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Preface

The control of dependence between random variables has always been an object of
interest and concern to probabilists and statisticians. Several ways to control this
dependence have been introduced, and this book concerns the notion of association
of random variables. Association and some other positive dependence notions were
introduced in the mid 1960s. The interest on these dependence notions came from
models where monotone transformations were concerned. Association and gener-
ally positive dependence received little attention of the probabilistic and statistics
community, but the interest increased in more recent years. Therefore, a rather com-
plete body of theory was constructed covering the traditional probabilistic topics
and, eventually, studying statistics based on dependent samples. Although this in-
creased interest, characterizations and results remained essentially scattered in the
literature published in different journals. So, it was time to bring together the bulk
of these results, presenting the theory in a unified way, explaining relations and im-
plications of the results. Such a challenge may be taken in, at least, two directions:
either going to the more subtle and at the peak of the wave results or introducing
the notions from a more elementary approach. In this book this later choice is taken.
In this way, the attention of the reader will not be diverted from the essential point,
which is the peculiarities of positive dependence and the way to get around the dif-
ficulties due this dependence structure. This does not mean that advanced or recent
results are not included. On the contrary, the text is organized in a manner such that,
starting from this elementary approach, and progression is made towards recent re-
sults on the asymptotics of sequences of associated random variables. This book
is addressed to researchers in probability and statistics, with a special concern on
people interested in kernel estimation methods. It will also be of interest to graduate
students in those areas. The book could also be used as a reference on association
on a course covering dependent variables and their asymptotics.

After presenting the notion of association of random variables, together with a
few variations on this definition, an account of inequalities hold for this dependence
structure is given. Many of these inequalities are extended versions of counterparts
that are well known for independent random variables, while others are really spe-
cific to this dependence. Most of these inequalities were developed as a means to
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prove or characterize extension of the classical results to associated variables. These
inequalities are presented as a chapter in order to have most of the basic tools avail-
able once and for all. The role that the covariance structure plays while control-
ling asymptotic results for associated random variables will become more explicit.
Again, throwing these into a separate chapter would contribute to leave the con-
centration of the reader directed in the appropriate direction when dealing with the
proofs of the later results. With these tools in hand, the text concentrates on the
convergence, almost sure or in distribution, and for this later with a special interest
on functional results, of sequences of associated random variables. At each of these
chapters we include a reference to the asymptotics of kernel estimators based on
associated samples.

Writing this book comes a result of work developed through many years during
which I had the opportunity to discuss and collaborate with a few colleagues. From
these, I would like to leave a special acknowledgement to Pierre Jacob and Charles
Suquet for the collaboration, many discussions and friendship throughout the years.
Finally, I wish to express my gratitude to my colleague Carlos Tenreiro who helped
improving an earlier version of this text.

Paulo Eduardo OliveiraCoimbra, Portugal
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Chapter 1
Positive Dependence

Abstract This is an introductory chapter where the notions of positive dependence,
with a particular interest in association, will be introduced. A few useful alternative
characterizations of association will be studied. Basic properties are proved showing
that, although some vagueness in its definition, association is reach enough to be an
interesting structure. We include examples and applications that are illustrative of
the scope and usefulness of this dependence notion. Association is natively a depen-
dence structure on random variables, so we will discuss its extension to some more
abstract spaces, highlighting the connections with the order structure of the under-
lying space. The chapter is concluded with a reference to other types of positive
dependence and their relations. A brief discussion on negative dependence notions
concludes the chapter.

1.1 Introduction

Some ideas of what is now known as positive dependence were explored in the liter-
ature for particular and relevant examples, without explicit referral to any particular
dependence structure. As an example, statistical procedures were used involving
pairs of dependent random variables trying to detect if large values of one variable
tend to be associated with large values of the other variable, as is the case for the
classical tests based on correlation ranks, or Kendall’s t-statistic, as discussed for
example in Hoeffding [46], Lehmann [57] or Blum, Kiefer and Rosenblatt [18].
Most of such procedures explore implicitly some notion of positive dependence,
meaning with this that some kind of measuring if large values of one variable tend
to be associated to large values of another variable, or, to put it in a different way,
if random variables tend to increase or decrease simultaneously. This was explicitly
noticed by Lehmann [58], who was the first reference to attempt a formalization
of these kind of dependence notions and to explore a few of its properties, trying
to extend the scope of applicability of the behaviour of the above-mentioned tests
beyond the particular distributions considered. Lehmann [58] was essentially inter-
ested in the distribution of pairs of random variables and introduced a dependence
notion well adapted for this framework, noticing immediately some consequences
about the covariance between the random variables. So, it was only natural that
positive dependence notions appeared in a bivariate context. Later, this idea was
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2 1 Positive Dependence

extended to multivariate distributions by Esary, Proschan and Walkup [36] to the
notion of association. This new dependence structure showed to have more inter-
esting properties and application scope still broad enough to attract the interest of
probabilists and, somewhat later, of statisticians. The main ideas behind these posi-
tive dependence notions is the global tendency for increasingness or decreasingness
of the family of random variables and the fact that approximation to independence
is completely characterized by the covariance structure. As it will be proved later,
association appears naturally in models that rely on monotone transformations, such
us reliability and survival analysis, thus contributing for the interest in applications
of these models and results derived. Most of the early results and applications where
in this direction, as is described in Barlow and Proschan [5], one of the few refer-
ences to explore in a more systematic way the positive dependence notions in the
decade that followed the contributions by Lehmann [58] and Esary, Proschan and
Walkup [36]. In the meanwhile, this dependence concept received some attention in
statistical mechanics and percolation theory, being known as the FKG inequalities
following the contribution by Fortuin, Kasteleyn and Ginibre [40]. Here the motiva-
tion for the interest in this kind of dependence appeared from properties satisfied by
the Hamiltonian describing the interaction between two bodies in Ising ferromagnet
spin models. The flow of literature eventually increased constructing a full body of
results, either with a probabilistic flavour or with a more statistical application in
mind.

Some other positive dependence notions were considered trying to respond to
specific difficulties, or to extend the scope of applicability of some of the results or
even trying to characterize independence from the covariances of the random vari-
ables. A few notions remained concentrated on bivariate distributions, while many
others tried to deal with multivariate distributions, extending the more relevant prop-
erties. Contributions made by Block, Savits and Shaked [17], Joag-Dev [53] and
Joag-Dev and Proschan [54] are examples of developments in this direction. Even-
tually some approaches using a more general framework appeared, trying to under-
stand more deeply what these dependence structures really mean. Shaked [92, 93]
tried to build a general approach to positive dependence notions, while Lindqvist
[60] extended the approach to abstract space-valued random variables, highlight-
ing the role of the order structure of the base space. Another direction of develop-
ment reversed the direction of the inequalities, thus defining negative dependence
notions. At first sight this seems to define an easier framework, as almost all the
bounds known for independent variables still hold for negative dependence. Never-
theless, many of the asymptotic results do not follow directly from the independent
case, so there was room for developing some theory. We will introduce and study a
few results on this direction, but for the development of the asymptotic theory, we
will remain concentrated in positive dependence notions. Many of the approaches
and methodologies to be used throughout this text can be easily adapted to obtain
characterizations about negatively dependent variables. Of course, in this later case
one should expect to find better inequalities that, in a sense, would make proofs
somewhat easier to carry. Another recent direction of extension emerged in more
recent years, starting from Doukhan and Louhichi [34]. This was a consequence
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of some inequalities proved in the meanwhile for associated random variables that
showed the importance of covariances in the characterization of independence. We
chose not to include these later developments in this text, although these weak forms
of dependence show a sufficiently rich structure allowing one to prove quite a few
asymptotic results.

1.2 Basic Definitions and Examples

This section introduces the basic notions of positive dependence to be explored
throughout this text and establishes a few of the fundamental properties. Before
embarking in the main subject, we introduce some really basic notation that will be
used throughout this text. We begin with the simplest kind of positive dependence,
introduced by Lehmann [58].

Definition 1.1 Two random variables X and Y are said to be positively quadrant
dependent (PQD) if, for all x, y ∈R,

H(x,y) = P(X > x,Y > y) − P(X > x)P(Y > y) ≥ 0.

In order to rewrite H(x,y) in a convenient way, we denote, as usual, by IA the
indicator function of a set A, that is, the function such that IA(x) = 1 if x ∈ A

and IA(x) = 0 if x /∈ A. This will help us on rewriting H(x,y) using distribution
functions:

H(x,y) = P(X > x,Y > y) − P(X > x)P(Y > y)

= Cov
(
I(x,+∞)(X), I(y,+∞)(Y )

)

= Cov
(
1 − I(x,+∞)(X),1 − I(y,+∞)(Y )

)

= Cov
(
I(−∞,x](X), I(−∞,y](Y )

)

= P(X ≤ x,Y ≤ y) − P(X ≤ x)P(Y ≤ y). (1.1)

Example 1.2 Let X and Y be jointly distributed as P(X = 0, Y = 0) = p1, P(X = 0,

Y = 1) = p2, P(X = 1, Y = 0) = p3 and P(X = 1, Y = 1) = p4, where p1 + p2 +
p3 + p4 = 1. Using the representation of H with distribution functions, it is easily
seen that X and Y are PQD if and only if P(X ≤ 0, Y ≤ 0) − P(X ≤ 0)P(Y ≤ 0) =
p1 − (p1 + p2)(p1 + p3) = p1p4 − p2p3 ≥ 0.

To describe the next example, let us introduce some notation:

1. Given x1, . . . , xn ∈ R, denote x1 ∨ · · · ∨ xn = max(x1, . . . , xn).
2. Given x1, . . . , xn ∈ R, denote x1 ∧ · · · ∧ xn = min(x1, . . . , xn).

Example 1.3 Let T1, T2, T3 be independent random variables with common distri-
bution function F and define X = T1 ∨ T2, Y = T2 ∨ T3. Then,

P(X ≤ x,Y ≤ y) = F(x)F (y)F (x ∧ y), P(X ≤ x) = P(Y ≤ x) = F 2(x),
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and, for every x, y ∈R,

H(x,y) = F(x)F (y)F (x ∧ y) − F 2(x)F 2(y)

= F(x)F (y)F (x ∧ y)
(
1 − F(x ∨ y)

)≥ 0.

Thus, the random variables X and Y are PQD.

The following result expresses the covariance between two random variables us-
ing H(x,y) and provides one of the key links towards the extension of this depen-
dence notion.

Theorem 1.4 (Hoeffding formula) Let X and Y be square-integrable random vari-
ables. Then

Cov(X,Y ) =
∫

R2
H(x,y) dx dy. (1.2)

Proof Let (X1, Y1) and (X2, Y2) be independent random vectors with the same dis-
tribution as (X,Y ). Then, by simple computation,

E(X1Y1) − E(X1)E(Y1)

= 1

2
E
(
(X1 − X2)(Y1 − Y2)

)

= 1

2
E

(∫

R2

(
I(−∞,X1](x) − I(−∞,X2](x)

)(
I(−∞,Y1](y) − I(−∞,Y2](y)

)
dx dy

)
.

As the random variables are assumed to be square integrable, we can use Fubini’s
theorem to interchange the expectation with the integration above, to find

E(X1Y1) − E(X1)E(Y1)

= 1

2

∫

R2
E
(
I(−∞,X1](x)I(−∞,Y1](y)

)− E
(
I(−∞,X1](x)I(−∞,Y2](y)

)

− E
(
I(−∞,X2](x)I(−∞,Y1](y)

)+ E
(
I(−∞,X2](x)I(−∞,Y2](y)

)
dx dy

=
∫

R2
P(X > x,Y > y) − P(X > x)P(Y > y)dx dy. �

The following result on covariances is now obvious.

Corollary 1.5 Let X and Y be PQD random variables. Then Cov(X,Y ) ≥ 0.

It is also evident that, for PQD variables, their covariance completely character-
izes independence.

Corollary 1.6 Let X and Y be PQD random variables. X and Y are independent if
and only if Cov(X,Y ) = 0.

The following important example, as it gives a complete characterization for
Gaussian random vectors, is now a simple consequence of the above results.



1.2 Basic Definitions and Examples 5

Example 1.7 Let (X,Y ) be a random vector with bivariate normal distribution with
correlation ρ. If X and Y are PQD, then Cov(X,Y ) = ρ(Var(X)Var(Y ))1/2 ≥ 0,
that is, ρ ≥ 0. The converse is also true but requires a more elaborate argument and
is deferred to Theorem 1.35, where a stronger result is proved.

The following results show how we can proceed to construct pairs of variables
that are PQD. The complete argument uses Corollary 1.5 in two steps.

Proposition 1.8 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random vari-
ables such that, for each i = 1, . . . , n, Xi and Yi are PQD. Let f,g :Rn −→ R

be such that, for each i = 1, . . . , n, when considered as functions of the ith co-
ordinate alone, they are both nondecreasing or both nonincreasing, and let X =
f (X1, . . . ,Xn) and Y = g(Y1, . . . , Yn). Then Cov(X,Y ) ≥ 0.

Proof We proceed by induction on n. The case n = 1 is immediate: assuming f and
g to be nondecreasing, we have

H(x,y) = P(X ≤ x,Y ≤ y) − P(X ≤ x)P(Y ≤ y)

= P
(
X1 ≤ f ←(x), Y1 ≤ g←(y)

)− P
(
X1 ≤ f ←(x)

)
P
(
Y1 ≤ g←(y)

)
,

where f ← and g← are the generalized inverses of f and g, respectively (see Ap-
pendix C, page 181). Thus, H(x,y) ≥ 0, so the variables X and Y are PQD, and
from Corollary 1.5 it follows that Cov(X,Y ) ≥ 0. Assume now that the proposition
is true for n − 1 variables and define

f ∗(x2, . . . , xn) = Ef (X1, x2, . . . , xn) and g∗(x2, . . . , xn) = Eg(Y1, x2, . . . , xn).

These functions of n − 1 variables share the monotonicity properties in each of the
variables x2, . . . , xn as the functions f and g. Thus, by the induction hypothesis, the
covariance with respect to the distributions of (X2, Y2), . . . , (Xn,Yn) is nonnegative,
that is,

Cov(X2,Y2),...,(Xn,Yn)

(
f ∗(X2, . . . ,Xn), g

∗(Y2, . . . , Yn)
)≥ 0,

to emphasize the distributions with respect to which we are integrating. Now, taking
into account the independence of (X1, Y1) from (X2, Y2), . . . , (Xn,Yn), we may
write, using the same indexing for expectation as done for the covariances,

Cov(X1,Y1),...,(Xn,Yn)(X,Y )

= E(X1,Y1),...,(Xn,Yn)(XY) − E(X1,Y1),...,(Xn,Yn)(X)E(X1,Y1),...,(Xn,Yn)(Y )

= E(X1,Y1)E(X2,Y2),...,(Xn,Yn)(XY)

− E(X1,Y1)

(
E(X2,Y2),...,(Xn,Yn)(X)E(X2,Y2),...,(Xn,Yn)(Y )

)

+ E(X1,Y1)

(
E(X2,Y2),...,(Xn,Yn)(X)E(X2,Y2),...,(Xn,Yn)(Y )

)

− E(X1,Y1)

(
E(X2,Y2),...,(Xn,Yn)(X)

)
E(X1,Y1)

(
E(X2,Y2),...,(Xn,Yn)(Y )

)

= E(X1,Y1)

(
Cov(X2,Y2),...,(Xn,Yn)(X,Y )

)

+ Cov(X1,Y1)

(
E(X2,Y2),...,(Xn,Yn)(X),E(X2,Y2),...,(Xn,Yn)(Y )

)
.



6 1 Positive Dependence

Now, from the induction hypothesis, the first term on the right is nonnegative. For
the second, both E(X2,Y2),...,(Xn,Yn)(X) and E(X2,Y2),...,(Xn,Yn)(Y ) are nondecreasing
functions of (X1, Y1), and so, as for the case n = 1, they are PQD, and their covari-
ance is also nonnegative. �

We can now complete the second step proving that the construction on the previ-
ous proposition produces PQD variables.

Theorem 1.9 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random variables
such that, for each i = 1, . . . , n, Xi and Yi are PQD. Let f,g :Rn −→ R be such
that, for each i = 1, . . . , n, when considered as functions of the ith coordinate alone,
they are both nondecreasing or both nonincreasing, and let X = f (X1, . . . ,Xn) and
Y = g(Y1, . . . , Yn). Then X and Y are PQD.

Proof For all x, y ∈ R, let X∗ = I(−∞,x](X) and Y ∗ = I(−∞,y](Y ). The transfor-
mations used to construct X∗ and Y ∗ have the same monotonicity properties as f

and g, and so, by the previous proposition,

Cov
(
X∗, Y ∗)= P(X ≤ x,Y ≤ y) − P(X ≤ x)P(Y ≤ y) ≥ 0,

that is, X and Y are PQD. �

A useful and obvious extension of this result is the following.

Corollary 1.10 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random vari-
ables such that, for each i = 1, . . . , n, Xi and Yi are PQD. Let U and V be indepen-
dent and independent of (X1, Y1), . . . , (Xn,Yn). Let f,g :Rn+1 −→ R be such that,
for each i = 2, . . . , n + 1, when considered as functions of the ith coordinate alone,
they are both nondecreasing or both nonincreasing, and let X = f (U,X1, . . . ,Xn)

and Y = g(V,Y1, . . . , Yn). Then X and Y are PQD.

Proof Just repeat the arguments of the proof of Theorem 1.9 taking into account the
independence of U and V and of these with the remaining variables. �

This characterizations provide an easy way to construct examples of PQD ran-
dom variables: all one has to do is apply monotone transformations with the same
monotonicity direction. As an application of the previous results, we may prove the
nonnegativity of Kendall’s τ .

Corollary 1.11 Let (X1, Y1) and (X2, Y2) be independent with the distribution of
(X,Y ). If X and Y are PQD, then the Kendall’s τ is nonnegative.

Proof Kendall’s τ is defined as Cov(U,V ), where U = sgn(X2 − X1) and V =
sgn(Y2 − Y1), where sgn(x) represents the sign of x. Then, it is enough to verify
that U and V are PQD. But this is a direct consequence of Theorem 1.9. �
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Table 1.1 PQD but not associated random variables

x1 x2 P(X1 = x1,X2 = x2) x1 x2 P(X1 = x1,X2 = x2)

0 0 3
14 1 0 2

14

0 1 1
14 1 1 2

14

0 2 1
14 1 3 3

14

0 3 2
14

The drawback with positive quadrant dependence is due to its bivariate nature.
In fact, it is quite clear from the definition that this dependence regards two given
random variables and does not allow any manipulation concerning sequences of
random variables, unless done pairwise. But then, this would quickly drive us into
difficulties whenever more than two variables were involved, rendering proofs on
results about partial sums, for example, rather difficult to handle and requiring extra
assumptions to take care of higher-order joint distributions. There are several ways
to extend positive quadrant dependence, a few of which have received some interest
in the literature, and some of these will be referred in Sect. 1.5. The extension that
proved to be most successful, because it allows for a sufficiently rich theoretical
body and has a wide scope of applicability, has been what is known as (positive)
association, introduced by Esary, Proschan and Walkup [36].

Definition 1.12 The random variables X1, . . . ,Xn are associated if, given two co-
ordinatewise nondecreasing functions f,g :Rn −→R,

Cov
(
f (X1, . . . ,Xn), g(X1, . . . ,Xn)

)≥ 0 (1.3)

whenever the covariance exists.
A sequence of random variables Xn, n ∈ N, is associated if, for every n ∈ N, the

family of variables X1, . . . ,Xn is associated.

Naturally, we may replace nondecreasing functions by nonincreasing functions
in the definition above.

Remark 1.13 It is obvious that if X and Y are associated, they are also PQD. The
converse is generally not true as illustrated by the following example from Joag-Dev
[53].

Example 1.14 Consider discrete variables X1 and X2 with joint distribution charac-
terized by Table 1.1. It is a simple matter of routine to verify that these random vari-
ables are indeed PQD. In fact, taking into account (1.1), for this joint distribution it is
enough to verify the nonnegativity of H(x1, x2) = P(X1 ≤ x1,X2 ≤ x2) − P(X1 ≤
x1)P(X2 ≤ x2) for (x1, x2) = (0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,3). These
values are given in Table 1.2.

Define now f (x1, x2) = I(0,+∞)(x1) and g(x1, x2) = I(1,+∞)(x2). These func-
tions are obviously coordinatewise nondecreasing, and
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Table 1.2 Verification that the distribution in Table 1.1 is PQD

x1 x2 H(x1, x2) x1 x2 H(x1, x2)

0 0 1
28 1 0 0

0 1 0 1 1 0

0 2 1
28 1 3 0

0 3 0

Cov
(
f (X1,X2), g(X1,X2)

)

= P(X1 > 0,X2 > 1) − P(X1 > 0)P(X2 > 1) = − 1

28
,

so X1 and X2 are not associated.

The following property is an immediate consequence of the definition of associ-
ation.

Theorem 1.15 Let X1, . . . ,Xn be associated random variables and consider coor-
dinatewise nondecreasing functions f1, . . . , fk :Rn −→ R. Then the random vari-
ables Y1 = f1(X1, . . . ,Xn), . . . , Yk = fk(X1, . . . ,Xn) are associated.

Remark 1.16 In the statement above we can require all the functions to be nonin-
creasing for the result to still hold.

The properties proved above for PQD variables that depend only on the nonneg-
ativeness of the covariances are immediately valid for associated variables. We state
them here without proof, as this would be just repeating the already used arguments.

Theorem 1.17 Let X1, . . . ,Xn be associated variables. These random variables
are independent if and only if Cov(Xi,Xj ) = 0, i, j = 1, . . . , n, i �= j .

For an extension of this independence characterization, see Corollary 2.2. The
following result extends Theorem 1.9 and is proved in exactly the same way.

Theorem 1.18 Let X1, . . . ,Xn be independent of the variables Y1, . . . , Ym. Assume
that X1, . . . ,Xn are associated variables and also that Y1, . . . , Ym are associated.
Then the variables X1, . . . ,Xn, Y1, . . . , Ym are associated.

It is now simple to generate new families of associated variables starting from
a given set of associated random variables by applying monotone transformations
with the same monotonicity direction. So, to illustrate such a procedure, repeating
the constructions described in Example 1.3, we obtain associated variables if the
initial ones are already associated. It would be interesting to be able to start the
construction from independent variables, but this requires some more results.
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Example 1.19 If Xn, n ∈ N, are associated random variables, then the sequence
of partial sums Sn = X1 + · · · + Xn, n ∈ N, is associated. This is an immediate
consequence of Theorem 1.15.

Example 1.20 Given the random variables X1, . . . ,Xn, define the ordered statistics
Xk:n = the kth smallest among X1, . . . ,Xn. These order statistics are nondecreasing
transformations of the X1, . . . ,Xn, so if these are associated, the same holds for
X1:n, . . . ,Xn:n.

Example 1.21 One model that will be used to illustrate the usefulness of some as-
sumptions later starts with a sequence of random variables Yn, n ∈ N, and m ∈ N

fixed and defines Xn = max(Yn,Yn+1, . . . , Yn+m). If the Yn’s are associated, so are
the Xn’s. We will show later that we can relax the assumption on the Yn’s.

1.3 Characterizations and Constructive Properties

In this section we will study a few alternative characterizations of association relax-
ing the family of functions for which we should verify the sign of the covariances.

Theorem 1.22 The random variables X1, . . . ,Xn are associated if and only if, for
every coordinatewise nondecreasing functions γ1, γ2 :Rn −→ {0,1},

Cov
(
γ1(X1, . . . ,Xn), γ2(X1, . . . ,Xn)

)≥ 0.

Proof If the variables are associated, the conclusion is immediate from the defini-
tion of association. To prove the other implication, let f,g :Rn −→ R be coordi-
natewise nondecreasing functions. From Hoeffding’s formula (1.2) it follows that

Cov
(
f (X1, . . . ,Xn), g(X1, . . . ,Xn)

)

=
∫

Rn

Cov(I{f (X1,...,Xn)>s}, I{g(X1,...,Xn)>t}) ds dt. (1.4)

Now, as f is coordinatewise nondecreasing, the same is true for the function
γs(x1, . . . , xn) = I{f (x1,...,xn)>s} and likewise about γt (x1, . . . , xn) = I{g(x1,...,xn)>t}.
Thus, the integrand in (1.4) is nonnegative for every s, t ∈R, so it follows that

Cov
(
f (X1, . . . ,Xn), g(X1, . . . ,Xn)

)≥ 0,

as required. �

Remark 1.23 Notice that a nondecreasing {0,1}-valued function γ defined on R

is of the form I[a,+∞)(x) or I(a,+∞)(x), for some a ∈ R. If γ is defined on R
n

for some n ≥ 2 and is of the form IB1×···×Bn(x1, . . . , xn) where each Bi is either
[ai,+∞) or (ai,+∞), ai ∈ R, then γ is coordinatewise nondecreasing. However,
for the case n ≥ 2, there are coordinatewise nondecreasing {0,1}-valued functions
that are not of this form. For an example, take B = {(x1, . . . , xn) :x1 +· · ·+ xn ≥ 0}
and γ (x1, . . . , xn) = IB(x1, . . . , xn).
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We may now prove that random variables are associated with themselves.

Theorem 1.24 Every random variable X is associated with itself.

Proof Taking into account the previous characterization of association, it suffices to
verify that Cov(γ1(X), γ2(X)) ≥ 0 for all {0,1}-valued nondecreasing functions γ1

and γ2. But, taking into account Remark 1.23, such functions are necessarily of
the form γ1(x) = I[a1,+∞)(x) or γ1(x) = I(a1,+∞)(x), and the same representa-
tion holds for γ2. Thus, we will have either γ1(x) ≤ γ2(x) for every x ∈ R or
γ1(x) ≥ γ2(x) for every x ∈R. Assume, with loss of generality, that γ1(x) ≤ γ2(x).
Then, γ1(x)γ2(x) = γ 2

1 (x) = γ1(x) and

Cov
(
γ1(X), γ2(X)

)

= E
(
γ1(X)γ2(X)

)− Eγ1(X)Eγ2(X)

= Eγ1(X) − Eγ1(X)Eγ2(X) = Eγ1(X)
(
1 − Eγ2(X)

)≥ 0. �

This result, together with Theorem 1.18, implies that independent variables are
associated.

Corollary 1.25 If Xn, n ∈ N, are independent random variables, then they are as-
sociated.

Proof According to Theorem 1.24, X1 is associated with itself, the same holds
for X2, and these variables are independent. Thus, from Theorem 1.18 it follows
that X1 and X2 are associated. Now X3 is associated with itself and independent
from (X1,X2), so Theorem 1.18 again implies that X1, X2 and X3 are associated.
Applying successively this argument, it follows that, for every n ∈ N, the variables
X1, . . . ,Xn are associated, so the corollary is proved. �

We can now extend the construction in Examples 1.19, 1.20 and 1.21 starting
from independent random variables.

Example 1.26 If Xn, n ∈ N, are independent random variables, the sequence of
partial sums Sn = X1 + · · · + Xn, n ∈ N, is associated.

Example 1.27 Given the independent random variables X1, . . . ,Xn, define the or-
der statistics Xk:n = the kth smallest among X1, . . . ,Xn. These order statistics are
associated random variables.

Example 1.28 Let Yn, n ∈N, be independent random variables, m ∈ N be fixed, and
define Xn = max(Yn,Yn+1, . . . , Yn+m). Then the variables Xn, n ∈ N, are associ-
ated.

Some more simple examples can be added to our list.
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Example 1.29 Consider a moving average model Xn = a0εn + · · ·+ aqεn−q , where
εn are independent random variables, and a0, . . . , aq have the same sign. Then the
variables Xn, n ∈ N, are associated.

Example 1.30 Consider now an auto-regressive model Xn = c1Xn−1 + · · · +
cqXn−q , n ≥ 1, where c1, . . . , cq > 0, and X1−q, . . . ,X0 are initial independent
random variables. Then the variables Xn, n ∈N, are associated.

The family of functions for which we have to check (1.3) to prove the association
of a given collection of variables may be reduced in different directions than those
considered in Theorem 1.22. In this theorem we reduced the family of functions by
imposing some restriction on the possible values for these functions. No regularity
or smoothness was assumed on these functions. It is convenient to restrict the need
of verifying (1.3) to suitable families of test functions that share some smoothness
property. A first result on this direction is proved next, requiring the test functions
to be bounded and continuous. We need a preparatory result to prove the announced
characterization.

Lemma 1.31 Let X1, . . . ,Xn be random variables and assume that, given any co-
ordinatewise nondecreasing, continuous and bounded functions f,g :Rn −→ R,
we have Cov(f (X1, . . . ,Xn), g(X1, . . . ,Xn)) ≥ 0. Then, for every coordinatewise
nondecreasing and right continuous functions γ1, γ2 :Rn −→ {0,1} it holds that
Cov(γ1(X1, . . . ,Xn), γ2(X1, . . . ,Xn)) ≥ 0.

Proof Let γ1 :Rn −→ {0,1} coordinatewise nondecreasing and right continuous.
We will first show that γ1 is the limit of a sequence fk of coordinatewise non-
decreasing, continuous and bounded functions. For this, define A = γ −1

1 ({1}). We
start by proving that A is closed. Given a sequence xm ∈ A, m ∈ N, that is conver-
gent to some z, construct a new sequence ym as follows: for each i = 1, . . . , n,
choose the ith coordinate yi,m satisfying zi = 1

2 (xi,m + yi,m) if xi,m < zi and
yi,m = xi,m otherwise. Then, for every m ∈ N, xi,m ≤ yi,m, zi ≤ yi,m, i = 1, . . . , n,
and ‖ym − z‖2 = ‖xm − z‖2. As γ1 is nondecreasing, it follows that, for each
m ∈ N, 1 = γ1(xm) ≤ γ1(ym), and thus ym ∈ A. Moreover, the sequence ym is lex-
icographically nonincreasing (that is, every coordinate of ym+1 is less or equal to
the corresponding one of ym), thus the right continuity of γ1 implies that γ1(z) =
limm→+∞ γ1(ym) = 1, that is, z ∈ A, which proves that A is closed.

Define now fk(x) = max(1 − kd(x,A),0), where d(x,A) represents the Eu-
clidean distance of x to the set A. Each function fk is continuous and obviously
verifies that fk(x) ∈ [0,1] for every x ∈R. As we have proved that A is closed, it is
clear that fk ↘ IA.

Next, we prove that each fk is coordinatewise nondecreasing or, equivalently,
that d(x,A) is a nonincreasing function of x ∈ R

n. Choose ε > 0 and zε ∈ A such
that ‖x − zε‖2 < d(x,A) + ε. Given y lexicographically larger or equal than x,
define tε = zε + (y − x). Then zε ≤ tε , tε ∈ A, and ‖x − zε‖2 = ‖x − zε‖2. As ε > 0
is arbitrarily chosen, it follows that d(y,A) ≤ d(x,A), thus fk is nondecreasing.
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Finally, defining gk analogously with respect to γ2, it follows now by dominated
convergence that

Cov
(
γ1(X1, . . . ,Xn), γ2(X1, . . . ,Xn)

)

= lim
k→+∞ Cov

(
fk(X1, . . . ,Xn), gk(X1, . . . ,Xn)

)
,

thus Cov(γ1(X1, . . . ,Xn), γ2(X1, . . . ,Xn)) ≥ 0. �

Theorem 1.32 The random variables X1, . . . ,Xn are associated if and only if
Cov(f (X1, . . . ,Xn), g(X1, . . . ,Xn)) ≥ 0 for all coordinatewise nondecreasing,
continuous and bounded functions f,g :Rn −→R.

Proof Let γ1, γ2 :Rn −→ {0,1} be coordinatewise nondecreasing, A1 = γ −1
1 ({1})

and A2 = γ −1
2 ({1}). Given ε > 0, let C ⊂ A1 be a compact such that

P
(
(X1, . . . ,Xn) ∈ A1

)≤ P
(
(X1, . . . ,Xn) ∈ C

)+ ε (1.5)

and

C1 = C + [0,+∞)n = {c + t, c ∈ C, t = (t1, . . . , tn), ti ≥ 0, i = 1, . . . , n
}⊂ A1,

as γ1 is coordinatewise nondecreasing. Let xk = ck + tk , k ∈ N, be a sequence in C1,
convergent to some z. As C is compact, there exists a subsequence ck�

, � ∈ N, con-
vergent to some s ∈ C. Then, the corresponding subsequence tk�

is convergent to
z − s, so all the coordinates of z − s are nonnegative, and z = s + (z − s) ∈ C1,
that is, C1 is closed. It is obvious, from the construction of the set C1, that IC1 is
coordinatewise nondecreasing, right continuous and IC1 ≤ γ1. We can repeat the
construction to obtain a closed set C2 ⊂ A2 such that IC2 is coordinatewise nonde-
creasing, right continuous and IC2 ≤ γ2. Now, taking into account Lemma 1.31, we
have that Cov(IC1(X1, . . . ,Xn), IC2(X1, . . . ,Xn)) ≥ 0. On the other hand, given the
construction made,

E
(
γ1(X1, . . . ,Xn)γ2(X1, . . . ,Xn)

)≥ E
(
IC1(X1, . . . ,Xn)IC2(X1, . . . ,Xn)

)
.

From (1.5) it follows that Eγ1(X1, . . . ,Xn) ≤ EIC1(X1, . . . ,Xn) + ε and analo-
gously Eγ2(X1, . . . ,Xn) ≤ EIC2(X1, . . . ,Xn) + ε. So, finally we have

Cov
(
γ1(X1, . . . ,Xn), γ2(X1, . . . ,Xn)

)

≥ E
(
IC1(X1, . . . ,Xn)IC2(X1, . . . ,Xn)

)

− (EIC1(X1, . . . ,Xn) + ε
)(

EIC1(X1, . . . ,Xn) + ε
)

≥ Cov
(
IC1(X1, . . . ,Xn), IC2(X1, . . . ,Xn)

)− 2ε − ε2.

As ε > 0 was arbitrarily chosen, if follows that Cov(γ1(X1, . . . ,Xn), γ2(X1, . . . ,

Xn)) ≥ 0, so, taking into account Theorem 1.22, we have that the variables
X1, . . . ,Xn are associated. �

The characterization of association depending only on continuous functions al-
lows us to obtain the preservation of association through convergence in distribu-

tion. Let us introduce some more notation: we will denote by
d−→ convergence in

distribution.
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Theorem 1.33 For each k ∈ N, let X1,k, . . . ,Xn,k be associated random variables

and assume that, as k −→ +∞, (X1,k, . . . ,Xn,k)
d−→ (X1, . . . ,Xn). Then the ran-

dom variables X1, . . . ,Xn are associated.

Proof Let f,g :Rn −→ R be coordinatewise nondecreasing, continuous and
bounded functions. Then, for each k ∈ N, Cov(f (X1,k, . . . ,Xn,k), g(X1,k, . . . ,

Xn,k)) ≥ 0. As the f , g and fg are all bounded and continuous functions, it follows
that

Cov
(
f (X1, . . . ,Xn), g(X1, . . . ,Xn)

)

= lim
k→+∞ E

(
f (X1,k, . . . ,Xn,k)g(X1,k, . . . ,Xn,k)

)

− Ef (X1,k, . . . ,Xn,k)Eg(X1,k, . . . ,Xn,k)

= lim
k→+∞ Cov

(
f (X1,k, . . . ,Xn,k), g(X1,k, . . . ,Xn,k)

)≥ 0.

Thus, taking into account Theorem 1.32, the variables X1, . . . ,Xn are associated. �

We can still reduce somewhat the family of test functions for the definition of
association.

Theorem 1.34 The random variables X1, . . . ,Xn are associated if and only if
Cov(f (X1, . . . ,Xn), g(X1, . . . ,Xn)) ≥ 0, for all coordinatewise nondecreasing,
bounded functions f,g :Rn −→R with bounded first partial derivatives.

Proof Taking into account Theorem 1.32, it is enough to prove that, under the as-
sumptions given, the inequality Cov(h1(X1, . . . ,Xn),h2(X1, . . . ,Xn)) ≥ 0 holds
for all coordinatewise nondecreasing, continuous and bounded functions h1 and h2.
This will follow if we prove that each such function hi is the limit of a se-
quence of coordinatewise nondecreasing, bounded with first partial derivatives func-
tions, by dominated convergence. Denote, for all k ∈ N and x ∈ R

n, χk(x) =
( k

2π
)n/2 exp(− k‖x‖2

2 ) and define

hi,k(x) =
∫

Rn

hi(x − y)χk(y) dy1 · · · dyn.

Then, each hi = limk→+∞ hi,k , so the result follows. �

It is now possible to give a complete characterization of association for Gaussian
families of random variables. This is a nice result due to Pitt [82] giving a full
description using only the covariances of the random variables.

Theorem 1.35 Let X = (X1, . . . ,Xn) be a Gaussian random vector. Then, the vari-
ables X1, . . . ,Xn are associated if and only if Cov(Xi,Xj ) ≥ 0, i, j = 1, . . . , n,
i �= j .
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Proof If the variables are associated, the covariances are obviously nonnegative,
as follows immediately from the definition, so we need only to prove the other
implication. Of course, without loss of generality, we may assume that X is cen-
tred. Assume for the moment that the covariance matrix Σ = [σij ] of (X1, . . . ,Xn)

is invertible, so that there exists a density pX. Consider Z a random vector with
the same distribution as X but independent from X. For each α ∈ [0,1], de-
fine Y(α) = αX + (1 − α2)1/2Z, so Y(α) is Gaussian centred with covariance
matrix Σ , and Cov(Xj ,Yj (α)) = ασij , i, j = 1, . . . , n. Further, define, for each
α ∈ [0,1], F(α) = E(f (X)g(Y(α))), where f and g are coordinatewise nonde-
creasing, bounded with bounded first partial derivatives. Thus, F is continuous, and
F(1) − F(0) = E(f (X)g(X)) − E(f (X)g(Z)) = Cov(f (X), g(X)), due to the in-
dependence of Z and X. Taking into account Theorem 1.34, it is enough to prove
that F is differentiable and has nonnegative derivative in (0,1).

In order to find a more suitable representation for F , consider the conditional
density

p(α,x, y) = pY(α)|X(y|x)

= pY(α),X(y, x)

pX(x)
= ∂n

∂y1 · · · ∂yn

P
(
Y1(α) ≤ y1, . . . , Yn(α) ≤ yn|X = x

)

= (1 − α2)−n/2
pX
((

1 − α2)−1/2
(αx − y)

)
.

Then

F(α) =
∫

Rn×Rn

f (x)g(y)pY(α),X(y, x) dy dx

=
∫

Rn

f (x)pX(x)

∫

Rn

g(y)p(α, x, y) dy dx

=
∫

Rn

pX(x)f (x)h(α, x) dx,

where h(α, x) = ∫
Rn g(y)p(α, x, y) dy. This function may be rewritten as a convo-

lution. Indeed, denoting pα(x) = (1 − α2)−n/2pX((1 − α2)−1/2x), we have

h(α, x) =
∫

Rn

g(y)pα(αx − y)dy =
∫

Rn

g(αx − y)pα(y) dy.

As g is coordinatewise nondecreasing and α ∈ (0,1), it follows that h has bounded,
continuous and nonnegative partial derivatives ∂h

∂xi
, i = 1, . . . , n. Moreover, as the

conditional density p decreases exponentially at infinity, we can differentiate h with
respect to α inside the integral, that is,

∂h

∂α
(α, x) =

∫

Rn

g(y)
∂p

∂α
(α, x, y) dy.

The representation (C.5) for the derivative of p of course implies a similar expres-
sion for the corresponding derivative of h. Thus, differentiating again under the
integral sign, we find that
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F ′(α) =
∫

Rn

pX(x)f (x)
∂h

∂α
(α, x) dx

= − 1

α

∫

Rn

f (x)pX(x)

(
n∑

i,j=1

σij

∂2h

∂xi ∂xj

(α, x) −
n∑

i=1

xj

∂h

∂xi

(α, x)

)

dx.

Integrating by parts on the first sum, we find, taking into account that f is bounded
and h has bounded derivatives,

αF ′(α) = −
∫

Rn

n∑

i,j=1

σij

∂

∂xi

(
f (x)pX(x)

)
dx

+
∫

Rn

f (x)pX(x)

n∑

i=1

xj

∂h

∂xj

(α, x) dx

= −
∫

Rn

n∑

i,j=1

σij

(
∂pX

∂xi

(x)f (x) + ∂f

∂xi

(x)pX(x)

)
∂h

∂xj

(α, x) dx

+
∫

Rn

f (x)pX(x)

n∑

i=1

xj

∂h

∂xi

(α, x) dx. (1.6)

If Σ−1 = [sij ], we can write, taking into account the symmetry of Σ (thus Σ−1 is
also symmetric),

n∑

i,j=1

σij

∂pX

∂xi

(x)
∂h

∂xj

(α, x)

= 1

2

n∑

i,j=1

σijpX(x)
∂

∂xi

(
n∑

k,�=1

sk�xkx�

)
∂h

∂xj

(α, x)

=
n∑

i,j=1

σijpX(x)

(
n∑

k=1

skixk

)
∂h

∂xj

(α, x)

=
n∑

j=1

∂h

∂xj

(α, x)

n∑

k=1

xk

n∑

i=1

skiσij =
n∑

j=1

∂h

∂xj

(α, x)xj .

Thus, in the final expression on the right of (1.6), the integration on the first sum-
mation cancels with the second integral, leaving us with

F ′(α) = 1

α

∫

Rn

pX(x)

n∑

i,j=1

σij

∂f

∂xi

(x)
∂h

∂xj

(α, x) dx.

As f is assumed nondecreasing and we have proved that h has nonnegative partial
derivatives, it follows from the assumption σij ≥ 0 that F ′(α) ≥ 0. Consequently,
F(1) − F(0) = Cov(f (X), g(X)) ≥ 0.

It remains to prove the result when Σ is not invertible. In this case, take Z to be
a random Gaussian random vector centred with covariance matrix In, the identity
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matrix, and independent of X. Then the random vector Xk = X+ 1
k

Z has covariance
matrix with all entries nonnegative, that is, the coordinates of Xk are associated.

Now, as k −→ +∞, Xk
d−→ X; thus, taking into account Theorem 1.33, we get that

the coordinate variables X1, . . . ,Xn of X are associated. �

1.4 Abstract Spaces

The notion of association only depends on using nondecreasing functions; thus, it is
natural trying to extend this dependence structure to random variables taking values
in more general spaces, as long as these have an order relation defined. The main
contribution to this extension comes from Lindqvist [60].

Let us start by setting some notation and basic definitions. We will restrain our-
selves to the more important facts concerning order relations without going into
details and proofs on this direction, unless this is really relevant for the scope of this
text. For a general treatment of topological issues with order relations, we refer the
reader to Nachbin [67]. For the sequel of this section, recall that a polish space is a
separable, complete and metrizable topological space.

Definition 1.36 We call S a partially ordered polish space, or POP space, a com-
plete and separable metric where there is defined a partial order relation ≤ such that
the set G = {(x, y) ∈ S × S :x ≤ y} is closed in the product space S × S.

There is an obvious way to build product structures based on POP spaces: given
POP spaces S1, S2, . . . , the product S1 × S2 × · · · is a POP space with respect to the
partial ordering

(x1, x2, . . .) ≤ (y1, y2, . . .) ⇔ xi ≤ yi, i = 1,2, . . . .

Notice that, to simplify the notation, we have used the same symbol ≤ for the order
relation in each POP space. When S = R, this is what is done to define the usual
partial order relation in the Euclidean space R

n. We will refer to this as the usual
order in R

n.

Definition 1.37 Let S be a POP space, and A ⊂ S. The set A is said to be totally
ordered if for all x, y ∈ A, we have either x ≤ y or y ≤ x.

Now we must define what is understood by nondecreasing sets and functions.

Definition 1.38 Let S be a POP space. A set A ⊂ S is nondecreasing if whenever
x ∈ A and x ≤ y, it holds that y ∈ A. A set A ⊂ S is nonincreasing if whenever
x ∈ A and y ≤ x, it holds that y ∈ A.

Of course, not all sets are nondecreasing. Simple examples of sets in S = R
2 that

are not nondecreasing with respect to the usual order are {(0,1), (1,0)} or {0} ×R.
We will need to identify conveniently induced nondecreasing sets.
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Definition 1.39 Let A ⊂ S, a POP space. Define Inc(A) as the smallest nondecreas-
ing set that includes A and Dec(A) as the largest nonincreasing set included in A.

An explicit description is Inc(A) = {y ∈ S : there exists x ∈ A such that x ≤ y}.
For example, in R

2 and with respect to the usual order, Inc({(0,1), (1,0)}) =
[0,+∞) × [1,+∞) ∪ [1,+∞) × [0,+∞).

We can now extend association to S-valued random elements.

Definition 1.40 Let S be a POP space, and X an S-valued random variable. We say
that X is associated if, for all nondecreasing sets A1 and A2,

P(X ∈ A1 ∩ A2) ≥ P(X ∈ A1)P(X ∈ A2).

Remark 1.41 Notice that we are adopting a different language with this definition.
In fact, looking to Definition 1.12 of association of a family of random variables
X1, . . . ,Xn, we are now adopting the expression X = (X1, . . . ,Xn) is associated.
Thus, the definition above, when S = R

n, means that the n coordinate variables of
the random vector are associated.

Remark 1.42 A set A is nondecreasing if and only if its complement Ac is non-
increasing. Thus, reasoning as is (1.1), one can, in the definition above, replace
nondecreasing sets by nonincreasing sets.

Remark 1.43 For the case S = R, Definition 1.40 is equivalent to X being PQD
with itself, which always holds as follows from Theorem 1.24 and Remark 1.13.

Example 1.44 There do exist random vectors that are not associated in the sense just
introduced. Take, for instance, S = R

2 with its usual order relation, and consider X
with distribution P(X = (0,1)) = P(X = (1,0)) = 1

2 . If we take A1 = Inc{(0,1)} =
{(x1, x2) :x1 ≥ 0, x2 ≥ 1} and A2 = Inc{(1,0)} = {(x1, x2) :x1 ≥ 1, x2 ≥ 0}, then
P(X ∈ A1) × P(X ∈ A2) = 1

4 . On the other hand, A1 ∩ A2 = [1,+∞)2, and thus
P(X ∈ A1 ∩ A2) = 0. That is, this random vector is not associated. Notice that the
relevant feature explored in this case is the fact that the distribution of X is concen-
trated in two points that are not comparable using the order relation defined in R

2.

We will verify soon that the definition just introduced really coincides with Def-
inition 1.12 when treating real random variables. For this, we need to prove alterna-
tive characterizations of association in POP spaces.

Definition 1.45 Let S be a POP space. A nondecreasing set A ⊂ S is compact
generated if A = Inc(K) for some compact set K . A nonincreasing set A ⊂ S is
compact generated if A = Dec(K) for some compact set K .

It is proved in Nachbin [67] (see page 44) that nondecreasing or nonincreasing
compact generated sets are closed.

We still need to clarify what is a monotone function between two POP spaces,
although this notion should be by now clear.
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Definition 1.46 Let S1 and S2 be two POP spaces. A function f :S1 −→ S2 is
nondecreasing if x ≤ y (in S1) implies f (x) ≤ f (y) (in S2). A function f :S1 −→
S2 is nonincreasing if x ≤ y (in S1) implies f (x) ≥ f (y) (in S2).

We can now prove some equivalent characterizations of association.

Theorem 1.47 Let S be a POP space, and X an S-valued random variable. The
following statements are equivalent:

(a) X is associated;
(b) for all nondecreasing functions f,g :S −→ R, E(f (X)g(X)) ≥ Ef (X)Eg(X);
(c) for all nondecreasing closed sets A1 and A2,

P(X ∈ A1 ∩ A2) ≥ P(X ∈ A1)P(X ∈ A2);
(d) for all nondecreasing compact generated sets A1 and A2,

P(X ∈ A1 ∩ A2) ≥ P(X ∈ A1)P(X ∈ A2).

Proof (a) ⇒ (b): Use Hoeffding’s formula (1.2) to write

E
(
f (X)g(X)

)− Ef (X)Eg(X)

=
∫

R2
P
(
f (X) > u,g(X) > v

)− P
(
f (X) > u

)
P
(
g(X) > v

)
dudv.

Now, as f and g are nondecreasing, the sets A1(u) = {x ∈ S :f (x) > u} and
A2(v) = {x ∈ S :g(x) > v} are, for every u,v ∈ R, nondecreasing, so it follows
that

E
(
f (X)g(X)

)− Ef (X)Eg(X)

=
∫

R2
P
(
X ∈ A1(u) ∩ A2(v)

)− P
(
X ∈ A1(u)

)
P
(
X ∈ A2(v)

)
dudv ≥ 0.

(b) ⇒ (a): Given nondecreasing sets A1 and A2, take f = IA1 and g = IA2 . These
functions are obviously nondecreasing, so the implication follows.

(a) ⇒ (c) and (c) ⇒ (d): These are obvious.
(d) ⇒ (a): Let A1 and A2 be nondecreasing sets and fix ε > 0. It is possible to

choose compact sets K1 ⊂ A1 and K2 ⊂ A2 such that P(A1 \ K1) < ε and P(A2 \
K2) < ε. Consider now H1 = Inc(K1) and H2 = Inc(K2). Then, obviously K1 ⊂
H1 ⊂ A1, P(A1 \ H1) < ε, K2 ⊂ H2 ⊂ A2 and P(A2 \ H2) < ε. Finally,

P(X ∈ A1 ∩ A2) − P(X ∈ A1)P(X ∈ A2)

≥ P(X ∈ H1 ∩ H2) − (P(X ∈ H1) + ε
)(

P(X ∈ H2) + ε
)

≥ P(X ∈ H1 ∩ H2) − P(X ∈ H1)P(X ∈ H2) − 2ε − ε2.

As ε > 0 is arbitrarily chosen, it follows that

P(X ∈ A1 ∩ A2) − P(X ∈ A1)P(X ∈ A2)

≥ P(X ∈ H1 ∩ H2) − P(X ∈ H1)P(X ∈ H2) ≥ 0. �
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The equivalence between (a) and (b) above shows that association in abstract or-
dered spaces, given by Definition 1.40, coincides with the Definition 1.12 by choos-
ing S = R

n with its usual partial order.
For real random variables, we have proved in Theorem 1.32 that nondecreas-

ing, bounded and continuous functions are enough to characterize the association
of a family of random variables. It is possible to extend this characterization, but it
depends on some extra ordering structure of the POP space.

Definition 1.48 A POP space S is normally ordered if given disjoint sets A1, closed
and nonincreasing, and A2, closed and nondecreasing, there exists a nondecreasing
and continuous function f :S −→ [0,1] such that f (x) = 0 if x ∈ A1 and f (x) = 1
if x ∈ A2.

The above is not the definition of a normally ordered space adopted in Nachbin
[67], but it is proved there that this is an equivalent characterization. The above
definition is more convenient for our purposes. Notice that it is easily verified that,
for every n ∈N, Rn is normally ordered (with respect to the usual partial ordering).

Theorem 1.49 Let S be a normally ordered POP space. Then an S-valued random
variable is associated if and only if for all nondecreasing, bounded and continuous
functions f,g :S −→ R, E(f (X)g(X)) ≥ Ef (X)Eg(X).

Proof It is clear from Theorem 1.47(b) that if X is associated, the inequality stated
holds for every nondecreasing, bounded and continuous functions f,g :S −→R. To
prove this result, it is now enough to check that if E(f (X)g(X)) ≥ Ef (X)Eg(X)

is verified for all nondecreasing, bounded and continuous functions f,g :S −→ R,
then we have Theorem 1.47(d). Let A1 and A2 be nondecreasing compact generated
sets and choose ε > 0. As S is complete and separable, there exist compact sets
K1 ⊂ Ac

1 and K2 ⊂ Ac
2 such that P(Ac

1 \ K1) < ε and P(Ac
2 \ K2) < ε. Put G1 =

Dec(K1) and G2 = Dec(K2). Then, it is obvious that G1 ⊂ Ac
1, P(Ac

1 \ G1) < ε,
G2 ⊂ Ac

2 and P(Ac
2 \ G2) < ε. Now, since S is normally ordered, there exist non-

decreasing and continuous functions f1, f2 :S −→ [0,1] such that f1(x) = 0 if
x ∈ G1, f1(x) = 1 if x ∈ A1, f2(x) = 0 if x ∈ G2, f2(x) = 1 if x ∈ A2. Moreover,
it is clear that

P(X ∈ A1) ≤
∫

S

f1(x)PX(dx) ≤ P
(
Gc

1

)
< P(A1) + ε,

P(X ∈ A2) ≤
∫

S

f2(x)PX(dx) ≤ P
(
Gc

2

)
< P(A2) + ε,

P(X ∈ A1 ∩ A2) ≤
∫

S

f1(x)f2(x)PX(dx) ≤ P
(
Gc

1 ∩ Gc
2

)
< P(A1 ∩ A2) + 2ε.

So, finally, we obtain

P(X ∈ A1 ∩ A2) − P(X ∈ A1)P(X ∈ A2)

≥ E
(
f1(X)f2(X)

)− 2ε − Ef1(X)Ef2(X) ≥ −2ε,
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so, as ε > 0 is arbitrary, the result follows. �

The basic properties that we have proved before for associated families of random
variables may be extended to this enlarged framework. We start with the extended
version of Theorem 1.15.

Theorem 1.50 Let S1 and S2 be POP spaces, f :S1 −→ S2 a nondecreasing mea-
surable function, and X an S1-valued associated random variable. Then Y = f (X)

is an S2-valued associated random variable.

Proof Let A1 and A2 be nondecreasing subsets of S2. Then, obviously f −1(A1)

and f −1(A2) are nondecreasing subsets of S1. Thus,

P(Y ∈ A1 ∩ A2)

= P
(
X ∈ f −1(A1) ∩ f −1(A2)

)

≥ P
(
X ∈ f −1(A1)

)
P
(
X ∈ f −1(A2)

)= P(Y ∈ A1)P(Y ∈ A2).
�

The following is a generalized version of Theorem 1.18.

Theorem 1.51 Let S1 and S2 be POP spaces. Let X1 be an S1-valued associated
random variable, and X2 be an S2-valued associated random variable. If X1 and X2
are independent, then (X1,X2) is an S1 × S2-valued associated random variable.

Proof Let f,g :S1 × S2 −→ R be nondecreasing functions. It is obvious that, for
each x1 ∈ S1, f (x1, ·), g(x1, ·) :S2 −→R are nondecreasing functions. Thus,

E
(
f (x1,X2)g(x1,X2)

)≥ E
(
f (x1,X2)

)≥ E
(
g(x1,X2)

)
.

Then, taking into account the independence between X1 and X2, we have

E
(
f (X1,X2)g(X1,X2)

)

= E
(
E
(
f (X1,X2)g(X1,X2)

)|X1
)

≥ E
(
E
(
f (X1,X2)

)
E
(
g(X1,X2)

)|X1
)= E

(
f (X1,X2)

)
E
(
g(X1,X2)

)
,

so the association of (X1,X2) follows from Theorem 1.47(b). �

There is an interesting and relevant relation between association and the prop-
erties of the order structure of the POP space. It allows us to find, as a corollary,
a generalized version of Theorem 1.24.

Theorem 1.52 Let S be a POP space, and X be an S-valued random variable. If
there exists a totally ordered set A ⊂ S such that P(X ∈ A) = 1, then X is associ-
ated.

Proof Let A1 and A2 be nondecreasing sets in S. Assume that it is possible to
choose x ∈ A ∩ A1 ∩ Ac

2 and y ∈ A ∩ Ac
1 ∩ A2. Then, as A is totally ordered, we
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have either x ≤ y or y ≤ x. Assume, without loss of generality, that x ≤ y. We have
then that x ∈ A1, which is a nondecreasing set, so it follows that y ∈ A1, but this is
incompatible with y ∈ A ∩ Ac

1 ∩ A2, so this choice of x and y is not possible. Thus,
we proved that either A ∩ A1 ∩ Ac

2 = ∅ or A ∩ Ac
1 ∩ A2 = ∅.

Now assume that A ∩ A1 ∩ Ac
2 = ∅. Then P(X ∈ A1 ∩ Ac

2) = P(X ∈ A ∩ A1 ∩
Ac

2) = 0, so P(X ∈ A1) = P(X ∈ A1 ∩ A2), and hence P(X ∈ A1 ∩ A2) ≥ P(X ∈
A1)P(X ∈ A2), that is, X is associated. The other case is proved symmetrically. �

Corollary 1.53 Let S be a POP space. Then every S-valued random variable X is
associated if and only if S is totally ordered.

Proof If S is totally ordered, it follows immediately from Theorem 1.52 that every
S-valued variable is associated. Assume now that S is not totally ordered. Thus
there exist x, y ∈ S such that they are not comparable, that is, neither x ≤ y or
y ≤ x holds. Define the S-valued random variable X with distribution P(X = x) =
P(X = y) = 1

2 . Then P(X ∈ Inc({x}) ∩ Inc({y})) = 0 and P(X ∈ Inc({x}))P(X ∈
Inc({y})) = 1

4 . Thus, X is not associated. �

Remark 1.54 Notice that the final part of the proof above reproduces the construc-
tion made in Remark 1.44 to give an example of a nonassociated R

2-valued variable.

These results show that the order structure of the underlying space is crucial to
characterize association. One consequence is that if we change the representation of
a family of random variables, using a different base space, this could mean that we
might loose the association property.

Example 1.55 Consider a real random variable X and define the random point
mass δX . This is a random variable with values in N , the space of measures on R

such that, for every Borel set A ⊂ R, μ(A) ∈ {0,1,2, . . .}. Each μ ∈ N is repre-
sentable in the form μ =∑n δxn , where xn ∈ R, not necessarily distinct. Denote the
support of μ by supp(μ) = {x1, x2, . . .}. Then we may define μ1 ≤ μ2 if and only
if supp(μ1) ⊂ supp(μ2). This clearly defines a partial order relation in N . It is also
clear that this order is not total: it is not possible to order elements of N whose
supports do not satisfy an inclusion relation. Thus δX is not associated with itself,
although, as a real random variable, X is associated with itself.

To conclude this section, we prove the extended version of Theorem 1.33.

Theorem 1.56 Let S be a normally ordered POP space, and Xn, n ∈N, associated
S-valued random variables. If there exists an S-valued random variable X such that

Xn
d−→ X, then X is associated.

Proof Taking into account Theorem 1.49, it is enough to consider nondecreasing,
bounded and continuous functions f,g :S −→ R and verify that E(f (X)g(X)) ≥
Ef (X)Eg(X). As each Xn is associated and the functions are nondecreasing,
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we have that E(f (Xn)g(Xn)) ≥ Ef (Xn)Eg(Xn). The convergence in distribu-
tion implies that E(f (Xn)g(Xn)) −→ E(f (X)g(X)), Ef (Xn) −→ Ef (X) and
Eg(Xn) −→ Eg(X), because every function is bounded and continuous, so the con-
clusion follows immediately. �

1.5 Some Other Weak Dependence Notions

In this section we return to the more elementary framework of treating families of
real random variables. There are several variants of notions of positive dependence
trying to weaken association while extending the positive quadrant dependence to
larger families of variables, that is, liberating this dependence from treating just
two random variables. We will introduce some of these notions and briefly establish
some basic relations between them.

1.5.1 Some Other Positive Dependence Notions

The most natural extensions of positive quadrant dependence, described on what
follows, were introduced by Joag-Dev [53]. Let us introduce some notation be-
fore defining the new concepts of dependence. Given random variables X1,X2, . . . ,
a set A ⊂ N and x1, . . . , x|A| ∈ R, where |A| represents the cardinality of A, denote
IA(x1, . . . , x|A|) =∏i∈A I(xi ,+∞)(Xi) and JA(x1, . . . , x|A|) =∏i∈A I(−∞,xi ](Xi) =∏

i∈A(1− I(xi ,+∞)(Xi)). We will write just IA or JA when confusion does not arise.

Definition 1.57 A family of random variables X1, . . . ,Xn is strongly positive or-
thant dependent (SPOD) if, given any disjoint A,B ⊂ {1, . . . , n} and real xj ’s and
yk’s,

Cov
(
IA(x1, . . . , x|A|), IB(y1, . . . , y|B|)

) ≥ 0,

Cov
(
JA(x1, . . . , x|A|),JB(y1, . . . , y|B|)

) ≥ 0,

Cov
(
IA(x1, . . . , x|A|),JB(y1, . . . , y|B|)

) ≤ 0.

A sequence of random variables Xn, n ∈ N, is strongly positive orthant dependent
(SPOD) if for any n ∈ N, the random variables X1, . . . ,Xn are strongly positive
orthant dependent.

Definition 1.58 A family of random variables X1, . . . ,Xn is linearly positive quad-
rant dependent (LPQD) if, given any disjoint A,B ⊂ {1, . . . , n} and positive λj ’s,
the random variables

∑
i∈A λiXi and

∑
j∈B λjXj are pairwise quadrant dependent.

The following are obvious consequences of the definitions above.

Proposition 1.59 Let X1, . . . ,Xn be associated random variables. Then X1, . . . ,

Xn are SPOD.
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Table 1.3 SPOD but not LPQD random variables

x1 x2 x3 p(x1, x2, x3) x1 x2 x3 p(x1, x2, x3)

0 0 0 3
14 1 0 0 2

14

0 1 0 1
14 1 0 1 1

14

0 2 0 1
14 1 1 0 1

14

0 2 1 2
14 1 2 1 3

14

Table 1.4 Pairwise verifications concerning SPOD (ε ∈ (0,1))

(j, k) = (1,2)

x y C1,2(x − ε, y − ε) x y C1,2(x − ε, y − ε)

0 0 0 1 0 0

0 1 0 1 1 0

0 2 1 2 0 0

(j, k) = (1,3)

x y C1,3(x − ε, y − ε) x y C1,3(x − ε, y − ε)

0 0 0 1 0 0

0 1 0 1 1 3
28

(j, k) = (2,3)

x y C2,3(x − ε, y − ε) x y C2,3(x − ε, y − ε)

0 0 0 1 1 11
98

0 1 0 2 0 0

1 0 0 2 1 17
98

Proposition 1.60 Let X1, . . . ,Xn be associated random variables. Then X1, . . . ,

Xn are LPQD.

The examples below show that neither SPOD nor LPQD implies the other. We
start by an example of SPOD random variables that are not LPQD.

Example 1.61 Consider discrete variables X1, X2 and X3 with joint distribution
characterized by p(x1, x2, x3) = P(X1 = x1,X2 = x2,X3 = x3), given in Table 1.3.
To verify that these variables are indeed SPOD, we need to compute all the co-
variances mentioned in Definition 1.57. Obviously, it is enough to consider the
case where A,B �= ∅. If A = {j} and B = {k}, then Cov(JA,JB) = Cov(IA, IB)

and Cov(IA,JB) = −Cov(IA, IB), so it is enough to compute Cj,k(x, y) =
Cov(IA, IB) = Cov(I(x,+∞)(Xj ), I(y,+∞)(Xk)) for every possible values of j, k =
1,2,3, j �= k, x and y and check that these covariance are nonnegative. As the
variables are discrete, we compute, in Table 1.4, these covariances for every point
located just a little to the left and below the position of each of the possible values of
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Table 1.5 Triple verifications concerning SPOD (ε ∈ (0,1))

(j, k, �) = (1,2,3), (2,1,3)

x y z C(j,k),�(x − ε, y − ε, z − ε) x y z C(j,k),�(x − ε, y − ε, z − ε)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 3
28

0 1 0 0 1 1 0 0

0 1 1 11
98 1 1 1 9

98

0 2 0 0 1 2 0 0

0 2 1 17
98 1 2 1 6

49

(j, k, �) = (1,3,2), (3,1,2)

x y z C(j,k),�(x − ε, y − ε, z − ε) x y z C(j,k),�(x − ε, y − ε, z − ε)

0 0 0 0 1 0 0 0

0 0 1 0 1 0 1 0

0 0 2 0 1 0 2 3
28

0 1 1 0 1 1 1 0

0 1 0 11
98 1 1 1 5

98

0 1 2 17
98 1 1 2 15

49

(j, k, �) = (3,2,1), (3,2,1)

x y z C(j,k),�(x − ε, y − ε, z − ε) x y z C(j,k),�(x − ε, y − ε, z − ε)

0 0 0 0 1 1 0 0

0 0 1 0 1 1 1 1
28

0 1 0 0 2 0 0 0

0 1 1 3
28 2 0 1 0

1 0 0 0 2 1 0 0

1 0 1 0 2 1 1 1
28

the pair (Xj ,Xk). We also have to consider the case where A = {j, k} and B = {�},
with � �= j, k. In this case,

C∗
j,k,�(x, y, z) = Cov(JA,JB)

= Cov
(
I(x,+∞)(Xj ), I(z,+∞)(X�)

)

+ Cov
(
I(y,+∞)(Xk), I(z,+∞)(X�)

)

+ Cov
(
I(x,+∞)(Xj )I(y,+∞)(Xk), I(z,+∞)(X�)

)
.

So, we need to compute the final covariance term

C(j,k),�(x, y, z) = Cov
(
I(x,+∞)(Xj )I(y,+∞)(Xk), I(z,+∞)(X�)

)
.

which are given in Table 1.5. As all these covariances are nonnegative, it follows
that all the C∗

j,k,�(x, y, z) = Cov(JA,JB) are nonnegative.
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Table 1.6 LPQD but not SPOD random variables

x1 x2 x3 p(x1, x2, x3) x1 x2 x3 p(x1, x2, x3)

1 1 1 4
17 2 3 1 1

17

1 1 2 1
17 3 1 2 1

17

1 2 2 1
17 3 2 1 1

17

1 3 2 1
17 3 3 1 1

17

2 1 2 1
17 3 3 2 4

17

2 2 1 1
17

Finally, we still have to verify what happens with

Dj,k,�(x, y, z) = Cov(IA,JB)

= −Cov
(
I(x,+∞)(Xj ), I(z,+∞)(X�)

)

− Cov
(
I(y,+∞)(Xk), I(z,+∞)(X�)

)

+ Cov
(
I(x,+∞)(Xj )I(y,+∞)(Xk), I(z,+∞)(X�)

)
.

As all values on the right have been computed, it is easy to verify that the only
nonzero values are

D1,2,3(1,1,1) = D2,1,3(1,1,1) = −13

98
,

D1,2,3(1,2,1) = D2,1,3(2,1,1) = − 31

196
,

D1,3,2(1,1,1) = D3,1,2(1,1,1) = − 3

49
,

D1,3,2(1,1,2) = D3,1,2(1,1,2) = − 1

49
,

D2,3,1(1,1,1) = D3,2,1(1,1,1) = − 1

14
,

D2,3,1(2,1,1) = D3,2,1(1,2,1) = − 1

14
,

all conveniently nonpositive, so the random variables X1, X2 and X3 are SPOD.
On the other hand,

P(X1 > 0,X2 + X3 > 1) − P(X1 > 0)P(X2 + X3 > 1) = − 1

28
,

so X1, X2 and X3 are not LPQD.

Now we show an example of random variables that are LPQD but not SPOD.

Example 1.62 Consider again three random variables X1, X2 and X3 with joint
distribution p(x1, x2, x3) = P(X1 = x1,X2 = x2,X3 = x3) described in Table 1.6.
It is easily verified that these random variables are not SPOD. In fact,
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P(X1 > 1,X2 > 1,X3 > 1) = 4

17
≈ 0.2353

< P(X1 > 1,X2 > 1)P(X3 > 1) = 8 × 9

172
≈ 0.2491.

The verification that the random variables are not LPQD is somewhat lengthy, so
we will just describe how it goes in a few cases, leaving the rest for the reader. First
notice that verification that the variables are LPQD is equivalent to verifying that

P(λ1Xj + λ2Xk > c1|X� > c2) ≥ P(λ1Xj + λ2Xk > c1) (1.7)

for all λ1, λ2 > 0, c1, c2 ∈R and any permutation (j, k, �) of (1,2,3), when P(X� >

c2) > 0. The case where this later probability is null makes the right-hand side in
the inequality characterizing LPQD also null, so the inequality is trivially verified.
Let us consider (j, k, �) = (1,2,3), the other cases being treated analogously. As
X3 only takes the values 1 and 2, it is enough to verify the case where c2 ∈ [1,2).
In such a case, P(X3 > c2) = 9

17 . Now rewriting

P(λ1Xj + λ2Xk > c1|X� > c2) = P(λ1Xj + λ2Xk > c1,X� > c2)

P(X� > c2)
,

the events that contribute to the numerator will all be among the events contributing
to the right-hand side of (1.7). But, for this right-hand side, there will be some more
events, corresponding to the cases where X3 = 1. The description of the distribution
of (Xj ,Xk) is now as indicated in the picture below, where the symbol • identi-
fies the possible positions of (x1, x2), and the numbers next to each • are equal to
17P(Xj = x1,Xk = x2). The numbers in bold identify how many cases contribute
to the probability corresponding to X3 = 1, so those that should be removed from
the computation when calculating the probability conditional on X3 > c2 (recall that
c2 ∈ [1,2)):

�

�

λ1 2λ1 3λ1

λ2

2λ2

3λ2

• • •

• • •

• • •

4 + 1 1 1

1 1 1

1 1 1 + 4

①①①

②

②

③ ③

③④

Assume now that the right-hand side of (1.7) is of the form a
17 . Then, the value of

the left-hand side is of the form a−1
9 , a−2

9 , a−3
9 or a−7

9 , depending on the value of
c1, corresponding to the positions identified by the circled numbers. When c1 de-
fines a region corresponding to those marked by ①, the conditional probability is
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a−1
9 , as there is only one point satisfying X3 > c2 ∈ [1,2) above this region. Thus,

we should verify that a−1
9 > a

17 or, equivalently, a > 17
8 . The possible values for a

for this choice are a = 5,6,7, all larger that 17
8 . For the region marked by ②, we

should verify that a−2
9 > a

17 , as this region include two points satisfying X3 ≤ 1.5.

This is equivalent to a > 34
8 = 4.25, and the possible values for a are 6 or 7. Re-

peating the arguments, on region ③ we should verify that a−3
9 > a

17 or, equivalently,
that a > 51

8 = 6.375, and the possible values for a are 8 or 10. Finally on region ④

we should verify a−7
9 > a

17 , which is equivalent to a > 119
8 = 14.857, and, in this

region, a = 17. Thus, all the conditions for the LPQD-ness of the random variables
have been verified for this permutation of indexes and conditioning. To complete
the verification, we must do likewise for the remaining permutations and condition-
ing possibilities, but this is only a matter of routine repetition of the approach just
described.

The following characterizations of independence, analogous to Corollary 1.6
and Theorem 1.17, are straightforward, reproducing the arguments for the proof
of Corollary 1.6.

Theorem 1.63 Let X1, . . . ,Xn be SPOD or LPQD random variables. These ran-
dom variables are independent if and only if Cov(Xi,Xj ) = 0 for all i �= j .

1.5.2 Positive Dependencies and Stochastic Ordering

The notions of positive dependence discussed below, and a few others, have been
used to study stochastic order relations between random variables. We give here a
brief account of some results in this direction. The main purpose is to introduce
some notions that imply the association but are easier to verify. A more complete
picture of basic results can be found in Barlow and Proschan [5].

Definition 1.64 Let random variables X and Y have a joint density function or joint
probability function, in case of a discrete distribution, f . The function f is totally
positive of order 2 (TP2) if, for all x1 < x2 and y1 < y2,

∣∣
∣∣∣
f (x1, y1) f (x1, y2)

f (x2, y1) f (x2, y2)

∣∣
∣∣∣
≥ 0.

We say that X and Y are TP2 if their joint density function or probability function
is totally positive of order 2.

Theorem 1.65 Let X and Y be TP2 random variables. Then P(Y > y|X = x) is,
for every y ∈R, a nondecreasing function of x.
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Proof Assume that the joint distribution is absolutely continuous. It follows from
Definition 1.64 that, for all x1 < x2,

∣∣∣∣∣∣∣∣
∣

∫ y

−∞
f (x1, t) dt

∫ +∞

y

f (x1, t) dt

∫ y

−∞
f (x2, t) dt

∫ +∞

y

f (x2, t) dt

∣∣∣∣∣∣∣∣
∣

≥ 0.

Replacing the first column by the sum of the two columns, we find that
∫ +∞

−∞
f (x1, t) dt ×

∫ +∞

y

f (x2, t) dt ≥
∫ +∞

−∞
f (x2, t) dt ×

∫ +∞

y

f (x1, t) dt

or, equivalently

P(Y > y|X = x2) ≥ P(Y > y|X = x1).

The discrete case is proved with an obvious modification of the argument above. �

It is now easily seen that the conclusion of this result implies the association of
two random variables.

Theorem 1.66 Let X and Y be such that P(Y > y|X = x) is, for every y ∈ R,
a nondecreasing function of x. Then X and Y are associated.

Proof Define, for each x ∈ R, Fx(y) = P(Y ≤ y|X = x) and g(u, x) = inf{y :u ≤
Fx(y)}, the generalized inverse of Fx(·), for each fixed x. It follows from the nonde-
creaseness of P(Y > y|X = x) that g is nondecreasing in both arguments. Moreover,
if U is uniform on [0,1], then g(U,x) has distribution function Fx . Thus, if the ran-
dom variable U is chosen independent from X, the distribution of (X,Y ) coincides
with the distribution of (X,g(U,X)). Taking into account Theorem 1.15, it follows
that the random variables X and g(U,X) are associated, and thus, as association
only depends on the joint distributions, X and Y are associated. �

It is possible to prove a more general version of the preceding results, dealing
with an arbitrary number of variables. But first, it is helpful to have a formalization
of the nondecreasingness property that has been referred.

Definition 1.67 The random variables X1, . . . ,Xn are stochastically nondecreasing
if, for each j = 2, . . . , n, P(Xj > xj |X1 = x1, . . . ,Xj−1 = xj−1) is nondecreasing
in x1, . . . , xj−1.

The final goal is to prove the association of a family of random variables, using
the TP2 condition. As when considering only two random variables, the notion of
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stochastic increasingness is an intermediate step. For this more general framework,
we still need to check that the TP2 property is inherited by subfamilies.

Lemma 1.68 Let X1, . . . ,Xn have a joint density function or probability func-
tion (if the distribution is discrete) f that is TP2 in each pair of arguments. Then
X1, . . . ,Xn−1 have a joint density function or probability function g that is TP2 in
each pair of arguments.

Proof Let j, k ∈ {1, . . . , n − 1}, j �= k, xi ∈ R, i = 1, . . . , n, but i �= j, k, be fixed
and denote, for simplicity, f ∗(x, y, z) = f (x1, . . . , xj−1, x, xj , . . . , xk−1, y, xk, . . . ,

xn−1, z) and g∗(x, y) = g(x1, . . . , xj−1, x, xj , . . . , xk−1, y, xk, . . . , xn−1). Obvi-
ously,

g(x1, . . . , xn−1) =
∫

f (x1, . . . , xn) dxn

and

g∗(x, y) =
∫

f ∗(x, y, z) dz.

We want then to prove that g∗ is TP2. For this, let x1 < x2 and y1 < y2.
Then, we need to prove that g∗ verifies the condition of Definition 1.64, that is,
g∗(x1, y1)g

∗(x2, y2) − g∗(x1, y2)g
∗(x2, y1) ≥ 0:

g∗(x1, y1)g
∗(x2, y2) − g∗(x1, y2)g

∗(x2, y1)

=
∫

R2

f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
f ∗(x1, y1, z1)f

∗(x2, y1, z2) dz1 dz2

−
∫

R2

f ∗(x1, y2, z2)

f ∗(x1, y1, z2)
f ∗(x2, y1, z1)f

∗(x1, y1, z2) dz1 dz2. (1.8)

Each of these integrals is separated into two by integrating on the sets {z1 < z2}
and {z1 > z2}. In the integrals over {z1 > z2}, we make the change of variables
(z1, z2) = (u2, u1). Then, for the first integral on the right in (1.8), we find

∫

{z1>z2}
f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
f ∗(x1, y1, z1)f

∗(x2, y1, z2) dz1 dz2

=
∫

{u1<u2}
f ∗(x2, y2, u1)

f ∗(x2, y1, u1)
f ∗(x1, y1, u2)f

∗(x2, y1, u1) dz1 dz2,

and analogously for the second integral in (1.8). We find then an expression with
four terms. Putting together the first and fourth on one side and the second and third
on the other side, we find
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g∗(x1, y1)g
∗(x2, y2) − g∗(x1, y2)g

∗(x2, y1)

=
∫

{z1<z2}

(
f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
− f ∗(x1, y2, z1)

f ∗(x1, y1, z1)

)

× f ∗(x1, y1, z1)f
∗(x2, y1, z2) dz1 dz2

+
∫

{z1<z2}

(
f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
− f ∗(x1, y2, z2)

f ∗(x1, y1, z2)

)

× f ∗(x1, y1, z2)f
∗(x2, y1, z1) dz1 dz2

=
∫

{z1<z2}

(
f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
− f ∗(x1, y2, z1)

f ∗(x1, y1, z1)

)

× (f ∗(x1, y1, z1)f
∗(x2, y1, z2) − f ∗(x2, y1, z1)f

∗(x1, y1, z2)
)
dz1 dz2

+
∫

{z1<z2}

(
f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
− f ∗(x1, y2, z2)

f ∗(x1, y1, z2)

+ f ∗(x2, y2, z1)

f ∗(x2, y1, z1)
− f ∗(x1, y2, z1)

f ∗(x1, y1, z1)

)

× f ∗(x1, y1, z2)f
∗(x2, y1, z1) dz1 dz2.

Now, in the second integral the two differences inside the large parentheses are
nonnegative because f ∗ is TP2 in each pair of arguments (z2 is fixed on the first
difference, while z1 is fixed on the second). On what concerns the first integral, we
have, again because f ∗ is TP2 in each pair of arguments,

f ∗(x2, y2, z2)

f ∗(x2, y1, z2)
≥ f ∗(x2, y2, z1)

f ∗(x2, y1, z1)
≥ f ∗(x1, y2, z1)

f ∗(x1, y1, z1)
,

so the difference is also nonnegative. As f ∗ is obviously nonnegative, we finally
have that g∗(x1, y1)g

∗(x2, y2) − g∗(x1, y2)g
∗(x2, y1) ≥ 0, as required. �

We can now extend Theorem 1.65.

Theorem 1.69 Let X1, . . . ,Xn have a joint density function or probability func-
tion f that is TP2 in each pair of arguments. Then X1, . . . ,Xn are stochastically
nondecreasing.

Proof Denote by fj the distribution of the vector (X1, . . . ,Xj ), j = 1, . . . , n. It
follows from the previous lemma that each fj is TP2. In particular, f2 is totally
positive of order 2, that is, X1 and X2 are TP2, so, it follows from Theorem 1.65
that P(X2 > x2|X1 = x1) is nondecreasing in x1. For the case j = 3, the func-
tion f3(x1, x2, x3) is, for each fixed x1, TP2 in x2 and x3, so, again according to
Theorem 1.65, P(X3 > x3|X1 = x1,X2 = x2) is nondecreasing in x2. Analogously,
for each fixed x2, we conclude that P(X3 > x3|X1 = x1,X2 = x2) is nondecreas-
ing in x1. So, it follows that P(X3 > x3|X1 = x1,X2 = x2) is nondecreasing in x1
and x2. We can now recurse this argument to conclude that, for each j = 2, . . . , n,
P(Xj > xj |X1 = x1, . . . ,Xj−1 = x−1) is nondecreasing in x1, . . . , xj−1. �
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Finally, we prove the association of stochastic nondecreasing variables.

Theorem 1.70 Let X1, . . . ,Xn be stochastic nondecreasing random variables.
Then X1, . . . ,Xn are associated.

Proof All the arguments used in the proof of Theorem 1.66 are applicable in this
multivariate framework, so this result follows. �

1.5.3 Some Negative Dependence Notions

Negative dependence is naturally introduced by reversing the inequalities in the def-
initions of positive dependencies above. There are, however, a few cares to be taken
when dealing with association to remove some choices where obviously the covari-
ances could not become negative. The negative counterpart of PQD was studied in
Lehmann [58] proving the analogous of the PQD results referred before. The ap-
pearance of a negative association happened in Joag-Dev and Proschan [54] and
Joag-Dev [53]. Some other negative dependence notions appeared when trying to
adapt some of the positive dependencies mentioned above to their negative counter-
parts as in Shaked [92] or Block, Savits and Shaked [17]. We will not include this
material here, as much of it is derived with arguments very similar to those used in
the previous subsection. These negative counterparts have attracted some attention,
especially on what concerns inequalities about partial sums. In some sense, the neg-
ative association will make moment inequalities easier to be obtained, as it implies
that covariances are negative, so the covariances between partial sums are smaller
than in the independent case. This general impression about negative dependencies
was, probably, at the origin of less attention in earlier years, when compared to the
interest in positive association, but there are, of course, quite a few specific features
that finally caught the attention. We will give a brief account of negative dependence
and a few basic properties in this subsection. These notions will not be developed in
further chapters of this text.

Definition 1.71 Two random variables X and Y are said to be negatively quadrant
dependent (NQD) if, for all x, y ∈R,

H(x,y) = P(X > x,Y > y) − P(X > x)P(Y > y) ≤ 0.

The following is obvious but useful for adapting the proofs and results from the
PQD results.

Proposition 1.72 X and Y are NQD if and only if X and −Y are PQD.

The notion relies on Hoeffding’s formula (1.2) for its basic properties. Thus,
Corollaries 1.5 and 1.6 have immediate counterparts.
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Proposition 1.73 Let X and Y be NQD random variables. Then

(a) Cov(X,Y ) ≤ 0;
(b) X and Y are independent if and only if Cov(X,Y ) = 0.

The adaptation of Proposition 1.8, Theorem 1.9 and Corollary 1.10 requires a
little more care because of the direction of the monotonicity of the transformations
involved, as is obvious from Proposition 1.72. We will include here the statements
without proof, as these are obvious taking into account the previous comment.

Proposition 1.74 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random vari-
ables such that, for each i = 1, . . . , n, Xi and Yi are NQD. Let f,g :Rn −→ R

be such that, for each i = 1, . . . , n, when considered as functions of the ith co-
ordinate alone, one is nondecreasing, and the other is nonincreasing, and let
X = f (X1, . . . ,Xn) and Y = g(Y1, . . . , Yn). Then Cov(X,Y ) ≤ 0.

Theorem 1.75 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random vari-
ables such that, for each i = 1, . . . , n, Xi and Yi are PQD. Let f,g :Rn −→ R

be such that, for each i = 1, . . . , n, when considered as functions of the ith co-
ordinate alone, one is nondecreasing, and the other is nonincreasing, and let
X = f (X1, . . . ,Xn) and Y = g(Y1, . . . , Yn). Then X and Y are NQD.

Corollary 1.76 Let (X1, Y1), . . . , (Xn,Yn) be independent pairs of random vari-
ables such that, for each i = 1, . . . , n, Xi and Yi are PQD. Let U and V be
independent and independent from (X1, Y1), . . . , (Xn,Yn). Let f,g :Rn+1 −→ R

be such that, for each i = 2, . . . , n + 1, when considered as functions of ith co-
ordinate alone, one is nondecreasing, and the other is nonincreasing, and let
X = f (U,X1, . . . ,Xn) and Y = g(V,Y1, . . . , Yn). Then X and Y are NQD.

For the definition of negative association, one should take care on the choice
of the arguments that are passed to the nondecreasing functions in order to avoid
turning the definition useless.

Definition 1.77 The variables X1, . . . ,Xn are negatively associated if, for all dis-
joint A,B ⊂ {1, . . . , n} and coordinatewise nondecreasing functions f :R|A| −→R,
g :R|B| −→R,

Cov
(
f (Xi, i ∈ A),g(Xj , j ∈ B)

)≤ 0 (1.9)

whenever the covariance exists.
A sequence of random variables Xn, n ∈N, is negatively associated if, for every

n ∈N, the family of variables X1, . . . ,Xn is negatively associated.

The following are immediate conversions to negatively dependent variables of
Theorems 1.15, 1.17 and 1.18, with proofs that just rephrase the arguments used
before.
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Theorem 1.78 Let X1, . . . ,Xn be negatively associated random variables and con-
sider coordinatewise nondecreasing functions f1, . . . , fk :Rn −→ R. Then the ran-
dom variables Y1 = f1(X1, . . . ,Xn), . . . , Yk = fk(X1, . . . ,Xn) are negatively asso-
ciated.

Theorem 1.79 Let X1, . . . ,Xn be negatively associated variables. These random
variables are independent if and only if Cov(Xi,Xj ) = 0, i, j = 1, . . . , n, i �= j .

Theorem 1.80 Let X1, . . . ,Xn and Y1, . . . , Ym be independent and disjoint fami-
lies of the variables. Assume that X1, . . . ,Xn are negatively associated variables
and also that Y1, . . . , Ym are negatively associated. Then the variables X1, . . . ,Xn,
Y1, . . . , Ym are negatively associated.

To finalize this subsection, we show an example of families of random variables
that are negatively associated.

Example 1.81 Let x1, . . . , xn be distinct and fixed real numbers, and X1, . . . ,Xn

be random variables such that X = (X1, . . . ,Xn) has distribution verifying P(X =
(xσ(1), . . . , xσ(n)) = 1

n! for every permutation σ of the set {1, . . . , n}. If n = 2, it is
easily verified that X1 and X2 are negatively associated. In fact, is this case, given
nondecreasing functions f and g,

Cov
(
f (X1), g(X2)

)= 1

4

(
f (x1) − f (x2)

)(
g(x2) − g(x1)

)≤ 0.

The general case can now be proved by induction, so assume that this is true for a
family of n − 1 variables. We may assume, without loss of generality, that f and g

take the same value when we permute their arguments. Denote x∗ = x1 ∧ · · · ∧ xn.
Let L the random variable identifying the index of X that takes the value x∗, and
A,B ⊂ {1, . . . , n} be disjoint. Now we have

Cov
(
f (Xi, i ∈ A),g(Xj , j ∈ B)

)

= E
(
Cov

(
f (Xi, i ∈ A),g(Xj , j ∈ B)|L))

+ Cov
(
E
(
f (Xi, i ∈ A)|L)E(g(Xj , j ∈ B)|L)).

By the induction hypothesis, Cov(f (Xi, i ∈ A),g(Xj , j ∈ B)|L) ≤ 0, thus the first
term on the right above is less than or equal to zero. As we have assumed that f does
not change by permuting its arguments, E(f (Xi, i ∈ A)|L) takes only two different
values, depending on whether L ∈ A or not. In the first case, where L ∈ A, as f

is nondecreasing, the value of the conditional expectation will be smaller than the
value corresponding to the second case. Of course, the same behaviour is observed
for the conditional expectation E(g(Xj , j ∈ B)|L). That is, the final term on the
right is the covariance between a nondecreasing function of L and a nonincreasing
function of L, so it is less than or equal to zero.



Chapter 2
Inequalities

Abstract This chapter sets the basic tools to prove the asymptotic results that are
to come in the following chapters. The first three sections are concerned with dif-
ferent types of inequalities on joint distributions of associated random variables and
moments of sums. It is interesting that, although association is defined with a some-
what vague requirement, it is possible to recover versions for moment inequalities
which are quite close to the independent case, thus paving the way to find asymp-
totic results that are also similar to the ones found in the independence framework.
One of the key issues with association is the ability to control joint distributions
from the marginal distributions using the covariance structure of the random vari-
ables. This is explored mainly in Sects. 2.5 and 2.6. The inequalities proved in these
sections will provide the means to use the coupling technique, common to prove
convergence results. Sect. 2.5 shows that at least the convergence in distribution is
concerned with the covariance structure that completely describes the behaviour of
associated variables. This chapter is a fundamental one for the remaining text.

2.1 Introduction

As usual, inequalities play an important role in the development of a theory, as much
of the proving efforts are spent obtaining good estimates of suitable quantities. The
first result on inequalities for associated random variables appeared in Lebowitz
[55], controlling covariances of blocks of variables motivated by the need to con-
trol some Hamiltonians appearing in the Ising spin models with ferromagnetic in-
teractions. These are essentially covariance inequalities on transformations defined
with indicator functions. The natural development considering more general trans-
formations appeared with the contributions by Newman [69, 70], where the main
goal was, however, the extension of inequalities on characteristic functions to trans-
formed associated random variables. These inequalities on characteristic functions
were motivated by the study of central limit problems using the classical approach:
decomposing sums into sums of blocks and trying to treat these as if they were in-
dependent. This led the work in Newman [69, 70] to one of the main tools in the
association literature about convergence in distribution, Theorem 2.37 and its exten-
sion to transformed variables, Theorem 2.40. Moreover, inequality (2.26) showed
the importance of covariances on the characterization of the dependence structure
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of associated random variables, leading naturally to conditions on the decay rate of
the covariances when dealing with central limit problems, invariance principles or
statistical estimation issues. The meaningfulness of the coefficient u(n), introduced
by Cox and Grimmett [25] (see Definition 2.13), is well justified by this charac-
teristic functions inequality. As a sort of a side effect of the previous, it is worth
mentioning the control of covariances of indicator functions by the covariances of
the original associated variables, with a first version appearing in Yu [109] and later
extended in Cai and Roussas [24]. This inequality, as expressed in Corollary 2.36,
has shown to be of significant importance in the analysis of invariance principles and
also when studying the behaviour of statistical estimators. The interest on extending
covariance inequalities was also developed into another direction, controlling the
covariance of not necessarily monotone transformations of the variables, with upper
bounds depending on the derivatives of these transformations. A general method-
ology for approaching the control of such covariances really follows from a few
concepts introduced in Newman [69, 70], although explicit results only appeared
somewhat later, Bulinski [22]. The control of moments for partial sums was first
treated in Birkel [13], where the usual nr/2 bounds were proved under suitable de-
cay rates on the pairwise covariances, expressed through a convenient coefficient,
to be introduced below in Definition 2.13, and were later extended by Shao and Yu
[94]. These tools were used by Masry [65] to prove almost optimal convergence
rates for density estimators based on associated samples.

Finally, exponential inequalities have been an important tool for studying con-
vergence rates, especially for laws of large numbers or large deviations. The first
such inequality was proved by Prakasa Rao [83], who obtained an upper bound
that is too weak to characterize convergence results. A more useful exponential in-
equality for bounded associated variables appeared in Ioannides and Roussas [48]
and was used by the authors to prove the first convergence rates for Strong Laws
of Large Numbers. This inequality was also used in statistical estimation to char-
acterize convergence rates when approximating distribution functions in Azevedo
and Oliveira [3] or Henriques and Oliveira [41] or for density estimators [42]. The
approach was based on a block decomposition of partial sums, as for the proofs
of Central Limit Theorems. This was later extended, dropping the boundedness of
the variables by using truncation, by Oliveira [75]. Curiously, what seems to be the
weak point of this approach was the treatment of the coupling independent variables
used in the proof. This aspect was further improved by Sung [98] and Xing, Yang
and Liu [106], always with the motivation of improving the convergence rates for
the laws of large numbers in mind, who were able to obtain exponential inequalities
that lead to convergence rates in the law of large numbers arbitrarily close to the rate
for independent variables.

2.2 Block and Tail Inequalities

In this section we prove two simple inequalities whose proofs use essentially the
same arguments. The first one concerns joint distributions and pairwise joint distri-
butions, separating the variables, and was proved by Lebowitz [55]. This inequality
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can be thought of as a first version of the control of the distance between joint dis-
tributions and the product of marginal distributions that would be found in the case
of independent random variables. This idea will be extended into a finer and more
clear statement in Sect. 2.5, where this distance is truly controlled in terms of the
covariances of the associated variables. The second inequality concerns distribution
functions and tail probabilities, proving what one could expect to find, given the
definition of association of random variables, that is, that joint probabilities tend to
increase with respect to the product of the corresponding marginal ones. This is a
direct consequence of the fact that covariances are nonnegative, which is one of the
sources of difficulties when treating associated variables: covariances of moments of
sums tend to increase with respect to what could be found for independent variables,
so the inequalities seem to somehow go into a wrong direction.

Given A,B ⊂ {1, . . . , n} and x1, . . . , xn ∈ R, define

HA,B(x1, . . . , xn) = P(Xi > xi, i ∈ A ∪ B)

− P(Xj > xj , j ∈ A)P(Xk > xk, k ∈ B),

Hj,k(x1, . . . , xn) = H{j},{k}(x1, . . . , xn).

We will write, for simplicity, just HA,B or Hj,k , unless confusion arises. Notice
that Hj,k = Cov(I(xj ,+∞)(Xj ), I(xk,+∞)(Xk)) ≥ 0, as the functions I(x,+∞)(u) are,
for each fixed x, nondecreasing in u. Moreover, as already remarked before (see
page 3),

H1,2(x1, x2) = P(X1 > x1,X2 > x2) − P(X1 > x1)P(X2 > x2)

= P(X1 ≤ x1,X2 ≤ x2) − P(X1 ≤ x1)P(X2 ≤ x2)

= Cov
(
I(−∞,x1](X1), I(−∞,x2](X2)

)
.

Theorem 2.1 (Lebowitz inequality) Let X1, . . . ,Xn be associated random vari-
ables, and A,B ⊂ {1, . . . , n}. Then 0 ≤ HA,B ≤∑j∈A,k∈B Hj,k .

Proof Recall the definition of IA =∏i∈A I(xi ,+∞)(Xi) (see page 22) and put SA =∑
i∈A I(xi ,+∞)(Xi), and analogously for IB and SB . Then, obviously,

HA,B = Cov(IA, IB),
∑

j∈A,k∈B

Hj,k = Cov(SA,SB)

and

Cov(SA,SB) = Cov(SA − IA,SB) + Cov(IA,SB − IB) + Cov(IA, IB).

All the IA, IB , SA and SB are nondecreasing transformations of the X1, . . . ,Xn, thus
are associated, according to Theorem 1.15. It follows that HA,B = Cov(IA, IB) ≥ 0.
Let us now fix j ∈ A. Then

SA − IA =
∑

�∈A
��=j

I� + Ij

(
1 −

∏

�∈A
��=j

I�

)
.

The first term on the right does not depend on Xj , while the second is the product
of a nondecreasing function of Xj , Ij , by a nonnegative factor that does not depend
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on Xj . Thus, it follows that SA − IA is a nondecreasing function of Xj . Repeating
this argument for each choice of j ∈ A and each k ∈ B , it follows that SA − IA and
SB − IB are nondecreasing in each variable they depend on. Thus, due to the associ-
ation, Cov(SA − IA,SB) ≥ 0 and Cov(IA,SB − IB) ≥ 0, so the theorem follows. �

This result implies immediately a very simple characterization of independence
between associated variables completely described in terms of the covariances, gen-
eralizing Theorem 1.17.

Corollary 2.2 Let X1, . . . ,Xn be associated random variables, and A,B ⊂
{1, . . . , n}. Then the random variables Xi , i ∈ A, are jointly independent of Xj ,
j ∈ B , if and only if Cov(Xi,Xj ) = 0 for every i ∈ A and j ∈ B .

Theorem 2.1 above gives an upper bound for a term that may be thought of as
a joint covariance using pairwise covariances. Next we prove a similar result but
concerning directly the joint distributions. In this case, association implies a lower
bound for the joint distributions.

Theorem 2.3 Let X1, . . . ,Xn be associated random variables, and x1, . . . , xn ∈R.
For every A ⊂ {1, . . . , n},
(a) P(Xi > xi, i ∈ A) ≥∏i∈A P(Xi > xi).
(b) P(Xi ≤ xi, i ∈ A) ≥∏i∈A P(Xi ≤ xi).

Proof (a) may be rewritten as E(
∏

i∈A I(xi ,+∞)(Xi)) ≥∏i∈A E(I(xi ,+∞)(Xi)). By
permutating the random variables, which does not affect association, we may as-
sume, without loss of generality, that A = {1, . . . , k} for some k ≤ n. Then,

Cov

(

I(xk,+∞)(Xk),

k−1∏

i=1

I(xi ,+∞)(Xi)

)

= E

(

I(xk,+∞)(Xk)

k−1∏

i=1

I(xi ,+∞)(Xi)

)

− E
(
I(xk,+∞)(Xk)

)
E

(
k−1∏

i=1

I(xi ,+∞)(Xi)

)

≥ 0.

Iterating now this argument, (a) follows. As for (b), apply the same argument to the
decreasing transformations I(−∞,xi ](Xi) = 1 − I(xi ,+∞)(Xi). �

A useful bound for Hj,k , in terms of the covariances of the original random
variables will be proved later in Corollary 2.36.

The inequality in Theorem 2.1 concerns a special kind of nondecreasing transfor-
mations. In fact, the same is still true for the inequalities in Theorem 2.3. However,
it is possible to go beyond nondecreasing and even nonmonotone transformations
of associated variables if these functions are dominated by nondecreasing ones, in a
convenient sense as introduced by Newman [69].
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Definition 2.4 Let f,g :Rn −→ C, where n ∈ N. We write f � g if g − Re(eiαf )

is coordinatewise nondecreasing for every α ∈ R.

Remark 2.5 Notice that as g = 1
2 [(g − Re(f )) + (g − Re(−f ))], if f � g, then g

is real-valued and coordinatewise nondecreasing.

Remark 2.6 If f is a real-valued function, then it is obvious, by choosing α = π or
α = 0, that f � g if and only if both g + f and g − f are nondecreasing.

We first state a result allowing to deal with characteristic functions through the
relation “�”.

Proposition 2.7 Let f and g be functions defined on R
n. Assume f is real-valued

and f � g. Let ρ be a complex-valued function defined on R such that, for every
u,v ∈R, |ρ(u) − ρ(v)| ≤ |u − v|. Then ρ ◦ f � g.

Proof We need to prove that g − Re(eiαρ ◦ f ) is nondecreasing. Let t, s ∈ R
n be

such that t ≥ s (in the coordinatewise sense, that is, tj ≥ sj , j = 1, . . . , n). Then,
taking into account the assumption on ρ, we have

∣∣Re
(
eiαρ

(
f (t)

))− Re
(
eiαρ

(
f (s)

))∣∣

≤ ∣∣eiαρ
(
f (t)

)− eiαρ
(
f (s)

)∣∣= ∣∣ρ(f (t)
)− ρ

(
f (s)

)∣∣≤ ∣∣f (t) − f (s)
∣∣.

Now, as f � g, both g +f and g −f are nondecreasing. So, if f (t)−f (s) > 0, use
the first to find |f (t)−f (s)| = f (t)−f (s) ≤ g(t)−g(s), and in case f (t)−f (s) <

0, use the later to find |f (t)− f (s)| = f (s)− f (f ) ≤ g(t)− g(s). That is, we have
in either case |f (t) − f (s)| ≤ g(t) − g(s). Finally, as g is nondecreasing,

∣∣(g(t) + Re
(
eiαρ

(
f (t)

)))− (g(s) + Re
(
eiαρ

(
f (s)

)))∣∣

≥ g(t) − g(s) − ∣∣Re
(
eiαρ

(
f (t)

))− Re
(
eiαρ

(
f (s)

))∣∣≥ 0. �

Notice that in the previous result we can choose ρ(u) = eiu.

Lemma 2.8 Let Xn, n ∈ N, be associated random variables. Let f1, f2, g1, g2 be
functions defined on R

n for some n ∈ N, such that f1 � g1 and f2 � g2. Then
∣∣Cov

(
f1(X1, . . . ,Xn), f2(X1, . . . ,Xn)

)∣∣

≤ 2
∣∣Cov

(
g1(X1, . . . ,Xn), g2(X1, . . . ,Xn)

)∣∣. (2.1)

Proof Assume that f1, f2, g1, g2 are real-valued functions. Then, it is enough to
prove
∣∣Cov

(
g1(X1, . . . ,Xn), g2(X1, . . . ,Xn)

)∣∣− Cov
(
f1(X1, . . . ,Xn),h(X1, . . . ,Xn)

)

≥ 0

both for h = f2 and h = −f2. Now, according to Remark 2.6, g1 + f1, g1 − f1,
g2 + f2 and g2 − f2 are all nondecreasing functions. Thus, for both considered
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choices of h, g2 +h and g2 −h are nondecreasing. Notice further that, according to
Remark 2.5, g1 and g2 are nondecreasing functions. Thus, taking into account the
association of the random variables, we have

∣
∣Cov

(
g1(X1, . . . ,Xn), g2(X1, . . . ,Xn)

)∣∣

− Cov
(
f1(X1, . . . ,Xn),h(X1, . . . ,Xn)

)

= Cov
(
g1(X1, . . . ,Xn), g2(X1, . . . ,Xn)

)

− Cov
(
f1(X1, . . . ,Xn),h(X1, . . . ,Xn)

)

= 1

2

[
Cov

(
g1(X1, . . . ,Xn) + f1(X1, . . . ,Xn),

g2(X1, . . . ,Xn) − h(X1, . . . ,Xn)
)

+ Cov
(
g1(X1, . . . ,Xn) − f1(X1, . . . ,Xn),

g2(X1, . . . ,Xn) + h(X1, . . . ,Xn)
)]

≥ 0,

again due to the association of the random variables for the final step. If f1 and f2
are complex-valued functions, separate them into the real and imaginary parts and
apply twice the previous upper bound. �

Remark 2.9 Notice that, if one of the functions f1 or f2 is real-valued, we may drop
the coefficient 2 in (2.1). This inequality, for real functions, has appeared in Birkel
[14], while the extension to complex-valued functions was considered in Newman
[69].

These inequalities give us a means to prove an extension of Theorem 2.1 consid-
ering smooth but not necessarily monotone transformations of the random variables.

Theorem 2.10 (Bulinsky inequality) Let Xn, n ∈ N, be associated random vari-
ables. Assume that A,B ⊂ N are two finite sets and that f1 and f2 are real-
valued functions defined on R

|A| and R
|B|, respectively, partially differentiable with

bounded first-order partial derivatives. Then

∣∣Cov
(
f1(Xi, i ∈ A),f2(Xj , j ∈ B)

)∣∣≤
∑

i∈A,j∈B

∥
∥∥∥
∂f1

∂ti

∥
∥∥∥∞

∥
∥∥∥
∂f2

∂tj

∥
∥∥∥∞

Cov(Xi,Xj ).

(2.2)

Proof Define the following functions:

g1(s1, . . . , s|A|) =
∑

i∈A

∥∥∥∥
∂f

∂ti

∥∥∥∥∞
si and g2(s1, . . . , s|B|) =

∑

j∈B

∥∥∥∥
∂g

∂tj

∥∥∥∥∞
sj .

Then g1 − f1, g1 + f1, g2 − f2 and g2 + f2 are nondecreasing functions, that is,
f1 � g1 and f2 � g2. Then, applying Lemma 2.8 and taking into account Re-
mark 2.9, the theorem follows immediately. �
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A useful consequence of Theorem 2.10 gives an upper bound when considering
transformed associated random variables.

Corollary 2.11 Let Xn, n ∈ N, be associated random variables. Assume that
A,B ⊂ N are two finite sets and that h is a bounded real-valued function defined on
R with bounded first-order derivative. Then

∣∣∣∣Cov

(∏

i∈A

h(Xi),
∏

j∈B

h(Xj )

)∣∣∣∣≤ ‖h‖a+b−1∞
∥∥h′∥∥2

∞
∑

i∈A,j∈B

Cov(Xi,Xj ).

Proof Apply Theorem 2.10 to f1(s1, . . . , s|A|) = h(s1) · · ·h(s|A|) and f2(s1, . . . ,

s|B|) = h(s1) · · ·h(s|B|). �

Remark 2.12 Notice that the inequalities proved in Theorem 2.10 and Corol-
lary 2.11 makes the control of dependence through the pairwise covariances.

Following the above remark, we close the section introducing an essential coef-
ficient, firstly used by Cox and Grimmett [25], for the control of the dependence for
associated variables.

Definition 2.13 Let Xn, n ∈N, be a sequence of random variables. Denote

u(n) = sup
k∈N

∑

j :|j−k|≥n

Cov(Xj ,Xk).

Remark 2.14 Notice that if we assume the random variables to be stationary, then

u(n) = EX1 + 2
∞∑

j=n+1

Cov(X1,Xj ).

One can recognize this expression as the asymptotic variance in central limit theo-
rems for dependent variables if we choose n = 0.

2.3 Moment Inequalities

Moment inequalities play a central role in proving asymptotic results for sums of
random variables. As is well known, for independent random variables, the growth
of ESr

n is controlled by nr/2. We find in this section sufficient conditions for this
growth rate to hold for associated variables. The first such result was proved by
Birkel [13] and later extended by Shao and Yu [94], obtaining the control for sums
of transformations of associated variables, as described in Theorem 2.18 below. The
route for the proof of both these versions is much alike, although the technicali-
ties are somewhat different: find an appropriate control of covariances of powers of
sums and use an induction argument to proceed. So, let us go into the first step for
proving the main moment inequality, the control of covariances between sums of
transformed variables.
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Lemma 2.15 Let 2 < p < r ≤ +∞, and f be an absolutely continuous function
such that supx∈R |f ′(x)| ≤ C0. Assume that the random variables Xn, n ∈ N, are
associated with ‖f (Xn)‖r < ∞, n ∈ N. Let A and B be two finite subsets of N.
Then

∣∣∣∣Cov

(∣∣∣∣
∑

i∈A

f (Xi)

∣∣∣∣,
∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1)∣∣∣∣

≤ p

(
E

∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p)(r−1)(p−2)/rp
(∑

i∈A

∥∥f (Xj )
∥∥

r

)r(p−2)/rp

×
(

C2
0

∑

i∈A,j∈B

Cov(Xi,Xj )

)(r−p)/rp

, (2.3)

where rp = r(p − 1) − p.

Proof Let C1 > 0 be fixed and denote as usual by |A| the cardinality of a set A.
Define g(t1, . . . , t|A|) = |∑|A|

i=1 f (ti)| and

h(t1, . . . , t|B|) =
∣∣∣∣∣

|B|∑

j=1

f (tj )

∣∣∣∣∣

p−1

I{|∑j f (tj )|≤C1} + C
p−1
1 I{|∑j f (tj )|>C1}.

It is easily verified that
∥∥∥∥

∂g

∂ti

∥∥∥∥∞
≤ C1 and

∥∥∥∥
∂h

∂tj

∥∥∥∥∞
≤ (p − 1)C

p−2
1 C0

(in fact, h is not differentiable at every point, but, as f has a bounded derivative,
one may arbitrarily approximate h by a differentiable function and then take limits),
and thus, from Theorem 2.10 it follows that
∣∣Cov

(
g(Xi, i ∈ A),h(Xj , j ∈ B)

)∣∣≤ (p − 1)C
p−2
1 C2

0

∑

i∈A,j∈B

Cov(Xi,Xj ).

To complete the proof, we now find an upper bound for
∣∣∣∣Cov

(
g(Xi, i ∈ A),

∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1

− h(Xj , j ∈ B)

)∣∣∣∣

=
∣∣∣∣Cov

(
g(Xi, i ∈ A),

(∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1

− C
p−1
1

)
I{|∑j∈B f (Xj )|>C1}

)∣∣∣∣.

By rewriting this expression in terms of mathematical expectations, this covariance
is obviously less than or equal to

max

[∑

i∈A

E

(∣∣f (Xi)
∣∣
∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1

I{|∑j∈B f (Xj )|>C1}
)

,

∑

i∈A

E
∣∣f (Xi)

∣∣E
(∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1

I{|∑j∈B f (Xj )|>C1}
)]

.
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Applying the Hölder inequality to both terms, the above is still less than or equal to

∑

i∈A

∥∥f (Xi)
∥∥

r

(
E

(∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

(p−1)r/(r−1)

I{|∑j∈B f (Xj )|>C1}
))(r−1)/r

.

Finally, using again the Hölder inequality followed by the Markov inequality, we
find

∣∣∣∣Cov

(
g(Xi, i ∈ A),

∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p−1

− h(Xj , j ∈ B)

)∣∣∣∣

≤ C
−(r−p)/r

1

∑

i∈A

∥∥f (Xi)
∥∥

r

(
E

∣∣∣∣
∑

j∈B

f (Xj )

∣∣∣∣

p)(r−1)/r

.

The lemma now follows by choosing

C1 =
(∑

i∈A ‖f (Xi)‖rE(|∑j∈B f (Xj )|p)(r−1)/r

C2
0

∑
i∈A,j∈B Cov(Xi,Xj )

)r/rp

. �

Remark 2.16 Notice that, in the proof of this inequality, the association of the ran-
dom variables is only used through Bulinsky’s inequality.

The previous lemma is essential for the proof of the main inequality in this sec-
tion, as done in Shao and Yu [94]. We still need a technical lemma to achieve this
extension.

Lemma 2.17 Let α,β ∈ (0,1) and x, a, b, c ≥ 0. If x ≤ a + bx1−α + cx1−β , then
x ≤ 2a + (4b)1/α + (4c)1/β .

Proof As

sθ t1−θ ≤ s + t, s, t ≥ 0, θ ∈ [0,1], (2.4)

it follows that bx1−α = ((4b)(1−α)/αb)α( x
4 )1−α ≤ 4(1−α)/αb1/α + x

4 . Analogously,
cx1−β ≤ 4(1−β)/βb1/β + x

4 . Using these bounds on the assumption, the lemma fol-
lows readily. �

We may now, following Shao and Yu [94], prove a moment bound for partial
sums requiring a suitable decay rate on the covariance structure, expressed using
the coefficient u(n) introduced in Definition 2.13.

Theorem 2.18 Let 2 < p < r ≤ +∞, and f be an absolutely continuous function
such that supx∈R |f ′(x)| ≤ C0. Assume that the random variables Xn, n ∈ N, are as-
sociated, Ef (Xn) = 0, ‖f (Xn)‖r < ∞, n ∈ N, and u(n) ≤ C1n

−θ for some C1 > 0
and θ > 0. Then, for each ε > 0, there exists K , depending on ε, r , p and θ , such
that
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E

∣∣∣∣∣

n∑

i=1

f (Xi)

∣∣∣∣∣

p

≤ K

[

n1+ε max
i≤n

E
(∣∣f (Xi)

∣
∣p)+

(

nmax
i≤n

n∑

j=1

∣
∣Cov

(
f (Xi), f (Xj )

)∣∣
)p/2

+ n(r(p−1)−p−θ(r−p))/(r−2)∨(1+ε) max
i≤n

∥∥f (Xi)
∥∥r(p−2)/(r−2)

r

× (C2
0C1

)(r−p)/(r−2)

]

. (2.5)

Proof We shall prove the theorem by induction on the number of terms in the sum-
mation on the left side of (2.5). Notice that (2.5) is obvious for n = 1. So, assume
that the theorem is true for each k < n. Denote, for each n ∈ N, Tn =∑n

i=1 f (Xi)

and rp = r(p − 1) − p, as in Lemma 2.15. Let a ∈ (0, 1
2 ) be fixed, m = [na] + 1,

and denote kn = [ n
2m

] + 1. Now, decompose Tn into the sum of several blocks of
length m:

ξ� =
n∧(2�−1)m∑

j=2(�−1)m+1

f (Xj ) and η� =
n∧2�m∑

j=(2�−m)+1

f (Xj ), � = 1, . . . , kn.

Further, define the sums of alternating blocks:

T1,n =
kn∑

�=1

ξ� and T2,n =
kn∑

�=1

η�.

It is obvious, using the binomial inequality, that E|Tn|p ≤ 2p−1(E|T1,n|p +
E|T2,n|p). We will concentrate on finding an upper bound for E|T1,n|p , as the other
mathematical expectation is analogous. Using again the binomial inequality, we find

E|T1,n|p = E

(
kn∑

�=1

|ξ�||ξ� + T1,n − ξ�|p−1

)

≤ 2p−2
kn∑

�=1

E
(|ξ�|

(|ξ�|p−1 + |T1,n − ξ�|p−1))

≤ 2p−2
kn∑

�=1

E|ξ�|p + 2p−2
kn∑

�=1

E
(|ξ�||T1,n − ξ�|p−1). (2.6)

Denote the first summation above by A1 and the second by A2. The association of
the random variables enables the control of A2 as, taking into account Lemma 2.15,
it follows that
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A2 ≤
kn∑

�=1

E|ξ�|E|T1,n − ξ�|p−1

+
kn∑

�=1

p
(
E|T1,n − ξ�|p

)(r−1)(p−2)/rp
(
mmax

j≤m

∥∥f (Xj )
∥∥

r

)r(p−2)/rp

× (C2
0mu(m)

)(r−p)/rp . (2.7)

Using the binomial and Hölder inequalities, we get that the first term above is less
than or equal to

2p−2
kn∑

�=1

E|ξ�|E
(|ξ�|p−1 + |T1,n|p−1)

≤ 2p−2

[
kn∑

�=1

E|ξ�|p +
kn∑

�=1

(
E|T1,n|p

)(p−1)/pE|ξ�|
]

.

Put C2 = maxj≤m ‖f (Xj )‖r(p−2)/rp
r (C2

0u(m))(r−p)/rp . Then, using again the bino-
mial inequality on E|T1,n − ξ�|p , we obtain

A2 ≤ 2p−2A1 + 2p−2(E|T1,n|p
)(p−1)/p

kn∑

�=1

E|ξ�|

+ p2p−1C2m

(
kn∑

�=1

(
E|ξ�|p

)1−(r−2)/rp + kn

(
E|T1,n|p

)1−(r−2)/rp

)

. (2.8)

Using (2.4), we easily see that

C2m

kn∑

�=1

(
E|ξ�|p

)1−(r−2)/rp ≤
kn∑

�=1

E|ξ�|p + kn(C2m)rp/(r−2),

so, replacing in (2.8), we have

A2 ≤ 2p−2(1 + 2p)A1 + 2p−2(E|T1,n|p
)(p−1)/p

kn∑

�=1

E|ξ�|

+ p2p−1(C2mkn)
rp/(r−2) + p2p−1C2mkn

(
E|T1,n|p

)1−(r−2)/rp .

Insert now this into (2.6) and use Lemma 2.17, to find that

E|T1,n|p ≤ 2p−2(1 + 2p−2(1 + 2p)
)
A1

+ p22p−3(C1mkn)
rp/(r−2)

+ 22(p−2)
(
E|T1,n|p

)(p−1)/p
kn∑

�=1

E|ξ�|

+ p22p−3C2mkn

(
E|T1,n|p

)1−(r−2)/rp
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≤ 2p−1(1 + 2p−2(1 + 2p)
)
A1

+ 22p(p−1)

(
kn∑

�=1

E|ξ�|
)p

+ 3p22(p−1)(C2mkn)
rp/(r−2).

To simplify the writing of the expressions, denote

ap = 2p−1(1 + 2p−2(1 + 2p)
)

and

bp = 3p22(p−1) max
j≤m

∥∥f (Xj )
∥∥r(p−2)/rp

r

(
C2

0C1
)(r−p)/(r−2)

.

Then, recalling the assumption on u(n), we have

E|T1,n|p ≤ apA1 + 22p(p−1)

(
kn∑

�=1

(
Eξ2

�

)1/2

)p

+ bp(mkn)
rp/(r−2)mθ(p−r)/(r−2).

Denote vn = maxi≤n

∑n
j=1 |Cov(f (Xi), f (Xj ))|, so that Eξ2

� ≤ mvm ≤ mvn.
Hence,

E|T1,n|p ≤ apA1 + 22p(p−1)k
p
n (mvn)

p/2

+ bp(mkn)
rp/(r−2)mθ(p−r)/(r−2). (2.9)

Of course, T2,n verifies an analogous inequality. Therefore,

E|Tn|p ≤ 2p−1ap

(
kn∑

�=1

E|ξ�|p +
kn∑

�=1

E|η�|p
)

+ 2(2p+1)(p−1)+1k
p
n (mvn)

p/2 + 2pbp(mkn)
rp/(r−2)mθ(p−r)/(r−2).

We may now use the induction hypothesis to bound the summations
∑kn

�=1 E|ξ�|p
and

∑kn

�=1 E|η�|p , so it follows that

E|Tn|p ≤ 2papknK
(
m1+ε max

j≤n
E
∣∣f (Xj )

∣∣p + (mvn)
p/2

+ 2bpm(rp+θ(p−r))/(r−2)∨(1+ε)
)

+ 2(2p+1)(p−1)+1k
p
n (mvn)

p/2 + 2pbp(mkn)
rp/(r−2)mθ(p−r)/(r−2).

Choosing a = (2p−1ap)−1/ε and

K = max

(
2(2p+1)(p−1)+1ap(ε−1)/2

1 − a(p/2−1)(1+ε)
,

2pbpa(1+ε)rp/(r−2)

1 − 2bpa(1+ε)(p(r−1)/(r−2)−2)

)
,

we get inequality (2.5), so the proof of the theorem is concluded. �

The inequality just proved in Theorem 2.18 above plays an important role in the
study of convergence in distribution of empirical processes, allowing the control of
the moments of increments needed to prove the tightness of the empirical process
(refer to Sect. 5.4). An extension to the multivariate case, with an application to
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density estimation may be found in Masry [65]. A version of this inequality for
LPQD random variables has been proved in Louhichi [61].

If we assume that u(n) decreases fast enough, we may be more explicit about the
growth rate of the third term in (2.5).

Corollary 2.19 Under the assumptions of Theorem 2.18, if θ ≥ r(p−2)
2(r−p)

, then, for
each ε > 0, there exists K , depending on ε, r , p and θ , such that

E

∣∣∣∣∣

n∑

i=1

f (Xi)

∣∣∣∣∣

p

≤ K

[

n1+ε max
i≤n

E
(∣∣f (Xi)

∣∣p)+
(

nmax
i≤n

n∑

j=1

∣∣Cov
(
f (Xi), f (Xj )

)∣∣
)p/2

+ np/2 max
i≤n

∥∥f (Xi)
∥∥r(p−2)/(r−2)

r

(
C2

0C1
)(r−p)/(r−2)

]

. (2.10)

The following result is an immediate consequence of Corollary 2.19, choosing
f as the identity function and ε = p−2

2 , to obtain the nr/2 growth rate for the r th
moment of partial sums as for independent random variables.

Corollary 2.20 Let 2 < p < r ≤ ∞, and Xn, n ∈ N, be centred and associated
random variables satisfying u(n) ≤ C1n

−θ for some C1 > 0, with θ ≥ r(p−2)
2(r−p)

, and
‖Xn‖r < ∞ for n ≥ 1. Then, there exists a constant K = K(p, r) such that, for all
n ≥ 1,

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤ Knp/2

[

max
i≤n

E|Xi |p +
(

max
i≤n

n∑

j=1

Cov(Xi,Xj )

)p/2

+ max
i≤n

‖Xi‖r(p−2)/(r−2)
r C

(r−p)/(r−2)

1

]

. (2.11)

This corollary is essentially a version of the result proved by Birkel [13] that we
state next for convenience later when studying invariance principles (see Sect. 5.4).

Corollary 2.21 Let 2 ≤ p < r < ∞, and Xn, n ∈ N, be centred and associ-
ated random variables such that u(n) ≤ C1n

−θ for some C1 > 0 and θ > 0, and
supn∈N E|Xn|r+η < ∞ for some η > 0. Then, writing Sn = X1 + · · · + Xn, there
exists a constant K > 0 such that

sup
m∈N

E
(|Sm+n − Sm|p)≤ Knp/2. (2.12)

Proof Just remark that, in Corollary 2.20, the constant K in (2.11) does not de-
pend on n and the expression inside the large square brackets is bounded above by

supn E|Xn|p + (u(0))p/2 + supn ‖Xi‖r(p−2)/(r−2)
r C(r−p)/(r−2), which is also inde-
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pendent from n. Of course, in (2.11) one does not have to start the summations at
i = 1. �

2.4 Maximal Inequalities

An usual, the way to prove functional central limit theorems is based on suitable
maximal inequalities. In fact, such inequalities are at the base of most of the argu-
ments needed to prove the tightness of the sequences of random functions in the
most popular spaces of continuous or càdlàg functions as described, for example, in
Billingsley [10]. There is a huge literature on such problems that is directly inspired
on this approach. Thus, we are interested on extending such inequalities to associ-
ated random variables. An application of the following results to proving functional
central limit theorems will be treated later on Sect. 5.3.

The first maximal inequality appeared in Newman and Wright [71], controlling
the second-order moments of maxima. We will then discuss some extensions to
higher-order moments and conclude this section considering the case where we only
have moments of order strictly smaller than 2.

Throughout this section we will be referring to the maxima of partial sums, so
we introduce the following notation: for each n ∈ N, denote Mn = max(S1, . . . , Sn)

and M∗
n = max(|S1|, . . . , |Sn|).

Theorem 2.22 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. Then EM2

n ≤ Var(Sn) = ES2
n for every n ∈N.

Proof The inequality is trivial for n = 1. The proof will now be completed by an
induction argument. Thus, let us assume that the result holds for the maxima of
partial sums involving n − 1 variables and define, for each n ∈N,

Kn = min(X2 + · · · + Xn,X3 + · · · + Xn, . . . ,Xn,0),

Ln = max(X2,X2 + X3, . . . ,X2 + · · · + Xn),

Jn = max(0,Ln).

Notice that all these variables depend only on X2, . . . ,Xn. It is clear that Kn =
X2 + · · · + Xn − Jn, so, as Mn = X1 + Jn,

EM2
n = Var(X1) + 2 Cov(X1, Jn) + EJ 2

n

= Var(X1) + 2 Cov(X1,X2 + · · · + Xn) − 2 Cov(X1,Kn) + EJ 2
n .

The random variables Kn are increasing transformations of the original variables,
so according to Theorem 1.15, they are associated and associated with X1, and thus
Cov(X1,Kn) ≥ 0. Moreover, J 2

n ≤ L2
n, so it follows that

EM2
n ≤ Var(X1) + 2 Cov(X1,X2 + · · · + Xn) + EL2

n.

Finally, by the induction hypothesis, EL2
n ≤ Var(X2 + · · · + Xn), so the theorem

follows. �
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Given j,n ∈N, define

Tj,n =
{

j th largest among (S1, . . . , Sn) if j ≤ n,

min(S1, . . . , Sn) if j > n.

Obviously, Tn,n = min(S1, . . . , Sn) and T1,n = max(S1, . . . , Sn). The following
gives a general inequality.

Lemma 2.23 Let Xn, n ∈N, be associated random variables, and m a nondecreas-
ing function such that m(0) = 0. Then, for all j,n ∈N,

E
∫ Tj,n

0
um(du) ≤ E

(
Snm(Tj,n)

)
. (2.13)

Thus, for every c > 0,

λP(Tj,n ≥ c) ≤
∫

{Tj,n≥c}
Sn dP. (2.14)

Proof Write

m(Tj,n)Sn =
n−1∑

k=0

Sk+1
(
m(Tj,k+1) − m(Tj,k)

)+
n−1∑

k=1

(Sk+1 − Sk)m(Tj,k). (2.15)

By the definition of Tj,n, if k < j , we have either Tj,k = Tj,k+1 or Sk+1 = Yj,k+1.
Analogously, if k ≥ j , we have either Tj,k = Tj,k+1 or Sk+1 ≥ Yj,k+1. Thus, for
every k ≥ 1,

Sk+1
(
m(Tj,k+1) − m(Tj,k)

)≥ Tj,k+1
(
m(Tj,k+1) − m(Tj,k)

)≥
∫ Tj,k+1

Tj,k

um(du).

Now, take expectations, sum these terms, and recall that Tj,n = Sn and that, due to
the association of the random variables and that Sn are nondecreasing transforma-
tions, all the terms in the second summation of (2.15) are nonnegative, so (2.13)
follows. Finally, to prove (2.14), choose m(u) = I[c,+∞)(u) and apply (2.13). �

Remark 2.24 The previous lemma was proved by Newman and Wright [72] for
a somewhat more general framework. In fact, all that is used in the proof is just
that Cov(Xn+1,m(S1, . . . , Sn)) ≥ 0. A sequence of random variables verifying this
condition was called in Newman and Wright [72] a demimartingale.

We may now prove an extended version of the inequality in Theorem 2.22.

Theorem 2.25 Let Xn, n ∈ N, be centred and associated random variables. Then
ET 2

j,n ≤ ES2
n .
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Proof Define the random variables Z1 = 0 and Zk =∑n
i=n−k+2 Xi , k = 2,3, . . . ,

n + 1, and, for j ≤ n, Zj,n the j th largest among (Z1, . . . ,Zn). Then, from Theo-
rem 2.23 with m(u) = u we have

1

2
EZ2

n−j+1,n ≤ E(ZnTn−j+1,n) ≤ E(Zn+1Tn−j+1,n),

so E(Zn+1 − Tn−j+1,n)
2 ≤ EZ2

n+1, which is equivalent to the statement of this the-
orem. �

We may improve the upper bound for EM2
n if we assume a more precise conver-

gence decrease rate on the covariance of the random variables. The following result
appeared much later in the literature (Yang, Su and Yu [108]) and was motivated by
the search for convenient characterizations of the convergence rate in Strong Laws
of Large Numbers.

Theorem 2.26 Let Xn, n ∈N, be centred, square-integrable and associated random
variables such that

∞∑

i=1

u1/2(2i
)
< ∞. (2.16)

Then, there exists a positive constant C such that

EM2
n ≤ Cn

(
max
k≤n

EX2
k + 1

)
. (2.17)

Proof For each n ∈ N, define the sequence of random variables Yi,n = XiI[1,n](i),
i = 1,2, . . . . These random variables are obtained as nondecreasing transformations
of the original ones and thus are associated. Consider, on the sequel, n fixed. Given
j, k ∈N, define Sj (k) = Yj+1,n + · · · + Yj+k,n and, to deal with the nonstationarity,
sk = supj∈N ‖Sj (k)‖2, where ‖Sj (k)‖2 = (E(Sj (k)))1/2 is the L2 norm of Sj (k).
Then, obviously,
∥∥Sj (2k)

∥∥
2 ≤ ∥∥Sj (k) + Sj+k+[k1/3](k)

∥∥
2 + ∥∥Sj+k

([
k1/3])∥∥

2 + ∥∥Sj+2k

([
k1/3])∥∥

2

≤ ∥∥Sj (k) + Sj+k+[k1/3](k)
∥∥

2 + 2k1/3 sup
i∈N

‖Yi,n‖2

= ∥∥Sj (k) + Sj+k+[k1/3](k)
∥∥

2 + 2k1/3 max
i≤n

‖Xi‖2.

Now we use the association of the random variables, implying that the covariances
are nonnegative, so that

∥∥Sj (k) + Sj+k+[k1/3](k)
∥∥2

2 = E
(
Sj (k) + Sj+k+[k1/3](k)

)2

≤ 2s2
k + 2

j+k∑

i=j+1

∞∑

�=j+k+[k1/3]+1

Cov(Yi,n, Y�,n)

≤ 2s2
k + 2

j+k∑

i=j+1

u
([

k1/3])= 2s2
k + 2ku

([
k1/3]).
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Thus, inserting this in the previous majorization, it follows

s2k ≤ √
2sk +

√
2ku

([
k1/3

])+ 2k1/3s1.

We now use recursively the previous bound to find

s2r ≤ 2r/2s1 + 2s1

r−1∑

i=0

2(r−1−i)/2+i/3 + 2r/2
r−1∑

i=0

√
u
([

2i/3
])

≤ 2r/2s1 + 2(r+1)/2s1

∞∑

i=0

2−i/6 + 2r/2
∞∑

i=0

3i+2∑

j=3i

√
u
([

2j/3
])

≤ 14 × 2r/2s1 + 3 × 2r/2
∞∑

i=0

√
u
([

2i
])

≤ C2r/2(s1 + 1),

where C = max(14,3
∑∞

i=0

√
u([2i])). Assume now that 2r ≤ k < 2r+1. Then, due

to the association,

ES2
k ≤ E

(
S2

0

(
2r+1))≤ s2

22+1 ≤ C2(r+1)/2(s2
1 + 1

)≤ 2C22/r
(
s2

1 + 1
)
,

so, from Theorem 2.22 the result follows. �

Assumption (2.16) that has been used for the first time in Yang [107] is a rather
mild one. In fact, (2.16) is verified if u(n) is of order (logn)−2(log logn)−3, much
weaker than the typical hypothesis used in Sect. 2.3, where a polynomial decrease
rate was often assumed.

The result above assumes the existence of second-order moments, but, being a
statement that does not require stationarity, these moments may be unbounded. Of
course, the case where the second-order moments are bounded is included in the
framework of Theorem 2.26. As could be expected, it is possible to prove a version
of the upper bound better adapted to this situation, which will be explored later when
dealing with truncated variables, allowing to explore the behaviour of the truncating
sequence.

Theorem 2.27 Let Xn, n ∈ N, be centred and associated random variables such
that supn∈N EX2

n < ∞ and

K = sup
j∈N

∞∑

k:k−j>1

Cov1/2(Xj ,Xk) < ∞. (2.18)

Then, for every n ∈ N,

EM2
n ≤ 2n sup

n∈N
EX2

n + 4nK
(

sup
n∈N

EX2
n

)1/2
.
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Proof First remark that, obviously, for every j ≤ n,

S2
j ≤ max

((
min
k≤n

Sk

)2
,
(

max
k≤n

Sk

)2)≤
(

min
k≤n

Sk

)2 +
(

max
k≤n

Sk

)2
,

so it follows that M2
n ≤ (mink≤n Sk)

2 + (maxk≤n Sk)
2 ≤ 2(maxk≤n Sk)

2. Thus, ap-
plying Theorem 2.25, we have that E(maxk≤n Sk)

2 ≤ ES2
n , so

E
(

max
k≤n

S2
k

)
≤ 2ES2

n = 2
n∑

j,k=1

Cov(Xj ,Xk).

Define K1 = supn∈N EX2
n. Then, it is obvious that

Cov(Xj ,Xk) ≤ (EX2
j EX2

k

)1/2 ≤ K1

and

Cov(Xj ,Xk) ≤ (K1 Cov(Xj ,Xk)
)1/2

.

Thus,
n∑

j,k=1

Cov(Xj ,Xk) =
n∑

j=1

EX2
j + 2

n−1∑

j=1

n∑

k=j+1

Cov(Xj ,Xk) ≤ K1n + 2K
1/2
1 nK,

so the result follows. �

We now prove an extension to associated random variables of a well-known max-
imal inequality under independence.

Theorem 2.28 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. Then, for all λ > 0 and n ∈N,

P
(
M∗

n ≥ λsn
)≤ 2P

(|Sn| ≥ (λ − √
2)sn

)
. (2.19)

Proof Define M+
n = max(0, S1, . . . , Sn). Given real numbers x < y, we have

P
(
M+

n ≥ y
)

≤ P(Sn ≥ x) + P
(
M+

n−1 ≥ y,M+
n−1 − Sn > y − x

)

≤ P(Sn ≥ x) + P
(
S+

n−1 ≥ y
)
P
(
M+

n−1 − Sn > y − x
)

≤ P(Sn ≥ x) + P
(
M+

n ≥ y
)E(M+

n−1 − Sn)
2

(y − x)2
,

using Theorem 2.3, as M+
n−1 and Sn − M+

n−1 are associated. The mathematical ex-
pectation above may be rewritten as

E
(
M+

n−1 − Sn

)2 = E
[
max(Xn,Xn + Xn−1, . . . ,Xn + · · · + X1)

2]≤ ES2
n,

taking into account Theorem 2.22. Now, if (y − x)2 ≥ s2
n = ES2

n , it follows then that

P
(
M+

n ≥ y
)≤ (y − x)2

(y − x)2 − s2
n

P(Sn ≥ x). (2.20)



2.4 Maximal Inequalities 53

Repeating these arguments with M−
n = max(0,−S1, . . . ,−Sn) and adding to (2.20),

we find, whenever y − x ≥ √
2sn,

P
(
M∗

n ≥ y
)≤ 2P

(|Sn| ≥ x
)
. (2.21)

Finally, choosing y = λsn and x = (λ − √
2)sn, it follows that

P
(
M∗

n ≥ λsn
)≤ 2P

(|Sn| ≥ (λ − √
2)sn

)
. �

Notice that (2.19) has exactly the same form as in the independent case (see
Sect. 10 in Billingsley [10], for example).

The previous theorem implies, in a very simple way, a maximal inequality for
higher-order moments, thus extending Theorem 2.22.

Corollary 2.29 Let Xn, n ∈ N, be centred and associated random variables with
finite moments of order p ≥ 2. Then EM

p
n ≤ √

2(E|Sn|p)1/p + 2ES
p
n .

Proof Recall that M+
n = max(0, S1, . . . , Sn). As M+

n is a nonnegative variable, by
(2.19) and Hölder’s inequality, it follows that, with s2

n = ES2
n ,

E
(
M+

n

)p

=
∫ +∞

0
P
((

M+
n

)p
> y

)
dy ≤ √

2sn + 2
∫ +∞

√
2sn

P
(|Sn|p > y − √

2sn
)
dy

≤ √
2sn + 2ES

p
n ≤ √

2
(
E|Sn|p

)1/p + 2ES
p
n .

Obviously, the same applies to M−
n = max(0,−S1, . . . ,−Sn), so the result fol-

lows. �

If we only have moments of order smaller than 2, it is still possible to prove
bounds for the corresponding moments of maxima. These will be useful later on,
when analysing extensions of Strong Laws of Large Numbers. In this case we need
a preparatory lemma providing control on the tail of Mn. In order to state the result,
we need to introduce some extra notation. Recall the definition of Hj,k (see page 3):
Hj,k(x, y) = P(Xj > x,Xk > y)− P(Xj > x)P(Xk > y). Next, given v > 0, define
gv(u) = max(min(u, v),−v) and

Gj,k(v) = Cov
(
gv(Xj ), gv(Xk)

)=
∫ ∫

[−v,v]2
Hj,k(x, y) dx dy.

It is obvious that Gj,k(+∞) = Cov(Xj ,Xk). Moreover, as each gv is an increas-
ing function bounded by v2, it follows, assuming that the random variables Xn are
associated, that 0 ≤ Gv(x, y) ≤ v2.
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Lemma 2.30 Let Xn, n ∈ N, be associated random variables. Assume that there
exists a nonnegative random variable Y such that, for every x > 0, supn∈N P(|Xn| >
x) ≤ P(Y > x). Then, for every x,m > 0,

P(Mn > x) ≤ 4n

x2
E
(
Y 2

I{Y≤m}
)+ 4n

x
E(Y I{Y>m})

+ 4nm2

x2
P(Y > m) + 8

x2

n∑

j,k=1
j �=k

Gj,k(m).

Proof Let m > 0 be fixed and define, for each j ∈N,

X1,j = gm(Xj ), S1,n =
n∑

j=1

(X1,j − EX1,j ),

M1,n = max
k≤n

S1,k, X2,j = Xj − X1,j .

As, obviously,

Mn ≤ M1,n +
n∑

j=1

(|X2,j | + E|X2,j |
)
,

it follows from Markov’s inequality that

P(Mn > x) ≤ P
(

M1,n >
x

2

)
+ 4

x

n∑

j=1

E|X2,j | ≤ 4

x2
EM2

1,n + 4

x

n∑

j=1

E|X2,j |.

The random variables X1,n are associated, so we may apply Theorem 2.22 to bound
the first term on the right above, to find

P(Mn > x) ≤ 4

x2
ES2

1,n + 4

x

n∑

j=1

E|X2,j |

≤ 4

x2

n∑

j=1

EX2
1,j + 8

x2

n∑

j,k=1
j �=k

Cov(X1,j ,X1,k) + 4

x

n∑

j=1

E|X2,j |.

Finally, notice that EX2
1,j = ∫ P(X2

1,j > x)dx ≤ E(Y 2
I{Y≤m}) + m2P(Y > m) and,

analogously, E|X2,j | ≤ E((|Xj | − m)I{|Xj |>m}) ≤ E(Y I{Y>m}). �

Now we may prove the announced maximal inequality.

Theorem 2.31 Let Xn, n ∈ N, be associated random variables. Assume that there
exists a nonnegative random variable Y such that, for some p ∈ (1,2), EYp < ∞
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and, for every x > 0, supn∈N P(|Xn| > x) ≤ P(Y > x). Then, there exists a constant
cp > 0, depending only on p, such that

E
(

max
k≤n

|Sk|p
)

≤ cp

(

nEYp +
n∑

j,k=1
j �=k

∫ ∞

0
xp−3Gj,k(x) dx

)

. (2.22)

Proof Applying Lemma 2.30 with m = x and taking into account that p < 2, we
have

EM
p
n = p

∫ ∞

0
xp−1P(Mn > x)dx

≤ p

∫ ∞

0
xp−1

(
4n

x2
E
(
Y 2

I{Y≤x}
)+ 4n

x
E(Y I{Y>x}) + 4nP(Y > x)

)
dx

+ p

∫ ∞

0
xp−1 8

x2

n∑

j,k=1
j �=k

Gj,k(x) dx

≤ 8n

∫ ∞

0
xp−3E

(
Y 2

I{Y≤x}
)+ xp−2E(Y I{Y>x}) + xp−1P(Y ≥ x)dx

+ 8
∫ ∞

0
xp−3

n∑

j,k=1
j �=k

Gj,k(x) dx

≤ 8n

(
1

2 − p
+ 1

p − 1
+ 1

p

)
EYp + 8

∫ ∞

0
xp−3

n∑

j,k=1
j �=k

Gj,k(x) dx

and choose cp = 8 max( 1
2−p

+ 1
p−1 + 1

p
,1). Finally, notice that one may replace

the variables Xn by −Xn, keeping the association, so the previous inequality also
applies, thus proving the theorem. �

2.5 Characteristic Functions

This section presents a few inequalities, first proved by Newman [68] (see also New-
man [70] for a more complete presentation), controlling the distance between joint
distributions and the product of marginal distributions, based on characteristic func-
tions. As it will be shown, this distance is completely characterized by the covari-
ances of the variables, and thus, when seeking for asymptotic results, it becomes
natural to look for assumptions on the covariance structure. These inequalities will
play a major role in proving central limit theorems for associated variables. An anal-
ogous inequality concerning moment generating functions is also proved. This later
inequality, first used by Dewan and Prakasa Rao [30] in a different context, will be
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a useful tool for proving exponential inequalities of the next section and to derive
convergence rates.

We start by setting some notation.

Definition 2.32 Given the random variable X, we denote its characteristic function
by

ϕX(u) = EeiuX, u ∈R.

Given random variables X1, . . . ,Xn, we denote their joint characteristic function
by

ϕ(X1,...,Xn)(u1, . . . , un) = Eei(u1X1+···+unXn), u1, . . . , un ∈R.

Given a set A ⊂ {1, . . . , n}, we denote

ϕA(u1, . . . , un) = Ee
i
∑

j∈A uj Xj .

If A = {j}, we denote, for simplicity, ϕA by ϕj .

We first prove the inequality that describes the control of the distance between
joint distributions and the product of marginal distributions for two random vari-
ables. The proof of the main result in this section, Theorem 2.37, is built on this
version proceeding by induction.

Lemma 2.33 Let X and Y be associated random variables. Then, for every
u,v ∈ R,

∣∣EeiuX+ivY − EeiuXEeivY
∣∣≤ |uv|Cov(X,Y ). (2.23)

Proof The expression inside the absolute value may be rewritten as Cov(eiuX, eivY ).
Now, representing by PX , PY and P(X,Y ) the distributions of X, Y and (X,Y ), re-
spectively, and recalling that H(s, t) = P(X > s,Y > t) − P(X > s)P(Y > t) and
integrating by parts (see Theorem C.4), we find

Cov
(
eiuX, eivY

) =
∫ ∫

eius+ivt (P(X,Y ) − PX ⊗ PY )(ds dt)

=
∫ ∫

∂2

∂s ∂t
eius+ivtH(s, t) ds dt

=
∫ ∫

iueiusiveivtH(s, t) ds dt.

Noticing that due to the association of the variables, H is a nonnegative function,
the lemma follows immediately from

∣∣Cov
(
eiuX, eivY

)∣∣≤ |uv|
∫ ∫

H(s, t) ds dt = |uv|Cov(X,Y ),

using Hoeffding’s formula (1.2). �
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Remark 2.34 Notice that the proof depends only on the fact that H has constant
sign. Thus, the previous result holds for positively dependent variables or for nega-
tively dependent variables taking, in this later case, the absolute value of the covari-
ance on the left-hand side of (2.23). Of course, for general random variables, the
upper bound would be

|uv|
∫ ∫ ∣∣H(s, t)

∣∣ds dt.

Before stating an extension of this lemma, it is useful to relate the covariances
H with the covariances between the original random variables. This is a direct con-
sequence of the two-dimensional version of the classical Berry–Esséen inequalities,
given in Theorem A.2.

Lemma 2.35 Let X and Y be associated random variables with absolutely continu-
ous distributions. Assume that the marginal densities fX and fY are bounded by M .
Then, for every T > 0,

H(x,y) = Cov
(
I(−∞,x](X), I(−∞,y](Y )

)≤ M∗
(

T 2 Cov(X,Y ) + 1

T

)
, (2.24)

where M∗ = max( 2
π2 ,45M).

Proof Using Corollary A.3 together with (2.23), the lemma follows immediately. �

Optimizing the choice of T on the previous result, we find the following impor-
tant inequality.

Corollary 2.36 Under the same assumptions as in Lemma 2.35, if Cov(X,Y ) > 0,
we have that

Cov
(
I(−∞,x](X), I(−∞,y](Y )

)≤ 1

M∗ Cov1/3(X,Y ). (2.25)

Proof In (2.24), choose T = (2 Cov(X,Y ))−1/3, and the inequality follows. �

This inequality plays an important role while studying invariance principles and
the asymptotics for the density and regression estimators that depend on transforma-
tions using indicator functions on the sequence of random variables. In fact, (2.25)
enables the control of covariances between indicator functions using covariances
between the original random variables. Thus, it gives a way to obtain sufficient con-
ditions expressed in terms of the initial variables.

Now we extend Lemma 2.33 to any number of associated variables.
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Theorem 2.37 (Newman inequality) Let Xn, n ∈ N, be associated variables. Then,
for all n ∈ N and u1, . . . , un ∈ R,

∣∣∣∣∣
ϕ(X1,...,Xn)(u1, . . . , un) −

n∏

j=1

ϕj (uj )

∣∣∣∣∣
≤ 1

2

n∑

j,k=1
j �=k

|ujuk|Cov(Xj ,Xk). (2.26)

Proof When n = 2, inequality (2.26) reduces to (2.23), so we may proceed by in-
duction on n to prove this theorem. Assume then that (2.26) holds whenever there
are only n − 1 variables involved. To prove the inequality for n variables, split the
set {1, . . . , n} in the following way:

(a) if all the u1, . . . , un have the same sign, take A = {1, . . . , n − 1} and B = {n};
(b) if not all the u1, . . . , un have the same sign, take A = {j ∈ {1, . . . , n} :uj > 0}

and B = {1, . . . , n} \ A.

Define now the variables U = ∑
j∈A |uj |Xj and V = ∑

j∈B |uj |Xj . Notice that
these variables are increasing transformations of the Xn’s, so they are still associ-
ated. Moreover, we can write

ϕ(X1,...,Xn)(u1, . . . , un) = Eei(U−V ) = ϕU−V (1),

ϕA(uj , j ∈ A) = ϕU(1) and ϕB(uj , j ∈ B) = ϕV (−1).

Then,
∣∣
∣∣∣
ϕ(X1,...,Xn)(u1, . . . , un) −

n∏

j=1

ϕj (uj )

∣∣
∣∣∣

≤ ∣∣ϕU−V (1) − ϕU(1)ϕV (−1)
∣∣+ ∣∣ϕU(1)

∣∣
∣
∣∣∣ϕV (−1) −

∏

j∈B

ϕj (uj )

∣
∣∣∣

+
∣∣∣∣
∏

j∈B

ϕj (uj )

∣∣∣∣

∣∣∣∣ϕU(1) −
∏

j∈A

ϕj (uj )

∣∣∣∣. (2.27)

Of course, characteristics functions have absolute values bounded by 1, so the sec-
ond and third terms may be bounded using the induction hypothesis. It remains to
bound the first term on (2.27): as U and V are associated, we refer to Lemma 2.33
and, with respect to the notation used in this lemma, choose, for the case (a),
u = v = 1 if the uj are positive or u = v = −1 if the uj are negative, and for the
case (b), u = 1 and v = −1. Applying now Lemma 2.33 and the induction hypothe-
sis, we immediately get (2.27). �

Remark 2.38 A close look at the proof shows that the association assumption can be
weakened. In fact, what is used throughout the proof is the fact that linear combina-
tions with nonnegative coefficients (notice that we multiply by −1 the coefficients
that are negative) of the random variables have nonnegative covariance. Thus, the
previous result holds if the random variables are LPQD (see Definition 1.58).
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Remark 2.39 Notice that, as far as what convergence in distribution is concerned,
inequality (2.26) means that the covariance structure of the random variables com-
pletely determines the properties of the approximation of joint distributions to inde-
pendence. This remark is at the heart of most of the results included in Chap. 4. It
also justifies that, for random variables, it is natural to seek for assumptions on the
behaviour of these covariances.

Next, we prove an extension of Theorem 2.37, allowing for applications going
beyond associated random variables themselves, by considering suitable transfor-
mations of the variables. Of course, Theorem 2.37 still applies if we consider trans-
formations of the initial variables that are either all increasing or all decreasing as,
according to Theorem 1.15, such transformations keep the association. However, it
is possible to prove a version of (2.26) for nonmonotone transformations of associ-
ated variables, using Lemma 2.8, if these functions are dominated by nondecreasing
ones, as described by the relation “�” introduced in Definition 2.4.

Theorem 2.40 Let Yn, n ∈ N, be associated random variables. Assume that,
for each n ∈ N, fn, gn are real-valued functions such that fn � gn, and de-
note Xn = fn(Y1, Y2, . . .) and X∗

n = gn(Y1, Y2, . . .). Then, for every n ∈ N, given
A,B ⊂ {1, . . . , n} and u1, . . . , un ∈ R,

∣∣ϕA∪B(u1, . . . , un) − ϕA(u1, . . . , un)ϕB(u1, . . . , un)
∣∣

≤ 2
∑

j∈A,k∈B

|ujuk|
∣∣Cov

(
X∗

j ,X
∗
k

)∣∣ (2.28)

and ∣∣∣∣
∣
ϕ(X1,...,Xn)(u1, . . . , un) −

n∏

j=1

ϕj (uj )

∣∣∣∣
∣
≤ 2

n∑

j,k=1
j �=k

|ujuk|Cov
(
X∗

j ,X
∗
k

)
. (2.29)

Proof To prove (2.28), define f1(u1, . . . , un) = exp(i
∑

j∈A ujXj ) and f2(u1, . . . ,

un) = exp(i
∑

k∈B ukXk). As
∑

j∈A ujfj �∑j∈A |uj |gj , Proposition 2.7 applies,
so (2.28) is an immediate consequence of Lemma 2.8.

To prove (2.29), argue by induction as in the proof of Theorem 2.37, de-
composing the set {1, . . . , n} in exactly the same way and using decomposition
(2.27). As previously, the second and third terms of this decomposition are con-
trolled directly from the induction hypothesis. To control the first term, define
U = f1(u1, . . . , un) and V = fs(u1, . . . , un), which, according to Proposition 2.7,
verify U �∑j∈A |uj |gj and V �∑k∈B |uk|gk , and apply again Lemma 2.8. �

A straightforward modification of the proof of Lemma 2.33 gives an upper bound
in terms of moment generating functions. In fact, we may write

Cov
(
eλX, eλY

) =
∫ ∫

eλ(s+t)(P(X,Y ) − PX ⊗ PY )(ds dt)

=
∫ ∫

λ2eλ(s+t)H(s, t) ds dt.
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The following statement is now obvious.

Lemma 2.41 Let X and Y be associated random variables such that |X|, |Y | ≤ C

for some constant C > 0. Then, for every λ ∈R,
∣∣Eeλ(X+Y) − EeλXEeλY

∣∣≤ λ2e2λC Cov(X,Y ). (2.30)

Taking into account that, for any A ⊂ {1, . . . , n}, Ee
λ
∑

j∈A Xj ≤ eλ|A|C , where |A|
is the number of elements in A, the extension for n random variables is immediate,
following the arguments of the proof of Theorem 2.37.

Theorem 2.42 Let Xn, n ∈ N, be associated variables such that |Xn| ≤ C for some
constant C > 0, not depending n. Then, for all n ∈N and λ ∈R,

∣
∣∣∣∣
Ee

λ
∑n

j=1 Xj −
n∏

j=1

EeλXj

∣
∣∣∣∣
≤ λ2

2
enλC

n∑

i,j=1
i �=j

Cov(Xi,Xj ). (2.31)

2.6 Exponential Inequalities

One of the main tools used for characterizing convergence rates in strong laws has
been convenient versions of the so-called Bernstein-type exponential inequalities.
There exist several versions of such inequalities available in the literature for inde-
pendent sequences of variables with assumptions of uniform boundedness or some,
quite relaxed, control on their (centred or noncentred) moments. For associated ran-
dom variables, a first exponential inequality was proved by Prakasa Rao [83], but it
was too weak to be really useful. In fact, this inequality does not even recover the
known results if one assumes the variables to be independent. A stronger inequality,
effectively extending results from the independent case, was proved by Ioannides
and Roussas [48]. The technique was based on decomposing Sn into the sum of
convenient blocks in both cases. But, while Prakasa Rao [83] tried to control ev-
erything just using properties of the exponential function, Ioannides and Roussas
[48] controlled the mathematical expectations by coupling the blocks by indepen-
dent ones. The route of the proof consists then in controlling the distance between
the original blocks and the coupling independent variables, achieved using an induc-
tion argument, and finding convenient bounds for the independent coupling terms.
Their inequality was later extended in Oliveira [75], where the approximation to in-
dependence was controlled in a different way, based on Theorem 2.42, avoiding the
induction argument and dropping some technical assumptions appearing in course
of the proof proposed by Ioannides and Roussas [48]. One way to have some in-
sight on how optimized the exponential inequality is was to use it to characterize
convergence rates for Strong Laws of Large Numbers to see how close the optimal
rates for independent variables remain. This will be explored later in Sect. 3.2. We
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should note at this point that the main term in such convergence rate characteriza-
tions is the one that controls the independent coupling terms. This led to some effort
in improving the control of these independent like terms by Sun [98], Xing, Yang
and Liu [106], Henriques and Oliveira [43] and Xing and Yang [105], but we defer
this to Sect. 3.2. Nevertheless, in all these references, the way association was used
to find the exponential inequality was essentially the same, and that is what we will
be concentrating on this section.

Let us now introduce the notation to be used throughout this section. Let cn,
n ∈N, be a sequence of nonnegative real numbers such that cn −→ +∞ and, given
the random variables Xn, n ∈ N, define, for all i, n ≥ 1,

X1,i,n = −cnI(−∞,−cn)(Xi) + XiI[−cn,cn](Xi) + cnI(cn,+∞)(Xi),

X2,i,n = (Xi − cn)I(cn,+∞)(Xi), X3,i,n = (Xi + cn)I(−∞,−cn)(Xi).
(2.32)

For each fixed n ≥ 1, the variables X1,1,n, . . . ,X1,n,n are uniformly bounded, and
thus they may be treated using Theorem 2.42. Note that, for each fixed n ≥ 1, all
these variables are monotone transformations of the initial variables Xn. This im-
plies that an association assumption is preserved by this construction.

The proof of an exponential inequality will use, besides the truncation introduced
before, a convenient decomposition of the sums into blocks. This block decompo-
sition is a means to an approximation to independence technique on the truncated
variables. The tails will be treated directly using Laplace transforms.

Consider a sequence of natural numbers pn such that, for each n ≥ 1, pn < n
2 and

define rn as the greatest integer less than or equal to n
2pn

. Define then, for q = 1,2,3
and j = 1, . . . ,2rn,

Yq,j,n =
jpn∑

�=(j−1)pn+1

(Xq,�,n − EXq,�,n). (2.33)

Finally, for all q = 1,2,3 and n ≥ 1, define

Zq,n,od =
rn∑

j=1

Yq,2j−1,n, Zq,n,ev =
rn∑

j=1

Yq,2j,n,

Rq,n =
n∑

�=2rnpn+1

(Xq,�,n − EXq,�,n).

(2.34)

The proof of the main result is now divided into the control of the bounded terms,
corresponding to the index q = 1, and the control of the nonbounded terms that
correspond to the indices q = 2,3. The next result takes care of the approximation
between the joint distribution of the blocks and what one would find if these blocks
were independent.

Lemma 2.43 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables. Then, for every λ > 0,

∣∣∣∣∣
EeλZ1,n,od −

rn∏

j=1

EeλY1,2j−1,n

∣∣∣∣∣
≤ λ2n

2
eλncn

(2rn−1)pn∑

j=pn+2

Cov(X1,Xj ), (2.35)
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and analogously for the term corresponding to Z1,n,ev.

Proof Taking into account (2.34) and the fact that the variables defined in (2.32) are
associated, we have, applying directly Theorem 2.42,

∣∣∣∣∣
EeλZ1,n,od −

rn∏

j=1

EeλY1,2j−1,n

∣∣∣∣∣

≤ λ2rnpne
2λrnpncn

∑

1≤j<j ′≤rn

Cov(Y1,2j−1,n, Y1,2j ′−1,n). (2.36)

As 2rnpn ≤ n, we are left with the sum of the covariances to deal with. Using the
stationarity of the variables, it follows that

∑

1≤j<j ′≤rn

Cov(Y1,2j−1,n, Y1,2j ′−1,n) =
rn−1∑

j=1

(rn − j)Cov(Y1,1,n, Y1,2j−1,n).

A further invocation of the stationarity implies that

Cov(Y1,1,n, Y1,2j−1,n)

=
pn−1∑

�=0

(pn − �)Cov(X1,1,n,X1,2jpn+�+1,n)

+
pn−1∑

�=1

(pn − �)Cov(X1,�+1,n,X1,2jpn+1,n)

≤ pn

(2j+1)pn∑

�=(2j−1)pn+2

Cov(X1,1,n,X1,�,n). (2.37)

We now analyse the covariances using the Hoeffding formula (1.2):

Cov(X1,i,n,X1,j,n) =
∫

R2
P(X1,i,n > u,X1,j,n > v)

− P(X1,i,n > u)P(X1,j,n > v)dudv. (2.38)

If we take into account the truncation made in (2.32), it follows that the integrand
function vanishes outside the square [−cn, cn]2. Moreover, for u,v ∈ [−cn, cn], we
may replace, in the integrand, the variables X1,i,n and X1,j,n by Xi and Xj , respec-
tively, so that

Cov(X1,i,n,X1,j,n)

=
∫

[−cn,cn]2
P(Xi > u,Xj > v) − P(Xi > u)P(Xj > v)dudv

≤
∫

R2
P(Xi > u,Xj > v) − P(Xi > u)P(Xj > v)dudv = Cov(Xi,Xj ),



2.6 Exponential Inequalities 63

due to the nonnegativity of the latter integrand function, as follows from the as-
sociation of the original variables. Inserting this into (2.36) and (2.37), the lemma
follows. �

The next step is to find some convenient control on the variables that couple the
blocks Y1,2j−1,n. We first prove a small extension of the moment inequalities studied
in Sect. 2.3, that is better suited for our present purposes.

Lemma 2.44 Let c > 0 and S1,n =∑n
i=1(X1,i,n − EX1,i,n). Assume that the ran-

dom variables Xn, n ∈ N, are strictly stationary, associated and u(0) < ∞. Then
ES2

1,n ≤ 2nc∗
n, where c∗

n ≥ c2
n + u(0).

Proof Using the stationarity, we easily get that

ES2
1,n = nVar(X1,1,n) + 2

n−1∑

j=1

(n − j)Cov(X1,1,n,X1,j+1,n)

≤ 2nc2
n + 2nu(0) ≤ 2nc∗

n,

since Cov(X1,1,n,X1,j+1,n) ≤ Cov(X1,Xj+1) due to the association of the random
variables, as mentioned in the proof of the previous lemma. �

Remark 2.45 Notice that we can assume that c∗
n = 2c2

n, at least as cn −→ +∞, as
is the case for our framework.

The previous inequality will help improving the control of the independent-like
terms used in Ioannides and Roussas [48] and Oliveira [75]. An improvement based
on the Hölder inequality appears in Sung [98], but the approach by Xing, Yan and
Liu [106] that goes along the arguments to be used below produces a better upper
bound.

Lemma 2.46 Let Xn, n ∈N, be strictly stationary and associated random variables
such that u(0) < ∞. If 0 < λ < 1

2cnpn
, then

rn∏

j=1

EeλY1,2j−1,n ≤ exp
(
λ2nc∗

n

)
,

and the same bound holds for
∏rn

j=1 EeλY1,2j,n .

Proof From the definition (2.33) it is obvious that |Y1,2j−1,n| ≤ 2cnpn. Using a
Taylor expansion and Lemma 2.44, we get that, for each j = 1, . . . , rn,

EeλY1,2j−1,n ≤ 1 + λ2EY 2
1,2j−1,n

∞∑

k=2

(2cnλpn)
k−2

k! ≤ exp
(
2λ2pnc

∗
n

)
,

using the inequality 1+x ≤ ex for ≥ 0 and taking into account the assumption on λ.
Finally, recall that 2rnpn ≤ n. �
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We may now prove an exponential inequality for the sum of odd indexed or even
indexed terms.

Lemma 2.47 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables. Assume that pn > cn > u(0) and

n

c4
n

exp

(
n

4cn

)
u(pn) ≤ C0 < ∞. (2.39)

Then, for every ε ∈ (0, cn

pn
),

P
(

1

n
|Z1,n,od| > ε

)
≤ (1 + 32C0) exp

(
−nε2

8c2
n

)
, (2.40)

and analogously for Z1,n,ev.

Proof Applying Markov’s inequality and using Lemma 2.43, we find that, for every
λ > 0 small enough,

P
(

1

n
|Z1,n,od| > ε

)
≤ λ2n

2
exp(λncn − λnε)

(2rn−1)pn∑

j=pn+2

Cov(X1,Xl)

+ exp
(
λ2nc∗

n − λnε
)
. (2.41)

To optimize the exponent in the last term of the upper bound in (2.41), we choose

λ = ε
2c∗

n
, so that λ2nc∗

n − λnε = −nε2

4c∗
n

. Notice that as ε < cn

pn
, it follows that the

requirement on λ of Lemma 2.46 is fulfilled. Replacing now λ in the first term of
the upper bound and taking into account (2.39), we get that

P
(

1

n
|Z1,n,od| > ε

)

≤ ε2n

8(c∗
n)

2
exp

(
ncn

2c∗
n

− nε2

2c∗
n

) (2rn−1)pn∑

j=pn+2

Cov(X1,Xl) + exp

(
−nε2

4c∗
n

)

≤ 32C0 exp

(
−nε2

2c∗
n

)
+ exp

(
−nε2

4c∗
n

)

≤ (1 + 32C0) exp

(
−nε2

4c∗
n

)

= (1 + 32C0) exp

(
−nε2

8c2
n

)
. �

Remark 2.48 Note that assumption (2.39), which involves the covariance structure
on the previous lemma, is much stronger than (2.16), used to control second-order
moments of maxima.

To complete the treatment of the bounded terms, it remains to control the sum
corresponding to the indices after 2rnpn, that is, R1,n.
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Lemma 2.49 Let Xn, n ∈N, be strictly stationary associated random variables and
assume that

n

cnpn

−→ +∞. (2.42)

Then, for n large enough and every ε > 0, we have P(|R1,n| > nε) = 0.

Proof Recall the definition of R1,n =∑n
�=2rnpn+1(X1,�,n − EX1,�,n). Taking into

account the construction of rn and pn, we get that |R1,n| ≤ 2(n−2rnpn)cn ≤ 4cnpn.
Now P(|R1,n| > nε) ≤ P( 4

ε
> n

cnpn
) and, by (2.42), this is equal zero for n large

enough. �

The variables X2,i,n and X3,i,n are associated but not bounded, even for fixed n.
This means that Theorem 2.42 may not be applied to the sum of such terms. But,
we may note that these variables depend only on the tails of the distributions of the
original variables. So, by controlling the decrease rate of these tails we may prove an
exponential inequality for sums of X2,i,n or X3,i,n. A first upper bound using such
an approach was obtained in Oliveira [75], where the association was not explored,
and later improved by Xing, Yang and Liu [106], using explicitly the association of
the random variables via the maximal inequality proved in Theorem 2.27.

Lemma 2.50 Let Xn, n ∈N, be associated random variables such that (2.18) holds
and there exist M > 0 and δ > 0 such that

sup
|t |≤δ

EetX1 ≤ M < +∞. (2.43)

Then, for t ∈ (0, δ] and q = 2,3,

P

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xq,i,n − EXq,i,n)

∣∣∣∣∣
> nε

)

≤ 2MCe−tcn

nt2ε2
+ (2M)1/2Ce−tcn/2

ntε2
,

(2.44)

where C is the constant introduced in Theorem 2.27.

Proof According to Theorem 2.27, using Markov’s inequality, we have

P

(

max
1≤k≤n

∣∣∣
∣∣

k∑

i=1

(Xq,i,n − EXq,i,n)

∣∣∣
∣∣
> nε

)

≤ 1

n2ε2
E

(

max
1≤k≤n

∣∣∣∣∣

k∑

i=1

(Xq,i,n − EXq,i,n)

∣∣∣∣∣

2)

≤ C

nε2

(
sup

i

EX2
q,i,n +

(
sup

i

EX2
q,i,n

)1/2)
, (2.45)

so we need to find upper bounds for EX2
q,i,n. Write F i(x) = P(Xi > x). Using

again Markov’s inequality, we get that, for t ∈ (0, δ), F i(x) ≤ e−txEetXi ≤ Me−tx .
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Writing the mathematical expectation as a Stieltjes integral and integrating by parts,
we find

EX2
2,i,n = −

∫

(cn,+∞)

(x − cn)
2F i(dx) =

∫ +∞

cn

2(x − cn)F i(x) dx ≤ 2M
e−tcn

t2
.

Inserting this into (2.45), we get the result. �

Remark 2.51 Notice that in (2.44), if cn −→ +∞, the second term in (2.44) is the
dominating one.

We can now collect all the previous upper bounds into the following result, stat-
ing an exponential inequality regardless of the boundedness of the variables.

Theorem 2.52 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables such that (2.18), (2.39), (2.42) and (2.43) hold. Then, for n large enough,
ε ∈ (0, cn

pn
) and t ∈ (0, δ],

P

(∣∣∣∣∣

n∑

i=1

Xi − EXi

∣∣∣∣∣
> nε

)

≤ 2(1 + 32C0) exp

(
− nε2

648c2
n

)
+ 36MCetcn

nt2ε2
+ 18(2M)1/2Cetcn/2

ntε2
. (2.46)

Proof Just write

P

(∣∣∣∣∣

n∑

i=1

Xi − EXi

∣∣∣∣∣
> nε

)

≤
3∑

q=1

P

(∣∣∣∣∣

n∑

i=1

Xq,i,n − EXq,i,n

∣
∣∣∣∣
>

nε

3

)

≤ P
(

|Z1,n,od| > nε

9

)
+ P

(
|Z1,n,ev| > nε

9

)
+ P

(
|R1,n| > nε

9

)

+ P

(∣∣∣∣∣

n∑

i=1

X2,i,n − EX2,i,n

∣∣∣∣∣
>

nε

3

)

+ P

(∣∣∣∣∣

n∑

i=1

X3,i,n − EX3,i,n

∣∣∣∣∣
>

nε

3

)

and use (2.40) and (2.44) to conclude. �

These inequalities are not yet in an adequate form for characterizing convergence
rates. This will be done in Sect. 3.2, essentially allowing ε to depend on n and
identifying a convenient decrease rate such that the derived upper bound still defines
a convergent series.



Chapter 3
Almost Sure Convergence

Abstract This chapter studies essentially Strong Laws of Large Numbers (SLLN)
for associated variables and their applications to the characterization of asymptotics
of statistical estimators under associated sampling. It is possible to prove SLLN
under fairly general assumptions, but, in order to prove characterizations of con-
vergence rates, a closer care on the control of the covariances, based on the in-
equalities studied in the previous chapter, is required. Sect. 3.2 handles this kind
of results, proving almost optimal convergence rates, that is, convergence rates ar-
bitrarily close to those for independent variables. There exist characterizations of
convergence rates based on extensions of the Law of Iterated Logarithm to associ-
ated variables. Such results are deferred to Chap. 4, as their proofs require a few
inequalities to be proved there. We include a section on large deviations, a not yet
very explored theme under association. Here the assumptions on the decay rate of
the covariances are much stronger, a behaviour as found for some other dependence
structures. The approach and techniques used in this chapter are adapted in the fi-
nal section to prove almost sure consistency results for nonparametric density and
regression estimators based on associated samples.

3.1 Introduction

The first Strong Law of Large Numbers (SLLN) for associated random variables
appears in Newman [70] under strict stationarity and a Cesàro convergence assump-
tion on the covariance structure of the variables. The stationarity assumption was
dropped in Birkel [15], who proved a version of the SLLN that can be interpreted as
a generalized Kolmogorov’s SLLN. This subject remained more or less quite until
the contribution by Ioannides and Roussas [48] provided a means to prove conver-
gence rates for the asymptotic behaviour of nonparametric estimators for the density
or for the regression. In fact, these authors proved an exponential-type inequality, a
particular case of Theorem 2.52, that enabled them to find rates assuming a conve-
nient geometric decay rate for the covariances. The rates proved by Ioannides and
Roussas [48] were rather slow, indicating that the exponential inequality used there
was far from an optimal form, so the interest on optimizing these inequalities and,
consequently, the rates derived from them was natural. The approach introduced
by Ioannides and Roussas [48] was improved by Oliveira [75], Sung [98], Xing,

P.E. Oliveira, Asymptotics for Associated Random Variables,
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Yang and Liu [106] and Xing and Yang [105] so that the rates derived became ar-
bitrarily close to the rates for independent variables. Another direction was pursued
by Louhichi [62] and Louhichi and Soulier [64], who proved the Marcinkiewicz–
Zygmund SLLN with less requirements on the existence of moments. The covari-
ance structure plays a rather indirect role on these later type of results. More recent
contributions were made by Yang, Su and Yu [108] using an approach based on
maximal inequalities and a suitable moment control. Their results require a mild as-
sumption on the existence of moments and a very weak condition on the decay rate
for the covariance structure, which now plays again an important role. A suitable
use of maximal inequalities enables still a small improvement.

As already remarked, these results on almost sure convergence naturally had an
interest for the statistical literature based on associated samples. The main interest
has been on density estimation. Roussas [85, 86] appears to be the first to prove
some asymptotics for kernel density estimators both almost surely and in distribu-
tion, these to be treated here in a later chapter. These results were followed by the
contributions by Cai and Roussas [23, 24], who also considered the estimation of
distribution functions. The results obtained included some convergence rates charac-
terization but assumed the sample to have pairwise joint distributions with densities
that should be close to product densities, that is, assumptions similar to those appear-
ing when considering strong mixing samples. A few interesting examples are left out
by this absolute continuity assumption, as for instance, the model described in Ex-
ample 1.28. Masry [65] proved various consistency results, including optimal almost
sure convergence rates, for the kernel density estimator, using an approach based on
moment inequalities and being less restrictive on the decay rate of the covariances,
as it includes polynomially decreasing covariances. The pairwise joint distributions
were still assumed to be absolutely continuous. The approach based on exponential
inequalities requires geometrically decreasing covariances but, although first results
were somewhat less encouraging, provides better convergence rates for the estima-
tor. This approach was used in Oliveira [74] and Henriques and Oliveira [42] for
the density estimator. The same method was also used in Azevedo and Oliveira [3]
and Henriques and Oliveira [41] to deal with the estimation of distribution func-
tions. A more general approach to estimation problems, trying to treat density and
regression estimation, deals with the estimation of Radon–Nikodym derivatives in
point process models. A few efforts dealing with associated samples were made
by Ferrieux [38, 39] and Jacob and Oliveira [52]. As follows from Sect. 1.4 (see,
for instance, Example 1.4), this is a different framework from considering associ-
ated samples of random variables, as the base space is changed in a way that the
order structure is affected. Nevertheless, this abstract approach has consequences
on results about estimation, enabling the treatment of pairwise distributions that are
no longer absolutely continuous, as showed in Oliveira [74], where pairwise joint
distributions are allowed to have some mass concentrated on the diagonal of the
product space.
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3.2 Strong Laws of Large Numbers

The first extensions of the SLLN to associated random variables follow the same
approach as the classical one for independent variables. Thus we start by a result
requiring the existence of second-order moments, leaving the identification of con-
vergence rates for a later approach.

Theorem 3.1 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. Assume that

∞∑

n=1

1

n2
Cov(Xn,Sn) < ∞. (3.1)

Then 1
n
Sn −→ 0 almost surely.

Proof We will prove this result by arguments similar to the classic ones: prove the
convergence along a suitably chosen subsequence and afterwards control the re-
maining terms.

Step 1. From Chebyshev’s inequality we have that P(|S2n | > 2nε) ≤ 1
4n Var(S2n).

An elementary calculation gives that, as the covariances are nonnegative,

Var(S2n) =
2n∑

i,j=1

Cov(Xi,Xj ) ≤ 2
2n∑

i=1

Cov(Xi, Si).

Thus, reversing the order of summation, again taking into account the nonnegativity
of the covariances, we have

∞∑

n=1

P
(|S2n | > ε2n

)

≤
∞∑

n=1

1

4nε2
Var(S2n)

≤ 2

ε2

∞∑

n=1

1

4n

2n∑

i=1

Cov(Xi, Si) ≤ 2

ε2

∞∑

i=1

( ∑

n:2n≥i

1

4n

)
Cov(Xi, Si)

≤ 2

ε2

∞∑

i=1

( ∑

n≥log2 i

1

4n

)
Cov(Xi, Si) ≤ 8

3ε2

∞∑

i=1

1

i2
Cov(Xi, Si) < ∞. (3.2)

Applying now the Borel–Cantelli lemma, it follows that 1
2n S2n −→ 0 almost surely.

Step 2. To control the remaining terms, first notice that if 2n < k ≤ 2n+1, then
∣∣∣∣
Sk

k
− S2n

2n

∣∣∣∣≤
|Sk − S2n |

2n
+ |S2n |

2n
,

so the theorem follows from the convergence proved in Step 1 if we also prove that
2−n max2n<k≤2n+1 |Sk − S2n | −→ 0 almost surely. For this, we use again the Borel–
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Cantelli lemma: from Chebyshev’s inequality and using Theorem 2.22, we have

∞∑

n=1

P
(

max
2n<k≤2n+1

|Sk − S2n | > ε2n
)

≤
∞∑

n=1

1

ε24n
E
(

max
2n<k≤2n+1

|Sk − S2n |
)2

≤
∞∑

n=1

2

ε24n
Var(S2n+1 − S2n) ≤

∞∑

n=1

2

ε24n
Var(S2n+1),

due to the association of the random variables. Finally, repeating the arguments in
(3.2), the series above is convergent, so the theorem is proved. �

If we assume the variables to be stationary, we may replace (3.1) by an easier
verifiable assumption.

Corollary 3.2 Let Xn, n ∈N, be centred, square-integrable, stationary and associ-
ated variables. Assume that, for some α > 0,

an = 1

n

n∑

j=1

Cov(X1,Xj ) = O
(
log−α n

)
. (3.3)

Then 1
n
Sn −→ 0 almost surely.

Proof It is easily seen that
∑∞

n=1
1
n2 Cov(Xn,Sn) =∑∞

n=1
an

n
, so (3.1) immediately

follows from (3.3). �

Remark 3.3 A result similar to Corollary 3.2 is contained in Theorem 7 in New-
man [70]. In this case only an −→ 0 is assumed, but it is required that the vari-
ables are strictly stationary, while in the previous result the covariance stationarity
is enough.

We will next try to relax the existence of second-order moments and, simulta-
neously, identify convergence rates for the convergence. The approach follows a
somewhat different path, looking at maxima of the partial sums instead of the par-
tial sums themselves, avoiding the use of covariances. This method was first used
by Louhichi [62] and Louhichi and Soulier [64], who proved the Marcinkiewicz–
Zygmund Strong Law of Large Numbers, that is, the almost sure convergence
to zero of 1

n1/p Sn for p ∈ [1,2), thus giving some information about the rate of
convergence in the strong law. This was proved under an assumption similar to
(3.1), where the decrease rate of the covariances, or more precisely, of u(n) =
supk∈N

∑
j :|j−k|≥n Cov(Xj ,Xk) is only characterized indirectly. Assuming a more

precise behaviour, but still a rather mild restriction, on u(n), the convergence rate
for the Strong Law of Large Numbers has been improved by Yang, Su and Yu [108]
to an almost optimal one, in the sense that it is arbitrarily close to the known rate for
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independent random variables, as characterized by the Law of Iterated Logarithm.
Let us start by a general result concerning the almost sure convergence. Recall that
we denote Mn = max(S1, . . . , Sn) and M∗

n = max(|S1|, . . . , |Sn|).

Theorem 3.4 Let Xn, n ∈ N, be centred random variables, and bn, n ∈ N, a non-
decreasing sequence of real numbers such that 1 ≤ b2n

bn
≤ c ∈ R. Assume that, for

every ε > 0,

∞∑

n=1

1

n
P
(
M∗

n > εbn

)
< ∞. (3.4)

Then M∗
n

bn
−→ 0 almost surely.

Proof We verify that we can apply the Borel–Cantelli lemma, first along a suit-
able subsequence and then control the remaining terms, thus following an approach
similar to the argument used to prove Theorem 3.1. We start by considering the sub-
sequence along the indices defined by powers of 2. For this step, we find an upper
bound for

∞∑

n=1

P
(
M∗

2n > εb2n

)=
∞∑

n=1

2n+1−1∑

k=2n

1

2n
P
(
M∗

2n > εb2n

)

≤
∞∑

n=1

2n−1∑

k=2n−1

1

k
P
(
M∗

2k > εbk

)

+
∞∑

n=1

2n−1∑

k=2n−1

2

2k + 1
P
(
M∗

2k+1 > εbk+1
)
,

taking into account, for the last inequality, that bn is nondecreasing. As b2n

bn
≤ c, we

still have that

∞∑

n=1

P
(
M∗

2n > εb2n

)

≤
∞∑

n=1

2n−1∑

k=2n−1

1

k
P
(

M∗
2k >

εb2k

c

)
+

∞∑

n=1

2n−1∑

k=2n−1

2

2k + 1
P
(

M∗
2k+1 >

εb2k+1

c

)

≤ 2
∞∑

n=1

2n+1−1∑

k=2n

1

n
P
(

M∗
n >

εbn

c

)

=
∞∑

n=1

1

n
P
(

M∗
n >

εbn

c

)
< ∞.
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Thus, it follows that 1
b2n

M∗
2n −→ 0 almost surely. As regards the remaining terms

in the sequence, recalling again that bn is nondecreasing and b2n

bn
≤ c,

max
2n−1<k≤2n

M∗
k

bk

≤ M∗
2n

b2n−1
≤ M∗

2n

cb2n
−→ 0,

as proved in the first part of this proof. �

In order to prove the more general Marcinkiewicz–Zygmund Strong Law of
Large Numbers, we need some preparatory results. For this, recall that Hj,k(x, y) =
P(Xj > x,Xk > y) − P(Xj > x)P(Xk > y), gv(u) = max(min(u, v),−v) and

Gj,k(v) = Cov
(
gv(Xj ), gv(Xk)

)=
∫ ∫

[−v,v]2
Hj,k(x, y) dx dy,

as introduced before. We need a few technical results before proving the actual
version of the strong law, dealing with some integrals needed in course of proof. Let
p ∈ [1,2), j, k ∈N, and s ≥ 1. Then, as

max
(|x|, |y|, s1/p

)−2 =
∫ 1

0
I[−u−1/2,u−1/2](x)I[−u−1/2,u−1/2](y)I[u,∞]

(
s−2/p

)
du,

we can use Fubini’s theorem to obtain
∫ ∫

max
(|x|, |y|, s1/p

)−2
Hj,k(x, y) dx dy

=
∫ 1

0
I[u,∞]

(
s−2/p

)
Gj,k

(
u−1/2)du = 2

∫ ∞

s1/p

1

v3
Gj,k(v) dv, (3.5)

assuming, of course, that the integrals are finite. The next lemma shows that the
boundedness of the pth moments is enough for the finiteness of the integrals.

Lemma 3.5 Let Xn, n ∈ N, be associated random variables such that, for some
p ∈ [1,2), supn∈N E|Xn|p < ∞. Then, for all j, k ∈N,

∫ ∞

1
v−3Gj,k(v) dv ≤ 2

p2
sup
n∈N

E|Xn|p.

Proof Denote by sgn(x) the sign of x. Then, taking into account (3.5) and, due to
the association of the random variables, the nonnegativity of Hj,k , we have

2
∫ ∞

1
v−3Gj,k(v) dv ≤

∫ ∫
min

(|x|−2, |y|−2,1
)
Hj,k(x, y) dx dy

≤
∫ ∫

|x|−2|y|−2Hj,k(x, y) dx dy.

Using Theorem C.4, we have that

2
∫ ∞

1
v−3Gj,k(v) dv ≤ 4

p2
Cov

(
sgn(Xj )|Xj |, sgn(Xk)|Xk|

)

≤ 4

p2
sup
n∈N

E|Xn|p. �
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Remark 3.6 The result above is better than what could be derived using the bound
from Corollary 2.36. In fact, from (2.25) we find the uniform bound Hj,k(x, y) ≤

1
M∗ Cov1/3(X,Y ), which is not enough to derive the finiteness of the integral above.

Having obtained a convenient control on the Gj,k functions, we can prove the
Marcinkiewicz–Zygmund Strong Law of Large Numbers. The assumptions require
a uniform domination of the sequence of random variables in terms of their distri-
butions, but, differently from what happened in previous results, the covariances of
the random variables do not appear explicitly. They are only indirectly considered
through the functions Gj,k .

Theorem 3.7 Let Xn, n ∈ N, be centred and associated random variables such
that there exists a random variable Y verifying supn∈N P(|Xn| > x) ≤ P(Y > x) for
every x > 0 and EYp < ∞ for some p ∈ [1,2). If

n∑

j,k=1
j �=k

∫ ∞

k1/p

1

v3
Gj,k(v) dv < ∞, (3.6)

then M∗
n

n1/p −→ 0 almost surely.

Proof Taking into account Theorem 3.4, it is enough to prove that, for every ε > 0,

∞∑

n=1

1

n
P
(
M∗

n > εn1/p
)
< ∞.

The case p ∈ (1,2). As the random variables are associated, we may apply
Lemma 2.30 with x = εn1/p and m = n1/p to find that

1

n
P
(
M∗

n > εn1/p
)

≤ 4

n1/pε
E(Y I{Yp>n}) + 4

n2/pε2
E
(
Y 2

I{Yp≤n}
)+ 1

ε2
P
(
Y > n1/p

)

+ 8n−1−2/p

ε2

n∑

j,k=1
j �=k

Gj,k

(
n1/p

)
. (3.7)

To bound the first three terms above, notice that

∞∑

n=1

1

n1/p
E(Y I{Yp>n}) = E

(

Y

∞∑

n=1

1

n1/p
I{Yp>n}

)

≤ E

(
Y

∫
1

x1/p
I{Yp>x} dx

)
≤ KEYp,
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using Fubini’s theorem, for some K > 0. Notice that K above depends only on p.
Proceeding in the same way, we find the bound

∞∑

n=1

(
1

n2/p
E
(
Y 2

I{Yp≤n}
)+ P

(
Y > n1/p

))
< K1EYp,

where again K1 > 0 only depends on p. Finally,

∞∑

n=1

1

n1+2/p

n∑

j,k=1
j �=k

Gj,k

(
n1/p

)

=
n∑

j,k=1
j �=k

∫ ∫ ∞∑

n=1

1

n1+2/p
I{max(|x|p,|y|p,j)≤n}Hj,k(x, y) dx dy

≤ K∗
n∑

j,k=1
j �=k

∫ ∫
1

max(|x|p, |y|p, j)2
Hj,k(x, y) dx dy

= 2K∗
n∑

j,k=1
j �=k

∫ ∞

j1/p

1

v3
Gj,k(v) dv < ∞,

using (3.5) and taking into account (3.6). Thus, inserting all these inequalities into
(3.7) yields the theorem for p ∈ (1,2).

The case p = 1. Let ε > 0 be fixed and define, for each i, n ∈ N,

Y1,i,n = gn(Xi) = max
(
min(Xi, n),−n

)
, Y2,i,n = Xi − Y1,i,n

and

Tn = sup
k≤n

k∑

i=1

(Y1,i,n − EY1,i,n).

Consider the set Γ =⋃n
i=1{Xi �= Y1,i,n}. Then, obviously,

P(Γ ) ≤
n∑

i=1

P
(|Xi | > n

)≤
n∑

n=1

P(Y > n).

On the other hand, if ω /∈ Γ , taking into account that EXi = 0, we may write Sj =
∑j

i=1(Xi − EXi), and it follows that M∗
n(ω) ≤ Tn(ω) +∑n

i=1 E|Xi − Y1,i,n|. But

E|Y1,i,n| ≤ E
((|Xi | − n

)
I{|Xi |>n}

)≤ E
(
(Y − n)I{Y>n}

)
.

As Y is integrable for n large enough, we have that E|Xi − Y1,i,n| ≤ ε
2 . Hence,

repeating the arguments used for the previous case, we have
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∞∑

n=1

1

n
P
(
M∗

n > nε
)≤

∞∑

n=1

P(Y > n) +
∞∑

n=1

1

n
P
(

Tn >
nε

2

)

≤ EY + K∗EY +
n∑

j,k=1
j �=k

∫ ∞

j

1

v3
Gj,k(v) dv,

where K∗ does not depend on n, thus concluding the proof. �

The next result gives a convergence rate of a general form.

Theorem 3.8 Let Xn, n ∈ N, be centred and associated random variables satisfying
∞∑

i=1

u1/2(2i
)
< ∞.

Let ϕ be a nonnegative real function such that limx→+∞ ϕ(x) = +∞, ϕ(x)
x

is

monotonous, and ϕ(x)

x2 is decreasing. Let bn, n ∈ N, be an increasing sequence of
positive real numbers. Assume that the following conditions are satisfied:

0 ≤ b2n

bn

≤ c < ∞, (3.8)

∞∑

n=1

1

b2
n

< ∞, (3.9)

∞∑

n=1

Eϕ(|Xn|)
ϕ(bn)

< ∞, (3.10)

∞∑

n=1

1

b2
n

max
k≤n

b2
j P
(|Xk| > bk

)
< ∞, (3.11)

∞∑

n=1

1

b2
n

max
k≤n

b2
j E(ϕ(|Xk|)I{|Xk |≤bk})

ϕ(bk)
< ∞. (3.12)

Then, 1
bn

Sn −→ 0 almost surely.

Proof Define the truncated variables Yn = XnI{|Xn|≤bn} −bnI{Xn<−bn} +bnI{Xn>bn},
n ∈ N. The variables Yn, n ∈ N, being monotonous transformations of the ini-
tial variables, are still associated. Now, if ϕ(x)

x
is nonincreasing, it follows that if

|Xn| ≤ bn, then |Xn|
bn

≤ ϕ(|Xn|)
ϕ(bn)

, so, using Markov’s inequality, we have

|EYn| ≤ E|Yn| ≤ bnE

( |Xn|
bn

I{|Xn|≤bn}
)

+ bnP
(|Xn| > bn

)≤ 2bnE
ϕ(|Xn|)
ϕ(bn)

.

On the other hand, if ϕ(x)
x

is nondecreasing, it follows that if |Xn| > bn, then |Xn|
bn

≤
ϕ(|Xn|)
ϕ(bn)

, so taking into account that EXn = 0 and repeating the arguments of the
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previous case, we have

|EYn| =
∣∣E(XnI{|Xn|>bn})

∣∣+ bnP
(|Xn| > bn

)

≤ bnE

( |Xn|
bn

I{|Xn|>bn}
)

+ bnP
(|Xn| > bn

)

≤ bnE
ϕ(|Xn|)
ϕ(bn)

+ bnE
ϕ(|Xn|)
ϕ(bn)

= 2bnE
ϕ(|Xn|)
ϕ(bn)

.

That is, in either case we find that
∑

n

|EYn|
bn

≤ 2
∑

n

E
ϕ(|Xn|)
ϕ(bn)

.

Thus, from (3.10) and using the Kronecker’s lemma (see Lemma C.7), it follows
that 1

bn

∑n
j=1 |EYj | −→ 0 almost surely. Moreover, as

∞∑

n=1

P(Xn �= Yn) =
∞∑

n=1

P
(|Xn| > bn

)≤
∞∑

n=1

E
ϕ(|Xn|)
ϕ(bn)

< ∞,

the theorem follows if we prove that 1
bn

∑n
j=1(Yj − EYj ) −→ 0 almost surely. Tak-

ing into account (3.8) and Theorem 3.4, it is enough to verify that, for each fixed
ε > 0,

∑

n

1

n
P

(

max
k≤n

∣∣∣∣∣

k∑

j=1

(Yj − EYj )

∣∣∣∣∣
> εbn

)

< ∞. (3.13)

Notice that if |Xj | ≤ bj , as ϕ(x)

x2 is decreasing, it follows that
X2

j

b2
j

≤ ϕ(|Xj |)
ϕ(bj )

. Thus,

EY 2
j = E

(
X2

j I{|Xj |≤bj }
)+ b2

j P
(|Xj | > bj

)

= b2
j E

(
X2

j

b2
j

I{|Xj |≤bj }
)

+ b2
j P
(|Xj | > bj

)

≤ b2
j

E(ϕ(|Xj |)I{|Xj |≤bj })
ϕ(bj )

+ b2
j P
(|Xj | > bj

)
.

Then, as the random variables Yn are associated, we use (2.17), to conclude that

∞∑

n=1

1

n
P

(

max
k≤n

∣∣∣∣∣

k∑

j=1

(Yj − EYj )

∣∣∣∣∣
> εbn

)

≤ 1

ε2

∞∑

n=1

1

nb2
n

E

(

max
k≤n

∣∣∣∣∣

k∑

j=1

(Yj − EYj )

∣∣∣∣∣

2)
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≤ C

∞∑

n=1

1

b2
n

(
max
k≤n

EY 2
k + 1

)

≤ C

∞∑

n=1

1

b2
n

(
max
k≤n

b2
k

E(ϕ(|Xk|)I{|Xk |≤bk})
ϕ(bk)

+ b2
kP
(|Xk| > bk

)+ 1

)
< ∞,

so it follows that 1
bn

maxk≤n Sk −→ 0 almost surely, and hence the theorem is
proved. �

Conditions (3.11) and (3.12) are difficult to verify, but we may replace them by
convenient moment assumptions.

Corollary 3.9 Let Xn, n ∈ N, be centred and associated random variables satisfy-
ing

∞∑

i=1

u1/2(2i
)
< ∞.

Let ϕ be a nonnegative real function such that limx→+∞ ϕ(x) = +∞, ϕ(x)
x

is

monotonous, and ϕ(x)

x2 is decreasing. Let bn, n ∈ N, be an increasing sequence of
positive real numbers. Assume that the following conditions are satisfied: (3.8), (3.9)
and

∞∑

n=1

1

ϕ(bn)
< ∞, (3.14)

sup
n∈N

Eϕ
(|Xn|

)
< ∞. (3.15)

Then, 1
bn

Sn −→ 0 almost surely.

Proof It is enough to check that (3.10)–(3.12) are verified. Now, as

Eϕ(|Xn|)
ϕ(bn)

≤ 1

ϕ(bn)
sup
n∈N

Eϕ
(|Xn|

)
,

(3.10) immediately follows from (3.14). To verify (3.11), notice that b2
j P(|Xj | >

bj ) ≤ b2
j

ϕ(bj )
Eϕ(|Xj |) ≤ b2

j

ϕ(bj )
supn∈N Eϕ(|Xn|), so, taking into account that ϕ(x)

x2 is
decreasing, we have that

1

b2
n

max
k≤n

b2
j P
(|Xk| > bk

)≤ 1

ϕ(bn)
sup
n∈N

Eϕ
(|Xn|

)
,

thus (3.11) follows from (3.14). Finally, (3.12) is verified in the same way. �

Choosing now a convenient function ϕ and a sequence bn, we find a more explicit
characterization of the convergence rate for the Strong Law of Large Numbers.
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Corollary 3.10 Let Xn, n ∈ N, be centred and associated random variables such
that supn∈N E|Xn|p < ∞ for some p ≥ 1 and

∞∑

i=1

u1/2(2i
)
< ∞.

Then, for every δ > 1,

n1−1/p

(logn)1/p(log logn)δ/p

1

n
Sn −→ 0 almost surely.

Proof Choose, in Corollary 3.9, ϕ(x) = |x|p and bn = (n logn(log logn)δ)1/p . �

Remark 3.11 The most interesting use of the previous corollary corresponds, of
course, to the case p ∈ [1,2]. Notice further that, by choosing p = 2, the previous
result identifies a convergence rate of order n−1/2(logn)1/2(log logn)δ/2, thus close
to the optimal one for independent variables, which is of order n−1/2(log logn)1/2.

It is possible to improve still the above-mentioned convergence rate at the cost
of requiring the boundedness of higher-order moments. This can be achieved by a
proper use of the maximal inequalities proved before (see Corollary 2.29) together
with a suitable moment bound. We start by an extension of Theorem 3.8.

Theorem 3.12 Let Xn, n ∈ N, be centred and associated random variables, and ϕ

be a nonnegative real function such that limx→+∞ ϕ(x) = +∞, ϕ(x)
x

is monotonous,

and ϕ(x)

x2 is decreasing. Let bn, n ∈ N, be an increasing sequence of positive real
numbers. Let r > p ≥ 2 and assume that supn∈N ‖Xn‖r < ∞ and u(n) ≤ Cn−α ,

where C > 0 is some constant, for some α ≥ r(p−2)
2(r−p)

, (3.8), (3.10) are satisfied, and

∑

n

np/2−1

b
p
n

< ∞. (3.16)

Then, 1
bn

Sn −→ 0 almost surely.

Proof Follow the arguments in the proof of Theorem 3.8 until (3.13). An obvious
upper bound is then obtained by using Markov’s inequality, so that, taking into ac-
count Corollary 2.29, we have

∞∑

n=1

1

nεpb
p
n

E

(

max
k≤n

∣∣∣
∣∣

k∑

j=1

(Yj − EYj )

∣∣∣
∣∣

p)

≤ c

∞∑

n=1

1

nb
p
n

E

(
n∑

j=1

(Yj − EYj )

)p

,

where c does not depend on n. Thus, it is enough to prove the convergence of the
series on the right. To control the pth-order moment, we apply Corollary 2.20, so
we need to bound uY (n) defined as in (2.13) but with respect to the Yn variables.
Now write, using Hoeffding’s formula (1.2),

Cov(Yj , Yk) =
∫ ∫

P(Yj > s,Yk > t) − P(Yj > s)P(Yk > t) ds dt.
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The integrand is easily checked to be null outside the rectangle [−bj , bj ] ×
[−bk, bk] and equal to P(Xj > s,Xk > t)− P(Xj > s)P(Xk > t) inside this rectan-
gle. So, due to the association of the random variables, it follows that Cov(Yj , Yk) ≤
Cov(Xj ,Xk). Thus, uY (n) ≤ u(n) ≤ Cn−α , and Corollary 2.20 is applicable to the
Yn variables to find that

∣∣∣
∣∣
E

(
n∑

j=1

(Yj − EYj )

)p∣∣∣
∣∣
≤ E

∣∣∣
∣∣

n∑

j=1

(Yj − EYj )

∣∣∣
∣∣

p

≤ Knp/2.

Finally, from (3.16) the theorem follows. �

An improved convergence rate follows immediately by choosing, in the previous
result, ϕ(x) = xp and bn = n1/2(logn(log logn)δ)1/p .

Corollary 3.13 Let Xn, n ∈ N, be centred and associated variables such that
supn∈N ‖Xn‖r < ∞ for some r > p ≥ 2. Assume that u(n) ≤ Cn−α , where C > 0 is
some constant, for some α ≥ r(p−2)

2(r−p)
. Then, for every δ > 1,

n1/2

(logn(log logn)δ)1/p

1

n
Sn −→ 0 almost surely.

3.3 Large Deviations

After characterizing convergence rates for the Strong Law of Large Numbers, we
will now study the convergence of tail probabilities P( 1

n
Sn ≥ a), extending large

distribution characterizations to associated variables. As usual, the typical result de-
scribes the asymptotic behaviour of 1

n
log P( 1

n
Sn ≥ a) using the moment generating

function of the Xn variables. The approach followed below is taken from Henriques
and Oliveira [44] and is largely inspired in the extension to various mixing structures
proved by Bryc [20] and Bryc and Dembo [21] (see also Dembo and Zeitouni [29]
for an account of the existing results on this direction), assuming a convenient de-
crease rate on the significant coefficients. The large deviation principle for associ-
ated variables requires a rather stringent decrease rate on the covariance structure,
which corresponds to the translation of the assumptions used to prove similar results
for mixing sequences.

Definition 3.14 A sequence of random variables Xn, n ∈ N, is said to satisfy the
large deviation principle with rate function r if:

(1) for every closed F ⊂ R,

lim sup
n→+∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
r(x);

(2) for every open G ⊂ R,

lim inf
n→+∞

1

n
log P

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
r(x).
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The basic tool for proving large deviation principles is the well-known Gärtner–
Ellis theorem (see Theorem B.1 and, for some more general results on large de-
viations, Appendix B). Taking into account Theorem B.1, the upper bound on the
large deviation principle will follow if we prove, for each u ∈ R, the existence and
finiteness of

Λ(u) = lim
n→+∞

1

n
log E

(
euSn

)
. (3.17)

To prove the lower bound, one is compelled to some extra effort, as the direct veri-
fication of the differentiability, required by part (b) in Theorem B.1, is harder. The
work around this difficulty uses Theorem B.6, to get the large deviation principle
followed, by Theorem B.4, to identify the rate function.

One key assumption throughout this section concerns the behaviour of the den-
sity function of 1

n
Sn:

There exist constants c > 0 and B > 0 such that, for each n ∈ N, the
density function of 1

n
Sn is bounded by cBn.

(3.18)

This condition seems somewhat restrictive, but it is easily seen that, if the random
variables Xn have distribution with common bounded support, then (3.18) is ful-
filled.

In order to describe the asymptotic results below, we need another definition.

Definition 3.15 Given a function Λ :R−→ R, the Fenchel–Legendre transform, or
convex conjugate, of Λ is the real-valued function Λ∗ defined by

Λ∗(x) = sup
u∈R
(
ux − Λ(u)

)
. (3.19)

We first establish the upper bound of the large deviation principle by a direct
application of Theorem B.1.

Theorem 3.16 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables such that there exists M > 0 for which P(|X1| ≤ M) = 1. Then, Λ as defined
by (3.17) exists and is finite for every u ∈ R. Moreover, for every closed F ⊂ R,

lim sup
n→+∞

1

n
log P

(
1

n
Sn ∈ F

)
= − inf

u∈F
Λ∗(u),

where Λ∗ is the Fenchel–Legendre transform of Λ.

Proof As the variables are associated, given u ∈R and n,m ∈ N, we have

Cov
(
euSn, eu(Sn+m−Sn)

)≥ 0,

thus, from the stationarity it still follows that E(euSn+m) ≥ E(euSn)E(euSm) or, equiv-
alently,

log E
(
euSn+m

)≥ log E
(
euSn

)+ log E
(
euSm

)
.
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Denote h(n) = − log E(euSn). Then, h(n + m) ≤ h(n) + h(m), that is, h is subaddi-
tive, so the sequence h(n), n ∈N, verifies the conditions of Lemma C.5 with εn = 0.
Hence, according to this Lemma C.5, the following limit exists:

Λ(u) = lim
n→+∞

1

n
log E

(
euSn

)= − lim
n→+∞

h(n)

n
.

It remains to prove that the limit is finite. As the random variables are bounded
by M , it follows that, for u > 0 and n ∈ N, e−unM ≤ E(euSn) ≤ eunM , or, equiv-
alently, −uM ≤ 1

n
log E(euSn) ≤ uM , so, taking the limit as n → +∞, we have

−uM ≤ Λ(u) ≤ uM . Repeating the argument for u < 0, we get in this case that
uM ≤ Λ(u) ≤ −uM , so Λ(u) is finite for every u ∈ R. Finally, the second part of
this theorem follows directly from the Gärtner–Ellis theorem. �

The next step is the proof of the lower bound in Definition 3.14. As mentioned
before, this will be accomplished using Theorems B.4 and B.6. The main steps to
obtain this lower bound are the proof of the existence of a generalized limit analo-
gous to (3.17), which will identify a candidate for the rate function, but is dependent
on a suitable class of functions, followed by the proof of the convexity of this can-
didate to be a rate function. This later part needs some technical intermediate steps
in the proof. We start by a lemma on sequences of real numbers taking care of some
convergence aspects.

Lemma 3.17 Let t (n), n ∈ N, be a sequence of nonnegative real numbers such that
there exist a, b > 0 verifying t (n) ≤ a exp(−n log1+b n). Then, for all k < b and
c ∈R,

lim
n→+∞nt

(
n

log1+k n

)
ecn = 0.

Proof For each n ∈ N, define v(n) = ∫∞
n

exp(−x log1+b x) dx. As 0 ≤ t (n) ≤
av(n), it is enough to prove that

lim
n→+∞nv

(
n

log1+k n

)
ecn = 0.

Defining h1(x) = x log−(1+k) x and h2(x) = x−1e−cx , the previous limit follows
from limx→+∞ v(h1(x))

h2(x)
= 0, and this is easily proved using Cauchy’s rule. �

Theorem 3.18 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables such that there exists M > 0 for which P(|X1| ≤ M) = 1. Assume that there
exist constants a, b > 0 such that

u(n) ≤ a exp
(−n log1+b n

)
. (3.20)

Then, for every continuous and concave function g such that supx∈R g(x) < ∞, the
following limit exists:

Λg = lim
n→+∞

1

n
log E

(
eng(n−1Sn)

)
.
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Proof Let g be continuous, concave and such that supx∈R g(x) < ∞. Without loss
of generality, we assume that −∞ < −B ≤ g(x) ≤ 0 for all x ∈ [−M,M]. Being
concave and continuous, g is also Lipschitz continuous on [−M,M], that is, there
exists L > 0 such that, for all x, y ∈ [−M,M], |g(x) − g(y)| ≤ L|x − y|.

For all m,n, � ∈ N, as the random variables are bounded we have that, with prob-
ability 1,

1

n + m

∣∣Sn+m − (Sn + (Sn+m+� − Sn+�)
)∣∣

≤ 1

n + m

(
n+�∑

i=n+1

|Xi | +
n+m+�∑

i=n+m+1

|Xi |
)

≤ 2�M

n + m
.

Thus, as g is Lipschitzian,

g

(
1

n + m
Sn+m

)
− g

(
1

n + m

(
Sn + (Sn+m+� − Sn+�)

)
)

≥ −L
2�M

n + m
,

and from the concavity of the function it follows that

g

(
1

n + m
Sn+m

)

≥ n

n + m
g

(
1

n
Sn

)
+ m

n + m
g

(
1

m

(
Sn + (Sn+m+� − Sn+�)

))− 2�LM

n + m
.

For the sequel of this proof, let us denote h(n) = − log E(eng(n−1Sn)). Then the in-
equality above is equivalent to

h(n + m) ≤ 2�LM − log E
(
eng(n−1Sn)emg(m−1(Sn+m+�−Sn+m))

)
. (3.21)

Define now, for all n ∈ N and x ∈ [−M,M], fn(x) = eng(x). We have then that, for
all x, y ∈ [−M,M],

∣∣fn(x) − fn(y)
∣∣≤ ∣∣ng(x) − ng(y)

∣∣≤ Ln|x − y|.
That is, each fn is Lipschitz continuous and thus absolutely continuous and almost
everywhere differentiable. Moreover, when the derivative exists, |f ′

n(x)| ≤ Ln. Us-
ing integration by parts, we have that, due to the association of the random variables,

Cov
(
eng(n−1Sn), emg(m−1(Sn+m+�−Sn+m))

)

=
∣∣∣
∣

∫

[−M,M]2
f ′

n(x)f ′
m(y)

× Cov

(
I(−∞,x]

(
1

n
Sn

)
, I(−∞,y]

(
1

m
(Sn+m+� − Sn+m)

))
dx dy

∣∣∣∣

≤ L2nm

×
∫

[−M,M]2
Cov

(
I(−∞,x]

(
1

n
Sn

)
, I(−∞,y]

(
1

m
(Sn+m+� − Sn+m)

))
dx dy.

Taking into account the stationarity of the random variables, we still have that



3.3 Large Deviations 83

Cov
(
eng(n−1Sn), emg(m−1(Sn+m+�−Sn+m))

)

≤ L2nmCov

(
1

n
Sn,

1

m
(Sn+m+� − Sn+m)

)
= L2

n∑

i=1

n+m+�∑

j=n+�+1

Cov(Xi,Xj )

≤ L2n

∞∑

i=�+2

Cov(X1,Xi) = L2nu(� + 1) ≤ L2(n + m)u(�).

Now, recalling that g(x) ≥ −B for every x ∈ [−M,M], the previous inequality
implies that

E(eng(n−1Sn)emg(m−1(Sn+m+�−Sn+m)))

E(eng(n−1Sn))E(emg(m−1(Sn+m+�−Sn+m)))
≥ 1 − L2(n + m)u(�)e(n+m)B. (3.22)

Define, for all �,n ∈ N, Θ(�,n) = 1 − L2nu(�)enB . From (3.22) it follows that

log E
(
eng(n−1Sn)emg(m−1(Sn+m+�−Sn+m))

)

≥ −h(n) − h(m) + log
(
max

(
Θ(�,n + m),0

))
,

so, inserting this into (3.21), we find

h(n + m) ≤ 2�LM + h(n) + h(m) − log
(
max

(
Θ(�,n + m),0

))
. (3.23)

Choose now δ ∈ (0, b), where b is defined by (3.20). It follows from Lemma 3.17
that, as n −→ +∞,

Θ

(
n

log1+δ n
,n

)
= 1 − L2nu

(
n

log1+δ n

)
enB −→ 1.

If we choose � = [(n+m) log−(1+δ)(n+m)], we have that, for n+m large enough,
− log(max(Θ(�,n + m),0)) ≤ �; thus, from (3.23) it follows that

h(n + m) ≤ h(n) + h(m) + (2LM + 1)�

= h(n) + h(m) + (2LM + 1)
n + m

log1+δ(n + m)
.

Finally, recalling Lemma C.5, we have that the limit below exists:

lim
n→+∞

h(n)

n
= lim

n→+∞
−E(eng(n−1Sn))

n
,

which concludes the proof of the theorem. �

We still need one auxiliary result to prove the convexity of the rate function on
the large deviation principle.

Lemma 3.19 Let Xn, n ∈N, be strictly stationary and associated random variables
such that there exists M > 0 for which P(|X1| ≤ M) = 1. Assume that (3.18) and
(3.20) are satisfied. If x1, x2 ∈R are such that, for each δ > 0,

lim inf
n→+∞

1

n
log P

(∣∣∣
∣
1

n
Sn − xi

∣∣∣
∣< δ

)
> −∞, i = 1,2,
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then

inf
δ>0

lim inf
n→+∞

1

n
log

P(|(2n)−1S2n − (x1 + x2)/2| < δ)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)
≥ 0.

Proof Let δ > 0 be fixed. From the assumptions it follows that there exists c1 > 0
such that, for every sufficiently large n,

P
(∣∣∣∣

1

n
Sn − x1

∣
∣∣∣<

δ

2

)
P
(∣∣∣∣

1

n
Sn − x2

∣
∣∣∣<

δ

2

)
≥ exp(−nc1). (3.24)

Now, for every n, � ∈N,

P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2
,

∣∣∣∣
1

n
(S2n+� − Sn+�) − x2

∣∣∣∣<
δ

2

)

− P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2

)
P
(∣∣∣∣

1

n
Sn − x2

∣∣∣∣<
δ

2

)

≤
∣∣∣
∣P
(

1

n
Sn < x1 + δ

2
,

1

n
(S2n+� − Sn+�) < x2 + δ

2

)

− P
(

1

n
Sn < x1 + δ

2

)
P
(

1

n
(S2n+� − Sn+�) < x2 + δ

2

)∣∣∣∣

+
∣∣∣∣P
(

1

n
Sn < x1 + δ

2
,

1

n
(S2n+� − Sn+�) ≤ x2 + δ

2

)

− P
(

1

n
Sn < x1 + δ

2

)
P
(

1

n
(S2n+� − Sn+�) ≤ x2 + δ

2

)∣∣∣∣

+
∣∣∣
∣P
(

1

n
Sn ≤ x1 + δ

2
,

1

n
(S2n+� − Sn+�) < x2 + δ

2

)

− P
(

1

n
Sn ≤ x1 + δ

2

)
P
(

1

n
(S2n+� − Sn+�) < x2 + δ

2

)∣∣∣∣

+
∣∣∣∣P
(

1

n
Sn ≤ x1 + δ

2
,

1

n
(S2n+� − Sn+�) ≤ x2 + δ

2

)

− P
(

1

n
Sn ≤ x1 + δ

2

)
P
(

1

n
(S2n+� − Sn+�) ≤ x2 + δ

2

)∣∣∣∣,

so, taking into account Corollary 2.36, we have

P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2
,

∣∣∣∣
1

n
(S2n+� − Sn+�) − x2

∣∣∣∣<
δ

2

)

− P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2

)
P
(∣∣∣∣

1

n
Sn − x2

∣∣∣∣<
δ

2

)

≤ 4Bn Cov1/3
(

1

n
Sn,

1

n
(S2n+� − Sn+�)

)
,

where Bn = 2 max(2π−2,45cBn), as the variables 1
n
Sn and 1

n
(S2n+� − Sn+�) have

a density function bounded above by cBn, according to (3.18). Thus, recalling that
the variables are stationary, we get
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P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2
,

∣∣∣∣
1

n
(S2n+� − Sn+�) − x2

∣∣∣∣<
δ

2

)

− P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2

)
P
(∣∣∣∣

1

n
Sn − x2

∣∣∣∣<
δ

2

)

≤ 4Bn

(
1

n2

n∑

i=1

∞∑

j=n+�+1

Cov(Xi,Xj )

)1/3

= 4Bnn
−1/3u1/3(�).

Taking again into account the stationarity and (3.24), we find that, for all � ∈ N and
sufficiently large n,

P(|n−1Sn − x1| < δ/2, |n−1(S2n+� − Sn+�) − x2| < δ/2)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)

≥ 1 − 4Bnn
−1/3u1/3(�) exp(c1n). (3.25)

As the variables are bounded by M , it easily derived that
∣∣∣∣

1

2n
S2n − x1 + x2

2

∣∣∣∣

≤ 1

2

∣∣∣∣

(
1

n
Sn − x1

)
+
(

1

n
(S2n+� − Sn+�) − x2

)∣∣∣∣+
1

2n

∣∣∣∣∣

n+�∑

i=n+1

Xi +
2n+�∑

i=2n+1

Xi

∣∣∣∣∣

≤ 1

2

∣∣∣
∣

(
1

n
Sn − x1

)
+
(

1

n
(S2n+� − Sn+�) − x2

)∣∣∣
∣+

�M

n
,

so that the following holds:

P
(∣∣∣∣

1

2n
S2n − x1 + x2

2

∣∣∣∣< δ

)

≥ P
(

1

2

∣∣∣∣

(
1

n
Sn − x1

)
+
(

1

n
(S2n+� − Sn+�) − x2

)∣∣∣∣< δ − �M

n

)

≥ P
(∣∣∣∣

1

n
Sn − x1

∣
∣∣∣< δ − �M

n
,

∣
∣∣∣
1

n
(S2n+� − Sn+�) − x2

∣
∣∣∣< δ − �M

n

)
.

Choose now � = δn
2M

and insert the resulting inequality into (3.25) to obtain

P(|(2n)−1S2n − (x1 + x2)/2| < δ)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)

≥ 1 − 4Bnn
−1/3u1/3

(
δn

2M

)
exp(c1n).

Thus, finally,

lim inf
n→+∞

1

n
log

P(|(2n)−1S2n − (x1 + x2)/2| < δ)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)

≥ lim inf
n→+∞

1

n
log

(
max

(
1 − 4Bnn

−1/3u1/3
(

δn

2M

)
exp(c1n),0

))
.
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The limit on the right is, according to Lemma 3.17, equal to 0, and so, as δ > 0 is
arbitrary, the theorem is proved. �

We are finally in position to state and prove the large deviation principle that we
have been announcing throughout this section.

Theorem 3.20 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables such that there exists M > 0 for which P(|X1| ≤ M) = 1. Assume that (3.18)
and (3.20) are satisfied. Then, the random variables Xn, n ∈ N, satisfy the large
deviation principle with rate function Λ∗(x), the Fenchel–Legendre transform of

Λ(u) = lim
n→+∞

1

n
log E

(
euSn

)
.

Proof As the variables are strictly stationary and uniformly bounded, the distribu-
tions of Sn, n ∈ N, are exponentially tight (see page 178). Also, according to the
comment at the end of Appendix B, the family of continuous, concave and bounded
above functions is well separated (see page 179). Moreover, according to Theo-
rem 3.18, the limit Λg = limn→+∞ 1

n
log E(eng(n−1Sn)) exists for every g continu-

ous, concave and bounded above. That is, the conditions of Theorem B.8 are ful-
filled, so it follows that Xn, n ∈ N, verifies the large deviation principle with a good
rate function r(·) (see page 178). The proof of this theorem will be concluded, that
is, the rate function will be identified as the Fenchel–Legendre transform of Λ if
we prove that this rate function is convex. In fact, as we have proved the finite-
ness of Λ, defined by (3.17), we may apply Theorem B.4 to conclude. According to
Theorem B.2, for every x ∈ R,

r(u) = − inf
δ>0,y:|y−x|<δ

{
lim inf
n→+∞

1

n
log P

(∣∣∣∣
1

n
Sn − y

∣∣∣∣< δ

)}

= − inf
δ>0,y:|y−x|<δ

{
lim sup
n→+∞

1

n
log P

(∣∣∣
∣
1

n
Sn − y

∣∣∣
∣< δ

)}
.

As, given that y ∈ (x − δ, x + δ), there exists some δ′ such that (x − δ′, x + δ′) ⊂
(y − δ, y + δ), we may write

r(u) = − inf
δ>0

{
lim inf
n→+∞

1

n
log P

(∣∣∣∣
1

n
Sn − x

∣∣∣∣< δ

)}

= − inf
δ>0

{
lim sup
n→+∞

1

n
log P

(∣∣∣∣
1

n
Sn − x

∣∣∣∣< δ

)}
.

Consider now x1, x2 ∈ R such that r(x1), r(x2) < ∞. Thus, x1 and x2 both satisfy
the assumptions of Lemma 3.19, so it follows that

inf
δ>0

lim inf
n→+∞

1

n
log

P(|(2n)−1S2n − (x1 + x2)/2| < δ)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)
≥ 0.

We have then that



3.4 Kernel Density Estimation 87

−r

(
x1 + x2

2

)

= inf
δ>0

(
lim sup
n→+∞

1

n
log

(
P
(∣∣∣∣

1

n
Sn − x1 + x2

2

∣∣∣∣< δ

)))

≥ inf
δ>0

(
lim inf
n→+∞

1

2n
log

(
P(|(2n)−1S2n − (x1 + x2)/2| < δ)

P(|n−1Sn − x1| < δ/2)P(|n−1Sn − x2| < δ/2)

))

+ inf
δ>0

(
lim inf
n→+∞

1

2n
log

(
P
(∣∣∣∣

1

n
Sn − x1

∣∣∣∣<
δ

2

)))

+ inf
δ>0

(
lim inf
n→+∞

1

2n
log

(
P
(∣∣∣∣

1

n
Sn − x2

∣∣∣∣<
δ

2

)))

≥ −1

2
r(x1) − 1

2
r(x2).

That is, we have concluded that, for every x1, x2 ∈ R, r( x1+x2
2 ) ≤ 1

2 r(x1) + 1
2 r(x2).

Iterating now this inequality, it is easily proved that, for every n ∈ N and k =
0, . . . ,2n,

r

(
k

2n
x1 +

(
1 − k

2n

)
x2

)
≤ k

2n
r(x1) +

(
1 − k

2n

)
r(x2),

and the convexity follows from the continuity of r . Thus, according to Theorem B.4,
the rate function is the Fenchel–Legendre transform of Λ, that is, r(u) = Λ∗(u). �

3.4 Kernel Density Estimation

The technical treatment of the kernel density or regression estimators is similar. As
could be expected, the regression problem is somewhat more intricate as we need
to handle the dependence between the X and Y variables that are natural in this
problem. We will start by proving the asymptotic results for the density estimator,
introducing the techniques in a simpler framework, and then extend them to the
treatment of the regression.

In this section we start looking at the classical statistical problems of, based on a
sample, estimating the density function, assuming, naturally, that it exists. We will,
of course, be interested in characterizing the asymptotics of the estimates assuming
that the samples verify an association condition. As expected, the main difficulty
will be to handle the variance of the estimators. This will be achieved assuming
a mild condition on joint distributions, not even requiring the existence of joint
densities, as is frequently done throughout the literature. The first results proving the
consistency of nonparametric estimators were obtained by Roussas [88] assuming,
among other technical conditions, that joint densities should be close enough to
the product densities, thus, controlling the deviance from independence in a way
rather similar to what is done while handling strong mixing samples. Even simple
models generating associated variables construct sequences of random variables for
which their joint distributions do not have a joint density, just having some mass
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concentrated on the diagonal (see Example 1.28). We will prove the consistency of
kernel estimates allowing for this mass concentration on the diagonal. It is curious
to notice right away that it is exactly this diagonal mass that will appear in the
characterization of the asymptotic results concerning the variances.

3.4.1 Definitions and Preliminary Results

We now describe the framework for our statistical problem, introducing the estima-
tor that will be studied in the sequel. Let X1,X2, . . . be an associated sequence of
random variables with the same distribution as X for which there exists a density
function f . Let K be a fixed probability density, and hn a sequence of real numbers
converging to zero.

Definition 3.21 The kernel estimator of the density function f is, of course, defined
as

f̂n(x) = 1

nhn

n∑

j=1

K

(
x − Xj

hn

)
. (3.26)

This estimator is well known to be asymptotically unbiased if there exists a
suitable version of the density, as a consequence of the Bochner’s lemma (see
Bochner [19]).

Lemma 3.22 If f is bounded and continuous, then Ef̂n(x) −→ f (x) uniformly on
any compact set.

This means also that, in order to establish the convergence of f̂n(x), it is enough
to prove that f̂n(x) − Ef̂n(x) −→ 0 in the appropriate mode of convergence.

We now introduce the assumptions that describe the appropriate control on the
diagonal decomposition of the joint distributions. Let λ2 be, as usual, the Lebesgue
measure on R

2. Let Δ be the diagonal of R × R, and represent by λ∗ the measure
on Δ defined by λ∗{(u,u),u ∈ A} = λ(A), where A is Borel subset of R, and λ is
the Lebesgue measure on R. The first set of conditions may now be described:

(D)

(D.1) For each j, k ∈ N, the distribution of (Xj ,Xk) is the sum of a
measure m1,j,k on R × R \ Δ with a measure m2,j,k on Δ such
that m1,j,k � λ2 and m2,j,k � λ∗.

(D.2) For each j, k ∈ N, there exists a bounded version g1,j,k of
dm1,j,k

dλ2 .
(D.3) For all j, k ∈ N, there exists a bounded and continuous version

g2,j,k of
dm2,j,k

dλ∗ .

Notice that the pairs are allowed to have some mass concentrated on the diagonal,
and thus they need not to be absolutely continuous with respect to λ2. A simple
example where this property is required arises from a method used to construct
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sequences of associated variables from an independent sequence of variables, as
described in Example 1.28: assuming that m ∈ N is some fixed integer, define, for
each n ∈ N, Xn = min(Yn, . . . , Yn+m). The variables Xn, n ∈ N, are associated, have
a common absolutely continuous distribution, but the random pairs (Xn,Xn+j ),
j = 1, . . . ,m, are not absolutely continuous. Nevertheless, their joint distribution
satisfies (D).

In order to prove the convergence results, we will need some control on Radon–
Nikodym derivatives introduced in (D), thus we introduce a second set of conditions:

(A)

(A.1) (D) is satisfied.
(A.2) 1

n

∑n
j,k=1 |g1,j,k(x, y) − f (x)f (y)| converges uniformly to a

bounded function g1.
(A.3) 1

n

∑n
j,k=1 g2,j,k(x, x) converges uniformly to a bounded and con-

tinuous function g2.

It is now convenient to introduce the following notation.

Definition 3.23 Given functions h1 :Rn −→ R and h2 :Rm −→ R, we denote by
h1 ⊗ h2 the function defined on R

n+m by

h1 ⊗ h2(x1, . . . , xn, y1, . . . , ym) = h1(x1, . . . , xn)h2(y1, . . . , ym).

With respect to (A), remark that, if the variables X1,X2, . . . are strictly stationary,
it is easy to check that

1

n

n∑

j,k=1

|g1,j,k − f ⊗ f | ≤
n−1∑

j=1

|g1,1,j − f ⊗ f |,

and analogously for the summation in (A.3). In such a case, it is enough to assume
the convergence of these upper bounds.

The main tool for proving the convergence is stated in the following lemma.

Lemma 3.24 Let Xn, n ∈ N, be random variables such that (A) is satisfied. If the
kernel K is square integrable, then

1

nhn

n∑

j,k=1

Cov

(
K

(
x − Xj

hn

)
,K

(
x − Xk

hn

))
−→ g2(x, x)

∫
K2(u) du

uniformly on any compact set.

Proof Write

1

hn

Cov

(
K

(
x − Xj

hn

)
,K

(
x − Xk

hn

))

= 1

hn

∫

R2
K

(
x − u

hn

)
K

(
x − v

hn

)(
g1,j,k(u, v) − f (u)f (v)

)
dudv

+ 1

hn

∫

Δ

K2
(

x − u

hn

)
g2,j,k(u,u)du. (3.27)
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The first integral in (3.27) is bounded above by
∫

R2
K

(
x − u

hn

)
K

(
x − v

hn

)∣
∣g1,j,k(u, v) − f (u)f (v)

∣
∣dudv,

so that, for n ∈ N large enough,

1

nhn

n∑

j,k=1

∫

R2
K

(
x − u

hn

)
K

(
x − v

hn

)∣
∣g1,j,k(u, v) − f (u)f (v)

∣
∣dudv

≤ 2hn

1

h2
n

∫

R2
K

(
x − u

hn

)
K

(
x − v

hn

)
g1(u, v) dudv

≤ 2hn sup
u,v

∣∣g1(u, v)
∣∣−→ 0,

as hn −→ 0. For the second integral in (3.27), we have that

1

hn

∫

Δ

K2
(

x − u

hn

)
1

n

n∑

j,k=1

g2,j,k(u,u)du −→ g2(x, x)

∫
K2(u) du

using Bochner’s lemma after renormalizing K2 to find a density. �

Remark 3.25 The previous result states a general convergence for the covariances
not requiring the association of the random variables.

Remark 3.26 Notice that the limit obtained in Lemma 3.24 is the diagonal density
multiplied by a constant depending only on the kernel. So, if we had assumed the
absolute continuity of the random pairs (Xj ,Xk), this limit would have been zero.
As this term appears when dealing with the convergence of the estimator, in case it
converges to zero most of the convergences would follow with relaxed assumptions
on the bandwidth sequence hn.

The convergence in probability of f̂n(x) is a simple and immediate consequence
of Lemma 3.24, as stated in the next result.

Theorem 3.27 Let Xn, n ∈ N, be random variables such that (A) is satisfied. If the
kernel K is square integrable and

nhn −→ +∞, (3.28)

then f̂n(x) converges in probability to f (x) for every x ∈R.

Proof As

P
(∣∣f̂n(x) − Ef̂n(x)

∣∣> ε
)

≤ 1

ε2nhn

1

nhn

n∑

j,k=1

Cov

(
K

(
x − Xj

hn

)
,K

(
x − Xk

hn

))
,

the theorem follows immediately taking into account Lemmas 3.22 and 3.24. �
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3.4.2 Almost Sure Consistency

The almost sure convergence requires some further assumptions on the kernel K

and on the bandwidth sequence. This is due to the fact that the variables K(
x−Xj

hn
)

are, in general, not associated. In order to keep the association, we should apply
only monotone transformations to the original variables, which is not the case with
a general kernel. This may be resolved by assuming the kernel K to be of bounded
variation, which includes most of the popular choices for the kernel function. There
are some additional technical assumptions required by the method of proof, which
follows closely the proof of Theorem 2.7.1 in Ferrieux [39]. For a more general
setting, it is interesting to have a look at Ferrieux [38], although, as in [39], the
author is interested in estimation problems for point processes, a framework that
is not the one we are studying here, as it follows from Sect. 1.4. The result below
appears in this form in Oliveira [74].

Theorem 3.28 Let Xn, n ∈ N, be associated random variables. Assume that (A) is
satisfied, K is of bounded variation such that, for fixed x ∈R, K(αx) is a decreasing
function of α > 0, and

hn ↘ 0,

∞∑

n=1

1

n2hn2
< ∞,

h(n+1)2

hn2
−→ 1.

Then f̂n(x) converges almost surely to f (x) for every x ∈R.

Proof We first check that the subsequence corresponding to terms of order n2

converges almost surely. This is an immediate consequence of the Borel–Cantelli
lemma, Lemma 3.24 and the assumptions made, as

P
(∣∣f̂n2(x) − Ef̂n2(x)

∣∣> ε
)

≤ 1

ε2n2hn2

1

n2hn2

n2∑

j,k=1

Cov

(
K

(
x − Xj

hn2

)
,K

(
x − Xk

hn2

))
.

For the remaining terms, we write, for an integer k ∈ (n2, (n + 1)2],
∣∣(f̂k(x) − Ef̂k(x)

)− (f̂n2(x) − Ef̂n2(x)
)∣∣

≤ 1

n2
max

n2<k≤(n+1)2

∣∣∣
∣∣

1

hk

k∑

j=1

[
K

(
x − Xj

hk

)
− EK

(
x − Xj

hk

)]

− 1

hn2

n2∑

j=1

[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]∣∣
∣∣∣

+ 1

n2hn2

∣∣∣∣∣

n2∑

j=1

[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]∣∣∣∣∣
,
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thus leaving the first term to be treated. Now,

1

hk

k∑

j=1

[
K

(
x − Xj

hk

)
− EK

(
x − Xj

hk

)]

− 1

hn2

n2∑

j=1

[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]

=
k∑

j=1

(
1

hk

− 1

hn2

)[
K

(
x − Xj

hk

)
− EK

(
x − Xj

hk

)]

+
k∑

j=1

1

hn2

([
K

(
x − Xj

hk

)
− EK

(
x − Xj

hk

)]

−
[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)])

+
k∑

j=n2+1

1

hn2

[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]
.

Let us denote by an, bn and cn the maxima over k ∈ (n2, (n + 1)2] of each of the
three terms on the right of the preceding expression, respectively. The consistency
of the estimator (3.26) follows if we prove that an

n2 , bn

n2 and cn

n2 all converge almost
surely to 0.

Convergence of an

n2 . As hn is decreasing and using the decreasing assumption on
the kernel, it follows that

0 ≤
(

1

hk

− 1

hn2

)
K

(
x − u

hk

)
≤
(

1

h(n+1)2
− 1

hn2

)
K

(
x − u

hn2

)
.

Now, for every k ∈ (n2, (n + 1)2],

1

n2

∣∣∣∣∣

k∑

j=1

(
1

hk

− 1

hn2

)[
K

(
x − Xj

hk

)
− EK

(
x − Xj

hk

)]∣∣∣∣∣

≤ 1

n2

(n+1)2
∑

j=1

(
1

h(n+1)2
− 1

hn2

)[
K

(
x − Xj

hn2

)
+ EK

(
x − Xj

hn2

)]
. (3.29)

We first look at the terms with the mathematical expectation. On one hand, we have

1

n2h(n+1)2

(n+1)2
∑

j=1

EK

(
x − Xj

hn2

)
= (n + 1)2

n2

hn2

h(n+1)2

1

hn2
EK

(
x − X

hn2

)
−→ f (x),
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using Lemma 3.22. Analogously, it follows that

1

n2hn2

(n+1)2
∑

j=1

EK

(
x − Xj

hn2

)
−→ f (x).

Thus, in (3.29) the terms corresponding to the mathematical expectations converge
to zero. This allows replacing the sign “+” inside the square brackets on the right-
hand side of (3.29) by the sign “−” as, given δ > 0, for n large enough, the right-
hand side in (3.29) becomes smaller than

1

n2

(n+1)2
∑

j=1

(
1

h(n+1)2
− 1

hn2

)[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]
+ δ.

So, it is enough to verify that the summation above converges almost surely to zero.
In the present form, Chebyshev’s inequality gives an upper bound with a variance
term: for any ε > 0,

P

(
1

n2

∣∣∣∣∣

(n+1)2
∑

j=1

(
1

h(n+1)2
− 1

hn2

)[
K

(
x − Xj

hn2

)
− EK

(
x − Xj

hn2

)]∣∣∣∣∣
> ε

)

≤ 1

ε2n4

(
1

h(n+1)2
− 1

hn2

)2 (n+1)2
∑

j,j ′=1

Cov

(
K

(
x − Xj

hn2

)
,K

(
x − Xj ′

hn2

))

= 1

ε2n2hn2

(
hn2

h(n+1)2
− 1

)2 1

n2hn2

(n+1)2
∑

j,j ′=1

Cov

(
K

(
x − Xj

hn2

)
,K

(
x − Xj ′

hn2

))
,

which, taking account of Lemma 3.24 and the assumptions made on the bandwidth
sequence, defines a convergent series.

Convergence of bn

n2 . Using the decreasing assumption on the kernel, it follows

that, for every k ∈ (n2, (n + 1)2],

|bn|
n2

≤ 1

n2hn2

(n+1)2
∑

j=1

([
K

(
x − Xj

hn2

)
+ EK

(
x − Xj

hn2

)]

−
[
K

(
x − Xj

h(n+1)2

)
+ EK

(
x − Xj

h(n+1)2

)])
.

As for the convergence of the terms an

n2 , it is easy to check that the terms with the
mathematical expectations cancel each other in the limit. So, we are left with check-
ing the almost sure convergence to zero of

1

n2hn2

(n+1)2
∑

j=1

[
K

(
x − Xj

hn2

)
− K

(
x − Xj

h(n+1)2

)]
.

Given ε > 0,
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P

(
1

n2hn2

∣∣∣∣∣

(n+1)2
∑

j=1

[
K

(
x − Xj

hn2

)
− K

(
x − Xj

h(n+1)2

)]∣∣∣∣∣
> ε

)

≤ 1

ε2n4h2
n2

(n+1)2
∑

j,j ′=1

Cov

(
K

(
x − Xj

hn2

)
− K

(
x − Xj

h(n+1)2

)
,

K

(
x − Xj ′

hn2

)
− K

(
x − Xj ′

h(n+1)2

))
.

Taking into account Lemma 3.24 and
h

(n+1)2

h
n2

−→ 1, we get that the sum of these

covariances, divided by n2hn2 , is convergent to 4g2(x, x)
∫

K2(u) du. As there re-
mains the term 1

n2h2
n2

, we have in fact a convergent series defined by the probabili-

ties.
Convergence of cn

n2 . Write K = K1 − K2, with K1, K2 increasing functions.

The random variables K1(
x−Xj

h
n2

), j = 1,2, . . . , being monotone transformations

of associated variables, are associated. Then, we may apply the generalization of
Kolmogorov’s inequality for associated variables proved in Theorem 2.22 to obtain
that, given ε > 0,

P

(
1

n2hn2
max

n2<k≤(n+1)2

∣∣∣∣∣

k∑

j=n2+1

[
K1

(
x − Xj

hn2

)
− EK1

(
x − Xj

hn2

)]∣∣∣∣∣
> ε

)

≤ 2

ε2n4h2
n2

(n+1)2
∑

j,j ′=n2+1

Cov

(
K1

(
x − Xj

hn2

)
,K1

(
x − Xj ′

hn2

))
.

Because of the association, this sum is bounded above by the sum with j , j ′ ranging
from 1 to (n+1)2, and then the proof is completed repeating the arguments used for
the two previous cases. The terms corresponding to K2 are treated analogously. �

Remark 3.29 Notice that the association of the random variables is only used in the
final step of the proof.

Remark 3.30 The assumptions made on the kernel function, namely, that K is of
bounded variation and such that K(αx), for fixed x ∈R, is a decreasing function of
α > 0, are met by most of the usual kernels considered in the statistical literature.

3.4.3 Almost Sure Convergence Rates

Characterization of strong convergence rates relies on appropriate inequalities for
sums of variables. The main tools have been exponential inequalities such as the
one proved in Theorem 2.52 or Rosenthal inequalities like (2.3). Results based on
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the later inequalities require milder assumptions on the covariance decay rate of
the variables. In fact, as already mentioned before, exponential inequalities are not
available unless the covariances decrease geometrically. There is, though, an interest
on the exponential inequality approach: the rates derived are better, closer to the

optimal (
log logn

nhn
)1/2 rate known for independent random variables. We will next

prove a convergence rate based on an adaptation of (2.3) that is just slightly slower
than the optimal rate.

Theorem 3.31 Let p ≥ 2, r > p + 2
3 , and Xn, n ∈ N, be associated random vari-

ables with density function f such that supx∈R |f (x)| ≤ B < ∞ and u(n) ≤ Cn−θ

with θ ≥ r(p−2)
2(r−p)

. Assume that the kernel function K is differentiable with bounded

derivative and that Kr is integrable. Then, for every γ ∈ (0,1), f̂n(x) converges
almost surely to f (x) with rate (

log logn
nhn

)γ /2.

Proof The main argument for this proof is to find a suitable version of the moment
inequality (2.5) in Theorem 2.18. For this purpose, define, for all i, n ∈ N,

Yj,n = 1

hn

(
K

(
x − Xj

hn

)
− EK

(
x − Xj

hn

))
.

With respect to the proof of Theorem 2.18, we refer here only what should be
changed, as the arguments are completely parallel. Denote rp = r(p − 1) − 1 and
define, similarly to proof of Theorem 2.18, Tn =∑n

i=1 Yi,n. Given a ∈ (0, 1
2 ), put

m = [na] + 1 and kn = [ n
2m

] + 1. Decompose Tn into the blocks:

ξ� =
n∧(2�−1)m∑

j=2(�−1)m+1

Yj,n and η� =
n∧2�m∑

j=(2�−m)+1

Yj,n, � = 1, . . . , kn,

and define the sums of alternating blocks: T1,n =∑kn

�=1 ξ� and T2,n =∑kn

�=1 η�. The
initial arguments are the same as in the proof of Theorem 2.18. Notice now that,
taking into account the boundedness of the density f , we have

1

hr
n

∫ ∣∣∣∣K
(

x − u

hn

)∣∣∣∣

r

f (u)du ≤ B

hr−1
n

∫ ∣∣K(z)
∣∣r dz,

so the bound corresponding to (2.7) becomes

A2 ≤
kn∑

�=1

E|ξ�|E|T1,n − ξ�|p−1

+
kn∑

�=1

p
(
E|T1,n − ξ�|p

)(r−1)(p−2)/rp

×
(

2Bm

h
1−1/r
n

∫ ∣∣K(z)
∣∣r dz

)r(p−2)/rp
(

m‖K ′‖∞
h4

n

u(m)

)(r−p)/rp

.
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Thus, we may continue with the argument as in the proof of Theorem 2.18, redefin-
ing

C1 = (2B
∫ |K(z)|r dz)r(p−2)/rp‖K ′‖2(r−p)/(r−2)∞

h
1+(3r−4p+2)/rp
n

(
u(m)

)(r−p)/(r−2)
.

Repeating the arguments, we need to redefine the constant bp in the bound corre-
sponding to (2.9) as

bp = (p2p + 4p2((2p−3)/(r−2))rp )

h
(1+(3r−4p+2)/rp)rp/(r−2)
n

((
2B

∫ ∣∣K(z)
∣∣r dz

)r(p−2)/rp

× ∥∥K ′∥∥2(r−p)/(r−2)

∞
(
u(m)

)(r−p)/(r−2)
)rp/(r−2)

.

Remark that the denominator of this last expression may be written as
h

2+p−3(p−2)/(r−2)
n . Now, taking into account that u(n) ≤ Cn−θ and that θ ≥ r(p−2)

2(r−p)
,

repeating the arguments of Corollary 2.20, we find that there exist two constants K1
and K2, depending only on r , p and u(0), such that

E|Tn|p ≤ np/2
(

K1 + K2

h
2+p−3(p−2)/(r−2)
n

)
,

which is the sought convenient moment inequality. Now, the convergence rate for
f̂n(x) follows using standard arguments based on the Borel–Cantelli lemma. In fact,
we want to choose a sequence εn such that

∑∞
n=1 P( 1

n
|Tn| > εn) < ∞. As P( 1

n
|Tn| >

εn) ≤ 1
npε

p
n

E|Tn|p , by the previous inequality, it is enough to verify the convergence

of both series
∞∑

n=1

1

np/2ε
p
n

and
∞∑

n=1

1

np/2h
2+p−3(p−2)/(r−2)
n ε

p
n

.

It is, of course, enough to find the convergence of the second series as hn −→ 0. To
find a convergent series, we set

np/2h
2+p−3(p−2)/(r−2)
n ε

p
n = n logδ n for some δ > 1.

If we choose εn = (
log logn

nhn
)γ /2, this means that, since p ≥ 2,

h
2+(1−γ /2)p−3(p−2)/(r−2)
n = n1−((1−γ )/2)p logδ n

(log logn)δp/2
−→ 0,

so the exponent of hn should be positive, but this is true as long as γ <
3p
2

r−p
r−2 .

Finally it is easy to check that 3p
2

r−p
r−2 > 1 is equivalent to r > p + 2

3 − 8
3

1
3p−2 , so

we may really choose γ arbitrarily close to 1. �

Remark 3.32 The argument used in the final part of the proof above fails if we
choose εn = (

log logn
nhn

)1/2. In fact, repeating the arguments, we would arrive at

h
2+p/2−3(p−2)/(r−2)
n = n logδ n

(log logn)p/2
−→ +∞,
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so the exponent of hn should now be negative. It is easily verified that, as r > p ≥ 2,
this cannot be true.

3.5 Kernel Regression Estimation

We now concentrate on the estimation of the regression function and the asymptotic
results corresponding to those studied in the preceding subsections. We start by
extending the framework appropriately. We begin by stating clearly our framework.
Let (X1, Y1), (X2, Y2), . . . be an associated sequence of random vectors with the
same distribution as (X,Y ), for which there exists a density function f ∗. We will
denote by f the marginal density corresponding to X and by h the marginal density
corresponding to Y . Let K be a fixed probability density, and hn a sequence of real
numbers converging to zero.

Definition 3.33 The kernel estimator of the regression function r(x) = E(Y |X = x)

is defined as

r̂n(x) =
∑n

j=1 YjK((x − Xj)/hn)
∑n

j=1 K((x − Xj)/hn)

= (1/(nhn))
∑n

j=1 YjK((x − Xj)/hn)

f̂n(x)
, (3.30)

where f̂n(x) is the density estimator (3.26). If we denote

m̂n(x) = 1

nhn

n∑

j=1

YjK

(
x − Xj

hn

)
,

then, obviously, r̂n(x) = m̂n(x)

f̂n(x)
.

The technical treatment of the density or regression estimators is similar to that
of the expression for the corresponding estimators. As could be expected, the re-
gression problem is somewhat more intricate as we need to handle the dependence
between the X and Y variables that are natural in this problem. We will extend the
techniques used in the previous section to prove the almost sure asymptotics for the
regression estimator (3.30).

The proofs will be based in the inclusion proved in Theorem C.3, which enables
the separation of the variables X and Y in the definition of (3.30). This separation re-
sult depends on a nonnegativity assumption on the variables. For the present setting,
it is enough to assume the nonnegativity of the variable Y , as explained next. We
now use the representation of (3.30) as r̂n(x) = m̂n(x)

f̂n(x)
. For each x ∈ R, the random

variables f̂n(x) and m̂n(x) are obviously nonnegative if we assume that Y is nonneg-
ative valued. We need to control |̂rn(x) − r(x)|, but this will be achieved indirectly
through Ef̂n(x) and Em̂n(x). We have already remarked that Ef̂n(x) −→ f (x)

(see Lemma 3.22). So, in order to apply Theorem C.3, it is enough to assume that
f (x) > 0. We still need to describe the asymptotic behaviour of Em̂n(x).
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Lemma 3.34 Let Y be a random variable such that the regression function r(x) =
E(Y |X = x) is continuous and assume that the density f of X is continuous. If the
kernel K has compact support, we have Em̂n(x) −→ r(x)f (x).

Proof Write

Em̂n(x) = 1

hn

E

(
YK

(
x − X

hn

))
= 1

hn

∫
r(u)K

(
x − u

hn

)
f (u)du

and apply Lemma 3.22 to conclude the proof. �

So, if we assume Y to be nonnegative, the regression function r is also nonnega-
tive, and the conditions of Theorem C.3 are verified, at least for n large enough, and
thus the following inclusion holds.

Lemma 3.35 Assume that Y is a nonnegative random variable and the regression
function r(x) = E(Y |X = x) is continuous. If the kernel K has compact support, we
have, for ε > 0 small enough and n large enough, that

{∣∣∣∣̂rn(x) − Em̂n(x)

Ef̂n(x)

∣∣∣∣> ε

}

⊂
{∣∣m̂n(x) − Em̂n(x)

∣∣>
ε

4
Ef̂n(x)

}

∪
{∣∣f̂n(x) − Ef̂n(x)

∣∣>
ε

4

(Ef̂n(x))2

Em̂n(x)

}
. (3.31)

This lemma allows us to reduce the proof of the consistency of r̂n(x) to the
convergence to zero of m̂n(x) − Em̂n(x) and f̂n(x) − Ef̂n(x). Naturally, the later
convergence has been established in the previous section, so we need to prove the
other convergence.

To proceed, we need an extension of assumptions (D) and (A), describing an ade-
quate control on an extension of the diagonal decomposition to a higher dimension.
Recall that we have denoted by λ2 be the Lebesgue measure on R. Now let λ2

2 be
the Lebesgue measure on R

2 ×R
2, that is, the four-dimensional Lebesgue measure.

Represent by Δ∗ = {(u, v,u, v), (u, v) ∈R
2} the diagonal of R2 ×R

2 and introduce
the measure λ∗

2 defined by λ∗
2{(u, v,u, v), (u, v) ∈ A} = λ2(A), where A is a Borel

subset of R2. We consider the following extension of (D):

(D′)

(D′.1) For all j, k ∈ N, the distribution of ((Xj ,Yj ), (Xk,Yk)) is the
sum of a measure m1,j,k on R

2 ×R
2 \ Δ and a measure m2,j,k

on Δ such that m1,j,k � λ2
2 and m2,j,k � λ∗

2.

(D′.2) For all j, k ∈ N, there exists a bounded version b1,j,k of
dm1,j,k

dλ2
2

.

(D′.3) For all j, k ∈N, there exists a bounded and continuous version
b2,j,k of

dm2,j,k

dλ∗
2

.
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What concerns (A), we have the following extension:

(A′)

(A′.1) (D′) is satisfied.
(A′.2) 1

n

∑n
j,k=1 |b1,j,k − f ∗ ⊗ f ∗| converges uniformly to a function

b1 such that b∗
1(v1, v2)

∫
R2 u1u2b1(v1, u1, v2, u2) du1 du2 is a

bounded function of (v1, v2).
(A′.3) 1

n

∑n
j,k=1 b2,j,k converges uniformly to b2 such that b∗

2(v) =
∫
R

u2b2(v,u) du is bounded and continuous.

Reproducing the arguments of the proof of Lemma 3.24, it is now a simple matter
to prove the following result.

Lemma 3.36 Let (Xn,Yn), n ∈ N, be random vectors such that (A′) is satisfied. If
the kernel K is square integrable, then

1

nhn

n∑

j,k=1

Cov

(
YjK

(
x − Xj

hn

)
, YkK

(
x − Xk

hn

))
−→ b∗

2(x, x)

∫
K2(u) du

uniformly on any compact set.

With this tool in hand, the convergence of m̂n(x) − Em̂n(x) is immediate, again
by reproducing the corresponding arguments for the proof of the convergence of
f̂n(x) − Ef̂n(x), as in Theorem 3.28.

Theorem 3.37 Let (Xn,Yn), n ∈ N, be associated random vectors. Assume that
(A′) is satisfied, K is of bounded variation such that K(αx), for fixed x ∈ R, is a
decreasing function of α > 0, and

hn ↘ 0,

∞∑

n=1

1

n2hn2
< ∞,

h(n+1)2

hn2
−→ 1.

Then m̂n(x) converges almost surely to r(x)f (x) for every x ∈R.

Finally, we may state the complete result with the almost sure convergence of the
regression estimator (3.30), taking into account Lemma 3.35.

Theorem 3.38 Let (Xn,Yn), n ∈ N, be associated random vectors. Assume that
r(x) = E(Y |X = x) is continuous, (A) and (A′) are satisfied, K is of bounded vari-
ation such that K(αx), for fixed x ∈R, is a decreasing function of α > 0, and

hn ↘ 0,

∞∑

n=1

1

n2hn2
< ∞,

h(n+1)2

hn2
−→ 1.

Then r̂n(x) converges almost surely to r(x) for every x ∈ R.

It is worth noticing that this theorem is an explicit version of the results included
in Ferrieux [38, 39] and in Jacob and Oliveira [50–52], although our statement seems
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somewhat more intricate than the corresponding ones in the above-mentioned refer-
ences. This is due the fact that [38, 39, 50–52] explore a more complex and enlarged
framework, using point processes, which requires a quite condensed form of writ-
ing in order to produce readable results. We notice also that [38, 39, 52], which deal
with statistical problems based on associated samples of point processes, do not
overlap with the results in these two last sections. In fact, as follows from Sect. 1.4,
association of point processes is not equivalent to association of random variables
or vectors, due to a different order structure on the base space (see Example 1.4).



Chapter 4
Convergence in Distribution

Abstract This chapter addresses central limit theorems, invariance principles and
then proceeds to the convergence of empirical processes. The pathway will be to
start with versions based on stationary variables and drop this assumption introduc-
ing the necessary control on the covariance structure. The techniques will be based
on approximations of independent variables relying on a few inequalities established
in Chap. 2. Once we have proved the first results, we will find characterizations of
convergence rates with respect to the usual supnorm metric between distribution
functions. A few applications to statistical estimation problems will be addressed in
the final section of this chapter, as done in the previous one.

4.1 Introduction

Central Limit Theorems are at the heart of every probability model, so it is not
surprising that this problem was one of the first to be addressed in the literature
for associated random variables. In fact, after the early developments, mainly con-
cerned with the dependency structure itself, the first asymptotic result was a Central
Limit Theorem and an invariance principle proved in Newman and Wright [72, 71]
for strictly associated sequences of random variables. The stationarity assumption
was dropped by Cox and Grimmett [25], who introduced the coefficients u(n) (see
Definition 2.13) that control the covariance structure of the variables. Naturally, ex-
tensions of the classical Berry–Esséen inequalities characterizing convergence rates
were addressed in Wood [104], assuming the stationarity of the sequence, and Birkel
[14] for general sequences of associated variables. The approach used either for the
Central Limit Theorems or for the convergence rate characterization is based on
block decompositions of the sums and approximations by independent variables.
This step is essentially controlled using Newman’s inequality (2.26), thus being a
key ingredient for this kind of results. Functional results characterizing the conver-
gence in distribution of the partial sums process or the empirical process have also
been proved, but these are deferred to Chap. 5.

In statistical estimation based on associated samples, the first problems involv-
ing convergence in distribution that were treated concerned the approximation of
distribution functions in Roussas [85] and survival functions in Bagai and Prakasa
Rao [4]. The results obtained proved the almost sure consistency and asymptotic
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normality for stationary sequences under a polynomial decrease rate of the coeffi-
cient v(n) =∑∞

i=n+1 Cov1/3(X1,Xi). This is not the usual u(n) coefficient, but its
appearance is easily explained noticing that distributions functions involve transfor-
mations depending on indicator functions, and recalling inequality (2.25). Roussas
[85] even proved a polynomial convergence rate for the estimator assuming, be-
sides a suitable decay rate of v(n), the existence of joint densities and a control
of the distance of this with respect to the product density, thus controlling the dis-
tance of joint distributions to independence. Extensions of the above asymptotic
characterizations addressing associated random fields appeared in Roussas [86, 87],
to quantile functions in Cai and Roussas [24] and to multidimensional distribution
functions in Azevedo and Oliveira [3] and Henriques and Oliveira [41]. The estima-
tion of density functions was treated in Roussas [88], who proved the consistency
and asymptotic normality under the above-mentioned control between the distance
of joint densities and product densities. The control of this distance was dropped
in Roussas [89, 90], but still assuming the existence of pairwise joint densities.
An extension of these results appeared in Oliveira [74], allowing for nonabsolutely
continuous joint distributions. Again, one of the key tools to prove the asymptotic
normality results for the estimators is Newman’s inequality (2.26).

There is a much more general approach to estimation problems followed by Ja-
cob and Oliveira [50–52], Ferrieux [38, 39], Bensaïd and Fabre [6] and Bensaïd
and Oliveira [7], where one deals with models characterized by point processes, and
the interest is in the estimation of Radon–Nikodym derivatives. These models are
shown to be an extension of several classical estimation problems, as explained, for
example, in Jacob and Oliveira [50, 51]. Nevertheless, as follows from Sect. 1.4,
association of point processes is not the same as association of the random variables
that define the point processes. However, some of the techniques used in this point
process framework are adaptable to the treatment of associated random variables
allowing, for example, for the extension to nonabsolutely continuous joint distribu-
tions proved in Oliveira [74].

4.2 Central Limit Theorems

The first Central Limit Theorem for associated variables will be proved assuming
the stationarity of the sequence. The requirement on the covariance structure is just
that defines a summable series. The technique of proof that will be used again later
in a broader context consists of decomposing sums of variables into sums of blocks
of variables and treating these as if they were independent. Naturally, we will need
some control on the approximation between the sums of the dependent blocks and
their independent counterparts. This control is achieved using characteristic func-
tions and is based on inequality (2.26), following the approach used in Newman
[68].
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Theorem 4.1 Let Xn, n ∈ N, be centred, strictly stationary, square-integrable and
associated random variables such that

σ 2 = Var(X1) + 2
∞∑

j=2

Cov(X1,Xj ) < ∞. (4.1)

Then,

1

σ
√

n
Sn

d−→ Z ∼ N (0,1).

Proof Denote the characteristic function of 1√
n
Sn by ϕn(t). We will decompose Sn

into the sum of blocks of size � ∈ N. The number of such blocks is m = [n
�
], the

largest integer less than or equal to n/�. Define now the blocks

Yj,� =
j�∑

i=(j−1)�+1

Xi, j = 1, . . . ,m, and Ym+1,� =
n∑

i=m�+1

Xi.

The proof will be divided into four steps, proceeding with fixed � in the first three
steps and allowing � −→ +∞ in the last one.

Step 1. We start by checking that it is enough to consider n a multiple of �. Using
|eit − eis | ≤ |t − s| for t, s ∈ R and the Cauchy inequality, it follows that

∣∣ϕn(t) − ϕm�(t)
∣∣ ≤ |t |E1/2

(
Sn√
n

− Sm�√
m�

)2

≤ |t |
(

1√
m�

− 1√
n

)
E1/2

(
m�∑

j=1

Xj

)2

+ |t |√
m�

E1/2

(
n∑

j=m�+1

Xj

)2

.

Expanding the squares in the mathematical expectations it easily follows that, given
the definition of σ 2,

E

(
m�∑

j=1

Xj

)2

≤ σ 2m� and E

(
n∑

j=m�+1

Xj

)2

≤ σ 2�.

As � is fixed, both n −→ +∞ and m −→ +∞, so

∣
∣ϕn(t) − ϕm�(t)

∣
∣≤ |t |σ

(
1 −

√
m�√
n

+ 1√
m

)
−→ 0. (4.2)

Step 2. We now control the difference between the joint distribution of the
blocks and what we would find if they were independent. We obviously have

1√
m�

Sm� = 1√
m

1√
�
Yj,�, and, given that the variables are stationary, the distribution of

Yj,� coincides with the distribution of S�, thus the characteristic function of 1√
�
Yj,�
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is ϕ�(t). Moreover, the blocks Yj,� are increasing functions of the original variables,
so are still associated, and we can apply inequality (2.26) to their characteristic
functions to find:

∣∣∣∣ϕm�(t) − ϕm
�

(
t√
m

)∣∣∣∣≤
t2

2m

m∑

j,k=1
j �=k

Cov(Yj,�, Yk,�).

Due to the stationarity, we obviously have that
m∑

j,k=1
j �=k

Cov(Yj,�, Yk,�) = 1

�

(
Var(Sm�) − mVar(S�)

)
.

Using again the stationarity, Var(Sn) = nVar(X1) + 2
∑n

j=2(n − 1 − j)Cov(X1,

Xj ), so 1
n

Var(Sn) −→ σ 2, and finally, as n −→ +∞,
∣∣∣∣ϕm�(t) − ϕm

�

(
t√
m

)∣∣∣∣−→ 0. (4.3)

Step 3. In this step we assume that the blocks are independent. If we define
σ 2

� = 1√
�

Var(S�), then the classical Central Limit Theorem for independent vari-
ables implies that, as n −→ +∞ (which also implies that m −→ +∞),

∣∣∣∣ϕ
m
�

(
t√
m

)
− exp

(
− t2σ 2

�

2

)∣∣∣∣−→ 0. (4.4)

Step 4. Using again the inequality
∣∣∣∣exp

(
− t2σ 2

2

)
− exp

(
− t2σ 2

�

2

)∣∣∣∣≤
t2

2
|σ − σ�|

and collecting inequalities (4.2), (4.3) and (4.4), we get that, for each fixed � > 0,

lim sup
n→+∞

∣∣∣∣ϕn(t) − exp

(
− t2σ 2

2

)∣∣∣∣≤ t2|σ − σ�|.

As the left side of this inequality does not depend on �, we may allow � → +∞ to
conclude that

lim sup
n→+∞

∣∣∣∣ϕn(t) − exp

(
− t2σ 2

2

)∣∣∣∣= 0,

so the theorem is proved. �

Remark 4.2 Notice that association is crucial in the way we control the approxi-
mation Steps 1 and 2 in the previous proof. In fact, it is association, as it implies
that covariances are always nonnegative, that allows for the conclusion (4.2). For
the deviance from independence, again it is association that allows the conclusion,
as the argument used relies on Newman’s inequality (2.26) (in fact, for this part of
the proof, it would be enough to assume the variables to be LPQD).
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Remark 4.3 The main argument in the proof above is the approximation of the dis-
tribution of Sn by the product distribution of the blocks defined in the proof. This
sort of argument has been used before, sometimes just by including this approxi-
mation in the assumptions, as done, for example, in Lemma 3 in Birkel [12]. Of
course, such a result did not include the association in its assumptions, otherwise
the statement would have been quite similar to Theorem 4.1.

Taking into account the previous remark, it is an easy matter to prove a general
Central Limit Theorem, repeating the arguments above, with the obvious adapta-
tions to control the approximation to the independent coupling variables.

Theorem 4.4 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. For each n ∈ N, let �n ∈ N and mn = [ n

�n
]. Define, for j = 1, . . . ,mn

Yj,�n =∑j�n

i=(j−1)�n+1 Xi and Ymn+1,�n =∑n
mn�n+1 Xi . Assume that mn −→ +∞,

1

s2
n

mn∑

j=1

Var(Yj,�n) −→ 1, (4.5)

∣∣∣∣∣
E exp

(
iu

sn
Sn

)
−

mn∏

j=1

E exp

(
iu

sn
Yj,�n

)∣∣∣∣∣
−→ 0, u ∈R, (4.6)

∀ε > 0,
1

s2
n

mn∑

j=1

∫

{|Yj,�n |≥εsn}
Y 2

j,�n
dP −→ 0. (4.7)

Then

1

sn
Sn

d−→ Z ∼ N (0,1).

As mentioned above, the proof of the previous Central Limit Theorem is based
on (2.26), with (4.5) playing the role of (4.1), (4.6) allowing for the argument cor-
responding to Step 1 in the proof of Theorem 4.1 and (4.7), a Lindeberg condition,
implying the Central Limit Theorem corresponding to Step 3 of the proof of Theo-
rem 4.1.

We have proved an extension to possibly nonmonotone transformations of the
random variables in Theorem 2.40. So, it possible to have an extended version of
Theorem 4.1, by adapting the proof of Theorem 2.40 in an obvious way.

Theorem 4.5 Let Yn, n ∈N, be strictly stationary and associated random variables.
Define, for each n ∈ N, Xn = f (Yn,Yn+1, . . .) and X∗

n = g(Yn,Yn+1, . . .) where
f � g (see Definition 2.4). Assume that

∞∑

k=2

Cov
(
X∗

1,X∗
k

)
< ∞. (4.8)
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Then,

1

σ
√

n
(Sn − ESn)

d−→ Z ∼ N (0,1),

where σ 2 is defined by (4.1).

It is possible to be somewhat more precise about the convergence assumptions
and the characterization of the asymptotic variance σ 2 in the previous statements.
For this purpose, let us define H ∗

j,k , the functions corresponding to the usual Hj,k

but with respect to the Yn variables:

H ∗
j,k(x, y) = P(Yj > x,Yk > y) − P(Yj > x)P(Yk > y)

= Cov
(
I(x,+∞)(Yj ), I(y,+∞)(Yk)

)

= Cov
(
I(−∞,x](Yj ), I(−∞,y](Yk)

)
. (4.9)

Assume the Yn are strictly stationary and define

Γ (x, y) = H1,1(x, y) +
∞∑

k=2

(
H1,k(x, y) + H1,k(y, x)

)
. (4.10)

If we assume the variables Yn to be associated, as is the case where the initial Xn

are associated, it follows that 0 ≤ H1 ≤ Γ ≤ +∞. Define further,

H(n)(x, y) = 1

n

n∑

j,k=1

Cov
(
I(x,+∞)(Yj ), I(y,+∞)(Yk)

)
.

Then, given a real-valued function g,
∫ ∫

g(x)H(n)(x, y)g(y) dx dy

= 1

n

n∑

j,k=1

∫ ∫
g(x)Hj,k(x, y)g(y) dx dy = 1

n
Var

(
n∑

j=1

g(Yj )

)

≥ 0.

Taking into account the strict stationarity of the random variables, it still follows
that

H(n)(x, y) = Cov
(
I(x,+∞)(Y1), I(y,+∞)(Y1)

)

+ 1

n

n−1∑

j=2

(n − j)
(
Cov

(
I(x,+∞)(Y1), I(y,+∞)(Yj )

)

+ Cov
(
I(y,+∞)(Y1), I(x,+∞)(Yj )

))
.

Thus, taking into account the nonnegativity of each term, we have

lim
n→+∞H(n)(x, y) = H1,1(x, y) +

∞∑

j=2

(
H1,j (x, y) + H1,j (y, x)

)
,
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so, if the integrals are finite, we have that, for any real-valued function g,
∫ ∫

g(x)Γ (x, y)g(y) dx dy = lim
n→+∞

∫ ∫
g(x)H(n)(x, y)g(y) dx dy ≥ 0.

Notice further that, if we take g ≡ 1, we may rewrite the asymptotic variance in
Theorem 4.1 as σ 2 = ∫ ∫ g(x)Γ (x, y)g(y) dx dy.

The inequality above expresses one fundamental property that should be re-
quired if Γ is to be a covariance operator, namely the semidefinite positiveness. Of
course, the above integral only makes sense for g such that g(x)H(n)(x, y)g(y) and
g(x)Γ (x, y)g(y) are integrable. To simplify referring to this integrability property,
given a real-valued symmetric function Ψ on R

2, we denote

DΨ = {g :g(x)Ψ (x, y)g(y) is integrable
}
.

Theorem 4.6 Let Yn, n ∈N, be strictly stationary and associated random variables,
and Xn = F(Yn), where F is an absolutely continuous function. Put X∗

n = F ∗(Yn)

where F ∗(t) = ∫ t

−∞ |F ′(u)|du. Assume that, for Γ defined by (4.10), F ′ ∈ DΓ .
Then, X∗

1 is square integrable, and

1

σ
√

n

n∑

j=1

(Xj − EXj)
d−→ Z ∼ N (0,1).

Proof Using integration by parts, it follows easily that, for absolutely continuous
functions g1 and g2,

Cov
(
g1(Y1), g2(Yj )

)=
∫ ∫

g′
1(x)H1,j (x, y)g′

2(y) dx dy (4.11)

whenever this covariance exists. Rewriting (4.11) for j = 1 and g1 = g2 = F ∗, we
get that X∗

1 is square-integrable. As, due to the association of the variables, for every
j ∈ N, 0 ≤ H1,j ≤ Γ , it is obvious that F ′ ∈ DH1,j

. The proof is now completed
referring to Theorem 4.5: by choosing g1 = g2 = F ∗ and summing for j = 2,3, . . . ,
(4.8) follows from (4.11), while the characterization of the asymptotic variance σ 2

follows using again (4.11) with g1 = g2 = F . �

Remark 4.7 Assume, in the previous result, that
∑

j Cov(Y1, Yj ) < +∞. Then, if
F ′ is bounded, it follows that F ′ ∈ DΓ :

∫ ∫
F ′(x)Γ (x, y)F ′(y) dx dy ≤ ∥∥F ′∥∥∞

∫ ∫
Γ (x, y) dx dy

= ∥∥F ′∥∥∞
∞∑

j=2

Cov(Y1, Yj ) < +∞.

To deal with nonstationary variables, let us recall the definition of

u(n) = sup
k∈N

∑

j :|j−k|≥n

Cov(Xj ,Xk).
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Theorem 4.8 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. Assume that

u(n) −→ 0, u(1) < ∞, (4.12)

inf
n∈N

1

n
s2
n > 0, (4.13)

∀ε > 0,
1

s2
n

n∑

j=1

∫

{|Xj |>εsn}
X2

j dP −→ 0. (4.14)

Then

1

sn
Sn

d−→ Z ∼ N (0,1).

Proof For the proof, we will check that the assumptions of Theorem 4.4 are ver-
ified. For this purpose, reproduce the decomposition of Sn into blocks: for each
n ∈ N, let �n ∈ N, mn = [ n

�n
] and define Yj,�n =∑j�n

i=(j−1)�n+1 Xi , j = 1, . . . ,mn,
and Ymn+1,�n = ∑n

mn�n+1 Xi . We first choose a sequence �n such that, for every
ε > 0,

�2
n

s2
n

n∑

j=1

∫

{|Xj |>εsn/�n}
X2

j dP −→ 0. (4.15)

Such a sequence does exist, as follows from (4.14). In fact, put n1 = 1 and define,
for k ≥ 2, nk ∈ N such that 2nk ≤ nk+1 and

1

s2
n

n∑

j=1

∫

{|Xj |>εsn/k2}
X2

j dP ≤ 1

k3
, n ≥ nk.

Take now �n = k if nk ≤ n < nk+1. So, we have that �n −→ +∞ and also mn −→
+∞. As the random variables are associated, we may repeat the arguments of the
proof of Theorem 4.1 to find that

∣∣∣∣∣
E exp

(
iu

sn
Sn

)
−

mn∏

j=1

E exp

(
iu

sn
Yj,�n

)∣∣∣∣∣
≤ t2

∣∣∣∣∣
1 − 1

s2
n

mn∑

j=1

Var(Yj,�n)

∣∣∣∣∣
.

So, to complete the proof, it is enough to verify that (4.5) and (4.7) hold. Taking into
account that Sn = Y1,�n + · · · + Ymn,�n , we have

1 − 1

s2
n

mn∑

j=1

Var(Yj,�n) = 2

s2
n

mn−1∑

j=1

mn∑

k=j+1

Cov(Yj,�n , Yk,�n) ≥ 0.

As, due to the association of variables, all the covariances are nonnegative, it follows
that

1 − 1

s2
n

mn∑

j=1

Var(Yj,�n) ≤ 2mn

s2
n

�n∑

j=1

u(j) ≤ 2n

s2
n

1

�n

�n∑

j=1

u(j) −→ 0
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as �n −→ +∞, by Cesàro convergence (see Lemma C.6). We have thus verified
that (4.5) is satisfied. We now verify that (4.7) also holds. We have, for each j =
1, . . . ,mn, Y 2

j,�n
≤ �n

∑j�n

i=(j−1)�n+1 X2
i , so,

∫

{|Yj,�n |>εsn}
Y 2

j,�n
dP

≤ �n

j�n∑

i=(j−1)�n+1

∫

{∑k X2
k>ε2s2

n/�n}
X2

i dP

≤ �n

j�n∑

i=(j−1)�n+1

j�n∑

k=(j−1)�n+1

∫

{X2
k>ε2s2

n/�2
n}

X2
i dP

≤ �n(�n − 1)

j�n∑

i=(j−1)�n+1

∫

{X2
j >ε2s2

n/�2
n}

X2
i dP.

It follows then that

1

s2
n

mn∑

j=1

∫

{|Yj,�n |>εsn}
Y 2

j,�n
dP ≤ �2

n

s2
n

n∑

j=1

∫

{|Xj |>εsn/�n}
X2

j dP −→ 0

taking into account (4.15), so (4.7) also holds. �

Remark 4.9 Assumptions (4.13) and (4.14) are the minimum one could expect,
even for independent random variables without the stationarity. Thus, in order
to prove the Central Limit Theorem, all that is required is that the covariances
decrease fast enough. Notice further, that for strictly stationary random vari-
ables, u(n) = 2

∑∞
j=n Cov(X1,Xn), thus (4.12) is equivalent to the convergence

of
∑

n Cov(X1,Xn), which is implicitly required in (4.1).

4.3 Convergence Rates

In this section we prove some extensions to associated random variables of the clas-
sical Berry–Esséen bounds for the distance between the asymptotic Gaussian distri-
bution function and the distribution function of 1√

n
(X1 +· · ·+Xn). We will start by

proving a bound with respect to the usual supnorm, assuming only the existence of
third-order moments. A first result in this direction, assuming the strict stationarity
of the variables, was proved by Wood [104]. Is well known that, for the supnorm
distance, the Berry–Esséen inequality provides a convergence rate of order n−1/2,
assuming the existence of moments of order 2. If we assume higher-order moments,
this convergence rate can be improved, as expected from an approach based on Tay-
lor expansions. The bounds that are proved for associated random variables can only
provide much slower convergence rates. This seems to depend on the approach, still
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based on Taylor expansions now complemented with the block decomposition of
X1 + · · · + Xn as used in the previous section.

The proof of the Berry–Esséen bound for associated variables follows the same
path of arguments as used for proving Central Limit Theorems: we decompose the
partial sums into blocks and couple these with independent variables keeping the
distributions of these blocks. The essential of the proof is then controlling the ap-
proximation to independence. So, in order to prepare for the proof under association,
we prove a convenient version of the Berry–Esséen bound for independent variables.
Denote in the sequel by Φa the distribution function of the Gaussian distribution
with mean 0 and variance a > 0.

Theorem 4.10 Let X1, . . . ,Xn be independent centred random variables with finite
third-order absolute moments βj = E|Xj |3. Assume that

inf
n∈N

s2
n

n
≥ c0. (4.16)

Then

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣≤ 24

∑
j βj

πs2
nn1/2

+ 96
∑

j βj

c0π
√

2πsnn
. (4.17)

Proof The proof consists of deriving convenient bounds for the difference be-
tween the characteristic functions of the distributions involved, that is, bound-

ing |ϕSn(tn
−1/2) − exp(− t2s2

n

2n
)|, and then applying (A.1). Denote in the sequel

ν2
j = EX2

j , so that s2
n = ν2

1 + · · · + ν2
n .

Assume first that

n1/2

2(
∑

j βj )1/3
≤ |t | ≤ c0n

3/2

4
∑

j βj

. (4.18)

For each j ∈N, consider random variables Yj independent of Xj and with the same
distribution as Xj . So, E(Xj − Yj ) = 0, Var(Xj − Yj ) = 2EX2

j = 2v2
j and E|Xj −

Yj |3 ≤ E(|Xj | + |Yj |)3 ≤ 2E|Xj |3 + 6E|Xj |EY 2
j ≤ 8βj . The characteristic function

of Xj − Yj is |ϕXj
|2. Now, a Taylor expansion gives, for some θ ∈ (−1,1),

∣∣
∣∣ϕXj

(
t√
n

)∣∣
∣∣

2

= 1 − v2
j t

2

n
+ θ

t3E(Xj − Yj )
3

6n3/2

≤ 1 − v2
j t

2

n
+ θ

4|t |3βj

3n3/2
≤ exp

(
−v2

j t
2

n
+ 4|t |3βj

3n3/2

)
.

Taking account of the upper bound for t and (4.16), it follows that
∣∣∣∣ϕSn

(
t√
n

)∣∣∣∣

2

=
n∏

j=1

∣∣∣∣ϕXj

(
t√
n

)∣∣∣∣

2

≤ exp

(
− t2

n

∑

j

v2
j + 4|t |3

3n3/2

∑

j

βj

)

≤ exp

(
− t2s2

n

n
+ t2s2

n

3n

)
= exp

(
−2t2s2

n

3n

)
.
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Finally, given (4.18), we have
∣∣∣∣ϕSn

(
t√
n

)
− exp

(
− t2s2

n

2n

)∣∣∣∣≤ exp

(
−2t2s2

n

3n

)
+ exp

(
− t2s2

n

2n

)
≤ 2 exp

(
− t2s2

n

3n

)
.

Assume now that |t | ≤ n1/2

2(
∑

j βj )1/3 and write

ϕXj

(
t√
n

)
− 1 = −v2

j t
2

2n
+ θ

t3βj

6n3/2

for some θ ∈ (−1,1). It follows, using Hölder’s inequality and the fact that the βj

are nonnegative, that
∣∣∣∣ϕXj

(
t√
n

)
− 1

∣∣∣∣≤
v2
j t

2

2n
+ |t |3βj

6n3/2
≤ v2

j

8(
∑

j βj )2/3
+ βj

48
∑

j βj

≤ 7

48
.

Hence, in the interval |t | ≤ n1/2

2(
∑

j βj )1/3 , the characteristic function ϕXj
(tn−1/2) is

bounded away from zero. On the other hand,
∣
∣∣∣ϕXj

(
t√
n

)
− 1

∣
∣∣∣

2

≤ 2
v4
j t

4

4n2
+ 2

t6β2
j

36n3

≤ |t |3βj

(
v4
j

4n3/2βj (
∑

j βj )1/3
+ βj

144n3/2
∑

j βj

)

≤ |t |3βj

37

144n3/2
,

from which follows that

logϕXj

(
t√
n

)
= −v2

j t
2

2n
+ θ

|t |3βj

6n3/2
+ γ

37|t |3βj

144n3/2
= −v2

j t
2

2n
+ η

|t |3βj

2n3/2
,

where γ ∈ (−1,1) and η = θ
3 + 37γ

72 ∈ (−1,1). Thus, we find the expansion

logϕSn

(
t√
n

)
=

n∑

j=1

logϕXj

(
t√
n

)
= − t2

2n

∑

j

v2
j + η

|t |3
2n3/2

∑

j

βj ,

from which it follows, recalling that s2
n =∑j v2

j , that
∣∣∣∣ϕSn

(
t√
n

)
− exp

(
− t2s2

n

2n

)∣∣∣∣

≤ exp

(
− t2s2

n

2n

)∣∣∣∣exp

(
η

|t |3
2n3/2

∑

j

βj

)
− 1

∣∣∣∣

≤ exp

(
− t2s2

n

2n

) |t |3
2n3/2

∑

j

βj exp

( |t |3
2n3/2

∑

j

βj

)

≤ e1/16

2
exp

(
− t2s2

n

2n

) |t |3
n3/2

∑

j

βj .
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So, putting together the two upper bounds derived in each interval for t , we have
that

∣∣∣
∣ϕSn

(
t√
n

)
− exp

(
− t2s2

n

2n

)∣∣∣
∣≤ 16

|t |3
n3/2

∑

j

βj exp

(
− t2s2

n

3n

)

for every |t | ≤ c0n
3/2

4
∑

j βj
. To finish the proof, just use (A.1) with T = c0n

3/2

4
∑

j βj
to find

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣

≤ 16
∑

j βj

πn3/2

∫ T

−T

t2 exp

(
− t2s2

n

3n

)
dt + 96

√
n
∑

j βj

c0π
√

2πσnn3/2

≤ 24
∑

j βj

πs2
nn1/2

+ 96
∑

j βj

c0π
√

2πsnn
. �

Notice that, for the case of independent and identically distributed variables,
(4.17) gives the usual n−1/2 rate.

Corollary 4.11 Let X1, . . . ,Xn be independent and identically distributed centred
random variables with finite third-order absolute moments β = E|X1|3. Then, with
s2

1 = EX2
1,

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φs2

1
(x)
∣∣≤ 24β

πs2
1n1/2

+ 96β

π
√

2πs3
1n1/2

. (4.19)

Based on the previous bounds and inequality (2.26), we may get a convergence
rate for the Central Limit Theorem for associated variables.

Theorem 4.12 Let Xn, n ∈ N, be centred and associated random variables. For
each � ∈ N, let m be the largest integer less than or equal to n/�, and define Yj,� =

1√
�

∑j�

i=(j−1)�+1 Xi , j = 1, . . . ,m, σ 2
j,� = EY 2

j,� and τj,� = E|Yj,�|3. Assume that

inf
m∈N

1

m

m∑

j=1

σ 2
j,� ≥ c0 > 0. (4.20)

Then, for n = m × �,

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣

≤ c2
0m

3

(
∑

j τj,�)2

∣∣∣∣
s2
n

n
− 1

m

∑

j

σ 2
j,�

∣∣∣∣

+ 24
∑

j τj,�

πm1/2
∑

j σ 2
j,�

+ 96
∑

j τj,�

c0π
√

2πm(
∑

j σ 2
j,�)

1/2
. (4.21)
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Proof Using (A.1), we have
∣∣P(Sn ≤ √

nx) − Φn−1s2
n
(x)
∣∣

≤ 1

π

∫ T

−T

1

|t |
∣∣∣∣ϕSn

(
t√
n

)
− e−t2s2

n/(2n)

∣∣∣∣dt + 24
√

n

π
√

2πsnT
.

Notice that 1√
n
Sn = 1√

m

∑m
j=1 Yj,�, so the integral may be decomposed into the sum

I1 + I2 + I3 =
∫ T

−T

1

|t |

∣∣∣∣∣
E exp

(
i

t√
m

∑

j

Yj,�

)
−

m∏

j=1

E exp

(
i

t√
m

Yj,�

)∣∣∣∣∣
dt

+
∫ T

−T

1

|t |

∣∣∣∣∣

m∏

j=1

E exp

(
i

t√
m

Yj,�

)
− exp

(
− t2

2m

∑

j

σ 2
j,�

)∣∣∣∣∣
dt

+
∫ T

−T

1

|t |
∣∣∣
∣exp

(
− t2

2m

∑

j

σ 2
j,�

)
− e−t2s2

n/(2n)

∣∣∣
∣dt.

The third integral is bounded by using the inequality |e−t − e−s | ≤ |t − s|:

I3 ≤ 1

2

∣∣∣∣
s2
n

n
− 1

m

∑

j

σ 2
j,�

∣∣∣∣

∫ T

−T

|t |dt = T 2

2

∣∣∣∣
s2
n

n
− 1

m

∑

j

σ 2
j,�

∣∣∣∣.

As the random variables are associated, the integral I1 is bounded using (2.26):

I1 ≤ 1

2m

m∑

j,k=1
j �=k

Cov(Yj,�, Yk,�)

∫ T

−T

|t |dt = T 2

2

∣
∣∣∣
s2
n

n
− 1

m

∑

j

σ 2
j,�

∣
∣∣∣,

where, according to the proof of Theorem 4.10, we may choose T = c0m
3/2

4
∑

j τj,�
. Fi-

nally, to bound I2, use (4.17) to find

I2 ≤ 24
∑

j τj,�

πm1/2
∑

j σ 2
j,�

+ 96
∑

j τj,�

c0π
√

2πm(
∑

j σ 2
j,�)

1/2
.

Inequality (4.21) now follows immediately by summing up these upper bounds. �

It is straightforward to write a version of (4.21) assuming the strict stationarity of
the random variables. The inequality that follows is essentially the same as derived
in Theorem 1 in Wood [104], although our constants are not the same. But this is
due to a different method used by Wood [104] to control the upper bound for the
result corresponding to (4.17) for independent random variables. In fact, in Wood
[104] the stationarity was assumed from the beginning, allowing for some further
simplification.

Corollary 4.13 Let Xn, n ∈ N, be centred, strictly stationary and associated ran-
dom variables. For each k ∈ N, let σ 2

k = 1
k

ES2
k and τk = 1

k3/2 E|Sk|3. Then, for
n = m × k, we have that
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sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣

≤ σ 4
k m

τ 2
k

(
s2
n

n
− σ 2

k

)
+ 24τk

πmσ 2
k

+ 96τk

π
√

2πm1/2σ 3
k

. (4.22)

This upper bound allows for a simple identification of the convergent rate that
follows from this Berry–Esséen bound for associated variables. The rate, as could
be expected, is slower that the n−1/2 rate for independent variables.

Corollary 4.14 Let Xn, n ∈ N, be centred, strictly stationary and associated ran-
dom variables such that E|X1|r < ∞ for some r > 2. For each k ∈N, let σ 2

k = 1
k

ES2
k

and τk = 1
k3/2 E|Sk|3. Assume that u(0) < ∞ and u(n) < Cn−θ for some θ > 2.

Then, there exists a positive constant K > 0, independent from n, such that

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣≤ Kn−1/5. (4.23)

Proof It is obvious that, due to the association of the random variables, σ 2
k ≤ u(0) <

∞. Put σ 2 = EX2
1 + 2

∑∞
i=2 Cov(X1,Xi). Then, we have that

σ 2 − s2
n

n
= 2

∞∑

i=2

Cov(X1,Xi) − 2

n

n∑

i=2

Cov(n − i + 1)Cov(X1,Xi)

= 2
∞∑

i=n+1

Cov(X1,Xi) + 2

n

n∑

i=2

Cov(i − 1)Cov(X1,Xi)

≤ 2u(n) + 2

n

∞∑

i=1

u(i) ≤ C1

n

for some C1 > 0, independent of n. Recall that we have σ 2
k = 1

k
s2
k , so, the same

bound holds for σ 2 − σ 2
k . Thus (4.22) rewrites as

sup
x∈R

∣∣P(Sn ≤ √
nx) − Φn−1s2

n
(x)
∣∣

≤ σ 4
k m

τ 2
k

(
σ − σ 2

k − C1

n

)
+ 24τk

πmσ 2
k

+ 96τk

π
√

2πm1/2σ 3
k

.

It follows from Corollary 2.21 that both σ 2
k and τk are bounded, so choosing

k = [n3/5] and m = [n2/5] concludes the proof. �

4.4 A Law of Iterated Logarithm

The upper bounds established in the previous section allow us to prove results that
actually characterize convergence rates for the Strong Law of Large Numbers in a
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more precise way than the results obtained in the final part of Sect. 3.2, recovering
now the same convergence rate as for independent random variables. In fact, using
the approximations to the distribution function of a Gaussian variable described in
Corollary 4.14, it is possible to prove a Law of Iterated Logarithm (LIL). The first
results in this direction were obtained by Dabrowski [27], Dabrowski and Dehling
[28], even proving functional versions of the LIL, and Yu [110]. Their method relied
on a version of Corollary 4.13 proved by Wood [104] and some control on the upper
bound of Newman’s inequality (2.26), together with a characterization of the set of
limit points due to Berkes [8]. We will follow here a later approach to this problem
of Li and Wang [59] that uses more direct arguments.

We need a technical lemma that gives us the work around to using an exponential
inequality that we do not have in a sufficiently strong form for associated variables.

Lemma 4.15 Let Xn, n ∈ N, be centred, square-integrable, strictly stationary and
associated random variables such that

E|X1|p < ∞ for some p > 2, (4.24)

u(n) ≤ Cn−θ for some C > 0 and θ > 2, (4.25)

σ 2 = EX2
1 + 2

∞∑

k=2

Cov(X1,Xk) < ∞. (4.26)

Let cn, n ∈ N, be a nondecreasing sequence of positive numbers, and nk , k ∈ N,
a nondecreasing sequence of positive integers such that

∑∞
k=1 n

−1/5
k < ∞. The fol-

lowing are equivalent:

(a)
∑∞

k=1 P(Snk
> cnk

√
nkσ ) < ∞.

(b)
∑∞

k=1 P(|Snk
| > cnk

√
nkσ ) < ∞.

(c)
∑∞

k=1
1

cnk
exp(− 1

2c2
nk

) < ∞.

Proof Notice that, taking into account Theorem 4.1, we get that 1
σ
√

n
Sn converges

weakly to a standard Gaussian variable, so, denoting by Φ the distribution function
of a standard Gaussian distribution, it follows from Corollary 4.14 that

∣∣P(Snk
≤ cnk

√
nkσ ) − Φ(cnk

)
∣∣≤ Kn

−1/5
k .

Thus, given the assumption on the sequence nk ,

∞∑

k=1

P(Snk
> cnk

√
nkσ ) < ∞ ⇔

∞∑

k=1

(
1 − Φ(cnk

)
)
< ∞.

Now, taking into account Lemma A.4, we get that this last series converges or di-
verges as does the series

∞∑

k=1

1

cnk

Φ ′(cnnk) = 1√
2π

∞∑

k=

1

cnk

exp

(
−c2

nk

2

)
. �
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Theorem 4.16 Let Xn, n ∈N, be centred, square-integrable, strictly stationary and
associated random variables such that (4.24), (4.25) and (4.26) are verified. Then,
with probability 1,

lim sup
n→+∞

Sn√
2σ 2n log logn

= 1. (4.27)

Proof Assume, for simplicity, that σ 2 = 1. To prove the theorem, it is enough to
show that with probability one, for ε > 0 small enough, we have:

lim sup
n→+∞

|Sn|√
2n log logn

≤ 1 + 4ε, (4.28)

lim sup
n→+∞

Sn√
2n log logn

≥ 1 − 4ε. (4.29)

Proof of (4.28). Choose α > 0 such that α(1 + 4ε)2 > 1 and define, for each
k ≥ 1, nk = [ekα ]. Then,

∞∑

k=1

exp(−(1 + 4ε)2 log lognk)

(1 + 4ε)
√

2 log lognk

≤
(

α

2

)1/2 ∞∑

k=1

1

kα(1+4ε)2 < ∞;

hence, taking into account Lemma 4.15, we have that

∞∑

k=1

P
(|Snk

| > (1 + 4ε)
√

2nk log lognk

)
< ∞,

so (4.28) follows along the subsequence nk , that is,

lim sup
k→+∞

|Snk
|√

2nk log lognk

≤ 1 + 4ε.

We still need to control the remaining terms of the sequence. For this step, define,
for each k ≥ 1,

Mk = sup
nk≤n<nk+1

|Sn − Snk
|√

2nk log lognk

.

Then, obviously, for each n ∈ [nk,nk+1), we have that

|Sn|√
2nk log logn

≤ |Snk
|√

2nk log lognk

+ Mk.

The first term on the right has just been handled, so we need to prove the almost
sure convergence to 0 of the sequence Mk . Assume that p(1 − α) ≥ 2. As p > 2,
this assumption on α is compatible with the previous one, α(1+4ε)2 > 1, whenever
ε < 1

8 . Then, taking into account Corollary 2.21, there exists a constant K > 0,
depending only on p, such that

∞∑

k=1

EM
p
k ≤ K

∞∑

k=1

(nk+1 − nk)
p/2

√
2nk log lognk

≤ K

∞∑

k=1

1

kp(1−α)/2(lognk)p/2
< ∞,



4.4 A Law of Iterated Logarithm 117

so, again the Borel–Cantelli lemma implies that, with probability one, Mk −→ 0, as
k −→ +∞.

Proof of (4.29). Let N > 2 be fixed and define, for each k ≥ 1, τk = SNk −
SNk−1+[Nk/2] and

Ck = {ω : τk(ω) > (1 − 2ε)ψ
(
Nk − Nk−1 − [Nk/2])},

where ψ(n) = √
2n log logn. We start by showing that

∑∞
k=1 P(Ck) = +∞. For

this, notice that, for N0 large enough and some suitable constant C1 > 0,

∞∑

k=1

exp(−(1 − 2ε)2 log log(Nk − Nk−1 − [Nk/2]))
(1 − 2ε)

√
2 log log(Nk − Nk−1 − [Nk/2])

≥ C1 +
∞∑

k=N0

exp
(−(1 − ε)2 log log

(
Nk − Nk−1 − [Nk/2]))

≥ C1 +
∞∑

k=N0

exp
(−(1 − ε)2 log logNk

)

= C1 + 1

(logN)(1−ε)2

∞∑

k=1

1

k(1−ε)2 = +∞.

It follows now from Lemma 4.15 and the stationarity of the random variables that
∞∑

k=1

P(Ck) =
∞∑

k=1

P
(
SNk−Nk−1−[Nk/2] > (1 − 2ε)ψ

(
Nk − Nk−1 − [Nk/2]))= +∞.

Choose a real-valued function g such that supx∈R |g′(x)| ≤ γ < ∞ and

I((1−2ε)ψ(Nk−Nk−1−[Nk/2]),+∞)(x) ≤ g(x) ≤ I((1−3ε)ψ(Nk−Nk−1−[Nk/2]),+∞)(x).

Then, we obviously have that
∞∑

k=1

Eg(τk) ≥
∞∑

k=1

P(Ck) = +∞. (4.30)

On the other hand, we have

P

( ∞∑

k=1

g(τk) ≤ 1

2

n∑

k=1

Eg(τk)

)

≤ P

(∣∣∣∣∣

∞∑

k=1

g(τk) −
n∑

k=1

Eg(τk)

∣∣∣∣∣
≥ 1

2

n∑

k=1

Eg(τk)

)

≤ 4
Var(

∑n
k=1 g(τk))

(
∑n

k=1 Eg(τk))2

≤ 4
∑n

k=1 Eg(τk)
+ 8

1

(
∑n

k=1 Eg(τk))2

∞∑

k=1

∞∑

j=k+1

∣∣Cov
(
g(τk), g(τj )

)∣∣.
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Taking into account Bulinsky’s inequality (2.2), (4.25) and the stationarity of the
variables, we still have that

∞∑

k=1

∞∑

j=k+1

∣∣Cov
(
g(τk), g(τj )

)∣∣≤ γ 2
∞∑

k=1

∞∑

j=k+1

∣∣Cov(τk, τj )
∣∣

≤ Cγ 2
∞∑

k=1

(
Nk − Nk−1 − [Nk/2])u

([
N(k+1)/2])

≤ Cγ

N1/2

∞∑

k=1

1

Nk(θ/2−1)
< ∞,

as θ > 2. Recalling now (4.30) and letting n −→ +∞, it follows that

P

( ∞∑

k=1

g(τk) < ∞
)

= 0,

and hence

P
(

lim sup
k→∞

{
τk > (1 − 3ε)ψ

(
Nk − Nk−1 − [Nk/2])}

)
= 1. (4.31)

Finally, consider, for each k ≥ 1, the sets

C′
k = {ω : τk(ω) > (1 − 3ε)ψ

(
Nk − Nk−1 − [Nk/2])}

and

Bk = {ω :SNk−1+[Nk/2](ω) > −2ψ
(
Nk−1 + [Nk/2])}.

So, taking into account (4.28) and (4.31), we have

P
(

lim sup
k→+∞

Bk ∩ C′
k

)
= 1.

If we now choose N large enough, it follows that

P
(
SNk > (1 − 4ε)ψ

(
Nk
))≥ P

(
lim sup
k→∞

{
SNk ≥ (1 − 3ε)ψ

(
Nk − Nk−1 − [Nk/2])

− 2ψ
(
Nk−1 + [Nk/2])}

)

≥ P
(

lim sup
k→+∞

Bk ∩ C′
k

)
= 1,

which concludes the proof. �

4.5 Density Estimation

We now look at the asymptotic normality of the kernel estimator for the density
(3.26),

f̂n(x) = 1

nhn

n∑

j=1

K

(
x − Xj

hn

)
.
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We will prove the asymptotic normality under conditions somewhat weaker than
second-order stationarity, assuming that the distribution of pairs of random variables
verify a diagonal decomposition as described by condition (D), introduced for the
treatment of the almost sure consistency of the estimator in Sect. 3.4 (see page 88).
The method of proof is an extension of the approach used to prove Theorem 5.22,
which is based on the blocking decomposition used in the proof of Theorem 4.1.
Just as for proving Theorem 5.22, this implies a quite long and technical proof that
we will present here divided into several steps.

We will need some notation for the proof of the main result in this section, Theo-
rem 4.19 below. Let � be an integer smaller than n and m = �n

�
�, the greatest integer

less than or equal to n/�. Let us further define the random variables

Tn,i = 1√
hn

(
K

(
x − Xi

hn

)
− EK

(
x − Xi

hn

))
, i = 1, . . . , n, n ∈ N,

Tn = 1√
n

n∑

i=1

Tn,i and Yn,k = 1√
�

jk∑

r=(k−1)�+1

Tn,r , j = 1, . . . ,m.

Note that the random variables Yn,k just introduced are the analogs to the blocks
defined in Theorem 5.22, now referring to the corresponding terms for the present

framework. Moreover, notice also that Tm� = 1√
m

∑m
k=1 Ym�,k = 1√

m�

∑m�
i=1 Tm�,i .

An obvious adaptation of Lemma 3.24 describes the behaviour of the variances of
the variables just defined.

Lemma 4.17 Assume that (A) is satisfied. Then, for each fixed � ∈ N,

lim
m→+∞σ 2

m� = lim
m→+∞ Var(Tm�) = g2(x, x)

∫
K2(u) du. (4.32)

We now introduce the following notation: given x ∈R, write

σ 2(x) = x

∫
K2(u) du.

In order to complete our proof of the asymptotic normality, we need some extra
assumptions on the kernel function, due to the peculiarities of association, as already
discussed when proving the almost sure consistency of the kernel estimator (see
page 91). Throughout this section, we will assume that K is of bounded variation.
Thus, there exist increasing functions K1 and K2 such that K = K1 −K2. Introduce
the following assumption:

(K) K1, K2 are bounded and lim|u|→+∞ K1(u) = 0, lim|u|→+∞ K2(u) = 0.

Remark that, obviously, (4.32) still holds with respect to K1 and K2. Corresponding
to these two functions, we define, for each n ∈ N, the analog of the block decompo-
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sition introduced above:

Tn,i,q = 1√
hn

(
Kq

(
x − Xi

hn

)
− EKq

(
x − Xi

hn

))
, q = 1,2, i = 1, . . . , n,

Yn,k,q = 1√
�

j�∑

r=(k−1)�+1

Tn,r,q , q = 1,2, j = 1, . . . ,m.

Let us first prove a technical lemma that appeared in Utev [101], handling integrals
of summations of random variables over sets also defined by conditions on summa-
tions of variables, separating each term. This will help us dealing with the Lindeberg
conditions in the proof of the main result.

Lemma 4.18 Let Xn, n ∈N, be random variables. Then, for all ε > 0 and n ∈ N,

∫

{|∑n
i=1 Xi |≥εn}

(
n∑

i=1

Xi

)2

dP ≤ 2n

n∑

i=1

∫

{|Xi |≥ε/2}
X2

i dP. (4.33)

Proof For all ε > 0 and n ∈ N, define g(x) = max(2x2 − ε2n2,0). Then, obviously,
if εn ≤ |x|, one has g(x) ≥ x2, so,

∫

{|∑n
i=1 Xi |≥εn}

(
n∑

i=1

Xi

)2

dP ≤
∫

g

(
n∑

i=1

Xi

)

dP.

It is also obvious that g is convex, and thus,
∫

g

(
n∑

i=1

Xi

)

dP ≤ 1

n

n∑

i=1

∫
g(nXi) dP ≤ 2n

n∑

i=1

∫

{|Xi |≥ε/2}
X2

i dP. �

We may now state the main result of this section.

Theorem 4.19 Let Xn, n ∈ N, be associated random variables. Assume (A) and
(K) are satisfied. Assume that

hn −→ 0, nhn −→ +∞,
hn+1

hn

−→ 1, (4.34)

lim
m→+∞

1

m�

m∑

k=1

j�∑

r,r ′=(k−1)�+1

g2,r,r ′ = g2,�, (4.35)

lim
�→+∞g2,� = g2 uniformly. (4.36)

Then

1√
nhn

n∑

i=1

(
K

(
x − Xi

hn

)
− EK

(
x − Xi

hn

))

converges in distribution to a centred Gaussian random variable with variance
σ 2(g2(x, x)).
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Proof Write

∣∣EeiuTn − e−(u2/2)σ 2(g2(x,x))
∣∣≤ ∣∣EeiuTn − EeiuTm�

∣∣+
∣∣∣∣∣
EeiuTm� −

m∏

k=1

Eei(u/
√

m)Ym�,k

∣∣∣∣∣

+
∣∣∣∣∣

m∏

k=1

Eei(u/
√

m)Ym�,k − e−(u2/2)σ 2(g2,�(x,x))

∣∣∣∣∣

+ ∣∣e−(u2/2)σ 2(g2,�(x,x)) − e−(u2/2)σ 2(g2(x,x))
∣∣. (4.37)

The proof is now completed in four steps. The first three find convenient upper
bounds for each of the terms in the right of the inequality above. The final step puts
everything together and takes care of the final details.

Step 1. As |EeiuTn − EeiuTm� | ≤ |u|Var1/2(Tn − Tm�), it is enough to prove the
convergence to zero of this variance. Write

Var1/2(Tn − Tm�)

≤ Var1/2

[
1√
n

m�∑

k=1

(Tn,k − Tm�,k)

]

+ Var1/2

[(
1√
m�

− 1√
n

) m�∑

k=1

Tm�,k

]

+ Var1/2

[
1√
n

n∑

k=m�+1

Tn,k

]

. (4.38)

We now prove that each of these terms converges to zero. As for the first term,

1

n
Var

[
m�∑

k=1

(Tn,k − Tm�,k)

]

= 1

n

m�∑

k,k′=1

[
Cov

(
1√
hn

K

(
x − Xk

hn

)
,

1√
hn

K

(
x − Xk′

hn

))

− Cov

(
1√
hn

K

(
x − Xk

hn

)
,

1√
hm�

K

(
x − Xk′

hm�

))

− Cov

(
1√
hm�

K

(
x − Xk

hm�

)
,

1√
hn

K

(
x − Xk′

hn

))

+ Cov

(
1√
hm�

K

(
x − Xk

hm�

)
,

1√
hm�

K

(
x − Xk′

hm�

))]
.

From Lemma 3.24, as n
m�

−→ 1, it follows that the summation over the first and
last terms of this previous expansion is convergent to 2σ 2(g2(x, x)). The remaining
terms are of the form

1

n

m�∑

k,k′=1

1√
hnhm�

(∫
K

(
x − u

hn

)
K

(
x − v

hm�

)
(g1,k,k′ − f ⊗ f )dudv

+
∫

K

(
x − u

hn

)
K

(
x − u

hm�

)
g2,k,k′(u,u)du

)
.
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The part corresponding to the first integral converges to zero as it is easily checked
reproducing the arguments in the proof of Lemma 3.24. As for the second integral,
rewrite it as

1

n

√
hn

hm�

m�∑

k,k′=1

∫
K(z)K

(
z

hn

hm�

)
g2,k,k′(x − hnz, x − hnz) dz,

which, by the Lebesgue dominated convergence theorem and taking into account
assumptions (D), that are included in the set of assumptions (A), and hn+1

hn
−→ 1,

converges to σ 2(g2(x, x)). So, we have proved that

1

n
Var

[
m�∑

k=1

(Tn,k − Tm�,k)

]

−→ 0.

The second term in (4.38) may be rewritten as

(
1√
m�

− 1√
n

)2

Var

[
m�∑

k=1

Tm�,k

]

=
(

1 −
√

m�√
n

)2 1

m�hm�

m�∑

k,k′=1

Cov

(
K

(
x − Xk

hm�

)
,K

(
x − Xk′

hm�

))
.

As
√

m�√
n

−→ 1, the convergence to zero of this term follows from Lemma 3.24.
Finally, for the third term in (4.38), we have

1

n
Var

[
n∑

k=m�+1

Tn,k

]

= 1

nhn

n∑

k,k′=m�+1

∣∣∣∣Cov

(
K

(
x − Xk

hn

)
,K

(
x − Xk′

hn

))∣∣∣∣

≤ 1

nhn

n∑

k,k′=1

(∫

R2
K

(
x − u

hn

)
K

(
x − v

hn

)∣∣g1,k,k′(u, v) − f (u)f (v)
∣∣dudv

+
∫

Δ

K2
(

x − u

hn

)
g2,k,k′(u,u)du

)
,

which converges to zero due to the nonnegativity of the terms and hn+1
hn

−→ 1. Thus,
for each fixed � ∈N,

∣∣EeiuTn − EeiuTm�
∣∣−→ 0. (4.39)

Step 2. We find an upper bound for the second term in (4.37). As the variables
Ym�,k , k = 1, . . . ,m, are not associated but, nevertheless, functions of associated
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variables, we apply the extended version of Newman’s inequality proved in Theo-
rem 2.40, to obtain

∣∣∣
∣∣
EeiuTm� −

m∏

k=1

Eei(u/
√

m)Ym�,k

∣∣∣
∣∣

≤ u2

2m

m∑

k,k′=1
k �=k′

Cov(Ym�,k,1 + Ym�,k,2, Ym�,k′,1 + Ym�,k′,2).

After expanding this covariance, we find four terms that are controlled in the same
way as the following one:

1

m

m∑

k,k′=1
k �=k′

Cov(Ym�,k,1, Ym�,k′,1)

= 1

m

m∑

k,k′=1

Cov(Ym�,k,1, Ym�,k′,1) − 1

m

m∑

k=1

Var(Ym�,k,1).

From Lemma 3.24 it follows that

1

m

m∑

k,k′=1

Cov(Ym�,k,1, Ym�,k′,1) −→ g2(x, x)

∫
K2

1 (u) du.

As for the other term,

1

m

m∑

k=1

Var(Ym�,k,1)

= 1

m�hm�

m∑

k=1

k�∑

r,r ′=(k−1)�+1

Cov

(
Kq

(
x − Xr

hm�

)
,Kq

(
x − Xr ′

hm�

))
.

Now, using (D), we may write these covariances as a sum of an integral over R2 with
an integral over the diagonal Δ of R2, as was done in the proof of Lemma 3.24. The
first integral thus appearing is bounded above by

1

m�hm�

m�∑

r,r ′=1

∫

R2
Kq

(
x − u

hm�

)
Kq

(
x − v

hm�

)∣∣g1,r,r ′(u, v) − f (u)f (v)
∣∣dudv −→ 0,

as in the proof of Lemma 3.24. The second integral appearing in this decomposition
is equal to

1

m�hm�

m∑

k=1

k�∑

r,r ′=(k−1)�+1

∫

Δ

K2
q

(
x − u

hm�

)
g2,r,r ′(u,u)du

−→ g2,�(x, x)

∫
K2

q (u) du,
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taking into account (4.35). Thus,

lim sup
m→+∞

∣∣
∣∣∣
EeiuTm� −

m∏

k=1

Eei(u/
√

m)Ym�,k

∣∣
∣∣∣
≤ Bu2(g2(x, x) − g2,�(x, x)

)
, (4.40)

where B = ∫ K2
1 (u) + K2

2 (u) + 2K1(u)K2(u) du.
Step 3. Controlling the third term in the upper bound on (4.37) is equivalent to

proving a Central Limit Theorem for the variables Ym�,k , k = 1, . . . ,m, treating
them as if they where independent (to be formally completely correct, we should in-
troduce a new collection of independent variables with the same distributions as the
ones we have; we shall not do so to avoid further notation). We shall accomplish this
step by proving that the triangular array of random variables Ym�,k , k = 1, . . . ,m,
satisfies the Lindeberg condition. Using Lemma 3.24, one easily checks that

1

m
Var

(
m∑

k=1

Ym�,k

)

−→ g2,�(x, x)

∫
K2(u) du.

So, the Lindeberg condition reduces to verifying that
m∑

k=1

∫

{|Ym�,k |>cg2,�(x,x)
√

m}
1

m
Y 2

m�,k dP −→ 0.

Taking into account (4.33), we get that an upper bound for the integral above is

2

m

m∑

k=1

k�∑

r=(k−1)�+1

∫

{|Tm�,r |>(cg2,�(x,x)/2)
√

m/�}
T 2

m�,r dP

= 2

m

m�∑

k=1

∫

{|Tm�,k |>(cg2,�(x,x)/2)
√

m/�}
T 2

m�,k dP.

Write, for notational simplicity, c′
� = c

2g2,�(x, x). Recalling the definition of Tm�,k

and taking into account that the kernel K is bounded, it follows that

2

m

m�∑

k=1

∫

{|Tm�,k |>c′
�

√
m/�}

T 2
m�,k dP ≤ 2

m

m�∑

k=1

∫

{2‖K‖∞>c′
�

√
m�hm�/�}

4

hm�

‖K‖2∞ dP.

Assumption (4.34) implies that m�hm� −→ +∞ as m −→ +∞ so, recalling that �

is fixed, the integration set becomes, for m large enough, empty, thus the integrals
are 0, and the Lindeberg condition is trivially verified. Hence m−1/2∑m

k=1 Ym�,k

converges in distribution to a centred Gaussian random variable with variance
σ 2(g2,�(x, x)).

Step 4. It follows from the preceding steps that, for each fixed �,

lim sup
n→+∞

∣∣EeiuTn − e−(u2/2)σ 2(g2(x,x))
∣∣

≤ Bu2(g2(x, x) − g2,�(x, x)
)+ ∣∣e−(u2/2)σ 2(g2,�(x,x)) − e−(u2/2)σ 2(g2(x,x))

∣∣,

where B is defined in (4.40). Letting now � −→ +∞ and taking into account (4.36),
we have that this upper bound converges to zero. �
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4.6 Regression Estimation

We may now adapt the previous approaches to prove the convergence in distribution
of the regression estimator r̂n(x), as defined in (3.30):

r̂n(x) =
∑n

j=1 YjK((x − Xj)/hn)
∑n

j=1 K((x − Xj)/hn)
.

The approach follows the same lines as in Sect. 3.5. We do not have an asymptotic
normality result, as usual in such problems, but only a finite-dimensional normality
of the regression estimator, that is, we will prove that the random vector

(
r̂n(x1) − Êrn(x1), . . . , r̂n(xq) − Êrn(xq)

)
(4.41)

is asymptotically normal for every choice of x1, . . . , xq ∈ R. This will be obtained
in an indirect way, applying a suitable transformation Θ , defined later, to

Ψ (x1, . . . , xq) = (f̂n(x1) − Ef̂n(x1), . . . , f̂n(xq) − Ef̂n(xq),

m̂n(x1) − Em̂n(x1), . . . , m̂n(xq) − Em̂n(xq)
)
, (4.42)

where f̂n and m̂n have been defined in Sects. 3.4 and 3.5, respectively (see page 97
for the later definition). As for the density estimator studied in the previous section,
we need to prove a Central Limit Theorem for an arbitrary linear combination of
the coordinates of this random vector. Analogously to what was done for the almost
sure convergence in Sect. 3.5, this will be accomplished by adapting the proof of
the density estimator to appropriately handle all the terms appearing now. The proof
of Theorem 4.19 is based on the manipulation of covariances using Lemma 3.24.
This correctly takes care of the terms depending only on expressions of the form
f̂n(xs) − Ef̂n(xs). As we have already proved a two-dimensional extension of this
result in Lemma 3.36, we can reproduce the same arguments to handle the sums
depending only on terms of the form m̂n(xs) − Em̂n(xs). We are thus left with the
cross terms depending both on f̂n(xs) − Ef̂n(xs) and m̂n(xs) − Em̂n(xs). As could
be expected, the extension of assumptions (D) and (A) introduced in Sect. 3.5 offers
a solution for this problem, providing an extension of Lemmas 3.24 and 3.36. We
just need to complete (A′) to handle the cross terms, adding a fourth assumption:

(A′) (A′.4) b∗∗
2 (v) = ∫

R
ub2(v,u) du is bounded and continuous.

Lemma 4.20 Assume that (D′) and (A′.1)–(A′.4) are satisfied and that the kernel
K is bounded. Then

1

nhn

n∑

j,k=1

Cov

(
K

(
x − Xj

hn

)
, YkK

(
x − Xk

hn

))
−→ b∗∗

2 (x, x)

∫
K2(u) du

uniformly on any compact set.

The proof of the result is, as before, a simple repetition of the arguments of the
proof of Lemma 3.24.
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We may now state the result concerning the convergence in distribution of (4.41).
The proof follows by repeating the steps of the proof of Theorem 4.19 and taking
the terms corresponding to the same xs , f̂n(xs) − Ef̂n(xs) and m̂n(xs) − Em̂n(xs),
in pairs, followed by taking into account a Taylor expansion of a suitable transfor-
mation (this is also known as the δ-method).

Theorem 4.21 Let Xn, n ∈ N, be associated random variables. Assume (A), (A′)
and (K) are satisfied. If

hn −→ 0, nhn −→ +∞,
hn+1

hn

−→ 1, (4.43)

lim
m→+∞

1

m�

m∑

k=1

k�∑

r,r ′=(k−1)�+1

g2,r,r ′ = g2,�, (4.44)

lim
m→+∞

1

m�

m∑

k=1

k�∑

r,r ′=(k−1)�+1

b2,r,r ′ = b2,�, (4.45)

lim
�→+∞g2,� = g2 uniformly, (4.46)

lim
�→+∞b2,� = b2 uniformly. (4.47)

Then, for all x1, . . . , xq ∈R, the random vector

√
nhn

(
r̂n(x1) − Em̂n(x1)

Ef̂n(x1)
, . . . , r̂n(xq) − Em̂n(xq)

Ef̂n(xq)

)

converges in distribution to a centred Gaussian random vector with covariance ma-
trix

Γ ∗ = diag

(
r2(x1)g2(x1, x1) − 2r(x1)b

∗∗
2 (x1, x1) + b∗

2(x1)

f (x1)
, . . . ,

r2(xq)g2(xq, xq) − 2r(xq)b∗∗
2 (xq, xq) + b∗

2(xq)

f (xq)

)∫
K2(u) du.

Proof Start by reproducing the arguments in proof of Theorem 4.19 to conclude
that the random vector

√
nhnΨ (x1, . . . , xq) converges in distribution to a centred

Gaussian random vector with covariance matrix

Γ =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

g2(x1, x1) 0 b∗∗
2 (x1, x1) 0

. . .
. . .

0 g2(xq, xq) 0 b∗∗
2 (xq, xq)

b∗∗
2 (x1, x1) 0 b∗

2(x1, x1) 0
. . .

. . .

0 b∗∗
2 (xq, xq) 0 b∗

2(xq, xq)

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

×
∫

K2(u) du.
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Finally, to obtain an asymptotic result for the regression estimator r̂n(x), apply the
transformation Θ(v1, . . . , vq, u1, . . . , uq) = (u1

v1
, . . . ,

uq

vq
) to Ψ (x1, . . . , xq) and use

a Taylor expansion to find

√
nhn

(
r̂n(x1) − Em̂n(x1)

Ef̂n(x1)
, . . . , r̂n(xq) − Em̂n(xq)

Ef̂n(xq)

)

=√nhnΘ
(
Ψ (x1, . . . , xq)

)

≈√nhn

q∑

s=1

∂Θ

∂ys

(us)
(
f̂n(xs) − Ef̂n(xs)

)+
2q∑

s=q+1

∂Θ

∂ys

(us)
(
m̂n(xs) − Em̂n(xs)

)
,

where us = uq+s = Em̂n(xs )

Ef̂n(xs )
, for s = 1, . . . , q . The higher-order terms are negligible,

so computing the partial derivatives and the covariance matrix of this new vector,
we conclude the proof. �



Chapter 5
Convergence in Distribution—Functional
Results

Abstract This chapter addresses functional central limit theorems, that is invari-
ance principles and the convergence of empirical processes. The importance of these
processes come, of course, from the several statistical applications that are based on
transformations of the random-sum process or of the empirical process. Both these
sequences of processes are shown to converge in distribution to suitable Gaussian
processes. Some transforms depend closely on the paths of processes, while others
are only integral transformations, thus being less sensitive to the regularity of the ob-
served path. These arguments justify that, depending on the functionals that we are
interested in, we may require the convergence with respect to the usual Skorokhod
space or with respect to some suitable Lp space. These, being weaker topological
spaces, will be less demanding in order to have the convergence in distribution. The
techniques are similar to those used in Chap. 4 but adapted to handle the technicali-
ties that arise from the underlying functional space.

5.1 Introduction

Having studied the Central Limit Theorem, it is now time to interest ourselves with
the functional versions of these results. Naturally, as for the Central Limit The-
orem, the first functional results appeared assuming stationarity in Newman and
Wright [72], and later without stationarity in Birkel [12], considering the conver-
gence with respect to the supnorm in C[0,1], the space of continuous functions
defined on [0,1], or the Skorokhod topology in D[0,1], the space of càdlàg func-
tions (see Billingsley [10] for details). A large part of the effort relied on the ex-
tension to associated random variables of the classical inequalities on moments or
tail probabilities. Of course, proofs became somewhat more intricate, but the essen-
tial of the results known for independent variables is extended. Much of the control
obtained depends on some weak stationarity, as described for example, in Theo-
rem 5.12, proved by Birkel [12], or on the decrease rate of the covariances, as in
Theorem 5.14, proved later by Birkel [16]. As usual for this kind of results, much of
the proving effort is spent with the tightness of the sequences. When dealing with
integral functionals of the sample paths of random sums process or its continuous
counterparts, we do not need a topology as strong as the one considered in the previ-
ous subsection. This means that it is reasonable to expect to prove the convergence
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in distribution of these processes under weaker assumptions on the covariance struc-
ture of the underlying random variables. The first result in this direction was proved
by Prokhorov [84], assuming the underlying variables to be independent, but af-
terwards these weaker spaces did not attract much attention. Having this in mind,
Oliveira and Suquet [76, 78] rephrased the problem in some Lp space. These spaces
have weaker topologies, so the tightness becomes simpler to characterize, but are
still strong enough to allow for applying interesting functionals to the partial-sum
process. In this weaker topological framework, the functional Central Limit Theo-
rem is proved under some weak form of stationarity assumption and a Lindeberg
condition. Analogous results and approaches for the asymptotics of empirical pro-
cesses were studied by Yu [109], who proved the convergence towards a suitable
Gaussian process assuming that Cov(X1,Xn) decays fast enough, with a rate ob-
tained by using inequality (2.25). This was later improved by Shao and Yu [94] and
Louhichi [63], relaxing this decay rate for the covariances. Recasting the problem
in a convenient Lp space, Oliveira and Suquet [77, 79] obtained the convergence of
the empirical process under a still weaker decay rate on the covariances.

The theory of convergence in distribution with respect to the Skorokhod topology
is well known and established. We refer the reader for the monographs by Billings-
ley [10, 11] for an account on this subject. In regards with convergence in distri-
bution in Lp-spaces, the results seem to be spread throughout the literature, so we
include some general characterizations of tightness and convergence in distribution
on Lp[0,1] spaces.

5.2 General Results on Weak Convergence in Lp[0,1] Spaces

For underlying associated variables and these weaker spaces, the literature seems
to have essentially concentrated on the study of empirical processes, more widely
applied in statistical problems. Nevertheless, we can still prove convenient versions
of the empirical process on these Lp spaces.

A general result implying the convergence in distribution in Lp[0,1] is the fol-
lowing, which is analogous to the well-known conditions in the Skorokhod space.

Theorem 5.1 Let ζn, n ∈N, and ζ be random variables with values in Lp[0,1] for
some p > 1. Assume that:

(a) for every f ∈ Lq [0,1] with 1
p

+ 1
q

= 1,

∫ 1

0
f (t)ζn(t)λ(dt)

d−→
∫ 1

0
f (t)ζ(t)λ(dt),

where λ is the Lebesgue measure on [0,1];
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(b) the sequence ζn, n ∈N, is relatively compact.

Then ζn converges in distribution to ζ in Lp[0,1].

For the proof of this result and a more complete characterization of conver-
gence in distribution on Banach spaces, we refer the interested reader to Vakhania,
Tarieladze and Chobanyan [102] (see Sect. IV.3) or Ledoux and Talagrand [56] (see
Sect. 2.1). In fact, condition (a) in the previous theorem is just a more convenient
statement, adapted to Lp[0,1] spaces, of the a general condition for separable Ba-
nach spaces, where an analogue of a characteristic function should be considered.
This remark is of particular interest in the case of a Hilbert space, as happens for
L2[0,1]. When using Theorem 5.1 to prove convergence in distribution, verifica-
tion of condition (a) reduces to a Central Limit Theorem for real random variables,
so we are left with the need to prove the relative compactness of the sequence. Of
course, as Lp[0,1] spaces are separable, this is equivalent to proving the tightness
of the sequence, according to the well-known Prokhorov theorem (see, for exam-
ple, Billingsley [10], Theorems 6.1 and 6.2). These tightness characterizations were
first presented in Oliveira [73] and Oliveira and Suquet [77] for L2[0,1] and in Su-
quet [100] for Lp[0,1] spaces using a special wavelet multiresolution analysis. Here
we follow Oliveira and Suquet [79] for an approach using more classical Lp[0,1]
arguments.

Theorem 5.2 Let ζn, n ∈ N, be a sequence of random elements in Lp[0,1] for some
p ≥ 1 verifying:

(a) For some γ > 1, supn≥1 E‖ζn‖γ

1 < ∞,
(b) limh→0 supn≥1 E‖ζn(· + h) − ζn(·)‖p

p = 0.

Then ζn, n ∈ N, is tight in Lp[0,1].

Proof To avoid notational complications, we extend the definition of the ζn outside
the interval [0,1] by putting ζn(t) = 0 for any t /∈ [0,1]. Consider now a probability
density K with support [−1,1] that we assume to be Lipschitzian, that is,

‖K‖Lip := sup
s �=t

|K(t) − K(s)|
|t − s| < ∞.

For any positive integer j , define Kj(t) = jK(jt). The sequence Kj , j ∈ N, is an
approximate identity (see, for example, Stroock [97]), and we will use it to repro-
duce the convolution approach that is typical of the wavelet multiresolution analy-
sis.

Writing

Kj ∗ ζn(x) − ζn(x) =
∫

[−1/j,1/j ]
(
ζn(x − t) − ζn(x)

)
Kj(t)λ(dt)

and using Jensen’s inequality with respect to the probability measure whose density
function is Kj(t), we easily obtain
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E

(∫

R

∣∣Kj ∗ ζn(x) − ζn(x)
∣∣pλ(dx)

)

≤ E

(∫

[−1/j,1/j ]
Kj(t)

∫

R

∣∣ζn(x − t) − ζn(x)
∣∣pλ(dx)dt

)

≤ sup
t∈[−1/j,1/j ]

E
∥∥ζn(·) − ζn(· + t)

∥∥p

p
.

Hence by (b),

lim
j→∞ sup

n≥1
E‖Kj ∗ ζn − ζn‖p

p = 0. (5.1)

Now, it is easily checked that

E‖Kj ∗ ζn‖∞ ≤ ‖Kj‖∞ sup
i≥1

E‖ζi‖1

and, for any 0 ≤ s < t ≤ 1,

E
(∣∣Kj ∗ ζn(t) − Kj ∗ ζn(s)

∣∣γ )≤ ‖Kj‖γ

Lip sup
i≥1

E‖ζi‖γ

1 |t − s|γ .

So, according to Billingsley [10], Theorem 12.3, it follows that, for each fixed j ∈N,
the sequence Kj ∗ ζn, n ∈ N, is tight in C[0,1] and hence, also in Lp[0,1].

Now we use the approximation to identity defined by the sequence Kj , j ∈ N,
to prove the tightness of the sequence ζn, n ∈ N, itself. For any fixed η > 0, define,
for each k ≥ 1, ηk = 2−kη and choose a sequence of positive εk decreasing to 0. By
(5.1) and the Markov inequality, there exists a subsequence jk , k ≥ 1, such that

P
(‖ζn − Kjk

∗ ζn‖p > εk

)
< ηk, n ≥ 1, k ≥ 1. (5.2)

By the Lp[0,1]-tightness of the sequence Kjk
∗ ζn, n ≥ 1, there is a compact Ck in

Lp[0,1] such that

P(Kjk
∗ ζn /∈ Ck) < ηk, n ≥ 1, k ≥ 1. (5.3)

Defining A = {f ∈ Lp[0,1] :Kjk
∗ f ∈ Ck and ‖Kjk

∗ f − f ‖p ≤ εk, k ≥ 1}, it
follows from (5.2) and (5.3) that

P(ζn ∈ A) > 1 − 2η, n ≥ 1.

Clearly, the set A is totally bounded, so, as Lp[0,1] is complete, it follows that A is
compact in Lp[0,1], so the sequence ζn, n ∈N, is tight in Lp[0,1]. �

The following corollary gives alternative conditions for the tightness in Lp[0,1]
that are easier to verify.

Corollary 5.3 Let ζn, n ∈ N, be a sequence of random elements in Lp[0,1] such
that, for some q ≤ p < r :

(a) for some constant c > 0, E|ξn(t)|r ≤ c for all t ∈ [0,1] and n ∈ N,
(b) E|ξn(t + h) − ξn(t)|q ≤ ε(h) for 0 ≤ h < 1, 0 ≤ t ≤ 1 − h and n ∈ N, for some

function ε(·) such that ε(h) −→ 0 as h → 0.



5.2 General Results on Weak Convergence in Lp[0,1] Spaces 133

Proof As (a) obviously implies Theorem 5.2(a), we only need to prove that Theo-
rem 5.2(b) holds. If q = p, this is evident, so we are left with the case q < p. Denote
by 1

u
and 1

v
the barycentric coordinates of p in the segment (q, r), that is,

p = 1

u
q + 1

v
r,

1

u
+ 1

v
= 1, u, v > 0.

The Hölder inequality applied to |ξn(t + h) − ξn(t)| gives

E
∣∣ξn(t + h) − ξn(t)

∣∣p ≤ E1/u
∣∣ξn(t + h) − ξn(t)

∣∣qE1/v
∣∣ξn(t + h) − ξn(t)

∣∣r .

So, integrating with respect to t , we find

E
∥∥ξn(· + h) − ξn(·)

∥∥p

p
≤
∫

E1/u
∣∣ξn(t + h) − ξn(t)

∣∣qE1/v
∣∣ξn(t + h) − ξn(t)

∣∣rλ(dt)

≤ (2r−1c
)1/v

ε(h)1/u,

using (a) and (b). Hence E‖ξn(· + h) − ξn(·)‖p
p converges to zero, uniformly in n,

as h goes to zero, that is, Theorem 5.2(b) is satisfied. �

The following result gives a characterization of relative compactness in separable
Hilbert spaces, in terms of the coefficients representing the process with respect
to some orthonormal basis. We state the result for L2[0,1], due to our particular
interests. This is a restatement of Theorem 2.2 in Parthasarathy [80], taking into
account a correction introduced by Suquet [99]. An immediate adaptation will give
the corresponding result for a general separable Hilbert space.

Corollary 5.4 Let en, n ∈ N, is an orthonormal basis of L2[0,1], and ζn, n ∈ N, be
a sequence of random elements in L2[0,1] verifying:

(a) supn≥1 E‖ζn‖2
2 < +∞,

(b) limN→+∞ supn≥1 E[∑+∞
i=N(

∫ 1
0 ei(t)ζn(t)λ(dt))2] = 0.

Then ζn, n ∈ N, is tight in L2[0,1].

Proof For simplicity, define, for each f ∈ L2[0,1],

r2
N(f ) =

+∞∑

i=N

(∫ 1

0
ei(t)f (t)λ(dt)

)2

.

Then, assumptions (a) and (b) rewrite as

sup
n∈N

E
(
r2

1 (ζn)
)
< +∞ and lim

N→+∞ sup
n≥1

E
(
r2
N(ζn)

)= 0,

respectively. Define, for each N ∈N,

Ψ (N) = sup
n≥1

E
(
r2
N(ζn)

)
.

Now, given ε > 0, choose, taking into account (b), a sequence of nonnegative
real numbers λk ↗ +∞ and a sequence of positive integers nk , k ≥ 1, such that
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∑∞
k=1 λkΨ (nk) < ε. Define the sets Ek = {f ∈ L2[0,1] : r2

Nk
(f ) ≤ λ−1

k } and put
K =⋂∞

k=1 Ek . It follows from (a) that this set K is bounded. Thus, the projection
over the first nk coordinates is relatively compact, so it is possible to cover this pro-
jection using a finite number of balls with radii λ−1

k . The set K is included in each
Ek , which means that it is possible to cover K using the balls with the same centres
as above but with radii 2λ−1

k . Thus, the set K is totally bounded, so it is compact, as
L2[0,1] is complete. �

5.3 Invariance Principles

Having studied the Central Limit Theorem, it is now time to interest ourselves with
the functional versions of these results. For this purpose, recalling that Sn = X1 +
· · · + Xn and s2

n = ES2
n , we define two versions of the partial-sum process with

underlying variables X1, . . . ,Xn:

ξn(t) = 1

σ
√

n
S[nt] and ξ∗

n (t) = 1

sn
S[nt], t ∈ [0,1], (5.4)

where [x] represents the largest integer less than or equal to x, and σ needs to be de-
fined later. The interest in characterizing the convergence in distribution of these se-
quences of random functions on appropriate function spaces is that this convergence
gives a description of the global behaviour of the partial sums. Moreover, consider-
ing convenient continuous transformations, we will still have the convergence in dis-
tribution of the transformed random elements. This remark is quite useful as many
statistical applications may be defined as transformations of the above-mentioned
processes or of the empirical processes, to be studied in the next section. A simple
example of such a transformation is maxi≤n |Si |, which is just the supnorm of the
σ
√

nξn(t). All we need is to place ourselves in a space where this norm is a con-
tinuous transformation. Another statistically interesting family of transformations
has the form

∫
f (t)ξn(t) dt or

∫
G(ξn(t)) dt , which require weaker topologies on

the function space to be continuous. The natural choices of spaces just mentioned
would be the Skorokhod space D[0,1], extensively studied in Billingsley [10], for
example, for the supnorm transformation, while the weaker Lp[0,1] space for suit-
able p ≥ 1 would be enough for the integral transformation of sample paths of the
partial-sum process. The two cases mentioned are important choices for the func-
tion space and are essentially different in what concerns the topological character-
izations, thus meaning that different treatments should be used in either case. We
will study the convergence in distribution in the Skorokhod space in Sect. 5.3.1 and
the L2 case in Sect. 5.3.2.

The first suggestion to address functional versions of the Central Limit Theorem
seems to be attributable to Erdos and Käc [35], which was promptly answered by
Donsker [31] for the Skorokhod space and by Prokhorov [84] for the L2[0,1] space,
in both cases considering independent underlying variables and obtaining as limits a
version of suitably renormalized Brownian motion. As expected, this was followed
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by extensions to various dependence structures, in this latter case the limit becoming
a Gaussian process with convenient covariance operator.

Definition 5.5 The random variables Xn, n ∈ N, are said to fulfill the invariance
principle if ξn or ξ∗

n converge in distribution to a random function W such that its
distribution is the Wiener measure.

Remark 5.6 Notice that we consider the sequence ξn or ξ∗
n . In general, the conver-

gence of each sequence is not equivalent to the convergence of the other. However,
in the case of associated variables and the assumptions we will be considering, these
will become, in fact, equivalent.

Remark 5.7 We also did not include any reference to the space were the conver-
gence takes place. We will be interested in the convergence with respect to different
topologies and spaces, so a full statement about an invariance principle must include
the space to which this convergence refers.

The Skorokhod space attracted essentially all the attention in regards with in-
variance principles. Most of the approaches to results on dependent variables would
consider some kind of approximation to independence, either by trying to prove
that the underlying variables Xi and Xj become almost independent whenever
|i − j | −→ +∞, or by coupling the variables, or blocks of variables, by indepen-
dent ones, in ways similar to what has been done in Sect. 2.6. The asymptotic in-
dependence was first controlled in terms of mixing conditions, as in Ibragimov [47]
or Theorem 20.1 in Billingsley [10]. The first invariance principle for associated
random variables was proved by Newman and Wright [71] and later improved by
Birkel [12] dropping the stationarity assumption.

The weaker L2[0,1] space received more attention in regards with the transfor-
mations of empirical processes that will be considered in more detail in Sect. 5.4.

5.3.1 Invariance Principle in D[0,1]

The random functions ξn or ξ∗
n are both discontinuous, so the space D[0,1] is a more

appropriate and natural choice to address the convergence if we are interested in
continuity with respect to a strong topology. In some cases we may be interested in a
continuous version of ξn or ξ∗

n , constructed by considering polygonal lines between
the end points of each step, but, as it will be commented at the end of this subsection
(see Remark 5.15), this is essentially the same problem. The noncontinuous random
functions, considered in the Skorokhod space, even allow for a simpler proof.

We begin by considering the case were the variables are strictly stationary. In
such a case, the invariance principle follows under the sole assumption that a limit
covariance exists.
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Theorem 5.8 Let Xn, n ∈ N, be centred, square-integrable and strictly stationary
associated random such that

σ 2 = Var(X1) + 2
∞∑

j=2

Cov(X1,Xj ) < ∞. (5.5)

Then the random variables Xn, n ∈ N, fulfill the invariance principle in D[0,1].

Proof We follow the usual steps based on Theorem 15.1 in Billingsley [10] to prove
this theorem, that is, we need to prove the tightness of the sequence and the con-
vergence in distribution of the finite-dimensional distributions. Tightness will be
proved using a maximal inequality and standard arguments as for independent vari-
ables, once we have proved a Central Limit Theorem for the Xn random variables.
Also, using the same Central Limit Theorem, the finite-dimensional distributions of
ξn will be showed to converge to the corresponding ones of a Brownian process.

As our assumptions coincide with those of Theorem 4.1, we immediately have
that

1

σ
√

n
Sn

d−→ Z ∼ N (0,1).

Let now m ∈ N and 0 ≤ t0 < t1 < · · · < tm ≤ 1 be fixed. From the previous
convergence we will characterize the asymptotic distribution of the increments
ξn(tj+1) − ξn(tj ), j = 0, . . . ,m − 1. In fact, using the stationarity,

ξn(tj+1) − ξn(tj ) = 1

σ
√

n
(S[ntj+1] − S[ntj ])

= 1

σ
√

n
S[ntj+1]−[ntj ] = 1

σ
√

n
S[n(tj+1−tj )]+zj

,

where, for each j = 0, . . . ,m − 1, zj may be equal to −1, 0 or 1. Multiplying by√[n(tj+1 − tj )] + zj and taking into account that, for each fixed j = 0, . . . ,m − 1,
[n(tj+1−tj )]+zj

n
→ tj+1 − tj , it follows that

ξn(tj+1) − ξn(tj )
d−→ Zj ∼ N (0, tj+1 − tj ).

Let us now look at the covariance between different increments. Assume, without
loss of generality, that j < k. Then

Cov
(
ξn(tj+1) − ξn(tj ), ξn(tk+1) − ξn(tk)

)

= 1

σ 2n
Cov(S[n(tj+1−tj )]+zj

, S[n(tk+1−tk)]+zk
)

= 1

σ 2n
Cov(X[ntj ]+1 + · · · + X[ntj+1]+1,X[ntk]+1 + · · · + X[ntk+1]+1)

≤ 1

σ 2

∞∑

�=[n(tk−tj )]+zjk

Cov(X1,X�),
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using the stationarity of the random variables and the nonnegativity of the covari-
ances. It follows from (5.5) that this upper bound converges to 0 as n −→ ∞, so
that Cov(ξn(tj+1) − ξn(tj ), ξn(tk+1) − ξn(tk)) −→ 0. It is also clear that the vari-
ables ξn(t1) − ξn(t0), . . . , ξn(tm) − ξn(tm−1), being nondecreasing transformations
of the original variables, are associated. Thus, taking into account Theorem 1.33,

if (ξn(t1) − ξn(t0), . . . , ξn(tm) − ξn(tm−1))
d−→ (W1, . . . ,Wm), the coordinate vari-

ables of the limit are associated with null covariances, thus independent. That is, the
finite-dimensional distributions converge weakly to those of a Brownian process.

Finally, let us prove the tightness of the sequence ξn, n ∈ N. Recalling Theo-
rem 2.28, we have

P
(
max

(|S1|, . . . , |Sn|
)≥ λsn

)≤ 2P
(|Sn| ≥ (λ − √

2)sn
)
,

so we may conclude the proof using standard techniques. In fact, if λ > 2
√

2, we
have

P
(
max

(|S1|, . . . , |Sn|
)≥ λsn

)≤ 2P
(

|Sn| ≥ λsn

2

)
.

The stationarity of the variables obviously implies that

s2
n = nVar(X1) + 2

n∑

j=2

(n − i + 1)Cov(X1,Xj ),

thus from (5.5) it follows s2
n

nσ 2 −→ 1. As already mentioned, the random variables

Xn, n ∈ N, satisfy the Central Limit Theorem, so 1
sn

Sn
d−→ Z ∼ N (0,1), and

P
(

1

sn
|Sn| > λ

2

)
−→ P

(
|Z| > λ

2

)
.

Thus, for n ∈N large enough,

P
(

1

sn
|Sn| > λ

2

)
≤ 16

λ3
E|Z|3,

so, choosing ε = E|Z3|
λ2 and λ sufficiently large, the tightness follows from Theo-

rem 8.3 in Billingsley [10] (see the proof of Theorem 16.1 in [10] for the reformu-
lation on D[0,1]). �

In order to relax the stationarity requirement, we will need a closer control on the
covariance structure of the random variables. The control of the variance of Sn will
be crucial. In particular, the assumption

1

s2
n

s2
nk −→ k, k ∈N, (5.6)

plays an important role.

Lemma 5.9 Let Xn, n ∈ N, be centred, square-integrable and associated random
variables. Then (5.6) is satisfied if and only if 1

s2
n
s2[nt] −→ t for every t ∈ [0,+∞).
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Proof Let us assume that 1
s2
n
s2
nk −→ k for every k ∈ N. As the variables are associ-

ated, the sequence s2
n is nondecreasing, so, taking into account (5.6), we have that,

for all p ∈N and 0 ≤ � ≤ p − 1,

lim sup
m→+∞

1

s2
mp+�

s2
m ≤ lim sup

m→+∞
1

s2
mp

s2
m = 1

p
. (5.7)

Choose now an integer k ≥ 2. Given m ∈N, define r = [ m
k−1 ], so we obviously have

that r(k − 1) = [ m
k−1 ](k − 1) ≤ m. If m ≥ (k − 1)2, then

rk − m > m + 1 − k +
[

m

k − 1

]
− m ≥ 0,

thus � ≤ p − 1 ≤ (rk − m)p, that is, mp + � ≤ rkp. Hence,

lim inf
m→∞

1

s2
mp+�

s2
m ≥ lim inf

m→∞
1

s2
rkp

s2
r(k−1) =

(
1 − 1

k

)
1

p
. (5.8)

As k may be chosen arbitrarily large, it follows that

1

s2
n

s2[nt] → t for t = 1

p
with p ∈N.

For t = q
p

, the conclusion now follows by writing

1

s2
n

s2
[n(q/p)] = 1

s2
n

s2[nq]
1

s2[nq]
s2
[n(q/p)] −→ q

p
.

Finally, for nonrational t ∈ [0,∞), we can approximate from below and from above
by sequences of rationals u� and v�, respectively, and use the association, which
implies that s2

m is nondecreasing, to find

u� = lim
1

s2
n

s2
nu�

≤ lim inf
1

s2
n

s2
nt ≤ lim sup

1

s2
n

s2
nt ≤ lim

1

s2
n

s2
nv�

= v�,

from which the result follows. The other implication is obvious. �

We start by relating the fulfillment of the invariance principle and the Central
Limit Theorem. To control the variances, we will need a somewhat strengthened
version of (5.6).

Theorem 5.10 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. The following statements are equivalent:

(a) The random variables Xn, n ∈N, satisfy a Central Limit Theorem, and

1

s2
n

E(SnkSn�) −→ min(k, �), k, � ∈ N. (5.9)

(b) The random variables Xn, n ∈N, satisfy the invariance principle in D[0,1].
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Proof We first prove that (a) implies (b). Taking into account Lemma 5.9, we get

that, for each t ∈ [0,1], 1
sn

S[nt]
d−→ tZ, where Z ∼ N (0,1). Consider now fixed

0 < s < t ≤ 1. Then, as the marginal distributions are tight, the sequence of random
vectors ( 1

sn
S[ns], 1

sn
S[nt]), n ∈N, is tight, so there exists a probability measure Q on

R
2 such that

(
1

sn
S[ns],

1

sn
S[nt]

)
d−→ Q.

Denoting by π1 and π2 the coordinate projections from R
2 onto R, we have that

(
1

sn
S[ns],

1

sn
(S[nt] − S[ns])

)
d−→ Q(π1,π2 − π1)

−1.

The random variables S[ns] and S[nt] − S[ns] are nondecreasing transformations of
the Xn’s and so are associated. Thus, it follows from Theorem 1.33 that the pro-
jection π1 and π2 − π1 are associated with respect to Q. From the convergence in
distribution of 1

s2
n
S[nt], using Theorem 5.4 in Billingsley [10], we derive the uniform

integrability of each of the following sets of random variables: { 1
sn

S[nu], n ∈ N} for

each fixed u ∈ [0,1] and { 1
s2
n
(S[nu] − S[nv]), n ∈ N} for each fixed 0 ≤ u < v ≤ 1.

Hence, using (5.9), it follows that, with respect to Q,

Cov(π1,π2 − π1)

= lim
n→∞ Cov

(
1

sn
S[ns],

1

sn
(S[nt] − S[ns])

)

= lim
n→∞

1

s2
n

E
(
S[ns](S[nt] − S[ns])

)= 0.

That is, π1 and π2 −π1 are, under Q, associated and uncorrelated, thus independent.
Finally, we have that Qπ−1

1 = N (0, s) and Q(π2 − π1)
−1 = N (0, t − s), so that

1

sn
(S[nt] − S[ns])

d−→ (t − s)Z,

where Z ∼ N (0,1).
We still have to prove the tightness of the sequence ξ∗

n . For this, we will prove,
arguing along the lines of the proof of Theorem 2.2 in Herrndorf [45], that, for all
ε, η > 0, there exists δ > 0 such that

lim sup
n→∞

P
(
ω
(
ξ∗
n , δ

)
> ε
)≤ η,

where ω(ξ∗
n , δ) = sup|s−t |<δ |ξ∗

n (s) − ξ∗
n (t)|. Using a standard decomposition

(see, for example, the corollary to Theorem 8.3 in Billingsley [10]), we have, for
δ ∈ (0,1),

P
(
ω
(
ξ∗
n , δ

)
> ε
)≤

[1/δ]∑

i=0

P
(

max
[niδ]<r≤[n(i+1)δ]

|Sr − S[niδ]| > εsn

3

)
.

Repeating the arguments leading to (2.20), we find that
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P
(

max
[niδ]<r≤[n(i+1)δ]

|Sr − S[niδ]| > εsn

3

)

≤
(

1 − 36

s2
nε

E(S[n(i+1)δ] − S[niδ])
)−1

P
(

|S[n(i+1)δ] − S[niδ]| ≥ εsn

6

)
.

Using (5.9) and Lemma 5.9, it is easy to check that, for each fixed i,

1

s2
n

E(S[n(i+1)δ] − S[niδ])2 −→ δ,

so, for n large enough (depending on i and δ), 1
s2
n

E(S[n(i+1)δ] − S[niδ])2 ≤ 2δ. Thus,

if 72δ
ε

< 1,

P
(
ω(ξn, δ) > ε

)≤
[1/δ]∑

i=0

(
1 − 72δ

ε2

)−1

P
(

|S[n(i+1)δ] − S[niδ]| ≥ εsn

6

)
.

Now, as s2
n

s2[n(i+1)δ]−[niδ]
−→ δ, for n large enough (depending now on i, δ and ε), we

have

P
(
ω
(
ξ∗
n , δ

)
> ε
)

≤
[1/δ]∑

i=0

(
1 − 72δ

ε2

)−1

P
(

1

s[n(i+1)δ]−[niδ]
|S[n(i+1)δ] − S[niδ]| ≥ ε

12δ1/2

)

≤
(

1 − 72δ

ε2

)−1([1

δ

]
+ 1

)
144δ

ε2
sup

i≤[1/δ]
1

s2
[n(i+1)δ]−[niδ]

× E
[
(S[n(i+1)δ] − S[niδ])2

I|S[n(i+1)δ]−S[niδ]|>ε(s[n(i+1)δ]−[niδ])/(12δ1/2)

]

=
(

1 − 72δ

ε2

)−1([1

δ

]
+ 1

)
144δ

ε2
sup

m,n∈N
1

s2
n

× E
[
(Sm+n − Sm)2

I|Sm+n−Sn|>εsn/(12δ1/2)

]
.

Finally, as the variables appearing in this last mathematical expectation are uni-
formly integrable, taking into account Theorem 5.4 in Billingsley [10], we may
choose δ > 0 small enough so that this upper bound is smaller than the given η > 0,
which concludes the proof of the tightness.

We now prove that (b) implies (a). It is enough to prove that (5.9) holds. Let us
first prove that s2

n = nh(n), where the function h is slowly varying. Obviously, for u

large enough, h(u) = s2[u]
u

. As the Central Limit Theorem is satisfied, we have both

1

s[nt]
S[nt]

d−→ Z and
1

sn
S[nt]

d−→ tZ, where Z ∼ N (0,1).
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Therefore,
s2[nt]
s2
n

−→ t . As the variables fulfill the invariance principle, the sequence

ξ∗
n , n ∈N, is tight, so, for every δ > 0,

lim sup
n→∞

P
(

max
1≤i≤n

|Xi | ≥ εσn

)
≤ lim sup

n→∞
P
(
ω
(
ξ∗
n , δ

)≥ ε
)
.

This later upper bound converges to 0 as δ −→ 0, which implies that Xn

sn
−→ 0

in probability. Thus, as 1
sn+1

Sn+1 = 1
sn+1

Sn + Xn+1
sn+1

, the limits in distribution of
1
sn

Sn and 1
sn+1

Sn coincide, hence sn
sn+1

−→ 1. Consequently, for each t ∈ (0,1],
lims→∞ s[ts]

st[s] = lims→∞ h(ts)
h(s)

= 1, that is, h is slowly varying. Thus,

1

s2
n

s2
nk −→ k, k ∈N.

Let now 0 ≤ s ≤ t ≤ u ≤ v ≤ 1 be fixed. The random variables 1
s2
n
S2

n , n ∈ N,

are uniformly integrable, hence, it follows from Lemma 5.9 that the variables
1
s2
n
(S[nt] − S[ns])(S[nv] − S[nu]), n ∈ N, are also uniformly integrable. As the invari-

ance principle is verified, we have that

1

s2
n

(S[nt] − S[ns])(S[nv] − S[nu])
d−→ (

W(t) − W(s)
)(

W(v) − W(u)
)
,

where W is a Brownian motion. Then, taking into account Theorem 5.4 in Billings-
ley [10], we have

1

s2
n

E
[
(S[nt] − S[ns])(S[nv] − S[nu])

]−→ E
[(

W(t) − W(s)
)(

W(v) − W(u)
)]= 0,

using the independence of the increments of W . From this it immediately follows
that

1

s2
n

E
[
(Snj − Sni)(Sn� − Snk)

]−→ 0, i ≤ j ≤ k ≤ �,

and, finally, (5.9) by choosing i = 0 and j = k. �

Remark 5.11 Notice that the association of the random variables is only used in the
first part of the proof of the previous result.

We now extend the results from Sect. 4.2. We will look for assumptions on the co-
variance structure instead of (5.9), as, in view of Theorem 2.37, this is a much more
natural way of controlling the asymptotics for associated sequences. The control
over the covariance structure is achieved through the usual coefficient u(n) intro-
duced earlier (see page 41),

u(n) = sup
k∈N

∑

j :|j−k|≥n

Cov(Xj ,Xk).



142 5 Convergence in Distribution—Functional Results

Theorem 5.12 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. If (4.12), (4.13), (4.14) and (5.6) are satisfied, then the random variables
Xn, n ∈ N, verify the invariance principle in D[0,1].

Proof Taking into account Theorems 4.8 and 5.10, it is enough to prove that (5.9)
is satisfied. For this, we shall verify that

1

s2
n

E
[
(Snj − Sni)(Sn� − Snk)

]−→ 0, i ≤ j ≤ k ≤ �,

as (5.9) then follows by choosing i = 0 and j = k. Now, due to the nonnegativity of
the covariances,

1

s2
n

E
[
(Snj − Sni)(Sn� − Snk)

]

= 1

s2
n

nj∑

p=ni+1

n�∑

q=nk+1

Cov(Xp,Xq) ≤ 1

s2
n

u
(
n(k − j)

)−→ 0,

as follows from (4.12) and (4.13). �

In the proof of Theorem 5.10 we have verified that 1
n
s2
n is a slowly varying func-

tion. A common assumption in Central Limit Theorems or invariance principles
requires the convergence of this sequence. In such a case, the following result is an
immediate consequence of Theorem 5.12.

Corollary 5.13 Let Xn, n ∈ N, be centred, square-integrable and associated ran-
dom variables. Assume that (4.12), (4.14) and

1

n
s2
n −→ σ 2 ∈ (0,∞) (5.10)

are satisfied. Then the random variables Xn, n ∈ N, verify the invariance principle
in D[0,1].

Proof It suffices to remark that (4.13) and (5.6) are both consequences of (5.10). �

The Lindeberg assumption (4.14) above may be replaced by the existence of
higher-order moments. But this must be accompanied by a convenient behaviour on
the covariance structure. In some sense, this is alike what happens when replacing
the Lindeberg assumption by the Lyapunov condition for the classical Central Limit
Theorem. In our framework, dealing with dependent variables, we need a closer
control on the covariances expressed through the decrease rate of u(n).

Theorem 5.14 Let Xn, n ∈N, be centred and associated random variables. Assume
that (4.13), (5.6),

u(n) ∼ n−θ for some θ > 0,

sup
n∈N

E|Xn|r+η < ∞ for some r > 2, η > 0,
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are satisfied. Then the random variables Xn, n ∈ N, verify the invariance principle
in D[0,1].

Proof We start by verifying that the finite-dimensional distributions of ξ∗
n converge

in distribution to those of a stochastic process W that has finite-dimensional projec-
tions behaving like the ones from a Brownian motion. It follows from (5.6) and, as
the random variables are associated, Lemma 5.9 that, for each t ∈ [0,1],

1

sn
S[nt]

d−→ tZ, Z ∼ N (0,1).

Hence, each of the two families of variables 1
sn

S[nt], n ∈ N, and 1
s2
n
S2[nt], n ∈ N, is

uniformly integrable. Thus, taking into account Theorem 5.4 in Billingsley [10], we
have

E
(
W(t)

)= lim
n→∞ E

(
1

sn
S[nt]

)
= 0 and E

(
W 2(t)

)= lim
n→∞ E

(
1

s2
n

S[nt]2

)
= t.

Consider now fixed k ∈ N and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1. The random variables
ξ∗
n (tj+1) − ξ∗

n (tj ), j = 0, . . . , k − 1, are nondecreasing functions of the Xn’s and
thus are associated. So, repeating the arguments of the proof of Theorem 5.8, it
follows that

ξ∗
n (tj+1) − ξ∗

n (tj )
d−→ Zj ∼ N (0, tj+1 − tj ), j = 0, . . . , k − 1,

and

(
ξ∗
n (t1) − ξ∗

n (t0), . . . , ξ
∗
n (tk) − ξ∗

n (tk−1)
)

d−→ (
W(t1) − W(t0), . . . ,W(tk) − W(tk−1)

)
.

Moreover, from Theorem 1.33 it follows that W(t1) − W(t0), . . . ,W(tk) − W(tk−1)

are associated random variables. Proceeding as in the proof of Theorem 5.12, we
get from (4.13) that, for j �= �,

Cov
(
W(tj+1) − W(tj ),W(t�+1) − W(t�)

)

= lim
n→∞ Cov

(
ξ∗
n (tj+1) − ξ∗

n (tj ), ξ
∗
n (t�+1) − ξ∗

n (t�)
)= 0.

Hence, it follows that the variables W(tj+1)−W(tj ), j = 0, . . . , k − 1, are uncorre-
lated and thus independent, taking into account Theorem 1.17. This means that the
limit stochastic process has finite-dimensional distributions as those of a Brownian
motion.

To complete the proof, we need to verify the tightness of the sequence ξ∗
n , n ∈N.

Recall that, as used before, we have, for each ε > 0,

P
(
ω
(
ξ∗
n , δ

)
> ε
)≤

[1/δ]∑

i=0

P
(

max
[niδ]<p≤[n(i+1)δ]

|Sp − S[niδ]| > εsn

3

)
.
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From Corollary 2.21 it follows that supm∈N E|Sm+n − Sm|r ≤ Bnr/2, so, using The-
orem A.5, we have

sup
m∈N

E
(

max
1≤p≤n

|Sm+p − Sm|r
)

≤ B ′nr/2,

where B ′ > 0 is independent of n. Using this upper bound together with Markov’s
inequality, we find

P
(
ω
(
ξ∗
n , δ

)
> ε
)≤

(
3

εsn

)r [1/δ]∑

i=0

E
(

max
[niδ]<p≤[n(i+1)δ]

|Sp − S[niδ]|r
)

≤ B ′ 1

nr/2

(
3n1/2

εsn

)r [1/δ]∑

i=0

([
n(i + 1)δ

]− [niδ])r/2
.

Finally, taking into account (4.13), we have

P
(
ω
(
ξ∗
n , δ

)
> ε
)≤ B ′

([
1

δ

]
+ 1

)(
δ + 1

n

)r/2(3

ε

)r

inf
n∈N

(
n

s2
n

)r/2

.

As r > 2, this upper bound approaches zero as δ ↘ 0, and thus the tightness of ξ∗
n ,

n ∈N, in D[0,1] follows recalling Theorem 15.5 in Billingsley [10]. �

Remark 5.15 We have been looking at the noncontinuous random functions ξn or
ξ∗
n . As mentioned previously, we might be interested in the continuous versions

obtained by considering polygonal lines between the end points of each step,

ξc
n(t) = 1

σ
√

n
S[nt] + nt − [nt]

σ
√

n
X[nt]+1

for the continuous version of ξn, and analogously constructed ξ∗c
n , the continuous

version of ξ∗
n . It is obvious that, for each ε > 0,

P
(

sup
t∈[0,1]

∣∣ξn(t) − ξc
n(t)

∣∣≥ ε
)

≤ P
(

max
1≤i≤n

|Xi | ≥ εσ
√

n
)
.

Now, if either ξn or ξc
n fulfills the invariance principle, repeating the arguments used

on the proof of Theorem 5.10 (see the end of page 141), it follows that the upper
bound above converges to 0. So, finally, Theorem 4.1 in Billingsley [10] implies
that ξc

n or ξn, respectively, also fulfills the invariance principle. Of course, these
arguments may applied with respect to ξ∗

n and the corresponding continuous version.

5.3.2 Invariance Principle in L2[0,1]

We shall now look at how the general results of the previous subsection translate
into characterizations concerning the invariance principle. First we present a simple
condition for the tightness in L2[0,1]. This result has appeared in several versions
and with different proofs in Oliveira [73] and Oliveira and Suquet [76, 78].
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Theorem 5.16 Let Xn, n ∈N, be centred, square-integrable and associated random
variables. Assume that there exists a constant C > 0 such that

1

n

n∑

j,k=1

E(XjXk) ≤ C. (5.11)

Then the sequence ξn, n ∈N, is weakly relatively compact in L2[0,1].

Proof Let en, n ∈N, be an orthonormal basis of L2[0,1] and define, for each n ∈N,
fn(s) = ∫ 1

s
en(t)λ(dt). According to Corollary 5.4, it is enough to prove

lim
N→+∞ sup

n∈N

∫ ∞∑

i=N

(∫ 1

0
ξn(t)ei(t)λ(dt)

)2

dP = 0

and

sup
n∈N

∫ ∞∑

i=0

(∫ 1

0
ξn(t)ei(t)λ(dt)

)2

dP < ∞.

It is easily checked that
∫ 1

0
ξn(t)ei(t)λ(dt) = 1√

n

n∑

j=1

Xj

∫ 1

j/n

ei(t)λ(dt),

so that we have

sup
n∈N

∫ ∞∑

i=N

(∫ 1

0
ξn(t)ei(t)λ(dt)

)2

dP

= sup
n∈N

∞∑

i=N

1

n

n∑

j,k=1

fi

(
j

n

)
fi

(
k

n

)
E(XjXk)

≤ sup
n∈N

(

sup
x∈[0,1]

∞∑

i=N

f 2
i (x)

)
1

n

n∑

j,k=1

E(XjXk),

as E(XjXk) ≥ 0, due to the association. Now, taking into account (5.11) and Dini’s
theorem, we get that this converges to zero. The second condition is trivially verified
by choosing N = 1 in the previous calculation. �

Remark 5.17 A common assumption when proving central limit theorems, invari-
ance principles or the convergence of empirical processes is 1

n
E(S2

n) −→ σ 2 < ∞,
as in Corollary 5.13. If we assume that the variables Xn, n ∈ N, are associated,
this obviously implies (5.11), so the relative compactness of ξn, n ∈ N, in L2[0,1]
follows.

Remark 5.18 The statement of Theorem 5.16 only uses the association in the final
step of the majorization of the series that we need to control. A general condition
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for the relative compactness in L2[0,1], without any kind of positive dependence,
obviously is

1

n

n∑

j,k=1

∣∣E(XjXk)
∣∣≤ C.

It is an easy consequence of the computations above that we always have relative
compactness in L2[0,1] if we consider the normalization by sn instead of

√
n.

Corollary 5.19 Let Xn, n ∈ N, be centred, square-integrable and associated ran-
dom variables. Then the sequence ξ∗

n , n ∈ N, is weakly relatively compact in
L2[0,1].
Proof Using the calculation as in the previous theorem, we would find the upper
bound

sup
n∈N

(

sup
x∈[0,1]

∞∑

i=N

f 2
i (x)

)
1

s2
n

n∑

j,k=1

E(XjXk) = sup
n∈N

(

sup
x∈[0,1]

∞∑

i=N

f 2
i (x)

)

.

Finally, Dini’s theorem gives the convergence to zero we sought. �

We may prove the tightness in Lp[0,1] spaces for p > 2, using Corollary 2.21,
by strengthening somewhat our assumptions requiring, in particular, a faster conver-
gence decay for the covariances.

Theorem 5.20 Let Xn, n ∈N, be centred and associated random variables.

(a) Assume that

u(n) ∼ n−θ for some θ > 0,

sup
n∈N

E|Xn|p+η < ∞ for some p > 2, η > 0.
(5.12)

Then the sequence ξn, n ∈N, is tight in Lp[0,1].
(b) If, in addition, we assume that 1

n
E(S2

n) −→ σ 2 < ∞, then the sequence ξ∗
n ,

n ∈N, is tight in Lp[0,1].
Proof We will verify that the conditions of Theorem 5.2 are satisfied. In what con-
cerns condition (b) of Theorem 5.2, notice first that, as the random variables are
associated, according to Corollary 2.21,

E
∥
∥ξn(· + h) − ξn(·)

∥
∥p

p
= 1

σpnp/2
E(X[nt]+1 + · · · + X[n(t+h)])p

≤ B[nh]p/2

σpnp/2
(5.13)

for some B > 0 (independent of n ∈N and t ∈ [0,1]). So,

lim
h→0

sup
n≥1

E
∥∥ξn(· + h) − ξn(·)

∥∥p

p
≤ lim

h→0

Bhp/2

σp
= 0.
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Condition (a) of Theorem 5.2 follows choosing γ = p and the same arguments as
above, thus proving (a).

As for ξ∗
n , n ∈ N, the upper bound in (5.13) becomes B[nh]p/2

s
p/2
n

, where, as usual,

s2
n = E(S2

n). If s2
n

n
−→ σ 2, the previous is, for n large enough, bounded above by

2Bhp/2 −→ 0 as h −→ 0. �

To complete the proof of an invariance principle, according to Theorem 5.1, we
must now have a control on the convergence in distribution of

∫
ξn(t)f (t)λ(dt)

for every f chosen in the appropriate space. Let us recall that we may rewrite the
integral above as

∫ 1

0
ξn(t)f (t)λ(dt) = 1

σ
√

n

n∑

i=1

XiF

(
i

n

)
, (5.14)

where F(s) = ∫ 1
s

f (t)λ(dt), so we need to prove a Central Limit Theorem for these
triangular arrays of random variables. As before, when proving convergence in dis-
tribution, the main problem is to have some control on the covariances placed out-
side of the principal diagonal of the covariance matrix. The essence is to impose
conditions that imply that the sum of those covariances became negligible. We
achieve this in a somewhat different way than that used for the invariance princi-
ples in D[0,1], saving us from the need to assume some convergence rate to zero
of the u(n), as done, for example in Theorem 5.14. Besides, we will need only the
existence of moments of order 2, thus also relaxing somewhat the assumptions on
the moments.

Before the result on the convergence of these integrals, we need to prove an
additional technical lemma.

Lemma 5.21 Let un, n ∈ N, be a sequence of real numbers such that

lim
n→+∞

1

n

n∑

k=1

uk = τ.

Then, for each absolutely continuous function h defined on [0,1],

lim
n→+∞

1

n

n∑

k=1

h2
(

k

n

)
uk = τ‖h‖2

2.

Proof It is enough to verify the convergence for h Lipschitzian, as this class of
functions is dense in the space of absolutely continuous functions. Denote vn =∑n

k=1 uk . We may write 1
n
vn = τ + εn where, εn −→ 0. Then, it follows that

uk = k(τ + εk) − (k − 1)(τ + εk−1) = τ + kεk − (k − 1)εk−1,

so to prove the lemma, it suffices to verify

lim
n→+∞

1

n

n∑

k=1

h2
(

k

n

)(
kεk − (k − 1)εk−1

)= 0.
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As h is Lipschitzian, there exists a constant α > 0 such that |h(x)−h(y)| ≤ α|x−y|,
so

∣∣∣∣∣
1

n

n∑

k=1

h2
(

k

n

)(
kεk − (k − 1)εk−1

)
∣∣∣∣∣

=
∣∣∣∣∣
1

n

n−1∑

k=1

kεk

(
h2
(

k

n

)
− h2

(
k + 1

n

))
+ εnh

2(1)

∣∣∣∣∣

≤ 2α‖h‖∞
n

n−1∑

k=1

|εk| + |εn|h2(1) −→ 0,

by Cesàro convergence (see Lemma C.6). For the general case, remark that ‖h‖2 ≤
‖h‖∞ ≤ C‖h′‖2 (where h′ denotes the almost everywhere derivative of the abso-
lutely continuous function h) and use standard density arguments. �

The next result states a Central Limit Theorem for triangular arrays, as needed to
control (5.14). The proof follows a method similar to the proofs of Theorems 4.1,
4.4 or 4.8, which consists in approximating the characteristic function of sums by
the characteristic functions of sums of blocks and treat these as if they were inde-
pendent.

Theorem 5.22 Let Xn, n ∈ N, be centred and associated random variables. For
each � ∈ N, put m = [n

�
], Yj,� = ∑j�

i=(j−1)�+1 Xi , j = 1, . . . ,m, and Ym+1,� =
∑n

k�+1 Xi . Assume that the following conditions are verified:

lim
n→+∞

1

n
E
(
S2

n

)= σ 2 > 0, (5.15)

lim
m→+∞

1

m

m∑

j=1

E
(
Y 2

j,�

)= a� and lim
�→+∞

a�

�
= σ 2, (5.16)

∀δ > 0,
1

n

n∑

i=1

∫

{|Xi |>δ
√

n}
X2

i dP −→ 0. (5.17)

Then, for all p > 1 and f ∈ Lp[0,1],
∫ 1

0
ξn(t)f (t)λ(dt)

d−→ Zf ∼ N
(
0,‖F‖2

)
,

where F(s) = ∫ 1
s

f (t)λ(dt).

Proof As mentioned above, we are interested in the random variables

Sn(f ) = 1√
n

n∑

i=1

F

(
i

n

)
Xi, where F(s) =

∫ 1

s

f (t)λ(dt).
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We may consider only functions F which are Lipschitzian, as these are a dense sub-
set of the space {h :h(s) = ∫ 1

s
g(t)λ(dt), g ∈ Lp[0,1]}. To prove the Central Limit

Theorem for the triangular array, we will approximate the characteristic function
of Sn(f ), ϕSn(f ), by the product of the characteristic functions of the blocks Yj,�,
j = 1, . . . ,m. This will be accomplished in five steps, where we take � fixed, except
in the final one.

Step 1. We first prove that, as the convergence in distribution is regarded, we
may replace the sum with n terms by a sum considering only a multiple of � terms.
Using |eit −eis | ≤ |t −s| for t, s ∈ R, and the Cauchy–Schwarz inequality, it follows
that

∣∣ϕSn(f )(t) − ϕSm�(f )(t)
∣∣≤ |t |Var1/2(Sn(f ) − Sm�(f )

)
. (5.18)

Recalling that this upper bound is just the L2[0,1]-norm of Sn(f ) − Sm�(f ), we
still have that

∣∣ϕSn(f )(t) − ϕSm�(f )(t)
∣∣2

≤ 1

n
E

(
m�∑

j=1

(
F

(
j

n

)
− F

(
j

m�

))
Xj

)2

+
(

1√
n

− 1√
m�

)2

E

(
m�∑

j=1

F

(
j

m�

)
Xj

)2

+ 1

n
E

(
n∑

j=m�+1

F

(
j

n

)
Xj

)2

. (5.19)

Using the fact that F is Lipschitzian and the association of the random variables, the
first term in this upper bound is, up to the multiplication by a constant depending
only on F , less than or equal to

1

n

(
1

n
− 1

m�

)2 m�∑

j,k=1

jkE(XjXk) ≤
(

m�

n
− 1

)2 1

n
E
(
S2

m�

)−→ 0

as n −→ +∞, taking into account (5.15), as, � being fixed, we also have that
m −→ +∞. From the association of the Xn, n ∈ N, it follows that the second
term in (5.19) is bounded above by

‖F‖2∞
(

m�

n
− 1

)
1

m�
E
(
S2

m�

)−→ 0

as n −→ +∞, again taking into account (5.15). Finally, the third term in the upper
bound in (5.19) is, due to the association of the underlying variables, less than or
equal to

‖F‖2∞
n

n∑

j,k=m�+1

Cov(Xj ,Xk) = ‖F‖2∞
n

E

(

S2
n − S2

m� − 2
m�∑

j=1

n∑

k=m�+1

XjXk

)

.
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Obviously, form (5.15) it follows that 1
n

E(S2
n) and 1

n
E(S2

m�) both converge to σ 2

as n −→ +∞. Using again the association of the random variables Xn, n ∈ N, this
implies that all the covariances are nonnegative, and from (5.15) it also follows
that 1

n
E(
∑m�

j=1
∑n

k=m�+1 XjXk) −→ 0 as n −→ +∞. Thus, collecting these upper
bounds and inserting into (5.19), it follows that

lim
k→+∞

∣∣ϕSn(f )(t) − ϕSm�(f )(t)
∣∣= 0.

Step 2. We now verify that we may approach F by a simple function keeping an
approximation of the corresponding characteristic functions. Using the same argu-
ments as in the first upper bounds in Step 1, we have

∣∣∣∣∣
ϕSm�(f )(t) − E exp

(
it√
m�

m∑

j=1

F

(
j

m

)
Yj,�

)∣∣∣∣∣

≤ |t |Var1/2

(

Sm�(f ) − 1√
m�

k∑

j=1

F

(
j

m

)
Yj,�

)

.

Expanding the variance above and using the Lipschitz property of F , that is, |F(x)−
F(y)| ≤ α|x − y| for some α > 0, we easily find that

Var

(

Sm�(f ) − 1√
m�

m∑

j=1

F

(
j

m

)
Yj,�

)

≤ α2

m3�

m�∑

j,k=1

E(XjXk),

hence, from (5.15) we have, for m large enough,
∣∣∣∣∣
E exp

(
itSm�(f )

)− E exp

(

it
1√
m�

m∑

j=1

F

(
j

m

)
Yj,�

)∣∣∣∣∣
≤

√
2σα|t |
m

(5.20)

which converges to zero as n −→ +∞.
Step 3. Now we approximate the characteristic function of (m�)−1/2 ×∑m
j=1 F(j/m)Yj,� by what we would find if the blocks were independent. Us-

ing Theorem 2.37, it follows, taking into account (5.15) and (5.16), that for m large
enough,

∣∣∣∣∣
E exp

(

it
1√
m�

m∑

j=1

F

(
j

m

)
Yj,�

)

−
k∏

j=1

E exp

(
it√
m�

F

(
j

m

)
Yj,�

)∣∣∣∣∣

≤ 1

2

m∑

j,k=1
j �=k

t2

m�

∣∣∣∣F
(

j

m

)
F

(
m

m

)∣∣∣∣E(Yj,�Yk,�)

≤ t2‖F‖2∞
2m�

m∑

j,k=1
j �=k

E(Yj,�Yk,�) ≤ t2‖F‖2∞
(

σ 2 − a�

�

)
. (5.21)

Step 4. We prove that the product
∏m

j=1 E exp(it (m�)−1/2F(j/m)Yj,�) con-
verges to the characteristic function of a Gaussian distribution where the Yj,�,
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j = 1, . . . ,m, may be assumed to be independent. Using Lemma 5.21, from (5.16)
we have that

s2
n(f ) = 1

m�

m∑

j=1

F 2
(

j

m

)
E
(
Y 2

j,�

)−→ a�

�
‖F‖2

2.

So, to prove the Lindeberg condition for the triangular array (m�)−1/2F(j/m)Yj,�,
j = 1, . . . ,m, m ∈N, it is enough to prove that, for every ε > 0,

m∑

j=1

∫

{|F(j/m)||Yj,�|>εsn(f )
√

m�}
1

m�
F 2
(

j

m

)
Y 2

j,� dP −→ 0. (5.22)

For m large enough and applying (4.33), an upper bound for this integral is

‖F‖2∞
m

m∑

j=1

j�∑

m=(j−1)�+1

∫

{|Xk |>(ε/2)
√

a�/�(‖F‖2/‖F‖∞)
√

m/�}
X2

k dP

≤ ‖F‖2∞
m

m�∑

j=1

∫

{|Xj |>(ε/(2�))
√

a�/�(‖F‖2/‖F‖∞)
√

m�}
X2

j dP −→ 0, (5.23)

taking into account (5.17).
Step 5. Now summing up inequalities (5.18), (5.20), (5.21) and (5.23), we get,

for fixed � ∈ N,

lim sup
n→+∞

∣∣∣∣E exp
(
itSn(f )

)− exp

(
−σ 2

2
t2‖F‖2

2

)∣∣∣∣≤ Ct2‖F‖2∞
(

σ 2 − a�

�

)
,

and now letting � −→ +∞, we have the Central Limit Theorem that concludes the
proof. �

Remark 5.23 The association of the random variables is crucial in the first two steps
of the proof, which take care of the control of the deviance from independence, just
as in the proof of Theorem 4.1.

Example 5.24 Assumption (5.16) is a sort of relaxed weak stationarity, allowing for
some perturbation of a few random variables. Moreover, the assumption puts some
control on the covariance structure which is more flexible than the conditions used
for the treatment of the D[0,1] case as, for instance, Theorem 5.14. An example
that verifies Theorem 5.22 but not Theorem 5.14 can be constructed as follows:
let Xn, n ∈ N, be stationary and associated random variables such that E(Xn) = 0,
Var(Xn) = 1 and Cov(Xj ,X�) = γ (|j − �|), where

∑∞
n=1 γ (n) < ∞; for each

n ∈N, define X′
n = cnXn, where

cn =
{

q1/2 if n = 2q for some q ∈N,

1 otherwise.
The perturbed sequence remains associated. Its coefficient u′(n) is now

u′(n) = sup
k≥1

u′
k(n) with u′

k(n) =
∑

j :|j−k|≥n

cj ck Cov(Xj ,Xk).
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For each n ∈N, we can find k large enough such that k + n = 2q and q1/2γ (n) ≥ 1,
so, supk≥1 u′

k(n) ≥ 1, and u′(n) does not converge to zero.
Next we check conditions (5.15), (5.16) and (5.17) for X′

n, n ∈ N. Write S′
n =∑n

i=1 X′
i and Y ′

j,� for the blocks relative to the X′
i .

To (5.15). By the stationarity of Xn, n ∈ N, we have

1

n
E
(
S2

n

)−→ σ 2 = Var(X1) + 2
∞∑

n=1

γ (n) < ∞.

As what regards S′
n, we have

E
(
S′2

n

)= E
(
S2

n

)+
∑

1≤i,j≤n

cicj >1

(cicj − 1)E(XiXj ).

The second term is bounded above by
∑

1≤i,j≤n

cicj >1

cicj E(XiXj ) =
∑

1≤i,j≤n

ci>1,cj >1

cicj E(XiXj ) + 2
∑

1≤i≤n

ci=1

∑

1≤j≤n

cj >1

cj E(XiXj )

= T1 + T2,

where

T1 ≤
∑

1≤i,j≤n

ci>1,cj >1

cicj =
(

n∑

i=1,ci>1

ci

)2

= O
(
ln3 n

)

and

T2 ≤ 4σ 2
n∑

j=1,cj >1

cj = O
(
ln3/2 n

)
.

Hence 1
n
(T1 + T2) −→ 0 and 1

n
E(S′2

n ) −→ σ 2.
To (5.16). Observing that the number of blocs Y ′

j,� having at least one perturbed
term is dominated by log2(m�) and that the variance of such a perturbed block is
bounded by �2 log2(m�), we have the estimate

0 ≤
k∑

j=1

E
(
Y ′2

j,�

)−
m∑

j=1

E
(
Y ′2

j,�

)≤ �2(log2 n)2,

so limm→∞ 1
m

∑m
j=1 E(Y ′2

j,�) = a� = E(S2
� ).

To (5.17). Obviously,

n∑

i=1,ci>1

∫

{ci |Xi |>δ
√

n}
c2
i X

2
i dP ≤

n∑

i=1,ci>1

c2
i EX2

i =
n∑

i=1,ci>1

c2
i = O

(
ln2 n

)
,

which is enough to prove (5.17) for the perturbed sequence of random variables.
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It is easily verified that, assuming the wide sense stationary, condition (5.16) is
superfluous, thus we immediately have the following result.

Corollary 5.25 Let Xn, n ∈ N, be centred, weakly stationary and associated ran-
dom variables. Assume that (5.15) and (5.17) are verified. Then, for every p > 1
and f ∈ Lp[0,1],

∫ 1

0
ξn(t)f (t)λ(dt)

d−→ Zf ∼ N
(
0,‖F‖2

)
,

where F(s) = ∫ 1
s

f (t)λ(dt).

The previous results concern only the convergence in distribution of the analo-
gous of the finite-dimensional distributions for L2[0,1]. The corresponding state-
ment about the invariance principle is now obvious.

Theorem 5.26 Let Xn, n ∈ N, be random variables fulfilling the assumptions of
Theorem 5.22. Then, the sequence ξn, n ∈ N, verifies the invariance principle in
L2[0,1].

Proof It is enough to remark that, due to the association of the underlying variables,
(5.15) implies (5.11), so the relative compactness of ξn, n ∈ N, follows. Finally,
Theorem 5.22 translates into

∫ 1

0
ξn(t)f (t)λ(dt)

d−→
∫ 1

0
σW(t)f (t)λ(dt), f ∈ L2[0,1],

so the invariance principle follows. �

Remark 5.27 Notice that one could think of using Theorem 4.8 to try to prove an
Lp[0,1] invariance principle. This is not possible, as Theorem 4.8 does not state
a Central Limit Theorem for triangular arrays of associated variables, and this is
required to deal with the sums

Sn(f ) = 1√
n

n∑

i=1

F

(
i

n

)
Xi.

5.4 Empirical Processes

Given a sample X1, . . . ,Xn from a random variable X with distribution function F ,
there is an obvious interest in describing the probabilistic behaviour of the distance
between F and the empirical distribution function Fn(t) = 1

n

∑n
i=1 I(−∞,t](Xi).

This is achieved through the process

Zn(t) = √
n
(
Fn(t) − F(t)

)
, t ∈R.
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This random function Zn is naturally of importance in statistics, thus it has attracted
a lot of interest in the literature. As is well known, for theoretical purposes and on
what convergence in distribution is regarded, transforming the random variables by
their quantile function Q allows us to be more precise about the common distribu-
tion of the variables: Zn(Q(t)) has the same distribution as if we do the construction
assuming the random variables Xn, n ∈ N, to be uniformly distributed on [0,1]. So,
throughout the section we will assume the random variables to be associated and
uniformly distributed on the interval [0,1]. We adapt accordingly the definition of
the empirical process.

Definition 5.28 Given the random variables Xn, n ∈ N, uniformly distributed on
[0,1], the empirical process is defined as the sequence of random functions

Zn(t) = √
n
(
Fn(t) − t

)
, t ∈ [0,1], (5.24)

where Fn is the empirical distribution function.

If the underlying variables Xn, n ∈ N, are independent, it was mentioned by
Doob [33] and later proved by Donsker [32] that Zn converges in distribution to a
Brownian bridge in the Skorokhod space D[0,1]. As what concerns associated ran-
dom variables, Newman [70] proved the weak convergence of the finite-dimensional
distributions of the empirical process assuming strict stationarity of the Xn and that
Cov(I{X1>x}, I{Xn>y}) = P(X1 > x,Xn > y) − P(X1 > x)P(Xn > y) defines a uni-
formly convergent series. As Cov(X1,Xn) = ∫ ∫

Cov(I{X1>x}, I{Xn>y}) dx dy, as
described by Hoeffding’s formula (1.2), it is natural to seek for assumptions on
the covariances inside the integral. Now, taking into account Corollary 2.36, the
uniform convergence of the series defined by Cov(I{X1>x}, I{Xn>y}) follows from∑∞

n=1 Cov1/3(X1,Xn) < ∞. Hence, to have an asymptotic result on the empiri-
cal process, we should expect that, at least, Cov(X1,Xn) = O(n−3). The result by
Newman [70] only deals with finite-dimensional distributions, thus leaving tightness
untreated. This is usually, at least on what the Skorokhod topology is concerned, the
hardest step in the proof of asymptotic results. The first complete proof about the
limit behaviour of empirical processes on D[0,1] assuming that the Xn variables
are associated was obtained by Yu [109] requiring that Cov(X1,Xn) = O(n−b) for
some b > 15

2 . The approach relied on an extension of the above-mentioned integral
representation of the covariances and a subsequent control over moments of the form
E(Zn(t) − Zn(s))

4, so the classical conditions for tightness, as in Theorem 15.5 in
Billingsley [10], could be verified. Improving on moment bounds, relying now on
inequalities of the form stated in Theorem 2.18, Shao and Yu [94] weakened the

assumption on the covariance, requiring that b > 3+√
33

2 ≈ 4.373, later improved by
Louhichi [63], requiring only that b > 4.

Having in mind integral transformations of the empirical process as, for exam-
ple, the Cramér–von Mises ω2 test statistic, the Watson statistic [103], the Shepp
statistic [95], the Anderson Darling statistics [1], some von Mises functionals and
some functionals of the form

∫ 1
0 G(t,Zn(t))μ(dt), it is enough to require only

the L2[0,1] or Lp[0,1] topology on the space of paths (for more extensions and
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examples we refer the reader to Cremers and Kadelka [26]). These spaces have
weaker topologies, so we might expect to find convergence under weaker assump-
tions. In fact, using a special wavelet multiresolution approach Oliveira and Su-
quet [77] proved the L2[0,1] convergence assuming that Cov(X1,Xn) = O(n−b)

with b > 3, thus achieving the best rate that could be expected. This was later ex-
tended to Lp[0,1] by Oliveira and Suquet [79], assuming that b >

3p
2 . Of course,

the interest of this extension is limited by the available result on convergence in
the Skorokhod space to the case where p < 8

3 , thus leaving essentially the L2[0,1]
space with a weaker assumption.

5.4.1 Convergence in D[0,1]
The main step for the proof of the convergence in distribution of the empirical pro-
cess in D[0,1] is the control of moments of the form E(Zn(t)−Zn(s))

2. To achieve
this, we will need to be able to control several covariance terms and some approx-
imation properties. We start with a few technical lemmas on the control of covari-
ances of functions of associated and uniformly distributed random variables. Notice
that the definition of Zn involves transforming the random variables through indica-
tor functions of convenient sets. Results like Theorem 2.10 give control on covari-
ances of transformations of the variables through differentiable functions. The lack
of differentiability at, at most, countably many points, might be overcome by the
usual approximation procedures using smooth functions. But we must have control
over continuous transformations. This is the object of the following lemmas, where
indicator functions of real intervals are approximated using continuous transforma-
tions. We need some notation to proceed. Let a, b, δ ∈ [0,1] be given, and define
the real valued function

fa,b,δ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if x ≤ a − δ,

1 + x−a
δ

if a − δ ≤ x ≤ a,

1 if a ≤ x ≤ b,

1 + b−x
δ

if b ≤ x ≤ b + δ,

0 if x ≥ b + δ,

(5.25)

which is, of course, a continuous approximation of I[a,b](x).

Lemma 5.29 Let X1 and X2 be associated random variables uniformly distributed
on [0,1]. Assume that a, b ∈ [0,1], b > a and 0 ≤ δ ≤ b − a. Then, the following
inequalities hold:

(a) If δ ≥ min(Cov1/4(X1,X2), (b − a)−1/3 Cov1/3(X1,X2)),
∣∣Cov

(
fa,b,δ(X1), fa,b,δ(X2)

)∣∣≤√6(b − a)Cov1/4(X1,X2).

(b) Assume that δ < min(Cov1/4(X1,X2), (b − a)−1/3 Cov1/3(X1,X2)).
(i) If Cov(X1,X2) ≤ (b − a)4,

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ 9(b − a)Cov1/4(X1,X2).



156 5 Convergence in Distribution—Functional Results

(ii) If (b − a)4 ≤ Cov(X1,X2) ≤ (b − a)2,

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ 9 Cov1/2(X1,X2).

(iii) If (b − a)2 ≤ Cov(X1,X2),

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ 5(b − a).

(iv) For all the previous three cases,

−Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ 18(b − a)2/3 Cov1/3(X1,X2).

(c) Moreover, when b = a,
∣∣Cov

(
fa,a,δ(X1), fa,a,δ(X2)

)∣∣≤ 2
(
Ef 2

a,a,δ(X1)
)1/2 Cov1/4(X1,X2).

Proof As the random variables are associated, taking into account Theorem 2.10,
the following inequality is obvious:

∣
∣Cov

(
f (X1), f (X2)

)∣∣≤ min
(
2Ef 2(X1),

∥
∥f ′∥∥2

∞ Cov(X1,X2)
)
. (5.26)

Proof of (a). As ‖f ′
a,b,δ‖∞ = δ−1, it follows that:

(i) If δ ≥ Cov1/4(X1,X2) then, from (5.26) it follows that
∣∣Cov

(
fa,b,δ(X1), fa,b,δ(X2)

)∣∣

≤ min
(
2Ef 2

a,b,δ(X1),Cov1/2(X1,X2)
)

≤ √
2
(
Ef 2

a,b,δ(X1)
)1/2

Cov1/4(X1,X2).

Now, recalling that the variables are uniformly distributed on [0,1], it is easily
checked that Ef 2

a,b,δ(X1) ≤ 2δ + b − a ≤ 3(b − a).

(ii) If δ ≥ (b − a)−1/3 Cov1/3(X1,X2), then, again from (5.26) it follows directly
that

∣∣Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)∣∣≤ (b − a)2/3 Cov1/3(X1,X2).

As b − a ≥ δ, it follows that Cov1/3(X1,X2) ≤ (b − a)4/3, so
∣∣Cov

(
fa,b,δ(X1), fa,b,δ(X2)

)∣∣≤ (b − a)Cov1/4(X1,X2)

≤ (b − a)1/2 Cov(X1,X2),

as b − a < 1.

Thus, (a) is proved.
Proof of (b). Denote, for simplicity, η = Cov1/4(X1,X2), so δ < η. Hence

fa,b,δ ≤ fa,b,η , and, taking into account that the variables are associated, we have

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)

≤ Cov
(
fa,b,η(X1), fa,b,η(X2)

)

+ Efa,b,η(X1)Efa,b,η(X2) − Efa,b,δ(X1)Efa,b,δ(X2).
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As the variables are uniformly distributed on [0,1], Efa,b,η(X1) ≤ 2η + b − a and
Efa,b,δ(X1) ≥ b − a, and likewise for X2. So, recalling (5.26), we have

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)

≤ 1

η2
Cov(X1,X2) + (2η + b − a)2 − (b − a)2

= 5 Cov1/2(X1,X2) + 4(b − a)Cov1/4(X1,X2). (5.27)

Proof of (b)(i). Assume that Cov(X1,X2) ≤ (b − a)4. Then, the upper bound
in (5.27) is less than or equal to 9(b − a)Cov1/4(X1,X2).

Proof of (b)(ii). If we assume that (b − a)4 ≤ Cov(X1,X2) ≤ (b − a)2, then the
upper bound in (5.27) is less than or equal to 9 Cov1/2(X1,X2).

Proof of (b)(iii). Remark first that, taking into account that 0 ≤ fa,b,δ ≤ 1, we
have

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ E
(
fa,b,δ(X1)fa,b,δ(X2)

)≤ Efa,b,δ(X1)

≤ b − a + 2δ ≤ 3(b − a),

as the variables are both uniformly distributed on [0,1]. So, we still may write

Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)

≤ 5 min
(
Cov1/2(X1,X2) + (b − a)Cov1/4(X1,X2), b − a

)

≤ 5(b − a).

Proof of (b)(iv). We now verify the bound for −Cov(fa,b,δ(X1), fa,b,δ(X2)).
The easy case is where (b − a)4 ≤ 8 Cov(X1,X2):

−Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)

≤ (Efa,b,δ(X1)
)2 ≤ 9(b − a)2 ≤ 18(b − a)2/3 Cov1/3(X1,X2).

If (b − a)4 > 8 Cov(X1,X2), choose η ∈ [δ, b−a
2 ). Then, obviously,

fa+η,b−η,η ≤ fa,b,δ, Efa+η,b−η,η(X1) ≥ (b − a) − 2η,

and
∥∥f ′

a+η,b−η,η

∥∥∞ = η−1,

so, due to the association of the variables,

−Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)

≤ −Cov
(
fa+η,b−η,η(X1), fa+η,b−η,η(X2)

)

− Efa+η,b−η,η(X1)Efa+η,b−η,η(X2) + (b − a + 2δ)2

≤ 1

b2
Cov(X1,X2) − ((b − a) − 2η

)2 + (b − a + 2δ)2

≤ 1

b2
Cov(X1,X2) + 8(b − a)η,
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by the choice of η. If we now take η = (b − a)−1/3 Cov1/3(X1,X2), which verifies
the assumption made above, it follows that

−Cov
(
fa,b,δ(X1), fa,b,δ(X2)

)≤ 18(b − a)2/3 Cov1/3(X1,X2),

so the proof of (b)(iv) is complete.
Proof of (c). As before, the proof is divided in two cases.

(i) If δ > Cov1/4(X1,X2) then, proceeding as in (a) for the corresponding case,
∣∣Cov

(
fa,a,δ(X1), fa,a,δ(X2)

)∣∣≤ √
2
(
Ef 2

a,a,δ(X1)
)1/2 Cov1/4(X1,X2).

(ii) If δ ≤ Cov1/4(X1,X2), then

Cov
(
fa,a,δ(X1), fa,a,δ(X2)

)≤ Ef 2
a,a,δ(X1) = 2δ

3
≤
√

2δ

3
Cov1/4(X1,X2)

= (Ef 2
a,a,δ(X1)

)1/2 Cov1/4(X1,X2)

and

−Cov
(
fa,a,δ(X1), fa,a,δ(X2)

)≤ (Efa,a,δ(X1)
)2 ≤ 2δ

(
Ef 2

a,a,δ(X1)
)1/2

≤ 2
(
Ef 2

a,a,δ(X1)
)1/2 Cov1/4(X1,X2).

�

We may now obtain an upper bound for covariances of the variables transformed
by the functions fa,b,δ , assuming a decrease rate of the covariances of the original
variables.

Lemma 5.30 Let Xn, n ∈N, be strictly stationary and associated random variables
uniformly distributed on [0,1], and a, b, δ ∈ [0,1]. Assume that, for some constant
C > 0,

Cov(X1,Xn) ≤ Cn−b, b > 4. (5.28)

Then, there exists a constant C∗ > 0, independent of a, b and δ, such that

∞∑

n=1

∣∣Cov
(
fa,b,δ(X1), fa,b,δ(Xn)

)∣∣≤ C∗(Efa,b,δ(X1)
)1/2

, (5.29)

where either 0 ≤ δ ≤ b − a, or b = a and δ > 0.

Proof We will divide the summation in (5.29) according to the cases considered in
Lemma 5.29. Define

I = {i ≤ n : δ < min
(
Cov1/4(X1,Xi), (b − a)−1/3 Cov1/3(X1,Xi)

)}
.

Taking into account Lemma 5.29(a), we have
∑

i /∈I

Cov
(
fa,b,δ(X1), fa,b,δ(Xn)

)≤√6(b − a)
∑

i /∈I

Cov1/4(X1,Xi).
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For the control of the summation when i ∈ I , we further divide this set into I1, I2
and I3 according to which of the conditions mentioned in (b)(i), (b)(ii) or (b)(iii)
from Lemma 5.29 is verified. Then

∑

i∈I

Cov
(
fa,b,δ(X1), fa,b,δ(Xn)

)

≤ 18

[
(b − a)2/3

∑

i∈I

Cov1/3(X1,Xi) +
∑

i∈I1

(b − a)Cov1/4(X1,Xi)

+
∑

i∈I2

Cov1/2(X1,Xi) +
∑

i∈I3

(b − a)

]

≤ 18(b − a)1/2
[∑

i∈I

Cov1/3(X1,Xi) +
∑

i∈I1

Cov1/4(X1,Xi)

+
∑

i∈I2∪I3

Cov1/2(X1,Xi)

]

≤ C∗(Ef 2
a,b,δ(X1)

)1/2
,

where C∗ = 18
∑∞

n=1[Cov1/3(X1,Xi) + Cov1/4(X1,Xi) + Cov1/2(X1,Xi)] < ∞,
taking into account that b − a ≤ Ef 2

a,b,δ(X1). �

We have obtained a way to control covariances between transformations through
functions fa,b,δ . We still have to control how the approximations are affected
through covariances.

Definition 5.31 Given δ > 0, define C(δ) as the smallest nonnegative integer n

such that there exist f1, . . . , fn bounded by 1 with first derivatives bounded by δ−1

so that given any t ∈ [0,1], there exist i, j ∈ {1, . . . , n} verifying fi ≤ I(−∞,t] ≤ fj

and E(fj (X1)−fi(X1)) ≤ Cδ, where C > 0 depends only on the distribution of X1.
Denote by Iδ a set of functions f1, . . . , fC(δ) that fulfills the previous condition.

Before the main result of this section, we still need a maximal inequality, which
is an extension of the approximation given in Theorem 2.2 in Andrews and Pol-
lard [2]. In order to simplify somewhat the notation, define, for a real function f

and Sn(f ) = f (X1) + · · · + f (Xn), ρ(f ) = ‖f (X1)‖2. Notice that, with this no-
tation, we may rewrite Zn(t) = 1√

n
(Sn(I(−∞,t]) − ESn(I(−∞,t])). That is, we may

think of the empirical process as a functional defined on the family of indicator
functions. It is then natural to extend the definition of the empirical process to more
general functions than just indicators: given a real function f , define

Zn(f ) = 1√
n

(
Sn(f ) − ESn(f )

)
.

We first prove two general inequalities. The first one is a reduced version, adapted
to our purposes, of a more general inequality proved by Pisier [81].
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Lemma 5.32 Let X1, . . . ,Xn be random variables with finite r th moments. Then
∥∥∥ max

1≤i≤n
|Xi |

∥∥∥
r
≤ n1/r max

1≤i≤n
‖Xi‖r . (5.30)

Proof As ψ(x) = xr is convex and increasing, using Jensen’s inequality, we have
that

(
E
(

max
1≤i≤n

|Xi |
))r ≤ E

(
max

1≤i≤n
|Xi |

)r

= E
(

max
1≤i≤n

|Xi |r
)

≤ E

(
n∑

i=1

|Xi |r
)

≤ n max
1≤i≤n

|Xi |r ,

which concludes the proof. �

Lemma 5.33 Let Xn, n ∈ N, be stationary random variables such that for some
p > 2 and μ > 0, there exists a constant Cp,μ such that, for all h,g ∈ I2−k ,

E
∣∣Sn(h − g) − ESn(h − g)

∣∣p ≤ Cp,μ

(
22kn1+μ + np/2ρp/2(h − g)

)
. (5.31)

Assume that, for some sequence an ↘ 0,

lim
n→+∞

n2−p/2+μ

a2
n

C
(

an√
n

)
= 0 and

∫ 1

0
x−3/4C1/p(x) dx < ∞. (5.32)

Then, for all ε > 0 and δ > 0, there exists m ∈ N, depending only on ε, p and C,
such that
∥∥∥ sup

|t−s
∣
∣≤δ

|Zn(t) − Zn(s)
∣∣
∥∥∥

p
≤ ε + C2/p

(
2−m

)
sup

|t−s|≤2δ

∥∥Zn(t) − Zn(s)
∥∥

p
. (5.33)

Proof We first prove that, for some suitably chosen sequence kn −→ +∞, there
exist functions fkn ∈ I2−kn such that

lim
n→+∞

∥∥∥ sup
t∈[0,1]

∣∣Zn(t) − Zn(fkn)
∣∣
∥∥∥

p
= lim

n→+∞

∥∥∥ sup
t∈[0,1]

∣∣Zn(I(−∞,t]) − Zn(fkn)
∣∣
∥∥∥

p

= 0. (5.34)

Given t ∈ [0,1] and k ∈N, choose functions fk, gk ∈ I2−k such that fk ≤ I(−∞,t] ≤
gk and E(fk(X1)−gk(X1))

2 ≤ C2−k , where C is the constant from Definition 5.31.
It is easy to verify that

Zn(t) − Zn(fk) ≤ ∣∣Zn(gk) − Zn(fk)
∣∣+ C2−k

√
n

and, since fk ≤ I(−∞,t],

Zn(fk) − Zn(t) = 1√
n

(
Sn(fk − I(−∞,t]) − ESn(fk − I(−∞,t])

)≤ C2−k
√

n.

Thus, it follows that

sup
t∈[0,1]

∣∣Zn(t) − Zn(fk)
∣∣≤ max

fk∈I2−k

∣∣Zn(gk) − Zn(fk)
∣∣+ C2−k

√
n.
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Applying now the maximal inequality (5.30), we have
∥∥∥ sup

t∈[0,1]
∣∣Zn(t) − Zn(fk)

∣∣
∥∥∥

p
≤ C1/p

(
2−k

)
max

fk∈I2−k

∥∥Zn(gk) − Zn(fk)
∥∥

p
+ C2−k

√
n,

so (5.31) finally implies that
∥∥∥ sup

t∈[0,1]
∣∣Zn(t) − Zn(fk)

∣∣
∥∥∥

p

≤ Cp,μC1/p
(
2−k

)(
22k/pn(1+μ)/p−1/2 + 2−k/4)+ C2−k

√
n.

Choose a sequence kn such that 2kn =
√

n
an

. As an ↘ 0, we have kn −→ +∞. It now
follows from (5.32) that

C1/p
(
2−k

)(
22k/pn(1+μ)/p−1/2 + 2−k/4)+ C2−k

√
n −→ 0,

thus proving (5.34).
Let m ∈ N be fixed. Then, for n large enough, we will have kn ≥ m, and we

want to control ‖ supt∈[0,1] |Zn(fkn) − Zn(fm)|‖p . Notice first that the sup is really
attained as we are approximating within a finite range of functions. Consider inter-
mediate functions hi ∈ I2−i , i = kn − 1, . . . ,m + 1, hm = fm, hkn = fkn such that
E(hi − hi−1)

2 ≤ C2−i+1 (such functions do exist, following Definition 5.31). Now
obviously

∥∥∥ sup
t∈[0,1]

∣∣Zn(fkn) − Zn(fm)
∣∣
∥∥∥

p
≤

kn∑

i=m+1

∥∥∥ sup
gi∈I2−i

∣∣Zn(hi) − Zn(hi−1)
∣∣
∥∥∥

p
.

Using again (5.30) and (5.31) and taking into account that C(2−�) increases with �,
we obtain

∥∥∥ sup
t∈[0,1]

∣∣Zn(fkn) − Zn(fm)
∣∣
∥∥∥

p

≤ Cp,μ

kn∑

i=m+1

C1/p
(
2−i
)(

22i/pn(1+μ)/p−1/2 + 2−i/4)

≤ Cp,μ

kn∑

i=m+1

(
C1/p

(
2−kn

)
22i/pn(1+μ)/p−1/2 + C1/p

(
2−i
)
2−i/4).

The first term above behaves like C1/p(2−kn)2(2kn+1)/pn(1+μ)/p−1/2 and thus con-
verges to 0, by the first assumption in (5.32), while the second term is, up to multi-

plication by a constant, bounded above by
∫ 2−m

0 x−3/4C1/p(x) dx and thus may be
made arbitrarily small by choosing m large enough. That is, given any ε > 0, we
may choose m such that for n large enough,

∥∥∥ sup
t∈[0,1]

∣∣Zn(fkn) − Zn(fm)
∣∣
∥∥∥

p
≤ ε.

The previous approximations imply that, given ε > 0, there exists m such that

lim
n→+∞

∥∥∥ sup
t∈[0,1]

∣∣Zn(t) − Zn(fm)
∣∣
∥∥∥

p
≤ ε. (5.35)
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Define an equivalence relation on [0,1] as follows: t ∼ s if fm = f ′
m, where fm

and f ′
m are the functions considered in Definition 5.31 corresponding to t and s,

respectively. This partitions [0,1] into C(2−m) equivalence classes E1, . . . ,EC(2−m).
Using (5.35) twice, we have that, for n large enough,

∥
∥∥ sup

t,s∈Ei

∣∣Zn(t) − Zn(s)
∣∣
∥
∥∥

p
≤ 2ε, i = 1, . . . ,EN (2−m).

Define d(Ei,Ej ) = inf{|t − s|, t ∈ Ei, s ∈ Ej } and, given δ > 0, choose tij ∈ Ei

and tj i ∈ Ej such that |tij − tj i | < d(Ei,Ej ) + δ. Then, if t ∈ Ei , s ∈ Ej are such
that |t − s| < δ, it follows that |tij − tj i | < 2δ and

∣∣Zn(t) − Zn(s)
∣∣≤ 2 sup

u∼v

∣∣Zn(u) − Zn(v)
∣∣

+ max
1≤i,j≤C(2−m)

{∣∣Zn(tij ) − Zn(tji)
∣∣ : |tij − tj i |

}
.

Taking norms, we get (5.33), thus concluding the proof of the lemma. �

The maximal inequality proved in Lemma 5.33 suggests the need of controlling
‖Zn(t) − Zn(s)‖p .

Lemma 5.34 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables uniformly distributed on [0,1] such that Cov(X1,Xn) = O(n−b) for some
b > 1. Then, for each p ≥ 2 and small enough η > 0, there exists a constant K > 0,
independent of n, t and s, such that,

E
∣∣Zn(t) − Zn(s)

∣∣p

≤ K

[

n−p(p−4−2η)/(2(p+2)) +
( n∑

j=1

Cov
(
I(s,t](X1), I[s,t](Xj )

))p/2
]

.

Remark 5.35 Before embarking in the proof of Lemma 5.34, we make a com-
ment on the assumption on the covariance decay rate connected to the use of
Theorem 2.18 in the proof. The assumption Cov(X1,Xn) = O(n−b) implies that
u(n) = O(n−b+1). In order to simplify the use of Theorem 2.18, we will take, with
the notation corresponding to this theorem, r = +∞ and p = b + 1. This choice
makes the exponent in the third term of (2.5) equal to the exponent in the first term.
So, taking into account that the functions fs,t,h and fs+h,t−h,h are bounded by 1
and their derivatives uniformly bounded by 1

h
, the upper bound that follows from

Theorem 2.18 may be rewritten as

E

∣∣∣∣∣

n∑

i=1

(
fs,t,h(Xi) − Efs,t,h(Xi)

)
∣∣∣∣∣

p

≤ K

[
n1+η

h2
+
(

nmax
i≤n

n∑

j=1

∣∣Cov
(
fs,t,h(X1), fs,t,h(Xj )

)∣∣
)p/2]

(5.36)



5.4 Empirical Processes 163

for some η > 0 small enough. Of course, an analogous upper bound holds for
fs+h,t−h,h. These bounds will be used in the proof of Lemma 5.34.

Proof of Lemma 5.34 Given 0 ≤ s < t ≤ 1 and 0 < h < t−s
2 , consider the two func-

tions fs,t,h and fs+h,t−h,h, approximating I(s,t] from above and below, respectively,
that is fs+h,t−h,h(x) ≤ I(s,t](x) ≤ fs,t,h(x). Moreover,

0 ≤ fs,t,h(x) − fs+h,t−h,h(x) ≤ I(s−h,s+h)(x) − I(t−h,t+h)(x).

It is also clear that, for all q ≥ 1 and n ∈N,

E
∣∣fs,t,h(Xn) − Efs,t,h(Xn) − (I(s,t](Xn) − (t − s)

)∣∣q ≤ 2h,

E
∣∣fs+h,t−h,h(Xn) − Efs+h,t−h,h(Xn) − (I(s,t](Xn) − (t − s)

)∣∣q ≤ 2h.
(5.37)

It follows then that
∣∣
∣∣∣

n∑

i=1

(
I(s,t](Xi) − (t − s)

)
∣∣
∣∣∣
≤ 4nh +

∣∣
∣∣∣

n∑

i=1

(
fs,t,h(Xi) − Efs,t,h(Xi)

)
∣∣
∣∣∣

+
∣∣∣∣∣

n∑

i=1

(
fs+h,t−h,h(Xi) − Efs+h,t−h,h(Xi)

)
∣∣∣∣∣
.

Taking the power p and mathematical expectations on the expression above means
that we need to control E|∑n

i=1(fs,t,h(Xi) − Efs,t,h(Xi))|p and likewise with
the function fs+h,t−h,h. For this purpose, we use Theorem 2.18 as argued in Re-
mark 5.35, so that (5.36) holds. Hence, we need to control the sums of covariances
appearing on the right side of (5.36). Taking into account the stationarity, we have

max
i≤n

n∑

j=1

∣∣Cov
(
fs,t,h(X1), fs,t,h(Xj )

)∣∣

≤ Var
(
fs,t,h(X1)

)+ 2
n∑

i=2

∣∣Cov
(
fs,t,h(X1), fs,t,h(Xi)

)∣∣. (5.38)

Now, using (5.37), we have

Var
(
fs,t,h(X1)

)≤ 2 Var
(
I(s,t](X1)

)+ 4h,
∣∣Cov

(
fs,t,h(X1), fs,t,h(Xi)

)∣∣≤ 2
∣∣Cov

(
I(s,t](X1), I(s,t](Xi)

)∣∣+ 4h.

Inserting this in (5.38) and using Theorem 2.10, we find that

max
i≤n

n∑

j=1

∣∣Cov
(
fs,t,h(X1), fs,t,h(Xj )

)∣∣

≤ 4

[

Var
(
I(s,t](X1)

)+ h

+
n∑

i=2

max

(∣∣Cov
(
I(s,t](X1), I(s,t](Xi)

)∣∣+ h,
Cov(X1,Xi)

h2

)]



164 5 Convergence in Distribution—Functional Results

≤ 4

[
n∑

i=1

∣∣Cov
(
I(s,t](X1), I(s,t](Xi)

)∣∣+
∑

i≤h−3/(ν+ε)

h +
∑

i>h−3/(ν+ε)

i−ν−ε

h2

]

≤ 4

[
n∑

i=1

∣∣Cov
(
I(s,t](X1), I(s,t](Xi)

)∣∣+ h1−3/(ν+ε)

]

.

This upper bound is now used on (5.36) to find:

E

∣∣∣∣∣

n∑

i=1

(
I(s,t](Xi) − (t − s)

)
∣∣∣∣∣

p

≤ 3p−1

[

(4nh)p + E

∣∣∣∣∣

n∑

i=1

(
fs,t,h(Xi) − Efs,t,h(Xi)

)
∣∣∣∣∣

p

+ E

∣∣
∣∣∣

n∑

i=1

(
fs+h,t−h,h(Xi) − Efs+h,t−h,h(Xi)

)
∣∣
∣∣∣

p]

≤ 2 × 4p × 3p−1

[

(nh)p + n1+η

h2
+ (nh1−3/(ν+ε)

)p/2

+
(

n

n∑

i=1

∣∣Cov
(
I(s,t](X1), I(s,t](Xi)

)∣∣
)p/2]

.

Choosing h = n−(p−1+η)/(p+2), we conclude the proof. �

The main ingredients for the proof of the convergence of the empirical process
are now available. Thus, we may state the main result of this subsection.

Theorem 5.36 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables uniformly distributed on [0,1], satisfying (5.28). Then Zn converges in distri-
bution in the space D[0,1] to a centred Gaussian process with covariance function

Γ (s, t) = s ∧ t − st + 2
∞∑

k=2

Cov
(
I(−∞,s](X1), I(−∞,t](Xk)

)
. (5.39)

Proof The weak convergence of the finite-dimensional distributions follows as in
the proof of Theorem 5.8, so we are left with the proof of the tightness of the se-
quence. For this purpose, according to Theorem 15.5 in Billingsley [10], it is enough
to prove that, for some p > 2,

lim sup
n→+∞

∥∥∥ sup
|t−s|≤δ

∣∣Zn(t) − Zn(s)
∣∣
∥∥∥

p
= 0. (5.40)

Denote I = {I(−∞,t] : t ∈ [0,1]}, the set of indicator functions. For each k ∈ N,
define Dk = { i

2k , i = 1, . . . ,2k} and, for each d ∈ Dk , the function fd(x) =
I(−∞,d−2−k](x)−2k(x −d)I[d−2−k,d](x). Each fd is differentiable except at d −2−k

and d . Let f ′
d be equal to the derivative of fd where this derivative exists and to 0 at
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d −2−k and d . Then, for d ∈ Dk , ‖fd‖∞ ≤ 1, ‖f ′
d‖∞ ≤ 2k . Moreover, the following

approximations hold:

fd(x) ≤ I(−∞,t](x) ≤ fd+21−k (x) with d = 2−k
[
t2k
] ∈ Dk,

E
(
fd+21−k (X1) − fd(X1)

)≤ 21−k.

Given the correspondence between the classes of functions considered, the above
approximations imply that C(x) = O(x−1). Inserting this into (5.32), these assump-
tions are verified if p > 5+2μ, so we need to prove that (5.31) holds for some p > 5
for our class of functions I2−k . Assuming that d, d ′ ∈ Dk are such that d < d ′, the
difference fd ′ − fd is a function of the form defined in (5.25). In fact, it is easily
checked that, referring to the notation of (5.25), fd ′ − fd = fd,d ′−2−k,2−k . Choosing
ν = b − 4, p = 5 + 3μ, where μ ∈ (0, ν

3 ), Theorem 2.18 yields

E
∣∣Sn(fd − fd ′) − ESn(fd − fd ′)

∣∣p

≤ C

[

n1+μ22k + np/2

( ∞∑

j=1

∣∣Cov
(
fd,d ′−2−k,2−k (X1), fd,d ′−2−k,2−k (Xj )

)∣∣
)p/2]

,

where the constant C does not depend on the class of functions. From this inequality
it follows, by Lemma 5.30, that

E
∣∣Sn(fd − fd ′) − ESn(fd − fd ′)

∣∣p ≤ C
[
n1+μ22k + C∗np/2ρp/2(fd − fd ′)

]
,

that is, (5.31) really holds. So, from Lemma 5.33 it follows that
∥∥∥ sup

|t−s|≤δ

∣∣Zn(t) − Zn(s)
∣∣
∥∥∥

p
≤ ε + C2/p

(
2−m

)
sup

|t−s|≤2δ

∥∥Zn(t) − Zn(s)
∥∥

p
.

We need now to estimate ‖Zn(t)−Zn(s)‖p , but this was done in Lemma 5.34, from
which follows that
∥∥Zn(t) − Zn(s)

∥∥
p

≤ K

(

n−(p−4−2μ)/(2(p+2)) +
(

n∑

j=1

Cov
(
fd,d,t−s(X1), fd,d,t−s(Xj )

)
)1/2)

.

Then, using Lemma 5.30 again, we have
∥∥∥ sup

|t−s|≤δ

∣∣Zn(t) − Zn(s)
∣∣
∥∥∥

p
≤ ε + KC2/p

(
2−m

)(
n−(p−4−2μ)/(2(p+2)) + δ1/2).

Therefore, recalling that p > 5, we have

lim sup
n→+∞

∥∥∥ sup
|t−s

∣
∣≤δ

|Zn(t) − Zn(s)
∣∣
∥∥∥

p
≤ ε + KC2/p

(
2−m

)
δ1/2

and now choose δ > 0 such that KC2/p(2−m)δ1/2 ≤ ε. As ε > 0 is arbitrarily cho-
sen, (5.40) follows, so the theorem is proved. �
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5.4.2 Convergence in Lp[0,1]
As already argued in Sect. 5.3, one might be interested in establishing the conver-
gence in distribution in a weaker space than the one studied in the previous subsec-
tion. The main results concerning the characterization of convergence in distribution
have been addressed in Sect. 5.2, so we proceed directly to the proof of the appro-
priate versions of the convergence of the empirical process. As usual, we will look
for assumptions on the decay rate of the covariances, proving the convergence in
Lp[0,1] with weaker conditions than those obtained for D[0,1], when p ∈ [2, 8

3 ).

Theorem 5.37 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables uniformly distributed on [0,1]. Assume that

∞∑

n=1

Cov1/3(X1,Xn) < ∞. (5.41)

Then, the uniform empirical process Zn converges weakly in L2[0,1] to a centred
Gaussian process Z with covariance Γ given by (5.39).

Proof We first check the tightness of Zn, n ∈ N. As the variables are stationary,
defining gk(s, t) = Cov(I(s,t](X1), I(s,t](Xk)), we have

E
∣∣Zn(t) − Zn(s)

∣∣2 = g1(s, t) + 2
n∑

k=2

(
1 − k

n

)
gk(s, t).

As the random variables are uniform and associated, we may use now Corollary 2.36
to conclude that there exists a constant M > 0, independent of n, satisfying

∣∣gk(s, t)
∣∣≤ M Cov1/3(X1,Xk), s, t ∈ [0,1]. (5.42)

So, it follows that

E
∣∣Zn(t) − Zn(s)

∣∣2 ≤ g1(s, t) + 2
∞∑

k=2

∣∣gk(s, t)
∣∣

≤ M

(

Var(X1) +
∞∑

k=2

Cov1/3(X1,Xk)

)

< ∞. (5.43)

The functions gk(s, t) are continuous, so, as the series

g(s, t) = g1(s, t) + 2
∞∑

k=2

∣∣gk(s, t)
∣∣

is uniformly absolutely convergent, its sum is a continuous function on [0,1]2.
Moreover, is immediate to check that each gk vanishes on the diagonal of [0,1]2, so
g vanishes on this diagonal as well. Thus, the following uniform estimate holds:

E
∣∣Zn(t + h) − Zn(t)

∣∣2 ≤ sup
0≤s≤1

g(s, s + h) = ε(h), t ∈ [0,1], n ≥ 1. (5.44)
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So we have proved that condition (b) of Corollary 5.3 holds, and hence Theo-
rem 5.2(b) is verified. To prove the tightness, it remains to prove that Theorem 5.2(a)
also holds. It is a simple matter to check that it suffices to choose s = 0 in (5.43) to
have Theorem 5.2(a) verified.

Now that the tightness of Zn has been established, to prove the weak L2[0,1]
convergence to Z, it suffices, taking into account Theorem 5.1, to verify the con-
vergence in distribution of

∫ 1
0 f (t)Zn(t) dt to

∫ 1
0 f (t)Z(t) dt for each f ∈ L2[0,1].

Observe that we may rewrite
∫ 1

0
f (t)Zn(t) dt = 1√

n

n∑

i=1

(∫ 1

Xi

f (t) dt − E
∫ 1

Xi

f (t) dt

)
.

Thus, we need to verify that a Central Limit Theorem holds for the random vari-
ables

∫ 1
Xi

f (t) dt . Now, as L2[0,1] ⊂ L1[0,1], the function F(x) = ∫ 1
x

f (t) dt is
absolutely continuous, so the required Central Limit Theorem follows immediately
from Theorem 4.6. �

The corresponding result for Lp[0,1] is as follows.

Theorem 5.38 Let Xn, n ∈ N, be strictly stationary and associated random vari-
ables uniformly distributed on [0,1], and p > 2. Assume that

Cov(X1,Xn) = O
(
n−b

)
, b >

3p

2
. (5.45)

Then, the uniform empirical process Zn converges weakly in Lp[0,1] to a centred
Gaussian process Z with covariance Γ given by (5.39).

Proof Inequality (5.44) still holds for this case, as the arguments leading to this in-
equality still apply. To prove Theorem 5.2(b), we will prove that Corollary 5.3(a)
also holds. First notice that the random variables I[0,t](Xi) are nonincreasing func-
tions of associated variables Xi , so they are associated as well. Recall that Zn(t) =
n−1/2∑n

i=1(I[0,t](Xi) − t). The random variables in this summation are obviously
uniformly bounded by 2. On the other hand, taking into account Corollary 2.36, we
have that there exists a constant M > 0, independent of n, such that

∞∑

k=n

Cov
(
I[0,t](X1), I[0,t](Xk)

)≤ M

∞∑

k=n

Cov1/3(X1,Xk)

≤ M

∞∑

k=n

k−b/3 = O
(
n1−b/3).

Now, if we choose r ∈ (p, 2b
3 ), the assumptions of Corollary 2.21 are satisfied, so

it follows that E|∑n
i=1(I[0,t](Xi) − t)|r = O(nr/2), and Corollary 5.3(a) holds. Fi-

nally, the finite-dimensional distributions are convergent as in the previous theorem.

In fact, it is sufficient now to check that
∫ 1

0 f (t)Zn(t) dt
d−→ ∫ 1

0 f (t)Z(t) dt for
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each f ∈ Lq(0,1), the dual space of Lp[0,1]. As Lq [0,1] ⊂ L1[0,1], the argu-
ments used in the final part of the proof of Theorem 5.37 still hold. �

Getting back to the convergence in L2[0,1], there is an interesting characteriza-
tion of the convergence of the uniform empirical process not using assumptions on
covariances. This was proved by Morel and Suquet [66] and explores some facts
directly depending on the uniform distribution of the random variables. Assume
that X and Y are uniformly distributed on [0,1]. Then, the following calculation is
obvious:

∫ 1

0
Cov

(
I(−∞,t](X), I(−∞,t](Y )

)
dt

=
∫ 1

0
P
(
max(X,Y ) ≤ t

)− t2 dt

=
∫ 1

0
1 − P

(
max(X,Y ) > t

)− t2 = 2

3
− E max(X,Y ). (5.46)

Theorem 5.39 Let Xn, n ∈ N, be stationary and associated random variables uni-
formly distributed on [0,1]. The series in

Γ (s, t) = s ∧ t − st + 2
∞∑

k=2

Cov
(
I(−∞,s](X1), I(−∞,t](Xk)

)
(5.47)

converges almost everywhere in [0,1]2. It represents the covariance operator of
some Gaussian random process in L2[0,1] if and only if

∞∑

k=2

(
2

3
− E max(X1,Xk)

)
< ∞. (5.48)

Moreover, if (5.48) holds, the sequence of covariance operators

Γn(s, t) = E
(
Zn(s)Zn(t)

)

= EX2
1 + 2

n∑

k=2

(
1 − k

n

)
Cov

(
I(−∞,s](X1), I(−∞,t](Xk)

)
(5.49)

converges in L2([0,1]2) to Γ .

Proof If Γ is the covariance operator of a Gaussian random process, then, by The-
orem 4.9 in Parthasarathy [80], it has finite trace, that is, it verifies

∫ 1

0
Γ (t, t) dt =

∞∑

j=1

(
2

3
− E max(X1,Xj )

)
< ∞,

and thus, (5.48) is satisfied.
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Assume now that (5.48) holds. Using the Cauchy–Schwarz inequality, it follows
that Γn(s, t)

2 ≤ Γn(s, s)Γn(t, t), so, taking into account that, due to the association
of the random variables Xn, Γn ≤ Γ , we have

∫ 1

0

∫ 1

0
Γn(s, t)

2 ds dt ≤
(∫ 1

0
Γn(t, t) dt

)2

≤
(∫ 1

0
Γ (t, t) dt

)2

< ∞.

It follows now, using monotone convergence, that
∫ 1

0

∫ 1

0
Γn(s, t)

2 ds dt ≤
(∫ 1

0
Γn(t, t) dt

)2

< ∞.

Hence, Γ is almost everywhere finite on [0,1]2 and, again by the monotonicity of
Γn(s, t) for all s, t ∈ [0,1], it follows that Γn ↗ Γ almost everywhere on [0,1]2.
Finally, as

∫ 1

0

∫ 1

0

∣∣Γ (s, t) − Γ1(s, t)
∣∣2 ds dt ≤ 4

(∫ 1

0
Γ (t, t) dt

)2

< ∞,

we can apply the Monotone Convergence Theorem to conclude
∫ 1

0

∫ 1

0

∣∣Γ (s, t) − Γn(s, t)
∣∣2 ds dt −→ 0,

so we have the L2([0,1]2) convergence to 0 of Γ − Γn, and hence, Γ ∈
L2([0,1]2). �

Theorem 5.40 Let Xn, n ∈ N, be stationary and associated random variables uni-
formly distributed on [0,1]. Then, the uniform empirical process Zn converges
weakly in L2[0,1] to a centred Gaussian process Z with covariance operator Γ

defined by (5.47) if and only if (5.48) holds.

Proof We start by proving the tightness of the sequence Zn using Corollary 5.4. Let
en, n ∈ N, be an orthonormal basis of L2[0,1]. Let Γn be defined by (5.49). Then,
due to the association of the variables, (5.46) and (5.48), we have that

E‖Zn‖2
2 =

∫ 1

0
Γn(t, t) dt ≤

∫ 1

0
Γ (t, t) dt < ∞.

To prove condition (b) of Corollary 5.4, denote, as before,

r2
N(f ) =

+∞∑

i=N

(∫ 1

0
ei(t)f (t) dt

)2

.

It is obvious that

Er2
N(Zn) = E‖Zn‖2

2 − E

(
N−1∑

i=1

(∫ 1

0
ei(t)Zn(t) dt

)2
)

=
∫ 1

0
Γn(t, t) dt −

∫ 1

0

∫ 1

0

N−1∑

i=1

ei(s)ei(t)Γn(s, t) ds dt.
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The Monotone Convergence Theorem implies that
∫ 1

0
Γn(t, t) dt −→

∫ 1

0
Γ (t, t) dt,

while the L2([0,1]2) convergence of Γn to Γ , proved on Theorem 5.39, implies, as
n −→ +∞,

∫ 1

0

∫ 1

0

N−1∑

i=1

ei(s)ei(t)Γn(s, t) ds dt −→
∫ 1

0

∫ 1

0

N−1∑

i=1

ei(s)ei(t)Γ (s, t) ds dt.

Thus, it follows that

lim
n→+∞ Er2

N(Zn) = Er2
N(Z).

Finally, as E‖Z‖2
2 < ∞, again the Monotone Convergence Theorem implies

lim
N→+∞ Er2

N(Z) = 0,

concluding the proof. �



Appendix A
General Inequalities

A.1 Berry–Esséen Inequalities

The following is the classical Berry–Esséen inequality, proved independently by
Berry [9] and Esséen [37], which is at the basis of the classical bounds for the
convergence rates in Central Limit Theorems.

Theorem A.1 Let F1 and F2 be distribution functions with characteristic functions
ϕ1 and ϕ2, respectively, and assume that F2 has a bounded derivative f2. Then, for
every T > 0,

sup
x∈R

∣∣F1(x) − F2(x)
∣∣≤ 1

π

∫ T

−T

∣∣∣
∣
ϕ1(t) − ϕ2(t)

t

∣∣∣
∣dt + 24

πT
sup
x∈R

∣∣f2(x)
∣∣. (A.1)

The following two-dimensional extension of the classical Berry–Esséen inequal-
ity was proved by Sadikova [91].

Theorem A.2 Let F and G be two-dimensional distribution functions with charac-
teristic functions ϕ and φ, respectively. Define, for all u,v ∈R, ϕ̂(u, v) = ϕ(u, v)−
ϕ(u,0)ϕ(0, v) and φ̂(u, v) = φ(u, v)−φ(u,0)φ(0, v). Assume that G has bounded
first-order partial derivatives and put A1 = sup ∂G

∂u
, A2 = sup ∂G

∂v
. Then, for every

T > 0,

sup
u,v∈R

∣∣F(u, v) − G(u,v)
∣∣

≤ 1

2π2

∫

[−T ,T ]2

∣
∣∣∣
ϕ̂(s, t) − φ̂(s, t)

st

∣
∣∣∣ds dt

+ 2 sup
u∈R

∣∣F(u,+∞) − G(u,+∞)
∣∣+ 2 sup

v∈R

∣∣F(+∞, v) − G(+∞, v)
∣∣

+ 2(3
√

2 + 4
√

3)
A1 + A2

T
.
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Proof Define the density function

κ(x) = 3

8π

(
sin(x/4)

x/4

)4

.

This density verifies
∫

x2κ(x) dx = 12 and
∫

|x|κ(x) dx < 3
√

2

and has the characteristic function

κ̂(t) =

⎧
⎪⎨

⎪⎩

1 − 6t2 + 6|t |3 if |t | ≤ 1
2 ,

2(1 − |t |)3 if 1
2 ≤ |t | < 1,

0 if |t | ≥ 1.

Define λ > 0 such that
∫ −λ

−∞
κ(x) dx =

∫ +∞

λ

κ(x) dx = 1 −
√

3

2
.

It is easily verified, using Chebyshev’s inequality, that λ ≤ 4
√

3. Given T > 0,
construct the two-dimensional density function qT (x, y) = T 2κ(T x)κ(T y), whose
characteristic function is q̂T (s, t) = κ̂( s

T
)̂κ( t

T
), which is null outside the square

max(|s|, |t |) ≤ T . Moreover,
∫ ∫

|x|qT

(
x ± λ

T
, t ± λ

T

)
dx dy

=
∫ ∫

|y|qT

(
x ± λ

T
, t ± λ

T

)
dx dy ≤ 3

√
2

T
+ λ

T

and
∫ ∫

(−∞,0]×(−∞,0]
qT

(
x + λ

T
, t + λ

T

)
dx dy

=
∫ ∫

[0,+∞)×[0,+∞)

qT

(
x − λ

T
, t − λ

T

)
dx dy = 3

4
.

Introduce random vectors (X1,X2), (Y1, Y2) with distribution functions F and G,
respectively, a vector (Z1,Z2), independent of the previous ones, with density func-
tion qT , and the function

R(u, v) = P(X1 < u,X2 < v) − P(Y1 < u,Y2 < v).

Let γ = supu,v∈R |R(u, v)| = supu,v∈R R(u, v), θ = 1 and

R1(x, y) = P(X1 + Z1 ≤ x,X2 + Z2 ≤ y) − P(Y1 + Z1 ≤ x,Y2 + Z2 ≤ y).

Given the independence of (Z1,Z2) with respect to the other vectors, it follows that

R1

(
x + θλ

T
, y + θλ

T

)
=
∫ ∫

R(x − u,y − v)qT

(
u + θλ

T
, v + θλ

T

)
dudv.
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Then, obviously, γ1 supu,v∈R |R(u, v)| ≤ γ . Consider now ε > 0 and consider
xε, yε ∈ R such that R(xε, yε) ≥ γ − ε. For all u,v ≤ 0, we have

R(xε − u,yε − v) = F(xε − u,yε − v) − G(xε − u,yε − v)

≥ F(xε, yε) − G(xε, yε) − (G(xε − u,yε − v) − G(xε, yε)
)

≥ R(xε, yε) − A1|u| − A2|v|
≥ γ − ε − A1|u| − A2|v|.

Multiplying the inequality above by qT (u + λ
T

, v + λ
T

) and integrating over the set
(−∞,0] × (−∞,0], we find

J1 =
∫ ∫

(−∞,0]×(−∞,0]
R(xε − u,yε − v)qT

(
u + λ

T
, v + λ

T

)
dudv

≥ 3

4
(γ − ε) − A1 + A2

T
(3

√
2 + λ)

and

J2 =
∣∣∣
∣

∫ ∫

R\(−∞,0]×(−∞,0]
R(xε − u,yε − v)qT

(
u + λ

T
, v + λ

T

)
dudv

∣∣∣
∣≤

γ

4
.

Hence,

γ1 ≥ R1

(
xε + λ

T
,yε + λ

T

)

≥ |J1| − J2

≥ γ

2
− 3ε

4
− A1 + A2

T
(3

√
2 + λ).

Thus, as ε > 0 was chosen arbitrarily, it follows that

2γ1 + 2(A1 + A2)

T
(3

√
2 + λ) ≥ γ. (A.2)

Of course, it may happen that γ = supu,v∈R |R(u, v)| = − supu,v∈R R(u, v). But in
this case we repeat the steps above by choosing θ = −1. Hence (A.2) holds in both
cases.

We now consider the approximation of γ1. Using the inversion formula, we have
that

∫ ∫ (
F(x − u,y − v) − F(x − u,+∞)F (+∞, y − v)

)
qT (u, v) dudv

= 1

(2π)2

∫ ∫
ϕ(s, t) − ϕ(s,0)ϕ(0, t)

−st
eisx−ity κ̂

(
s

T

)
κ̂

(
t

T

)
ds dt

= 1

(2π)2

∫ ∫
ϕ̂(s, t)

−st
eisx−ity κ̂

(
s

T

)
κ̂

(
t

T

)
ds dt,

and analogously with respect to the distribution function G. Making the difference
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between these two representations, we find that

∫ ∫
R(x − u,y − v)qT (u, v) dudv

=
∫ ∫ (

F(x − u,+∞)F (+∞, y − v)

− G(x − u,+∞)G(+∞, y − v)
)
qT (u, v) dudv

= 1

(2π)2

∫ ∫
ϕ̂(s, t) − φ̂(s, t)

−st
eisx−ity κ̂

(
s

T

)
κ̂

(
t

T

)
ds dt. (A.3)

Finally, remarking that

F(x − u,+∞)F (+∞, y − v) − G(x − u,+∞)G(+∞, y − v)

≤ ∣∣F(x − y,+∞) − G(x − u,+∞)
∣∣+ ∣∣F(+∞, y − v) − G(+∞, y − v)

∣∣

and taking into account (A.2) and (A.3), we conclude the proof. �

The following corollary is an immediate consequence of Theorem A.2.

Corollary A.3 Let X and Y be random variables, denote by F(X,Y ), FX and FY

their joint and marginal distributions functions, and by ϕ(X,Y ), ϕX and ϕY their
joint and marginal characteristic functions. Assume that the marginal densities fX

and fY exist and are bounded by M . Then, for every T > 0,

sup
u,v∈R

∣∣F(X,Y )(u, v) − FX(u)FY (v)
∣∣

≤ 1

2π2

∫

[−T ,T ]2

∣∣∣∣
ϕ(X,Y )(s, t) − ϕX(s)ϕY (t)

st

∣∣∣∣ds dt + 45M

T
.

Proof A direct application of Theorem A.2, taking into account that the sup terms
in the upper bound become

sup
u∈R

∣∣F(X,Y )(u,+∞) − FX(u)
∣∣= sup

v∈R

∣∣F(X,Y )(+∞, v) − FY (v)
∣∣= 0,

gives

sup
u,v∈R

∣∣F(X,Y )(u, v) − FX(u)FY (v)
∣∣

≤ 1

2π2

∫

[−T ,T ]2

∣∣∣∣
ϕ(X,Y )(s, t) − ϕX(s)ϕY (t)

st

∣∣∣∣ds dt + 4(3
√

2 + 3
√

3)
M

T
.

Finally, remark that 4(3
√

2 + 4
√

3) ≈ 44.6834 ≤ 45. �
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A.2 An Estimate for the Standard Gaussian Distribution

Lemma A.4 Let X be a standard Gaussian random variable and denote by φ its
density function. Then, for every x > 0,

P(X > x) ≤ 1

x
φ(x) and P(X > x) ≥

(
x + 1

x

)−1

φ(x).

Proof Noticing that φ′(x) = −xφ(x) and φ is an even function, we have that

φ(x) = φ(−x) =
∫ −x

−∞
−yφ(y)dy =

∫ +∞

x

yφ(y) dy

≥ x

∫ +∞

x

φ(y) dy = xP(X > x),

so the first inequality follows. What concerns the second inequality, start by noticing
that ( 1

x
φ(x))′ = −(1 + 1

x2 )φ(x), so that

1

x
φ(x) =

∫ +∞

x

(
1 + 1

y2

)
φ(y)dy

≤
(

1 + 1

x2

)∫ +∞

x

φ(y) dy =
(

1 + 1

x2

)
P(X > x),

which proves the second inequality. �

A.3 A Maximal Inequality

The following inequality is proved, in a more general form, in Stout [96] (see The-
orem 3.7.5 therein).

Theorem A.5 Let Xn, n ∈N, be random variables with finite pth moments. Assume
that there exists a constant K1 > 0, independent of n, such that, for every n ∈ N,
E|Sn|p ≤ K1n

p/2. Then, there exits a constant K2 > 0, independent of n, such that,
for every n ∈N,

E
(

max
1≤k≤n

|Sk|
)p ≤ K2n

p/2.



Appendix B
General Results on Large Deviations

We present here, without proofs, an account of general results on large deviation
principles. For the details and more results on large deviations, we refer the inter-
ested reader to Dembo and Zeitouni [29]. In the sequel, Xn, n ∈N, is some sequence
of real random variables, and, as usual, Sn = X1 +· · ·+Xn. In order to obtain a gen-
eral description of rate functions, define, for every u ∈R,

Λ(u) = lim
n→+∞

1

n
log E

(
euSn

)
, (B.1)

and recall the Fenchel–Legendre transform of Λ (see Definition 3.15),

Λ∗(x) = sup
u∈R
(
ux − Λ(u)

)
. (B.2)

Theorem B.1 (Gärtner–Ellis) Assume that, for every x ∈ R, Λ(x) defined by (B.1)
exists. Then, its Fenchel–Legendre transform verifies:

(a) for every closed F ⊂ R,

lim sup
n→+∞

1

n
log P

(
1

n
Sn ∈ F

)
≤ − inf

x∈F
Λ∗(x);

(b) if Λ is differentiable, then, for every open G ⊂ R,

lim inf
n→+∞

1

n
log P

(
1

n
Sn ∈ G

)
≥ − inf

x∈G
Λ∗(x).

That is, the Gärtner–Ellis theorem says that it is enough to have the existence
of the limit in (B.1), together with the differentiability of Λ, to have a large devi-
ation principle. Moreover, this result also identifies the rate function. Notice that
there are no assumptions on the distributions of the random variables nor on their
independence. It is thus a very general criterium.

The following characterization of the rate function, expressing some regularity,
is useful.
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Theorem B.2 Let Xn, n ∈ N, be random variables that satisfy the large deviation
principle with rate Λ∗. Then, for any topological basis A of R and any x ∈R,

Λ∗(x) = sup
A∈A:x∈A

{
− lim inf

n→+∞
1

n
log P

(
1

n
Sn ∈ A

)}

= sup
A∈A:x∈A

{
− lim sup

n→+∞
1

n
log P

(
1

n
Sn ∈ A

)}
.

Definition B.3 A rate function r is called a good rate function if, for all � ∈ R, the
sets {x : r(x) ≤ �} are compact.

The Gärtner–Ellis theorem assumes the differentiability of the Λ before identi-
fying the rate function as its transform. This differentiability is often hard to verify,
so an alternative characterization of the rate function is convenient. The notion just
introduced helps on this difficulty, as it allows identification of good rate functions
as Fenchel–Legendre transforms.

Theorem B.4 Assume that the large deviation principle is satisfied with a good rate
function r . Moreover, assume that, for every u ∈ R,

Λ(u) = lim sup
n→+∞

1

n
log E

(
euSn

)
< ∞.

Then

(a) for every u ∈ R, the limit above exists and satisfies Λ(u) = supt∈R(ut − r(t));
(b) if the rate function r is convex, it is the Fenchel–Legendre transform of Λ.

Next we quote a result giving sufficient conditions for the large deviation princi-
ple to be verified. This was an assumption on the previous theorem, so an alternative
condition is convenient. One solution requires some global regularity on the proba-
bility distributions of the random variables.

Definition B.5 The probability distributions Pn on R are said to be exponentially
tight if, for each ε > 0, there exists a compact set K such that

lim sup
n→+∞

1

n
log Pn

(
Kc
)
< −ε.

This is a strengthened version of the usual tightness condition and plays a role
similar to the one of tightness in functional limit theorems.

Theorem B.6 Assume that Pn, the distributions of 1
n
Sn, are exponentially tight and

that, for every continuous and bounded function f , the following limit exists:

Λf = lim
n→+∞

1

n
log E

(
enf (n−1Sn)

)
.
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Then, the random variables Xn, n ∈ N, satisfy the large deviation principle with
good rate function r(x) = sup(f (x) − Λf ), where the sup is taken over the family
of bounded and continuous functions. Moreover, for every such f ,

Λf = sup
x∈R
(
f (x) − r(x)

)
.

The verification of the existence of the limit Λf for the given family of functions
may be relaxed, requiring such a verification to be done in a suitable smaller family
of functions.

Definition B.7 A family G of continuous real valued functions is well separated if

(a) the constant functions are in G;
(b) if g1, g2 ∈ G, then g(x) = sup(g1(x), g2(x)) ∈ G;
(c) given x, y ∈ R, x �= y and a, b ∈ R, there exists g ∈ G such that g(x) = a and

g(y) = b.

The following result is helpful for checking that the large deviation principle
holds.

Theorem B.8 If, with the notation of the previous theorem, the limit Λg exists for a
well-separated family of functions, then it exists for every continuous and bounded
function, that is, the assumption of the previous theorem is satisfied.

Finally, we refer a convenient well-separated family

G =
{
g :R −→R continuous, concave, and sup

x∈R
g(x) < ∞

}
.



Appendix C
Miscellaneous

C.1 Generalized Inverse Functions

Definition C.1 Let f :R −→ R be a monotone function. The generalized inverse
of f , denoted f ←, is

(a) if f is nondecreasing, f ←(u) = inf{x :u ≤ f (x)};
(b) if f is nonincreasing, f ←(u) = inf{x :u ≥ f (x)}.

It is obvious that if f is an invertible function, then f ← = f −1.

C.2 Separation of Variables

It is usual to study centred random variables, and in several estimation problems
one is interested in the centred estimator. When considering estimators defined by
some quotient, centring by its mean introduces an extra difficulty for characterizing
the behaviour of this centring term. It is more convenient to replace this term by the
quotient between the means of the numerator and the denominator if we can then
separate the corresponding term. This is achieved through the inclusion stated in
Theorem C.3 below, proved by Jacob and Niéré [49]. An auxiliary inclusion will be
needed in the proof.

Lemma C.2 Let X and Y be nonnegative random variables, and ε ∈ (0,1). Then

{|X − 1| > εY
}⊂

{
|X − 1| > ε

2

}
∪
{
|Y − 1| > ε

2

}
.

Proof Let δ > 0. Then, obviously,
{|X − 1| > εY

}= {|X − 1| > εY, |Y − 1| < δ
}∪ {|X − 1| > εY, |Y − 1| ≥ δ

}
.

If |Y − 1| < δ, then Y > 1 − δ, so that
{|X − 1| > εY

}⊂ {|X − 1| > ε(1 − δ)
}∪ {|Y − 1| ≥ δ

}
.
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Choose now δ satisfying ε(1 − δ) = δ, that is δ = ε
ε+1 > ε

2 , as ε ∈ (0,1). Finally, we
have

{|X − Y | > εY
}⊂

{
|X − 1| > ε

2

}
∪
{
|Y − 1| > ε

2

}
. �

We now prove the inclusion enabling the separation of variables when dealing
with quotients.

Theorem C.3 Let X and Y be nonnegative integrable random variables. Given
ε ∈ (0, 2EX

EY
), we have

{∣∣∣∣
X

Y
− EX

EY

∣∣∣∣> ε

}
⊂
{
|X − EX| > ε

4
EY

}
∪
{
|Y − EY | > ε

4

(EY)2

EX

}
. (C.1)

Proof Put, for simplicity, α = EY
EX

. Then, we have
{∣∣∣∣

X

Y
− EX

EY

∣∣∣∣> ε

}
=
{∣∣∣∣

X

Y

EY

EX
− 1

∣∣∣∣> εα

}

=
{∣∣∣∣

X

EX
− Y

EY

∣∣∣∣> εα
Y

EY

}

⊂
{∣∣∣∣

X

EX
− 1

∣∣∣∣+
∣∣∣∣

Y

EY
− 1

∣∣∣∣> εα
Y

EY

}

⊂
{∣∣∣∣

X

EX
− 1

∣∣∣∣>
εα

2

Y

EY

}
∪
{∣∣∣∣

Y

EY
− 1

∣∣∣∣>
εα

2

Y

EY

}

⊂
{∣∣∣∣

X

EX
− 1

∣∣∣∣>
εα

4

}
∪
{∣∣∣∣

Y

EY
− 1

∣∣∣∣>
εα

4

}
,

taking into account the previous lemma. �

C.3 Integration by Parts

Theorem C.4 Let f :R2 −→ C be twice continuously differentiable with bounded
derivatives. If X and Y are square-integrable random variables, then
∫

R2
f (x, y)(P(X,Y ) − PX ⊗ PY )(dx dy) =

∫

R2

∂2f

∂x ∂y
(x, y)H(x, y) dx dy, (C.2)

where H(x,y) = P(X > x,Y > y) − P(X > x)P(Y > y).

Proof Notice first that the integral on the right of (C.2) is finite as f has bounded
derivatives and the random variables are square integrable. Let u,v ∈ R. Then, for
all x ≥ u, y ≥ v,

f (x, y) = f (u, y) + f (x, v) − f (u, v) +
∫

(u,x)×(v,y)

∂2f

∂x ∂y
(s, t) ds dt.
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Integrating these expressions over (u,+∞) × (v,+∞) with respect to the measure
μ = P(X,Y ) − PX ⊗ PY and letting u,v −→ −∞, we need to prove that

lim
u,v→−∞

∫

(u,+∞)×(v,+∞)

f (u, y) + f (x, v) − f (u, v)μ(dx dy) = 0 (C.3)

and
∫

R2

∂2f

∂x ∂y
(x, y)H(x, y) dx dy

= lim
u,v→−∞

∫

(u,+∞)×(v,+∞)

∫

(u,x)×(v,y)

∂2f

∂x ∂y
(s, t) ds dtμ(dx dy).

(C.4)

Separate (C.3) into the sum of three terms in the obvious way. For the first term,
∫

(u,+∞)×(v,+∞)

f (u, y)μ(dx dy)

=
∫

(u,+∞)×(v,+∞)

f (u, y)P(X,Y )(dx dy)

−
∫

R×(v,+∞)

P(X > u)f (u, y)P(X,Y )(dx dy)

≤
∫

R×(v,+∞)

∣∣f (u, y)
∣∣∣∣I(u,+∞)(x) − P(X > u)

∣∣P(X,Y )(dx dy).

Taking into account the differentiability of f , up to the multiplication by a constant,
this is still bounded above by

∫

R×(v,+∞)

(
1 + u2 + y2)∣∣I(u,+∞)(x) − P(X > u)

∣∣P(X,Y )(dx dy)

≤ 2
(
1 + u2 + EY 2)P(X ≤ u),

remarking that I(u,+∞)(x) − P(X > u) = I(−∞,u](x) − P(X ≤ u). Thus, as Y is
square integrable, limu→−∞(1 + EY 2)P(X ≤ u) = 0. On the other hand, for u < 0,
one has that u2P(X ≤ u) ≤ E(X2

I(−∞,u](X)) −→ 0 as u −→ −∞. The second
term in (C.3) is obviously identical to the one just treated. Finally, the third term is,
up to the multiplication by a constant, bounded above by

P(X ≤ u,Y ≤ y) − P(X ≤ u)P(Y ≤ v) + 2u2P(X ≤ u) + 2v2P(Y ≤ v) −→ 0

as u,v −→ −∞. For (C.4), taking into account the boundedness of the derivatives
and the integrability of H (as follows from Theorem 1.4), we may apply the Domi-
nated Convergence Theorem and Fubini’s theorem to find

∫

R2

∂2f

∂x ∂y
(x, y)H(x, y) dx dy

= lim
u,v→−∞

∫

(u,+∞)×(v,+∞)

∂2f

∂x ∂y
(x, y)H(x, y) dx dy
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= lim
u,v→−∞

∫

(u,+∞)×(v,+∞)

∂2f

∂x ∂y
(x, y)

×
∫

(u,+∞)×(v,+∞)

I(x,+∞)×(y,+∞)(s, t)μ(ds dt) dx dy

= lim
u,v→−∞

∫

(u,+∞)×(v,+∞)

∫

(u,x)×(v,y)

∂2f

∂x ∂y
(s, t) ds dtμ(dx dy). �

C.4 Some Asymptotic Results on Real Sequences

In order to prepare the framework for the proof of the large deviation principle, the
following result about subadditive sequences is useful.

Lemma C.5 Let un and εn, n ∈ N, be sequences of real numbers such that un+m ≤
un + um + εn+m, where, for some δ > 1,

lim sup
n→+∞

εn

n
logδ n < ∞.

Then, u = limn→+∞ un

n
exists.

The following two lemmas are standard results on convergence of sequences of
real numbers.

Lemma C.6 (Cesàro lemma) Let bn, n ∈ N, be an increasing sequence of positive
real numbers such that bn −→ +∞, and xn, n ∈ N, a sequence of real numbers
such that xn −→ x∞ ∈R. Then, with b0 = 0,

1

bn

n∑

k=1

(bk − bk−1)xk −→ x∞.

Proof Fix ε > 0 and choose n0 such that xn ≥ x∞ − ε for every n ≥ n0. Then

lim inf
n→+∞

1

bn

n∑

k=1

(bk − bk−1)xk

≥ lim inf
n→+∞

(
1

bn

n0∑

k=1

(bk − bk−1)xk + bn − bn0

bn

(x∞ − ε)

)

.

≥ x∞ − ε.

Thus, as ε > is chosen arbitrarily, it follows that

lim inf
n→+∞

1

bn

n∑

k=1

(bk − bk−1)xk ≥ x∞.
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Now repeat the argument with respect to lim sup to conclude that

lim sup
n→+∞

1

bn

n∑

k=1

(bk − bk−1)xk ≤ x∞,

so the result follows. �

Lemma C.7 (Kronecker lemma) Let bn, n ∈ N, be an increasing sequence of posi-
tive real numbers such that bn −→ +∞, xn, n ∈N, a sequence of real numbers and,
for each n ∈N, sn = x1 + · · · + xn. Assume that

∑
n

xn

bn
converges. Then

sn

bn

−→ 0.

Proof Define, for each n ∈ N, un =∑n
k=1

xn

bk
. Thus, un is a convergent sequence,

and un − un−1 = xn

bn
. Hence,

sn =
n∑

k=1

bk(uk − uk−1) = bnun −
n∑

k=1

(bk − bk−1)uk−1,

so that, dividing by bn, we get the result by the Cesàro lemma. �

C.5 A Formula About Multivariate Gaussian Integrals

Lemma C.8 For all λ ∈ (0,1) and x ∈ R, let p(λ,x, y) be the Gaussian density
function with mean λx and covariance matrix Σ = [σij ]i,j=1,...,n. Then

∂p

∂α
= − 1

α

(
n∑

i,j=1

σij

∂2p

∂xi ∂xj

−
n∑

i=1

xj

∂p

∂xi

)

. (C.5)

Proof Denote by p̂ the Fourier transform of p with respect to the variable x, that is,

p̂(z) =
∫

Rn

e
i
∑n

j=1 zj xj p(α, x, y) dx, z ∈ R
n

(this is not a characteristic function because, as a function of x alone, p is not a
density). If we rewrite (C.5) in terms of Fourier transforms, we find

∂p̂

∂α
= − 1

α

(
n∑

i,j=1

σij

∂̂2p

∂xi ∂xj

−
n∑

i=1

̂

xj

∂p

∂xi

)

= 1

α

(
n∑

i,j=1

σij xj xkp̂ −
n∑

i=1

(
p̂ + xj

∂p̂

∂xi

))

. (C.6)

Now, to identify p̂, notice that
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p(α,x, y)

= 1

(2π)n(1 − α2)n/2|Σ |1/2
exp

(
1

2(1 − α2)
(y − αx)tΣ−1(y − αx)

)

= 1

αn

αn

(2π)n(1 − α2)n/2|Σ |1/2
exp

(
α2

2(1 − α2)

(
x − α−1y

)t
Σ−1(x − α−1y

))
,

thus, as a function of x, αnp(α, x, y) is a Gaussian density with mean α−1y and

covariance matrix 1−α2

α2 Σ , so

αnp̂(z) = exp

(

iα−1
n∑

j=1

zj yj − 1 − α2

α2

n∑

j,k=1

zj zjσjk

)

.

The verification of (C.6) is now a simple matter of routine computation. �
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|A|, cardinality of set, 22

d−→, convergence in distribution, 12
�, order relation between functions, 39
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abstract spaces, 17
characterizations, 9, 12, 13
definition, 7
Gaussian, 13

B
Berry–Esséen, see Central Limit Theorem,

convergence rates
one dimensional, 171
two dimensional, 171, 174

C
Central Limit Theorem

convergence rates, 110
nonstationary variables, 112
stationary variables, 113

density estimator, 120
nonstationary variables, 105, 108
stationary variables, 103
transformed variables, 105, 107

Characteristic function, 56
Construction

of associated variables, 8
of negatively associated variables, 33
of NQD variables, 32
of PQD variables, 6
of TP2 variables, 29

Cox–Grimmett coefficient, see u(n)

D
Dec(A), 17
Dependence

linear positive quadrant dependence, 22
negative association, 32
negative quadrant dependence, 31
positive association, 7
positive quadrant dependence, 3
relations, 23, 25
strong positive orthant dependence, 22
totally positive of order 2, 27

E
Empirical process

convergence in D[0,1], 164
convergence in L2[0,1], 166, 168, 169
convergence in Lp[0,1], 167
definition, 154

F
Fenchel–Legendre transform, 80

H
H , 3
HA,B , 37
Hj,k , 37
Hoeffding formula, 4

I
I, see indicator function, 22
Inc(A), 17
Indicator function, 3
Inequality

Bulinsky, 40
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Dewan and Prakasa Rao, 60
exponential, 66
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Inequality (cont.)
extended Newman, 59
Lebowitz, 37
maximal, 48, 50–52, 54
maximal of order p, 53
moments of partial sums of order p, 43, 47
Newman, 58

Invariance principle
D[0,1]

nonstationary variables, 141, 142
stationary variables, 135

definition, 135
L2[0,1]

finite dimensional distributions, 148
nonstationary variables, 153
tightness, 144, 146

J
J, 22

K
Kernel estimation

density estimator, 88
(A), set of conditions, 89
almost sure convergence, 91, 95
Central Limit Theorem, 120
convergence in probability, 90
convergence of covariances, 89, 119
(D), set of conditions, 88

regression estimator, 97
(A′), set of conditions, 99
almost sure convergence, 99
convergence of covariances, 99, 125
(D′), set of conditions, 98
finite dimensional distributions, 126

L
Lp[0,1]

convergence in distribution, 130
tightness, 131, 132
tightness for p = 2, 133

Large deviation principle, 86
definition, 79
exponentially tight, 178
Gärtner–Ellis Theorem, 177
good rate function, 178

well separated family, 179
Law of Iterated Logarithm, 116
LDP, see large deviation principle
Linear positive quadrant dependence, 22
LPQD, see linear positive quadrant

dependence

M
Mn, 48
M∗

n , 48

N
Negative association, 32
Negative quadrant dependence, 31
Nondecreasing

compactly generated, 17
function, 18
set, 16

Nonincreasing
compactly generated, 17
function, 18
set, 16

Normally ordered set, 19
NQD, see negative quadrant dependence

P
Partially ordered space, 16
Positive association, see association, definition
Positive quadrant dependence, 3
PQD, see positive quadrant dependence

S
SPOD, see strong positive orthant dependence
Stochastically nonincreasing, 28
Strong Law of Large Numbers, 69

Marcinkiewicz–Zygmund type, 73
rate of convergence, 71, 75, 78, 79

Strong positive orthant dependence, 22

T
Totally ordered set, 16
Totally positive of order 2, 27
TP2, see totally positive of order 2

U
u(n), 41
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