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Foreword

Ower the last few years electronic data processing has changed the work
of engineers throughout all fields of construction. This is particularly true
for design of structures where, nowadays, it is unimaginable that it can be
done without the help of computer software. Even simple structures like,
for example, simply supported reinforced concrete beams under uniform
loading, are designed using the help now available from computers. One
must admire this. In many cases, these computer calculations are faster,
less costly and thus more profitable than manual calculations.

The developments of the last vear or so have been to use ver more
complex numerical models, as can be seen from the various contribu-
tions to conferences on the subject. It seems that today, it is only a
question of computer capacity, the size of the element mesh, and the
modelling of the nonlinear material behaviour, in order to model an
arbitrary complex reinforced structure with almost unlimited accuracy.
But then, there is a great danger that one only believes in the results
from the computer, and the engineer loses his feelings for the real
behaviour of the structure. Thus, in this book, the author faces up to
the blind belief in computer results. One should not have a totally
blind confidence, but rather a useful scepticism of the outpur of the
computer calculations, regarding the numerical model used and
hence the results achieved.

With the increasing complexity of a numerical model, it becomes
more likely that important details are overlooked, due to the flood of
information produced by the computer. The collapse of the so-called
Sleipner Platform (see Chapter 1), resulting from an erroneous Finite
Element calcularion, impressively demonstrates this danger.

A complex numerical calculation should not be used to compensate
for any lack of knowledge of the structural behaviour of a structure. An

vil
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engineer should be able to simplify any real structure into a well-
defined, known, understandable, and designable equivalent structural
system. Unimportant details are neglected. It should always be kept
in mind that even very complex structures such as the Chapel of St
Peter's Church in Rome or the Temples in Luxor, had been built
without the help of computers and even without any knowledge of
mechanics.

This book has been written for both the practical structural engineer
and for students, who are using computer software for designing of
concrete structures. The problems of Finite Element calculations are
illustrated, not just by theoretical systems, but also by relating to real
structures, mostly those on which the author has actually worked.
They concern systems from all fields of engineering. Furthermore, this
book should help those people who develop software for structural
design to understand the difference berween theory and the daily
problems of designing reinforced concrete strucrures.

This book would not have been written without the help and support
of friends and colleagues in practice and research. I am much indebted
to Peter Whiting LLB (Hons), BSc. FICE for reviewing of the manu-
script and his support of my work.

Guenter Axel Rombach
Hamburg, 2004
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Notations

In general the symbols of Eurocode 2 are used. These are listed below
together with additional abbreviations used in this book.

1 Latin upper-case letter

Accidental acrion; cross-sectional area
Cross-sectional area of concrete

Area of a prestressing tendon or tendons
Cross-sectional area of reinforcement

Minimum cross-sectional area of reinforcement
Area steel provided

Area steel required

Cross-sectional area of shear reinforcement
Symbol for grade of normal concrete

Wrapping torsional stiffness

Effect of action (member force)

Tangent modulus of elasticity of normal weight concrete
Force; action

Design value of action

Finite Elements

Characreristic permanent action

Horizontal force

Second moment of area

Length

Bending moment

Design value of the applied internal bending moment
Axial force

Design value of the applied axial force (tension or
compression)

1x
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P
Fa

L

-
L

Prestressing force

Initial force at the active end of the tendon immediately
after stressing

Mean value of the prestressing force at time t, at any point
distance x along the member

Characteristic variable action

Resistance

Nominal value of resistance

Internal forces and moments

First moment of area

Centre of torsion of a cross-section

Centre of gravity of a cross-section

Serviceability limit state

Torsional moment

Ultimate limit state

Shear force

2 Latin lower-case letters

sup

o o

L ]

= i i W T ~ W~ B

gl

ﬂ'l-ai-.l',r_-.l'rruh.
=m

3 iy

-

Distance; geometrical data
Deviation of geometrical data
Shift of moment curve

Owerall width of a cross-section, or actual flange width in a
T- or L-beam

Width of the support

Width of web on T, I, L beams
Concrete cover

Diameter; depth

Effective depth of a cross-section
Eccentricity

Strength (of a material)

Height

Owerall depth of a cross-secrion
Radius of gyration

Length; span

Anchorage length

Height of a column

Effective span of beams and slabs
Clear distance from the faces of the supports
Moment per unit length; mass

Number of vertical continuous members
Radius
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Notations

Diistance; spacing of stirrups

Mean transverse pressure over the anchorage length
Time being considered; thickness

Perimeter of concrete cross-section having area A_
Shear force per unit length

Coefficient relating the average design compressive stress in
struts to the design value of the concrete compressive
strength (f)

Angle of inclination of a structure, assumed in assessing
effects of imperfections

Neutral axis depth

Lever arm of internal forces

Greek letters

Angle; ratio

Angle; ratio; coefficient

Partial safety factor

Increment

Reduction factor; distribution coefficient

Strain

Angle; rotation

Slenderness rartio

Coefhicient of friction between tendons and their ducts
Moment coethcient

Poisson's rario

Strength reduction factor for concrete cracked in shear
Longitudinal force coefficient for an element

Ratio of bond strength of prestressing and reinforcing steel
Over-dry density of concrete in kg/m’

Reinforcement ratio

Normal stress

Compressive stress of concrete

Tensile stresses in reinforcement

Torsional shear stress

Diameter of a reinforcing bar or of a prestressing duct
Creep coefficient, defining creep between times ¢ and t;,
related to elastic deformation at 28 days

Factors defining representative values of variable actions
W, for combination values

¥, for frequent values

¥, for quasi-permanent values

xi
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4 Subscripts

C Concrete; compression; creep
b Bond

d Design

e Eccentricity

eff Effective

t Flange

tar Fartigue

fav Favourable

freq Frequent

g Permanent action

h Depth of a cross-section
i Indices; notional

inf Inferior; lower

] Indices

k Characteristic

| Low; lower

m Mean; material; bending
max Maximum

min Minimum

nom  Nominal

P Prestressing force

perm  Permanent

pl Plastic

q Variable action

rep Representative

s Reinforcing steel; shrinkage
sup Superior; upper

t Torsion; time being considered; tension
unf unfavourable

W Web

y Yield

Xil
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1

General

Numerical calculations based on the Finite Element Method are becoming
a standard tool in the design of structures. Furthermore, the lower cost of
hardware and increased performance of more user-friendly software often
displace manual calculations. This applies not only to complicated 3-
dimensional structures, like slabs, shear walls and shells of complicated
shape, but also to normal beams. It can be economical — as it is much
faster — to design a simple supported reinforced concrete beam under
uniform loading by using a computer. However, one saves time only
when the necessary checking of the numerical results are omitted.

A few vears ago large computers were needed and only experts and
big consulting offices used this method. Nowadays, a whole building
can be handled by a simple PC. Graphical input makes it easy to
generate three-dimensional Finite Element meshes with several
thousands of nodes. Computer programs can design concrete, steel or
wooden structures, which have linear or nonlinear material behaviour,
under static or dynamic loading. There no longer seems to be any
limitations. Nontheless, this development has led to an increasing
number of cases where the Finite Element Method has been misused.

As daily experience shows, results from computer calculations are
often trusted with blind faith. Users assume that expensive computer
software must be free from any error. A graphical pre-processor and a
user-friendly input of systems and loadings may suggest a high technical
competence and reliability of the computer program. Nevertheless, as
experience in practice shows, this confidence can only be justified to
a very limited degree. Almost no software is free from errors. Therefore,
a crirical distrust is appropriate, as program errors may also occur in soft-
ware which has been in use for a long time and which may not have
been found to date.
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Finite element design of concrete structures

It should always be kept in mind that the Finite Element Method is
only a numerical tool based on numerous assumptions and simpli-
fications. This must be considered when using a software for design of
structures. Otherwise, the result of the numerical calculations can be
totally wrong. For explanation purposes, the following is a very simple
example: a plate element only provides a numerical model of a real
slab. It is assumed to have a linear strain distribution over its depth
under pure bending. There are no stresses at the midplane. With
such a plate element, one will never be able to estimate the normal
forces of a simple supported rectangular slab due to temperature
changes or shrinkage, even if the supports are fully restraint in hori-
zontal directions.

The modelling, the discretization, of real reinforced concrete struc-
tures is the focal point of this book. The fundamental aspects are
illustrated by practical examples of concrete structures. This book does
not look into the fundamental basis of the Finite Element Method, as
numerous publications are already available (see, for example, references
[1=3]). The so-called state of the art of the Finite Element techniques
will not be discussed as there seems to be a great gap between the
ongoing research and the day-to-day problems that a structural engineer
has to face. An engineer has neither the time to make highly sophisti-
cated numerical models nor the experimental data to verify his analysis.
He is not even interested in the ‘correct’ results. His goal is simply o
estimate the required amount of reinforcement and its accurate arrange-
ment (the ‘dimensioning’ of a structure), in order to build a safe and
economical structure. The calculation of the member and internal
forces and moments is only a required step to reach this goal.

The examples shown in this book are calculated using standard soft-
ware, used in day-to-day practice, and not with one of the advanced
general-purpose Finite Element packages such as ABAQUS, ADINA
or ANSYS which offer a great variety of different elements and material
models. Hence, the reader can easily verify the given examples using his
or her own software. A further reason for the strong relation to practical
design is that a user of a software package is not usually familiar with its
theoretical background. He cannot maodify it. It does not help him if he
knows that, for example, a reduced integrated 3-noded shell element
may give better results than a full integrated 6-noded isoparametric
element. He is just using the ‘black box'. The user, however, is supposed
to have sufficient knowledge to see and solve the problems, which may
occur in a Finite Element analysis. This is where this book is intended to
provide help.

2
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General

It is surprising that, in structural engineering, the use of Finite
Elements causes numerous problems, especially as this numercal
method was first used by structural engineers. The world's first electronic
programmable calculator was built by the structural engineer Konrad Zuse
in May 1941. He was tired of repeating calculation procedures when
designing structures. Zuse also developed the first algorithmic program-
ming language, ‘Plankalkuel’. In other fields of engineering, like, for
example, the automobile or aircraft industry, the numerical FE-analysis
of highly complex problems, such as the crash behaviour of a car, the
optimization of aerodynamics, or the processes in the engine, have
become a day-to-day practice. The reasons for this discrepancy is that
these sorts of costly and complicated computer calculations are only
economical for mass products. In contrast, a building is usually a
unique structure, whose costs depend on several factors, not only the
cost of its building material. The numerical modelling of the complex
behaviour of the composite material ‘reinforced concrete’ causes far
greater problems than the elasto-plastic bilinear behaviour of metals.

This book focuses on the numerical analysis of structures made of
reinforced or prestressed concrete. Finite Element calculations of
concrete structures have the following different and exceptional
features in comparison with other materials:

e Reinforced or prestressed concrete is a composite inhomogeneous
material with a very complex nonlinear material behaviour, thus
an ‘exact’ model is far too costly for daily structural design. Therefore,
the calculations of the member forces are mostly based on a linear
elastic material model. Stiffness reductions, as a result of crack forma-
tions or the ‘vielding' of concrete in regions with high compressive
stresses, are ignored. The extent of this very large simplification
should be justified for each calculation.

® The required material parameters, like, for example, elastic modulus
E., concrete compressive strength f., Poisson's ratio v, show a large
scarter in comparison with other construction materials. Furthermore,
they are often time-dependant. The actual quality of construction
(workmanship, weather condirions, curing) is not known during the
design stage, however, this can influence the material parameters.

e Concrete material is often used for massive members where, for
example, the Bernoulli hypothesis of a linear strain distribution
over the depth of the cross-section does not apply. Therefore,
standard beam and plate elements should not be used for the
design of the so-called discontinuity regions.
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® Plane shell structures, like, for example, slabs and shear walls, are
often made of reinforced concrere. For such members an elastic
design is not sufhcient. The cracking of the concrete has to be
considered in the arrangement of the reinforcement of a deep
beam. The pin supports of flat slabs may cause singularity problems.

e The actual detailing arrangement of the reinforcement in a member
is very important tor the behaviour of a structure, and not just for the
calculation of the forces and the amount of reinforcement required.

e There are numerous parts of a concrete structure, where a full,
detailed calculation of its load bearing and detormation characteris-
tics cannot be economically justified (such as for the frame comers or
corbels),

e Most concrete construction components are unique, for which a
major computer calculation is generally not economical.

e Concrete members can be produced with arbitrary shapes and cross-
sections.

e The construction process, as well as the time-dependant behaviour of
concrete, can be of considerable significance.

e For some load cases, like, for example, restraints or torsional
moments, the forces are reduced by cracking and do not need to
be considered in the calculations.

The uncritical or erroneous use of Finite Element software can lead to
serious damage as the collapse of the Sleipner A platform (Fig. 1.1) has
impressively demonstrated [4, 5]. This so-called Condeep-Platform had
a total height of 110 m. The four towers rested on 24 cylindrical cells,
¢ach having a diameter of 24 m. On 23 August, 1991, the concrete plat-
form collapsed completely during its lowering and sank down to the
seabed. The actual financial damage was estimated at about
USH250 million. The cause of the rotal collapse was found in serious
inaccuracies in the global Finite Element analysis of the structure and
faulty reinforcement arrangement in the connection area of the cell
walls. The element mesh used for the calculations was too coarse to
determine the actual forces in the members. This disaster raises a
critical question, whether nowadays this sort of accident could still be
allowed to happen. The essential causes of this case of damage and
the consequences of the numerical analysis are discussed in detail in
Chapter 5.

This accident significantly demonstrates an essential problem in
complex numerical calculations: the insufficient control of the results
due to the large amount of data output. The more complex the numerical

4
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Fig. 1.1 Sleipmer A platform (photo NC)

models are, the more difficult it becomes to recognize the areas of possible
mistakes and inaccuracies.

In this respect, it is the author’s opinion that the modelling of a struc-
ture as a whole, by the help of shell elements, for example, multi-storey
buildings or bridges, is rarely meaningful; although this approach is
often encouraged by the software companies. A structural engineer
must always be able to understand the behaviour of any complex struc-
ture and to idealize it so that the flow of forces can easily be understood
and caleulated. Complex Finite Element calculations can then be used
to lower any excessive safety margin of simple models and produce a far
more economical structure. However, complex Finite Element models
must never be used to replace either the design engineer or any of his
missing expertise. Costly, sophisticared analysis does not always lead
to more realistic results. Furthermore, the amount of a Finite
Element analysis should be considered with respect to the degree of
accuracy thar is actually necessary. The results of any calculation can
only be as accurate as the underlying assumption of its numerical
model. One should always keep in mind thar there can always be
considerable variation in the acrual loading of a structure and in the
properties of its materials.

i
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1.1 Introduction to the Finite Element Method

This very short introduction gives a brief precis of the basics of the
Finite Element Method. Further and more detailed information can
be found in numerous publications, e.g. [1-3].

In using the Finite Element Method, a complex structure is sub-
divided into a finite number of individual components called ‘elements’
(discretization), whose behaviour — the relation between their nodal
displacements (static analysis) and their nodal reactions — can be
specified by a limited number of parameters and analytical functions,
the so-called shape or form functions (see Fig. 1.2). All displacements,
strains and stresses within an element, as well as the resulting nodal
forces, can be calculated by means of the shape functions and their deri-
vatives respectively. The individual elements are only interconnected
by their nodes. The solution of the complete system follows from the
assembly of all of these elements. The stiffnesses of all the elements
[K]* are added to arrive at a global stiffness marrix [K], from which
the unknown nodal displacements {u} can be calculared.

K] - {u} = {F}

o Midplana
Finite Elemant modal

Fig. 1.2 Numerical analysis of a contimuous structure (slab)

6
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Fig. 1.3 2-noded plane truss element (without torsion)

where:

[K] is the global stiffness matrix [K] = Z[K]%;
{u} is the vector of nodal displacements;
{F} is the vector of nodal forces (loading).

The main task is to ind form functions which can approximate the
behaviour of a special structural element and satisfy the comparibiliry
condition. For simple elements like the 2-noded truss element shown
above (Fig. 1.3), the relation between the nodal forces {F}° and the
nodal displacements of each element {u}" can be found by means of
equilibrium conditions.

For more complex elements, like, for example, plate or shell
elements, virtual work or virtual displacement principles are used.

i
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ur, 5

Fig. 1.4 Displacements within a 4-noded and 8-noded element for u; = |

Figure 1.4 shows the displacements within a 4-noded and an 8-noded
isoparametric element for a unit deflection of u; = 1 at node no. 1. It
can clearly be seen that both elements have different displacements
and thus different strains, even if the nodal values are equal.

The basics of the Finite Element technique set out above therefore
give the following important conclusions:

e A Finite Element model is based on nodal forces and nodal displace-
ments (static analysis).

e All values, like, for example, displacements, strains or stresses within
an element, are calculated by means of shape functions.

e The nodal forces are calculated by shape functions and not by equi-
librium conditions.

1.2 General problems of numerical analysis of concrete
structures

The following is a summary of the significant problems in numerical

analysis of reinforced concrete structures. A detailed discussion can

be found in the chapters that follow.

8
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1.2.1 Program errors

One should always keep in mind that computer software, in general, is
not error free. The more complex the software is the sooner it becomes
difficult for the software engineer to examine all of the possible even-
tualities in advance. This problem can be made worse for the user by
the issue of updates to a previously error-free software, which then
suddenly produces incorrect results. This problem can only be met by
use of independent checking calculations.

Next the computer has a limited accuracy, e.g.:

2%~ 0.8 - 2% = —0.8008 # —0.8000
2 _08-2¥ =00 + —0.8000

1.2.2 Model errors

The majority of errors come from the modelling, i.e. making an idealiza-
tion of a real structure (Fig. 1.7).

1.2.2.1 Model material

The calculation of the action effects (internal forces and moments) is
usually based on a linear elastic material behaviour, although it is
well known that concrete is a highly nonlinear material. The Eurocode
EC2, Parr 1 [6] allows for nonlinear or plastic analysis, but, in design
practice, such complex analysis is very seldom justified, due to the
large amount of work needed. Furthermore, the combination of the
results from various load cases is then no longer possible, which
increases the workload substantially. Therefore, the design is usually
based on a linear-elastic material behaviour with limited redistribution
of member forces. The accuracy of such simplified analysis is generally
sufficient. In addition to slender columns or thin shell structures,

there are other structures where the nonlinear behaviour may be signif-
icant. This will be further discussed in Chapters 2 and 3.

1.2.2.2 Loading

A Finite Element model (FEM) is based on nodal forces and nodal
displacements (Fig. 1.5). This is still valid when an arbitrary load
arrangement is possible. In this case, the software calculates the
equivalent nodal forces. Depending on the size of the elements this
may lead to a considerable extension of the actual area under load.

9
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member forces = deflection = 0
Fig. 1.5 Difference between FE-nodal loading and real loading

This is important, for example, in the calculation of slabs under con-
centrated loads, e.g., wheel loads on bridges.

Furthermore, loads on fully restraint nodes are mostly neglected in
the design and hence in the results. The total support force is only
the sum of the loads on the unrestrained nodes. This has to be consid-
ered, when support forces from the Finite Element analysis are used for
loading of other members. Loads on columns and walls, which may be
fully restrained in the numerical model, are neglected by some software
programs.

The nodal forces result from the chosen element with respect to its
shape functions and not from ‘engineering’ experience. Figure 1.6

10
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Fig. 1.6 Nodal forces for a 4-noded and 8-noded isoparametric plate element
under comstant vertical loading

shows the nodal forces for a 4-noded and an 8-noded plate element
under a constant vertical loading. For the 4-noded element the load
is distributed equally to the nodes, whereas the 8-noded element
shows uplifting forces at the edge nodes.

1.2.2.5 Determination of the required reinforcement

Nowadays the estimation of the reinforcement required and its detailed
arrangement in truss and plate structures, is not a problem. However,
this is not the case for deep beams and shell structures. Here, a software

g
Heal structure T
real actions

‘l Design
Equivalent structural loads ,.—"T‘ Beam
system and loading -
‘#ﬂFIn support
l Modal loads |
Finite Elemant :l
micdel MW
l elemeant
Calc. of nodal
displacemenis,
strassaes and

member forces

Cale. of required e
reinforcamant

(incl. min.
delaum;s}

'

construction

i HH TR R AR AT HE

Fig. 1.7 Numerical analysis of a real structure
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program in general is not able to make the best detailing of the
reinforcement, as it is based on an element-wise analysis. Force
redistribution, due to the cracking of the concrete, is not considered
in a linear-elastic analysis. In general, a Finite Element model with
shell elements will not be able to distinguish between a member in
bending and one in compression, whereas their design must be different.
Thus, the model can lead to incorrect results. The same is true for
designs under shear forces.

1.2.2.4 Discretization

The numerical modelling of a real structure, the ‘discretizarion’ (sub-
dividing a structure into a finite number of different elements), is
where most of the errors are made. Here, among other matters,
special note should be made on the following:

Size of elements: Some years ago the number of elements was limited due
to the capabilities of both hardware and software, whereas nowadays a
sufficient fine discretization of a whole building can easily be done
without any major difficulties. Furthermore, an element mesh can be
produced very quickly by graphical pre-processors. Nevertheless, even
automatic mesh generation should not be used in an uncaring or
uncritical manner; engineering knowledge is still required. An
inadequate modelling of apparently irrelevant details, like, for
example, small cantilever slabs of a bigger plate (section 4.12.2) or
apenings in a flat slab near columns, can lead to faulty caleulations
and an unsafe design. A sufficiently fine element mesh should be
used in regions of high deformation or stress gradients.

Element form functions, mcompatible elements: In general the user of a
software program has no information of the numerical algorithms and
the form functions for the elements which the software is based on.
Nevertheless, he should have a basic knowledge to know at least the
principal difference between a beam, a plate and a shell element in
order to understand that the various element rypes cannot be simply
joined together, even if this is possible.

Support: The numerical modelling of the supports of shell structures
should be carried out with great care, as this is where fundamental
mistakes can be made. This aspect of a design will be explained for a
deep beam in Chapter 3, and for a flat slab in Chaprer 4.

Singularities: Singularities, or infinite stresses and internal forces, occur
in slabs or shear walls under high concentrated point loads. It should be

12
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kept in mind that this problem only oceurs in a numerical model caused
by simplifications and assumptions of the element's behaviour. A real
structure does not show any infinite internal forces. In regions of high
compression, the concrete may ‘vield'. Tensile stresses may cause the
tormation of cracks. The high forces shown by a Finite Element analysis
in singularity regions, do not happen in a real structure, and thus need
not be considered in the design. Nevertheless, the user should know
about these problems and how the results of the numerical analysis
(e.g. bending momenis and shear forces) should be interpreted.
Kinematic systems: In general, a software program gives out warnings or
stops the analysis when the structure becomes kinematic. In these cases,
the system of equations has no unique solution. There is no unique
solution for the nodal displacements. These wamings can, however,
be easily overlooked due to the great quantities of data produced,
which can only be checked by graphical control. If the distribution of
forces is reasonable, these mistakes will not be noticed, and the struc-
ture will be designed for actions and erroneous member forces of a
kinematic system.

13
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Truss and beam structures

The internal forces and moments in trusses and beams can be deter-
mined by means of the Finite Element Method as well as by load
transfer methods. Either method produces the same model problems
when considering actual structures.

Truss systems are not only used for analysing beams and columns.
Nowadays, they are also used as an equivalent system for the structural
analysis of flat shell structures, like shear walls (see section 2.5) or T-
beam bridges (see section 2.8). The main reason for this simplification
of spartial shell strucrures by simple beams is that the amount of caleula-
tion needed for beam or truss systems is considerably less than that for a
three-dimensional shell design. This is especially true for the calculation
of the reinforcement requirements.

This chapter starts off by examining various detailed problems related
to the correct modelling of so-called ‘discontinuity regions’. These
regions are those where the essential assumption of truss elements,
the Bernoulli hypothesis which states that the section remains approxi-
mately plane before and after loading, is not valid. Examples considered
are those of beam column intersections, frame comers, beams with
abrupt or smooth change of cross-sections or openings, halving joints
and inclined haunches.

Even if the action effects in these discontinuity regions cannot be
calculated accurately, it is important to model the different stiffnesses
of a structure. The main differences in the various modelling used for
frame corners are shown in an example of a frame bridge with
shallow foundations and the transverse design of a hollow box girder
bridge. The modelling of a foundation slab bedded on ground
(section 2.4.1) and a bridge column supported on piles (section 2.4.3)
will also be discussed.

14
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Following the discussion of these detailed problems, we look at the
design of whole strucrures. The calculation of coupled concrete shear
walls with large openings, which are used as bracing elements in
high-rise buildings, is shown in section 2.5. Then the modelling of a
complex bracing system of a high-rise building consisting of cores of
different shape and shear walls is discussed, followed by the analysis
of a hollow box girder and a T-beam bridge by means of a grillage
(plane grid) system. This chapter ends by looking at some problems
in the calculation of reinforcement requirements in beams.

2.1 Corners in frame structures — rigid regions

Beam column intersections are regions for which the assumption that a
section remains approximately plane before and after loading (the
Bernoulli hypothesis) does not apply. This is where a truss analysis
can only provide an approximate value for the member forces.

In design calculations, “exact’ values are often not needed. In general,
the purpose of the structural analysis of a frame is not to calculate the
maximum member forces at the beam column junction of the centre-
lines, but rather at the inner face of the corner for bending or at a
distance of 1.0d for shear (d = effective depth of a cross-section).
However, the exact modelling of the stiffness ot the frame comer is
important, as these can have a large effect on both the internal forces
and the deformation of a member or structure.

In a real structure the frame corners generally behave like a stiff
diaphragm. Therefore, in these areas the nodes of the truss model
cannot move independently from each other (see Fig. 1.1). The
simplest way of raking this condition into account is through a stiff
coupling of the corner nodes. An alternative is to introduce an addi-
tional stiff inclined truss element. However, this may cause numerical
problems because of the great stiffness differences of the system.

The following two examples will show the influence of the numerical
modelling of beam column intersections. The first one is a portal frame
bridge with shallow foundations, which is widely used for road under-
passes. The second example deals with the transverse design of a

hollow box girder bridge.

2.1.1 Portal frame bridge
When modelling a truss system, the nodes must be in sections which are
relevant to the design. Most computer programs determine the member
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Fig. 2.1 Frame siructure

forces and the reinforcement requirements only for the nodes at the
beginning and the end of the element or at the integration points.
The relevant sections for design are:

e At a distance of 0.2 dp.,,,, from the inner face of the comer and at the
inner face of the corner in the design procedure for bending moments;

e At a distance of 1.0dp.,, from the inner face of the comer in the
dﬂ&ign FTLH:E(IUTE 'ﬁ:]r Ehﬂ‘-ﬂl— fﬂ[‘ﬁ:ﬂﬁ;

e At the midspan of the top beam for calculation of greatest bending
moments and the maximum deflection.

There are various loadings to be considered in the design of portal
frame bridges. This means a considerable amount of work for the
manual calculation of the member forces. In addition to the dead and
live loads acting on and adjacent to the frame, various earth pressure
distributions have to be considered. In general, the structure should
be designed for the following load cases:

e dead load;

® active earth pressure;

e increased active earth pressure on both walls;

e asymmetric earth pressure: increased active earth pressure on one
wall and active earth pressure on the other;

e live load on the backfill (left/right);

16
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Fig. 2.2 Poral frame bridge

e loading due to the traffic on the frame horizontal member;

e traction and braking forces of the traffic;

e loading due to temperature, for example (for concrete bridge in
Germany, see EC1)

iTM.n:-u — Tr.|1|||:|. == TI_1 _ETK i T-,_\
ﬁT}'E-F‘"" = Tn.‘-rn.l'-: - Tl." — _}?K - TJ

e differential temperature of the horizontal member .i"uTM_‘w = +15K
and ATy .. = —8K (for concrete bridges in Germany).

Furthermore, it must be remembered that due to the short length of

the foundation beam at the inner tace of the trame (see Fig. 1.3)
member forces, as calculated by the computer program, cannot be
used for the purpose of the design. This is without doubt a discontinuiry
region to which the Bernoulli hypothesis does not apply, Nevertheless
the entire foundation should be modelled, since not only the member
forces of the structure but also the soil pressure distribution and the
settlements must be determined.

The truss elements will be located at the centreline of the beam and
columns (Fig. 2.3). But in this case, the cross-section of the comer
region will not be modelled correctly. However, the additional dead
load can be neglected in general. The elastic bedding of the foundartions
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Real structure

/ A and gis missing | §
'E,

&

Feal Loadingan
loading  truss model
8.80 m

6.25 m

Mode number
Springs

Fig. 2.3 Portal frame bridge — numerical model

can be modelled with individual springs or with '.‘.iFI'I.:L'i'dI boundary
elements. In this example, the bedding modulus is taken to be
k, = 10 MN/m*.

The walls are loaded by a trapezoidal earth pressure distribution. It
should be kept in mind thar the height of the truss model is smaller
than the height of the real structure (i.e. the height of the column is
6.25 m, whereas the height of the real structure is 6.20 + 0.80 =
7.0m, see detail Fig. 2.3). Therefore, additional horizontal loads must
be applied on the comer nodes. The same applies to the vertical
loads on the horizontal member.

Figure 2.4 shows the calculated bending moments, the shear forces,
and the displacement of the structure. These were calculated both with
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139

Fig. 2.4 Shear forces, bending moments and deflections with and without coupling
of the comer nodes for the load case ‘dead load'

and without coupling of the corner nodes. The system shown is under
dead load only.

With this system, as expected, the influence of the node coupling is
very small (see Fig. 2.4). This further applies to the relevant design
forces from an unfavourable combination of relevant actions. The differ-
ences are estimated at less than 3% for the bending moment in the critical
sections and approximately 6% for the vertical displacement at midspan.
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Fig. 2.5 Stndard and deviator segment, Second Seape Expresswary, Banghkok [12]

2.1.2 Transverse design of a hollow box girder bridge

Figure 1.5 shows a cross-section of a hollow box girder bridge. In this
particular case, the segments are the standard cross-section of whar is
L'llr]"l:.'l'.llh' one I.|F IEIL‘ [l.ll:lj.;l_'.\[ !'.L'].[I'I:'ll.'”l'rl:] .I:'I.l.}l.]l'l\'!-' I'll.'l‘."i ﬂ['['l.jL'r I"ri:L:IHL'h i.]l
the world, the Second Stage Expressway System in Bangkok, Thailand
[12] (Fig. 2.6).
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F Y

Fig. 2.7 Cross-section and vesulting oruss model of a hollow box girder bridge
(standard segment, Second Stage Expressway, Banghkok)

The design of a bridge is usually done separately for the transverse
and longitudinal directions. In the following example, we are looking
at only the transverse behaviour. To do this, a ‘I m' wide section is
taken of the bridge and modelled by truss elements. The wvariable
depth of the beams and the inclination of the axis of gravity are
taken into account (see Fig. 2.7). There are pin supports under the
wehs, which are fully restrained in the vertical direction. The system
is also a frame structure. Of further interest is the modelling of the
corners, the junction berween the webs and the deck slab.

The behaviour of the structure will be examined under two different
theoretical unit loadings, a linear loading of g = 10kN/m at (a) the
outer edge of the cantilever slab and (b) at midspan of the top slab.

@@@Jﬁ e

Fig. 2.8 Remforcement lavout
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Single force on the free adge of the cantilever slab

lq-mm.fm o Bending moments [kNm|
S _oa

=187
e B bl
T43
iq b Deflections [mm| i
a6
(3.3}

Single force al midspan of tha deck
Bending momenis [kMm]
l =10 kN/m e

. I S —

Fig. 2.9 Bending moment distribution and deflections due to a single force at the
free edge of the cantilever slab (top) and at midspan of the deck (bottom)

For the load on the cantilever slab, the bending moments and the
displacements are only slightly influenced (by 5%) by the modelling
of the comers (with/without coupling) (see Fig. 2.9). For the line
load acting at midspan of the top slab, the coupling of the corners
causes the bending moments and the deflection at midspan to
vary by approximately 10% and 50%, respectively. The latter value
definitely cannot be neglected. The difference berween the moment
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Fig. 2.10 Finite Element mesh

Fig. 2.11 Main membrane forces and distribution of the hovizental resp. vertical
membrane force n, (flange) and n, (web) over the section depth; loading:
q = 10kN/m at the cantilever slab

and displacement shows that the coupling of the corner nodes mainly
reduces the span width. The increased restraint of the top slab does
not have a significant effect on the member forces. The bending
moment My of a fully restraint single span beam under concentrated
load ar midspan is proportional to the span length to the power of 1,
(M; = F_l/8), whereas the deflection at midspan { is proportional to
the span width to the power of 3 (f = F‘.I‘f[l*;'l - E - I]). However, it
must be pointed out here that the influence of the node coupling
depends largely on the geometry of the system. The width of the
webs of segmental hollow box girder bridges with external prestressing
is very small in relation to in-situ constructions with internal prestres-
sing tendons. The latter usually has a web thickness of more than
5':' cim d'llE [ tl'!{;'! space I'E'L!'I.J.irEd fur ThE tEl."I.I.JﬂTL'i Hl'll..l tl"l.l..‘. CHUPIEIE.
Here the influence of the coupling of the corner nodes on the shear
I'I[!ICEE ';md maoaments can I."H_’ much largur.

With shell models (diaphragms) the behaviour of the ‘elastic’ struc-
ture can be analysed more precisely. This will be shown in Chapter 3.
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However, the results of such caleulations are presented here in order to
show the stress distribution in corner regions.

Figure 2.11 shows the membrane forces in a comner region for a load
of 10kN/m at the free edge of the cantilever beam (element mesh see
Fig. 2.10). One recognizes a very complex force distribution, which
EE‘[’tﬂiﬂl‘f Canmot bE mﬂdﬂllﬂd h"’r I.']-EFlm O [russ E‘IE‘ITIETITE h':'IEE'I:l. o
the linear strain theory (the Bemnoulli hypothesis), Qutside this

Table 2.1 Bending moments and displacements i the relevant sections

5 12 3
L—
Bending moments [kNm} Section 1-1  Section 2-2  Section 3-3  Section 4-4

Load case 1: ¢ = 10kN/m at the tree edge of the cantilever slab

Truss model without coupling —335 -17.4 =0 -10.8
Truss model with coupling -335 —18.3 = —10.0
Shell analysis -334 —18.3 =0 —11.4

Load case 2: g = 10kMN/m at midspan of the deck

Truss model withour coupling 0 -1.7 f.2 7.3
Truss model with coupling 0 —8.2 5.6 Tl
Shell analysis Q =11 5.3 8.0
Displacements [mm] Section 3-31  Section 3-5

qu: 10 kN/m
Load case 1; g = 10kN/m at the free edge of the
cantilever slab ﬂ ;
Truss model without coupling =0 1.6
Truss model with coupling =0 3.3
Shell analysis =) 3.7

Load case 2: g = 10kN/m ar midspan of the deck

¢q=1ﬂkhl.|'m

Truss model without coupling 0.44 -0.15
Truss model with coupling 030 ~0.10 i ?

Shell analysis 0.36 .17
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strut-and-tie madeal rainforcameant arrangemeant

i
_—
—

fe

Fig. 2.12 Frame comer with high opening bendmg moment; strut-and-tie model
and resudtmg arrangement of reimforcement (ace. [13])

discontinuity region, the strains and stresses are linear over the depth of
the section. The discontinuity region extend up to a distance =h from
the continuity.

In Table 2.1 the bending moments and the displacements in the
relevant sections of the structure are compared with each other for
both load cases. Good agreement can be seen in the bending
moments. However, there are relatively big differences in the
midspan displacements.

Besides the structural analysis, good detailing of the reinforcement in
comer regions is very important with respect to both the load bearing
capacity and the serviceability of the structure (see Figs 2.8 and 2.12).
Many experimental investigarions were made and several theoretical
design models have been evaluated to design such sections.

2.2 Beams with variable depth - inclined haunches
The depth of a beam may be increased to oprimize the reinforcement
arrangement at the intermediate supports (greater lever arm) and to
reduce the midspan bending moment (Figs 2.13 and 2.14).

For frame structures with inclined haunches, the variable depth and
the inclination of the axis of gravity should be modelled in addition to
the coupling of the comer nodes. Furthermore, the inclined haunches
should be discretized by a sufficient number of elements. The cross-
section is usually assumed to be constant within a finite element.

As will be shown later, the inclination of the axis of gravity generally
only has a small influence on the action effects, where the system is not
horizontally restrained. Nevertheless, this inclination should not be
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Fig. 2.13 Frame comer with inclined hinnch

neglected, as it is very important with respect to the design for shear
(Fig. 2.15a~c). A straight beam axis with constant depth of elements
will cause mistakes as the slope of the compression strut with respect

to the tension chord is neglected. Therefore, the resulting change in
the design shear resistance Vi, is not considered (see Fig. 2.15¢).

Vega =Vras + Vs + Vg (EC2.1, eq. 6.1) (2.1)
where:

VE..L: is the design value of the shear force which can be sustained by
the vielding shear reinforcement

V.. is the design value of the shear component of the force in the
compression area, in the case of an inclined compression chord

4.0m i 4.0m

h = 50-93 cm

Fig. 2.14 Haunched T-beam girder of an mdustrial building
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Fig. 2.15 Vanous models for an inclined havmched beam and vesulting intemnal
forces and moments

V.y is the design value of the shear component of the force in the
tensile reinforcement, in the case of an inclined tensile chord.

The support conditions have to be checked, when the inclination of
the axis of gravity is considered in the FE model. For a straight single
span girder under uniformly distributed loads a horizontal restraint
does not change the member forces and moments. This is not true
for inclined truss elements with horizontal restraining supports. The
strutted frame system is modelled in the following example. Figure
2.16 shows the member forces and deflections for a fully restraint
single span beam of variable depth (inner span of a bridge). The span
length is 50 m. In order to show the influence of the variable depth
of cross-section, a relatively large depth of h = 4.0m has been chosen
at the supports, whereas in midspan the depth is only h = 1.0m. Two
different support conditions are considered:
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System and leading (@ + g) = 30 kNim
S i T s R0 WSS B e
1.0m
L 40m
a 12.5m > % > 125m d

« " Ully restrained beam =Elumrmmmmm >
" direction and against rotation

Copyrighted Material

Fig. 2.16 Member forces and displacements of a single span haunched beam for
fully and partial restramt support conditions

Model a: fully restrained supports;
Model b: no restraint in horizontal direction.

As can be seen from the distribution of the member forces, a strutted
frame system results if both supports are fully restrained. This causes
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gy Hf

o h,h, = 4.0

a4 /_ hih, = 3.0
o Miaunch = g £* Moo
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% o My =125 4112550 = 0.25
bending moments of a fully restrainad
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] hih, = 3.0 My = 3125 kMm-0.37 = 1156 kNm
0.2 hih, =40

Fig. 2.17 Factors for the calculation of the support and midspan bending moment
of a haunched fully vestrained beam (linear increase of depth)

high normal forces, even for the slender beam in the example. In Model
b, the support bending moment for the fully restrained system are
reduced by 26%, the shear forces by 19%, and the displacement art
midspan by approximately 10% with respect to Model a.

It should be noted that normal forces are always per definition in the
direction of the beam axis and shear forces are perpendicular to it. That
is why the shear force at the support is different in the two models.

The manual calculation of the internal forces of a beam with variable
depth can be made with the help of Fig. 2.17. The diagram shows the
relationship of the bending moment of a beam with constant depth
to the one of linearly increasing depth, depending on the length of
the inclined haunch and the depth of the beam h, /hy,. For the previous
system the following bending moments are calculated manually:

support bending moment Mg = ~8250 kNm;
midspan bending moment Mg = 1156 kINm.

Table 2.2 lists the member forces at the supports and midspan for
the various models. The results of a shell analysis are also given for

comparison.
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Table 2.2 Comparison of the member forces and displacements

Analytical Truss Truss Truss snalysis  Shell analysis.  Shiell analysis
analysis analysis  analysis inclined axis  syspem fully system not
(Fig. 217} straight  imclined axis  beam not restrained st restrained in
xis beam fully  restrained in the supports horzonal
restratned hisrizoneal direcrion ar
direction the supports
Support
N 4 & —=1258 -0 —-1051 0 kN
v 750 750 607 747 750 750 kN
M -&250 =8215 =520 -84 6371 -8181 kMm
Midspan
] d 0 =116 0 =1150 0 kN
¥ Q ¥ 0 9 0 0 kM
M 1156 1150 1100 1150 1150 1195 kNm
Dhisplacement in midspan
i/ 9.2 191 163 193 26.7 19.1 mim

The internal forces and the displacements of the truss model are
confirmed by the shell model. There is also good agreement with the
manually calculated results. As can be seen from Fig. 2.16, the hori-
zontal restraine of the beam has a great influence on the internal forces.

To summarize: if the system is not restrained in horizontal direction
and if there are no normal forces, the inclination of the axis of the truss
elements can be neglected with regard to the member forces. However,
for a shear design, the elements should be given a variable depth.

2.3 Beams with halving joints and openings
The Bernoulli hypothesis does not apply in beam—beam and beam—
column intersections — regions of sudden change of cross-section or
openings (‘discontinuity regions’ see Figs 2.18 and 2.19). Therefore,
one cannot analyse these areas precisely by using a truss system with
finite elements, which are based on a linear strain distribution over
the depth of the cross-section. Nevertheless, the different sriffness
values should be modelled, as the internal forces of a statically indeter-
minate system depend on ir.

The location of the beam axis changes suddenly at a halving joint.
This can easily be modelled by coupling the nodes in the joint similar
to a frame corner. In the region of openings, rwo separate beams for

30

Copyrighted Material



Truss and beam strictures

——»!

lg——]
F
£
P
&

F
k

& h
Fig. 2.18 Discontimuaty regions i [russ siructures

=178 x| =13 s =141

Mambrane force
in horeontal dirsctson

i 17E Pl

Sysiem
Load g=1 khNm

e —

™ Bhown secticn
5 B5m

Width of beam b=022 cm

Fig. 2.19 Hovizontal membrane forces (= normal stress x width of beam) m the
region of a halving joine (shell analyse)

il

Copyrighted Material




Finite element desiom of concrete structures

Fig. 2.20 Halving joint and opening in a beam

the compression and the tension chords should be used (Fig. 2.20). The
normal and bending stiffness of these elements should be fixed taking
account of possible cracking in the tension zone and the resulting
reduction of stiffness.

In the following the bending moment distribution of a single span
beam (l=12.5m) under a uniformly distributed load with an
opening at midspan will be examined. This beam has been used as a
girder for an existing industrial building. The results of the two different
beam models and a shell model will be shown.

Only one half of the structure is shown, as the system and its loading
is symmetric about the midspan. The following three systems have been
analysed (Fig. 2.21):

System 1 80 cm

ﬂmiwummumwmmuw

1250 cm
Widih of beam b= 22 cm

[ )
u_m.‘l

System 3

Fig. 2.21 Different beams
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e System |: beam withour opening.

e System 2: beam with an opening (1.0 x 0.4m) at midspan at the
lower side of the cross-section.

® System 3: beam with an opening (1.0 x 0.4 m) ar midspan on the
E':nt[ﬂilrl-u Uf l'.h.ﬂ CTOE5-5CCHON.

Figure 2.22 shows the bending moment distribution of the various
models, both with and withour considering such openings.

symmetry axis
System 1: without opening midspan |
Elemeant axis = neulral axis

R “ 5

A

_—

System 2a: with opening at lower edge, straight element axis
Elemant axis = neulral axis

o —

1

System 2b: with opening at lower edge, element axis = neutral axis |
Element axis = neutral axis

Copyrighted Material

System 3a: with centric opening, I'ﬂ'll-!l'll‘ element axis
Element axis

System 3b: with centric opening, element axis = neutral axis '
Elemeant axis —

i1

N m -3 BN
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Fig. 2.22 System and bending moments

33



Finite element design of concrete structures

System 2: opening at bottom side System 3: centric opening
1 11
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Fig. 2.23 Stress distribution near the edge of the opening - beam system

There is no change in the bending moment distribution of System 2,
as there are no normal forces acting on the beam. Therefore, the
bending moment distribution does not depend on the opening with
respect to the model. Nevertheless, a sudden change in strain can be
observed near the opening (see Fig. 2.23), which has a small influence
on the deformation of the given structural system. Due to the assump-
tion of the numerical analysis (elastic material behaviour, Bernoulli
hypothesis) the strain in the concrete section is equal to:

M
E.-l

Copyrighted Material
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where:

M is the bending moment at the face of the opening;

h is the overall depth of the cross-section left or right of the face of
the opening;

I is the second moment of area left or right of the face of the
opening.

In the case of a centric opening, the bending moment of the unweak-
ened cross-section is divided into a compression and a tension force. This
different behaviour has to be modelled by two separate beams. No normal
forces are calculated when this opening is neglected and the beam axis is
kept straight. This means that the stiffness is not modelled correctly,
resulting in a doubling of the midspan displacement (Table 2.3).
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Table 2.3 Deflection of the beam at midspan (in mm)

System Beam axis Truss model Shell model
System 1 — no opening straight 10.7 10.0
e
System 1 — opening at lower side
— {a) seraight 176 174
(b} jump 218 174
System ¥ = centric opening
| AR {a} straight 19.6 10.3
{b) jump 10.9 10.3

For comparison purposes, the internal forces and the deformations of
the beam are calculated by a shell model. Figure 2.26 shows the
membrane forces and the distribution over the depth of the beam in
various sections. In most sections a linear strain distribution can be
seen. Here the Bernoulli hypothesis is valid. Large differences are
only seen in the vicinity of the opening (see Fig. 2.24). Thus, a beam
system, which is based on a linear strain distribution, will always lead
to incorrect results to a greater or lesser extent.

Design of the discontinuity regions can be done by strut-and-te
models (Fig. 2.25). The results of a linear elastic shell model can be
used to evaluate the load parths.

It must be noted thar strut-and-tie models are only valid for the ult-
mate limit state design. A fully cracked structure is assumed. Therefore,
these models cannot give any information with regard to the service-
ability of the structure (cracking). However, it can be useful to
reduce the permissible stresses in the reinforcement in order to
reduce the crack width.
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Fig. 2.24 Membrane forces in the vicinity of the opening
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Positive banding moment Megative bending momani

Strut-and-tie modal

-

Fig. 2.25 Strut-and-te model for a halving joimt

It should be noted, that the shear force in the opening will be carried
mainly by the compression member. This has to be considered in the
design of the opening region.

The influence of the different FE-models on the member forces in
cases where there is an opening was not significant in the above
example. But this only results from it being considered as a statically
determinable system with a fully elastic behaviour being assumed.
One of the main questions is the stiffness of the fully tensioned chord
in the tension zone of the opening. Due to cracking of concrete the stiff-
ness is significantly reduced with regard to the elastic value.

This problem is clearly demonstrated in the following example for
a fully restrained 2-span beam under uniformly distributed loads
(Fig. 2.28). The beam has an opening of 20 x 50 cm close to the inter-
mediate support. Three different models for the opening region are
used. In the frst system the opening is neglected, whereas in the
second, the rension and compression chord in the opening is modelled
by two separate beams which are rigid coupled with the centre nodes of
the undisturbed beam. In the third system hinge couplings (no bending
moments) are used to take account of the lack of bending stiffness in a
fully tensioned member.
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Fig. 2.27 Strut-and-tie maodel for a beam with an opening ([34], Fig. 4.3.7)
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Fig. 2.28 Member forces of a 2-span beam for three different models used for the
apening

There are only very small differences for Models 1 and 2 (Fig. 2.28),
although Model 3 results in totally different member forces. The left
span tends to become a cantilever beam. The bending moments over
the intermediate support become positive. Parametric studies have to
be conducted to find the most relevant distribution of member forces
for this system.

It should be pointed out, however, that Model 3 is an extreme case:
just to demonstrate the importance of the correct manner of modelling
the stiffness in the region of the opening.

2.4 Elastic supports — elastic bedding

2.4.1 Elastic bedded foundation beam

There are a lot of structures where the supports are not fully or partly
restrained and where the deformation of the supports cannor be
neglected. For example, in the design of shallow foundations, the soil
settlement, the interaction between the structure and the ground,
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a) Spring elements b) Interface alements
Footing
—2 |
c) Continuous badding d} 2-D shell modal

Fig. 2.29 Various models for elastic suppore

must be considered. Also the deformation of the support for structures
on elastomeric bearings must not be neglected either. An elastic
support can be modelled by (Fig. 2.29):

(a) individual spring elements;

(b) special interface elements;

(¢) continuous elastic supported elements;

(d) plane or three-dimensional shell or volume elements.

The friction between the foundation and the ground can be modelled
by horizontal springs. Linear as well as nonlinear spring characteristics
can be used. A nonlinear analysis is required if certain load arrange-
ments show tension stresses in the ground, which cannot occur in
reality due to uplifting of the foundation beam.

The results of the model (a~c) are identical if the lengths or the
spacings of the elements is suthciently small. In practice, the advantage
of using special interface elements instead of individual springs is that
the normal stiffness does not depend on the length of the element for
a given soil modulus. For individual springs, the stiffness depends on
the spacing of the elements (Fig. 2.29a). Continuous bedded elements
are used in elastic supported foundation slabs, where the effects of the
bedding can be directly introduced into the element sriffness matrices
(see section 4.9).

9
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Constant load “ﬂ Constant lnad
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Fig. 2.30 Deformation of soil and structure — foumdation modulus and constrait
modulus method

All of the above mentioned methods, except the continuum model
(d), are based on a linear relationship between the local force and
the local deformation of the soil (stiffness modulus method). This
method does not consider the shear stiffness of the soil. Therefore, in
general, the displacements and associared reactions of the soil and
the structure are not compatible (Fig. 2.30). The error caused by this
simplification can often be neglected in practice. However, when
designing a shallow foundation, one has to keep in mind that a
uniformly distributed load on an elastic bedded beam or slab does not
result in any member forces (see Fig. 2.30). In such a case, it is recom-
mended that studies with two- or three-dimensional continuum models
are made (e.g. constrained modulus method). But this usually requires a
much greater amount of work. Please note that the considerable uncer-
tainties of the soil behaviour cannot be overcome by using more refined
numerical models.

When using distinct spring elements, the reaction of the ground is
introduced into the structures by single forces. Even at the free end
of a foundation beam, a force is estimated, which results in a shear
force at the free end of the beam (Fig. 2.31). Therefore, the calculared
shear forces are only correct in the middle of each beam element.
However, for design purposes the distribution of the internal forces
can be smoothed out.

The discretizarion, the number of elements per length have a consid-
erable influence on the member forces. This aspect will therefore be
discussed in grearer detail. As an example, an elastic supported beam
with rectangular cross-section (b/h = 1.0/0.8m) and a length of
5.0m is analysed under a uniformly distributed load and a single load
at midspan.

First, a very coarse element mesh is used, having only two beam and
three spring elements (Fig. 2.31). The spring stifiness is calculared for a
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Fig. 2.31 Beam supported on three elastic springs wnder uniformly distributed load

constant influence width of 2.50 m/2 = 1.25 m for the outer springs and
2.50m for the inner springs. As demonstrated in Fig. 2.31, even for a
system under a uniformly distributed load, significant bending moments
and shear forces are estimated. As mentioned previously, due to the
assumption of the elastic modulus method, no bending moments and
shear forces should be estimated under such loads. In principle, the
calculated member forces correspond to a 2-span continuous beam.
With a refined element mesh, the results are more reasonable (see Fig.
1,32a). Here the member forces and the displacement in midspan are
plotted versus the number of truss and spring elements.
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Fig. 2.32 Midspan deflection, shear forces and bending moments of an elastic
supported beam with mcreasing number of spring and beam elements

At first one would suppose that more elements are required for a
beam with a concentrated load than for one under a continuous load.
This is not the case as the parametric study in Fig. 2.32b shows. Here
the member forces are plotted for two to ten elements versus the analy-
rical values (see Fig. 2.33). With regard to the bending moment and
displacement at midspan, six elements are sufficient. For the shear
forces, a more refined element mesh is required. The midspan deflection
for both load cases is not very sensitive to the number of the elements.
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Fig. 2.33 Deformations and member forces of an infinite elastic bedded founda-
tiem beam under concentrated load

As the previous calculations have shown, the length of beam
elements with respect to the distance of the springs is limited by the
following requirements:

® The deformation of the structure and the resulting soil reactions must be
modelled with a sufficient degree of accuracy. The element length is
limited by the shape of the structural deflection curve and the
form functions of the used truss and interface elements. If the foun-
dation has a small bending stiffness, as in the example above, the
deflection curve can be described by using only a few elements.

It is generally recommended that the length of a beam element Al
depends on the so-called ‘characteristic length’ L. The following
calculation provides the characteristic length for the above mentioned
example.

4.E. -] 4 4-32{]1i}0~ﬂ.53,|"11
| e ki .3 =t
\ kb \/ 50-1.0 A

where:

El is the bending stiffness of the foundation beam;
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b is the width of the beam;
k. is the bedding modulus of the soil.

This recommendarion is based on the deflection curve of an infinite
foundation beam. The di&plﬂtt,l‘ﬂt:nt of am:h a structure under a single
load is zero ar a distance of x/L = —“T. Em, = etc. The length of the
element should be chosen to dﬂs-r:nhf: this deformation pattern with a
sufhcient accuracy depending on the form functions used (see Fig.
2.33). In the case of a linear function, the length of the beam elements
Al should not be greater than approximately ﬁL. For elements with
quadratic and cubic functions, fewer elements are required.

e The distribution of the member forces must be modelled with a sufficient
degree of accuracy. The correlation between the element length and
the shear force distribution results from the element type used in
the numerical analysis. In case of no internal element loads, they
are based on an assumption of a linear shear force distriburion
within each individual element. Refinement of the element mesh
results in a more accurate description of the actual maximum shear
force under the concentrated load.

Elastic bedded beams have large maximum bending moments under
concentrated loads. These high values are usually not relevant for the
design, as point loads do not exist in reality. All forces act on a distinct
load area. A load distribution with an angle of 45° can be assumed up to
the centreline of the beam or slab. In the example, this would resultin a
load area of greater than 0.80m. This would reduce the maximum
bending moment by a factor of 0.8. The loaded area has to be modelled
by ar least rtwo elements to describe the shear force distribution with a
sufficient degree of accuracy.

In the case of a linear elastic analysis based on the bedding modulus
method, one has to remember that tension forces cannot actually occur
in the ground due to uplifting of the foundation beam. The bedding of
the beam has to be neglected in those regions where the numerical
calculation shows any uplifting of the foundarion beam. In such a
case, load superposition is not permissible, and this will significantly
increase the amount of calculation effort.

2.4.2 Influence of the nonlinear material behaviour of concrete
In the examples mentioned above, a linear elastic material behaviour
has been assumed for the foundation beam and the ground. Not only

44

Copyrighted Material



Truss and beam structures

50m

Fig. 2.34 Elastic bedded foundation beam

the complex deformarion characteristics of the soil, but also the change
of stiffness of a concrete beam due to cracking may have a significant
influence on the member forces and deflections, as will be shown in
the following example.

A strip foundation having a thickness of h = 60 em and a transverse
width of b = 5.0 m is analysed (Fig. 2.34). The calculations are carried
out for a strip of 1 m width in the longitudinal direction. The system is
loaded in the middle by a wall. The geometry of the foundation beam
and the bedding modulus have been chosen, so that for a central
load of g = 1000 kN/m a reasonable amount of reinforcement and a
realistic maximum settlement is calculated.

The member forces, the settlements and the required reinforcement
are shown in Fig. 2.35 for both the linear elastic as well as the nonlinear
material behaviour of the reinforced concrete beam. For the nonlinear
calculations, the amount of reinforcement has been hixed by the results
of the linear analysis. A linear elastic analysis results in a maximum
bending moment under the wall of m = 520 kNm/m and a maximum
displacement of w = 4.7mm. However, the maximum bending
moment is reduced by 20 to 25% and settlements are increased by
32%, when a nonlinear behaviour of the reinforced concrete beam and
its resulting stiffness reduction in the region of the maximum bending
moments are considered. Figure 2.36 (below) shows the results of the
nonlinear analysis, both wirth and withour raking the tension stiffening
effect into account. It can be seen that neglecting the tension stiffening
effect results in smaller bending moments. Therefore, this effect has to
be included in the design of foundation beams and slabs.

Figure 2.36 shows the distribution of the bending moment at
midspan and the settlements of the strip foundation under an increasing
load. At the beginning, there is a linear relation berween the load and
the vertical displacements and bending moment respectively. The beam
is uncracked and behaves fully elastic. At an approximate load of
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Linear elastic Monlinear
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h A

Fig. 2.35 Member forces and settlements of a foundation beam with lnear elastic
and nonlmear behaviour of concrete (max. load q = 1000kN/m)

q = 1400 kN/m, the elastic load bearing capacity of the critical section
at the midspan is reached, starting the formation of cracks. A plastic
hinge develops. In this area, the bending moment can only increase
slightly. Any further increase in load bearing capacity can only be
possible for a load redistribution to the less stressed sections and a
concentration of the soil pressure under the wall. This results in exces-
sive increases in the settlements. It should be considered in the design
that a load increase with a safety factor 4 does not affect the maximum
bending moments but will lead to a considerable increase in the settle-
ments. The shear force at the relevant section near to the wall does not
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Fig. 2.36 Bending moment and senlements with increasing load (nonlnear
material)

depend on the stiffness of the system, for it results from the equilibrium
condition.

2.4.3 Pile foundation — foundation of a bridge column

Pile foundations are used to transter the loads from the structure in
deeper and stiffer soil layers with a greater load bearing capacity.
They are required when the load bearing capacity of a shallow
foundation is insufficient or if the size of the foundation slab would
be uneconomical.

One must distinguish between bored and driven piles. Due to their
great diameter and reinforcement, bored piles can carry normal forces
and bending moments. Driven piles have small bending stiffness and
can only carry vertical loads due to their slendemness.

In the following example only bored piles will be discussed, as the
vertical normal forces in driven piles can easily be estimated from the
equilibrium conditions (see Fig. 2.42).
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Fig. 2.37 Boved pile — numerical model and distribution of bedding modulus k,
for a horizontal force at the pile head

Rigid piles can be modelled by linear-elastic supported truss elements.
The bedding modulus k, and the stiffness of the horizontal springs may
vary along the length of the pile and its circumference. According to
Timm [17], the distribution of k, along the length of the pile respectively
the exponent n should be chosen as follows (see Fig. 2.37):

n=0 for cohesive soil under small to medium loads;

n = 0.5 for medium cohesive soil and non-cohesive soil above the
ground warter level;

n = 1.0 for non-cohesive soil below the ground water level or under
greater loads;

n= 1.5 to 2.0 for loose non-cohesive soil under very high loads.

If there are no results available from acrual pile rests, the bedding
modulus k, may be estimated by the following expression:

k, = E,/d
where:

k, is the bedding modulus;
E, is the saffness modulus of the ground;
d is the diameter of the pile d < 1.0m.

The stiffness modulus for non-cohesive soils varies berween E, = 100
to 200MN/m” for gravel and E, = 10 to 100MN/m? for sand. The
elastic horizontal support in the upper region of the pile should only
be included in the design if it can always be guaranteed during the
whaole liferime of the foundation.

The problem of determination of the relevant soil properties will
not be discussed further here. It should only be noted that, in every
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16m

Fig. 2.38 Pile forndation of a bridge column (Schombachtalbricke [21])

design, the distribution of the member forces and the displacements are
considerably influenced by the behaviour of the soil.

The modelling problems will be further considered for a bridge column
on a pile foundation (Schornbachtalbriicke [21], bridge under construc-
tion, see Figs 2.39-2.41). Figure 2.38 shows the dimensions of the
structure, The bridge column is founded on 14 reinforced piles, each
having a diameter of d = 61 cm. In order to simplify the numerical
model the pile inclination and the enlarged footing are neglected.

2.4.3.1 Loading
Only a horizontal braking force of H = 870 kN, acting at the top of the

bridge column in the horizontal (y-) direction, is considered. This
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Fig. 2.39 Bridee during construction
5

Fig. 2.40 Bridge column
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Fig. 2.4]1 Pile boring rig

results in a bending moment at the bottom of the pile cap of:

M =870kN-15.8m = 13750kNm

2.4.3.2 Manual analysis

The normal forces in the different piles can be calculated from equi-
librium conditions if one neglects the deformation of the structure
(rgid pile cap). This results in normal pile forces of F; = £585kN
for the outer row and F; = £195kN for the inner row (Fig. 2.42).
No bending moments are estimated in this approach.

2.4.3.3 Truss system

The piles are modelled with truss elements that are supported horizon-
tally by spring elements (see Fig. 2.44). A linear distribution of the
bedding modulus along the length of the pile with k, = 0MN/m" at
the head and k, = 100 MN/m’ at the pile toe is assumed. The inter-
action between the piles and the friction between the piles and the
ground is neglected. The vertical settlement of the pile toe is modelled
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Fig. 2.42 Manual calculation of the pile forces

by linear-elastic springs. For simplicity, a constant cross-section of
the column is used in the following, for, in this example, only the pile
foundation is of interest.

The pile cap cannot be modelled by truss elements, as this is a typical
discontinuity region (see Fig. 2.43). Therefore the nodes of the pile's
heads are fixed to the end node of the column base. The pile cap is,
therefore, modelled as an infinite stiff body. The disadvantage of this
model is that the member forces of the pile cap are not calculated.
Further investigations are required if the bending deformations of the
pile cap cannot be neglected.

2.4.3.4 Variation of the vertical spring stiffness
The stiffness of the vertical spring at the pile toe can only be estimated
by tests. The codes provide rough, approximate values only (Fig. 2.45).
As the stiffness of the vertical support of a pile may show a grear scatter
in practice, the results of a parametric study will be discussed in the
following example. The stiffness of the vertical spring varies from
C = 400 MN/m to infinity (full vertical restraint).

As can be seen in Fig. 2.46, the stifiness of the vertical spring has a
great influence on the bending moments in the piles. A fixed vertical
support reduces the greatest bending moment by a factor of 2 compared

Fig. 2.43 Flow of forces m a pile cap
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Fig. 2.44 Truss model

with that from an elastic support with C = 400 MN/m. The main
reason for this big difference is the rotation of the pile cap. The
greater the inclination of the infinite stiff pile cap due to settlements
of the piles the greater is the rotation of the pile heads and the resulring
bending moments.

When comparing the bending moment distributions, one has to
remember that a pile usually has a uniform reinforcement arrangement
around its circumference. Therefore, the (+/—) sign of the bending
moments does not matter,
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Fig. 2.45 Load-settlement curves acc. DIN 4014 ([ 18], Fig. 3)

C =400 MM/m C = 1000 MN/m pile toe fied

Fig. 2.46 Bending moment distribution in the pile (load: H,= 870kN at column
head)
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Fig. 2.47 Homizontal deformation of the pile (load: H,= 870kN at column
head)

The distribution of the normal forces is not shown in this example, as
it is only slightly influenced by the stiffness of the vertical spring. The
normal forces in the piles can easily be calculated manually from the
bending moment at the base of the bridge column (Fig. 2.42).

The main difference berween a manual and a numerical analysis is
that in the latter, bending moments and normal forces are estimated.
Bending moments may cause a high increase of the pile reinforcement
due to the small lever arm of the internal forces.

In this example, the displacement and rotation of the pile cap does
not significantly increase the member forces of the column. The
horizontal deformation of the column head is less than 18mm
(C=400MN/m) or 8mm (fully restrained) assuming an elastic
material behaviour.

2.4.3.5 Horizontal restraint of the pile cap
In the analysis above, it was assumed that the pile cap can move
horizontally without any reacting forces of the ground. In reality this
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Fig. 2.48 Bendmg moment distributim m the pile respectively with/without
horizentally fixed pile cap (load: H, = 870 kN at column head)

displacement is partly restrained due to the friction between the pile cap
and the ground, and the horizontal passive earth pressure. A horizontal
restraint of the pile cap has a large influence on the bending moments of
the piles (see Fig. 2.48). The bending moment at the pile head increases
from M = 8kNm (no restraint) to M = 195 kNm (C = 400 MN/m).
Please note that long-term settlements of the soil underneath the pile
cap may reduce the vertical and horizontal bedding of the pile cap.

2.4.3.6 Inclined piles

If the inclination of the outer row of piles is considered in the numerical
model as in reality (Fig. 2.38), the maximum bending moments are
estimated at the pile heads (Fig, 2.49). Again there are large differences
in bending moments between those of fully restrained and elastically
supported pile roes.

To summarize, the vertical restraint, the elastic bedding of the piles
and their distribution along its length, and any horizontal restraint of
the pile cap have significant influences on the member forces in
the structural system. All these parameters depend on the soil
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Fig. 2.49 Bending moment distribution in the edge piles (load: H, = 870kN at
column head)

characteristics, which in reality can vary within a great range. There-
fore, parametric studies may be required to estimate the correct relevant
design forces.

As the restraint of the column due to the foundation shows less
scatter, it may be useful to estimate the required design forces of the
column by a separate model (i.e. a truss which is partially restrained
at its lower end). The resulting forces can then be used as loads for
the foundation.

A linear increase of the bedding modulus over the length of the piles
has been assumed in the example given above. In general, the restraint
of the soil against horizontal deformation is not proportional to the
ground reactions. Therefore, such nonlinear behaviour has to be
considered in the case of large horizontal loads.

Drring all calculations, one must check thar the calculated soil pres-
sure is not positive (tension) or greater than the permissible one.

In the case of large bending moments, a nonlinear design of the piles
(including the reduction of stiffness due to cracking) can result in a
significant reduction of the maximum member forces. But it is doubrttul
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whether such a refined model is more accurate than a linear elastic one,
as the basic input parameter — the soil stiffness — can show a great
scatter in reality,

2.5 Shear walls with large openings

Shear walls are used in high-rise buildings as bracing elements (Fig. 2.50).
Maodelling of such a structure is a difficult task. At first, one may think of
it as a two-dimensional model with shell elements (diaphragm). However,
these calcularions are generally too time-consuming for practical purposes.
Furthermore, the estimation of the reinforcement requirements is difhicult
(see Chapter 3). With a truss model one can only approximate the
behaviour of a shear wall with large openings due to the considerable
width of the structural elements and the non-uniform strain distribution
in most parts of the structure. Nevertheless, due to its simplicity, it is
interesting to use this model. In such a case one has to model the stiffness
of the structure correctly.

In a frame model, the structural system is modelled by straight truss
elements which are located at the centreline of the cross-section of the
individual members. Modifications are required for massive structural
parts, like the columns as shown in Fig. 2.51. In addition, it should
be noted that truss models are only valid for slender shear walls
(beam system). Further investigations may be required for areas near
the supports at the base of the structure.

The member forces of the horizontal beams and vertical ‘columns’ are
required for the design of the structure. In this case, one must consider
the deformation behaviour of the whole structure. The different parts of
the structure are modelled by straight truss elements. Special artention
has to be given to the joints between the horizontal beams and the
vertical ‘columns'. The horizontal beams are restrained at the inner
face of the vertical ‘columns’ and not at their centreline. If this is not
considered, the span length would be much too large, and the calcu-
lated stiffness of the structure would be smaller than in reality. There

are various possibilities to model the real behaviour of the structure
(Fig. 2.51):

e Model 1: Special truss elements. The horizontal beam is modelled by
special beam elements, which have infinite stiffness at borh ends.

e Model 2: Beam with wvariable stiffness, The horizontal beam is
modelled by at least three elements: two very stiff elements ar the
ends and one with normal stiffness in between (see Figs 2.51a and
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Fig. 2.50 Bracmg elements of a high-rise building — frames and shear walls
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2.52). The considerable stiffness differences between the rigid and
elastic elements may cause some numerical problems.

o Model 3: Modification of the stiffness. The bending and normal
stiffness of a fActitious member, having a constant cross-section, is
increased in order to consider the actual true behaviour of the
horizontal beam in the structure. The moment of inertia of the new
beam is calculated as though it has the same bending stiffness as the
real beam but with a shorter span length. It must be noted that the
deformation of the horizontal beam is not calculated correctly.

e Model 4: Coupling of the nodes at the joints. The nodes in the
joints are coupled together (see Fig. 2.51¢). This method has been
previously explained in section 2.1.
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e Model 5: Two-dimensional shell model (diaphragm). Shell models
will be discussed in Chapter 3. A considerable effort is needed to
evaluate such a model. Furthermore, the software cannot usually

estimate the reinforcement requirements. This is the reason that
shell models are not widely used.

The major difference of the above-mentioned models will be
examined for the system shown in Fig. 2.53. The walls have a thickness
of h = 20 cm. They are made of concrete grade C35/45. The structure
is loaded with a uniform horizontal load of ¢ = 10 kN/m. The deflection
pattern, which has been calculated with a shell model (diaphragm), is
shown in Fig. 2.54. A large shear and bending deformation in the
upper horizontal beams can be observed.

Table 2.4 lists the member forces in a few sections of the various
models. Models 3 and 4 give nearly the same results. The influence
of the axial stiffness EA is relatively small (i.e. 5%). As expected, the

Fig. 2.54 Deformation (shell model)
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Table 2.4 Member forces of a shear wall with large openings (Fig. 2.53)

Secrions Without Model 3 with Model J with  Model 4 Model 5

see modifi-  modified I modified I, A" coupling shell

Fig. 2.53 catons  (Fig. 2.31h)  (Fig. 2.51b) of nodes analysis

(Fig, 2.51c)

Secrion A-A 0N 215.6 133.2 133.2 133.2 1178 kN
V 2001 187.7 195.2 195.2 1919 kN
M —i818 =16 —2251 —2251 2116  kNm

Section B-B Y| =715.6 =133.2 -]33.2 =133.1 117.2 kN
Vv 137.4 149.5 142.3 142.3 145.5 kN
M =262 —- 2146 -1112 1114 2199  kNm

Section C-C N —4.4 =42 5.7 —5.7 kM
v =11 —f.5 =56 - 5.6 kM
M 2.7 16.5 6.6 16.4 kMm

Secton D=0 N —4.4 —9.2 —5.7 =5.7 kN
v =T —h.6 —h6 —6.6 kM
M Q 0 4] (1) kNm

Section E-E N =11.5 —17.5 — 108 ! LR kN
v —3.5 —18.5 ~18.5 =16.5 kN
M a.7 41.2 41.2 41.3 kNm

Section F-F N —115 —-17.5 -10.8 - 10.8 kN
Y = - 185 —18.5 = 16.5 kM
M 0 i) (4] o kMNm

Hortzontal w, 10.7 7.3 7.3 73 80 mm

displacement

unmodified frame system results in much greater displacements, greater
bending moments, and less normal forces than the ones of a two-dimen-
sional shell system.

The resulting member forces of a shell model are provided in column
7 of Table 2.4. There is a good agreement in the results of the truss
system. Therefore, the considerable work required for a shell analysis
does not seem to be justified for this particular structure,

The calculations shown above are based on a linear elastic material
behaviour. The maximum tensile stresses in the horizontal beam are
greater than the mean tensile strength of the concrete f,, (maxM =
41.2kNm, Section E-E, o,=M/W =41.2/8.33 = +4.9MPa),
resulting in cracking of the horizontal girders and a reduced restraint.
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Fig. 2.55 Member forces and deformation of a shear wall with large openings,
nodes at the colemn/beam joimts coupled

This aspect must be considered in design if more precise data for the
deformation of the structure is required. But for the example above,
the influence of the stifiness of the horizontal beams on the member
forces is small.

It should be noted here thar the accuracy of a truss system in the
region of the support depends on the restraint conditions (nonlinear
strain distribution). If more precise information is needed, then a
shell model (diaphragm) may be helpful.

In the above example, special beams are used to connect the
rwo vertical elements (‘columns’) together. Considerable construction
effort would be needed to build such beams. Therefore, one is interested
to avoid them, where possible, and to use the existing slab only as a
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Fig. 2.56 Effective width b of a slab [9)]

coupling element. However, this results in a complicated three-
dimensional shell system which requires much calculation effort.
To avoid this, one may again use a truss system. First of all, the
cross-section properties of the equivalent, fictitious horizontal beams
are needed. The effective width by can be taken from diagrams
provided by Wrong [9] (Fig. 1.56). As great accuracy cannot be
expected from such a model, the figures are only valid for simple
regular systems which are rarely built in practice. If more accurate
values for the stifiness of the horizontal beams are required, then it is
better to use a shell model with a simplihed equivalent structural
Sysiemi.

2.6 Bracing of high-rise buildings
The bracing elements of a building have to be designed to resist the
vertical loads and more importantly the horizontal actions (e.g. wind,
earthquake and their resultant effects) on a structure. Furthermore,
the stability of the structure must be assured.

Nowadays, whole buildings can be modelled by three-dimensional
shell elements. But this tremendous effort is not justified for ordinary
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Suppart level Festraint

Fig. 2.57 Modelling of a bracimg system - fictitious bar methad

structures. A truss system, where the whole structure is reduced to just
the main load bearing elements, the so-called ‘cores’, is sufficient for
maost cases in practice. In the real system the bracing elements are
connected together by the slabs, which are assumed to be rigid in
their midplane, Also, the bending stiffness of each slab is neglected.

Simple regular systems with a congruent deformation pattern of the
bracing elements can easily be designed with the so-called method of
fictitious bars (equivalent beam method) [13] (see Fig. 2.57). This
simple method is often used to check numerical results, even for
complex bracing systems. If there are differences between the analyrical
and the numerical analysis, it is always a question of which are the
correct member forces. Therefore, in the following the differences
between manual and numerical models are discussed.

In reality, often complicated bracing systems are built like, e.g. girders
which have different cross-sections over their length or columns which
are not continuous throughout the height of the building. In such cases,
a manual calculation using the method of fictitious bars is not possible.
A numerical analysis will then be required for a three-dimensional truss
model of the bracing system.

In addition, a numerical model can be useful where nonlinear
material behaviour has to be considered, or when a dynamic analysis
is required (i.e. an earthquake).
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Even in this day-to-day task, engineering knowledge is needed when
using design software. There are several problems which may arise when
using a truss model, such as:

e cross-sectional properties of the truss elements;

e location of the axis of gravity of the trusses (axis of gravity — axis of
torsion);

o modelling of the behaviour of the slabs = coupling of the truss
nodes.
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Fig. 2.58 High-rise building — bracing system (Mainzer Landstraffe, Frankfurt
[16])
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Method of fictitious bars

Plan view with bracing elements

@~

ﬁ“\

ST | [n}
¥
} Ll !
‘,Eﬂ
My *
b —

.

Cantre of
of fictitiou

bar

Cenire of lorsion

d

ol fictitiokss bar

i |

-
LY

|

5, = cantra of gravity of bracing elameant /
&, = cantre of forsion of bracing element /

Simplified model with equivalent springs

[ LF

=|

68

Copyrighted Material



Truss and beam structures

The following items are neglected:

moment of inertia I, of the bracing elements;

wrapping torsional stiffness of the individual elements G - Cy, ;
St Venantsche torsion stiffness of individual elements G - 11 ;
shear deformations.

Forces due to translation:

Hyy E-1 BBy
Hy=so i M= TLE,
Forces due to rotation:
HL s Mu,H__'nE Ly Ty i BT M, m n E+ Ly Yot
¥ i1 E-Cy ie1 E - Cy
with:

H, mi Hzy resultant horizontal force, related to the centre of
torsion;

M, um resultant torsional moment, related to the centre of
LOTSLION.

The member forces of the individual bracing elements are
estimated on a cantilever beam loaded by horzontal forces
H, and H,. Torsional effects of the individual elements are
neglected.

2.

6.1 Equivalent cross-section of the trusses

The following stiffness parameters are needed for design purposes:
normal stiffness E-A
bending stiffrness E-l,andE- [,
shear stiffness G-A,and G- A,
torsional stiffness (St Venant) Gl

torsional stiffness (warping torsion) G - Cyy.

For closed thin-walled sections, in which equilibrium is satisfied by a

closed shear flow, these parameters can easily be calculated, e.g. by
means of a computer software based on the linear-elastic behaviour of
the concrete material. However, the reduction of stiffness in Stage 11
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(cracked concrete) has to be considered. It is well-known that the
torsional stiffness of a cracked member is significantly lower than the
elastic value. Therefore, the torsional stiffness Gl may be neglected
for a concrete structure in Stage Il condition. Rough data are given
in Heft 240 of the German Association for Concrete Design [10],
where the following values are listed:

beam uncracked (Stage I) (G- I7)' = 1/3-E, - I
beam cracked (Stage IT) (G- Ip)" = 0.1 -E_ Iy

E
7-(1-v)

According to Eurocode 2, a structural member may be weated as
uncracked if the greatest tensile stress o,y under a certain load combi-
nation is less than the guaranteed tensile strength f, 5 o51./9c

Very often the bracing elements have large openings (e.g. for the doors
to the elevator shaft) which may reduce the shear and rorsional stiffness
significantly. For beams with open cross-sections or for hollow box girders
with openings the influence of the floor slab has to be considered when
calculating the stiffness parameters. An engineering judgement is
required here.

Further investigations are required if the bracing elements are close
to each other. In the fictitious truss model, it 1s assumed thar the slab
can only transfer normal forces and that it has no bending stiffness,
This assumption is not valid if the distance between the bracing
elements is small. In such a case, the cores may be modelled as one
single, stiff cross-section. An alternative is to introduce a stiff coupling
of the nodes. This will be explained in section 2.6.3.

shear modulus G =

= 0.6-E. (Poisson's ratio i 2= 0.2).

2.6.2 Location of the beam elements

In a numerical model, the beam axis coincides with the axis of gravity of
its cross-section. All external loads and intermnal forces relate to this
point. Special attention should be taken for beams where the centre
of gravity does not coincide with the centre of torsion. In such a case
torsional moments are calculated if a load does not act at the centre
of torsion. Some software programs do not consider this effect. Also,
some FE-programs do not consider that the beam rotates around its
axis of torsion and not around its axis of gravity (Fig. 2.59). In such a
case, the axis of the beam elements should be located in the axis of
torsion. Otherwise the stiffness of the global system is overestimated.
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Rotation around the axis of gravity Ruotation around the axis of torsion
not correct covmect

Fig. 2.59 Rotation of a beam with U-section under pure torsional moment

2.6.3 Coupling of nodes

The bracing elements are modelled by truss elements (see Fig. 2.63).
The axis of the elements coincides with the axis of gravity of the real
system, as explained above. It is useful to introduce extra fictitious
master nodes, to which all cores at one level are coupled (Fig. 2.60).
These nodes simplify the input of the external loading. It can be
located at the centre of the load area. It should be noted that, in the
numerical model, loads are usually only considered when the loaded
node is connected to the truss system (see Fig. 2.61).

Sz

Sy = centre of gravity of bracing element i | =
Sn = centre of torsion of bracing elements |

Fig. 2.60 Location of the bracing elements and master node
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Hinge coupling Rigid coupling

Fig. 2.61 Coupling of nodes - elevation

It is very time consuming to model a slab by using shell elements.
Therefore, the behaviour of the slab is simulated by special coupling
of the truss nodes. The wype of coupling — hinge, full or parnally
restraint — depends on the real system. The deck slab in normal build-
ings is usually relatively thin and the distance of the bracing element
and the columns is considerably larger. In such cases, one may assume
that the deck slab has no bending stiffness but an infinite normal stiff-
ness. The slab may only transfer normal forces. The bending restraint
of the bracing elements due to the slab is neglected.

The following different types of coupling are used in practice (see
Fig. 2.62):

1. Bending stiff slab
Ve =Y+ 00 (-2} — o (¥ — )
vy = vy + P (T — 20) + a0 - (x — xp)
v: =+ s (Y —Yo) — @t (x—x0)

2. No bending stiffness, where the rotation of the nodes at the same
level is not identical

vy =V — 20 (¥ — %)

"’I\' N Ll'rﬂ + I'IE"'.':' ) {.x | xﬂ}
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©
i
he
Fig. 2.62 Displacement and rotation of the bracing element m case of a suff slab E
D
3. No bending stiffness, where all nodes at the same level have the &
same rotation o
Uy =V — ¥+ (¥ — o) =
o B
Vy =ty + 0 - (X —Xo) S
¥: = ¥
with:

Uys Y0, Yo is the displacement of the reference node;
Pty Bvin W 15 the rotation of the reference node.

Model 2 is used for comparison only. It does not reflect the real
behaviour of the slab. Whether Model 1 or 3 should be used depends
on the behaviour of the actual system with respect to the stiffness of
the slab and the distance of the bracing elements. A stiff coupling
(additional to coupling without bending stiffness: rotation ¢, = .,
B = Ps P: = P) may cause restraints in the system, as can be
seen from Fig. 2.61. When the deformation and the rotation of all
nodes in the same level are identical, vertical loads are distribured
according to the normal stiffness of an individual bracing element.
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This does not reflect the actual behaviour of the structure. In reality,
the loads are carried by the bracing element which is close to the load.

The actual load bearing and deformation behaviour of a slab is gener-
ally similar to a slab without bending stiffness but which is infinitely stiff
in its normal plane. In such a case the rotation of all elements around
the vertical axis o, must be identical at one level. Therefore, Model
3 should be used.

The axis of gravity of the different truss elements is coupled together,
resulting in torsional moments where the axis of torsion does not coin-
cide with the axis of gravity (e.g. cross-section with L or U shape). In
this case, torsional moments and rotations are estimated.

2.6.4 Example — comparison of the various models

The following calculation will be done for the bracing system shown in
Fig. 2.63 (the height of the building is h = 24 m). This structure has
been chosen as the member forces can be calculated by the equivalent
beam (fictitious bar) method. Therefore, the manual calculated results
can be used to verity the numerical models. There are four different
bracing elements: two shear walls, a flinged member with L-shape,
and a member with U-shape. The slabs are modelled as mentioned
before, using special restraints with and without coupling of the nodal
rotation ¢, (i, is the rotation around the vertical axis).

For the sake of simplicity of the further calculations, it is assumed
that all bracing elements are fully restrained by the foundation slab. If
the structure has a stiff box as a basement, it can be assumed that
the trusses are fully restrained at ground level, thus resulting in
smaller forces and displacements. An elastic foundation can be
madelled by using spring elements at the base of the trusses.

The distribution of the bending moments, from the method of ficti-
tious bars, are shown in Fig. 2.64 for a uniformly distributed horizontal
load of g = 0.442 kN/m’ (total horizontal force is H = 106.1 kN) in the
x-direction.

The distribution of the total load between the different bracing
elements is as shown in Table 2.5.

Figure 2.64 shows the bending moment distribution from manual
analysis (hctitious bar method), and the values of the two different
truss models, It can be seen that the coupling of the rotation around
the vertical axis . has a considerable influence on the member
forces. The bending moments in the bracing elements numbers 1 and
3 are more than 1.5 times larger than for the system without coupling.
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Fig. 2.63 System, loading and truss model

Table 2.5 Support reactions (hovizontal force and restraint bending moment) of the
bracing elements calculated with the method of fictitions bars

Element no. 1 z 3 4

Support force in x-direction {in kN) 18 h) = 28
Fixed end moment (in kNm) —215 ~725 =0 -335
Load distribution (in %) 17 57 = 26
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Fig. 2.64 Bending and torsional moments of the bracing elements

These large differences are caused by the torsional moments of
element number 2, which results from the distance of the axis of
gravity and the axis of torsion (Fig. 2.65). Without coupling the
rotation around the vertical axis, the transverse bending moments,
M,, are small. In the case of coupling of the rotation . the torsional
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Centre of torsion |‘ 4m >

Fig. 2.65 Bracig element number 2
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hand, the ransverse bending moment, M,, increases.

The small differences between the results of the equivalent beam
method and the numerical truss model are caused by different
assumptions for each model. Within the equivalent beam method the
bending stiffness of the bracing elements is considered, whereas the
torsional stiffness of the individual members is neglected. This
simplification is required in order to obtain an easy analytical solution.
On the other hand, a numerical calculation will always be based on a
linear-elastic material behaviour. An elastic bending and a torsional
stiffness are used in this example (Stage I — uncracked).

The assumption of a linear-elastic material behaviour should be
checked in the case of large bending and rorsion loads. As already
mentioned in section 2.6.1, it may be necessary to neglect the torsional
stiffness Glp if the section is cracked.

The results of a three-dimensional shell analysis are used to verify the
truss models. The whole structure had been modelled with approxi-
mately 4410 shell elements (element size 1 x 1 m) (see Fig. 21.66).
The columns are neglected.

Table 2.6 Bending moment M, at the supports of the bracing elements (m kNm)

Element no. l 2 3 4

Method of hodrious bars -2115 125 4] —335
Truss analysis v, ; = v v, = v -330 —- 430 0 =518
Truss analysis v,; = vo: ¥, = Vi & =@ —221 -701 0 —-356
Shell analysis -267 —636 0 ~334
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Fig. 2.66 Three-dimensional shell model

Table 2.7 summarizes the main results of the shell analysis. The load
on bracing element no. 1 is increased by approximartely 30%, and that of
element no. 2 is reduced by approximately 13% relative to the values
from the equivalent beam method. Overall, there is a relatively good
agreement with the results of the simple manual model.

In Fig. 2.67, the deformation of the structure is plotted. The dis-
placements are increased by a factor of 10000 thus resulting in a big
differential deformation of bracing elements numbers 1 and 2.

In reality, the maximum displacements are approximately 1.1 mm in
the x-direction and 0.2 mm in the y-direction only (building material
C35/40 concrete, linear-elastic material behaviour).

The good agreement in the results of the three different models
demonstrates that a considerable effort to calculate the ‘correct’

Table 2.7 Support forces of the bracing elements (shell model)

Element no. 1 2 3 4

Support force in x-direction [kN] 32 43 1 28
':iuppurr force in y-direction [kM] ) —12 5 ¢
Fixed end moment M, [kNm] 18 ] =91 0
Fixed end moment M, [kNm] ~267 —636 0 —334
Fixed end moment M, [kNm] 132 2 0 |
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Cara no, 1

Fig. 2.67 Deformed structure (increased by a factor of 10000) loaded in the
x-direction

member forces, for example with a three-dimensional shell model, is
generally not required. However, the compurer calcularion rime for
the three-dimensional shell model is more than 100 times larger than
that for the truss model. More time is needed for the discretization,

9
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the verification of the results, and for summarizing the main output, In
addition, a computer program can generally not calculate the correct
arrangement of the reinforcement bars for a shell model, as will be
demonstrated in Chapter 3. One advantage of a shell model is that
not only the bracing elements but also the slabs can be modelled.
Thus, the deformation and load bearing behaviour of the structure is
modelled with higher accuracy. However, the calculated member
forces of the slabs cannot be used for the design, as the columns are
neglected and the size of the plate elements is too big,

In Table 2.8 the bending and torsional moments, shear forces at the
base of the columns and the deflection and rotation for a uniformly
distributed load in the x-direction are listed for different numerical
models.

The various analyses of the given bracing system can be summarized
as follows:

e The calculated bending moments of all truss models are greater than
that of the ‘real’ structure (shell model no. 6).

® There is a significant difference between the member forces of the
various truss models and the more realistic shell model no. 6.

e The results are very sensitive to the method of coupling. Rigid
coupling with 5, , = 2,5 should be used.

® Wrapping torsion can be neglected with regard to the simplifications
of the truss model.

e The support reactions are not very sensitive to the location of the
beam axis as the global deformation behaviour dominares.

2.6.5 Checking for stability — stability parameter
In addition to the design of the structural elements of a building which
can carry the relevant design loads, it is important to note whether the
structure is classified as sway or non-sway. In case of a sway system, it is
necessary to consider the deformation of the structure when calculating
the member forces of all individual elements, including columns
(second-order effect). In theory, this can easily be done with an
available software. It should be noted that the amount of calculation
is increased significantly in such cases, as the superimposition of the
various loadings may no longer be valid. Second-order effects may be
ignored if they are less than 10% of the corresponding first order
etfects (EC2, Part 1 [6]).

In the case of a manual analysis, the stability of the structure is
checked with the so-called stability parameter ev. Only if the parameter
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becomes greater than the specific value given in the codes, e.g.
Eurocode 2.1 [6], a more refined analysis, including second-order
effects, is required. The same holds true in the case of an unsymmetric
arrangement of various bracing elements.

Stability parameter ox
EC2A32:

forn <3:a=hgu\(F./Eqml) < 0.240.1n
for n > 4: a = hyr/(Fo/Eaal:) < 0.6

“rhETE.:

n is the number of storeys

h,,, is the total height of the building above level of moment
restraint

E_.l, is the sum of the bending stiffness of all vertical bracing
elements, which carry a load in a considered direction. In
all bracing elements the maximum tensile stress should be
less than f005 = 0.7 fon = 0.21 fi’} under the relevant
serviceability loads.

I.  is the second moment of area of uncracked bracing
members

F. is the total vertical loads in the serviceability limit state

(= 1)

The stability parameter o depends on the bending stifiness of the
bracing system E_I_, the height of the building h and the total vertical
loads F.. F, is the maximum load under serviceability condition,
including the reduction of the live loads allowed by Eurocode 2. The
elastic modulus E_ is given in the codes. Thus, only the moments of
inertia I, and I, are unknown.

In the case of regular structural systems, the required cross-section
parameter is the total sum of the moment of inertia of the individual
bracing elements in the relevant direction. In non-regular bracing
systems, the equivalent moment of inertia [, may be estimated by a
comparison of the maximum horizontal deformation of a cantilever
beam with the results from the truss model loaded by an arbitrary
horizontal force (Fig. 2.68).

The calculation can be based on linear-elastic material behaviour, as
long as the maximum tensile stress in the concrete is less than

Fko.05/ Ye:
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Fig. 2.68 Estmation of the equivalent moment of merta 1, of the bracing
s¥stemn

2.7 Design of hollow box girder bridges
The structural analysis of a hollow box girder bridge in the transverse
direction has been provided in section 2.1.2. Next, we consider its
modelling in the longitudinal direction. In practice, the designs in the
transverse and longitudinal directions are made separately. The bridge
is modelled as an ordinary beam, having a rigid cross-section with no
distortions due to either bending or shear (Fig. 2.69). This model is
used to estimate the longitudinal, shear and tomssion reinforcements,
the relevant support forces, the stresses, and the deflections of the bridge.
The torsional moments are estimated by assuming two bearings
located at one support axis. In such a case it is recommended that
each bearing be considered separately in the numerical model,
including the transverse spacing between them as well as their distance
from the centre of gravity of the beam. This results in a three-
dimensional numerical model instead of a plane grillage system. The
additional work is justified in this case, as the greatest components of
forces in each bearing are needed and not only the maximum total
support reactions. As an alternative, the rotation around the longitu-
dinal axis may be restrained, however this requires manual calculation
of the relevant bearing forces from the vertical load and the torsional
moments. A three-dimensional model is also required for the case of
a superstructure which has an unsymmetric cross-section.
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Beam model
1 21 41

a-Xx Fy r

¥
Support
Cross-saction y
m 1‘.

3-D view of truss system

Meutral axis

beam alemant

y  Support

Fig. 2.69 Numerical model of a two-span hollow box givder bridpe

The diaphragms at the support axis are modelled by stiff beam
elements, or more efficiently, by coupling of the nodes at the support.
As an alternative, torsional restraint at the supports can be considered.

Various different load cases have to be considered in the design of a
bridge structure, They then have to be combined in the most unfavour-
able manner. The relevant positioning of the traffic loads, e.g. axle
loads, can be considered in two different ways. First one can ‘drive’
the traffic loads by the computer over the bridge in all different lanes.
This results in an enormous number of load cases and a major compu-
tational effort. In addition one has to know in advance which parts of
the structure should be loaded to get the greatest member forces (see
Fig. 2.70). Therefore, numerical integration of influence lines for
each node and each force can be used as a reasonable alternative
(Fig. 2.70).

Influence line for

# bending moment — deflection curve caused by a rotation of A = 1;
e shear force — deflection curve caused by a deformation jump of

Aw=1.

The beam model is based on a rigid cross-section (Figs 2.71 and 2.72).
Distortions caused by unsymmetrical actions have to be considered
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| B0 KN/m
mmMaF__TlL =21 e

| maxhes vy

Influance line for banding
moment axis 3
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A
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Fig. 2.70 Load arrangement by means of an mfluence line (tram load UIC 71)
max./mm. bending moment at axis 3

separately by means of a frame system. This system may be supported
either in the vertical direction or in the direction of the webs (see
section 2.1.2). For this model the relevant member forces in the webs
and in transverse direction are estimated for a longitudinal uniformly
distributed load.

The displacements may be considered approximately by analysing the
equivalent forces in an elastically supported frame system.

Fig. 2.71 3-D shell model of a hollow box givder bridge (only one half of the
structure is shown)
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a) Longitudinal sysiem - baam model b} Transvarss systam
Deformed structure - rigid suppon

g =10 kN/m

Fig. 2.72 Distovsion of a hollow box givder bridge at midspan; beam model (left)
and real deformations (right, bottom)
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Fig. 2.73 Simplified equavalent system for a deck slab
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A slab system may be used to calculate the bending moments and the
shear forces caused by single forces (e.g. wheel loads) and non-
symmetric loads on the top slab (see section 4.11.3). This slab is
partially restrained at the webs (see Fig. 2.73). The stiffness of the
equivalent bending springs can be estimated by comparison of the
bending moment of a beam and a plate structure under a uniform
line load. As an alternative, bending moments can be estimated from
charts, such as those of Homberg (influence lines) [19,20]. Sometimes
an interpolation of the values of different support conditions (fully or
partially restraint at the web supports) and the location of the single
loads is required. However, such an analysis may be more time-
consuming than an FE analysis. Further information on plate structures
is given in Chapter 4.

2.8 Truss system — design of T-beam bridges

Until recently the capabilities of personal computers and the software
available were not able to compute a plate or a 3-D shell system by
means of the Finite Element Method. Until then two-dimensional
truss systems, e.g. grillage, were used. One of the best known examples
for this idealization of a three-dimensional shell structure is the Opera
House in Sydney, Australia. Ar the time of construction it was not
possible to design the roof as a thin unstiffened shell. Therefore, a
truss system was used instead of a more elegant spatial structure.

This idealization is still widely used, e.g. in prestressed T-beam
bridges. For such structures the results of a 2-D plate or 3-D shell
analysis (see Fig. 2.71) may be 'nice looking’ but are generally of little
use for a design where the resulting member forces are required
rather than the accurate stresses. Also a considerable amount of compu-
ration time is needed in order to consider all the relevant load cases.

An example of a T-beam bridge is shown in Fig. 2.74. This structure
has been constructed by prefabricated T-beams with an additional cast-
in-situ concrete top slab. However, before we consider the modelling of
real structures, we will examine the essential special fearures of a grillage
system for a simply supported rectangular slab.

2.8.1 Design of a rectangular solid slab

The internal forces of a rectangular simply supported concrete slab can
be determined from tables or by means of a spatial FE analysis. These
methods can be used to check the results of a grillage system.
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The solid 2-way slab is represented by a 2-D grillage system where the
longitudinal and transverse beams are connected at the nodes.
The loading is always perpendicular to the midplane of the system.
The following example only considers uniform loading.

After the discretization of the structure, one has to determine the
equivalent vertical line loads on the beams in both directions. This can
be done by assuming that the displacement of the beams at the nodes,
where they are connected together, should be the same (Fig. 2.75). For
midspan of a simply supported beam structure under uniformly distributed
loading g (g = q; + g; = total load) this results in:

max. displacement of a simply supported beam wnder wuniform loadmg:

Sl -t 5 ] ]

i o

System A (x/ = 0.5) — midspan
{Fig. 2.75 left)

System B {x/l = 0.1) - near support
(Fig. 2.75 right)

i il P L
b 384 E. -l ! = 384 L
-5 nh-ﬁ = = g -1
b B fa = 0.1) ~ 00041 - ]

with E I, = constant and f; = [; this results in:

gyt =g} gy -1} =0.3139.4; - 1§
with ¢ = q; + ¢ it follows:
8 ™
R Y W= 3 ise. 041
b I
R A IR TETN:
“’iThI]=I:

h=q:=05¢ =044 ¢.=076-q

However, this load distribution only applies to one location. It follows
from the deflected condition (see the right-hand side of Fig. 2.75), as
well as the previous calculations that the equivalent load on the
beams decreases from midspan to the supports respectively in the direc-
tion of the shorter span length. This non-uniformiry is usually neglected
in the analysis of a grillage system.
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The accuracy of the calculation usually increases with the number of
trusses in both directions. In the following example the influence of the
number of beams on the member forces and the displacements of a
simply supported rectangular slab with a aspect ratio of I,“-"L =131
examined. The structure is loaded by a uniformly distributed load of
q = 10 kN/m".

a) junction of the beams at midspan b} junction of the beams near the support

-

Girdar 1 A‘jirdﬂrE

___________________

F.:g. 2.75 Load distribution Jf::.n' d 'q'r['fll...:g.-: SYSLETn
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Fig. 2.76 Grillage systems used m the analysis

For the purpose of comparison, the displacement at midspan and the
relevant bending moments in both directions are calculated either by
tables or by a two-dimensional FEM (shell).

Czerny [11] gives the following values (concrete grade C30/35, slab
thickness h = 30 cm):

M = 13.0kNm/m; m 0 = 288kNm/m; f = 10.8 mm.

Figure 2.77 shows the bending moments, the shear force and the dis-
placements of the grillage system with three girders in each direction.
As would be expected, the load is mainly transferred in the direction
of the shorter span. The bending moment and shear force distribution
show some jumps, which are caused by the pointwise connection of the
beam elements.

The convergence of the grillage model is shown in Fig. 2.78. Here the
ratio of the results of the grillage system to that of the slab are given for
an increasing number of beams in both directions.

A system with one beam in both direction results in 43% (m,,) resp.
61% (m,,) greater bending moments compared to the slab. This large
error can be traced back to the fact that the two-dimensional spatial
load dispersion of a solid slab is not modelled. Even for this simple
system at least 7 = 7 beams are required in order to achieve a sufficient
accuracy in the member forces. Figure 2.78 shows that with more than
9 x 9 beams, the calculated results are lower than the correct values
(factor < 1.0) which may lead to an unsafe design.

By means of a truss system the forces in members can be calculated
for slabs with reduced twisting stiffness or orthotropic slabs. Slabs which
have a reduced twisting stiffness can only carry the loads in two ortho-
gonal directions. The twisting bending moment m,, cannot be sustained
in the edges where two simple line supports meet. Some examples of
systems with reduced twisting stiffness are:

e precast concrete slabs without additional cast-in-situ concrete cover,
if a joint is located closer than 0.3[ from the corners;

# slabs having large openings in the region of the corners;

e slabs, where the comers are not restraint against uplifting.
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Fig. 2.77 Bending moments, shear forces and displacements of the beams (3 x 3
division)

The reduction of twisting stiffness in the girder model is considered
by reducing the torsional stiffness of the beam elements. Figure 2.79
shows the results for the extreme value I+ = 0 in relation to that of
the elastic value Iy for an increasing number of beams in each direction.
The bending moments at midspan increase to more than 80% if the
torsional stiffness is neglected. This factor is significantly higher than
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Fig. 2.78 Comparisom of the results of a grillage with increasing number of beams
with the plate values

the value given in Heft 240 of the German Concrete Association [10]. ™
According to this publication, the bending moments of an isotropic slab o
should be increased by only 26% (aspect ratio of the slab 1:1.5) if the r
real system has a reduced twisting stiffness. This big differences between =
the calculated values for I+ = 0 and that of Heft 240 [10] can be traced E
back to the fact that the latter one assumes a reduction and not a =
complete loss of the twisting stiffness. o
=
>
1.8 E‘
1.8 S
171
o 1.6+
B 1571
i 141
'E 134
O 124
1.11
.01 = war mean e s & e
e 3 3 7 g

Number of girders in each direction

Fig. 2.79 Comparison of the bending moments and displacement at midspan with
the plate values (stiffness against twisting moments) for an increasing number of
beams in both divections with I+ =0

94



Truss and beam structures

2.8.2 Double T-beam bridge

Different numerical models can be used for T-beams and ribbed slabs.
These will be discussed in detail in Chapter 5. In the following, only
the modelling of a double T-beam by means of a grillage is shown. As
mentioned earlier, truss systems are still applicable as, for example,
the dimensioning of prestressed beams is much more complicated if a
shell model is used. Furthermore, the computational effort for truss
systems is considerably less than a folded slab analysis.

The procedure for a girder calculation is demonstrated for the double
T-beam bridge shown in Figs 2.80 and 2.81. The numerical model is
shown in Fig. 2.82. The longitudinal girders are represented by straight
beam elements. Their axis is located in the centre of gravity of the T-
cross-section. Where the longitudinal girders have an unsymmetrical
cross-section, which is very often the case for the outer girders (see Fig.
2.81), the principal axis is not purely in the vertical and horizontal direc-
tion. This results in a 2-axial bending for the beam, which can only be
considered by a three-dimensional numerical model. In order to avoid
this additional effort, the inclination of the principal axes is generally
neglected. This simplification is justihed since, in most cases, the effect
of the inclinaton of the main axis on the member forces and moments
is very small. Furthermore, the shear centre is placed in the centre of
gravity of the cross-section. The effective width of the flanges has to
eventually be taken into account. With these simplifications, the struc-
tural analysis of the bridge by using a flat truss system (grillage) is possible.

For simplicity, a pin support in the centre of gravity of the main
girders and a restraint against torsion caused by the cross beams and

Cross-saction

165 ol 480 e 155.1515'._

5‘ | 15
il h

e

10 10

System
TR AT e a

B E
Fig. 2.80 Double T-beam bridge
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Fig. 2.82 Numerical model of a double T-bheam bridge
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the two separate bearings in each axis at the supports are assumed in the
system shown in Fig. 2.82. Therefore, the distance between the bearings
and the distance of the support level to the centre of gravity has to be
considered when estimating the relevant bearing forces.

While the discretzation of the longitudinal girders creates no
difficulties, detailed investigations are required for correct and realistic
modelling of the transverse load-bearing behaviour of the bridge. This
includes the vertical location of the equivalent ‘hctitious’ transverse
beams, their connection with the longitudinal main girders and their

bending stiffness.

2.8.2.1 Location of the beams in transverse direction
The transverse girders can either be arranged in the centre of gravity
{model A) or at the height of the deck (model B) (Figs 2.83 and 2.84).
The main difference between these alternatives is that model B requires
a three-dimensional truss model. The effect of the discretization on the
member forces will be discussed in section 2.8.2.4 by a special example.
In the case of torsion, the longitudinal girders rotate around their centre
of torsion, which in the case of a symmetric T-beam is located ar the

Cross-gsection

1

EE _JF BRE RS NE BN BB BRI EEK B _LR_ER_EL _EE Ll

Longitudinal
Longitudinal girder 2

girder 1 Transverse girder (location)

8

Fig. 2.83 Location of the transverse beams
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Fig. 2.84 Two different models for a double T-beam bridge
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Single or line load Single or line load
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Fig. 2.85 Deformation of the longitudinal and transverse beams under constant
Ime loading

junction of the centreline of the flange and the web. It follows from this
that a load on the flanges results in tension forces in model A and
compression forces in model B in the transverse beams (Fig. 2.85).
However, since the torsional stifness and thus the restraint against
rotation of a T-beam is small, the difference between the rwo models
can usually be neglected. It should be noted that in the case of model B
the end forces of the transverse beams are introduced into the T-beam
eccentrically which results in rorsional moments in the longitudinal girder.

2.8.2.2 Number of transverse beams

The number of transverse beams, hence their distance from each other,
influences the load distribution in the transverse direction of the bridge
deck. Therefore, the spacing of the transverse beams should not be too
great. This is of special importance in the case of concentrated loads
(e.g. truck loads on a deck). A point load on a slab will always disperse
in two directions, whereas a beam can only transfer the load in the
direction of its axis. In such a case, it is recommended to design the
bridge in the transverse direction with another system, e.g. a slab,
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Fig. 2.86 Member forces and deflections of a fully restramed beam due 1o vertical
displacernent or rotation of one support

modelled by 2-D plate elements. This has already been explained for a
hollow box girder bridge (see Fig. 2.73). Thus, to improve the load
transfer in the longitudinal direction, it may be useful to add additional
(hctitious) beams in the longitudinal direction.

2.8.2.3 Section properties of the transverse beams

The stiffness of the transverse beams should be the same as that of the
real slab. Due to the considerable stiffness of the longitudinal girders it
is assumed that the transverse beams are fully restrained by the
longitudinal beams. If the transverse beam is located on the axis of
gravity of the T-beams (model A), its span length is longer than in
reality (o = [, +b,) (Fig. 2.85). Therefore, the cross-section
height has to be modihed to ger the same stiffiness as the real slab.
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This can be done by comparing the angle of roration or the vertical
support force of a fully restraint single span beam (Fig. 2.87). The
relevant deformation case depends on the stiffness of the rtotal
system. If the longitudinal girders mainly deflect in the vertical direction
under external loading, the support displacement Aw has to be used. In

Modal A: transverse beams at the centre of gravity of the longitudinal girders

Longitudinal Longitudinal
; girder 2
System
=3B37 kMNm
Bending
moment 1| 4647 kNm
Shear force ~1475 kN
Deflections i
O1m

Estimation of the equivalent height of the transverse beam

12-E-F Va-P BN
T T =
r 12wy 12

Model A ! = 5.2+ 1.1m = 83m

Vi = —Vg =

. _ 147552+ 1.1}
~ 12-31939.0.1

Model B: I =52m

= [.00982 — h" = 0. 487 m

1.475 -5.2°
— e — ] — h" =10
=12 3193 g1 0005 e

Model B: transverse baams in the centre of gravity of the llange

Transwersa beam
(location)

Fig. 2.87 Forces in members and displacements of the equivalent structural
systems due to a displacement of the supporis of w = 0.10m
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1

g= 10 kM/m
1 =
e T

Fig. 2.88 Load cases

—

g

such a case the shear force ar the support is:
_12-E.-1
-
Thus, the equivalent moment of inertia is proportional to the span
length powered by a factor of 3.

If the bending behaviour of the deck slab is the dominant feature, i.e.
the longitudinal girders rotate under external loading, the unit rotation

of the support Ay has to apply. In this case the equivalent moment of
inertia is proportional to the span length powered by a factor of 2.
6:+E.~1

F

In the case of inclined haunches, as in the chosen example, the support
forces due to the unit displacement Aw =1 and the unit rotation
Ay = 1 may be estimated numerically by a plane truss system. As the
bending moments are independent from the bending stifiness of the
equivalent system (support bending moment of a fully restraint beam
under uniformly distributed load M = —gl*/12), model A would result
in correct shear forces but with incorrect bending moments (Fig. 2.87).
Theretore, in such cases the model B is recommended as the member
forces in the longitudinal and transverse girders are needed for design.

Vi=V; Aw

VI,,‘ = ‘Ir"rH = .&.I.F

2.8.2.4 Comparison of both models
Figures 2.89 and 2.90 show the member forces and deflection of the
inner span of double T-beam bridge shown in Fig. 2.80 for both

102

Copyrighted Material



Truss and beam structures

Bending moment M,
E Load case 1 E E load case 2 E..
o T T T

s s

3 L

148

tEnt aamt samt o dim b dam 2 33amt + Y i

A B C D E F G i
L I
Load case 2

Fig. 2.89 Member forces and deflections of span C-D - three-dimensional truss
system
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Laad case 1
3
|

N 2 4

1752

g

Tranaverse bending moment &

5 —-""‘!,L— T::.mil:u"mlnw:mﬂhﬁ
| I I S A B

" &
—
fmwv,
/ﬁ g
8
L~ o
3 b= A

Daflections
TWEDPT SO
T
-.- i.'IJ
System - + Cross-saction
‘-ﬂg;‘.ﬂm.f‘-ﬂmiﬂm:‘ Mm.‘?.ﬂﬁq‘ + —ILmjm'—Ir‘-
A B c D E F G =
R £
Load case 2

Fig. 2.90 Member forces and deflections of span C-D - wwo-dimensional truss
system
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Table 2.9 Forces in members and displacements of the relevant sections

Load case 1 Load case 2
Flane D Plane 3-I
System System
Support  bending moment M, —1333/-305 —1297/-197 —178&/135 —1741/134
axis bending moment M, Q0 147/ 164 a0 498115
rorsional moment M+ —58/—=T1 —54/—p8 —401/—65 —419/=36
shear force V. 19 T4 197713 J60:—135 261/-36
Mid- bending moment M, 5937203 ST0/193 TROD T60/4
span bending moment M, 00 o587 a0 —205/-165
torsional moment My =0 =0 =={) 2=l
shear force Y, r=l) =0 =l =0
displacements 1.2/0.38 1.2/0:4 1.6/—06 1.6/—(0.5

models of the transverse beams, namely a plane (grillage) and a three-

dimensional truss system. Two different unit loads are considered (Fig.
2.88):

load case 1: line load g = 10kN/m in the centreline of longitudinal
girder 1;
load case 2: eccentric line load ¢ = 10kN/m (is equivalent to

g = 10kN/m + m = 33.4 kNm/m).

From the figures in Table 2.9 it can be seen thar the results of both
models are quite similar except the transverse bending moment M.,
which is from its definition equal to zero Q in the case of a plane truss
system.

The sawtooth shape of the forces in members (Figs 2.89 and 2.90)
results from the local loading of the transverse beams. For dimensioning
purposes, these values can be smoothed.

The different parts of the load transfer should first be analysed. This
is done for the transverse beam in the middle of the span C-D. Figure
2.91 shows the member forces and rhe displacements of this beam.

Using the numerically determined deformation pattern of the beam,
the two parts of the shear force caused by either a vertical shift or a
rotation of the supports can be calculated by means of the expressions
provided in Fig. 2.86. The resulting bending moment distributions are
shown in Fig. 2.91. For the two load cases, the shear forces due to
vertical shift and those due to rotation have similar ranges and different
signs. For this system, the equivalent stiffness of the transverse beam
consists of both parts of equal size.
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A =] c ] E i;: G

Grillage system
A Y 'y A F 4

Shown transversa beam Auxiliary beam

Fig. 2.91 Member forces and deflection of the transverse beam ar midspan of
span C=D

As noted above, the equivalent stiffness of the transverse beams
depends on different parameters and cannot be determined exactly.
Therefore, the influence of the stiffness of the transverse beams
should be examined in more detail. For this, the sectional height is
varied from h = 0.0 (no transverse beams) up to h = 0.60m. The
study of parameters is made by a plane truss system (grillage). Figure
2.92 shows the bending moments at the supports M, and at midspan
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Load case 1 %q-iﬂkhl.n‘m

h
m = 33.4 kNm/m

Load case 2 Ef; g = 10 kN/m

1.0 1.2 h
: y Inm'h

Fig. 2.92 Influence of the section depth h of the transverse beams on the bending
moments of the loaded longitudinal givder

of span C—D M; of longitudinal girder No. 1 for the different depths. In
Fig. 2.93 the vertical support forces at axis C are plotted. This figure
shows the significant influence of the loading. An increase in the
section depth only results in minor changes in the bending moment,
whereas its reducrion causes a considerable increase in the forces in
members of the loaded girder.

AF, in % A
A -LU%UMMA

120 1
te
100 Suppart forca in axis C

Load case 1 * g =10 kNim

m..
Load case 2 ‘ﬁr?

G0 h
my = 33.4 kNm/m
401 LHﬂHE&EEE!q:'}ﬂWm
mn
i 0.6 0.8 1
i} . I-=l="_''_ﬂ';!_._-l-.:z_ﬂ
02 04 Gt
—20+
40t

Fig. 2.93 Influence of the section depth h of the transverse heams to the support
forces at axis C
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2.8.3 T-beam bridge with several longitudinal

girders

Eccentric loads, e.g. loads on a cantilever slab, cause a sawtooth kind
of pattern for the torsional moments in the longitudinal girders (see
Figs 2.89 and 2.90). This pattern results from the local restraint of
the longitudinal girders by the transverse beams and vice versa. A
design of the longitudinal girders for the peak torsional moments is,
however, not required. This will be shown in the following example.

Cross-saction of supersiruciure
- in-situ concrele slab b= 28 cm

Copyrighted Material

Cross-section of
precast beams i I—
1 2 3 4 & L] T
| | | | | | |
-
AR PRSI FE—— >
38.5m w5 m BEm IBE5m BWEmMm 283Em

Fig. 2.94 Theodor-Heuss Bridge in Heidelberg [21]
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Bending moment M, in kNm

201

51
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Deflections v, in mm 25
C— T DT - : n ] - - e S ——

Fig. 2.96 Forces in members of the longitudmal givder between axis 3—4 due to
an eccentric line load of g = 10kN/m = 10 transverse beams per spm
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slab is nearly unstressed. Due to creep and shrinkage, load redistribution
berween the precast beams and the cast-in-situ slab takes place. In addi-
tion, the design in the transverse direction has to consider that the full
height of the flange of the precast girders cannot be taken into
account. The joint between the precast girders is not reinforced and is,
therefore, not able to carry any tensile forces.

2.9 Dimensioning of reinforced beams
In the previous sections, the estimation of the member forces and
deflections of truss systems have been explained in detail. However,
the goal of any design is not the calculation of the action effects in
the members but the dimensioning of the system for the ultimate and
serviceability limit state. Therefore, it is often not necessary to model
the structure with a high degree of accuracy and to consider all possible
actions and effects. The actual amount of structural analysis to be
carried out should be adapted to the required accuracy.

The following only refers to the ultimate limit state (ULS) design, as
the design for serviceability can be very different according to the
requirements of the relevant codes.

2.9.1 Design for bending and normal forces
The computation and dimensioning of an arbitrary concrete cross-section
under ultimate condition has been described in derail by Quast and
Busjaeger in Heft 415 of the German Concrete Association [14]. There-
fore, the following only provides some brief comments on this.

The design of a concrete cross-section requires the following items:

e Checking of the structural safety and balance between internal and
external forces without exceeding the permissible stresses and strains
of the materials.

e Estimation of the required reinforcement and its distribution in the
beam under consideration of the ultimate and the serviceability
limit state.

e Estimation of the strains and stresses.

The nonlinear behaviour of concrete and steel as building materials
has to be considered in the design (Fig. 2.98). In addirion, concrete is
not allowed to carry any tensile forces in ultimare limit state design.
The tensile strength of concrete is only used in the design of the service-
abiliry limir state (crack width, restraint forces and displacements).
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Actions Rasistance
il ] —p{ ~hed | 4—
& %) = pe 2
A Mg ! FuRm
h 0| BEEcEses e I
Ney o
= Egi - y
h I Fud
Ec
Strain Stresses and strass
resultants

Fig. 2.98 Acuons, strains and intemal forces (resistance) of a remnforced concrete
section

The design is based on the straight strain distribution over the depth
of the cross-section in Stage | (uncracked) as well as in Stage Il
(cracked) (Bernoulli's hypothesis) condition.

The nonlinear material behaviour with respect to the stress—strain
relation is defined in the relevant codes (see Fig. 2.99). It should
always be kept in mind that these curves are only approximations of
the real material behaviour for use in the design. The parabola-
rectangle stress—strain relation of concrete is only a simplification of
the stress distribution in the concrete compression zone, and cannot
be used for other design purposes. In reality significant deviations
may occur. In the design the permissible concrete strains, which are
different in various codes, should be checked (Fig. 2.100).

1. (<0) Concrete z Reinforcing stesl
' 'y
Focl Y
fe T Relts —
Eg (=) Eg
> L

L

Ezay E,
(=—27a)  (=—3.87.)

Fig. 2.99 Stress-strain relationship of concrete and steel according 1o EC2, Pant |
Fig. 4.2 and 4.5 [6]
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{1 = EcplEca )t
of
(1 — e/ )b
=

.ﬁp w .\:H;‘u] n
/ N &
" —
0 Bz Ey

A — steal tension strain limit

B - concrete compression strain limi

C - pure compression strain limit
Fig. 2.100 Possible strain distributions under wltmate limit state according to
ECZ2, Pamt 1, Fig. 4.11 [6]

For a more realistic estimation of the stiffness of a member, the
tension stiffening effect has to be taken into account (see section
2.4.2). Otherwise the stiffness of the member in the relevant section
is underestimared. The tension stiffening effect can be considered by
modifying the stress stain relation of steel in Stage II, e.g. according
ro Fig. 2.101. From Fig. 2.101 it can be seen thar the rension stiffening
effect only has a significant influence on the stiffness of the member
when the steel strain has not reached the point of yielding.

The dimensioning, i.e. the estimation of the required reinforcement,
can only be done by iteration. This is true even for simple rectangular

A
[
&
b
-l .M- mfﬂ - EF“I
Ty
‘F-l.

Fig. 2.101 Modified stress—stram relation of steel with regard to the temsiom
stiffening effect (DIN 1045-1, Fig. 7 [7])
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cross-sections under uniaxial bending. For cross-sections of arbitrary
shapes, such dimensioning is an optimization problem. The designer
must provide a reasonable distribution of the reinforcing bars in the
cross-section and give some information regarding the iteration
process (i.e. how the calculated reinforcement has to be increased or
decreased).

In addition to the reinforcement required for the ULS, the minimum
reinforcement and the ‘shift rule’ (horizontal displacement of the
envelope line of the total tensile force) have to be considered. The
latter is done by increasing the local normal force in the longitudinal
tensile reinforcement by:

cot @ — cotcx

B 7
AFy =V 3

where:

f is the inclinarion of compression struts;
cx is the inclination of the shear reinforcement against the horizontal
axis.

2.9.2 Design for shear and torsion

The design for shear and torsion for a cracked section is based on a
strut-and-tie model (Fig. 2.102). There are considerable differences
between the various codes with regard to the permissible angle
between the concrete compression struts and the main tension chord
f, the shear capacity due to the dowel effect, the shear friction in the
cracks caused by aggregate interlock, and the permissible stresses in
the compression struts. Therefore, the results of the numerical calcula-
tion should always be verified by manual analysis of some critical
sections of the beam.

The shear and compressive stresses depend on the minimum width of
the beam in the tensile region. For polygonal cross-sections of an arbi-
trary shape, the relevant section for the shear design has to be defined
by the user of the computer program.

In addition the influence of point loads close to the supports, the
variation of the cross-section's depth (inclined haunches), and the
influence of an indirect support has to be taken into account.

In the case of torsion, a reduction in the resulting tensile force in the
compression zone of the cross-section can be applied. It should be noted
that torsion reinforcement is only required in the case of an equilibrium

113

Copyrighted Material



Fmite element design of concrete structures

Shear loading Torsion

Tension ties

- = = Compression siruts

Rigid plate al the end
for load transher My

Fig. 2.102 Strut-and-tie model for shear and torsion design

rorsion where the equilibrium of the structure depends on the torsional
stiffness of the elements of the structure. As the torsion stifiness of a
concrete member decreases significantly in case of cracking (Stage
I1), the minimum reinforcement is sufficient for the compatibility
torsion. The calculation of the internal forces is usually based on a
linear-elastic material behaviour. Therefore, a computer program will
'ﬂl\.lr':i'!,-':i determine an amount of torsional reinforcement. This pmhlem
can be overcome by setting the torsional stiffness of the members to
very small values.
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Shear walls and deep beams

Shear walls and deep beams are thin two-dimensional flat spatial struc-
tures, which are loaded by forces parallel to the midplane of the plate
(Fig. 3.1). The stresses and strains are uniformly distribured over the
thickness. However, one must make a distinction between shear walls
and deep beams (Fig. 3.2). Shear walls are continuously supported
plane members loaded by normal forces, where the maximum width
of the cross-section is greater than four times its minimum width, If
this is not the case, the member is treated as a column. Deep beams
are plane spatial members, whose height is greater than half of their
effective span width Ly [6]. Furthermore, these beams are not continu-
ously supported. In contrast to ordinary beams, shear walls and deep
beams usually have a nonlinear strain distribution over their depth
(see Fig. 3.3). Shear deformation cannot be neglected.

Planea shell Stresses
oy + (doy/dy) - dy
+ (BTl -
b s im0y

g, dx dy b

%

Ty + (1,/0)

» >
Geaxayb | la, + (do/Bx) - d

-

og

T
—
Fig. 3.1 Fmite element of a shear wall and stresses considered in the model
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FyryyyYyrym

Fig. 3.2 Shear wall and deep beam

The distinction between deep and slender beams is not only
necessary for the calculation of the internal forces but also for the
reinforcement detailing. In ordinary beams a minimum shear reinforce-
ment of stirrups is needed, whereas deep beams only need the minimum
surface reinforcement.

This section only discusses the calculations of deep beams, as they are
more often used in practice. Shear walls can be designed in the usual
manner, similar to a column.

In accordance with Section 2.5.3.2 of EC2 [6], the internal forces in
the ULS can be calculated by using the following methods:

® methods based on a linear elastic material behaviour;
e methods based on a linear elastic material behaviour with limited
redistribution;

1T&

Fig. 3.3 Smgle span deep beam — main membrane forces (left) and hovizomeal
stresses m midspan (right) for various heights h
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e methods based on a plastic material behaviour including strut-and-
tie models:
e methods based on a nonlinear material behaviour.

Of these methods, the one which uses Finite Element models based
on a linear-elastic material behaviour is most commonly used in prac-
tice. Comments on the evaluation of strut-and-tie models (plastic
analysis) are given at the end of this chapter.

Linear-elastic calculations can be used for both the ULS and the
serviceability limit state. The effects of the redistribution of internal
torces due to cracking of concrete or its *vielding' under high pressures
are neglected. Nevertheless, the nonlinear behaviour should be consid-
ered in both the design and the detailing of the reinforcement. For
example, the longitudinal reinforcement of a single-span deep beam
should be located at the bottom face of the member and should not
be distributed according to the tensile stresses, which are estimated
by a linear-elastic analysis.

The next section will provide the principles of a Finite Element
calculation for deep beams by a very simple example of a single-span

deep beam.

3.1 Estimation of stress resultants of a single-span

deep beam
The beam in this example has a width to depth raro of 1:1
(ly =L = 7.20m) (see Fig. 3.4). A uniform loading of g=20kN/m is

Systam and loading Finily Elemant modal

STy 1= 20
A

b=24cm ’/ﬂ

riaps supports

h=7.20m

Fig. 3.4 System and Finite Element model
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IERRRERERERND T Load case 1: =4 B

BEEAREER AR ST || constant load g = 20 kN/m
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Fig. 3.5 Main membrane forces — load case 1: uniform load q = 20kN/m on the
upper edge

acting on its upper free edge. The structure is modelled by
30 % 30 =900 rectangular plane elements which gives an element
size of 0.24 x 0.24 m.

The results of the Finite Element calculation are the node deforma-
tion vy, vy, the membrane forces n,, ny, ny, and the stresses oy, 9,, 0,y
within the elements (see Figs 3.1 and 3.5). The membrane forces are
obtained by multiplying the normal stress o, or o, by the thickness of
the wall.

The objective of the design of a concrete member is to estimate its
required reinforcement. For beams and slabs this can be automatically
produced by a computer program. In the case of walls, a computer
program is usually unable to estimate these reinforcement requirements
or its correct distribution, as it is based on an element per element
design. This problem will be further discussed in section 3.3. The
reinforcement requirements of the single-span deep beam, therefore,
should be estimated by numerical integration of the horizontal tensile
forces n, over the midspan depth. For the structure in this example
(load case 1), this results in a tensile force of F, =31kN (see Fig.
3.5). The lever arm of the compressive and tensile force is equal to
z = 3.80 m. The reinforcement requirements are obtained from dividing
the tensile force F, by the permissible stresses of steel: A, .., = F,/a.
The stress in the reinforcement should be chosen two fulhl the crack
width requirements (o4 < f4).
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We will now compare the results of the Finite Element calculation
with the widely used manual design method given in CEB [30] or
Heft 240 of the German Association of Reinforced Concrete [10].
The example considers four different load cases.

® Load case 1: uniform load g = 20 kN/m on the upper edge of the deep
beam;

o Load case 2: uniform load ¢ = 20 kN/m on the lower edge of the deep
beam,;

e Load case 3: concentrated load F =96 kN on the upper edge of the
deep beam (loaded width ¢ = 0.96 m);

o Load case 4: concentrated load F =96 kN on the lower edge of the

deep beam (loaded width t =0.96 m).

Manual design methods (beam theory)

The horizontal tensile force is estimated from the bending
moments of a beam at midspan (held) Mg, ¢ and at the supports
My (Fig: 5:8).

Resulting tensile force in mid:-;pan: Foir = Mgir/zr
Resulting tensile force over the supports of

a multispan or cantilever beam: Fus = Mgis/zs
where:

Mg midspan moment of a beam having the same span lengths as
the deep beam

Mg moment over the supports of a beam having the same span
lengths as the deep beam

z¢  lever arm of the internal forces at midspan

zs  lever arm of the internal forces over the supports

internal forces at midspan and

CP @ @ @ at the intermediate supports

¥ LE | LT

i i | 1 [ ¢ ; | THF

i i | : Fi

FR | B e“““*'*“)a 2N

- .k o
R L ple—1 . e

Fig. 3.6 Internal forces according to the simplified design model
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of a cantilever member)

The lever arm of the internal forces ¢ and z5 can be estimated as

1. single-span member
05<hfl<10 zz=03h(3-h/l) (DAfSth)
2 = 0.2 (1+2h) (CEB)
h/l> 1.0 ¢ = 0.6l (DAfSth and CEB)
2. two-span member and end span of a multispan member
04<hlcl0 zp=2=05h(1.9—h/l)  (DAfStb)
zr = z5 = 0.21 (1 + 1.5h) (CEB)
h/l> 1.0 2 = 25 = 0.45! resp. 0.51 (CEB)
3. intermediate spans of a multispan member
03<hfl<1.0 zp=2s=05h(1.8—h/)  (DAFSth)
h/l > 1.0 F =25 = 0,401 (DAfSth)
4. cantilever member
1.0 < hfly < 2.0 zp=25= 065l 4+ 0.10h (DAfSth)
h/l > 2.0 7 = 75 = 0.850 (DAfSth)

(h = height of the deep beam; | = span of the deep beam; [, = span

e L e Membrane force in x-direction
) in section x = 0.5/, (Im kN/m)

--------

Fig. 3.7 Main membrane forces — load case 2: wniform load q= 20kN/m on the

lower edge
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CEB [30] and Heft 240 of the German Association of Reinforced
Concrete [10] offers two different desien methods (see the boxed rext

The results of the Finite Element analysis are shown in Fig. 3.5 and
Figs 3.7 to 3.9 for the various load cases. The resulting forces and the

lever arms are obtained from numerical integration of the horizontal

membrane forces at midspan.

Fig. 3.8 Main membrane forces — load case 3: force F
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=96 kN at the lower edge
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Table 3.1 Resulting forces and lever arms — single-span deep beam

Load case 1 Load case 2 Load case 3 Load case 4

F,=-F, % F,=-F; % F,=-F, 1 F,=-F: 1
(in kM) {inm) {in kM) (inm) (inkM) (inm) {in kN) (in m)

FE-analysis 31 L S 1 38 25 61 39 3.9
DAfSth
beam 29 4.2 29 4.2 40 4.2 40 4.2
tables 29 - 29 - 26 - I8 -

e beam theory: the resulting tensile force of a single-span deep beam:
F, = Mg /25, with 7z = 0.6 (for single-span deep beam with h/l > 1.0);
& tables based on shell theory.

Table 3.1 shows the results of the Finite Element analysis and the
simplihed method of DAfSth 240 [10].

A good agreement can be seen between the Finite Element results
and the manual calculaton, except for load case 3 (beam theory),
which is mainly due to the simple single-span system. However, it
will show greater differences for other structures (e.g. multispan deep
beams), as shown in the following example.

The internal forces for a two-span deep beam are calculated, carrying
the loads from the facade columns of an 11-storey office building, above
the entrance to the underground car park (see Fig. 3.10). The concen-
trated loads in the columns are simplified to an equivalent uniformly
distributed load (gpy/gpg = 400/200kN/m). The wall is modelled by
52 x 15 plane shell elements (element size 0.25 x 0.25m). In the first
analysis, an infinitely stiff vertical support is assumed. The stiffness of
the supporting columns is neglecred.

Table 3.2 shows the resulting tensile forces in midspan and over the
intermediate support and the support reactions. The tensile forces
obtained from the manual design method (in accordance with
DAfSth 240 [10]) are greater than those from the Finite Element
analysis. In particular, the beam model results in much higher forces
over the intermediate support (+172%). This is due to the small
lever arm z¢ with respect to the numerical analysis.

3.2 Modelling the support condition
In the case of statically indeterminate structures like multispan
deep beams it is very important to model the support conditions as
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873 -2108 873

Fig. 3.10 Two-span deep beam: system, loading and membrane forces

accurately as possible. In contrast to normal beam structures, the
stiffness of the supports and the resulting deflections have a consider-
able influence on the stresses and resulting internal forces in deep
beams.
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Table 3.2 Tensile forces and lever arms — dowble-span deep beam

Midspan Intermediare support Support forces

Fl.]: iF Fp,.... 5 A:C E
KN % m % kKN % m % kKN % kN %

FE-calculagon 650 100 2.6 100 700 100 36 100 1692 100 4417 100

DAfSth
beam 675 104 24 94 1201 172 24 68 1609 95 4802 109
tables 713 110 - - 815 118 — - 1609 95 4802 109

3.2.1 The influence of support settlements

The above mentioned double-span deep beam (see Fig. 3.10) was fully
restrained in the vertical direction at the supports. In general, the stiff-
ness of the elastic supports should not be neglected. This is particularly
true in the case of deep beams supported on slender columns or walls, or
where differential settlements are expected. It is a well-known fact that
the internal forces and the reactions of multi-span deep beams are very
sensitive to differential deflections of the supports. This will be
discussed in the following example.

First, the influence of the deflection of the supports will be demon-
strated for the slender (h/l=0.6) double-span deep beam shown in

Fig. 3.10. The structure is loaded by a uniform loading of g = 600 kN/m
at the top edge. Furthermore, it is assumed that there is a settlement of
the intermediate support by up to 7mm. Figures 3.11 and 3.12 show
the results of the numerical analyses of the varying amounts of settlements.

Force in kN g = 600 kN/m
5000 YYYYYYYYYYY

R

Tensile torce F, g 8 the colurmn sgmwasnamm
o 1 2 3 4 5 6§ 7 supporiinmm

Fig. 3.11 Support forces and tensile forces dependmg on the settlement of the
mtermediate support
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q = 600 kKN/m
\AAAALALE LD
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Fig. 3.12 Horizontal membrane forces at the midspan and over the miermediate
support B depending on the amount of vertical deflection As ar axis B

The reactions and the resultant horizontal forces are very consider-
ably influenced by the amount of the settlement at the intermediate
support. A deflection of only 2mm is needed to increase the vertical
forces at the end supports by 37% and reduce the reaction at the inter-
mediate support by 38%. The resulting horizontal tensile force is
increased by 200% in midspan and 33% at axis B. With increasing
deflections, the stress distribution becomes similar to that of a single-
span beam with a span length of 2 x 6.25 = 12.50 m (see Fig. 3.12).

A deflection of only 7 mm (=0.0010)is needed to reduce the reactions
at the intermediate support to zero.

3.2.2 Modelling of flexible supports with springs
The above example clearly demonstrates that the sriffness of the
supports of a statically indeterminate structure must be considered in
the design model. Deep beams are often supported by slender
columns or walls. The simplest method to consider the stiffness of the
bearing structure is to model them by using individual springs. For
simplicity, the column itself is not modelled. This will be shown in
the next chapter.

A column has a bending and a normal stiffness. Both should be
modelled by individual springs. It should be pointed out thar bending
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Table 3.3 Equivalent spring stiffness of a column

Normal stiffness Rotational stiffness
F=Cy v M=C,:»
where: Cyy = E_ - A,/ where: C, = 3E_ -1/l where: C, =4E, -1 /I

springs cannot be used in conjunction with plane shell elements, as they
have no degree of freedom for rotation (see the following chapter);
hence, a different method of modelling the bending stiffness of the
columns has to be found.

In general, deep beams are loaded by large vertical forces which
require large bearing areas. This continuous support can be modelled
by using several spring elements or special boundary elements. The
advantage of the latter model is that the elastic support stresses can
easily be estimated. These have to be checked in the design.

The axial stiffness of the springs Cy,; is obtained from the following
expression (see Table 3.3):

Cy=E-A/I
where:

E - A, is the axial stiffness of column;
[ is the height of column.

As bending springs cannot be used in conjunction with plane shell
elements, the rotational stiffness of the column is modelled by using
multiple springs, having a given distance from each other (see Fig. 3.13).

The principles are demonstrated on a single-span deep beam (see
Fig 3.14). The deep beam is supported on 2 columns (b/h = 0.24/
0.48 m) which are fully restrained at their base. This results in the

128

Copyrighted Material



Shear walls ond deep beams

V=29
F=C-ag
M=FR-a=Caf -g

: M=EM=EC:8f -9=G, '
< > G =IC-af

Fig. 3.13 Rotational stiffness resulting from axial springs

following equivalent stiffness for the springs: (concrete grade C 25/30,

Two springs are used for each support. The supported nodes are
coupled with each other, thus the supported area remains plane
before and after loading in the numerical model. The distance of

o

E. = 30500 MPa). T
E-.-A  305.10°.0.24-0. ©

Cy = Lf\= 3;"34 o 976000kN/m =
e o

Bl .30.5+10°.0.24 - 0.48° u

o o HEcL_4:305:10°-024-048Y/12 oo 2
=

-

| B

O

O

System and loading Finite Elamant modal

- p= 750 * o e

Fig. 3.14 Structure and Finite Element model
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the normal springs has to be determined in order to get the correct
rotational stiffness C

3 Ko 73000
= s g =1 | — = : — —_— . wm 0
C,=2-Cy-a =g I 1|.I'E 976 000 0.20m

where;

a, is distance of the spring from the centre of the supported area.

For the given structure, it is necessary to use a distance which is
smaller than the actual supported width. As this is an exceptional
case, the springs are located ar the face of the supported area.
This results in a distance of 0.48m between the springs. This
model gives a spring force of 3LL6KN and 40.4kN ar the outer
spring and the inner spring, respectively. The total vertical force is
equal to T2kN. The resulting bending moment at the rop of the
column is:

M= (4044 —-31.6)/2-048 = 2.12kNm

The influence of the spring stiffness on the bending moment is shown
in Fig. 3.15. It can be seen that in the practical relevant region of
Cy == I1000MN/m, the spring stiffness has a considerable effect on
the bending moment at the column head. An infinite stiff support
results in a bending moment of M = 10.3 kNm.

max M= 40.3 kKhm

/,--" coupling : B

-

Bending momeant M in kKNm
= 3 a2 = th o | @
[
2

>
O 2000 4000 G000 8000 10000

Spring stiffness Cyin MMM

=

Fig. 3.15 Bending moment at the supporvts in relagon w the novmal spring
stiffness Cy
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3.2.3 Modelling of the columns with beam elements

Instead of using springs, it may be easier to model the whole structure
including the shear wall and the columns. The latter one is modelled by
beam elements. This has the advantage that the member forces M, V, N
and the reinforcement requirements of the column are calculated
automatically by the computer program. It is also possible to model
the columns using the same plane shell elements as the deep beam
(Fig. 3.17). However, this has the disadvantage that the member
forces (i.e. the bending moments, shear and normal forces) which are
required for the design must be separately calculated by the integration
of the stresses in various sections. Both of these models will be further
discussed.

The connection of the beam elements with the plane shell elements
should be handled with great care, as will be shown in the following
example, which uses a single-span deep beam. The columns are modelled
with beam elements located on the axis of gravity of the column. The top
beam node is stiff connected to the node of the deep beam element ar the
same location.

The results of the Finite Element analysis are shown in Fig. 3.16. No
bending moments can be seen at the column head. This result is not
expected, as a rotation of the supported area of the deep beam is
likely to happen (note the deflected structure Fig. 3.17). Furthermore,
considerable distortions can be seen for the elements in the vicinity of
the column heads.

As zero bending moments are highly unexpected at the stiff joint
between the column and the deep beam, the same structure is recalcu-
lated using plane shell elements for the columns. Figure 3.17 shows the
results of this analysis. A roration of the upper end of the column can be
seen which must result in bending moments in the column.

The error of the beam model can be traced back to the fact that plane
Sh‘EI]. Eiﬂmﬂntq hﬂ\-’E I:,]'Tll'}r twi {.‘IEE"EL"H {':I!'- ﬁEEd{]m ff..':lr dﬂﬂﬂctinﬂ, vy :'Ind
vy, but no degree of freedom for rotation (Fig. 3.18). Thus, coupling of
beam and plane shell elements results in a so-called ‘incompatible’
element mesh. This means that there is a missing degree of the
freedom (rotation) between the two types of elements. Thus, a plane
shell element can be used to only estimate membrane forces and not
bending moments.

The stiff connection between the column and the deep beam must be
modelled by stiff coupling of the top node of the beam element to some
nodes of the deep beam (see Fig. 3.19). The rotation of the supported
nodes of the deep beam should be identical to the rotation of the upper
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Sysiem and loading Finite Elemant model

Py - 20

b = 24/48 cm i, BEE

=2 4m

Deformad structura
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Fig. 3.16 Deep beam supported om two columns (beam elements)

end of the beam element. Distortions of the shell elements above the
columns as shown in Fig. 3.16, should be avoided.

The stiff connection can either be modelled with a special coupling of
the nodes (Fig. 3.19 left) or by extension of the beam elements into the
deep beam (Fig. 3.19 right). Both models only provide an approxima-
tion of the real situarion. The number of coupled nodes can have a
great influence on the bending moments in the column. This is demon-
strated by the results shown in Fig. 3.20, where considerable differences
between both variants in the calculated bending moments at the
column head can be seen. For the case with horizontal coupling a
bending moment at the junction of M = —3.7kNm is estimated,
whereas for the other model the bending moment is only M =
—2.0kNm. The ratio of the first moment with respect to the second
one is 3.7/2.0=1.85!
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Finite Elemant model

-+ T EREEE Deformed structure
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Horizontal membrane force n,
Main membrane forces (sectian al midspan)
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Fig. 3.17 Deep beam supported on cohumns (plane shell elements)

Plane shell elemeant Beam elameant

Fig. 3.18 Degrees of freedom of a plane shell and a beam element (two-
dimensional)
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Shell alemeant

Hinge coupling 1 Extension of the beam elements
™ with centric node into the shaar wall
;ﬁ‘h Beam elemant Beam elemant

!

Fig. 3.19 Connection between a beam with a plane shell element

Fig. 3.20 Membrane forces and the deformed structure for two different models

{coupling wath supported nodes — extension of the beam elements)
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T 4 Section 3-3 Section 4—d
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Fig. 3.21 Vertical membrane force n, in various sections near the comer of a

deep beam

Here it should be noted that there are also plane shell elements,
which have a rotational degree of freedom (based on Cosserat
continuum), However, these elements are rarely implemented in the
software programs used for practical design of concrere structures,

A highly refined Finite Element mesh has to be used to obtain a more
accurate value for the bending moment. The results of this analysis
are shown in Fig. 3.21. The numerical integration of the vertical
membrane forces at top of the column (section 2-2) results in a force
of F=72kN (F=7.20m x 20kN/m x 0.5=72kN) and a bending
moment of M = 2.6 kNm. This value is between the two results from
the above models.

An unbalanced distribution of the vertical membrane force n, in
section 4-4 at the inner face of the comer can be seen in Fig. 3.21,
This is a result of the simplifications and assumptions of the used
numerical model and does not occur in real structures. The comer
causes a singularity problem. The unbalanced boundary conditon
results in high (infinite) stresses resp. membrane forces. If the
element size is further reduced, the stresses at the inner face of the
corner will become infinite. However, the resulting bending moment
is only slightly changed.
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The stress distribution in any corner region of plates can only be
approximated when using plane elements with a linear-elastic material
behaviour. High tensile stresses would cause cracking of the concrete,
thus resulting in a redistribution of the internal forces. The same
effects occur in the case of large compressive pressures at the inner
side of the cormer. Therefore, a highly refined element mesh does not
model the reality any more precisely than a coarse element mesh.

3.2.4 Horizontal restraint
When modelling deep beams, grear care should be taken with regard to
horizontal restraints due ro the supports. They may result in an arching
effect with considerable reduction in the design tensile forces as will be
shown in the following example.

The deep beam shown in Fig. 3.22 is a very slender structure, having
a width to depth ratio of 1:2. The member can, therefore, also be
considered as a normal beam with the assumption of a linear strain
distribution over its depth at midspan. The structure is modelled with
14 % 30 plane shell elements. It is loaded with a vertical uniformly
distribured loading of g=20kN/m at its upper free edge.

Two ultimate support conditions are treated:

® System 1: both supports are fixed in the vertical direction, and only
one support is fixed in the horizontal direction;

e System 2: both supports are fixed in both the horizontal and vertical
directions.

Figure 3.23 shows the distribution of the main membrane forces n;
and ny and the horizontal membrane force n, at midspan. Significant
differences can be seen between the two models.

System and loading Finite Element model
!!EE!II.IIIEE!

'Yy TYT™T™T

Fig. 3.22 Svystem and element mesh
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System 1: nodes at the supports fixed System 2: nodes at the Supports not restraint
in horizontal direction
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Fig. 3.23 Membrane forces with and withoat hovizonial restraims

It one uses the manual design models provided in DAfSth 240 [10],
the calculated tensile force is F =53 kN. This is the same value as the
resulting tensile force of System 1. If the structure is fully restraint in
horizontal direction (System 2) the resulting tensile force in midspan
is only 1/5 of the value calculated of System 1, even for this very
slender structure,

3.3 Dimensioning of deep beams

As already mentioned in section 3.1, individual dimensioning of each
shell element of the whole structure does not result in a useful arrange-
ment of the required reinforcement. This can be seen in Fig. 3.24,
which shows the distribution for the required reinforcement as
calculated automatically by the computer program for the ULS. The
reinforcement requirements are estimated by dividing the rtoral
membrane forces in each element by the design vield stress of steel
f.4 separately for each element. Thus, the horizontal reinforcement is
distributed over the depth of the deep beam according to the distribu-
tion of tensile membrane force. According to Fig. 3.24, horizontal
reinforcement is also required at the top of the wall in the compression
zone. Here the software assumes a uniaxial compressed member and
calculates the required minimum reinforcement.
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Vertical reinforcement Section in midspan
r 0.41

10.0 15.0 10.42

Fig. 3.25 Horvizontal and vertical reinforcement (loading with q = 152.3 kN/m at
the bottom edge)

height which is not greater than Q.1 or Q.1h (I=span length,
h=depth of deep beam).

® The tensile reinforcement should not be stapgered as per the rensile
stresses. It must be anchored at the supports for a force of 0.8F spun
(where F, ;. is the maximum horizontal tensile force in the field).

e At the intermediate supports of multispan deep beams only straight
horizontal bars should be used for the horizontal reinforcement.
These bars can overlap where necessary.

e Half of the required horizontal reinforcement over the intermediate
supports should go from support to support without any staggering.
The rest should have a length of 2 % 1/3] from the end of the support
(without further anchorage length).

e Loads acting at the bottom of deep beams, i.e. loads acting in the
region of a half circle with a radius of 0.51 (where | < h), including
the self weight, should be carried by vertical reinforcement which
must have a length of | < h.
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hi=1.0

Fig. 3.26 Arrangement of the hovizontal remforcement for the tensile force F,

over the supports of multispan deep beams [10]

As can be seen from the above list, it is not sufficient to only
determine the relevant design forces.

The internal forces of ordinary beams can be estimated by using
bheam and shell elements. This was already demonstrated in some
examples of Chapter 2. Finite Element calculations based on a linear-
clastic material behaviour may be useful to determine the flow of
forces in discontinuous regions, where the Bernoulli hypothesis is not
valid. Examples for this are regions with highly concentrared forces,
which occur when anchoring the tendons in prestressed structures, or
where there are sudden changes in cross-sectional depths, like
halving joints.

In order to demonstrate the problems in the automatic calculation
of the required horizontal reinforcement, the following considers a
‘simple’ single-span beam. The advantage of this simple structure is
that the required reinforcement for the ULS can be estimated manually
by well-known formulae, whereas for the case of deep beams only
approximate methods are available.

The single-span beam has a span length of [=20m. A uniformly
distributed load of g, = 20kN/m is applied to the structure. This
system is symmeiric, and therefore only one half of the structure is
modelled in order to reduce the amount of required calculations.
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Fig. 3327 :im,l-:!a:-s_mn beam: system, loadmg and main membrane force distribution

The member forces and the stresses can be simply estimated:

g -2 20-10°

ML=T=_E1'=25Gkh“‘
M 0.250:6 ;
—e—p—— Y T I '

L T e

Nymax =0 -b=50:03= 1L5MN/m

The manually calculared values are in a very good agreement with
the resulting forces of the Finite Element analysis (Fig. 3.27).

A partial safety coefficient of v=1.45 is used for estimating the
required bending reinforcement. This gives the required amount of
horizontal reinforcement at the midspan (concrete grade C25/30,
fu. = 500 MPa, b/d/h = 0.30/0.95/1.0m):

S 2 )
moment coefficient pgy, = MF‘{" = o I—l'i-h : IE— = (.083

b-d 0.3-0.952.125/1.5
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inner leverarm z = (1 — 0.7 - pgg ) -d = (1 = 0.7 - 0.083) - 0.95
=0.897Tm

Mgy, 250 1.45
z-fq  0.897-435

: ' 7
required reinforcement reg A, = =93cm’

The computer program estimates the reinforcement in each element
separately. For the lowest element this results in a required horizontal
reinforcement of (see Fig, 3.18):

T}:t'[.-q.' = {'I'lﬂ -+ . ]'g'r:'l : ng'll:-” '”i',."'.f-,\j
= (1500 + 900)/2 - (1.0/5) - 1.45/43.5
= 8.0em’ (over a depth of 0.2m!)

Reinforcement for the other elements is shown in Fig. 3.28. If one
extrapolates the results in the middle of the bottom elements to the

X

Horizantal reinforcemeant [em<m)

L_/ _!D
e 15
— P 50

|

|

Vertical reinforcement [em®/m) I
|

:2.5

- B

I

Fig, 3.28 Simply supported beam with uniform loadmg distribution of the
remforcement calculated by means of a shell model
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Fig. 3.29 Strain and stress distribution and internal forces of cracked and un-
cracked members

lower boundary, the Estimated maximum reinforcement A, e
would be greater than 50 em”.

The numerical integration of the tensile zone results in a required
total reinforcement of:

req A, = (ny +0)/2 (h/2) v/
— (1500 +0)/2 - (1.0/5) - 1.45/43.5

= 12.9cm?

Such a numerical calculation not only results in a wrong distribution
of the reinforcement, but it is also uneconomical: it overestimates the
reinforcement requirements by 39%. This is due to the lever arm of
the internal forces of a cracked member which is greater than the
one of an uncracked member (see Fig. 3.29).

Uncracked member (Stage I): 2=2/3-h=12/3.1.0=0.66Tm
Cracked member  (Stage lI): 7 = 0.897 m (see calc. above)

This is also true for deep beams. Fig. 3.28 shows the distribution of
the vertical reinforcement. The estimated area of stirrups in the
critical section at a distance of 1.0d from the face of the supports
is a,, =5cm’/m. This is much greater than the required value
calculated by the manual design. According to EC2, stirrups of area
dy = 0.9cm” /m are sufficient to carry the loads.

In addition, the distribution of the vertical reinforcement in the long-
itudinal direction is incorrect. According to the numerical analysis
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(Fig. 3.28), the vertical reinforcement decreases from the midspan to
the supports. This is in contrast to the normal beam theory. In the
case of an ordinary single-span beam the shear forces and, thus, the
required shear reinforcement increases from the midspan to the
supports. The reason for this error in the shell model is the assumption
of a linear-elastic uncracked material behaviour. The design for shear of
a reinforced or prestressed member is usually based on a strut-and-tie
maodel, with a fully cracked member.

This very simple example of a simply supported beam should demon-
strate that the nonlinear material behaviour of concrete as well as the
cracking of the composite material ‘reinforced concrete’, has to be
considered in the design. Estimation of the reinforcement requirements
by integrating the tensile forces of a linear-elastic model may lead to
incorrect and unsafe values.

3.4 Strut-and-tie models

Even if the internal forces of a cracked member cannot be correctly
estimated with a linear-elastic shell model, as demonstrated by the
above examples, it may be very useful to gain an understanding of
the flow of forces in the structure. Linear-elastic Finite Element
EEIJCUI'JIiUI'L‘i Ina',r and ﬁh{!UI'I:I bﬂ‘ 'I.IEL"{J. ds a bﬂ.’ii& ] I..‘IE‘FE‘].{}P Etmt-and-
tie models. According to EC2, Part 1, the strut-and-tie model and,
especially, the locarion and orientation of the main compression
struts should be similar to that of a linear-elastic Finire Element analysis
to avoid major redistribution of forces and cracking.

sStrut-and-tie models consist of straight compression and tension
struts, which are connected by hinges, The truss model should be stari-
cally determined and should represent the main force distribution in the
member. Schlaich and Schifer provide further information regarding
this design method [13, 34]. The main principles are explained in the
following for a simple single-span deep beam.

At first one has to determine the force distribution in the member.
This can be done by means of the force flow method or a linear-
elastic Finite Element model. The strut locations are similar to the
main compression stresses. The only unknown in the manual analysis
for the given single-span deep beam is the location of the horizontal
compression strut, respectively the distance z; and 7, (see Fig. 3.30).
The horizonral compression and tension struts are locared in the
centre of the stress field ar the midspan. Thus, the increase of the
lever arm of the cracked member under ultimare loads is neglected.
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Fig. 3.30 Senuc-and-tie model for a angle-span deep beam

The strut-and-tie model is a statically determined truss structure. Thus,
all forces can be estimated from the geometry of the truss system. The
resulting rensile force for the given structure ([, =1 = 7.20 m; a = 0.48
m; g = 20kN/m) is:

I, —a q- /2 _7.20—-048 20-72/2

By= . 4 18

= 31.8kN

The calculated force is nearly identical to the value given in [10].
There is a small difference of 3 kN only (see Table 3.1).

In the above example, the reinforcement requirements are estimated
from the resulting tensile forces. Bur, as will be shown later, this
reinforcement can be inadequate with respect to the serviceability of
a structure. Fig. 3.31 shows the distribution of the main membrane
forces and the resulung strut-and-tie model for a double-span deep
beam (I, /1, =2 x 7.5/3.65 m). The model is nearly identical to thar of
a single-span deep beam. The tensile force at the inner support is the
only addition to be considered. The tensile reinforcement at the
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Main membrana forces and strut-and-te model
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Fig. 3.31 Two-span deep beam (1 /l,=2 = 7.5/3.65m)

midspan must not be concentrated ar the centre axis of the tensile zone
but at bottom of the deep beam.

Figure 3.32 shows the same system with a small opening near to the
left support. Here the reinforcement calculared from the resulting
rensile forces is insufficient. A linear-elastic calculation does not show
any vertical tensile forces near the opening. This is in contrast to
engineering practice and contradicts with the strut-and-tie model.
Vertical reinforcement is required.

Therefore, the nonlinear behaviour of the material has o be
considered when developing a strut-and-tie model,
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Main membrane forces and strut-and-tie modal
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Fig. 3.32 Two-span deep beam (1, /L, =2 x 7.5/3.65m) with an opening

3.5 Singularities

In shell systems, infinite stresses and deformations (singularities) may be
calculated, which are caused by the assumptions of the numerical
model. Examples of these singularities are (see Fig. 3.33, Table 3.4):

® corners (free or fu"!,' restrained):
e concentrated loads or pin supports,

A Finite Element analysis will always estimate finite results, whereby
the maximum stress will increase considerably with any decrease in the
element size. The ‘exact’ calculation of the maximum value of
lhl.: SITES4ER |8 H’UI\L‘TH"T not FUL.]Ui['l.‘d.. a5 l.I'I.l.! r'l'iﬂ."'li_'tllbi Are 1.::[1.15'._'1] 1""!.-
the simplihcations of the numerical model, an inaccuracy of the
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x

Fig. 3.33 Singularity vegions i walls and deep beams

Table 3.4 Sinmularity vegions in plane shell structures (walls and deep beams)

Reactions resp. Displacements  Stresses Support Srresses
forces condirion infinire for
Yes Yes a > 1 80¢
Hﬂ 1":5
o > 1807
Yes Yes
o > 63"

Yes Y

Mo Yes
(o)

Mo Mo

(T IR )
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boundary conditions. A real structure does not show any singularities.
In the case of high stresses, the material will ‘yield". In tensile regions
the concrete will crack. Furthermore, in discontinuity regions the
stress distribution is a complex three-dimensional one which will not
be modelled with plane shell elements. The main concern will be the
good derailing of the reinforcement in the corner regions and in the
area of concentrated loading.

Numerical problems with concentrated loads can be avoided if the
width of the loaded area is considered. The same is true for pin supports.
But any refinement of the numerical model is generally not required, as
the stress distribution in these regions is not needed for the design.
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Fig. 4.1 Intemal forces and stresses of a finite plate element

e small vertical displacements (w < h; 1. Order theory);

e linear strain distribution over the section depth (Navier);

e no strains at the middle pl:mr.: {(i.e. no normal or membrane forces);
® stresses in normal direction can be neglected;

® plane sections remain plane before and after loading (Bernoulli-

Euler).

The basics of a plate analysis are not mentioned any further in this
book as extensive information on this topic has been already published
le.g. 23 and 24).

An analytical solution of the partial differential equation AAw = g/K
(Kirchhoft slab equation; where K is the flexural rigidity of the plare

3 et : : .

= [E.h1/[12(1 = 7)]) is only possible for axisymmetric structures
and loading, e.g. circular slabs. The shear forces and moments of rectan-
gular slabs can only be estimated by means of numerical methods, The
Kirchhoft slab equation was solved by Fourier analysis or Finite Difference
approximations [23, 25] and various weighted residual procedures before
efficient computer hardware and software were available. Nowadays the
Finite Element Method is generally used, as it is more flexible with
regard to the boundary condirions and the load arrangements.

Slabs can be analysed manually by means of the strip method. In this
approach, the two-dimensional load transfer is simplified 0 wo
ordinary beams or a grillage. This simple method is sull applied ro this
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Fig. 4.2 Discretizatem of a slab

day, as has been shown in section 2.8, Nevertheless, the two-dimensional
behaviour of slabs (dispersion of loads) is represented much more
accurately by Finite Element models using plate and shell elements.

In recent years the Finite Element Method has become a standard
tool for the analysis of spatial structures. The practical applications
have dramatically increased with the significant improvement of the
software. The graphical pre- and post-processing makes it fast and
easy to handle whole buildings, including all slabs, walls, columns,
and foundations within one big numerical model. Also the hardware
has become much faster. But complex Finite Element models include
a big danger, as the collapse of the Sleipner Platform (see section
5.1.1) has impressively demonstrated. Therefore, only simple flat slabs
will be mentioned in the following.

In the Finite Element Method, the slab is divided into small finite
elements (discretization of a continuum), which are connected to each
other by their nodes (Fig. 4.2). The deflections, strains, and internal
forces within an element are interpolated from the node displacements
by means of so-called form functions, which are mostly polynomials.
The form function may but must not fulfl the compatibility conditions
at the boundaries between the elements. Therefore, the deformations,
strains and stresses, as well as the internal forces may be discontinuous
between the elements. The difference of the stresses at the boundaries
may be used to verify the quality of the Finite Element model.

A detailed descriprion of the basis of the Finite Element Methaod is
explained in various literature (e.g. [1-3]). Therefore, no further
theoretical information regarding the theory is provided here.
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Fig. 4.3 Degrees of freedom of a 4-node plate elemene

The required effort to generate an adequate Finite Element model
has decreased dramatically due to the availability of user-friendly
graphical pre-processors. In the near future, it may even be possible
to perform the analysis and design of the slab for a ‘simple’ one-storey
residential building (like the one shown in Fig. 4.4) by means of the

o
® ©

Fig. 4.4 Slab of a simple one-storey residential building
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Fig. 4.4b Tensor plot of the principal bending moments

154

Copyrighted Material



Restricted Page

This page is unavailable for viewing fwhy?). You may continue browsing to view
unrestricted pages, ar visit the About this Book page.




Fmite element design of concrete structures

Finite Element techniques instead of manual calcularions. Therefore,
one may worry that Finite Element programs will be more and more
used by designers without a proper understanding of the method.
This problem becomes even worse as a main advantage of the Finite
Element Method is thar the user does not have ro simplify the load
transfer of a structure as by manual analysis. Therefore, young engineers
without structural experience tend to use the numerical method. This
may lead to mistakes in the results which may even cause the collapse of
a structure (see section 5.1.1).

It should always be kept in mind that a numerical model is only a
simplification of reality. It is only as accurate as its basic assumptions.
Therefore, it must be especially understood thar the usage of the
Finite Element Merhod requires experience.

When using the Finite Element Method, the following items should
always be checked:

e correct modelling of the support conditions
pin and simple line supports
girders ( joists)
flush beam strips in slabs
support by masonry or concrete walls and columns, or elastomer
bearings
— is the slab monolithically ixed to the supports or can uplift occur!
~ discontinuous simple support (e.g. supporting walls which end
within the slab)
— continuously supported on ground.
e location and omentation of the fixed nodes
relevant in case of curved boundaries.
e singulanities
regions where the internal forces and deflections of a slab may
become infinite.
e size of elements
should be checked in regions with high deformation and stress
gradients,
e numernical-mechanical models
— form funcrions: polynomial functions of first or higher order
~ Kirchhoff or Reissner/Midlin models.

[t is not necessary to use complex structures to demonstrate the prob-
lemis of the Finite Element Method. Even the slab of a simple one-storey
residential building (Fig. 4.4) is sufficient. The manual design of this
slab can be easily and quickly performed by means of the strip
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method. Therefore, this structure is only used here to demonstrate the
problems of the Finite Element Method.

The real system is simplified for a Finite Element analysis. A simple
line support is assumed underneath all supporting walls (breadth of
support neglected), whereby small openings like that of doors or
windows are neglected. The slab thickness is h = 0.18 m. Concrete
grade C20/25 is assumed for the building material. The slab is dis-
cretized by 451 plane plate elements. Figures 4.4a to 4.4d show the
internal forces and deflections for a uniformly distributed load of
2y = 5.0kN/m?. For simplicity, the most unfavourable arrangements
of live loads are not considered here. Very high bending momenrts
and shear forces can be observed in axis B-2 and B-3. The design of
the slab for these high bending moments and shear forces is impossible.
Even an inexperienced user can recognize this problem. As an engineer,
he has to know that the design for such high internal forces is not
required. These peaks are caused by simplifications of the numerical
model (singularities, see section 4.11). In the following sections such
problems in the model for reinforced concrete slabs will be discussed
with emphasis on the accurate representation of the support
conditions.

Most engineers believe that a ‘complex’ numerical calculation saves
reinforcement, where the structural system is modelled with greater
accuracy than in a manual design. This is very often not the case. A
comparison between the manual and the Finite Element design of
the slab shown in Fig. 4.4 has resulted in a very small or negligible
difference in the amount of reinforcement required. Thus, this simple
example demonstrates that a more detailed design may not be
economical, when considering the great effort required for a numerical
analysis and the resulting labour cost of the designer.

4.2 Material parameters — Poisson’s ratio

The analysis of a slab is usually based on the linear-elastic isotropic
behaviour of the building material concrete. The nonlinear behaviour
of concrete and its reduction in stiffness in the case of crack formation
are neglected. With this simplification, only two different material
parameters, the modulus of elasticity E. and Poisson’s rato v, are
needed in the design. The modulus of elasticity can be taken either
from tests or from codes [6] whereby the creep effect has to be taken
into account. Poisson's ratio © is not an exact value for reinforced
concrete. Values varving from v = 0.0 to » = 0.2 are generally used.
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Fig. 4.5 Strain in transverse divection of a linear-elastic plate element wunder
bending (ome-way slab)

The Poisson's ratio v is defined for an elastic member as the ratio
between the lateral strain and the axial strain. According to ECZ,
Part 1 [6] 3.1.2.5.3, the Poisson's ratio in an uncracked compression
region of the cross-section may be taken as v = 0.2, which is the
mean value of a ‘homogeneous’ uncracked concrete under compression.
In the tension zone, ¥ may be assumed to be equal to zero. However,
this information is not very helpful as a slab under pure bending
always has a compression and a tension zone (Fig. 4.5).

Bittner [26] has conducted theoretical investigations to determine
the correct value for Poisson's ratio. He proposed that a value of
v = 0.0 should be used in the design of reinforced concrete slabs.
With this value the compressive stresses are underestimated. This is
not mostly critical, as the compressive stresses are usually not relevant
in the design.

So the structural engineer can choose any value for v between 0.0
and 0.2 for the design. The influence of Poisson's ratio on the internal
forces will be discussed in the following box.

The Kirchhoff plate theory leads to the following expressions, which
show the influence of the Poisson's ratio on the bending moments, the
shear forces and the corner tie-down force.

Based on these expressions the bending moments m, and m, are
proportional to Poisson's ratio ». When v is decreased, the twisting
moment m,, and the comer tie-down force F, are reduced.

The simplified expressions are verified by a parametric study on a
rectangular simply supported slab (I, = 5.0m, [, = 5.0 to 7.5m, and
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w = deflection of the slab

v = Poisson's ratio

h=0.20m), as shown in Fig. 4.6. The internal forces have been
estimated for different Poisson's ratios by means of the Finite
Element Method. The midspan bending moment m,,, is oriented
along the longer panel dimension, and increases almost linearly with
an increasing Poisson’s ratio. This agrees with the expressions listed
before. With an increase in Poisson's ratio, the twisting moment m,,
and the corner tie-down force F, decrease linearly. The bending
moment m, and the shear forces are not shown in Fig. 4.6, as they
are only slightly affected by Poisson’s ratio. The maximum shear force
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Fig. 4.6 Bending moment m,, twisting moment m,,, and comer tie-doun force F,
for differene Poisson's ratios v (1,4, = 5.0/5.0m and 5.0/7.5m, and h = 0.20m)
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at the support at midspan decreases by less than 10% if Poisson’s ratio
increases from v = 0.0 to ¥ = 0.4. The maximum deflection at midspan
is approximately reduced by 20%.

In slabs, the secondary transverse reinforcement should not be less than
20% of the principal reinforcement [6]. Thus, the value of the Poisson's
ratio is often not critical. But this minimum transverse reinforcement
has to be considered in the Finite Element design of slabs.

4.3 Support conditions for slabs
Modelling of the support conditions of slabs should be done with great
care, as they have a significant influence on the results.

The following support conditions may occur in practice:

e continuous support of the whole slab or part of it by the ground;

e knife-edge (line) support on walls — free to uplift or fully or partially
restrained;

e pin support on columns, e.g. flat slabs.

Normal forces, as well as bending moments, can be transferred if the
slab is monolithically connected to the support. The stiffness of the
support can be represented either by individual springs or by special
boundary elements. In both cases, the rotational stiffness of the
springs should be determined with regard to the nonlinear behaviour
of the concrete and the reduction of stiffness in case of cracking.

Where the supports have different vertical stiffness values, any
possible deflection of the supports should be considered. This can be
the case for flat slabs which are supported by columns with different
cross-sections or normal forces. Slabs usually have only a small
bending stiffness. Thus, the influence of the differential deformation
on the internal and support forces can be mostly neglected.

If the slabs are supported on different building materials, having
different time-dependant properties, then the time-dependant defor-
mations of the supports (e.g. due to creep or shrinkage) should be
considered. A wall made of gypsum - or sand-lime concrete — blocks
may become lower with time, whereas the height of a clay-brick wall
remains nearly constant. Differential settlements of the foundations
should be considered if relevant.

Various numerical models are used in practice to describe the support
conditions of slabs. These may result in rather different internal forces
in the restraint regions. However, one should not compare the
maximum peak values. Only the bending moments and shear forces
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to determine the ‘accurate’ model of flat slabs, where analytical solu-
tions are not available.

4.4 One-way slab

The following analysis will be carried out on a two-span, simply
supported, one-way slab having equal span length of 2x50m
(Fig. 4.8). The slab has a constant depth of h = 0.20m. The inter-
mediate support has a breadth of 25 cm. For this simple structure the
internal forces can easily be estimated by manual calculations (see
Fig. 4.9). These values will be used to verify the numerical results.

Two different load cases are considered:

® Load case 1: uniform loading of ¢ = 10kN/m? on both spans;
o Load case 2: uniform loading of g = 10kN/m* on the left span only.

The different models for a support on walls which are used in pracrice
are shown in Fig. 4.10.

(a) Three-dimensional model of the whole structure (column and walls) by
3-D elements
If the whole structure behaves linear elastic then the load-bearing
behaviour of the system is modelled with grear accuracy by means of
a 3-D model. However, the assumption of an uncracked section
over the intermediate support is not valid, as it is very likely that
the tensile stresses exceed the tensile strength of the concrete.
Moreover, a grear effort has to be spent to handle a three-dimen-
sional volume or even a two-dimensional shell model, which is
often not required. It should be noted that the problems arise
when the reinforcement requirements are being estimated. There-
fore, in practice, a 3-D shell model is very rarely used.

Plan view (element mesh)

Fig. 4.8 System
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Fig. 4.10 Models for line support of slabs

(e) Coupling of nodes
The nodes at the support are coupled with the node in the centre of
the support to simulate an infinite stiff element which can rotate
around the centre node. This model has already been discussed
in section 2.6.3.

(f) Bedding of the supported elements
The elements over the wall are elastic supported. A flexible, plane
support is simulated.

The different bending moment distributions, resulting from the models
described above, are shown in Figs 4.11 and 4.12. The relevant resules are
further summarized in Table 4.1.

Model B (pin support of one node only) gives a good correlation
between the beam and the Finite Element (plate element) results for
both load cases. Any further refinement of the element mesh does
not change the results. Knife-edge supported one-way slabs do not
show any singularities.
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Fig. 4.11 Bending moments — wniform load ar both spans — plate elements

If three nodes are restrained in a vertical direction at the support
(Model C), the resulting bending moments at the face and those ar
the centre of the support are underestimated for uniform loading over
both spans by 89% and 47%, respectively. On the other hand, if only
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Pin support of 1 = 2 nodas =15.8

Fig. 4.12 Bending moments — uniform load at left span only = plate elements

one span is loaded, the support bending moment is overestimated by
226%. Therefore, this model should not be used. A further refinement
of the element mesh would result in a fully restrained intermediate
support. Doubling the number of the elements increases the bending
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Fig. 4.14 Stress distribution of a one-way slab at the suppores

the global deformation of the supporting structure and the resulting
torce redistribution. The local deformations, the stresses and strains
in the slab in the vicinity of the wall with respect to the column
head, which are required to derermine the ‘exact’ internal forces,
cannot be modelled with this simple approach.

The main assumption of all plate elements, the linear strain distribu-
tion, is not valid in the region of the support (see Fig. 4.14). Therefore,
the bedding of the elements is an engineering tool, to ger a smooth

distribution of the bending moments over the support, in a manner

similar to those in a manual analysis.

170

Copyrighted Material



Slabs

Table 4.2 shows the bending moments for different values of C from
C=9.10°kN/m’ to C =9 10" kN/m’. The results are not sensitive
to the bedding modulus C used for a uniform loading over both spans, as
the deflection curve over the support shows a horizontal tangent. On
the other hand, when only one span is loaded the bending moments
are highly dependant on the value of C (see Table 4.2). A refinement
of the element mesh in the support region does not change the internal
torces significantly.

A slab has to be designed for both bending and shear. The section
at a distance of 1.0d from the face of the support is relevant for
the shear design for the given direct support of the chosen system.
The shear forces are shown in Table 4.3 for different models.
A constant static depth of d =20-2.5cm=17.5cm is used for
comparison.

The results of the various models are similar if both spans are loaded,
whereas in load case 2 significant differences can be seen. A restraint of
all nodes art the support (Models B and C) results in much higher shear
torces in the supported elements (maximum + 13%) of the loaded span.
The shear forces are much smaller than the beam values in the
unloaded span, and in some models the forces are even zero. This is
also the case if the supported elements are bedded.

In conclusion, in order to model a support on walls only the centre
node should be fixed to avoid numerical restraints.

In this chapter, the internal forces and moments calculated manually
by a beam structure have been used to verify the numerical model.
It should be noted thar the major assumption of a beam model, a
linear strain distribution over the supports, is not valid. This can be
seen from Fig. 4.14 where the stresses of a plane shell model
(diaphragm) of a one-way slab are shown near the intermediate
support for a monolithic connection and a free, not restrained,
support (I = 22 x 5.0m).

A nonlinear strain distribution can be seen at the inner face of the
support. High compressive stresses are estimated for the fixed connec-
tion (singularity). In both cases, the tensile stresses do not increase over
the supports. Therefore, it is generally sufficient to use the bending
moments at the face of the support for obtaining the smoothed
values for design.

Even complex shell models can only approximate the real load-
bearing and deformation behaviour of a slab at the supports, as the
basic assumption of a linear-elastic material behaviour is not valid in
this region. The concrete slab will show some cracks.
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Slabs

4.5 Slabs which can lift from the supports

The design of slabs is usually based on the assumption that the slab cannot
lift from the supports. It must be emphasized that even a rectangular,
simply supported slab under constant loading will partially lift from the

& Part Part =2
g NELR E : _:"'_-‘-"I"J""\"'\."\.::
B [ e s
= ,# ] ket
Hib
:_:H “;_
11 1] :
el 8 3
E Praeaades = AL
E. (=8 My ) T e e
: (11711 3 iy e r
Principal bending momanis Deflactions
T
Bending momeant m,, Bending moment my, Twisting moment my,
23
Principal shear force Shear lorce v, Shear forca v,

Fig. 4.15 Intemmal forces and deflections of a vectangular slab free o wplift from
the supports under uniform load
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Slabs

The internal forces and midspan deflections of a rectangular, simply
supported slab which is fixed to the supports and one which can uplift,
are given in Table 4.4. If the slab is not restrained in the vertical
direcrion, the bending moments at midspan increase approximarely
by 13%. The support forces per unit length increase due to the
reduced supported length by approximately 38% (shorter side) and
6% (longer side).

4.6 Discontinuous line support

The numerical modelling of discontinuous support of slabs or a wall
support which ends in the slab can cause considerable problems. In
both cases, infinite shear forces and bending moments are estimated
at unsupported edges. This singularity problem is caused by the
sudden change of the boundary conditions (see Figs 4.18 and 4.19).
Dimensioning of the slab for these ‘theoretical’ peaks is not required,
as they only result from a numerical problem. The basic assumption
of a linear strain distribution does not hold near the end of a wall
support. The large tensile stresses calculated are reduced due to the
cracking of concrete. But an analysis which considers the nonlinear
material behaviour and the complicated three-dimensional stress distri-
bution is too difficult and extensive for any practical applicarions.
Hence, three different models may be used to overcome the numerical
problem (Fig. 4.16). First, one may neglecr the discontinuity of the line
support in the numerical model. The design of the opening region has to
be done separately on a fully or partially restrained equivalent beam
system (‘'flush beam strip’, see Fig. 4.17). This additional effort can be
avoided, when the opening is considered in the numerical model.

Structure a) Missing support  b) Missing support ¢) Three-dimensional model
not considered considenad {shall or voluma)

E@ - %1: %—'ﬂ%‘"

¢ Unresiraint node

e

-

« Fiead node
I TTTT T 1
: : a ,-'P'
Bedded nodes Shell or volume
elemants

Fig. 4.16 Different models for a discontimuous line support
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Fig. 4.17 Beam system (‘flush beam serip’) and load mfluence areas for a discon-
tmuows line support according o DAfSth Heft 240 [10]

The nodes at the end of the line support may by fully or partally
restrained in the vertical direction. Another variation is to use a
three-dimensional volume model of the slab and the wall underneath.
However, this model is again roo extensive and not practical.

In the Finite Element model the missing line supports can be
neglected if their length is smaller than 15 times the depth of the
slab (lg/h < 15). The dimensioning of this region can be done manu-
ally using an equivalent beam system (‘flush beam strip") in accordance
to DAfSth Heft 240 [10] (see Fig. 4.17). More detailed investigations
based on the Finite Element Method are only necessary if the
opening length exceeds 15 times of the section depth h of the slab.

“Theoretical’ singularities at the unsupported edge can be found if the
wall opening is considered by the Finite Element model. These load
peaks can be reduced significantly by a soft, elastic support, by elastic
bedding of the nodes or the elements, as the results of a comparison
calculation demonstrates. Figure 4.18 shows the internal forces for a
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Bending momant m,, in kNm'm Bandging momant M. in kNmim

Copyrighted Material

Slab thickness f = 20 cm
Concrits grade G307
Poisson's rabio v = 0.2

Loading: g = 10 kN/m?

Principal shear force in khm

Fig. 4.18 Bending moments and shear forces for a slab with a discomtimuous line
Sufport

soft and a stff support. A bedding modulus of C = 2327 MN/m’ is
used, which corresponds to a concrete wall (grade C25/30) with a thick-
ness of h = 20cm and a height of | = 2.75m (C=E -h/l = 32 000 -
0.2/2.75 = 2327 MN/m?).
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2 >

< mi
i0m

Fig. 4.19 Support forces of the outer wall near the face of the opening (nodes
fully restramed in the vertical divectiom)

Table 4.5 Modulus of elasticiry of different building materials

Concrete E. =95 (f4 +8)'
Clay bricks E =3000:m,

Steel E. =110 000 N/mm*
where:

. — . = . ¥
fci i the characreristic concrete compressive strength in N/mm®;
7 is the permissible compressive strength of a brick wall.

Table 4.6 Bending moments in the opening region

Copyrighted Material
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0,15/

g =
[ -
= '\ xer
& 1
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ym
« X »!
Rigid suppor Soft support Sriglar [25]
My KNM/M 10.52 12.02 Q.0
m,... kKNm/m —21.88 -13.78 -421.0
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A large reduction in the moment peaks at the unsupported edges can
be seen (Fig. 4.18) if the stiffness of the support is considered.

Bending moments for fixed and elastic supports and the values of
Sriglar [25] are given in Table 4.6. Stiglat has used the Finite Difference
Method and a Poisson's ration of v = 0.0 to estimate the internal forces
in the region of the missing support. With this assumption the bending
moment becomes nearly twice as high as thar of the fully restraint
supported slab. This large difference may be caused by the influence
of the element size. The bending moments at midspan of the Finite
Element analysis correspond well to Stiglat’s values.

Figure 4.20 shows the bending moment distribution of a slab with a
partition wall. For this structure a singularity occurs at the face of the
opening. To demonstrate the large influence of the vertical stiffness
of the support on the internal forces a very small bedding modulus
was used (C = 50MN/m’), which correspond to a wall made of
hollow or aerated concrete bricks.

As shown in Fig. 4.20, the peak of the bending moment and the large
concentrated shear force ar the unsupported edge disappear. This load
redistribution causes a considerable increase of the bending moments
and the deflecrions of the slab.

The dimensioning of the slab can be done either with a stiff or elastic
support. In the case of a stiff wall it should be noted that a redistribution
of the bending moment at the unsupported edge is only possible if the
concrete slab cracks. Therefore, reinforcement to limit the crack width
should be inserted in the top face of the slab.

It must be emphasized that an elastic support of the slab can
only represent the overall deflection behaviour of the supporting wall.
The complex three-dimensional stress and strain distribution at the
unsupported edges cannot be modelled with plain plate elements
based on a linear strain distribution.

4.7 Concrete joist floors
Several variations exist to model joist floors. At first one may consider

the joist in the Finite Element model as a stiff vertical continuous
Eupp(]'r[. _]._I_l.lf TEEull:ing Eupp{“:ll‘t f{:IIl;Eﬁ are u'&Ed 1 k] ExEEmEI h]‘ﬂdﬁ fﬂl_ dn
equivalent T-beam, which may then be analysed manually. This
model is based on the assumprion of a rigid support, i.e. the stiffness
of the joist is much higher than the bending stiffness of the slab.

A more refined model has to be used if this assumption does not
apply. The joist has to be discretized together with the slab in the
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Slab thickness h = 20 cm
Concrefe grade C30/37
Podsson's ratio v= 0.2

VT T T T T T T
Loading: g = 10 kN/m®

Support forces at the inner wall — nodes baddad C = 50 MPa

Support forces al the inner wall = node fixed

Fig. 4.20 Slab with parttion wall

same system. In this case, the real T-beam system is idealized as a slab
of constant depth and with an additional separate beam or a plate
element having a greater thickness, located ar the midplane of the
slab. In actual dimensioning, the depth of the equivalent beam
element has to be greater as the eccentricity of the joist is not con-
sidered. The moment of inertia of the real T-beam should be identical
to that of the idealized system. The effective width of the flanges of the
joist bz has to be considered in this calculation. It may be estimated

182

Copyrighted Material



T-beam = Slab + Beaam

" Bes T i :
v I PR L) B B

Restricted Page

This page is unavailable for viewing {why?). ¥ou may continue browsing to view
unrestricted pages, ar wisit the About this Book page.




Finite element design of concrete strictures

E 10 [ S — = T-hanm
%
» § 113_._!“-“""'_ e o
E & h=5m b=5m
= 7 v
B E HE A
4 : , == hE oy
g 5 5 %M by =05m —»i20| 4
=18 4
5|8 ?
E 3 'E 04 .___‘ |
T 2 g s T
E = 1 0.2 r'r-”-q:r::"—‘—-— PR 1 Y S
E 0 h-ﬁﬂll:m
ﬂ'l 0.2 0.3 0.4 0.5 0.6

Depih of web of T-beam h, in m

Fig. 4.22 Depth of the equivalent beam hi*™ and relation of the moment of
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4.8 Flat slabs

Flar slab and flat slab plate floors are directly supported on columns,
There are no interior beams as supporting elements. They are widely
used as flar slab construction is economical (Fig. 4.23). A manual
analysis can easily be carried out by the analytical methods given in
EC2, Part 1 [6] or in Heft 240 [10] for regular systems with approxi-
mately equal span lengths, The bending moments and shear forces
for irregular panels or loadings have to be estimated by means of the
Finite Element Method.

The numerical analysis has to model the actual behaviour of the pin
support at the columns. Different approaches are available, which will
be discussed in the following.

It must be emphasized here that the behaviour of the structure in the
region of the columns cannot be calculated exactly due to the under-
lying assumptions of the Finite Element slab model. In the supported
area the strain distribution is very complex. This behaviour cannot be
modelled by plate elements which are generally based on a linear
strain distribution over their cross-section depth. In Fig. 4.24, the
stresses of a circular slab are shown near the supported area. The slab
is simply supported at the outer edge and has a circular column ar its
centre. The slab is subjected to a uniformly distributed load of
q = 10kN/m*. The axisymmetric model represents the load-bearing
behaviour of a flat slab very well for the region of the column. Even
in the case of a rectangular arrangement of the supports the behaviour
around the columns is nearly axisymmetric.

An ‘exact’ determination of the internal forces and the stresses of a
pin supported slab is only possible by means of a three-dimensional
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L e
T 1 Elament
Top view
tColumns
¥
Wi,

Slab Modes

Section A-4

|
Column Column

Fig. 4.23 Flat slab

(volume) model. The nonlinear behaviour of the concrete due to
cracking has to be considered. Such a complex model of a flat slab is
oo extensive for practical use. Furthermore, the dimensioning
cannot be done automatically by the software.

Therefore, in practice, a two-dimensional plane plate model is used
and the columns are modelled by special support conditions. Various
models, as shown in Fig. 4.25, can be used. These have already been
explained in detail in section 4.3 for a simply supported one-way slab.

(a) Three-dimensional volume model.
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slab is that the latter is a two-dimensional spatial structure, carrying the
loads in two dimensions.

The ‘correct’ bending moments, shear forces and stresses of a flar slab
in ThE ['Egiﬂl_l Uf Ehf_' E”].umrl EUPI}L}HE are unknl:ﬁm. -n'IEI‘E'ﬁ}rE, thﬂ
results of the various models are examined on a simple structure,
using an interior panel of a flat slab with regular panel dimensions of
I, =1, = 5.0m. For comparison purposes, the bending moment at the
face of the column is used. This value is relevant for dimensioning
the slab. A uniformly distributed load of g = 10 kN/m? is applied to
the slab.

Owing to the symmetric structural system and the load arrangement,
it is sufficient to only analyse one quarter of the slab and to consider the
boundary conditions at the symmetry lines. Therefore, in the following
figures only one quarter of the whole slab is shown.

The results of the Finite Element calculations are compared with the
values estimated by the widely used equivalent frame [6] and beam
method [10]. Here, the bending moments of a flat slab are estimated
by means of an equivalent frame or beam system and distributed in trans-
verse direction with factors given in the tables (see Figs 4.27 to 4.29).

Strip

Fig. 4.27 Egquwalent frame madel of flat slabs
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Fig. 4.29 Eguivalent frame model of a flat slab according 1o [6]

Table 4.8 Bending moment in strips

Positive moments

NE‘H‘H[[\’E maoments

+10.4 o 14.6 kNm/m
+10.4 to 6.3 kENm/m

=150 to =333 kNm/m

lumn strip

Co

16.7 to —8.3 kMNm/m

Middle strip
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uniform load g = 10kN/m

where: b, is the width of column, [ is the span length

Support bending moments
in the inner strip above the column:
Mgs = kf;s'ﬂ'g'ffnl +k§5 e q 'IEr:]
- { —0.224-1.0- 5 = =56 kNm/m (column 25/25 cm)
| -0.160-1.0-5 = —40 kNm/m (column 50/50 cm)

in the other strip beside the column:
ms; = 0.7mgs = —39.2kNm/m  resp. —28 kNm/m

in the field strip:

mgg =K g+ q-ff = —0.03.10-5° = ~7.5kNm/m
Span moments

in the inner strip:

mic =Ko, g + ki - q- 1} = 0.052-10- 5% = 13.00kNm/m

in the field strip:

mpp = ke g1} + ki - g+ F =0.041:10- 5% = 10.25kNm/m

where: k = moment factors (see [10], Tables 3.1-3.5).

The equivalent frame analysis [6] gives bending moments as shown
in Table 4.8.

The calculated negative bending moment in the column strip
Meypmax = —33.3 kNm/m is significantly less than the value from the
equivalent beam method m; . = —356.0 kKNm/m.

The distribution of the bending moments in the direction of the main
load bearing is treated first (see Fig. 4.28 bottom). Next, we consider,
the distribution of the bending moments in transverse direction (see

Fig. 4.28 right).

4.8.1 Pin support of one node

The influence of the element size on the distribution of the bending
moments is first examined at the section ¥y = 0. The quarter of the
interior panel is divided into 4 x 4, 8 x 8, and 16 x 16 elements. The
size of the element is kept constant in each model for comparison.,

191

Copyrighted Material



Fnite element design of concrete structures

There is no refinement of the meshes in the region of the support.
Figure 4.30 shows the dimensionless bending moment distribution in
the column axis (v =0). It is obvious that a refinement of the
element mesh results in a significant increase of the maximum
support moment. This can be traced back to a singularity problem
caused by the pin support and the concentrated support force. The

1.44 (50 = 50 ol
51.64 (16 x 16 8l)
G244 (BxBal)
55.36 (4 x 4 al.)

0.2 0.3 04 (xfI) D5

=100 1 : 4 x 4 gloments
AY

-241  Haft 240 1or b/l = D.05

116 x 16 elements
11

=T

Fig. 4.30 Moment distribution m,, for y = O in the region of an interior column
for different element meshes — pin supported node
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bending moment in the span is nearly independent of the element size,
except for the very coarse mesh of 4 x 4 elements.

The moment distribution of the models with 8 x 8 and 16 x 16
elements are well matched for the span and up to x/l = 0.06 from
the centreline of the pin support. Consequently, a further refinement
of the element mesh would only slightly affect the moments at
x > 0.06l. Both curves meet in the region of x/l = 0.02.

The bending moment at the face of the column is needed in the
design. Therefore, the considerable differences in the peak moment
at the pin support (mg = —241 to —471 kNm/m) are of no practical
importance. As illustrated in Fig. 4.30, the results are highly dependant
on the element size in the region of x/l < 0.0Z and b,,,/l < 0.04.
Therefore, a pin supported node should not be used for a column
width of b, < 0.04l. Such slender columns (e.g. b, < 20cm for
Ly = 3 m) are rarely used in practice.

Elament mesh (B0 x 80 elemeants)

Mhyy
-53 —40
: =53

Fig. 4.31 Element mesh, bending moments and deflections of a flat slab - all
nodes above the column fixed in vertical direction
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Saction A-A

Liniform load on both spans Unifiarm load on right span only

YYVYYYYYYYYYYYY YV YYYY

=
% D=0
—r
>
."--
- /
s

T

Partial rastraint Deflaction of the midplana Partial restraint

S o W

Fig. 4.32 Restramt caused by the pin support of all nodes above the colemn

Furthermore, one can see that the maximum bending moments at
the supports for all meshes correlates well with values calculared by
the analytical method given in [10]. This is not surprising as the
moment factor k had been estimated for a pin supported plate.

4.8.2 Pin support of all nodes
The slab is fully restrained if all nodes at the column are fixed in the
vertical direction. This mis-modelling is important for asymmetric
loading, as has been shown for a one-way slab (see section 4.4).
Figure 4.33 shows the distribution of the bending moments in
the symmertry lines for two different cross-sections of the column
(byp=25cm and b, =50cm). It can be seen that the bending
moments in the span are only slightly dependant on the width of the
column. In contrast the internal forces at the face of the column
increase considerably when the width of the column becomes smaller.
This is caused by the concentration of the support reactions.

4.8.3 Fully restraint of all nodes
If, in addition to the previous example, the rotation of all supported
nodes is restrained then there is a high moment peak at the column.

194

Copyrighted Material



Slabs

&  1000-m
;i
10—
50 § Face of the column 25 = 25 cm 51

=18

=100

-150
-164

m,-column 25 x 25 cm
10

B
7

=200

DAfSth Helt 240 = ©
i
-250
e
Fig. 4.33 Bending moment m,, and m,, in the section y = 0 — pin support of all E
nodes above the coliomn
=
2
& 1000-m -
2
5o + [Faceof the column 25 x 25 cm 50 E
Face of the column 50 x 50 cm '.3
0 : !
0 03 () o4 05 .8
.--""'_-_.-'_-r"::_:-:ﬁ:-_
50 - e 5L
My ~column 50 = 50 cm
=100
Ay
s M -column 25 = 25 cm
=150 ¢ Mig-eolumn 50 = 50 cm
g I
=200 4 %
|
my-column 25 = 25 cm I
=250

Fig. 4.34 Bending moment my, and my, in the section y = 0 — all nodes above
the column are fully restraint
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-2
Fig. 4.35 Bending moment i the symmetry lines — all nodes above the column

are fully restramt

'T-E'I.E muximum 1|r'E'|]|.ll: 15 pTals I{Iﬂtﬂd at thE 'F-ﬂl:l: {!f I.'hE culumn. T!.'il.?
elements over the support are free of any internal forces as their

: : o
nodes are fully restrained. E
As illustrated in Fig. 4.36, the size of the elements has a great influ- o
ence on the maximum support bending moment. The bending =
=)
mveima240 mvelMa24g q
1-15? 115k £
Colurnn b'h 50 = S0cm Column béh 25 = 25cm o
1.10 1.10 =
-
1.05 . 1.05 =l
1.00 e 1.00 y Mg e S
0.95 b 0.
a5 H__‘_}‘-‘ 85
0.90 s 0.90
.85 .85
osol e 0.80 i
u.rﬁh . -+ 0.75 1
10% 10 20 x 20 40 = 40 BOx80 20x20 40 x 40 B0 x 80
Number of elements Mumber of elemants
whara:

Mgy I8 the support bending moment in the inner strip
Mg is the support bending mament in tha fleld strip
Mg |8 the span moment in the field strip

Mgz are the moments from FE analysis

Magg @re the moments according lo Heft 240 [10]

Fig. 4.36 Bending moment near the face of the coheomn for different refined
element meshes; colwmn size 25 % 25cm and 50 % 50cm — all supported nodes
fully restrained
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moments near the face of the column (maximum value) are compared

for various mesh refinements with the values calculated according to
[10].

4.8.4 Elastic bedded elements

The problem of estimating the correct bedding modulus C has already
been discussed in section 4.4. It has to be noted that the bedding of the
elements above the column results in a partial restraint of the slab, as is
the case when all nodes are restrained in the vertical direction. For a
very high bedding modulus C, the same effects occur as for fully
restrained nodes.

Figure 4.37 shows the moment distribution in the column axis for a
bedding modulus of C = 9000 MN/m’. 40 x 40 elements are used for a
quarter of the slab. The column has a cross-section of 25 x 25cm.
Hence 2 x 2 elements and 4 x 4 elements for a column of 50 x 50cm
are bedded. The results of the numerical analysis do not change
much if the element mesh is further refined.

The desired smoothed distribution of the bending moment over the
column can be seen in Fig. 4.37. The maximum bending moment
decreases with the size of the column. A good correlation of the
results with the values provided by Heft 240 [10] is obtained.

ﬂ_ﬂf'_,.ﬂ-"_’_
: (il
0.3 o4 05
=100 7 Ay
=150 '-';:
—200
@ 4,
b
=250 1 >
byl = 0.05 - column 25 = 25 cm [

Fig. 4.37 Bending moment in section v = 0 = elastic bedded elements
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As shown by the parametric study with different bedding modulus C,

only the maximum bending moment at the support is dependant on the
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In contrast to the previously mentioned model, the rotation of the

nodes (v, v, .) are not combined for a hinged coupling. Only the

¥
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T 1000=m
gl Column 25 x 25 cm
100
50
0.1 nz/l(/n—_u
o : -
5
-850 18
3
4
100 *+ € Ay
§
8
-150 15
5 Maximum bending moments: & *
1 216 (20 x 20 elements) My
~ee -207 (40 x 40 elements) | 2
=208 (B0 = BO elements) o
~250 i"_ﬂ
& 1000-m E
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o1 3
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=50 % Ay
_m. - =5
8
=100 s
_120 | E Maximum bending moments: g ?ﬂ‘&”
Rinems LS
-140 -1 x mants) :
o ~138 (40 x 40 elements) 2

Fig. 4.39 Bending moment in section v = 0 — hinged coupling of the nodes

done in the centre of the elements and not at the nodes. A parabolic
smoothed bending moment distribution over the support should be
used if there is no monolithic connection between the slab and the
column,
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Table 4.9 Span and support bending moments jor a flat slab according w diffevent
models (b, = 25cm, L, =L=5m, 40 x 40 elements)

Span moments DAfSth [10] Pin Pin Bedding Hinged

{manual analysis) support of  support of coupling
| node 3 nodes

Inner strip | meg 13,0 (13.0)° 12.9 12.7 12.8 127
{100%) (909%:) (98%:) R RN (98%:)

Ficld strip mpe 10.3 (8.75)° 8.3 8.2 8.3 8.2
{ 100 %) (B1%) {B0%) (1%} (B0}

Support moments  DAfSth [10] Pin Pin Bedding Hinged

{ar the face) (manual support of  support of coupling
analysis) | node 3 nodes

Inner strip 1 —56.0 (—44.8)" —-63.3 —41.2 -59.1 —-41.2

(face) mss ( 100%) (113%) (T4%) (106%) (T4%)

Inner smip 2mgg - —39.2 (—-29.2)° 313 =30.6 —31.7 -30.6
(100%) (B2%) (T8%) (B1%) (78%)

Field strip meg; -1.5 (—=10.4) —4.6 —4.5 —4.6 —4.5
{100 {6 19%) {60%) (61%) (B0596)

* Values in parentheses: equivalent girder system according to [10]

4.8.8 Slab - edge column connection

In general the bending stiffness of interior columns can be neglected,
but this does not apply to edge or corner columns. The partial restraint
of the slab can be modelled by torsional springs or by bedding of the
support elements. A spring stiffness of C = 3El/l and C = 4EI/l may
be used for a column which is pin ended on the base and a fully
restrained column, respectively (Fig. 4.41). The upper boundary
value is gained if all nodes are fully restrained. The reduction of stiffness
of a cracked member relative to the elastic value should be considered.

The node in the centre of the supported area is fixed for a pin
support. Thus, a small cantilever slab is created which shows bending
moments perpendicular to the free edge.

The following calculations are carried out on a simple system, a
rectangular flat slab with equal span length |, = | = 5.0m supported
by four edge columns (25/25cm). Due to this being a symmetric
system, only a quarter has to be modelled. A uniform load of
g = 10kN/m? is applied.
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Bedding moduli between C = 9. 10° kN/m’ and 27 - 10° kN/m? are
used. The first value corresponds to the normal stiffness Cy = E/l of a
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M=Cyl g

where: Cy = bedding modulus of the slab
| = sacend moment of area of the column

M=Cylg=C,rg=C4y=C,lt=

_Mi
P8 =ag

M=C,-pg=
C,=23E-lft

Cu=3-Eft

A
rrrrrd

M
=2

C,=4E-I/{

Cu=4-E/t

Fig. 4.41 Bedding modulus Cy,y to model the bending stiffness of a column

4 1000.m
g
200
- Elastic support C= 8 = 10° kN/m®
1 i \(__’/.‘-—-Fﬂ":::__.- —— -_::_ 118
1m- - ..._._._... s I--:;':-'-_---'-'--
Pin support AT e
m-
Al nodes fixed
1] - -
i 0.3 04 (x/0y 05
~60 1
100 4 Ay
Elastic support C = 27 » 10° ki/m?
=150 + _-t ;
-200 + ? 3 *m...
-300

Fig. 442 Bending moment m,,
different bedding moduli C
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in section vy = 0 of an edge supported slab for
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3.55m high column with a Young’s modulus of Ec = 32000 MN/m’
(concrete grade C30/37). If the bending stiffness is considered, a
value of Cx = 3E/l = 27 - 10° kN/m’ has to he used.

Figure 4.42 shows the bending moment distribution m,, at the edge
of the slab (v = 0) for different models. The moment at the face of the
column and at midspan is very sensitive to the numerical model of the
support.

The span moment at the outer edge of the slab is 30% greater if
bedded elements are used instead of a pin support. Significant differ-
ences can be observed at the relevant sections for design at the face
of the column. The extreme values are 0 kNm/m to —38 kNm/m.

Pin support All nodes fooad
O o
20 il !
15

il ol

MoORLAEDDo A

Column
Bending momant distribution 2525 cm
over the column

-
4—5—"15__*,/
Fig. 443 Bending moments at an edge column for different models and bedding
moduli C (thin shell elements)
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These differences become clear, when the three-dimensional distri-
bution of the bending moments above the column is checked. The
peak wvalues are not located on the symmetry axis. The largest
bending moment is between m = —14kNm/m for bedded elements
with C = 9000 MN/m’ and m = —73 kNm/m for fixed nodes.

4.9 Foundation slabs
Foundation slabs are spatial concrete structures which distribute the
load of the structure before rransferring it into the ground. Thus, the
ground pressure is mostly reduced in comparison to footings.

The following foundation types are used in pracrice:

(a) Footings
used for high concentrated forces (e.g. those resulting from column
loadings).

(b) Strip foundations
used beneath walls or series of columns.

(c) Foundation slabs
used under buildings as load-bearing elements and for watertight
structures.

The design of a strip foundation in the direction of the longitudinal
axis can be done by means of an elastically supported beam model. The
member forces in the transverse direction can be determined either
analytically if the deformarion of the structure can be neglected, or
by means of a two-dimensional plate model (see section 4.9.2).

The internal forces of a foundation slab are mostly determined by
means of the stiffness modulus method. The inaccuracies of this
approach have already been discussed in section 2.4. The main
advantage of this model lies in the fact that the bedding behaviour
can easily be implemented within the element functions. Thus, no
contact or interface elements are required which simplifies the mesh
generation and the numerical analysis. Furthermore, a two-dimensional
plane Finite Element model is sufficient whereas the constraint
modulus method requires a three-dimensional model of the structure
and the ground or an iterative solution. The following calculations
are based on the stiffness modulus method.

4.9.1 Footings
Footings are used under high concentrated loads, for example
those caused by columns. The panel dimensions necessary for these
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- »

Fig. 4.44 Moment distribution of a smgle-slab foundation

foundations are mostly determined by the permissible soil pressures.
The slab depth is fixed by the design for bending or by punching. For
small loads, massive block foundations can be used which may not be
reinforced. Such structures can be designed by means of strut-and-de
models. Numerical analysis is not required.

The following example focuses on the design of the foundation slabs.
The internal forces can be calculated by means of a Finite Element
model or simplified analytical methods, like the equivalent strip
method given in [10]. Hence different models are available to verify
the results.

The columns, which transfer the load to the foundation, can be
modelled with different approaches like those used for flar slabs. The
variants are (Fig. 4.44):

e a concentrated single loading;
# uniform loading over the area of the column (50/50 cm);
e uniform loading, extension of the loaded area 1o the midplane of the

slab (1.50/1.50 m);
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e hinge coupling of the elements in the column area with the node at
the centre of the column (coupled area is equal to column dimen-
sions, 50/50 cm).

Figure 4.44 shows the bending moment distribution in the symmerry
axis calculated for the different models. The rectangular slab with
l,=L =50m is loaded by a concentrated force of F = 5000kN.
The stepped curve is calculated with the simple analytical model
given in [10]. With the given Finite Element model, a single concen-
trated load results in a very high moment peak (singularity) of
My = 1890 kNm/m. If the load is distributed over the area of the
column (m,,, = 1010 kNm/m = 100%), it results in only half of this
value. A coupling of the elements under the column results in a
turther decrease in the maximum moment by approximately 14%. A
bending moment of m,,, = 630kNm/m = 62% is obtained, when the
column load is dispersed up to the midplane of the foundation slab ar
an angle of 45°, resulting in a loaded area of 1.50 x 1.50 m*. It can
be observed that the size of the loaded area has a significant influence
on the bending moment distribution.

The correct model and the correct loaded area can only be
found by verification with experimental results or by means of a
three-dimensional Finite Element analysis. The main bending
moments show an axisymmetric partern in the column region as can
be seen in Fig. 4.45. Thus, an axisymmetric model (diaphragm) and
not a three-dimensional model is sufhcient to determine the correct

Main bending momenis Settlement in mm
(D R R I R R . o B R U . TR R TR R TR T /-_—I—\—\_\-\-
O S T R B A e o T Y vk
Lo b I T R / \\
|||||1{+zii++l | E I T |
(L T R O B | + i [
T TR T T T R W A T

|
| |
U T T T AR T B W N o . i i NEN U RN
...... LT R o i o N R R I
I O T N T R e T T R

Fig. 4.45 Main bending moments and settlements
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Fig. 4.51 Semple strut-and-tie model of a strip foundation i transverse divection
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4.10 Skewed slabs

The previous sections only focus on rectangular slabs or flat slabs. These
simple structures have been used to demonstrate the basic problem of
finding an adequate model for the supports and the loaded area. In
practice more complicated slab systems are built, which have complex
support conditions and irregular layout (Fig. 4.533). It is one of the
most important advantages of concrete that structures can be builr in
arbitrary shapes.

Skewed slabs with two simply supported opposite sensibly parallel
edges and two free edges are often used for single-span bridges, A
line support results in infinite shear forces and bending moments in
the obtuse corner. This can be seen in Fig. 4.54, which shows the distri-
bution of the internal forces at a simply supported edge. The slab has a
width of 13 m and an angle of 45" to the supported axis. The singularity
of the support forces can be seen clearly.

The peak moments can be reduced significantly, if the stiffness of the
individual bearings is considered. In Fig. 4.54 the internal forces are
plotted for a slab with three elastomer bearings (50 x 25 cm®, height
h = 10cm) on each side. The main shear force in this system is one
third of that of the simple continuous supported slab. The bending
moment m,, in transverse direction is increased from —234 kNm/m
to —409 kNm/m. This is caused by the transverse bending of the slab

Fig. 4.53 Triangular slab of an office building
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Fig. 4.54 Bending moment and main shear force at the supported edge of a
skewed slab

Table 4.10 Internal forces and deflections at midspan (v = 0.5] = 6m)

Rigid support Elastomer bearings
Centre End Cenire End
Bending moment m.: kNm/m 0 131 -9 121
Bending moment m,,: kNm/m ar 195 414 196
Shear force v: kKN/m 0 331 o 406
Dieflection w: mm 11.5 14.7 18.6 20.6
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due to the single bearings. The transverse bending moment can be
reduced if the number or the size of the bearings is increased.

The internal forces at the midspan are almost independent of the
support conditions, as shown by the fgures given in Table 4.10.

4.11 Singularities

Singularity problems may arise in linear-elastic slab calculations as has
been previously shown. Some problems can be avoided by an elastic
support or an extension of the loaded area. Singularities may occur in
the regions of (Fig. 4.55):

e walls which end within a slab (section 4.6);
e discontinuous line supports (section 4.6);
e pin support (secton 4.8);

e obtuse corners (secrion 4.10).

Two more singularity regions which are relevant in pracrice are
treated next:

® openings;

® re-entrant corner (o > 90°%);
e concentrated loads.

- = Ae-antrant
T
d %" comer
%
Driscontinuous
liné suppaort

o

Fig. 4.55 Sigularities
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Table 4.11 Singularities of FE-models hased on Kirchhoff plate elements

Support condition Moments Shear forces

o > 180° a > 78°

a > 9%0° a > 51"

o > 900 o > 60°

o = 95 a > 52"

o > 129" o = 9 TT
&
nJ
=

o > 1807 o = 126"
3
o o
Ch
N
-
(=R
o
o

Displacement, rotation Internal forces

No Yes

(my, my, v ow)
Yes Yes
dw (myy, v,)
(7 %)
No Yes

()




Singularities are caused by simplihcations of numerical models [31

| |
|
|
1
F
!

['he assumption of a linear strain distribution over the section dept
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Fig. 4.57 Mam bending moments and shear forces m the region of an opening

The maximum peak value depends on the size of the relevant elements.
Only a small region near the corner is influenced by the singularity (see
Fig. 4.56).

The distribution of the principal bending moments and shear forces
in the region of an opening is shown in Fig. 4.57. The high increase of
the shear force in the comer indicates a singularity problem. The shear
design of the slab is not possible (and not required) for these peak
values,

Singularity problems can be avoided by smoothing the edges, by
rounding the comers in the Finite Element model. However, this
effort is not required in practice, as shown by the previous analyses.

4.11.2 Re-entrant corners (cx = 90%)

Figure 4.58 shows the distribution of the main bending moments in the
region of a cantilever slab, where two supporting walls meer at right
angles. The singularity can be clearly seen. This problem can be
solved, if the vertical stiffness of the walls is considered in the numerical
model (see Fig. 4.58). The bedding modulus at the supports is chosen
though the vertical deflection of the slab under the wall is less than
0.8 mm in this example. Even with this small value the shear forces
and the bending moments are reduced by a factor of 3 and 2, respec-
tively, relative to those of a slab with rigid supports.

4.11.3 Concentrated loads
In the linear-elastic Kirchhoff slab theory, infinite internal forces are
calculated under a point load (see Fig. 4.59), whereas the deflections
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Fig. 4.58 Intemnal forces of a slab which is supported by two perpendicular walls
— no supents at the outer edges.

are limited. This singularity problem can easily be solved by a spreading
of the loaded area. This will be shown in the following.

Concentrated loads may occur, for example on a deck slab of hollow
box or T-beam bridges. The internal forces due to truck loading are
calculated using a simplified system of a partially restrained equivalent
slab (see Fig. 4.60), as in practice a 3-D Finite Element model of the
whole structure is too extensive. A detailed estimation of the effective
span length is not required with regard to the assumptions of the model.
The torsion stiffness may be estimated by separate manual calculations,

219

Copyrighted Material



Finite element design of concrete structures

Fig. 4.59 Moment distribution of a rectangular slab loaded by a pont load at the
midspan

e.g. using an equivalent beam model. It depends not only on the
structural system but also on the type of the loading.

The point load has to be distributed up to the midplane to avoid
singularities (Fig. 4.61).

Figure 4.62 shows the significant influence of the loaded area on the
bending moments. Here the bending moments for a total force of
F=100kN and a loaded area of 0 x Dcml,, 24 = 20 t:l'n.:,r and
60 x 96 cm” are plotted. The slab has an effective span length of
lif = 6.0m and a constant thickness of h=20cm. The inclined
haunches near the webs are neglected.

A Finite Element analysis of the deck slab is required if more accurate
internal forces are needed for design or in the case of special load
arrangements. Tables in literature and influence lines provided by
Homberg and Ropers [19] and Homberg [20] can be used for standard
conditions. The determination of the internal forces by means of tables
may be time-consuming as various values have to be interpolated; thus,
a Finite Element analysis may become economical.
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Fig. 4.60 Equivalent slab model for the deck of a hollow box givder bridge
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221

Copyrighted Material



Finite element design of concrete structures

!

Banding momeant Main shaar force

156 327

14.8

Fig. 4.62 Moment and shear force distribution of a plate serip loaded by a force
of F = 100kN at mudspan — different loaded areas

4.12 Discretization — generation of the element mesh
Nowadays, the generation of the element mesh is done by means of
graphical pre-processors. The effort is considerably less than a manual
input. Also, input errors, caused by incorrect node coordinates or
restraints, are mostly avoided by the visual control.

An automatic mesh generation can only consider the main geometrical
boundaries. Refinements are required in regions of great stress gradients,
and have to be done manually by the user if no adaptive mesh refinement
tools are available. Hence, the mesh generaton requires sufficient
experience and skills in use of the Finite Element Method and knowledge
of material properties too.

The problems of mesh generation are demonstrated by the following
two practical examples.

4.12.1 Location of the restraint nodes

The support nodes of simply supported circular slabs should be located
exactly on the outer circumference. Even small differences may result in
a partial restraint of the slab even in the case of hinge support. This
problem is demonstrated on a simple example.

221

Copyrighted Material



Restricted Page

Thiz page 1s unavailable for viewing fwhy?). You may continue browsing to view
unrestricted pages, or visit the About this Book page.




Fimite element design of concrete structures
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Fig. 4.64 Circular slab — bowndary nodes not accurately placed on the outer cir-
cumference

Figure 4.64 shows the Finite Element mesh and the resulting main
bending moments. Due to the symmertry conditions it is sufficient to
only model a quarter of the whole slab.

The orientation of the main bending moments at the upper edge of
the slab is surprising. A support moment of m; = 80 kNm/m has been
calculated. This moment is 70% of the maximum bending moment in
the centre even for a structure which is supported by hinges.

This error is caused by the faulty location of the supported nodes.
The fixed nodes at the upper right of the slab are located in a sawtooth
manner, | mm away from the circle. Even this small value, equivalent
to 1/1500 of the diameter, has a significant influence on the bending
moments. The same problem arses in rectangular slabs, for cases
where the fixed nodes are not located accurately on a straight line.
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Fig. 4.65 Finite Element meshes for a civcular slab — various member of elements

This example has impressively shown that the hxed nodes should be
precisely located at the curved boundary.

Very often only the graphical output of a Finite Element analysis is
checked. Errors in node coordinates, like those referred to above, can
then hardly be noticed. Therefore, the checking of a Finite Element

analysis should not be restricted only to the graphical outpur of the
software.

4.12.2 Size of the elements
A sufficient number of elements have to be used in order to model the
real deformation characteristics and the load-bearing behaviour of a
structure. This has to be considered particularly for curved boundaries
as will be shown on the simply supported circular slab under uniform
load of ¢ = 10kN/m’, mentioned previously.

Figure 4.66 shows the bending moment distribution and the deflec-
tion in the centre of the slab for different number of elements. The
correct values can be estimated analytically.

bending moment in the centre

e 10-7.5°
TI'IIZE"IE-{j'{'P:I: 16

(3+0.2) = 112.5kNm
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Fig. 4.66 Deflections and bending moment in the centre of a civcular simply
supported slab for different number of elements

deflection in the centre

(5+wv)-q-1

E-h’
12 - (1 — %)
(5+0.2)-10-7.5*
34.10%.0.5°
12 (1 -0.2%)

The results show that only 4 x 6 = 24 elements are required for the
whole slab in order to get satisfactory results.

Nowadays, due to the increasing computer capacity, the size of the
numerical model or the number of elements does not usually play an
important role. Therefore, modelling is often done quickly, without suffi-
cient attention paid to the relevant details. What may be considered as
unimportant details, such as a one-way cantilever slab or a small opening
in a flat slab near a column support, are not noticed. However, these are
the regions where high gradients of the internal forces may occur.

The problems, due to neglecting such ‘unimportant’ details, are demon-
strated by a simple cantilever slab. This is not a theoretical example. Such
a problem had occurred in a real big slab, whereas, unfortunarely, the
mistake had only been noticed after the slab had been poured with
insufficient reinforcement. Excessive retro fitting was required. The

W=

64-(14+v)-

10" =5.8mm

64-(1+0.2)-
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Fig. 4.67 Bending moments in the region of the balcomy

system and the element model are shown in Fig. 4.67 (the full system
is shown in Fig. 4.4). The balcony had been only modelled with
one element layer, as it has a simple one-way load-bearing behaviour.
A uniform load of g = 5kN/m’ is applied on the whole slab. This
results in a support bending moment of the equivalent cantilever beam
of m=5x2x1=-10kNm/m. Values between m, = —3 and
m, = —6kNm/m, which are much smaller than the analytical ones, are
calculated by the Finite Element Method. The differences are caused by
the linear form functions of the four-noded element used, which results

221

Copyrighted Material



Fimite element desim of concrete structures

ement. Thus, only the values in the

centre of the element are calculated and not the values required for design
. i T—I-...r _.J. ...-.-.lm.rn.. . |_|n.r ulrl. A o T s .-.| r._.l - _.|_| ._II H - .-.ul - |_ — e -

in constant internal forces within an e

Restricted Page

This page is unavailable for viewing {why). ¥You may continue browsing to wiew
unrestricted pages, or wisit the About this Book page.




Before cracking Aftar cracking

CTRCK Craids
- >
A F o | L F
Restricted Page

Thizs page is unavailable for viewing (why ). ¥ou may continue browsing to view
unrestricted pages, or visit the About this Boaok page.




Finite element design of concrete structures

Fig. 4.69 Transformation of the bending moment

It should be noted that the codes specify a minimum transverse
reinforcement (20% of the maximum reinforcement in the main load-
bearing direction). Thus, the value k, should always be greater than
0.2. Furthermore, for o« = 25° the reinforcement should be distributed
in the orthogonal directions, as illustrated in Fig. 4.70. In this figure,
the bending moment, m;, is always greater than that caused by the
external actions. The design bending moments in the direction of the
reinforcement bars can be estimated by using the following expressions:

1

1 = :
cos® a + k, - sin

-,
Iﬂ

A mam "
20 i

7 i

: m
1.0

- M

1 |m s

My
- my /
/ m
"_i' [N}

n_u ' ¥l - ' 1 ’

0 20 25 30 40 45°

Fig. 4.70 Distribution of the main bending moment in the divectuon of the reinfor-
cement bars
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4.13.2 Model of Baumann
The design for the bending of a slab is transferred to the design of a
pla.me platE Hisk} for normal forces {Fig. 47”‘ ”5]

The forces in the reinforcement results from the equilibrium condi-
tons on a plane plate element (see Fig. 4.73). The angle of the
cracks ¢ is determined by the principle of the minimum energy. A
linear-elastic material behaviour is assumed.

sl £ tanﬂ+krcﬂtn_m[_ mtn-l—hrtann_l
v
ZI“—ENJFH
Whl;“.'l"E:
s, % K
gy h E,
k=my/m =ny/n
T My = K- my
L ——
45 54
| B . |
Al Memk-my
- ———

Compression zone due to bending
Fig. 4.71 Transfer of bending moments into normal forces in an equivalent disk
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Fig. 4.72 Definition of angles o and

m; and m; are the principal bending moments

€ angle between direction of rebar (¥) and main tensile
torce ny (o < 457);

@ angle between direction of rebar (y) and cracks;

2 angle between direction of rebar (v) and cracks, if the
shear forces are neglecred;

s angle berween direction of rebar (y) and cracks, if the

steel is yielding.

If the reinforcement in both directions reaches the yielding point, the
angle of the crack ¢; is obtained from the following expression:

tang; = —C+VC 4+ )

where:

l+tan‘a-(k—A)—k-A

b= 2-tana- (1 —k)

231

Copyrighted Material



' D

Restricted Page

This page 12 unavailable for viewing (why?). ¥You may continue browsing to view
unrestricted pages, or visit the About this Book page.




Finite element design of concrete structures

The following expressions are used to determine the forces in the
reinforcement F,, and F,, and the compressive force F_:

k k=mn;/n; = tanlex + 7/4) - tana k=n;/n; < tanla + 7/4) - tan o
k-1
. g wi4 g [I:.un o+ k- v:nmnn}
_ i L 1 n
Fpm it 2 gk | ==amins) sin® o <+ k - cos® o
E,. m n||_+n!" ~.gnla- (1 + tana) = ]
[ (ny —my)-sinlo (ny —mny) - sin 2o/ sin 2,

4.13.3 Model of Eurocode 2

The Eurocode 2 (EC2) model [6] is also based on a transformation of
the bending moments into the direction of the reinforcement (Fig.
4.74). The results agree with the Baumann model if: m, = |m,|.

4.13.4 Comparison of the different models
Figure 4.75 shows a comparison of the reinforcement required for
the ULS design, according to the above-mentioned models for

Copyrighted Material

Mty = My + | My | | Mun=0
Mhacy = My + | Mgy | My, = My Mg, /| my |l

Mgy = =M+ | My | M ==+ m, /1 m, |
Mgy = =My + | Mg | My, =0

Fig. 4.74 Dimensioning of slabs according 1o EC2, Part 1, A 1.8 [6]
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rectangular slabs under uniform load. These values can be used to verify
a Finite Element model. However, the differences in the numerical
models, assumptions, and simplifications have to be considered.
While most tables have been calculated in accordance to the Kirchhoff
plate theory, the Finite Element software is generally based on the
more consistent plate theory of Reissner/Midlin. The main difference
berween the two approaches is in the shear deformation. The Kirchhoff
approach neglects shear deformations, while these are taken into

Bending moments Shear forces (v and
suppor forces (V)

Fig. 4.76 Bendmg moments and shear forces of a simply supported rectangular
slab under wuniform load calculated by the Fmite Element Method and with
Czemy tables [11]
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180 m1. 70 m 4 80 m

Concrete grade C25/30

BST 5005
Stab thickness: h= 18 ocm
Loading:
g = B.0 kN/im®
g =42 kNm®
Floor covering
Camani screed
h=d4dcm
Fail g =0 kN/m®
Impact sownd
insulatian h=4 cm
Concrate slab,
h=18cm

1.80m 2.00 m 540 m 300 m Gypsum plaster, 15 mm

Fig. 4.77 Structure and loading

model. This structure had been used in the original publication [27],
but the loads and the thickness of the slab have been increased to
represent the up-to-date conditions.

Figures 4.78 and 4.79 show the bending moment distribution
calculated by the Finite Element Method in both axes for various
sections. Figure 4.80 shows the comparison of the bending moments
in the relevant sections. A good agreement in the field bending
moments can be seen for both calculations using the simple manual
method and the Finite Element Method. The support bending
moments are generally greater due to the assumption of high restraints
(between 50% and 1009%).

It should be noted that the minimum bending moments given in
ECZ, Part 1 [6] are relevant in the small slabs Nos. 4 and 5 and not
the values from the linear-elastic Finite Element model. The
minimum internal forces always have to be considered in addition to
a Finite Element analysis.
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8.38
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- 9.51
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6.26 B

-2.04 %

N | o

-5.85

Fig. 4.78 Bending moment distribution m various sections  (Finite  Element
analysis)
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Shell structures

Hotational degree of freedom

Fig. 5.1 Nodal degrees of freedom of a flat thm shell element

5.1.1 Collapse of the Sleipner Platform

The problems of Finite Element calculations can be well demonstrated
in respect of damage or failures of structures due to errors in the numer-
ical analyses. Unfortunately, due to a lack of interest in demonstrating
such design errors, so far only a few of such cases have actually been
published.

A good example of the failure of a concrete structure, caused by an
erroneous numerical analysis, was the collapse of the offshore oil plat-
form ‘Sleipner A’. Further detailed data is available in the literature
[4, 5, 32]. This so-called Condeep-type platform consists of 24 cylind-
rical caisson cells, each with an internal diameter of 24 m, which were
closed at top and bottom by a dome (see Fig. 5.2). These cells were used
as buoyancy during the construction and the shipping of the platform to
its final location. The steel deck (total weight 40000 tons) rested on
tour shafts, each having a minimum internal diameter of 12 m. The
structure had a total height of 110 m. It was designed to operate ar a
location with a water depth of 82 m. The ‘Sleipner A’ platform was
the twelfth in a series of gravity-based structures built for use in the
exploitation of hydrocarbons in the North Sea. There was no significant
difference between this platform and the earlier platforms of the

Condeep type.
The structure collapsed during installation. The construction of this

type of platform is carried out in three phases. In the first phase, the
lower part of the foundation structure is built in a dry dock. Then
the dry dock is flooded and the structure is shipped to a deep-water
construction berth, where the rest of the cylindrical caisson cells and
the four shafts are erected. Finally, the whole platform is lowered to
nearly the sea water level by partially flooding the cylindrical caisson
cells, and the steel deck is lifted on the shafts and fixed in place.
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Fig. 5.3 Detail ‘A’ — tricell

e erroneous Finite Element analysis;
e insufficient reinforcement and bad detailing of the tricell walls.

The bad detailing of the intersection between the cell walls can be
seen in Fig. 5.5. The T-headed bar of diameter d, = 25 mm, was not
anchored in the compression region of the walls. More information
about this problem is given in the available literature (e.g. [4, 5]).

The errors in the Finite Element analysis of the platform lay in an
insufficient  discretization, and poor geometrical shaping of some
elements in the tricells (Fig. 5.6). Simplifications had been made with
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detail

«

Fig. 5.5 Arrangement of the remforcement in the intersection of the caisson cells
(tricells)

regards to the number and shape of the elements, due to the size and

complexity of the structure and the limited computer capacity. This
had resulted in incorrect modelling of the load-bearing behaviour of
the tricells. The walls of the cells had been modelled by only two
element layers.

Using a coarse finite element mesh, the internal tensile forces, that
is the shear forces at the wall supports, are underestimated by nearly
50%. Due to the large amount of input and output data of the three-
dimensional model used, this mistake was not recognized by the
designers.

Fig. 5.6 Element mesh of the tricells
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Fig. 5.7 Mam membrane forces

The basic model problem is demonstrated by the following parametric
study. For simplicity, a flat shell model is used.

Figure 5.7 shows the distribution of the main membrane forces in the
region of the wall intersections. The inclination of the compression struts
result in a high tensile force, which should be carried by the T-headed
bars. However, the size of this force is highly dependant on the size
of the elements, as can easily be demonstrated by calculations with
various mesh sizes. Figure 5.8 shows the distribution of the horizontal
tensile force in the walls for different mesh refinements (see Fig. 5.9).

With a very coarse mesh there appears to be no tensile force in the
intersection region (mesh No. 1). Refinements result in a large increase
in the horizontal force resultants (see Table 5.1). It should be noted
that the results are highly dependant on the element type used and
the element size.

What are the conclusions of this failure [33]? Complicated shell models
with various arbitrary loadings can hardly be checked by a manual analysis
of simplified equivalent structures, whereas this is possible for flar plates
and shear walls. Furthermore, the checking of the equilibrium condition
of the external and support forces is not sufficient. Other checks have
to be performed for shells with complicated shapes.

The essential problem in the numerical analysis of the platform was
that the element mesh used was not able to model the real deformarion
characteristics and load-bearing behaviour of the structure. The element
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+16.9 (N8)
+14.7 (N4)

Fig. 5.8 Distribution of the horizontal membrane force m the wall

size used was too large, furthermore, the assumption of linear-elastic
behaviour did not hold for all sections of the structure.

Thus, each structure has to be checked for regions where the assump-
rions of the numerical model do not apply. Detailed knowledge of both
the Finite Element Method and the material behaviour are required for
this rask. Numerical algorithms like the automatic mesh refinement
cannot compensate for the knowledge of the user. They are often not
able to detect critical sections when the element mesh used is too
coarse.

Critical regions of the structure can be analysed separately from the
whole structure by means of, for example, strut-and-tie models or
refined Finite Element models (substructure method). The resultant
forces at the outer surface of the substructure can then be applied to

a global model.

5.1.2 Patch loads on shells
The design of a huge offshore platform is very specialized and not a
routine task. However, model problems can appear even on simple
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/N /A

Fig. 5.9 Element meshes for the tricells

Table 5.1 Resultant tensile force for various element meshes

Element mesh N1 N1 N4 N8

Resuleane tensile force TL in MKN/m -2.0 0.75 0,99 1.04

cylindrical shells. The following demonstrates this on a cylindrical silo
(see Fig. 530).

The cylindrical bin, which is used for storage of fly ash, has a height of
59 m and an inner diameter of 24.4 m. The following analysis is carried
out on a simplified model. Only the cylindrical shaft is modelled. The
inverted cone and the partial restraint of the walls in the pile foundation
are neglected.

For axisymmetric structures, three-dimensional models are only
required if unsymmetric loads have to be applied. This is the case for
most silo structures. The main loading of a silo results from the bulk
material inside the bin, which can be estimated from various codes
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Elevation Plan view

R a8

Fig. 5.11 Patch load according to ECI, Part 4 [28]

Mash A Mesh B Mesh C
Mumber of elements over tha circumferance and hasght
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Fig. 5.12 Element meshes
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Fig. 5.13 Internal forces m a hovizomtal sectiom at z =h/2 = 28m (element
values)

mesh No. 3. A uniform horizontal parch load of g = 100kN/m? is applied
to the walls.

The internal forces under the patch load increase considerably with an
increase in the number of the elements, as can be seen in Fig. 5.13. Table
5.2 gives the maximum values of the internal forces. The maximum
bending moment, calculated with the coarse element mesh A, is only {
of that of mesh C. Calculating the reinforcement requirements using

Table 5.2 Maximum intemal forces (nodal value)

Mesh A Mesh B Mesh C Hennig [29]

n, in kN/m min =97 (86%) —106 (94%) -113 (100%) -
max 244 (39%) 492 (79%) 627 (100%) 424 (68%)

nin kN/m  min —487 (85%) =356 (97%) =571 (100%) —540 (95%)
max 273 (71%) 356 (92%) 387 (100%) - -

m, in kKNm/m min =50 (78%)  —68 (106%) —64 (100%) - -
max 03 (44%) 202 (97%) 209 (100%) 1588 (90%)

mn kNm/m min =15 (63%) =22 (92%) —24 (100%) - -
max 36 (31%) 114 (98%) 116 (100%) 120 (103%:)

ny, m, = internal forces in circumferential direction
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Fig. 5.14 Contour plot of the bending moment m, in circumferential direction
{mesh C)

such considerably lower value for the bending moments would resultin a
lack of safety.

Due to the large uncertainty in the actual loading conditions, a high
accuracy in the analysis is not required. The patch load represents only
a rough idealization of the non-uniform pressure distribution in the silo
bin in the circumferential direction caused by the granular bulk
material, In this respect, an extensive three-dimensional fnite
element shell analysis is only useful in special cases. Table 5.2 shows
that a simple manual analysis of the maximum bending moments,
using the parameters published by Hennig [29], gives a good agreement
with the Finite Element analysis.

As previously mentioned, the patch load represents a rough simplifica-
tion of the real pressure distribution. Therefore, nonlinear calculations
are not permissible, as the theoretical bending moments in the walls
would be considerably reduced relative to the acrual moments.

5.2 Continuous slab beam girder systems — T-beams

T-beams are widely used in concrete structures, whether as a main
longitudinal girder in bridges or as the support (joist) of slabs (see
sections 2.8.2 and 2.8.3). An analysis can easily be carried out manually
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forces in the plate analysis can then be used as loading for the T-beam
girder to calculate the internal forces and dimensioning of the T-beam.
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5.2.1.3 Model C: Replacement of the web by additional beam
elements at the midplane of the slab

vl i L] i L] i L i Lo ==l

Restricted Page

This page 15 unavailable for viewing fwhy?). You may continue browsing to view
unrestricted pages, or visit the About this Book page.




Finite element design of concrete structures

Cross-section System and loading
150 em G = 15 kN/m

azo UL EEL LTI

SRR R R R s e Rk

2 15
» P T >
Bending mamant
L
15 421.9 kNm
Saction proparties
A=0510m*
= 0.1144 m* Shear force

Z, =042 m
(from top of flange) 1125

Fig. 5.18 T-beam: system, loads, miernal forces (beam model)

5.2.2 Comparison calculations with the different models

The results of the different approaches will be compared on a very
simple structure, a simply supported single span T-beam (span width
of | = 15m) under a uniform load of g = 15kN/m (see Fig. 5.18).
The internal forces can easily be manually calculated by means of a
girder system, as the whole flange is under constant compression
(b = bg). This manual analysis results in the following maximum
stresses in midspan of the T-beam.

-0.429

M 4219
U‘:—T‘f—m‘ -0.229
1.171

~1582kN/m" (top)
={ —B45kN/m’ (lower face of flange)
+4310kN/m* (bottom)

These values serve as reference for the other models.

The results of the shell model are shown in Figs 5.19 w 5.21. The
structure and the loading are symmertric. Therefore, it is sufficient to
model only half of the whole structure and to consider the special
boundary conditions at midspan. The web and the flange are each
modelled by 20 x 50 elements. A pin support, which results in infinite
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150 cm Midspan .
e N = +

= TR,

= RN,
= AR,

22 15 kN/m
22 g YYYYYYYTYYVYYY
z= R
22 B
Support £ - 15m >
Axis of sg'mrrm:glr
-237 (-1580}

224 308 420 512 (3413) 650 (4333) |
Y x Membrane force n, in the web in kN/m
7 (valuas in brackets = horizontal stress in kM/m®)

Fig. 5.19 Shell model

forces in the vicinity of the restraint, and nor a continuous bedding is
LIEL"LI., L T].'IE i]'ll'l!mﬂ]. I:-{!IE'E!!' TeaAar tl'l{: SIIPFH.}TFS are l]f- Ty rllrt].'lL‘I interest.
A uniform load of g = 10kN/m” is applied to the flange.

The distribution of the horizontal membrane forces and the honzontal
strains across the secton depth are linear except near the supports
(Fig. 5.19). The main assumption of any beam analysis, the linear
strain distribution over the depth of the section, is valid for almost the
whole structure. Therefore, it is not surprising that the normal stresses
of the Finite Element maodel comrespond well to the results of the beam
analysis (stresses ar the upper and lower edge of the section at midspan
(@™ = —1580kN/mm’; 6™ = 44333 kN/mm?, see Fig. 5.19).

The compressive stresses, @, = n,;hy, in the flange increase parabol-
ically from the support axis to midspan in agreement to the bending
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-231

Distribution in

longitudinal direction

?x

Membrane loroe n,

L
-77.8 I
|
A
A
41.8
1.96 | 14.1 288
-14,1
Distribution in
longitudenal
direction
1 1
* Asis of symmetry Membrans force ny, Support axis «

Fig. 5.20 Membrane forces n,, n,, n,, in the flange in different sections

moment distribution (Fig. 5.20). The support force causes high transverse
compressive stresses o, = n, /h; in the flange, atr the end of the beam
(Fig. 5.20 middle). The membrane shear forces, n,,, in the flange are
greatest at the intersection with the web. They decrease in a longitudinal
direction to zero at midspan. Consequently, the shear force is not
constant as assumed in most models for shear design of a flange in trans-

verse direction (see, e.g., [6], section 4.3.2.5).
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Fig. 5.21 Main membrane forces in the support regions

A three-dimensional folded slab model of a T-beam is, in general, too
extensive for most practical cases, especially as the dimensioning task is
difficult (see, e.g., shear walls). However, shell models are very helpful
to determine the flow of forces in a structure and to evaluate an
accurate strut-and-tie model (see section 5.2.3).

Figure 5.22 shows a model with beam elements located in the
midplane of the plate. An equivalent depth of " = 2.09m and a
width of b, = 0.15m (the same as a real weh) can be calculated for
the given dimensions of the T-beam. The models with an eccentric
beam element are shown in Figs 5.23 and 5.24.

The total internal forces of the T-beam are calculated by summation
of the beam forces Nieam Mieam and the membrane forces in the shell
n,, m,. The latter values are gained by numerical integration.

Edge stresses of a beam:
. = NJA £ M/W
Edge stresses of a slab:
ngobp my b ng om, -6
TR K ChT R
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Fig. 5.22 Model C: plate elements (flange) with central equivalent beam elements
fweh)

Axis of symmetry
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Crogs-section of equivalent beam z
Fig. 5.23 Model DI: shell elements ( flange) with eccentric beam elements (web)
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Axis of symmaetry

Fig. 5.24 Model D2: shell elements (flange) with eccentric beam elements (web)

Total normal force of T-beam:
Niot = Npeam + Nitab = Nieam + Mytab - Pitange
Total bending moment of T-beam:
Muoe = Micam + Nbcam * Zheam + Mtab * btange + Milab * Dange * 2utab

whﬂl‘f.::

b,,, by is the width of web and flange

h,,, hg is the depth of web and flange

z is the distance berween the centre of gravity of the flange or
the web to that of the T-beam

The results of the various approaches are summarized in Table 5.3. A
very good agreement between all three different numerical models and
the values of the manual analysis can be observed. The small differences
between the results are caused by rounding errors. The distributions of
the edge stresses are shown in Fig. 5.25.

The bending bearing behaviour is well represented in all the models.
No differences in the deflection of the girder can be observed.
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Table 5.3 Member forces at midspan over the sectim depth of different models
(demensions kN and m)

Mfﬂl!l: hrrh.'- Ml!':u.ul h il. : ﬂ_i.lm ”hlh.ﬂ h"'- Mﬁuu
W m* m m m kN/m'  kNim? N Mo
C 00 4185 015 209 © —-3832 +3812 0.0 4185
oo 142 1.5 @1 0 =363 +363 o0 363
Toal o0 4211
D1 6.1 1260 D015 140 L171-07 -B49 4335 3661 126041724
-I440 241 15 02 0419-01 =1584 -<=8% -3660 363+ 1104
Total 1 4220
B2 130.0 1890 Q15 160 OR-0420 1578 44328 3300 1890+ 1224
-1450 143 1.5 02 0419-01 -=1587 -85 3660 3.3+ 1088
Total -8 4230

As it was expected, the stress distriburions in the slab and in the
equivalent girder of Model C are completely different from the other
cases (see Fig. 5.25). These values cannot be used in design (e.g.
checking the edge tensile stresses in the serviceability limit state for
partial prestressed structures). In contrast, the stresses of Model D
agree well with thar of the T-beam girder, both in the web and the
flange.

In Model D), single forces and single bending moments are introduced
in the nodes due to the local coupling of the beam and shell elements.

Fig. 5..35 Stress diseribution in medspan over the section depth of differens models
[kN/m* ]
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Fig. 5.27 Structure and Fmate Element model

on the flow of forces is useful. A 3-D Finite Element shell analysis can be
helpful in this rask.

This will be shown for a single precast beam of the concrete T-beam
bridge shown in Fig. 5.27 (see also Figs 2.96 and 2.97). This system has
already been explained in section 2.8.3. The beam has a span length of
| = 38m. The following calculation only considers the prestressing
forces. The T-beam girder was stressed by 52 straight tendons of
grade ST 1570/1770.

The analysis can be restricted to half of the system, as the structure
and the loading are symmetric. Shell elements of 20 x 50 are used for
the web and the flange.

The results of the shell analysis are shown in Figs 5.28 and 5.29. The
strut-and-tie model was adapted to the orientation of the main
membrane forces. The large transverse tensile stresses in the flange at
the support region are clearly shown in Fig. 5.29.

The above-mentioned analysis was based on a linear-elastic material
behaviour. This applies mostly to the web, as almost no tensile stresses
occur under prestressing; nevertheless, force redistributions may
happen in the flange due to cracking.
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Fig. 5.28 Mam membrane forces at the end of the pirder (1 = 3.0m) and mem-
brane forces in longitudinal divection in various sections — strut-and-tie model
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+E42

3.0
< - >

Fig. 5.29 Distvibution of the membrane forces in transverse direction i the flange
near the end of the beam (top view)

5.3 Composite structures

The model — flar shell with eccentric beam — can be used for the
analysis of composite structures. Construction stages can be considered
by activating the relevant load-bearing parts of the structures, i.e. the
elements. The shear forces in the joint are obtained directly from the
coupling forces in the nodes. Time dependant characteristics of the
concrete can be considered in the analysis.

Cross-saction

(degth increased Top view -
3 6.5
-~ — ';'"'-g
1.3
B / 00

t:ir gl

Cantre-of gravity Shell elements Beam elements o

of steel girder

Fig. 5.30 Composite structure — Finite Element model
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5.4 Singularities
Singularities of the internal forces can be observed in shell structures as
well as in plate systems. They are caused by the same numerical errors.
Therefore, only one practical problem - single forces on shell structures
— is discussed in the following example.

As explained already for plate structures, single forces should only be
applied to a Finite Element shell model, if the internal forces close o

Bending momeant m,

A5 m
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Fig. 5.31 Bending moment m, and membrane force n, in the loaded area (point
load)
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Table 5.4 Intemal forces (mesh: 64 % 44 elements) loaded area — single force

n,inkN/m n inkN/m m,inkN/m m in kN/m

min. max. min.  max. min.  max. min.  max

Loaded area 5x5m —113 627 =57l 387 =64 9 =14 116
g = 100 kN/m

Point load —117 968 =50 36 =13 6bl =31 54
(3 = 2500 kN

n,, m, membrane force and bending moment in circumferential direction

the loaded area are not needed for design. Otherwise, the estimation of
high bending moments and membrane forces close to the concentrated
load may result in an uneconomical design. This will be demonstrated
on the silo structure (height h = 56 m and diameter d = 25 m), which
was already mentioned in section 5.2.2.

Figure 5.31 shows the distribution of the bending moments and
normal forces in circumferential direcdon for a single force of
F=5mx5mx 100kN/m* = 2500kN. A comparison of this result
with thar of a distributed uniform load over an area of 5 % 5 m shows,
that the internal forces are higher but on the safe side (see Table
5.4). The greatest bending moment in circumferential direction, m,,
under a concentrated load is three times higher than if a distributed
load was applied.

It should be noted, that the maximum values will greatly increase
with the number of elements in the loaded area.
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bending moments, slabs (continued)
Eurocode 2 (EC2) model 234,
235
Finite Element Method 236-237,
236, 240, 241, 242, 243
flat 189-191
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Finite Element design (continued)
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bending moment distribution
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modelling 210, 211
tensile force 211, 212
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soil deformarion 40-41, 40, 41
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internal forces 26-29, 27, 28
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Bridge 108
high-rise buildings
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bending moment distribution 74,
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73
design software 67
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dimensioning 114-115
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reinforced beams (continued)
tension stiffening effece 114, 114
reinforcement
deep beams
horizontal distribution 137,
138=139, 138, 139, 140
vertical distribution 138, 139
determination, by modelling 11-12
hollow box girder bridges 21
frame comers 21, 25, 2§
internal arrangements 4
slabs 160
Reissner/Midlin plate theory 236-237
residential buildings
slabs 153, 153, 156-157
bending moments 154, 155
deflections 154
shear forces [55

shear forces

toundation beams 42, 42

hollow box girder bridges, top slab 89

rectangular slabs 236-237, 236

slabs
Czerny tables 236-237, 236
discontinuous line support 178, 179
one-way 171, 174
partially lifting 175, 176
residential buildings 155
skewed 213, 214, 215

T-beam bridges 92, 93

shear walls
beam/column juncrions 58, 60, 60
definition 117, 118

finite element stresses 117, 117
high-rise buildings 58, 59, 60, 61, 62
large openings
deformation 62-63, 62, 64
modelling 60, 60, 61, 62
singularities 147, 148, 149
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shell structures
composite 270, 270
definition 244
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slabs (combmied) stability
residential buildings 153, 133, high-rise buildings
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bending moments 154, 155 sway systems 80
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shear forces 133 80, 84, 85
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shewed 213, 213
bending moments 213, 214
internal forces 214-115
shear forces 213, 214, 215
stiff, bending displacement 72-73, 73
SUPPOITs
bending moments at 161-162, 161
conditions 160-161
time-dependant deformations 160
Sleipner A platform 5
collapse 4, 245-247
Finite Element analysts, errors
246-249, 247, 248
tensile force distribution 249, 250
tricells 246, 247
slender beams, and deep beams 118
software
Finite Element design
availability 1, 2
uncritical use of 4-5
high-rise building design 67
program errors 9
soil deformation, foundations 40-41, 40,
41
soils, stiffness modulus 48-49
sparial shell structures, simplification by
simple beams 14
spatial structures
dimensioning
Baumann model 231-234, 231,
232,233
cracking 228, 229
internal forces 228
simplifications 228-229
Stiglat model 229, 230

184

structural deformation, high-rise

structural modelling, usefulness 5
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design B9
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torsional stiffness 92-94, 94
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