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Preface

Univariate statistical analysis is concerned with techniques for the analysis of a single
random variable. This book is about applied multivariate analysis. It was written to pro-
vide students and researchers with an introduction to statistical techniques for the analy-
sis of continuous quantitative measurements on several random variables simultaneously.
While quantitative measurements may be obtained from any population, the material in this
text is primarily concerned with techniques useful for the analysis of continuous observa-
tions from multivariate normal populations with linear structure. While several multivariate
methods are extensions of univariate procedures, a unique feature of multivariate data anal-
ysis techniques is their ability to control experimental error at an exact nominal level and to
provide information on the covariance structure of the data. These features tend to enhance
statistical inference, making multivariate data analysis superior to univariate analysis.

While in a previous edition of my textbook on multivariate analysis, I tried to precede
a multivariate method with a corresponding univariate procedure when applicable, I have
not taken this approach here. Instead, it is assumed that the reader has taken basic courses
in multiple linear regression, analysis of variance, and experimental design. While students
may be familiar with vector spaces and matrices, important results essential to multivariate
analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text. Emphasis
is on applications to provide students in the behavioral, biological, physical, and social
sciences with a broad range of linear multivariate models for statistical estimation and
inference, and exploratory data analysis procedures useful for investigating relationships
among a set of structured variables. Examples have been selected to outline the process
one employs in data analysis for checking model assumptions and model development, and
for exploring patterns that may exist in one or more dimensions of a data set.

To successfully apply methods of multivariate analysis, a comprehensive understand-
ing of the theory and how it relates to a flexible statistical package used for the analysis
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has become critical. When statistical routines were being developed for multivariate data
analysis over twenty years ago, developing a text using a single comprehensive statistical
package was risky. Now, companies and software packages have stabilized, thus reduc-
ing the risk. I have made extensive use of the Statistical Analysis System (SAS) in this
text. All examples have been prepared using Version 8 for Windows. Standard SAS pro-
cedures have been used whenever possible to illustrate basic multivariate methodologies;
however, a few illustrations depend on the Interactive Matrix Language (IML) procedure.
All routines and data sets used in the text are contained on the Springer-Verlag Web site,
http://www.springer-ny.com/detail.tpl?ISBN=0387953477 and the author’s University of
Pittsburgh Web site, http://www.pitt.edu/∼timm.
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1
Introduction

1.1 Overview

In this book we present applied multivariate data analysis methods for making inferences
regarding the mean and covariance structure of several variables, for modeling relationships
among variables, and for exploring data patterns that may exist in one or more dimensions
of the data. The methods presented in the book usually involve analysis of data consisting of
n observations on p variables and one or more groups. As with univariate data analysis, we
assume that the data are a random sample from the population of interest and we usually
assume that the underlying probability distribution of the population is the multivariate
normal (MVN) distribution. The purpose of this book is to provide students with a broad
overview of methods useful in applied multivariate analysis. The presentation integrates
theory and practice covering both formal linear multivariate models and exploratory data
analysis techniques.

While there are numerous commercial software packages available for descriptive and
inferential analysis of multivariate data such as SPSSTM, S-PlusTM, MinitabTM, and SYS-
TATTM, among others, we have chosen to make exclusive use of SASTM, Version 8 for
Windows.

1.2 Multivariate Models and Methods

Multivariate analysis techniques are useful when observations are obtained for each of
a number of subjects on a set of variables of interest, the dependent variables, and one
wants to relate these variables to another set of variables, the independent variables. The
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data collected are usually displayed in a matrix where the rows represent the observations
and the columns the variables. The n × p data matrix Y usually represents the dependent
variables and the n × q matrix X the independent variables.

When the multivariate responses are samples from one or more populations, one often
first makes an assumption that the sample is from a multivariate probability distribution.
In this text, the multivariate probability distribution is most often assumed to be the multi-
variate normal (MVN) distribution. Simple models usually have one or more means µi and
covariance matrices �i .

One goal of model formulation is to estimate the model parameters and to test hypotheses
regarding their equality. Assuming the covariance matrices are unstructured and unknown
one may develop methods to test hypotheses regarding fixed means. Unlike univariate anal-
ysis, if one finds that the means are unequal one does not know whether the differences
are in one dimension, two dimensions, or a higher dimension. The process of locating
the dimension of maximal separation is called discriminant function analysis. In models
to evaluate the equality of mean vectors, the independent variables merely indicate group
membership, and are categorical in nature. They are also considered to be fixed and non-
random. To expand this model to more complex models, one may formulate a linear model
allowing the independent variables to be nonrandom and contain either continuous or cat-
egorical variables. The general class of multivariate techniques used in this case are called
linear multivariate regression (MR) models. Special cases of the MR model include mul-
tivariate analysis of variance (MANOVA) models and multivariate analysis of covariance
(MANCOVA) models.

In MR models, the same set of independent variables, X, is used to model the set of de-
pendent variables, Y. Models which allow one to fit each dependent variable with a differ-
ent set of independent variables are called seemingly unrelated regression (SUR) models.
Modeling several sets of dependent variables with different sets of independent variables
involve multivariate seemingly unrelated regression (MSUR) models. Oftentimes, a model
is overspecified in that not all linear combinations of the independent set are needed to
“explain” the variation in the dependent set. These models are called linear multivariate
reduced rank regression (MRR) models. One may also extend MRR models to seemingly
unrelated regression models with reduced rank (RRSUR) models. Another name often as-
sociated with the SUR model is the completely general MANOVA (CGMANOVA) model
since growth curve models (GMANOVA) and more general growth curve (MGGC) models
are special cases of the SUR model. In all these models, the covariance structure of Y is
unconstrained and unstructured.

In formulating MR models, the dependent variables are represented as a linear structure
of both fixed parameters and fixed independent variables. Allowing the variables to remain
fixed and the parameters to be a function of both random and fixed parameters leads to
classes of linear multivariate mixed models (MMM). These models impose a structure on
� so that both the means and the variance and covariance components of � are estimated.
Models included in this general class are random coefficient models, multilevel models,
variance component models, panel analysis models and models used to analyze covariance
structures. Thus, in these models, one is usually interested in estimating both the mean and
the covariance structure of a model simultaneously.
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A general class of models that define the dependent and independent variables as ran-
dom, but relate the variables using fixed parameters are the class of linear structure relation
(LISREL) models or structural equation models (SEM). In these models, the variables may
be both observed and latent. Included in this class of models are path analysis, factor analy-
sis, simultaneous equation models, simplex models, circumplex models, and numerous test
theory models. These models are used primarily to estimate the covariance structure in the
data. The mean structure is often assumed to be zero.

Other general classes of multivariate models that rely on multivariate normal theory in-
clude multivariate time series models, nonlinear multivariate models, and others. When the
dependent variables are categorical rather than continuous, one can consider using multino-
mial logit or probit models or latent class models. When the data matrix contains n subjects
(examinees) and p variables (test items), the modeling of test results for a group of exam-
ines is called item response modeling.

Sometimes with multivariate data one is interested in trying to uncover the structure or
data patterns that may exist. One may wish to uncover dependencies both within a set of
variables and uncover dependencies with other variables. One may also utilize graphical
methods to represent the data relationships. The most basic displays are scatter plots or a
scatter plot matrix involving two or three variables simultaneously. Profile plots, star plots,
glyph plots, biplots, sunburst plots, contour plots, Chernoff faces, and Andrews’ Fourier
plots can also be utilized to display multivariate data.

Because it is very difficult to detect and describe relationships among variables in large
dimensional spaces, several multivariate techniques have been designed to reduce the di-
mensionality of the data. Two commonly used data reduction techniques include principal
component analysis and canonical correlation analysis. When one has a set of dissimilarity
or similarity measures to describe relationships, multidimensional scaling techniques are
frequently utilized. When the data are categorical, the methods of correspondence analysis,
multiple correspondence analysis, and joint correspondence analysis are used to geometri-
cally interpret and visualize categorical data.

Another problem frequently encountered in multivariate data analysis is to categorize
objects into clusters. Multivariate techniques that are used to classify or cluster objects into
categories include cluster analysis, classification and regression trees (CART), classifica-
tion analysis and neural networks, among others.

1.3 Scope of the Book

In reviewing applied multivariate methodologies, one observes that several procedures are
model oriented and have the assumption of an underlying probability distribution. Other
methodologies are exploratory and are designed to investigate relationships among the
“multivariables” in order to visualize, describe, classify, or reduce the information under
analysis. In this text, we have tried to address both aspects of applied multivariate analy-
sis. While Chapter 2 reviews basic vector and matrix algebra critical to the manipulation
of multivariate data, Chapter 3 reviews the theory of linear models, and Chapters 4–6 and
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10 address standard multivariate model based methods. Chapters 7-9 include several fre-
quently used exploratory multivariate methodologies.

The material contained in this text may be used for either a one-semester course in ap-
plied multivariate analysis for nonstatistics majors or as a two-semester course on multi-
variate analysis with applications for majors in applied statistics or research methodology.
The material contained in the book has been used at the University of Pittsburgh with both
formats. For the two-semester course, the material contained in Chapters 1–4, selections
from Chapters 5 and 6, and Chapters 7–9 are covered. For the one-semester course, Chap-
ters 1–3 are covered; however, the remaining topics covered in the course are selected from
the text based on the interests of the students for the given semester. Sequences have in-
cluded the addition of Chapters 4–6, or the addition of Chapters 7–10, while others have
included selected topics from Chapters 4–10. Other designs using the text are also possible.
No text on applied multivariate analysis can discuss all of the multivariate methodologies
available to researchers and applied statisticians. The field has made tremendous advances
in recent years. However, we feel that the topics discussed here will help applied profes-
sionals and academic researchers enhance their understanding of several topics useful in
applied multivariate data analysis using the Statistical Analysis System (SAS), Version 8
for Windows.

All examples in the text are illustrated using procedures in base SAS, SAS/STAT, and
SAS/ETS. In addition, features in SAS/INSIGHT, SAS/IML, and SAS/GRAPH are uti-
lized. All programs and data sets used in the examples may be downloaded from the
Springer-Verlag Web site, http://www.springer.com/editorial/authors.html. The programs
and data sets are also available at the author’s University of Pittsburgh Web site, http:
//www.pitt.edu/∼timm. A list of the SAS programs, with the implied extension .sas, dis-
cussed in the text follow.

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7

Multinorm m4 3 1 m5 3 1 m6 4 1 m7 3 1
Norm MulSubSel m5 5 1 m6 4 2 m7 3 2
m3 7 1 m4 5 1 m5 5 2 m6 4 3 m7 5 1
m3 7 2 m4 5 1a m5 7 1 m6 6 1
Box-Cox m4 5 2 m5 7 2 m6 6 2
Ramus m4 7 1 m5 9 1 m6 8 1
Unorm m4 9 1 m5 9 2 m6 8 2
m3 8 1 m4 9 2 m5 13 1
m3 8 7 m4 11 1 m5 14 1
m3 9a m4 13 1a
m3 9d m4 13 1b
m3 9e m4 15 1
m3 9f Power
m3 10a m4 17 1
m3 10b
m3 11 1
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Chapter 8 Chapter 9 Chapter 10 Other

m8 2 1 m9 4 1 m10 4 1 Xmacro
m8 2 2 m9 4 2 m10 4 2 Distnew
m8 3 1 m9 4 3 m10 6 1
m8 3 2 m9 4 3a m10 6 2
m8 3 3 m9 4 4 m10 8 1
m8 6 1 m9 4 4
m8 8 1 m9 6 1
m8 8 2 m9 6 2
m8 10 1 m9 6 3
m8 10 2
m8 10 3

Also included on the Web site is the Fortran program Fit.For and the associated manual:
Fit-Manual.ps, a postscript file. All data sets used in the examples and some of the exercises
are also included on the Web site; they are denoted with the extension .dat. Other data sets
used in some of the exercises are available from the Data and Story Library (DASL) Web
site, http://lib.stat.cmu.dat/DASL/. The library is hosted by the Department of Statistics at
Carnegie Mellon University, Pittsburgh, Pennsylvania.
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2
Vectors and Matrices

2.1 Introduction

In this chapter, we review the fundamental operations of vectors and matrices useful in
statistics. The purpose of the chapter is to introduce basic concepts and formulas essen-
tial to the understanding of data representation, data manipulation, model building, and
model evaluation in applied multivariate analysis. The field of mathematics that deals with
vectors and matrices is called linear algebra; numerous texts have been written about the
applications of linear algebra and calculus in statistics. In particular, books by Carroll and
Green (1997), Dhrymes (2000), Graybill (1983), Harville (1997), Khuri (1993), Magnus
and Neudecker (1999), Schott (1997), and Searle (1982) show how vectors and matrices
are useful in applied statistics. Because the results in this chapter are to provide the reader
with the basic knowledge of vector spaces and matrix algebra, results are presented without
proof.

2.2 Vectors, Vector Spaces, and Vector Subspaces

a. Vectors

Fundamental to multivariate analysis is the collection of observations for d variables. The d
values of the observations are organized into a meaningful arrangement of d real1 numbers,
called a vector (also called, a d-variate response or a multivariate vector valued observa-

1All vectors in this text are assumed to be real valued.
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tion). Letting yi denote the i th observation where i goes from 1 to d, the d × 1 vector y is
represented as

y =


y1
y2
...

yd

 (2.2.1)

This representation of y is called a column vector of order d, with d rows and 1 column.
Alternatively, a vector may be represented as a 1 × d vector with 1 row and d columns.
Then, we denote y as y′ and call it a row vector. Hence,

y′ = [y1, y2, . . . , yd ] (2.2.2)

Using this notation, y is a column vector and y′, the transpose of y, is a row vector. The
dimension or order of the vector y is d where the index d represents the number of variables,
elements or components in y. To emphasize the dimension of y, the subscript notation yd×1
or simply yd is used.

The vector y with d elements represents, geometrically, a point in a d-dimensional Eu-
clidean space. The elements of y are called the coordinates of the vector. The null vec-
tor 0d×1 denotes the origin of the space; the vector y may be visualized as a line segment
from the origin to the point y. The line segment is called a position vector. A vector y with
n variables, yn , is a position vector in an n-dimensional Euclidean space. Since the vector y
is defined over the set of real numbers R, the n-dimensional Euclidean space is represented
as Rn or in this text as Vn .

Definition 2.2.1 A vector yn×1 is an ordered set of n real numbers representing a position
in an n-dimensional Euclidean space Vn.

b. Vector Spaces

The collection of n × 1 vectors in Vn that are closed under the two operations of vector
addition and scalar multiplication is called a (real) vector space.

Definition 2.2.2 An n-dimensional vector space is the collection of vectors in Vn that sat-
isfy the following two conditions

1. If xεVn and yεVn, then z = x+ yεVn

2. If αεR and yεVn, then z = αyεVn

(The notation ∈ is set notation for “is an element of.”)
For vector addition to be defined, x and y must have the same number of elements n.

Then, all elements zi in z = x + y are defined as zi = xi + yi for i = 1, 2, . . . , n.
Similarly, scalar multiplication of a vector y by a scaler α ∈ R is defined as zi = αyi .
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c. Vector Subspaces

Definition 2.2.3 A subset, S, of Vn is called a subspace of Vn if S is itself a vector space.
The vector subspace S of Vn is represented as S ⊆ Vn.

Choosing α = 0 in Definition 2.2.2, we see that 0 ∈ Vn so that every vector space
contains the origin 0. Indeed, S = {0} is a subspace of Vn called the null subspace. Now,
if α and β are elements of R and x and y are elements of Vn , then all linear combinations
αx + βy, are in Vn . This subset of vectors is called Vk , where Vk ⊆ Vn . The subspace
Vk is called a subspace, linear manifold or linear subspace of Vn . Any subspace Vk , where
0 < k < n, is called a proper subspace. The subset of vectors containing only the zero
vector and the subset containing the whole space are extreme examples of vector spaces
called improper subspaces.

Example 2.2.1 Let

x =
 1

0
0

 and y =
 0

1
0


The set of all vectors S of the form z = αx+βy represents a plane (two-dimensional space)
in the three-dimensional space V3. Any vector in this two-dimensional subspace, S = V2,
can be represented as a linear combination of the vectors x and y. The subspace V2 is
called a proper subspace of V3 so that V2 ⊆ V3.

Extending the operations of addition and scalar multiplication to k vectors, a linear com-
bination of vectors yi is defined as

v =
k∑

i=1

αi yi ∈ V (2.2.3)

where yi ∈ V and αi ∈ R. The set of vectors y1, y2, . . . , yk are said to span (or generate)
V , if

V = {v | v =
k∑

i=1

αi yi } (2.2.4)

The vectors in V satisfy Definition 2.2.2 so that V is a vector space.

Theorem 2.2.1 Let {y1, y2, . . . , yk} be the subset of k, n× 1 vectors in Vn. If every vector
in V is a linear combination of y1, y2, . . . , yk then V is a vector subspace of Vn.

Definition 2.2.4 The set of n × 1 vectors {y1, y2, . . . , yk} are linearly dependent if there
exists real numbers α1, α2, . . . , αk not all zero such that

k∑
i=1

αi yi = 0

Otherwise, the set of vectors are linearly independent.
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For a linearly independent set, the only solution to the equation in Definition 2.2.4 is
given by α1 = α2 = · · · = αk = 0. To determine whether a set of vectors are linearly
independent or linearly dependent, Definition 2.2.4 is employed as shown in the following
examples.

Example 2.2.2 Let

y1 =
 1

1
1

 , y2 =
 0

1
−1

 , and y3 =
 1

4
−2


To determine whether the vectors y1, y2, and y3 are linearly dependent or linearly inde-
pendent, the equation

α1y1 + α2y2 + α3y3 = 0

is solved for α1, α2, and α3. From Definition 2.2.4,

α1

 1
1
1

 + α2

 0
1
−1

 + α3

 1
4
−2

 =
 0

0
0


 α1

α1
α1

 +
 0

α2
−α2

 +
 α3

4α3
−2α3

 =
 0

0
0


This is a system of three equations in three unknowns

(1) α1 + α3 = 0

(2) α1 + α2 + 4α3 = 0

(3) α1 − α2 − 2α3 = 0

From equation (1), α1 = −α3. Substituting α1 into equation (2), α2 = −3α3. If α1and α2
are defined in terms of α3, equation (3) is satisfied. If α3 �= 0, there exist real numbers α1,
α2, and α3, not all zero such that

3∑
i=1

αi = 0

Thus, y1, y2, and y3 are linearly dependent. For example, y1 + 3y2 − y3 = 0.

Example 2.2.3 As an example of a set of linearly independent vectors, let

y1 =
 0

1
1

 , y2=
 1

1
−2

 , and y3=
 3

4
1


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Using Definition 2.2.4,

α1

 0
1
1

+ α2

 1
1
−2

+ α3

 3
4
1

 =
 0

0
0


is a system of simultaneous equations

(1) α2 + 3α3 = 0

(2) α1 + α2 + 4α3 = 0

(3) α1 − 2α2 + α3 = 0

From equation (1), α2 = −3α3. Substituting −3α3 for α2 into equation (2), α1 = −α3;
by substituting for α1 and α2 into equation (3), α3 = 0. Thus, the only solution is α1 =
α2 = α3 = 0, or {y1, y2, y3} is a linearly independent set of vectors.

Linearly independent and linearly dependent vectors are fundamental to the study of ap-
plied multivariate analysis. For example, suppose a test is administered to n students where
scores on k subtests are recorded. If the vectors y1, y2, . . . , yk are linearly independent,
each of the k subtests are important to the overall evaluation of the n students. If for some
subtest the scores can be expressed as a linear combination of the other subtests

yk =
k−1∑
i=1

αi yi

the vectors are linearly dependent and there is redundancy in the test scores. It is often
important to determine whether or not a set of observation vectors is linearly independent;
when the vectors are not linearly independent, the analysis of the data may need to be
restricted to a subspace of the original space.

Exercises 2.2

1. For the vectors

y1 =
 1

1
1

 and y2 =
 2

0
−1


find the vectors

(a) 2y1 + 3y2

(b) αy1 + βy2

(c) y3 such that 3y1 − 2y2 + 4y3 = 0

2. For the vectors and scalars defined in Example 2.2.1, draw a picture of the space S
generated by the two vectors.



12 2. Vectors and Matrices

3. Show that the four vectors given below are linearly dependent.

y1 =
 1

0
0

 , y2 =
 2

3
5

 , y3 =
 1

0
1

 , and y4 =
 0

4
6


4. Are the following vectors linearly dependent or linearly independent?

y1 =
 1

1
1

 , y2 =
 1

2
3

 , y3 =
 2

2
3


5. Do the vectors

y1 =
 2

4
2

 , y2 =
 1

2
3

 , and y3 =
 6

12
10


span the same space as the vectors

x1 =
 0

0
2

 and x2 =
 2

4
10


6. Prove the following laws for vector addition and scalar multiplication.

(a) x+ y = y+ x (commutative law)

(b) (x+ y)+ z = x+ (y+ z) (associative law)

(c) α(βy) = (αβ)y = (βα)y = α(βy) (associative law for scalars)

(d) α (x+ y) = αx+ αy (distributive law for vectors)

(e) (α + β)y = αy+ βy (distributive law for scalars)

7. Prove each of the following statements.

(a) Any set of vectors containing the zero vector is linearly dependent.

(b) Any subset of a linearly independent set is also linearly independent.

(c) In a linearly dependent set of vectors, at least one of the vectors is a linear
combination of the remaining vectors.

2.3 Bases, Vector Norms, and the Algebra of Vector Spaces

The concept of dimensionality is a familiar one from geometry. In Example 2.2.1, the
subspace S represented a plane of dimension two, a subspace of the three-dimensional
space V3. Also important is the minimal number of vectors required to span S.
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a. Bases

Definition 2.3.1 Let {y1, y2, . . . , yk} be a subset of k vectors where yi ∈ Vn. The set of k
vectors is called a basis of Vk if the vectors in the set span Vk and are linearly independent.
The number k is called the dimension or rank of the vector space.

Thus, in Example 2.2.1 S ≡ V2 ⊆ V3 and the subscript 2 is the dimension or rank of
the vector space. It should be clear from the context whether the subscript on V represents
the dimension of the vector space or the dimension of the vector in the vector space. Every
vector space, except the vector space {0}, has a basis. Although a basis set is not unique, the
number of vectors in a basis is unique. The following theorem summarizes the existence
and uniqueness of a basis for a vector space.

Theorem 2.3.1 Existence and Uniqueness

1. Every vector space has a basis.

2. Every vector in a vector space has a unique representation as a linear combination
of a basis.

3. Any two bases for a vector space have the same number of vectors.

b. Lengths, Distances, and Angles

Knowledge of vector lengths, distances and angles between vectors helps one to understand
relationships among multivariate vector observations. However, prior to discussing these
concepts, the inner (scalar or dot) product of two vectors needs to be defined.

Definition 2.3.2 The inner product of two vectors x and y, each with n elements, is the
scalar quantity

x′y =
n∑

i=1

xi yi

In textbooks on linear algebra, the inner product may be represented as (x, y) or x ·y. Given
Definition 2.3.2, inner products have several properties as summarized in the following
theorem.

Theorem 2.3.2 For any conformable vectors x, y, z, and w in a vector space V and any
real numbers α and β, the inner product satisfies the following relationships

1. x′y = y′x

2. x′x ≥ 0 with equality if and only if x = 0

3. (αx)′(βy) = αβ(x′y)

4. (x+ y)′ z = x′z+ y′z

5. (x+ y)′(w+ z) = x′(w+ z)+ y′(w+ z)
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If x = y in Definition 2.3.2, then x′x =∑n
i=1 x2

i . The quantity (x′x)1/2 is called the
Euclidean vector norm or length of x and is represented as ‖x‖. Thus, the norm of x is the
positive square root of the inner product of a vector with itself. The norm squared of x is
represented as ||x||2. The Euclidean distance or length between two vectors x and y in Vn

is ‖x− y‖ = [(x− y)′(x− y)]1/2. The cosine of the angle between two vectors by the law
of cosines is

cos θ = x′y/ ‖x‖ ‖y‖ 0◦ ≤ θ ≤ 180◦ (2.3.1)

Another important geometric vector concept is the notion of orthogonal (perpendicular)
vectors.

Definition 2.3.3 Two vectors x and y in Vn are orthogonal if their inner product is zero.

Thus, if the angle between x and y is 90◦, then cos θ = 0 and x is perpendicular to y,
written as x ⊥ y.

Example 2.3.1 Let

x =
 −1

1
2

 and y =
 1

0
−1


The distance between x and y is then ‖x− y‖ = [(x− y)′(x− y)]1/2 = √14 and the
cosine of the angle between x and y is

cos θ = x′y/ ‖x‖ ‖y‖ = −3/
√

6
√

2 = −√3/2

so that the angle between x and y is θ = cos−1(−√3/2) = 150◦.

If the vectors in our example have unit length, so that ‖x‖ = ‖y‖ = 1, then the cos θ is
just the inner product of x and y. To create unit vectors, also called normalizing the vectors,
one proceeds as follows

ux = x / ‖x‖ =
 −1/

√
6

1/
√

6
2/
√

6

 and uy = y/ ‖y‖ =
 1/

√
2

0/
√

2
−1/
√

2


and the cos θ = u′x uy = −

√
3/2, the inner product of the normalized vectors. The normal-

ized orthogonal vectors ux and uy are called orthonormal vectors.

Example 2.3.2 Let

x =
 −1

2
−4

 and y =
 −4

0
1


Then x′y = 0; however, these vectors are not of unit length.

Definition 2.3.4 A basis for a vector space is called an orthogonal basis if every pair of
vectors in the set is pairwise orthogonal; it is called an orthonormal basis if each vector
additionally has unit length.
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y

0
θ

xPx y = αx

y − αx

FIGURE 2.3.1. Orthogonal Projection of y on x, Pxy = αx

The standard orthonormal basis for Vn is {e1, e2, . . . , en} where ei is a vector of all zeros
with the number one in the i th position. Clearly the ‖ei‖ = 1 and ei⊥e j ; for all pairs i
and j . Hence, {e1, e2, . . . , en} is an orthonormal basis for Vn and it has dimension (or rank)
n. The basis for Vn is not unique. Given any basis for Vk ⊆ Vn we can create an orthonormal
basis for Vk . The process is called the Gram-Schmidt orthogonalization process.

c. Gram-Schmidt Orthogonalization Process

Fundamental to the Gram-Schmidt process is the concept of an orthogonal projection. In a
two-dimensional space, consider the vectors x and y given in Figure 2.3.1. The orthogonal
projection of y on x, Pxy, is some constant multiple, αx of x, such that Pxy ⊥ (y−Pxy).

Since the cos θ =cos 90◦ = 0, we set (y−αx)′αx equal to 0 and we solve for α to find
α = (y′x)/ ‖x‖2. Thus, the projection of y on x becomes

Pxy = αx = (y′x)x/ ‖x‖2

Example 2.3.3 Let

x =
 1

1
1

 and y =
 1

4
2


Then, the

Pxy = (y′x)x
‖x‖2 =

7

3

 1
1
1


Observe that the coefficient α in this example is no more than the average of the ele-
ments of y. This is always the case when projection an observation onto a vector of 1s (the
equiangular or unit vector), represented as 1n or simply 1. P1y = y1 for any multivariate
observation vector y.

To obtain an orthogonal basis {y1, . . . , yr } for any subspace V of Vn , spanned by any
set of vectors {x1, x2, . . . , xk}, the preceding projection process is employed sequentially
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as follows

y1 = x1

y2 = x2 − Py1 x2 = x2 − (x′2y1)y1/ ‖y1‖2 y2⊥y1

y3 = x3 − Py1 x3 − Py2x3

= x3 − (x′3y1)y1/‖y2
1‖ − (x′3y2)y2/‖y2‖2 y3⊥y2⊥y1

or, more generally

yi = xi −
i−1∑
j=1

ci j y j where ci j = (x′i y j )/
∥∥y j

∥∥2

deleting those vectors yi for which yi = 0. The number of nonzero vectors in the set
is the rank or dimension of the subspace V and is represented as Vr , r ≤ k. To find an
orthonormal basis, the orthogonal basis must be normalized.

Theorem 2.3.3 (Gram-Schmidt) Every r-dimensional vector space, except the zero-dimen-
sional space, has an orthonormal basis.

Example 2.3.4 Let V be spanned by

x1 =


1
−1

1
0
1

 , x2 =


2
0
4
1
2

 , x3 =


1
1
3
1
1

 , and x4 =


6
2
3
−1

1


To find an orthonormal basis, the Gram-Schmidt process is used. Set

y1 = x1 =


1
−1

1
0
1



y2 = x2 − (x′2y1)y1/ ‖y1‖2

=


2
0
4
1
2

− 8

4


1
−1

1
0
1

 =


0
2
2
1
0



y3 = x3 − (x′3y1)y1/ ‖ y1 ‖2 −(x′3y2)y2/ ‖ y2 ‖2= 0
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so delete y3;

y4 =


6
2
3
−1

1

− (x′4y1)y1/ ‖y1‖2 − (x′4y2)y2/ ‖y2‖2

=


6
2
3
−1

1

− 8

4


1
−1

1
0
1

− 9

9


0
2
2
1
0

 =


4
2
−1
−2
−1


Thus, an orthogonal basis for V is {y1, y2, y4}. The vectors must be normalized to

obtain an orthonormal basis; an orthonormal basis is u1 = y1/
√

4,u2 = y2/3, and
u3 = y4/

√
26.

d. Orthogonal Spaces

Definition 2.3.5 Let Vr = {x1, . . . , xr } ⊆ Vn . The orthocomplement subspace of Vr in Vn,
represented by V⊥, is a vector subspace of Vn which consists of all vectors y ∈ Vn such
that x′i y = 0 and we write Vn = Vr ⊕ V⊥.

The vector space Vn is the direct sum of the subspaces Vn and V⊥. The intersection of
the two spaces only contain the null space. The dimension of Vn, dim Vn , is equal to the
dim Vr + dim V⊥ so that the dim V⊥ = n − r. More generally, we have the following
result.

Definition 2.3.6 Let S1, S2, . . . , Sk denote vector subspaces of Vn. The direct sum of these
vector spaces, represented as

⊕k
i=1 Si , consists of all unique vectors v =∑k

i=1 αi si where
si ∈ Si , i = 1, . . . , k and the coefficients αi ∈ R.

Theorem 2.3.4 Let S1, S2, . . . , Sk represent vector subspaces of Vn. Then,

1. V =⊕k
i=1 Si is a vector subspace of Vn, V ⊆ Vn .

2. The intersection of Si is the null space {0}.
3. The intersection of V and V⊥ is the null space.

4. The dim V = n − k so that dim V ⊕ V⊥ = n.

Example 2.3.5 Let

V =

 1

0
1

 ,

 0
1
−1

 = {x1, x2} and y ∈ V3
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We find V⊥ using Definition 2.3.5 as follows

V⊥ = {y ∈ V3 | (y′x) = 0 for any x ∈ V }
= {y ∈ V3 | (y⊥V }
= {y ∈ V3 | (y⊥xi } (i = 1, 2)

A vector y′ = [y1, y2, y3] must be found such that y⊥x1 and y⊥x2. This implies that
y1 − y3 = 0, or y1 = y3, and y2 = y3, or y1 = y2 = y3. Letting yi = 1,

V⊥ =
 1

1
1

 = 1 and V3 = V⊥ ⊕ V

Furthermore, the

P1y =
 y

y
y

 and PVy = y− P1y =
 y1 − y

y2 − y
y3 − y


Alternatively, from Definition 2.3.6, an orthogonal basis for V is

V =

 1

0
−1

 ,

 −1/2
1

−1/2

 = {v1, v2} = S1 ⊕ S2

and the PV y becomes

Pv1y+ Pv2 y =
 y1 − y

y2 − y
y3 − y


Hence, a unique representation for y is y = P1y + PV y as stated in Theorem 2.3.4. The
dim V3 = dim 1+ dim V⊥.

In Example 2.3.5, V⊥ is the orthocomplement of V relative to the whole space. Often
S ⊆ V ⊆ Vn and we desire the orthocomplement of S relative to V instead of Vn . This
space is represented as V/S and V = (V/S) ⊕ S = S1 ⊕ S2. Furthermore, Vn = V⊥ ⊕
(V/S)⊕ S = V⊥ ⊕ S1 ⊕ S2. If the dimension of V is k and the dimension of S is r , then
the dimension of V⊥ is n − k and the dim V/S is k − r , so that (n − k)+ (k − r)+ r = n
or the dim Vn = dim V⊥ + dim(V/S)+ dim S as stated in Theorem 2.3.4. In Figure 2.3.2,
the geometry of subspaces is illustrated with Vn = S ⊕ (V/S)⊕ V⊥.

yi j = µ+ αi + ei j i = 1, 2 and j = 1, 2

The algebra of vector spaces has an important representation for the analysis of variance
(ANOVA) linear model. To illustrate, consider the two group ANOVA model

Thus, we have two groups indexed by i and two observations indexed by j . Representing
the observations as a vector,

y′ = [y11, y12, y21, y22]
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V/S

VV⊥

S

Vn

FIGURE 2.3.2. The orthocomplement of S relative to V, V/S

and formulating the observation vector as a linear model,

y =


y11
y12
y21
y22

 =


1
1
1
1

µ+


1
1
0
0

α1 +


0
0
1
1

α2 +


e11
e12
e21
e22


The vectors associated with the model parameters span a vector space V often called the

design space. Thus,

V =




1
1
1
1




1
1
0
0




0
0
1
1


 = {1, a1, a2}

where 1, a1, and a2 are elements of V4. The vectors in the design space V are linearly
dependent. Let A = {a1, a2} denote a basis for V . Since 1 ⊆ A, the orthocomplement of
the subspace {1} ≡ 1 relative to A, denoted by A/1 is given by

A/1 = {a1 − P1a1, a2 − P1a2}

=




1/2
1/2
−1/2
−1/2



−1/2
−1/2

1/2
1/2




The vectors in A/1 span the space; however, a basis for A/1 is given by

A/1 =


1
1
−1
−1


where (A/1)⊕1 =A and A ⊆ V4. Thus, (A/1)⊕1⊕ A⊥ = V4. Geometrically, as shown in
Figure 2.3.3, the design space V ≡ A has been partitioned into two orthogonal subspaces
1 and A/1 such that A = 1⊕ (A/1), where A/1 is the orthocomplement of 1 relative to A,
and A ⊕ A⊥ = V4.
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A⊥

1

y

Α     V

A/1

FIGURE 2.3.3. The orthogonal decomposition of V for the ANOVA

The observation vector y ∈ V4 may be thought of as a vector with components in various
orthogonal subspaces. By projecting y onto the orthogonal subspaces in the design space A,
we may obtain estimates of the model parameters. To see this, we evaluate PAy = P1y +
PA/1y.

P1y = y


1
1
1
1

 = µ̂


1
1
1
1


PA/1y = PAy− P1y

= (y′a1)a1

‖a1‖2
+ (y′a2)a2

‖a2‖2
− (y′1)1
‖1‖2

=
2∑

i=1

[
(y′ai )

‖ai‖2
− (y′1)
‖1‖2

]
ai

=
2∑

i=1

(yi − y)ai =
2∑

i=1

α̂i ai

since (A/1)⊥1 and 1 = a1 + a2. As an exercise, find the projection of y onto A⊥ and the
‖PA/1y‖2.

From the analysis of variance, the coefficients of the basis vectors for 1 and A/1 yield the
estimators for the overall effect µ and the treatment effects αi for the two-group ANOVA
model employing the restriction on the parameters that α1+α2 = 0. Indeed, the restriction
creates a basis for A/1. Furthermore, the total sum of squares, ‖y‖2, is the sum of squared
lengths of the projections of y onto each subspace, ‖y‖2 = ‖P1y‖2+‖PA/1y‖2+‖PA⊥y‖2.
The dimensions of the subspaces for I groups, corresponding to the decomposition of ‖y‖2,
satisfy the relationship that n = 1 + (I − 1) + (n − I ) where the dim A = I and y ∈ Vn .
Hence, the degrees of freedom of the subspaces are the dimensions of the orthogonal vector
spaces {1}, {A/1} and {A⊥}for the design space A. Finally, the ‖PA/1y‖2 is the hypothesis
sum of squares and the ‖PA⊥y‖2 is the error sum of squares. Additional relationships be-
tween linear algebra and linear models using ANOVA and regression models are contained
in the exercises for this section. We conclude this section with some inequalities useful in
statistics and generalize the concepts of distance and vector norms.
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e. Vector Inequalities, Vector Norms, and Statistical Distance

In a Euclidean vector space, two important inequalities regarding inner products are the
Cauchy-Schwarz inequality and the triangular inequality.

Theorem 2.3.5 If x and y are vectors in a Euclidean space V , then

1. (x′y)2 ≤ ‖x‖2 ‖y‖2 (Cauchy-Schwarz inequality)

2. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ (Triangular inequality)

In terms of the elements of x and y, (1) becomes(∑
i

xi yi

)2

≤
(∑

i

x2
i

)(∑
i

y2
i

)
(2.3.2)

which may be used to show that the zero-order Pearson product-moment correlation co-
efficient is bounded by ±1. Result (2) is a generalization of the familiar relationship for
triangles in two-dimensional geometry.

The Euclidean norm is really a member of Minkowski’s family of norms (Lp-norms)

‖x‖p =
{

n∑
i=1

|xi |p
}1/p

(2.3.3)

where 1 ≤ p < ∞ and x is an element of a normed vector space V . For p = 2, we
have the Euclidean norm. When p = 1, we have the minimum norm, ‖x‖1. For p = ∞,
Minkowski’s norm is not defined, instead we define the maximum or infinity norm of x as

‖x‖∞ = max
1≤i≤n

|xi | (2.3.4)

Definition 2.3.7 A vector norm is a function defined on a vector space that maps a vector
into a scalar value such that

1. ‖x‖p ≥ 0, and ‖x‖p = 0 if and only if x = 0,

2. ‖αx‖p = |α| ‖x‖p for α ∈ R,

3. ‖x+ y‖p ≤ ‖x‖p + ‖y‖p,

for all vectors x and y.

Clearly the ‖x‖2 = (x′x)1/2 satisfies Definition 2.3.7. This is also the case for the maxi-
mum norm of x. In this text, the Euclidean norm (L2-norm) is assumed unless noted other-
wise. Note that (||x||2)2 = ||x||2 = x′x is the Euclidean norm squared of x.

While Euclidean distances and norms are useful concepts in statistics since they help to
visualize statistical sums of squares, non-Euclidean distance and non-Euclidean norms are
often useful in multivariate analysis. We have seen that the Euclidean norm generalizes to a
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more general function that maps a vector to a scalar. In a similar manner, we may generalize
the concept of distance. A non-Euclidean distance important in multivariate analysis is the
statistical or Mahalanobis distance.

To motivate the definition, consider a normal random variable X with mean zero and
variance one, X ∼ N (0, 1). An observation xo that is two standard deviations from the
mean lies a distance of two units from the origin since the ‖xo‖ = (02 + 22)1/2 = 2 and
the probability that 0 ≤ x ≤ 2 is 0.4772. Alternatively, suppose Y ∼ N (0, 4) where the
distance from the origin for yo = xo is still 2. However, the probability that 0 ≤ y ≤ 2
becomes 0.3413 so that y is closer to the origin than x . To compare the distances, we must
take into account the variance of the random variables. Thus, the squared distance between
xi and x j is defined as

D2
i j = (xi − x j )

2/σ 2 = (xi − x j )(σ
2)−1(xi − x j ) (2.3.5)

where σ 2 is the population variance. For our example, the point xo has a squared statistical
distance D2

i j = 4 while the point yo = 2 has a value of D2
i j = 1 which maintains the in-

equality in probabilities in that Y is “closer” to zero statistically than X . Di j is the distance
between xi and x j , in the metric of σ 2 called the Mahalanobis distance between xi and x j .
When σ 2 = 1, Mahalanobis’ distance reduces to the Euclidean distance.

Exercises 2.3

1. For the vectors

x =
 −1

3
2

, y =
 1

2
0

, and z =
 1

1
2


and scalars α = 2 and β = 3, verify the properties given in Theorem 2.3.2.

2. Using the law of cosines

‖y− x‖2 = ‖x‖2 + ‖y‖2 − 2 ‖x‖ ‖y‖ cos θ

derive equation (2.3.1).

3. For the vectors
y1 =

 2
−2

1

 and y2 =
 3

0
−1


(a) Find their lengths, and the distance and angle between them.

(b) Find a vector of length 3 with direction cosines

cosα1 = y1/ ‖y‖ = 1/
√

2 and cosα2 = y2/ ‖y‖ = −1/
√

2

where α1 and α2 are the cosines of the angles between y and each of its refer-

ences axes e1=
[

1
0

]
, and e2=

[
0
1

]
.

(c) Verify that cos2 α1 + cos2 α2 = 1.
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4. For

y =
 1

9
−7

 and V =
v1 =

 2
3
1

 , v2 =
 5

0
4


(a) Find the projection of y onto V and interpret your result.

(b) In general, if y⊥V , can you find the PV y?

5. Use the Gram-Schmidt process to find an orthonormal basis for the vectors in Exer-
cise 2.2, Problem 4.

6. The vectors

v1 =
 1

2
−1

 and v2 =
 2

3
0


span a plane in Euclidean space.

(a) Find an orthogonal basis for the plane.

(b) Find the orthocomplement of the plane in V3.

(c) From (a) and (b), obtain an orthonormal basis for V3.

7. Find an orthonormal basis for V3 that includes the vector y′ = [−1/
√

3, 1/
√

3,
−1/
√

3].
8. Do the following.

(a) Find the orthocomplement of the space spanned by v′ = [4, 2, 1] relative to
Euclidean three dimensional space, V3.

(b) Find the orthocomplement of v′ = [4, 2, 1] relative to the space spanned by
v′1 = [1, 1, 1] and v′1 = [2, 0,−1].

(c) Find the orthocomplement of the space spanned by v′1 = [1, 1, 1] and v′2 =[2, 0,−1] relative to V3.

(d) Write the Euclidean three-dimensional space as the direct sum of the relative
spaces in (a), (b), and (c) in all possible ways.

9. Let V be spanned by the orthonormal basis

v1 =


1/
√

2
0

1/
√

2
0

 and v2 =


0

−1/
√

2
0

−1/
√

2


(a) Express x′ = [0, 1, 1, 1] as x = x1 + x2,where x1 ∈ V and x2 ∈ V⊥.
(b) Verify that the ‖PV x‖2 = ‖Pv1x‖2 + ‖Pv2 x‖2.
(c) Which vector y ∈ V is closest to x? Calculate the minimum distance.
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10. Find the dimension of the space spanned by

v1
1
1
1
1


v2
1
1
0
0


v3
0
0
1
1


v4
1
0
1
0


v5
0
1
0
1


11. Let yn ∈ Vn , and V = {1}.

(a) Find the projection of y onto V⊥, the orthocomplement of V relative to Vn .

(b) Represent y as y = x1 + x2, where x1 ∈ V and x2 ∈ V⊥. What are the dimen-
sions of V and V⊥?̇

(c) Since ‖y‖2 = ‖x1‖2+‖x2‖2 = ‖PV y‖2+∥∥PV⊥y
∥∥2, determine a general form

for each of the components of ‖y‖2. Divide
∥∥PV⊥y

∥∥2 by the dimension of V⊥.

What do you observe about the ratio
∥∥PV⊥y

∥∥2
/ dim V⊥?

12. Let yn ∈ Vn be a vector of observations, y′ = [y1, y2, . . . , yn] and let V = {1, x}
where x′ = [x1, x2, . . . , xn].

(a) Find the orthocomplement of 1 relative to V (that is, V/1) so that 1⊕(V/1) =
V . What is the dimension of V/1?

(b) Find the projection of y onto 1 and also onto V/1. Interpret the coefficients
of the projections assuming each component of y satisfies the simple linear
relationship yi = α + β(xi − x).

(c) Find y − PV y and ‖y− PV y‖2. How are these quantities related to the simple
linear regression model?

13. For the I Group ANOVA model yi j = µ + αi + ei j where i = 1, 2, . . . , I and j =
1, 2, . . . , n observations per group, evaluate the square lengths ‖P1y‖2 , ∥∥PA/1y

∥∥2
,

and
∥∥PA⊥y

∥∥2 for V = {1, a1, . . . , aI }. Use Figure 2.3.3 to relate these quantities
geometrically.

14. Let the vector space V be spanned by

v1



1
1
1
1
1
1
1
1


{ 1

v2 v3 v4 v5 v6 v7 v8 v9

1
1
1
1
0
0
0
0





0
0
0
0
1
1
1
1


,



1
1
0
0
1
1
0
0





0
0
1
1
0
0
1
1





1
1
0
0
0
0
0
0





0
0
1
1
0
0
0
0





0
0
0
0
1
1
0
0





0
0
0
0
0
0
1
1




A, B, AB }
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(a) Find the space A+ B = 1⊕ (A/1)⊕ (B/1) and the space AB/(A+ B) so that
V = 1⊕ (A/1) ⊕ (B/1) + [AB/(A + B)]. What is the dimension of each of
the subspaces?

(b) Find the projection of the observation vector y = [y111, y112, y211, y212, y311,

y312, y411, y412] in V8 onto each subspace in the orthogonal decomposition of V
in (a). Represent these quantities geometrically and find their squared lengths.

(c) Summarize your findings.

15. Prove Theorem 2.3.4.

16. Show that Minkowski’s norm for p = 2 satisfies Definition 2.3.7.

17. For the vectors y′ = [y1, . . . , yn] and x′ = [x1, . . . , xn] with elements that have a
mean of zero,

(a) Show that s2
y = ‖y‖2 /(n − 1) and s2

x = ‖x‖2 / (n − 1) .

(b) Show that the sample Pearson product moment correlation between two obser-
vations x and y is r = x′y/ ‖x‖ ‖y‖ .

2.4 Basic Matrix Operations

The organization of real numbers into a rectangular or square array consisting of n rows
and d columns is called a matrix of order n by d and written as n × d.

Definition 2.4.1 A matrix Y of order n × d is an array of scalars given as

Yn×d =


y11 y12 · · · y1d

y21 y22 · · · y2d
...

...
...

yn1 yn2 · · · ynd


The entries yi j of Y are called the elements of Y so that Y may be represented as Y = [yi j ].
Alternatively, a matrix may be represented in terms of its column or row vectors as

Yn×d = [v1, v2, . . . , vd ] and v j ∈ Vn (2.4.1)

or

Yn×d =


y′1
y′2
...

y′n

 and y′i ∈ Vd

Because the rows of Y are usually associated with subjects or individuals each y′i is a
member of the person space while the columns v j of Y are associated with the variable
space. If n = d, the matrix Y is square.



26 2. Vectors and Matrices

a. Equality, Addition, and Multiplication of Matrices

Matrices like vectors may be combined using the operations of addition and scalar multi-
plication. For two matrices A and B of the same order, matrix addition is defined as

A+ B = C if and only if C = [
ci j

] = [
ai j + bi j

]
(2.4.2)

The matrices are conformable for matrix addition only if both matrices are of the same
order and have the same number of row and columns.

The product of a matrix A by a scalar α is

αA = Aα = [αai j ] (2.4.3)

Two matrices A and B are equal if and only if [ai j ] = [bi j ]. To extend the concept of an
inner product of two vectors to two matrices, the matrix product AB = C is defined if and
only if the number of columns in A is equal to the number of rows in B. For two matrices
An×d and Bd×m , the matrix (inner) product is the matrix Cn×m such that

AB = C = [ci j ] for ci j =
d∑

k=1

aikbk j (2.4.4)

From (2.4.4), we see that C is obtained by multiplying each row of A by each column
of B. The matrix product is conformable if the number of columns in the matrix A is equal
to the number of rows in the matrix B. The column order is equal to the row order for
matrix multiplication to be defined. In general, AB �= BA. If A = B and A is square, then
AA = A2. When A2= A, the matrix A is said to be idempotent.

From the definitions and properties of real numbers, we have the following theorem for
matrix addition and matrix multiplication.

Theorem 2.4.1 For matrices A,B,C, and D and scalars α and β, the following properties
hold for matrix addition and matrix multiplication.

1. A+ B = B+ A

2. (A+ B)+ C = A+ (B+ C)

3. α(A+ B) =αA+βB

4. (α + β)A =αA+βA

5. (AB)C = A(BC)

6. A(B+ C) = AB+ AC

7. (A+ B)C = AC+ BC

8. A+ (−A) = 0

9. A+ 0 = A

10. (A+ B)(C+ D) = A(C+ D)+ B(C+ D) = AC+ AD+ BC+ BD
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Example 2.4.1 Let

A =
 1 2

3 7
−4 8

 and B =
 2 2

7 5
3 1


Then

A+ B =
 3 4

10 12
−1 9

 and 5(A+ B) =
 15 20

50 60
−5 45


For our example, AB and BA are not defined. Thus, the matrices are said to not be con-
formable for matrix multiplication. The following is an example of matrices that are con-
formable for matrix multiplication.

Example 2.4.2 Let

A =
[ −1 2 3

5 1 0

]
and B =

 1 2 1
1 2 0
1 2 −1


Then

AB =
 (−1)(1)+ 2(1)+ 3(1) −1(2)+ 2(2)+ 3(2) −1(1)+ 2(0)+ 3(−1)

5(1)+ 1(1)+ 0(1) 5(2)+ 1(2)+ 0(2) 5(1)+ 1(0)+ 0(−1)


=

 4 8 −4

6 12 5


Alternatively, if we represent A and B as

A = [a1, a2, . . . , ad ] and B =


b′1
b′2
...

b′n


Then the matrix product is defined as an “outer” product

AB =
d∑

k=1

akb′k

where each Ck = akb′k is a square matrix, the number of rows is equal to the number of
columns. For the example, letting

a1 =
[ −1

5

]
, a2 =

[
2
1

]
, a3 =

[
3
0

]
b′1 = [1, 2, 1] , b′2 = [1, 2, 0] , b′3 = [1, 2,−1]
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Then

3∑
k=1

akb′k = C1 + C2 + C3

=
[ −1 −2 −1

5 10 5

]
+

[
2 4 0
1 2 0

]
+

[
3 6 −3
0 0 0

]
=

[
4 8 −4
6 12 5

]
= AB

Thus, the inner and outer product definitions of matrix multiplication are equivalent.

b. Matrix Transposition

In Example 2.4.2, we defined B in terms of row vectors and A in terms of column vectors.
More generally, we can form the transpose of a matrix. The transpose of a matrix An×d is
the matrix A′d×n obtained from A = [

ai j
]

by interchanging rows and columns of A. Thus,

A′d×n =


a11 a21 · · · an1
a12 a22 · · · an2
...

...
...

a1d a2d · · · and

 (2.4.5)

Alternatively, if A = [ai j ] then A′ = [a ji ]. A square matrix A is said to be symmetric if
and only if A = A′ or [ai j ] = [a ji ]. A matrix A is said to be skew-symmetric if A = −A′.
Properties of matrix transposition follow.

Theorem 2.4.2 For matrices A, B, and C and scalars α and β, the following properties
hold for matrix transposition.

1. (AB)′ = B′A′

2. (A+ B)′ = A′ + B′

3. (A′)′ = A

4. (ABC)′ = C′B′A′

5. (αA)′ = αA′

6. (αA+βB)′ = αA′ + βB′

Example 2.4.3 Let

A =
[

1 3
−1 4

]
and B =

[
2 1
1 1

]
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Then

A′ =
[

1 −1
3 4

]
and B′ =

[
2 1
1 1

]
AB =

[
5 4
2 3

]
and (AB)′ =

[
5 2
4 3

]
= B′A′

(A+ B)′ =
[

3 0
4 5

]
= A′ + B′

The transpose operation is used to construct symmetric matrices. Given a data matrix
Yn×d , the matrix Y′Y is symmetric, as is the matrix YY′. However, Y′Y �= YY′ since the
former is of order d × d where the latter is an n × n matrix.

c. Some Special Matrices

Any square matrix whose off-diagonal elements are 0s is called a diagonal matrix. A di-
agonal matrix An×n is represented as A = diag[a11, a22, . . . , ann] or A = diag[aii ] and is
clearly symmetric. If the diagonal elements, aii = 1 for all i , then the diagonal matrix A
is called the identity matrix and is written as A = In or simply I. Clearly, IA = AI = A
so that the identity matrix behaves like the number 1 for real numbers. Premultiplication
of a matrix Bn×d by a diagonal matrix Rn×n = diag[rii ] multiplies each element in the
i th row of Bn×d by rii ; postmultiplication of Bn×d by a diagonal matrix Cd×d = diag[c j j ]
multiplies each element in the j th column of B by c j j . A matrix 0 with all zeros is called
the null matrix.

A square matrix whose elements above (or below) the diagonal are 0s is called a lower
(or upper) triangular matrix. If the elements on the diagonal are 1s, the matrix is called a
unit lower (or unit upper) triangular matrix.

Another important matrix used in matrix manipulation is a permutation matrix. An ele-
mentary permutation matrix is obtained from an identity matrix by interchanging two rows
(or columns) of I. Thus, an elementary permutation matrix is represented as Ii,i ′ . Premul-
tiplication of a matrix A by Ii,i ′ , creates a new matrix with interchanged rows of A while
postmultiplication by Ii,i ′ , creates a new matrix with interchanged columns.

Example 2.4.4 Let

X =


1 1 0
1 1 0
1 0 1
1 0 1

 and I1,2 =
 0 1 0

1 0 0
0 0 1


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Then

A = X′X =
 4 2 2

2 2 0
2 0 2

 is symmetric

I1, 2A =
 2 2 0

4 2 2
2 0 2

 interchanges rows 1 and 2 of A

AI1, 2 =
 2 4 2

2 2 0
0 2 2

 interchanges columns 1 and 2 of A

More generally, an n × n permutation matrix is any matrix that is constructed from In

by permuting its columns. We may represent the matrix as In, n since there are n! different
permutation matrices of order n.

Finally, observe that InIn = I2
n = In so that In is an idempotent matrix. Letting Jn =

1n1′n , the matrix Jn is a symmetric matrix of ones. Multiplying Jn by itself, observe that
J2

n = nJn so that Jn is not idempotent. However, n−1Jn and In − n−1Jn are idempotent
matrices. If A2

n×n = 0, the matrix A is said to be nilpotent. For A3 = 0, the matrix is
tripotent and if Ak = 0 for some finite k > 0, it is k − potent. In multivariate analysis
and linear models, symmetric idempotent matrices occur in the context of quadratic forms,
Section 2.6, and in partitioning sums of squares, Chapter 3.

d. Trace and the Euclidean Matrix Norm

An important operation for square matrices is the trace operator. For a square matrix
An×n = [ai j ], the trace of A, represented as tr(A), is the sum of the diagonal elements
of A. Hence,

tr (A) =
n∑

i=1

aii (2.4.6)

Theorem 2.4.3 For square matrices A and B and scalars α and β, the following properties
hold for the trace of a matrix.

1. tr(αA+βB) =α tr(A)+ β tr(B)

2. tr(AB) = tr (BA)

3. tr(A′) = tr(A)

4. tr(A′A) = tr(AA′) =∑
i, j

a2
i j and equals 0, if and only if A = 0.

Property (4) is an important property for matrices since it generalizes the Euclidean
vector norm squared to matrices. The Euclidean norm squared of A is defined as

‖A‖2 =
∑

i

∑
j

a2
i j = tr(A′A) = tr(AA′)
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The Euclidean matrix norm is defined as

‖A‖ = {
tr
(
A′A

)}1/2 = {
tr
(
AA′

)}1/2 (2.4.7)

and is zero only if A = 0. To see that this is merely a Euclidean vector norm, we introduce
the vec (·) operator.

Definition 2.4.2 The vec operator for a matrix An×d stacks the columns of An×d = [a1, a2,
. . . , ad ] sequentially, one upon another, to form a nd × 1 vector a

a = vec(A) =


a1
a2
...

ad


Using the vec operator, we have that the

tr
(
A′A

) = d∑
i=1

a′i ai = [(vec A)′][vec (A)] = a′a

= ‖a‖2

so that ‖a‖ = (
a′a

)1/2, the Euclidean vector norm of a. Clearly ‖a‖2 = 0 if and only if all
elements of a are zero. For two matrices A and B, the Euclidean matrix norm squared of
the matrix difference A− B is

‖A− B‖2 = tr
[
(A− B) (A− B)′

] =∑
i, j

(
ai j − bi j

)2

which may be used to evaluate the “closeness” of A to B. More generally, we have the
following definition of a matrix norm represented as ‖A‖.
Definition 2.4.3 The matrix norm of An×d is any real-valued function represented as ‖A‖
which satisfies the following properties.

1. ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0.

2. ‖αA‖ = |α| ‖A‖ forα ∈ R

3. ‖A+ B‖ ≤ ‖A‖ + ‖B‖ (Triangular inequality)

4. ‖AB‖ ≤ ‖A‖ ‖B‖ (Cauchy-Schwarz inequality)

Example 2.4.5 Let

X =


1 1 0
1 1 0
1 0 1
1 0 1

 = [x1, x2, x3]
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Then

x = vec X =
 x1

x2
x3


tr
(
X′X

) = 8 = (vec X)′ vec (X)

‖x‖ = √8

More will be said about matrix norms in Section 2.6.

e. Kronecker and Hadamard Products

We next consider two more definitions of matrix multiplication called the direct or Kro-
necker product and the dot or Hadamard product of two matrices. To define these products,
we first define a partitioned matrix.

Definition 2.4.4 A partitioned matrix is obtained from a n × m matrix A by forming sub-
matrices Ai j of order ni × m j such that the

∑
i

ni = n and
∑

j
m j = m. Thus,

A = [
Ai j

]
The elements of a partitioned matrix are the submatrices Ai j . A matrix with matrices Ai i as
diagonal elements and zero otherwise is denoted as diag [Ai i ] and is called a block diagonal
matrix.

Example 2.4.6 Let

A =


1 2

... 0 1
· · · · · · · · · · · · · · ·
1 −1

... 3 1

2 3
... 2 −1

 =
[

A11 A12
A21 A22

]

B =



1
... 1

1
... −1

· · · · · · · · ·
2

... 0

0
... 5


=

[
B11 B12
B21 B22

]
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Then

AB =
2∑

k=1

AikBk j =


3

... 4
· · · · · · · · ·
6

... 7

9
... 6


The matrix product is defined only if the elements of the partitioned matrices are con-
formable for matrix multiplication. The sum

A+ B = [
Ai j + Bi j

]
is not defined for this example since the submatrices are not conformable for matrix addi-
tion.

The direct or Kronecker product of two matrices An×m and Bp×q is defined as the parti-
tioned matrix

A⊗ B =


a11B a12B · · · a1mB
a21B a22B · · · a2mB
...

...
...

an1B an2B · · · anmB

 (2.4.8)

of order np × mq . This definition of multiplication does not depend on matrix conforma-
bility and is always defined.

Kronecker or direct products have numerous properties. For a comprehensive discussion
of the properties summarized in Theorem 2.4.4 (see, for example Harville, 1997, Chap-
ter 16).

Theorem 2.4.4 Let A,B,C, and D be matrices, x and y vectors, and α and β scalars.
Then

1. x′ ⊗ y = yx′ = y⊗ x′

2. αA⊗ βB = αβ(A⊗ B)

3. (A⊗ B)⊗ C = A⊗ (B⊗ C)

4. (A+ B)⊗ C = (A⊗ C)+ (B⊗ C)

5. A⊗ (B+ C) = (A⊗ B)+ A⊗ C

6. (A⊗ B)(C⊗ D) = (AC⊗ BD)

7. (A⊗ B)′= A′ ⊗ B′

8. tr(A⊗ B) = tr (A) tr (B)

9. [A1, A2] ⊗ B = [A1 ⊗ B, A2 ⊗ B] for a partitioned matrix A = [A1, A2]
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10. I⊗ A =


A 0 · · · 0
0 A · · · 0
...

...
...

0 0 · · · A

 = diag [A], a block diagonal matrix.

11. (I⊗ x)A(I⊗ x′) = A⊗ xx′

12. In general, A⊗ B �= B⊗ A

Another matrix product that is useful in multivariate analysis is the dot matrix product
or the Hadamard product. For this product to be defined, the matrices A and B must be of
the same order, say n × m. Then, the dot product or Hadamard product is the element by
element product defined as

A� B = [ai j bi j ] (2.4.9)

For a discussion of Hadamard products useful in multivariate analysis see Styan (1973).
Some useful properties of Hadamard products are summarized in Theorem 2.4.5 (see, for
example, Schott, 1997, p. 266).

Theorem 2.4.5 Let A,B, and C be n × m matrices, and xn and ym any vectors. Then

1. A� B = B� A

2. (A� B)′ = A′�B′

3. (A� B)� C = A� (B� C)

4. (A+ B)� C = (A� C)+ (B� C)

5. For J = 1n1′n, a matrix of all 1s, A� J = A

6. A� 0 = 0

7. For n = m, I� A = diag[a11, a22, . . . , ann]
8. 1′n(A� B)1m = tr(AB′)

9. Since x = diag [x] 1n and y = diag [y] 1m, x′ (A� B) y = tr
(
diag [x] A diag [y] B′

)
where diag [x] or diag [y] refers to the construction of a diagonal matrix by placing
the elements of the vector x (or y) along the diagonal and 0s elsewhere.

10. tr{(A′ � B′)C} = tr{A′(B′�C)}
Example 2.4.7 Let

A =
[

1 2
3 4

]
and B =

[
1 2
0 3

]
Then

A⊗ B =
[

1B 2B
3B 4B

]
=


1 2 2 4
0 3 0 6
3 6 4 8
0 9 0 12


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and

A� B =
[

1 4
0 12

]
In Example 2.4.7, observe that A� B is a submatrix of A ⊗ B. Schott (1997) discusses

numerous relationships between Kronecker and Hadamard products.

f. Direct Sums

The Kronecker product is an extension of a matrix product which resulted in a partitioned
matrix. Another operation of matrices that also results in a partitioned matrix is called the
direct sum. The direct sum of two matrices A and B is defined as

A⊕ B =
[

A 0
0 B

]
More generally, for k matrices A11 A22, . . . ,Akk the direct sum is defined as

k⊕
i=1

Ai i = diag [Ai i ] (2.4.10)

The direct sum is a block diagonal matrix with matrices Ai i as the i th diagonal element.
Some properties of direct sums are summarized in the following theorem.

Theorem 2.4.6 Properties of direct sums.

1. (A⊕ B)+ (C⊕ D) = (A+ C)⊕ (B+ D)

2. (A⊕ B) (C⊕ D) = (AC)⊕ (BD)

3. tr

[
k⊕

i=1
Ai

]
=∑

i
tr(Ai )

Observe that for all Ai i = A, that direct sum
⊕

i Ai i = I⊗ A = diag [A], property (10)
in Theorem 2.4.4.

g. The Vec(·) and Vech(·) Operators

The vec operator was defined in Definition 2.4.2 and using the vec(·) operator, we showed
how to extend a Euclidean vector norm to a Euclidean matrix norm. Converting a matrix to
a vector has many applications in multivariate analysis. It is most useful when working with
random matrices since it is mathematically more convenient to evaluate the distribution of
a vector. To manipulate matrices using the vec(·) operator requires some “vec” algebra.
Theorem 2.4.7 summarizes some useful results.
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Theorem 2.4.7 Properties of the vec(·) operator.

1. vec(y) = vec(y′) = y

2. vec(yx′) = x⊗ y

3. vec(A⊗ x) = vec(A)⊗ x

4. vec(αA+βB) =α vec(A)+β vec(B)

5. vec(ABC) = (C′ ⊗ A) vec(B)

6. vec(AB) = (I⊗ A) vec(B) = (B′ ⊗ I) vec(B′ ⊗ I) vec(A)

7. tr(A′B) = (vec A)′ vec(B)

8. tr(ABC) = vec(A′)(I⊗ B) vec(C)

9. tr(ABCD) = (
vec(A′)

)′
(D′ ⊗ B) vec(C)

10. tr(AX′BXC) = (vec(X))′ (CA⊗ B′) vec(X)

Again, all matrices in Theorem 2.4.7 are assumed to be conformable for the stated opera-
tions.

The vectors vec A and vec A′ contain the same elements, but in a different order. To
relate vec A to vec A′, a vec- permutation matrix may be used. To illustrate, consider the
matrix

An×m =
 a11 a12

a21 a22
a31 a32

 where A′ =
[

a11 a21 a31
a12 a22 a32

]
Then

vec A =


a11
a21
a31
a12
a22
a32

 and vec A′ =


a11
a12
a21
a22
a31
a32


To create vec A′ from vec A, observe that

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 vec A = vec A′
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and that

vec A =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

 vec A′

Letting Inm vec A = vec A′, the vec-permutation matrix Inm of order nm × nm converts
vec A to vec A′. And, letting Imn be the vec-permutation matrix that converts vec A′ to
vec A, observe that I′nm = Imn .

Example 2.4.8 Let

A
3×2
=

 a11 a12
a21 a22
a31 a32

 and y
2×1
=

[
y1
y2

]
Then

A⊗ y =
 a11y a12y

a21y a22y
a31y a32y

 =


a11 y1 a12 y1
a11 y2 a12 y2
a21 y1 a22 y1
a21 y2 a22 y2
a31 y1 a32 y1
a31 y2 a32 y2



y⊗ A =
[

y1A
y2A

]
=


y1a11 y1a12
y1a21 y1a22
y1a31 y1a32
y2a11 y2a12
y2a21 y2a22
y2a31 y2a32


and 

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (A⊗ y) = (y⊗ A)

Inp(A⊗ y) = y⊗ A

or

A⊗ y = I′np(y⊗ A)

= Ipn(y⊗ A)
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From Example 2.4.8, we see that the vec-permutation matrix allows the Kronecker prod-
uct to commute. For this reason, it is also called a commutation matrix; see Magnus and
Neudecker (1979).

Definition 2.4.5 A vec-permutation (commutation) matrix of order nm × nm is a permu-
tation matrix Inm obtained from the identity matrix of order nm × nm by permuting its
columns such that Inm vec A = vec A′.

A history of the operator is given in Henderson and Searle (1981). An elementary overview
is provided by Schott (1997) and Harville (1997).

Another operation that is used in many multivariate applications is the vech(·) operator
defined for square matrices that are symmetric. The vech(·) operator is similar to the vec(·)
operator, except only the elements in the matrix on or below the diagonal of the symmetric
matrix are included in vech(A).

Example 2.4.9 Let

A = X′X =
 1 2 3

2 5 6
3 6 8


n×n

Then

vech A =


1
2
3
5
6
8


n(n+1)/2×1

and vec A =



1
2
3
2
5
6
2
6
8


n2×1

Also, observe that the relationships between vech(A) and vec(A) is as follows:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1


vech A = vec A

n2×n(n+1)2

Example 2.4.9. leads to the following theorem.

Theorem 2.4.8 Given a symmetric matrix An×n there exist unique matrices Dn of order
n2 × n(n + 1)/2 and D+n of order n (n + 1) /2× n2(its Moore-Penrose inverse) such that

vec A = Dn vech A and D+n vec A = vech A
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The definition of the matrix D+n is reviewed in Section 2.5. For a discussion of vec(·) and
vech (·) operators, the reader is referred to Henderson and Searle (1979), Harville (1997),
and Schott (1997). Magnus and Neudecker (1999, p. 49) call the matrix Dn a duplication
matrix and D+n an elimination matrix, Magnus and Neudecker (1980). The vech (·) operator
is most often used when evaluating the distribution of symmetric matrices which occur
in multivariate analysis; see McCulloch (1982), Fuller (1987), and Bilodeau and Brenner
(1999).

Exercises 2.4

1. Given

A =
 1 2

0 −1
4 5

 ,B =
 3 0
−1 1

2 7

 ,C =
 1 2
−3 5

0 −1

 , and D =
 1 1
−1 2

6 0


and α = 2, and β = 3, verify the properties in Theorem 2.4.1.

2. For

A =
 1 −2 3

0 4 2
1 2 1

 and B =
 1 1 2

0 0 4
2 −1 3


(a) Show AB �= BA. The matrices do not commute.

(b) Find A′A and AA′.
(c) Are either A or B idempotent?

(d) Find two matrices A and B not equal to zero such that AB = 0 , but neither A
or B is the zero matrix.

3. If X = [
1, x1, x2, . . . , xp

]
and xi and e are n × 1 vectors while β is a k × 1 vector

where k = p + 1, show that y = 1+
p∑

i=1
β i xi + e may be written as y = Xβ + e.

4. For α = 2 and β = 3, and A and B given in Problem 2, verify Theorem 2.4.2.

5. Verify the relationships denoted in (a) to (e) and prove (f).

(a) 1′n1n = n and 1n1′n = Jn (a matrix of 1’s)

(b) (JnJn) = J2
n = nJn

(c) 1′n
(
In − n−1Jn

) = 0′n
(d) J′n

(
In − n−1Jn

) = 0n×n

(e)
(
In − n−1Jn

)2 = In − n−1Jn

(f) What can you say about I− A if A2 = A?
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6. Suppose Yn×d is a data matrix. Interpret the following quantities statistically.

(a) 1′Y/n

(b) Yc = Y− 1(1′Y/n)

(c) Y′cYc/(n − 1) = Y′
(
In − n−1Jn

)
Y/ (n − 1)

(d) For D = [
σ 2

i i

]
and Yz = YcD−1/2, what is Y′zYz/(n − 1).

7. Given

A =
[

σ 2
1 σ 12

σ 21 σ 2
2

]
and B =

[
1/σ 1 0

0 1/σ 2

]
form the product B′AB and interpret the result statistically.

8. Verify Definition 2.4.2 using matrices A and B in Problem 2.

9. Prove Theorems 2.4.4 through 2.4.7 and represent the following ANOVA design
results and models using Kronecker product notation.

(a) In Exercise 2.3, Problem 13, we expressed the ANOVA design geometrically.
Using matrix algebra verify that

i. ‖P1y‖2 = y′
(
a−1Ja ⊗ n−1Jn

)
y

ii.
∥∥PA/1y

∥∥2 = y′
[(

Ia − a−1Ja
)⊗ n−1Jn

]
y

iii.
∥∥PA⊥y

∥∥2 = y′
[
Ia ⊗

(
In − n−1Jn

)]
y

for y′ = [y11, y12, . . . , y1n, . . . , ya1, . . . , yan]

(b) For i = 2 and j = 2, verify that the ANOVA model has the structure y =
(12 ⊗ 12)µ+ (I2 ⊗ 12)α + e.

(c) For X ≡ V in Exercise 23, Problem 14, show that

i. X = [12 ⊗ 12 ⊗ 12, I2 ⊗ 12 ⊗ 12, 12 ⊗ I2 ⊗ 12, I2 ⊗ I2 ⊗ I2]

ii. AB = [v2 � v4, v2 � v5, v3 � v4, v3 � v5]

10. For

A =
[

1 −2
2 1

]
, B =

[
1 2
5 3

]
, C =

[
2 6
0 1

]
, and D =

[
0 4
1 1

]
and scalars α = β = 2, verify Theorem 2.4.2, 2.4.3, and 2.4.4.

11. Letting Y
n×d
= X

n×k
B

k×d
+ U

n×d
where Y = [v1, v2, . . . , vd ] ,B = [

β1,β2, . . . ,βd
]
,

and U = [u1,u2, . . . ,ud ], show that vec (Y) = (Id ⊗ X) vec (B)+ vec (U) is equiv-
alent to Y = XB+ U.

12. Show that the covariances of the elements of u = vec (U) has the structure � ⊗ I
while the structure of the covariance of vec

(
U′

)
is I⊗�.
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13. Find a vec-permutation matrix so that we may write

B⊗ A = Inp (A⊗ B) Imq

for any matrices An×m and Bp×q .

14. Find a matrix M such that M vec(A) = vec(A+ A′)/2 for any matrix A.

15. If ei is the i th column of In verify that

vec(In) =
n∑

i=1

(ei ⊗ ei )

16. Let �i j represent an n×m indicator matrix that has zeros for all elements except for
element δi j = 1. Show that the commutation matrix has the structure.

Inm =
n∑

i=1

m∑
j=1

(�i j ⊗�′i j ) =
n∑

i=1

m∑
j=1

(�′i j ⊗�i j )
′ = Imn

17. For any matrices An×m and Bp×q , verify that

vec(A⊗ B) = (Im ⊗ Iqn ⊗ Ip)(vec A⊗ vec B)

18. Prove that
∑k

i=1 Ai = tr (I⊗ A) , if A1 = A2 = · · · = Ak = A.

19. Let An× n be any square matrix where the n2 × n2 matrix Inn is its vec-permutation
(commutation) matrix, and suppose we define the n2×n2 symmetric and idempotent
matrix P = (

In2 + Inn
)
/2. Show that

(a) P vec A = vec
(
A+ A′

)
/2

(b) P (A⊗ A) = P (A⊗ A)P

20. For square matrices A and B of order n × n, show that P (A⊗ B)P = P (B⊗ A)P
for P defined in Problem 19.

2.5 Rank, Inverse, and Determinant

a. Rank and Inverse

Using (2.4.1), a matrix An×m may be represented as a partitioned row or column matrix.
The m column n-vectors span the column space of A, and the n row m-vectors generate the
row space of A.

Definition 2.5.1 The rank of a matrix An×m is the number of linearly independent rows
(or columns) of A.
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The rank of A is denoted as rank(A) or simply r(A) is the dimension of the space spanned
by the rows (or columns) of A. Clearly, 0 ≤ r(A) ≤ min(n,m). For A = 0, the r(A) = 0.
If m ≤ n, the r(A) cannot exceed m, and if the r(A) = r = m, the matrix A is said to have
full column rank. If A is not of full column rank, then there are m − r dependent column
vectors in A. Conversely, if n ≤ m, there are n − r dependent row vectors in A. If the
r(A) = n, A is said to have full row rank.

To find the rank of a matrix A, the matrix is reduced to an equivalent matrix which has
the same rank as A by premultiplying A by a matrix Pn×n that preserves the row rank of A
and by postmultiplying A by a matrix Qm×m that preserves the column rank of A, thus
reducing A to a matrix whose rank can be obtained by inspection. That is,

PAQ =
[

Ir 0
0 0

]
= Cn×m (2.5.1)

where the r(PAQ) = r(C) = r . Using P and Q, the matrix C in (2.5.1) is called the canon-
ical form of A. Alternatively, A is often reduced to diagonal form. The diagonal form of A
is represented as

P∗AQ∗ =
[

Dr 0
0 0

]
= � (2.5.2)

for some sequence of row and column operations.
If we could find a matrix P−1

n×n such that P−1P = In and a matrix Q−1
m×m such that

QQ−1 = Im , observe that

A = P−1
[

Ir 0
0 0

]
Q−1

= P1Q1 (2.5.3)

where P1 and Q1 are n× r and r ×m matrices of rank r . Thus, we have factored the matrix
A into a product of two matrices P1 Q1 where P1 has column rank r and Q1 has row rank r .

The inverse of a matrix is closely associated with the rank of a matrix. The inverse of a
square matrix An×n is the unique matrix A−1 that satisfies the condition that

A−1A = In = AA−1 (2.5.4)

A square matrix A is said to be nonsingular if an inverse exists for A; otherwise, the ma-
trix A is singular. A matrix of full rank always has a unique inverse. Thus, in (2.5.3) if the
r(P) = n and the r(Q) = m and matrices P and Q can be found, the inverses P−1 and Q−1

are unique.
In (2.5.4), suppose A−1 = A′, then the matrix A said to be an orthogonal matrix since

A′A = I = AA′. Motivation for this definition follows from the fact that the columns of A
form an orthonormal basis for Vn . An elementary permutation matrix In,m is orthogonal.
More generally, a vec-permutation (commutation) matrix is orthogonal since I′nm = Inm

and I−1
nm = Imn .

Finding the rank and inverse of a matrix is complicated and tedious, and usually per-
formed on a computer. To determine the rank of a matrix, three basic operations called
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elementary operations are used to construct the matrices P and Q in (2.5.1). The three
basic elementary operations are as follows.

(a) Any two rows (or columns) of A are interchanged.
(b) Any row of A is multiplied by a nonzero scalar α.
(c) Any row (or column) of A is replaced by adding to the replaced row (or

column) a nonzero scalar multiple of another row (or column) of A.

In (a), the elementary matrix is no more than a permutation matrix. In (b), the matrix
is a diagonal matrix which is obtained from I by replacing the (i, i) element by αi i > 0.
Finally, in (c) the matrix is obtained from I by replacing one zero element with αi j �= 0.

Example 2.5.1 Let

A =
[

a11 a12
a21 a22

]
Then

I1, 2 =
[

0 1
1 0

]
and I1, 2A interchanges rows 1
and 2 in A

D1, 1(α) =
[

α 0
0 1

]
and D1, 1(α)A multiplies row
1 in A by α

E2, 1(α) =
[

1 0
α 1

]
and E2, 1(α)A replaces row 2 in A
by adding to it α times row 1 of A

Furthermore, the elementary matrices in Example 2.5.1 are nonsingular since the unique
inverse matrices are

E−1
1,2 (α) =

[
1 0
α 0

]
, D−1

1,1(α) =
[

α−1 0
0 1

]
, I−1

1, 2 = I′1,2

To see how to construct P and Q to find the rank of A, we consider an example.

Example 2.5.2 Let

A =
 1 2

3 9
5 6

 , E2,1(−3) =
 1 0 0
−3 1 0

0 0 1

 ,

E3,1(−5) =
 1 0 0

0 1 0
−5 0 1

 , E3,2(4/3) =
 1 0 0

0 1 0
0 4/3 1

 ,

D2, 2(1/3) =
 1 0 0

0 1/3 0
0 0 1

 , E1,2(−2) =
[

1 −2
0 1

]
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Then

D2,2(1/3)E3, 2 (4/3)E3, 1(−5)E2, 1 (−3)︸ ︷︷ ︸ A E1, 2 (−2)︸ ︷︷ ︸ =
 1 0

0 1
0 0


P A Q =

[
I2 0
0 0

]
 1 0 0
−1 1/3 0
−1 4/3 1

 A
[

1 −2
0 1

]
=

 1 0
0 1
0 0


so that the r(A) = 2. Alternatively, the diagonal form is obtained by not using the matrix
D2, 2(1/3)  1 0 0

−3 1 0
−9 4/3 1

A
[

1 −2
0 1

]
=

 1 0
0 3
0 0


From Example 2.5.2, the following theorem regarding the factorization of An×m is evident.

Theorem 2.5.1 For any matrix An×m of rank r , there exist square nonsingular matrices
Pn×n and Qm×m such that

PAQ =
[

Ir 0
0 0

]
or

A = P−1
[

Ir 0
0 0

]
Q−1 = P1Q1

where P1 and Q1 are n × r and r × m matrices of rank r . Furthermore, if A is square and
symmetric there exists a matrix P such that

PAP′ =
[

Dr 0
0 0

]
= �

and if the r(A) = n, then PAP′ = Dn = � and A = P−1�(P′)−1.

Given any square nonsingular matrix An×n , elementary row operations when applied to
In transforms In into A−1. To see this, observe that PA = Un where Un is a unit upper
triangular matrix and only n(n − 1)/2 row operations P∗ are needed to reduce Un to In ; or
P∗PA = In ; hence A−1 = P∗PIn by definition. This shows that by operating on A and In

with P∗P simultaneously, P∗PA becomes In and that P∗P In becomes A−1.

Example 2.5.3 Let

A =
 2 3 1

1 2 3
3 1 2


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To find A−1, write

(A |I‖ row totals) =
 2 3 1

1 2 3
3 1 2

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∥∥∥∥∥∥
7
7
7


Multiply row one by 1/2, and subtract row one from row two. Multiply row three by 1/3,
and subtract row one from three. 1 3/2 1/2

0 1/2 5/2
0 −7/6 1/6

∣∣∣∣∣∣
1/2 0 0
−1/2 1 0
−1/2 0 1/3

∥∥∥∥∥∥
7/2
7/2
−7/6


Multiply row two by 2 and row three by −6/7. Then subtract row three from row two.
Multiple row three by −7/36. 1 3/2 0

0 1 0
0 0 1

∣∣∣∣∣∣
23/26 −7/36 −1/36

7/18 1/18 −5/18
−5/18 7/18 1/18

∥∥∥∥∥∥
105/36

7/6
7/6


Multiply row two by −3/2, and add to row one. 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣
1/18 −5/18 7/18
7/18 1/18 −5/18
−5/18 7/18 1/18

∥∥∥∥∥∥
7/6
7/6
−7/6

 = (
I
∣∣∣A−1

∥∥∥ row totals
)

Then

A−1 = (1/18)

 1 −5 7
7 1 −5
−5 7 1


This inversion process is called Gauss’ matrix inversion technique. The totals are included
to systematically check calculations at each stage of the process. The sum of the elements
in each row of the two partitions must equal the total when the elementary operations are
applied simultaneous to In, A and the column vector of totals.

When working with ranks and inverses of matrices, there are numerous properties that
are commonly used. Some of the more important ones are summarized in Theorem 2.5.2
and Theorem 2.5.3. Again, all operations are assumed to be defined.

Theorem 2.5.2 For any matrices An×m,Bm×p, and Cp×q , some properties of the matrix
rank follow.

1. r(A) = r(A′)

2. r(A) = r(A′A) = r(AA′)

3. r(A)+ r(B)− n ≤ r(AB) ≤ min [r(A), r (B)] (Sylvester’s law)

4. r(AB)+ r(BC) ≤ r (B)+ r (ABC)
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5. If r (A) = m and the r (B) = p, then the r(AB) ≤ p

6. r(A⊗ B) = r(A)r (B)

7. r(A� B) ≤ r(A)r (B)

8. r(A) =
k∑

i=1
r(Ai ) for A =

k⊕
i=1

Ai

9. For a partitioned matrix A = [A1,A2, . . . ,Ak], the r

(
k∑

i=1
Ai

)
≤ r (A) ≤

k∑
i=1

r (Ai )

10. For any square, idempotent matrix An×n
(
A2 = A

)
, of rank r < n

(a) tr (A) = r (A) = r

(b) r (A)+ r (I− A) = n

The inverse of a matrix, like the rank of a matrix, has a number of useful properties as
summarized in Theorem 2.5.3.

Theorem 2.5.3 Properties of matrix inversion.

1. (AB)−1 = B−1A−1

2. (A′)−1 = (A−1)′, the inverse of a symmetric matrix is symmetric.

3. (A−1)−1 = A

4. (A⊗ B)−1 = A−1 ⊗ B−1 {compare this with (1)}
5. (I+ A)−1 = A(A+ I)−1

6. (A+ B)−1 = A−1 − A−1B(A+ B)−1 = A−1 − A−1(A−1+B−1)−1A−1so that
B(A+ B)−1A = (A−1 + B−1)−1

7. (A−1 + B−1)−1 = (I+ AB−1)−1

8. (A+ CBD)−1 = A−1 − A−1C(B−1 + DA−1C)−1DA−1 so that for C = Z and
D = Z′ we have that (A+ ZBZ′)−1 = A−1 − A−1Z(B−1 + Z′AZ)−1Z′A.

9. For a partitioned matrix

A =
[

A11 A12
A21 A22

]
,A−1 =

[
B11 B12
B21 B22

]
where

B11 = (A11 − A12A−1
22 A21)

−1

B12 = −B11B12A−1
22

B21 = A−1
22 A21B11

B22 = A−1
22 + A−1

22 A21B11A12A−1
22

provided all inverses exist.
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b. Generalized Inverses

For an inverse of a matrix to be defined, the matrix A must be square and nonsingular.
Suppose An×m is rectangular and has full column rank m; then the r(A′A) = m and the
inverse of A′A exists. Thus,

[
(A′A)−1A′

]
A = Im . However, A[(A′A)−1A′] �= In so A has

a left inverse, but not a right inverse. Alternatively, if the r(A) = n, then the r(AA′) = n
and AA′(AA′)−1 = In so that A has a right inverse. Multiplying Im by A, we see that
A(A′A)−1A′A = A and multiplying In by A, we also have that AA′(AA′)−1A = A. This
leads to the definition of a generalized or g-inverse of A.

Definition 2.5.2 A generalized inverse of any matrix An×m, denoted by A−, is any matrix
of order m × n that satisfies the condition

AA−A = A

Clearly, the matrix A− is not unique. To make the g-inverse unique, additional conditions
must be satisfied. This leads to the Moore-Penrose inverse A+. A Moore-Penrose inverse
for any matrix An×m is the unique matrix A+ that satisfies the four conditions

(1) AA+A = A (3) (AA+)′ = AA+
(2) A+AA+ = A (4)

(
A+A

)′ = A+A
(2.5.5)

To prove that the matrix A+ is unique, let B and C be two Moore-Penrose inverse matrices.
Using properties (1) to (4) in (2.5.5, observe that the matrix B = C since

B = BAB = B(AB)′ = BB′A′ = BB′(ACA)′ = BB′A′C′A′ =
B(AB)′(AC)′ = BABAC = BAC = BACAC = (BA)′(CA)′C =
A′B′A′C′C = (ABA)′CC = A′C′C = (CA)′C = CAC = C

This shows that the Moore-Penrose inverse is unique. The proof of existence is left as an
exercise. From (2.5.5), A− only satisfies conditions (1). Further, observe that if A has full
column rank, the matrix

A+ = (A′A)−1A′ (2.5.6)

satisfies conditions (1)–(4), above. If a square matrix An×n has full rank, then A−1 =
A−= A+. If the r(A) = n, then A+ = A′(AA′)−1. If the columns of A are orthogonal, then
A+= A′. If An×n is idempotent, then A+ = A . Finally, if A = A′, then A+ = (A′)+ =
(A+)′so A+ is symmetric. Other properties of A+ are summarized in Theorem 2.5.4.

Theorem 2.5.4 For any matrix An×m, the following hold.

1. (A+)+ = A

2.
(
A+

)′ = (A′)+

3. A+ = (A′A)+A′ = A′(AA′)+

4. For A = P1Q1,A+ = Q′1(P′1AQ′1)−1P′1 where the r(P1) = r(Q1) = r .

5. (A′A+) = A+(A′)+ = A+(A+)′
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6. (AA+)+ = AA+

7. r(A) = r(A+) = r(AA+) = r(A+A)

8. For any matrix Bm×p, (AB)+ �= B+A+.

9. If B has full row rank, (AB)(AB)+ = AA+.

10. For A =
k⊕

i=1
Ai i ,A+=

k⊕
i=1

A+i i .

While (2.5.6) yields a convenient Moore-Penrose inverse for An×m when the r(A) = m,
we may use Theorem 2.5.1 to create A− when the r(A) = r < m ≤ n. We have that

PAQ = � =
[

Dr 0
0 0

]
Letting

�− =
[

D−1
r 0
0 0

]
��−� = �, and a g-inverse of A is

A− = Q�− P (2.5.7)

Example 2.5.4 Let

A =
 2 4

2 2
−2 0


Then with

P =
 1 0 0
−1 1 0
−1 2 1

 and Q =
[

1 −2
0 1

]

PAQ =
 2 0

0 −2
0 0


Thus

�− =
[

1/2 0 0
0 −1/2 0

]
and A− = Q�−P =

[ −1/2 0 0
1/2 −1/2 0

]
Since r(A) = 2 = n, we have that

A+ = (A′A)−1A′= (1/96)

[
20 −12
−12 12

]
A′

= (1/96)

[ −8 16 −40
24 0 24

]
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Example 2.5.5 Let

A =
 4 2 2

2 2 0
2 0 2


Choose

P =
 1/4 0 0
−1/2 1 0
−1 1 1

 ,Q =
 1/4 −1/2 −1

0 1 1
0 0 1


and

�− =
 4 0 0

0 1 0
0 0 0


Then

A− =
 1/2 −1/2 0
−1/2 1 0

0 0 0


Theorem 2.5.5 summarizes some important properties of the generalized inverse matrix A−.

Theorem 2.5.5 For any matrix An×m, the following hold.

1. (A′)− = (A−)′

2. If A = P−1A−Q−1, then (PAQ)− = QA−P.

3. r(A) = r(AA−) = r(A−A) ≤ r(A−)

4. If
(
A′A

)−
is a g-inverse of A, then A− = (A′A)−A′, A+ = A′(AA′)−A(A′A)−A′

and A(A′A)−A′ is unique and symmetric and called an orthogonal projection ma-
trix.

5. For A =
[

A11 A12
A21 A22

]
and A− =

[
A−1

11 0
0 0

]
for some nonsingular matrix A11

of A, then

A− =
 A−1

11 − A−1
11 A12A−1

11 0

0 0


6. For

M =
[

A B
B′ C

]
M− =

[
A− + A−BF−B′A′ −A−BF−
−F−B′A′ F−

]
=

[
A− 0
0 0

]
+ [−A−,B

]
F−

[−B′A−, I
]

where F = C− B′A−B.
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The Moore-Penrose inverse and g-inverse of a matrix are used to solve systems of linear
equations discussed in Section 2.6. We close this section with some operators that map a
matrix to a scalar value. For a further discussion of generalized inverses, see Boullion and
Odell (1971), Rao and Mitra (1971), Rao (1973a), and Harville (1997).

c. Determinants

Associated with any n × n square matrix A is a unique scalar function of the elements
of A called the determinant of A, written |A|. The determinant, like the inverse and rank,
of a matrix is difficult to compute. Formally, the determinant of a square matrix A is a
real-valued function defined by

|A| =
n!∑

(−1)ka1i1 , a2i2 , . . . , anin (2.5.8)

where the summation is taken over all n! permutations of the elements of A such that each
product contains only one element from each row and each column of A. The first subscript
is always in its natural order and the second subscripts are 1, 2, . . . , n taken in some order.
The exponent k represents the necessary number of interchanges of successive elements in
a sequence so that the second subscripts are placed in their natural order 1, 2, . . . , n.

Example 2.5.6 Let

A =
[

a11 a12
a21 a22

]
Then

|A| = (−1)k a11a22 + (−1)k a12a21

|A| = a11a22 − a12a21

Let

A =
 a11 a12 a13

a21 a22 a23
a31 a32 a33


Then

|A| = (−1)k a11a22a33 + (−1)k a12a23a31 + (−1)k a13a21a32 + (−1)k a11a23a32

+ (−1)k a12a21a33 + (−1)k a13a22a31

= a11a22a33 + a12a23a31 + a13a21a32 − a11a23a32 − a12a21a33 − a13a22a31

Representing A in Example 2.5.6 as

[A | B] =


(−)

a11 a12 a13
a21 a22 a23
a31 a32 a33

(+)

∣∣∣∣∣∣∣∣∣∣
(−) (−)
a11 a12
a21 a22
a31 a32
(+) (+)


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where B is the first two columns of A, observe that the |A|may be calculated by evaluating
the diagonal products on the matrix [A | B], similar to the 2 × 2 case where (+) signs
represent plus “diagonal” product terms and (−) signs represent minus “diagonal” product
terms in the array in the evaluation of the determinant.

Expression (2.5.8) does not provide for a systematic procedure for finding the determi-
nant. An alternative expression for the |A| is provided using the cofactors of a matrix A.
By deleting the i th row and j th column of A and forming the determinant of the resulting
sub-matrix, one creates the minor of the element which is represented as

∣∣Mi j
∣∣. The cofac-

tor of ai j is Ci j = (−1)i+ j |M|i j , and is termed the signed minor of the element. The |A|
defined in terms of cofactors is

|A| =
n∑

j=1

ai j Ci j for any i (2.5.9)

|A| =
n∑

i=1

ai j Ci j for any j (2.5.10)

These expressions are called the row and column expansion by cofactors, respectively, for
finding the |A|.
Example 2.5.7 Let

A =
 6 1 0

3 −1 2
4 0 −1


Then

|A| = (6) (−1)1+1
∣∣∣∣ −1 2

0 −1

∣∣∣∣+ (1) 1(1+2)
∣∣∣∣ 3 2

4 −1

∣∣∣∣+ (0) 1(1+3)
∣∣∣∣ 3 −1

4 0

∣∣∣∣
= 6 (1− 0)+ (−1) (−3− 8)

= 17

Associated with a square matrix is the adjoint (or adjugate) matrix of A. If Ci j is the
cofactor of an element ai j in the matrix A, the adjoint of A is the transpose of the cofactors
of A

adj A = [
Ci j

]′ = [
C ji

]
(2.5.11)

Example 2.5.8 For A in Example 2.5.7, the

adj A =
 1 11 4

1 −6 4
2 −12 −9

′ =
 1 1 2

11 −6 −12
4 4 −9


and the

(adj A)A =
 17 0 0

0 17 0
0 0 17

 =
 |A| 0 0

0 |A| 0
0 0 |A|


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Example 2.5.8 motivates another method for finding A−1. In general,

A−1 = adj A
|A| (2.5.12)

where if the |A| �= 0, A is nonsingular. In addition, |A|−1 = 1/ |A|. Other properties of the
determinant are summarized in Theorem 2.5.6.

Theorem 2.5.6 Properties of determinants.

1. |A| = ∣∣A′∣∣
2. |AB| = |BA|
3. For an orthogonal matrix, |A| = ±1.

4. If A2 = A, (A is idempotent) , then the |A| = 0 or 1.

5. For An×n and Bm×m

|A⊗ B| = |A|m |B|n

6. For A =
[

A11 A12
A21 A22

]
, then

|A| = |A11|
∣∣∣A22 − A21A−1

11 A12

∣∣∣ = |A22|
∣∣∣A11 − A12A−1

22 A21

∣∣∣ ,
provided A11 and A22 are nonsingular.

7. For A =
k⊕

i=1
Ai i , |A| =

k∏
i=1
|Ai i |.

8. |αA| = αn |A|

Exercises 2.5

1. For

A =


1 0 2
3 1 5
5 2 8
0 0 1


Use Theorem 2.5.1 to factor A into the product

A
4×3
= P1

4×r
Q1
r×3

where r = R(A).
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2. For

A =
 2 1 2

1 0 4
2 4 −16


(a) Find P and P′ such that P′AP = �.

(b) Find a factorization for A.

(c) If A1/2A1/2 = A, define A1/2.

3. Find two matrices A and B such that the r = r(AB) ≤ min[r(A), r(B)].
4. Prove that AB is nonsingular if A has full row rank and B has full column rank.

5. Verify property (6) in Theorem 2.5.2.

6. For

A =


1 0 0 1
3 5 1 2
1 −1 2 −1
0 3 4 1


(a) Find A−1 using Gauss’ matrix inversion method.

(b) Find A−1 using formula (2.5.12).

(c) Find A−1 by partitioning A and applying property (9) in Theorem 2.5.3.

7. For

A =
 2 1 −1

0 2 3
1 1 1

 , B =
 1 2 3

1 0 0
2 1 1

 , and C =
 1 0 1

0 2 0
3 0 2


Verify Theorem 2.5.3.

8. For

A =
[

1 0
2 5

]
and B =

 1 0 1
0 2 0
3 0 2


Find the r(A⊗ B) and the |A⊗ B|.

9. For In and Jn = 1n1′n , verify

(αIn + βJn)
−1 =

[
In − α

α + nβ
Jn

]
/α

for α + nβ �= 0.

10. Prove that (I+ A)−1 is A (A+ I)−1.
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11. Prove that |A| |B| ≤ |A� B|
12. For a square matrix An×n that is idempotent where the r (A) = r , prove

(a) tr (A) = r (A) = r ;

(b) (I− A) is idempotent;

(c) r (A)+ r (I− A) = n.

13. For the Toeplitz matrix

A =
 1 β β2

α 1 β

α2 α 1


Find A−1 for αβ �= 1.

14. For the Hadamard matrices

H4×4 =


1 1 1 1
−1 −1 1 1

1 −1 1 −1
1 −1 −1 1


H2×2 =

[
1 1
1 −1

]
Verify that

(a) |Hn×n| = ± nn/2;

(b) n−1/2Hn×n ;

(c) H′H = HH′ = nIn for Hn×n .

15. Prove that for An×m and Bm×p, |In + AB| = |Im + BA|.
16. Find the Moore-Penrose and a g-inverse for the matrices

(a)

 1
2
0

 , (b) [0, 1, 2, ] , and (c)

 1 2
0 −1
1 0


17. Find g-inverses for

A =
 8 4 4

4 4 0
4 0 4

 and B =


0 0 0 2
0 1 2 3
0 4 5 6
0 7 8 9


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18. For

X =


1 1 0
1 1 0
1 0 1
1 0 1

 and A = X′X

Find the r(A), a g-inverse A− and the matrix A+.

19. Verify that each of the matrices P1 = A′
(
A′A

)−1 A, P2 = A′
(
A′A

)− A, and P3 =
A′

(
A′A

)+ A are symmetric, idempotent, and unique. The matrices Pi are called
projection matrices. What can you say about I− Pi ?

20. Verify that
A− + Z− A−AXAA−

is a g-inverse of A.

21. Verify that B−A− is a g-inverse of AB if and only if A−ABB− is idempotent.

22. Prove that if the Moore-Penrose inverse A+, which satisfies (2.5.5), always exists.

23. Show that for any A− of a symmetric matrix
(
A−

)2 is a g-inverse of A2 if A−A is
symmetric.

24. Show that
(
A′A

)− A′ is a g-inverse of A, given
(
A′A

)− is a g-inverse of
(
A′A

)
.

25. Show that AA+ = A
(
A′A

)− A.

26. Let Dn be a duplication matrix of order n2 × n (n + 1) /2 in that Dn vech A = vec A
for any symmetric matrix A. Show that

(a) vech A = D−n vec A;

(b) DnD+n vec A = P vec A where P is a projection matrix, a symmetric, and idem-
potent matrix;

(c)
[
D′n (A⊗ A)Dn

]−1 = D+n
(
A−1 ⊗ A−1

)
D+′n .

2.6 Systems of Equations, Transformations, and Quadratic
Forms

a. Systems of Equations

Generalized inverses are used to solve systems of equations of the form

An×mxm×1 = yn×1 (2.6.1)

where A and y are known. If A is square and nonsingular, the solution is x̂ = A−1y. If A
has full column rank, then A+ = (A′A)−1A′ so that x̂ = A+y = (A′A)−1A′y provides the
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unique solution since (A′A)−1A′A = A−1. When the system of equations in (2.6.1) has
a unique solution, the system is consistent. However, a unique solution does not have to
exist for the system to be consistent (have a solution). If the r(A) = r < m ≤ n, the system
of equations in (2.6.1) will have a solution x̂ = A−y if and only if the system of equations
is consistent.

Theorem 2.6.1 The system of equations Ax = y is consistent if and only if AA−y = y,
and the general solution is x̂= A−y+ (Im −A−A)z for arbitrary vectors z; every solution
has this form.

Since Theorem 2.6.1 is true for any g-inverse of A, it must be true for A+ so that
x̂ = A+y+ (Im−A+A)z. For a homogeneous system where y = 0 or Ax = 0, a general
solution becomes x̂ = (Im − A−A)z. When y �= 0, (2.6.1) is called a nonhomogeneous
system of equations.

To solve a consistent system of equations, called the normal equations in many statistical
applications, three general approaches are utilized when the r(A) = r < m ≤ n . These
approaches include (1) restricting the number of unknowns, (2) reparameterization, and (3)
generalized inverses.

The method of adding restrictions to solve (2.6.1) involves augmenting the matrix A of
rank r by a matrix R of rank m − r such that the r(A′R′) = r + (m − r) = m, a matrix of
full rank. The augmented system with side conditions Rx = θ becomes[

A
R

]
x =

[
y
θ

]
(2.6.2)

The unique solution to (2.6.2) is

x̂ = (
A′A+ R′R

)−1 (A′y+ R′θ
)

(2.6.3)

For θ = 0, x̂ = (A′A+ R′R)−1A′y so that A+= (A′A+ R′R)−1A′ is a Moore-Penrose
inverse.

The second approach to solving (2.6.1) when r(A) = r < m ≤ n is called the reparame-
terization method. Using this method we can solve the system for r linear combinations of
the unknowns by factoring A as a product where one matrix is known. Factoring A as

A
n×m

= B
n×r

C
r×m

and substituting A = BC into (2.6.1),

Ax = y

BCx = y

(B′B)Cx = B′y (2.6.4)

Cx = (B′B)−1B′y
x̂∗ = (B′B)−1B′y
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a unique solution for the reparameterized vector x∗ = Cx is realized. Here, B+= (B′B)−1B′
is a Moore-Penrose inverse.

Because A = BC, C must be selected so that the rows of C are in the row space of A.
Hence, the

r

[
A
C

]
= r(A) = r(C) = r

B = B(CC′)(CC′)−1 = AC′(CC′)−1
(2.6.5)

so that B is easily determined given the matrix C. In many statistical applications, C is a
contrast matrix.

To illustrate these two methods, we again consider the two group ANOVA model

yi j = µ+ αi + ei j i = 1, 2 and j = 1, 2

Then using matrix notation
y11
y12
y21
y22

 =


1 1 0
1 1 0
1 0 1
1 0 1


 µ

α1
α2

+


e11
e12
e21
e22

 (2.6.6)

For the moment, assume e′ = [e11, e12, e21, e22] = 0′ so that the system becomes

A x = y
1 1 0
1 1 0
1 0 1
1 0 1


 µ

α1
α2

 =


y11
y12
y21
y22

 (2.6.7)

To solve this system, recall that the r(A) = r(A′A) and from Example 2.5.5, the r(A) = 2.
Thus, A is not of full column rank.

To solve (2.6.7) using the restriction method, we add the restriction that α1 + α2 = 0.
Then, R = [

0 1 1
]
, θ = 0, and the r(A′R′) = 3. Using (2.6.3), µ̂

α̂1
α̂2

 =
 4 2 2

2 3 1
2 1 3

−1  4y..
2y1.
2y2.


where

y.. =
I∑
i

J∑
j

yi j/I J =
2∑
i

2∑
j

yi j/(2)(2)

yi. =
J∑
j

yi j/J =
2∑
j

yi j/2
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for I = J = 2. Hence, µ̂

α̂1
α̂2

 = 1

16

 8 −4 −4
−4 8 0
−4 0 8

−1  4y..
2y1.
2y2.


=

 2y.. − (y1./2− (y2./2)
y1. − y..
y2. − y..

 =
 y..

y1. − y..
y2. − y..


is a unique solution with the restriction α1 + α2 = 0.

Using the reparameterization method to solve (2.6.7), suppose we associate with µ+ αi

the parameter µi . Then, (µ1 + µ2) /2 = µ + (α1 + α2) /2. Thus, under this reparame-
terization the average of µi is the same as the average of µ + αi . Also observe that
µ1 − µ2 = α1 − α2 under the reparameterization. Letting

C =
[

1 1/2 1/2
0 1 −1

]
be the reparameterization matrix, the matrix

C

 µ

α1
α2

 = [
1 1/2 1/2
0 1 −1

] µ

α1
α2

 = [
µ+ (α1 + α2) /2

α1 − α2

]

has a natural interpretation in terms of the original model parameters. In addition, the
r (C) = r(A′C′) = 2 so that C is in the row space of A. Using (2.6.4),

(
CC′

) = [
3/2 0
0 2

]
,

(
CC′

)−1 =
[

2/3 0
0 1/2

]

B = AC′
(
CC′

)−1 =


1 1/2
1 1/2
1 −1/2
1 −1/2


so

x̂∗ = Cx = (
BB′

)−1 B′y[
x̂∗1
x̂∗2

]
=

[
µ+ (α1 + α2) /2

α1 − α2

]
=

[
4 0
0 1

]−1 [ 4y..
y1.. − y..

]
=

[
y..

y1. − y..

]
For the parametric function ψ = α1 − α2, ψ̂ = x̂∗2 = y1. − y2. which is identical to the
restriction result since α̂1 = y1. − y.. and α̂2 = y2. − y... Hence, the estimated contrast is
ψ̂ = α̂1− α̂2 = y1.− y2.. However, the solution under reparameterization is only the same
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as the restriction method if we know that α1 + α2 = 0. Then, x̂∗1 = µ̂ = y... When this is
not the case, x̂∗1 is estimating µ+ (α1 + α2) /2. If α1 = α2 = 0 we also have that µ̂ = y..
for both procedures.

To solve the system using a g-inverse, recall from Theorem 2.5.5, property (4), that
(A′A)−A′ is a g-inverse of A if (A′A)− is a g-inverse of A′A. From Example 2.5.5,

(
A′A

) =
 4 2 2

2 2 0
2 0 2

 and
(
A′A

)− =
 1/2 −1/2 0
−1/2 1 0

0 0 0


so that

A−y = (
A′A

)− A′y =
 y.

y1. − y2.
0


Since

A−A = (
A′A

)− (
A′A

) =
 1 0 1

0 1 −1
0 0 0


I− A−A =

 0 0 −1
0 0 1
0 0 1


A general solution to the system is µ̂

µ̂1
µ̂2

 =
 y2.

y1. − y2.
0

+ (
I− A−A

)
z

=
 y2.

y1. − y2.
0

+
 −z3

z3
z3


Choosing z3 = y2. − y.., a solution is µ

α̂1
α̂2

 =
 y..

y1. − y..
y2. − y..


which is consistent with the restriction method. Selecting z3 = y2.; µ̂ = 0, α̂1 = y..
and α̂2 = y2. is another solution. The solution is not unique. However, for either selec-
tion of z, ψ̂ = α̂1 − α̂2 is unique. Theorem 2.6.1 only determines the general form for
solutions of Ax = y. Rao (1973a) established the following result to prove that certain
linear combinations of the unknowns in a consistent system are unique, independent of the
g-inverse A−.

Theorem 2.6.2 The linear combination ψ = a′x of the unknowns, called parametric func-
tions of the unknowns, for the consistent system Ax = y has a unique solution x̂ if and only
if a′(A−A) = a′. Furthermore, the solutions are given by a′̂x = t′(A−A)A−y for r = r(A)

linearly independent vectors a′ = t′A−A for arbitrary vectors t′.
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Continuing with our illustration, we apply Theorem 2.6.2 to the system defined in (2.6.7)
to determine if unique solutions for the linear combinations of the unknowns α1− α2, µ+
(α1 + α2), and µ can be found. To check that a unique solution exists, we have to verify
that a′

(
A−A

) = a′.

For α1 − α2, a′(A−A) = [0, 1,−1]

 1 0 1
0 1 −1
0 0 0

 = [0, 1,−1] = a′

For µ+ (α1 − α2) /2, a′ = [1, 1/2, 1/2] and

a′(A−A) = [1, 1/2, 1/2]

 1 0 1
0 1 −1
0 0 0

 = [1, 1/2, 1/2] = a′.

Thus both α1−α2 and µ+(α1 − α2) /2 have unique solutions and are said to be estimable.
For µ, a′ = [

1, 0, 0
]

and a′(A′A) = [
1, 0, 1

] �= a′. Hence no unique so-
lution exists for µ so the parameter µ is not estimable. Instead of checking each linear
combination, we find a general expression for linear combinations of the parameters given
an arbitrary vectors t. The linear parametric function

a′x = t′
(
A′A

)
x = [t0, t1, t2]

 1 0 0
0 1 −1
0 0 0

 µ

α1
α2


= t0 (µ+ α1)+ t1 (α1 − α2) (2.6.8)

is a general expression for all linear combinations of x for arbitrary t. Furthermore, the
general solution is

a′̂x = t′(A′A)−A′y = t′
[(

A′A
)− (

A′A
)] (

A′A
)− A′y

= t′
 1 0 1

0 1 −1
0 0 0

 y2.
y1. − y2.

0


= t0 y2. + t1 (y1. − y2.) (2.6.9)

By selecting t0, t1, and t2 and substituting their values into (2.6.8) and (2.6.9), one deter-
mines whether a linear combination of the unknowns exists, is estimable. Setting t0 = 0
and t1 = 1, ψ1 = a′x = α1 − α and a′̂x = ψ̂1 = y1. − y2. has a unique solution. Setting
t0 = 1 and t1 = 1/2,

ψ2 = a′x = 1 (µ+ α2)+ (α1 − α2) /2

= µ+ (α1 + α2) /2

and

ψ̂2 = a′̂x = y1. + y2.

2
= y..
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which shows that ψ2 is estimated by y... No elements of t0, t1, and t2 may be chosen to
estimate µ; hence, µ̂ has no unique solution so that µ is not estimable. To make µ estimable,
we must add the restriction α1+α2 = 0. Thus, restrictions add “meaning” to nonestimable
linear combinations of the unknowns, in order to make them estimable. In addition, the
restrictions become part of the model specification. Without the restriction the parameter
µ has no meaning since it is not estimable. In Section 2.3, the restriction on the sum of the
parameters αi orthogonalized A into the subspaces 1 and A/1.

b. Linear Transformations

The system of equations Ax = y is typically viewed as a linear transformation. The m × 1
vector x is operated upon by the matrix A to obtain the n × 1 image vector y.

Definition 2.6.1 A transformation is linear if, in carrying x1 into y1 and x2 into y2, the
transformation maps the vector α1x1 + α2x2 into α1y1 + α2y2 for every pair of scalars α1
and α2.

Thus, if x is an element of a vector space U and y is an element of a vector space V , a
linear transformation is a function T :U −→ V such that T (α1x1 + α2x2) = α1T (x1)+
α2T (x2) = α1y1 + α2y2. The null or kernel subspace of the matrix A, denoted by N (A)

or K A is the set of all vectors satisfying the homogeneous transformation Ax = 0. That is,
the null or kernel of A is the linear subspace of Vn such that N (A) ≡ K A = {x | Ax = 0}.
The dimension of the kernel subspace is dim {K A} = m − r (A). The transformation is
one-to-one if the dimension of the kernel space is zero; then, r (A) = m. The complement
subspace of K A is the subspace K A′ =

{
y | A′y = 0

}
.

Of particular interest in statistical applications are linear transformations that map vec-
tors of a space onto vectors of the same space. The matrix A for this transformation is now
of order n so that An×n xn×1 = yn×1. The linear transformation is nonsingular if and only if
the |A| = 0. Then, x = A−1y and the transformation is one-to-one since N (A) = {0}. If A
is less than full rank, the transformation is singular and many to one. Such transformations
map vectors into subspaces.

Example 2.6.1 As a simple example of a nonsingular linear transformation in Euclidean
two-dimensional space, consider the square formed by the vectors x′1 = [1, 0] , x′2 =
[0, 1] , x1 + x2 = [1, 1] under the transformation

A =
[

1 4
0 1

]
Then

Ax1 = y1 =
[

1
0

]
Ax2 = y2 =

[
4
1

]
A (x1 + x2) = y1 + y2 =

[
5
1

]
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FIGURE 2.6.1. Fixed-Vector Transformation

Geometrically, observe that the parallel line segments {[0, 1], [1, 1]} and {[0, 0], [1, 0]} are
transformed into parallel line segments {[4, 1], [5, 1]} and {[0, 0], [1, 0]} as are other sides
of the square. However, some lengths, angles, and hence distances of the original figure are
changed under the transformation.

Definition 2.6.2 A nonsingular linear transformation Tx = y that preserves lengths, dis-
tances and angles is called an orthogonal transformation and satisfies the condition that
TT′ = I = T′T so that T is an orthogonal matrix.

Theorem 2.6.3 For an orthogonal transformation matrix T

1.
∣∣T′AT

∣∣ = |A|
2. The product of a finite number of orthogonal matrices is itself orthogonal.

Recall that if T is orthogonal that the |T| = ±1. If the |T| = 1, the orthogonal matrix
transformation may be interpreted geometrically as a rigid rotation of coordinate axes. If
the |T| = −1 the transformation is a rotation, followed by a reflection.

For a fixed angle θ , let T =
[

cos θ sin θ

− sin θ cos θ

]
and consider the point v = [v1,v2] =

[v∗1,v∗2] relative to the old coordinates e1 =
[

1
0

]
, e2 =

[
0
1

]
and the new coordinates

e∗1and e∗2. In Figure 2.6.1, we consider the point v relative to the two coordinate systems
{e1, e2} and

{
e∗1, e∗2

}
.

Clearly, relative to {e1, e2} ,
v = v1e1 + v2e2

However, rotating e1 −→ e∗1 and e2 −→ e∗2, the projection of e1 onto e∗1 is ‖e1‖ cos θ =
cos θ and the projection of e1onto e∗2 is cos (θ + 90◦) = − sin θ or,

e1 = (cos θ) e∗1 + (− sin θ) e∗2

Similarly,
e2 = (cos θ) e∗1 + (− sin θ) e∗2
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Thus,
v = (v1 cos θ + v2 sin θ) e∗1 + (v1 (− sin θ)+ v2 cos θ) e∗2

or [
v∗1
v∗2

]
=

[
cos θ sin θ

− sin θ cos θ

] [
v1
v2

]
v∗ = Tv

is a linear transformation of the old coordinates to the new coordinates. Let θ i j be the angle
of the i th old axes and the j th new axes: θ11 = θ,θ22 = θ,θ21 = θ − 90◦and θ12 = θ + 90.
Using trigonometric identities

cos θ21 = cos θ cos
(−90◦

)− sin θ sin
(−90◦

)
= cos θ (0)− sin θ (−1)

= sin θ

and

cos θ12 = cos θ cos−90◦ − sin θ sin−90◦

= cos θ (0)− sin θ (1)

= − sin θ

we observe that the transformation becomes

v∗ =
[

cos θ11 cos θ21
cos θ12 cos θ22

]
v

For three dimensions, the orthogonal transformation is v∗1
v∗2
v∗3

 =
 cos θ11 cos θ21 cos θ31

cos θ12 cos θ22 cos θ32
cos θ13 cos θ23 cos θ33

 v1
v2
v3


Extending the result to n-dimensions easily follows. A transformation that transforms an
orthogonal system to a nonorthogonal system is called an oblique transformation. The basis
vectors are called an oblique basis. In an oblique system, the axes are no longer at right
angles. This situation arises in factor analysis discussed in Chapter 8.

c. Projection Transformations

A linear transformation that maps vectors of a given vector space onto a vector subspace
is called a projection. For a subspace Vr ⊆ Vn , we saw in Section 2.3 how for any y ∈ Vn

that the vector y may be decomposed into orthogonal components

y = PVr y+PV⊥n−r
y

such that y is in an r -dimensional space and the residual is in an (n − r)-dimensional space.
We now discuss projection matrices which make the geometry of projections algebraic.
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Definition 2.6.3 Let PV represent a transformation matrix that maps a vector y onto a sub-
space V . The matrix PV is an orthogonal projection matrix if and only if PV is symmetric
and idempotent.

Thus, an orthogonal projection matrix PV is a matrix such that PV = P′V and P2
V = PV .

Note that I− PV is also an orthogonal projection matrix. The projection transformation
I− PV projects y onto V⊥, the orthocomplement of V relative to Vn . Since I− PV projects
y onto V⊥, and Vn = Vr ⊕ Vn−r where Vn−r = V⊥,we see that the rank of a projection
matrix is equal to the dimension of the space that is being projected onto.

Theorem 2.6.4 For any orthogonal projection matrix PV, the

r (PV ) = dim V = r

r (I− PV ) = dim V⊥ = n − r

for Vn = Vr ⊕ V⊥n−r .

The subscript V on the matrix PV is used to remind us that PV projects vectors in Vn onto
a subspace Vr ⊆Vn . We now remove the subscript to simplify the notation. To construct a
projection matrix, let A be an n × r matrix where the r(A) = r so that the columns span
the r -dimensional subspace Vr ⊆ Vn . Consider the matrix

P = A
(
A′A

)−1 A′ (2.6.10)

The matrix is a projection matrix since P = P′, P2 = P and the r (P) = r . Using P defined
in (2.6.10), observe that

y = PVr y+ PV⊥y

= Py+ (I− P) y

= A
(
A′A

)−1 A′y+[I− A
(
A′A

)−1 A′]y
Furthermore, the norm squared of y is

‖y‖2 = ‖Py‖2 + ‖(I− P) y‖2
= y′Py+ y′ (I− P) y (2.6.11)

Suppose An×m is not of full column rank, r (A) = r < m ≤ n, Then

P = A
(
A′A

)− A′

is a unique orthogonal projection matrix. Thus, P is the same for any g-inverse
(
A′A

)−.

Alternatively, one may use a Moore-Penrose inverse for
(
A′A

)
. Then, P = A

(
A′A

)+ A′.

Example 2.6.2 Let

V =


1 1 0
1 1 0
1 0 1
1 0 1

 and y =


y11
y12
y21
y22


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where (
V′V

)− 0 0 0
0 1/2 0
0 0 1/2


Using the methods of Section 2.3, we can obtain the PV y by forming an orthogonal basis
for the column space of V. Instead, we form the projection matrix

P = V
(
V′V

)− V′ =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2


Then the PVy is

x = V
(
V′V

)− V′y =


y1.
y1.
y2.
y2.


Letting V ≡ A as in Figure 2.3.3,

x = P1y+ PA/1y

= y


1
1
1
1

+ (y1. − y)


1
1
−1
−1



=


y1.
y1.
y2.
y2.


leads to the same result.

To obtain the PV⊥y, the matrix I− P is constructed. For our example,

I− P = I− V
(
V′V

)− V′ =


1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 −1/2 1/2


so that

e = (I− P) y =


(y11 − y12) /2
(y12 − y11) /2
(y21 − y22) /2
(y22 − y21) /2

 =


y11 − y1.
y21 − y1.
y21 − y2.
y22 − y2.


is the projection of y onto V⊥. Alternatively, e = y− x.
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In Figure 2.3.3, the vector space V ≡ A = (A/1)⊕ 1. To create matrices that project y
onto each subspace, let V ≡ {1,A} where

1 =


1
1
1
1

 and A =


1 0
1 0
0 1
0 1


Next, define P1,P2, and P3 as follows

P1 = 1
(
1′1

)− 1′

P2 = V
(
V′V

)− V′ − 1
(
1′1

)− 1′

P3 = I− V
(
V′V

)− V′

so that

I = P1 + P2 + P3

Then, the quantities Pi y

P1y = P1y

PA/1y = P2y

PA⊥y = P3y

are the projections of y onto the orthogonal subspaces.
One may also represent V using Kronecker products. Observe that the two group ANOVA

model has the form
y11
y12
y21
y22

 = (12 ⊗ 12)µ+ (I2 ⊗ 12)

[
α1
α2

]
+


e11
e12
e21
e22


Then, it is also easily established that

P1 = 12
(
1′212

)−1 1′2 = (J2 ⊗ J2) /4 = J4/4

P2 = 1

2
(I2 ⊗ 12) (I2 ⊗ 12)

′ − J4/4 = 1

2
(I2 ⊗ J2)− J4/4

P3 = (I2 ⊗ I2)− (I2 ⊗ J2) /4

so that Pi may be calculated from the model.

By employing projection matrices, we have illustrated how one may easily project an
observation vector onto orthogonal subspaces. In statistics, this is equivalent to partitioning
a sum of squares into orthogonal components.
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^y − Xβ

⊥Vn − r

y

Vr

y = Xβ̂^

FIGURE 2.6.2. ‖y‖2 = ‖PVr y‖2 + ‖PVn−r y‖2.

Example 2.6.3 Consider a model that relates one dependent variable y to x1, x2, . . . , xk

linearly independent variables by the linear relationship

y = β0 + β1x1 + β2x2 + · · · + βk xk + e

where e is a random error. This model is the multiple linear regression model, which, using
matrix notation, may be written as

y
n×1
= X

n×(k+1)
β

(k+1)×1
+ e

n×1

Letting X represent the space spanned by the columns of X, the projection of y onto X is

ŷ = X
(
X′X

)−1 X′y

Assuming e = 0, the system of equations is solved to obtain the best estimate of β. Then,
the best estimate of y using the linear model is Xβ̂ where β̂ is the solution to the system

y = Xβ for unknown β. The least squares estimate β̂ = (
X′X

)−1 X′y minimizes the sum
of squared errors for the fitted model ŷ = Xβ̂. Furthermore,

‖(y− ŷ)‖2 = (y− Xβ̂)′(y− Xβ̂)

= y′(In − X
(
X′X

)−1 X′)y

= ∥∥PV⊥y
∥∥2

is the squared distance of the projection of y onto the orthocomplement of Vr ⊆ Vn.

Figure 2.6.2 represents the squared lengths geometrically.

d. Eigenvalues and Eigenvectors

For a square matrix A of order n the scalar λ is said to be the eigenvalue (or characteristic
root or simply a root) of A if A− λIn is singular. Hence the determinant of A− λIn must
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equal zero
|A− λIn| = 0 (2.6.12)

Equation (2.6.12) is called the characteristic or eigenequation of the square matrix A and is
an n-degree polynomial in λ with eigenvalues (characteristic roots) λ1, λ2, . . . , λn . If some
subset of the roots are equal, say λ1 = λ2 = · · · = λm , where m < n, then the root is said
to have multiplicity m. From equation (2.6.12), the r (A− λkIn) < n so that the columns
of A− λkIn are linearly dependent. Hence, there exist nonzero vectors pi such that

(A− λkIn) pi = 0 for i = 1, 2, . . . , n (2.6.13)

The vectors pi which satisfy (2.6.13) are called the eigenvectors or characteristic vectors
of the eigenvalues or roots λi .

Example 2.6.4 Let

A =
[

1 1/2
1/2 1

]
Then

|A− λI2| =
∣∣∣∣[ 1− λ 1/2

1/2 1− λ

]∣∣∣∣ = 0

(1− λ)2 − 1/4 = 0

λ2 − 2λ+ 3/4 = 0

(λ− 3/2) (λ− 1/2) = 0

Or, λ1 = 3/2 and λ2 = 1/2. To find p1 and p2, we employ Theorem 2.6.1. For λ1,

x̂ = [
I− (A− λ1I)− (A− λ1I)

]
z

=
{[

1 0
0 1

]
−

[
0 0
0 −2

] [ −1/2 1/2
1/2 −1/2

]}
z

=
[

1 0
1 0

]
z

=
[

z1
z1

]
Letting z1 = 1, x̂′1 = [1, 1]. In a similar manner, with λ2 = 1/2, x̂′2 = [z2,− z2]. Setting
z2 = 1, x̂′2 = [1,−1], and the matrix P0 is formed:

P0 = [̂x1, x̂2] =
[

1 1
1 −1

]
Normalizing the columns of P0, the orthogonal matrix becomes

P1 =
[

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]



2.6 Systems of Equations, Transformations, and Quadratic Forms 69

However, the |P1| = −1 so that P1 is not a pure rotation. However, by changing the signs
of the second column of P0 and selecting z1 = −1, the orthogonal matrix P where the
|P| = 1 is

P =
 1/
√

2 −1/
√

2

1/
√

2 1/
√

2

 and P′ =
 1/

√
2 1/

√
2

−1/
√

2 1/
√

2


Thus, P′= T is a rotation of the axes e1, e2 to e∗1, e∗2 where θ i j = 45◦ in Figure 2.6.1.

Our example leads to the spectral decomposition theorem for a symmetric matrix A.

Theorem 2.6.5 (Spectral Decomposition) For a (real) symmetric matrix An×n, there exists
an orthogonal matrix Pn×n with columns pi such that

P′AP = �,AP = P�,PP′ = I =
∑

i

pi p′i and A = P�P′ =
∑

i

λi pi p′i

where � is a diagonal matrix with diagonal elementsλ1 ≥ λ2 ≥ · · · ≥ λn .

If the r(A) = r ≤ n, then there are r nonzero elements on the diagonal of � . A
symmetric matrix for which all λi > 0 is said to be positive definite (p.d.) and positive
semidefinite (p.s.d.) if some λi > 0 and at least one is equal to zero. The class of matrices
taken together are called non-negative definite (n.n.d) or Gramian. If at least one λi = 0, A
is clearly singular.

Using Theorem 2.6.5, one may create the square root of a square symmetric matrix. By
Theorem 2.6.5, A = P�1/2�1/2P′ and A−1 = P�−1/2�−1/2P′. The matrix A1/2 = P�1/2

is called the square root matrix of the square symmetric matrix A and the matrix A−1/2 =
P�−1/2 is called the square root matrix of A−1 since A1/2A1/2 = A and (A1/2)−1 =
A−1/2. Clearly, the factorization of the symmetric matrix A is not unique. Another common
factorization method employed in statistical applications is called the Cholesky or square
root factorization of a matrix. For this procedure, one creates a unique lower triangular
matrix L such that LL′ = A The lower triangular matrix L is called the Cholesky square
root factor of the symmetric matrix A. The matrix L′ in the matrix product is an upper
triangular matrix. By partitioning the lower triangular matrix in a Cholesky factorization
into a product of a unit lower triangular matrix time a diagonal matrix, one obtains the LDU
decomposition of the matrix where U is a unit upper triangular matrix.

In Theorem 2.6.5, we assumed that the matrix A is symmetric. When An×m is not
symmetric, the singular-value decomposition (SVD) theorem is used to reduce An×m to
a diagonal matrix; the result readily follows from Theorem 2.5.1 by orthonormalizing the
matrices P and Q. Assuming that n is larger than m, the matrix A may be written as
A = PDr Q′where P′P = Q′Q = QQ′ = Im . The matrix P contains the orthonormal
eigenvectors of the matrix AA′, and the matrix Q contains the orthonormal eigenvectors of
A′A. The diagonal elements of Dr contain the positive square root of the eigenvalues of
AA′ or A′A, called the singular values of An×m . If A is symmetric, then AA′ = A′A = A2

so that the singular values are the eigenvalues of A. Because most matrices A are usually
symmetric in statistical applications, Theorem 2.6.5 will usually suffice for the study of



70 2. Vectors and Matrices

multivariate analysis. For symmetric matrices A, some useful results of the eigenvalues of
(2.6.12) follow.

Theorem 2.6.6 For a square symmetric matrix An×n, the following results hold.

1. tr(A) =∑
i λi

2. |A| =∏
i λi

3. r (A) equals the number of nonzero λi .

4. The eigenvalues of A−1 are 1/λi if r (A) = n.

5. The matrix A is idempotent if and only if each eigenvalue of A is 0 or 1.

6. The matrix A is singular if and only if one eigenvalue of A is zero.

7. Each of the eigenvalues of the matrix A is either +1 or −1, if A is an orthogonal
matrix.

In (5), if A is only idempotent and not symmetric each eigenvalue of A is also 0 or 1;
however, now the converse is not true.

It is also possible to generalize the eigenequation (2.6.12) for an arbitrary matrix B where
B is a (real) symmetric p.d. matrix B and A is a symmetric matrix of order n

|A− λB| = 0 (2.6.14)

The homogeneous system of equations

|A− λi B|qi = 0 (i = 1, 2, . . . , n) (2.6.15)

has a nontrivial solution if and only if (2.6.14) is satisfied. The quantities λi and qi are the
eigenvalues and eigenvectors of A in the metric of B. A generalization for Theorem 2.6.5
follows.

Theorem 2.6.7 For (real) symmetric matrices An×n and Bn×n where B is p.d., there exists
a nonsingular matrix Qn×n with columns qi such that

Q′AQ = � and Q′BQ = I

A = (
Q′

)−1
�Q−1 and

(
Q′

)−1 Q−1= B

A =
∑

i

λi xi x′i and B =
∑

i

xi x′i

where xi is the i th column of (Q′)−1 and � is a diagonal matrix with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn for the equation |A− λB| = 0.
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Thus, the matrix Q provides a simultaneous diagonalization of A and B. The solution to
|A− λB| = 0 is obtained by factoring B using Theorem 2.6.5: P′BP = � or B = P�P′ =(
P�1/2

) (
�1/2P′

) = P1P′1 so that P−1
1 B

(
P′1

) = I. Using this result, and the transformation

qi =
(
P′1

)−1 xi , (2.6.15) becomes[
P−1

1 A
(
P′1

)−1 − λi I
]

xi = 0 (2.6.16)

so that we have reduced (2.6.14) to solving |P−1
1 A

(
P′1

)−1 − λI| = 0 where P−1
1 A

(
P′1

)−1

is symmetrical. Thus, roots of (2.6.16) are the same as the roots of (2.6.14) and the vectors
are related by qi =

(
P′1

)−1 xi .

Alternatively, the transformation qi = B−1xi could be used. Then
(
AB−1 − λi I

)
xi =

0; however, the matrix AB−1 is not necessarily symmetric. In this case, special iterative
methods must be used to find the roots and vectors, Wilkinson (1965).

The eigenvalues λ1, λ2, . . . , λn of |A− λB| = 0 are fundamental to the study of applied
multivariate analysis. Theorem 2.6.8 relates the roots of the various characteristic equations
where the matrix A is associated with an hypothesis test matrix H and the matrix B is
associated with an error matrix E.

Theorem 2.6.8 Properties of the roots of |H− λE| = 0.

1. The roots of |E− v (H+ E)| = 0 are related to the roots of |H− λE| = 0:

λi = 1− vi

vi
or vi = 1

1+ λi

2. The roots of |H− θ (H+ E)| = 0 are related to the roots of |H− λE| = 0:

λi = θ i

1− θ i
or θ i = λi

1+ λi

3. The roots of |E− v (H+ E)| = 0 are

vi = (1− θ i )

Theorem 2.6.9 If α1, . . . , αn are the eigenvalues of A and β1, β2, . . . , βm are the eigen-
values of B. Then

1. The eigenvalues of A⊗ B are αiβ j (i = 1, . . . , n; j = 1, . . . ,m) .

2. The eigenvalues of A⊕ B are α1, . . . , αn, β1, β2, . . . , βm .

e. Matrix Norms

In Section 2.4, the Euclidean norm of a matrix An×m was defined as the
{
tr(A′A)

}1/2.
Solving the characteristic equation

∣∣A′A− λI
∣∣ = 0, the Euclidean norm becomes ‖A‖2 =
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i λi

}1/2 where λi is a root of A′A. The spectral norm is the square root of the maximum
root of A′A. Thus, ‖A‖s = max

√
λi . Extending the Minkowski vector norm to a matrix,

a general matrix (Lp norm) norm is ‖A‖p =
{∑

i λ
p/2
i

}1/p
where λi are the roots of A′A,

also called the von Neumann norm. For p = 2, it reduces to the Euclidean norm. The
von Neumann norm satisfies Definition 2.4.2.

f. Quadratic Forms and Extrema

In our discussion of projection transformations, the norm squared of y in (2.6.11) was
constructed as the sum of two products of the form y′Ay = Q for a symmetric matrix A.
The quantity Q defined by

f (y) =
n∑

i=1

n∑
j=1

ai j yi y j = Q (2.6.17)

is called a quadratic form of yn×1 for any symmetric matrix An×n . Following the definition
for matrices, a quadratic form y′Ay is said to be

1. Positive definite (p.d.) if y′Ay > 0 for all y �= 0 and is zero only if y = 0.

2. Positive semidefinite (p.s.d.) if y′Ay > 0 for all y and equal zero for at least one
nonzero value of y.

3. Non-negative definite (n.n.d.) or Gramian if A is p.d. or p.s.d.

Using Theorem 2.6.5, every quadratic form can be reduced to a weighted sum of squares
using the transformation y = Px as follows

y′Ay =
∑

i

λi x2
i

where the λi are the roots of |A− λI| = 0 since P′AP = �.
Quadratic forms arise naturally in multivariate analysis since geometrically they repre-

sent an ellipsoid in an n-dimensional space with center at the origin and Q > 0. When
A = I, the ellipsoid becomes spherical. Clearly the quadratic form y′Ay is a function of
y and for y = αy (α > 0), it may be made arbitrarily large or small. To remove the scale
changes in y, the general quotient y′Ay/y′By is studied.

Theorem 2.6.10 Let A be a symmetric matrix of order n and B a p.d. matrix where λ1 ≥
λ2 ≥ · · · ≥ λn are the roots of |A− λB| = 0. Then for any y �= 0,

λn ≤ y′Ay/y′By ≤ λ1

and

min
y �=0

(
y′Ay/y′By

) = λn

max
y �=0

(
y′Ay/y′By

) = λ1

For B = I, the quantity y′Ay/y′y is known as the Rayleigh quotient.
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g. Generalized Projectors

We defined a vector y to be orthogonal to x if the inner product y′x = 0. That is y ⊥ x
in the metric of I since y′Ix = 0. We also found the eigenvalues of A in the metric of
I when we solved the eigenequation |A− λI| = 0. More generally, for a p.d. matrix B,
we found the eigenvalues of A in the metric of B by solving |A− λB| = 0. Thus, we
say that y is B-constrained orthogonal to x if y′Bx = 0 or y is orthogonal to x in the
metric of B and since B is p.d., y′By > 0. We also saw that an orthogonal projection
matrix P is symmetric

(
P = P′

)
and idempotent

(
P2 = P

)
and has the general structure

P = X
(
X′X

)− X′. Inserting a symmetric matrix B between X′X and postmultiplying P

by B, the matrix PX/B = X
(
X′BX

)− X′B is constructed. This leads one to the general
definition of an “affine” projector.

Definition 2.6.4 The affine projection in the metric of a symmetric matrix B is the matrix
PX/B = X

(
X′BX

)− X′B

Observe that the matrix PX/B is not symmetric, but that it is idempotent. Hence, the
eigenvalues of PX/B are either 0 or 1. In addition, B need not be p.d. If we let V represent
the space associated with X and Vx⊥ the space associated with B where Vn = Vx ⊕ Vx⊥
so that the two spaces are disjoint, then PX/B is the projector onto Vx⊥ . Or, PX/B is the
projector onto X along the kernel X′B and we observe that X[(X′BX)−X′B]X = X and
X
(
X′BX

)− X′B = 0.
To see how we may use the affine projector, we return to Example 2.6.4 and allow the

variance of e to be equal to σ 2V where V is known. Now, the projection of y onto X is

ŷ = X[
(

X′V−1X
)−

X′V−1y] = Xβ̂ (2.6.18)

along the kernel X′V−1. The estimate β̂ is the generalized least squares estimator of β̂.
Also,

‖y− ŷ‖2 = (y− Xβ̂)′V−1(y− Xβ̂) (2.6.19)

is minimal in the metric of V−1. A more general definition of a projector is given by Rao
and Yanai (1979).

Exercises 2.6

1. Using Theorem 2.6.1, determine which of the following systems are consistent, and
if consistent whether the solution is unique. Find a solution for the consistent systems

(a)

[
2 −3 1
6 −9 3

] x
y
z

 = [
5

10

]

(b)


1 1 0
1 0 −1
0 1 1
1 0 1


 x

y
z

 =


6
−2

8
0


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(c)

[
1 1
2 −3

] [
x
y

]
=

[
0
0

]

(d)

 1 1 −1
2 −1 1
1 4 −4

 x
y
z

 =
 0

0
0



(e)


1 1 1
1 −1 1
1 2 1
3 −1 3


 x

y
z




2
6
0

14


2. For the two-group ANOVA model where

y11
y12
y21
y22

 =


1 1 0
1 1 0
1 0 1
1 0 1


 µ

α1
α2


solve the system using the restrictions

(1) α2 = 0

(2) α1− α2 = 0

3. Solve Problem 2 using the reparameterization method for the set of new variables

(1) µ+ α1 andµ+ α2 (2) µ and α1 + α2

(3) µ+ α1 andα1 − α2 (4) µ+ α1 andα2

4. In Problem 2, determine whether unique solutions exist for the following linear com-
binations of the unknowns and, if they do, find them.

(1)µ+ α1 (2)µ+ α1 + α2

(3)α1 − α2/2 (4)α1

5. Solve the following system of equations, using the g-inverse approach.

1 1 0 1 0
1 1 0 1 0
1 1 0 0 1
1 1 0 0 1
1 0 1 1 0
1 0 1 1 0
1 0 1 0 1
1 0 1 0 1




µ

α1
α2
β1
β2

 =



y111
y112
y121
y122
y211
y212
y221
y222


= y

For what linear combination of the parameter vector do unique solutions exist? What
is the general form of the unique solutions?
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6. For Problem 5 consider the vector spaces

1 =



1
1
1
1
1
1
1
1


,A =



1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1


,B =



1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1


,X =



1 1 0 1 0
1 1 0 1 0
1 1 0 0 1
1 1 0 0 1
1 0 1 1 0
1 0 1 1 0
1 0 1 0 1
1 0 1 0 1


(a) Find projection matrices for the projection of y onto 1,A/1 and B/1.

(b) Interpret your findings.

(c) Determine the length squares of the projections and decompose ||y||2 into a
sum of quadratic forms.

7. For each of the symmetric matrices

A =
[

2 1
1 2

]
and B =

 1 1 0
1 5 −2
0 −2 1


(a) Find their eigenvalues

(b) Find n mutually orthogonal eigenvectors and write each matrix as P�P′.

8. Determine the eigenvalues and eigenvectors for the n × n matrix R = [
ri j

]
where

ri j = 1 for i = j and ri j = r �= 0 for i �= j .

9. For A and B defined by

A =
 498.807 426.757

426.757 374.657

 and B =
 1838.5 −334.750

−334.750 12, 555.25


solve |A− λB| = 0 for λi and qi .

10. Given the quadratic forms

3y2
1 + y2

2 + 2y2
3 + y1 y3 and y2

1 + 5y2
2 + y2

3 + 2y1 y2 − 4y2 y3

(a) Find the matrices associated with each form.

(b) Transform both to each the form
∑

i λi x2
i .

(c) Determine whether the forms are p.d., p.s.d., or neither, and find their ranks.

(d) What is the maximum and minimum value of each quadratic form?

11. Use the Cauchy-Schwarz inequality (Theorem 2.3.5) to show that(
a′b

)2 ≤ (
a′Ga

)
(b′G−1b)

for a p.d. matrix G.
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2.7 Limits and Asymptotics

We conclude this chapter with some general comments regarding the distribution and con-
vergence of random vectors. Because the distribution theory of a random vectors depend
on the calculus of probability that involves multivariable integration theory and differential
calculus, which we do not assume in this text, we must be brief. For an overview of the
statistical theory for multivariate analysis, one may start with Rao (1973a), or at a more
elementary level the text by Casella and Berger (1990) may be consulted.

Univariate data analysis is concerned with the study of a single random variable Y char-
acterized by a cumulative distribution function FY (y) = P [Y ≤ y] which assigns a proba-
bility that Y is less than or equal to a specific real number y <∞, for all y ∈ R. Multivari-
ate data analysis is concerned with the study of the simultaneous variation of several ran-
dom variables Y1,Y2, . . . ,Yd or a random vector of d-observations, Y′ = [Y1, Y2, . . . ,Yd ].

Definition 2.7.1 A random vector Yd×1 is characterized by a joint cumulative distribution
function FY (y) where

FY (y) = P [Y ≤ y] = P [Y1 ≤ y1, Y2 ≤ y2 ≤ · · · ≤ Yd ≤ yd ]

assigns a probability to any real vector y′ = [y1, y2, . . . , yd ] , yεVd. The vector Y′ =
[Y1,Y2, . . . ,Yd ] is said to have a multivariate distribution.

For a random vector Y, the cumulative distribution function always exists whether all the
elements of the random vector are discrete or (absolutely) continuous or mixed. Using the
fundamental theorem of calculus, when it applies, one may obtain from the cumulative
distribution function the probability density function for the random vector Y which we
shall represent as fY(y). In this text, we shall always assume that the density function exists
for a random vector. And, we will say that the random variables Yi ∈ Y are (statistically)
independent if the density function for Y factors into a product of marginal probability
density functions; that is,

fy(y) =
d∏

i=1

fYi (yi )

for all y. Because many multivariate distributions are difficult to characterize, some basic
notions of limits and asymptotic theory will facilitate the understanding of multivariate
estimation theory and hypothesis testing.

Letting {yn} represent a sequence of real vectors y1, y2, . . . , for n = 1, 2, . . . , and {cn}
a sequence of positive real numbers, we say that yn tends to zero more rapidly than the
sequence cn as n −→∞ if the

lim
n−→∞

‖yn‖
cn
= 0 (2.7.1)

Using small oh notation, we write that

yn = o (cn) as n −→∞ (2.7.2)

which shows that yn converges more rapidly to zero than cn as n −→ ∞. Alternatively,
suppose the ‖yn‖ is bounded, there exist real numbers K for all n, then, we write that
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‖yn‖ ≤ K cn for some K . Using big Oh notation

yn = O (cn) (2.7.3)

These concepts of order are generalized to random vectors by defining convergence in
probability.

Definition 2.7.2 A random vector Yn converges in probability to a random vector Y writ-

ten as Yn
p−→ Y, if for all ε and δ > 0 there is an N such that for all n > N,

P (‖Yn − Y‖ > ε) < δ. Or, limn→∞ {‖Yn − Y‖ > 0} = 0 and written as plim {Yn} = Y.

Thus, for the elements in the vectors Yn −Y, {Yn − Y} , n = 1, 2, . . . converge in proba-
bility to zero.

Employing order of convergence notation, we write that

Yn = op (cn) (2.7.4)

when the sequence plim ‖Yn‖
cn
= 0. Furthermore, if the ‖Yn‖ is bounded in probability by

the elements in cn , we write
Yn = O (cn) (2.7.5)

if for ε > 0 the P {‖Yn‖ ≤ cn K } ≤ ε for all n; see Ferguson (1996).
Associating with each random vector a cumulative distribution function, convergence in

law or distribution is defined.

Definition 2.7.3 Yn converges in law or distribution to Y written as Yn
d−→ Y, if the limit

limn→∞ = FY (y) for all points y at which FY (y) is continuous.

Thus, if a parameter estimator β̂n converges in distribution to a random vector β, then
β̂n = Op (1) . Furthermore, if β̂n−β = Op (cn) and if cn = op (1) , then the plim

{
β̂n

} =
β or β̂n is a consistent estimator of β. To illustrate this result for a single random variable,

we know that
√

n
(
Xn − µ

) d−→ N
(
0, σ 2

)
. Hence,

(
Xn − µ

) = Op
(
1/
√

n
) = op (1)

so that Xn converges in probability to µ, plim
{
Xn

} = µ. The asymptotic distribution of

Xn is the normal distribution with mean µ and asymptotic variance σ 2/n as n −→ ∞.
If we assume that this result holds for finite n, we say the estimator is asymptotically
efficient if the variance of any other consistent, asymptotically normally distributed esti-
mator exceeds σ 2/n. Since the median converges in distribution to a normal distribution,√

2n/π (Mn − µ)
d−→ N

(
0, σ 2

)
, the median is a consistent estimator of µ; however, the

mean is more efficient by a factor of π/2.
Another important asymptotic result for random vectors in Slutsky’s Theorem.

Theorem 2.7.1 If Xn
d−→ X and plim {Yn} = c. Then

1.

[
Xn

Yn

]
d−→

[
x
c

]
2. YnXn

d−→ cX
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Since Xn
d−→ x implies plim {Xn} = X, convergence in distribution may be replaced

with convergence in probability. Slutsky’s result also holds for random matrices. Thus if
Yn and Xn are random matrices such that if plim {Yn} = A and plim {Xn} = B, then
plim

{
YnX−1

n

} = AB−1.

Exercises 2.7

1. For a sequence of positive real numbers {cn}, show that

(a) O (cn) = Op (cn) = cn O (1)

(b) o (cn) = op (cn) = cno (1)

2. For a real number α > 0, Yn converges to the αth mean of Y if the expectation
of |Yn − Y |α −→ 0, written E |Yn − Y |α −→ 0 as n −→ ∞, this is written as

Yn
gm−→ Yn convergence in quadratic mean. Show that if Yn

α−→ Y for some α,that

Yn
p−→ Y.

(a) Hint: Use Chebyshev’s Inequality.

3. Suppose Xn
d−→ N (0, 1). What is the distribution of X2

n .

4. Suppose Xn − E (Xn) /
√

var Xn
d−→ X and E (Xn − Yn)

2 / var Xn −→ 0. What is
the distribution of Yn − E (Yn) /

√
var Yn?

5. Asymptotic normality of t. If X1, X2, . . . , is a sample from N
(
µ, σ 2

)
, then Xn

d−→
µ and �X2

j/n
d−→ E

(
X2

)
so s2

n = �X2
j/n − X

2
n

d−→ E
(
X2

) − µ2 = σ 2
1. Show

that
√

n − 1
(
Xn − µ

)
/sn

d−→ N (0, 1).



3
Multivariate Distributions and the
Linear Model

3.1 Introduction

In this chapter, the multivariate normal distribution, the estimation of its parameters, and
the algebra of expectations for vector- and matrix-valued random variables are reviewed.
Distributions commonly encountered in multivariate data analysis, the linear model, and
the evaluation of multivariate normality and covariance matrices are also reviewed. Finally,
tests of locations for one and two groups are discussed. The purpose of this chapter is to
familiarize students with multivariate sampling theory, evaluating model assumptions, and
analyzing multivariate data for one- and two-group inference problems.

The results in this chapter will again be presented without proof. Numerous texts at vary-
ing levels of difficulty have been written that discuss the theory of multivariate data analy-
sis. In particular, books by Anderson (1984), Bilodeau and Brenner (1999), Jobson (1991,
1992), Muirhead (1982), Seber (1984), Srivastava and Khatri (1979), Rencher (1995) and
Rencher (1998) may be consulted, among others.

3.2 Random Vectors and Matrices

Multivariate data analysis is concerned with the systematic study of p random variables
Y′ = [Y1,Y2, ..., Yp]. The expected value of the random p × 1 vector is defined as the
vector of expectations

E (Y) =


E (Y1)

E (Y2)
...

E
(
Yp

)

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More generally, if Yn×p =
[
Yi j

]
is a matrix of random variables, then the E (Y) is

the matrix of expectations with elements [E(Yi j )]. For constant matrices A,B, and C, the
following operation for expectations of matrices is true

E
(
AYn×pB+ C

) = AE
(
Yn×p

)
B+ C (3.2.1)

For a random vector Y′ = [Y1, Y2, . . . ,Yp], the mean vector is

µ = E (Y) =


µ1
µ2
...

µp


The covariance matrix of a random vector Y is defined as the p × p matrix

cov (Y) = E
{
[Y− E (Y)] [Y− E (Y)]′

}
= E

{
[Y− µ] [Y− µ]′

}

=


σ 11 σ 12 · · · σ 1p

σ 21 σ 22 · · · σ 2p
...

...
...

σ p1 σ p2 · · · σ pp

 = �

where
σ i j = cov

(
Yi , Y j

) = E
{[

Yi − µi
] [

Y j − µ j
]}

and σ i i = σ 2
i = E[(Yi − µi )

2] = var Yi . Hence, the diagonal elements of � must be non-
negative. Furthermore, � is symmetric so that covariance matrices are nonnegative definite
matrices. If the covariance matrix of a random vector Y is not positive definite, the com-
ponents Yi of Y are linearly related and the |�| = 0. The multivariate analogue of the
variance σ 2 is the covariance matrix �. Wilks (1932) called the determinant of the covari-
ance matrix, |�|, the generalized variance of a multivariate normal distribution. Because
the determinant of the covariance matrix is related to the product of the roots of the charac-
teristic equation |�−λI|, even though the elements of the covariance matrix may be large,
the generalized variance may be close to zero. Just let the covariance matrix be a diagonal
matrix where all diagonal elements are large and one variance is nearly zero. Thus, a small
value for the generalized variance does not necessary imply that all the elements in the
covariance matrix are small. Dividing the determinant of � by the product of the variances

for each of the p variables, we have the bounded measure 0 ≤ (|�|/∏p
i=1 σ i i

)2 ≤ 1.

Theorem 3.2.1 A p × p matrix � is a covariance matrix if and only if it is nonnegative
definite (n.n.d.).

Multiplying a random vector Y by a constant matrix A and adding a constant vector c,
the covariance of the linear transformation z = AY+ c is seen to be

cov (z) = A�A′ (3.2.2)
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since the cov (c) = 0. For the linear combination z = a′Y and a constant vector a, the
cov

(
a′Y

) = a′�a.
Extending (3.2.2) to two random vectors X and Y, the

cov(X,Y) = E{[Y− µY ][X− µX]′} = �XY (3.2.3)

Properties of the cov (·) operator are given in Theorem 3.2.2.

Theorem 3.2.2 For random vectors X and Y, scalar matrices A and B, and scalar vec-
tors a and b, the

1. cov
(
a′X,b′Y

) = a′�XY b

2. cov (X,Y) = cov (Y,X)

3. cov(a+ AX,b+ BY) = A cov(X,Y)B′

The zero-order Pearson correlation between two random variables Yi and Y j is given by

ρi j =
σ i j

σ iσ j
= cov

(
Yi , Y j

)√
var (Yi ) var

(
Y j

) where −1 ≤ ρi j ≤ 1

The correlation matrix for the random p-vector Y is

P = [
ρi j

]
(3.2.4)

Letting (diag�)−1/2 represent the diagonal matrix with diagonal elements equal to the
square root of the diagonal elements of �, the relationship between P and � is established

P = (diag�)−1/2 � (diag�)−1/2

� = (diag�)1/2 P (diag�)1/2

Because the correlation matrix does not depend on the scale of the random variables,
it is used to express relationships among random variables measured on different scales.
Furthermore, since the |�| = | (diag�)1/2 P (diag�)1/2 | we have that 0 ≤ |P|2 ≤ 1.
Takeuchi, et al. (1982, p. 246) call the |P| the generalized alienation coefficient. If the
elements of Y are independent its value is one and if elements are dependent it value
is zero. Thus, the determinant of the correlation matrix may be interpreted as an overall
measure of association or nonassociation.

Partitioning a random p-vector into two subvectors: Y = [Y′1,Y′2]′, the covariance ma-
trix of the partitioned vector is

cov (Y) =
 cov (Y1,Y1) cov (Y1,Y2)

cov (Y2,Y1) cov (Y2,Y2)

 =
 �11 �12

�21 �22


where �i j = cov(Yi ,Y j ). To evaluate whether Y1 and Y2 are uncorrelated, the following
theorem is used.
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Theorem 3.2.3 The random vectors Y1 and Y2 are uncorrelated if and only if �12 = 0.

The individual components of Yi are uncorrelated if and only if �i i is a diagonal matrix.
If Yi has cumulative distribution function (c.d. f ), FYi (yi ), with mean µi and covariance
matrix �i i , we write Yi ∼

(
µi , �i i

)
.

Definition 3.2.1 Two (absolutely) continuous random vectors Y1 and Y2 are (statistically)
independent if the probability density function of Y = [Y′1,Y′2]′ is obtained from the prod-
uct of the marginal densities of Y1 and Y2:

fY (y) = fY1 (y1) fY2 (y2)

The probability density function or the joint density of Y is obtained from FY(y) using
the fundamental theorem of calculus. If Y1 and Y2 are independent, then the cov(Y1,Y2) =
0. However, the converse is not in general true.

In Chapter 2, we defined the Mahalanobis distance for a random variable. It was an
“adjusted” Euclidean distance which represented statistical closeness in the metric of 1/σ 2

or
(
σ 2

)−1
. With the first two moments of a random vector defined, suppose we want to

calculate the distance between Y and µ. Generalizing (2.3.5), the Mahalanobis distance
between Y and µ in the metric of � is

D�(Y,µ) = [(Y− µ)′�−1(Y− µ)]1/2 (3.2.5)

If Y ∼ (µ1, �) and X ∼ (µ2, �), then the Mahalanobis distance between Y and X, in the
metric of �, is the square root of

D2
�(X,Y) = (X− Y)′�−1(X− Y)

which is invariant under linear transformations zX= AX + a and zY = AY+ b. The co-
variance matrix � of X and Y becomes � = A�A′ under the transformations so that
D2

�(X,Y) = z′X�zY = D2
�(zX, zY).

The Mahalanobis distances, D, arise in a natural manner when investigating the sep-
aration between two or more multivariate populations, the topic of discriminant analysis
discussed in Chapter 7. It is also used to assess multivariate normality.

Having defined the mean and covariance matrix for a random vector Yp×1 and the first
two moments of a random vector, we extend the classical measures of skewness and kurto-
sis, E[(Y − µ)3]/σ 3 = µ′3/σ 3 and E[(Y − µ)4]/σ 4 = µ′4/σ 4 of a univariate variable Y ,
respectively, to the multivariate case. Following Mardia (1970), multivariate skewness and
kurtosis measures for a random p-variate vector Yp ∼ (µ, �) are, respectively, defined as

β1, p = E
{
(Y− µ)′�−1 (X− µ)}3 (3.2.6)

β2, p = E
{
(Y− µ)′�−1 (Y− µ)}2 (3.2.7)

where Yp and Xp are identically and independent identically distributed (i.i.d.). Because
β1,p and β2,p have the same form as Mahalanobis’ distance, they are also seen to be in-
variant under linear transformations.
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The multivariate measures of skewness and kurtosis are natural generalizations of the
univariate measures √

β1 =
√
β1,1 = µ′3/σ 3 (3.2.8)

and
β2 = β2, 1 = µ′4/σ 4 (3.2.9)

For a univariate normal random variable, γ 1 =
√
β1 = 0 and γ 2 = β2 − 3 = 0.

Exercises 3.2

1. Prove Theorems 3.2.2 and 3.2.3.

2. For Y ∼ N (µ,�) and constant matrices A and B, prove the following results for
quadratic forms.

(a) E(Y′AY) = tr(A�)+ µ′Aµ
(b) cov

(
Y′AY

) = 3 tr (A�)2 + 4µ′A�Aµ

(c) cov
(
Y′AY,Y′BY

) = 2 tr (A�B�)+ 4µ′A�Bµ[
Hint : E

(
YY′

) = � + µµ′, and the tr
(
AYY′

) = Y′AY.
]

3. For X ∼ (µ1, �) and Y ∼ (µ2, �) ,whereµ′1 = [1, 1],µ′2 = [0, 0] and � =[
2 1
1 2

]
, find D2 (X,Y) .

4. Graph contours for ellipsoids of the form (Y − µ)′�−1(Y − µ) = c2 whereµ′ =
[2, 2] and � =

[
2 1
1 2

]
.

5. For the equicorrelation matrix P = (1 − ρ)I + ρ11′ and −(p − 1)−1 < ρ < 1 for
p ≥ 2, show that the Mahalanobis squared distance between µ′1 = [α, 0′] and µ′2 =
0 in the metric of P is

D2 (µ1,µ2) = α

{
1+ (p − 2) ρ

(1− ρ) [1+ (p − 1) ρ]

}
[
Hint: P−1 = (1− ρ)−1 {I− ρ [1+ (p − 1) ρ]−1 11′

}
.
]

6. Show that β2,p may be written as β2,p = tr[{D′p(�−1 ⊗�−1)Dp}�] + p where Dp

is a duplication matrix in that Dp vech(A) = vec(A) and � = cov[vech{(Y−µ)(Y−
µ)′}].

7. We noted that the |P|2 may be used as an overall measure of multivariate association,
construct a measure of overall multivariate association using the functions ||P||2,and
the tr(P)?
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3.3 The Multivariate Normal (MVN) Distribution

Derivation of the joint density function for the multivariate normal is complex since it
involves calculus and moment-generating functions or a knowledge of characteristic func-
tions which are beyond the scope of this text. To motivate its derivation, recall that a ran-
dom variable Yi has a normal distribution with mean µi and variance σ 2, written Yi ∼
N (µi , σ

2), if the density function of Yi has the form

fYi (yi ) = 1

σ
√

2π
exp

{− (
yi − µi

)2
/2σ 2} −∞ < yi <∞ (3.3.1)

Letting Y′ = [Y1,Y2, . . . ,Yp] where each Yi is independent normal with mean µi and
variance σ 2, we have from Definition 3.2.1, that the joint density of Y is

fY (y) =
p∏

i=1

fYi (yi )

=
p∏

i=1

1

σ
√

2π
exp

{− (
yi − µi

)2
/2σ 2}

= (2π)−p/2
(

1

σ p

)
exp

{− p∑
i=1

(
yi − µi

)2
/2σ 2}

= (2π)−p/2
∣∣∣(σ 2Ip

)∣∣∣−1/2
exp

{− (y− µ)′
(
σ 2Ip

)−1
(y− µ) /2

}
This is the joint density function of an independent multivariate normal distribution, written
as Y ∼ Np(µ, σ

2I), where the mean vector and covariance matrix are

E (Y) = µ =


µ1
µ2
...

µp

 , and cov (Y) =


σ 2 0 · · · 0
0 σ 2 · · · 0
...

...
...

0 0 · · · σ 2

 = σ 2Ip,

respectively.
More generally, replacing σ 2Ip with a positive definite covariance matrix �, a general-

ization of the independent multivariate normal density to the multivariate normal (MVN)
distribution is established

f (y) = (2π)−p/2 |�|−1/2 exp
{− (y− µ)′�−1 (y− µ) /2

} −∞ < yi <∞
(3.3.2)

This leads to the following theorem.

Theorem 3.3.1 A random p-vector Y is said to have a p-variate normal or multivari-
ate normal (MVN) distribution with mean µ and p.d. covariance matrix � written Y ∼
Np (µ, �) , if it has the joint density function given in (3.3.2). If � is not p.d., the density
function of Y does not exist and Y is said to have a singular multivariate normal distribu-
tion.
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If Y ∼ Np (µ, �) independent of X ∼ Np (µ, �) then multivariate skewness and kur-
tosis become β1,p = 0 andβ2,p = p (p + 2). Multivariate kurtosis is sometimes defined
as γ = β2,p − p (p + 2) to also make its value zero. When comparing a general spherical
symmetrical distribution to a MVN distribution, the multivariate kurtosis index is defined
as ξ = β2,p/p (p + 2). The class of distributions that maintain spherical symmetry are
called elliptical distributions. An overview of these distributions may be found in Bilodeau
and Brenner (1999, Chapter 13).

Observe that the joint density of the MVN distribution is constant whenever the quadratic
form in the exponent is constant. The constant density ellipsoid (Y− µ)′�−1 (Y− µ) = c
has center at µ while � determines its shape and orientation. In the bivariate case,

Y =
[

Y1
Y2

]
,µ =

[
µ1
µ2

]
, � =

[
σ 11 σ 12
σ 21 σ 22

]
=

[
σ 2

1 ρσ 1σ 2

ρσ 1σ 2 σ 2
2

]
For the MVN to be nonsingular, we need σ 2

1 > 0, σ 2
2 > 0 and the |�| = σ 2

1σ
2
2

(
1− ρ2

)
>

0 so that −1 < ρ < 1. Then

�−1 = 1

1− ρ2

 1
σ 2

1

−ρ
σ 1σ 2

−ρ
σ 1σ 2

1
σ 2

2


and the joint probability density of Y yields the bivariate normal density

f (y) =
exp

{
−1

2(1−ρ2)

[(
y1−µ1
σ 1

)2 − 2ρ
(

y1−µ1
σ 1

) (
y2−µ2
σ 2

)
+

(
y2−µ2
σ 2

)2
]}

2πσ 1σ 2
(
1− ρ2

)1/2

Letting Zi =
(
Yi − µi

)
/σ i (i = 1, 2), the joint bivariate normal becomes the standard

bivariate normal

f (z) =
exp −1

2(1−ρ2)

(
z2

1 − 2ρz1z2 + z2
2

)
2π

(
1− ρ2

)1/2
−∞ < zi <∞

The exponent in the standard bivariate normal distribution is a quadratic form

Q = [z1, z2]′ �−1
[

z1
z2

]
= z2

1 − 2ρz1z2 + z2
2

1− ρ2
> 0

where

�−1 = 1

1− ρ2

[
1 −ρ
−ρ 1

]
and � =

[
1 ρ

ρ 1

]
which generates concentric ellipses about the origin. Setting ρ = 1/2, the ellipses have the
form Q = z2

1 − z1z2 + z2
2 for Q > 0. Graphing this function in the plane with axes z1 and

z2 for Q = 1 yields the constant density ellipse with semi-major axis a and semi-minor
axis b, Figure 3.3.1.
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[−(1/3)1/2, (1/3)1/2]

x2

z2

b

a

x1

(1, 1)

z1

FIGURE 3.3.1. z′�−1z = z2
1 − z1z2 + z2

2 = 1

Performing an orthogonal rotation of x = P′z, the quadratic form for the exponent of the
standard MVN becomes

z′�−1z = λ∗1x2
1 + λ∗2x2

2 =
1

λ2
x2

1 +
1

λ1
x 2

2

where λ1 = 1 + ρ = 3/2 and λ2 = 1 − ρ = 1/2 are the roots of |� − λI| = 0 and
λ∗2 = 1/λ1 and λ∗1 = 1/λ2 are the roots of | �−1 − λ∗I = 0. From analytic geometry, the
equation of an ellipse, for Q = 1, is given by(

1

b

)2

x2
1 +

(
1

a

)2

x2
2 = 1

Hence a2 = λ1 and b2 = λ2 so that each half-axis is proportional to the inverse of the
squared lengths of the eigenvalues of �. As Q varies, concentric ellipsoids are generated
so that a = √Qλ1 and b = √Qλ2.

a. Properties of the Multivariate Normal Distribution

The multivariate normal distribution is important in the study of multivariate analysis be-
cause numerous population phenomena may be approximated by the distribution and the
distribution has very nice properties. In large samples the distributions of multivariate pa-
rameter estimators tend to multivariate normality.

Some important properties of a random vector Y having a MVN distribution follow.

Theorem 3.3.2 Properties of normally distributed random variables.

1. Linear combinations of the elements of Y ∼ N [µ, �] are normally distributed. For
a constant vector a �= 0 and X = a′Y, then X ∼ N1

(
a′µ,a′�a

)
.

2. The normal distribution of Yp ∼ Np [µ, �] is invariant to linear transformations.
For a constant matrix Aq×p and vector bq×1,X = AYp + b ∼ Nq(Aµ+ b,A�A′).
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3. Partitioning Y = [Y′1,Y′2]′,µ =
[

µ1
µ2

]
and � =

[
�11 �12
�21 �22

]
, the subvec-

tors of Y are normally distributed. Y1 ∼ Np1

[
µ1, �11

]
and Y2 ∼ Np2

[
µ2, �22

]
where p1+ p2 = p. More generally, all marginal distributions for any subset of ran-
dom variables are normally distributed. However, the converse is not true, marginal
normality does not imply multivariate normality.

4. The random subvectors Y1 and Y2 of Y = [Y′1,Y′2]′ are independent if and only if
� = diag[�11, �22] . Thus, uncorrelated normal subvectors are independent under
multivariate normality.

5. The conditional distribution of Y1 | Y2 is normally distributed,

Y1 | Y2 ∼ Np1

[
µ1 +�12�

−1
22 (y2 − µ1) ,�11 −�12�

−1
22 �21

]
Writing the mean of the conditional normal distribution as

µ = (µ1 −�12�
−1
22 µ2)+�12�

−1
22 y2

= µ0 + B′1y2

µ is called the regression function of Y1 on Y2 = y2 with regression coefficients B′1.
The matrix �11.2 = �11 − �12�

−1
22 �21 is called the partial covariance matrix with

elements σ i j. p1+1,..., p1+ p2 . A similar result holds for Y2 | Y1.

6. Letting Y1 = Y, a single random variable and letting the random vector Y2 = X,
a random vector of independent variables, the population coefficient of determina-
tion or population squared multiple correlation coefficient is defined as the maximum
correlation between Y and linear functions β ′X. The population coefficient of deter-
mination or the squared population multiple correlation coefficient is

ρ2
Y X = σ ′Y X�

−1
XXσXY /σ Y Y

If the random vector Z = (Y,X′)′ follows a multivariate normal distribution, the
population coefficient of determination is the square of the zero-order correlation
between the random variable Y and the population predicted value of Y which we
see from (5) has the form Ŷ = µY + σ ′Y X�

−1
XX(x− µX).

7. For X = �−1/2 (Y− µ) where �−1/2is the symmetric positive definite square root
of �−1 then X ∼Np (0, I) or Xi ∼ I N (0, 1).

8. If Y1 and Y2 are independent multivariate normal random vectors, then the sum
Y1 + Y2 ∼ N (µ1 + µ2, �11 + �22). More generally, if Yi ∼ I Np(µi , �i ) and
a1, a2, ..., an are fixed constants, then the sum of n p-variate vectors

n∑
i=1

ai Yi ∼ Np

[
n∑

i=1

aiµi ,

n∑
i=1

a2
i �i

]
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From property (7), we have the following theorem.

Theorem 3.3.3 If Y1,Y2, . . . ,Yn are independent MVN random vectors with common
mean µ and covariance matrix �, then Y =∑n

i=1 Yi/n is MVN with mean µ and covari-
ance matrix �/n,Y ∼ Np(µ, �/n).

b. Estimating µ and �

From Theorem 3.3.3, observe that for a random sample from a normal population that Y
is an unbiased and consistent estimator of µ, written as µ̂ = Y. Having estimated µ, the
p × p sample covariance matrix is

S =
n∑

i=1

(yi − y) (yi − y)′ / (n − 1)

=
n∑

i=1

[(yi − µ)− (y− µ)] [(yi − µ)− (y− µ)]′ / (n − 1)

=
[

n∑
i=1

(yi − µ) (yi − µ)′ + n
(
yi − µ

) (
yi − µ

)′]
/ (n − 1) (3.3.3)

where E(S) = � so that S is an unbiased estimator of �. Representing the sample as a
matrix Yn×p so that

Y =


y′1
y′2
...

y′n


S may be written as

(n − 1) S = Y′
[
In − 1n

(
1′n1n

)−1 1′n
]

Y

= Y′Y− nyy′ (3.3.4)

where In is the identity matrix and 1n is a vector of n 1s. While the matrix S is an unbiased
estimator, a biased estimator, called the maximum likelihood estimator under normality is
�̂ = (n−1)

n S =∑n
i=1(yi −y)(yi −y)′/n = E/n. The matrix E is called the sum of squares

and cross-products matrix, SSCP and the |S| is the sample estimate of the generalized
variance.

In Theorem 3.3.3, we assumed that the observations Yi represent a sample from a normal
distribution. More generally, suppose Yi ∼ (µ, �) is an independent sample from any
distribution with mean µ and covariance matrix �. Theorem 3.3.4 is a multivariate version
of the Central Limit Theorem (CLT).



3.3 The Multivariate Normal (MVN) Distribution 89

Theorem 3.3.4 Let {Yi }∞i=1 be a sequence of random p-vectors with finite mean µ and
covariance matrix �. Then

n1/2(Y− µ) = n−1/2
n∑

i=1

(Yi − µ) d−→ Np(0, �)

Theorem 3.3.4 is used to show that S is a consistent estimator of �. To obtain the distri-
bution of a random matrix Yn×p, the vec (·) operator is used. Assuming a random sample
of n p-vectors Yi ∼ (µ, �), consider the random matrix Xi = (Yi − µ)(Yi − µ)′. By
Theorem 3.3.4,

n−1/2
n∑

i=1

[vec(Xi )− vec (�)]
d−→ Np2 (0,�)

where

� = cov[vec(Xi )]

and

n−1/2 (y− µ) d−→ Np (0, �)

so that

n−1/2[vec(E)− n vec(�)] d−→ Np2(0,�).

Because S = (n − 1)−1E and the replacement of n by n − 1 does not effect the limiting
distribution, we have the following theorem.

Theorem 3.3.5 Let {Yi }∞i=1 be a sequence of independent and identically distributed p×1
vectors with finite fourth moments and mean µ and covariance matrix �. Then

(n − 1)−1/2 vec(S−�)
d−→ Np2(0,�)

Theorem 3.3.5 can be used to show that S is a consistent estimate of �, S
p−→ � since

S − � = Op(n − 1)1/2 = op(1). The asymptotic normal distribution in Theorem 3.3.5 is
singular because �p2×p2 is singular. To illustrate the structure of � under normality, we
consider the bivariate case.
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Example 3.3.1 Let Y ∼ N2(µ, �). Then

� =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (� ⊗�)

=


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




σ 11σ 11 σ 11σ 12 σ 12σ 11 σ 12σ 12
σ 11σ 21 σ 11σ 22 σ 12σ 21 σ 12σ 22
σ 21σ 11 σ 21σ 12 σ 22σ 11 σ 22σ 12
σ 21σ 21 σ 21σ 22 σ 22σ 21 σ 22σ 22



=


σ 11σ 11 + σ 11σ 11
σ 11σ 21 + σ 21σ 11
σ 11σ 21 + σ 21σ 11
σ 21σ 21 + σ 21σ 21

· · ·
· · ·
· · ·
· · ·

σ 12σ 12 + σ 12σ 12
σ 12σ 22 + σ 22σ 12
σ 12σ 22 + σ 22σ 12
σ 22σ 22 + σ 22σ 22


= [

σ ikσ jm + σ imσ jk
]

(3.3.5)

See Magnus and Neudecker (1979, 1999) or Muirhead (1982, p. 90).

Because the elements of S are duplicative, the asymptotic distribution of the elements of
s = vech(S) are also MVN. Indeed,√

(n − 1) (s− σ ) d−→ N (0, �)

where σ = vech(�) and � = cov
[
vech (Y− µ) (Y− µ)′]. Or,√

(n − 1)�−1/2 (s− σ ) d−→ N
(
0, Ip∗

)
where p∗ = p(p + 1)/2. While the matrix � in (3.3.5) is not of full rank, the matrix � is
of full rank. Using the duplication matrix in Exercise 3.2, problem 6, the general form of
� under multivariate normality is � = 2D+p (� ⊗ �)D+p for D+p = (D′pDp)

−1D′p, Schott
(1997, p. 285, Th. 7.38).

c. The Matrix Normal Distribution

If we write that a random matrix Yn×p is normally distributed, we say Y has a ma-
trix normal distribution written as Y ∼ Nn, p(M, V ⊗ W) where Vp×p and Wn×n are
positive definite matrices, E(Y) = M and the cov(Y) = V⊗W. To illustrate, suppose
y = vec(Y) ∼ Nnp(β,� = � ⊗ In), then the density of y is

(2π)np/2 |�|−1/2 exp

{
−1

2
(y− β)′�−1(y− β)

}



3.3 The Multivariate Normal (MVN) Distribution 91

However, |�|−1/2 = ∣∣�p ⊗ In
∣∣−1/2 = |�|−n/2 using the identity |Am ⊗ Bn| = |A|n |B|m .

Next, recall that vec(ABC) = (C′ ⊗ A) vec(B) and that the tr(A′B) = (vec A)′ vec B. For
β = vec (M), we have that

(y− β)′�−1 (y− β) = [vec (Y−M)]′
[
(� ⊗ In)

−1
]

vec (Y−M)

= tr
[
�−1 (Y−M)′ (Y−M)

]
This motivates the following definition for the distribution of a random normal matrix Y
where � is the covariance matrix among the columns of Y and W is the covariance matrix
among the rows of Y.

Definition 3.3.1 The data matrix Yn×p has a matrix normal distribution with parameters
M and covariance matrix � ⊗W. The multivariate density of Y is

(2π)−np/2 |�|−n/2 |W|−p/2 etr

[
−1

2
�−1 (Y−M)′W−1 (Y−M)

]
Y ∼ Nn, p (M, � ⊗W) or vec (Y) ∼ Nnp (vec M, � ⊗W).

As a simple illustration of Definition 3.3.1, consider y = vec(Y′). Then the distribution
of y is

(2π)−np/2
∣∣In ⊗�p

∣∣−1/2 exp

[
−1

2
(y−m)′

∣∣In ⊗�p
∣∣−1

(y−m)

]
(2π)−np/2 |�|−n/2 etr

[
−1

2
�−1 (Y−M)′ (Y−M)

]
where E(Y) = M and m = vec(M′). Thus Y′ ∼ Nn, p(M′, In ⊗ �). Letting Y1,Y2,

. . . ,Yn ∼ I Np (µ, �) ,

E (Y) =


µ′
µ′
...

µ′

 = 1n µ
′ =M

so that the density of Y′ is

(2π)−np/2 |�|−n/2 etr

[
−1

2
�−1 (Y− 1µ′

)′ (Y− 1µ′
)]

More generally, suppose
E(Y) = XB

where Xn×q is a known “design” matrix and Bq×p is an unknown matrix of parameters.
The matrix normal distribution of Y′ is

(2π)−np/2 |�|−n/2 etr

[
−1

2
�−1 (Y− XB)′ (Y− XB)

]
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or

(2π)−np/2 |�|−n/2 etr

[
−1

2
(Y− XB)�−1 (Y− XB)′

]
The expression for the covariance structure of Yn×p depends on whether one is consid-

ering the structure of y = vec (Y) or y∗ = vec
(
Y′

)
. Under independence and identically

distributed (i.i.d.) observations, the cov (y) = �p ⊗ In and the cov (y∗) = In ⊗�p. In the
literature, the definition of a matrix normal distribution may differ depending on the “ori-
entation” of Y. If the cov (y) = �⊗W or the cov (y∗) =W⊗� the data has a dependency
structure where W is a structure among the rows of Y and � is the structure of the columns
of Y.

Exercises 3.3

1. Suppose Y ∼ N4(µ, �), where

µ =


1
2
3
4

 and � =


3 1 0 0
1 4 0 0
0 0 1 4
0 0 2 0


(a) Find the joint distribution of Y1 and Y2 and of Y3 and Y4.

(b) Determine ρ12 and ρ24.

(c) Find the length of the semimajor axis of the ellipse association with this MVN
variable Y and a construct Q = 100.

2. Determine the MVN density associated with the quadratic form

Q = 2y2
1 + y2

2 + 3y2
3 + 2y1 y2 + 2y1 y3

3. For the bivariate normal distribution, graph the ellipse of the exponent for µ1 =
µ2 =0, σ 2

1 + σ 2
2 = 1, and Q = 2 and ρ = 0, .5, and .9.

4. The matrix of partial correlations has as elements

ρi j.p+1,... ,p+q =
σ i j.p+1,... ,p+q√

σ i i.p+1,... ,p+q
√
σ j j.p+1,... ,p+q

(a) For Y =
[

Y1
Y2

]
and Y3 = y3, find ρ12.3.

(b) For Y1 = Y1 and Y2 =
[

Y2
Y3

]
show that σ 2

1.2 = σ 2
1 − σ ′12�

−1
22 σ 21 =

|�| / |�22|.
(c) The maximum correlation between Y1 ≡ Y and the linear combination β1Y2 +

β2Y3 ≡ β ′X is called the multiple correlation coefficient and represented as
ρ0(12). Show that σ 2

1.2 = σ 2
1(1 − ρ2

0(12)) and assuming that the variables are

jointly multivariate normal, derive the expression for ρ2
0(12) = ρ2

Y X.
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5. For the p2× p2 commutation matrix K =∑
i j �i j⊗�′i j where �i j is a p× p matrix

of zeros with only δi j = 1 and Y ∼ Np(µ, �), show that

cov
{
vec (Y− µ) (Y− µ)′} = (

Ip2 +K
)
(� ⊗�)

(
Ip2 +K

)
= (

Ip2 +K
)
(� ⊗�)

since
(
Ip2 +K

)
is idempotent.

6. If Y ∼ Nn,p[XB, � ⊗ In], B̂ = (
X′X

)−1 X′Y, and �̂ = (Y− XB̂)′(Y− XB̂)/n.
Find the distribution of B̂.

7. If Yp ∼ Np [µ,�] and one obtains a Cholesky factorization of � = LL′, what is
the distribution of X = LY?

3.4 The Chi-Square and Wishart Distributions

The chi-square distribution is obtained from a sum of squares of independent normal zero-
one, N (0, 1), random variables and is fundamental to the study of the analysis of variance
methods. In this section, we review the chi-square distribution and generalize several re-
sults, in an intuitive manner, to its multivariate analogue known as the Wishart distribution.

a. Chi-Square Distribution

Recall that if Y1,Y2, . . . ,Yn are independent normal random variables with mean µi = 0
and variance σ 2 = 1,Yi ∼ I N (0, 1), or, employing vector notation Y ∼ Nn(0, I), then

Q = Y′Y =∑n
i=1 Y 2

i ∼ χ2 (n) 0 < Q <∞
Q = Y′Y has a central χ2 distribution with n degrees of freedom. Letting Yi ∼ I N (µi , σ

2),
results in the noncentral chi-square distribution.

Definition 3.4.1 If the random n-vector Y ∼ Nn(µ, σ
2I), then Y′Y/σ 2 has a noncentral

χ2 distribution with n degrees of freedom and noncentrality parameter γ = µ′µ/σ 2.

For µ = 0, the noncentral chi-square distribution reduces to a central chi-square distri-
bution. For Y ∼ Nn (µ, I) , then Y′Y ∼ χ2(n, γ ) with γ = µ′µ so that γ = ‖µ‖2 is a
norm squared. The further µ is from zero, the larger the noncentrality parameter γ or the
norm squared of µ . Because Y′Y in Definition 3.4.1 is a special case of the quadratic form
Y′AY, with A = I and since I2 = I, we have the following more general result.

Theorem 3.4.1 Let Y ∼ Nn
(
µ, σ 2I

)
and A be a symmetric matrix of rank r . Then we

have Y′AY/σ 2 ∼ χ2 (r, γ ), where γ = µ′Aµ/σ 2, if and only if A = A2.

Example 3.4.1 As an example of Theorem 3.4.1, suppose Y ∼ Nn(µ, σ
2In). Then

(n − 1) s2

σ 2
=

∑n
i=1

(
Yi − Y

)2

σ 2
= Y′[I− 1

(
1′1

)−1 1]Y
σ 2

= Y′AY
σ 2
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However, A′ = A and A2 = A since A is a projection matrix and the r(A) = tr(A) = n−1.
Hence

(n − 1) s2

σ 2
∼ χ2 (n − 1, γ = 0)

since γ = E
(
Y′

)
AE(Y)/σ 2 = 0. Thus, (n − 1) s2 ∼ σ 2χ2(n − 1).

Theorem 3.4.2 generalizes Theorem 3.4.1 to a vector of dependent variables in a natural
manner by setting Y = FX and FF′ = �.

Theorem 3.4.2 If Y ∼ Np (µ, �). Then the quadratic form Y′AY ∼ χ2(r, γ ), where
γ = (

µ′Aµ
)

and the r(A) = r, if and only if A�A = A or A� is idempotent.

Example 3.4.2 An important application of Theorem 3.4.2 follows:
Let Y1,Y2, . . . ,Yn be n independent p-vectors from any distribution with mean µ and

nonsingular covariance matrix �. Then by the CLT,
√

n(Y − µ) d−→ Np(0,�). By The-

orem 3.4.2, T 2 = n(Y − µ)′�−1
(
Y− µ) = nD2 d−→ χ2 (p) for n − p large since

�−1��−1 = �. The distribution is exactly χ2 (p) if the sample is from a multivariate
normal distribution.

Thus, comparing nD2 with a χ2 critical value may be used to evaluate multivariate
normality. Furthermore, nD2 for known � may be used to test H0 : µ = µ0 vs. H1 : µ �=
µ0. The critical value of the test with significance level α is represented as

Pr[nD2 ≥ χ2
1−α (p) | H0] = α

where χ2
1−α is the upper 1 − α chi-square critical value. For µ �= µ0, the noncentrality

parameter is
γ = n

(
µ− µ0

)′
�−1 (µ− µ0

)
The above result is for a single quadratic form. More generally we have Cochran’s The-

orem.

Theorem 3.4.3 If Y ∼ Nn(µ, σ
2In) and Y′Y/σ 2 = ∑n

i=1 Y′Ai Y where r(Ai ) = r and∑n
i=1 Ai = In, then the quadratic forms Y′Ai Y/σ 2 ∼ χ2(ri , γ i ), where γ i = µ′Aiµ/σ

2

are statistically independent for all i if and only if
∑n

i=1 ri = n and
∑

i r (Ai ) = r
(∑

i Ai
)
.

Cochran’s Theorem is used to establish the independence of quadratic forms. The ra-
tios of independent quadratic forms normalized by their degrees of freedom are used to
test hypotheses regarding means. To illustrate Theorem 3.4.3, we show that Y and s2 are
statistically independent. Let Y ∼ Nn

(
µ1, σ 2I

)
and let P = 1(1′1)−11′ be the averaging

projection matrix. Then

Y′IY
σ 2
= Y′PY

σ 2
+ Y′ (I− P)Y

σ 2∑n
i=1 Y 2

i

σ 2
= nY

2

σ 2
+ (n − 1) s2

σ 2
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Since the r (I) = n = r (P)+r (I− P) = 1+(n−1), the quadratic forms are independent
by Theorem 3.4.3, or Y is independent of s2.

Example 3.4.3 Let Y ∼ N4(µ, σ
2 I )

A =


1 1 0
1 1 0
1 0 1
1 0 1

 = [A1 A2] and y =


y11
y12
y21
y22


where

A1 =


1
1
1
1

 and A2


1 0
1 0
0 1
0 1


In Example 2.6.2, projection matrices of the form

P1 = A1
(
A′1A1

)− A′1
P2 = A

(
A′A

)− A′ − A1
(
A′1A1

)− A′1
P3 = I− A

(
A′A

)− A′

were constructed to project the observation vector y onto orthogonal subspaces. The pro-
jection matrices were constructed such that I = P1+P2+P3 where Pi P j = 0 for i �= j and
each Pi is symmetric and idempotent so that the r (I) =∑

i r(Pi ). Forming an equation of
quadratic forms, we have that

y′y =
3∑

i=1

y′Pi y

or

‖y‖2 =
3∑

i=1

‖Pi y‖2

For P1,P2, and P3 given in Example 2.6.3, it is easily verified that

‖P1y‖2 = y′P1y = 42 y..

‖P2y‖2 = y′P2y =
∑

i

2 (yi. − y..)
2

‖P3y‖2 = y′P3y =
∑

i

∑
j

2
(
yi j − yi.

)2

Hence, the total sum of squares has the form

y′Iy =
∑

i

∑
j

y2
i j = 4y2

.. +
∑

i

2(yi. − y..)
2 +

∑
i

∑
j

(
yi j − yi.

)2
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or ∑
i

∑
j

(
yi j − y..

)2 =
∑

i

2(yi. − y..)
2 +

∑
i

∑
j

(
yi j − yi.

)2

“Total about the Mean” SS = Between SS +Within SS

where the degrees of freedom are the ranks of r(I − P1) = n − 1, r(P2) = I − 1, and
r(P3) = n − I for n = 4 and I = 2. By Theorem 3.4.3, the sum of squares (SS) are
independent and may be used to test hypotheses in analysis of variance, by forming ratios
of independent chi-square statistics.

b. The Wishart Distribution

We saw that the asymptotic distribution of S is MVN. To derive the distribution of S in
small samples, suppose Yi ∼ I Np(0, �). Then yi = vec(Yn×p) ∼ Nnp(0, � ⊗ In). Let
Q = Y′Y =∑n

i=1 Yi Y′i represent the SSCP matrix.

Definition 3.4.2 If Q = Y′Y and the matrix Y ∼ Nn, p(0, � ⊗ In). Then Q has a central
p-dimensional Wishart distribution with n degrees of freedom and covariance matrix �,

written as Q ∼ Wp(n,�).

For E(Y) = M and M �= 0,Q has a noncentral Wishart distribution with noncen-
trality parameter � = M′M�−1, written as Q ∼ Wp(n, �, �). More formally, Q ∼
Wp(n, �, � = M′M�−1) if and only if a′Q a/a′�a ∼χ2(n, a′M′Ma /a′Ma) for all non-
null vectors a. In addition E(Q) = n� + �� = n� +M′M and E(Y′AY) = tr(A)� +
M′AM for a symmetric matrix An×n . For a comprehensive treatment of the noncentral
Wishart distribution, see Muirhead (1982).

If Q ∼ Wp(n, �), then the distribution of Q−1 is called an inverted Wishart distribution.
That is Q−1 ∼ W−1

p (n + p + 1, �−1) and

E(Q−1) = �−1/(n − p − 1)

for n − p − 1 > 0. Or, if P ∼ W−1
p (n∗,V−1) then E(P) = V−1/(n∗ − 2p − 2).

The Wishart distribution is a multivariate extension of the chi-square distribution and
arises in the derivation of the distribution of the sample covariance matrix S. For a random
sample of n p-vectors, Yi ∼ Np(µ, �) for i = 1, . . . , n and n ≥ p,

(n − 1)S =
n∑

i=1

(Y′i − Y)(Yi − Y)′ ∼ Wp(n − 1, �) (3.4.1)

or
S ∼ Wp[n − 1, �/(n − 1)]

so that S has a central Wishart distribution. Result (3.4.1) follows from the multivariate
extension of Theorem 3.4.1. Furthermore, if Aq×p is a matrix of constants where the
r(A) = r ≥ p, then(n−1)ASA′ ∼ Wq(n−1, A�A′). If FF′ = � so that I = F−1�(F′)−1
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then I = F′�F. Hence, letting A = F′ we have that (n − 1)F′SF ∼ Wp(n − 1, I). Parti-
tioning the matrix Q ∼ Wp(n, �) where

Q =
[

Q11 Q12
Q21 Q22

]
, (n − 1)Q = S =

[
S11 S12
S21 S22

]
, and� =

[
�11 �12
�21 �22

]
we have the following result.

Theorem 3.4.4 For a p1 × p1 matrix Q11 and a p2 × p2 matrix Q22 where p1 + p2 = p,

1. Q11 ∼ Wp1 (n, �11) or (n − 1) S11 ∼ Wp1 [(n − 1) ,�11]

2. Q22 ∼ Wp2 (n, �22) or (n − 1) S22 ∼ Wp2 [(n − 1) ,�22]

3. If �12 = 0, then Q11 and Q22 are independent, or S11 and S22 are independent.

4. Q11.2 = Q11 − Q12Q−1
22 Q21 ∼ Wp, [n − p2 ∼ �11.2] where �11.2 = �11 −

�12�
−1
22 �21 or (n − 1)S11.2 ∼ Wp1 [n − p2, �11.2] and Q11.2 is independent of

Q22 or S11.2 and S22 are independently distributed. Similar results hold for Q22.1
and S22.1.

5. The conditional distribution of Q12 given Q22 follows a matrix multivariate normal

Q12 | Q22 ∼ Np1, p− p2

(
Q12Q−22Q21, �11.2 ⊗Q22

)
In multivariate analysis, the sum of independent Wishart distributions follows the same

rules as in the univariate case. Matrix quadratic forms are often used in multivariate mixed
models. Also important in multivariate analysis are the ratios of independently distributed
Wishart matrices or, more specifically, the determinant and trace of matrix products or
ratios which are functions of the eigenvalues of matrices. To construct distributions of roots
of Wishart matrices, independence needs to be established. The multivariate extension for
Cochran’s Theorem follows.

Theorem 3.4.5 If Yi ∼ I Np(µ, �) for i = 1, . . . , n and Y′Y = ∑k
i=1 Y′Pi Y where∑k

i=1 Pi = In, the forms Y′Pi Y ∼ Wp(ri , �, �i ) are statistically independent for all i if
and only if

∑k
i=1 ri = n. If ri < p, the Wishart density does not exist.

Example 3.4.4 Suppose Yi ∼ I Np(µ, �). Then Y′[I − 1
(
1′1

)−1 1′]Y ∼ Wp(n − 1, �,

� = 0) and Y′[1 (
1′1

)−1 1′]Y ∼ Wp(1, �, �2) are independent since

Y′Y = Y′[I− 1
(
1′1

)−1 1′]Y+ Y′[1 (
1′1

)−1 1′]Y
Y′Y = Y′P1Y+ Y′P2Y

Y′Y = (n − 1)S+ nYY
′

or
Wp(n, �, �) = Wp(n − 1, �, �1 = 0)+Wp(1, �, �2)

where � = �1 + �2 so that variance covariances matrix S and the vector of means Y are
independent. The matrices Pi are projection matrices.
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In Theorem 3.4.5, each row of Yn×p is assumed to be independent. More generally,
assume that y∗ = vec

(
Y′

)
has structure cov (y∗) = W �= I so that the observations are

no longer independent. Wong et al. (1991) provide necessary and sufficient conditions to
ensure that Y′Pi Y still follow a Wishart distribution. Necessary and sufficient conditions
for independence of the Wishart matrices is more complicated; see Young et al. (1999).

The |S|, the sample generalized variance of a normal random sample, is distributed as
quantity |�|/(n − 1)p times a product of independent chi-square variates

|S| ∼ |�|
(n − 1)p

p∏
i=1

χ2 (n − i) (3.4.2)

as shown by Muirhead (1982, p. 100). The sample mean and variance of the generalized
variance are

E (|S|) = |�|
p∏

i=1

[1− (i − 1)/(n − 1)] (3.4.3)

var|S|
= |�|2

p∏
i=1
[1− (i − 1)/(n − 1)]{ p∏

j=1
[1− ( j − 3)/(n − 1)] −

p∏
j=1
[1− ( j − 1)/(n − 1)]}

(3.4.4)

so that the E (|S|) < |�| for p > 1. Thus, the determinant of the sample covariance ma-
trix underestimates the determinant of the population covariance matrix. The asymptotic
distribution of the sample generalized variance is given by Anderson (1984, p. 262). The
distribution of the quantity

√
(n − 1)(|S|/|�| − 1) is asymptotically normally distributed

with mean zero and variance 2p. Distributions of the ratio of determinants of some matrices
are reviewed briefly in the next section.

In Example 3.3.1 we illustrated the form of the matrix cov {vec (S)} = � for the bivariate
case. More generally, the structure of � found in more advanced statistical texts is provided
in Theorem 3.4.6.

Theorem 3.4.6 If Yi ∼ I Np (µ, �) for i = 1, 2, . . . , n so that
(n − 1) S ∼Wp (n − 1, �). Then

� = cov (vec S) = 2P (� ⊗�)P/ (n − 1)

where P = (
Ip2 +K

)
/2 and K is a commutation matrix.

Exercises 3.4

1. If Y ∼ Np(µ, �), prove that (Y− µ)′�−1(Y− µ) ∼ χ2(p).

2. If Y ∼ Np(0, �), show that Y′AY = ∑p
j=1 λz2

j where the λ j are the roots of

|�1/2A�1/2 − λI| = 0, A = A′ and Zi ∼ N (0, 1).
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3. If Y ∼ Np(0,P) where P is a projection matrix, show that the ‖Y‖2 ∼ χ2(p).

4. Prove property (4) in Theorem 3.4.4.

5. Prove that E(S) = � and that the cov {vec(S)} = 2(Ip2+K)(�⊗�)/(n−1) where
K is a commutation matrix defined in Exercises 3.3, Problem 5.

6. What is the distribution of S−1? Show that E(S−1) = �−1(n − 1)/(n − p − 2) and
that E(�̂−1) = n�−1/(n − p − 1).

7. What is the mean and variance of the tr(S) under normality?

3.5 Other Multivariate Distributions

a. The Univariate t and F Distributions

When testing hypotheses, two distributions employed in univariate analysis are the t and
F distributions.

Definition 3.5.1 Let X and Y be independent random variables such that X ∼ N (µ, σ 2)

and Y ∼ χ2(n, γ ). Then t = X�
√

Y/n ∼ t (n, γ ),−∞ < t <∞.

The statistic t has a noncentral t distribution with n degrees of freedom and noncentral-
ity parameter γ = µ/σ . If µ = 0, the noncentral t distribution reduces to the central t
distribution known as Student’s t-distribution.

A distribution closely associated with the t distribution is R.A. Fisher’s F distribution.

Definition 3.5.2 Let H and E be independent random variables such that H ∼ χ2(vh, γ )

and E = χ2(ve, γ = 0). Then the noncentral F distribution with vh and ve degrees of
freedom, and noncentrality parameter γ is the ratio

F = H/vh

E/ve
∼ F(vh, ve, γ )0 ≤ F ≤ ∞

b. Hotelling’s T 2 Distribution

A multivariate extension of Student’s t distribution is Hotelling’s T 2 distribution.

Definition 3.5.3 Let Y and Q be independent random variables where Y ∼ Np(µ, �) and
Q ∼ Wp(n, �), and n > p. Then Hotelling’s T 2 (1931) statistic

T 2 = nY′Q−1Y

has a distribution proportional to a noncentral F distribution

n − p + 1

p

T 2

n
∼ F (p, n − p + 1, γ )

where γ = µ′�−1µ.
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The T 2 statistic occurs when testing hypotheses regarding means in one- and two-sample
multivariate normal populations discussed in Section 3.9.

Example 3.5.1 Let Y1,Y2, . . . ,Yn be a random sample from a MVN population, Yi ∼
I Np(µ, �). Then Y ∼ Np(µ, �/n) and (n− 1)S ∼ Wp(n− 1, �), and Y and S are inde-
pendent. Hence, for testing H0 : µ = µ0 vs. H1 : µ �= µ0, T 2 = n(Y−µ0)

′S−1
(
Y− µ0

)
or

n − p

p

T 2

n − 1
= n (n − p)

p (n − 1)

(
Y− µ0

)′
S−1 (Y− µ0

) ∼ F (p, n − p, γ )

where
γ = n(µ− µ0)

′�−1(µ− µ0)

is the noncentrality parameter. When H0 is true, the noncentrality parameter is zero and
T 2 has a central F distribution.

Example 3.5.2 Let Y1,Y2, . . . ,Yn1 ∼ I N (µ1, �) and X1,X2, . . . ,Xn2 ∼ I Np(µ2, �)

where Y =∑n1
i=1 Yi/n1 and X =∑n2

i=1 Xi/n2. An unbiased estimator of � in the pooled
covariance matrix

S = 1

n1 + n2 − 2

[ n1∑
i=1

(Yi − Y)(Yi − Y)′ +
n2∑

i=1

(Xi − X)(Xi − X)′
]

Furthermore, X, Y, and S are independent, and(
n1n2

n1 + n2

)1/2 (
Y− X

) ∼ Np

[(
n1n2

n1 + n2

)1/2

(µ1 − µ2) ,�

]

and
(n1 + n2 − 2)S ∼ Wp(n1 + n2 − 2, �)

Hence, to test H0 : µ1 = µ2 vs. H1 : µ1 �= µ2, the test statistic is

T 2 =
(

n1n2

n1 + n2

)
(Y− X)′S−1(Y− X)

=
(

n1n2

n1 + n2

)
D2

By Definition 3.5.3,

n1 + n2 − p − 1

p

T 2

n1 + n2 − 2
∼ F (p, n1 + n2 − p − 1, γ )

where the noncentrality parameter is

γ =
(

n1n2

n1 + n2

)
(µ1 − µ2)

′�−1 (µ1 − µ2)
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Example 3.5.3 Replacing Q by S in Definition 3.5.3, Hotelling’s T 2 statistic follows an
F distribution

(n − p) T 2/ (n − 1) p ∼ F (p, n − p, γ )

For γ = 0,

E(T 2) = (n − 1) p/ (n − p − 2)

var(T 2) = 2p (n − 1)2 (n − 2)

(n − p − 2)2 (n − p − 4)

By Theorem 3.4.2, T 2 d−→ χ2 (p) as n −→ ∞. However, for small values of n, the
distribution of T 2 is far from chi-square. If X2 ∼ χ2 (p), then E

(
X2

) = p and the

var
(
X2

) = 2p. Thus, if one has a statistic T 2 d−→ χ2 (p), a better approximation for
small to moderate sample sizes is the statistic

(n − p) T 2

(n − 1) p
.
∼ F (p, n − p, γ )

c. The Beta Distribution

A distribution closely associated with the F distribution is the beta distribution.

Definition 3.5.4 Let H and E be independent random variables such that H ∼ χ2(vh, γ )

and E ∼ χ2(ve, γ = 0). Then

B = H

H + E
∼ beta (vh/2, ve/2, γ )

has a noncentral (Type I) beta distribution and

V = H/E ∼ Inverted beta (vh/2, ve/2, γ )

has a (Type II) beta or inverted noncentral beta distribution.

From Definition 3.5.4,

B = H/(H + E) = vh F/ve

1+ vh F/ve

= H/E

1+ H/E
= V/(1+ V )

where veV/vh ∼ F(vh, ve, γ ). Furthermore, B = 1 + (1 + V )−1 so that the percentage
points of the beta distribution can be related to a monotonic decreasing function of F

1− B(a, b) = B ′(b, a) = (1+ 2aF(2a, 2b)/2b)−1

Thus, if t is a random variable such that t ∼ t (ve), then

1− B(1, ve) = B ′(ve, 1) = 1

1+ t2/ve
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so that large values of t2 correspond to small values of B ′.
To extend the beta distribution in the central multivariate case, we let H ∼ Wp(vh, �)

and E ∼ Wp(ve, �). Following the univariate example, we set

B = (E+H)−1/2 H (E+H)−1/2

V = E−1/2HE−1/2
(3.5.1)

where E−1/2 and (E+H)−1/2are the symmetric square root matrices of E−1 and (E+H)−1

in that E−1/2 E−1/2 = E−1 and (E+H)−1/2(E+H)−1/2 = (E+H)−1.

Definition 3.5.5 Let H ∼ Wp(vh, �) and E ∼ Wp(ve, �) be independent Wishart dis-
tributions where vh ≥ p and ve ≥ p. Then B in (3.5.1) follows a central p-variate
multivariate (Type I) beta distribution with vh/2 and ve/2 degrees of freedom, written
as B ∼ Bp(vh/2, ve/2). The matrix V in (3.5.1) follows a central p-variate multivari-
ate (Type II) beta or inverted beta distribution with vh/2 and ve/2 degrees of freedom,
sometimes called a matrix F density.

Again Ip −B ∼ Bp(ve/2, vh/2) as in the univariate case. An important function of B in
multivariate data analysis is

∣∣Ip − B
∣∣ due to Wilks (1932). The statistic

� = ∣∣Ip − B
∣∣ = |E|
|E+H| ∼ U (p, vh, ve) 0 ≤ � ≤ 1

is distributed as a product of independent beta random variables on (ve− i+1)/2 and vh/2
degrees of freedom for i = 1, . . . , p.

Because � is a ratio of determinants, by Theorem 2.6.8 we can relate � to the product
of roots

� =
s∏

i=1

(1− θ i ) =
s∏

i=1

(1+ λi )
−1 =

s∏
i=1

vi (3.5.2)

for i = 1, 2, . . . , s = min(vh, p) where θ i , λi and vi are the roots of |H− θ(E+H)| =
0, |H− λE| = 0, and |E− v(H+ E)| = 0, respectively.

One of the first approximations to the distribution of Wilks’ likelihood ratio criterion �

was developed by Bartlett (1947). Letting X2
B = −[ve − (p − vh + 1)/2] log �, Bartlett

showed that the statistic X2 converges to a chi-square distribution with degrees of freedom
v = pvh . Wall (1968) developed tables for the exact distribution of Wilks’ likelihood
ratio criterion using an infinite series approximation. Coelho (1998) obtained a closed form
solution. One of the most widely used approximations to the � criterion was developed by
Rao (1951, 1973a, p. 556). Rao approximated the distribution of � with an F distribution
as follows.

1−�1/d

�1/d

f d − 2λ

pvh
∼ F (pvh, f d − 2λ) (3.5.3)

f = ve − (p − vh + 1) /2

d2 = p2v2
h − 4

p2 + v2
h − 5

for p2 + v2
h − 5 > 0 or d = 1

λ = (pvh − 2) /4
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The approximation is exact for p or vh equal to 1 or 2 and accurate to three decimal places
if p2 + v2

h ≤ f /3; see Anderson (1984, p. 318).
Given (3.5.2) and Theorem 2.6.8, other multivariate test statistics are related to the dis-

tribution of the roots of the |B| or |H− θ(E+H)| = 0. In particular, the Bartlett (1939),
Lawley (1938), and Hotelling (1947, 1951) (BLH) trace criterion is

T 2
o = ve tr(HE−1)

= ve

s∑
i=1

θ i/ (1− θ i )

= ve

s∑
i=1

λi

= ve

s∑
i=1

(1− vi ) /vi (3.5.4)

The Bartlett (1939), Nanda (1950), Pillai (1955) (BNP) trace criterion is

V (s) = tr
[
H (E+H)−1

]
=

s∑
i=1

θ i =
s∑

i=1

(
λi

1+ λi

)
=

s∑
i=1

(1− vi ) (3.5.5)

The Roy (1953) maximum root criterion is

θ1 = λ1

1+ λ1
= 1− v1 (3.5.6)

Tables for these statistics were developed by Pillai (1960) and are reproduced in Kres
(1983). Relating the eigenvalues of the criteria to an asymptotic chi-square distribution,
Berndt and Savin (1977) established a hierarchical inequality among the test criteria devel-
oped by Bartlett-Nanda-Pillai (BNP), Wilks (W), and Bartlett-Lawley-Hotelling (BLH).
The inequality states that the BLH criterion has the largest value, followed by the W crite-
rion and the BNP criterion. The larger the roots, the larger the difference among the criteria.
Depending on the criterion selected, one may obtain conflicting results when testing linear
hypotheses. No criterion is uniformly best, most powerful against all alternatives. However,
the critical region for the statistic V (s) in (3.5.5) is locally best invariant. All the criteria may
be adequately approximated using the F distribution; see Pillai (1954, 1956), Roy (1957),
and Muirhead (1982, Th. 10.6.10).

Theorem 3.5.1 Let H ∼ Wp(vh, �) and E ∼ Wp(ve, �) be independent Wishart distri-
butions under the null linear hypothesis with vh degrees of freedom for the hypothesis test
matrix and ve degrees of freedom for error for the error test matrix on p normal random
variables where ve ≥ p, s = min(vh, p), M = (|vh − p|−1)/2 and N = (ve− p−1)/2.
Then (

2N + s + 1

2M + s + 1

)(
V

s − V

)
d−→ F (v1, v2)
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where v1 = s (2M + s + 1) and v2 = s(2N + s + 1)

2 (s N + 1)

s2 (2M + s + 1)

T 2
o

νe

d−→ F (v1, v2)

where v1 = s (2M + s + 1) and v2 = 2 (s N + 1) . Finally,

v2λ1/v1
.= Fmax (v1, v2) ≤ F

where v1 = max (vh, p) and v2 = ve − v1 + vh. For vh = 1, (ve − p + 1) λ1/p = F
exactly with v1 = p and v2 = ve − p + 1 degrees of freedom.

When s �= 1, the statistic Fmax for Roy’s criterion does not follow an F distribution.
It provides an upper bound on the F statistic and hence results in a lower bound on the
level of significance or p-value. Thus, in using the approximation for Roy’s criterion one
can be sure that the null hypothesis is true if the hypothesis is accepted. However, when
the null hypothesis is rejected this may not be the case since Fmax ≤ F, the true value.
Muller et al. (1992) develop F approximations for the Bartlett-Lawley-Hotelling, Wilks
and Bartlett-Nanda-Pillai criteria that depend on measures of multivariate association.

d. Multivariate t , F, and χ2 Distributions

In univariate and multivariate data analysis, one is often interested in testing a finite num-
ber of hypotheses regarding univariate- and vector-valued population parameters simulta-
neously or sequentially, in some planned order. Such procedures are called simultaneous
test procedures (STP) and often involve contrasts in means. While the matrix V in (3.5.1)
follows a matrix variate F distribution, we are often interested in the joint distribution of
F statistics when performing an analysis of univariate and multivariate data using STP
methods. In this section, we define some multivariate distributions which arise in STP.

Definition 3.5.6 Let Y ∼ Np(µ,� = σ 2P) where P = [
ρi j

]
is a correlation matrix and

s2/σ 2 ∼ χ2(n, γ = 0) independent of Y. Setting Ti = Yi
√

n/s for i = 1, . . . , p. Then
the joint distribution of T′ = [T1, T2, . . . , Tp] is a central or noncentral multivariate t
distribution with n degrees of freedom.

The matrix P = [
ρi j

]
is called the correlation matrix of the accompanying MVN distri-

bution. The distribution is central or noncentral depending on whether µ = 0 or µ �= 0,
respectively. When ρi j = ρ (i �= j) ,the structure of P is said to be equicorrelated. The
multivariate t distribution is a joint distribution of correlated t statistics which is clearly not
the same as Hotelling’s T 2 distribution which involves the distribution of a quadratic form.
Using this approach, we generalize the chi-square distribution to a multivariate chi-square
distribution which is a joint distribution of p correlated chi-square random variables.

Definition 3.5.7 Let Yi be m independent MVN random p-vectors with mean µ and co-
variance matrix �,Yi ∼ I Np (µ, �). Define X j = ∑m

i=1 Y 2
i j for j = 1, 2, . . . , p. Then

the joint distribution of X′ = [
X1, X2, . . . , X p

]
is a central or noncentral multivariate

chi-square distribution with m degrees of freedom.
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Observe that X j is the sum of m independent normal random variables with mean µ j

and variance σ 2
j = σ j j . For m = 1, X has a multivariate chi-square distribution with 1

degree of freedom. The distribution is central or noncentral if µ = 0 or µ �= 0, respectively.
In many applications, m = 1 so that Y ∼ Np (µ, �) and X ∼ χ2

1 (p, γ ), a multivariate
chi-square with one degree of freedom.

Having defined a multivariate chi-square distribution, we define a multivariate F-distri-
bution with (m, n) degrees of freedom.

Definition 3.5.8 Let X ∼ χ2
m (p, γ ) and Yi ∼ I Np (µ, �) for i = 1, 2, . . . ,m. Define

Fj = nX jσ 00/m X0σ j j for j = 1, . . . , p and X0/σ 00 ∼ χ2 (n) independent of X′ =[
X1, X2, . . . , X p

]
. Then the joint distribution of F′ = [

F1, F2, . . . , Fp
]

is a multivariate
F with (m, n) degrees of freedom.

For m = 1, the multivariate F distribution is equivalent to a multivariate t2 distribution
or for Ti = √Fi , the distribution of T′ = [

T1, T2, . . . , Tp
]

is multivariate t , also known
as the Studentized Maximum Modulus distribution used in numerous univariate STP; see
Hochberg and Tamhane (1987) and Nelson (1993). We will use the distribution to test
multivariate hypotheses involving means using the finite intersection test (FIT) principle;
see Timm (1995).

Exercises 3.5

1. Use Definition 3.5.1 to find the distribution of
√

n
(
y − µ0

)
/s if Yi ∼ N

(
µ, σ 2

)
and µ �= µ0.

2. For µ = µ0 in Problem 1, what is the distribution of F/ [(n − 1)+ F]?

3. Verify that for large values of ve, X2
B = − [ve − (p − vh + 1) /2] ln�

.∼ χ2 (pvh)

by comparing the chi-square critical value and the critical value of an F-distribution
with degrees of freedom pvh and ve.

4. For Yi ∼ I Np (µ, �) for i = 1, 2, . . . , n, verify that � = 1/
[
1+ T 2/ (n − 1)

]
.

5. Let Yi j ∼ I N
(
µi , σ

2
)

for i = 1, . . . , k, j = 1, . . . , n. Show that

Ti =
(
yi. − y..

)
/s

√
(k − 1) /nk ∼ t [k (n − 1)]

if µ1 = µ2 = · · · = µk = µ and that T′ = [T1, T2, . . . , Tk] and have a central
multivariate t-distribution with v = n (k − 1) degree of freedom and equicorrelation
structure P = [

ρi j = ρ
]

for i �= j where ρ = −1/ (k − 1); see Timm (1995).

6. Let Yi j ∼ I N
(
µi , σ

2
)

i = 1, . . . , k, j = 1, . . . , ni and σ 2 known. For ψg =∑k
i=1 cigµi and ψ̂g =

∑k
i=1 cigµ̂i where E

(
µ̂i

) = µi define Xg = ψ̂g /
√

dgσ

where dg =∑k
i=1

(
cig / ni

)
. Show that X1, X2, . . . , Xq for g = 1, 2, . . . , q is mul-

tivariate chi-square with one degree of freedom.
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3.6 The General Linear Model

The linear model is fundamental to the analysis of both univariate and multivariate data.
When formulating a linear model, one observes a phenomenon represented by an observed
data vector (matrix) and relates the observed data to a set of linearly independent fixed
variables. The relationship between the random dependent set and the linearly independent
set is examined using a linear or nonlinear relationship in the vector (matrix) of parameters.
The parameter vector (matrix) may be assumed either as fixed or random. The fixed or
random set of parameters are usually considered to be independent of a vector (matrix)
of errors. One also assumes that the covariance matrix of the random parameters of the
model has some unknown structure. The goals of the data analysis are usually to estimate
the fixed and random model parameters, evaluate the fit of the model to the data, and to
test hypotheses regarding model parameters. Model development occurs with a calibration
sample. Another goal of model development is to predict future observations. To validate
the model developed using a calibration sample, one often obtains a validation sample.

To construct a general linear model for a random set of correlated observations, an ob-
servation vector yN ×K is related to a vector of K parameters represented by a vector βK×1
through a known nonrandom design matrix XN×K plus a random vector of errors eN×1
with mean zero, E (e) = 0,and covariance matrix � = cov (e). The representation for the
linear model is

yN×1 = XN×K βK×1 + eN×1

E (e) = 0 and cov (e) = �
(3.6.1)

We shall always assume that E (e) = 0 when writing a linear model. Model (3.6.1) is
called the general linear model (GLM) or the Gauss-Markov setup. The model is linear
since the i th element of y is related to the i th row of X as yi = x′iβ; yi is modeled by a lin-
ear function of the parameters. We only consider linear models in this text; for a discussion
of nonlinear models see Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997).
The procedure NLMIXED in SAS may be used to analyze these models. The general non-
linear model used to analyze non-normal data is called the generalized linear model. These
models are discussed by McCullagh and Nelder (1989) and McCulloch and Searle (2001).

In (3.6.1), the elements of β can be fixed, random, or both (mixed) and β can be either
unrestricted or restricted. The structure of X and � may vary and, depending on the form
and structure of X, �, and β, the GLM is known by many names. Depending on the struc-
ture of the model, different approaches to parameter estimation and hypothesis testing are
required. In particular, one may estimate β and � making no assumptions regarding the dis-
tribution of y. In this case, generalized least squares (GLS) theory and minimum quadratic
norm unbiased estimation (MINQUE) theory is used to estimate the model parameters;
see Rao (1973a) and Kariya (1985). In this text, we will usually assume that the vector y
in (3.6.1) has a multivariate normal distribution; hence, maximum likelihood (ML) theory
will be used to estimate model parameters and to test hypotheses using the likelihood ratio
(LR) principle. When the small sample distribution is unknown, large sample tests may be
developed. In general, these will depend on the Wald principle developed by Wald (1943),
large sample distributions of LR statistics, and Rao’s Score principle developed by Rao
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(1947) or equivalently Silvey’s (1959) Lagrange multiplier principle. An introduction to
the basic principles may be found in Engle (1984) and Mittelhammer et al. (2000), while a
more advanced discussion is given by Dufour and Dagenais (1992). We now review several
special cases of (3.6.1).

a. Regression, ANOVA, and ANCOVA Models

Suppose each element yi in the vector yN is related to k linearly independent predictor
variables

yi = β0 + xi1β1 + xi2β2 + · · · + xikβk + ei (3.6.2)

For i = 1, 2, . . . , n, the relationship between the dependent variable Y and the k inde-
pendent variables x1, x2, . . . , xk is linear in the parameters. Furthermore, assume that the
parameters β0, β1, . . . , βk are free to vary over the entire parameter space so that there is no
restriction on β ′q =

[
β0, β1, . . . , βk

]
where q = k+1 and that the errors ei have mean zero

and common, unknown variance σ 2. Then using (3.6.1) with N = n and K = q = k + 1,
the univariate (linear) regression (UR) model is

y1
y2
...

yn

 =


1 x11 x12 . . . x1k

1 x21 x22 . . . x2k
...

...
...

...

1 xn1 xn1 · · · xnk




β0
β1
...

βk

+


e1
e2
...

en


yn×1 = Xn×q βq×1 + en×1

cov (y) = σ 2In (3.6.3)

where the design matrix X has full column rank, r (X) = q. If the r (X) < q so that X is not
of full column rank and X contains indicator variables, we obtain the analysis of variance
(ANOVA) model.

Often the design matrix X in (3.6.3) is partitioned into two sets of independent variables,
a matrix An×q1 that is not of full rank and a matrix Zn×q2 that is of full rank so that X =
[A Z] where q = q1 + q2. The matrix A is the ANOVA design matrix and the matrix
Z is the regression design matrix, also called the matrix of covariates. For N = n and
X = [A Z] , model (3.6.3) is called the ANCOVA model. Letting β ′ = [

α′ γ ′
]
, the analysis

of covariance ANCOVA model has the general linear model form

y = [A Z]

[
α

γ

]
+ e

y = Aα + Zγ + e (3.6.4)

cov (y) = σ 2In
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Assuming the observation vector y has a multivariate normal distribution with mean Xβ
and covariance matrix � = σ 2In, y ∼ Nn

(
Xβ, σ 2In

)
, the ML estimates of β and σ 2 are

β̂ = (
X′X

)−1 X′y
σ̂ 2 = (y− Xβ̂)′(y− Xβ̂)/n

= y′[I− X
(
X′X

)−1 X′]y/n

= E/n (3.6.5)

The estimator β̂ is only unique if the rank of the design matrix r (X) = q, X has full
column rank; when the rank of the design matrix is less than full rank, r (X) = r < q,
β̂ = (

X′X
)− X′y. Then, Theorem 2.6.2 is used to find estimable functions of β. Alterna-

tively, the methods of reparameterization or adding side conditions to the model parameters
are used to obtain unique estimates. To obtain an unbiased estimator of σ 2, the restricted
maximum likelihood (REML) estimate is s2 = E/ (n − r) where r = r (X) ≤ q is used;
see Searle et al. (1992, p. 452).

To test the hypothesis of the form Ho : Cβ = ξ , one uses the likelihood ratio test which
has the general form

� = λ2/n = E/ (E + H) (3.6.6)

where E is defined in (3.6.5) and

H = (Cβ̂ − ξ)′
[
C
(
X′X

)−1 C′
]−1

(Cβ̂ − ξ) (3.6.7)

The quantities E and H are independent quadratic forms and by Theorem 3.4.2, H ∼
σ 2χ2 (vh, δ) and E ∼ σ 2χ2 (ve = n − r). For additional details, see Searle (1971) or Rao
(1973a).

The assumption of normality was needed to test the hypothesis Ho. If one only wants to
estimate the parameter vector β, one may estimate the parameter using the least squares
criterion. That is, one wants to find an estimate for the parameter β that minimizes the
error sum of squares, e′e = (y− Xβ)′(y− Xβ). The estimate for the parameter vector β
is called the ordinary least squares (OLS) estimate for the parameter β. Using Theorem
2.6.1, the general form of the OLS estimate is β̂O L S =

(
X′X

)− X′y+ (I−H)z where
H = (X′X)−(X′X) and z is an arbitrary vector; see Rao (1973a). The OLS estimate always
exists, but need not be unique. When the design matrix X has full column rank, the ML
estimate is equal to the OLS estimator.

The decision rule for the likelihood ratio test is to reject Ho if � < c where c is deter-
mined such that the P (� < c|Ho) = α. From Definition 3.5.4, � is related to a noncentral
(Type I) beta distribution with degrees of freedom vh/2 and ve/2. Because the percentage
points of the beta distribution are easily related to a monotonic function of F as illus-
trated in Section 3.5, the null hypothesis Ho : Cβ = ξ is rejected if F = ve H /ve E ≥
F1−α (vh, ve)where F1−α (vh, ve) represents the upper 1−α percentage point of the cen-
tral F distribution for a test of size alpha.

In the UR model, we assumed that the structure of � = σ 2In . More generally, suppose
� = � where � is a known nonsingular covariance matrix so that y ∼ Nn (Xβ, � = �).
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The ML estimate of β is

β̂M L =
(

X′�−1X
)−1

X′�−1y (3.6.8)

To test the hypothesis Ho : Cβ = ξ for this case, Theorem 3.4.2 is used. The Wald W
statistic, Rao’s score statistic, and the LR statistic all have the following form

X2 = (Cβ̂M L − ξ)′[C
(

X′�−1X
)−1

C′]−1(Cβ̂M L − ξ) (3.6.9)

and follow a noncentral chi-square distribution; see Breusch (1979). The test of Ho : Cβ =
ξ is to reject Ho if X 2 ≥ χ2

1−α (vh) where vh = r (C) . For known �, model (3.6.1) is also
called the weighted least squares or generalized least squares model when one makes no
distribution assumptions regarding the observation vector y. The generalized least squares
estimate for β is obtained by minimizing the error sum of squares in the metric of the in-
verse of the covariance matrix, e′e = (y− Xβ)′�−1(y− Xβ) and is often called Aitken’s
generalized least squares (GLS) estimator. This method of estimation is only applicable be-
cause the covariance matrix is nonsingular. The GLS estimate for β is identical to the ML
estimate and the GLS estimate for β is equal to the OLS estimate if and only if �X = XF
for some nonsingular conformable matrix F; see Zyskind (1967). Rao (1973b) discusses
a unified theory of least squares for obtaining estimators for the parameter β when the
covariance structure has the form � = σ 2V when V is singular and only assumes that
E(y) = Xβ and that the cov(y) = � = σ 2V. Rao’s approach is to find a matrix T such
that (y− Xβ)′T−(y− Xβ) is minimized for β. Rao shows that for T− = �−, a sin-
gular matrix, that an estimate of the parameter β is β̂G M =

(
X′�−X

)−1 X′�−y some-
times called the generalized Gauss-Markov estimator. Rao also shows that the general-
ized Gauss-Markov estimator reduces to the ordinary least squares estimator if and only
if X′�Q = 0 where the matrix Q = X⊥ = I− X

(
X′X

)− X′ is a projection matrix. This
extends Zyskind’s result to matrices that are nonsingular. In the notation of Rao, Zyskind’s
result for a nonsingular matrix � is equivalent to the condition that X′�−1Q = 0.

Because y ∼ Nn (Xβ, �) , the maximum likelihood estimate is normally distributed as
follows

β̂M L ∼ Nn

[
β,

(
X′�−1X

)−1
]

(3.6.10)

When � is unknown, asymptotic theory is used to test Ho : Cβ = ξ . Given that we can

find a consistent estimate �̂
p−→ �, then

̂̂βFGL S = (X′�̂−1X′)−1X′y p−→ β̂M L (3.6.11)

cov(̂̂βFGL S) =
1

n

(
X ′�̂−1 X

n

)−1
p−→

(
X�−1X

)−1

where ̂̂βFGL S is a feasible generalized least squares estimate of β and X′�−1X/n is the
information matrix of β. Because � is unknown, the standard errors for the parameter
vector β tend to be underestimated; see Eaton (1985). To test the hypothesis Ho : Cβ = ξ ,
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the statistic

W = (Ĉ̂βFGL S − ξ)′[C(X′�̂−1X)C′]−1(Ĉ̂βFGL S − ξ) d−→ χ2 (vh) (3.6.12)

where vh = r (C) is used. When n is small, W/vh may be approximated by an distribution
with degrees of freedom vh = r (C) and ve = n − r (X); see Zellner (1962).

One can also impose restrictions on the parameter vector β of the form Rβ = θ and
test hypotheses with the restrictions added to model (3.6.3). This linear model is called the
restricted GLM. The reader is referred to Timm and Carlson (1975) or Searle (1987) for a
discussion of this model. Timm and Mieczkowski (1997) provide numerous examples of
the analyses of restricted linear models using SAS software.

One may also formulate models using (3.6.1) which permit the components of β to
contain only random effects or more generally both random and fixed effects. For example,
suppose in (3.6.2) we add a random component so that

yi = x′iβ + αi + ei (3.6.13)

where β is a fixed vector of parameters and αi and ei are independent random errors with
variances σ 2

α and σ 2, respectively. Such models involve the estimation of variance compo-
nents. Searle et al. (1992), McCulloch and Searle (2001), and Khuri et al. (1998) provide
an extensive review of these models.

Another univariate extension of (3.6.2) is to assume that yi has the linear form

yi = x′iβ + z′iαi + ei (3.6.14)

where αi and ei are independent and z′i is a vector of known covariates. Then � has the
structure, � = � + σ 2I where � is a covariance matrix of random effects. The model
is important in the study of growth curves where the random αi are used to estimate ran-
dom growth differences among individuals. The model was introduced by Laird and Ware
(1982) and is called the general univariate (linear) mixed effect model. A special case of
this model is Swamy’s (1971) random coefficient regression model. Vonesh and Chinchilli
(1997) provide an excellent discussion of both the random coefficient regression and the
general univariate mixed effect models. Littell et al. (1996) provide numerous illustrations
using SAS software. We discuss this model in Chapter 6. This model is a special case of the
general multivariate mixed model. Nonlinear models used to analyze non-normal data with
both fixed and random components are called generalized linear mixed models. These mod-
els are discussed by Littell et al. (1996, Chapters 11) and McCulloch and Searle (2001),
for example.

b. Multivariate Regression, MANOVA, and MANCOVA Models

To generalize (3.6.3) to the multivariate (linear) regression model, a model is formulated
for each of p correlated dependent, response variables

y1 = β011n + β11x1 + · · ·+ βk1xk + e1
y2 = β021n + β12x2 + · · ·+ βk2xk + e2
...

...
...

...
...

yp = β0p1n + β1pxp + · · ·+ βkpxk + ep

(3.6.15)
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Each of the vectors y j , x j and e j , for j = 1, 2, . . . , p are n × 1 vectors. Hence, we have
n observations for each of p variables. To represent (3.6.15) in matrix form, we construct
matrices using each variable as a column vector. That is,

Yn×p =
[
y1, y2, . . . , yp

]
Xn×q = [1n, x1, x2, . . . , xk] (3.6.16)

Bq×p =
[
β1,β2, . . . ,β p

]
=


β01 β01 · · · β0p
β11 β11 · · · β1p
...

...
...

βk1 βk2 · · · βkp


En×p =

[
e1, e2, . . . , ep

]
Then for q = k + 1, the matrix linear model for (3.6.15) becomes

Yn×p = Xn×qBq×p + En×p

= [
Xβ1,Xβ2, . . . ,Xβ p

]+ [
e1, e2, . . . , ep

]
(3.6.17)

Model (3.6.17) is called the multivariate (linear) regression (MR) model , or MLMR model.
If the r(X) < q = k+1, so that the design matrix is not of full rank, the model is called the
multivariate analysis of variance (MANOVA) model. Partitioning X into two matrices as in
the univariate regression model, X = [A,Z] and B′ = [�′, �′], model (3.6.17) becomes
the multivariate analysis of covariance (MANCOVA) model.

To represent the MR model as a GLM, the vec (·) operator is employed. Let y = vec(Y),
β = vec(B) and e = vec(Y). Since the design matrix Xn×q is the same for each of the p
dependent variables, the GLM for the MR model is as follows

y1
y2
...

yp

 =


X 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · X



β1
β2
...

β p

+


e1
e2
...

ep


Or, for N = np and K = pq = p(k + 1), we have the vector form of the MLMR model

yN ×1 =
(
Ip ⊗ X

)
N×K βK ×1 + eK ×1

cov (y) = � ⊗ In
(3.6.18)

To test hypotheses, we assume that E in (3.6.17) has a matrix normal distribution, E ∼
Nn, p(0, �⊗ In) or using the row representation that E′ ∼ Nn, p(0, In ⊗�). Alternatively,
by (3.6.18), e ∼ Nnp(0, � ⊗ In). To obtain the ML estimate of β given (3.6.18), we asso-
ciate the covariance structure �with � ⊗ In and apply (3.6.8), even though � is unknown.
The unknown matrix drops out of the product. To see this, we have by substitution that

β̂M L =
[(

Ip ⊗ X
)′
(� ⊗ In)

−1 (Ip ⊗ X
)]−1 (

Ip ⊗ X
)′
(� ⊗ In)

−1 y

=
(
�−1 ⊗ X′X

)−1 (
�−1 ⊗ X′

)
y (3.6.19)
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However, by property (5) in Theorem 2.4.7, we have that

β̂M L = vec
[(

X′X
)−1 X′Y

]
by letting A = (

X′X
)−1 X′ and C′ = Ip. Thus,

B̂M L =
(
X′X

)−1 X′Y (3.6.20)

using the matrix form of the model. This is also the OLS estimate of the parameter matrix.
Similarly using (3.6.19), the

cov
(
β̂M L

) = [(
Ip ⊗ X

)′
(� ⊗ In)

−1 (Ip ⊗ X
)]−1

= �⊗ (
X′X

)−1

Finally, the ML estimate of � is

�̂ = Y′
[
In − X

(
X′X

)−1 X′
]

Y/n (3.6.21)

or the restricted maximum likelihood (REML) unbiased estimate is S = E/(n − q) where
q = r(X). Furthermore β̂M L and �̂ are independent, and n �̂ ∼ Wp(n − q, �). Again,
the Wishart density only exists if n ≥ p + q.

In the above discussion, we have assumed that X has full column rank q. If the r(X) =
r < q, then B̂ is not unique since (X′X)−1 is replaced with a g-inverse. However, �̂ is still
unique since

(
In − X(X′X)−X′

)
is a unique projection matrix by property (4), Theorem

2.5.5. The lack of a unique inverse only affects which linear parametric functions of the
parameters are estimable and hence testable. Theorem 2.7.2 is again used to determine the
parametric functions in β = vec(B) that are estimable.

The null hypothesis tested for the matrix form of the MR model takes the general form

H : CBM = 0 (3.6.22)

where Cg×q is a known matrix of full row rank g, g ≤ q and Mp×u is a matrix of full
column rank u ≤ p. Hypothesis (3.6.22) is called the standard multivariate hypothesis. To
test (3.6.22) using the vector form of the model, observe that vec(CB̂M) = (M′ ⊗C) vec B̂
so that (3.6.22) is equivalent to testing H : Lβ = 0 when L is a matrix of order gu × pq
of rank v = gu. Assuming � = � ⊗ In is known,

β̂M L ∼ Ngu(β,L[(In ⊗ X)′�−1(Ip ⊗ X)]−1L′) (3.6.23)

Simplifying the structure of the covariance matrix,

cov
(
β̂M L

) = (
M′�M

)⊗ (C
(
X′X

)−1 C′) (3.6.24)

For known �, the likelihood ratio test of H is to reject H if X2 > cα where cα is chosen
such that the P(X2 > cα | H) = α and X2 = β̂ ′M L [(M′�M) ⊗ (C(X′X)−1C′)]−1β̂M L .
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However, we can simplify X2 since

X2 = [vec(CB̂M)]′[(M′�M
)−1 ⊗ (C

(
X′X

)−1
)
]

vec(CB̂M)

= [vec(CB̂M)]′ vec[(C (
X′X

)−1 C′]−1(CB̂M)
(
M′�M

)−1

= tr[(CB̂M)′[C (
X′X

)−1 C′]−1(CB̂A)
(
M′�M

)−1] (3.6.25)

Thus to test H : Lβ = 0, the hypothesis is rejected if X2 in (3.6.25) is larger than a
chi-square critical value with v = gu degrees of freedom. Again, by finding a consistent

estimate of �, X2 d−→ χ2(v = gu). Thus an approximate test of H is available if � is

estimated by �̂
p−→ �.

However, one does not use the approximate chi-square test when � is unknown since an
exact likelihood ratio test exists for H : Lβ = 0⇐⇒ CBM = 0. The hypothesis and error
SSCP matrices under the MR model are

H = (CB̂M)′[C(X′X)−1C′]−1(CB̂M)

E =M′Y′[In − X(X′X)−1X′]YM (3.6.26)

= (n − q)M′SM

Using Theorem 3.4.5, it is easily established that E and H have independent Wishart
distributions

E ∼ Wu(ve = n − q,M′�M, � = 0)

H ∼ Wu

(
vh = g,M′�M,

(
M′�M

)−1
� = �

)
where the noncentrality parameter matrix � is

� = (M′�M)−1 (CBM)′ (C(X′X)−1C′)−1(CBM) (3.6.27)

To test CBM = 0, one needs the joint density of the roots of HE−1 which is extremely
complicated; see Muirhead (1982, p. 449). In applied problems, the approximations sum-
marized in Theorem 3.5.1 are adequate for any of the four criteria. Exact critical values are
required for establishing exact 100 (1− α) simultaneous confidence intervals.

For H and E defined in (3.6.26) and ve = n−q, an alternative expression for T 2
o defined

in (3.5.4) is

T 2
o = tr[(CB̂M)[C (

X′X
)−1 C′]−1(CB̂M)

(
M′EM

)−1 (3.6.28)

Comparing T 2
o with X2 in (3.6.25), we see that for known �, T 2

o has a chi-square distribu-
tion. Hence, for veE/n = �̂, T 2

o has an asymptotic chi-square distribution.
In our development of the multivariate linear model, to test hypotheses of form Ho :

CBM = 0, we have assumed that the covariance matrix for the y∗ = vec(Y′n×p) has covari-
ance structure In⊗�p so the rows of Yn×p are independent identically normally distributed
with common covariance matrix �p. This structure is a sufficient, but not necessary condi-
tion for the development of exact tests. Young et al. (1999) have developed necessary and
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sufficient conditions for the matrix W in the expression cov (y∗) =Wn⊗�p = � for tests
to remain exact. They refer to such structures of � as being independence distribution-
preserving (IDP).

Any of the four criteria may be used to establish simultaneous confidence intervals for
parametric functions of the form ψ = a′Bm. Details will be illustrated in Chapter 4 when
we discuss applications using the four multivariate criteria, approximate single degree of
freedom F tests for C planned comparisons, and stepdown finite intersection tests. More
general extended linear hypotheses will also be reviewed. We conclude this section with
further generalizations of the GLM also discussed in more detail with illustrations in later
chapters.

c. The Seemingly Unrelated Regression (SUR) Model

In developing the MR model in (3.6.15), observe that the j th equation for j = 1, . . . , p, has
the GLM form y j = Xβ j+e j where β ′j =

[
β1 j , . . . , βk j

]
. The covariance structure of the

errors e j is cov(e j ) = σ j j In so that each β j can be estimated independently of the others.
The dependence is incorporated into the model by the relationship cov(yi , y j ) = σ i j In .
Because the design matrix is the same for each variable and B = [β1,β2, . . . ,β p] has a

simple column form, each β j may be estimated independently as β̂ j =
(
X′X

)−1 X′y j for

j = 1, . . . , p. The cov
(
β̂ i , β̂ j

) = σ i j
(
X′X

)−1.
A simple generalization of (3.6.17) is to replace X with X j so that the regression model

(design matrix) may be different for each variable

E(Yn×p) = [X1β1,X2β2, . . . ,Xpβ p]
cov[vec(Y′)] = In ⊗�

(3.6.29)

Such a model may often be more appropriate since it allows one to fit different models for
each variable. When fitting the same model to each variable using the MR model, some
variables may be overfit. Model (3.6.29) is called S.N. Srivastava’s multiple design multi-
variate (MDM) model or Zellner’s seemingly unrelated regression (SUR) model. The SUR
model is usually written as p correlated regression models

y j
(n×1)

= X
(n×q j )

β j
(q j×1)

+ e j
(n×1)

cov
(
yi , y j

) = σ i j In

(3.6.30)

for j = 1, 2, . . . , p. Letting y′ = [y′1, y′2, . . . , y′p] with β ′and e′partitioned similarly and
the design matrix defined by X = ⊕p

j=1 X j , with N = np, K = ∑
j q j = ∑

j (k j + 1)

and the r(X j ) = q j , model (3.6.30) is again seen to be special case of the GLM (3.6.1).
Alternatively, letting

Y = [y1, y2, . . . , yp]
X = [x1, x2, . . . , xq ]
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B̃ =


β11 0 · · · 0
0 β22 · · · 0
...

...
...

0 0 · · · β pp


where β j

′ = [β0 j , β1 j , . . . , βk j ], the SUR model may be written as

Yn×p = Xn×q B̃q ×p + En×p

which is a MR model with restrictions.
The matrix version of (3.6.30) is called the multivariate seemingly unrelated regression

(MSUR) model. The model is constructed by replacing y j and β j in (3.6.30) with matrices.
The MSUR model is called the correlated multivariate regression equations (CMRE) model
by Kariya et al. (1984). We review the MSUR model in Chapter 5.

d. The General MANOVA Model (GMANOVA)

Potthoff and Roy (1964) extended the MR and MANOVA models to the growth curve
model (GMANOVA). The model was first introduced to analyze growth in repeated mea-
sures data that have the same number of observations per subject with complete data. The
model has the general form

Yn×p = An×qBq×kZk×p + En×p

vec (E) ∼ Nnp (0, � ⊗ In)
(3.6.31)

The matrices A and Z are assumed known with n ≥ p and k ≤ p. Letting the r(A) = q
and the r(Z) = p, (3.6.31) is again a special case of (3.6.1) if we define X = A ⊗ Z′.
Partitioning Y, B and E rowwise,

Y =


y′1
y′2
...

y′n


n×p

, B =


β ′1
β ′2
...

β ′q


q ×k

, and E =


e′1
e′2
...

e′n


so that (3.6.31) is equivalent to the GLM

y∗ = vec
(
Y′

) = (
A⊗ Z′

)
vec

(
B′

)+ vec
(
E′

)
cov

(
Y′

) = I⊗�
(3.6.32)

A further generalization of (3.6.31) was introduced by Chinchilli and Elswick (1985) and
Srivastava and Carter (1983). The model is called the MANOVA-GMANOVA model and
has the following structure

Y = X1B1Z1 + X2B2 + E (3.6.33)

where the GMANOVA component contains growth curves and the MR or MANOVA com-
ponent contains covariates associated with baseline data. Chinchilli and Elswick (1985)
provide ML estimates and likelihood ratio tests for the model.
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Patel (1983, 1986) and von Rosen (1989, 1990, 1993) consider the more general growth
curve (MGGC) model, also called the sum-of-profiles model,

Y =
r∑

i=1

Xi Bi Zi + E (3.6.34)

by Verbyla and Venables (1988a, b). Using two restrictions on the design matrices

r(X1)+ p ≤ n and X′r Xr ⊆ X′r−1Xr−1 ⊆ · · · ⊆ X′1X1

von Rosen was able to obtain closed-form expressions for ML estimates of all model pa-
rameters. He did not obtain likelihood ratio tests of hypotheses. A canonical form of the
model was also considered by Gleser and Olkin (1970). Srivastava and Khatri (1979, p. 197)
expressed the sum-of-profiles model as a nested growth model. They developed their model
by nesting the matrices Zi in (3.6.34). Details are available in Srivastava (1997).

Without imposing the nested condition on the design matrices, Verbyla and Venables
(1988b) obtained generalized least squares estimates of the model parameters for the MGGC
model using the MSUR model. Unique estimates are obtained if the

r
[(

X1 ⊗ Z′1
)
,
(
X2 ⊗ Z′2

)
, . . . ,

(
Xr ⊗ Z′2

)] = q

To see this, one merely has to write the MGGC model as a SUR model

vec
(
Y′

) = [(
X1 ⊗ Z′1

)
,
(
X2 ⊗ Z′2

)
, . . . ,

(
Xr ⊗ Z′r

)]


vec
(
B′1

)
vec

(
B′2

)
...

vec
(
B′r

)

+ vec
(
E′

)
(3.6.35)

Hecker (1987) called this model the completely general MANOVA (CGMANOVA) model.
Thus, the GMANOVA and CGMANOVA models are SUR models.

One may add restrictions to the MR, MANOVA, GMANOVA, CGMANOVA, and their
extensions. Such models belong to the class of restricted multivariate linear models; see
Kariya (1985). In addition, the elements of the parameter matrix may be only random,
or mixed containing both fixed and random parameters. This leads to multivariate random
effects and multivariate mixed effects models, Khuri et al. (1998). Amemiya (1994) and
Thum (1997) consider a general multivariate mixed effect repeated measures model.

To construct a multivariate (linear) mixed model (MMM) from the MGLM, the matrix E
of random errors is modeled. That is, the matrix E = ZU where Z is a known nonrandom
matrix and U is a matrix of random effects. Hence, the MMM has the general structure

Y
n×r

= X
n×q

B
q×r

+ Z
n×h

U
h×r

(3.6.36)

where B is the matrix of fixed effects. When XB does not exist in the model, the model
is called the random coefficient model or a random coefficient regression model. The data
matrix Y in (3.6.36) is of order (n × r) where the rows of Y are a random sample of n
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observations on r responses. The subscript r is used since the r responses may be a vector
of p-variables over t occasions (time) so that r = pt .

Because model (3.6.36) contains both fixed and random effects, we may separate the
model into its random and fixed components as follows

XB =
∑

i

Ki Bi

ZU =
∑

j

K j U j

(3.6.37)

The matrices Ki and K j are known and of order (n × ri ) of rank ri ; the matrices Bi of
order (ri × r) contain the fixed effects, while the matrices U j of rank r j contain the random
effects. The rows of the matrices U j are assumed to be independent MVN as N

(
0, � j

)
.

Writing the model using the rows of Y or the columns of Y′, y∗ = cov
(
Y′

)
,

cov
(
y∗

) =∑
j

(
V j ⊗� j

)
(3.6.38)

Model (3.6.36) with structure (3.6.38) is discussed in Chapter 6. There we will review
random coefficient models and mixed models. Models with r = pt are of special interest.
These models with multiple-response, repeated measures are a p-variate generalization
of Scheffé’s mixed model, also called double multivariate linear models and treated in
some detail by Reinsel (1982, 1984) and Boik (1988, 1991). Khuri et al. (1998) provide an
overview of the statistical theory for univariate and multivariate mixed models.

Amemiya (1994) provides a generalization of the model considered by Reinsel and Boik,
which permits incomplete data over occasions. The matrix version of Amemiya’s general
multivariate mixed model is

Yi
ni×p
= Xi

ni×k
B

k×p
+ Zi

ni×h
Ai

h×p
+ Ei

ni×p

cov
(
vec Y′i

) = (
Zi ⊗ Ip

)
�

(
Zi ⊗ Ip

)′ + Ini ⊗�e

(3.6.39)

for i = 1, 2, . . . , n and where �hp × hp = cov
(
vec A′i

)
and �e is the p × p covariance

matrix of the i th row of Ei . This model is also considered by Thum (1997) and is reviewed
in Chapter 6

Exercises 3.6

1. Verify that β̂ in (3.6.5) minimizes the error sum of squares

n∑
i=1

e2
i = (y− Xβ̂)′(y− Xβ̂)

using projection operators.

2. Prove that H and E in (3.6.6) are independent.
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3. Verify that β̂ in (3.6.8) minimizes the weighted error sum of squares

n∑
i=1

e2
i = (y− Xβ̂)′�−1(y− Xβ̂)

4. Prove that H and E under the MR model are independently distributed.

5. Obtain the result given in (3.6.23).

6. Represent (3.6.39) as a GLM.

3.7 Evaluating Normality

Fundamental to parameter estimation and tests of significance for the models considered in
this text is the assumption of multivariate normality. Whenever parameters are estimated,
we would like them to have optimal properties and to be insensitive to mild departures
from normality, i.e., to be robust to non-normality, and from the effects of outliers. Tests
of significance are said to be robust if the size of the test α and the power of the test
are only marginally effected by departures from model assumptions such as normality and
restrictions placed on the structure of covariance matrices when sampling from one or more
populations.

The study of robust estimation for location and dispersion of model parameters, the iden-
tification of outliers, the analysis of multivariate residuals, and the assessment of the effects
of model assumptions on tests of significance and power are as important in multivariate
analysis as they are in univariate analysis. However, the problems are much more complex.
In multivariate data analysis there is no natural one-dimensional order to the observations,
hence we can no longer just investigate the extremes of the distribution to locate outliers
or identify data clusters in only one dimension. Clusters can occur in some subspace and
outliers may not be extreme in any one dimension. Outliers in multivariate samples effect
not only the location and variance of a variable, but also its orientation in the sample as
measured by the covariance or correlation with other variables. Residuals formed from fit-
ting a multivariate model to a data set in the presence of extreme outliers may lead to the
identification of spurious outliers. Upon replotting the data, they are often removed. Finally,
because non-normality can occur in so many ways robustness studies of Type I errors and
power are difficult to design and evaluate.

The two most important problems in multivariate data analysis are the detection of out-
liers and the evaluation of multivariate normality. The process is complex and first begins
with the assessment of marginal normality, a variable at a time; see Looney (1995). The
evaluation process usually proceeds as follows.

1. Evaluate univariate normality by performing the Shapiro and Wilk (1965) W test
a variable at a time when sample sizes are less than or equal to 50. The test is
known to show a reasonable sensitivity to nonnormality; see Shapiro et al. (1968).
For 50 < n ≤ 2000, Royston’s (1982, 1992) approximation is recommended and is
implemented in the SAS procedure UNIVARIATE; see SAS Institute (1990, p. 627).
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2. Construct normal probability quantile-vs-quantile (Q-Q) plots a variable at a time
which compare the cumulative empirical distribution with the expected order values
of a normal density to informally assess the lack of linearity and the presence of
extreme values; see Wilk and Gnanadesikan (1968) and Looney and Gulledge (1985).

3. If variables are found to be non-normal, transform them to normality using perhaps
a Box and Cox (1964) power transformation or some other transformation such as a
logit.

4. Locate and correct outliers using graphical techniques or tests of significance as out-
lined by Barnett and Lewis (1994).

The goals of steps (1) to (4) are to evaluate marginal normality and to detect outliers. If
r + s outliers are identified for variable i , two robust estimators of location, trimmed and
Winsorized means, may be calculated as

y T (r, s) =
n−s∑

i=r+1

yi/ (n − r − s)

y W (r, s) =
r yr+1 +

n−s∑
i=r+1

yi + syn−s

 /n

(3.7.1)

respectively, for a sample of size n. If the proportion of observations at each extreme are
equal, r = s, the estimate y w is called an α-Winsorized mean. To create an α-trimmed
mean, a proportion α of the ordered sample y(i) from the lower and upper extremes of the
distribution is discarded. Since the proportion may not be an integer value, we let α n =
r + w where r is an integer and 0 < w < 1. Then,

y T (α)(r, r) =
(1− w)yr+1 +

n−r−1∑
i=r+2

yi + (1− w)yn−r

 /n(1− 2α) (3.7.2)

is an α-trimmed mean; see Gnanadesikan and Kettenring (1992). If r is an integer, then the
r -trimmed or α-trimmed mean for α = r/n reduces to formula (3.7.1) with r = s so that

y T (α)(r, r) =
n−r∑

i=r+1

yi/(n − 2r) (3.7.3)

In multivariate analysis, Winsorized data ensures that the number of observations for each
of the p variables remains constant over the n observations. Trimmed observations cause
complicated missing value problems when not applied to all variables simultaneously. In
univariate analysis, trimmed means are often preferred to Winsorized means. Both are spe-
cial cases of an L-estimator which is any linear combination of the ordered sample. An-
other class of robust estimators are M-estimators. Huber (1981) provides a comprehensive
discussion of such estimators, the M stands for maximum likelihood.
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Using some robust estimate of location m∗, a robust estimate of the sample variance
(scale) parameter σ 2 is defined as

s̃2
i i =

k∑
i=1

(yi − m∗)2/(k − 1) (3.7.4)

where k ≤ n, depending on the “trimming” process. In obtaining an estimate for σ 2, we see
an obvious conflict between protecting the estimate from outliers versus using the data in
the tails to increase precision. Calculating a trimmed variance from an α-trimmed sample
or a Winsorized-trimmed variance from a α-Winsorized sample leads to estimates that are
not unbiased, and hence correction factors are required based on the moments of order
statistics. However, tables of coefficients are only available for n ≤ 15 and r = s.

To reduce the bias and improve consistency, the Winsorized-trimmed variance suggested
by Huber (1970) may be used for an α-trimmed sample. For α = r/n and r = s

s̃2
i i (H) =

(r + 1)
(

yr+1 − y T (α)

)2 +
n−r−1∑
i=r+2

(
yi − y T (α)

)2

+ (r + 1)
(

yn−r − y T (α)

)2
}
/ [n − 2r − 1]

(3.7.5)

which reduces to s2 if r = 0. The numerator in (3.7.5) is a Winsorized sum of squares.
The denominator is based on the trimmed mean value t = n − 2r observations and not
n which would have treated the Winsorized values as “observed .” Alternatively, we may
write (3.7.5) as

s̃2
i i =

∑n
k=1

(
ỹik − y ik

)2
/ (n − 2ri − 1) i = 1, 2, . . . , p (3.7.6)

where y ik is an α-trimmed mean and ỹik is either an observed sample value or a Winsorized
value that depends on α for each variable. Thus, the trimming value ri may be different for
each variable.

To estimate the covariance between variables i and j , we may employ the Winsorized
sample covariance suggested by Mudholkar and Srivastava (1996). A robust covariance
estimate is

s̃i j =
n∑

k=1

(
ỹik − y ik

) (
ỹ jk − y jk

)
/ (n − 2r − 1) (3.7.7)

for all pairs i, j = 1, 2, . . . , p. The average r = (r1 + r2)/2 is the average number of
Winsorized observations in each pairing. The robust estimate of the covariance matrix is

S 
w =

[̃
si j

]
Depending on the amount of “Winsorizing,” the matrix S may not be positive definite. To
correct this problem, the covariance matrix is smoothed by solving | S = λI |= 0. Letting

�̂ = P� P′ (3.7.8)
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where � contains only the positive roots of S and P is the matrix of eigenvectors; �̂ is
positive definite, Bock and Peterson (1975). Other procedures for finding robust estimates
of � are examined by Devlin et al. (1975). They use a method of “shrinking” to obtain a
positive definite estimate for �.

The goals of steps (1) to (4) are to achieve marginal normality in the data. Because
marginal normality does not imply multivariate normality, one next analyzes the data for
multivariate normality and multivariate outliers. Sometimes the evaluation of multivariate
normality is done without investigating univariate normality since a MVN distribution en-
sures marginal normality.

Romeu and Ozturk (1993) investigated ten tests of goodness-of-fit for multivariate nor-
mality. Their simulation study shows that the multivariate tests of skewness and kurtosis
proposed by Mardia (1970, 1980) are the most stable and reliable tests for assessing multi-
variate normality.

Estimating skewness by

β̂1, p =
n∑

i=1

n∑
j=1

[
(yi − y)′ S−1 (y j − y

)]3
/n2 (3.7.9)

Mardia showed that the statistic X2 = nβ̂1, p/6
d−→ χ2(v) where v = p (p + 1) (p+2)/6.

He also showed that the sample estimate of multivariate kurtosis

β̂2, p =
n∑

i=1

[
(yi − y)′ S−1 (yi − y)

]2
/n (3.7.10)

converges in distribution to a N (µ, σ 2) distribution with mean µ = p(p + 2) and vari-
ance σ 2 = 8p(p + 2)/n. Thus, subtracting µ from β̂2, p and then dividing by σ , Z =(
β̂2, p − µ

)
/σ

d−→ N (0, 1). Rejection of normality using Mardia’s tests indicates either
the presences of multivariate outliers or that the distribution is significantly different from a
MVN distribution. If we fail to reject, the distribution is assumed to be MVN. Small sample
empirical critical values for the skewness and kurtosis tests were calculated by Romeu and
Ozturk and are provided in Appendix A, Table VI-VIII. If the multivariate tests are rejected,
we have to either identify multivariate outliers and/or transform the vector sample data to
achieve multivariate normality. While Andrews et al., (1971) have developed a multivariate
extension of the Box-Cox power transformation, determining the appropriate transforma-
tion is complicated; see Chambers (1977), Velilla and Barrio (1994), and Bilodeau and
Brenner (1999, p. 95). An alternative procedure is to perform a data reduction transforma-
tion and to analyze the sample using some subset of linear combinations of the original
variables such as principal components, discussed in Chapter 8, which may be more nearly
normal. Another option is to identify directions of possible nonnormality and then to es-
timate univariate Box-Cox power transformations of projections of the original variables
onto a set of direction vectors to improve multivariate normality; see Gnanadesikan (1997).

Graphical displays of the data are needed to visually identify multivariate outliers in a
data set. Seber (1984) provides an overview of multivariate graphical techniques. Many of
the procedures are illustrated in Venables and Ripley (1994) using S-plus. SAS/INSIGHT
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(1993) provides a comprehensive set of graphical displays for interacting with multivariate
data. Following any SAS application on the PC, one may invoke SAS/INSIGHT by using
the Tool Bar: and clicking on the option “Solutions.” From the new pop-up menu, one se-
lects the option “analysis” from this menu and finally from the last menu one selects the
option “Interactive Data Analysis.” Clicking on this last option opens the interactive mode
of SAS/INSIGHT. The WORK library contains data sets created by the SAS application.
By clicking on the WORK library, the names of the data sets created in the SAS procedure
are displayed in the window. By clicking on a specific data set, one may display the data
created in the application. To analyze the data displayed interactively, one selects from the
Tool Bar the option “Analyze.” This is illustrated more fully to locate potential outliers in a
multivariate data set using plotted displays in Example 3.7.3. Friendly (1991), using SAS
procedures and SAS macros, has developed numerous graphs for plotting multivariate data.
Other procedures are illustrated in Khattree and Naik (1995) and Timm and Mieczkowski
(1997). Residual plots are examined in Chapter 4 when the MR model is discussed. Ro-
bustness of multivariate tests is also discussed in Chapter 4. We next discuss the generation
of a multivariate normal distribution and review multivariate Q-Q plots to help identify
departures from multivariate normality and outliers.

To visually evaluate whether a multivariate distribution has outliers, recall from Theo-
rem 3.4.2 that if Yi ∼ Np (µ, �) then the quadratic form

�2
i = (Yi − µ)′�−1 (Yi − µ) ∼ χ2 (p)

The Mahalanobis distance estimate of �2
i in the sample is

D2
i = (yi − y)′ S−1 (yi − y) (3.7.11)

which converges to a chi-square distribution with p degrees of freedom. Hence, to evalu-
ate multivariate normality one may plot the ordered squared Mahalanobis distances D2

(i)
against the expected order statistics of a chi-square distribution with sample quantilies
χ2

p [(i − 1/2) /n] = qi where qi (i = 1, 2, . . . , n) is the 100 (i − 1/2) /n sample quan-
tile of the chi-square distribution with p degrees of freedom. The plotting correction (i −
.375)/(n + .25) may also be used. This is the value used in the SAS UNIVARIATE pro-
cedure for constructing normal Q-Q plots. For a discussion of plotting corrections, see
Looney and Gulledge (1985). If the data are multivariate normal, plotted pairs

(
D(i), qi

)
should be close to a line. Points far from the line are potential outliers. Clearly a large value
of D2

i for one value may be a candidate. Formal tests for multivariate outliers are consid-
ered by Barnett and Lewis (1994). Given the complex nature of multivariate data these tests
have limited value.

The exact distribution of bi = nD2
i / (n − 1)2 follows a beta [a = p/2, b = (n −

p − 1)/2] distribution and not a chi-square distribution; see Gnanadesikan and Kettenring
(1972). Small (1978) found that as p gets large (p > 5% of n) relative to n that the chi-
square approximation may not be adequate unless n ≥ 25 and recommends a beta plot. He
suggested using a beta [α, β] distribution with α = (a − 1)/2a and β = (b − 1)/2b and
the ordered statistics

b 
(i) = beta α, β [(i − α)/(n − α − β + 1)] (3.7.12)
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Then, the ordered b(i) are plotted against the expected order statistics b 
(i). Gnanadesikan

and Kettenring (1972) consider a more general plotting scheme using � plots to assess
normality. A gamma plot fits a scaled chi-square or gamma distribution to the quantity
(yi − y)′ � (yi − y), by estimating a shape parameter (η) and scale parameter (λ).

Outliers in a multivariate data set inflate/deflate y and S, and sample correlations. This
tends to reduce the size of D2

(i). Hence, robust estimates of µ and� in plots may help to
identify outliers. Thus, the “robustified” ordered distances

D2
(i) =

(
yi −m∗

)′ (S 
)−1 (yi −m∗

)
may be plotted to locate extreme outliers. The parameter m∗ and S are robust estimates
of µ and �.

Singh (1993) recommends using robust M-estimators derived by Maronna (1976) to
robustify plots. However, we recommend using estimates obtained using the multivariate
trimming (MVT) procedure of Gnanadesikan and Kettenring (1972) since Devlin et al.
(1981) showed that the procedure is less sensitive to the number of extreme outliers, called
the breakdown point. For M-estimators the breakdown value is ≤ (1/p) regardless of the
proportion of multivariate outliers. The S estimator of Davies (1987) also tends to have high
breakdowns in any dimension; see Lopuaä and Rousseeuw (1991). For the MVT procedure
the value is equal to α, the fraction of multivariate observations excluded from the sample.

To obtain the robust estimates, one proceeds as follows.

1. Because the MVT procedure is sensitive to starting values, use the Winsorized sam-
ple covariance matrix S 

w using (3.7.7) to calculate its elements and the α-trimmed
mean vector calculated for each variable. Then, calculate Mahalanobis (Mhd) dis-
tances

D2
(i) =

(
yi − y T (α)

)′ (
S 

w
)−1

(
yi − y T (α)

)
2. Set aside a proportion α1 of the n vector observations based on the largest D2

(i) values.

3. Calculate the trimmed multivariate mean vector over the retained vectors and the
sample covariance matrix

S 
α1
= �

n−r

(
yi − y T (α1)

) (
yi − y T (α1)

)′
/ (n − r − 1)

for α1 = r/n. Smooth S 
α1

to ensure that the matrix is positive definite.

4. Calculate the D2
(i) values using the α1 robust estimates

D2
(i) =

(
yi − y T (α1)

)′ (
S 
α1

)−1
(

yi − y T (α1)

)
and order the D2

(i) to find another subset of vectors α2 and repeat step 3.

The process continues until the trimmed mean vector y T and robust covariance ma-
trix S 

αi
converges to S . Using the robust estimates, the raw data are replotted. After mak-

ing appropriate data adjustments for outliers and lack of multivariate normality using some
data transformations, Mardia’s test for skewness and kurtosis may be recalculated to affirm
multivariate normality of the data set under study.
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Example 3.7.1 (Generating MVN Distributions) To illustrate the analysis of multivari-
ate data, several multivariate normal distributions are generated. The data generated are
used to demonstrate several of the procedures for evaluating multivariate normality and
testing hypotheses about means and covariance matrices.

By using the properties of the MVN distribution, recall that if z ∼ Np(0, Ip), then y =
zA+ µ ∼ Np(µ, � = A′A) . Hence, to generate a MVN distribution with mean µ and
covariance matrix �, one proceeds as follows.

1. Specify µ and �.

2. Obtain a Cholesky decomposition for �; call it A.

3. Generate a n × p matrix of N (0, 1) random variables named Z.

4. Transform Z to Y using the expression Y = ZA+U where U is created by repeating
the row vector u′ n times producing an n × p matrix.

In program m3 7 1.sas three data sets are generated, each consisting of two independent
groups and p = 3 variables. Data set A is generated from normally distributed populations
with the two groups having equal covariance matrices. Data set B is also generated from
normally distributed populations, but this time the two groups do not have equal covariance
matrices. Data set C consists of data generated from a non-normal distribution.

Example 3.7.2 (Evaluating Multivariate Normality) Methods for evaluating multivari-
ate normality include, among other procedures, evaluating univariate normality using the
Shapiro-Wilk tests a variable at a time, Mardia’s test of multivariate skewness and kurto-
sis, and multivariate chi-square and beta Q-Q plots. Except for the beta Q-Q plots, there
exists a SAS Institute (1998) macro % MULTINORM that performs these above mentioned
tests and plots. The SAS code in program m3 7 2.sas demonstrates the use of the macro to
evaluate normality using data sets generated in program m3 7 1.sas. Program m3 7 2.sas
also includes SAS PROC IML code to produce both chi-square Q-Q and beta Q-Q plots.

The full instructions for using the MULTINORM macro are included with the macro
program. Briefly, the data = statement is where the data file to be analyzed is specified, the
var = statement is where the variable names are specified, and then in the plot = statement
one can specify whether to produce the multivariate chi-square plot.

Using the data we generated from a multivariate normally distributed population (data
set A, group 1 from program m3 7 1.sas), program m3 7 2.sas produces the output in Ta-
ble 3.7.1 to evaluate normality.

For this data, generated from a multivariate normal distribution with equal covariance
matrices, we see that for each of the three variables individually we do not reject the null
hypothesis of univariate normality based on the Shapiro-Wilk tests. We also do not reject the
null hypothesis of multivariate normality based on Mardia’s tests of multivariate skewness
and kurtosis. It is important to note that p-values for Mardia’s test of skewness and kurtosis
are large sample values. Table VI-VIII in Appendix A must be used with small sample sizes.

When n < 25, one should construct beta Q-Q plots, and not chi-square Q-Q plots.
Program m3 7 2.sas produces both plots. The outputs are shown in Figures 3.7.1 and 3.7.2.
As expected, the plots display a linear trend.
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TABLE 3.7.1. Univariate and Multivariate Normality Tests, Normal Data–Data Set A, Group 1

Multivariate Test
Skewness & Statistic

Variable N Test Kurtosis Value p-value
COL 1 25 Shapiro-Wilk . 0.96660 0.56055
COL 2 25 Shapiro-Wilk . 0.93899 0.14030
COL 3 25 Shapiro-Wilk . 0.99013 0.99592

25 Mardia Skewness 0.6756 3.34560 0.97208
25 Mardia Kurtosis 12.9383 −0.94105 0.34668
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FIGURE 3.7.1. Chi-Square Plot of Normal Data in Set A, Group 1.
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FIGURE 3.7.2. Beta Plot of Normal Data in Data Set A, Group 1
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TABLE 3.7.2. Univariate and Multivariate Normality Tests Non-normal Data, Data Set C, Group 1

Multivariate Test Non-Normal
Skewness and Statistic Data

Variable N Test Kurtosis Value p-value
COL 1 25 Shapiro-Wilk . 0.8257 0.000630989
COL 2 25 Shapiro-Wilk . 0.5387 0.000000092
COL 3 25 Shapiro-Wilk . 0.8025 0.000250094

25 Mardia Skewness 14.6079 72.3441 0.000000000
25 Mardia Kurtosis 31.4360 7.5020 0.000000000

We next evaluate the data that we generated not from a multivariate normal distribution
but from a Cauchy distribution (data set C, group 1, in program m3 7 1.sas); the test results
are given in Table 3.7.2.

We can see from both the univariate and the multivariate tests that we reject the null
hypothesis and that the data are from a multivariate normal population. The chi-square
Q-Q and beta Q-Q plots are shown in Figures 3.7.3 and 3.7.4. They clearly display a
nonlinear pattern.

Program m3 7 2.sas has been developed to help applied researchers evaluate the as-
sumption of multivariate normality. It calculates univariate and multivariate test statistics
and provides both Q-Q Chi-Square and beta plots. For small sample sizes, the critical
values developed by Romeu and Ozturk (1993) should be utilized; see Table VI-VIII in Ap-
pendix A. Also included in the output of program m3 7 2.sas are the tests for evaluating the
multivariate normality for data set A, group2, data set B (groups 1 and 2) and data set C,
group2.

Example 3.7.3 (Normality and Outliers) To illustrate the evaluation of normality and the
identification of potential outliers, the ramus bone data from Elston and Grizzle (1962)
displayed in Table 3.7.3 are utilized. The dependent variables represent the measurements
of the ramus bone length of 20 boys at the ages 8, 8.5, 9, and 9.5 years of age. The data set
is found in the file ramus.dat and is analyzed using the program ramus.sas. Using program
ramus.sas, the SAS UNIVARIATE procedure, Q-Q plots for each dependent variable, and
the macro %MULTINORM are used to assess normality.

The Shapiro-Wilk statistics and the univariate Q-Q plots indicate that each of the de-
pendent variables y1, y2, y3, and y4 (the ramus bone lengths at ages 8, 8.5, 9, and 9.5)
individually appear univariate normal. All Q-Q plots are linear and the W statistics have
p-values 0.3360, 0.6020, 0.5016, and 0.0905, respectively.

Because marginal normality does not imply multivariate normality, we also calculate
Mardia’s test statistics b1,p and b2,p for Skewness and Kurtosis using the macro %MULTI-
NORM. The values are b1,p = 11.3431 and b2,p = 28.9174. Using the large sample
chi-square approximation, the p-values for the tests are 0.00078 and 0.11249, respectively.
Because n is small, tables in Appendix A yield a more accurate test. For α = 0.05, we
again conclude that the data appear skewed.
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FIGURE 3.7.3. Chi-Square Plot of Non-normal Data in Data Set C, Group 2.
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FIGURE 3.7.4. Beta Plot of Non-normal Data in Data Set C, Group 2.
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TABLE 3.7.3. Ramus Bone Length Data

Age in Years
Boy 8 8.5 9 9.5
1 47.8 48.8 49.0 49.7
2 46.4 47.3 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 45.3 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45.0 47.0 47.3 48.3
11 51.2 51.4 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8

To evaluate the data further, we investigate the multivariate chi-square Q-Q plot shown
in Figure 3.7.5 using SAS/INSIGHT interactively.

While the plot appears nonlinear, we cannot tell from the plot displayed which of the ob-
servations may be contributing to the skewness of the distribution. Using the Tool Bar fol-
lowing the execution of the program ramus.sas, we click on “Solutions,” select “Analysis,”
and then select “Interactive Data Analysis.” This opens SAS/INSIGHT. With SAS/INSIGHT
open, we select the Library “WORK” by clicking on the word. This displays the data sets
used in the application of the program ramus.sas. The data set “CHIPLOT” contains the
square of the Mahalanobis distances (MANDIST) and the ordered chi-square Q-Q values
(CHISQ). To display the values, highlight the data set “CHIPLOT” and select “Open”
from the menu. This will display the coordinates of MAHDIST and CHISQ. From the Tool
Bar select “Analyze” and the option “Fit( Y X ).” Clicking on “Fit( Y X ),” move vari-
able MAHDIST to window “Y ” and CHISQ to window “X”. Then, select “Apply” from
the menu. This will produce a plot identical to Figure 3.7.5 on the screen. By holding
the “Ctrl” key and clicking on the extreme upper most observations, the numbers 9 and
12 will appear on your screen. These observations have large Mahalanobis squared dis-
tances: 11.1433 and 8.4963 (the same values calculated and displayed in the output for
the example). None of the distances exceed the chi-square critical value of 11.07 for alpha
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FIGURE 3.7.5. Ramus Data Chi-square Plot
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= 0.05 for evaluating a single outlier. By double clicking on an extreme observation, the
window “Examine Observations” appears. Selecting each of the extreme observations 9,
12, 20, and 8, the chi-square residual values are −1.7029, 1.1893, 2.3651, and 1.3783,
respectively. While the 9th observation has the largest distance value, the imbedded 20th

observation has the largest residual. This often happens with multivariate data. One must
look past the extreme observations.

To investigate the raw data more carefully, we close/cancel the SAS/INSIGHT windows
and re-option SAS/INSIGHT as before using the Tool Bar. However, we now select the
“WORK” library and open the data set “NORM.” This will display the raw data. Holding
the “Ctrl” key, highlight the observations 9, 12, 20, and 8. Then again click on “Analyze”
from the Tool bar and select “Scatterplot (Y X)”. Clicking on y1, y2, y3 and y4, and mov-
ing all the variables to both the “X” and “Y ” windows, select “OK.” This results in a
scatter plot of the data with the variables 8, 9, 12, and 20 marked in bold. Scanning the
plots by again clicking on each of the bold squares, it appears that the 20th observation is
an outlier. The measurements y1 and y2 (ages 8 and 8.5) appear to be far removed from
the measurements y3 and y4 (ages 9 and 9.5). For the 9th observation, y1 appears far
removed from y3 and y4. Removing the 9th observation, all chi-square residuals become
less than 2 and the multivariate distribution is less skewed. Mardia’s skewness statistic
b1,p = 11.0359 now has the p-value of 0.002. The data set remains somewhat skewed. If
one wants to make multivariate inferences using these data, a transformation of the data
should be considered, for example, to principal component scores discussed in Chapter 8.

Example 3.7.4 (Box-Cox) Program norm.sas was used to generate data from a normal
distribution with p = 4 variables, yi . The data are stored in the file norm.dat. Next, the
data was transformed using the nonlinear transformation xi = exp(yi ) to create the data
in the file non-norm.dat. The Box-Cox family of power transformations for x > 0

y =


(
xλ − 1

)
/λ λ �= 0

log x λ = 0


is often used to transform a single variable to normality. The appropriate value to use for
λ is the value that maximizes

L (λ) = −n

2
log

[
n∑

i=1

(yi − y)2 /n

]
+ (λ− 1)

n∑
i−1

log xi

y =
n∑

i−1

(
xλ

i − 1
)
/nλ

Program Box-Cox.sas graphs L (λ) for values of λ : −1.0 (.1) 1.3. Output from execut-
ing the program indicates that the parameter λ $ 0 for the Box-Cox transformation for
the graph of L(λ) to be a maximum. Thus, one would use the logarithm transformation
to achieve normality for the transformed variable. After making the transformation, one
should always verify that the transformed variable does follow a normal distribution. One
may also use the macro ADXTRANS available in SAS/AC software to estimate the optimal
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Box-Cox transformation within the class of power transformations of the form y = xλ.

Using the normal likelihood, the value of λ is estimated and an associated 95% confidence
interval is created for the parameter lambda. The SAS macro is illustrated in the program
unorm.sas. Again, we observe that the Box-Cox parameter λ $ 0.

Exercises 3.7

1. Use program m3 7 1.sas to generate a multivariate normal data set of n1 = n2 = 100
observations with mean structure

µ′1 =
[

42.0 28.4 41.2 31.2 33.4
]

µ′2 =
[

50.9 35.0 49.6 37.9 44.9
]

and covariance matrix

S =


141.49 (Sym)

33.17 53.36
52.59 31.62 122.44
14.33 8.62 31.12 64.69
21.44 16.63 33.22 31.83 49.96


where the seed is 101999.

2. Using the data in Problem 1, evaluate the univariate and multivariate normality of the
data using program m3 7 2.sas.

3. After matching subjects according to age, education, former language training, in-
telligence and language aptitude, Postovsky (1970) investigated the effects of delay
in oral practice at the beginning of second-language learning. The data are provided
in Timm (1975, p. 228). Using an experimental condition with a 4-week delay in
oral practice and a control condition with no delay, evaluation was carried out for
language skills: listening (L), speaking (S), reading (R), and writing (W). The data
for a comprehensive examination given at the end of the first 6 weeks follow in Ta-
ble 3.7.4.

(a) For the data in Table 3.7.4, determine whether the data for each group, Experi-
mental and Control, are multivariate normal. If either group is nonnormal, find
an appropriate transformation to ensure normality.

(b) Construct plots to determine whether there are outliers in the transformed data.
For the groups with outliers, create robust estimates for the joint covariance
matrix.

4. For the Reading Comprehension data found on the Internet link at http://lib.stat.cmu.
edu/DASL/Datafiles/ReadingTestScore.html from a study of the effects of instruction
on reading comprehension in 66 children, determine if the observations follow a
multivariate normal distribution and if there are outliers in the data. Remove the
outliers, and recalculate the mean and covariance matrix. Discuss your findings.
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TABLE 3.7.4. Effects of Delay on Oral Practice.

Experimental Group Control Group

Subject L S R W L S R W

1 34 66 39 97 33 56 36 81

2 35 60 39 95 21 39 33 74

3 32 57 39 94 29 47 35 89

4 29 53 39 97 22 42 34 85

5 37 58 40 96 39 61 40 97

6 35 57 34 90 34 58 38 94

7 34 51 37 84 29 38 34 76

8 25 42 37 80 31 42 38 83

9 29 52 37 85 18 35 28 58

10 25 47 37 94 36 51 36 83

11 34 55 35 88 25 45 36 67

12 24 42 35 88 33 43 36 86

13 25 59 32 82 29 50 37 94

14 34 57 35 89 30 50 34 84

15 35 57 39 97 34 49 38 94

16 29 41 36 82 30 42 34 77

17 25 44 30 65 25 47 36 66

18 28 51 39 96 32 37 38 88

19 25 42 38 86 22 44 22 85

20 30 43 38 91 30 35 35 77

21 27 50 39 96 34 45 38 95

22 25 46 38 85 31 50 37 96

23 22 33 27 72 21 36 19 43

24 19 30 35 77 26 42 33 73

25 26 45 37 90 30 49 36 88

26 27 38 33 77 23 37 36 82

27 30 36 22 62 21 43 30 85

28 36 50 39 92 30 45 34 70

5. Use PROC UNIVARIATE to verify that each variable in file non-norm.dat is non-
normal. Use the macro %MULTINORM to create a chi-square Q-Q plot for the four
variables. Use programs Box-Cox.sas and norm.sas to estimate the parameter λ for a
Box-Cox transformation of each of the other variables in the file non-norm.dat. Ver-
ify that all the variables are multivariate normal, after an appropriate transformation.
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3.8 Tests of Covariance Matrices

a. Tests of Covariance Matrices

In multivariate analysis, as in univariate analysis, when testing hypotheses about means,
three assumptions are essential for valid tests

1. independence

2. multivariate normality, and

3. equality of covariance matrices for several populations or that a covariance matrix
has a specific pattern for one or more populations.

In Section 3.7 we discussed evaluation of the multivariate normal assumption. We now
assume data are normally distributed and investigate some common likelihood ratio tests of
covariance matrices for one or more populations. The tests are developed using the likeli-
hood ratio principle which compares the likelihood function under the null hypothesis to the
likelihood function over the entire parameter space (the alternative hypothesis) assuming
multivariate normality. The ratio is often represented by the statistic λ. Because the exact
distribution of the lambda statistic is often unknown, large sample results are used to obtain
tests. For large samples and under very general conditions, Wald (1943) showed that−2 log
λ converges in distribution to a chi-square distribution under the null hypothesis where the
degrees of freedom are f . The degrees of freedom is obtained by subtracting the number
of independent parameters estimated for the entire parameter space minus the number of
independent parameters estimated under the null hypothesis. Because tests of covariance
matrices involves variances and covariances, and not means, the tests are generally very
sensitive to lack of multivariate normality.

b. Equality of Covariance Matrices

In testing hypotheses regarding means in k independent populations, we often require that
the independent covariance matrices �1, �2, . . . , �k be equal. To test the hypothesis

H : �1 = �2 = · · · = �k (3.8.1)

we construct a modified likelihood ratio statistic; see Box (1949). Let Si denote the unbi-
ased estimate of �i for the i th population, with ni independent p-vector valued observa-
tions (ni ≥ p) from the MVN distribution with mean µi and covariance matrix �i . Setting
n =∑k

i=1 ni and vi = ni − 1, the pooled estimate of the covariance matrix under H is

S =
k∑

i=1

vi Si/(n − k) = E/ve (3.8.2)

where ve = n − k. To test (3.8.1), the statistic

W = ve log |S| −
k∑

i=1

vi log |Si | (3.8.3)
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is formed. Box (1949, 1950) developed approximations to W using either a χ2 or an F
approximation. Details are included in Anderson (1984). The test is commonly called Box’s
M test where M is the likelihood ratio statistic. Multiplying W by ρ = 1− C where

C = 2p2 + 3p − 1

6 (p + 1) (k − 1)

[
k∑

i=1

1

vi
− 1

ve

]
(3.8.4)

the quantity

X2 = (1− C)W = −2ρ log M
d−→ χ2( f ) (3.8.5)

where f = p (p + 1) (k − 1)/2. Thus, to test H in (3.8.1) the hypothesis is rejected if
X2 > χ2

1−α( f ) for a test of size α. This approximation is reasonable provided ni > 20 and
both p and k are less than 6. When this is not the case, an F approximation is used.

To employ the F approximation, one calculates

C0 = (p − 1) (p + 2)

6 (k − 1)

[
k∑

i=1

1

v2
i

− 1

v2
e

]

f0 = ( f + 2) /
∣∣∣C0 − C2

∣∣∣
(3.8.6)

For C0 − C2 > 0, the statistic

F = W / a
d−→ F( f, f0) (3.8.7)

is calculated where a = f/[1− C − ( f/ f0)]. If C0 − C2 < 0, then

F = f0W / f (b −W )
d−→ F( f, f0) (3.8.8)

where b = f0/ (1− C + 2/ f0). The hypothesis of equal covariances is rejected if F >

F1−α
( f, f0)

for a test of size α; see Krishnaiah and Lee (1980).

Both the χ2 and F approximations are rough approximations. Using Box’s asymptotic
expansion for X2 in (3.8.5), as discussed in Anderson (1984, p. 420), the p-value of the
test is estimated as

α p = P
(

X2 ≥ X2
0

)
= P(χ2

f ≥ X2
0)

+ ω
[

P(χ2
f+4 ≥ X2

0)− P
(
χ2

f ≥ X2
0

)]
+ O

(
v−3

e

)
where X2

0 is the calculated value of the test statistic in (3.8.5) and

ω =
p (p + 1)

[
(p − 1) (p + 2)

[∑k
i=1

1
vi
− 1

ve

]
− 6 (k − 1) (1− ρ)2

]
48ρ2

(3.8.9)

For equal vi , Lee et al. (1977) developed exact values of the likelihood ratio test for
vi = (p + 1) (1) 20 (5) 30, p = 2 (1) 6, k = 2 (1) 10 and α = 0.01, 0.05 and 0.10.
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TABLE 3.8.1. Box’s Test of �1 = �2χ
2 Approximation.

XB V1 PROB XB
1.1704013 6 0.9783214

TABLE 3.8.2. Box’s Test of �1 = �2 F Approximation.

FB V1 PROB FB
0.1949917 16693.132 0.9783382

Layard (1974) investigated the robustness of Box’s M test. He states that it is so severely
affected by departures from normality as to make it useless; and that under nonnormality
and homogeneity of covariance matrices, the M test is a test of multivariate normality.
Layard (1974) proposed several robust tests of (3.8.1).

Example 3.8.1 (Testing the Equality of Covariance Matrices) As an example of testing
for the equality of covariance matrices, we utilize the data generated from multivariate
normal distributions with equal covariance matrices, data set A generated by program
m3 7 1.sas. We generated 25 observations from a normal distribution withµ′1 = [6, 12, 30]
and 25 observations with µ′2 = [4, 9, 20]; both groups have covariance structure

� =
 7 2 0

2 6 0
0 3 5


Program m3 8 1.sas was written to test �1 = �2 for data set A. Output for the chi-square
and F tests calculated by the program are shown in Tables 3.8.1 and 3.8.2. The chi-square
approximation works well when ni > 20, p < 6, and k < 6. The F approximation can
be used for small ni and p, and for k > 6. By both the chi-square approximation and
the F approximation, we fail to reject the null hypothesis of the equality of the covariance
matrices of the two groups. This is as we expected since the data were generated from
populations having equal covariance matrices.

The results of Box’s M test for equal covariance matrices for data set B, which was
generated from multivariate normal populations with unequal covariance matrices, are
provided in Table 3.8.3. As expected, we reject the null hypothesis that the covariance
matrices are equal.

As yet a third example, Box’s M test was performed on data set C which is generated
from non-normal populations with equal covariance matrices. The results are shown in
Table 3.8.4. Notice that we reject the null hypothesis that the covariance matrices are equal;
we however know that the two populations have equal covariance matrices. This illustrates
the effect of departures from normality on Box’s test; erroneous results can be obtained if
data are non-normal.

To obtain the results in Table 3.8.3 and Table 3.8.4, program m3 8 1.sas is executed two
times by using the data sets exampl.m371b and exampl.m371c.
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TABLE 3.8.3. Box’s Test of �1 = �2χ
2 Data Set B.

χ2 Approximation F Approximation

XB VI PROB XB FB VI PROB FB
43.736477 6 8.337E-8 7.2866025 16693.12 8.6028E-8

TABLE 3.8.4. Box’s Test of �1 = �2χ
2 Data Set C.

χ2 Approximation F Approximation
XB VI PROB XB FB VI PROB FB

19.620669 6 0.0032343 3.2688507 16693.132 0.0032564

In addition to testing for the equality of covariance matrices, a common problem in mul-
tivariate analysis is testing that a covariance matrix has a specific form or linear structure.
Some examples include the following.

1. Specified Value
H : � = �o (�o is known)

2. Compound Symmetry

H : � = σ 2


1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ
...

...
...

...

ρ ρ ρ · · · 1

 = σ 2 [(1− ρ) I+ ρJ]

where J is a square matrix of 1s, ρ is the intraclass correlation, and σ 2 is the common
variance. Both σ 2 and ρ are unknown.

3. Sphericity
H : � = σ 2I (σ unknown)

4. Independence, for � = (�i j )

H : �i j = 0 for i �= j

5. Linear Structure

H : � =
k∑

i=1

Gi ⊗�i

where G1,G2, . . . ,Gk are known t × t matrices, and �1, �2, . . . , �k are unknown
matrices of order p × p.

Tests of the covariance structures considered in (1)-(5) above have been discussed by
Krishnaiah and Lee (1980). This section follows their presentation.
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c. Testing for a Specific Covariance Matrix

For multivariate data sets that have a large number of observations in which data are studied
over time or several treatment conditions, one may want to test that a covariance matrix is
equal to a specified value. The null hypothesis is

H : � = �o (known) (3.8.10)

For one population, we let ve = n − 1 and for k populations, ve = ∑
i (ni − 1) = n − k.

Assuming that the n p-vector valued observations are sampled from a MVN distribution
with mean µ and covariance matrix �, the test statistic to test (3.8.10) is

W = −2 log λ = ve

[
log |�o| − log |S| + tr

(
S�−1

o

)
− p

]
where S = E/ve is an unbiased estimate of �. The parameter λ is the standard likelihood
ratio criterion. Korin (1968) developed approximations to W using both a χ2 and an F
approximation. Multiplying W by ρ = 1− C where

C =
(

2p2 + 3p − 1
)
/6ve(p + 1) (3.8.11)

the quantity

X2 = (1− C)W = −2ρ log λ
d−→ χ2( f )

where f = p(p + 1)/2. Alternatively, the F statistic is

F = W /a
d−→ F( f, f0) (3.8.12)

where

f0 = ( f + 2)/
∣∣C0 − C2

∣∣
C0 = (p − 1)(p + 2)/6ve

a = f / [1− C − ( f / f0)]
Again, H : � = �o is rejected if the test statistic is large. A special case of H is to set
�o = I, a test that the variables are independent and have equal unit variances.

Using Box’s asymptotic expansion, Anderson (1984, p. 438), the p-value of the test is
estimated as

α p = P(−2ρ log λ ≥ X2
0) (3.8.13)

= P(χ2
f ≥ X2

0)+ ω[P(χ2
f+4 ≥ X2

0)− P(χ2
f ≥ X2

0)] /ρ2 + O(v−3
e )

for
ω = p(2p4 + 6p3 + p2 − 12p − 13) / 288(v2

e )(p + 1)

For p = 4(1)10 and small values of ve, Nagarsenker and Pillai (1973a) have developed
exact critical values for W for the significant levels α = 0.01 and 0.05.
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TABLE 3.8.5. Test of Specific Covariance Matrix Chi-Square Approximation.

S EO
7.0874498 3.0051207 0.1585046 6 0 0
3.0051207 5.3689862 3.5164255 0 6 0
0.1585046 3.5164235 5.528464 0 6

X SC DFX SC
48.905088 6 PROB XSC

7.7893E-9

Example 3.8.2 (Testing � = �o) Again we use the first data set generated by program
m3 7 1.sas which is from a multivariate normal distribution. We test the null hypothesis
that the pooled covariance matrix for the two groups is equal to

�o =
 6 0 0

0 6 0
0 0 6


The SAS PROC IML code is included in program m3 8 1.sas. The results of the test are

given in Table 3.8.5. The results show that we reject the null hypothesis that � = �o.

d. Testing for Compound Symmetry

In repeated measurement designs, one often assumes that the covariance matrix � has
compound symmetry structure. To test

H : � = σ 2 [(1− ρ) I+ ρJ] (3.8.14)

we again assume that we have a random sample of vectors from a MVN distribution with
mean µ and covariance matrix �. Letting S be an unbiased estimate of � based on ve

degrees of freedom, the modified likelihood ratio statistic is formed

Mx = −ve log
{
|S| /

(
s2
)p

(1− r)p−1 [1+ (p − 1) r ]
}

(3.8.15)

where S = [si j ] and estimates of σ 2 and σ 2ρ are

s2 =
p∑

i=1

sii/p and s2r =
∑
i �= j

si j / p(p − 1) (3.8.16)

The denominator of Mx is

|So| =

∣∣∣∣∣∣∣∣∣∣


s2 s2r · · · s2r
s2r s2 · · · s2r
...

...
...

s2r s2r · · · s2


∣∣∣∣∣∣∣∣∣∣
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TABLE 3.8.6. Test of Comparing Symmetry χ2 Approximation.

CHIMX DEMX PRBCHIMX
31.116647 1 2.4298E-8

so that Mx = −ve log {|S| / |So|} where s2r is the average of the nondiagonal elements
of S.

Multiplying Mx by (1− Cx ) for

Cx = p(p + 1)2(2p − 3)/6(p − 1)(p2 + p − 4)ve (3.8.17)

Box (1949) showed that

X2 = (1− Cx )Mx
d−→ χ2( f ) (3.8.18)

for f = (p2 + p− 4)/2, provided ni > 20 for each group and p < 6. When this is not the
case, the F approximation is used. Letting

Cox = p
(

p2 − 1
)
(p + 2)

6(p2 + p − 4)v2
e

fox = ( f + 2) /
∣∣∣Cox − C2

x

∣∣∣
the F statistic is

F = (1− Cx − f )Mx/ fox
d−→ F( f, fox ) (3.8.19)

Again, H in (3.8.16) is rejected for large values of X2 or F .
The exact critical values for the likelihood ratio test statistic for p = 4(1)10 and small

values of ve were calculated by Nagarsenker (1975).

Example 3.8.3 (Testing Compound Symmetry) To test for compound symmetry we again
use data set A, and the sample estimate of S pooled across the two groups. Thus, ve = n−r
where r = 2 for two groups. The SAS PROC IML code is again provided in program
m3 8 1.sas. The output is shown in Table 3.8.6. Thus, we reject the null hypothesis of com-
pound symmetry.

e. Tests of Sphericity

For the general linear model, we assume a random sample of n p-vector valued observa-
tions from a MVN distribution with mean µ and covariance matrix � = σ 2I. Then, the p
variables in each observation vector are independent with common variance σ 2. To test for
sphericity or independence given a MVN sample, the hypothesis is

H : � = σ 2I (3.8.20)

The hypothesis H also arises in repeated measurement designs. For such designs, the
observations are transformed by an orthogonal matrix Mp×(p−1) of rank (p − 1) so the
M′M = I(p−1). Then, we are interested in testing

H :M′�M = σ 2I (3.8.21)
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where again σ 2 is unknown. For these designs, the test is sometimes called the test of
circularity. The test of (3.8.21) is performed in the SAS procedure GLM by using the RE-
PEATED statement. The test is labeled the “Test of Sphericity Applied to Orthogonal Com-
ponents.” This test is due to Mauchly (1940) and employs Box’s (1949) correction for a
chi-square distribution, as discussed below. PROC GLM may not be used to test (3.8.20).
While it does produce another test of “Sphericity,” this is a test of sphericity for the original
variables transformed by the nonorthogonal matrix M′. Thus, it is testing the sphericity of
the p − 1 variables in y∗ =M′y, or that the cov (y∗) =M′�M = σ 2I.

The likelihood ratio statistic for testing sphericity is

λs =
{|S| / [tr S / p]p}n/2 (3.8.22)

or equivalently
� = (λs)

2/n = |S| /[tr S / p]p (3.8.23)

where S is an unbiased estimate of � based on ve = n−1 degrees of freedom; see Mauchly
(1940). Replacing n by ve,

W = −ve log �
d−→ χ2( f ) (3.8.24)

with degrees of freedom f = (p − 1)(p + 2)/2. To improve convergence, Box (1949)
showed that for

C = (2p2 + p + 2)/6pve

that

X2 = −ve(1− C) log �

= −
(
ve − 2p2 + p + 2

6p

)
log �

d−→ χ2 ( f ) (3.8.25)

converges more rapidly than W . The hypotheses is rejected for large values of X2 and
works well for n > 20 and p < 6. To perform the test of circulariy, one replaces S with
M′SM and p with p− 1 in the test for sphericity. For small samples sizes and large values
of p, Box (1949) developed an improved F approximation for the test.

Using Box’s asymptotic expansion, the p-value for the test is more accurately estimated
using the expression

α p = P(−veρ log λ2 ≥ X2
0) = P(X2 ≥ X2

0) (3.8.26)

= P
(
χ2

f ≥ X2
0

)
+ ω

[
P
(
χ2

f+4 ≥ X2
0

)
− P(χ2

f ≥ X2
0)
]
+ O(v−3

e )

for ρ = 1− C and

ω = (p + 2)(p − 1)(2p3 + 6p + 3p + 2)

288p2v2
eρ

2

For small values of n, p = 4(1)10 and α = 0.05, Nagarsenker and Pillai (1973) pub-
lished exact critical values for �.
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An alternative expression for � is found by solving the characteristic equation |�−λI| =
0 with eigenvalues λ1, λ2, . . . , λp. Using S to estimate �,

� =
p∏

i=I

λ̂i/

[∑
i

λ̂i/p

]p

(3.8.27)

where λ̂i are the eigenvalues of S. Thus, testing H : � = σ 2I is equivalent to testing that
the eigenvalues of � are equal, λ1 = λ2 = · · · = λp. Bartlett (1954) developed a test of
equal λi that is equal to the statistic X2 proposed by Box (1949). We discuss this test in
Chapter 8.

Given the importance of the test of independence with homogeneous variance, numerous
tests have been proposed to test H : � = σ 2I. Because the test is equivalent to an inves-
tigation of the eigenvalues of |� − λI| = 0, there is no uniformly best test of sphericity.
However, John (1971) and Sugiura (1972) showed that a locally best invariant test depends
on the trace criterion, T , where

T = tr(S2)/ [tr S]2 (3.8.28)

To improve convergence, Sugiura showed that

W = ve p

2

[
p tr

(
S2

)
(tr S)2

− 1

]
d−→ χ2 ( f )

where f = (p − 1) (p + 2) /2 = 1
2 p(p+1)−1. Carter and Srivastava (1983) showed that

under a broad class of alternatives that both tests have the same power up to O(v
−3/2
e ).

Cornell et al. (1992) compared the two criteria and numerous other proposed statistics
that depend on the roots λ̂i of S. They concluded that the locally best invariant test was
more powerful than any of the others considered, regardless of p and n ≥ p.

Example 3.8.4 (Test of Sphericity) In this example we perform Mauchly’s test of spheric-
ity for the pooled covariance matrix for data set A. Thus, k = 2. To test a single group, we
would use k = 1. Implicit in the test is that �1 = �2 = � and we are testing that � = σ 2I.
We also include a test of “pooled” circularity. That M′�M = σ 2I for M′M = I(p−1). The
results are given in Table 3.8.7. Thus, we reject the null hypothesis that the pooled covari-
ance matrix has spherical or circular structure.

To test for sphericity in k populations, one may first test for equality of the covariance
matrices using the nominal level α/2. Given homogeneity, one next tests for sphericity us-
ing α/2 so that the two tests control the joint test near some nominal level α. Alternatively,
the joint hypothesis

H : �1 = �2 = · · · = �k = σ 2I (3.8.29)

may be tested using either a likelihood ratio test or Rao’s score test, also called the La-
grange multiplier test. Mendoza (1980) showed that the modified likelihood ratio statistic
for testing (3.8.29) is

W = −2 log M = pve log [tr(A)/ve p] −
k∑

i=1

vi log |Si |
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TABLE 3.8.7. Test of Sphericity and Circularity χ2 Approximation.

Sphericity df Circularity df
(p-value) (p-value)

Mauchly’s test 48.702332 5 28.285484 2
(2.5529E-9) (7.2092E-7)

Sugiura test 29.82531 5 21.050999 2
(0.000016) (0.0000268)

where M is the likelihood ratio test statistic of H ,

n =
k∑

i=1

ni , vi = ni − 1, ve = n − k, and A =
k∑

i=1

vi Si

Letting ρ = 1− C where

C =
{[
ve p2 (p + 1) (2p + 1)− 2ve p2

] [∑k
i=1 1/vi

]
− 4

}
6ve p [kp (p + 1)− 2]

Mendoza showed that

χ2 = (1− C) W = −2ρ log M
d−→ χ2 ( f ) (3.8.30)

where f = [kp(p + 1)/2] − 1.
An asymptotically equivalent test of sphericity in k populations is Rao’s (1947) score test

which uses the first derivative of the log likelihood called the vector of efficient scores; see
Harris (1984). Silvey (1959) independently developed the test and called it the Lagrange
Multiplier Test. Harris (1984) showed that

W = ve p

2


ve p

[∑k
i=1 vi tr(Si )

2
]

[∑k
i=1 vi tr(Si )

]−1

 d−→ χ2 ( f ) (3.8.31)

where f = (kp(p + 1)/2) − 1. When k = 1, the score test reduces to the locally best
invariant test of sphericity. When k > 2, it is not known which test is optimal. Observe that
the likelihood ratio test does not exist if p > ni for some group since the |Si | = 0. This is
not the case for the Rao’s score test since the test criterion involves calculating the trace of
a matrix.

Example 3.8.5 (Sphericity in k Populations) To test for sphericity in k populations, we
use the test statistic developed by Harris (1984) given in (3.8.31). For the example, we use
data set A for k = 2 groups. Thus, we are testing that �1 = �2 = σ 2I. Replacing Si by
C′Si C where C′C = I(p−1)is normalized, we also test that C′�1C = C′�2C = σ 2I, the
test of circularity. Again, program m3 8 1.sas is used. The results are given in Table 3.8.8.
Both hypotheses are rejected.
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TABLE 3.8.8. Test of Sphericity and Circularity in k Populations.

χ2 Approximation
W DFKPOP PROB K POP

Sphericity 31.800318 11 0.0008211

Circularity 346.1505 5 < 0.0001

f. Tests of Independence

A problem encountered in multivariate data analysis is the determination of the indepen-
dence of several groups of normally distributed variables. For two groups of variables, let
Yp×1 and Xq×1 represent the two subsets with covariance matrix

� =
[

�YY �YX
�XY �XX

]
The two sets of variables are independent under joint normality if �XY = 0. The hypothesis
of independence is H : �XY = 0. This test is related to canonical correlation analysis
discussed in Chapter 8.

In this section we review the modified likelihood ratio test of independence developed by
Box (1949). The test allows one to test for the independence of k groups with pi variables
per group.

Let Y j ∼ I Np(µ, �), for j = 1, 2, . . . , n where p =∑k
i=1 pi

µ =


µ1
µ2
...

µk

 and � =


�11 �12 · · · �1k

�21 �22 · · · �2k
...

...
...

�k1 �k2 · · · �kk


then the test of independence is

H : �i j = 0 for i �= j = 1, 2, . . . , k (3.8.32)

Letting

W = |S|
|S11| · · · |Skk | =

|R|
|R11| · · · |Rkk |

where S is an unbiased estimate of � based on ve degrees of freedom, and R is the sample
correlation matrix, the test statistic is

X2 = (1− C)ve log W
d−→ χ2( f ) (3.8.33)



144 3. Multivariate Distributions and the Linear Model

where

Gs =
[

k∑
i=1

pi

]s

−
k∑

i=1

ps
i for s = 2, 3, 4

C = (2G3 + 3G2) /12 f ve

f = G2/2

The hypothesis of independence is rejected for large values of X2. When p is large, Box’s
F approximation is used. Calculating

f0 = ( f + 2) /
∣∣∣C0 − C2

∣∣∣
C0 = (G4 + 2G3 − G2) /12 f v2

e

V = −ve log W

for C0 − C2 > 0, the statistic

F = V/a
d−→ F( f, f0) (3.8.34)

where a = f/[1− C − ( f / f0)]. If C0 − C2 < 0 then

F = f0V/ f (b − V )
d−→ F( f, f0) (3.8.35)

where b = f0/(1− C + 2/ f0). Again, H is rejected for large values of F .
To estimate the p-value for the test, Box’s asymptotic approximation is used, Anderson

(1984, p. 386). The p-value of the test is estimated as

α p = P
(
−m log W ≥ X2

0

)
= P

(
χ2

f ≥ X2
0

)
+ ω

m2

[
P
(
χ2

f+4 ≥ X2
0

)
− P

(
χ2

f ≥ X2
0

)]
+ O

(
m−3

)
(3.8.36)

where

m = ve − 3

2
− G3

3G2

ω = G4/48− 5G2/96− G3/72G2

A special case of the test of independence occurs when all pi = 1. Then H becomes

H : � =


σ 11 0 · · · 0
0 σ 22 · · · 0
...

...
...

0 0 · · · σ pp


which is equivalent to the hypothesis H : P = I where P is the population correlation
matrix. For this test,

W = |S|∏p
i=1 sii

= |R|
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and X2 becomes
X2 = [ve − (2p + 5) /6] log W

d−→ χ2 ( f ) (3.8.37)

where f = p (p − 1) /2, developed independently by Bartlett (1950, 1954).

Example 3.8.6 (Independence) Using the pooled within covariance matrix S based on
ve = n1 + n2 − 2 = 46 degrees of freedom for data set A, we test that the first set of two
variables is independent of the third. Program m3 8 1.sas contains the SAS IML code to
perform the test. The results are shown in Table 3.8.9. Thus, we reject the null hypothesis
that the first two variables are independent of the third variable for the pooled data.

TABLE 3.8.9. Test of Independence χ2 Approximation.

INDCH1 INDF INDPROB
34.386392 2 3.4126E-8

g. Tests for Linear Structure

When analyzing general linear mixed models in ANOVA designs, often called components
of variance models, the covariance matrix for the observation vectors yn has the general
structure � =∑k

i=1 σ
2
i Zi Z′i+σ 2

eIn . Associating � with � and Gi with the known matrices
Zi Z′i and In, the general structure of � is linear where σ 2

i are the components of variance

� = σ 2
1G1 + σ 2

2G2 + · · · + σ 2
kGk (3.8.38)

Thus, we may want to test for linear structure.
In multivariate repeated measurement designs where vector-valued observations are ob-

tained at each time point, the structure of the covariance matrix for normally distributed
observations may have the general form

� = G1 ⊗�1 +G2 ⊗�2 + · · · +Gk ⊗�k (3.8.39)

where the Gi are known commutative matrices and the �i matrices are unknown. More
generally, if the Gi do not commute we may still want to test that � has linear structure;
see Krishnaiah and Lee (1976).

To illustrate, suppose a repeated measurement design has t time periods and at each time
period a vector of p dependent variables are measured. Then for i = 1, 2, . . . , n subjects
an observation vector has the general form y′ = (y′1, y′2, . . . , y′t ) where each yi is a p × 1
vector of responses. Assume y′ follows a MVN distribution with mean µ and covariance
matrix

� =


�11 �12 · · · �1t

�21 �22 · · · �2t
...

...
...

�t1 �t2 · · · �t t

 (3.8.40)
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Furthermore, assume there exists an orthogonal matrix Mt×q of rank q = t − 1 such that
(M′ ⊗ Ip)y = y∗ where M′M = Iq . Then the covariance structure for y∗ is

�∗pq × pq =
(
M⊗ Ip

)′
�

(
M⊗ Ip

)
(3.8.41)

The matrix �∗ has multivariate sphericity (or circularity) structure if

�∗ = Iq ⊗�e (3.8.42)

where �e is the covariance matrix for yi .
Alternatively, suppose � has the structure given in (3.8.40) and suppose �i i = �e +�λ

for i = j and �i j = �λ for i �= j , then � has multivariate compound symmetry structure

� = It ⊗�e + Jt×t ⊗�λ (3.8.43)

where J is a matrix of 1s. Reinsel (1982) considers multivariate random effect models with
this structure. Letting �i j = �1 for i = j and �i j = �λ for i �= j , (3.8.43) has the form

� = It ⊗�1 + (Jt×t − It )�2

Krishnaiah and Lee (1976, 1980) call this the block version intraclass correlation matrix.
The matrix has multivariate compound symmetry structure. These structures are all special
cases of (3.8.39).

To test the hypothesis

H : � =
k∑

i=1

Gi ⊗�i (3.8.44)

where the Gi are known q×q matrices and �i is an unknown matrix of order p× p, assume
we have a random sample of n vectors y′ = (x′1, x′2, . . . , x′q) from a MVN distribution
where the subvectors xi are p × 1 vectors. Then the cov (y) = � = [

�i j
]

where �i j are
unknown covariance matrices of order p × p, or y ∼ Npq(µ, �). The likelihood ratio
statistic for testing H in (3.8.44) is

λ = ∣∣�̂∣∣n/2
/

∣∣∣∣∣
k∑

i=1

Gi ⊗ �̂i

∣∣∣∣∣
n/2

(3.8.45)

where

n� =
n∑

i=1

(yi − y) (yi − y)′

and �̂i is the maximum likelihood estimate of �i which is usually obtained using an itera-
tive algorithm, except for some special cases. Then,

−2 log λ
d−→ χ2 ( f ) (3.8.46)

As a special case of (3.8.44), we consider testing that �∗ has multivariate sphericity
structure given in (3.8.42), discussed by Thomas (1983) and Boik (1988). Here k = 1 and
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Iq = G1 Assuming �∗11 = �∗22 = · · · = �∗qq = �e, the likelihood ratio statistic for
multivariate sphericity is

λ =
∣∣�̂∣∣n/2∣∣Iq ⊗ �̂e

∣∣n/2
=

∣∣�̂∣∣n/2∣∣�̂e
∣∣nq/2

(3.8.47)

with f = [pq (pq + 1)− p (p + 1)] /2 = p (q − 1) (pq + p + 1) /2 and −2 log λ
d−→

χ2 ( f ).
To estimate �̂, we construct the error sum of square and cross products matrix

E = (
M⊗ Ip

)′ [ n∑
i=1

(yi − y) (yi − y)′
] (

M⊗ Ip
)

Then, n�̂ = E. Partitioning E into p× p submatrices, E = [
Ei j

]
for i, j = 1, 2, . . . , q =

t − 1, n�̂e = ∑q
i=1 Ei i/q. Substituting the estimates into (3.8.47), the likelihood ratio

statistic becomes

λ = En/2/|q−1
q∑

i=1

Ei i |nq/2 (3.8.48)

as developed by Thomas (1983). If we let αi (i = 1, . . . , pq) be the eigenvalues of E, and
β i (i = 1, . . . , p) the eigenvalues of

∑q
i=1 Ei i , a simple form of (3.8.48) is

U = −2 log λ = n[q
p∑

i=1

log
(
β i

)− pq∑
i=1

log (αi )] (3.8.49)

When p or q are large relative to n, the asymptotic approximation U may be poor. To
correct for this, Boik (1988) using Box’s correction factor for the distribution of U showed
that the

P (U ≤ Uo) = P
(
ρ∗U ≤ ρ∗Uo

)
× (1− ω) P

(
X2

f ≤ ρ∗Uo

)
+ ωP

(
X2

f+4 ≤ ρ∗Uo

)
+ O

(
v−3

e

)
(3.8.50)

where f = p (q + 1) (pq + p + 1), and

ρ = 1− p[2p2
(

q4 − 1
)
+ 3p

(
q3 − 1

)
−

(
q2 − 1

)
]/12q f ve

ρ∗ = ρve/n (3.8.51)

ω =
(

2ρ2
)−1

{[
(pq − 1) pq (pq + 1) (pq + 2)

24ve

]
−

[
(p − 1) p (p + 1) (p + 2)

24q2v2
e

][
( f − ρ)2

2

]}
and ve = n − R (X). Hence, the p-value for the test of multivariate sphericity using Box’s
correction becomes

P
(
ρ∗U ≥ Uo

) = (1− ω) P
(

X2
f ≥ Uo

)
+ ωP

(
X2

f+4 ≥ Uo

)
+ O

(
v−3

e

)
(3.8.52)
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TABLE 3.8.10. Test of Multivariate Sphericity Using Chi-Square and Adjusted Chi-Square Statistics

CHI 2 DF PVALUE
74.367228 15 7.365E-10

RHO
0.828125
OMEGA

0.0342649
RO CHI 2 CPVALUE
54.742543 2.7772E-6

Example 3.8.7 (Test of Circularity) For the data from Timm (1980, Table 7.2), used to
illustrate a multivariate mixed model (MMM) and a doubly multivariate model (DMM),
discussed in Chapter 6, Section 6.9, and illustrated by Boik (1988), we test the hypothesis
that �∗ has the multivariate structure given by (3.8.41). Using (3.8.49), the output for the
test using program m3 8 7.sas is provided in Table 3.8.10.

Since −2 log λ = 74.367228 with d f = 15 with a p-value for the test equal to 7.365×
10−10 or using Box’s correction, ρ∗U = 54.742543 with the p-value = 2.7772 ×10−6, we
reject the null hypothesis of multivariate sphericity.

In the case of multivariate sphericity, the matrix �∗ = Iq ⊗�e. More generally, suppose
�∗ has Kronecker structure, �∗ = �q ⊗ �e where both matrices are unknown. For this
structure, the covariance matrix for the q = t−1 contrasts in time is not the identity matrix.
Models that permit the analysis of data with a general Kronecker structure are discussed in
Chapter 6.

Estimation and tests of covariance matrix structure is a field in statistics called structural
equation modeling. While we will review this topic in Chapter 10, the texts by Bollen
(1989) and Kaplan (2000) provide a comprehensive treatment of the topic.

Exercises 3.8

1. Generate a multivariate normal distribution with mean structure and covariance struc-
ture given in Exercises 3.7.1 for n1 = n2 = 100 and seed 1056799.

(a) Test that �1 = �2 .

(b) Test that the pooled � = σ 2I and that � = σ 2 [(1− ρ) I + ρJ] .

(c) Test that �1 = �2 = σ 2I and that C′�1C = C′�2C = σ 2I .

2. For the data in Table 3.7.3, determine whether the data satisfy the compound sym-
metry structure or more generally has circularity structure.

3. For the data in Table 3.7.3, determine whether the measurements at age 8 and 8.5 are
independent of the measurements at ages 9 and 9.5.
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4. Assume the data in Table 3.7.3 represent two variables at time one, the early years
(ages 8 and 8.5), and two variables at the time two, the later years (ages 9 and 9.5).
Test the hypothesis that the matrix has multivariate sphericity (or circularity) struc-
ture.

5. For the data in Table 3.7.4, test that the data follow a MVN distribution and that
�1 = �2.

3.9 Tests of Location

A frequently asked question in studies involving multivariate data is whether there is a
group difference in mean performance for p variables. A special case of this general prob-
lem is whether two groups are different on p variables where one group is the experimental
treatment group and the other is a control group. In practice, it is most often the case that
the sample sizes of the groups are not equivalent possibly due to several factors including
study dropout.

a. Two-Sample Case, �1 = �2 = �

The null hypothesis for the analysis is whether the group means are equal for all variables

H :


µ11
µ12
...

µ1p

 =


µ21
µ22
...

µ2p

 orµ1 = µ2 (3.9.1)

The alternative hypothesis is A : µ1 �= µ2. The subjects in the control group i =
1, 2, . . . , n1 are assumed to be a random sample from a multivariate normal distribution,
Yi ∼ I Np (µ1, �) . The subjects in the experimental group, i = n1 + 1, . . . , n2 are
assumed independent of the control group and multivariate normally distributed: Xi ∼
I Np (µ2, �). The observation vectors have the general form

y′i = [yi1, yi2, . . . , yip]
x′i = [xi1, xi2, . . . , xip] (3.9.2)

where y = ∑n1
i=1 yi/n1 and x = ∑n2

i=n1+1 xi/n2. Because �1 = �2 = �, an unbi-
ased estimate of the common covariance matrix � is the pooled covariance matrix S =
[(n1 − 1)E1 + (n2 − 1)E2]/(n1 + n2 − 2) where Ei is the sum of squares and cross prod-
ucts (SSCP) matrix for the i th group computed as

E1 =
n1∑

i=1

(yi − y) (yi − y)′

E2 =
n2∑

i=n1+1

(xi − x) (xi − x)′
(3.9.3)
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To test H in (3.9.1), Hotelling’s T 2 statistic derived in Example 3.5.2 is used. The statis-
tic is

T 2 =
(

n1n2

n1 + n2

)
(y− x)′ S−1 (y− x)

=
(

n1n2

n1 + n2

)
D2 (3.9.4)

Following the test, one is usually interested in trying to determine which linear combina-
tion of the difference in mean vectors led to significance. To determine the significant linear
combinations, contrasts of the form ψ = a′ (µ1 − µ2) = a′� are constructed where the
vector a is any vector of real numbers. The 100 (1− α)% simultaneous confidence interval
has the general structure

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂ (3.9.5)

where ψ̂ is an unbiased estimate of ψ , σ̂ ψ̂ is the estimated standard deviation of ψ̂ , and cα
is the critical value for a size α test. For the two-group problem,

ψ̂ = a′ (y− x)

σ̂ 2
ψ̂
=

(
n1 + n2

n1n2

)
a′Sa (3.9.6)

c2
α =

pve

ve − p + 1
F1−α (p, ve − p + 1)

where ve = n1 + n2 − 2.
With the rejection of H, one first investigates contrasts a variable at a time by selecting

a′i = (0, 0, . . . , 0, 1i , 0, . . . , 0) for 1, 2, . . . , p where the value one is in the i th position.
Although the contrasts using these ai are easy to interpret, none may be significant. How-
ever, when H is rejected there exists at least one vector of coefficients that is significantly
different from zero, in that | ψ̂ |> cασ̂ ψ̂ , so that the confidence set does not cover zero.

To locate the maximum contrast, observe that

T 2 =
(

n1n2

n1 + n2

)
(y− x)′ S−1 (y− x)

= ve

(
1

n1
+ 1

n2

)−1

(y− x)′ E−1 (y− x)

= ve tr

[
(y− x)

(
1

n1
+ 1

n2

)−1

(y− x)′ E−1

]

= ve tr
(

HE−1
)

(3.9.7)

where E = veS and ve = n1+n2−2 so that T 2 = veλ1 where λ1 is the root of |H− λE| =
0. By Theorem 2.6.10,

λ1 = max
a

(
a′Ha/a′Ea

)
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so that
T 2 = ve max

a

(
a′Ha/a′Ea

)
(3.9.8)

where a is the eigenvector of |H− λE| = 0 associated with the root λ1. To find a solution,
observe that

(H− λE) aw = 0[(
n1n2

n1 + n2

)
(y− x) (y− x)′ − λE

]
aw = 0

1

λ

(
n1n2

n1 + n2

)
E−1 (y− x) (y− x)′ aw = aw[

1

λ

(
n1n2

n1 + n2

)
(y− x)′ aw

]
E−1 (y− x) = aw

(constant)E−1 (y− x) = aw

so that
aw = E−1 (y− x) (3.9.9)

is an eigenvector associated with λ1. Because the solution is not unique, an alternative
solution is

as = S−1 (y− x) (3.9.10)

The elements of the weight vector a are called discriminant weights (coefficients) since
any contrast proportional to the weights provide for maximum separation between the two
centroids of the experimental and control groups. When the observations are transformed
by as they are called discriminant scores. The linear function used in the transformation
is called the Fisher’s linear discriminant function. If one lets L E = a′sy represents the
observations in the experimental group and LC = a′sx the corresponding observations in
the control group where Li E and LiC are the observations in each group, the multivariate
observations are transformed to a univariate problem involving discriminant scores. In this
new, transformed, problem we may evaluate the difference between the two groups by
using a t statistic that is created from the discriminant scores. The square of the t statistic
is exactly Hotelling’s T 2 statistic. In addition, the square of Mahalanobis’ distance is equal
to the mean difference in the sample mean discriminant scores, D2 = L E − LC , when
the weights as = S−1(y − x) are used in the linear discriminant function. (Discriminant
analysis is discussed in Chapter 7.)

Returning to our two-group inference problem, we can create the linear combination of
the mean difference that led to the rejection of the null hypothesis. However, because the
linear combination is not unique, it is convenient to scale the vector of coefficients as or aw
so that the within-group variance of the discriminant scores are unity, then

aws = aw√
a′wSaw

= as√
a′sSas

(3.9.11)

This coefficient vector is called the normalized discriminant coefficient vector. Because it
is an eigenvector, it is only unique up to a change in sign so that one may use aws or −aws .
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Using these coefficients to construct a contrast in the mean difference, the difference in the
mean vectors weighted by aws yields D, the number of within-group standard deviations
separating the mean discriminant scores for the two groups. That is

ψws = a′ws (y− x) = D (3.9.12)

To verify this, observe that

ψws = a′ws (y− x)

= a′w√
a′wSaw

(y− x)

= (y− x)′ E−1 (y− x)√
(y− x)′ E−1SE−1 (y− x)

= ve D2/

√
v2

e D2

= D

Alternatively, using the contrast ψ s = a′s (y− x) = D2 and ψmax = n1n2
n1+ n2

ψ s . In prac-
tice, these contrasts may be difficult to interpret and thus one may want to locate a weight
vector a that only contains 1s and 0s. In this way the parametric function may be more
interpretable. To locate the variables that may contribute most to group separation, one cre-
ates a scale free vector of weights awsa = (diag S)1/2 aws called the vector of standardized
coefficients. The absolute value of the scale-free standardized coefficients may be used to
rank order the variables that contributed most to group separation. The standardized coeffi-
cients represent the influence of each variable to group separation given the inclusion of the
other variables in the study. Because the variables are correlated, the size of the coefficient
may change with the deletion or addition of variables in the study.

An alternative method to locate significant variables and to construct contrasts is to study
the correlation between the discriminant function L = a′y and each variable, ρi . The vector
of correlations is

ρ = (diag�)−1/2 �a√
a′�a

(3.9.13)

Replacing � with S, an estimate of ρ is

ρ̂ = (diag S)−1/2 Sa√
a′Sa

(3.9.14)

Letting a = aws

ρ̂ = (diag S)−1/2 Saws

= (diag S)−1/2 S (diag S)−1/2 (diag S)1/2 aws

= Re (diag S)1/2 aws

= Reawsa (3.9.15)
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where awsa is the within standardized adjusted vector of standardized weights. Investigat-
ing ρ̂, the variables associated with low correlations contribute least to the separation of
the centroids. Contrasts are constructed by excluding variables with low correlations from
the contrast and setting coefficients to one for high correlations. This process often leads
to a contrast in the means that is significant and meaningful involving several individual
variables; see Bargman (1970). Rencher (1988) shows that this procedure isolates variables
that contribute to group separation, ignoring the other variable in the study. This is not
the case for standardized coefficients. One may use both procedures to help to formulate
meaningful contrasts when a study involves many variables.

Using (3.9.5) to obtain simultaneous confidence intervals for any number of comparisons
involving parametric functions of the mean difference ψ as defined in (3.9.6), we know the
interval has probability greater than 1 − α of including the true population value. If one
is only interested in a few comparisons, say p, one for each variable, the probability is
considerably larger then 1 − α. Based on studies by Hummel and Sligo (1971), Carmer
and Swanson (1972), and Rencher and Scott (1990), one may also calculate univariate t-
tests using the upper (1 − α)/2 critical value for each test to facilitate locating significant
differences in the means for each variable when the overall multivariate test is rejected.
These tests are called protected t-tests, a concept originally suggested by R.A. Fisher. While
this procedure will generally control the overall Type I error at the nominal α level for all
comparisons identified as significant at the nominal level α, the univariate critical values
used for each test may not be used to construct simultaneous confidence intervals for the
comparisons The intervals are too narrow to provide an overall confidence level of 100(1−
α)%. One must adjust the value of alpha for each comparison to maintain a level not less
than 1− α as in planned comparisons, which we discuss next. When investigating planned
comparisons, one need not perform the overall test.

In our discussion of the hypothesis H : µ1 = µ2, we have assumed that the investigator
was interested in all contrasts ψ = a′ (µ1 − µ2). Often this is not the case and one is
only interested in the p planned comparisons ψ i = µ1i − µ2i for i = 1, 2, . . . , p. In
these situations, it is not recommended that one perform the overall T 2 test, but instead one
should utilize a simultaneous test procedure (STP). The null hypothesis in this case is

H =
p⋂

i=1
Hi : ψ i = 0 (3.9.16)

versus the alternative that at least one ψ i differs from zero. To test this hypothesis, one
needs an estimate of each ψ i and the joint distribution of the vector θ̂

′ = (ψ̂1, ψ̂2, . . . , ψ̂ p).

Dividing each element ψ̂ i by σ̂ ψ̂ i
, we have a vector of correlated t statistics, or by squaring

each ratio, F-tests, Fi = ψ̂
2
i /σ̂ ψ̂

2
i
. However, the joint distribution of the Fi is not multi-

variate F since the standard errors σ̂ 2
ψ̂ i

do not depend on a common unknown variance. To

construct approximate simultaneous confidence intervals for each of the p contrasts simul-
taneously near the overall level 1 − α, we use Šidák’s inequality and the multivariate t
distribution with a correlation matrix of the accompanying MVN distribution, P = I, also
called the Studentized Maximum Modulus distribution, discussed by Fuchs and Sampson
(1987). The approximate Šidák multivariate t , 100 (1− α)% simultaneous confidence in-
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TABLE 3.9.1. MANOVA Test Criteria for Testing µ1 = µ2.

s = 1 M = 0.5 N = 22
Statistics Value F NumDF DenDF Pr > F

Wilks’ lambda 0.12733854 105.0806 3 46 0.0001
Pillai’s trace 0.87266146 105.0806 3 46 0.0001
Hotelling-Lawley trace 6.85308175 105.0806 3 46 0.0001
Roy’s greatest root 6.85308175 105.0806 3 46 0.0001

tervals have the simple form

ψ̂ i − cασ̂ ψ̂ i
≤ ψ ≤ ψ̂ i + cασ̂ ψ̂ i

(3.9.17)

where
σ̂ 2
ψ̂
= (n1 + n2) s2

i i/n1n2 (3.9.18)

and s2
i i is the i th diagonal element of S and cα is the upper α critical value of the Studentized

Maximum Modulus distribution with degrees of freedom ve = n1 + n2 − 2 and p = C ,
comparisons. The critical values for cα for p = 2 (16) , 18 (2) 20, and α = 0.05 are
given in the Appendix, Table V. As noted by Fuchs and Sampson (1987), the intervals
obtained using the multivariate t are always shorter that the corresponding Bonferroni-
Dunn or Dunn-Šidák (independent t) intervals that use the Student t distribution to control
the overall Type I error near the nominal level α.

If we can, a priori, place an order of importance on the variables in a study, a stepdown
procedure is recommended. While one may use Roy’s stepdown F statistics, the finite in-
tersection test procedure proposed by Krishnaiah (1979) and reviewed by Timm (1995) is
optimal in the Neyman sense, i.e., yielding the smallest confidence intervals. We discuss
this method in Chapter 4 for the k > 2 groups.

Example 3.9.1 (Testing µ1 = µ2, Given �1 = �2) We illustrate the test of the hypothe-
sis Ho : µ1 = µ2 using the data set A generated in program m3 7 1.sas. There are three
dependent variables and two groups with 25 observations per group. To test that the mean
vectors are equivalent, the SAS program m 3 9a.sas is used using the SAS procedure GLM.
Because this program is using the MR model to test for differences in the means, the ma-
trices H and E are calculated. Hotelling’s (1931) T 2 statistic is related to an F distribution
using Definition 3.5.3. And, from (3.5.4) T 2 = veλ̂1 when s = 1 where λ̂1 is the largest
root of | H− λE |= 0. A portion of the output is provided in Table 3.9.1.

Thus, we reject the null hypothesis that µ1 = µ2. To relate T 2 to the F distribution, we
have from Definition 3.5.3 and (3.5.4) that

F = (ve + p + 1) T 2/pve

= (ve − p + 1) veλ̂1/pve

= (ve − p + 1) λ̂1/p

= (46) (6.85308) /3 = 105.0806
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TABLE 3.9.2. Discriminant Structure Vectors, H : µ1 = µ2.

Within Structure Standarized Vector Raw Vector
ρ̂ awsa aws

0.1441 0.6189 0.219779947
0.2205 −1.1186 −0.422444930
0.7990 3.2494 0.6024449655

as shown in Table 3.9.1. Rejection of the null hypothesis does not tell us which mean dif-
ference led to the significant difference. To isolate where to begin looking, the standardized
discriminant coefficient vector and the correlation structure of the discriminate function
with each variable is studied.

To calculate the coefficient vectors and correlations using SAS, the /CANONICAL option
is used in the MANOVA statement for PROC GLM. SAS labels the vector ρ̂ in (3.9.15) the
within canonical structure vector. The vector awsa in (3.9.15) is labeled the Standardized
Canonical Coefficients and the discriminant weights aws in (3.9.11) are labeled as Raw
Canonical Coefficients. The results are summarized in Table 3.9.2.

From the entries in Table 3.9.2, we see that we should investigate the significance of the
third variable using (3.9.5) and (3.9.6). For α = 0.05,

c2
α = (3) (48) F0.95 (3, 46) /46 = 144 (2.807) /46 = 8.79

so that cα = 2.96. The value of σ̂ ψ̂ is obtained from the diagonal of S. Since SAS pro-
vides E, we divide the diagonal element by ve = n1 + n2 − 2 = 48. The value of σ̂ ψ̂ for
the third variable is

√
265.222/48 = 2.35.

Thus, for a′ = (0, 0, 1), the 95% simultaneous confidence interval for the mean differ-
ence in means ψ for variable three, ψ̂ = 29.76− 20.13 = 9.63, is estimated as follows.

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂

9.63− (2.96) (2.35) ≤ ψ ≤ 9.63+ (2.96) (2.35)
2.67 ≤ ψ ≤ 16.59

Since ψ does not include zero, the difference is significant. One may continue to look
at any other parametric functions ψ = a′ (µ1 − µ2) for significance by selecting other
variables. While we know that any contrast ψ proportional to ψws = a′ws (µ1 − µ2) will
be significant, the parametric function ψws is often difficult to interpret. Hence, one tends
to investigate contrasts that involve a single variable or linear combinations of variables
having integer coefficients. For this example, the contrast with the largest difference is
estimated by ψ̂ws = 5.13.

Since the overall test was rejected, one may also use the protected univariate t-tests to
locate significant differences in the means for each variable, but not to construct simulta-
neous confidence intervals. If only a few comparisons are of interest, adjusted multivariate
t critical values may be employed to construct simultaneous confidence intervals for a few
comparisons. The critical value for cα in Table V in the Appendix is less than the mul-
tivariate T 2 simultaneous critical value of 2.96 for C = 10 planned comparisons using
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any of the adjustment methods. As noted previously, the multivariate t (STM) method en-
try in the table has a smaller critical value than either the Bonferroni-Dunn (BON) or the
Dunn-Šidák (SID) methods. If one were only interested in 10 planned comparisons, one
would not use the multivariate test for this problem, but instead construct the planned ad-
justed approximate simultaneous confidence intervals to evaluate significance in the mean
vectors.

b. Two-Sample Case, �1 �= �2

Assuming multivariate normality and �1 = �2, Hotelling’s T 2 statistic is used to test
H : µ1 = µ2. When �1 �= �2 we may still want to test for the equality of the mean vectors.
This problem is called the multivariate Behrens-Fisher problem. Because �1 �= �2, we no
longer have a pooled estimate for � under H . However, an intuitive test statistic for testing
H : µ1 = µ2 is

X2 = (y− x)′
(

S1

n1
+ S2

n2

)−1

(y− x) (3.9.19)

where S1 = E1/ (n1 − 1) and S2 = E2 / (n2 − 1). X2 d−→ χ2 (p) only if we assume that
the sample covariance matrices are equal to their population values. In general, X2 does
not converge to either Hotelling’s T 2 distribution or to a chi-square distribution. Instead,
one must employ an approximation for the distribution of X2.

James (1954), using an asymptotic expansion for a quadratic form, obtained an approx-
imation to the distribution of X2 in (3.9.19) as a sum of chi-square distributions. To test
H : µ1 = µ2, the null hypothesis is rejected, using James’ first-order approximation, if

X2 > χ2
1−α (p)

[
A + Bχ2

1−α (p)
]

where

Wi = Si/ni and W =
2∑

i=1

Wi

A = 1+ 1

2p

2∑
i=1

(
tr W−1Wi

)2
/ (ni − 1)

B = 1

2p(p + 2)

2∑
i=1

[(
tr W−1Wi

)2 + 2
(

tr W−1Wi

)2
]
/ (ni − 1)

and χ2
1−α (p) is the upper 1 − α critical value of a chi-square distribution with p degrees

of freedom.
Yao (1965) and Nel and van der Merwe (1986) estimated the distribution of X2 using

Hotelling’s T 2 distribution with degrees of freedom p and an approximate degrees of free-
dom for error. For Yao (1965) the degrees of freedom for error for Hotelling’s T 2 statistic is
estimated by ν̂ and for Nel and van der Merwe (1986) the degrees of freedom is estimated
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by f̂ . Nel and van der Merwe (1986) improved upon Yao’s result. Both approximations
for the error degrees of freedom follow

1

ν̂
=

2∑
i=1

(
1

ni − 1

){
(y− x)′W−1Wi W−1 (y− x)

X2

}2

f̂ = tr W2 + (tr W)2∑2
i=1

[
tr W2

i + (tr Wi )
2] / (ni − 1)

(3.9.20)

where the min (n1 − 1, n2 − 1) ≤ ν̂ ≤ n1 + n2 − 2. Using the result due to Nel and
van der Merwe, the test of H : µ1 = µ2 is rejected if

X2 > T 2
1−α(p, ν) = p f̂

f̂ − p − 1
F1−α (

p, f̂
)

(3.9.21)

where F1−α(p, f̂ ) is the upper 1− α critical value of an F distribution. For Yao’s test, the
estimate for the error degrees of freedom f̂ is replaced by ν̂ given in (3.9.20).

Kim (1992) obtained an approximate test by solving the eigenequation |W1 − λW2| =
0. For Kim, H : µ1 = µ2 is rejected if

F = ν̂ − p + 1

ab̂ν
w′

[(
D1/2 + rI

)−1
]2

w > F1−α (b, ν̂ − p + 1) (3.9.22)

where

r =
( p∏

i=1

λi

)1/2p

δi = (λi + 1)

/(
λ

1/2
i + r

)2

a =
p∑

i=1

δ2
i

/ p∑
i=1

δi

b =
( p∑

i=1

δi

)2 / p∑
i=1

δ2
i

λi and pi are the roots and eigenvectors of |W1 − λW2| = 0, D = diag
[
λ1, λ2, . . . , λp

]
,

P = [
p1,p2, . . . ,pp

]
, w = P′ (y− x), and ν̂ given in (3.9.20) is identical to the approxi-

mation provided by Yao (1965).
Johansen (1980), using weighted least squares regression, also approximated the dis-

tribution of X2 by relating it to a scaled F distribution. For Johansen’s procedure, H is
rejected if

X2 > cF1−α (
p, f ∗

)
(3.9.23)
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where

c = p + 2A − 6A/ [p (p − 1)+ 2]

A =
2∑

i=1

[
tr
(

I−W−1W−1
i

)2 +
(

tr
(

I−W−1W−1
i

))2
]
/2 (ni − 1)

f ∗ = p (p + 2) /3A

Yao (1965) showed that James’ procedure led to inflated α levels, her test led to α levels
that were less than or equal to the true value α, and that the results were true for equal
and unequal sample sizes. Algina and Tang (1988) confirmed Yao’s findings and Algina et
al. (1991) found that Johansen’s solution was equivalent to Yao’s test. Kim (1992) showed
that his test had a Type I error rate that was always less than Yao’s. De la Rey and Nel
(1993) showed that Nel and van der Merwe’s solution was better than Yao’s. Christensen
and Rencher (1997) compared the Type I error rates and power for James’, Yao’s, Jo-
hansen’s, Nel and van der Merwe’s, and Kim’s solutions and concluded that Kim’s approx-
imation or Nel and van der Merwe’s approximation had the highest power for the overall
test and always controlled the Type I errors at the level less than or equal to α. While
they found James’ procedure almost always had the highest power, the Type I error for
the tests was almost always slightly larger than the nominal α level. They recommended
using Kim’s (1992) approximation or the one developed by Nel and van der Merwe (1986).
Timm (1999) found James’ second-order approximation—James (1954) Equation 6.7 in
his paper—to control the overall level at the nominal level when testing the significance
of multivariate effect sizes in multiple-endpoint studies. James’ second-order approxima-
tion may improve the approximation for the two-sample location problem. The procedure
should again have higher power and yet also control the overall level of the test nearer to
the nominal α level. This needs further investigation.

Myers and Dunlap (2000) recommend extending the simple procedure developed by
Alexander and Govern (1994) to the multivariate two group location problem when the
covariance matrices are unequal. The method is very simple. To test H : µ1 = µ2, one
constructs the weighted centroid

cp = [(y+ x)
/

wi ]/
[

2∑
i=1

(1/wi )

]
where the weights wi are defined using the 1/pth root of the covariance matrix for each
group

wi = |Si |1/p/ni

Then one calculates Hotelling’s statistics T 2
i for each group as follows

T 2
1 = n1[

(
y− cp

)′ S−1
1

(
y− cp

)
T 2

2 = n2[
(
x− cp

)′ S−1
2

(
x− cp

)
or converting each statistic to a corresponding F statistic,

Fi = (ni − p)T 2
i /p(ni − 1)
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For each statistic Fi , the p-value ( p̃i ) for the corresponding F distribution with υh = p
and ve = (ni − p − 1) degrees of freedom is determined. Because distribution of the sum
of two F distributions is unknown, the statistics Fi are combined using additive chi-square
statistics. One converts each Fi statistic to a chi-square equivalent statistic using the p-
value of the F-statistic. That is, one finds the corresponding chi-square statistic X2

i on p
degrees of freedom that corresponds to the p-value 1 − p̃i , the upper tail integral of the
chi-square distribution for each statistic Fi . The test statistic A for the two-group location
problem is the sum of the chi-square statistics X2

i across the two groups

A =
2∑

i=1

X2
i

The statistic A converts the nonadditive T 2
i statistics to additive chi-square statistics with

p-values p̃i . The test statistic A is distributed approximately as a chi-square distribution
with υ = (g − 1)p degrees of freedom where g = 2 for the two group location problem.
A simulation study performed by Myers and Dunlap (2000) indicates that the procedure
maintains the overall Type I error rate for the test of equal mean vectors at the nominal
level α and the procedure is easily extended for g > 2 groups.

Example 3.9.2 (Testing µ1 = µ2, Given �1 �= �2) To illustrate testing H : µ1 = µ2
when �1 �= �2, we utilize data set B generated in program m3 7 1.sas. There are p = 3
variables and n1 = n2 = 25 observations. Program m3 9a.sas also contains the code for
testing µ1 = µ2 using the SAS procedure GLM which assumes �1 = �2. The F statistic
calculated by SAS assuming equal covariance matrices is 18.4159 which has a p-value of
5.44E-18. Alternatively, using formula (3.9.19), the X2 statistic for data set B is X2 =
57.649696. The critical value for X2 using formula (3.9.21) is FVAL = 9.8666146 where
f̂ = 33.06309 is the approximate degrees of freedom.

The corresponding p-value for Nel and van der Merwe’s test is P-VALF = 0.000854
which is considerably larger than the p-value for the test generated by SAS assuming
�1 = �2, employing the T 2 statistic. When �1 �= �2 one should not use the T 2 statistic.
Approximate 100 (1− α)% simultaneous confidence intervals may be again constructed
by using (3.9.21) in the formula for c2

α given in (3.9.6). Or, one may construct approximate
simultaneous confidence intervals by again using the entries in Table V of the Appendix
where the degrees of freedom for error is f̂ = 33.06309.

We conclude this example with a nonparametric procedure for nonnormal data based
upon ranks. A multivariate extension of the univariate Kruskal-Wallis test procedure for
testing the equality of univariate means. While the procedure does not depend on the error
structure or whether the data are multivariate normal, it does require continuous data. In
addition, the conditional distribution should be symmetrical for each variable if one wants
to make inferences regarding the mean vectors instead of the mean rank vectors. Using the
nonnormal data in data set C and the incorrect parametric procedure of analysis yields a
nonsignificant p-value for the test of equal mean vectors, 0.0165. Using ranks, the p-value
for the test for equal mean rank vectors is < 0.0001. To help to locate the variables that led
to the significant difference, one may construct protected t-tests or F-tests for each variable
using the ranks. The construction of simultaneous confidence intervals is not recommended.
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c. Two-Sample Case, Nonnormality

In testing H : µ1 = µ2, we have assumed a MVN distribution with �1 = �2 or �1 �= �2.
When sampling from a nonnormal distribution, Algina et al. (1991) found in comparing
the methods of James et al. that in general James’ first-order test tended to be outper-
formed by the other two procedures. For symmetrical distributions and moderate skewness(−1 < β1, p < 1

)
all procedures maintained an α level near the nominal level independent

of the ratio of sample sizes and heteroscedasticity.
Using a vector of coordinatewise Winsorized trimmed means and robust estimates S̃ 

1
and S̃ 

2, Mudholkar and Srivastava (1996, 1997) proposed a robust analog of Hotelling’s
T 2 statistic using a recursive method to estimate the degrees of freedom ν̂, similar to Yao’s
procedure. Their statistic maintains a Type I error that is less than or equal to α for a wide
variety of nonnormal distributions. Bilodeau and Brenner (1999, p. 226) develop robust
Hotelling T 2 statistics for elliptical distributions. One may also use nonparametric proce-
dures that utilize ranks; however, these require the conditional multivariate distributions to
be symmetrical in order to make valid inferences about means. The procedure is illustrated
in Example 3.9.2. Using PROC RANK, each variable is ranked in ascending order for the
two groups. Then, the ranks are processed by the GLM procedure to create the rank test
statistic. This is a simple extension of the Kruskal-Wallis test used to test the equality of
means in univariate analysis, Neter et al. (1996, p. 777).

d. Profile Analysis, One Group

Instead of comparing an experimental group with a control group on p variables, one often
obtains experimental data for one group and wants to know whether the group mean for
all variables is the same as some standard. In an industrial setting the “standard” is estab-
lished and the process is in-control (out-of-control) if the group mean is equal (unequal)
to the standard. For this situation the variables need not be commensurate. The primary
hypothesis is whether the profile for the process is equal to a standard.

Alternatively, the set of variables may be commensurate. In the industrial setting a pro-
cess may be evaluated over several experimental conditions (treatments). In the social sci-
ences the set of variables may be a test battery that is administered to evaluate psychological
traits or vocational skills. In learning theory research, the response variable may be the time
required to master a learning task given i = 1, 2, . . . , p exposures to the learning mech-
anism. When there is no natural order to the p variables these studies are called profile
designs since one wants to investigate the pattern of the means µ1, µ2, . . . , µp when they
are connected using line segments. This design is similar to repeated measures or growth
curve designs where subjects or processes are measured sequentially over p successive
time points. Designs in which responses are ordered in time are discussed in Chapters 4
and 6.

In a profile analysis, a random sample of n p-vectors is obtained where Yi ∼ I Np (µ, �)

for µ′ = [µ1, µ2, . . . , µp] and � = [
σ i j

]
. The observation vectors have the general struc-

ture y′i = [yi1, yi2, . . . , yip] for i = 1, 2, . . . , n. The mean of the n observations is y and
� is estimated using S = E/ (n − 1). One may be interested in testing that the population
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mean µ is equal to some known standard value µ0; the null hypothesis is

HG : µ = µ0 (3.9.24)

If the p responses are commensurate, one may be interested in testing whether the profile
over the p responses are equal, i.e., that the profile is level. This hypothesis is written as

HC : µ1 = µ2 = · · · = µp (3.9.25)

From Example 3.5.1, the test statistic for testing HG : µ = µ0 is Hotelling’s T 2 statistic

T 2 = n
(
y− µ0

)′ S−1 (y− µ0
)

(3.9.26)

The null hypothesis is rejected if, for a test of size α,

T 2 > T 2
1−α (p, n − 1) = p (n − 1)

n − p
F1−α (p, n − p) . (3.9.27)

To test HC , the null hypothesis is transformed to an equivalent hypothesis. For example,
by subtracting the pth mean from each variable, the equivalent null hypothesis is

HC∗1 :


µ1 − µp
µ2 − µp

...

µp−1 − µp

 = 0

This could be accomplished using any variable. Alternatively, we could subtract successive
differences in means. Then, HC is equivalent to testing

HC∗2 :


µ1 − µ2
µ2 − µ3

...

µp−1 − µp

 = 0

In the above transformations of the hypothesis HC to HC∗, the mean vector µ is either
postmultiplied by a contrast matrix M of order p × (p − 1) or premultiplied by a matrix
M′ of order (p − 1)× p; the columns of M form contrasts in that the sum of the elements
in any column in M must sum to zero. For C∗1 ,

M ≡M1 =


1 0 0 · · · 0
0 1 0 · · · 0
...

...
...

...

−1 −1 −1 · · · −1


and for C∗2 ,

M ≡M2 =



1 0 · · · 0
−1 1 · · · 0

0 −1 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · −1


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Testing HC is equivalent to testing

HC∗ : µ′M = 0′ (3.9.28)

or
HC∗ :M′µ = 0 (3.9.29)

For a random sample of normally distributed observations, to test (3.9.29) each observa-
tion is transformed by M′ to create Xi = M′Yi such that E (Xi ) = M′µ and cov (Xi ) =
M′�M. By property (2) of Theorem 3.3.2, Xi ∼ Np−1

(
M′µ, M′�M

)
, Xi = M′Yi ∼

Np−1
(
M′µ, M′�M/n

)
. Since (n − 1)S has an independent Wishart distribution, follow-

ing Example 3.5 we have that

T 2 = (
M′y

)′ (M′SM/n
)−1 (M′y) = n

(
M′y

)′ (M′SM
)−1 M′y (3.9.30)

has Hotelling’s T 2 distribution with degree of freedom p − 1 and ve = n − 1 under the
null hypothesis (3.9.29). The null hypothesis HC , of equal means across the p variables, is
rejected if

T 2 ≥ T 2
1−α (p − 1, ve) = (p − 1) (n − 1)

(n − p + 1)
F1−α (p − 1, n − p + 1) (3.9.31)

for a test of size α.
When either the test of HG or HC is rejected, one may wish to obtain 100 (1− α)%

simultaneous confidence intervals. For HG , the intervals have the general form

a′y− cα
√

a′Sa/n ≤ a′µ ≤ a′y+ cα
√

a′Sa/n (3.9.32)

where c2
α = p (n − 1) F1−α (p, n − p) / (n − p) for a test of size α and arbitrary vectors

a. For the test of HC , the parametric function ψ = a′M′µ = c′µ for c′ = a′M′. To estimate
ψ , ψ̂ = c′y and the cov ψ̂ = c′Sc/n = a′M′SMa/n. The 100(1 − α)% simultaneous
confidence interval is

ψ̂ − cα
√

c′Sc/n ≤ ψ ≤ ψ̂ + cα
√

c′Sc/n (3.9.33)

where c2
α = (p − 1) (n − 1) F1−α (p − 1, n − p − 1) / (n − p + 1) for a test of size α

and arbitrary vectors a. If the overall hypothesis is rejected, we know that there exists at
least one parametric function that is significant but it may not be a meaningful function of
the means. For HG , it does not include the linear combination a′µ0 of the target mean and
for HC , it does not include zero. One may alternatively establish approximate simultaneous
confidence sets a-variable-at-a-time using Šidák’s inequality and the multivariate t distri-
bution with a correlation matrix of the accompanying MVN distribution P = I using the
values in the Appendix, Table V.

Example 3.9.3 (Testing HC : One-Group Profile Analysis) To illustrate the analysis of a
one-group profile analysis, group 1 from data set A (program m3 7 1.sas) is utilized. The
data consists of three measures on each of 25 subjects and we want to test HC : µ1 = µ2 =
µ3. The observation vectors Yi ∼ IN3 (µ, �) where µ′ = [

µ1, µ2, µ3
]
. While we may test



3.9 Tests of Location 163

TABLE 3.9.3. T 2 Test of HC : µ1 = µ2 = µ3.

S = 1 M = 0 N = 10, 5
Statistic Value F Num DF Den DF Pr > F
Wilks’ lambda 0.01240738 915.37 2 23 0.0001
Pillai’s trace 0.98759262 915.37 2 23 0.0001
Hotelling-Lawley trace 79.59717527 915.37 2 23 0.0001
Roy’s greatest root 79.59717527 915.37 2 23 0.0001

HC using the T 2 statistic given in (3.9.30), the SAS procedure GLM employs the matrix
m ≡ M′ to test HC using the MANOVA model program m3 9d.sas illustrates how to test
HC using a model with an intercept, a model with no intercept and contrasts, and the use
of the REPEATED statement using PROC GLM. The results are provided in Table 3.9.3.

Because SAS uses the MR model to test HC , Hotelling’s T 2 statistic is not reported.
However, relating T 2 to the F distribution and T 2 to T 2

o we have that

F = (n − p + 1) T 2/ (p − 1) (n − 1)

= (n − p + 1) λ̂1/ (p − 1)

= (23) (79.5972) /2 = 915.37

as shown in Table 3.9.3 and HC is rejected. By using the REPEATED statement, we find that
Mauchly’s test of circularity is rejected, the chi-square p-value for the test is p = 0.0007.
Thus, one must use the exact T 2 test and not the mixed model F tests for testing hypotheses.
The p-values for the adjusted Geisser-Greenhouse (GG) and Huynh-Feldt (HF) tests are
also reported in SAS.

Having rejected HC , we may use (3.9.32) to investigate contrasts in the transformed
variables defined by M′1. By using the /CANONICAL option on the MODEL statement, we
see by using the Standardized and Raw Canonical Coefficient vectors that our investigation
should begin with ψ = µ2 − µ3, the second row of M′1. Using the error matrix

M′1EM1 =
[

154.3152
32.6635 104.8781

]
in the SAS output, the sample variance of ψ̂ = µ̂2 − µ̂3 is σ̂ ψ̂ =

√
104.8381/24 = 2.09.

For α = 0.05,

c2
α = (p − 1) (n − 1)F1−α (p − 1, n − p − 1) / (n − p + 1)

= (2) (24) (3.42) / (23)

= 7.14

so that cα = 2.67. Since µ̂′ = [6.1931, 11.4914, 29.7618] ,the contrast ψ̂ = µ̂2 − µ̂3 =
−18.2704. A confidence interval for ψ is

−18.2704− (2.67) (2.09) ≤ ψ ≤ −18.2704+ (2.67) (2.09)

−23.85 ≤ ψ ≤ −12.69



164 3. Multivariate Distributions and the Linear Model

Since ψ does not include zero, the comparison is significant. The same conclusion is ob-
tained from the one degree of freedom F tests obtained using SAS with the CONTRAST
statement as illustrated in the program. When using contrasts in SAS, one may compare the
reported p-values to the nominal level of the overall test, only if the overall test is rejected.
The F statistic for the comparison ψ = µ2 − µ3 calculated by SAS is F = 1909.693 with
p-value < 0.0001. The F tests for the comparisons ψ1 = µ1 −µ2 and ψ2 = µ1 −µ3 are
also significant. Again for problems involving several repeated measures, one may use the
discriminant coefficients to locate significant contrasts in the means for a single variable
or linear combination of variables.

For our example using the simulated data, we rejected the circularity test so that the most
appropriate analysis for the data analysis is to use the exact multivariate T 2 test. When the
circularity test is not rejected, the most powerful approach is to employ the univariate mixed
model. Code for the mixed univariate model using PROC GLM is included in program
m3 9d.sas. Discussion of the SAS code using PROC GLM and PROC MIXED and the
associated output is postponed until Section 3.10 where program m3 10a.sas is used for
the univariate mixed model analysis. We next review the univariate mixed model for a one-
group profile model.

To test HC we have assumed an arbitrary structure for �. When analyzing profiles using
univariate ANOVA methods, one formulates the linear model for the elements of Yi as

Yi j = µ+ si + β j + ei j

i = 1, 2, . . . , n; j = 1, 2, . . . , p

ei j ∼ I N
(

0, σ 2
e

)
si ∼ I N

(
0, σ 2

s

)
where ei j and si are jointly independent, commonly known as an unconstrained (unre-
stricted), randomized block mixed ANOVA model. The subjects form blocks and the within
subject treatment conditions are the effects β j . Assuming the variances of the observations
Yi j over the p treatment/condition levels are homogeneous, the covariance structure for the
observations is

var
(
Yi j

) = σ 2
s + σ 2

e ≡ σ 2
Y

cov
(
Yi j ,Yi j ′

) = σ 2
s

ρ = cov
(
Yi j , Yi j ′

)
/σ 2

Y = σ 2
s/

(
σ 2

e + σ 2
s

)
so that the covariance structure for �p×p is represented as

� = σ 2
s J+ σ 2

eI

= σ 2
e [(1− ρ) I+ ρJ]

has compound symmetry structure where J is a matrix of 1s and ρ is the intraclass correla-
tion coefficient. The compound symmetry structure for � is a sufficient condition for an ex-
act univariate F test for evaluating the equality of the treatment effects β j

(
H : allβ j = 0

)
in the mixed ANOVA model; however, it is not a necessary condition.
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Huynh and Feldt (1970) showed that only the variances of the differences of all pairs
of observations, var

(
Yi j − Yi j ′

) = σ 2
j + σ 2

j ′ − 2σ j j ′ must remain constant for all j �=
j ′ and i = 1, 2, . . . , n for exact univariate tests. They termed these covariance matrices
“Type H” matrices. Using matrix notation, the necessary and sufficient condition for an
exact univariate F test for testing the equality of p correlated treatment differences is that
C′�C = σ 2I where C′ (p − 1) × (p − 1) is an orthogonal matrix calculated from M′
so that C′C = I(p−1); see Rouanet and Lépine (1970). This is the sphericity (circularity)
condition given in (3.8.21). When using PROC GLM to analyze a one-group design, the
test is obtained by using the REPEATED statement. The test is labeled Mauchly’s Criterion
Applied to Orthogonal Components.

When the circularity condition is not satisfied, Geisser and Greenhouse (1958) (GG)
and Huynh and Feldt (1976) (HF) suggested adjusted conservative univariate F tests for
treatment differences. Hotelling’s (1931) exact T 2 test of HC does not impose the restricted
structure on �; however, since � must be positive definite the sample size n must be greater
than or equal to p; when this is not the case, one must use the adjusted F tests. Muller et
al. (1992) show that the GG test is more powerful than the T 2 test under near circularity;
however, the size of the test may be less than α. While the HF adjustment maintains α

more near the nominal level it generally has lower power. Based upon simulation results
obtained by Boik (1991), we continue to recommend the exact T 2 test when the circularity
condition is not met.

e. Profile Analysis, Two Groups

One of the more popular designs encountered in the behavioral sciences and other fields is
the two independent group profile design. The design is similar to the two-group location
design used to compare an experimental and control group except that in a profile analysis
p responses are now observed rather than p different variables. For these designs we are not
only interested in testing that the means µ1 and µ2 are equal, but whether or not the group
profiles for the two groups are parallel. To evaluate parallelism of profiles, group means for
each variable are plotted to view the mean profiles. Profile analysis is similar to the two-
group repeated measures designs where observations are obtained over time; however, in
repeated measures designs one is more interested in the growth rate of the profiles. Analysis
of repeated measures designs is discussed in Chapters 4 and 6.

For a profile analysis, we let y′i j = [yi j1, yi j2, . . . , yi jp] represent the observation vec-

tor for the i = 1, 2, groups and the j = 1, 2, . . . , ni observations within the i th group
as shown in Table 3.9.4. The random observations yi j ∼ I Np

(
µi , �

)
where and µi =[

µi1, µi2, . . . , µi p
]

and �1 = �2 = �, a common covariance matrix with an undefined,
arbitrary structure.

While one may use Hotelling’s T 2 statistic to perform tests, we use this simple design to
introduce the multivariate regression (MR) model which is more convenient for extending
the analysis to the more general multiple group situation. Using (3.6.17), the MR model for
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TABLE 3.9.4. Two-Group Profile Analysis.

Group Conditions
1 2 · · · p

y′11 = y111 y112 · · · y11p

y′12 · · · y121 y122 · · · y12p

1
...

...
...

...
...

...

y′1n1
= y1n11 y1n12 · · · y1n1 p

Mean y1.1 y1.2 · · · y1.p

y′21 = y211 y212 · · · y21p

y′22 · · · y221 y222 · · · y22p

2
...

...
...

...
...

...

y′2n1
= y2n21 y2n22 · · · y2n2 p

Mean y2.1 y2.2 · · · y2.p

the design is

Y
n×p

= X
n×2

B
2×p

+ E
n×p

y′11
y′12
...

y′1n1

y′21
y′22
...

y′2n2


=



1 0
1 0
...

1 0
0 1
0 1
...

0 0



[
µ11, µ12, . . . , µ1p
µ21, µ22, . . . , µ2p

]
+



e′11
e′12
...

e′1n1

e′21
e′22
...

e′2n2


The primary hypotheses of interest in a profile analysis, where the “repeated,” commensu-
rate measures have no natural order, are

1. HP : Are the profiles for the two groups parallel?

2. HC : Are there differences among conditions?

3. HG : Are there differences between groups?

The first hypothesis tested in this design is that of parallelism of profiles or the group-by-
condition (G × C) interaction hypothesis, HP . The acceptance or rejection of this hypoth-
esis will effect how HC and HG are tested. To aid in determining whether the parallelism
hypothesis is satisfied, plots of the sample mean vector profiles for each group should be
constructed. Parallelism exists for the two profiles if the slopes of each line segment formed
from the p−1 slopes are the same for each group. That is, the test of parallelism of profiles
in terms of the model parameters is
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HP ≡ HG×C :


µ11 − µ12
µ21 − µ13

...

µ1(p−1) − µ1p

 =


µ21 − µ22
µ22 − µ23

...

µ2(p−1) − µ2p

 (3.9.34)

Using the general linear model form of the hypothesis, CBM = 0, the hypothesis becomes

C
1×2

B
2×p

M
p×(p−1)

= 0

[1,−1]

[
µ11 µ12 · · · µ1p
µ21 µ22 · · · µ2p

]


1 0 · · · 0 0
−1 1 · · · 0 0

0 −1 · · · 0 0
...

...
...

...

0 0 · · · 1 0
0 0 · · · −1 1
0 0 · · · 0 −1


= [0]

(3.9.35)
Observe that the post matrix M is a contrast matrix having the same form as the test for

differences in conditions for the one-sample profile analysis. Thus, the test of no interaction
or parallelism has the equivalent form

HP ≡ HG×C : µ′1M = µ′2M (3.9.36)

or
M′ (µ1 − µ2) = 0

The test of parallelism is identical to testing that the transformed means are equal or that
their transformed difference is zero. The matrix C in (3.9.35) is used to obtain the difference
while the matrix M is used to obtain the transformed scores, operating on the “within”
conditions dimension.

To test (3.9.36) using T 2, let yi. = (yi.1, yi.2, . . . , yi.p) for i = 1, 2. We then have
M′ (µ1 − µ2) ∼ Np−1

[
0, M′�M/ (1/n1 + 1/n2)

]
so that under the null hypothesis,

T 2 = (
M′y1. −M′y2.

)′ [( 1

n1
+ 1

n2

)
M′SM

]−1 (
M′y1. −M′y2.

)
=

(
n1n2

n1 + n2

) (
y1. − y2.

)′M (
M′SM

)−1 M′
(
y1. − y2.

)
∼ T 2 (p − 1, ve = n1 + n2 − 2) (3.9.37)

where S = [(n1 − 1)E1 + (n2 − 1)E2] / (n1 + n2 − 2); the estimate of � obtained for the
two-group location problem. S may be computed as

S = Y′
[
I− X

(
X′X

)−1 X′
]

Y/ (n1 + n2 − 2)
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The hypothesis of parallelism or no interaction is rejected at the level α if

T 2 ≥ T 2
1−α (p − 1, n1 + n2 − 2)

= (n1 + n2 − 2) (p − 1)

n1 + n2 − p
F1−α (p − 1, n1 + n2 − p)

(3.9.38)

using Definition 3.5.3 with n ≡ ve = (n1 + n2 − 2) and p ≡ p − 1.
Returning to the MR model representation for profile analysis, we have that

B̂ = (
X′X

)−1 X′Y =
[

y1.1 y1.2 · · · y1.p
y2.1 y2.2 · · · y2.p

]
=

[
y′1.
y′2.

]
(
CB̂M

)′ =M′
(
y1. − y2.

)
which is identical to (3.9.36). Furthermore,

E =M′Y
(

In − X
(
X′X

)−1 X′
)

YM (3.9.39)

for n = n1 + n2 and q = r (X) = 2, ve = n1 + n2 − 2. Also

H = (CB̂M)′
[
C
(
X′X

)−1 C′
]−1

(CB̂M) (3.9.40)

=
(

n1n2

n1 + n2

)
M′

(
y1. − y2.

) (
y1. − y2.

)′M
Using Wilk’s � criterion,

� = |E|
|E+H| ∼ U (p − 1, vh = 1, ve = n1 + n2 − 2) (3.9.41)

The test of parallelism is rejected at the significance level α if

� < U 1−α (p − 1, 1, n1 + n2 − 2) (3.9.42)

or
(n1 + n2 − p)

(p − 1)

1−�

�
F1−α (p − 1, n1 + n2 − p)

Solving the equation |H− λE| = 0, � = (1+ λ1)
−1 since vh = 1 and T 2 = veλ1 so that

T 2 = ve

(
�−1 − 1

)
= (n1 + n2 − 2)

{ |E+H|
|E| − 1

}
=

(
n1n2

n1 + n2

) (
y1. − y2.

)′M (
M′SM

)−1 M′
(
y1. − y2.

)
or

� = 1/
(

1+ T 2/ve

)
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Because, θ1 = λ1/ (1+ λ1) one could also use Roy’s criterion for tabled values of θ . Or,
using Theorem 3.5.1

F = ve − p + 1

p
λ1

has a central F distribution under the null hypothesis with v1 = p and v2 = ve − p +
1 degrees of freedom since νh = 1. For ve = n1 + n2 − 2 and p ≡ p − 1, F =
(n1 + n2 − p) λ1 / (p − 1) ∼ F (p − 1, n1 + n2 − p) . If vh ≥ 2 Roy’s statistic is ap-
proximated using an upper bound on the F statistic which provides a lower bound on the
p-value.

With the rejection of parallelism hypothesis, one usually investigates tetrads in the means
that have the general structure

ψ = µ1 j − µ2 j − µ1 j ′ + µ2 j ′

= c′ (µ1 − µ2)m (3.9.43)

for c′ = [1,−1] and m is any column vector of the matrix M. More generally, letting
c′ = a′M′ for arbitrary vectors a, then ψ̂ = c′

(
y1. − y2.

)
and 100(1 − α)% simultaneous

confidence intervals for the parametric functions ψ have the general form

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂ (3.9.44)

where

σ̂ 2
ψ̂
= n1 + n2

n1n2
c′Sc

c2
α = T 2

1−α (p − 1, n1 + n2 − 2)

for a test of size α. Or, c2
α may be calculated using the F distribution following (3.9.38).

When the test of parallelism is not significant, one averages over the two independent
groups to obtain a test for differences in conditions. The tests for no difference in condi-
tions, given parallelism, are

HC : µ11 + µ21

2
= µ12 + µ22

2
= · · · = µ1p + µ2p

2

H W
C :

n1µ1 + n2µ2

n1 + n2
= n1µ1 + n2µ2

n1 + n2
= · · · = n1µ1p + n2µ2p

n1 + n2

for an unweighted or weighted test of differences in conditions, respectively. The weighted
test is only appropriate if the unequal sample sizes result from a loss of subjects that is
due to treatment and one would expect a similar loss of subjects upon replication of the
study. To formulate the hypothesis using the MR model, the matrix M is the same as M in
(3.9.35); however, the matrix C becomes

C = [1/2, 1/2] for HC

C = [n1/ (n1 + n2) , n2 / (n1 + n2)] for H W
C
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Using T 2 to test for no difference in conditions given parallel profiles, under HC

T 2 = 4

(
n1n2

n1 + n2

)(
y1. − y2.

2

)′
M

(
M′SM

)−1 M′
(

y1. − y2.

2

)
= 4

(
n1n2

n1 + n2

)
y′..M

(
M′SM

)−1 M′y..

∼ T 2
1−α (p − 1, n1 + n2 − 2) (3.9.45)

where y.. is a simple average. Defining the weighed average as y.. =
(
n1y1. + n2y2.

)
/ (n1 + n2), the statistic for testing H W

C is

T 2 = (n1 + n2) y′..M
(
M′SM

)−1 M′y..
∼ T 2

1−α (p − 1, n1 + n2 − 2) (3.9.46)

Simultaneous 100(1− α)% confidence intervals depend on the null hypothesis tested. For
HC and c′ = a′M, the confidence sets have the general form

c′y.. − cα
√

c′Sc/ (n1 + n2) ≤ c′µ ≤ c′y.. + cα
√

c′Sc/ (n1 + n2) (3.9.47)

where c2
α = T 2

1−α (p − 1, n1 + n2 − 2).
To test for differences in groups, given parallelism, one averages over conditions to test

for group differences. The test in terms of the model parameters is

HG :
∑p

j=1 µ1 j

p
=

∑p
j=1 µ2 j

p
(3.9.48)

1′µ1/p = 1′µ2/p

which is no more than a test of equal population means, a simple t test.
While the tests of HG and HC are independent, they both require that the test of the

parallelism (interaction) hypothesis be nonsignificant. When this is not the case, the tests
for group differences is

H∗G : µ1 = µ2

which is identical to the test for differences in location. The test for differences in conditions
when we do not have parallelism is

H∗C :
[

µ11
µ21

]
=

[
µ12
µ22

]
= · · · =

[
µ1p
µ2p

]
(3.9.49)

To test H∗C using the MR model, the matrices for the hypothesis in the form CBM = 0 are

C =
[

1 0
0 1

]
and M =


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1
−1 −1 · · · −1


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so that vh = r (C) = 2. For this test we cannot use T 2 since vh �= 1; instead, we may use
the Bartlett-Lawley-Hotelling trace criterion which from (3.5.4) is

T 2
o = ve tr

(
HE−1

)
for

H = (CB̂M)′
[
C
(
X′X

)−1 C′
]−1

(CB̂M)

=M′B̂′
(
X′X

)
B̂M (3.9.50)

E =M′Y(In − X
(
X′X

)−1 X′)YM

We can approximate the distribution of T 2
o using Theorem 3.5.1 with s = min (vh, p −

1 = min (2, p − 1) , M = |p − 3|−1, and N = (n1 + n2 − p − 2) /2 and relate the statis-
tic to an F distribution with degrees of freedom v1 = 2 (2M + 3) and v2 = 2 (2N + 3).
Alternatively, we may use Wilks’ � criterion with

� = |E|
|E+H| ∼ U (p − 1, 2, n1 + n2 − 2) (3.9.51)

or Roy’s test criterion. However, these tests are no longer equivalent. More will be said
about these tests in Chapter 4.

Example 3.9.4 (Two-Group Profile Analysis) To illustrate the multivariate tests of group
difference

(
H∗G

)
, the test of equal vector profiles across the p conditions

(
H∗C

)
, and the test

of parallelism of profiles (HP ), we again use data set A generated in program m3 7 1.sas.
We may also test HC and HG given parallelism, which assumes that the test of parallelism
(HP ) is nonsignificant. Again we use data set A and PROC GLM. The code is provided in
program m3 9e.sas.

To interpret how the SAS procedure GLM is used to analyze the profile data, we express
the hypotheses using the general matrix product CBM = 0. For our example,

B =
 µ11 µ12 µ13

µ21 µ22 µ23


To test H∗G : µ1 = µ2, we set C = [1,−1] to obtain the difference in group vectors and
M = I3. The within-matrix M is equal to the identity matrix since we are evaluating the
equivalence of the means for each group and p-variables, simultaneously. In PROC GLM,
this test is performed with the statement

manova h = group / printe printh;
where the options PRINTE and PRINTH are used to print H and E for hypothesis testing.
To test H∗C , differences among the p conditions (or treatments), the matrices

C = I2 and M =
 1 0
−1 0

0 −1


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are used. The matrix M is used to form differences among conditions (variables/treatments),
the within-subject dimension, and the matrix C is set to the identity matrix since we are
evaluating p vectors across the two groups, simultaneously. To test this hypothesis using
PROC GLM, one uses the CONTRAST statement, the full rank model (NOINT option in the
MODEL statement) and the MANOVA statement as follows

contrast ‘Mult Cond’ group 1 0
group 0 1;

manova m =
(1 −1 0 0 0,
0 1 −1 0 0,
0 0 0 −1 0,
0 0 0 1 −1) prefix = diff / printe printh;

where m = M′ and the group matrix is the identity matrix I2. To test for parallelism of
profiles, the matrices

C = [
1, −1

]
and M =

 1 0
−1 1

0 −1


are used. The matrix M again forms differences across variables (repeated measurements)
while C creates the group difference contrast. The matrices C and M are not unique
since other differences could be specified; for example, C = [1/2,−1/2] and M′ =[

1 0 −1
0 1 −1

]
. The rank of the matrix is unique. The expression all for h in the SAS

code generates the matrix

[
1 1
1 −1

]
, the testing for differences in conditions given par-

allelism; it is included only to obtain the matrix H. To test these hypotheses using PROC
GLM, the following statements are used.

manova h = all m = (1 −1 0
0 1 −1) prefix = diff / printe printh;

To test for differences in groups (HG) in (3.9.48), given parallelism, we set

C = [
1, −1

]
and M =

 1/3
1/3
1/3

 .

To test this hypothesis using PROC GLM, the following statements are used.

contrast ‘Univ Gr’ group 1 −1;
manova m = (0.33333 0.33333 0.33333) prefix = GR/printe printh;

To test for conditions given parallelism (HC ) and parallelism [(G × C), the interac-
tion between groups and conditions], the REPEATED statement is used with the MANOVA
statement in SAS.

As in our discussion of the one group profile example, one may alternatively test HP ,
HC , and HG using an unconstrained univariate mixed ANOVA model. One formulates the
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model as

Yi jk = µ+ αi + βk + (αβ)ik + s(i) j + ei jk

i = 1, 2; j = 1, 2, . . . , ni ; k = 1, 2, . . . , p

s(i) j ∼ I N
(

0, ρσ 2
)

ei jk ∼ I N
(

0, (1− ρ) σ 2
)

where ei jk and s(i) j are jointly independent, commonly called the unconstrained, split-
plot mixed ANOVA design. For each group, �i has compound symmetry structure and
�1 = �2 = �,

�1 = �2 = � = σ 2
e [(1− ρ) I+ ρJ] = σ 2

s J+ σ 2
eI

where ρσ 2 = ρ
(
σ 2

s + σ 2
e

)
.

Thus, we have homogeneity of the compound symmetry structures across groups. Again,
the compound symmetry assumption is a sufficient condition for split-plot univariate exact
univariate F tests of βk and (αβ)ik . The necessary condition for exact F tests is that �1
and �2 have homogeneous, “Type H” structure; Huynh and Feldt (1970). Thus, we require
that

A′�1A = A′�2A

= A′�A

= λI

where A′ is an orthogonalized (p − 1) × (p − 1) matrix of M′ used to test HP and HC .
The whole plot test for the significance of αi does not depend on the assumption and is
always valid.

By using the REPEATED statement in PROC GLM, SAS generates exact univariate F
tests for within condition differences (across p variables/treatments) and the group by con-
dition interaction test (G × C ≡ P) given circularity. As shown by Timm (1980), the tests
are recovered from the normalized multivariate tests given parallelism. For the one-group
example, the SAS procedure performed the test of “orthogonal” sphericity (circularity).
For more than one group, the test is not performed. This is because we must test for equality
and sphericity. This test was illustrated in Example 3.8.5 using Rao’s score test developed
by Harris (1984). Finally, PROC GLM calculates the GG and HH adjustments. While these
tests may have some power advantage over the multivariate tests under near sphericity, we
continue to recommend that one use the exact multivariate test when the circularity con-
dition is not satisfied. In Example 3.8.5 we showed that the tests of circularity is rejected;
hence, we must use the multivariate tests for this example. The results are displayed in Ta-
ble 3.9.5 using Wilk’s � criterion. The mixed model approach is discussed in Wilks Section
3.10 and in more detail in Chapter 6.

Because the test of parallelism (HP ) is significant for our example, the only valid tests
for these data are the test of H∗G and H∗C , the multivariate tests for group and condition
differences. Observe that the test of H∗G is no more than the test of location reviewed in
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TABLE 3.9.5. MANOVA Table: Two-Group Profile Analysis.

Multivariate Tests
Test H Matrix � F p-value

H∗G

 48.422
64.469 85.834

237.035 315.586 1160.319

 0.127 105.08 < 0.0001

H∗C
[

1241.4135
3727.4639 11512.792

]
0.0141 174.00 < 0.0001

HP

[
5.3178

57.1867 614.981

]
0.228 79.28 < 0.0001

Multivariate Tests Given Parallelism
Test H Matrix � F p-value

HG 280.967 0.3731 80.68 < 0.0001

HC

[
1236.11
3670.27 10897.81

]
0.01666 1387.08 < 0.0001

HP

[
5.3178

57.1867 614.981

]
0.2286 79.28 < 0.0001

Univariate F Tests Given Sphericity (Circularity)
Test F-ratios p-values

HG 80.68 < 0.0001
HC 1398.37 < 0.0001
HG×C 59.94 < 0.0001

Example 3.9.1. We will discuss H∗C in more detail when we consider a multiple-group ex-
ample in Chapter 4. The tests of HG and HC should not be performed since HP is rejected.
We would consider tests of HG and HC only under nonsignificance of HP since the tests
sum over the “between” group and “within” conditions dimensions. Finally, the univariate
tests are only exact given homogeneity and circularity across groups.

Having rejected the test HP of parallelism one may find simultaneous confidence inter-
vals for the tetrads in (3.9.43) by using the S matrix, obtained from E in SAS. T 2 crit-
ical values are related to the F distribution in (3.9.38) and σ̂ ψ̂ = (n1 + n2) c′Sc/n1n2.
Alternatively, one may construct contrasts in SAS by performing single degree of free-
dom protected F-tests to isolate significance. For c1 = [1,−1] and m1 = [1,−1, 0] we
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have ψ1 = µ11 − µ21 − µ12 + µ22 and for c2 = [1,−1] and m2 = [0, 1,−1], ψ2 =
µ12−µ22−µ13+µ23. From the SAS output, ψ2 is clearly significant (p−value < 0.0001)
while ψ1 is nonsignificant with (p − value = 0.3683). To find exact confidence bounds,
one must evaluate (3.9.44).

f. Profile Analysis, �1 �= �2

In our discussion, we have assumed that samples are from a MVN distribution with ho-
mogeneous covariances matrices, �1 = �2 = �. In addition, we have not restricted the
structure of �. All elements in � have been free to vary. Restrictions on the structure of �
will be discussed when we analyze repeated measures designs in Chapter 6.

If �1 �= �2, we may adjust the degrees of freedom for T 2 when testing HP , HC , H W
C , or

H∗G . However, since the test of H∗C is not related to T 2, we need a more general procedure.
This problem was considered by Nel (1997) who developed an approximate degrees of
freedom test for hypotheses of the general form

H : C
g×q

B1
q×p

M
p×v
= C

g×q
B2

q×p
M
p×v

(3.9.52)

for two independent MR models

Yi
ni×p

= Xi
ni×q

Bi
q×p

+ Ei
ni ×p

(3.9.53)

under multivariate normality and �1 �= �2.
To test (3.9.52), we first assume �1 = �2. Letting B̂i =

(
X′i Xi

)−1 X′i Yi , B̂i ∼
Nq, p

[
Bi ,�i = �i ⊗

(
X′i Xi

)−1] by Exercise 3.3, Problem 6. Unbiased estimates of �i are

obtained using Si = Ei/ (ni − q) where q = r (Xi ) and Ei = Y′i
(
Ini −Xi

(
X′i Xi

)−1X′i
)
Yi .

Finally, we let vi = ni − q, ve = v1 + v2 so that veS = v1S1 + v2S2 and Wi =
C
(
X′i Xi

)−1 C′. Then, the Bartlett-Lawley-Hotelling (BLH) test statistic for testing (3.9.52)
with �1 = �2 is

T 2
o = ve tr

(
HE−1

)
= tr

[
M′(B̂1 − B̂2)

′C′ (W1 +W2)
−1 C(B̂1 − B̂2)M

(
M′SM

)−1
] (3.9.54)

Now assume �1 �= �2; under H , C(B̂1 − B̂2)M ∼Ng, v [0, M′�1 M⊗W1 +M′�2M⊗
W2]. The unbiased estimate of the covariance matrix is

U =M′S1M⊗W1 +M′S2M⊗W2 (3.9.55)

which is distributed independent of C (B1 − B2)M. When �1 �= �2, the BLH trace statis-
tic can no longer be written as a trace since U is a sum of Kronecker products. However,
using the vec operator it can be written as

T 2
B =

[
vec C(B̂1 − B̂2)M

]′
U−1 vec

[
C(B̂1 − B̂2)M

]
(3.9.56)
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Defining

Se =
[
S1 tr

(
W1 (W1 +W2)

−1
)
+ S2 tr

(
W2 (W1 +W2)

−1
)]

/g

T̂ 2
B =

[
vec(C(B̂1 − B̂2)M)

]′ [
M′SeM⊗ (W1 +W2)

]−1 vec(C(B̂1 − B̂2)M)

Nel (1997), following Nel and van der Merwe (1986), found that T̂ 2
B can be approximated

with an F statistic. The hypothesis H in (3.9.52) is rejected for a test of size α if

F = f̂ − v+1
v

T̂ 2
B

f̂
≥ F1−α (

v, f̂ − v+1
)

(3.9.57)

where f̂ is estimated from the data as

f̂ = tr{[D+v ⊗ vech (W1 +W2)]
(
M′SeM⊗M′SeM

) (
Dv ⊗ [vech (W1 +W2)]′

)}∑2
i=1

1
vi

tr{(D+v ⊗ vech Wi
) (

M′Si M⊗M′Si M
)
(Dv ⊗ [vech (Wi )]′)}

(3.9.58)
where Dv is the unique duplication matrix of order v2× v (v+1) /2 defined in Theo-
rem 2.4.8 of the symmetric matrix A =M′SM where S is a covariance matrix. That is
for a symmetric matrix Av×v, vec A = Dv vech A and the elimination matrix is D+v = (D′v
Dv)
−1D′v, such that D+v vec A = vech A. When the r(C) = 1, the approximation in (3.9.57)

reduces to Nel and van der Merwe’s test for evaluating the equality of mean vectors. For
g = v = 1, it reduces to the Welch-Aspin F statistic and if the r (M) = 1 so that M = m
the statistic simplifies to

T̃ 2
B = m′(B̂1 − B̂2)

′C′
(
v1BĜ1 + v2Ĝ2

)−1
C(B̂1 − B̂2)m (3.9.59)

where
Ĝi = (m′Si m)Wi/vi

Then, H : CB1m = CB2m is rejected if

F = T̃ 2
B/g ≥ F1−α (

g, f̂
)

(3.9.60)

where

f̂ = [vech(v1Ĝ1 + v2Ĝ2)]′ vech(v1Ĝ1 + v2Ĝ2)

v1(vech Ĝ1)′ vech Ĝ1 + v2(vech Ĝ2)′ vech Ĝ2
(3.9.61)

Example 3.9.5 (Two-Group Profile Analysis �1 �= �2) Expression (3.9.52) may be used
to test the multivariate hypotheses of no group difference (H∗G), equal vector profiles across
the p conditions (H∗C ), and the parallelism of profiles (HP ) when the covariance matrices
for the two groups are not equal in the population. And, given parallelism, it may be used
to test for differences in groups (HG) or differences in the p conditions (HC ). For the test
of conditions given parallelism, we do not have to assume that the covariance matrices
have any special structure and for the test for differences in group means we do not require
that the population variances be equal. Because the test of parallelism determines how we
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usually proceed with our analysis of profile data, we illustrate how to calculate (3.9.57) to
test for parallelism (HP ) when the population covariances are unequal. For this example,
the problem solving ability data provided in Table 3.9.9 are used. The data represent the
time required to solve four mathematics problems for a new experimental treatment pro-
cedure and a control method. The code for the analysis is provided in program m3 9f.sas.
Using formula (3.9.57) with Hotelling’s approximate T 2 statistic, T̂ 2

B = 1.2456693, the
F-statistic is F = 0.3589843. The degrees of freedom for the F-statistic for the hypothesis
of parallelism are 3 and 12.766423. The degrees of freedom for error is calculated using
(3.9.57) and (3.9.58). The p-value for the test of parallelism is 0.7836242. Thus, we do not
reject the hypothesis of parallel profiles.

For this example, the covariance matrices appear to be equal in the population so that
we may compare the p-value for the approximate test of parallelism with the p-value for
the exact likelihood ratio test. As illustrated in Example 3.9.4, we use PROC GLM to test
for parallelism given that the covariance matrices are equal in the population. The exact
F-statistic for the test of parallelism is F = 0.35 has an associated p-value of 0.7903.
Because the Type I error rates for the two procedures are approximately equal, the relative
efficiency of the two methods appear to be nearly identical when the covariance matrices
are equal. Thus, one would expect to lose little power by using the approximate test pro-
cedure when the covariance matrices are equal. Of course, if the covariance matrices are
not equal we may not use the exact test. One may modify program m3 9f.sas to test other
hypotheses when the covariances are unequal.

Exercises 3.9

1. In a pilot study designed to compare a new training program with the current standard
in grammar usage (G), reading skills (R), and spelling (S) to independent groups of
students finished the end of the first week of instruction were compared on the three
variables. The data are provided in Table 3.9.6

TABLE 3.9.6. Two-Group Instructional Data.

Experimental Control
Subject G R S Subject G R S

1 31 12 24 1 31 50 20
2 52 64 32 2 60 40 15
3 57 42 21 3 65 36 12
4 63 19 54 4 70 29 18
5 42 12 41 5 78 48 24
6 71 79 64 6 90 47 26
7 65 38 52 7 98 18 40
8 60 14 57 8 95 10 10
9 54 75 58

10 67 22 69
11 70 34 24
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(a) Test the hypotheses that �1 = �2.

(b) For α = 0.05, test the hypothesis than the mean performance on the three
dependent variables is the same for both groups; Ho : µ1 = µ2. Perform the
test assuming �1 = �2 and �1 �= �2.

(c) Given that �1 = �2, use the discriminant coefficients to help isolate variables
that led to the rejection of HC .

(d) Find 95% simultaneous confidences for parametric functions that evaluate the
mean difference between groups for each variable using (3.9.5). Compare these
intervals using the Studentized Maximum Modulus Distribution. The critical
values are provided in the Appendix, Table V.

(e) Using all three variables, what is the contrast that led to the rejection of Ho.
Can you interpret your finding?

2. Dr. Paul Ammon had subjects listen to tape-recorded sentences. Each sentence was
followed by a “probe” taken from one of five positions in the sentence. The subject
was to respond with the word that came immediately after the probe word in the
sentence and the speed of the reaction time was recorded. The data are given in
Table 3.9.7.

Example Statement: The tall man met the young girl who got
the new hat.

1 2 3 4 5
Dependent Variable: Speed of response (transformed reaction

time).

(a) Does the covariance matrix for this data have Type H structure?

(b) Test the hypothesis that the mean reaction time is the same for the five probe
positions.

(c) Construct confidence intervals and summarize your findings.

3. Using that data in Table 3.7.3. Test the hypothesis that the mean length of the ramus
bone measurements for the boys in the study are equal. Does this hypothesis make
sense? Why or why not? Please discuss your observations.

4. The data in Table 3.9.8 were provided by Dr. Paul Ammon. They were collected as
in the one-sample profile analysis example, except that group I data were obtained
from subjects with low short-term memory capacity and group II data were obtained
from subjects with high short-term memory capacity.

(a) Plot the data.

(b) Are the profiles parallel?

(c) Based on your decision in (b), test for differences among probe positions and
differences between groups.

(d) Discuss and summarize your findings.
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TABLE 3.9.7. Sample Data: One-Sample Profile Analysis.

Probe-Word Positions
Subject 1 2 3 4 5
1 51 36 50 35 42
2 27 20 26 17 27
3 37 22 41 37 30
4 42 36 32 34 27
5 27 18 33 14 29
6 43 32 43 35 40
7 41 22 36 25 38
8 38 21 31 20 16
9 36 23 27 25 28
10 26 31 31 32 36
11 29 20 25 26 25

TABLE 3.9.8. Sample Data: Two-Sample Profile Analysis.

Probe-Word Positions
1 2 3 4 5

S1 20 21 42 32 32
S2 67 29 56 39 41
S3 37 25 28 31 34
S4 42 38 36 19 35

Group I S5 57 32 21 30 29
S6 39 38 54 31 28
S7 43 20 46 42 31
S8 35 34 43 35 42
S9 41 23 51 27 30
S10 39 24 35 26 32

Mean 42.0 28.4 41.2 31.2 33.4
S1 47 25 36 21 27
S2 53 32 48 46 54
S3 38 33 42 48 49
S4 60 41 67 53 50

Group II S5 37 35 45 34 46
S6 59 37 52 36 52
S7 67 33 61 31 50
S8 43 27 36 33 32
S9 64 53 62 40 43
S10 41 34 47 37 46

Mean 50.9 35.0 49.6 37.9 44.9
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TABLE 3.9.9. Problem Solving Ability Data.

Problems
Subject 1 2 3 4

1 43 90 51 67
2 87 36 12 14
3 18 56 22 68
4 34 73 34 87

C 5 81 55 29 54
6 45 58 62 44
7 16 35 71 37
8 43 47 87 27
9 22 91 37 78
1 10 81 43 33
2 58 84 35 43
3 26 49 55 84
4 18 30 49 44

E 5 13 14 25 45
6 12 8 40 48
7 9 55 10 30
8 31 45 9 66

(e) Do these data satisfy the model assumptions of homogeneity and circularity so
that one may construct exact univariate F tests?

5. In an experiment designed to investigate problem-solving ability for two groups of
subjects, experimental (E) and control (C) subjects were required to solve four dif-
ferent mathematics problems presented in a random order for each subject. The time
required to solve each problem was recorded. All problems were thought to be of the
same level of difficulty. The data for the experiment are summarized in Table 3.9.9.

(a) Test that �1 = �2 for these data.

(b) Can you conclude that the profiles for the two groups are equal? Analyze this
question given �1 = �2 and �1 �= �2.

(c) In Example 3.9.5, we showed that there is no interaction between groups and
conditions. Are there any differences among the four conditions? Test this hy-
pothesis assuming equal and unequal covariance matrices.

(d) Using simultaneous inference procedures, where are the differences in condi-
tions in (c)?

6. Prove that if a covariance matrix � has compound symmetry structure that it is a
“Type H” matrix.
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3.10 Univariate Profile Analysis

In Section 3.9 we presented the one- and two-group profile analysis models as multivariate
models and as univariate mixed models. For the univariate models, we represented the mod-
els as unconstrained models in that no restrictions (side conditions) were imposed on the
fixed or random parameters. To calculate expected mean squares for balanced/orthogonal
mixed models, many students are taught to use rules of thumb. As pointed out by Searle
(1971, p. 393), not all rules are the same when applied to mixed models. If you follow Neter
et al. (1996, p. 1377) or Kirk (1995, p. 402) certain terms “disappear” from the expressions
for expected mean squares (EMS). This is not the case for the rules developed by Searle.
The rules provided by Searle are equivalent to obtaining expected mean squares (EMS)
using the computer synthesis method developed by Hartley (1967). The synthesis method
is discussed in detail by Milliken and Johnson (1992, Chapter 18) and Hocking (1985,
p. 336). The synthesis method may be applied to balanced (orthogonal) designs or unbal-
anced (nonorthogonal) designs. It calculates EMS using an unconstrained model. Applying
these rules of thumb to models that include restrictions on fixed and random parameters has
caused a controversy among statisticians, Searle (1971, pp. 400-404), Schwarz (1993), Voss
(1999), and Hinkelmann et al. (2000).

Because SAS employs the method of synthesis without model constraints, the EMS as
calculated in PROC GLM depend on what factors a researcher specifies as random on the
RANDOM statement in PROC GLM, in particular, whether interactions between random
effects and fixed effects are designated as random or fixed. If any random effect that inter-
acts with a fixed effect or a random effect is designed as random, then the EMS calculated
by SAS results in the correct EMS for orthogonal or nonorthogonal models. For any bal-
anced design, the EMS are consistent with EMS obtained using rules of the thumb applied
to unconstrained (unrestricted) models as provided by Searle.

If the interaction of random effects with fixed effects is designated as fixed, and excluded
from the RANDOM statement in PROC GLM, tests may be constructed assuming one or
more of the fixed effects are zero. For balanced designs, this often causes other entries
in the EMS table to behave like EMS obtained by rules of thumb for univariate models
with restrictions. To ensure correct tests, all random effects that interact with other random
effects and fixed effects must be specified on the RANDOM statement in PROC GLM.
Then, F or quasi-F tests are created using the RANDOM statement

random r r * f / test ;

Here, r is a random effect and f is a fixed effect. The MODEL statement is used to specify
the model and must include all fixed, random, and nested parameters. When using PROC
GLM to analyze mixed models, only the tests obtained from the random statement are
valid; see Littell et al. (1996, p. 29).

To analyze mixed models in SAS, one should not use PROC GLM. Instead, PROC
MIXED should be used. For balanced designs, the F tests for fixed effects are identical. For
nonorthogonal designs they generally do not agree. This is due to the fact that parameter es-
timates in PROC GLM depend on ordinary least squares theory while PROC MIXED uses
generalized least squares theory. An advantage of using PROC MIXED over PROC GLM
is that one may estimate variance components in PROC mixed, find confidence intervals
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for the variance components, estimate contrasts in fixed effects that have correct standard
errors, and estimate random effects. In PROC MIXED, the MODEL statement only con-
tains fixed effects while the RANDOM statement contains only random effects. We will
discuss PROC MIXED in more detail in Chapter 6; we now turn to the reanalysis of the
one-group and two-group profile data.

a. Univariate One-Group Profile Analysis

Using program m3 10a.sas to analyze Example 3.9.3 using the unconstrained univariate
randomized block mixed model, one must transform the vector observations to elements
Yi j . This is accomplished in the data step. Using the RANDOM statement with subj , the
EMS are calculated and the F test for differences in means among conditions or treatments
is F = 942.9588. This is the exact value obtained from the univariate test in the MANOVA
model. The same value is realized under the Tests of Fixed Effects in PROC MIXED.
In addition, PROC MIXED provides point estimates for σ 2

e and σ 2
s : σ̂ 2

e = 4.0535 and
σ̂ 2

s = 1.6042 with standard errors and upper and lower limits. Tukey-Kramer confidence
intervals for simple mean differences are also provided by the software. The F tests are
only exact under sphericity of the transformed covariance matrix (circularity).

b. Univariate Two-Group Profile Analysis

Assuming homogeneity and circularity, program m3 10b.sas is used to reanalyze the data in
Example 3.9.4, assuming a univariate unconstrained split-plot design. Reviewing the tests
in PROC GLM, we see that the univariate test of group differences and the test of treatment
(condition) differences have a warning that this test assumes one or more other fixed effects
are zero. In particular, looking at the table of EMS, the interaction between treatments by
groups must be nonsignificant. Or, we need parallel profiles for a valid test.

Because this design is balanced, the Tests of Fixed Effects in PROC MIXED agree with
the GLM, F tests. We also have estimates of variance components with confidence inter-
vals. Again, more will be said about these results in Chapter 6. We included a discussion
here to show how to perform a correct univariate analysis of these designs when the circu-
larity assumption is satisfied.

3.11 Power Calculations

Because Hotelling’s T 2 statistic, T 2 = nY′Q−1Y, is related to an F distribution, by Defi-
nition 3.5.3

F = (n − p + 1) T 2

pn
∼ F1−α (p, n − p, γ ) (3.11.1)

with noncentrality parameter
γ = µ′�−1µ

one may easily estimate the power of tests that depend on T 2. The power π is the Pr[F ≥
F1−α(vh, ve, γ )] where vh = p and ve = n − p. Using the SAS functions FINV and
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PROBF, one computes π as follows

F CV = FINV (1− α, d f h, d f e, γ = 0)

π = 1− PROBF (F CV, d f h, d f e, γ )
(3.11.2)

The function FINV returns the critical value for the F distribution and the function PROBF
returns the p-value. To calculate the power of the test requires one to know the size of the
test α, the sample size n, the number of variables p, and the noncentrality parameter γ

which involves both of the unknown population parameters, � and µ.
For the two-group location test of Ho : µ1 = µ2, the noncentrality parameter is

γ = n1n2

n1 + n2
(µ1 − µ2)

′�−1 (µ1 − µ2) (3.11.3)

Given n1, n2, α, and γ , the power of the test is easily estimated.
Conversely for a given difference δ = µ1−µ2 and �, one may set n1 = n2 = n0 so that

γ = n2
0

2n0
δ′�−1δ (3.11.4)

By incrementing n0, the desired power for the test of Ho : µ1 = µ2 may be evaluated to
obtain an appropriate sample size for the test.

Example 3.11.1 (Power Calculation) An experimenter wanted to design a study to eval-
uate the mean difference in performance between an experimental treatment and a control
employing two variables that measured achievement in two related content areas. To test
µE = µC . Based on a pilot study, the population covariance matrix for the two variables
was as follows

� =
 307 280

280 420


The researcher wanted to be able to detect a mean difference in performance of δ′ = [µ1−
µ2]′ = [1, 5]′ units. To ensure that the power of the test was at least 0.80, the researcher
wanted to know if five or six subjects per group would be adequate for the study. Using
program m3 11 1.sas, the power for n0 = 5 subjects per group or 10 subjects in the study
has power, π = 0.467901. For n0 = 6 subjects per group, the value of π = 0.8028564.
Thus, the study was designed with six subjects per group or 12 subjects.

Power analysis for studies involving multivariate variables is more complicated than uni-
variate power analysis because it involves the prior specification of considerable population
structure. Because the power analysis for T 2 tests is a special case of power analysis us-
ing the MR model, we will address power analysis more generally for multivariate linear
models in Chapter 4.

Exercises 3.11

1. A researcher wants to detect differences of 1, 3, and 5 units on three dependent
variables in an experiment comparing two treatments. Randomly assigning an equal
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number of subjects to the two treatments, with

� =
 10

5 10
5 5 10


and α = 0.05, how large a sample size is required to attain the power π = 0.80 when
testing H : µ1 = µ2?

2. Estimate the power of the tests for testing the hypotheses in Exercises 3.7, Problem 4,
and Exercises 3.7, Problem 2.



4
Multivariate Regression Models

4.1 Introduction

In Chapter 3, Section 3.6 we introduced the basic theory for estimating the nonrandom,
fixed parameter matrix Bq×p for the multivariate (linear) regression (MR) model Yn×p =
Xn×qBq×p + En×p and for testing linear hypotheses of the general form CBM = 0. For
this model it was assumed that the design matrix X contains fixed nonrandom variables
measured without measurement error, the matrix Yn×p contains random variables with or
without measurement error, the E (Y) is related to X by a linear function of the parameters
in B, and that each row of Y has a MVN distribution.

When the design matrix X contains only indicator variables taking the values of zero
or one, the models are called multivariate analysis of variance (MANOVA) models. For
MANOVA models, X is usually not of full rank; however, the model may be reparameter-
ized so that X is of full rank. When X contains both quantitative predictor variables also
called covariates (or concomitant variables) and indicator variables, the class of regression
models is called multivariate analysis of covariance (MANCOVA) models. MANCOVA
models are usually analyzed in two steps. First a regression analysis is performed by re-
gressing the dependent variables in Y on the covariates and then a MANOVA is performed
on the residuals. The matrix X in the multivariate regression model or in MANCOVA mod-
els may also be assumed to be random adding an additional level of complexity to the
model. In this chapter, we illustrate testing linear hypotheses, the construction of simulta-
neous confidence intervals and simultaneous test procedures (STP) for the elements of B
for MR, MANOVA and MANCOVA models. Also considered are residual analysis, lack-
of-fit tests, the detection of influential observations, model validation and random design
matrices. Designs with one, two and higher numbers of factors, with fixed and random co-
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variates, repeated measurement designs and unbalanced data problems are discussed and il-
lustrated. Finally, robustness of test procedures, power calculation issues, and testing means
with unequal covariance matrices are reviewed.

4.2 Multivariate Regression

a. Multiple Linear Regression

In studies utilizing multiple linear regression one wants to determine the most appropriate
linear model to predict only one dependent random variable y from a set of fixed, observed
independent variables x1, x2, . . . , xk measured without error. One can fit a linear model
of the form specified in (3.6.3) using the least squares criterion and obtain an unbiased
estimate of the unknown common variance σ 2. To test hypotheses, one assumes that y in
(3.6.3) follows a MVN distribution with covariance matrix � = σ 2In . Having fit an ini-
tial model to the data, model refinement is a necessary process in regression analysis. It
involves evaluating the model assumptions of multivariate normality, homogeneity of vari-
ance, and independence. Given that the model assumptions are correct, one next obtains
a model of best fit. Finally, one may evaluate the model prediction, called model valida-
tion. Formal tests and numerous types of plots have been developed to systematically help
one evaluate the assumptions of multivariate normality; detect outliers, select independent
variables, detect influential observations and detect lack of independence. For a more thor-
ough discussion of the iterative process involved in multiple linear and nonlinear regression
analysis, see Neter, Kutner, Nachtsheim and Wasserman (1996).

When the dependent variable y in a study can be assumed to be independent multivariable
normally distributed but the covariance structure cannot be assumed to have the sphericity
structure � = σ 2In , one may use the generalized least squares analysis. Using generalized
least squares, a more general structure for the covariance matrix is assumed. Two common
forms for � are � = σ 2V where V is known and nonsingular called the weighted least
squares (WLS) model and � = � where � is known and nonsingular called the generalized
least squares (GLS) model. When � is unknown, one uses large sample asymptotic normal
theory to fit and evaluate models. In the case when � is unknown feasible generalized least
squares (FGLS) or estimated generalized least squares (EGLS) procedures can be used. For
a discussion of these procedures see Goldberger (1991), Neter et al. (1996) and Timm and
Mieczkowski (1997, Chapter 4).

When the data contain outliers, or the distribution of y is nonnormal, but elliptically
symmetric, or the structure of X is unknown, one often uses robust regression, nonpara-
metric regression, smoothing methodologies or bootstrap procedures to fit models to the
data vector y, Rousseeuw and Leroy (1987), Buja, Hastie and Tibshirani (1989) and Fried-
man (1991). When the dependent variable is discrete, generalized linear models introduced
by Nelder and Wedderburn (1972) are used to fit models to data. The generalized linear
model (GLIM) extends the traditional MVN general linear model theory to models that in-
clude the class of distributions known as the exponential family of distributions. Common
members of this family are the binomial, Poisson, normal, gamma and inverse gamma dis-
tributions. The GLIM combined with quasi-likelihood methods developed by Wedderburn
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(1974) allow researchers to fit both linear and nonlinear models to both discrete (e.g., bino-
mial, Poisson) and continuous (e.g., normal, gamma, inverse gamma) random, dependent
variables. For a discussion of these models which include logistic regression models, see
McCullagh and Nelder (1989), Littell, et al. (1996), and McCulloch and Searle (2001).

b. Multivariate Regression Estimation and Testing Hypotheses

In multivariate (linear) regression (MR) models, one is not interested in predicting only
one dependent variable but rather several dependent random variables y1, y2, . . . , yp . Two
possible extensions with regard to the set of independent variables for MR models are (1)
the design matrix X of independent variables is the same for each dependent variable or
(2) each dependent variable is related to a different set of independent variables so that p
design matrices are permitted. Clearly, situation (1) is more restrictive than (2) and (1) is a
special case of (2). Situation (1) which requires the same design matrix for each dependent
variable is considered in this chapter while situation (2) is treated in Chapter 5 where we
discuss the seemingly unrelated regression (SUR) model which permits the simultaneous
analysis of p multiple regression models.

In MR models, the rows of Y or E, are assumed to be distributed independent MVN so
that vec (E) ∼ Nnp (0, � ⊗ In). Fitting a model of the form E (Y) = XB to the data matrix
Y under MVN, the maximum likelihood (ML) estimate of B is given in (3.6.20). This ML
estimate is identical to the unique best linear unbiased estimator (BLUE) obtained using
the multivariate ordinary least squares criterion that the Euclidean matrix norm squared,
tr
[
(Y− XB)′ (Y− XB)

] = ‖Y− XB‖2 is minimized over all parameter matrices B for
fixed X, Seber (1984).

For the MR model Y = XB+ E, the parameter matrix B is

B =
 β ′0−−−

B1

 =


β01 β02 · · · β0p
−−− −−− −−− −−−
β11 β12 · · · β1p
β21 β22 · · · β2p
...

...
...

...

βk1 βk2 · · · βkp


(4.2.1)

where q = k + 1 and is the number of independent variables associated with each depen-
dent variable. The vector β ′0 contains intercepts while the matrix B1 contains coefficients
associated with independent variables. The matrix B in (4.2.1) is called the raw score form
of the parameter matrix since the elements yi j in Y have the general form

yi j = β0 j + β1 j xi1 + . . .+ βk j xik + ei j (4.2.2)

for i = 1, 2, . . . , n and j = 1, 2, . . . , p.
To obtain the deviation form of the MR model, the means x j = ∑n

i=1 xi j/n, j =
1, 2, . . . , k are calculated and the deviation scores di j = xi j − x j , are formed. Then, (4.2.2)
becomes

yi j = β0 j +
k∑

h=1
βh j xh +

k∑
h=1

βh j (xih − xh)+ ei j (4.2.3)
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Letting

α0 j = β0 j +
k∑

h=1
βh j xh j = 1, 2, . . . , p

α′0 =
[
α01, α02, . . . , α0p

]
B1 =

[
βh j

]
h = 1, 2, . . . , k and j = 1, 2, . . . , p

Xd =
[
di j

]
i = 1, 2, . . . , n and j = 1, 2, . . . , p

(4.2.4)

the matrix representation of (4.2.3) is

Y
n×p
= [1n Xd ]

 α′0

B1

+ E (4.2.5)

where 1n is a vector of n 1′s. Applying (3.6.21),

B̂ =
 α̂′0

B̂1

 =
 y′(

X′dXd
)−1 X′dY

 =
 y′(

X′dXd
)−1 XdYd

 (4.2.6)

where Yd =
[
yi j − y j

]
, and y j is the mean of the j th dependent variable. The matrix Y

may be replaced by Yd since the �
j
di j = 0 for i = 1, 2, . . . , n. This establishes the equiv-

alence of the raw and deviation forms of the MR model since β̂0 j = y j −
∑k

h=1 βh j x j .
Letting the matrix S be the partitioned sample covariance matrices for the dependent and
independent variables

S =
 Syy Syx

Sxy Sxx

 (4.2.7)

and

B̂1 =
(

X′dXd

n − 1

)−1 (X′dYd

n − 1

)
= S−1

xx Sxy

Because the independent variables are considered to be fixed variates, the matrix Sxx does
not provide an estimate of the population covariance matrix. Another form of the MR re-
gression model used in applications is the standard score form of the model. For this form,
all dependent and independent variables are standardized to have mean zero and variance
one. Replacing the matrix Yd with standard scores represented by Yz and the matrix Xd

with the standard score matrix Z, the MR model becomes

Yz = ZBz + E (4.2.8)

and
B̂z = R−1

xy Rxy or B̂′z = Ryx R−1
xx (4.2.9)

where Rxx is a correlation matrix of the fixed x ′s and Ryx is the sample intercorrelation
matrix of the fixed x and random y variables. The coefficients in B̂z are called standardized
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or standard score coefficients. Using the relationships that

Rxx = (diag Sxx )
1/2 Sxx (diag Sxx )

1/2

Rxy =
(
diag Sxy

)1/2 Sxy
(
diag Sxy

)1/2 (4.2.10)

B̂1 is easily obtained from B̂z .
Many regression packages allow the researcher to obtain both raw and standardized co-

efficients to evaluate the importance of independent variables and their effect on the de-
pendent variables in the model. Because the units of measurement for each independent
variable in a MR regression model are often very different, the sheer size of the coefficients
may reflect the unit of measurement and not the importance of the variable in the model.
The standardized form of the model converts the variables to a scale free metric that often
facilitates the direct comparison of the coefficients. As in multiple regression, the magni-
tude of the coefficients are affected by both the presence of large intercorrelations among
the independent variables and the spacing and range of measurements for each of the inde-
pendent variables. If the spacing is well planned and not arbitrary and the intercorrelations
of the independent variables are low so as not to adversely effect the magnitude of the coef-
ficients when variables are added or removed from the model, the standardized coefficients
may be used to evaluate the relative simultaneous change in the set Y for a unit change in
each Xi when holding the other variables constant.

Having fit a MR model of the form Y = XB+E in (3.6.17), one usually tests hypotheses
regarding the elements of B. The most common test is the test of no linear relationship
between the two sets of variables or the overall regression test

H1 : B1 = 0 (4.2.11)

Selecting Ck×q = [0, Ik] of full row rank k and Mp×p = Ip, the test that B1 = 0 is easily
derived from the general matrix form of the hypothesis, CBM = 0. Using (3.6.26) and
partitioning X = [1 X2] where Q = I− 1

(
1′1

)−1 1′ then

B̂ =
 β̂

′
0

B̂1

 =


(
1′1

)−1 1′Y− (
1′1

)−1 1′X2
(
X′2QX2

)−1 X′2QY(
X′2QX2

)−1 X′2QY

 (4.2.12)

and B̂1 = X2
(
X′2QX2

)−1 X′2QY = (
X′dXd

)−1 X′dYd since Q is idempotent and

H = B̂′1
(
X′dXd

)
B̂1

E = Y′Y−y y′ − B̂′1
(
X′dXd

)
B̂1 = Y′dYd − B̂′1

(
X′dXd

)
B̂1

(4.2.13)

so that E+H = T = Y′Y− ny y′ = Y′dYd is the total sum of squares and cross products
matrix, about the mean. The MANOVA table for testing B1 = 0 is given in Table 4.2.1.

To test H1 : B1 = 0, Wilks’ � criterion from (3.5.2), is

� = |E|
|E+H| =

s∏
i=1

(1+ λi )
−1
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TABLE 4.2.1. MANOVA Table for Testing B1 = 0

Source d f SSCP E(MSCP)

β0 1 ny y′ � + nβ0β
′
0

B1 | β0 k H = B̂′1(X′dXd)B̂1 � + B′1(X′d Xd )B1
k

Residual n − k − 1 E = Y′dYd − B̂′1(X′dXd)B̂1 �

Total n Y′Y

where λi are the roots of |H− λE| = 0, s = min (vh, p) = min (k, p) , vh = k and
ve = n − q = n − k − 1. An alternative form for � is to employ sample covariance ma-
trices. Then H = Syx S−1

xx Sxy and E = Syy − Syx S−1
xx Sxy so that |H− λE| = 0 becomes∣∣Syx S−1

xx Sxy − λ(Syy − S−1
xx Sxy)

∣∣ = 0. From the relationship among the roots in Theorem
2.6.8, |H− θ (H+ E)| = ∣∣Syx S−1

xx Sxy − θ Syy
∣∣ = 0 so that

� =
s∏

i=1
(1+ λi )

−1 =
s∏

i=1
(1− θ i ) =

∣∣Syy − Syx S−1
xx Sxy

∣∣∣∣Syy
∣∣

Finally, letting S be defined as in (4.2.7) and using Theorem 2.5.6 (6), the � criterion for
testing H1 : B1 = 0 becomes

� = |E|
|E+H| =

s∏
i=1

(1+ λi )
−1

= |S|
|Sxx |

∣∣Syy
∣∣ = s∏

i=1
(1− θ i )

(4.2.14)

Using (3.5.3), one may relate � to an F distribution. Comparing (4.2.14) with the ex-
pression for W for testing independence in (3.8.32), we see that testing H1 : B1 = 0 is
equivalent to testing �xy = 0 or that the set X and Y are independent under joint mul-
tivariate normality. We shall see in Chapter 8 that the quantities r2

i = θ i = λi/ (1+ λi )

are then sample canonical correlations. For the other test criteria, M = (|p − k| − 1) /2
and N = (n − k − p − 2) /2 in Theorem 3.5.1. To test additional hypotheses regarding the
elements of B other matrices C and M are selected. For example, for C = Iq and M = Ip,

one may test that all coefficients are zero, Ho : B = 0. To test that any single row of B1 is
zero, a row of C = [0, Ik] would be used with M = Ip. Failure to reject Hi : c′i B = 0′ may
suggest removing the variable from the MR model.

A frequently employed test in MR models is to test that some nested subset of the rows
of B are zero, say the last k − m rows. For this situation, the MR model becomes

�o : Y = [X1,X2]

 B1

B2

+ E (4.2.15)

where the matrix X1 is associated with 1, x1, . . . , xm and X2 contains the variables xm+1,

. . . , xk so that q = k + 1. With this structure, suppose one is interested in testing H2 :
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B2 = 0. Then the matrix C = [0m, Ik−m] has the same structure as the test of B1 with the
partition for X = [X1,X2] so that X1 replaces 1n . Now with Q = I−X1

(
X′1X1

)−1 X′1 and

B̂2 =
(
X′2QX2

)−1 X′2QY, the hypothesis test matrix becomes

H = B̂′2(X′2X2 − X′2X1
(
X′1X1

)−1 X′1X2)B̂2

= Y′QX2
(
X′2QX2

)−1 X2QY
(4.2.16)

Alternatively, one may obtain H by considering two models: the full model �o in (4.2.15)
and the reduced model ω : Y = X1B1 + Eω under the hypothesis. Under the reduced
model, B̂1 =

(
X′1X1

)−1 X′1Y and the reduced error matrix Eω = Y′Y − B̂′1
(
X′1X1

)
B̂1 =

Y′Y− B̂′1X′1Y where Hω = B̂′1
(
X′1X1

)
B̂1 tests Hω : B1 = 0 in the reduced model. Under

the full model, B̂ = (
X′X

)−1 X′Y and E�o = Y′Y − B̂′
(
X′X

)
B̂ = Y′Y − B̂′X′Y where

H = B̂′
(
X′X

)
B̂ tests H : B = 0 for the full model. Subtracting the two error matrices,

Eω − E�o = B̂′
(
X′X

)
B̂− B̂′1

(
X′1X1

)
B̂1

= Y′X
(
X′X

)−1 X′Y− B̂′1
(
X′1X1

)
B̂1

= Y′
[
X1

(
X′1X

)−1 X′1 − X1
(
X′1X1

)−1 X′1X2
(
X′2QX2

)−1 X′2Q

+ X2
(
X′2QX2

)−1 X′2Q
]

Y− B̂′1
(
X′1X1

)
B̂1

= Y′X2
(
X′2QX2

)−1 X′2QY− Y′X1
(
X′1X1

)−1 X′1X2
(
X′2QX2

)−1 X′2QY

= Y′
[
I− X1

(
X′1X1

)−1 X1

] [
X2

(
X′2QX2

)−1 X′2Q
]

Y

= Y′QX2
(
X′2QX2

)−1 X′2QY

= H

as claimed. Thus, H is the extra sum of squares and cross products matrix due to X2 given
the variables associated with X1 are in the model. Finally, to test H2 : B2 = 0, Wilks’ �
criterion is

� = |E|
|E+H|

=
∣∣E�o

∣∣
|Eω| =

s∏
i=1

(1+ λi )
−1 =

s∏
i=1

(1− θ i ) ∼ U(p,k−m,ve)

(4.2.17)

where ve = n − q = n − k − 1. For the other criteria, s = min (k − m, p), M =
(|p − k − m| − 1) /2 and N = (n − k − p − 2) /2.

The test of H2 : B2 = 0 is also called the test of additional information since it is
being used to evaluate whether the variables xm+1, . . . , xk should be in the model given
that x1, x2, . . . , xm are in the model. The tests are being performed in order to uncover and
estimate the functional relationship between the set of dependent variables and the set of
independent variables. We shall see in Chapter 8 that θ i = λi/ (1+ λi ) is the square of a
sample partial canonical correlation.
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In showing that H = Eω − E�o for the test of H2, we discuss the test employing the
reduction in SSCP terminology. Under ω, recall that Tω = Eω+Hω so that Eω = Tω−Hω

is the reduction in the total SSCP matrix due to ω and E�o = T�o − H�o is the reduction
in total SSCP matrix due to �o. Thus Eω − E�o = (Tω −Hω)−

(
T�o −H�o

) = H�o −
Hω represents the differences in the regression SSCP matrices for fitting Y = X1B1 +
X2B1 + E compared to fitting the model Y = X1B1 + E. Letting R (B1,B2) = H�o

and R (B1) = Hω then R (B1,B2) − R (B1) represents the reduction in the regression
SSCP matrix resulting from fitting B2, having already fit B1. Hence, the hypothesis SSCP
matrix H is often described at the reduction of fitting B2, adjusting for B1. This is written
as

R (B2 | B1) = R (B1,B2)− R (B1) (4.2.18)

The reduction R (B1) is also called the reduction of fitting B1, ignoring B2. Clearly
R (B2 | B1) �= R (B2). However, if X′1X2 = 0, then R (B2) = R (B2 | B1) and B1 is said
to be orthogonal to B2.

One may extend the reduction notation further by letting B = (B1,B2,B3). Then R(B2 |
B1) = R(B1,B2) − R (B1) is not equal to R (B2 | B1,B3) = R (B1,B2,B3) − R (B1B3)

unless the design matrix is orthogonal. Hence, the order chosen for fitting variables affects
hypothesis SSCP matrices for nonorthogonal designs.

Tests of Ho, H1, H2 or Hi are used by the researcher to evaluate whether a set of inde-
pendent variables should remain in the MR model. If a subset of B is zero, the independent
variables are excluded from the model. Tests of Ho, H1, H2 or Hi are performed in SAS
using PROC REG and the MTEST statement. For example to test H1 : B1 = 0 for k
independent variables, the MTEST statement is

mtest x1,x2,x3,...,xk / print;

where x1, x2, . . . , xk are names of independent variables separated by commas. The option
/ PRINT directs SAS to print the hypothesis test matrix. The hypotheses Hi : [β i1, β i2,

. . . , β i p] = 0′ are tested using k statements of the form

mtest xi /print;

for i = 1, 2, . . . , k. For the subtest H2 : B2 = 0, the MTEST command is

mtest xm,....,xk / print;

for a subset of the variable names xm, . . . , xk, again the names are separated by commas.
To test that two independent variable coefficients are both equal and equal to zero, the
statement

mtest x1, x2 / print;

is used. To form tests that include the intercept in any of these tests, on must include the
variable name intercept in the MTEST statement. The commands will be illustrated with
an example.
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c. Multivariate Influence Measures

Tests of hypotheses are only one aspect of the model refinement process. An important
aspect of the process is the systematic analysis of residuals to determine influential obser-
vations. The matrix of multivariate residuals is defined as

Ê = Y− XB̂ = Y− Ŷ (4.2.19)

where Ŷ = XB̂ is the matrix of fitted values. Letting P = X
(
X′X

)−1 X′, (4.2.19) is written
as Ê = (I− P)Y where P is the projection matrix. P is a symmetric idempotent matrix,
also called the “hat matrix” since PY projects Y into Ŷ. The ML estimate of � may be
represented as

�̂ = Ê′Ê/n = Y′ (I− P)Y/n = E/n (4.2.20)

where E is the error sum of squares and cross products matrix. Multiplying �̂ by n/ (n − q)
where q = r (X), an unbiased estimate of � is

S = n�̂/ (n − q) = E/ (n − q) (4.2.21)

The matrix of fitted values may be represented as follows

Ŷ =


ŷ′1
ŷ′2
...

ŷ′n

 = PY = P


y′1
y′2
...

y′n


so that

ŷ′i =
n∑

j=1
pi j y′j

= pii y′i +
n∑

j �=i
pi j y′j

where pi1, pi2, . . . , pin are the elements in the i th row of the hat matrix P. The coefficients
pii , the diagonal elements of the hat matrix P, represent the leverage or potential influence
an observation y′i has in determining the fitted value ŷ′i . For this reason the matrix P is
also called the leverage matrix. An observation y′i with a large leverage value pii is called a
high leverage observation because it has a large influence on the fitted values and regression
coefficients in B.

Following standard univariate notation, the subscript ‘(i)’ on the matrix X(i) is used to
indicate that the i th row is deleted from X. Defining Y(i) similarly, the matrix of residuals
with the i th observation deleted is defined as

Ê(i) = Y(i) − X(i)B̂(i)

= Y(i) − Ŷ(i)
(4.2.22)
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where B̂(i) = (X′(i)X(i))
−1X′(i)Y(i) for i = 1, 2, . . . , n. Furthermore, S(i) = Ê′(i)Ê(i)/(n −

q − 1). The matrices B̂i and S(i) are the unbiased estimators of B and � when the i th

observation vector
(
y′i , x′i

)
is deleted from both Y and X.

In multiple linear regression, the residual vector is not distributed N
(
0, σ 2 (I− P)

)
;

however, for diagnostic purposes, residuals are “Studentized”. The internally Studentized
residual is defined as ri = êi/

[
s (1− pii )

1/2] while the externally Studentized residual
is defined as ti = êi/

[
s(i) (1− pii )

1/2] where êi = yi − x′i β̂ i . If the r (X) = r
(
X(i)

) =
q and e ∼ Nn

(
0, σ 2I

)
, then the ri are identically distributed as a Beta (1/2, (n − q − 1) /2)

distribution and the ti are identically distributed as a student t distribution; in neither case
are the quantities independent, Chatterjee and Hadi (1988, pp. 76–78). The externally Stu-
dentized residual is also called the Studentized deleted residual.

Hossain and Naik (1989) and Srivastava and von Rosen (1998) generalize Studentized
residuals to the multivariate case by forming statistics that are the squares of ri and ti . The
internally and externally “Studentized” residuals are defined as

r2
i = ê′i S−1̂ei/ (1− pii ) and T 2

i = ê′i S
−1
(i) êi/ (1− pii ) (4.2.23)

for i = 1, 2, . . . , n where êi is the i th row of Ê = Y−XB̂. Because T 2
i has Hotelling’s T 2

distribution and r2
i / (n − q) ∼ Beta [p/2, (n − q − p) /2], assuming no other outliers, an

observation y′i may be considered an outlier if

(n − q − p)

p

T 2
i

(n − q − 1)
> F1−α∗ (p, n − q − 1) (4.2.24)

where α∗ is selected to control the familywise error rate for n tests at the nominal level α.
This is a natural extension of the univariate test procedure for outliers.

In multiple linear regression, Cook’s distance measure is defined as

Ci =
(
β̂ − β̂(i)

)′ (
X′X

) (
β̂ − β̂(i)

)
qs2

=
(̂
y− ŷ(i)

)′ (̂y− ŷ(i)
)

qs2

= 1

q

pii

1− pii
r2

i

= 1

q

pii

(1− pii )
2

ê2
i

s

(4.2.25)

where ri is the internally Studentized residual and is used to evaluate the overall influence
of an observation (yi , xi ) on all n fitted values or all q regression coefficients for i =
1, 2, . . . , n, Cook and Weisberg (1980). That is, it is used to evaluate the overall effect of
deleting an observation from the data set. An observation is influential if Ci is larger than
the 50th percentile of an F distribution with q and n− q degrees of freedom. Alternatively,
to evaluate the effect of the i th observation (yi , xi ) has on the i th fitted value ŷi , one may
compare the closeness of ŷi to ŷi(i) = x′i β̂(i) using the Welsch-Kuh test statistic, Belsley,
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Welsch and Kuh (1980), defined as

W Ki =
∣∣̂yi − ŷi(i)

∣∣
s(i)
√

pii
= x′i

(
β̂ − β̂(i)

)
s(i)
√

pii

= |ti |
√

pii

1− pii

(4.2.26)

where ti is an externally Studentized residual. The statistic W Ki ∼ t
√

q/ (n − q) for i =
1, 2, . . . , n. The statistic W Ki is also called (DFFITS)i . An observation yi is considered
influential if W Ki > 2

√
q/ (n − q).

To evaluate the influence of the i th observation on the j th coefficient in β in multiple
(linear) regression, the DFBETA statistics developed by Cook and Weisberg (1980) are
calculated as

Ci j = ri

(1− pii )
1/2

wi j(
w′j w j

)1/2
i = 1, 2, . . . , n; j = 1, 2, . . . , q (4.2.27)

where wi j is the i th element of w j =
(
I− P[ j]

)
x j and P[ j] is calculated without the j th

column of X. Belsley et al. (1980) rescaled Ci j to the statistic

Di j =
β̂ j − β̂ j(i)√

var
(
β̂ j

) = ei

σ (1− pii )
1/2

wi j(
w′j w j

)1/2

1

(1− pii )
1/2

(4.2.28)

If σ in (4.2.28) is estimated by s(i), then Di j is called the (DFBETA)i j statistic and

Di j = ti

(1− pii )
1/2

wi j(
w′j w j

)1/2
(4.2.29)

If σ in (4.2.28) is estimated by s, then Di j = Ci j . An observation yi is considered inferen-
tial on the regression coefficient β j if the

∣∣Di j
∣∣ > 2/

√
n.

Generalizing Cook’s distance to the multivariate regression model, Cook’s distance be-
comes

Ci =
[
vec

(
B− B(i)

)]′ (S⊗ X′X
)−1 vec

(
B− B(i)

)
/q

= tr
[(

B− B(i)
)′ (X′X)−1 (B− B(i)

)
S−1

]
/q

= tr
[(

Ŷ− Ŷ(i)
)′ (

Ŷ− Ŷ(i)
)]

/q

= pii

1− pii
r2

i /q

= pii

(1− pii )
2

ê′i S−1̂ei/q

(4.2.30)

for i = 1, 2, . . . , n. An observation is influential if Ci is larger than the 50th percentile of
a chi square distribution with v = p (n − q) degrees of freedom, Barrett and Ling (1992).



196 4. Multivariate Regression Models

Alternatively, since r2
i has a Beta distribution, an observation is influential if Ci > C∗o =

Ci × (n − q)× Beta1−α (v1, v2), v1 = p/2 and v2 = (n − q − p) /2. Beta1−α (v1, v2) is
the upper critical value of the Beta distribution.

To evaluate the influence of
(
y′i , x′i

)
on the i th predicted value ŷ′i where ŷ′i is the i th row

of Ŷ, the Welsch-Kuh, DFFITS, type statistic is defined as

W Ki = pii
1−pii

T 2
i i = 1, 2, . . . , n (4.2.31)

Assuming the rows of Y follow a MVN distribution and the r (X) = r
(
X(i)

) = q, an
observation is said to be influential on the i th predicted value ŷi if

W Ki >
q

n − q

(n − q − 1)

n − q − p
F1−α∗ (p, n − q − p) (4.2.32)

where α∗ is selected to control the familywise error rate for the n tests at some nominal
level α. To evaluate the influence of the i th observation y′i on the j th row of B̂, the DFBETA
statistics are calculated as

Di j = T 2
i

1− pii

w2
i j

w′j w j
(4.2.33)

for i = 1, 2, . . . , n and j = 1, 2, . . . , q. An observation is considered influential on the
coefficient β̂i j of B̂ if Di j > 2 and n > 30.

Belsley et al. (1980) use a covariance ratio to evaluate the influence of the i th observa-
tion on the cov(β̂) in multiple (linear) regression. The covariance ratio (CVR) for the i th

observation is
CV Ri =

[
s2
(i)/s2

]
/ (1− pii ) i = 1, 2, . . . , n (4.2.34)

An observation is considered influential if |CVRi −1| > 3q/n. For the MR model, Hossain
and Naik (1989) use the ratio of determinants of the covariance matrix of B̂ to evaluate the
influence of y′i on the covariance matrix of B̂. For i = 1, 2, . . . , n the

CV Ri =
∣∣cov

(
vec B̂(i)

)∣∣∣∣cov
(
vec B̂

)∣∣ =
(

1

1− pii

)p
(∣∣S(i)

∣∣
S

)q

(4.2.35)

If the
∣∣S(i)

∣∣ ≈ 0, then CV Ri ≈ 0 and if the |S| ≈ 0 then CV Ri −→ ∞. Thus, if CV Ri is
low or very high, the observation y′i is considered influential. To evaluate the influence of

y′i on the cov(B̂), the | Si | /S ≈ [
1+ T 2

i / (n − q − 1)
]−1

∼ Beta [p/2, (n − q − p) /2].
A CVRi may be influential if CVRi is larger than

[1/ (1− pii )]
p
[
Beta1−α/2 (v1, v2)

]q

or less that the lower value of

[1/ (1− pii )]
p
[
Betaα/2 (v1, v2)

]q
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where v1 = p/2 and v2 = [(n − q − p) /2] and Beta1−α/2and Betaα/2 are the upper and
lower critical values for the Beta distribution. In SAS, one may use the function Betainv
(1− α, d f 1, d f 2) to obtain critical values for a Beta distribution.

Finally, we may use the matrix of residuals Ê to create chi-square and Beta Q-Q plots,
to construct plots of residuals versus predicted values or variables not in the model. These
plots are constructed to check MR model assumptions.

d. Measures of Association, Variable Selection and Lack-of-Fit Tests

To estimate the coefficient of determination or population squared multiple correlation co-
efficient ρ2 in multiple linear regression, the estimator

R2 = β̂
′
X′y− ny2

y′y− ny2
= SS R

SST
= 1− SSE

SST
(4.2.36)

is used. It measures the proportional reduction of the total variation in the dependent vari-
able y by using a set of fixed independent variables x1, x2, . . . , xk . While the coefficient
of determination in the population is a measure of the strength of a linear relation in the
population, the estimator R2 is only a measure of goodness-of-fit in the sample. Given that
the coefficients associated with the independent variables are all zero in the population,
E
(
R2

) = k/ (n − 1) so that if n = k + 1 = q, E
(
R2

) = 1. Thus, in small samples the
sheer size of R2 is not the best indication of model fit. In fact Goldberger (1991, p. 177)
states: “Nothing in the CR (Classical Regression ) model requires R2 to be high. Hence a
high R2 is not evidence in favor of the model, and a low R2 is not evidence against it”. To
reduce the bias for the number of variables in small samples, which discounts the fit when k
is large relative to n, R.A. Fisher suggested that the population variances σ 2

y|x be replaced

by its minimum variance unbiased estimate s2
y|x and that the population variance for σ 2

y be

replaced by its sample estimator s2
y , to form an adjusted estimate for the coefficient of de-

termination or population squared multiple correlation coefficient. The adjusted estimate
is

R2
a = 1−

(
n − 1

n − q

)(
SSE

SST

)
= 1−

(
n − 1

n − q

)(
1− R2

)
=

(
1− s2

y|x / s2
y

) (4.2.37)

and E{R2 − [k(1− R2)/(n − k − 1]} = E(R2
a) = 0, given no linear association between

Y and the set of X ′s. This is the case, since

R2
a = 0⇐⇒

∑
i

(ŷi − y)2 = 0⇐⇒ ŷi = yi for all i

in the sample. The best-fitted model is a horizontal line, and none of the variation in the
independent variables is accounted for by the variation in the independent variables. For an
overview of procedures for estimating the coefficient of determination for fixed and random
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independent variables and also the squared cross validity correlation coefficient (ρ2
c), the

population squared correlation between the predicted dependent variable and the dependent
variable, the reader may consult Raju et al. (1997).

A natural extension of R2 in the MR model is to use an extension of Fisher’s correlation
ratio η2 suggested by Wilks (1932). In multivariate regression eta squared is called the
square of the vector correlation coefficient

η2 = 1−� = 1− |E| / |E+H| (4.2.38)

when testing H1 : B1 = 0, Rozeboom (1965). This measure is biased, thus Jobson (1992,
p. 218) suggests the less biased index

η2
a = 1− n�/ (n − q +�) (4.2.39)

where the r (X) = q. Another measure of association is based on Roy’s criterion. It is
η2
θ = λ1/ (1+ λ1) = θ1 ≤ η2, the square of the largest canonical correlation (discussed

in Chapter 8). While other measures of association have been proposed using the other
multivariate criteria, there does not appear to be a “best” index since X is fixed and only Y
varies. More will be said about measures of association when we discuss canonical analysis
in Chapter 8.

Given a large number of independent variables in multiple linear regression, to select a
subset of independent variables one may investigate all possible regressions and incremen-
tal changes in the coefficient of determination

(
R2

)
, the reduction in mean square error

(M Se), models with values of total mean square error
(
C p

)
near the total number of vari-

ables in the model, models with small values of predicted sum of squares (PRESS), and
models using the information criteria (AIC, HQIC, BIC and CAIC), McQuarrie and Tsai
(1998). To facilitate searching, “best” subset algorithms have been developed to construct
models. Search procedures such as forward selection, backward elimination, and stepwise
selection methods have also been developed to select subsets of variables. We discuss some
extensions of these univariate methods to the MR model.

Before extending R2 in (4.2.36) to the MR model, we introduce some new notation.
When fitting all possible regression models to the (n × p) matrix Y, we shall denote the
pool of possible X variables to be K = Q−1 so that the number of parameters 1 ≤ q ≤ Q
and at each step the numbers of X variables is q−1 = k. Then for q parameters or q−1 = k
independent variables in the candidate MR model, the p × p matrix

R2
q = (B̂′qX′qY− ny y′)

(
Y′Y− ny y′

)−1 (4.2.40)

is a direct extension of R2. To convert R2
q to a scalar, the determinant or trace functions are

used. To ensure that the function of R2
q is bounded by 1 and 0, the tr(R2

q) is divided by p.

Then 0 < tr(R2
q)/p ≤ 1 attains its maximum when q = Q. The goal is to select q < Q or

the number of variables q − 1 = k < K and to have the tr(R2
q)/p near one. If the |R2

q | is
used as a subset selection criterion, one uses the ratio: |R2

q |/|R2
Q | ≤ 1 for q = 1, 2, . . . , Q.

If the largest eigenvalue is used, it is convenient to normalize Rq to create a correlation
matrix Pq and to use the measure γ = (λmax − 1) / (q − 1) where λmax is the largest root
of Pq for q = 1, 2, . . . , Q.
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Another criterion used to evaluate the fit of a subset of variables is the error covariance
matrix

Eq = (n − q) Sq = Y′Y−B̂′qX′qY

= (n − q)Y′
[

In − X′q
(

X′qXq

)−1
Xq

]
Y

= (n − q)Y′
[
In − Pq

]
Y

= (n − q) Ê′q Êq

(4.2.41)

for Êq = Y− Xq B̂q = Y− Ŷq for q = 1, 2, . . . , Q. Hence Eq is a measure of predictive
closeness of Ŷ to Y for values of q. To reduce Eq to a scalar, we may use the largest
eigenvalue of Eq , the tr

(
Eq

)
or the

∣∣Eq
∣∣, Sparks, Zucchini and Coutsourides (1985). A

value q < Q is selected for the tr
(
Eq

)
near the tr

(
EQ

)
, for example.

In (4.2.41), we evaluated the overall closeness of Y to Ŷ for various values of q. Al-
ternatively, we could estimate each row y′i of Y using ŷ′i(i) = x′i B̂q(i) where B̂q(i) is esti-

mated by deleting the i th row of y and X for various values of q. The quantity yi − ŷi(i) is
called the deleted residual and summing the inner products of these over all observations
i = 1, 2, . . . , n we obtain the multivariate predicted sum of squares (MPRESS) criterion

MPRESSq =
n∑

i=1

(
yi − ŷi(i)

)′ (yi − ŷi(i)
)

=
n∑

i=1
ê′i êi / (1− pii )

2
(4.2.42)

where êi = yi − ŷi without deleting the i th row of Y and X, and pii = x′i
(

X′qXq

)−1
xi

for the deleted row Chatterjee and Hadi (1988, p. 115). MR models with small MPRESSq

values are considered for selection. Plots of MPRESSq versus q may facilitate variable
selection.

Another criterion used in subset selection is Mallows’ (1973) Cq criterion which, instead
of using the univariate mean square error,

E
(
ŷi − µi

)2 = var (ŷi )+
(
E (ŷi )− µi

)2
,

uses the expected mean squares and cross products matrix

E
(̂
yi − µi

) (̂
yi − µi

)′ = cov (̂yi )+
[
E (̂yi )− µi

] [
E (̂yi )− µi

]′ (4.2.43)

where E (̂yi )− µi is the bias in ŷi . However, the cov[vec(B̂q)] = � ⊗ (X′qXq)
−1 so that

the cov(̂y′i ) = cov(x′qi B̂q) = (x′qi (X
′
qXq)

−1xqi )�. Summing over the n observations,

n∑
i=1

cov(̂y′i ) = [
n∑

i=1
x′qi

(
X′qXq)

−1xqi

]
�

= tr[X′q(X ′q X)−1Xq ]�
=

[
tr
(

X′qXq

)−1 (
X′qXq

)]
�

= q�
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Furthermore, summing over the bias terms:

n∑
i=1

[(
E (̂yi )− µi

)] [
E
(̂
yi − µi

)]′ = (n − q) E
(
Sq −�

)
where Sq = Eq/ (n − q). Multiplying both sides of (4.2.43) by �−1 and summing, the
expected mean square error criterion is the matrix

�q = qIp + (n − q)�−1 E
(
Sq −�

)
(4.2.44)

as suggested by Mallows’ in univariate regression. To estimate �q , the covariance matrix
� with Q parameters in the model or Q − 1 = K variables is SQ = EQ / (n − Q), so that
the sample criterion is

Cq = qIp + (n − q) S−1
Q

(
Sq − SQ

)
= S−1

Q Eq + (2q − n) Ip

(4.2.45)

When there is no bias in the MR model, Cq ≈ qIp. Thus, models with values of Cq near
qIp are desirable. Using the trace criterion, we desire models in which tr

(
Cq

)
is near qp. If

the | Cq | is used as a criterion, the | Cq |< 0 if 2q − n < 0. Hence, Sparks, Coutsourides
and Troskie (1983) recommend a criterion involving the determinant that is always positive

| E−1
Q Eq |≤

(
n − q

n − Q

)p

(4.2.46)

Using their criterion, we select only subsets among all possible models that meet the cri-
terion as the number of parameters vary in size from q = 1, 2, ..., Q = K + 1 or as
k = q − 1 variables are included in the model. Among the candidate models, the model
with the smallest generalized variance may be the best model. One may also employ the
largest root of Cq as a subset selection criterion. Because the criterion depends on only a
single value it has limited value.

Model selection using ad hoc measures of association and distance measures that evalu-
ate the difference between a candidate MR model and the expectation of the true MR model
result in matrix measures which must be reduced to a scalar using the determinant, trace or
eigenvalue of the matrix measure to assess the “best” subset. The evaluation of the eigen-
values of R2

q , Eq , MPRESSq and Cq involve numerous calculations to obtain the “best”
subset using all possible regressions. To reduce the number of calculations involved, algo-
rithms that capitalize on prior calculations have been developed. Barrett and Gray (1994)
illustrate the use of the SWEEP operator.

Multivariate extensions of the Akaike Information Criterion (AIC) developed by Akaike
(1974) or the corrected AIC (CAIC) measure proposed by Sugiura (1978); Schwartz’s
(1978) Bayesian Information Criterion (BIC), and the Hannan and Quinn (1979) Infor-
mation Criterion (HQIC) are information measures that may be extended to the MR model.
Recalling that the general AIC measure has the structure

−2 (log - likelihood)+ 2d
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where d is the number of model parameters estimated; the multivariate AIC criterion is

AI Cq = n log | �̂q | +2qp + p(p + 1) (4.2.47)

if maximum likelihood estimates are substituted for B and � in the likelihood assuming
multivariate normality, since the constant np log (2π)+np in the log-likelihood does not ef-
fect the criterion. The number of parameters in the matrix B and � are qp and p (p + 1) /2,
respectively. The model with the smallest AIC value is said to fit better.

Bedrick and Tsai (1994) proposed a small sample correction to AIC by estimating the
Kullback-Leibler discrepancy for the MR model, the log-likelihood difference between the
true MR model and a candidate MR motel. Their measure is defined as

AI Ccq = (n − q − p − 1) log | �̂q | + (n + q) p

Replacing the penalty factor 2d in the AIC with d log n and 2d log log n where d is the
rank of X, the BICq and HQICq criteria are

B I Cq = n log | �̂q | +qp log n

H Q I Cq = n log | �̂q | +2qp log log n
(4.2.48)

One may also calculate the criteria by replacing the penalty factor d with qp+ p (p + 1) /2.
Here, small values yield better models. If AIC is defined as the log-likelihood minus d, then
models with larger values of AIC are better. When using information criteria in various
SAS procedures, one must check the documentation to see how the information criteria
are define. Sometimes smallest is best and other times largest is best.

One may also estimate AIC and HQIC using an unbiased estimate for � and B and
the small sample correction proposed by Bedrick and Tsai (1994). The estimates of the
information criteria are

AI Cuq = (n − q − p − 1) log | S2
q | + (n + q) p (4.2.49)

H Q I Cuq = (n − q − p − 1) log | S2
q | +2qp log log (n) (4.2.50)

McQuarrie and Tsai (1998) found that these model selection criteria performed well for real
and simulated data whether the true MR model is or is not a member of the class of can-
didate MR models and generally outperformed the distance measure criterion MPRESSq ,
Cq , and R2

q . Their evaluation involved numerous other criteria.
An alternative to all possible regression procedures in the development of a “best” subset

is to employ statistical tests sequentially to obtain the subset of variables. To illustrate, we
show how to use Wilks’ � test of additional information to develop an automatic selection
procedure.

To see how we might proceed, we let �F , �R and�F |R represent the � criterion for
testing HF : B = 0, HR : B1 = 0, and HF |R : B2 = 0 where

B =
[

B1
B2

]
and X =

[
X1
X2

]
.



202 4. Multivariate Regression Models

Then,

�F = |EF |
|EF +HF | =

∣∣Y′Y∣∣∣∣Y′Y− B̂′ (X′X) B̂
∣∣

�R = |ER |
|ER +HR | =

∣∣Y′Y∣∣∣∣Y′Y− B̂′1
(
X′1X1

)
B̂1

∣∣
�F |R =

∣∣EF |R
∣∣∣∣EF |R +HF |R

∣∣ =
∣∣Y′Y− B̂′1

(
X′1X1

)
B̂1

∣∣∣∣Y′Y− B̂′ (X′X) B̂
∣∣

so that
�F = �R �F |R

Associating �F with the constant term and the variables x1, x2, . . . , xk where q = k + 1,
and �R with the subset of variables x1, x2, . . . , xk−1 the significance or nonsignificance of
variable xk is, using (3.5.3), determined by the F statistic

1−�F |R
�F |R

ve − p + 1

p
∼ F (p, ve − p + 1) (4.2.51)

where ve = n − q = n − k − 1. The F statistics in (4.2.51), also called partial F-tests,
may be used to develop backward elimination, forward selection, and stepwise procedures
to establish a “best” subset of variables for the MR model.

To illustrate, suppose a MR model contains q = k + 1 parameters and variables x1, x2,

. . . , xk . By the backward elimination procedure, we would calculate Fi in (4.2.51) where
the full model contained all the variables and the reduced model contained k − 1 variables
so that Fi is calculated for each of the k variables. The variable xi with the smallest Fi ∼
F (p, n − k − p) would be deleted leaving k−1 variables to be evaluated at the next step.
At the second step, the full model would contain k − 1 variables and the reduced model
k − 2 variables. Now, Fi ∼ F (p, n − k − p − 1). Again, the variable with the smallest F
value is deleted. This process continues until F attains a predetermined p-value or exceeds
some preselected F critical value.

The forward selection process works in the reverse where variables are entered using the
largest calculated F value. However, at the first step we consider only full models where
each model contains the constant term and one variable. The one variable model with the
smallest � ∼ U (p, 1, n − 2) initiates the process. At the second step, Fi is calculated with
the full model containing two variables and the reduced model containing the variable at
step one. The model with the largest Fi ∼ F (p, n − p − 1), for k = 2 is selected. At step
k, Fi ∼ F (p, n − k − p) and the process stops when the smallest p-value exceeds some
preset level or Fi falls below some critical value.

Either the backward elimination or forward selection procedure can be converted to a
stepwise process. The stepwise backward process allows each variable excluded to be re-
considered for entry. While the stepwise forward regression process allows one to see if
a variable already in the model should by dropped using an elimination step. Thus, step-
wise procedure require two F criteria or p-values, one to enter variables and one to remove
variables.
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TABLE 4.2.2. MANOVA Table for Lack of Fit Test

Source d f SSCP E(MSCP)

B1 m + 1 B̂′1X′1V−1X1B̂1 = H1 � + B′1X′1V−1X1B1
m+ 1

B2 k − m B̂′2X′2QX2B̂2 = H2 � + B′2X′2QX2B2
k−m

Residual c − k − 1 ER = Y′.V−1Y. −H1 −H2 �

Total (Between) c Y′.V−1Y.

Total Within n − c EP E = Y′Y− Y′.V−1Y. �

Total n Y′Y

For the MR model, we obtained a “best” subset of x variables to simultaneous predict
all y variables. If each x variable has a low correlation with a y variable we would want
to remove the y variable from the set of y variables. To ensure that all y and x variables
should remain in the model, one may reverse the roles of x and y and perform a backward
elimination procedure on y given the x set to delete y variables.

Having fit a MR model to a data set, one may evaluate the model using a multivariate
lack of fit test when replicates or near replicates exist in the data matrix X, Christensen
(1989). To develop a lack of fit test with replicates (near replicates) suppose the n rows of
X are grouped into i = 1, 2, . . . , c groups with ni rows per group, 1 ≤ c < n. Forming
replicates of size ni in the observation vectors y′i so that yi. = ∑ni

i=1 yi/ni , we have the
multivariate weighted least squares (MWLS) model is

Y.
c×p
= X

c×q
B

q×p
+ E

c×p

cov
(
y′i.

) = V⊗�, V = diag [1/ni ]

E (Y.) = XB

(4.2.52)

Vectorizing the MWLS model, it is easily shown that the BLUE of B is

B̂ =
(

X′V−1X
)−1

X′V−1Y

cov[vec(B̂)] = � ⊗
(

X′V−1X
) (4.2.53)

and that an unbiased estimate of � is

SR = ER/ (c − k − 1) = Y′.V−1Y. − B̂′(X′V−1X)B̂ / (c − k − 1)

where q = k + 1.
Partitioning X = [X1,X2] where X1 contains the variables x1, x2, . . . , xm included in

the model and X2 the excluded variables, one may test H2 : B2 = 0. Letting Q = V−1 −
V−1X1

(
X′1V−1X1

)−1
X′1V−1, the MANOVA Table 4.2.2 is established for testing H2 or

H1 : B1 = 0.
From Table 4.2.2, we see that if B2 = 0 that the sum of squares and products matrix as-

sociated with B2 may be combined with the residual error matrix to obtain a better estimate
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of �. Adding H2 to ER we obtain the lack of fit error matrix EL F with degrees of freedom
c − m − 1. Another estimate of � independent of B2 = 0 is EP E/ (n − c) which is called
the pure error matrix. Finally, we can write the pooled error matrix E as E = EP E + EL F

with degrees of freedom (n − c)+ (c − m − 1) = n − m − 1. The multivariate lack of fit
test for the MR model compares the independent matrices EL F with EP E by solving the
eigenequation

|EL F − λEP E | = 0 (4.2.54)

where vh = c − m − 1 and ve = n − c. We concluded that B2 = 0 if the lack of fit test is
not significant so that the variables in the MR model adequately account for the variables
in the matrix Y. Again, one may use any of the criteria to evaluate fit. The parameters for
the test criteria are s = min (vh, p) , M = [| vh − p | −1] /2 and N = (ve − p − 1) /2
for the other criteria.

e. Simultaneous Confidence Sets for a New Observation ynew and the
Elements of B

Having fit a MR model to a data set, one often wants to predict the value of a new ob-
servation vector y′new where E

(
y′new

) = x′newB. Since ŷ′new = x′newB̂ and assuming the
cov (ynew) = � where y′new is independent of the data matrix Y, one can obtain a predic-
tion interval for y′new based on the distribution of (ynew − ŷnew)

′. The

cov (ynew − ŷnew)
′ = cov

(
y′new

)+ cov
(̂
y′new

)
= � + cov(x′newB̂)

= � + (x′new

(
X′X

)−1 xnew)�

= (1+ x′new

(
X′X

)−1 xnew)�

(4.2.55)

If y′new and the rows of Y are MVN, then ynew − ŷnew is MVN and independent of E

so that (1 + x′new

(
X′X

)−1 xnew)
−1 (ynew − ŷnew) (ynew − ŷnew)

′ ∼ Wp (1, �, 0). Using
Definition 3.5.3,

(ynew − ŷnew)
′ S−1 (ynew − ŷnew)

(1+ x′new (X′X)−1 xnew)

ve − p + 1

p
∼ F (p, ve − p + 1) (4.2.56)

Hence, a 100 (1− α)% prediction ellipsoid for ynew is all vectors that satisfy the inequality

(̂ynew − ynew)
′ S−1 (̂ynew − ynew)

≤ pve

(ve − p − 1)
F1−α (p, ve − 1) (1+ x′new

(
X′X

)−1 xnew)

However, the practical usefulness of the ellipsoid is of limited value for p > 2. In-
stead we consider all linear combinations of a′ynew. Using the Cauchy-Schwarz inequality
(Problem 11, Section 2.6), it is easily established that the

max
a

[
a′ (̂ynew − ynew)

]2

a′Sa
≤ (̂ynew − ynew)

′ S−1 (̂ynew − ynew)
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Hence, the

P

[
max
a
| a′ (̂ynew − ynew) |√

a′Sa
≤ co

]
≥ 1− α

for
c2
α = pve F1−α (p, ve − p + 1) (1+ x′new

(
X′X

)−1 xnew)/ (ve − p + 1) .

Thus, 100 (1− α)% simultaneous confidence intervals for linear combination of a′ynew
for arbitrary a is

a′̂ynew − cα
√

a′Sa ≤ a′ynew ≤ a′̂ynew + cα
√

a′Sa (4.2.57)

Selecting a′ = [0, 1, . . . , 1i , 0, . . . , 0], a confidence interval for the i th variable within
ynew is easily obtained. For a few comparisons, the intervals may be considerably larger
than 1 − α. Replacing ŷnew with E (̂y), ynew with E (y) and 1 + x′new

(
X′X

)−1 xnew with

x′
(
X′X

)−1 x, one may use (4.2.57) to establish simultaneous confidence intervals for the
mean response vector.

In addition to establishing confidence intervals for a new observation or the mean re-
sponse vector, one often needs to establish confidence intervals for the elements in the
parameter matrix B following a test of the form CBM = 0. Roy and Bose (1953) extended
Scheffé’s result to the MR model. Letting V = cov(vec B̂) = � ⊗ (

X′X
)−1

, they showed
using the Cauchy-Schwarz inequality, that the

P{[vec(B̂− B)]′V−1 vec(B̂− B)} ≤ veθ
α

1− θα
= 1− α (4.2.58)

where θα(s, M, N ) is the upper α critical value for the Roy’s largest root criterion used
to reject the null hypotheses. That is, λ1 is the largest root of |H− λE| = 0 and θ1 =
λ1/ (1+ λ1) is Roy’s largest root criterion for the test CBM = 0. Or one may use the
largest root criterion where λα is the upper α critical value for λ1. Then, 100 (1− α)%
simultaneous confidence intervals for parametric functions ψ = c′Bm have the general
structure

c′B̂m−cασ̂ ψ̂ ≤ ψ≤ c′B̂m+ cασ̂ ψ̂ (4.2.59)

where

σ̂ 2
ψ̂
= (

m′Sm
)

c′
(
X′X

)−1 c

c2
α = veθ

α/
(
1− θα

) = veλ
α

S = E/ve

Letting Uα,Uα
o = T 2

o, α/ve and V α represent the upper α critical values for the other
criteria to test CBM = 0, the critical constants in (4.2.59) following Gabriel (1968) are
represented as follows

(a) Wilks
c2
α = ve[(1−Uα)/Uα] (4.2.60)
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(b) Bartlett-Nanda-Pillai (BNP)

c2
α = ve[V α/(1− V α)]

(c) Bartlett-Lawley-Hotelling (BLH)

c2
α = veUα

o = T 2
o,α

(d) Roy
c2
α = ve[θα/(1− θα)] = veλ

α

Alternatively, using Theorem 3.5.1, one may use the F distribution to approximate the exact
critical values. For Roy’s criterion,

c2
α ≈ ve

[
v1

ve − v1 + vh

]
F1−α (v1, ve − v1 + vh) (4.2.61)

where v1 = max (vh, p). For the Bartlett-Lawley-Hotelling (BLH) criterion,

c2
α ≈ νe

[
sv1

v2

]
F1−α (v1, v2) (4.2.62)

where v1 = s (2M + s + 1) and v2 = 2 (s N + 1). For the Bartlett-Nanda-Pillai (BNP)
criterion, we relate V α to an F distribution as follows

V α =
(

sv1

v2
F1−α(v1, v2)

)/(
1+ v1

v2
F1−α(v1, v2)

)
where v1 = s (2M + s + 1) and v2 = s (2N + s + 1) . Then the critical constant becomes

c2
α ≈ ve[V α/(1− V α)] (4.2.63)

To find the upper critical value for Wilks’ test criterion under the null hypothesis, one
should use the tables developed by Wall (1968). Or, one may use a chi-square approxima-
tion to estimate the upper critical value for Uα. All the criteria are equal when s = 1.

The procedure outlined here, as in the test of location, is very conservative for obtaining
simultaneous confidence intervals for each of the elements 33 elemts β in the parame-
ter matrix B. With the rejection of the overall test, on may again use protected t-tests
to evaluate the significance of each element of the matrix B and construct approximate
100(1− α)% simultaneous confidence intervals for each element again using the entries in
the Appendix, Table V. If one is only interested in individual elements of B, a FIT proce-
dure is preferred, Schmidhammer (1982). The FIT procedure is approximated in SAS using
PROC MULTTEST, Westfall and Young (1993).

f. Random X Matrix and Model Validation: Mean Squared Error of
Prediction in Multivariate Regression

In our discussion of the multivariate regression model, we have been primarily concerned
with the development of a linear model to establish the linear relationship between the
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matrix of dependent variables Y and the matrix of fixed independent variables X. The
matrix of estimated regression coefficients B̂ was obtained to estimate the population mul-
tivariate linear regression function defined using the matrix of coefficients B. The es-
timation and hypothesis testing process was used to help understand and establish the
linear relationship between the random vector variable Y and the vector of fixed vari-
ables X in the population. The modeling process involved finding the population form
of the linear relationship. In many multivariate regression applications, as in univariate
multiple linear regression, the independent variables are random and not fixed. For this
situation, we now assume that the joint distribution of the vector of random variables
Z = [Y′,X′]′ = [Y1,Y2, . . . ,Yp, X1, X2, . . . , Xk]′ follows a multivariate normal distribu-
tion, Z ∼ Np+k(µz, �z) where the mean vector and covariance matrix have the following
structure

µz =
 µy

µx

 , � =
 �yy �yx

�xy �xx

 (4.2.64)

The model with random X is sometimes called the correlation or structural model. In mul-
tiple linear regression and correlation models, interest is centered on estimating the popu-
lation squared multiple correlation coefficient, ρ2. The multivariate correlation model is
discussed in more detail in Chapter 8 when we discuss canonical correlation analysis. Us-
ing Theorem 3.3.2, property (5), the conditional expectation of Y given the random vector
variable X is

E(Y|X = x) = µy +�yx�
−1
xx (x− µx )

= (µy −�yx�
−1
xx µx )+�yx�

−1
xx x

= β0 + B′1x

(4.2.65)

And, the covariance matrix of the random vector Y given X is

cov(Y|X = x) = �yy −�yx�
−1
xx �xy = �y|x = � (4.2.66)

Under multivariate normality, the maximum likelihood estimators of the population param-
eters β0,B1,and � are

β̂0 = y− Syx S−1
xx Sxx x

B̂1 = S−1
xx Sxy

�̂ = (n − 1)(Syy − Syx S−1
xx Sxy)/n

(4.2.67)

where the matrices Si j are formed using deviations about the mean vectors as in (3.3.3).
Thus, to obtain the unbiased estimate for the covariance matrix �, one may use the ma-
trix Se = n�̂/(n − 1) to correct for the bias. An alternative, minimal variance unbiased
REML estimate for the covariance matrix � is to use the matrix Sy|x = E/(n − q) where
q = k+1 as calculated in the multivariate regression model. From (4.2.67), we see that the
ordinary least squares estimate or BLUE of the model parameters are identical to the max-
imum likelihood (ML) estimate and that an unbiased estimate for the covariance matrix is
easily obtained by rescaling the ML estimate for �. This result implies that if we assume
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that the vector Z follows a multivariate normal distribution, then all estimates and tests for
the multivariate regression model conditioned on the independent variables have the same
formulation when one considers the matrix of independent variables to be random. How-
ever, because the distribution of the columns of the matrix B̂ do no follow a multivariate
normal distribution when the matrix X is random, power calculations for fixed X and ran-
dom X are not the same. Sampson (1974) discusses this problem in some detail for both
the univariate multiple regression model and the multivariate regression model. We discuss
power calculations in Section 4.17 for only the fixed X case. Gatsonis and Sampson (1989)
have developed tables for sample size calculations and power for the multiple linear regres-
sion model for random independent variables. They show that the difference in power and
sample size assuming a fixed variable model when they are really random is very small.
They recommend that if one employs the fixed model approach in multiple linear regres-
sion when the variables are really random that the sample sizes should be increased by only
five observations if the number of independent variables is less than ten; otherwise, the dif-
ference can be ignored. Finally, the maximum likelihood estimates for the mean vector µz
and covariance matrix �z for the parameters in (4.2.64) follow

µ̂z =
 x

y

 , �̂ = (n − 1)

n

 Syy Syx

Sxy Sxx

 (4.2.68)

Another goal in the development of either a univariate or multivariate regression model is
that of model validation for prediction. That is, one is interested in evaluating how well the
model developed from the sample, often called the calibration, training, or model-building
sample predicts future observations in a new sample called the validation sample. In model
validation, one is investigating how well the parameter estimates obtained in the model
development phase of the study may be used to predict a set of new observations. Model
validation for univariate and multivariate models is a complex process which may involve
collecting a new data set, a holdout sample obtained by some a priori data splitting method
or by an empirical strategy sometimes referred to as double cross-validation, Lindsay and
Ehrenberg (1993). In multiple linear regression, the square of the population multiple cor-
relation coefficient, ρ2, is used to measure the degree of linear relationship between the
dependent variable and the population predicted value of the dependent variables, β ′X. It
represents the square of the maximum correlation between the dependent variable and the
population analogue of Ŷ. In some sense, the square of the multiple correlation coefficient
is evaluating “model” precision. To evaluate predictive precision, one is interested in how
well the parameter estimates developed from the calibration sample predict future observa-
tions, usually in a validation sample. One estimate of predictive precision in multiple linear
regression is the squared zero-order Pearson product-moment correlation between the fitted
values obtained by using the estimates from the calibration sample with the observations
in the validation sample, (ρ2

c), Browne (1975a). The square of the sample coefficient of
determination, R2

a, is an estimate of ρ2 and not ρ2
c . Cotter and Raju (1982) show that R2

a
generally over estimates ρ2

c . An estimate of ρ2
c , sometimes called the “shruken” R-squared

estimate and denoted by R2
c has been developed by Browne (1975a) for the multiple linear

regression model with a random matrix of predictors. We discuss precision estimates base
upon correlations in Chapter 8. For the multivariate regression model, prediction preci-
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sion using correlations is more complicated since it involves canonical correlation analysis
discussed in Chapter 8. Raju et al. (1997) review many formula developed for evaluating
predictive precision for multiple linear regression models.

An alternative, but not equivalent measure of predictive precision is to use the mean
squared error of prediction, Stein (1960) and Browne (1975b). In multiple linear regression
the mean square error (MSE) of prediction is defined as MSEP = E[(y−̂y(x|̂β)2], the ex-
pected squared difference between the observation vector (“parameter”) and its predicted
value (“estimator”). To develop a formula for predictive precision for the multivariate re-
gression model, suppose we consider a single future observation ynew and that we are
interested determining how well the linear prediction equation ŷ = x′B̂ obtained using the
calibration sample predicts the future observation ynew for a new vector of independent
variables. Given multivariate normality, the estimators β̂0 and B̂1 in (4.2.67) minimize the
sample mean square error matrix defined by

n∑
i=1

(yi − β̂0 − B̂′1xi )(yi − β̂0 − B̂′1xi )
′/n (4.2.69)

Furthermore, for β0 = µy−�yx�
−1
xx µx and B′1 = �yx�

−1
xx in (4.2.65), the expected mean

square error matrix M where

M = E(y− β0 − B′1x)(yi − β0 − B′1x)′

+�yy −�yx�
−1
xx �xy

+ (β0 − µy + B′1µx )(β0 − µy + B′1µx )
′

+ (B′1 −�yx�
−1
xx )(�xx )(B′1 −�yx�

−1
xx )
′

(4.2.70)

is minimized. Thus, to evaluate how well a multivariate prediction equation estimates a new
observation ynew given a vector of independent variables x, one may use the mean square
error matrix M with the parameters estimated from the calibration sample; this matrix is
the mean squared error matrix for prediction Q defined in (4.2.71) which may be used
to evaluate multivariate predictive precision. The mean square error matrix of predictive
precision for the multivariate regression model is

Q = E(y− β̂0 − B̂′1x)(y− β̂0 − B̂′1x)′

= (�yy −�yx�
−1
xx �xy)

+ (β̂0 − µy − B̂′1µx )(β̂0 − µy − B̂′1µx )
′

+ (B̂′1 −�yx�
−1
xx )(�xx )(B̂′1 −�yx�

−1
xx )
′

(4.2.71)

Following Browne (1975b), one may show that the expected error of prediction is

� = E(Q) = �y|x (n + 1)(n − 2)/n(n − k − 2) (4.2.72)

where the covariance matrix �y|x = �yy − �yx�
−1
xx �xy is the matrix of partial variances

and covariances for the random variable Y given X = x. The corresponding value for the
expected value of Q, denoted as d2 by Browne (1975b) for the multiple linear regression
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model with random X, is δ2 = E(d2) = σ 2(n + 1)(n − 2)/n(n − k − 2). Thus � is a
generalization of δ2.

In investigating δ2 for the random multiple linear regression model, Browne (1975b)
shows that the value of δ2 tends to decrease, stabilize, and then increase as the number of
predictor variables k increases. Thus, when the calibration sample is small one wants to use
a limited number of predictor variables. The situation is more complicated for the random
multivariate regression model since we have an expected error of prediction matrix. Recall
that if the elements of the determinant of the matrix of partial variances and covariances
of the �y|x are large, one may usually expect that the determinant of the matrix to also
be large; however this is not always the case. To obtain a bounded measure of generalized
variance, one may divide the determinant of �y|x by the product of its diagonal elements.
Letting σ i i represent the partial variances on the diagonal of the covariance matrix �y|x ,
the

0 ≤ |�y|x | ≤
p∏

i=1

σ i i (4.2.73)

and we have that the

|�y|x |∏p
i=1 σ i i

= |Py|x | (4.2.74)

where Py|x is the population matrix of partial correlations corresponding to the matrix of
partial variances and covariances in �y|x . Using (4.2.73), we have that 0 ≤ |Py|x |2 ≤ 1.

To estimate �, we use the minimum variance unbiased estimator for �y|x from the cali-
bration sample. Then an unbiased estimator of � is

�̂c = Sy|x
(

(n + 1)(n − 2)

(n − k − 1)(n − k − 2)

)
(4.2.75)

where Sy|x = E/(n − k − 1) = Eq is the REML estimate of �y|x for q = k − 1 variables.
Thus, �̂c may also be used to select variables in multivariate regression models. However
�̂c it is not an unbiased estimate of the matrix Q. Over all calibration samples, one might
expect the entire estimation process to be unbiased in that the E(|�̂c| − |Q|) = 0. As an
exact estimate of the mean square error of prediction using only the calibration sample, one
may calculate the determinant of the matrix Sy|x since

|�̂c|(
(n+1)(n−2)

(n−k−1)(n−k−2)

)p = |Sy|x | (4.2.76)

Using (4.2.74) with population matrices replaced by their corresponding sample estimates,
a bounded measure of the mean square error of prediction is 0 ≤ |Ry|x |2 ≤ 1. Using results
developed by Ogasawara (1998), one may construct an asymptotic confidence interval for
this index of precision or consider other scalar functions of �̂c. However, the matrix of
interest is not E(Q) = �, but Q. Furthermore, the value of the determinant of Ry|x is zero
if any eigenvalue of the matrix is near zero so that the determinant may not be a good
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estimate of the expected mean square error of prediction. To obtain an estimate of the
matrix Q, a validation sample with m

.= n observations may be used. Then an unbiased
estimate of Q is Q∗where

Q∗=
m∑

i=1
(yi − β̂0 − B̂′1xi )(yi − β̂0 − B̂′1xi )

′/m (4.2.77)

Now, one may compare the |�c| with the |Q∗| to evaluate predictive precision. If a valida-
tion sample is not available, one might estimate the predictive precision matrix by holding
out one of the original observations each time to obtain a MPRESS estimate for Q∗. How-
ever, the determinant of the MPRESS estimator is always larger than the determinant of the
calibration sample estimate since we are always excluding an observation.

In developing a multivariate linear regression model using a calibration sample and
evaluating the predictability of the model using the validation sample, we are evaluating
overall predictive “fit”. The simple ratio of the squares of the Euclidean norms defined as
1 − ||Q∗||2/||�̂c||2 may also be used as a measure of overall multivariate predictive pre-
cision. It has the familiar coefficient of determination form. The most appropriate measure
of predictive precision using the mean square error criterion for the multivariate regression
model requires additional study, Breiman and Friedman (1997).

g. Exogeniety in Regression

The concept of exogeniety arises in regression models when both the dependent (endoge-
nous) variables and the independent (exogeneous) variables are jointly defined and random.
This occurs in path analysis, simultaneous equation, models discussed in Chapter 10. In
regression models, the dependent variable is endogenous since it is determined by the re-
gression function. Whether or not the independent variables are exogeneous depends upon
whether or not the variable can be assumed given without loss of information. This de-
pends on the parameters of interest in the system. While joint multivariate normality of the
dependent and independent variables is a necessary condition for the independent variable
to be exogeneous, the sufficient condition is a concept known as weak exogeniety. Weak
exogeniety ensures that estimation and inference for the model parameters (called efficient
inference in the econometric literature) may be based upon the conditional density of the
dependent variable Y given the independent variable X = x (rather than the joint density)
without loss of information. Engle, Hendry, and Richard (1893) define a set of variables x
in a model to be weakly exogenous if the full model can be written in terms of a marginal
density function for X times a conditional density function for Y|X = x such that the esti-
mation of the parameters of the conditional distribution is no less efficient than estimation
of the all the parameters in the joint density. This will be the case if none of the parameters
in the conditional distribution appears in the marginal distribution for x. That is, the param-
eters in the density function for X may be estimated separately, if desired, which implies
that the marginal density can be assumed given. More will be said about this in Chapter 10,
however, the important thing to notice from this discussion is that merely saying that the
variables in a model are exogeneous does not necessary make them exogeneous.
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4.3 Multivariate Regression Example

To illustrate the general method of multivariate regression analysis, data provided by Dr.
William D. Rohwer of the University of California at Berkeley are analyzed. The data are
shown in Table 4.3.1 and contained in the file Rohwer.dat.

The data represent a sample of 32 kindergarten students from an upper-class, white, res-
idential school (Gr). Rohwer was interested in determining how well data from a set of
paired-associate (PA), learning-proficiency tests may be used to predict the children’s per-
formance on three standardized tests (Peabody Picture Vocabulary Test; PPVT-y1, Raven
Progressive Matrices Test; RPMT-y2, and a Student Achievement Test, SAT-y3). The five
PA learning proficiency tasks represent the sum of the number of items correct out of 20
(on two exposures). The tasks involved prompts to facilitate learning. The five PA word
prompts involved x1-named (N), x2-still (S), x3-named action (NA), x4-named still (NS)
and x5-sentence still (SS) prompts. The SAS code for the analysis is included in program
m4 3 1.sas.

The primary statistical procedure for fitting univariate and multivariate regression models
to data in SAS is PROC REG. While the procedure may be used to fit a multivariate model
to a data set, it is designed for multiple linear regression. All model selection methods,
residual plots, and scatter plots are performed a variable at a time. No provision has yet been
made for multivariate selection criteria, multivariate measures of association, multivariate
measures of model fit, or multivariate prediction intervals. Researchers must write their
own code using PROC IML.

When fitting a multivariate linear regression model, one is usually interested in finding a
set of independent variables that jointly predict the independent set. Because some subset
of independent variables may predict an independent variable better than others, the MR
model may overfit or underfit a given independent variable. To avoid this, one may consider
using a SUR model discussed in Chapter 5.

When analyzing a multivariate data set using SAS, one usually begins by fitting the full
model and investigates residual plots for each variable, Q-Q plots for each variable, and
multivariate Q-Q plots. We included the multinorm.sas macro into the program to produce
a multivariate chi-square Q-Q plot of the residuals for the full model. The residuals are also
output to an external file (res.dat) so that one may create a Beta Q-Q plot of the residuals.
The plots are used to assess normality and whether or not there are outliers in the data set.
When fitting the full model, the residuals for y1 ≡ PPVT and y3 = SAT appear normal;
however, y2 = RPMT may be skewed right. Even though the second variable is slightly
skewed, the chi-square Q-Q plot represents a straight line, thus indicating that the data
appear MVN. Mardia’s tests of skewness and Kurtosis are also nonsignificant. Finally, the
univariate Q-Q plots and residual plots do not indicate the presence of outliers.

Calculating Cook’s distance using formula (4.2.30), the largest value, Ci = 0.85, does
not indicate that the 5th observation is influential. The construction of logarithm leverage
plots for evaluating the influence of groups of observation are discussed by Barrett and
Ling (1992). To evaluate the influence of a multivariate observation on each row of B̂ or on
the cov(vec B̂), one may calculate (4.2.33) and (4.2.35) by writing code using PROC IML.

Having determined that the data are well behaved, we next move to the model refine-
ment phase by trying to reduce the set of independent variables needed for prediction. For
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TABLE 4.3.1. Rohwer Dataset

PPVT RPMT SAT Gr N S NS NA SS

68 15 24 1 0 10 8 21 22

82 11 8 1 7 3 21 28 21

82 13 88 1 7 9 17 31 30

91 18 82 1 6 11 16 27 25

82 13 90 1 20 7 21 28 16

100 15 77 1 4 11 18 32 29

100 13 58 1 6 7 17 26 23

96 12 14 1 5 2 11 22 23

63 10 1 1 3 5 14 24 20

91 18 98 1 16 12 16 27 30

87 10 8 1 5 3 17 25 24

105 21 88 1 2 11 10 26 22

87 14 4 1 1 4 14 25 19

76 16 14 1 11 5 18 27 22

66 14 38 1 0 0 3 16 11

74 15 4 1 5 8 11 12 15

68 13 64 1 1 6 19 28 23

98 16 88 1 1 9 12 30 18

63 15 14 1 0 13 13 19 16

94 16 99 1 4 6 14 27 19

82 18 50 1 4 5 16 21 24

89 15 36 1 1 6 15 23 28

80 19 88 1 5 8 14 25 24

61 11 14 1 4 5 11 16 22

102 20 24 1 5 7 17 26 15

71 12 24 1 9 4 8 16 14

102 16 24 1 4 17 21 27 31

96 13 50 1 5 8 20 28 26

55 16 8 1 4 7 19 20 13

96 18 98 1 4 7 10 23 19

74 15 98 1 2 6 14 25 17

78 19 50 1 5 10 18 27 26
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this phase, we depend on univariate selection methods in SAS, e.g. Cq -plots and stepwise
methods. We combine univariate methods with multivariate tests of hypotheses regarding
the elements of B using MTEST statements. The MTEST statements are testing that the
regression coefficients associated with of all independent variables are zero for the set of
dependent variables simultaneously by separating the independent variables by commas.
When a single variable is included in an MTEST statement, the MTEST is used to test that
all coefficients for the variable are zero for each dependent variable in the model. We may
also test that subsets of the independent variables are zero. To include the intercept in a test,
the variable name INTERCEPT must be included in the MTEST statement. Reviewing the
multiple regression equations for each variable, the Cq plots, and the backward elimination
output one is unsure about which variables jointly prediction the set of dependent variables.
Variable NA is significant in predicting PPVT, S is significant in predicting RPMT, and the
variables N, NS, and NA are critical in the prediction of SAT. Only the variable SS should
be excluded from the model based upon the univariate tests. However, the multivariate tests
seem to support retaining only the variables x2, x3 and x4 (S, NS, and NA). The multivari-
ate MTEST with the label N SS indicates that both independent variable x1and x5 (N, SS)
are zero in the population. Thus, we are led to fit the reduced model which only includes
the variables S, NS, and NA.

Fitting the reduced model, the overall measure of association as calculated by η2 defined
in (4.2.39) indicates that 62% of the variation in the dependent set is accounted for by the
three independent variables: S, NS and NA. Using the full model, only 70% of the variation
is explained. The parameter matrix B for the reduced model follows.

B =


41.695 12.357 −44.093
0.546 0.432 2.390
−0.286 −0.145 −4.069

1.7107 0.066 5.487


(Intercept)
(S)
(NS)
(NA)

Given B for the reduced model, one may test the hypothesis Ho : B = 0, H1 : B1 =
0, and that a row vector of B is simultaneously zero for all dependent variables, Hi :
β ′i = 0′ among others using the MTEST statement in SAS as illustrated in the program
m4 3 1.sas. While the tests of Hi are exact, since s = 1 for these tests, this is not the
case when testing Ho or H1 since s > 2. For these tests s = 3. The test that B1 = 0
is a test of the model or the test of no regression and is labeled B1 in the output. Because
s = 3 for this test, the multivariate criteria are not equivalent and no F approximation is
exact. However, all three test criteria indicate that B1 �= 0. Following rejection of any null
hypothesis regarding the elements of the parameter matrix B, one may use (4.2.59) to obtain
simultaneous confidence intervals for all parametric functions ψ = c′Bm. For the test
H1 : B1 = 0, the parametric functions have the form ψ = c′B1m. There are 9 elements in
the parameter matrix B1. If one is only interested in constructing simultaneous confidence
intervals for these elements, formula (4.2.49) tends to generate very wide intervals since it
is designed to be used for all bi-linear combinations of the elements of the parameter matrix
associated with the overall test and not just a few elements. Because PROC REG in SAS
does not generate the confidence sets for parametric functions ψ, PROC IML is used. To
illustrate the procedure, a simultaneous confidence interval for β42 in the matrix B obtained
following the test of H1 by using c′ = [(0, 0, 0, 1], m′ = [0, 0, 1] is illustrated. Using
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α = 0.05, the approximate critical values for the Roy, BLH, and BNP criteria are 2.97,
4.53, and 5.60, respectively. Intervals for other elements of B1 may be obtained by selecting
other values for c and m. The approximate simultaneous 95% confidence interval for β42
as calculated in the program using the upper bound of the F statistic is (1.5245, 9.4505).
While this interval does not include zero, recall that the interval is a lower bound for the
true interval and must be used with caution. The intervals using the other criteria are more
near their actual values using the F approximations. Using any of the planned comparison
procedures for nine intervals, one finds them to be very near Roy’s lower bound, for this
example. The critical constant for the multivariate t is about 2.98 for the Type I error rate
α = 0.05, C = 9 comparisons and υe = 28.

Continuing with our example, Rohwer’s data are reanalyzed using the multivariate for-
ward stepwise selection method and Wilks’ � criterion, the Cq criterion defined in (4.2.46),
the corrected information criteria AI Cuq and H Q I Cq defined in (4.2.48) and (4.2.49), and
the uncorrected criteria: AI Cq , B I Cq , and H Q I Cq using program MulSubSel.sas written
by Dr. Ali A. Al-Subaihi while he was a doctoral student in the Research Methodology
program at the University of Pittsburgh. This program is designed to select the best subset
of variables simultaneously for all dependent variables.

The stepwise (STEPWISE), Cq (C P) and H Q I Cuq (H Q) procedures selected variables
1, 2, 3, 4(N , S, N S, N A) while AI Cuq (AI CC) selected only variables 2 and 4 (S, N S).
The uncorrected criteria AI Cq(AI C), B I Cq(B I C), H Q I Cq (H Q I C) only selected one
variable, 4(N A). All methods excluded the fifth variable SS. For this example, the num-
ber of independent variable is only five and the correlations between the dependent and
independent variables are in the moderate range. A Monte Carlo study conducted by Dr.
Al-Subaihi indicates that the H Q I Cuq criterion tends to find the correct multivariate model
or to moderately overfit the correct model when the number of variables is not too large and
all correlations have moderate values. The AI Cuq also frequently finds the correct model,
but tends to underfit more often. Because of these problems, he proposed using the reduced
rank regression (RRR) model for variable selection. The RRR model is discussed briefly in
Chapter 8.

Having found a multivariate regression equation using the calibration sample, as an es-
timate of the expected mean square error of prediction one may use the determinant of
the sample covariance matrix Sy|x . While we compute its value for the example, to give
meaning to this value, one must obtain a corresponding estimate for a validation sample.

Exercises 4.3

1. Using the data set res.dat for the Rohwer data, create a Beta Q-Q plot for the residu-
als. Compare the plot obtained with the chi-square Q-Q plot. What do you observe.

2. For the observation y′new = [70, 20, 25] find a 95% confidence interval for each
element of ynew using (4.2.57).

3. Use (4.2.58) to obtain simultaneous confidence intervals for the elements in the re-
duced model parameter matrix B1.
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4. Rohwer collected data identical to the data in Table 4.3.1 for kindergarten students
in a low-socioeconomic-status area The data for the n = 37 student are provided in
table 4.3.2. Does the model developed for the upper-class students adequately predict
the performance for the low-socioeconomic-status students? Discuss your findings.

5. For the n = 37 students in Table 4.3.2, find the “best” multivariate regression equa-
tion and simultaneous confidence intervals for the parameter matrix B.

(a) Verify that the data are approximately multivariate normal.

(b) Fit a full model to the data.

(c) Find a best subset of the independent variables.

(d) Obtain confidence intervals for the elements in B for the best subset.

(e) Calculate η2 for the final equation.

6. To evaluate the performance of the Cq criterion given in (4.2.46), Sparks et al. (1983)
analyzed 25 samples of tobacco leaf for organic and inorganic chemical constituents.
The dependent variates considered are defined as follows.

Y1: Rate of cigarette burn in inches per 1000 seconds

Y2: Percent sugar in the leaf

Y3: Percent nicotine

The fixed independent variates are defined as follows.

X1: Percentage of nitrogen

X2: Percentage of chlorine

X3: Percentage of potassim

X4: Percentage of Phosphorus

X5: Percentage of calculm

X6: Percentage of Magnesium

The data are given in the file tobacco.sas and organized as [Y1,Y2,Y3, X1, X2, . . . ,

X6]. Use PROC REG and the program MulSubSel.sas to find the best subset of in-
dependent variables. Write up your findings in detail by creating a technical report
of your results. Include in your report the evaluation of multivariate normality, eval-
uation of outliers, model selection criteria, and model validation using data splitting
or a holdout procedure.
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TABLE 4.3.2. Rohwer Data for Low SES Area

SAT PPVT RPMT N S NS NA SS

49 48 8 1 2 6 12 16
47 76 13 5 14 14 30 27
11 40 13 0 10 21 16 16

9 52 9 0 2 5 17 8
69 63 15 2 7 11 26 17
35 82 14 2 15 21 34 25

6 71 21 0 1 20 23 18
8 68 8 0 0 10 19 14

49 74 11 9 9 7 16 13
8 70 15 3 2 21 26 25

47 70 15 8 16 15 35 24
6 61 11 5 4 7 15 14

14 54 12 1 12 13 27 21
30 35 13 2 1 12 20 17

4 54 10 1 3 12 26 22
24 40 14 0 2 5 14 8
19 66 13 7 12 21 35 27
45 54 10 0 6 6 14 16
22 64 14 12 8 19 27 26
16 47 16 3 9 15 18 10
32 48 16 0 7 9 14 18
37 52 14 4 6 20 26 26
47 74 19 4 9 14 23 23

5 57 12 0 2 4 11 8
6 57 10 0 1 16 15 17

60 80 11 3 8 18 28 21
58 78 13 1 18 19 34 23

6 70 16 2 11 9 23 11
16 47 14 0 10 7 12 8
45 94 19 8 10 28 32 32

9 63 11 2 12 5 25 14
69 76 16 7 11 18 29 21
35 59 11 2 5 10 23 24
19 55 8 9 1 14 19 12
58 74 14 1 0 10 18 18
58 71 17 6 4 23 31 26
79 54 14 0 6 6 15 14
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4.4 One-Way MANOVA and MANCOVA

a. One-Way MANOVA

The one-way MANOVA model allows one to compare the means of several independent
normally distributed populations. For this design, ni subjects are randomly assigned to
one of k treatments and p dependent response measures are obtained on each subject. The
response vectors have the general form

y′i j =
[
yi j1, yi j2, . . . , yi jp

]
(4.4.1)

were i = 1, 2, . . . , k and j = 1, 2, . . . , ni . Furthermore, we assume that

yi j ∼ I Np
(
µi , �

)
(4.4.2)

so that the observations are MVN with independent means and common unknown covari-
ance structure �.

The linear model for the observation vectors yi j has two forms, the full rank (FR) or cell
means model

yi j = µi + ei j (4.4.3)

and the less than full rank (LFR) overparameterized model

yi j = µ+ αi + ei j (4.4.4)

For (4.4.3), the parameter matrix for the FR model contains only means

B
k×p
=


µ′1
µ′2
...

µ′k

 = [
µi j

]
(4.4.5)

and for the LFR model,

B
q × p
=


µ′
α′1
...

α′k

 =


µ1 µ2 · · · µp
α11 α12 · · · α1p
...

...
...

αk1 αk2 · · · αkp

 (4.4.6)

so that q = k + 1 and µi j = µ j + αi j . The matrix B in the LFR case contain unknown
constants µ j and the treatment effects αi j .

Both models have the GLM form Yn×q =
[
yi j

] = Xn×qBq ×p + En×p; however, the
design matrices of zeros and ones are not the same. For the FR model,

Xn×q = XF R =


1n1 0 · · · 0
0 1n2 · · · 0
...

...
...

0 0 · · · 1nk

 =
k⊕

i=1

1ni (4.4.7)
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and the r (XF R) = k ≡ q − 1. For the LFR model, the design matrix is

Xn×q = XL F R = [1n,XF R] (4.4.8)

where n = ∑
i ni is a vector of n 1’s and the r (XL F R) = k = q − 1 < q is not of full

rank.
When the number of observations in each treatment for the one-way MANOVA model

are equal so that n1 = n2 = . . . = nk = r , the LFR design matrix X has a balanced
structure. Letting y j represent the j th column of Y, the linear model for the j th variable
becomes

y j = Xβ j + e j j = 1, 2, . . . , p

= (1k ⊗ 1r )µ j + (Ik ⊗ 1r )α j + e j
(4.4.9)

where α′j =
[
α1 j , α2 j , . . . , αk j

]
is a vector of k treatment effects, β j is the j th column

of B and e j is the j th column of E. Letting Ki represent the Kronecker or direct product
matrices so that K0 = 1k ⊗ 1r and K1 = Ik ⊗ 1r with β0 j = µ j and β1 j = α j , an
alternative univariate structure for the j th variable in the multivariate one-way model is

y j =
2∑

i=0

Kiβ i j + e j j = 1, 2, . . . , p (4.4.10)

This model is a special case of the more general representation for the data matrix Y =[
y1, y2, . . . , yp

]
for balanced designs

Y
n× p
= XB+ E =

m∑
i=0

Ki Bi + E (4.4.11)

where Ki are known matrices of order n × ri and rank ri and Bi are effect matrices of
order ri × p. Form (4.4.11) is used with the analysis of mixed models by Searle, Casella
and McCulloch (1992) and Khuri, Mathew and Sinha (1998). We will use this form of the
model in Chapter 6.

To estimate the parameter matrix B for the FR model, with X defined in (4.4.7), we have

B̂F R =
(
X′X

)−1 X′Y =


y′1.
y′2.
...

y′k.

 (4.4.12)

where yi. = ∑ni
j=1 yi j/ni is the sample mean for the i th treatment. Hence, µ̂i = yi. is a

vector of sample means. An unbiased estimate of � is

S = Y′
[
I− X

(
X′X

)−1 X′
]

Y/ (n − k)

=
k∑

i=1

ni∑
j =1

(
yi j − yi.

) (
yi j − yi.

)′
/ (n − k)

(4.4.13)

where ve = n − k.
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To estimate B using the LFR model is more complicated since for X in (4.4.12),
(
X′X

)−1

does not exist and thus, the estimate for B is no longer unique. Using Theorem 2.5.5, a
g-inverse for X′X is

(
X′X

)− =


0 0 · · · 0
0 1/n1 · · · 0
...

...
...

0 0 · · · 1/nk

 (4.4.14)

so that

B̂ = (
X′X

)− X′Y =


0′
y′1.
...

y′k.

 (4.4.15)

which, because of the g-inverse selected, is similar to (4.4.15). Observe that the parameter
µ is not estimable.

Extending Theorem 2.6.2 to the one-way MANOVA model, we consider linear paramet-
ric functions ψ = c′Bm such that c′H = c′ for H = (

X′X
)− X′X and arbitrary vectors m.

Then, estimable functions of ψ have the general form

ψ = c′Bm = m′
(

k∑
i=1

ti µ+
k∑

i=1
ti αi

)
(4.4.16)

and are estimated by

ψ̂ = c′B̂m = m′
(

k∑
i=1

ti yi.

)
(4.4.17)

for arbitrary vector t′ = [t0, t1, . . . , tk]. By (4.4.16), µ and the αi are not estimable; how-
ever, all contrasts in the effects vector αi are estimable. Because X

(
X′X

)− XX′ is unique
for any g-inverse, the unbiased estimate of � for the FR and LFR models are identical.

For the LFR model, the parameter vectorµ has no “natural” interpretation. To give mean-
ing to µ, and to make it estimable, many texts and computer software packages add side
conditions or restrictions to the rows of B in (4.4.6). This converts a LFR model to a model
of full rank making all parameters estimable. However, depending on the side conditions
chosen, the parameters µ and αi have different estimates and hence different interpreta-
tions. For example, if one adds the restriction that the

∑
i αi = 0, then µ is estimated as an

unweighted average of the sample mean vectors yi.. If the condition that the
∑

i niαi = 0
is selected, then µ is estimated by a weighted average of the vectors yi.. Representing these
two estimates by µ̂u and µ̂w, respectively, the parameter estimates for µ become

µ̂u =
k∑

i=1
yi/k = y.. and µ̂w =

k∑
i=1

ni yi./k = y.. (4.4.18)

Now µmay be interpreted as an overall mean and the effects also become estimable in that

α̂i = yi. − y.. or α̂i = yi. − y.. (4.4.19)
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depending on the weights (restrictions). Observe that one may not interpret α̂i unless one
knows the “side conditions” used in the estimation process. This ambiguity about the esti-
mates of model parameters is avoided with either the FR cell means model or the overpa-
rameterized LFR model. Not knowing the side conditions in more complex designs leads
to confusion regarding both parameter estimates and tests of hypotheses.

The SAS procedure GLM allows one to estimate B using either the cell means FR model
or the LFR model. The default model in SAS is the LFR model; to obtain a FR model
the option / NOINT is used on the MODEL statement. To obtain the general form of es-
timable functions for the LFR solution to the MANOVA design, the option / E is used in
the MODEL statement.

The primary hypothesis of interest for the one-way FR MANOVA design is that the k
treatment mean vectors, µi , are equal

H : µ1 = µ2 = . . . = µk (4.4.20)

For the LFR model, the equivalent hypothesis is the equality of the treatment effects

H : α1 = α2 = . . . = αk (4.4.21)

or equivalently that
H : allαi − αi ′ = 0 (4.4.22)

for all i �= i ′. The hypothesis in (4.4.21) is testable if and only if the contrasts ψ = αi −αi ′
are estimable. Using (4.4.21) and (4.4.16), it is easily shown that contrasts in the αi are
estimable so that H in (4.4.21) is testable. This complication is avoided in the FR model
since the µi and contrasts of the µi are estimable. In LFR models, individual αi are not
estimable, only contrasts of the αi are estimable and hence testable. Furthermore, contrasts
of αi do not depend on the g-inverse selected to estimate B.

To test either (4.4.20) or (4.4.21), one must again construct matrices C and M to trans-
form the overall test of the parameters in B to the general form CBM = 0. The matrices
H and E have the structure given in (3.6.26). If X is not of full rank, (X′X)−1 is replaced
by any g-inverse

(
X′X

)−. To illustrate, we use a simple example for k = 3 treatments and
p = 3 dependent variables. Then the FR and LFR matrices for B are

BF R =


µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 =


µ′1

µ′2

µ′3


or

BL F R =



µ1 µ2 µ3

α11 α12 α13

α21 α22 α23

α31 α32 α33


=



µ′

α′1

α′2

α′3



(4.4.23)
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To test for differences in treatments, the matrix M = I and the contrast matrix C has the
form

CF R =
 1 0 −1

0 1 −1

 or CL F R =
 0 1 0 −1

0 0 1 −1

 (4.4.24)

so that in either case, C has full row rank vh = k − 1. When SAS calculates the hypothesis
test matrix H in PROC GLM, it does not evaluate

H = (CB̂M)′
(

C
(
X′X

)− C′
)−1

(CB̂M)

directly. Instead, the MANOVA statement can be used with the specification H = TREAT
where the treatment factor name is assigned in the CLASS statement and the hypothesis
test matrix is constructed by employing the reduction procedure discussed in (4.2.18). To
see this, let

BL F R =



µ′
· · ·
α′1
α′2
...

α′k


=

 B1
· · ·
B2



so that the full model �o becomes

�o : Y = XB+ E

= X1B1 + X2B2 + E

To test α1 = α2 = . . . = αk we set each αi equal to α0 say so that yi j = µ+ α0 + ei j =
µ0 + ei j is the reduced model with design matrix X1 so that fitting yi j = µ0 + α0 + ei j

is equivalent to fitting the model yi j = µ0 + ei j . Thus, to obtain the reduced model from
the full model we may set all αi = 0. Now if all αi = 0 the reduced model is ω : Y =
X1B1 + E and R (B1) = Y′X1

(
X′1X1

)− X′1Y = B̂′1
(
X′1X1

)
B̂1. For the full model �o,

R (B1, B2) = Y′X
(
X′X

)− X′Y = B̂′
(
X′X

)
B̂ so that

H = H� −Hω = R (B2 | B1)

= R (B1,B2)− R (B1)

= Y′X
(
X′X

)− X′Y− Y′X1
(
X′1X1

)− X′1Y

=
k∑

i=1
ni yi.y′i. − ny..y

′
..

=
l∑

i=1
ni

(
yi. − y..

)
(yi. − y..)′

(4.4.25)

for the one-way MANOVA. The one-way MANOVA table is given in Table 4.4.1.
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TABLE 4.4.1. One-Way MANOVA Table

Source d f SSC P E (SSC P)

Between k − 1 H (k − 1)� + ��

Within n − k E (n − k)�

“Total” n − 1 H+ E

The parameter matrix � for the FR model is the noncentrality parameter of the Wishart
distribution obtained from H in (4.4.25) by replacing sample estimates with population
parameters. That is,

� =
[

k∑
i=1

ni
(
µi − µ

) (
µi − µ

)′]
�−1.

To obtain H and E in SAS for the test of no treatment differences, the following commands
are used for our example with p = 3.

proc glm;

class treat;
FR Model

model y1− y3 = treatment / noint;

manova h = treat / printe printh;

proc glm;

class treat;
LFR Model

model y1− y3 = treat / e;

manova h = treat / printe printh;

In the MODEL statement the variable names for the dependent variables are y1, y2,
and y3. The name given the independent classification variable is ‘treat’. The PRINTE and
PRINTH options on the MANOVA statement directs SAS to print the hypothesis test matrix
H (the hypothesis SSCP matrix) and the error matrix E (the error SSCP matrix) for the null
hypothesis of no treatment effect. With H and E calculated, the multivariate criteria again
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depend on solving |H− λE| = 0. The parameters for the one-way MANOVA design are

s = min (vh, u) = min (k − 1, p)

M = (|u − ve| − 1) /2 = (k − p − 1) /2

N = (ve − u − 1) /2 = (n − k − p − 1) /2

(4.4.26)

where u = r (M) = p, vh = k − 1 and ve = n − k.
Because µ is not estimable in the LFR model, it is not testable. If there were no treatment

effect, however, one may fit a mean only model to the data, yi j = µ+ei j . Assuming a model
with only a mean, we saw that µ is estimated using unweighted or weighted estimates
represented as µ̂u and µ̂w. To estimate these parameters in SAS, one would specify Type III
estimable functions for unweighted estimates or Type I estimable functions for weighted
estimates. While Type I estimates always exist, Type III estimates are only provided with
designs that have no empty cells. Corresponding to these estimable functions are H matrices
and E matrices. There are two types of hypotheses for the mean only model; the Type I
hypothesis is testing Hw : µ = ∑n

i=1 niµi = 0 and the Type III hypotheses is testing
Hu : µ = ∑n

i=1 µi = 0. To test these in SAS using PROC GLM, one would specify
h = INTERCEPT on the MANOVA statement and use the HTYPE = n option where
n = 1 or 3. Thus, to perform tests on µ in SAS using PROC GLM for the LFR model, one
would have the following statements.

proc glm;

class treat;

LFR Model model y1 − y3 = treat / e;

manova h = treat / printe printh;

manova h = intercept / printe printh htype = 1;

manova h = intercept / printe printh htype = 3;

While PROC GLM uses the g-inverse approach to analyze fixed effect MANOVA and
MANCOVA designs, it provides for other approaches to the analysis of these designs by the
calculation of four types of estimable functions and four types of hypothesis test matrices.
We saw the use of the Type I and Type III options in testing the significance of the inter-
cept. SAS also provides Type II and Type IV estimates and tests. Goodnight (1978), Searle
(1987), and Littell, Freund and Spector (1991) provide an extensive and detail discussion
of the univariate case while Milliken and Johnson (1992) illustrate the procedures using
many examples. We will discuss the construction of Type IV estimates and associated tests
in Section 4.10 when we discuss nonorthogonal designs.
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Analysis of MANOVA designs is usually performed using full rank models with restric-
tions supplied by the statistical software or input by the user, or by using less than full
rank models. No solution to the analysis of MANOVA designs is perfect. Clearly, fixed
effect designs with an equal number of observations per cell are ideal and easy to analyze;
in the SAS software system PROC ANOVA may be used for such designs. The ANOVA
procedure uses unweighted side conditions to perform the analysis. However, in most real
world applications one does not have an equal number of observations per cell. For these
situations, one has two choices, the FR model or the LFR model. Both approaches have
complications that are not easily addressed. The FR model works best in designs that re-
quire no restrictions on the population cell means. However, as soon as another factor is
introduced into the design restrictions must be added to perform the correct analysis. As
designs become more complex so do the restrictions. We have discussed these approaches
in Timm and Mieczkowski (1997). In this text we will use either the FR cell means model
with no restrictions, or the LFR model.

b. One-Way MANCOVA

Multivariate analysis of covariance (MANCOVA) models are a combination of
MANOVA and MR models. Subjects in the one-way MANCOVA design are randomly
assigned to k treatments and ni vectors with p responses are observed. In addition to the
vector of dependent variables for each subject, a vector of h fixed or random independent
variables, called covariates, are obtained for each subject. These covariates are assumed to
be measured without error, and they are believed to be related to the dependent variables
and to represent a source of variation that has not been controlled for by the study design
to represent a source of variation that has not been controlled in the study. The goal of
having covariates in the model is to reduce the determinant of the error covariance matrix
and hence increase the precision of the design.

For a fixed set of h covariates, the MANCOVA model may be written as

Y
n×p
= X

n×q
B

q×p
+ Z

n×h
�

h×p
+ E

n×p

= [X,Z]

[
B
�

]
+ E

= A
n×(q+h)

�
(q+h)×p

+ E
n×p

(4.4.27)

where X is the MANOVA design matrix and Z is the matrix from the MR model containing
h covariates. The MANOVA design matrix X is usually not of full rank, r (X) = r < q,
and the matrix Z of covariates is of full rank h, r (Z) = h.

To find �̂ in (4.4.27), we apply property (6) of Theorem 2.5.5 where

A′A =
 X′X X′Z

Z′X Z′Z


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Then (
A′A

)− = [ (
X′X

)− 0
0 0

]
+ (

X′X
)− X′Z

I

[
Z′QZ

]− [
−Z′X

(
X′X

)−
, I
]

with Q defined as Q = I− X
(
X′X

)− X′, we have

�̂ =
 B̂

�̂

 =
 (

X′X
)− X′

(
Y− Z�̂

)
(
Z′QZ

)− Z′QY

 (4.4.28)

as the least squares estimates of �̂. �̂ is unique since Z has full column rank,
(
Z′QZ

)− =(
Z′QZ

)−1. From (4.4.28) observe that the estimate B̂ in the MANOVA model is adjusted by
the covariates multiplied by �̂. Thus, in MANCOVA models we are interested in differences
in treatment effects adjusted for covariates. Also observe that the matrix � is common to all
treatments. This implies that Y and X are linearly related with a common regression matrix
� across the k treatments. This is a model assumption that may be tested. In addition,
we may test for no association between the dependent variables y and the independent
variables z or that � = 0. We can also test for differences in adjusted treatment means.

To estimate � given B̂ and �̂, we define the error matrix for the combined vector
(y

z
)

as

E =
 Y′QY Z′QY

Y′QZ Z′QZ

 =
 Eyy Eyz

Ezy Ezz

 (4.4.29)

Then, the error matrix for Y given Z is

Ey|z = Y′
(I− [X,Z])

 X′X X′Z

Z′X Z′Z

−  X′

Z′

Y

= Y′QY− Y′QZ
(
Z′QZ

)−1 Z′QY

= Eyy − Eyz E−1
zz Ezy

= Y′QY− �̂′
(
Z′QZ

)
�̂

(4.4.30)

To obtain an unbiased estimate of �, Ey|z is divided by the r (A) = n − r − h

Sy|z = Ey|z/ (n − r − h) (4.4.31)

The matrix �̂′
(
Z′QZ

)
�̂ = EyzE−1

zz Ezy is the regression SSCP matrix for the MR model
Y = QZ� + E. Thus, to test H : � = 0, or that the covariates have no effect on Y, the
hypothesis test matrix is

H = EyzE−1
zz Ezy = �̂′

(
Z′QZ

)
�̂ (4.4.32)
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where the r (H) = h. The error matrix for the test is defined in (4.4.29). The � criterion
for the test that � = 0 is

� =
∣∣Ey|z

∣∣∣∣H+ Ey|z
∣∣ =

∣∣Eyy − Eyx E−1
xx Exy

∣∣
Eyy

(4.4.33)

where vh = h and ve = n − r − h. The parameters for the other test criteria are

s = min (vh, p) = min (h, p)

M = (|p − vh | − 1) /2 = (|p − h| − 1) /2

N = (ve − p − 1) /2 = (n − r − h − p − 1) /2

(4.4.34)

To test � = 0 using SAS, one must use the MTEST statement in PROC REG. Using SAS
Version 8, the test may not currently be tested using PROC GLM.

To find a general expression for testing the hypotheses regarding B in the matrix � is
more complicated. By replacing X in (3.6.26) with the partitioned matrix [X,Z] and finding
a g-inverse, the general structure of the hypothesis test matrix for hypothesis CBM = 0 is

H = (CB̂M)′
[
C
(
X′X

)− C′ + C
(
X′X

)− X′Z
(
Z′QZ

)−1 Z′X
(
X′X

)− C′
]−1

(CB̂M)

(4.4.35)
where vh = r (C) = g. The error matrix is defined in (4.4.29) and ve = n − r − h. An
alternative approach for determining H is to fit a full model (�o) given in (4.4.26) and
the reduced model under the hypothesis (ω). Then H = Eω − E�. Given a matrix H and
the matrix Ey|z = E�o , the test criteria depend on the roots of

∣∣H− λEy|z
∣∣ = 0. The

parameters for testing H : CBM = 0 are

s = min (g, u)

M = (|u − g| − 1) / 2

N = (n − r − h − g − 1) / 2

(4.4.36)

where u = r(M). As in the MR model, Z may be fixed or random.
Critical to the application of the MANCOVA model is the parallelism assumption that

�1 = �2 = . . . = �I = �. To develop a test of parallelism, we consider an I group
multivariate intraclass covariance model

�o :


Y1
Y2
...

YI

 =


X1 Z1 0 · · · 0
X2 0 Z2 · · · 0
...

...
...

...

XI 0 0 · · · ZI




B
�1
�2
...

�I

 +


E1
E2
...

EI


(n × p) [n × I q∗] [I q∗ × p) (n × p)

Y = [X,F]

[
B
�

]
+ E

(4.4.37)
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where q∗ = q + h = k∗ + 1 so that the matrices �i vary across the I treatments. If

H : �1 = �2 = . . . = �I = � (4.4.38)

then (4.4.37) reduces to the MANCOVA model

ω :


Y1
Y2
...

YI

 =


X1 Z1
X2 Z2
...

...

XI ZI


[

B
�

]
+


E1
E2
...

EI


Y = [X,Z]

[
B
�

]
+ E

Y
n×p

= A
n×q∗

�
q∗ ×p

+ E
n×p

To test for parallelism given (4.4.37), we may use (3.6.26). Then we would estimate the
error matrix under �o, E�o , and define C such that C� = 0. Using this approach,

C
h(I−1)× hI

=


Ih 0 · · · −Ih

0 Ih · · · −Ih
...

...
...

0k 0 · · · −Ih


where the r (C) = vh = h (I − 1). Alternatively, H may be calculated as in the MR
model in (4.2.15) for testing B2 = 0. Then H = Eω − E�o . Under ω, Eω is defined
in (4.4.29). Hence, we merely have to find E�o . To find E�o , we may again use (4.4.29)
with Z replaced by F in (4.4.37) and ve = n − r(X,F) = n − I q∗ = n − r(X) − I h.
Alternatively, observe that (4.4.37) represents I independent MANCOVA models so that
�̂i =

(
Z′i Qi Zi

)−1 Z′i Qi Yi where Qi = I− Xi
(
X′i Xi

)− X′i . Pooling across the I groups,

E�o =
I∑

i=1
(Y′i Qi Yi − �̂′i

(
Z′i Qi Zi

)
�̂)

= Y′QY
I∑

i=1
�̂′i

(
Z′i Qi Zi

)
�̂i

(4.4.39)

To test for parallelism, or no covariate by treatment interaction, Wilks’ � criterion is

� = | E�o |
| Eω | =

|Eyy −∑I
i=1 �̂

′
i

(
Z′i Qi Zi

)
�̂i |

| Ey|z | (4.4.40)

with degrees of freedom vh = h (I − 1) and ve = n − q − I h. Other criteria may also be
used.

The one-way MANCOVA model assumes that ni subjects are assigned to k treatments
where the p-variate vector of dependent variables has the FR and LFR linear model struc-
tures

yi j = µi + �′zi j + ei j (4.4.41)
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or the LFR structure

yi j = (µ+ αi )+ �′zi j + ei j (4.4.42)

for i = 1, 2, . . . , k and j = 1, 2, . . . , ni . The vectors zi j are h-vectors of fixed covariates,
�h×p is a matrix of raw regression coefficients and the error vectors ei j ∼ I Np (0, �).
As in the MR model, the covariates may also be stochastic or random; estimates and tests
remain the same in either case.

Model (4.4.41) and (4.4.42) are the FR and LFR models, for the one-way MANCOVA
model. As with the MANOVA design, the structure of the parameter matrix A = [B

�

]
de-

pends on whether the FR or LFR model is used. The matrix � is the raw form of the
regression coefficients. Often the covariates are centered by replacing zi j with overall de-
viation scores of the form zi j − z.. where z.. is an unweighted average of the k treatment
means zi.. The mean parameter µi or µ + αi is estimated by yi. − �̂′zi . Or, one may use
the centered adjusted means

yA
i. = µ̂i + �̂′z.. = yi. − �̂′ (zi. − z..) (4.4.43)

These means are called adjusted least squares means (LSMEANS) in SAS. Most software
package use the “unweighted” centered adjusted means in that z.. is used in place of z..
even with unequal sample sizes.

Given multivariate normality, random assignment of ni subjects to k treatments, and ho-
mogeneity of covariance matrices, one often tests the model assumption that the �i are
equal across the k treatments. This test of parallelism is constructed by evaluating whether
or not there is a significant covariate by treatment interaction present in the design. If this
test is significant, we must use the intraclass multivariate covariance model. For these mod-
els, treatment difference may only be evaluated at specified values of the covariate. When
the test is not significant, one assumes all �i = � so that the MANCOVA model is most
appropriate. Given the MANCOVA model, we first test H : � = 0 using PROC REG.
If this test is not significant this means that the covariates do not reduce the determinant
of � and thus it would be best to analyze the data using a MANOVA model rather than a
MANCOVA model.

If � �= 0, we may test for the significance of treatment difference using PROC GLM. In
terms of the model parameters, the test has the same structure as the MANOVA test. The
test written using the FR and LFR models follows.

H : µ1 = µ2 = . . . = µk (FR)

H : α1 = α2 = . . . = αk (LFR)
(4.4.44)

The parameter estimates µ̂i or contrasts in the αi now involve the h covariates and the
matrix �̂. The estimable functions have the form

ψ = m′
(

k∑
i=1

tiµ+
k∑

i=1
tiαi

)
ψ̂ = m′

{
k∑

i=1
ti [yi. − �̂′ (zi. − z..)]

} (4.4.45)
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The hypotheses test matrix may be constructed using the reduction procedure.
With the rejection of hypotheses regarding � or treatment effects, we may again establish

simultaneous confidence sets for estimable functions of H. General expressions for the
covariance matrices follow

cov(vec �̂) = � ⊗ (
Z′QZ

)−1

var(c′�̂m) = m′�m(c′
(
Z′QZ

)−1 c)

var(c′B̂m) = m′�m[c′ (X′X)− c

+ c′
(
X′X

)− X′Z
(
Z′QZ

)−1 Z′X
(
X′X

)− c]
cov(c′B̂m, c�̂m) = −m�m

[
c′
(
X′X

)− X′Z
(
Z′QZ

)−1 c
]

(4.4.46)

where � is estimated by Sy|z .

c. Simultaneous Test Procedures (STP) for One-Way MANOVA /
MANCOVA

With the rejection of the overall null hypothesis of treatment differences in either the
MANOVA or MANCOVA designs, one knows there exists at least one parametric func-
tion ψ = c′Bm that is significantly different from zero for some contrast vector c and an
arbitrary vector m. Following the MR model, the 100 (1− α)% simultaneous confidence
intervals have the general structure

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂ (4.4.47)

where ψ̂ = c′B̂m and σ̂ 2
ψ̂
= var(c′B̂m) is defined in (4.4.46). The critical constant, c2

α ,

depends on the multivariate criterion used for the overall test of no treatment differences.
For one-way MANOVA/MANCOVA designs, ψ̂ and σ̂ ψ̂ are easy to calculate given the
structure of

(
X′X

)
. This is not the case for more complicated designs. The ESTIMATE

statement in PROC GLM calculates ψ̂ and σ̂ ψ̂ for each variable in the model. Currently,
SAS does not generate simultaneous confidence intervals for ESTIMATE statements. In-
stead, a CONTRAST statement may be constructed to test that Ho : ψ i = 0. If the overall
test is rejected, one may evaluate each contrast at the nominal level used for the overall test
to try to locate significant differences in the group means. SAS approximates the signifi-
cance of each contrast using the F distribution. As in the test for evaluating the differences
in means for the two group location problem, these tests are protected F-tests and may
be evaluated using the nominal α level to determine whether any contrast is significant.
To construct simultaneous confidence intervals, (4.2.60) must be used or an appropriate
F-approximation. To evaluate the significance of a vector contrast ψ = c′B, one may
also use the approximate protected F approximations calculated in SAS. Again, each test is
evaluated at the nominal level α when the overall test is rejected.

Instead of performing an overall test of treatment differences and investigating paramet-
ric functions of the form ψ i = c′i Bmi to locate significant treatment effects, one may, a
priori, only want to investigate ψ i for i = 1, 2, . . . ,C comparisons. Then, the overall test
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H : CBM = 0 may be replaced by the null hypothesis H = ⋂C
i=1 Hi : ψ i = 0 for

i = 1, 2, . . . ,C . The hypothesis of overall significance is rejected if at least one Hi is sig-
nificant. When this is the goal of the study, one may choose from among several single-step
STPs to test the null hypothesis; these include the Bonferroni t, Šidák independent t, and the
Šidák multivariate t (Studentized maximum modulus procedure). These can be used to con-
struct approximate 100 (1− α)% simultaneous confidence intervals for the i = 1, 2 . . . ,C
contrasts ψ i = c′i B̂mi , Fuchs and Sampson (1987) and Hochberg and Tamhane (1987).
Except for the multivariate t intervals, each confidence interval is usually constructed at
some level α∗ < α to ensure that for all C comparisons the overall level is ≥ 1− α. Fuchs
and Sampson (1987) show that for C ≤ 30 the Studentized maximum modulus intervals
are “best” in the Neyman sense, the intervals are shortest and have the highest probability
of leading to a significant finding that ψ i �= 0.

A procedure which is superior to any of these methods is the stepdown finite intersec-
tion test (FIT) procedure discussed by Krishnaiah (1979) and illustrated in some detail in
Schmidhammer (1982) and Timm (1995). A limitation of the FIT procedure is that one
must specify both the finite, specific comparisons ψ i and the rank order of the importance
of the dependent variables in Yn×p from 1 to p where 1 is the variable of most importance
to the study and p is the variable of least importance. To develop the FIT procedure, we
use the FR “cell means” MR model so that

Y
n×p
= X

n×k
B

k×p
+ E

B
k×p
=


µ′1
µ′2
...

µ′k

 = [
µi j

] = [
u1,u2, . . . ,up

] (4.4.48)

where E (Y) = XB and each row of E is MVN with mean 0 and covariance matrix �. For
C specific treatment comparisons, we write the overall hypothesis H as

H =
C⋂

i=1
Hi where Hi : ψ i = 0

ψ i = c′i Bmi i = 1, 2, . . . ,C

(4.4.49)

where c′i = [ci1, ci2, . . . , cik] is a contrast vector so that the
∑k

j=1 ci j = 0. In many
applications, the vectors mi are selected to construct contrasts a variable at a time so that
mi is an indicator vector m j (say) that has a one in the j th position and zeros otherwise.
For this case, (4.4.49) may be written as Hi j : θ i j = c′i u j = 0. Then, H becomes

H :
C⋂

i=1

p⋂
j=1

Hi j : θ i j = 0 (4.4.50)

To test the pC hypotheses Hi j simultaneously, the FIT principle is used. That is, F type
statistics of the form

F∗i j = θ̂
2
i j/σ̂ θ̂ i j
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are constructed. The hypothesis Hi j is accepted (<) or rejected (>) depending on whether
Fi j

<
>

Fα results such that the

P
(

F∗i j ≤ Fα; i = 1, 2, . . . , L and j = 1, 2, . . . , p | H
)
= 1− α (4.4.51)

The joint distribution of the statistics F∗i j is not multivariate F and involve nuisance pa-
rameters, Krishnaiah (1979). To test Hi j simultaneously, one could use the Studentized
maximum modulus procedure. To remove the nuisance parameters Krishnaiah (1965a,
1965b, 1969) proposed a stepdown FIT procedure that is based on conditional distribu-
tions and an assumed decreasing order of importance of the p variables. Using the order
of the p variables, let Y = [y1, y2, . . . yp], B = [β1,β2, . . . ,β p], Y j = [y1, y2, . . . y j ],
B j = [β1,β2, . . . ,β j ] for j = 1, 2, . . . p for the model given in (4.4.48). Using property

(5) in Theorem 3.3.2 and the realization that the matrix �1.2 = �11 − �12�
−1
22 �21 re-

duces to σ 2
1.2 = σ 2

1 − σ ′12�
−1
22 σ 21 = |�| / |�22| for one variable, the elements of y j+1 for

fixed Y j are distributed univariate normal with common variance σ 2
j+1 =

∣∣� j+1
∣∣ / ∣∣� j

∣∣
for j = 0, 1, 2, . . . , p − 1 where the |�0| = 1 and � j is the first principal minor of order
j containing the first j rows and j columns of � = [

σ i j
]
. The conditional means are

E(y j+1|Y j ) = Xη j+1 + Y jγ j

= [
X,Y j

] [ η j+1
γ j

]
(4.4.52)

where η j+1 = β j+1 − B jγ j , γ
′
j =

[
σ 1, j+1, . . . , σ j, j+1

]′
�−1

j , and B0 = 0.
With this reparameterization, the hypotheses in (4.4.49) becomes

H :
C⋂

i=1

p⋂
j=1

Hi j : c′iη j = 0 (4.4.53)

so that the null hypotheses regarding the µi j are equivalent to testing the null hypotheses
regarding the ηi j simultaneously or sequentially. Notice that η j+1 is the mean for variable
j adjusting for j = 0, 1, . . . , p − 1 covariate where the covariates are a subset of the
dependent variables at each step. When a model contains “real” covariates, the dependent
variables are sequentially added to the covariates increasing them by one at each step until
the final step which would include h + p − 1 covariates.

To develop a FIT of (4.4.50) or equivalently (4.4.49), let ξ̂ i j = c′i η̂ j where η̂ j is the
estimate of the adjusted mean in the MANCOVA model, then for

B j =
[
β̂1, β̂2, . . . , β̂ j

]
and S j = Y′j [I− X

(
X′X

)−1 X′]Y j ,

the variance of c′i η̂ j = ξ̂ i j , is

σ 2
ξ i j
= c′i [

(
X′X

)−1 + B̂ j S
−1
j B̂ j ]ciσ

2
j+1

= di jσ
2
j+1

(4.4.54)
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so that an unbiased estimate of σ 2
ξ i j

is σ̂ 2
ξ i j
= di j s2

j / (n − k − j − 1) where

s2
j / (n − k − j − 1)

is an unbiased estimate of σ 2
j . Forming the statistics

Fi j =
(̂ξ i j )

2 (n − k − j + 1)

di j s2
j

= (̂ξ i j )
2 (n − k − j + 1)[

c′i (X′X)−1 ci +∑ j−1
m=1

c′̂ηm
sm

]
s2

j

(4.4.55)

where s2
j =| S j | / | S j−1 | and | S0 |= 1, the FIT procedure consists of rejecting H if

Fi j > f jα where the f jα are chosen such that the

P
(
Fi j ≤ f jα; j = 1, 2, . . . , p and i = 1, 2, . . . ,C | H

)
=

p∏
j=1

P
(
Fi j ≤ f jα; i = 1, 2, . . . ,C | H

)
=

p∏
j=1

(
1− α j

) = 1− α.

For a given j , the joint distribution of F1 j , F2 j , . . . , FC j is a central C-variate multivariate
F distribution with (1, n − k − j + 1) degrees of freedom and the statistics Fi j in (4.4.55)
at each step are independent. When h covariates are in the model, � is replaced by �y|z
and k is replaced by h + k.

Mudholkar and Subbaiah (1980a, b) compared the stepdown FIT of Krishnaiah to Roy’s
(1958) stepdown F test. They derived approximate 100 (1− α)% level simultaneous con-
fidence intervals for the original population means µi j and showed that FIT intervals are
uniformly shorter than corresponding intervals obtained using Roy’s stepdown F tests, if
one is only interested in contrasts a variable at a time. For arbitrary contrasts ψ i j = c′i Bm j ,
the FIT is not uniformly better. In a study by Cox, Krishnaiah, Lee, Reising and Schuur-
mann (1980) it was shown that the stepdown FIT, is uniformly better in the Neyman sense
than Roy’s largest root test or Roy’s T 2

max test.
The approximate 100 (1− α)% simultaneous confidence intervals for θ i j = c′iβ j where

β j is the j th column of B, a variable at a time for i = 1, 2, . . . ,C and j = 1, 2, . . . , p are

θ̂ i j − cα

√
c′i (X′X)−1 ci ≤ θ i j ≤ θ̂ i j + cα

√
c′i (X′X)−1 ci

cα =
j∑

q=1
| tq j |

√
c∗j

c j = f jα/ (n − k − j + 1)

c∗1 = c1, c∗j = c j (1+ c∗1 + . . .+ c∗j−1)

(4.4.56)

where tq j are the elements of the upper triangular matrix T for a Cholesky factorization of

E = T′T
= Y′[I− X(X′X)−1X′]Y.
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Replacing θ i j by arbitrary contrasts ψ i j = c′i Bm j where h′j = Tm j and T′T = E,
simultaneous confidence sets for ψ i j become

ψ̂ i j −
(

p∑
j=1

∣∣h j
∣∣√c∗j

)(√
c′i (X′X)−1 ci

)
≤ ψ i j

≤ ψ̂ i j +
(

p∑
j=1

∣∣h j
∣∣√c∗j

)(√
c′i (X′X)−1 ci

)
(4.4.57)

where c∗j is defined in (4.4.51). Using the multivariate t distribution, one may also test
one-sided hypotheses Hi j simultaneously and construct simultaneous confidence sets for
directional alternatives.

Currently no SAS procedure has been developed to calculate the Fi j statistics in (4.4.45)
or to create the approximate simultaneous confidence intervals given in (4.4.57) for the
FIT procedure. The problem one encounters is the calculation of the critical values for
the multivariate F distribution. The program Fit.For available on the Website performs the
necessary calculations for MANOVA designs. However, it only runs on the DEC-Alpha
3000 RISC processor and must be compiled using the older version of the IMSL Library
calls. The manual is contained in the postscript file FIT-MANUAL.PS. The program may
be run interactively or in batch mode. In batch mode, the interactive commands are placed
in an *.com file and the SUBMIT command is used to execute the program. The pro-
gram offers various methods for approximating the critical values for the multivariate F
distribution. One may also approximate the critical values of the multivariate F distribution
using a computer intensive bootstrap resampling scheme, Hayter and Tsui (1994). Timm
(1996) compared their method with the analytical methods used in the FIT program and
found little difference between the two approaches since exact values are difficult to calcu-
late.

4.5 One-Way MANOVA/MANCOVA Examples

a. MANOVA (Example 4.5.1)

The data used in the example were taken from a large study by Dr. Stanley Jacobs and Mr.
Ronald Hritz at the University of Pittsburgh to investigate risk-taking behavior. Students
were randomly assigned to three different direction treatments known as Arnold and Arnold
(AA), Coombs (C), and Coombs with no penalty (NC) in the directions. Using the three
treatment conditions, students were administrated two parallel forms of a test given under
high and low penalty. The data for the study are summarized in Table 4.5.1. The sample
sizes for the three treatments are respectively, n1 = 30, n2 = 28, and n3 = 29. The total
sample size is n = 87, the number of treatments is k = 3, and the number of variables is
p = 2 for the study. The data are provided in the file stan hz.dat.
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TABLE 4.5.1. Sample Data One-Way MANOVA

AA C NC
Low High Low High Low High Low High Low High Low High

8 28 31 24 46 13 25 9 50 55 55 43
18 28 11 20 26 10 39 2 57 51 52 49

8 23 17 23 47 22 34 7 62 52 67 62
12 20 14 32 44 14 44 15 56 52 68 61
15 30 15 23 34 4 36 3 59 40 65 58
12 32 8 20 34 4 40 5 61 68 46 53
12 20 17 31 44 7 49 21 66 49 46 49
18 31 7 20 39 5 42 7 57 49 47 40
29 25 12 23 20 0 35 1 62 58 64 22

6 28 15 20 43 11 30 2 47 58 64 54
7 28 12 20 43 25 31 13 53 40 63 64
6 24 21 20 34 2 53 12 60 54 63 56

14 30 27 27 25 10 40 4 55 48 64 44
11 23 18 20 50 9 26 4 56 65 63 40
12 20 25 27 67 56

The null hypothesis of interest is whether the mean vectors for the two variates are the
same across the three treatments. In terms of the effects, the hypothesis may be written as

Ho :
[

α11
α12

]
=

[
α21
α22

]
=

[
α31
α32

]
(4.5.1)

The code for the analysis of the data in Table 4.5.1 is provided in the programs: m4 5 1.sas
and m4 5 1a.sas.

We begin the analysis by fitting a model to the treatment means. Before testing the hy-
pothesis, a chi-square Q-Q plot is generated using the routine multinorm.sas to investigate
multivariate normality (program m4 5 1.sas). Using PROC UNIVARIATE, we also gener-
ate univariate Q-Q plots using the residuals and investigate plots of residuals versus fitted
values. Following Example 3.7.3, the chi-square Q-Q plot for all the data indicate that ob-
servation #82 (NC, 64, 22) is an outlier and should be removed from the data set. With the
outlier removed (program m4 5 1a.sas), the univariate and multivariate tests, and residual
plots indicate that the data are more nearly MVN. The chi-square Q-Q plot is almost lin-
ear. Because the data are approximately normal, one may test that the covariance matrices
are equal (Exercises 4.5, Problem 1). Using the option HOVTEST = BF on the MEANS
statement, the univariate variances appear approximately equal across the three treatment
groups.

To test (4.5.1) using PROC GLM, the MANOVA statement is used to create the hy-
pothesis test matrix H for the hypothesis of equal means or treatment effects. Solving
|H− λE| = 0, the eigenvalues for the test are λ1 = 8.8237 and λ2 = 4.41650 since
s = min (vh, p) = min (3, 2) = 2. For the example, the degrees of freedom for error is
ve = n−k = 83. By any of the MANOVA criteria, the equality of group means is rejected
using any of the multivariate criteria (p-value < 0.0001).
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With the rejection of (4.5.1), using (4.4.47) or (4.2.59) we know there exists at least one
contrast ψ = c′Bm that is nonzero. Using the one-way MANOVA model, the expression
for ψ is

c′B̂m− cα

√
(m′Sm) c′ (X′X)− c ≤ ψ ≤ c′B̂m+ cα

√
(m′Sm) c′ (X′X)− c (4.5.2)

As in the MR model, m operates on sample covariance matrix S and the contrast vector
c operates on the matrix

(
X′X

)−. For a vector m that has a single element equal to one
and all others zero, the product m′Sm = s2

i , a diagonal element of S = E/(n − r(X). For
pairwise comparisons among group mean vectors, the expression

c′
(
X′X

)− c = 1

ni
+ 1

n j

for any g-inverse. Finally, (4.5.2) involves cα which depends on the multivariate criterion
used for the overall test for treatment differences. The values for cα were defined in (4.2.60)
for the MR model. Because simultaneous confidence intervals allow one to investigate all
possible contrast vectors c and arbitrary vectors m in the expression ψ = c′Bm, they
generally lead to very wide confidence intervals if one evaluates only a few comparisons.
Furthermore, if one locates a significant contrast it may be difficult to interpret when the
elements of c and/or m are not integer values. Because PROC GLM does not solve (4.5.2)
to generate approximate simultaneous confidence intervals, one must again use PROC IML
to generate simultaneous confidence intervals for parametric functions of the parameters as
illustrated in Section 4.3 for the regression example. In program m4 5 1a.sas we have in-
cluded IML code to obtain approximate critical values using (4.2.61), (4.2.62) and (4.2.63)
[ROY, BLH, and BNP] for the contrast that compares treatment one (AA) versus treatment
three (NC) using only the high penalty variable. One may modify the code for other com-
parisons. PROC TRANSREG is used to generate a full rank design matrix which is input
into the PROC IML routine. Contrasts using any of the approximate methods yield inter-
vals that do not include zero for any of the criteria. The length of the intervals depend on
the criterion used in the approximation. Roy’s approximation yields the shortest interval.
The comparison has the approximate simultaneous interval (−31.93,−23.60) for the com-
parison of group one (AA) with group three (NC) for the variable high penalty. Because
these intervals are created from an upper bound statistic, they are most resolute. However,
the intervals are created using a crude approximation and must be used with caution. The
approximate critical value was calculated as cα = 2.49 while the exact value for the Roy
largest root statistic is 3.02. The F approximations for BLH and BNP multivariate crite-
ria are generally closer to their exact values. Hence they may be preferred when creating
simultaneous intervals for parametric functions following an overall test. The simultane-
ous interval for the comparison using the F approximation for the BLH criterion yields the
simultaneous interval (−37.19,−18.34) as reported in the output.

To locate significant comparisons in mean differences using PROC GLM, one may com-
bine CONTRAST statements in treatments with MANOVA statements by defining the
matrix M. For M = I, the test is equivalent to using Fisher’s LSD method employing
Hotelling’s T 2 statistics for locating contrasts involving the mean vectors. These protected
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tests control the per comparison error rate near the nominal level α for the overall test only
if the overall test is rejected. However, they may not be used to construct simultaneous con-
fidence intervals. To construct approximate simultaneous confidence intervals for contrast
in the mean vectors, one may use

c2
α = pve Fα∗

(p,ve−p+1)/(ve − p + 1)

in (4.5.2) where α∗ = α/C is the upper α critical value for the F distribution using, for
example, the Bonferroni method where C is the number of mean comparisons. Any number
of vectors m may be used for each of the Hotelling T 2 tests to investigate contrasts that
involve the means of a single variable or to combine means across variables.

Instead of using Hotelling’s T 2 statistic to locate significant differences in the means,
one may prefer to construct CONTRAST statements that involve the vectors c and m.
To locate significance differences in the means using these contrasts, one may evaluate
univariate protected F tests using the nominal level α. Again, with the rejection of the
overall test, these protected F tests have an experimental error rate that is near the nominal
level α when the overall test is rejected. However, to construct approximate simultaneous
confidence intervals for the significant protected F tests, one must again adjust the alpha
level for each comparison. Using for example the Bonferroni inequality, one may adjust the
overall α level by the number of comparisons, C , so that α∗ = α/C . If one were interested
in all pairwise comparisons for each variable (6 comparisons) and the three comparisons
that combine the sum of the low penalty and high penalty variables, then C = 9 and α∗ =
0.00556. Using α = 0.05, the p-values for the C = 9 comparisons are shown below. They
are all significant. The ESTIMATE statement in PROC GLM may be used to produce ψ̂ and
σ̂ ψ̂ for each contrast specified for each variable. For example, suppose we are interested
in all pairwise comparisons (3 + 3 = 6 for all variables) and two complex contrasts that
compare ave (1+ 2) vs 3 and ave (2+ 3) vs 1 or ten comparisons. To construct approximate
simultaneous confidence intervals for 12 the comparisons, the value for cα may be obtained
form the Appendix, Table V by interpolation. For C = 12 contrasts and degrees of freedom
for error equal to 60, the critical values for the BON, SID and STM procedures range
between 2.979 and 2.964. Because the Šidák’s multivariate t has the smallest value, by
interpolation we would use cα = 2.94 to construct approximate simultaneous confidence
intervals for 12 the comparisons. SAS only produces estimated standard errors, σ̂ ψ̂ , for
contrasts that involve a single variable. The general formula for estimating the standard
errors, σ̂ ψ̂ =

√
(m′Sm) c′ (X′X)− c, must be used to calculate standard errors for contrasts

for arbitrary vectors m.

Variables

Contrasts Low High Low + High
1 vs 3 .0001 .0001 .0001
2 vs 3 .0001 .0001 .0001
1 vs 2 .0001 .0001 .0209

If one is only interested in all pairwise comparisons. For each variable, one does not
need to perform the overall test. Instead, the LSMEANS statement may be used by setting
ALPHA equal to α∗ = α/p where p is the number of variables and α = .05 (say). Then,
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using the option CL, PDIFF = ALL, and ADJUST = TUKEY, one may directly isolate
the planned comparisons that do not include zero. This method again only approximately
controls the familywise error rate at the nominal α level since correlations among vari-
ables are being ignored. The LSMEANS option only allows one to investigate all pairwise
comparisons in unweighted means. The option ADJUST=DUNNETT is used to compare
all experimental group means with a control group mean. The confidences intervals for
Tukey’s method for α∗ = 0.025 and all pairwise comparisons follow.

Variables

Contrasts Low High
1 vs 2 (−28.15 −17.86) (11.61 20.51)
1 vs 3 (−48.80 −38.50) (−32.21 −23.31)
2 vs 3 (−25.88 −15.41) (−48.34 −39.30)

Because the intervals do not include zero, all pairwise comparisons are significant for our
example.

Finally, one may use PROC MULTTEST to evaluate the significance of a finite set of
arbitrary planned contrasts for all variables simultaneously. By adjusting the p-value for
the family of contrasts, the procedure becomes a simultaneous test procedure (STP). For
example, using the Šidák method, a hypothesis Hi is rejected if the p-value pi is less than
1 − (1− α)1/C = α∗ where α is the nominal FWE rate for C comparisons. Then the
Šidák single-step adjusted p-value is p̃i = 1− (1− pi )

C . PROC MULTTEST reports raw
p-values pi and the adjusted values p-values, p̃i . One may compare the adjusted p̃i val-
ues to the nominal level α to assess significance. For our example, we requested adjusted
the p-values using the Bonferroni, Šidák and permutation options. The permutation option
resamples vectors without replacement and adjusts p-values empirically. For the finite con-
trasts used with PROC MULTTEST using the t test option, all comparisons are seen to
be significant at the nominal α = 0.05 level. Westfall and Young (1993) illustrate PROC
MULTTEST in some detail for univariate and multivariate STPs.

When investigating a large number of dependent variables in a MANOVA design, it is of-
ten difficult to isolate specific variables that are most important to the significant separation
of the centroids. To facilitate the identification of variables, one may use the /CANONICAL
option on the MANOVA statement as illustrated in the two group example. For multiple
groups, there are s = min (vh, p) discriminant functions. For our example, s = 2. Re-
viewing the magnitude of the coefficients for the standardized vectors of canonical variates
and the correlations of the within structure canonical variates in each significant dimension
often helps in the exploration of significant contrasts. For our example, both discriminant
functions are significant with the variable high penalty dominating one dimension and the
low penalty variable the other.

One may also use the FIT procedure to analyze differences in mean vectors for the one-
way MANOVA design. To implement the method, one must specify all contrasts of interest
for each variable, and rank the dependent variables in order of importance from highest to
lowest. The Fit.for program generates approximate 100 (1− α)% simultaneous confidence
intervals for the conditional contrasts involving the η j and the original means. For the
example, we consider five contrasts involving the three treatments as follows.
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TABLE 4.5.2. FIT Analysis

Variable: Low Penalty
Contrast Fi j Crude Estimate of C.Is

for Original Means
1 141.679* −23.0071 (−28.57 −17.45)
2 110.253* −20.6429 (−26.30 −14.99)
3 509.967* −43.6500 (−49.21 −38.09)
4 360.501* −32.1464 (−37.01 −27.28)
5 401.020* −33.3286 (−38.12 −28.54)

Variable: High Penalty

1 76.371* 16.0595 ( 9.67 22.43)
2 237.075* −43.8214 (−50.32 −37.32)
3 12.681* −27.7619 (−34.15 −21.37)
4 68.085* −35.7917 (−41.39 −30.19)
5 1.366 −5.8512 (−11.35 −0.35)

*significant of conditional means for α = 0.05

Contrasts AA C NC

1 1 −1 0
2 0 1 −1
3 1 0 −1
4 5 .5 −1
5 1 −.5 −.5

For α = 0.05, the upper critical value for the multivariate F distribution is 8.271. Assuming
the order of the variables as Low penalty followed by High penalty, Table 4.5.2 contains
the output from the Fit.for program.

Using the FIT procedure, the multivariate overall hypothesis is rejected if any contrast is
significant.

b. MANCOVA (Example 4.5.2)

To illustrate the one-way MANCOVA design, Rohwer collected data identical to that an-
alyzed in Section 4.3 for n = 37 kindergarten students from a residential school in a
lower-SES-class area. The data for the second group are given in Table 4.3.2. It is com-
bined with the data in Table 4.3.1 and provided in the file Rohwer2.dat. The data are used
to test (4.4.44) for the two independent groups. For the example, we have three dependent
variables and five covariates. Program m4 5 2.sas contains the SAS code for the analysis.
The code is used to test multivariate normality and to illustrate the test of parallelism

H : �1 = �2 = �3 = � (4.5.3)
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using both PROC REG and PROC GLM. The MTEST commands in PROC REG allow one
to test for parallelism for each covariate and to perform the overall test for all covariates
simultaneously. Using PROC GLM, one may not perform the overall simultaneous test.
However, by considering interactions between each covariate and the treatment, one may
test for parallelism a covariate at a time. Given parallelism, one may test that all covariates
are simultaneously zero, Ho : � = 0 or that each covariate is zero using PROC REG. The
procedure GLM in SAS may only be used to test that each covariate is zero. It does not
allow one to perform the simultaneous test. Given parallelism, one next tests that the group
means or effects are equal

H : µ1 = µ2 (FR)

H : α1 = α2 (LFR)
(4.5.4)

using PROC GLM.
When using a MANCOVA design to analyze differences in treatments, in addition to the

assumptions of multivariate normality and homogeneity of covariance matrices, one must
have multivariate parallelism. To test (4.5.3) using PROC REG for our example, the over-
all test of parallelism is found to be significant at the α = .05 level, but not significant
for α = 0.01. For Wilks’ � criterion, � = 0.62358242 and the p-value is 0.0277. Re-
viewing the one degree of freedom tests for each of the covariates N, S, NS, NA, and SS
individually, the p-values for the tests are 0.2442, 0.1212, 0.0738, 0.0308, and 0.3509, re-
spectively. These are the tests performed using PROC GLM. Since the test of parallelism is
not rejected, we next test Ho : � = 0 using PROC REG. The overall test that all covariates
are simultaneously zero is rejected. For Wilks’ � criterion, � = 0.44179289. All criteria
have p-values < 0.0001. However, reviewing the individual tests for each single covariate,
constructed by using the MTEST statement in PROC REG or using PROC GLM, we are
led to retain only the covariates NA and NS for the study. The p-value for each of the co-
variates N, S, NS, NA, and SS are : 0.4773, 0.1173, 0.0047, 0.0012, 0.3770. Because only
the covariates N A(p-value = 0.0012) and N S (p-value = 0.0047) have p-values less than
α = 0.01, they are retained. All other covariates are removed from the model. Because the
overall test that � = 0 was rejected, these individual tests are again protected F tests. They
are used to remove insignificant covariates from the multivariate model.

Next we test (4.4.44) for the revised model. In PROC GLM, the test is performed us-
ing the MANOVA statement. Because s = 1, all multivariate criteria are equivalent and
the test of equal means, adjusted by the two covariates, is significant. The value of the F
statistic is 15.47. For the revised model, tests that the coefficient vectors for NA and NS
remain significant, however, one may consider removing the covariate NS since the p-value
for the test of significance is 0.0257. To obtain the estimate of � using PROC GLM, the
/SOLUTION option is included on the MODEL statement. The /CANONICAL option per-
forms a discriminant analysis. Again the coefficients may be investigated to form contrasts
in treatment effects.

When testing for differences in treatment effects, we may evaluate (4.4.35) with

C = [1,−1, 0, 0] and M = I

This is illustrated in program m4 5 2.sas using PROC IML. The procedure TRANSREG
is used to generate a full rank design matrix for the analysis. Observe that the output for
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H and E agree with that produced by PROC GLM using the MANOVA statement. Also
included in the output is the matrix A, where

A
(4×3)

=
[

B̂2×3

�̂2×3

]
=


51.456 11.850 8.229
33.544 10.329 −4.749
−−−− −− −−−− −− −−−−

0.117 0.104 −1.937
1.371 0.068 2.777


The first two rows of A are the sample group means adjusted by �̂ as in (4.4.28). Observe
that the rows of �̂ agree with the ‘SOLUTION’ output in PROC GLM; however, the matrix
B̂ is not the adjusted means, output by PROC GLM by using the LSMEANS statement. To
output the adjusted means in SAS, centered using Z.., one must use the COV and OUT =
options on the LSMEANS statement. The matrix of adjusted means is output as follows.

B̂S AS =
 81.735 14.873 45.829

63.824 13.353 32.851


As with the one-way MANOVA model or any multivariate design analyzed using PROC

GLM, the SAS procedure does not generate 100 (1− α)% simultaneous confidence in-
tervals for the matrix B in the MR model for the MANCOVA design B is contained in the
matrix A. To test hypotheses involving the adjusted means, one may again use CONTRAST
statements and define the matrix M ≡ m′ in SAS with the MANOVA statement to test hy-
potheses using F statistics by comparing the level of significance with α. These are again
protected tests when the overall test is rejected. One may also use the LSMEAN statement.
For these comparisons, one usually defines the level of the test at the nominal value of
α∗ = α/p and uses the ADJUST option to approximate simultaneous confidence intervals
For our problem there are three dependent variables simultaneously so we set α∗ = 0.0167.
Confidence sets for all pairwise contrasts in the adjusted means for the TUKEY procedure
follow. Also included below are the exact simultaneous confidence intervals for the differ-
ence in groups for each variable using the ROY criterion Program m4 5 2.sas contains the
difference for c′ = [1,−1, 0, 0] and m′ = [1, 0, 0]. By changing m for each variable, one
obtains the other entries in the table. The results follow.

PPVT RPMT SAT

ψ̂diff 17.912 1.521 −0.546

Lower Limit (Roy) 10.343 −0.546 12.978
Lower Limit (Tukey) 11.534 −0.219 −2.912

Upper Limit (Roy) 25.481 3.587 31.851
Upper Limit (Tukey) 24.285 3.260 28.869

The comparisons indicate that the difference for the variable PPVT is significant since the
confidence interval does not include zero. Observe that ψ̂diff represents the difference in
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the rows of B̂ or B̂S AS so that one may use either matrix to form contrasts. Centering does
effect the covariance structure of B̂. In the output from LSMEANS, the columns labeled
‘COV’ represent the covariance among the elements of B̂S AS .

A test closely associated with the MANCOVA design is Rao’s test for additional infor-
mation, (Rao, 1973a, p. 551). In many MANOVA or MANCOVA designs, one collects
data on p response variables and one is interested in determining whether the additional
information provided by the last (p − s) variables, independent of the first s variables, is
significant. To develop a test procedure of this hypothesis, we begin with the linear model
�o : Y = XB+ U where the usual hypothesis is H : CB = 0. Partitioning the data matrix
Y = [Y1,Y2] and B = [B1,B2], we consider the alternative model

�1 : Y1 = XB1 + U1

H01 : CB1 = 0
(4.5.5)

where

E (Y2 | Y1) = XB2 + (Y1 − XB1)�
−1
11 �12

= X
(

B2 − B1�
−1
11 �12

)
+ Y1�

−1
11 �12

= X�+ Y1�

�2.1 = �22 −�21�
−1
11 �12

Thus, the conditional model is

�2 : E (Y2 | Y1) = X�+ Y1� (4.5.6)

the MANCOVA model. Under �2, testing

H02 : C (B2 − B1�) = 0 (4.5.7)

corresponds to testing H02 : C� = 0. If C = Ip and � = 0, then the conditional
distribution of Y2 | Y1 depends only on � and does not involve B1; thus Y2 provides no
additional information on B1. Because �2 is the standard MANCOVA model with Y ≡ Y2
and Z ≡ Y1, we may test H02 using Wilks’ criterion

�2.1 =
∣∣∣E22 − E21E−1

11 E12

∣∣∣
|EH22 − EH21E−1

H11EH12|
∼ Up−s, vh, ve (4.5.8)

where ve = n − p − s and vh = r (C). Because H (CB = 0) is true if and only if
H01 and H02 are true, we may partition � as � = �1�2.1 where �1 is from the test of
H01; this results in a stepdown test of H (Seber, 1984, p. 472).

Given that we have found a significant difference between groups using the three depen-
dent variables, we might be interested in determining whether variables RPMT and SAT
(the variable in set 2) add additional information to the analysis of group differences above
that provided by PPVT (the variable in set 1). We calculate �2.1 defined in (4.5.8) using
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PROC GLM. Since the p-value for the test is equal to 0.0398, the contribution of set 2
given set 1 is significant at the nominal level α = 0.05 and adds additional information in
the evaluation of group differences. Hence we should retain the variable in the model.

We have also included in program m4 5 2.sas residual plots and Q-Q plots to evaluate
the data set for outliers and multivariate normality. The plots show no outliers and the
data appears to be multivariate normal. The FIT procedure may be used with MANCOVA
designs by replacing the data matrix Y with the residual matrix Y− Z�̂.

Exercises 4.5

1. With the outlier removed and α = 0.05, test that the covariance matrices are equal
for the data in Table 4.5.1 (data set: stan hz.dat).

2. An experiment was performed to investigate four different methods for teaching
school children multiplication (M) and addition (A) of two four-digit numbers. The
data for four independent groups of students are summarized in Table 4.5.3.

(a) Using the data in Table 4.5.3, is there any reason to believe that any one method
or set of methods is superior or inferior for teaching skills for multiplication and
addition of four-digit numbers?

TABLE 4.5.3. Teaching Methods

Group 1 Group 2 Group 3 Group 4
A M A M A M A M
97 66 76 29 66 34 100 79
94 61 60 22 60 32 96 64
96 52 84 18 58 27 90 80
84 55 86 32 52 33 90 90
90 50 70 33 56 34 87 82
88 43 70 32 42 28 83 72
82 46 73 17 55 32 85 67
65 41 85 29 41 28 85 77
95 58 58 21 56 32 78 68
90 56 65 25 55 29 86 70
95 55 89 20 40 33 67 67
84 40 75 16 50 30 57 57
71 46 74 21 42 29 83 79
76 32 84 30 46 33 60 50
90 44 62 32 32 34 89 77
77 39 71 23 30 31 92 81
61 37 71 19 47 27 86 86
91 50 75 18 50 28 47 45
93 64 92 23 35 28 90 85
88 68 70 27 47 27 86 65
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(b) What assumptions must you make to answer part a? Are they satisfied?

(c) Are there any significant differences between addition and multiplication skills
within the various groups?

3. Smith, Gnanadesikan, and Hughes (1962) investigate differences in the chemical
composition of urine samples from men in four weight categories. The eleven vari-
ables and two covariates for the study are

y1 = pH, y8 = chloride (mg/ml),

y2 = modified createnine coefficient, y9 = bacon (µg/m1),

y3 = pigment createnine, y10 = choline (µg/m1),

y4 = phosphate (mg/ml), y11 = copper (µg/m1),

y5 = calcium (mg/ml), x1 = volume (m1),

y6 = phosphours (mg/ml), x2 = (specific gravity− 1)× 103,

y7 = createnine (mg/ml),

The data are in the data file SGH.dat.

(a) Evaluate the model assumptions for the one-way MANCOVA design.

(b) Test for the significance of the covariates.

(c) Test for mean differences and construct appropriate confidence sets.

(d) Determine whether variables y2, y3, y4, y6, y7, y10, and y11 (Set 2) add addi-
tional information above those provided by y1, y5, y7, and y8 (Set 1).

4. Data collected by Tubb et al. (1980) are provided in the data set pottery.dat. The data
represent twenty-six samples of Romano-British pottery found a four different sites
in Wales, Gwent, and the New Forest. The sites are Llanederyn (L), Caldicot (C),
Island Thorns (S), and Ashley Rails (A). The other variables represent the percent-
age of oxides for the metals: A1, Fe, Mg, Ca, Na measured by atomic absorption
spectrophotometry.

(a) Test the hypothesis that the mean percentages are equal for the four groups.

(b) Use the Fit procedure to evaluate whether there are differences between groups.
Assume the order A1, Fe, Mg, Ca, and Na.
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4.6 MANOVA/MANCOVA with Unequal �i or Nonnormal
Data

To test H : µ1 = µ2 = . . . = µk in MANOVA/MANCOVA models, both James’ (1954)
and Johansen’s (1980) tests may be extended to the multiple k group case. Letting Si be an
estimate of the i th group covariance matrix, Wi = Si/ni and W =∑k

i=1 Wi ., we form the
statistic

X2 =
k∑

i=1
(yA

i. − y)′Wi (yA
i. − y) (4.6.1)

where y = W−1 ∑k
i=1 Wi yA

i. , �̂ = W−1 ∑
i Wi �̂i is a pooled estimate of �, �̂i =(

X′i Xi
)−1 X′i Yi and yA

i. is the adjusted mean for the i th group using �̂ in (4.4.43). Then,
the statistic X2 .

∼ χ2 (vh) with degrees of freedom vh = p (k − 1). To better approximate
the chi-square critical value we may calculate James’ first-order or second-order approxi-
mations, or use Johansen’s F test approximation. Using James’ first-order approximation,
H is rejected if

X2 > χ2
1−α (vh)

{
1+ 1

2

[
k1

p
+ k2χ

2
1−α (vh)

p (p + 2)

]}
(4.6.2)

where

k1 =
k∑

i=1
tr
(

W−1Wi

)2
/ (ni − h − 1)

k2 =
k∑

i=1

[
tr
(

W−1Wi

)2 + 2
(

tr W−1Wi

)2
]
/ (ni − h − 1)

and h is the number of covariates. For Johansen’s (1980) procedure, the constant A becomes

A =
k∑

i=1
[tr

(
I−W−1Wi

)2 +
(

tr I−W−1Wi

)2 ]/k (ni − h − 1) (4.6.3)

Then (3.9.23) may be used to test for the equality of mean vectors under normality. Finally,
one may use the A statistic developed by Myers and Dunlap (2000) as discussed in the
two group location problem in Chapter 3, Section 3.9. One would combine the chi-square
p-values for the k groups and compare the statistic to the critical value for chi-square dis-
tribution with (k − 1)p degrees of freedom.

James’ and Johansen’s procedures both assume MVN samples with unequal �i . Alter-
natively, suppose that the samples are instead from a nonnormal, symmetric multivariate
distribution that have conditional symmetric distributions. Then, Nath and Pavur (1985)
show that the multivariate test statistics may still be used if one substitutes ranks from 1 to
n for the raw data a variable at a time. This was illustrated for the two group problem.
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4.7 One-Way MANOVA with Unequal �i Example

To illustrate the analysis of equal mean vectors given unequal covariance matrices, pro-
gram m4 7 1.sas is used to reanalyze the data in Table 4.5.1. The code in the program
calculates the chi-square statistic adjusted using Johansen’s correction. While we still have
significance, observe how the correction due to Johansen changes the critical value for the
test. Without the adjustment, the critical value is 9.4877. With the adjustment, the value be-
comes 276.2533. Clearly, one would reject equality of means more often without adjusting
the critical value for small sample sizes. For our example, the adjustment has little effect
on the conclusion.

Exercises 4.7

1. Modify program m 4 7 1.sas for James’ procedure and re-evaluate the data in Table
4.5.1.

2. Analyze the data in Exercises 4.5, problem 2 for unequal covariance matrices.

3. Re-analyze the data in Exercises 4.5, problem 3 given unequal covariance matrices
using the chi-square test, the test with James’ correction, and the test with Johansen’s
correction.

4. Analyze the data in Exercises 4.5, problem 3 using the A statistic proposed by Myers
and Dunlap discussed in Section3.9 (b) for the two group location problem.

4.8 Two-Way MANOVA/MANCOVA

a. Two-Way MANOVA with Interaction

In a one-way MANOVA, one is interested in testing whether treatment differences exist on
p variables for one treatment factor. In a two-way MANOVA, no ≥ 1 subjects are randomly
assigned to two factors, A and B say, each with levels a and b, respectively, creating a
design with ab cells or treatment combinations. Gathering data on p variables for each of
the ab treatment combinations, one is interested in testing whether treatment differences
exist with regard to the p variables provided there is no interaction between the treatment
factors; such designs are called additive models. Alternatively, an interaction may exist for
the study, then interest focuses on whether the interaction is significant for some linear
combination of variables or for each variable individually. One may formulate the two-way
MANOVA with an interaction parameter and test for the presence of interaction. Finding
none, an additive model is analyzed. This approach leads to a LFR model. Alternatively,
one may formulate the two-way MANOVA as a FR model. Using the FR approach, the
interaction effect is not contained in the model equation. The linear model for the two-way
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MANOVA design with interaction is

yi jk = µ+ αi + β j + γ i j + ei jk (LFR)

= µi j + ei jk (FR)
(4.8.1)

ei jk ∼ I Np (0, �) i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , no > 0.

Writing either model in the form Yn×p = Xn×q Bq×p + En×p, the r (X) = ab < q =
1+ a + b + ab for the LFR model and the r (X) = ab = q for the FR model.

For the FR model, the population cell mean vectors

µ′i j =
[
µi j1, µi j2, . . . , µi j p

]
(4.8.2)

are uniquely estimable and estimated by

yi j. =
no∑

k=1
yi jk/no (4.8.3)

Letting

yi.. =
b∑

j=1
yi j./b

y. j. =
a∑

i=1
yi j./a

y... =∑
i

∑
j

yi j./ab

(4.8.4)

the marginal means µi. =
∑

j µi j/b and µ. j =
∑

i µi j/b are uniquely estimable and
estimated by µ̂i. = yi.. and µ̂. j = y. j., the sample marginal means. Also observe that for
any tetrad involving cells (i, j) ,

(
i, j ′

)
,
(
i ′, j

)
and

(
i ′, j ′

)
in the ab grid for factors A

and B that the tetrad contrasts

ψ i,i ′, j, j ′ = µi j − µi ′ j − µi j ′ + µi ′ j ′

= (µi j − µi ′ j )− (µi j ′ − µi ′ j ′)
(4.8.5)

are uniquely estimable and estimated by

ψ̂ i,i ′, j, j ′ = yi j. − yi ′ j. − yi j ′. + yi ′ j ′. (4.8.6)

These tetrad contrasts represent the difference between the differences of factor A at levels
i and i ′, compared at the levels j and j ′ of factor B. If these differences are equal for all
levels of A and also all levels of B, we say that no interaction exists in the FR design. Thus,
the FR model has no interaction effect if and only if all tetrads or any linear combination of
the tetrads are simultaneously zero. Using FR model parameters, the test of interaction is

HAB : allµi j − µi ′ j − µi j ′ + µi ′ j ′ = 0 (4.8.7)
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If the HAB hypothesis is not significant, one next tests for significant differences in marginal
means for factors A and B, called main effect tests. The tests in terms of FR model param-
eters are

HA : allµi. are equal

HB : allµ. j are equal
(4.8.8)

This is sometimes called the “no pool” analysis since the interaction SSCP source is ignored
when testing (4.8.8).

Alternatively, if the interaction test HAB is not significant one may use this information to
modify the FR model. This leads to the additive FR model where the parametric functions
(tetrads) in µi j are equated to zero and this becomes a restriction on the model. This leads
to the restricted MGLM discussed in Timm (1980b). Currently, these designs may not be
analyzed using PROG GLM since the SAS procedure does not permit restrictions. Instead
the procedure PROG REG may be used, as illustrated in Timm and Mieczkowski (1997).
Given the LFR model formulation, PROC GLM may be used to analyze either additive or
nonadditive models.

For the LFR model in (4.8.1), the parameters have the following structure

µ′ = [
µ1, µ2, . . . , µp

]
α′i =

[
αi1, αi2, . . . , αi p

]
β ′j =

[
β j1, β j2, . . . , β j p

]
γ ′i j =

[
γ i j1, γ i j2, . . . , γ i j p

] (4.8.9)

The parameters are called the constant (µ), treatment effects for factor A (αi ), treatment
effects for factor B

(
β j

)
, and interaction effects AB

(
γ i j

)
. However, because the r (X) =

ab < q is not of full rank and none of the parametric vectors are uniquely estimable.
Extending Theorem 2.6.2 to the LFR two-way MANOVA model, the unique BLUEs of the
parametric functions ψ = c′Bm are

ψ = c′Bm = m′
[∑

i

∑
j

ti j
(
µ+ αi + β j + γ i j

)]

ψ = c′B̂m = m′
[∑

i

∑
j

ti j yi j.

] (4.8.10)

where t′ = [
t0, t1, . . . , ta, t ′1, . . . , t ′b, t11, . . . , tab

]
is an arbitrary vector such that c′ = t′H

and H = (
X′X

)− (
X′X

)
for

(
X′X

)− = [
0 0
0 diag [1/no]

]
. Thus, while the individ-

ual effects are not estimable, weighted functions of the parameters are estimable. The ti j

are nonnegative cell weights which are selected by the researcher, Fujikoshi (1993). To
illustrate, suppose the elements ti j in the vector t are selected such that ti j = ti ′ j ′ = 1,
ti ′ j = ti j ′ = −1 and all other elements are set to zero. Then

ψ = ψ i,i ′, j, j ′ = γ i j − γ i ′ j − γ i j ′ + γ i ′ j ′ (4.8.11)
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is estimable, even though the individual γ i j are not estimable. They are uniquely estimated
by

ψ̂ = ψ̂ i,i ′, j, j ′ = yi j. − yi ′ j. − yi j ′. + yi ′ j ′. (4.8.12)

The vector m is used to combine means across variables. Furthermore, the estimates do not
depend on

(
X′X

)−. Thus, an interaction in the LFR model involving the parameters γ i j is
identical to the formulation of an interaction using the parameters µi j in the FR model. As
shown by Graybill (1976, p. 560) for one variable, the test of no interaction or additivity has
the following four equivalent forms, depending on the model used to represent the two-way
MANOVA,

(a) HAB : µi j − µi ′ j − µi j ′ + µi ′ j ′ = 0

(b) HAB : γ i j − γ i ′ j − γ i j ′ + γ i ′ j ′ = 0

(c) HAB : µi j = µ+ αi + β j

(d) HAB : γ i j = 0

(4.8.13)

for all subscripts i, i ′, j and j ′. Most readers will recognize (d) which requires adding side
conditions to the LFR model to convert the model to full rank. Then, all parameters become
estimable

µ̂ = y...
α̂i = yi.. − y...

β̂ j = y. j. − y...

γ̂ i j = yi j. − yi.. − y. j. + y...

This is the approach used in PROC ANOVA. Models with structure (c) are said to be
additive. We discuss the additive model later in this section.

Returning to (4.8.10), suppose the cell weights are chosen such that∑
j

ti j =
∑

j

ti ′ j = 1 for i �= i ′.

Then

ψ = αi − αi ′ +
b∑

j=1
ti j (β j + γ i j )−

b∑
j=1

ti ′ j (β j + γ i ′ j )

is estimable and estimated by

ψ̂ =∑
j

ti j yi j. −∑
j

ti ′ j yi ′ j.

By choosing ti j = 1/b, the function

ψ = αi − αi ′ +
(
β . + γ i.

)− (
β . + γ i ′.

)
= αi − αi ′ +

(
γ i. − γ i ′.

)
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is confounded by the parameters γ i. and γ i ′.. However, the estimate of ψ is

ψ̂ = yi.. − yi ′..

This shows that one may not test for differences in the treatment levels of factor A in
the presence of interactions. Letting µi j = µ + αi + β j + γ i j , µi. = αi + γ i. so that
ψ = µi.−µi ′. = αi −αi ′ +

(
γ i. − γ ′i.

)
. Thus, testing that all µi. are equal in the FR model

with interaction is identical to testing for treatment effects associated with factor A. The
test becomes

HA : allαi +∑
j
γ i j/b are equal (4.8.14)

for the LFR model. Similarly,

ψ = β j − β j ′ +
∑
i

ti j (αi + γ i j )−
∑
i

ti j ′(αi + γ i j ′)

is estimable and estimated by
ψ̂ = y. j. − y. j ′.

provided the cell weights ti j are selected such that the
∑

i ti j = ∑
i ti j ′ = 1 for j �= j ′.

Letting ti j = 1/a, the test of B becomes

HB : all β j +
∑
i
γ i j / a are equal (4.8.15)

for the LFR model. Using PROC GLM, the tests of HA, HB and HAB are called Type III
tests and the estimates are based upon LSMEANS.

PROC GLM in SAS employs a different g-inverse for
(
X′X

)− so that the general form
may not agree with the expression given in (4.8.10). To output the specific structure used
in SAS, the / E option on the MODEL statement is used.

The tests HA, HB and HAB may also be represented using the general matrix form
CBM = 0 where the matrix C is selected as CA, CB and CAB for each test and M = Ip.

To illustrate, suppose we consider a 3 × 2 design where factor A has three levels (a = 3)
and factor B has two levels (b = 2) as shown in Figure 4.8.1

Then forming tetrads ψ i, i ′, j, j ′ , the test of interaction HAB is

HAB :
γ 11 − γ 21 − γ 12 + γ 22 = 0

γ 21 − γ 31 − γ 22 + γ 32 = 0

as illustrated by the arrows in Figure 4.8.1. The matrix CAB for testing HAB is

CAB
2×12

=
 0

... 1 −1 −1 1 0 0

2× 6
... 0 0 1 −1 −1 1


where the r (CAB) = vAB = (a − 1) (b − 1) = 2 = vh . To test HAB the hypothesis test
matrix HAB and error matrix E are formed. For the two-way MANOVA design, the error
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2221

31 32

1211

A

B

FIGURE 4.8.1. 3× 2 Design

matrix is
E = Y′

[
I− X

(
X′X

)− X′
]

Y

=∑
i

∑
j

∑
k

(
yi jk − yi j.

) (
yi jk − yi j.

)′ (4.8.16)

and ve = n − r (X) = abno − ab = ab (no − 1). SAS automatically creates CAB so
that a computational formula for HAB is not provided. It is very similar to the univari-
ate ANOVA formula with sum of squares replaced by outer vector products. SAS also
creates CA and CB to test HA and HB with va = (a − 1) and vb = (b − 1) degrees
of freedom. Their structure is similar to the one-way MANOVA matrices consisting of
1′s and −1′s to compare the levels of factor A and factor B; however, because main ef-
fects are confounded by interactions γ i j in the LFR model, there are also 1′s and 0′s
associated with the γ i j . For our 3× 2 design, the hypothesis test matrices for Type III tests
are

CA =
 0

... 1 0 −1
... 0 0

... 1 1 0 0 −1 −1

0
... 0 1 −1

... 0 0
... 0 0 1 1 −1 −1


CB =

[
0

... 0 0 0
... 1 −1

... 1 1 1 1 −1 −1

]
where the r (CA) = vA = a−1 and the r (CB) = vB = (b − 1). The matrices CA and CB

are partitioned to represent the parameters µ, αi , β j and γ i j in the matrix B. SAS com-
mands to perform the two-way MANOVA analysis using PROC GLM and either the FR or
LFR model with interaction are discussed in the example using the reduction procedure.

The parameters s, M and N , required to test the multivariate hypotheses are summarized
by

s = min (vh, p)

M = (|vh − p| − 1) /2

N = (ve − p − 1) /2

(4.8.17)
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where vh equals vA, vB or vAB , depending on the hypothesis of interest, and ve = ab(no−
1).

With the rejection of any overall hypothesis, one may again establish 100 (1− α)%
simultaneous confidence intervals for parametric functions ψ = c′Bm that are estimable.
Confidence sets have the general structure

ψ − cασ̂ ψ̂ ≤ ψ ≤ ψ + cασ̂ ψ̂

where cα depends on the overall test criterion and

σ̂ 2
ψ̂
= (

m′Sm
)

c′
(
X′X

)− c (4.8.18)

where S = E/ve. For tetrad contrasts

σ̂ 2
ψ̂
= 4

(
m′Sm

)
/ no (4.8.19)

Alternatively, if one is only interested in a finite number of parameters µi j (say), a vari-
able at a time, one may use some approximate method to construct simultaneous intervals
or us the stepdown FIT procedure.

b. Additive Two-Way MANOVA

If one assumes an additive model for a two-way MANOVA design, which is common in
a randomized block design with no = 1 observation per cell or in factorial designs with
no > 1 observations per cell, one may analyze the design using either a FR or LFR model
if all no = 1; however, if no > 1 one must use a restricted FR model or a LFR model. Since
the LFR model easily solves both situations, we discuss the LFR model. For the additive
LFR representation, the model is

yi jk = µ+ αi + β j + ei jk

ei jk ∼ I Np (0, �)

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , no ≥ 1

(4.8.20)

A common situation is to have one observation per cell. Then (4.8.20) becomes

yi j = µ+ αi + β j + ei j

ei j ∼ I Np (0, �) i = 1, 2, . . . , a; j = 1, 2, . . . , b
(4.8.21)

We consider the case with no = 1 in some detail for the 3× 2 design given in Figure 4.8.1.
The model in matrix form is

y′11
y′12
y′21
y′22
y′31
y′32

 =


1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1




µ′
α′1
α′2
α′3
β ′1
β ′2

+


e′11
e′12
e′21
e′22
e′31
e′32

 (4.8.22)
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where the structure for µ,αi , β j follow that given in (4.8.9). Now,
(
X′X

)
is

(
X′X

) =



6
... 2 2 2

... 3 3
· · · · · · · · · · · · · · · · · · · · · · · ·
2

... 2 0 0
... 1 1

2
... 0 2 0

... 1 1

2
... 0 0 2

... 1 1
· · · · · · · · · · · · · · · · · · · · · · · ·
3

... 1 1 1
... 3 0

3
... 1 1 1

... 0 3


(4.8.23)

and a g-inverse is given by

(
X′X

)− =

−1/6 0 0 0 0 0

0 1/2 0 0 0 0
0 0 1/2 0 0 0
0 0 0 1/2 0 0
0 0 0 0 1/3 0
0 0 0 0 0 1/3


so that

H = (
X′X

)− (
X′X

) =

−1 −1/3 −1/3 −1/3 −1/2 −1/2

1 1 0 0 1/2 1/2
1 0 1 0 1/2 1/2
1 0 0 1 1/2 1/2
1 1/3 1/3 1/3 1 0
1 1/3 1/3 1/3 0 1


More generally,

(
X′X

)− =
 −1/n 0′ 0′

0 b−1Ia 0
0 0 a−1Ib


and

H = (
X′X

)− (
X′X

) =
 −1 −a−11′a −b−11′b

1a Ia b−1Jab

1b b−1Jab Ib


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Then a solution for B̂ is

B̂ = (
X′X

)− X′Y =



−y′..
· · ·
y′1.
...

y′a.
· · ·
y′.1
...

y′.b


where

yi. =
b∑

j=1
yi j/b

y. j =
a∑

i=1
yi j/a

y.. =∑
i

∑
j

yi j/ab

With c′H = c′, the BLUE for the estimable functions ψ = c′Bm are

ψ = c′Bm = m′
[−t0

(
µ+ α. + β .

)+
a∑

i=1

ti
(
µ+ αi + β .

)+ b∑
j=1

t ′j
(
µ+ αi + β .

)
ψ = c′B̂m = m′

− t0y+
a∑

i=1

ti yi. +
b∑

j=1

t ′j y. j


(4.8.24)

where

t′ = [
t0, t1, t2, . . . , ta, t ′1, t ′2, . . . , t ′b

]
α. =∑

i
αi/a andβ . =

∑
j
β j / b

Applying these results to the 3× 2 design, (4.8.24) reduces to

ψ =− t0
(
µ+ α. + β .

)+ (
µ+ α1 + β .

)
t1+(

µ+ α2 + β .

)
t2 +

(
µ+ α3 + β .

)
t3+(

µ+ α. + β1
)

t ′1 +
(
µ+ α. + β2

)
t ′2

ψ̂ = −t0y.. +
a∑

i=1

ti yi. +
b∑

j=1

t ′i y. j
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so that ignoring m, ψ1 = β1 − β2,ψ2 = αi − αi ′ and ψ3 = µ + α. + β . are estimable,
and are estimated by ψ̂1 = y.1 − y.2, ψ̂2 = yi. − yi ′. and ψ̂3 = y... However , µ and
individual effects αi and β j are not estimable since for c′ = [0, 1i , 0, . . . , 0] , c′H �= c′
for any vector c with a 1 in the i th position. In SAS, the general structure of estimable
functions is obtained by using the /E option on the MODEL statement.

For additive models, the primary tests of interest are the main effect tests for differences
in effects for factor A or factor B

HA : allαi are equal

HB : allβ i are equal
(4.8.25)

The hypothesis test matrices C are constructed in a way similar to the one-way MANOVA
model. For example, comparing all levels of A (or B) with the last level of A (or B), the
matrices become

CA
(a−1)×q

= [
0, Ia−1,−1, 0b×b

]
CB

(b−1)×q
= [

0, 0a×a, Ib−1,−1
] (4.8.26)

so that vA = r (CA) = a− 1 and vB = r (CB) = b− 1. Finally, the error matrix E may be
shown to have the following structure

E = Y′
[
I− X

(
X′X

)− X′
]

Y

=
a∑

i=1

b∑
j=1

(yi j − yi. − y. j + y..)(yi j − yi. − y. j + y..)′
(4.8.27)

with degrees of freedom ve = n − r (X) = n − (a + b − 1) = ab − a − b + 1 =
(a − 1) (b − 1).

The parameters s, M, and N for these tests are

Factor A Factor B

s = min (a − 1, p) s = min (b − 1, p)
M = (|a − p − 1| − 1) /2 M = (|b − p − 1| − 1) /2
N = (n − a − b − p) /2 N = (n − a − b − p) /2

(4.8.28)

If the additive model has no > 1 observations per cell, observe that the degrees of free-
dom for error becomes v∗e = abno−(a + b − 1) = ab (no − 1)+(a − 1) (b − 1) which is
obtained from pooling the interaction degrees of freedom with the within error degrees of
freedom in the two-way MANOVA model. Furthermore, the error matrix E for the design
with no > 1 observations is equal to the sum of the interaction SSCP matrix and the error
matrix for the two-way MANOVA design. Thus, one is confronted with the problem of
whether to “pool” or “not to pool” when analyzing the two-way MANOVA design. Pool-
ing when the interaction test is not significant, we are saying that there is no interaction so
that main effects are not confounded with interaction. Due to lack of power, we could have
made a Type II error regarding the interaction term. If the interaction is present, tests of
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main effects are confounded by interaction. Similarly, we could reject the test of interac-
tion and make a Type I error. This leads one to investigate pairwise comparisons at various
levels of the other factor, called simple effects. With a well planned study that has signif-
icant power to detect the presences of interaction, we recommend that the “pool” strategy
be employed. For further discussion on this controversy see Scheffé (1959, p. 126), Green
and Tukey (1960), Hines (1996), Mittelhammer et al. (2000, p. 80) and Janky (2000).

Using (4.8.18), estimated standard errors for pairwise comparisons have a simple struc-
ture for treatment differences involving factors A and B follow

A : σ̂ 2
ψ̂
= 2

(
m′Sm

)
/bno

B : σ̂ 2
ψ̂
= 2

(
m′Sm

)
/ano

(4.8.29)

when S is the pooled estimate of �. Alternatively, one may also use the FIT procedure to
evaluate planned comparisons.

c. Two-Way MANCOVA

Extending the two-way MANOVA design to include covariates, one may view the two-
way classification as a one-way design with ab independent populations. Assuming the
matrix of coefficients associated with the vector of covariates is equal over all of the ab
populations, the two-way MANCOVA model with interaction is

yi jk =µ+ αi + β j + γ i j + �′zi jk + ei jk (LFR)

=µi j + �′zi jk + ei jk (FR)
(4.8.30)

ei jk ∼ I Np (0, �) i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , no > 0

Again estimates and tests are adjusted for covariates. If the ab matrices � are not equal,
one may consider the multivariate intraclass covariance model for the ab populations.

d. Tests of Nonadditivity

When a two-way design has more than one observation per cell, we may test for interaction
or nonadditivity. With one observation per cell, we saw that the SSCP matrix becomes the
error matrix so that no test of interaction is evident. A test for interaction in the univari-
ate model was first proposed by Tukey (1949) and generalized by Scheffé (1959, p. 144,
problem 4.19). Milliken and Graybill (1970, 1971) and Kshirsagar (1993) examine the test
using the expanded linear model (ELM) which allows one to include nonlinear terms with
conventional linear model theory. Using the MGLM, McDonald (1972) and Kshirsagar
(1988) extended the results of Milliken and Graybill to the expanded multiple design mul-
tivariate (EMDM) model, the multivariate analogue of the ELM. Because the EMDM is a
SUR model, we discuss the test in Chapter 5.
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4.9 Two-Way MANOVA/MANCOVA Example

a. Two-Way MANOVA (Example 4.9.1)

We begin with the analysis of a two-way MANOVA design. The data for the design are
given in file twoa.dat and are shown in Table 4.9.1. The data were obtained from a larger
study, by Mr. Joseph Raffaele at the University of Pittsburgh to analyze reading compre-
hension (C) and reading rate (R). The scores were obtained using subtest scores of the
Iowa Test of Basic Skills. After randomly selecting n = 30 students for the study and
randomly dividing them into six subsamples of size 5, the groups were randomly assigned
to two treatment conditions-contract classes and noncontract classes-and three teachers; a
total of no = 5 observations are in each cell. The achievement data for the experiment are
conveniently represented by cells in Table 4.9.1.

Calculating the cell means for the study using the MEANS statement, Table 4.9.2 is
obtained.

The mathematical model for the example is

yi jk = µ+ αi + β j + γ i j + εi jk

εi jk ∼ IN (0, �) i = 1, 2, 3; j = 1, 2; k = 1, 2, . . . , no = 5
(4.9.1)

In PROC GLM, the MODEL statement is used to define the model in program m4 9 1.sas.
To the left of the equal sign one places the names of the dependent variables, Rate and

TABLE 4.9.1. Two-Way MANOVA

Factor B
Contract Noncontract

Class Class
R C R C
10 21 9 14
12 22 8 15

Teacher 1 9 19 11 16
10 21 9 17
14 23 9 17
11 23 11 15
14 27 12 18

Factor A Teacher 2 14 17 12 18
15 26 9 17
14 24 9 18
8 17 9 22
7 12 8 18

Teacher 3 10 18 10 17
8 17 9 19
7 19 8 19
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TABLE 4.9.2. Cell Means for Example Data

B1 B2 Means

A1 y′11. = [11.00, 21.20] y′12. = [ 9.20, 15.80] y′1.. = [10.10, 18.50]

A2 y′21. = [13.40, 24.80] y′22. = [10.20, 16.80] y′2. = [11.80, 20.80]

A3 y′31. = [ 8.00, 17.20] y′32. = [ 8.80, 19.00] y′3. = [ 8.40, 18.10]

Mean y′.1. = [10.80, 21.07] y′.2. = [ 9.40, 17.20] y′... = [10.10, 19.13]
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B1

Variable 1: reading rate (R) Variable 2: reading comprehension (C)
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FIGURE 4.9.1. Plots of Cell Means for Two-Way MANOVA

Comp, to the right of the equal sign are the effect names,T, C and T*C. The asterisk between
the effect names denotes the interaction term in the model, γ i j .

Before testing the three mean hypotheses of interest for the two-way design, plots of the
cell means, a variable at a time, are constructed and shown in Figure 4.9.1. From the plots,
it appears that a significant interaction may exist in the data. The hypotheses of interest
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TABLE 4.9.3. Two-Way MANOVA Table

Source df SSCP

A (Teachers) 2 HA =
[

57.8000
45.9000 42.4667

]

B (Class) 1 HB =
[

14.7000
40.6000 112.1333

]

Interaction AB (T ∗ C) 2 HAB =
[

20.6000
51.3000 129.8667

]
Within error 24 E = [given in (4.9.3)]

“Total” 29 H+ E
[

138.7000
157.6000 339.4666

]

become

HA :α1 +
∑

j γ 1 j

b
= α2 +

∑
j γ 2 j

b
= α3 +

∑
j γ 3 j

b

HB :β1 +
∑

i γ i1

a
= β2 +

∑
i γ i2

a
HAB :γ 11 − γ 31 − γ 12 − γ 32 = 0

γ 21 − γ 31 − γ 22 − γ 32 = 0

(4.9.2)

To test any of the hypotheses in (4.9.2), the estimate of E is needed. The formula for E is

E = Y′
[
I− X

(
X′X

)− X′
]

Y

=∑
i

∑
j

∑
k

(
yi jk − yi j.

) (
yi jk − yi j.

)′
=

[
45.6
19.8 56.0

] (4.9.3)

Thus

S = Ee

ve
=

[
1.9000
0.8250 2.3333

]
where ve = n − r (X) = 30− 6 = 24.

To find the hypothesis test matrices HA, HB and HAB using PROC GLM, the MANOVA
statement is used. The statement usually contains the model to the right of term h = on the
MANOVA statement. This generates the hypothesis test matrices HA, HB and HAB which
we have asked to be printed, along with E. From the output, one may construct Table 4.9.3,
the MANOVA table for the example.

Using the general formula for s = min (vh, p), M = (| vh − p | −1) /2 and N =
(ve − p − 1) /2 with p = 2, ve = 24 and vh defined in Table 4.9.3, the values of s, M ,
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and N for HA and HAB are s = 2, M = −0.5, and N = 10.5. For HB , s = 1, M = 0,
and N = 10.5. Using α = 0.05 for each test, and relating each multivariate criteria to an F
statistic, all hypotheses are rejected.

With the rejection of the test of interaction, one does not usually investigate differences in
main effects since any difference is confounded by interaction. To investigate interactions
in PROC GLM, one may again construct CONTRAST statements which generate one de-
gree of freedom F tests. Because PROC GLM does not add side conditions to the model,
individual γ i j are not estimable. However, using the cell means one may form tetrads in
the γ i j that are estimable. The cell mean is defined by the term T ∗C for our example. The
contrasts ‘11− 31− 12+ 32’ and ‘21− 31− 22+ 32’ are used to estimate

ψ1 = γ 11 − γ 31 − γ 12 − γ 32

ψ2 = γ 21 − γ 31 − γ 22 − γ 32

The estimates from the ESTIMATE statements are

ψ̂1 = y11. − y31. − y12. + y32. =
[

2.60
7.20

]
ψ̂2 = y21. − y31. − y22. + y32. =

[
4.00
9.80

]
The estimate ‘c1− c2’ is estimating ψ3 = β1−β2+

∑
i

(
γ i1 − γ i2

)
/3 for each variable.

This contrast is confounded by interaction. The estimate for the contrast is

ψ̂3 = y.1. − y.2.=
[

1.40
3.87

]
The standard error for each variable is labeled ‘Std. Error of Estimate’ in SAS. Arranging
the standard errors as vectors to correspond to the contrasts, the σ̂ ψ̂ i

become

σ̂ ψ̂2
=

[
1.2329
1.3663

]
σ̂ ψ̂3
=

[
0.5033
0.5578

]
To evaluate any of these contrasts using the multivariate criteria, one may estimate

ψ̂ i − cασ̂ ψ̂ i
≤ ψ i ≤ ψ̂ i + cασ̂ ψ̂ i

a variable at a time where cα is estimated using (4.2.60) exactly or approximately using
the F distribution. We use the TRANSREG procedure to generate a FR cell means design
matrix and PROC IML to estimate cα for Roy’s criterion to obtain an approximate (lower
bound) 95% simultaneous confidence interval for θ12 = γ 112 − γ 312 − γ 122 + γ 322 using
the upper bound F statistic. By changing the SAS code from m = (0 1) to m = (1, 0) the
simultaneous confidence interval for θ11 = γ 111 − γ 311 − γ 121 + γ 321 is obtained. With
cα = 2.609, the interaction confidence intervals for each variable follow.

−0.616 ≤ θ11 ≤ 5.816 (Reading Rate)
3.636 ≤ θ12 ≤ 10.764 (Reading Comprehension)
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The tetrad is significant for reading comprehension and not the reading rate variable. As
noted in the output, the critical constants for the BLH and BNP criteria are again larger,
3.36 and 3.61, respectively. One may alter the contrast vector SAS code for c = (1 −1 0
0 −1 1) in program m4 9 1.sas to obtain other tetrads. For example, one may select for
example select c = (0 0 1 −1 −1 1).

For this MANOVA design, there are only three meaningful tetrads for the study. To
generate the protected F tests using SAS, the CONTRAST statement in PROC GLM is
used. The p-values for the interactions follow.

Tetrad Variables
R C

11− 31− 12+ 32 0.0456 0.0001
21− 31− 22+ 32 0.0034 0.0001
11− 12− 21+ 22 0.2674 0.0001

The tests indicate that only the reading comprehension variable appears significant. For
α = 0.05, ve = 24, and C = 3 comparisons, the value for the critical constant in Table V
of the Appendix for the multivariate t distribution is cα = 2.551. This value may be used
to construct approximate confidence intervals for the interaction tetrads. The standardized
canonical variate output for the test of HAB also indicates that these comparisons should
be investigated. Using only one discriminant function, the reading comprehension variable
has the largest coefficient weight and the highest correlation. Reviewing the univariate and
multivariate tests of normality, model assumptions appear tenable.

b. Two-Way MANCOVA (Example 4.9.2)

For our next example, an experiment is designed to study two new reading and mathematics
programs in the fourth grade. Using gender as a fixed blocking variable, 15 male and 15
female students are randomly assigned to the current program and to two experimental
programs. Before beginning the study, a test was administered to obtain grade-equivalent
reading and mathematical levels for the students, labeled Z R and Z M . At the end of the
study, 6 months later, similar data (YR and YM) were obtained for each subject. The data
for the study are provided in Table 4.9.4.
The mathematical model for the design is

yi jk = µ+ αi + β j + γ i j + �zi j + ei jk

i = 1, 2; j = 1, 2, 3; k = 1, 2, . . . , 5

ei j ∼ Np
(
0, �y|z

) (4.9.4)

The code for the analyses is contained in program m4 9 2.sas.
As with the one-way MANCOVA design, we first evaluate the assumption of parallelism.

To test for parallelism, we represent the model as a “one-way” MANCOVA design involv-
ing six cells. Following the one-way MANCOVA design, we evaluate parallelism of the
regression lines for the six cells by forming the interaction of the factor T ∗ B with each
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TABLE 4.9.4. Two-Way MANCOVA

Control Experimental 1 Experimental 2
YR YM ZR ZM YR YM ZR ZM YR YM ZR ZM
4.1 5.3 3.2 4.7 5.5 6.2 5.1 5.1 6.1 7.1 5.0 5.1
4.6 5.0 4.2 4.5 5.0 7.1 5.3 5.3 6.3 7.0 5.2 5.2

Males 4.8 6.0 4.5 4.6 6.0 7.0 5.4 5.6 6.5 6.2 5.3 5.6
5.4 6.2 4.6 4.8 6.2 6.1 5.6 5.7 6.7 6.8 5.4 5.7
5.2 6.1 4.9 4.9 5.9 6.5 5.7 5.7 7.0 7.1 5.8 5.9
5.7 5.9 4.8 5.0 5.2 6.8 5.0 5.8 6.5 6.9 4.8 5.1
6.0 6.0 4.9 5.1 6.4 7.1 6.0 5.9 7.1 6.7 5.9 6.1

Females 5.9 6.1 5.0 6.0 5.4 6.1 5.6 4.9 6.9 7.0 5.0 4.8
4.6 5.0 4.2 4.5 6.1 6.0 5.5 5.6 6.7 6.9 5.6 5.1
4.2 5.2 3.3 4.8 5.8 6.4 5.6 5.5 7.2 7.4 5.7 6.0

covariate (ZR and ZM) using PROC GLM.. Both tests are nonsignificant so that we con-
clude parallelism of regression for the six cells. To perform the simultaneous test that the
covariates are both zero, PROC REG may be used.

Given parallelism, one may next test that all the covariates are simultaneously zero. For
this test, one must use PROG REG. Using PROC TRANSREG to create a full rank model,
and using the MTEST statement the overall test that all covariates are simultaneously zero
is rejected for all of the multivariate criteria. Given that the covariates are significant in the
analysis, the next test of interest is to determine whether there are significant differences
among the treatment conditions. Prior experience indicated that gender should be used as a
blocking variable leading to more homogeneous blocks. While we would expect significant
differences between blocks (males and females), we do not expect a significant interaction
between treatment conditions. We also expect the covariates to be significantly different
from zero.

Reviewing the MANCOVA output, the test for block differences (B) and block by treat-
ment interaction (T ∗ B) are both nonsignificant while the test for treatment differences is
significant (p-value < 0.0001). Reviewing the protected F test for each covariate, we see
that only the reading grade-equivalent covariate is significantly different from zero in the
study. Thus, one may want to only include a single covariate in future studies. We have
again output the adjusted means for the treatment factor. The estimates follow.

Variable Treatments
C E1 E2

Reading 5.6771 5.4119 6.4110
Mathematics 5.9727 6.3715 6.7758

Using the CONTRAST statement to evaluate significance, we compare each treatment
with the control using the protected one degree of freedom tests for each variable and α =
0.05. The tests for the reading variable (Y R) have p-values of 0.0002 and 0.0001 when one
compares the control group with first experimental group (c-e1) and second experimental
group (c-e2), respectively. For the mathematics variable (Y M), the p-values are 0.0038



4.9 Two-Way MANOVA/MANCOVA Example 263

and 0.0368. Thus, there appears to be significant differences between the experimental
groups and the control group for each of the dependent variables. To form approximate
simultaneous confidence intervals for the comparisons, one would have to adjust α. Using
the Bonferroni procedure, we may set α∗ = 0.05/4 = 0.0125. Alternatively, if one is only
interested in tests involving the control and each treatment, one might use the DUNNETT
option on the LSMEANS statement with α∗ = α/9 = 0.025 since the study involves two
variables. This approach yields significance for both variables for the comparison of e2
with c. The contrast estimates for the contrast ψ of the mean difference with confidence
intervals follow.

ψ̂ C.I. for (e2-c)

Reading 0.7340 (0.2972, 1.1708)
Mathematics 0.8031 (0.1477, 1.4586)

For these data, the Dunnett’s intervals are very close to those obtained using Roy’s crite-
rion. Again, the TRANSREG procedure is used to generate a FR cell means design matrix
and PROC IML is used to generate the approximate simultaneous confidence set. The crit-
ical constants for the multivariate Roy, BLH, and BNP criteria are as follows: 2.62, 3.38,
and 3.68. Because the largest root criterion is again an upper bound, the intervals reflect
lower bounds for the comparisons. For the contrast vector c1 = (−.5 .5 −.5 .5 0 0) which
compares e2 with c using the FR model, ψ̂ = 0.8031 and the interval for Mathematics
variable using Roy’s criterion is (0.1520, 1.454). To obtain the corresponding interval for
Reading, the value of m = (0 1) is changed to m = (1 0). This yields the interval, (0.3000,
1.1679) again using Roy’s criterion.

Exercises 4.9

1. An experiment is conducted to compare two different methods of teaching physics
during the morning, afternoon, and evening using the traditional lecture approach
and the discovery method. The following table summarizes the test score obtained in
the areas of mechanical (M), heat (H), the sound (S) for the 24 students in the study.

Traditional Discovery
M H S M H S
30 131 34 51 140 36

Morning 26 126 28 44 145 37
8 A.M. 32 134 33 52 141 30

31 137 31 50 142 33
41 104 36 57 120 31

Afternoon 44 105 31 68 130 35
2 P.M. 40 102 33 58 125 34

42 102 27 62 150 39
30 74 35 52 91 33

Evening 32 71 30 50 89 28
8 P.M. 29 69 27 50 90 28

28 67 29 53 95 41
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(a) Analyze the data, testing for (1) effects of treatments, (2) effects of time of day,
and (3) interaction effects. Include in your analysis a test of the equality of the
variance-covariance matrices and normality.

(b) In the study does trend analysis make any sense? If so, incorporate it into your
analysis.

(c) Summarize the results of this experiment in one paragraph.

2. In an experiment designed to study two new reading and mathematics programs in
the fourth grade subjects in the school were randomly assigned to three treatment
conditions, one being the old program and two being experimental program. Before
beginning the experiment, a test was administered to obtain grade-equivalent read-
ing and mathematics levels for the subjects, labeled R1 and M1, respectively, in the
table below. At the end of the study, 6 months later, similar data (R2 and M2) were
obtained for each subject.

Control Experimental Experimental
Y Z Y Z Y Z

R2 M2 R2 M2 R2 M2 R2 M2 R2 M2 R2 M2

4.1 5.3 3.2 4.7 5.5 6.2 5.1 5.1 6.1 7.1 5.0 5.1
4.6 5.0 4.2 4.5 5.0 7.1 5.3 5.3 6.3 7.0 5.2 5.2
4.8 6.0 4.5 4.6 6.0 7.0 5.4 5.6 6.5 6.2 5.3 5.6
5.4 6.2 4.6 4.8 6.2 6.1 5.6 5.7 6.7 6.8 5.4 5.7
5.2 6.1 4.9 4.9 5.9 6.5 5.7 5.7 7.6 7.1 5.8 5.9
5.7 5.9 4.8 5.0 5.2 6.8 5.0 5.8 6.5 6.9 4.8 5.1
6.0 6.0 4.9 5.1 6.4 7.1 6.0 5.9 7.1 6.7 5.9 6.1
5.9 6.1 5.0 6.0 5.4 6.1 5.0 4.9 6.9 7.0 5.0 4.8
4.6 5.0 4.2 4.5 6.1 6.0 5.5 5.6 6.7 6.9 5.6 5.1
4.2 5.2 3.3 4.8 5.8 6.4 5.6 5.5 7.2 7.4 5.7 6.0

(a) Is there any reasons to believe that the programs differ?

(b) Write up your findings in a the report your analysis of all model assumptions.

4.10 Nonorthogonal Two-Way MANOVA Designs

Up to this point in our discussion of the analysis of two-way MANOVA designs, we have
assumed an equal number of observations (no ≥ 1) per cell. As we shall discuss in Sec-
tion 4.16, most two-way and higher order crossed designs are constructed with the power
to detect some high level interaction with an equal number of observations per cell. How-
ever, in carrying out a study one may find that subjects in a two-way or higher order design
drop-out of the study creating a design with empty cells or an unequal and disproportion-
ate number of observations in each cell. This results in a nonorthogonal or unbalanced
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design. The analysis of two-way and higher order designs with this unbalance require care-
ful consideration since the subspaces associated with the effects are no longer uniquely
orthogonal. The order in which effects are entered into the model leads to different decom-
positions of the test space. In addition to nonorthogonality, an experimenter may find that
some observations within a vector are missing. This results in incomplete multivariate data
and nonorthogonality. In this section we discuss the analysis of nonorthogonal designs. In
Chapter 5 we discuss incomplete data issues where observations are missing within a vector
observation.

When confronted with a nonorthogonal design, one must first understand how observa-
tions were lost. If observations are lost at random and independent of the treatments one
would establish tests of main effects and interactions that do not depend on cell frequen-
cies, this is an unweighted analysis. In this situation, weights are chosen proportional to the
reciprocal of the number of levels for a factor (e.g. 1/a or 1/b for two factors) or the recip-
rocal of the product of two or more factors (e.g. 1/ab for two factor interactions), provided
the design has no empty cells. Tests are formed using the Type III option in PROC GLM. If
observation loss is associated with the level of treatment and is expected to happen in any
replication of the study, tests that depend on cell frequencies are used, this is a weighted
analysis. Tests are formed using the Type I option. As stated earlier, the Type II option has
in general little value, however, it may be used in designs that are additive. If a design has
empty cells, the Type IV option may be appropriate.

a. Nonorthogonal Two-Way MANOVA Designs with and Without Empty
Cells, and Interaction

The linear model for the two-way MANOVA design with interaction is

yi jk = µ+ αi + β j + γ i j + ei jk (LFR)

= µi j + ei jk (FR)
(4.10.1)

ei jk ∼ I Np (0, �) i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , ni j ≥ 0

and the number of observations in a cell may be zero, ni j = 0. Estimable functions and
tests of hypotheses in two-way MANOVA designs with empty cells depend on the location
of the empty cells in the design and the estimability of the population means µi j . Clearly,
the BLUE of µi j is again the sample cell mean

µ̂i j = yi j. =∑ni j
k=1 yi jk/ni j , ni j > 0 (4.10.2)

The parameters µi j are not estimable if any ni j = 0. Parametric functions of the cell means

η =∑
i, j

Ki jµi j (4.10.3)

are estimable and therefore testable if and only if Ki j = 0 when ni j = 0 and Ki j = 1 if
ni j �= 0. Using (4.10.3), we can immediately define two row (or column) means that are
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TABLE 4.10.1. Non-Additive Connected Data Design

Factor B

µ11 Empty µ13

Factor A µ21 µ22 µ23

Empty µ32 µ33

estimable. The obvious choices are the weighted and unweighted means

µi. =
∑

j
ni jµi j/ni+ (4.10.4)

µ̃i. =
∑

j
Ki jµi j/Ki+ (4.10.5)

where ni+ =∑
j ni j and Ki+ =∑

j Ki j . If all Ki j �= 0, then µ̃i. becomes

µi. =
∑

j
µi j/b (4.10.6)

the LSMEAN in SAS. The means in (4.10.4) and (4.10.5) depend on the sample cell fre-
quencies and the location of the empty cells, and are not easily interpreted. None of the
Type I, Type II, or Type III hypotheses have any reasonable interpretation with empty cells.
Furthermore, the tests are again confounded with interaction. PROC GLM does generate
some Type IV tests that are interpretable when a design has empty cells. They are balanced
simple effect tests that are also confounded by interaction. If a design has no empty cells
so that all ni j > 0, then one may construct meaningful Type I and Type III tests that com-
pare the equality of weighted and unweighted marginal means. These tests, as in the equal
ni j = no case, are also confounded by interaction.

Tests of no two-way interaction for designs with all cell frequencies ni j > 0 are identical
to tests for the case in which all ni j = no. However, problems occur when empty cells exist
in the design since the parameters µi j are not estimable for the empty cells. Because of the
empty cells, the interaction hypothesis for the designs are not identical to the hypothesis
for a design with no empty cells. In order to form contrasts for the interaction hypothesis,
one must write out a set of linearly independent contrasts as if no empty cells occur in the
design and calculate sums and differences of these contrasts in order to eliminate the µi j
that do not exist for the design. The number of degrees of freedom for interaction in any
design may be obtained by subtracting the number of degrees of freedom for main effects
from the total number of between groups degrees of freedom. Then, vAB = ( f − 1) −
(a − 1) − (b − 1) = f − a − b + 1 where f is the number of nonempty, “filled” cells in
the design. To illustrate, we consider the connected data pattern in Table 4.10.1. A design
is connected if all nonempty cells may be jointed by row-column paths of filled cells which
results in a continuous path that has changes in direction only in filled cells, Weeks and
Williams (1964).

Since the number of cells filled in Table 4.10.1 is f = 7 and a = b = 3, vAB =
f − a − b + 1 = 2. To find the hypothesis test matrix for testing HAB , we write out the



4.10 Nonorthogonal Two-Way MANOVA Designs 267

TABLE 4.10.2. Non-Additive Disconnected Design

Factor B

µ11 µ12 Empty
Factor A µ21 Empty µ23

Empty µ32 µ33

interactions assuming a complete design

a. µ11 − µ12 − µ21 + µ22 = 0

b. µ11 − µ13 − µ21 + µ23 = 0

c. µ21 − µ22 − µ31 + µ32 = 0

d. µ21 − µ23 − µ31 + µ33 = 0

Because contrast (b) contains no underlined missing parameter, we may use it to construct
a row of the hypothesis test matrix. Taking the difference between (c) and (d) removes the
nonestimable parameter µ31. Hence a matrix with rank 2 to test for no interaction is

CAB =
 1 −1 −1 0 1 0 0

0 0 0 1 −1 −1 1


where the structure of B using the FR model is

B =



µ′11
µ′13
µ′21
µ′22
µ′23
µ′32
µ′33


An example of a disconnected design pattern is illustrated in Table 4.10.2. For this de-

sign, all cells may not be joined by row-column paths with turns in filled cells. The test for
interaction now has one degree of freedom since vAB = f − a − b + 1 = 1.

Forming the set of independent contracts for the data pattern in Table 4.10.2.

a. µ11 − µ12 − µ21 + µ22 = 0

b. µ11 − µ13 − µ21 + µ23 = 0

c. µ21 − µ23 − µ31 + µ33 = 0

d. µ22 − µ23 − µ32 + µ33 = 0
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TABLE 4.10.3. Type IV Hypotheses for A and B for the Connected Design in Table 4.10.1

Tests of A Test of B
µ11+µ13

2 = µ21+µ23
2

µ11+µ21
2 = µ13+µ23

2

µ22+µ23
2 = µ32+µ33

2
µ22+µ32

2 = µ33+µ33
2

µ11 = µ21 µ11 = µ13

µ21 = µ32 µ21 = µ22

µ11 = µ23 µ21 = µ23

µ22 = µ33 µ21 = µ23

µ13 = µ33 µ32 = µ33

and subtracting (d) from (a), the interaction hypotheses becomes

HAB : µ11 − µ12 − µ21 + µ23 + µ32 − µ33 = 0

Tests of no interaction for designs with empty cells must be interpreted with caution
since the test is not equivalent to the test of no interaction for designs with all cells filled.
If HAB is rejected, the interaction for a design with no empty cells would also be rejected.
However, if the test is not rejected we cannot be sure that the hypothesis would not be
rejected for the complete cell design because nonestimable interactions are excluded from
the analysis by the missing data pattern. The excluded interactions may be significant.

For a two-way design with interaction and empty cells, tests of the equality of the means
given in (4.10.5) are tested using the Type IV option in SAS. PROC GLM automati-
cally generates Type IV hypothesis; however, to interpret the output one must examine the
Type IV estimable functions to determine what hypothesis are being generated and tested.
For the data pattern given in Table 4.10.1, all possible Type IV tests that may be generated
by PROC GLM are provided in Table 4.10.3 for tests involving means µ̃i..

The tests in Table 4.10.3 are again confounded by interaction since they behave like
simple effect tests. When SAS generates Type IV tests, the tests generated may not be
the tests of interest for the study. To create your own tests, CONTRAST and ESTIMATE
statements can be used. Univariate designs with empty cells are discussed by Milliken and
Johnson (1992, Chapter 14) and Searle (1993).

b. Additive Two-Way MANOVA Designs With Empty Cells

The LFR linear model for the additive two-way MANOVA design is

yi jk = µ+ αi + β j + ei jk

ei jk ∼ I N (0, �) i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , ni j ≥ 0
(4.10.7)
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where the number of observations per cell ni j is often either zero (empty) or one. Associ-
ating µi j with µ+αi +β j does not reduce (4.10.7) to a full rank cell means model, Timm
(1980b). One must include with the cell means model with no interaction a restriction of
the form µi j−µi ′ j−µi j ′ +µi ′ j ′ = 0 for all cells filled to create a FR model. The restricted
MGLM for the additive two-way MANOVA design is then

yi jk = µi j + ei jk i = 1, . . . , a ; j = 1, . . . b; k = 1, . . . , ni j ≥ 0
µi j− µi ′ j − µi j − µi j ′ + µi ′ j ′ = 0

ei j ∼ I Np (0, �)

(4.10.8)

for a set of ( f − a − b + 1) > 0 estimable tetrads including sums and differences. Model
(4.10.8) may be analyzed using PROG REG while model (4.10.7) is analyzed using PROC
GLM.

For the two-way design with interaction, empty cells caused no problem since with ni j =
0 the parameterµi j was not estimable. For an additive model which contains no interaction,
the restrictions on the parameters µi j may sometimes be used to estimate the population
parameter µi j whether or not a cell is empty. To illustrate, suppose the cell with µ11 is
empty so that n11 = 0, but that one has estimates for µ12, µ21, and µ22. Then by using
the restriction µ11 − µ12 − µ21 + µ22 = 0, an estimate of µ11 is µ̂11 = µ̂12 + µ̂21 − µ̂22
even though cell (1, 1) is empty. This is not always the case. To see this, consider the
data pattern in Table 4.10.2. For this pattern, no interaction restriction would allow one
to estimate all the population parameters µi j associated with the empty cells. The design
is said to be disconnected or disjoint. An additive two-way crossed design is said to be
connected if all µi j are estimable. This is the case for the data in Table 4.10.1. Thus, given
an additive model with empty cells and connected data, all pairwise contrasts of the form

ψ = µi j − µi ′ j = αi − αi ′ for all i, i ′
ψ = µi j − µi j ′ = β j − β j ′ for all j, j ′ (4.10.9)

are estimable as are linear combinations. When a design has all cells filled, the design by
default is connected so there is no problem with the analysis. For connected designs, tests
for main effects HA and HB become, using the restricted full rank MGLM

HA : µi j = µi ′ j for all i, i ′ and j
HB : µi j = µi j ′ for all i, j and j ′ (4.10.10)

Equivalently, using the LFR model, the tests become

HA : allαi are equal

HB : allβ j are equal
(4.10.11)

where contrasts in αi
(
β j

)
involve the LSMEANS µ̂i.

(
µ̂. j

)
so that ψ = αi − αi ′ is esti-

mated by ψ̂ = µ̂i.−µ̂i ′., for example. Tests of HA and HB for connected designs are tested
using the Type III option. With unequal ni j , Type I tests may also be constructed. When
a design is disconnect, the cell means µi j associated with the empty cell are no longer
estimable. However, the parametric functions given in Table 10.4.3 remain estimable and
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TABLE 4.11.1. Nonorthogonal Design

Factor B
B1 B2

A1
[10, 21]
[12, 22] n11 = 2

[9, 17]
[8, 13] n12 = 2

Factor A A2
[14, 27]
[11, 223] n21 = 2

[12, 18]
n22 = 1

A3
[7.151]

n31 = 1
[8, 18]

n32 = 1

are now not confounded by interaction. These may be tested in SAS by using the Type IV
option. To know which parametric functions are included in the test, one must again in-
vestigate the form of the estimable functions output using the / E option. If the contrast
estimated by SAS are not the parametric functions of interest, one must construct CON-
TRAST statements to form the desired tests.

4.11 Unbalance, Nonorthogonal Designs Example

In our discussion of the MGLM, we showed that in many situations that the normal equa-
tions do not have a unique solution. Using any g-inverse, contrasts in the parameters do
have a unique solution provided c′H = c′ for H = (

X′X
)− (

X′X
)

for a contrast vector c.
This condition, while simple, may be difficult to evaluate for complex nonorthogonal de-
signs. PROC GLM provides users with several options for displaying estimable functions.
The option /E on the model statement provides the general form of all estimable functions.
The g-inverse of

(
X′X

)
used by SAS to generate the structure of the general form is to set

a subset of the parameters to zero, Milliken and Johnson (1992, p. 101). SAS also has four
types for sums of squares, Searle (1987, p. 461). Each type (E1, E2, E3, E4) has associ-
ated with it estimable functions which may be evaluated to determine testable hypotheses,
Searle (1987, p. 465) and Milliken and Johnson (1992, p. 146 and p. 186). By using the
XPX and I option on the MODEL statement, PROC GLM will print

(
X′X

)
and

(
X′X

)−
used to obtain B̂ when requesting the option / SOLUTION. For annotated output produced
by PROC GLM when analyzing unbalanced designs, the reader may consult Searle and
Yerex (1987).

For our initial application of the analysis of a nonorthogonal design using PROC GLM,
the sample data for the two-way MANOVA design given in Table 4.11.1 are utilized using
program m4 11 1.sas
The purpose of the example is to illustrate the mechanics of the analysis of a nonorthogonal
design using SAS.

When analyzing any nonorthogonal design with no empty cells, one should always use
the options / SOLUTION XPX I E E1 E3 SS1 and SS3 on the MODEL statement. Then
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estimable functions and testable hypotheses using the Type I and Type III sums of squares
are usually immediately evident by inspection of the output.

For the additive model and the design pattern given in Table 4.11.1, the general form of
the estimable functions follow.

Effect Coefficients

Intercept L1

a L2
a L3
a L1−L2−L3

b L5
b L1−L5

Setting L1 = 0, the tests of main effects always exist and are not confounded by each other.
The estimable functions for factor A involve only L2 and L3 if L5 = 0. The estimable
functions for factor B are obtained by setting L2 = 1, with L3 = 0, and by setting L3 = 1
and L2 = 0. This is exactly the Type III estimable functions. Also observe from the printout
that the test of HA using Type I sums of squares (SS) is confounded by factor B and that
the Type I SS for factor B is identical to the Type III SS. To obtain a Type I SS for B, one
must reorder the effects in the MODEL statement. In general, only Type III hypotheses are
usually most appropriate for nonorthogonal designs whenever the unbalance is not due to
treatment.

For the model with interaction, observe that only the test of interaction is not confounded
by main effects for either the Type I or Type III hypotheses. The form of the estimable
functions are as follows.

Coefficients Effect

a∗b 11 L7
a∗b 12 −L7
a∗b 21 L9
a∗b 22 −L9
a∗b 31 −L7−L9
a b 32 L7+L9

The general form of the interaction contrast involves only coefficients L7 and L9. Setting
L1 = 1 and all others to zero, the tetrad

′
11−12−31+32

′
is realized. Setting L9 = 1 and

all others to zero, the tetrad
′
21−22−31+32

′
is obtained. Summing the two contrasts yields

the
′
sum inter

′
contrast while taking the difference yields the tetrad

′
11 − 12 − 21 + 22

′
.

This demonstrates how one may specify estimable contrasts using SAS. Tests follow those
already illustrated for orthogonal designs.
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To create a connected two-way design, we delete observation [12, 18] in cell (2, 2). To
make the design disconnected, we also delete the observations in cell (2, 1). The statements
for the analysis of these two designs are included in program m4 11 1.sas.

When analyzing designs with empty cells, one should always use the / E option to obtain
the general form of all estimable parametric functions. One may test Type III or Type IV
hypotheses for connected designs (they are equal as seen in the example output); however,
only Type IV hypotheses may be useful for disconnected designs. To determine the hy-
potheses tested, one must investigate the Type IV estimable functions. Whenever a design
has empty cells, failure to reject the test of interaction may not imply its nonsignificance
since certain cells are being excluded from the analysis. When designs contain empty cells
and potential interactions, it is often best to represent the MR model using the NOINT
option since only all means are involving in the analysis.

Investigating the test of interaction for the nonorthogonal design with no empty cells,
vAB = (a − 1) (b − 1) = 2. For the connected design with an interaction, the cell mean
µ22 is not estimable. The degrees of freedom for the test of interaction becomes vAB =
f − a− b+ 1 = 5− 3− 2+ 1 = 1. While each contrast ψ̂1 = µ11−µ12−µ21+µ22 and
ψ̂2 = µ21 − µ22 − µ31 + µ32 are not estimable, the sum ψ = ψ1 + ψ2 is estimable. The
number of linearly independent contrasts is however one and not two. For the disconnected
design, vAB = f −a−b+1 = 4−3−2+1 = 1. For this design, only one tetrad contrast
is estimable, for example ψ = ψ1 + ψ2. Clearly, the test of interaction for the three
designs are not equivalent. This is also evident from the calculated p-values for the tests for
the three designs. For the design with no empty cells, the p-value is 0.1075 for Wilks’ �
criterion; for the connected design, the p-value is 0.1525; and for the disconnected design,
the p-value is 0.2611. Setting the level of the tests at α = 0.15, one may erroneously claim
nonsignificance for a design with empty cells when if all cells are filled the result would be
significant. The analysis of multivariate designs with empty cells is complex and must be
analyzed with extreme care.

Exercises 4.11

1. John S. Levine and Leonard Saxe at the University of Pittsburgh obtained data to
investigate the effects of social-support characteristics (allies and assessors) on con-
formity reduction under normative social pressure. The subjects were placed in a
situations where three persons gave incorrect answers and a fourth person gave the
correct answer. The dependent variables for the study are mean option (O) score and
mean visual-perception (V) scores for a nine item test. High scores indicate more
conformity. Analyze the following data from the unpublished study (see Table 4.11.2
on page 273) and summarize your findings.

2. For the data in Table 4.9.1, suppose all the observations in cell (2,1) were not col-
lected. The observations for Teacher 2 and in the Contract Class is missing. Then,
the design becomes a connected design with an empty cell.

(a) Analyze the design assuming a model with interaction.

(b) Analyze the design assuming a model without interaction, an additive model.
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TABLE 4.11.2. Data for Exercise 1.

Assessor

Good Poor
O V O V

2.67 .67 1.44 .11
1.33 .22 2.78 1.00
.44 .33 1.00 .11

Good .89 .11 1.44 .22
.44 .22 2.22 .11

1.44 −.22 .89 .11
.33 .11 2.89 .22
.78 −.11 .67 .11

1.00 .67
Ally

1.89 .78 2.22 .11
1.44 .00 1.89 .33
1.67 .56 1.67 .33
1.78 −11 1.89 .78
1.00 1.11 .78 .22

Poor .78 .44 .67 .00
.44 .00 2.89 .67
.78 .33 2.67 .67

2.00 .22 2.78 .44
1.89 .56
2.00 .56
.67 .56

1.44 .22

(c) Next, suppose that the observations in the cells (1,2) and (3,1) are also missing
and that the model is additive. Then the design becomes disconnected. Test for
means differences for Factor A and Factor B and interpret your findings.

4.12 Higher Ordered Fixed Effect, Nested and Other Designs

The procedures outlined and illustrated using PROC GLM to analyze two-way crossed
MANOVA/MANCOVA designs with fixed effects and random/fixed covariates extend in a
natural manner to higher order designs. In all cases there is one within SSCP matrix error
matrix E. To test hypotheses, one constructs the hypothesis test matrices H for main effects
or interactions.
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For a three-way, completely randomized design with factors A, B, and C and ni jk > 0
observations per cell the MGLM is

yi jkm = µ+ αi + β j + τ k + (αβ)i j + (βτ ) jk + (ατ )ik + γ i jk + ei jkm

= µi jk + ei jkm (4.12.1)

ei jkm ∼ I Np (0, �)

for i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , c; and m = 1, . . . , ni jk > 0 which allows
for unbalanced, nonorthogonal, connected or disconnected designs. Again the individual
effects for the LFR model are not estimable. However, if ni jk > 0 then the cell means µi jk
are estimable and estimated by yi jk., the cell mean.

In the two-way MANOVA/MANCOVA design we were unable to estimate main effects
αi and β j ; however, tetrads in the interactions

(
γ i j

)
were estimable. Extending this con-

cept to the three-way design, the “three-way” tetrads have the general structure

ψ = (
µi jk − µi ′ jk − µi j ′k + µi ′ j ′k

)− (
µi jk′ − µi ′ jk′ − µi j ′k′ + µi ′ j ′k′

)
(4.12.2)

which is no more than a difference in two, two-way tetrads (AB) at levels k and k′ of factor
C . Thus, a three-way interaction may be interpreted as the difference of two, two-way
interactions. Replacing the FR parameters µi jk inψ above with the LFR model parameters,
the contrast in (4.12.2) becomes a contrast in the parameters γ i jk . Hence, the three-way
interaction hypotheses for the three-way design becomes

HABC =
(
γ i jk − γ i ′ jk − γ i j ′k + γ i ′ j ′k

)− (
γ i jk′ − γ i ′ jk′ − γ i j ′k′ + γ i ′ j ′k′

) = 0
(4.12.3)

for all triples
(
i, i ′, j, j ′, k, k′

)
. Again all main effects are confounded by interaction; two-

way interactions are also confounded by three-way interactions. If the three-way test of
interaction is not significant, the tests of two-way interactions depend on whether the two-
way cell means are created as weighted or unweighted marginal means of µ̂i jk . This design
is considered by Timm and Mieczkowski (1997, p. 296).

A common situation for two-factor designs is to have nested rather than crossed factors.
These designs are incomplete because if factor B is nested within factor A, every level of
B does not appear with every level of factor A. This is a disconnected design. However,
letting β(i) j = β j + γ i j represent the fact that the j th level of factor B is nested within the
i th level of factor A, the MLGL model for the two-way nested design is

yi jk = µ+ αi + β(i) j + ei jk (LFR)

= µi j + ei jk (FR) (4.12.4)

ei jk ∼ I Np (0, �)

for i = 1, 2, . . . , a; j = 1, 2, . . . , bi ; and k = 1, 2, . . . , ni j > 1.
While one can again apply general theory to obtain estimable functions, it is easily seen

that µi j = µ+ αi + β(i) j is estimable and estimated by the cell mean, µ̂i j = yi j.. Further-
more, linear combinations of estimable functions are estimable. Thus, ψ = µi j − µi j ′ =



4.12 Higher Ordered Fixed Effect, Nested and Other Designs 275

β(i) j − β(i) j ′ for j �= j ′ is estimable and estimated by ψ̂ = yi j. − yi j ′.. Hence, the hy-
pothesis of no difference in treatment levels B at each level of Factor A is testable. The
hypothesis is written as

HB(A) : all β(i) j are equal (4.12.5)

for i = 1, 2, . . . , a. By associating β(i) j ≡ β j + γ i j , the degrees of freedom for the test
is vB(A) = (b − 1) + (a − 1) (b − 1) = a (b − 1) if there were an equal number of levels
of B at each level of A. However, for the design in (4.12.3) we have bi levels of B at each
level of factor A, or a one-way design at each level. Hence, the overall degrees of freedom
is obtained by summing over the a one-way designs so that vB(A) =∑a

i=1 (bi − 1).
To construct tests of A, observe that one must be able to estimate ψ = αi−αi ′ . However,

taking simple differences we see that the differences are confounded by the effects β(i) j .
Hence, tests of differences in A are not testable. The estimable functions and their estimates
have the general structure

ψ =∑
i

∑
j

ti j
(
µ+ αi + β(i) j

)
ψ̂ =∑

i

∑
j

ti j yi j.
(4.12.6)

so that the parametric function

ψ = αi − αi ′ +∑
j

ti jβ(i) j −
∑

j
ti ′ jβ(i ′) j (4.12.7)

is estimated by
ψ̂ =∑

j
yi j. −∑

j
yi ′ j. (4.12.8)

if we make the
∑

j ti j = ∑
j ti ′ j = 1. Two sets of weights are often used. If the unequal

ni j are the result of the treatment administered, the ti j = ni j/ni+. Otherwise, the weights
ti j = 1/bi are used. This leads to weighted and unweighted tests of HA. For the LFR
model, the test of A becomes

HA : allαi +∑
j

ti jβ(i) j are equal (4.12.9)

which shows the confounding. In terms of the FR model, the tests are

HA∗ : allµi. are equal

HA : all µi. are equal
(4.12.10)

where µi. is a weighted marginal mean that depends on the ni j cell frequencies and µi. is
an unweighted average that depends on the number of nested levels bi of effect B within
each level of A. In SAS, one uses the Type I and Type III options to generate the correct
hypothesis test matrices. To verify this, one uses the E option on the MODEL statement to
check Type I and Type III estimates. This should always be done when sample sizes are
unequal.
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For the nested design given in (4.12.4), the r (X) = q =∑a
i=1 bi so that

ve =
a∑

i=1

bi∑
j=1

(
ni j − 1

)
and the error matrix is

E =∑
i

∑
j

∑
k

(
yi jk − yi j.

) (
yi jk − yi j.

)′ (4.12.11)

for each of the tests HB(A), HA∗ , and HA.
One can easily extend the two-way nested design to three factors A, B, and C . A design

with B nested in A and C nested in B as discussed in Scheffé (1959, p. 186) has a natural
multivariate extension

yi jkm = µ+ αi + β(i) j + τ (i j)k + ei jkm (LFR)

= µi jk + ei jkm (FR)

ei jkm ∼ I Np (0, �)

where i = 1, 2, . . . , a; j = 1, 2, . . . , bi ; k = 1, 2, . . . , ni j and m = 1, 2, . . . ,mi jk .
Another common variation of a nested design is to have both nested and crossed factors,

a partially nested design. For example, B could be nested in A, but C might be crossed with
A and B. The MGLM for this design is

yi jkm = µ+ αi + β(i) j + τ k + γ ik + δ(i) jk + ei jkm

ei jkm ∼ I Np (0, �)
(4.12.12)

over some indices (i, j, k, m).
Every univariate design with crossed and nested fixed effects, a combination of both, has

an identical multivariate counterpart. These designs and special designs like fractional fac-
torial, crossover designs, balanced incomplete block designs, Latin square designs, Youden
squares, and numerous others may be analyzed using PROC GLM. Random and mixed
models also have natural extensions to the multivariate case and are discussed in Chapter 6.

4.13 Complex Design Examples

a. Nested Design (Example 4.13.1)

In the investigation of the data given in Table 4.9.1, suppose teachers are nested within
classes. Also suppose that the third teacher under noncontract classes was unavailable for
the study. The design for the analysis would then be a fixed effects nested design repre-
sented diagrammatically as follows
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TABLE 4.13.1. Multivariate Nested Design
Classes A1 A2

Teachers B1 B2 B′1 B′2 B′3

R C R C R C R C R C
9 14 11 15 10 21 11 23 8 17
8 15 12 18 12 22 14 27 7 15
11 16 10 16 9 19 13 24 10 18
9 17 9 17 10 21 15 26 8 17
9 17 9 18 14 23 14 24 7 19

T1 T2 T3 T4 T5
Noncontrast Classes × ×
Contrast Classes × × ×

where the × denotes collected data. The data are reorganized as in Table 4.13.1 where
factor A, classes, has two levels and factor B, teachers, is nested within factor A. The labels
R and C denote the variables reading rate and reading comprehension, as before.

Program m4 13 1a.sas contains the PROC GLM code for the analysis of the multivariate
fixed effects nested design. The model for the observation vector yi jk is

yi jk = µ+ αi + β(i) j + ei jk

ei jk ∼ IN2 (0, �)
(4.13.1)

where a = 2, b1 = 2, b2 = 3, and ni j = 5 for the general model (4.12.4). The total number
of observations for the analysis is n = 25.

While one may test for differences in factor A (classes), this test is confounded by the
effects β(i) j . For our example, HA is

HA : α1 +
b1∑

j=1
ni jβ(1) j/n1+ = α2 +

b1∑
j=1

n2 jβ(2) j/n2+ (4.13.2)

where n1+ = 10 and n2+ = 15. This is seen clearly in the output from the estimable
functions. While many authors discuss the test of (4.12.5) when analyzing nested designs,
the tests of interest are the tests for differences in the levels of B within the levels of A. For
the design under study, these tests are

HB(A1) : β(1)1 = β(1)2

HB(A2) : β(2)1 = β(2)2 = β(2)3
(4.13.3)
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TABLE 4.13.2. MANOVA for Nested Design

Source df SSCP

HA: Classes 1 HA =
[

7.26 31.46
31.46 136.33

]
HB(A) : Teachers with Classes 3 HB =

[
75.70 105.30
105.30 147.03

]
HB(A1) 1 HB(A1) =

[
2.5 2.5
2.5 2.5

]
HB(A1) 2 HB(A1) =

[
73.20 102.80
102.80 144.53

]
Error 20 E =

[
42.8 20.8
20.8 42.0

]

The tests in (4.13.3) are “planned” comparisons associated with the overall test

HB(A) : allβ(i) j are equal (4.13.4)

The MANOVA statement in PROC GLM by default performs tests of HA and HB(A). To
test (4.13.3), one must construct the test using a CONTRAST statement and a MANOVA
statement with M = I2. Table 4.13.2 summarizes the MANOVA output for the example.
Observe that HB(A) = HB(A1) + HB(A2) and that the hypothesis degrees of freedom for
HB(A) add to HB(A). More generally, vA = a−1, vB(A) =∑a

i=1 (bi − 1), vB(Ai ) = bi −1,
and ve =∑

i
∑

j

(
ni j − 1

)
.

Solving the characteristic equation |H− λE| = 0 for each hypotheses in Table 4.13.2
one may test each overall hypothesis. For the nested design, one tests HA and HB(A) at
some level α. The tests of HB(Ai ) are tested at αi where the

∑
i αi = α. For this example,

suppose α = 0.05, the αi = 0.025. Reviewing the p-values for the overall tests, the test of
HA ≡ C and HB(C) ≡ T (C) are clearly significant. The significance of the overall test
is due to differences between teachers in contract classes and not noncontract classes. The
p-value for HB(A1) ≡ T (C1) and HB(A1) ≡ T (C2) are 0.4851 and 0.0001, respectively.

With the rejections of an overall test, the overall test criterion determines the simulta-
neous confidence intervals one may construct to determined the differences in parametric
functions that led to rejection. Letting ψ = c′Bm, ψ̂ = c′B̂m, σ̂ 2

ψ̂
= (

m′Sm
)

c′
(
X′X

)− c,

then we again have that with probability 1− α, for all ψ ,

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂ (4.13.5)

where for the largest root criterion

c2
α =

(
θα

1− θα

)
ve = λαve
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For our example,

B =



µ′
α′1
α′2
β ′(1)1
β ′(1)2
β ′(2)1
β ′(2)2
β ′(2)3


=



µ11 µ12
α11 α12
α21 α22
β(1)11 β(1)12
β(1)21 β(1)22
β(2)11 β(2)12
β(2)22 β(2)22
β(2)31 β(2)32


(4.13.6)

for the LFR model and B = [
µi j

]
for a FR model. Using the SOLUTION and E3 option

on the model statement, one clearly sees that contrasts in the αi are confounded by the
effects β(i) j . One normally only investigates contrasts in the αi for those tests of HB(Ai )

that are nonsignificant. For pairwise comparisons ψ = β(i) j − β(i) j ′ for i = 1, 2, . . . , a
and j �= j ′ the standard error has the simple form

σ̂ 2
ψ̂
= (

m′Sm
) ( 1

ni j
+ 1

ni j ′

)

To locate significance following the overall tests, we use several approaches. The largest
difference appears to be between Teacher 2 and Teacher 3 for both the rate and comprehen-
sion variables. Using the largest root criterion, the TRANSREG procedure, and IML code,
with α = 0.025 the approximate confidence set for reading comprehension is (4.86, 10.34).
Locating significance comparison using CONTRAST statement also permits the location
of significant comparisons.

Assuming the teacher factor is random and the class factor is fixed leads to a mixed
MANOVA model. While we have included in the program the PROC GLM code for the
situation, we postpone discussion until Chapter 6.

b. Latin Square Design (Example 4.13.2)

For our next example, we consider a multivariate Latin square design. The design is a
generalization of a randomized block design that permits double blocking that reduces the
mean square within in a design by controlling for two nuisance variables. For example,
suppose an investigator is interested in examining a concept learning task for five experi-
mental treatments that may be adversely effected by days of the week and hours of the day.
To investigate treatments the following Latin square design may be employed
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Hours of Day

1 2 3 4 5

Monday T2 T5 T4 T3 T1

Tuesday T3 T1 T2 T5 T4

Wednesday T4 T2 T3 T1 T5

Thursday T5 T3 T1 T4 T2

Friday T1 T4 T5 T2 T3

where each treatment condition Ti appears only once in each row and column. The Latin
square design requires only d2 observations where d represents the number of levels per
factor. The Latin square design is a balanced incomplete three-way factorial design. An
additive three-way factorial design requires d3 observations.

The multivariate model for an observation vector yi jk for the design is

yi jk = µ+ αi + β j + γ k + ei jk

ei jk ∼ INp (0, �)
(4.13.7)

for (i, jk) εD where D is a Latin square design. Using a MR model to analyze a Latin
square design with d levels, the rank of the design matrix X is r (X) = 3 (d − 1) + 1 =
3d − 2 so that ve = n − r (X) = d2 − 3d + 2 = (d − 1) (d − 2). While the individual
effects in (4.13.7) are not estimable, contrasts in the effects are estimable. This is again
easily seen when using PROC GLM by using the option E3 on the MODEL statement.

To illustrate the analysis of a Latin square design, we use data from a concept learning
study in the investigation of five experimental treatments (T1, T2, . . . , T5) for the two block-
ing variables day of the week and hours in the days as previously discussed. The dependent
variables are the number of treats to criterion used to measure learning (V1) and number of
errors in the test set on one presentation 10 minutes later (V2) used to measure retention.
The hypothetical data are provided in Table 4.13.3 and are in the file Latin.dat. The cell
indexes represent the days of the week, hours of the day, and the treatment, respectively.
The SAS code for the analysis is given in program m4 13 1b.sas.

In the analysis of the Latin square design, both blocking variables are nonsignificant.
Even though they were not effective in reducing variability between blocks, the treatment
effect is significant. The H and E matrices for the test of no treatment differences are

H =
[

420.80 48.80
48.80 177.04

]

E =
[

146.80 118.00
118.00 422.72

]
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TABLE 4.13.3. Multivariate Latin Square

Cell V1 V2 Cell V1 V2

112 8 4 333 4 17
125 18 8 341 8 8
134 5 3 355 14 8
143 8 16 415 11 9
151 6 12 423 4 15
213 1 6 431 14 17
221 6 19 444 1 5
232 5 7 452 7 8
245 18 9 511 9 14
254 9 23 524 9 13
314 5 11 535 16 23
322 4 5 542 3 7

553 2 10

Solving |H− λE| = 0, λ1 = 3.5776 and λ2 = 0.4188. Using the /CANONICAL option,
the standardized and structure (correlation) vectors for the test of treatments follow

Standardized Structure[
1.6096
−0.5128

] [
0.0019
0.9513

] [
0.8803
−0.001

] [
0.0083
0.1684

]
indicating that only the first variable is contributing to the differences in treatments. Using
Tukey’s method to evaluate differences, all pairwise differences are significant for V2 while
only the comparison between T2 and T5 is significant for variable V1.

Reviewing the Q-Q plots and test statistics, the assumption of multivariate normality
seems valid.

Exercises 4.13

1. Box (1950) provides data on tire wear for three factors: road surface, filler type, and
proportion of filler. Two observations of the wear at 1000, 2000, and 3000 revolutions
were collected for all factor combinations. The data for the study is given in Table
4.13.4.

(a) Analyze the data using a factorial design. What road filler produces the least
wear and in what proportion?

(b) Reanalyze the data assuming filler is nested within road surface.

2. The artificial data set in file three.dat contains data for a nonorthogonal three-factor
MANOVA design. The first three variables represent the factor levels A, B, and C;
and, the next two data items represent two dependent variables.
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TABLE 4.13.4. Box Tire Wear Data

25% 50% 75%
Tire Wear Tire Wear Tire Wear

Road
Surface Filler 1 2 3 1 2 3 1 2 3

194 192 141 233 217 171 265 252 207
F1 208 188 165 241 222 201 261 283 191

1
239 127 90 224 123 79 243 117 100

F2 187 105 85 243 123 110 226 125 75
155 169 151 198 187 176 235 225 166

F1 173 152 141 177 196 167 229 270 183
2

137 82 77 229 94 78 155 76 91
F2 160 82 83 98 89 48 132 105 69

(a) Assuming observation loss is due to treatments, analyze the data using Type I
tests.

(b) Assuming that observation loss is not due to treatment, analyze the data using
Type III tests.

4.14 Repeated Measurement Designs

In Chapter 3 we discussed the analysis of a two group profile design where the vector
of p responses were commensurate. In such designs, interest focused on parallelism of
profiles, differences between groups, and differences in the means for the p commensurate
variables. A design that is closely related to this design is the repeated measures design.
In these designs, a random sample of subjects are randomly assigned to several treatment
groups, factor A, and measured repeatedly over p traits, factor B. Factor A is called the
between-subjects factor, and factor B is called the within-subjects factor. In this section, we
discuss the univariate and multivariate analysis of one-way repeated measurement designs
and extended linear hypotheses. Examples are illustrated in Section 4.15. Growth curve
analysis of repeated measurements data is discussed in Chapter 5. Doubly multivariate
repeated measurement designs in which vectors of observations are observed over time are
discussed in Chapter 6.

a. One-Way Repeated Measures Design

The data for the one-way repeated measurement design is identical to the setup shown in
Table 3.9.4. The vectors

y′i j =
[
yi j1, yi j2, . . . , yi jp

] ∼ I Np
(
µi , �

)
(4.14.1)
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represent the vectors of p repeated measurements of the j th subject within the i th treatment
group (i = 1, 2, . . . , a). Assigning ni subjects per group, the subscript j = 1, 2, . . . , ni

represents subjects within groups and n = ∑a
i=1 ni is the total number of subjects in the

study. Assuming all �i = � for i = 1, . . . , a, we assume homogeneity of the covariance
matrices. The multivariate model for the one-way repeated measurement design is identical
to the one-way MANOVA design so that

yi j = µ+ αi + ei j = µi + ei j

ei j ∼ I Np
(
µi , �

) (4.14.2)

For the one-way MANOVA design, the primary hypothesis of interest was the test for
differences in treatment groups. In other words, the hypothesis tested that all mean vectors
µi are equal. For the two-group profile analysis and repeated measures designs, the primary
hypothesis is the test of parallelism or whether there is a significant interaction between
treatment groups (Factor A) and trials (Factor B). To construct the hypothesis test matrices
C and M for the test of interaction, the matrix C used to compare groups in the one-way
MANOVA design is combined with the matrix M used in the two group profile analysis,
similar to (3.9.35). With the error matrix E defined as in the one-way MANOVA and H =
(CB̂M)′

(
C
(
X′X

)− C′
)−1

(CB̂M) where B̂ is identical to B̂ for the MANOVA model, the

test of interaction is constructed. The parameters for the test are

s = min (vh, u) = min (a − 1, p − 1)

M = (|vh − u| − 1) /2 = (|a − p| − 1) /2

N = (ve − u − 1) /2 = (n − a − p) /2

since vh = r (C) = (a − 1), u = r(M), and ve = n − r (X) = n − a.
If the test of interaction is significant in a repeated measures design, the unrestrictive

multivariate test of treatment group differences and the unrestrictive multivariate test of
equality of the p trial vectors are not usually of interest.

If the test of interaction is not significant, signifying that treatments and trials are not
confounded by interaction, the structure of the elements µi j in B are additive so that

µi j = µ+ αi + β j i = 1, . . . , a; j = 1, 2, . . . , p (4.14.3)

When this is the case, we may investigate the restrictive tests

Hα : allαi are equal

Hβ : allβ i are equal
(4.14.4)

Or, using the parameters µi j , the tests become

Hα : µ1. = µ2. = . . . = µa.

Hβ : µ.1 = µ.2 = . . . = µ.p

Hβ∗ : µ.1 = µ.2 = . . . = µ.p

(4.14.5)
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where µi. =
∑p

j=1 µi j/p, µ. j =
∑a

i=1 µi j/a, and µ. j =
∑a

i=1 niµi j/n.
To test Hα , the matrix C is identical to the MANOVA test for group differences, and the

matrix M′ = [1/p, 1/p, . . . , 1/p]. The test is equivalent to testing the equality of the a
independent group means, or a one-way ANOVA analysis for treatment differences.

The tests Hβ and Hβ∗ are extensions of the tests of conditions, HC and H W
C , for the two

group profile analysis. The matrix M is selected equal to the matrix M used in the test of
parallelism and the matrices C are, respectively,

Cβ = [1/a, 1/a, . . . , 1/a] for Hβ

Cβ∗ = [n1/n, n2/n, . . . , na/n] for Hβ∗
(4.14.6)

Then, it is easily verified that the test statistics follow Hotelling’s T 2 distribution where

T 2
β = a2

(
a∑

i=1
1/ni

)−1

y′..M
(
M′SM

)−1 M′y..

T 2
β∗ = ny′..M

(
M′SM

)−1 M′y..

are distributed as central T 2 with degrees of freedom (p − 1, ve = n − a) under the null
hypotheses Hβ and Hβ∗ , respectively, where y.. and y.. are the weighted and unweighted
sample means

y.. =∑
i

yi./a and y.. =
∑
i

ni yi./n

Following the rejection of the test of AB, simultaneous confidence intervals for tetrads
in the µi j are easily established using the same test criterion that was used for the overall
test. For the tests of Hβ and Hβ∗ , Hotelling T 2 distribution is used to establish confidence
intervals. For the test of Hα , standard ANOVA methods are available.

To perform a multivariate analysis of a repeated measures design, the matrix � for each
group must be positive definite so that p ≥ ni for each group. Furthermore, the analysis
assumes an unstructured covariance matrix � for the repeated measures. When the matrix
� is homogeneous and has a simplified (Type H) structure, the univariate mixed model
analysis of the multiple group repeated measures design is more powerful.

The univariate mixed model for the design assumes that the subjects are random and
nested within the fixed factor A, which is crossed with factor B. The design is called a
split-plot design where factor A is the whole plot and factor B is the repeated measures or
split-plot, Kirk (1995, Chapter 12). The univariate (split-plot) mixed model is

yi jk = µ+ αi + βk + γ ik + s(i) j + ei jk (4.14.7)

where s(i) j and ei jk are jointly independent, s(i) j ∼ I N
(
0, σ 2

s

)
and ei jk ∼ I N

(
0, σ 2

e

)
.

The parameters αi , β j , and γ i j are fixed effects representing factors A, B, and AB. The
parameter s(i) j is the random effect of the j th subject nested within the i th group. The
structure of the cov

(
yi j

)
is ∑ = σ 2

s Jp + σ 2
eIp

= ρ2Jp + (1− ρ) σ 2Ip
(4.14.8)
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where σ 2 = σ 2
e + σ 2

s and the intraclass correlation ρ = σ 2
s/

(
σ 2

s + σ 2
e

)
. The matrix � is

said to have equal variances and covariances that are equal or uniform, intraclass structure.
Thus, while cov(yi j ) �= σ 2I, univariate ANOVA procedures remain valid.

More generally, Huynh and Feldt (1970) showed that to construct exact F tests for
B and AB using the mixed univariate model the necessary and sufficient condition is that
there exists an orthogonal matrix Mp×(p−1)

(
M′M = Ip−1

)
such that

M′�M = σ 2Ip−1 (4.14.9)

so that � satisfies the sphericity condition. Matrices which satisfy this structure are called
Type H matrices. In the context of repeated measures designs, (4.14.9) is sometimes called
the circularity condition. When one can capitalize on the structure of �, the univariate F test
of mean treatment differences is more powerful than the multivariate test of mean vector
differences since the F test is one contrast of all possible contrasts for the multivariate test.
The mixed model exact F tests of B are more powerful than the restrictive multivariate tests
Hβ

(
Hβ∗

)
. The univariate mixed model F test of AB is more powerful than the multivariate

test of parallelism since these tests have more degrees of freedom v, v = r (M) ve where
ve is the degrees of freedom for the corresponding multivariate tests. As shown by Timm
(1980a), one may easily recover the mixed model tests of B and AB from the restricted
multivariate test of B and the test of parallelism. This is done automatically by using the
REPEATED option in PROC GLM. The preferred procedure for the analysis of the mixed
univariate model is to use PROC MIXED.

While the mixed model F tests are most appropriate if � has Type H structure, we know
that the preliminary tests of covariance structure behave poorly in small samples and are
not robust to nonnormality. Furthermore, Boik (1981) showed that the Type I error rate of
the mixed model tests of B and AB are greatly inflated when � does not have Type H
structure. Hence, he concludes that the mixed model tests should be avoided.

An alternative approach to the analysis of the tests of B and AB is to use the Green-
house and Geisser (1959) or Huynh and Feldt (1970) approximate F tests. These authors
propose factors ε and ε̃ to reduce the numerator and denominator degrees of freedom of
the mixed model F tests of B and AB to correct for the fact that � does not have Type
H structure. In a simulation study conducted by Boik (1991), he shows that while the ap-
proximate tests are near the Type I nominal level α, they are not as powerful as the exact
multivariate tests so he does not recommend their use. The approximate F tests are also
used in studies in which p is greater than n since no multivariate test exists in this situation.
Keselman and Keselman (1993) review simultaneous test procedures when approximate F
tests are used.

An alternative formulation of the analysis of repeated measures data is to use the univari-
ate mixed linear model. Using the FR cell means model, let µ jk = µ+α j +βk + γ jk . For
this representation, we have interchanged the indices i and j . Then, the vector of repeated
measures y′i j =

[
yi j1, yi j2, . . . , yi jp

]
where i = 1, 2, . . . , n j denotes the i th subject nested

within the j th group (switched the role of i and j) so that si( j) is the random component of
subject i within group j ; j = 1, 2, . . . , a. Then,

yi j = θ j + 1ps(i) j + ei j (4.14.10)
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where θ j =
[
µ j1, µ j2, . . . , µ j p

]
is a linear model for the vector yi j of repeated measures

with a fixed component and a random component. Letting i = 1, 2, . . . , n where n =∑
j n j and δi j be an indicator variable such that δi j = 1 if subject i is from group j and

δi j = 0 otherwise where δ′i = [δi1, δi2, . . . , δia], (4.4.10) has the univariate mixed linear
model structure

yi = Xiβ + Zi bi + ei (4.14.11)

where

yi
p×1
=


yi1
yi2
...

yip

 , Xi
p×a
= [

Ip ⊗ δi
]
, β

pa×1
=


µ11
µ21
...

µap


Zi = 1p and bi = si( j)

and e′i =
[
ei j1, ei j2, . . . , ei jp

]
. For the vector yi of repeated measurements, we have as in

the univariate ANOVA model that

E (yi ) = Xiβ

cov (yi ) = Zi cov (bi )Z′i + cov (ei )

= Jpσ
2
s + σ 2

eIp

which is a special case of the multivariate mixed linear model to be discussed in Chapter 6.
In Chapter 6, we will allow more general structures for the cov (yi ) and missing data.

In repeated measurement designs, one may also include covariates. The covariates may
enter the study in two ways: (a) a set of baseline covariates are measured on all subjects
or (b) a set of covariates are measured at each time point so that they vary with time. In
situation (a), one may analyze the repeated measures data as a MANCOVA design. Again,
the univariate mixed linear model may be used if � has Type H structure. When the
covariates are changing with time, the situation is more complicated since the MANCOVA
model does not apply. Instead one may use the univariate mixed ANCOVA model or use the
SUR model. Another approach is to use the mixed linear model given in (4.14.11) which
permits the introduction of covariates that vary with time. We discuss these approaches in
Chapters 5 and 6.

b. Extended Linear Hypotheses

When comparing means in MANOVA/MANCOVA designs, one tests hypotheses of the
form H : CBM = 0 and obtains simultaneous confidence intervals for bilinear parametric
functions ψ = c′Bm. However, all potential contrasts of the parameters of B = [

µi j
]

may
not have the bilinear form. To illustrate, suppose in a repeated measures design that one is
interested in the multivariate test of group differences for a design with three groups and
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three variables so that

B =


µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 (4.14.12)

Then for the multivariate test of equal group means

HG :


µ11

µ12

µ13

 =


µ21

µ22

µ23

 =


µ31

µ32

µ33

 (4.14.13)

one may select C ≡ Co and M ≡Mo where

Co =
 1 −1 0

0 1 −1

 and Mo = I3 (4.14.14)

to test HG : CoBMo = 0. Upon rejection of HG suppose one is interested in comparing
the diagonal means with the average of the off diagonal means. Then,

ψ = (
µ11 + µ22 + µ33

)− [
(µ12 + µ21)+

(
µ13 + µ31

)+ (
µ23 + µ32

)]
/2 (4.14.15)

This contrast may not be expressed in the bilinear form ψ = c′Bm. However, for a gen-
eralized contrast matrix G defined by Bradu and Gabriel (1974), where the coefficients in
each row and column sum to one, the contrast in (4.14.15) has the general form

ψ = tr (GB) = tr


1 −.5 −.5

−.5 1 −.5

−.5 −.5 1




µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33

 (4.14.16)

Thus, we need to develop a test of the contrast, Hψ : tr (GB) = 0.
Following the multivariate test of equality of vectors across time or conditions

HC :


µ11

µ21

µ31

 =


µ12

µ22

µ32

 =


µ13

µ23

µ33

 (4.14.17)

where C ≡ Co = I3 and M ≡Mo =
 1 0
−1 1

0 −1

, suppose upon rejection of HC that

the contrast
ψ = (µ11 − µ12)+

(
µ22 − µ23

)+ (
µ31 − µ33

)
(4.14.18)
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is of interest. Again ψ may not be represented in the bilinear form ψ = c′Bm. However,
for the column contrast matrix

G =


1 0 1

−1 1 0

0 −1 −1

 (4.14.19)

we observe that ψ = tr (GB). Hence, we again need a procedure to test Hψ : tr (GB) = 0.
Following the test of parallelism

 1 −1 0

0 1 −1




µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33




1 0

−1 1

0 −1

 = 0

Co B Mo = 0

(4.14.20)

suppose we are interested in the significance of the following tetrads

ψ = (
µ21 + µ12 − µ31 − µ22

)+ (
µ32 + µ23 − µ13 − µ22

)
(4.14.21)

Again, ψ may not be expressed as a bilinear form. However, there does exist a generalized
contrast matrix

G =


0 1 −1

1 −2 1

−1 1 0


such that ψ = tr (GB). Again, we want to test Hψ tr (GB) = 0.

In our examples, we have considered contrasts of an overall test Ho : Co B Mo = 0
where ψ = tr (GB). Situations arise where G =∑

i γ i Gi , called intermediate hypotheses
since they are defined by a spanning set {Gi }. To illustrate, suppose one was interested in
the intermediate hypothesis

ωH : µ11 = µ21
µ12 = µ22 = µ32
µ23 = µ33
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To test ωH , we may select matrices Gi as follows

G1 =


1 −1 0

0 0 0

0 0 0

 , G2 =


0 0 0

1 −1 0

0 0 0



G3 =


0 0 0

0 1 −1

0 0 0

 , G4 =


0 0 0

0 0 0

0 1 −1


(4.14.22)

The intermediate hypothesis ωH does not have the general linear hypothesis structure,
CoBMo = 0.

Our illustrations have considered a MANOVA or repeated measures design in which each
subject is observed over the same trials or conditions. Another popular repeated measures
design is a crossover (of change-over) design in which subjects receive different treatments
over different time periods. To illustrate the situation, suppose one wanted to investigate
two treatments A and B, for two sequences AB and B A, over two periods (time). The pa-
rameter matrix for this situation is given in Figure 4.14.1. The design is a 2 × 2 crossover
design where each subject receives treatments during a different time period. The subjects
“cross-over” or “change-over”

Periods (time)
1 2

Sequence
AB

µ11
A

µ12
B

B A
µ21
B

µ22
A

Figure 4.14.1 2× 2 Cross-over Design

from one treatment to the other. The FR parameter matrix for this design is

B =
 µ11 µ12

µ21 µ22

 =
 µA µB

µB µA

 (4.14.23)

where index i = sequence and index j = period. The nuisance effects for crossover de-
signs are the sequence, period, and carryover effects. Because a 2 × 2 crossover design is
balanced for sequence and period effects, the main problem with the design is the potential
for a differential carryover effect. The response at period two may be the result of the direct
effect (µA or µB) plus the indirect effect (λB or λA) of the treatment at the prior period.
Then, µB = µA + λA and µA = µB + λB at period two. The primary test of interest for
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the 2× 2 crossover design is whether ψ = µA −µB = 0; however, this test is confounded
by λA and λB since

ψ =
(
µ11 + µ22

2

)
−

(
µ12 + µ21

2

)
= µA − µB + (λA − λB) /2

This led Grizzle (1965) to recommend testing H : λA = λB before testing for treatment
effects. However, Senn (1993) shows that the two step process adversely effects the overall
Type I familywise error rate. To guard against this problem, a multivariate analysis is
proposed. For the parameter matrix in (4.14.23) we suggest testing for no difference in the
mean vectors across the two periods

Hp :
 µ11

µ21

 =
 µ12

µ22

 (4.14.24)

using

C ≡ Co =
 1 0

0 1

 and M =Mo

 1

−1

 (4.14.25)

Upon rejecting Hp, one may investigate the contrasts

ψ1 : µ11 − µ22 = 0 or λA = 0
ψ2 : µ21 − µ12 = 0 or λB = 0

(4.14.26)

Failure to reject either ψ1 = 0 or ψ2 = 0, we conclude that the difference is due to
treatment. Again, the joint test of ψ1 = 0 and ψ2 = 0 does not have the bilinear form,
ψ i �= c′i Bmi . Letting β = vec (B), the contrasts ψ1 and ψ2 may be written as Hψ :
Cψβ = 0 where Hψ becomes

Cψβ =
 1 0 0 −1

0 1 −1 0




µ11

µ21

µ12

µ22


=



0

0

0

0


(4.14.27)

Furthermore, because K =M′o⊗Co for the matrices Mo and Co in the test of Hp, ψ1 and
ψ2 may be combined into the overall test

γ = C∗β =



1 0 0 −1

0 1 −1 0

1 0 −1 0

0 1 0 −1





µ11

µ21

µ12

µ22


=



0

0

0

0


(4.14.28)
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where the first two rows of C∗ are the contrasts for ψ1 and ψ2 and the last two rows of C∗
is the matrix K.

An alternative representation for (4.14.27) is to write the joint test as

ψ1 = tr

[(
1 0
0 −1

)(
µ11 µ12
µ21 µ22

)]
= 0

ψ2 = tr

[(
0 1
−1 0

)(
µ11 µ12
µ21 µ22

)]
= 0

ψ3 = tr

[(
1 0
−1 0

)(
µ11 µ12
µ21 µ22

)]
= 0

ψ4 = tr

[(
0 1
0 −1

)(
µ11 µ12
µ21 µ22

)]
= 0

(4.14.29)

so that each contrast has the familiar form: ψ i = tr (Gi B) = 0. This suggests representing
the overall test of no difference in periods and no differential carryover effect as the inter-
section of the form tests described in (4.14.29). In our discussion of the repeated measures
design, we also saw that contrasts of the form ψ = tr (GB) = 0 for some matrix G arose
naturally. These examples suggest an extended class of linear hypotheses. In particular all
tests are special cases of the hypothesis

ωH = ⋂
GεGo

{tr (GB) = 0} (4.14.30)

where Go is some set of p × q matrices that may form k linear combinations of the pa-
rameter matrix B. The matrix decomposition described by (4.14.29) is called the extended
multivariate linear hypotheses by Mudholkar, Davidson and Subbaiah (1974). The family
ωH includes the family of all maximal hypotheses Ho : CoBMo = 0, all minimal hypothe-
ses of the form tr (GB) = 0 where the r (G) = 1 and all intermediate hypotheses where G
is a linear combination of Gi ⊆ Go. To test ωH , they developed an extended T 2

o and largest
root statistic and constructed 100 (1− α)% simultaneous confidence intervals for all con-
trasts ψ = tr (GB) = 0. To construct a test of ωH , they used the UI principal. Suppose a
test statistic tψ (G ) may be formed for each minimal hypotheses ωM ⊆ ωH . The overall
hypothesis ωH is rejected if

t (G) = sup
G∈Go

tψ (G) ≥ cψ (α) (4.14.31)

is significant for some minimal hypothesis where the critical value cψ (α) is chosen such
that the P

(
t (G) ≤ cψ (α) |ωH |

) = 1− α.
To develop a test of ωH , Mudholkar, Davidson and Subbaiah (1974) relate tψ (G) to

symmetric gauge functions (sg f ) to generate a class of invariant tests discussed in some
detail in Timm and Mieczkowski (1997). Here, a more heuristic argument will suffice.

Consider the maximal hypothesis in the family ωH , Ho : CoBMo = 0. To test Ho, we
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let
Eo =M′oY′(I− X

(
X′X

)−1 X′)YMo

Wo = Co
(
X′X

)−1 C′o
B̂ = (

X′X
)−1 X′Y

B̂o = CoB̂Mo

Ho = B̂′oW−1
o B̂o

(4.14.32)

and relate the test of Ho to the roots of |Ho − λEo| = 0. We also observe that

ψ = tr (GB) = tr (MoGoCoB) = tr (GoCoBMo) = tr (GoBo)

ψ̂ = tr(GB̂) = tr(GoB̂o)
(4.14.33)

for some matrix Go in the family. Furthermore, for some Go, ψ̂ is maximal. To maximize
t (G) in (4.14.31), observe that the

tr(GoB̂o) =
[
tr(E1/2

o GoW1/2
o )(W−1/2

o B̂oE−1/2
o )

]
(4.14.34)

Also recall that for the matrix norm for a matrix M is defined as ‖M‖p =
[∑

i λ
p/2
i

]1/2

where λi is a root of M′M. Thus, to maximize t (G), we may relate the function tr(GoB̂o)

to a matrix norm. Letting

M′ = E1/2
o GoW1/2

o

M′M = E1/2
o GoW1/2

o G′oE1/2
o ,

the ‖M‖p depends on the roots of
∣∣H− λE−1

o

∣∣ = 0 for H = GoWoG′o. For p = 2, the[
tr
(
GoWoG′oEo

)]1/2 = (∑
i λi

)1/2 where the roots λi = λi
(
GoWoG′oEo

) = λi (HEo)

are the roots of
∣∣H− λE−1

o

∣∣ = 0. Furthermore observe that for A = W−1/2
o B̂oE−1/2

o that

A′A = E−1
o B̂′oW−1

o B̂oE−1/2
o and that the ||A||p = (

∑
i θ

p/2
i )1/p. For p = 2, the θ i are

roots of |Ho − θEo| = 0, the maximal hypothesis. To test Ho : CoBMo = 0, we use
T 2

o = ve tr
(
HoE−1

o

)
. For p = 1, the test of Ho is related to the largest root of |Ho − θEo| =

0. These manipulations suggest forming a test statistic with t (G) = tψ (G) = |ψ̂ |/σ̂ ψ̂

and to reject ψ = tr (GB) = 0 if t (G) exceeds cψ (α) = cα where cα depends on the
root and trace criteria for testing Ho. Letting s = min (vh, u), M = (|vh − u| − 1) /2,
N = (ve − u − 1) /2 where vh = r (Co) and u = r (Mo), we would reject ωm : ψ =
tr (GB) = 0 if |ψ̂ |/σ̂ ψ̂ > cα where σ̂ ψ̂ ≡ σTrace =

(∑
i λi

)1/2 and σ̂ ψ̂ ≡ σRoot =∑
i λ

1/2
i for λi that solve the characteristic equation

∣∣H− λE−1
o

∣∣ = 0 for H = GoWoG′o
and tr(GoB̂o) = tr(GB̂) for some matrix Go. Using Theorem 3.5.1, we may construct
simultaneous confidence intervals for parametric function ψ = tr (GB).

Theorem 4.14.1. Following the overall test of Ho : CoBMo = 0, approximate 1 − α

simultaneous confidence sets for all contrasts ψ = tr (GB) = 0 using the extended trace or
root criterion are as follows

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂



4.14 Repeated Measurement Designs 293

where for the

Root Criterion

c2
α ≈ v1

v2
F1−α (v1, v2)

v1 = max (vh, u) and v2 = ve − v1 + vh

σ̂ ψ̂ ≡ σ̂Root =∑
i λ

1/2
i

and the

Trace Criterion

c2
α ≈ sv1

v2
F1−α (v1, v2)

v1 = s (2M + s + 1) and v2 = 2 (s N + 1)

σ̂ ψ̂ ≡ σ̂Trace =
(∑

i λi
)1/2

The λi are the roots of
∣∣H− λi E−1

o

∣∣ = 0, Eo is the error SSCP matrix for testing Ho,

M, N , vh and u are defined in the test of Ho and H = GoWoG′o for some Go, and the
tr(GoB̂o) = tr(GB̂) = ψ̂ .

Theorem 4.14.1 applies to the subfamily of maximal hypotheses Ho and to any minimal
hypothesis that has the structure ψ = tr (GB) = 0. However, intermediate extended multi-
variate linear hypotheses depend on a family of Gi so that G =∑k

i=1 ηi Gi for some vector
η′ = [

η1, η2, . . . , ηp
]
. Thus, we must maximize G over the Gi as suggested in (4.14.31)

to test intermediate hypotheses. Letting τ ′ = [τ i ] and the estimate be defined as τ̂ = [̂τ i ]
where

τ̂ i = tr(G′oi B̂o) = tr(G′i B̂)

T = [
ti j

]
where ti j = tr(Goi WoG′oj Eo)

and t (G) = [
tψ (G)

]2 = (
η′τ

)2
/η′Tη, Theorem 2.6.10 is used to find the supremum over

all vectors η.
Letting A ≡τ̂ τ̂ ′ and B ≡ T, the maximum is the largest root of |A− λB| = 0 or λ1 =

λ1(AB−1) = λ1
(̂
τ ′τ̂T−1

) = τ̂ ′T−1τ̂ . Hence, an intermediate extended multivariate linear
hypothesis ωH : ψ = 0 is rejected if t (G) = τ̂ ′T−1τ̂ > c2

ψ(α) is the trace or largest root
critical value for some maximal hypothesis. For this situation approximate 100 (1− α)%
simultaneous confidence intervals for ψ = a′τ are given by

a′τ̂ − c2
α

√
a′Ta

n
≤ a′τ ≤ a′τ̂ + c2

α

√
a′Ta

n
(4.14.35)

for arbitrary vectors a. The value c2
α may be obtained as in Theorem 4.14.1.
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We have shown how extended multivariate linear hypotheses may be tested using an
extended T 2

o or largest root statistic. In our discussion of the 2 × 2 crossover design we
illustrated an alternative representation of the test of some hypothesis in the family ωH . In
particular, by vectorizing B, the general expression for ωH is

ωH : C∗ vec (B) = C∗β = 0 (4.14.36)

Letting γ = C∗β, and assuming a MVN for the vows of Y, the distribution of γ̂ ∼
Nv[γ , C∗

(
D′�−1D

)−1
C′∗] where v = r (C∗) , D = Ip ⊗ X and � = � ⊗ In . Be-

cause � is unknown, we must replace it by a consistent estimate that converges in prob-
ability to �. Two candidates are the ML estimate �̂ = Eo/n and the unbiased estimate
S = Eo/ [n − r (X)]. Then, as a large sample approximation to the LR test of ωH we may
use Wald’s large sample chi-square statistic given in (3.6.12)

X2 = (C∗β̂)′[C∗(D′�̂−1D)−1C′∗]−1(C∗β̂) ∼ χ2
v (4.14.37)

where v = r (C∗). If an inverse does not exist, we use a g-inverse. For C∗ = M′o ⊗ Co,
this is a large sample approximation to T 2

o given in (3.6.28) so that it may also be con-
sidered an alternative to the Mudholkar, Davidson and Subbaiah (1974) procedure. While
the two procedures are asymptotically equivalent, Wald’s statistic may be used to establish
approximate 100 (1− α)% simultaneous confidence intervals for all contrasts c′∗β = ψ .
For the Mudholkar, Davidson and Subbaiah (1974) procedure, two situations were dealt
with differently, minimal and maximal hypotheses, and intermediate hypotheses.

4.15 Repeated Measurements and Extended Linear
Hypotheses Example

a. Repeated Measures (Example 4.15.1)

The data used in the example are provided in Timm (1975, p. 454) and are based upon data
from Allen L. Edwards. The experiment investigates the influence of three drugs, each at
a different dosage levels, on learning. Fifteen subjects are assigned at random to the three
drug groups and five subjects are tested with each drug on three different trials. The data
for the study are given in Table 4.15.1 and in file Timm 454.dat. It contains response times
for the learning tasks. Program m4 15 1.sas is used to analyze the experiment.

The multivariate linear model for the example is Y
15×3
= X

15×3
B

3×3
+ E

15×3
where the param-

eter matrix B has the structure

B =
 µ11 µ12 µ13

µ21 µ22 µ23
µ31 µ32 µ33

 =
 µ′1
µ′2
µ′3

 = [
µi j

]
(4.15.1)

Given multivariate normality and equality of the covariance matrices for the three indepen-
dent groups, one may test the hypothesis of equal group mean vectors.

HG : µ1 = µ2 = µ3 (4.15.2)
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This test is identical to the one-way MANOVA hypothesis. Using PROC GLM, this is
tested with the MANOVA statement and h = group. Setting α = 0.05, the test of HG is
rejected since F = 3.52 on (6, 20) degrees of freedom has a p-value of 0.0154 for the test
using Wilks’ � criterion. All multivariate criteria lead one to reject HG .

To test for parallelism of the regressions curves for the three groups, C is identical to the
matrix used to test HG ; however, that post matrix M is selected such that

M =
 1 0
−1 1

0 −1


Then, the test of parallelism is

HP :
[

µ11 − µ12
µ12 − µ13

]
=

[
µ21 − µ22
µ22 − µ23

]
=

[
µ31 − µ32
µ32 − µ33

]
(4.15.3)

In PROC GLM, HP is tested using

m = (
1 −1 0,
0 1 −1

)
TABLE 4.15.1. Edward’s Repeated Measures Data

Trials
Subject 1 2 3

1 2 4 7
2 2 6 10

Drug Group 1 3 3 7 10
4 7 9 11
5 6 9 12

1 5 6 10
2 4 5 10

Drug Group 2 3 7 8 11
4 8 9 11
5 11 12 13

1 3 4 7
2 3 6 9

Drug Group 3 3 4 7 9
4 8 8 10
5 7 10 10
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FIGURE 4.15.1. Plot of Means Edward’s Data

For Wilks’ � criterion, � = 0.4602 or F = 2.61 the p-value for the test is 0.0636.
We conclude that there is no interaction between groups and trials. A plot of the means is
provided in Figure 4.15.1
While the plots do cross, for α = 0.05 the result is not statistically significant.

One may also test that the mean vectors across trials are equal

HC =
 µ11

µ21
µ31

 =
 µ12

µ22
µ32

 =
 µ13

µ23
µ33

 (4.15.4)

To test HC with PROC GLM, one must use a CONTRAST statement in SAS with C ≡ I
while M is used to construct differences across trials. For Wilks’ � criterion, � = 0.0527
with p-value < 0.0001 so that the test is significant.

The three multivariate tests we have just considered have assumed equal, unknown, and
unstructured covariance matrices for the three groups under study. The most important
test in a repeated measurement design is the test of parallelism or equivalently whether
or not there exists a significant interaction between groups and trials. If we can further
establish that the circularity condition in (4.14.9) is valid for our study, a uniformly more
powerful test of parallelism (group × trial interaction) exists with the design. To test for
sphericity/circularity using PROC GLM, one must use the REPEATED statement with the
option PRINTE. This is found in program m14 15 1.sas with the heading “Univariate Tests
given Parallelism and Sphericity” We see that Mauchly’s test of sphericity for orthogonal
components is not rejected (p-value = 0.1642). The test of trial∗group given sphericity has
a p-value of 0.0569. This value is less than the corresponding p-value for the multivariate
test with p-value 0.0636, but still larger that the nominal α = 0.05 level so that we fail
to reject the test of parallelism or interaction. Given a nonsignificant interaction, one may
average over drug groups to test for differences in trials given parallelism, Hβ in (4.14.5).
And, one may average over trials to test for differences in drug groups given parallelism,
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Hα in (4.14.5). From a MR model perspective, the test of Hα is constructed using

C =
[

1 −1 0
0 1 −1

]
and M =

 1/3
1/3
1/3


Using PROC GLM in program m4 15 1.sas this test is labeled “Test of Groups given
Parallelism”. Testing Hα , F = 1.13 with degrees of freedom (2, 12) and p-value of 0.3567,
a non-significant result. Observe, that this is merely a contrast following the test of HG of
the one-way MANOVA design. To test Hβ from a MR model perspective, one may select

C = [
1, 1, 1

]
and M =

[
1 0 −1
0 1 −1

]
or equivalently, one may select

C = [
1/3, 1/3, 1/3

]
and M =

 .707107 −.408258
0 .816497

−.707107 −.408248


so that M′M = I. This test is labeled the “Test of Intercept” in SAS. It is associated with
the MANOVA statement with h = all . For this test,

H =
[

163.3334 13.4738
13.4738 1.1115

]
E =

[
15.000 1.7318
1.7317 4.9998

] (4.15.5)

For Wilks’ � criterion, � = 0.0839 with p-value 0.0001. One may think of this test as a
contrast following the multivariate test of HC . Because s = 1,

� = 1

1+ T 2/ve

this is seen to be a multivariate test of equal correlated means and not a univariate test of
independent means as was the case for the test of Hα .

The tests of Hα and Hβ were tested given parallelism and assuming an unknown general
structure for �. However, we saw that M′�M = σ 2I. As with the test of parallelism, we
may be able to construct a more powerful test of Hα and Hβ given sphericity. This is the
case. In program m4 15 1.sas we have labeled the tests as “Univariate Tests given Paral-
lelism and Sphericity”. They are obtained by using the REPEATED statement. Reviewing
the output from PROC GLM one observes that SAS generates tests of Sphericity, a test of
no trials effect, a test of no trials*group effect, and a test of group differences. In addition,
an ANOVA table is produced for tests of trials and trials*group interaction. Further inves-
tigation of the results, we see that the test of trials is our test of Hβ,� = 0.0839. The test
of no trials*group effect is our test of HP given in (4.15.3) and � = 0.4602. These are
multivariate tests and do not require the sphericity condition to hold.
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Next, we have a test for group different with F = 1.13. This is the test of Hα . It also
does not require sphericity. Finally , we have an ANOVA table for the tests of trials and
trials∗groups. These are derived from the multivariate tests Hβ and HP given M′M = I
and M′�M =σ 2I. To illustrate, recall that the tests of Hβ produced H and E in (4.15.5)
with vh = 1 and ve = 12. Suppose we divide the diagonal elements of H by vh = 1 and
average, then we have M Sh = 82.222. Similarly, if we divide the diagonal elements of
E by ve = 12 and average M Se = 0.8333. These are the mean squares in the ANOVA
table labels “trials” and “Error (trials)”. To determine the univariate degrees of freedom, the
r (M) is used. That is, r (M) vh = 2(1 = 2 and r (M) ve = 2 (12) = 24. This demon-
strates that the univariate test of trials is directly determined from the test of HP given
parallelism. One may similarly demonstrate that the univariate tests of interaction given
sphericity may be obtained from the multivariate test HP . Details are provided by Boik
(1988). Given that sphericity is satisfied, that univariate tests are uniformly more powerful
than the multivariate tests Hβ and HP . When sphericity is not satisfied, some recommend
using F adjusted tests where the degrees of freedom of the univariate tests are multiplied
by the Geisser-Greenhouse Epsilon, ε̂, or the Huynh-Feldt Epsilon, ε̃. While this may be
appropriate under some conditions of lack of sphericity, it is not necessarily better than the
multivariate tests which may be conservative. In general, adjustments are to be avoided,
Boik (1991).

Given sphericity, one may also analyze the data in Table 4.15.1 as a univariate split plot
design where subjects are random and all other factors are fixed. This is a mixed ANOVA
model. For this approach, the data vectors must be reorganized into univariate observa-
tions. This is accomplished in the DATA step SPLIT. We have also included in program
m4 15 1.sas SAS statements for PROC GLM and PROC MIXED for the univariate analy-
sis. We will discuss the code for this approach in Chapter 6.

Scanning the output, one observes that the univariate ANOVA results for the fixed ef-
fects: groups, treat, and trial*group using the random/test results in PROC GLM and the
test of fixed effects in PROC MIXED are in agreement with the output generated by PROC
GLM using the REPEATED statement. If the univariate assumptions are satisfied, one
should use PROC MIXED for testing fixed effects, obtaining confidence intervals for fixed
parameters, and for estimating variance components. The output from PROC GLM should
only be used to test the significance of variance components and to compute expected mean
squares. This is made clear in Chapter 6.

b. Extended Linear Hypotheses (Example 4.15.2)

Returning to our analysis of Edward’s data assuming an unknown structure for Edwards�,
one may find that following a multivariate test of the form CBM = 0 that a contrast in-
volving the elements of B may be of interest and does not have a simple bilinear structure.
This leads one to investigate extended linear hypotheses. In SAS, one does not have a pro-
cedure to analyze extended linear hypotheses. In program m4 15 1.sas we include PROC
IML code to test HG , HC , HP , and to obtain simultaneous confidence intervals for a few
contrasts in the parameters that do not have a simple bilinear structure. For example, fol-
lowing the test of HG , we may want to test ψ = 0 for ψ defined in (4.14.15). Alternatively,
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suppose we are interested in testing

ωH : µ11 = µ21
µ12 = µ22 = µ32
µ13 = µ33

(4.15.6)

This has the structure ψ = Tr (Gi B) for Gi defined in (4.14.22). Following the test of HC ,
suppose we wanted to test ψ = 0 for ψ defined in (4.14.18). Finally, suppose following the
test of HP we wanted to investigate ψ defined in (4.14.21).

In program m4 15 1.sas, we first test a maximal hypothesis of the form Ho : CoBMo =
0 which is identical to a multivariate test. For the test of HG in (4.14.13), we estimate B
and Eo. Then for ψ in (4.14.15),

ψ̂ = tr(GB̂) = −2.5

for G in (4.14.16). Using Theorem 4.14.1, we solve | H− λEo |= 0 using the EIGVAL
function in PROC IML. This yields λ1 = 6.881, λ2 = 2.119, and λ3 = .0000158. Then,
for

σ̂Root =∑
i
λ

1/2
i

σ̂Trace =
(∑

i
λi

)1/2

the extended root statistics are

| ψ̂ | /σ̂Root = 0.6123

| ψ̂ | /σ̂Trace = 0.8333

Evaluating c2
α in Theorem 4.14.1, 0.9891365 and 1.3319921 are, respectively, the critical

values for the Root and Trace tests as shown in the output. Because the test statistic does not
exceed the critical value, the contrast is not significantly different from zero. Both intervals
contain zero

Root Interval (−6.5384, 1.5384)
Trace Interval (−6.4960, 1.4960)

To test (4.15.6) is more complicated since this involves the maximization of G over Gi .
Letting τ ′ = [τ 1, τ 2, τ 3, τ 4] where τ̂ ′ = [̂τ 1, τ̂ 2, τ̂ 3, τ̂ 4]

τ̂ i = tr(G′i B̂)

T = [
ti j

] = tr(Gi WoG′j Eo)

we find that

τ̂ ′ = [ −3, −1, 1, 2
]

T =


29.6 26 −13 −.7

26 27.2 −13.6 −7.6
−13 −13.6 27.2 15.2
−7 −7.6 15.2 10.4


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and that the test statistic t (G) = τ̂ ′T−1τ̂ = 2.2081151. The critical constant for the trace
criterion is the square of c2

α for the contrast ψ in (4.14.15) or (1.33199)2 = 1.774203.
Thus, the test of ωH in (4.15.6) is significant.

Following the test of parallelism, HP , the code in program m4 15 1.sas is provided to
obtain a confidence interval for ψ given in (4.14.21) and for (4.14.18) follow the test of HC

using both the Root and Trace criteria. The test that

ψ = (
µ21 + µ12 − µ31 − µ22

)+ (
µ32 + µ23 − µ13 − µ22

) = 0

is nonsignificant since the intervals include zero

Root : (−2.7090, 4.7900)

Trace : (−2.7091, 4.7091)

while the test that

ψ = (µ11 + µ12)+
(
µ22 − µ23

)+ (
µ31 + µ33

) = 0

is significant since the intervals do not include zero

Root : (−10.2992,−9.701)

Trace : (−10.2942,−9.7050)

While extended linear hypotheses allow us to analyze tests that do not have a single
bilinear form, a more direct procedure is to use Wald’s large sample chi-square statistic
given in (4.14.37) or for small samples we may use an F approximation

F = X2/r (C∗) .
∼

F (v, ve)

where ve = n − r (X). To illustrate, we test (4.15.6). Letting β = vec (B), the matrix C∗
for the test is

C∗ =


1 0 0 −1 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 −1 0
0 0 0 0 0 1 0 0 −1


Then for D = Ip ⊗ X and �̂ = �̂ ⊗ In , X2 = 66.67 and F = 16.67. For this example,
the chi-square or the more exact F approximation are both significant and consistent with
the test using the test statistic t (G) = τ̂ ′T−1τ̂ for the hypothesis.

Again one may use CONTRAST statements to locate significance of tests when using
PROC GLM or with IML code, obtain simultaneous confidence sets as illustrated in the
previous examples in this chapter. Finally, one may evaluate multivariate normality. For
our example, we have no reason to believe the data are not multivariate normal.

Exercises 4.15

1. In a study of learning 15 rats were randomly assigned to three different reinforce-
ment schedules ad then given a maze to run under form experimental conditions.
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The sequence in which the four conditions were presented in the experiment was
randomized independently for each animal. The dependent variable for the study
was the number of seconds taken to run the maze. The data for the study follow.

Reinforcement Rat Conditions
Schedule 1 2 3 4

1 29 20 21 18
2 24 15 10 8

1 3 31 19 10 31
4 41 11 15 42
5 30 20 27 53
1 25 17 19 17
2 20 12 8 8

2 3 35 16 9 28
4 35 8 14 40
5 26 18 18 51
1 10 18 16 14
2 9 10 18 11

3 3 7 18 19 12
4 8 19 20 5
5 11 20 17 6

(a) Analyze the data using both univariate and multivariate methods and discuss
your findings.

(b) Modify program m4 15 1.sas to test that ψ = (µ11 − µ12) +
(
µ22 + µ23

) +(
µ33 + µ34

) = 0, an extended linear hypothesis.

4.16 Robustness and Power Analysis for MR Models

When testing hypotheses for differences in means using the fixed effects, under normal-
ity, the F test is the uniformly most powerful, invariant, unbiased (UMPIU) test, Lehmann
(1994). The unbiasedness property ensures that the power of the test for parameters under
the alternative is greater than or equal to the size of the test α. The invariance property
states that test statistics satisfy special group structure that leave the test statistics invari-
ant. Finally, the UMP condition states that the test maximizes the power uniformly for all
parameters in the alternative hypothesis.

In general, UMPIU tests are difficult to find since they depend on the dimension of the
subspace occupied by the mean vectors. For example, when analyzing one and two group
hypotheses regarding mean vectors, Hotelling’s T 2 statistic is UMPIU, Anderson (1984).
In this situation, s = min (vh, u) = 1. When u = 1, the means µ1, µ2, . . . ,µq have
a unique order and when vh = 1 the q u-dimensional vectors lie on a line, an s = 1
dimensional subspace occupied by the mean vectors so that they may again be uniquely
ordered.
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For s > 1, there is no uniformly most powerful test. The four test statistics are max-
imally invariant statistics in that they depend on the s eigenvalues of HE−1 (Muirhead,
1982, Theorem 6.1.4). Furthermore, when testing H : CBM = 0 Perlman and Olkin
(1980) showed that the tests are unbiased. However, it is in general difficult to determine
the power of the test statistics since the distribution function of the roots of HE−1 is com-
plicated.

In the population, the E (Y) = XB for the MGLM and under multivariate normality, the
noncentrality parameter of the Wishart distribution under the null hypothesis is

� = (CBM)′ (C
(
X′X

)−1 C′)−1 (CBM)
(
M′�M

)−1 = ��−1 (4.16.1)

the population counterpart of HE−1. Thus, the nonzero eigenvalues
γ 1, γ 2, . . . , γ s of ��−1 represent the s-dimensional subspace spanned by the population
vectors µ1,µ2, . . . ,µq where s = min (vh, u) = r (�). An indication of the rank of �
may be obtained by examining the sample roots of HE−1 by solving |H−λE| = 0. The
population roots δ1 ≥ δ2 ≥ δ3 ≥ . . . ≥ δs > 0 lie between two extreme situations:
(1) δ > 0 and δi = 0 for i ≥ 2 and (2) δ1 = δ2 = . . . = δs > 0 where the vectors
are equally diffuse in s dimensions. Other configurations correspond to different relations
among the roots δ1 > δ2 > . . . > δs .

When δ1 > 0 and all other δi = 0, Roy’s largest root statistic tends to out perform the
other test procedures where the relation among the test statistics are as follows θ ≥ U (s) ≥
� ≥ V (s). For fixed u and as ve −→ ∞, the statistics based on �, V (s) and U (s) are
equivalent since they all depend on an asymptotic noncentral chi-square distribution with
degree of freedom v = vh u and noncentrality parameter δ = Tr (�). Olson (1974) found
that the tests are equivalent, independent of δ if ve ≥ 10vhu.

For small sample sizes using various approximations to the noncentral distribution of
the roots of HE−1, Pillai and Jaysachandran (1967), Lee (1971), Olson (1974), Muller and
Peterson (1984), Muller, LaVange, Ramey and Ramey (1992) and Schatzoff (1966) found
that when the roots δ1 ≥ δ2 ≥ . . . ≥ δs > 0 have different configuration that the ordering
of power is generally as follows for the four criteria: V (s) ≥ � ≥ U (s) ≥ θ with little
differences in power for the criteria V (s), � and U (s). As a general rule, one should use
Roy’s largest root test if δ1 & δ2, use V (s) if it is known that the δi are equal, use U (s) if
it is known that the δi are very unequal, and with no knowledge use the LRT criterion �.

Even though V (s) is the locally best invariant unbiased (LBIU) test for testing CBM = 0,
it does not always have an advantage in terms of power over the other criteria, except when
the δi are diffuse. This is not the case for multivariate mixed models, Zhou and Mathew
(1993).

While there is no optimal multivariate test for testing CBM = 0, it is of some inter-
est to investigate how sensitive the four test statistics are to violations of normality and
homogeniety of covariance matrices. Under homogeniety of the covariance matrices, we
know from the multivariate central limit theorem, that all statistics are reasonably robust
to nonnormality given large sample sizes; by large, we mean that ve/p > 20. For smaller
sample sizes this is not the case.

Robustness studies for departures from MVN that compare the four test criteria have
been conducted by Ito (1980), Korin (1972), Mardia (1971), O’Brien, Parente, and Schmitt
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(1982), and Olson (1974, 1975) among others, while Davis (1980, 1982) investigated
� and θ . Olson (1974) also compared the four statistics when the equality of covariance
matrices does not hold.

For moderate levels of skewness and kurtosis, O’Brien et al. (1982) concluded that all
four statistic are reasonable robust to nonnormality, effecting neither the Type I error rate α,
the size of the test, or power. This was also found to be the case for � and θ studied by
Davis (1980, 1982). In general, increased skewness tends to increase the size of the test,
α, while an increase in kurtosis tends to reduce α. Olson (1974) found that outliers tend to
reduce α, and ordered the robustness of the tests: V (s) ≥ � ≥ U (s) ≥ θ . This is the same
ordering of the asymptotic power of the tests assuming a MVN. Positive kurtosis tends to
reduce the power of all the tests.

When one does not have homogeniety of the covariance matrix, the simulation study
conducted by Olson (1974) found that this effects α more than nonnormality. The rates are
significantly increased with V (s) being most robust and θ the least, Olson (1975).

The simulation studies tend to show that the statistic most robust to lack of normality
and homogeniety of covariance matrices is V (s); however, α increases as the heterogeneity
of �i increases. The power is reduced only marginally by outliers, and the Type I error rate
is only moderately effected by lack of normality, Olson (1974).

Often a researcher wants to evaluate the power of a multivariate test and determine the
sample size for a study. Using noncentral F approximations, Muller and Peterson (1984)
showed how to approximate the distributions of V (s) and U (s) using Rao’s transforma-
tion given in (3.5.3). For the noncentral case, Muller and Peterson (1984) calculated the
noncentrality parameter of the F distribution by replacing sample values with population
values. To illustrate, recall that for a univariate GLM that the noncentrality parameter for
the noncentral F distribution is

γ = (Cβ)′ (C
(
X′X

)−1 C′)−1 (Cβ) /σ 2

= v1 M S∗h / M S∗e
= v1 F∗ (v1, v2)

(4.16.2)

where F∗ is the F statistic replaced by population values. Using (3.5.3), we let v1 = pvh

and

�∗ = |ve�|
|ve� + vh�| (4.16.3)

the population noncentrality � = ��−1 for � = (CBM)′
(

C
(
X′X

)−1 C′
)−1

(CBM) .

Then

γ = pvh

[
1− (�∗)1/d

(�∗)1/d

](
f d − 2λ

pvh

)
(4.16.4)

is the approximate noncentrality parameter of the noncentral F distribution for the � cri-
terion where f, d and λ are given in (3.5.3). Hence with X, B, C, M and � known

since � = (CBM)′
(

C
(
X′X

)−1 C′
)−1

(CBM) one may calculate γ . Using the SAS func-

tion PROBF, the approximate power of the � criterion is

power = 1− β = 1− PROBF
(

F1−α, v1, v2, γ
)

(4.16.5)
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where v1 = pvh, v2 = f d − 2λ in (3.5.3), and F1−α is the upper critical value of the F
distribution under Ho : CBU = 0. Muller and Peterson (1984) use Rao’s approximation
to also obtain estimates γ v and γ u for V (s) and U (s). Their approach does not use the
approximation used for F in Theorem 3.5.1. The population values for the other criteria are
defined as

V (s)∗ = tr
[
(vh�) (ve� + vh�)−1

]
U (s)∗ = tr

[
(vh�) (ve�)−1

]
Then

γ v = v1[V (s)∗ /(s − V (s)∗ )](v2/v1)

γ u = v1(U
(s)∗ /s) (v3/v1)

where v1 = pvh , s = min (vh, p), v2 = s (ve − vh + s) and v3 = s (ve − vh − 1). Muller
et al. (1992) extend the procedure to models with repeated measurements using the program
power.sas developed by Keith E. Muller. All power calculations while approximate are
accurate to approximately two digits of accuracy when compared to other procedures that
use asymptotic expansions of the test statistics to evaluate power for the noncentral Wishart
distribution. However, the approximation requires the design matrix X to contain fixed
variables. A study similar to that conducted by Gatsonis and Sampson (1989) for a random
MR design matrix has yet to be investigated. Because we now have p dependent variables
and not one, the guidelines developed by Gatsonis and Sampson are not applicable. One
rule may be to increase the sample size by 5p, if the number of independent variables is
small (below 10).

4.17 Power Calculations—Power.sas

To calculate the approximate power for a MGLM, one must be able to specify values for
the unknown parameter matrix in B for the linear model Y = XB+ E and the unknown
covariance matrix �. Because interest may involve several hypotheses of the form H :
CBM−� = 0 must also be defined. Finally, the estimated value for power depends on the
test criterion and the values of α. We use the program power.sas discussed by Muller et al.
(1992) to illustrate how one may estimate power for a repeated measurement design. The
program is similar to the program MV power illustrated by O’Brien and Muller (1993).

To use the power program, we first have to relate the notation of the program with the
matrices in this text. The matrix U is our matrix M. The default value for U is the identity
matrix Ip. When U is not equal to I, it must be proportional to an orthonormal matrix.
For repeated measures designs, U′U = Ip−1. The matrix B is defined as beta, the matrix
sigma = � and � ≡ THETAO. For our examples, we have taken the matrix � as a matrix
of zeros. To define the design matrix X, one may input X as a full rank design matrix or
using the cell means model define X with an essence design matrix (ESSENCEX) and use
REPN to denote the number of times each row of the ESSENCEX matrix occurs. For a cell
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means model, X′X = diag [Ni ]. Finally the matrix C is defined to represent the overall test
or contrast of interest. In program m4 17 1.sas we use the program to calculate the power
for the repeated measures design analyzed in Section 4.15 for α = 0.05.

To plan the experiment for the three group repeated measures design, suppose the re-
searcher specifies that the parameter matrix B is

B =
 4 7 10

7 8 11
5 7 9


and based on a pilot study that the unknown covariance matrix � is

� =
 74 65 35

65 68 38
35 38 26


For ni = 5, 10, and 15 subjects in each of the groups, the experimenter wants to evaluate
the associated power of several tests for α = 0.05.

Assuming a multivariate model, the power for the test of equal group means require

C =
[

1 0 −1
0 1 −1

]
and U = I3

For the test of equality of vectors across the repeated measurements,

C = I3 and U =
 .707107 .408248
−.707107 .408248

0 −.816497


The test of parallelism or no interaction requires

C =
[

1 0 −1
0 1 −1

]
and U =

 .707107 .408248
−.707107 .408248

0 −.816497


Given no interaction, the researcher also wanted to evaluate the power of the test for differ-
ences in groups given parallelism, the ANOVA test of means, so that

C =
[

1 0 −1
0 1 −1

]
and U =

 1/3
1/3
1/3


and finally the test for differences in conditions given parallelism is evaluated using

C = [
1/3 1/3 1/3

]
and U =

 .707107 .408248
−.707107 .408248

0 −.816497


Recalling that the mixed model univariate analysis of repeated measures design requires

the structures of U′�U = λI for the test of conditions given parallelism and the test
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TABLE 4.17.1. Power Calculations—�

ANOVA Means Power GG PWR
5 0.061
10 0.076
15 0.092

Conditions/Parallelism
5 0.731 0.878
10 0.982 0.997
15 0.999 1

Interaction
5 0.091 0.082
10 0.156 0.132
15 0.229 0.185

Group Mean Vectors
5 0.114
10 0.248
15 0.397

Condition Mean Vectors
5 0.480
10 0.906
15 0.991

of interaction, program power.sas also calculates the approximate power for the Geisser-
Greenhouse (GG) adjusted test ε̂, and the expected value of ε̂. The program computes the
approximate power of the GG and Huynh-Feldt (HF) corrections to the exact mixed model
solution whenever the r (U) ≥ 2. The output from the program is given in Table 4.17.1

For a repeated measurement design, the primary hypothesis of interest is the test of inter-
action, and given no interaction, the test of differences in condition. While 10 subjects per
group appears adequate for the test of conditions given parallelism, the test of interaction
has low power. For adequate power, one would need over over 60 subjects per treatment
group. Charging � to

�1 =
 7.4 6.5 3.5

6.5 6.8 3.8
3.5 3.8 2.6


which is closer to the sample estimate S for the example, power of the multivariate that of
interaction with 10 subjects per treatment group becomes 0.927. The power results for all
test using �1 are shown in Table 4.17.2.

This illustrates the critical nature � plays in estimating power for hypotheses regard-
ing B. Before one develops scenarios regarding B, a reliable estimate of � is critical in the
design of multivariate experiments. We have also assumed that the independent variables
are fixed in our example. In many multivariate regression applications we know that the
independent variables are random. While this does not effect hypothesis testing and the es-
timation of parameters for the MGLM, the effect of treating random independent variables
as fixed in power and sample size calculations is in general unknown. A study of multivari-
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TABLE 4.17.2. Power Calculations—�1

ANOVA Means Power GG PWR
5 0.0175
10 0.356
15 0.504

Conditions/Parallelism
5 1 1
10 1 1
15 1 1

Interaction
5 0.547 0.476
10 0.927 0.454
15 0.993 0.971

Group Mean Vectors
5 0781
10 0.998
15 1

Condition Mean Vectors
5 1 1
10 1 1
15 1 1

ate power and sample size that compares exact power and sample size calculations with
approximate values obtained assuming fixed independent variables, similar to the study by
Gatsonis and Sampson (1989), has not be conduction for the MGLM. We have assumed
that the relationship between the random and fixed univariate general linear models extend
in a natural way to multivariate general linear models. The guideline of increasing the sam-
ple size by five when the number of independent variables is less than ten in multiple linear
regression studies may have to be modified to take into account the number of dependent
variables in multivariate studies.

Exercises 4.17

1. Use program power.sas to estimate the power calculation in Exercise 3.11, problem 1.

2. Determine the approximate power for the one-way MANOVA design discussed in
Section 4.5 using sample estimates for B, � and α = 0.05 with and without the
outlier. Discuss your findings.

4.18 Testing for Mean Differences with Unequal Covariance
Matrices

Procedures for testing for differences in mean vectors for two groups were introduced in
Chapter 3 and extended in Section 4.6 for independent groups. However, these procedures
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may not be used for repeated measures designs and more general MR models. In this sec-
tion, using results due to Nel and van der Merwe (1988) and Nel (1997) methods for more
general designs are developed.

Using results due to Johansen (1980), Keselman, Carriere, and Lix (1993) developed an
extension of (3.9.23) to analyze multiple group repeated measurement designs which they
called a Welch-James (WJ) test. Assuming a one-way repeated measurement design with
� replaced by �1 in (4.14.1), the test statistic for testing

H : Cµ = 0 (4.18.1)

where µ = (
µ1,µ2, . . . ,µa

)′, µi =
(
µi1,µi2, . . . ,µi p

)′
, and C is a contrast matrix of

dimension r × ap with rank r = r (C) is

X2
W J = (Cy)′ (CSC)−1 (Cy) (4.18.2)

The matrix S = diag [Si/ni ,S2/n2, . . . ,Sa/na]. Si is the sample covariance matrix for
the i th group, and y = (

y1, y2, . . . , ya

)′ is a vector of stacked means for the a independent
groups. The test statistic X2

J W when divided by c may be approximated by a F distribution,
following (3.9.23), with v1 = r = R (C) and v2 = v1 (v1 + 2) /3A degrees of freedom.
The constants c and A are

c = v1 + 2A − 6A/ (v1 + 2) (4.18.3)

A = 1
2

∑a
i=1

[
tr
{

SC′
(
CSC′

)−1 CQi

}2+

tr
{

SC′
(
CSC′

)−1 CQi

}2
]
/ (ni − 1)

The matrix Qi is a block diagonal matrix of dimension (ap × ap), corresponding to the i th

groups, with the i th block equal to a p × p identity matrix and zero otherwise.
Keselman et al. (1993) show that when repeated measures main effects are tested, the

WJ test controls the Type I error rate. For the interaction between groups and conditions, it
fails to control the Type I error rate. Tests for between groups were not investigated.

Coombs and Algina (1996) extended the Brown and Forsythe (1974) univariate test to
one-way MANOVA designs by replacing univariate means with mean vectors and variances
with covariance matrices. Using the MR model Y = XB+E for testing H : CBM = 0 and
using results due to Nel and van der Merwe (1986) and Nel (1997), the multivariate Brown-
Forsythe (BF) statistic for testing differences in means is obtained by solving | H−λẼ |= 0.
Where

H = (CB̂M)′(C
(
X′X

)−1 C′)−1(CB̂M)

Ẽ =
[

a∑
i=1

ci
(
M′Si M

)] [
v∗e (p − 1)

vh f̂

] (4.18.4)

where Si is an sample estimate of �i , ci = (N − ni ) /N , vh = r (C),

v∗e =
tr
[∑a

i=1

(
ci M′Si M

)]2 + [
tr
∑a

i=1

(
ci M′Si M

)]2∑a
i=1{tr (ci M′Si M)2 + [tr (ci M′Si M)]2}/ (ni − 1)

(4.18.5)
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where letting NU M denote the numerator of v∗e the value of f̂ is

f̂ = NU M/
a∑

i=1

[
tr A2 + (tr A)2

]
+ B

A = (1− 2ci )
1/2 M′Si M

B =
[

tr
∑
i

(
ci M′Si M

)]2

+ tr

[∑
i

(
ci M′Si Mi

)]2

(4.18.6)

Following Boik (1991), we reject H if for

T 2
o = v∗e tr(HẼ)−1

2 (s N + 1)

s2 (2M + s + 1)
T 2

o /ν
∗
e > F1−α (v1, v2)

(4.18.7)

where s = min
(
v∗h , p

)
, N = (

v∗e − p − 1
)
/2, M = (| v∗h − p | −1

)
/2, v1 = s(2M + s+

1), and v2 = s(2N + s + 1). Results reported by Algeria (1994) favor the B F test, even
though the numerator degrees of freedom were not corrected in his study.

Exercises 4.18

1. For Edward’s data in Section 4.15, test the hypotheses: HG Edwards(4.14.2), HP

(5.15.3) and HC (4.14.4) using the test statistic X2
W J defined in (4.18.2).and statistic

T 2
o defined in (4.18.7). Compare the test results obtained using PROC GLM.

2. Reanalyze the data in Exercise 4.15, Problem 1, using the statistic X2
W J .
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5
Seemingly Unrelated Regression Models

5.1 Introduction

In the MR regression model, the design matrix X is common to each variable. This limita-
tion does not permit one to associate different design matrices with each dependent variable
which in many regression problems may lead to overfitting some variables. To correct this
problem, we must be able to model each dependent variable separately within a common,
overall model. Using the vec (·) operator on the columns of the data matrix Y, Zellner
(1962, 1963) formulated the seemingly unrelated regression (SUR) model as p correlated
regression models. Srivastava (1966, 1967) called the design the multiple-design multi-
variate (MDM) model. Hecker (1987) formulates the model using the vec (·) operator on
the rows of Yn×p and calls the model the completely general MANOVA (CGMANOVA)
model. In this chapter, we review the general theory of the SUR model and show how the
model may be used to estimate parameters and test hypothesis in complex design situations
including the generalized MANOVA (GMANOVA) model developed by Potthoff and Roy
(1964), repeated measurement designs with changing covariates, and mixed MANOVA-
GMANOVA designs. In addition, goodness of fit tests, tests for nonadditivity, and sum of
profile models are discussed. Finally, the multivariate SUR (MSUR) is reviewed.
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5.2 The SUR Model

a. Estimation and Hypothesis Testing

To extend the MR model to a SUR model, we represent each dependent variable in the MR
model as a univariate model. Following (3.6.29), we represent the mean of Y as

E
(
Yn×p

) = [
X1β1,X2β2, . . . ,Xpβ p

]

= [
X1, X2, . . . ,Xp

]

β1 0 · · · 0
0 β2 · · · 0
...

...
...

0 0 · · · β p

 (5.2.1)

= XB

where X = [
X1,X2, . . . ,Xp

]
and B = diag

[
β j

]
is a block diagonal matrix. The matrices

X j are design matrices for each variable for j = 1, 2, . . . , p. Hence, for the j th column
of Y the E

(
y j

) = X jβ j and the cov
(
y j , y j ′

) = σ i j I j j ′ . Letting y = vec (Y) so that the
matrix Y is stacked columnwise, we have a GLM representation for the SUR as follows

E (y) = Dβ (5.2.2)

cov (y) = � ⊗ I

D
np×

∑p
j=1 q j

=


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · Xp

 = p⊕
j=1

X j

where X j
(
n × q j

)
has full rank q j and q∗ =∑

j q j . In formulation (5.2.2), the columns
of Y are modeled so that we have p correlated regression models. Again, each row of Y is
assumed to follow a MVN with common covariance structure �.

To estimate β in (5.2.2), we employ the ML estimate or GLS estimate of β given in
(3.6.8)

β̂ = (D′ (� ⊗ In)
−1 D)−1D′ (� ⊗ In)

−1 y =(D′�−1D)−1D′�−1y (5.2.3)

for � = � ⊗ In . Because � is unknown, a feasible generalized least squares (FGLS)
estimate is obtained by replacing � with a consistent estimator. Zellner (1962) proposed
replacing � by �̂ = S = [

si j
]

where

si j = 1

n − q
y′i

(
In − Xi

(
X′i Xi

)−1 X′i
)(

In − X j

(
X′j X j

)−1
X′j

)
y j (5.2.4)

and q = r
(
X j

)
, assuming the number of variables is the same for each model. Relaxing

this condition, we may let q = 0 or let q = qi j where

qi j = tr

[(
In − Xi

(
X′i Xi

)−1 X′i
)(

In − X j

(
X′j X j

)−1
X′j

)]
(5.2.5)
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Substituting �̂ for � in (5.2.3), the FGLS estimator of β is ̂̂β defined as

̂̂β =


̂̂β1̂̂β2
...̂̂β p

 =


s11X′1X1 · · · s1pX′1Xp

s21X′2X1 · · · s2pX′2Xp
...

...

s p1X′pX1 · · · s ppX′pXp


−1 

X′1
∑p

j=1 s1 j y j

X′2
∑p

j=1 s2 j y j
...

X′p
∑p

j=1 s pj y j

 (5.2.6)

where �̂−1 = [
si j

]
. The asymptotic covariance matrix of ̂̂β, is

[
D′

(
�−1 ⊗ In

)
D
]−1 =


σ 11X′1X1 · · · σ 1pX′1Xp

...
...

σ p1X′pX1 · · · σ ppX′pXp


−1

(5.2.7)

To estimate β, we first estimate � with �̂ such that �̂
p−→ �, and then obtain the

estimate ̂̂β, a two-stage process. The ML estimate is obtained by iterating the process.

Having calculated ̂̂β in the second step, we can re-estimate � = � ⊗ In as

�̂2 = (y− D̂̂β1)(y− D̂̂β1)
′

where ̂̂β1 is the two stage estimate. Then a revised estimate of β iŝ̂β2 = (D′�̂2D)−1D′�̂−1
2 y

Continuing in this manner, the i th iteration is

�̂i = (y− D̂̂β i−1)(y− D̂̂β i−1)
′̂̂β i = (D′�̂i D)−1D′�̂−1

i y

The process continues until ̂̂β i converges such that ||̂̂βi − ̂̂β i−1||2 < ε for some ε > 0.
This yields the iterative feasible generalized least squares estimate (IFGLSE). Park (1993)
shows that the MLE and IFGLSE of β are mathematically equivalent.

To test hypotheses of the form H : C∗β = ξ , Wald’s statistic defined in (3.6.12) may be

used. With �̂ = [
si j

]
, ̂̂β the estimate of β and D defined in (5.2.2),

W = (C∗̂̂β − ξ)′{C∗[D′(�̂ ⊗ In)
−1D]−1C ′∗}−1(C∗̂̂β − ξ) (5.2.8)

Under H (C∗β = ξ), W has an asymptotic chi-square distribution with degrees of freedom
vh = r (C∗). Alternatively, Zellner (1962) proposed the approximate F statistic under H as

F∗ = (W/vh) /M Se (5.2.9)

M Se = (y− D̂̂β)′�̂−1(y− D̂̂β)/ve

ve = n −∑
j

q j
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The statistic F∗ is calculated in the SAS procedure SYSLIN to test H : C∗β = ξ by using
the STEST statement.

In (5.2.1) and (5.2.2), the vectors in Yn×p were equated using a columnwise expansion
of Y. Alternatively, suppose we consider each row in Y given (5.2.1). Then we may write
(5.2.1) as

yi
p×1
= Di

p×m
θ

m×1
+ ei

p×1

Di =


x′i1 0′ · · · 0′

0 x′i2 · · · ...
...

...
...

0′ 0′ · · · x′i p


where xi j is a q j × 1 vector of variables, i = 1, 2, . . . , n and j = 1, 2, . . . , p, q∗ =∑

j q j and θ ′ =
[
β ′1,β ′2, . . . ,β ′p

]
is the parameter vector. For this representation of the

SUR or MDM model, we roll out Y row-wise so that

y∗
np×1

= A
np×m

θ
m×1
+ e

np×1
(5.2.10)

where y∗ = vec
(
Y′

)
, e = [

e′1, e′2, . . . , e′n
]′, A = [

D′1,D′2, . . . ,D′n
]′ and the cov (y∗) =

I⊗�. We call (5.2.11), the general SUR model. For (5.2.11), we again may obtain a
FGLSE of θ ̂̂θ = [A′(In ⊗ �̂)−1A]−1A′(In ⊗ �̂)−1y∗ (5.2.11)

where �̂ is again any consistent estimate of �. One may employ Zellner’s estimate of �
or even a naive estimate based on only within-subject variation

�̂ = Y′(I− 1
(
1′1

)−1 1′)Y/n (5.2.12)

To test hypotheses of the form H : Cθ = θo, one may again use Wald’s statistic

W = (Ĉ̂θ − θo)
′{C[A′(In ⊗ �̂−1)A]−1C′}(Ĉ̂θ − θo) (5.2.13)

where W
.∼ χ2 (vh) and vh = r (C). Or following Zellner (1962), an F-like statistic as in

(5.2.9) may be used.

b. Prediction

When developing a regression model, one is also interested in the prediction of future
observations. This is also the case for the SUR model, however, it is complicated by the
fact that the future observations are dependent on the observed observations. Suppose we
are interested in predicting m future observations defined by the matrix Y f . To predict the
matrix of future observations, we let the mp × 1 vector y f = vec (Y f ), and � f represent
the mp × mp covariance matrix of the future observations. Because the vector y f is not
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independent of y, we let Wmp×np represent the covariance matrix between y and y f . Then
for the joint vector z′ = (y′, y′f ), the covariance matrix has the following structure

cov (z) =cov

[
y

y f

]
=

[
� W′
W � f

]
= V (5.2.14)

Letting D f represent the design matrix for the future observations y f , one might be tempted
to estimate y f by D f β̂ where β̂ is defined in (5.2.3). As shown by Goldberger (1962), this
is incorrect since it ignores the covariance matrix W. The best linear unbiased predictor
(BLUP) of y f is the vector

ŷ f = D f β̂ +W�−1(y− Dβ̂) (5.2.15)

where β̂ is defined in (5.2.3). From Theorem 3.3.2, property 5, the expression in (5.2.16)
is the estimated mean E(y f |y), under joint normality. Hence, the prediction of y f depends
on knowing both � and W, but not � f . To estimate the vector of future observations, one
usually replaces the unknown matrices with consistent estimators based upon the sample
data. There are however special situations when the prediction of the future observation
vector does not depend on the unknown matrices.

If the covariance between the observation vector y and the future observation vector
y f is zero so that the covariance matrix W = 0, then the BLUP of the future observation
vector y f is the vector ŷ f = D f β̂ where β̂ is defined in (5.2.3). And, the prediction of
the future observation vector only depends on knowing the covariance matrix �. While
this too is an interesting result, it also is not very useful since W is usually not equal to
zero. If however, �D = DF for some nonsingular conformable matrix F, Zyskind (1967)
shows that the ML estimate (GLS estimate) of β reduces to the OLS estimate of β. Since
β̂O L S = (D′D)−1D′y, the estimate of y f does not depend on � if �D = DF. While this
is an interesting result, it is not too useful since ŷ f in (5.2.16) still depends on W�−1.

However, Elian (2000) shows that the estimate of y f may be estimated by

ŷ f = D f β̂O L S = D f (D′D)−1D′y (5.2.16)

if and only if the covariance matrix W′ = DG �= 0 for G = (D′�−1D)−1D′�−1W′ and
�D = DF. Thus, while the matrices W and � are both unknown, the BLUP of y f does not
depend on knowing either matrix. If we can only establish that the covariance matrix may
be represented as W′ = DG, then the estimate of the future observations still depends on
the covariance matrix � but not W since

ŷ f = D f β̂ = D f (D′�−1D)−1D′�−1y (5.2.17)

Using Rao’s unified theory of least squares, one may extend Elian’s result for nonsingular
matrices �. Following Rao (1973b, Eq. 3.23), the BLUP of the vector y f is

ŷ f = D f β̂G M +W�−�Q(Q�Q)−Qy (5.2.18)

where the estimate of parameter vector is the Gauss-Markov estimate given by β̂G M =
(D′�−D)−D′�−y and Q = I− D(D′D)−D′ is the symmetric projection matrix. We can
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further show that the BLUE of y f is

ŷ f = D f β̂G M (5.2.19)

if and only if W�−�Q = 0, a generalization of the condition established by Elian (2000).
Finally, if in addition we can establish that D′�Q = 0, then β̂G M = β̂O L S so that the vector
of future observations does not depend on knowing any of the matrices W, �, or � f .

5.3 Seeming Unrelated Regression Example

In multivariate regression, the entire set of dependent variables are jointly predicted by
a set of independent variables. Every dependent variable is related to every independent
variable. In seemingly unrelated regressions, different subsets of independent variables are
related to each dependent variable. If for a set of p dependent variables X1 = X2 = . . . =
Xp = X, the design matrix D = Ip ⊗ � and β̂ = vec(B̂), the SUR model estimate is
identical to the MR model solution. The advantage of the SUR model is that it permits one
to relate different independent variables to each dependent variable using the correlations
among the errors in different equations to improve upon the estimators. The procedure
for performing the analysis of the system of equations in SAS is PROC SYSLIN. To use
the procedure, new terminology is introduced. The jointly dependent variables are called
endogenous variables and are determined by the model. While these variables can appear
also on the right side of an equation, we discuss this situation in Chapter 10, structural
equation modeling. Exogenous variables are independent variables that are determined by
factors outside the model. They do not depend on any of the endogenous variables in the
system of equations.

Estimation of the parameters in SUR models is complicated and the SYSLIN procedure
provides many options to the researcher. The primary goal of any option is to obtain ef-
ficient estimators, estimators with minimum or no bias and smallest variance. The default
method of estimation for SUR models is the ordinary least squares (OLS) method. This
method ignores any correlation of the errors across equations. Given a correctly specified
model, SUR estimates take into account the intercorrelation of errors across equations. In
large samples, SUR estimators will always be at least as efficient as OLS estimators. In
PROC SYSLIN, the option SUR replaces � in (5.2.3) with an unbiased estimator S. The
ITSUR option iterates using improved estimates of S at each stage. The FIML option es-
timates � and β jointly by solving the likelihood equations using instrumental variables,
Hausman (1975).

Instrument variables are used to predict endogenous variables at the first-stage regres-
sion. For the FIML option all predetermined variables that appear in any system are used as
instruments. Because the FIML option involves minimizing the determinant of the covari-
ance matrix associated with residuals of the reduced form of the likelihood for the system
of equations, �̂ �= S. In PROC SYSLIN, ITSUR and FIML yield different estimates, even
though they are mathematically equivalent. One may calculate both and choose the method
that yields the smallest variance for the estimates. For poorly specified models or models
with small sample sizes, the estimate of � may be unreliable. In these situations, OLS es-
timates may be best. In practice, one usually employs several methods of estimation when
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the exogenous variables are fixed. For random exogenous variables, the FIML estimate
of the model parameters are calculated under joint multivariate normality. The other esti-
mation methods used in the SYSLIN procedure to estimate model parameters use only the
conditional distribution y|x. Implicit in the application of methods that employ the condi-
tional distribution to estimate model parameters is the assumption of weak exogeniety for
the variable x, as discussed in multivariate regression (MR). Exogeniety is discussed in
Chapter 10.

To test hypotheses using the SYSLIN procedure, the TEST or STEST statements are
used. It uses the F-like statistic in (5.2.9) for testing hypotheses. The TEST statement is
used within a model while the STEST statement relates variables across models. Thus, by
using the SYSLIN procedure and the STEST statement, on may evaluate whether mod-
els across dependent or independent populations are equal. Recall that PROC REG only
considered a single population. The SYSLIN procedure in SAS allows one to evaluate the
equality of regression models developed for several groups, the analysis of heterogeneous
data sets for independent or dependent groups.

For Rohwer’s data in Table 4.3.1, the MR model was used to fit the five independent vari-
ables simultaneously to the three dependent variables. Because some independent variables
predict the dependent variables in varying degrees, some variables may be included in the
model for one or more dependent variables even though they may have low predictive value.
Using the same data, we use the SUR model to fit a separate regression equation to each
variable with different subsets of exogenous (independent) variables. Program m5 3 1.sas
is used for the analysis.

We begin our analysis with the full and reduced multivariate models using ordinary least
squares and the PROC SYSLIN. Comparing the output for the SYSLIN procedure and the
procedure REG, we see that the results are identical. The STEST statement is used to test
that the coefficients for N and SS are zero across equations. As in Chapter 4, this leads us
to the reduced model involving the paired associate learning tasks S, NA, and NA. For this
reduced model, tests that these coefficients are zero are significant, however, this is not the
case within each model. For the SUR model we use NA (named action) to predict PPVT
(Peabody Picture Vocabulary Test); S (still) to predict RPMT (Raven Picture Matrices Test);
and both to predict SAT (Student Achievement). We use the estimation procedure FIML,
ITSUR and SUR to fit the three correlated regression models to the data. While the three
estimation methods give similar results, the FIML methods provide estimates of β with the
smallest standard errors.

To obtain approximate 100 (1− α)% simultaneous confidence intervals for parametric
functions ψ = a′β, one estimates ψ̂ and σ̂ ψ̂ that is consistent with the estimation method
and forms the confidence set

ψ̂ − cασ̂ ψ̂ ≤ ψ ≤ ψ̂ + cασ̂ ψ̂

Using the F approximation, as implemented in the SYSLIN procedure,

c2
α = vh F1−α (vh, ve)

where ve is the system degrees of freedom, ve = n −∑
j q j .

When fitting SUR models, one may again construct multiple linear regression indices
of model fit like the coefficient of determination, McElroy (1977). This is the only index
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provided by the SYSLIN procedure. While one may construct residual plots using PROC
SYSLIN, the extensive features of PROC REG are not available.

In multiple linear regression and multivariate regression, model selection was limited to
models nested within an overall model. In SUR models, one may want to compare several
models that overlap for some set of variables, but the variables in an alternative model are
not a nested subset of an overall model. This leads one to nonnested hypotheses first con-
sidered by Cox (1961, 1962). We discuss model specification for nonnested SUR models
in Section 5.14.

Exercises 5.3

1. Using only the variables PPVT and SAT, fit the following models to the Rohwer
dataset:rohwer.dat.

(a) Model 1: SAT = na ss and PPVT = ns ss

(b) Model 2: SAT = n ss and PPVT = s ss

Which model fits the data best?

2. Using the dataset Rohwer2.dat for the n = 37 students in a high-socioeconomic-
status area (those records marked with a two for the first variable in the file), fit a
SUR model to the data selecting SS, NA and N for predicting SAT, SS, N and NA
for predicting PPVT, and NS, SS and NA for predicting RMPT.

5.4 The CGMANOVA Model

To develop a model that may be used to test extended multivariate general linear hypothe-
ses, Hecker (1987) proposed the completely general MANOVA (CGMANOVA) model.
Hecker transformed the MR model, Y = XB + E, using a row-wise expansion. Letting
y∗ = vec

(
Y′

)
and θ = vec

(
B′

)
, the MR model has the univariate structure

y∗ =


y1

y2

...

yn

 =


Ip ⊗ x′1
Ip ⊗ x′2

...

Ip ⊗ x′n

 θ + e∗ (5.4.1)

where e∗ = vec
(
E′

)
and cov (e∗) = In ⊗�.

Letting Di = Ip ⊗ x′i and associating θ = vec
(
B′

)
with θ in (5.2.11), we observe

that Hecker’s CGMANOVA model is no more than a general SUR model. Hence, we may

estimate parameters and test hypotheses using (5.2.12) and (5.2.14) with ̂̂θ replaced by ̂̂θ ,
A = [

D′1, D′2, . . . ,D′n
]

where Di = Ip ⊗ x′i , and x′i is a row of the design matrix X. If X
is not of full rank, one may use g-inverses.
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Using an independent estimate of �, Hecker proposed a LR test statistic for testing hy-
potheses using the CGMANOVA/SUR model; however, he did not derive its distribution.
For large sample sizes, his statistic is equivalent to Wald’s statistic.

5.5 CGMANOVA Example

In Section 4.15 we showed how one may test hypotheses for the MGLM that do not have the
bilinear form CBM = 0 by using the extended linear model. We reanalyze Edward’s data
in Table 4.15.1 using theEdwards CGMANOVA/SUR model and the SYSLIN procedure,
program m5 5 1.sas.

Recall that the parameter matrix B has the structure

B =
 µ11 µ12 µ13

µ21 µ22 µ23
µ31 µ32 µ33

 (5.5.1)

To fit a SUR model to B, each dependent variable is related to the independent variables x1,
x2, and x3 that represent group membership. To test for group differences the hypothesis is

HG :
 µ11

µ12
µ13

 =
 µ21

µ22
µ23

 =
 µ31

µ32
µ33

 (5.5.2)

The test for differences in conditions is

Hc :
 µ11 − µ13 − µ31 + µ33 µ12 − µ13 − µ32 + µ33

µ21 − µ23 − µ31 + µ33 µ22 − µ23 − µ32 + µ33

 = 0 (5.5.3)

These are the standard MANOVA tests. One may also construct tests that do not have
bilinear form

H1 : ψ =
(
µ11 + µ22 + µ33

)− µ12 + µ21

− µ13 + µ31 − µ32 + µ33 + µ33 = 0
(5.5.4)

H2 : µ11 = µ21

µ12 = µ22 + µ32

µ23 = µ33

(5.5.5)

H3 : ψ = (µ11 − µ12)+
(
µ22 − µ23

)+ (
µ31 − µ33

) = 0 (5.5.6)

All of the tests may be tested using the STEST command in the SYSLIN procedure. The
results are given in Table 5.5.1.

Comparing the approximate SUR model tests with the exact multivariate likelihood ratio
tests, we find that the tests for group and conditions are consistent for both procedures.
However, the test of parallel profiles is rejected using the SUR model, and is not rejected
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TABLE 5.5.1. SUR Model Tests for Edward’s Data

Test NumDF DenDF F-Value p-Value
Group 6 36 23.89 0.0001
Cond 6 36 4.50 0.0017
G×C 4 36 3.06 0.0219
H1 1 36 101.40 0.0001
H2 4 36 6.62 0.0004
H3 1 36 100.00 0.0001

using the MR model. While the two approaches are asymptotically equivalent, this is not
the case for small samples. For the tests of H1, H2, H3, both approaches are based upon ap-
proximate testing procedures. While we would again expect the results to be asymptotically
equivalent, the two approaches give different results for small samples. For large samples,
the advantage of the SUR approach for the analysis of extended linear hypothesis is that the
tests may be performed using a SAS procedure and one does not need special IML code.

Exercises 5.5

1. Work problem 1, Exercises 4.15 using the CGMANOVA model.

5.6 The GMANOVA Model

a. Overview

In Chapter 4 we analyzed repeated measures data using the mixed ANOVA model and
the MANOVA model. For both analyses, we had complete data and observations were
gathered at regular intervals for all subjects. For trend analysis, orthogonal polynomials
always included the degree equal to the number of time points. In this section, we review the
generalized MANOVA, (GMANOVA) model, which allows one to fit polynomial growth
curves (of low degree) to within-subjects trends and permits the analysis of incomplete data
missing completely at random (MCAR). While the GMANOVA model is more flexible
than the MANOVA model, it does not permit one to analyze trends with irregularly spaced
intervals for each subject, it does not allows one to analyze individual growth curves, and
it does not permit the analysis of data that are missing at random (MAR). In Chapter 6, we
will discuss a more general model which does not have these limitations, for these reasons,
our discussion of the GMANOVA model is intentionally brief.

The GMANOVA model was introduced by Potthoff and Roy (1964) to analyze mean
growth using low degree polynomials. The GMANOVA model is written as

Y
n×p

= X
n×k

B
k×q

P
q×p

+ E
n×p (5.6.1)

where
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Y is the data matrix,

X is the known design matrix of fixed variables,

B is a fixed unknown matrix of parameters,

P is the within-subject design matrix or rank q ≤ p,

E is the random error matrix,

and the n ≥ p + q rows of Y are assumed to be MVN, independent observation vectors
with common unknown covariance matrix �.

If p = q and P = I, (5.6.1) reduces to the MR model or the MANOVA model. Or, if
P is square and nonsingular, the GMANOVA model also reduces to the MR or MANOVA
model since E (Yo) = XB for Yo = YP−1. If P is an orthogonal matrix , then P−1 = P′.
The advantage of the GMANOVA model over the MANOVA model for the analysis of
repeated measurement data is that q may be less than p which requires the estimation of
fewer parameters and hence may result in a more efficient model.

b. Estimation and Hypothesis Testing

Estimation and inference using the GMANOVA model has been discussed by Rao (1965,
1966, 1967), Khatri (1966), Grizzle and Allen (1969) and Gleser and Olkin (1970). For a
general overview see Kariya (1985) who considers the extended or restricted GMANOVA
models of which the GMANOVA model is a special case.

Representing the GMANOVA model as a GLM given in (3.6.32), the GLS estimate of B
is

B̂GLS =
(
X′X

)−1 X′Y�−1P′(P�−1P′)−1 (5.6.2)

if we let A ≡ X and Z ≡ P, Potthoff and Roy (1964). Under normality, Khatri (1966)
showed that the ML estimates of B and � are

B̂ML =
(
X′X

)−1 X′YE−1P′(PE−1P′)−1 (5.6.3)

n �̂ = (Y− XB̂MLP)′(Y− XB̂MLP)

= E+W′Y′X
(
X′X

)−1 X′YW

where

E = Y′
(

In − X
(
X′X

)−1 X′
)

Y

W = Ip − E−1P′(PE−1P′)−1P

Comparing (5.6.3) with (5.6.2), we see that the GLS estimate of B and the ML estimate
have the same form, but they are not equal for the GMANOVA model. This was not the
case for the MANOVA model.
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Under the MR or MANOVA model E (Y) = XB, the distribution of vec(B̂) is multivari-
ate normal; for the GMANOVA model, this is not the case, Gleser and Olkin (1970). The
covariance matrices for β̂ML = vec(B̂ML) and β̂GLS = vec(B̂GLS) are

cov(β̂ML) =
(

P�−1P′
)−1 ⊗ n − k − 1

n − k − (p − q)−1

(
X′X

)−1

cov(β̂GLS) =
(

P�−1P′
)−1 ⊗ (

X′X
)−1

(5.6.4)

so that the two are equal only if p = q, Rao (1967). Because � is unknown and must be
estimated, the two estimates are approximately equal for large sample sizes.

To test the hypothesis H (CBM = 0) under the GMANOVA model is also complicated.
Khatri (1966) derived a likelihood ratio (LR) test using a conditional argument. Rao (1965,
1967) transformed the testing problem to a MANCOVA model and developed a conditional
LR test. Gleser and Olkin (1970) showed that the Rao-Khatri test was an unconditional test
using a canonical form of the model and a univariate argument. To test H (CBM = 0) under
the GMANOVA model, the model is reduced to an equivalent conditional MANCOVA
model

E (Yo | Z) = XB+ Z� (5.6.5)

where

Yo(n×q) is a transformed data matrix

Zn×h is a matrix of covariates of rank h

�h×q is a matrix of unknown regression coefficients

and X and B remain defined as in (5.6.1).
To reduce the GMANOVA model to the MANCOVA model, two matrices H1 of or-

der p × q with rank q and H2 of order p × (p − q) with rank p − q are constructed
such that Hp×p =

[
H1,H2

]
and PH1 = Iq and PH2 = 0p−q . Convenient choices for

H1 and H2 are the matrices

H1 = P′
(
PP′

)−1 and H2 = I− PH1 (5.6.6)

Letting P be a matrix of orthogonal polynomials so the P′ = P−1, then one may set H1 =
P′1 where P1 is a matrix of normalized orthogonal polynomials representing the constant
term and all polynomials up to degree q − 1 and by letting H2 represent transpose of the
remaining normalized rows of P. For example, if

Pp×p =


.577350 .577350 .577350
−.707107 0 .707107
−−−−−−−−−−−−−−−−−
.408248 −.816497 .408248


then

P =
 P1q×p

P2(p−q)×p

 (5.6.7)
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so that H1 = P′1 and H2 = P′2. Setting Yo = YH1 and Z = YH2, then the E (Yo) =
XBPH1 = XBIq = XB and the E (Z) = E (YH2) = XBPH2 = XB0 = 0. Thus, the
expected value of Yo given Z is seen to have the form given in (5.6.5), Grizzle and Allen
(1969, p. 362). Associating model (5.6.5) with the MANCOVA model in (4.4.27) and using
the fact that if PH2 = 0 results in the identity

H2
(
H′2EH2

)−1 H′2 = E−1 − E−1P′
(

PE−1P′
)−1

PE−1 (5.6.8)

It is easily shown that the BLUE or ML estimate of B for the MANCOVA model is

B̂ = (
X′X

)−1 X′YE−1P′
(

PE−1P′
)−1

(5.6.9)

which is the ML estimate of B given in (5.6.3) for the GMANOVA model. Letting ve =
n−r [X, Z] = n−k−h = n−k−(p − q) = n−k− p+q and S = E / ve, an alternative
form for B̂ in (5.6.9) is

B̂ = (
X′X

)−1 X′YS−1P′
(

PS−1P′
)−1

(5.6.10)

where E (S) = � for the conditional model or the GMANOVA model. To test hypotheses
regarding B in the GMANOVA model, we use the Rao-Khatri reduced MANCOVA model
and the theory of Chapter 4. To test H (CBM = 0), the hypothesis and error sum of squares
and cross products (SSCP) matrices have the following form

Ẽ =M′(PE−1P′)−1M

H̃ = (CB̂M)′(CR−1C′)−1(CB̂M)
(5.6.11)

where

R−1 = (
X′X

)−1 + (
X′X

)−1 X′Y
[

E−1 − E−1P′
(

PE−1P′
)−1

PE−1
]

Y′X
(
X′X

)−1

B̂ = (
X′X

)−1 X′YS−1P′(PS−1P′)−1

E = Y′[I− X
(
X′X

)−1 X′]Y
and S = E/ve, ve = n − k − p + q, Timm and Mieczkowski (1997, p. 289). The degrees
of freedom for the hypothesis is vh = r (C). With H̃ and Ẽ defined in (5.6.11), the four
test statistics based on the roots of | H̃ − λÊ |= 0 may be used to test H : CBM = 0 and
to establish simultaneous confidence intervals for contrasts ψ = c′Bm for the GMANOVA
model. Naik (1990) develops prediction intervals for the growth curve model.

There are, as discussed by Rao (1966) and Grizzle and Allen (1969), a few serious prob-
lems with the application of the GMANOVA model in practice. First, the estimate of B
is only more efficient if the covariances between Yo and Z are not zero. It is necessary to
determine whether all or a best subset of the variables in Z should be included. Second,
while inspecting the correlations between Yo and Z may be helpful, preliminary tests on
sample data may be required. Furthermore, the selected set of covariates may vary from
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sample to sample, while the best subset often depends on the structure of �. Third, when
the number of treatment groups is greater than one, since the covariates are not determined
prior to treatment, it is difficult to determine whether the covariates affect the treatment
conditions. In addition, there is no reason to expect that the same set of covariates is “best”
for all groups. Finally, because H̃ does not necessarily have a noncentral Wishart dis-
tribution when H is false, power calculation’s for the GMANOVA model are not easily
approximated, Fujikoshi (1974).

c. Test of Fit

When applying the GMANOVA model in practice, one usually has a large number of re-
peated measures, p, and we would like to determine for what q < p is the GMANOVA
model adequate. When p = q, the MANOVA model is appropriate. Grizzle and Allen
(1969) developed a goodness-of-fit test for the GMANOVA model which tests the ade-
quacy of modeling a polynomial of degree q − 1. Thus, the null hypothesis is that we have
a GMANOVA model versus the alternative that the model is MANOVA.

To test the adequacy of the model fit to the data, we must choose the most appropriate
set of covariates. Recall that for the GMANOVA model, we have that

E (Y) = XBP = X�

E (Z) = XBPH2 = X�H2 = 0
(5.6.12)

where the r (X) = k and X�H2 = 0 if and only if �H2 = 0. Hence we may evaluate the
fit of the model by testing whether E (Z) = 0 or equivalently that H : Ik�H2 = 0 for the
model E (Y) = X�. This is the MANOVA model so that the hypothesis and error matrices
are

H = (�̂H2)
′ (X′X)

�̂H2 = P2�̂
′ (X′X)

�̂P′2
E = P2Y′(I− X

(
X′X

)−1
)X′YP′2

(5.6.13)

where u = r (P2) = p−q, vh = r (C) = k, ve = n−k and �̂ = (
X′X

)−1 X′Y. Assuming
that a first degree polynomial is inadequate, a second degree polynomial is tested. This
sequential testing process continues until an appropriate degree polynomial is found or
until it is determined that a MANOVA model is preferred over the GMANOVA model.
The GMANOVA model is sometimes called a weighted analysis since we are using the
“information” in the covariates as weights. The strategy of continuously testing the model
adequacy until one attains nonsignificance may greatly increase the overall Type I error for
the study. Hence, it is best to have some knowledge about the degree of the polynomial
growth curve.

d. Subsets of Covariates

In applying the GMANOVA model, we are assuming that the weighted analysis is appro-
priate. This may not be the case, especially if Yo and Z are uncorrelated. Yo and Z are
independent if and only if H′1�H2 = P1�P′2 = 0. This occurs if and only if � has Rao’s
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mixed-model covariance structure

� = P′�P+ Z′�Z (5.6.14)

where �q×q and �(q−p)× (q−p) are p.d. matrices with Z′ ≡ P′2, Kariya (1985, p. 70).
Given (5.6.14), the ML of B is

B̂M L =
(
X′X

)−1 X′YH1 =
(
X′X

)−1 X′YP′1 (5.6.15)

and is the BLUE, as in the MANOVA model. Note that this is equivalent to setting � = I in
the weighted case so that the solution for B̂ in (5.6.15) is sometimes called the unweighted
estimate. The unweighted estimate is equal to the weighted estimate if and only if � is
a member of the class of matrices defined by (5.6.14). Rao’s covariance structure occurs
naturally in univariate mixed models. A LR test for Rao’s covariance structure is equivalent
to testing that Yo = YP′1 and Z = YP′2 are independent, Kariya (1985, p. 184). Letting

V = PY′[I− X
(
X′X

)−1 X′]YP′

=
 V11 V12

V21 V22


for P partitioned as in (5.6.7), we have following the test of independence that the LR test
for evaluating Rao’s covariance structure is

� = |V|
|V11| |V22| =

|V22|
∣∣∣V11 − V12V−1

22 V21

∣∣∣
|V11| |V22|

=
∣∣∣I− V−1

11 V12V−1
22 V21

∣∣∣
(5.6.16)

and � ∼ U(q, q−p, n−k). For any LR test, Bartlett (1947) showed that if � ∼ U(p, vh , ve)

that

X2
B = −[ve − (p − vh + 1) /2] ln�

·∼ χ2
(pvh)

(5.6.17)

Hence, we may use the chi-square distribution to test for Rao’s covariance structure. For
any LR test, the approximation is adequate for most problems and if p2+v2

h ≤ f /3 where
f = ve− (p + vh + 1) /2 the approximation is accurate to three decimal places, Anderson
(1984). Hence

−[(n − k)− (p + 1) /2] ln�
·∼ χ2

q(q−p) (5.6.18)

may be used to test that � has Rao’s covariance structure.
Estimates that use some subset of covariates are called partially weighted estimates, Rao

(1965, 1967) and Grizzle and Allen (1969). However, they are not very useful in most
GMANOVA applications, Vonesh and Chinchilli (1997, p. 217).
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e. GMANOVA vs SUR

To represent the GMANOVA model as a SUR model, (5.2.9) is used. We let y∗ = vec
(
Y′

)
and A = Xn×k ⊗ P′p×q where the r (X) = k and the r (P) = q. Letting θ ′ = [β ′1,β ′2, . . . ,
β ′k] and e′ = [e1, e2, . . . , en] , the GLSE of θ by (5.2.12) is

θ̂ =
[
A′ (In⊗�)−1 A

]−1
A′ (In⊗�)−1 y∗

=
[(

X′⊗P
) (

In ⊗�−1
) (

X⊗ P′
)]−1 (

X′ ⊗ P
) (

In ⊗�−1
)

y∗

=
[(

X′X
)⊗ (

P�−1P′
)]−1 (

X′⊗P�−1
)

y∗[(
X′X

)−1 X′ ⊗
(

P�−1P′
)−1

P�−1
]

y∗ (5.6.19)

Replacing � by S where E (S) = �, we see that the ML estimate for B in the GMANOVA
model is equal to the FGLS estimate of B for the SUR model. Hence, we may use either
model to estimate B. For the GMANOVA model, we were able to obtain a LR test of
CBM = 0 using the Rao-Khatri reduction. For more complex models, the distribution of
the LR test may be very complicated; in these cases, the Wald statistic for the SUR model
provides an alternative, as illustrated later in this Chapter and by Timm (1997).

f. Missing Data

In MR models and in particular in GMANOVA studies which involve obtaining repeated
measurements over time at some sequence of fixed intervals for all subjects, one often en-
counters missing data. With missing data, one still needs to estimate parameters and test
hypotheses. To solve this problem, numerous approaches have been recommended, Little
(1992) and Schafer (2000). In particular, one may use some imputation techniques to esti-
mate the missing values and then obtain estimates and tests using the complete data making
adjustments in degrees of freedom of test statistics for estimated data. Because single im-
putation methods do not take into account the uncertainty in estimating the missing values,
the resulting estimated variances of the parameter estimates tend to be biased toward zero,
Rubin (1987, p. 13). One may use procedures that estimate parameters and incomplete data
iteratively from complete data using Markov chain Monte Carlo multiple imputation meth-
ods (including Gibbs sampling, data augmentation, monotone data augmentation, Metropo-
lis algorithm, and sampling-importance resampling), likelihood methods, asymptotic GLS
methods and Bayesian methods. These latter methods are usually superior to single step
imputation methods; however, they are very computer intensive. A very good discussion
of multiple imputation methods for missing multivariate data may be found in Schafer and
Olsen (1998). For any of these techniques, one must be concerned about the missing data
response pattern. To address these problems, Little and Rubin (1987) characterized three
missing data response patterns:

1. The pattern of missing responses is independent of both the observed and missing
data.
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2. The pattern of missing responses is independent of the missing data and only depen-
dent on the observed data.

3. The pattern of missing responses is dependent on the missing data (the effect that the
observed data has on the pattern is ignored).

In these situations, we say that the missing data are either (1) missing completely at random
(MCAR), (2) missing at random (MAR), or (3) Neither. In situations (1) and (2), we say
that the missing data mechanism is “nonignorable”. When situation (3) occurs, there is
no solution to the missing data problem. In the former case, the MCAR assumption is
stronger than the MAR assumption. Under the MCAR assumption, one may use GLS and
non-likelihood methods to obtain estimates and tests. For the weaker MAR assumption,
one usually uses likelihood or Bayesian methods assuming normality or multinomial data
models. If one uses non-likelihood estimates when data are only MAR, estimates for the
standard error of estimated parameters are difficult to obtain, Schafer (2000). A test for
whether data are MCAR or MAR has been proposed by Little (1988) and Park and Davis
(1993).

A procedure for analyzing missing data for the GMANOVA model which assumes data
are MCAR has been proposed by Kleinbaum (1973) which uses FGLS estimates and
asymptotic theory to develop tests. The method is discussed and illustrated by Timm and
Mieczkowski (1997) who provide SAS code for the method. Likelihood methods which
assume data are MAR are discussed in Chapter 6. A multiple imputation procedure, PROC
MI, is under development by SAS. Also under development is the PROC MIANALYZE
that combines the parameter estimates calculated for each imputation data set (using any
standard SAS procedure) for making valid univariate and multivariate inferences for model
parameters that take into account the uncertainty for data MAR or MCAR. Both procedures
will be available in Release 8e of the SAS System and should be in production with Release
9.0.

Because the GMANOVA model is a regression procedure, one may also employ diag-
nostic methods to evaluate influential observations, Kish and Chinchilli (1990) and Walker
(1993). For a discussion of nonparametric procedures, see Puri and Sen (1985).

5.7 GMANOVA Example

When fitting polynomials to data using the simple multiple linear regression model y =
Xβ + e, the design matrix is usually a nonorthogonal matrix. For example, for three time
points

X =
 1 1 1

1 2 4
1 3 9

 = [
x1, x2, x3

]
(5.7.1)

Using the Gram-Schmidt process on the columns of X, then

qi = xi −
i−1∑
j=1

ci j q j
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where ci j = x′i q j/‖q j‖2, so that

Q =
 1 −1 1

1 0 2
1 1 −1

 and Q′Q =
 3 0 0

0 2 0
0 0 6

 (5.7.2)

The matrix Q′Q is a diagonal matrix with the squared lengths of each column of Q as
diagonal elements. To normalize Q, the columns of Q are divided by the square root of the
diagonal element of Q′Q. Then

Q/‖Q′Q‖ = P =
 1/
√

3 −1/
√

2 1/
√

6
1/
√

3 0 −2/
√

6
1/
√

3 1/
√

2 1/
√

6

 (5.7.3)

and P′P = I so that P is an orthogonal matrix, P′ = P−1.
When fitting a model to y using X, the model has the form y = β0 + β1x + β2x2.

Transforming the matrix X to Q a matrix G−1 is formed so that Q = XG−1 and ξ = Gβ.
The transformed model has the form y = ξ0 + ξ1 (x − 2)+ ξ2

(
3x2 − 12x + 10

)
for x =

1, 2, and 3 as in (5.7.1). Evaluating the linear and quadratic polynomials at x = 1, 2, and 3,
the second and third columns of Q are obtained. The parameter ξ0 is associated with
the constant term. The coefficients in Q are the familiar constant, linear, and quadratic
trend contrasts in models involving the analysis of mean trends in ANOVA. Normalizing
the polynomial contrasts, one obtains estimates of the orthonormalized coefficients ξ ′0, ξ ′1,
and ξ ′2. The matrix P in the GMANOVA model usually employs an orthogonal matrix P of
rank q < p in the product XBP. To obtain the matrix P using SAS, the function ORPOL is
used in the IML procedure. In some experimental situations, data are collected at unequal
intervals. Thus, one needs to construct orthogonal polynomial contrasts to analyze trends
for unequally spaced data. The function ORPOL also permits one to construct polynomials
for the analysis of unequally spaced data.

a. One Group Design (Example 5.7.1)

While testing hypotheses for growth curve models is complicated, estimation of model pa-
rameters is straightforward. This is because the ML estimate of B using the GMANOVA
model is identical to the SUR model estimator by replacing � with the unbiased estima-
tor S. To illustrate the analysis of growth data, we analyze the Elston and Grizzle (1962)
ramus bone data given in Table 3.7.3, discussed in Example 3.7.3. These data represent the
growth of ramus bone lengths of 20 boys at the ages 8, 8.5, 9, and 9.5. The data are given
in ramus.dat and analyzed using program m5 7 1.sas with the outliers.

When fitting a polynomial to growth data, one begins by plotting the means at each time
point to visually estimate the lowest degree of the polynomial that appears to capture the
mean trend in the data. Using the PROC SUMMARY, the means are calculated, output, and
plotted. Because these are four time points, one may fit polynomials that represent constant,
linear, quadratic, or cubic trend. The order of the polynomial is 0, 1, 2, or 3. The maximum
order is one less than the number of observed time points. From the plot of the means, a
linear model appears to adequately model the growth trend for ramus heights.
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An informal lack-of-fit test for the adequacy of a linear model may be obtained using
PROC GLM and the REPEATED statement. The procedure will sequentially fit polynomial
contrasts to the means. Choosing α = 0.05 and dividing α by q − 1, one fits polynomial
contrasts of increasing order to the means. As q increases from q = 0 to q − 1 where q is
the number of time points, one retains polynomials for all significant orders and stops with
the highest degree of nonsignificance. Setting α = 0.05, α∗ = 0.05/ (q − 1) = 0.05/3 =
0.0267. Since the second degree polynomial has a p-value of 0.6750, we conclude that a
linear trend is adequate for the ramus data.

Assuming a linear model for our example, the growth curve model has the structure for
E (Y) = XBP as

E (Y)
20×4 =

1
20×1

[
β0, β1

]
1×2

P
2×4 (5.7.4)

where

P′ =


0.5 −0.670820
0.5 −0.223609
0.5 0.223607
0.5 0.670820

 (5.7.5)

so that q < p.
To estimate B for our example, we use formula (5.6.20) for the SUR model using PROC

IML. Later we estimate B̂ using (5.6.9) using PROC GLM to illustrate the equivalence of
the models. The estimate of B̂ is

B̂′ =
[

β0
β1

]
=

[
100.09916
2.081342

]
(5.7.6)

Alternatively, using the matrix

Q′ =


1 −1
1 −1
1 1
1 3

 (5.7.7)

the parameter estimate for the regression coefficients is

&̂′ =
[

50.0496
0.4654

]
(5.7.8)

To obtain &̂ from B̂, one divides 100.09916 of B̂′ by
√

4 = 2 and 2.08134 by the
√

20 =
4.472, the square root of the diagonal elements of QQ′ in (5.7.7).

To test for model fit using H and E defined in (5.6.13), PROC GLM is used with the
transformed variables yt3 and yt4. These variables are created from the 4 × 4 matrix of
orthogonal polynomials in the PROC IML routine. The matrix H1 = P′ in (5.7.5), and H2 is
associated with the quadratic and cubic normalized polynomials. The matrix of covariates
Z = YH2 is defined as the variables yt3 and yt4. To evaluate fit, we are testing that
E (Z) = 0. With nonsignificance, the higher order terms are zero and the model is said to
fit. For our example, the p-value for the test-of-fit for a linear model is 0.9096 indicating
that the 2nd and 3rd degree polynomials do not significantly contribute to variation in the
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means and are considered nonsignificant. For these data, the formal test of fit is consistent
with the ad hoc sequential tests of trend using orthogonal polynomials.

To test hypotheses regarding B for the GMANOVA model, we use PROC GLM for
the MANCOVA model (5.6.5) with the transformed variables. The MANOVA statement is
used to test hypotheses using Ẽ and H̃ given in (5.6.11). One may also use PROG REG, and
the MTEST statement or one may use the SYSLIN procedure and the TEST and STEST
statements. For the procedures GLM and REG, the tests are exact likelihood ratio tests.
For the SYSLIN procedure, the F tests are approximate. For the ramus height data, all
procedures indicate that the regression coefficients for the linear model are nonzero. Using
the estimated standard errors for the elements of B and the MANCOVA model, one may
contrast confidence intervals for population parameters ψ = c′Bm as illustrated in program
m4 5 2.sas.

b. Two Group Design (Example 5.7.2)

In the ramus height example, a growth curve model was fit to a single group. In many appli-
cations, one obtains growth data for observations in several independent groups. The data
usually involve repeated measurements data in which trends are fit to all groups simultane-
ously and tests involving the coefficient matrix B for each group are tested for parallelism
or coincidence. To illustrate the process of fitting a GMANOVA model to several indepen-
dent groups. Edward’s data are again used. For this example, we have three independent
Edwardsgroups and three time points. Program m5 7 2.sas is used to analyze the data.

As with the one group analysis, we begin by plotting the means for each group. The plots
and the informal test of polynomial trend indicate that a linear model is appropriate for
modeling the trend in means. The p-value for quadratic trend is 0.1284. The GMANOVA
model for Edward’s data is Edwards

E (Y) = XBP1

where

X =
 15 0 0

0 15 0
0 0 15

 , B =
 β10 β11

β20 β21
β30 β31

 (5.7.9)

To reduce the GMANOVA model to a MANCOVA model, Yo = YP′1 where

P′1 =
 0.577350 −0.707107

0.577350 0
0.577350 0.707107

 (5.7.10)

and the model
E (Yo) = XB+ Z�

is analyzed with Z = YP′2

P′2 =
 0.577350
−.816497
0.408248

 (5.7.11)
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For the MANCOVA model, letting Q∗ = I− X
(
X′X

)−1 X′, �̂ = (
Z′Q∗Z

)−1 Z′XYo and

B̂ = (
X′X

)−1 X′Yo −
(
X′X

)−1 X1Z�̂

= (
X′X

)−1 X′YS−1P′1
(

P1S−1P′1
)−1

=
 12.1244 4.2464

17.6669 2.5456
12.1235 2.8228

 (5.7.12)

by (5.6.10) and associating P ≡ P1. In program m5 7 2.sas, B̂ is estimated using the pro-
cedures GLM and SYSLIN by using the transformed data matrix Yo = YP′1.

Before testing hypotheses using the linear growth curve model, one usually performs
the test-of-fit or model adequacy. The test that the quadratic term is zero has a p-value of
0.1643. Hence a linear model appears appropriate.

To test hypotheses regaining the parameter matrix B in the GMANOVA model, the
MANCOVA model E (Yo) = XB + Z� in used. Thus, one may test hypotheses of the
form CBM = 0 by selecting matrices C and M as illustrated in Section 4.5. For growth
curve models, one may be interested in testing that the growth curves are the same for the
groups for all parameters. For our example, the test is

HC :
[

β10
β11

]
=

[
β20
β21

]
=

[
β30
β31

]
(5.7.13)

The hypothesis test matrix for testing HC is

C =
[

1 0 −1
0 1 −1

]
where M = I2. Another test of interest may be that the growth curves for the groups are
parallel. This test is for the example is

HP : β11 = β21 = β31

For the test of parallelism,

C =
[

1 0 −1
0 1 −1

]
M = [

0 1
]

Using the LFR model and Wilks’ � criterion, � = 0.3421 with p-value 0.0241 for the
test of HC and � = 0.6648 with p-value 0.1059 for the test of HP . Thus, the profiles are
parallel, but not coincident.

Also included in program m5 7 2.sas is the code for evaluating B using the procedure
SYSLIN. The approximate F tests of coincidence and parallelism are also provided. Again,
one may establish confidence sets for the coefficients in B.
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Exercises 5.7

1. Reanalyze the ramus bone length data with the outliers removes. Discuss you find-
ings.

2. The data in file Danford.dat represent radiation dosage levels for four groups of pa-
tients for four treatment levels (column one in the file). The next four columns in a
design matrix and the next column is a baseline measurement. Using the next five
variables in the dataset which represent posttreatment measurements for five days
(columns with the first value of (223, 242, 248, 266, and 274), fit a GMANOVA
model to the data and evaluate model fit.

3. Lee (1970) gives data for two dependent variables (time on target in seconds and the
number of hits on target and five traits to investigate bilateral transfer of are rem-
iniscence of teaching performance under four treatment conditions: (1) distributed
practice on a linear circular-tracking task, (2) distributed practice on a nonlinear
hexagonal-tracking task, (3) mass practiced on a linear circular-tracking task, and
(4) massed practice on a nonlinear hexagonal-tracking task. Subjects, randomly as-
signed to each group performed on the given task under each condition with one hand
for ten traits and then transferred to the other hand for the same number of traits af-
ter a prescribed interval. The two sets of measurements taken for the ten traits were
blocked into five block of two trials and averaged, yielding five repeated measures
for each dependent variable. The data obtained for groups 1 and 2 are given below.
Fit a growth curve to each group. Are they the same? Discuss your findings.

Group 1 Time on Target See
1 2 3 4 5

1 13.95 12.00 14.20 14.40 13.00
2 18.13 22.60 19.30 18.25 20.45
3 19.65 21.60 19.70 19.55 21.00
4 20.80 21.15 21.25 21.25 20.00
5 17.80 20.00 20.00 19.80 18.20
6 17.35 20.85 20.85 20.10 20.70
7 16.15 16.70 19.25 16.30 18.35
8 19.10 18.35 22.95 22.70 22.65
9 12.05 15.40 14.75 13.45 11.60

10 8.55 9.00 9.10 10.50 9.55
11 7.15 5.85 6.10 7.05 9.15
12 17.85 17.95 19.05 18.40 16.85
13 14.50 17.70 16.00 17.40 17.10
14 22.30 22.30 21.90 21.65 21415
15 19.70 19.25 19.85 18.00 17.80
16 13.25 17.40 18.75 18.40 18.80
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Group 1 Hits on Target
1 2 3 4 5

1 31.50 17.50 36.50 35.50 34.00
2 22.50 12.00 17.50 19.00 16.50
3 18.50 18.00 21.50 18.50 14.501
4 20.50 18.50 17.00 16.50 16.50
5 29.00 21.00 19.00 23.00 21.00
6 22.00 15.50 18.00 18.00 22.50
7 36.00 29.50 22.00 26.00 25.50
8 18.00 9.50 10.50 10.50 14.50
9 28.00 30.50 17.50 31.50 28.00

10 36.00 37.00 36.00 36.00 33.00
11 13.50 32.00 33.00 32.50 36.50
12 23.00 26.00 20.00 21.50 30.00
13 31.00 31.50 33.00 26.00 29.50
14 16.00 14.00 16.00 19.50 18.00
15 32.00 25.50 24.00 30.00 26.50
16 21.50 24.00 22.00 20.50 21.50

5.8 Tests of Nonadditivity

In a two-way MANOVA design with one observation per cell, one may want to evaluate
whether a linear model is additive

yi j = µ+ αi + β j + ei j (5.8.1)

or nonadditive
yi j = µ+ αi + β j + γ i j + ei j (5.8.2)

However, there are no degrees of freedom to test for no interaction. To develop a test of
no interaction, McDonald (1972) extended the test of Tukey (1949) following Milliken and
Graybill (1971) to the multivariate case.

In extending the test to the multivariate case, McDonald (1972) replaced γ i j in (5.8.2)
with the same function ofαi andβ j a variable at a time. For example, γ i j = αi � β j .

Writing γ i j = γ k(αi � β j ), one may test H : γ k = 0 for k = 1, 2, . . . , p to determine
whether an additive model would be satisfactory for a single variable.

Thus, McDonald (1972) proposed an “expanded” SUR model of the form

y j =
[
X,F j

] [ β∗j
γ j

]
+ e j

cov
(
y j , y j ′

) = σ j j ′In

(5.8.3)

for each variable j = 1, 2, . . . , p where F j are known
(
n × k j

)
matrix functions of Xβ∗j .

Observe that this is not a linear model since F j is a function of Xβ∗j . However, suppose we
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assume that F̂ j = Xβ̂
∗
j and that F̂ j is known. Then testing H : γ j = 0 or no interaction is

equivalent to testing for no covariates in the ANCOVA model.
Continuing with this approach, we write (5.8.3) as a multivariate model. Then (5.8.3)

becomes

E( Y
n×p

) = X
n×q

B
q×p
+ [

F1,F2, . . . ,Fp
]

γ 1 0 · · · 0
0 γ 2 · · · 0
...

...
...

0 0 · · · γ p


= X

n×q
B

q×p
+ F

n×h
�

h×p
(5.8.4)

where F j is an n × k j matrix of known constants, h =∑
j k j , r (X) = r ≤ q and the rank

[X, F] is r + h < n in the vector space spanned by the rows of XB and F.
By assuming each row of Y is sampled from a p-variate MVN with covariance matrix

�, the interaction hypothesis becomes

H : γ j = 0 for j = 1, 2, . . . , p

substituting F̂ = XB̂ in model (5.8.4), we have that �̂ = (̂F′QF̂)−1F′QY for Q = I −
X
(
X′X

)− X′. Thus, testing for nonadditivity is equivalent to testing H : � = 0. From the
MANCOVA model, the hypothesis and error matrices for the test of nonadditivity are

H = �̂′(̂F′QF̂)�̂

= Y′QF̂(̂F′QF̂)−1F̂′QY (5.8.5)

E = Y′QY− �̂′(̂F′QF̂)�̂

where vh = h and ve = n − r − h. Hence, to perform the test of nonadditivity, one
estimates F using F̂ = XB̂. Assuming F̂ is a matrix of known covariates, one tests the
hypothesis H : � = 0 using the MANCOVA model. Given the structure of F and �, the
matrices involving F have the structure F = [

F1γ 1, . . . ,Fpγ p

]
so that H is partitioned

into h matrices Hi with one degree of freedom. Each Hi with E is used to test that γ i = 0
for the p variables simultaneously.

To illustrate, consider a two-way design with one observation per cell where i = 1, 2,
. . . , a a levels of factor A and j = 1, 2, . . . , b levels of factor B. Suppose F = [f1, f2, . . . ,

fp] where fk = γ k

(
αi � β j

)
for k = 1, 2, . . . , p. Then f̂k = γ k

(
α̂i � β̂ j

)
and vh ≡

h = p and ve = n − r − h = ab − (a + b − 1) − p = ab − a − b + 1 − p since the
r (X) = a + b − 1. To test H : � = 0, H and E in (5.8.5) are evaluated. If one has
covariates in the two-way design, they may be incorporated into the design matrix X. The
rank of X is increased by the number of independent covariates.

The test of nonadditivity developed by McDonald (1972) and Kshirsagar (1988, 1993)
assume multivariate normality. Khattree and Naik (1990) develop a likelihood ratio test that
only requires that each observation follows a multivariate elliptical symmetric distribution.
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5.9 Testing for Nonadditivity Example

Designs with one observation per cell are common in experimental design. In particular,
randomized block designs usually have one observation per cell. For the analysis of such
designs, one usually assumes a model with no interaction. Tukey (1949) developed a test
for nonadditivity which was generalized by Scheffé (1959, p. 144, prob. 4.19). Milliken
and Graybill (1970, 1971) extended the test in a very general manner by considering an
extended linear model (ELM) which allows one to analyze certain nonlinear models in the
parameters using a linear model. Their tests are special cases of the test developed by
McDonald (1972). Setting p = 1 in the general case, we have the ELM

y
n×1
= X

n×q
β

q×1
+ F1

n×h
γ 1
h×1
+ e

n×1

e ∼ IN
(

0, σ 2I
) (5.9.1)

where F1 =
[

fi j (·)
]

is a matrix of known function of the unknown elements of Xβ, the
r (X) = r , and the r [X1F1] = r + h < n.

For a simple univariate randomized block design with two blocks and three treatments,
the design given in (5.9.1) may be written as

y11
y12
y21
y22
y31
y32

 =


1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 0 1




µ

α1
α2
α3
β1
β2

 +


α1β1
α1β2
α2β1
α2β2
α3β1
α3β2

 γ
1×1
+


e11
e12
e21
e22
e31
e12


(6× 1) (6× 1) (6× 1) (6× 1) (6× 1)

(5.9.2)
which represents the model

yi j = µ+ αi + β j + αiβ j + ei j , ei j ∼ IN
(

0, σ 2
)

Then a test of H (γ = 0) may be used to assess the significance of the nonlinear parameter
αiβ j . If γ = 0, the additive model may be satisfactory. For the ELM given in (5.9.1), the
test of interaction becomes H : γ = 0 for h covariates.

If F1 was known, we see that (5.9.1) is identical to the ANCOVA model. However, F1
is unknown and is a function of Xβ̂. Recalling that β̂ = (

X′X
)− X′y for any g-inverse(

X′X
)− and since F1 = [ fi j (Xβ̂ j )], we see F1 does not depend on

(
X′X

)−. This follows

from the fact that Xβ̂ = X
(
X′X

)− X′y = Py is unique because P is a projection matrix.
Replacing F in (5.8.5) with F̂1, an F-statistic for testing H : γ = 0 is

F = H/h

E/ (n − r − h)
∼ F (h, n − r − h) (5.9.3)
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For the univariate randomized block design, this reduces to Tukey’s test of additivity for
product type interactions. Hence, to perform Tukey’s test of additivity, one estimates F1
and employs the analysis of covariance model to test that the covariate is zero.

For the design given in (5.9.2), we selected a product interaction. Adding constraints to
the linear model, F1 =

[
fi j

]
has the familiar interaction form fi j = (yi. − y..)

(
y. j − y..

)
.

Or, removing the constants, a more convenient form for fi j is fi j = yi.y. j . Again, this is
a product “interaction”. The general model may be used to test for other functions of the
elements of Xβ̂.

As an example of the univariate procedure, we consider the data provided in Problem 1,
Exercise 6.6. The experiment analyzes the number of trials to criterion for a learning experi-
ment for five-letter (F) words and seven-letter (S) words. To test for no interaction assuming
all factors in the design are fixed, Tukey’s test is performed for each variable individually.
For the interaction functions, we set fi j = yi.y. j for each variable. Program m5 9 1.sas
is used to perform the tests of nonadditivity using PROC GLM. The data are given in the
datafile add.dat.

For each variable, we test that a single covariate is zero. For the five-letter variable F , the
covariate is ZF. The test that the coefficient associated with ZF is zero has p-value 0.2777.
For the seven letter variable S the p-value for the covariate ZS is 0.7873. Thus, we conclude
that the model is additive for each variable individually.

To illustrate the multivariate test of nonadditivity, the data for the multivariate random-
ized block design given in Problem 2, Exercise 6.6, are used. The experiment involves two
factors: four levels of SES and four ethnic groups. The pilot study is used to analyze three
dependent variables: Mathematics (Mat), English (Eng) and General Knowledge (GK).
The assumed model for the design is yi j = µ + αi + β j + ei j where all factors are fixed.
Letting Fk = γ k

(
αi � β j

)
k = 1, 2, 3 the general model has the structure

E (Y) = XB+ F� (5.9.4)

for F = [F1,F2,F3]. Letting F̂k = (yi. � y. j ), we observe that ve = n − r (X) − h =
16−7−3 = 6. Program m5 9 1.sas is used to perform the multivariate test of nonadditivity
using the MANCOVA. The data are given in file add2.dat.

As we saw with the analysis of the MANCOVA in Examples 4.5.2 and 4.9.2, PROC GLM
does not provide a joint test that the matrix of covariates are zero. It performs tests for each
covariate individually. For this example, s = min (vh, p) = 1, M = (| p − h | −1) /2 =
0.5 and N = (ve − p − 1) /2 = 1. For the test of nonadditivity, the p-value for the three
tests are 0.2175, 0.1299, and 0.6935 for each covariate. These tests indicate that the model
is additive. To evaluate the joint test that γ 1 = γ 2 = γ 3 = 0, the procedure REG is used.
However, the design matrix must be reparameterized to full rank using PROC TRANSREG.
For the joint test, s = 3, M = −0.5, and N = 1. The p-values for the overall joint test

differ for each of the multivariate criteria. The p-values for Wilks’, BLT, and the BNP
criteria are: 0.1577, 0.1486, 0.2768. The p-value for Roy’s test criterion is 0.0205. These
results do not clearly indicate that the model is additive since one of the multivariate criteria
rejects the joint test of additivity. However, because the majority of the criteria lead to a
nonsignificant result and the p-value for Roy’s test is not significant at the 0.01 level, we
conclude that the model is additive.
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Exercises 5.9

1. Show that H and E in (5.9.3) have the form

H =
[∑

i
∑

j yi j (yi. − y..)
(
y. j − y..

)]2

∑
i (yi. − y..)2 ∑

j

(
y. j − y..

)2

E =∑
i

∑
j

(
y. j − y.. − y. j + y..

)2 − H

and that ve = (a − q) (b − 1) − 1 where a and b denote the number of blocks and
treatments, respectively.

2. Perform the test of multivariate nonadditivity using the data in Exercises 4.9, Prob-
lem 1.

3. Perform the test of multivariate nonadditivity using the data in Exercises 6.6, Prob-
lem 2.

5.10 Lack of Fit Test

A major disadvantage of the MR model is that the design matrix is common for all vari-
ables. Hence, when fitting a polynomial function to a set of dependent variables, many
variables may be overfit. Performing the multivariate lack of fit test may lead to underfit-
ting a subset of variables. Levy and Neill (1990) develop multivariate lack of fit tests for
the SUR model.

To develop a lack of fit test for the SUR model, we use representation (5.2.1) to test

H : E (Y) = XB (5.10.1)

where B is created to fit different sets of independent variables to each dependent variable
or different order polynomials. Following the multivariate lack of fit test, the pooled error
matrix

E = Y′(In − X
(
X′X

)− X′)Y (5.10.2)

is partitioned into two independent components, pure error and lack of fit error written as
EP E and EL F , respectively. The pure error component is an estimate of � based upon
the within or replicated observations and EL F is obtained from E by subtraction, EL F =
E− EP E .

To compute EP E , suppose there are c different replicated rows in X j each occurring ni

times where i = 1, 2, . . . , c and 1 ≤ c ≤ n. Grouping the rows together, let k =∑c
i=1 ni

be the first rows of X. Then to calculate EP E , we may use the centering matrix

K = [
C1,C2, . . . ,Cc, 0n×k

]
(5.10.3)

where Ci = Ini − Jni /ni for i = 1, 2, . . . , c so that
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EP E = Y′KY ≡ Y′Y− Y′.V−1Y. (5.10.4)

for V−1 = diag [n1, n2, . . . , nc, 0] with degrees of freedom in vP E = k − c ≥ p. The
matrix EL F has degrees of freedom vL F = n − q∗ − vP E ≥ p where q∗ = r (X).

To test for lack of fit for the SUR model, we solve

| EL F − λEP E |= 0 (5.10.5)

and use any of the standard criteria where

s = min (vLF, p)

M = (| vL F − p | −1) /2

N = (vP E − p − 1) /2

following Khuri (1985). Alternative test statistics have been proposed by Levy and Neill
(1990). The simulation study by Levy and Neill (1990) show that the Bartlett-Lawley-
Hotelling test statistic is most stable.

5.11 Sum of Profile Designs

Frequently with the analysis of complete repeated measurement data, one wants to analyze
treatment effects using low order polynomials with covariates that may be modeled differ-
ently or with covariates that may be changing with time. To create a model allowing one
to model treatment effects with low order polynomials and baseline covariates, Chinchilli
and Elswick (1985) proposed a mixed MANOVA-GMANOVA model of the form

E (Y | Z) = XBP+ Z� (5.11.1)

They were able to obtain ML estimates for the model parameters B, � and �, and devel-
oped likelihood ratio tests for the three hypotheses assuming a MVN distribution

H1 : C1BM1 = 0 (5.11.2)

H2 : C2� = 0

H3 : H1 ∩ H2 = 0

They also developed goodness of fit tests for the model comparing it to the GMANOVA
and MANOVA models. Timm and Mieczkowski (1997) developed SAS code for the LR
and goodness of fit tests for the MANOVA-GMANOVA model.

Patel (1986) considered a model similar to the mixed MANOVA-GMANOVA model
that did not allow for polynomial growth, but did permit covariates that change with time.
Patel’s model has the general structure

E (Y) = XB+
r∑

j=1
Z j� j (5.11.3)
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While Patel was unable to obtain a closed form solution for the ML estimates of �, B, and
� j , he obtained estimates that converge to ML estimates. He also developed asymptotic LR
tests of (5.11.2) under his model.

Verbyla and Venables (1988) extended Patel’s model to a sum of GMANOVA profiles
model of the form

E( Y
n×p

) =
r∑

i=1
Xi Bi Mi (5.11.4)

called a sum of profiles model. This model has no closed form ML solution for � and Bi .
Hence, Verbyla and Venables represent (5.11.4) as a SUR model to estimate model pa-
rameters. von Rosen (1989) developed necessary and sufficient conditions for the sum of
profiles model in (5.12.4) to have a closed form solution. Except for the simple structure
considered by Chinchilli and Elswick (1985), his result involves nested design matrices
which have limited practical application. In addition, the distribution of the LR statistics is
complicated and would have to be approximated using, for example, Bartlett’s chi-square
approximation.

To estimate parameters and to test hypotheses for the sum of profiles model, we follow
the approach recommended by Verbyla and Venables (1988). Given a consistent estimate
of �, we use Hecker’s (1987) CGMANOVA model which we saw is a general SUR model
to study models of the form given in (5.11.4). Recalling that for Y = ABC, Y′ = C′B′A′ so
that vec

(
Y′

) = (
A⊗ C′

)
vec

(
B′

)
, we vectorize Y and B row-wise so that y∗ = vec

(
Y′

)
and β∗i = vec

(
B′i

)
, then (5.11.4) may be written as a CGMANOVA/SUR model

E
(
y∗

) = [(
X1 ⊗M′1

)
, . . . ,

(
Xr ⊗M′r

)]

β∗1
β∗2
...

β∗r

 (5.11.5)

= Aθ

Using (5.2.12) to estimate θ with ̂̂θ where �̂ is defined in (5.2.13), tests of the form H :
Cθ = θo are easily tested using the Wald statistic defined in (5.2.14).

The CGMANOVA/SUR model may be used to estimate parameters and to test hypothe-
ses in any multivariate fixed effects design for which LR tests may be difficult to obtain.
One merely vectorizes the model, obtains a consistent estimate of � and applies Wald’s
statistic. To illustrate, we consider the multivariate SUR (MSUR) model.

5.12 The Multivariate SUR (MSUR) Model

In (5.2.1), we developed the SUR model as p correlated regression models. Replacing each
column vector of Yn×p by a matrix Yi of order (n × pi ), the MSUR model has the general
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form

E
[
Y1,Y2, . . . ,Yq

] = [
X1�11,X2�22, . . . ,Xq�qq

]

= [
X1,X2, . . . ,Xq

]


�11 0 · · · 0
0 �22 · · · 0
...

...
...

0 0 · · · �qq


E (Y) = X� (5.12.1)

where Xi has order (n × ki ), �i i has order (n × pi ) and the cov
(
Yi ,Y j

) = �i j is of order(
pi × p j

)
, � = [

�i j
]

is of order p × p where p = ∑q
i=1 pi . For the j th matrix Y j in

Y = [
Y1,Y2, . . . ,Yq

]
, we have that E

(
Y j

) = X j� j j where the cov
(
Y j

) = � j j . If
p1 = p2 = . . . = pq = po (say), then (5.12.1) has the simple form

E


Y1
Y2
...

Yq

 =


X1 0 · · · 0
0 X2 · · · 0
...

...
...

0 0 · · · Xq




�11
�22
...

�qq


a matrix generalization of (5.2.2).

To represent (5.12.1) as a GLM, we let

U = [
E1,E2, . . . ,Eq

]
U = [

ei1, ei2, . . . , eipi

]
Y = [

Y1,Y2, . . . ,Yq
]

Yi =
[
yi1, yi2, . . . , yipi

]
� = [

�11,�22, . . . , �qq
]

� j j =
[
� j j1,� j j2, . . . , � j j p j

]
where

e = vec (U) = [
vec (U1) , . . . , vec

(
Uq

)]
y = vec (Y) = [

vec (Y1) , . . . , vec
(
Yq

)]
θ = vec� = [

vec (�11) , . . . , vec
(
�qq

)]
so that yi j is the j th column of Yi and θ j j t is the t th column of � j j , then (5.12.1) becomes

y = Dθ + e (5.12.2)

D = diag
[(

Ip1 ⊗ X1
)
, . . . ,

(
Ipq ⊗ Xq

)]
and diag [Ai ] is a block diagonal matrix with Ai =

(
Ipi ⊗ Xi

)
. The ML estimate of θ is

θ̂ =
[
D′ (� ⊗ In)

−1 D
]−1

D′ (� ⊗ In)
−1 y (5.12.3)

A FGLS estimate of θ is

̂̂θ = [
D′(�̂ ⊗ In)

−1D
]−1

D′
(
�̂ ⊗ In

)−1 y (5.12.4)



5.13 Sum of Profile Example 341

where �̂
p−→ �. Following (5.2.4), we may �̂ = [si j ] with elements

si j = 1

n − qi j

[
Y′i (In − Xi

(
X′i Xi

)−1 X′i )(In − X j (X j X′j )−1X′j )Y j

]
(5.12.5)

where qi j = 0 or

qi j = tr
[
(In − Xi

(
X′i Xi

)−1 X′i )(In − X j (X′j X j )
−1X′j )

]
Since (5.13.2) is a GLM, the Wald statistic

W = (Ĉ̂θ − θo)
′{C[D′(�̂⊗In)

−1D]−1C′}−1(Ĉ̂θ − θo) (5.12.6)

may be used to test
H : Cθ = θo (5.12.7)

where the r (C) = vh and D is defined in (5.12.2).
For the MSUR model, observations were stacked column-wise, for the CGMANOVA

model, observations were stated row-wise. The SUR model may be used for either repre-
sentation, depending on the application. For growth curve models, it is convenient to stack
vectors row-wise. This is illustrated with an example in the following section.

5.13 Sum of Profile Example

To illustrate the CGMANOVA/SUR model, data analyzed by Chinchilli and Elswick (1985)
and Timm and Mieczkowski (1997, p. 404) from Danford et al. (1960) are utilized. The data
set is given in the file Danford.dat. It consists of 45 patients with cancerous lesions who
were subjected to whole-body x-radiation. The radiation dosage was at four levels, a control
level with six patients and three treatment levels with 14, 15, and 10 patients. A baseline
measurement was taken at day 0 (pretreatment), and then measurements were taken daily
for ten consecutive days (posttreatment). For our example, only the first five measurements
are used. The first variable in the file represents the control and three treatment levels of
radiation (1, 2, 3, 4); the next four columns (values 0 or 1) represent a full rank design
matrix X without the covariate; the next column is the baseline covariate; the next columns
(y1− y10) denote the 10 posttreatment measurements; and the last column is set to one so
that a common model may be easily fit to the entire group of patients. Program m5 13 1.sas
contains the code for the analysis.

Because the data set has a baseline variable, one may not fit a growth curve model to the
data since the growth curve model does not permit covariates. A natural model for the data
is the MANOVA-GMANOVA model given in (5.11.1). The structure for the model is

E( Y
45×5

) = X
45×4

B
4×q

P
q×5
+ Z

54×1
�

1×5
(5.13.1)

Again, one must decide upon the degree of the polynomial q ≤ p in the matrix P. Ignoring
the covariate, and plotting the five time points, a linear model appears appropriate. Thus,
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we consider fitting the model

E( Y
45×5

) = X
45×4

B
4×2

P
2×5
+ Z

54×1
�

1×5
(5.13.2)

to the data.
While the MANOVA-GMANOVA model is appropriate for these data and has a closed

form solution, the more general sum of profiles model has no simple likelihood ratio test
solution since ML estimates of model parameters are difficult to obtain. The more flexible
solution is to represent the model as a CGMANOVA/SUR model using (5.11.5). To evaluate
model fit using the SUR model approach, one may fit two nested models and use a chi-
square or F-like statistic to compare the two models. Tests for comparing two nonnested
models are developed in the next section.

To transform the model given in (5.13.2) to a SUR model, we use (5.11.5) with M′1 =
P and M′3 = I. For the 45 patients, the repeated measurement row-vectors are stacked
columnwise to form the linear model

y = A θ + e


y1
y2
...

y45

 = [
X⊗ P′,Z⊗ I5

]



β11
β12
β21
β22
β31
β32
β41
β42
γ 1
γ 2
γ 3
γ 4
γ 5



+


e1
e2
...

e45


(5.13.3)

for the example. For each patient, we have the model

yi
5×1
= A

5×13
θ

13×1
+ e

5×1
i = 1, 2, . . . , 45 (5.13.4)

where Ai are sets of five rows of the matrix A = (
X⊗ P′,Z⊗ I5

)
.

In program m5 13 1.sas we estimate θ using formula (5.2.12). As a convenient estimate
of �, we use the naive estimate

�̂ = Y′(I− 1
(
1′1

)−1 1′)Y/n

based upon the within-patient variation. To test hypotheses, the Wald statistic in (5.2.14) is
used.
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From the output, the matrices B and � are reconstructed from θ . The estimates for the
parameter matrices are

B′ =
[

148.00 107.71 141.46 132.80
32.04 18.07 15.82 5.57

]
� = [

0.780, 0.883, 0.921, 0.922, 0.988
]

The ML estimates for B′ and �′ obtained by Chinchilli and Elswick (1985) are

B′M L =
[

150.89 102.80 139.87 132.19
32.39 17.27 15.33 5.36

]
�M =

[
0.782 0.887 0.925 0.928 0.994

]
as calculated in Timm and Mieczkowski (1977, p. 411). Comparing the two estimators, we
have close agreement for the two approaches, even using a naive “plug in” estimate for �.
We may also use the SYSLIN procedure to fit the model, however, it is rather cumbersome
since it involves 45 equations.

To test hypotheses, we use formula (5.2.14). To illustrate the method we evaluate whether
the profiles are coincident using (5.13.3). For θ in (5.13.3), the matrix C has the form

C =


1 0 0 0 0 0 −1 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 0


where the r (C) = 6. The p-value for the test of coincidence is 0.5731 so that we conclude
coincident profiles. The exact LR test has a p-value of 0.34.

To test that the covariate is nonzero, we may test H : � = 0. Then, C = [05, I5] with
rank 5. Because the p-value for the test is 0.0001, we conclude that the baseline measure-
ment should be included in the model. The exact likelihood ratio test of H : � = 0 involves
a matrix inverted Dirichlet distribution which is difficult to evaluate. Using the sum of two
chi-square distributions, Timm and Mieczkowski (1997, p. 353) suggest an approximation.
Using the approximation for the exact likelihood ratio test, the estimated p-value is 0.0123.
Thus, we conclude using either approach to retain the baseline measurement.

Because the SUR model provides the researcher with the analysis of complex linear mod-
els when exact likelihood ratio test procedures may be difficult to implement, we strongly
recommend its use. Timm (1997) provides additional examples for the approach.

Exercises 5.13

1. The Danford data set contains one outlier, remove the observation and rerun program
m5 13 1. Discuss your findings.

2. Using n = 45 subjects in the file Danford.data with all 10 consecutive posttreatment
measurements, fit a GMANOVA-MANOVA model group using a SUR model.



344 5. Seemingly Unrelated Regression Models

5.14 Testing Model Specification in SUR Models

When fitting a SUR model to a data set, one may use the Wald statistic or an approximate
F statistic to test that some subset of the variables should be excluded from the model. To
apply these statistics, the requirement for the procedure is that the alternative model must
be nested within the overall model. The approach presumes that the “true” model exists
within the family of models being considered. This assumption in some applications may
not be true; thus, the true model may not be found. Cox (1961, 1962) viewed the problem of
model evaluation as the process of selecting among alternative models instead of restricting
ones search within a given family. This leads one to the more general problem of evaluating
nonnested hypotheses. A review of the literature in provided by McAleer (1995). Most tests
developed for nonnested models are not exact, but depend on asymptotic theory.

In testing hypotheses regarding nested linear models, one considers a linear model

�o : y = Xβ + e (5.14.1)

and an alternative model
ω : y = Xβ1 + e (5.14.2)

where under ω, for β ′ = (
β ′1,β ′2

)
,β2 = 0. Under H0, ω is considered the true model and

under H1,�o is the true model. More generally, suppose one wants to evaluate two models

H1 : y = Xβ + e1

H2 : y = Zγ + e2
(5.14.3)

where the intersection of X and Z is not null, some variables must be shared by the two
models. The models in (5.14.3) are not nested. Cox (1961, p. 106, 1962, p. 406) states that
two models are nonnested (or separate) if neither may be obtained from the other by the
“imposition of appropriate restrictions, or as a limiting form of a suitable approximation”.
When one model is nested within another, the likelihood ratio under the null model is zero,
and there is only one null model. This is not the case for nonnested models. Each model
is considered to be the null model temporarily. While both procedures are concerned with
model specification, in the nested situation evaluation is among rivals within a family while
nonnested tests evaluate model specification between two competing families. Nonnested
tests allow one to determine whether one or both models are misspecified. In the nested
model situation, only one model is misspecified.

In considering (5.14.3), we want a test of H1 vs. H2 where rejection of H1 allows us to
test the viability of H2 by testing H2 vs. H1. To conclude that specification H2 is “more
correct” than H1, we must fail to reject H2 compared to H1. Or, conversely interchanging
H1 and H2 we may conclude that H1 is a “more correct” specification than H2. If we reject
both when comparing H2 vs. H1, and H1 vs. H2, then neither model provides an adequate
specification and both models are considered misspecified. Failure to reject neither, one
must postpone judgement regarding model specification.

Assuming H1 ≡ H2 against H2 vs. H1 in (5.14.3) where both models are SUR models so
that e1 ≡ e0 ∼ N (0,�0 = �0 ⊗ I) and e2 ≡ e1 ∼ N (0,�1 = �1 ⊗ I), Cox (1961, 1962)
developed a modified likelihood ratio test of H0 vs. H1. Following Pesaran and Deaton
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(1978), Cox’s test statistic is

T0 = n

2
ln

{| �̂1 | / | �̂10 |
}

(5.14.4)

The covariance matrix �̂1 is the MLE of � given H1. To estimate �10, one estimates �

under the difference in the likelihoods (L10 = L0 − L1) which is like minimizing the errors
under H0 (ω ) and under H1 (�) and taking the difference as an error estimate. To estimate
�10, we consider the artificial regression model

f̂ = Zγ + error (5.14.5)

where f̂ = Xβ̂ represents fitted values of y under H0. Then

�̂10 = �̂error + �̂0 (5.14.6)

The maximum likelihood estimate of γ in (5.14.5) is represented as γ̃ .
Cox shows that T0 in (5.14.4) is asymptotically normal with mean zero and variance

σ̂ 2
0 = var (T0) when H0 is true. The statistic Z01 = T0/σ 0

.∼ N (0, 1). The formula for the
estimated variance σ̂ 2

0 given H0 is

σ̂ 2
0 = d′0�̂

−1
0 d0 (5.14.7)

where

�̂0 = �̂0 ⊗ I

d0 = [I− X(X′�̂−1
0 X)−1X′�̂−1

0 ]̂h0 (5.14.8)

ĥ0 = (�̂0�̂
−1
10 ⊗ I)(Xβ̂ − Zγ̃ )

as developed by Pesaran and Deaton (1978). In a similar manner, we may calculate the
statistics T1, σ̂ 2

1 and Z10 by interchanging the role of X with Z, testing H1 vs. H0.
For multiple linear regression models, Godfrey and Pesaran (1983) recommend replacing

ML estimates of the covariance matrices with unbiased estimates when n < 40 and the
number of variables is small, less than 3. For n ≥ 20, the statistic maintained a Type I error
rate near the nominal level. For SUR models, the same relationships should be maintained
for each variable, however, exact guideline need to be established. Replacing ML estimates
with unbiased estimates S, the mean of Z01 = T0/σ̂ 0 is nearest to zero under H0 leading
to fewer Type I errors.

A major disadvantage of Cox’s procedure is that the result is asymptotic. For multiple
linear regression models, Fisher and McAleer (1981) and McAleer (1983) developed exact
tests based on the ELM of Milliken and Graybill (1970). We extend their approach to the
SUR model.

To develop a test for evaluating (5.14.3), we let H1 ≡ H0 and H2 ≡ H1 and write
(5.14.3) as

H0 : y = Xβ + u0 u0 ∼ Nnp×1 (0,�0 = �0 ⊗ I)

H1 : y = Zγ + u1 u1 ∼ Nnp×1 (0,�1 = �1 ⊗ I)
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Next, we combine H0 and H1 to form the artificial linear model

α0 (y− Xβ)+ α1 (y− Zγ ) = u

y = Xβ∗ + α1Zγ + u
(5.14.9)

where u = α0u0 + α1u1, α0 + α1 = 1 and β∗ = α0β0. Letting α0 = −α1/α0 and u/α0,

we may write (5.14.9) as an artificial SUR model

y = Xβ + (y− Zγ ) α∗ + u (5.14.10)

where u∗ ∼ N
(
0,�∗ = �0 + α2

1�1
)
. Using (5.10.10), testing H0 : α∗ = 0 is equivalent

to testing H0 : α1 = 0 and each is testing H0 in (5.14.9). Equation (5.10.10) is similar to
the ELM given in (5.9.1) with y− Zγ ≡ F1. Thus, (5.10.10) is an extended SUR model.
As in the test of nonadditivity, we must estimate Zγ to test H0 : α∗ = 0.

Under H0, the predicted value of y is Xβ̂. For the SUR model,

Xβ̂ = X(X′�̂−1
0 X)−1X′�̂−1

0 y = f̂ (5.14.11)

say. Replacing y of H1 in (5.10.9) with f̂, the estimate of γ is obtained from the artificial
SUR model

f̂ = Zγ+ error (5.14.12)

Letting �10 represent the covariance matrix for the SUR model,

γ̃ =
(

Z′�̂−1
10 Z

)−1
Z′�̂−1

10 f̂

the predicted value of f̂ defined as g10 (say) is

g̃10 = Zγ̃

= z(z′�̂−1
10 Z)−1Z′�̂−1

10 f̂
(5.14.13)

Replacing y− Zγ in (5.14.10) with
(

f̂ − g̃10
) ≡ F̂, the residual of (5.14.12), we obtain

the extended SUR model

y
np×1
= X

np×k
β

k×1
+ F̂

np×1
α∗ + u∗

np×1
(5.14.14)

Letting X∗ =
[
X,̂F

]
, model (5.14.13) has the structure of the SUR model

y = X∗θ + u∗

where θ ′ = (
β ′, α∗

)
and u∗ ∼ Nnp (0,�∗ = �∗ ⊗ I). To test H0 : α∗ = 0 we may set

C = (
0′, 1

)
and use F∗ in (5.2.9) where

̂̂θ = (
X′∗�̂−1∗ X∗

)−1
X∗�̂−1∗ y

�̂∗ = �̂∗ ⊗ I
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and �̂0
p−→ �. As n becomes large,

√
F∗ d−→ N (0, 1) under H0 since νh F∗ d−→ χ2

(vh)

and νh = 1 so that the
√

F∗ is asymptotically equivalent to Cox’s test. For known �∗, F∗ is
an exact test. Because F∗ is asymptotically equivalent to Rao’s score test, it has maximum
local power, St. Laurent (1990).

Example 5.14.1 (Nonnested Tests) To implement Cox’s modified LR test procedure and
the
√

F∗ statistic developed using the extended SUR model, we again use Rohwer’s data in
Table 4.3.1. This data was used to illustrate the MR model and the SUR model. When using
the multivariate regression procedure or the SUR modeling methods to fit models to data,
alternative models are evaluated as subsets of an overall model.

Because the Raven Picture Matrices Test (RPMT) is not strongly related to the PA learn-
ing tasks, we delete this variable from the data set and we consider investigating the rela-
tionship of the achievement variables SAT and PPVT to different subsets of paired associate
(PA) learning tasks. Under H0, we relate SAT to N and SS, and PPVT to S and SS. And,
under the alternative H1, SAT is related to NA and SS while PPVT is related to NS and
SS. For the SUR models given in (5.14.9), the dependent vector y′ = (

y′1, y′2
)

contains
the variables y1 = {SAT} and y2 = {PPVT}. Under H0, X contains X1 = {N,SS} and
X2 = {S,SS} and under H1,Z contains Z1 = {NA,SS} and Z2 = {NS,SS}for the two
models. To analyze the two models, program m5 14 1.sas is used.

Program m5 14 1.sas uses the SYSLIN procedure, and IML code to test H0 vs H1 and H1
vs. H0 for both Cox’s test and the

√
F∗ statistic. The program is divided into two sections:

Cox’s test procedure and the F-like test procedure. The program begins by calculating in-
puts to T0 in (5.14.4) for testing H0 vs H1 by obtaining unbiased estimates S0,S1, and S10
using the SYSLIN procedure with the option ISUR. It also calculates the values of the co-
variance estimates S0,S1, and S10 for testing H1 vs. H0 by interchanging X and Z. Output
from this program step is passed to the second IML step using the new Output Delivery
System available in Version 8 of SAS to calculate T0, σ̂

2
0 and Z01 for testing H0 vs H1 .

The process is repeated to calculate T0 , σ
2
1, Z10 for testing H1 vs H0. Testing H0 vs H1,

Z01 = −15.19455 and for testing H1 vs H0, Z10 = −133.0896. Hence, using Cox’s mod-
ified LR test procedure we would conclude that both models are misspecified.

Evaluating the same models using the
√

F∗ statistic, we find that F∗ = 22.1945 and√
F∗ = 4.711 for testing H0 vs H1. For testing H1 vs H0, F∗ = 12.9697 and

√
F∗ =

3.6013. Using the small sample statistic, we also conclude that both models are misspeci-
fied for Rohwer’s data.

For this example, the sample size n = 32 is small which usually leads to a Type I error
rate for Cox’s test that is less than the nominal level α. The Type I error for Cox’s test
is usually less than the nominal level for sample sizes n ≤ 50. The Type I error rate for
statistic

√
F∗ appears to always be near the nominal level of the test for sample sizes larger

than 25. For n ≥ 100, both test procedures always appear to have Type I error rates near
the nominal level of the test, Timm and Al-Subaihi (2001). Except for very small sample
sizes (n ≤ 25), the two procedures have approximately the same power. For large sample
sizes, n � 200, the two tests are equivalent.
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Exercises 5.14

1. Use the file Rohwer2.dat for the n = 37 subjects in the high SES area to fit the
models proposed for the n = 32 low SES students.

5.15 Miscellanea

In applying the MR, SUR, GMANOVA and other multivariate linear models in the analy-
sis of multivariate data, the covariance matrix � was unknown and estimated jointly with
the parameters associated with the mean, E (Y). The primary focus of the analysis was
to estimate the location parameters and �, and to test hypotheses regarding the mean. In
many applications in the behavioral and social sciences, one often constrains � to a specific
form. Then, one is interested in estimating both the covariance structure of � and the lo-
cation parameters. Jöreskog (1970, 1973) developed a very general multivariate model for
this problem and called it the analysis of covariance structures (ACOVS). His covariance
structure model allows one to estimate the covariance structure as well as the location pa-
rameters and, in large samples, test hypotheses about the structure of �. Jöreskog’s model
for the specification of E (Y) is identical to the GMANOVA model given in (5.6.1); how-
ever, he further assumes that � has a general covariance structure of the form

� = A
(
���′ +'

)
A′ +� (5.15.1)

where the matrices Ap×q = [αik], �g×r = [γ km], the symmetric matrix �r×r = [φms],
and the diagonal matrices 'g×g = diag[ψh] and �p×p = diag[θ i ] are parameter ma-
trices. To apply the general model in practice, Y determines n and p, and X and P are
determined by the application as in the GMANOVA model. However, the parameters in
B,A, �, �,', and � are permitted to be of three types: (i) fixed parameters that have
known values; (ii) constrained parameters that are unknown but equal to one or more of
the other parameters; and (iii) free parameters that are unknown, and constrained to be
equal to other parameters.

An important problem with Jöreskog’s model is the indeterminacy of �. That is, if A is
replaced by AT−1

1 , � by T1�T−1
2 , � by T2�T′2, ' by T1'T′1 with � unchanged, the struc-

ture of the matrix � is unaffected. This is the case for all nonsingular matrices T1 (g × g)
and T2 (r × r) such that T1'T′1 is diagonal. To eliminate the indeterminacy, constraints
are imposed on parameters; some values are assigned known values, and others are allowed
to be free to vary to ensure that all parameters are uniquely estimable. More will be said
about this problem when we address specific applications. For now, we will assume that
all indeterminacies have been eliminated so that T1 = T2 = I is the only transformation
that preserves the specifications regarding the fixed and constrained parameters.

To estimate B, A, �, �, ', and � in the Jöreskog model, Jöreskog minimizes the
expression −2 log L/n where L is the likelihood for the MVN model. In particular, letting

T (B) = (Y− XBP)′ (Y− XBP) /n (5.15.2)

the function to be minimized is

FM L = −2 log L/n = log |�| + tr
(

T�−1
)

(5.15.3)
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where T ≡ T (B). The function F is a function of B, A, �, �, ', and �, T is a function
of B as given in (5.15.2), and � is a function of A, �, �, ', and � by (5.15.1). To obtain
full information ML estimates for the model parameters in Jöreskog’s model is complicated
and requires numerical iterative methods. The ML procedure described in Jöreskog (1973)
was programed by using a modified Fletcher-Powell algorithm.

To test hypotheses using the model, one lets H0 be any hypotheses concerning the para-
metric structure of the general model and H1 an alternative, usually the GMANOVA model.
Letting F0 be the minimum of FM L under Ho and F1 the minimum of FM L under H1, the
likelihood ratio test of minus two times the likelihood ratio in terms of FM L becomes

X2 = n (F0 − F1) (5.15.4)

and has an asymptotic chi-squared distribution under H0 with degrees of freedom v equal to
the difference in the number of independent parameters estimated under H1 and H0. When
the alternative is the GMANOVA model, where �̂ is defined in (5.6.3) and the statistic in
(5.14.4) becomes

X2 = n(F0 − log |�̂| − p) (5.15.5)

where υ∗ = kp + p (p + 1) /2 − υo and υo is the number of independent parameters
estimated under Ho.

We have introduced the Jöreskog’s analysis of covariance structures (ACOVS) model
to illustrate a very general model which includes the MR, MANOVA, MANCOVA and
GMANOVA models as special cases. It may also be used to analyze many applications that
arise in classical test theory, the estimation of variance components, path analysis models,
complex economic models and linear structural equation models. We will discuss some of
these models in the next chapters. A popular special class of the covariance structure model
is the Linear Structural Relations (LISREL) model, Jöreskog (1977, 1979) Structural
equation modeling (SEM) is discussed in Chapter 10.
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6
Multivariate Random and Mixed Models

6.1 Introduction

In our discussion of the MR model the parameter matrix B contained only fixed parame-
ters and the analysis of univariate fixed effect designs for orthogonal and nonorthogonal
MANOVA and MANCOVA designs extended in a natural manner to the multivariate case.
The MANOVA model also provided an alternative for the analysis of repeated measure-
ment designs, if there are no covariates changing with time, and allowed the within-subject
covariance matrix to have a general structure. The SUR model was introduced to permit the
analysis of repeated measures data with changing covariates. The GMANOVA model was
also used to analyze repeated measurements, however, exact tests exist only when there is
complete data and the within-subject covariance matrix is unstructured.

In this chapter we discuss a generalization of the GMANOVA model, called the random
coefficient regression model, which will permit the analysis of longitudinal repeated mea-
surements data that are MAR. We also discuss the univariate general linear mixed model
which allows one to model the within-subject covariance matrix in repeated measurement
designs and to analyze multi-response repeated measurements. Next, we discuss a MGLM
that allows the parameter matrix to be random or mixed and to contain both random and
fixed parameters. For orthogonal designs, univariate models generalize in a natural manner
to the multivariate case; this is not the case for nonorthogonal designs which require a mul-
tivariate analogue of Satterthwaite’s approximation. Finally, we conclude the chapter with
a discussion of a general multivariate hierarchical linear model.
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6.2 Random Coefficient Regression Models

a. Model Specification

The GMANOVA and SUR models were used to fit polynomials to repeated measurement
data to model the behavior of each group rather than individuals. The analysis required
complete data for exact tests and if data are missing, it was MCAR. To permit the analysis
of repeated measurements data that are gathered at irregular intervals and MAR, we employ
the random coefficient regression model considered independently by Rao (1965), Swamy
(1971), Lindley and Smith (1972) and Laird and Ware (1982). To specify the model, we use
a two-stage hierarchical linear model (TSHLM) where at stage one we model the within-
subject observations and at stage two we model the random regression coefficients. The
model has the general structure

yi = Ziβ i + ei i = 1, 2, . . . , n

β i = Qiβ + ai
(6.2.1)

The vector y′i =
[
yi1, yi2, . . . , yiri

]
is a vector of ri repeated measurements for the i th

subject. The matrix Zi is the within-subject design matrix of order ri × h of full rank h,
and the r (Zi ) = h ≤ ri . The vector β i (h × 1) is a vector of regression coefficients for the
i th subject and ei ∼ I Nri

(
0, σ 2Iri

)
. The vector β i is being modeled in the second stage

as a linear regression equation where Qi (h × q) is the between-subject design matrix and
βq×1 is a vector of fixed population parameters. The vectors ai ∼ I Nh (0,�) and are
independent of ei .

Combining the equations in (6.2.1) into a single model, we have that

yi = (Zi Qi )β + Zi ai + ei i = 1, 2, . . . , n

= Xiβ + Zi ai + ei

E (yi ) = Xiβ

cov (yi ) = Zi�Z′i + σ 2Iri = �i

(6.2.2)

where the j th element of yi has the simple linear structure

yi j = β ′xi j + a′i zi j + ei j i = 1, 2, . . . , n j = 1, 2, . . . , ri (6.2.3)

the E
(
ei j

) = 0, var
(
ei j

) = σ 2 and the cov (ai ) = �. Letting ai = a′i zi j where the
var (ai ) = σ 2

a (say), a simple application of (6.2.3) is the one-way mixed random effects
model. Replacing yi j and ei j by p×1 random vectors and letting β ′xi j = Bxi j where Bp×q

is a matrix of unknown fixed parameters, we have the multivariate extension of the mixed
random effects models. Alternatively, we may write (6.2.2) using a single vector equation.
Letting N =∑

i ri ,

yN×1 =


y1
y2
...

yn

 , X =


X1
X2
...

Xn

 , a =


a1
a2
...

an


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Z =
n⊕

i=1

Zi =


Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

0 0 · · · Zn

 and e =


e1
e2
...

en


a linear (univariate) model for (6.2.2) becomes

y = Xβ + Za+ e

E (y) = Xβ

cov (y) = Z (In ⊗�)Z′ +
(

n⊕
i=1

σ 2Iri

)
= Z (In ⊗�)Z′ + IN ⊗ σ 2

= Z (In ⊗�)Z′ + σ 2IN

= �

(6.2.4)

where � = ⊕n
i=1 �i , �i = Zi�Z′i + σ 2Iri and y ∼NN (Xβ,�). Model (6.2.4) is linear

in the parameters, but is more complicated that the GLM since now it involves the random
component vector a. Model (6.2.4) is a mixed linear model with covariance structure �.

b. Estimating the Parameters

To estimate the fixed parameters σ 2, �, and β in the random coefficient regression model
(6.2.4) is more complicated than estimating β and σ 2 in the GLM since we have the
additional matrix � of unknown covariances. In addition, the prediction of yi becomes
more complicated. In the GLM, we could obtain confidence intervals for the elements of
E (y) = Xβ and prediction intervals for ŷ not in the domain of X, or future observations.
In the random coefficient regression model, confidence intervals for the elements of E (yi )

depend on estimates of β, �, and σ 2. In addition, prediction intervals for the elements of ŷi

over the domain of collected data depend on an estimate for the random vectors ai , called
the best linear unbiased predictor (BLUP). To see this, recall that yi = Xiβ + Zi ai + ei

where E (yi ) = Xiβ. Hence, a confidence interval for the elements of E (yi ) depend on
ŷi = Xi β̂ and the variability of ŷi − yi over the domain Xi . The

cov (̂yi − yi ) = Xi
(
cov β̂

)
X′i + Zi�Z′i + σ 2Iri (6.2.5)

which depends on β̂, � and σ 2. However, a prediction interval for yi depends on âi since
ŷi = Xi β̂ + Zi âi . The predictive variance of ŷi − yi ,

cov (̂yi − yi ) = Xi
(
cov β̂

)
X′i + Zi cov (̂ai − ai )Z′i + σ 2Iri (6.2.6)

depends on the BLUP estimate âi and the variance of âi − ai .
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To estimate the parameter vector β in (6.2.4), we first assume that � and σ 2 are known.
Then, the ML or GLS estimate of β is

β̂ = (
X′�X

)−1 X′�−1y

=
n∑

i=1

(
X′i�

−1
i Xi

)−1
[

n∑
i=1

X′i�
−1
i yi

] (6.2.7)

and the

cov(β̂) =
(

X′�−1X
)−1 =

(
n∑

i=1
X′i�

−1
i Xi

)−1

(6.2.8)

The distribution of β̂ is MVN provided e is multivariate normal.
To estimate β, σ 2, and the nonredundent elements of � represented by φ = [vec (�)]′

or θ ′s =
(
φ′, σ 2

)
, called the variance components of the model, requires the use of a com-

puter algorithm since the likelihood equations have no simple closed form solution. Com-
monly used algorithms to estimate β and θ include the EM (Expectation-Maximization)
algorithm described by Laird and Ware (1982) based on the work of Dempster, Laird and
Rubin (1977), the Newton-Raphson and Fisher scoring algorithms described by Jennrich
and Schluchter (1986), and the ridge-stabilizing, sweep-based, Newton-Raphson algorithm
described by Wolfinger, Tobias, and Sall (1994) and used in the SAS procedure PROC
MIXED. Due to the EM algorithm’s slow convergence for estimating the elements of θ ,
especially when the parameter θ is near the boundary of the parameter space, Newton-
Raphson-based methods are preferred, Lindstrom and Bates (1988).

The maximum likelihood estimate of θ , θ̂M L , is biased in small samples and since β̂ de-
pends of θ̂ , we represent β̂ as β̂ (̂θ). Furthermore, the cov β̂ is biased downward because of
the variability introduced by working with �̂i , by using θ̂M L , instead of �i is not taken into
account in the approximation for (X′i�

−1
i Xi )

−1. To reduce the bias in the cov β̂, Harville
(1977) advocates the use of the restricted (residual) maximum likelihood (REML) estimates
for θ , θ̂ RE M L , which may also lead to a biased estimate, but tends to reduce the downward
bias in the cov β̂ if �̂i ≡ θ̂ RE M L . REML estimates for the elements of θ are obtained by
maximizing the reduced likelihood equation obtained by minimizing the log-likelihood of

the transformed residual contrasts ψ i =
(

I− Xi
(
X′i Xi

)− X′i
)

yi of the original data yi ,

Searle, Casella and McCulloch (1992) and McCulloch and Searle (2001).
We have indicated how one may obtain a ML estimate for β by using β̂ (̂θM L) and indi-

rectly a REML estimate represented as β̂ (̂θ RE M L). The estimation of ai is more compli-
cated. By an extension of the Gauss-Markov theorem for the general linear mixed model,
Harville (1976) showed that the BLUP of ai (also called the empirical Bayes estimate of ai )
is

âi = �Z′i�
−1
i

(
yi − Xi β̂ (θ)

)
(6.2.9)

where �i = Zi�Z′i + σ 2I and β̂ (θ) is the ML or GLS estimate of β. The covariance
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matrix of âi − ai is

cov (̂ai − ai ) = �− cov (̂ai )

cov (̂ai ) = �Z′i Pi Zi� (6.2.10)

Pi = �−1
i −�−1

i Xi

(
n∑

i=1
X′i�

−1
i Xi

)−1

X−1
i �−1

i

To estimate the cov (̂ai − ai ), one replaces �i with θ̂REML or θ̂ML, Laird and Ware (1982).
Using (6.2.10) with �̂i substituted for �i , one may evaluate (6.2.5) and (6.2.6) to establish
100 (1− α)% simultaneous confidence intervals for a single element of yi . For a Bayesian
analysis of the random coefficient regression model, one is referred to Smith (1973) and
Laird and Ware (1982). Henderson (1963) obtains estimates for β and a by solving the
mixed model equations (e.g. Searle, Casella and McCulloch, 1992). We discuss this ap-
proach in the next section.

c. Hypothesis Testing

To test hypotheses regarding the model parameters of the random coefficient regression
model, we consider two situations: (a) observations are taken at regular intervals and con-
tain no missing data so that r1 = r2 = . . . = rn = r (say) and (b) observations are gathered
at irregular intervals so that the ri are unequal. For situation (a), exact tests and confidence
intervals exist for the model while in situation (b), tests are based on large sample theory. In
many applications of the random coefficient regression model, the between-subject design
matrix Qi has the simple structure Qi = Ih ⊗ q′i where q′i is a known k × 1 vector of
between subject coefficients usually of the form q′i = (0, 0, 0, 1k , 0, . . . , 0) with the value
one in the kth position. Setting q = hk, Zi = Z with ri = r for all i and letting Y′ represent
the data matrix with yi as its i th column, we may write Y as

Y′
r×n
= Z′

r×h
B′

h×k
Q′
k×n
+ A′

r×n
(6.2.11)

where

Q′ = [q1,q2, . . . ,qn]

A′ = [a1, a2, . . . , an]

ai = yi − Xiβ

Letting β = vec
(
B′

)
in model (6.2.11), model (6.2.2) has the same structure as the GMA-

NOVA model of Chapter 5, equation (5.6.1). The ML estimate of B assuming ai ∼ N (0, �)

where � = Z�Z′ + σ 2Ir is identical to the ML estimate of β in (6.2.2) so that β̂ =
vec(B̂′) as shown by Laird, Lange and Stram (1987). Furthermore, exact tests exist for
testing hypotheses regarding B of the form CBM = 0 or

(
M′ ⊗ C

)
vec (B) = 0 where

C is a contrast matrix for the GMANOVA model. If the matrices Zi are allowed to vary
among individuals, an approximate analysis may be accomplished using a SUR model with
complete data.
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To test hypotheses regarding β in (6.2.1) where the ri are not equal and MAR requires
the use of large sample theory. To test hypotheses of the form

H : Cβ = 0 (6.2.12)

one may again use Wald’s statistic

W = (Cβ̂)′[C(X′�̂−1X)−C′]−1(Cβ̂) (6.2.13)

∼ χ2 (vh)

where vh = rank (C), using the linear model (6.2.4). Following Theil (1971), one may also
use Wald’s F statistic approximation

F = W/vh
.∼ F (vh, ve) (6.2.14)

where ve
.= n − rank [X,Z], the default procedure of PROC MIXED. Alternatively, the

denominator degrees of freedom may be approximated using Satterthwaite’s (1946) proce-
dure. His approximation states that if

ψ̂ = c′(X′�̂−1X)−c =
s∑

i=1
αiθ i (6.2.15)

for s variance components, then the degrees of freedom for the contrast ψ̂ is approximated
by

v̂e =
(∑s

i=1 αi θ̂ i
)2(∑s

i=1 αi θ̂ i
)2

/ vi

(6.2.16)

where αi are known constants and θ̂ i are estimates of the variance components in the vec-
tor θ s×1 where s = h (h + 1) /2 + 1. This is the procedure used in PROC MIXED by
employing the option DDFM = SATTERTH on the MODEL statement. For a discussion
of Satterthwaite’s approximation, one may consult Searle et al. (1992, p. 134) or Verbeke
and Molenberghs (1997, p. 279). An elementary introduction is included in Neter, Kut-
ner, Nachtsheim and Wasserman (1996, p. 971) and Dean and Voss (1997). The default
option for calculating the denominator degrees of freedom is DDFM = CONTAIN. This
method searches for random effects that contain an appropriate fixed effect and a random
component and selects the term with the lowest value as the degrees of freedom.

Given the relationship (6.2.11) so that
(
Ih ⊗ q′i

) = Qi in (6.2.1), Vonesh and Carter
(1987) show that the hypothesis H : (M′ ⊗ C

)
β = 0 or equivalently that H : CBM = 0

may be tested using an F statistic that is an approximation to testing H under the GMA-
NOVA model given in (6.2.11) by using the Bartlett-Pillai-Hotelling trace criterion. That
is, by Theorem 3.5.1 assuming multivariate normality, an asymptotically valid test of H is
to use

F = W/ (2s No − s + 2) (svhu) (n − k)

∼ F (vhu, 2s No − s + 2)
(6.2.17)

where vh = rank (C), u = rank (M), s = min, (vh, u) and No = (n − k − u) /2. It
is unknown how this approximation compares with Satterthwaite’s approximation used in
PROC MIXED. However, both procedures are better than Wald’s chi-square statistic.
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Testing the hypothesis that a variance component in θ is zero is a more difficult problem,
Self and Liang (1987). This is due to the fact that the asymptotic distribution of likelihood
ratio statistics under the null hypothesis that the component is zero is no longer chi-square,
but a mixture of chi-square distributions. While Stram and Lee (1994) have suggested cor-
rections, PROC MIXED generates Z tests based on asymptotic likelihood properties. The
tests are generally unreliable. The procedure also produces confidence limits for variance
components using the Satterthwaite procedure where the θ i in (6.2.15) are replaced by
expected mean squares and αi are known coefficients. To obtain Z tests and approximate
standard errors and confidence intervals for components of variance, the options COVTEST
and CL are used on the procedure statement.

6.3 Univariate General Linear Mixed Models

a. Model Specification

While the random coefficient regression model given in (6.2.1) or more compactly in (6.2.2)
permits us to generalize the GMANOVA model in the analysis of growth curves involving
MAR repeated measurements data, the structure of the within-subject covariance matrix
for ei ∼ I Nri

(
0, σ 2Iri

)
is somewhat restrictive. In addition, the second equation of model

(6.2.1) requires all elements of each β i to be random. To relax these requirements, we may
define each β i as

β i = Qiβ + Ai ai (6.3.1)

where the matrix Ai contains 0’s and 1’s to select the elements in β i that are random and
allow the others to be fixed. Furthermore, we assume that the errors ei ∼ I Nri (0, ' i )

where 'i is a general ri × ri covariance matrix so that the covariance structure of yi is
�i = Zi�Z′i + 'i . Combining (6.3.1) with the first stage equation given in (6.2.1), the
univariate mixed effects linear model becomes

yi = (Zi Qi )β i + (Zi Ai ) ai + e

= Xiβ + Z̃i ai + ei i = 1, 2, . . . , n

E (yi ) = Xiβ

cov (yi ) = Z̃i�Z̃′i +'i = �i

(6.3.2)

Comparing (6.3.2) with (6.2.2), we observe that the linear structures for the two models are
very similar since letting Ai = I and 'i = σ 2Iri , the random coefficient regression model
is a special case of the univariate mixed effects linear model. For notational convenience,
we let Z̃i ≡ Zi which is a known design matrix linking ai with yi , Laird and Ware (1982).
Thus, the general structure for the univariate linear mixed model is

yi = Xiβ + Zi ai + ei i = 1, 2, . . . , n

ai ∼ I Nh (0, �) (6.3.3)

ei ∼ I Nri (0, 'i )
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where Xi of order ri × q is a known design matrix, βq×1 is a vector of fixed effect popula-
tion parameters, Zi of order n× h is a known design matrix, and ai and ei are independent
random vectors. Other names for model (6.3.3) include hierarchical linear models, mul-
tilevel models, panel data models, variance component models, or simply mixed effects
linear models, Searle et al. (1992), and Kreft and de Leeuw (1998).

Model (6.3.3) is more general than the random coefficient regression model because it
provides for alternative intrasubject covariance matrices 'i , thus leading to the estimation
of more parameters. Following (6.2.4) with N =∑

i ri , we may express the model as
y1
y2
...

yn

 =


X1
X2
...

Xn

 β +

y
N×1

= X
N×q

β
q×1

+

(6.3.4)


Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

0 0 · · · Zn




a1
a2
...

an

 +


e1
e2
...

en


Z

N×hn
a

hn×1
+ e

N×1

where
cov (a) = In ⊗� = Diag [�,�, . . . ,�] = G

cov (e) =
n⊕

i=1

'i = Diag ['1, '2, . . . , 'n] = '
(6.3.5)

cov (y) = � = ZGZ′ +' =⊕n
i=1 �i where �i = Zi�Z′i +'i . Again, we let θ represent

the nonredundent variances and covariances of 'i , i = 1, . . . , n and �.
One may again obtain ML estimates of the parameters in (6.3.4) and (6.3.5) using the

ML procedure which again requires the use of a computer algorithm. To obtain estimates
of β and a, one may also solve the mixed model normal equations following Henderson
(1963)  X′'̂−1X X′'̂−1Z

Z′'̂−1X Z′'̂−1Z+G−1

  β̂

â

 =
 X′'̂−1y

Z′'̂−1y

 (6.3.6)

which upon simplification yields the solution

β̂ = (X′�̂−1X)−1X′�̂−1y

=
(

n∑
i=1

X′i �̂
−1
i Xi

)−1 ( n∑
i=1

X′i �̂
−1
i yi

)
(6.3.7)

â = ĜZ′�̂−1(y− Xβ̂)
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so that
âi = �̂Z′i �̂

−1
i (yi − Xi β̂) (6.3.8)

which, except for arbitrary 'i , has the same structure as the random coefficient models.
Thus, we may obtain ML or REML estimates of β represented as β̂ (̂θML) and β̂ (̂θREML),
respectively. Or we may obtain the BLUP of a, represented as â(̂θML), or the empirical
Bayes (EB) estimate represented as â(̂θREML), depending on the likelihood used to obtain
the estimates for the components of variance of the vector θ .

Using (6.3.4), motivation for the BLUP â follows from the fact that if

y = Xβ + Za+ e

cov (y) = ZGZ′ +' = � (6.3.9)

cov (y, a) = ZG and G = In ⊗� a

y

 ∼ N


 0

Xβ

 ,

 G′ GZ′

ZG �


Then the conditional mean of a|y is

E (a | y) = GZ′�−1 (y− Xβ)

cov (a | y) = G−GZ′
(
ZGZ′ +'

)−1 ZG
(6.3.10)

Furthermore, the conditional distribution of y given a is

(y | a) ∼ N (Xβ + Za,') (6.3.11)

so that
(yi | ai ) ∼ N (Xiβ + Zi ai , 'i )

for i = 1, 2, . . . , n.

b. Covariance Structures and Model Fit

A unique feature of the mixed linear model is that one may select various structures for the
covariance matrix � =⊕n

i=1 �i when estimating the model parameters β and a. Because
�i has two components, � and 'i , one must specify the structure of each when obtaining
ML and REML estimates under normality. Using PROC MIXED, the population structure
of these matrices are described using the RANDOM and REPEATED statements, respec-
tively. The TYPE = option is used to define � and 'i for the random vectors ai and ei ,
respectively. The population structure of the covariance matrix depends on the application,
a partial list for these components is provided in Table 6.3.1. More will be said about their
selection in the examples discussed in Section 6.4. References that include numerous ex-
amples with discussion of PROC MIXED and the SAS macro %glimmix used to analyze
univariate nonlinear non-normal data include Littell et al. (1996), Verbeke and Molen-
berghs (1977), Vonesh and Chinchilli (1997), and Brown and Prescott (1999). Technical
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TABLE 6.3.1. Structured Covariance Matrix

TYPE STRUCTURE

Unstructured
TYPE = UN

 σ 2
1 σ 12 σ 13

σ 2
2 σ 23

σ 2
3


Simple
TYPE = SIM

 σ 2 0 0
σ 2 0

σ 2

 = σ 2I

Variance Components
TYPE = VC

 σ 2
1 0 0

σ 2
2 0

σ 2
3


Compound Symmetry
TYPE = CS

 σ 2
1 + σ 2

2 σ 2
2 σ 2

2
σ 2

1 + σ 2
2 σ 2

2
σ 2

1 + σ 2
2


σ 2 (1− ρ) Ip + σ 2ρJp

where σ 2 = σ 2
1 + σ 2

2 and ρ = σ 2
2 /

(
σ 2

1 + σ 2
2

)
Autoregressive (1st order)
TYPE = AR(1)

 σ 2 ρσ 2 ρ2σ 2

σ 2 ρσ 2

σ 2


Toeplitz
TYPE = TOEP

 σ 2 σ 12 σ 13

σ 2 σ 12

σ 2


Compound Symmetry
Heterogeneous1

TYPE = CSH

 σ 2
1 ρσ 1σ 2 ρσ 1σ 3

σ 2
2 ρσ 2σ 3

σ 2
3


1Also available for AR(1) and Toeplitz

documentation of the SAS procedure MIXED is contained in the on-line documentation
distributed with Version 8 and in the SAS manuals, SAS (1992, 1997).

When fitting a mixed model, one again needs to evaluate model fit and model assump-
tions. Assuming for the moment that normality assumptions are valid, one needs to evaluate
the structure of the within-structure covariance matrix, evaluate the need for random effects,
and determine an appropriate mean structure for the model.

To evaluate the structure of the covariance matrix in fitting a mixed model with the
same number of fixed effects, one calculates the value of the REML log-likelihood or the
ML log-likelihood values under normality for a given model. Then using the log-likelihood
after adjusting for the number of variance components in θ , one may define the information
criterion as

AI C = log L (̂θ)− v (6.3.12)
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where v is the number of variance components estimated, Akaike (1974). As noted in
Chapter 4, with this definition of AIC a model with the largest information is now consid-
ered best. An alternative form of the information criterion was proposed by Schwarz (1978)
known as Schwarz’s Bayesian information criterion (SBC) and is defined as

SBC =
{

log L (̂θML)− v ln N/2

log L (̂θREML)− v ln N∗/2
(6.3.13)

where N = ∑
i ri , N∗ = N − q and q is the number of elements in β. These criteria, as

well as the criteria

HQIC =
{

log L (̂θML)− v ln (ln N )

log L (̂θREML)− v ln (ln N∗)

CAIC =
{

log L (̂θML)− v (ln N + 1) /2

log L (̂θREML)− v (ln N∗ + 1) /2

(6.3.14)

developed by Hannan and Quinn (1979) and Bozdogan (1987) are calculated in PROC
MIXED. When evaluating covariance structures, the model with the largest AIC, SBC,
HQIC or CAIC is considered the one with the best fit. These criteria are used to help
differentiate among several nested or non-nested models with the same fixed effects and
are not to be used as tests of significance.

To compare two nested models with the same fixed effects where the full model has θ F

variance components with vF degrees of freedom and the reduced model has θ R compo-
nents with vR degrees of freedom, a large sample likelihood ratio tests is used. The criterion
is

X2 = 2
[

log L R − log L F
] .∼ χ2 (v) (6.3.15)

where v = vR − vF , and L F and L R are the likelihoods for the reduced and full models,
respectively. The PROC MIXED software calculates a Null Model LRT chi-square statistic
by default which compares the full model y = Xβ + Za + e with the reduced model
y = Xβ+e to test whether one needs to model the covariance structure for the data. This is
an approximate test for structure since this tends to preserve the size of the test at or below
the level α while only inflating the standard errors of fixed effects, Altham (1984).

c. Model Checking

In fixed effect univariate and multivariate regression models, procedures for the evaluation
of model assumptions, outliers and influential observations were discussed. For the mixed
model, the situation is complicated by the random effects ai ∼ N (0,�) and the fact that
ei ∼ N (0, ' i ) have heterogenous covariance structure 'i .

Recall that the basic assumptions for the mixed model yi = Xiβ + Zi ai + ei are that

ei ∼ I Nri (0, 'i )

ai ∼ I Nh (0,�) (6.3.16)

yi ∼ I Nri

(
Xiβ,�i = Zi�Z′i +'i

)
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In most applications, we assume the error vectors yi are mutually independent so that 'i ≡
σ 2Iri . Then,

�i = Zi�Z′i + σ 2Iri (6.3.17)

when Xi ≡ Z⊗ q′i and ri = r so that 'i = σ 2Ir then the mixed model is a GMANOVA
model and the procedures discussed by Vonesh and Carter (1987) may be used to evaluate
model assumptions. When this is not the case, the situation is more complicated, Lange and
Ryan (1989).

For mixed models, as with multiple linear regression models, evaluation of each model fit
to a data set needs to be evaluated. This may be accomplished by fitting alternative models
and evaluating overall fit using the tr(�̂) or the | �̂ | where �̂ = ⊕n

i=1 �̂i for various
models. The model with the smallest overall generalized variance may be selected or, one
may use information criteria.

Evaluating residuals for outliers, normality, and influential observations is complicated
by the fact that we have two sources of random variation, ai and ei . In multiple linear
regression, one fits the model y = Xβ + e and exams residuals ê = y − Xβ̂ to evaluate
assumptions regarding e. In the mixed model, the residuals r̂ = y − Xβ̂ = Za + e model
both the random and error components. Furthermore, ê= r̂−Ẑa depends on the variability
of both r̂ and â. Thus, in mixed models we have two residuals to evaluate r̂ and ê. This
is usually accomplished in two steps. First, we evaluate whether the random effects are
normally distributed. Next we investigate the predicted residuals ê = y− Xβ̂ − Ẑa.

Another complication in the investigation of residuals for the mixed model is that an
entire vector of subjects may be an outlier or only one element of the vector may be an
outlier. Again, while each component may be normal, this does not imply that the entire
vector is multivariate normal.

To investigate mixed model assumptions, we consider the one-way mixed random effects
model discussed by Lange and Ryan (1989). The model is

yi j = µ+ ai + ei j i = 1, 2, . . . , n; j = 1, 2, . . . , ri (6.3.18)

where ei j ∼ I N
(
0, σ 2

)
and ai ∼ I N

(
0, σ 2

a

)
. The linear model for the i th group is

yi1
yi2
...

yiri

 = 1ri µ + 1ri ai +


ei1
ei2
...

eiri


yi = 1ri µ + 1ri ai + ei

(6.3.19)

where the parameter µ is fixed.
For each vector yi , the covariance matrix has compound symmetry structure

�i = σ 2Iri + σ 2
aJri (6.3.20)

so that the observations within the same group, class or cluster are correlated

var
(
yi j

) = σ 2 + σ 2
a

cov(yi j , yi j ′) = σ 2
a

(
j �= j ′

) (6.3.21)
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The correlation of any two observations within the same group is

ρ = σ 2
a /

(
σ 2 + σ 2

a

)

called the intraclass correlation. In addition, the variance ratio is defined as ω = σ 2
a / σ

2.
Multiplying �i by σ−2, the resulting matrix

Vi = σ−2�i = Iri + ωJri (6.3.22)

depends on σ 2 through the variance ratio ω. Also observe that V−1
i = σ 2�−1

i .
Because �i in (6.3.20) has compound symmetry structure, its inverse and determinant

have simple forms

�−1
i = σ−2

[
Iri −

σ 2
a

riσ 2
a + σ 2

Jri

]

= σ−2Iri −
σ 2

a

fiσ 4
Jri (6.3.23)

|�i | = fiσ
2ri

where fi = 1+ riω. The |�i | is the generalized variance of yi . The factor fi is an inflation
factor so that the generalized variance as an index of fit will become large as ri increases,
independent of the variance ratio ω = σ 2

a / σ
2.

In working with V−1
i = σ−2�−1

i , we have the following useful result found in Longford
(1993a, p. 43).

Theorem 6.3.1. For arbitrary vectors v, v1, and v2 of order ri × 1, the quadratic forms
v′�−1

i 1ri and v′1�
−1
i v2 have the structure

v′�−1
i 1ri = v′V−1

i 1′ri
/ σ 2

= v′1ri

(
1− riω f −1

i

)
/ σ 2

= v′1′ri
/ fiσ

2

v′1�
−1
i v2 =

(
v′1v2 − ω f −1

i v′11ri v
′
21r2

)
/ σ 2

where fi = 1+ riω.
Continuing with the one-way mixed random effects model, the BLUP of ai , assuming

all parameters are known, using (6.3.8) and Theorem 6.3.1 with the arbitrary vector v as-
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sociated with ei = yi − Xiβ, is

âi = σ 2
a1′�−1

i ei

= σ 2
a1′V−1

i ei / σ
2

= σ 2
a σ
−2 f −1

i e′i 1ri

= σ 2
aσ
−2 (1− riω)

−1 e′i 1ri

= σ 2
a

σ 2 + ri σ 2
a

ri∑
i=1

(
yi j − µ

)
=

[
σ 2

a

σ 2/ri + σ 2
a

](
1

ri

) ri∑
j=1

(
yi j − µ

)
(6.3.24)

the result given by Lange and Ryan (1989). Given âi in (6.3.24) and again making use of
Theorem 6.3.1, Lange and Ryan estimate the variance of âi as

var (̂ai ) = �Z′i�
−1
i �i�

−1
i Zi�

= �Z′i�
−1
i Z ′i�

= σ 2
a

(
1′ri

�−1
i 1ri

)
σ 2

a

= σ 4
a / (σ

2
a + σ 2 / ri )

(6.3.25)

Because the parameters are not known, an alternative estimate for the var (̂ai ) is

var (ai )− var (̂ai ) = σ 2
a − σ 4

a /
(
σ 2

a + σ 2 / ri

)
(6.3.26)

However, notice that the quantity

σ 2
a − σ 4

a/
(
σ 2

a + σ 2/ri

)
= σ 2

a −
σ 2

a riω

fi

= σ 2
a

[
1− riω

fi

]
= σ 2

a [( fi − riω) / fi ]

= σ 2
a / fi

(6.3.27)

This may also be seen by using (6.3.10). That is, under joint multivariate normality of ai

and yi , the conditional distribution of ai in the one-way mixed random effects model given
the data is

ai | yi ∼ N
(
σ 2

a1′�−1
i ei , σ

2
a − σ 4

a1′ri
�−1

i 1ri

)
∼ N

(
σ 2

a1′ri
ei

σ 2 fi
,
σ 2

a

fi

)
(6.3.28)

∼ N
(
ω f −1

i 1′ri
ei , σ

2ω f −1
i

)



6.3 Univariate General Linear Mixed Models 365

Furthermore, given that σ 2 and σ 2
a are known the conditional distribution of ei given the

data is
ei | y ∼ N

(
σ 2�−1

i ei , σ
2 − σ 4�−1

i

)
∼ N

(
σ 2�−1

i ei , σ
4�−1

i

) (6.3.29)

Forming the standardized variables

zi = σ 2
a1′�−1

i ei√
σ 2

a / fi
= yi−µ√

σ 2 / fi+σ 2
a

i = 1, 2, . . . , n (6.3.30)

for model (6.3.19) and replacing population parameters with ML estimates, Lange and
Ryan (1989) recommend comparing the empirical distribution of zi with a standard normal
to evaluate the distribution of ai . Replacing σ 2 and �−1

i by their ML estimates, one may
use chi-square and Beta plots to evaluate the multivariate normality of ei using (6.3.29).
For appropriate choices of arbitrary vectors c, Lange and Ryan(1989) investigate Q-Q plots
of the variables

vi = c′ei/
√

c′ cov (ei ) c i = 1, 2, . . . , n (6.3.31)

For the general mixed model under normality, one may derive the conditional distribu-
tions of ai and ei given the data and all known parameters, Longford (1993a). The condi-
tional distributions have the structure

ai | y ∼ N
(
�Fi Zi ei , �F−1

i

)
ei | y ∼ N

(
σ 2�−1

i ei , σ
4�−1

i

)
Fi = Iri + σ−2Z′i Zi� (6.3.32)

�−1
i = σ−2

(
Iri − σ 2Zi�F−1

i Z ′i
)

|�i | = σ 2ri |Fi |
given ai ∼ I N (0, �) and ei ∼ I N

(
0, σ 2Iri

)
. The matrix Fi is a generalization of the

inflation factor. Replacing population parameters by ML estimates, one may examine these
distributions for multivariate normality. In addition, influence measures for mixed models
may be investigated to locate influential observations on fixed effects. Christensen, Pearson
and Johnson (1992) investigate removing an entire vector, a global influence. They do not
address the problem of the influence of an element within a vector, called local influence.
For additional details and discussion of residual analysis and influence measures in mixed
models, one may consult Goldstein (1995) and Verbeke and Molenberghs (1997).

In mixed models, one is usually interested in fitting a model to data and then estimating
the fixed parameter β, testing hypotheses regarding β, and estimating variance components.
In some studies, one may also be interested in the fitted values ŷi = Xi β̂ + Zi âi and in
the prediction of future observations. To predict future observations, one uses the proce-
dure discussed in Chapter 5.2, sub-section (b) since model (6.3.9) is a GLM with arbitrary
covariance structure �. The effect of departures from normality, covariance structure mis-
specification, lack of homogeneity of covariance structures �, and the identification of
influential observations has only begun to be investigated in recent years.
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d. Balanced Variance Component Experimental Design Models

In our formulation of the mixed model given by (6.3.4), the vectors yi contained an unequal
number of elements. In many applications ri = r for all i as in growth curve models with
complete data. Such models are called balanced designs. In experimental design settings,
r is the number of replications or observations in a cell of a design and i indexes groups
or factors. Starting with the GLM for experimental designs, Hartley and Rao (1967) for-
mulated the univariate mixed linear model used in experimental designs with equal cell
frequencies, also called variance component models, as

y
N×1
= X

N×1
β

q×1
+ Z

N×h
u

h×1
+ e (6.3.33)

where the matrices X and Z are known, β is a vector of fixed effects, u is a random vector of
random effects and e is a vector of random errors. Using the Hartley and Rao’s formulation,
one usually partitions u into m sub-vectors

u′ = [
u′1,u′2, . . . ,u′m

]
(6.3.34)

where each component ui represents, for example, random effects, main effect, interactions
and nested factors in the design. Similarly, the matrix Z is partitioned conformable with u
so that

Z = [Z1,Z2, . . . ,Zm] (6.3.35)

where each matrix Zi is of order N × qi . Then, model (6.3.33) becomes

y = Xβ + Zu+ e = Xβ +
m∑

i=1
Zi ui + e (6.3.36)

Or, letting u0 = e and Z0 = IN (6.3.36) becomes

y = Xβ +
m∑

i=0
Zi ui (6.3.37)

For ẽ =∑m
i=0 Zi ui , a GLM for y becomes y = Xβ + ẽ.

Assuming e ∼ NN
(
0, σ 2IN

)
and ui ∼ Nqi

(
0, σ 2

i Iqi

)
where e and ui are mutually

independent, the covariances structure for y is

cov (y) = Z�Z′ + σ 2IN (6.3.38)

=
m∑

i=1
σ 2

i Zi Z′i + σ 2IN

=
m∑

i=0
σ 2

i Zi Z′i = �

where � = diag
[
σ 2

i Iqi

]
and σ 2 = σ 2

0. Thus, ẽ ∼ N (0,�) for the model y = Xβ + ẽ.
Variance component models are special cases of the more general formulation given in
(6.3.4). To see this, we again consider the univariate one-way random mixed model.
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Example 6.3.1 (Univariate One-way Mixed Model) For this model, the model equation
is

yi j = µ+ ai + ei j i = 1, 2, . . . , a and j = 1, 2, . . . , r

where yi j is the j th observation in the i th class or group, µ is a fixed parameter, ai is a
random effect for the i th group, ei j is the random error for observation j within group i .
Furthermore, ai ∼ I N

(
0, σ 2

a

)
, ei j ∼ I N

(
0, σ 2

)
, and ai and ei j are mutually indepen-

dent. A general linear model for the one-way design is

y = Xβ + Zu+ e

= (1a ⊗ 1r ) µ+ (Ia ⊗ 1r )u+ e

cov (y) = Z�Z′ +'

= (Ia ⊗ 1r ) σ
2
aIa (Ia ⊗ 1r )

′ σ 2Iar

= σ 2
a (1a ⊗ Jr )+ σ 2Iar = �

which is the structure given in (6.3.38). And, rewriting the cov (y) as

cov (y) = σ 2
a (Ia ⊗ Jr )+ σ 2 (Ia ⊗ Ir )

= Ia ⊗
(
σ 2In + σ 2

aJr

)
= Ia ⊗�∗

= �

where �1 = �2 = . . . = �a = �∗,� has block diagonal structure given in (6.3.20)
with r1 = r2 = . . . = ra = r . Hence, � = σ 2

aJr and 'i = σ 2Ir so that the cov (y) =
Z�Z′ +' = � =⊕a

i=1 �i where �i = σ 2
aJr + σ 2Ir for i = 1, 2, . . . , a.

e. Multilevel Hierarchical Models

A common application of (6.3.3) in the social and behavioral sciences is to model multilevel
data, Goldstein (1995). The approach is to represent a student level outcome yi j to a pair of
linked models. Given n j observations within the j th school, the linear model for the level-1
unit with n j observations is

y j = X jβ j + e j (6.3.39)

The matrices X j contain student level variables such as SES, ethnic origin, gender, and IQ.
The level-2 unit, school, for j = 1, 2, . . . , n are considered random units modeled as

β j = Z jγ + u j (6.3.40)

The matrices Z j contain schools level variables such as class size, percentage of minority
students, and student-teacher ratio’s. Combining (6.3.40) with (6.3.39), we have that

y j = X j
(
Z jγ + u j

)+ e j

= (
X j Z j

)
γ+ [

X j u j + e j
]

= fixed part+ random part

which has the mixed model structure of (6.3.3).
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Example 6.3.2 (Multilevel Linear Model) To formulate a multilevel model, suppose the
relationship among schools is linear

yi j = α j + β j xi j + ei j

where
(
α j , β j

)
are unknown parameters and ei j ∼ N

(
0, σ 2

e

)
. At level-2 of the model,

the coefficients α j and β j become random variables with unknown covariance structure.
In multilevel notation, one replaces α j with β0 j and β j with β1 j , and suppose that the
random coefficients are related to a covariate using the linear model

β0 j = β00 + γ 01z j + u0 j andβ1 j = β10 + γ 11z j + u1 j

where u0 j and u1 j are random, ui j ∼ N
(
0, σ 2

ui

)
and z j is a covariate at the school level.

Combining the results into a single equation, the multilevel model for the outcome variables
yi j becomes

yi j =
(
β00 + γ 01z j + u0 j

)+ (
β10 + γ 11z j + u1 j

)
xi j + ei j

= [
β00 + γ 01z j + β10 + γ 11z j xi j

]+ [
u0 j + u1 j xi j + ei j

]
= fixed part+ random part

where

ei j ∼ N
(

0, σ 2
e

)
[

u0 j

u1 j

]
∼ N

([
0
0

]
1

[
σ 2

u0 σ u01

σ u10 σ 2
u1

])
so that the errors u0 j and u1 j are not independent.

When formulating multilevel models, care must be exercised in the scaling of the vari-
ables xi j and coding the variables zi j . For example, xi j may be centered using the grand
mean x or the school mean x j . The parameterization of the model depends on the appli-
cation. For a discussion of scaling and coding in multilevel modeling, consult Kreft and
de Leeuw (1998). Bryk and Raudenbush (1992), Goldstein (1995) and Singer (1998) dis-
cuss hierarchical, multilevel models in some detail.

The SAS procedure PROC MIXED uses formulation (6.3.4) to analyze mixed models by
defining Z and specifying the covariance structures of G and '. When Z contains indicator
variables and G contains variance components on it diagonal only and ' = σ 2IN then
variance component models result. If Z = 0 and ' = σ 2In we obtain the GLM with fixed
effects.

f. Prediction

In (6.3.9), the E(yN×1) = Xβ since E(a) = 0 and the cov (y) = � where the covariance
matrix of the observation vector y is nonsingular. This is the general Gauss-Markov setup
for the observation vector. If the future m × 1 vector y f is not independent of y, and
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Wm×N represents the covariance matrix between y and y f , then by (5.2.16) the BLUP for
the future observation vector y f is the vector

ŷ f = Xβ̂ +W�−1(y− Xβ̂) (6.3.41)

where β̂ is defined in (6.3.7). Thus, the predicted value of the future observation is again
seen to be dependent on both W and �.

6.4 Mixed Model Examples

A simple application of the random coefficient (RC) regression model defined in (6.2.2)
is to fit a linear model to an independent variable yi j and a covariate xi j . The subscript j
represents the j th response on the i th unit. The unit may be a subject, an animal, a patient,
a batch, a variety, a treatment, a company, etc. For a linear relation between yi j and xi j , the
RC linear regression model is

yi j = β0i + β1i xi j + ei j

β i =
[

β0i
β1i

]
∼ IN

[[
β0
β1

]
,�

]

� =
 σ 2

0 σ 01

σ 10 σ 2
1


ei j ∼ IN

(
0, σ 2

e

)
(6.4.1)

for i = 1, 2, . . . , n and j = 1, 2, . . . , ri . Letting a0i =
(
β0i − β0

)
and a1i =

(
β1i − β1

)
,

the linear RC regression model is written as a mixed linear model

yi j = β0 + a0i +
(
β1 + a1i

)
xi j + ei j

= β0 + β1xi j + a0i + a1i xi j + ei j
(6.4.2)

Setting β ′ = [
β0, β1

]
,

ai =
[

a0i

a1i

]
=

[
β0i − β0
β1i − β1

]
= β i − β

ai ∼ IN (0,�)

and letting

Xi =


1 xi1
1 xi2
...

...

1 xiri


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the model in (6.4.2) has the form specified in (6.2.2) with Zi ≡ Xi . The covariance structure
for the model is

�i = Z′i

 σ 2
0 σ 01

σ 10 σ 2
1

Zi +
 σ 2

e 0

0 σ 2
e

 (6.4.3)

so that the vector of variance components θ ′ = [
σ 2

0, σ 01, σ
2
1, σ

2
e

]
.

For this example the pairs of observations
(
yi j , xi j

)
are observed for i = 1, 2, . . . , n units

and j = 1, 2, . . . , ri responses. In the RC model, the random regression lines vary about an
overall unknown mean, E (y | x) = β0+β1x . Because a0i = β01−β0 and a1i = β1i−β1,
the estimates of a0i and a1i , called Best Linear Unbiased Predictors (BLUP), are deviation
scores.

In model (6.4.2), yi j was defined with random and fixed intercepts, and slopes. And the
variable xi j was a continuous fixed variable. Now assume that xi j is a random classification
variable that is nested within the levels of i . Then, letting a0i = x(i) j the statistical model
becomes a mixed linear model with general structure given in (6.3.3) or for our example
we have that

yi j = β0 + β1xi j + a1i xi j + x(i) j + ei j

= β0 + β1xi j + a1i xi j + e∗i j
(6.4.4)

where e∗i j = x(i) j + ei j . Assuming x(i) j and ei j are jointly independent, and that x(i) j ∼

IN
(
0, σ 2

x

)
and e(i) j ∼ IN

(
0, σ 2

e

)
, the covariance structure for e∗i j is

e∗i j ∼ IN

0,

 σ 2
x + σ 2

e σ 2
x

σ 2
x σ 2

x + σ 2
e


where x(i) j is the random effect of the j th level of x within unit i, the var(e∗i j ) = σ 2

x + σ 2
e ,

and the cov(e(i j1), ei j2) = σ 2
x . The covariance matrix has compound symmetry struc-

ture. Letting β ′ = [
β0, β1

]
and a1i = β1i − β1 denote a random slope effect such that

a1i ∼ IN(0, σ 2
1) where yi represents the (ri × 1) vector of observations for the i th unit

i = 1, 2, . . . , n and

Xi =


1 xi1
1 xi2
...

...

1 xiri

 Zi =


1
1
...

1


the mean and covariance structure for yi is

E (yi ) = Xiβ

cov (yi ) = Z′i�Zi +'i = �i

where � = σ 2
1 and 'i has compound symmetry structure

�i = σ 2
1Jri + σ 2

x Jri + σ 2
eIri

= σ 2
1Jri +'i
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The vector of random components θ ′ = [
σ 2

1, σ
2
x , σ

2
e

]
. Model (6.4.4) may arise if i rep-

resents random diets, and j represents individuals nested within diets and one wants to
investigate the relationship between weight and age. Fuller and Battese (1973) call this
model a one-fold linear model with nested error structure.

In the specification for yi j in (6.4.4), we replaced the random intercept a0i with a nested
random variable x(i) j . Now suppose we remove a1i xi j from the model, then our revised
model is

yi j = β0 + β1xi j + a0i + ei j

= β0 + a0i + β1xi j + ei j
(6.4.5)

where β0 is a fixed intercept (overall mean), β1 is the slope for the fixed covariate xi j , and
a0i represents the random intercept (treatment) effect. This is a mixed ANCOVA model.
Assuming a0i ≡ αi and β0 ≡ µ, model (6.4.5) is a LFR model. Letting µi = β0 + αi , the
model is a FR model. The models are represented as follows

LFR yi j = µ+ αi + β1xi j + ei j

FR yi j = µi + β1xi j + ei j
(6.4.6)

Both models are fixed effect ANCOVA models. To obtain estimates for intercepts and
slopes using PROC MIXED, one must use the no intercept (NOINT) option. To obtain
a test that all αi are zero, the LFR model is used. The parameter µ has no meaning in the
LFR model. To provide meaning, one often reparameterizes the model as

yi j = µ+ αi + β1xi j + ei j

= µ− β1x.. + αi + β1
(
xi j − x..

)+ ei j

= µ.. + αi + β1
(
xi j − x..

)+ ei j

where x..is the unweighted mean of the covariate and β1 is the slope parameter for the
common regression equation. The parameter µ.. becomes an overall mean by adding the
restriction to the model that the sum of the treatment effects αi is zero. This is the familiar
adjusted means form of the ANCOVA model.

This simple example illustrates the flexibility of the RC regression/mixed linear model.
We illustrate the relationships among models (6.4.2), (6.4.4), (6.4.5) and (6.4.6) with a data
set using PROC MIXED.

a. Random Coefficient Regression (Example 6.4.1)

This example is a modification of a problem discussed in SAS (1997, p. 684) based upon a
phamaceutical stability experiment from Obenchain (1990). The study involves the record-
ing of drug potency (expressed as a percentage of the claim on the label), the dependent
variables

(
yi j

)
, for several months of shelf life (0, 1, 3, 6, 9 and 12), the independent vari-

able
(
xi j

)
. Three batches of product sampled from many products were examined. The

potency levels may differ in both initial potency (intercept) and rate of degradation (slope).
Since batches are random, variation in each batch may differ from an overall fixed level of
initial potency and rate of potency loss as shelf life increases. The data for the study are
shown in Table 6.4.1. The program for this example is labeled m6 4 1.sas.
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TABLE 6.4.1. Pharmaceutical Stability Data

Batch Month Potency Ratio
1 0 101.2 103.3 103.3 102.1 104.4 102.4
1 1 98.8 99.4 99.7 99.5 . .

1 3 98.4 99.0 97.3 99.8 . .

1 6 101.5 100.2 101.7 102.7 . .

1 9 96.3 97.2 97.2 96.3 . .

1 12 97.3 97.9 96.8 97.7 97.7 96.7
1 0 102.6 102.7 102.4 102.1 102.9 102.6
2 1 99.1 99.0 99.9 100.6 . .

2 3 105.7 103.3 103.4 104.0 . .

2 6 101.3 101.5 100.9 101.4 . .

2 9 94.1 96.5 97.2 95.6 . .

2 12 93.1 92.8 95.4 92.2 92.2 93.0
3 0 105.1 103.9 106.1 104.1 103.7 104.6
3 1 102.2 102.0 100.8 99.8 . .

3 3 101.2 101.8 100.8 102.6 . .

3 6 101.1 102.0 100.1 100.2 . .

3 9 100.9 99.5 102.2 100.8 . .

3 12 97.8 98.3 96.9 98.4 96.9 96.5

The model for the analysis is represented using (6.4.2), where yi j ≡ potency; xi j ≡
months (a continuous variable), β0 and β1 represent the fixed slopes and intercepts, and a0i

and a1i represent the random slopes and intercepts. There are n = 3 batches (units) for level
i and an unequal number of observations ri at each level.

To run PROC MIXED, the method of estimation for the variance components σ 2
0, σ 2

01,
σ 2

1 is specified using the METHOD= option. The default is METHOD=REML; the options
COVTEST, CL and ALPHA = are used to obtain estimates for the variance components,
asymptotic standard errors, asymptotic Z tests and approximate 1− α confidence intervals
for each element in �. The MODEL statement specifies the design matrix X; the intercept
is always included by default. The SOLUTION and OUTP= options request that fixed
effects be printed with t tests and the fitted values ŷ = Xβ̂ + Ẑa be stored in the data set
defined by OUTP=. These plots are used to investigate the presence of outliers. The option
DDFM = SATTERTH corrects the degrees of freedom for tests of fixed effects for both
t tests and F tests. The RANDOM statement defines the structure of the random effects
in the model, the covariance structure �, and the “subjects” in the data set. The TYPE
= UN provides estimates of the random variance components σ 12 ≡ σ 01 �= 0, σ 2

1 ≡ σ 2
0

and σ 2
2 ≡ σ 2

1 as shown in Table 6.3.1. Thus, we have variance component estimates for
the slope, intercept and the covariance between the slope and intercept. The SUBJECT
= BATCH option specifies that the slopes and intercepts are independent across batches,
but correlated within a batch. The REPEATED statement is used to define 'i ; with no
statement, 'i = σ 2

eIri . Using (6.2.9), the option SOLUTION prints the BLUPs for the
random effects in the model, a0i = β0i − β0 and a1i = β1i − β0. More generally, âi =
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�̂Z′i �̂
−1
i (yi − Xi β̂). The standard errors are obtained using (6.2.10).

In fitting model (6.4.2) to the data in Table 6.4.1, we find the estimates for �, σ 2
e and β

as

�̂ =
 0.9768 −0.1045

−0.1045 0.0372

 β̂ =
 102.70

−0.5259


σ̂ 2

e = 3.2932

(6.4.7)

The components of variance are labeled “UN(i, j)” in the table “Covariance Parameter
Estimates”; the estimate of error variance is labeled “Residual”. The elements of the fixed
parameter β are in the table labeled “Solution for Fixed Effects”. Also provided for the
fixed effects are approximate t tests that the coefficients are zero. The tests are obtained
by dividing the parameter estimate by its corresponding estimated (asymptotic) standard
error; the degrees of freedom for each test is set to that appearing in the “Test of Fixed
Effects” table calculated using (6.2.16). For our example, the test that the slope is zero is
only marginally significant using α = 0.05, the p-value is 0.0478. Associated with the
variance components are Z tests that the components are zero. These asymptotic tests have
limited value unless the sample is large; they are nonsignificant for our example. Of interest
is the confidence intervals created for each component. These are formed using a first-order
Satterthwaite approximation and the chi-square distribution. Because we set α = 0.10, an
approximate 90% confidence interval for each component is generated. Since the interval
for the covariance σ 01 contains zero, one may consider fitting an alternative model with
TYPE = VC for �, a diagonal matrix. We will discuss this further later.

Finally, the table of “Solution for Random Effects” provide estimates for âi = β̂ i −
β̂0 which are deviations of the random coefficients about the mean. For each batch, the
deviations are as follows

Batch Intercept Slope

1 −1.0010 0.1287

2 0.3934 −0.2060

3 0.6076 −0.0773

(6.4.8)

Because α = 0.083 on the random statement, the confidence intervals for the six random
effects are approximate simultaneous 95% confidence intervals for the random effects, us-
ing the Bonferroni inequality. Thus, the random variation of each batch about β does not
appear to be significant. The “Test of Fixed Effects” in the output is using (6.2.14) and
(6.2.16) to test whether the fixed slope parameter is nonzero. Because we have only one
parameter, the F test is identical to the t test for the coefficient with p-value = 0.0478. The
analysis suggests no serious variation from batch to batch and that potency degradation is
linear.

While PROC MIXED does not directly provide any methods for model checking, one
may plot the predicted residuals ê−y−Xβ̂− Ẑa = r̂ versus the fitted values ŷ = Xβ̂− Ẑa



374 6. Multivariate Random and Mixed Models

and investigate the plot for outliers. This is accomplished using the PROC PLOT. One
may also use PROC UNIVARIATE to evaluate the normality of ê and â; however, ê is
confounded with â. The plot of residuals do not indicate the presence of outliers in the
data.

In model (6.4.2), the independent variable xi j ≡ MONTH is a continuous variable.
To define a new classification variable x(i) j that is qualitative, the MONTHC variable is
created in the PROC DATA step. It may be treated as a factor in the linear model. To
associate model (6.4.4) with this example, the random parameter a1i ≡ MONTH and the
random intercept is removed from the model. This permits a more complex specification for
the errors e∗i j (a correlated error structure); for example, compound symmetry. To fit model
(6.4.4), the RANDOM statement only includes MONTH; the intercept has been removed.
By default TYPE = VC, SUBJECT = BATCH and the covariance parameter is MONTH.
The REPEATED statement models 'i . The TYPE = CS specifics the covariance structure
to be compound symmetry, Table 6.3.1. The option SUB = MONTHC (BATCH) specifies
that the structure pertains to each submatrix of each MONTHC within each BATCH so that
' is block diagonal. For this model, we have used both the RANDOM and REPEATED
statements in order to structure � =⊕n

i=1 �i , TYPE = VC structures � and TYPE = CS
structures 'i .

Fitting the new model,

'̂i =
 σ̂ 2

e + σ̂ 2
x σ̂ 2

x

σ̂ 2
x σ̂ 2

e + σ̂ 2
x


where σ̂ 2

e = 0.7967, σ̂ 2
x = σ̂ 2

MONTHC = 3.7411 and �̂ = σ̂ 2
1 = σ̂ 2

MONTHC = 0.0124.
Thus, while the error variance had decreased, the component of variance due to the nested
errors (MONTHC) has increased. The random slope component of variance, σ 2

1, is about
the same for the two models. The fixed effects vector for the model with nested, compound
symmetry error is

β̂ =
[

102.56
−0.5003

]
(6.4.9)

Comparing these with β̂ in (6.4.7), there is little difference in the estimates; however, there
are larger differences in the estimated standard errors. The t test for the fixed slope param-
eter has p-value = 0.0579, larger than the α = 0.05 nominal level.

Because model (6.4.4) is not nested within model (6.4.2), we may only compare the mod-
els using the information criteria. A comparison of AIC (−141.451) and SBC(−145.061)
for this model with the nonnested model with unknown covariance structure (−179.164
and −183.978, respectively) favors the model with errors that are nested with compound
symmetry structure.

In modeling the pharmaceutical stability data, � had unknown structure and 'i = σ 2
eIri .

For the nested compounded symmetry model, 'i and � were both changed. Assuming
'i = σ 2

eIri , we now consider setting the covariance between the random intercept and
slope to zero. Thus, we return to our first model, changing TYPE = UN to TYPE = VC.



6.4 Mixed Model Examples 375

The matrix

� =
 σ 2

0 0

0 σ 2
1


and the linear model is given as in (6.4.2). Now, �, σ 2

0 and β are

�̂ =
 0.8129 0

0 0.0316

 β̂ =
[

102.70
−0.5259

]

σ̂ 2
e = 3.3059

(6.4.10)

While β̂ is identical for the two models, the reduction in the estimated standard errors yield
a p-value = 0.0398 for the slope parameter.

Comparing the information criteria for this model, AIC = −178.422 and SBC =
−182.033. with the TYPE = UN model, (−179.164, −183.978, respectively) the TYPE
= VC model is slightly better. However, because this model is nested within the former
model, we may use (6.3.15) to evaluate model fit. Under the reduced model we assume
σ 01 = 0, and we are testing H : σ 01 = 0 vs A. σ 01 �= 0. For TYPE = VC, the re-
duced model, −2 (Residual Log-likelihood) = 350.8449. For the full model, TYPE = UN,
the corresponding value is 350.3281. Comparing the difference of 0.5168 to an asymptotic
chi-square distribution with one degree of freedom, we fail to reject H. Thus, there is little
evidence to believe that σ 01 �= 0. Observe however, that the model with correlated error
and compound symmetry structure fits the data better than the TYPE = VC model.

In fitting model (6.4.2) with the two covariance structures for �, TYPE = VC and TYPE
= UN, we concluded that the covariance term σ 01 = 0 and that the random slopes do not
vary significantly from the fixed slope. This motivates one to consider fitting model (6.4.5)
to the data; a mixed ANCOVA model, ignoring a nested model structure, for the moment.
Model (6.4.5) is identical to model (6.4.6), if we consider αi to be random. We illustrate
the two formulations in program m6 4 1.sas.

For the mixed ANCOVA model, the variance components are σ 2
INTERCEPT = σ 2

BATCH =
0.8911 and σ̂ 2

e = 3.8412. The parameter vector of fixed effects is

β =
[

102.70
−0.5259

]
Now the test of H : β1 = 0 is significant with p-value = 0.0001. Again, the random
variation in the random intercepts (batches) do not vary significantly about the fixed inter-
cept. Because this model is nested within the model with random slopes and intercepts and
TYPE = VC structure for �, we may compare the models using the difference in likeli-
hood tests. The difference 358.9971 − 350.8449 = 8.1522 for α = 0.05 is compared to a
chi-square distribution with one degree of freedom: χ2

α = 3.84. Since 8.1522 > 3.84, we
reject the mixed ANCOVA model for these data.

We also include in program m6 4 1.sas the analysis of the univariate fixed effects AN-
COVA model using PROC MIXED. The NOINT option permits one to obtain slope and
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intercept estimates; however, the fixed effect test of BATCH must be ignored. The test of
equal BATCH effects is not being tested using the NOINT option. The test of BATCH is
testing µ1 = µ2 = µ3. The test of parallelism is tested using the fixed effects test of
interaction. For our example, the p-value = 0.0009. Hence, the ANCOVA model is not ap-
propriate for these data. One could consider a fixed effects model with unequal slopes; the
intraclass covariance model is discussed by Timm and Mieczkowski (1997, p. 67).

When fitting any RC regression model or a mixed linear model to a data set, one should
explore the covariance structure of the data by comparing several linear mixed models.

In Example 6.4.1, we showed how the general (univariate) linear mixed model in (6.3.4)
may be used to analyze models with random coefficients. The model may also be used to
analyze univariate models with random effects, mixed effects, and models with repeated
measurements. We next consider an orthogonal/nonorthogonal mixed linear model dis-
cussed by Milliken and Johnson (1992, p. 290).

b. Generalized Randomized Block Design (Example 6.4.2)

In this example, a company wanted to replace machines (TREAT) to make a new compo-
nent in one of its factories. Three different machines were analyzed to evaluate the produc-
tivity of the machines, six employees (BLOCK) were randomly selected to operate each
of the machines on three independent occasions. Thus, treatments and blocks are crossed
factors. The dependent variable (SCORE), takes into account the number and quality of the
components produced. Because the machines were pre-determined and not sampled from
a population, the machine ≡ treatment factor is fixed. Because the employees were sam-
pled from the company at large, persons ≡ blocks are random. In addition, the interaction
between treatment and blocks is random. This design is the familiar completely general
randomized block (CGRB), nonorthogonal, two-way mixed (Model III) ANOVA design.
The statistical mixed linear model for the design is

yi jk = µ+ αi + b j + (αb)i j + ei jk (6.4.11)

for i = 1, 2, . . . , a; j = 1, 2, . . . , b; and k = 1, 2, . . . , ni j . The parameter µ is an overall
constant, αi is the fixed effect of treatment i, b j is the random effect for block j (to more
easily identify the random effects we do not use Greek letters) and (αb)i j is the random
interaction between treatments and blocks. The random components are assumed to be
normally distributed: b j ∼ IN(0, σ 2

b), (αb) ∼ IN(0, σ 2
αb) and ei jk ∼ IN

(
0, σ 2

e

)
.

The data for the model given in (6.4.11) are included in Table 6.4.2. For the completely
balanced, orthogonal design, i = 1, 2, 3; j = 1, 2, . . . , 6 and ri j = 3. For model (6.3.3),
the number of replications r = 3. To create a nonorthogonal design the number of ob-
servations per cell vary; the observations with an asterisk (*) were randomly deleted for
a nonorthogonal design and reanalyzed. The SAS code for the example is contained in
program m6 4 2.sas.

To analyze model (6.4.11) using the data in Table 6.4.2, two basic approaches have been
put forth. The first technique is called the ANOVA or method-of-moments procedure dis-
cussed in Searle (1971, Chapter 11). It involves obtaining sums of squares (SS) assuming
a fixed model and evaluating the expected mean sum of squares (EMS) under a “set of
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TABLE 6.4.2. CGRB Design (Milliken and Johnson, 1992, p. 285)

Treat 1 Treat 2 Treat 3
52.0 62.1∗ 67.5

Block 1 52.8∗ 62.6∗ 67.2
53.1∗ 64.0 66.9

52.8 59.7 61.5
Block 2 51.8 60.0 61.7

53.8∗ 59.0 62.3

60.0 68.6 70.8
Block 3 60.2∗ 65.8 70.6

58.4∗ 69.7∗ 71.0

51.1 63.2 64.1
Block 4 52.3 62.8 66.2

50.3∗ 62.2 64.0

50.9 64.8 72.1
Block 5 51.8 65.0 72.0

51.4 64.5∗ 71.1

46.4 43.7 62.0
Block 6 44.8 44.2 61.4

49.2 43.0 60.5

mixed model assumptions”. To estimate variance components, one equates the EMS with
the observed mean squares; this results in a system of equations that must be solved to
obtain method-of-moment estimators (estimates obtained by the ANOVA method) which
may be negative. Assuming the yi jk are normally distributed, for most balanced designs
exact F tests that a variance component is zero versus the alternative that it is larger than
zero may be tested by forming an appropriate ratio of expected mean squares. However,
the tests depend on the mixed model specification; in particular, whether or not the mixed
model includes or does not include side conditions or constraints on the fixed parameters,
Hocking (1985, p. 330), Searle (1971, p. 400) and Voss (1999), and Hinkelmann et al.
(2000). To compute EMSs in SAS, one may use PROC GLM. Because PROC GLM uses
Hartley’s (1967) method of synthesis, which does not impose side conditions on the fixed
parameters, the EMSs are calculated assuming a LFR linear model with no restrictions. In
some balanced designs, there does not always exist simple ratio’s of expected mean squares
for testing variance components. Then, one creates quasi-F tests using the Satterthwaite ap-
proximation to estimate the denominator degrees of freedom for the test.

A second approach to the analysis of (6.4.11) is to use (6.3.4). For balanced models,
the covariance structure has the general form shown in (6.3.38). This approach requires a
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stronger assumption on the ANOVA model, we must now assume that the yi jk are jointly
multivariate normal. Then we may obtain ML and REML estimates of variance compo-
nents. For balanced designs, REML estimates often agree with method-of-moment esti-
mates. The tests of variance components are more problematic. As indicated earlier, the Z
test has limited value unless one uses corrections or has large sample sizes. One may use F
tests with appropriate Satterthwaite corrections to the denominator degrees of freedom for
balanced designs. For nonorthogonal designs, forming the difference likelihood ratio test as
in (6.3.15) is often used. Two models are fit to the data, one with the random components of
interest set to zero and the other with the corresponding component nonzero. Then, a large
sample chi-square test on one degree of freedom is used to test that a component is zero.
Approximate (1− α)% confidence intervals may be constructed for variance components
by using a chi-square distribution and the Satterthwaite (1946) approximation procedure.
These are generated in PROC MIXED by using the CL option on the PROC MIXED state-
ment. An improved procedure for obtaining confidence intervals for variance components
has been proposed by Ting et al. (1990), however, it is not currently supported in SAS. A
discussion of the method is provided in Neter et al. (1996, p. 973).

To analyze the data in Table 6.4.2, SAS code for both the analysis of the orthogonal and
nonorthogonal designs is provided using both PROC GLM and PROC MIXED. Because
of improved algorithms in SAS, the output for this example does not agree with those
provided by Milliken and Johnson (1992, Chapter 23). In addition, they did not use PROC
MIXED for their analysis. We briefly review the input and output for this example.

When using PROC GLM to analyze a mixed model, the MODEL statement contains both
fixed and random effects. The RANDOM statement includes only random effects. And, the
/TEST option creates the F statistics. When formulating the RANDOM effect components,
we have specified that both the BLOCK and BLOCK * TREAT factors as random. If one
would only specify the BLOCK effect as random and not the interaction term, different
results would be obtained. The constructed F tests are similar to the analysis of model
(6.4.11) with restrictions imposed on the fixed parameters. Recall that the EMS depend on
the set of mixed model assumptions. When the interaction term is considered fixed, the test
of treatment is confounded with interaction so that no valid test of treatment is available as
noted in PROC GLM for this situation. For balanced, orthogonal designs, the SAS output
for the EMS and ANOVA tests agree with those discussed by Milliken and Johnson (1992,
p. 286). The REML estimates of variance components in PROC MIXED agree with the
methods-of-moment estimates. Because of rounding error in the interpolation of the chi-
square critical values, the confidence intervals for variance components produced by PROC
MIXED differ slightly from those of Milliken and Johnson.

In the PROC MIXED procedure, the random components are not included in the MODEL
statement. The DDFM option is used to adjust the F tests for testing fixed effects. Observe
that the F test for treatments using PROC GLM and that using PROC MIXED have the
same value, F = 20.58 with p-value = 0.0003. This is because the design is balanced.
This F statistic would not be obtained using PROC GLM if one incorrectly considered the
interaction term as fixed and not random. Even with the stronger model assumptions, the
two procedures are in agreement when exact F tests exist for balanced designs.

The analysis of nonorthogonal mixed linear models is more complicated. Now we have
several methods for calculating sums of squares (TYPE I, II, III and IV) and numerous pro-
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TABLE 6.4.3. ANOVA Table for Nonorthogonal CGRB Design

Source (dfh, dfe) F EMS P-value

TREAT (2, 10.04) 16.5666 σ 2
e+ 2.137 σ 2

αb + Q (α) 0.0007

BLOCK (5, 10.02) 5.1659 σ 2
e+ 2.2408 σ 2

αb+ 6.7224 σ 2
b 0.0133

BLOCK*TREAT (10, 26) 46.3364 σ 2
e+ 2.3162 σ 2

αb 0.0001

posed methods/rules for calculating expected mean squares, Milliken and Johnson (1992,
Chapters 10 and 18) and Searle (1971, p. 389). The procedure GLM calculates TYPE I,
II, III, or IV sums of squares by specifying E1, E2, E3, or E4 on the MODEL statement.
The default is TYPE III sum of squares. For nonorthogonal designs, all cells must be filled
when the TYPE III option is used. While PROC GLM develops F tests for both fixed and
random components, the tests for random components become extremely unreliable with
more incomplete data. Because PROC MIXED only develops tests using TYPE III sums
of squares, all fixed effect tests are unweighted.

Comparing the ANOVA table produced by PROC GLM for the unbalanced, nonorthog-
onal design in Table 6.4.2, with that provided by Milliken and Johnson (1992, p. 290), one
observes that the results do not agree. This is due to the fact that their EMSs are calculated
from sums of squares obtained by the method of fitting constants or Henderson’s Method
III procedure. This is equivalent to calculating EMSs using TYPE I sum of squares in SAS.
The test of fixed effects are weighted tests that depend on the cell frequencies. The un-
weighted test of treatment differences obtained employing PROC GLM result in a quasi F
test. The output from PROC GLM is shown in Table 6.4.3.

Using PROC MIXED, the test of treatment differences results in an approximate F statis-
tic, F = 19.97 with degrees of freedom, d f = (2, 10.1). Neither PROC MIXED or PROC
GLM generates an exact test for evaluating differences in treatments. Both are approxima-
tions to an F-distribution. The F statistic in PROC GLM is a quasi F test, the numerator and
denominator MSs are not independent. In PROC MIXED, the fixed effects are weighted
least squares estimates and F defined in (6.2.14) with the correction in (6.2.16) approxi-
mately follows an F-distribution. It is currently unknown which procedure is best. Also
observe the very large difference in the p-value for the Z tests in PROC MIXED com-
pared to the quasi F tests for testing H : σ 2

BLOCK = 0 and the exact F test for testing
H : σ 2

BLOCK ∗TREAT = 0 with p-values 0.0133 and 0.0001, respectively. The p-values
for the Z tests in PROC MIXED are 0.1972 and 0.0289, respectively. While both tests for
BLOCK differences may be unreliable, the Z tests are useless. The REML estimates for
the variance components are σ̂ 2

b = 22.4551, σ̂ 2
αb = 14.2340, and σ̂ 2

e = 0.8709 are again
close to the estimates reported by Milliken and Johnson using method-of-moment method:
σ̂ 2

b = 21.707, σ̂ 2
αb = 17.079, and σ̂ 2

e = 0.873.
To obtain approximate 95% simultaneous confidence intervals for differences in un-

weighted treatment means, the LSMEANS statement is used in PROC MIXED with the
TUKEY option to control the Type I error rate at the α = 0.05 nominal level.
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c. Repeated Measurements (Example 6.4.3)

For our next example, we consider a repeated measurements design with unbalanced and
missing data, Milliken and Johnson (1992, p. 385). This design was discussed briefly in
Chapter 3 with complete data. The study involves an experiment to determine the effects of
a drug on the scores obtained by depressed patients on a test designed to measure depres-
sion. Two patients were in the placebo group, and three were assigned to the drug group.
The mixed ANOVA model for the design is

yi jk = µ+ αi + s(i) j + β j + (αβ)i j + ei jk

i = 1, 2, . . . , a; j = 1, 2, . . . , ri , k = 1, 2, . . . , ri j
(6.4.12)

where s(i) j ∼ IN
(
0, σ 2

s

)
, ei jk ∼ IN

(
0, σ 2

e

)
are jointly independent; a nonorthogonal split-

plot design. Patients ≡ subjects are random and nested within treatments, drug groups. For
the study, two patients did not return for examination often the second week. The data for
the analysis are given in Table 6.4.4.

To analyze the data in Table 6.4.4, program m6 4 3.sas is used with code for both PROC
MIXED and PROC GLM. Because two patients did not return for re-examination, a TYPE
III analysis is appropriate for these data. The missing observations are not due to treatment.
The ANOVA table from PROC GLM is provided in Table 6.4.5. The results are in agree-
ment with those discussed by Milliken and Johnson (1992, p. 394) using TYPE III sums of
squares.

To test for differences in drug treatment differences, PROC GLM constructed a quasi F
test. The statistic follows an F-distribution only approximately since the numeration and de-
nominator mean squares are no longer independent. Testing for differences between Week
1 and Week 2, observe that the test is confounded by interaction and should thus be avoided.
The test of no significant interaction is an exact F test for this design. All tests of fixed ef-
fects using PROC MIXED are approximate. We have again selected DDFM = SATTERTH
which calculates the degrees of freedom from the data. This option should always be used
with unbalanced designs. For balanced, orthogonal designs, PROC MIXED makes avail-
able other options, Littell et al. (1996). However, no clear guidelines have been provided
by the SAS Institute to recommend one over another except for computational convenience.
One option that should never be used is DDFM = RESIDUAL because it tends to generally
overestimate the denominator degrees of freedom.

TABLE 6.4.4. Drug Effects Repeated Measures Design

Treatment Subject Week 1 Week 2
Placebo 1 24 18

2 22 −

Drug 1 25 22
2 23 −
3 26 24
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TABLE 6.4.5. ANOVA Table Repeated Measurements

Source (dfh, dfe) F EMS P-value

TREAT (1, 3.10) 6.5409 σ 2
e+ 1.1111 σ 2

s + Q (α, α ∗ β) 0.0806
PATIENT (TREAT) (3, 1) 11.2222 σ 2

e+ 1.3333 σ 2
s 0.2152

WEEK (1, 1) 96.3333 σ 2
e+ Q(α, α ∗ β) 0.0646

TREAT*WEEK (1, 1) 16.3333 σ 2
e + Q (α ∗ β) 0.1544

ERROR 1 0.25 σ 2
e

d. HLM Model (Example 6.4.4)

In a one-way mixed ANOVA model, an observation yi j for the i th student in the j th school
is represented as

yi j = µ+ a j + ei j

a j ∼ IN
(

0, σ 2
a

)
(6.4.13)

ei j ∼ IN
(

0, σ 2
e

)
where a j and ei j are independent random variables for i = 1, 2, . . . , n j and j = 1, 2, . . . , J

Thus,

var yi j = σ 2
e + σ 2

a

cov
(
yi ′ j , yi j

) =
 σ 2

a i �= i ′

0 otherwise

Letting

y =


y11
y21
y12
y22

 =


σ 2
e + σ 2

a σ 2
a 0 0

σ 2
a σ 2

e + σ 2
a 0 0

0 0 σ 2
e + σ 2

a σ 2
a

0 0 σ 2
a σ 2

e + σ 2
a


the covariance matrix for y has block diagonal structure. The intraclass coefficient between
yi j , yi ′ j is

ρ = σ 2
a

σ 2
e + σ 2

a

This is a measure of the proportion of the total variability in the yi j that is accounted for by
the variability in the a j . When σ 2

e = 0, then σ 2
y = σ 2

a and all the variance in y is accounted
for by the variation in a j . There is no random error and y is totally reliable.

One may also formulate yi j in (6.4.13) as a multilevel, hierarchical model where the
level − 1, student factor is nested within the level − 2, school factor. At the first level, we
represent the outcome yi j as an intercept for the student’s school plus a random error

yi j = α0 j + ei j (6.4.14)
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For the second level of the model, the school level intercepts one represented as deviations
about a constant µ (

α0 j − µ
) = a0 j ∼ N

(
0, σ 2

α

)
(6.4.15)

Substituting (6.4.15) into (6.4.14), the multilevel model is a random effects ANOVA model.
Timm and Mieczkowski (1997, Chapter 9) and Singer (1998) consider in some detail the
analysis of multilevel, hierarchical models using PROC MIXED.

Exercises 6.4

1. Using the Elston and Grizzle (1962) ramus bone data for a random sample of boys
discussed in Example 3.7.3, fit a linear random coefficient model to the growth data.
The dependent variable is the ramus length measurement and the independent vari-
able is age.

(a) Assume the covariance structure for the random intercept and slope is unknown.

(b) Assume the random coefficients are uncorrelated

(c) Which model fits the data better?

2. To investigate the effect of drugs on maze learning, two rats were randomly assigned
to five drug levels (0, 1, 2, and 3) and the time to run the maze for 8 runs are reported
for two rats in the table below. Use program m6 4 1.sas to analyze the data and
summarize your findings.

DRUG RAT RUNS

0 1 6 14 12 10 18 10 4 8
2 8 4 10 18 12 14 7 8

1 1 20 18 26 22 16 28 20 22
2 22 20 28 16 22 26 18 20

2 1 12 28 16 30 26 24 28 10
2 10 28 24 26 30 16 28 12

3 1 30 36 36 22 26 38 34 28
2 38 46 39 47 52 54 49 56

3. An experimenter was interested in investigating two methods of instruction in teach-
ing map reading where students are randomly assigned to three instructors. The co-
variate measure in this experiment is the score on an achievement test on map reading
prior to the training, the criterion measure is the score on a comparable form of the
achievement test after training is completed. The data for the study follow.
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Instructor Instructor 2 Instructor 3
X Y X Y X Y

Method 1 40 95 30 85 50 90
35 80 40 100 40 85
40 95 45 85 40 90
50 105 40 90 30 80
45 100 40 90 40 85

Method 2 50 100 50 100 45 95
30 95 30 90 30 85
35 95 40 95 25 75
45 110 45 90 50 105
30 88 40 95 35 85

(a) Perform both an ANOVA and ANCOVA analysis of the data.

(b) State the mathematical models and associated assumptions. Discuss.

(c) How would the analysis change if instructors were random?

(d) How would the analysis change if instructors are nested within methods and
random?

4. In the construction of a projective test, 40 more or less ambiguous pictures of two or
more human figures were used. In each picture, the sex of at least one of the figures
was only vaguely suggested. In a study of the influence of the introduction of extra
cues into the pictures, one set of 40 was retouched so that the vague figure looked
slightly more like a woman, in another set each was retouched to make the figure look
slightly more like a man. A third set of the original pictures was used as a control.
The forty pictures were administered to a group of 18 randomly selected male college
students and an independent group of 18 randomly selected female college students.
Six members of each group saw the pictures with female cues, six the picture with
males cues, and six the original pictures. Each subject was scored according to the
number of pictures in which he interpreted the indistinct figure as a female. The
results follow.

Female Cues Male Cues No Cues

Female 29 36 14 5 22 25
Subjects 35 33 8 7 20 30

28 38 10 10 23 32
Male 25 35 3 5 18 7
Subjects 31 32 8 9 15 11

26 34 4 6 8 10

Carry out an analysis of variance, assuming (a)both factors are fixed, (b) both factors
are random, and (c) that blocks (sex) is random and that the factor cues is fixed.
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5. An automobile company was interested in the comparative efficiency of three dif-
ferent sales approaches to one of their products. They selected a random sample of
10 different large cities, and then assigned the various selling approaches of random
to three agencies within the same city. The results, in terms of sales volumes over a
fixed period for each agency, was as follows.

Approach
A B C

1 38 27 28
2 47 45 48
3 40 24 29
4 32 23 33

City 5 41 34 26
6 39 23 31
7 38 29 34
8 42 30 25
9 45 30 25
10 41 27 34

Does there seem to be a significant difference in the three sales approaches? If so,
estimate the effect sizes.

6. In a concept formation study, 12 subjects were randomly assigned to three differ-
ent experimental conditions and then given four trials in the solution of a problem.
For each trial, the number of minutes taken to solve the problem was recorded. The
results were as follows.

Trial Number
Condition Subject 1 2 3 4

1 1 9 8 8 5
2 12 11 11 4
3 15 18 13 10
4 14 15 12 7

2 5 20 11 12 9
6 15 15 14 10
7 12 19 18 7
8 13 10 15 9

3 9 8 10 6 6
10 10 5 5 9
11 8 7 7 8
12 9 13 12 6

What do these results indicate?



6.5 Mixed Multivariate Models 385

7. Marascuilo (1969) gives data from an experiment designed to investigate the effects
of variety on the learning of the mathematical concepts of Boolean set unit and in-
tersection. For the study, students were selected from fifth and seventh grades from
four schools representing different socioeconomic areas. The students were then ran-
domly assigned to four experimental conditions that varied in two ways. Subjects in
the small variety (S) conditions were given eight problems to solve with each prob-
lem repeated six times, while the students in the large-variety (L) conditions solved
48 different problems. Half the students were given familiar geometric forms (G),
and the remaining students were given nonsense forms (N) generated from random
numbers. The data for the experiment follow.

5th Grade 7th Grade
School 1 School 2 School 1 School 2

S L S L S L S L
N G N G N G N G N G N G N G N G
18 9 11 20 38 33 35 21 3 25 14 16 19 39 44 41
38 32 6 13 19 22 31 36 10 27 8 6 41 41 39 40
24 6 6 10 44 13 26 34 14 2 7 15 28 36 38 44
17 4 2 0 40 21 27 30 25 21 39 9 40 45 36 46

(a) What are the mathematical model and the statistical assumptions for the design?
Test to see that the assumptions are satisfied.

(b) Form an ANOVA table and summarize your results.

(c) Construct appropriate simultaneous confidence intervals for contrasts using
α = 0.05.

6.5 Mixed Multivariate Models

The extension of univariate ANOVA and ANCOVA models to MANOVA and MANCOVA
designs with fixed parameters extended in a natural manner to multivariate designs when
an observed random variable was replaced by a vector containing p random variables.
Nonorthogonal (unbalanced) designs extended in a natural manner to the multivariate case.
The analysis of these designs in SAS were performed using the procedure PROC GLM.
And while PROC GLM may be used to analyze the GMANOVA model, the PROC MIXED
procedure is preferred since it permits the analysis of treatment effects with time varying
covariates, the evaluation of covariance structures and the analysis of repeated measure-
ments with data MAR.

When analyzing overall fixed treatment effects for balanced variance component designs,
we saw that we can use PROC MIXED or PROC GLM. While PROC MIXED always con-
structed the correct F ratio, one could also obtain the appropriate ratio by examination of
the Type III expected mean squares in PROC GLM. For unbalanced designs or for the anal-
ysis of arbitrary contrasts in the fixed effects, PROC MIXED is used with Satterthwaite’s
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approximation to adjust the denominator degrees of freedom. Because all parameters are
considered fixed in PROC GLM, variances components are not estimated so that the esti-
mates of contrast variances are incorrect for mixed models.

The analysis of univariate variance component designs extend in a natural manner to
the multivariate case; however, their analyses is more complicated, except for the balanced
case. For balanced designs, overall tests of fixed or random effects may be constructed by
inspection of the TYPE III expected SSCP matrices using PROC GLM. All the multivari-
ate criteria may be used to test for overall significance, however, Wilks’ test is no longer a
Likelihood Ratio test since the likelihood must now be maximized subject to the constraint
that all variance covariances matrices of random effects are nonnegative definite. The de-
velopment of multivariate tests of fixed effects are based on the assumption that there exists
a random effect whose mean square error matrix has the same expected value as the effect
being tested when the null hypothesis is true. When this is not the case, one has to approxi-
mate the distribution of the linear combination of mean square error matrices with a central
Wishart distribution by equating the first two moments of the distributions, Boik (1988,
1991) and Tan and Gupta (1983). Because ψ̂ = c′B̂m depends on the random components,
the variance of ψ̂ also depends on the random components.

a. Model Specification

The general linear multivariate model for balanced multivariate component of variance
designs following (6.3.37) has the general structure

Y = XB+
m∑

j=1
Z j U j + E (6.5.1)

where Yn×p is the data matrix, Xn×q is a known design matrix, Bq×p is a matrix of un-
known fixed effects, Z j are known n × r j matrices of rank r j , U j are random effect ma-
trices of order r j × p, and En×p is a matrix of random errors. We further assume that the
rows u′j of U j and e′j of E are distributed MVN as follows, e′j ∼ I Np (0, �e) and u′j ∼
I Np

(
0, � j

)
for j = 1, 2, . . . ,m so that E (Y) = XB. Letting �e ≡ �0,V j = Z j Z′j , and

y∗ = vec
(
Y′

)
, the covariance of y∗ is

� = cov
(
y∗

) = cov

[
m∑

j=1
(Zi ⊗ I) vec u′j

]
+ cov

[
vec

(
E′

)]
=

m∑
j=1

(
Zq ⊗ I

) (
I⊗� j

) (
Z j ⊗ I

)′ + In ⊗�o

=
m∑

j=1

(
Z j Z′j ⊗� j

)
+ In ⊗�o

=
m∑

j=0
V j ⊗� j

(6.5.2)

by setting V0 ≡ In where each � j is nonnegative definite and � is positive definite,
Mathew (1989).
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Because the multivariate component of variance models have an equal number of ob-
servations per cell, are balanced, an alternative structure for model (6.5.1) as discussed in
Chapter 3, expression (3.6.36) is

Y = XB+ ZU+ E

=∑
i

Ki Bi +
m∑

j=0
K j U j

(6.5.3)

where the matrices Ki or K j have Kronecker product structure of the form

(A1 ⊗ A2 ⊗ . . .⊗ Ah)

where Ai (i = 1, 2, . . . , h) and each Ai is an identity matrix or a vector of 1s. Expression
(6.5.3) is the multivariate extension of the univariate mixed models considered by Searle et
al. (1992). The covariance structure for model (6.5.3) is identical to that given by (6.5.2).
However, the matrices V j have the Kronecker product structure V j = H1⊗H2⊗ . . .⊗Hh

where Hi is an identity matrix I or a matrix J so the V j commute, Khuri (1982). This
structure for � was discussed in Chapter 3, expression (3.6.38).

To illustrate (6.5.1), we examine the overparameterized balanced one-way mixed MA-
NOVA model. The model is similar to the fixed effect model considered in Chapter 4 except
that the fixed effect parameter vector is replaced by a random vector of treatment effects
since treatments are sampled from a large population of treatments. Letting yi j represent
a p × 1 vector of observations, µ′ = [

µ1, µ2, . . . , µp
]

denote a vector of constants, and
a′i =

[
ai1, ai2, . . . , aip

]
a vector of random effects, the overparameterized multivariate

variance components MANOVA model becomes

yi j = µ+ ai + ei j (6.5.4)

where ei j are random p × 1 vectors of errors, the ai and ei j are mutually independent, and
ai ∼ I Np (0, �a) and ei j ∼ I Np (0, �e). Letting the data matrix and error matrix have the
structure

Y
n×p
= [y11, y12, . . . , y1r , y21, y22, . . . , y2r , yk1, yk2, . . . , ykr ]′

E
n×p
= [e11, e12, . . . , e1r , e21, e22, . . . , e2r , ek1, ek2, . . . , ekr ]′

where n = kr , model (6.5.1) has the matrix form

Y = XB+ ZU+ E

= 1
kr×1

[
µ1, µ2, . . . , µp

]
1×p

+

diag [1r , 1r , . . . , 1r ]
kr×k


a11 a12 · · · a1p

a21 a22 · · · a2p
...

...
...

ak1 ak2 · · · akp

+ E

(6.5.5)
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Or, letting a′ = [
a1, a2, . . . , ap

]
the model has the simple Kronecker structure

Y
n×p
= (1k ⊗ 1r )µ

′ + (Ik ⊗ 1r ) a+ E

= K1µ
′ +K2a+ E

(6.5.6)

where K1 and K2 have the Kronecker product structure A1 ⊗ A2 where Ai is either the
identity matrix or a vector of ones. Furthermore,

E (Y) = (1k ⊗ 1r )µ
′

cov
(
vec a′

) = Ik ⊗�a (6.5.7)

cov
(
vec E′

) = In ⊗�e

Using (6.5.6), the structure of � for the one-way model is

� = K2K′2 ⊗�a + In ⊗�e

= (Ik ⊗ 1r ) (Ik ⊗ 1r )
′ ⊗�a + In ⊗�e

= (Ik ⊗ Jr )⊗�a + (Ik ⊗ 1r )⊗�e (6.5.8)

= V1 ⊗�a + V0 ⊗�0

=
1∑

j=0

(
V j ⊗� j

)
letting �1 ≡ �a . Alternatively, observe the � has the block diagonal structure � =
Ik ⊗ (Jr ⊗�a + Ir ⊗�e) = diag [Jr ⊗�a + Ir ⊗�e], a generalization of the univari-
ate model.

b. Hypothesis Testing

As with the univariate mixed model, the primary hypothesis of interest for the one-way
multivariate variance component MANOVA model is whether the covariance matrix �a

for the random effects is significantly different from zero.

H1 : �a = 0 vs HA : �a �= 0

A test which does not arise in the univariate case is the investigation of the rank of �a ,
Schott and Saw (1984).

To construct tests of the fixed effects of the form Ho : CBM = 0 or the covariance
components Hj : � j = 0 for j = 1, 2, . . . ,m, for MANOVA designs with structure (6.5.3)
or (6.5.1), Mathew (1989) using Theorem 3.4.5 establishes conditions for the existence and
uniqueness for the SSCP partition of Y′Y,

Y′Y =
t∑

i=1
Y′Pi Y+

s∑
i=1

Y′Qi Y (6.5.9)

where P = X
(
X′X

)− X′ is a projection matrix (symmetric and idempotent), Q = I −
P, P = ∑t

i=1 Pi , Q = ∑s
i=1 Qi where Pi and Qi are orthogonal projection matrices,
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Pi P j = 0 and Qi Q j = 0 (i �= j), that permits one to test hypotheses of the form given by
Ho and Hj for multivariate variance components models (6.5.1).

Theorem 6.5.1 Given a partition of Y′Y of the form specified by (6.5.9) that satisfies The-
orem 3.4.5 for the MANOVA model (6.5.1), the partition is unique if and only if there exists
real numbers αi j > 0 and δi j > 0 such that

V j =
t∑

i=1
Pi V j Pi +

s∑
i=1

Qi V j Qi +
t∑

i=1
αi j Pi +

t∑
i=1

δi j Qi

for i = 1, 2, . . . , t and j = 0, 1, 2, . . . ,m.

By construction of the matrix SSCP matrix Y′Y, P2
i = Pi and Pi Qi = 0 for all i ;

hence, the expression for V j in Theorem 6.5.1 is equivalent to the two conditions that (i)
P1,P2, . . . ,Pt ,V0,V1, . . . ,Vk commute and (ii) αi j > 0 exist such that Pi V j Pi = αi j Pi

for i = 1, 2, . . . , t and j = 0, 1, . . . ,m given by Mathew (1989).
To apply Theorem 6.5.1 to the one-way design, we partition the vector space into the

spaces 1, A|1 and (A|1)⊥ and write the projection matrices using Kronecker product no-
tation so that I = P1 +Q2 +Q3. Then it is easily verified, as seen in Example 2.6.2, that
the general expressions for Pi and Qi are

P1 = 1kr
(
1′kr 1kr

)−1 1′kr =
1

kr
(1r ⊗ 1k) = Jkr

kr
= (Jk ⊗ Jr ) /kr

Q1 = 1

r
(Ik ⊗ 1r ) (Ik ⊗ 1r )

′ − Jrk/kr (6.5.10)

= 1

r
(Ik ⊗ Jr )− Jrk/kr

Q2 = (Ik ⊗ Ir )− (Ik ⊗ Jr ) /r

where the rank (P1) = 1, rank (Q1) = k−1 and the rank (Q2) = kr−k = k (r − 1). Since
I = P1 +Q1 +Q2, the partition for Y′Y is

Y′Y = Y′P1Y+ Y′Q1Y+ Y′Q2Y

where Q = Q1 + Q2 and P1, Q1 and Q2 are orthogonal projection matrices such that
P2

i = Pi ,Q2
i = Qi , Pi P j = 0 (i �= j) , Qi Q j = 0 (i �= j) and Pi Q j = 0. Furthermore,

P1 commutes with V1 = Ik⊗Jr and V0 = Ik⊗ Ir = In . Finally, P1V j P1 = α1 j P1 where
α1 j = r and α10 = 1 as required by Theorem 6.5.1.

In the proof of Theorem 6.5.1, Mathew (1989) shows that Y′Pi Y have independent non-
central Wishart distributions, that Y′Qi Y have independent central Wishart distributions,
and that SSCP matrices are mutually independent. That is that

Y′Pi Y ∼ I Wp (vi , �i ,�i )

Y′Qi Y ∼ I Wp (vi , 0,�i )
(6.5.11)
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where

�i = B′X′Pi XB

(
m∑

j=0
αi j� j

)−1

�i =
m∑

j=0
αi j� j (6.5.12)

vi = rank (Pi ) or the rank (Qi )

Furthermore, the expected value of the SSCP matrices are

E
(
Y′Pi Y

) = vi�i + B′X′Pi XB i = 1, 2, . . . , t

E
(
Y′Qi Y

) = vi�i i = 1, 2, . . . , s
(6.5.13)

Details are provided by Khuri et al. (1998).
Evaluating the expectations of the matrix quadratic forms for the one-way model,

E
(
Y′Q1Y

) = (k − 1) (r�1 +�0)

= (k − 1) (r�a +�e) (6.5.14)

E
(
Y′Q2Y

) = k (r − 1)�0 = k (r − 1)�e

Using (6.5.14) to solve for �a and �e, an unbiased estimate for the covariance matrices
�a and �e are

Sa = 1

r

[
Y′Q1Y
k − 1

− Y′Q2Y
k (r − 1)

]
= 1

r
[E1/v1 − E2/v2]

Se = Y′Q2Y/k (n − 1) (6.5.15)

= E2/v2

= Y′
[
I− X

(
X′X

)− X′
]

Y /ve

where ve = n − r (X) = k (r − 1) and vi = rank (Qi ).
While the matrices Sa and Se are not necessarily nonnegative definite, the matrix Se

is p.d. provided n − r (X) = ve ≥ p. Making this assumption, Anderson (1985) and
Amemiya (1985) independently show how to modify Sa to create a REML estimate for
�a . The procedure is as follows. By solving the characteristic equation |E1 − λE2| = 0
there exists a nonsingular matrix T such that T′E1T = � and T′E2T = I so that E1 =(
T′

)−1
�(T)−1 and E2 =

(
T′

)−1 T−1 where � contain the eigenvalues λ1 > λ2 > . . . >

λp. Letting F = T−1, the matrix E1 may be written as E1 = F′(� / v1− I /v2)F. If any λi

in � is negative, its value is set to zero and the new matrix is represented by �. Then,

SREML = F′�F/r (6.5.16)
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is a REML estimate of �a that is positive semidefinite by construction, Mathew, Niyogi and
Sinha (1994). Srivastava and Kubokawa (1999) propose improved estimators for jointly
estimating both �a and �e. Calvin and Dykstra (1991 a, b) suggest other procedures for
estimating covariance matrix components for more complex multivariate components of
variances designs requiring computer algorithms.

To test the hypothesis H1 : �a = 0, one uses (6.5.14) to create a MANOVA table similar
to the fixed effects model using the formula given in (6.5.13) to evaluate the expected values
of SSCP matrices. For the one-way MANOVA the hypothesis SSCP matrix for testing
Ho : α1 = α2 = . . . = αk is used to test H1 : �a = 0. In general, one locates mean
square matrices for testing hypotheses by examining the Type III expected mean square
matrices provided in PROC GLM. As in the univariate mixed model, when testing for fixed
effects, one may not be able to locate random effects whose mean square error matrix has
the same expected value as the effect being tested when the null hypothesis is true. Thus,
one may have to combine mean square error matrices to construct an approximate test.
Because Y′Qi Y ∼Wp (vi ,�i ) where �i is defined in (6.5.12), we need to approximate
the distribution of L̂ = ∑

i ci
(
Y′Qi Yi

)
/vi with a central Wishart distribution Wp (v,�)

where L is some linear combination of mean square error matrices.
To approximate the distribution of L̂, one equates the first two sample moments of L̂,

its expected value and variance, to those of a Wp (v, �). Recall that by Theorem 2.4.6.
if Qi ∼ Wp (vi , �) that E (Qi ) = vi� and the cov (vec Qi ) = 2vi

(
Ip2 +K

)
(� ⊗�).

Tan and Gupta (1983) estimate v and � by equating the expected value and determinant
(generalized variance) of L̂ to those of Wp (v, �) which they call a multivariate Satterth-
waite approximation. This procedure was employed by Nel and van der Merwe (1986) for
the multivariate Behrens-Fisher problem discussed in Chapter 3. Khuri, Mathew and Nel
(1994) give necessary and sufficient conditions for L̂ to have a central Wishart distribu-
tion. The approximation is illustrated in Khuri, Mathew and Sinha (1998). An alternative
approximation has been suggested by Boik (1988, 1991) who recommends equating the
expected value and the trace of L̂ to those of Wp (v, �) instead of the determinant. In
general the two procedures will lead to different estimates of v̂. For tests of random ef-
fects, hypothesis and error matrices may need to be constructed. The value of v̂ using the
generalized variance criterion is given in Khuri et al. (1998, p. 271).

c. Evaluating Expected Mean Square

While we have provided general expressions for evaluating the expected mean squares in
mixed models, their evaluation is not straight forward. To facilitate their evaluation, one
may use rules. Results may differ depending upon whether restrictions are incorporated
into the model and whether interactions of fixed and random effects are considered fixed
or random, Searle (1971, pp. 389-404) and Dean and Voss (1999, pp. 627-628), and others
discussed in Chapter 6. The SAS procedure PROC GLM does not use rules to evaluate
expected mean squares. Instead, it uses the computer syntheses procedure developed by
Hartley (1967) to evaluate the expected value of quadratic forms directly for each sum of
squares (Type I, II, III and IV) a variable at a time, Milliken and Johnson (1992, Chapters
18 and 22). When one cannot locate appropriate expected mean square matrices to per-
form tests, PROC GLM does not currently (Version 8) provide any type of multivariate
Satterthwaite approximation.
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d. Estimating the Mean

In many random effect multivariate variance component models, the only fixed parameter
is µ. Using the projection matrix P1, we observe that

µ̂ = P1XB̂ = P1X
(
X′X

)−1 X′Y = P1P = P1Y = y.

Furthermore, P1V j Q = 0 so that y and QY are uncorrelated. Under MVN assumptions, y
is BLUE and its components have minimal variance.

For the more general case with fixed effects P1,P2, . . . ,Pt and random effects Qi , the
j th column of Y induces a balanced univariate model of the form

y j = Xβ j +
∑m

i=0 Zi ui j = 1, 2, . . . , p

where the var
(
y j

) =∑m
i=0 Zi Z′iσ 2

i j . Even though the estimates β̂ j are correlated, for each
model the OLS estimate of β j and the GLS estimate of β j are equal for balanced designs
with no covariates, Searle et al. (1992, p. 160). In addition, one may obtain BLUP’s a
variable at a time.

Because ψ̂ = CB̂M depends on the random effects in the model, the covariance of
ψ̂ depends on the estimates of the covariance matrices of the random effects. Letting
A′ =M′X

(
X′X

)−1, the covariance matrix of ψ̂ is

m∑
j=0

CV j C′ ⊗ A′� j A

which depends on V j and � j .

e. Repeated Measurements Model

A useful application of the multivariate variance components model in the social sciences
is in the analysis of the multivariate split-plot mixed model. For this model, the p × 1
observation vector represents the p measures taken on the j th subject in group i , under
treatment condition k, where i = 1, 2, . . . , g, j = 1, 2, . . . , r, and k = 1, 2, . . . , t . The
mixed model is written as

yi jk = µ+ αi + βk + (αβ)ik + s(i) j + ei jk (6.5.17)

Furthermore, we assume that the random components s(i) j and ei jk are mutually indepen-
dent with distributions that are MVN: s(i) j ∼ I N (0 �s) and ei jk ∼ I N (0, �e). Letting
yi j =

[
yi j1, yi j2, . . . , yi j t

]
and y∗i j = vec

(
yi j

)
denote the pt × 1 vector formed from p× t

matrix yi j , the cov(y∗i j ) = � for all i and j . The matrix � is the pt× pt covariance matrix
for each group. The organization for the design is given in Table 6.5.1.
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TABLE 6.5.1. Multivariate Repeated Measurements

Conditions (time)
Treatment

Group
Subject 1 2 · · · t

1 y111 y112 · · · y11t

2 y121 y122 · · · y12t

1
...

...
...

...

r y1r1 y1r2 · · · y1r t

1 y211 y212 · · · y21t

2 y221 y222 · · · y22t

2
...

...
...

...

r y2r1 y2r2 · · · y2r t

...
...

...
...

1 yg11 yg12 · · · yg1t

2 yg21 yg22 · · · yg2t

g
...

...
...

...

r ygr1 ygr2 · · · ygrt

Representing the model in matrix form where Y = [y∗11, y∗12, . . . , y∗gr ], the mixed model
for Y = [y∗11, y∗12, . . . , y∗gr ], the mixed model for the design is

Y
n×pt
= X

n×q
B

q×pt
+ (Ig ⊗ Ir ⊗ 1t )s(i) j + E

n×pt

E (Y) = XB

cov
(
vec Y′

) = (
Ig ⊗ Ir ⊗ Jt

)⊗�s +
(
Ig ⊗ Ir

)⊗�e (6.5.18)

= Igr ⊗ (Jt ⊗�s +�e)

= Igr ⊗�pt × pt

so that � has compound symmetry structure.
Following the one-way MANOVA mixed model, one may construct unbiased estimates

of �s and �e. Evaluating the expected values of the SSCP matrices for treatments, con-
ditions, treatment by conditions interaction, subjects within groups and error, test matrices
for the design are easily established. An example is given in the next section using the data
in Timm (1980). This model has been considered by Reinsel (1982, 1985), and by Arnold
(1979), Mathew (1989) and Alalouf (1980).

Critical to the analysis of the split-plot multivariate mixed model (MMM) analysis is the
structure of �, Thomas (1983). For our model, � = It ⊗ �e + 1t 1′t ⊗ �s has compound
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symmetry structure since

� =


�1 �2 · · · �2
�2 �1 · · · �2
...

...
...

�2 �2 · · · �1

 (6.5.19)

where �1 = �e + �s and �2 = �s . More generally, let M be a contrast matrix across
conditions such that M′M = It−1 and M′1t = 0. Letting u = t − 1 and

V = (
M′ ⊗ Ip

)
�

(
M⊗ Ip

)
(6.5.20)

Boik (1988) and Pavar (1987) showed that a MMM analysis is valid if and only if the matrix
V satisfies the multivariate sphericity condition

V = Iu ⊗� (6.5.21)

for some p.d. matrix �p×p. Matrices � in this class are called Type H matrices, Huynh
and Feldt (1970). Clearly, if � = It ⊗�e +

(
11′ ⊗�s

)
, then(

M′ ⊗ Ip
)
�

(
M⊗ Ip

) = Iu ⊗�e

so that if � has compound symmetry structure, it satisfies the multivariate sphericity con-
dition. In chapter 3 we showed how to test for multivariate sphericity.

Vaish (1994) in his Doctoral dissertation develops a very general characterization of � in
(6.5.19) which ensures that one may analyze repeated measurements data using the MMM.
He shows that � must have the general structure.

� = (It − t−1Jt )⊗�e + t−1(1t ⊗ Ip)H′ + t−1H(1′t ⊗ Ip)− t−11t 1′t ⊗H (6.5.22)

where r
(
Hpt×p

) ≤ p, H = ∑t
i=1 Hi/t and each p × p matrix Gi is formed so that

H = [H′1,H′2, . . . ,H′t ]′.

6.6 Balanced Mixed Multivariate Models Examples

The SAS procedure GLM may be used to test hypotheses in balanced MANOVA designs.
Following the univariate procedure, if an exact F tests exist for the univariate design for
testing for fixed effects or random components a variable at a time (the denominator of the
F statistic depends on a single mean square error term), then one may construct an exact
multivariate test for the design. The test is constructed using the MANOVA statement with
the components H = and E = specified, the options defined by h and e are defined using
the factors in the design. From the factor names, PROC GLM creates the hypothesis test
matrix H and error matrix E, solving | H− λE |= 0 to develop multivariate test statistics.
In Version 8.0 of SAS, one may not combine matrices to create “quasi” multivariate tests
since no multivariate Satterthwaite approximation for degrees of freedom has been pro-
vided. Also, no procedure is currently available to obtain estimates for random covariance
matrices.
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a. Two-way Mixed MANOVA

Khuri et al. (1998) provide simulated data to analyze a balanced, two-way, random effects,
model II MANOVA design

yi jk = µ+ αi + β j + (αβ)i j + ei jk

i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , n
(6.6.1)

where factors A and B each have four levels, and n = 3 bivariate normal observation
vectors. The random components αi ,β j , (αβ)i j , and ei jk are independent and follow
MVN distributions with zero mean vectors and random covariance matrices �α,�β,�αβ,

and �e. Assuming the parameters αi are fixed rather than random, model (6.6.1) becomes
a mixed, a Model III, MANOVA model. The data and tests of hypotheses for both designs
is included in program m6 6 1.sas.

To analyze (6.6.1) assuming αi are fixed and β j are random, the RANDOM statement
includes both factors B and A*B. Reviewing the univariate output, an exact F test for the
corresponding univariate model exists for testing HA : all αi = 0 and HB : σ 2

B = 0 if
the denominator of the F-statistic contain the interaction mean square. To create the corre-
sponding MANOVA tests: HA : all αi = 0 and HA : �β = 0 the MANOVA statement
with h = AB and e = A ∗ B is used. For the test of HAB : �αβ = 0, the default error
mean squares matrix is used. The expected mean squares for the Mixed Model III design
are shown in Table 6.6.1

All multivariate criteria show that the tests of HA, HB, and HAB are rejected. Because
contrasts in the vectors αi involve elements of �αβ, PROC MIXED is required. Also
included in program m6 6 1.sas is the code for the example discussed by Khuri et al. (1998,
p. 273).

While one many use the methods-of-moment procedure to estimate the random covari-
ance matrices, they may not be positive definite.

b. Multivariate Split-Plot Design

For this example, model (6.5.17) is analyzed using data from Timm (1980). The data were
provided by Dr. Thomas Zullo in the School of Dental Medicine, University of Pittsburgh.
Nine subjects were selected from the class of dental students and assigned to two ortho-
pedic treatment groups. Each group was evaluated by studying the effectiveness of three
adjustments that represented the position and angle of the mandible over three occasions
(conditions). The data for the study are shown in Table 6.6.2 and provided in file mixed.dat.

For model (6.5.17), g = 2 (groups), r = 9 (subject) and t = 3 (conditions). Each obser-
vation is a vector of the three measurements on the mandible. To construct exact multivari-
ate tests for differences in occasions and for the interaction between groups and occasions,
the matrix V in (6.5.20) must satisfy the multivariate sphericity (M-sphericity) condition
given in (6.5.21). This was tested in Example 3.8.7. More will be said regarding this test
and what it means in Section 6.7. For now, we assume that the data satisfy the circularity
condition. This being the case, program m6 6 2.sas is used to perform the analysis for the
data.
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TABLE 6.6.1. Expected Mean Square Matrix

Source df EMS
A 3 �e + 3�αβ + Q (A)
B 3 �e + 3�αβ + 12�β

AB 9 �e + 3�αβ

Error 32

TABLE 6.6.2. Individual Measurements Utilized to Assess the Changes in the Vertical Position and
Angle of the Mandible at Three Occasion

SOr-Me ANS-Me Pal-MP angle
(mm) (mm) (degrees)

Group 1 2 3 1 2 3 1 2 3
117.0 117.5 118.5 59.0 59.0 60.0 10.5 16.5 16.5
109.0 110.5 111.0 60.0 61.5 61.5 30.5 30.5 30.5
117.0 120.0 12.5 60.0 61.5 62.0 23.5 23.5 23.5
122.0 126.0 127.0 67.5 70.5 71.5 33.0 32.0 32.5

T1 116.0 118.5 119.5 61.5 62.5 63.5 24.5 24.5 24.5
123.0 126.0 127.0 65.5 61.5 67.5 22.0 22.0 22.0
130.5 132.0 134.5 68.5 69.5 71.0 33.0 32.5 32.0
126.5 128.5 130.5 69.0 71.0 73.0 20.0 20.0 20.0
113.9 116.5 117.9 57.9 59.0 60.5 25.0 25.0 24.5
128.0 129.0 131.5 67.0 67.5 69.0 24.0 24.0 24.0
116.5 120.0 121.5 63.5 65.0 66.0 28.5 29.5 29.5
121.5 125.5 127.5 64.5 67.5 69.0 26.5 27.0 27.0
109.5 112.0 114.0 54.0 55.5 57.0 18.0 18.5 19.0

T2 133.0 136.0 137.5 72.0 73.3 75.5 34.5 34.5 34.5
120.0 124.5 126.0 62.5 65.0 66.0 26.0 26.0 26.0
129.5 133.5 134.5 65.0 68.0 69.0 18.5 18.5 18.5
122.0 124.0 125.5 64.5 65.5 66.0 18.5 18.5 18.5
125.0 127.0 128.0 65.5 66.5 67.0 21.5 21.5 21.6

TABLE 6.6.3. Expected Mean Squares for Model (6.5.17)

Source df EMS
GROUP 1 �e + 3�S(G) + Q (G, G ∗ C)

SUBJ(GROUP) 16 �e + 3�S(G)

COND 2 �e + Q(, G ∗ C)

GROUP*COND 2 �e + Q(G ∗ C)

ERROR 32 �e
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TABLE 6.6.4. MMM Analysis Zullo’s Data

HYPOTHESIS Wilks � df F df p-value
GROUP 0.8839 (3, 1, 16) 0.6132 (3, 14) 0.6176
COND 0.0605 (3, 2, 32) 30.6443 (6, 60) < 0.0001
GROUP*COND 0.8345 (3, 2, 32) 0.9469 (6, 60) 0.4687

TABLE 6.6.5. Summary of Univariate Output

Variable F-value p-value
SOr(Y1) 76.463/0.472 = 162.1 < 0.001
ANS(Y2) 31.366/0.852 = 36.82 < 0.001
Pal (Y3) 0.795/0.773 = 1.03 0.3694

For the univariate analysis of mixed linear models with an equal number of subjects per
group and no missing data, the tests for fixed effects using PROC MIXED and PROC GLM
are identical. However, PROC GLM may not used to obtain standard errors for contrasts
since no provision is made in the procedure for random effects. Because there is no PROC
MIXED for the multivariate model, we must use PROC GLM to construct multivariate
tests. Again one reviews the univariate expected mean squares to form the appropriate
matrices H and E to test for the fixed effects: Conditions, Groups and Group by Condition
interaction. The expected mean squares are provided in Table 6.6.3

From the expected mean squares in Table 6.6.3, we see that the test for differences in
conditions is confounded by interaction (G*C). Thus, to interpreted the test of conditions,
we must have a nonsignificant interaction. The MANOVA table using Wilks’ � criterion is
given in Table 6.6.4

Because the test of interaction is nonsignificant, we may want to investigate contrasts in
conditions. In most mixed models involving both fixed and random effects, PROC GLM
does not correctly calculate the correct standard errors for contrasts since it considers all
factors fixed. Because the test for conditions and interactions only involve �e, this is not
a problem for this design. Because it is usually a problem for more general designs, we
recommend using PROC MIXED. That is, using the Bonferroni inequality one divides the
overall α by the number of variables. For this problem, α∗ = 0.05/3 = 0.0167. Then, one
may use the LSMEAN statement to obtain approximate confidence intervals as illustrated
in program m6 6 2.sas. For pairwise comparisons across conditions for the variable sor me,
the mean differences follow

−3.35 ≤ C1− C2 ≤ −1.99
−4.74 ≤ C1− C3 ≤ −3.38
−2.07 ≤ C2− C3 ≤ −0.71

Pairwise comparisons for the variable ANS ME are also significant. Thus, we conclude
that significant differences exist for conditions for two of the three variables and that there
is no significant differences between treatment groups.

From the MMM, one may obtain the univariate split-plot F-ratios, one variable at a time
by constructing the appropriate error mean squares. The results are provided in Table 6.6.5
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Exercises 6.6

1. In a learning experiment with four male and four females, 150 trials were given to
each subject in the following manner.

(1) Morning With training Nonsense words

(2) Afternoon With training Letter word

(3) Afternoon No training Nonsense words

(4) Morning No training Letter words

Using the number of trials to criterion for five-letter (F) and seven-letter (S) “words,”
the data for the randomized block design follows.

Treatment Conditions

1 2 3 4
M F 120 F 90 F 140 F 70

S 130 S 100 S 150 S 85
Blocks

F F 70 F 30 F 100 F 20
S 80 S 60 S 110 S 35

Using α = .05 for each test, test for differences in Treatment Conditions and for
Block differences.

2. In a pilot study designed to investigate the mental abilities of four ethnic groups and
four socioeconomic-status (SES) classifications, high SES males (HM), high SES
females (HF) low SES males (LM), and low SES females (LF), the following table
of data on three different measures, mathematics (MAT), English (ENG), and general
knowledge (GK), was obtained.

Ethnic Groups

I II
SES MAT ENG GK MAT ENG GK

HM 80 60 70 85 65 75
HF 85 65 75 89 69 80
LM 89 78 81 91 73 82
LF 92 81 85 100 80 90
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III IV
SES MAT ENG GK MAT ENG GK

HM 90 70 80 95 75 85
HF 94 76 85 96 80 90
LM 99 81 90 100 85 97
LF 105 84 91 110 90 101

Carry out a multivariate, analysis-of-variance procedure to investigate differences in
ethnic groups (I, II, III, and IV).

3. In an experiment designed to investigate two driver-training programs, students in the
eleventh grade in schools I, II, and III were trained with one program and eleventh-
grade students in schools IV, V, and VI were trained with another program. After the
completion of a 6-week training period, a test measuring knowledge (K) of traffic
laws and driving ability (A) was administered to the 138 students in the study.

Program 1 Program 2
S1(I) S2(II) S3(III) S1(IV) S2(V) S3(VI)

K A K A K A K A K A K A
48 66 36 43 82 51 54 79 46 46 21 5
68 16 24 24 79 55 30 79 13 13 51 16
28 22 24 24 82 46 9 36 59 76 52 43
42 21 37 30 65 33 23 79 26 42 53 54
73 10 78 21 33 68 18 66 38 84 11 9
46 13 82 60 79 12 15 82 29 65 34 52
46 17 56 24 33 48 16 89 12 47 40 16
76 15 24 12 75 48 14 82 6 56 43 48
52 11 82 63 33 35 48 83 15 46 11 12
44 64 78 34 67 28 31 65 18 34 39 69
33 14 44 39 67 52 11 74 41 23 32 25
43 25 92 34 67 37 41 88 26 33 33 26
76 60 68 85 33 35 56 67 15 29 45 12
76 18 43 50 33 30 51 93 54 50 27 12
36 49 68 28 67 33 23 83 36 83 49 21
39 75 53 90 67 54 16 76 27 82 44 56
76 16 76 41 75 63 40 69 64 79 64 18
73 11 35 10 83 93 21 37 55 67 27 11
34 12 24 11 94 92 88 82 10 70 79 57
68 63 23 21 79 61 7 32 12 65 47 64
52 69 66 65 89 53 38 75 34 93 17 29
46 22 76 78 94 92 20 77 21 83 39 42
26 18 34 36 93 91 13 70 34 81 21 11

Test for differences between Programs.
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4. Using as blocking variables ability tracks and teaching machines, an investigator
interested in the evaluation of four teaching units in science employed the following
Latin-square design.

Teaching Machines
1 2 3 4

1 T2 T1 T3 T4
Ability 2 T4 T3 T1 T2
Groups 3 T1 T4 T2 T3

4 T3 T2 T4 T1

The treatments T1, T2, T3 and T4 are four version of measuring astronomical dis-
tance in the solar system and beyond the solar system. The dependent variables for
the study are subtest scores on one test designed to measure the students ability in
determining solar system distances within (W) and beyond (B) the solar system. The
data for the study follow.

Cell W B Cell W B
112 13 15 311 10 5
121 40 4 324 20 16
133 31 16 332 17 16
144 37 10 343 12 4
214 25 20 413 24 15
233 30 18 422 20 13
231 22 6 434 19 14
242 25 18 441 29 20

Use the mixed MANOVA model for the Latin-square design to test the main-effect
hypothesis. What are your conclusions?

6.7 Double Multivariate Model (DMM)

In the last section we reviewed several MMM’s and illustrated the analysis of vector valued
repeated measurement data that require a restrictive structure for � for a valid analysis.
We may relax the requirement that � be a member of the class of multivariate covariance
matrices with Type H structure and now only require the � be positive definite. Then, using
the data structure given in Table 6.5.1, the multivariate repeated measures may be modeled
using the fixed effect MGLM

Y = XB+ E (6.7.1)

where Yn×pt , and the matrix Y is organized as Y =
[
y∗11, y∗12, . . . , y∗gr

]
so that variables

are nested within conditions (time). The matrix B is an unknown parameter matrix, and E
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is a random error matrix such that

e∗ = vec
(
E′

) ∼ Npq (0 In ⊗�) (6.7.2)

so that each row of Y has covariance structure �pt × pt .
For model (6.7.1), hypotheses have the general structure

H : CB
(
M⊗ Ip

) = 0 (6.7.3)

where the matrix Cg×g has rank g = vh , Mt×(t−1) is a orthogonal contrast matrix such
that M′M =It−1 and M′1 = 0 so that A = M⊗ Ip has rank p (t − 1). To test hypotheses,
one again forms the hypotheses and error matrices H and E. For H in (6.7.3) and model
(6.7.1), the matrices H and E are constructed as follows

H = [
CB̂

(
M⊗ Ip

)]′ [
C
(
X′X

)− C′
]−1 [

CB̂
(
M⊗ Ip

)]
E = (

M′ ⊗ Ip
)

Y′
[
I− X

(
X′X

)− X′
]

Y
(
M⊗ Ip

) (6.7.4)

where B̂ = (
X′X

)−1 X′Y. The matrices H and E have independent Wishart distributions
with degrees of freedom vh = rank C and ve = n − r (X).

A disadvantage of the DMM is that � has arbitrary structure. In many applications of
repeated measurements, � has a simple structure as opposed to a general structure, Crowder
and Hand (1990). A very simple structure for � is that � = It ⊗�e which implies that the
measurements observed over time are uncorrelated and that the covariance structure of the
p variables is arbitrary and represented by �e. Then, � has Type H structure and satisfies
the multivariate sphericity (M-sphericity) condition so that an analysis would employ the
MMM approach.

When the MMM approach is not valid, but one does not want to assume a general struc-
ture, an alternative structure for � is to assume that

� = �t ⊗�e (6.7.5)

suggested by Boik (1991), Galecki (1994), and Naik and Rao (2001). If � satisfies (6.7.5),
it does not satisfy the M-sphericity condition since

V =M′�t M⊗�e =W⊗�e �= I(t−1) ⊗�e

Hence, a MMM analysis does not produce exact tests. Also observe that V = W ⊗ �e

has Kronecker structure. Boik (1991) showed that if V has Kronecker structure that his ε-
adjusted test provides a reasonable approximation to a MMM test. And, that the adjustment
factor is invariant to choosing a trace or generalized variance criterion when equating the
first two moments of the hypothesis and error matrices to obtain a Satterthwaite approxi-
mation. The ε-adjustment to the MMM tests involves correcting the hypothesis and error
degrees of freedom of the Wishart distribution for the tests of conditions and interactions,
the within-subject tests that depend on multivariate sphericity. In particular v∗h = ε̂vh and
v∗e = ε̂ve where ve and vh are the associated degrees of freedom for the MMM tests. To
calculate ε̂, we define the generalized trace operator, Thompson (1973).
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Definition 6.7.1 If W is a (qp × qp) matrix and Wi j are p × p submatrices of W for
i, j = 1, 2, . . . , q, then the generalized trace operator of W is the q × q matrix

Tq (W) = [
tr
(
Wi j

)]
Interchanging q and p, the matrix Tp (W ) is a p × p matrix containing submatrices of
order q × q.

Letting A =M⊗ Ip and � = A′�̂A where � is partitioned into p× p submatrices Ei j ,

Boik (1991) purposed a new estimator of ε as

ε̂ = [Tr (�)]2 /p (t − 1) tr (�) (6.7.6)

where
� =

{
Ip ⊗ [Tu (�)]−1/2

}
�

{
Ip ⊗ [Tu (�)]−1/2

}
and �̂ is an unbiased estimator of �. This new estimator may only be used with the Lawley-
Hotelling trace criterion, T 2

o . Unlike the ε-adjustment of Boik (1988), this new adjustment
is invariant under linear transformation of the p dependent variables.

To test the hypothesis that � has Kronecker structure versus the alternative that � has
general structure

H : � = �t ⊗�e vs A : � = � (6.7.7)

the likelihood ratio criterion is

λ = |�̂|n/2/|�̂|np/2|�̂t |nt/2 (6.7.8)

where �̂t and �̂e are the ML estimates of � under H and �̂ is the estimate of � under the
alternative. Because the likelihood equations �̂e and �̂t have no closed form, an iterative
procedure must be used to obtain the ML estimates. The ML estimate of � is E/n = �̂

where E is the error SSCP matrix. The procedure PROC MIXED in SAS may be used
to obtain the ML estimates of �e and�t . Alternatively, the algorithm suggested by Boik
(1991) may be used. To test (6.7.7), the large sample chi-square statistic is

X2 = −2 log λ
.∼ χ2 (v) (6.7.9)

where v = (p − 1) (t − 1) [(p + 1) (t + 1)+ 1] / 2.
One may also test the hypothesis that � has multivariate sphericity structure versus the

alternative that � has Kronecker structure

H : � = I(t−1) ⊗�e

A : � =W⊗�e
(6.7.10)

where W = M′�t M for some matrix M, M′M = It−1 and M′1 = 0. The likelihood ratio
statistic is

λ = |Ŵ|np/2|�̂e|n(t−1)/2/|�̂o|n(t−1) (6.7.11)
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where
�̂o =

(
M⊗ Ip

)′
�̂

(
M⊗ Ip

)
= (

M⊗ Ip
)′ [ n∑

i=1
(yi − y) (yi − y)′

] (
M⊗ Ip

) (6.7.12)

and Ŵ and �̂e are ML estimates of W and �e under A. The large sample chi-square statistic
to test (6.7.10) is

X2 = −2 log λ
·
∼
χ2 (v) (6.7.13)

where v = t (t − 1) /2. One may use PROC MIXED to estimate Ŵ and �̂e.
In summary, the analysis of multivariate repeated measures data should employ the

DMM if � has general structure. If � satisfies the multivariate sphericity condition so that
V = (M⊗ I)� (M⊗ I) = Iu ⊗ �, then the MMM should be used. If � has Kronecker
structure, the ε-adjusted developed by Boik (1988, 1991) may be used. As an alternative
to the ε-adjusted method, one may also analyze multivariate repeated measurements using
PROC MIXED. Then, the DMM is represented as a mixed model using (6.3.4) by stack-
ing the g, pt × 1 vectors one upon the other. Because the design is balanced, hypotheses
CB

(
M⊗ Ip

) = 0 are represented as ((M⊗ Ip)
′ ⊗C) vec (B) = 0 and may be tested using

an approximate Sattherwaite F statistic. This is the approach used in PROC MIXED.
Replacing the matrix In in (6.7.2) with a matrix Wn , Young, Seaman and Meaux (1999)

develop necessary and sufficient conditions for the structure of Wn for exact multivariate
tests of H given in (6.7.3) for the DMM. They develop exact tests for covariance structure
of the form Wn ⊗�, calling such structures independence distribution-preserving (IDP).

6.8 Double Multivariate Model Examples

When analyzing a DMM, one may organize the vector observations for each subject with
p variables nested in t occasions (O) as in (6.6.1) so that for each occasion Oi we have

Oi

v1, v2, . . . , vp
(6.8.1)

for i = 1, 2, . . . , t . Then, the post matrix for testing (6.7.3) has the form A =M⊗Ip where
the r (M) = t − 1 = u. Alternatively, the multivariate observations may be represented as
in Table 6.6.1. Then, the t occasions (conditions) are nested within each of the variables so
that

vi

O1, O2, . . . , Op
(6.8.2)

for i = 1, 2, . . . , p. For this organization, the post matrix P for testing

H : CBP = 0

has the structure P = Ip⊗M. This has a convenient block structures for P; however, the M-
sphericity condition has the reverse Kronecker structure, V = �e⊗Iu . Both representations
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are used in the literature and we have used both in this text. Details regarding each choice is
discussed further by Timm and Mieczkowski (1997, Chapter 6) and will not be duplicated
here.

a. Double Multivariate MANOVA (Example 6.8.1)

Using the data in Table 6.6.1, we illustrate the analysis of Dr. Thomas Zullo’s data. Because
occasions are nested within variables, the post matrix P will be used to test hypotheses.
Assuming a FR model, the parameter matrix B has the structure

B =


µ11µ12µ13

... µ14µ15µ16
... µ17µ18µ19

...
...

µ21µ22µ23
... µ24µ25µ26

... µ27µ28µ29

 (6.8.3)

where each block of parameters represents three repeated measurements on each variable.
The first hypothesis test of interest for these data is to test whether the profiles for the two

treatment groups are parallel, by testing for an interaction between conditions and groups.
The hypothesis is

HGC : [µ11 − µ13, µ12 − µ13, . . . , µ17 − µ18, µ18 − µ19]
= [µ21 − µ23, µ22 − µ23, . . . , µ27 − µ28, µ28 − µ29]

(6.8.4)

The matrices C and P = (I3 ⊗M) of the form CBP = 0 to test HGC are

C = (1,−1) ,P =
 M 0 0

0 M 0
0 0 M

 and M =
 1 0

0 1
−1 −1

 (6.8.5)

To analyze the DMM in SAS, the matrix P is defined as m ≡ P′ so that the columns of P
become the rows of m. This organization of the data does not result in a convenient block
structure of H and E. Instead, one must employ (6.8.1) as suggested by Boik (1988). In
either case, if M is normalized so that M′M = I and M′1 = 0, the MMM easily obtained
from the DMM as illustrated by Timm (1980) and Boik (1988).

Continuing with the DMM analysis, the overall hypothesis for testing differences in
Groups, HG∗ , is

HG∗ : µ1 = µ2 (6.8.6)

and the matrices C and P to test this hypothesis are

CG∗ = [1,−1] and P = I2 (6.8.7)

The hypothesis to test for vector differences in conditions becomes

HC∗ :


µ11
µ21
µ14
µ24
µ17
µ27

 =


µ12
µ22
µ15
µ25
µ18
µ28

 =


µ13
µ23
µ16
µ26
µ19
µ29

 (6.8.8)
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The test matrices to test (6.8.8) are

CC∗ = I2 and P =



1 0 0 0 0 0
−1 1 0 0 0 0

0 −1 0 0 0 0
0 0 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1


Tests (6.8.6) and (6.8.8) do not require parallelism of profiles. However, given parallelism,
tests for differences between groups and among conditions are written as

HG∗



∑3
j=1 µ1 j/3

∑6
j=4 µ1 j/3

∑9
j=7 µ1 j/3

 =


∑3
j=1 µ2 j/3

∑6
j=4 µ2 j/3

∑9
j=7 µ2 j/3

 (6.8.9)

and

HC∗


∑2

i=1 µi1/2∑2
i=1 µi4/2∑2
i=1 µi7/2

 =


∑2
i=1 µi2/2∑2
i=1 µi5/2∑2
i=1 µi8/2

 =


∑2
i=1 µi3/2∑2
i=1 µi6/2∑2
i=1 µi9/2

 (6.8.10)

respectively. The hypothesis test matrices to text HG and HC are

CG = [1,−1] and P′ =


1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

 (6.8.11)

CG = (1/2,−1/2) and P′ =



1 0 0 0 0 0
0 0 0 1 0 0
−1 0 0 −1 0 0

0 1 0 0 0 0
0 0 0 0 1 0
0 −1 0 0 −1 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 −1 0 0 −1


(6.8.12)
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TABLE 6.8.1. DMM Results, Dr. Zullo’s Data

Hypothesis Wilks’ � df F df p-value
GC 0.5830 (6,1,16) 1.3114 (6,11) 0.3292
G∗ 0.4222 (9,1,16) 1.216 (9,8) (0.3965)
C∗ 0.0264 (6.2.16) 9.4595 (12,22) < 0.0001
G 0.8839 (3,1,16) 0.6132 (3.14) 0.6176
C 0.0338 (6,1,16) 52.4371 (6,11) < 0.0001

Normalization of the matrix P in (6.8.11) and (6.8.12) within each variable allows one to
again obtain MMM results from the multivariate tests, given parallelism. This is not the
case for the multivariate tests of HG∗ and HC∗ that do not assume parallelism of profiles.
Some standard statistical packages for the analysis of the DMM design, like SPSS, do not
test HG∗ or HC∗ but assume the parallelism condition, and hence are testing HG and HC .

The SAS code to perform these tests is provided in program m6 8 1.sas. The results of
the tests are given in Table 6.8.1 using only Wilks’ � criterion.
Because the test of parallelism is not significant, tests of conditions and group differences
given parallelism are appropriate. From these tests one may derive MMM tests of HC and
HGC given multivariate sphericity. The MMM tests of group differences is identical to the
test of HG using the DMM and does not depend on the sphericity assumption.

Thomas (1983) derived the likelihood ratio test of multivariate sphericity and Boik (1988)
showed that it was the necessary and sufficient condition for the MMM tests to be valid.
Boik (1988) also developed ε-adjusted multivariate tests of HC and HGC when multivariate
sphericity is not satisfied. Recall that for the simple split-plot design F-ratios are exact if
and only if across groups. For the DMM using the data organization (6.8.2), the condition
becomes (

Ip ⊗M
)′
�

(
Ip ⊗M

) = �e ⊗ Iu (6.8.13)

where the contrast matrix M is orthogonal; using organization (6.8.1), the M-sphericity
condition becomes (

M⊗ Ip
)′
�

(
M⊗ Ip

) = Iu ⊗�e (6.8.14)

The LR test statistic for testing (6.8.14) given in (3.8.48) is

λ = |E|n/2/ q−1
∣∣∣∣ q∑
i=1

Ei i

∣∣∣∣nq/2

where u ≡ q = r (M) was illustrated in Example 3.8.7. The code is included in program
m6 8 1.sas for completeness. Because the M-sphericity test is rejected for these data, the
MMM should not be used to test hypotheses.

In many applications of the DMM, the matrix �̂ = E/ve is not positive definite. This
occurs when the number of subjects in each treatment group is less than the product of the
number of occasions times the number of variables. When this occurs, or if the M-sphericity
condition is not met, one may use Boik’s (1988, 1991) ε-adjusted MMM procedure to test
HC and HGC .
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Using (6.7.6) with the data organized as in (6.8.1), Boik’s (1991) revised estimator of ε
for these data is ε̂ = 0.66667 as calculated in program m6 8 1.sas using PROC IML. Mul-
tiplying T 2

o obtained under multivariate sphericity by ε̂, Boik (1991) shows that the value
of the test statistic and the degrees of freedom should be adjusted for testing HC and HGC

(for example, the T 2
o statistic for testing HGC given M-sphericity 13.7514, is multiplied by

ε̂). Boik’s new approximation to the T 2
o statistic results in a p-value for the test of HGC

of 0.667. The p-value for the test of HGC assuming incorrectly M-sphericity, is 0.4862
(Example 6.6.2). The p-value for the DMM is 0.3292. Using Boik’s (1988) adjustment,
ε̂∗ = 0.73051 for these data, the p-value for the test of HGC using T 2

o is 0.482, Timm
and Mieczkowski (1997, p. 278). From the simulation results reported by Boik (1991), it
appears that the poor performance of the new ε-adjusted MMM test is due to the fact that
� does not have Kronecker structure.

When analyzing designs with multivariate vector observations over occasions, one must
ensure that the data are MVN and that the covariance matrices are homogeneous across
treatment groups. Given these assumptions, the MMM is most powerful under multivariate
sphericity. When multivariate sphericity does not hold, neither the ε-adjusted MMM or
the DMM is uniformly most powerful. For small sample sizes and Kronecker structure of
�, Boik’s (1991) newly proposed ε-adjusted test of the MMM is preferred to the DMM.
However, if Kronecker structure can be established, it is better to incorporate the structure
into the model, Galecki (1994). Models with certain types of Kronecker structure may be
tested using PROC MIXED.

Two important situations in which a Kronecker structure may facilitate the analysis of
longitudinal data occur in DMM designs where one has a single within factor (C), and
vector observations at each level of factor C. This leads to a condition factor and a second
factor that is associated with the variable under study. This also occurs in split-split plot
designs where one obtains repeated observations over two within-subject, crossed factors.
In both situations, we often assume that the covariance matrix at any level of one within
factor is the same for every level of the other within factor. This leads to the analysis of
a mixed model in which the within-subject covariance may be considered with differing
profiles for each covariance matrix. Because the Kronecker product of covariance matrices
are only unique up to a scaler (A⊗ B = αA⊗ B/α for α > 0), PROC MIXED rescales
one covariance matrix so that a single diagonal element is set equal to one in the analyses
of mixed models with Kronecker structure.

b. Split-Plot Design (Example 6.8.2)

For an example of Kronecker structure, we consider a univariate split-split plot design. The
classical univariate mixed model is

yi jkm = µ+ αi + βk + γm + (αβ)ik + (αγ )im

+ (βγ )km + (αβγ )ikm + s(i) j (6.8.15)

+ (βs)(i) jk + (γ s)(i) jm + e(i) jkm

i = 1, 2, . . . , I ; j = 1, 2, . . . , J ; k = 1, 2, . . . , K ; and M = 1, 2, . . . , M where s(i) j ∼

IN
(
0, σ 2

s

)
, βs(i) jk ∼ IN

(
0, σ 2βs

)
, (γ s)(i) jm ∼ IN

(
0, σ 2

βs

)
, ε(i) jkm∼ IN

(
0, σ 2

e

)
, and all
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random components are jointly independent. For the within-subject structure, we have a
fixed effect factorial design, and the random subjects are nested within fixed treatment
levels. To fix our ideas, the data in Table 6.8.2 are used, Timm (1980, p. 61).

For the data in Table 6.8.2, I = 2, K = 3, M = 3 and J = 10 subjects are nested within
the two treatment levels. The necessary and sufficient conditions for exact univariate F tests
for this design is that the within subject covariance matrix is homogeneous across groups,
and that the three circularity conditions are satisfied

M′B�MB = λI

M′C�MC = λI (6.8.16)

M′BC�MBC = λI

where the matrices Mi are normalized contrast matrices such that M′i Mi = I, of reduced
order.

The assumptions given in (6.8.16) are somewhat restrictive. As an alternative, we analyze
the data in Table 6.8.2 assuming that the covariance matrix � has Kronecker structure,
� = �B ⊗ �C , over the within subject factors B and C . Program m6 8 2.sas is used for
the analysis.

The (3× 3) covariance matrix �B is the unknown covariance matrix for factor B and
the (3× 3) unknown covariance matrix for factor C is �C . For the data in Table 6.8.2,
we consider two models for �: (1) both �B and �C have unknown structure and (2) the
structure for �B is unknown, but �C has compound symmetry structure. This latter situ-
ation occurs frequently with DMM designs when the covariance structure for variables is
unknown and the covariance structure for occasions satisfies compound symmetry (CS).
Structure (1) and (2) above are represented in PROC MIXED as follows: TYPE=UN@UN
and TYPE=UN@CS.

To use PROC MIXED for designs with repeated measurements with Kronecker struc-
ture, there must be two distinct within factors. The CLASS variables for the example are:
treatment (treat), factor A (a), and factor B (b). The multivariate observations must be or-
ganized into a single vector for processing. The MODEL statement models the means for
the multivariate observations. When specifying the model statement, one usually includes
all combinations of variables defined in the CLASS statement.

We fit two models to the data, one covariance matrix with unknown Kronecker structure
and the other that includes a matrix with CS structure. Comparing the AIC information
criteria for the models, the model with unknown structure for �B and �C appears to fit
better. The AIC information criteria are −544.4 and −582.3, respectively. Because one
model is nested in the other, we may also calculate the likelihood ratio difference test
statistic, X2 = 1150.527 − 1066.800 = 83.73 on four degrees of freedom to compare the
models. Using α = 0.05, χ2 = 9.48 so that the model with CS structure is rejected. The
ANOVA table for the fixed effect tests are given in Table 6.8.3

Also provided in the output are ML estimates for �B and �C where �C has been stan-
dardized by setting one component to one. Contrasts for differences in treatments and in-
teractions, BC, are also provided in the program.
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TABLE 6.8.2. Factorial Structure Data

B1 B2 B3

C1 C2 C3 C1 C2 C3 C1 C2 C3

S1 20 21 21 32 42 37 32 32 32
S2 67 48 29 43 56 48 39 40 41
S3 37 31 25 27 28 30 31 33 34
S4 42 49 38 37 36 28 19 27 35

A1 S5 57 45 32 27 21 25 30 29 29
S6 39 39 38 46 54 43 31 29 28
S7 43 32 20 33 46 44 42 37 31
S8 35 34 34 39 43 39 35 39 42
S9 41 32 23 37 51 39 27 28 30
S10 39 32 24 30 35 31 26 29 32

S′1 47 36 24 31 36 29 21 24 27
S′2 53 43 32 40 48 47 46 50 54
S′3 38 35 33 38 42 45 48 48 49
S′4 60 51 61 54 67 60 53 52 50

A2 S′5 37 36 35 40 45 40 34 40 46
S′6 59 48 37 45 52 44 36 44 52
S′7 67 50 33 47 61 46 31 41 50
S′8 43 35 27 32 36 35 33 33 32
S′9 64 59 53 58 62 51 40 42 43
S′10 41 38 34 41 47 42 37 41 46

TABLE 6.8.3. ANOVA for Split-Split Plot Design �-Unknown Kronecker Structure

Source NDF DDF Type III F p-value

TREAT 1 16.6 9.52 0.0069
B 2 14.6 1.58 0.2402
C 2 18.0 34.91 0.0001
BC 4 14.1 43.55 0.0001
TREAT*B 2 14.6 0.09 0.9131
TREAT*C 2 18.0 0.23 0.7957
TREAT*B*C 4 14.1 0.84 0.5204
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TABLE 6.8.4. ANOVA for Split-Split Plot Design �-Compound Symmetry Structure

Source NDF DDF Type III F p-value

TREAT 1 18 9.49 0.0064
B 2 36 3.64 0.0364
C 2 36 12.19 < 0.0001
B*C 4 72 34.79 < 0.0001
TREAT*B 2 36 0.11 0.8986
TREAT*C 2 36 0.18 0.8385
TREAT*B*C 4 72 0.96 0.4349

Continuing with the example, the design is next analyzed using PROC MIXED and
PROC GLM assuming compound symmetry as defined in (6.8.16). The ANOVA table is
shown in Table 6.8.4. To ensure that the degrees of freedom for the F tests in PROC GLM
are identical to those generated by PROC MIXED, the option DDFM = CONTAIN is used
on the MODEL statement. The option DDFM = SATTERTH may also be used; however,
the F tests will no longer agree since this procedure uses the matrices of the random and
fixed effects to determine the degrees of freedom of the denominator and not just a “syn-
tactical” name as in the CONTAIN option.

Also included in program m6 8 2.sas is the SAS code for a multivariate analysis of
model (6.8.15) where the MR model Y = XB + E assumes an unknown structure for �.
The contrast matrices C and M for testing hypotheses of the form H : CBM = 0 are given
in the program. For example, to test interaction hypothesis B*C the matrices C and M

C = [1, 1] and M =



1 0 0 0
−1 1 0 0

0 −1 0 0
−1 0 1 0

1 −1 −1 1
0 1 0 −1
0 0 −1 0
0 0 1 −1
0 0 0 1


are used. As illustrated in Timm (1980), the univariate F-ratio’s may be obtained by aver-
aging appropriately normalized hypothesis and error sums of squares and products matri-
ces. That is, if the post matrix M for the test of interaction B*C is normalized such that
M′M = I, then univariate F test for interaction becomes

FBC = r (M) tr (H) /vBC

r (M) tr (E) /ve
= M SAB

M Se
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TABLE 6.8.5. MANOVA for Split-Split Plot Design �-Unknown Structure

Source NDF DDF Type III F p-value

PARL 8 11 0.3250 0.9392
B*C 4 15 12.8803 < 0.0001
C 2 17 17.6789 < 0.0001
B 2 17 4.0825 0.0356
TREAT 1 18 8.5443 0.0091

The MANOVA test results for the multivariate tests of parallelism (PARL), B*C, C, B and
TREAT using F-ratio’s are given in Table 6.8.5.

All three models indicate that the treatment effect interactions with B, with C, and with
B*C are nonsignificant. The test of PARL in Table 6.8.4 is testing these hypotheses simul-
taneously. The tests of C and B*C are also consistent for the three approaches. However,
the tests of treatment (TREAT) and of B differ for the three approaches. Recall that the
mixed model ANOVA procedure assumes a compound symmetry structure for �, the MR
model assumes no structure, and the mixed model ANOVA with � = �B ⊗ �C assumes
a Kronecker structure for �. The most appropriate analysis of these data depends on the
structure of � given multivariate normality and homogeneity of covariance structure across
treatments.

The likelihood ratio test given in (6.7.8) that � has Kronecker structure versus the al-
ternative that � has general structure is tested in program m6 8 2.sas. Since this test is
rejected, the most appropriate analysis for the data analysis is to employ a MR model.

Exercises 6.8

1. Lee (1970) gives data for two dependent variables (time on target in seconds and
the number of hits on target) and five trials to investigate bilateral transfer of rem-
iniscence of teaching performance under four treatment conditions: (1) distributed
practice on a linear circular-tracking task, (2) distributed practice on a nonlinear
hexagonal-tracking task, (3) massed practice on a linear circular-tracking task, and
(4) massed practice on a nonlinear hexagonal-tracking task. Subjects, randomly as-
signed to each group, performed on the given task under each condition with one
hand for ten traits and then transferred to the other hand for the same number of tri-
als after a prescribed interval. The two sets of measurement taken for the ten trials
were blocked into five blocks of two trials and averaged, yielding five repeated mea-
sures for each dependent variable. The data obtained for groups 1 and 2 are given
below.
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Group 1 Time on Target/Sec.
1 2 3 4 5

1 13.95 12.00 14.20 14.40 13.00
2 18.15 22.60 l9.30 18.25 20.45
3 19.65 21.60 19.70 19.55 21.00
4 30.80 21.35 21.25 21.25 20.90
5 17.80 20.05 20.35 19.80 18.30
6 17.35 20.85 20.95 20.30 20.70
7 16.15 16.70 19.25 16.50 18.55
8 19.10 18.35 22.95 22.70 22.65
9 12.05 15.40 14.75 13.45 11.60

10 8.55 9.00 9.10 10.50 9.55
11 7.35 5.85 6.20 7.05 9.15
12 17.85 17.95 19.05 18.40 16.85
13 14.50 17.70 16.00 17.40 17.10
14 22.30 22.30 21.90 21.65 21.45
15 19.70 19.5 19.85 18.00 17.80
16 13.25 17.40 18.75 18.40 18.80

Group 1 Hits on Target
1 2 3 4 5

1 31.50 37.50 36.50 35.50 34.00
2 22.50 12.00 17.50 19.00 16.50
3 18.50 18.00 21.50 18.50 14.50
4 20.50 18.50 17.00 16.50 16.50
5 29.00 21.00 19.00 23.00 21.00
6 22.00 15.50 18.00 18.00 22.50
7 36.00 29.50 22.00 26.00 25.50
8 18.00 9.50 10.50 10.56 14.50
9 28.00 30.50 37.50 31.50 28.00

10 36.00 37.00 36.00 36.00 33.00
11 33.50 32.00 33.00 32.50 36.50
12 23.00 26.00 20.00 21.50 30.00
13 31.00 31.50 33.00 26.00 29.50
14 16.00 14.00 16.00 19.50 18.00
15 32.00 25.50 24.00 30.00 26.50
16 23.50 24.00 22.00 20.50 21.50
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Group 2 Time on Target/Sec
1 2 3 4 5

1 11.30 13.25 11.90 11.30 9.40
2 6.70 6.50 4.95 4.00 6.65
3 13.70 18.70 16.10 16.20 17.55
4 14.90 15.95 15.40 15.60 15.45
5 10.90 12.10 12.10 13.15 13.35
6 7.55 11.40 12.15 13.00 11.75
7 12.40 14.30 15.80 15.70 15.85
8 12.85 14.45 15.00 14.80 13.35
9 7.50 10.10 12.40 12.40 14.95

10 8.85 9.15 10.70 10.05 9.50
11 12.95 12.25 12.00 12.05 11.35
12 3.35 6.70 6.60 6.70 6.60
13 7.75 8.25 10.40 9.20 10.40
14 14.25 16.20 15.25 17.60 16.25
15 11.40 14.85 17.20 17.15 16.05
16 11.60 13.75 13.25 12.80 10.90

Group 2 Hits on Target
1 2 3 4 5

1 49.00 46.50 44.00 45.50 50.00
2 32.50 42.50 46.00 43.00 47.00
3 47.00 49.50 50.50 45.50 48.50
4 42.50 46.50 46.50 44.00 41.50
5 24.00 44.00 43.00 44.50 41.00
6 42.50 42.50 53.50 46.00 54.50
7 48.00 46.00 44.50 42.00 45.00
8 39.00 42.50 47.50 37.50 34.50
9 36.00 43.00 30.00 29.50 39.50

10 40.00 34.50 35.50 35.00 38.00
11 44.50 56.00 53.50 52.50 56.00
12 41.50 36.00 44.50 45.00 43.50
13 33.50 51.50 49.00 43.00 47.00
14 50.50 51.50 51.00 47.50 46.50
15 54.50 54.00 52.00 49.00 49.50
16 43.00 52.50 45.50 47.00 43.00
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(a) Arrange the data matrix such that the first five columns represent the measure-
ments on the first validate and the last five columns the second dependent vari-
able, so that the observation matrix is a 32× 10 matrix. Letting

B =
[

β10 β11 β12 β13 β14 θ10 θ11 θ12 θ13 θ14
β20 β21 β22 β23 β24 θ20 θ21 θ22 θ23 θ24

]
so that p1 = p2 = q = 5 and p3 = 0, test the overall hypothesis of parallelism.

H0 :



β11
β12
β13
β14
−−
θ11
θ12
θ13
θ14





β21
β22
β23
β24
−−
θ21
θ22
θ23
θ24


or .

[
β1
θ1

]
=

[
β2
θ2

]

(b) Test for differences in the five repeated measurement occasions and for groups.

(c) Repeat (b) given parallelism.

(d) Analyze the data assuming a Kronecker structure of the type AR(1) over time.

2. SAS (1990a, example 9, p. 988) provides data for two responses, Y 1 and Y 2, mea-
sured three times for each subject (at pre, post, and follow-up). Each subject reviewed
one of three treatments: A, B, or the control C. The data follow.

Y 1 Y 2
Treat Subject PR PO FU PR PO FU

A 1 3 13 9 0 0 9
A 2 0 14 10 6 6 3
A 3 4 6 17 8 2 6
A 4 7 7 13 7 6 4
A 5 3 12 11 6 12 6
A 6 10 14 8 13 3 8
B 1 9 11 17 8 11 27
B 2 4 16 13 9 3 26
B 3 8 10 9 12 0 18
B 4 5 9 13 3 0 14
B 5 0 15 11 3 0 25
B 6 4 11 14 4 2 9
C 1 10 12 15 4 3 7
C 2 2 8 12 8 7 20
C 3 4 9 10 2 0 10
C 4 10 8 8 5 8 14
C 5 11 11 11 1 0 11
C 6 1 5 15 8 9 10
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(a) Analyze the data using a DMM, a MMM, an a ε-adjusted MMM.

(b) Analyze the data assuming a Kronecker structure over the within dimension.

3. Reanalyze Zullo’s data set assuming a Kronecker structure for the covariance matrix.

6.9 Multivariate Hierarchical Linear Models

The general univariate hierarchical linear model developed by Laird and Ware (1982) and
illustrated using PROC MIXED can be used to analyze univariate components of variance
models, random coefficient regression models, repeated measurements observations that
contain data MCAR and time varying covariates under numerous covariance structures.
In Section 6.5, we extended the univariate components of variance model to multivariate
balanced designs and showed how the model may be used to analyze complete multivariate
repeated measurements data when the covariance matrix has Type H structure. The DMM
in Section 6.7 provided for the analysis of balanced multivariate repeated measures with
arbitrary structure. However, the vector observations were not permitted to contain missing
vector outcomes or random time-varying covariates. To permit missing observations and
time-varying covariates, we can stack the observation vectors one upon another and analyze
the data using PROC MIXED. This approach is discussed by Goldstein (1995). Longford
(1993a) extends the model by adding measurement error to the model. His model may be
fit to growth data using a general SEM. Following Amemiya (1994), we extend the model
of Laird and Ware (1982) to the multivariate setting.

Following the univariate model, we introduce the multivariate random regression coeffi-
cient model. The model has the two stage structure

Yi = Zi Bi + Ei i = 1, 2, . . . , n

Bi = Qi B+ Ai
(6.9.1)

The matrix Yi of order ri × p is a matrix of p-variables observed over ri time points for
the i th subject. Hence, the outcomes in Yi are response vectors over an unequal number of
time points. Here the data are assumed to be only MAR. The matrix Zi of order ri × h is a
known within-subject design matrix with the r (Zi ) = h ≤ ri ≥ p. The matrix Bi (h × p)
is an unknown matrix of regression coefficients for the i th subject and the rows e′i of E
are distributed I Np (0, �e). In the second stage, the matrix Bi is being modeled as a
multivariate regression model where the rows a′i of Ai are mutually independent of e′i and
a′i ∼ I Np (0, �a). The matrix Bq×1 is an unknown matrix of regression parameters and
the matrix Qi (h × q) is known and fixed.

Combining the equations in (6.9.1) into a single model, we have that

Yi = (Zi Qi )B+ Zi Ai + Ei

Yi = Xi B+ Zi Ai + Ei
(6.9.2)

which is a multivariate generalization of (6.3.2). Letting N =∑
i ri , the multivariate hier-
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archical linear model may be written as
Y1
Y2
...

Yn

 =


X1
X2
...

Xn

 B +

Y
N ×q

= X
N ×q

B
q ×p

+


Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

0 0 · · · Zn




A1
A2
...

An

 +


E1
E2
...

En


Z

N ×hp
A

hp× p
+ E

N × p

(6.9.3)

a multivariate extension of the Laird and Ware (1982) model. The covariance structure for
the model is

cov
(
vec Y′

) = (
Z⊗ Ip

)
cov

(
vec A′

)+ IN ⊗�e (6.9.4)

= (
Z⊗ Ip

)
(Ih ⊗�a)

(
Z⊗ Ip

)′ + IN ⊗�e

= (
Z⊗ Ip

)
�

(
Z⊗ Ip

)′ + IN ⊗�e

= �

Letting � =⊕n
i=1 �i , the matrix � has block diagonal structure where

�i =
(
Zi ⊗ Ip

)
�

(
Zi ⊗ Ip

)′ + Iri ⊗�e (6.9.5)

and �hp× hp = Ih ⊗�a .
If the variance component matrices �i are known, one may obtain a generalized least

square estimator of the fixed effect matrix B as follows.

B̂ =
(

X′�−1X
)−1

X′�−1Y (6.9.6)

=
[

N∑
i=1

(
X′i�

−1
i X′

)]−1 N∑
i=1

X′i�
−1
i Yi

Because � is unknown, it must be estimated. Again, one may obtain ML and REML esti-
mates of covariance components as shown by Thum (1997) who develops a quasi-Newton
algorithm requiring only the first derivatives of the log-likelihood. Currently, no SAS pro-
cedure performs the necessary calculations.

Setting r1 = r2 = . . . = rn = r , it is easily shown that the multivariate variance
components model is a special case of model (6.9.3). A typical observation has the linear
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structure

yi j
p×1

= B′
p×q

xi j
q×h

+ A′i
p×h

zi j
h×1

+ ei j

cov
(
ei j

) = �

i = 1, 2, . . . , n, j = 1, 2, . . . , ri

cov
[
vec

(
A′i

)] = �

Because the ri are not equal, exact tests of B and variance components do not exist.

6.10 Tests of Means with Unequal Covariance Matrices

For all tests of means involving the MR model, the assumption of normality and equal
covariance matrices have been assumed. When this is not the case, adjustments to test
statistics have been proposed in Chapters 3 and 4. Because the DMM is a MR model,
the adjustments proposed in Chapter 4 are also applicable for this design. The problems
reported by Keselman et al. (1993) for repeated measurement designs also apply to multi-
variate repeated measurement designs.
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7
Discriminant and Classification Analysis

7.1 Introduction

Given two or more groups or populations and a set of associated variables one often wants
to locate a subset of the variables and associated functions of the subset that leads to maxi-
mum separation among the centroids of the groups. The exploratory multivariate procedure
of determining variables and a reduced set of functions called discriminants or discriminant
functions is called discriminant analysis. Discriminants that are linear functions of the vari-
ables are called linear discriminant functions (LDF). The number of functions required to
maintain maximum separation for a subset of the original variables is called the rank or
dimensionality of the separation. The goals of a discriminant analysis are to construct a set
of discriminants that may be used to describe or characterize group separation based upon
a reduced set of variables, to analyze the contribution of the original variables to the sep-
aration, and to evaluate the degree of separation. Fisher (1936) developed the technique to
create a linear discriminant function to establish maximum separation among three species
of iris flowers based upon four measurements. In personnel management one may want to
discriminate among groups of professionals based upon a skills inventory. In medicine one
may want to discriminate among persons who are at high risk or low risk for a specific
disease. In a community, the mayor may want to evaluate how far apart several interest
groups are on specific issues and to characterize the groups. In industry, one may want to
determine when processes are in-control and out-of-control.

A multivariate technique closely associated with discriminant analysis is classification
analysis. Classification analysis is concerned with the development of rules for allocating
or assigning observations to one or more groups. While one may intuitively expect a good
discriminant to also accurately predict group membership for an observation, this may not
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be the case. A classification rule usually requires more knowledge about the parametric
structure of the groups. The goal of classification analysis is to create rules for assigning
observations to groups that minimize the total probability of misclassification or the average
cost of misclassification. Because linear discriminant functions are often used to develop
classification rules, the goals of the two processes tend to overlap and some authors use
the term classification analysis instead of discriminant analysis. Because of the close asso-
ciation between the two procedures we treat them together in this chapter. A topic closely
associated with classification analysis is cluster analysis. The primary difference between
the two is that variables used to develop classification rules are applied to a known number
of groups. In cluster analysis variables are used to create associations (similarities) or dis-
tances (dissimilarities) to try to determine the unknown number of distinct groups. Cluster
analysis is discussed in Chapter 9.

In Section 3.9, a two group linear discriminant function was developed to obtain a con-
trast in the sample mean vectors that led to maximum separation of the sample group
means when comparing the significance of two normal population means µ1 and µ2 with
a common covariance matrix. We recommended calculating the correlation between the
discriminant function and each variable to assist in locating a “meaningful” mean differ-
ence, a variable-at-a-time, independent of the other variables in the model when one found
ψ = µ1 − µ2 to be significantly different from zero. The linear discriminant function
located the exact contrast, up to a constant of proportionality, that led to significance. Cor-
relations of variables with the linear discriminant function were used as a post-hoc data
analysis tool. We also suggested a simple linear classification rule that in general tends
to minimize the overall probability of misclassification under multivariate normality. In
testing H : µ1 = µ2, we did not try to evaluate how each variable contributed to sepa-
ration, reduce the number of variables to maintain maximum separation, or try to develop
a classification rule to minimize misclassification. These problems are considered in this
chapter.

In this chapter we discuss the topics of discrimination and classification for two or more
populations using continuous multivariate observations and multivariate normality is usu-
ally assumed. For a more comprehensive discussion, books by Lachenbruch (1975), Hand
(1981), McLachlan (1992), and Huberty (1994) may be consulted.

7.2 Two Group Discrimination and Classification

For a two group discriminant analysis, we assume that we have two independent samples
from two multivariate normal populations with common covariance matrix � and unknown
means µ1 and µ2. Thus, yi j ∼ I Np

(
µi , �

)
where i = 1, 2; j = 1, 2, . . . , ni and each

observation yi j is a p × 1 vector of random variables. Fisher’s two group linear discrimi-
nant function L is the linear combination of the variables that provides for the maximum
separation between the groups

L = a′y =
p∑

j=1
a j y j (7.2.1)
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From (3.9.10), a vector a ≡ as that provides maximum separation between the discriminant
scores Li j = a′syi j for the two group situation is the vector

as = S−1 (y1 − y2
)

(7.2.2)

where yi is the sample mean for the observations in group i (i = 1, 2) and S is the unbi-
ased estimate of �. Evaluating the discriminant scores at the group mean vectors yi , the
difference in the mean discriminant scores is exactly Mahalanobis’ D2 statistic

D2 = L1 − L2 = a′sy1 − a′sy2 (7.2.3)

= a′s
(
y1 − y2

)
= (

y1 − y2
)′ S−1 (y1 − y2

)
Hence, if T 2 = (n1n2/n1 + n2) D2 is significant then we have good separation of the
sample group centroids for the two populations. It is also easily established that the square
of the univariate student t2 statistic using the mean discriminant scores for two groups with
a ≡ as is equal to T 2 since

t2 =
(
L1 − L2

)2

s2
L

(
1

n1
+ 1

n2

) = (
n1n2

n1 + n2

) (
y1 − y2

)′ S−1 (y1 − y2
) = T 2 (7.2.4)

where s2
L is the sample estimate of the common population variance for discriminant scores.

Thus, a simple t test on the discriminant scores is equivalent to calculating Hotelling’s T 2

statistic for testing for the difference in the mean vectors for two groups.

a. Fisher’s Linear Discriminant Function

Letting the discriminant scores Li j ≡ y represent the dependent variable and the dummy
independent variables x1 = −1 and x2 = 1 for the two groups, we may fit a regression
equation y = α + βx+e to the discriminant scores. Testing H : β = 0 in the regression
problem is equivalent to testing ρ = 0 using the t2 statistic

t2 = (n − 2) r2

1− r2
(7.2.5)

Equating t2 in (7.2.5) with t2 in (7.2.4), observe that

n1n2 D2

n1 + n2
= (n − 2) r2

1− r2

D2 = (n1 − n2) (n − 2) r2

(n1n2)
(
1− r2

) (7.2.6)

r2 = n1n2 D2

(n1 + n2) (n − 2)+ n1n2 D2
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where n = n1 + n2. Performing the “pseudoregression” on the “dummy” variables

c1 = n2

n1 + n2
and c2 = c1 − 1 = − n1

n1 + n2
(7.2.7)

for groups 1 and 2, respectively (Fisher’s codes with mean zero), one may regress the orig-
inal variables on the dummy variables. Then r2 in (7.2.6) is replaced by R2

p, the squared
multiple correlation or coefficient of determination found by regressing the independent
variable ci on the dependent variables y1, y2, . . . , yp, Fisher (1936). Letting b′ = [b1, b2,

. . . , bp] be the vector of estimated regression coefficients (ignoring the intercept), the vec-
tor b is seen to be proportional to as

b =
[

n1n2

(n1 + n2) (n1 + n2 − 2)+ n1n2 D2
p

]
as

as =
[
(n1 + n2) (n1 + n2 − 2)

n1n2
+ D2

p

]
b

(7.2.8)

and R2
p =

(
y1 − y2

)′ b, Siotani, Hayakawa and Fujikoshi (1985, Section 9.4). Thus, one

may obtain b and R2 from a and D2
p. Or, by (7.2.6) and (7.2.8), one may find a and D2

p
using the dummy variables in (7.2.7) as the dependent variable in a multiple regression
analysis.

b. Testing Discriminant Function Coefficients

The LDF L = a′sy is an estimate of a population LDF L = α′y where α = �−1 (µ1 − µ2).
Having found a sample LDF that leads to significant separation between two groups, one
may be interested in reducing the number of variables and yet maintain significant discrim-
ination. The strategy differs from the two group MANOVA design where one retains all
variables and investigates contrasts for significance.

To test that some subset of the variables in y do not contribute to maximum separation,
the population LDF is partitioned as α′y = α′1y1+α′2y2 where y1 is a (q × 1) subvector of
the (p × 1) vector y. To test that the variables yq+1, . . . , yp do not contribute to separation,
H : α2 = 0 is tested. For this test, Rao (1970) developed the F statistic

F = ve − p + 1

p − q

(
n1n2

n1+n2

) (
D2

p − D2
q

)
ve +

(
n1n2

n1+n2

)
D2

q

(7.2.9)

= ve − p + 1

p − q

(
T 2

p − T 2
q

ve + T 2
q

)

= ve − p + 1

p − q

(
R2

p − R2
q

1− R2
p

)
∼ F(p−q, ve−p+1)
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where the subscripts p and q on D2, T 2, and R2 represent the number of variables in the
LDF. A proof of this result is given in Siotani et al. (1985, p. 404).

From the regression approach, equation (7.2.9) is used to examine the extent to which the
prediction of the dummy dependent variable c can be improved by including more variables
in the model. 1 − R2

q is the amount of variability in c not accounted for by y1, y2, . . . , yq ,

and 1 − R2
p is a measure of the variability not accounted for by y1, y2, . . . , yp. Thus, the

difference (
1− R2

q

)
−

(
1− R2

p

)
= R2

p − R2
q

is a measure of the reduction in the variability due to the other variables. Or for q = p − 1
variables, the difference in the squared multiple correlation coefficients is an estimate of
the squared population part (also called semipartial) correlation coefficient for variable p
given the p − 1 variable with the dependent variable c.

Recall that the proportional reduction of the variation in c remaining after all other vari-
ables y1, y2, . . . , yq have been used (accounted for by yq+1, . . . , yp) is given by

R2
c(q+1,..., p)·(1, 2,...,q) =

R2
p − R2

q

1− R2
q

(7.2.10)

and is called the squared partial multiple correlation or the coefficient of partial multiple
determination of c with yq+1, . . . , yp removing the influence of y1, y2, . . . , yq . Relating
(7.2.10) to (7.2.9), we have that

F = R2
c(q+1,... ,p)·(1, 2,... ,q) / (p − q)

1− R2
c(q+1,... ,p)·(1,... ,q) / (ve−p−1)

(7.2.11)

as another representation of the F statistic involving the squared partial multiple correlation
coefficient.

When q = p − 1 in (7.2.9), we are testing H : α p = 0, the significance of the pth

variable given that the other variables are included in the LDF. Again using the regression
approach, this is the partial F test. From (4.2.51), it is seen to be related to the test of
additional information using the � criterion. Or, using (7.2.10), the partial F statistic is
seen to be related to the square of the partial correlation coefficient

r2
cp·(1, 2,... ,p−1) =

(
R2

p − R2
p−1

)
/
(

1− R2
p−1

)
(7.2.12)

Thus, the test of the significance of a single variable is related to a partial correlation and
not the simple correlation of each variable with the LDF which ignores the other variables
in the model, Rencher (1988). The numerator of the ratio is (7.2.12) is the sample estimate
of the squared population part (semi-partial) correlation coefficient for variable p which is
written as r2

c(p.1,2,...,p−1).

When one deletes variables from the LDF, one must re-calculate the LDF with the vari-
ables excluded and the significance of T 2 based on the remaining variables for the two
sample case as discussed in Section 3.9. This test is testing the hypothesis H : αq = 0,
having removed variables yq+1, . . . , yp.
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Given the relation of the two group LDF to the regression model, one may again use
forward, backward and stepwise regression procedures to develop a MANOVA model with
some subset of variables y1, y2, . . . , yp using partial F statistics. In general, stepwise pro-
cedures are not recommended since the tests are not independent and usually result in too
many variables being selected, Rencher and Larson (1980).

Because a LDF is not unique, one may not test that two LDFs are equal. However, one
may want to evaluate whether a LDF for a replicated study is proportional to a standard. A
test of H : L DF1 ∝ L DF0 was developed by Siotani et al. (1985, p. 402). Associating T 2

q
(7.2.9) with the standard so that q = 1, the test statistic is

F = ve − p + 1

p − 1

(
T 2

p − T 2
1

ve + T 2
1

)
∼ F(p−1, ve−p+1) (7.2.13)

where T 2
p is Hotelling’s T 2 statistic based on the new set of variables and T 2

1 is the statistic
based on the standard.

c. Classification Rules

To develop a classification rule for classifying an observation y into one or the other pop-
ulation in the two group case requires some new notation. First, we let f1 (y) and f2 (y)
represent the probability density functions (pdfs) associated with the random vector Y for
populations π1 and π2, respectively. We let p1 and p2 be the prior probabilities that y is a
member of π1 and π2, respectively, where p1 + p2 = 1. And, we let c1 = C (2 | 1) and
c2 = C (1 | 2) represent the misclassification cost of assigning an observation from π2 to
π1, and from π1 to π2, respectively. Then, assuming the pdfs f1 (y) and f2 (y) are known,
the total probability of misclassification (T P M) is equal to p1 times the probability of
assigning an observation to π2 given that it is from π1, P (2 | 1), plus p2 times the proba-
bility that an observation is classified into π1 given that it is from π2, P (1 | 2). Hence,

T P M = p1 P (2 | 1)+ p2 P (1 | 2) (7.2.14)

The optimal error rate (O E R) is the error rate that minimizes the T P M . Taking costs into
account, the average or expected cost of misclassification is defined as

EC M = p1 P (2 | 1)C (2 | 1)+ p2 P (1 | 2)C (1 | 2) (7.2.15)

A reasonable classification rule is to make the EC M as small as possible. In practice costs
of misclassification are usually unknown.

To assign an observation y to π1 or π2, Fisher (1936) employed his LDF. To apply the
rule, he assumed that �1 = �2 = � and because he did not assume any pdf, Fisher’s rule
does not require normality. He also assumed that p1 = p2 and that C (1 | 2) = C (2 | 1).
Using (7.2.3), we see that D2 > 0 so that L1 − L2 > 0 and L1 > L2. Hence, if

L = a′sy = (
y1 − y2

)′ S−1y >
L1 + L2

2
(7.2.16)
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we would assign the observation to π1. However,

L1 + L2

2
= 1

2

(
y1 − y2

)′ S−1 (y1 + y2
)

(7.2.17)

and letting

Ŵ = L −
(
L1 + L2

)
2

= (
y1 + y2

)′ S−1
[

y− 1

2

(
y1 + y2

)]
(7.2.18)

Fisher’s classification rule becomes

Assign y to π1 if Ŵ > 0

Assign y to π2 if Ŵ < 0
(7.2.19)

the rule given in Section 3.9.
Welch (1939) showed that the optimal classification rule for two groups which minimizes

the T P M is to allocate y to π1 if

p1 f1 (y) > p2 f2 (y) (7.2.20)

and to assign y to π2, otherwise. It is interesting to note that (7.2.20) is equivalent to
assigning an observation to the population with the largest posterior probability P (π i | y).
By Bayes’ Theorem, the posterior probabilities are

P (π i | y) = P (π i ) P (y | π i )∑
i P (π1) P (y | π i )

= pi fi (y)∑
i pi fi (y)

Because the denominators of P (π i | y) are identical for i = 1, 2, one may classify obser-
vations using (7.2.20) by equivalently calculating the posterior probabilities.

Assuming π1 is Np (µ1, �) and π2 is Np (µ2, �), the classification rule using (7.2.20)
becomes

W = (µ1 − µ2)
′�−1

[
y− 1

2
(µ1 + µ2)

]
> log

(
p2

p1

)
(7.2.21)

Since µ1,µ2 and � are usually unknown they must be estimated. Substituting sample
estimates for the population parameters, the rule becomes

Assign y to π1 if Ŵ > log

(
p2

p1

)
Assign y to π2 if Ŵ < log

(
p2

p1

) (7.2.22)

This rule is also called Anderson’s classification rule, Anderson (1951) and Wald (1944).
The distribution of Ŵ is unknown so that an optimal rule using Ŵ has not been developed,
Anderson (1984, p. 210).
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Welch’s optimal rule requires known population parameters. Using Ŵ , we have substi-
tuted sample estimates; hence, Anderson’s classification rule and Fisher’s rule assuming
p1 = p2 are not optimal, but only asymptotically optimal. The rule minimizes the T P M
as the sample sizes become large.

To take costs into account, the rule that minimizes the EC M is to assign y to π1 if

C (2 | 1) p1 f1 (y) > C (1 | 2) p2 f2 (y) (7.2.23)

and to π2, otherwise. For two normal populations, the rule becomes

Assign y to π1 if Ŵ > log

[
C (1 | 2)
C (2 | 1)

](
p2

p1

)
(7.2.24)

Assign y to π2 if Ŵ < log

[
C (1 | 2)
C (2 | 1)

](
p2

p1

)
Anderson (1984, p. 202). Again, if the ratios of the costs and prior probabilities are both
one, then rule (7.2.24) reduces to Fisher’s classification rule. In summary, Fisher’s rule
has some optimal properties if �1 = �2, p1 = p2 and c1 = c2 provided samples are
obtained from normal populations. When this is not the case, Fisher’s rule is to be avoided,
Krzanowski (1977).

When �1 �= �2, and samples are from normal populations, a quadratic rule that mini-
mizes the EC M is to allocate y to π1 if

Q̂ = 1

2
log

( |S2|
|S1|

)
− 1

2

(
y′1S−1

1 y1 − y′2S−1
2 y2

)
+

(
y′1S−1

1 − y′2S−1
2

)
y−1

2
y′

(
S−1

1 − S−1
2

)
y (7.2.25)

> log

[
C (1 | 2)
C (2 | 1)

(
p2

p1

)]
and to π2, otherwise, Anderson (1984, p. 234). When �1 �= �2, one should not use Fisher’s
LDF.

Classification rules that make assumptions regarding the pdfs f1 (y) and f2 (y), such as
normality, are called parametric procedures. While Fisher’s LDF is nonparametric, it is only
asymptotically optimal under normality and requires the covariance matrices to be equal.
When this is not the case, a quadratic rule is used under normality. Hence, the quadratic
rule is also a parametric procedure.

Welch’s optimal rule that minimizes the T P M does not require one to specify the pdfs;
thus, if one could estimate the empirical form of the density using the data, the optimal rule
would be to allocate y to the population π i (i = 1, 2) when

ci pi f̂i (y) is a maximum (7.2.26)

General procedures used to estimate density functions empirically are called kernel den-
sity estimation methods. A review of kernel density estimation may be found in Silverman
(1986) and Scott (1992). A study of linear, quadratic, and kernel classification proce-
dures was conducted by Remme, Habbema, and Hermans (1980) for the two group case.
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TABLE 7.2.1. Classification/Confusion Table

Actual
Population

Predicted π1 Population π2 Sample Size

π1 n1C n1E n1
π2 n2E n2C n2

They showed that linear and quadratic rules are superior to kernel classification methods
when parametric assumptions hold. When the parametric assumptions are violated, kernel
density estimation procedures were preferred. One may always use linear, quadratic, and
kernel density estimation methods and compare the confusion matrix in Table 7.2.1 when
evaluating classification rules.

Another classification method that is a nonparametric data driven procedure is the k-
nearest-neighbor classification rule first proposed by Fix and Hodges (1951). Their proce-
dure calculates k Mahalanobis’ distances in the neighborhood of an observation y. Evaluat-
ing the k distances, k1 points may be associated with observations in π1 and k2 points will
be associated with observation in π2 where k1+k2 = k. Taking costs and sample sizes into
account, an observation y is allocated to π1 if

k1/n1

k2/n2
>

[
C (1 | 2)
C (2 | 1)

](
p2

p1

)
(7.2.27)

and to π2, otherwise. One usually tries several values of k and evaluates its effectiveness
to classify observations using Table 7.2.1.

d. Evaluating Classification Rules

Given a classification rule, one wants to evaluate how well the rule performs in assigning
an observation to the correct population. Given that f1 (y) and f2 (y) are known (along
with their associated population parameters), the TPM expression given in (7.2.14) may
be evaluated to obtain the actual error rate (AER). Because the specification of f1 (y) and
f2 (y) is seldom known one generally cannot obtain the AER, but must be satisfied with
an estimate. The simplest nonparametric method is to apply the classification rule to the
sample and to generate a classification or confusion table as shown in Table 7.2.1. This is
called the substitution or resubstitution method.
Then, the observed error rate or apparent error rate (APER) is defined as the ratio of the
total number of misclassified observations to the total

APER = n1E + n2E

n1 + n2
(7.2.28)

The apparent correct error rate is 1 – APER. The APER is an estimate of the probability
that a classification rule based on a given sample will misclassify a future observation.
Unfortunately because the same data are being used to both construct and evaluate the
classification rule, the APER tends to underestimate the AER.
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To eliminate the bias in the APER, one may split the sample into two parts. The “train-
ing” sample and the “validation” sample. Then, the classification rule is created using the
training sample and the apparent error rate is determined using the validation sample. This
is sometimes called the holdout, resubstitution method. The primary disadvantages of this
procedure are that (1) it requires a large sample, and (2) since the classification rule is based
upon a subset of the sample, it may be a poor estimate of the population classification func-
tion, depending on the split.

An alternative nonparametric approach that seems to work better than the holdout method
is Lachenbruch’s leave-one-out, cross-validation method developed in his doctoral disserta-
tion and discussed by Lachenbruch and Mickey (1968). It is a one-at-a-time, crossvalidation
procedure that goes as follows.

1. Starting with π1, omit one observation from the sample and develop a classification
rule based upon the n1 − 1 and n2 sample observations.

2. Classify the holdout observation using the rule estimated in step 1.

3. Continue this process until all observations are classified and let n(HC)
1E denote the

number of misclassified observations in population π1.

4. Repeat steps 1 to 3 with population π2 and count the misclassify observation from
π2, n(HC)

2E .

Then, the estimated apparent error rate ÂPAR is defined as

ÂPAR = n(HC)
1E + n(HC)

2E

n1 + n2
(7.2.29)

and is nearly an unbiased estimator of the expected average error rate in that E (̂APAR) =
E (AER) = E (TPM). An estimate of the actual error rate based on all possible samples, of-
ten called the true error rate. The quantities p̂ (2 | 1) = n(HC)

1E /n1 and ρ̂ (2/1) = n(HC)
2E /n2

are estimates of the misclassification probabilities.
The nonparametric one-at-a-time, crossvalidation method is a jackknife-like method pro-

posed to reduce the bias in the AER using the naive substitution method, McLachlan (1992,
p. 345). Efron and Gong (1983) develop a jackknife estimator and compared it to the leave-
one out crossvalidation method and bootstrap estimators. For the two-group discrimina-
tion problem, Davison and Hall (1992) show that the AERs for the one-at-a-time hold-
out and bootstrap resampling procedures are essentially the same. Gnaneshanandam and
Krzanowski (1990) compare several estimates of the AER and conclude that the one-at-a-
time, holdout, crossvalidation method performs as well as resampling procedures, although
they are at times more variable. The method is always superior to the substitution method
for both normal and nonnormal populations.

While one may use many strategies to construct classification rules two group classifica-
tion problems, one should always develop a confusion/classification table, Table 7.2.1, to
aid in the selection. There is no optional rule. Whatever procedure is selected, one must
remember that all procedures are sensitive to outliers in the data.
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7.3 Two Group Discriminant Analysis Example

Three procedures are available in SAS for discriminant analysis: CANDISC, DISCRIM
and STEPDISC. Assuming multivariate normality and common covariance matrices, the
procedures CANDISC and STEPDISC are used to obtain a discriminant function based on
all variables or a subset of variables that maximizes separation between centroid means.
The procedure DISCRIM calculates discriminant functions employing various criteria in
order to classify observations into groups under both normality with equal covariance ma-
trices, normality with unequal covariance matrices, and various nonparametric methods.
The METHOD = option on the procedure statement determines the classification rule (cri-
terion). To evaluate the performance of the method selected one must select CROSSVAL-
IDATE to obtain the estimated ÂPAR rates. The default method in SAS for estimating the
estimated apparent error rate is to use the naive resubstitution method.

a. Egyptian Skull Data (Example 7.3.1)

For this discriminant analysis example, four measurements on male Egyptian skulls from
five different periods categorized into two periods B.C. and A.D. are used to evaluate sep-
aration and classification of skull formation. The data were obtained from the DASL Web
site, http://lib.stat.com/ Datafiles/EgyptianSkulls. The data are included in Thomson and
Randall-Maciver (1905) and may be found in the file skulls.dat. The data consists of 150
cases with four skull measurements

MB − Maximum Breadth
BH − Basibregmatic Height
BL − Basialveslour Length
NH − Nasal Height

The approximate year of skull formation is also included. Negative years represent the
B.C. period and positive years represent the A.D. period. Year was used to assign the ob-
servations to two groups: 1 = B.C. and 2 = A.D.. Program m7 3 1.sas includes the SAS
code for the analysis.

As discussed in Example 3.9.1, PROC GLM is used to test H : µ1 = µ2 using the
MANOVA statement. The test of equality is rejected with p-value 0.0003. Thus, µ1 �= µ2.
Solving |H− λE| = 0 using the /CANONICAL option, Table 7.3.1 contains the discrimi-
nant structure vectors for the skull data.

The correlation structure and magnitude of the standardized coefficients in Table 7.3.1
indicate that the difference in centroids for the two groups is primarily due to the variables
MB, BH, and BL.

The canonical variate output for PROC CANDISC is very similar to that produced by
PROC GLM; however, because DISTANCE is included on the procedure statement, it cal-
culates the Mahalanobis distance between mean centroids. Given �1 = �2 = �, the
squared distance is

D2 = (
y1 − y2

)′
�−1 (y1 − y2

) = 0.97911
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TABLE 7.3.1. Discriminant Structure Vectors, H : µ1 = µ2

Within Standardized Raw
Structure ρ Vector awsa Vector aws

MB −0.5795 −0.4972 −0.10165601
BH 0.5790 0.4899 0.09917666
BL 0.7210 0.5917 0.11001651
NH −0.1705 −0.1738 −0.05416834

as given in formula (7.2.3). The canonical correlation, ρ̂c, is obtained using the relation

ρ̂c =
[̂
λ1/

(
1+ λ̂1

)]1/2 =
(

0.1587

1+ 0.1587

)1/2

= 0.370161

where λ̂1 is the root of | H− λE |= 0, ρ̂2
c = 0.137019. Since ρ̂2

c = θ̂1 where θ̂1 is the root
of | H− θ (H+ E) |= 0, ρ̂2

c is the proportion of the total sum of squares for the discrimi-
nant scores that is due to the differences between groups. Or, it is the amount of variation
between groups that is explained by the discriminating variables. For the two group case,
ρ̂2

c is identical to R2
p for the multiple regression of a dichotomous group-membership vari-

able, ci on the p predictors. More will be said about canonical correlations in Chapter 8.
For now, observe that

� = (
1+ λ̂1

)−1 = (
1+ θ̂1

) = 1+ ρ̂2
c

so that testing H : µ1 = µ2 is identical to testing H : ρc = 0. If µ1 �= µ2, then ρc �= 0
so that the canonical correlation ρc corresponding to the canonical discriminant function is
significantly different from zero.

Using the OUT = option on the CANDISC statement, the discriminant scores for the ex-
ample are stored in the SAS data set defined by OUT =. To plot the scores, PROC CHART
is used. This generates a histogram of the scores for each group, providing a visual graph
of separation. PROC TTEST is included to test that the means of the two groups using
discriminant scores are equal. For our example, the test statistic squared is

t2 = (4.8475)2 = 23.499 = T 2 = n1n2 D2/ (n1 + n2)

where n1 = 120, n2 = 30, and D2 = 0.97911. This verifies formula (7.2.4).
To test whether or not a variable in the discriminant function significantly contributes to

separation, given the other variables are included in the function, the procedure STEPDISC
is used with METHOD = BACKWARD. Setting q = p−1, we are testing that α p = 0. The
F statistic for removal for the variable NH is F = 0.568 with p-value 0.4521 so that NH
does not appear to be contributing to the separation of the centroids and may be considered
for exclusion from the discriminant function. If excluded, the squared distance between
group centroids is marginally reduced from 0.97911 to 0.95120.

To invoke Fisher’s discriminant function for classification of observations into the two
groups, PROC DISCRIM is used with all four variables. The option METHOD = NOR-
MAL generates Fisher’s classification rule using (7.2.19) with p1 = p2 = 0.5 and equal
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TABLE 7.3.2. Discriminant Functions

Variable Group 1 Group 2
CONSTANT −928.878 −921.869
MB 5.999 6.100
BH 4.803 4.705
BL 3.191 3.082
NH 2.121 2.173

TABLE 7.3.3. Skull Data Classification/Confusion Table

Actual Predicted Sample
Population 1 2 Size
1 85 35 120
2 14 16 30

costs of misclassification, C (1 | 2) = C (2 | 1). If �1 �= �2, a quadratic rule is formulated
as defined in (7.2.25). To test H : �1 = �2, the likelihood ratio test is performed using
Box’s M test given in (3.8.5). To perform the test, the option POOL = TEST is required
and pooling occurs only if the test is not significant at the level 0.1. Because this test is not
robust to nonnormality, it may reject the hypothesis of equal covariance matrices because
of nonnormal data, however, Fisher’s rule does not require normality. For nonnormal data
and �1 = �2, the option POOL = YES may be used. For the skull data, the p-value for
the chi-square test is 0.4024 so that a pooled covariance matrix is used to construct the
criterion Ŵ in (7.2.22). The program calculates Ŵ1 and Ŵ2 for each group as

constant = −1

2
x′j S−1x j

coefficient vector = S−1x j

so that Ŵ is obtained by subtraction. The individual discriminant function coefficients are
given in Table 7.3.2.

To evaluate Fisher’s rule for the skull data, we employ the CROSSVALIDATE-option.
Included in SAS is the Classification/Confusion Table 7.2.1 where ÂPAR is estimated using
a smoothed modification of (7.2.29). Table 7.3.3 is the Classification/Confusion table for
the skull data.

Using Table 7.3.3, the estimated error rate is ÂPAR = (14+ 15) /150 = 0.3267.
The SAS procedure reports a smoothed error rate estimate resulting in an estimator with
smaller variance, Glick (1978). The smoothed estimate is 37.92%. For three variables,
the smoothed error rate is 34.58%. To identify the misclassified observations, the option
CROSSLISTERR is used. Since one may expect on average 1/3 of the skulls to be misclas-
sified, Fisher’s LDF rule does not appear to adequately succeed in classifying the skulls
into the two groups. The example illustrates that significant separation does not ensure
good classification.
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b. Brain Size (Example 7.3.2)

In this example we are interested in the development of a discriminant function to distin-
guish between males and females using brain size data and other variables. The analysis is
based upon data from Willerman et al. (1991) collected on 20 male and 20 female right-
handed Anglo psychology students at a large southwestern university. The sample of 40
students are from a larger population of students with SAT scores larger than 1350 or lower
than 940. The subjects took four subtests of the Wechster Adult Intelligence Scale-Revised
test. The scores recorded were Full Scale IQ (FSIQ), Verbal IQ (VIQ) and Performance
IQ (PIQ). The researchers also obtained 19 Magnetic Resonance Imaging (MRI) scans and
recorded the total pixel count of the scans. The data stored in the file brainsize.dat was
obtained from the DASL (http://lib.stat.cmu.edu/DASL/Datafiles/Brainsize) and are given
in Table 7.3.4. The researchers withheld the weights of two students and the height of one
subject for reasons of confidentiality.

Program m7 3 2.sas contains the SAS code to develop both a linear and quadratic dis-
criminant function for these data. Following the steps of the previous example, we per-
form a MANOVA analysis on the data using PROC GLM and PROC CANDISC. Rejecting
H : µ1 = µ2, the squared Mahalanobis distance between the means is D2 = 7.15884. The
discriminant function structure is given in Table 7.3.5.

Because the square of the canonical correlation ρ̂2
c = 0.653248, about 65.3% of the

variation between groups is explained by the discriminant function. In Example 7.3.1, the
value was only 13.77%. However, the variable PIQ does not appear to contribute to the sep-
aration in the mean centroids. This is confirmed using PROC STEPDISC with METHOD
= BACKWARD; the procedure recommends dropping the variable PIQ.

For these data, �1 = �2 so that we may construct Fisher’s linear classification rule.
However, we also illustrate the construction of a quadratic rule. For the quadratic function,
METHOD = NORMAL and POOL = NO. The smoothed value of ÂPAR for the linear rule
is 12.5% while the quadratic rule yields ÂPAR = 20.07%. Thus, if �1 = �2, the linear
rule yields less errors and has greater efficiency than the quadratic rule. Also observe how
the resubstitution method under estimates the error rate. Its value is 5%.

Having obtained a reasonable discriminant rule for a set of data, one may use Ŵ to
classify future observations into groups.

Exercises 7.3

1. Examples 7.3.1 and 7.3.2 were each demonstrated using the option CROSSVALI-
DATE. One may also assign observations using posterior probabilities, option POST-
ERR. Run both examples using this option and discuss the results.

2. Investigate Examples 7.3.1 and 7.3.2 using a nonparametric discriminant method
available in PROC DISCRIM.
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TABLE 7.3.4. Willeran et al. (1991) Brain Size Data

Gender FSIQ VIQ PIQ Weight Height MRI
Male 140 150 124 166* 72.5 100121
Male 139 123 150 143 73.3 1038437
Male 133 129 128 172 68.8 965353
Male 89 93 84 134 66.3 904858
Male 133 114 147 172 68.8 955466
Male 141 150 128 151 70.0 1079549
Male 135 129 124 155 69.1 924059
Male 100 96 102 178 73.5 945088
Male 80 77 86 180 70.0 889083
Male 83 83 86 166* 71.4* 892420
Male 97 107 84 186 76.5 905940
Male 139 145 128 132 68.0 955003
Male 141 145 131 171 72.0 935494
Male 103 96 110 187 77.0 1062462
Male 144 145 137 191 67.0 949589
Male 103 96 110 192 75.5 997925
Male 90 96 86 181 69.0 679987
Male 140 150 124 144 70.5 949395
Male 81 90 74 148 74.0 930016
Male 89 91 89 179 75.5 935863

Female 133 132 124 118 64.5 816932
Female 137 132 134 147 65.0 951545
Female 99 90 110 146 69.0 928799
Female 138 136 131 138 64.5 991305
Female 92 90 98 175 66.0 854258
Female 132 129 124 118 64.5 833868
Female 140 120 147 155 70.5 856472
Female 96 100 90 146 66.0 878897
Female 83 71 96 135 68.0 865363
Female 132 132 120 127 68.5 852244
Female 101 112 84 136 66.3 808020
Female 135 129 134 122 62.0 790619
Female 91 86 102 114 63.0 831772
Female 85 90 84 140 68.0 798612
Female 77 83 72 106 63.0 793549
Female 130 126 124 159 66.5 866662
Female 133 126 132 127 62.5 857782
Female 83 90 81 143 66.5 834344
Female 133 129 128 153 66.5 948066
Female 88 86 94 139 64.5 893983
*Estimated Value
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TABLE 7.3.5. Discriminant Structure Vectors, H : µ1 = µ2

Within Standardized Raw
Structure ρ Vector awsa Vector aws

FSIQ 0.0476 −1.8430 −0.07652898
VIQ 0.0913 1.6274 0.06891079
PIQ 0.0189 0.3593 0.01598925
Weight 0.6067 0.4676 0.02023707
Height 0.7618 0.8036 0.20244671
MRI 0.6164 0.5935 0.00000821

7.4 Multiple Group Discrimination and Classification

To develop linear discriminant functions in the multiple group case, we again assume that
we have samples of random p-vectors from normal populations with common covariance
matrices �. That yi j ∼ I Np

(
µi , �

)
i = 1, 2, . . . , k and j = 1, 2, . . . , ni where n =∑k

i=1 ni . These assumptions are identical to the one-way MANOVA design discussed in
Section 4.4.

a. Fisher’s Linear Discriminant Function

To generalize Fisher’s procedure to k groups, we seek to construct linear combinations of
the variables L = a′y called discriminants or LDFs that maximize the separation of the k
population mean vectors using the sample such that the ratio of between group variation is
maximum relative to the within group variation. Letting

E =
k∑

i=1

ni∑
j=1

(
yi j − yi.

) (
yi j − yi.

)′ (7.4.1)

H =
k∑

i=1
ni

(
yi. − y..

) (
yi. − y..

)′
represent the between-hypothesis and within-error matrices, we have from Theorems 2.6.10
and 2.6.8 that the solution to the eigenequation |H−λE| = 0 yield eigenvalues λ̂m and
associated vectors am for m = 1, 2, . . . , s = min (k − 1, p) that maximizes the ratios,
a′mHam/a′mEam . By Theorem 2.6.8, a′mEam = 0 for am �= am′ so that vectors are orthog-
onal in the metric of E and uncorrelated. The s uncorrelated functions Lm = a′my are called
the linear discriminant functions and have been constructed to provide maximum separa-
tion in the means µi , based upon the sample. Because the coefficients of the eigenvectors
are not unique, following the two group case, the eigenvectors are standardized as

awsa = (diag S)1/2 am /
√

a′mEam (7.4.2)

for m = 1, 2, . . . , s.
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FIGURE 7.4.1. Plot of Discriminant Functions

b. Testing Discriminant Functions for Significance

The goals for a multiple group discriminant analysis are similar to the two group case
in that we want to examine separation, and locate a subset of the variables that separates
the groups as well as the original set. However, there is an additional complication with
the multiple group situation. There is no longer one principal discriminant function, but s
discriminants.

To test the hypothesis of mean differences in the MANOVA design, we could use Roy’s
largest root criterion, Wilks’ � criterion or a trace criterion. Following rejection, we in-
vestigated contrasts in the means using all possible subsets of variables to describe the
significant result. Significance could occur in any one of s dimensions. To investigate this
more fully, if the means are all equal in the population, then the noncentrality matrix � for
the one-way MANOVA would be zero and the rank of � equals zero. If the means µi vary
on a line, then one discriminant function could be used to characterized the separation in
the k means and the r (�) = 1. Continuing, if the k means lie in some s-dimensional space
so that the r (�) = s, it would take s discriminants to achieve significant discrimination.

To see what we mean more clearly, suppose we have four populations and p = 10
variables. Evaluating the three population discriminants for the four populations, suppose
the discriminant plot shown in Figure 7.4.1 results (L1 is drawn ⊥ to L2 for convenience).
For our example, suppose λ1 > λ2 > λ3 = 0 so that the r (�) = 2. Then, while L1 may
be adequate to separate the group means, the two functions taken together provide a clearer
picture of separation. If λ1 = λ2 = .5, then the ratio λ1/

∑4
i=1 λi only accounts for 50%

of the discrimination while two eigenvalues account for 100% of the separation. While L1
clearly separates all groups, L2 only separates group 3 and 4 from 1 and 2.

To evaluate whether the first discriminant function in Figure 7.4.1 is significant based

upon a sample, we might use Roy’s largest root test. Assuming that λ̂1
p−→ λ1 and that

L1 = â1y
p−→ α1y, then the significance suggests that the population value λ1 > 0 and

that the means are significantly separated in at least one dimension. Thus the rank of � is
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at least one. However, the largest root criterion says nothing about the higher dimensions.
To ensure maximal separation, we want to find s = min (p, k − 1). Thus, the hypothesis
of interest is

Hd : λ1 ≥ . . . ≥ λd > 0 and λd+1 = . . . = λs = 0 (7.4.3)

where d = rank (�). The test of Hd is called the test of dimensionality. The hypotheses
Ho : λ1 = λ2 = . . . = λs = 0 is identical to testing the MANOVA hypothesis of equal
population means.

While Roy’s criterion may be used to test Ho as defined in (7.4.3.), rejection only ensures
that d ≥ 1. To determine d following Roy’s test, we suggest forming

(k
2

)
contrasts involving

the k vectors of s discriminant scores. Using λ̂ j ( j = 1, 2, . . . , s) to order the scores, one
sequentially applies the stepdown FIT to evaluate dimensionality. If all s stepdown tests are
significant, then the dimension of the discriminant space is s. If nonsignificance is attained
for some j = 2, 3, . . . , s − 1, the dimension is estimated as d = s − j .

While Roy’s test may not be used to determine dimensionality, one may use any of the
other criteria to evaluate dimensionality. Following Fujikoshi (1977), we define

�d =
s∏

i=d+1

(
1+ λ̂i

)−1 =
s∏

i=d+1

(
1− θ̂ i

)
(7.4.4)

Ud =
s∑

i=d+1
λ̂i =

s∑
i=d+1

θ̂ i/
(
1− θ̂ i

)
Vd =

s∑
i=d+1

λ̂i/
(
1+ λ̂i

) = s∑
i=d+1

θ̂ i

for d = 0, 1, 2, . . . , s − 1, to test Hd . Then provided Hd is true, Fujikoshi (1977) shows
that the criteria

X2
B = −

[
ve − 1

2
(p − vh + 1)

]
ln�d

X2
L = −

[
ve − d − 1

2
(p − vh + 1)+

d∑
i=1

θ̂
−1
i

]
ln�d (7.4.5)

X2
(BL H) = −

[
ve − (p − vh + 1)+

d∑
i=1

θ̂
−1
i

]
ln Ud

X2
(B N P) = −

[
ve − 2d +

d∑
i=1

θ̂
−1
i

]
ln Vd

are asymptotically distributed as chi-squared distributions with v = (vh − d) (p − d) de-
grees of freedom where ve = n − k and vh = k − 1. The statistics X2

B and X2
L were first

proposed by Bartlett (1947) and Lawley (1959). Fujikoshi (1977) verified Lawley’s correc-
tion factor and developed the chi-squared approximations corresponding to the multivariate
trace criteria due to Bartlett-Lawley-Hotelling and Bartlett-Nanda-Pillai. The dimension d
for the discriminant space is the value at which d becomes nonsignificant. If d = s is signif-
icant, then all dimensions are needed for discrimination. Again, these tests are sequential.
The size of the test αi is selected to control the test at some nominal level α. Because the
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test criteria are not equivalent, the value of d ≤ s may not be the same using the different
criteria.

c. Variable Selection

Implicit in our discussion of estimating the dimensionality of the discriminant space is that
all p variables contribute to discrimination in some unknown dimension. This may not be
the case, thus one may want to reduce the number of variables to improve the precision of
the model. For the multiple group case, variable selection becomes more complicated since
both p and s are both unknown.

A preliminary investigation of the standardized discriminant coefficients may lead one
to delete some variables in the analysis, namely those with small absolute values in all
significant dimensions. Deleting the variables and performing a reanalysis may lead to sig-
nificance with fewer variables and a value of s that is less than or equal to the estimated
value obtained using all variables. One may also use the average size of the absolute value
of the coefficients to “order” the variables in an ad hoc manner to assess a variable’s contri-
bution to separation performing a sequential analysis by deleting variables one-at-a-time.

Alternatively, we may use some type of stepwise, forward elimination, or backward elim-
ination procedure to determine whether a subset of the dependent variables maintain sig-
nificant mean differences. To develop a test that some subset of the dependent variables
do not contribute to overall separation one partitions the dependent variables into two sub-
sets y′ = [y′1, y′2]. Then one evaluates the contribution y2 makes to the separation of the
group means given that variables y1 are included in the MANOVA model, a conditional or
stepwise MANOVA. This is similar to testing that B2 = 0 in the MR model considered in
Section 4.2, except that one is evaluating the contribution of the dependent set of variables
y2 given that the subset of dependent variables y1 are included in the MANOVA model.
Letting y1 contain p − q variables and y2 contain q variables, one partitions E and H as

E =
 E11 E12

E21 E22

 , H =
 H11 H12

H21 H22

 (7.4.6)

where T = H + E. Using Wilks’ � criterion, Rao (1973a, p. 551) shows that one may
factor Wilks’ full model criterion as

�F = |E|
|E+H| =

|E11|
∣∣∣E22 − E21E−1

11 E12

∣∣∣
|T11|

∣∣∣T22 − T21T−1
11 T12

∣∣∣ (7.4.7)

= �R�F |R

Rao’s test that y2 given y1 provides no additional information in discrimination is tested
using

�F |R ∼ Up−q,vh ,ve (7.4.8)

where vh = k − 1 and ve = n − k − q. To evaluate the contribution of a single variable,
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q = p − 1 so that the partial � statistic in (7.4.7), may be related to the partial F statistic

F =
(

n − k − p + 1

k − 1

)
1−�F |R
�F |R

(7.4.8)

which has an F distribution with v∗h = k − 1 and v∗e = n − k − p + 1,the partial F
statistic in (4.2.51). Given some order of importance for the variables y1, y2, . . . , yp the
F statistic in (7.4.8) may be used to evaluate the redundance of yp given y1, y2, . . . , yp−1.

This process may be performed in a stepdown manner decreasing the error degrees of
freedom at each step and stopping the process when significance is attained at some step.
Because the process is sequential, the Type I error rate should be controlled at some α level
where 1− α =∏p

i=1 (1− αi ).
While one may also use (7.4.8) to develop a stepwise selection procedure as suggested by

Hawkins (1976) in multiple group discriminant analysis problems, as we found in multiple
and multivariate regression they must be used with caution since critical variables may be
deleted from the study. A review of selection methods using other criteria with an analysis
of alternative techniques is included in McKay and Campbell (1982 a,b), Krishnaiah (1982)
and Huberty (1994). McLachlan (1992, Chapter 12) provides a nice overview.

d. Classification Rules

To develop a classification rule for an observation y for the multiple group case involves
π1, π2, . . . , πk populations and fi (y) for (i = 1, 2, ...k) probability density functions.
Furthermore, we have p1, p2, . . . , pk prior probabilities that an observation is from popu-
lation π i where the

∑
i pi = 1. The cost of assigning an observation to population π j when

it belongs to π i is represented as C( j | i) for i, j = 1, 2, . . . , k. Finally, we let P( j | i)
denote the probability of classifying an observation into π j given that it should be in π i .
Then, the P(i | i) = 1−∑k

j=1 P( j | i) for i �= j . With this notation for the k group case,
the total probability of misclassification (TPM) and the expected cost of misclassification
become

T P M =
k∑

i=1
pi

 k∑
j=1
j �=i

P ( j | i)
 (7.4.9)

EC M =
k∑

i=1
pi

 k∑
j=1
j �=i

C ( j | i) P ( j | i)
 (7.4.10)

Again, assuming known probability density functions, the optimal rule for classifying an
observation y into one of k populations that minimizes the TPM is to allocate y to π i if

pi fi (y) > p j f j (y) for all j = 1, 2, . . . , k (7.4.11)

so that pi fi (y) is maximum. If all pi are equal, the rule is called the maximum likelihood
rule since fi (y) is a likelihood for an observation y. Using Bayes’ theorem, it is also seen
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to be equivalent to assigning observations based upon a maximum posterior probability.
Assuming π i ≡ Np

(
µi , �

)
and letting

D2
i (y) = (

y− yi

)′ S−1 (y− yi

)
(7.4.12)

The rule in (7.4.11) becomes: Assign y to π i for which

Li (y) = −D2
i (y) /2+ log pi (7.4.13)

is a maximum. This is easily established by evaluating the log pi fi (y), ignoring constant
terms, and estimating µ̂i with yi and � by the unbiased common estimate S. Equivalently,
one may assign an observation to π i to the population with the maximal posterior proba-
bility

P (π i | y) = pi e−D2
i (y)/2∑k

j=1 p j e
−D2

j (y) /2
(7.4.14)

Because the population parameters are being estimated, rules (7.4.13) and (7.4.14) are only
asymptotically optimal.

Given that all the populations are multivariate normal, with a common covariance matrix
�, and equal prior probabilities pi , classification based upon a maximum value of −D2

i (y)
or that y is closest to yi is equivalent to classifying an observation based upon Fisher’s s
discriminant functions using the eigenvectors of |H− λE| = 0. This is discussed by Kshir-
sagar and Arseven (1975), Green (1979) and Johnson and Wichern (1998, Section 11.7).

When the covariance matrices are not equal, one may again develop quadratic classifica-
tion rules for normal populations. Now the rules depend on Si and |Si |. Letting

D̃2
i (y) = (y− yi )

′S−1
i (y− yi ) (7.4.15)

the posterior probabilities becomes

P (π i | y) = pi |Si |−1/2 e−D̃2
i (y) / 2∑k

j=1 p j
∣∣S j

∣∣−1/2
e−D̃2

i (y) / 2
(7.4.16)

Given any classification rule for multiple populations, one must again evaluate the AER.
One again constructs a confusion table for the k groups using the one-at-a-time, crossval-
idation procedure to obtain an APER. While the APER is usually used to evaluate a clas-
sification rule, it may also be used in variable selection, Gnaneshanandam and Krzanowski
(1989).

e. Logistic Discrimination and Other Topics

We have been primarily concerned with discrimination and classification assuming a mul-
tivariate normal model for the variables in each group. The method may also be applied
with repeated measurement data and with adjustments for covariates, McLachlan (1992).
However, one often finds that the variables in a study are not continuous, but categorical



440 7. Discriminant and Classification Analysis

and continuous. If the group membership variable is categorical, then logistic discrimina-
tion may be performed using logistic regression, Anderson (1982) and Bull and Donner
(1987). Logistic regression in SAS may be performed using the procedure LOGISTIC. For
a discussion of procedures for logistic regression in SAS, one may consult Stokes, Davis,
and Koch (2000). Numerous examples discriminant analysis are also provided by Khattree
and Naik (2000).

If a random p-vector Y follows a multivariate normal distribution and a random vector X
follows a multinomial distribution with k categories, then the joint distribution vector Y
and X is called a p-variate normal mixture distribution. Classifying objects using p-variate
normal mixture distributions is called discriminant analysis with partially classified data or
Discrimix analysis, Flury (1997).

While linear discriminant functions used for classification are reasonably robust to non-
normality, this is not the case for discrimination. Both discrimination and classification are
adversely affected by having heavy tailed distributions and outliers, Campbell (1978, 1982).
For a discussion of nonparametric discrimination and classification procedures consult Kof-
fler and Penfield (1979, 1982) and McLachlan (1992). Newer methods of classification and
discrimination with unknown distributions include the use of neural networks while classi-
fication and regression tress (CART) are used for classification. For an introduction of these
newer procedures consult Stern (1996) and Breiman, Friedman, Olshen and Stone (1984).

7.5 Multiple Group Discriminant Analysis Example

To illustrate multiple group discriminant analysis method, data from Lubischew (1962)
are used. The data were obtained from the DASL Web site http://lib.stat.cmu.edu/DASL/
Datafiles/FleaBeetles and is provided in the file fleabeetles.dat. The data consists of the
maximum width of the aedeagus in the forepart (in microns), and the front angle of the
aedeagus (in units of 7.5◦) measurements on three species of male flea beetles Chactoc-
nema:Coninnna (Con), Heikertingeri (Hei), and Heptapotamica (Hep). The goal of the
study is to construct a classification rule to distinguish among the three species. Program
m7 5 1.sas contains the SAS code for the analysis.

To begin our analysis, PROC GLM is used to evaluate separation by testing H : µ1 =
µ2 = µ3. This test assumes all �i = � and multivariate normality. The test is not re-
quired for the establishment of a classification rule; however, it provides an indication of
separation. Evaluation of separation is also provided using the PROC CANDISC.

The sample means for the three species and an estimate of S for the flea beetles data
follow.

Con

x1 =
[

146.19048
14.09524

] Hei

x2 =
[

124.64516
14.29032

]
Hep

x3 =
[

138.27273
10.09091

]
S =

[
23.02392262
−0.55961773 1.01429299

]
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TABLE 7.5.1. Discriminant Structure Vectors, H : µ1 = µ2 = µ3

Within Structure Standardized Vector Raw Vector
WIDTH 0.7802 1.5258 0.147406745
ANGLE −0.7116 −1.3394 −0.62527665

TABLE 7.5.2. Squared Mahalanobis Distances Flea Beetles H : µ1 = µ2 = µ3

From
Species Con Hei Hep
Con 0 (Sym)
Hei 20.26956 0
Hep 20.32363 23.01849 0

Testing the hypothesis H : µ1 = µ2 = µ3 using either PROC GLM, PROC CANDISC or
PROC DISCRIM, the overall test of equal means is rejected using all multivariate criteria.
Because s = min (p, k − 1) = (2, 2) = 2, there are two eigenvalues for the problem.
Solving | H−λE |= 0, the estimated eigenvalues are λ̂1 = 4.2929 and λ̂2 = 2.9937. The
GLM procedure for the MANOVA analysis uses Wilks’ � criterion with X2

B defined in
(7.4.5) is used to test (7.4.3), sequentially. For our example, both roots in the population
appear to be nonzero. Because squared canonical correlation, ρ2

i , are related to the roots
of | H − θ (H+ E) |= 0 in that ρ2

i = θ i , the test of dimensionality is labeled a test of
canonical correlations using the /CANONICAL option. This will be investigated further in
Chapter 8. The structure of the discriminant structure for the test of equal centroids is given
in Table 7.5.1.

The entries in Table 7.5.1 indicate that both variables appear to contribute to separation
equally. From PROC CANDISC, the squared Mahalanobis distances between species are
calculated and shown in Table 7.5.2.
Comparing the pairwise mean differences, all pairs appear to be widely separated. A plot of
the data using the two discriminant functions is provided in Figure 7.5.1, obtained using the
PROC PLOT procedure. Also provided in the output are one-dimensional histograms used
to display marginal separation. The plots indicates clear separation of the three species:
C = con, H = Hei and P = Hep.

The lines Di j have been added to the plot and will be discussed shortly.
To assess the importance of each variable to separation, PROC DISCRIM is used with

the option METHOD = BACKWARD. To evaluate the contribution of a single variable, the
partial F statistics defined in (7.4.8) are calculated for each variable (F = 124 and F = 119;
df =2, 70) are significant (p-value < 0.0001), neither variable should be removed from the
analysis.

The final step in our analysis is to create a classification rule to assign the beetles to
each group. For this we use PROC DISCRIM. Confirming that �1 = �2 = �, we use
the option POOL = TEST. The p-value for the hypothesis 0.7719 indicates that we may
use Fisher’s LDF with �1 = �2 for classification. The three subgroups are also seen to
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FIGURE 7.5.1. Plot of Flea Beetles Data in the Discriminant Space

TABLE 7.5.3. Fisher’s LDFs for Flea Beetles

Con Hei Hep
CONSTANT −619.746 −487.284 −505.619
WIDTH 6.778 5.834 6.332
ANGLE 17.636 17.308 13.442

be multivariate normal. Setting p1 = p2 = p3 = 1/3 with Di (y) defined in (7.4.12), the
LDF rule is created using (7.4.13). That is, an observation y is assigned to population π i

for which

Li (y) = −1

2

(
y− yi

)′ S−1 (y− yi

)+ log pi

is maximal. Ignoring the term ln (pi ) and since y′S−1y/2 is the same for each Li (y), SAS
calculates

L∗i (y) = y′i S−1y− y′i S−1yi/2

= y′i S−1 (y− yi/2
)

= coefficient vector− constant

The linear functions L∗i (y) are given in Table 7.5.3
The function L∗i (y) are used to partition the sample space into three regions by forming

the differences
Di j = L∗i (y)− L∗j (y)

for i �= j .
Creating the differences Di j , observe that if L∗1 (y) > L∗2 (y) and L∗1 (y) > L∗3 (y) then

D12 (y) > 0 and D13 (y) > 0 and an observation would be assigned to group 1. By the same
logic, if D12 (y) < 0 and D23 (y) < 0, an observation is assigned to group 2. If D13 (y) < 0
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TABLE 7.5.4. Classification/Confusion Matrix for Species

Con Hei Hep
Con 20 1 0 21
Hei 0 31 0 31
Hep 0 0 22 22

and D23 (y) < 0, an observation is assigned to group 3. For our example, Group 1≡ Con≡
(C), Group 2 ≡ Hei ≡ (H), Group 3 ≡ Hep ≡ (P). Relabeling the axis in Figure 7.5.1, the
functions Di j represent three lines in the plane that separate the three groups where CAN 1
≡WIDTH and CAN 2 ≡ ANGLE. The lines have been super-imposed onto Figure 7.5.1.
From Figure 7.5.1, we observe that only one observation is misclassified. This is shown in
the Classification/Confusion table generated by SAS, Table 7.5.4.

The estimated apparent error rate for the LDF rule is 0.0159. In this example, we have
excellent classification and separation.

Exercises 7.5

1. Use the Egyptian skull data for the B.C. years: −4000, −3300,−1850, −200 and
the A.D. year 150 to evaluate group separation. And, obtain a classification rule to
assign skulls to groups. Discuss your findings.

2. Using the option POOL = NO on the PROC DISCRIM statement, obtain a quadratic
classification rule for the Flea Beetles data. What do you observe?

3. Develop a discriminant function for the pottery data described in Exercises 4.5, Prob-
lem 4.

4. In his seminal paper on discriminant analysis, Fisher (1936) developed his LDF to
analyze three species of flowers: (1) Iris Setosa, (2) Iris Vericolor, and (3) Iris Vir-
ginica. For the 50 specimens of the three species the variables: sepal length (SL),
sepal width (SW), petal length (PL) and petal width (PW)are measured in mm. The
data are provided in the data set iris.dat where the variables are ordered: SL, SW,
PL, PL and Species (1, 2, 3). Obtain two linear and quadratic discriminant func-
tions for the data, and evaluate which of the two functions classify the species in two
dimensions best.
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8
Principal Component, Canonical
Correlation, and Exploratory Factor
Analysis

8.1 Introduction

In the previous chapter on discriminant analysis we generated linear combinations of vari-
ables called discriminant functions. Applying the discriminant functions to multivariate
data obtained from several independent groups resulted in discriminant scores in a smaller
dimensional discriminant space. The uncorrelated scores were used to evaluate group dif-
ferences (separation) and to classify (allocate) observations into groups. In this chapter
we investigate three statistical procedures that commonly involve a single group. These
procedures were designed to reduce the dimensionality of the data space in order to dis-
cover, visualize, and interpret dependences among sets of variables, or to help stabilize the
measurements for additional statistical analysis such as regression analysis (Chapter 4) or
cluster analysis (Chapter 9).

8.2 Principal Component Analysis

Principal component analysis (PCA) was first introduced by Karl Pearson in the early
1900’s. Formal treatment of the method is due to Hotelling (1933) and Rao (1964). In
PCA a set of p correlated variables is transformed to a smaller set of uncorrelated hypo-
thetical constructs called principal components (PCs). The PCs are used to discover and
interpret the dependences that exist among the variables, and to examine relationships that
may exist among individuals. The PCs may be used to stabilize estimates, evaluate multi-
variate normality, and to detect outliers. While we review the basic theory in this chapter,
an extensive discussion of the topic is provided by Jolliffe (1986), Jackson (1991), and
Basilevsky (1994).
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a. Population Model for PCA

Given an observation vector Y′1×p =
[
Y1, Y2, . . . ,Yp

]
with mean µ and covariance matrix

� of full rank p, the goal of PCA is to create a new set of variables called principal compo-
nents (PCs) or principal variates. The principal components are linear combinations of the
variables of the vector Y that are uncorrelated such that the variance of the j th component
is maximal.

The first principal component of the vector Y is the linear combination

Z1 = p′1Y (8.2.1)

such that the variance of Z1 is maximal. To determine the first linear combination of Y, a
vector p is sought such that

var (Z1) = var
(
p′1Y

) = p′1�p1 (8.2.2)

is maximal, subject to the constraint that p′1p1 = 1. The condition that p′1p1 = 1 is im-
posed to ensure the uniqueness (except for sign) of the principal component. From Theo-
rem 2.6.10, the vector that maximizes (8.2.2), subject to the constraint that p′1p1 = 1, is the
characteristic vector associated with the largest root of the eigenequation

|� − λI| = 0 (8.2.3)

The largest variance of Z1, is the largest root λ1 of (8.2.3).
To determine the second principal component, the linear combination

Z2 = p′2Y (8.2.4)

is constructed such that it is uncorrelated with Z1 and has maximal variance. For Z2 to be
uncorrelated with Z1, the covariance between Z2 and Z1 must be zero. However, �p1 =
p1λ1 so that the

cov (Z2, Z1) = p′2�p1 = p′2p1λ1 = 0 (8.2.5)

implies that p′2p1 = 0. Furthermore, if p2 is the second eigenvector of (8.2.3), then �p2 =
p2λ2 and the

var (Z2) = p′2�p2 = λ2 (8.2.6)

where λ1 ≥ λ2. More generally, by Theorem 2.6.5 (Spectral Decomposition Theorem)
there exists an orthogonal matrix P

(
P′P = I

)
such that

P′�P = � = diag [λi ] (8.2.7)

where λ1 ≥ λ2 ≥ . . . ≥ λp ≥ 0. Setting

Z = P′Y (8.2.8)

the E (Z) = P′µ and the cov (Z) = � where the j th element Z j of Z is the j th principal
component of Y. Thus, the raw score form of the j th component is

Z j = p′j Y =
p∑

i=1
pi j Yi (8.2.9)
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where p j is the j th column of P so that p′j is the j th row of P′. In general the mean of Z j is
not zero. Letting Yd = Y−µ , the components C j = p′j Yd = p′j (Y− µ) have mean zero
and variance λ j . To standardize the components with regard to both location and scale, the
standardized components

Z∗j = p′j (Y− µ) /
√
λ j j = 1, 2, . . . , p (8.2.10)

are constructed so that the E(Z∗j ) = 0 and the var(Z∗j ) = 1.
The construction of principal components do not require that the variables in Y have a

multivariate normal distribution. However, assuming that Y ∼ Np (0, �), recall that the
constant density ellipsoids associated with Y have the form Y′�−1Y = Q > 0 centered
at the mean µ = 0. If µ �= 0, one may use deviation scores Yd . Under the transformation
Y = PZ, the principal components have the simplified ellipsoid structure Z′�−1Z = Q
where � is a diagonal matrix with elements 1/λ j and λ j is an eigenvalue of �. Letting θ i j

define the direction cosine of the i th old axis with the j th new axis, the matrix P has the
general form

P = [
cos θ i j

] = [
p1,p2, . . . ,pp

]
so that the transformation Z = P′Y represents a rigid rotation of the old axes into the new
principal axes. If λ1 is the largest eigenvalue of �, then the major axis of the ellipsoid lies in
the direction of p1. For the bivariate case illustrated in Figure 3.3.1, the axes x1 and x2 rep-
resent the principal components. For the population covariance matrix �−1 given in Figure
3.3.1 with ρ = 1/2, the matrix P formed from the column eigenvectors of |� − λI| = 0 is
the matrix

P = [
cos θ i j

] =
 cos 45◦ cos 135◦

cos 45◦ cos 45◦

 =
 1/
√

2 −1/
√

2

1/
√

2 1/
√

2


using direction cosines. The matrix P′ rotates the old axes into the new axes so that the
component scores in the new coordinate system are uncorrelated and have maximum vari-
ance. Thus, normal PCA is a statistical procedure for transforming a MVN distribution into
a set of independent univariate normal distributions, since under normality zero correlation
implies independence.

Subtracting the mean µ from the vector Y, the p PCs are represented as follows

C1 = p′1 (Y− µ) = p11 (Y1 − µ1) + . . .+ pp1
(
Yp − µp

)
C2 = p′2 (Y− µ) = p12 (Y1 − µ1) + . . .+ pp2

(
Yp − µp

)
...

...
...

...

C p = p′p (Y− µ) = p1p (Y1 − µ1) + . . .+ ppp
(
Yp − µp

) (8.2.11)

where the rank of � is p. To obtain standardized components, one divides C j by
√
λ j for

j = 1, 2, . . . , p. The components are summarized in Table 8.2.1.
Using vector notation, the relationship between Y and the PCs are

Z = P′Y
C = P′ (Y− µ)

Z∗ = �−1/2P′ (Y− µ) = �−1/2C

(8.2.12)



448 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis

TABLE 8.2.1. Principal Component Loadings

Components
Variables C1 C2 . . . C p

Y1 p11 p12 . . . p1p

Y2 p21 p22 . . . p2p
...

...
...

...
...

Yp pp1 pp2 . . . ppp

Eigenvectors p1 p2 . . . pp

Eigenvalues λ1 λ2 · · · λp

TABLE 8.2.2. Principal Component Covariance Loadings (Pattern Matrix)

Components

Variables C1 C2 · · · C p

Y1 p11
√
λ1 = q11 p12

√
λ2 = q12 · · · p1p

√
λp = q1p

Y2 p21
√
λ1 = q21 p22

√
λ2 = q22 · · · p2p

√
λp = q2p

...
...

... · · · ...

Yp pp1
√
λ1 = qp1 pp2

√
λ2 = qp2 · · · ppp

√
λp = qpp

Alternatively, one may also construct the data vector from the PCs

Y = PZ

Y = µ+ PC

Y = µ+ P�1/2Z∗ = µ+QZ∗
(8.2.13)

The matrix Q in (8.2.13) is called the covariance loading matrix since the covariance be-
tween Y and Z∗j , where Z∗j = C j/

√
λ j , is

cov
(

Y, Z∗j
)
= cov

(
Y,p′j Y/

√
λ j

)
= �p j = λ j p j/

√
λ j

so that the covariance between variable i and the j th standardized PC is

cov
(

Yi , Z∗j
)
= pi j

√
λi j = qi j (8.2.14)

The covariance loadings are shown in Table 8.2.2.
Selecting only a subset of the components C1,C2, . . . ,Ck where k ) p, observe that

variable Yi may be estimated as

Yi ≈ µi +
k∑

j=1
qi j Z∗j = Ỹi
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so that
Ỹ = µ+QZ∗ (8.2.15)

where Q = [
qi j

]
. Letting

Q = (Y− µ− Ỹ)′(Y− µ− Ỹ)

and assuming Y ∼ Np (µ, �), Jackson and Mudholkar (1979) show that

(Q/θ1)
ho

.∼ N

[
1+ θ2ho (ho − 1)

θ2
1

,
2θ2h2

o

θ2
1

]
(8.2.16)

is approximately univariate normal where

θm = ∑p
j=k+1 λ

m
j m = 1, 2, 3

ho = 1− (
2θ1θ3 / 3θ2

2

)
A significant value of Q using sample estimates for µ and � suggests that Y may be an
outlier. Rao (1964) suggests investigating the distances

D2
i = (Y− Ỹ)′(Y− Ỹ)

=
p∑

j=k+1

(
qi j Z∗j

)2 .∼ χ2 (p − k)
(8.2.17)

An informal plot of D2
i (i = 1, 2, . . . , n) may be used to detect outliers. Hawkins (1974)

suggests a weighted form of (8.2.17) by dividing each term D2
i by λ̂ j to improve conver-

gence to a chi-square distribution. If an outlier is detected, one would exclude it from the
estimation of � as discussed in chapter 3. Gnanadesikan (1977) reviews other methods for
the detection of outliers in PCA.

b. Number of Components and Component Structure

Defining the total (univariate) variance as the trace of � and recalling that the sum of the
roots of |� − λI| = 0 is equal to the tr (�), observe that

tr (�) = σ 11 + σ 22 + . . .+ σ pp

= λ1 + λ2 + . . .+ λp

is maximized by the PCs. Because the generalized variance of p variables is the |�| =∏p
i=1 λi , we also see that the geometric mean

λg = |�|1/p =
( p∏

i=1
λi

)1/p

(8.2.18)

is maximized by the PCs.
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TABLE 8.2.3. Principal Components Correlation Structure

Components

Variables C1 C2 · · · Ck

Y1 p11
√
λ1 / σ 1 p12

√
λ2 / σ 1 · · · p1k

√
λk / σ 1

Y2 p21
√
λ1 / σ 2 p22

√
λ2 / σ 2 · · · p2k

√
λk / σ 2

...
...

... · · · ...

Yp pp1
√
λ1 / σ p pp1

√
λ2 / σ p · · · ppk

√
λk / σ p

Since the tr (�)−∑k
j=1 λ j =∑p

j=k+1 λ j , the proportion of the total univariate variance
accounted for by k PCs is

ρ2
k =

∑k
j=1 λ j∑p
j=1 λ j

=
∑k

j=1 λ j

tr (�)
(8.2.19)

which may be used as a criterion for selecting a subset of k components from p. One
usually wants to account for 70%− 80% of the total univariate variance with a few PCs.

One may use either the geometric mean or arithmetic mean of the eigenvalues as a cri-
terion for retaining k ) p components. Later in this chapter we discuss how these criteria
and formal statistical tests are used to evaluate the number of components one should retain.

Having selected a set of k components where k ) p, we saw that the PCs may be used
to estimate the original data using the covariance loadings in Table 8.2.2. Alternatively,
one may also want to evaluate the contribution of the i th variable to the j th component.
The covariance loadings in Table 8.2.2 may not be used as they depend on σ i i = σ 2

i .
Large values for covariance loadings may only reflect differences in population variances.
To remove this dependence, one divides the covariance loadings by σ i = √σ i i . This is no
more than calculating the correlation between Yi and Z j since the

ρYi , Z j
= cov

(
Yi , Z j

)
√
σ i i

√
λ j
= pi j

√
λ j

σ i
(8.2.20)

One can create a matrix of these correlations, the structure matrix, shown in Table 8.2.3.
Observe that if all σ i = 1 in Table 8.2.3, meaning all variables are standardized, then the

loading coefficients are correlations.
The column entries in Table 8.2.3 represent the contribution of variable Yi on the j th

component ignoring the other variables in the linear combination of variables. This same
result was encountered in discriminant analysis. Where instead of evaluating correlations,
the variables were standardized which was equivalent to adjusting the “raw” eigenvectors
by multiplying each coefficient by σ i . This may not be done in PCA since PCs as shown in
Table 8.2.1 are not invariant to linear transformations of the original variables. Rescaling
may result in an entirely different set of components; the least important component or vari-
able may become the most important under rescaling. Because the population correlation
matrix is a rescaling of the data to standardized variables, the components of standardized
variables using a population correlation matrix Pρ may lead to very different results. Let-
ting δ j be the eigenvalues of the equation |Pρ − δI| = 0 where Pρ is a rescaling of �, its
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eigenvalues and eigenvectors may be very different from those obtained using �. This is
because under a rescaling Y∗ = DY where D is a nonsingular diagonal matrix, the roots
and vectors of |D�D − δI| = |Pρ − δI| = 0 are not a simple rescaling of the roots and
vectors of |� − λI| = 0. Thus, the principle component weights are not scale free, Lawley
and Maxwell (1971, p. 18). The scaling of the original variables should precede any PCA.
Choosing Pρ over � may not always be the correct decision since it may destroy natural
commensurate variability, as illustrated by Naik and Khattree (1996).

An advantage to using Pρ instead of � is that Pρ is scale free since a change in scale
of the variables does not effect the elements ρi j of Pρ . When analyzing a population cor-
relation matrix, the tr

(
Pρ

) = p so that δ j / p is a measure of the importance of the j th

component. And since the
∑p

j=1 δ j = p, the criterion δ > 1 is often used in selecting

components using Pρ . Furthermore, since σ 2
i = 1 for standardized variables the matrix

of covariance loadings (pattern matrix) is identical to the correlation structure matrix when
using a population correlation matrix. By dividing the components based on Pρ by the√
δ j , both the principal components and the variables are standardized, have mean zero

and variance one.
Yet another index that one may calculate when creating PCs is the prediction of the p

components on Yi also called square of the population multiple correlation between Yi and
the p components of Z′ = [

Z1, Z2, . . . , Z p
]
. Using the definition of multiple correlation,

the square of the multiple correlation between Yi and the vector Z′ = [
Z1, Z2, . . . , Z p

]
is

ρ2
Yi(Z1, Z2,... ,Z p)

= σ ′Yi Z
�−1

ZZ σ Yi Z

σ 2
i

(8.2.21)

Using the fact that �ZZ = diag
[
λ j

]
and (8.2.14), (8.2.21) becomes

ρ2
Yi Z =

p∑
j=1

q2
i j / σ

2
i =

p∑
j=1

λ j p2
i j / σ

2
i =

p∑
j=1

ρ2
Yi Z j

(8.2.22)

Thus, for k ) p one may use the entries in Table 8.2.2 to evaluate how well a subset of
components predict Yi . The residual variance is σ 2

i −
∑k

j=1 q2
i j .

Example 8.2.1 To illustrate the calculation of principal components, we consider the 3×3
covariance matrix

� =


26.64 (Sym)

8.25 9.85

18.29 8.27 22.08


with corresponding population correlation matrix

Pρ =


1.00000 (Sym)

0.52596 1.00000

0.75413 0.56077 1.00000





452 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis

Solving the eigenequation | � − λI |= 0, the roots and vectors of � are

� = diag
[

46.6182, 6.5103, 5.4414
]

P =


0.71056 −0.61841 0.33567

0.30705 0.70175 0.64286

0.63311 0.35372 −0.68852


the quantities in Table 8.2.1. Using 8.2.20, the correlation between variable Yi and each
component Z j , as shown in Table 8.2.3, are obtained. The structure/pattern matrix is

F� =


0.93996 −0.30571 0.15171

0.66799 0.57051 0.47781

0.91994 0.19207 −0.34180


Using (8.2.9), the proportion of total univariate variance accounted for by each component
follows

Proportion 0.7959 0.1112 0.0927

Cumulative 0.7959 0.9071 1.0000

For the population correlation matrix, the equation | Pρ − δI | = 0 is solved. For our
example, the results follow.

� = diag
[

2.2331, 0.5227, 0.2442
]

P =


0.59543 −0.42647 0.68087

0.52896 0.84597 0.06730

0.60470 −0.32008 −0.72931



Fρ =


0.88979 −0.30832 0.33647

0.79046 0.61161 0.03326

0.90364 −0.23141 −0.36040


Proportion 0.7444 0.1742 0.0814

Cumulative 0.7444 0.9186 1.0000

Comparing the two results, we see that even though the matrices F� and Fρ are similar
they are not the same. In particular, the signs on the second component are clearly not the
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same. One must decide before any application of principal component analysis which ma-
trix to analyze. A principal component analysis of a covariance matrix gives more weight
to variables with larger variances. A principal component analysis of a covariance matrix
is equivalent to an analysis of a weighted correlation matrix, where the weight for each
variable is equal to its sample variance. In general, variables with larger weights tend to
have larger loadings on the first component and smaller residual correlations than vari-
ables with smaller weights. Conversely, a principal component analysis of a correlation
matrix is equivalent to an unweighted analysis of a covariance matrix. For this example,
two components account for most of the variance. For other problems, the number of impor-
tant components retained when analyzing the two matrices may also be very different. The
choice of which to analyze depends on the goals of the application. Program m8 2 1.sas
was used to perform the calculations in Example 8.2.1 employing both the PROC FACTOR
and the PROC PRINCOMP. In principal component analysis, the variance explained by
a component is equal to the eigenvalue of either the covariance or the correlation matrix
used in the analysis. In PROC FACTOR, observe that the variance explained by each factor
is labeled weighted or unweighted when one uses the covariance matrix. The usual method
for computing the variance accounted for by a factor is to take the sum of squares of the
corresponding column of the factor pattern matrix output by PROC FACTOR, resulting in
an unweighted variance. If the square of each loading is multiplied by the variance of the
variable (the weight) before the sum is taken, the result is the weighted variance explained
by a component, the eigenvalue of the covariance matrix. The unweighted variance ac-
counted for by each factor when one is analyzing the covariance matrix is equivalent to the
analysis one obtains by analyzing the correlation matrix This is confirmed in our example
by comparing the eigenvalues obtained in the analysis of the correlation matrix with the
unweighted variance explained by each factor when we analyzed the covariance matrix.
The values are 2.233, 0.523, 0.244 and 2.176, 0.456, 0.368, respectively.

c. Principal Components with Covariates

In many applications, one may have a set of variables Y′ = [
Y1,Y2, . . . , Yp

]
and a set of

covariates, X′ = [
X, X, . . . , Xq

]
. For this situation we would again like to find components

Z j = p′j Y such that the joint set of variables Z j and X accounts for the variation in Y. We
now consider the joint covariance matrix

� =
 �yy �yx

�xy �xx

 (8.2.23)

Regressing Y on X, the matrix

�y.x = �yy −�yx�
−1
xx �xy

= [
σ i j. p+1,... ,p+q

] (8.2.24)

is the residual matrix of partial variances and covariances. Since �yy is the covariance
matrix for Y, the matrix

�y x�
−1
xx �x y =

[
αi j

]
(8.2.25)
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is the dispersion in Y explained by X. Thus, we are led to consider the eigenequation∣∣�y. x − θI
∣∣ = 0 (8.2.26)

given a set of covariates X and a set of variables Y. Using equation (8.2.26), we find its
eigenvalues θ1, θ2, . . . , θ p and eigenvectors p1,p2, . . . ,pp. The quantities

Z1 = p′1Y, Z2 = p′2Y, . . . , Z p = p′pY (8.2.27)

are defined as the PCs of Y given X or partial principal components (PPCs). Now, letting

P = [
p1,p2, . . . ,pp

]
and� = diag [θ i ]

we have that
P′�y xP = �

�yy −�y x�
−1
xx �x y = P�P′

�yy = �yx�
−1
xx �xy + P�P′

(8.2.28)

Equation (8.2.28) suggests that the variation in Y may be partitioned into variation due to X
and that due to the PPCs. Now, the total univariate variance of Y may be written as

tr
(
�yy

) = tr
(
�yx�

−1
xx �xy

)
+ tr

(
P�P′

)
σ 2

1 + σ 2
2 + · · · + σ 2

p = α11 + α12 + · · · + α pp +
(
θ1 + θ2 + · · · + θ p

) (8.2.29)

To obtain a value of k ) p, we may use the ratio

ρ2
k =

α11 + α22 + · · · + α pp + θ1 + θ2 + · · · + θk

σ 2
1 + σ 2

2 + · · · + σ 2
p

(8.2.30)

following (8.2.19). Again we would like the ratio to account for 70% − 80% of the total
variance.

Because we are using the covariance matrix �y.x to create components and the cov(Y,

p′j (Y.X)) = p′j�1.2 = θ j p j , we define the standardized partial principal components as

Z∗j = P′j
[(

Y− µy
)−�y x�

−1
xx (X− µx)

]
/
√
θ i (8.2.31)

Finally, letting
q j = p j

√
θ j and Q = [q1,q2, . . . ,qk] (8.2.32)

as we did when we had no covariates, Table 8.2.4 may be constructed to summarize the
relationships between the PPCs Z∗1 , Z∗2 , . . . , Z∗k and the variables Y1,Y2, . . . ,Yp.

Table 8.2.4 summarizes the relationship between the partial principal components and
the variables. The correlations may be used to interpret the partial principal components; the
coefficients αi j and β i j represent the variance accounted for by X and the partial principal
components, respectively. The square of the multiple correlations (αi i + β i i )/σ i permits
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TABLE 8.2.4. Partial Principal Components

Variance Explained by

Variable Z∗1 , Z∗2 , . . . , Z∗k X Components

Y1
q11
σ 1

q12
σ 1

. . .
q1k
σ 1

α11 q2
11 + · · ·+ q2

1k = β11

Y2
q21
σ 2

q22
σ 2

. . .
q2k
σ 2

α22 q2
21 + · · ·+ q2

2k = β22
...

...
...

...
...

...
...

Yp
qp1
σ p

qp2
σ p

. . .
qpk
σ p

α pp q2
p1 + · · ·+ q2

pk = β pp

one to evaluate the fit by replacing the original variable Yi with a subset of partial principal
components. The reconstructed observation vector Y for Q with k ) p columns is

Ỹ = µy +�y x�
−1
xx �x y (X− µx)+QZ∗ (8.2.33)

where
Z∗ = �−1/2P′

[
(Y− µy)−�y x�

−1
xx �x y (X− µx)

]
(8.2.34)

which reflects both the variation due to X and the partial principal components.
As in the situation with principal components with no covariates, the PPCs are not in-

variant to linear transformations of Y. However, to standardize variables and components,
the population matrix of partial correlations may be used to obtain eigenvectors and eigen-
values.

d. Sample PCA

In the preceding section we discussed the theory of PCA as it applied to an infinite popula-
tion of measures. In practice, a random sample of n individuals are obtained on p variables.
The data for a PCA consists of an (n × p) data matrix Y and an (n × q) data matrix X of
q covariates. To perform a PCA, one employs the unbiased estimator S for � or the sample
correlation matrix R. Selecting between S and R depends on whether the measurements
are commensurate. If the scales of measurements are commensurate, one should analyze
S, otherwise R is used. Never use R if the scales are commensurate since by forcing all
variables to have equal sample variance one may not be able to locate those components
that maximize the sample dispersion.

Replacing � with S, one solves |S − λI| = 0 to obtain eigenvalues and eigenvectors
usually represented as λ̂ j and p̂ j . Thus, the sample eigenvectors become P̂ and the sample
eigenvalues become �̂ = diag[̂λ j ]. Replacing population values with sample estimates,
one may construct Tables 8.2.1, 8.2.2, and 8.2.3. Because Z∗ is a matrix, the formula for
the standardized principal components for all n individuals is

Z∗n×p = Yd P̂�̂−1/2 = YdQ̂ (8.2.35)

where Yd is the matrix of deviation scores after subtracting the sample means and Q̂ are the
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sample covariance loading given in Table 8.3.2. Alternatively the data matrix Yd becomes

Yd = Z∗
(

P̂�̂1/2
)−1

= Z∗�̂−1/2P̂′

= Z∗Q̂′
(8.2.36)

Letting D−1/2 = [
diag S

]−1/2, the sample correlation matrix is used in the analysis so
that the equation |R− δI| = 0 is solved. Again we let P̂ = [̂p1, p̂2, . . . , p̂k] be the sample
eigenvectors of R. Then,

Z∗ = Zd P̂�̂−1/2 = ZdQ̂ (8.2.37)

Here, Q̂ is a matrix of correlations. To obtain the variables from the PCs, the equation
becomes

Zd = Z∗
(

P̂�̂−1/2
)−1

= Z∗�̂1/2P̂′

= Z∗Q̂′
(8.2.38)

To evaluate how many components to retain when using either S or R is complicated
since λ̂ j and δ̂ j are only estimates of λ j and δ j . Assuming that � and Pρ are nonsingular,
the dimensionality of the component space is k if λk+1 = λk+2 = . . . = λp = 0 or it
is m if δm+1 = δm+2 = . . . = δ p = 0. In general, k ≤ m and is equal to m only if
σ 2

1 = σ 2
2 = . . . = σ 2

p = 1. Before developing formal tests of dimensionality, we consider
some ad hoc methods.

Two popular rules of thumb are to use either the geometric mean or the arithmetic mean
of the sample eigenvalues. That is to retain a component if

(a) λ̂ j > λg =
( p∏

i=1
λ̂i

)1/p

or λ̂ j > λ =
p∑

i=1
λ̂i/p

(b) δ̂ j > δg =
( p∏

i=1
δ̂i

)1/p

or δ̂ j > δ =
p∑

j=1
δ̂ j/p = 1

(8.2.39)

when analyzing S or R, respectively. Using the simple average, we are saying that one
should retain a component whose estimated variance is larger than the average variance of
all the original variables. The geometric mean adjusts for outliers in the sample estimates
and with no outliers is less than or equal to the mean. There is no sound statistical basis
for these rules. For example, when analyzing R retaining components when δ̂ j > 1 for m
components may cumulatively account for more variation than the original variables, an
absurd result.

A more parsimonious rule would be to retain a number that accounts for 70% − 80%
of the total univariate variance. To help evaluate the percentage, one may construct a scree
plot. The plot was suggested by Cattell (1966). The plot is a graph that compares the esti-
mated eigenvalue versus the number of components k (k = 1, 2, . . . , p). The graph usually
has a sharp elbow where both the smaller roots and the larger roots lie on a line. Fitting
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FIGURE 8.2.1. Ideal Scree Plot

a spline regression model to the sample roots, one is estimating the location of the knot.
A graph of an ideal scree plot is shown in Figure 8.2.1. The graph reflects a sharp decline
in estimated roots where the smaller (lower) and larger (upper) roots may be estimated by
two lines. Bentler and Yuan (1996) have developed a maximum likelihood test that the
lower roots lie on a line. Jolliffe (1986) and Basilevsky (1994) discuss other methods using
resampling techniques to evaluate how many components to retain.

When covariates are included in a PCA, the covariance matrix for a sample has the
general structure

S =
 Syy Sy x

Sx y Sxx

 (8.2.40)

where the sample residual covariance matrix is

Sy.x = Syy − Syx S−1
xx Sxy (8.2.41)

Letting

Syx S−1
xx Sxy = [ai j ] (8.2.42)

and θ̂ i the eigenvalues | Sy.x − θI | = 0, the standardized partial principal components
have the form

Z∗ =
(

Yd − XdS−1
xx Sxy

)
P̂�̂−1/2 (8.2.43)

where Yd and Xd are deviation matrices. To evaluate the number of roots to retain, one may
investigate the sample percentages of the ratio given in (8.2.30). Because tr

(
Syx S−1

xx Sxy
)

and
∑p

i=1 sii is constant, one may also construct scree plots for θ̂ i . Letting D−1/2 =[
diag Sy.x

]−1/2
, one may analyze Ry.x using standardized variables for both Y and X.

McCabe (1984) uses the idea of partial principal components to delete variables from
a PCA. Partitioning a set of dependent variables as Y′ = [

Y′1,Y′2
]

where Y1 contains q
variables and Y2 contains p − q variables, he investigates the eigenvalues of the residual
covariance matrix

S2.1 = S22 − S21S−1
11 S12 (8.2.44)
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where
|S| = |S11| |S2.1| (8.2.45)

Letting θ̂1, θ̂2, . . . , θ̂ p−q be the roots of S2.1, McCabe suggests evaluating 2p − 1 choices
for q. Given q, we have that the

|S2.1| =
p−q∏
j=1

θ̂ j

tr |S2.1| =
p−q∑
j=1

θ̂ j

‖S2.1‖2 =
p−q∑
j=1

θ̂
2
j

Depending on the criterion selected, McCabe shows that one should discard the subset
of variables in Y2 for which the selected criterion is minimal. To visualize the criteria one
can construct a plot. Jolliffe (1972, 1973) suggests using PCs to select subsets of variables
for prediction.

e. Plotting Components

Having completed a component analysis using S, it is often informative to plot the corre-
lations between the components and the variables in a two dimensional component space.
This allows one a visual evaluation of determining how variables cluster.

If one is analyzing R, both PC scores and variables are normalized to one. Hence, one
may create a two-dimensional joint plot of loadings and scores. Such a plot is termed a bi-
plot by Gabriel (1971). Friendly (1991) has developed a SAS MACRO to generate biplots.

f. Additional Comments

We have assumed that PC analysis only applies to one group, Krzanowski (1982) sug-
gests procedures for comparing PCs across several groups while Keramidas, Devlin and
Gnanadesikan (1987) develop Q-Q plots for comparing components. Hastie and Stuetzle
(1989) extend principal components to principal curves. Principal component analysis us-
ing discrete data is called correspondence analysis. Greenacre (1984), van Rijckevarsel and
de Leeuw (1988), and Blasius and Greenacre (1998) discuss this topic. Principal compo-
nent analysis with constraints and covariates for both subjects and variables are discussed
by Takane and Shibayama (1991) and Takane, Kiers and de Leeuw (1995).

g. Outlier Detection

Principal component analysis is sensitive to the presence of outliers. An extreme outlier
may generate a single component. We conclude this section with an example to show how
principal component analysis may be used to detect outliers in a n × p data matrix. If
one cannot remove the outlier from the data matrix, one may use a robust estimate of
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the covariance matrix or the correlation matrix. In Section 8.3, we show how principal
component analysis is used to explore data structures defined by a covariance or correlation
matrix.

Example 8.2.2 (Outlier Detection) As cheese matures, a chemical process takes place to
give it flavor. The data set cheese.dat from Moore and McCabe (1993, p. 792) contains
measurements of acetic acid (Acetic), hydrogen sulfide (H2S) and lactic (Lactic) acid and
an index of taste for a sample of mature cheddar cheese. The taste variable was obtained
based upon several tasters. The variables Acetic and H2S are the natural logarithm of
Acetic and H2S concentrations, respectively. We use this data to determine whether there
are outliers in the n = 30 observations using the method of principal components. The
data set and SAS code for this example are given in program m8 2 2.sas.

To determine outliers for these data, expression (8.2.17) is evaluated for each observa-
tion. Using the SAS procedure PRINCOMP, one PC accounts for 99% of the total variance.
Hence, p− k = 4− 1 = 3 is the dimension of the residual space. By using the STD option
on the PRINCOMP statement, the unit length eigenvectors are divided by the square root of
the eigenvalues to create component scores Z∗j . Hawkin’s D2

i may be calculated by using
the SAS function USS. The distances are output and compared to a chi-square critical value
using α = 0.05 with degrees of freedom equal one, χ2

1−α (3) = 7.81473. Comparing each

D2
i with the critical value, no vector observation appears to be an outlier.

Exercises 8.2

1. For Example 8.2.1, use (8.2.22) to evaluate how well k = 2 components predict each
variable. These multiple correlation coefficients are called the final communality es-
timates in PROC FACTOR. They are the sum of squares of each row of the factor
pattern matrix in SAS. Run example m8 2 1.sas with NFACT = 2.

2. For the population correlation matrix

Pρ =


1.00
.086 1.000
−.031 .187 1.000
−.034 .242 .197 1.000
.085 .129 .080 .327 1.000


based upon 151 observations, construct Table 8.2.3 for two eigenvalues larger than
1.

(a) What is the correlation between the second component and the first variable?

(b) What proportion of the total variance is accounted for by the first and second
components?

(c) Express the component as a linear combination of the five variables such that
the mean of the component scores is 0 and the variance 1.
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3. Use the Principal Component Analysis method as outlined in Example 8.2.2 to iden-
tify outliers in the Ramus data set (Ramus.dat) examined in Example 3.7.3.

4. For the multivariate regression data in Table 4.3.1, Chapter 4, how many partial prin-
cipal components are needed to account for 70%-90% of the univariate variance of
Y given X = {N , S, N S, N A, SS} . In the SAS procedures FACTOR or PRIN-
COMP, the partial covariance or correlation matrix is analyzed using the PARTIAL
command.

5. In Example 8.2.2, we computed D2
i using Hawkin’s method to test for outliers using

the covariance matrix and α = 0.05. What happens if you use R? Discuss your
findings.

6. For the data in Example 8.2.2, calculate
(
Qi /̂θ1

)ho
using (8.2.16) to evaluate whether

any vector observation is an outlier.

8.3 Principal Component Analysis Examples

As an exploratory data analysis technique, principal component analysis may be used to
detect outliers, to uncover data structures that account for a large percentage of the total
variance, and to create new hypothetical constructs that may be employed to predict or
classify observations into groups. In the social sciences, PCA is often employed in the
analyses of tests or questionnaires. Often a test battery or a questionnaire is administered to
individuals to characterize and evaluate their behaviors, attitudes or feelings. PCA is used
to uncover complex dimensions of the instrument based on the total variance accounted
for by the constructs. Insight into the data set is achieved by analyzing either a sample
covariance or correlation matrix; when the scales of subtests are not commensurate, the
correlation matrix is used.

a. Test Battery (Example 8.3.1)

Shin (1971) collected data on intelligence, creativity and achievement for 116 students
in the eleventh grade in suburban Pittsburgh. The Otis Quick Scoring Mental Ability Test,
Guilford’s Divergent Productivity Battery, and Kropp and Stoker’s Lisbon Earthquake
Achievement Test were used to gather one IQ score, six creativity measures, and six achieve-
ment measures for each subject. In addition to the IQ variable (1), the variables included
in the creativity test were ideational fluency (2), spontaneous flexibility (3), associational
fluency (4), expressional fluency (5), originality (6), and elaboration (7). The achievement
measures were knowledge (8), comprehension (9), application (10), analysis (11), synthesis
(12), and evaluation (13). The correlation matrix for the study is presented in Table 8.3.1.

Program m8 3 1.sas was used to analyze the correlation matrix in Table 8.3.1 using
the SAS procedure FACTOR. The commands METHOD = PRIN and PRIORS = ONE
are required for a PCA. The keyword SCREE requests a scree plot. Coefficients in the
pattern matrix whose absolute value is larger than 0.40 are marked with an asterisk (∗).
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TABLE 8.3.1. Matrix of Intercorrelations Among IQ, Creativity, and Achievement Variables

Tests
1 1.00 (Sym)
2 .16 1.00
3 .32 .71 1.00
4 .24 .12 .12 1.00
5 .43 .34 .45 .43 1.00
6 .30 .27 .33 .24 .33 1.00
7 .43 .21 .11 .42 .46 .32 1.00
8 .67 .13 .27 .21 .39 .27 .38 1.00
9 .63 .18 .24 .15 .36 .33 .26 .62 1.00

10 .57 .08 .14 .09 .25 .13 .23 .44 .66 1.00
11 .59 .10 .16 .09 .25 .12 .28 .58 .66 .64 1.00
12 .45 .13 .23 .42 .50 .41 .47 .46 .47 .37 .53 1.00
13 .24 .08 .15 .36 .28 .21 .26 .30 .24 .19 .29 .58 1.00

The output in Table 8.3.2 is formatted using the Output Delivery System (ODS) in SAS
and PROC FORMAT. The coefficients are rounded and multiplied by 100 (Version 8 no
longer supports the ROUND and FLAG options available in Version 6.12).

Examination of the results in Table 8.3.2 indicates that the first component is a general
measure of mental ability where only one measure, ideational fluency, has a correlation
considerably lower than 50. The second component is bipolar, comparing low levels of
creativity with low levels of achievement. Note that the correlations of both synthesis and
evaluation with component two are low. This second component could be termed verbal
creativity. The third component compares higher levels of creativity and achievement with
lower levels of creativity and achievement; thus, component three is a higher-level cognitive
component consisting of high levels of creativity and achievement.

Since the total variance acquired by the three components is only 64.4% using the com-
ponents for data reduction is not too meaningful. The analysis does lead to a better under-
standing of creativity, achievement, and intelligence variables in an experimental setting in
that, perhaps creativity may be considered a learning aptitude that might affect the relation-
ship between achievement and general intelligence.

PROC FACTOR retained only those components with sample eigenvalues larger than 1.
Note that the correspondences scree plot in Figure 8.3.1 has an elbow between the third
and fourth roots or possibly between the fourth and fifth roots. A researcher should not be
bound by a strict rule for determining the number of components, but allow flexibility in
PCA. In this example, with a fourth component, over 70% of the total variance is accounted
for in the sample and a natural interpretation can be given the fourth component.

b. Semantic Differential Ratings (Example 8.3.2)

Di Vesta and Walls (1970) studied mean semantic differential ratings given by fifth-grade
children for 487 words. The semantic differential ratings were obtained on the follow-
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TABLE 8.3.2. Summary of Principal-Component Analysis Using 13× 13 Correlation Matrix

Components
Tests 1 2 3

1 (IQ) 79∗ −22 14
2 (Ideational fluency) 36 62∗ 52∗
3 (Spontaneous flexibility) 47∗ 56∗ 54∗
4 (Associational fluency) 45∗ 34 −55∗
5 (Expressional fluency) 66∗ 38 −07
6 (Originality) 50∗ 36 −02
7 (Elaboration) 59∗ 18 −34
8 (Knowledge) 75∗ −23 08
9 (Comprehension) 76∗ −34 22

10 (Application) 64∗ −48∗ 21
11 (Analysis) 71∗ −48∗ 13
12 (Synthesis) 76∗ 04 −36
13 (Evaluation) 51∗ 09 −46∗

Eigenvalues 5.11 1.81 1.45
Percentage of total variance 39.3 13.9 11.2
Cumulative percentage of 39.3 53.2 64.4

total variance
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FIGURE 8.3.1. Scree Plot of Eigenvalues Shin Data
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TABLE 8.3.3. Intercorrelations of Ratings Among the Semantic Differential Scale

Scale
1 1.00 (Sym)
2 .95 1.00
3 .96 .98 1.00
4 .68 .70 .68 1.00
5 .33 .35 .31 .52 1.00
6 .60 .63 .61 .79 .61 1.00
7 .21 .19 .19 .43 .31 .42 1.00
8 .30 .31 .31 .57 .29 .57 .68 1.00

TABLE 8.3.4. Summary of Principal-Component Analysis Using 8× 8 Correlation Matrix

Components
Variables 1 2 3

1 (Friendly/Unfriendly) 87∗ −42∗ −13
2 (Good/Bad) 88∗ −42∗ −10
3 (Nice/Awful) 87∗ −44∗ −15
4 (Brave/Not Brave) 89∗ 10 07
5 (Big/Little) 58∗ 26 72∗
6 (Strong/Week) 86∗ 19 22
7 (Moving/Still) 49∗ 70∗ −29
8 (Fast/Slow) 61∗ 61∗ −32

Eigenvalues 4.76 1.53 .81
Percentage of total variance 59.6 19.1 10.1
Cumulative percentage of 59.6 78.7 88.8

total variance

ing eight scales: friendly/unfriendly (1), good/bad (2), nice/awful (3), brave/not brave (4),
big/little (5), strong/weak (6), moving/still (7), and fast/slow (8). Table 8.3.3 shows the
intercorrelations among mean semantic differential ratings for one list of 292 words.

Using program m8 3 2.sas, the correlation matrix in Table 8.3.3 is analyzed. To extract
three components, the statement NFACT = 3 is needed. The output is provided in Table
8.3.4. The first component in Table 8.3.4 represents an overall response-set component of
the subjects to the list of words. The second component is bipolar, comparing evaluative
behavior (friendly/unfriendly, good/bad, and nice/awful) with activity judgements (mov-
ing/still and fast/slow). The third component is dominated by fourth variable (big/little),
with a weight of 72∗, and may be termed a size component. Again, coefficient larger than
0.40 in absolute value are output with an asterik (∗).

Often components are rotated using an orthogonal matrix T of weights, even though the
maximum variance criterion is destroyed by such transformations. This is done because be-
ing able to interpret the “rotated” components is more important than preserving maximum
variance. In SAS, rotation is accomplished using the statement ROTATE = VAXIMAX. For
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TABLE 8.3.5. Covariance Matrix of Ratings on Semantic Differential Scales

Scale
1 1.44 (Sym)
2 1.58 1.93
3 1.55 1.83 1.82
4 .61 .73 .69 .56
5 .23 .28 .24 .23 .34
6 .56 .68 .64 .46 .28 .61
7 .19 .20 .17 .24 .13 .25 .56
8 .21 .25 .24 .24 .10 .25 .29 .33

TABLE 8.3.6. Summary of Principal-Component Analysis Using 8× 8 Covariance Matrix

Components
Variables 1 2

1 (Friendly/Unfriendly) 97∗ -13
2 (Good/Bad) 98∗ −12
3 (Nice/Awful) 98∗ −16
4 (Brave/Not Brave) 78∗ 42∗
5 (Big/Little) 41∗ 47∗
6 (Strong/Weak) 72∗ 51∗
7 (Moving/Still) 28 79∗
8 (Fast/Slow) 41∗ 70∗

Eigenvalues 5.76 .95
Percentage of total variance 75.6 12.5
Cumulative percentage of 75.6 88.4

total variance

this example, rotation does not facilitate interpretation. Rotation is discussed in more detail
in Section 8.9.

We also analyzed the sample covariance matrix for the data presented in Table 8.3.5.
The output is provided in Table 8.3.6. Comparing the component analysis using S, with the
analysis using R, we note that used only two components are required to account for the
same proportion of variance in the sample using R. The first component is again a general
response-set component, but in this case it is dominated by evaluation behavior. The second
component is an activity component.

Using the first two eigenvectors of |S− λI| = 0, the first two components are represented
by

C1 = .484
(
y1 − y1

)+ .568
(
y2 − y2

)+ .550
(
y3 − y3

)+ .243
(
y4 − y4

)
+ .100

(
y5 − y5

)+ .232
(
y6 − y6

)+ .087
(
y7 − y7

)+ .097
(
y8 − y8

)
C2 = −.156

(
y1 − y1

)− .178
(
y2 − y2

)− .218
(
y3 − y3

)+ .323
(
y4 − y4

)
+ .284

(
y5 − y5

)+ .409
(
y6 − y6

)+ .610
(
y7 − y7

)+ .415
(
y8 − y8

)
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FIGURE 8.3.2. Plot of First Two Components Using S

for the raw data matrix given by Di Vesta and Walls.
After a PCA, it is often helpful to plot the structure matrix in the component space.

This allows evaluation of those variables that tend to be associated with one another. For
example, using the matrix S in the Di Vesta and Walls study, Figure 8.3.2 shows such a
plot. Inspection of the plot indicates that variables 1, 2, and 3, here represented as A, B,
and C, form a cluster while the rest of the variables do not form a distinct cluster. In PROC
FACTOR, the plot is obtained by using the NPLOT statement.

c. Performance Assessment Program (Example 8.3.3)

This example examines the impact of a Performance Assessment Program (PAP). A ques-
tionnaire was designed to evaluate the positive and negative impact that the Program had
on a teachers’ instructional and assessment methods. The goal of the PAP questionnaire,
administered to 265 teachers in elementary school in grades 3, 5, and 8, was to “measure”
the following five constructs, Hansen (1999).

1. Teachers’ support for the PAP.

2. Teachers’ emphasis on outcomes/change in instruction and assessment.

3. Teachers’ familiarity with PAP.

4. PAP’s impact on instruction/assessment.

5. PAP’s impact on professional development.
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The PAP questionnaire consisting of items on a four-point Likert Scale, was developed
to provide information on the five dimensions. The mean responses of the teachers were
calculated from responses to items to create scales. There were eight variables for the five
scales: General and Instructional Support (SUPPG, SUPPI), Assessment and Instructional
Emphasis and change (ASMTE, ASMTC), Familiarity (FAM), PAP Impact (PAP), and
Professional Development Support Activity and Amount (PROF1, PROF2). The primary
goal of the study was to determine whether the eight variables measured the five dimen-
sions. Because the dimensions are not directly measurable, but are latent traits, one might
employ the factor analysis method to analyze the data. More will be said about this ap-
proach later in this chapter and in Chapter 10. Because the variables were created from
mean responses over items on a Likert scale, the covariance matrix in Table 8.3.7 is used
in the PCA.

Program m8 3 3.sas is used to analyze the covariance matrix in Table 8.3.7. Using the
criterion that at least 70% of the variance must be accounted for by the components, the
three components given in Table 8.3.8 were obtained using the sample covariance matrix.

The pattern matrix shows that three components may account for over 70% of the vari-
ance; however, the analysis does not reveal the five dimensions in the PAP study. These
data will be reanalyzed using confirmatory factor analysis in Chapter 10 and exploratory
factor analysis discussed in Section 8.9.

Instead of analyzing S, suppose we chose to analyze R for these data. The output is
provided in Table 8.3.9.

Note that both solutions account for about 70% of the variance, the factor patterns for the
two matrices are very different and neither recover the five dimensions in the questionnaire.

Exercises 8.3

1. Using a random sample of 502 twelfth-grade students from the Project Talent survey
(supplied by William W. Cooley at the University of Pittsburgh), data were collected
on 11 tests: (1) general information test, part 1, (2) general information test, part II,
(3) English, (4) reading comprehension, (5) creativity, (6) mechanical reasoning, (7)
abstract reasoning, (8) mathematics, (9) sociability inventory, (10) physical science
interest inventory, and (11) office work interest inventory. Tests (1) through (5) were
verbal ability tests, tests (6) through (8) were nonverbal ability tests, and tests (9)
through (11) were interest measures (for a description of the variables, see Cooley
and Lohnes, 1971). The correlation matrix for the 11 variables and 502 subjects is
given in Table 8.3.10. Use PCA to reduce the number of variables in Table 8.3.9 and
interpret your findings.

2. For the protein consumption data in the file protein.dat, described in Example 9.4.1,
use the covariance matrix and correlation matrix for the food groups to reduce the
consumption variables to a few components. Can you name the components and
determine whether the variables tend to cluster by food group for both the covariance
matrix and correlation matrix? Discuss you findings.
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TABLE 8.3.7. PAP Covariance Matrix

Variable

SUPPG 0.39600 (Sym)
SUPPI 0.24000 0.44100
ASMTE 0.03310 0.04383 0.21400
ASMTC 0.03983 0.05242 0.12200 0.24400
FAM 0.09002 0.08361 0.08825 0.08792 0.360
PAP 0.12700 0.15700 0.11300 0.11900 0.208 0.365
PROF1 0.06587 0.09230 0.09137 0.09284 0.200 0.197 0.480
PROF2 0.10800 0.14000 0.11000 0.06940 0.175 0.184 0.199 0.634

TABLE 8.3.8. Component Using S in PAP Study

Components
Variables 1 2 3
Supp 1 52∗ 69∗ 01
Supp 2 58∗ 68∗ −02
Asmt 1 50∗ −21 17
Asmt 2 45∗ −14 34

Fam 70∗ −22 28
Impt 78∗ −02 28

Prof 1 68∗ −35 30
Prof 2 72∗ −23 −65∗

Eigenvalues 1.3041 0.5193 0.4034
% Variance 41.6 16.6 12.9
Cumulative 41.6 58.2 71.1

TABLE 8.3.9. PAP Components Using R in PAP Study

Components
Variables 1 2 3
Supp 1 51∗ 69∗ 21
Supp 2 55∗ 66∗ 20
Asmt 1 61∗ −43∗ 41∗
Asmt 2 58∗ −40∗ 54∗

Fam 72∗ −13 −34
Impt 81∗ −01 −06

Prof 1 65∗ −18 −42∗
Prof 2 60∗ −02 −35

Eigenvalues 3.2362 1.3151 0.9570
% Variance 40.1 16.4 12.0
Cumulative 40.5 56.9 68.9
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TABLE 8.3.10. Project Talent Correlation Matrix

Scale
1 1.000 (Sym)

2 .861 1.000
3 .492 .550 1.000
4 .698 .765 .613 1.000
5 .644 .621 .418 .595 1.000
6 .661 .519 .160 .413 .522 1.000
7 .487 .469 .456 .530 .433 .451 1.000
8 .761 .649 .566 .641 .556 .547 .517 1.000
9 −.011 .062 .083 .021 .001 −.075 .007 .030 1000

10 .573 .397 .094 .275 .340 .531 .202 .500 .055 1.000
11 −.349 −.234 .109 −.087 −.119 −.364 −.079 −.191 .084 −.246 1.000

8.4 Statistical Tests in Principal Component Analysis

Distributional assumptions are not required when using principle component analysis as
an exploratory data analysis tool to improve ones understanding of a set of p variables.
However, to use PCA as a quasi-confirmatory procedure, tests of hypotheses and confidence
intervals for population roots and vectors may be of interest. To perform statistical tests,
we assume that the n p-vectors are sampled from a MVN distribution, Yi ∼ Np (µ, �).

a. Tests Using the Covariance Matrix

Using a result due to Anderson (1963) and Girshick (1939), one may construct confidence
intervals for the eigenvalues of �. They showed that as n −→∞

λ j − λ̂ j

λ j
√

2/ (n − 1)
d−→ I N (0, 1) for j = 1, 2, . . . , p (8.4.1)

where the sample variance of λ̂ j ≈ λ j
√

2/ (n − 1). Solving (8.4.1) for λ j , an approximate
100 (1− α)% confidence interval for λ j is

λ̂ j

1+ Z1−α/2
√

2/ (n − 1)
≤ λ j ≤ λ̂ j

1− Z1−α/2
√

2/ (n − 1)
(8.4.2)

where Z1−α/2 is the upper α/2 critical value for a standard normal variate provided in Table
I in Appendix A. To control the overall error rate at some nominal level α, one may use
the Bonferroni or Šidák inequalities to adjust the α-level for each root to obtain confidence
sets for k ) p roots. For example, one may use Z1−α∗/2 where α∗ = α/k and α = 0.05.
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If the multiplicity of λ j is m in the population, Anderson (1963) showed that an approx-
imate confidence interval for λ j is

λ

1+ Z1−α/2
√

2/ (n − 1)m
≤ λ j ≤ λ

1− Z1−α/2
√

2/ (n − 1)m
(8.4.3)

where λ = ∑m
j=1 λ̂ j/m, the sample mean of the estimates of the roots with population

multiplicity m.
Using (8.4.3), one may construct a confidence interval for the population average µλ =∑p
j=1 λ j/p estimated by λ. Clearly, as n −→∞

λ− µλ

µλ

√
2/p (n − 1)

d−→ N (0, 1) (8.4.4)

so that a 100 (1− α)% confidence interval for the “average” root criterion is

λ

1+ Zα/2
√

2/p (n − 1)
≤ µλ ≤

λ

1− Zα/2
√

2/p (n − 1)
(8.4.5)

Example 8.4.1 For the Di Vesta and Walls’ data, an approximate confidence interval for
the first eigenvalue is

5.774

1+ 1.96
√

2/191
≤ λ1 ≤ 5.774

1− 1.96
√

2/291

4.97 ≤ λ1 ≤ 6.89

Using (8.4.5), a 95% confidence interval for µλ is

31.449

1+ 1.96
√

2/8 (191)
≤ µλ ≤

31.449

1− 1.96
√

2/8 (191)

28.06 ≤ µλ ≤ 35.76

Using (8.2.39) to retain components, one may want to choose λ in the interval for µλ.

If some of the elements of p j are near zero in the population, one may want to test that
the population covariance loading vector has a specified value poj . To test the hypothesis

H : p j = poj (8.4.6)

for the j th distinct root, when all the roots are distinct
(
λ1 > λ2 > . . . > λp

)
, we may again

use a result due to Anderson (1963). He shows that
√

n − 1
(̂
p j − poj

)
has a limiting MVN

distribution with mean zero and covariance matrix

p∑
j=1
j �= j ′

[
λ j ′λ j(

λ j ′ − λ j
)2

]
p j p′j ′ (8.4.7)
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Anderson showed that

X2 = (n − 1)
(̂
λ j p′oj S

−1poj + λ̂
−1
j p′oj Spoj − 2

)
(8.4.8)

converges asymptotically to a χ2 distribution, when H is true, with v = p − 1 degrees
of freedom. Thus, the null hypothesis in (8.4.6) is rejected at some level α if X2 >

χ2
1−α (p − 1). Again, one must adjust the size of the test if one is interested in more than

one eigenvector.
Testing that the eigenvectors in (8.4.6) have a specified value is only valid if the roots

λ j are distinct. Anderson (1963) developed a test to determine whether the roots are dis-
tinct. Before addressing this problem, recall that if a covariance matrix � = σ 2I then
σ 2

1 = σ 2
2 = . . . = σ 2

p = σ 2 or equivalently λ1 = λ2 = . . . = λp = λ so that the rank
of � or its dimensionality is one. This is the test of sphericity (3.8.27) discussed in Chap-
ter 3. Replacing |S| = ∏

i λ̂i and tr (S) /p = λ, the test criterion becomes, using Bartlett’s
correction,

X2 = [
(n − 1)− (

2p2 + p + 2
)
/6p

] [
p log λ− log

∏p
j=1 λ̂ j

]
.∼ χ2 [(p − 1) (p + 2) /2]

(8.4.9)

Rejecting the sphericity hypothesis, some subset of the σ 2
i may remain equal or equiv-

alently some subset of m adjacent roots may be equal. Anderson (1963) considered the
problem of testing the equality of any subset of adjacent roots being equal when he de-
veloped the test of (8.4.6). This includes the test that all roots are equal or that only the
smallest m = p − k roots are equal. Modifying Anderson’s procedure following Bartlett,
the hypothesis

H : λk+1 = λk+2 = . . . = λk+m (8.4.10)

that any m roots of � are equal may be tested using

X2 =
[
(n − k − 1)−

(
2m2 + m + 2

)
/6m

](
m log λ−

k+m∑
j=k+1

log λ̂ j

)
(8.4.11)

where

λ =
k+m∑
j=k+1

λ̂ j/m (8.4.12)

When (8.4.10) is true, X2 converges to a chi-square distribution with

v = (m − 1) (m + 2) /2

degrees of freedom. When k = 0, the test reduces to Bartlett’s (1954) test of sphericity. If
k + m = p or m = p − k, (8.4.11) reduces to the criterion proposed by Bartlett (1950,
1954) and Lawley (1956) for testing the equality of the last p − k roots

H : λk+1 = λk+2 = . . . = λp (8.4.13)
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Using Lawley’s (1956) correction factor, the test of (8.4.13) becomes

X2 =
{
(n − k − 1)−

(
2m2 + 2m + 2

)
/6m

+
k∑

j=1

(
λ/λ j − λ

)2
}[

m log λ−
p∑

j=k+1
log λ̂ j

]
(8.4.14)

where m = p − k which is similar to the factor suggested by Lawley in testing for dimen-
sionality in discriminant analyses. James (1969) confirmed Lawley’s result, but claims it
may be conservative.

Given that one ignores p − k = m components, one may want to evaluate whether the
proportion of total univariate variance as defined in (8.2.19) is larger than ρo

H : ρ2
k ≥ ρo (8.4.15)

for k = 1, 2, . . . , p and 0 < ρo < 1. Letting

R2
k =

k∑
j=1

λ̂ j/ tr (S)

σ 2 = 2

[
ρ2

o

k∑
j=1

λ2
j +

(
1− ρo

)2
p∑

j=k+1
λ2

j

]
/ tr (�)

(8.4.16)

Fujikoshi (1980) shows that

√
n
(

R2
k − ρo

)
d−→ N

(
0, σ 2

)
(8.4.17)

Substituting sample estimates for population parameter an approximate test of (8.4.15)
results.

Example 8.4.2 Employing Dr. Di Vesta and Walls’ data, the sample roots of S are

λ̂1 = 5.7735 λ̂4 = 0.1869 λ̂7 = 0.0803

λ̂2 = 0.9481 λ̂5 = 0.1167 λ̂8 = 0.0314

λ̂3 = 0.3564 λ̂6 = 0.0967

To test the hypothesis Ho : λ2 = λ3 versus H1 : λ2 �= λ3, k = 1 and m = 2. Hence,
formula (8.4.11) becomes

X2 =
[
(292− 1− 1)− 2 (2)2 + 2+ 2

6 (2)

]
(2 log 0.6523− log 0.9481− log 0.3564)

= 289 (−.8547+ .05330+ 1.0317)

= 66.56

Since v = (m − 1) (m + 2) /2 = 2, the critical value for the test is χ2
1−α (2) = 5.991 for

α = 0.05. Thus, λ2 �= λ3 so that the directions of λ2 and λ3 are distinct.
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Replacing (n − 1) with N = n − q − 1 where q is the number of fixed covariates, tests
of the roots and vectors of

∣∣�y.x − θI
∣∣ = 0 given X, follow directly.

b. Tests Using a Correlation Matrix

General tests regarding the population correlation matrix Pρ and the roots and vectors of∣∣Pρ − δI
∣∣ = 0 are complex. In Chapter 3 we developed a test of independence which we

showed was equivalent to testing the null hypothesis that the population correlation matrix
equals I, H : Pρ = I. We also showed how one may test that � = σ 2 [(1− ρ) I+ρJ], has
equal variances and equal covariances, i.e. that � has compound symmetry structure. To
test the equivalent hypotheses using a correlation matrix

H : Pρ = (1− ρ) I+ ρJ

H : ρi j = ρ for i �= j

H : δ2 = δ3 = . . . = δ p

(8.4.18)

is more complicated. Bartlett (1950, 1951, 1954), Anderson (1963), Lawley (1963) and
Aitken, Nelson and Reinfort (1968) suggested tests of (8.4.18). Gleser (1968) showed that
only Lawley’s test is asymptotically independent of ρ. For p ≤ 6 Lawley’s statistic con-
verges to a chi-square distribution for n as small as 25 (Aitken, et al., 1968).

Lawley’s statistic to test H defined in (8.4.18) is

X2 = n − 1

λ2

[∑∑
i < j

(
ri j − r

)2 − v
∑
k
(rk − r)2

]
(8.4.19)

where

rk =
∑p

i<k rik

p − 1
, r = 2

∑
i< j ri j

p (p − 1)

v = (p − 1)2
(

1− λ2
)
/
[

p − (p − 2) λ2
] (8.4.20)

and λ = 1−ρ is substituted into (8.4.20) for ρ given in (8.4.18). Under H, X2 d−→ χ2 (v)

where v = (p + 1) (p − 2) /2.
The test statistic in (8.4.19) is used to test that the dimensionality of Pρ is one. To test

the hypotheses that the smallest m = p − k roots are equal

H : δk+1 = δk+2 = . . . = δ p (8.4.21)

is more complicated. Lawley (1956) suggested a very approximate procedure provided
δ1, δ2, . . . , δk are large and δ = ∑p

j=k+1 δ j/m is small, a condition that is difficult to
verify. Lawley’s test statistic is

X2
k =

{
(n − k − 1)−

(
2m2 + 2m + 2

)
/6m +

k∑
j=1

(
δ/̂δ j − δ

)2
}[

m log δ −
p∑

j=k+1
log δ̂ j

]
(8.4.22)
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Under H with m = p − k and δk & δ, X2
k

d−→ χ2 (v) with v = (m − 1) (m + 2) /2
provided the ratio n/p ≈ 10, n > 100 and k ≤ 4. When this is not the case, an improved
approximation developed by Schott (1988) may be used. Schott approximates the distri-
bution of X2

k by cχ2
d where c and d are estimated by using the first two moments of X2

k .
An alternative may be to obtain the adjustment using the bootstrap procedure suggested by
Rocke (1989). Schott (1991) has also developed a test that an eigenvector of a population
correlation matrix Pρ has a specified value.

Exercises 8.4

1. For the covariance matrix given in Example 8.2.1, do the following.

(a) Find an appropriate 95% confidence interval for the first eigenvalue. How would
you use this to test the hypothesis that the first eigenvalue has a specified vari-
ance?

(b) Test the hypothesis H0 : λ2 = λ3 that the last two eigenvalues are equal.

(c) Using α = .05, test the hypothesis H0 : � = �0 that � has a specified value,
if �0 is defined by

�0 =
 40.43

9.38 10.40
30.33 7.14 30.46


2. For the sample correlation matrix given by

R =
 1.000

.586 1.000

.347 .611 1.000


constructed from N = 101 observations, do each of the following.

(a) Test the hypothesis H0 : ρi j = ρ, for an i �= j , using α = .05.

(b) If the test in part a is accepted, test the equality of the last two roots, H0 : δ2 =
δ3.

(c) The matrix R appears to have simplex form 1
ρ 1
ρ2 ρ 1


with ρ = .6. Using α = .05, test the hypothesis that

P =
 1.00

.60 1.00

.36 .60 1.00

 .
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3. For a sample correlation matrix of rank 10 computed from 500 observations, the
following sample eigenvalues were obtained: δ̂i = 2.969, 1.485, 1.230, .825, .799,
.670, .569, .569, .555, .480, .439. Test the hypothesis that the last six roots are equal,
H : δ5 = δ6 = . . . = δ10.

8.5 Regression on Principal Components

In a MR model, the elements of B̂ = [
β̂1, . . . , β̂ p

]
become numerically unstable when X′X

is singular leading to large standard errors of estimate; this is termed multicollinearity. To
reduce the effect of multicollinearity, one may remove variables, locate outliers, or perform
some type of modified regression procedure like ridge regression, Hoerl and Kennard (1970
a, b). Another alternative is to replace the independent variables with a fewer number of
uncorrelated PCs. The advantage of this method over non standard regression alternatives
is that classical tests of significance may be performed on the reparameterized model.

When analyzing growth curves, B̂ and the cov(vec B̂) depend on S−1 so that as S−1

becomes unstable for highly correlated dependent variables, the standard errors of elements
of B̂ may become unstable even though (X′X)−1 is well behaved. To correct this situation,
Rao (1948) suggested replacing the original variables with PCs.

While the MR model does not take into account the correlation that exists among the
dependent variables, a more serious problem occurs when the number of variables p > n
and the number of elements in B is large. To correct this situation, one may fit a reduced-
rank MR model to Y, Reinsel and Velu (1998). Alternatively, one may reduce the number
of variables by replacing Y with PCs, Dempster (1969, p. 241).

Given a MR model Y = XB + E, recall that the cov(vec B̂) = � ⊗ (
X′X

)−1 so that
the elements of B̂ will have large standard errors under multicollinearity. Reparameterizing
the MR model, suppose we replace X with the PCs Z = XP̂ where P̂ diagonalizes X′X,
P̂′

(
X′X

)
P = �. Then, writing the MR model in terms of PCs, the PC regression model

becomes

Y = ZP′B+ E

= ZB∗ + E
(8.5.1)

Then,

B̂∗ = (
Z′Z

)−1 Z′Y = �̂−1Z′Y

cov(vec B̂∗) = �⊗ (
Z′Z

)−1 = � ⊗�−1
(8.5.2)

so that using PCs as independent variables, instability is immediately seen when one or
more of the eigenvalues λi are small. To correct this situation, one may replace X by a few
components. Because the components were obtained independent of Y, the first k compo-
nents may not be “best” subset. Thus, one may want to utilize some stepwise procedure
to obtain a subset of components that maximizes prediction and reduces multicollinearity,
Dempster (1963) and Jackson (1991).
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a. GMANOVA Model

In formulating the GMANOVA model

Y
n×p
= X

n×k
B

k×q
Q

q×p
+ E

n×p
(8.5.3)

the ML estimate of B under normality is

B̂ = (
X′X

)−1 X′YS−1Q′
(

QS−1Q′
)−1

(8.5.4)

and the covariance matrix of B̂ is

cov(vec B̂) = n − k − 1

n − k − 1− (p − q)

(
X′X

)−1 ⊗
(

QS−1Q′
)−1

(8.5.5)

as shown by Rao (1967) and Grizzle and Allen (1969). Hence, if S−1 is unstable due to
highly correlated variables and (X′X) is ill-conditioned, the standard errors of B̂ may be
large. To correct this situation, let P̂ be the eigenvectors of Y′Y and since S is a rescaling
of Y′Y

(n − k − 1) S = Y′(I− X
(
X′X

)−1 X′)Y (8.5.6)

the eigenvectors of S and Y′Y are the same. Letting �̂ be the eigenvalues of S and Z = YP̂,
one may reparameterized (8.5.3) to the principal component model

YP̂ = XBQP̂+ EP̂

Z = XBQP̂Eo
(8.5.7)

by postmultipling (8.5.3) by P̂ and setting Eo = EP̂. Then, since P̂ orthogonalizes S,
the cov Z = P�P′ and S−1 = P̂�−1P̂′. To stabilize Y, one may replace the dependent
variables by a subset of PCs.

One may also apply this procedure to the MR model by replacing Y with a set of uncor-
related components. Then, one may fit a regression model to each variable, one at a time
using different design matrices as an alternative to the SUR model. Another option is to
regress the components (one at a time) on the set of X variables simultaneously. Or, one
may fit all component Ci and X1, X2, . . . , Xk simultaneously, a variation of latent root
regression, Gunst, Webster and Mason (1976).

b. The PCA Model

Most authors do not associate a model with PCA. If Y is a random vector and Z = P′Y is
a PC, we have the identity that

Y = PZ = PP′Y (8.5.8)

Replacing P with k ) p eigenvectors, observe that

Y = PkP′kY+ e

Y = ABY+ e
(8.5.9)
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where A = Pk, B = P′k and the rank of C = AB is k ) p. This is the reduced-rank
multivariate regression model. Letting Ỹ = ABY, then Y = Ỹ + e so that the analysis of
residuals in PCA is a reduced-rank MR model, Reinsel and Velu (1998, p. 36).

8.6 Multivariate Regression on Principal Components
Example

To illustrate multivariate regression on principal components, data from Smith, Gnanade-
sikan and Hughes (1962) are utilized. The data are biochemical measurements on urine
samples of men. The variables measured are

y1 = pH, y8 = chloride (mg/ml),

y2 = modified createnine coefficient, y9 = bacon (µ g/ml),

y3 = pigment createnine, y10 = choline (µg/ml),

y4 = phosphate (mg/ml), y11 = copper (µg/ml),

y5 = calcium (mg/ml), x1 = volume (ml),

y6 = phosphours (mg/ml), x2 = (specific gravity− 1)× 103

y7 = createnine (mg/ml), x3 = weight

for n = 45 patients. The data were used in Chapter 4 to illustrate the analysis of a one-way
MANCOVA design with two covariates and are provided in the file SGH.dat. The weight
variable was used to classify the patients into four groups. To illustrate multivariate regres-
sion on principal components, we hypothesize a reverse regression model, X = YB + E,

using the eleven dependent variables to predict the three independent variables. This de-
sign leads to an ill-conditioned

(
Y′Y

)−1 matrix. In particular, the variance inflation factor
of 13.98 on variable y6 is evidenced in the output of program m8 6 1.sas. Instead of mod-
ifying the set of predictor variables, we perform a PCA on the covariance matrix of the
prediction variables. We have chosen to retain the first four components that account for
97% of the variance. The SCORE parameter on the PROC FACTOR statement informs
the SAS procedure to save the coefficients in the work SAS data set using OUTSTAT. The
SAS procedure SCORE is used to calculate component scores which are output to the SAS
data set WORK.SCORE and printed. Finally, we regress x1, x2, and x3 on the four new
orthogonal principal components. Alternatively, we may use the program MulSubSel to se-
lect the best subset of principal components for the MR model as illustrated in Section 4.3.
While we have lost some predictive power by using the four components, the model is
better behaved. We have a model that is no longer ill-conditioned with reasonable predic-
tive capability. Wilks’ � criterion for regression on the original variable had a value of
� = 0.01086, so that η2 = 1−� = 0.99. For regression on the PCs, Wilks’ � = 0.09966
and η2 = 0.90, a small reduction in η2.

We have chosen to illustrate the development of a regression model on PCs using PROC
FACTOR. One may also use the PROC PRINCOMP for the analysis.
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Exercises 8.6

1. Use variables y3, y4, y6 y7 and y10 and x1 and x2, to develop a multivariate principal
components regression model.

2. Reversing the roles of y1 and x1 in Problem 1, develop a model to predict Y given X.

8.7 Canonical Correlation Analysis

PCA is used to investigate one set of variables with or without covariates. The original
variables are replaced by a set of variates called principal components. The components
are created to account for maximal variation among the original variables.

A generalization of PCA, developed by Hotelling (1936), is canonical correlation anal-
ysis (CCA). The method was developed to investigate relationships between two sets of
variables with one or more sets of covariates.

In CCA one is interested in investigating relationships between two sets of variables
Y′ = [

Y1,Y2, . . . ,Yp
]

and X′ = [
X1, X2, . . . , Xq

]
. In addition one may also have sets

of covariates Z′ = [Z1, Z2, . . . , Zr ] and W′ = [W1, W2, . . . , Ws]. More will be said about
the inclusion of covariates later in this section. The goal of CCA as developed by Hotelling
(1936) is to construct two new sets of canonical variates U = α′Y and V = β ′X that are
linear combinations of the original variables such that the simple correlation between U
and V is maximal, subject to the restriction that each canonical variate U and V has unit
variance (to ensure uniqueness, except for sign) and is uncorrelated with other constructed
variates within the set.

Canonical correlation analysis may be used to determine whether two sets of variables
are independent assuming multivariate normality. As an exploratory tool, it is used as a
data reduction method. Given a large number of variables, one may want to locate a few
canonical variates in each set to study and reconstruct the intercorrelations among the vari-
ables. For example, given a set of ability variables and a set of personality variables, the
object of the study may be to determine what sort of personality traits may be associated
with various ability domains.

In this section we will present a general overview of the basic theory of CCA, consider
some extensions when covariates are included, develop tests of hypotheses, and discuss the
interpretation of canonical variates using redundancy analysis. Extensions of CCA to sev-
eral groups is discussed by Gnanadesikan (1997) while Gittens (1985) provides a general
overview of CCA with several applications. The topic is also treated by Basilevsky (1994).
CCA with linear constraints for continuous and discrete data is discussed by Yanai and
Takane (1992) and Böckenholt and Böckenholt (1990).

a. Population Model for CCA

Given two sets of variables Y′ = [
Y1, Y, . . . ,Yp

]
and X′ = [

X1, X2, . . . , Xq
]

with as-
sociated covariance, matrices �yy and �xx where s = min (p, q), one goal of CCA
is to identify canonical variates U = α′Y and V = β ′X such that the correlation be-
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tween U and V is maximal. Letting the population covariance matrix for the joint vector
(Y1,Y2, . . . ,Yp, X1, X2, . . . , Xq) =

(
Y′,X′

)
be defined as

� =
 �yy �yx

�xy �xx

 (8.7.1)

the correlation between U and V is

ρU V =
α′�yxβ√(

α′�yyα
) (
β ′�xxβ

) (8.7.2)

Because ρU V involves the canonical variates U and V , it is called a canonical correlation.
Thus, the goal of CCA is to find canonical variates Ui = α′i Y and Vi = β ′i X for i =

1, 2, . . . , s such that the set of variates Ui are uncorrelated and the set of variates Vi are
uncorrelated, each having unit variance

cov
(
Ui , U j

) = cov
(
Vi , Vj

) = {
1 i = j

0 i �= j

Furthermore, the covariance or correlation between Ui and Vi is ρi , for i = 1, 2, . . . , s and
0, otherwise

cov (Ui , Vi ) = cov (Ui , Vi ) = ρi i = 1, 2, . . . , s

cov (Ui , Vi ) = cov
(
Ui , Vj

) = 0 i �= j

Thus, if U1, U2 (p = 2) and V1, V2 and V3 (q = 3) are canonical variates, the correlation
matrix for U′ = [U1, U2] and V′ = [V1, V2, V3] has the form

U1 U2 V1 V2 V3

U1

U2

V1
V2
V3



1

0
· · ·
ρ1
0
0

0

1
· · ·
0
ρ2
0

...

...

· · ·
...
...

ρ1

0
· · ·
1
0
0

0

ρ2
· · ·
0
1
0

0

0
· · ·
0
0
1


=

 Ip
... �

· · · · · · · · ·
�′

... Iq



To maximize (8.7.2), we assume that both �yy and �xx are positive definite and let

�
1/2
yy and �

1/2
xx be the square root matrices of �yy and �xx , respectively. Without loss of

generality we assume p ≤ q (if this is not the case, the role of X and Y are interchanged)
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and let α̃ = �
−1/2
yy α and β̃ = �

−1/2
xx β. Then from (8.7.2) we must find α and β to maximize

the

cov
α,β

(
α′Y,β ′X

)2 = (̃α′�−1/2
yy �yx�

−1/2
xx β̃)2(

α̃′α̃
)
(β̃
′
β̃)

Now, let φ = �
−1/2
yy �yx�

−1/2
xx so that

φφ′ = �
−1/2
yy �yx�

−1
xx �xy�

−1/2
yy and φ′φ = �

−1/2
xx �xy�yy�yx�

−1/2
xx .

Then by the Cauchy-Schwarz inequality (Theorem 2.3.4), (̃α′φβ̃)2 ≤ (
α̃′φφ′α

)
(β̂
′
β) and

since the roots of φφ′ are the same as φ′φ, the maximum of (8.7.2) may be obtained by
solving the eigenequations

∣∣φφ′ − ρ2I
∣∣ = 0 or

∣∣φ′φ − ρ2I
∣∣ = 0. In terms of the covariance

matrices, we may solve ∣∣∣�yx�
−1
xx �xy − ρ2�yy

∣∣∣ = 0∣∣∣�xy�
−1
yy �yx − ρ2�xx

∣∣∣ = 0
(8.7.3)

for s = min (p, q) = p < q roots ρ2
i . Using Theorem 2.6.7, let

[
a1, a2, . . . , ap

] = A
be the eigenvectors of the first equation and

[
b1,b2, . . . ,bq

] = B be the eigenvectors of
the second equation. Then A′�yyA = Ip and A′�yx�

−1
xx �xyA = �; and B′�xx B = Iq

and B′�xy�
−1
yy �yx B = �. The square root of the roots ρ2

i are the canonical correlations
between the orthogonal canonical variates Ui = α′i Y and the orthogonal variates Vi = β ′i X
for i = 1, 2, . . . , p. They have been constructed so that the canonical correlations ρ1 ≥
ρ2 ≥ . . . ≥ ρ p are maximal. The vector of canonical variates are defined as U = A′Y
and V = B′X. To avoid solving both equations in (8.7.3), the eigenvectors are related as
follows

αi = �−1
yy �yxβ i/ρi

β i = �−1
xx �xyαi/ρi

(8.7.4)

for i = 1, 2, . . . , p. The vectors αi and β i may be standardized to one, α′i�yyαi =
β ′i�xxβ i = 1, so that the variance of Ui and Vi are unity for i = 1, 2, . . . , p.

In applying PCA, a researcher had to establish the scale of measurement for the analysis.
This is not the case for CCA since the canonical correlations are invariant to changes in
location and scale; the CCA procedure is scale free. Thus, one may replace the covariance
matrices in (8.7.3) with population correlation matrices. The eigenvectors of the two are
related by the simple rescaling

ξ i =
(
diag�yy

)1/2
αi

δi = (diag�xx )
1/2 β i

(8.7.5)

where ξ i and δi are the eigenvectors of∣∣∣P−1/2
yy Pyx P−1

xx PxyP−1/2
yy − ρ2I

∣∣∣ = 0∣∣∣P−1/2
xx PxyP−1

yy Pyx P−1/2
xx − ρ2I

∣∣∣ = 0
(8.7.6)
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Letting C be the eigenvectors of the first equation in (8.7.6) and D be the eigenvectors of
the second, then

C′PyyC = Ip

D′Pxx D = Iq

C′Pyx D = �

(8.7.7)

Since D = P−1
xx PxyC, the population intercorrelation matrix has the factorization

Pyx = PyyC�D′Pxx

=
p∑

i=1
ρi Li M′i

(8.7.8)

where Li and Mi are column vectors of Pyy C and Pxx D, respectively. Thus, by selecting
k ) s = min (p, q) = p rescaled variates or factors, the correlations explained by k
factors are

Pyx (k) =
k∑

i=1
ρi Li M′i (8.7.9)

and the residual matrix is

Pyx − Pyx (k) =
p∑

i=k+1
ρi+1Li+1M′i+1 (8.7.10)

The residual matrix is zero if the rank of Pyx is k.
These observations suggest that one may employ CCA to study and recover the relation-

ship between Y and X by studying the structure and rank of Pyx , the matrix of intercorre-
lations. To formalize the relationship, a linear model is formulated for Y and X

Y
p×1
= µy + �y

p×k
f

k×1
+ ey

p×1

X
q×1
= µx + �x

q×k
f

k×1
+ ex

q×1

(8.7.11)

where f is a vector of unobserved hypothetical factors, ex and ey are random error vectors,
and �y and �x are matrices of regression weights of rank k ≤ p. Furthermore, we assume
that the elements of f are uncorrelated and have unit variance; and that ey, ex and f are
mutually uncorrelated with zero means

E (ex ) = E
(
ey

) = E (f) = 0

cov (f) = I

cov
(
f, ey

) = cov (f, ex ) = cov
(
ex , ey

) = 0

(8.7.12)

Then, standardizing Y and X to variables Zy and Zx , model (8.7.11) and our assumptions
imply that the population correlation matrices have the structure

Pyy = �y�
′
y +�1

Pxx = �x�
′
x +�2

Pyx = �y�
′
x and Pxy = �x�

′
y

(8.7.13)
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where the cov
(
ey

) = �1 and the cov (ex ) = �2. Furthermore, by Theorem 2.5.2, the rank
of Pyx = r

(
�y�

′
x

) ≤ k where k is the number of factors common to Y and X. We may
further assume that the rank of �y�

′
x is k. For if it is less than k model (8.7.11) may be

reformulated to have the number of common factors equal to the rank of Pyx .

In expression (8.7.8), the matrices L = PyyC and M = Pxx D represent the correlations
between the p variables and the canonical variates since

ρYU = cov (Y, U) = (
diag�yy

)−1/2
�yyA

= (
diag�yy

)−1/2
�yy

(
diag�yy

)−1/2 C

= PyyC

ρXV = cov (X, V) = (diag�xx )
−1/2 �xx B

= (diag�xx )
−1/2 �yy (diag�xx )

−1/2 D

= Pxx D

(8.7.14)

Thus, the vectors L1,L2, . . . ,Lk and M1,M2, . . . ,Mk fully recover Pyx for some k ≤ p
where k = r

(
Pyx

)
so that ρk+1 = . . . = ρ p = 0.

It is often the case that the first few canonical correlations ρ1, ρ1, ρ2, . . . , ρk are large
while the other ρk+1, ρk+2, . . . , ρ p are small, then most of the intercorrelation is ex-
plained by the first k components or factors. An index of how much the correlation structure
is explained by the first k canonical variates is

ρ2
k =

k∑
i=1

ρ2
i /

p∑
i=1

ρ2
i =

k∑
i=1

ρ2
i / tr(P−1/2

yy Pyx P−1
xx PxyP−1/2

yy ) (8.7.15)

If the r
(
Pyx

) = k, then ρ2
k = 1. Each ρ2

i is a measure of the proportion of variance of Ui

explained by Vi .
With the analysis of standardized variables, let Ui = c′i Zy and Vi = d′i Zx represent the

canonical variates. The standardized coefficients (loadings) are used to evaluate the con-
tribution or influence of each variable to a canonical variate. Converting the coefficients
to correlations (structure loadings) using (8.7.14), the contribution of each variable, ignor-
ing the other variables, to the canonical variate may be evaluated. These are conveniently
represented in Table 8.7.1 for k ≤ s = min (p, q) = p canonical variates.

R2 in each row is equal to 1 if k = p < q and is constructed from the inner product of
the row vectors in the structure matrix of correlations. Letting s (U1) , s (U2) , . . . , s (Uk)

represent the column vectors in Table 8.7.1 for domain Y and s (V1) , s (V2) , . . . , s (Vk)

the corresponding columns for domain X, the inner products of the column vectors for each
domain divided by the number of variables in each domain are

U∗j =
ξ ′i RyyRyyξ i

p
= [s (Ui )]′ [s (Ui )]

p
=

p∑
i=1

ρ2
Yi U j

/ p

V ∗j =
δ′i Rxx Rxxδi

q
= [s (Vi )]′ [s (Vi )]

q
=

q∑
i=1

ρ2
Xi Vj

/ q

(8.7.16)

for j = 1, 2, . . . , k. Because the variables Yi and Xi have been standardized, the total
variance in domain Y and domain X are p and q, respectively. Thus, the quantities in
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TABLE 8.7.1. Canonical Correlation Analysis

Domain Y
Variable Loadings Structure R2

U1 U2 · · · Uk U1 U2 · · · Uk

Z y1 c11 c12 · · · c1k ρY1U1
ρY1U2

· · · ρY1Uk

∑k
i=1 ρ

2
Y1Ui

Z y2 c21 c22 · · · c2k ρY2U1
ρY2U2

· · · ρY2Uk

∑k
i=1 ρ

2
Y2Ui

...
...

...
...

...
...

...
...

Z yp cp1 cp2 · · · cpk ρYpU1
ρYpU2

· · · ρYpUk

∑k
i=1 ρ

2
YpUi

Domain X
Variable Loadings Structure R2

V1 V2 · · · Vk V1 V2 · · · Vk

Zx1 d11 d12 · · · d1k ρX1V1
ρX1V2

· · · ρX1Vk

∑k
i=1 ρ

2
X1Vi

Zx2 d21 d22 · · · d2k ρX2V1
ρX2V2

· · · ρX2Vk

∑k
i=1 ρ

2
X2Vi

...
...

...
...

...
...

...
...

Zxq dq1 dq2 · · · dqk ρXq V1
ρXq V2

· · · ρXq Vk

∑k
i=1 ρ

2
X p Vi

(8.7.16) represent the proportion of the total variance in each domain accounted for by each
canonical variate or, the average variance in a domain that is accounted for by a canonical
variate. The proportion of variance of Ui (Vi ) accounted for by Vi (Ui ) is ρ2

i , the square of
the canonical correlation or the shared variance.

b. Sample CCA

To apply CCA in practice, a sample of n (p + q)-vectors are collected on two sets of
variables y′ = [

y1, y2, . . . , yp
]

and x′ = [
x1, x2, . . . , xq

]
with population mean µ′ =

[µx ,µy] and covariance matrix �. The unbiased estimate for the covariance matrix is the
sample covariance matrix

S =
 Syy Syx

Sxy Sxx

 (8.7.17)

The corresponding sample correlation matrix is

R = [
diag

(
Syy,Sxx

)]−1/2 S
[
diag

(
Syy,Sxx

)]−1/2

=
[

Ryy Ryx

Rxy Rxx

] (8.7.18)
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Then, solving either ∣∣∣Syx S−1
xx Sxy − ρ2Syy

∣∣∣ = 0∣∣∣Ryx R−1
xx Rxy − ρ2Ryy

∣∣∣ = 0
(8.7.19)

where ai and bi are the eigenvectors using S and ci and di are the eigenvectors using R,
the relationship between the eigenvectors in the sample are as follows

ri ai = S−1
yy Syx bi

ri bi = S−1
xx Sxyai

ci =
(
diag Syy

)1/2 ai

di = (diag Sxx )
1/2 bi

(8.7.20)

where ri are the estimates of ρi , the population canonical correlations. The sample canon-
ical variates are defined as either raw variates or standardized variates

Raw Ui = a′i y
Vi = b′i x

Standardized Ui = c′i zy

Vi = d′i zx

(8.7.21)

where zy and zx denote standardized variables.

c. Tests of Significance

Assuming Xi ∼ Nq
(
µx , �xx

)
and Yi ∼ Np

(
µy, �yy

)
, we may be interested in testing

hypotheses regarding the canonical correlations ρi or the square of ρi , ρ
2
i . If ρ1 ≥ ρ2 ≥

. . . ≥ ρs ≥ 0, we may be interested in testing that all ρi = 0 where s = min (p, q)

Ho : ρ1 = ρ2 = . . . = ρs = 0 (8.7.22)

This is the test of independence since if �yx = 0 then �
−1/2
yy �yx�

−1
xx �xy �

−1/2
yy = 0

and all ρi = 0, or, equivalently that the rank of �yx is zero. The likelihood ratio test of
independence developed is Chapter 3 based upon Wilks’ � statistic is

�o = |S|∣∣Syy
∣∣ |Sxx | =

|R|∣∣Ryy
∣∣ |Rxx |

= |Sxx |
∣∣Syy − Syx S−1

xx Sxy
∣∣∣∣Syy

∣∣ |Sxx |

=
∣∣Syy − Syx S−1

xx Sxy
∣∣∣∣Syy

∣∣
(8.7.23)
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and is identical to the � test statistic for testing for no linear relationship between Y and X,
that B1 = 0 in the MR model. From (4.2.14), we may relate �o to the sample canonical
correlations

�o =
s∏

i=1

(
1− r2

i

)
(8.7.24)

where r2
i are the sample eigenvalues of

|Syx S−1
xx Sxy − r2

i Syy | = 0 (8.7.25)

the square of the sample canonical correlations. Thus, �o may be used to test the hypothesis
of independence, that B1 = 0 in the MR model, or that the rank of �XY is zero.

More importantly, we may want to test

Hk : ρ1 �= 0, ρ2 �= 0, . . . , ρk �= 0, ρk+1 = . . . = ρs = 0 (8.7.26)

or that the rank of �yx is k so that we should retain k factors in a CCA. Bartlett (1947)
showed that if Hk is true for k = 0, 1, 2, . . . , s = min (p, q) so that

X2
k = −{(n − 1)− (p + q + 1) /2} log �k (8.7.27)

converges asymptotically to a chi-square distribution with v = (p − k) (q − k) degrees of
freedom, where

�k =
s∏

i=k+1

(
1− r2

i

)
(8.7.28)

Following Fujikoshi (1977) one may also test Hk using the other overall test criteria

X2
L = −

[
(n − k − 1)− 1

2
(p + q + 1)+

k∑
i=1

(
1/r2

i

)]
log �k

X2
BL H =

[
(n − p − q − 2)+

k∑
i=1

(
1/r2

i

)] s∑
j=k+1

r2
i /

(
1− r2

i

)
X2

B N P =
[

n − 2k +
k∑

i=1

(
1/r2

i

)] s∑
j=k+1

r2
i

(8.7.29)

which are also distributed as χ2(v) with degree of freedom v = (p − k) (q − k). SAS uses
the F distribution to approximate (8.7.27) ignoring Lawley’s (1959) correction factor.

Because r2
i is not an unbiased estimate of ρ2

i , a better estimate of ρ2
i having a bias of

O
(
1/n2

)
was developed by Lawley (1959)

r̂i = ri

1−
(

1

n − 1

)
k∑

j=1
j �=i

(
r2

j

r2
i − r2

j

)
− s − k

(n − 1) r2
i


1/2

(8.7.30)

assuming ρk+1 = ρk+2 = . . . = ρs = 0. If the adjustment is negative, it is undefined. This
is called the adjusted canonical correlation in the SAS procedure CANCORR.



8.7 Canonical Correlation Analysis 485

d. Association and Redundancy

In our discussion of the MR model, a natural extension, although biased, of the multiple
correlation coefficient squared, R2, was given by

η2
yx = 1−� (8.7.31)

where � was Wilks’ � criteria used to test for no linear relationships between Y and X or
that �yx = 0, the test of independence under normality. From (8.7.23),

� = |E|
|E+H| =

s∏
i=1

(
1− r2

i

)
(8.7.32)

where s = min (p, q) in CCA. Hotelling (1936) referred to � as the vector alienation co-
efficient (VAC). However, Rozeboom (1965) called ηyx =

√
1−� the vector correlation

coefficient (VCC). In the CCA model, observe that

η2
yx = 1−

∣∣∣I− S−1/2
yy Syx S−1

xx SxyS−1/2
yy

∣∣∣
= 1−

s∏
i=1

(
1− r2

i

)
=

s∑
i=1

r2
i −

∑
i< j

r2
i r2

j +
∑

i< j< k
r2

i r2
j r2

k + . . .+ (−1)s r2
1r2

2r2
s

(8.7.33)

so that ηyx is a generalized measure of association between domain Y and domain X. From
(8.7.33), observe that η2

yx ≥ r2
1 . When s = 1 or the number of variables in either of the

domains Y or X is one, η2
yx = r2

1 = R2. Or, the VCC reduces to the multiple correla-

tion coefficient. If X and Y are uncorrelated, η2
yx −→ 0. But, if X and Y are dependent,

η2
yx −→ 1 independent of the values of ρ2, ρ3, . . . , ρs if ρ1 = 1. Thus r1 is a better

measure of association than ηyx . Using (8.7.30), one may reduce the bias in r2
1 .

Instead of η2
yx or r2

1 , Yanai (1974) suggested the generalized coefficient of determination
(GCD) defined as

η̃2
yx = tr(S−1/2

yy Syx S−1
xx SxyS−1/2

yy )/s

=
s∑

i=1
r2

i /s
(8.7.34)

where s = min (p, q). The statistic 0 ≤ η̃2
yx ≤ 1 reduces to r2 in the case of simple linear

regression and R2 in multiple linear regression. Furthermore,

r2
s ≤ η̃2

yx ≤ r2
1 ≤ η2

yx (8.7.35)

Takeuchi, Yanai and Mukherjee (1982, p. 251). Thus, as an overall measure of association
between two sets of variables one may use η̃2

yx or r2
1 , Cramer and Nicewander (1979). One

may of course replace the sample covariance matrices with sample correlation matrices in
the above. Using the δ-method and assuming multivariate normality, Ogasawara (1998) has
obtained the asymptotic standard errors for several measures of multivariate association.
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Ui

Vi
2ri

Domain Y

Domain X

FIGURE 8.7.1. Venn Diagram of Total Variance

An overall measure of association does not help in determining which of the original
variables are most influential in the construction of the canonical variates. For this one
uses the absolute values of the size of the coefficients in the eigenvectors ci and di using
standardized variables. One may also investigate the correlations of the canonical variates
with each variable as given in (8.7.14). These correlation represent the contribution of a
single variable to the canonical construct, ignoring the other variables in the set.

Because we have two sets of variables and two sets of canonical variates the notion of
“influence” is more complex since we have within and between domain influence. To study
the relationship within a domain, the entries in Table 8.7.1 are replaced by sample esti-
mates. When k = s = min (p, q) = p < q, the R2 entries in each row sum to 1 so that
each canonical variate accounts for a portion of the total sample in their variance in each
variable y1, y2, . . . , yp or x1, x2, . . . , xq as you move down the structure matrix row by
row. Using (8.6.16) with sample values, one may estimate the proportion of the variance in
the domain Y accounted for by each canonical variate U1,U2, . . . ,Us . Using domain X,
one may estimate the contribution of V1, V2, . . . , Vs . Furthermore, r2

1 , r2
2 , . . . , r2

s is a mea-
sure of variability in Ui accounted for by Vi or conversely. Thus, r2

i is a measure of shared
variance.

Representing the domains as a Venn diagram, Figure 8.7.1, the total variance of each
canonical variate in each domain may be partitioned into three parts: (1) the average unique
variance in Y due to Ui ; (2) the shared variance measured by r2

i ; and (3) the average unique
variance in X due to Vi .

Using Figure 8.7.1, Stewart and Love (1968) constructed a redundancy index (RI) to
estimate the proportion of the variance in domain Y that is attributed to Ui = a′i Y and
Vi = b′i X by multiplying the average variance in domain Y by the shared variance as
measured by r2

i . The redundancy of Y given X as measured by Ui | Vi and r2
i is defined as

RIUi (Y | Vi ) =
{

[s (Ui )]′ [s (Ui )]

p

}
r2

i i = 1, 2, . . . , p

=
(

c′i RyyRyyci

p

)
r2

i

(8.7.36)

Conversely, the redundancy of X given Y as measured by Vi | Ui and r2
i is
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RIVi (X | Ui ) =
{

[s (Vi )]′ [s (Vi )]

q

}
r2

i i = 1, 2, . . . , q

=
(

d′i Rxx Rxx di

q

)
r2

i

(8.7.37)

Because the correlation between Yi and Ui is not equal to the correlation between Xi and Vi ,
and because p �= q, the redundancy indexes are asymmetric in that RIUi (Y | Vi ) �=
RIVi (X | Ui ).

Summing the redundancy indexes over all canonical variates within each domain, the
total redundancy for Y given V1, V2, . . . , Vs is

R (Y | V) = tr
(

Syx S−1
xx Sxy

)
/ tr

(
Syy

)
= tr

(
Ryx R−1

xx Rxy

)
/p

=
p∑

i=1
R2

Yi .X/p

(8.7.38)

while the redundancy index for X given U1, U2, . . . ,Us is

R (X | U) = tr
(

SxyS−1
yy Syx

)
/ tr (Sxx )

= tr
(

RxyR−1
yy Ryx

)
/q

=
q∑

i=1
R2

Xi .Y/q

(8.7.39)

Since R (Y | V) �= R (X | U), the index allows one to evaluate which domain is more pre-
dictable. Because the total redundancy of domain Y (or X) is equal to the average of the
squared multiple correlations R2

Yi .X
(or R2

Xi .Y
) it is not a very good measure of overall asso-

ciation between Y and X, Cramer and Nicewander (1979). Ogasawara (1998) recommends
that one average the redundancy indexes given in (8.7.38) and (8.7.39) to obtain a naive
estimator of overall association.

e. Partial, Part and Bipartial Canonical Correlation

CCA was originally developed to study the relation between two sets of variables Y and X.
However, one often finds that a set of covariates Z influences both domains Y and X. Then
one wants to investigate the partial canonical correlation between Y and X after removing
the linear influence of Z, Roy (1957, p. 40) and Rao (1969). Assuming

U =


Y

X

Z

 ∼ Np+q+r




µ1

µ2

µ3

 , � = [
�i j

]
 (8.7.40)
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the covariance matrix of Y and X given Z is

�.3 =
 �11.3 �12.3

�21.3 �22.3


=

 �11 −�13�
−1
33 �31 �12 −�13�

−1
33 �32

�21 −�23�
−1
33 �31 �22 −�23�

−1
33 �32

 (8.7.41)

so that a test of partial independence of the two sets of variables Y and X, after partialing
out Z from both Y and X becomes

H : �12.3 = 0 (8.7.42)

To test (8.7.42), one may apply the procedure used to test for independence in (8.7.22)
with �yy, �yx�xy, �xx replaced by �11.3, �12.3, �21.3 and �22.3, respectively. Either of
the determinantal equations ∣∣∣�12.3�

−1
22.3�21.3 − ρ2

.3�11.3

∣∣∣ = 0∣∣∣�21.3�
−1
11.3�12.3 − ρ2

.3�22.3

∣∣∣ = 0
(8.7.43)

may be evaluated in the sample with �i j.3 replaced with Si j.3 or Ri j.3. The sample roots
r2

i.3 are called the squares of the partial canonical correlations. The positive square roots
ri.3 represent the maximal correlation between the partial canonical variates U∗i = a′i ey

and V ∗j = b′i ex where ey and ex represent the residual vectors obtained after regressing Y
on Z and X on Z. Using the “partial” roots of (8.7.43) to test (8.7.42), the � criterion is

�′o =
s∏

i=1

(
1− r2

i.3

)
=

∣∣∣S11.3 − S12.3S−1
22.3S21.3

∣∣∣
|S11.3| (8.7.44)

where �′o ∼ U (p, q, ve) and ve = n − r − q − 1 and r is the number of elements in the
partialed out set Z. Following Fujikoshi (1977) with

�′k =
s∏

i=k+1

(
1− r2

i.3

)
(8.7.45)

one may test

Hk : ρ1.3 �= 0, ρ2.3 �= 0, . . . , ρk.3 �= 0, ρ(k+1).3 = . . . = ρs.3 = 0 (8.7.46)

where s = min (p, q). For Lawley’s criterion,

X2
L = −

[
(n − r − k − 1)− 1

2
(p + q + 1)+

k∏
i=1

1/r2
i.3

]
log �′k (8.7.47)

Under (8.7.46), X2
L is approximately distributed as χ2(v) with v = (p − k) (q − k) degrees

of freedom for k = 0, 1, 2, . . . , s.
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Modifying (8.7.41) to

�1(2.3) =
 �11 �12.3

�21.3 �22.3

 (8.7.48)

part canonical correlations and variates may be examined with the variation in the Z domain
removed from the X domain, but not the Y domain. This is accomplished by considering
the eigenequations ∣∣∣�12.3�

−1
22.3�21.3 − ρ2

i(2.3)�11

∣∣∣ = 0∣∣∣�21.3�
−1
11 �12.3 − ρ2

i(2.3)�22.3

∣∣∣ = 0
(8.7.49)

This is a generalization of a part correlation in univariate analysis, Timm and Carlson
(1976). Our discussion regarding overall multivariate association, redundancy and the in-
terpretation of canonical variates follow immediately for part and partial canonical corre-
lation analysis. To test for part independence, the partial canonical correlations in (8.7.46)
are replaced by part canonical correlations.

Timm and Carlson (1976) also discuss the concept of bipartial canonical correlation
analysis as an extension of bipartial correlation. Given two univariate variables Y and X ,
suppose one knows that the association is biased by two sets of covariates that differentially
effect Y and X . That is, variable Z influences Y and W influences X . Then forming the
residuals after regressing Y on Z and X on W the correlation between the residuals is

r(1.4)(2.3) = r12 − r14 r42 − r13 r32 + r14 r43 r32√
1− r2

14

√
1− r2

23

(8.7.50)

where 1 ≡ Y, 2 ≡ X, 3 ≡ Z and 4 ≡ W .
To extend bipartial correlation to multivariate data domains, we assume that U′ = [Y′,X′,

W′,Z′] ∼ Np+q+r+t [0, �i j ] where i, j = 1, 2, 3, 4 and construct the sample covariance
matrix based upon n observations as follows

S(1.4)(2.3) =
 S11 − S14S−1

44 S42 S∗

S′∗ S22 − S23S−1
33 S32

 (8.7.51)

where
S∗ = S12 − S14S−1

44 S42 − S13S−1
33 S32 + S14S−1

44 S43S−1
33 S32

Again, S(1.4)(2.4) has the block structure

S(1.4)(2.3) =
 A11 A12

A21 A22

 (8.7.52)

Associating the partitioned matrices in (8.7.51) with those in (8.7.52) one may solve the
eigenequation ∣∣∣A21A−1

11 A12 − ρ2A22

∣∣∣ = 0 (8.7.53)
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for the eigenvectors ai , where

bi = A−1
22 A21ai/ρi(1.4)(2.3) (8.7.54)

are the bipartial canonical variates. The bipartial sample canonical correlations ri(1.4)(2.3)
obtained using the sample data are estimates of the population bipartial canonical correla-
tions ρi(1.4)(2.3) for i = 1, 2, . . . , s = min (p, q).

To test the hypotheses of bipartial independence

H : �12 −�13�
−1
33 �32 −�14�

−1
44 �42 +�13�

−1
33 �34�

−1
44 �42 = 0 (8.7.55)

or equivalently

Hk : ρ1(1.4)(2.3) �= 0, . . . , ρk(1.4)(2.3) �= 0,

ρ(k+1)(1.4)(2.3) = 0 = . . . = ρs(1.4)(2.3) = 0
(8.7.56)

Wilks’ � statistic

�∗k =
s∏

i=k+1

(
1− r2

i(1.4)(2.3)

)
(8.7.57)

is formed. For Lawley’s criterion

X2
L = −{[n −max (r, t)− k − 1]− 1

2
(p + q + 1)+

k∑
i=1

1/r2
i(1.4)(2.3)} log �∗k (8.7.58)

where X2
L

.∼ χ2 (p − k) (q − k) under Hk in equation (8.7.56).

f. Predictive Validity in Multivariate Regression using CCA

For the multivariate regression model in Chapter 4, we investigated predictive precision
using the expected mean square error of prediction. However, we indicated that a mea-
sure of linear predictive precision may be defined as the square of the zero-order Pearson
correlation between a set of actual observations and the estimates obtained from the cal-
ibration sample. For the multivariate regression model, this leads one to the CCA model.
Before discussing the multivariate model, recall that for one dependent variable that the
population coefficient of determination is identical to the square of the population canoni-
cal correlation coefficient. Browne (1975a) developed a formula to estimate the predictive
precision of a multiple linear regression model with k random independent variables. Let-
ting ρ2

c represent the square of the zero-order Pearson correlation between an observation
Y and the predicted value Ŷ based on the linear parametric function Xβ̂ in the population,
Browne (1975a) obtained a formula to estimate of predicted precision without the need
for a validation sample under multivariate normality. His estimate for prediction precision
follows

R2
c =

(n − k − 3)(R2
a)

2 + R2
a

(n − 2k − 2)R2
a + k

(8.7.59)
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where R2
a is the adjusted estimate of the population coefficient of determination ρ2. Monte

Carlo studies performed by Browne (1975a) show that the estimate results in very small
bias. Cotter and Raju (1982) confirmed Browne’s result using cross validation procedures.
For an estimate of the square of the cross validation correlation coefficient or predictive pre-
cision, Browne assumed multivariate normality and random independent variables. Nichol-
son (1960) proposed the estimate

R2
c = 1−

(
n + k + 1

n

)
(1− R2

a) (8.7.60)

of ρ2
c assuming fixed independent variables which Uhl and Eisenberg (1970) found to ac-

curately estimate the population parameter ρ2
c . In multiple linear regression, the adjusted

estimate of the coefficient of determination R2
a defined in (4.2.36) provides a reasonable

estimate of the population coefficient of determination whether the independent variables
are considered fixed or random.

To provide a reasonable estimate of predictive precision using the CCA model, we must
estimate the square of the correlation between a the observation matrix Ym×p and Ŷm×p =
XB̂ where the p×q parameter matrix is B̂ based upon the set of k variables in the calibration
sample. These canonical correlations depend on a validation sample. Expression (8.7.30) is
used to estimate the p population canonical correlations within the calibration sample. For
the multivariate regression model with random X, there are s = min(p, q) = p (assuming
p ≤ q) estimates of predictive precision, one for each of the p dependent variables. An
estimate of predictive precision using the CCA model that does not depend on a validation
sample has not yet been developed. However, if one has a validation sample, by (8.7.35),
one might use η̃2

y ŷ as an estimate of predictive precision. It provides a natural estimate of

predictive precision where the matrix Ym×p is a validation sample and the matrix Ŷm×p

is an estimate using the parameter matrix of the calibration sample with m
.= n. One

may of course propose other estimates that involve other scalar functions, for example,
the Euclidean norm squared. Following Nicholson (1960) with η2

a defined in (4.2.39), a
reasonable overall estimate of predictive precision for fixed independent variates is the
estimate

η2
c = 1−

(
n + k + 1

n

)
(1− η2

a) (8.7.61)

As an extension of Browne’s result to the multivariate model, one might consider the esti-
mate

η2
c =

(n − k − 3)(η2
a)

2 + η2
a

(n − 2k − 2)η2
a + k

(8.7.62)

however, its use in practice requires verification. Ogasawara (1998) provides an overview
of multivariate measures of association.

g. Variable Selection and Generalized Constrained CCA

To find the best subset of variables in Y′ = [
Y1, Y2, . . . , Yp

]
and X′ = [

X1, X2, . . . , Xq
]

is complicated since it depends on the measure of multivariate association one employes.



492 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis

Using (8.7.34), Takeuchi et al. (1982, p. 253) develop a forward selection procedure for en-
tering pairs of variables into a CCA. The pairs of variables are entered to maximize the sum
of the squared canonical correlations at each step. With the forward order established, vari-
ables are sequentially deleted from least important to most important to maintain a subset
of significant canonical variates in order to maintain a significant proportion of explained
correlation structure. Any estimate of predictive precision must be determined after one has
established a model with reasonable fit.

All of the CCA examples discussed in this section are special cases of the generalized
constrained canonical correlation analysis (GCCANO) procedure recently developed by
Yanai and Takane (1999). For discrete data, their model may be used for correspondence
analysis, part and bi-partial canonical correlation analysis, and for the development of con-
strained MANOVA and GMANOVA models.

8.8 Canonical Correlation Analysis Examples

a. Rohwer CCA (Example 8.8.1)

Professor William D. Rohwer at the University of California at Berkeley selected n =
37 kindergarten students in a low-socioeconomic-status area to investigate how well two
paired associate (PA) learning tasks using action words versus nonaction words are related
to three student achievement tests. The set of variables Y′ = [N A, SS] are the number of
items correct out of 20 (on two exposures) of the PA learning tasks using action and still
prompt words. The set of variables X′ = [S AT, P E A, R AV ] are the scores on a student
achievement test (SAT), the Peabody Picture Vocabulary Test (PEA) and the Ravin Pro-
gressive Matrices Test (RAV). The sample correlation matrix for the two sets of variables
follows.

R =
[

Ryy Ryx

Rxy Rxx

]
=


1.0000 (Sym)

.7951 1.0000

.2617 .3341 1.0000

.6720 .5876 .3703 1.0000

.3390 .3404 .2114 .3548 1.0000

 (8.8.1)

To analyze the sample correlation matrix in (8.8.1), program m8 8 1.sas is used with
the SAS procedure CANCORR. For this example, p = 2 and q = 3. The correlations of the
two sets are represented as ′VAR′ variables and as ′WITH′ variables in the SAS procedure.
Solving (8.7.19), the sample canonical correlations are

r1 = 0.6889 r2 = 0.1936

r2
1 = 0.4746 r2

2 = 0.0375
(8.8.2)

The adjusted canonical correlations using (8.7.30) are r̂1 = 0.6612 and r̂2 = 0.1333. Us-
ing (8.7.15) with sample estimates, we see that one canonical variate in each set accounts
for 92.3% of the correlation structure. Using Theorem 2.6.8, the |RxyR−1

yy Ryx R−1
xx | =∏

i r2
i /

(
1− r2

i

)
. The CANCORR procedure calculates λ̂i = r2

i /
(
1− r2

i

)
and the ratios



8.8 Canonical Correlation Analysis Examples 493

of λ̂i/
∑

i λ̂i as the proportion of the correlation structure explained by each canonical
variate.

Using (8.7.24), and assuming joint normality, the likelihood ratio criterion for testing
independence, H : �yx = 0, is

�o =
2∏

i=1

(
1− r2

i

)
= 0.5057

Relating �o to an F distribution, the p-value for the test of independence is 0.0010. For
α = 0.05, the test of independence is rejected. Using expression (4.2.39), a measure of
association for the multivariate model is estimated by η2

a = 0.4437, or approximately
44.4% of the variance in the Y domain is accounted for by the X domain variables. Using
(8.7.61) to estimate the overall cross validation precision of the model, we have that the
shrucken estimate is approximately η2

c = 0.3356 using two canonical variates.
To evaluate if we can reduce the number of canonical variates, (8.7.29). The SAS proce-

dure relates X2
L to an approximate F distribution. Instead of performing a significance test,

one might retain the number of canonical variates that explain 70% − 80% of the correla-
tion structure. For our example, we need only one canonical variate. Using standardized
variables,

U1 = 0.7753 (N A)+ 0.2661 (SS)

V1 = 0.0520 (S AT )+ 0.8991 (P E A)+ 0.1830 (R AV )
(8.8.3)

The loadings indicate that NA is most important to U1, while PEA is most important to
V1. Using (8.7.14), one may measure the contribution of each variable to each canonical
variate, ignoring the other variables. For our example,

ρYU =
[

0.987
0.883

]
(N A)
(SS)

ρXV =
 0.424

0.983
0.513

 (S AT )

(P E A)
(R AV )

(8.8.4)

Thus, individually (NA) and (SS) are equally important to U1 and (PEA) is twice as impor-
tant to V1 than either SAT or RAV. The correlations measure the individual effects while
the loadings measure the simultaneous effects of the variables on the canonical variates.
Averaging the squares of the coefficients in (8.8.4), we may estimate the proportion of the
variance in each domain accounted for by each canonical variate. For our example,

U∗1 =
(.987)2 + (.883)2

2
= 0.8764

V ∗1 =
(.424)2 + (.983)2 + (.513)2

3
= 0.4698

Thus, 88% of the variance in the Y set is accounted for by U1 and only 47% of the X set is
accounted for by V1.
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Evaluating (8.7.36) and (8.7.37), we may calculate the proportion of the variance the
opposite canonical variate accounts for in a given set. That is,

RIU1 (Y | V1) = (0.8764) r2
1 = 0.4159

RIV1 (X | U1) = (0.4698) r2
1 = 0.2230

The proportion of the variance in the set X = {S AT, P E A, R AV } accounted for by V1 is
0.2230 and the proportion of the variance in the set Y = {N A, SS} accounted for by U1, is
0.4159.

In summary, given the two sets of variables

Y = {N A, SS} and X = {S AT, P E A, R AV }
where

U1 = 0.7753 (N A)+ 0.2662 (SS)

and
V1 = 0.0520 (S AT )+ 0.8991 (P E A)+ 0.1830 (R AV )

it appears that the proportion of variance “in common” to the two canonical variates is about
47% since r2

1 = .4746. However, 88% of the variance in the set Y is accounted for by U1,
and only 42% of the variance in Y is accounted for by the canonical variance V1. Similarly,
47% of the variance in the set X is accounted for by V1, but only 23% of the variance in X
is accounted for by the canonical variate U1. Averaging the redundancy indices, the overall
association between the two data sets is (0.4159+ 0.2230)/2 = 0.3194.

b. Partial and Part CCA (Example 8.8.2)

In Exercises 8.3, Problem 1, Project Talent data was analyzed using PCA. The eleven
variables may be partitioned into sets of variables as follows.

Y = {G1, G2}
X = {V E, V R, V C}
Z = {NC, N A, N M}

W = {I S, I P, I O}
The set of variables in domain Y (1, 2) are general information tests, the set of variables
in domain X (3, 4, 5) are verbal ability tests domain Z (6, 7, 8) contains nonverbal ability
tests, and finally, domain W (9, 10, 11) contains interest measures.

For this data set, we illustrate a partial canonical correlation analysis using domains Y
and X, removing the joints effects of set Q = [Z,W] from both domains Y and X. Thus,
(8.7.41) is analyzed with �i j replaced by Ri j . The matrix of partial correlations is

R.3 =
[

R11.3 R12.3
R21.3 R22.3

]
=


1.0000 (Sym)

0.6365 1.000
−0.0157 0.0920 1.0000

0.3081 0.1301 0.1064 1.0000
−0.3055 −0.1985 0.0486 −0.0265 1.0000


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Alternatively, replacing R11.3 with R11, the matrix of part correlations may be analyzed.
Then, Q is removed from the X set but not the Y set. In the SAS procedure, one would
input R1(2.3) and perform a canonical analysis on the modified matrix. The SAS code for
both the partial and part canonical correlation analysis is provided in Program m8 2 2.sas.
The output is similar in format to Example 8.2.1.

In summary, given the three sets of variables

Y = {G1, G2} , X = {V E, V R, V C} and

Q = {NC, N A, N M, I S, I P, I O}
the significant partial canonical variates are

U1 = 1.1296(G1)− 0.2281(G2)

V1 = −0.1342 (V E)+ 0.7278 (V R)− 0.6625(V C)

sharing only 19% of the common variance since r2
1.3 = 0.1897. The correlation structure

for each canonical variate follows.

ρYU =
[

0.9844
0.4909

]
(G1)
(G2)

ρXV =
 −0.0890

0.7311
−0.0883

 (V E)

(V R)

(V C)

Thus, G1 is most important to U1 while V R contributes most to V1. From the redundancy
analysis, 60% of the variance in the Y set (after removing Q) is account for by U1 and only
11% is accounted for by V1. Only 34% of the variance in the X set (after removing Q) is
accounted for by V1, and only 6% is accounted for by U1.

Reviewing the output for the part canonical analysis, we see that it is better to remove
the influence of the set Q from X, but not Y. The proportion of shared variance increases
to 23% while the variance explained the part canonical variates are almost the same as the
partial canonical variates.

To perform a bipartial canonical analysis using the Project Talent data, one would ana-
lyze the matrix in (8.7.51) with Si j replaced by Ri j . The resulting matrix may be input into
PROC CANCORR.

Exercises 8.8

1. Shin (1971) collected data on intelligence using six creativity measures and six
achievement measures for 116 subjects in the eleventh grade in suburban Pittsburgh.
The correlation matrix for the study is given in Table 8.3.1 and an explanation of the
variables is summarized in Example 8.3.1. Inspection of Table 8.3.1 indicates that
four out of the six creativity measures (tests 4, 5, 6, and 7) are highly correlated with
synthesis and evaluation (tests 12 and 13), as is IQ (test 1). What else do you notice?
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(a) Use canonical correlation analysis to investigate the relationship between the
six achievement variables and IQ and the six creativity variables.

(b) Use canonical correlation analysis to investigate the relationship between the
six achievement variables and IQ and the six creativity variables.

(c) By partialing out the IQ variable from both sets of variables, use partial canoni-
cal correlation analysis to analyze the data and compare your results with parts
a and b.

(d) Would a part canonical correlation analysis of the data be meaningful? If so,
why? If not why not?

(e) Summarize your findings. Include in your discussion an analysis of predictive
precision.

2. For the partition of Project Talent variables given in Example 8.8.2, analyze the bi-
partial correlation matrix R(Y.Z)(X.W) using PROC CANCORR and summarize your
findings.

8.9 Exploratory Factor Analysis

Exploratory factor analysis (EFA) is a causal modeling technique that attempts to “ex-
plain” correlations among a set of observed (manifest) variables through the linear com-
bination of a few unknown number of latent (unobserved) random factors. The procedure
was originated by the psychologist Charles Spearman in the early 1900’s to model human
intelligence. Spearman developed the technique to try to understand the causal relationship
between the latent human trait intelligence and test scores (grades) obtained in several dis-
ciplines. Spearman believed that students’ test scores are intercorrelated and that the inter-
correlations could be completely explained by a single common latent general intelligence
factor g, and that when this factor was removed, the test scores would be uncorrelated.
Spearman’s model of intelligence assumes that performance on a test (the observed data)
is caused by a general unobserved common factor labeled intelligence and a specific or
unique factor due to each discipline (test type). Spearman’s (1904) single factor model was
later generalized by Thurstone (1931, 1947) to multiple factors.

Because both PCA and EFA usually begin with an analysis of the variation of a set of
variables as characterized by the correlation or covariance matrix and because both may be
used to characterize the variation by a few hypothetical constructs they are often confused.
In EFA one may explain all the covariances or correlations with a few common factors
that are unobservable or latent. In PCA one needs all components to account for all the
covariances or correlations. While a few factors may account for all the intercorrelations
(covariances), the same number of factors will not explain as much of the total variance
as the same number of principal components. Thus, PCA is concerned with explaining the
variance in the variables while EFA is concerned with explaining the covariances. In EFA,
the correlation or covariance matrix is partitioned into two parts; that due to the common
factors and that due to the unique factors. Any correlations (covariances) not explained by
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the common factors are associated with the mutually uncorrelated unique (residual) factors.
In PCA there is no residual variance, all variance is explained by the components. Another
important difference between the two procedures lies in the direction of analysis. In EFA
one sets forth a causal model and uses the data to validate the model. This has led to some
controversy among statisticians since the power to reject model fit depends on the number
of unknown factors and sample size. In PCA there is no causal model since all components
are linear combinations of observed data, observed with no error.

The literature associated with EFA is extensive with much of the early work interesting,
but obsolete. Early reviews of EFA are included in Harmon (1976) and Mulaik (1972).
More recent developments are included in the books by Jöreskog and Sörbom (1979), Mc-
Donald (1985), Bollen (1989) and Basilevsky (1994). Statistical treatment of the method is
included in Anderson and Rubin (1956) and Lawley and Maxwell (1971). In this section
we discuss the exploratory factor analysis model where the structure of the model or under-
lying theory is not known or specified a priori. The data are used to discover the structure
of the model. When a precise theory is set forth for the factor model, the structure of the
model is hypothesized a priori and the factor structure is confirmed. This type of factor
analysis is called confirmatory factor analysis (CFA) and is discussed in Chapter 10.

a. Population Model for EFA

In EFA we begin with a random observation vector Y′1×p =
[
Y1,Y2, . . . ,Yp

]
with mean µ

and covariance matrix �. Each vector of p-variables is assumed to have the linear structure

Y
p×1
− µ

p×1
= �

p×k
f

k×1
+ e

p×1
(8.9.1)

where � = [
λi j

]
is a matrix of regression weights or “loadings” with rank k ) p, f is a

vector of random, unobserved latent factors and e is a vector of random errors. It is further
assumed that E (Y) = µ, E (f) = E (e) = 0, cov (f) = I, cov (Y) = �, cov (e) = ' is
a diagonal matrix with elements ψ i > 0, and that the cov (f, e) = 0. These assumptions
imply that the covariance matrix � for each observation Y has the structure

� = cov (Y) = cov (� f+ e)

= � cov (f)�′ + cov (e)

= ��′ +'

(8.9.2)

where the covariance matrix ' is diagonal, ' = diag
[
ψ1, ψ2, . . . , ψ p

]
. Thus, all the

covariances σ i j for i �= j in � depend only on the λi j through the product ��′, while the
variances σ i i depend on λ2

i j and ψ i .
One may also think of (8.9.1) as a linear regression model where

E (Y | f) = µ+�f

cov (Y | f) = ' = diag
[
ψ1, ψ2, . . . , ψ p

] (8.9.3)

Because the covariance matrix of Y given f is diagonal, f accounts for all the intercorre-
lations, and hence all linear relationships among the elements of Y. Once the factors f are
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partialed out there remains no correlation among the elements of Y. Furthermore, given
(8.9.3), the covariance matrix

� = E (Y− µ) (Y− µ)′ = E (�f+ e) (�f+ e)′

= �E
(
f f ′

)
�′ + (

ee′
)

= ��′ +'

(8.9.4)

so that the cov (Y | f) = � −��′ = '. Letting ' = diag
(
� −��′

)
, the partial correla-

tion matrix becomes '−1/2
(
� −��′

)
'−1/2.

From (8.9.1) or (8.9.3), we observe that the EFA model makes no distributional assump-
tions regarding Y. The model parameters are the mean vector µ and the parameter matrices
� and '. Later we will make distribution assumptions regarding Y to test hypotheses of
model fit and to obtain maximum likelihood estimates of the model parameters.

Expanding (8.9.1) into a system of linear equations, the model equations became

Y1 − µ1 = λ11 f1 + λ12 f2 + . . .+ λ1k fk + e1

...
...

...
...

...

Yi − µi = λi1 f1 + λi2 f2 + . . .+ λik fk + ei

...
...

...
...

...

Yp − µp = λp1 f1 + λp2 f2 + . . .+ λpk fk + ep

(8.9.5)

where the cov
(
ei , e j

) = 0 for i �= j , and the λi j are regression coefficients. For psycholo-
gists, the observations Yi are usually test scores, the λi j are termed factor loadings, and the
residuals ei are called unique or specific factors. Thus, each test score or observation about
the mean is represented as two parts, a common part and a unique part

Yi − µi = ci + ei (8.9.6)

EFA is used to investigate the unobserved common parts

ci = λi1 f1 + λi2 f2 + . . .+ λik fk (8.9.7)

whereas PCA is used to study the observed observations Yi . The unique factor may be
regarded as a sum of an error of measurement and a specific factor where the specific factor
is associated with a particular test; however, since these do not contribute to any correlation
or covariance among test scores, they are omitted in our discussion (see Harmon, 1976).

Corresponding to the structure of � given in (8.9.2), � is also partitioned into two parts,
the common part and the unique part. The variance of a random observation Yi is

σ i i ≡ σ 2
i = λ2

i1 + λ2
i2 + . . .+ λ2

ik + ψ i

var (Yi ) = var (ci )+ var (ei )

= h2
i + ψ i

(8.9.8)
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The variance of the common part of Yi is represented by h2
i and is called the common

variance or communality of the response and the var (ei ) = ψ i , the i th diagonal element of
', is termed the unique, or specific variance or the uniqueness of Yi . The uniqueness is that
part of the total variance not accounted for by the common factors, while the communality
is that portion of the variance attributed to the common factors.

The covariance between Yi and Y j , for i �= j , is

σ i j = λi1λ j1 + λi2λ j2 + . . .+ λikλ jk (8.9.9)

where λi j is the covariance between Yi and the j th common factor f j . Using matrix nota-
tion, the

cov (Y, f) = cov (�f+ e, f)

= � cov (f, f)�′ + cov (e, f)

= ��′
(8.9.10)

since the cov (e, f) = 0. If standardized variables are analyzed, � is a correlation matrix so
that (8.9.2) becomes

Pρ = ��′ +' (8.9.11)

and the loadings λi j become correlations. Then (8.9.9) becomes

ρi j = λi1λ j1 + . . .+ λikλ jk (8.9.12)

where the diagonal elements of Pρ are 1 so that (8.9.8) is written as

ψ i = 1− h2
i

= 1−
(
λ2

i1 + λ2
i2 + . . .+ λ2

ik

) (8.9.13)

The quantities h2
i =

∑k
j=1 λ

2
ik , the inner product of the i th row of � with itself, are com-

munalities. They represent the common variance of a variable accounted for by a factor
solution.

In our discussion of the EFA model we have assumed that the common factors are or-
thogonal or uncorrelated as in PCA since the cov (f) = I. A more general model permits
the common factors to be correlated so that the cov (f) = � where � �= I. Then � has the
structure

� = ���′ +' (8.9.14)

and the resulting common factors are said to be oblique.
A basic property of the EFA model with the structure given by (8.9.14) or (8.9.2) is that

the model is scale free under affine transformations of the form Z = AY + b where A is
nonsingular. To see this, observe that the

cov (Z) = A cov (Y)A′

= A
(
���′

)
A′ + A'A′

= (A�)� (A�)′ + A'A′

= �∗��′∗ +'∗
= �∗
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Thus, an affine transformation of the original variables is also applied to � and '. This
scale free property of the EFA model allows one to analyze either � or Pρ . Even though
the model is scale free, some early procedures used to estimate model parameters are not
scale free and should be avoided, Harris (1964).

While the EFA model is scale free, the model does not impose sufficient restrictions on
the parameters �, � and ' to ensure that � may be found to satisfy either (8.9.14) or
(8.9.2). The three major problems with the structure are (1) the value of k is unknown,
(2) given k, the parameter matrices �, �, and ' are not unique, and (3) even if ' is
uniquely determined for some k, the factorization of � is not unique. These are often called
the problem of minimal rank, the problem of equivalent structures, and the transformation
problem.

Given a p × p covariance matrix �, a necessary and sufficient condition that there exist
k common factors is that there is a matrix ' such that the matrix � − ' is p.s.d. and
of rank k (see, for example, Anderson and Rubin, 1956, and Jöreskog, 1963). However,
Reiersøl (1950, Th 3.3) has shown that if there is a structure for �, it is not unique. To
determine ' uniquely, he infers that the minimum value of k must be attained, although no
proof is provided. If �−' is p.s.d. and of minimal rank k, by the spectral decomposition
theorem there exists a matrix � such that � − ' = ��′ so that a structure exists with
� = I. Takeuchi, Yanai, and Mukherjee (1982, p. 298) show that ' is determined uniquely
if

1. ' = θIp

2. ' = θ
(
diag�−1

)−1

Jöreskog (1969a) considered situation (2) and called it image factor analysis.
Given that we have a structure, given k and ', we still have the factor transformation

problem. That is, even if a structure exists for some k and the some ', there will be in-
finitely many others. To see this, let Tk×k be any nonsingular matrix such that

�∗ = �T−1

�∗ = T�T′
(8.9.15)

Then,

�∗�∗�′∗ +' = �T−1T�T′
(
T′

)−1
�′ +'

= ���′ +'

and model (8.9.1) with structure (8.9.14) becomes

Y− µ = �∗f∗ + e (8.9.16)

for
f∗ = Tf

�∗f∗ = �f
(8.9.17)



8.9 Exploratory Factor Analysis 501

This illustrates a fundamental indeterminacy in the EFA model. By observing Y, we cannot
distinguish between the two models. Thus, without further restrictions on the model, � and
� are not identified. A common restriction is to set � = I. Then the factors are orthogonal
and T is restricted to an orthogonal matrix. This reduces some of the indeterminacy in the
model and is the primary reason for introducing the model with structure � given in (8.9.2).

Given the transformation problem in EFA, one usually rotates the k common factors to
meaningful constructs. Thurstone (1947, p. 335) described simple structure as follows. The
factor matrix � should have the following properties.

1. Each row of � should have at least one zero.

2. Each column of � should have at least k zeros.

3. For all pairs of columns in �, there should be several rows in which one loading is
zero and one is nonzero; and only a small number of rows with two nonzero elements.

4. If k ≥ 4, several pairs of columns of � should have two zero loadings.

These conditions are not mathematically precise. Reiersøl (1950, Th 9.2) gives precise
conditions for the identification of � given '. For most practical applications, “simple
structure” is discovered using graphical and analytic methods. We will discuss some of the
methods available in SAS later when we discuss factor rotation procedures.

Aside from the transformation problem, and the problem of determining k, given a ',
there is still the problem of estimating �, evaluating model fit, and estimating the factor
scores, Anderson and Rubin (1956). To estimate the model parameters, we let � = I to
reduce some indeterminacy in the model. Then

�
p×p

= �
p×k

�′
k×p

+ '
p×p (8.9.18)

where � is the covariance matrix of Y;' is the a diagonal, nonsingular covariance matrix
of e; and ��′ is the covariance matrix of the common parts of the observation Y of rank k
such that �−' is p.s.d. and of minimal rank k. The matrix ��′ has the same off-diagonal
elements as �. Because ' is nonsingular, each ψ i > 0. When ψ i is not greater than zero,
we have what is known as the Heywood case. In such situations, the EFA model is not
appropriate. The goal of EFA is to obtain a few factors that adequately reproduces � or Pρ

if one uses standardized variables.
In (8.9.18) there are p(p+1)/2 elements in �. They are to be represented in terms of the

p (k + 1) unknown parameters in � and '. Because of the transformation problem, � may
be made to satisfy k (k − 1) /2 independent conditions, the number of unique elements in
the orthogonal matrix T. Thus, the effective number of unknown parameters is not p+ pk,
but f = (p + pk) − k (k − 1) /2. Now the degrees of freedom v for the EFA model is
given by the number of equations implied by (8.9.18) or the distinct elements in � minus
the number of free parameters f . Hence v = (p − k)2 − (p + k) /2. For v > 0, k must
satisfy the condition that p + k < (p − k)2, Anderson and Rubin (1956). The k (k − 1) /2
conditions imposed on � are chosen for mathematical convenience. Two sets of restrictions
are that �′� is diagonal, also called the principal component characterization of the EFA



502 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis

model. Or, to require �′'−1� to be diagonal, the canonical correlation characterization of
the EFA model, Rao (1955).

For an estimator to be scale free, suppose we consider a simple rescaling of the data so
that Y∗ = DY where D is nonsingular. Then �∗ = D� and '∗ = D'D depend on the con-
ditions imposed on � and ', Anderson and Rubin (1956). For example if �′� is required
to be diagonal, then �∗′�∗ = �′D2� is not diagonal under the PC characterization. Al-
ternatively under the canonical correlation characterization, suppose we require �′'−1�

to be diagonal. Then for �∗ = D�, the matrix �∗′'∗−1�∗ is diagonal. This shows that
the canonical correlation characterization is scale free as indicated by Swaminathan and
Algina (1978).

b. Estimating Model Parameters

To estimate the model parameters of the EFA model with structure � = ��′ + ', one
obtains a random sample of n p-vectors to form an n × p data matrix Yn×p. Using Y, one

constructs the unbiased estimate of � defined by S = Y′(I − 1
(
1′1

)−1 1′)Y/ (n − 1) .
Or, the sample correlation matrix R. In general, estimation procedures are divided into two
broad classes: scale free methods and non-scale free methods. For scale free methods, one
may analyze S or R. While most software packages provide both, non-scale free methods
give different results depending on whether S or R is analyzed.

In general, non-scale free methods are based on the least squares principle which min-
imizes the sum of the squares of the elements of S − ��′ − ' = S − �. That is the fit
function is

FU L S (�,') = tr
[
(S−�)′ (S−�)

]
= tr (S−�)2

= ‖S−�‖2
(8.9.19)

is minimized for a known value of k where � = ��′ + '. Methods known as principal
component factoring (PCF), principal factor analysis (PFA), iterative principal factor anal-
ysis (IPFA), and the minus method fall into this class, Harmon (1976), Mulaik (1972), and
Jöreskog (1977). Minimization of (8.9.19) leads to the normal equations

(S− �̂�̂′ − '̂)�̂ = 0

diag(S−��̂′ − '̂) = 0
(8.9.20)

These equations may not be solved directly. Instead, one selects '̂o = '̂ and solves the
equations

(S− '̂o)�̂ = �̂(�̂′�̂)

'̂o = diag(S−��̂′)
(8.9.21)

in a single step or iteratively. Using the PC characterization that �̂′�̂ is diagonal and setting
Sr = S− '̂o, by PCA there exists an orthogonal matrix P̂ such that

Sr = P̂�̂P̂′ = (̂P�̂1/2)(̂P�̂1/2)′ = �̂�̂′ (8.9.22)
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where �̂ is a diagonal matrix containing the roots of |Sr − δI| = 0. By construction,

Sr P̂ = P̂�̂

Sr P̂�̂1/2 = P̂�̂1/2(�1/2PP�1/2)

Sr �̂ = �̂(�̂′�̂)

where �̂′�̂ = �̂ is diagonal. Thus, with an estimate of ' for a given k, one has that

�̂ = P�1/2 and ��̂′ = P�P′ (8.9.23)

The equation |Sr − δI| = 0 corresponds to a PCA of the common part of the test scores,
c = �′f.

To use the ULS procedure, two assumptions are made: (1) a reasonable estimate of '
is available, and (2) k is known. Given S and treating it as �, ignoring sample variation,
the number of common factors k is equal to the rank of S − ', if ' is known. Since '

is not usually known, the rank of S − ' is affected by the elements used in ' or by the
values of the communalities. Furthermore, the estimates of the loadings are influenced by
the number of common factors, which are only determinable if k is known. The common
factor structure changes as k changes. But k is not obtained until factoring is complete, and
even if k is known, it is not sufficient for ' to be uniquely determined. This unfortunate
state of affairs has led many researches to avoid the EFA model or to limit its exploration
using only the PCF method.

For PCF method, one sets '̂o = I and analyzes S or R. Then for some number of com-

mon factors k, S− �̂�̂′ = '̂ where ψ̂ i = sii −∑k
j=1 λ̂

2
i j = sii − ĥ2

i and ĥ2
i is an estimate

of the communalities, the variance of the common part of Yi . To estimate k, one studies the
sample eigenvalues of S − '̂ and analyzes the residual matrix S − �̂�̂′ − '̂ for various

values of k. The ||S − �̂�̂′ − '̂||2 ≤ ∑p
i=k+1 λ̂

2
i and the root mean square residual is

||S− �̂�̂′ − '̂|| / [p (p − 1) / 2]1/2.
Both PFA and IPFA use an “ad hoc” method to estimate the matrix of unique variances

' by '̂o. If one is analyzing S, an estimate the matrix is

'̂o = (diag S−1)−1 (8.9.24)

The rationale for this estimate is that if S−1 is a good estimate of �−1, then by the EFA
model, for an infinite number of tests,

(� − '̂o) = ��′

exactly and k is the rank of � − '̂o. The rank of S − '̂o with '̂o estimated by (8.9.24)
is known as Guttman’s strongest lower bound for the rank of �, Mulaik (1972, p. 141).
Letting sii represent the i th diagonal element of S−1, the communality on the diagonal of
the matrix S− '̂o has the general form ĥ2

i = sii − (sii )−1. When the correlation matrix is
analyzed, one may select

'̂o =
(

diag R−1
)−1

(8.9.25)



504 8. Principal Component, Canonical Correlation, and Exploratory Factor Analysis

Representing the i th diagonal element of R−1 as r ii , the i th communality has the form

ĥ2
i = 1− (r ii )−1 (8.9.26)

and is seen to be equal to the squared multiple correlation (SMC) between Yi and the
remaining p− 1 variables, R2

i . The reduced correlation matrix R− '̂o has estimated com-
munalities ĥ2

i = 1− ψ̂ i = R2
i or the squared multiple correlations as its diagonal elements.

When using a covariance matrix, the diagonal elements are rescaled squared multiple cor-
relations ĥ2

i = sii− ψ̂ i = sii R2
i . In IPFA one modifies '̂o at each stage after finding �̂

until �̂i and '̂i+1 agree with �̂i−1 and '̂i to a predetermined number of significant figures.
Since the element in the matrix �̂ are used to estimate the communalities, the communal-
ities are changed at each state of the iterative process. In general, one should avoid using
these “ad hoc” methods of analysis since for moderately correlated variables the procedures
lead to inconsistent estimates, Basilevsky (1994, p. 365).

One of the first scale free methods for EFA was developed by Lawley (1940) using the
maximum likelihood method which assumes that Yi ∼ Np

(
µ, � = ��′ +'

)
. Then, the

likelihood normal equations are

S'̂−1�̂ = �̂(I+ �̂′'̂−1�̂)

'̂ = diag(S− �̂�′)
(8.9.27)

Again, these equations may not be solved directly; instead an iterative procedure is used.
For a review of the method, the reader should consult Lawley and Maxwell (1971), Jöres-
kog (1967, 1977) and Jöreskog and Lawley (1968). Briefly, to solve (8.9.27) we premulti-
ple the first equation in (8.9.27) by '−1/2. This results in the equation

('̂−1/2S'̂−1/2)('−1/2�) = ('̂−1/2�)(I+ �̂′'̂−1�̂) (8.9.28)

Now using the condition that �̂′'̂−1�̂ is diagonal because of the transformation problem,
the canonical correlation characterization makes the model identifiable, and given k and '̂o,
(8.9.28) implies that Q = '

−1/2
o �̂ contains the eigenvectors of the p× p weighted matrix

'̂
−1/2
o S'̂−1/2

o and that the diagonal matrix � = (
I+ �̂′'̂−1

o �̂
)

contains k nonnegative
roots. However, the matrix product Q′Q = �̂′'̂−1

o �̂ = �−I �= I. To ensure that Q′Q = I,
we set P = Q (�− I)−1/2 so that P′P = I. Then, Q becomes

Q = '̂
−1/2
o � = P (�− I)1/2 (8.9.29)

or Q′'̂−1/2
o S'̂−1/2

o Q = � as required. Hence a solution for the loading matrix from
(8.9.29) is

�̂ = '̂
−1/2
o P (�− I)1/2 (8.9.30)

By forming the matrix product �̂�̂′ and using the equation '̂ = diag(S − ��̂) for a
calculated �̂, an iterative procedure is established to determine '̂ and �̂, simultaneously.

A major advantage of the ML method is that it is scale free. That is, if �̂ is a matrix
of loadings for analyzing S, then D�̂ are the loadings for analyzing R. A disadvantage
of the method is that the matrix S or R must be nonsingular. Furthermore, it may result in
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estimates of ψ i that are zero or negative, the Heywood or ultra-Heywood situation. When
this occurs, this is a strong indication that the EFA model is not an appropriate model for
the data.

Another scale free procedure, canonical factor analysis, was developed by Rao (1955).
Rather than maximizing the total variance of the variables, as in PCA, Rao utilized CCA in
determining k sample canonical variates between Y and f. Under the CFA model given in
(8.7.11), we assume that Y

f

 ∼

 µy

0 ,

 � �

�′ I

 (8.9.31)

and find linear combinations Ui = a′i Y and Vj = b′j f with maximum correlation using
(8.6.19). For a sample, we must solve∣∣�̂�̂′ − θS

∣∣ = 0 (8.9.32)

were θ̂ j is the square of the canonical correlation between Ui and Vj . Letting �̂�̂′ =
�̂ − '̂, (8.9.32) becomes

| S− δ'̂ |= 0 (8.9.33)

for δ̂ j = 1/
(
1− θ̂ j

)
. Thus letting � denote the roots of '̂−1/2S'̂−1/2 and Q the ma-

trix of eigenvectors, CFA is mathematically equivalent to the ML method. That is, the
CFA loadings are �̂ = '̂−1/2Q = '̂

−1/2
o P (�− I)1/2 and Q′'̂−1/2

o S'̂−1/2
o Q = �. This

demonstrates that Rao’s CFA solution is equivalent to the ML solution, without assuming
normality. It is also equivalent to Howe’s (1955) maximum determinant method that maxi-
mizes the determinant of the partial correlation matrix,

∣∣'−1/2
(
� −��′

)
'−1/2

∣∣ , using
model (8.9.3), Morrison (1990).

Instead of maximizing the determinant of the partial correlation matrix

'−1/2 (� −��′
)
'−1/2,

suppose we assume ' is fixed. Then, for fixed ' suppose we minimize the weighted least
squares function

F (�,') = tr
[
'−1

o (S−�)
]2

(8.9.34)

where '−1
o is a “weight” matrix and � = ��′ +'. Minimizing (8.9.34) for fixed ', one

can show that the normal equation is

'−1 (S−��′ −'
)
'−1� = 0 (8.9.35)

Multiplying (8.9.35) by ', observe that

S'�̂ = �̂(I+ �̂′ψ̂−1
�̂) (8.9.36)

which is identical to the first equation of the ML solution. Replacing '−1
o with the random

weight matrix S−1 which is an estimate of �−1 where � is the true population covari-
ance matrix of Y and following Jöreskog and Goldberger (1972), (8.9.34) becomes the
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generalized least squares fit criterion

FGL S (�, ') = tr
[
S−1 (S−�)

]2 = tr(I− S−1�)2 (8.9.37)

Minimizing (8.9.37) for fixed ', the equation for the loadings � agree with (8.9.36),
Jöreskog and Goldberger (1972). Adding the constraint that '̂o = diag

(
S−��′

)
, one

can force the GLS estimates, the ML estimates, and the weighted estimates using (8.9.34)
to yield identical results, Lee and Jennrich (1979). Thus, for large or small samples and
provided S (or R) is nonsingular ML estimates may be used to estimate � and', given k,
for the EFA model. Furthermore, even though ML estimates do not exist for fixed factors
(Anderson and Rubin, 1956, p. 129) assuming � = ��′+'o where 'o is known and used
as a “weight” matrix one is led to fixed model estimates which can be made to be “ML like”
estimates. For these reasons, we recommend using the ML procedure for the EFA model.
The procedure always leads to efficient and consistent estimates of model parameters.

c. Determining Model Fit

Under the EFA model, we assume that � has the structure � = ��′ +' for a given value
of k. The alternative is that � has any structure �. Lawley (1940) derived the likelihood
ratio test of

H : � = ��′ +' (8.9.38)

assuming Yi ∼ Np (µ, �). The likelihood ratio statistic for testing H derived by Lawley
is an

X2
k = n

[
log |�̂| − log |S| + tr(S�̂−1)− p

]
If H is true, as n −→∞ then X2

k converges to a chi-square distribution with v = [(p−k)2−
(p + k)]/2. Observing that the diag �̂ = diag S so that the tr

(
S−1�̂

) = p (Anderson and
Rubin, 1956, eq. 8.3) and using Bartlett’s (1954) correction, an alternate form of Lawley’s
statistic is

X2
k = [n − (2p + 4k + 11) / 6] log (|�̂|/|S|) (8.9.39)

However, under H the rank of ��′ is k so that the last p − k roots of ��′ must be zero.
Or, equivalently the roots of '−1/2��′'−1/2 must be zero. But under H, � = ��′ +'

or '−1/2�'−1/2 = '−1/2��′'−1/2 + I. By the first ML normal equation, if δi is a root
of the weighted covariance matrix '̂−1/2S'̂−1/2, then δi = 1 + γ i where γ i is the i th of
'−1/2��′'−1/2 or the i th diagonal element of � = �′'−1� which is diagonal. Thus, if
γ i = 0 then δi = 1. Hence, testing H is equivalent to testing that the last p − r roots δi

of '̂−1/2S'̂−1/2 differ from one. An alternative form of the test statistic for H for various
values of k is

X2
k = − [n − (2p + 4k + 11) / 6]

p∑
i = k + 1

log (̂δi ) (8.9.40)

as given by Anderson and Rubin (1956, p. 136). The test of fit is used to determine the
number of factors when using the ML method. However, it tends to over estimate the
number of factors. One may also use (8.9.40) when analyzing Pρ provided n is large. A test
developed by Schott (1988) may be modified for the EFA model for small samples.
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Using a formal test of fit may lead one to retain too many factors. One should also
construct scree plots of the sample eigenvalues of S − '̂ and study the elements of S −
�̂�̂′ − '̂, for consistently small values. For various values of k, the root mean square
residual (RMS) index

RMS =
√

tr(S−��̂′ − '̂)2

p (p − 1) / 2
(8.9.41)

is investigated. For strong data, the formal test and ad hoc methods should lead to a con-
sistent value for k. To evaluate whether one has strong data, the variables should not be
independent. Thus, Pρ �= I which may be tested using the procedure discussed in Chap-
ter 3.

An ad hoc procedure for determining “strong” data, available in SAS, is to use Kaiser and
Rice’s (1974) measure of sampling adequacy (MSA). Their index is designed to evaluate
how close R−1 is to a diagonal matrix. It is defined as

MSA =
∑

i< j r2
i j∑

i< j r2
i j +

∑
i< j q2

i j

(8.9.42)

where R = [
ri j

]
and Q = DR−1D = [

qi j
]
, D = [(diag R−1

)1/2]−1. As R −→ I, the
MSA index approaches 0. While Kaiser and Rice (1974) recommend that the MSA be
greater than 0.80, the following table developed by them is also provided

MSA Data Strength
≥ 0.9 Marvelous

0.8 Meritorious
0.7 Middling
0.6 Mediocre
0.5 Miserable

< 0.5 Unacceptable

for evaluating the strength of one’s data for analysis by the EFA model.

d. Factor Rotation

In PCA and CCA we did not recommend rotation since these models are uniquely identified
and any rotation destroys the criterion of maximum variances in PCA or maximum corre-
lation in CCA. Thus, rotation of components or canonical variates is usually ill-advised. In
EFA this is not the case; by design one obtains a solution that is not unique and one rotates
for ease of interpretation.

Having determined k and ' for the EFA model with orthogonal factors f, one usually
tries to discover a loading matrix �∗ using an orthogonal transformation matrix P such
that �∗ = �̂P where PP′ = I. Such transformations are orthogonal. Geometrically, the
loadings in the i th row of �̂ are the coordinates of Yi in the loading space. Using the
transformation P, one is trying to find new coordinates that generate a simple structure
for the loading matrix, following Thurstone. Recall that the loading matrix represents the
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covariance between factors and variables, and given high and low values of the loadings on
each variable one is trying to investigate patterns to interpret the factors. For this reason,
the matrix of loadings is called the pattern matrix. When a correlation matrix is analyzed,
the pattern matrix yields correlations between factors and variables. This matrix is called
the structure matrix. To interpret factors, one analyzes the pattern matrix.

One of the most popular and effective methods for orthogonal transformations is the
varimax method developed by Kaiser (1958). The goal of the varimax method is to obtain
factors that have high loadings for a subset of variables on only one factor and zeros for the
other factors. This generally leads to easy interpretation since variables are not confounded
by factors. To accomplish this, Kaiser’s varimax criterion makes the sum of the variances
of the loadings in each column of the matrix �̂∗ large, subject to the constraint that the
communality of each variable is unchanged; or letting �̂∗ = [̂λi j ]

Vj =
p∑

i=1
(̂λ

2
i j − λ̂

2
. j )

2/ p

=
[

p
p∑

i=1
λ̂

4
i j −

( p∑
i=1

λ̂
2
i j

)2
]

/ p2

where Vj is the variance of the communality of the variables within factor j , and λ̂
2
. j =∑p

i=1 λ̂
2
i j/p is the average of the squared loadings for factor j . Summing Vj over all

factors

Vr =
k∑

j=1
Vj =

k∑
j=1

[
1

p

p∑
i=1

λ̂
4
i j −

1

p2

( p∑
i=1

λ̂
2
i j

)2
]

(8.9.43)

yields the raw varimax criterion, Magnus and Neudecker (1999, p. 374).
Since each variable is weighted equally in (8.9.43), the raw varimax criterion is overly

influenced by variables with large communalities. To adjust for this, the factors are nor-
malized to unit length, by dividing each loading in a row of the pattern matrix by the com-
munality for the variable, and then returned to their original length; this is Kaiser’s normal
varimax criterion. Kaiser (1958) developed the matrix P of direction cosines using an iter-
ative procedure that is applied to all

(k
2

)
pairs of factors to maximize the normal varimax

criterion.
Orthogonal transformations using other criteria have been suggested to facilitate the in-

terpretation of orthogonal factors, Mulaik (1972). For example, the quarimax criterion max-
imizes the variance across factors (rows of �) instead of variables (columns of �). This
procedure usually results in a single factor with high loadings and other factors with dif-
ferential loadings across variables. The equamax criterion is an orthogonal transformation
that maximizes the weighted sum of row-wise and column-wise variances. While there are
numerous other proposed criteria, the varimax procedure usually leads to a satisfactory
pattern matrix.

Because orthogonal transformations of � using P to develop �∗ are rigid transforma-
tions of axes that are perpendicular or orthogonal to each other,one may not find a “simple
structure” pattern matrix. Then, an alternative to orthogonal transformations are oblique
transformations. For this situation, the axes of the factor space do not remain orthogonal.
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Using a nonsingular transformation matrix T such that f∗ = Tf and �∗ = �T−1 the
cov (f∗) = TT′ �= I so that the factors are correlated. Oblique transformation “rotate”
factor axes differentially. Furthermore, since angles and distances are not preserved, com-
munalities are changed. The variance of the common part of Yi now has the form

var (ci ) =
k∑

j=1
λ2

i j +
k−1∑
j=1

λi jλi j+1ρ
(

f j , f j+1
)

so that it depends on the correlations among factors. One still uses the pattern matrix to
interpret oblique factors, even though they are correlated. In the analysis of R, the pattern
matrix is not the same as the structure matrix.

Because oblique transformations allow axes to move differentially, they are sometimes
easier to interpret than orthogonal factors. However, they imply a structure for � of the
form given by (8.9.14), a correlated factor model, and not (8.9.2), an uncorrelated factor
model. For an oblique transformation, one may also have to investigate the structure matrix
and the intercorrelations among the factors. For further information, the reader should con-
sult Harmon (1976), Mulaik (1972) and McDonald (1985). SAS offers only a few oblique
transformations: the orthoblique, oblique procrustes and oblique promax. Each of these
start with an orthogonal transformation and through modification result in oblique fac-
tors. Currently, oblique rotation that minimize covariance of squared loadings among the
columns such as oblimin, a modification of varimax, is not available in the SAS procedure
FACTOR, Hakstain and Abel (1974).

e. Estimating Factor Scores

Principal components and canonical variates are computed from the observed data matrix
Y. However, given the orthogonal EFA model with structure � defined in (8.9.2) the fac-
tor scores must be estimated. Because the conditional model given in (8.9.3) where f is
considered fixed and the random model given in (8.9.1) where f is considered random lead
to the same structure for � = ��′ + ', one may estimate factor scores using either the
model.

To estimate factor scores using least squares theory, we use formulation (8.9.3) and con-
sider f fixed. Then, assuming �, ' and k are known and equal to their estimates, the
weighted least squares estimates of E (Y|f) is

f̂i = (�̂′'̂−1�̂)−1�̂′'̂−1 (Yi − y) (8.9.44)

for i = 1, 2, . . . , k. The matrix of factor scores becomes

F̂ = Y'̂−1�̂(�̂′'̂−1�̂)−1 (8.9.45)

This estimate was proposed by Bartlett (1938).
Although the estimates given in (8.9.45) are BLUE, the procedure assumes that the fac-

tors are fixed rather than random variables. Furthermore, f̂ is an estimate of E (Y | f) and
not of f. Finally, they may be inconsistent with ML estimates.
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An alternative to the fixed factor approach was proposed by Thompson (1934) known as
the regression estimator. Assuming the joint distribution of

[
Y′, f′

]
is as shown in (8.9.31),

Thompson proposed predicting f using the regression of f on Y. Given that F is known and
replacing Yn×p with deviation scores, Yd , the MR model relating Yd and F is

F
n×k

= Yd
n×p

B
p×k

+ E
n×k (8.9.46)

where B̂ = (
Y′dYd

)−1 Y′dF. Then, the predicted value of F is

F̂ = Yd B̂ = Yd
(
Y′dYd

)−1 Y′dF

= YdS−1�̂
(8.9.47)

the matrix of estimated factor scores. Assuming
[
Y′, f′

]
are jointly multivariate normal, the

least squares estimate of F̂ given in (8.9.47) is the ML estimation of the factor scores. Thus,
the estimator is consistent with finding ML estimates of the parameters of the EFA model.
The matrix F̂ as given in (8.9.47) are calculated in SAS. F̂ is a consistent estimator and
is not unbiased. Furthermore, S must be nonsingular and the factor scores are not unique
because of the factor inderterminacy problem. F̂ is usually evaluated for �̂ = �̂∗, the
rotated loading matrix. For standardized variables, (8.9.47) becomes

F̂ = ZR−1�̂ (8.9.48)

For additional remarks on the estimation of factor scores see Harmon (1976), Mulaik
(1972), and McDonald (1985).

f. Additional Comments

Topics related to the EFA model include image factor analysis and alpha factor analysis.
Following Jöreskog (1969), image factor analysis in SAS is done by performing a PCA on
an image covariance matrix. The communality (image) of a variable is the predicted value
of the variable obtained by regressing the variable on the remaining variables. There is no
indeterminacy due to estimating the communality since it now has a precise meaning. In
SAS, squared multiple correlations are inserted on the diagonal of the correlation matrix
and the off-diagonals of the matrix are adjusted so that the matrix is p.s.d. Hence, R must
be nonsingular. Alpha factor analysis is a scale invariant technique; however, instead of
scaling in the metric of the unique part of the observations, it uses the common part. In
alpha factor analysis the data are the population, and the variables are considered a sample
from the population of variables. The analysis seeks to find whether factors for a sample
of variables hold for a population of variables by constructing common factors that have
maximum correlation with factors in the population of variables, Kaiser and Derflinger
(1990).

In our presentation, we apply the EFA model to a single population, extensions to several
populations are considered by Jöreskog (1971).
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8.10 Exploratory Factor Analysis Examples

a. Performance Assessment Program (PAP—Example 8.10.1)

For our first example, we re-analyze the correlation matrix R associated with the PAP co-
variance matrix given in Table 8.3.7, Hansen (1999). In PCA we analyzed the total variance
of each variable. In factor analysis, the total variance is partitioned into a common variance
part

(
h2

i

)
and a unique variance

(
ψ i

)
. Removing the common variance from R, factor anal-

ysis is used to analyze the reduced correlation matrix or the common variance in each
variable. Thus, the term “common factor” analysis. An initial estimate of the communality

when analyzing R is ĥ2
i = 1− (

r ii
)−1 = 1− R2

i where R2
i is the squared multiple correla-

tion (SMS) between Yi and the remaining p − 1 variables. The statement PRIORS = SMC
is used in the SAS procedure FACTOR to obtain the initial SMC estimates. Because the
ML method for estimating ' and � is scale free, the SAS procedure analyzes R and not S.
The ML method is selected using option METHOD = ML.

The first and most difficult problem in EFA is to decide on the number of factors. We
have not really addressed this problem since we have assumed the value is known and that
'̂ is a perfect estimate of '. Then, the rank of R − ' (the reduced correlation matrix)
is k and 100% of the common variance it accounted for by k < p factors. The problem
of selecting k is known as the communality problem. Since '̂ is not an exact estimate
of ', some of the roots of R − '̂ will be negative. For guidance in selecting k, Guttman
(1954) recommended the number of sample eigenvalues of R − '̂ that are non-negative,
kG , known as Guttman’s strongest lower bound. One should also investigate the scree plots
of the eigenvalues of the reduced correlation matrix, perform tests of fit, and investigate
the RMS index given in (8.9.41) for several values of k. There is no exact solution to
the communality problem. Another criterion is the intepretability criterion. Do the rotated
factors make sense?

For the PAP reduced correlation matrix, kG = 4; however, the proportion of common
variance accounted for by the fourth latent factor is only 0.07%. The scree plots of the
eigenvalues of the reduced correlation matrix have a sharp elbow between the third and
fourth sample roots; and the MSA value is 0.781, near the “meritorious” level. Using the
rule of parsimony, we investigate both a 2-factor and 3-factor fit. The SAS code is provided
in program m8 10 1.sas.

Reviewing the output, the RMS index for the two models are .0198 for the 3-factor solu-
tion and .057 for the 2-factor solution. In general, 3-factor fit is better having smaller off-
diagonal residuals. In addition, Lawley’s statistic of fit accepts a 3-factor solution (p-value
= 0.3135) while a 2-factor solution is rejected (p-value < 0.0001). Finally, information
criteria due to Akaike (1987), [AIC] and Schwarz (1978) [SIC] support selecting a 3-factor
model over a 2-factor model. The criteria use a penalized likelihood function that takes
into account both the goodness-of-fit (likelihood) of a model and the number of parameters
estimated such that a model with smallest information value is best. For these criteria, the
model with a “smaller” value is better. Since AI C3 = −5.603 is less than AI C2 = 28
and SI C3 = −30.66 < SI C2 = 18.29, we would select the 3-factor solution over the
2-factor solution. Finally, the rotated factor pattern matrix solution recovers more of the
five dimensions of the study. The varimax rotated factors are provided in Table 8.10.1.
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TABLE 8.10.1. PAP Factors

Rotated Estimated
Factors Communality

Variables
(̂
λi j

) (̂
h2

i

)
1 2 3

SUPPG 20 60∗ 05 0.40
SUPPI 14 91∗ 09 0.85
ASMTE 24 05 75∗ 0.62
ASMTC 23 08 63∗ 0.46
FAM 75* 11 18 0.60
PAP 64* 30 33 0.61
PROF1 59* 11 19 0.40
PROF2 43* 21 20 0.26

Weighted Eigenvalues 8.2992 3.5427 1.1336

Proportion 0.6396 0.2730 0.0874

Cumulative % 64.0 91.3 100%

Comparing the PCA solution in Table 8.3.9 with the EFA solution in Table 8.10.1, we
are able to recover the structure in R exactly using 3 factors. However, we did not recover
the five dimensions in the questionnaire

b. Di Vesta and Walls (Example 8.10.2)

In program m8 10 2.sas, we analyze the correlation matrix in Table 8.3.4 for the eight
semantic differential scale of Di Vesta and Walls (1970). For these data, kG = 4; however,
one root dominates the reduced correlation matrix. Even though one root dominates, we fit
two factors since the scree plot has a sharp elbow between the second and third eigenvalues.
While Kaiser’s measure of sampling adequacy may be classified as “meritorious” since
M S A = 0.83 and 2 factors yield small residuals, the test of fit for a two-factor solution is
rejected. Fitting three factors results in a Heywood case, a single factor is trying to account
for more than 100% of the total observed common variance. This indicates that these data
are not appropriate for a factor analysis.

c. Shin (Example 8.10.3)

These data, like the Di Vesta and Walls example, do not seem to be appropriate for a factor
analysis. One again finds that the Heywood condition arises for the three factor solution. In
program m8 10 3.sas, we also analyze these data using the non-scale free unweighted least
square (ULS) criterion given in (8.9.19). Selecting three factors, the unrotated solution is
very similar to the PCA solution. The rotated matrix seems to provide a clearer picture of
a three factor solution.
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TABLE 8.10.2. Correlation Matrix of 10 Audiovisual Variables

Variable
v1 1.00 (Sym)
v2 .59 1.00
v3 .30 .34 1.00
v4 .16 .24 .62 1.00
v5 −.02 −.13 .28 .37 1.00
v6 .00 −.05 .42 .51 .90 1.00
v7 .39 .61 .70 .59 .05 .20 1.00
v8 .17 .29 .57 .88 .30 .46 .60 1.00
v9 −.04 −.14 .28 .33 .93 .86 .04 .28 1.00

v10 −.04 −.08 .42 .50 .87 .94 .17 .45 .90 1.00

We saw that PCA is not invariant to changes in scales and that no optimal criterion has
been developed to determine the number of components. In general non-scale free methods
of factor analysis do not improve upon the situation. Indeed, the problem is worse since
factor scores relate to latent traits. While scale free EFA methods are widely used in many
disciplines for data reduction and the interpretation of latent constructs as an exploratory
data analysis tool, we feel that EFA has little utility since factors obtained in practice are
usually dependent on the mathematical restriction imposed to attain uniqueness. And, while
rotation for interpretation may be critical to an analysis it should not be treated as an end
in itself. As an exploratory data analysis tool, factor analysis seeks to uncover “structure”
in data. In most disciplines, knowledge regarding the important variables and number of
factors is frequently known. One may even know something about the factor pattern. Thus,
data analysis is no longer exploratory but confirmatory. The Confirmatory Factor Analysis
(CFA) model is discussed in Chapter 10.

Exercises 8.10

1. Bolton (1971) measured 159 deaf individuals on ten skills, four were based on com-
munication skills and six were based upon reception skills. Use the ML factor anal-
ysis technique to uncover the structure and discuss your findings. The variables are
Reception Skills: v1− Unaided Hearing, v2− Aided Hearing, v3− Speech Read-
ing, v4− Reading, v5− Manual Signs, v6− Fingerspelling, and Communication
Skills: v7− Oral Speech, v8− Writing, v9− Manual Signs, v10− Fingerspelling.
The correlation matrix is provided in Table 8.10.2.

2. Stankov (1979) analyzed the correlation matrix of 13 audiovisual variables shown
in Table 8.10.3 using image analysis and orthoblique rotations. Re-analyze the data
using ML factor analysis and PCA with varimax and promax rotations. Compare and
interpret your findings.
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TABLE 8.10.3. Correlation Matrix of 13 Audiovisual Variables (excluding diagonal)

Variable 2 3 4 5 6 7 8 9 10 11 12 13
1 0.69 0.54 0.37 0.46 0.39 0.37 0.40 0.53 0.37 0.62 0.52 0.29
2 0.31 0.28 0.31 0.21 0.23 0.20 0.32 0.36 0.49 0.29 0.18
3 0.43 0.33 0.42 0.31 0.43 0.46 0.38 0.39 0.39 0.26
4 0.30 0.50 0.52 0.41 0.41 0.37 0.37 0.31 0.27
5 0.49 0.33 0.25 0.28 0.33 0.28 0.36 0.26
6 0.60 0.50 0.36 0.36 0.48 0.37 0.19
7 0.45 0.33 0.22 0.37 0.37 0.29
8 0.31 0.36 0.33 0.28 0.11
9 0.55 0.50 0.28 0.25

10 0.38 0.30 0.21
11 0.40 0.27
12 0.44

Variables
1 Verbal communication 8 Relation perception
2 Experimental evaluation 9 Spatial Scanning
3 Induction (visual) 10 Flexibility of closure
4 Auditory Induction 11 Perceptual speed
5 Memory span 12 Making
6 Temporal tracking 13 Tempo
7 Sound pattern recognition



9
Cluster Analysis and Multidimensional
Scaling

9.1 Introduction

Discriminant analysis is used to evaluate group separation and to develop rules for assign-
ing observations to groups. Cluster analysis is concerned with group identification. The
goal of cluster analysis is to partition a set of observations into a distinct number of un-
known groups or clusters in such a manner that all observations within a group are similar,
while observations in different groups are not similar. If data are represented as an n × p
matrix Y = [

yi j
]

where

Y
n×p
=


y′1
y′i
...

y′n


the goal of cluster analysis is to develop a classification scheme that will partition the rows
of Y into k distinct groups (clusters). The rows of the matrix usually represent items or ob-
jects. To uncover the groupings in the data, a measure of nearness, also called a proximity
measure needs to be defined. Two natural measures of nearness are the degree of distance
or “dissimilarity” and the degree of association or “similarity” between groups. The choice
of the proximity measure depends on the subject matter, scale of measurement (nominal,
ordinal, interval, ratio), and type of variables (continuous, categorical) being analyzed. In
many applications of cluster analysis, one begins with a proximity matrix rather than a data
matrix. Given the proximity matrix of order (n × n) say, the entries may represent dissim-
ilarities [drs] or similarities [srs] between the r th and sth objects. Cluster analysis is a tool
for classifying objects into groups and is not concerned with the geometric representation
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of the objects in a low-dimensional space. To explore the dimensionality of the space, one
may use multidimensional scaling.

Multidimensional scaling (MDS), like PCA, is a data reduction technique that begins
with an (n × n) proximity matrix of dissimilarities δrs based upon (1× p) vectors and
tries to find a set of constructs of lower-dimension k based upon dissimilarities drs ≈
δrs for all objects under study. In most applications, the data matrix Yn×p is not given.
Multidimensional scaling is an exploratory data analysis technique designed to discover the
dimensionality of the space of hypothetical constructs called principal coordinates based
upon a proximity matrix of perceived dissimilarities (distances). The process of uncovering
the geometric representation of the principal coordinates is sometimes referred to as the
ordination process, the construction of a low-dimensional plot of the objects under study.

In this chapter we provide an overview of commonly used hierarchical and nonhierar-
chical clustering methods, and some criteria commonly used to determine the number of
clusters. Comprehensive discussions of cluster analysis are included in books on the topic
by Anderberg (1973), Hartigan (1975) and Everitt (1993). Metric and nonmetric multidi-
mensional scaling methods are also reviewed. These topics are discussed in more detail by
Torgerson (1958), Kruskal and Wish (1978), Davidson (1983), Young (1987), Cox and Cox
(1994), and Everitt and Rabe-Hesketh (1997). Both topics are also discussed by Mardia,
Kent and Bibby (1979), Seber (1984), and Jobson (1992).

9.2 Proximity Measures

Proximity measures are used to represent the nearness of two objects. If a proximity mea-
sure represents similarity, the value of the measure increases as two objects become more
similar. Alternatively, if the proximity measure represents dissimilarity the value of the
measure decreases in value as two objects become more alike. Letting yr and ys represent
two objects in a p-variate space, an example of a dissimilarity measure is the Euclidean
distance between yr and ys . As a measure of similarity, one may use the proportion of
the elements in the two vectors that match. More formally, one needs to establish a set of
mathematical axioms to create dissimilarity and similarity measures.

a. Dissimilarity Measures

Given two objects yr and ys in a p-dimensional space, a dissimilarity measure satisfies the
following conditions.

1. drs ≥ 0 for all objects yr and ys

2. drs = 0 if and only if yr = ys

3. drs = dsr

(9.2.1)

Condition (3) implies that the measure is symmetric so that the dissimilarity measure that
compares yr (object r ) with ys (object s) is the same as the comparison for object s versus
object r . Condition (2) requires the measure to be zero whenever object r equals object s,
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the objects are identical only if drs = 0 and under no other situation. Finally, (1) implies
that the measure is never negative. A dissimilarity measure that satisfies conditions (1) to
(3) is said to be a semi-metric measure.

For continuous (interval, ratio scale) variables, the most common dissimilarity measure
is the Euclidean distance between two objects. Given an (n × p) matrix Y with (1× p)
row vectors y′i , the square of the Euclidean distance between two rows yr and ys is defined
as

d2
rs = (yr − ys)

′ (yr − ys) = ‖yr − ys‖2 (9.2.2)

The (n × n) data matrix D = [drs] is called the Euclidean distance matrix. Because a
change in the units of measurement may cause a variable to dominate the ranking of dis-
tances, the Euclidean distance matrix is most effective for variables that are commensurate.

When variables are not commensurate, one may weight the squared differences by s2
j =∑n

i=1(yi j − y. j )
2/ (n − 1) , j = 1, 2, ..., p where s2

j and y. j represent estimates of the
mean and variance of variable j.

d2
rs = (yr − ys)

′ (diag S)−1 (yr − ys) (9.2.3)

This process eliminates the dependence of the analysis on the units of measurement. How-
ever, it often causes the within-cluster distances to become larger than the between-cluster
differences thus tending to mask clusters, Hartigan (1975, p. 59). This problem also occurs
when using the square of Mahalanobis distances as a proximity measure in the metric of
the covariance matrix S defined as follows.

d2
rs = (yr − ys)

′ S−1 (yr − ys) (9.2.4)

Mahalanobis distances, whether or not the variables are commensurate, tend to mask clus-
ters even more since correlations tend to be reduced even further, Hartigan (1975, p. 63).
There is no satisfactory solution to the inconsistent unit of measurement problem.

Because Euclidean distance is a special case of the Minkowski metric (Lp-norm), the
dissimilarity measures may be represented as

drs =
(

p∑
j=1

∣∣yr j − ys j
∣∣λ)1/λ

(9.2.5)

Varying λ in (9.2.5) changes the weight assigned to larger and smaller distances. For λ = 1,
we have city-block distances (L1-norm) and for λ = 2, we have Euclidean distances. City-
block distances tend to have low sensitivity to outliers.

In defining dissimilarity measures, we did not include the triangular inequality condi-
tion that drs ≤ drq + dqs for all points r, s, and q. With this condition, the dissimilarity
measures form a metric. While all Minkowski distances form a metric, the requirement is
a sufficient condition but not a necessary condition for a proximity measure. For exam-
ple, we may cluster using the matrix of squared Euclidean distances which do not form a
metric or use the norm drs = ‖yr − ys‖, which does form a metric. Replacing the trian-
gular inequality with the condition that drs ≤ max

(
drq , dqs

)
for all points r, s, and q,
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FIGURE 9.2.1. 2× 2 Contingency Table, Binary Variables

Row s Total
1 0

1 a b a + b
Row r

0 c d c + d

Total a + c b + d p = a + b + c + d

the semi-metric becomes an ultrametric. It is called an ultrametric since this condition is
stronger than the triangular inequality requirement for a metric.

To reduce the size of squared distances (or distances), they are often divided by the
number of variables p. Because all dissimilarities are divided by the same number p, this
does not effect the clustering results. In addition, the squared Euclidean distances are often
mean centered by subtracting from each variable its corresponding mean. Then Yd = [yi j−
y. j ] is analyzed. Variable centering does not effect the Euclidean distances since removing
the means from the p variables does not change the Euclidean distance between any two
objects.

Two other dissimilarity measures that have been proposed when all yi j are positive are
the following.

Canberra Metric drs =
p∑

j=1

{
| yr j − ys j |(

yr j + ys j
) }

(9.2.6)

Czekanowski Coefficient drs =
∑p

j=1 | yr j − ys j |∑p
j=1

(
yr j + ys j

) (9.2.7)

Both of these measures are modified L1-norms and are used when data are skewed and/or
contain outliers. A scaled L1-norm that may be used for data that includes both positive
and negative values is Gower’s metric

Gower Metric drs =∑p
j=1

∣∣yr j − ys j
∣∣ /R j (9.2.8)

where R j represents the range of variable j .
We have developed some dissimilarity measures assuming the data are continuous with

levels of measurement that are at least interval. For categorical data that have nominal or
ordinal scales of measurement, the situation becomes more complex, Anderberg (1973, p.
122). For a simple case, suppose each row y′i of Y contains only binary data. Then, the
squared Euclidean distances only provide a count of mismatches, (1− 0) or (0− 1), and
treat the matches, (1− 1) and (0− 0), equally. When variables are coded either 0 or 1 to
indicate the absence or presence of a characteristic, a (2× 2) table as shown in Table 9.2.1
may be created to evaluate dissimilarity and similarity measures.

In Figure 9.2.1, the frequencies b and c represent mismatches while frequencies a and c
represent matches. Thus the squared Euclidean distance divided by p becomes

p∑
j=1

(
yr j − ys j

)2
/p = (b + c) /p = d2

rs/p
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for p binary variables. Using any Minkowski metric the value is the same for all λ ≥ 1.
Note also that (b + c) /p = 1 − (a + d) /p. The quantity (a + d)/p is a measure of
similarity in that it reflects the proportion of matches between two (1× p) binary vectors.
We will say more about similarity measures later. For binary variables, the Canberra metric
is identical to the city block metric (L1-norm) and Czekanowski’s coefficient becomes a
metric.

In evaluating Czekanowski’s metric for binary variables, we have the following expres-
sion for the dissimilarity measure

drs =
∑p

j=1

∣∣yr j − ys j
∣∣∑p

j=1

(
yr j + ys j

) = b + c

(a + b)+ (a + c)
= 1− 2a

2a + b + c
(9.2.9)

The quantity 2a/ (2a + b + c) is called Czekanowski’s coefficient. It is a measure of simi-
larity in which double weight is given to (1− 1) matches, and (0− 0) matches are excluded
from both the numerator and denominator, thus making them irrelevant in the calculation.
We now discuss proximity matrices made up of similarity measures.

b. Similarity Measures

Given two objects yr and ys in a p-dimensional space, a similarity measure satisfies the
following conditions.

1. 0 ≤ srs ≤ 1 for all objects yr and ys

2. srs = 1 if and only if yr = ys

3. srs = ssr

(9.2.10)

Condition (3) again implies the measure is symmetric while conditions (1) and (2) ensure
that its always positive and identically one only if objects r and s are identical.

Given a similarity measure that satisfies (9.2.10), one may always create a dissimilarity
measure using the relationship that drs = 1− srs or some other decreasing function, how-
ever, the new measure may not form a metric. Conversely, given a dissimilarity measure
drs one may want to construct a similarity measure as srs = 1/ (1+ drs). Because drs is
unbounded, 0 < srs ≤ 1 so that srs never attains the value of zero. Thus, one may not cre-
ate srs from drs . While one may use either similarity measures or dissimilarity measures
to cluster the rows of a data matrix, the CLUSTER procedure in SAS only uses dissimi-
larity measures. In this section, we therefore emphasize converting similarity measures to
dissimilarity measures.

A common measure of similarity suggested by some authors is to use the Pearson product
moment correlation between objects yr and ys r, s = 1, 2, . . . , n defined as

qrs =
∑p

j=1

(
yr j − yr.

) (
ys j − ys.

)[∑p
j=1

(
yr j − yr.

)2 ∑p
j=1

(
ys j − ys.

)2
] (9.2.11)
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where yr. =
∑

j yr j/p and ys. =
∑

j ys j/p. The symbol qrs is being used since we are
calculating correlations using the rows of the data matrix. However, because −1 ≤ qrs ≤
1, it does not satisfy condition (1) in (9.2.10). To correct this situation, one may instead use
the quantities |qrs | or 1− q2

rs . It has also been suggested to add one to qrs and divide by 2,
q∗rs = (qrs + 1) /2. Or, equivalently the quantity 1−qrs . This still presents a problem since
q∗rs = 1 does not imply that yr = ys only that the elements in each vector are perfectly
linearly related.

If the matrix Y is standardized so that ỹi j = (yr j− yi.)/ si where si =∑p
j=1 ỹ2

s j/(p−1)
for i = 1, 2, ..., n objects, then one may relate qrs to squared Euclidean distances as follows

d2
rs =

p∑
j=1

(
ỹr j − ỹs j

)2 (9.2.12)

=
p∑

j=1
ỹ2

r j +
p∑

j=1
ỹ2

s j − 2
p∑

j=1
ỹr j ỹs j

= 2 (1− qrs)

so that drs = √2 (1− qrs) becomes a metric. One may then use the quantities drs, 1 −
qrs or d2

rs to cluster rows. As noted by Anderberg (1973, p. 114), standardization makes
little sense when the p variables are not commensurate since the measure of similarity qrs

has little meaning for different scales of measurement.
Another measure of similarity for rows in Y is the cosine of the angle θ between two

vectors yr and ys for r, s = 1, 2, . . . , n defined as

cos θ = crs = y′r ys/ ‖yr‖ ‖ys‖ (9.2.13)

Because −1 ≤ crs ≤ 1, condition (1) of similarity measures is not satisfied. If one nor-
malizes the elements in each row of Y so that the ‖̃yr‖2 = ‖̃ys‖2 = 1, then by the law of
cosines

‖̃yr − ỹs‖2 = ‖̃yr‖2 + ‖̃ys‖2 − 2 ‖̃yr‖2 ‖̃ys‖ cos θ

and the squared distances become

d2
rs = 2 (1− crs) (9.2.14)

so that one may again employ a dissimilarity measure to cluster rows in Y with normaliza-
tion, Anderberg (1973, p. 114).

Similarity measures for binary variables are important in cluster analysis. To construct
similarity measures for binary data we again consider the entries in the 2× 2 table given in
Table 9.2.1. We consider how to weight matches and mismatches because a (1− 1) match
may be more important than a (0 − 0) match since the former implies the presence while
the later implies the absence of an attribute. One may even want to discard (0− 0) matches
completely. To provide for the differential weighting of matches and mismatches and the
treatment of (0−0) matches, Anderberg (1973, p. 89) using Table 9.2.1 summarizes several
matching counting schemes as shown in Table 9.2.1

In Table 9.2.1, recall that a and b represent matched pair frequencies while cells c and d
represent the frequencies for mismatched pairs when comparing two observations yr and ys .
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TABLE 9.2.1. Matching Schemes

Similarity Weighting of Matches Coefficient Dissimilarity=
Measure and Mismatches Name (1-Similarity)

1. a+d
p Equal Weight to Matched Simple Matching Metric

Pairs With (0− 0) Matches

2. 2(a+d)
2(a+d)+b+c Double Weight to Matched Double Matching Metric

Pairs With (0− 0) Matches

3. a+d
a+d+2(b+c) Double Weight to Unmatched Rogers-Tanimoto Metric

Pairs With (0− 0) Matches

4. a
p Equal Weight to Matches With Russell-Rao Semi-metric

No(0− 0) Matches in Numerator

5. a
a+b+c Equal Weight to Matches With No Jaccard Metric

(0− 0) Matches in Denominator

6. 2a
2a+b+c Double Weight to (1− 1) Matches Czekanowski- Metric

With No (0− 0) Matches in Sørensen-Dice
Numerator or Denominator

7. a
a+2(b+c) Double Weight to Unmatched Pairs Unnamed Metric

With No (0− 0) Matches in
Numerator or Denominator

8. a
a+c Ratio of Matches to Mismatches Kulezynski Semi-metric

No (0− 0) Matches Included

9. a+d
b+c Ratio of Matches to Mismatches Unnamed Semi-metric

With (0− 0) Matches Included

The coefficients in Table 9.2.1 represent similarity proximity measures, srs , using various
weighting schemes with the inclusion and/or exclusion of (0−0) matches from the numer-
ation and/or denominator. The column titled “Dissimilarity” is defined as drs = 1 − srs ,
where srs is the similarity measure. We indicate in the column whether or not the corre-
sponding dissimilarity measure drs forms a metric or a semi-metric.

Subsets of similarity (dissimilarity) proximity measures in Table 9.2.1 are monotonically
increasing (decreasing). For some agglomerative hierarchical clustering procedures such as
the single link and complete link methods, monotonicity is important since the clustering
method is invariant to monotonic increasing (decreasing) relationships, Johnson (1967).
Anderberg (1973, p. 90) shows that the subgroup of metric proximity measures (1, 2 and 3)
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and measures (5, 6 and 7) are monotonically related. Clustering algorithms that are mono-
tonically related and yield the same clustering tree diagram (to be discussed later in this
chapter) under monotonic transformations of the data. The single link and complete link
clustering algorithms under monotonic transformations of proximities will yield the same
clustering tree diagram.

In our presentation of dissimilarity and similarity measures, we have discussed measures
employed for clustering rows of Y containing continuous interval or ratio level data or
binary data that commonly occur in multivariate data analysis. Anderberg (1973) devel-
ops measures for nominal and ordinal data, and for observation vectors that contain both
continuous and discrete data.

c. Clustering Variables

Proximity measures for clustering rows of Yn×p may also be used to cluster rows of Y′p×n ,
or variables. Replacing p with n in Table 9.2.1, all similarity (dissimilarity) measures
in Table 9.3.1 may be used to cluster variables. When clustering variables, one is likely
to standardize the variables and use some measure of association for clustering. When
working with variables, standardization is usually a natural step and a measure of associa-
tion ai j is used to cluster variables. To convert ai j to a dissimilarity measure, the function
di j =

√
1− ai j is often used.

Agresti (1981) provides an overview of several measures of association for nominal and
ordinal variables. For binary data, we may use Table 9.2.1 to calculate the Pearson product
moment correlation coefficient ri j and the cosine of the angle between variables i and j as
follows, Anderberg (1973, pp. 84-85)

ri j = ad − bc

[(a + b) (c + d) (a + c) (b + d)]1/2
(9.2.15)

ci j =
[(

a

a + b

)(
a

a + c

)]1/2

(9.2.16)

Then, from (9.2.15) and (9.2.16) dissimilarity measures that may be used to cluster vari-
ables are d2

i j =
(
1− ri j

)
, di j =

√
1− ri j , d2

i j =
(
1− ci j

)
, or di j =

√
1− ci j . Formula

(9.2.15) is the familiar phi coefficient. The coefficient ci j is also called the Ochiai coeffi-
cient. These measures work most effectively when all ri j ≥ 0 or all ci j ≥ 0. In general the
entries in Table 9.2.1 are preferred.

9.3 Cluster Analysis

To initiate a cluster analysis one constructs a proximity matrix. The proximity matrix rep-
resents the strength of the relationship between pairs of rows in Y′p×n or the data ma-
trix Yn×p. Algorithms designed to perform cluster analysis are usually divided into two
broad classes called hierarchical and nonhierarchical clustering methods. Generally speak-
ing, hierarchical methods generate a sequence of cluster solutions beginning with clusters
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containing a single object and combines objects until all objects form a single cluster; such
methods are called agglomerative hierarchical methods. Other hierarchical methods begin
with a single cluster and split objects successively to form clusters with single objects;
these methods are called diversive hierarchical methods. In both the agglomerative and di-
versive processes, a tree diagram, or dendogram, is created as a map of the process. The
agglomerative hierarchical procedures fall into three broad categories: Linkage, Centroid,
and Error Variance methods. Among these procedures, only linkage algorithms may be
used to cluster either objects (items) or variables. The other two methods can be used to
cluster only objects. Nonhierarchical methods may only be used to cluster items. In this
section we review several commonly used agglomerative hierarchical methods: the single
linkage (nearest neighbor), complete linkage (farthest neighbor), average linkage (average
distance), centroid, and Ward’s method. The nonhierarchical k-means method and some
procedures for determining the number of clusters are also reviewed.

a. Agglomerative Hierarchical Clustering Methods

Agglomerative hierarchical clustering methods use the elements of a proximity matrix to
generate a tree diagram or dendogram as shown in Figure 9.3.1. To begin the process, we
start with n = 5 clusters which are the branches of the tree. Combining item 1 with 2
reduces the number of clusters by one, from 5 to 4. Joining items 3 and 4, results in 3
clusters. Next, joining item 5 with the cluster (3, 4), results in 2 clusters. Finally, all items
are combined to form a single cluster, the root of the tree. As we move from left to right,
groups of items are successively combined to form clusters. Once an item or group of items
are combined they are never separated. Figure 9.3.1 represents the agglomerative process
as we move from left to right. The label at the top of the diagram denotes the number
of clusters at each step of the process. Figure 9.3.1 also represents a divisive hierarchical
process which begins with the root (a single cluster) and moves from right to left to create
the branches (items). In SAS, the procedure TREE is used to construct dendograms.

More generally, given a proximity matrix Dn×n = [drs], the steps for the agglomerative
hierarchical clustering algorithm are as follows.

1. Begin with n clusters, each containing only a single object.

2. Search the dissimilarity matrix D for the most similar pair. Let the pair chosen be
associated with element drs so that object r and s are selected.

3. Combine objects r and s into a new cluster (rs) employing some criterion and reduce
the number of clusters by 1 by deleting the row and column for objects r and s. Cal-
culate the dissimilarities between the cluster (rs) and all remaining clusters, using
the criterion, and add the row and column to the new dissimilarity matrix.

4. Repeat steps 2 and 3, (n − 1) times until all objects form a single cluster. At each
step, identify the merged clusters and the value of the dissimilarity at which the
clusters are merged.

By changing the criterion in Step 3 above, we obtain several agglomerative hierarchical
clustering methods. While we indicated that divisive methods may also be used to cluster
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FIGURE 9.3.1. Dendogram for Hierarchical Cluster

objects, the procedure requires a significant number of calculations. For example, to locate
the first split in Figure 9.3.1 would require investigating 15 = 2n−1 − 1 partitions for
the n = 5 objects using some distance criterion. In general divisive methods use large
computer resources and splitting criteria are sometimes difficult to establish. A review of
divisive techniques is included in Seber (1984). Hartigan (1975) and O’Muircheartaigh
and Payne (1977) illustrate the automatic interactive detective (AID) method which splits
objects based upon prediction. The classification and regression tree (CART) methodology
is closely related to divisive clustering methods, Breiman et al. (1984). The VARCLUS
procedure in SAS attempts to divide a set of variables into clusters using a correlation or
covariance matrix. We now discuss some agglomerative hierarchical clustering methods.

(a1) Single Link (Nearest-Neighbor) Method

To implement the single link method, one combines objects in clusters using the minimum
dissimilarity between clusters. Letting r represent any element in cluster R, r ∈ R, and s be
any element in cluster S, r ∈ S, from the clusters in Step 3 of the agglomerative clustering
algorithm, distances between R and S are calculated using the rule

d(R)(S) = min {drs | r ∈ R and s ∈ S} (9.3.1)

At each step of the process, a dendogram is created representing the ordered distances
where objects are joined.
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Example 9.3.1 To illustrate rule (9.3.1), consider the hypothetical dissimilarity matrix

D = [drs] =

1 2 3 4 5

1
2
3
4
5


0
2
4
7
9

2
0
8
9
8

4
8
0
3
7

7
9
3
0
5

9
8
7
5
0


Scanning the matrix D, the most similar objects are represented by drs = d12 = 2 so that
objects 1 and 2 are jointed to form the cluster (12). Following Step 3, we must calculate the
minimum values using criterion (9.3.1) as follows.

d(12)(3) = min {d13, d23} = min {4, 8} = 4

d(12)(4) = min {d14, d24} = min {7, 9} = 7

d(12)(5) = min {d15, d25} = min {9, 8} = 8

Deleting the rows in D corresponding to objects 1 and 2, and adding the row and column
for the cluster (12), the new dissimilarity matrix becomes

D1 =

(1 2) 3 4 5

(1 2)
3
4
8


0
4
7
8

4
0
3
7

7
3
0
5

8
7
5
0


The most similar object in D1 is d34 = 3, so that we combine element 3 and 4 to form the

cluster (34). Again, we calculate the values

d(34)(12) = min
{
d(3)(12), d4(12)

} = min {4, 7} = 4

d(34)(5) = min {d35, d45} = min {7, 5} = 5

so that the new dissimilarity matrix is

D2 =

(12) (34) (5)

(12)
(34)
(8)

 0
4
8

4
0
5

8
5
0


The most similar value in D2 is the value 4 at which (34) is combined with (12). Then

d((12)(34))5 = min
{
d(12)(5), d(34)5

} = {8, 5} = 5

so that object 5 is combined with clusters (12) and (34) to form the single cluster (1 2 3 4
5) at the value 5. The dendogram for nearest dissimilarities follows.
The groupings and ordered dissimilarities at which clusters are joined are included in the
tree diagram at the left margin.
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1 2 3 4 5

RootDissimilarity

2

3

4

5

FIGURE 9.3.2. Dendogram for Single Link Example

(a2) Complete Link (Farthest-Neighbor) Method
In the single link method, dissimilarities were replaced using minimum values. For the

complete link procedure, maximum values are calculated instead. Letting r ∈ R and s ∈ S,
where R and S are two clusters, distances between clusters R and S are calculated using
the rule

d(R)(S) = max {drs | r ∈ R and s ∈ S} (9.3.2)

An example with illustrate the procedure.

Example 9.3.2 To illustrate rule (9.3.2.), we consider the same dissimilarity matrix dis-
cussed in Example 9.3.1.

D = [drs] =

1 2 3 4 5

1
2
3
4
5


0
2
4
7
9

2
0
8
9
8

4
8
0
3
7

7
9
3
0
5

9
8
7
5
0


From D we again see that drs = 2 represents the most similar objects. Using (9.3.2.), we
replace minimum values with maximum values

d(12)(3) = max {d13, d23} = d23 = 8

d(12)(4) = max {d14, d24} = d24 = 9

d(12)(5) = max {d15, d25} = d15 = 9
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RootDissimilarity

2

3

4

9

1 2 3 4 5

FIGURE 9.3.3. Dendogram for Complete Link Example

so that the new dissimilarity matrix is

D1 =

(1 2) 3 4 5

(1 2)
3
4
5


0
8
9
9

8
0
3
7

9
3
0
5

9
7
5
0


The most similar object in D1 is d34 = 3 so that 3 is combined with 4. Using the maximum
rule,

d(34)(12) = max
{
d(3)(12), d4(12)

} = d4(12) = 9

d(34)(5) = max {d35, d45} = d35 = 7

so that the modified dissimilarities matrix is

D2 =

(12) (34) (5)

(12)
(34)
(5)

 0
9
9

9
0
7

9
7
0


In D2, (34) is combined with 5. And finally, all elements are combined at the value 9. The
dendogram for the process follows

Comparing Figure 9.3.3. with Figure 9.3.2, observe that they do not yield the same result.
Objects 3 and 4 are joined to object 5 by the complete link process while in the single link
process they were joined to objects 1 and 2. While the two methods do not result in the
same dendogram, the tree diagrams are not changed by monotonic transformations of the
proximity measures.
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(a3) Average Link Method

When comparing two clusters of objects R and S, the single link and complete link methods
of combining clusters depended only upon a single pair of objects within each cluster.
Instead of using a minimum or maximum measure, the average link method calculates the
distance between two clusters using the average of the dissimilarities in each cluster

d(R)(S) =
∑

r
∑

s drs

nR nS
(9.3.3)

where r ∈ R, s ∈ S, and nR and nS represent the number of objects in each cluster. Hence,
the dissimilarities in Step 3 are replaced by an average of nRnS dissimilarities between all
pairs of elements r ∈ R and s ∈ S.

(a4) Centroid Method

In the average link method, the distance between two clusters is defined as an average of
dissimilarity measures. Alternatively, suppose cluster R contains nR elements and cluster
S contains nS elements. Then, the centroids for the two item clusters are

yr =
∑

r yr

nR
=


yr1
yr2
...

yr p

 and ys =
∑

s ys

nS
=


ys1
ys2
...

ysp

 (9.3.4)

and the square of the Euclidean distance between the two clusters is d2
rs =

∥∥yr − ys

∥∥2. For
the centroid agglomerative process, one begins with any dissimilarity matrix D (in SAS, the
distances are squared unless one uses the NOSQUARE option). Then, the two most similar
clusters are combined using the weighted average of the two clusters. Letting T represent
the new cluster, the centroid of T is

yt =
(
nRyr + nSys

)
/ (nR + nS) (9.3.5)

The centroid method is called the median method if an unweighted average of the centroids
is used, yt =

(
yr + ys

)
/2. The median method is preferred when nR >> nS or nS & nR .

Letting the dissimilarity matrix D = [
d2

rs

]
where d2

rs = ‖yr − ys‖2, suppose the ele-
ments r ∈ R and s ∈ S are combined into a cluster T where

yt =
(
nRys + nSys

)
/ (nR + nS) .

Then to calculate the square of the Euclidean distance between cluster T and the centroid
yu of a third cluster U , the following formula may be used

d2
tu =

(
nR

nR + nS

)
d2

rs +
(

nS

nR + nS

)
d2

ru −
(

nRnS

nR + nS

)
d2

rs (9.3.6)

This is a special case of a general algorithm for updating proximity measures for the single
link, complete link, average link, centroid and median methods developed by Williams and
Lance (1977).
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(a5) Ward’s (Incremental Sum of Squares) Method

Given n objects with p variables, the sum of squares within clusters where each object
forms its own group is zero. For all objects in a single group, the sum of squares within
clusters the sum of squares error is equal to the total sum of squares

SSE =
n∑

i=1
(yi − y)′ (yi − y) =

n∑
i=1
‖ yi − y ‖2= T (9.3.7)

Thus, the sum of squares within clusters is between zero and SSE . Ward’s method for
forming clusters joins objects based upon minimizing the minimal increment in the within
or error sum of squares. At each step of the process, n(n−1)/2 pairs of clusters are formed
and the two objects that increase the sum of squares for error least are joined. The process
is continued until all objects are joined. The dendogram is constructed based upon the
minimum increase in the sum of squares for error.

To see how the process works, let

SSEr =∑
r

∥∥yr − yr

∥∥2
, r ∈ R

SSEs =∑
s

∥∥ys − ys

∥∥2
, s ∈ S

for clusters R and S. Combining cluster R and S to form cluster T , the error sum of squares
for cluster T is

SSEt =∑
t

∥∥yt − yt

∥∥2
, t ∈ T

where yt =
(
nRyr + nSys

)
/ (nR + nS). Then, the incremental increase in joining R and S

to form cluster T is SSEt − (SSEr + SSEs). Or, letting SSEt be the total sum of squares
and SSEr + SSEs the within cluster sum of squares, the incremental increase in the er-
ror sum of squares is no more than the between cluster sum of squares. The incremental
between cluster sum of squares (IBCSS) is

(I BC SS)(R)(S) = nR
∥∥yr − yr

∥∥2 + nS
∥∥ys − ys

∥∥2 (9.3.8)

=
(

nRnS

nR + nS

)∥∥yr − ys

∥∥2

For clusters with one object, (9.3.8) becomes d2
rs/2. Hence, starting with a dissimilarity

matrix D = [
d2

rs

]
where d2

rs is the square of the Euclidean distances (the default in SAS for
Ward’s method) between objects r and s, the two most similar objects are combined and the
new incremental sum of squares proximity matrix has elements prs = d2

rs/2. Combining
objects r and s to form a new cluster with mean yt using (9.3.5), the incremental increase
in the error sum of squares may be calculated using the formula developed by Williams and
Lance (1977) as

ptu = [(nU + nR) pru + (nU + nS) psu − nu prs] / (nu + nR + nS) (9.3.9)
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b. Nonhierarchical Clustering Methods

In hierarchical clustering the number of clusters is unknown. The process is initiated with a
dissimilarity proximity matrix and once an object is assigned to a cluster it is never reallo-
cated. Linkage methods may be used to cluster either items or variables. In nonhierarchical
clustering, methods are only applied to cluster items. The process is initiated using the raw
data matrix Y and not a dissimilarity matrix, D. One has to know a priori the number of
clusters k which are either cluster centroids or seeds, and observations are reassigned using
some criterion with reallocation terminating based upon some stopping rule.

Nonhierarchical clustering methods usually follow the following steps.

1. Select k p-dimensional centroids or seeds (clusters).

2. Assign each observation to the nearest centroid using some Lp-norm, usually the
Euclidean distance.

3. Reassign each observation to one of the k clusters based upon some criterion.

4. Stop if there is no reallocation of observations or if reassignment meets some con-
vergence criterion; otherwise, return to Step 2.

In implementing a nonhierarchical clustering method one may vary the method for se-
lecting the k clusters, employ different Lp-norms, and vary the criterion for reallocating
observations to clusters to attain cluster stability.

To initiate a nonhierarchical cluster method, one first selects k centroids or seeds. The k
seeds may be the first k observations, the first k observations at some defined level of sepa-
ration, k random seeds, k initial seeds that may be replaced based upon some replacement
algorithm, and other variations. Once the seeds are selected, each of the observations are
evaluated for assignment or reassignment based upon some convergence criterion. While
numerous criteria use multivariate statistics that involve the determinant and trace of the
within-cluster and between-cluster variability, MacQueen’s k-means algorithm is used in
the SAS procedure FASTCLUS with modification using nearest centroid sorting, Ander-
berg (1973). The basic steps are as follows.

1. Select k seeds.

2. Assign each of the n − k observations to the nearest seed and recalculate the cluster
centroid (mean, median, or other depending on the Lp-norm).

3. Repeat Step 2 until all observations are assigned or until changes in cluster centroids
become small (no reassignments are made in cluster membership).

In Step 2 of the k-means process, the seed may or may not be updated. Two tests may
be made for seed replacement. An observation may replace one of a pair of seeds if the
distance between the seeds is less than the distance between an observation and the nearest
seed. The former seed becomes an observation in the recalculation of the centroid. If an
observation fails this test, one may invoke a second test. The observation replaces the near-
est seed if the smallest Euclidean distance from the observation to all seeds other than the



9.3 Cluster Analysis 531

nearest one is greater than the shortest distance from the nearest seed to all seeds. For one
pass of the data, all observations are associated with k clusters. This process is repeated
until all changes in cluster seeds become small based upon a convergence criterion.

When clustering items, hierarchical and nonhierarchical clustering methods may be com-
bined to facilitate the identification of clusters. As a first step, one may use a hierarchical
procedure to identify the seeds and number of clusters, these may be input into the non-
hierarchical procedure to refine the cluster solution.

c. Number of Clusters

Given a cluster analysis solution, one needs to evaluate various indices to determine the
number of clusters k. For some value of k, one wants to determine whether the clusters
are sufficiently separated so as to illustrate minimal overlap. Thus, evaluating a cluster
solution for k clusters is similar to trying to determine the dimension of the space in a PCA
or the number of factors in an EFA. In those situations, recall that one constructed informal
SCREE plots and under MVN, performed some test of dimensionality.

This is also the situation in cluster analysis. At each step of the clustering process a
cluster is formed by joining two observations, by joining an observation and a previous
cluster, or by joining two previously formed clusters. At each step of the joining process
the number of clusters decrease from k = n to k = 1. The “distance” between two clusters
joined beginning with n clusters and ending with one is the Euclidean distance or dissimi-
larity measure between clusters R and S. For example, for the single, complete, and average
link methods it is the minimum, maximum or average Euclidean distance, respectively. For
Ward’s method, it is the between cluster sum of squares as given in (9.3.8). As the number
of clusters decreases from n to 1, the value for the “distance” measure should increase since
it should be largest when two dissimilar clusters are joined. A shape elbow in the plot of
distances versus the number of clusters may be an indication of the number of clusters. If
one could construct an index of separation or a “pseudo” test statistic and plot its values as
clusters are joined, a large change in the index when plotted against the number of clusters
may help to locate a range of values or even one value for the number of clusters. There
is no exact procedure for determining the number of clusters since even with random data
one may find spurious clusters.

In regression analysis the coefficient of determination, R2, is a measure of the total vari-
ance in the dependent variable accounted for by the independent variables. In an ANOVA
study involving the analysis of trends, R2 or more correctly η̂2, is defined as the ratio of
between sum of squares to the total sum of squares and is a measure of the total variation in
the dependent variable accounted for by the group means. Thus, in cluster analysis we may
construct an index of R2 as the number of clusters change. For n clusters, the total sum of
squares is T =∑n

i=1 ‖yi − y‖2 and the within cluster sum of squares for cluster k (Ck) is

SSEk =∑
i

∥∥yi − yk

∥∥2. Then, R2 for k clusters is defined as

R2
k =

T −∑
k SSEk

T
(9.3.10)

For n clusters, each SSEk = 0 so that R2 = 1. As the number of clusters decrease from
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n to 1 they should become more widely separated. A large decrease in R2
k would represent

a distinct join. Alternatively, joining clusters R and S one might compute the incremental
change in R2 or

S R2 = R2
k − R2

k−1 (9.3.11)

called the semipartial R2 index. The statistic S R2 compares the ratio of SSEt − (SSEr +
SSEs) where clusters CR and CS are jointed to form CT to the total sum of squares T =∑n

i=1 ‖yi − y‖2. The larger the increment, the larger the “loss of homogeneity” or the more
separated the clusters.

The goal of cluster analysis is to find a small number of homogeneous clusters. For
n = 1 cluster, the pooled within variance for all variables is the average of the variances for
each variable so that s2 = ∑n

i=1 ‖yi − y‖2 /p (n − 1) and the root mean square standard
deviation is s = RMSSTD. For any new cluster Ck with nk observations,

[RMSSTD]2 =
nk∑

i=1

∥∥yi − yk

∥∥2
/p (nk − 1) (9.3.12)

is the pooled variance of all variables forming a cluster at a given step. Large values of the
pooled variance suggest that the clusters are not homogeneous. Thus, a shape decrease to
near zero for some k < n suggest the formation of homogeneous clusters.

Under multivariate normality and independence of the n p-vectors for � = σ 2I, one may
test that the centroids of k clusters show significant separation using an ANOVA F statistic.
One may also evaluate whether two means are significantly separated at any level of the
clustering hierarchy as one proceeds through a cluster analysis using a t statistic. Because
independence and MVN are rarely satisfied, the statistics are called pseudo F and pseudo
t2 statistics. The pseudo F statistic is defined as

F∗k =
(
T −∑

k SSEk
)
/ (k − 1)∑

k SSEk/ (n − k)
(9.3.13)

If F∗k decreases with k, one may not use the statistic to estimate k. However, if F∗k decreases
with k and attains a maximum, the value of k at the maximum or immediately prior to the
point may be a candidate for the value of k. The pseudo t2 statistic is defined as

pseudo t2 = [SSEt − (SSEr + SSEs)] (nR + nS − 2)

SSEr + SSEs
(9.3.14)

for joining cluster CR with CS each having nR and nS elements. Again, one may plot the
pseudo values versus the number of clusters. If the values are irregular at each join as
the number of clusters decrease, then it is not a good index for evaluating the number of
clusters. However, if the plot looks like a hockey stick the value of k + 1 that caused the
slope to change is a candidate for the number of clusters.

A number of statistics are generated by cluster analysis programs that may be plotted
to heuristically evaluate how many clusters are generated by the clustering process. Some
indices generated by the procedure CLUSTER in SAS include
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1. Pseudo F and t2 statistics (PSEUDO).

2. The root mean square standard deviation (RMSSTD).

3. R2 and semipartial R2 (RSQUARE).

4. Centroid Distances (NONORM).

d. Additional Comments

Cluster analysis is an exploratory data analysis methodology. It tries to discover how ob-
jects may or may not be combined. The analysis depends on the amount of random noise in
the data, the existence of outliers in the data, the variables selected for the analysis, the prox-
imity measure used, the spatial properties of the data, and the clustering method employed.
Because there is no optimal method, we briefly review some properties of the clustering
methods studied by Milligan (1980, 1981) and Milligan and Cooper (1985, 1986).

A major advantage of hierarchical clustering methods over nonhierarchical methods is
that one does not have to know or guess the number of clusters. Thus, hierarchical method
are often called exploratory while nonhierarchical are often called confirmatory. We view
the methods as complementary whenever coordinate (interval level) data are used.

All of the hierarchical methods depend on the proximity measure used in an analysis.
Independent of the proximity measure, all hierarchical methods are effected by chaining.
Objects tend to be assigned to an existing cluster rather than initiating a new cluster. This
is especially the case for the single link method which is also very sensitive to errors of
measurement, but somewhat robust to outliers. The complete link and Ward’s method tend
to find compact clusters of nearly equal size with the clustering solution adversely affected
by outliers. Comparing the single, complete, and average link methods, the centroid and
Ward methods, Milligan (1980) found the average link hierarchical clustering method to be
the preferred method. The study by Milligan and Cooper (1985) found the pseudo F index
to be the most helpful in identifying the number of clusters.

A major problem with a cluster analysis solution is the validity of the solution. To assess
the validity of a solution one may use internal criteria, external criteria and replication or
cross-validation methods. A discussion of these issues are presented by Milligan (1981)
and Milligan and Cooper (1986).

9.4 Cluster Analysis Examples

Cluster analysis is used to categorize objects such as patients, voters, products, institutions,
countries, and cities among others into homogeneous groups based upon a vector of p
variables. The clustering of objects into homogeneous groups depends on the scale of the
variables, the algorithm used for clustering, and the criterion used to estimate the number
of clusters. In general, variables with very large variances relative to others and outliers
have an adverse effect on cluster analysis methods. They tend to dominate the proximity
measure.
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The CLUSTER procedure in SAS performs a hierarchical cluster analysis using either
the data matrix Yn×p or a matrix D = [drs] of dissimilarity measures. The matrix Y is used
to calculate Euclidean distances, drs = ‖yr −ys‖ where yr and ys are rows of Y. Distances
are used by the SINGLE and COMPLETE link methods. The AVERAGE, CENTROID and
WARD methods use d2

rs . To replace d2
rs , with distances drs , one may use the NOSQUARE

option. The NONORM option prevents distances from being divided by the average of all
the Euclidean distances for all observations. To evaluate the number of clusters, one may
always plot the criterion used to join clusters versus the number of clusters. In SAS, the
variable is stored in the SAS data set defined by OUTTREE = with the name HEIGHT .
When HEIGHT is plotted against the number of clusters, NCL , one is looking for a
sharp elbow to try to estimate the number of clusters. Using the PSEUDO option, one may
also plot the pseudo F ( PSF ) and t2 ( PST2 ) statistics versus NCL . One usually looks
for large values (peaks) to try to locate the number of clusters for most clustering methods.
When t2 is maximum at NCL , the number of cluster near NCL + 1 is a possible choice.
Because the single link algorithm tends to truncate the tails of distributions, the pseudo F
and t statistics should not be used For all clustering methods, one may plot R2, semi-partial
R2, root mean square standard deviations and other criteria available in the OUTTREE =
data set versus the number of clusters when using continuous data. The plots are illustrated
in the examples.

a. Protein Consumption (Example 9.4.1)

For our first example, data on protein consumption in twenty-five European countries in
nine food groups are analyzed. The data were obtained from The Data and Story Library
(DASL) Found on the Web site http://lib.stat.cmu.edu/DASL/Data files/Protein.htlm. The
data are measurements of protein consumption in nine food groups (Redmeat, Whitemeat,
Eggs, Milk, Fish, Cereals, Starch, Nuts, and Fruits and Vegetables). The data are shown in
Table 9.4.1 and are available in the data file protein.dat. The list of twenty-five countries
represented by the numbers 1 to 25 in Table 9.4.1 follow.

1. Albania
2. Austria
3. Belgium
4. Bulgaria
5. Czechoslovakia
6. Denmark
7. EGermany
8. Finland
9. France

10. Greece
11. Hungry
12. Ireland
13. Italy
14. Netherlands
15. Norway
16. Poland
17. Portugal
18. Romania

19. Spain
20. Sweden
21. Switzerland
22. UK
23. USSR
24. WGerman
25. Yugoslavia

To initiate a hierarchical clustering method in SAS, the METHOD = option is used on the
PROC CLUSTER statement along with other options. Most are names of indices that may
be plotted against the number of clusters to help to determine the number of clusters. The
SIMPLE option provides descriptive statistics for the variables when using a data matrix Y
as input.
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TABLE 9.4.1. Protein Consumption in Europe

Country RMEAT WMEAT EGGS MILK FISH CERL STARCH NUTS FR VEG
Number

1 10.1 1.4 0.5 8.9 0.2 42.3 0.6 5.5 1.7
2 8.9 14.0 4.3 19.9 2.1 28.0 3.6 1.3 4.3
3 13.5 9.3 4.1 17.5 4.5 26.6 5.7 2.1 4.0
4 7.8 6.0 1.6 8.3 1.2 56.7 1.1 3.7 4.2
5 9.7 11.4 2.8 12.5 2.0 34.3 5.0 1.1 4.0
6 10.6 10.8 3.7 25.0 9.9 21.9 4.8 0.7 2.4
7 8.4 11.6 3.7 11.1 5.4 24.6 6.5 0.8 3.6
8 9.5 4.9 2.7 33.7 5.8 26.3 5.1 1.0 1.4
9 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5

10 10.2 3.0 2.8 17.6 5.9 41.7 2.2 7.8 6.5
11 5.3 12.4 2.9 9.7 0.3 40.1 4.0 5.4 4.2
12 13.9 10.0 4.7 25.8 2.2 24.0 6.2 1.6 2.9
13 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7
14 9.5 13.6 3.6 23.4 2.5 22.4 4.2 1.8 3.7
15 9.4 4.7 2.7 23.3 9.7 23.0 4.6 1.6 2.7
16 6.9 10.2 2.7 19.3 3.0 36.1 5.9 2.0 6.6
17 6.2 3.7 1.1 4.9 14.2 27.0 5.9 4.7 7.9
18 6.2 6.3 1.5 11.1 1.0 49.6 3.1 5.3 2.8
19 7.1 3.4 3.1 8.6 7.0 29.2 5.7 5.9 7.2
20 9.9 7.8 3.5 24.7 7.5 19.5 3.7 1.4 2.0
21 13.1 10.1 3.1 23.8 2.3 25.6 2.8 2.4 4.9
22 17.4 5.7 4.7 20.6 4.3 24.3 4.7 3.4 3.3
23 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
24 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8
25 4.4 5.0 1.2 9.5 0.6 55.9 3.0 5.7 3.2

When all variables are measured on the same scale, one may compare the standard de-
viations to evaluate whether or not some variables may dominate the clustering procedure.
When variables are measured on different scales, one may estimate the coefficient of varia-
tion (CV = s/x) for each variable. When variables display large variations, one may need
to employ standardized variables. This is accomplished by using the STD option on the
PROC CLUSTER statement in SAS. The bimodality index for each variable is calculated
as

B M =
(

m2
3 + 1

)
/
[
m4 + 3 (n − 1)2 / (n − 2) (n − 3)

]
where m3 and m4 represent sample skewness and kurtosis, respectively. For a uniform
distribution, bimodality is ≈ .55. Thus, if a sample value is larger than .55, the marginal
distribution may be bimodal or multimodal, an indication of variable clustering. Variables
with large values may dominate and hence bias the clustering process. The EIGEN op-
tion causes the eigenvalues of the covariance matrix (correlation matrix for standardized
variables) to be calculated.

Program m9 4 1.sas is used to analyze the protein consumption data. Reviewing the raw
data statistics, observe that the variance of the cereal group is very much larger than the
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other variables and that the bimodality values for all variables appear reasonable. Because
of the large variance in the cereal group, we use standardized variables for our analysis,
and compare five clustering methods: CENTROID, WARD, AVERAGE, COMPLETE and
SINGLE. The eigenvalues of the correlation matrix for the standardized variables indicate
variation in three or four dimensions, accounting for 75% to 85% of the variance. To eval-
uate the number of clusters for each method, plots of the selected criteria are made from
variables stored in the SAS data set defined by OUTTREE =. Plots are created using PROC
GPLOT. The procedure TREE is used to create a dendogram plot, and after sorting, PROC
PRINT outputs cluster/group membership.

For each method, we generate plots for several indices to try to determine an optimal
cluster value. In general, shape peaks of pseudo F and t2 values at cluster joins (peak +1)
are candidates for the number of clusters. When reviewing root mean square deviations
between two clusters joined at a given step, larger values imply lack of homogeneity so
that smaller values are better. A large drop in R2 and/or in the semi-partial R2 value may
indicate distinct clusters. Finally, when plotting a distance measure versus the number of
clusters, one should investigate dramatic changes “elbows” for the number of clusters. Re-
viewing the plots of indices and tables for several criteria calculated in SAS, Table 9.4.2
displays choices for the number of clusters using various criteria. Reviewing the entries in
Table 9.4.2, it appears that we should consider a solution with 4, 5 or 6 clusters. The results
for NCL = 6 are given in Table 9.4.3. Reviewing the entries, the four clustering methods
only agree for countries assigned to groups 1 and 2, countries in the Balkans (1) and West-
ern Europe (2). There is disagreement for the countries in the other four groups. However,
the complete link method locates “natural” clusters: Group 3 - Scandinavia, Group 4 -
Eastern Europe, Group 5 - Mediterranean and Group 6 - Iberian. Thus, the complete link
method provides a reasonable solution for the protein consumption data.

For our example, we see that the single link method fails to classify the countries into
groups. Baker and Huber (1975) show that the single link method has limited value because
of its sensitivity to data errors and chaining. They and others recommend the complete
link method over the single link method. However, when the single link method works it
usually works very well, especially in the field of numerical taxonomy, Jardine and Sibson
(1971, p. 151). When data are strongly clustered, the two methods complete and single
link usually yield identical results. The poor performance of the other methods (centroid,
average, and ward) may be due to the presence of isolated points or outliers. The methods
tend to cluster outliers. When performing an exploratory cluster analysis, one must consider
several distance measures and clustering algorithms to try to obtain a parsimonious solution
if it exists at all.

b. Nonhierarchical Method (Example 9.4.2)

For our second illustration, we reanalyze the Protein Consumption data using a nonhier-
archical method. It is usually a good practice to follow a hierarchical clustering procedure
with a nonhierarchical method to refine or validate the solution obtained. The methods are
complementary to each other. For a nonhierarchical cluster analysis the procedure FAST-
CLUS is used. The SAS code for our example is included in program m9 4 2.sas. To use
the procedure, one must specify either the number of clusters, MAXCLUSTER, or the
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TABLE 9.4.2. Protein Data Cluster Choices Criteria

F t2 R2 SPR2 RMS Height
Centroid 3, 4 4 3 2 4 5
Average 3 4 3 6 4 4
Ward 3, 4 4 4 2 6 2, 5
Complete 6 4, 7 5 5 6 4
Single N.A. 5 5 4 7 3

TABLE 9.4.3. Protein Consumption—Comparison of Hierarchical Clustering Methods

Country CENTROID AVERAGE WARD COMPLETE SINGLE
Albania* 1 1 1 1 1
Austria* 2 2 2 2 2
Belgium* 2 2 2 2 2
Bulgaria* 1 1 1 1 1
Czechoslovakia 2 2 4 4 2
Denmark 2 2 3 3 2
EGermany 2 2 4 4 2
Finland 2 2 3 3 2
France* 2 2 2 2 2
Greece 3 3 5 5 3
Hungry 5 6 4 4 1
Ireland* 2 2 2 2 2
Italy 3 3 5 5 3
Netherlands* 2 2 2 2 2
Norway 2 2 3 3 2
Poland 2 2 4 4 2
Portugal 6 4 6 6 6
Romania* 1 1 1 1 1
Spain 3 4 6 6 5
Sweden 2 2 3 3 2
Switzerland* 2 2 2 2 2
UK* 2 2 2 2 2
USSR 4 5 4 4 4
WGermany* 2 2 2 2 2
Yugoslavia* 1 1 1 1 1
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RADIUS = parameter. The RADIUS option is used to specify the minimum Euclidean dis-
tance between observations selected as initial seeds. The REPLACE option controls seed
replacement after initial seed selection using rules for seed replacement. For k clusters, one
needs k seeds. If the radius option is not met, an observation may not be selected as a seed.
The radius values must be small enough to ensure k seeds. The default value is zero. SAS
reports the initial seeds and the minimum distance between initial seeds and new seeds
for each seed replacement. When the process does not converge in the desired number of
iterations (MAXITER = 20), since each iteration results in a reallocation of all observa-
tions, one may have to increase the number of iterations, modify the number of clusters,
or increase the default converge criterion, the default is CONVERGE = 0.02. Because we
are using standardized variables, the STANDARD procedure is used to transform the data
matrix to standardized variables.

To analyze the protein consumption data, we selected a four, five and six cluster solu-
tion allowing SAS to select the seeds. For the four group solution, the seeds were Albania,
Ireland, Portugal and Denmark. For five clusters, the seeds Albania, Austria, Greece, Portu-
gal, and Denmark were selected. For the six group solution, the countries Albania, Austria,
Netherland, Portugal, Spain, and Denmark were selected. Table 9.4.4 summarizes the geo-
graphic regions for the seeds.

While the four and five group solutions selected seeds in each geographic region, this
was not the case for k = 6 clusters. To control seed selection, one may use the SEED =
option with REPLACE = NONE or to refine a solution, select REPLACE = FULL. To try
to validate the complete links hierarchical cluster solution, we ran FASTCLUS with fixed
seeds stored in the file seed.dat with one entry in each geographic region: Albania, Den-
mark, Ireland, Italy, Portugal and the USSR. The assignments by cluster are displayed in
Table 9.4.5. The entries marked (CL) reflect the complete link assignments of the countries
to six groups. To visualize the clusters, we used the procedure CANDISC, discussed in
Chapter 7.

For the four and five cluster solutions, one observes distinct separation among clusters
with Portugal as a distinct outlier. While the Scandinavia and Balkans groupings remained
distinct for these two solutions, the other regions provide mixed results. Comparing the six
cluster nonhierarchical solution with the complete link solution with either random or fixed
seeds, we were unable to validate the complete link result using the nonhierarchical proce-
dure even with seeds from the hierarchical solution. The countries France and Spain were
not easily separated using fixed seeds. Because the initial partition in any nonhierarchical
method is critical to a successful result, the random seed 6 cluster result was further from
the complete link solution. Disagreements are noted with an asterisk (*) in Table 9.4.5.
This example illustrates the wide variability that can occur in clustering methods when per-
forming exploratory clustering methodologies. The clustering method, proximity measure
selected and whether or not to use standardization is critical to the analysis. Any one may
have an adverse effect on the clustering solution.

c. Teacher Perception (Example 9.4.3)

In this example we cluster variables. The data are reported by Napoir (1972). The study
involves administering a questionnaire to primary school teachers in which views on the
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TABLE 9.4.4. Geographic Regions for Random Seeds

Four Five Six
Balkans Balkans Balkans
Western Europe Western Europe Western Europe (2)
Iberian Mediterranean Iberian (2)
Scandinavia Iberian Scandinavia

Scandinavia

TABLE 9.4.5. Protein Consumption—Comparison of Nonhierarchical Clustering Methods

Country (CL) Four Five Six (Random) Six (Fixed)
Albania (1) 1 1 1 1
Austria (2) 2 2 2 2
Belgium (2) 2 2 3* 2
Bulgaria (1) 1 1 1 1
Czechoslovakia (4) 2 2 2* 4
Denmark (3) 3 3 3 3
EGermany (4) 2 2 4 4
Finland (3) 3 3 4* 3
France (2) 2 4 4* 5*
Greece (5) 2 4 5 5
Hungry (4) 1 1 1 1
Ireland (2) 2 2 2 2
Italy (5) 2 4 2* 5
Netherlands (2) 2 2 2 2
Norway (3) 3 3 3 3
Poland (4) 2 2 2* 4
Portugal (6) 4 5 6 6
Romania (1) 1 1 1 1
Spain (6) 3 4 5* 5*
Sweden (3) 3 3 3 3
Switzerland (2) 2 2 2 2
UK (2) 2 2 4* 2
USSR (4) 2 2 2* 4
WGermany (2) 2 2 2 2
Yugoslavia (1) 1 1 1 1
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TABLE 9.4.6. Item Clusters for Perception Data

Other Teachers Parents Principals Pupils
10 07 03 14
11 08 04 16
09 06 02 15
12 05 01 13

need for change in the behavior on attitudes of people with whom they associate (princi-
pals, parents, other teachers, and pupils) were recorded. The need for change was indicated
on a four-point Likert scale. To measure the degree of association between pairs of items,
Goodman and Kruskal’s (1963) gamma was calculated. The measure of association is cal-
culated like Kendall’s tau, except that tied pairs are excluded from the count of total pairs,

γ = C − D

C + D

where C represents the number of concordant pairs and D represents the number of discor-
dant pairs. Like the correlation coefficient, −1 ≤ γ ≤ 1. However only monotonicity is re-
quired between two variables for the | γ |= 1. Thus, it does not require a linear association.
To cluster items in this example, program m9 4 3.sas is used where the similarity matrix of
gammas is converted to dissimilarity measures using the relation d2

i j = 2
(
1− γ i j

)
, where

γ i j is the Goodwin-Kruskal gamma reported by Napoir (1972). The 16 × 16 similarity
data matrix is provided in program m9 4 3.sas.

To perform a cluster analysis on items, the similarity measures are input using the
TYPE = CORR dataset. Using the DATA step, similarities are converted to dissimilari-
ties, d2

i j = 2
(
1− γ i j

)
, as illustrated in the code in program m9 4 3.sas. Having converted

the similarity matrix to a dissimilarity matrix, the remaining statements follow those pro-
vided in Example 9.4.1. We again illustrate the four hierarchical methods: CENTROID,
WARD, AVERAGE, COMPLETE, and SINGLE.

Reviewing the output, all clustering methods clustered the items into four groups based
upon the dissimilarity measures. The sixteen items dealing with teachers’ perceptions of
need for change were associated with four groups of people: other teachers, parents, prin-
cipals, and pupils. The item clusters are shown in Table 9.4.6.

While all clustering methods were able to recover the item associations, it does not pro-
vide a spatial configuration for all pairwise relations among the items. Because these data
involve judgements, the measures are not exact and (metric) factor analysis is not appro-
priate for evaluating dimensionality. Even if it were, we would find a four factor solution.
Using the technique of multidimensional scaling, we will show how the items may be rep-
resented in a two or three dimensional space.

To cluster the items in our example using PROC CLUSTER, the matrix of similarities
are converted to a dissimilarity matrix. To analyze the similarity matrix directly in SAS,
one may use the PROC VARCLUS to obtain clusters. This procedure also resulted in four
clusters. Program m9 4 3a.sas contains the SAS code for the analysis.
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d. Cedar Project (Example 9.4.4)

For this example, symptom data on alcohol, drug and tobacco use were collected on chil-
dren (ages 16-20), mothers and fathers in the Pittsburgh area obtained the Center for Edu-
cation and Drug Abuse Research (CEDAR). The alcohol, drug, and tobacco symptoms are
coded as present (one) or absent (zero) for six levels of alcohol use, seven levels of drug
use, and six levels of tobacco use. Some subjects in the sample have a substance use dis-
order (SUD = 1) while others do not have a disorder (SUD = 0). The object of the study
was to determine whether the subjects can be clustered into a few distinct groups. For this
data, the symptom match (0 − 0) is given no weight so the Jaccard Coefficient is used for
the analysis. The Jaccard Coefficient of dissimilarity was calculated using the SAS macro
%DISTANCE. The distance macro uses the routines xmacro.sas and distnew.sas distributed
by SAS with Version 8. The code for the example is included in program m9 4 4.sas. To use
the distance macro, we set METHOD=DJACCARD to calculate the Jaccard dissimilarity
measure and use Ward’s hierarchical clustering method to determine the number of clusters.
Reviewing the output from the hierarchical solution, we observe three clear clusters. How-
ever, they are difficult to interpret using the symptom data. To more easily interpret the hier-
archical dendogram, we used the nonhierarchical FASTCLUS and CANDISC procedures.
Reviewing the nonhierarchical solution, we observe three distinct clusters of individuals.
The canonical variates for the nonhierarchical solution provide a clear two-dimensional
plot of the three clusters. The vertical axis appears to represent the Alcohol-Drug (+,−)
dimension, while the horizontal axis appears to represent the Drug-Tobacco (−, +) dimen-
sion. While there is no clear clusters for SUD and non-SUD participants, or for children,
mothers, and fathers we do observe three distinct clusters based upon the binary symptom
data.

Exercises 9.4

1. Without standardizing the Protein Consumption Data, perform a hierarchical and
nonhierarchical solution for the data matrix. Discuss your findings.

2. Using the data in Example 9.4.4, perform a cluster analysis using the single link,
complete link,centroid method, and Ward’s method with Euclidean distances and use
the %DISTANCE macro with Czekanowski’s Coefficient (METHOD=DICE) with
Ward’s Method to determine the number of clusters in the data set. How do these
cluster solutions compare with the solution given in Example 9.4.4. Summarize your
finding.

3. Analyze the data in Example 9.4.4 for each group: children, mothers, and fathers.
Are the clusters the same?

9.5 Multidimensional Scaling

Nonhierarchical clustering methods use the data matrix Yn×p and a dissimilarity matrix
Dn×n to cluster items. Alternatively, hierarchical clustering techniques use only a dissimi-
larity matrix. Multidimensional scaling (MDS) techniques seek to find a low dimensional
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coordinate system to represent n objects using only a proximity matrix usually without
observing the n (p × 1) observation vectors where the dimension of the space is k ) p.
Given perceptions or judgements regarding n objects, one tries to construct a low dimen-
sional space to represent the judgements.

In classical, metric MDS problems, we assume there exists a data matrix Yn×p such
that the distances between any two objects r and s is δrs = ‖yr − ys‖. Because Y is not
usually observed, we try to find a set of observations Z = [z1, z2, . . . , zn]′ where zi is in
a k-dimensional space such that the distances drs = ‖zr − zs‖ where drs ≈ δrs . Thus, a
model for the distances may take the form

drs = α + βδrs + ers for all r, s (9.5.1)

where ers is random measurement error. Generating a scatter plot of the pairs (drs, δrs),
one may obtain a set of estimated distances drs using the relationship

d̂rs = α̂ + β̂δrs (9.5.2)

The fitted values d̂rs are not distances, but simply numbers fitted to distances and referred
to as disparities. Ordering the proximities δrs so that

δr1s1 < δr2s2 < . . . < δrm sm (9.5.3)

where m = n(n − 1)/2 and ri < si are distinct integers, then by (9.5.2) if

δrs < δu v =⇒ d̂rs ≤ d̂u v for all r < s, u < v (9.5.4)

This is called the weak monotonicity constraint.
In most applications of multidimensional scaling, exact proximity measures δrs are not

available; however, one may be able to order the proximities as in (9.5.3) where the ordered
quantities are perceived judgments regarding n objects. In addition, we may not be able to
specify the relationship between δrs and drs as in (9.5.1), but only that

drs = f (δrs)+ ers for all r, s (9.5.5)

where the function f is an unknown monotonic increasing function with property (9.5.4).
Thus, only the rank order of the distances drs is used to construct δrs . Because only the
rank order or ordinal relationship of the distances drs is used in finding the configuration
to reconstruct δrs , the scaling process is termed nonmetric. This has nothing to do with the
properties of the space which remains a metric space.

a. Classical Metric Scaling

Given n objects and a dissimilarity matrix � = [δrs], the matrix � is said to be Euclidean
if there exists a matrix Yn×p such that

δ2
rs = (yr − ys)

′ (yr − ys) r, s = 1, 2, . . . , n (9.5.6)

The Euclidean matrix � has zeros on its main diagonal and is not positive semidefinite.
However, a positive definite matrix B can be constructed from the elements δrs in � using
the fundamental theorem of MDS which follows, Seber (1984, p. 236).
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Theorem 9.5.1 Given the contrast matrix

B = [brs] =
(

In − n−11n1′n
)

A
(

In − n−11n1′n
)

where �2 = [
δ2

rs

]
and A = − 1

2�
2, the matrix � is Euclidean if and only if B is positive

semidefinite (p.s.d.).

Expanding B in Theorem 9.5.1, an element of B has the “corrected” ANOVA structure

brs = −1

2

[
δ2

rs − δ
2
r. − δ

2
.s + δ

2
..

]
(9.5.7)

= ars − ar. − a.s + a..

where δ
2
r., δ

2
.s, and δ

2
.. are the row, column and overall averages of the two-way matrix �2

so that brs is calculated directly from the distances δrs .
Given that the matrix of distances � is Euclidean, there exists a configuration Yn×p =

[y1, y2, . . . , yn]′ such that −2ars = δ2
rs = ‖yr − ys‖2. By Theorem 9.5.1, and using

(9.5.7), one can show that an element of B has the form

brs = (yr − y)′ (ys − y) (9.5.8)

so that B = YdY′d where Y′d = [y1 − y, . . . , yn − y]. Because y is the mean of y, the
matrix Yd is the mean centered matrix.

Conversely, using Theorem 9.5.1 if B is p.s.d. and of rank p, by the Spectral Decom-
position Theorem there is a matrix P such that P′BP = � where λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂p

are the eigenvalues of B and P = [p1,p2, . . . ,pn] are the associated eigenvectors. Hence,
B = P�P′ = ZZ′ where Z = P�1/2 is the metric scaling solution with B = [brs] = z′r zs .
Expressing B in terms of A, observe that

d2
rs = ‖zr − zs‖2 (9.5.9)

= z′r zr − 2z′r zs + z′szs

= brr − 2brs + bss

= arr − 2ars + ass

= −2ars

= δ2
rs

by relating brs to ars using (9.5.7), and observing that arr = −δ2
rr/2 = 0 and ass = 0.

Hence, we can recover �2 exactly from Z where the ‖zi‖2 = λi ‖pi‖ = λi . In practice,
k ) p so that drs ≈ δrs . The vectors z1, z2, . . . , zn are called the principal coordinates
of Z in k dimensions. Because rotations and translations of the coordinates do not change
interpoint distances, the solution is not unique and may be, for example, translated to the
origin and rotated for interpretation. To standardize the principal coordinates, one uses the
matrix Z∗ = Z�−1/2 so that

∥∥z∗i
∥∥ = 1.
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Recall in cluster analysis that if srs is a similarity measure and the profiles are mean-
centered using the columns of Yn×p, then δ2

rs = 2 (1− srs). Letting ars = srs in Theo-
rem 9.5.1, by (9.5.9) the squared distances

d2
rs = ‖zr − zs‖2
= arr − 2ass + ass

= 2 (1− srs)

= δ2
rs

so that one may obtain a metric scaling using B = [brs] where brs is defined in (9.5.7) for
ars = −δ2

rs/2 or ars = srs . The process of finding the principal coordinates of a proximity
matrix using either similarity of dissimilarity measures resulting in a low-dimensional plot
is called an ordination of the data. In PCA and EFA, the data matrix Y is provided. In
classical, metric MDS one begins with the matrix B which is a function of dissimilarities
or similarities.

To evaluate the goodness-of-fit of a classical, metric MDS solution of dimension k, we
consider two criteria proposed by Mardia et al. (1979, p. 406). Letting λ̂i be an eigenvalue
of B and B̂ =∑k

i=1 λ̂i zi z′i for eigenvectors zi , they suggest the two fit criteria

φ2 =∑
r,s

(
δ2

rs − d2
rs

)
= 2n

n∑
i=k+1

λ̂i (9.5.10)

ψ2 =∑
r,s

(brs − b̂rs)
2 = ||B− B̂||2 =

n∑
i=k+1

λ̂
2
i

The proportion of the distance matrix explained by a k-dimensional solution is

α1,k =
k∑

i=1
λ̂i/

n∑
i=1

λ̂i (9.5.11)

α2,k =
k∑

i=1
λ̂

2
i /

n∑
i=1

λ̂
2
i

In most applications, k = 2 provides an adequate fit.
In classical, metric scaling the data matrix Zk may be viewed as an orthogonal projection

of Y into a subspace of dimension k by estimating measured proximities with distances.
Classical metric scaling (principal ordinate analysis) is equivalent to plotting objects using
principal components.

b. Nonmetric Scaling

In nonmetric scaling, the matrix � instead of being made up of measured proximities is
usually based upon perceptions or judgments about a set of objects. Thus, one usually
knows that one object is perceived to be better than another, but one cannot say by how
much. In these situations one may only order the proximity measures as in (9.5.3) such that
f is a monotonic function as in (9.5.5) and the constraint (9.5.4) is satisfied.
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FIGURE 9.5.1. Scatter Plot of Distance Versus Dissimilarities, Given the Monotonicity Constraint

To understand the concepts behind nonmetric scaling, it is helpful to consider a simple
example. Consider a situation in which one is given n = 4 new cars and asked to rank order(

n
2

) = 6 dissimilarity measures δrs with the result that

δ12 < δ34 < δ13 < δ24 < δ14 < δ23 (9.5.12)

That is cars 1 and 2 are judged to be least dissimilar (most similar) while cars 2 and 4 are
most dissimilar (least similar). Using the monotonicity condition given in (9.5.4), suppose
that observed Euclidean distance between the points follow the same sequence so that

d12 ≤ d34 ≤ d13 ≤ d24 ≤ d14 ≤ d23 (9.5.13)

This means that the order relationship for interpoint distances is identical to the observed
dissimilarities. Plotting the pairs (drs, δrs) for the above points results in Figure 9.5.1.
Observe the natural monotonic chain among all pairs of objects, which is also the case for
metric scaling.

Switching d34 and d13, and also d14 and d23, the revised order becomes

d12 ≤ d13 ≤ d34 ≤ d24 ≤ d23 ≤ d14 (9.5.14)

so that the monotonicity constraint is violated. Plotting the pairs when monotonicity is
violated, Figure 9.5.2 results.

The scatter plot in Figure 9.5.2 is now not a smooth monotone chain, but more like a
“sawtooth” chain. To generate a sequence that satisfies the monotonicity constraint, we
may create a set of fitted values d̂rs such that

d̂12 ≤ d̂34 ≤ d̂13 ≤ d̂24 ≤ d̂14 ≤ d̂23 (9.5.15)

Setting d̂34 = d̂13 = (d13 + d14) /2, and d̂14 = d̂23 = (d23 + d14) /2, the new fitted
values satisfy the monotonicity condition shown as a dashed (bolder) line in Figure 9.5.2.
While the d̂i j satisfy the monotonicity constraint, they may no longer be distances and are
sometimes called pseudodistances.

For a given value of k, one may not be able to find a configuration of points whose
pairwise distances (in any Lp-metric) satisfy the monotonicity constraint given in (9.5.4).
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FIGURE 9.5.2. Scatter Plot of Distance Versus Dissimilarities, When the Monotonicity Constraint Is
Violated

To evaluate departures from monotonicity Kruskal (1964 a,b) following the metric scaling
method recommended the index called the Standardized Residual Sum of Square (STRESS)
defined as

STRESS =
��

r<s

(
d2

rs − d̂2
rs

)2

��
r<s

d2
rs


1/2

(9.5.16)

which is between 0 and 1. Given a set of distances drs , one selects d̂rs so that STRESS is
minimized subject to the constraint that the pseudodistances d̂rs are monotonic nondecreas-
ing with the observed δrs as specified in (9.5.4). The scaling constant in (9.5.4) is the sum
of the squared distances d2

rs. To minimize STRESS, Kruskal (1964b, 1977) used a least
squares monotone regression procedure and a steepest decent algorithm. Kruskal (1964a)
provides the following guidelines for his STRESS index of “goodness” of monotonicity as
follows.

Minimum
STRESS × 100% Goodness of Fit

20 Poor
10 Fair
5 Good

2.5 Excellent
0 Perfect

In general, one likes to obtain a value of STRESS ≤ 0.1 for some k.
Observe that Kruskal’s STRESS index is similar to a normalized value of ψ in metric

scaling. Using normalized deviations of φ, Takane, Young and de Leeuw (1977) suggested
the index

SSTRESS =
��

r<s

(
d2

rs − d̂2
rs

)2

��
r<s

d̂4
rs


1/2

(9.5.17)
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Because SSTRESS uses squares of distances instead of distances, it tries harder to fit larger
dissimilarities ignoring smaller deviations. Observe that the scaling constant in SSTRESS
uses the estimated disparities instead of the observed distances. Both indexes are between
0 and 1. Plotting STRESS or SSTRESS versus k, one may empirically estimate the dimen-
sion of the solution at the “elbow” of the hockey stick like plot. The large decline should
appear near k = 2 or 3.

Algorithms for nonmetric multidimensional scaling are interative and begin with an ini-
tial configuration by selecting various values of k beginning with k = 1. The initial config-
uration is usually a metric solution.

The MDS procedure in SAS uses the STRESS criterion defined in (9.5.16) to evaluate
goodness of fit (called badness of fit in SAS). The STRESS criterion is obtained using
FORMULA = 1. The other option, FORMULA = 2, in the MDS procedure normalizes

(9.5.16) using the mean deviations ��
r<s

(
drs − drs

)2
which allows one to relate STRESS to√

1− R2 where R is the multiple correlation coefficient. The algorithm used in SAS to fit
a nonmetric model to proximity measures combines monotone regression with a nonlinear
least squares regression. The ALSCAL procedure in SAS minimizes SSTRESS using the
Newton-Raphson method described in Schiffman, Reynolds and Young (1981).

Most of the initial models for metric and nonmetric scaling are exploratory and descrip-
tive. Assuming the observed elements of � = [

δi j
]

follow some distribution, maximum
likelihood methods may be used to scale items allowing one to obtain simultaneous confi-
dences intervals for the elements of �. Ramsay (1982) develops maximum likelihood pro-
cedures for metric scaling while Brady (1985) discusses the nonmetric situation. De Leeuw
and Meulman (1986) use resampling methods to obtain confidence intervals.

c. Additional Comments

The MDS methods we have reviewed use only one proximity matrix. If one asked N sub-
jects to rate n objects, we would have a three-way model so that � = [δrst ]. Models that
fit distances drst to δrst are called individual differences multidimensional scaling (IND-
SCAL) models, Carroll and Chang (1970). The SAS procedure ALSCAL and MDS per-
form nonmetric three-way multidimensional scaling. Kruskal and Wish (1978) show that
INDSCAL models are in general better than nonmetric MDS models fit to an average dis-
similarities matrix since one may weight individuals differentially. De Leeuw and Heiser
(1980) show how to fit INDSCAL models with restrictions.

Multidimensional scaling models that fit both objects and variables (items) are called
unfolding models, Heiser (1981) and Nishisato (1994, 1996). For these models, individuals
provide a rank or preference of n objects so that the matrix �N×n is rectangular. Meulman
(1992) considers a nonlinear data distance model that is closely related to MDS.

We have not discussed correspondence analysis in this book since we have been pri-
marily concerned with continuous variables. Correspondence analysis was introduced by
Fisher to analyze frequency data organized in an I × J two-way table of unscaled fre-
quencies and by Guttman to analyze indicator matrices. Like multidimensional scaling, the
goal of correspondence analysis is to represent a contingency table formed from categorical
data in a low dimensional space. Carroll, Kumbasar and Romney (1997) show how a vari-
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ant of correspondence analysis when applied to exact or transformed Euclidean distances is
asymptotically equivalent to classical multidimensional scaling. For a discussion of corre-
spondence analysis, the book by Greenacre (1984), Gifi (1990) and Benzécri (1992) may
be consulted. Correspondence analysis is available in SAS using the procedure CORRESP.
Data analysis techniques that explore dimensionality also involve visualization of the data.
Methods for visualizing multivariate data may be found in the non-traditional books by
Blasius and Greenacre (1998) and Jambu (1991).

9.6 Multidimensional Scaling Examples

In cluster analysis one begins with distances between objects in order to cluster the objects
into groups. In MDS, one tries to discover the dimension of the space that contributes to the
differences among the objects based upon imprecise judgements or associations among the
objects. Kruskal and Wish (1978) put it very nicely using as an example distance measures
among cities on a map. Given a map, one may easily construct distances among cities;
however, MDS involves creating a map given only “approximate” distances among cities
where the measurements are made in a low dimensional space of unknown dimension. The
hope is to be able to display the objects with a spatial orientation that has meaning. MDS
employs proximity measures to uncover unknown or hidden structure regarding a set of
objects using imprecise measurements.

To perform multidimensional scaling in SAS, we use the MDS procedure. The procedure
may be used to fit two- and three-way, metric and nonmetric multidimensional scaling
models. The three-way model is the INDSCAL model. Special unfolding models may also
be analyzed. Most simple applications of MDS models begin with a dissimilarity matrix
(the default in SAS). To convert a similarity matrix to a dissimilarity matrix, the option
SIMILAR is used. For example, if the proximity matrix is a correlation matrix the option
SIMILAR calculates δi j = 1− ri j .

In classical metric scaling, one is given a n × n Euclidean matrix � = [
δi j

]
of dissimi-

larities and the goal is to find a matrix D = [
di j

]
that is close to �. This is accomplished

by using the matrix B in (9.5.7). The matrix Z of eigenvectors of B represent the coordi-
nates of the n points on the i th axis of the Euclidean space. This matrix Z provides a set
of “principal” coordinates resulting in the estimated squared distances d2

i j so the � is ap-

proximated by D. That is, φ2 =∑
r,s

(
δ2

rs − d2
rs

)
is minimized. Implicit in classical metric

scaling is the MDS model that drs = δrs + ers . More generally, one may fit a model of the
form drs = α + βδrs + ers , or drs = f (δrs + ers) where f is some arbitrary monotone
function. In MDS, the LEVEL = option is used to specify the MDS model using levels of
measurement. For metric scaling, LEVEL = ABSOLUTE and the proximity matrix is ei-
ther a dissimilarity matrix or a similarity matrix. For nonmetric scaling, the option LEVEL
= ORDINAL is used. The FIT option allows one to fit distances, squared distances, the
logarithm of distances, and the nth power of distances. The FORMULA option governs
the badness-of-fit criterion. For FIT = DISTANCE, FORMULA = 1, and LEVEL = ORDI-
NAL, Kruskal’s stress formula in (9.5.16) is used for the nonmetric MDS model. More will
be said about various options in MDS as we proceed through examples.
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TABLE 9.6.1. Road Mileages for Cities
CH HO NY SF

Chicago
Houston
New York
San Francisco


0

1212
813

2156

0
1667
1950

0
2947

(Sym)

0



a. Classical Metric Scaling (Example 9.6.1)

The most fundamental application of the MDS model is to reconstruct a map from a matrix
� = [

δi j
]

of distances. For our example, we use road miles between four US cities, similar
to the flying mile distance example discussed by Kruskal and Wish (1978, p. 8). The road
miles are given in Table 9.6.1 among the four U.S. cities: Chicago, Houston, San Francisco
and New York. Program m9 6 1.sas performs the analysis.

To analyze the mileages inTable 9.6.1 using PROC MDS, we specify the MDS model
as drs = δrs + ers by using the option LEVEL = ABSOLUTE. The estimated coordinates
of the four cities are output to the data set defined in OUT =. Using the DIMENSION = 2
option, we request a two-dimensional solution. To plot the coordinates for the solution, the
PROC PLOT statement is used. To save the fitted distances drs , one must create a data set
using option OUTRES =. The FITDATA vector contains the distances drs and the FITDIST
vector contains the δrs (or transformed δrs using the FIT option). To evaluate the monotonic
relationship between the observed and fitted distances, the PLOT statement is again used.

For this problem, Kruskal’s stress fit index, called the badness–of-fit criterion is 0.004817
indicating that the data fit is almost perfect since STRESS ×100% = 0.4. The coordinates
for the four cities are represented in the output labeled configuration. This is obtained by
using the option PFINAL. To plot the coordinates, the PROC PLOT DATA = OUT state-
ment is used where TYPE ‘CONFIG’. The Configuration coordinates for the four cities
are

Z =


465.70 −298.67
−51.28 799.08
1262.82 −244.23
−1677.23 −276.19


Chicago
Houston
New York
San Francisco

The default PLOT statement may not scale the axes correctly so that the distance between
“tick” marks are approximately equal for both axes. To modify the scaling of tick marks,
the VTOH = option is used to adjust the ratio of the vertical distance between tick marks to
the horizontal distance. This often requires some experimentation. In addition, the units on
each axis must be set using the /HAXIS = VAXIS = option. Finally, the orientation of the
plotted objects may not lead to a direct interpretation of physical directional relationships.
The MDS plot for the four cities is shown in Figure 9.6.1. Observe that while the “normal”
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FIGURE 9.6.1. MDS Configuration Plot of Four U.S. Cities

east-west orientation is displayed, this is not the case for the “normal” north-south orien-
tation. The desired orientation occurs if one changes the signs on the second dimension.
For interpretation of plots, one may relocate the origin and rotate the axes. This may be
accomplished using SAS/INSIGHT and the matrix Z in the data set defined by OUT=.

Having obtained a parsimonious configuration, one next inspects the residuals stored in
the data set defined in OUTRES =. The PLOT statement FITDIST * RESIDUAL generates
a residual plot of the fitted distances versus the residuals. A plot of the residual matrix of
quasi-distance residuals resulting in patterns suggests increasing the dimensionality of a so-
lution. Creating a SCREE plot of Stress versus the number of dimensions may also be used
to evaluate dimensionality. Often a sharp elbow at some low level of dimensionality may
suggest as feasible solution. Finally, one may plot the coordinates

(
di j , δi j

)
; the distances

in the MDS space and the original data distances (proximities). This is accomplished using
the PLOT statement with FITDIST * FITDATA. A clear monotonic relationship should be
evident showing that small dissimilarities correspond to small distances, and large dissimi-
larities to large distances. For similarities, the plot should represent a monotonic decreasing
relationship. If this does not occur, the solution may be incorrect.

b. Teacher Perception (Example 9.6.2)

For our next example, we reanalyze the similarity matrix of Napoir (1972) examined in Ex-
ample 9.4.3. Having found that the items cluster into four groups, we use multidimensional
scaling to represent the clusters in a low dimensional space. For the MDS application,
the Goodman-Kruskal γ i j similarity measures are used directly. However, one must now
specify SIMILAR on the MDS statement. Then, δi j = 1− γ i j is the dissimilarity measure
analyzed. We investigate solutions in several dimensions and also use the EFA (metric)
model discussed in Chapter 8 to explore dimensionality.

Setting DIMENSION = 2, the badness-of-fit criterion value of 0.15 or 100 × .15 = 15
indicates a fair to poor fit for the data. Plotting the two-dimensional configuration and join-
ing items using the cluster analysis hierarchy, a compact geometric representation for the
four item clusters is evident, Figure 9.6.2. The figure represents wider separation between



9.6 Multidimensional Scaling Examples 551

1.5

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

D i m e n s i o n   1

1.0

-1.0

-1.5

1.5

D
i

m
e
n
s
i
o
n
 
2

2.0

0.5

0.0

-0.5

Partents

> Items 12

> Items 11
> Items 09

> Items 04
> Items 03

> Items 01

> Items 02

 Principals

> Items 10

Pupils

> Items 07

> Items 05
> Items 16

> Items 14

> Items 15

> Items 13

> Items 08
> Items 06 Other Teachers

FIGURE 9.6.2. MDS Two-Dimensional Configuration Perception Data

the clusters other teachers and principals than between the parent and pupil clusters.
Figure 9.6.2 enhances the geometric structure of the clusters. However, from the residual

plot a distinct cluster of the residuals is evident suggesting that we increase the dimension-
ality. For a three-dimensional solution, STRESS = 0.08, a slight improvement resulting in a
fit results, between good and fair. The matrix Z of coordinates for the configuration follows.

Z =



0.90 1.31 0.29
1.35 1.56 −0.15
1.36 1.23 0.21
1.11 0.79 0.41
−1.25 0.35 1.15
−1.49 −0.33 0.69
−1.29 0.11 0.69
−1.48 −0.22 1.30

1.42 −1.34 0.11
0.87 −1.31 0.37
1.12 −1.25 0.57
1.32 −1.06 −0.83
−0.57 −0.01 −1.69
−.97 0.02 −0.95
−1.29 0.45 −1.21
−1.10 −0.32 −0.96


The coordinates in Z are not directly, immediately interpretable. The first two vectors

locate the items in the (x, y)-plane and the third vector provides the coordinates of the
vertical, perpendicular z-axis. While one may construct a two-dimensional plot, putting the
third coordinates within parentheses, the geometric picture may be difficult to interpret. For
a clear spatial representation of the clusters, a three-dimensional plot is needed. To create
the plot using SAS, one may use SAS/INSIGHT. One may interactively rotate the axes to
generate the three-dimensional plot of the item clusters for the perception data, Figure 9.6.3.
The three-dimensional plot enhances the separation among clusters and helps to illustrate
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FIGURE 9.6.3. MDS Three-Dimensional Configuration Perception Data

a wider separation between the Parent and Pupils clusters. This was not as evident in the
two-dimensional plot.

While a fit for k = 4 dimensions reduces the fit value of stress to 0.04, the configuration
does not enhance cluster separation or interpretation. Thus, we conclude that a three-
dimensional fit adequately represents the structure of the gamma matrix for the perception
data.

Embedding a cluster analysis in a low dimensional MDS space often results in a special
representation of the objects that reflect the structural aspects of the (dis)similarity matrix
using Euclidean distances between items. Recall that the solution for the distance between
any two objects has the form

‖ yr − ys ‖2 =‖ yr ‖2 + ‖ ys ‖2 −2 ‖ yr ‖‖ ys ‖ cos θrs

d2
rs = d2

r + d2
s + 2dr ds cos θrs

For unit vectors yr and ys , the squared distances are

d2
rs = 2 (1− cos θrs) = 2 (1− ars)

where ars is an association (similarity) measure. In factor analysis, we are not fitting latent
factors to d2

rs , but to the associations ars which are the cosines of angles between objects
(items in our example) and not distances. The latent factors, the position vectors in the
vector space, are used to simultaneously approximate the pairwise associations, using a
linear model for the data. Treating the association measure γ i j as a correlation coefficient
we may fit a (metric) EFA model to the matrix. This results in four latent factors with
a pattern matrix of dimension four to reconstruct the clusters. Using a MDS model, we
were able to recover the clusters in two-dimensions with limited distortion while a three-
dimensional solution provided a clear Euclidean spatial representation of the clusters. The
EFA model required four dimensions. A metric EFA solution is provided in Table 9.6.2.

In most applications, the metric factor analysis model used to recover dimensionality or
structure in a correlation matrix usually results in a higher level of dimensionality. And,
no measure of separation is available. For MDS models, one often finds a low dimensional
compact solution without severe distortion that is interpreted using a visual process of ro-
tating coordinates. Because γ i j is not a Pearson correlation coefficient, one should analyze
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TABLE 9.6.2. Metric EFA Solution for Gamma Matrix

FACTOR1 FACTOR2 FACTOR3 FACTOR4
I1 74* 25 20 15
I2 84* 1 9 20
I3 82* 12 23 14
I4 73* 22 32 15
I5 21 63* 11 27
I6 13 62* 15 33
I7 15 82* 16 24
I8 6 81* 14 20
I9 27 11 62* 13

I10 16 17 87* 20
I11 15 14 86* 16
I12 30 15 42* 22
I13 21 19 14 62*
I14 16 29 19 79*
I15 15 27 12 64*
I16 12 27 25 70*

the Gamma matrix using a nonmetric factor analysis model that is able to recover rank-
order patterns in the matrix, Lingoes and Guttman (1967). However, SAS does not provide
this data analysis procedure. The MDS model and the nonmetric EFA model are both able
to recover nonlinear patterns in a data matrix with the MDS model fit usually obtained in a
lower dimension since it uses distances to recover rank-order patterns instead of cosines of
angles between vectors.

c. Nation (Example 9.6.3)

This example uses the similarity matrix of perceptions of students in 1968 who rated the
overall similarity between twelve nations on a scale from 1 for “very different” to 9 for
“very similar”, Kruskal and Wish (1978, p. 31). The mean ratings are shown in Table 9.6.2.
The higher the mean rating, the more similar the nations.

Using the mean similarity measures, a one, two, and three dimensional MDS model is
fit to the data, program m9 6 3.sas. Because the input matrix contains similarity measures,
we must again use the option SIMILAR on the PROC MDS statement. However, because
the matrix of similarities are not associations, the transformed δrs are created using the
expression max (srs) − srs = δrs where the max srs = 6.67 (most similar) for Russia
and Yugoslavia. The least similar were China and the Congo where srs = 2.39, the most
dissimilar pair. The LEVEL = ORDINAL option performs a monotone transformation on
the δrs and drs are fit to the transformed proximities.

Fitting four models of dimensions 1, 2, 3, and 4 to the data, the STRESS criteria are
0.39, 0.19, 0.11, and 0.06, respectively. While the Stress criterion is lowest for a four di-
mensional model, it may not represent the most stable model. To ensure model stability,
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TABLE 9.6.3. Mean Similarity Ratings for Twelve Nations

1 2 3 4 5 6 7 8 9 10 11 12
1 0 (Sym)

2 4.83 0
3 5.28 4.56 0
4 3.44 5.00 5.17 0
5 4.72 4.00 4.11 4.78 0
6 4.50 4.83 4.00 5.83 3.44 0
7 3.83 3.33 3.61 4.67 4.00 4.11 0
8 3.50 3.39 2.94 3.83 4.22 4.50 4.83 0
9 2.39 4.00 5.50 4.39 3.67 4.11 3.00 4.17 0

10 3.06 3.39 5.44 4.39 5.06 4.50 4.17 4.61 5.72 0
11 5.39 2.39 3.17 3.33 5.94 4.28 5.94 6.06 2.56 5.00 0
12 3.17 3.50 5.11 4.28 4.72 4.00 4.44 4.28 5.06 6.67 3.56 0

Country
1. Brazil 4. Egypt 7. Israel 10. Russia
2. Congo 5. France 8. Japan 11. U.S.A.
3. Cuba 6. India 9. China 12. Yugoslavia

Kruskal and Wish (1978, p. 34) purpose that the number of stimuli minus one should be
four times larger than the dimensionality. Letting I represent the number of stimuli and D
the dimension, I ≥ 4D+ 1. Thus, model stability usually occurs with no more than D = 3
dimensions on average with only I = 12 stimuli. Reviewing the residual plots for the two-
dimensional model, large residuals indicate an over estimate of distances between nations
that are geographically close. Conversely, underestimates of distances between nations that
are far apart geographically are negative. For our two-dimensional model residuals larger
than 0.90 occur for (India, France), (Israel, France) and (Japan, Israel). While a large neg-
ative residual (−0.86) occurs for the pair (Cuba, Brazil). Also, the plot of residuals versus
the data does not appear to be random, and reflects a clear pattern.

For a three-dimensional model, the residuals are reduced significantly with no evident
pattern. Thus, we conclude that a reasonably stable model occurs in D = 3 dimensions. A
three-dimensions plot of the result is provided in Figure 9.6.4. The plot was obtained using
SAS/INSIGHT.

The three clusters of countries appear to represent the 1968 attitudes of students in that
era: Pro-communism countries China, Cuba, Yugoslavia, and Cuba); Under-Developed
countries (Egypt, India, Congo); and Pro-Western countries (France, Japan, USA, Brazil
and Israel). However, because of the small number of stimuli the model may not be stable.

Exercises 9.6

1. Using the approximate distances between the four Europeans cities: Barcelona, Spain;
Berlin, Germany; London, England; and Paris, France construct a map for the cities
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by plotting a pattern of the estimated coordinate. The distance matrix

� =


0

1550 0
1200 1000 0
900 950 350 0


2. The correlation matrix for the Performance Assessment data is

R =



1
.57 1
.11 .14 1
.13 .16 .52 1
.24 .21 .32 .30 1
.33 .39 .40 .40 .57 1
.15 .20 .29 .27 .48 .47 1
.22 .26 .30 .18 .37 .38 .36 1



SUPPG
SUPPI
ASMTE
ASMTC
FAM
PAP
PROF1
PROF2

(a) Cluster the variables and embed the solution in a two-dimensional space.

(b) Using SAS/INSIGHT, obtain a three-dimensional MDS model for the data and
interpret your findings.



This page intentionally left blank 



10
Structural Equation Models

10.1 Introduction

In most of the multivariate linear models analyzed to this point, we formulated relationships
between one observed independent set of variables and a set of random dependent variables
where the covariance structure of the dependent set involved an unknown and unstructured
covariance matrix �. Two exceptions to this paradigm included mixed models where � was
formulated to have structure which contained components of variance and the exploratory
factor analysis (EFA) model where � depended upon the unknown regression (pattern)
coefficients which related unobserved (latent) factors to observed dependent variables.

In this chapter, we study linear relationships between random dependent (endogenous)
variables and random independent (exogenous) variables where either can be directly ob-
served (manifest variables) or unobserved hypothetical variables (latent variables). The co-
variance structure among the observed random variables is used to study the linear struc-
tural relations among all the model variables. In the social and behavioral sciences, such
models are called “causal” models and involve the analysis of the covariance matrix for the
manifest variables derived from a linear structural model. This terminology is unfortunate
since most models do not establish causality, but only establish an empirical linear asso-
ciation among the latent and manifest variables under study, Freedman (1987) and Dawid
(2000).

Following an overview of path diagrams, basic notation, and the general approach, the
topics discussed in this chapter include confirmatory factor analysis (CFA), structural mod-
els with manifest variables also called path analysis (PA) or simultaneous equation models,
and structural equation models with manifest and latent variables.
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The treatment given structural equation modeling (SEM) in this chapter is far from com-
plete. Textbooks by Everitt (1984), McDonald (1985), Bollen (1989), Mueller (1996) and
Kaplan (2000) should be consulted for comprehensive coverage. For a review of other texts
on the subject, one should consult Steiger (2001), and for a historical overview of the topic,
see Bentler (1986). Bentler and Lee (1983) investigate linear models with constraints, and
Heise (1986) and Arminger (1998) investigate nonlinear models. For additional advances in
SEM, one may also consult the books edited by Bollen and Long (1993), and Marcoulides
and Schumacker (1996). Bayesian methods for testing SEM are discussed by Scheines,
Hoijtink and Boomsma (1999). Pearl (2000) using graphical models and the logic of inter-
vention clarifies some of the issues, confusion and controversy in the meaning and usage of
SEM’s. Finally, the analysis of simultaneous equation models of vector observations that
vary over individuals and time called panel analysis models is discussed by Hsiao (1986).

10.2 Path Diagrams, Basic Notation, and the General
Approach

In multivariate regression models, the two sets of variables in the formulation of the model
are random observed dependent variables and fixed (usually non-random) observed inde-
pendent variables or covariates. While the general theory of the linear model is valid when
the independent variables are random, the basic assumption for the model is that the in-
dependent variables are distributed independently of error. This assumption, while simple,
has significant implications for the analysis of regression models. The assumption allows
one to think of a regression model as a structural model which may imply causation. For
the model to be structural, we must argue that the unspecified causes (random variables) on
the dependent variables, usually included in the error term, are uncorrelated with the ran-
dom independent variables in the model. This ensures that for models that are misspecified,
that the estimated regression coefficients are always consistent whether or not independent
variables are included or excluded from the design matrix. This is why randomization is so
important in linear models. The implicit assumption of randomization is that experimental
manipulation of independent variables affect only the variables in the experimental design
and has no effect on the residual causes on the dependent variables. This is not the case for
nonexperimental designs, settings in which most “causal models” occur.

In path analysis, or more generally in structural equation modeling (SEM), all variables
are defined as random and new terminology is used. The first distinction made among vari-
ables in the model is between observed and unobserved random variables. Observed vari-
ables are called manifest variables and are directly observed. Latent variables (unobserved
variables, factors, true scores) are hypothetical constructs that are not directly measured or
observed. In path diagrams, circles or ovals, represent latent variables while squares or rect-
angles represent observed variables. In addition to manifest and latent variables, the vari-
ables in a SEM are characterized as endogenous, exogenous, and as disturbances or errors.
Endogenous variables (as in the SUR models using the SYSLIN procedure) are determined
within the model; they are caused by other variables within the model. In path diagrams,
such variables have a single-headed arrow pointing at them. Exogenous explanatory vari-
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ables (as in SUR models using the SYSLIN procedure) are treated as predetermined givens
and are only influenced by variables outside the model. They usually never have single-
headed arrows pointing at them, but instead, they are usually connected by curved lines
signifying unanalyzed association (covariation). Random errors or disturbances represent
omitted causes on the endogenous variables and are usually taken to be the independent of
exogenous variables, but they may be correlated. Merely indicating that a variable is ex-
ogenous does not make it exogenous. The concept of exogeniety is important in SEM and
regression models with random independent variables since conditional inference (and esti-
mation) is only valid with weak exogeneity. While the assumption of multivariate normality
is a necessary condition for weak exogeneity it is not a sufficient condition. Exogeniety is
discussed in Section 10.10. An introduction to exogeneity may also be found in the text by
Davidson and MacKinnon (1993).

A final distinction made in SEM is whether the model is recursive or nonrecursive. Re-
cursive models are models in which causation is unidirectional. There is no backward cau-
sation, causal loops, or bidirectional paths in the model. In nonrecursive models, causation
may flow in both directions. This is represented as two separate single-headed straight ar-
rows between the variables. In general, nonrecursive models are more difficult to analyze,
Berry (1984). Table 10.2.1 represent some common symbols and relationships among vari-
ables in a SEM.

In Table 10.2.1 we have annotated the boxes and circles with letters and Greek symbols
to represent the components of the path diagrams using the popular Keesling (1972)-Wiley
(1973)-Jöreskeg (1973, 1977) LISREL (linear structural relations) notation which is widely
used in many texts. Assuming all variables are standardized to have mean zero (deviation
scores), next we define the general LISREL model without an intercept.

The structural model for latent variables is

ηi = B ηi + � ξ i + ζ i
m×1 m×m m×1 m×n n×1 m×1 (10.2.1)

where ηi , ξ i , and ζ i are random vectors of latent endogenous variables, latent exogenous
variables, and latent errors for i = 1, 2, . . . , N observations where ξ i ∼ Nn (0,�) , ζ i ∼
Nm (0, '), ζ i and ξ i are independent (uncorrelated), (I− B) is nonsingular, B is a matrix
with zeros on the diagonal, and the observations are independent. Dropping the subscript,
the model has the reduced form

η = (I− B)−1 �ξ + (I− B)−1 ζ = )ξ + e (10.2.2)

where the covariance matrix for the model is

� =
 �ηη �ηξ

�ξη �ξξ

 =
 E

(
ηη′

)
E
(
ηξ ′

)
E
(
ξη′

)
E
(
ξξ ′

)
 (10.2.3)

=
 (I− B)−1 (���′ +'

)
(I− B)−1′ (I− B)−1 ��

�′ (I− B)−1′ � �


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TABLE 10.2.1. SEM Symbols.

Latent variable causing manifest
variables with independent measure-
ment errors.

y
2

Symbols

Square or rectangular boxes represent
manifest variables.

Explanation

Circles or ellipses represent latent
variables.

Latent variable causing another latent
variable with latent error.

Two associated manifest variables
causing another manifest variable
with measurement error.

Nonrecursive relationship betrween
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Relating the unobserved latent constructs to observed variables, the measurement model
is

yi
(p×1)

= �y
(p×m)

ηi
(m×1)

+ εi
(p×1)

xi
(q×1)

= �x
(q×n)

ξ i
(n×1)
+ δi

(q×1)

(10.2.4)

where yi and xi are vectors of observed indications of the latent endogenous vectors ηi and
the latent exogenous vectors ξ i . The vectors εi and δi are vectors of measurement errors,
and �y and�x are regression coefficients relating y to η, and x to ξ , respectively. Finally,
we assume that εi ∼ Np (0,�ε), δi ∼ Nq (0,�δ), and that εi , δi , ηi , ξ i and ξ i are mutually
independent. Thus, the joint SEM is

η = Bη + �ξ + ζ (10.2.5)

y = �yη + ε
x = �xξ + δ

where the matrices B, �,�y, and�x are matrices of direct effects. The covariance matrix
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of y is

�yy = �y�ηη�
′
y +�ε

= �y

[
(I− B)−1 (���′ +'

)
(I− B)−1′]�′y +�ε

The covariance matrix of x is

�xx = �x��′x +�δ

and the covariance matrix �xy is

�xy = �x�ξη�
′
y = �x��′ (I− B)−1′�′y

Hence, the covariance matrix for the SEM given by (10.2.5) becomes

� (θ) =
 �y

[
(I− B)−1 (���′ +'

)
(I− B)−1′]�′y +�ε �y (I− B)−1 ���′x

�x��′ (I− B)−1′�′y �x��′x +�δ


(10.2.6)

where θ represents the unknown vector of model parameters. Letting x ≡ ξ so that x is
observed, the matrix �yy in (10.2.6) has the ACOVS structure discussed in Chapter 5.

The population covariance matrix � (θ) in (10.2.6) is a function of all the structural
parameters so that the covariance structure is also called a structural model. Letting θ
represent the independent free and distinct (nonredundent) constrained parameters in the
parameter matrices B, �, �y, �x , �, ', �ε and �δ , the vector θ contains the structural
parameters to be estimated. The issue of estimability is called the (global) identification
problem. A parameter θ in a SEM is identified if it can be estimated and underidentified (or
unidentified) otherwise. If θ is uniquely estimable, the model is said to be exactly (or just)
identified or saturated. Overidentified models yield a family of solutions.

Identification is critical to the analysis of covariance structures. Bollen (1989, p. 89)
defines global model identification as follows.

Definition 10.2.1 If an unknown parameter in θ can be written as a function of one or
more elements of �, then the parameters in θ are identified. If all unknown parameters in θ
are identified, then the model is identified.

Bollen also gives a definition for model uniqueness, local identification, by considering two
vectors θ1 and θ2 of an unknown θ .

Definition 10.2.2 A parameter θ is locally identified or uniquely defined at a point θ1if, in
the neighborhood of θ1 there is no vector θ2 for which � (θ1) = � (θ2) unless θ1 = θ2.

This definition of local identification can only be used to detect an unidentified model and
is not a sufficient condition for determining whether a model is identified. Clearly, if a pair
of vector θ1 and θ2 exist such � (θ1) = � (θ2) and θ1 �= θ2 then the parameter θ is not
identified. Bollen and Jöreskog (1985) show that model uniqueness does not imply global
identification and provide several examples.
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To solve for the model parameters in a SEM, the number of equations must be larger
than or equal to the number of unknowns. The total number of equations as given by the
distinct elements in � (θ) is υ = (p + q) (p + q + 1) /2. If t is the number of parameters
to be estimated, a necessary condition for model identification is that

υ∗ = υ − t ≥ 0 (10.2.7)

Provided υ∗ > 0 and the model is correct and identified, the hypothesis

H : � = � (θ) (10.2.8)

is said to be testable. This hypothesis tests whether an overidentified SEM is consistent
with the observed data and is called an overidentification or goodness-of-fit test.

To analyze a SEM, one begins by specifying the model using a path diagram that relates
the latent and observed variables specified using (10.2.5) with covariance structure given in
(10.2.6). Following model specification, one next determines whether a model is identified.
This is usually a very difficult task since except for some simple structural models, general
sufficient conditions for model identification have not been developed. Details regarding
model identification for specific models are provided later in this chapter. Given an identi-
fied model, one next must estimate the model parameters in � (θ) for the SEM. To estimate
the parameters in � (θ) for any SEM, one obtains a sample estimate S of � (θ) and chooses
a scalar error-in-fit function continuous function F (S, � (θ)) ≥ 0. Minimizing the fit func-
tion at θ = θ̂, the value of the function at �(̂θ) = �̂ represented as F(S,�̂) is a measure
of closeness of fit of S by �̂. For S = �̂, the fit function is defined to be zero so that S− �̂

should be approximately 0. Two general fit functions used in SEM are a variant of the log
likelihood under multivariate normality of the manifest variables, the ML fit function, and
several variants of matrix norms that compare S with weighted estimates of �(̂θ) = �̂, the
weighted least squares (WLS) fit function. The two functions are defined as

FM L = log |� (θ)| + tr
(

S� (θ)−1
)
− log (S)− (p + q) (10.2.9)

FW L S = 1

2
tr
[
W−1 [S−� (θ)]

]2 = 1

2

∥∥∥W−1 [S−� (θ)]
∥∥∥2

When W−1 = S−1, weighted least squares is called the generalized least squares (GLS)
fit function. If W−1 = I it becomes the unweighted least squares (ULS) fit function and
if W−1 = �̂−1 where �̂ is the asymptotic covariance matrix of the elements of S dis-

cussed in Chapter 3, cov
(
sgh, si j

) p−→ σ g jσ h j + σ g jσ hi/N , the fit function is called the
asymptotically distribution free (ADF) fit function, as long as W is positive definite and
the plim S = �, Browne (1984). Because the estimate for the model parameter θ using
the FM L error-in-fit function is identical to the full information maximum likelihood esti-
mate obtained assuming joint multivariate normality, the estimate θ̂ is always a consistent
estimate of θ , given that the model holds in the population and provided θ is globally iden-
tified. This is not necessarily the case for the other fit functions. The other fit functions also
require the vector x to be weakly exogeneous for the parameters of interest.

Minimization of the functions given in (10.2.9) is complex since it involves a constrained
nonlinear system of equations. Jöreskog (1969b, 1973) showed how to minimize FM L us-
ing the Davidon-Fletcher-Powell method which only involves first-order derivatives. More
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FIGURE 10.2.1. Path Analysis Diagram

recently, Newton-Raphson and Gauss-Newton algorithms that involve second-order deriva-
tives with Levenberg-Marquadt adjustments are used, Thisted (1988).

Given that a model is identified and an error-in-fit function F(S, �(̂θ)) is selected such
that θ̂ is a consistent estimator of θ , the next step in the evaluation of a SEM is the as-
sessment of overall fit. The criteria used to evaluate model fit include chi-square tests, fit
indices, root mean square residuals, and others, all of which depend upon the error-in-fit
function selected, distribution assumptions of the manifest variables, sample size, whether
the fit function selected is scale invariant, and whether the estimation method is scale free.
There is no uniformly “best” criterion for evaluating model fit or whether some subset of
the model parameters fit better than others. More will be said about this in later sections.
Using the fitted model, one relates the model to a theory, compares several models and/or
revises the model based upon substantive area expertise. Most research in SEM has been
concerned with model fit, the more complex issue of model predictive validity has received
little attention. This is because the latent scores in the calibration sample are unobserved.
This should change with the release of LISREL 8.30 which allows one to estimate the la-
tent variables in the calibration sample with estimated latent variable scores, Jöreskog et
al. (2000, p. 168). The latent variable scores based upon the calibration sample may be
compared with the observed scores in the validation sample to evaluate predictive validity
of the model. Finally, critical to SEM is the assumption of multivariate normality and the
use of an appropriate sample size. One should consult MacCallum, Browne, and Sugawara
(1996) and Kaplan (2000) for additional detail on power analysis is SEM.

Figure 10.2.1 illustrates a simple recursive path diagram for three latent variables.
In the path diagram, we have known parameters (values set to one), constrained param-

eters (the paths from η1 and η2 to the effect indicators yi are equal), and unknown free
parameters. The relationships are formulated based upon the knowledge of the substantive
area under study.
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Assuming the elements in η and ξ are uncorrelated, the latent variables model for Fig-
ure 10.2.1 is  η1

η2

 =
 0 0

β21 0

+
 γ 11

γ 21

[
ξ1

]+
 ζ 1

ζ 2


' =

 ψ11 0

0 ψ22

 , � = [
φ11

]
so that the number of parameters to be estimated is six. The measurement models for the
diagram are x1

x2
x3

 =
 1

λ21
λ31

[
ξ1

]+ [
δ1
δ2

]
, θδ =

 σ 2
δ1

0 0
0 σ 2

δ2
0

0 0 σ 2
δ3




y1
y2
y3
y4
y5
y6
y7
y8


=



1 0
λ2 0
λ3 0
λ4 0
0 1
0 λ2
0 λ3
0 λ4


[

η1
η2

]
+



ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8


, �ε = diag

[
σ 2
εi

]

so that the number of parameters to be estimated is 19. Thus, the total number of free
parameters in the model is t = 6+ 19 = 25. And, since t < (p + q) (p + q + 1) /2 = 66,
this model is at least not underidentified. Because there is no general necessary condition
that allows one to evaluate whether a SEM is identified, we treat the topic with specific
applications of the model in the separate sections of this chapter.

The LISREL model defines a SEM by representing relationships among the latent vari-
ables (structural model) and the manifest variables (measurement model). An alternative
representation requiring only three matrices to define a SEM is McArdle’s reticular ac-
tion model (RAM), McArdle (1980) and McArdle and McDonald (1984). In the RAM, the
p+q = g manifest variables and the m+n = h latent variables are organized into a single
random vector vt×1 where t = g + h. The linear model for the system is

v
t×1
= A

t×t
v

t×t
+ u

t×1
(10.2.10)

u ∼ Nt (0,P)

where I−A is nonsingular, and u and v are independent. We assume that E (v) = 0 so that
all variables are corrected to have mean zero so that moment matrices become covariance
matrices.
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From (10.2.10), the vector v may be written as

v = (I− A)−1 u (10.2.11)

and partitioning v so that v′ = [
g′,h′

]
and defining a selection matrix J = [I, 0], the

manifest variables are related to v by

g = Jv = J (I− A)−1 u (10.2.12)

The covariance structure for the manifest variables is

� (θ) = J (I− A)−1 P (I− A)−1′ J′ (10.2.13)

To express a LISREL model as a RAM model, we let v′ = [
y′, x′, η′, ξ ′

]
so that

y
x
η

ξ

 =


0 0 �y 0
0 0 0 �x

0 0 B �

0 0 0 0




y
x
η

ξ

+

ε

δ

ζ

ξ

 (10.2.14)

Letting J =
[

I 0 0 0
0 I 0 0

]
and g = Jv, the covariance matrix for � (θ) is

� (θ) = J (I− A)−1 P (I− A)−1′ J′ (10.2.15)

where

I− A =


I 0 −�y 0
0 I 0 −�x

0 0 I− B �

0 0 0 I

 (10.2.16)

P =


θε

θ δ
'

�


That the covariance structure for � (θ) in (10.2.15) is identical to � (θ) in (10.2.6) fol-

lows by showing that the inverse of I− A is

(I− A)−1 =


I 0 �y (I− B)−1 �y (I− B) �

0 I 0 �

0 0 (I− B)−1 (I− B) �

0 0 0 I

 (10.2.17)

Substituting (10.2.17) into (10.2.15), the result follows.
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Conversely, the RAM model may be written as a LISREL model by setting B = A,
� = I, � = P, and equating all other matrices to zero. A special case of the RAM model
was proposed by Bentler and Weeks (1980). The Bentler-Weeks model states that

η∗ = Bη∗ + �ξ∗ (10.2.18)

where the variables in η∗ and ξ∗ may be manifest or latent, I − B is nonsingular and � is
the covariance matrix of ξ∗. For a selection matrix J, the covariance structure for model
(10.2.18) is

� (θ) = J (I− A)−1 P (I− A)−1′ J′ (10.2.19)

with

A =
 B 0

0 0

 and P =
 ���′ ��

��′ �


so that (10.2.18) is a RAM.

In both the formulation of the LISREL and RAM models, the covariance matrix for the
manifest variables was a patterned covariance matrix. This motivated McDonald (1980) to
propose his Covariance Structure Analysis (COSAN) model. McDonald proposed that each
of the g2 elements of a covariance matrix �g×g for a (g × 1) random vector be expressed
as a function of t parameters θ1, θ2, . . . , θ t . In McDonald’s notation, his COSAN model is
expressed as

� =
 m∏

j=1

F j

P

 m∏
j=1

F j

′ (10.2.20)

where F j is of order
(
g j−1 × g j

)
, and P is symmetric of order nm . Each element of F j ,

or (in some applications) of F−1
j , and each element of P

(
or of P−1

)
, is a function of t

fundamental parameters θ ′ = [θ1, θ2, . . . , θ t ]. McDonald (1980) shows that his COSAN
model includes as a special case the seemingly more general linear COSAN model analyzed
in the CALIS procedure in SAS proposed by Bentler (1976). That is

� =
m∑

j=0

 j∏
i=1

Bi

L j

 j∏
i=1

Bi

 (10.2.21)

where the matrices Bi are defined like F j in (10.2.20) and L j are defined like P. To show
that model (10.2.21) can be obtained from (10.2.20), we set

P =


Lm

Lm−1
. . .

L0


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and select patterned matrices F j with structure

F j =


B j

... I
...

· · · · · · · · · · · · · · ·
...

...
...

...


where the identity matrices I are constructed to have appropriate orders.

We have shown that the LISREL model is equivalent to the RAM. Using the matrix
identity for the inverse of (I− A)−1

(I− A)−1 =
∞∑

k=0
Ak = (I− Ak+1)(I− A)−1 (10.2.22)

found in Harville (1997, p. 429), the inverse exists if the series converges as k −→ ∞.
Then, one observes that (10.2.13) has a structure similar to (10.2.19) and because (10.2.20)
is a special case of (10.2.18), one may find a RAM model that is equivalent to a COSAN
model. Conversely, one may find a COSAN model that yields the RAM structure as il-
lustrated by McDonald (1985, p. 154). Hence, for a single population the three model
representations LISREL, RAM and COSAN are equivalent. The representation selected is
usually one dictated by the problem, user preference, and output generated by a software
program for the model. While the CALIS procedure in SAS permits one to fit all three
representations, the LISREL model documented in Jöreskog and Sörbom (1993) and the
RAM model documented by Bentler (1993) and Bentler and Wu (1995) are preferred by
many researchers analyzing SEM since they may be used to analyze LISREL models with
mean structures (intercepts):

η = α + Bη + �ξ + ζ (10.2.23)

y = λy +�yη + ε
x = λx +�xξ + δ

multiple groups models with constraints across groups, and missing data. While the CALIS
program may also be used to analyze (10.2.23), it requires equal sample sizes and no miss-
ing data. A detail discussion of the use of PROC CALIS may be found in Hatcher (1994).
We have tried to employ his notation, called the Bentler-Weeks notation, in our examples
in this chapter. A new program for SEM analysis, distributed with SPSSTM, is Amos, short
for Analysis of MOment Structures, Arbuckle and Wothke (1999). It has an easy-to-use
graphical interface, allows for missing data, and incorporates newer bootstrap methodolo-
gies for model evaluation.

10.3 Confirmatory Factor Analysis

In exploratory factor analysis (EFA) discussed in Chapter 8, an observed vector of vari-
ables was related to an unobserved (latent) factor using a linear model with uncorrelated
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FIGURE 10.3.1. Two Factor EFA Path Diagram

errors. The goal of the analysis was to find a small number of latent factors that account
for the observed covariance (correlations) among the p observed variables. Having found
a small number of latent factors, all factors were simultaneously transformed to try to de-
termine a small number of “simple structure” orthogonal or oblique factors. If necessary,
factor scores could be estimated. When performing an exploratory analysis, the researcher
had no prior knowledge of the number of common factors, the pattern of the regression
coefficients that related latent factors to variables, or whether the factors were correlated
or orthogonal. In addition, the model imposed the restriction that the covariance matrix for
errors was diagonal.

Centering the observed data to have mean zero, replacing the observed, manifest vector
yp×1 with the vector xq×1 and the unobserved, latent factor f with ξ , the EFA model using
LISREL, SEM notation has the general form

x
q×1
= �x

q×n
ξ

n×1
+ δ

q×1

�xx = �x��′x +�δ

(10.3.1)

where �δ is assumed diagonal. Given a two factor solution with three variables, the EFA
model path diagram is shown in Figure 10.3.1.

Using (10.3.1), the model for the diagram is
x1
x2
x3
x4
x5
x6

 =


λ11 λ12
λ21 λ22
λ31 λ32
λ41 λ42
λ51 λ52
λ61 λ62


[

ξ1
ξ2

]
+


δ1
δ2
δ3
δ4
δ5
δ6


x �x ξ + δ

where

� =
[

φ11 φ12
φ21 φ22

]
and �δ = diag

[
σ 2
δi

]
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In Figure 10.3.1, observe that each latent factor is related to every variable so that no
constraints are imposed on the λi j . To estimate �x and�δ , recall that the diagonal matrix
of unique variances was estimated for various “guessed” values for the minimum number
of factors (in the new notation n) and to estimate �x , the residual matrix �−�δ = �x�

′
x

was solved iteratively, given an initial estimate of �δ . With the number of factors n known,
�̂δ and �̂x estimated, the solution was “rotated” to find the n (n + 1) /2 elements in �.
This multi-step process is used due to the indeterminacy of the structural model.

In confirmatory factor analysis (CFA), we also use model (10.3.1). The major difference
is that we specify the number of latent factors n before we begin our analysis; we allow
�δ to be a symmetric, unspecified covariance matrix so as to allow for correlated errors of
measurement; and we restrict the elements of �x to be associated with specific variables
to hypothesize an a priori “pattern” matrix of regression coefficients where the covariance
matrix � is unspecified. This allows one to estimate all of the qn parameters in �x , the
n (n + 1) /2 parameters in �, and the q (q + 1) /2 parameters in �δ simultaneously, pro-
vided the model is identified or overidentified. From (10.2.7), a necessary but not sufficient
condition for model identification is that

t = qn + n (n + 1) /2+ q (q + 1) /2 ≤ q (q + 1) /2 (10.3.2)

so that the CFA is usually not identified. For identification or overidentification to occur,
one must place restrictions on the parameters in the matrix �xx ≡ � (θ).

From equation (10.3.1), implicit in the relationship of ξ i and δi is that δi appears only
once for each xi . Because δi is not observed, in order to give the latent variable ξ i a scale,
the latent variables must have a metric. This is accomplished in one of two ways. The
reference variable solution sets at least one indicator variable, λi j , in each column of �x to
1, the indicator solution, or the variance of each latent variable is set to 1, the standardized
solution. In either case, on average one expects that a unit change in ξ i implies a unit change
in xi . One may also set some λi j to zero, constrain some of the λi j to be equal, and set other
parameters to zero or to known values to reduce the number of unknown parameters.

To illustrate the problem of identification, we consider the simple one factor design with
q = 2 variables and independent measurement errors. The SEM for the design is x1

x2

 =
 λ11

λ21

[
ξ1

]+
 δ1

δ2


� =

 σ 2
1 σ 12

σ 21 σ 2
2


� (θ) =

 λ11

λ21

[
φ11

] [
λ11 λ12

]+
 σ 2

δ1
0

0 σ 2
δ2



=
 λ2

11φ11 + σ 2
δ1

λ11φ11λ12

λ21λ11φ11 λ2
21φ11 + σ 2

δ2


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so that � (θ) contains 5 unknown parameters, θ ′ = [λ11, λ21, φ11, σ
2
δ1
, σ 2

δ2
], and estimat-

ing � with S, we have only 3 known values. Hence, we have 3 equations and 5 unknowns
so that the model is not identified. The equations have the following form

s2
1 = λ2

11φ11 + σ 2
δ1

s12 = λ21λ11φ11

s2
2 = λ2

21φ11 + σ 2
δ2

To make the model identified, we may set, for example, λ21 = λ11 = 1 or we may set
φ11 = 1 and σ 2

δ1
= σ 2

δ2
= 1. For either situation, the system of equations may be solved

uniquely for the unknown parameters. Setting one λi j = 1 and the other to zero does not
make the single factor model identified unless φ11 = 1. The problem is that there are too
few indication variables for the factor. Increasing the number of indicators from two to
three and setting one λi j = 1 makes the one factor model identified. Bollen (1989, p. 247)
calls this the three-indicator sufficient rule. Extending the reference variable sufficient rule
to more than one factor, �x is structured so that each column has at least one λi j = 1 and
any other row has one and only one nonzero element; at least three indicators are included
per factor; and �δ is assumed diagonal with � unspecified. For the standardized solution,
� has ones on its diagonal and none of the elements in �x are set to one.

We next consider a two factor model in which at least two measures have been obtained
for the correlated latent exogenous variables ξ1 and ξ2 with independent measurement er-
rors. The SEM is 

x1
x2
x3
x4

 =


λ11 λ12
λ21 λ22
λ31 λ32
λ41 λ42

[
ξ1
ξ2

]
δ1
δ2
δ3
δ4


where

� (θ) = �x

 φ11 φ12

φ21 φ22

�′x + diag
[
σ 2
δi

]
and

� = [
σ i j

] =


σ 2
1 (sym)

σ 21 σ 2
2

σ 31 σ 32 σ 2
3

σ 41 σ 42 σ 43 σ 2
4


The number of unknown parameters in �x ,� and�δ is 15 = t . The number of known
elements in S, an estimate of �, is q (q + 1) /2 = 10. Since, t > q (q + 1) /2, the model
is not identified. To make the model identified, we begin by setting some λi j = 0 and some
λi j = 1 so that each row of �x has one and only one unknown element. For example,

�x =


1 0
λ21 0
0 1
0 λ42





10.3 Confirmatory Factor Analysis 571

This scales the latent variables and provides a reasonable factor pattern matrix, as suggested
by Wiley (1973, p. 73). It reduces the number of unknown elements t from 15 to 9 so that
t ≤ 10 making the model overidentified. To see whether the model is identified, we must
compare the elements of � (θ) with S where for the model

� (θ) =



φ11 + σ 2
δ1

(sym)

λ21φ11 λ2
21φ11 + σ 2

δ2

φ21 λ21φ21 φ22 + σ 2
δ3

λ42φ21 λ21λ42φ21 λ42φ22 λ2
42φ22 + σ 2

δ4


and

S =


s2

1 (sym)
s21 s2

2
s31 s32 s2

3
s41 s42 s43 s2

4


Equating elements in S with � (θ),

s31 = φ21

λ21φ21 = s32 =⇒ λ21 = s32/s31

s41 = λ42φ21 =⇒ λ42 = s41/s31

s21 = λ21φ11 =⇒ φ11 = s31s21/s32

s43 = λ42φ22 =⇒ φ22 = s43s31/s41

and since

σ 2
δ1
= s2

1 − φ11 = s2
1 − s31s21/s32

σ 2
δ2
= s2

2 − λ2
21φ11 = s2

2 − (s32/s21)
2 s31

σ 2
δ3
= s2

3 − φ22 = s2
3 − s43s31/s41

σ 2
δ4
= s2

4 − λ2
42φ22 = s2

4 − (s41/s31) (s43s31/s41)
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all elements are identified for the two factor model. Alternatively, suppose we can rescale
by setting φ11 = φ22 = 1, then

�x =


λ11 0
λ21 0
0 λ32
0 λ42


The model remains identified, but with a different scaling of the latent variables.

Rearranging the elements in � (θ) using the reference variable solution and letting

� =
 λ21 0

0 λ42

 , �1 =
 σ 2

δ1
0

0 σ 2
δ3

 and �2 =
 σ 2

δ2
0

0 σ 2
δ4


Wiley (1973) observed that � (θ) has the general structure

� (θ) =
 �+�1 ��′

�� ���′ +�2


Since � = f (S) ,� is identified provided each factor contains at least two indicator
variables. Also, since � is nonsingular, � = (��)�−1 so that � is identified and,
�i = f (φ,�) so that � (θ) is identified. These observations substantiate Bollen’s (1989,
p. 247) two indicator reference variable sufficient Rule 1 for identifying an underidentified
CFA model. The rule states that if all φi j �= 0 and�δ is diagonal, that there are at least two
indicators per factor, and that each row of �x has only one nonzero element while each
column has one λi j = 1 for each n > 1 factors. For the standardized solution, the λi j set
to one are allowed to vary; but, each φi i = 1. Bollen (1989, p. 247) extends Rule 1 to a
Rule 2 that permits φi j �= 0 for at least one pair of factors i and j, i �= j , and assuming all
other Rule 1 conditions.

Given that a CFA model is overidentified, rules that establish sufficient conditions for
model identification when �δ is not diagonal, have not been established. Because of the
difficulty associated with global model identification, most researchers depend on tests of
local identification using Definition 2.10.2. Local identification, given a model is overiden-
tified, ensures identification in a neighborhood of θ1, a specific value of θ . Local identi-
fication is a necessary but not, in general, a sufficient condition for global identification
unless σ [θ] = vec [� (θ)] is a convex (concave) function over a closed, bounded convex
(concave) parameter space. This condition is not frequently met in practice. To evaluate lo-
cal identification, most computer programs use the two methods proposed by Wiley (1973,
pp. 81-82) which evaluates the rank of the score matrix (it must have rank r = t , if r < t
then t − r constraints must be added to the SEM) or the inverse of the Fisher information
matrix for θ (it must be nonsingular). The identification problem is a serious and complex
issue for any SEM since an estimate θ̂ of θ which may be a consistent estimate of θ for an
overidentified SEM is no longer consistent without global identification.

Given a CFA model or any SEM is identified, one next selects a fit function F (S, � (θ)),
minimizes the function to obtain θ̂ , and employs tests or indices of fit to evaluate the error-
in-fit.
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The EFA model was scale free under a transformation of the data vector, x∗ = Dx, if
(1) the parameters in �∗ and�∗δ are easily recovered using the scaling matrix D and (2) the
model restrictions imposed on the model parameters (model identification) are also pre-
served under the rescaling, Swaminathan and Algina (1978). Because the EFA model is
scale free using a scaling matrix D, condition (2) is equivalent to the characterization of
the model. The GLS and ML estimators are scale free (the canonical correlation character-
ization of the EFA model) while the ULS estimators are, in general, not scale free (the PC
characterization of the model). Defining a fit function F (S, � (θ)) ≥ 0 and equal to zero if
and only if S = �̂, Swaminathan and Algina (1978) define a fit function to be scale invari-
ant under the nonsingular transformation D if F (S,� (θ)) = F (DSD,D�(θ)D) ≥ 0. This
implies that the value of the error-in-fit function is uncharged for the analysis of � or Pρ .
Using this definition, the fit function is scale invariant. If plim W−1 = �−1, then FW L S

is scale invariant so that FGL S and FADF are scale invariant. Also, if plim diag W−1 =
diag�−1, the FDW L S fit function is scale invariant. The unweighted least squares fit func-
tion FU L S is not scale invariant. However, for any SEM, scale invariance is neither a nec-
essary or sufficient condition for scale freeness. Thus, ML estimators may at times not
be scale free while ULS estimators may be scale free under special conditions. The ex-
act conditions for scale freeness are difficult to establish. A necessary condition is that
the diag�(̂θ) = diag S for any consistent estimator θ̂ . Because estimates obtained us-
ing the fit functions FM L ,FGL S and FADF are asymptotically efficient when analyzing �

they are preferred to estimates obtained using FDW L S or FU L S . Also, tests for fit tend
to be asymptotically chi-square when analyzing �, while tests involving estimates using
FDW L S or FU L S have to be adjusted, Browne (1974, 1984).

Assuming the manifest variables are jointly normal and N > 100, one may test the
goodness-of-fit hypothesis

H : � = � (θ) (10.3.3)

versus the alternative that � is unstructured using a chi-square statistic. If F (S, � (θ))is
scale invariant, the statistic

X2 = (N − 1) F(S, �(̂θ)) (10.3.4)

converges asymptotically to a chi-square distribution under H , with degrees of freedom
v∗ = [(p + q) (p + q + 1) /2] − t . For the CFA model, v∗ = [q (q + 1) /2] − t . The test
statistic of model fit is an asymptotic result that is adversely effected by lack of multivariate
normality and in particular kurtosis, Browne (1982,1984). When one does not have mul-
tivariate normality, one should investigate transformations of the data or a robust estimate
of the covariance matrix. The test in (10.3.3) is valid only if the diag �(̂θ) = diag S when
analyzing R, Krane and McDonald (1978). In CFA, S and not R should be analyzed unless
the units of measurement have no meaning so that Pρ ≡ �.

Because the assumption for the chi-square fit test are usually not valid, because more
complex models almost always fit better, and since large sample sizes lead to erroneous
results; it has limited value, Kaplan (1990). Thus, one usually converts it to an index for
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distributions with kurtosis equal zero. The converted index is

Z =
3
√

X2

v∗ −
(

1− 2
9v∗

)
√

2
9v∗

(10.3.5)

When |Z | ≤ 5, one usually has a “good fit.”
Because most tests of fit are not appropriate for SEMs, there have been over thirty indices

of fit proposed in the literature, March, Balla and McDonald (1988). The CALIS procedure
calculates over twenty-five indices. For a detail discussion of each, the reader should con-
sult Bollen (1989), Mueller (1996) and Kaplan (2000). The goodness-of-fit index (GFI) and
adjusted goodness-of-fit index (AGFI) behave like R2 and adjusted R2

a in multiple regres-
sion, Tanaka and Huba (1984). The root mean square residual is also calculated. Bentler’s
(1990) comparative fit indices and several parsimonious fit indices are calculated, Williams
and Holohan (1994). Finally, statistics that measure the variation in the sample covariance
accounted for by the model are calculated for all equations, the structural model, and the
measurement model.

When evaluating the overall fit of a complex structural equation model, the model often
does not fit the data. Most of the procedures compare S and �̂. The goal is to obtain nor-
malized residuals that are less than two. When one finds that a model does not fit the data,
it is generally better to apply the principle of parsimony and remove rather than add paths
and covariances to the model. Adding parameters more often than not tends to capitalize
on chance characteristics. To facilitate the evaluation of alternative nested models one may
use likelihood ratio (LR), Lagrange Multiplier (LM), and Wald (W) tests. These tests are
only valid under multivariate normality using a scale invariant fit function with large sam-
ple sizes (N > 100), and for analyzing the structure of � and not Pρ . The likelihood ratio
tests fit two models, an unstructued model (̂θu) and a restricted model (̂θr ). Comparing the
difference in chi-square statistics, one may determine whether or not the restrictions are
significant.

The structure of the LR test is

X2 = (N − 1) (Fr − Fu) (10.3.6)

where Fr is the scale invariant fit function evaluated at θ̂r and Fu is the same function
evaluated at θ̂u . Under the restrictions, the statistic X2 ·� χ2 (d f ) with degrees of freedom
d f = υ∗r − υ∗u , the difference in degrees of freedom for the restricted model minus the
degrees of freedom for the unrestricted model. Restrictions usually remove coefficients
from the model or set free parameters to zero.

The likelihood ratio test procedure requires calculating θ under the unrestricted model
(̂θu) and the restricted model (̂θr ). An alternative to the LR test is Rao’s score test (Rao,
1947) also called the Lagrange Multiple Test (Silvey, 1959) which uses only θ̂r to evaluate
model fit. One can also use Wald’s (1943) test statistic which only uses θ̂u . For the classical
linear regression model with known variance σ 2, the three tests are identical, Buse (1982).
This is not the case in general, Davidson and MacKinnon (1993); however, they are asymp-
totically equivalent. Yuan and Bentler (1999) recommend approximating the distribution
of X2 in (10.3.6) using Hotelling’s T 2 statistic.
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The Wald (W) test evaluates whether restrictions r (θ) = 0 can be imposed on the model.
With restrictions on the model, r (̂θr ) = 0 by construction and if the restrictions are valid,
then r (̂θu) = 0. The W statistic estimates the change in chi-square that would result from
removing a path or covariance from a model. The Lagrange Multiplier (LM) test is evaluat-
ing whether restrictions can be removed from the model. The test estimates the reduction in
chi-square that would result by allowing a parameter to be estimated. The test is evaluating
whether a new path or covariance should be added to the model, MacCallum (1986).

Even with a “good” fit, the path diagram may be incorrect. A different model may rep-
resent the same “good” fit. Indeed, for complex models path directions may even be re-
versed without effecting the fit. Lee and Hershberger (1990) provide a very good discus-
sion and develop some rules for examining a path diagrams to determine if paths can be
reversed. To locate internal specification error, one uses modification indices, expected pa-
rameter change statistics and cross-validation indexes, Saris, Satorra and Sörbam (1987),
and Browne and Cudeck (1989).

10.4 Confirmatory Factor Analysis Examples

a. Performance Assessment 3 - Factor Model (Example 10.4.1)

Using a three-factor EFA model and the ML estimation method, we found in Example
8.10.1 that the model was able to recover the sample covariance matrix; however, all five
dimensions of the questionnaire instrument were not identified by the solution. Two factors
recovered two of the hypothesized dimensions while the third latent factor was confounded
by several variables. The development of the EFA model required the specification of only
the number of factors and an initial estimate of the unique error variances. We now assume
one knows the number of factors and the structure of �. Then, using the SEM symbols
in Figure 10.1.1, we formulate a three-factor CFA model for the PAP covariance matrix
� (θ) = �x��′x +�δ as shown in Figure 10.4.1.

Associated with the SEM in Figure 10.4.1 is the CFA model that follows.



x1
x2
x3
x4
x5
x6
x7
x8


=



1 0 0
λ21 0 0
0 1 0
0 λ42 0
0 0 1
0 0 λ63
0 0 λ73
0 0 λ83



 ξ1
ξ2
ξ3

 +



δ1
δ2
δ3
δ4
δ5
δ6
δ7
δ8


x

q×1 = �x
q×n

ξ
n×1 + δ

q×1

(10.4.1)
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ξ1

λ211

x1

δ1

β21

φ23

ξ2 ξ3

1 λ42 λ63
λ73

λ831

x2 x3 x4 x5 x6 x7
x8

δ2 δ3 δ4 δ5
δ6 δ7 δ8

φ13

φ12

FIGURE 10.4.1. 3-Factor PAP Model

The covariance structure is

� (θ) = �x��′x +�δ (10.4.2)

� = [
φi j

]
diag�δ =

[
σ 2
δi

]
The structure given in (10.4.2) is similar to the structure obtained using the EFA and an
oblique rotation. Depending on �, the factors may be orthogonal/oblique which supports
the general structure given in (10.4.2).

To fit the model given in (10.4.1), we use the procedure CALIS. While the SAS proce-
dure may determine that a model is underidentified, there are no guarantees. Thus, it is best
to demonstrate that any proposed CFA model is overidentified. For the model in (10.4.1),
q = 8 so that by (10.2.7), v = (8) (9) /2 = 36. And, counting the number of unknown
parameters in �, �x and �δ , t = 6+8+5 = 19, so that v− t = 17 ≥ 0. Hence, our model
meets the necessary condition for model identification. And because the model meets the
two indicator sufficient condition that all φi �= 0, �δ is diagonal, and �x is scaled with one
nonzero element per row, the sufficient condition for identification is met. Thus, the model
is globally identified.

To analyze the structure given in Figure 10.4.1, the LINEQS statement is used to spec-
ify the model equations. The STD statement defines the variances in �δ to be estimated.
And, the COV statement is used to identify the elements of � to be estimated. Because we
are analyzing a covariance matrix the option COV must be included on the PROC CALIS
statement. If one does not include COV, the CALIS procedure default is to analyze a cor-
relation matrix. Please be careful. The SAS code for this example is provided in program
m10 4 1.sas. While there are many options for the PROC CALIS statement, we have kept
this example simple. The option COV is needed to analyze a covariance matrix, EDF is the
required degrees of freedom to obtain tests of fit, and the keyword RESIDUAL is needed
to output residuals

[
ri j

] = S− �̂ for the SEM.
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TABLE 10.4.1. 3-Factor PAP Standardized Model

Equations R2

x1 = 0.7148 ξ1 + 0.6993 δ1 .51
x2 = 0.8034 ξ1 + 0.5954 δ2 .65
x3 = 0.7604 ξ2 + 0.6495 δ3 .58
x4 = 0.7021 ξ2 + 0.7120 δ4 .49
x5 = 0.7016 ξ3 + .7126 δ5 .49
x6 = 0.8151 ξ3 + .5796 δ6 .66
x7 = 0.6077 ξ3 + .7942 δ7 .37
x8 = 0.5132 ξ3 + .8583 δ8 .26

When fitting a CFA model, the first task is to evaluate model fit. For large samples and
assuming a MVN distribution, one first examines the chi-square statistic. Using (10.3.4),
X2 = 23.88 with p-value = 0.1228. This statistic indicates a good fit. In many CFA
problems the statistic will usually be significant even if the model fits. Thus, it should not
be the only index investigated. For the Z test, | Z |= 1.16 < 5.

Examining the root mean square residuals,

RM R =

√√√√√2
q∑

i=1

i∑
j=1

(
si j − σ̂ i j

)2
/q (q + 1) (10.4.3)

for the model, RM R = 0.0139 and the mean absolute value of the unstandardized residuals
ri j = si j − σ̂ i j is very small (0.009). While our example shows these values to be small,
the magnitude of these indices are affected by the differing variable scales. Hence, one
examines normalized residuals

r∗i j =
(
si j − σ̂ i j

)
/
[(

σ̂ i j σ̂ j j + σ̂ 2
i j

)
/N

]1/2
(10.4.4)

where N = sample size. Generally, one expects each absolute value of the normalized resid-
uals to be less than 2.00. Also, Bentler’s (1990) comparative fit index and Bentler and
Bonett’s (1980) indices are over 0.9 indicating a reasonable model fit. For a comprehensive
evaluation of fit indices, consult Mulaik et al. (1989) and Bollen (1989).

Finally, we investigate the ML estimates for �x , �, and �δ . First, observe that no asymp-
totic standard error is really small (< 0.0005), that all asymptotic t values are large, and
that all standardized loadings are larger than 0.60. We conclude that a 3-factor model for
the data appears reasonable. The standardized loadings are summarized in Table 10.4.1

For a CFA model, the total variance is equal to the common variance plus the unique
(error) variance. And the square of the multiple correlation between a manifest (observed)
variable and the latent factor, defined as

R2
xi
= 1− var δ̂i

σ̂ i i
(10.4.5)
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is a reliability estimate for the observed variable, Bollen (1989, p. 221). Reliability is a
measure of how consistently the questionnaire instrument measures what it was designed
to measure. Using the standardized model, R2

xi
= (λ∗i j )

2, the square of the standardized
loadings. The larger the direct standardized effect (excluding errors δi ), the higher the ξ ′i s
reliability. From this perspective, the 3-factor model has low reliabilities ranging from 0.26
to 0.65.

To illustrate a poorly fit model, we include in program m 10 4 1.sas the code for fitting
a 2-factor model. For this model, the chi-square test of fit is rejected, the Z test value is
larger than 5 and one has large normalized residuals.

b. Performance Assessment 5-Factor Model (Example 10.4.2)

While the 3-factor CFA model provided a reasonable fit to the PAP data, we were unable
to recover the five designed dimensions of the questionnaire instrument. Hence, we next fit
a 5-factor CFA to the covariance matrix. For a 5-factor model, (10.4.1) becomes

x1
x2
x3
x4
x5
x6
x7
x8


=



1 0 0 0 0
λ21 0 0 0 0
0 1 0 0 0
0 λ42 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 λ85




ξ1
ξ2
ξ3
ξ4
ξ5

 +



δ1
δ2
δ3
δ4
δ5
δ6
δ7
δ8


x

q×1 = �x
q×n

ξ
n×1 + δ

q×1

(10.4.6)

with covariance structure

� (θ) = �x��′x +�δ

� = [
φi j

]
φi j �= 0 (10.4.7)

diag�δ =
[
σ 2
δ1
, σ 2

δ2
, σ 2

δ3
, σ 2

δ4
, 0, 0, σ 2

δ7
, σ 2

δ8

]
Because the observed variables (x5, x6) are the same as the latent variables

(
ξ3, ξ4

)
, the

error variances are set to zero, σ 2
δ5
= σ 2

δ6
= 0. Now the number of model parameters is

24: 15−φi j , 5−σ 2
δi

, and 3−λi j . And, v− t = 36− 24 = 12 ≥ 0 so that the model meets
the necessary condition of model identification. Because all φi j �= 0, each row of �x has
one nonzero element, and the elements of �δ are set to zero when a factor has less than two
indicators, the model is identified. Program m10 4 2.sas is used to analyze the new model.

Reviewing the chi-square fit statistic, the p-value for testing H : � = � (θ) is not
rejected. The p-value of the test is 0.4528, higher than the 3-factor model. Using the Like-
lihood Ratio difference test to compare the two models, we consider the 3-factor model
to be a nested, restricted model of the unrestricted 5-factor model. Subtracting the chi-
square values and the associated degrees of freedom, X2 = (23.87− 11.91) = 11.96,
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TABLE 10.4.2. 5-Factor PAP Standardized Model

Equations R2

x1 = 0.6935 ξ1 + 0.7205 δ1 .48
x2 = 0.8282 ξ1 + 0.5605 δ2 .69
x3 = 0.7562 ξ2 + 0.6543 δ3 .57
x4 = 0.7060 ξ2 + 0.7082 δ4 .50
x5 = 1.0000 ξ3 + 0.0000 δ5 1.00
x6 = 1.0000 ξ4 + 0.0000 δ6 1.00
x7 = 0.6626 ξ5 + 0.7490 δ7 .44
x8 = 0.5444 ξ5 + 0.8388 δ8 .30

d f = 17 − 12 = 6. Since 11.96 > 11.07, the critical chi-square value for α = 0.05, we
reject the 3-factor model. To further evaluate whether the 5-factor model is better than the 3-
factor model we may compare the information criteria developed by Akaike (1974, 1987),
Schwartz (1968) and Bozdogan (1987). As with mixed linear models, the recommendation
is to choose a model with largest information. Comparing the criteria for the two models
(5-factor vs 3-factor), there is no clear winner. However, the Z test is smaller and most
of the fit indices are higher (≈ 1.000) for the 5-factor model. Finally, the average of the
normalized residuals is small (0.22 < 0.25). Reviewing the loading matrix �x , standard
errors and t tests, the 5-factor model fits better than the 3-factor model. The standardized
loadings are given in Table 10.4.2.

Comparing the entries in Table 10.4.2 and Table 10.4.1, we see that except for variable
x1 = suppg, all reliability estimates increased and the error variances decreased. Thus, we
conclude that the questionnaire instrument appears to recover the five latent domains.

Using the MODIFICATION option on the PROC CALIS statement, the SAS procedure
generates Lagrange Multiplier and Wald modification indices, and Stepwise Multivariate
Wald tests for fitted models. These tests are discussed by Bollen (1989), and MacCallum,
Roznowski and Necowitz (1992). The Wald test is used to estimate the change in the
chi-square model statistic that would result by equating a parameter to zero. The effect of
eliminating a specific path or setting a “free” covariance parameter to zero. The tests often
agree with the t tests calculated for parameters where nonsignificance may result in setting
the parameter to zero. In general, t tests and Lagrange Multiplier tests should be used
with caution since the action taken may not generalize to other samples. The Lagrange
Multiplier and Wald indices are computed for three matrices GAMMA , BETA , and
PHI . For the CFA model, the phi matrix contain latent factors and residual error terms and

the matrix gamma has as rows indicator variables and as columns factors. The Lagrange
Multiplier/Wald Indices estimate the reduction in the chi-square statistic that would result
by allowing a parameter to be estimated. That is, the degree to which the model would
improve by adding a new parameter (loading/covariance) to the model. The rank order of
the ten largest Lagrange multipliers appear at the end of the matrix. For our example, the
largest reduction occurs by relating δ8 and δ3 or x7 and f1. Clearly, we want δ8 and δ3
to be uncorrelated; however, the relation x7 and f1 suggests that factor 1 may influence
variable 7.
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As a general practice, when fitting SEM to data, it is generally better to obtain a good
model by removing paths to improve or maintain fit than to add paths to a model.

Exercises 10.4

1. Perform CFA on the correlation matrix given in Table 3.10.1 and interpret your re-
sults. How do the results compare with the factor structure obtained using EFA.

2. Analyze the correlation matrix in Table 3.10.2 using CFA. Discuss your findings.

3. Analyze the correlation matrix in Table 3.10.2 assuming a correlated factor structure
using the CFA model.

10.5 Path Analysis

The CFA model contains one manifest variable and one latent variable. We now con-
sider models commonly found in economics which have only observed, manifest variables.
These models are called path analysis (PA) models or simultaneous equation models. Using
LISREL notation, the basic model has the structure

y
p×1
= B

p×p
y

p×1
+ �

p×q
x

q×1
+ ζ

p×1
(10.5.1)

where η = y and ξ = x . The matrices B and� contain the direct effect (path) coefficients
and from (10.2.3), the covariance structure for the model is

� (θ) =
 (I− B)−1 (���′ +'

)
(I− B)−1′ (I− B)−1 ��

��′ (I− B)−1′ �

 (10.5.2)

For PA models, it is common to have both recursive and nonrecursive models. Recall that
a model is recursive if relationships among the variables in y are one directional while non-
recursive models contain bi-directional relationships and feedback loops. For a recursive
model, the matrix B is always a lower triangular matrix and ' is diagonal, otherwise the
path analysis model is said to be nonrecursive. Often the vector y is partitioned into subsets
which generates a block structure for B and�. For example, for two subsets of variables
the structure of B and' is as follows.

B =
 B11 0

B21 B22

 and ' =
 '11 0

0 '22

 (10.5.3)

Models with this structure are said to be block-recursive.
When working with path models, one may again convert the structure to reduced form.

This expresses the endogenous variables in terms of the random exogenous variables plus
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(a)  Recursive

(b)  Nonrecursive
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FIGURE 10.5.1. Recursive and Nonrecursive Models

random error, a general nonlinear model. Solving for y in (10.5.1), the reduced form for the
model is

y = (I− B)−1 �x+ (I− B)−1 ζ (10.5.4)

= )x+ e

The matrix ) contains the reduced form coefficients and the vector e the reduced form
random errors. Model (10.5.4) is the classical conditional regression model.

In Figure 10.5.1, we provided two examples of path diagram. Example (a) is a recursive
model and example (b) is a nonrecursive model. For the recursive model, observe that,
ζ 1 and ζ 2 are not correlated, which is not the case for the nonrecursive model.

The structural equations for the two models follow.

(a) Recursive Model[
y1
y2

]
=

[
0 0

β21 0

] [
y1
y2

]
+

[
γ 11 γ 12
0 γ 22

] [
x1
x2

]
+

[
ζ 1
ζ 2

]
� =

[
φ11 φ12
φ21 φ22

]
, ' =

[
ψ11 0

0 ψ22

]
(b) Nonrecursive Model[

y1
y2

]
=

[
0 β12

β21 0

] [
y1
y2

]
+

[
γ 11 γ 12 0
0 0 γ 23

] x1
x2
x3

+
 ζ 1

ζ 2
ζ 3


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� =
 φ11 φ12 φ13

φ21 φ22 φ23
φ31 φ32 φ33

 , ' =
[

ψ11 ψ12
ψ21 ψ22

]
(10.5.5)

For the recursive structure, B is a lower triangular matrix and ' is diagonal. For the
nonrecursive structure, B cannot be made to be a lower triangular matrix and ' may or
may not be diagonal. In the example it is nondiagonal.

The first task one encounters in the analysis of path analysis models is model identifica-
tion. From (10.2.7), the necessary condition is that the number of nonredundent elements
in the covariance matrix must be larger than the number of unknown parameters in θ

(p + q) (p + q + 1)

2
≥ t (10.5.6)

For the models in Figure 10.5.1, (p + q) (p + q + 1) /2 = 10 for the recursive model and
(p + q) (p + q + 1) /2 = 15 for the nonrecursive model. The number of parameters t is
9 and 14, respectively. Both models are overidentified.

To develop sufficient conditions for model identification, some special models are con-
sidered. From the reduced form of the structural model if B = 0, then path analysis model
is a multivariate regression model. And, �,�, and' are easily expressed in terms of the
observed covariance matrix S. For

S =
 Syy Syx

Sxy Sxx

 (10.5.7)

the parameters have the identified structure

� = Sxx , �
′ = S−1

xx Sxy and ' = Syy − Syx S−1
xx Sxy (10.5.8)

This rule is not too helpful in practice since most models involve structures with B �= 0.
A more common situation is to have a recursive model where B is lower triangular and

' is diagonal. The recursive condition is sufficient for model identification. To see this,
one merely has to observe that I − B is a unit triangular matrix for some ordering of the
elements in y, that the inverse of (I− B) is also triangular, and that both y and x are each
uncorrelated with e. Then, equating the elements of � (θ) with S we have that

Syy = (I− B)−1 (���′ +'
)
(I− B)−1′ (10.5.9)

Sxy = ��′ (I− B)−1′

Sxx = �

Because � is identified, we may determine the elements in �,', and B using each equation
in the simultaneous system one at a time, successively, to solve for all parameters. Because
(I− B)−1 is lower triangular, the first equation only depends on the first row of �. Thus,
one may find γ ′1, the first row of �, and then ψ11. From the second equation, one obtains
the second row of �, the second row of B and then ψ22. Continuing, in this manner, all
parameters are identified.
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In developing sufficient conditions for path models, we placed restrictions on the model
parameters, defining B to be zero or specified the pattern of the coefficients in the matrix
B as lower triangular and ' as diagonal for recursive models. For nonrecursive models,
we continue with this approach. First, because � is always identified we need not concern
ourself with this parameter. However, assume ' is unconstrained, is free to vary, then
necessary and sufficient conditions for identification of nonrecursive models involve a rank
condition on the partitioned matrix Gp×(p+q) = [I− B,− �]. The rank rule is as follows.
Form the matrix G for i = 1, 2, . . . , p by deleting all columns of G that do not have zeros
in the row. Then, the necessary and sufficient condition for the nonrecursive model to be
identified is that the

rank (Gi ) = p − 1 i = 1, 2, . . . , p (10.5.10)

For a proof of this result, see Greene (2000, p. 667).
To illustrate the use of (10.5.10), consider the nonrecursive example illustrated in Fig-

ure 10.5.1. The matrix

G =


1 −β12

... γ 11 γ 12 0

...

−β21 1
... 0 0 γ 23

 (10.5.11)

and the

rank (G1) = rank
[
γ 23

] = 1

rank (G2) = rank
[
γ 23, γ 12

] = 1

so that the nonrecursive model is identified.
Although the identification rule developed for nonrecursive models may be applied in

many situations, it does not allow ' to be constrained. Bekker and Pollock (1986) have de-
veloped additional rules for this case. For very complex nonrecursive models, one must use
the general computational methods discussed in CFA. Again, they usually only ensure lo-
cal identification. One must again have global identification to obtain consistent estimators
of θ .

Having established model identification, one once again uses the fit functions defined in
(10.2.9) to estimate model parameters. In CFA only one matrix �x of direct effects was
estimated. In path analysis, two matrices are involved, B = [

β i j
]

and � = [
γ i j

]
. These

contain the direct effects of yi on y j and xi on x j , respectively. However, one also has
indirect effects and total effects. An indirect effect of yi or y j or xi on yi is separated by
intervening, mediating variables and is represented as products of direct effects. The total
effect is the sum of all direct and indirect effects. For the identified recursive system in
Figure 10.5.1, the indirect effect of x1 on y2 is γ 11β21, the direct effect of x1 on y1 is γ 11
so that the total effect is γ 11+γ 11β21. Only, straight arrows are used to trace effects (direct,
indirect, and total).

To evaluate the effect of y on y, recall that B is the matrix of direct effects. Multiplying
the direct matrix B by itself, the matrix B2 contains the indirect effects with one intervening
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variable and B3 represents the indirect effects with two intervening variables. Because the
total (T) effect is the sum of the indirect (I) effect plus the direct (D) effect, the total effect
of y on y is

Tyy = Dyy + Iyy (10.5.12)

= B+
∞∑

k=2
Bk

For a recursive model, B is a lower triangular matrix with zeros on the diagonal. Since B is
lower triangular with zeros on the diagonal, it is nilpotent for some k in that Bk+1 = 0 so
that the infinite series in (10.5.12) terminates for recursive models. Then, the total effect of
y on y is

Tyy = B+ B2 + . . .+ Bk (10.5.13)

= B0 + B1 + . . .+ Bk − I

= (I− B)−1 − I

using (10.2.21) with B0 ≡ I. And, the indirect effect of y on y is

Iyy = Tyy = B (10.5.14)

= (I− B)−1 − I− B

To evaluate the effect of x on y, again assuming a recursive model, we proceed in a sim-
ilar manner by expressing the total effect as the sum of direct plus indirect effects as

Txy = Dxx + Ixy (10.5.15)

= � + �B+ �B2+
=

[
I+ B+ B2 + . . .+

]
�

= (I− B)−1 �

which is identical to the coefficient matrix for the reduced form of the model. Hence, the
indirect effect matrix of x on y is

Ixy = Txy − � (10.5.16)

= (I− B)−1 − �

The coefficients for direct, indirect and total effects are summarized in Table 10.5.1
For some nonrecursive models, the indirect and total effects may not exist, Bollen (1989,

p. 381). A sufficient condition for convergence of the infinite series for nonrecursive models
is that the largest eigenvalue of BB′ is less than one, or ||B|| <1. By the singular value
decomposition theorem, a necessary and sufficient condition for the inverse (I− B)−1 to
exist is that the largest eigenvalue of B is less than one. While this ensures that a solution
to the cross-sectional model exits, it does not mean that the system is stable or that it is in
equilibrium. To evaluate equilibrium, one must consider a dynamic model.
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TABLE 10.5.1. Path Analysis—Direct, Indirect and Total Effects

Component x −→ y y −→ y
Direct � B
Indirect (I− B)−1 � − � (I− B)−1 − I− B

Total (I− B)−1 � (I− B)−1 − I

The system of equations defined by (10.5.1) may be viewed as a cross-sectional analy-
sis of a dynamic process and as such we are assuming that the system of equations is in
equilibrium. To evaluate equilibrium, we consider a simple dynamic simultaneous equation
model. A system is considered dynamic if it depends on one or more lagged endogenous
variables. A simple dynamic simultaneous equation model has the structure

yt = Byt + �x+�yt−1 + ζ (10.5.17)

where the lagged variable is yt−1 and � is a matrix of parameters. We have used the sub-
script t to denote that the observations vary with time. In more complicated dynamic mod-
els, the exogenous variables x and disturbance terms ζ may also depend upon time. Letting
only the errors in (10.5.17) depend on time and not the exogenous variables, the model
is equivalent to a vector autoregressive AR(1) model, Reinsel (1993). The parameter ma-
trix � may have diagonal elements that are nonzero. The canonical form for the dynamic
system is as follows

yt = )x+�yt−1 + e (10.5.18)

where the matrix ) =(I− B)−1�, the matrix � = (I− B)−1�, and vector of errors is
e = (I− B)−1ζ . By successive substitution into (10.5.18) and using (10.2.22), the dynamic
model may be written as follows

yt = �t y0 +
t−1∑
s=0

[�s)x]+
t−1∑
s=0

�se (10.5.19)

= �t y0 + (I−�t )(I− B)−1�x+ (I−�t )(I− B)−1ζ

The model indicates that the endogenous observation vector is determined by only the
initial vector y0 since the exogenous variables, and the disturbances do not vary with time.
The coefficient matrices included in the bracketed sum are called dynamic multipliers.
From the equation (10.5.19), we see that if �t → 0 as t →∞ and if the matrix (I− B)−1

exists, the solution to the dynamic model is the reduced form solution of the cross-sectional
path analysis, simultaneous equation, model given in (10.5.4) and the system is said to be
in equilibrium or stable. Since the model considered in (10.5.17) is a vector autoregressive
AR(1) process, equilibrium will be attained provided the eigenvalues of � are less than
one, the stationarity condition in multivariate time series analysis, Reinsel (1993, p. 28). A
Monte Carlo study of the behavior of the eigenvalues of B and � was conducted by Kaplan
et al. (2000). Their study confirms that evaluation of the eigenvalues of the matrix B does
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not provide an accurate assessment of the existence of an equilibrium for a cross-sectional
structural equation model. Because the eigenvalues of the matrix � are not available in
cross-sectional models, one cannot directly evaluate the stability of the process.

Selecting a scale invariant fit function and assuming x is weakly exogenous for B, �,
and ', one may estimate the asymptotic standard errors for the parameters. Also of interest
may be the standard errors of indirect effects. These, unfortunately are not provided in
CALIS, however, by establishing hierarchical models one may evaluate the contribution of
variables to a model. The fit statistics reviewed for the CFA model may also be used to
evaluate the fit of a path analysis model.

10.6 Path Analysis Examples

In CFA a SEM was used to specify relationships between latent, unobserved variables or
factors and observed, manifest variables. In path analysis (PA) all variables are observed,
manifest variables. And, a distinction is made between endogenous and exogenous vari-
ables. The endogenous (dependent) variables (y) are predicted from variables within the
model and the exogenous (independent) variables (x) are only influenced by external vari-
ables that are outside the model. In recursive models, the paths are uni-directional while in
nonrecursive models they are bi-directional.

a. Community Structure and Industrial Conflict (Example 10.6.1)

For our first example, data found in Fox (1984, p. 267), a subset of the variables from a
study on community, structure and conflict conducted by Lincoln (1979) are utilized. Lin-
coln obtained data on the industrial strike activity and characteristics of the surrounding 78
communities. The observational data consisted of four exongenous variables (x1, x2, x3, x4)

and three endogenous variables (y1, y2, y3).

x1 −UC O N , index of metropolitan union concentration (the
higher the index, the higher the correlation of
union workers employed in a small number of
large labor organizations).

x2 − E M PC O N , index of employment concentration in metro-
politan areas (the higher the index, the more
concentrated the employment).

x3 − SI Z E, logarithm of total employed in the metro-
politan area.

x4 −U N I Z , extent of unionization in the metropolitan
area.

y1 − ST RI K E S, frequency of recent work stoppages.

y2 − ST RI K E RS, number of workers involved.

y3 − M AN D AY S, number of person days lost.
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FIGURE 10.6.1. Lincoln’s Strike Activity Model in SMSAs

Lincoln’s proposed recursive model of strike activity in SMSAs is shown in Figure
10.6.1. The SEM equation for Figure 10.6.1 are y1

y2
y3

 =
 0 0 0

β21 0 0
0 β32 0

  y1
y2
y3

 +

y
p×1 = B

p×p
y

p×1 +

 0 γ 12 γ 13 γ 14
γ 21 γ 22 γ 23 0
γ 31 γ 32 γ 33 0

 +


x1
x2
x3
x4

 +


ζ 1
ζ 2
ζ 3
ζ 4


�

p×q
x

q×1
ζ

p×1

and

�
q×q
=


φ11 φ12 φ13 φ14

φ22 φ23 φ24
φ33 φ34

φ14

 '
p×q

= diag
[
ψ11, ψ22, ψ33

]

where the general structure for � (θ) is given in (10.5.2).
The model hypothesizes that UNIZ affects the incidence of strikes while only UCON de-

termines their size and duration. The variables EMPCON and SIZE affect all three conflict
variables (STRIKES, STRIKERS, and MANDAYS). MANDAYS is mediated by STRIK-
ERS where STRIKERS is an antecedent to STRIKES. Finally, one would expect all path
coefficients to be positive and significant in the model.
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Excluded from the model are paths from UCON to STRIKES, and UNIZ to STRIKERS
and MANDAYS. Thus, the model hypothesizes that metropolitan union concentration may
involve a large number of employees and result in many lost days, but it does not affect
the frequency of work stoppages. And, union concentration in SMSAs only effects the
frequency of strikes and not the number of strikes and the number of lost mandays.

To verify that Lincoln’s model is identified, we use (10.5.6). For the model, p = 3 and
q = 4 so that v = (p + q) (p + q + 1) /2 = 28 and t = 24. Since v ≥ t , and the necessary
condition for model identification is met. Because B is lower triangular and ' is diagonal,
the sufficient condition for model identification is also met. Observe that we could also
allow the path coefficients β31, γ 11, γ 24 and γ 34 to be nonzero. Then v − t = 0. Hence, a
full model would allow all paths to vary and a restricted model may set the four parameters
to zero. When v = 0, S = �̂ for an exactly identified model. The covariance matrix � for
Lincoln’s strike activity data follows.

S =



0.007744 (Sym)

0.000635 0.000400
0.052401 0.005077 1.065024
0.006624 0.001471 0.066069 0.037636
0.054564 0.012024 0.823108 0.137249 1.809025
0.084675 0.015990 1.131609 0.171958 2025220 2.496400
0.103616 0.019572 1.325756 0.184820 1.969703 2.567911 2.989441


Rather than fitting Lincoln’s proposed model, we first fit a model with all elements in

� = [
γ i j

]
specified. The model is y1

y2
y3

 =
 0 0 0

β21 0 0
0 β32 0

  y1
y2
y3

 +

y = B y +
 γ 11 γ 12 γ 13 γ 14

γ 21 γ 22 γ 23 γ 24
γ 31 γ 32 γ 33 γ 34




x1
x2
x3
x4

 +
 ζ 1

ζ 2
ζ 3


� x ζ

� = [
φi j

]
' = diag

[
ψ i

]

(10.6.1)

For this model, the exogenous xi are associated with each of the endogenous variables
yi . To analyze the model with all γ i j free to vary using PROC CALIS, the variables are
relabeled to specify the LINEQS statements in SAS following the notation of Bentler and
Weeks (1980). For details see Hatcher (1994). All variables are relabeled vi where pvivj
represents a path coefficient. The letter “c” represents model errors covariances in the COV
statement and the letter “e” represents model errors. The CALIS model for the SEM in
(10.6.2) is shown in Figure 10.6.2. All variables xi [v 4, v 5, v 6, and v 7] are related to
yi [v 1, v 2, and v 3]. From Figure 10.6.2, one may construct the LINEQS, STD, and COV
statements for the “Full Gamma Matrix” model, program m10 6 1.sas.
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FIGURE 10.6.2. CALIS Model for Eq. (10.6.2).

The steps one employs to evaluate a PA model are similar to the process employed in
CFA. One would like to have nonsignificant chi-square and Z tests of fit. Fit indices larger
than 0.9, and the |r∗i j | < 2.0 for all normalized residuals. Reviewing the fit of our model,
the p-value of the chi-square statistic is 0.4803, Z = 0.0316, all indices of fit are larger
than 0.90 and the |r∗i j | < 2.00 with all normalized residuals nearly zero.

Next, the R2 values of the endogenous variables are reviewed. These measure the pro-
portion of variance accounted for by direct effects of the exogenous variables. The values
of R2 for yi (v1, v2, v3) are 0.55, 0.40, and 0.57 for each set of xi (v4, v5, v6, v7). For the
social sciences, these values are reasonable. However, not all the asymptotic t tests that the
path coefficients are nonzero are significant, some of the standardized coefficients are mod-
erate in magnitude (< 0.05), and the stepwise multivariate Wald tests indicate that some of
the paths may be set to zero.

When trying to fit a SEM in practice, as a general principle, it is usually better to remove
paths than to add paths. The stepdown Wald tests estimate the change in the chi-square
statistic of model fit that would result by setting a parameter to zero. The Univariate In-
crement chi-square values represent the change in the chi-square statistic that results when
setting a parameter to zero, ordered from lowest to highest. Also provided is the cumulative
chi-square effect. Equating a parameter to zero may not improve model fit. It may increase
the chi-square statistic so that a model which once fit, may no longer fit. Conversely, if the
ratio of the chi-square statistic to its degrees of freedom is reduced, a significant chi-square
test of fit may become nonsignificant.

We began with the “Full Gamma” model to see if we can reduce the paths to discover
Lincoln’s model. This is not the case since one would have to set the paths PV 3V 4 =
PV 1V 7 = PV 2V 7 = 0. And, while many coefficients are candidates, PV 2V 6, PV 1V 4,
PV 1V 2, PV 2V 4, PV 2V 5, PV 3V 4, PV 3V 6, PV 3V 5, only PV 3V 4 is among the en-
tries. The incremental chi-square value of 1.586, indicates a very small change in chi-
square. While the “Full Gamma” model provides a “good” fit, it is difficult to interpret
the standardized coefficients. In particular, the inverse relationship between union con-
centration (V 4 ≡ x1) on the number of recent strikes (V 3 ≡ y3) and the inverse rela-
tionship among the endogenous variables. Setting the coefficients PV 3V 4 = PV 1V 7 =
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PV 2V 7 = 0, to fit Lincoln’s model, we find the chi-square test of fit to be significant
(p-values = 0.0029). However, the fit indices are all larger than 0.90, the Z test = 2.94, the
values of R2 did not change, and no residual is larger than 2.0. Again, not all the t tests
are significant, and the negative relationship between the frequency of recent studies (V3)
and the total number of strikes (V2) is difficult to explain. Lincoln’s model fit by CALIS is
displayed in Figure 10.6.3.

All estimates of variances for the exogenous variables and errors, and covariances among
the exogenous variables were found to be nonzero for Lincoln’s model. This model suggests
that EMPCON has a negative influence on conflict, and that as strike frequency increases
the number of effected employees decreases. However, the model does not fit.

Returning to the “Full Gamma” model we again review the t test statistics for values
less than 1.96, the magnitude of the standardized path coefficients, and the Wald tests. This
may lead one to set PV 1V 4 = 0 in equation one, PV 2V 4 = PV 2V 5 = PV 2V 6 = 0 in
equation two, and PV 3V 4 = PV 3V 5 = PV 3V 6 = 0 equation three. This revised model
does fit (chi-square p-value = 0.5690), |Z | = .1776, and all fit indices remained larger than
0.90. However, some normalized residuals increased in size, most coefficients increased in
size, although not all t tests are larger than 1.96. The R2 values remained unchanged (0.55,
0.39, 0.55) and the information criteria are smaller than either the “Full Gamma” model
or Lincoln’s model. Using the CALIS notation, the standardized coefficients are given in
Table 10.6.1.

Does the model represented in Table 10.6.1 make sense? Can we interpret our findings
and substantiate our results in theory? For this, one investigates the magnitude of the direct
and indirect effects, and the signs of the coefficients. The direct effect signs are provided in
Figure 10.6.4.

While the revised model in Figure 10.6.4 may provide a reasonable fit, it is very difficult
to interpret. This is a frequent problem when analyzing observational data with causal paths
not determined by experimentation. Do not make something out of nothing. Obtain another
sample, revise your theory and began again.

b. Nonrecursive Model (Example 10.6.2)

As a second example of a PA model, an example discussed by Bollen (1989, p. 116) ana-
lyzed using LISRELTM and EQSTM is considered. The variables in the model follow.

y1 — subjective income

y2 —- subjective occupational prestige

y3 — subjective overall social status

x1 — income

x2 — occupational prestige
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TABLE 10.6.1. CALIS OUTPUT—Revised Model

V 1 = −0.05 ∗ V 2 + 0.04 ∗ V 4 − 1.03 ∗ V 5 + 1.110 ∗ V 6
+ 0.53 ∗ V 7 + 0.6698E1

V 2 = −0.39 ∗ V 3 + 0.86 ∗ V 7 + 0.7821E2

V 3 = 0.74 ∗ V 7 + 0.6693E3

MANDAYS
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SIZE

UNIZ

x2    V5==

x1    v4==

x3    v6==

x4    v7==

y3    v3==

y2    v2==

y1    v1==
0.0506

.0029
−0.5729
−1.2945∗

−0.4258

1.8
12

8

1.1771∗

.5353

0.6001∗

−0.2665*

(*) t-value > 1.96

FIGURE 10.6.3. Lincoln’s Standardized Strike Activity Model Fit by CALIS.
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FIGURE 10.6.4. Revised CALIS Model with Signs
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φ12
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γ11

γ22

y1

y2

β21

ζ1

β12

ζ2

y3 ζ3

β32

β31

ψ13

ψ23

ψ12

FIGURE 10.6.5. Socioeconomic Status Model

The proposed nonrecursive SEM model for “real” and “perceived” socioeconomic status
is provided in Figure 10.6.5.

The SEM for the diagram in Figure 10.6.5 follows. y1
y2
y3

 =
 0 β12 0

β21 0 0
β31 β32 0

  y1
y2
y3

 +
y

3×1 = B
p×p

y
p×1 γ 11 0

0 γ 22
0 0

 [
x1
x2

]
+

 ζ 1
ζ 2
ζ 3


�

p×q

x
q×1

ζ

1×1

�

q×q
= [

φi j
] '

p×p
= [

ψ i j
]

(10.6.2)

The number of parameters to be estimated for the model is t = 15 and as v = (p + q) (p+
q + 1)/2 = 15, v − t ≥ 0 so the necessary condition for model identification is satisfied.
Since all the elements of � and ' are free to vary, the rank condition may be used to verify
that the model is identified. Because v − t = 0, the model is exactly identified so that
�̂ = S.

The model suggests that real income and occupation status (which affect each other),
mediate perceived overall social status. One would expect all coefficients to be positive
and the correlations among the model errors to be positive. The covariance matrix based
on a sample of N = 432 white respondents is used for the analysis. The PROC CALIS
commands for the analysis are given in program m 10 2.sas. The sample covariance matrix
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TABLE 10.6.2. Revised Socioeconomic Status Model

Equation R2

y1 = 0.3829 x1 + 0.9238 ζ 1 0.15
y2 = 0.3078 y1 + 0.2293 x2 + 0.9003 ζ 2 0.19
y3 = 0.4421 y1 + 0.5894 y2 + 0.8753 ζ 3 0.23

for the variables y1, y2, y3, x1, and x2 is

S =


0.499
0.166
0.226
0.564
2.366

0.410
0.173
0.259
3.840

0.393
0.382
3.082

4.831
13.656

(Sym)

452.711


The results obtained by CALIS are identical to the results published by Bollen (1989,

p. 117) using LISREL TM and EQSTM. Because v − t = 0, there is no test of model
fit. Reviewing the t tests for the fitted model, observe that the coefficients β12 (PV 1V 2) ,
ψ21 (C E1E2), ψ31 (C E1E3), and ψ32 (C E2E3) have asymptotic t values that are less
than 1.96 and that the correlations among the model errors are negative, contrary to what
one might expect. In addition, the stepwise Wald Test suggests setting β12 = 0.

Rerunning the model setting β12 = 0, the new model is recursive, suggesting that sub-
jective income effects subjective occupational prestige, but not conversely. We continue to

allow the errors to be correlated. The new model continues to fit the data and the
∣∣∣r∗i j

∣∣∣ < 2.

Now, all t tests for the path coefficients are larger than 1.96, and all standardized coefficient
are positive. However, the covariances of the model errors remain negative and nonsignifi-
cant. The standardized coefficients for the revised model are given in Table 10.6.2.

Finally, we consider setting ψ13 = ψ12 = ψ23 = 0. This model does not fit the data
as well as the revised model; however, all t tests are significant and the magnitude of the
standardized coefficients remained reasonably stable. In addition, the cross validation index
for the two models, are not very different, the smaller the index the better the prediction.
We would recommend replicating the study with another data set before deciding upon a
model for socioeconomic status.

Exercises 10.6

1. Delete from Lincoln’s Strike Activity Model variables X4 (U N I Z) and

X2 (E M PC O N ).

(a) Draw the revised path analysis diagram.

(b) Fit the model to the resulting covariance matrix.

(c) Discuss your findings.
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10.7 Structural Equations with Manifest and Latent
Variables

We have reviewed two special applications of the SEM, the CFA model and the path anal-
ysis (PA) model. In this section we treat the general model which contains both a structural
model and a measurement model. The structural model is identical to the path analysis
model except that manifest variables are replaced with latent variables. For the measure-
ment submodel, a CFA model is formulated for both manifest variables y and x. Recall that
the general specification of the model is

η
m×1
= B

m×m
η

m×1
+ �

m×n
ξ

n×1
+ ζ

m×1

y
p×1
= �y

p×m
η

m×1
+ ε

p×1
(10.7.1)

x
q×1
= �x

q×n
ξ

n×1
+ δ

q×1

where � (θ) is defined in (10.2.6). The parameters for the model are B, �, �y , �x , �, ',
�ε , and �δ .

To determine whether the model is identified, we must establish a sufficient condition for
identification since the necessary condition was given in (10.2.7). For this, the model is sep-
arated into the measurement and structural models. Letting x∗ = [

y′, x′
]′, the measurement

model has the CFA structure

x∗ =
 �y 0

0 �x

 ξ1

ξ2

+
 ε

δ

 (10.7.2)

with parameters �,�y , and �x . Using the CFA rules one may establish the identification
of this submodel.

Next, one examines the structural model with ξ = x and η = y to determine whether
B, � and ' are identified using path analysis rules. If each submodel results in an identified
model, then the entire model is identified. When the two step rule fails or the specified
model does not meet the CFA and path analysis rules, one must use the rank of the score
matrix and Fisher’s information matrix to evaluate global identification empirically using
local identification with several starting values.

Having found that a SEM is identified, one again chooses a fit function to estimate θ ,
and uses indices to evaluate fit. Replacing x with ξ and y with η in Table 10.5.1, the matrix
expressions may be used to determine the direct, indirect and total effects for the latent
variables.

To determine the total and indirect effects of ξ on y, observe that the direct effects of ξ
on y are 0. Hence, the indirect effects of ξ on y are equal to the total effects so that

Tξy = Iξy = �y (I− B)−1 � (10.7.3)
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Similarly, the total effects of η on y is

Tηy = �y +�yB+�yB2 + . . .+�yBk (10.7.4)

= �y

[
B0 + B+ B2 + . . .+ Bk

]
= �y (I− B)−1

and the indirect effects of η on y is

Iηy = �y (I− B)−1 −�y (10.7.5)

for recursive models. For nonrecursive models, the effects are only defined under the con-
ditions specified for path analysis models.

10.8 Structural Equations with Manifest and Latent
Variables Example

For our next example in this chapter, we consider a longitudinal study of the stability of
alienation over time and its relationship to social economic status discussed by Jöreskog
(1977) based upon a study by Wheaton, Muthén, Alevin and Summers (1977). Data on
932 individuals were collected in rural Illinois for three years: 1969, 1967, and 1971. The
latent variables under study were alienation and social economic status (SES). The indica-
tor variables of alienation consisted of two subscale scores of anomia and powerlessness
obtained by Wheaton et al. (1977). For the SES factor, the indicator variables were years of
schooling (EDUC) and Duncan’s SES index (SEI) administered in 1966. Jöreskog (1977)
proposed two models for analysis of alienation and SES, Models A and B. Neither model
corresponded to Wheaton et al.’s final model. The models are represented in Figure 10.8.1
for data collected in 1967 and 1971.

The SEM for both models A and B are[
η1
η2

]
=

[
0 0
β21 0

] [
η1
η2

]
+

[
γ 11
γ 21

]
ξ +

[
ζ 1
ζ 2

]
η

m×1 = B
m×m

η
m×1 + �

m×n

ξ
n×1 + ζ

m×1


y1
y2
y3
y4

 =


1 0
λ21 0
0 1
0 λ42

 [
η1
η2

]
+


ε1
ε2
ε3
ε4


y

p×1 = �y
p×m

η
m×1 + ε

p×1

(10.8.1)
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FIGURE 10.8.1. Models for Alienation Stability
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[
x1
x2

]
=

[
1
λ∗21

]
ξ +

[
δ1
δ2

]
x

q×1 = �x
p×n

ξ
n×1 + δ

q×1

The covariance structures for the models differ. For Model A, � = [
φ11

] = var ξ1, ' =
diag

[
ψ11, ψ22

]
where ψ i i = var

(
ζ i
)
, and �ε = diag [θ i i ], �δ = diag [δi ] For model B,

�δ =


θ11 (Sym)

0 θ22
θ31 0 θ33
0 θ42 0 θ44


since the εi are correlated. The structure of �, ', and �ε for Model B is identical to the
specification given for Model A. Scales for η1, η2 and ξ1 have been set to y1, y3, and x1,
respectively. For the model, the observed variables are

y1 = AN O M I A67 x1 = E DUC

y2 = P OW L E S67 x2 = SE I

y3 = AN O M I A71

y4 = P OW L E S71

while the latent factors are

η1 = Alienation 67

η2 = Alienation 71

ξ1 = SE S

The CALIS program to analyze both models is contained in program m10 8 1.sas using
the covariance matrix

S =


11.839 (Sym)

6.947 9.364
6.819 5.091 12.532
4.783 5.028 7.495 9.986
−3.834 −3.889 −3.841 −3.625 9.60
−21.899 −18.831 −21.748 −18.775 35.522 450.283


for the variables y1, y2, y3, y4, x1 and x2.

To determine whether Model A and Model B are identified, the number of observed
variances and covariance, v = (p + q) (p + q + 1) /2 must be greater than or equal to the
number of unknown parameters, tA and tB , say. For Model A, tA = 15 and for Model B,
tB = 17. Since v = 21, the necessary condition for model identification is met. Next,
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one may equate � (θ) to S and see if one may estimate all parameters using the observed
covariances or one may determine sufficiency in two steps. That is, determine whether the
CFA model is identified; and, treating the latent model as a PA model, determine whether
it is identified. Using Bollen’s Rule 1, the CFA model for Model A is identified. Using
Rule 2, the CFA for Model B is identified. Treating the latent model as a PA model in step
two, the model is recursive because B is lower triangular. Both Models are hence identified.
The CALIS statements for the analysis of Models A and B, and an alternative Model C are
provided in program m10 8 1.sas.

Reviewing the output for Model A, the chi-square statistic of fit, X2 = 71.4715 with
d f = 6, has a p-value < 0.0001 indicating that perhaps the model does not fit. The Z
test is also significant. Even though the fit indices are reasonable, the information measures
appear large. However, no normalized residuals appear large, although the distribution is
skewed. All asymptotic t tests for all covariances and path coefficients are larger than 1.96.

Using the MODIFICATION option, no stepwise Wald tests were generated so that one
is not provided with any guidance for deleting paths to “improve” fit. However, the La-
grange Multiplier/Wald Indices in the PHI matrix suggests that one consider adding the
covariance parameter θ31 to the model. The value of the chi-square statistic is expected
to decrease by 63.6999. This path is justified since it represents the covariance between
ANOMIA 67 and ANOMIA 71 collected over time on the same subjects. This type of
covariance is frequently present in repeated measures data. One might also consider the co-
variance between POWLESS 67 and POWLESS 71. The expected reduction in chi-square
for θ42 is 37.2661. This change ensures some model symmetry, and it makes sense. Alas,
this is Model B. Note that θ12 and θ34 are not included, but that θ14 and θ23 are among the
10 largest entries.

The chi-square statistic for Model B
(
X2 = 4.7391 with d f = 4

)
has a p-value of 0.3135.

The new model is not rejected and all information criteria for Model B are smaller than
Model A. The normalized residuals are well behaved and all asymptotic t tests are signifi-
cant. However, the stepwise Wald Test suggests setting θ24 = 0. This is Model C. Model C
is nested within Model B.

The chi-square statistic for Model C
(
X2 = 6.3437 with d f = 5

)
has a p-value= 0.2742.

The information statistics suggest that perhaps Model C is better than A. However, the
average of the normalized residuals is marginally larger (0.1722 vs 0.111) for B vs C.
A major problem with Model C is that it does not provide the symmetry in the cor-
related errors which may be more difficult to explain. Finally, if we assume Model B
is correct, and because Model C is nested within Model B, we may use the chi-square
difference test in (10.4.6) to compare Model B to Model C. The chi-square statistic is
(6.3437− 4.7391) = 1.60 with (5− 4) = 1 degrees of freedom. Thus, we fail to reject
Model B. We thus, conclude that Model B is a reasonable model for the stability of Alien-
ation.

Exercises 10.8

1. In Figure 10.8.1 (Model A), suppose we remove the background variable SES from
the model. What can you say about the estimate for β21?
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FIGURE 10.8.2. Duncan-Haller-Portes Peer-Influence Model

2. Refit model B in Figure 10.8.1 assuming all errors εi are correlated. Discuss your
findings.

3. Duncan, Haller and Portes (1968) obtained data on n = 329 high school students
paired with their best friends to analyze peer influence on occupational choice. They
assumed that the latent variables η1 =Respondent’s Ambition and η2 =Best Friend’s
Ambition were nonrecursive factors related to observed indicators of choice: y1 =
Respondent’s occupational aspiration score, y2 = Respondent’s educational aspira-
tion score, y3 = Best friend’s occupational aspiration score, and y4 = Best friend’s
educational aspiration. Furthermore, that assumed that the observed variables paren-
tal aspiration, intelligence, and socioeconomic status directly influenced the latent
ambition factors. That is ξ i ≡ xi so that �x = I and δ = 0. The path diagram for
their SEM is given in Figure 10.8.2 and the correlations among the peer-influence is
given in Table 10.8.1

(a) Briefly discuss the model.

(b) Use SEM notation to express the model diagram in Figure 10.6.5 in matrix
notation.
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TABLE 10.8.1. Correlation Matrix for Peer-Influence Model

y1 1.000 (Sym)

y2 .6247 1.000
y3 .3269 .3639 1.000
y4 .4210 .3275 .6404 1.000
x1 .2137 .2742 .1124 .0839 1.000
x2 .4105 .4043 .2903 .2599 .1839 1.000
x3 .3240 .4047 .3054 .2786 .0489 .2220 1.000
x4 .2930 .2407 .4105 .3607 .0186 .1861 .2707 1.000
x5 .2995 .2863 .5191 .5007 .0782 .3355 .2302 .2950 1.000
x6 .0760 .0702 .2784 .1988 .1147 .1021 .0931 −.0438 .2087 1.000

(c) Verify that the model is identified.

(d) Find the ML estimates for the 40 model parameters.

(e) Does the model fit? Discuss.

(f) Refit the model with the parameters ψ21 = 0 and β21 = β12. Interpret the
standardized solution.

10.9 Longitudinal Analysis with Latent Variables

In Chapter 6 we illustrated how one may use the mixed (univariate) linear model to analyze
mixed ANOVA designs and to fit growth curves. For i = 1, 2, . . . , n units, the general
model is

yi = Xiβ + Zi ai + ei (10.9.1)

To use (10.9.1) to model growth, suppose the relationship between y and x is linear, then
for i = 1, 2, . . . , n and t = 1, 2, . . . , T we may have that

yit = β0i + β1i xi t + eit

The variables xit are observed time points for example age or grade levels. Adding a time
varying covariate for each subject, we may have that

yit = β01 + β1i xi t + θ iwi t + eit (10.9.2)

The parameter θ i varies with individuals. This is the within-subject or level-1 model. For
the between-subject or level-2 model, the random coefficients are modeled. For example,
we might say that

β0i = α00 + γ 01zi + u0i

β1i = α10 + γ 11zi + u1i (10.9.3)

θ i = α + γ zi + ui
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Combining (10.9.2) and (10.9.3), observe that

yit =
[(
α00 + γ 01zi

)+ (
α10 + γ 11zi

)
xit + (α + γ zi ) wi t

]
+ [u0i + u1i xi t + ui zi + eit ]

= [
fixed part

]+ [
random part

]
which is a mixed linear model. This model allows covariates to vary with time and individ-
uals, and not all individuals need to be observed at the same time points. Letting yi jk be the
observation for the i th individual, at time t and variable k where δi = 1 if an observation is
obtained on yk and δi = 0, otherwise, then a multivariate multilevel model for change as
proposed by Goldstein (1995) becomes

yit =
∑

k

δk{
[(
α00 + γ 01zi

)+ (
α10 + γ 11zi

)
xit + (α + γ zi ) wi t

]
+ [u0i + u1i xi t + ui zi + eit ]}

=
∑

k

{[fixed part
]+ [

random part
]}

To fit the multilevel model into a SEM framework, one first sets Xi = X so that each
individual is observed at the same time points (not necessarily equally spaced). This was
the case for the GMANOVA model. The design is balanced for all individuals. Thus, we
have that

yit = β0i + β1i xt + eit

However, not all xt need to be fixed. For example, xt may have the values 0 and 1 and
the values of x3 and x4 may be parameters to be estimated. This permits one to model
nonlinear growth. In multilevel modeling, the parameter θ varied across individuals. A
multilevel model that permits measurement error has been proposed by Longford (1993),
however, SAS does not currently have procedures for the analysis of multilevel models with
measurement error. However, one may fit the multilevel model within the SEM framework.

To fit the multilevel model into the SEM framework, the parameter θ is permitted to vary
only with time and not individuals. In multilevel modeling, the parameter θ could vary with
both individuals and time because zit is always considered fixed. The measurement model
becomes

yit = β01 + β1i xt + θ twi t + εi t (10.9.4)

The equations given by (10.9.3) become the structural part of the SEM

β0i = α00 + γ 01zi + u0i

β1i = α10 + γ 11zi + u1i
(10.9.5)

In the SEM setup, θ depends on time and not the i th individual. It is a fixed parameter
used to evaluate the contribution of the time varying covariate zit on the outcome vari-
able, beyond the growth factors β0i and β1i . Taking expectation of the growth factors, the
estimated growth means are

Ê
(
β01

) = α̂00 + γ̂ 01z

Ê
(
β1i

) = α̂10 + γ̂ 11z
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FIGURE 10.9.1. Growth with Latent Variables.

so that the estimated mean outcome is

Ê (yit ) = Ê
(
β01

)+ Ê
(
β1i

)
xt + θ̂ twi t

where
ŷi t = β̂0i + β̂1i xi t + θ̂ twi t

are predicted outcomes. The parameters β0i represent the initial status of the outcome when
time and the covariate is set to zero, and β1i represents the growth rate of the outcome for
a unit increase in time. Averaging over subjects, α̂00 is the intercept of the average growth
curve and α̂10 is the average growth rate, given no covariates. Covariates are added to
account for the variation in the growth factors β0i and β1i . Because one does not observe
β00 and β1i , the parameters are considered latent factors where β̂0i and β̂1i are latent
factor scores. To represent (10.9.4) and (10.9.5) as a SEM, see Figure 10.9.1 with t = 4
time points. The disturbances ui may be correlated within level-1 and the errors εi may be
correlated within level-2. In addition, β0 may be related to β0 and β1. Then for example,
the second equation in (10.9.5) may be replaced with

β1i = α + δβ0i + γ zi + ui

Comparing Figure 10.9.1 with Figure 10.2.1, we may associate β0 and β1 with η1 and η2
then the matrix structural model becomes

ηi = α + Bηi + �zi + ζ i (10.9.6)

by replacing ξ i with the observed covariates zi .

The matrix form of the measurement model is

yi = λy +�ηi +�wi + εi (10.9.7)

where � may contain the fixed time point values xt or for nonlinear growth may contain
unknown values.. For example, the values 0, 1, x3, x4 may be used where x3 and x4 are pa-
rameters to be estimated. The parameter � is unknown and must be estimated. Combining
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(10.9.6) and (10.9.7) into a single equation, we have that

yi =
[
λy +�(I− B)−1 α +�(I− B)−1 �xi

+�xi ]+
[
�(I− B)−1 ζ i + εi

]
(10.9.8)

= [
fixed part

]+ [
random part

]
a complicated mixed model. The time varying covariates wi t and the time invariant covari-
ates zi are contained in the vector xi .

To fit Figure 10.9.1 into a SEM, we have that[
β0
β1

]
=

[
α00
α11

]
+

[
0 0
0 0

] [
β0
β1

]
+

[
γ 01
γ 11

]
z +

[
ζ 1
ζ 2

]


y1
y2
y3
y4

 =


1 0
1 1
1 x3
1 x4

[
β0
β1

]
+


ε1
ε2
ε3
ε4




w1
w2
w3
w4

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




θ1
θ2
θ3
θ4

+


0
0
0
0


In the above representation, the common intercept of yit is obtained by restricting the in-
tercepts for each of the outcomes yt to be equal across time and the mean α00 for the latent
intercept factor β0i is calculated at zero. Thus, we have that x1 = 0 and x2 = 1. Because
x3 and x4 may vary, the mean of the slope growth factor (with no covariate) is no longer a
constant rate of change over time. It represents a rate of change for a time increment change
of one unit. A model is usually first fit with fixed values for xt with some centering point,
are then one considers variable xt , and finally time invariant covariate may be included in
the model.

More generally, using (10.2.2) we may set λx = λy = 0 and estimate the intercept α.
Because there is no latent factor ξ , the covariance matrix for y is

cov (y) = �(I− B)−1 ' (I− B)−1′�′ +�ε (10.9.9)

where �ε is the covariance matrix for the errors and ' is the covariance matrix for ζ .
In our SEM example, we used deviation scores and the latent factor η had a mean of zero.

Now, the intercept contains a structured mean α. The mean of y has the general structure

E (y) = λy +�(I− B)−1 α +�(I− B)−1 �z (10.9.10)

where z contains time invariant covariates. Thus, to use the SEM approach to model growth
for multilevel models, one must estimate α. This is accomplished by adding a dummy
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variables of all ones to the model, Dunn et al. (1993). Thus, one analyzes the augmented
moment matrix  S + y y′

y′ 1


to fitµ (θ) and � (θ) to y and S simultaneously. Here we assume y and S are asymptotically
independent. To analyze the an augmented moment matrix using PROC CALIS, one must
use the options UCOV and AUGMENT on the PROC CALIS statement.

The formulation of the multilevel model as a latent variable SEM provides one with a
very flexible approach to the analysis of longitudinal data. It may be used to analyze growth
processes involving multiple groups and multiple variables, and may include several lev-
els of mediational variables with multiple indicator variables, multiple groups and multiple
growth procedure. Illustration of the general approach is discussed by McArdle (1988),
Meredith and Tisak (1990), Muthén (1991), Willett and Sayer (1996), and Bijleveld and
van der Kamp (1998), Muthén (1997), and Kaplan (2000). MacCallum et al. (1997) il-
lustrate the analysis of multivariate growth curves using the SEM approach and compare
the method with a multivariate multilevel modeling approach. The extension of multilevel
models for binary responses is considered by Muthén (1984, 1996). The program M plus
developed by Muthén and Muthén (1998) performs the necessary calculations for both
SEM and multilevel SEM with continuous and categorical data.

10.10 Exogeniety in Structural Equation Models

The analysis of the models in this chapter involve estimating and testing hypotheses re-
garding model parameters where the observed variables y and x are both random. However,
because we are investigating a system of simultaneous equations a critical assumption in
our analysis is the concept of exogeniety. Weak exogeniety allows one to formulate com-
plex relationships about Y and X defined by a joint probability model, but permits one
to estimate model parameters using only the conditional distribution of Y|x, ignoring the
marginal distribution of X. This was addressed in Chapter 4 when we considered the mul-
tivariate (single equation) regression model and also in Chapter 6 for SUR models.

In path analysis, simultaneous equation modeling, the joint structure of the observed data
is represented in (10.5.2). By adding an intercept to (10.5.1), the structural equation model
with the endogenous vector y and the “exogenous” variable x becomes

y = α + By+�x+ ζ (10.10.1)

y = (I− B)−1α + (I− B)−1�x+ (I− B)−1ζ

y = )0 +)1 + e

a reduced form, vector representation of the multivariate regression (MR) model. The vec-
tor )0 contain the reduced form model intercepts and the matrix )1 contain the reduced
slopes. This is equation (10.5.4) with ) = [)0,)1]. The reduced form error vector e has
the covariance structure, cov(e) = �e = (I− B)−1'(I− B)′−1. To estimate model pa-
rameters, we may use the likelihood fit function which under multivariate normality of the
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observed variables leads to full information likelihood estimates for the model parameters.
While the other fit functions do not depend on multivariate normality, they do depend on
the conditional distribution of y|x, ignoring the information in x. Ignoring the information
in the marginal distribution is only valid if x is weakly exogenous. The sufficient condition
of weak exogeniety permits efficient inference where estimation of the model parameters,
tests of hypotheses, and prediction only depend upon the conditional distribution.

Ignoring the latent parameters, the structural model for the observed variables involve
the parameter vector θ = [µ′x ,µ′y,vec(B)′,vec(�)′,vec(')′,vec(�)′]′ where an element
of the vector θ is in the parameter space �, θε�. The factoring of the joint density as
f (Y,X; θ) = f (Y|X = x;λ1) f (X;λ2) is said to operate a sequential cut of the density
for joint parameter space � = (�1 × �2), a Cartesian product space, if and only if for
λ = (λ′1,λ′2)′ = g(θ)ε(�1 ×�2) = � for λ1ε�1 and λ2ε�2. Then the parameter vectors
λ1 and λ2 are said to be variation free. That is for any λ1ε �1, λ2ε�2 can attain any value in
�2, and conversely, so that the parameters in the vectors λ1and λ2 are unconstrained or free
to vary. Following Engle, Hendry, and Richard (1983), we have the following definition of
weak exogeneity.

Definition 10.10.1 The variable x is weakly exogeneous for any vector of parameters
ψ , say, if and only if there exists a reparameterization of the elements of θ ∈ � as
λ = [λ′1,λ′2]′ ∈ (�1 × �2) such that (1) ψ = f (λ1) alone, and (2) the parameter λ1 and
λ2 are variation free so that λ ∈ (�1 × �2), and the joint density has the representation
f (Y,X; θ) = f (Y|X = x;λ1) f (X;λ2).

If we can assume weak exogeneity for the path analysis, simultaneous equation, model so
that x is weakly exogenous for λ, then we can restrict our attention to the parameter vector
λ1 = [vec())′,vec(�e)

′]′ and ignore the vector λ2 = [µ′x ,vec(�)′]′. Again, multivariate
normality is only a necessary condition for weak exogeneity to hold. As we indicated ear-
lier, the multivariate normal distribution is a member of the class of distributions known as
elliptical distributions as is the multivariate t distribution. And, conditional cuts of elliptical
distributions are themselves elliptical. However, if the joint distribution of Y and X follows
an elliptical distribution, the observed variable x is no longer weakly exogeneous for the
parameter vector λ1, Bilodeau and Brenner (1999, p. 208). This means that the parameters
in the conditional distribution are confounded by the parameters in the marginal distribu-
tion. Thus, even if one is only interested in the parameters associated with the conditional
distribution, the marginal distribution cannot be ignored. Estimation and inference is no
longer valid using only the conditional distribution and one must use an estimation proce-
dure, for example, a full information maximum likelihood method that depends on the joint
distribution.

Example 10.10.1 Assume that the random vector Z = [Y′,X′]′ follows a multivariate nor-
mal distribution with mean µz and partitioned, positive definite, covariance matrix � de-
fined:

µz =
 µy

µx

 , � =
 �yy �yx

�xy �xx


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By Theorem 3.3.2, property (5), the parameter vector θ of the joint distribution is θ ′ =
[µ′y,µ′x ,vec(�yy)

′,vec(�yx )
′,vec(�xx )

′]. Using representation (4.2.65), the parameter vec-
tor of the conditional model Y|X = x is λ′1 = [β ′0,vec(B′1)′,vec(�)′] and the parameter
vector for the marginal model is λ′2 = [µ′x ,vec(�xx )

′]. In addition, the factorization of the
joint density into the product of the conditional density time the marginal density generates
a sequential cut of the joint density since the parameter vectors λ1and λ2 are variation free.
This is the case since for arbitrary choices of values in λ1and λ2 there is a one-to-one cor-
respondence between λ = [λ′1,λ′2]′ ∈ �1 ×�2 for all admissible values in the parameter
space � since we have that

µz =
 β0 + B′1µx

µx

 , � =
 � + B′1�B1 B′1�yx

�xyB1 �xx

 ε(�1 ×�2)

Thus, x is weakly exogenous for the parameter vector ψ = f (λ1).

Example 10.10.2 If the random variable Z has an elliptical distribution so that Z ∼
E p(µz,�). Even though the conditional and marginal distributions are both elliptical,
the variance of the conditional random variable Y|x depends on µx and �xx through the
product g(x)� where g(x) depends on the quadratic form (x− µ2)

′�−1
xx (x− µ2)

′. For
the a parameter vector λ = [λ′1,λ′2]′ε� as defined in the multivariate normal example
� �= (�1 × �2) so that the vectors λ1 and λ2 are not variation free. The factoring of
the joint density does not generate a sequential cut and x is not weakly exogenous for the
parameter λ1.

The notion of exogeniety is often discussed in dynamic simultaneous equation models.
For these models, Granger noncausality is also important. A lagged variable yt−1 does not
Granger cause xt if and only if the probability density function for f (xt |xt−1, yt−1) =
f (xt |xt−1). This means that in the conditional distribution, the lagged values yt−1, do not
account for variation in the movements in xt beyond that already provided by the lagged
variable xt−1. Thus, forecasts of the variable yt may be made conditional on forecasts of
the variable xt if yt−1does not Granger cause xt . However, if one is interested in estimation
or inference of parameters in dynamic forecast models, one may estimate the parameters
conditionally with respect to xt if the variables are weakly exogenous for the parameters
in the context of the model in which they are defined. Combining the notions of weak ex-
ogeniety and Granger noncausality, we obtain strong exogeniety. If a variable xt is weakly
exogenous and if yt−1 does not Granger cause xt , then the variable xt is said to be strongly
exogeneous. We have only briefly introduced some terms used in forecasting, in estimating
parameters in dynamic simultaneous equation models, and in economic policy analysis. For
a comprehensive treatment of exogeniety, one should consult the book edited by Ericsson
and Iron (1994). Dynamic models are discussed by Hsiao (1986).

Exercises 10.10

1. For the simple dynamic model yt = βxt + εt where xt = yt−1θ+δt , assume
that the errors follow a joint bivariate normal distribution and so that the errors
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εt ∼ N (0, σ 2
1), and δt ∼ N (0, σ 2

2). Show that x is weakly exogenous for β, but
that x is not weakly exogenous for the root parameter ρ = βθ. The system is dy-
namically stable if |ρ| < 1 and unstable if |ρ| > 1. The system oscillates without
dampening if ρ = 1. This shows that in order to evaluate stability of the simultaneous
equation system, you must use the joint bivariate distribution. Or, one cannot evalu-
ate equilibrium by only investigating the conditional distribution since it depends on
the parameter θ.
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Appendix A
Tables

• TABLE I. Upper Percentage Points of the Standard Normal Distribution, Z1−α

Z1−α denotes the upper 1 − α critical value for the standard normal distribution. If
X ∼ N (0, 1)and α = 0.05, the critical value Z1−α such that the P

(
X > Z1−α) =

0.05 is read as Z0.95 = 1.645 from the table.

Source: Abridged from Table 1. E. S. Pearson and H. O. Hartley (Eds.), Biometrika
tables for statisticians, Vol 1 (3rd ed.). New York: Cambridge, 1966.

• TABLE II. Upper Percentage Points of the χ2 Distribution, χ2
1−α (v)

χ2
1−α (v) is the upper 1-α critical value for a χ2 distribution with v degrees of free-

dom. If X2 = χ2 (v) and α = 0.05 with v = 10, the critical constant such that the
P
[
X2 > χ2

1−α (v)
] = .05 is χ2

0.95 (10) = 18.3070.

Source: Table 8. E. S. Pearson, and H. O. Hartley (Eds.), Biometrika tables for
statisticians, Vol 1 (3rd ed.). New York: Cambridge, 1966.

• TABLE III. Upper Percentage Point of Student’s Distribution, t1−α (v)

t1−α (v) represent the upper 1− α critical value for the t distribution with degree of
freedom. If t ∼ t (v) and α = 0.05 with v = 10, the P

[
t > t1−α (v)

] = .05 is
t0.95 (10) = 1.812.

Source: Table 12, E. S. Pearson and H. O. Hartley (Eds.) Biometrika tables for
statisticians, Vol 1 (3rd ed.). New York: Cambridge, 1966.
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• TABLE IV. Upper Percentage Points of the F Distribution, F1−α (vh, ve)

F1−α (vh, ve) is the upper 1−α critical value of the F distribution with vh represent-
ing the numerator and ve the determinator degrees of freedom. If F ∼ F1−α (vh, ve)

the critical value for α = 0.05, vh = 4, and ve = 9 such that the P
[
F > F1−α (vh, ve)

] =
.05 is F0..95 (4, 9) = 3.63. To find theP [F < Fα (vh, ve)], the formula Fα (vh, ve) =
1/F1−α (ve, vh) is employed. Since F1−α (9, 4) = 6.00, the critical constant is
Fα (vh, ve) = 1/6 = .167.

Source: Table 18, E. S. Pearson, and H. O. Hartley (Eds.), Biometrika tables for
statisticians, Vol 1 (3rd ed.). New York: Cambridge, 1966.

• TABLE V. Upper Percentage Point for Simultaneous Inference Procedures.

Upper α = 0.05 percentage points for the Scheffé (SCH), Bonferroni-Dunn (BON),
Dunn-Šidák (SID) independent t and Šidák multivariate t (STM), Studentized Maxi-
mum Modulus distribution, multiple comparison procedures for C comparisons. The
critical values cα in Table V are used to evaluate ψ̂±cασ̂ ψ̂ for linear parametric func-
tions ψ of the fixed effect linear models where the general structure of for parametric
function ψ = c′β for E (Y) = Xβ. The entries in the table labeled (BON), (SID),
and (STM) may also be used to contruct approximate 100(1 − α)% simultaneous
intervals for C comparisons of the form ψ i = c′Bm for i = 1, 2, ...,C comparisons
using the MR model, E(Y) = XB.

Source: C. Fuchs and A.R. Sampson, Simultaneous confidence intervals for the gen-
eral linear model, Biometrics, 1987, 43, 457-469.

• TABLE VI. Small Sample Empirical Critical Values for Multivariate Skewness.

The estimated 1−α empirical critical values represented as η1−α for α = 0.10, 0.05,
and 0.01 for and sample sizes n for Mardia’s tests of multivariate Skewness.*

• TABLE VII. Small Sample Empirical Critical Values for Multivarite Kurtosis: Lower
Values.

The estimated 1−α lower empirical critical values represented as η1−α for α = 0.10,
0.05, and 0.01 and sample sizes n for Mardia’s test of multivariate Kurtosis.*

• TABLE VIII. Small Sample Empirical critical Values for Multivariate Kurtosis: Up-
per Values.

The estimated 1 − α upper empirical critical values represented as η1−α for α =
0.10, 0.05, and 0.01 and sample sizes n for Mardia’s test of multivariate Kurtosis.*

*Source: J. L. Romeu and A. Ozturk, A comparative study of goodness-of-fit tests
for multivariate normality, Journal of Multivariate Analysis, 1993, 46, 309-334.
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Table I. Upper Percentage Points of
the Standard Normal Distribution Z1−α

1− α Z1−α 1− α Z1−α 1− α Z1−α
.50 0.00 .75 0.67 .950 1.645
.51 0.03 .76 0.71 .955 1.695
.52 0.05 .77 0.74 .960 1.751
.53 0.08 .78 0.77 .965 1.812
.54 0.10 .79 0.81 .970 1.881

.55 0.13 .80 0.84 .975 1.960

.56 0.15 .81 0.88 .980 2.054

.57 0.18 .82 0.92 .985 2.170

.58 0.20 .83 0.95 .990 2.326

.59 0.23 .84 0.99 .995 2.576

.60 0.25 .85 1.04 .996 2.652

.61 0.28 .86 1.08 .997 2.748

.62 0.30 .87 1.13 .998 2.878

.63 0.33 .88 1.17 .999 3.090

.64 0.36 .89 1.23

.65 0.39 .90 1.28 .9995 3.291

.66 0.41 .91 1.34 .9999 3.719

.67 0.44 .92 1.41

.68 0.47 .93 1.48 .99995 3.891

.69 0.50 .94 1.55 .99999 4.265

.70 0.52

.71 0.55

.72 0.58

.73 0.61

.74 0.64
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Table II. Upper Percentage Points of the χ2 Distribution, χ2
1−α (v)

v�1−α 0.750 0.900 0.950 0.975 0.990 0.995 0.999

1 1.32330 2.70554 3.84146 5.02389 6.63490 7.87944 10.828
2 2.77259 4.60517 5.99146 7.37776 9.21034 10.5966 13.816
3 4.10834 6.25139 7.81473 9.34840 11.3449 12.8382 16.266
4 5.38527 7.77944 9.48773 11.1433 13.2767 14.8603 18.467
5 6.62568 9.23636 11.0705 12.8325 15.0863 16.7496 20.515
6 7.84080 10.6446 12.5916 14.4494 16.8119 18.5476 22.458
7 9.03715 12.0170 14.0671 16.0128 18.4753 20.2777 24.322
8 10.2189 13.3616 15.5073 17.5345 20.0902 21.9550 26.125
9 11.3888 14.6837 16.9190 19.0228 21.6660 23.5894 27.877

10 12.5489 15.9872 18.3070 20.4832 23.2093 25.1882 29.588

11 13.7007 17.2750 19.6751 21.9200 24.7250 26.7568 31.264
12 14.8454 18.5493 21.0261 23.3367 26.2170 28.2995 32.909
13 15.9839 19.8119 22.3620 24.7356 27.6882 29.8195 34.528
14 17.1169 21.0641 23.6848 26.1189 29.1412 31.3194 36.123
15 18.2451 22.3071 24.9958 27.4884 30.5779 32.8013 37.697
16 19.3689 23.5418 26.2962 28.8454 31.9999 34.2672 39.252
17 20.4887 24.7690 24.5871 30.1910 33.4087 35.7585 40.790
18 21.6049 25.9894 28.8693 31.5264 34.8053 37.1565 42.312
19 22.7178 27.2036 30.1435 32.8523 36.1909 38.5823 43.820
20 23.8277 28.4120 31.4104 34.1696 37.5662 39.9968 45.315

21 24.9348 29.6151 32.6706 35.4789 38.9322 41.4011 46.797
22 26.0393 30.8133 33.9244 36.7807 40.2894 42.7957 48.268
23 27.1413 32.0069 35.1725 38.0756 41.6384 44.1813 49.728
24 28.2412 33.1962 36.4150 39.3641 42.9798 45.5585 51.179
25 29.3389 34.3816 37.6525 40.6465 44.3141 46.9279 52.618
26 30.4346 35.5632 38.8851 41.9232 45.6417 48.2899 54.052
27 31.5284 36.7412 40.1133 43.1945 46.9629 49.6449 55.476
28 32.6205 37.9159 41.3371 44.4608 48.2782 50.9934 56.892
29 33.7109 39.0875 42.5570 45.7223 49.5879 52.3356 58.301
30 34.7997 40.2560 43.7730 46.9792 50.8922 53.6720 59.703

40 45.6160 51.8051 55.7585 59.3417 63.6907 66.7660 73.402
50 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 86.661
60 66.9815 74.3970 79.0819 83.2977 88.3794 91.9517 99.607
70 77.5767 85.6270 90.5312 95.0232 100.425 104.215 112.317
80 88.1303 96.5782 101.879 106.629 112.329 116.321 124.839
90 98.6499 107.565 113.145 118.136 124.116 128.299 137.208
100 109.141 118.498 124.342 129.561 135.807 140.169 149.449
X +0.6745 +1.2816 +1.6449 +1.9600 +2.3263 +2.5758 +3.0902

For v > 100, the expression χ2
1−α = v

[
1− (2/9v)+ X

√
2/9v

]3 or χ2
1−α =

(1/2)
[
X +√2v − 1

]2
may be used with X defined in the last line of the table

as a N(0,1) variable depending on the degree of accuracy desire
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Table III. Upper Percentage Points of Student t-distribution, t1−α (v)

v�1−α 0.750 0.900 0.950 0.975 0.990 0.995 0.999
1 1.000 3.078 6.314 12.706 31.821 63.657 318.31
2 0.816 1.886 2.920 4.303 6.965 9.925 22.327
3 0.765 1.638 2.353 3.182 4.541 5.841 10.214
4 0.741 1.533 2.132 2.776 3.747 4.604 7.173
5 0.727 1.476 2.015 2.571 3.365 4.032 5.893
6 0.718 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.372 1.812 2.228 2.764 3.169 4.144
11 0.697 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.345 1.761 2.145 2.624 2.977 3.787
15 0.691 1.341 1.753 2.131 2.602 2.947 3.733
16 0.690 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.330 1.734 2.101 2.552 2.878 3.610
19 0.688 1.328 1.729 2.093 2.539 2.861 3.579
20 0.687 1.325 1.725 2.086 2.528 2.845 3.552
21 0.686 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.316 1.711 2.064 2.492 2.797 3.467
25 0.684 1.316 1.708 2.060 2.485 2.787 3.450
26 0.684 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.311 1.699 2.045 2.462 2.756 3.396
30 0.683 1.310 1.697 2.042 2.457 2.750 3.385
40 0.681 1.303 1.684 2.021 2.423 2.704 3.307
60 0.679 1.296 1.671 2.000 2.390 2.660 3.232

120 0.677 1.289 1.658 1.980 2.358 2.167 3.160
∞ 0.674 1.282 1.645 1.960 2.326 2.576 3.090
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Table IV. Upper Percentage Points of the F-distribution, F1−α (vh, ve)

d f d f for (vh)

(ve) 1− α 1 2 3 4 5 6 7 8 9 10 11 12

1 .90 39.9 49.5 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.5 60.7
.95 161 200 216 225 230 234 237 239 241 242 243 244

2 .90 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41
.95 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4
.99 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4

3 .90 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22
.95 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8,76 8.74
.99 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1

4 .90 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.91 3.90
.95 7.71 6.94 6.59 6.39 626 616 6.09 6.04 6.00 5.96 5.94 5.91
.99 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.8 14.5 14.4 14.4

5 .90 4.06 3.78 3.62 3,52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27
.95 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.71 4.68
.99 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.96 9.89

6 .90 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90
.95 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00
.99 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7/87 7.79 7.72

7 .90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.68 2.67
.95 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57
.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47

8 .90 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50
.95 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28
.99 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 581 5.73 5.67

9 .90 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38
.95 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07
.99 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11
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Table IV. (continued)

d f for (vh) d f

15 20 24 30 40 50 60 100 120 200 500 ∞ 1− α (ve)

61.2 61.7 62.0 62.3 62.5 62.7 62.8 63.0 63.1 63.2 6.33 63.3 .90 1
246 248 249 250 251 252 252 253 253 254 254 254 .95

9.42 9.44 9.45 9.46 9.47 9.47 9.47 9.48 9.48 9.49 9.49 9.49 .90 2
19.4 19.4 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5 .95
99.4 99.4 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 .99

5.20 5.18 5.18 5.17 5.16 5.15 5.15 5.14 5.14 5.14 5.14 5.13 .90 3
8.70 8.66 8.64 8.62 8.59 8.58 8.57 8.55 8.55 8.54 8.53 8.53 .95
26.9 26.7 26.6 26.5 26.4 26.4 26.3 26.2 26.2 26.2 26.1 26.1 .99

3.87 3.84 3.83 3.82 3.80 3.80 3.79 3.78 3.78 3.77 3.76 3.76 .90 4
5.86 5.80 5.77 5.75 5.72 5.70 5.69 5.66 5.66 5.65 5.64 5.63 .95
14.2 14.0 13.9 13.8 13.7 13.7 13.7 13.6 13.6 13.5 13.5 13.5 .99

3.24 3.21 3.19 3.17 3.16 3.15 3.14 3.13 3.12 3.12 3.11 3.10 .90 5
4.62 4.56 4.53 4.50 4.46 4.44 4.43 4.41 4.40 4.39 4.37 4.36 .95
9.72 9.55 9.47 9.38 9.29 9.24 9.20 9.13 9.11 9.08 9.04 9.02 .99

2.87 2.84 2.82 2.80 2.78 2.77 2.76 2.75 2.74 2.73 2.73 2.72 .90 6
3.94 3.87 3.84 3.81 3.77 3.75 3.74 3.71 3.70 3.69 3.68 3.67 .95
7.56 7.40 7.31 7.23 7.14 7.09 7.06 6.99 6.97 6.93 6.90 6.88 .99

2.63 2.59 2.58 2.56 2.54 2.52 2.51 2.50 2.49 2.48 2.48 2.47 .90 7
3.51 3.44 3.41 3.83 3.34 3.32 3.30 3.27 3.27 3.25 3.24 3.23 .95
6.31 6.16 6.07 5.99 5.91 5.86 5.82 5.75 5.74 5.70 5.67 5.65 .99

2.46 2.42 2.40 2.38 2.36 2.35 2.34 2.32 2.32 2.31 2.30 2.99 .90 8
3.22 3.15 3.12 3.08 3.04 3.02 3.01 2.97 2.97 2.95 2.94 2.93 .95
5.52 5.36 5.28 5.20 5.12 5.07 5.03 4.96 4.95 4.91 4.88 4.86 .99

2.34 2.30 2.28 2.25 2.23 2.22 2.21 2.19 2.18 2.17 2.17 2.16 .90 9
3.01 2.94 2.90 2.86 2.83 2.80 2.79 2.76 2.75 2.73 2.72 2.71 .95
4.96 4.81 4.73 4.65 4.57 4.52 4.48 4.42 4.40 4.36 4.33 4.31 .99

(continued)
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Table IV. (continued)

d f d f for (vh)

(ve) 1− α 1 2 3 4 5 6 7 8 9 10 11 12

10 .90 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28
.95 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91
.99 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.49 4.85 4.77 4.71

11 .90 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21
.95 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79
.99 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40

.75 1.46 1.56 1.56 1.55 1.54 1.53 1.52 1.51 1.51 1.50 1.50 1.49
12 .90 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15

.95 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.27 2.69

.99 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16

13 .90 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10
.95 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60
.99 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96

14 .90 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.08 2.05
.95 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53
.99 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80

15 .90 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02
.95 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48
.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67

16 .90 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99
.95 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42
.99 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55

17 .90 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96
95 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38
.99 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46

18 .90 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.96 1.93
.95 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34
.99 8.29 6.01 5.09 4.55 4.25 4.01 3.84 3.71 3.60 351 3.43 3.37

19 .90 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 .94 1.91
.95 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 234 2.31
.99 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30

20 .90 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.92 1.89
.95 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28
.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23
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Table IV. (continued)

d f for (vh) d f

15 20 24 30 40 50 60 100 120 200 500 ∞ 1− α (ve)

2.24 2.20 2.18 2.16 2.13 2.12 2.11 2.09 2.08 2.07 2.06 2.06 .90 10
2.85 2.77 2.74 2.70 2.66 2.64 2.62 2.59 2.58 2.56 2.55 2.54 .95
4.56 4.41 4.33 4.25 4.17 4.12 4.08 4.01 4.00 3.96 3.93 3.91 .99

2.17 2.12 2.10 2.08 2.05 2.04 2.03 2.00 2.00 1.99 1.98 1.97 .90 11
2.72 2.65 2.61 2.57 2.53 2.51 2.49 2.46 2.45 2.43 2.42 2.40 .95
4.25 4.10 4.02 3.94 3.86 3.81 3.78 3.71 3.69 3.66 3.62 3.60 .99

2.10 2.06 2.04 2.01 1.99 1.97 1.96 1.94 1.93 1.92 1.91 1.90 .90 12
2.62 2.54 2.51 2.47 2.43 2.40 2.38 2.35 2.34 2.32 2.31 2.30 .95
4.01 3.86 3.78 3.70 3.62 3.57 3.54 3.47 3.45 3.41 3.38 3.36 .99

2.05 2.01 1.98 1.96 1.93 1.92 1.90 1.88 1.88 1.86 1.85 1.85 .90 13
2.53 2.46 2.42 2.38 234 2.31 2.30 2.26 2.25 2.23 2.22 2.21 .95
3.82 3.66 3.59 3.51 3.43 3.38 3.34 3.27 325 322 319 317 .99

2.01 1.96 1.94 1.91 1.89 1.87 1.86 1.83 1.83 1.82 1.80 1.80 .90 14
2.46 2.39 2.35 2.31 2.27 2.24 2.22 2.19 2.18 216 2.14 2.13 .95
3.66 3.51 3.43 3.35 3.27 3.22 3.18 3.11 3.09 3.06 3.03 3.00 .99

1.97 1.92 1.90 1.87 1.85 1.83 1.82 1.79 1.79 1.77 1.76 1.76 .90 15
2.40 2.33 2.29 2.25 2.20 2.18 2.16 2.12 2.11 2.10 2.08 2.07 .95
3.52 3.37 3.29 3.21 3.13 3.08 3.05 2.98 2.96 2.92 2.89 2.87 .99

1.94 1.89 1.87 1.84 1.81 1.79 1.78 1.76 175 1.74 1.73 1.72 .90 16
2.35 2.28 2.24 2.19 2.15 2.12 2.11 2.07 2.06 2.04 2.02 2.01 .95
3.41 3.26 3.18 3.10 3.02 2.97 2.93 2.86 2.84 2.81 2.78 2.75 .99

1.91 1.86 1.84 1.81 1.78 1.76 1.75 173 1.72 1.69 1.69 1.69 .90 17
2.31 2.23 2.19 2.15 2.10 2.08 2.06 2.02 2.01 1.99 1.97 1.96 .95
3.31 3.16 3.08 3.00 2.92 2.87 2.83 2.76 2.75 2.71 2.68 2.65 .99

1.89 1.84 1.81 1.78 1.75 1.74 1.72 1.70 1.69 1.68 1.67 1.66 .90 18
2.77 2.19 2.15 2.11 2.06 2.04 2.02 1.98 1.97 1.95 1.93 1.92 .95
3.23 3.08 3.00 2.92 2.84 2.78 2.75 2.68 2.66 2.62 2.59 2.57 .99

1.86 1.81 1.79 1.76 1.73 1.71 1.70 1.67 167 1.65 1.64 1.63 .90 19
2.23 2.16 2.11 2.07 2.03 2.00 1.98 1.94 1.93 1.91 1.89 1.88 .95
3.15 3.00 2.92 2.84 2.76 2.71 2.67 2.60 2.58 2.55 2.51 2.49 .99

1.84 1.79 1.77 1.74 1.71 1.69 1.68 1.65 1.64 1.63 1.62 1.61 .90 20
2.20 2.12 2.08 2.04 1.99 1.97 1.95 1.91 1.90 1.88 1.86 1.84 .95
3.09 2.94 2.86 2.78 2.69 2.64 2.61 2.54 2.52 2.48 2.44 2.42 .99

(continued)
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Table IV. (continued)

d f d f for (vh)

(ve) 1− α 1 2 3 4 5 6 7 8 9 10 11 12

22 .90 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86
.95 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 22.3
.99 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12

24 .90 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83
.95 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.21 2.18
.99 7.82 561 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03

26 .90 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.84 1.81
.95 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15
.99 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96

28 .90 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 184 1.81 1.79
.95 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12
.99 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90

30 .90 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77
.95 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09
.99 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84

40 .90 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.73 1.71
.95 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00
.99 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66

60 .90 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66
.95 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92
.99 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50

120 .90 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.62 1.60
.95 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.87 1.83
.99 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34

200 .90 2.73 2.33 2.11 1.97 1.88 1.80 1.75 1.70 1.66 1.63 1.60 1.57
.95 3.89 3.04 2.65 2.42 2.26 2.14 2.06 1.98 1.93 1.88 1.84 1.80
.99 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27

∞ .90 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55
.95 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75
.99 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18
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Table IV. (continued)

d f for (vh) d f

15 20 24 30 40 50 60 100 120 200 500 1− α (ve)

1.81 1.76 1.73 1.70 1.67 1.65 1.64 0.61 1.60 1.59 1.58 1.57 .90 22
2.15 2.07 2.03 1.98 1.94 1.91 1.89 1.85 1.84 1.82 1.80 1.78 .95
2.98 2.83 2.75 2.67 2.58 2.53 2.50 2.42 2.40 2.36 2.33 2.31 .99

1.78 1.73 1.70 1.67 1.64 1.62 1.61 1.58 1.57 1.56 1.54 1.53 .90 24
2.11 2.03 1.98 1.94 1.89 1.86 1.84 1.80 1.79 1.77 1.75 1.73 .95
2.89 2.74 2.66 2.58 2.49 2.44 2.40 2.33 2.31 2.27 2.24 2.21 .99

1.76 1.71 1.68 1.65 1.61 1.59 1.58 1.55 1.54 1.53 1.51 1.50 .90 26
2.09 1.99 1.95 1.90 1.85 1.82 1.80 1.76 1.75 1.73 1.71 1.69 .95
2.81 2.66 2.58 2.50 2.42 2.36 2.33 2.25 2.23 2.19 2.16 2.13 .99

1.74 1.69 1.66 1.63 1.59 1.57 1.56 1.53 1.52 1.50 1.49 1.48 .90 28
2.04 1.69 1.91 1.87 1.82 1.79 1.77 1.73 1.71 1.69 1.67 1.65 .95
2.75 2.60 2.52 2.44 2.35 2.30 2.26 2.19 2.17 2.13 2.09 2.06 .99

1.72 1.67 1.64 1.61 1.57 1.55 1.54 1.51 1.50 1.48 1.47 1.46 .90 30
2.01 1.93 1.89 1.84 1.79 1.76 1.74 1.70 1.68 1.66 1.64 1.62 .95
2.70 2.35 2.47 2.39 2.30 2.55 2.21 2.13 2.11 2.07 2.03 2.01 .99

1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.43 1.42 1.41 1.39 1.38 .90 40
1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 .95
2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.87 1.83 1.80 .99

1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.36 1.35 1.33 1.31 1.29 .90 60
1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.48 1.47 1.44 1.41 1.39 .95
2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 .99

1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.27 1.26 1.24 1.21 1.19 .90 120
1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.37 1.35 1.32 1.28 1.25 .95
2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.56 1.53 1.48 1.42 1.38 .99

1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 1.14 .90 200
1.72 1.62 1.57 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 .95
2.13 1.97 1.89 1.79 1.69 1.63 1.58 1.48 1.44 1.39 1.33 1.28 .99

1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.17 1.13 1.08 1.00 .90 ∞
1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 .95
2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 .99
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Table V. Upper 1− α percentage Points for Scheffé, Bonferroni-Dunn,
Šidák (independent-t), and STMaxmod (Šidák Multivariate-t)

simultantous confidence intervals for (α = .05)
Number of Contrasts (C)

ve 2 3 4 5 6 8 10 12 15 20
3 SCH 4.371 5.275 6.039 6.713 7.324 8.412 9.373 10.244 11.426 13.161

BON 4.177 4.857 5.392 5.841 6.232 6.895 7.453 7.940 8.575 9.465
SID 4.156 4.826 5.355 5.799 6.185 6.842 7.394 7.876 8.505 9.387
STM 3.960 4.430 4.764 5.023 5.233 5.562 5.812 6.015 6.259 6.567

4 SCH 3.727 4.447 5.055 5.593 6.081 6.952 7.723 8.423 9.374 10.773
BON 3.495 3.961 4.315 4.604 4.851 5.261 5.598 5.885 6.254 6.758
SID 3.481 3.941 4.290 4.577 4.822 5.228 5.562 5.848 6.214 6.714
STM 3.382 3.745 4.003 4.203 4.366 4.621 4.817 4.975 5.166 5.409

5 SCH 3.402 4.028 4.557 5.025 5.450 6.209 6.881 7.492 8.324 9.548
BON 3.163 3.534 3.810 4.032 4.219 4.526 4.773 4.983 5.247 5.604
SID 3.152 3.518 3.791 4.012 4.197 4.501 4.747 4.955 5.219 5.573
STM 3.091 3.399 3.619 3.789 3.928 4.145 4.312 4.447 4.611 4.819

6 SCH 3.207 3.778 4.248 4.684 5.070 4.760 6.372 6.928 7.686 8.803
BON 2.969 3.287 3.521 3.707 3.863 4.115 4.317 4.486 4.698 4.981
SID 2.959 3.274 3.505 3.690 3.845 4.095 4.296 4.464 4.675 4.956
STM 2.916 3.193 3.389 3.541 3.664 3.858 4.008 4.129 4.275 4.462

7 SCH 3.078 3.611 4.060 4.456 4.816 5.459 6.030 6.549 7.257 8.300
BON 2.841 3.128 3.335 3.499 3.636 3.855 4.029 4.174 4.355 4.595
SID 2.832 3.115 3.321 3.484 3.620 3.838 4.011 4.156 4.336 4.574
STM 2.800 3.056 3.236 3.376 3.489 3.668 3.805 3.916 4.051 4.223

8 SCH 2.986 3.493 3.918 4.294 4.635 5.245 5.785 6.278 6.948 7.938
BON 2.752 3.016 3.206 3.355 3.479 3.677 3.833 3.962 4.122 4.334
SID 2.743 3.005 3.193 3.342 3.464 3.661 3.816 3.945 4.105 4.316
STM 2.718 2.958 3.128 3.258 3.365 3.532 3.600 3.764 3.891 4.052

9 SCH 2.918 3.404 3.812 4.172 4.499 5.083 5.601 6.073 6.715 7.763
BON 2.685 2.933 3.111 3.250 3.364 3.547 3.690 3.808 3.954 4.146
SID 2.677 2.923 3.099 3.237 3.351 3.532 3.675 3.793 3.939 4.130
STM 2.657 2.885 3.046 3.171 3.272 3.430 3.552 3.651 3.770 3.923

10 SCH 2.865 3.335 3.730 4.078 4.394 4.957 5.457 5.912 6.533 7.448
BON 2.634 2.870 3.038 3.169 3.277 3.448 3.581 3.691 3.827 4.005
SID 2.626 2.860 3.027 3.157 3.264 3.434 3.568 3.677 3.813 3.989
STM 2.609 2.829 2.984 3.103 3.199 3.351 3.468 3.562 3.677 3.823

11 SCH 2.822 3.281 3.664 4.002 4.309 4.856 5.342 5.784 6.386 7.275
BON 2.593 2.820 2.981 3.106 3.208 3.370 3.497 3.600 3.728 3.895
SID 2.586 2.811 2.970 3.094 3.196 3.358 3.484 3.587 3.715 3.880
STM 2.571 2.784 2.933 3.048 3.142 3.288 3.400 3.491 3.602 3.743

12 SCH 2.788 3.236 3.611 3.941 4.240 4.774 5.247 5.678 6.265 7.132
BON 2.560 2.779 2.934 3.055 3.153 3.308 3.428 3.527 3.649 3.807
SID 2.553 2.770 2.924 3.044 3.141 3.296 3.416 3.515 3.636 3.793
STM 2.540 2.747 2.892 3.004 3.095 3.236 3.345 3.433 3.541 3.677
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Table V (continued)

ve 2 3 4 5 6 8 10 12 15 20
15 SCH 2.714 3.140 3.496 3.809 4.092 4.596 5.044 5.450 6.004 6.823

BON 2.490 2.694 2.837 2.947 3.036 3.177 3.286 3.375 3.484 3.624
SID 2.483 2.685 2.827 2.937 3.026 3.1666 3.275 3.364 3.472 3.612
STM 2.474 2.669 2.805 2.910 2.994 3.126 3.227 3.309 3.409 3.536

20 SCH 2.643 3.049 3.386 3.682 3.949 4.425 4.845 5.228 5.749 6.518
BON 2.423 2.613 2.744 2.845 2.927 3.055 3.153 3.233 3.331 3.455
SID 2.417 2.605 2.736 2.836 2.918 3.045 3.143 3.223 3.320 3.445
STM 2.411 2.594 2.722 2.819 2.898 3.020 3.114 3.179 3.282 3.399

25 SCH 2.602 2.996 3.322 3.608 3.866 4.324 4.729 5.097 5.598 6.336
BON 2.385 2.566 2.692 2.787 2.865 2.986 3.078 3.153 3.244 3.361
SID 2.379 2.558 2.683 2.779 2.856 2.976 3.069 3.144 3.235 3.351
STM 2.374 2.551 2.673 2.766 2.842 2.959 3.048 3.121 3.208 3.320

30 SCH 2.575 2.961 3.280 3.559 3.811 4.258 4.653 5.010 4.497 6.216
BON 2.360 2.536 2.657 2.750 2.825 2.941 3.030 3.102 3.189 3.300
SID 2.354 2.528 2.649 2.742 2.816 2.932 3.021 3.092 3.180 3.291
STM 2.350 2.522 2.641 2.732 2.805 2.918 3.005 3.075 3.160 3.267

40 SCH 2.542 2.918 3.229 3.500 3.744 4.176 4.558 4.903 5.373 6.064
BON 2.329 2.499 2.616 2.704 2.776 2.887 2.971 3.039 3.122 3.227
SID 2.323 2.492 2.608 2.696 2.768 2.878 2.963 3.031 3.113 3.218
STM 2.321 2.488 2.603 2.690 2.760 2.869 2.952 3.019 3.100 2.203

60 SCH 2.510 2.876 3.178 3.441 3.678 4.096 4.464 4.797 5.248 5.913
BON 2.299 2.463 2.575 2.660 2.729 2.834 2.915 2.979 3.057 3.156
SID 2.294 2.456 2.568 2.653 2.721 2.826 2.906 2.971 3.049 3.148
STM 2.292 2.454 2.564 2.649 2.716 2.821 2.900 2.964 3.041 3.139

∞ -ALL- 2.236 2.388 2.491 2.569 2.631 2.727 2.800 2.858 2.928 3.016
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Table VI. Small Sample Empirical Critical Values for Mardia’s Skewness Test

Size ρ = 2 ρ = 2 ρ = 2 ρ = 3 ρ = 3 ρ = 3 ρ = 4 ρ = 4 ρ = 4
n η90 η95 η99 η90 η95 η99 η90 η95 η99
25 5.84 7.37 11.18 12.21 14.26 18.42 21.45 24.63 30.34
50 6.78 8.81 12.24 14.25 16.72 22.53 25.40 28.50 35.81
75 7.04 78.81 12.97 14.86 17.28 23.13 26.28 29.55 36.12
100 7.28 9.17 13.13 17.77 23.31 26.84 30.14 37.50 43.53
125 7.42 9.25 13.25 15.30 17.65 23.85 27.30 30.36 37.48
150 7.47 9.34 13.47 15.47 17.95 23.23 28.66 30.82 37.66
175 7.52 9.31 13.31 15.47 17.96 23.00 27.56 30.67 37.35
200 7.60 9.38 13.43 15.47 17.92 23.28 27.62 30.63 37.68
∞ 7.78 9.49 13.28 15.99 18.31 23.21 28.41 31.41 37.57

Size ρ = 5 ρ = 5 ρ = 5 ρ = 6 ρ = 6 ρ = 6 ρ = 8 ρ = 8 ρ = 8
n η90 η95 η99 η90 η95 η98 η90 η95 η99
25 34.39 38.77 45.63 53.86 57.89 66.15 108.00 113.36 124.22
50 40.98 44.99 54.15 62.09 66.80 76.49 125.02 131.78 146.09
75 43.27 47.52 56.60 65.27 70.01 80.63 130.25 138.00 153.40
100 47.76 57.07 66.35 71.45 82.29 66.35 71.45 139.65 153.73
125 44.42 48.35 56.93 67.60 71.95 82.10 135.10 141.00 155.48
150 44.72 48.86 57.44 67.10 72.58 82.10 135.74 142.34 155.95
175 44.69 48.73 57.09 68.09 72.73 82.08 136.66 143.55 157.78
200 45.08 48.99 57.38 68.20 73.19 83.60 137.09 143.85 156.29
∞ 46.06 49.80 57.34 69.92 74.47 83.51 139.56 145.98 157.66

Size ρ = 10 ρ = 10 ρ = 10
n η90 η95 η99
25 189.94 196.32 209.94
50 219.37 227.97 246.15
75 230.35 238.8 258.68
100 234.00 243.03 261.33
125 237.46 247.69 266.75
150 239.75 248.41 265.31
175 241.47 250.24 267.14
200 241.30 250.20 267.10
∞ 246.60 255.19 270.48
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Table VII. Small Sample Empirical Critical Values for
Mardia’s Kurtosis Test Lower Values

Size ρ = 2 ρ = 2 ρ = 2 ρ = 3 ρ = 3 ρ = 3 ρ = 4 ρ = 4 ρ = 4
n η90 η95 η99 η90 η95 η99 η90 η95 η99
25 −1.22 −1.33 −1.52 −1.38 −1.49 −1.67 −1.48 −1.61 −1.80
50 −1.35 −1.31 −1.75 −1.49 −1.63 −1.91 −1.58 −1.74 −2.03
75 −1.44 −1.59 −1.91 −1.55 −1.75 −2.05 −1.64 −1.84 −2.17
100 −1.44 −1.62 −1.95 −1.54 −1.75 −2.11 −1.65 −1.86 −2.23
125 −1.50 −1.67 −2.03 −1.57 −1.78 −2.15 −1.65 −1.85 −2.23
150 −1.50 −1.71 −2.12 1.56 −1.75 −2.18 −1.64 −1.86 −2.26
175 −1.49 −1.71 −2.11 −1.59 −1.79 −2.27 −1.69 −1.90 −2.32
200 −1.52 −1.76 −2.14 −1.61 −1.83 −2.21 −1.67 −1.88 −2.33
∞ −1.65 −1.95 −2.58 −1.65 −1.95 −2.58 −1.65 −1.95 −2.58

Size ρ = 5 ρ = 5 ρ = 5 ρ = 6 ρ = 6 ρ = 6 ρ = 8 ρ = 8 ρ = 8
n η90 η95 η99 η90 η95 η99 η90 η95 η99
25 −1.61 −1.80 −2.10 −1.69 −1.79 −2.00 −1.87 −1.97 −2.16
50 −1.74 −2.03 −2.09 −1.77 −1.93 −2.20 −1.91 −2.09 −2.38
75 −1.84 −2.17 −2.27 −1.77 −1.97 −2.30 −1.90 −2.11 −2.45
100 −1.86 −2.23 −2.34 −1.78 −1.99 −2.37 −1.90 −2.10 −2.53
125 −1.85 −2.23 −2.35 −1.75 −1.96 −2.34 −1.89 −2.09 −2.53
150 −1.86 −2.26 −2.32 −1.74 −1.97 −2.37 −1.89 −2.13 −2.56
175 −1.90 −2.32 −2.39 −1.77 −2.03 −2.44 −1.86 −2.08 −2.56
200 −1.88 −2.33 −2.38 −1.78 −2.02 −2.43 −1.88 −2.13 −2.59
∞ −1.95 −2.58 −2.68 −1.65 −1.95 −2.58 −1.65 −1.95 −2.58

Size ρ = 10 ρ = 10 ρ = 10
n η90 η95 η99
25 −2.04 −2.14 −2.31
50 −2.04 −2.21 −2.49
75 −2.04 −2.23 −2.59
100 −2.01 −2.23 −2.61
125 −2.00 −2.21 −2.62
150 −1.96 −2.22 −2.69
175 −1.98 −2.19 −2.64
200 −1.98 −2.21 −2.67
∞ −1.65 −1.95 −2.58
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TableVIII. Small Sample Empirical Critical Values for
Mardia’s Kurosis Test Upper Values

Size ρ = 2 ρ = 2 ρ = 2 ρ = 3 ρ = 3 ρ = 3 ρ = 4 ρ = 4 ρ = 4
n η90 η95 η99 η90 η95 η99 η90 η95 η99
25 0.87 1.23 2.05 0.63 0.91 1.61 0.49 0.76 1.38
50 1.21 1.60 2.58 1.06 1.45 2.38 0.94 1.28 2.05
75 1.36 1.79 2.80 1.21 1.62 2.49 1.08 1.46 2.27
100 1.43 1.85 2.91 1.35 1.78 2.63 1.25 1.64 2.48
125 1.46 1.90 2.93 1.35 1.74 2.62 1.27 1.72 2.54
150 1.51 1.94 2.81 1.46 1.85 2.74 1.35 1.70 2.59
175 1.55 2.00 2.78 1.46 1.87 2.63 1.38 1.73 2.57
200 1.54 1.95 2.99 1.48 1.89 2.77 1.41 1.75 2.55
∞ 1.65 1.95 2.58 1.65 1.95 2.58 1.65 1.95 2.58

Size ρ = 5 ρ = 5 ρ = 5 ρ = 6 ρ = 6 ρ = 6 ρ = 8 ρ = 8 ρ = 8
n η90 η95 η99 η90 η95 η99 η90 η95 η99
25 0.26 0.50 1.07 0.09 0.28 0.71 −0.29 −0.08 0.32
50 0.77 1.11 1.85 0.63 0.93 1.57 0.39 0.69 1.27
75 1.03 1.38 2.17 0.89 1.23 1.96 0.73 1.07 1.71
100 1.16 1.57 2.31 1.06 1.41 2.08 0.84 1.16 1.83
125 1.18 1.52 2.27 1.12 1.45 2.18 0.96 1.32 1.98
150 1.28 1.66 2.44 1.18 1.53 2.26 1.02 1.41 2.30
175 1.30 1.71 2.47 1.22 1.60 2.32 1.13 1.44 2.06
200 1.32 1.66 2.44 1.30 1.69 2.38 1.13 1.49 2.12
∞ 1.65 1.95 2.58 1.65 1.95 2.58 1.65 1.95 2.58

Size ρ = 10 ρ = 10 ρ = 10
n η90 η95 η99
25 −0.65 −0.46 −0.09
50 0.14 0.40 0.96
75 0.48 0.76 1.35
100 0.65 0.96 1.53
125 0.82 1.17 1.84
150 0.90 1.25 1.93
175 0.99 1.40 1.99
200 1.01 1.38 2.06
∞ 1.65 1.95 2.58
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Cochran’s theorem

multivariate, 97
univariate, 94
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and canonical correlation, 485
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in canonical correlation analysis, 481
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expansion formula, 51

Column space, 25, 42
Commutation matrix, 38, 41
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Consistent estimator, 77
Consistent system of equations, 56
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Convergence in probability, 77
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Correlated MR model

see MSUR, 116, 339
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Covariance

vec S, 99
Covariance matrix

asymptotic distribution of, 88
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distribution of, 96
for SEM, 561
in exploratory factor analysis, 498
in mixed models, 359
in MMM models, 386
Kronecker structure, 402

test of, 402
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maximum likelihood estimate, 88
nonnegative definite, 80
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operator, 81

partial, 87
partitioned matrix, 81

distribution of, 96, 97
pooled, 100
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random vector, 80
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robust estimate, 123
smoothed, 120
test for circularity, 140

example, 141
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example, 139
test for equality, 133

example, 135
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example, 138
test for sphericity, 139

example, 141
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unbiased estimate, 88
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Winsorized, 123

Cox’s test nonnested models, 345
Crossover design, 289
CROSSVALIDATE option, 429
Cumulative distribution function, 76
Czekanowski coefficient, 518

METHOD=DICE, 541

Danford’s data, 332
Decomposition

Cholesky, 69
LDU, 69
singular value, 69
spectral, 69

Dendogram, 525
Density function, 76, 82

Beta distribution
multivariate, 102
univariate, 101

bivariate normal, 85
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multivariate, 104
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F-distribution, 99
Hotelling’s T2 distribution, 99
matrix F distribution, 104
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multivariate t distribution, 104
Student t-distribution, 99
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Wishart distribution, 96
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covariance matrix, 80

distribution of, 98
definition, 50
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partitioned matrix, 52
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Diagonal matrix, 29
Diagonalization, 42

symmetric matrix, 69
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Dimension of vector space, 13
Direct product, 33
Direct sum of matrices, 35
Direct sum of vector spaces, 17, 18
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Disconnected two-way designs, 267
DISCRIM procedure, 429, 440, 441

POOL option, 431
Discriminant analysis

and classification analysis, 426
Egyptian skull data example, 429
in MANCOVA, 240
in MANOVA, 238
Latin square design, 280
logistic, 439
multiple groups, 434

dimensionality, 435
example, 440
plots, 442

tests of hypotheses
coefficients, 422
discriminant functions, 424

two groups, 151, 420
assumptions, 420
CANONICAL option, 155
correlation weights, 153

DISCRIM procedure, 430
plots, 430
standardized coefficients, 152
�1 �= �2, 426

variable selection, 429
stepwise, 437
test of additional information, 438

Discriminant scores, 151
normalized, 151

Dissimilarity measure
definition, 516

Distance
Euclidean, 14
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Mahalanobis, 21

Distance in the metric of, 22
Distribution of

Beta hat, 112
|S|, 98
Hotelling’s T2 statistic, 99
Mahalanobis distance, 94
partitioned covariance matrix, 97
partitioned matrices, 97
quadratic form, 94
random normal matrix, 90
sample variance, 93
vech S, 90

Dot product
matrix, 34
vector, 13

Double eigenequation, 70
Double multivariate model (DMM), 400

example, 404
Duplication matrix, 39
Dynamic multipliers, 585
Dynamic structural model, 585

Edward’s data, 294
Egyptian skull data, 429
Eigenequation, 68

double, 70
eigenvalue, 67
eigenvector, 68

EIGVAL function, 299
Elementary permutation, 29
Elementary transformations, 43
Elimination matrix, 39
Elliptical distribution, 85, 605
Endogenous variable, 316, 557
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example, 135
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apparent error rate, 427

bias correction, 428
expected actual error rate, 428
hold out, 428
leave-one-out, 428
resubstitution, 427
true error rate, 428

Estimable functions
MANCOVA, 226
nonorthogonal designs, 266
one-way MANCOVA, 229
one-way MANOVA, 220
solution, 60
two-way additive MANOVA, 254
two-way MANOVA, 248
two-way nested design, 275

ESTIMATE statement, 237, 260
Estimation

least squares, 108
Euclidean distance matrix, 517
Euclidean matrix norm, 31
Euclidean norm squared, 21
Euclidean space, 8
Evaluating expected mean squares, 391

Hartley’s method of synthesis, 377
Exogeniety, 604

and Granger noncausality, 606
strong, 606
weak, 211, 317, 605

Exogenous variable, 316, 557
Expected value

random matrix, 80
random vector, 80

Exploratory factor analysis, 496
and regression, 497
communality, 499
Di Vesta and Walls example, 512
eigenvectors, 498
estimation

Howe’s determinant method, 505
ML method, 505
Rao’s canonical factors, 505
unweighted least squares, 502

weighted least squares, 506
estimation of communalities, 503
estimation of factor scores, 509
factor rotation, 507
Guttman’s bound, 511
Heywood case, 501
indeterminacy

canonical correlation characterization,
501

principal component characterization,
501

interpretation, 511
iterative factoring method, 503
loading matrix, 498
measure of sampling adequacy, 507
model assumptions, 497
model definition, 497
number of factors, 500
number of factors to retain, 511
of correlation matrix, 499
of covariance matrix, 497
performance assessment example, 511
principal component method, 502
principal factoring method, 502
rotation

varimax method, 508
scale invariance, 499
Shin’s example, 512
simple structure, 501
structure matrix, 499
test of model fit, 506
transformation problem, 500
unique variance, 499

Extended linear hypotheses, 286
Extended linear model, 335

F-approximation
Bartlett-Lawley-Hotelling trace, 103
Bartlett-Nanda-Pillai trace, 103
in mixed models, 356
Roy’s statistic, 103
Wilks’�, 102

F-distribution, 99
and Beta distribution, 101
and Hotelling’s T2, 99, 101
multivariate, 105
noncentrality parameter, 99
table explanation, 610
table of critical values, 614
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Factor analysis see Confirmatory, 496
Factor analysis see Exploratory, 496
FACTOR procedure, 453, 460, 464
Factor scores, 509

estimation
Bartlett’s method, 509
regression method, 510

output in SAS, 476
Factoring a matrix, 42
FASTCLUS procedure, 536
Feasible generalized

least squares estimate, 109
in SUR, 313
iterative, 313

Finite intersection tests
in MANOVA, 232

FINV function, 182
Fisher’s discriminant function, 151, 421

in multiple linear regression, 422
robustness, 424

Fisher’s Iris data, 443
Fisher’s protected t-tests, 153
Fit functions in SEM, 562
Fit indices

in CFA, 574
Fundamental theorem in scaling, 543

g-inverse, 47
partitioned matrix, 49

Gauss’ matrix inversion technique, 45
Gauss-Markov model, 106

estimate of Beta hat, 109
Wald’s statistic, 109

General linear model, 106
multivariate, 111

noncentrality matrix, 113
General solution linear equations, 56
Generalized alienation coefficient, 81
Generalized coefficient of determination, 485
Generalized Gauss-Markov estimator, 109
Generalized inverse

definition, 47
Generalized least squares, 109
Generalized variance, 80, 98

expected value, 98
variance of, 98

Generating MVN data, 124
data sets A, B, and C, 124

Geometry
ANOVA model, 18
correlation, 25
generalized least squares, 73
least squares, 67
linear model, 67
orthogonal transformation, 62
projection matrix, 64

glimmix macro, 359
GLM procedure, 155, 163, 171, 181, 240, 259,

262, 278, 295, 329, 378, 391
RANDOM statement, 181

GLM vs MIXED, 386
GMANOVA model, 115

as a SUR model, 326
definition, 320
ill-conditioned, 475
ML estimate of B matrix, 321
ML estimate of �, 321
one group example, 328
Rao-Khatri reduction, 323
selection of covariates, 325
test of fit, 324
two group example, 330

Goodman-Kruskal gamma, 538
Gower metric, 517
Gram-Schmidt orthogonalization, 15
Gram-Schmidt orthonormalization

example, 16
Gramian matrix, 69

H and E matrices, 102
multivariate, 113
univariate, 108

Hadamard product, 34
Hansen’s data, 465
Harris’ test of circularity, 142
Hierarchical clustering methods, 523
Homogeneous system of equations, 56
Hotelling’s T2 distribution, 99

and F-distribution, 101
mean and variance of, 101

HOVTEST option, 235

Idempotent matrix, 26
properties, 54

Identification
in CFA, 572
in SEM, 597
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local, 561
necessary condition, 561
path analysis, 582

Identity matrix, 29
Image factor analysis, 500
IML procedure, 298
Independence

distribution-preserving, 114
matrix quadratic forms, 97
mean and covariance, 100
quadratic forms, 94
test of, 136, 143

example, 145
zero covariance, 82

Independent
random variables, 76
random vectors, 82

INDSCAL models, 547
Influence measures

Cook’s distance, 194
covariance ratio, 196
DFBETA, 195
DFFITS, 194
Studentized residuals, 194
Welsch-Kuh statistic, 195

Information criteria
in confirmatory factor analysis, 579
in exploratory factor analysis, 511
multivariate regression, 201
univariate mixed models, 360

Inner product
definition, 13

Inverse matrix, 42
Inverted Beta distribution

multivariate, 102
univarate, 101

Inverted Wishart distribution, 96

J matrix, 30
properties, 39

Jaccard coefficient, 521
METHOD=dJaccard, 541

Jacobs and Hritz data, 234
Joseph Raffaele’s data, 257

Kernel space, 61
complement of, 61
dimension, 61

Kronecker product, 33

Kurtosis, 82, 121

Lp norm
in cluster analysis, 517
matrix, 72
vector, 21

Largest root test
see Roy’s statistic, 104

Latent variable, 557
endogenous, 559
exogenous, 559

Latin square design, 279
Law of cosines, 22
Least squares estimate

Beta, 108
Gauss-Markov, 109

Lee’s data, 332
Left inverse, 47
Levine and Saxe data, 272
Likelihood ratio statistic

multivariate, 102
univariate, 109
Wilks’ �, 102

Linear dependence, 9
Linear equations, 55

consistent, 55
general solution, 56
homogeneous, 56
nonhomogeneous, 56
parametric functions, 59
solution

g-inverse, 59
reparameterization, 56
restrictions, 56

unique solution, 56
Linear independence, 9
Linear model, 67

ANCOVA, 107
ANOVA, 107
Beta vector, 106
F-test, 108
general linear hypothesis, 108
GLS estimate beta, 108
ML estimate beta, 109
multivariate, 110
OLS estimate beta, 108
regression, 108
univariate, 106

mixed, 357
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Linear space, 9
Linear transformation, 61

nonsingular, 61
one-to-one, 61
orthogonal, 62
rotation, 62, 69
singular, 61

LISREL notation, 567
LSMEANS statement, 238, 241
Lubischew’s flea beetle data, 440

M estimate, 119
M-sphericity, 407
Mahalanobis distance, 22, 82

and T2, 101
distribution of, 94
in classification analysis, 427
in cluster analysis, 517
robust estimate, 123
two vectors, 82

Manifest variable, 557
MANOVA statement, 172
MANOVA-GMANOVA model, 115, 338
Marascuilo’s data, 385
Mardia’s test of normality, 121

example, 124
table explanation kurtosis, 610
table explanation skewness, 610
table of critical values skewness, 622
table of lower critical values kurtosis,

623
table of upper critical values kurtosis,

624
Matrix

addition, 26
adjoint, 51
adjugate, 51
affine projection, 73
canonical form, 42
commutation, 38
definition, 25
diagonal, 29
direct sum, 35
duplication, 39
elementary, 43
elementary permutation matrix, 29
elimination, 39
equality, 26
equicorrelation, 83

factorization, 44
square root, 69

Hadamard, 54
Hadamard product, 34
idempotent, 26
identity, 29
inverse, 52

infinite series, 567
J matrix, 30
Kronecker product, 33
lower triangular, 69
minor, 51
multiplication, 26

by scalar, 26
nilpotent, 30
nonsingular, 42
norm, 30
order, 25
orthogonal, 42
orthogonal projection, 64
outer product, 27
partial correlations, 92
partitioned, 32
permutation, 30
positive definite, 69
positive semidefinite, 69
postmultiplication, 29
premultiplication, 29
projection, 49, 55, 64
quadratic forms

distribution of, 97
random, expected value, 80
rank, 41
singular, 42
skew-symmetric, 28
square, 25, 27
square root, 69
sum of squares and cross products, 88
Toeplitz, 54
trace, 30

generalized, 401
transpose, 28
triangular

lower or upper, 29
tripotent, 30
vec-permutation, 37

Matrix norm, 71
Euclidean, 71
max norm, 72
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spectral, 72
von Neumann, 72

Matrix normal distribution, 90
covariance structure, 91
mean structure, 91

Matrix properties
addition, 26
determinant, 52
direct sum, 35
double eigenequation

roots, 71
eigenvalues, 70
generalized inverse, 49
Hadamard product, 34
inverse matrix, 46
Kronecker product, 33
matrix norm, 31
Moore-Penrose inverse, 47
multiplication, 26
rank, 45
trace, 30
transpose, 28
vec operator, 36

Mauchly’s test of
circularity, 140

randomized block ANOVA, 165
sphericity, 140

Maximum eigenvalue, 72
Maximum likelihood estimate

Beta, 108, 109
variance, 108

MDS procedure, 549, 550, 553
Mean vector, 80

equality - two groups, 149
example, 154

estimate, 88
Measures of association

canonical correlation, 485
coefficient of determination, 485
vector correlation coefficient, 485
Wilks’�, 485

MGGC model
see sum-of-profiles, 116

Minimum eigenvalue, 72
Minkowski norm, 21, 517
Minor, 51
Missing data, 326

MAR, 327
MCAR, 327

MIXED procedure, 372, 378, 397
CONTAIN option, 410
DDFM option, 372
Kronecker � = �A

⊗
�B , 408

METHOD option, 372
TYPE option for �, 373

Mixed procedure, 182
RANDOM statement, 181

MIXED vs GLM, 378
MODEL statement, 172
Moore and McCabe cheese data, 458
Moore-Penrose inverse, 47

construction of, 48
More general growth curve model

see sum-of-profile model, 116
MSUR model, 116

as SUR model, 341
definition, 339

MTEST statement, 214, 240
MULTEST procedure, 238
Multidimensional scaling, 516, 541

and cluster analysis, 550
classical method example, 549
classical metric method, 542

evaluation of fit, 544
fundamental theorem, 542

MDS procedure, 550
nonmetric, 544

STRESS criterion, 546
number of dimensions, 549
plots, 550
principal coordinates, 544
rotation of dimensions, 551

Multilevel hierarchical models, 367
MULTINORM macro, 124
Multiple design multivariate

see SUR, 114
Multiple linear regression, 107, 186

adjusted R2, 197
and discriminant analysis, 422
coefficient of determination R2, 197
Cook’s distance, 194
covariance ratio, 196
estimate of Beta, 107
on principal components, 474
power calculations, 208
residual

DFBETA, 195
DFFITS, 194
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externally Studentized, 194
internally Studentized, 194

test of hypotheses, 108
variable selection, 198
weighted LS estimate, 108

Multivariate
Beta plots, 122
chi-square distribution, 104
chi-square plots, 122
F-distribution, 104
Outlier, 126
t-distribution, 104

Multivariate analysis of covariance (MANCOVA)
general linear model, 225
H and E matrices, 226
one-way classification, 230

adjusted means, 229, 241
discriminant analysis, 240
example, 239
GLM procedure, 240
simultaneous confidence intervals, 231
tests of hypotheses, 229

test of additional information, 242
test of parallelism, 228
tests of hypotheses, 227
two-way classification, 256

example, 261
test of parallelism, 261

Multivariate analysis of variance (MANOVA),
111

extended linear hypotheses, 286
general linear hypothesis, 112
Latin square design, 279
one-way classification, 218

discriminant analysis, 238
estimable functions, 220
example, 234
GLM procedure, 223, 235
protected F-tests, 230, 236
simultaneous confidence intervals, 230,

236
tests of hypotheses, 223
unequal �i , 245
unequal �i (example), 246

power calculations, 302
repeated measures, 282

see Repeated measurement designs,
282

robustness of tests, 301

tests of hypotheses
unequal covariance matrices, 308

three-way classification, 274
two-way classification, 246

additive model, 252
example, 257
simultaneous confidence intervals, 252,

260
test of additivity, 333
test of interaction, 249
tests of main effects, 250

two-way nested design, 274
example, 276

two-way nonorthogonal design, 264
connected, 268
disconnected, 267
empty cells, 266

Multivariate association, 81, 485
Multivariate circularity, 146

test of, 147
example, 148

Multivariate general linear model (MGLM),
111

Multivariate hierarchical model, 415
Multivariate linear model, 111

chi-square statistic, 112
general hypothesis, 112
likelihood ratio statistic, 113
MANCOVA, 111
MANOVA, 111
ML estimate of B matrix, 112
ML estimate vec B, 111
power calculations, 301
vector form, 111

Multivariate mixed model (MMM), 116, 385
balanced designs, 394

multivariate split-plot example, 395
two-way classification - example, 395

definition, 386
estimating the mean, 392
expected mean squares, 391
repeated measurements, 392
tests of hypotheses, 388

Multivariate normal distribution, 84
central limit theorem, 88
conditional distribution, 87

covariance matrix, 87
mean, 87

constant density ellipsoid, 85
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covariance matrix
maximum likelihood estimate, 88

estimation of covariance, 88
estimation of mean, 88
generation of, 124
independent, 84
kurtosis, 85
linear functions of, 87
of mean vector, 88
properties, 86
skewness, 85
test for, 121

Multivariate normality, test of, 121
Multivariate outlier

example, 126
Multivariate regression (MR), 111, 187

assessing normality, 197
estimation of B, 187

deviation scores, 188
least squares, 187
maximum likelihood (ML), 187
simultaneous confidence intervals, 205
standardized scores, 188

estimation of deleted covariance matrix,
194

estimation of �, 193
example, 212

MTEST statement, 214
REG procedure, 212
simultaneous confidence intervals, 214

exogeniety, 211
expect mean square error of prediction,

209
fitted values, 193

hat matrix, 193
influence measures

Cook’s distance, 195
covariance ratio, 196
DFBETA, 196
DFFITS, 196
externally Studentized residuals, 194
internally Studentized residuals, 194

on principal components, 474
example, 476

power calculations, 301
prediction, 204

simultaneous confidence intervals, 205
predictive validity, 490
random X matrix, 206, 490

reduction notation, 192
REG procedure, 192
regression coefficients, 187
residual matrix, 193

deleted residual matrix, 193
see Multivariate linear model, 111
test of hypotheses, 189

additional information, 191
lack of fit, 203
MTEST statement, 192
multivariate test criteria, 190
overall regression, 189
partial F-test, 202
row of parameter matrix B, 190

variable selection, 198, 212
using Eq , 199
information criteria (AIC, BIC, etc.),

200
using MPRESSq , 199
using R2

q , 198
stepwise, 201

Multivariate trimming (MVT), 123

Napoir’s data, 538
Nation’s data, 553
Nested designs, 273
Nonhierarchical clustering methods, 530
Nonnegative definite matrix, 69
Nonnested models, 344

example, 347
Nonorthogonal two-way designs, 264

additive model, 268
with empty cells, 269

connected, 268
disconnected, 267
example, 270
interaction model, 265

with empty cells, 266
TYPE I, II, and IV hypotheses, 272

Nonrecursive model, 559, 580
block nonrecursive, 580

Nonsingular matrix, 42, 52
Norm

matrix, 30
vector, 14

Normal distribution
table explanation, 609
table of critical values, 611

Normal equations, 56
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Normalized vector, 14
Null matrix, 29
Null space, 17
Null space, see Kernel, 61
Null vector, 8

Obenchain’s data, 371
Oblique transformations, 509
Ochiai coefficient, 522
ODS option, 347
Oh notation, 77
oh notation, 76
Ordinary least squares estimate, 108
ORPOL function, 328
Orthogonal basis, 14
Orthogonal complement, 17

dimension of, 17
subspace, 18

Orthogonal decomposition, 20
Orthogonal matrix, 42
Orthogonal polynomials, 328
Orthogonal projection, 15, 64
Orthogonal transformation, 62

properties, 62
Orthonormal basis, 14
Orthonormal vector, 14
Outlier

detection with a plot, 126
detection with PCA, 449

example, 459
Output Delivery System (ODS), 461

Parametric functions, 59
Part canonical correlation analysis, 488

example, 495
tests of hypotheses, 488

Partial canonical correlation analysis, 488
example, 494
tests of hypotheses, 488

Partitioned matrix, 32
inverse, 46

Path analysis, 580
direct effects, 583
dynamic model, 585
identification, 582

nonrecursive models, 583
recursive models, 582

indirect effects, 584
LINEQS statements, 589

model definition, 580
model equilibrium, 585
nonrecursive example, 590
nonrecursive model, 581
recursive example, 586
recursive model, 581

Permutation matrix, 30
Phi coefficient, 522
Plim

definition, 77
Plots

Beta, 122
CANDISC procedure, 541
chi-square, 122
gamma, 123
in multidimensional scaling, 550
non-normal chi-square, 126
scree, 461

Positive definite, 69
Positive semidefinite, 69
Power analysis

ANOVA
example, 306

MANOVA
example, 304

multivariate linear model, 303
two groups, 182

example, 183
Prediction

expected mean square error, 209
in MR, 204, 490
in SUR model, 314
in univariate mixed models, 368

Principal component analysis, 445
and cluster analysis, 465
and correspondence analysis, 458
and eigenvalues, 446
and eigenvectors, 446
and residual variance, 451
calculation of components, 451

FACTOR procedure, 459
PRINCOMP procedure, 459

component scores, 465
covariance loadings, 448
effect of scaling, 450
FACTOR procedure, 461
in reduced rank regression, 474
interpretation, 460, 463, 464, 466
maximum eigenvalue, 446
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number of components
eigenvalue criterion, 451
geometric mean, 449
proportion of variance, 449
scree plots, 456
tests of significance, 470, 473

orthogonal components, 446
outlier detection, 449

example, 459
pattern loadings, 450
performance assessment example, 465
plotting components, 458
population model with �, 446
population model with P, 450
regression on components, 474
rotation, 447, 463
score matrix, 447
semantic differential ratings example, 461
standardized components, 447
test battery example, 460
tests using correlation matrix

dimensionality, 472
equal eigenvalues, 472

tests using covariance matrix
average of eigenvalues, 469
confidence interval maximum eigen-

value, 468
dimensionality, 470
eigenvectors, 469
equal eigenvalues, 470
proportion of variance, 471

using S, 455
variable selection, 457
with covariates, 453, 457

Principal coordinates, 516, 543
Principle curves, 458
PRINCOMP procedure, 453, 459
PROBF function, 183, 303
Profile analysis, 160

and randomized block mixed ANOVA,
164

definition, 160
one group, 160

example, 162
simultaneous confidence intervals, 162

two groups
�1 = �2, 165
�1 �= �2, 175
simultaneous confidence intervals, 170

two groups �1 = �2
example, 171

two groups �1 �= �2
example, 176

Project talent data, 466
Projection (orthogonal), 15
Projection matrix, 49, 63

affine, 73
properties, 63

Protected F-tests, 230
Protected t-tests, 153
Protein consumption data, 534
Proximity measures, 516
Pseudo statistics, 532

Q-Q plots
Beta, 124
chi-square, 126
normal, 119, 122

Quadratic classification rule, 426
example, 430

Quadratic form, 72
distribution of, 100
independence, 94
max eigenvalue/root, 72
nonnegative definite

Gramian, 72
positive definite, 72
positive semidefinite, 72

Ramus bone data, 126, 328
Random coefficient model, 352

best linear unbiased predictor (BLUP),
354

covariance matrix of BLUP, 355
covariance of Beta hat, 354
estimate of covariance matrix, 354

ML estimate, 354
restricted ML (REML), 354

example, 371
Mixed procedure, 372
RANDOM statement, 372
REPEATED statement, 372

ML estimate of Beta, 353
tests of hypotheses, 355

Satterthwaite F test, 356
Wald statistic, 356

two-stage hierarchical model, 352
RANDOM statement, 181
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Rank, 42
full rank, 42

Rank condition, 583
Rao’s F-approximation

Wilks’�, 102
Rao’s score statistic, 109
Rayleigh quotient, 72
Recursive model, 559, 580

block recursive, 580
Reduced rank multivariate regression model,

476
Redundancy analysis, 487

index, 487
REG procedure, 212, 262
Regression

see Multivariate or Multiple, 106
Reliability, 578
Reparameterization, 56
Repeated measurement designs, 282

CGMANOVA, 319
crossover design, 289
double multivariate model, 400
extended linear hypotheses, 287

example, 298
generalized contrast matrix, 287
Roy criterion, 292
simultaneous confidence intervals, 293
trace criterion, 292
Wald statistic, 294

multivariate split-plot design, 393
one-way classification, 283

example, 294
mixed ANOVA model, 284, 380

power calculations, 305
see ANOVA, 283
tests of hypotheses

unequal covariance matrices, 308
with Kronecker structure, 403

REPEATED statement, 163, 172, 173, 296
Restricted linear model

univariate, 110
Restrictions, 56
Reticular action model (RAM), 564
Right inverse, 47
Robust estimate

breakdown point, 123
of covariance matrix, 123

two groups, 160
of mean, 119, 123

of variance, 120
Rohwer’s data, 212, 492
Root, see Eigenvalue, 68
Rotation, 69

in exploratory factor analysis, 507
in multidimensional scaling, 552

Row space, 25, 42
Roy’s statistic, 103

F-approximation, 103

SAS/INSIGHT software
creating chi-square plots, 128
examining observations, 130
in multidimensional scaling, 553
invoking, 122
three-dimensional plots, 554

Scale free, 573
Scale invariance, 573
Scree plot, 456

cluster analysis, 531
exploratory factor analysis, 511
principal component analysis, 461

Seemingly Unrelated Regression (SUR), 311
asymptotic covariance matrix Beta hat,

313
CGMANOVA model, 116, 318

example, 319
definition, 114
estimate of covariance matrix, 312
example, 316

STEST statement, 317
exogeniety, 316
extended linear SUR model

tests of nonnested models, 346
FGLSE of Beta, 313
lack of fit test, 337
ML estimate of Beta, 312
nonnested models, 344

example, 347
prediction, 314
simultaneous confidence intervals, 317
tests of hypotheses, 313

Semi-metric, 518
Shapiro-Wilk test, 124
Shin’s data, 460
Signed minor, 51
Similarity measure

conversion to dissimilarity, 520
correlation coefficient, 519
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cosine, 520
definition, 519

Simultaneous confidence intervals
eigenvalues of covariance matrix, 469
extended linear hypotheses, 293
finite intersection tests, 233
GMANOVA model, 323
IML procedure, 214, 236, 240, 260, 263
MANCOVA, 230
MANOVA, 230
mean vectors - two groups, 150

maximum contrast, 152
protected t-tests, 153

multivariate regression, 205
profile analysis

one group, 162
two groups, 169

random coefficient model, 356
SUR model, 317

Simultaneous test procedure, 104
ADJUST option, 237, 241
Bonferroni-Dunn, 154
Dunn-Šidák, 154
DUNNETT option, 263
finite intersection tests, 154, 231
MULTEST procedure, 238
multivariate regression, 206
multivariate t-distribution, 154
one way classification MANOVA, 237
one-way classification MANCOVA, 230
table explanation, 610
table of critical values, 620

Single link method, 523
Singular matrix, 42
Singular values, 69
Skew-symmetric matrix, 28
Skewness, 82, 121
Slutsky’s theorem, 77
Smith, Gnanadesikan and Hughes’ data, 476
Smith, Gnanadesikan and Hughes’ data, 244
SOLUTION option, 240, 279
Spanning set, 9
Sparks’ tobacco leaf data, 216
Spectral decomposition theorem, 69
Sphericity

test of one sample, 139
test of several populations

example, 142
Square root decomposition, see Cholesky, 69

Square root matrix, 69
Squared multiple correlation

population, 87
SSTRESS criterion, 547
Standardized data matrix, 520
Stankov’s data, 513
Statistical distance, 21
STEPDISC procedure, 432
STEST statement, 317
STRESS criterion, 546
Structural equation models, 558

and multilevel models, 600
Bentler-Weeks model, 566
covariance structure of, 560
example, 594

model identification, 597
MODIFICATION option, 598
nested models, 598

exogeniety, 604
fit functions, 562

asymptotic distribution free, 562
identification, 561
latent growth, 602
LISREL notation, 559
McDonald’s COSAN model, 566
model equivalence, 567
model uniqueness, 561
multiple groups, 604
nonrecursive model, 559
notation, 559
path diagram, 559

symbols, 559
recursive model, 559
reticular action model (RAM), 564
see confirmatory factor analysis, 567
simultaneous equation models, see path

analysis, 580
structural model, 559
tests of hypotheses, 562
with measurement error, 560

Student t-distribution, 99
and Beta distribution, 101
multivariate, 104
noncentrality parameter, 99
table explanation, 609
table of critical values, 613

Studentized maximum modulus
see multivariate t-distribution, 105

Subspace, 9
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Sum of vector spaces, 17
Sum-of-profiles model, 116

example, 341
tests of hypotheses, 339

Sylvester’s law, 45
Symmetric gauge functions, 291
Symmetric matrix, 28
SYSLIN procedure, 314, 316, 319, 343

estimation options, 316
FIML, SUR, ITSUR, 317

T2- tests
and two group discriminant function, 150
in discriminant analysis, 421
one sample statistic, 100
profile analysis

one group, 161
two groups, 165

two mean vectors
power calculation, 183
�1 �= �2, 156
�1 = �2, 149

two sample statistic, 100
using ranks, 160

Test of hypotheses
additional information, 242
additivity in MANOVA, 333
bipartial canonical correlations, 489
canonical correlations, 483
circularity, 140
compound symmetry, 138
confirmatory factor analysis, 574
covariance matrices, equality

Box’s M test, 134
� = �o, 137
discriminant analysis, 422
eigenvalues of correlation matrix, 472
eigenvectors of covariance matrix, 470
equal covariance matrices, 133
equal eigenvalues of S, 470
extended linear, 286
fit in factor analysis, 506
GMANOVA model, 321
in principal component analysis, 468
independence, 143
MANCOVA, 225
MSUR model, 340
multivariate circularity, 147
multivariate mixed model (MMM), 388

multivariate regression, 189
multivariate repeated measurements, 401
nonnested models, 344
one-way MANCOVA

parallelism, 227
one-way MANOVA, 218
parallelism in MANCOVA

REG procedure, 240
part canonical correlations, 489
partial canonical correlations, 488
random coefficient model, 355
significant discriminant functions, 436
sphericity, 139

several populations, 142
sum-of-profiles model, 339
SUR model, 313
two mean vectors

�1 = �2, 149
�1 �= �2, 156
using ranks, 160

Tests of location
multiple groups

unequal covariance matrices, 307
nonnormal data, 160
two group example

�1 = �2, 154
�1 �= �2, 159

Tests of nonadditivity, 256
Three-dimensional plots, 553
Trace, 30

eigenvalues, 70
Trace statistic

Bartlett-Lawley-Hotelling, 103
Bartlett-Nanda-Pillai, 103

Transformation
oblique, 509
problem in factor analysis, 500
projection, 64

Transformation, see Linear, 61
Transforming data in SAS, 298
Transpose, 8, 28
TRANSREG procedure, 236, 240, 262, 336
Triangular inequality

matrices, 31
vectors, 21

Triangular matrix
lower, 29
upper or lower

unit upper/unit lower, 29
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Trimmed mean, 119
TTEST procedure, 430
Tubb’s pottery data, 244
TYPE I - IV sum of squares, 379
Type I Beta distribution

see Beta distribution, 101
Type II Beta distribution

see inverted Beta distribution, 101
TYPE option, 375

Ultrametric, 518
Unequal covariance matrices

tests for means, 308
Unfolding methods, 547
Unified theory LS, 109, 315
Uniformly most powerful, 103
Union-intersection

see Roy’s statistic, 104
Unit vector, 15
Univariate linear model, 107
Univariate mixed model

BLUP, 359
covariance structures, 359
definition, 357
estimation of Beta, 358
generalized randomized block design, 376
multilevel hierarchical model, 367

example, 381
residual analysis, 361
tests of hypotheses

model fit, 361
variance components, 361

UNIVARIATE procedure, 126, 235, 373
USS function, 459

VARCLUS procedure, 524
Variable selection

canonical correlation analysis, 492
in discriminant analysis, 423
in principal component analysis, 457
Multivariate regression, 215

Variance
generalized, 98
in exploratory factor analysis, 498
in PCA, 446
ML estimate, 108
REML estimate, 108
Winsorized-trimmed, 120

Variance-covariance matrix
see Covariance matrix, 80

Vec operator, 31
Vec-permutation matrix, 37
Vech operator, 38
Vector

addition, 8
column, 8
cosine of angle, 14
definition, 8
dimension

order, 8
direction cosines, 22
inner product, 13
laws, 12
linearly dependent, 9
linearly independent, 9
normalized, 14
orthogonal, 14
orthogonal projection, 15
position, 8
random

expected value, 79
uncorrelated, 82

scalar multiplication, 8
unit, 15

Vector alienation coefficient, 485
Vector correlation coefficient, 198, 485
Vector norm

definition, 21
distribution of, 99
Euclidean, 14
infinity norm, 21
max norm, 21
minimum, 21
Minkowski, 21

Vector space, 9
basis of, 13
definition, 8
dimension of, 13
direct sum, 17
Euclidean, 8
existence, 13
intersection, 17
linear manifold, 9
orthonormal, 15
subspace, 9

null, 9
uniqueness, 13
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Vector subspace
improper, 9
orthocomplement, 17

VTOH option, 549

Wald statistic, 109, 110
extended linear hypotheses, 294
F-approximation, 110
SUR model, 313

F-approximation, 313
Ward’s method, 529
weak monotonicity, 542
weak monotonicity constraint, 542
Welsch-Kuh statistic, 195
Wilks’� distribution, 102
Wilks’� statistic, 102

Bartlett’s chi-square approximation, 102
F-approximation, 102

Willerman’s brain size data, 432
Winsorized mean, 119

alpha trimmed, 119
Winsorized sum of squares, 120
Wishart distribution, 96

independence, 97
linear model

noncentrality matrix, 113
noncentrality matrix, 96

with latent variables, 559

Zellner’s model
see SUR, 114

Zullo’s data, 404
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