 351-357. 
xtab. 

Lefebvre M. Une application des methodes sequentielles aux tests de permutations. 
Canad J Statist; 1982; 10: 173-180. 
tests. 

Lehmann EL. Consistency and unbiasedness of certain nonparametric tests. Annal 
Math Statist; 1951; 22: 165-179. 
theory/two-sample. 

Lehmann EL. Non-Parametrics: Statistical Methods Based on Ranks. San Francisco: 
Holden-Day; 1975. 
p-dist. 

Lehmann EL. Testing Statistical Hypotheses. New York: John Wiley & Sons; 1986. 
theory/asymptotic/efficiency /power. 

Lehmann EL; Stein C. On the theory of some non parametric hypotheses. Annal Math 
Statist; 1949; 20: 28-45. 
power. 

Leslie PH. A method of calculating the exact probabilities in 2 x 2 contingency tables 
with small marginal totals. Biometrika; 1955; 42: 522-523. 
exact/xtab/algorithm. 

Levin DA. The organization of genetic variability in Phlox drummondi. Evolution; 
1977; 31: 477-494. 
Mantel/application. 

Levin JM; LA Marascuilo, and LJ Hubert. Nonparametric randomization tests. JR 
Kratochwill, Editor. Single Subject Research: Strategies for Evaluating Change. 
New York: Academic Press; 1978: 167-196. 
concept. 

Lindsey JK. Likelihood analyses and test for binary data. Appl Stat; 1975; 241: 1-
16. 
conditional likelihood/design. 

Livezey RE. Statistical analysis of general circulation model climate simulation: sensi­
tivity and prediction experiments. J of Atmospheric Sciences; 1985; 42: 1139-1149. 
review/application. 

Livezey RE; W Chen. Statistical field significance and its determination by Monte 
Carlo techniques. Monthly Weather Review; 1983; 111: 46-59. 
application. 

Lock RH. A sequential approximation to a permutation test. Commun Statist-Simul; 
1991; 20: 341-363. 
algorithm. 



Bibliography Part 1: Randomization 199 

Lorenz J; JH Eiler. Spawning habitat and characteristics of sockeye salmon in the 
Glacial Taker River, British Columbia and Alaska. Transactions American Fish­
eries Society; 1989; 18: 495-502. 

Louis EJ; ER Dempster. An exact test for Hardy-Weinberg and multiple alleles. 
Biometrics; 1987; 43: 805-811. 

Ludbrook J. 1994. "Advantages of permutation (randomization) tests in clinical and 
experimental pharmacology and physiology." Clinical Experimental Pharmacology 
21: 673-686. 

Ludbrook J; Dudley H. 1994. "Issues in biomedical statistics. Statistical inference." 
Austr NZ J Statist 64: 630-636. 

Mackay DA; RE Jones. Leaf-shape and the host-finding behavior of two ovi-positing 
monophagous butterfly species. Ecological Entomology; 1989; 14: 423-431. 

Macuson R; E Nordbrock. A multivariate permutation test for the analysis of arbi­
trarily censored survival data Biometrical J; 1981; 23: 461-465. 

Madow WG. On the limiting distribution of estimates based on samples from finite 
universes. Annal. Math Statist; 1948; 19: 534-545. 

Makinodan T; JW Albright, CP Peter, PI Good and ML Hedrick. Reduced humoral 
activity in long-lived mice. Immunology. 1976; 31: 400-408. 

Manly BFJ. Analysis of polymorphic variation in different types of habitat. Biome­
trics; 1983; 39: 13-27. 

Manly BFJ. The comparison and scaling of student assessment marks in several 
subjects. Appl Statist; 1988: 37: 385-395. 

Manly BFJ. Randomization and Monte Carlo Methods in Biology. London: Chapman 
and Hall; 1991. 

Mann HB. Nonparametric tests against trend. Econometrica; 1945; 13: 245-259. 
p-dist. 

Mann RC; REJr Hand. The randomization test applied to flow cytometric histo­
grams. Computer Programs in Biomedicine; 1983; 17: 95-100. 
application. 

Mantel N. The detection of disease clustering and a generalized regression approach. 
Cancer Research; 1967; 27: 209-220. 
application/clusters/p-dist. 

Mantel N. Re: "Clustering of disease in population units: an exact test and its asymp­
totic version." Amer J Epidemiol; 1983; 118: 628-629. 
choice/xtab/clustering/misuse/asymptotic. 

Mantel N; JC Bailar. A class of permutational and multinomial tests arising in epide­
miological research. Biometrics; 1970; 26: 687-700. 
application. 

Mantel N; RS Valand. A technique of nonparametric multivariate analysis. Biomet­
rics; 1970; 26: 547-558. 
application/U -statistics/multivariate. 

Marascuilo LA; M McSweeny. Nonparametric and Distribution-Free Methods for the 
Social Sciences. Monterey CA: Brooks/ Cole; 1977. 
concept/review. 

Marcus LF. Measurement of selection using distance statistics in prehistoric orang­
utan pongo pygamous palaeosumativens. Evolution; 1969; 23: 301. 
application. 

Maritz JS. Distribution Free Statistical Methods. London: Chapman and Hall; 1981. 
confidence intervals. 

Marriott FHC. Barnard's Monte Carlo tests: How many simulations? Appl Statist; 
1979; 28: 75-77. 
algorithm/Monte Carlo. 

Marshall-Olds T. Analysis of local variation in plant size. Ecology; 1987; 68: 82-87. 
review/application. 



200 Bibliography Part 1: Randomization 

Martin RL. On the design of experiments under spatial correlation. Biometrika; 1986; 
73: 247-277. 
p-dist/ design. 

Martin-Lof P. Exact tests, confidence regions and estimates. Barndorff-Nielsen 0, 
Blasild P, and Schow G. Proceeding of the Conference of Foundational Questions 
in Statistical Inference. Aarhus: Institute of Mathematics, University of Aarhus; 
1974; 1: 121-138. 

McCarthy MD. On the application of the z-test to randomized blocks. Annal Math 
Statist; 1937; 10: 337-359. 
design. 

McKinney PW; MJ Young, A Hartz, and M Bi-Fong Lee. The inexact use of Fisher's 
exact test in six major medical journals. JAMA; 1989; 261: 3430-3433. 
exact test/misuse/tests. 

McLeod RS; DW Taylor, A Cohen, and JB Cullen. Single patient randomized clinical 
trials; its use in determining optimal treatment for patients with inflammation of a 
Kock continent ilestomy reservoir. Lancet; 1986; 29: 726-728. 
application, single-case. 

Mead, R. A test for spatial pattern at several scales using data from a grid of contigu­
ous quadrats. Biometrics; 1974; 30: 295-307. 
patterns. 

Meagher TR; DS Burdick. The use of nearest neighbor frequency analysis in studies 
of association. Ecology; 1980; 61: 1253-1255. 
application. 

Mehta CR; NR Patel, and LJ Wei. Computing exact permutational distributions with 
restricted randomization designs. Biometrika; 1988; 75: 295-302. 
algorithm/restricted/designs. 

Mehta CR; NR Patel, and AA Tsiatis. Exact significance testing to establish treatment 
equivalence for ordered categorical data. Biometrics; 1984; 40: 819-825. 

Mehta CR; NR Patel, and P Senchaudhuri. Importance sampling for estimating 
exact probabilities in permutational inference. J Am Statist Assoc; 1988; 83:999-
1005. 

Mehta CR; NR Patel and P Senchaudhuri. Exact stratified linear rank tests for or­
dered categorical and binary data. J Computer Graphics Statist. 1992; 1: 21-40. 

Mehta CR; NR Patel, and R Gray. On computing an exact confidence interval for the 
common odds ratio in several 2 x 2 contingency tables. J Am Statist Assoc; 1985; 
80: 969-973. 

Melia KF; CL Ehlers. Signal detection analysis of ethanol effects on a complex condi­
tional discrimination. Pharm Biochem Behavior; 33; 1989: 581-584. 

Merrington M; CC Spicer. Acute leukemia in New England. Brit J Preventive and Soc 
Med; 1969; 23: 124-127. 

Mesinger F; N Mesinger. Has hail suppression in eastern Yugoslavia led to a reduc­
tion in the frequency of hail? J Appl Meteorology. 1992; 31: 104-111. 

Mielke PW. Clarification and appropriate inferences for Mantel and Valand's non­
parametric multivariate analysis technique. Biometrics; 1978; 34: 277-282. 
finite population/multi-response. 

Mielke PWJr. Geometric concerns pertaining to applications of statistical tests in the 
atmospheric sciences. J Atmospheric Sci; 1985; 42: 1209-1212. 
concept/application. 

Mielke PWJr. Meterological applications of permutation techniques based on dis­
tance functions. Krishnaiah PR and Sen PK, editors. Handbook of Statistics. 
Amsterdam: North-Holland; 1984; 4: 813-830. 

Mielke PWJr. Non-metric statistical analysis: Some metric alternatives. J Statist Plan 
Infer; 1986; 13: 377-387. 
concept/multivariate/cyclic data. 



Bibliography Part 1: Randomization 201 

Mielke PWJr. On asymptotic nonnormality of null distributions of MRPP statistics. 
Commun Statist A; 1979a; 8: 1541-1550. 
multivariate/quadratic assignment/MRPP/asymptotic. 

Mielke PWJr. Some parametric, nonparametric and permutation inference proce­
dures resulting from weather modification experiments. Commun Statist A; 1979b; 
8: 1083-1096. 
multivariate/k-sample. 

Mielke PWJr; KJ Berry, and GW Brier. Application of multiresponse permutation 
procedures for examining seasonal changes in monthly mean sea-level pressure 
patterns. Monthly Weather Rev; 1981; 109: 120-126. 
application. 

Mielke PW; KJ Berry. Asymptotic clarifications, generalizations, and concerns re­
garding an extended class of matched pairs tests based on powers of ranks. Psycho­
metrika; 1985, 48: 483-485. 
matched-pairs/choosingfasymptotic/robust/conceptfWilcoxon. 

Mielke PWJr. KJ Berry, PJ Brockwell, and JS Williams. A class of nonparametric 
tests based on multiresponse permutation procedures. Biometrika; 1981; 68: 720-
724. 
asymptotic. 

Mielke PWJr; KJ Berry, and J Medina. Climax I and II: distortion resistant residual 
analysis. J Appl Meterol; 1982; 21: 788-792. 
application/misuse. 

Mielke PWJr; KJ Berry. An extended class of matched pairs tests based on powers of 
ranks. Psychometrika; 1976; 41: 84-100. 
matched-pairs. 

Mielke PWJr; KJ Berry. An extended class of permutation techniques for matched 
pairs. Commun Statist-Theory and Methodology; 1982; 11: 1197-1207. 

Mielke PWJr; KJ Berry, and ES Johnson. Muitiresponse pemutation procedures for 
a priori classifications. Commun Statist; 1976; A5(14): 1409-1424. 

Mielke PWJr; KJ Berry. Non-asymptotic inferences based on the chi-square statistic 
for r x c contingency tables. J Statist Plan Infer; 1985; 12: 41-45. 
algorithm/p-dist/Pearson type III/xtab. 

Mielke PWJr; KJ Berry. Fisher's exact probability test for cross-classification tables. 
Educat Psych Measure. 1992; 52: 97-102. 

Mielke PWJr; HK Iyer. Permutation techniques for analyzing multi-response data 
from randomized block experiments. Commun Statist A; 1982; 11: 1427-1437. 
design/matched-pairs/multivariate. 

Mielke PWJr; PK Sen. On asymptotic non-normal null distributions for locally most 
powerful rank tests statistics. Commun Statist A; 1981; 10 1079-1094. 
asymptotic. 

Miller AJ; DE Shaw, LG Veitch, and EJ Smith. Analyzing the results of a cloud­
seeding experiment in Tasmania. Commun Statist A; 1979; 8: 1017-1047. 
application/residuals/choice. 

Miller RG. Simultaneous Statistical Inference. New York: Springer-Verlag; 1956 (2nd 
Edition). 
design/p-dist/simultaneous. 

Mitchell-OIds T. Analysis oflocal variation in plant size. Ecology; 1987; 68: 82-87. 
review. 

Mitchell-Olds T. Quantitative genetics of survival and growth in Impatiens capensis 
Evolution; 1986; 40. 
application. 

Mitra SK. On the F -test in the intrablock analysis of a balanced incomplete block 
design. Sankhya; 1961; 22: 279-84. 
design/moments. 



202 Bibliography Part 1: Randomization 

Motoo M. On the Hoeffding's combinatorial central limit theorem. Annal Inst Statist 
Math; 1957; 8: 145-154. 
cit. 

Mueller LD; L Altenberg. Statistical inference on measures of niche overlap. Ecology; 
1985;66: 1204-1210. 
application. 

Mukhopadhyay I. Nonparametric tests for multiple regression under permutation 
symmetry. Calcutta Statist Assoc Bull; 1989; 33: 93-114. 
tests. 

Murphy BP. Comparison of some two-sample tests by means of simulation. Commun 
Statist-Simulation; 1976; B5: 23-32. 
power /sim ulation. 

Nguyen TT. A generalization of Fisher s exact test in p x q contingency tables using 
more concordant relations. Commun Statist B; 1985; 14: 633-645. 
xtab/choice. 

Nicholson T AJ. A method for optimizing permutation probabilities and its industrial 
applications. in P J A Welsh Ed. Combinatorial Mathematics and its Applications. 
NY: Academic Press; 1971: 201-217. 
algorithm. 

Noether G E. Asymptotic properties of the Wald-Wolfowitz test of randomness. Annal 
Math Statist; 1950,21: 231-246. 
asymptotic/trend/independence. 

Noether, GE. Distribution-free confidence intervals. Statistica Neerlandica; 1978; 32: 
104-122. 
confidence-interval. 

Noether GE. On a theorem by Wald and Wolfowitz. Annal Math Statist; 1949; 
20. 

Noreen E. Computer-Intensive Methods for Testing Hypotheses. New York: John 
Wiley & Sons; 1989. 

O'Brien KF. Concerning the analysis of 2 x 2 tables. Comp Biomed Res. 1994; 27: 
434-40. 

O'Reilly FJ; PWJr Mielke. Asymptotic normality of MRPP statistics from invariance 
principles of U-statistics. Commun Statist A; 1980; 9: 629-637. 
MRPP /asymptotic. 

O'Sullivan F; P Whitney, MM Hinshelwood, and ER Hauser. Analysis of repeated 
measurement experiments in endocrinology. J Anim Science; 1989; 59: 1070-
1079. 
repeated measurements/application. 

Oden A; H Wedel. Arguments for Fisher's permutation test. Annal Statist 1975; 3: 
518-520. 
Robustness. 

Oden NL. Allocation of effort in Monte Carlo simulations for power of permutation 
tests. J Am Statist Assoc; 1991; 86: 1074-1076. 
power/Monte Carlo. 

Ogawa J. Effect of randomization on the analysis of a randomized block design. 
Annal Inst Stat Math Tokyo; 1961; 13: 105-117. 
design/p-dist. 

Ogawa J. Exact and approximate sampling distribution of the F -statistic under the 
randomization procedure. in A Modern Course on Statistical Distributions in Scien­
tific Work. GP Patil, S Kotz, and JK Ord Eds. Dordret-Holland: Reidel Publishing 
Company; 1975. p-dist. 

Ogawa J. On the null distribution of the F -statistic in a randomized block under the 
Neyman model. Annals Math Statist; 1963.34: 1558. 
design. 



Bibliography Part 1: Randomization 203 

Ogawa J. Statistical Theory of the Analysis of Experimental Designs. New York: 
Marcel Dekker, 1974. 
design. 

Ogbonmwan E; A Wynn. Resampling generalized likelihoods. Statistical Decision 
Theory and Related Topics. Gupta SS and JO Berger, Eds. New York: Springer 
Verlag; 1988; 1: 133-147. 
concept/resampling. 

Oja Hannu. On permutation tests in multiple regression and analysis of covariance 
problems. Austral J Statist; 1981; 29: 91-100. 
tests. 

Pallini A; F Pesarin. A class of combinations of dependent tests by bootstrap and 
permutations procedures (abstract only). IMS Bulletin; 1990; 19: 574-575. 
combination of tests. 

Passing H. Exact simultaneous comparisons with controls in an r x c contingency 
table. Biometrical J; 1984; 26: 643-654. 
cross-tab/simultaneous. 

Patefield WM. Exact tests for trends in ordered contingency tables. Appl Statist; 1982; 
31: 32-43. 
xtab. 

Patil CHK. Cochran's Q test: exact distribution. J Am Statist Assoc; 1975; 70: 186-
189. 
contingency. 

Pearson ES. Some aspects of the problem of randomization. Biometrika; 1937; 29: 
53-64. 
concept/choice of test/alternative. 

Pecaric JE; F Proschan, and YL Tong. Convex Functions, Partial Orderings, and 
Statistical Applications. Boston: Academic Press; 1992. 
theory/likelihood. 

Peritz E. Exact tests for matched pairs: studies with covariates. Commun Statist A; 
1982; 11: 2157-2167 (errata 12: 1209-1210). 
matched-pairs/covariate. 

Peritz E. Modified Mantel-Haenszel procedures for matched pairs. Commun Statist A, 
1985; 14:2263-2285. 
matched pairs/logistic/covariates. 

Peto R; J Peto. Asymptotically efficient rank invariant test procedures. J Roy Statist 
Soc A; 1972, 135: 185-206. 
survival/censor/power. 

Petrondas DA; RK Gabriel. Multiple comparisons by rerandomization tests. J Am 
Statist Assoc; 1983; 78: 949-957. 
multiple comparisons. 

Picard R. Randomization and design. RA Fisher, An Appreciation. SE Fienberg and 
DV Hinckley, Editors. New York: Springer-Verlag; 1980: 208-213. 
test. 

Pike MC; PG Smith. A case-control approach to examine disease for evidence of 
contagion including diseases with long latent periods. Biometrics; 1974; 30: 263-
279. 
cluster/covariate/case-control/restricted. 

Pitman EJG. Significance tests which may be applied to samples from any popula­
tion. Roy Statist Soc Suppl; 1937; 4: 11-130,225-232. 
concept/tests. 

Pitman EJG. Significance tests which may be applied to samples from any popu­
lation. Part III. The analysis of variance test. Biometrika; 1938; 29: 322-
335. 
tests. 



204 Bibliography Part 1: Randomization 

Plackett RL. Analysis of Categorical Data. London: Griffin; 1974. 
exact/reference set. 

Plackett RL. Analysis of permutations. Applied Statistics; 1975; 24: 163-17l. 
logistic models/application. 

Plackett RL. Random permutations. J Roy Stat Soc B; 1968; 30: 517-534. 
algorithm. 

Pollard E; KH Lakhand, and P Rothrey. The detection of density dependence from a 
series of annual censuses. Ecology; 1987; 68: 2046-2055. 
application. 

Prager MH; JM Hoenig. Superposed epoch analysis: A randomization lest of envi­
ronmental effects on recruitment with application to chub mackrel. Transac Am 
Fisheries Soc; 1989; 18: 608-619. 
application/misuse. 

Priesendorfer RW; TP Barnett. Numerical model/reality intercomparison tests using 
small-sample statistics. J of Atmospheric Sci; 1983; 40: 1884-1896. 
p-dist/choosing/application. 

Puri M; PK Sen. Non-parametric Methods in General Linear Models. New York: John 
Wiley; 1985. 
multivariate/ranks/design. 

Puri ML; PK Sen. A class of rank order tests for a general linear hypothesis. Annal 
Math Statist; 1969; 40: 1325-1343. 
multivariate. 

Puri ML; PK Sen. Nonparametric Techniques in Multivariate Analysis. New York: 
John Wiley and Sons; 1971. 
cit. 

Puri ML; PK Sen. On a class of multivariate, multisample rank-order tests. Sankyha 
Ser A; 1966; 28: 353-376. 
tests/multivariate. 

Puri ML; HD Shane. Statistical inference in incomplete blocks design. N onparametric 
Techniques in Statistical Inference. ML Puri, Ed. Cambridge: University Press; 
1970: 131-155. 
p-dist. 

Putter J. Treatment of ties in some nonparametric tests. Annal Math Statist; 1955; 26: 
368-386. 
p-dist. 

Pyhel N. Distribution free r-sample tests for the hypothesis of parallelism of response 
profiles. Biometric J; 1980; 22: 703-714. 
k-sample/response curves. 

Quinn, JF. On the statistical detection of cycles in extinctions in the marine fossil 
record. Paleobiology; 1987; 13: 465-478. 
application/trend. 

Randles RH; DA Wolfe. Introduction to the Theory of Nonparametric Statistics. New 
York: John Wiley and Sons; 1979. 
review/robust. 

Rao JNK; DR Bellhouse. Optimal estimation of a finite population mean under 
generalized random permutation models. J Statist Plan and lrifer; 1978; 2: 125-
14l. 
estimation. 

Rao TJ. Some aspects of random permutation models in finite population sampling 
theory. Metrika; 84; 31: 25-32. 
design. 

Ray W. Logic for a rank test. Behav Science; 1966; 11: 405. 
algorithm. 



Bibliography Part 1: Randomization 205 

Raz J. Analysis of repeated measurements using nonparametric smoothing and ran­
domization tests. Biometrics; 1989; 45: 851-871. 
repeated measurements. 

Raz 1. Testing for no effect when estimating a smooth function by nonparametric 
regression: a randomization approach. J ASA; 1990, 85: 132-138. 

Raz J; G Fein. Testing for heterogeneity of evoked potential signals using an approxi­
mation to an exact permutation test. Biometrics. 1992; 48: 1069-80. 

Recchia M; M Recchetti. The simulated randomization test. Computer Programs in 
Biomedicine; 1982; 15: 111-116. 

Reich RM; PWJr Mielke and FG Hawksworth. Spatial analysis of ponderosa pine 
trees infected with dwarf mistletoe. Canadian J Forest Research. 1991; 21: 1808-
15. 

Rice WR. A new probability model for determining exact p-values for 2 x 2 con­
tingency tables when comparing binomial proportions. Biometrics; 1988; 44: 1-
14. 

Ritland C; K Ritland. Variation of sex allocation among eight taxa of the Minimuls 
guttatus species complex (Scrophulariaceae). Amer J Botany; 1989; 76. 

Roberson P; L Fisher. Lack of robustness in time-space disease clustering. Commun 
Statist B: Simulation and Computing; 1986; 12: 11-22. 

Robinson 1. Approximations to some test statistics for permutation tests in a com­
pletely randomized design. Austral J Statist; 1983; 25: 358-369. 

Robinson J. An asymptotic expansion for samples from a finite population. Annal 
Statist; 1978; 6: 1005-1011. 
asymptotic. 

Robinson J. An asymptotic expansion for permutation tests with several samples. 
Annal Statist, 1980; 8: 851-864. 
asymptotic/k-sample. 

Robinson J. A converse to a combinatorial central limit theorem. Annal Math Statist; 
1972; 43: 2055-2057. 
asymptotic/theory. 

Robinson J. Large deviation probabilities for samples from a finite population. Annal 
Probability; 1977; 5: 913-925. 
theory/asymptotic. 

Robinson J. The large-sample power of pemutation tests for randomization models. 
Annal Statist; 1973; 1: 291-296. 
power/asymptotic. 

Robinson, 1. Nonparametric confidence intervals in regression: The bootstrap and 
randomization methods. New Perspectives in Theoretical and Applied Statistics. 
M Puri, JP Vilaplana, and W Wertz, Eds. New York: John Wiley & Sons; 1987: 
243-256. 
confidence/bootstrap. 

Robinson J. On the test for additivity in a randomized block design. J Am Statist 
Assoc; 1975; 70: 184-194. 
p-dist/design/asymptotic. 

Romano JP. Bootstrap and randomization tests of some nonparametric hypotheses. 
Annal Statist; 1989; 17: 141-159. 
efficiency. 

Romano JP. On the behavior of randomization tests without a group invariance 
assumption. J Am Statist Assoc; 1990; 85: 686-692. 
robust/misuse/asymptotic. 

Romesburg He. Exploring, confirming and randomization techniques. Computers 
and Geosciences; 1985; 11: 19-37. 
multivariate/concept/program/discrim anal. 



206 Bibliography Part 1: Randomization 

Rosen B. Limit theorems for sampling from a fmite population. Ark Mat; 1965; 5: 
383-424. 
limit/finite/theory. 

Rosenbaum PRo Conditional permutation tests and the propensity score in observa­
tional studies. JASA; 1984; 79: 565-574. 
tests. 

Rosenbaum PRo On permutation tests for hidden biases in observational studies: an 
application of Holley's inequality to the Savage lattice. Annal Statist; 1989; 17: 
643-653. 
p-dist. 

Rosenbaum PRo Permutation tests for matched pairs with adjustments for covariates. 
Appl Statist; 1988; 37: 401-411. 
covariates. 

Rosenbaum PRo Sensitivity analysis for certain permutation tests in matched obser­
vational studies. Biometrika; 1987; 74: 13-26. 
p-dist/power. 

Rosenbaum PRo Sensitivity analysis for matching with multiple controls. Biometrika; 
1988; 75: 577-581. 

Rosenbaum PRo Sensitivity analysis for matched observational studies with many 
ordered treatments. Scand J Statist; 1989; 16: 227-236. 

Rosenbaum PRo Sensitivity analysis for matched case-control studies. Biometrics; 
1991; 47: 87-100. 

Rosenbaum PRo Coherence in observational studies. Biometrics. 1994; 50: 368-
74. 

Rosenbaum PR; AM Krieger. Sensitivity analysis of two-sample permutation infer­
ences in observational studies. J Am Statist Assoc; 1990; 85: 493-498. 

Rosenberger WF. Asymptotic inference with response-adaptive treatment allocation 
designs. Annal Statist. 1993; 21: 2098-2107. 

Royaltey HH; E Astrachen, arid RR Sokal. Tests for patterns in geographic variation. 
Geographic Analys; 1975; 7: 369-395. 

Rubin DB. Bayesian inference for causal effects: the role of randomization. Annal 
Statist; 1978; 6: 34-58. 

Runger GC; Eaton ML. Most powerful invariant permutation tests. J Multiv Anal. 
1992; 42: 202-09. 

Ryman N; C Reuterwall, K Nygren, and T Nygren. Genetic variation and differentia­
tion in Scandiavian moose (Alces): Are large mammals monomorphic? Evolution; 
1980; 34; 1037-1049. 

Salsburg DS. The Use of Restricted Significance Tests in Clinical Trials. New York: 
Springer-Verlag; 1992. . 
application/restricted/clinical trials. 

Scheffe H. Analysis of Variance. New York: John Wiley and Sons; 1959. 
design. 

Scheffe H. Statistical inference in the non-parametric case. Annals Math Statist; 1943; 
14: 305-332. 
concept. 

Schemper M. A generalization of the intraclass tau correlation for tied and censored 
data. Biometrical J; 1984; 26: 609-617. 

Schemper M. A survey of permutation tests for censored survival data. Commun Stat 
A; 1984; 13: 433-448. 

Schomoyer RL. Permutation tests for correlation in regression errors. J Am Statist 
Assoc. 1994; 89: 1507-16. 

Schrage C. Evaluation of permutation tests by means of normal approximation or 
Monte Carlo methods. Comput Statist Quart; 1984; 1: 325-332. 
approximation/Monte Carlo. 



Bibliography Part 1: Randomization 207 

Schulman RS. Ordinal data; an alternative distribution. Psychometrika; 1979; 44: 
3-20. 
conditional p-dist/rank test/trend. 

Schultz JR; L Hubert. A nonparametric test for the correspondence between two 
proximity matrices. J Educ Statist; 1976; 1: 59-67. 
Mantel/concept. 

Selander RK; DW Kaufman. Genetic structure of populations of the brown snail 
(Helix aspersa). I: Microgeographic variation. Evolution; 1975; 29: 385-401. 
Mantel/application. 

Sen PK. Nonparametric tests for multivariate interchangeability. Part 1: Problems of 
location and scale in bivariate distributions. Sankhya A; 1967; 29: 351-372. 
multivariate. 

Sen PK. Nonparametric tests for multivariate interchangeability. Part 2: The problem 
of MANOVA in two-way layouts. Sankhya; 1969; 31. 
multivariate. 

Sen PK. On permutational central limit theorems for general multivariate linear 
statistics. Sankhya A; 1983; 45: 141-149. 
multivariate/clt. 

Sen PK. On some permutation tests based on U-statistics. Bull Calcutta Stat Assoc; 
1965; 14: 106-126. 
U statistics/tests. 

Sen PK. On some multisample permutation tests based on a class of U -statistic. J Am 
Statist Assoc; 1967; 62: 1201-1213. 
U -statistic. 

Sen PK; ML Puri. On the theory of rank order tests for location in the multivariate 
one sample problem. Annal Math Statist; 1967; 38: 1216-1228. 
multivariate. 

Servy EC, PK Sen. Missing variables in mUlti-sample rank permutation tests for 
MANOV A and MANCOVA. Sankhya A; 1987; 49: 78-95. 
efficiency /multivariate/design/ranks. 

Shane HD, ML Puri. Rank order tests for multivariate paired comparisons. Annal 
Math Statist; 1969; 40: 2101-2117. 
multivariate/matched-pairs. 

Shapiro CP; LJ Hubert. Asymptotic normality of permutation probabilities derived 
from the weighted sums of bivariate functions. Annal Statist; 1979; 7: 788-794. 
bivariate/asymptotic. 

Shen CD; D Quade. A randomization test for a three-period three-treatment cross­
over experiment. Commun Statist B; 1986; 12: 183-199. 
missing/design/multi-period/application. 

Shorack G. Testing and estimating ratios of scale parameters. J Am Statist Assoc; 
1969;64:999-1013. 
asymptotic approximation/test. 

Shuster JJ; JM Boyett. Nonparametric multiple comparison procedures. J Am Statist 
Assoc; 1979; 74: 379-382. 
multiple comparisons. 

Siegel S. Practical Nonparametric Statistics. New York: Wiley; 1956. 
test. 

Siemiatycki 1. Mantel's space-time clustering statistic: computing higher moments 
and a comparison of various data transforms. J Statist Comput Simul; 1978; 7: 
13-31. 
approximation/cluster. 

Siemiatycki J; AD McDonald. Neural tube defects in Quebec: A search for evidence 
of clustering in time and space. Brit J Prev Soc Med, 1972; 26: 10-14. 
application. 



208 Bibliography Part 1: Randomization 

Silvey SD. Asymptotic distributions of statistics arising in certain nonparametric 
tests. Proc Glascow Math Assoc; 1956; 2: 47-5l. 
asymptotic/p-dist/variance. 

Silvey SD. Equivalence of asymptotic distributions arising under randomization and 
normal theories. Proc Glascow Math Assoc; 1954; 1: 139-147. 
asymptotic. 

Simon R. Restricted randomization designs in clinical trials. Biometrics; 1979; 35: 
503-512. 
clinical trials. 

Smith PG; MC Pike. Generalization of two tests for the detection of household 
aggregation of disease. Biometrics; 1976; 32: 817-828. 
application/p-dist/clustering. 

Smith RL. Sequential treatment allocation using biased coin designs. J Roy Statist 
Soc B; 1984; 46: 519-543. 
inference/concept/p-dist. 

Smythe RT. Conditional inference for restricted randomization designs. Annal Math 
Statist; 1988; 16: 1155-1161. 
restricted. 

Smythe RT; LJ Wei. Significance tests with restricted randomization design. Bio­
metrika; 1983; 70: 496-500. 
p-dist/restricted. 

Sokal RR. Testing statistical significance in geographical variation patterns. System­
atic Zoology; 1979; 28: 227-232. 
Mantel/application. 

Sokal RR; FJ Rohlf. Biometry. San Francisco: Freeman; 1981. 
Solow AR. A randomization test for independence of animal locations. Ecology; 1989; 

70: 1546-1549. 
Solow AR. A randomization test for misclassification problems in discriminatory 

analysis. Ecology; 1990; 71: 2379-2382. 
Solow AR. A simple test for change in community structure. J Animal Ecology. 1993; 

62: 191-193. 
Solow AR; VE Starczak. Statistical analysis with an ordered categorical regressor: 

The effect of rainfall on attendence. Water Research Reports. 1993; 29: 1561-
64. 

Soms AP. Permutation tests for k-sample binomial data with comparisons of exact 
and approximate P-Ievels. Commun Statist A; 1985; 14. 

Soper KA; Tonkonoh N. The discrete distribution used for the log-rank test can be 
inaccurate. Biometric J. 1993; 35: 291-98. 

Spino C; M Pagano. Efficient calculation of the permutation distribution of trimmed 
means. J Am Statist Assoc; 1991; 86: 729-737. 

Steyn HS; RH Stumpf. Exact distributions associated with an h x k contingency 
table. S African Stat J; 1984; 18: 135-159. 

Still A W, AP White. The approximate randomization test as an alternative to the 
F-test in the analysis of variance. British J Math Stat Psych; 1981; 34: 243-
252. 

Storer BE; C Kim. Exact properties of some exact test statistics for comparing two 
binomial populations. J Am Statist Assoc; 1990; 85: 146-155. 
xtab. 

Stucky W; J Vollmar. Ein verfahren zur exakten awwertung von r x c­
haufigeekeitstatein. Biom Zeit; 1975; 17: 147-162. 
xtab. 

Suissa S; JJ Shuster. Are uniformly most powerful unbiased tests really best? Am 
Statistician; 1984; 38: 204-206. 
xtab/concept/misuse. 



Bibliography Part 1: Randomization 209 

Suissa S; J Shuster. Exact unconditional sample sizes for the 2 x 2 binomial trial. 
J Roy Statist Soc A; 1985; 148: 317-327. 
xtab/power. 

Takaeuchi K. Asymptotically efficient tests for location: nonparametric and asympto­
tically nonparametric. in Nonparametric Techniques in Statistical Inference. ML 
Puri, Ed. Cambridge: University Press; 1970: 131-155. 
robust. 

Tardif S. On the almost sure convergence of the permutation distribution for aligned 
rank test statistics in randomized block designs. Annal Statist; 1981; 9: 190-93. 
asymptotic/rank/design. 

Tocher KD. Extension of the Neyman-Pearson theory of tests of discontinuous 
variates. Biometrika; 1950; 37: 1301-1444. 
xtab/inference. 

Tracy DS; KA Khan. Comparison of some MRPP and standard rank tests for two 
unequal samples. Commun Statist B; 1989; 18: 729-756. 
MRPP/power. 

Tracy DS; KA Khan. Comparison of some MRPP and standard rank tests for three 
equal sized samples. Commun Statist B; 1990; 19: 315-333. 
MRPP/power. 

Tracy DS; IH Tajuddin. Empirical power comparisons of two MRPP rank tests. 
Commun Statist A; 1986; 15: 551-570. 
MRPP /power. 

Tracy DS; IH Tajuddin. Extended moment results for improved inferences based on 
MRPP. Commun Statist A, 1985, 14: 1485-1496. 
MRPP. 

Tritchler D. On inverting permutation tests. J Am Statist Assoc; 1984; 79: 200-
207. 
confidence intervals. 

Tsutakawa RK; SL Yang. Permutation tests applied to antibiotic drug resistance. 
JASA; 1974; 69: 87-92. 
application. 

Tukey JW. Dyaclic ANOV A, an analysis of variance for vectors. Human Biology; 
1949; 21: 65-110. 

Tukey JW. Improving crucial randomized experiments-especially in weather 
modification-by double randomization and rank combination. Proceedings of 
the Berkeley Conference in Honor of J Neyman and J Kiefer, L LeCam, RA 
Olshen, CS Cheng, Editors. Hayward, CA: Institute of Mathematical Statistics; 
1985; 1: 79-108. 

Tukey JW; DR Brillinger, and LV Jones. Management of Weather Resources: Vol II: 
The role of statistics in weather resources management. Washington DC: Depart­
ment of Commerce, US Government Printing Office; 1978. 
power/concept/application. 

Turnbull BW; EJ Iwano, WS Burnett, HL Howe, and LC Clark. Monitoring for 
clusters of disease: applications to leukemia incidence in upstate New York. Am J 
Epidem; 1990; 132: S136-143. 
cluster/application. 

Upton GJG. A comparison of alternative tests for the 2 x 2 comparative trial. J Roy 
Statist Soc A; 1982; 145: 86-105. 

Upton GJG; D Brook. Determination of the optimum position on a ballot paper. 
Appl Stat; 1975; 24: 279-287. 

Upton GJG. Fisher's exact test. J Roy Statist Soc A. 1992; 155: 395-402. 
Vadiveloo, J. On the theory of modified randomization tests for nonparametric hy­

pothesis. Commun Statist-Theory and Methods; 1983; 12: 1581-1598. 
power/Monte Carlo. 



210 Bibliography Part 1: Randomization 

van den Brink WP; SGJ van den Brink A modifies approximate permutation test 
procedure. Comp Sci Quart; 1990; 3: 241-24. 
test/algorithm/multistage. 

van-Putten B. On the construction of multivariate permutation tests in the multi­
variate two-sample case. Statist Neerlandica; 1987; 41: 191-201. 

Vecchia DF; HK Iyer. Moments of the quartic assignment statistic with an applica­
tion to multiple regression. Common Statist- Theor and Meth; 1991; 20: 3253-
3269. 

Vecchia DF; Iyer HK. Exact distribution-free tests for equality of several linear 
models. Commun Stat A; 1989; 18: 2467-2488. 

Verdonschot PFM; Braak CJFT. 1994. "An experimental manipulation of oligochate 
communities in mesocosms treated with chlorpyrifos or nutrient additions-multi­
variate analyses with Monte Carlo permutation tests." Hydrobiology 278: 251-
266. 

Wald A; J Wolfowitz. An exact test for randomness in the nonparametric case based 
on serial correlation. Annal Math Statist; 1943; 14: 378-388. 

Wald A; J Wolfowitz. Statistical tests based on permutations of the observations. 
Annal Math Statist; 1944; 15: 358-372. 

Wampold BE; MJ Furlong. Randomization tests in single-subject designs: illustrative 
examples. J Behav Assess; 1981; 3: 329-341. 

Weerahandi S. Exact Statistical Methods in Data Analysis. New York: Springer­
Verlag; 1995. 

Wei LJ. Exact two-sample permutation tests based on the randomized play-the­
winner rule. Biometrika; 1988; 75: 603-605. 
restricted randomization. 

Wei LJ; JM Lachin. Properties of urn-randomization in clinical trials. Controlled 
Clinical Trials; 1988; 9: 345-364. 
restricted randomization. 

Wei LJ; RT Smythe, and RL Smith. K-treatment comparisons in clinical trials. Annal 
Math Statist; 1986; 14: 265-274. 
clinical trials/restricted. 

Welch BL. On tests for homogeneity. Biometrika; 193830: 149-158. 
finite populations/concept/variance. 

Welch BL. On the z-test in randomized blocks and Latin squares. Biometrika; 1937; 
29: 21-52. 
concept/tests/p-dist/design. 

Welch WJ. Construction of permutation tests. J Am Statist Assoc; 1990; 85: 693-
698. 
review/theory/design. 

Welch WJ. Rerandomizing the median in matched-pairs designs. Biometrika; 1987; 74: 
609-614. 
robust/matched-pairs. 

Welch WJ; LG Guitierrez. Robust permutation tests for matched pairs designs. 
J ASA; 1988; 83: 450-461. 
robust/outliers. 

Wellner JA. Permutation tests for directional data. Annal Statist; 1979; 7: 929-
943. 
tests. 

Westfall PH; SS Young. Resampling-Based Multiple Testing. New York: John Wiley 
& Sons; 1993. 

Whaley FS. The equivalence ofthree individually derived permutation procedures for 
testing the homogeneity of multidimensional samples. Biometrics; 1983; 39: 741-
745. 
concept/multivariate. 



Bibliography Part 1: Randomization 211 

White AP; AW Still. Monte Carlo analysis of variance. Proceedings ofthe 6th Sympo­
sium in Computational Statistics. Havranek P, Z Sidak, and M Novak, Eds. Wien: 
Physica-Verlag; 1984. 
design/robust/Monte Carlo. 

Wilk MB. The randomization analysis of a generalized randomized block design. 
Biometrika, 1955; 42: 70-79. 
designs. 

Wilk MB; 0 Kempthome. Nonadditivities in a Latin square design. J Am Statist 
Assoc 1957; 52: 218-236. 
p-dist/design/average. 

Wilk MB; 0 Kempthome. Some aspects of the analysis of factorial experiments in a 
completely randomized design. Annal Math Statist; 1956; 27: 950-984. 
p-dist. 

Williams-Blangero S. Clan-structured migration and phenotypic differentiation in the 
Jirels of Nepal. Hum Bioi; 1989; 61: 143-157. 
spatial dispersion. 

Witting, H. On the theory of nonparametric tests. In Nonparametric Techniques in 
Statistical Inference. ML Puri, Ed. Cambridge: University Press; 1970: 41-51. 
groups/derivation/power. 

Wong RKW; Chidambaram & Mielke PW. Applications of multi-response permuta­
tion procedures and median regression for covariate analyses of possible weather 
modification effects on hail responses. Atmosphere-Ocean; 1983; 21: 1-13. 
MRPP /application/covariate. 

Yanagimoto T; M Okamoto. Partial orderings for permutations and monotonicity of 
a rank correlation statistic. Inst Stat Math Annal; 1969; 21: 489-506. 
power/theory/algorithm. 

Yates F. Tests of significance for 2 x 2 contingency tables (with discussion). J Roy 
Statist Soc A; 1984; 147: 426-463. 
xtab. 

Young, A. Conditional data-based simulations. Some examples from geometric statis­
tics. Int Statist Rev, 1986; 54: 1-13. 
application/bootstrap. 

Zelen M. The analysis of several 2 x 2 contingency tables. Biometrika; 1971; 58: 129-
137. 
concept/xtab/binomialftest. 

Zerbe GO. Randomization analysis of the completely randomized design extended to 
growth and response curves. J Am Statist Assoc; 1979; 74: 215-221. 
test/application/repeated measures. 

Zerbe GO. Randomization analysis of randomized block design extended to growth 
and response curves. Commun Statist A, 1979; 8: 191-205. 
design/repeated measures. 

Zerbe GO; JR Murphy. On multiple comparisons in the randomization analysis of 
growth and response curves. Biometrics, 1986; 42: 795-804. 
design/application. 

Zerbe GO; SH Walker. A randomization test for comparison of groups of growth 
curves with different polynomial design matricies. Biometrics; 1977; 33: 653-657. 
application/test. 

Zimmerman GM; H Goetz, and PWJr Mielke. Use of an improved statistical method 
for group comparisons to study effects of prairie fire. Ecology; 1985,66: 606-611. 
application/MRPP. 



BIBLIOGRAPHY PART 2: 

Supporting 

Berger JO, RW Wolpert. The Likelihood Principle. Institute of Mathematical Statis­
tics Lecture Notes-Monograph Series. (1984) Heyward CA: IMS. 

Bishop YMM; SE Fienberg, and PW Holland. Discrete Multivariate Analysis: Theory 
and Practice. (1975) Cambridge MA: MIT Press. 

Box JF. The Life of a Scientist. (1978) New York: John Wiley and Sons. 
Clarke B. Divergent effects of natural selection on two closely-related polymorphic 

snails. Heredity. 1960; 14: 423-443. 
Clarke B. Natural selection in mixed populations of two closely-related polymorphic 

snails. Heredity. 1962; 16: 319-345. 
Conover WJ; ME Johnson, and MM Johnson. Comparative study of tests for homo­

geneity of variances, with applications to the outer continental shelf bidding data. 
Technometrics 23, (1981) 351-361. 

David HA. Order Statistics. (1970) New York: John Wiley and Sons. 
Davis A W (1982). On the effects of moderate nonnormality on Roy's largest root test. 

J Am Stat Assoc; 77, 896-900. 
Dodge Y. Editor, Statistical Data Analysis Based on the L1-norm and Related Meth­

ods. (1987) Amsterdam: N Holland. 
Efron B. Censored data and the bootstrap. J Am Statist Assoc 76, (1981) 312-319. 
Efron B. Better bootstrap confidence intervals (with discussion). J Am Statist Assoc; 

(1987) 82,171-200. 
Efron B; R Tibshirani. Bootstrap methods for standard errors, confidence intervals 

and other measures of scientific accuracy. Statistical Science. 1986; 1: 54-77. 
Fisher NI and P Hall. On bootstrap hypothesis testing. Austral J Statist; (1990) 32, 

177-190. 
Fix E; JLJr Hodges, and EL Lehmann. The restricted x 2 test. In Studies in Probability 

and Statistics Dedicated to Harold Cramer. (1959) Stockholm: Almquist and Wiksell. 
Gabriel KR. Ante-dependence analysis of an ordered set of variables. Annal Math 

Statist; (1962) 33, 201-212. 
Gastwirth JL; H Rubin. Effects of dependence on the level of some one-sample tests. 

J Am Statist Assoc. 1971; 66: 816-820. 
Gine E; J Zinno Necessary conditions for a bootstrap of the mean. Annal Statist; (1989) 

17,684-691. 
Goodman L; W Kruskal. Measures of association for cross-classification. J Am 

Statist Assoc (1954) 49, 732-764. 
Hall P. On efficient bootstrap simulation. Biometrika. 1989; 76: 613-17. 
Hall P; SR Wilson. Two guidelines for bootstrap hypothesis testing. Biometrics, (1991) 

47,757-762. 



Bibliography Part 2: Supporting 213 

Hampel FR; EM Ronchetti, PJ Rousseeuw, and W A Stahel. Robust Statistics: The 
Approach Based on Influence Functions. (1986) New York: John Wiley and Sons. 

Hasegawa M; H Kishino, and T Yano. Phylogentic inference from DNA sequence 
data. In Statistical Theory and Data Analysis. K Matusita, Ed. (1988) Amsterdam: 
North Holland. 

Hettmansperger TP. Statistical Inference Based on Ranks. New York: John Wiley; 
1984. 

Hodges JL; EL Lehmann. Testing the approximate validity of statistical hypothesis. 
J Roy Statist Soc B, 16, (1954) 261-268. 

Hogg RV; RV Lenth. A review of some adaptive statistical techniques. Comm Statist, 
13, (1984) 1551-1579. 

James GS. The comparison of several groups of observations when the ratios of the 
population variances are unknown. Biometrika. 1950; 38: 324-29. 

Knight K. On the bootstrap of the sample mean in the infinite variance case. Annals 
Statist, 17, (1989) 1168-1173. 

Lehmann E. Some concepts of dependence. Annal Math Statist, 37, (1966) 1137-1153. 
Liu RY. Bootstrap procedures under some non i.i.d. models. Annals Statist. 1988; 16: 

1696-1788. 
Makridakis S; SC Wheelwright, and VE McGee. Forecasting Methods and Applica­

tions, (1983) New York: John Wiley and Sons. 
Maxwell SE; Cole DA. A comparison of methods for increasing power in randomized 

between-subjects designs. Psych Bull. 1991; 110: 328-337. 
Morrison DF. Multivariate Statistical Methods, (1990) New York: McGraw-Hill. 
Smith R. Properties of biased coin designs in sequential clinical trials. Annal Statist, 

12, (1984) 1018-1034. 
Sampford MR; J Taylor. Censored observations in randomized block experiments. 

J Roy Statist Soc B 21(1), (1959) 214-237. 
Stine RA. Estimating properties of autoregressive forecasts. J Am Statist Assoc, 82, 

(1987) 1072-1078. 
Werner M; R Tolls, J Hultin, and J Mellecker. Sex and age dependence of serum 

calcium, inorganic phosphorous, total protein, and albumin in a large ambulatory 
population. In Fifth Technical International Congress on Automation, Advances in 
Automated AnalYSis 2: 59-65. (1970) Future Publishing Co., Mount Kisco, NY. 

Wetherill GB. The Wilcoxon test and nonnull hypothesis. J Roy Statist Soc B. 1960; 
2: 402-18. 



BIBLIOGRAPHY PART 3: 

Computational Methods 

Abramson M; WJ Moser. Arrays with fixed row and column sums. Discrete Math; 
1973,6: 1-14. 

Agresti A; CR Mehta, and NR Patel. Exact inference for contingency tables with 
ordered categories. Statist Assoc; 1990; 85: 453-458. 

AKI SG. A comparison of combination generation methods. ACM Trans Math Soft­
ware; 1981; 7: 42-45. 

Amana IA; GG Koch. A macro for multivariate randomization analysis of stratified 
sample data. SAS Sugi; 1980; 5: 134-144. . 

Arbuckle J; LS Astler. A program for Pitman's permutation test for differences in 
location. Behav Res Meth Instr; 1975; 7: 381. 

Baglivo J; D Olivier, and M Pagano. Methods for exact goodness-of-fit tests. J Am 
Statist Assoc; 1992; 87: 464-469. 

Baglivo J; D Oliver, and M Pagano. Methods for the analysis of contingency Tables 
with large and small cell counts. J Am Statist Assoc; 1988; 83: 1006-1013. 

Baker FB; RO Collier. Analysis of experimental designs by means of randomization, 
a Univac. 1103 program. Behav Science; 1961; 6: 369. 

Baker RD; Tilbury JB. Algorithm AS 283: Rapid computation of the permutation 
paired and group t-tests. Applied Statistics. 1993; 42: 432-441. 

Baker RJ. Exact distributions derived from two-way tables. Appl Statist; 1997; 26: 
199-206. 

Balmer DW. Recursive enumeration of r x c tables for exact likelihood evaluation. 
AS 236. Appl Statist; 1988; 37: 290-301. 

Bebbington AC. A simple method of drawing a sample without replacement. Appl 
Statist; 1975; 24: 136. 

Bernard A; P Van Efferen. A generalization of the method of m rankings. Proc Kon 
Ned Akad Wefensch; 1953: A56. 

Berry KJ. AS179 Enumeration of all permutations of multi-sets with fixed repetition 
numbers. Appl Statist; 1982; 31. 

Besag J; P Clifford. Sequential Monte Carlo p-values Biometrika; 1991; 78: 301-304. 
Bissell AF. Ordered random selection without replacement. Appl Statist; 1986; 35. 
Bitner JR, G Ehrlich, and E Rheingold. Efficient generation of the reflected Gray 

Code and its applications. Commun ACM; 1976; 19: 517-521. 
Booth JG; RW Butler. Random distributions and saddlepoint approximations in 

general linear models. Biometrika; 1990; 77: 787-796. 
Boothroyd J. Algorithm 246. Gray code. Commun ACM; 1964; 7: 701. 
Boothroyd J. Algorithm 29, Permutation of the elements of a vector. Computer J; 

1967: 60: 311. 



Bibliography Part 3: Computational Methods 215 

Boswell MT; SD Gore, GP Patel, and C Taillie. The art of computer generation of 
random variables. Handbook of Statistics 9. Computational Statistics. CR Rao, Ed, 
Amsterdam: North Holland. 1993. 

Boulton DM. Remarks on Algorithm 434. Commun ACM; 1974; 17: 326. 
Boyet 1M. Random R x C tables with given row and column totals (algorithm AS 

144). Appl Statist; 1979; 28. 
Bratley P. Algorithm 306, Permutations with repetitions. Commun ACM; 1967; 10: 

450-451. 
Chase Pl. Algorithm 382. Combinations of M out of N objects. Commun ACM; 

1970a; 13: 368. 
Chase Pl. Algorithm 383, Permutations of a set with repetitions. Commun ACM; 

1970b; 13. 
Chen RS; Dunlap WP. SAS procedures for randomization tests. ,Behav Res Meth 

Instrum. 1993; 25: 406-09. 
Conlon M; Thomas RG. Algorithm AS 280: The power function for Fisher's exact 

test. Applied Statistics. 1993; 42: 258-260. 
Dallal, GE. Pitman: A Fortran program for exact randomization tests. Computers and 

Biomed Res; 1988; 21: 9-15. 
Daniels HE. Discussion of paper by GEP Box and SL Anderson. J Roy Statist Soc B; 

1955; 17: 27-28. 
Daniels HE. Discussion of paper by DR Cox. J Roy Statist Soc B, 1958, 20: 236-

238. 
Davison AC; DV Hinkley. Saddlepoint approximations in randomization methods. 

Biometrika; 1988; 75: 417-431. 
De Cani 1. An algorithm for bounding tail probabilities for two-variable exact tests. 

Randomization; 1979,2: 23-4. 
Dershowitz N. A simplified loop-free algorithm for generating permutations. BIT; 

1975; 15: 158-164. 
Durstenfie1d R. Random permutations. Commun ACM; 1964, 7: 420. 
Ehrlich G. Algorithm 466. Four combinatorial algorithms. Commun ACM; 1973; 16: 

690-691. 
Feldman SE; E Kluger. Shortcut calculations to Fisher-Yates "exact tests". Psycho­

metrika; 1963; 2: 289-291. 
Fike CT. A permutation generation method. Computer J; 1975; 18: 21-22. 
Fleishman AI. A program for calculating the exact probabilities along with explora­

tions ofm by n contingency tables. Educ Psychol Measure; 1977; 33: 798-803. 
Gail M; N Mantel. Counting the number of r x c contingency tables with fixed mar­

ginals. J Am Statist Assoc; 1977; 72: 859-862. 
Gentleman IF. Algorithm AS88. Generation of all nCr combinations by simulating 

nested Fortran DO loops. Appl Statist; 1975; 24: 374-376. 
Goetghe1uck P. Computing binomial coefficients. Am Math Monthly; 1987,94: 360-

365. 
Green BF. A practical interactive program for randomization tests of location. Am 

Statist; 1977,31: 37-39. 
Gregory Rl. A Fortran computer program for the Fisher exact probability test. Educ 

Psychol Measurement; 1973; 33: 697-700. 
Hancock TW. Remark on algorithm 434. Commun ACM; 1974; 18: 117-119. 
Hayes IE. Fortran program for Fisher's exact test. Behav Res Meth Instr; 7: 481. 
Howell DC; LR Gordon. Computing the exact probability of an r by c contingency 

table with fixed marginal totals. Behav Res Meth Instr, 1976; 8: 317. 
Hull ID; R Peto. Alg AS35 Probabilities derived from finite populations. Appl Statist; 

1971,20: 99-105. 
Ives FM. Permutation enumeration: four new permutation algorithms. Commun 

ACM; 1976; 19: 68-70. 



216 Bibliography Part 3: Computational Methods 

Joe H. Extreme probabilities for contingency tables under row and column indepen­
dence with applications to Fisher's exact test. Commun Statist A; 1988; 17: 3677-
3685. 

Joe H. An ordering of dependence for contingency tables. Lin Alg Appl; 1985; 70: 89-
103. 

Knott GD. A numbering system for permutations of combinations. Commun ACM; 
1976, 19: 355-356. 

Knuth DE. The Art of Computer Programming. Vol 2 Semi-Numerical Algorithms. 
Reading MA: Addison-Wesley; 1973. 

Kreiner S. Analysis of multidimensional contingency tables by exact conditional fre­
quencies; techniques and strategies. Scand J Statist; 1987; 14: 97-112. 

Kurtzburg J. Algorithm 94. Combination. Commun ACM; 1962; 5: 344. 
Lam CWH, LH Sotchen. Three new combination algorithms with the minimal­

change property. Commun ACM; 1982; 25: 555-559. 
Liu CH; DT Tang. Algorithm 452. Enumerating combinations of m out of n objects. 

Commun ACM, 1973; 16: 485. 
Mackenzie G; M O'Flaherty. Direct simulation of nested Fortran DO loops. Appl 

Statist; 1982; 31: 71-74. 
March DL. Exact probabilities for R x C contingency tables. Commun ACM; 1972; 

15: 991-992. 
Marsh NW A. Efficient generation of all binary patterns by Gray Code. Appl Statist; 

1987,36: 245-249. 
Mehta CR; NR Patel. FEXACT: a Fortran subroutine for Fisher's exact test on 

unordered r x c contingency tables. ACM Trans Math Software; 1986a; 12: 154-
161. 

Mehta CR; NR Patel. A hybrid algorithm for Fisher's exact test in unordered r x c 
contingency tables. Commun Statist; 1986b; 15: 387-4Ol 

Mehta CR; NR Patel. A network algorithm for the exact treatment of the 2 x K 
contingency table. Commun Statist B; 1980; 9: 649-664. 

Mehta CR; NR Patel. A network algorithm for performing Fisher's exact test in r x c 
contingency, tables. J Am Statist Assoc; 1983; 78: 427-434. 

Minc H. Rearrangements. Trans Am Math Soc; 1971; 159: 497-504. 
Nelson DE, GO Zerbe. A SASjIML program to execute randomization of response 

curves with multiple comparisons. American Statistician; 1988; 42: 231-232. 
Nigam AK, VK Gupta. A method of sampling with equal or unequal probabilities 

without replacement. Appl Statist; 1984; 33. 
Nijenhuis A; HS Wilf. Combinatorial Algorithms. New York: Academic Press; 1978. 
aden NE. Allocation of effort in Monte Carlo simulation for power of permutation 

tests. J Am Statist Assoc; 1991; 86: 1074-1076. 
Ord-Smith RJ. Generation of permutation sequences: Part 1. Computer J; 1970; 13: 

152-155. 
Ord-Smith RJ. Generation of permutation sequences: part 2. Computer J; 1971; 14: 

136-139. 
Pagano M; K Halvorsen. An algorithm for finding the exact significance levels of 

r x C contingency tables. J Am Statist Assoc; 1981; 76. 
Pagano M; D Tritchler. On obtaining permutation distributions in polynomial time. 

J Am Statist Assoc; 1983; 78: 435-441. 
Page ES. Note on generating random parameters. Appl Statist; 1967; 16: 273-274. 
Page ES, LB Wilson. An Introduction to Combinatorial Combinations. Cambridge 

UK: Cambridge University Press; 1979. 
Patefield WM. An efficient method of generating r x c tables with given row and 

column totals (algorithm AS 159). Appl Statist; 1981; 30: 91-97. 
Payne WH; FM Ives. Combination generators. ACM Tran Math Software; 1979; 5: 

163-172. 



Bibliography Part 3: Computational Methods 217 

Rabinowitz; ML Berenson. A comparison of various methods of obtaining random 
order statistics for Monte Carlo computations. Am Stat; 1974; 28: 27-29. 

Radlow R; EF Alf. An alternate marginal assessment ofthe accuracy ofthe chi-square 
test of goodness offit. J Am Statist Assoc; 1975; 70: 811-813. 

Robertson WHo Programming Fisher's exact method of comparing two percentages. 
Technometrics; 1960; 2: 103-107. 

Robinson J. Saddlepoint approximations to permutation tests and confidence inter­
vals. J Roy Statist Soc, B; 1982; 44: 91-101. 

Rogers MS. A Philco 2000 program to exhibit distinguishably different permutations. 
Behav Science; 1964; 9: 289-299. 

Rohl JS. Generating permutations by choosing. Computer J; 1978; 21: 302-305. 
Romesburg HC; R Marshall, and TP Mauk. FITEST -A computer program for 

"exact chi-square" goodness of fit tests. Computers and Geosciences; 1981; 7: 457-
458. 

Roy MK. Evaluation of permutation algorithms. Computer J; 1978; 21: 296-301. 
Sag TW. Algorithm 242. Permutation with a set of repetitions. Commun ACM; 1964; 

7: 585. 
Saunders IW. Enumeration of r x c tables with repeated row totals. Applied Statis­

tics; 1984; 33: 340-352. 
Shamos MI. Geometry and statistics: problems at the interface. In Algorithms and 

Complexity: New Directions and Recent Results. JF Traub Ed. New York: Aca­
demic Press; 1976: 251-279. 

Soms AP. An algorithm for the discrete Fisher's permutation tests. J Am Statist 
Assoc; 1977; 72: 662-664. 

Spino C; M Pagano. Efficient calculation of the permutation distribution of robust 
two-sample statistics. Comput Statist Data Anal; 1991; 12: 349-368. 

Spino C; M Pagano. Efficient calculation of the permutation distribution of trimmed 
means. J Am Statist Assoc; 1991,86: 729-737. 

Strawderman RL; Mehta CR. On the validation of exact tests for nonparametric 
inference. Comp Statist Data Anal. 1992; 14: 263-266. COIT. 1994; 18: 197. 

Streitberg B; R Rohmed. Exact distributions for permutation and rank tests: an intro­
duction to some recently published algorithms. Stat Software Newsletter; 1986; 12: 
10-17. 

Streitberg B; J Rohmel. Exact distributions for rank- and permutation-tests in the 
general c-sample problem. EDV in Medizin und Biologie; 1987; 18: 12-19. 

Sunter AB. List sequential sampling with equal or unequal probabilities without 
replacement. Applied Statistics; 1977; 26: 261-268. 

Thomas D. Exact and asymptotic methods for the combination of 2 x 2 tables. Com­
puters Biomedical Res; 1975; 8: 423-446. 

Thomas RG; Conlon M. An algorithm for the rapid evaluation of the power function 
for Fisher's exact test. J Statist Comput Simul. 1992; 44: 63-73. 

Tritchler D. An algorithm for exact logistic regression. J Am Statist Assoc; 1984; 79: 
709-711. 

Tritchler DL; DT Pedrini. A computer program for Fisher's exact test. Educ Psychol 
Meas; 35: 717-720. 

Verbeek A; PM Kroonenberg. A survey of algorithms for exact distribution of test 
statistics in r x c tables with fixed marginals. Comput Statist Data Anal; 1985; 3: 
159-185. 

Vitter JS. Faster methods for random sampling. Commun ACM; 1984; 27: 703-718. 
Vollset SE; KF Hirji, and RM Elashoff. Fast computation of exact confidence limits 

for the common odds ratio in a series of 2 x 2 tables. J Am Statist Assoc; 1991; 86: 
404-409. 

VoUset SE; KF Hirji. A microcomputer program for exact and asymptotic analysis of 
several 2 x 2 tables. Epidemiology; 1991; 2: 217-220. 



218 Bibliography Part 3: Computational Methods 

Walsh JE. An experimental method for obtaining random digits and permutations. 
Sankhya; 1957; 17:355-360. 

Wells MB. Elements of Combinatorial Computing. 1971. Oxford: Pergammon. 
Wichmann, BA; Hill, ID. Algorithm AS 183: an efficient and portable pseudo-random 

number generator. Appl Statist; 1982; 31: 188-190. 
Woodhill AD. Generation of permutation sequences. Computer J; 1977; 20: 346-349. 
Wright T. A note on Pascal's triangle and simple random sampling. College Math J; 

1984; 20: 59-66. 
Zar JH. A fast efficient algorithm for the Fisher exact test. Behav Res Meth and Instr; 

1987; 19: 413-414. 
Zimmerman H. Exact calculations of permutation distributions for r dependent sam­

ples. Biometrical J, 1985; 27: 349-352. 
Zimmerman H. Exact calculations for permutation distribution for r independent 

samples. Biometrical J; 1985; 27: 431-443. 



BIBLIOGRAPHY PART 4: 

Seminal Articles 

1. Agresti A.; D Wackerly, and JM Boyett. Exact conditional tests for cross-classifi­
cations: approximations of attained significance levels. Psychometrika; 1979; 44: 
75-83. 

2. Albers W; PJ Bickel, and WR Van Zwet. Asymptotic expansions for the power of 
distribution-free tests in the one-sample problem. Annal Statist; 1976; 4: 108-156. 

3. Arnold Hl Permutation support for multivariate techniques. Biometrika; 1964; 
51: 65-70. 

4. Baker FB; RO Collier. Analysis of experimental designs by means of randomiza­
tion, a Univac 1103 program. Behav Sci; 1961; 6: 369-369. 

5. Barton DE; FN David. Randomization basis for multivariate tests. Bull Int 
Statist Inst; 1961; 39: 455-467. 

6. Basu D. Randomization analysis of experimental data: The Fisher randomization 
test. J Am Statist Assoc; 1980; 75: 575-582. 

7. Bell CB; KA Doksum. Some new distribution free statistics. Anal Math Statist; 
1965; 36: 203-214. 

8. Bickel PM; WR Van Zwet. Asymptotic expansion for the power of distribution 
free tests in the two-sample problem. Annal Statist; 1978; 6: 987-1004 (corr 1170-
1171). 

9. Box GEP; SL Anderson. Permutation theory in the development of robust cri­
teria and the study of departures from assumptions. J Roy Statist Soc B; 1955; 17: 
1-34. 

10. Boyett JM; JJ Shuster. Nonparametric one-sided tests in multivariate analysis 
with medical applications. J Am Statist Assoc; 1977; 72: 665-668 .. 

11. Bradley JV. Distribution Free Statistical Tests. New Jersey: Prentice-Hall; 1968. 
12. Bross IDJ. Taking a covariable into account. J Am Statist Assoc; 1964; 59: 725-

736. 
13. Dwass M. Modified randomization tests for non-parametric hypotheses. Annal 

Math Statist; 1957; 28: 181-187. 
14. Fisher RA. Coefficient of racial likeness and the future of craniometry. J Roy 

Anthrop Soc; 1936; 66: 57-63. 
15. Fisher, RA. The Design of Experiments 6th Ed. New York: Hafner; 1951. 
16. Gabriel KR; CF Hsu. Evaluation of the power of rerandomization tests, with 

application to weather modification experiments. J Am Statist Assoc; 1983; 78: 
766-775. 

17. Good PI. Globally almost powerful tests for censored data. Nonparametric Statis­
tics; 1992; 1: 253-262. 

18. Hoeffding W. Combinatorial central limit theorem. Annal Math Statist; 1951; 22. 

219 



220 Bibliography Part 4: Seminal Articles 

19. Kempthorne 0; TE Doerfler. The behavior of some significance tests under 
experimental randomization. Biometrika; 1969; 56: 231-248. 

20. Kempthorne O. Design and Analysis of Experiments. 1952. New York: John Wiley 
and Sons. 

21. Lehmann EL; C Stein. On the theory of some nonparametric hypotheses. Annal 
Math Statist; 1949; 20: 28-45. 

22. Mantel N. The detection of disease clustering and a generalized regression 
approach. Cancer Research; 1967; 27: 209-220. 

23. Mehta CR; NR Patel. A network algorithm for the exact treatment of the 2 x K 
contingency table. Commun Statist B; 1980; 9: 649-664. 

24. Mielke PW; KJ Berry and ES Johnson. Multiresponse permutation procedures 
for a priori classifications. Commun Statist; 1976; A5(14): 1409-1424. 

25. Oden A; H Wedel. Arguments for Fisher's permutation test. Annal Statist; 1975; 
3: 518-520. 

26. Ogawa J. Effect of randomization on the analysis of a randomized block design. 
Annal [nst Stat Math Tokyo; 1961; 13: 105-117. 

27. Pearson ES. Some aspects ofthe problem of randomization. Biometrika; 1937; 29: 
53-64. 

28. Pitman EJG. Significance tests which may be applied to samples from any popu­
lation. Part III: The analysis of variance test. Biometrika; 1938; 29: 322-335. 

29. Pitman EJG. Significance tests which may be applied to samples from any popu­
lation. Roy Statist Soc Suppl; 1937; 4: 119-130,225-232. 

30. Plackett RL. Random permutations. J Roy Stat Soc B; 1968; 30: 517-534. 
31. Robinson J. A converse to a combinatorial central limit theorem. Annal Math 

Statist; 1972; 43: 2055-2057. 
32. Rosenbaum, PRo Conditional permutation tests and the propensity score in ob­

servational studies. JASA; 1984; 79: 565-574. 
33. Tukey JW; DR Brillinger, and LV Jones. Management of Weather Resources. Vol 

II: The role of statistics in weather resources management. Washington DC: De­
partment of Commerce, US Government Printing Office; 1978. 

34. Wald A; J Wolfowitz. Statistical tests based on permutations of the observations. 
Annal Math Statist; 1944; 15: 358-372. 



Index 

Accept, the hypothesis, 6 
Acceptance region, 174 
Acyclic network, 158 
Adaptive test, 122 
Additivity, 44, 59 
Agriculture, 40, 48 
Algorithms 

branch and bound, 156, 164 
characteristic functions, 160 
for clinical trials, 61, 158 
for contingency tables, 87,151, 

158 
Edgeworth expansions, J62 
enumeration and selection, 155 
network, 157 
saddlepoint approximations, 162 
selection, 163 

Alternative 
class of, 136 
global,84 
monotone increasing effect, 46 
normal,29 
one-sided vs. two-sided, 28 
ordered,83 
shift,29 
stochastically increasing, 29 
vs. hypothesis, 4, 15 

Analysis of variance (ANOV) 
choice of tests, 45 
models, 46 

Anthropology, 1 
Archaeology, 1, 105, 107 
Assessment, 129 

Assumptions, in formulating a test, 10, 
87,113,152 

Asymptotic 
approximation, 8, 62, 86,161,164 
consistancy, 26 
distribution, 162, 175-176 
efficiency, 115, 177 

Atmospheric science, 1, 127 

Behrens-Fisher problem, 177 
Bias, 50 
Biased coin approach, 60 
Binomial 

comparing two Poissons, 144 
distribution, 163 
trials, 81 

Bioequivalence, 76 
Birth defects, 92, 106, 150 
Blocking,39,52,67,74,112 
Bootstrap 

choice of statistic, 47 
comparison with permutation test, 20, 

142 
DNA sequencing, 126 
estimate, 59 
paired comparisons, 121 
properties, 29 
resampling procedure, 19 
test for interaction, 59 
test for variances, 33 
test procedure, 7 
tests for dependence, 94 

221 



222 

Botany, 1 
Branch and bound, see Algorithms 

Case controls, see Observational study 
Categorical data, 78,94, 142 
Category, 78, 142 
Cause and effect, 13, 70 
Cell culture, 2, 9 
Censored data, 117, 119, 137, 146, 156 
Censoring, 116 
Chance device, 27 
Characteristic functions, 160 
Chi-square statistic 

definition, 84 
drawbacks, 86 
restricted, 135 

Clinical trial, 60 
Cluster analysis, 1, 105 
Computer programs, 35, 49, 68, 69 
Computers, 8, 155 
Confidence intervals, 27-29, 62, 101, 174 
Confound, 58, Ill, 146 
Conservative test, 16, 168 
Contingency tables 

2 x 2,78,103 
r x 1, goodness of fit, 135 
r x c, ordered, 90 
r x c, unordered, 83 
odds ratio test, 82 
with covariates, 91 

Control 
factor, 44 
group, 4, 125, 150 

Correlation 
bivariate, 172 
Kendall, 107 
linear, 36 
Mantel's U, 105 
Pearson, 96, 107 
Pitman, 36, 96, 107 
serial, 97 
Spearman, 107 

Covariance, 64 
Covariate, 55 

after the fact, 112 
analysis, 62, 91 

Critical region, 160 
Critical value, 8, 172 

Data 
categorical, 78, 142 
continuous, 144 
discrete, 135, 143 
ordered, 90 
space, 134 

Decisions, 6, 23, 133, 166 
decision rule, 167 

Degrees of freedom, 34, 80 
Density, see Probability, density 
Dependence, 18 

first-order, 100 
models, 94, 101 
quadrant, 95 
serial correlation, 97 
tests for, 94 
trend, 96 

Deterministic, 11 
Discarding data, 117 
Distribution, 6, 12 

Beta, 141 
binomial, 142 
Cauchy, 24 
chi-square, 80, 141 
double exponential, 24 
exponential, 12,28, 118, 123, 179 
F-ratio, 141 
function defined, 168 
gamma, 39, 118, 141 
hypergeometric, 79, 83 
lognormal, 141 
normal, 12, 24, 118, 133, 140, 173 
Poisson, 132, 140, 142 
Student's t, 141 
symmetric, 24 
uniform, 24, 170 

Distribution-free test, 7, 17,32 
DNA sequencing, 126 
Dose response, 37 
Double blind study, 60 
Drop outs, 41, 111 
Dynamic programming, 160 

Ecology, 1,86, 105, 125 
Economics, 141 
Education, 1, 105, 129 
Effects 

interaction, 44, 48, 59 

Index 



Index 

main, 44 
residual, 45 

Efficiency, 114 
Epidemiology, 1, 105, 137 
Error 

residuals, 50 
systematic bias, 50 
Type 1,13 
Type 11,14 

Euclidian distance, 107 
Exact test, 6, 16, 168 

asymptotically exact, 59 
Exchangeable, 18,26, 149, 168, 

177 
Experiment, 3, 13 
Experimental designs 

balanced, 44 
balanced incomplete block, 161 
double blind, 60 
k-sample, 38 
Latin square, 52-54, 161 
randomized block, 161 
sequential, 154 
unbalanced, 57 

Experimental unit, 45,63, 150 
Extreme value, 6 

F-statistic, 33,47,62,134 
False positive, 13 
Finite populations, 22, 30 
Fisher's exact test, 78, 143 

power of, 81 
Fourier analysis, 1 
Friedman's chi-square, 74 
Fundamental lemma, 171 

GAMP test, 117 
Genetics, 1, 128 
Geography, 105 
Goodness-of-fit, 135 
Gradient, see Bias 

Histogram, 13 
Hotelling's P, 64, 69, 176 
Hypothesis 

null, 4,83 

simple vs. compound, 16 
vs. alternative, 4, 23, 167 

Immunology, 58,117 
Importance sampling, 160 
Imputed values, 118 
Independent observations 

determination, 33 
exchangeable, 34 
test for, 84, 95 

Indifference region, 117 
Interaction, 44, 48, 59 
Interdependent, 31 
Invariance 

of a problem, 179 
of a test, 133, 138 
under permutations, 43, 54, 138 

K-sample comparisons, 33, 110 
Kernel estimation, 38 

Labelings, 3 
Latin Square, 52-54, 161 
Least-squares, 38, 77 
Likelihood 

conditional, 138 
function, 95, 137 

223 

ratio, 83, 118, 132, 135, 171-174, 178 
Linear 

correlation, see Correlation 
estimation, 38 
form, 175 
regression, see regression 
statistic, 134 
transformation, 74 

Logistic regression, 137, 151, 158 
Losses, 6, 23, 26, 133, 166 

Main effect, 44 
Management science, 106 
Mantel's U 

applications, 105 
equivalences, 107, 108 

Marginals, 79, 83, 111 



224 

Matched pairs, 41, 74,112, 117, 119, 145, 
156 

Maximum likelihood, 134 
Mean, 12,30, 141 
Median, 12,30,31,42, 178 
Medical applications, 2, 13, 55, 61, 67, 

150 
Methodology, design, 149 
Minimal spanning tree, 71 
Missing data, 61, 76, 110 
Model validation, 126 
Molecular biology, 2, 126 
Moments, 161 
Monotone function, 36, 39, 77, 157 
Monte Carlo, 153, 163 
Most powerful test, 15 
Multivariate tests, 1 

one-sample, 64 
repeated measures, 75 
two-sample, 65 

Network representation, 158 
Neyman-Pearson fundamental lemma, 

171 
Nonlinear 

device, 122 
function, 101 

Nonparametric test, 7 
Nonresponders, 114, 124 
Normal distribution, 12,24, 172 
Normal scores, 69, 115 
Null hypothesis, 4 

Observational study, 56 
Odds ratio, 82,93, 158 
One-sample problem, 24, 123 
One-tailed or one-sided test, 27, 80 
Order statistics, 132, 138, 169, 172 
Ordered alternatives, 83 
Outliers 30, 113, 115 

P-value, see Critical value 
Paleontology, 2 
Parameter 

location, 25, 27 

scale, 145, 162 
space, 134 

Parametric test, 7, 19,21,23, 141 
vs. permutation test, 20, 177 

Path,159 
Permutation 

Index 

distribution, 4, 25, 56, 81, 108, 126-
129 

rearrange,4,5,25,37,66,170 
test procedure, 4, 19 

Pharmacology, 76, 124, 141 
Pitman correlation, 36, 39, 96, 100, 176 
Pivotal quantity, 28, 103 
Poisson see Distribution 
Population see Sampling model 
Power, 15, 21, 23 

effect of blocking, 40 
effect of covariates, 77 
effect of design, 81 
effect of sample size, 152, 163 
as function of alternative, 15 
for large samples, 26 
for variance comparisons, 33 
maximizing, 169 
relation to Type II error, 168 
versus cost of sampling, 125 

Power curve, 15 
Probability 

density, 169 
distribution, see Distribution 
of false coverage, see Type I and Type 

II errors 
Proportion, 141 
Psychology, 106 

~uadrantdependence,95 

Quadratic form, 105 

Radioactivity, 23,123,178 
Random 

assignments, see Randomization 
integer, 164 
number, 164 
rearrangement, 66 
variable, 18, 21, 169 
vector, 65 



Index 

Randomization 
in experiments, 22, 34, 50 
model, 21 
on the boundary, 27, 120 
rerandomization, 27 
restricted, 56, 112 
test, see Permutation test 

Rank test, 19 
Ranks, 30, 66, 121 
Ratio, 141 
Rearrange, see Permutation 
Reassignments, see Permutation 
Regression 

coefficients, 55, 98, 103 
forward stepping rule, 56 
linear model, 39 
logistic, 137, 151, 158 
multivariate, 104 
polynomial, 76 

Reject, the hypothesis, 6 
Rejection region, 29, 118 
Reliability, 2, 118 
Repeated measures, 75 
Rerandomize, see Permutation 
Resampling methods 

with replacement, 18 
without replacement, 4 

Residuals, 45, 50 
Response profile, 75 
Risk, 167 
Robust 

test, 10, 35, 116 
transformation, 116 

Runs test, 71, 108 

Sample 
control sample 4, 125, 150 
distribution, 13 
size, 93, 162 
unrepresentative, 15 
with/without replacement, 18 

Sampling model, 21 
Screen, 13 
Sensitivity of a test, 42, 52 
Sequential test, 154 
Serial correlation, 97 
Shape, 12 
Shift, 31, 72 

Significance 
estimating, 155 
level, 15,23,27,33, 35 

Simulation, 35 
Simultaneous inference, 70 
Single-subject analysis, 1 
Sociology, 2, 106, 109 
Software, 151, 155, 164 
Spatial distribution, 108, 125, 151 
Statistic, 4 

first- vs. second-order, 134 
Stochastic, 11 
Stochastically increasing, 169 
Stopping rule, 154 
Stratify, 40 
Studentize, 69 
Student's t, 42 
Study time, 125 
Sufficiency, 25, 132, 178 
Sums of squares, 35 
Survival data, 119, 151 
Symmetric volume, 109 
Symmetry, 24,41, 133 
Systematics, 106 
Swap, 154 

T -test, see Student's t 

225 

Tail probabilities, 156, see also Critical 
value 

Test, 168 
chi-square, 84 
choosing, 8, 19,29, 72, 83, 91, 139 
Cochran's Q, 85, 143 
definition, 168 
F-test, 33, 47, 22 
Fisher's exact, 143 
Freeman and Halton, 83, 143 
GAMP,117 
Goodman-Kruskal tau, 84, 143 
Hotelling's T, 64, 69, 176 
likelihood ratio, 83, 143 
location, for, 115 
Mann-Whitney, 151 
Mantel's U, 105 
MRPP,107 
non parametric, 7 
odds ratio, 82, 143 
one-sample, 24 
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Test (cant.) 
one-tailed, 27, 80 
parametric vs. non-parametric, 140 
Pitman correlation, 36 
pivot permutation, 32, 145 
restricted chi-square, 135 
runs, 71 
scale, for, 145 
shift, for a, 172 
statistic, 4 
student's t, 8, 26, 42 
tau, 84 
two-tailed, 28 
UMPU, 26,169-174 

Ties, 37, 144 
Time series, 97, 151 
Transformation 

arcsin, 144 
logarithmic, 43, 114, 145 
rank, 7, 30, 115 
rescale, 30, 31,43,74 
robust, 116, 157 
sq uare root, 144 

Tree, 71 
Trend,96 
Toxicology, 13,36, 151 
Two-sample problem, 29, 156, 170, 

176 

Index 

Two-tailed or two-sided test, 28,80-81 
Type I and II errors, 13-15 

UMP test, 16 
UMPU test, 119, 169 
Unbalanced designs, 57 
Unbiased, 17, 26, 178 
Unconditional test, 68 
Univariate hypothesis, 67 

Variables, dependent, 69 
Variance 

between vs. within, 21 
effect on power, 39 
reducing between, 112 
testing equality, 31 

Variation, 11 
Vector of observations, 65, 154 
Virology, 43 

Weighting variables, 69 
Withdrawals, 41, 111 

Zero point, 118 
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