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Preface

The purpose of this book is to explain the application of the finite element modeling
or analysis (FEM or FEA) with special emphasis on the mechanics of carbon and
inorganic nanotubes and related solids, such as nanocomposites. It is intended for
those who require modeling and stress analysis of nanotubes using finite element
modeling with specific explanations and the book is designed as a textbook or
reference material for related graduate engineering courses.

Models of the nanotubes are made using Nanotube Modeler© and Surface
Builder tool of Material Studio© package with application of the finite element
method demonstrated using ANSYS©. Step-by-step instructions for the use of
ANSYS Parametric Design Language (APDL) in relation to nanotubes are given
under different structural and boundary conditions.

This book is not anticipated as an exhaustive reference book on the use of
ANSYS, but as a guide for simulation of mechanical properties of nanotubes and
nanocomposites that are carbon and inorganic based. Thus, Chaps. 1 and 2 give
required information about the atomic structures of nanotubes and how the concept
of interatomic potential energy functions are utilized in determining mechanical
properties. In other to simplify the procedures to be followed in modeling and
meshing of nanotubes, Chaps. 3 and 4 explain the geometrical structure of nano-
tubes and the options for the elements to be used. An overview of ANSYS is given
in Chap. 5 with step-by-step guidelines on how to carry out linear FEA on nano-
tubes. Chapters 6–10 deal with some specific applications of ANSYS in deter-
mining mechanical properties of nanotubes, such as nonlinear analysis, effect of
geometrical parameters, effect of defects and multi-walled structures and behaviour
of nanocomposites. Most of the simulations presented in this book were made using
Version 14.5 of ANSYS; however, many of the examples can be conducted using
earlier versions.

During the preparation of this book, necessary attempts were made to cover only
essentials of the subject and to provide required tools for understanding of some
theoretical background and the skills for using related software. Therefore, apology
is offered in advance to all those concerned whose materials are not referenced.
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Chapter 1
Nanotubes

1.1 Introduction

A nanometer is one-billionth of a meter, or relatively one ten-thousandth of the
thickness of a human hair. A nanometer-scale tube-like structure is called nanotube.
It may represent carbon nanotube (CNT), silicon nanotube, boron nitride nanotube,
inorganic nanotube, DNA nanotube and membrane nanotube comprising of tubular
membrane connected in the middle of cells. Nanotubes are similar to a powder or
black soot. The CNTs, representing others, are in reality rolled-up sheets of
graphene that establish hollow threads having walls with one atom thickness [1].

Structurally, nanotubes (NTs) have one dimensional nanostructure with the
lateral dimension in nanometer scale. The tube-like configuration is specifically
attractive as it makes available access to three separate contact areas: internal and
external surfaces together with both ends. Nanotubes can be categorized based on
some factors [1–5]: structures having single-walled, double walled and multiple
walled as options and composition having carbon NTs and inorganic nanotubes
(INTs) as examples.

Both single and multicomponent NTs have been synthesized using various
methods [5] with the products have diverse conformations. Nanotubes can be uti-
lized for wide-ranging new and existing applications [6] such as conductive plas-
tics, structural composite materials, flat-panel displays, gas storage, antifouling
paint, micro- and nano-electronics, radar-absorbing coating, technical textiles,
ultra-capacitors, Atomic Force Microscope (AFM) tips, batteries with improved
lifetime, biosensors for harmful gases, extra strong fibers, etc.

Despite the potential impact of NTs in vast areas of nanomaterial and nano-
technology, a deep understanding of their mechanical behavior is missing. This
limitation affects the design and optimization of NT-enhanced materials. In this
chapter, the recent breakthroughs in mechanical evaluation of NTs are highlighted.
Thus emphasis is on the outstanding mechanical properties of CNTs which is
essential toward the fabrication of CNT reinforced polymer composite. Moreover,
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recent reports on CNT embedded polymer composites are reviewed from
both theoretical and experimental aspects, with brief explanation relevant areas
on INTs.

1.2 Carbon Nanotubes

It was at mid-1980s that Smalley and Yacobson [7] discovered the fullerenes
structures. According to his reports, fullerenes are structures with carbon atoms in
geometrical shape of a spherical cage. This cage is composed of hexagonal and
pentagonal rings of carbon atoms [12]. Only a few years later, CNTs are introduced
by Ijima [8]. CNTs could be defined as a relatively long and thin fullerene struc-
tures. Their tubular walls are made of hexagonal carbon cells and could have
spherical capes at ends. If these two caps join together, they can form a fullerene
[9]. Since 1991, huge attentions have been paid to their atomic structures and their
applications in material science, chemistry, physics and engineering. They have
been used in a wide range of applications including ultra-strong composite mate-
rials, nanofibers, catalysts, and as components of novel electronic and thermal
devices [10–16]. CNTs are considered as the revolutionary material that has dis-
played this combination of superior mechanical, thermal and electronic properties
[17]. Their good chemical stability, large surface area, small size, low density, high
stiffness, high strength and excellent electronic, optical and thermal properties
have demonstrated high potentials in advanced material and nanomechanical
devices [12, 16, 18–20].

These exceptional material properties are convinced to be a result of the sym-
metrical structure of CNTs [12]. From almost the first analogy studies on the CNT’s
graphite like structure, it was anticipated that they would represent superlative
mechanical properties which exceed those of all known materials. It was deter-
mined long before, that graphite poses a modulus of about 1 TPa in longitudinal
direction [21] and CNTs were conceived to exhibit similar strength.

1.3 Atomic Structure and Morphology of CNTs

Carbon with four valence electrons is known as the sixth element in the periodic
table. Having similar energies, these electrons could easily mix their wave functions
in order to form hybridized orbits. For example, they can hybridize into sp, sp2 and
sp3 form which are known as amorphous carbon, graphite and diamond, respec-
tively. Diamond, which is the most famous allotrope of carbon, has four covalent
bonds in form of sp3. These bands connect neighboring carbon atoms into a
face-centered cubic atomic structure. Graphite has very different physical properties
due to its sp2 bond type and forms 3 covalent bonds with the neighboring carbons.
Diamond and graphite substantially are made from carbon atoms exhibits
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completely different properties. While diamond is one of the hardest materials,
highly transparent, and has very low electrical conductivity, graphite is black, very
soft and a very good conductor [14, 21].

Later on, more interesting classes of carbon have been introduced which are
fullerenes, CNTs and graphene. Graphene is a single honeycomb lattice which is
packed with hexagonal cells of carbon atoms. To be more concise, it could be
assumed as a single layer of graphite. From theoretical point of view, CNT could be
seen as a single-wall tubule which is cylindrical in shape with caps at each end. All
these materials are made of sp2 bonds which are interesting and similar to graphite.
Figure 1.1a demonstrates graphene as the origin of all graphitic structures [22].
Graphene can be wrapped up to build fullerenes (Fig. 1.1b). It can be rolled into a
CNT (Fig. 1.1c) or piled up into graphite form (Fig. 1.1d). These materials have
drawn so many researches intention to themselves. For instance, it was pointed out
that CNTs and graphene could be an excellent replacement for silicon as a sub-
stantial material for electronic devices [11].

The sp2 hybridized carbon has three valence electrons. Hence, each atom can
establish three covalent bonds with its closest neighbors so-called σ bonds. They are

Fig. 1.1 a Graphene structure which is the source of other graphitic forms, b Fullerenes, c CNT
and d Graphite [22]
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just as strong as the sp3 bonds which put diamonds in the list of the hardest
materials. Graphene shows extraordinary mechanical properties and very high
thermal conductivity are a consequence of σ bonds presence [23–25].

The fourth electron is in 2pz orbital and can forms a bond perpendicular to the
plane. These so-called π bonds are responsible for remarkable properties [23–25].
Figure 1.2 shows the crystal structure of graphene. The lattice vectors in the x, y
coordinates can be written as in Eq. 1.1.

~a1 ¼
ffiffiffi

3
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2
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2
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; ~a2 ¼
ffiffiffi

3
p

a
2

;� a
2
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The lattice constant, a ¼ ffiffiffi

3
p

aC�C ¼ 2:46 A
o
, and aC�C ¼ 1:42 A

o
is the bond

length. Figure 1.2 shows that there are theoretically two carbon atoms in each unit
cell of graphene lattice and referred as A and B atoms. Each distinct atom forms a
sub-lattices, so that graphene can be imagined as A and B sub-lattices (Fig. 1.3).

The diameter, dt and chiral angle, θ which is the angle between the chiral vectors
and lattice vector, a1, can be derived from the chiral indices:

dt ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ m2 þ nm
p

ð1:2Þ

cos h ¼ 2nþ m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ m2 þ nm
p ð1:3Þ

In particular, armchair and zigzag CNTs as illustrated in Fig. 1.4 correspond to
θ = 30° and zero, respectively. The chirality could have significant impact on the
material properties of the CNT [19]. Although graphite is listed as a semi-metal
material, it was shown that CNTs can be metallic, semi-metallic or semi-conducting,
depending on tube chirality [26]. The translation vector, T as the unit vector of
CNTs, also can be expressed on the basis of unit vectors of graphene sheet:

Fig. 1.2 Crystal structure of
graphene [23]
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T ¼ 2mþ n
dR

a1 þ 2nþ m
dR

a2 ð1:4Þ

where dR is the greatest common divisor of 2n + m and 2 m + n terms.
To construct a seamless cylindrical single walled carbon nanotube (SWCNT),

graphene sheet can be easily roll up and coincide the points equivalently as shown

Fig. 1.3 a A (4, 2) SWCNT is constructed from graphene sheet. b Examples for armchair (5,5),
zigzag (90) and chiral (10,5) CNTs [25]

Fig. 1.4 Illustrations of the
atomic structure of armchair
(4,4), zigzag (7,0) and chiral
(5,3) CNTs [27]
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in Fig. 1.4. SWCNT diameter is usually about 0.7–10 nm and can reach centimeter
in length. Hence, they are referred as one-dimensional structure. Graphene layers
can stack up to bilayer, trilayer to multilayer structures and construct multi walled
carbon nanotube (MWCNT). MWCNT consist of several SWCNT cylinders which
are arranged concentrically and separated by 0.35 nm as shown in Fig. 1.5. There is
a similar separation space in the basal plane of graphite. MWCNTs have diameters
from 2 to 100 nm and lengths of tens of microns [8]. These concentric CNTs are
bonded to each other through van der Waals forces. Figure 1.5a illustrates a high
resolution transmission electron microscope (HRTEM) image which shows a
MWCNT. Several layers of graphitic carbon and a hollow core are evident. There is
a 0.34 nm separation between parallel layers.

Since the interactions between concentric layers in MWCNTs further complicate
the properties of CNTs, SWCNTs are most used to determine structure-property
relationships of CNTs. Indeed, both SWCNTs and MWCNTs exhibit unique
properties that can be successfully employed in composite fabrication. Figure 1.5b
shows a 3-layered MWCNT and its tip structure. Again, the layer separation is
measured as 0.34 nm. Figures 1.5c belongs to a multi-layered CNT and enlarged the
tip structure of its conical end. In Fig. 1.5d a detached SWCNT with diameter of
1.2 nm is shown. Tube bundles covered with amorphous carbon are also evident.
Finally, a geometric change due to the presence of five and seven membered rings is

Fig. 1.5 HRTEM images of: a an individual MWCNT, b The tip structure of a conical end, c the
tip structure of a closed MWCNT, d isolated SWCNT and tubes bundles covered with amorphous
carbon and e geometric changes caused by five and seven membered defects [28]
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shown in Fig. 1.5e. Defects are noted by P for pentagon and H for heptagon on the
MWCNT outmost layer.

1.4 Inorganic Nanotubes

An inorganic nanotube is a molecule having cylindrical structure composed
of material(s) other than carbon and morphologically similar to a carbon nanotube.
Inorganic nanotubes (INTs) occur naturally and have also been synthesized [1].
Some minerals such as white asbestos (or chrysotile) and imogolite were discovered
to have tubular configuration [4, 5]. The pioneer synthesis of INTs occurred in 1992
when nanotubes made from tungsten disulfide (WS2) were produced [12]. Several
inorganic nanotubes (INTs) has been produced and characterized in the last few
years [29], as summarized in Table 1.1.

The atomic structures of some INTs are illustrated in Figs. 1.6 and 1.7.
INTs are regarded as alternative material to better-explored carbon nanotubes,

displaying benefits such as simple synthetic approach and extraordinary crystal-
linity, suitable consistency and distribution, needle-like morphology, effective
connection to several polymers and superior impact-resistance. Thus, they are
favorable options as fillers for polymer composites with enhanced mechanical,
electrical and thermal properties. Specific uses for this type of composites are
materials for photovoltaic elements, heat management, electrostatic dissipators,
wear protection materials, etc. INTs are heavier than CNTs and not as strong under
tensile stress, but they are particularly strong under compression, leading to
potential applications in impact-resistant applications such as bulletproof vests
[1–6, 29–32] (Fig. 1.8).

1.5 Mechanical Properties of Nanotubes

Since two decades ago, there was a steady progress in the field of CNT charac-
terization and exploring their mechanical properties. It is reported that specific
tensile strength of a CNT can be 100 times higher than that of steel. These kind of

Table 1.1 Types of inorganic nanotubes [29]

Type of INTs Examples

Chalcogenides HfS2, MoS2, MoSe2, NbS2, NbSe2, TiS2, TiSe2, WS2, WSe2, ZrS2
Oxides BaTiO3, Ga2O3, PbTiO3, SiO2,TiO2, VOx, ZnO, ZrO2

Nitrides BN, GaN

Halides NiCl2
Metals Bi, Co, Cu, Fe, Ni, Te

1.3 Atomic Structure and Morphology of CNTs 7



astonishing mechanical properties ignited further interest to employ CNTs in
lightweight and high strength materials [9]. Elastic properties of MWCNTs and
SWCNTs have been investigated extensively through experimental work.
Theoretical investigations, on the other hand, reported a wide range of elastic
property predictions. While the predicted Young’s modulus of SWCNT alter in an
wide interval of 0.5–5.5 TPa, experimentally determined Young’s modulus scatter
between 2.8 and 3.6 TPa [10].

In the experimental part, researchers investigated the elastic modulus of isolated
MWCNTs by measuring the amplitude of their intrinsic thermal vibration via
transmission electron microscopy-TEM [11] or directly measure the properties such
as stiffness and strength for individually isolated MWCNTs using atomic force
microscopy-AFM [12–14]. Table 1.2 briefly describes particular efforts in this area.
Figure 1.9a shows a scanning electron microscope (SEM) image of a MWCNT
which was attached to the oppositely aligned tips of an AFM. They used electron

Fig. 1.6 Nanotubes for transition-metal disulfides of TMS2 type (TM = Mo, W) with a being
zigzag and b armchair types [30]
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Fig. 1.7 Single-walled TiO2 nanotubes for (18,0) in a and (12,12) in b having different
configuration but similar diameter [31]

Fig. 1.8 Front, side, and top views for a 15 × 15 CNT and b 11 × 11 ZrO2 NT [31]
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beam deposition to paste the MWCNT on the AFM silicon tip surface. The lower
AFM tip in the image is placed on a soft cantilever beam whose deflection was used
to measure the applied force on the MWCNT. Figure 1.9b–d are large magnification
SEM image of the mentioned region in Fig. 1.9a and the welding of the MWCNT to
the AFM tip [16], respectively.

Table 1.2 Experimental
studies of mechanical
properties of CNTs

Authors Elastic modulus Strength

Treacy et al. [12] 1.8 TPa n/a

Wong et al. [13] 1.26 TPa n/a

Salvetat et al. [14] 1 TPa n/a

Walters et al. [15] 1.25 TPa –

Yu et al. [16] 270–950 GPa for
MWCNTs

11–63 GPa

320–1470 GPa for
SWCNTs

13–52 GPa

Xie et al. [17] 450 GPa 4 GPa

Fig. 1.9 SEM images of: a MWCNT is held by two oppositely aligned AFM tips, b–d the AFM
tips in pointed rectangle and the welding of the MWCNT to the AFM tip

10 1 Nanotubes



Yu et al. [18] determined the mechanical behavior of several SWCNT ropes
under tensile load. Their results showed that 8 of these ropes broke at strains below
5.3 % as depicted in Fig. 1.9. The stress-strain data were further fit by a model that
assumed the tensile load was supported by the perimeter surface of the SWCNTs
ropes. This model provided mean fracture strength of 30 GPa for SWCNTs on the
perimeter region. The virtual values can be seen in the Fig. 2.7 in range of 13–
52 GPa. Average Young’s modulus values was also calculated in range of 320–
1470 GPa, based on the same model.

Variations in the values of measured Young’s modulus for INTs as shown in
Table 1.3 are similar to what was obtained for CNT (Table 1.2). It should be noted
that INTs have large size in comparison to CNTs, thus they have less strength and
other mechanical properties [33] (Fig. 1.10).

Table 1.3 Young’s modulus of various INTs measured using different methods [33–38]

Types of nanotube Method Young’s modulus

TiO2 Compression test in AFM–TEM 23–44 GPa

TiO2 Nano indentation 36–43 GPa

TiO2 Nano indentation 4–30 GPa

ZrO2 Micro nano-indentation 30–62 GPa

WS2 Tensile test in SEM 150–17 GPa

MoS2 Tensile and bending tests in SEM 170–250 GPa

BN Thermal vibration in TEM 1.22 ± 0.24 TPa

BN Direct measurement using TEM 0.5–0.6 TPa

BN Electric field induced-resonance in TEM 850 GPa

Fig. 1.10 Experimentally
determined stress-strain
curves from tensile loading of
isolated SWCNT ropes [18]
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Chapter 2
Interatomic Bonding

In computational nanoscale science, we deal with many body nanostructures of all
types composed of N atoms or molecules. The value of N can range from several
hundred to several billions. To handle the energetics of these structures computa-
tionally, the most efficient way is to express the total interaction energies in these
systems in terms of interatomic potentials that are functions of the atomic coordi-
nates. The reason is that, even with the high-performing computing platforms and
sophisticated simulation techniques available today, the existing quantum
mechanical-based, or ab initio, strategies can handle nanoscale systems composed
of, at most, a few hundred atoms. Interatomic potential energy functions will,
therefore, be indispensable in modeling and simulation studies for a long time to
come.

2.1 Potential Energy Function (PEF)

The total potential energy function, HI of an N-body nanostructure, refers to the
configurational potential energy that can be expressed in terms of the position
coordinates r of its constituent atoms. The simplest way is to express this energy as
a cluster expansion involving two, three-body etc. The total potential energy
functions HI is as follow,

HI ¼ 1
2!

X

i

X

j 6¼i

V2ðri; rjÞþ 1
3!

X

i

X

j6¼i

X

k 6¼i;j

V3ðri; rj; rkÞþ. . . ð2:1Þ

where Vn are n-body interatomic potential functions. In (Eq. 2.1), V2 is the
pair-wise potential between atoms i and j, and V3 is the three-body potential
involving atoms i, j and k.

Potential energy functions that are constructed should satisfy a set of criteria so
that they are effective in computational modeling applications. Brenner [1] has
succinctly summarized the critical properties that a potential energy function must
possess. The properties are as follows:
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(1) Flexibility. A PEF must be sufficiently flexible that it accommodates as wide a
range as possible of fitting data. For solid systems, the data might include
crystalline lattice constants, cohesive energies, elastic properties, vacancy
formation energies and surface energies.

(2) Accuracy. A PEF should be able accurately to reproduce an appropriate fitting
database.

(3) Transferability. A PEF should be able to describe, at least qualitatively, if not
with quantitative accuracy, structures that were not included in the fitting
database.

(4) Computational efficiency. Evaluation of the PEF should be relatively efficient,
vis-à-vis such quantities as the system size and time-scale of interest, as well
as the available computing resources.

In this chapter, we present a rather thorough description of most of the state-of-
the-art PEFs that have been developed and used in the computational modeling of
the mechanical, thermal, structural, transport and storage properties of carbon
nanotubes. These potentials have been extensively used in many simulation studies.
In the early molecular mechanics studies in both inorganic and organic chemistry
the strain energy, Utotal is defined as arising from four principle energy terms
(Eq. 2.2),

Utotal ¼
X

molecule

ðEb þ Eh þ E/ þ EnbÞ ð2:2Þ

where
P

Eb is the total bond deformation energy,
P

Eh the total valence angle
deformation energy,

P

E/ the total torsional (or dihedral) angle deformation
energy and

P

Enb the total nonbonded (van der Waals) interaction energy. The
individual energy terms are calculated using simple functions. Bonds are modeled
as elements that obey Hooke’s law (Eq. 2.3),

Eb ¼ 1
2
kbðrij � r0Þ2 ð2:3Þ

Where kb is the force constant or spring ‘strength’ and r0 is the ideal bond length or
the preferred spring’s length. Valence angles are modeled in a very similar way
(Eq. 2.4),

Eh ¼ 1
2
khðhij � h0Þ2 ð2:4Þ

where kh is the strength of the ‘spring’ holding the angle at its ideal value of θ0.
Torsion or dihedral angles cannot be modeled in the same manner since a

periodic function is required (Eq. 2.5),
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E/ ¼ 1
2
k/ð1þ cosðmð/ijkl þ /offsetÞÞÞ ð2:5Þ

where kϕ is the height of the barrier to rotation about the torsion angle ϕijkl, m is the
periodicity and ϕoffset is the offset of the minimum energy from a staggered
arrangement. Nonbonded interactions are calculated using a function that includes a
repulsive and an attractive (London dispersion) component (Eq. 2.6),

Enb ¼ Ae�Bdij � Cd�6
ij ð2:6Þ

where dij is the distance between the two nuclei and A, B and C are atom based
constants discussed later in this book.

More recently a number of additional components have been added to the cal-
culation of the strain energy. Out-of-plane deformation terms Eδ have been included
in models of aromatic or sp2 hybridized systems (Eq. 2.7),

Ed ¼ 1
2
kdd

2 ð2:7Þ

where δ is the angle between the plane defined by three atoms and the vector from
the center of these atoms to a fourth bonded atom, and kδ is the corresponding force
constant. Modeling the interaction of metal complexes with biological systems has
necessitated the inclusion of electrostatic and hydrogen bonding interaction terms.
The electrostatic interactions are modeled based on the Coulomb’s law (Eq. 2.7),

Ee ¼ qiqj
edij

ð2:8Þ

where qi and qj are the partial charges on atoms i and j, ε is the dielectric constant
and dij is the interatomic separation. Hydrogen bonding, Ehb interactions are gen-
erally modeled using a function of the type given in (Eq. 2.9),

Ehb ¼ Fd�12
ij � Gd�10

ij ð2:9Þ

where F and G are empirically derived constants that reproduce the energy of a
hydrogen bond and djj, is the donor-acceptor distance. The addition of these terms
give rise to the revised definition of Utotal given in (Eq. 2.10),

Utotal ¼
X

molecule

ðEb þ Eh þ E/ þ Enb þ Ed þ Ee þ EhbÞ ð2:10Þ

The set of functions together with the collection of terms that parameterize them
(kb, r0, etc.) is referred to the force field. In some cases force field parameters can be
related to experimentally determinable values. For example, the bond stretching
force constant kb is approximately equivalent to the vibrational force constant
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derived from an infrared spectrum. However, in general the force field terms are
derived empirically with the target of reproducing experimental structures and
energy distributions.

Once a model and a force field have been chosen for a particular problem, the
goal of molecular mechanics is to find the geometry with the minimum strain
energy. This can be achieved by a variety of mathematical techniques described
elsewhere in this book. The value of the strain energy is dependent on the force field
and therefore has little meaning in absolute terms. However, because isomers have
the same bond, bond angle and torsional angle types, strain energies of isomers can
be compared to each other and differences correlated with experimentally deter-
mined isomer populations.

This has formed the justification of many molecular mechanics studies. In recent
studies of more complex systems the primary goal has been to produce reasonable
models that allow the investigator to visualize the interactions of metal ions with
large molecules. Also, methods where molecular mechanics is used in combination
with experimental data to determine molecular structures, for example in solution,
are receiving increasing attention.

2.2 Harmonic Functions for Carbon Nanotubes

It has been proved through chemical calculations that harmonic functions provide a
reasonable approximation to the potential energy of molecular systems in which the
bond length is near its equilibrium position [2]. In this particular formula, the
energy terms associated to bond stretching (Eq. 2.11), angle bending (Eq. 2.12) and
inversion (Eq. 2.13) are described as [3, 4],

Ub ¼ 1
2

X

i

Kiðr � r0Þ2 ð2:11Þ

Uh ¼ 1
2

X

j

Cjðh� h0Þ2 ð2:12Þ

U/ ¼ 1
2

X

k

Bkðu� u0Þ2 ð2:13Þ

where r � r0, h� h0, u� u0 are the elongation of bond i, variance of bond angle
j and inversion angle k, respectively. Ki, Cj and Bk are force constants associated
with bond stretching, angle variance and inversion, respectively. Formulation was
done by using schematic diagrams as shown in Fig. 2.1.

In such cases, elastic Young’s modulus En of armchair (n, n) and zigzag (n, 0)
CNTs could be expressed as the following,
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En ¼ 4
ffiffiffi

3
p

K
3kKa2=C þ 9

; k ¼ 7� cosðp=nÞ
34þ 2 cosðp=nÞ ð2:14Þ

where K, C and a are axial stiffness of the carbon–carbon covalent bond (C–C)
(742 nN/nm), bending stiffness resulting from the angular distortion of bond angle
(1.42 nN/nm) and bond length, respectively [4].

2.3 Morse Potential Functions for CNTs

It is crucial to note that linear functions are only applicable to characterize material
properties under relatively small strain conditions. Obviously, a harmonic function
is a good approximation of the bond stretching function near the energy minimum
as shown in Fig. 2.2 [3, 5]. However, a more complex function must be used to
describe the behavior of a chemical bond far from its equilibrium position such as
Morse potential which was used to describe the behavior from equilibrium to bond
dissociation [3]. Among presented models, Morse potential function was selected in
this study mostly due to its simplicity over many-body potentials such as Brenner
function and its compatibility with the finite element method [5–8]. For a SWCNT
subjected to axial loadings at large strains, with the proper set of constants, it is
possible to simulate all potentials including torsion, inversion, van der Waals and
electrostatic interactions [3]. To make the simulation as simple as possible in
agreement with [9], those potentials with minor effects were neglected.

After neglecting non effective force fields, the bond total energy could be
expressed by the interatomic functions defined by Morse potential. A modified
Morse potential function has been established for CNT [6].

Fig. 2.1 Schematic
illustration of atoms and
bonds in CNT
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The main improvement was that a bond angle bending potential was added in
Morse potential. This modification has been mainly done to facilitate theoretical
studies of CNT fracture. It can be written as

U ¼ Ustretch þ Uangle ð2:15Þ

where Ustretch and Uangle are the bond energy due to bond stretching and bond
energy due to bond angle bending. These potentials are shown in Fig. 2.3. In which,

Fig. 2.2 The schematic of the
Morse and the harmonic
potentials [10]

Fig. 2.3 Interatomic interactions according to modified Morse potential for C–C bonds: a bond
stretching, b bond bending
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Ustretch ¼ De 1� e�bðr�r0Þ
� �2

�1
� �

ð2:16Þ

Uangle ¼ 1
2
khðh� h0Þ2 1þ ksexicðh� h0Þ4

h i

ð2:17Þ

where r and θ are the current bond length and angle of the adjacent bond,
respectively. The parameters of the potential are summarized in Table 2.1 [6, 8, 9].

The stretching force and required bending moment to deform C–C bonds were
obtained by differentiating bond stretching and angle bending potentials against
bond length and bending angle, respectively,

FðrÞ ¼ @Ustretching

@r
¼ 2bDe 1� e�bðr�r0Þ

h i

e�bðr�r0Þ ð2:18Þ

MðhÞ ¼ @Ubending

@h
¼ khðh� h0Þ 1þ 3ksexticðh� h0Þ4

� �

ð2:19Þ

2.4 Potential Interactions for Inorganic Nanotubes

The initial stage in the majority of the atomistic molecular modeling methods
(molecular mechanics) is the computation of the energy (Lattice energy in this
case). The lattice energy of a crystal can be determined by summing all separate
kinds of interactions that may likely occur in a system containing a number of
atoms in it [11]. But, the lattice energy calculated is accurate only if higher orders of
interactions are also taken into consideration during the calculation process. On the
other hand, it is unrealistic to take account of the higher orders of interaction for
computation as it will turn out to be exceedingly time consuming [12]. Furthermore
since contributions decreases progressively with increasing order of interactions, it
is realistic to shorten the increase to two body and three body interactions. The
atomic interactions turn out to be weaker as the distance in the middle of the atoms
spread wider [11].

Table 2.1 Associated values of force constants

Symbol Name Value

r0 C–C bond length 1.421 × 10−10 m

θ0 Bond angle 2.094 rad

De well depth 6.03105 × 10−19 nm

β Controls the width of the potential 2.625 × 1010 m−1

kθ force constant 0.9 × 10−18 N/rad2

ksexic force constant 0.754 rad−4
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Potentials of atoms/molecules are determined using empirical equations (based
on interatomic distance) in order to calculate the energy related with the particular
atomic interactions. Potentials perform a significant task in defining the precision of
the computational modeling investigations [13]. There are various types of chem-
ical bonds occurring in numerous elements for binding the material together, viz.
covalent bonds, ionic bonds, metallic bonds, Van der Waals bonds and hydrogen
bonds. Every form of bonds will have varied strength. Bonds may also be cate-
gorized as intramolecular bonds and intermolecular bonds. Intramolecular bonds
keep the atoms together in a molecule. In addition, intramolecular bonds are those
that exist between the molecules as in Van der Waals bonding, ionic bonding,
covalent bonding, dipole—dipole interaction and hydrogen bonding [11]. In ionic
bonding, the ions of opposite charges are attracted to each other. Zirconia (ZrO2) is
an example of ionic bonding. In covalent bonding, the valence electrons are mutual
in the middle of atoms not like electron transfer witnessed in ionic bonding.
Covalent bonding is witnessed in water and diatomic molecules like O2, H2 etc.
These atomic interactions may well be categorized as long and short range inter-
actions [14].

2.4.1 Long Range Interactions

In ionic crystals such as Zr-O, the long range (Coulomb) interactions accounts for
most of the total energy of the structure [11]. Considering the ions as specific point
charges, the Coulomb’s law may be specified as [12]

UCoulomb
ij ¼ qiqj

4pe0rij
ð2:20Þ

where UCoulomb
ij is the Coulomb’s energies, qi, qj represent the charges on the pairs

of ions, εo is the permittivity of free space and rij is the inter-ionic distance.
The computation of Coulomb energy turns out to be tedious for a 3D bulk

material [12]. Exchanges involving ions progressively decrease in the midst of
increase in the inter-ionic distances. On the other hand, the amount of ions and
therefore the number of interactions among ions increases as the cut-off radius
increases. This eventually affects the increase of energy density of interactions with
increase in distance [12]. This hindrance may well be fixed by using Ewald sum-
mation technique [11, 15, 16], which requires two vital conditions for convergence:
(a) Sum of all the charges in the system should be zero (b) Dipole moment should
be zero. Ewald summation technique is fundamentally obtained by using Laplace
transformation on Eq. 2.22. The Coulomb energy computation occurs in two sec-
tions: (a) Real space summation (b) Reciprocal space summation. Real space
summation section converges promptly and the reciprocal space summation section
decays rapidly. A Gaussian charge distribution is included and deducted from each
ion. The expression for the approximation of Coulomb energy (UCE) as the sum
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total of inputs from real space (Ureal), reciprocal space (Ureciprocal) and self-energy
(Uselfenergy) of the ions is specified by [13]:

UCE ¼ 1
2

X

N

i¼1

X

N

j�1

qiqj
rij

erfcðg1
2rijÞ

þ 1
2

X

N

i¼1

X

N

j�1

X

G

4
p
qiqj expðiGrijÞ

exp G2

4p

� �

G2 �
X

N

i¼1

q2i
g
p

� �0:5
ð2:21Þ

UCE ¼ Ureal þ Ureciprocal � Uselfenergy ð2:22Þ

From Eq. 2.22, q represents the charge of the ion, G is equal to the reciprocal
lattice vector, V is the unit cell volume, N is the number of atoms in the system and
η represents the ratio of task among real and reciprocal space.

2.4.2 Short Range Interactions

Short range (non-Coulombic) interactions perform a critical part in approximating
the position and profile of the minimum energy [11]. Mostly, the two body terms
influence the short range interactions. Two body terms consist of interactions
amongst atoms that are ions or attached. The three most prevalently used two- body
potentials are Buckingham potential, Lennard-Jones potential and Morse potential
[13]. The expressions for the potentials are given by:

UBuckingham
ij ¼ A exp

�rij
q

� �

� C6

r6ij
ð2:23Þ

ULennard�Jones
ij ¼ Cm

rmij
� C6

r6ij
ð2:24Þ

UMorse
ij ¼ De 1� expð�aðr � r0ÞÞð Þ2

h i

� 1 ð2:25Þ

where, rij is the inter-atomic distance and all the other terms are the parameters of
the potential.

The Buckingham potential and Lennard-Jones potential include comparable
terms in Eqs. (2.23) and (2.24) i.e., a repulsive part and attractive part. The C6

portion obtained in all the potentials is the attractive part of the potential and it is
not required to model in relation to ionic bonds [17]. Thus for ZrO2, the potential
energy is obtained as a sum of two-body interactions of the form [11]:
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U ¼ Ubonded þ Unonbonded

U ¼ A exp
�rij
q

� �

� C6

r6ij
þ qiqj
4pe0rij

ð2:26Þ

Parameters in Eq. 2.26 for ZrO2 have been developed by empirical method [11, 18]
and are indicated in Table 2.2.

The electric permittivity of vacuum, eo = 0.55263614 × 10−12 C2eV−1Å−1;
qZr = 4e; qO2 = −2e; where e is the magnitude of electronic charge, 1.602 × 10−19 C
[11, 18]. The Morse potential is used for atomic interactions where covalent bond
dominates in the total energy for the system such CNT, BN and others [17].
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Chapter 3
Finite Element Modeling of Nanotubes

In order to develop a finite element model for a given nanotube, it is necessary to set
few things. Geometry of the nanotube should be well understood. As discussed in
the previous chapters, atomic coordinates in a nanotube structure should be
determined. The atomic coordinates is the base of any atomic modeling. Bonding
between atoms should be established with respect to the experimental observations.
Chemical bonds will be replaced with a proper structural element. After creating the
frame-like structure of the nanotube, we can apply boundary conditions and carry
out the simulation process.

In order to make a clear image of the modeling process, we will try to model a
typical nanotube such as SWCNT in the following section. First of all, description
of the geometry of SWCNT will be given. Different types of bonds exist between
atoms in a given nanotube structure. For example, in a CNT there are covalent
bonds that connect two neighboring carbon atoms. These bonds should be replaced
with structural elements such as springs, beam, shell, plates. In the following
section, a more detailed geometrical description will be presented for CNT. Similar
approach should be utilized for modeling of other nanotubes. Type of bonding
between atoms in the nanotube should be studied carefully. The bonding charac-
teristics play a significant role on the rest of modeling approach and simulation
results as well. Accuracy of the model mainly depends on the understanding of the
nanotube structure and interatomic interactions of the atoms. Later, the modeling of
INTs is also considered.

3.1 Geometry and Structure of Nanotubes

First step of the modeling process is to create the geometry of the nanotube. To
begin with, let’s consider CNT. Atomic structure of CNT is described in the first
chapter. CNTs can be imaged as graphene sheets which are rolled into hollow
cylindrical hexagonal carbon rings. When the hexagonal pattern is repeated in
particular directions, carbon atoms are bond to neighboring rings via covalent
bonds. In this way, CNTs can be constructed as a frame-like structure with their
bonds as beam members and carbon atoms as joints [1]. This process is shown in
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Fig. 3.1. In the present approach, it is assumed that CNTs are defect free molecular
structures.

The parameters related to various components of CNT is shown in Table 3.1.
Atomic structure of a SWCNT follows a regular expression,

ðx; y; zÞ ¼ rn cos
x0

rn

� �

; rn sin
x0

rn

� �

; y0
� �

where in this equation, x′ and y′ are the original coordinates of carbon atoms on the
corresponding graphene sheet.

Nanotube Modeler is the most widely software for generating xyz-coordinates
for nanotubes and nanocones. The Fullerene library by M.Yoshida may be accessed
as well. Generated geometries may be viewed using the integrated viewer or by
calling a viewer program of your choice. This program is based on the
JNanotubeApplet but has improved and extended features as Fig. 3.2.

The main features of Nanotube Modeler include [3]:

• Interactive graphics (rotate structure by mouse drag)
• Creation of Nanotubes, Nanocones, Buckyball, Graphene Sheets
• Creation of capped (9,0) and (5,5) tubes
• Application of tube distortions
• Creation of single- or multi-walled nanotubes (SWNT, MWNT)
• Export of XYZ, JPG, BMP, PDF, MOL, XMOL, PDB, CIF, VRML, POV files
• Import of XY-Sheet coordinate files (can be rolled into tube)
• Display of Drexler-Merkle molecular machines from IMM
• XY-Sheet generation tool (image search/manual assembly)
• Nanotube Hetero-Junctions (using CoNTub plug-in)
• Import of XMOL coordinate files (distortions can be applied to nanotube data)
• More capped tubes (6,6), (10,0) and (10,10)
• Create tubes by number of translational units
• Custom MWNT input/Radius calculator/MWNT sequence finder
• Expanded number of atoms for longer tubes
• Rainbow color mode
• New CIF output option for ICSD style atom data block
• User-assigned bond order for MOL file export

Fig. 3.1 The FE representation of the hexagonal structure of a typical CNT [1]
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Table 3.1 Parameters of carbon nanotubes [2]

Symbol Name Formula Value

ac-c Carbon–carbon distance 1.421

a Length of unit vector
ffiffiffi

3
p

ac�c 2.46

a1, a2 Unit vectors
ffiffi

3
p
2 ; 12

� �

a;
ffiffi

3
p
2 ;� 1

2

� �

a in (x,y)
coordinates

b1, b2 Reciprocal lattice vectors 1
ffiffi

3
p ; 1

� �

2p
a ;

1
ffiffi

3
p ;�1

� �

2p
a

in (x,y)
coordinates

Ch Chiral vector Ch ¼ na1 þma2 ¼ ðn;mÞ n, m are
integers

L Circumference of
nanotube

L ¼ Chj j ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

0� mj j � n

dt Diameter of nanotube dt ¼ L
p
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

p

θ Chiral angle
sin h ¼

ffiffiffi

3
p

m

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

cos h ¼ 2nþm

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þm2 þ nm
p

tan h ¼
ffiffiffi

3
p

m
2nþm

0� hj j � 30o

d The highest common
divisor of (n,m)

dR ¼ d if n� m not a multiple of 3df
dR ¼ 3d if n� m a multiple of 3df

dR The highest common
divisor of (2n,m, 2 m,n)

T Translational vector of
1D unit cell

T ¼ t1a1 þ t2a2 ¼ ðt1; t2Þ
t1 ¼ 2mþ n

dR

t2 ¼ � 2nþm
dR

t1, t2 are
integers

T Length of vector T T ¼
ffiffi

3
p

L
dR

N Number of hexagons per
1D unit cell

N ¼ 2ðn2 þm2 þ nmÞ
dR

2 N = nC/
unit cell

R Symmetry vector R ¼ pa1 þ qa2 ¼ ðp; qÞ
d ¼ mp� nq; 0� p� n=d; 0� q�m=d

p, q are
integers

M Number of 2π revolutions M ¼ ½ð2nþmÞpþð2mþ nÞq�=dR
NR ¼ MCh þ dT

M is integers

R Basic symmetry
operation

R ¼ ðw=sÞ

ψ Rotation operation w ¼ 2pM
N ; ðx ¼ wL

2pÞ ψ in radians

τ Translation operation s ¼ dT
N

τ, x are unit
lengths
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• Modified for European customers (decimal point/comma issue)
• Select one or both caps for capped tubes
• Extra-long tubes (>100 000 A)
• Export bond connection files
• Export MLM files (Agile Molecule)
• Export Nano-Hole Arrays
• Export VRML1.0 (in addition to VRML2.0)
• Multi-Layer Graphene Sheets
• Rotation option for Multi-Layer Graphene Sheets

Nanotube Modeler can also be used to generate some INTs: B-N, Ga-N, Al-N,
Al-P and Ga-P. Free version of Nanotube Modeler is available in the link: http://
jcrystal.com/products/wincnt/ except for the above mentioned export functions and
the Copy Functions. The full version of Nanotube Modeler with all features has to
be purchased through single user license or classroom/multi user license.

There are a series of other free online codes for generating CNTs based on the
specific chilarity and other parameters such as C-C bond length, length/height of the
nanotube, tube distortion and others. These coordinates can be imported to other
software for furthers analysis. Other available software for modeling CNTs are
summarized in Table 3.2.

For INTs,Materials Studio is the preferable software for modeling. It is developed
and distributed by Biovia (formerlyAccelrys), a company specializing in research
software for computational chemistry, bioinformatics, cheminformatics, molecular
simulation, and quantummechanics [4]. This software is used in advanced research of
various materials, such as polymers, nanotubes, catalysts, metals, ceramics, and so
on, by universities, research centers and hi-tech companies. Materials Studio is

Fig. 3.2 CNTs generated from Nanotube Modeler
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a client–server software package with Microsoft Windows-based PC clients and
Windows and Linux-based servers running on PCs, Linux IA-64 workstations
(including Silicon Graphics (SGI) Altix) and HP XC clusters.

Materials Visualizer is the core product of the Materials Studio (MS) software
suite, which is designed to support the materials modeling needs of the chemicals
and materials-based industries.Materials Visualizer provides all of the tools that are
required to construct graphical models of molecules, crystalline materials, and
polymers. You can manipulate, view, and analyze these models. Materials
Visualizer also handles graph, tabular, and textual data and provides the software
infrastructure and analysis tools to support the full range of Materials Studio®
products. Nanotechnology building tools include [4]:

• Tools available for both single and multi-walled nanotubes
• Specify carbon or boron Nitride tubes
• Build nanoropes
• Create nanoclusters from crystals

3.1.1 Modeling of CNTs with Specific Chirality

Let us consider a SWCNT with chilarity of (10,0) and length of 10 Å. Figure 3.3
shows the parameters required to generate the specified nanotube. From the
structure, the atomic coordinates of the nanotube is generated and then the

Table 3.2 Available FE software for modeling of CNTs

Name Description Source Link

TubeASP Web-accessible carbon
nanotube generation applet

Roberto Veiga http://www.
nanotube.msu.
edu/tubeASP/

TubeGen Web-accessible nanotube
structure generator

Doren Research Group,
University of Delaware

http://turin.nss.
udel.edu/
research/
tubegenonline.
html

CoNTub Java-based code to
generate nanotube junction
geometries

GMDM group at the
University of Granada,
Spain

http://www.ugr.
es/*gmdm/java/
contub/contub.
html

Fullerene
isomers

Generation of fullerene
geometries based on
structures in the Fullerene
Library that has been
created by M. Yoshida

David Tomanek and Nick
Frederick at the Michigan
State
University Com-putational
Nanotechnology Lab

http://www.
nanotube.msu.
edu/fullerene/
fullerene-
isomers.html
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coordinates are inserted into a commercial finite element software such as ANSYS.
In this entry, Nanotube modeler is used to create the coordinates.

A simple zigzag nanotube (10, 0) will be created using the Nanotube modeler
and the (x,y,z) coordinates will be transferred to ANSYS. The (10,0) CNT with
length of 10 Å has 100 carbon atoms in hexagonal cell arrangements. The
hexagonal rings of carbon is illustrated in the Fig. 3.4.

The coordinates for CNT models generated using Nanotube modeler will be
used in this book.

Fig. 3.3 Parameters for generating (10,0) CNT using Nanotube modeler

Fig. 3.4 (10, 0) CNT indicating all the atoms and bonds
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3.1.2 Geometries of Multi-walled Carbon Nanotubes

As explained earlier, MWCNTs are centrically arranged SWCNTs that connect
together with weak van der Waals forces. Some of mentioned codes are capable of
producing MWCNTs with particular geometries. Using procedures as stipulated in
Sect. 3.1.1, MWCNTs are generated with different parameters. In addition to chi-
rality, tube length and bond length; the other parameters required for modeling
MWCNTs are the number of walls and increment per wall. Some generated
MWCNTs are illustrated in Figs. 3.5 and 3.6.

The models generated using Nanotube modeler (Figs. 3.5 and 3.6) are similar to
TEM images of MWCNTs obtained experimentally as shown in Fig. 3.7.

3.1.3 Geometry of Inorganic Nanotubes

Structural models of INTs such as ZrO2 nanotube (ZNT) can be created using the
default of CNT or BN nanotube available in Materials Studio (MS), so we will
make nanotube with BN and then replace B by Zr and N by Oxygen as indicated in
Fig. 3.8.

Then select all B atom by pressing Alt key and double click any B atom, all of
them (B atoms) will be selected, then change them to Zr; follow similar with N and
replace them (N atoms) with O. Thereafter use “clean” tool to adjust the bond

Fig. 3.5 MWCNT having
(29,0) (38,0) (47,0)
configuration
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length from that of B-N to Zr-O. Example of generated model for ZrO2 nanotube
(10, 10) is illustrated in Fig. 3.9.

In order to transfer the model of INTs to ANSYS for simulation, a (35, 0) ZNT
was generated and the structure was then exported and saved as PDB file as shown
in Fig. 3.10.

Based on the PDB file generated, specific data required were extracted using
code developed by Python software to carry out the following tasks [6]:

Fig. 3.6 MWCNT having (29,0) (38,0) (47,0) (48,13) (55,16) (63,17) (70,20) configuration

(a) (b)

Fig. 3.7 TEM micrographs of a typical MWCNT, b interlayer distances in a MWCNT wall [5]
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Fig. 3.8 Building of single-walled BN nanotube with (6,6) chirality using Material Studio

Fig. 3.9 Ball and stick a and stick b models of ZrO2 NT generated from Material Studio
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(1) Open the PDB file and read each line.
(2) Select out lines having the word “ATOM”.
(3) Get the X, Y and Z coordinates of those atoms.
(4) Store the coordinates as nodes.
(5) Select out lines with the word “CONECT”.
(6) Separate each line into pair connections only, with the first atom connected to

others in twos serially.
(7) Print out the results in a formatted table.

The output in txt file (Fig. 3.11) was thereafter exported into ANSYS.

3.2 Modeling the Mechanical Properties of Carbon
Nanotubes

As mentioned previously, CNTs can be constructed as a frame-like structure with
their bonds as beam members and carbon atoms as joints [1]. This process is shown
in Fig. 3.1. In the present approach, it is assumed that CNTs are defect free
molecular structures.

A rather extensive part of the modeling concentrates on the computation of the
elastic constants, Poisson’s ratios and Young’s moduli of SWCNTs, MWCNTs and
their respective bundles (ropes), aiming to show the dependence of these properties
on the diameter and chirality of the nanotubes. A very interesting aspect of the
computational modeling of the mechanical properties of nanotubes that has clearly

REMARK   Materials Studio PDB file
REMARK  Created:  Mon Sep 22 06:47:27 Malay Peninsula Standard Time 2014
ATOM      1 Zr   MOL     1      13.560   0.607   0.658  1.00  0.00          Zr4+  
ATOM      2  O   MOL     1      14.697   1.984   1.204  1.00  0.00           O2-
| 
| 
ATOM   3358 Zr   MOL 1      13.254  -3.027 101.248  1.00  0.00          Zr4+  
ATOM   3359  O   MOL     1      13.829  -1.873 102.814  1.00  0.00           O2-
ATOM   3360 Zr   MOL     1      13.586  -0.610 101.245  1.00  0.00          Zr4+  
TER    3361 
CONECT    1   2  137
CONECT    2    1    4    6
CONECT    3    6  140  141
| 
| 
CONECT 3357 3221 3356 3360
CONECT 3358 3355 3353 3359
CONECT 3359 3358 3360
CONECT 3360 3223 3359 3357
END

Fig. 3.10 PDB File for 10 × 10 cubic zirconia nanotube from Material Studio
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emerged from the research in this area of nanotube physics is the relevance of the
well-established continuum-based theories of curved plates, thin shells, beams and
vibrating rods, to model and interpret the response of nanotubes to external influ-
ences, such as large strains, or the flow of fluids inside nanotubes.

These continuum-based theories have been successfully employed both in their
own right, i.e. as independent computational tools to compute the elastic properties
and deformation modes of nanotubes, and also in conjunction with the atomistic
based models to provide the input data for these models and interpret the results
obtained from them.

Continuum-based theories dealing with vibration, bending and buckling of
beams and rods, have been also employed to model a range of mechanical prop-
erties of carbon nanotubes. They also provide a theoretical framework to interpret
the results from nanoscale experiments designed to measure the stiffness of nan-
otubes. Here the theories pertinent to the dynamics of a thin beam (the Euler–
Bernoulli beam) and a thick beam (the Timoshenko beam) are presented.

/prep7
k, 1, 13.560, 0.607,0.658
k, 2, 14.697, 1.984,1.204
k, 3, 14.831, 0.665,3.705
k, 4, 13.244, 3.021,0.661
k, 5, 14.111, 4.585,1.199
: 
: 
k, 3358, 13.254, -3.027,101.248
k, 3359, 13.829, -1.873,102.814
k, 3360, 13.586, -0.610,101.245
l, 1, 2
l, 1, 137
l, 2, 1
l, 2, 4
l, 2, 6
l, 3, 6
l, 3, 140
: 
: 
: 
l, 3359, 3360
l, 3360, 3223
l, 3360, 3359
l, 3360, 3357

Fig. 3.11 Output file in
macro APDL for modeling
35 × 0 SWZNT
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3.2.1 Analytic Solution

Based on equivalent continuum modeling techniques [7], each carbon–carbon bond
is treated as load bearing beam undergoing tension and bending. A graphene sheet
can be considered as a honeycomb frame structure. The displacement field of the
unit element of the structure is investigated using complementary potential energy
of the structure and the Young’s modulus of a graphene sheet will be derived,
accordingly. The developed formulation of a graphene sheet will be enhanced to a
CNT, based on rolling a graphene sheet virtually and reorganizing the governing
equations.

A CNT can be treated as schematically rolled graphene sheet. Analysis of zigzag
and armchair CNTs can be performed using mentioned load distribution in
Fig. 3.12, while variations of π angle in term of nanotube diameter is needed to be
characterized. Orientation of zigzag and armchair nanotubes including corre-
sponding angles are depicted in Fig. 3.12. The n–n’ is a line of intersection between
the plane perpendicular to the axes of nanotube and BAC plane [8].

Relationship between mentioned angles in Fig. 3.12 can be expressed for zigzag
and armchair configurations in Eqs. 3.1 and 3.2 respectively [8].

sinðb=2Þ ¼ sinðhÞ cosðp=2nÞ ð3:1Þ

cosðbÞ ¼ � cosðhÞ cosðp=2nÞ ð3:2Þ

where n is characterized by chiral index of either armchair or zigzag in the form of
(n, n) or (n, 0), respectively. As it can be seen from Eqs. 3.1 and 3.2, when n goes to
infinity, the equations account for a graphene sheet. Composing moment and force
equilibrium for each load case, the variation of h can be obtained for zigzag and
armchair nanotubes. Detailed description of the calculation procedure can be found
in [8]. Rearranged forms of equations stating variation of h with respect to the

Fig. 3.12 Angle orientations of armchair (left) and zigzag (right) nanotubes [8]
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developed method are specified in Eqs. (3.3a) and (3.3b) for zigzag and armchair
geometrical configurations, respectively.

DhZ ¼ HL2

2EI
sin h 1þ cos2 h cos2ðp=2nÞ

1� sin2 h cos2ðp=2nÞ

� ��1

ð3:3aÞ

DhA ¼ VL2

2EI
cos h 2þ sin2 h cos2ðp=2nÞ

1� cos2 h cos2ðp=2nÞ
� ��1

ð3:3bÞ

Again it can be observed from Eqs. (3.3a) and (3.3b) that when n goes to infinity,
the corresponding HL leads to the associated amount of graphene sheet. Using
ab initio simulation, Yu et al. [9] showed that h is approximately equal to 60 Å for
both armchair and zigzag nanotubes.

Now, we can rearrange Eqs. (3.3a) and (3.3b) and adopt it for zigzag and
armchair CNTs which were previously developed for graphene sheet as shown in
Eqs. (3.4a) and (3.4b).

dZ ¼ LDhZ
3

sin hþ HL cos2 h
EA

þ 2HL
EA

ð3:4aÞ

dA ¼ LDhA
2

cos hþ VL sin2 h
EA

ð3:4bÞ

where δZ and δA are the deformations of zigzag and armchair nanotubes along their
axial axes, respectively. Strain and stress fields can be expressed using following
equations:

eZ ¼ dZ
Lð1þ cos hÞ ; rZ ¼ H

tL sin h
ð3:5aÞ

eA ¼ dA
L sin h

; rA ¼ V
tLð1þ cos hÞ ð3:5bÞ

where εZ, σZ, εA and σA are strains and stresses of zigzag and armchair nanotubes all
along tube axial axes, respectively. Finally, axial Young’s moduli of hollow CNTs
can be obtained using the following formulation:

EZ ¼ 16
ffiffiffi

3
p

t
krk0ð3� cos p

nÞ
5krL2 þ 108kh � ð3krL2 þ 36khÞ cos p

n

� �

ð3:6aÞ

EA ¼ 16

t
ffiffiffi

3
p krk0ð17þ cos p

nÞ
7krL2 þ 204kh þð12kh � krL2Þ cos p

n

� �

ð3:6bÞ
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Both Eqs. (3.6a) and (3.6b) will converge to when n goes to infinity. This
mathematical behavior can be interpreted as a logical physical behavior that
Young’s modulus of larger nanotubes in diameter will approaches to the Young’s
modulus of a graphene sheet as a bounding value. The reason for this behavior can
be found in distortion of carbon–carbon bonds in smaller diameter which are much
more significant than it in larger diameter and when diameter is large enough, the
mentioned influence diminishes [10].

3.2.2 Computing Some Mechanical Properties of Carbon
Nanotubes

To calculate the mechanical properties of a CNT, one CNT’s end was restrained and
axial displacement was applied on the other end (Fig. 3.14). The axial strain, eZ , is
defined as tube length at each substep, l, divided by initial length of the tube, l0 . The
corresponding external force, F, is calculated from the summation of nodal reac-
tions at fixed end [1].

Then, the properties can be calculated as follows:

eZ ¼ u
l0
¼ l� l0

l0
ð3:7Þ

r ¼ F
A

ð3:8Þ

E ¼ dr
de

ð3:9Þ

m ¼ ðr � r0Þ=r0
u=l0

ð3:10Þ

where E, r, F, A, v, r, r0 are the Young’s modulus, axial stress, reaction force, cross
sectional area, Poisson’s ratio, current and initial radius of the tube.

From the theoretical point of view, tensile properties of CNTs are strongly based
on its wall thickness assumptions [11]. This may explain wide range of reported
property values such as Young’s modulus of the SWCNT. In fact, there has been no
consensus on the exact values of CNT wall thickness in theoretical calculations.
Different values have been considered for CNT wall thickness such as the graphite
inter-layer spacing (0.34 nm) or the double C–C bond length. Most of reported
thicknesses are vary in a range of 0.06–0.69 nm. In this work, the wall thickness is
defined equal to 0.34 nm, according to electron density distributions [12]. With this
assumption, the CNT cross section is defined as πDt where D and t are CNT
diameter and thickness as shown in Fig. 3.13.
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3.3 Modeling the Mechanical Properties of Inorganic
Nanotubes

Due to ionic bonds in inorganic nanotubes, their structure buckles when exposed to
deformation [13]. This buckling, which is lacking in carbon nanotubes, may well
produce a consequence on the mechanical properties of ZNT and other inorganic
nanotubes [14]. Thus analytical model based on molecular mechanics method for
determining the elastic properties of nanotubes formed by two or more elements is
not the same as that of SWCNTs [15].

An inorganic nanotube is structurally represented in Fig. 3.14, with (a) sym-
bolizing the whole (10,10) armchair ZNT, (b) shows the structure observed by the
longitudinal path along the nanotube, (c) arrangement, and (d) breakdown of force
applied on half of stick b. The dark (or red) balls represent oxygen atoms and the
bright (or green) balls represent zirconium atoms.

Considering a single-walled zirconia nanotube (SWZNT) as a ZrO2 nanosheet
rolled into a tube, its geometry and structure is more complex than that of SWCNT.
The bonds and bond angles is denoted by a1, b1, b2, αO2, βO2, βO2 for oxygen atom
and a2, b2, b3, αZr, βZr, βZr for zirconium atom as illustrated in Fig. 3.14c; this is
similar to what was used for BN nanotubes [15]. With the force and moment in
stick b, the internal forces are based on the axial force F and the axial torque
T which are designated by f and s, correspondingly. Thus the connections joining
the external and internal forces are generated as

F ¼ 2nf ; T ¼ 2nsR ð3:11Þ

where R represents the tube radius with the forces f and s been divided in dual
components, p and q as indicated in Fig. 3.14d.

Fig. 3.13 Illustration of the
diameter and cross section of
the carbon nanotube
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Along the b-b plane, the bond stretching by the component p = f sin(α/2) + cos
(α/2) alongside the direction of the bond with the component q = f cos(α/2) + s sin
(α/2) which is at right angles to the bond leading into bond angle deformation/
distortion.

The force of equilibrium for the bond, yields

f sin
aO2

2

� �

þ s cos
aO2

2

� �

¼ f sin
aZr
2

� �

þ s cos
aZr
2

� �

¼ Kdb ð3:12Þ

When the bond/stick b is divided in two: with O2 atoms represented by bO2 and
Zr atoms by bZr. The bond angle variances dα and dβ give rise to moments Cdα and
Cdβ in planes b-b and a-b respectively.

Fig. 3.14 Schematic representation of the forces in a (10,10) zirconia nanotube
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The torsion angles between planes b-b and a-b can be computed as

cos/O2
¼ � tan aO2

2ð Þ
tan bO2

ð3:13Þ

cos/Zr ¼ � tan aZr
2ð Þ

tan bZr
ð3:14Þ

Then the moment equilibrium becomes

bO2 f cos aO2

2

� �

þ s sin aO2

2

� �h i

¼ CO2daO2 þCO2dbO2
cos/O2

ð3:15Þ

bZr f cos aZr
2

� �

þ s sin aZr
2

� �h i

¼ CZrdaZr þCZrdbZr cos/Zr ð3:16Þ

In relation to armchair single-walled inorganic nanotube, the geometry con-
nections fulfill [15]

cos bO2
¼ � cos aO2

2

� �

cos cO2
ð3:17Þ

cos bZr ¼ � cos aZr
2

� �

cos cZr ð3:18Þ

where γO2 and γZr are the angles for the bonds aO2 and aZr along the plane b-b.
Differentiating Eqs. (3.17) and (3.18)

dbO2
¼ � sin aO2

2ð Þ
2 sin bO2

cos cO2
daO2 ð3:19Þ

dbZr ¼ � sin aZr
2

	 


2 sin bZr
cos cZrdaZr ð3:20Þ

For simplicity, it is assumed that a = b and αO2 = αZr. If the SWZNT is subjected
only to axial tensile force F, then T = 2nsR = 0 giving the force equilibrium and
moment equations as

f sin aO2

2

� �

¼ f sin aZr
2

� �

¼ Kdb ð3:21Þ

bO2 ¼ f cos aO2

2

� �

¼ CO2daO2 þCO2dbO2
cos/O2

ð3:22Þ

bZr ¼ f cos aZr
2

� �

¼ CZrdaZr þCZrdbZr cos/Zr ð3:23Þ
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Merging Eqs. (3.22) and (3.23), then substituting Eqs. (3.16)–(3.19) and
Eq. (3.21) into it, we attain

da ¼ 2Kb2

CO2kO2 þCZrkZr
cot

a
2

� � db
b

ð3:24Þ

where,

kO2 ¼
2� 2 cos2ða2Þ cos2 cO2

þ sin2ða2Þ cos2 cO2

1� cos2ða2Þ cos2 cO2

ð3:25Þ

kZr ¼ 2� 2 cos2ða2Þ cos2 cZr þ sin2ða2Þ cos2 cZr
1� cos2ða2Þ cos2 cZr

ð3:26Þ

The axial strain ɛ3 and the circumferential strain ɛ2 of armchair nanotube is
expressed as [15]

e3 ¼ d b sinða2Þ½ �
b sinða2Þ½ � ; e2 ¼

d aþ bs cosða2Þ½ �
aþ b cosða2Þ½ � ð3:27Þ

Substituting Eq. (3.24) into Eq. (3.27), we obtain

e3 ¼ 1þ Kb2

CO2kO2 þCZrkZr
cot2ða

2
Þ

� �

db
b
;

e2 ¼ � Kb2

CO2kO2 þCZrkZr
� 1

� �

cos a
2

	 


1þ cos a
2

	 


db
b

ð3:28Þ

Considering a nanotube as a cylindrical thin shell having radius R and thickness
t and subjected to an axial tensile force F, its Young’s modulus can be expressed as
the ratio of axial stress and the axial strain, that is

E ¼ F
2pRtes

ð3:29Þ

To avoid the problem with variable thickness of nanotubes [14], the equivalent
Young’s modulus is Ys is defined as

Ys ¼ Et ¼ F
2pRes

ð3:30Þ

Additionally, the Poisson’s ratio is
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m ¼ � e2
e3

ð3:31Þ

In order to obtain the shear modulus Gs, an axial torque T is applied and
following the procedure utilized for axial modulus above then

Gs ¼ s
2pR2l

ð3:32Þ

Substituting Eqs. (3.28) and (3.29) into Eqs. (3.30) and (3.31), we obtain

Ys ¼ 4
ffiffiffiffiffiffi

3K
p

9þ 3Kb2
CO2kO2 þCZrkZr

; ð3:33Þ

m ¼
Kb2

CO2kO2 þCZrkZr
� 1

3þ Kb2
CO2kO2 þCZrkZr

ð3:34Þ

For the shear modulus,

Gs ¼ 2
ffiffiffi

3
p

K

3þ 9Kb2
CO2kO2 þCZrkZr

ð3:35Þ

From the steps described above, the numerical technique for stress-strain cor-
relation for armchair nanotube is summarized as follows:

(1) Determine/assume any given bond stretch db
(2) Compute f using Eqs. (3.21) and (3.29)
(3) Calculate stress at the most recent position by Eq. (3.33)
(4) Identify balance geometry with dα and dβ for both Zr and O2 conforming to

db using Eqs. (3.30) and (3.31) over a loop with fixed variation [14]
(5) Estimate the strains at the most recent/current state using Eqs. (3.26) and

(3.35).
(6) Calculate the Young’s modulus, Poisson’s ratio and shear modulus using

Eqs. (3.33), (3.34) and (3.35) respectively.

The values for the angles α and β for Zr and O2 of armchair nanotubes for
various materials have been determined using ab initio calculations [16]. Similar
procedure was followed to determine the values of Ys, ν and Gs for the zigzag
nanotubes [13–15].

Determining the stress-strain relationship for nanotubes using Eqs. (3.11)–(3.35)
is demanding as hundreds of equations will be generated depending on chirality and
number of atoms and bonds available. The best alternative is to use a numerical
method with the capability to handle as many atoms/nodes and bonds/elements as
possible.
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Chapter 4
Nanotube Modeling Using Beam Element

4.1 Introduction

Advances in computing technology have significantly increased the scientific
interest in computer based molecular modeling of nano materials [1]. In order to
perform any computational study on molecular properties, it is necessary to create a
molecular model. In other words, it is essential to create an accurate model of
atomic interactions at the first step. This model could be used to investigate the
mechanical properties of a material near molecular length scales [2]. It can be
derived by taking into account an appropriate crystal structure. Any technique that
can produce a valid model for a given compound seems appropriate. Molecular
modeling could be a useful tool at this stage. It is widely employed to determine
molecular equilibrium structures. In addition, it could be used to design new
materials with desirable properties [3]. These theoretical methods can be classified
into two board branch which are ‘‘bottom up’’ and ‘‘top down’’. ‘‘Bottom up’’ is
based on quantum/molecular mechanics including the classical MD and ab initio
methods. In contrast, ‘‘top down’’ approach arose from continuum mechanics.

In the last decade intensive computational investigation has been performed to
assess CNT’s mechanical properties, either to explain observations or to obtain
information which is not accessible through experimental studies. The deformation
behavior of CNTs has been subjected to numerous investigations via MD and
continuum approaches [4–9]. Since experimental studies at nano length scale are
still under development, they have resulted in a scattered range of values for various
mechanical properties. A MD model was proposed for CNTs under bending, tor-
sion and axial compression loadings [5]. Simulations were conducted on SWCNTs
of various diameters, helicities and lengths with large elastic deformations and
results were in good agreement with the experimentally observed patterns.
Moreover, the results showed that CNT behaviors could be well described by a
continuum model with proper chosen set of parameters, e.g., Poisson’s ratio,
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ν = 0.19, Young’s modulus, E = 5.5 TPa, and CNT thickness, t = 0.66 Å [10]. The
results of these simulations indicated that the walls of CNTs can be accurately
treated as elastic shells when proper attention is given to the definition of the wall
elastic modulus and thickness. Later the strain energy and Young’s modulus of
SWCNT were estimated by counting the total energy of all the occupied band
electrons [11]. At thickness of 0.074 nm, the Young’s modulus of simulated CNT
was 5.1 TPa. Their results also showed that continuum elasticity theory can serve
well to describe the mechanical properties of SWCNTs.

Although, MD has been used widely in studying the deformation mechanism of
CNTs, the required computational power for MD simulations restrains the size of
the CNTs model [12]. Generally, the main drawback of MD is the limitation in time
and length scale of the models. Even short length scale in range of nanometer for
small times in range of picosecond (10–12 s) needs great deal of time and effort.
MD is not practical for models that include large number of atoms [12]. Great
amount of computing power and extremely complex formulations makes them
suitable for small systems with at most few hundreds of atoms. It was noted that
although computational power constantly increases and numerical algorithms are
improved quickly, the molecular dynamics approaches are still bounded to models
with just around 106–108 atoms for a fraction of seconds [13]. Therefore, it seems
the evaluation of larger compounds or longer periods should be done via continuum
methods.

Molecular mechanics is one such a technique. It is one of the most widely used
techniques due to computational simplicity and efficiency [2]. Molecular mechanics
are believed to have been developed from the Born-Oppenheimer approximation. It
mainly assumes that in a molecule, the nuclei motions are independent of the
electrons motions. In molecular mechanics approach, the positions of the nuclei are
calculated while the arrangement of the electrons is presumed to be fixed. However,
electron positions are calculated in quantum mechanics calculations based on the
assumption that nuclei are at fixed positions [3, 14].

In order to create a model, a mechanical approach must be chosen to calculate all
the forces between the atoms of a given molecule. In this way, good estimate of the
molecule geometry could be obtained. Bonded atoms are assumed to hold together
by forces that behave like mechanical springs. Non bonded interactions are replaced
by attractive and repulsive forces which are known as van der Waals forces.
Experimental observation such as infrared vibrational frequencies and gas com-
pressibility data will be used to define spring stiffness and parameters or the van der
Waals curves are derived. However, the defined parameters should be modified
empirically to enhance the replication of geometries which are experimentally
detected. In order to optimize the geometry of a given molecule, computational
methods are employed to minimize its total energy caused by atomic interactions.
The molecular strain could be determined by considering minimized total energies
so-called the strain energy. It is mainly related to the molecular potential energy and
its stable order [15].
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4.2 Forces Between Bonds in Nanotubes

Basically, forces between pairs of atoms are the main variables in molecular
mechanics calculations which determine the positions of the atoms in a molecule or
similar compound and crystal lattice. Various kinds of these forces exist such as
covalent bonds, hydrogen bonds, van der Waals and electrostatic interactions are
pair of atomic forces. Groups of three atoms could create valence angles. Torsional
angles and planes are formed to groups of four atoms.

Several empirical potentials for covalent bonds are available [16] and can be
used to estimate physical and mechanical properties of CNTs. The typical empirical
models could be classified as force field model [17–19], bond order model [20–23],
and semi-empirical model [24]. The calculated energies by mentioned models can
be used to determine the positions of the nuclei in a molecule. Consequently, the
entire molecular structure is easy to find out.

The total strain energy of a molecule is commonly represented by a set of
potential energy functions. It is more convenient to divide the total strain energy
into “through bond” and “through space” terms. Therefore, the molecular
mechanics model could be expressed as below.

Utotal ¼
X

molecule

ðUd þ UndÞ ð4:1Þ

The through bond terms, Ud, are called directional terms. In contrary, all
non-bonded interactions are summation of repulsive and attractive terms. Repulsive
interactions includes through space or non-directional terms, Und,

Ud ¼ Ub þ Eh þ U/ þ Ud ð4:2Þ

Und ¼ Unb þ Uz þ Uhb ð4:3Þ

These terms are listed in Table 4.1 and shown in Figs. 4.1 and 4.2 [2, 25].
Various potential energy functions are given below.

Ub ¼ 1
2
kbðrij � r0Þ2 ð4:4Þ

Uh ¼ 1
2
khðhijk � h0Þ2 ð4:5Þ

U/ ¼ 1
2
k/ð1þ cosðmð/ijkl � /offsetÞÞÞ2 ð4:6Þ

Ud ¼ Ae�Edij�Cd�6
ij ð4:7Þ
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where,

A ¼ 2014ðeiejÞ1
2 ð4:8Þ

B ¼ 12:50
vdwi þ vdwj

ð4:9Þ

Table 4.1 Potential energy functions

Potential type Energy Symbol

Through bond terms Two body interactions Bonding energy Ub

Three body interactions Valence angle energy Uθ

Four body interactions Torsional angle Uϕ

Out-of-plane energy Uδ

Through space terms van der Waals interactions Unb

Electrostatic terms Uε

Hydrogen bonding Uhb

Fig. 4.1 The molecular
mechanics model of force
field potentials [3]

Fig. 4.2 Molecular mechanics force fields and related parameters [3]
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C ¼ 2:55ðeiejÞ1
2ðvdwi þ vdwjÞ6
144

ð4:10Þ

Ud ¼ 1
2
kdd

2 ð4:11Þ

Ue ¼ qiqj
edij

ð4:12Þ

Uhb ¼ F
d1ij

� G
d2ij

ð4:13Þ

Parameters and variables are shown in Fig. 4.2.
Figure 4.3 shows schematic bond structure of a carbon cell and energy terms.

Additional energy terms associated with electromechanical or optomechanical
interactions can be likewise included [1].

Recently, great efforts have been made to employ continuum mechanics in
computational modeling of CNTs. For instance, to show the validity of the classical
shell theory, [25] the deformation of SWCNTs and MWCNTs were studied [using
the continuum limit from the local density approximation (LDA) model developed
earlier [26]. The obtained values were Young’s modulus, E = 5.470 TPa, Poisson’s
ratio, ν = 0.34, and thickness, t = 0.75 Å. Young’s modulus of the MWCNT is
obviously found to be a function of the number of layers which varies from 1.04 to
4.70 TPa. Nanoscale continuum theory was proposed to directly incorporate
interatomic potentials into a continuum analysis [27]. The predictions for the linear
elastic modulus of a SWCNT with t = 0.335 nm yielded E = 475 GPa and E = 705
GPa for different set of parameters. Afterwards, the same theory was also applied
for fracture nucleation in SWCNTs under tension [27]. Another approach was
proposed to determine relationships between nanomaterials structure and properties
[28]. This method connected computational chemistry and solid mechanics and

Fig. 4.3 Bond structures of a
graphene cell and
corresponding energy terms
[12]
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successfully replaced molecular structures with equivalent-continuum models. In
another attempt, a structural mechanics was presented to simulate the deformation
of CNTs [29]. The sectional parameters of structural members were obtained by
connecting structural mechanics to molecular mechanics. Young’s modulus and
shear modulus of CNTs were found in increasing trend of 0.9–1.03 TPa when CNT
diameter increases.

An elastic finite element approach based on molecular mechanics was later
introduced using elastic beam elements to simulate the carbon-carbon chemical
bonds [30]. The approach was based on an equivalency between the beam sectional
stiffness and force field constants. The estimated Young’s modulus of 1.033 TPa
showed good agreement with what was obtained in other studies. The buckling of
SWCNTs was also studied with emphasis on the out-of-plane deformation of the
bonds with a rectangular cross sectional beam was assumed for the structural
elements [31]. Using the same concept, a finite element model for SWCNTs was
built and then upgraded to MWCNTs [32, 33]. Spring elements were used to
simulate van der Waals interactions between layers of the MWCNTs.

Most of the above mentioned computational methods are limited to elastic
constants like Young’s modulus or Poisson’s ratio of CNTs. It is mainly caused by
employing harmonic potential functions. In order to obtain more realistic results on
the mechanical behavior of nanotubes up to or beyond bond breaking, a more
complex interatomic potential function has to be used [1, 2].

The unrolled graphene sheet subjected to axial tension in two orthogonal
directions is shown in Fig. 4.4. This lattice structure can be substituted with
equivalent honeycomb-like continuum structure conventionally utilized as a core
material in composite sand.

The structure of honeycomb consists of several thin strut elements assembled
together in hexagonal cells. Using the same analogy, the carbon–carbon bonds in
molecular system of a graphene sheet can be simulated as constitutive struts of the
honeycomb. The simulation procedure will be accomplished successfully, if the
carbon–carbon bonds in the lattice structure of molecular system are properly

Fig. 4.4 Graphene sheet
subjected to bi-axial tension
loading
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replaced with load bearing struts in the imaginary honeycomb configuration. As it
was stated in the preceding section, the employed inter atomic potential energy of
the molecular structure consists of bond stretching and angle variation. Hence, the
substituted structural member for the carbon–carbon bond should be able to capture
both axial and bending deformations. Frame elements are suitable structural
members to fulfill these requirements. A frame structure is identified by its cross
sectional area, modulus of elasticity, moment of Inertia and length. A linkage
between structural mechanics and molecular mechanics was developed to obtain
sectional stiffness parameters based on the constants of force fields [34].
A correlation between inter-atomic molecular potential energies and strain energies
of a beam was established using equivalence of energies and thus the graphene
sheet can be analyzed using solid mechanics.

4.3 Beam and Frame Elements

In structure analysis, most element types are structural elements, ranging from
simple spars and beams to more complex layered shells and large strain solids. For
example, the types of structural elements used in ANSYS are summarized in
Table 4.2 [3]. Some of the element types have been removed in the latest version.

Beams play significant roles in many engineering applications, including
buildings, bridges, automobiles, and airplanes structures. A beam is defined as a
structural member whose cross-sectional dimensions are relatively smaller than its
length. Beams are commonly subjected to transverse loading, which is a type of
loading that creates bending in the beam. A beam subjected to a distributed load is
shown in Fig. 4.5. The deflection of the neutral axis at any location x is represented
by the variable u. For small deflections, the relationship between the normal stresses
at a section, the bending moment at that section M, and the second moment of area
I is given by the flexure formula. The flexure formula can be written as,

r ¼ �My
I

ð4:14Þ

where y locates a point in the cross section of the beam and represents the lateral
distance from the neutral axis to that point.

The deflection of the neutral axis v is also related to the internal bending moment
M(x), the transverse shear V(x), and the load w(x) according to the equations

EI
d2v
d2x

¼ MðxÞ ð4:15Þ
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EI
d3v
d3x

¼ dMðxÞ
dx

¼ VðxÞ ð4:16Þ

EI
d4v
d4x

¼ dVðxÞ
dx

¼ wðxÞ ð4:17Þ

In the following derivation, we will neglect the contribution of shear stresses to
the strain energy. The strain energy for an arbitrary beam element (e) then becomes:

Fig. 4.5 Cross section of uniformly loaded beam

Table 4.2 Types of structural elements used in ANSYS

Category Element name(s)

Spars LINK1, LINK8, LINK10, LINK180

Beams BEAM3, BEAM4, BEAM23, BEAM24, BEAM44, BEAM54, BEAMI88,
BEAMI89

Pipes PIPE16, PIPE17, PIPE18, PIPE20, PIPE59, PIPE60

2-D Solids PLANE2, PLANE25, PLANE42, HYPER56, HYPER74, PLANE82,
PLANE83, HYPER84, VISC088, VISCO106, VISC0108, PLANE145,
PLANE146, PLANE182, PLANE183

3-D Solids SOLID45, SOLID46, HYPERS8, SOLID64, SOLID65, HYPER86,
VISC089, SOLID92, SOLID95, VISCO107, SOLID147, SOUD148,
HYPER158, SOLID185, SOLID186, SOLID187, SOLID191

Shells SHELL28, SHELL41, SHELL43, SHELL51, SHELL61, SHELL63,
SHELL91, SHELL93, SHELL99, SHELL150, SHELL181

Interface INTER192, INTER193, INTER194, INTER195

Contact CONTAC12, CONTAC52, TARGE169, TARGE170, CONTA171,
CONTA172, CONTA173, CONTA174, CONTA175

Coupled-field SOLID5, PLANE13,FLUID29, FLUID30, FLUID38, SOLID62, FLUID79,
FLUID80, FLUID81,SOLID98, FLUID129, INFIN110, INFIN111,
FLUID116, FLUID130

Specialty COMBIN7, LINK11, COMBIN14, MASS21, MATRIX27, COMBIN37,
COMBIN39, COMBIN40, MATRIX50, SURF153, SURF154

Explicit
dynamics

LINK160, BEAM161, PLANE162, SHELL163, SOLID164, COMBI165,
MASS166, LINK167, SOLID168
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KðaÞ ¼
Z

v

re
2
dV ¼

Z

v

Ee2

2
dV ¼E

2

Z

v

�y
d2v
dx2

� �2

dV ð4:18Þ

KðaÞ ¼ E
2

Z l

v

d2v
dx2

� �2

dx
Z

v

y2dA ð4:19Þ

KðaÞ ¼ EL
2

Z L

0

d2v
dx2

� �2

dx ð4:20Þ

Before integrating Eq. (4.7), beam element has to be specified. A simple beam
element consists of two nodes. At each node, there are two degrees of freedom, a
vertical displacement, and a rotation angle (slope), as shown in Fig. 4.6.

There are fournodal values associatedwithabeamelement.Therefore, a third-order
polynomial with four unknown coefficients is used to represent the displacementfield.
Moreover, the first derivatives of the shape functions should be continuous. The
resulting shape functions are commonly referred to as Hermite shape functions.

Frames represent structural members that may be rigidly connected with welded
or bolted joints. For such structures, in addition to rotation and lateral displacement,
we also need to be concerned about axial deformations. Here, we will focus on
plane frames.

The frame element, shown in Fig. 4.6, consists of two nodes. At each node, there
are three degrees of freedom: a longitudinal displacement, a lateral displacement,
and a rotation [35].

Referring to Fig. 4.6, note that ui1, represents the longitudinal displacement and
ui2 and ui3, represent the lateral displacement and the rotation at node i, respec-
tively. In the same manner, uji, uj2 and uj3 represent the longitudinal displacement,
the lateral displacement and the rotation at node i, respectively. In general, two
frames of reference R will be required to describe frame elements: a global

Fig. 4.6 Frame element with
two nodes
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coordinate system and a local frame of reference. We choose a fixed global coor-
dinate system (X, Y) for several uses: (1) to represent the location of each joint
(node) and to keep track of the orientation of each element using angles such as 0;
(2) to apply the constraints and the applied loads in terms of their respective global
components; and (3) to represent the solution. We will also need a local, or ele-
mental, coordinate system to describe the axial-load behavior of an element. The
relationship between the local coordinate system (x, y) and the global coordinate
system (X Y) is shown in Fig. 4.6. Because there are three degrees of freedom
associated with each node, the stiffness matrix for the frame element will be a 6 × 6
matrix. The local degrees of freedom are related to the global degrees of freedom
through the transformation matrix [T], based on the relationship,

u½ � ¼ T½ � U½ �

where the transformation matrix is

½T] ¼ �

cosh sinh 0 0 0 0
�sinh cosh 0 0 0 0
0 0 1 0 0 0
0 0 0 cosh sinh 0
0 0 0 �sinh cosh 0
0 0 0 0 0 1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð4:21Þ

In the previous section, we developed the stiffness matrix attributed to bending
for a beam e1ement. U matrix accounts for lateral displacements and rotations at
each node,

K½ �xy¼
EI
L3

0 0 0 0 0 0
0 12 6L 0 �12 6L
0 6L 4L2 0 �6L 2L2

0 0 0 0 0 0
0 �12 �6L 0 12 �6L
0 6L 2L2 0 �6L 4L2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð4:22Þ

To represent the contribution of each term to nodal degrees of freedom, the
degrees of freedom are shown above and alongside the stiffness matrix in Eq. (4.9).
The stiffness matrix for members under axial loading is represented as

K½ �axial¼

AE
L 0 0 �AE

L 0 0
0 0 0 0 0 0
0 0 0 0 0 0
�AE

L 0 0 AE
L 0 0

0 0 0 0 0 0
0 0 0 0 0 0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð4:23Þ
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Adding Eqs. (4.9) and (4.10) results in the stiffness matrix for a frame element:

½K�ðeÞxy ¼

AE
L 0 0 �AE

L 0 0
0 12EI

L3
6EI
L2 0 �12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 �6EI

L2
2EI
L

�AE
L 0 0 AE

L 0 0
0 12EI

L3 �6EI
L2 0 12EI

L3 �6EI
L2

0 6EI
L2

2EI
L 0 �6EI

L2
4EI
L

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

ð4:24Þ

Note that we need to represent Eq. (4.11) with respect to the global coordinate
system. To perform this task, we must substitute for the local displacements in
terms of the global displacements in the strain energy equation, using the trans-
formation matrix and performing the minimization. These steps result in the
relationship

K½ �ðeÞ¼ T½ �T K½ �ðeÞxy T½ � ð4:25Þ

4.3.1 Three-Dimensional Beam Element

The 3D beam element used in ANSYS is suited for situations wherein the beam may
be subjected to loads that can create tension, compression, bending about different
axes, and twisting (torsion). At each node, there are six degrees of freedom, dis-
placements in X, Y, and Z directions, and rotation about X, Y, and Z axes. Therefore,
the elemental matrix for a three-dimensional beam element is a 12 × 12 matrix.
ANSYS’s three-dimensional elastic beam element is shown in Fig. 4.7 [36].

The element input data include node locations, the cross-sectional area, two
moments of inertia (IZZ and Iyy), two thicknesses (TKY and TKZ), an angle of
orientation (θ) about the element x-axis, the torsional moment of inertia (Ixx) and
the material properties. If Ixx is not specified or is equal to 0.0, ANSYS assumes that
it is equal to the polar moment of inertia (Iyy + IZZ). The element x-axis is oriented
from node I toward node J. For the two-node option, the default (θ = 0°) orientation
of the element y-axis, ANSYS automatically sets the orientation parallel to the global
X-Y plane.

For the case where the element is parallel to the global Z axis, the element y-axis
is oriented parallel to the global Y-axis (as shown). For user control of the element
orientation about the element x-axis, use the 6 angle (THETA) or the third-node
option. If both are defined, the third-node option takes precedence. The third node
(K), if used, defines a plane (with I and J) containing the element x and z axes (as
shown).
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The input data for BEAM188 is summarized below:
Nodes
I, J, K (K orientation node is optional)
Degrees of Freedom
UX, UY, UZ (displacements in X, Y, and Z-directions)
ROTX (rotation about X-axis), ROTY (rotation about Y-axis), ROTZ (rotation

about Z-axis)
Real Constants
AREA, Izz, Iyy, TKZ, TKY, THETA,
ISTRN (initial strain in the element), Ixx
Material Properties
EX (modulus of elasticity), ALPX (Poisson’s ratio), DENS (density), GXY

(shear modulus), DAMP (damping)

Fig. 4.7 BEAM188 3-D elastic beam
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Surface Loads
Pressures
face 1 (I−J) (-Z normal direction)
face 2 (I−J) (—Y normal direction)
face 3 (I−J) (+X tangential direction)
face 4 (I) (+X axial direction)
face 5 (J) (−X axial direction)
(use negative value for opposite loading)
Temperatures
Tl, T2, T3, T4, T5, T6, T7, T8
Stresses
To review stresses in beams, you must first copy these results into element

tables, and then you can list them or plot them. These items are obtained using item
label and sequence numbers. For a BEAM188 element, the following output
information is available: the maximum stress, which is computed as the direct stress
plus the absolute values of both bending stresses; the minimum stress, which is
calculated as the direct stress minus the absolute value of both bending stresses.
BEAM188 output includes additional stress values—examples of these stresses are
given in Table 4.3. Once you decide which stress values you want to look at, you
can read them into a table using item labels and sequence numbers. Examples of the
item labels and sequence numbers for BEAM188 are summarized in Table 4.4.

Table 4.3 Examples of
stresses computed by ANSYS

Type Description

SDIR Axial direct stress

SB YT Bending stress on the element + Y side of the beam

SBYB Bending stress on the element − Y side of the beam

SBZT Bending stress on the element + Z side of the beam

SBZB Bending stress on the element − Z side of the beam

SMAX Maximum stress (direct stress + bending stress)

SMIN Minimum stress (direct stress − bending stress)

Table 4.4 Item and sequence
numbers for the BEAM188
element

Type Group Item label Sequence No

SDIR LS 1 6

SBYT LS 2 7

SBYB LS 3 8

SBZT LS 4 9

SBZB LS 5 10

SMAX NMISC 1 3

SMIN NMISC 2 4
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Chapter 5
Linear Finite Element Analysis
of Nanotubes

5.1 Introduction

From proven chemical calculations [1], the harmonic functions provide a reason-
able approximation to the potential energy of molecular systems in which the bond
length is near its equilibrium position. In this particular formula, the energy terms
associated to bond stretching (5.1), angle bending (5.2) and inversion (5.3) are
described as [2, 3],

Ur ¼ 1
2

X

i

Kiðr � r0Þ2 ð5:1Þ

Uh ¼ 1
2

X

j

Cjðh� h0Þ2 ð5:2Þ

U/ ¼ 1
2

X

k

Bkðu� u0Þ2 ð5:3Þ

where r � r0, h� h0, u� u0 are the elongation of bond i, variance of bond angle
j and inversion angle k. Ki, Cj and Bk are force constants associated with bond
stretching, angle variance and inversion, respectively. Formulation was done by
using schematic diagram as shown in Fig. 5.1.

In such cases, elastic Young’s modulus (En) of armchair (n, n) and zigzag (n, 0)
CNTs could be expressed as the following,

En ¼ 4
ffiffiffi

3
p

K
3kKa2=Cþ 9

; k ¼ 7� cosðp=nÞ
34þ 2 cosðp=nÞ ð5:4Þ
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where K, C and a are axial stiffness of the carbon–carbon covalent bond
(742 nN/nm), bending stiffness resulting from the angular distortion of bond angle
(1.42 nN/nm) and bond length, respectively [2].

To calculate the elastic moduli of beam elements, a linkage between molecular
and continuum mechanics is used [2, 4, 5]. For clarity, the linkage is illustrated in
Fig. 5.2.

From the viewpoint of molecular mechanics, CNTs may be regarded as large
molecules consisting of carbon atoms. The atomic nuclei may be regarded as
material points and their motions are regulated by a force-field generated by
electron–nucleus and nucleus–nucleus interactions. The force-field is expressed in
the form of steric potential energy, which depends solely on the relative positions of
the nuclei constituting the molecule. The general expression of the total steric
potential energy, when omitting the electrostatic interaction, is the following sum of

Fig. 5.1 A schematic
illustration of atomic
interactions in CNT model

Fig. 5.2 Space-frame structure with beam elements substituting C–C bonds
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energies due to valence of bonded interactions or bonded and non-bonded inter-
actions [6]:

UTotal ¼
X

Ur þ
X

Uh þ
X

U/ þ
X

Ux þ
X

Uvdw ð5:5Þ

where Ur is the energy due to bond stretch interaction, Uθ the energy due to bending
(bond angle variation), Uϕ the energy due to dihedral angle torsion, Uω the energy
due to out-of-plane torsion and Uvdw the energy due to non-bonded van der Waals
interaction. A schematic representation of the interatomic interactions in molecular
mechanics, as taken into account in Eq. (5.2), is shown in Fig. 5.3.

For covalent systems, the main contributions to the total steric energy come from
the first four terms of Eq. (5.2). Under the assumption of small deformation, the
harmonic approximation is adequate for describing the energy [7]. By adopting the
simplest harmonic forms and merging dihedral angle torsion and out-of-plane
torsion into a single equivalent term, the expressions for each form of energy is
determined (Eq. 5.6).

Ur ¼ 1
2
krðr � r0Þ2 ¼ 1

2
krðDrÞ2

Uh ¼ 1
2
khðh� h0Þ2 ¼ 1

2
khðDhÞ2

Us ¼ U/ þUx ¼ 1
2
ksðD/Þ2

ð5:6Þ

where kr, kθ, and kτ are the bond stretching, bond bending and torsional resistance
force constants, respectively, while Δr, Δθ and Δφ represent bond stretching
increment, bond angle variation and angle variation of bond twisting, respectively.

Fig. 5.3 Interatomic
interactions in molecular
mechanics
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In order to determine the elastic moduli of beam elements, relations between the
sectional stiffness parameters in structural mechanics and the force-field constants
in molecular mechanics need to be obtained. For simplicity reasons, the sections of
the bonds are assumed to be identical and circular, and therefore the moments of
inertia are equal, i.e. Ixz, Iyz. The elastic moduli that need to be determined are the
Young’s modulus, E and shear modulus, G. The deformation of a space-frame
results in changes of strain energies. Thus, the elastic moduli can be determined
through the equivalence of the energies due to the interatomic interactions (Eq. 5.6)
and the energies due to deformation of the structural elements of the space- frame.
As each of the energy terms of Eq. (5.6) represents specific deformations, and no
interactions are included, the strain energies of structural elements under specific
deformations will be considered.

According to classical structural mechanics, the strain energy of a uniform beam
of length, L and cross-section, A under pure axial force, N can be written as

UA ¼ 1
2

Z L

0

N2

EA
dL ¼ 1

2
N2L
EA

¼ 1
2
EA
L

ðDLÞ2 ð5:7Þ

where dL is the axial stretching deformation. The strain energy of a uniform beam
under pure bending moment, M is

UM ¼ 1
2

Z L

0

M2

EI
dL ¼ 2EI

L
a2 ¼ 1

2
EI
L
ð2aÞ2 ð5:8Þ

where α denotes the rotational angle at the ends of the beam. The strain energy of a
uniform beam under pure torsion T is

UT ¼ 1
2

Z L

0

T2

GJ
dL ¼ 1

2
T2L
GJ

¼ 1
2
GJ
L

ðDbÞ2 ð5:9Þ

where Δβ is the relative rotation between the ends of the beam and J the polar
moment of inertia.

It can be concluded that Ur, UA represent the stretching energies in the two
systems (molecular and structural), Uθ, UM are the bending energies, and Uτ, UT are
the torsional energies. It can be assumed that the rotation angle 2α is equivalent to
the total change Δq of the bond angle, ΔL is equivalent to Δr, and Δβ is equivalent
to Δf. Therefore, by comparing Eq. (5.6) with Eqs. (5.7–5.9), the following direct
relationships between the structural mechanics parameters EA, EI and GJ and the
molecular mechanics parameters kr, kq and kt are obtained

EA
L

¼ kr;
EI
L

¼ kh;
GJ
L

¼ ks ð5:10Þ

Equation (5.10) forms the basis for the application of structural mechanics to the
analysis of CNTs and carbon-related nano-structures. By assuming a circular beam

66 5 Linear Finite Element Analysis of Nanotubes



section with diameter d, and setting AZ = d2/4, IZ = d4/64 and JZ = d4/32, Eq. (5.10)
give

d ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffi���kh
kr

r

; E ¼ k2r L
4pkh

; G ¼ k2r ksL
8pk2h

ð5:11Þ

Equation (5.11) establishes the basis for the application of continuum mechanics
to the analysis of the mechanical behavior of CNTs, and provides the input for
simulation of the CNTs as space-frame structures. The values of force constants and
input data for the FE model are given in Table 5.1.

Given the force constants kr, kθ and kτ together with the bond diameter (d) and the
elastic moduli can be obtained from Eq. (5.11) and thereafter other mechanical
properties can be computed. Taking the constants from various sources [2, 4, 5], and
using Eq. (5.11) d = 0.147 nm, E = 5.49 TPa and G = 0.871 TPa. The procedure
followed above provides a unique value of the bond diameter (equal to wall thick-
ness). However, different values of the wall thickness have been used in the literature.
In order to compare the evaluated elastic moduli of the SWCNTs with the literature
results, the FE model has been implemented using various values of wall thickness.
To satisfy the energy equivalence between molecular and structural approaches, the
moment of inertia I was evaluated from Eq. (5.10) and not as I = d4/64.

As stated earlier, the potential use of CNTs and other inorganic nanotubes as
reinforcing materials in nano-composites or in present advanced composites,
originated the need to investigate their mechanical properties. Two of the properties
receiving great attention, because they are appointing the effectiveness of CNTs, are
the Young’s modulus and tensile strength. Many theoretical and experimental
research efforts have been placed on the investigation of Young’s modulus of CNTs
[2, 3, 8–27]. From the review, it is clear that the values of Young’s modulus of
CNTs either calculated using theoretical methods or measured using experimental
techniques show a very wide scatter. The reasons for that are due to the physical

Table 5.1 Input parameters for the FE model of CNTs

Parameters Value Formula

Force constant, kr 6.52 × 10−7 N nm−1
–

Force constant, kθ 8.76 × 10−10 N nm rad−2 –

C–C bond or beam length (l = ac–c) 0.1421 –

Diameter (d) 0.147 nm d ¼ 4
ffiffiffiffiffiffiffiffiffi

kh=kr

q

Cross section area, Ab 0.01688 nm2
Ab ¼ pd

2�

4
Moment of inertia, Ib 2.269 × 10−5 nm4

Ib ¼ pd
4�

64
Young’s modulus, Eb 5488 GPa Eb ¼ k2r l

�

4pkh
Tensile rigidity, EbAb 92.65 nN EbAb ¼ krl

Bending rigidity, EbIb 0.1245 nN nm2 EbIb ¼ khl
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difficulty of direct experimental measurements, the approximation in theoretical
methods used and the dependence of Young’s modulus to various geometrical and
nano-structural parameters. Thus, there is a need to use the FE modeling in order to
assess the effect of wall thickness, diameter and chirality on the Young’s and shear
moduli of nanotubes.

Simulation of some mechanical properties of nanotubes can be carried out using
commercial finite element software currently available such as ANSYS, I-IDEAS,
NASTRAN, ABAQUS, COSMOS, ALGOR etc. with each having respective
capabilities and limitations [28].

5.2 Overview of ANSYS Software

ANSYS is a general-purpose finite-element modeling package for numerically
solving a wide variety of mechanical problems. These problems include
static/dynamic, structural analysis (both linear and nonlinear), heat transfer, and
fluid problems, as well as acoustic and electromagnetic problems. In general, a
finite-element solution may be broken into the following three stages.
(1) Preprocessing: defining the problem. The major steps in preprocessing are
(i) define keypoints/lines/areas/volumes, (ii) define element type and
material/geometric properties, and (iii) mesh lines/areas/volumes as required [29].

The amount of detail required will depend on the dimensionality of the analysis,
i.e., 1D, 2D, axisymmetric, and 3D. (2) Solution: assigning loads, constraints, and
solving Here, it is necessary to specify the loads (point or pressure), constraints
(translational and rotational), and finally solve the resulting set of equations.
(3) Postprocessing: further processing and viewing of the results In this stage one
may wish to see (i) lists of nodal displacements, (ii) element forces and moments,
(iii) deflection plots, and (iv) stress contour diagrams or temperature maps [30–33].

5.3 Building a Linear Model for a Typical SWCNT

The ANSYS program has many finite-element analysis capabilities, ranging from a
simple linear static analysis to a complex nonlinear transient dynamic analysis.
Building a finite-element model requires more time than any other part of the
analysis as illustrated in Fig. 5.4.

At the onset, a jobname and analysis title has to be specified. Next, the PREP7
preprocessor is used to define the element types, element real constants, material
properties, and the model geometry. It is important to remember that ANSYS does
not assume a system of units for intended analysis. Consider a nanotube with zigzag
chilarity (10,0), length of 100Å and having C–C bond length was 1.14Å; in order
to create an atomic model of this nanotube in ANSYS, we have to follow the steps
detailed in subsequent sections.
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5.3.1 Specifying Units

First of all, activate [A] SI (MKS) button to inform the ANSYS program that this
system of units is proposed to be used in the analysis. Any system of units can be used
so long as it is ensured that units are consistent for all input data. Units cannot be set
directly from the GUI. In order to set units as the international system of units
(SI) from ANSYS Main Menu, select Preprocessor → Material
Props→Material Library→ SelectUnits. Figure 5.5 shows the resulting window.

Before we feed in the input data of the BEAM 188 elements properties, the
dimensions of the parameters stated above should be further adjusted to avoid

Fig. 5.4 Steps involved for FEM in ANSYS

Fig. 5.5 Selection of appropriate unit system in ANSYS
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possible digits of overflow/underflow error during the computation performed by
ANSYS. Thus, we adjust the dimensions as follows:

Lan ¼ 1010L; Fan ¼ 1020F; Man ¼ 1026M;

where the original dimensions of length L, force F and mass M are m, N and kg,
respectively, and the subscript “an” denotes the associated values in ANSYS.
Thereby the adjustment of the derived dimensions which will appear in the present
problem can be represented as

Ean ¼ E; Gan ¼ G; ks;an ¼ 1010ks;

fan ¼ 10�8f ; Pcr;an ¼ 1020Pcr;

where E, G, ks, f and Pcr denote respectively the Young’s modulus, shear modulus,
spring element stiffness, natural frequency and buckling load. After such adjust-
ment, the numerical parts of the input data prepared for the BEAM188 elements can
be listed respectively as Ean = 5.49 × 1012, Aan = 1.69, νan = 0.3 and ks,
an = 3.7 × 1010, where Aan = πd2/4 is the area of the cross section, dan = 1.47 is the
diameter of the cross section [4, 5, 34, 35].

5.3.2 Defining Element Types and Real Constants

The ANSYS element library contains more than 200 different element types. Each
element type has a unique number and a prefix that identifies the element category.
In order to define element types, one must be in PREP7. From ANSYS Main
Menu, select Preprocessor → Element Type → Add/Edit/Delete. In response, a
pop-up window shown in Fig. 5.6 appears. Click on [A] Add button and a new
frame, shown in Fig. 5.7, appears. Select an appropriate element type for the
analysis performed, e.g., [A] Beam and [B] Beam188 as shown in Fig. 5.7.
Thereafter select OK and then Options to change elements settings (Fig. 5.8).

5.3.3 Defining Material Properties

Most element types require material properties. Depending on the application,
material properties may be:

• Linear or nonlinear
• Isotropic, orthotropic, or anisotropic
• Constant temperature or temperature-dependent.

As with element types and real constants, each set of material properties has a
material reference number. The table of material reference numbers versus material

70 5 Linear Finite Element Analysis of Nanotubes



property sets is called the material table. Within one analysis, you may have
multiple material property sets (to correspond with multiple materials used in the
model). ANSYS identifies each set with a unique reference number.

While defining the elements, point to the appropriate material reference number
using one of the following: Main Menu > Preprocessor > -Attributes-
> Define > Default Attribs. For simple linear material models, the options avail-
able are indicated in Fig. 5.9.

For CNT, the input parameters used are shown in Fig. 5.10 with EX representing
Young’s modulus and PRXY the Poisso’s ratio along x-y axis.

Fig. 5.6 Addition of element type from ANSYS library

Fig. 5.7 Selection of BEAM 188 element
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Fig. 5.8 Settings for BEAM188 element type

Fig. 5.9 Selecting the material model
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5.3.4 Defining the Cross Section of the Element

The ANSYS element library contains more than 200 different element types. Each
element type has a unique number and a prefix that identifies the element category:
BEAM 188, BEAM188, PLANE77, SOLID96, etc. (Table 5.2).

The element type determines, among other things:

• The degree-of-freedom set (which in turn implies the discipline-structural,
thermal, magnetic, electric, quadrilateral, brick, etc.)

• Whether the element lies in two-dimensional or three-dimensional space.

Element real constants are properties that depend on the element type, such as
cross-sectional properties of a beam element, which are supposed to be defined
using this format: Main Menu > Preprocessor > Sections > Beam > Common
Sections. The cross section of the beam elements according to the simplified
structural model of the carbon-carbon bond is indicated in Fig. 5.11.

Thereafter, the cross section of the element is plotted: Main
Menu > Preprocessor > Sections > Beam > Plot Section (Fig. 5.12); the sections
listed:Main Menu > Preprocessor > Sections > List Sections and details obtained
(Figs. 5.12 and 5.13).

Fig. 5.10 Input data for
material properties of CNT

Table 5.2 Some element
types available in ANSYS

BEAM PLANE

COMBINation SHELL

CONTACt SOLID

FLUID SOURCe

HYPERelastic SURFace

INFINite TARGEt

LINK USER

MASS INTERface

MATRIX VISCOelastic (or viscoplastic)

PIPE
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Fig. 5.11 Selected cross section of C–C bond (BEAM188)

Fig. 5.12 Section of C–C bond cross section
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5.3.5 Creating Carbon Nanotube Model

To create the geometrical model of CNT, we need to generate the atomic coordi-
nates of the nanotube and then insert the coordinates into the ANSYS program.
Therefore, we will use any suitable software such as nanotube modeler to create the
coordinates. A simple zigzag nanotube (10,0) will be created using the nanotube
modeler (Fig. 5.14) and the (x,y,z) coordinates will be transferred to ANSYS.

The (10,0) nanotube with length of 10 has 100 carbon atoms in hexagonal cell
arrangements. The hexagonal rings of carbon can be seen in Fig. 5.14. There is the
need to create a list of keypoints from the coordinates using a simple coding. We
can make a simple macro in ANSYS to do the modeling job. The macro name will
be nanotube. To make sure we are safe we add few lines to the macro and done in
the preprocessing section. Otherwise, we will not be able to insert keypoints. The
active coordinate system should be global Cartesian.

The (10,0) CNT model developed in Nanotube Modeler is then exported as a
Protein Data Bank (PDB) file and the coordinates displayed using a Notepad text

Fig. 5.13 Details of the C–C beam section
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editor (Fig. 5.15). Thereafter a file is created to generate the atoms as nodes using
ANSYS Parametric Design Language (APDL) commands. The command for cre-
ating a node has the format: N, NODE, X, Y. Z, THXY, THYZ, THZX. The model
of CNT with (10,0) configuration have 100 atoms (nodes) that are connected by
bonds regards as elements of BEAM188 type.

The macro to generate the (10,0) CNT is indicated in Fig. 5.16. The commands
are copied and then paste on the command line in ANSYS APDL. Then click the
isometric view button to obtain the 3D model of generated (10,0) CNT as indicated
in Fig. 5.17.

All the nodes and their serial numbers can also be plotted as indicated in Fig. 5.18.
The file is saved by pressing the SAVE_DB button on the Utility menu and we can
resume from any step, in case of any error by pressing RESUME_DB button.

5.3.6 Creating Inorganic Nanotube Model

Based on available geometrical parameters, inorganic nanotubes having different
dimensions can be developed using the Surface Builder tool of Material Studio©

Fig. 5.14 Model of CNT (10,0) developed using Nanotube Modeler
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package for armchair and zigzag types. Examples of modelled single walled cubic
zirconia nanotubes (SWCZNT) are shown in Figs. 5.19 and 5.20 for armchair and
zigzag respectively.

The structure of SWCZNT modelled using the Surface Builder of the Material
Studio can be exported to CrystalMaker or any other software with capacity for
importing Protein Data Bank (PDB) file. The PDB file(s) contain detailed infor-
mation such as atomic coordinates, bibliographic citations, primary and secondary
structure, information, and crystallographic structure factors [36]. PDB file format

REMARK   Nanotube Modeler PDB file (JCrystalSoft) 

REMARK   Created:5/8/2015 9:22:06 AM 

CRYST1    1.000    1.000    1.000  90.00  90.00  90.00 P1 

ATOM      1  C     C A   1       3.917   0.000   0.000  1.00  0.00 

ATOM      2  C     C A   1       3.725   1.210   2.132  1.00  0.00 

ATOM      3  C     C A   1       3.917   0.000   1.421  1.00  0.00 

: 

: 

: 

ATOM     98  C     C A   1       3.725  -1.210   7.816  1.00  0.00 

ATOM     99  C     C A   1       3.169  -2.302   8.526  1.00  0.00 

ATOM    100  C     C A   1       3.169  -2.302   9.947  1.00  0.00 

TER

CONECT    1    3

CONECT    2    3    4   13 

CONECT    3    1    2   92 

: 

: 

: 

CONECT   98    9   96   99 

CONECT   99   88   98  100 

CONECT  100   99 

MASTER        0    0    0    0    0    0    0    0  100    0  100    0 

END

Fig. 5.15 PDB file of (10,0) CNT indication x,y,z coordinates of atoms and how they are
connected
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is a typical way of data exchange in macromolecular configuration and is com-
monly accepted by much molecular modeling software. A typical PDB file for a
SWZCNT exported from Material Studio is shown in Fig. 5.21.

Software such as MATLAB, C+ and others have been used to extract the required
information for modeling nanotubes in ANSYS [37]. Python (Wing IDE version 101
v 5) have additional capabilities such as the availability of predefined modules for
3D structural format including those with periodic setup. A script (code) to extract
the required data and print out an APDL macro for finite element modeling is
indicated in Fig. 5.22.

All the outputs for all atoms and bonds are recorded in a file. The output file for
35 × 0 SWCZNT with 102.08 Å length is displayed in Fig. 5.23. The /PREP7 is
the ANSYS command employed to build and setup the model, n labels the node to

Fig. 5.16 APDL Macro for generating (10,0) CNT
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Fig. 5.17 Generated (10,0) CNT showing the elements

Fig. 5.18 Generated (10,0) CNT showing the elements and numbered nodes
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be and e defines the element. The file is imported into ANSYS (APDL 15.0).
Alternatively, this can also be conducted by inserting the data as a macro in the
command line. The model created in ANSYS is illustrated in Fig. 5.24 together
with that of 20 × 20. With the model of the nanotube transferred into ANSYS,
further editing and simulation can be carried out.

The Zr and O2 atoms are joined mainly with ionic bonds and have a hexagonal
lattice along (111) miller index [38]. The input sectional properties for the element
of SWZNT compared to that of SWCNT [39] are shown in Table 5.3.

Fig. 5.19 a Front and b Top in ball and stick form and c Front wire frame models for an armchair
(20 × 20) SWCZNT

Fig. 5.20 a Front and b Top in ball and stick form and c Front wire frame models for zigzag
(35 × 0) SWCZNT
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5.3.7 Meshing the Generated Nanotube

The mesh used for a simulation is critical in determining the accuracy of the output
as too many elements may lead to longer computation time and too little may lead
to inaccurate result. Before meshing a model, and even ahead of creating the model,
it is vital to decide whether a free mesh or a mapped mesh is appropriate for the
analysis. A free mesh has no limits in relation to element shapes, and has no definite
pattern. In comparison to a free mesh, a mapped mesh is constrained in relation to
element shape and the pattern of the mesh [40]. Beam elements will connect each
pair of neighboring nodes. Nanotube modeler can provide us with a list of con-
nections as well. We use list of connections and create another simple macro to
insert beam elements into ANSYS. The path followed is: Main

REMARK   Materials Studio PDB file
REMARK   Created:  Sat Jul 05 03:22:30 Malay Peninsula Standard Time 2014
ATOM      1  O   MOL     1       3.057  -0.191  -2.121  1.00  0.00           O2-
ATOM      2  O   MOL     1       1.222   2.792  -2.104  1.00  0.00           O2-
ATOM      3 Zr   MOL     1       3.823   1.677  -1.450  1.00  0.00          Zr4+  
ATOM      4  O   MOL     1       4.513   3.533  -0.679  1.00  0.00           O2-
ATOM      5 Zr   MOL     1      -0.349   4.084  -1.479  1.00  0.00          Zr4+  
ATOM      6  O   MOL     1      -1.930   5.301  -0.753  1.00  0.00           O2-
ATOM      7 Zr   MOL     1       2.426   3.945  -0.761  1.00  0.00          Zr4+  
ATOM      8  O   MOL     1      -2.355   1.919  -2.113  1.00  0.00           O2-
ATOM      9 Zr   MOL     1      -3.001   3.460  -0.777  1.00  0.00          Zr4+  
ATOM     10  O   MOL    1      -2.680  -1.537  -2.127  1.00  0.00           O2-
: 
: 
: 
: 
ATOM    816  O   MOL     1       2.010  -5.383 102.467  1.00  0.00           O2-
ATOM    817 Zr   MOL     1       0.531  -4.042 103.193  1.00  0.00          Zr4+  
ATOM    818 Zr   MOL     1       3.042  -3.522 102.524  1.00  0.00          Zr4+  
ATOM    819  O   MOL     1       2.270  -1.991 103.804  1.00  0.00           O2-
ATOM    820 Zr   MOL     1       3.960  -0.840 103.215  1.00  0.00          Zr4+  
TER     821 
CONECT    1    3   20
CONECT    2    5    7
CONECT    3    1    4
CONECT    4    3    7   23
: 
: 
: 
: 
CONECT  816  797  817  818
CONECT  817  814  816
CONECT  818  816  799  819
CONECT  819  818  820
CONECT  820  819  801
END

Fig. 5.21 PDB File for 5 × 5 SWCZNT from Material Studio
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### get atoms cordinates from PDB file and write them as 
###ANSYS keypoints
line_value = 0
node_value = 0
file = open('C:\\xyz\\5x5.pdb','r')
igot = file.readlines()
output_file = open('C:\\xyz\\ZNT5x5.txt',"a") # needs input for distinct file 
output_file.write('/PREP7'+"\n") #open pre-processing menu
output_file.write('CSYS,0'+"\n") #activate global cartesian
for line in igot:

if line.find("ATOM") > -1:
node_value = node_value + 1
kv = str(node_value)
xyz =  line.split()
#print kv,",", xyz[6], ",", xyz[7],  
line_i="k" + ', '+ kv + ', ' + xyz[5] + ', ' + xyz[6] + ' , ' + xyz[7] + "\n"
print (line_i)
output_file.write(line_i)

### reads connect records                
elif line.find("CONECT") > -1:

con =  line.split()
line_value = line_value + 1
#print line_value
#print con[2]
line_j = "l" + ', ' + str(line_value) + ', ' + con[2] + "\n"
output_file.write(line_j)
print (line_j)
try: 

line_i = "l" + ', ' + str(line_value) + ', ' + con[3] + "\n"
output_file.write(line_i)
print (line_i)                          
line_k = "l"+ ', ' + str(line_value) + ', ' + con[4] + "\n"
print (line_k)
output_file.write(line_k)

except IndexError:
continue

Fig. 5.22 Python script for extracting required data to model SWCZNT

/prep7
n, 1, 13.560, 0.607,0.658
n, 2, 14.697, 1.984,1.204
n, 3, 14.831, 0.665,3.705
: 
: 
n, 3358, 13.254, -3.027,101.248
n, 3359, 13.829, -1.873,102.814
n, 3360, 13.586, -0.610,101.245
e, 1, 2
e, 1, 137
e, 2, 1
e, 2, 4
e, 3, 6
e, 3, 140
: 
: 
: 
e, 3359, 3360
e, 3360, 3223
e, 3360, 3359
e, 3360, 3357

Fig. 5.23 Output file in
macro APDL for modeling
35 × 0 SWCZNT
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Menu > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All
Lines with the options indicated in Fig. 5.25 (lines); Fig. 5.26 (picking of lines);
Fig. 5.27 (creation of elements) and Fig. 5.28 (plotting of nodes).

Similar method is applicable to inorganic nanotubes. Mapped mesh has been
used for zirconia nanotubes with the shape been the same as what was obtained
during the solid modeling using Material Studio. The shape is similar to that of the
nanosheet obtained by cleaving the supercell along the (111) miller index. Element
shape testing was conducted and the warning and error limits found out to be 0 %,
meaning the setting used for the meshing is acceptable [41].

Fig. 5.24 FE model of a 35 × 0 and b 20 × 20 SWCZNTs having equal diameter

Table 5.3 Input properties of the SWZNT element compared to that of CNT

SWZNT SWCNT

Cross-sectional area, A 1.28579 Å2 1.68794 Å2

Moment of inertia, IYY = IZZ = I 0.131496 Å4 0.22682 Å4

Polar moment of inertia, IXX 0.26298 Å4 0.453456 Å4

Elastic modulus of beam element, E 5.09 × 10−10 N/Å2 5.488 × 10−8 N/Å2

Shear modulus of beam element, G 0.8569 × 10−9 N/Å2 8.711 × 10−9 N/Å2
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5.3.8 Boundary Conditions

After generating the geometric models, specific conditions have to be given in
relation to the constraints at both translational and rotational degrees of freedom on
the nodes at ends needed for simulation. At this step, we will simulate the nanotube
behavior under axial tension. In order to do this through ANSYS, we need to fix one
end of the nanotube in x,y,z directions and pull the other end in axial direction
which is z axis in this case (Fig. 5.29).

The selected end is fixed by constraining all degree of freedoms (DOFs) by
setting all displacement to be zero (Ux = Uy = UZ = 0) as indicated in Fig. 5.30.

Fig. 5.25 Options for meshing CNT model

GUI command:  Main Menu>Preprocessor>Meshing>Mesh>Lines

Fig. 5.26 Selection of lines to be meshed
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GUI command:
Main Menu>Preprocessor>Meshing>Mesh>Lines

Fig. 5.27 Creation of lines to be meshed

GUI command: Utility Menu>Plot>Nodes

Fig. 5.28 Plotting of nodes in the meshing
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Then, known magnitude of displacement is applied in z direction to the nodes on
the other end of the model to simulate tension condition (Fig. 5.31). It should be
noted that the direction where displacement is applied depends the orientation of the
triad, thus it can be in the x, y or z direction; the displacement in Fig. 5.31 was
applied in the z direction as it coincides with axial direction.

The way boundary conditions and forces are shown can be changed by selecting
the Symbols option under PlotCtrls in theMain Menu and thereafter obtaining the
details as indicated Fig. 5.32.

To save your model, select Utility Menu Bar → File → Save As Jobname.db.
Your model will be saved in a file called jobname.db, where jobname is the name

Fig. 5.29 Selection of the fixed nodes of (10,0) CNT

Fig. 5.30 Constraining
displacement of the selected
nodes in the CNT
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that you specified in the Launcher when you first started ANSYS. It is a good idea to
save your job at different times throughout the building and analysis of the model to
back up your work in case of a system crash or other unforeseen problems.

Frequently you want to start up ANSYS and recall and continue a previous job.
There are two methods to do this:

1. Using the Launcher…

(1) In the ANSYS Launcher, select Interactive… and specify the previously
defined jobname.

(2) Then when you get ANSYS started, select Utility
Menu → File → Resume Jobname.db.

(3) This will restore as much of your database (geometry, loads, solution, etc.)
that you previously saved.

2. Or, start ANSYS and select Utitily Menu → File → Resume from… and
select your job from the list that appears.

Similar procedure is also followed for applying boundary conditions for inor-
ganic nanotubes as illustrated in Fig. 5.33 for zirconia nanotube.

Fig. 5.31 Modelled (10,0)
CNT with boundary
conditions applied
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5.3.9 Initiation of Solution for Nanotube Model

During the solution process, the computer takes over and solves the relevant
equations that the finite element method generates. The results of the solution are:

• nodal degree-of-freedom values, which form the primary solution
• derived values, which form the element solution

Several methods of solving the simultaneous equations are available in the
ANSYS program. You can select a solver using one of the following:

GUI: Main Menu > Preprocessor > Loads > Analysis Type > Analysis
Options Main Menu > Solution > Load Step Options > Sol’n Control (: Sol’n
Options Tab)

Fig. 5.32 Details and options available for the boundary conditions
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Main Menu > Solution > Analysis Options
Main Menu > Solution > Unabridged Menu > Analysis Options
After all the boundary conditions are applied select:
Main Menu > Solution > Solve > Current LS (Fig. 5.34).
When the solution is done, close the notification window (Fig. 5.35).

5.3.10 Post Processing

In relation to ANSYS, Post Processing signifies evaluating the results of an analysis.
It is perhaps the most vital phase in the analysis, because it is related to under-
standing how the applied loads affect designs/models, how acceptable the selected
finite element mesh is, and so on. Post processing is divided in three main groups
[42]:

Fig. 5.33 a Armchair
(20 × 20) and b zigzag
(35 × 0) SWZNT with tensile
loading at top end and fixed at
the bottom
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(i) Post Processors: two postprocessors are available for reviewing your results:
POST1, the general postprocessor, and POST26, the time-history postpro-
cessor. POST1 allows you to review the results over the entire model at
specific load steps and substeps (or at specific time-points or frequencies). In a
static structural analysis, for example, you can display the stress distribution
for load step 3. Or, in a transient thermal analysis, you can display the tem-
perature distribution at time = 100 s. POST26 allows you to review the
variation of a particular result item at specific points in the model with respect
to time, frequency, or some other result item. In a transient magnetic analysis,
for instance, you can graph the eddy current in a particular element versus
time. Or, in a nonlinear structural analysis, you can graph the force at a
particular node versus its deflection.

Description of the problem
Type of Analysis
Load step option

Fig. 5.34 Details of the solution options

Fig. 5.35 End of the Solution
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(ii) Result file: The name of the results file depends on the analysis discipline:
Jobname.RST for a structural analysis; Jobname.RTH for a thermal analysis;
Jobname.RMG for a magnetic field analysis and Jobname.RFL for a
FLOTRAN analysis.

(iii) Types of data files available for post processing: the solution phase calculates
two types of results data, namely

(a) Primary data consist of the degree-of-freedom solution calculated at each
node: displacements in a structural analysis, temperatures in a thermal
analysis, magnetic potentials in a magnetic analysis, and so on (Table 5.4).
These are also known as nodal solution data.

(b) Derived data are those results calculated from the primary data, such as
stresses and strains in a structural analysis, thermal gradients and fluxes in
a thermal analysis, magnetic fluxes in a magnetic analysis, and the like.
They are typically calculated for each element and may be reported at any
of the following locations: at all nodes of each element, at all integration
points of each element, or at the centroid of each element. Derived data are
also known as element solution data, except when they are averaged at the
nodes. In such cases, they become nodal solution data.

In order to plot the deformed shape of CNT after the boundary conditions has
been applied and simulation carried out, press Main Menu > General
Postproc > Plot Results > Deformed Shape. Then select the type of plot needed
(Fig. 5.36).

The output plot associated with these elements is as shown in Fig. 5.37 with the
maximum nodal displacement (DMX) equal to 2.00654 units.

We can list or plot the results from the General Postproc Menu. For example,
select Nodal Solution from Contour Plot and follow the steps in Fig. 5.38 to plot
the displacement of the nanotube under axial load.

After selecting the required option and pressing OK, the plot will be created
(Fig. 5.39) indicating variation of displacement along the CNT as indicated
numerically by the legend.

Thereafter, the nodal displacements can be listed by the following steps: Main
Menu > General Postproc > List Results > Nodal Solution (Fig. 5.40).

Table 5.4 Primary and derived data for different disciplines [42]

Discipline Primary data Derived data

Structural Displacement Stress, strain, reaction, etc.

Thermal Temperature Thermal flux, thermal gradient, etc.

Magnetic Magnetic potential Magnetic flux, current density, etc.

Electric Electric scalar potential Electric field, flux density, etc.

Fluid Velocity, pressure Pressure gradient, heat flux, etc.
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Fig. 5.36 Plotting of the deformed shape for CNT

Fig. 5.37 Deformed (blue) and undeformed (black) plot for (10,0) CNT
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Fig. 5.38 Steps for plotting displacement vector sum

Fig. 5.39 Displacement contour plot for (10,0) CNT
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The displacement values for all the nodes obtained after simulation are shown in
Fig. 5.41. It should be noted that there are 100 nodes in (10,0) CNT having 10 Å
length. The maximum absolute values are indicated in in Fig. 5.42.

5.3.11 Element Table

To review other results, such as forces and stresses in the elements, we must sort the
results into element tables. The item labels and sequence numbers were given in
Table 4.4 when element of BEAM188 type was described. For beam elements, the
values of internal forces, stresses and strains calculated by ANSYS, can be looked
up by assigning user defined labels. For example, we will assign the internal stress
in beam elements, as computed by ANSYS to a user defined label Elmstrain. It
should be noted that there are limitation on the number of defined label characters,
which is eight.

Fig. 5.40 Listing results obtained during simulation of CNT
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In order to sort results into element table, follow the sequence: Main
Menu > General Postproc > Element Table > Define Table as visualized in
Figs. 5.43 and 5.44.

After clicking OK and returning to the previous window, the defined table is
listed with its parameters (Fig. 5.45). Several tables for other parameters can also be
defined by referring to their sequence numbers and following the same steps.

Now we can plot or list the stress values in the elements by selecting Plot Elem
Table and List Elem Table, respectively. For example, we plot the internal stress
values for the nanotube structure: Main Menu > General Postproc > Element
Table > Plot Elem Table (Fig. 5.46) with the element solution obtained in
Fig. 5.47.

From the data generated so far after simulation of (10,0) CNT that was subjected
to uniaxial loading, its Young’s modulus can be computed. This requires the
retrieval of the axial reaction forces at the top nodes of the nanotube by selecting the
specific nodes and listing the reaction forces by following this sequence: Utility
Menu > Select > Entities leading to options in a dialogue box (Fig. 5.48). Click
Ok. In next window, Select Nodes, select Box option and now select the 10 nodes
at top end of the tube (Fig. 5.49).

Click OK and go to the Reaction Solution section using the following sequence:
Main Menu > General Postproc > List Results > Reaction Solutions. Then Pick
FZ (Fig. 5.50) item from the list and click OK.

List of selected Nodes and reaction forces on those nodes will be appear as
shown in Fig. 5.51.

Now that we have the reaction forces, the Young’s modulus of the nanotube can
be calculated by using below equations,

Fig. 5.41 Individual nodal displacement for (10,0) CNT
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E ¼ FL
AL

¼ FL
pDtDL

ð5:12Þ

where E, F and A are the Young’s modulus, net reaction force, cross sectional area,
of the nanotube. In this case, cross section of the nanotube can be calculated by πDt
(D and t are the nanotube diameter and thickness, respectively). It should be noted
that the length (L) of the CNT was 10 Å during modeling with Nanotube Modeler
but was measured in ANSYS as 9.947 10 Å. Applied displacement or extension
(ΔL) during simulation in ANSYS was 2 Å. So, the Young’s modulus of the
nanotube using finite element modeling is:

E ¼ 0:12605� 1014 � 9:947
p� 7:834� 3:4� 2

¼ 7:49191� 1011 Pa� 0:75 TPa ð5:13Þ

 PRINT U    NODAL SOLUTION PER NODE 

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

  LOAD STEP=     1  SUBSTEP=     1
TIME=    1.0000      LOAD CASE=   0

  THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE 
GLOBAL COORDINATE SYSTEM

    NODE      UX          UY          UZ          USUM
       1   0.0000      0.0000      0.0000      0.0000
       2 -0.87560E-01 0.26555E-02 0.45961     0.46789
       3 -0.75354E-01 0.43425E-01 0.25331     0.26782
       4 -0.10441     0.62639E-02 0.65837     0.66663
       5 -0.13039     0.89872E-01 0.91421     0.92782
     : 
     : 
     : 
      97 -0.12261     0.17743      1.0473      1.0692
      98 -0.12846     0.17521      1.3471      1.3645
      99 -0.13354     0.14969      1.2672      1.2830
     100 -0.13354     0.14969      1.2672      1.2830

 MAXIMUM ABSOLUTE VALUES 
 NODE         58          86          10          30 
 VALUE   0.19422     0.17792      2.0000      2.0065

Fig. 5.42 Post1 nodal degree of freedom listing for (10,0) CNT
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Fig. 5.43 Settings for defining element table

Fig. 5.44 Defining the label (Elmstrain) and other parameters
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5.4 Simulating Other Mechanical Behaviors
for Nanotubes

Other properties of nanotubes such as mechanical and thermal can be studied using
similar approach as carried on the elastic properties of the nanotube (Sect. 5.3). This
requires the creation of the correct geometry of the nanotube and thereafter relates
an equivalency between chemical potentials with structural mechanics. After
importing the geometry and replacing chemical bonds with elements in the
ANSYS, specific boundary conditions are applied depending on the type of
property to be simulated.

Fig. 5.45 Defined data with status for Elstrain label

Fig. 5.46 Selecting the element table data for Elstrain label
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Fig. 5.47 Contour plot of element table data for (10,0) CNT

Fig. 5.48 Dialogue box to
select entities for CNT
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Fig. 5.49 Selected nodes at top of CNT

Fig. 5.50 Selecting the type of structural force to be used in reaction solution
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5.4.1 Buckling Behavior

The buckling behaviour of nanotubes involves applying compressive displacement
or force at the free end of the nanotube with the necessary boundary conditions as
detailed in Fig. 5.52.

The buckling behavior of nanotubes can be analyzed using the Euler model. The
general form of the Euler equations for a straight column under uniaxial com-
pression is [43]:

Pcri ¼ Cp2EI
L2

; ð5:14Þ

where C represents the end form of the column, E is Young’s modulus of elasticity,
L is the length, and I is the moment of inertia and equal to (π/64) (Do

4 − Di
4) for

hollow NNTs. Also, Do is the exterior diameter and Di is the interior diameter of the
NNT.

Also, Pcri can be computed as

Pcri ¼ AEecri ð5:15Þ

with A = (π/4) (Do
2 − Di

2) represent the area of the nanotubes and ɛcri is the critical
strain. Thus,

rcri ¼ Eecri ¼ Pcri

A
; ð5:16Þ

where σcri is the critical stress.

Fig. 5.51 Reaction forces on the selected nodes net/resultant force
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5.4.2 Bending Behavior

In order to simulate the bending effect, the free end of SWZNT was exposed to a
little transverse displacement (δ) as indicated in Fig. 5.53.

Afterward the maximum force at right angles to cross section at the fixed support
nodes of nanotube is recorded. Then, the bending elasticity modulus (EB) was
estimated from [43]:

EB ¼ FL3

3Id
ð5:17Þ

where F, L, δ and I are bending force, nanotube length, deflection at the free end,
and the second moment of inertia, respectively. EB is also referred to as flexural
modulus.

5.4.3 Torsional Behavior

In order to study the torsional behavior of nanotubes, the Cartesian coordinates
were substituted with cylindrical coordinates. Afterwards, a slight twist angle is
applied to the free end of the nanotube whereas the other end was fixed (Fig. 5.54).

Fig. 5.52 Compressive loading, a illustrative and b on 35 × 0 zirconia nanotube
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Fig. 5.53 Bending loading, a illustrative and b on (35 × 0) zirconia nanotube

Fig. 5.54 Torsional loading
at the free end of (35 × 0)
zirconia nanotube
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Following the application of the torsion, the sum of generated torsional torque at
the fixed end of SWZNT was established and torsional modulus G determined from
[44]:

G ¼ TL
J/

ð5:18Þ

where T, L, J and ϕ are torsional moment, nanotube length, polar moment of inertia
and twist angle, respectively.

5.4.4 Modal Behavior

The modal analysis can be carried out to determine the behavior of SWZNT when
exposed to vibration. The mode extraction method used was the Block Lanczos due
to its ability for extract large modes [44]. After generating the model, analysis types
and options were imposed and then the boundary conditions were set together with
the density of the nanotube. The simulation can then be carried out for different
settings: fixed-free, free-free and fixed-fixed. At the end of the simulation, the
outputs to be recorded include natural frequencies, mode shapes and mode par-
ticipation factors.
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Chapter 6
Non-linear Finite Element Analysis
of Nanotubes

6.1 Introduction

Structural analysis is possibly the utmost common application of the finite element
method with several options available. For example, in ANSYS there are seven
types of structural analyses available: static analysis, modal analysis, harmonic
analysis, harmonic analysis, spectrum analysis, buckling analysis, explicit dynamic
analysis and others for special-purpose features [1]. Static analysis has wider
applications and is used to determine the displacements, stresses, strains, and forces
in structures or components caused by loads that do not induce significant inertia
and damping effects. Steady loading and response conditions are assumed; that is,
the loads and the structure’s response are assumed to vary slowly with respect to
time. The kinds of loading that can be applied in a static analysis include: externally
applied forces and pressures, steady-state inertial forces (such as gravity or rota-
tional velocity), imposed (nonzero) displacements, temperatures (for thermal strain)
and others [2].

A linear elastic model is not always suitable for numerical simulations of
adapted mechanical elements [3]. Such set ups has enormous permanent defor-
mations, and call for material models that should take into consideration the cor-
relation concerning stress and strain.

Nonlinear structural behavior arises from a number of causes, which can be
grouped into these principal categories [2]:

(i) Changing Status (Including Contact): Many common structural features
exhibit nonlinear behavior that is status-dependent. Status changes might be
directly related to load or they might be determined by some external cause.
Situations in which contact occurs are common to many different nonlinear
applications. Contact forms a distinctive and important subset to the category
of changing-status nonlinearities.
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(ii) Geometric Nonlinearities: If a structure experiences large deformations, its
changing geometric configuration can cause the structure to respond nonlin-
early. Geometric nonlinearity is characterized by “large” displacements and/or
rotations.

(iii) Material Nonlinearities: Nonlinear stress-strain relationships are a common
cause of nonlinear structural behavior. Many factors can influence a material’s
stress-strain properties, including load history (as in elastoplastic response),
environmental conditions (such as temperature), and the amount of time that a
load is applied (as in creep response).

For nanotubes, non-linear structural behaviors are attributed mainly to material
properties [3] and are solved using different approaches. For example, ANSYS
employs the “Newton-Raphson” approach to solve nonlinear problems. In this
approach, the load is subdivided into a series of load increments. The load incre-
ments can be applied over several load steps. Figure 6.1 illustrates the use of
Newton-Raphson equilibrium iterations in a single DOF nonlinear analysis [2].

There are several models used to designate the elasto-plastic description of
materials. Each model has its feature and is suitable to a specific problem. Examples
of models are [4]:

(1) Linear elastic,
(2) Elastic-perfectly plastic,
(3) Elasto-plastic with linear or nonlinear hardening,
(4) Isotropic or kinematic hardening.

Several models can be used for describing plasticity behavior in ANSYS. This
work will deal with only the Multilinear Isotropic Hardening (MISO) model.
The MISO is option uses the von Mises yield criteria coupled with an isotropic
work hardening assumption. It is called multilinear [5] because several lines define
the stress-strain curve (Fig. 6.2).

Fig. 6.1 Newton-Raphson
approach for solving
non-linear problems [2]
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6.2 Non-linear Simulation of Carbon Nanotube

6.2.1 Problem Description

Let us consider an armchair carbon nanotube (12,12) with length of 10 nm (100 Å).
This nanotube has 1968 carbon atoms which are connected through 2928 covalent
bonds. We will study the tensile stress-strain behavior of the nanotube using
ANSYS. Recall that for the large deformation of the carbon-carbon bonds, we must
employ more complicated potentional such as Modified Morse potentials. The
Modified Morse potential was discussed in Sect. 2.3. The geometry of the men-
tioned nanotube is shown in Fig. 6.3.

Fig. 6.3 Geometry of (12,12) CNT with L = 10 nm in Nanotube Modeler

Fig. 6.2 Uniaxial stress-strain curve for a MISO model [3]
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6.2.2 Defining Element Type

Enter the ANSYS program by using the Launcher and create a title for the problem.
This title helps to identify the displays. Use the following command sequences:
Utility Menu > File > Change Title.

Then select the BEAM188 element. BEAM 188 element supports nonlinear
material models such as large deflection, large strain, plasticity, stress stiffening,
user-defined material. This element is capable enough to handle nonlinear material
properties corresponding to the interatomic Morse potential functions. These
functions were already introduced in Sect. 5.3.3.

6.2.3 Defining Material Properties

In general, a number of factors can cause your structure’s stiffness to change during
the course of an analysis. Nonlinear stress-strain relationships cause a structure’s
stiffness to change at different load levels. We have to use this concept in order to
make the equivalency between chemical PEF and structural analysis (Fig. 6.4).

If a material displays nonlineary, we can use the TB family of commands (TB,
TBTEMP, TBDATA, TBPT, TBCOPY, TBLIST, TBPLOT, TBDELE) to define
the nonlinear material property relationships in terms of a data table. The precise
form of these commands varies depending on the type of nonlinear material
behavior being defined.

Consider a C–C bond which can be expressed by Morse potential functions.
Under axial tension, bond stretching potential dominates the nanotube deformation.
Based on the stress-strain curve of a single C–C bond (Fig. 6.5), the Multi-linear
Isotropic Hardening (TB, MISO) option is recommended for large strain analyses of
the nanotube. The MISO option can contain up to 20 different temperature curves,
with up to 100 different stress-strain points allowed per curve. Strain points can
differ from curve to curve.

The corresponding material model (TB, MISO) consists of two main parts.
Isotropic elastic and non-linear isotropic hardening model. For the elastic section,
axial Young’s modulus and Poisson ratio were obtained from the elastic formula-
tion. Based on the Eq. (3.4), the stretching force for a C–C bond has defined.
Stress-strain relationship for bond stretching can be calculated by dividing
the stretching force by bond cross section. The diameter of C–C covalent

Fig. 6.4 Title for the (12,12) CNT
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Bond is 1.47 Å, so the cross section would be πD2/4. Microsoft Excel is used to
make the calculations.

The initial modulus of the covalent bond is 7.99087 TPa and passion ratio is 0.3.
The nonlinear model is responsible for large deformation of the bond at larger
strains.

Now, check the material models which should indicate two options: Linear
Isotropic and Multilnear Isotropic (Fig. 6.6).

The MISO table can be reviewed together with revised strain and stress values if
necessary by double clicking Multilinear Isotropic to see the window in Fig. 6.7.

Click Graph to plot the defined strain-stress data. It should be noted that MISO
material model does not support negative slops in the defined curve. The initial

Fig. 6.5 Simplified structural model of the carbon-carbon bond
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Fig. 6.6 Material models defined for CNT

Fig. 6.7 Defined strain-stress data for C–C bond
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point of the graph will be used by ANSYS to calculate the initial Young’s modulus.
So, the elastic isotropic Young’s modulus should be exactly similar to this value
from the curve. Otherwise, there would be some errors (Fig. 6.8).

6.2.4 Defining the Element Cross Section

The cross section of the beam elements according to the simplified structural model
of the carbon-carbon bond is indicated in Fig. 6.9, see details in Sect. 5.3.4.

6.2.5 Creating the Nanotube Geometry

After creating the (12,12) nanotube as indicated in Fig. 6.3, then Microsoft Excel is
used to list the commands for Nodes and Elements in ANSYS. Carbon atoms will
be replaced by nodes and covalent bonds will be substitute with beam elements.
Figure 6.10 shows a section of text file consist of nodes definition commands, since
we have almost 2000 nodes having the format: N, NODE, X, Y, Z, THXY, THYZ,
THZX. Then follow the sequence Main Menu > Preprocessor > Modeling >
Create > Nodes > In Active CS to create the nodes.

Now we use the text editor to replace spaces with “,”. The result would be a list
of node definition commands as partially shown in Fig. 6.11. Then copy the list and

Fig. 6.8 Stress-strain curve for C–C bond based on MISO model
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paste it at the command prompt in ANSYS and press ENTER to obtain the geo-
metrical model of (12,12) as shown in Fig. 6.12.

After we defined the nodes, elements will be defined to connect adjacent nodes
and create the honeycomb structure of the armchair nanotube. We must use fol-
lowing command, in order to create the beam elements: Main Menu >
Preprocessor > Modeling > Create > Elements > Auto Numbered > Thru
Nodes having the format: E, I, J, K, L, M, N, O, P with E representing “element”
and I, J, K indicating x, y, z coordinates of the nodes (atoms). Then from Microsoft
Excel, import bonds list (Fig. 6.13).

Now replace the spaces with “,” in the text editor (Fig. 6.14a) and paste the list to
the command prompt in ANSYS. Then, plot the elements in the (12,12) CNT as
defined as shown in Fig. 6.14b.

6.2.6 Boundary Conditions and Loads

Apply boundary condition with the following commands: Main
Menu > Solution > Define Loads > Apply > Structural > Displacement > On
Nodes. Procedures for applying the boundary condition can be reduced and making
the process more convenient by using a series of commands and tools in APDL.

Fig. 6.9 Selected cross
section of C–C bond
(BEAM188)
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For commands in APDL, components must be created which would be useful
through the rest of the analysis. A component is a grouping of some geometric
entity that can then be conveniently selected or unselected. A component may be
redefined by reusing a previous component name. The following entity types may
belong to a component: nodes, elements, keypoints, lines, areas, and volumes.
A component may contain only 1 entity type, but an individual item of any entity
may belong to any number of components. Once defined, the items contained in a
component may then be easily selected or unselected [CMSEL]. Components may
be listed [CMLIST], modified [CMMOD] and deleted [CMDELE]. Components
may also be further grouped into assemblies [CMGRP]. Other entities associated
with the entities in a component (e.g., the lines and keypoints associated with areas)
may be selected by the ALLSEL command.

The steps for creating component(s) are illustrated in Figs. 6.15, 6.16, 6.17, 6.18.
Then click Ok to return to the Component Manager window which shows a list

of existing components (Fig. 6.19).

Fig. 6.10 Nodes and
coordinates of (12,12) CNT
in Microsoft Excel
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Fig. 6.11 Nodes and coordinates of (12,12) CNT in text editor/notepad

Fig. 6.12 Structural geometry of (12,12) CNT
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In other to create another component from the 24 nodes at the bottom top of the
nanotube and name it “Bottom_nodes”, follow the same procedure in Figs. 6.15,
6.16, 6.17, 6.18 as obtained in Fig. 6.20.

Alternatively, we can use command on notepad to select the components and
apply boundary conditions to the nanotube model by following the below
commands,

Fig. 6.13 Elements/bonds list for (12,12) CNT
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Copy the entire list and paste them at the command prompt in ANSYS toolbar.
Using the GUI or command option, model with boundary conditions is gener-

ated as shown in Fig. 6.21.
After setting the boundary conditions, we must define the load step options.

Select the Solution Control form the Analysis Type. Enter the solution controls and
change the small deformation to large deformation option. It is recommended to
work with large deformation option when non-linear material models is active. We
need to set the following parameters (Fig. 6.22):

Fig. 6.14 a Elements in APDL format for (12,12) CNT; b (12,12) CNT FE model

Fig. 6.15 Selecting
component manager from the
Select menu
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Analysis Options: Large Displacement
Time at end of loadstep: 100
Automatic time stepping: On
Number of substeps: 200
Max no. of substeps: 300
Min no. of substeps: 100
Frequency: Write every substep
Then choose solve current LS and wait until the solving ends. Waiting time is

highly depends on the computing power of your unit.

Fig. 6.16 Creating component(s)

Fig. 6.17 Picking entities
and renaming the component
as “Top_Nodes”
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6.2.7 Non-linear Solution

The Graphical Solution Tracking plot is shown in Fig. 6.23. The title of the graph is
the time value of the last calculated iteration. For example, the time at the end of the
analysis was set to 100. This can be changed with the Time command before the

Fig. 6.18 Reselecting nodes at top end of the (12,12) carbon nanotube

Fig. 6.19 List of existing components in (12,12) CNT
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Solve command is issued. For more information regarding setting the time value,
and many other solution control option, see Chapter on Structural Analysis Guide in
the ANSYS Help documents [1, 2, 6].

In the plot (Fig. 6.23), the x-axis is labeled Cumulative Iteration Number.
As ANSYS steps through non-linear analysis, it uses a solver, Newton-Raphson as
illustrated in Fig. 6.1. If the problem is relatively linear, very little iteration will be
required and thus the length of the graph will be small. However, if the solution is
highly non-linear, or is not converging, much iteration will be required. The length

Fig. 6.20 Top and bottom components for the (12,12) CNT

Fig. 6.21 carbon nanotube (12,12) with applied boundary conditions
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of the graph in these cases can be quite long. Again, for more information about
changing iteration settings, see Chapter on Structural Analysis Guide in the ANSYS
Help documents [1, 2, 6].

The y-axis is labeled Absolute Convergence Norm. In the case of a structural
analysis, which this graph is taken from, this absolute convergence norm refers to
non-normalized values (i.e. there are units associated with these values). Some
analyses use normalized values. In reality it does not really matter because it is only
a comparison that is going on.

6.2.7.1 Curves and Legend

As can be guessed from the legend labels, the graph in Fig. 6.23 relates to forces
and moments. These values are plotted because they are the corresponding values in
the solution vector for the DOF’s that are active in the elements being used. If this
graph were from a thermal analysis, the curves may be for temperature. For each
parameter, there are two curves plotted. For ease of explanation, we will look at the
force curves.

The F CRIT curve refers to the convergence criteria force value. This value is
equal to the product of VALUE times TOLER. The default value of VALUE is the
square root of the sum of the squares (SRSS) of the applied loads, or MINREF

Fig. 6.22 Setting the solutions control for non-linear analysis
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(which defaults to 0.001), whichever is greater. This value can be changed using the
CNVTOL command, which is discussed in the help file. The value of TOLER
defaults to 0.5 % for loads.

One may inquire why the F CRIT value increases as the number of iterations
increases. This is because the analysis is made up of a number of substeps. In the
case of a structural example, such as this, these substeps are basically portions of
the total load being applied over time. For instance, a 100 N load broken up with 20
substeps means 20, 5 N loads will be applied consecutively until the entire 100 N is
applied. Thus, the F CRIT value at the start will be 1/20th of the final F CRIT
value.

The F L2 curve refers to the L2 Vector Norm of the forces. The L2 norm is the
SRSS of the force imbalances for all DOF’s. In simpler terms, this is the SRSS of
the difference between the calculated internal force at a particular DOF and the
external force in that direction.

For each substep, ANSYS iterates until the F L2 value is below the F CRIT
value. Once this occurs, it is deemed the solution is within tolerance of the correct
solution and it moves on to the next substep. Generally, when the curves peak this
is the start of a new substep. As can be seen in the graph above, a peak follow every
time the L2 value drops below the CRIT value, as expected.

Fig. 6.23 Graphical solution tracking plot for (12, 12) CNT
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6.2.8 Post Processing

In order to obtain/view the results from the simulation of the nanotube, follow
the command sequence path: Main Menu > General Postproc > Plot
Results > Deformed Shape. Then select the Def + undeformed option (Fig. 6.24)
to obtain the displacement vector sum (Fig. 6.25).

Fig. 6.24 Options for plotting deformed shape

Fig. 6.25 Plot result for the displacement vector sum from the nodal solution
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Then, in order to obtain the contour results from the simulation of the nanotube,
follow the command sequence path: Main Menu > General Postproc > Plot
Results > Contour Plot > Nodal Solu. Then select the DOF Solu option
(Fig. 6.26) to obtain the displacement vector sum (Fig. 6.27).

In order to review the effect of axial displacement, we must define the axial
strain and internal stress using element tables. We can define the tables through the
Element Table under General Post processing menu. The more convenient option is
to use a series of ANSYS commands and command prompt. We will use the
following commands to define and plot the element strains and stresses:

Main Menu > General Postproc > Element Table > Define Table
ETABLE, Lab, Item, Comp
Main Menu > General Postproc > Element Table > Plot Elem Table
PLETAB, Itlab, Avglab
Use a text editor and type following sequence of commands,

Fig. 6.26 Options for contour plotting
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The bonds strain based on Modified Morse potential are shown in Fig. 6.29
similar to what was obtained in Fig. 6.28.

6.2.9 Stress-Strain Curve of the Nanotube

Now that we have incorporated a more precise potential function, it is possible to
study the stress-strain relationship of the nanotube under axial displacements. Based
on the defined parameters at Solution Control section, we have applied the axial
displacement at 100 equal steps. List of substeps can be found in the General Post
processing menu by this sequence: Main Menu > General Postproc > Read
Results > By Pick with the output in Fig. 6.29.

We must calculate the reaction forces on all nodes at top end of the nanotube at
each substep. There are several ways to review the stored solution data using
command prompt. *GET command is a general command to obtain a specific data
from the solutions. We can use it at different section of the analysis by employing
appropriate set of parameters. These parameters can be listed from the Help Topics
at main menu.

Fig. 6.27 Contour plot result for the displacement vector sum options for (12,12) CNT
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*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM
GET command retrieves a value for a specified item and stores the value as a

scalar parameter, or as a value in a user-named array parameter. An item is iden-
tified by various keyword, label, and number combinations. The usage is similar to

Fig. 6.28 Contour plot for the element strain of (12,12) CNT

Fig. 6.29 List of substeps for (12,12) CNT
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the *SET command except that the parameter values are retrieved from previously
input or calculated results. For example, A, ELEM, 5, CENT, X returns the centroid
x-location of element 5 and stores the result as parameter A. *GET command
operations, along with the associated Get functions return values in the active
coordinate system unless stated otherwise. A Get function is an alternative in-line
function that can be used to retrieve a value instead of the *GET command (see
Using In-line Get Functions for more information). The sequence is: Utility
Menu > Parameters > Get Scalar Data.

We will use *GET command to retrieve reaction forces and strains at top end of
the nanotube. For additional information regarding other mentioned commands,
please referee to the ANSYS documents from Help Topics. Use a text editor and
type the commands as shown in Fig. 6.30. This macro, Macro_1, will store the
reaction forces and nanotube strain under axial tension in a text file which named
“output.txt”.

After creating the Macro_1, save it into the working directory and rename it to
“lib_1.txt”. Use the text editor to define below commands,

Copy both lines and paste them into the command prompt. Wait till the process
is accomplished. Now, we can import output.txt into Microsoft Excel (Fig. 6.31)
and used to plot the stress-strain curve (Fig. 6.32) with the slope been the Young’s
modulus.

Fig. 6.30 Macro to retrieve reaction forces and strains at the top of (12,12) CNT
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Fig. 6.31 Retrieved stress
and strain for (12,12) CNT

Fig. 6.32 Plot the stress
values against the strain
values
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6.3 Non-linear Simulation of Inorganic Nanotubes

The procedure for simulation of mechanical properties of inorganic nanotubes is
similar to that used for carbon nanotube with some differences in relation to
specifications. For example, the input sectional properties for the element of single
walled zirconia nanotube compared to that of carbon nanotube are shown in
Table 5.3.

The diameter and Poisson ratio for the element (Zr-O bond) were determined to
be 0.018 nm and 0.1897 respectively using CrystalMaker and CASTEP. While for
C–C bond, the diameter and Poisson ratio are 0.147 nm and 0.3 respectively.

Differentiating Eq. (2.26), the force between Zr-O bond is:

F ¼ �Ae�
r
q

q

� �

þ 6C
r7

� �

� QZrQo2

4e0pr2

� �

ð6:1Þ

In relation to ZrO2, εo = 0.55263614 × 10−12 C2eV−1Å−1, QZr = 4e, QO2 = −2e,
where e is magnitude of electronic charge = 1.602 × 10−19 C and the parameters of
pairs of interactions of atoms in ZrO2 are presented in Table 6.1.

For Zr-O bond, the relationship between stress and strain is shown in Fig. 6.32
and was obtained by calculating the element’s cross-sectional area to be
2.545 × 10−20m2. The Zr-O bond displays nonlinear or rate-dependent stress-strain
and the problem is reduced by using MISO model for the element. The slope along
the linear section of the curve represents the Young’s modulus of the Zr-O bond,
which is the same as the element of the nanotube.

Fig. 6.33 Stress and strain
curve for Zr-O bond/element
as MISO model

Table 6.1 Computed
constants for interactions of
pairs of atoms in ZrO2 [7]

Pair ij A ij (eV) ρij (Å) C (eVÅ6)

Zr-O 985.87 0.3760 0.0

O-O 22764.3 0.1490 27.89

Zr-O 0.0 0.0 0.0
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From the curve in Fig. 6.33, Young’s modulus of the Zr-O element was com-
puted to be 5.01 × 1011 Pa (501 GPa), representing the slope in the linear region,
and the value is similar to 491 GPa that was obtained for bulk ZrO2 by first
principle calculations using CASTEP [8].

Thereafter, the subsequent procedures are same for simulating inorganic nano-
tubes as conducted for carbon nanotubes (Sects. 6.2.1–6.2.9).
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Chapter 7
Effect of Geometrical Parameters
on Tensile Properties of Nanotubes

7.1 Introduction

There is a large variation of mechanical properties, such as Young’s moduli for
nanotubes as indicated from both experimental and theoretical studies. From an
early study [1], the experimental values of Young’s modulus of the carbon nano-
tubes was 1.3 −0.4/+0.6 TPa. While, in another study [2] measured value for
Young’s modulus of nanotubes as 0.816 ± 0.41 TPa. The wide variation in the
experimental results may be due to the several factors including (i) presence of
defects in nanotube specimens and (ii) inherent limitations of current experimental
techniques.

Contradicting theoretical results have also been observed [3–6] due to various
definitions and constants involved, for example, the wide range of effective
thickness of nanotube and different potential functions with different algorithms.
During a simulation the thickness of 0.066 nm for C-C bond was used resulting in
the graphite Young’s modulus of 5.5 TPa [7] as opposed to 0.34 nm used in several
studies [3–5].

To calculate the stress, one CNT’s end was restrained and axial displacement
was applied on the other end. The axial strain, εz, is defined as tube length at each
substep, l, divided by initial length of the tube, lo. The corresponding external force,
F, is calculated from the summation of nodal reactions at fixed end. Then, the
properties can be calculated as follows:

ez ¼ u
l0
¼ l� l0

l0
ð7:1Þ

r ¼ F
A

ð7:2Þ

E ¼ dr
ds

ð7:3Þ
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t ¼ ðr � r0Þ=r0
u=l0

ð7:4Þ

where E, σ, F, A, ν, r, ro are the Young’s modulus, axial stress, reaction force, cross
sectional area, Poisson’s ratio, current and initial radius of the tube.

The stress–strain relationship of nanotubes is predicted using the above proce-
dures up to the inflection point (i.e. the maximum of the interatomic force) only,
though the procedure is able to give the post failure [8]. However, the predicted
post failure of the generated model may not be reliable because the model together
with the simple interatomic potential function is not capable of describing the
behaviors of the nanotube after the bonds are broken, such as formation of new
bonds, rehybridization and structural transformations. From the experimental [9]
and theoretical [10] studies on the tensile behaviors of nanotubes, it was found that
the stress exhibits a sudden drop to zero when stress reaches the ultimate tensile
strength and the fracture is brittle. Therefore, there is the need to study the effect of
geometrical parameters with respect to mechanical behaviors of nanotubes.

7.2 Effect of Nanotube Length on its Mechanical Behavior

There have been several theoretical investigations leading to conclusion that that
Young’s moduli are size-dependent at small tube diameters with studies based on
lattice-dynamical [11], atomistic-based continuum mechanics [12], structural
mechanics [13], and analytical molecular mechanics [14]. Due to the limitations of
current experimental techniques, it is hard to validate/extract such dependence
experimentally.

It was assumed that length to radius ratio smaller than 10 may affect the sim-
ulation results. As mentioned earlier, one end of CNT is fixed in all degree of
freedom while the other end is axially stretched. Hence, a series of simulations were
performed to determine the possible effects of boundary conditions on different
length to diameter ratio (L/D). Figure 7.1 shows the Young’s modulus variation
with length of nanotubes for zigzag (10,0) and armchair (5,5) which have almost
same diameters.. The tube lengths and estimated Young’s modulus are listed in
Table 7.1 together with the number of atoms and elements for each model are also
mentioned for comparison purposes.

In agreement with previous observations, results shows that armchair configu-
ration is stiffer than zigzag. However, their stiffness decreases sharply when L/D
ratio increase. This effect is a result of applied boundary conditions. As one end is
completely fixed, the transverse displacement is also restricted which affect the
stiffness of the nanotube structure.

It should be noted that all above-mentioned Young’s moduli are the initial
tangent modulus of carbon nanotubes. Secant moduli at different strains will be
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presented later to illustrate the degree of nonlinearity in the stress–strain curve
predicted prior to failure.

Figure 7.2 shows the calculated initial Young’s modulus of nanotubes from the
Modified Mores potential functions. The predicted Young’s modulus of graphene
sheet is 1.13 TPa (corresponding to an in-plane stiffness of 383 J/m2), which agrees
well with the experimental value and other theoretical values mentioned above.
Differences between the experimental and theoretical graphite results may be due to
the potential function and associated parameters.

It is seen from Fig. 7.2 that the feature of the size-dependent Young’s moduli is
captured by the present simple model and Young’s moduli for both armchair and
zigzag nanotubes decrease with decreasing tube diameter and approach the pre-
dicted graphite value when the tube diameter is increased.

Table 7.1 Axial Young’s modulus of SWCNTs with different L/D ratio

Chilarity L/D Length
(Å)

E (TPa) No. of
atoms/nodes

No. of
bonds/elements

(10,0) 2.55 17.76 0.86 190 270

(10,0) 6.38 47.60 0.86 470 690

(10,0) 8.93 66.78 0.86 660 970

(10,0) 12.76 98.75 0.86 950 1410

(10,0) 25.52 196.80 0.86 1880 2800

(10,0) 51.05 397.16 0.86 3760 5620

(5,5) 2.901 19.69 0.88 170 245

(5,5) 6.38 43.07 0.87 360 530

(5,5) 8.93 60.30 0.87 500 740

(5,5) 12.76 86.14 0.87 710 1055

(5,5) 25.52 173.51 0.87 1420 2120

(5,5) 51.05 345.80 0.87 2820 4220
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Fig. 7.1 Young’s modulus
variation with CNT length for
zigzag (10,0) and armchair
(5,5) SWCNTs
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For a given tube diameter, Young’s modulus of armchair tubes is slightly larger
than that of zigzag tubes. The maximum difference of armchair nanotube’s moduli
is less than 5 % and could be considered size-independent. At small diameter
(<2 nm), zigzag nanotubes exhibit a higher sensitivity of moduli to tube diameter as
shown in Fig. 7.2 with a difference up to 19 % and also compared with results from
other simulations. The present model gives almost same trend as those of the
tight-binding formulation [11] and continuum structural mechanics [14] although
there exists difference at the area of stability level. It is interesting that when
different values are normalized by their corresponding asymptotic value (i.e. pre-
dicted graphite value for large tube diameters), one obtains almost identical curves
as shown in Fig. 7.2. In summary, the present values for single-walled nanotubes
are in reasonable agreement with other theoretical and experimental values.

The dependence of Poisson’s ratio to the tube diameter is shown in Fig. 7.3. The
present predicted Poisson’s ratio for both armchair and zigzag tubes decrease with
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increasing tube diameter, approaching the limit value of 0.20 for graphene sheet. It
is seen that Poisson’s ratio for zigzag tubes is more sensitive to the tube diameter
than the armchair tubes.

The results given in earlier [15] show the same trend as the present results for
armchair tubes, but a different trend for zigzag tubes. It should be noted that the
present prediction for large diameter nanotubes (>2 nm) and graphite is almost
constant and in excellent agreement with the theoretical value (0.21) obtained based
on a lattice-dynamics model [15]. Although many investigations for Poisson’s ratio
of nanotubes have been conducted, there is no unique opinion that is widely
accepted. Another study [14] showed that Poisson’s ratio for single-walled nano-
tubes is almost constant (0.28). The tight-binding calculations [11] gave values of
0.247, 0.256 for (6,6), (10,10) armchair tubes, respectively and values of 0.275,
0.270 for (10,0), (20,0) zigzag tubes, respectively.

7.3 Effect of Wall Curvature on Strength of CNTs

Although there is discrepancy on Young’s modulus of nanotubes it has been
commonly recognized that nanotubes with large diameters have the same modulus
as that of graphite and small diameter nanotubes exhibit some size-dependence.
Experimental value for graphite [16] is about 1.06 TPa (corresponding to an
in-plane stiffness of 360 J/m2).

Available theoretical graphite values include 1.16 TPa (also size-independent
nanotube value [10]) using molecular mechanics/dynamics with the modified
Morse potential and 1.50 TPa [17] using MD with the Keating potential. Based on a
lattice dynamics model with empirical force-constants, Young’s modulus for
graphite (also nanotubes) was calculated to be about 0.972 TPa [18] and around
1.0 TPa for graphite [15]. The Young’s modulus of carbon nanotube with larger
diameters was also simulated as 1.025 TPa using structural mechanics [13]. In
relation to graphite value of 1.06 TPa (360 J/m2) for the Young’s modulus using the
same analytical structural model [14] as the present investigation, but with
force-constants (harmonic potential). The tight-binding methods also showed sig-
nificant scatter in Young’s modulus values with variations from 0.676 TPa [19] to
1.27 TPa [11]. There are also many other predictions available from other simu-
lations conducted.

An armchair (10,10) with length of 100 nm was chosen to study the SWCNT
under tension. A relatively long CNT is selected to minimize effect of boundary
conditions. Figure 5.17 shows snapshots of the finite element model of a CNT. All
atoms at lower end of CNTs are held fixed in 6 degree of freedom while the other
end displaced outward to simulate axial tension. To keep the tubular shape of CNT
ends, radial constrains were applied to both ends. Displacement was applied and
solution completed in almost 500 substeps followed by equilibrium for each of
them. The applied boundary conditions are depicted in Fig. 7.4.
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In Fig. 7.5a the reaction forces at extreme nodes is displayed for the last substep.
Figure 7.5b shows the recorded reaction force for a selected node at the fixed end
during deformation. Equations (7.1)–(7.4) were used to compute stress and strain
values at each substep of the solution. Figure 7.5a shows the stress-strain plot for
tensile loading of (10,10). The CNT behavior under tension was assumed to be
nonlinear for strains higher than 10 %. Therefore, for better accuracy both the
tangent modulus at zero strain and the secant modulus were studied. The secant
modulus at higher strains is depicted in Fig. 7.5b.

In the modified Morse potential formulation, nonlinear exponential functions
were employed to estimate mechanical behaviors of C-C bonds when the bond
stretching is dominant. Obviously, the stiffness of the C-C bonds becomes weaker
when the interatomic distance increase. Thus, CNTs became weaker when defor-
mation increases. This is the direct effect of modified Morse potential functions in
bond stretching simulations. It also suggests that harmonic equations which merely
assume linear functions are not precise tools for studying large strains such as
tensile fracture of CNTs. Present calculations showed large differences between the
tangent modulus at near zero strain and the secant modulus in higher strains.
According to the results, the elastic formulations seem only suitable for very small
strains. Young’s modulus as an indicator of mechanical response remains constant
in values less than 0.018 and 0.010 for armchair and zigzag CNTs, respectively. At
larger strains, CNTs regardless of the chirality tends to become weaker. Figure 7.6b

loaded 
end

Fixed end

(a)

(b)

Fig. 7.4 a Schematic of
CNTs studied in this work
armchair (10,10), b finite
element model of (10,10)
CNT

138 7 Effect of Geometrical Parameters on Tensile Properties …



depicts the secant modulus of a (10,10) armchair SWCNT under tensile load.
Hence, it is recommended to use more versatile formulations such as Morse
potential [20, 21] or Brenner many-body potential [10] in large deformation studies.

Figure 7.7 shows a comparison of secants modulus reported by different authors.
It can be seen clearly that the results are in good agreement with previous models.
Present atomic model can provide wide range of information about the CNTs
subjected to loads. For example, radial displacement and bond stretching for a
typical CNT under tensile load are illustrated in Fig. 7.8.

Unlike a planar graphene sheet, the carbon atom and its three closest neighbors
carbon atoms on a CNT wall form a tetrahedron because of the curvature effect [8].
Since the CNT is built by rolled graphene sheet in specific direction, the armchair
SWCNT was unrolled to a two-dimensional planar sheet of graphene as shown in
Fig. 7.9. This can be simply done by cutting the CNT along on its axial direction
and then unrolling to a plane without stretching as shown in Fig. 7.9b.
Consequently, the bond distance between each pair of atoms in the unrolled plane is
similar to its matching arc length on the CNT wall. Then, the same tensile load was
applied to the graphene sheet and the tensile behavior was compared with the
corresponding CNT configuration. The stress-strain curve of (10,10) graphene
sheet along (10,10) SWCNT were depicted in Fig. 7.10. The effect of curvature
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introduced by rolling carbon sheets could be seen clearly [22]. As it was expected,
the graphene sheet showed higher tensile strength at equal strains comparing to
matching CNT and its ultimate strength of 124.69 GPa obtained at about 20 %
strain.

(a)

(b)

Fig. 7.8 Radial displacement and bonds strain at the final substep of axial loading
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Simulation result gave a value of about 1 TPa for the Young’s modulus of
graphene sheet. The graphene layer thickness is assumed equal to 3.4 Å. Values of
1.06 and 1.04 TPa were reported using the same analytical structural model [14].
From a molecular mechanics approach, a predicted the value of 1.16 TPa was also
obtained [10]. Figure 7.11 shows the variation of secant modulus for (10,10)
SWCNT and graphene sheet.

Fig. 7.9 Schematic of a a (10,10) CNT configuration, b a planar, “unrolled” (10,10) graphene
sheet
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Fig. 7.10 The stress–strain
diagrams for graphene sheet
and SWCNT of armchair
(10,10) under tensile load
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7.4 Effect of Chirality on Strength of CNTs

In this section, the effects of chirality on the tensile behavior of SWCNTs were
investigated. The influences of the CNT length and diameter were also studied in
the following sections. Armchair and zigzag SWCNTs were tested under tension to
see how significant does chirality affect their behavior. Armchairs (10,10) and
zigzags (18,0) configuration were selected for illustration purposes. Figure 7.12
shows the stress–strain curves for the armchair and the zigzag CNTs. The average
Young’s modulus for the simulated CNTs in the range of 0–0.01 strain were 0.89
and 0.87 TPa for armchair and zigzag configuration, respectively. For the armchair
(10,10) and zigzag (18,0) CNTs, a maximum stress equal to 116.64 and 94.96 GPa
were found at around 21.48, 17.79 % of strain, respectively.

SWCNTs with different atomic configuration of (5,5), (8,8), (10,10), (14,14),
(16,16), (8,0), (14,0), (18,0) and (22,0) were analyzed and results are presented in
Table 7.2. In addition, plane sheets of graphene with atomic structure of (10,0) and
(10,10) were also evaluated to show the effect of curvature of the CNT wall on the
tensile behavior.

Results showed that the elastic properties of carbon nanotubes at small defor-
mations were almost unaffected by CNT chirality during tension. The Poisson’s
ratio for (14,14) and (22,0) configuration was calculated as 0.20. They are com-
parable with reported values of 0.19 [23] based on the Brenner potential force field
function. Average Young’s modulus was also predicted as 0.91 TPa by using Morse
potential force fields [24]. They utilized spring elements to simulate both C-C
bonds and angle bending force fields.

Generally, two contrary trends have been reported for size dependent Young’s
modulus of CNTs based on numerical studies. Although some researchers found
that the elastic properties of CNTs tend to decline when their diameter is increasing,
few studies predicted an opposite trend [25]. The present results suggested that the
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Young’s modulus of CNTs slightly increased when tube diameter raised [26] as
shown in Table 7.2. In general, results showed that the zigzag configurations lead to
a lower tensile strength as compared to the armchair configuration with almost
similar diameter. These results were in agreement with what was obtained in other
simulations [24, 27, 28].

Secant modulus is a useful tool for stiffness analysis at larger strains. It can be
seen that graphene is stiffer than SWCNTs as shown in Fig. 7.13. Armchair con-
figuration results in more tensile stiffness in comparison to zigzag structures.

A comparison between the present simulations results and previous studies is
shown in Fig. 7.14. It can be seen that the curve shape is in good agreement with
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Fig. 7.12 Stress–strain
diagrams for armchair (10,10)
and zigzag (18,0) SWCNTs
under tensile load

Table 7.2 Axial Young’s modulus of SWCNTs and graphene sheets

Helicity Diameter (Å) Young’s modulus (TPa) Strain (%) Ultimate strength (GPa)

(5,5) 6.78 0.86 21.12 115.86

(8,8) 10.84 0.89 21.48 116.53

(10,10) 13.56 0.89 21.31 116.64

(14,14) 18.98 0.90 21.12 116.58

(16,16) 21.69 0.97 21.12 131.14

Graphene sheet
(10,10)

∞ 1.00 19.99 124.69

(8,0) 6.26 0.84 17.91 94.17

(14,0) 10.96 0.87 17.64 94.02

(18,0) 14.09 0.87 17.79 94.96

(22,0) 17.22 0.88 17.85 94.41

Graphene sheet
(10,0)

∞ 1.00 17.73 111.28
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current studies [10, 20, 21, 28]. The predicted nonlinear behaviors of CNTs were
similar to calculated results from molecular dynamics [10]. The predicted ultimate
failure strains of 17–21 %, were dramatically larger than the experimental values
reported earlier [9]. This difference between predictions and experiential values
could be partly explained by various defects that reduce stiffness and strength.
Recently, the effects of imperfection of tube wall caused by defects have been
investigated [28].

On the other hand, the results showed a very slight dependence between tensile
properties and SWCNT radius. Moreover, it could be observed that with increasing
diameter of CNT it becomes stronger and come closer to the calculated value for
graphene sheets with infinite diameter. The calculated value for graphene sheets is
around 1 TPa which is comparable with previous studies.

Fig. 7.13 Secant modulus
variation for armchair and
zigzag CNTs under tensile
loading
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7.5 Effect of Geometric Parameters on the Mechanical
Behaviors of Inorganic Nanotubes

The effects of geometrical parameters on mechanical properties of inorganic
nanotubes are not exactly same as that of carbon nanotubes. For example, zirconia
nanotube (ZNT) in relation to diameter and length depends on chirality, with chiral
type having the highest followed by the zigzag and then armchair. The variations
are similar to that of Boron Nitride nanotubes (BNNT) and CNT [29, 30], but the
values are less than that of ZNT which have longer and thicker atomic bond. Details
of the geometrical parameters of some ZNTs are stated in Table 7.3.

The symmetry of the SWZNT is not uniform compared to CNT. The orientation
depends on the chirality, with armchair having more uniform diameter across the
tube and zigzag having variations leading to depressions across the tube and in
some cases less diameter at the ends. The ZNT is not a cylindrical tube as in CNT,
but irregular as referred to polygonal tube which is similar to other inorganic
nanotubes [31]. The difference in geometrical orientation of ZNT compared to CNT
is illustrated in Fig. 1.9, both have the same number of bonds/elements and
approximately same diameter.

It has been established that some mechanical properties of CNTs are influenced
by size and chirality (Sects. 7.2–7.4). Similar trend occurs in relation to ZNT as
indicated in Fig. 7.15 showing changes of Young’s modulus of armchair and zigzag
nanotubes with diameter. The curve indicates significant effect of diameter on the
value of E, especially in relation to small diameters. The zigzag ZNTs have higher
Young’s modulus in comparison with armchair ZNT’s with similar diameters, but
the pattern of increase in is the same for all nanotubes. The increase in Young’s
modulus as the diameter increases is attributed to the effect of nanotube curvature
[20, 32].

As the nanotube diameter increases, the effect of curvature reduces and Young’s
modulus, E converges to a value. For a variation of diameter from 1.05 to 6.18 nm
for the armchair SWZNTs and between 1.09 and 6.13 nm for the zigzag SWZNTs,
the values of Young’s modulus E vary from 217 to 385 GPa and from 309 to
431 GPa, respectively. The findings indicate that the Young’s modulus computed
for both armchair and zigzag SWZNTs is constant for diameters ranging from 3.8 to
6.13 nm and is approximately 380 and 427 GPa for armchair and zigzag,
respectively.

In contrast, the Young’s modulus of the SWZNTs decreases as the aspect ratio
(L/d) increases as shown in Fig. 7.16. This indicates that increasing the aspect ratio
will negatively affect the structural stability of the nanotubes as in other inorganic
nanotubes [32]. Thus in relation to optimum Young’s modulus, minimal diameter is
required.

With respect to length and aspect ratio, similar pattern was observed for (35,0)
SWZNT as illustrated in Fig. 7.17. There was tremendous increase in the Young’s
modulus initially until the optimum value of 297 GPa was attained at 10 nm length
and aspect ratio of 2 and thereafter convergence occurred.
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As illustrated in Fig. 1.9, the ZNT is not a cylindrical tube but polygonal tube.
Thus the thickness of the tube is not assumed to be equivalent to the thickness of
the bond/element as in CNT, but is defined as difference of radial spaces between
the farthest and inmost (oxygen) atoms in the optimized structures [29]. The wall
thickness of SWZNT modelled from cubic nanosheet varies between 0.194 and 0.
680 nm depending on symmetry and chirality [29]. As was obtained in CNT [21],
the wall thickness has substantial influence on the computed Young’s modulus as
shown in Fig. 7.18.

From the simulation results, it was noted that the greater the wall thickness of
SWZNTs, the lesser the value of Young’s modulus, E computed. For a variation of
t from 0.05 to 0.2 nm, the value of Young’s modulus, E varied from 565 to 67 GPa
for the (35,0) nanotube and from 431 to 53 GPa for the (20,20) nanotube. Thus the
result confirms what was obtained during nanoindentation of ZNT where thicker
arrays were found out to be softer than their thinner equivalents [33].
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It has been established that for any tube wall thickness, t and chirality, there
occurs a diameter. d below which the NT develops instability and experiences
impulsive damage or destruction [29]. In order to maintain uniformity in the
parametric studies of ZNT, the value of 0.194 was adopted for t which is equivalent
to the thickness of cubic zirconia nanosheet cleaved along (111) plane [34].
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7.6 Convergence and Mesh Independence Study

In the finite element analysis (FEA), a finer mesh often results in a more accurate
solution. While engineers cannot typically obtain the exact solution for a model, an
approximation can be obtained with very high accuracy using finite-element
methods. However, as a mesh is made finer and accuracy increased, computational
intensity also increases, often leading to longer solution times. This conundrum
begs the question: Just how fine of a mesh is fine enough to accurately represent the
real-world event? The question cannot be answered categorically. To find the
solution that best balances computational capacity and accuracy; we should perform
a mesh convergence study.

A mesh convergence study is an empirical process that compares the results of
one meshed model with those of another. As such, one of the easiest and best ways
to start is with the fewest, yet reasonable number of elements. That is, begin by
meshing the model as coarsely as seems reasonable and analyze it. Then, recreate
the mesh with a denser element distribution, re-analyze it and compare the results to
those of the more coarsely-meshed model. Are the results similar? If not, then the
coarse mesh is not very accurate. Increase the mesh density and re-analyze the
model.

Keep increasing the mesh density and re-analyzing the model until the results
converge satisfactorily. That is, when we reach a point at which finer meshing no
longer yields appreciably different results, the mesh may be considered fine enough.
This type of mesh convergence study can help us to obtain an accurate solution with
a mesh that is sufficiently dense and yet not overly demanding of computer
resources.

A zigzag nanotube with 100 length will be studied. We need to change the
mesh from coarse to fine and study its influence on the a constant property such as
Young’s modulus of the tube.

We start with very coarse element size. In order to change the meshing
parameters, go to meshing section (Fig. 7.19):

Main Menu > Preprocessor > Meshing > Size
Cntrls > ManualSize > Lines > All Lines

The lines can be meshed from the mesh submenu: Main
Menu > Preprocessor > Meshing > Mesh > Lines and Pick all lines. Better
observation can be made on the nodes and elements if we change the elements size
and shape. To do so, chose from main menu PlotCtrl > Style > Size and Shape
and apply the changes (Fig. 7.20). After replotting, nodes and element divisions
illustrated in a better view (Fig. 7.21).

Each pair of nodes is connected via a beam element. This pattern repeated
throughout the structure of the nanotube. Then the Young’s modulus of the
nanotube is computed using the established procedure (Sects. 6.2.2–6.2.9). After
which the element divisions for all lines are increased from 1 to 3, 5, 10 with the
view of division 5 shown in Fig. 7.22 and the effect of the changes on Young’s
modulus illustrated in Fig. 7.23.
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Result similar illustrated in Fig. 7.23 for CNT was obtained after convergence
test on (35,0) ZNT (Fig. 7.24). The plots (Figs. 7.23 and 7.24) indicate the results
are converging to a particular value or approaching a value. From Fig. 7.24, con-
vergence starts at 5 divisions of the element having Young’s modulus as
141.64 GPa compared to 297.96 GPa when division of the elements was 1 which is
about 110 % reduction. Dividing the elements further up to 10 units gave a

Fig. 7.19 Changing the meshing parameters

Fig. 7.20 Changing the
shape and/or size of the
meshing

7.6 Convergence and Mesh Independence Study 151



Fig. 7.21 Element division of 1for the CNT

Fig. 7.22 Element division of 5 for the CNT
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difference of 3 % from what was obtained for 5 divisions of the elements. Thus the
value at 5 or 10 element division is selected as the approximate Young’s modulus
of the nanotube.
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Chapter 8
Finite Element Analysis of Multi-walled
Nanotubes

8.1 Introduction

There are two types of nanotubes: single-walled nanotubes (SWCNTs) and mul-
tiwalled nanotubes (MWCNTs), which differ in the arrangement of their graphene
cylinders. SWCNTs have only one single layer of graphene cylinders; while
MWCNTs have many layers (approximately 2–50). Multi-walled tube with the
separation between the sheets around d + t [1] where d = is the diameter of the inner
tube and t is the thickness of the nanotube. Figure 8.1 shows a SWCNT and
MWCNT. The relative geometry of (10, 0) CNT having 25 Ǻ length, 1.421 Ǻ and
different walls as shown in Table 8.1.

8.2 Modeling Multi-walled Carbon Nanotubes

In order to model MWCNTs one should take into account the van der Waals forces
between CNTs layers. Van der Waals term include a variety of interactions such as
permanent electric dipoles, permanent multipoles and short lived multipoles. The
latter term caused some attraction forces among nuclei which is opposed by
repulsion anytime the two nuclei approach each other. Maximum stabilization is
occurred at the van der Waals radius. At any distances less than it, the van der
Waals potential emerges a repulsive force and the atoms repel each other. However,
at larger distances atoms attract each other. The main impact of van der Waals term
is to stabilize the molecular structure. At interatomic distances smaller than the van
der Waals radius when repulsion is noticeable, van der Waals interactions merely
results in a more stabilized molecule.

The pair wise potential energy between two nonbonded atoms can be conveyed
in term of internuclear separation. It is convenient to represent van der Waals
interactions by the Lennard-Jones (LJ) “6–12” potential [2–5]. The LJ potential
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attract two uncharged atoms which are approaching one another from a distance. In
contrast, it changes to strong repulsive force when the two atoms approach too
close. Consequently, the pair of atoms tend to keep a separation distance that
corresponds to the minimum of the LJ potential;

ULJ ¼ 4e
r
r

� �12
� r

r

� �6
� �

ð8:1Þ

where ULJ is the energy between a pair of atoms of distance r, ε is the bond energy
at the equilibrium distance and σ is a constant. The first part of the equation, (σ/r)12

describes the repulsive forces between particles while the latter part, (σ /r)6 denotes
attraction. For a pair of carbon atoms, the bond energy and σ are 0.002390 eV and
σ = 0.3415 nm, respectively [5]. To a limited extent, the Morse potential function
can be employed to quantify the van der Waals potential. It must be noted that
Morse potential was specially developed to describe interactions of a pair of atoms
[6, 7]. Morse function for van der Waal potential can be expressed as in Eq. (8.2).

Uvdw ¼ DM 1� e�aðr�RÞ
� �2

ð8:2Þ

Fig. 8.1 Single-walled nanotube and muti-walled nanotube [1]

Table 8.1 Geometry of SWCNT and MWCNT

Type and layers Chirality of walls Diameter (Å)

SWCNT, 1 (10,0) 7.834

MWCNT, 2 (10,0), (12,0) = [(10,0)-(12,0)] 9.401

MWCNT, 3 (10,0), (12,0), (14,0) = [(10,0)-(14,0)] 10.968

MWCNT, 4 (10,0), (12,0), (14,0), (16,0) = [(10,0)-(16,0)] 12.535

MWCNT, 5 (10,0), (12,0), (14,0), (16,0),(18,0) = [(10,0)-(16,0)] 14.102
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where DM is atomic separation energy and α is a constant (6/ro). Figure 8.2 depicts
that both for near equilibrium and long range, the LJ 12-6 and Morse behave in a
similar way at minimum well depths. It also clearly indicates that the van der Waals
forces between two carbon atoms are vividly nonlinear.

Therefore, nonlinear spring elements were used connecting the atoms. Load
against displacement relationship for spring elements according to Morse potential
is shown in Fig. 8.3. The spring element is capable of uniaxial tension and com-
pression. The opted elements offer three degrees of freedom at each node which are
x, y and z nodal translations. Two nodes and a non-linear force–displacement
relationship can properly specify them for this purpose.

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

-1.0

-0.5

0.0

0.5

1.0

U
/D

r/D

LJ 12-6
Morse

Fig. 8.2 The van der Waals
interactions for CNTs

Fig. 8.3 Load-displacement
for the spring element
according to Morse van der
Waals potential
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Two multi-walled nanotubes were studied: (12,0)-(21,0) and (5,0)-(14,0)-(23,0).
The finite element models for these two MWCNTs depicted in Fig. 8.4a, b. The
spring elements which simulate van der Waals are shown in the models and the
interaction illustrated in Fig. 8.5.

A triple walled CNT was also modeled. The schematic illustration of the
MWCNT and finite element model is shown in Fig. 8.6 with Van der Waals
interactions in Fig. 8.7.

Fig. 8.4 a Atomic structure and b corresponding FE model of (12,0)-(21,0)

Fig. 8.5 Van der Waals
interactions in (12,0)-(21,0)
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8.3 Tensile Behavior of MWCNT

There have been studies on the tensile loading of MWCNTs using different con-
figurations and conditions [8, 9]. In the aforementioned works, the CNTs were fixed
to two opposing AFM tips and undergone tensile load. In particular, the outermost
tube of a MWCNT failed under external tension and then the inner CNTs are pulled
out in so-called ‘sword and sheath’ telescoping failure mechanism [10, 11]. Thus,
only the outer CNT layer was considered as load bearing member in this work.
Weak van der Waals forces are responsible for inner layer interactions in the present
model. This is in contrast with another model [12] where the tensile load was

Fig. 8.6 a Atomic structure and b corresponding FE model of (5,0)-(14,0)-(23,0) CNT

Fig. 8.7 van der Waals
interactions of (5,0)-(14,0)-
(23,0)

8.3 Tensile Behavior of MWCNT 161



applied to all layers of a MWCNT. The finite element model of double-walled CNT
is generated with two concentric CNTs, (12, 0)-(21, 0). The nodes were connected
by non-linear spring elements when the pair distance was less than 4 Å but greater
than 3.3 Å. Mechanical response of FE models were investigated under small strain
tensions.

Simulation of pure tension was achieved by constraining all degrees of freedom
on the nodes at one end of the CNT, while the other end was loaded in axial tension.
Figure 8.8 shows the atomic configuration of double-wall CNT (12,0)-(21,0) and
corresponding modeling concepts, respectively.

Based on the formulation described above, Young’s modulus was calculated for
MWCNTs and the results are listed in Table 8.2 [8]. The measured tensile strengths
of the outermost layer are between 11 and 63 GPa, while elastic modulus was
scattered between 270 and 950 GPa. It has also been reported that average value of
1.8 TPa was obtained using AFM-based method [13]. These data are comparable to
the present Young’s modulus prediction of 0.95 TPa. Finally, the above modeling
work has shown that the tensile behavior of MWCNTs is different from that of
SWCNTs induced by the presence of van der Waals forces. It suggested that such
behaviors could not be simplified with the average of the modulus of the individual
SWCNTs building the MWCNT. Moreover, the result showed that when the load
was put only on the outmost layer, the inner layers demonstrated very small axial

Table 8.2 Axial Young’s
modulus of double-walled
CNTs

Helicity Young’s modulus (TPa)

(5,0)–(14,0) 0.9514

(12,0)–(21,0) 0.9531

Fig. 8.8 MWCNT (12, 0)–(21, 0): a atomic structure and b typical FE model for the van der
Waals interactions
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displacement. It means that the outer layer cannot transfer the applied force to the
inner layers because of weak van der Waals interactions. This behavior confirms the
“sword-sheath” mechanism observed by experimental studies [8].
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Chapter 9
Influence of Defects on the Strength
of Graphene and Carbon Nanotube

9.1 Introduction

As with every material, the presence of a crystallographic defect influences the
material properties. Defects can occur in various forms with significant effect. With
high levels of such defects can lower the tensile strength by up to 85 % [1]. In
general, three types of defects are reported in the CNTs [2, 3]:

1. Topological defects, such as the Stone-Wales transformations (Fig. 9.1).
A Stone–Wales defect is the rearrangement of the six-membered rings of
graphene into pentagons and heptagons [1]. This rearrangement is a result of π/2
(90°) rotation of a C–C bond. A Stone–Wales defect is a crystallographic defect
that occurs on carbon nanotubes and graphene and is thought to have important
implications for the mechanical properties of carbon nanotubes.

2. Rehybridization defects, which refer to the change from sp2 to sp3 of a C–C
bond due to highly localized deformation (Fig. 9.2),

3. Incomplete bonding (vacancy) and other defects, such as impurity attachments
and substitutions (Fig. 9.3).

It has been discovered that carbon nanotube (CNT) defects can be found at
different steps of its fabrication and purification process [4, 5], during device or
composite production [6, 7], or under mechanical strains [8]. It was also reported
that even few number of defects in the atomic structure of the CNT will result in
deterioration of mechanical or electrical properties of the CNT [9, 10]. At present,
the studies of the defective CNTs and atomistic effects of these imperfections has
been a great challenge from both experimental and numerical aspects.

In order to simulate the mechanical behavior of carbon-carbon bonds beyond
bond breaking, a complex interatomic potential function is needed. For instance, the
Brenner potential function is mentioned as an accurate model [11]. A continuum
mechanics approach directly incorporating the Brenner potential function has
been developed [12, 13]. The process involves modeling elastic properties and
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stress–strain relationships of carbon nanotubes based on a modified Cauchy–Born
rule. An analytical molecular structural mechanics model [14] incorporating the
modified Morse potential function [15] has been developed by model defect-free
CNTs under tensile loadings.

From the studies conducted so far, continuum mechanics based models have not
been fully developed for predicting the effects of defects on mechanical properties
of CNTs and nanotube composites. The quantum mechanics and molecular
dynamics (MD) simulations are the main approaches for modeling the effects of
defects on mechanical [9, 10] and thermal properties [16] of CNTs. One attempt
using a continuum based atomistic model to study defect nucleation in carbon
nanotubes under mechanical loadings have been carried out [15]. Also, the effect of

Fig. 9.1 Topological defect (Stone-Wales) in CNT [2]

Fig. 9.2 Hybridization defect in CNT (Sp2 to Sp3) [3]
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defects on fracture of nanotubes has been studied [16] using the finite element
(FE) based model where the dimensions of the nanotube structures were assumed to
remain unchanged after the formation of defects, which may not be true as atoms
redistribute to minimize energy.

9.2 Problem Description

The finite element method is to be used for evaluating the mechanical behavior of
defective CNTs and graphene sheets. Stone-Wales (SW) defect (5-7-7-5) [17] and
vacancies in SWCNTs and graphene sheets with different chilarities will be studied
under axial load. Then, the stress–strain relationship of defective structures con-
taining different number of defects is predicted by using the established finite
element model based on the modified Morse potential function. Effects of defects
on the tensile strength of carbon nanostructures are thereafter analyzed. The process
involves comparing obtained outputs after simulations with other numerical results
such as molecular dynamics for armchair and zigzag carbon nanotubes and
graphene.

9.3 Modeling of Defective CNT and Graphene Structures

The process for modeling defective CNT and graphene was conducted through
the same method used defect free CNT and other nano-structures as detailed in
Sects. 6.2.2–6.2.9. The boundary conditions for the models are shown in Fig. 9.4.

Fig. 9.3 A vacancy defect on a (10,10) SWCNT [2]
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The atoms on the bottom edge of the tube were fixed in all directions. The other end
of the CNT was axially displaced incrementally to introduce load into the tube.

The interatomic force is calculated for all atoms along the end of the nanotube
where the displacement is prescribed. The axial strain of the CNT is computed as
ɛ = Δl/lo, where lo is the initial length of the CNT or graphene. The force–strain
relationship of nanotubes is predicted using modified Morse potential as outlined
earlier. It should be noted that the present method does not require a tube thickness

Fig. 9.4 a Vacancy in a SWCNT and b SW defect in a graphene sheet
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to be defined. However, in order to compare the results with others, a conventional
modulus and strengths can be calculated using wall thickness of 0.34 nm for CNTs
and graphene sheets. The total force carried by the CNTs can be extracted from the
simulation results and then the stress can be computed as σ = F/A and the Young’s
modulus as E = F · l/Δl · A, respectively.

9.4 Post Processing for Defective CNT and Graphene

The predicted nonlinear behaviors of nanotubes are very similar to results calcu-
lated from MD approach [12]. From earlier studies [12, 13], the predicted strengths
and failure strains are significantly higher than the experimental values, that is 11–
63 GPa for strength and 10–13 % for failure strain [18]. This difference can be
partially explained by the presence of defects that reduce stiffness and strength.

Various types of defects exist in CNTs and graphene such as vacancies and SW
(5-7-7-5). Graphene sheets and SWCNTs of armchair (12,12) and zigzag (20,0)
were modeled in length of 10 nm. It was shown before that the Young’s moduli for
both armchair and zigzag nanotubes decrease with decreasing tube diameter and
approach the predicted graphite value when the tube diameter is increased. Effect of
tube curvature were neglected because (12,12) and (20,0) nanotubes have similar
tube diameter. In this simulation, the displacement was increased gradually until
carbon-carbon (C–C) bonds reach inflation point and bonds breaks. Bond strain and
stress can be extracted from the simulation results. Figure 9.5 shows effect of
vacancies on the graphene (12,12) and SWCNT (12,12).

Different numbers of vacancies were analyzed to these structures in order to
study the effect of vacancy density on the mechanical behavior of graphene sheets
and nanotubes. Figure 9.6 Shows stress-strain relationships for graphene (12,12)
and SWCNT (12,12) containing different amount of vacancies. It can be seen when
the number of vacancies increases from 0 to 50, both structures become less
resistance to stress. The same behavior was observed from simulation results of
graphene (20,0) and SWCNT (20,0). Based on the results, it can be concluded that
vacancies can badly deteriorate mechanical properties of carbon nanostructures.

Figure 9.7 shows the calculated Young’s modulus of defective nanotubes and
graphene sheets with different chilarities. Young’s modulus of nanotubes and
graphene sheets are reduced from 0.88 to 0.72 TPa when the number of vacancies
increased from 1 to 50, respectively.

Results show that such reduction is highly depends on the chilarity. Armchair
structures have greater mechanical strength comparing to zigzag structures.
Obviously graphene sheet (12,12) shows remarkable resistance to vacancies in
comparison with other nanostructures. Zigzag configurations are weaker and more
sensitive to defects as deduced from simulation results.

The Stone–Wales 5-7-7-5 defect involves the 90° rotation of a carbon bond with
a new configuration. Figure 9.7 shows two graphene sheet (12,12) with one and
three SW defect. Bond strains under tensile loading are depicted in Fig. 9.8.
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Fig. 9.5 Effect of 26 vacancies on the graphene and SWCNTs: a graphene (12,12) and b SWCNT
(12,12)
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Fig. 9.8 Effect of SW defects on graphene (12,12), a 1 SW and b 3 SW
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It seems that SW defect is the weakest part in a graphene sheet. In addition, the
effect of the SW defect on the configuration is found out to be local and limited to
atoms in the neighborhood of the defect.

Atoms far away from the defect undergo uniform deformation and their
geometry configurations are the same as the defect-free tubes. Stress-strain curves
of prefect graphene sheets and defected graphene sheets are shown in Fig. 9.8.
Results show that SW defect has significant effect on the tensile behavior of
graphene.

Figure 9.9a shows the calculated stress–strain relationships for armchair nano-
tubes with and without SW defects. As can be seen from Fig. 9.9b, when three SW
defect were introduced to a (12,12) graphene sheet, its Young’s modulus decreases
from 0.9227 to 0.896 TPa which is more effective than vacancies. The predicted
tensile strength as 85.9 GPa of defect free graphene is much greater than that
75 GPa of defective graphene.

From the results obtained after simulating defective CNT and graphene, it can be
concluded that:

1. The present approach is capable of predicting Young’s modulus, and stress–
strain relationship of graphene sheets and nanotubes with or without
vacancy/SW defects.

2. Results show that CNTs and graphene structures are sensitive to vacancies.
However armchair graphene structures have significant resistance to defect
under tensile load. Moreover, armchair structures for both CNTs and graphene
sheets are stronger than zigzag ones.

3. Effects of the SW defect on the Young’s modulus, fracture and failure of
defective CNTs have been investigated. Using the present approach, it is fea-
sible to model multiple defects and their interaction in both SWCNT and
MWCNT since the present approach is much simpler and computationally
efficient than the classical molecular dynamics model.
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Chapter 10
Mechanical Behavior of Carbon
Nanotube-Reinforced Polymer Composites

10.1 Introduction

Nanocomposite is a multiphase solid material where one of the phases has one, two
or three dimensions of less than 100 nm, or structures having nano-scale repeat
distances between the different phases that make up the material. In the broadest
sense this definition can include porous media, colloids, gels and copolymers, but is
more usually taken to mean the solid combination of a bulk matrix and
nano-dimensional phase(s) differing in properties due to dissimilarities in structure
and chemistry. The mechanical, electrical, thermal, optical, electrochemical, cata-
lytic properties of the nanocomposite will differ markedly from that of the com-
ponent materials [1–3].

In mechanical terms, nanocomposites differ from conventional composite
materials due to the exceptionally high surface to volume ratio of the reinforcing
phase and/or its exceptionally high aspect ratio. The reinforcing material can be
made up of particles (e.g. minerals), sheets (e.g. exfoliated clay stacks) or fibres
(e.g. CNT or electrospun fibres). The area of the interface between the matrix and
reinforcement phase(s) is typically an order of magnitude greater than for con-
ventional composite materials. The matrix material properties are significantly
affected in the vicinity of the reinforcement [4].

Examples on nanocomposites include:

1. Ceramic-matrix nanocomposites: In this group of composites the main part of
the volume is occupied by a ceramic, i.e. a chemical compound from the group
of oxides, nitrides, borides, silicides etc. In most cases, ceramic-matrix nano-
composites encompass a metal as the second component. Ideally both compo-
nents, the metallic one and the ceramic one, are finely dispersed in each other in
order to elicit the particular nanoscopic properties. Nanocomposites from these
combinations were demonstrated in improving their optical, electrical and
magnetic properties as well as tribological, corrosion-resistance and other pro-
tective properties [5].
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2. Metal-matrix nanocomposites: Metal matrix nanocomposites can also be defined
as reinforced metal matrix composites. This type of composites can be classified
as continuous and non-continuous reinforced materials. One of the more
important nanocomposites is CNT metal matrix composites, which is an
emerging new material that is being developed to take advantage of the high
tensile strength and electrical conductivity of carbon nanotube materials [6].

3. Polymer-matrix nanocomposites: These are obtained by adding nanoparticulates
to a polymer matrix to enhance its performance, often dramatically, by simply
capitalizing on the nature and properties of the nanoscale filler. Nanoparticles
such as graphene, CNTs, molybdenum disulfide and tungsten disulfide are being
used as reinforcing agents to fabricate mechanically strong biodegradable
polymeric nanocomposites for bone tissue engineering applications. In general,
two-dimensional nanostructures can reinforce the polymer better than
one-dimensional nanostructures, and inorganic nanomaterials are better rein-
forcing agents than carbon based nanomaterials. In addition to mechanical
properties, multi-walled carbon nanotubes based polymer nanocomposites have
also been used for the enhancement of the electrical conductivity [7, 8].

In the large field of nanotechnology, polymer matrix based nanocomposites have
become a prominent area of current research and development. Since the last
decade, research activities in the area of nanocomposites have been increased
dramatically [9]. Extensive efforts have been dedicated to a deep understanding of
CNT/polymer composites [10–16]. CNTs have been well respected as reinforce-
ment that can enhance mechanical, thermal and electrical properties of
polymer-based composite [17]. Their properties such as one-dimensional structure,
small size, low density, high aspect ratio, great flexibility and supreme mechanical
strength make them an attractive additive in a polymer matrix [18–20].
Nevertheless, many parameters influence the effective properties of CNT/polymer
composites such as structure, orientation, dispersion, diameter of CNTs and matrix
properties including stiffness and toughness.

10.2 Computational Modeling of CNT Based Composites

Computational approach can significantly assist the development of the CNT-based
composites and improve their analysis and design [20]. It is difficult to provide an
analytical model at nanoscale. However, even available models are often too
complicated and cannot be solved easily. Experimental tests are also costly and
involve technical difficulties. Due to these limitations, computational modeling of
nanocomposites can be an efficient tool for characterizing the mechanical properties
of CNT based composites [21].

It has been established that individual CNTs are widely simulated via MD
simulations which have been a great help toward understanding the mechanical and
electrical behaviors of the CNTs. However, MD limitations in length and time
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scales dramatically affect their application for larger length scales in nanocom-
posites. For instance, a composite cube with an edge length of 1 µm could contain
up to 1012 atoms which demands huge computing powers for a simple MD analysis
[22]. Practically, advanced materials and nanocomposites in particular should pri-
marily be evaluated at nano scale. They can be extended to macro length scales. It is
believed that a combination of MD with other methods is the best approach for this
purpose [23].

A multi-constituent material, composites in particular, could be successfully
homogenized through the combination of the continuum approaches with mi-
cromechanics models [24]. This combination bridges microscale properties to the
macroscale. Micromechanics is based on continuum mechanics and specialized for
small deformations. Material properties should be uniform in continuum mechanics.
However, it is impossible to hold uniformity at microscale. Thus, the microme-
chanics method must be employed instead. In this way, one can express the con-
tinuum quantities of very small elements by using the structural properties of micro
constituents [23].

Interaction between CNTs and polymer has been studied and various bonding in
the interface were reported [25]. However, most of the observations indicate that
strong bonding commonly occurs [25]. A suitable interface is defined as a strong
interface which efficiently transfers the load from the chosen matrix to the fibers
via a stiff interface [26]. It was argued that atomic interaction and micromechanical
interlock in the CNTs/matrix interface are the main factors in the interfacial
strength [27].

Based on several factors, a multi-scale representative volume element (RVE) has
been used for modeling the tensile behavior of carbon nanotube-reinforced com-
posites [28]. Between the nanotube and the matrix a perfect bonding was assumed
until the interfacial shear stress exceeds the corresponding strength which simulated
the debonding effect. With isotropic assumption for resultant composite, a typical
RVE for CNT composite is shown in Fig. 10.1.

Technical difficulties at nano scale are the main barrier in the way to a com-
prehensive measurement of the interfacial strength between CNT and polymer
matrix [29]. These inconveniences have incited the application of theoretical
approaches to evaluate the load transfer ability of the nanocomposites [30]. It has
been reported [24] that there are two main types of stress at the interface. The elastic
shear stress in the perfectly bonded area and frictional stress at debonded interfaces
with the variation for interfacial stress is depicted in Fig. 10.2.

Based on simulation conducted so far, computational approaches are powerful
tools in the field of CNT and related composites. However, they cannot simulate
many experimental observations which lead to over predicted or underestimated
properties of the composites. Micromechanical and continuum models exhibited
good potentials in mechanical characterization of composite RVEs. However,
results shows that enormous challenges still remain in the development of such an
accurate and efficient nanocomposite model.
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10.3 Modeling Procedure for RVE

Bulk CNTs are a combination of different sizes and forms. As mentioned in pre-
vious chapter, they can be a few nanometers in length and can reach micrometers.
They are in different shapes, for example, a CNT can be straight, twisted or curled
in the bundle of ropes. Moreover, their distribution and orientation in the matrix can
be uniform and unidirectional or random. All these parameters make the simula-
tions of CNT-based composites extremely difficult.

Fig. 10.1 Modeling the effective module of composite by representative volume element [17]

Fig. 10.2 Interfacial stress
measurement based on
micromechanics
modeling [31]
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The concept of unit cells or RVE has been applied successfully in the studies of
microscale fiber-reinforced composites [32, 33]. In the RVE, CNT with surrounding
matrix were modeled. Proper attention should be made to boundary and interfacial
conditions to consider the effects of the constituent materials. The mechanical
responses of these RVEs under tensile load would be analyzed using finite element
and ANSYS code. Different constituents of nanoscale RVEs are shown in
Fig. 10.3 [16].

At the onsett, finite element models should be constructed for each of the
components. Molecular mechanics are employed to create a nonlinear model for
tensile behavior of CNTs as described in Sects. 6.2.2–6.29. The Polymer
(Polypropylene) was modeled with solid elements which support plasticity with
available experimental data adopted for the material behavior of elements.
Interfacial region needs careful attention due to its important role in the load
transfer issue. As noted before, interface has been simulated differently through
spring or joint elements. Although they have leaded to acceptable, modeling pro-
cess were inefficient in terms of computing power and required time. Therefore, a
new approach was opted to overcome these difficulties. Figure 10.4 demonstrates
the finite element modeling steps for CNT and composite RVEs.

This RVE can efficiently be utilized to study the load transfer mechanism and
interactions of CNTs with the polymer. Stress distributions along the interface can
be extracted from the results as well. The chemical bonding between SWCNTs and
the PP may results in too complicated solutions. Therefore, chemical interactions in
the interface were neglected. To be more specific, the aim was to evaluate the
influences of nonbonded interactions on interfacial stress transfer which is a
common phenomenon in CNT/polymer composites.

It is a common practice to assume all the phases as homogeneous and isotropic.
The material deformation was integrated into elements for material and geometrical
nonlinearities. Full Norton-Raphson method was chosen to solve the nonlinear
finite element equations. The stress generated in the RVE was calculated using
the nodal and elemental stresses by accounting for all phases present in the RVE.
The mechanical properties of composite RVE were calculated via extracted nodal
data. For example, modulus of the composite was calculated from the values of
the axial.

Fig. 10.3 RVE consists of polymer, interface and CNT
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10.3.1 Polymer Matrix

The volume fraction of CNTs in a typical composite should be small, since CNTs
tends to agglomerate. Therefore, the volume percent of polymer matrix is much
higher than that of CNTs at molecular scale. As a reasonable assumption, a con-
tinuum medium is expected to be accurate enough for modeling of surrounding
polymer. In this work, solid elements are utilized to simulate the polypropylene
matrix. A 3-D higher order elements with 20-node, SOLID186, was employed for
this purpose. The nodes have 3 translational degrees of freedom in x, y and z
directions. The element support nonlinear material behavior and according to the
ANSYS conditions is a prefect medium to model curved boundaries.

The simulated resin was treated as a nonlinear isotropic material. Young’s
modulus and Poisson’s ratio was set according to the experimental data. Multilinear
Isotropic Hardening (MISO) material model was utilized to include nonlinear
plasticity of PP work or isotropic hardening has been adopted. The hardening rule
describes the changing of the yield surface with progressive yielding, so that the
conditions such as stress states for subsequent yielding can be established. For
materials with isotropic plastic behavior this is termed isotropic hardening and is
shown in Fig. 10.5a. The CNT volume percent is altered by changing the cross
sectional area of PP matrix.

Fig. 10.4 Modeling strategy
adopted for CNT and
composite RVEs
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10.3.2 CNT Polymer Interaction

The interfacial region between the CNTs and polymer is a crucial factor. Proper
adhesion ensures the maximum load carrying capacity from polymer. All these
issues make them the most challenging problem for any simulation approaches.
Therefore, it was one of the objectives to explore the load transfer issues and its
effects on the tensile behavior of CNT/PP composite.

Although continuum models have been developed for CNT/polymer composite,
simulation of CNT/polymer interface has remained as a challenge topic for further
investigations [35]. It is difficult to account for the van der Waals force in con-
tinuum models in an efficient and accurate method [36].

Cohesive zone models have been successfully employed in the continuum
modeling of interface stresses in composites [37]. In this work, a cohesive zone
model is adopted to relate interfacial shear tractions and the sliding displacements.
The proposed interface model is capable of simulating interface functions. With
respect to presented formulation, the interface is modeled using augmented
Lagrangian method. A typical cohesive zone with a relatively course mesh is shown
in Fig. 10.6. A combination of CONTA174 and TARGE170 elements were used to
model stress transfer behavior of the interface.

10.3.3 Boundary Conditions and Assumptions for RVE

To conduct a comprehensive study, two types of RVEs were represented containing
long and short CNTs. The schematic illustrations of 3D RVE with applied boundary
conditions are shown in Fig. 10.7. Tensile behavior of CNT/PP composites is
investigated under uniform extension. For each model, one end is constrained in the
all directions and the other end (z = L), where L is the length of RVE, is free to

Fig. 10.5 a Stress-strain behavior of the multilinear isotropic plasticity, b Isotropic work
hardening rule [34]
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move in the z directions. An axial displacement is applied to all nodes on the end
surface to simulate external tension on the top surface.

10.3.3.1 CNT Through the Length of the RVE

In this case embedded CNT is relatively long and represent one with large aspect
ratio. Therefore, a segment of the composite can be modeled using a 3D RVE as
shown in Fig. 10.7a. The volume fraction of the CNT was calculated from the RVE
geometry as:

Vf ¼ r2o � r2i
R2 � r2i

ð10:1Þ

One can simply obtains the following expression for the Young’s modulus in the
axial direction of a fiber-reinforced composite,

EC ¼ Ef Vf þ EMð1� Vf Þ ð10:2Þ

Fig. 10.6 Contact elements representing CNT/polymer interface
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where Ec, Em and Ef are the Young’s modulus of the composite, matrix and CNT,
respectively. This is the same rule of mixtures as applied for predicting the Young’s
modulus in the CNT direction.

However, in the proposed model, as matrix and CNT do not attach directly, it is
assumed that they can deform independently under the stretch ΔL. It means the
simplified formulation is not applicable in this work. Only for comparison purposes,
the results will be compared with the rule of mixtures. This will be compared with
the rule of mixtures. This may clarify the distortion of the simplified formulation.

10.3.3.2 CNT Inside the RVE

In this case, the CNT is comparatively short and completely surrounded with
polymer as illustrated in Fig. 10.7b. According to role of mixture, the RVE can be
divided into two segments. One segment accounting for the two ends with total
length Le and Young’s modulus Em; and another segment accounting for the center
part with length Lc and Young’s modulus Ec. The two hemispherical end caps of the
CNT have been ignored in this derivation, since they do not contribute to the
composite strength. The center part can be similarly visualized by a RVE similar to
Fig. 10.7a, thus its Young’s modulus can be found by using Eq. 10.3. The volume
fraction of the CNT is given by Eq. 10.3 is computed based on merely the center
part of the RVE with length of Lc. Once again, one can find the Young’s modulus in

Fig. 10.7 3D RVEs with the applied boundary conditions for a long and b short CNTs
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the axial direction by applying the compatibility of strains and equilibrium of
stresses. The expression can be written as:

1
EC

¼ 1
EM

Le
L

� �

þ 1
EC

LC
L

� �

A
AC

� �

ð10:3Þ

in which the areas are A = πR2 and Ac = π(R2
– r2). Equation 10.3 could be viewed

as an extended version of rule of mixtures compared to that given in Eq. 10.2. It can
be used to estimate the Young’s modulus when CNT is inside the RVE as shown in
Fig. 10.7b.

10.4 Tensile Loading of the RVEs

To evaluate the tensile properties of a CNT-based nanocomposite, the cylindrical
RVE consisting of SWCNT, PP matrix and interface was studied using the finite
elementmethod. Tensile behavior of PP and a typical CNTwas compared in Fig. 10.8.

As mentioned earlier, solid elements were utilized to model RVE. The nonlinear
behavior of PP and CNT were integrated with solid elements by using Multilinear
Isotropic Hardening (MISO) material model. This model is recommended for large
strain deformations. In order to calculate stress values at each substep, reaction
forces at surface nodes were divided by cross section of the polymer model.

In Fig. 10.9, a comparison between tensile behavior of fabricated net PP samples
and calculated behavior from FE model is shown. It can be seen that they match
perfectly up to 10 % strain.

Fig. 10.8 Stress-strain curves of armchair SWCNT and pure PP
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In order to reduce computing cost, the CNT were also replaced with solid
elements in shape of a hollow cylinder. Stress values for at each substep were
calculated from the reactions forces at surface nodes. The tensile behavior of solid
model is compared with tensile respond of molecular model based on modified
Morse functions and shown in Fig. 10.10.

10.4.1 Effect of CNT Length on the Modulus of CNT/PP
Composites

To start with, perfect bonding between CNT and PP was assumed. As noted pre-
viously, it is not impossible to create such a strong bond via functionalization
methods in a CNT-based composite. The interface model was adjusted to account

Fig. 10.9 Stress-strain curves
obtained from FE model and
experiments for pure PP

Fig. 10.10 Stress-strain
curves obtained from solid
and atomic models for
armchair SWCNT (5,0)
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the full bonded condition between the CNTs and matrix. RVE containing a long
CNT was studied. The RVE with applied boundary conditions is illustrated in
Fig. 10.11. Axial displacement were constrained at z = 0. Axial displacement was
applied in axial direction to simulate deformation of the RVE under tension. The
nodal displacement and reaction forces were computed for the described boundary
conditions. These data were used to calculate the stress-strain relationships of
RVEs. As demonstrated in Fig. 10.11, the CNT went all the way through the RVE
length. Material constants and dimensions of RVE are listed in Table 10.1. The
material behavior for CNT is assigned to the solid elements. The values of the
dimensions and material constants can be modified for any specific case in other
simulations. Equations 3.7–3.10 were employed to compute the Young’s modulus
(E), ultimate strength (σuts) and Poisson’s ratios (ν) for the RVE.

As mentioned earlier, two case studies are presented that covers long and short
CNTs in the polymer. In all the cases, full 3-D FEM models were built. The finite
element meshing has been done with different element sizes. The optimum mesh
size was chosen according to the accuracy and efficiency of the model as demon-
strated in Fig. 10.12. CNT is meshed with two layers of elements. It was concluded
that it was fine enough to produce converged solutions.

Surrounding matrix does not require small elements comparing to CNT. The
polymer meshed with relatively courser element. However, it was necessary to
avoid elements with large aspect ratios. Section of the proposed model is shown in
Fig. 10.13.

Fig. 10.11 RVE with applied boundary conditions

Table 10.1 Dimensions and
material constants of the RVE

Dimensions PP CNT

Length (nm) 100 100

Inner radius (nm) 5 4.6

Outer radius (nm) 10 5

E (GPa) 0.475 861

σuts (GPa) 0.028 94.86

ν 0.42 0.3
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Fig. 10.12 3-D RVE of SWCNT/PP composite with long CNT

Fig. 10.13 Section of the FE model for RVE with long CNT
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The volume facture of the presented RVE was calculated from Eq. (10.2) as
0.033. Thus, the rule of mixture in Eq. (10.3) yielded Emix = 28.7 GPa which
predicts a significant improvement in the composite mechanical response. However,
the calculated value form more elaborated Halpin-Tsai equation [38] leads to
EH–T = 475 MPa. This value is closer to the experimental observation. The dif-
ference is much obvious in the plots illustrated in Fig. 10.14. The lower values of
material constants obtained from FEA, compared with that of the results of rule of
mixture and Halpin-Tsai model, suggested that the effect of material nonlinearity
caused by both material properties and geometry of the RVE cannot be neglected.

Then a RVE containing short CNT was built. The same concept was utilized
while the CNT total length reduced to 50 nm. The finite element was meshed as
shown in Fig. 10.15. Two layers of elements were used to mesh the thickness of the

Fig. 10.14 Comparison
between the FEA results and
rule of mixture predictions

Fig. 10.15 Section of the FE model for RVE with short CNT
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CNT due to complexity of the geometry and to obtain a reasonable element shape.
The interface was adjusted accordingly to simulate prefect bonding. DOF constraint
was imposed to both end surfaces. All DOFs for the bottom surface was constrained
while axial displacement was applied to other end so that all nodes on that surface
displaced the same amount in the axial direction to simulate the tensile load.

If we consider the rule of mixture equation for short CNTs [16], calculation from
vf = 0.016, Ef = 861 GPa and Em = 0.475 GPa yields Emix = 0.912 GPa. While, the
extracted value form the RVE was Ec = 603 MPa. The difference could be seen
much clearly in the plots illustrated in Fig. 10.14. The lower value of Young’s
modulus and ultimate strength (σuts) obtained from FEA, compared with that of the
rule of mixture, suggests that we cannot neglect the effect of material nonlinearity
caused by both material properties and geometry for the composite RVE.

Figure 10.16 represented deformation contours of RVEs under tensile load. The
displacement results showed the deformed shape of RVE model after the solution.
The color contours demonstrated the magnitude of deformation from the original
shape. The color contours corresponded to the values defined by the color bar.

To find out the effect of CNT length on the tensile properties of composites, the
stress-strain curves for both cases were plotted in Fig. 10.17. It can be seen that
RVE with long CNTs shows several order higher strength comparing to other RVE.
This conclusion is in good agreement with other reports [16, 20, 40]. However, both
of these studies were based on elastic models.

According to the results, radial deformation mostly happens in the areas with
smallest mechanical strength. In RVE containing large CNT, the deformation
mostly happen in the polymer near the z = L. It can be seen that the tensile load was
applied to this end. For short CNT, deformation concentrated in the polymer close
to the CNT ends. Stress concentration at these regions can explain this behavior.
Displacement vector sum for both RVEs are shown in Fig. 10.17.

Von Mises stresses in Fig. 10.18 used color contours to show the stresses
calculated during the solution for RVE models. The deformed model was displayed.
The color contours corresponded to the values defined by the color bar.

It can be seen that the stress distribution is not uniform in the RVEs. Based on
the theoretical models, it was expected that polymer transfer external stress to the
CNT in a prefect composite. Stress distribution in the RVEs in Fig. 10.19 is the
evidence that confirm theoretical prediction. In both cases, stress is concentrated
mainly in the CNT. Maximum transferred stress in RVE containing short CNT is
1.16 GPa, while this value for RVE containing long CNT is several magnitude
larger and equals to 21.8 GPa. Strain mostly happen in the regions with larger stress
tensor. Strain distribution in the RVEs with prefect bonding is depicted in
Fig. 10.19. Von Mises strain in the RVEs matches perfectly with the predictions.

In order to realize the deformation mechanism of RVEs under tensile load, each
component of the RVE was studied separately. Figure 10.20 shows the stress
distribution in the matrix. Interestingly, in both cases the maximum stress value is
almost 33 MPa. It can be seen that polymer is merely a medium which transfer the
stress. Thus, it cannot resist the external stress sufficiently. Therefore, CNTs are

10.4 Tensile Loading of the RVEs 189



Fig. 10.16 Radial displacement of the RVEs for prefect bonding: a long and b short CNTs
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Fig. 10.17 Displacement vector sum of the RVEs for prefect bonding: a long and b short CNTs
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Fig. 10.18 Von Mises stress distribution in the RVEs for perfect bonding: a long and b short
CNTs
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essential parts of the composite and carry great part of the applied stress as shown in
Fig. 10.21. Prefect bonding in the interface enables the composite to withstand large
external stress before matrix fails under tension.

As depicted in Fig. 10.22, results showed that the maximum stress located in the
middle of the CNT for short CNT. The maximum stress happened at z = 0 of the
CNT. It is mostly the result of displacement constrains applied to the extremes.

Perfect bonding condition in the proposed RVE with long CNT results in a large
local strain up to 1.6 nm/nm as depicted in Fig. 10.23. Due to complete adhesion
between CNT and polymer, similar strain was observed in most of the length of the
RVE less than 0.006 nm/nm. Superior mechanical strength of the CNT successfully
resist against the external stress at these areas. At z = L, stress gradually increases
until the polymer fails under the tension and undergoes a large strain.

For RVE containing short CNT, maximum strain located in the polymer close to
the CNT ends as shown in Fig. 10.24. Based on the theoretical studies, the shear
stress at these regions should be maximum which introduce strain to the polymer
with lower mechanical strength.

Since CNTs are remarkably stronger than polymer, their displacement under
tension is very small. Von Mises total strain distribution in the CNTs are illustrated
in Fig. 10.25. Total strain in the CNTs are smaller than the polymer in

Fig. 10.19 Von Mises strain distribution in the RVEs with long CNT for perfect bonding
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corresponding RVEs. Maximum strain in RVE with short CNT located in the
middle of the CNT which has highest amount of normal stress. Due to fixed ends of
the RVE with long CNT, the maximum strain expected to occur at the z = 0 end
with highest stress value.

The first principal stress gives the value of stress that is normal to the plane in
which the shear stress is zero. The first principal stress helps to understand the
maximum tensile stress induced in the part due to the loading conditions.
Figures 10.26 and 10.27 shows the first principal stress distribution thorough the
RVEs. The obtained data showes that CNTs are vital when tensile strength is
needed in such a composite. Significant portion of the applied tensile stress was
transferred to the CNT through the polymer in both cases.

However, the shifted tensile load of 17.5 GPa is smaller than the von Mises
stress of 21 GPa. Their difference indicates that other tensile forces also exist in the
RVEs. This difference is more obvious for RVE with short CNT. The maximum
detected tensile tension is equal to 1.1 GPa which is remarkably smaller than von
Mises value of 11.6 GPa. It can be the main reason for the failure of the RVE under
tensions much faster than the RVE with long CNT. The tensile stress distribution of
the RVE with short CNT is shown in Fig. 10.27.

Fig. 10.20 Von Mises strain distribution in the RVEs with short CNTs for perfect bonding
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Fig. 10.21 Von Mises stress distribution in PP for prefect bonding: a long and b short CNTs
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Fig. 10.22 Von Mises stress distribution in CNT for prefect bonding: a long and b short CNTs
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10.4.2 Effect of Interface on the Modulus of CNT/PP
Composites

It has been established that the prefect interface can lead to a significantly improved
mechanical respond of the entire composite [24–27, 29, 32, 33, 36, 39–46].
However, in most cases qualitative Atomic Force Microscopy (AFM) and Scanning
Electron Microscope (SEM) studies showed that the interface is the weakest
component of the composite. To investigate the efficiency of the RVE, a parametric
study has been performed to illustrate the influence of interface strength on the
behavior of entire RVE. Different interface strength values were successfully
adjusted to contact elements. The interface modulus was varied from no-bonding to
very strong bonding.

Different values of shear strength was adjusted to the interface to simulate the
shear stress filed around the CNT. The values in between were adopted from
available experimental observations which were listed in Table 10.1.

Figure 10.28a shows the RVE with disabled interface. It means that the shear
strength of the interface is zero. It can be seen that polymer move freely around the
CNT and deformation is completely uniform in the entire matrix. In the contrary,
when the interface strength increased to 10 MPa, stress transfer dominates and
polymer cannot move independently. So there would be localized severe

Fig. 10.23 Von Mises total strain in the PP for prefect bonding: a long and b short CNTs

10.4 Tensile Loading of the RVEs 197



deformation as demonstrated in Fig. 10.28b. Stress analysis illustrated that the shear
transfer between polymer and CNT could be almost zero and polymer deformed
uniformly under the stress increment as shown in Fig. 10.29a.

Von Mises stress distribution for RVE with ISS value of 10 MPa is shown in
Fig. 10.29b. It seems that, polymer transfer the stress up to 10 MPa and beyond that
interface fails and polymer undergo the remaining stress. This leads to intensive
strain at the area neighboring the broken interface. The maximum stress in case of
disabled interface was detected on the edges of the polymer of almost 68.1 MPa,
while the stress value less than 35 MPa at most spots. These results can explain the
weak stress-strain relationship of the RVE as depicted in Fig. 10.29a. Maximum
stress of 732 MPa was calculated when the ISS = 10 MPa in Fig. 10.29b. It clearly
shows the effect of interface on the composite. In addition, von Mises stress dis-
tribution showed that stress is successfully transferred to the CNT through the
interface and CNT carries a great proportion of the stress. Stress-strain curves for
RVEs with disabled interface and ISS = 10 MPa are shown in Fig. 10.30.

Similar studies have been conducted for various ISS values. The mechanical
response of the RVEs was extracted and analyses. Stress-strain curves for different
ISS value was calculated from the FE model. These curves are shown in Fig. 10.31.
Results showed that the effect of interface on the Young’s modulus and tensile
strength is significant.

Fig. 10.24 Von Mises total strain in the PP for prefect bonding: a long and b short CNTs
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Fig. 10.25 Von Mises total strain in the CNT for prefect bonding: a long and b short CNTs
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The material constants were computed using the FEM results for the RVEs
under the tension. The Young’s modulus and ultimate strength of CNT/PP com-
posite as a function of the ISS value are listed in Table 10.2 for RVE containing
long CNT. It can be deduced from the Fig. 10.31 that bigger ISS values leads to
larger composite stiffness. For example, the strength of the composite were almost
two times bigger than RVE without interface bonding when ISS is 50 MPa. Lower
values of ISS results in decreased modulus for the composites. However, these are
remarkably smaller in comparison with the prefect interface bonding case. Based on
the results, the obtained stiffness in the axial direction from rule of mixtures
equation is far from the FEA solutions. So, the rule of mixtures could not serve as
an accurate tool to estimate the stiffness of CNT-based composites in the axial
direction.

The results in Table 10.2 confirm that the stiffness of the composite increases
substantially in the CNT axial direction. By addition of about 3.28 % volume
fraction of the CNT, the Young’s modulus of the composite in the axial direction
increases by more than 7 times compared with pure PP, when Ef is much larger than
Em (CNTs in a polymer matrix).

The cohesive zone model (CZM) adopted for interface has various capabilities
which are depicted in Fig. 10.32. Contact status is a useful indicator which shows
whether, the polymer is sticking or sliding at any stage of the tension. Total stress

Fig. 10.26 First principal stress distribution in the RVE with long CNT for perfect bonding

200 10 Mechanical Behavior of Carbon Nanotube-Reinforced …



and strain that transfer to the CNT from the surrounding PP could be retrieved
simply as shown in Fig. 10.32b, c.

For short CNTs, likewise, different cases were studies. For a non-perfect
bonding between CNT and PP, different amount of ISS were assumed between the
CNTs and matrix. Figure 10.33 shows stress distribution in the RVE with ISS value
of 10 MPa.

Extracted values for tensile properties of these RVEs are listed in Table 10.3.
The properties of the CZM interface region can be adjusted by appropriate values.
Results showed that at a similar interfacial strength, the RVE behavior completely
depends on the CNT length. For example, for ISS value of 10 MPa, the RVE
containing long CNT depicted higher strength comparing to the other. Von Mises
stress values in Figs. 10.29 and 10.33 clearly show the influence of CNT length on
the mechanical response of the composite. The stress-strain curves for long and
short CNTs with similar ISS value are shown in Fig. 10.34.

Von Mises stress value in the matrix for RVE containing short CNT is almost
8.1 MPa while the same value in RVE with long CNT is about 2.5 MPa. The stress
value inside the CNT on the other hand follows an opposite trend. Indeed, larger
values of stress transferred to the long CNT of 73.5 MPa comparing to 50.3 MPa
for short CNT. This difference shows that polymer transfer more stress to longer
CNTs which leads to higher stress values in same strains comparing to short CNTs.

Fig. 10.27 First principal stress distribution in the RVE with short CNT for perfect bonding
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Fig. 10.28 Displacement vector sum for RVE with a disabled interface and b ISS = 10 MPa
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Fig. 10.29 Von Mises stress distribution in RVE with a disabled interface and b ISS = 10 MPa
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Fig. 10.30 Stress-strain
curves of the long CNT/RVE
with different interfacial
strength

Fig. 10.31 Stress-strain
curves of RVE containing
long CNT as a function
of the ISS value

Table 10.2 Computed Young’s modulus and tensile strength for RVE with long CNT

ISS (MPa) E (MPa) Relative change (%) σuts (MPa) Relative change (%)

0.001 495 4.2 31.4 0.64

0.01 497 4.7 31.5 0.62

0.1 505 6.4 31.5 0.44

0 587 23.6 32.1 1.3

10 817 72.0 36.1 14.1

50 844 77.6 40.5 28.0
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The results showed that the increases of the mechanical properties in axial
direction were significant for different ISS values and even for small volume
fraction of the CNT. For example, when ISS = 50 MPa, the composite modulus was
553 MPa which is 16 % higher than pure PP samples. It reveals that the increase of
the stiffness of the composite can be significant in the CNT axial direction. Once
again, very low interfacial strength leads to smaller Young’s modulus and tensile
strength. According to the results, there is no significant mechanical enhancement
for the composite if the ISS value is below 1 MPa.

On the other hand, a comparison between mechanical improvement of RVEs
containing long and short CNTs shows a noticeable difference. In all cases, long
CNT results in higher Young’s modulus and stress values in same strains. It means
that reinforcement length plays a remarkable role in the composite stiffness, where
longer CNTs with higher interfacial surface area lead to larger stiffness and elastic
modulus. Although, presence of CNT in the matrix leads to better tensile strength in
all cases, results showed that short CNT cannot be as effective as long CNT in a

Fig. 10.32 a Contact status, b sliding distance at final step and c total stress at the interface at final
load step
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Fig. 10.33 First principal stress distribution in the RVE containing short CNT and ISS = 10 MPa
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polymer matrix for reinforcing purposes. Figures 10.35 and 10.36 show the effect of
ISS and CNT length on the mechanical response of RVEs.

It can be deduced from the results that the composite stiffness in the axial
direction calculated from the rule of mixtures is not coincident with the FEM
solutions which are based on nonlinear RVEs. Therefore, it seems the rule of
mixtures equations could not be employed as an accurate tool to predict the
Young’s modulus of CNT-reinforced composites in the axial direction.

At this stage RVEs were built based on the nonlinearity of materials and
cohesive zone interface. These RVEs were further used to estimate the tensile
properties of CNT/PP composites in the axial direction. In this section for the
convenience of comparison, the numerical results found by the FEM were validated
by experimentally data. Although the proposed FEM is not completely accurate for
stress distribution in the RVE, it is fairly accurate and efficient in predicting the
composite properties in the axial direction of the RVEs. The main emphasis of the
work was on the interfacial stress transfer issue which was addressed successfully
through cohesive zone model.

Table 10.3 Computed Young’s modulus and tensile strength for RVE with short CNT

ISS (MPa) E (MPa) Relative change (%) σuts (MPa) Relative change (%)

0.001 480 1.1 24.0 0.13

0.01 481 1.3 24.3 7.7

0.1 494 4.0 24.4 7.9

0 534 12.6 24.4 13.7

10 543 14.2.0 25.1 14.3

50 553 16.4 28.3 15.7

Fig. 10.34 Stress-strain
curves of RVEs with
ISS = 10 MPa
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The modelling results and experimental data were compared in terms of the
stress-strain curve overall shape and material constants such as Young’s modulus
and tensile strength. Figure 10.37 shows stress-strain curves of functionalized
MWCNTs/PP composites obtained from tensile tests for various amount of CNTs.

To compare experimental data with numerical results, weight percent of
MWCNTs should be converted to volume percent. Therefore, bulk and true density
of MWCNTs of 0.27 g/cm3 and 2.1 g/cm3 were taken into account, respectively.
Table 10.4 shows weight to volume conversions used in this study.

Fig. 10.35 Comparison
between Young’s modulus of
RVEs containing long and
short CNT

Fig. 10.36 Comparison
between tensile strength of
RVEs containing long and
short CNT
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By using the Table 10.4, the experimentally obtained data were converted in a
way in which they are comparable with theoretical results from FEM. Figure 10.38
shows a comparison between FEA results of RVE with long CNT and experimental
data from tensile tests.

Fig. 10.37 Stress-strain plot
of MWCNT/PP composites

Table 10.4 Percentage by
weight to percentage by
volume

Percentage by weight Percentage by volume

0.5 0.23

1 0.45

2 0.91

3 1.37

4 1.84

5 2.32

Fig. 10.38 Comparison
between FEA results for long
CNTs RVEs and experimental
data
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In case of RVEs with long CNT, it could be deduced that most of CNT effect
will happen below 0.03 strain. However, for RVEs with short CNTs, reinforcing
continued up to 0.05 strain.

Furthermore, RVEs with no interface shear strength illuminated similar tensile
behavior of pure polymer samples. Although accounting for the imperfect CNT/PP
contact leads to a reduced modulus of the composites comparing to perfect bonding
case, the computational results still overestimate the modulus compared to the
experimental values. It indicates that there are other experimentally observed
characteristics including CNT agglomerates, poor CNT dispersion within the PP
matrix and CNT alignment with respect to the applied load direction that should
also be accounted for in the future computational analysis.
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