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Preface

Univariate statistical analysis is concerned with techniques for the analysis of a single
random variable. This book is about applied multivariate analysis. It was written to pro-
vide students and researchers with an introduction to statistical techniques for the analy-
sis of continuous quantitative measurements on several random variables simultaneously.
While quantitative measurements may be obtained from any population, the material in this
text is primarily concerned with techniques useful for the analysis of continuous observa-
tions from multivariate normal populations with linear structure. While several multivariate
methods are extensions of univariate procedures, a unique feature of multivariate data anal-
ysis techniques is their ability to control experimental error at an exact nominal level and to
provide information on the covariance structure of the data. These features tend to enhance
statistical inference, making multivariate data analysis superior to univariate analysis.

While in a previous edition of my textbook on multivariate analysis, I tried to precede
a multivariate method with a corresponding univariate procedure when applicable, I have
not taken this approach here. Instead, it is assumed that the reader has taken basic courses
in multiple linear regression, analysis of variance, and experimental design. While students
may be familiar with vector spaces and matrices, important results essential to multivariate
analysis are reviewed in Chapter 2. I have avoided the use of calculus in this text. Emphasis
is on applications to provide students in the behavioral, biological, physical, and social
sciences with a broad range of linear multivariate models for statistical estimation and
inference, and exploratory data analysis procedures useful for investigating relationships
among a set of structured variables. Examples have been selected to outline the process
one employs in data analysis for checking model assumptions and model development, and
for exploring patterns that may exist in one or more dimensions of a data set.

To successfully apply methods of multivariate analysis, a comprehensive understand-
ing of the theory and how it relates to a flexible statistical package used for the analysis
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has become critical. When statistical routines were being developed for multivariate data
analysis over twenty years ago, developing a text using a single comprehensive statistical
package was risky. Now, companies and software packages have stabilized, thus reduc-
ing the risk. I have made extensive use of the Statistical Analysis System (SAS) in this
text. All examples have been prepared using Version 8 for Windows. Standard SAS pro-
cedures have been used whenever possible to illustrate basic multivariate methodologies;
however, a few illustrations depend on the Interactive Matrix Language (IML) procedure.
All routines and data sets used in the text are contained on the Springer-Verlag Web site,
http://www.springer-ny.com/detail.tpl ZISBN=0387953477 and the author’s University of
Pittsburgh Web site, http://www.pitt.edu/~timm.



Acknowledgments

The preparation of this text has evolved from teaching courses and seminars in applied
multivariate statistics at the University of Pittsburgh. I am grateful to the University of
Pittsburgh for giving me the opportunity to complete this work. I would like to express my
thanks to the many students who have read, criticized, and corrected various versions of
early drafts of my notes and lectures on the topics included in this text. I am indebted to
them for their critical readings and their thoughtful suggestions. My deepest appreciation
and thanks are extended to my former student Dr. Tammy A. Mieczkowski who read the
entire manuscript and offered many suggestions for improving the presentation. I also wish
to thank the anonymous reviewers who provided detail comments on early drafts of the
manuscript which helped to improve the presentation. However, I am responsible for any
errors or omissions of the material included in this text. I also want to express special
thanks to John Kimmel at Springer-Verlag. Without his encouragement and support, this
book would not have been written.

This book was typed using Scientific WorkPlace Version 3.0. I wish to thank Dr. Melissa
Harrison, Ph.D., of Far Field Associates who helped with the IATEX commands used to
format the book and with the development of the author and subject indexes. This book has
taken several years to develop and during its development it went through several revisions.
The preparation of the entire manuscript and every revision was performed with great care
and patience by Mrs. Roberta S. Allan, to whom I am most grateful. I am also especially
grateful to the SAS Institute for permission to use the Statistical Analysis System (SAS) in
this text. Many of the large data sets analyzed in this book were obtained from the Data and
Story Library (DASL) sponsored by Cornell University and hosted by the Department of
Statistics at Carnegie Mellon University (http:/lib.stat.cmu.edu/DASL/). I wish to extend
my thanks and appreciation to these institutions for making available these data sets for
statistical analysis. I would also like to thank the authors and publishers of copyrighted



X Acknowledgments

material for making available the statistical tables and many of the data sets used in this
book.

Finally, I extend my love, gratitude, and appreciation to my wife Verena for her patience,
love, support, and continued encouragement throughout this project.

Neil H. Timm, Professor
University of Pittsburgh



Contents

Preface
Acknowledgments
List of Tables
List of Figures
1 Introduction
1.1 OVEIVIEW . . . o o o o e e s e e e
1.2 Multivariate Models and Methods . . . . . . . ... ... .. ......
1.3 ScopeoftheBook . . . . . . . ... ... ..
2 Vectors and Matrices
2.1 Introduction . . . . . . . ...
2.2 Vectors, Vector Spaces, and Vector Subspaces . . . . . ... ... ....
A VECLOTS . . . . . o o e e e e e e e e
b. VectorSpaces . . . .. ... ... ...
c. Vector Subspaces . . . . . . ... ...
2.3 Bases, Vector Norms, and the Algebra of Vector Spaces . . . . . ... ..

a.

oo o

Bases . . . . ...
Lengths, Distances, and Angles . . . . . . . ... ... ... .....
Gram-Schmidt Orthogonalization Process . . . . . . . ... ... ..
Orthogonal Spaces . . . . . . . .. . ... ... ... .. ...
Vector Inequalities, Vector Norms, and Statistical Distance . . . . . .

vii

ix

Xix

xxiii



Xii

3

Contents
2.4 Basic Matrix Operations . . . . . . . . . . ... .o 25
a. Equality, Addition, and Multiplication of Matrices . . . . . . . .. .. 26
b. Matrix Transposition . . . . . . .. ... .. ... 28
c. Some Special Matrices . . . . . ... ..o 29
d. Trace and the Euclidean Matrix Norm . . . . . .. .. .. ...... 30
e. Kronecker and Hadamard Products . . . . . . ... ... ....... 32
f. DirectSums . . . . . . . . ... 35
g. The Vec(-) and Vech(:) Operators . . . . . . . . ... ... ...... 35
2.5 Rank, Inverse, and Determinant . . . . . . . . . . . . . ... ... .... 41
a. RankandInverse . . .. .. .. ... ... ... .. .. .. ..... 41
b. Generalized Inverses . . . . . . . . . .. .. ... ... . ... 47
c. Determinants . . . . .. .. .. .. .. ... ... 50
2.6 Systems of Equations, Transformations, and Quadratic Forms . . . . . . . 55
a. Systemsof Equations . . . . . .. ... ... ... .. ... ..., 55
b. Linear Transformations . . . . . . .. .. .. ... ... ....... 61
c. Projection Transformations . . . . . . . ... .. ... ... ..... 63
d. Eigenvalues and Eigenvectors . . . . . . . .. . ... ... ...... 67
e. Matrix Norms . . . . . . . . . . .. . . ... . 71
f. Quadratic Forms and Extrema . . . ... ... ... ......... 72
g. Generalized Projectors . . . . . . ... ... L., 73
2.7  Limits and Asymptotics . . . . . . . . . ..o 76
Multivariate Distributions and the Linear Model 79
3.1 Introduction . . . . . . . .. .. 79
3.2 Random Vectors and Matrices . . . . . .. .. .. .. ... ....... 79
33 The Multivariate Normal (MVN) Distribution . . . . . .. ... ... .. 84
a. Properties of the Multivariate Normal Distribution . . . . . . . .. .. 86
b. Estimatinggand X . . . . . . ... ... Lo 88
c. The Matrix Normal Distribution . . . . .. ... ... ........ 90
3.4  The Chi-Square and Wishart Distributions . . . . . ... ... ... ... 93
a. Chi-Square Distribution . . . . . . . ... ... ... o ... 93
b. The Wishart Distribution . . . . . . . .. .. ... ... ....... 96
3.5 Other Multivariate Distributions . . . . . . . ... .. ... ....... 99
a. The Univariate t and F Distributions . . . . . . .. .. ... ... .. 99
b. Hotelling’s 7% Distribution . . . . . . ... .............. 99
c. The BetaDistribution . . . . . . .. .. .. ... ... ........ 101
d. Multivariate ¢, F, and X2 Distributions . . . . . . . .. ... ... .. 104
3.6 The General Linear Model . . . . . .. .. .. ... ... ........ 106
a. Regression, ANOVA, and ANCOVAModels . . . ... ........ 107
b. Multivariate Regression, MANOVA, and MANCOVA Models . . . . 110
c. The Seemingly Unrelated Regression (SUR) Model . . . . . . .. .. 114
d. The General MANOVA Model (GMANOVA) . . . ... ... .... 115
3.7  Evaluating Normality . . . . . . ... ... ... ... ... ....... 118
3.8 Tests of Covariance Matrices . . . . . . . . . . . . .. .. .. .. .... 133

a. Tests of Covariance Matrices . . . . . . . . . . . . ... ... .... 133



3.9

3.10

3.11

Contents

Equality of Covariance Matrices . . . . . . . ... . ... ......
Testing for a Specific Covariance Matrix . . . . . . ... .. ... ..
Testing for Compound Symmetry . . . . . . ... .. ... .. ....
Tests of Sphericity . . . . . . . . . . ... ..
Tests of Independence . . . . . . .. . ... ... ... ... ...,
Tests for Linear Structure . . . . . . . ... ... ... ... .. ...
estsof Location . . . . .. .. ... .. ...
Two-Sample Case, 1 = 2o =2 . . . . . . ... o
Two-Sample Case, 1 # Zo . . . .« o v vt oo
Two-Sample Case, Nonnormality . . . . . . ... ... ... .....
Profile Analysis, One Group . . . . . . ... ... ... .......
Profile Analysis, TwoGroups . . . . . . . . ... .. ... .. ...,
Profile Analysis, 1 # X . . . . . . ..
Un1var1ate Profile Analysis . . . . . ... ... ... ... ...
a. Univariate One-Group Profile Analysis . . . . . . ... ... .. ...
b. Univariate Two-Group Profile Analysis . . . . . . ... .. ... ...
Power Calculations . . . . . ... .. ... ... ... ...

e AL TR gE S0 an T

Multivariate Regression Models

4.1
4.2

43
4.4

4.5

4.6
4.7
4.8

Introduction . . . . . . ...
Multivariate Regression . . . . . . . . .. .. ... . o
a. Multiple Linear Regression . . . . . .. ... ... ..........
Multivariate Regression Estimation and Testing Hypotheses . . . . . .
Multivariate Influence Measures . . . . . .. ... ... ... ...
Measures of Association, Variable Selection and Lack-of-Fit Tests . .
Simultaneous Confidence Sets for a New Observation ypew
and the Elementsof B . . . . . . .. ... .. ... ... ... ...
f. Random X Matrix and Model Validation: Mean Squared Er-

ror of Prediction in Multivariate Regression . . . . . .. ... .. ..
g. Exogenietyin Regression . . . . . . ... ... ... .........
Multivariate Regression Example . . . . . . . .. ... ... ... .. ..
One-Way MANOVA and MANCOVA . . . ... ... ... .......
a. One-Way MANOVA . . . . ... .. . . .
b. One-Way MANCOVA . . . .. ... .. ... .. ...
c. Simultaneous Test Procedures (STP) for One-Way MANOVA

IMANCOVA . . . .
One-Way MANOVA/MANCOVA Examples . . . . . ... ... .....
a. MANOVA (Example 4.5.1) . . . . . . . .. ... ...
b. MANCOVA (Example4.52) . . .. ... ... ... ... ......
MANOVA/MANCOVA with Unequal ¥; or Nonnormal Data . . . . . . .
One-Way MANOVA with Unequal ¥; Example . . . . ... ... ....
Two-Way MANOVA/MANCOVA . . . . ... ... .. ... ....
a. Two-Way MANOVA with Interaction . . . . . ... .. ... ....
b. Additive Two-Way MANOVA . . . .. ... .. ... ... .....
c. Two-Way MANCOVA . . . ... .. .. ... ... ...,

oo

xiii

133
137
138
139
143
145
149
149
156
160
160
165
175
181
182
182
182

185
185
186
186
187
193
197



X1v

Contents

d. Tests of Nonadditivity . . . . . . . . . ... ... ... ... ..... 256
49  Two-Way MANOVA/MANCOVA Example . . .. ... ... ...... 257
a. Two-Way MANOVA (Example 49.1) . ... ... ... .. ..... 257
b. Two-Way MANCOVA (Example 49.2) . .. ... ... .. ..... 261
4.10 Nonorthogonal Two-Way MANOVA Designs . . . . . ... ... . ... 264

a. Nonorthogonal Two-Way MANOVA Designs with and Without
Empty Cells, and Interaction . . . . . ... ... ... ........ 265
b. Additive Two-Way MANOVA Designs With Empty Cells . . . . . . . 268
4.11 Unbalance, Nonorthogonal Designs Example . . . . .. ... ... ... 270
4.12 Higher Ordered Fixed Effect, Nested and Other Designs . . . . . . . . .. 273
4.13 Complex Design Examples . . . . . . ... ... ... ... ....... 276
a. Nested Design (Example 4.13.1) . . . .. ... ... ... .. .... 276
b. Latin Square Design (Example 4.13.2) . . . . .. ... ... ... ... 279
4.14 Repeated Measurement Designs . . . . . ... ... ... ... .. 282
a. One-Way Repeated Measures Design . . . . . . ... ... .. .... 282
b. Extended Linear Hypotheses . . . . . ... .. ... ... ...... 286
4.15 Repeated Measurements and Extended Linear Hypotheses Example . . . 294
a. Repeated Measures (Example 4.15.1) . . .. ... ... ... .... 294
b. Extended Linear Hypotheses (Example 4.15.2) . . . ... ... ... 298
4.16 Robustness and Power Analysis for MR Models . . . . . ... ... ... 301
4.17 Power Calculations—Power.sas . . . . . . ... ... ... ........ 304
4.18 Testing for Mean Differences with Unequal Covariance Matrices . . . . . 307
Seemingly Unrelated Regression Models 311
5.1 Introduction . . . . . . ... 311
52 TheSURModel . . . . ... ... .. 312
a. Estimation and Hypothesis Testing . . . . . . . ... ... .. .... 312
b. Prediction . . . . .. ... ... 314
53 Seeming Unrelated Regression Example . . . . . . ... ... ... ... 316
54  TheCGMANOVA Model . . . ... ... ... ... . .. .. ..... 318
55 CGMANOVAExample . . . ... ... ... ... ... 319
56 TheGMANOVAModel . . . ... ... ... ... .. . . . . . ..... 320
a. OVervIewW . . . . . . . . 320
b. Estimation and Hypothesis Testing . . . . . . .. ... ... ..... 321
c. Testof Fit . . . . . . . . .. . ... 324
d. Subsets of Covariates . . . . . . ... ... ... ... ..., 324
e. GMANOVAvsSUR . .. ... . ... ... ... .. ... .... 326
f. MissingData . . . ... ... ... 326
57 GMANOVAExample . . . . ... ... ... ... . ..., 327
a. One Group Design (Example 5.7.1) . . ... ... ... .. ..... 328
b. Two Group Design (Example 5.7.2) . . ... ... ... ... .... 330
5.8  Testsof Nonadditivity . . . . . . . . . ... ... .. .. 333
5.9  Testing for Nonadditivity Example . . . . . .. ... ... .. ...... 335
5.10 Lackof FitTest . . . . . .. . ... .. .. 337
5.11 SumofProfile Designs . . . . . ... ... ... ... ... ... 338



Contents XV

5.12  The Multivariate SUR (MSUR)Model . . . . . . ... ... ... .... 339
5.13  Sumof Profile Example . . . . . ... ... ... ... ... 341
5.14  Testing Model Specificationin SUR Models . . . . . .. ... ... ... 344
5.15 Miscellanea . . . . . . . . . . ... 348
Multivariate Random and Mixed Models 351
6.1 Introduction . . . . . .. ... 351
6.2  Random Coefficient Regression Models . . . . . .. ... ... ... .. 352
a. Model Specification . . . . ... ... ... 352
b. Estimating the Parameters . . . . . . . ... ... ... ... ... .. 353
c. Hypothesis Testing . . . . .. .. ... ... ... ... ...... 355
6.3 Univariate General Linear Mixed Models . . . . . ... ... ... ... 357
a. Model Specification . . . . . ... ... ... 357
b. Covariance Structures and Model Fit . . . . . . ... ... ... ... 359
c. ModelChecking . . . . ... ... ... ... ... ... ... 361
d. Balanced Variance Component Experimental Design Models . . . . . 366
e. Multilevel Hierarchical Models . . . . . .. ... ... ... ..... 367
f. Prediction . . . .. . ... ... 368
6.4 Mixed Model Examples . . . . . . .. ... ... .. ... ... ... 369
a. Random Coefficient Regression (Example 6.4.1) . . . . . . ... ... 371
b. Generalized Randomized Block Design (Example 6.4.2) . . . .. .. 376
c. Repeated Measurements (Example 6.4.3) . . ... ... ... .... 380
d. HLM Model (Example 6.4.4) . . . . . . ... ... ... .. ..... 381
6.5 Mixed Multivariate Models . . . . . .. . ... ... ... ... 385
a. Model Specification . . . . .. ... ... L oL 386
b. Hypothesis Testing . . . . . ... ... ... ... . ... ...... 388
c. Evaluating Expected Mean Square . . . . . ... ... ........ 391
d. EstimatingtheMean . . ... ... ... ... ...... .. .... 392
e. Repeated Measurements Model . . . . . ... ... ... ... .... 392
6.6  Balanced Mixed Multivariate Models Examples . . . . . . .. ... ... 394
a. Two-way Mixed MANOVA . . . . . ... .. ... ... .. .... 395
b. Multivariate Split-Plot Design . . . . . .. ... ... ... ..... 395
6.7 Double Multivariate Model (DMM) . . . . .. . ... ... .. ..... 400
6.8 Double Multivariate Model Examples . . . . . ... ... ... ..... 403
a. Double Multivariate MANOVA (Example 6.8.1) . . . . . .. ... .. 404
b. Split-Plot Design (Example 6.8.2) . . . .. ... ... ... ..... 407
6.9 Multivariate Hierarchical Linear Models . . . . . . ... ... .. .. .. 415
6.10  Tests of Means with Unequal Covariance Matrices . . . . . . . . ... .. 417
Discriminant and Classification Analysis 419
7.1 Introduction . . . . . . . ... 419
7.2 Two Group Discrimination and Classification . . . ... ... ... ... 420
a. Fisher’s Linear Discriminant Function . . . . . .. ... ... .... 421
b. Testing Discriminant Function Coefficients . . . . . ... ... ... 422

c. ClassificationRules . . . . .. . .. .. ... . ... ... ... 424



XVi

Contents
d. Evaluating ClassificationRules . . . . . . .. ... ... ... .... 427
7.3 Two Group Discriminant Analysis Example . . . . ... ... ... ... 429
a. Egyptian Skull Data (Example 7.3.1) . . . . . ... ... .. ..... 429
b. Brain Size (Example 7.3.2) . . . . . ... ... 432
7.4  Multiple Group Discrimination and Classification . . . . . . ... .. .. 434
a. Fisher’s Linear Discriminant Function . . . . ... ... ... .. .. 434
b. Testing Discriminant Functions for Significance . . . . . .. ... .. 435
c. Variable Selection . . . . ... ... ..o oL 437
d. ClassificationRules . . . . .. ... ... ... ... ... 438
e. Logistic Discrimination and Other Topics . . . . . .. ... ... .. 439
7.5 Multiple Group Discriminant Analysis Example . . . . . . ... ... .. 440
Principal Component, Canonical Correlation, and Exploratory
Factor Analysis 445
8.1 Introduction . . . . . ... L 445
8.2  Principal Component Analysis . . . . ... ... ... .......... 445
a. Population Model for PCA . . . . . . ... ... ... ... .... 446
b. Number of Components and Component Structure . . . . . . . .. . . 449
c. Principal Components with Covariates . . . . . .. ... ... .... 453
d. SamplePCA . . . . . . . . .. 455
e. Plotting Components . . . . . . ... ... .. ... ..., 458
f. Additional Comments . . ... ... ... ... ... ... ..., 458
g. Outlier Detection . . . . ... ... ... ... ... ... .. ..., 458
8.3 Principal Component Analysis Examples . . . . . ... ... ... .... 460
a. TestBattery (Example 8.3.1) . . . ... ... ... ... .. ..... 460
b. Semantic Differential Ratings (Example 8.3.2) . . . . . ... ... .. 461
c. Performance Assessment Program (Example 8.3.3) . . ... ... .. 465
8.4  Statistical Tests in Principal Component Analysis . . . . . ... ... .. 468
a. Tests Using the Covariance Matrix . . . . ... ... ......... 468
b. Tests Using a Correlation Matrix . . . . ... ... .......... 472
8.5 Regression on Principal Components . . . . . . . .. ... ... ..... 474
a. GMANOVAModel . . ... ... ... ... ... .. ..... 475
b. ThePCAModel . . . .. ... ... . . ... . ... ... ...... 475
8.6  Multivariate Regression on Principal Components Example . . . . . . . . 476
8.7  Canonical Correlation Analysis . . . . . . ... ... ... .. ...... 4717
a. Population Model for CCA . . . . . .. ... ... ... .. ..... 4717
b. Sample CCA . . . . . . . . 482
c. Testsof Significance . . .. .. ... ... .. ... ..., 483
d. Association and Redundancy . . . . ... ... ... ... ..., 485
e. Partial, Part and Bipartial Canonical Correlation . . . . . .. ... .. 487
f. Predictive Validity in Multivariate Regression using CCA . . . . . .. 490
g. Variable Selection and Generalized Constrained CCA . . . . . . . .. 491
8.8  Canonical Correlation Analysis Examples . . . . . ... ... .. .... 492
a. Rohwer CCA (Example 8.8.1) . . .. ... .. ... ... ...... 492
b. Partial and Part CCA (Example 8.8.2) . . . . ... ... ... .... 494



10

8.9

8.10

Contents

Exploratory Factor Analysis . . . . .. ... ... ... .........
Population Model for EFA . . . . . .. .. ... ... ... ...
Estimating Model Parameters . . . . . . .. ... ... ........
Determining Model Fit . . . . ... ... ... .. ... ... ....
FactorRotation . . . . ... ... ... ... .............
Estimating Factor Scores . . . . . . . ... ... ... ... ...
. Additional Comments . . . . . . ... ...
Exploratory Factor Analysis Examples . . . . . . ... ... .......
a. Performance Assessment Program (PAP—Example 8.10.1) . . . . . .
b. Di Vesta and Walls (Example 8.10.2) . . . . . ... ... ... ....
c. Shin (Example 8.10.3) . . . . .. ... ... ... ... ...,

mo a0 o

Cluster Analysis and Multidimensional Scaling

9.1
9.2

9.3

94

9.5

9.6

Introduction . . . . . ...
Proximity Measures . . . . . . . . . .. ...
a. Dissimilarity Measures . . . . . . . . ... ... ...
b. Similarity Measures . . . . . . ... ... Lo
c. Clustering Variables . . . . . . .. ... ... ... ... . ...,
Cluster Analysis . . . . . . . . . o o i e
a. Agglomerative Hierarchical Clustering Methods . . . . . . . ... ..
b. Nonbhierarchical Clustering Methods . . . . . ... ... ... ....
c. NumberofClusters . . . . .. ... ... ... ............
d. Additional Comments . . . . . . ... ...
Cluster Analysis Examples . . . . .. ... ... ... .. ........
a. Protein Consumption (Example 9.4.1) . . .. .. ... .. ... ...
b. Nonhierarchical Method (Example 9.4.2) . . ... ... ... ....
c. Teacher Perception (Example 9.4.3) . . .. ... ... ... .....
d. Cedar Project (Example 9.4.4) . . . ... ... ... ... . .....
Multidimensional Scaling . . . . . . ... ... L Lo,
a. Classical Metric Scaling . . . . . ... ... ... ... ...,
b. Nonmetric Scaling . . . . ... ... ... ... oL
c. Additional Comments . . . . . . . .. ...
Multidimensional Scaling Examples . . . . .. ... ... ... .....
a. Classical Metric Scaling (Example 9.6.1) . . . . . ... ... .....
b. Teacher Perception (Example 9.6.2) . ... ... ... ... .....
c. Nation (Example 9.6.3) . . . . . ... ... ... ...

Structural Equation Models

10.1
10.2
10.3
10.4

10.5

Introduction . . . . . . . .. ...
Path Diagrams, Basic Notation, and the General Approach . . . . . . ..
Confirmatory Factor Analysis . . . . . . .. ... ... ..........
Confirmatory Factor Analysis Examples . . . . ... ... ... .....
a. Performance Assessment 3 - Factor Model (Example 10.4.1) . . . . .
b. Performance Assessment 5-Factor Model (Example 10.4.2) . . . . . .
Path Analysis . . . . . . . . ..

515
515
516
516
519
522
522
523
530
531
533
533
534
536
538
541
541
542
544
547
548
549
550
553



XViii Contents

10.6  Path Analysis Examples . . . . . .. ... ... ... ... ...

a. Community Structure and Industrial Conflict (Example 10.6.1) . . .

b. Nonrecursive Model (Example 10.6.2) . . . . ... ... ... ....
10.7  Structural Equations with Manifest and Latent Variables. . . . . . . . ..
10.8  Structural Equations with Manifest and Latent Variables Example
10.9 Longitudinal Analysis with Latent Variables . . . . . . . ... ... ...
10.10 Exogeniety in Structural Equation Models . . . . . ... ... ... ...

Appendix
References
Author Index

Subject Index

. 586

590
594

. 595

600
604

609

625

667

675



List of Tables

3.7.1

372

373
374
3.8.1
382
3.8.3
3.84
3.8.5
3.8.6
3.8.7
3.8.8
3.89
3.8.10

3.9.1
39.2
393
394
395
3.9.6
3.9.7

Univariate and Multivariate Normality Tests, Normal Data—

DataSet A,Group 1. . . . . . . . ... .. 125
Univariate and Multivariate Normality Tests Non-normal Data,

DataSetC,Group 1 . . . . . . . . . . .. ... 126
Ramus Bone LengthData . . . . . . ... ... ... .. ........ 128
Effects of Delay on Oral Practice. . . . . ... ............. 132
Box’s Test of | = Zox? Approximation. . . . . . .. ... ...... 135
Box’s Test of ¥; = ¥, F Approximation. . . . . . ... ........ 135
Box’s Test of | = sz2 DataSetB. ... ... ... ......... 136
Box’s Test of | = 22)(2 DataSetC. . . ... ... ... .. ..... 136
Test of Specific Covariance Matrix Chi-Square Approximation. . . . . . 138
Test of Comparing Symmetry x> Approximation. . . . . ... ..... 139
Test of Sphericity and Circularity x> Approximation. . . . . . ... .. 142
Test of Sphericity and Circularity in k Populations. . . . . . .. .. .. 143
Test of Independence x? Approximation. . . . .. ... ........ 145
Test of Multivariate Sphericity Using Chi-Square and Adjusted

Chi-Square Statistics . . . . . . . . ... 148
MANOVA Test Criteria for Testing iy = fp. . .« « « « « o v o v v .. 154
Discriminant Structure Vectors, H : jt; = . . o o« o o o oo oL L 155
T? Testof He : ju; = py = 3e o e e e 163
Two-Group Profile Analysis. . . . . ... ... ... ... ...... 166
MANOVA Table: Two-Group Profile Analysis. . . . ... ... .... 174
Two-Group Instructional Data. . . . . ... ... ... ......... 177

Sample Data: One-Sample Profile Analysis. . . . .. ... ....... 179



XX

List of Tables

3938
399

4.2.1
422
4.3.1
432
441
4.5.1
452
453
491
4.9.2
493
494
4.10.1
4.10.2
4.10.3

4.11.1
4.11.2
4.13.1
4.13.2
4.13.3
4.13.4
4.15.1
4.17.1
4.17.2

5.5.1

6.3.1
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5.1
6.6.1
6.6.2

6.6.3
6.6.4
6.6.5
6.8.1

Sample Data: Two-Sample Profile Analysis. . . . . . .. ... ... ..
Problem Solving Ability Data. . . . . . ... ... ... ........

MANOVA Table for Testing By =0 . . . . ... ... .........
MANOVA Table for Lackof Fit Test . . . . . . ... ... .......
Rohwer Dataset . . . . . ... ... ... ... ... ...
Rohwer Data for Low SESArea . . . .. ... ... ... .......
One-Way MANOVA Table . . . . ... ... ... ...........
Sample Data One-Way MANOVA . . . ... ... ... ... .....
FIT Analysis . . . . . . . . . e
Teaching Methods . . . . . . . ... ... ... ... .. .. ...
Two-Way MANOVA . . . . . ... o o o
Cell Means for Example Data. . . . . ... ... ............
Two-Way MANOVA Table . . . . ... .. ... ... .. .......
Two-Way MANCOVA . . . . . . .. e
Non-Additive Connected Data Design . . . . .. ... ... ......
Non-Additive Disconnected Design . . . . .. ... ... .......
Type IV Hypotheses for A and B for the Connected Design in

Table 4.10.1 . . . . . . .o
Nonorthogonal Design . . . . . . .. ... .. ... ... ......
DataforExercise 1. . . . . . . . . ... ..
Multivariate Nested Design . . . . . . . .. ... ... ... ......
MANOVA for Nested Design . . . . . ... ... ... .. .......
Multivariate Latin Square . . . . . . . ... ... ... L.
BoxTireWearData . . . . .. ... ... ... ... .. .......
Edward’s Repeated Measures Data . . . . . . ... ... ........
Power Calculations—X . . . . . . ... ... .o
Power Calculations—X1 . . . . . . . . ...

SUR Model Tests for Edward’sData . . . . ... ... ... ......

Structured Covariance Matrix . . . . . . . . .. ... ... ... ...,
Pharmaceutical Stability Data. . . . . ... ... ... ... ...
CGRB Design (Milliken and Johnson, 1992, p.285) . . . . . . ... ..
ANOVA Table for Nonorthogonal CGRB Design . . . . . ... .. ..
Drug Effects Repeated Measures Design . . . . . ... ... ......
ANOVA Table Repeated Measurements . . . . . . . ... ... ....
Multivariate Repeated Measurements . . . . . . . . . .. ... .....
Expected Mean Square Matrix . . . . ... ... ............
Individual Measurements Utilized to Assess the Changes in

the Vertical Position and Angle of the Mandible at Three Occasion . . .
Expected Mean Squares for Model (6.5.17) . . . ... ... ......
MMM Analysis Zullo’sData . . . . . ... ... .. ... .......
Summary of Univariate Output . . . . . . . ... ... ... ......
DMM Results, Dr. Zullo’sData . . . . . ... ... ... ........



6.8.2
6.8.3
6.8.4
6.8.5

7.2.1
7.3.1
7.3.2
7.3.3
7.34
7.3.5
7.5.1
7.5.2
753
7.5.4

8.2.1
8.2.2
8.2.3
8.2.4
8.3.1

8.3.2

8.3.3
834

8.3.5
8.3.6

8.3.7
8.3.8
8.3.9
8.3.10
8.7.1
8.10.1
8.10.2
8.10.3

9.2.1
9.4.1
94.2
943

9.4.4

List of Tables XXI1

Factorial Structure Data . . . . . . . ... ... ... 0oL 409
ANOVA for Split-Split Plot Design 2-Unknown Kronecker Structure . 409
ANOVA for Split-Split Plot Design 2-Compound Symmetry Structure . 410

MANOVA for Split-Split Plot Design 2-Unknown Structure . . . . . . 411
Classification/Confusion Table . . . . . . .. ... ... ... ..... 427
Discriminant Structure Vectors, H : iy = fp . . . . . . . ... .. .. 430
Discriminant Functions . . . . . .. . ... ... ... ... ... . 431
Skull Data Classification/Confusion Table . . . . ... ... ... ... 431
Willeran et al. (1991) Brain SizeData . . . . ... ... ........ 433
Discriminant Structure Vectors, H : iy = ftp . . . . . . . .. ... .. 434
Discriminant Structure Vectors, H : iy = o = 3 . . . « . . . . . .. 441
Squared Mahalanobis Distances Flea Beetles H : u; = p, = p3 . . . . 441
Fisher’s LDFs for FleaBeetles . . . . . . ... ... .. ........ 442
Classification/Confusion Matrix for Species . . . . . .. ... ... .. 443
Principal Component Loadings . . . . . . . .. ... ... ....... 448
Principal Component Covariance Loadings (Pattern Matrix) . . . . . . 448
Principal Components Correlation Structure . . . . . . . ... ... .. 450
Partial Principal Components . . . . . . . .. ... ... ... ... .. 455
Matrix of Intercorrelations Among IQ, Creativity, and

Achievement Variables . . . . . . ... .. ... ... 461
Summary of Principal-Component Analysis Using 13 x 13

Correlation Matrix . . . . . . ... ... 462
Intercorrelations of Ratings Among the Semantic Differential Scale . . 463
Summary of Principal-Component Analysis Using 8 x 8

Correlation Matrix . . . . . .. . ..o L 463
Covariance Matrix of Ratings on Semantic Differential Scales . . . . . 464
Summary of Principal-Component Analysis Using 8 x 8

Covariance Matrix . . . . . .. .. ... 464
PAP Covariance Matrix . . . . . . . . .. ... ... ... 467
Component Using SinPAPStudy . . . . ... ... ... ...... 467
PAP Components Using RinPAPStudy . . . . ... ... ... .... 467
Project Talent Correlation Matrix . . . . . . . . . . ... ... ..... 468
Canonical Correlation Analysis . . . . . .. .. ... ... ....... 482
PAPFactors . . . . . . . . .. 512
Correlation Matrix of 10 Audiovisual Variables . . . . . ... ... .. 513

Correlation Matrix of 13 Audiovisual Variables (excluding diagonal) . . 514

Matching Schemes . . . . . ... ... L L 521
Protein Consumptionin Europe . . . . . . . ... ... ... ...... 535
Protein Data Cluster Choices Criteria. . . . . . . . ... ... ..... 537
Protein Consumption—Comparison of Hierarchical

Clustering Methods . . . . . . . . .. .. ... ... . 537

Geographic Regions for Random Seeds . . . . .. ... ... .. ... 539



XXil

List of Tables

94.5

9.4.6
9.6.1
9.6.2
9.6.3

10.2.1
10.4.1
10.4.2
10.5.1
10.6.1
10.6.2
10.8.1

Protein Consumption—Comparison of Nonhierarchical

ClusteringMethods . . . . ... ... ... ... . . ... . ..... 539
Item Clusters for PerceptionData. . . . . . . ... ... ........ 540
Road Mileages for Cities . . . . . ... ... ... ........... 549
Metric EFA Solution for Gamma Matrix . . . . . .. ... ... .... 553
Mean Similarity Ratings for Twelve Nations . . . . . . . ... ... .. 554
SEM Symbols. . . . . .. ... 560
3-Factor PAP Standardized Model . . ... ... ............ 577
5-Factor PAP Standardized Model . . . . . ... ... ... ...... 579
Path Analysis—Direct, Indirect and Total Effects . . . . . ... .. .. 585
CALIS OUTPUT—RevisedModel . . . . ... ... ... ....... 591
Revised Socioeconomic Status Model . . . . .. ... ... ...... 593

Correlation Matrix for Peer-Influence Model . . . . . . . . ... .. .. 600



List of Figures

23.1
232
233
2.6.1
2.6.2

33.1
3.7.1
3.7.2
3713
374
3.7.5

4.8.1
491
4.15.1

74.1
7.5.1

8.2.1
8.3.1
8.3.2
8.7.1

Orthogonal Projectionof yon x, Pxy =ax . . ... ... ... .... 15
The orthocomplement of S relativeto V, V/S . . ... ... ... ... 19
The orthogonal decomposition of V for the ANOVA . . . . ... .. .. 20
Fixed-Vector Transformation . . . . . . .. ... ... ... ...... 62
IylIZ = Py ylI> + 1Py, ¥I% - oo 67
23 =22 —zim+d=1 oo 86
Chi-Square Plot of Normal Data in Set A, Group 1. . . . . .. ... .. 125
Beta Plot of Normal Data in Data Set A, Group 1 . . . . ... ... .. 125
Chi-Square Plot of Non-normal Data in Data Set C, Group 2. . . . . . . 127
Beta Plot of Non-normal Data in Data Set C, Group2. . . .. ... .. 127
Ramus Data Chi-square Plot . . . . . .. ... ... ... ....... 129
3x2Design ... .. e 251
Plots of Cell Means for Two-Way MANOVA . . . ... ... ... .. 258
Plot of Means Edward’sData . . . . . ... ... ... ......... 296
Plot of Discriminant Functions . . . . . ... ... ... ........ 435
Plot of Flea Beetles Data in the Discriminant Space . . . . . . ... .. 442
Ideal Scree Plot . . . . . . ... ... ... ... 457
Scree Plot of Eigenvalues ShinData . . . . .. ... ... ....... 462
Plot of First Two Components UsingS . . . . . ... ... ... .... 465

Venn Diagram of Total Variance . . .. ... ... ... ........ 486



XXiv List of Figures

9.2.1
9.3.1
932
933
9.5.1

9.5.2

9.6.1
9.6.2
9.6.3
9.6.4

10.2.1
10.3.1
10.4.1
10.5.1
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.8.1
10.8.2
10.9.1

2 x 2 Contingency Table, Binary Variables . . ... ... ... .... 518
Dendogram for Hierarchical Cluster . . . . . .. ... .. ....... 524
Dendogram for Single Link Example . . . . . . . ... ... ... ... 526
Dendogram for Complete Link Example . . . . . . ... ... ... .. 527
Scatter Plot of Distance Versus Dissimilarities, Given the

Monotonicity Constraint . . . . . . . .. ... ... 545
Scatter Plot of Distance Versus Dissimilarities, When the

Monotonicity Constraint Is Violated . . . . . ... ... .. ... ... 546
MDS Configuration Plot of Four U.S. Cities . . . . .. ... ... ... 550
MDS Two-Dimensional Configuration Perception Data . . . . . . . . . 551
MDS Three-Dimensional Configuration Perception Data . . . . . . . . 552
MDS Three-Dimensional Solution - Nations Data . . . . . .. ... .. 555
Path Analysis Diagram . . . . .. ... ... .. .. ... ...... 563
Two Factor EFA Path Diagram . . . . . ... ... ... ........ 568
3-Factor PAPModel . . . ... .. ... ... 576
Recursive and Nonrecursive Models . . . . . ... ... .. ... ... 581
Lincoln’s Strike Activity Model in SMSAs . . . . . . .. ... ... .. 587
CALIS Model for Eq. (10.6.2). . . . . . ... ... ... .. ...... 589
Lincoln’s Standardized Strike Activity Model Fit by CALIS. . . . . . . 591
Revised CALIS Model with Signs . . . . ... ... ... .. ..... 591
Socioeconomic Status Model . . . . . . . ... 592
Models for Alienation Stability . . . . . . . ... ... ... ... ... 596
Duncan-Haller-Portes Peer-Influence Model . . . . . . . ... ... .. 599

Growth with Latent Variables. . . . . . ... ... ... ........ 602



1

Introduction

1.1 Overview

In this book we present applied multivariate data analysis methods for making inferences
regarding the mean and covariance structure of several variables, for modeling relationships
among variables, and for exploring data patterns that may exist in one or more dimensions
of the data. The methods presented in the book usually involve analysis of data consisting of
n observations on p variables and one or more groups. As with univariate data analysis, we
assume that the data are a random sample from the population of interest and we usually
assume that the underlying probability distribution of the population is the multivariate
normal (MVN) distribution. The purpose of this book is to provide students with a broad
overview of methods useful in applied multivariate analysis. The presentation integrates
theory and practice covering both formal linear multivariate models and exploratory data
analysis techniques.

While there are numerous commercial software packages available for descriptive and
inferential analysis of multivariate data such as SPSS™ S Plus™ Minitab™, and SYS-
TAT™, among others, we have chosen to make exclusive use of SAS™ Version 8 for
Windows.

1.2  Multivariate Models and Methods

Multivariate analysis techniques are useful when observations are obtained for each of
a number of subjects on a set of variables of interest, the dependent variables, and one
wants to relate these variables to another set of variables, the independent variables. The
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data collected are usually displayed in a matrix where the rows represent the observations
and the columns the variables. The n x p data matrix Y usually represents the dependent
variables and the n x g matrix X the independent variables.

When the multivariate responses are samples from one or more populations, one often
first makes an assumption that the sample is from a multivariate probability distribution.
In this text, the multivariate probability distribution is most often assumed to be the multi-
variate normal (MVN) distribution. Simple models usually have one or more means g; and
covariance matrices %;.

One goal of model formulation is to estimate the model parameters and to test hypotheses
regarding their equality. Assuming the covariance matrices are unstructured and unknown
one may develop methods to test hypotheses regarding fixed means. Unlike univariate anal-
ysis, if one finds that the means are unequal one does not know whether the differences
are in one dimension, two dimensions, or a higher dimension. The process of locating
the dimension of maximal separation is called discriminant function analysis. In models
to evaluate the equality of mean vectors, the independent variables merely indicate group
membership, and are categorical in nature. They are also considered to be fixed and non-
random. To expand this model to more complex models, one may formulate a linear model
allowing the independent variables to be nonrandom and contain either continuous or cat-
egorical variables. The general class of multivariate techniques used in this case are called
linear multivariate regression (MR) models. Special cases of the MR model include mul-
tivariate analysis of variance (MANOVA) models and multivariate analysis of covariance
(MANCOVA) models.

In MR models, the same set of independent variables, X, is used to model the set of de-
pendent variables, Y. Models which allow one to fit each dependent variable with a differ-
ent set of independent variables are called seemingly unrelated regression (SUR) models.
Modeling several sets of dependent variables with different sets of independent variables
involve multivariate seemingly unrelated regression (MSUR) models. Oftentimes, a model
is overspecified in that not all linear combinations of the independent set are needed to
“explain” the variation in the dependent set. These models are called linear multivariate
reduced rank regression (MRR) models. One may also extend MRR models to seemingly
unrelated regression models with reduced rank (RRSUR) models. Another name often as-
sociated with the SUR model is the completely general MANOVA (CGMANOVA) model
since growth curve models (GMANOVA) and more general growth curve (MGGC) models
are special cases of the SUR model. In all these models, the covariance structure of Y is
unconstrained and unstructured.

In formulating MR models, the dependent variables are represented as a linear structure
of both fixed parameters and fixed independent variables. Allowing the variables to remain
fixed and the parameters to be a function of both random and fixed parameters leads to
classes of linear multivariate mixed models (MMM). These models impose a structure on
% so that both the means and the variance and covariance components of ¥ are estimated.
Models included in this general class are random coefficient models, multilevel models,
variance component models, panel analysis models and models used to analyze covariance
structures. Thus, in these models, one is usually interested in estimating both the mean and
the covariance structure of a model simultaneously.
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A general class of models that define the dependent and independent variables as ran-
dom, but relate the variables using fixed parameters are the class of linear structure relation
(LISREL) models or structural equation models (SEM). In these models, the variables may
be both observed and latent. Included in this class of models are path analysis, factor analy-
sis, simultaneous equation models, simplex models, circumplex models, and numerous test
theory models. These models are used primarily to estimate the covariance structure in the
data. The mean structure is often assumed to be zero.

Other general classes of multivariate models that rely on multivariate normal theory in-
clude multivariate time series models, nonlinear multivariate models, and others. When the
dependent variables are categorical rather than continuous, one can consider using multino-
mial logit or probit models or latent class models. When the data matrix contains n subjects
(examinees) and p variables (test items), the modeling of test results for a group of exam-
ines is called item response modeling.

Sometimes with multivariate data one is interested in trying to uncover the structure or
data patterns that may exist. One may wish to uncover dependencies both within a set of
variables and uncover dependencies with other variables. One may also utilize graphical
methods to represent the data relationships. The most basic displays are scatter plots or a
scatter plot matrix involving two or three variables simultaneously. Profile plots, star plots,
glyph plots, biplots, sunburst plots, contour plots, Chernoff faces, and Andrews’ Fourier
plots can also be utilized to display multivariate data.

Because it is very difficult to detect and describe relationships among variables in large
dimensional spaces, several multivariate techniques have been designed to reduce the di-
mensionality of the data. Two commonly used data reduction techniques include principal
component analysis and canonical correlation analysis. When one has a set of dissimilarity
or similarity measures to describe relationships, multidimensional scaling techniques are
frequently utilized. When the data are categorical, the methods of correspondence analysis,
multiple correspondence analysis, and joint correspondence analysis are used to geometri-
cally interpret and visualize categorical data.

Another problem frequently encountered in multivariate data analysis is to categorize
objects into clusters. Multivariate techniques that are used to classify or cluster objects into
categories include cluster analysis, classification and regression trees (CART), classifica-
tion analysis and neural networks, among others.

1.3 Scope of the Book

In reviewing applied multivariate methodologies, one observes that several procedures are
model oriented and have the assumption of an underlying probability distribution. Other
methodologies are exploratory and are designed to investigate relationships among the
“multivariables” in order to visualize, describe, classify, or reduce the information under
analysis. In this text, we have tried to address both aspects of applied multivariate analy-
sis. While Chapter 2 reviews basic vector and matrix algebra critical to the manipulation
of multivariate data, Chapter 3 reviews the theory of linear models, and Chapters 4—6 and
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10 address standard multivariate model based methods. Chapters 7-9 include several fre-
quently used exploratory multivariate methodologies.

The material contained in this text may be used for either a one-semester course in ap-
plied multivariate analysis for nonstatistics majors or as a two-semester course on multi-
variate analysis with applications for majors in applied statistics or research methodology.
The material contained in the book has been used at the University of Pittsburgh with both
formats. For the two-semester course, the material contained in Chapters 1-4, selections
from Chapters 5 and 6, and Chapters 7-9 are covered. For the one-semester course, Chap-
ters 1-3 are covered; however, the remaining topics covered in the course are selected from
the text based on the interests of the students for the given semester. Sequences have in-
cluded the addition of Chapters 4-6, or the addition of Chapters 7-10, while others have
included selected topics from Chapters 4—10. Other designs using the text are also possible.
No text on applied multivariate analysis can discuss all of the multivariate methodologies
available to researchers and applied statisticians. The field has made tremendous advances
in recent years. However, we feel that the topics discussed here will help applied profes-
sionals and academic researchers enhance their understanding of several topics useful in
applied multivariate data analysis using the Statistical Analysis System (SAS), Version 8
for Windows.

All examples in the text are illustrated using procedures in base SAS, SAS/STAT, and
SAS/ETS. In addition, features in SAS/INSIGHT, SAS/IML, and SAS/GRAPH are uti-
lized. All programs and data sets used in the examples may be downloaded from the
Springer-Verlag Web site, http://www.springer.com/editorial/authors.html. The programs
and data sets are also available at the author’s University of Pittsburgh Web site, http:
/Iwww.pitt.edu/~timm. A list of the SAS programs, with the implied extension .sas, dis-
cussed in the text follow.

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7
Multinorm m4_3_1 m5.3_1 mb6_4_1 m7.3_1
Norm MulSubSel mS5.5_1 m6_4_2 m7.32
m3_7_1 m4_5_1 m5.52 m6.4_3 m7.5_1
m3_72 m4_5_1a m5_7_1 m6_6_1

Box-Cox m4.52 m5_72 m6_6_2

Ramus m4_7_1 m5_9_1 m6_8_1

Unorm m49_1 m5.92 m6_8_2

m3_8_1 m4.92 m5_13_1

m3_8_7 m4_11_1 m5_14_1

m3_9a m4_13_1a

m3_9d m4_13_1b

m3_9e m4_15_1

m3_9f Power

m3_10a m4_17_1

m3_10b

m3_11_1



Chapter 8 Chapter 9 Chapter 10
m8.2_1 m9.4._1 ml0.4.1
m8_2.2 m9.4.2 ml10.4.2
m8_3_1 m9.4.3 ml0.-6_1
m8_3.2 m9_4_3a ml0.62
m8_3.3 m9._4.4 ml10.8_1
m8_6_1 m9.4.4

m8_8_1 m9.6_1

m8_8_2 m9_6_2

m8_10_1 m9_6_3

m8_10_2

m8_10_3

Also included on the Web site is the Fortran program Fit.For and the associated manual:
Fit-Manual.ps, a postscript file. All data sets used in the examples and some of the exercises
are also included on the Web site; they are denoted with the extension .dat. Other data sets
used in some of the exercises are available from the Data and Story Library (DASL) Web
site, http://lib.stat.cmu.dat/DASL/. The library is hosted by the Department of Statistics at

1.3 Scope of the Book

Other

Xmacro
Distnew

Carnegie Mellon University, Pittsburgh, Pennsylvania.
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2

Vectors and Matrices

2.1 Introduction

In this chapter, we review the fundamental operations of vectors and matrices useful in
statistics. The purpose of the chapter is to introduce basic concepts and formulas essen-
tial to the understanding of data representation, data manipulation, model building, and
model evaluation in applied multivariate analysis. The field of mathematics that deals with
vectors and matrices is called linear algebra; numerous texts have been written about the
applications of linear algebra and calculus in statistics. In particular, books by Carroll and
Green (1997), Dhrymes (2000), Graybill (1983), Harville (1997), Khuri (1993), Magnus
and Neudecker (1999), Schott (1997), and Searle (1982) show how vectors and matrices
are useful in applied statistics. Because the results in this chapter are to provide the reader
with the basic knowledge of vector spaces and matrix algebra, results are presented without
proof.

2.2 Vectors, Vector Spaces, and Vector Subspaces

a. Vectors

Fundamental to multivariate analysis is the collection of observations for d variables. The d
values of the observations are organized into a meaningful arrangement of d real' numbers,
called a vector (also called, a d-variate response or a multivariate vector valued observa-

L All vectors in this text are assumed to be real valued.
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tion). Letting y; denote the i™ observation where i goes from 1 to d, the d x 1 vector y is
represented as

y= . 2.2.1)
yd
This representation of y is called a column vector of order d, with d rows and 1 column.

Alternatively, a vector may be represented as a 1 x d vector with 1 row and d columns.
Then, we denote y as y’ and call it a row vector. Hence,

Y =1y, y2, -, ydl (2.2.2)

Using this notation, y is a column vector and y’, the transpose of y, is a row vector. The
dimension or order of the vector y is d where the index d represents the number of variables,
elements or components in y. To emphasize the dimension of y, the subscript notation yx |
or simply yg is used.

The vector y with d elements represents, geometrically, a point in a d-dimensional Eu-
clidean space. The elements of y are called the coordinates of the vector. The null vec-
tor 071 denotes the origin of the space; the vector y may be visualized as a line segment
from the origin to the point y. The line segment is called a position vector. A vector y with
n variables, y,, is a position vector in an n-dimensional Euclidean space. Since the vector y
is defined over the set of real numbers R, the n-dimensional Euclidean space is represented
as R" or in this text as V,.

Definition 2.2.1 A vector y,«1 is an ordered set of n real numbers representing a position
in an n-dimensional Euclidean space V.

b. Vector Spaces

The collection of n x 1 vectors in V,, that are closed under the two operations of vector
addition and scalar multiplication is called a (real) vector space.

Definition 2.2.2 An n-dimensional vector space is the collection of vectors in V, that sat-
isfy the following two conditions

1. IfxeV, and yeV,, thenz = x + yeV,,
2. If xeR and yeV,, then z = ayeV,
(The notation € is set notation for “is an element of.”)
For vector addition to be defined, x and y must have the same number of elements 7.

Then, all elements z; in z= X + y are defined as z; = x; + y; fori = 1,2,...,n.
Similarly, scalar multiplication of a vector y by a scaler « € R is defined as z; = «y;.
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c. Vector Subspaces

Definition 2.2.3 A subset, S, of V, is called a subspace of V,, if S is itself a vector space.
The vector subspace S of V,, is represented as S C V.

Choosing @ = 0 in Definition 2.2.2, we see that 0 € V,, so that every vector space
contains the origin 0. Indeed, S = {0} is a subspace of V,, called the null subspace. Now,
if @ and B are elements of R and x and y are elements of V,,, then all linear combinations
ax + By, are in V,. This subset of vectors is called Vi, where V; < V,. The subspace
Vi is called a subspace, linear manifold or linear subspace of V,,. Any subspace Vj, where
0 < k < n, is called a proper subspace. The subset of vectors containing only the zero
vector and the subset containing the whole space are extreme examples of vector spaces
called improper subspaces.

Example 2.2.1 Let

1 0
x=| 0 and y=| 1
0 0

The set of all vectors S of the form z = ax+ By represents a plane (two-dimensional space)
in the three-dimensional space V3. Any vector in this two-dimensional subspace, S = V>,
can be represented as a linear combination of the vectors X and y. The subspace V3 is
called a proper subspace of V3 so that Vo C V.

Extending the operations of addition and scalar multiplication to k vectors, a linear com-
bination of vectors y; is defined as

k
v=) ayi eV (2.2.3)
i=1
where y; € V and «; € R. The set of vectors yi, y2, ..., ¥k are said to span (or generate)
v, if
k
V={viv=> ayi) (22.4)
i=1

The vectors in V satisfy Definition 2.2.2 so that V is a vector space.
Theorem 2.2.1 Let {y,y2, ..., Yk} be the subset of k, n x 1 vectors in V,. If every vector
in'V is a linear combination of y1, Y2, - . ., Yk then V is a vector subspace of V,,.
Definition 2.2.4 The set of n x 1 vectors {y1,y2, ..., Yk} are linearly dependent if there
exists real numbers a1, oo, ..., not all zero such that

k
D aiyi=0
i=1

Otherwise, the set of vectors are linearly independent.
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For a linearly independent set, the only solution to the equation in Definition 2.2.4 is
given by @1 = ap = --- = o = 0. To determine whether a set of vectors are linearly
independent or linearly dependent, Definition 2.2.4 is employed as shown in the following
examples.

Example 2.2.2 Let

1 0 1
vi=| 1 |, y2 = 1 [, and y3= 4
1 -1 -2

To determine whether the vectors yi1, y2, and y3 are linearly dependent or linearly inde-
pendent, the equation

a1y1 + o2y2 + a3y =0

is solved for a1, an, and az. From Definition 2.2.4,

1 0 1 0
aq 1 + o 1 + a3 4 = 0
I =1 ] =2 ] | 0 |
@y ] 0 ] o3 ] 0
o + o) =+ 4o = 0
o i —) i —20(3 i L 0 i
This is a system of three equations in three unknowns
1 o1 + a; = 0
2) a1 + ar + 4daz = 0
B a1 — ap — 2a3 = 0
From equation (1), «1 = —a3. Substituting oy into equation (2), ap = —3a3. If a1and or

are defined in terms of o3, equation (3) is satisfied. If a3z # 0, there exist real numbers a1,
o, and a3, not all zero such that
3

Zai =0

i=1
Thus, y1, y2, and y3 are linearly dependent. For example, y1 + 3y> —y3 = 0.
Example 2.2.3 As an example of a set of linearly independent vectors, let
1 3

. Yo= 1 , and Y3= 4
1 -2 1

— O

yi =
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Using Definition 2.2.4,
0 1 3 0
ol 1 + a2 1 +a3| 4 = 0
1 -2 1 0

is a system of simultaneous equations

(D) oy +3a3 =0
2) ar+ay+4a3=0

3) a1 —2ay +a3=0

From equation (1), ar = —3a3. Substituting —3w3 for oy into equation (2), a1 = —a3;
by substituting for a1 and o> into equation (3), az = 0. Thus, the only solution is a1 =
ay = a3 =0, or {y1, Y2, y3} is a linearly independent set of vectors.

Linearly independent and linearly dependent vectors are fundamental to the study of ap-
plied multivariate analysis. For example, suppose a test is administered to n students where
scores on k subtests are recorded. If the vectors yp, ya, ..., yx are linearly independent,
each of the k subtests are important to the overall evaluation of the n students. If for some
subtest the scores can be expressed as a linear combination of the other subtests

k=1
Ye = Zaiyl'
i=1

the vectors are linearly dependent and there is redundancy in the test scores. It is often
important to determine whether or not a set of observation vectors is linearly independent;
when the vectors are not linearly independent, the analysis of the data may need to be
restricted to a subspace of the original space.

Exercises 2.2

1. For the vectors

1 2
yi=| 1 and y; = 0
| -1

find the vectors

(a) 2y1 + 3y
(b) ay1 + By
(c) y3 such that 3y; — 2y, +4y3 =0

2. For the vectors and scalars defined in Example 2.2.1, draw a picture of the space S
generated by the two vectors.
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3. Show that the four vectors given below are linearly dependent.

1 2 1 0
yvi=| 0|, y>=]| 3], y3=| 0 |, and ys=| 4
0 5 1 6

4. Are the following vectors linearly dependent or linearly independent?

1 2
yi=| 1|, =2 |, ya=| 2
3 3
5. Do the vectors
2 1 6
vi=| 4 |, y2=| 2|, and y3=| 12
2 3 10
span the same space as the vectors
0 2
xi=| 0 and xp = 4
2 10

6. Prove the following laws for vector addition and scalar multiplication.

(a) x+y=y+x (commutative law)

b)) x+y)+z=x+ (y+12z) (associative law)

(c) a(By) = (¢B)y = (Ba)y = a(By) (associative law for scalars)
(d) a(x+y) =ax+ay (distributive law for vectors)

() (@ + B)y =ay+ By (distributive law for scalars)

7. Prove each of the following statements.

(a) Any set of vectors containing the zero vector is linearly dependent.
(b) Any subset of a linearly independent set is also linearly independent.

(c) In a linearly dependent set of vectors, at least one of the vectors is a linear
combination of the remaining vectors.

2.3 Bases, Vector Norms, and the Algebra of Vector Spaces
The concept of dimensionality is a familiar one from geometry. In Example 2.2.1, the

subspace S represented a plane of dimension two, a subspace of the three-dimensional
space V3. Also important is the minimal number of vectors required to span S.
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a. Bases

Definition 2.3.1 Let {y1,y2, ..., Y} be a subset of k vectors where y; € V,. The set of k
vectors is called a basis of Vi if the vectors in the set span Vi and are linearly independent.
The number k is called the dimension or rank of the vector space.

Thus, in Example 2.2.1 § = V, C V3 and the subscript 2 is the dimension or rank of
the vector space. It should be clear from the context whether the subscript on V represents
the dimension of the vector space or the dimension of the vector in the vector space. Every
vector space, except the vector space {0}, has a basis. Although a basis set is not unique, the
number of vectors in a basis is unique. The following theorem summarizes the existence
and uniqueness of a basis for a vector space.

Theorem 2.3.1 Existence and Uniqueness

1. Every vector space has a basis.

2. Every vector in a vector space has a unique representation as a linear combination
of a basis.

3. Any two bases for a vector space have the same number of vectors.

b. Lengths, Distances, and Angles

Knowledge of vector lengths, distances and angles between vectors helps one to understand
relationships among multivariate vector observations. However, prior to discussing these
concepts, the inner (scalar or dot) product of two vectors needs to be defined.

Definition 2.3.2 The inner product of two vectors X and 'y, each with n elements, is the

scalar quantity
n
Xy = Z Xi i
i=1

In textbooks on linear algebra, the inner product may be represented as (X, y) or x-y. Given
Definition 2.3.2, inner products have several properties as summarized in the following
theorem.

Theorem 2.3.2 For any conformable vectors X, y, z, and w in a vector space V and any
real numbers a and B, the inner product satisfies the following relationships

1. Xy=yx

2. x'x > 0 with equality if and only if x = 0
3. (ax)'(By) = aB(Xy)

4 x+y)z=xz+Yyz

5. x+y)w+zy=xw+z)+yWw+z)



14 2. Vectors and Matrices

If x = y in Definition 2.3.2, then xX'x =} __, x?. The quantity (x'x)'/2 is called the
Euclidean vector norm or length of x and is represented as ||x||. Thus, the norm of x is the
positive square root of the inner product of a vector with itself. The norm squared of x is
represented as ||x| |2. The Euclidean distance or length between two vectors x and y in V,
islx—yl=[x—-y)/(x— y)]l/z. The cosine of the angle between two vectors by the law
of cosines is

cosd =xy/|Ix|||lyll 0° <6 <180° 2.3.1)

Another important geometric vector concept is the notion of orthogonal (perpendicular)
vectors.

Definition 2.3.3 Two vectors x and y in V,, are orthogonal if their inner product is zero.

Thus, if the angle between x and y is 90°, then cosé = 0 and x is perpendicular to y,
written as x L y.

Example 2.3.1 Let
-1 1
X = 1 and y= 0
2 -1

The distance between X and y is then |x —y| = [x—y) (x — y)]l/2 = /14 and the
cosine of the angle between X and y is

cos8 = x'y/ Xl Iyl = —=3/v6v2 = —/3/2

so that the angle between X and y is 0 = cos™! (—«/5/2) = 150°.

If the vectors in our example have unit length, so that ||x|| = ||y|| = 1, then the cos 6 is
just the inner product of x and y. To create unit vectors, also called normalizing the vectors,
one proceeds as follows

—-1//6 1/v2

u, =x/|x|| = 1/4/6 and uy, =y/|yll = 0/v/2
2//6 —-1/V2
and the cos 9 = u; u, = -3 /2, the inner product of the normalized vectors. The normal-

ized orthogonal vectors u, and u, are called orthonormal vectors.

Example 2.3.2 Let

-1 —4
X = 2 and y= 0
—4 1

Then X'y = 0; however, these vectors are not of unit length.

Definition 2.3.4 A basis for a vector space is called an orthogonal basis if every pair of
vectors in the set is pairwise orthogonal; it is called an orthonormal basis if each vector
additionally has unit length.
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P, y=ox

FIGURE 2.3.1. Orthogonal Projection of y on x, Pyy = ax

The standard orthonormal basis for V,, is {e|, e», ..., e,} where ¢; is a vector of all zeros
with the number one in the i position. Clearly the |le;|| = 1 and e; Le;; for all pairs i
and j. Hence, {e1, €2, ..., e,} is an orthonormal basis for V,, and it has dimension (or rank)
n. The basis for V,, is not unique. Given any basis for V; C V,, we can create an orthonormal
basis for V. The process is called the Gram-Schmidt orthogonalization process.

c. Gram-Schmidt Orthogonalization Process

Fundamental to the Gram-Schmidt process is the concept of an orthogonal projection. In a
two-dimensional space, consider the vectors x and y given in Figure 2.3.1. The orthogonal
projection of y on X, PxYy, is some constant multiple, ax of X, such that Pyy L (y—FPxy).

Since the cos 8 =cos 90° = 0, we set (y—ax)'ax equal to 0 and we solve for & to find
a=(yx)/ ||X||2. Thus, the projection of y on x becomes

Py = ax = (yxx/ [Ix||*

Example 2.3.3 Ler

1 1
x=| 1 and y=| 4
1 2
Then, the
_Oox 7

y_ —_—
Vw23

Observe that the coefficient « in this example is no more than the average of the ele-
ments of y. This is always the case when projection an observation onto a vector of 1s (the
equiangular or unit vector), represented as 1, or simply 1. P;y = y1 for any multivariate
observation vector y.

To obtain an orthogonal basis {yi, ..., y,} for any subspace V of V,, spanned by any
set of vectors {Xy, X3, ..., X¢}, the preceding projection process is employed sequentially
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as follows

Y1 =X

Y2 = X2 — Pyxo = X2 — (Xhy)yi/ Iy 12 y2-lyi

y3 = X3 — Py, X3 — Py,X3

=x3 — (y0Y1/ Iyl = (3y2)y2/ly20 yalya Ly
or, more generally
i—1
yi=x— Y cjy; where ¢ =xy)/ |y;]’

j=1

deleting those vectors y; for which y; = 0. The number of nonzero vectors in the set
is the rank or dimension of the subspace V and is represented as V., r < k. To find an
orthonormal basis, the orthogonal basis must be normalized.

Theorem 2.3.3 (Gram-Schmidt) Every r-dimensional vector space, except the zero-dimen-
sional space, has an orthonormal basis.

Example 2.3.4 Let V be spanned by

X] = s Xy = and X4 =

N = O
e
¥
Il
— = D =
—_— W N N

1
—1
1
0
1

To find an orthonormal basis, the Gram-Schmidt process is used. Set

yi=x1=

—_O = = =

Y2 = X2 — (xbyDy1/ Iyi 2

I

N = KON
|
oo

—_— O = = =
Il

S~ NN O

y3 =x3 — (Gy0yi/ I yi 11> —x5y2)y2/ 11 y2 1°=0
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so delete y3;

6
2
va=| 3 | = &yoy/ Iyl - &y2ye/ ly20?
-1
1
6 | 1 0 4
2 -1 2 2
8 9
= 3| —-- 1 |—=] 2 |=]| -1
1| 4 o] 21 -2
1] 1 0 —1
Thus, an orthogonal basis for V is {y1,y2,Ya}. The vectors must be normalized to
obtain an orthonormal basis; an orthonormal basis is w; = y1/v4,uy = y2/3, and
u3 = y4/~/26.

d. Orthogonal Spaces

Definition 2.3.5 Let V, = {x1, ..., X} C V,. The orthocomplement subspace of V, in V,,,
represented by VL, is a vector subspace of V,, which consists of all vectors'y € V, such
that X;y = 0 and we write V,, = V, @ VL.

The vector space V,, is the direct sum of the subspaces V,, and VL. The intersection of
the two spaces only contain the null space. The dimension of V,, dim V,,, is equal to the
dim V, + dim V+ so that the dim V- = n — r. More generally, we have the following
result.

Definition 2.3.6 Let S1, So, ..., Sk denote vector subspaces of V,,. The direct sum of these
vector spaces, represented as @le Si, consists of all unique vectors v = Zle o;s; where
si € Si,i =1,...,kand the coefficients a; € R.

Theorem 2.3.4 Let Sy, S>, ..., Sk represent vector subspaces of V,,. Then,
1. V= @le S; is a vector subspace of V,,, V C V.
2. The intersection of S; is the null space {0}.
3. The intersection of V and V= is the null space.

4. ThedimV =n — k so thatdim V @ V+ = n.

Example 2.3.5 Let

V = o1, 1 ={x;,x2}and y € V3
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We find V- using Definition 2.3.5 as follows

Vi={yeVs|(yx)=0foranyx e V}
={yeVs|(yLV}
={ye V3| (yLlx;} i=12)

A vector'y = [y1, y2, y3] must be found such that y1x; and y.1x,. This implies that
yi—y3=0,0ry = y3, and y = y3, or y| = y2 = y3. Letting y; = 1,

1
vi=|1|=1 and Wz=VioV
!
Furthermore, the
V] yi—y
Piy=1|75% and Pyy=y—-Piy=| n—Yy
y | 3=y

Alternatively, from Definition 2.3.6, an orthogonal basis for V is

1 —1/2
V= 0 , 1 ={vi,»} =815
-1 —-1/2
and the Pyy becomes
yi—y
Pyy+Puy=| »2—Yy
y3—y

Hence, a unique representation fory isy = P1y + Pyy as stated in Theorem 2.3.4. The
dim V3 = dim1 + dim V1.

In Example 2.3.5, V= is the orthocomplement of V relative to the whole space. Often
S € V C V, and we desire the orthocomplement of S relative to V instead of V,,. This
space is represented as V/S and V = (V/S) & S = S1 @ S,. Furthermore, V,, = vie
(V/S)® S =V @S| @& S. If the dimension of V is k and the dimension of S is r, then
the dimension of V- is n — k and the dim V/Sisk—r,sothat(mn —k)+(k—r)+r=n
or the dim V,, = dim V+ + dim(V/S) + dim § as stated in Theorem 2.3.4. In Figure 2.3.2,
the geometry of subspaces is illustrated with V, = S @ (V/S) @ V+.

Yij = M+ o + e i=1,2 and j=1,2

The algebra of vector spaces has an important representation for the analysis of variance
(ANOVA) linear model. To illustrate, consider the two group ANOVA model
Thus, we have two groups indexed by i and two observations indexed by j. Representing
the observations as a vector,
Y = [yi1, 12, y21, y221
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V/S

FIGURE 2.3.2. The orthocomplement of S relative to V, V /S

and formulating the observation vector as a linear model,

yi1 1 1 0 el
Y12 1 1 0 e

= = + o)+ o) +
y Y21 (I e 0 : 1 2 e1
y22 1 0 1 e

The vectors associated with the model parameters span a vector space V often called the
design space. Thus,

={1,a;,ay}

—
OO ==
—_——O O

where 1, aj, and a, are elements of V4. The vectors in the design space V are linearly
dependent. Let A = {a, ay} denote a basis for V. Since 1 C A, the orthocomplement of
the subspace {1} = 1 relative to A, denoted by A/1 is given by

A/1 ={a; — Pia;, ap — Pray}

1/2 ~1/2

B 1/2 ~1/2
1 -12 1/2
~1/2 1/2

The vectors in A/1 span the space; however, a basis for A/1 is given by

1

1
Alt=|
-1

where (A/1)®1 =A and A C V4. Thus, (A/1)B1d At =V, Geometrically, as shown in
Figure 2.3.3, the design space V = A has been partitioned into two orthogonal subspaces
1and A/1suchthat A =1 (A/1), where A/1 is the orthocomplement of 1 relative to A,
and A ® A+ = Vi
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AL

y

FIGURE 2.3.3. The orthogonal decomposition of V for the ANOVA

The observation vector y € V4 may be thought of as a vector with components in various
orthogonal subspaces. By projecting y onto the orthogonal subspaces in the design space A,
we may obtain estimates of the model parameters. To see this, we evaluate P4y = P1y +
Pasy.

Piy=Yy

—_— = = =
I
)
—_——

Paj1y = Pay — Pry
_ (apa, | (a)a (D1

llay|? llaz|? 12
2
=S [(y/ai) 3 (y/l)] a
- T 1
la; 12 (112

i=1
2 2

=) O —Vai =) _da;
i=1 i=1

since (A/1)L1 and 1 = a; + a,. As an exercise, find the projection of y onto A+ and the
I Pajyll*.

From the analysis of variance, the coefficients of the basis vectors for 1 and A/1 yield the
estimators for the overall effect i« and the treatment effects «; for the two-group ANOVA
model employing the restriction on the parameters that o1 + o2 = 0. Indeed, the restriction
creates a basis for A/1. Furthermore, the total sum of squares, ||y||?, is the sum of squared
lengths of the projections of y onto each subspace, ||y||> = || P1yl*>+ || PA/1y||2 + | PALYHZ.
The dimensions of the subspaces for I groups, corresponding to the decomposition of ||y]|2,
satisfy the relationship thatn =1+ (I — 1) + (n — I) where the dimA = I andy € V,,.
Hence, the degrees of freedom of the subspaces are the dimensions of the orthogonal vector
spaces {1}, {A/1} and {A+}for the design space A. Finally, the || PA/1y||2 is the hypothesis
sum of squares and the || PALyH2 is the error sum of squares. Additional relationships be-
tween linear algebra and linear models using ANOVA and regression models are contained
in the exercises for this section. We conclude this section with some inequalities useful in
statistics and generalize the concepts of distance and vector norms.



2.3 Bases, Vector Norms, and the Algebra of Vector Spaces 21

e. Vector Inequalities, Vector Norms, and Statistical Distance

In a Euclidean vector space, two important inequalities regarding inner products are the
Cauchy-Schwarz inequality and the triangular inequality.

Theorem 2.3.5 [fx andy are vectors in a Euclidean space V, then
1. &y)? < IxI?Iyl? (Cauchy-Schwarz inequality)
2. Ix+yll < |Ixll + llyll (Triangular inequality)

In terms of the elements of x and y, (1) becomes

(2,: xiyi>2 < <lei2 ) <Xl: y?) (2.3.2)

which may be used to show that the zero-order Pearson product-moment correlation co-
efficient is bounded by 1. Result (2) is a generalization of the familiar relationship for
triangles in two-dimensional geometry.

The Euclidean norm is really a member of Minkowski’s family of norms (Lp-norms)

n 1/p
|Mb={§]mW} (2.3.3)
i=1

where 1 < p < oo and x is an element of a normed vector space V. For p = 2, we
have the Euclidean norm. When p = 1, we have the minimum norm, ||x||;. For p = oo,
Minkowski’s norm is not defined, instead we define the maximum or infinity norm of x as

IXlloo = max |x;]| 2.3.4)
1<i<n

Definition 2.3.7 A vector norm is a function defined on a vector space that maps a vector
into a scalar value such that

1. |x|l, = 0, and |[x]|, = 0 if and only if x = 0,
2. x|, = la| x|, for @ € R,
3 Ix+yl, < IxIl, + lIyll,

for all vectors x and y.

Clearly the ||x|, = (x’ x)1/2 satisfies Definition 2.3.7. This is also the case for the maxi-

mum norm of X. In this text, the Euclidean norm (L;-norm) is assumed unless noted other-
wise. Note that (| |x||2)2 = ||x||? = x'x is the Euclidean norm squared of x.

While Euclidean distances and norms are useful concepts in statistics since they help to
visualize statistical sums of squares, non-Euclidean distance and non-Euclidean norms are
often useful in multivariate analysis. We have seen that the Euclidean norm generalizes to a
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more general function that maps a vector to a scalar. In a similar manner, we may generalize
the concept of distance. A non-Euclidean distance important in multivariate analysis is the
statistical or Mahalanobis distance.

To motivate the definition, consider a normal random variable X with mean zero and
variance one, X ~ N(0, 1). An observation x, that is two standard deviations from the
mean lies a distance of two units from the origin since the ||x,| = (0% +2%)1/2 = 2 and
the probability that 0 < x < 2 is 0.4772. Alternatively, suppose ¥ ~ N(0, 4) where the
distance from the origin for y, = X, is still 2. However, the probability that 0 < y < 2
becomes 0.3413 so that y is closer to the origin than x. To compare the distances, we must
take into account the variance of the random variables. Thus, the squared distance between
x; and x; is defined as

Dizj = (5 —xj)*/0? = (x; —x))(@D) 7 (x; — x;) (2.3.5)

where o2 is the population variance. For our example, the point X, has a squared statistical
distance D[Z. = 4 while the point y, = 2 has a value of D[Z. = 1 which maintains the in-
equality in probabilities in that Y is “closer” to zero statistically than X. D;; is the distance
between x; and x;, in the metric of o2 called the Mahalanobis distance between x; and x;.
When o2 = 1, Mahalanobis’ distance reduces to the Euclidean distance.

Exercises 2.3

1. For the vectors

-1 1 1
X = 3], y=| 2 |, and z=| 1
2 0

and scalars « = 2 and B = 3, verify the properties given in Theorem 2.3.2.
2. Using the law of cosines
lly = xII* = 1IxII + Iyl — 2 1]l |y ]| cos &

derive equation (2.3.1).

3. For the vectors 2 3
yi=| —2 and yp = 0
1 -1

(a) Find their lengths, and the distance and angle between them.

(b) Find a vector of length 3 with direction cosines
cosar =yi/llyl =1/v2 and cosas = y/ lyll = —1/v2

where 1 and o, are the cosines of the angles between y and each of its refer-

1 0
€nces axes e;= 0 , and e;= E

(c) Verify that cos? oy +cos?ay = 1.
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4.
1 2 5
y = 9 and V=4{vi=] 3 ,2vo=1| O
-7 1 4

(a) Find the projection of y onto V and interpret your result.

(b) In general, if yL V, can you find the Pyy?

5. Use the Gram-Schmidt process to find an orthonormal basis for the vectors in Exer-
cise 2.2, Problem 4.

6. The vectors

1 2
V] = 2 and vy=| 3
-1 0

span a plane in Euclidean space.

(a) Find an orthogonal basis for the plane.
(b) Find the orthocomplement of the plane in V3.
(c¢) From (a) and (b), obtain an orthonormal basis for V3.
7. Find an orthonormal basis for V3 that includes the vector y = [—1/+/3, 1/4/3,
—-1/4/31.
8. Do the following.

(a) Find the orthocomplement of the space spanned by v/ = [4, 2, 1] relative to
Euclidean three dimensional space, V3.

(b) Find the orthocomplement of v/ = [4, 2, 1] relative to the space spanned by
vi=[1,1,1]and V| =[2,0, —1].

(c) Find the orthocomplement of the space spanned by v{ = [1,1,1] and v, =
[2,0, —1] relative to V3.

(d) Write the Euclidean three-dimensional space as the direct sum of the relative
spaces in (a), (b), and (c) in all possible ways.

9. Let V be spanned by the orthonormal basis

1//2 0
B 0 4 v | V2
= 1/\/5 an V) = 0
0 —1/v/2

(a) Expressx' = [0, 1,1, 1] as x = x; + Xp,where x; € V and x; € v
(b) Verify that the || Pyx||2 = || Py, x| + || Py,x]|2.

(c) Which vectory € V is closest to x? Calculate the minimum distance.
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10. Find the dimension of the space spanned by

vi A V3 V4 Vs
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1

11. Lety, € V,,and V = {1}.

(a) Find the projection of y onto V=, the orthocomplement of V relative to V,.

(b) Representy asy =X + X2, where x; € V and x, € V1. What are the dimen-
sions of V and V1?

() Since |lyll> = IIxi[1* + %2/ = IPyyll* + | Py.y
for each of the components of [ly||?. Divide || Py 1 y“2 by the dimension of V.
What do you observe about the ratio || Py.y || 2 / dim V4?2

2 .
, determine a general form

12. Lety, € V, be a vector of observations, y = [y, y2,..., y,] and let V = {1, x}
where X' = [x1, x2, ..., X,].

(a) Find the orthocomplement of 1 relative to V' (that is, V' /1) so that 1(V /1) =
V. What is the dimension of V /1?

(b) Find the projection of y onto 1 and also onto V/1. Interpret the coefficients
of the projections assuming each component of y satisfies the simple linear
relationship y; = o + B(x; — X).

(c) Findy — Pyy and ||y — va||2. How are these quantities related to the simple
linear regression model?

13. For the I Group ANOVA model y;; = u +a; +e;; wherei =1,2,..., I and j =

1,2, ..., n observations per group, evaluate the square lengths ||Pyy]?, PA/ly} 2 ,
and ||PAin2 for V. = {1, ay, ..., ay}. Use Figure 2.3.3 to relate these quantities
geometrically.
14. Let the vector space V be spanned by
vy \) v3 V4 V5 V6 v7 Vg Vo
M1 7] F 177 07 177707 [17 [0 [ 07 0 ]
1 1 0 1 0 1 0 0 0
1 1 0 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 0 1 [ 1 0 0 0 1 0
1 0 1 1 0 0 0 1 0
1 0 1 0 1 0 0 0 1
L1 ] Lo L1 ] LoJL 1] LOJ] LO ] L[O0] L1 ]

>
=
>
&
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(a) Find the space A+ B =1& (A/1) ® (B/1) and the space AB/(A + B) so that
V=1&(A/1) & (B/1) + [AB/(A + B)]. What is the dimension of each of
the subspaces?

(b) Find the projection of the observation vector y = [y111, Y112, Y211, Y212, Y311,
Y312, Y411, Y412] in Vg onto each subspace in the orthogonal decomposition of V
in (a). Represent these quantities geometrically and find their squared lengths.

(c) Summarize your findings.

15. Prove Theorem 2.3.4.
16. Show that Minkowski’s norm for p = 2 satisfies Definition 2.3.7.

17. For the vectors y = [y, ..., yo] and X' = [xy, ..., x,] with elements that have a
mean of zero,

(a) Show that sy = [ly|* /(n — 1) and 57 = [x]|* / (n — 1).

(b) Show that the sample Pearson product moment correlation between two obser-
vations x and y is r = X'y/ |Ix|| ||yl -

2.4 Basic Matrix Operations

The organization of real numbers into a rectangular or square array consisting of n rows
and d columns is called a matrix of order n by d and written as n x d.

Definition 2.4.1 A matrix Y of order n x d is an array of scalars given as

yir y1i2 - Yiud

Y21 Y22 ot Y2
Yn><d = . .

Ynl Yn2 - Ynd

The entries y;; of Y are called the elements of Y so that Y may be represented as Y = [y;;].
Alternatively, a matrix may be represented in terms of its column or row vectors as

Yixda =[vi,v2,...,vq] and v; eV, (2.4.1)
or ,
v
Y> ,
Yva = . and y, € Vy
Yo

Because the rows of Y are usually associated with subjects or individuals each y; is a
member of the person space while the columns v; of Y are associated with the variable
space. If n = d, the matrix Y is square.
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a. Equality, Addition, and Multiplication of Matrices

Matrices like vectors may be combined using the operations of addition and scalar multi-
plication. For two matrices A and B of the same order, matrix addition is defined as

A+B=C ifandonlyif C= [Cij] = [aij + bij] 24.2)

The matrices are conformable for matrix addition only if both matrices are of the same
order and have the same number of row and columns.
The product of a matrix A by a scalar « is

aA = Aa = [aa;j] (2.4.3)

Two matrices A and B are equal if and only if [a;;] = [b;;]. To extend the concept of an
inner product of two vectors to two matrices, the matrix product AB = C is defined if and
only if the number of columns in A is equal to the number of rows in B. For two matrices
A, «q and B; ., the matrix (inner) product is the matrix C,, ,, such that

d
AB =C=[c;] for ¢;j= Zaikbkj (2.4.4)
k=1

From (2.4.4), we see that C is obtained by multiplying each row of A by each column
of B. The matrix product is conformable if the number of columns in the matrix A is equal
to the number of rows in the matrix B. The column order is equal to the row order for
matrix multiplication to be defined. In general, AB # BA. If A = B and A is square, then
AA = A2, When A2= A, the matrix A is said to be idempotent.

From the definitions and properties of real numbers, we have the following theorem for
matrix addition and matrix multiplication.

Theorem 2.4.1 For matrices A, B, C, and D and scalars o and B, the following properties
hold for matrix addition and matrix multiplication.

I. A+B=B+A
A+B)+C=A+B+0)
a(A + B) =«A+pB

(@ + B)A =aA+BA
(AB)C = A(BC)
AB+C)=AB+AC

(A +B)C = AC + BC
A+(-A) =0

O 2 N S R W

A+0=A

N
S

(A +B)(C + D) = A(C + D) + B(C + D) = AC + AD + BC + BD
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Example 2.4.1 Let

1 2 2 2
A= 3 7 and B=| 7
—4 8 3 1
Then
3 4 15 20
A+B= 10 12 and 5(A+B)= 50 60
-1 9 -5 45

For our example, AB and BA are not defined. Thus, the matrices are said to not be con-
formable for matrix multiplication. The following is an example of matrices that are con-
formable for matrix multiplication.

Example 2.4.2 Let

1 2 1
A=[_; f (3)] and B=|1 2 0
2 -1
Then
[ (=DM +2)+3(1) —1Q2)+2Q2)+32) —1(1)+2(0) +3(—1)
AB =
S(H+ 1M 401 5@+1@2)+02)  5(1)+1(0) +0(=1)
4 8 -4
B 6 12 5

Alternatively, if we represent A and B as
A =[a;,ay,...,a4] and B=

Then the matrix product is defined as an “outer” product
d
AB = "a;b]
k=1

where each C;, = akb;{ is a square matrix, the number of rows is equal to the number of
columns. For the example, letting

[3] w-[3] -3

b =[1,2,1], by=[1,2,0], bj=[1,2—1]
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Then

3
Y ab, =Ci+C2+C

k=1
-1 =2 —1 n 2 40 n 3 6 -3
a 5 10 5 1 20 0 0 0

4 8 —4
2[6 > 5:|=AB

Thus, the inner and outer product definitions of matrix multiplication are equivalent.

b. Matrix Transposition

In Example 2.4.2, we defined B in terms of row vectors and A in terms of column vectors.
More generally, we can form the transpose of a matrix. The transpose of a matrix A, x4 is
the matrix A/, =~ obtained from A = [ai j] by interchanging rows and columns of A. Thus,

apz a - anl

, alp a2 e a2
Apan =1 . . : (2.4.5)

ayd axd - Qpd

Alternatively, if A = [a;;] then A’ =[a jil- A square matrix A is said to be symmetric if
and only if A = A’ or [a;;] = [a;]. A matrix A is said to be skew-symmetric if A = —A’.
Properties of matrix transposition follow.

Theorem 2.4.2 For matrices A, B, and C and scalars a and B, the following properties
hold for matrix transposition.

1. (AB) = B'A/

22 A+B)=A"+P

3 (A)Y =A

4. (ABC) = C'B'A’

5. (@A) = aA’

6. (@A+BB) = aA’ + BB’

Example 2.4.3 Let
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Then
,_—1 -1 ;21
A__3 4] and B—|:1 1:|
AB = ;gi| and (AB)/:[i g}:B/A’
(A+B) = ig}=A’+B’

The transpose operation is used to construct symmetric matrices. Given a data matrix
Y, x4, the matrix Y'Y is symmetric, as is the matrix YY’. However, Y'Y # YY’ since the
former is of order d x d where the latter is an n X n matrix.

c. Some Special Matrices

Any square matrix whose off-diagonal elements are Os is called a diagonal matrix. A di-
agonal matrix A, x, is represented as A = diaglay1, az, ..., a,n] or A = diag[a;;] and is
clearly symmetric. If the diagonal elements, a;; = 1 for all i, then the diagonal matrix A
is called the identity matrix and is written as A = I, or simply L. Clearly, IA = AI = A
so that the identity matrix behaves like the number 1 for real numbers. Premultiplication
of a matrix B, x4 by a diagonal matrix R, »,, = diag[r;;] multiplies each element in the
i row of By« by r;;; postmultiplication of B, x4 by a diagonal matrix Cyxq = diag|[c;;]
multiplies each element in the j® column of B by ¢ jj- A matrix 0 with all zeros is called
the null matrix.

A square matrix whose elements above (or below) the diagonal are Os is called a lower
(or upper) triangular matrix. If the elements on the diagonal are 1s, the matrix is called a
unit lower (or unit upper) triangular matrix.

Another important matrix used in matrix manipulation is a permutation matrix. An ele-
mentary permutation matrix is obtained from an identity matrix by interchanging two rows
(or columns) of I. Thus, an elementary permutation matrix is represented as I, ;7. Premul-
tiplication of a matrix A by I; ;/, creates a new matrix with interchanged rows of A while
postmultiplication by I, ;/, creates a new matrix with interchanged columns.

Example 2.4.4 Let

and 11’2 =

S = O
S O =
—_ o O

e

Il
—_— = =
_—— O O

S O ==
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Then _ _
4 2 2
A=XX= 2 20 is symmetric
| 2 0 2 |
[ 2 2 0]
I2A = 4 2 2 interchanges rows 1 and 2 of A
| 2 0 2 |
2 4 2]
Al , = 2 20 interchanges columns 1 and 2 of A
0 2 2

More generally, an n X n permutation matrix is any matrix that is constructed from I,
by permuting its columns. We may represent the matrix as L, , since there are n! different
permutation matrices of order 7.

Finally, observe that I, I, = 1,21 = I, so that I, is an idempotent matrix. Letting J, =
1,1}, the matrix J, is a symmetric matrix of ones. Multiplying J,, by itself, observe that
J,Z, = nJ, so that J, is not idempotent. However, n~1J, and I, — n~1J, are idempotent
matrices. If A2, = 0, the matrix A is said to be nilpotent. For A3 = 0, the matrix is
tripotent and if A¥ = 0 for some finite k > 0, it is k — potent. In multivariate analysis
and linear models, symmetric idempotent matrices occur in the context of quadratic forms,
Section 2.6, and in partitioning sums of squares, Chapter 3.

d.  Trace and the Euclidean Matrix Norm

An important operation for square matrices is the trace operator. For a square matrix
Ayuxn = la;j], the trace of A, represented as tr(A), is the sum of the diagonal elements
of A. Hence,

n
r(A) =) a; (2.4.6)
i=1
Theorem 2.4.3 For square matrices A and B and scalars o and B, the following properties
hold for the trace of a matrix.
1. tr(eA+BB) =a tr(A) + B tr(B)
2. tr(AB) =tr (BA)
3. wr(A) =tr(A)
4. r(A’A) =tr(AA) = > al.zj and equals 0, if and only if A = 0.
iJ

Property (4) is an important property for matrices since it generalizes the Euclidean
vector norm squared to matrices. The Euclidean norm squared of A is defined as

IAIZ =) a} = w(A'A) =tr(AA))

J
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The Euclidean matrix norm is defined as
1A = [ir (AA)} = [ (an)) 04

and is zero only if A = 0. To see that this is merely a Euclidean vector norm, we introduce
the vec (-) operator.

Definition 2.4.2 The vec operator for a matrix A, x4 stacks the columns of A, xq = [a1, ay,
..., aq4] sequentially, one upon another, to form a nd x 1 vector a

a]

a
a=vec(A) =

a4

Using the vec operator, we have that the

d
tr (A’A) = > "aja; = [(vecA)][vec (A)] = a'a
i=1

2
= [lall

so that ||a|| = (a’ a) Y 2, the Euclidean vector norm of a. Clearly ||a||2 = 0 if and only if all
elements of a are zero. For two matrices A and B, the Euclidean matrix norm squared of
the matrix difference A — B is

|A-BI> =tr[(A-B)(A—B)] =) (a — byj)’
)

which may be used to evaluate the “closeness” of A to B. More generally, we have the
following definition of a matrix norm represented as ||A]|.

Definition 2.4.3 The matrix norm of A, x4 is any real-valued function represented as ||A||
which satisfies the following properties.

1. |All = 0, and ||A|| = 0 if and only if A = 0.

2. lleAll = || |A] fora € R

3. |A 4+ B| < ||All + IIB|| (Triangular inequality)
4. |AB]|| < |A|| IIB]| (Cauchy-Schwarz inequality)

Example 2.4.5 Let

= [X1, X2, X3]

—_ = =
O O = =
_—— O O
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Then
X1
x=vecX=| Xx»
X3
tr (X'X) = 8 = (vec X)" vec (X)

x| = v/8

More will be said about matrix norms in Section 2.6.

e. Kronecker and Hadamard Products

We next consider two more definitions of matrix multiplication called the direct or Kro-
necker product and the dot or Hadamard product of two matrices. To define these products,
we first define a partitioned matrix.

Definition 2.4.4 A partitioned matrix is obtained from a n x m matrix A by forming sub-
matrices A;j of order n; X mj such that the dnj=nandy mj = m. Thus,
i J

A=[A;]
The elements of a partitioned matrix are the submatrices A;;. A matrix with matrices A;; as
diagonal elements and zero otherwise is denoted as diag [A;;] and is called a block diagonal

matrix.

Example 2.4.6 Let

1 2 0 1
A= ' ) =|:A11 A12i|
1 -1 3 1 A2 Ap
2 3 2 -1
1 1
1 -1
B— _ | Bu B
By By
2 0
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Then
3 4
2
AB=) AyBy =
=1 : 7
9 6

The matrix product is defined only if the elements of the partitioned matrices are con-
formable for matrix multiplication. The sum

A+B =[A,‘j +Bij]

is not defined for this example since the submatrices are not conformable for matrix addi-
tion.

The direct or Kronecker product of two matrices A, x, and B, is defined as the parti-
tioned matrix

a B apB - a;B
a1B a»pB --- ay,B

ARB= . . (2.4.8)
a B apB - a,,;,B

of order np x mgq . This definition of multiplication does not depend on matrix conforma-
bility and is always defined.

Kronecker or direct products have numerous properties. For a comprehensive discussion
of the properties summarized in Theorem 2.4.4 (see, for example Harville, 1997, Chap-
ter 16).

Theorem 2.4.4 Let A, B, C, and D be matrices, X and y vectors, and o and 8 scalars.
Then

1. XQ@y=yx =y®x

2. tA® B =af(A®B)

3. A9B)®C=A® (B®C)

4 A+B)®C=A0C) +B&C)
S5 A9B+C)=AR®B)+ARC
6. A®B)(C®D)=(AC®BD)

7. (A®B)/=A"®B

8 tr(A®B) =tr (A) tr (B)

9. [A1, A2] @ B=[A| ® B, Ay ® B] for a partitioned matrix A = [A, A3]
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A O - 0
0O A --- 0

10. IQA = .. . = diag [A], a block diagonal matrix.
0O 0 --- A

11. I®x)AIR®X) =A Qxx
12. In general, AQB #B ® A

Another matrix product that is useful in multivariate analysis is the dot matrix product
or the Hadamard product. For this product to be defined, the matrices A and B must be of
the same order, say n x m. Then, the dot product or Hadamard product is the element by
element product defined as

AOB= [a,'jbij] (2.4.9)

For a discussion of Hadamard products useful in multivariate analysis see Styan (1973).
Some useful properties of Hadamard products are summarized in Theorem 2.4.5 (see, for
example, Schott, 1997, p. 266).

Theorem 2.4.5 Let A, B, and C be n x m matrices, and X, and y,, any vectors. Then
1. AOB=BOA
2. AOB)Y =A'OBF
3. AOB)OC=A0BOO
4 A+BOoC=A00+BOCO)
5. ForJ=1,1,, amatrixof all1s, AOJ = A
6. AG0=0
7. Forn =m,1 ® A = diaglai1, a», ..., ann]
8. 1,(A®B)1, =tr(AB)
9

. Since x = diag[x]1, andy = diag[y] 1, X (A © B)y = tr (diag [x] A diag [y] B’)
where diag [X] or diag [y] refers to the construction of a diagonal matrix by placing
the elements of the vector X (ory) along the diagonal and Os elsewhere.

10. tr{(A’ © B")C} = tr{A’(B'OC)}

1 2 1 2
Az[3 4] and B=|:O 3i|

Example 2.4.7 Let

Then

A®B=[1B 2B:|

3B 4B

S WO -
O O\ W N
S B~ O
[\SRNe Il RN N
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and

1 4
A@Bz[o 12]

In Example 2.4.7, observe that A © B is a submatrix of A ® B. Schott (1997) discusses
numerous relationships between Kronecker and Hadamard products.

f. Direct Sums

The Kronecker product is an extension of a matrix product which resulted in a partitioned
matrix. Another operation of matrices that also results in a partitioned matrix is called the
direct sum. The direct sum of two matrices A and B is defined as

A@Bz[A "}

0 B
More generally, for k matrices A1 A2z, ..., Ak the direct sum is defined as
k .
@ A;; = diag[A;] (2.4.10)
i=1

The direct sum is a block diagonal matrix with matrices A;; as the i diagonal element.
Some properties of direct sums are summarized in the following theorem.

Theorem 2.4.6 Properties of direct sums.

1. A®B)+(CeD)=A+0C) @ B+D)

2. (A®B)(CaD) = (AC) ® (BD)

k
3. tr [@ A,‘] = Ztr(A,-)

i=1

Observe that for all A;; = A, that direct sum €P; A;; = I ® A = diag[A], property (10)
in Theorem 2.4.4.

g. The Vec(-) and Vech(-) Operators

The vec operator was defined in Definition 2.4.2 and using the vec(-) operator, we showed
how to extend a Euclidean vector norm to a Euclidean matrix norm. Converting a matrix to
a vector has many applications in multivariate analysis. It is most useful when working with
random matrices since it is mathematically more convenient to evaluate the distribution of
a vector. To manipulate matrices using the vec(-) operator requires some “vec” algebra.
Theorem 2.4.7 summarizes some useful results.
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Theorem 2.4.7 Properties of the vec(-) operator.

1. vec(y) =vec(y) =y

2. vec(yx) =x®y

3. vec(A ® x) =vec(A) ®x

4. vec(eA+pBB) =a vec(A)+8 vec(B)

5. vec(ABC) = (C' ® A) vec(B)

6. vec(AB) = I® A) vec(B) = B’ ®I) vec(B’ ® I) vec(A)

7. tr(A’B) = (vec A)' vec(B)

8. tr(ABC) = vec(A)(I ® B) vec(C)

9. tr(ABCD) = (vec(A"))' (D' ® B) vec(C)

10. wr(AX’BXC) = (vec(X))' (CA @ B) vec(X)

Again, all matrices in Theorem 2.4.7 are assumed to be conformable for the stated opera-
tlo"l;ie vectors vec A and vec A’ contain the same elements, but in a different order. To

relate vec A to vec A’, a vec- permutation matrix may be used. To illustrate, consider the
matrix

aiedi ajl ax  asy
Apsm = | a1 am where A’ =
a2 dz2 dasp
as]p  dasp
Then
ari ari
as ap
a a
vecA = 31 and vecA' = 21
a2 ann
ann asg
asp asp

To create vec A’ from vec A, observe that

vecA = vec A’

SO OO O~
S OO~ OO
O = OO OO
S oo o~ O
SO~ O OO
- o O O o0



and that

vecA =

SO OO~

)

el N eNeNe]

0

SO O~ O

0

- o O OO

0

S == OO

0
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Letting I,,,, vec A = vec A/, the vec-permutation matrix I,,,, of order nm x nm converts
vec A to vec A’. And, letting I,,,, be the vec-permutation matrix that converts vec A’ to

vec A, observe that I, = L.

Example 2.4.8 Let

app  ap
A =| ay axn
3x2
az; as;
Then
any anny
AQy=| any axny
asly azy
_| nA | _
ye _|:Y2A]
and
1 0 0 0 0O
0O 01 0 0 O
0O 0 0 0 1 0
01 0 0 0 O
0O 0 01 0 O
0O 0 0 0 0 1
or

and

yiaii
yiazi
yiasi
»aii
y2azi
y2asi

ARy =FY®A)

2x1

ann
ary2
a1 yi
az1y2
asiyi
asiy2

yiarz
yia
yias2
y2ai2
y2a22
y2as2

|

Y1
Y2

aizyl
any2
a2 yi
anny2
aszyi
aszy2

Inp(A®Y) :y®A

A®y=L,y®A)
= Ipn(y @ A)
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From Example 2.4.8, we see that the vec-permutation matrix allows the Kronecker prod-
uct to commute. For this reason, it is also called a commutation matrix; see Magnus and
Neudecker (1979).

Definition 2.4.5 A vec-permutation (commutation) matrix of order nm X nm is a permu-
tation matrix I, obtained from the identity matrix of order nm x nm by permuting its
columns such that 1,,,, vec A = vec A’.

A history of the operator is given in Henderson and Searle (1981). An elementary overview
is provided by Schott (1997) and Harville (1997).

Another operation that is used in many multivariate applications is the vech(-) operator
defined for square matrices that are symmetric. The vech(-) operator is similar to the vec(-)
operator, except only the elements in the matrix on or below the diagonal of the symmetric
matrix are included in vech(A).

Example 2.4.9 Let

1 2 3
A=XX=]| 2 5 6
3 6 8
nxn
Then _
1
! ;
2
3 2
vechA = 5 and vecA=| 5
6
6
3 2
n(n+1)/2x1 6
L 8 dn2x1

Also, observe that the relationships between vech(A) and vec(A) is as follows:

1 0 0 0 0 O
01 0 0 0 O
001 0 0O
01 0 0 0 O
00 01 0O vechA = vecA
00 0 01 O
0O 01 0 0O
00 0 0 1 0
L 000001 n2xn(n+1)2

Example 2.4.9. leads to the following theorem.

Theorem 2.4.8 Given a symmetric matrix Ay, x, there exist unique matrices D,, of order
n? xn(n+1)/2 and D;" of ordern (n +1) /2 x n2(its Moore-Penrose inverse) such that

vecA =D, vechA and D vecA =vechA
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The definition of the matrix Dj,‘ is reviewed in Section 2.5. For a discussion of vec(-) and
vech (-) operators, the reader is referred to Henderson and Searle (1979), Harville (1997),
and Schott (1997). Magnus and Neudecker (1999, p. 49) call the matrix D,, a duplication
matrix and D;lL an elimination matrix, Magnus and Neudecker (1980). The vech () operator
is most often used when evaluating the distribution of symmetric matrices which occur
in multivariate analysis; see McCulloch (1982), Fuller (1987), and Bilodeau and Brenner
(1999).

Exercises 2.4

1. Given
1 30 1 2 1 1
A=(0 -1 |[,B=| -1 1 |,C=]| -3 5 |,andD=| -1 2
4 5 2 7 0 -1 6 0

and o = 2, and B8 = 3, verify the properties in Theorem 2.4.1.

2. For
1 -2 3 1 1 2
A=1] 0 4 2 and B=| 0 0 4
1 2 1 2 -1 3

(a) Show AB # BA. The matrices do not commute.
(b) Find A’A and AA’.
(c) Are either A or B idempotent?

(d) Find two matrices A and B not equal to zero such that AB = 0, but neither A
or B is the zero matrix.

3. If X = [1,x,X2,...,X,]| and X; and e are n x 1 vectors while B is a k x 1 vector

p
where k = p + 1, show thaty = 1+ ) B;x; + e may be written asy = Xp + e.

i=1
4. Fora =2 and B = 3, and A and B given in Problem 2, verify Theorem 2.4.2.

5. Verify the relationships denoted in (a) to (e) and prove (f).

(a) 1,1, =nand 1,1, = J, (a matrix of 1’s)
(b) Jndn) =J7 =nl,

© 1, (L, —n"'J,) =0,

) 3, (L =17 3) = O

© (I—n"'3,)° =1, —n71J,

(f) What can you say about I — A if A = A?
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10.

11.

12.
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Suppose Y, «4 is a data matrix. Interpret the following quantities statistically.

(a) 1Y/n

®) Yo=Y —11'Y/n)

© Y.Y/n—1)=Y (I, —n"'J,) Y/ (n—1)

(d) ForD = [07]and Y, = Y.D~!/2 whatis Y.Y./(n — 1).

2
A=|:a1 0122i| and B=|:l/0l 0 ]
o021 O0) 0 /o>

form the product B’AB and interpret the result statistically.

Given

Verify Definition 2.4.2 using matrices A and B in Problem 2.

. Prove Theorems 2.4.4 through 2.4.7 and represent the following ANOVA design

results and models using Kronecker product notation.
(a) In Exercise 2.3, Problem 13, we expressed the ANOVA design geometrically.
Using matrix algebra verify that
i Pyl? =y (a7 Ja®@n~" )y
ii. [Papy]’ =y [(la—a Wa) @n ]y
iii. [Pyuy|® =y [l ® (L —n7'3,)]y
fory’ = [yi1, y12, -+ Yins -+ Yals - - s Yan]

(b) Fori = 2 and j = 2, verify that the ANOVA model has the structure y =
Lelb)p+L@b)ate.

(c¢) For X = V in Exercise 23, Problem 14, show that
LX=1hehehb LohehL Ldhael LL L]
ii. AB=1[v2 O V4,V2OVs5, V30O V4, V3O Vs]

For

1 -2 12 2 6 0 4
S I R Y A PR Y I h

and scalars « = 8 = 2, verify Theorem 2.4.2, 2.4.3, and 2.4.4.

Leting Y = X B + U where Y = [vi. V. ....vs].B=[B:.8-.....8,].
cthing nxd nxk kxd+n><dw ere [Vl V2 Vd] [ﬂl ﬁZ ﬂd]

and U = [uy, uy, ..., uy], show that vec (Y) = (I ® X) vec (B) + vec (U) is equiv-
alentto Y = XB + U.

Show that the covariances of the elements of u = vec (U) has the structure ¥ ® I
while the structure of the covariance of vec (U/ ) sI®X.
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Find a vec-permutation matrix so that we may write
BRA=L,(A®B)l,,

for any matrices A, x,; and B .

Find a matrix M such that M vec(A) = vec(A + A’)/2 for any matrix A.

If e; is the i™ column of I,, verify that

n

vee(,) = ) (e; ®€)

i=1

Let A;; represent an n x m indicator matrix that has zeros for all elements except for
element §;; = 1. Show that the commutation matrix has the structure.

n m n m
Liw =35> (A @A) =3 D (A @ Aij) =
i=1 j=1 i=1 j=1
For any matrices A, x,, and B pXqs verify that

vec(A®B) =1, ®1;, ®1,)(vec A®Q vec B)

Prove that Y X_ A, = tr I®@A), if Aj = Ay =--- = Ay = A.

Let A, x , be any square matrix where the n? x n? matrix L, is its vec-permutation
(commutation) matrix, and suppose we define the n% x n> symmetric and idempotent
matrix P = (I> + I,,) /2. Show that

(a) P vecA =vec (A+A’) /2
(b) PA®RA)=PAR®AP

For square matrices A and B of order n x n, show that P(A®B)P=PB Q A)P
for P defined in Problem 19.

Rank, Inverse, and Determinant

Rank and Inverse

Using (2.4.1), a matrix A, «,, may be represented as a partitioned row or column matrix.
The m column n-vectors span the column space of A, and the n row m-vectors generate the
row space of A.

Definition 2.5.1 The rank of a matrix A, is the number of linearly independent rows
(or columns) of A.
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The rank of A is denoted as rank(A) or simply r (A) is the dimension of the space spanned
by the rows (or columns) of A. Clearly, 0 < r(A) < min(n, m). For A = 0, the r(A) = 0.
If m < n, the r(A) cannot exceed m, and if the r (A) = r = m, the matrix A is said to have
full column rank. If A is not of full column rank, then there are m — r dependent column
vectors in A. Conversely, if n < m, there are n — r dependent row vectors in A. If the
r(A) = n, A is said to have full row rank.

To find the rank of a matrix A, the matrix is reduced to an equivalent matrix which has
the same rank as A by premultiplying A by a matrix P, , that preserves the row rank of A
and by postmultiplying A by a matrix Q,,x,; that preserves the column rank of A, thus
reducing A to a matrix whose rank can be obtained by inspection. That is,

PAQ = [ I(; g } = Chum 2.5.1)

where the r (PAQ) =r(C) =r. Using P and Q, the matrix C in (2.5.1) is called the canon-
ical form of A. Alternatively, A is often reduced to diagonal form. The diagonal form of A
is represented as

* * D, 0 _
P*AQ* = [ 0 o l|= A (2.5.2)
for some sequence of row and column operations.
If we could find a matrix P, such that P~'P =1, and a matrix Q,,., such that
QQ ! =1, observe that
_ p-1 L. 0 —1
A=P |: 0 Q
=PQ (2.5.3)

where P; and Q are n x r and r x m matrices of rank r. Thus, we have factored the matrix
A into a product of two matrices P; Q where P has column rank » and Q; has row rank r.

The inverse of a matrix is closely associated with the rank of a matrix. The inverse of a
square matrix A, », is the unique matrix A~! that satisfies the condition that

AT'A=1,=AA""! (2.5.4)

A square matrix A is said to be nonsingular if an inverse exists for A; otherwise, the ma-
trix A is singular. A matrix of full rank always has a unique inverse. Thus, in (2.5.3) if the
r(P) = n and the r(Q) = m and matrices P and Q can be found, the inverses P~! and Q!
are unique.

In (2.5.4), suppose A~! = A’, then the matrix A said to be an orthogonal matrix since
A’A =1 = AA’. Motivation for this definition follows from the fact that the columns of A
form an orthonormal basis for V,,. An elementary permutation matrix I, ,, is orthogonal.
More generally, a vec-permutation (commutation) matrix is orthogonal since I, = L,
and I = 1,,.

Finding the rank and inverse of a matrix is complicated and tedious, and usually per-
formed on a computer. To determine the rank of a matrix, three basic operations called
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elementary operations are used to construct the matrices P and Q in (2.5.1). The three
basic elementary operations are as follows.

(a) Any two rows (or columns) of A are interchanged.

(b) Any row of A is multiplied by a nonzero scalar «.

(c) Any row (or column) of A is replaced by adding to the replaced row (or

column) a nonzero scalar multiple of another row (or column) of A.

In (a), the elementary matrix is no more than a permutation matrix. In (b), the matrix
is a diagonal matrix which is obtained from I by replacing the (i, i) element by «;; > O.
Finally, in (c) the matrix is obtained from I by replacing one zero element with «;; # 0.

Example 2.5.1 Let

a a
A= 11 12
azy a2

Then
I, — f0 1 and 1 A interchanges rows 1
D271 0| and2inA
_ [« 0 and Dy, 1(a)A multiplies row
Dl’l(a)__O 1:| linAbya
E) (o) = 1 0 and Ey 1 (a)A replaces row 2 in A
2,1 o | o 1 by adding to it « times row 1 of A

Furthermore, the elementary matrices in Example 2.5.1 are nonsingular since the unique
inverse matrices are

1 1 0 1 a b0 -1
E = [ a 0 } » D@ = [ 0 L b= T,
To see how to construct P and Q to find the rank of A, we consider an example.

Example 2.5.2 Let

1 2 1 0 0
A=|3 9 |, Ei(-3)=| =3 1 0 |,
|5 6 0 0 1
1 0 0 1 0 0
E; (-5 = 01 0|, E;»(4/3)=| 0 1 0 |,
| 5 0 1 0 4/3 1
"1 0 0 S
D;,(1/3)=] 0 1/3 0 |, Ei2(=2) = 0 1:|
0 0 1 L



44 2. Vectors and Matrices

Then
"1 o0
D>>(1/3)E3 2 (4/3)E3 1(—=5)E2 1 (=3) A E;2(-2) =| 0 1
L 0]
P A Q __() ()_
100 R 10
1 1/3 0 Ay, 1] =]o1
—1 43 1 0 0

so that the r(A) = 2. Alternatively, the diagonal form is obtained by not using the matrix
D, 2(1/3)

1 0 0 1 0
3 1.0 [A [ I =2 ] —|lo 3
1 0 0
From Example 2.5.2, the following theorem regarding the factorization of A, «,, is evident.

Theorem 2.5.1 For any matrix A, xm of rank r, there exist square nonsingular matrices

ann and mem such that
L 0
PAQ_[ 0 0 ]

1| L0 -
Azl’l[0 O]lePlQl

or

where Py and Q1 are n x r and r x m matrices of rank r. Furthermore, if A is square and
symmetric there exists a matrix P such that

, [D 0] _
p - 0]

and if the r(A) = n, then PAP’ =D, = A and A = P~ 'A(P) L.

Given any square nonsingular matrix A, x,, elementary row operations when applied to
I, transforms I,, into A~!. To see this, observe that PA = U, where U, is a unit upper
triangular matrix and only n(n — 1)/2 row operations P* are needed to reduce U,, to I,;; or
P*PA =1I,,;; hence A~! = P*PI,, by definition. This shows that by operating on A and I,,
with P*P simultaneously, P*PA becomes I,, and that P*P I,, becomes A~

Example 2.5.3 Let

>

I
W = N
— N W
N W =
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To find A~ write

23 1]100]7
(Alfrowtotals) = | 1 2 3|0 1 0 7
31 2100 1|7

Multiply row one by 1/2, and subtract row one from row two. Multiply row three by 1/3,
and subtract row one from three.

1 32 12 12 0 0 772
0 1/2 52 | —-1/2 1 0 72
0 —7/6 1/6 | —1/2 0 1/3 | —7/6

Multiply row two by 2 and row three by —6/7. Then subtract row three from row two.
Multiple row three by —7/36.

1 3/2 0] 23/26 —7/36 —1/36 | 105/36
1 o] 7/18 1/18 —5/18 7/6
0 0 1 |-5/18 7/18 1/18 7/6

Multiply row two by —3/2, and add to row one.

10 0| 1418 —5/18 7/18 | 7/6
01 0| 7/18 1/18 —5/18 | 7/6 =<I‘A‘1Hrowtotals)
00 1/|-518 7/18 1/18 | —7/6

Then
1 -5 7
Al = (1/18) 7 1 -5
-5 7 1

This inversion process is called Gauss’ matrix inversion technique. The totals are included
to systematically check calculations at each stage of the process. The sum of the elements
in each row of the two partitions must equal the total when the elementary operations are
applied simultaneous to I;, A and the column vector of totals.

When working with ranks and inverses of matrices, there are numerous properties that
are commonly used. Some of the more important ones are summarized in Theorem 2.5.2
and Theorem 2.5.3. Again, all operations are assumed to be defined.

Theorem 2.5.2 For any matrices Ay xm, Byx p, and Cpxy, some properties of the matrix
rank follow.

1. r(A) =r(A")

2. r(A) = r(A’A) = r(AA)

3. r(A) +r(B) —n < r(AB) < min[r(A), r (B)] (Sylvester’s law)
4. r(AB) + r(BC) < r (B) + r (ABC)
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Ifr (A) = m and the r (B) = p, then the r(AB) < p
r(A®B) =r(A)r (B)
r(AOB) <r(A)r[B)

k k
r(A) = Z r(Ai)forA = @A,‘
i=1 i=1

k k
For a partitioned matrix A =[A1, Ay, ..., Ay, the r<Z Ai) <rA) <> rA)
i=1 i=1

For any square, idempotent matrix A, x, (A2 = A), of rankr <n

(a) r(A)=r(A)=r
() rA)+rd—A)=n

The inverse of a matrix, like the rank of a matrix, has a number of useful properties as
summarized in Theorem 2.5.3.

Theorem 2.5.3 Properties of matrix inversion.

1.

N

(AB)"! =B 1A"!

2. (AN~ = (A7YY, the inverse of a symmetric matrix is symmetric.
3. (A Hhl=A

4.
S
6

AQB) '=A"1gB! {compare this with (1)}

CI+A) '=AA+D
. A+B) ' = AT A BA+B) ! = A — A YA 4B Y TA 5o that

BA+B) 'A=A"1+B H!

AT+ B Y =1+ ABTH!
. (A+CBD)"! = A —A-'CcB' + DAT'C)"'DA! 50 that for C = Z and

D = Z we have that (A +ZBZ))™' =A=' — A~ 1ZB~ ! + ZAZ) ' Z'A.

. For a partitioned matrix

A A -1 [ By B }
A = ,A =
|: Ay Ay i| By Bx

where
B = (A1 —ApAL Ay !
B> = —B11BpAy)
By = A3, Ay By
B = A3 + A5 AxBi1ARAY)

provided all inverses exist.
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b. Generalized Inverses

For an inverse of a matrix to be defined, the matrix A must be square and nonsingular.
Suppose A, x;, is rectangular and has full column rank m; then the r(A’A) = m and the
inverse of A’A exists. Thus, [(A’A)_IA’] A = I,,. However, A[(A’A)"'A’] # I, so A has
a left inverse, but not a right inverse. Alternatively, if the r(A) = n, then the r(AA") = n
and AA’(AA)~! = I, so that A has a right inverse. Multiplying I, by A, we see that
A(A’A)'A’A = A and multiplying I, by A, we also have that AA’(AA")~'A = A. This
leads to the definition of a generalized or g-inverse of A.

Definition 2.5.2 A generalized inverse of any matrix A, xm, denoted by A™, is any matrix
of order m x n that satisfies the condition

AATA=A

Clearly, the matrix A~ is not unique. To make the g-inverse unique, additional conditions
must be satisfied. This leads to the Moore-Penrose inverse A™. A Moore-Penrose inverse
for any matrix A, x,, is the unique matrix A" that satisfies the four conditions

() AATA =A  (3) (AA'Y = AA*

To prove that the matrix A™ is unique, let B and C be two Moore-Penrose inverse matrices.
Using properties (1) to (4) in (2.5.5, observe that the matrix B = C since

B = BAB = B(AB) = BB'A’ = BB'(ACA) = BB'A'C'A’ =
B(AB) (AC) = BABAC = BAC = BACAC = (BA)(CA)'C =
A’B'A'C'C = (ABA)'CC = A'C'C = (CA)'C = CAC =C

This shows that the Moore-Penrose inverse is unique. The proof of existence is left as an
exercise. From (2.5.5), A~ only satisfies conditions (1). Further, observe that if A has full
column rank, the matrix

AT = AAA (2.5.6)

satisfies conditions (1)—(4), above. If a square matrix A,, has full rank, then A~! =
A=At . Ifthe r(A) = n, then AT = A’(AA’)~!. If the columns of A are orthogonal, then
AT=A'.If A, is idempotent, then A* = A . Finally, if A = A/, then AT = (A)" =
(A")so AT is symmetric. Other properties of A* are summarized in Theorem 2.5.4.

Theorem 2.5.4 For any matrix Ay xp, the following hold.
1. (AHT=A
2. (AT) = @A)t
3. AT =(AATA = A (AA)T
4. ForA =P1Q|, AT =Q, (P’lAQ/l)_lP/1 where the r(P1) =r(Qq) =r.
5. (AAT) = ATAHT = ATATY
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6. (AAT)T = AAT
7. r(A) =r(A") =r(AAT) = r(ATA)
8. For any matrix By« ,, (AB)" # BTAT.
9. IfB has full row rank, (AB)(AB)T = AA™T.
10. For A = éAii, At= éA;.
i= i=

While (2.5.6) yields a convenient Moore-Penrose inverse for A, x,, when the r(A) = m,
we may use Theorem 2.5.1 to create A~ when the 7(A) = r < m < n. We have that

D, 0
PAQ:A:[ o 0]

Letting

A" =QAP (2.5.7)
Example 2.5.4 Let ~
2 4
A= 2 2
| -2 0
Then with _
1 00
P=| -1 1 0 and Q= |: (1) % :|
-1 2 1
2 0
PAQ=| 0 -2
0 0
Thus

- | 1/2 0 0 - —p_ | —1/2 0 0
A _|: 0 —1/2 0] and A™ =QA P_|: 12 —12 0:|

Since r(A) = 2 = n, we have that

20 —12
+ _ / —1A7__ /
At = (A'A) A_(1/96)[_12 IZ}A

—8 16 —40
=(1/96)[ 240 24}
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Example 2.5.5 Let

Choose
1/4 0 0 1/4 —-1/2 -1
P=| —-1/2 1 0 |,Q= 0 1 1
-1 1 1 0 0 1
and
4 0 O
A= 0 1 0
0 0 0
Then
1/2 —-1/2 0
A =| —1/2 1 0
0 00

Theorem 2.5.5 summarizes some important properties of the generalized inverse matrix A™.
Theorem 2.5.5 For any matrix Ay xm, the following hold.

1 (A=A

2. IFA =P 'A~Q7!, then (PAQ)” = QA™P.

3 r(A)=r(AA7)=r(A7A) <r(A7)

4. If(A/A)_ is a g-inverse of A, then A= = (A’A)"A’, AT = A'/(AA)"AA’A)"A’
and A(A’A)~A’ is unique and symmetric and called an orthogonal projection ma-
trix.

W

_| A A [ Ay o . .
. For A = |: Al Ax :|andA = |: 0 0 for some nonsingular matrix A1y
of A, then
-1 -1 -1
Ajp —AARAL 0

A =
0 0
6. For
A B
M= | B C }
M- | AT +ABFBA" —ABF-
| —F B/A/ F-
A= 0 _ _ _

=l 0 o }—k[—A ,B]F~ [-B'A",1]

where F = C — B'A™B.
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The Moore-Penrose inverse and g-inverse of a matrix are used to solve systems of linear
equations discussed in Section 2.6. We close this section with some operators that map a
matrix to a scalar value. For a further discussion of generalized inverses, see Boullion and
Odell (1971), Rao and Mitra (1971), Rao (1973a), and Harville (1997).

c. Determinants

Associated with any n x n square matrix A is a unique scalar function of the elements
of A called the determinant of A, written |A|. The determinant, like the inverse and rank,
of a matrix is difficult to compute. Formally, the determinant of a square matrix A is a
real-valued function defined by

n!
Al =) (=D*an,, aziy, ..., ani, (2.5.8)

where the summation is taken over all n! permutations of the elements of A such that each
product contains only one element from each row and each column of A. The first subscript
is always in its natural order and the second subscripts are 1, 2, ..., n taken in some order.
The exponent k represents the necessary number of interchanges of successive elements in
a sequence so that the second subscripts are placed in their natural order 1, 2, ..., n.

a a
A= 11 12
azr a2

Example 2.5.6 Let

Then . .
Al = (=D ajjan + (=D arnaz
|A| = a11a22 — apany
Let
ain ap a
A=| ay axn ax
a1 asxn  as
Then

Al = (=¥ ajjanazs + (—=D* annasazr + (=D apzaziaz, + (=¥ ajjanaz
+ (=D apaziaszz + (=¥ ajzanas

= a11a22a33 + a12a23a31 + A13a21a32 — a11423A32 — 412021433 — 13022431

Representing A in Example 2.5.6 as

(=) =) ()

air app a3 ai;  ap

[A|B]l=| ax ax ax a1 ax
as| azp  ass az; axp

+ | H B
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where B is the first two columns of A, observe that the |A| may be calculated by evaluating
the diagonal products on the matrix [A | B], similar to the 2 x 2 case where (+4) signs
represent plus “diagonal” product terms and (—) signs represent minus “diagonal” product
terms in the array in the evaluation of the determinant.

Expression (2.5.8) does not provide for a systematic procedure for finding the determi-
nant. An alternative expression for the |A| is provided using the cofactors of a matrix A.
By deleting the i™ row and j column of A and forming the determinant of the resulting
sub-matrix, one creates the minor of the element which is represented as |M,- I | The cofac-
tor of g;j is C;j = (—DitJ [M];;, and is termed the signed minor of the element. The [A|
defined in terms of cofactors is

n

Al =) ajCij  foranyi (2.5.9)
j=1
n

|A|=Za,~jc,-j for any j (2.5.10)

i=1

These expressions are called the row and column expansion by cofactors, respectively, for
finding the |A|.

Example 2.5.7 Let

6 1 0
A=| 3 -1
4 -
Then
1] -1 2 (1+2) (143) 1
|Al = (6) (—1) o —1 |TMI +(0)1 0
=6(1-0)+(-1)(-3-9)

=17

Associated with a square matrix is the adjoint (or adjugate) matrix of A. If C;; is the
cofactor of an element a;; in the matrix A, the adjoint of A is the transpose of the cofactors
of A

adjA =[C;;] = [Ci] (2.5.11)

Example 2.5.8 For A in Example 2.5.7, the

/

1 11 4 1 1 2
adiA=| 1 -6 4 =] 11 -6 -—12
2 —-12 -9 4 4 -9
and the
17 0 O |A] 0 0
(adjA)A = 0 17 0 |= 0 JA] O
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Example 2.5.8 motivates another method for finding A~!. In general,

_ adj A
ATl =220 (2.5.12)
Al
where if the |A| # 0, A is nonsingular. In addition, A"l =1 / |A]. Other properties of the

determinant are summarized in Theorem 2.5.6.

Theorem 2.5.6 Properties of determinants.

1.

2.

A= A
|AB| = |BA|

For an orthogonal matrix, |A| = £1.

IFAZ=A, (A isidempotent) , then the |A| = 0 or 1.

For A, «,, and B, sm
|A®B| = |A" B]"

| A Ap
For A _[ Aol Ax :| then

|A] = |A11] )Azz - A21A1_11A12’ = |A2| ‘Au —ApAS A,

provided A1\ and Ay are nonsingular.
k k
ForA =@ Aii, Al = [] Al

i=1 i=1

leAl = " |A]

Exercises 2.5

1.

For

S W W~
SN = O
— 00 W DN

Use Theorem 2.5.1 to factor A into the product

A =P Q
4x3 4xr rx3

where r = R(A).
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2. For
2 1
A=| 1 0 4
2 4 -—16

(a) Find P and P’ such that PAP = A.
(b) Find a factorization for A.
(c) If A/2A1/2 = A, define A!/2.

3. Find two matrices A and B such that the r = r(AB) < min[r(A), r(B)].

4. Prove that AB is nonsingular if A has full row rank and B has full column rank.

5. Verify property (6) in Theorem 2.5.2.
6. For
1 0 0 1
3 1 2
A=l -1 2 -
0 3 4

(a) Find A~! using Gauss’ matrix inversion method.
(b) Find A~! using formula (2.5.12).
(c) Find A~! by partitioning A and applying property (9) in Theorem 2.5.3.

7. For
2 1 -1 1 2 3 1 0 1
A=| 0 2 31, B=11 0 0], and C=| 0 2 O
1 1 1 2 1 1 3 0 2

Verify Theorem 2.5.3.
8. For Lot
A=|:; (5)j| and B=| 0 2 0
30 2
Find the 7 (A ® B) and the |A ® B|.
9. ForI, and J,, = 1,1}, , verify

o

-1 _ _
(al, + BJn)~ = |:In «+np

Jn] /Ol
fora +npB # 0.
10. Prove that I+ A) 'isAA+D~L
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11. Prove that |A| |B| < |A © B|
12. For a square matrix A, , that is idempotent where the r (A) = r, prove

(@ r(A)=rA)=r;
(b) I — A) is idempotent;
C©rA)+rd—-A) =n.

13. For the Toeplitz matrix

1 g B
A= o 1 8B
a? o 1
Find A~! for af # 1.
14. For the Hadamard matrices
M1 1 1 1
-1 -1 1 1
Haxa = 1 -1 1 -1
1 -1 -1

o=, _ ]

Verify that

(a) |ann| == nn/2;
(b) n= V2 H,
(c) HH = HH' = nl, forH,, .

15. Prove that for A, and By, p, |11, + AB| = |1, + BA|.

16. Find the Moore-Penrose and a g-inverse for the matrices

1 1
(@] 2], b [0,1,2,], and ()| 0 -1
0 1
17. Find g-inverses for
s 4 4 012 3
A=] 4 4 0 and B=

40 4 0 4 56
0 7 8 9
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19.

20.

21.
22.

23.

24,

25.
26.
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For
1 1 0
|1 10 o~
X = 1 o0 1 and A =X'X
1 0 1

Find the r(A), a g-inverse A~ and the matrix A™.

Verify that each of the matrices Py = A’ (A’A)” A, P, = A’ (A’A)” A, and P5 =
A’ (A’ A)+A are symmetric, idempotent, and unique. The matrices P; are called
projection matrices. What can you say about I — P;?

Verify that
A” +7Z - A"AXAA™

is a g-inverse of A.
Verify that B A~ is a g-inverse of AB if and only if ATABB™ is idempotent.

Prove that if the Moore-Penrose inverse A+, which satisfies (2.5.5), always exists.

Show that for any A~ of a symmetric matrix (A‘)2 is a g-inverse of A% if AA is
symmetric.

Show that (A’A)”~ A’ is a g-inverse of A, given (A’A)" is a g-inverse of (A’A).
Show that AAT = A (A’A)™ A.

Let D,, be a duplication matrix of order n? x n(n+ 1) /2 inthat D, vechA = vec A
for any symmetric matrix A. Show that
(a) vechA =D, vecA;

b) D,D;} vec A = Pvec A where P is a projection matrix, a symmetric, and idem-
n proj y
potent matrix;

© [D,A®A)D,]” =D} (A'@A D,

Systems of Equations, Transformations, and Quadratic
Forms

Systems of Equations

Generalized inverses are used to solve systems of equations of the form

ApsmXmx1 = Yuxl (2.6.1)

where A and y are known. If A is square and nonsingular, the solution is X = A~ 'y. If A
has full column rank, then A* = (A’A)"'A’ so that X = ATy = (A’A) "' A’y provides the
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unique solution since (A’A)"'A’A = A~!. When the system of equations in (2.6.1) has
a unique solution, the system is consistent. However, a unique solution does not have to
exist for the system to be consistent (have a solution). If the r(A) = r < m < n, the system
of equations in (2.6.1) will have a solution X = A~y if and only if the system of equations
is consistent.

Theorem 2.6.1 The system of equations AX =y is consistent if and only if AA"y =y,
and the general solution isX= A~y + (I,, — A~ A)z for arbitrary vectors z; every solution
has this form.

Since Theorem 2.6.1 is true for any g-inverse of A, it must be true for AT so that
X = Aty + (I,,—A"A)z. For a homogeneous system where y = 0 or Ax = 0, a general
solution becomes X = (I,, — A~A)z. When y # 0, (2.6.1) is called a nonhomogeneous
system of equations.

To solve a consistent system of equations, called the normal equations in many statistical
applications, three general approaches are utilized when the r(A) = r < m < n . These
approaches include (1) restricting the number of unknowns, (2) reparameterization, and (3)
generalized inverses.

The method of adding restrictions to solve (2.6.1) involves augmenting the matrix A of
rank r by a matrix R of rank m — r such that the r(A’'R’) = r + (m — r) = m, a matrix of
full rank. The augmented system with side conditions Rx = 6 becomes

[)-[2)

X=(AA+RR) ' (Ay +R6) (2.6.3)

The unique solution to (2.6.2) is

For @ = 0,X = (A/A + R'R)"!'A’y so that AT= (A’A + R'R)"'A’ is a Moore-Penrose
inverse.

The second approach to solving (2.6.1) when r(A) = r < m < n is called the reparame-
terization method. Using this method we can solve the system for » linear combinations of
the unknowns by factoring A as a product where one matrix is known. Factoring A as

A = B C

nxm nxr rxm

and substituting A = BC into (2.6.1),

Ax =y
BCx =y
(B'B)Cx =By (2.6.4)

Cx = (B'B)"'By
X* = (B'B)"'Bly
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a unique solution for the reparameterized vector x* = Cx is realized. Here, B* = (B'B) !B’
is a Moore-Penrose inverse.

Because A = BC, C must be selected so that the rows of C are in the row space of A.
Hence, the

r|: é ] =r(A)=r(C)=r
B =B(CC)(CC) ! =AC(cC)H™!

(2.6.5)

so that B is easily determined given the matrix C. In many statistical applications, C is a
contrast matrix.
To illustrate these two methods, we again consider the two group ANOVA model

Yij =kt o +eij i=1,2andj=1,2

Then using matrix notation

il 1 1 0 9 el
yi2 1 1 0 el

= o + 2.6.6
21 I 01 a; e21 ( )
22 1 01 e

For the moment, assume €' = [e]], €12, €21, €¢22] = 0’ so that the system becomes

A X = y
1 1 0 Vi1
110 ® Yi2 (2.6.7)
o =
I 01 o y21
101 2 2

To solve this system, recall that the r (A) = r (A’A) and from Example 2.5.5, the r(A) = 2.
Thus, A is not of full column rank.

To solve (2.6.7) using the restriction method, we add the restriction that oy + o = 0.
Then, R=[ 0 1 1 ],0=0,andther(A'R’) = 3. Using (2.6.3),

-1

m 4 2 2 4y
&1 = 2 31 2y1_
@ 2 1 3 2y,

where

I J 2 2
Yo=Y /T =) i/ Q)
i J i j
J 2 '
i =Y _yii/T = yij/2
J J
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for I = J =2. Hence,

m 1 8§ —4 —4 4y
&1 = — —4 8 0 2y1_
@ 161 4 o 3 2y,
2y. = (1./2—=(2./2) Y.
= i — Y. =1 y.—y.
y2. = ). Y2, — Y.

is a unique solution with the restriction o1 + ap = 0.

Using the reparameterization method to solve (2.6.7), suppose we associate with © 4 o;
the parameter p;. Then, (1 + @y) /2 = u + (a1 + «2) /2. Thus, under this reparame-
terization the average of u; is the same as the average of u + «;. Also observe that
U1 — Mo = a1 — ap under the reparameterization. Letting

o2 12
C_[o 1 —1}

be the reparameterization matrix, the matrix

cl BTz 2| B[ ut@tans2
R O | “ar = a) — an
o) o2

has a natural interpretation in terms of the original model parameters. In addition, the
r (C) = r(A’C’) = 2 so that C is in the row space of A. Using (2.6.4),

, 32 0 . 23 0
(CC)=[(/) 2] (CC)1=[(/) 1/2}
Y
12
1 —1)2
1 —1)2

B=AC (CC) ' =

SO

%"= Cx=(BB') ' By
:|_|:/L+(a1+a2)/2:|_|: 4 0 r[ 4y }
- ap — oo - 0 1 Vi — Y.

N [ wy ]

For the parametric function ¥ = o1 — a2, @ = 32’2“ = y1. — y2. which is identical to the
restriction result since @; = y;, — y.. and @ = y,. — y.. Hence, the estimated contrast is
Y = Q] —dy = y1. — y2.. However, the solution under reparameterization is only the same

S22



2.6 Systems of Equations, Transformations, and Quadratic Forms 59

as the restriction method if we know that o1 + ap = 0. Then, 55;‘ = 71 = y.. When this is
not the case, 551“ is estimating u + (1 + @2) /2. If @) = ap = 0 we also have that & = y .
for both procedures.

To solve the system using a g-inverse, recall from Theorem 2.5.5, property (4), that
(A’A)~ A’ is a g-inverse of A if (A’A)~ is a g-inverse of A’A. From Example 2.5.5,

4 2 2 12 —-1/2 0
(A’A): 2 20 and (A/A)fz —1/2 1 0
2 0 2 0 0 0
so that
— y.
ATy= (A/A) A’y =1 yi.— .
0
Since

00
I-A"A=| 0 O 1
0 0

A general solution to the system is

n .
A= y.—y |[+(I-ATA)z
i 0]
[ ] 23
= y.—Y. |+ 23
i 0 1 23

Choosing z3 = y;. — y.., a solution is

I Y.
o] =1 Y. —).
o2 Y2. =Y.

which is consistent with the restriction method. Selecting z3 = y,; & = 0,0 = y.
and @ = y;. is another solution. The solution is not unique. However, for either selec-
tion of z, I’ﬂ\ = & — &y is unique. Theorem 2.6.1 only determines the general form for
solutions of Ax = y. Rao (1973a) established the following result to prove that certain
linear combinations of the unknowns in a consistent system are unique, independent of the
g-inverse A™.

Theorem 2.6.2 The linear combination v = a’x of the unknowns, called parametric func-
tions of the unknowns, for the consistent system AX =y has a unique solutionX if and only
ifa’ (A~A) = a'. Furthermore, the solutions are given by a’X =t (A" A)A”y forr =r(A)
linearly independent vectors a’ = t' A~ A for arbitrary vectors t'.
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Continuing with our illustration, we apply Theorem 2.6.2 to the system defined in (2.6.7)
to determine if unique solutions for the linear combinations of the unknowns o1 — a2, 1 +
(o1 + @2), and p can be found. To check that a unique solution exists, we have to verify
thata’ (A~A) =4’
1 0 1
Fora; —az,a(A"A)=1[0,1,—-1]] 0 1 -1 [=][0,1,—-1]=4a
0 0 0
For u + (a1 — ) /2,4’ =[1,1/2,1/2] and

10 1
A(A"A) =[1,1/2,1/21 | 0 1 —1 |=[1,1/2,1/2] =4
00 0

Thus both o1 —ap and p+ (1 — a2) /2 have unique solutions and are said to be estimable.

For p, a’ = [ 1, 0, O ]and a'(A’A) =[ 1, 0, 1 ] # a’. Hence no unique so-
lution exists for u so the parameter v is not estimable. Instead of checking each linear
combination, we find a general expression for linear combinations of the parameters given
an arbitrary vectors t. The linear parametric function

1 0 0 %
ax=t (A/A)XZ [to,t1,2]] O 1 —1 o1
0 0 0 o

=1o(u+oy)+ 1 (0] —a2) (2.6.8)

is a general expression for all linear combinations of x for arbitrary t. Furthermore, the
general solution is

AR =t(AA) Ay =t [(AA)” (AA)] (A'4)" Ay

1o 1 .
=t'| 0 1 -1 Y1 = ).
0 0 0 0
=toy2. + 11 (1. — y2.) (2.6.9)

By selecting 1y, t1, and ; and substituting their values into (2.6.8) and (2.6.9), one deter-
mines whether a linear combination of the ql\lknowns exists, is estimable. Setting #p = 0
andf) = 1,9, = a’x = a)] —aand a’X = ¥ = y;. — y;. has a unique solution. Setting
to=1land t; = 1/2,

Yr=ax=1(u+a)+ (a1 —az) /2
=pu+ (a1 +az)/2

and

yi. + y2.

-~ e~
= ax =
v >

=J.
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which shows that v, is estimated by y_. No elements of fy, #1, and 2 may be chosen to
estimate u; hence, it has no unique solution so that u is not estimable. To make w1 estimable,
we must add the restriction o1 + a2 = 0. Thus, restrictions add “meaning” to nonestimable
linear combinations of the unknowns, in order to make them estimable. In addition, the
restrictions become part of the model specification. Without the restriction the parameter
1 has no meaning since it is not estimable. In Section 2.3, the restriction on the sum of the
parameters «; orthogonalized A into the subspaces 1 and A/1.

b. Linear Transformations

The system of equations Ax =y is typically viewed as a linear transformation. The m x 1
vector X is operated upon by the matrix A to obtain the n x 1 image vector y.

Definition 2.6.1 A transformation is linear if, in carrying X| into y; and X; into y;, the
transformation maps the vector o1X1 + a2X3 into o1y + a2ya for every pair of scalars oy
and .

Thus, if x is an element of a vector space U and y is an element of a vector space V, a
linear transformation is a function 7 :U — V such that T (a1x] + a2X2) = a1 T (X1) +
asT (x2) = a1y1 + «2y2. The null or kernel subspace of the matrix A, denoted by N (A)
or K 4 is the set of all vectors satisfying the homogeneous transformation Ax = 0. That is,
the null or kernel of A is the linear subspace of V, such that N (A) = K4 = {x | Ax = 0}.
The dimension of the kernel subspace is dim{K4} = m — r (A). The transformation is
one-to-one if the dimension of the kernel space is zero; then, r (A) = m. The complement
subspace of K 4 is the subspace K 4 = {y |Aly = 0}.

Of particular interest in statistical applications are linear transformations that map vec-
tors of a space onto vectors of the same space. The matrix A for this transformation is now
of order n so that Ay, <, Xy x1 = Ynx1. Lhe linear transformation is nonsingular if and only if
the |A| = 0. Then, x = A~y and the transformation is one-to-one since N (A) = {0}. If A
is less than full rank, the transformation is singular and many to one. Such transformations
map vectors into subspaces.

Example 2.6.1 As a simple example of a nonsingular linear transformation in Euclidean
two-dimensional space, consider the square formed by the vectors X/1 = [1,0], X’2 =
[0, 1], x1 + x2 = [1, 1] under the transformation

s3]

Then
Ax; =y = L]
Xl—)’l— 0_
4
AX2:Y2:|: 1
(5
A +X)=y1+y2=]| | :|
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Vs
«_| —sin O
e :[ sin
2 cos 0 _[ cos 0
o I |-sin 6
0+ 90
x| \e
1
> «[i]

FIGURE 2.6.1. Fixed-Vector Transformation

Geometrically, observe that the parallel line segments {[0, 1], [1, 1]} and {[0, 0], [1, 0]} are
transformed into parallel line segments {[4, 1], [5, 11} and {[0, 0], [1, 01} as are other sides
of the square. However, some lengths, angles, and hence distances of the original figure are
changed under the transformation.

Definition 2.6.2 A nonsingular linear transformation TXx =y that preserves lengths, dis-
tances and angles is called an orthogonal transformation and satisfies the condition that
TT =1=T'T so that T is an orthogonal matrix.

Theorem 2.6.3 For an orthogonal transformation matrix T
1. |T'AT| = |A|
2. The product of a finite number of orthogonal matrices is itself orthogonal.

Recall that if T is orthogonal that the |T| = £1. If the |T| = 1, the orthogonal matrix
transformation may be interpreted geometrically as a rigid rotation of coordinate axes. If
the |T| = —1 the transformation is a rotation, followed by a reflection.

For a fixed angle 6, let T = |: cosf  sinf and consider the point v = [vy,v2] =

—sinf cosf

1
efand 3. In Figure 2.6.1, we consider the point v relative to the two coordinate systems
{e1, 2} and {e’l‘., esl.

Clearly, relative to {er, e>},

. . 1 0 .
[v},v;] relative to the old coordinates e; = [ 0 :| ,€) = [ :| and the new coordinates

V=yvie| + vyer

However, rotating ¢, —> €] and e, —> €3, the projection of e; onto €] is |lej[|cos =
cos 0 and the projection of ejonto €} is cos (§ + 90°) = —sin6 or,

e; = (cosb) e} + (—sinb)e;

Similarly,
e = (cosb) e} + (—sinb)e;
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Thus,
v = (vicosf + vy sinf)e] + (vi (—sinh) + vo cos ) €3

vi | _ | cos®  sinf Vi
vy | | —sin® cos6 )

v =Tv

or

is a linear transformation of the old coordinates to the new coordinates. Let 6;; be the angle
of the i old axes and the j" new axes: 811 = 6 62 = 6 021 =6 —90°and 615 = 6 + 90.
Using trigonometric identities

cos 021 = cos 6 cos (—90°) — sin6 sin (—90°)
cosf (0) —sinf (—1)

=sinf

and

cosB12 = cosh cos —90° — sin @ sin —90°
=cosf (0) —sinf (1)

= —sinf

we observe that the transformation becomes

cosd cosd
v — 11 21 v
cosf 2 cos By

For three dimensions, the orthogonal transformation is

vi cosfi; cosfr; cosO3q Vi
vy | =| cosfp cosfx cosf3 v,
V3 cosf13 cosfr3 cosbsz Vs

Extending the result to n-dimensions easily follows. A transformation that transforms an
orthogonal system to a nonorthogonal system is called an oblique transformation. The basis
vectors are called an oblique basis. In an oblique system, the axes are no longer at right
angles. This situation arises in factor analysis discussed in Chapter 8.

c. Projection Transformations

A linear transformation that maps vectors of a given vector space onto a vector subspace
is called a projection. For a subspace V, C V,,, we saw in Section 2.3 how for any y € V,
that the vector y may be decomposed into orthogonal components

y=Pv,y+PyL y

such that y is in an r-dimensional space and the residual is in an (n — r)-dimensional space.
We now discuss projection matrices which make the geometry of projections algebraic.
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Definition 2.6.3 Let Py represent a transformation matrix that maps a vector'y onto a sub-
space V. The matrix Py is an orthogonal projection matrix if and only if Py is symmetric
and idempotent.

Thus, an orthogonal projection matrix Py is a matrix such that Py = P/, and P%, =Py.
Note that I — Py is also an orthogonal projection matrix. The projection transformation
I — Py projects y onto V-, the orthocomplement of V relative to V,,. Since I — Py projects
y onto VL, and V, = V, ® V,,_, where V,_, = VL we see that the rank of a projection
matrix is equal to the dimension of the space that is being projected onto.

Theorem 2.6.4 For any orthogonal projection matrix Py, the
r(Py)=dimV =r
r(d—Py) =dimV>-=n—r
forVy, =V, ® V=, .

The subscript V on the matrix Py is used to remind us that Py projects vectors in V,, onto
a subspace V, CV,. We now remove the subscript to simplify the notation. To construct a
projection matrix, let A be an n x r matrix where the r(A) = r so that the columns span
the r-dimensional subspace V. C V,,. Consider the matrix

P=A(AA)' A (2.6.10)

The matrix is a projection matrix since P = P/, P> = P and the r (P) = r. Using P defined
in (2.6.10), observe that

y=Pyy+Py.y
=Py+d—-P)y
=A(AA) T Ay+HI—A (AA) T Ay
Furthermore, the norm squared of y is

Iyl? = IPyI* + | - P) y|I?
=yPy+y d-P)y (2.6.11)

Suppose A, x, is not of full column rank, r (A) =r < m < n, Then

P=A (A’A)f A
is a unique orthogonal projection matrix. Thus, P is the same for any g-inverse (A’A)_.
Alternatively, one may use a Moore-Penrose inverse for (A’A). Then, P = A (A’A)Jr A

Example 2.6.2 Let

1 1 0 Y11
|t 1o _ | v
V= 10 1 and y= o1
1 0 1 y22
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where
0 O 0
(V’V) 10 172 0
0o 0 1/2

Using the methods of Section 2.3, we can obtain the Pyy by forming an orthogonal basis
for the column space of V. Instead, we form the projection matrix

12 12 0 0
12 12 0 0

P_V(VV) V= 0 0 1/2 1/2
0 0 1/2 1/2
Then the Pyy is
V1.
x=V(VV) Vy = V1.
( ) y 2.
2.
Letting V = A as in Figure 2.3.3,
x =Py + Paj1y
1] 1
| _ 1
L] -1
yi. |
_|
y2.
y2. |

leads to the same result.
To obtain the Py, 1y, the matrix I — P is constructed. For our example,

12 12 0 0
12 12 0 0
0o 0 12 1/2
0 0 —1/2 1/2

I-P=1-V(VV) V=

so that
O —y12) /2 Y11 — Y.
12 —y11) /2 Y21 — )1
( )y (21 —y22) /2 Y21 — 2.
(22 = y21) /2 Y22 — ¥2.

is the projection of y onto V=+. Alternatively, e =y — X.
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In Figure 2.3.3, the vector space V. = A = (A/1) @ 1. To create matrices that project y
onto each subspace, let V = {1, A} where

and A=

o
—_——_- O O

O O ==

Next, define Py, Py, and P3 as follows
P=1 (1’1)7 1
P,=V (V’V)7 V-1 (1/1)7 1
P; = I—V(V’V)fV’
so that
I=P +P,+P;

Then, the quantities P;y

Piy =Py
P41y = Poy
P,y =Psy

are the projections of 'y onto the orthogonal subspaces.
One may also represent V using Kronecker products. Observe that the two group ANOVA
model has the form

Y11 en
Y12 o1 €12
=11 + 1 +
a1 Lel)p+d; 2)[ o ] e
22 e

Then, it is also easily established that

Pi=1 (1/212)71 b= @) /4=1J4/4

1 1
P, = 3 Lel) L1 —Ji/4= 2 (L ®J2) — Ja/4

P;=L®L) —@L®J)/4
so that P; may be calculated from the model.
By employing projection matrices, we have illustrated how one may easily project an

observation vector onto orthogonal subspaces. In statistics, this is equivalent to partitioning
a sum of squares into orthogonal components.



2.6 Systems of Equations, Transformations, and Quadratic Forms 67

v+

n—r

FIGURE 2.6.2. [ly|? = |[Py,yII?> + IPy,_, yII>.

Example 2.6.3 Consider a model that relates one dependent variable y to x1, x2, ..., Xk
linearly independent variables by the linear relationship

y=ﬂ0+ﬂ1x1+,32x2+-~-+ﬁka+e

where e is a random error. This model is the multiple linear regression model, which, using
matrix notation, may be written as

y = X ﬂ + (3
nxl1 nx(k+1) (k+1)x1 nxl

Letting X represent the space spanned by the columns of X, the projection of y onto X is
¥=X(XX)"' XYy

Assuming e = 0, the system of equations is solved to obtain the best estimate of f. Then,
the best estimate of y using the linear model is X where B is the solution to the system

y = XB for unknown B. The least squares estimate B = x’ X)71 X'y minimizes the sum
of squared errors for the fitted model y = XB. Furthermore,

Iy =PI = (v - XB) (v — XB)
=y@, - X (X'X)"' X)y
= [Pvay)®
is the squared distance of the projection of y onto the orthocomplement of V. C V.

Figure 2.6.2 represents the squared lengths geometrically.

d. Eigenvalues and Eigenvectors

For a square matrix A of order n the scalar X is said to be the eigenvalue (or characteristic
root or simply a root) of A if A — AI,, is singular. Hence the determinant of A — AI,, must



68 2. Vectors and Matrices

equal zero
[A— AL, =0 (2.6.12)

Equation (2.6.12) is called the characteristic or eigenequation of the square matrix A and is
an n-degree polynomial in A with eigenvalues (characteristic roots) A, A2, ..., A,. If some
subset of the roots are equal, say A1 = Ay = --- = Ay, where m < n, then the root is said
to have multiplicity m. From equation (2.6.12), the r (A — A¢I,) < n so that the columns
of A — AxI, are linearly dependent. Hence, there exist nonzero vectors p; such that

(A— ML) pi =0fori =1,2,...,n (2.6.13)

The vectors p; which satisfy (2.6.13) are called the eigenvectors or characteristic vectors
of the eigenvalues or roots ;.

Example 2.6.4 Let
_ 1 172
A= |: 12 1 ]

fr=x 12 7|
'A_“ﬂ_‘[ 1/2 1—x]’_0

(1-2)2—-1/4=0
A =21 +3/4=0
(—3/2)(—1/2)=0

Then

Or, A1 =3/2 and Xy = 1/2. To find py and pa, we employ Theorem 2.6.1. For A1,

[1-A-uD™ (A—AD]z
{[ Lo 2]k SR
ol
5]

Letting z1 = 1,X| = [1, 11. In a similar manner, with 1y = 1/2,X, = [z2, — z2]. Setting
= 1,3(\’2 = [1, —1], and the matrix Py is formed:

Py = [X1, %] = [ i _} ]
Normalizing the columns of P, the orthogonal matrix becomes

b [ V2 2]
S R VNGRS YN)
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However, the |P1| = —1 so that Py is not a pure rotation. However, by changing the signs
of the second column of Py and selecting 71 = —1, the orthogonal matrix P where the
Pl =1is

1/vV2 —1/42 1/vV2 1/42
P= and P =
V2 12 —1/V2 12

Thus, P'= T is a rotation of the axes ey, €3 to e’lk, e§ where 6;; = 45° in Figure 2.6.1.
Our example leads to the spectral decomposition theorem for a symmetric matrix A.

Theorem 2.6.5 (Spectral Decomposition) For a (real) symmetric matrix A, xy, there exists
an orthogonal matrix P, with columns p; such that

PAP= A, AP=PA,PP' =I=) ppp; and A=PAP' =) Lpp
1 i

L

where A is a diagonal matrix with diagonal elementsk; > Xy > -+ > A,,.

If the r(A) = r < n, then there are r nonzero elements on the diagonal of A . A
symmetric matrix for which all ; > 0 is said to be positive definite (p.d.) and positive
semidefinite (p.s.d.) if some A; > 0 and at least one is equal to zero. The class of matrices
taken together are called non-negative definite (n.n.d) or Gramian. If at least one A; = 0, A
is clearly singular.

Using Theorem 2.6.5, one may create the square root of a square symmetric matrix. By
Theorem 2.6.5, A = PA/2AY2P" and A=! = PA~!/2A~1/2P’. The matrix A!/2 = PA!/2
is called the square root matrix of the square symmetric matrix A and the matrix A~!/2 =
PA~1/2 is called the square root matrix of A~! since A/?A1/2 = A and (A%~ =
A~1/2_ Clearly, the factorization of the symmetric matrix A is not unique. Another common
factorization method employed in statistical applications is called the Cholesky or square
root factorization of a matrix. For this procedure, one creates a unique lower triangular
matrix L such that LI’ = A The lower triangular matrix L is called the Cholesky square
root factor of the symmetric matrix A. The matrix L’ in the matrix product is an upper
triangular matrix. By partitioning the lower triangular matrix in a Cholesky factorization
into a product of a unit lower triangular matrix time a diagonal matrix, one obtains the LDU
decomposition of the matrix where U is a unit upper triangular matrix.

In Theorem 2.6.5, we assumed that the matrix A is symmetric. When A, is not
symmetric, the singular-value decomposition (SVD) theorem is used to reduce A, x,, to
a diagonal matrix; the result readily follows from Theorem 2.5.1 by orthonormalizing the
matrices P and Q. Assuming that n is larger than m, the matrix A may be written as
A = PD,Q'where PP = Q'Q = QQ' = I,,,. The matrix P contains the orthonormal
eigenvectors of the matrix AA’, and the matrix Q contains the orthonormal eigenvectors of
A’A. The diagonal elements of D, contain the positive square root of the eigenvalues of
AA’ or A’A, called the singular values of A, . If A is symmetric, then AA" = A’A = A?
so that the singular values are the eigenvalues of A. Because most matrices A are usually
symmetric in statistical applications, Theorem 2.6.5 will usually suffice for the study of
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multivariate analysis. For symmetric matrices A, some useful results of the eigenvalues of
(2.6.12) follow.

Theorem 2.6.6 For a square symmetric matrix A, xn, the following results hold.
1 tr(A) =) A
2. 1Al =TT &
3. r (A) equals the number of nonzero A;.
4. The eigenvalues of A=" are 1/1; if r (A) = n.
5. The matrix A is idempotent if and only if each eigenvalue of A is 0 or 1.
6. The matrix A is singular if and only if one eigenvalue of A is zero.

7. Each of the eigenvalues of the matrix A is either +1 or —1, if A is an orthogonal
matrix.

In (5), if A is only idempotent and not symmetric each eigenvalue of A is also O or 1;
however, now the converse is not true.

It is also possible to generalize the eigenequation (2.6.12) for an arbitrary matrix B where
B is a (real) symmetric p.d. matrix B and A is a symmetric matrix of order n

[A—AB| =0 (2.6.14)
The homogeneous system of equations
|A—21;Blqi =0 i=12,...,n) (2.6.15)

has a nontrivial solution if and only if (2.6.14) is satisfied. The quantities A; and q; are the
eigenvalues and eigenvectors of A in the metric of B. A generalization for Theorem 2.6.5
follows.

Theorem 2.6.7 For (real) symmetric matrices Ay x, and B, x,, where B is p.d., there exists
a nonsingular matrix Q, x,, with columns q; such that

QAQ=A and QBQ=1I
A=(Q)'AQ" and (Q)'Q'=B

A= Z)\ixix; and B= ZX,‘XE
i i

where x; is the i™ column of (Q)~! and A is a diagonal matrix with eigenvalues Ay >
Ay > -+ > A, for the equation |A — AB| = 0.
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Thus, the matrix Q provides a simultaneous diagonalization of A and B. The solution to
|A — AB| = 0 is obtained by factoring B using Theorem 2.6.5: PBP = A or B = PAP' =
(PA!/2) (A1/2P") = PP so that Pl_lB (P}) = L Using this result, and the transformation

q = (P/l)_1 X;, (2.6.15) becomes
[Pr'AP) " = ad]x =0 (2.6.16)

so that we have reduced (2.6.14) to solving |Pf]A (P’l)_1 — M| = 0 where PflA (P’l)_1
is symmetrical. Thus, roots of (2.6.16) are the same as the roots of (2.6.14) and the vectors
are related by q; = (P’l)_1 X;.

Alternatively, the transformation q; = B 'x; could be used. Then (AB_l — )»,-I) X; =
0; however, the matrix AB~! is not necessarily symmetric. In this case, special iterative
methods must be used to find the roots and vectors, Wilkinson (1965).

The eigenvalues A1, A2, ..., A, of |A — AB| = 0 are fundamental to the study of applied
multivariate analysis. Theorem 2.6.8 relates the roots of the various characteristic equations
where the matrix A is associated with an hypothesis test matrix H and the matrix B is
associated with an error matrix E.

Theorem 2.6.8 Properties of the roots of |[H — AE| = 0.

1. The roots of |[E — v (H + E)| = 0 are related to the roots of | H — LAE| = O:

1—V,‘ 1
A= or Vv; =
\'A 1+ A

2. The roots of | H — 6 (H + E)| = 0 are related to the roots of |H — AE| = 0:

= or 0; =
1—06; 1+ A;

3. The roots of |[E —v(H + E)| =0 are
Vi =(1-0))

Theorem 2.6.9 If oy, ..., a, are the eigenvalues of A and By, B, ..., B, are the eigen-
values of B. Then

1. TheeigenvaluesofA@Barea,ﬂj i=1,....,n;j=1,...,m).
2. The eigenvalues of A @ B are oy, ..., o, B1, Bos--s Bm-

e. Matrix Norms

In Section 2.4, the Euclidean norm of a matrix A, x,, was defined as the {tr(A/ A)}l/ 2.
Solving the characteristic equation |A/ A — AI| = 0, the Euclidean norm becomes ||A|l, =
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{Zi Ai } 12 Where A; is aroot of A’A. The spectral norm is the square root of the maximum
root of A’A. Thus, ||A|, = max +/A;. Extending the Minkowski vector norm to a matrix,

. . p/2 1/p ,
a general matrix (L, norm) norm is [|A[l, = [ Dok where A; are the roots of A’A,

also called the von Neumann norm. For p = 2, it reduces to the Euclidean norm. The
von Neumann norm satisfies Definition 2.4.2.

f. Quadratic Forms and Extrema

In our discussion of projection transformations, the norm squared of y in (2.6.11) was
constructed as the sum of two products of the form y’Ay = Q for a symmetric matrix A.
The quantity Q defined by

fy= Zzaijyiyj =0 (2.6.17)

i=1 j=1

is called a quadratic form of y, x| for any symmetric matrix A, x,. Following the definition
for matrices, a quadratic form y’Ay is said to be

1. Positive definite (p.d.) if y’Ay > 0 for all y # 0 and is zero only if y = 0.

2. Positive semidefinite (p.s.d.) if y’Ay > 0 for all y and equal zero for at least one
nonzero value of y.

3. Non-negative definite (n.n.d.) or Gramian if A is p.d. or p.s.d.

Using Theorem 2.6.5, every quadratic form can be reduced to a weighted sum of squares
using the transformation y = Px as follows

yAy = Z rix?
i

where the A; are the roots of |A — AI| = 0 since PPAP = A.

Quadratic forms arise naturally in multivariate analysis since geometrically they repre-
sent an ellipsoid in an n-dimensional space with center at the origin and Q > 0. When
A = 1, the ellipsoid becomes spherical. Clearly the quadratic form y’Ay is a function of
y and for y = ay (« > 0), it may be made arbitrarily large or small. To remove the scale
changes in y, the general quotient y'Ay/y By is studied.

Theorem 2.6.10 Let A be a symmetric matrix of order n and B a p.d. matrix where .1 >
Ay > -+« > Ay are the roots of |A — AB| = 0. Then for any 'y # 0,

A < YAy/yBy < 1
and
i 'Ay/y'By) = A
min (Y'Ay/y'By) = A,
max (y'Ay/y'By) = A
y#0

For B = I, the quantity y’Ay/y’y is known as the Rayleigh quotient.
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g. Generalized Projectors

We defined a vector y to be orthogonal to x if the inner product y'x = 0. Thatisy L x
in the metric of I since y'Ix = 0. We also found the eigenvalues of A in the metric of
I when we solved the eigenequation |A — AI| = 0. More generally, for a p.d. matrix B,
we found the eigenvalues of A in the metric of B by solving |A — AB| = 0. Thus, we
say that y is B-constrained orthogonal to x if yBx = 0 or y is orthogonal to x in the
metric of B and since B is p.d., yBy > 0. We also saw that an orthogonal projection
matrix P is symmetric (P = P’) and idempotent (P? = P) and has the general structure

P = X (X'’X) X' Inserting a symmetric matrix B between X'X and postmultiplying P

by B, the matrix Px;g = X (X'BX) X'B is constructed. This leads one to the general
definition of an “affine” projector.

Definition 2.6.4 The affine projection in the metric of a symmetric matrix B is the matrix
Pxp =X (X/BX)7 X'B

Observe that the matrix Px/g is not symmetric, but that it is idempotent. Hence, the
eigenvalues of Px,p are either 0 or 1. In addition, B need not be p.d. If we let V represent
the space associated with X and V. the space associated with B where V,, = Vx @ V1
so that the two spaces are disjoint, then Px,p is the projector onto V1. Or, Px/p is the
projector onto X along the kernel X'B and we observe that X[(X'BX)"X'B]X = X and
X (X’BX)_ X'B = 0.

To see how we may use the affine projector, we return to Example 2.6.4 and allow the
variance of e to be equal to o2V where V is known. Now, the projection of y onto X is

F=X] (X/V—‘X) X'V ly = XB (2.6.18)

along the kernel X’V~!. The estimate E is the generalized least squares estimator of E
Also,

ly —=31% = (v — XB)' V! (y — XB) (2.6.19)

is minimal in the metric of V~!. A more general definition of a projector is given by Rao
and Yanai (1979).

Exercises 2.6

1. Using Theorem 2.6.1, determine which of the following systems are consistent, and
if consistent whether the solution is unique. Find a solution for the consistent systems

(2 -3 1 X
(@) —33} Y :[1(5)}
Z

6
T1 1 0 . 6
1 0 —1 )
® 15 1 Yo = 8
10 1 < 0
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(1 1 X 0
o[> s ][V ]=[0]
T1 1 =17 x ] 0
@ | 2 =1 1 y =0
1 4 4 || 2] 0
(11 1] 9] 2
1 -1 1 6
@1 2 Y 0
3 -1 3 |L | 14

2. For the two-group ANOVA model where

Y11 1 10
e |[_[ 1t 1o 2
LTI I RV O
2 10 1 2
solve the system using the restrictions
(1) a =0

2) a;— ar=0
3. Solve Problem 2 using the reparameterization method for the set of new variables
(Dpu+arand u + an 2)pnand oy 4+ a3
B)p+ajanda; — s (4) u + g and

4. In Problem 2, determine whether unique solutions exist for the following linear com-
binations of the unknowns and, if they do, find them.

(D +ay Qu+ o1 +a
3oy — az/2 Dy

5. Solve the following system of equations, using the g-inverse approach.

1 1 0 1 0 Y111
1 1.0 10 Y112
1100 1 H Vi1
1 100 1 “1 V122
10110 QA= | 7Y
1 01 1 0 B Y212
1 01 01 b V221
[ 1010 1 v |

For what linear combination of the parameter vector do unique solutions exist? What
is the general form of the unique solutions?



6.

10.

11.
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For Problem 5 consider the vector spaces

1 1 0 1 0 1 1.0 1 0
1 1 0 1 0 11010
1 10 0 1 1 100 1
1 10 0 1 1 100 1
=y 3 A=y o0 1 (B=Y 100Xy 1 01 1 0
1 0 1 1 0 1 01 10
1 0 1 0 1 1 0101
1 0 1 0 1 1 010 1

(a) Find projection matrices for the projection of y onto 1, A/1 and B/1.
(b) Interpret your findings.

(c) Determine the length squares of the projections and decompose ||y||2 into a
sum of quadratic forms.

For each of the symmetric matrices

1 1 0
A:[% ;:| and B= 1 5 =2
0 -2 1

(a) Find their eigenvalues

(b) Find n mutually orthogonal eigenvectors and write each matrix as PAP'.

Determine the eigenvalues and eigenvectors for the n x n matrix R = [r;;] where
rij=1fori = jandr;j =r #0fori # j.

For A and B defined by
498.807 426.757 1838.5 —334.750
A= and B =
426.757 374.657 —334.750 12,555.25

solve |A — AB| = 0 for A; and ;.
Given the quadratic forms
3yf+ 5 +2y5 +yiys and  yi +5y5 + ¥+ 2y12 — 4y2y3

(a) Find the matrices associated with each form.
(b) Transform both to each the form Zi kixiz.
(c) Determine whether the forms are p.d., p.s.d., or neither, and find their ranks.

(d) What is the maximum and minimum value of each quadratic form?
Use the Cauchy-Schwarz inequality (Theorem 2.3.5) to show that
(a'b) < (a'Ga) (W'G™'b)

for a p.d. matrix G.
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2.7 Limits and Asymptotics

We conclude this chapter with some general comments regarding the distribution and con-
vergence of random vectors. Because the distribution theory of a random vectors depend
on the calculus of probability that involves multivariable integration theory and differential
calculus, which we do not assume in this text, we must be brief. For an overview of the
statistical theory for multivariate analysis, one may start with Rao (1973a), or at a more
elementary level the text by Casella and Berger (1990) may be consulted.

Univariate data analysis is concerned with the study of a single random variable Y char-
acterized by a cumulative distribution function Fy (y) = P [Y < y] which assigns a proba-
bility that ¥ is less than or equal to a specific real number y < oo, for all y € R. Multivari-
ate data analysis is concerned with the study of the simultaneous variation of several ran-
dom variables Y1, Y», ..., Y4 or arandom vector of d-observations, Y = [Y1, Y2, ..., Y4].

Definition 2.7.1 A random vector Y x 1 is characterized by a joint cumulative distribution
function Fy (y) where

Fy(y)=P[Y=<yl=P1 =y, Y2 <y <--- <Yy < y4l

assigns a probability to any real vector' y' = [y1, v, ..., vil, yeV4. The vector Y =
[Y1, Ya, ..., Yq] is said to have a multivariate distribution.

For a random vector Y, the cumulative distribution function always exists whether all the
elements of the random vector are discrete or (absolutely) continuous or mixed. Using the
fundamental theorem of calculus, when it applies, one may obtain from the cumulative
distribution function the probability density function for the random vector Y which we
shall represent as fy(y). In this text, we shall always assume that the density function exists
for a random vector. And, we will say that the random variables Y; € Y are (statistically)
independent if the density function for Y factors into a product of marginal probability
density functions; that is,

d
A =[] Mmoo
i=1
for all y. Because many multivariate distributions are difficult to characterize, some basic
notions of limits and asymptotic theory will facilitate the understanding of multivariate
estimation theory and hypothesis testing.
Letting {y,} represent a sequence of real vectors yi,y2, ..., forn = 1,2, ..., and {c,}
a sequence of positive real numbers, we say that y, tends to zero more rapidly than the
sequence ¢, as n —> oo if the
lim Iyl =0 (2.7.1)

n—s00 ¢y,
Using small ok notation, we write that
Yn =0 (cp)asn — o0 2.7.2)

which shows that y, converges more rapidly to zero than ¢, as n —> oc0. Alternatively,
suppose the ||y, || is bounded, there exist real numbers K for all n, then, we write that
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ly.ll < Kc, for some K. Using big Oh notation
Yn = O (cn) (2.7.3)

These concepts of order are generalized to random vectors by defining convergence in
probability.

Definition 2.7.2 A random vector Y, converges in probability to a random vector Y writ-

ten as Yy SN Y, if for all € and § > O there is an N such that for alln > N,
P (Y, =Y =€) <4. O, limy_, o {|IY, — Y| > 0} = 0 and written as plim{Y,} =Y
Thus, for the elements in the vectors Y, =Y, {Y, — Y}, n = 1,2, ... converge in proba-
bility to zero.

Employing order of convergence notation, we write that
Y, =0, (cy) (2.7.4)

when the sequence plim ™ ¥l —

the elements in ¢,;, we wrlte

= 0. Furthermore, if the ||Y, | is bounded in probability by

Y, =0 (c,) (2.7.5)

if fore > Othe P {||Y,|| < c,K} < ¢ for all n; see Ferguson (1996).
Associating with each random vector a camulative distribution function, convergence in
law or distribution is defined.

Definition 2.7.3 Y, converges in law or distribution to Y written as Y,, —> Y, if the limit
lim;,—, oo = Fy (y) for all points 'y at which Fy (y) is continuous.

Thus, if a parameter estimator /3 n converges in distribution to a random vector §, then
ﬂn = O,, (1) . Furthermore, if ﬂn B = 0 (cy)andif ¢, =0, (1), then the plim {,Bn} =
Bor /3,, is a consistent estimator of B. To illustrate this result for a single random variable,
we know that \/n (Y,, — ) Y (0,02). Hence, (X, — 1) = 0, (1/4/n) = o0p (1)
so that X, converges in probability to u, plim {X,,} = . The asymptotic distribution of
X, is the normal distribution with mean x and asymptotic variance o%/n as n —> oo.
If we assume that this result holds for finite n, we say the estimator is asymptotically
efficient if the variance of any other consistent, asymptotically normally distributed esti-
mator exceeds o2/n. Since the median converges in distribution to a normal distribution,
N2/ (M, — 1) i> N (O, 02) , the median is a consistent estimator of ©; however, the
mean is more efficient by a factor of 7 /2.

Another important asymptotic result for random vectors in Slutsky’s Theorem.

Theorem 2.7.1 If X, > X and plim {Y,} = ¢. Then

L]

2. Y,X, -5 X
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Since X, 4 x implies plim {X,,} = X, convergence in distribution may be replaced
with convergence in probability. Slutsky’s result also holds for random matrices. Thus if
Y, and X,, are random matrices such that if plim{Y,} = A and plim{X,} = B, then
plim {Y, X'} = AB~L.

Exercises 2.7
1. For a sequence of positive real numbers {c, }, show that

(@) O(cn) = Op (cn) =c,O(1)
(b) o(cn) = op (cn) = cpo (1)

2. For a real number « > 0, Y, converges to the o™ mean of Y if the expectation
of Y, — Y| — 0, written E|Y, —Y|* — 0asn —> o0, this is written as

m . . .
Y, £ Y, convergence in quadratic mean. Show that if ¥, %5 Y for some «, that

Y, 25 v.

(a) Hint: Use Chebyshev’s Inequality.

3. Suppose X, AN (0, 1). What is the distribution of Xﬁ.

4. Suppose X, — E (Xy) /+/var X, i> X and E (X, — Yn)z/varX,, —> 0. What is
the distribution of ¥,, — E (¥,,) /+/var Y,,?

5. Asymptotic normality of ¢. If X, X, ..., is a sample from N (/L, 02), then X, i>
pand £X2/n - E (X?) sos? = EX2/n — X, —5 E (X2) - u® = o7. Show
that /1 — T (X — 12) /sn —> N (0, 1).
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Multivariate Distributions and the
Linear Model

3.1 Introduction

In this chapter, the multivariate normal distribution, the estimation of its parameters, and
the algebra of expectations for vector- and matrix-valued random variables are reviewed.
Distributions commonly encountered in multivariate data analysis, the linear model, and
the evaluation of multivariate normality and covariance matrices are also reviewed. Finally,
tests of locations for one and two groups are discussed. The purpose of this chapter is to
familiarize students with multivariate sampling theory, evaluating model assumptions, and
analyzing multivariate data for one- and two-group inference problems.

The results in this chapter will again be presented without proof. Numerous texts at vary-
ing levels of difficulty have been written that discuss the theory of multivariate data analy-
sis. In particular, books by Anderson (1984), Bilodeau and Brenner (1999), Jobson (1991,
1992), Muirhead (1982), Seber (1984), Srivastava and Khatri (1979), Rencher (1995) and
Rencher (1998) may be consulted, among others.

3.2 Random Vectors and Matrices

Multivariate data analysis is concerned with the systematic study of p random variables
Y' = [Y1, Y, ..., Y,]. The expected value of the random p x 1 vector is defined as the
vector of expectations
E (Y1)
E(Y2)
E(Y) = .

E(Y,)
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More generally, if Yy, = [Yi ] is a matrix of random variables, then the E (Y) is
the matrix of expectations with elements [ E(Y;;)]. For constant matrices A, B, and C, the
following operation for expectations of matrices is true

E (AY,xpB+C) = AE (Yux,) B+ C 3.2.1)
For a random vector Y = [Y1, Y2, ..., Y p1, the mean vector is
23
n=EXY)=
,;,,

The covariance matrix of a random vector Y is defined as the p x p matrix
cov(Y)=E{[Y - EM)I[Y—-EM]}
= E{[Y — p][Y — pI'}

011 012 - Olp
021 02 -+ 0O2p

= . . . =X
Opl Op2 - Opp

where
oij = cov (¥, ¥;) = E{[Yi — ;] [¥; — ]}

and o;; = a? = E[(Y; — ,ui)z] = var ¥;. Hence, the diagonal elements of ¥ must be non-
negative. Furthermore, ¥ is symmetric so that covariance matrices are nonnegative definite
matrices. If the covariance matrix of a random vector Y is not positive definite, the com-
ponents Y; of Y are linearly related and the |X| = 0. The multivariate analogue of the
variance o2 is the covariance matrix ¥. Wilks (1932) called the determinant of the covari-
ance matrix, |X|, the generalized variance of a multivariate normal distribution. Because
the determinant of the covariance matrix is related to the product of the roots of the charac-
teristic equation | X — AI|, even though the elements of the covariance matrix may be large,
the generalized variance may be close to zero. Just let the covariance matrix be a diagonal
matrix where all diagonal elements are large and one variance is nearly zero. Thus, a small
value for the generalized variance does not necessary imply that all the elements in the
covariance matrix are small. Dividing the determinant of ¥ by the product of the variances

for each of the p variables, we have the bounded measure 0 < (| x|/ Hf’zl aii)z <1.

Theorem 3.2.1 A p x p matrix ¥ is a covariance matrix if and only if it is nonnegative
definite (n.n.d.).

Multiplying a random vector Y by a constant matrix A and adding a constant vector c,
the covariance of the linear transformation z = AY + ¢ is seen to be

cov(z) = AXA/ (3.2.2)
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since the cov (¢) = 0. For the linear combination z = a’Y and a constant vector a, the
cov(a'Y) =a'Za.
Extending (3.2.2) to two random vectors X and Y, the
cov(X,Y) = E{[Y — uyl[X — px]'} = Exy (3.2.3)

Properties of the cov () operator are given in Theorem 3.2.2.

Theorem 3.2.2 For random vectors X and Y, scalar matrices A and B, and scalar vec-
tors a and b, the

1. cov (a'’X,b'Y) =a'Sxyb
2. cov(X,Y) =cov (Y, X)
3. cov(a+AX,b+BY) = Acov(X,Y)B’
The zero-order Pearson correlation between two random variables Y; and Y is given by

pij = Tij_ _ COV( D j) where —1< pij < 1
gigj var (Y;) var (Y;)

The correlation matrix for the random p-vector Y is
P= [,oij] (3.2.4)

Letting (diag X)~!/? represent the diagonal matrix with diagonal elements equal to the
square root of the diagonal elements of X, the relationship between P and X is established

P = (diag ¥)"'/? £ (diag =)~ !/?
¥ = (diag ©)!/? P (diag £)'/?

Because the correlation matrix does not depend on the scale of the random variables,
it is used to express relationships among random variables measured on different scales.
Furthermore, since the |X| = | (diag ©)'/? P (diag £)!/? | we have that 0 < |P|> < 1.
Takeuchi, et al. (1982, p. 246) call the |P| the generalized alienation coefficient. If the
elements of Y are independent its value is one and if elements are dependent it value
is zero. Thus, the determinant of the correlation matrix may be interpreted as an overall
measure of association or nonassociation.

Partitioning a random p-vector into two subvectors: Y = [Y’l, Y’2]/ , the covariance ma-
trix of the partitioned vector is

cov(Yy,Yy) cov(Yy,Yp) X1 X2
cov(Y) = =
cov (Y2, Yy) cov(Ya, Y2) Y1 X

where X;; = cov(Y;, Y;). To evaluate whether Y| and Y; are uncorrelated, the following
theorem is used.
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Theorem 3.2.3 The random vectors Y1 and Y, are uncorrelated if and only if 1o = 0.

The individual components of Y; are uncorrelated if and only if %;; is a diagonal matrix.
If Y; has cumulative distribution function (c.d. f), Fy, (y;), with mean ; and covariance
matrix X;;, we write Y; ~ ([Li, E,-i).

Definition 3.2.1 Two (absolutely) continuous random vectors Y1 and Y, are (statistically)
independent if the probability density function of Y = [Y/, Y,]" is obtained from the prod-
uct of the marginal densities of Y1 and Yo

N = fy, ) fr, 32)

The probability density function or the joint density of Y is obtained from Fy(y) using
the fundamental theorem of calculus. If Y| and Y5 are independent, then the cov(Y1, Y;) =
0. However, the converse is not in general true.

In Chapter 2, we defined the Mahalanobis distance for a random variable. It was an
“adjusted” Euclidean distance which represented statistical closeness in the metric of 1/02

or (02)71. With the first two moments of a random vector defined, suppose we want to
calculate the distance between Y and . Generalizing (2.3.5), the Mahalanobis distance
between Y and g in the metric of X is

Ds(Y, ) = [(Y — w)T7(Y — w)]'/? (32.5)

IfY ~ (u, ¥) and X ~ (u,, ), then the Mahalanobis distance between Y and X, in the
metric of X, is the square root of

DX, Y)=X-Y)TI(X-Y)

which is invariant under linear transformations zx= AX + a and zy = AY + b. The co-
variance matrix ¥ of X and Y becomes 2 = AXA’ under the transformations so that
D%(X,Y) = 74 Qzy = D} (zx, zy).

The Mahalanobis distances, D, arise in a natural manner when investigating the sep-
aration between two or more multivariate populations, the topic of discriminant analysis
discussed in Chapter 7. It is also used to assess multivariate normality.

Having defined the mean and covariance matrix for a random vector Y, and the first
two moments of a random vector, we extend the classical measures of skewness and kurto-
sis, E[(Y — w)*1/0® = /03 and E[(Y — w)*1/o* = 1) /o* of a univariate variable Y,
respectively, to the multivariate case. Following Mardia (1970), multivariate skewness and
kurtosis measures for a random p-variate vector Y, ~ (g, X) are, respectively, defined as

— 3
Brp=E{(Y-w' =7 X-w) (3.2.6)
— 2
Brp=E{(Y-w)' =71 (Y - w) (3.2.7)
where Y, and X, are identically and independent identically distributed (i.i.d.). Because

B1,, and B, , have the same form as Mahalanobis’ distance, they are also seen to be in-
variant under linear transformations.
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The multivariate measures of skewness and kurtosis are natural generalizations of the
univariate measures

and

VB = \/B11 = /o’ (3.2.8)

By = By1 = u,/o* (3.2.9)

For a univariate normal random variable, y; = /8y =0and y, = 8, —3 =0.

Exercises 3.2

1.

2.

Prove Theorems 3.2.2 and 3.2.3.

For Y ~ N(u,X) and constant matrices A and B, prove the following results for
quadratic forms.

(a) E(YAY) =tr(AX) + n'Au
(b) cov (Y'AY) = 3tr (AD)? + 4/ AT A
(c) cov (Y'AY, Y'BY) =2tr (AXBX) + 4u/AZBu
[Hint: E (YY') = £ 4 pp/, and the tr (AYY') = Y'AY ]
For X ~ (u;,)andY ~ (up, ¥),wherep| = [1,1],n}, = [0,0]and ¥ =

2 1 s
[1 21|,ﬁndD X, Y).

Graph contours for ellipsoids of the form (Y — u) 21 (Y — n) = ¢ where p/ =

2 1
[2,2]and2]=|:1 > ]

For the equicorrelation matrix P = (1 — p)I 4+ p11’and —(p — )™ < p < 1 for
p > 2, show that the Mahalanobis squared distance between p} = [«, 0'] and p), =
0 in the metric of Pis

I+(p—-20p }

D* (uy, ={
W 2) =\ T T+ (= D 7]

[Hint: P =(1—p) " {I-p[l+(p—1Dpl~'11'} ]

Show that ,32,], may be written as ,82,[, = tr[{D:,,(XJ_1 ® E_l)Dl,}F] + p where D,
is a duplication matrix in that D, vech(A) = vec(A) and I' = cov[vech{(Y —u)(Y —
m)'H.

We noted that the |P|2 may be used as an overall measure of multivariate association,
construct a measure of overall multivariate association using the functions ||P| |2,and
the tr(P)?
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3.3 The Multivariate Normal (MVN) Distribution

Derivation of the joint density function for the multivariate normal is complex since it
involves calculus and moment-generating functions or a knowledge of characteristic func-
tions which are beyond the scope of this text. To motivate its derivation, recall that a ran-
dom variable ¥; has a normal distribution with mean w; and variance o2, written Y; ~

N(u;, o2), if the density function of Y; has the form

1 2
fr, Oi) = " exp{— (yl- — ,u,l-) /202} —00 <Yy <00 3.3.1)
Letting Y = [Y1,Y2,...,Y p] where each Y; is independent normal with mean w; and

variance o2, we have from Definition 3.2.1, that the joint density of Y is

p
A =]]mon

exp{— (i — 1;)* /20°)

I
e N}

1
RPN
P
= (2m)" P2 < >exp Z /20 }
i=1
==<2n>*P/2\(ozlp)\_i/zexp{——<y-—-u)’(azlp)_l(y-—-u)/Z}

This is the joint density function of an independent multivariate normal distribution, written
asY ~ Np(u, o21), where the mean vector and covariance matrix are

y g2 0 --- 0

Uy 0 o2 .- 0
EY)=p=| . |, and cov(Y)=| . .| =0,

Iy O 0 ... g2

respectively.

More generally, replacing oI p with a positive definite covariance matrix X, a general-
ization of the independent multivariate normal density to the multivariate normal (MVN)
distribution is established

f@=CoPPIE Pep{- -5 y-w /2] —co<yi<x
(3.3.2)
This leads to the following theorem.

Theorem 3.3.1 A random p-vector Y is said to have a p-variate normal or multivari-
ate normal (MVN) distribution with mean p and p.d. covariance matrix ¥ written Y ~
Ny (n, ), if it has the joint density function given in (3.3.2). If ¥ is not p.d., the density
function of Y does not exist and Y is said to have a singular multivariate normal distribu-
tion.
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IfY ~ Nj, (u, ) independent of X ~ N, (u, ¥) then multivariate skewness and kur-
tosis become B , = Oand B, , = p (p + 2). Multivariate Kurtosis is sometimes defined
asy = B, , — p (p +2) to also make its value zero. When comparing a general spherical
symmetrical distribution to a MVN distribution, the multivariate kurtosis index is defined
as § = B, ,/p (p+2). The class of distributions that maintain spherical symmetry are
called elliptical distributions. An overview of these distributions may be found in Bilodeau
and Brenner (1999, Chapter 13).

Observe that the joint density of the MVN distribution is constant whenever the quadratic
form in the exponent is constant. The constant density ellipsoid (Y — p) T~ (Y — ) = ¢
has center at u while X determines its shape and orientation. In the bivariate case,

2
Y:[Yl]ﬂz[m]zz[ o1l o012 }:[ o1 /001202 ]
Y, 2% 021 o0 pO102 05
For the MVN to be nonsingular, we need a% > 0, 0% > 0 and the | X| =0%a% (1—p2) >
Osothat —1 < p < 1. Then

1 —p

E_l _ 1 0% 0102
1= p2 P e

P 0102 o3

and the joint probability density of Y yields the bivariate normal density

oofrei (520 2 (52 () (2]

172

f@y=

2no102 (1 - p?)

Letting Z; = (Y,- — ui) /oi(i = 1,2), the joint bivariate normal becomes the standard
bivariate normal

exp ﬁ (22 — 2pz122 + 23)
172

— X< <X

(2) =
s 27 (1 — p?)

The exponent in the standard bivariate normal distribution is a quadratic form

2 2
7 —2p7122+ 2
11:|:1 prz2tzy

22 1 — p?

0=1z1, 2] 7! [

1 _
DI ! L and X = Lop
1—,02 —p 1 p 1

which generates concentric ellipses about the origin. Setting p = 1/2, the ellipses have the
form O = z% —z122 + z% for O > 0. Graphing this function in the plane with axes z; and
7o for O = 1 yields the constant density ellipse with semi-major axis a and semi-minor
axis b, Figure 3.3.1.

where
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z)

X
X

(1, 1)

[=(1/3)1/2, (1/3)1/2]

Z

FIGURE33.1.25 lz=23 — 1+ 4 =1

Performing an orthogonal rotation of x = P’z, the quadratic form for the exponent of the
standard MVN becomes
1 1
237 'z =i+ A5x5 = —xP + —x3
A2 Al
where Ay = 1 +p = 3/2and A = 1 — p = 1/2 are the roots of |¥ — AI| = 0 and
A3 = 1/A1 and AT = 1/, are the roots of | ¥ ~! — A*T = 0. From analytic geometry, the
equation of an ellipse, for Q = 1, is given by

1\> , 1\* ,
_ — =1
(5) 4+ (z) 3

Hence a®> = Aj and b> = X, so that each half-axis is proportional to the inverse of the
squared lengths of the eigenvalues of X. As Q varies, concentric ellipsoids are generated

sothata = /QA; and b = /QOX».

a. Properties of the Multivariate Normal Distribution

The multivariate normal distribution is important in the study of multivariate analysis be-
cause numerous population phenomena may be approximated by the distribution and the
distribution has very nice properties. In large samples the distributions of multivariate pa-
rameter estimators tend to multivariate normality.

Some important properties of a random vector Y having a MVN distribution follow.

Theorem 3.3.2 Properties of normally distributed random variables.

1. Linear combinations of the elements of Y ~ N [u, X] are normally distributed. For
a constant vector a # 0 and X = a'Y, then X ~ N (a'/L,a’Ea).

2. The normal distribution of Y, ~ N, [, X] is invariant to linear transformations.
For a constant matrix Ay p and vector by 1, X =AY, +b ~ Ny;(An +b, AZA).
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X X2
1 Ep
tors of Y are normally distributed. Y1 ~ N, [[Ll, 211] and Y ~ Np, [uz, 222]
where p1+ p2 = p. More generally, all marginal distributions for any subset of ran-
dom variables are normally distributed. However, the converse is not true, marginal
normality does not imply multivariate normality.

3. Partitioning Y = [Y|,Y,]', n = [ Zl ]and Y = |: :|, the subvec-
2

. The random subvectors Y1 and Y of Y = [Y,Y,]’ are independent if and only if
¥ = diag[Xy1, X22] . Thus, uncorrelated normal subvectors are independent under
multivariate normality.

. The conditional distribution of Y1 | Y2 is normally distributed,
Y | Y2~ Ny, [M + E12)32721 (y2—m1), X1 — 2122{21 221]
Writing the mean of the conditional normal distribution as

r= —ZnE5 ) + ZnEh'y
= po+Biy2

. . . . . . . ,
W is called the regression function of Y| on Y, = yo with regression coefficients B .

The matrix X112 = 211 — %12 22_21 31 is called the partial covariance matrix with
elements i p,+1,.... py + po- A similar result holds for Y, | Y.

. Letting Y1 = Y, a single random variable and letting the random vector Y, = X,
a random vector of independent variables, the population coefficient of determina-
tion or population squared multiple correlation coefficient is defined as the maximum
correlation between Y and linear functions B'X. The population coefficient of deter-
mination or the squared population multiple correlation coefficient is

2 4 -1
Pyx = UYXEXXUXY/UYY

If the random vector Z. = (Y, X' follows a multivariate normal distribution, the
population coefficient of determination is the square of the zero-order correlation
between the random variable Y and the population predicted value of Y which we
see from (5) has the form Y = nwy + (T/YXZ)Z;((X — K1x).

. For X = S Y2(Y — u) where £71/2is the symmetric positive definite square root
of 7! then X ~Np (0,DorX; ~IN(0,1).

. If Y1 and Y, are independent multivariate normal random vectors, then the sum
Y1+ Yo ~ N(uy + pp, 11 + X22). More generally, if Y; ~ IN,(p;, ;) and
ai, as, ..., ay are fixed constants, then the sum of n p-variate vectors

n n n
Za,‘Y,‘ ~ Np |:Za,~,ui, Zaizzi]
i=1 i=1 i=1
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From property (7), we have the following theorem.

Theorem 3.3.3 If Y,Y2,...,Y, are i’ndependent MVN random vectors with common
mean p and covariance matrix ¥, thenY = Y |, Y;/n is MVN with mean p and covari-
ance matrix ¥ /n, Y ~ Np(p, X/n).

b. Estimating p and ¥

From Theorem 3.3.3, observe that for a random sample from a normal population that Y
is an unbiased and consistent estimator of w, written as &t = Y. Having estimated g, the
p X p sample covariance matrix is

S=> -V -9 /(-1

i=1

=Y IGi—-m—-F-wIyi—m—-F-ml' /-1
i=1
= [Z Vi—w@i—w +n(y; —n) - u)/} /(n—1) (3.3.3)
i=1

where E(S) = X so that S is an unbiased estimator of . Representing the sample as a
matrix Y, , so that

S may be written as

n-1S=Y [I,, —1, (1,1,)"" 1;1] Y
— Y'Y — nyy (33.4)

where I, is the identity matrix and 1,, is a vector of n 1s. While the matrix S is an unbiased
estimator, a biased estimator, called the maximum likelihood estimator under normality is
T = @S =37 (i —Y)(yi —¥)/n = E/n. The matrix E is called the sum of squares
and cross-products matrix, SSCP and the |S| is the sample estimate of the generalized
variance.

In Theorem 3.3.3, we assumed that the observations Y; represent a sample from a normal
distribution. More generally, suppose Y; ~ (u, X) is an independent sample from any
distribution with mean g and covariance matrix 2. Theorem 3.3.4 is a multivariate version
of the Central Limit Theorem (CLT).
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Theorem 3.3.4 Let {Y;}72, be a sequence of random p-vectors with finite mean . and
covariance matrix X. Then

_ nw d
W'Y — ) =072y (Vi — p) > Np(0, %)

i=1

Theorem 3.3.4 is used to show that S is a consistent estimator of X. To obtain the distri-
bution of a random matrix Y, x , the vec (-) operator is used. Assuming a random sample
of n p-vectors Y; ~ (u, X), consider the random matrix X; = (Y; — u)(Y; — p)’. By
Theorem 3.3.4,

n2 Y vee(X) — vee ()] -5 N (0.9)

i=1

where
Q = cov[vec(X;)]
and
n2F ) -5 N, 0.3)
so that

2 [vec(E) — n vee(2)] -5 N, (0, Q).

Because S = (n — 1)"'E and the replacement of n by n — 1 does not effect the limiting
distribution, we have the following theorem.

Theorem 3.3.5 Let {Y;}?°, be a sequence of independent and identically distributed p x 1

i=1
vectors with finite fourth moments and mean . and covariance matrix X. Then

(n— D" veeS — £) -5 N, (0, Q)

Theorem 3.3.5 can be used to show that S is a consistent estimate of X, S 2,5 since
S—X=0,n- Dz = 0p(1). The asymptotic normal distribution in Theorem 3.3.5 is
singular because €2 >, > is singular. To illustrate the structure of 2 under normality, we
consider the bivariate case.
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Example 3.3.1 Let Y ~ Na(p, ). Then

1 0 0 O 1 0 0 O
01 0 0 0O 01 0
C=1loo1o0|T|o100]]|®F®D
L 0 0 0 1 0 0 0 1
[ 2 0 0 0][ oniont 011012 012011 012012
_| 01 10 011021 011022 012021 012022
01 10 021011 021012 02011 022012
| 0 0 0 2 || 02021 021022 02021 0202
[ oioni+oon - oo +onon
_ 011021 + 021011 -+ 012022 +02012
011021 + 021011 -+ 012022+ 022012
| 021021 +021021 -+ 022022+ 02022
= [UikUjm + UimUjk] (3.3.5)

See Magnus and Neudecker (1979, 1999) or Muirhead (1982, p. 90).

Because the elements of S are duplicative, the asymptotic distribution of the elements of
s = vech(S) are also MVN. Indeed,

Jru—1(s—0) -5 N@©T)

where ¢ = vech(X) and I" = cov [vech Y —pn) (Y- ll,)/]. Or,

Ja—Dr2s—o) -4 N (0.1,

where p* = p(p + 1)/2. While the matrix  in (3.3.5) is not of full rank, the matrix T" is
of full rank. Using the duplication matrix in Exercise 3.2, problem 6, the general form of
I under multivariate normality is I' = 2D} (X ® %)D; for D} = (D/,D p)_lD/p, Schott
(1997, p. 285, Th. 7.38).

c. The Matrix Normal Distribution

If we write that a random matrix Y, , is normally distributed, we say Y has a ma-
trix normal distribution written as Y ~ N, ,(M, V ® W) where V., and W, , are
positive definite matrices, E(Y) = Mandthecov(Y) = V ® W. To illustrate, suppose
y = vec(Y) ~ Nyp(B, 2 = X ® I,), then the density of y is

1
Q)" Q712 exp {—5<y - y- ﬂ)}
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However, |72 = |, ® I,|"/? = |£|/2 using the identity |A,, ® B,| = |A[" [B|".
Next, recall that vec(ABC) = (C’ ® A) vec(B) and that the tr(A’B) = (vec A)’ vec B. For
B = vec (M), we have that

=B/ (=B =Ilvec (Y =M [(E@ L)~ Jvec (v = M)
— [2—1 (Y — M) (Y — M)]

This motivates the following definition for the distribution of a random normal matrix Y
where ¥ is the covariance matrix among the columns of Y and W is the covariance matrix
among the rows of Y.

Definition 3.3.1 The data matrix Y, x, has a matrix normal distribution with parameters
M and covariance matrix ¥ @ W. The multivariate density of Y is

1
Q)2 | 2|72 (WP etr [—52—1 (Y-M)W (Y- M)}

Y~ Ny, M, X QW) orvec(Y) ~ Ny (vecM, £ ® W).

As a simple illustration of Definition 3.3.1, consider y = vec(Y’). Then the distribution
of yis

(27_[)—}1[)/2 ’In ® 2p|—1/2

1 _
€xp |:—§ (y —m)’ |In ® Ep‘ ! (y — m)]
(271’)_"17/2 |Z|_”/2 etr [_%E—l (Y - M)/ (Y — M)i|

where E(Y) = M and m = vec(M'). Thus Y ~ N, ,(M', I, ® %). Letting Y1, Y2,
Y, ~IN, (i, 3),

EY)=| . |=Ls=M

so that the density of Y’ is
1
(2n)—nl7/2 |E|—n/2 etr I:_zz—l (Y _ IIL/)/ (Y _ 1M/)i|

More generally, suppose

E(Y) =XB
where X,,»4 is a known “design” matrix and B, is an unknown matrix of parameters.
The matrix normal distribution of Y’ is

1
Q)2 |27 etr [—52—1 (Y — XB) (Y — XB)}
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or
1
Q)T etr [—5 (Y —XB) 2~ (Y — XB)’}

The expression for the covariance structure of Y, , depends on whether one is consid-
ering the structure of y = vec (Y) or y* = vec (Y’ ) Under independence and identically
distributed (i.i.d.) observations, the cov (y) = X, ® I, and the cov (y*) =1, ® . In the
literature, the definition of a matrix normal distribution may differ depending on the “ori-
entation” of Y. If the cov (y) = X ® W or the cov (y*) = W® X the data has a dependency
structure where W is a structure among the rows of Y and X is the structure of the columns
of Y.

Exercises 3.3

1. Suppose Y ~ Na(p, ¥), where

1 3100
2 1 400
p=| 5| ad Z=1 4 45 5 4
4 0020

(a) Find the joint distribution of Y7 and Y> and of Y3 and Y4.
(b) Determine p, and poy.

(c) Find the length of the semimajor axis of the ellipse association with this MVN
variable Y and a construct Q = 100.

2. Determine the MVN density associated with the quadratic form
Q =2y7 +y3 + 33 + 212 + 2913

3. For the bivariate normal distribution, graph the ellipse of the exponent for p©; =
y =0,0% 4+ 03 =1,and Q =2and p = 0,.5,and .9.
4. The matrix of partial correlations has as elements

. Oij.p+1,..,p+q
NOiip+l,...p+4/0 jj.p+1.....p+q

Pij.p+1,...,p+q

(a) ForY = [ Y ] and Y3 = y3, find py5 3.

Y2
g) 2 2 /sl
(b) For Y = Y and Yy = |: Ys j| show that 07, = 0] — 0, X5 021 =
1%]/ X2l
(c) The maximum correlation between Y; = Y and the linear combination 8;Y> +

B,Y3 = B'X is called the multiple correlation coefficient and represented as
Po12)- Show that G%.z = a%(l — ,0(2)(12)) and assuming that the variables are

jointly multivariate normal, derive the expression for /’%(12) = pzyx.
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5. For the p? x p? commutation matrix K = Zij Aij ® A;j where A;; is a p X p matrix
of zeros with only 6;; = 1and Y ~ N, (p, ¥), show that

covivec(Y—mw) (Y-} = (I +K)(Z® ) (I,2 +K)
=2 +K)(Zo%)

since (I 2+ K) is idempotent.

6. Y ~ N, ,[XB, = ®L,],B = (XX) ' XY, and £ = (Y — XB)/ (Y — XB)/n.
Find the distribution of B.

7. 1f Y, ~ Np[p,Z] and one obtains a Cholesky factorization of ¥ = LL’, what is
the distribution of X = LY?

3.4 The Chi-Square and Wishart Distributions

The chi-square distribution is obtained from a sum of squares of independent normal zero-
one, N (0, 1), random variables and is fundamental to the study of the analysis of variance
methods. In this section, we review the chi-square distribution and generalize several re-
sults, in an intuitive manner, to its multivariate analogue known as the Wishart distribution.

a. Chi-Square Distribution

Recall that if Y7, Y», ..., Y, are independent normal random variables with mean u; = 0
and variance o2 = 1, Y; ~ IN (0, 1), or, employing vector notation Y ~ N, (0, I), then

0=YY=Y" Y~ x> 0<Q<oo

O = Y'Y has a central x 2 distribution with n degrees of freedom. Letting Y; ~ I N (u;, o?),
results in the noncentral chi-square distribution.

Definition 3.4.1 If the random n-vector Y ~ N, (u, 621), then Y'Y/ o2 has a noncentral
x? distribution with n degrees of freedom and noncentrality parameter y = p'p/c>.

For u = 0, the noncentral chi-square distribution reduces to a central chi-square distri-
bution. For Y ~ N, (u,I), then Y'Y ~ x2(n,y) with y = p/pm so that y = ||| is a
norm squared. The further p is from zero, the larger the noncentrality parameter y or the
norm squared of g . Because Y'Y in Definition 3.4.1 is a special case of the quadratic form
Y’AY, with A = I and since I? = I, we have the following more general result.

Theorem 3.4.1 Let Y ~ N, (/L, 021) and A be a symmetric matrix of rank r. Then we
have Y AY /o2 ~ x2(r, y), where y = W' Ap/o?, if and only if A = A2.

Example 3.4.1 As an example of Theorem 3.4.1, suppose Y ~ Ny (i, 0°1,). Then

n—-Ds2 Y (%-7)7 YI-1(')'1]Y YAY
2 - - 2 - 2

o o? o o
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However, A’ = A and A% = A since A is a projection matrix and the r(A) = tr(A) = n—1.
Hence
(n—1)s2
o2
since y = E (Y)AE(Y)/o? = 0. Thus, (n — 1) s*> ~ 02 x*(n — 1).

~x =1, y=0)

Theorem 3.4.2 generalizes Theorem 3.4.1 to a vector of dependent variables in a natural
manner by setting Y = FX and FF' = X.

Theorem 3.4.2 If Y ~ N, (u, X). Then the quadratic form Y'AY ~ x2(r, y), where
y = (;L’A;L) and the r(A) = r, if and only if AL A = A or AX is idempotent.

Example 3.4.2 An important application of Theorem 3.4.2 follows:
LetY1,Y2, ..., Y, be n independent p-vectors from any distribution with mean p and

nonsingular covariance matrix . Then by the CLT, /n(Y — ) i> N,(0,%). By The-
orem 3.4.2, T*> = n(Y — p)’=~! (Y— [l,) = nD? LN x2 (p) for n — p large since
121 = X. The distribution is exactly x> (p) if the sample is from a multivariate
normal distribution.

Thus, comparing nD? with a x? critical value may be used to evaluate multivariate
normality. Furthermore, nD? for known ¥ may be used to test Hy : p = o vs. Hy @ p #
Ito. The critical value of the test with significance level « is represented as

PrinD? > x1_,(p) | Hil =«

where X%—a is the upper 1 — « chi-square critical value. For u # p, the noncentrality
parameter is

y=n(n—no) =" (n— po)
The above result is for a single quadratic form. More generally we have Cochran’s The-
orem.

Theorem 3.4.3 If Y ~ N,(,0°1,) and Y'Y /o? = 37| Y'A;Y where r(A;) = r and
Yo'y A; =1, then the quadratic forms YA Y/0? ~ x%(ri,y;), where y; = W' A;jp/o?
are statistically independent for all i ifand only if Y ¢ ri = nand ), r (A;) = r(>_; Ai).

Cochran’s Theorem is used to establish the independence of quadratic forms. The ra-
tios of independent quadratic forms normalized by their degrees of freedom are used to
test hypotheses regarding means. To illustrate Theorem 3.4.3, we show that ¥ and s> are
statistically independent. Let Y ~ N, (,ul, 021) and let P = 1(1'1)~'1’ be the averaging
projection matrix. Then

YIY YPY Y dA-P)Y
=5t 2
o (o2 o2

Y v? _ ny’ N (n—1)s?

o? o? o?
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Sincether (I) = n =r P)+r (I — P) = 14 (n—1), the quadratic forms are independent
by Theorem 3.4.3, or Y is independent of 5.

Example 3.4.3 Let Y ~ Ny(pu, o%1)

1 1 0 yii
|11 0] _ _ | Y2
A= 10 1 =[A1A2] and y= o
101 y22
where
1 1 0
1 1 0
A1= 1 and A2 0 1
1 0 1

In Example 2.6.2, projection matrices of the form
P = A (A/lAl)_ A}
P,=A (A’A)_ A — A (A/lAl)_ A}
P;=1-A (A'A)_ A

were constructed to project the observation vector'y onto orthogonal subspaces. The pro-
Jection matrices were constructed such that 1 = Py +P,+P3 where P;P; = 0 fori # j and
each P; is symmetric and idempotent so that the r (I) = ), r (P;). Forming an equation of
quadratic forms, we have that

3
Yy=Y yPy
i=1
or
3
Iyl =Y Pyl
i=1
For Py, Py, and P53 given in Example 2.6.3, it is easily verified that

IPyyl* = y'Piy = 4%y,
IPoyl® =yPay =) 2@ —y.)°

i
1Pyl = yPay = > 2(yij — i)’
i

Hence, the total sum of squares has the form

VIy=>" 333 =492+ > 20—y 2+ DY (i — i)’
i J i i J
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or

Z Z (vij — )’..)2 = Z 20—y + Z Z (vij = yi.)2
i i i
“Total about the Mean” S.S = Between SS + Within S§

where the degrees of freedom are the ranks of rd—P1) =n—1, r(P) =1 — 1, and
r(P3) = n—1forn =4and I = 2. By Theorem 3.4.3, the sum of squares (SS) are
independent and may be used to test hypotheses in analysis of variance, by forming ratios
of independent chi-square statistics.

b. The Wishart Distribution

We saw that the asymptotic distribution of S is MVN. To derive the distribution of S in
small samples, suppose Y; ~ IN,(0, ). Then y; = vec(Y,xp) ~ Npp(0, 2 ® I,). Let
Q=YY =37 Y;Y; represent the SSCP matrix.

Definition 3.4.2 If Q = Y'Y and the matrix Y ~ N, ,(0, £ ® L,). Then Q has a central
p-dimensional Wishart distribution with n degrees of freedom and covariance matrix X,
written as Q ~ W, (n, ).

For E(Y) = M and M # 0, Q has a noncentral Wishart distribution with noncen-
trality parameter I' = M'M3x L, written as Q ~ W,(n, £,I'). More formally, Q ~
W,(n, Z,T = M'MX ") if and only if a'Qa/a’Xa ~x*(n, a’M'Ma /a’Ma) for all non-
null vectors a. In addition E(Q) = nX + XTI’ = nX + M'M and E(Y'AY) = tr(A)X +
M’AM for a symmetric matrix A, ;. For a comprehensive treatment of the noncentral
Wishart distribution, see Muirhead (1982).

If Q ~ W (n, ), then the distribution of Q7! is called an inverted Wishart distribution.
Thatis Q™' ~ W, '(n+ p+1, £7!) and

EQYH=2Yn-p-1

forn—p—1>0.05if P~ W, '(n*, V1) then EP) = V™ !/(n* —2p —2).

The Wishart distribution is a multivariate extension of the chi-square distribution and
arises in the derivation of the distribution of the sample covariance matrix S. For a random
sample of n p-vectors, Y; ~ Np(u, X) fori =1,...,nandn > p,

n=1S=Y (¥, = D(Y; =) ~ Wy(n -1, ) G4l
i=1
or
S~ Wyln—1,%/(n— 1)

so that S has a central Wishart distribution. Result (3.4.1) follows from the multivariate
extension of Theorem 3.4.1. Furthermore, if A, is a matrix of constants where the
r(A) =r > p,then(n—1)ASA" ~ W,(n—1, ASA"). IfFF' = E sothatI = F~ ! (F)~!
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then I = F'SF. Hence, letting A = F' we have that (n — 1)F'SF ~ W, (n — 1, 1). Parti-
tioning the matrix Q ~ W,(n, X) where

| Quu Qn2 B o | St Si2 | 2 2
Q_[QZI sz}’(n I)Q_S_[Szl S22}’and2_[221 222]

we have the following result.
Theorem 3.4.4 Fora p; x p; matrix Q1 and a py X py matrix Qyy where p1 + p» = p,
1. Qu~ Wy (n, 1) or (n— 1811 ~ Wy [(n—1), Z11]
2. Q ~ Wy, (n, ) or (n —1)Sx ~ Wy, [(n — 1), 3]
3. If Z12 =0, then Q11 and Qy are independent, or S11 and S»; are independent.
4

. Qii2 = Qi — Q12Q5,' Qa1 ~ Wy, [n — pp ~ Zy12] where Tijn = Eq —
21222_21221 or (n—1)S112 ~ Wy [n — p2, Z11.2] and Qq12 is independent of
Q22 or S112 and So; are independently distributed. Similar results hold for Q21
and S>> 1.

5. The conditional distribution of Q13 given Qo follows a matrix multivariate normal
Qi21Q2 ~ Np,, p—p, (Q12Q5,Q21, Z112® Q2)

In multivariate analysis, the sum of independent Wishart distributions follows the same
rules as in the univariate case. Matrix quadratic forms are often used in multivariate mixed
models. Also important in multivariate analysis are the ratios of independently distributed
Wishart matrices or, more specifically, the determinant and trace of matrix products or
ratios which are functions of the eigenvalues of matrices. To construct distributions of roots
of Wishart matrices, independence needs to be established. The multivariate extension for
Cochran’s Theorem follows.

Theorem 3.4.5 If Y; ~ IN,(n, %) fori = 1,...,nand Y'Y = Zle Y'P;Y where
Zle P; = I, the forms Y'P,Y ~ W, (r;, X, T;) are statistically independent for all i if
and only if Zle ri = n. Ifr; < p, the Wishart density does not exist.
Example 3.4.4 Suppose Yi ~ IN, (g, ). Then YT —1(1'1) ' 1Y ~ W,(n — 1, %,
'=0)and Y'[1 (1’1)71 1'lY ~ W,(1, , I'y) are independent since
YY=Y[I-1(11)"" 1Y +Y[1(11)"
YY=YPY+YPY
YY=@m—-DS+nYY

1]Y

or
W,(n, £,T) = W,(n — 1, £, T =0) + W,(I, £, Ty)

where I' = I'1 + 'y so that variance covariances matrix S and the vector of means Y are
independent. The matrices P; are projection matrices.
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In Theorem 3.4.5, each row of Y, is assumed to be independent. More generally,
assume that y* = vec (Y’ ) has structure cov (y*) = W # I so that the observations are
no longer independent. Wong et al. (1991) provide necessary and sufficient conditions to
ensure that Y'P;Y still follow a Wishart distribution. Necessary and sufficient conditions
for independence of the Wishart matrices is more complicated; see Young et al. (1999).

The |S|, the sample generalized variance of a normal random sample, is distributed as
quantity |X|/(n — 1)? times a product of independent chi-square variates

IEI
S| ~ 1)!’HX (n — (34.2)

as shown by Muirhead (1982, p. 100). The sample mean and variance of the generalized
variance are

P
E(IS]) = [Z] H[l —(@—=1/(n—=1)] (3.4.3)
i=1
var|S|

=z H[l — =D/ - 1)]{1_[[1 —(=3)/m=D]— l_[[l ~( =D/t = D]}
Jj=1 j=1
(3.4.4)

so that the E (|S|) < |X| for p > 1. Thus, the determinant of the sample covariance ma-
trix underestimates the determinant of the population covariance matrix. The asymptotic
distribution of the sample generalized variance is given by Anderson (1984, p. 262). The
distribution of the quantity /(n — 1)(|S|/|X| — 1) is asymptotically normally distributed
with mean zero and variance 2 p. Distributions of the ratio of determinants of some matrices
are reviewed briefly in the next section.

In Example 3.3.1 we illustrated the form of the matrix cov {vec (S)} =  for the bivariate
case. More generally, the structure of €2 found in more advanced statistical texts is provided
in Theorem 3.4.6.

Theorem 3.4.6 IfY; ~IN, (pn,X) fori =1,2,...,n sothat
n—1DS~W,((1n—1,%). Then

Q = cov(vecS) =2P(Z® Z)P/(n — 1)

where P = (I 2t K) /2 and K is a commutation matrix.

Exercises 3.4
1. IfY ~ N,(u, X), prove that (Y — p) =Y — p) ~ x%(p).

2.If Y ~ Np(0, %), show that Y'AY = Zle Azi where the A; are the roots of
|IZ12AS12 311 =0,A =A’"and Z; ~ N (0, 1).
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3. If Y ~ N, (0, P) where P is a projection matrix, show that the 1Y[1Z ~ x2(p).
4. Prove property (4) in Theorem 3.4.4.

5. Prove that E(S) = ¥ and that the cov {vec(S)} = 2(I, +K)(X®%)/(n—1) where
K is a commutation matrix defined in Exercises 3.3, Problem 5.

6. What is the distribution of S~'? Show that E(S™') = £~!(n — 1)/(n — p — 2) and
that E(X~H) =n="/(n—p—1).

7. What is the mean and variance of the ¢7(S) under normality?

3.5 Other Multivariate Distributions

a. The Univariate t and F Distributions

When testing hypotheses, two distributions employed in univariate analysis are the t and
F distributions.

Definition 3.5.1 Let X and Y be independent random variables such that X ~ N(w, %)
andY ~ x*(n, y). Thent = X /JY]n ~ t(n,y), —00 <t < 0.

The statistic t has a noncentral t distribution with n degrees of freedom and noncentral-
ity parameter y = pu/o. If u = 0, the noncentral t distribution reduces to the central t
distribution known as Student’s t-distribution.

A distribution closely associated with the t distribution is R.A. Fisher’s F distribution.

Definition 3.5.2 Let H and E be independent random variables such that H ~ x*(vy,, y)
and E = x*(ve,y = 0). Then the noncentral F distribution with vy and v, degrees of
[freedom, and noncentrality parameter y is the ratio
H
F= /o
E /v,

~ F(vp,ve, )0 < F <00

b. Hotelling’s T? Distribution
A multivariate extension of Student’s t distribution is Hotelling’s T2 distribution.

Definition 3.5.3 Let Y and Q be independent random variables where Y ~ N, (i, X) and
Q~ W,(n, ), and n > p. Then Hotelling’s T2 (1931) statistic

T2 =nY' Q'Y
has a distribution proportional to a noncentral F distribution
n—p+1T?
——— — ~F({p.n-p+ly)
p n
where y = W' .
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The T2 statistic occurs when testing hypotheses regarding means in one- and two-sample
multivariate normal populations discussed in Section 3.9.

Example 3.5.1 Lez Y1,Y2,..., Y, be a random sample from a MVN ;Z)pulation, Y, ~

IN,(u, ). ThenY ~ Np(p, £/n) and (n — 1)S ~ Wy(n — 1, X), and Y and S are inde-

pendent. Hence, for testing Hy : 0 = g vs. Hy : 0 # [, T2 =n(Y — ,uo)’S’1 (V — Mo)
or

n—p T> n(n—p)

p n—1 pr-1

(Y —1o) ST (Y= po) ~ F(pon—p.y)
where
y =n(—ne) = (- o)

is the noncentrality parameter. When Hy is true, the noncentrality parameter is zero and
T? has a central F distribution.

Example 3.5.2 Let Y1, Yo, ..., Y, ~ IN(uy. ) and X1, Xy, ... Xy, ~ IN, (. %)
where Y =Y 'L Y;/ny and X = Y12 X;/n. An unbiased estimator of = in the pooled
covariance matrix

ni np
S=— [Z(Yi “V =Y + ) X - XX - i)’]
i=1

ny+ny—2 —
i=

Furthermore, X, Y, and S are independent, and

nma \V2 _ N
Y-X)~N — , 2
(nl—i—nz) ( )~ Np <n1+n2> (1 — 1)

(ny+n2—=2)S~Wy(ny +ny—2, %)

and

Hence, to test Hy : Ly = o vs. Hy @ b # Ro, the test statistic is

T2 =< ninz )(?—X)’s—l(?—i)
ny+np

ny+np

ny+n—p-—1 T2
P ny+ny—2

By Definition 3.5.3,

where the noncentrality parameter is

ninz /v —1
Y= (my — ) 27 (kg — p2)
ny+nz
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Example 3.5.3 Replacing Q by S in Definition 3.5.3, Hotelling’s T? statistic follows an
F distribution

(n—p)T*/(n=1)p~F(p,n—p,y)
Fory =0,

E(TH=(m-1)p/(n—p-2)
2p(n—1)*(n—2)

T2 =
= -4

By Theorem 3.4.2, T? N x%(p) as n —> oo. However, for small values of n, the
distribution of T? is far from chi-square. If X> ~ x?* (p), then E (Xz) = p and the

. .. d . .
var (X 2) = 2p. Thus, if one has a statistic T> — x> (p), a better approximation for
small to moderate sample sizes is the statistic

(n—p)T?

n—1p ~F(p,n—p,y)

c. The Beta Distribution
A distribution closely associated with the F distribution is the beta distribution.

Definition 3.5.4 Let H and E be independent random variables such that H ~ Xz(vh, Y)
and E ~ XZ(ve, y = 0). Then

B = H+E ~ beta (v, /2, v./2, y)

has a noncentral (Type I) beta distribution and
V = H/E ~ Inverted beta (vy /2, v./2,y)
has a (Type II) beta or inverted noncentral beta distribution.

From Definition 3.5.4,

F/ve
:LMZV/(1+V)
1+ H/E

where v,V /v, ~ F(vp, Ve, ). Furthermore, B = 1 4+ (1 + V)’1 so that the percentage
points of the beta distribution can be related to a monotonic decreasing function of F

1 — B(a,b) = B'(b,a) = (1 +2aF(2a, 219)/219)_1

Thus, if ¢ is a random variable such that r ~ ¢(v.), then

1

1 — B(1, =B (v, )= ——
(1, ve) (Ve, 1) 1+t2/ve
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so that large values of 72 correspond to small values of B’.
To extend the beta distribution in the central multivariate case, we let H ~ W, (v, X)
and E ~ W, (v,, X). Following the univariate example, we set

B=(E+H ?HE+H)"/?

S (3.5.1)

where E~1/2 and (E+4H)~!/2are the symmetric square root matrices of E~! and (E+H) ™!
inthat E-V/2E"12=E-land (E4+H)"V2E+H) "2 =E+H) .

Definition 3.5.5 Let H ~ W, (v, ¥) and E ~ Wy (v., X) be independent Wishart dis-
tributions where v, > p and v, > p. Then B in (3.5.1) follows a central p-variate
multivariate (Type I) beta distribution with vy, /2 and v./2 degrees of freedom, written
as B ~ Bp(vn/2,v./2). The matrix V in (3.5.1) follows a central p-variate multivari-
ate (Type Il) beta or inverted beta distribution with vy /2 and v./2 degrees of freedom,
sometimes called a matrix F density.

AgainI, —B ~ Bj(v./2, v;/2) as in the univariate case. An important function of B in
multivariate data analysis is |I p— B| due to Wilks (1932). The statistic

|E|
A=|l,—B| = ~ U (p, vy, 0<A<l1
‘ 4 | E + H| (P, vi, Ve)
is distributed as a product of independent beta random variables on (v, —i + 1) /2 and v}, /2
degrees of freedom fori =1, ..., p.

Because A is a ratio of determinants, by Theorem 2.6.8 we can relate A to the product

of roots Rk Rk s
A= H(1 —6;) = ]‘[(1 +a) = ]‘[v,- (3.5.2)
i=1 i=1 i=1

fori = 1,2,...,s = min(vy, p) where 6;, A; and v; are the roots of |[H— 6(E + H)| =
0, H—AE| =0,and |E — v(H+ E)| = 0, respectively.

One of the first approximations to the distribution of Wilks’ likelihood ratio criterion A
was developed by Bartlett (1947). Letting X 2 — _[v, — (p —vp + 1)/2] log A, Bartlett
showed that the statistic X2 converges to a chi-square distribution with degrees of freedom
v = puvy. Wall (1968) developed tables for the exact distribution of Wilks’ likelihood
ratio criterion using an infinite series approximation. Coelho (1998) obtained a closed form
solution. One of the most widely used approximations to the A criterion was developed by
Rao (1951, 1973a, p. 556). Rao approximated the distribution of A with an F distribution
as follows.

1—AYd fa—2x
Al/d UL

f=ve—(p—v+1)/2

~ F (pon, fd —2X) (3.5.3)

2 pzv,zl—4
_pz—i-vﬁ—S

A= (pvn—2)/4

for p*4+vi—5>00rd=1
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The approximation is exact for p or vy, equal to 1 or 2 and accurate to three decimal places
if p> + v} < f /3; see Anderson (1984, p. 318).

Given (3.5.2) and Theorem 2.6.8, other multivariate test statistics are related to the dis-
tribution of the roots of the |B| or |H — 6 (E + H)| = 0. In particular, the Bartlett (1939),
Lawley (1938), and Hotelling (1947, 1951) (BLH) trace criterion is

T? = v, tr(HE™ )

SIS

i=1

s
=ve) M
i=l1

=V, Z (1 =v;) /vi (3.5.4)
i=1

The Bartlett (1939), Nanda (1950), Pillai (1955) (BNP) trace criterion is

VO — [H (E + H)_l]

N N )\' N
=) 9, = ( ! ) =) (1—-v) (3.5.5)
; ; 1+ A; ;

The Roy (1953) maximum root criterion is

=15 =

01 1 —vp (3.5.6)
Tables for these statistics were developed by Pillai (1960) and are reproduced in Kres
(1983). Relating the eigenvalues of the criteria to an asymptotic chi-square distribution,
Berndt and Savin (1977) established a hierarchical inequality among the test criteria devel-
oped by Bartlett-Nanda-Pillai (BNP), Wilks (W), and Bartlett-Lawley-Hotelling (BLH).
The inequality states that the BLH criterion has the largest value, followed by the W crite-
rion and the BNP criterion. The larger the roots, the larger the difference among the criteria.
Depending on the criterion selected, one may obtain conflicting results when testing linear
hypotheses. No criterion is uniformly best, most powerful against all alternatives. However,
the critical region for the statistic V) in (3.5.5) is locally best invariant. All the criteria may
be adequately approximated using the F distribution; see Pillai (1954, 1956), Roy (1957),
and Muirhead (1982, Th. 10.6.10).

Theorem 3.5.1 Let H ~ W, (v, ) and E ~ Wy (v., X) be independent Wishart distri-
butions under the null linear hypothesis with vy, degrees of freedom for the hypothesis test
matrix and v, degrees of freedom for error for the error test matrix on p normal random
variables where v, > p, s = min(vy, p), M = (lv, — p|—1)/2and N = (v, — p—1)/2.

Then 2N 1 \%
o i>F(vl,vz)
2M 4+ s+ 1 s—V
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where vi = s QM + s+ 1) and vo = s2N + s+ 1)

26N +1) T?
sS22M +s5+1) v,

where vi =s QM +s + 1) andvo =2 (sN + 1) . Finally,
vA/vy = F™ (v, 1) < F

where v1 = max (v, p) and v3 = v — v +vp. Forvy = 1, e —p+ DA /p = F
exactly with vi = p and vo = v, — p + 1 degrees of freedom.

When s # 1, the statistic F™* for Roy’s criterion does not follow an F distribution.
It provides an upper bound on the F statistic and hence results in a lower bound on the
level of significance or p-value. Thus, in using the approximation for Roy’s criterion one
can be sure that the null hypothesis is true if the hypothesis is accepted. However, when
the null hypothesis is rejected this may not be the case since F™* < F, the true value.
Muller et al. (1992) develop F approximations for the Bartlett-Lawley-Hotelling, Wilks
and Bartlett-Nanda-Pillai criteria that depend on measures of multivariate association.

d. Multivariate t, F, and x? Distributions

In univariate and multivariate data analysis, one is often interested in testing a finite num-
ber of hypotheses regarding univariate- and vector-valued population parameters simulta-
neously or sequentially, in some planned order. Such procedures are called simultaneous
test procedures (STP) and often involve contrasts in means. While the matrix V in (3.5.1)
follows a matrix variate F distribution, we are often interested in the joint distribution of
F statistics when performing an analysis of univariate and multivariate data using STP
methods. In this section, we define some multivariate distributions which arise in STP.

Definition 3.5.6 Let Y ~ N,(u, X = o2P) where P = [p,»j] is a correlation matrix and
s2/a? ~ x%(n,y = 0) independent of Y. Setting T; = Y;/n/s fori = 1,..., p. Then
the joint distribution of T' = [Ty, T», ..., Ty is a central or noncentral multivariate t
distribution with n degrees of freedom.

The matrix P = [p;;] is called the correlation matrix of the accompanying MVN distri-
bution. The distribution is central or noncentral depending on whether u = 0 or u # 0,
respectively. When p;; = p (i # j),the structure of P is said to be equicorrelated. The
multivariate t distribution is a joint distribution of correlated t statistics which is clearly not
the same as Hotelling’s T2 distribution which involves the distribution of a quadratic form.
Using this approach, we generalize the chi-square distribution to a multivariate chi-square
distribution which is a joint distribution of p correlated chi-square random variables.

Definition 3.5.7 Let Y; be m independent MVN random p-vectors with mean p and co-
variance matrix X,Y; ~ INp, (i, ). Define X; = Z;-":l Yl%. forj =1,2,..., p. Then

the joint distribution of X' = [Xl, X7, ..., X,,] is a central or noncentral multivariate
chi-square distribution with m degrees of freedom.
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Observe that X is the sum of m independent normal random variables with mean 1 ;
and variance 03 = 0jj. Form = 1, X has a multivariate chi-square distribution with 1
degree of freedom. The distribution is central or noncentral if & = 0 or p # 0, respectively.
In many applications, m = 1 so that Y ~ N, (g, ) and X ~ X% (p, v), a multivariate
chi-square with one degree of freedom.

Having defined a multivariate chi-square distribution, we define a multivariate F-distri-

bution with (m, n) degrees of freedom.

Definition 3.5.8 Let X ~ szn (p,y)and Y; ~ IN, (u, X) fori = 1,2,...,m. Define
Fj = nXjoo/mXoojj for j = 1,..., p and Xo/opo ~ X2 (n) independent of X' =
[Xl, X, ..., Xp]. Then the joint distribution of F' = [Fl, F, ..., F,,] is a multivariate
F with (m, n) degrees of freedom.

For m = 1, the multivariate F distribution is equivalent to a multivariate ¢2 distribution
or for T; = /F;, the distribution of T' = [Tl, T, ..., T,,] is multivariate ¢, also known
as the Studentized Maximum Modulus distribution used in numerous univariate STP; see
Hochberg and Tamhane (1987) and Nelson (1993). We will use the distribution to test
multivariate hypotheses involving means using the finite intersection test (FIT) principle;
see Timm (1995).

Exercises 3.5

1. Use Definition 3.5.1 to find the distribution of /n (y — ,uo) /siftY; ~ N (,u, 02)
and pu # p1g.

2. For i = p in Problem 1, what is the distribution of F/[(n — 1) + F]?

3. Verify that for large values of v,, X% = —[ve—(p—vp+1)/21InA ~ x%(puvp)
by comparing the chi-square critical value and the critical value of an F-distribution
with degrees of freedom puv;, and v,.

4. ForY; ~ IN, (p, X) fori =1,2,...,n, verify that A = 1/ [1 ~|—T2/(n — 1)] .

5. LetY;; ~IN (u;,0%) fori =1,...,k, j=1,...,n. Show that

Ty = (vi.—7.)/sy/(k = 1) /nk ~ t [k (n — 1)]

ifu; = wp = --- = up = pand that T = [Ty, T», ..., Tx] and have a central
multivariate t-distribution with v = n (k — 1) degree of freedom and equicorrelation
structure P = [p;; = p] fori # j where p = —1/ (k — 1); see Timm (1995).

6. Let ¥;; ~ IN (u;,0%) i = 1,....k,j = 1,...,n; and o2 known. For Y, =
Si i cighty and Yy = Yy ciglt; where E (i) = p; define X, = ¥, /\/dg0
where d, = Zf:l (cig /ni). Show that X1, X5, ..., X, forg =1,2,..., g is mul-
tivariate chi-square with one degree of freedom.
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3.6 The General Linear Model

The linear model is fundamental to the analysis of both univariate and multivariate data.
When formulating a linear model, one observes a phenomenon represented by an observed
data vector (matrix) and relates the observed data to a set of linearly independent fixed
variables. The relationship between the random dependent set and the linearly independent
set is examined using a linear or nonlinear relationship in the vector (matrix) of parameters.
The parameter vector (matrix) may be assumed either as fixed or random. The fixed or
random set of parameters are usually considered to be independent of a vector (matrix)
of errors. One also assumes that the covariance matrix of the random parameters of the
model has some unknown structure. The goals of the data analysis are usually to estimate
the fixed and random model parameters, evaluate the fit of the model to the data, and to
test hypotheses regarding model parameters. Model development occurs with a calibration
sample. Another goal of model development is to predict future observations. To validate
the model developed using a calibration sample, one often obtains a validation sample.

To construct a general linear model for a random set of correlated observations, an ob-
servation vector yy x x is related to a vector of K parameters represented by a vector B g |
through a known nonrandom design matrix Xy x g plus a random vector of errors ey
with mean zero, E (e) = 0,and covariance matrix 2 = cov (e). The representation for the
linear model is

Yux1 = Xnxk Bgx1 + enxi

3.6.1)
E()=0 and cov(e) =

We shall always assume that £ (¢) = 0 when writing a linear model. Model (3.6.1) is
called the general linear model (GLM) or the Gauss-Markov setup. The model is linear
since the i™ element of y is related to the i row of X as y; = x;B; y; is modeled by a lin-
ear function of the parameters. We only consider linear models in this text; for a discussion
of nonlinear models see Davidian and Giltinan (1995) and Vonesh and Chinchilli (1997).
The procedure NLMIXED in SAS may be used to analyze these models. The general non-
linear model used to analyze non-normal data is called the generalized linear model. These
models are discussed by McCullagh and Nelder (1989) and McCulloch and Searle (2001).

In (3.6.1), the elements of B can be fixed, random, or both (mixed) and § can be either
unrestricted or restricted. The structure of X and €2 may vary and, depending on the form
and structure of X, €2, and B, the GLM is known by many names. Depending on the struc-
ture of the model, different approaches to parameter estimation and hypothesis testing are
required. In particular, one may estimate 8 and 2 making no assumptions regarding the dis-
tribution of y. In this case, generalized least squares (GLS) theory and minimum quadratic
norm unbiased estimation (MINQUE) theory is used to estimate the model parameters;
see Rao (1973a) and Kariya (1985). In this text, we will usually assume that the vector y
in (3.6.1) has a multivariate normal distribution; hence, maximum likelihood (ML) theory
will be used to estimate model parameters and to test hypotheses using the likelihood ratio
(LR) principle. When the small sample distribution is unknown, large sample tests may be
developed. In general, these will depend on the Wald principle developed by Wald (1943),
large sample distributions of LR statistics, and Rao’s Score principle developed by Rao
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(1947) or equivalently Silvey’s (1959) Lagrange multiplier principle. An introduction to
the basic principles may be found in Engle (1984) and Mittelhammer et al. (2000), while a
more advanced discussion is given by Dufour and Dagenais (1992). We now review several
special cases of (3.6.1).

a. Regression, ANOVA, and ANCOVA Models

Suppose each element y; in the vector yy is related to k linearly independent predictor
variables

yi = Bo+xi1B1 +xi2By + -+ xik B + e (3.6.2)

Fori = 1,2,...,n, the relationship between the dependent variable Y and the k inde-
pendent variables xq, x2, ..., X is linear in the parameters. Furthermore, assume that the
parameters S, B, . . ., By are free to vary over the entire parameter space so that there is no
restriction on ,8:1 = [/30, Bis-es ,Bk] where ¢ = k-+1 and that the errors e; have mean zero
and common, unknown variance o 2. Then using (3.6.1) with N =nand K =g =k + 1,
the univariate (linear) regression (UR) model is

v 1 X1 X2 ... Xk Bo ey
2 1 xo1 x22 ... Xk Bi e
= . . . +
Yn I xp1 Xu1 - Xnk ﬂk €n
Yux1 = anq ngxl +  exx1
cov (y) = 021, (3.6.3)

where the design matrix X has full column rank, r (X) = ¢. If the r (X) < g so that X is not
of full column rank and X contains indicator variables, we obtain the analysis of variance
(ANOVA) model.

Often the design matrix X in (3.6.3) is partitioned into two sets of independent variables,
a matrix A, x4, that is not of full rank and a matrix Z, g, that is of full rank so that X =
[A Z] where ¢ = q1 + g2. The matrix A is the ANOVA design matrix and the matrix
Z is the regression design matrix, also called the matrix of covariates. For N = n and
X = [A Z], model (3.6.3) is called the ANCOVA model. Letting 8’ = [&’ y’], the analysis
of covariance ANCOVA model has the general linear model form

o
=[AZ +e
y=I ][ y }
Yy=Aa+Zy+e (3.6.4)

cov (y) = 021n
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Assuming the observation vector y has a multivariate normal distribution with mean X
and covariance matrix Q = UZI,,, y~N, (Xﬁ, 021,,), the ML estimates of 8 and o2 are

B=(XX)"'XYy
Gl=(y—XB)(y—XB)/n
=y -X(XX)"' Xy/n
—E/n (3.6.5)

The estimator E is only unique if the rank of the design matrix r (X) = ¢, X has full
column rank; when the rank of the design matrix is less than full rank, r (X) = r < g¢,
B = (X’X)” X'y. Then, Theorem 2.6.2 is used to find estimable functions of 8. Alterna-
tively, the methods of reparameterization or adding side conditions to the model parameters
are used to obtain unique estimates. To obtain an unbiased estimator of o2, the restricted
maximum likelihood (REML) estimate is s> = E/ (n — r) where r = r (X) < g¢ is used;
see Searle et al. (1992, p. 452).
To test the hypothesis of the form H, : C8 = &, one uses the likelihood ratio test which
has the general form
A=\/"=E/(E+H) (3.6.6)

where E is defined in (3.6.5) and
~ _ —1 ~
H=(CB—¢ [C (x'x) " c’] (CB — &) (3.6.7)

The quantities £ and H are independent quadratic forms and by Theorem 3.4.2, H ~
02x2 (vp, 8) and E ~ 022 (v, = n — r). For additional details, see Searle (1971) or Rao
(1973a).

The assumption of normality was needed to test the hypothesis H,, If one only wants to
estimate the parameter vector 8, one may estimate the parameter using the least squares
criterion. That is, one wants to find an estimate for the parameter B that minimizes the
error sum of squares, €¢'e = (y — XB)'(y — XB). The estimate for the parameter vector 8
is called the ordinary least squares (OLS) estimate for the parameter §. Using Theorem
2.6.1, the general form of the OLS estimate is By g = (X’X)” X'y + (I — H)z where
H = (X’X)~(X’X) and z is an arbitrary vector; see Rao (1973a). The OLS estimate always
exists, but need not be unique. When the design matrix X has full column rank, the ML
estimate is equal to the OLS estimator.

The decision rule for the likelihood ratio test is to reject H, if A < ¢ where c is deter-
mined such that the P (A < c¢|H,) = «. From Definition 3.5.4, A is related to a noncentral
(Type I) beta distribution with degrees of freedom vy, /2 and v, /2. Because the percentage
points of the beta distribution are easily related to a monotonic function of F' as illus-
trated in Section 3.5, the null hypothesis H, : Cf = £ is rejected if F = v.H /v, E >
F1=% (v, vo)where F1=% (v, v.) represents the upper 1 — o percentage point of the cen-
tral F distribution for a test of size alpha.

In the UR model, we assumed that the structure of 2 = ¢2I,,. More generally, suppose
Q = X where X is a known nonsingular covariance matrix so thaty ~ N, (X, Q = X).
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The ML estimate of 8 is
~ -1
Bur = (X’E”X) X'z ly (3.6.8)

To test the hypothesis H, : CB = & for this case, Theorem 3.4.2 is used. The Wald W
statistic, Rao’s score statistic, and the LR statistic all have the following form

2 R Y I—1 -1 =1 ,~0 .
X2 = By - §)IC(X'=7'X)  C17 (CByr — ) (3.6.9)

and follow a noncentral chi-square distribution; see Breusch (1979). The testof H, : C =
& istoreject H, if X 2> ngoz (vp) where vy = r (C) . For known €2, model (3.6.1) is also
called the weighted least squares or generalized least squares model when one makes no
distribution assumptions regarding the observation vector y. The generalized least squares
estimate for B is obtained by minimizing the error sum of squares in the metric of the in-
verse of the covariance matrix, e'e = (y — XB8)'=~!(y — XB) and is often called Aitken’s
generalized least squares (GLS) estimator. This method of estimation is only applicable be-
cause the covariance matrix is nonsingular. The GLS estimate for 8 is identical to the ML
estimate and the GLS estimate for B is equal to the OLS estimate if and only if QX = XF
for some nonsingular conformable matrix F; see Zyskind (1967). Rao (1973b) discusses
a unified theory of least squares for obtaining estimators for the parameter § when the
covariance structure has the form = o2V when V is singular and only assumes that
E(y) = XB and that the cov(y) = Q = o>V. Rao’s approach is to find a matrix T such
that (y — XB)'T~(y — XB) is minimized for 8. Rao shows that for T~ = X~, a sin-
gular matrix, that an estimate of the parameter B is EG M= (X’E*X)f1 X'Y "y some-
times called the generalized Gauss-Markov estimator. Rao also shows that the general-
ized Gauss-Markov estimator reduces to the ordinary least squares estimator if and only
if X'2Q = 0 where the matrix Q = X~ = I — X (X'X)~ X' is a projection matrix. This
extends Zyskind’s result to matrices that are nonsingular. In the notation of Rao, Zyskind’s
result for a nonsingular matrix X is equivalent to the condition that xX'z! Q=0

Because y ~ N, (X, ©2), the maximum likelihood estimate is normally distributed as
follows

Bu ~ N [ﬂ, (X’E“X>_l} (3.6.10)

When ¥ is unknown, asymptotic theory is used to test H, : CB8 = &. Given that we can
find a consistent estimate 3 —> 3, then

Brors = XXXy 5 By, 3.6.11)
—~ -1
= 1 (X' 1x —1
cov(BrgLs) = — (—) LN (XE_IX)
n n

where E FcLs is a feasible generalized least squares estimate of g and X’ »~1X/n is the
information matrix of 8. Because ¥ is unknown, the standard errors for the parameter
vector B tend to be underestimated; see Eaton (1985). To test the hypothesis H, : C = &,
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the statistic
= ~_ _ = d
W = (CBrgrs — &) ICX'T'X)CT HCBrgLs — &) — x* (vn) (3.6.12)

where v, = r (C) is used. When n is small, W/v;, may be approximated by an distribution
with degrees of freedom v;, = r (C) and v, = n — r (X); see Zellner (1962).

One can also impose restrictions on the parameter vector  of the form RS = 6 and
test hypotheses with the restrictions added to model (3.6.3). This linear model is called the
restricted GLM. The reader is referred to Timm and Carlson (1975) or Searle (1987) for a
discussion of this model. Timm and Mieczkowski (1997) provide numerous examples of
the analyses of restricted linear models using SAS software.

One may also formulate models using (3.6.1) which permit the components of 8 to
contain only random effects or more generally both random and fixed effects. For example,
suppose in (3.6.2) we add a random component so that

yi=XB+a;t+e (3.6.13)

where f is a fixed vector of parameters and «; and ¢; are independent random errors with
variances ag and o2, respectively. Such models involve the estimation of variance compo-
nents. Searle et al. (1992), McCulloch and Searle (2001), and Khuri et al. (1998) provide
an extensive review of these models.

Another univariate extension of (3.6.2) is to assume that y; has the linear form

Vi=XB+zoi+e (3.6.14)

where «; and e; are independent and z; is a vector of known covariates. Then 2 has the
structure, @ = ® + 21 where @ is a covariance matrix of random effects. The model
is important in the study of growth curves where the random «; are used to estimate ran-
dom growth differences among individuals. The model was introduced by Laird and Ware
(1982) and is called the general univariate (linear) mixed effect model. A special case of
this model is Swamy’s (1971) random coefficient regression model. Vonesh and Chinchilli
(1997) provide an excellent discussion of both the random coefficient regression and the
general univariate mixed effect models. Littell et al. (1996) provide numerous illustrations
using SAS software. We discuss this model in Chapter 6. This model is a special case of the
general multivariate mixed model. Nonlinear models used to analyze non-normal data with
both fixed and random components are called generalized linear mixed models. These mod-
els are discussed by Littell et al. (1996, Chapters 11) and McCulloch and Searle (2001),
for example.

b. Multivariate Regression, MANOVA, and MANCOVA Models

To generalize (3.6.3) to the multivariate (linear) regression model, a model is formulated
for each of p correlated dependent, response variables

vi = Boaln + Buxi +---+ Buxk + e

Y2 = Bpli + Bpx +-+ B + e
) : : ) . (3.6.15)

YP = ﬂOpln + :Blpxp +--- 4+ ﬁkpxk + ep
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Each of the vectors yj,X; and e;, for j =1,2,..., pare n x 1 vectors. Hence, we have
n observations for each of p variables. To represent (3.6.15) in matrix form, we construct
matrices using each variable as a column vector. That is,

Yiuxp = [YI,)’z,--"Yp]

Xixq = [, X1, X2, ..., X¢] (3.6.16)
BqXp = [:Blvﬁza ""ﬂp]
Bor Bor - Bop
B Biw Bu - Bip
Bxi Bra -+ Bip
Enp=er. e, ... ¢]

Then for ¢ = k + 1, the matrix linear model for (3.6.15) becomes
Yn><p = anquxp + Enxp
= [XB1. XBy.....XB,| +[e1.e2.....¢)] (3.6.17)

Model (3.6.17) is called the multivariate (linear) regression (MR) model , or MLMR model.
If the r (X) < ¢ = k+ 1, so that the design matrix is not of full rank, the model is called the
multivariate analysis of variance (MANOVA) model. Partitioning X into two matrices as in
the univariate regression model, X = [A, Z] and B’ = [®’, I'’], model (3.6.17) becomes
the multivariate analysis of covariance (MANCOVA) model.

To represent the MR model as a GLM, the vec (-) operator is employed. Let y = vec(Y),
B = vec(B) and e = vec(Y). Since the design matrix X, is the same for each of the p
dependent variables, the GLM for the MR model is as follows

Y1 X0 --- 0 B, e]
Y2 0o 0 --- 0 B2 e
N B : : 1 .
Yp 0 0 -+ X B, e,

Or, for N = np and K = pg = p(k + 1), we have the vector form of the MLMR model

ynx1 = (I, ®X),, « Bx x1 +€kx1
coviy) =EQI,

To test hypotheses, we assume that E in (3.6.17) has a matrix normal distribution, E ~
Ny, (0, ¥ ®I,) or using the row representation that E' ~ N, ,(0,I, ® X). Alternatively,
by (3.6.18), e ~ N,,(0, ¥ ® I,,). To obtain the ML estimate of B given (3.6.18), we asso-
ciate the covariance structure Xwith ¥ ® I, and apply (3.6.8), even though ¥ is unknown.
The unknown matrix drops out of the product. To see this, we have by substitution that

(3.6.18)

- ’ -1 ’
Bur=[L,oX) el (,eX)] (LX) Eel) !y

_ (2*1 @x’x)_1 (2*1 ®x’)y (3.6.19)
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However, by property (5) in Theorem 2.4.7, we have that

Bur = vee | (X'X) ' X'Y]
by letting A = (X'X)”' X and €’ = 1,,. Thus,

By = (X'X) ' XY (3.6.20)

using the matrix form of the model. This is also the OLS estimate of the parameter matrix.
Similarly using (3.6.19), the

o~ —1
cov(Bur) = [, @X) el (1, 8 X)]
=3 (XX)"'

Finally, the ML estimate of ¥ is
S-Yv [In ~ X (x'x)”"! X/] Y/n (3.6.21)

or the restricted max1mum hkehhood (REML) unbiased estlmate isS = E/(n — g) where
q = r(X). Furthermore ﬂ ur and S are independent, and n S~ Wy — g, X). Again,
the Wishart density only exists if n > p + ¢.

In the above discussion, we have assumed that X has full column rank ¢. If the r(X)
r < q, then B is not unique since (X’X) ! is replaced with a g-inverse. However, S is still
unique since (I - XX'X)"X ) is a unique projection matrix by property (4), Theorem
2.5.5. The lack of a unique inverse only affects which linear parametric functions of the
parameters are estimable and hence testable. Theorem 2.7.2 is again used to determine the
parametric functions in 8 = vec(B) that are estimable.

The null hypothesis tested for the matrix form of the MR model takes the general form

H:CBM=0 (3.6.22)

where Cg , is a known matrix of full row rank g, ¢ < g and M, », is a matrix of full
column rank u# < p. Hypothesis (3.6.22) is called the standard multivariate hypothesis. To
test (3.6.22) using the vector form of the model, observe that vec(CﬁM) = M ®C) vec B
so that (3.6.22) is equivalent to testing H : LS = 0 when L is a matrix of order gu x pq
of rank v = gu. Assuming Q2 = ¥ ® I, is known,

By ~ Neu(B. LIT, ®X)'Q7' (01, @ X)]7'L)) (3.6.23)
Simplifying the structure of the covariance matrix,
cov (By) = (M'EM) ® (C (X'X) ' C) (3.6.24)

For known X, the likelihood ratio test of H is to reject H if X 2 - ¢, where ¢, is chosen
such that the P(X? > ¢y | H) = « and X2 = B),, [M'EM) ® (CX'X)~'C)H]™'B),1.
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However, we can simplify X2 since
X2 = [vec(CBM)][(M'SM) ' ® (C (X'X) )] vec(CBM)
= [vec(CBM)] vec[(C (X'X) ' C'17(CBM) (M'SM) "~
= t[(CBM)'[C (X'X) ' C'17'(CBA) (M'=M) '] (3.6.25)

1

Thus to test H : LB = 0, the hypothesis is rejected if X? in (3.6.25) is larger than a
chi-square critical value with v = gu degrees of freedom. Again, by finding a consistent

estimate of ¥, X2 4, x%(v = gu). Thus an approximate test of H is available if ¥ is

estimated by s 2o,

However, one does not use the approximate chi-square test when X is unknown since an
exact likelihood ratio test exists for H : LB = 0 <= CBM = 0. The hypothesis and error
SSCP matrices under the MR model are

H = (CBM)[CX'X)"'C'1"1(CBM)
E=MY[L - XXX)"'XTYM (3.6.26)
=0 —qgMSM

Using Theorem 3.4.5, it is easily established that E and H have independent Wishart
distributions

E~W,(ve=n—qg,MIM, T =0)
H~ W, (v =g MEM, (M'EM) ' A =T)

where the noncentrality parameter matrix I is
=M™ (CBM) (CX'X)~'C)~(CBM) (3.6.27)

To test CBM = 0, one needs the joint density of the roots of HE~! which is extremely
complicated; see Muirhead (1982, p. 449). In applied problems, the approximations sum-
marized in Theorem 3.5.1 are adequate for any of the four criteria. Exact critical values are
required for establishing exact 100 (1 — o) simultaneous confidence intervals.
For H and E defined in (3.6.26) and v, = n — ¢, an alternative expression for Ta2 defined
in (3.5.4) is
T2 = «[(CBM)[C (X'X) ' C'17'(CBM) (M'EM) (3.6.28)

Comparing T02 with X2 in (3.6.25), we see that for known X, T02 has a chi-square distribu-
tion. Hence, for v,.E/n = s, To2 has an asymptotic chi-square distribution.

In our development of the multivariate linear model, to test hypotheses of form H, :
CBM = 0, we have assumed that the covariance matrix for the y* = vec(Y), P) has covari-
ance structure I,, ® X, so the rows of Y« ,, are independent identically normally distributed
with common covariance matrix X . This structure is a sufficient, but not necessary condi-

tion for the development of exact tests. Young et al. (1999) have developed necessary and
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sufficient conditions for the matrix W in the expression cov (y*) = W, ® X, = Q for tests
to remain exact. They refer to such structures of Q2 as being independence distribution-
preserving (IDP).

Any of the four criteria may be used to establish simultaneous confidence intervals for
parametric functions of the form ¥ = a’Bm. Details will be illustrated in Chapter 4 when
we discuss applications using the four multivariate criteria, approximate single degree of
freedom F tests for C planned comparisons, and stepdown finite intersection tests. More
general extended linear hypotheses will also be reviewed. We conclude this section with
further generalizations of the GLM also discussed in more detail with illustrations in later
chapters.

c. The Seemingly Unrelated Regression (SUR) Model

In developing the MR model in (3.6.15), observe that the j™ equation for j = 1, ..., p, has
the GLM formy; = X ; +e; where B; = [,31]-, ceey ,Bkj]. The covariance structure of the
errors e; is cov(e;) = o j;I, so that each B ; can be estimated independently of the others.
The dependence is incorporated into the model by the relationship cov(y;, y;) = o;;1,.
Because the design matrix is the same for each variable and B = [B, B,, ..., B,] has a

simple column form, each B; may be estimated independently as ﬁ = (X/ X)_1 X'y, for
; - = -1
j=1.....p.Thecov(B;.B;) =0 (XX) .

A simple generalization of (3.6.17) is to replace X with X; so that the regression model
(design matrix) may be different for each variable

E(Yn ><p) = [Xlﬂl’XZﬂz’ '--vXp,Bp]

/ (3.6.29)
covivec(Y)] =1, =

Such a model may often be more appropriate since it allows one to fit different models for
each variable. When fitting the same model to each variable using the MR model, some
variables may be overfit. Model (3.6.29) is called S.N. Srivastava’s multiple design multi-
variate (MDM) model or Zellner’s seemingly unrelated regression (SUR) model. The SUR
model is usually written as p correlated regression models

yy = X B, + e
(nx1) (nxq;) (gjx1)  (nx1) (3.6.30)

cov (yi, yj) = oijln

for j = 1,2,..., p. Lettingy’ = [y}, ), ...,y,] with B’and €'partitioned similarly and
the design matrix defined by X = @721 Xj,with N =np, K =3 ;q; = ;(kj + 1
and the r(X;) = ¢;, model (3.6.30) is again seen to be special case of the GLM (3.6.1).
Alternatively, letting

Y=I[yi.y2,---,¥pl
X =[x1,X2,...,Xq]
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Bii O 0
~ 0 By 0
B = .
0 0o .. Bop
where ﬂj/ = [ﬂoj, /31]-, R ,Bkj], the SUR model may be written as

~

Ynxp :anquxp +En><p
which is a MR model with restrictions.
The matrix version of (3.6.30) is called the multivariate seemingly unrelated regression
(MSUR) model. The model is constructed by replacing y; and B ; in (3.6.30) with matrices.

The MSUR model is called the correlated multivariate regression equations (CMRE) model
by Kariya et al. (1984). We review the MSUR model in Chapter 5.

d. The General MANOVA Model (GMANOVA)

Potthoff and Roy (1964) extended the MR and MANOVA models to the growth curve
model (GMANOVA). The model was first introduced to analyze growth in repeated mea-
sures data that have the same number of observations per subject with complete data. The
model has the general form

Y, xXp = Anququkap + Enxp

(3.631)
vec (E) ~ N,y (0, = ® 1)

The matrices A and Z are assumed known with n > p and k < p. Letting the r(A) = ¢
and the r(Z) = p, (3.6.31) is again a special case of (3.6.1) if we define X = A ® Z'.
Partitioning Y, B and E rowwise,

/
Y B, €
/
Y2 B3 €)
Y= . , B= . , and E-= .
./ ﬂ'/ e‘/
Y nxp q q xk n

so that (3.6.31) is equivalent to the GLM
vy =vec(Y') = (A®Z') vec (B') + vec (E)

3.6.32
cov(Y)=I® X ( )

A further generalization of (3.6.31) was introduced by Chinchilli and Elswick (1985) and
Srivastava and Carter (1983). The model is called the MANOVA-GMANOVA model and
has the following structure

Y=X|B/Z +X;B, +E (3.6.33)

where the GMANOVA component contains growth curves and the MR or MANOVA com-
ponent contains covariates associated with baseline data. Chinchilli and Elswick (1985)
provide ML estimates and likelihood ratio tests for the model.
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Patel (1983, 1986) and von Rosen (1989, 1990, 1993) consider the more general growth
curve (MGGC) model, also called the sum-of-profiles model,

.
Y=> X;BZ +E (3.6.34)

i=1
by Verbyla and Venables (1988a, b). Using two restrictions on the design matrices
rX)+p<nandX X, X X, C--- CX|X;

von Rosen was able to obtain closed-form expressions for ML estimates of all model pa-
rameters. He did not obtain likelihood ratio tests of hypotheses. A canonical form of the
model was also considered by Gleser and Olkin (1970). Srivastava and Khatri (1979, p. 197)
expressed the sum-of-profiles model as a nested growth model. They developed their model
by nesting the matrices Z; in (3.6.34). Details are available in Srivastava (1997).

Without imposing the nested condition on the design matrices, Verbyla and Venables
(1988b) obtained generalized least squares estimates of the model parameters for the MGGC
model using the MSUR model. Unique estimates are obtained if the

(X ©Z) (a8 Z))..... (X 8 Z)] =g
To see this, one merely has to write the MGGC model as a SUR model

vec (B))
vec (B’z)
vee (Y)=[(Xi®Z)).(Xo®Z)),....(X, ®Z))] ) + vec (E') (3.6.35)

vec (B}.)

Hecker (1987) called this model the completely general MANOVA (CGMANOVA) model.
Thus, the GMANOVA and CGMANOVA models are SUR models.

One may add restrictions to the MR, MANOVA, GMANOVA, CGMANOVA, and their
extensions. Such models belong to the class of restricted multivariate linear models; see
Kariya (1985). In addition, the elements of the parameter matrix may be only random,
or mixed containing both fixed and random parameters. This leads to multivariate random
effects and multivariate mixed effects models, Khuri et al. (1998). Amemiya (1994) and
Thum (1997) consider a general multivariate mixed effect repeated measures model.

To construct a multivariate (linear) mixed model (MMM) from the MGLM, the matrix E
of random errors is modeled. That is, the matrix E = ZU where Z is a known nonrandom
matrix and U is a matrix of random effects. Hence, the MMM has the general structure

Y = X B Z U

nxr nxq gxr + nxh hxr (3636)
where B is the matrix of fixed effects. When XB does not exist in the model, the model
is called the random coefficient model or a random coefficient regression model. The data
matrix Y in (3.6.36) is of order (n x r) where the rows of Y are a random sample of n
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observations on r responses. The subscript 7 is used since the r responses may be a vector
of p-variables over f occasions (time) so that r = pt.

Because model (3.6.36) contains both fixed and random effects, we may separate the
model into its random and fixed components as follows

XB = ZK,-Bi
i
(3.6.37)
77U = ZK/'U/'
j

The matrices K; and K; are known and of order (n x r;) of rank r;; the matrices B; of
order (r; x r) contain the fixed effects, while the matrices U; of rank r; contain the random
effects. The rows of the matrices U; are assumed to be independent MVN as N (0, z j).
Writing the model using the rows of Y or the columns of Y', y* = cov (Y’),

cov (y¥) =Y _(V,;® %)) (3.6.38)
J
Model (3.6.36) with structure (3.6.38) is discussed in Chapter 6. There we will review
random coefficient models and mixed models. Models with » = pt are of special interest.
These models with multiple-response, repeated measures are a p-variate generalization
of Scheffé’s mixed model, also called double multivariate linear models and treated in
some detail by Reinsel (1982, 1984) and Boik (1988, 1991). Khuri et al. (1998) provide an
overview of the statistical theory for univariate and multivariate mixed models.
Amemiya (1994) provides a generalization of the model considered by Reinsel and Boik,
which permits incomplete data over occasions. The matrix version of Amemiya’s general
multivariate mixed model is

Y, =X; B +7Z; A+ E;
nixXp nixk kxp nixh hxp nixXp (3.6.39)
cov(vecY]) = (Z;®L,) @ (Z; ®L,) + 1, ® =,

fori = 1,2,...,n and where @y, xpp = cov (vec A:) and X, is the p x p covariance
matrix of the i™ row of E;. This model is also considered by Thum (1997) and is reviewed
in Chapter 6

Exercises 3.6

1. Verify that ﬁ in (3.6.5) minimizes the error sum of squares
n
Y el =(y—XB)'(y —XB)
i=1

using projection operators.

2. Prove that H and E in (3.6.6) are independent.
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(98]

. Verify that ﬁ in (3.6.8) minimizes the weighted error sum of squares

Y et =@y —XB)s ' (y—XB)

i=1

~

. Prove that H and E under the MR model are independently distributed.

|91

. Obtain the result given in (3.6.23).

=)

. Represent (3.6.39) as a GLM.

3.7 Evaluating Normality

Fundamental to parameter estimation and tests of significance for the models considered in
this text is the assumption of multivariate normality. Whenever parameters are estimated,
we would like them to have optimal properties and to be insensitive to mild departures
from normality, i.e., to be robust to non-normality, and from the effects of outliers. Tests
of significance are said to be robust if the size of the test « and the power of the test
are only marginally effected by departures from model assumptions such as normality and
restrictions placed on the structure of covariance matrices when sampling from one or more
populations.

The study of robust estimation for location and dispersion of model parameters, the iden-
tification of outliers, the analysis of multivariate residuals, and the assessment of the effects
of model assumptions on tests of significance and power are as important in multivariate
analysis as they are in univariate analysis. However, the problems are much more complex.
In multivariate data analysis there is no natural one-dimensional order to the observations,
hence we can no longer just investigate the extremes of the distribution to locate outliers
or identify data clusters in only one dimension. Clusters can occur in some subspace and
outliers may not be extreme in any one dimension. Outliers in multivariate samples effect
not only the location and variance of a variable, but also its orientation in the sample as
measured by the covariance or correlation with other variables. Residuals formed from fit-
ting a multivariate model to a data set in the presence of extreme outliers may lead to the
identification of spurious outliers. Upon replotting the data, they are often removed. Finally,
because non-normality can occur in so many ways robustness studies of Type I errors and
power are difficult to design and evaluate.

The two most important problems in multivariate data analysis are the detection of out-
liers and the evaluation of multivariate normality. The process is complex and first begins
with the assessment of marginal normality, a variable at a time; see Looney (1995). The
evaluation process usually proceeds as follows.

1. Evaluate univariate normality by performing the Shapiro and Wilk (1965) W test
a variable at a time when sample sizes are less than or equal to 50. The test is
known to show a reasonable sensitivity to nonnormality; see Shapiro et al. (1968).
For 50 < n < 2000, Royston’s (1982, 1992) approximation is recommended and is
implemented in the SAS procedure UNIVARIATE; see SAS Institute (1990, p. 627).
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2. Construct normal probability quantile-vs-quantile (Q-Q) plots a variable at a time
which compare the caumulative empirical distribution with the expected order values
of a normal density to informally assess the lack of linearity and the presence of
extreme values; see Wilk and Gnanadesikan (1968) and Looney and Gulledge (1985).

3. If variables are found to be non-normal, transform them to normality using perhaps
a Box and Cox (1964) power transformation or some other transformation such as a
logit.

4. Locate and correct outliers using graphical techniques or tests of significance as out-
lined by Barnett and Lewis (1994).

The goals of steps (1) to (4) are to evaluate marginal normality and to detect outliers. If
r + s outliers are identified for variable i, two robust estimators of location, trimmed and
Winsorized means, may be calculated as

n—s

Vi)=Y yi/(n—r—s)
i=r+1
3.7.1)
n—s
y;v(r» §) = 3ryr+1 + Z Vi +SYn—s ¢ /70
i=r+l1

respectively, for a sample of size n. If the proportion of observations at each extreme are
equal, r = s, the estimate yy, is called an «-Winsorized mean. To create an a-trimmed
mean, a proportion « of the ordered sample y(;) from the lower and upper extremes of the
distribution is discarded. Since the proportion may not be an integer value, we let o n =
r 4+ w where r is an integer and 0 < w < 1. Then,

n—r—1

V@ ={0=wy+ Y v+ =Wy, | /n(l=20)  (372)
i=r+2

is an o-trimmed mean; see Gnanadesikan and Kettenring (1992). If r is an integer, then the
r-trimmed or ¢-trimmed mean for « = r/n reduces to formula (3.7.1) with r = s so that

n—r

Vi) = > yi/(n—2r) (3.7.3)

i=r+l

In multivariate analysis, Winsorized data ensures that the number of observations for each
of the p variables remains constant over the n observations. Trimmed observations cause
complicated missing value problems when not applied to all variables simultaneously. In
univariate analysis, trimmed means are often preferred to Winsorized means. Both are spe-
cial cases of an L-estimator which is any linear combination of the ordered sample. An-
other class of robust estimators are M-estimators. Huber (1981) provides a comprehensive
discussion of such estimators, the M stands for maximum likelihood.
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Using some robust estimate of location m*, a robust estimate of the sample variance
(scale) parameter o2 is defined as

k
2= i —m"H k- 1) (3.7.4)

i=1

where k < n, depending on the “trimming” process. In obtaining an estimate for o2, we see
an obvious conflict between protecting the estimate from outliers versus using the data in
the tails to increase precision. Calculating a trimmed variance from an a-trimmed sample
or a Winsorized-trimmed variance from a «-Winsorized sample leads to estimates that are
not unbiased, and hence correction factors are required based on the moments of order
statistics. However, tables of coefficients are only available forn < 15 andr = s.

To reduce the bias and improve consistency, the Winsorized-trimmed variance suggested
by Huber (1970) may be used for an -trimmed sample. Foro = r/n andr = s

n—r—1

2 2
2 (H)y=4{@+1) (yr+1 - )’;(a)) + Z (yi - y;(a))
i=r+2 3.7.5)

2
+ @+ (yn,r - Y;(a)> }/[n =2r—1]

which reduces to s2 if » = 0. The numerator in (3.7.5) is a Winsorized sum of squares.
The denominator is based on the trimmed mean value t = n — 2r observations and not
n which would have treated the Winsorized values as “observed.” Alternatively, we may
write (3.7.5) as

~ 2 .
=30 Gie—yh) /(e —2r = 1) i=1,2,...,p (3.7.6)

where y? is an a-trimmed mean and Y is either an observed sample value or a Winsorized
value that depends on « for each variable. Thus, the trimming value r; may be different for
each variable.

To estimate the covariance between variables i and j, we may employ the Winsorized
sample covariance suggested by Mudholkar and Srivastava (1996). A robust covariance
estimate is

n
5= 2 G —vi) (T —vi) /=27 = D) (37.7)
k=1
for all pairs i, j = 1,2,..., p. The average ¥ = (r; + r2)/2 is the average number of
Winsorized observations in each pairing. The robust estimate of the covariance matrix is
S\ = [5]

Depending on the amount of “Winsorizing,” the matrix S* may not be positive definite. To
correct this problem, the covariance matrix is smoothed by solving | S* = AI |= 0. Letting

S* = PA*P (3.7.8)
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where A* contains only the positive roots of S* and P is the matrix of eigenvectors; =*is
positive definite, Bock and Peterson (1975). Other procedures for finding robust estimates
of ¥ are examined by Devlin et al. (1975). They use a method of “shrinking” to obtain a
positive definite estimate for X.

The goals of steps (1) to (4) are to achieve marginal normality in the data. Because
marginal normality does not imply multivariate normality, one next analyzes the data for
multivariate normality and multivariate outliers. Sometimes the evaluation of multivariate
normality is done without investigating univariate normality since a MVN distribution en-
sures marginal normality.

Romeu and Ozturk (1993) investigated ten tests of goodness-of-fit for multivariate nor-
mality. Their simulation study shows that the multivariate tests of skewness and kurtosis
proposed by Mardia (1970, 1980) are the most stable and reliable tests for assessing multi-
variate normality.

Estimating skewness by

n n

Bi,=>_>. [(Yi -v'S ! (y; —.‘7)]3/112 (3.7.9)

i=1j=1

Mardia showed that the statistic X% = n,IB\L /6 LN x*(v) where v = p (p + 1) (p+2)/6.
He also showed that the sample estimate of multivariate kurtosis

n

B, p= Z [(Yi -v'S i - ?)]2 /n (3.7.10)

i=1

converges in distribution to a N(u, o'2) distribution w1th mean u = p(p + 2) and vari-
ance 0> = 8p(p + 2)/n. Thus, subtracting u from /32 p and then dividing by o, Z =

(ﬂz, P u) /o 4, N (0, 1). Rejection of normality using Mardia’s tests indicates either
the presences of multivariate outliers or that the distribution is significantly different from a
MVN distribution. If we fail to reject, the distribution is assumed to be MVN. Small sample
empirical critical values for the skewness and kurtosis tests were calculated by Romeu and
Ozturk and are provided in Appendix A, Table VI-VIIL. If the multivariate tests are rejected,
we have to either identify multivariate outliers and/or transform the vector sample data to
achieve multivariate normality. While Andrews et al., (1971) have developed a multivariate
extension of the Box-Cox power transformation, determining the appropriate transforma-
tion is complicated; see Chambers (1977), Velilla and Barrio (1994), and Bilodeau and
Brenner (1999, p. 95). An alternative procedure is to perform a data reduction transforma-
tion and to analyze the sample using some subset of linear combinations of the original
variables such as principal components, discussed in Chapter 8, which may be more nearly
normal. Another option is to identify directions of possible nonnormality and then to es-
timate univariate Box-Cox power transformations of projections of the original variables
onto a set of direction vectors to improve multivariate normality; see Gnanadesikan (1997).

Graphical displays of the data are needed to visually identify multivariate outliers in a
data set. Seber (1984) provides an overview of multivariate graphical techniques. Many of
the procedures are illustrated in Venables and Ripley (1994) using S-plus. SAS/INSIGHT
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(1993) provides a comprehensive set of graphical displays for interacting with multivariate
data. Following any SAS application on the PC, one may invoke SAS/INSIGHT by using
the Tool Bar: and clicking on the option “Solutions.” From the new pop-up menu, one se-
lects the option “analysis” from this menu and finally from the last menu one selects the
option “Interactive Data Analysis.” Clicking on this last option opens the interactive mode
of SAS/INSIGHT. The WORK library contains data sets created by the SAS application.
By clicking on the WORK library, the names of the data sets created in the SAS procedure
are displayed in the window. By clicking on a specific data set, one may display the data
created in the application. To analyze the data displayed interactively, one selects from the
Tool Bar the option “Analyze.” This is illustrated more fully to locate potential outliers in a
multivariate data set using plotted displays in Example 3.7.3. Friendly (1991), using SAS
procedures and SAS macros, has developed numerous graphs for plotting multivariate data.
Other procedures are illustrated in Khattree and Naik (1995) and Timm and Mieczkowski
(1997). Residual plots are examined in Chapter 4 when the MR model is discussed. Ro-
bustness of multivariate tests is also discussed in Chapter 4. We next discuss the generation
of a multivariate normal distribution and review multivariate Q-Q plots to help identify
departures from multivariate normality and outliers.

To visually evaluate whether a multivariate distribution has outliers, recall from Theo-
rem 3.4.2 that if Y; ~ N, (i, X) then the quadratic form

A2 = (Y, — ) =7 (Y — ) ~ X2 (p)

The Mahalanobis distance estimate of Aiz in the sample is

D}=@i—-9S'Gyi-9 (3.7.11)

which converges to a chi-square distribution with p degrees of freedom. Hence, to evalu-
ate multivariate normality one may plot the ordered squared Mahalanobis distances D(zl.)
against the expected order statistics of a chi-square distribution with sample quantilies
X%) [G —1/2)/n] = g; where ¢; (i =1,2,...,n) is the 100 (i — 1/2) /n sample quan-
tile of the chi-square distribution with p degrees of freedom. The plotting correction (i —
.375)/(n + .25) may also be used. This is the value used in the SAS UNIVARIATE pro-
cedure for constructing normal Q-Q plots. For a discussion of plotting corrections, see
Looney and Gulledge (1985). If the data are multivariate normal, plotted pairs (D(,-), q,-)
should be close to a line. Points far from the line are potential outliers. Clearly a large value
of Dl.2 for one value may be a candidate. Formal tests for multivariate outliers are consid-
ered by Barnett and Lewis (1994). Given the complex nature of multivariate data these tests
have limited value.

The exact distribution of b; = nDl.2 /(n—1)? follows a beta [a = p/2,b = (n —
p — 1)/2] distribution and not a chi-square distribution; see Gnanadesikan and Kettenring
(1972). Small (1978) found that as p gets large (p > 5% of n) relative to n that the chi-
square approximation may not be adequate unless n > 25 and recommends a beta plot. He
suggested using a beta [«, S] distribution with « = (a — 1)/2a and 8 = (b — 1)/2b and
the ordered statistics

bi;y =betaq, pl(i —a)/(n —o — B+ 1)] (3.7.12)
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Then, the ordered by are plotted against the expected order statistics b‘(*l.). Gnanadesikan
and Kettenring (1972) consider a more general plotting scheme using I" plots to assess
normality. A gamma plot fits a scaled chi-square or gamma distribution to the quantity
(y; —¥)' T (y; —¥), by estimating a shape parameter (1) and scale parameter (1).

Outliers in a multivariate data set inflate/deflate y and S, and sample correlations. This
tends to reduce the size of D(zi). Hence, robust estimates of g and ¥ in plots may help to
identify outliers. Thus, the “robustified” ordered distances

Dy = (yi —m*) (8 (yi —m")
may be plotted to locate extreme outliers. The parameter m* and S* are robust estimates
of w and X.

Singh (1993) recommends using robust M-estimators derived by Maronna (1976) to
robustify plots. However, we recommend using estimates obtained using the multivariate
trimming (MVT) procedure of Gnanadesikan and Kettenring (1972) since Devlin et al.
(1981) showed that the procedure is less sensitive to the number of extreme outliers, called
the breakdown point. For M-estimators the breakdown value is < (1/p) regardless of the
proportion of multivariate outliers. The S estimator of Davies (1987) also tends to have high
breakdowns in any dimension; see Lopuaa and Rousseeuw (1991). For the MVT procedure
the value is equal to «, the fraction of multivariate observations excluded from the sample.

To obtain the robust estimates, one proceeds as follows.

1. Because the MVT procedure is sensitive to starting values, use the Winsorized sam-
ple covariance matrix S}, using (3.7.7) to calculate its elements and the «-trimmed
mean vector calculated for each variable. Then, calculate Mahalanobis (Mhd) dis-
tances

/
2 -1
DGy = (yi - Y}(a)) (S:v) (Yi - Y;(a)>
2. Set aside a proportion o1 of the n vector observations based on the largest D(zi) values.

3. Calculate the trimmed multivariate mean vector over the retained vectors and the
sample covariance matrix

/7
S;q = nz_3r (Yz' - Y;(al)) (Yi - Y}(a])> [(n—r—1)
for oy = r/n. Smooth S, to ensure that the matrix is positive definite.

4. Calculate the D(zl.) values using the o robust estimates

/
2 -1
Di) = (Yi - Y*T(a1)> (S3) (Yi - Y*T(ou)>
and order the D(zi) to find another subset of vectors oy and repeat step 3.

The process continues until the trimmed mean vector y;. and robust covariance ma-
trix S, converges to S*. Using the robust estimates, the raw data are replotted. After mak-
ing appropriate data adjustments for outliers and lack of multivariate normality using some
data transformations, Mardia’s test for skewness and kurtosis may be recalculated to affirm
multivariate normality of the data set under study.
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Example 3.7.1 (Generating MVN Distributions) 7o illustrate the analysis of multivari-
ate data, several multivariate normal distributions are generated. The data generated are
used to demonstrate several of the procedures for evaluating multivariate normality and
testing hypotheses about means and covariance matrices.

By using the properties of the MVN distribution, recall that if z ~ N,(0,1,), then'y =
ZA+ p ~ Np(p, X = A’A) . Hence, to generate a MVN distribution with mean j. and
covariance matrix %, one proceeds as follows.

1. Specify p and X.
2. Obtain a Cholesky decomposition for X; call it A.
3. Generate a n x p matrix of N (0, 1) random variables named Z.

4. Transform Z to Y using the expression Y = ZA + U where U is created by repeating
the row vector w’ n times producing an n x p matrix.

In program m3_7_1.sas three data sets are generated, each consisting of two independent
groups and p = 3 variables. Data set A is generated from normally distributed populations
with the two groups having equal covariance matrices. Data set B is also generated from
normally distributed populations, but this time the two groups do not have equal covariance
matrices. Data set C consists of data generated from a non-normal distribution.

Example 3.7.2 (Evaluating Multivariate Normality) Methods for evaluating multivari-
ate normality include, among other procedures, evaluating univariate normality using the
Shapiro-Wilk tests a variable at a time, Mardia’s test of multivariate skewness and kurto-
sis, and multivariate chi-square and beta Q-Q plots. Except for the beta Q-Q plots, there
exists a SAS Institute (1998) macro % MULTINORM that performs these above mentioned
tests and plots. The SAS code in program m3_7_2.sas demonstrates the use of the macro to
evaluate normality using data sets generated in program m3_7_1.sas. Program m3_7_2.sas
also includes SAS PROC IML code to produce both chi-square Q-Q and beta Q-Q plots.

The full instructions for using the MULTINORM macro are included with the macro
program. Briefly, the data = statement is where the data file to be analyzed is specified, the
var = statement is where the variable names are specified, and then in the plot = statement
one can specify whether to produce the multivariate chi-square plot.

Using the data we generated from a multivariate normally distributed population (data
set A, group 1 from program m3_7_1.sas), program m3_7_2.sas produces the output in Ta-
ble 3.7.1 to evaluate normality.

For this data, generated from a multivariate normal distribution with equal covariance
matrices, we see that for each of the three variables individually we do not reject the null
hypothesis of univariate normality based on the Shapiro-Wilk tests. We also do not reject the
null hypothesis of multivariate normality based on Mardia’s tests of multivariate skewness
and kurtosis. It is important to note that p-values for Mardia’s test of skewness and kurtosis
are large sample values. Table VI-VIII in Appendix A must be used with small sample sizes.

When n < 25, one should construct beta Q-Q plots, and not chi-square Q-Q plots.
Program m3_7_2.sas produces both plots. The outputs are shown in Figures 3.7.1 and 3.7.2.
As expected, the plots display a linear trend.
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TABLE 3.7.1. Univariate and Multivariate Normality Tests, Normal Data—Data Set A, Group 1

Multivariate Test
Skewness &  Statistic
Variable N Test Kurtosis Value p-value
COL1 25 Shapiro-Wilk 0.96660 0.56055
COL2 25 Shapiro-Wilk 0.93899 0.14030
COL3 25 Shapiro-Wilk . 0.99013 0.99592
25 Mardia Skewness 0.6756 3.34560 0.97208
25 Mardia Kurtosis 12.9383 —0.94105 0.34668
Chi Square Q—Q Plot (Set A—Gr1)
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Chi-Square Quantile

FIGURE 3.7.1. Chi-Square Plot of Normal Data in Set A, Group 1.

Beta Q—Q Plot (Set A—Gn)

D-Square
N

Beta Quantile

FIGURE 3.7.2. Beta Plot of Normal Data in Data Set A, Group 1
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TABLE 3.7.2. Univariate and Multivariate Normality Tests Non-normal Data, Data Set C, Group 1

Multivariate Test Non-Normal
Skewness and  Statistic Data
Variable N Test Kurtosis Value p-value
COL1 25 Shapiro-Wilk . 0.8257  0.000630989
COL2 25 Shapiro-Wilk . 0.5387  0.000000092
COL3 25 Shapiro-Wilk . 0.8025 0.000250094
25 Mardia Skewness 14.6079 72.3441  0.000000000
25 Mardia Kurtosis 31.4360 7.5020  0.000000000

We next evaluate the data that we generated not from a multivariate normal distribution
but from a Cauchy distribution (data set C, group 1, in program m3_7_1.sas); the test results
are given in Table 3.7.2.

We can see from both the univariate and the multivariate tests that we reject the null
hypothesis and that the data are from a multivariate normal population. The chi-square
0-0 and beta Q-Q plots are shown in Figures 3.7.3 and 3.7.4. They clearly display a
nonlinear pattern.

Program m3_7_2.sas has been developed to help applied researchers evaluate the as-
sumption of multivariate normality. It calculates univariate and multivariate test statistics
and provides both Q-Q Chi-Square and beta plots. For small sample sizes, the critical
values developed by Romeu and Ozturk (1993) should be utilized; see Table VI-VIII in Ap-
pendix A. Also included in the output of program m3_7 2.sas are the tests for evaluating the
multivariate normality for data set A, group2, data set B (groups 1 and 2) and data set C,
group?2.

Example 3.7.3 (Normality and Outliers) To illustrate the evaluation of normality and the
identification of potential outliers, the ramus bone data from Elston and Grizzle (1962)
displayed in Table 3.7.3 are utilized. The dependent variables represent the measurements
of the ramus bone length of 20 boys at the ages 8, 8.5, 9, and 9.5 years of age. The data set
is found in the file ramus.dat and is analyzed using the program ramus.sas. Using program
ramus.sas, the SAS UNIVARIATE procedure, Q-Q plots for each dependent variable, and
the macro %MULTINORM are used to assess normality.

The Shapiro-Wilk statistics and the univariate Q-Q plots indicate that each of the de-
pendent variables y1, y2, y3, and y4 (the ramus bone lengths at ages 8, 8.5, 9, and 9.5)
individually appear univariate normal. All Q-Q plots are linear and the W statistics have
p-values 0.3360, 0.6020, 0.5016, and 0.0905, respectively.

Because marginal normality does not imply multivariate normality, we also calculate
Mardia’s test statistics by, and by, for Skewness and Kurtosis using the macro %eMULTI-
NORM. The values are by, = 11.3431 and by , = 28.9174. Using the large sample
chi-square approximation, the p-values for the tests are 0.00078 and 0.11249, respectively.
Because n is small, tables in Appendix A yield a more accurate test. For « = 0.05, we
again conclude that the data appear skewed.
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Chi Square Q—Q Plot (Set C—Gn)
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FIGURE 3.7.3. Chi-Square Plot of Non-normal Data in Data Set C, Group 2.

Beta Q—Q Plot (Set C—Gn)
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FIGURE 3.7.4. Beta Plot of Non-normal Data in Data Set C, Group 2.
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TABLE 3.7.3. Ramus Bone Length Data

Age in Years

Boy 8 8.5 9 9.5

1 47.8 48.8 49.0 49.7
2 46.4 473 47.7 48.4
3 46.3 46.8 47.8 48.5
4 45.1 453 46.1 47.2
5 47.6 48.5 48.9 49.3
6 52.5 53.2 53.3 53.7
7 51.2 53.0 54.3 54.5
8 49.8 50.0 50.3 52.7
9 48.1 50.8 52.3 54.4
10 45.0 47.0 47.3 48.3
11 51.2 514 51.6 51.9
12 48.5 49.2 53.0 55.5
13 52.1 52.8 53.7 55.0
14 48.2 48.9 49.3 49.8
15 49.6 50.4 51.2 51.8
16 50.7 51.7 52.7 53.3
17 47.2 47.7 48.4 49.5
18 53.3 54.6 55.1 55.3
19 46.2 47.5 48.1 48.4
20 46.3 47.6 51.3 51.8

To evaluate the data further, we investigate the multivariate chi-square Q-Q plot shown
in Figure 3.7.5 using SAS/INSIGHT interactively.

While the plot appears nonlinear, we cannot tell from the plot displayed which of the ob-
servations may be contributing to the skewness of the distribution. Using the Tool Bar fol-
lowing the execution of the program ramus.sas, we click on “Solutions,” select “Analysis,”
and then select “Interactive Data Analysis.” This opens SAS/INSIGHT. With SAS/INSIGHT
open, we select the Library “WORK” by clicking on the word. This displays the data sets
used in the application of the program ramus.sas. The data set “CHIPLOT” contains the
square of the Mahalanobis distances (MANDIST) and the ordered chi-square Q-Q values
(CHISQ). To display the values, highlight the data set “CHIPLOT” and select “Open”
from the menu. This will display the coordinates of MAHDIST and CHISQ. From the Tool
Bar select “Analyze” and the option “Fit( YX ).” Clicking on “Fit( YX ),” move vari-
able MAHDIST to window “Y” and CHISQ to window “X”. Then, select “Apply” from
the menu. This will produce a plot identical to Figure 3.7.5 on the screen. By holding
the “Ctrl” key and clicking on the extreme upper most observations, the numbers 9 and
12 will appear on your screen. These observations have large Mahalanobis squared dis-
tances: 11.1433 and 8.4963 (the same values calculated and displayed in the output for
the example). None of the distances exceed the chi-square critical value of 11.07 for alpha
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FIGURE 3.7.5. Ramus Data Chi-square Plot
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= 0.05 for evaluating a single outlier. By double clicking on an extreme observation, the
window “Examine Observations” appears. Selecting each of the extreme observations 9,
12, 20, and 8, the chi-square residual values are —1.7029, 1.1893, 2.3651, and 1.3783,
respectively. While the 9™ observation has the largest distance value, the imbedded 20"
observation has the largest residual. This often happens with multivariate data. One must
look past the extreme observations.

To investigate the raw data more carefully, we close/cancel the SAS/INSIGHT windows
and re-option SAS/INSIGHT as before using the Tool Bar. However, we now select the
“WORK” library and open the data set “NORM.” This will display the raw data. Holding
the “Ctrl” key, highlight the observations 9, 12, 20, and 8. Then again click on “Analyze”
from the Tool bar and select “Scatterplot (Y X)”. Clicking on y1, y2, y3 and y4, and mov-
ing all the variables to both the “X” and “Y” windows, select “OK.” This results in a
scatter plot of the data with the variables 8, 9, 12, and 20 marked in bold. Scanning the
plots by again clicking on each of the bold squares, it appears that the 20 observation is
an outlier. The measurements y1 and y2 (ages 8 and 8.5) appear to be far removed from
the measurements y3 and y4 (ages 9 and 9.5). For the 9" observation, y1 appears far
removed from y3 and y4. Removing the 9™ observation, all chi-square residuals become
less than 2 and the multivariate distribution is less skewed. Mardia’s skewness statistic
b1,p = 11.0359 now has the p-value of 0.002. The data set remains somewhat skewed. If
one wants to make multivariate inferences using these data, a transformation of the data
should be considered, for example, to principal component scores discussed in Chapter 8.

Example 3.7.4 (Box-Cox) Program norm.sas was used to generate data from a normal
distribution with p = 4 variables, y;. The data are stored in the file norm.dat. Next, the
data was transformed using the nonlinear transformation x; = exp(y;) to create the data
in the file non-norm.dat. The Box-Cox family of power transformations for x > 0

(x*=1)/x  r#0
y:
log x A=0

is often used to transform a single variable to normality. The appropriate value to use for
A is the value that maximizes

L= %”log [Z (yi —i)z/n] +0.— 1)) logxi
i=1 i—1
y=>_(x}—1)/nx

i—1

Program Box-Cox.sas graphs L (A) for values of » : —1.0(.1) 1.3. Output from execut-
ing the program indicates that the parameter A =~ 0 for the Box-Cox transformation for
the graph of L(A) to be a maximum. Thus, one would use the logarithm transformation
to achieve normality for the transformed variable. After making the transformation, one
should always verify that the transformed variable does follow a normal distribution. One
may also use the macro ADXTRANS available in SAS/AC software to estimate the optimal
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Box-Cox transformation within the class of power transformations of the form y = x*.

Using the normal likelihood, the value of A is estimated and an associated 95% confidence
interval is created for the parameter lambda. The SAS macro is illustrated in the program
unorm.sas. Again, we observe that the Box-Cox parameter A == (.

Exercises 3.7

1. Use program m3_7_1.sas to generate a multivariate normal data set of n; = ny = 100
observations with mean structure

pi=[420 284 412 312 334 ]
why=[509 350 49.6 37.9 449 ]

and covariance matrix

141.49 (Sym)
33.17 53.36
S=| 5259 31.62 12244

1433 8.62 31.12 64.69
21.44 16.63 33.22 31.83 49.96

where the seed is 101999.

2. Using the data in Problem 1, evaluate the univariate and multivariate normality of the
data using program m3_7_2.sas.

3. After matching subjects according to age, education, former language training, in-
telligence and language aptitude, Postovsky (1970) investigated the effects of delay
in oral practice at the beginning of second-language learning. The data are provided
in Timm (1975, p. 228). Using an experimental condition with a 4-week delay in
oral practice and a control condition with no delay, evaluation was carried out for
language skills: listening (L), speaking (S), reading (R), and writing (W). The data
for a comprehensive examination given at the end of the first 6 weeks follow in Ta-
ble 3.7.4.

(a) For the data in Table 3.7.4, determine whether the data for each group, Experi-
mental and Control, are multivariate normal. If either group is nonnormal, find
an appropriate transformation to ensure normality.

(b) Construct plots to determine whether there are outliers in the transformed data.
For the groups with outliers, create robust estimates for the joint covariance
matrix.

4. For the Reading Comprehension data found on the Internet link at http://lib.stat.cmu.
edu/DASL/Datafiles/ReadingTestScore.html from a study of the effects of instruction
on reading comprehension in 66 children, determine if the observations follow a
multivariate normal distribution and if there are outliers in the data. Remove the
outliers, and recalculate the mean and covariance matrix. Discuss your findings.
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TABLE 3.7.4. Effects of Delay on Oral Practice.

Experimental Group Control Group

Subject L S R W L S R W
1 34 66 39 97 33 56 36 81
2 35 60 39 95 21 39 33 74
3 32 57 39 94 29 47 35 89
4 29 53 39 97 22 42 34 85
5 37 58 40 96 39 61 40 97
6 35 57 34 90 34 58 38 94
7 34 51 37 84 29 38 34 76
8 25 42 37 80 31 42 38 83
9 29 52 37 85 18 35 28 58
10 25 47 37 9% 36 51 36 83
11 34 55 35 88 25 45 36 67
12 24 42 35 88 33 43 36 86
13 25 59 32 82 20 50 37 94
14 34 57 35 89 30 50 34 84
15 35 57 39 97 34 49 38 94
16 29 41 36 82 30 42 34 77
17 25 44 30 65 25 47 36 66
18 28 51 39 96 32 37 38 88
19 25 42 38 86 22 44 22 85
20 30 43 38 91 30 35 35 77
21 27 50 39 96 34 45 38 95
22 25 46 38 85 31 50 37 96
23 22 33 27 72 21 36 19 43
24 19 30 35 77 26 42 33 73
25 26 45 37 90 30 49 36 88
26 27 38 33 77 23 37 36 82
27 30 36 22 62 21 43 30 85
28 36 50 39 92 30 45 34 70

5. Use PROC UNIVARIATE to verify that each variable in file non-norm.dat is non-
normal. Use the macro %MULTINORM to create a chi-square Q-Q plot for the four
variables. Use programs Box-Cox.sas and norm.sas to estimate the parameter A for a
Box-Cox transformation of each of the other variables in the file non-norm.dat. Ver-
ify that all the variables are multivariate normal, after an appropriate transformation.
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3.8 Tests of Covariance Matrices

a. Tests of Covariance Matrices

In multivariate analysis, as in univariate analysis, when testing hypotheses about means,
three assumptions are essential for valid tests

1. independence
2. multivariate normality, and

3. equality of covariance matrices for several populations or that a covariance matrix
has a specific pattern for one or more populations.

In Section 3.7 we discussed evaluation of the multivariate normal assumption. We now
assume data are normally distributed and investigate some common likelihood ratio tests of
covariance matrices for one or more populations. The tests are developed using the likeli-
hood ratio principle which compares the likelihood function under the null hypothesis to the
likelihood function over the entire parameter space (the alternative hypothesis) assuming
multivariate normality. The ratio is often represented by the statistic A. Because the exact
distribution of the lambda statistic is often unknown, large sample results are used to obtain
tests. For large samples and under very general conditions, Wald (1943) showed that —2 log
A converges in distribution to a chi-square distribution under the null hypothesis where the
degrees of freedom are f. The degrees of freedom is obtained by subtracting the number
of independent parameters estimated for the entire parameter space minus the number of
independent parameters estimated under the null hypothesis. Because tests of covariance
matrices involves variances and covariances, and not means, the tests are generally very
sensitive to lack of multivariate normality.

b. Equality of Covariance Matrices

In testing hypotheses regarding means in k independent populations, we often require that
the independent covariance matrices X1, 2o, ..., X be equal. To test the hypothesis

H:X i =%y= =3 (3.8.1)

we construct a modified likelihood ratio statistic; see Box (1949). Let S; denote the unbi-
ased estimate of X; for the i™ population, with n; independent p-vector valued observa-
tions (n; > p) from the MVN distribution with mean u; and covariance matrix %;. Setting
n= Zle n; and v; = n; — 1, the pooled estimate of the covariance matrix under H is

k
S=Y vSi/(n—k) =E/v, (3.8.2)
i=l1

where v, = n — k. To test (3.8.1), the statistic

k
W = v, log [S| — ) v log IS;]| (3.8.3)

i=1
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is formed. Box (1949, 1950) developed approximations to W using either a x2 or an F
approximation. Details are included in Anderson (1984). The test is commonly called Box’s
M test where M is the likelihood ratio statistic. Multiplying W by p = 1 — C where

202 +3p—1 [ 1
C— o 40 (3.8.4)
6(p+Dk—1 [; v v
the quantity
X2=(1—-C)W =—2plog M -5 x2(f) (3.8.5)

where f = p(p+ 1) (k — 1)/2. Thus, to test H in (3.8.1) the hypothesis is rejected if
X2 > X%—a (f) for a test of size «. This approximation is reasonable provided n; > 20 and
both p and k are less than 6. When this is not the case, an F approximation is used.

To employ the F approximation, one calculates

D) [ 1

v

i=1 (3.8.6)
fo=(f+2/|Co-C?|
For Cy — C? > 0, the statistic
F=Ww/a-% F(f, fo) (3.8.7)
is calculated where a = f/[1 — C — (f/ fo)]. If Co — C? < 0, then
F=foW/f (b—W) -5 F(f. fo) (3.88)

where b = fo/ (1 — C +2/fo). The hypothesis of equal covariances is rejected if F >
F(] ff"}o) for a test of size «; see Krishnaiah and Lee (1980).

Both the x? and F approximations are rough approximations. Using Box’s asymptotic
expansion for X2 in (3.8.5), as discussed in Anderson (1984, p. 420), the p-value of the
test is estimated as

0p=P (X2 2 X3) = PO} = XD
+o [P(X§c+4 > Xé) - P (Xzf > X%)] +0 (U;3)
where X% is the calculated value of the test statistic in (3.8.5) and

Pe+D[0-D@+2 [Tt - L] -6k—-D - p?]
“= 482

(3.8.9)

For equal v;, Lee et al. (1977) developed exact values of the likelihood ratio test for
vi=((@+1)1)2005)30, p=2(1)6,k =2(1)10and « = 0.01, 0.05 and 0.10.
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TABLE 3.8.1. Box’s Test of £{ = 22)(2 Approximation.

XB V1 PROB XB
1.1704013 6 0.9783214

TABLE 3.8.2. Box’s Test of ¥; = X, F Approximation.

FB V1 PROB FB
0.1949917 16693.132 0.9783382

Layard (1974) investigated the robustness of Box’s M test. He states that it is so severely
affected by departures from normality as to make it useless; and that under nonnormality
and homogeneity of covariance matrices, the M test is a test of multivariate normality.
Layard (1974) proposed several robust tests of (3.8.1).

Example 3.8.1 (Testing the Equality of Covariance Matrices) As an example of testing
for the equality of covariance matrices, we utilize the data generated from multivariate
normal distributions with equal covariance matrices, data set A generated by program
m3_7_1.sas. We generated 25 observations from a normal distribution with [L/l = [6, 12, 30]
and 25 observations with [L’2 = [4, 9, 20]; both groups have covariance structure

7 2 0
=2 6 0
0 3 5

Program m3_8_1.sas was written to test ¥1 = X for data set A. Output for the chi-square
and F tests calculated by the program are shown in Tables 3.8.1 and 3.8.2. The chi-square
approximation works well when n; > 20, p < 6, and k < 6. The F approximation can
be used for small n; and p, and for k > 6. By both the chi-square approximation and
the F approximation, we fail to reject the null hypothesis of the equality of the covariance
matrices of the two groups. This is as we expected since the data were generated from
populations having equal covariance matrices.

The results of Box’s M test for equal covariance matrices for data set B, which was
generated from multivariate normal populations with unequal covariance matrices, are
provided in Table 3.8.3. As expected, we reject the null hypothesis that the covariance
matrices are equal.

As yet a third example, Box’s M test was performed on data set C which is generated
Jfrom non-normal populations with equal covariance matrices. The results are shown in
Table 3.8.4. Notice that we reject the null hypothesis that the covariance matrices are equal;
we however know that the two populations have equal covariance matrices. This illustrates
the effect of departures from normality on Box’s test; erroneous results can be obtained if
data are non-normal.

To obtain the results in Table 3.8.3 and Table 3.8.4, program m3_8_1.sas is executed two
times by using the data sets exampl.m371b and exampl.m371c.
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TABLE 3.8.3. Box’s Test of ¥ = 22)(2 Data Set B.

x* Approximation

F Approximation

XB VI PROB XB
43736477 6 8.337E-8

FB

7.2866025

VI PROB FB
16693.12  8.6028E-8

TABLE 3.8.4. Box’s Test of £| = %, x2 Data Set C.

x? Approximation

F Approximation

XB VI PROB XB
19.620669 6  0.0032343

3.2688507

FB

VI PROB FB
16693.132  0.0032564

In addition to testing for the equality of covariance matrices, a common problem in mul-
tivariate analysis is testing that a covariance matrix has a specific form or linear structure.

Some examples include the following.

1. Specified Value

H:Y =3%,(Z,isknown)

2. Compound Symmetry
L p
H:Y =02 ,0 1
b p

D

0

DD

=% [(1—p) 1+ pJ]

1

where J is a square matrix of 1s, p is the intraclass correlation, and o2 is the common
variance. Both ' and p are unknown.

3. Sphericity

H:Y =01 (o unknown)

Independence, for ¥ = (%)

H:%j; =0fori # j

. Linear Structure

k

H:E:ZGi@@Ei

where G, Go, ..
matrices of order p X p.

i=1

., G are known ¢ x t matrices, and X, X, .

.., X are unknown

Tests of the covariance structures considered in (1)-(5) above have been discussed by
Krishnaiah and Lee (1980). This section follows their presentation.
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c. Testing for a Specific Covariance Matrix

For multivariate data sets that have a large number of observations in which data are studied
over time or several treatment conditions, one may want to test that a covariance matrix is
equal to a specified value. The null hypothesis is

H:X=%, (known) (3.8.10)

For one population, we let v, = n — 1 and for k populations, ve = ) ;(n; — 1) = n — k.
Assuming that the n p-vector valued observations are sampled from a MVN distribution
with mean g and covariance matrix X, the test statistic to test (3.8.10) is

W = —21log % = v, [log IS,] — log |S| +tr (sz;l) —_ p]

where S = E/v, is an unbiased estimate of ¥. The parameter X is the standard likelihood
ratio criterion. Korin (1968) developed approximations to W using both a x> and an F
approximation. Multiplying W by p = 1 — C where

C= (2p2+3p— 1) J6ve(p + 1) (3.8.11)
the quantity

X2=(1-=O)W =—2plog » -5 x2(f)
where f = p(p + 1)/2. Alternatively, the F statistic is

F=W/a-5 F(t fo) (3.8.12)
where

fo=(f+2)/|Co— C?
Co=(p—1D(p+2)/6v,
a=f/[1—C—(f/fol

Again, H : ¥ = ¥, is rejected if the test statistic is large. A special case of H is to set
Y, = 1, a test that the variables are independent and have equal unit variances.

Using Box’s asymptotic expansion, Anderson (1984, p. 438), the p-value of the test is
estimated as

ap = P(=2plog x> X}) (3.8.13)
— P(x2 > X2 P(y2 > X2)— P(v2 > X2)1/0% 4+ O3
=Xy = o) + ol (Xf+4_ 0) (Xf_ )l/p”+ 0w, )
for
w=pQ2p*+6p’+p>—12p—13)/288w))(p + 1)

For p = 4(1)10 and small values of v,, Nagarsenker and Pillai (1973a) have developed
exact critical values for W for the significant levels « = 0.01 and 0.05.
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TABLE 3.8.5. Test of Specific Covariance Matrix Chi-Square Approximation.

S EO
7.0874498 3.0051207 0.1585046 6 0 O
3.0051207 5.3689862 3.5164255 0 6 0
0.1585046 3.5164235  5.528464 0 6

X_SC DFX_SC
48.905088 6 PROB XSC
7.7893E-9

Example 3.8.2 (Testing X = X,) Again we use the first data set generated by program
m3_7_1.sas which is from a multivariate normal distribution. We test the null hypothesis
that the pooled covariance matrix for the two groups is equal to

6 0 0
=10 6 0
0 0 6

The SAS PROC IML code is included in program m3_8_1.sas. The results of the test are
given in Table 3.8.5. The results show that we reject the null hypothesis that ¥ = %,,.

d. Testing for Compound Symmetry

In repeated measurement designs, one often assumes that the covariance matrix X has
compound symmetry structure. To test

H:Z=02[(1-p) 1+ pJ] (3.8.14)

we again assume that we have a random sample of vectors from a MVN distribution with
mean g and covariance matrix X. Letting S be an unbiased estimate of X based on v,
degrees of freedom, the modified likelihood ratio statistic is formed

p
M, = —v, log {|S| / (s2> A=rP 1+ (p— l)r]} (3.8.15)
where § = [s;;] and estimates of o2 and 02,0 are
p
52 = Zs,-,-/p and s’r = Zs,-j /p(p—1) (3.8.16)
i=1 i#]
The denominator of M, is
S2 52r S2
s2r 52 s

|Sa| =
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TABLE 3.8.6. Test of Comparing Symmetry X2 Approximation.

CHIMX DEMX PRBCHIMX
31.116647 1 2.4298E-8
so that M, = —v, log {|S|/|Ss|} where s2r is the average of the nondiagonal elements
of S.
Multiplying M, by (1 — Cy) for
Cy = p(p+ D>Q2p =3)/6(p = D(P* + p — 4o (3.8.17)

Box (1949) showed that
X2 =(1-CoM, -5 x2(f) (3.8.18)

for f = (p> + p —4)/2, provided n; > 20 for each group and p < 6. When this is not the
case, the F approximation is used. Letting

p(PP-1)(p+2

C,, =
6P+ p— 4}
f()x = (f+2) / Cox _C)%
the F statistic is J
F=00=Cx = f)Mx/fox —> F(f, fox) (3.8.19)

Again, H in (3.8.16) is rejected for large values of X2 or F.
The exact critical values for the likelihood ratio test statistic for p = 4(1)10 and small
values of v, were calculated by Nagarsenker (1975).

Example 3.8.3 (Testing Compound Symmetry) 7o fest for compound symmetry we again
use data set A, and the sample estimate of S pooled across the two groups. Thus, v = n—r
where r = 2 for two groups. The SAS PROC IML code is again provided in program
m3_8_1.sas. The output is shown in Table 3.8.6. Thus, we reject the null hypothesis of com-
pound symmetry.

e. Tests of Sphericity

For the general linear model, we assume a random sample of n p-vector valued observa-
tions from a MVN distribution with mean g and covariance matrix ¥ = o 2I. Then, the p
variables in each observation vector are independent with common variance o2. To test for
sphericity or independence given a MVN sample, the hypothesis is

H:% =01 (3.8.20)

The hypothesis H also arises in repeated measurement designs. For such designs, the
observations are transformed by an orthogonal matrix M ,—1) of rank (p — 1) so the
M'M = I,,_1). Then, we are interested in testing

H:M3IM ="l (3.8.21)
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where again o2 is unknown. For these designs, the test is sometimes called the test of
circularity. The test of (3.8.21) is performed in the SAS procedure GLM by using the RE-
PEATED statement. The test is labeled the “Test of Sphericity Applied to Orthogonal Com-
ponents.” This test is due to Mauchly (1940) and employs Box’s (1949) correction for a
chi-square distribution, as discussed below. PROC GLM may not be used to test (3.8.20).
While it does produce another test of “Sphericity,” this is a test of sphericity for the original
variables transformed by the nonorthogonal matrix M. Thus, it is testing the sphericity of
the p — 1 variables in y* = My, or that the cov (y*) = M'SM = ¢21.
The likelihood ratio statistic for testing sphericity is

n/2

Ay ={ISI/[trS/ p1”} (3.8.22)

or equivalently
A=) =18|/lrS / pl? (3.8.23)
where S is an unbiased estimate of X based on v, = n — 1 degrees of freedom; see Mauchly

(1940). Replacing n by v,,

W= —u, log A -5 x2(f) (3.8.24)

with degrees of freedom f = (p — 1)(p + 2)/2. To improve convergence, Box (1949)
showed that for
C=Qp*+ p+2)/6pve

that
X% = —v,(1 —C)log A

( 2p 4+ p+2
= — Ue—i

) log A -5 ¥2(f) (3.8.25)
6p

converges more rapidly than W. The hypotheses is rejected for large values of X2 and
works well for n > 20 and p < 6. To perform the test of circulariy, one replaces S with
M’SM and p with p — 1 in the test for sphericity. For small samples sizes and large values
of p, Box (1949) developed an improved F approximation for the test.

Using Box’s asymptotic expansion, the p-value for the test is more accurately estimated
using the expression

ap = P(—veplogry > X3) = P(X* > X3) (3.8.26)
=P (i3 2 X3) +o [P (= X3) - PO = XD] + 00
forp=1—-C and

(p+2(p—1D2p*+6p+3p+2)
w =
288 p2v2p?

For small values of n, p = 4(1)10 and « = 0.05, Nagarsenker and Pillai (1973) pub-
lished exact critical values for A.
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An alternative expression for A is found by solving the characteristic equation | X —AI| =
0 with eigenvalues A1, A2, ..., A,. Using S to estimate X,

p

]_[ [Z A /pi| (3.8.27)

where 5:,' are the eigenvalues of S. Thus, testing H : £ = oI is equivalent to testing that

the eigenvalues of X are equal, A; = A2 = --- = A,. Bartlett (1954) developed a test of
equal A; that is equal to the statistic X> proposed by Box (1949). We discuss this test in
Chapter 8.

Given the importance of the test of independence with homogeneous variance, numerous
tests have been proposed to test H : ¥ = o°I. Because the test is equivalent to an inves-
tigation of the eigenvalues of |X — AI| = 0, there is no uniformly best test of sphericity.
However, John (1971) and Sugiura (1972) showed that a locally best invariant test depends
on the trace criterion, 7', where

T = tr(S?)/ [tr S (3.8.28)

To improve convergence, Sugiura showed that

W= el [P‘f(sz)

2 | wsy —l}iwf(f)

where f =(p—1)(p+2)/2 = %p(p + 1) — 1. Carter and Srivastava (1983) showed that

under a broad class of alternatives that both tests have the same power up to O (v, 3/ 2).

Cornell et al. (1992) compared the two criteria and numerous other proposed statistics
that depend on the roots X of S. They concluded that the locally best invariant test was
more powerful than any of the others considered, regardless of p and n > p.

Example 3.8.4 (Test of Sphericity) In this example we perform Mauchly’s test of spheric-
ity for the pooled covariance matrix for data set A. Thus, k = 2. To test a single group, we
would use k = 1. Implicit in the test is that 1 = ¥2 = ¥ and we are testing that ¥ = o*1.
We also include a test of “pooled” circularity. That M'SM = 21 for M'M = Lp—1). The
results are given in Table 3.8.7. Thus, we reject the null hypothesis that the pooled covari-
ance matrix has spherical or circular structure.

To test for sphericity in k populations, one may first test for equality of the covariance
matrices using the nominal level «/2. Given homogeneity, one next tests for sphericity us-
ing « /2 so that the two tests control the joint test near some nominal level . Alternatively,
the joint hypothesis

H:S =% =--=3% =01 (3.8.29)

may be tested using either a likelihood ratio test or Rao’s score test, also called the La-
grange multiplier test. Mendoza (1980) showed that the modified likelihood ratio statistic
for testing (3.8.29) is

k

W = —2log M = pv, log [tr(A)/v.p] — Y _ v; log |S;]
i=1



142 3. Multivariate Distributions and the Linear Model

TABLE 3.8.7. Test of Sphericity and Circularity X2 Approximation.

Sphericity df Circularity  df

(p-value) (p-value)

Mauchly’s test 48.702332 5 28.285484 2
(2.5529E-9) (7.2092E-7)

Sugiura test 29.82531 5 21.050999 2
(0.000016) (0.0000268)

where M is the likelihood ratio test statistic of H,
k

n:Zni,vi =n;—1, ve.=n—k, and A:ZviSi
i=1

Letting p = 1 — C where

[[ver? @+ D @p+ 1D = 2007 [ L 1/0] - 4
6vep [kp (p+ 1) — 2]

C =

Mendoza showed that
X2=(1—C)W=—2plog M - x2(f) (3.8.30)

where f = [kp(p +1)/2] — 1.

An asymptotically equivalent test of sphericity in k populations is Rao’s (1947) score test
which uses the first derivative of the log likelihood called the vector of efficient scores; see
Harris (1984). Silvey (1959) independently developed the test and called it the Lagrange
Multiplier Test. Harris (1984) showed that

Vep Zf: vi tr(S;)?
w= P [ : ] 2 (3.8.31)

2 [Zle v; tr(Si)]71

where f = (kp(p + 1)/2) — 1. When k = 1, the score test reduces to the locally best
invariant test of sphericity. When k > 2, it is not known which test is optimal. Observe that
the likelihood ratio test does not exist if p > n; for some group since the |S;| = 0. This is
not the case for the Rao’s score test since the test criterion involves calculating the trace of
a matrix.

Example 3.8.5 (Sphericity in k Populations) 7o test for sphericity in k populations, we
use the test statistic developed by Harris (1984) given in (3.8.31). For the example, we use
data set A for k = 2 groups. Thus, we are testing that ¥ = £, = o 2L Replacing S; by
C’S;C where C'C = I(,_1)is normalized, we also test that C'¥1C = C'X,C = 21, the
test of circularity. Again, program m3_8_1.sas is used. The results are given in Table 3.8.8.
Both hypotheses are rejected.



3.8 Tests of Covariance Matrices 143

TABLE 3.8.8. Test of Sphericity and Circularity in £ Populations.

x? Approximation

w DFKPOP  PROB K POP
Sphericity 31.800318 11 0.0008211
Circularity 346.1505 5 < 0.0001

|- Tests of Independence

A problem encountered in multivariate data analysis is the determination of the indepen-
dence of several groups of normally distributed variables. For two groups of variables, let
Y, x1 and X, 1 represent the two subsets with covariance matrix

5 = Yyy Xyx
2xy Xxx

The two sets of variables are independent under joint normality if ¥xy = 0. The hypothesis
of independence is H : Xxy = 0. This test is related to canonical correlation analysis
discussed in Chapter 8.

In this section we review the modified likelihood ratio test of independence developed by
Box (1949). The test allows one to test for the independence of k groups with p; variables
per group.

LetY; ~ IN,(p, ¥),for j =1,2,...,n where p = Zle Di

“1 X X2 oo Xk

2 o1 X - Xk
n= and X = . . .

i Y X2 - Xk

then the test of independence is
H:%jj=0fori#j=12,...k (3.8.32)

Letting
[S] [R|
W = fd
[Stil--- ISkl IRpq] -« [Rggl

where S is an unbiased estimate of X based on v, degrees of freedom, and R is the sample
correlation matrix, the test statistic is

X2 = (1= Clog W -% x2(f) (3.8.33)
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where

k S k

Gy = |:Zp{| - p;  fors=2.3.4
i=l1 i=1

C = (2G3 +3G2) /12 fv,

f=G2/2

The hypothesis of independence is rejected for large values of X2. When p is large, Box’s
F approximation is used. Calculating

fo=(f+2/|Co-C?|

Co = (G4 +2G3 — Gy) /12 fuv?
V=—-v,logW

for Co — C? > 0, the statistic

F=V/a-5 F fo (3.8.34)
where a = f/[1 — C — (f/ fo)l. If Co — C? < 0 then

F=fV/f(b-V)-5 F(f. fo) (3.8.35)

where b = fo/(1 — C + 2/fp). Again, H is rejected for large values of F.
To estimate the p-value for the test, Box’s asymptotic approximation is used, Anderson
(1984, p. 386). The p-value of the test is estimated as

a,=P (—m log W > X(Z))
(5 28) B[P ()= 3 2 )]0 o) o020

where
3 G3

m=1v,— = — ——
2 3G,

w=G4/48 —5G>/96 — G3/72G

A special case of the test of independence occurs when all p; = 1. Then H becomes

oy 0 - 0

0 opm -~ 0

H:Y = . . .
0 0 - opp

which is equivalent to the hypothesis H : P = I where P is the population correlation
matrix. For this test,
W — IS|
i1 Sii

= IR|
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and X2 becomes
d
X*=[v.— (2p+5) /6] log W — x> (f) (3.8.37)

where f = p (p — 1) /2, developed independently by Bartlett (1950, 1954).

Example 3.8.6 (Independence) Using the pooled within covariance matrix S based on
ve = n1 + ny — 2 = 46 degrees of freedom for data set A, we test that the first set of two
variables is independent of the third. Program m3_8_1.sas contains the SAS IML code to
perform the test. The results are shown in Table 3.8.9. Thus, we reject the null hypothesis
that the first two variables are independent of the third variable for the pooled data.

TABLE 3.8.9. Test of Independence %2 Approximation.

INDCH1 INDF INDPROB
34.386392 2 3.4126E-8

g. Tests for Linear Structure

When analyzing general linear mixed models in ANOVA designs, often called components
of variance models, the covariance matrix for the observation vectors y, has the general
structure 2 = Zf‘: 1 U?Z,‘ZQ +0§I,,. Associating ¥ with € and G; with the known matrices

Z,~Z§ and I,,, the general structure of X is linear where o2

¢ are the components of variance

Y =01G; +035Gy + -+ 071Gy (3.8.38)

Thus, we may want to test for linear structure.

In multivariate repeated measurement designs where vector-valued observations are ob-
tained at each time point, the structure of the covariance matrix for normally distributed
observations may have the general form

Y=GI X +620%+ -+ Gy ® X (3.8.39)

where the G; are known commutative matrices and the ¥; matrices are unknown. More
generally, if the G; do not commute we may still want to test that X has linear structure;
see Krishnaiah and Lee (1976).

To illustrate, suppose a repeated measurement design has 7 time periods and at each time
period a vector of p dependent variables are measured. Then for i = 1,2, ..., n subjects
an observation vector has the general form y’ = (y},y5....,y;) where eachy; isa p x 1
vector of responses. Assume y’ follows a MVN distribution with mean g and covariance
matrix

Xn X oo Xy
o1 X2 oo Xy
Y= . . . (3.8.40)

21 Yo oo Xp
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Furthermore, assume there exists an orthogonal matrix M; 4 of rank ¢ = ¢ — 1 such that
M’ ®1,)y = y* where M'M = I,,. Then the covariance structure for y* is

S xpg = (ML) T (MT,) (3.8.41)

The matrix £* has multivariate sphericity (or circularity) structure if
Tr=1,® %, (3.8.42)

where %, is the covariance matrix for y;.
Alternatively, suppose X has the structure given in (3.8.40) and suppose X;; = X, + X
fori = jand X;; = X, fori # j, then ¥ has multivariate compound symmetry structure

Y=L®Z,+Jix ® Xy, (3.8.43)

where J is a matrix of 1s. Reinsel (1982) considers multivariate random effect models with
this structure. Letting X;; = X fori = j and X;; = X, fori # j, (3.8.43) has the form

=L+ Ui — L) X2

Krishnaiah and Lee (1976, 1980) call this the block version intraclass correlation matrix.

The matrix has multivariate compound symmetry structure. These structures are all special
cases of (3.8.39).
To test the hypothesis

k
H:2=) G ®% (3.8.44)
i=1
where the G; are known g x ¢ matrices and ¥; is an unknown matrix of order p x p, assume
we have a random sample of n vectors y = (x],X),...,X,) from a MVN distribution
where the subvectors x; are p x 1 vectors. Then the cov (y) = X = [Ei j] where X;; are
unknown covariance matrices of order p x p, ory ~ Np,(, X). The likelihood ratio
statistic for testing H in (3.8.44) is

n/2

k
ZGi@)ii

i=1

=" (3.8.45)

where
n
nE=>"i-Nu-y
i=1

and ; is the maximum likelihood estimate of ; which is usually obtained using an itera-
tive algorithm, except for some special cases. Then,

“2logr -5 x2 () (3.8.46)

As a special case of (3.8.44), we consider testing that X* has multivariate sphericity
structure given in (3.8.42), discussed by Thomas (1983) and Boik (1988). Here k = 1 and
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I, = G; Assuming X}, = XJ, = -+ = Z;‘q = X,, the likelihood ratio statistic for
multivariate sphericity is

n/2 n/2

_ B3
Les IS

(3.8.47)

with £ = [pg (pg +1) = p (p+11/2 = p(@ =) (pg +p+ 1) /2 and 2 log 2 N
x-(f).

To estimate X, we construct the error sum of square and cross products matrix

E=M®I,) |:Z (yi =9 (vi —Y)/:| MeI,)

i=1
Then, n% = E. Partitioning E into p x p submatrices, E = [Eij]fori, j=1,2,....,qg =
t—1,n%, = Z,‘qzl E;;/q. Substituting the estimates into (3.8.47), the likelihood ratio
statistic becomes
q
r=E"/lg7" Y E;"? (3.8.48)
i=1

as developed by Thomas (1983). If we let «; (i = 1, ..., pq) be the eigenvalues of E, and
B; (i =1,..., p) the eigenvalues of Z?:l E;;, a simple form of (3.8.48) is

P rq
U=—2logr=nlg ) log(B;) — Y _log(e)] (3.8.49)
i=1

i=1

When p or g are large relative to n, the asymptotic approximation U may be poor. To
correct for this, Boik (1988) using Box’s correction factor for the distribution of U showed
that the

PU < U =P (pU < p*U,)
% (1 —w) P (Xﬁ. < ,o*Uo) P (Xﬁf+4 < ,O*Uo) +0 (v;3) (3.8.50)
where f = p(g+1)(pg+p+1),and

p=1-p2p* (¢* = 1) +3p (¢* = 1) = (42 = 1)1/1241 v,

p* = pv./n (3.8.51)
a2\ (g =1 pg(pg+ 1) (pg +2)
©= (Zp ) {[ 24v, }
_[<p—1>p<p+1>(p+2)} (f —p)
24q%v? 2

and v, = n — R (X). Hence, the p-value for the test of multivariate sphericity using Box’s
correction becomes

P(p*U > U,) = (1 — ) P (X} > Ug) +oP (X§,+4 > U,,) +o0 (vﬁ) (3.8.52)
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TABLE 3.8.10. Test of Multivariate Sphericity Using Chi-Square and Adjusted Chi-Square Statistics

CHI2 DF PVALUE
74.367228 15 7.365E-10
RHO
0.828125
OMEGA
0.0342649
RO_CHI_2 CPVALUE
54.742543 2.7772E-6

Example 3.8.7 (Test of Circularity) For the data from Timm (1980, Table 7.2), used to
illustrate a multivariate mixed model (MMM) and a doubly multivariate model (DMM),
discussed in Chapter 6, Section 6.9, and illustrated by Boik (1988), we test the hypothesis
that ©* has the multivariate structure given by (3.8.41). Using (3.8.49), the output for the
test using program m3_8_7.sas is provided in Table 3.8.10.

Since —2 log . = 74.367228 with df = 15 with a p-value for the test equal to 7.365 x
10710 or using Box’s correction, p*U = 54.742543 with the p-value = 2.7772 x107°, we
reject the null hypothesis of multivariate sphericity.

In the case of multivariate sphericity, the matrix £* = I, ® X.. More generally, suppose
¥* has Kronecker structure, ©* = X, ® X, where both matrices are unknown. For this
structure, the covariance matrix for the ¢ = ¢ — 1 contrasts in time is not the identity matrix.
Models that permit the analysis of data with a general Kronecker structure are discussed in
Chapter 6.

Estimation and tests of covariance matrix structure is a field in statistics called structural
equation modeling. While we will review this topic in Chapter 10, the texts by Bollen
(1989) and Kaplan (2000) provide a comprehensive treatment of the topic.

Exercises 3.8
1. Generate a multivariate normal distribution with mean structure and covariance struc-
ture given in Exercises 3.7.1 for ny = np = 100 and seed 1056799.
(a) Testthat X = Xp .
(b) Test that the pooled ¥ = 02T and that £ = o2 [A—=p) I+ pJ].
(c) Testthat ¥; = ¥ = o2l and that C'S{C = C'Z,C = o21.

2. For the data in Table 3.7.3, determine whether the data satisfy the compound sym-
metry structure or more generally has circularity structure.

3. For the data in Table 3.7.3, determine whether the measurements at age 8 and 8.5 are
independent of the measurements at ages 9 and 9.5.
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4. Assume the data in Table 3.7.3 represent two variables at time one, the early years
(ages 8 and 8.5), and two variables at the time two, the later years (ages 9 and 9.5).
Test the hypothesis that the matrix has multivariate sphericity (or circularity) struc-
ture.

5. For the data in Table 3.7.4, test that the data follow a MVN distribution and that
X = ).

3.9 Tests of Location

A frequently asked question in studies involving multivariate data is whether there is a
group difference in mean performance for p variables. A special case of this general prob-
lem is whether two groups are different on p variables where one group is the experimental
treatment group and the other is a control group. In practice, it is most often the case that
the sample sizes of the groups are not equivalent possibly due to several factors including
study dropout.

a. Two-Sample Case, ¥1 = Xy = X

The null hypothesis for the analysis is whether the group means are equal for all variables

M1t H21

K12 K22
H : . = . orpL; = o 3.9.1)

Hip Hap
The alternative hypothesis is A : u; # p,. The subjects in the control group i =
1,2,...,n; are assumed to be a random sample from a multivariate normal distribution,
Y; ~ IN, (py, X). The subjects in the experimental group, i = ny + 1,...,ny are

assumed independent of the control group and multivariate normally distributed: X; ~
IN, (ny, X). The observation vectors have the general form

Yi = [vit, Yiz, -+, ip]

(3.9.2)
X: = [xi1, Xi2, .. -, Xip]

where y = > '! yi/njandX = Z;’inlﬂ X;/n2. Because ¥ = ¥, = X, an unbi-
ased estimate of the common covariance matrix ¥ is the pooled covariance matrix S =
[(m1 — DE; + (n2 — 1) Ez]/(n1 + ny —2) where E; is the sum of squares and cross prod-
ucts (SSCP) matrix for the i group computed as

ni
El=) i-D-y
i=1

s (3.9.3)
Ex=) x-%x-%

i=ni+1
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To test H in (3.9.1), Hotelling’s T2 statistic derived in Example 3.5.2 is used. The statis-
tic is

T2=< e )@—iYS*@—i)

ny+ny

— (ﬂ) D> (3.9.4)

niy+np

Following the test, one is usually interested in trying to determine which linear combina-
tion of the difference in mean vectors led to significance. To determine the significant linear
combinations, contrasts of the form ¥ = a’ (u; — p,) = a’A are constructed where the
vector a is any vector of real numbers. The 100 (1 — «) % simultaneous confidence interval
has the general structure R R

v — ca?ﬂ; <y <y+ caff\@ (3.9.5)

where {ﬁ\ is an unbiased estimate of vy, 6\@ is the estimated standard deviation of @, and ¢y
is the critical value for a size « test. For the two-group problem,

v =2aF-%
52 _ ("‘ +”2> a'Sa (3.9.6)
14 niny
2 Ple l—a
=" F Ve —p+1
iy — (P, ve—p+1)

where v, = n1 +np — 2.

With the rejection of H, one first investigates contrasts a variable at a time by selecting
a; =(,0,...,0,1;,0,...,0) for 1,2, ..., p where the value one is in the jth position.
Although the contrasts using these a; are easy to interpret, none may be significant. How-
ever, when H is rejected there exists at least one vector of coefficients that is significantly
different from zero, in that | @ |> ca’o\ﬁ, so that the confidence set does not cover zero.

To locate the maximum contrast, observe that

z@:(””z)@—mﬂ”@—@
ny+ny
TNt
:Ue<_+_> Y—xE F—-X%
ni ny
[_ _(1 1)‘1_ _, _1]
=vtr | y—X) | —+ — §§—XxE
ni ny
= v tr (HE—l) (3.9.7)

where E = v,S and v, = nj +n2—2 so that T2 = v,A; where A is the root of |H — AE| =
0. By Theorem 2.6.10,
A1 = max (a’Ha/a’Ea)
a
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so that
T? = v, max (a'Ha/a'Ea) (3.9.8)
a

where a is the eigenvector of |[H — LE| = 0 associated with the root A1. To find a solution,
observe that

(H-AE)a, =0
[(ﬂ) F-% <y—i>’—AE] a, =0

ny+ny

o (—'””2 )E—l F-0F-9'a, =a,

A\ny+no

1 niny _ — 1 ,— —

- — — E —X) =
[A (nl +n2>(y X) ay y—-X) =ay

(constant) E~! Y —X) =ay

so that
a, =E'F-% (3.9.9)

is an eigenvector associated with Aj. Because the solution is not unique, an alternative
solution is
a,=S"'F-% (3.9.10)

The elements of the weight vector a are called discriminant weights (coefficients) since
any contrast proportional to the weights provide for maximum separation between the two
centroids of the experimental and control groups. When the observations are transformed
by a; they are called discriminant scores. The linear function used in the transformation
is called the Fisher’s linear discriminant function. If one lets Ly = ay represents the
observations in the experimental group and L¢ = a)x the corresponding observations in
the control group where L;g and L;¢ are the observations in each group, the multivariate
observations are transformed to a univariate problem involving discriminant scores. In this
new, transformed, problem we may evaluate the difference between the two groups by
using a ¢ statistic that is created from the discriminant scores. The square of the t statistic
is exactly Hotelling’s 7' statistic. In addition, the square of Mahalanobis’ distance is equal
to the mean difference in the sample mean discriminant scores, D? = Lg — Lc, when
the weights a; = S-! (Y — X) are used in the linear discriminant function. (Discriminant
analysis is discussed in Chapter 7.)

Returning to our two-group inference problem, we can create the linear combination of
the mean difference that led to the rejection of the null hypothesis. However, because the
linear combination is not unique, it is convenient to scale the vector of coefficients a; or a,,
so that the within-group variance of the discriminant scores are unity, then

Ay = =D (3.9.11)

/ /
Ja,Sa, ,/aSa,
This coefficient vector is called the normalized discriminant coefficient vector. Because it
is an eigenvector, it is only unique up to a change in sign so that one may use a,,; or —ay;.
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Using these coefficients to construct a contrast in the mean difference, the difference in the
mean vectors weighted by a,, yields D, the number of within-group standard deviations
separating the mean discriminant scores for the two groups. That is

Vs =2y, §—X) =D (3.9.12)

To verify this, observe that

a/, Sa,,
__ -DE'GF-x
JE-%EISET 3 —x)
= v,D?/,/v2D?
=D

Alternatively, using the contrast ¥, = a/, (y —X) = D? and ¥/, = n?jrnzz Y. In prac-

tice, these contrasts may be difficult to interpret and thus one may want to locate a weight
vector a that only contains 1s and Os. In this way the parametric function may be more
interpretable. To locate the variables that may contribute most to group separation, one cre-
ates a scale free vector of weights a5, = (diag S)l/ 2 a,, called the vector of standardized
coefficients. The absolute value of the scale-free standardized coefficients may be used to
rank order the variables that contributed most to group separation. The standardized coeffi-
cients represent the influence of each variable to group separation given the inclusion of the
other variables in the study. Because the variables are correlated, the size of the coefficient
may change with the deletion or addition of variables in the study.

An alternative method to locate significant variables and to construct contrasts is to study
the correlation between the discriminant function L = a’y and each variable, p;. The vector
of correlations is

p— (diag£)~1/? Ta

Java (3.9.13)
Replacing ¥ with S, an estimate of p is
diagS)~'/2 8
5= (diagB) 7" 5a (3.9.14)

va'Sa

Letting a = ay

0 = (diagS)™"/% Say,
= (diag S)~128 (diag S)~1/2 (diag )2 a,,
= R, (diag S)l/2 Ays
= R.ayq (3.9.15)
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where a,, is the within standardized adjusted vector of standardized weights. Investigat-
ing p, the variables associated with low correlations contribute least to the separation of
the centroids. Contrasts are constructed by excluding variables with low correlations from
the contrast and setting coefficients to one for high correlations. This process often leads
to a contrast in the means that is significant and meaningful involving several individual
variables; see Bargman (1970). Rencher (1988) shows that this procedure isolates variables
that contribute to group separation, ignoring the other variable in the study. This is not
the case for standardized coefficients. One may use both procedures to help to formulate
meaningful contrasts when a study involves many variables.

Using (3.9.5) to obtain simultaneous confidence intervals for any number of comparisons
involving parametric functions of the mean difference ¥ as defined in (3.9.6), we know the
interval has probability greater than 1 — « of including the true population value. If one
is only interested in a few comparisons, say p, one for each variable, the probability is
considerably larger then 1 — «. Based on studies by Hummel and Sligo (1971), Carmer
and Swanson (1972), and Rencher and Scott (1990), one may also calculate univariate ¢-
tests using the upper (1 — «)/2 critical value for each test to facilitate locating significant
differences in the means for each variable when the overall multivariate test is rejected.
These tests are called protected ¢-tests, a concept originally suggested by R.A. Fisher. While
this procedure will generally control the overall Type I error at the nominal « level for all
comparisons identified as significant at the nominal level «, the univariate critical values
used for each test may not be used to construct simultaneous confidence intervals for the
comparisons The intervals are too narrow to provide an overall confidence level of 100(1 —
a)%. One must adjust the value of alpha for each comparison to maintain a level not less
than 1 — « as in planned comparisons, which we discuss next. When investigating planned
comparisons, one need not perform the overall test.

In our discussion of the hypothesis H : g = p,, we have assumed that the investigator
was interested in all contrasts 1 = a’ (i; — p,). Often this is not the case and one is
only interested in the p planned comparisons ¥; = puy; — o fori = 1,2,..., p. In
these situations, it is not recommended that one perform the overall T2 test, but instead one
should utilize a simultaneous test procedure (STP). The null hypothesis in this case is

P

H=(H:¥;=0 (3.9.16)

i=1
versus the alternative that at least one v; differs from zero. To test this hypothesis, one
needs an estimate of each ¥/; and the joint distribution of the vector' = W1V ¥ p).
Dividing each element vr; by 3@_ , we have a vector of correlated ¢ statistics, or by squaring
. ~2 e . .
each ratio, F-tests, F; = /] /‘7@2' However, the joint distribution of the F; is not multi-
i

variate F since the standard errors &\% do not depend on a common unknown variance. To
construct approximate simultaneous confidence intervals for each of the p contrasts simul-
taneously near the overall level 1 — «, we use Siddk’s inequality and the multivariate ¢
distribution with a correlation matrix of the accompanying MVN distribution, P = 1, also

called the Studentized Maximum Modulus distribution, discussed by Fuchs and Sampson
(1987). The approximate Siddk multivariate ¢, 100 (1 — «) % simultaneous confidence in-
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TABLE 3.9.1. MANOVA Test Criteria for Testing | = .

s=1 M=05 N=22

Statistics Value F NumDF DenDF Pr>F
Wilks’ lambda 0.12733854  105.0806 3 46 0.0001
Pillai’s trace 0.87266146  105.0806 3 46 0.0001
Hotelling-Lawley trace  6.85308175  105.0806 3 46 0.0001
Roy’s greatest root 6.85308175 105.0806 3 46 0.0001

tervals have the simple form

o~

Vi—ca®g, SV < Ui + a0y, (3.9.17)

where
3% = (n1 +ny) s /nina (3.9.18)

and sizi is the i diagonal element of S and ¢, is the upper « critical value of the Studentized
Maximum Modulus distribution with degrees of freedom v, = n; +n, —2 and p = C,
comparisons. The critical values for ¢, for p = 2(16), 18(2)20, and ¢ = 0.05 are
given in the Appendix, Table V. As noted by Fuchs and Sampson (1987), the intervals
obtained using the multivariate ¢ are always shorter that the corresponding Bonferroni-
Dunn or Dunn-Sidak (independent 7) intervals that use the Student 7 distribution to control
the overall Type I error near the nominal level «.

If we can, a priori, place an order of importance on the variables in a study, a stepdown
procedure is recommended. While one may use Roy’s stepdown F statistics, the finite in-
tersection test procedure proposed by Krishnaiah (1979) and reviewed by Timm (1995) is
optimal in the Neyman sense, i.e., yielding the smallest confidence intervals. We discuss
this method in Chapter 4 for the k > 2 groups.

Example 3.9.1 (Testing i, = p,, Given X1 = ¥) We illustrate the test of the hypothe-
sis Hy, : py = |, using the data set A generated in program m3_7_1.sas. There are three
dependent variables and two groups with 25 observations per group. To test that the mean
vectors are equivalent, the SAS program m_3_9a.sas is used using the SAS procedure GLM.
Because this program is using the MR model to test for differences in the means, the ma-
trices H and E are calculated. Hotelling’s (1931) T? statistic is related to an F distribution
using Definition 3.5.3. And, from (3.5.4) T? = Vel when s = 1 where A1 is the largest
root of | H — AE |= 0. A portion of the output is provided in Table 3.9.1.

Thus, we reject the null hypothesis that jL; = . To relate T? to the F distribution, we
have from Definition 3.5.3 and (3.5.4) that

F=®+p+1)T?/pu,
= (ve — D + 1) Ue))tl/pve

=We—p+Dii/p
— (46) (6.85308) /3 = 105.0806
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TABLE 3.9.2. Discriminant Structure Vectors, H : 1 = 5.

Within Structure Standarized Vector Raw Vector
ﬁ a'U)Sd aU)S
0.1441 0.6189 0.219779947
0.2205 —1.1186 —0.422444930
0.7990 3.2494 0.6024449655

as shown in Table 3.9.1. Rejection of the null hypothesis does not tell us which mean dif-
ference led to the significant difference. To isolate where to begin looking, the standardized
discriminant coefficient vector and the correlation structure of the discriminate function
with each variable is studied.

To calculate the coefficient vectors and correlations using SAS, the /CANONICAL option
is used in the MANOVA statement for PROC GLM. SAS labels the vector p in (3.9.15) the
within canonical structure vector. The vector ay, in (3.9.15) is labeled the Standardized
Canonical Coefficients and the discriminant weights a, in (3.9.11) are labeled as Raw
Canonical Coefficients. The results are summarized in Table 3.9.2.

From the entries in Table 3.9.2, we see that we should investigate the significance of the
third variable using (3.9.5) and (3.9.6). For a = 0.05,

c2 = (3) (48) F¥3 (3, 46) /46 = 144 (2.807) /46 = 8.79

so that ¢, = 2.96. The value of 3@ is obtained from the diagonal of S. Since SAS pro-
vides E, we divide the diagonal element by v, = n1 + ny — 2 = 48. The value of?f@ for
the third variable is \/265.222/48 = 2.35.

Thus, for a’ = (0,0, 1), the 95% simultaneous confidence interval for the mean differ-
ence in means  for variable three, l,ﬁ\ =29.76 — 20.13 = 9.63, is estimated as follows.

¥ —cay <y < U+l
9.63 —(2.96) (2.35) <y <  9.63 + (2.96) (2.35)
2.67 <y < 16.59

Since W does not include zero, the difference is significant. One may continue to look
at any other parametric functions ¥ = a' (ju; — |,) for significance by selecting other
variables. While we know that any contrast \ proportional to ,,, = a,. (jt1 — py) will
be significant, the parametric function V, is often difficult to interpret. Hence, one tends
to investigate contrasts that involve a single variable or linear combinations of variables
having integer coefficients. For this example, the contrast with the largest difference is
estimated by @ws =15.13.

Since the overall test was rejected, one may also use the protected univariate t-tests to
locate significant differences in the means for each variable, but not to construct simulta-
neous confidence intervals. If only a few comparisons are of interest, adjusted multivariate
t critical values may be employed to construct simultaneous confidence intervals for a few
comparisons. The critical value for cy in Table V in the Appendix is less than the mul-
tivariate T? simultaneous critical value of 2.96 for C = 10 planned comparisons using
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any of the adjustment methods. As noted previously, the multivariate t (STM) method en-
try in the table has a smaller critical value than either the Bonferroni-Dunn (BON) or the
Dunn-Siddk (SID) methods. If one were only interested in 10 planned comparisons, one
would not use the multivariate test for this problem, but instead construct the planned ad-
Jjusted approximate simultaneous confidence intervals to evaluate significance in the mean
vectors.

b. Two-Sample Case, X1 % %)

Assuming multivariate normality and £; = X,, Hotelling’s T2 statistic is used to test
H : py = p,. When X1 # X, we may still want to test for the equality of the mean vectors.
This problem is called the multivariate Behrens-Fisher problem. Because X # ¥, we no
longer have a pooled estimate for X under H. However, an intuitive test statistic for testing

H:py=pyis ]
T
—§-% (—1 + —2> F—% (3.9.19)
ny  na

where S = E{/(n; — 1) and S = Eo/ (ny — 1). X? A, x2 (p) only if we assume that
the sample covariance matrices are equal to their population values. In general, X does
not converge to either Hotelling’s T2 distribution or to a chi-square distribution. Instead,
one must employ an approximation for the distribution of X2.

James (1954), using an asymptotic expansion for a quadratic form, obtained an approx-
imation to the distribution of X? in (3.9.19) as a sum of chi-square distributions. To test
H : py = p,, the null hypothesis is rejected, using James’ first-order approximation, if

X >, [A+ B, ()]

where

2
W; =Si/njandW = "W,
i=1

_ 2i 3 (trw—lwi)2 /(i — 1)

i=1
2

g e
i=1

and x%fa (p) is the upper 1 — « critical value of a chi-square distribution with p degrees
of freedom.

Yao (1965) and Nel and van der Merwe (1986) estimated the distribution of X2 using
Hotelling’s 7% distribution with degrees of freedom p and an approximate degrees of free-
dom for error. For Yao (1965) the degrees of freedom for error for Hotelling’s T2 statistic is
estimated by U and for Nel and van der Merwe (1986) the degrees of freedom is estimated
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by f Nel and van der Merwe (1986) improved upon Yao’s result. Both approximations
for the error degrees of freedom follow

Loy (- F-OWIWWlg-n]|
1)\ - n; —1 Xz

tr W2 + (tr W)?
iy [tr W2+ (r Wi)?] / (i — 1)

(3.9.20)

where the min (n; — 1,72 — 1) <V < ny + ny — 2. Using the result due to Nel and
van der Merwe, the test of H : p; = 1, is rejected if

X2 > T2 (pv) = _Pf i (p. 7) (3.9.21)
f—p—1

where F!=%(p, f) is the upper 1 — « critical value of an F distribution. For Yao’s test, the
estimate for the error degrees of freedom fis replaced by v given in (3.9.20).

Kim (1992) obtained an approximate test by solving the eigenequation |[W; — AW3| =
0. For Kim, H : u; = p, is rejected if

~ 1 172
F:E_%i;w{@fﬂ+ﬂ)] w>Fl G5 - pt1) (3.9.22)
aoy

where

A; and p; are the roots and eigenvectors of [W; — AW3| = 0, D = diag [A1, A2, ..., 4, ],
P = [pl, P2, ..., pp] , w= P (y—X), and D given in (3.9.20) is identical to the approxi-
mation provided by Yao (1965).

Johansen (1980), using weighted least squares regression, also approximated the dis-
tribution of X2 by relating it to a scaled F distribution. For Johansen’s procedure, H is
rejected if

X% > cF'™ (p, f*) (3.9.23)
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where

c=p+2A—-06A/[p(p—1)+2]

:2 ~welw-1)’ w-lw-! 2] o
A ;[tr(l WoIW; ) +(tr(1 WoIW; )) /2 — 1)

ff=p(p+2)/3A

Yao (1965) showed that James’ procedure led to inflated « levels, her test led to « levels
that were less than or equal to the true value «, and that the results were true for equal
and unequal sample sizes. Algina and Tang (1988) confirmed Yao’s findings and Algina et
al. (1991) found that Johansen’s solution was equivalent to Yao’s test. Kim (1992) showed
that his test had a Type I error rate that was always less than Yao’s. De la Rey and Nel
(1993) showed that Nel and van der Merwe’s solution was better than Yao’s. Christensen
and Rencher (1997) compared the Type I error rates and power for James’, Yao’s, Jo-
hansen’s, Nel and van der Merwe’s, and Kim’s solutions and concluded that Kim’s approx-
imation or Nel and van der Merwe’s approximation had the highest power for the overall
test and always controlled the Type I errors at the level less than or equal to «. While
they found James’ procedure almost always had the highest power, the Type I error for
the tests was almost always slightly larger than the nominal « level. They recommended
using Kim’s (1992) approximation or the one developed by Nel and van der Merwe (1986).
Timm (1999) found James’ second-order approximation—James (1954) Equation 6.7 in
his paper—to control the overall level at the nominal level when testing the significance
of multivariate effect sizes in multiple-endpoint studies. James’ second-order approxima-
tion may improve the approximation for the two-sample location problem. The procedure
should again have higher power and yet also control the overall level of the test nearer to
the nominal « level. This needs further investigation.

Myers and Dunlap (2000) recommend extending the simple procedure developed by
Alexander and Govern (1994) to the multivariate two group location problem when the
covariance matrices are unequal. The method is very simple. To test H : jt; = u,, one
constructs the weighted centroid

2
¢, =[F+% / wil/ [Z(l/w»}
i=1

where the weights w; are defined using the 1/p*" root of the covariance matrix for each

group
wi = [S;|"/7 /n;

Then one calculates Hotelling’s statistics T,.2 for each group as follows
2 — fa—1 (—
TP =ml(y—c¢p) 87" (Y—¢p)
2 — ra—1 (=
Ty =ml(X—¢p)' S, (X—cp)
or converting each statistic to a corresponding F statistic,

Fi = (ni — p)T?/p(ni — 1)
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For each statistic F;, the p-value (p;) for the corresponding F distribution with v, = p
and v, = (n; — p — 1) degrees of freedom is determined. Because distribution of the sum
of two F distributions is unknown, the statistics F; are combined using additive chi-square
statistics. One converts each F; statistic to a chi-square equivalent statistic using the p-
value of the F-statistic. That is, one finds the corresponding chi-square statistic Xl2 on p
degrees of freedom that corresponds to the p-value 1 — p;, the upper tail integral of the
chi-square distribution for each statistic ;. The test statistic A for the two-group location
problem is the sum of the chi-square statistics X 12 across the two groups

2
A=>Y"X}

i=1

The statistic A converts the nonadditive Ti2 statistics to additive chi-square statistics with
p-values p;. The test statistic A is distributed approximately as a chi-square distribution
with v = (g — 1) p degrees of freedom where g = 2 for the two group location problem.
A simulation study performed by Myers and Dunlap (2000) indicates that the procedure
maintains the overall Type I error rate for the test of equal mean vectors at the nominal
level « and the procedure is easily extended for g > 2 groups.

Example 3.9.2 (Testing i, = p,, Given 2| # %) To illustrate testing H : p; = p,
when X1 # Xo, we utilize data set B generated in program m3_7_1.sas. There are p = 3
variables and n1 = ny = 25 observations. Program m3_9a.sas also contains the code for
testing Ly = L, using the SAS procedure GLM which assumes X1 = X,. The F statistic
calculated by SAS assuming equal covariance matrices is 18.4159 which has a p-value of
5.44E-18. Alternatively, using formula (3.9.19), the X? statistic for data set B is X*> =
57.649696. The critical value for X? using formula (3.9.21) is FVAL = 9.8666146 where
f: 33.06309 is the approximate degrees of freedom.

The corresponding p-value for Nel and van der Merwe’s test is P-VALF = 0.000854
which is considerably larger than the p-value for the test generated by SAS assuming
3| = %o, employing the T? statistic. When ¥ # ¥, one should not use the T? statistic.
Approximate 100 (1 — «) % simultaneous confidence intervals may be again constructed
by using (3.9.21) in the formula for ci given in (3.9.6). Or, one may construct approximate
simultaneous confidence intervals by again using the entries in Table V of the Appendix
where the degrees of freedom for error is f: 33.06309.

We conclude this example with a nonparametric procedure for nonnormal data based
upon ranks. A multivariate extension of the univariate Kruskal-Wallis test procedure for
testing the equality of univariate means. While the procedure does not depend on the error
structure or whether the data are multivariate normal, it does require continuous data. In
addition, the conditional distribution should be symmetrical for each variable if one wants
to make inferences regarding the mean vectors instead of the mean rank vectors. Using the
nonnormal data in data set C and the incorrect parametric procedure of analysis yields a
nonsignificant p-value for the test of equal mean vectors, 0.0165. Using ranks, the p-value
for the test for equal mean rank vectors is < 0.0001. To help to locate the variables that led
to the significant difference, one may construct protected t-tests or F-tests for each variable
using the ranks. The construction of simultaneous confidence intervals is not recommended.
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c. Two-Sample Case, Nonnormality

In testing H : p; = p,, we have assumed a MVN distribution with £; = ¥, or ¥ # X,.
When sampling from a nonnormal distribution, Algina et al. (1991) found in comparing
the methods of James et al. that in general James’ first-order test tended to be outper-
formed by the other two procedures. For symmetrical distributions and moderate skewness
(—1 <Bip< 1) all procedures maintained an « level near the nominal level independent
of the ratio of sample sizes and heteroscedasticity. _

Using a vector of coordinatewise Winsorized trimmed means and robust estimates S}
and gg, Mudholkar and Srivastava (1996, 1997) proposed a robust analog of Hotelling’s
T2 statistic using a recursive method to estimate the degrees of freedom 7, similar to Yao’s
procedure. Their statistic maintains a Type I error that is less than or equal to « for a wide
variety of nonnormal distributions. Bilodeau and Brenner (1999, p. 226) develop robust
Hotelling 72 statistics for elliptical distributions. One may also use nonparametric proce-
dures that utilize ranks; however, these require the conditional multivariate distributions to
be symmetrical in order to make valid inferences about means. The procedure is illustrated
in Example 3.9.2. Using PROC RANK, each variable is ranked in ascending order for the
two groups. Then, the ranks are processed by the GLM procedure to create the rank test
statistic. This is a simple extension of the Kruskal-Wallis test used to test the equality of
means in univariate analysis, Neter et al. (1996, p. 777).

d. Profile Analysis, One Group

Instead of comparing an experimental group with a control group on p variables, one often
obtains experimental data for one group and wants to know whether the group mean for
all variables is the same as some standard. In an industrial setting the “standard” is estab-
lished and the process is in-control (out-of-control) if the group mean is equal (unequal)
to the standard. For this situation the variables need not be commensurate. The primary
hypothesis is whether the profile for the process is equal to a standard.

Alternatively, the set of variables may be commensurate. In the industrial setting a pro-
cess may be evaluated over several experimental conditions (treatments). In the social sci-
ences the set of variables may be a test battery that is administered to evaluate psychological
traits or vocational skills. In learning theory research, the response variable may be the time
required to master a learning task giveni = 1,2, ..., p exposures to the learning mech-
anism. When there is no natural order to the p variables these studies are called profile
designs since one wants to investigate the pattern of the means uy, 45, ..., 4, when they
are connected using line segments. This design is similar to repeated measures or growth
curve designs where subjects or processes are measured sequentially over p successive
time points. Designs in which responses are ordered in time are discussed in Chapters 4
and 6.

In a profile analysis, arandom sample of n p-vectors is obtained where Y; ~ IN,, (., %)
forw = [y, ho, .o\ 4 pland & = [a i j]. The observation vectors have the general struc-
ture yg = [yi1, yi2, ..., yipl fori = 1,2, ..., n. The mean of the n observations is y and
% is estimated using S = E/ (n — 1). One may be interested in testing that the population
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mean p is equal to some known standard value p(; the null hypothesis is
Hg : = py (3.9.24)

If the p responses are commensurate, one may be interested in testing whether the profile
over the p responses are equal, i.e., that the profile is level. This hypothesis is written as

He:py=pp=---=u, (3.9.25)
From Example 3.5.1, the test statistic for testing Hg : st = p is Hotelling’s 7' statistic
T*=n(¥—nro) S~ (¥ — no) (3.9.26)
The null hypothesis is rejected if, for a test of size «,
-1
72> T2 (p.n—1) = PO=D ey . (3.9.27)

To test Hc, the null hypothesis is transformed to an equivalent hypothesis. For example,
by subtracting the p" mean from each variable, the equivalent null hypothesis is

153 e ,pr
Mo — :u“p

HCI* . . =0
/J“pfl _/’Lp

This could be accomplished using any variable. Alternatively, we could subtract successive
differences in means. Then, H¢ is equivalent to testing

My — K2
M2 — M3

HC;‘ . . =0
Kp—1— Hp

In the above transformations of the hypothesis Hc to Hc+, the mean vector u is either
postmultiplied by a contrast matrix M of order p x (p — 1) or premultiplied by a matrix
M’ of order (p — 1) x p; the columns of M form contrasts in that the sum of the elements
in any column in M must sum to zero. For C7,

1 0 0 0
0 1 0 0
MEMl = .
-1 -1 -1 -1
and for C7,

_ 0

— 0

— 0

M=M, = 0 0 0
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Testing H¢ is equivalent to testing
Hes : W/’ M =0 (3.9.28)

or
He+ . M/[L =0 (3.9.29)

For a random sample of normally distributed observations, to test (3.9.29) each observa-
tion is transformed by M’ to create X; = M'Y; such that E (X;) = M'u and cov (X;) =
M'EM. By property (2) of Theorem 3.3.2, X; ~ N,—; (M'n, M'EM), X; = M'Y; ~
Np—i (M', M'SM/n) . Since (n — 1)S has an independent Wishart distribution, follow-
ing Example 3.5 we have that

72 = (My) (M'SM/n) " (M) = n (M'y) (M'SM) ™' M’y (3.9.30)

has Hotelling’s 72 distribution with degree of freedom p — 1 and v, = n — 1 under the
null hypothesis (3.9.29). The null hypothesis Hc, of equal means across the p variables, is
rejected if

(p—Dn—-1)

Fl*(p—1,n—p+1 3.9.31
Ty (p P+ (393D

T*>TE,(p—1,v) =
for a test of size «.
When either the test of Hg or Hc is rejected, one may wish to obtain 100 (1 — ) %
simultaneous confidence intervals. For Hg, the intervals have the general form

a'y — cyv/a'Sa/n <a'p < a'y+c,/a'Sa/n (3.9.32)

where cﬁ =pn—1)F'"% (p,n— p)/(n— p) for a test of size « and arbitrary vectors
a. For the test of Hc, the parametric function v = a’M'u = ¢/u for ¢/ = a’M’. To estimate
¥, ¥ = ¢y and the covy/ = ¢/Se/n = a’M’SMa/n. The 100(1 — «)% simultaneous
confidence interval is

U — ca/CSe/n <Y < U + car/¢'Se/n (3.9.33)

where ¢2 = (p—D)(n—1)F'""*(p—1,n—p—1)/(n— p+1) for a test of size «
and arbitrary vectors a. If the overall hypothesis is rejected, we know that there exists at
least one parametric function that is significant but it may not be a meaningful function of
the means. For Hg, it does not include the linear combination a’p of the target mean and
for Hc, it does not include zero. One may alternatively establish approximate simultaneous
confidence sets a-variable-at-a-time using Sidak’s inequality and the multivariate ¢ distri-
bution with a correlation matrix of the accompanying MVN distribution P = I using the
values in the Appendix, Table V.

Example 3.9.3 (Testing Hc: One-Group Profile Analysis) 7o illustrate the analysis of a
one-group profile analysis, group 1 from data set A (program m3_7_1.sas) is utilized. The
data consists of three measures on each of 25 subjects and we want to test Hc : (11 = p =
w3. The observation vectors Y; ~ IN3 (u, X) where p’ = [,ul, o, ,u3]. While we may test
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TABLE 3.9.3. T2 Testof He : iy = jip = ps.

Statistic Value F Num DF  DenDF Pr> F
Wilks’ lambda 0.01240738  915.37 2 23 0.0001
Pillai’s trace 0.98759262  915.37 2 23 0.0001
Hotelling-Lawley trace  79.59717527  915.37 2 23 0.0001
Roy’s greatest root 79.59717527 915.37 2 23 0.0001

Hc using the T? statistic given in (3.9.30), the SAS procedure GLM employs the matrix
m = M’ fo test Hc using the MANOVA model program m3_9d.sas illustrates how to test
Hc¢ using a model with an intercept, a model with no intercept and contrasts, and the use
of the REPEATED statement using PROC GLM. The results are provided in Table 3.9.3.

Because SAS uses the MR model to test Hc, Hotelling’s T? statistic is not reported.
However; relating T? to the F distribution and T? to T? we have that

F=mn—-p+1)T*/(p—1D@n-1)
=(n—-p+Dr/(p—1)
= (23) (79.5972) /2 = 915.37

as shown in Table 3.9.3 and Hc is rejected. By using the REPEATED statement, we find that
Mauchly’s test of circularity is rejected, the chi-square p-value for the test is p = 0.0007.
Thus, one must use the exact T? test and not the mixed model F tests for testing hypotheses.
The p-values for the adjusted Geisser-Greenhouse (GG) and Huynh-Feldt (HF) tests are
also reported in SAS.

Having rejected Hc, we may use (3.9.32) to investigate contrasts in the transformed
variables defined by M. By using the /CANONICAL option on the MODEL statement, we
see by using the Standardized and Raw Canonical Coefficient vectors that our investigation
should begin with ¥ = u, — w3, the second row of M. Using the error matrix

154.3152

! —
M EM —[ 32.6635  104.8781 }

in the SAS output, the sample variance of ¥ = iy — i3 is Gy = /104.8381/24 = 2.09.
Fora = 0.05,
G=p-Da-DF'"*(p-lLn-—p-1/a—-p+1)
= (2) (24) (3.42) / (23)
=17.14

so that cq = 2.67. Since @' = [6.1931, 11.4914, 29.7618] ,the contrast @ =y — 3 =
—18.2704. A confidence interval for \ is

—18.2704 — (2.67) (2.09) <y < —18.2704 + (2.67) (2.09)

—2385 <y < -—-12.69
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Since ¥ does not include zero, the comparison is significant. The same conclusion is ob-
tained from the one degree of freedom F tests obtained using SAS with the CONTRAST
statement as illustrated in the program. When using contrasts in SAS, one may compare the
reported p-values to the nominal level of the overall test, only if the overall test is rejected.
The F statistic for the comparison ¥ = [, — 3 calculated by SAS is F = 1909.693 with
p-value < 0.0001. The F tests for the comparisons | = i1 — Wy and Yy = | — U3 are
also significant. Again for problems involving several repeated measures, one may use the
discriminant coefficients to locate significant contrasts in the means for a single variable
or linear combination of variables.

For our example using the simulated data, we rejected the circularity test so that the most
appropriate analysis for the data analysis is to use the exact multivariate 7> test. When the
circularity test is not rejected, the most powerful approach is to employ the univariate mixed
model. Code for the mixed univariate model using PROC GLM is included in program
m3_9d.sas. Discussion of the SAS code using PROC GLM and PROC MIXED and the
associated output is postponed until Section 3.10 where program m3_10a.sas is used for
the univariate mixed model analysis. We next review the univariate mixed model for a one-
group profile model.

To test Hc we have assumed an arbitrary structure for £. When analyzing profiles using
univariate ANOVA methods, one formulates the linear model for the elements of Y; as

Yij=u+si+B;+ei
i=L2,....,m;5j=12,...,p
€ij ~IN (0,0‘?)

si~ 1N (0,02)

where e;; and s; are jointly independent, commonly known as an unconstrained (unre-
stricted), randomized block mixed ANOVA model. The subjects form blocks and the within
subject treatment conditions are the effects 8 ;. Assuming the variances of the observations
Y;; over the p treatment/condition levels are homogeneous, the covariance structure for the
observations is

var (Yij) = 03 + ag = 0?,
cov (Yij, Yij/) = o?
p = cov (Y,-j, Y,-j/) /o% = af/ (og +o?)
so that the covariance structure for X, , is represented as
= U?J + U?I
=0l =p) T+ p]]

has compound symmetry structure where J is a matrix of 1s and p is the intraclass correla-
tion coefficient. The compound symmetry structure for X is a sufficient condition for an ex-
act univariate F test for evaluating the equality of the treatment effects (H rallg; = 0)
in the mixed ANOVA model; however, it is not a necessary condition.
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Huynh and Feldt (1970) showed that only the variances of the differences of all pairs
of observations, var (Yij — Y,-j/) = a? —+ 03/ — 20 jj» must remain constant for all j #
jandi = 1,2,...,n for exact univariate tests. They termed these covariance matrices
“Type H” matrices. Using matrix notation, the necessary and sufficient condition for an
exact univariate F test for testing the equality of p correlated treatment differences is that
C'SC = oI where C'(p — 1) x (p — 1) is an orthogonal matrix calculated from M’
so that C'C = I,—1); see Rouanet and Lépine (1970). This is the sphericity (circularity)
condition given in (3.8.21). When using PROC GLM to analyze a one-group design, the
test is obtained by using the REPEATED statement. The test is labeled Mauchly’s Criterion
Applied to Orthogonal Components.

When the circularity condition is not satisfied, Geisser and Greenhouse (1958) (GG)
and Huynh and Feldt (1976) (HF) suggested adjusted conservative univariate F tests for
treatment differences. Hotelling’s (1931) exact T2 test of Hc does not impose the restricted
structure on X; however, since ¥ must be positive definite the sample size n must be greater
than or equal to p; when this is not the case, one must use the adjusted F tests. Muller et
al. (1992) show that the GG test is more powerful than the T2 test under near circularity;
however, the size of the test may be less than «. While the HF adjustment maintains o
more near the nominal level it generally has lower power. Based upon simulation results
obtained by Boik (1991), we continue to recommend the exact T2 test when the circularity
condition is not met.

e. Profile Analysis, Two Groups

One of the more popular designs encountered in the behavioral sciences and other fields is
the two independent group profile design. The design is similar to the two-group location
design used to compare an experimental and control group except that in a profile analysis
p responses are now observed rather than p different variables. For these designs we are not
only interested in testing that the means p; and g, are equal, but whether or not the group
profiles for the two groups are parallel. To evaluate parallelism of profiles, group means for
each variable are plotted to view the mean profiles. Profile analysis is similar to the two-
group repeated measures designs where observations are obtained over time; however, in
repeated measures designs one is more interested in the growth rate of the profiles. Analysis
of repeated measures designs is discussed in Chapters 4 and 6.

For a profile analysis, we let y; ;= [yij1, yij2s - -+, Yijp] represent the observation vec-

tor for the i = 1,2, groups and the j = 1,2, ..., n; observations within the jth group
as shown in Table 3.9.4. The random observations y;; ~ IN, (;, ¥) where and p; =
[ii1, 12 -+ ip] and £ = Eo = %, a common covariance matrix with an undefined,
arbitrary structure.

While one may use Hotelling’s 72 statistic to perform tests, we use this simple design to
introduce the multivariate regression (MR) model which is more convenient for extending
the analysis to the more general multiple group situation. Using (3.6.17), the MR model for



166 3. Multivariate Distributions and the Linear Model

TABLE 3.9.4. Two-Group Profile Analysis.

Group Conditions
1 2 p
y/” = Y111 yilz o oo Yilp
Y’lz e V121 Y12 - Vi2p
1 : : : :
Yio, = Yiml Y2 0 Yimp
Mean V1.1 Y12 e yl.p
Y/zl = Y211 Y212 - Y2lp
y/zz cee y221 Y222 y22p
2 : : : :
y/an = yzl’lzl y2n22 M y2n2p
Mean V2.1 22 o Yap
the design is
Y = X B + E
nxp nx2 2xp nxp
[ Y] 107 [T
Yio 1 0 €,
Yin, 10 [ Hits 125 -5 1 } €\,
! /
Y21 = 1 Kats M2y s Kop + €
Y2 0 1 e,
/ /
L y2n2 . L 0 0 . L e2n2 .

The primary hypotheses of interest in a profile analysis, where the “repeated,” commensu-
rate measures have no natural order, are

1. Hp : Are the profiles for the two groups parallel?
2. Hc : Are there differences among conditions?
3. Hg : Are there differences between groups?

The first hypothesis tested in this design is that of parallelism of profiles or the group-by-
condition (G x C) interaction hypothesis, Hp. The acceptance or rejection of this hypoth-
esis will effect how H¢ and Hg are tested. To aid in determining whether the parallelism
hypothesis is satisfied, plots of the sample mean vector profiles for each group should be
constructed. Parallelism exists for the two profiles if the slopes of each line segment formed
from the p — 1 slopes are the same for each group. That is, the test of parallelism of profiles
in terms of the model parameters is
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H11 — K12 H21 — K22
M21 — K413 22 — K23
Hp = Hg «c : . = . (3.9.34)
Kip—1) — H1p Ha(p—1) — M2p

Using the general linear model form of the hypothesis, CBM = 0, the hypothesis becomes

C B M =0
1x2 2xp px(p—1)
_ . 0 0
-1 0 o
-1 ... 0O 0
(1. —1] [Mn Mz - Ml[’] C S = [0]
Mar M2 0 M2p : : ‘ :
o 0 --..
0 0 - —1
o 0 .- 0 -1
- T (3.9.35)

Observe that the post matrix M is a contrast matrix having the same form as the test for
differences in conditions for the one-sample profile analysis. Thus, the test of no interaction
or parallelism has the equivalent form

Hp = Hg xc : $)M = p)M (3.9.36)

or
M () — ) =0

The test of parallelism is identical to testing that the transformed means are equal or that
their transformed difference is zero. The matrix C in (3.9.35) is used to obtain the difference
while the matrix M is used to obtain the transformed scores, operating on the “within”
conditions dimension.

To test (3.9.36) using 72, let Yi = (i1, Yi2, ..., yip) fori = 1,2. We then have
M’ (r; — ) ~ Np—i [0, M'EM/ (1/n1 + 1/n3)] so that under the null hypothesis,

11 -
T = MYy, — M’yz,)’ [(E + E) M’SM] My, —My,)
nin _ _ — - _
— () 1w MMM (5, <)
~TX (p—1, ve=n1+ny—2) (3.9.37)

where S = [(n; — 1) E; 4+ (n2 — 1) E2] / (n] + ny — 2); the estimate of X obtained for the
two-group location problem. S may be computed as

S=Y [I X (XX) X’] Y/ (1 +n2—2)
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The hypothesis of parallelism or no interaction is rejected at the level « if

T*>T,(p—1, ni+ny—2)

ny+ny—2 —1 _ (3.9.38)
= I DP D pice 1y 4 - p)
ny+ny—p
using Definition 3.5.3 withn = v, = (n; +n, —2)and p=p — 1.
Returning to the MR model representation for profile analysis, we have that
=/
Y21 Y22 t Y2p Yo.
(CBM) =M (¥, — ¥,
which is identical to (3.9.36). Furthermore,
E=MY (In ~X(Xx)" X/) ™ (3.9.39)
forn =n;+nyand g =r (X) =2, v, =n1 +ny — 2. Also
P _ -1
H = (CBM) [C (X'x)”" C’] (CBM) (3.9.40)
niny ; _ _ N
= M — - M
(m n n2> (1. = ¥2) (1. - ¥2)
Using Wilk’s A criterion,
= IE| ~U((p—1,vp=1,v, =n1 +ny—2) (3.9.41)
|E + H|
The test of parallelism is rejected at the significance level « if
A<U"%(p=1,1,n+n—2) (3.9.42)

or
(nmi+ny—p)1—A

(p—1 A
Solving the equation H—AE| =0, A = (1 + A1)~ ! since v, = 1 and T2 = v,A; so that

T2 = v, (A—1 — 1)

F'™(p—1,n1 + ny — p)

E+H
:(n1+n2—2){| E| |—1}
ninz — -\ , A onay _
= (22 ) 51— 2) M SN M (5 - 72)

or
A= 1/(1 +T2/ve>
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Because, 81 = A1/ (1 4+ A1) one could also use Roy’s criterion for tabled values of 6. Or,
using Theorem 3.5.1
F — w Al
p
has a central F distribution under the null hypothesis with vi = p and v = v, — p +
1 degrees of freedom since v, = 1. Forv, = ni +ny, —2and p = p—1, F =

m+n—-—prx/(p—-1)~F(p—1, ni+ny—p). If v, > 2 Roy’s statistic is ap-
proximated using an upper bound on the F statistic which provides a lower bound on the
p-value.

With the rejection of parallelism hypothesis, one usually investigates tetrads in the means
that have the general structure

Y=y — Moy — Myt Moy
=¢ (i — pp)m (3.9.43)
for ¢ = [1, —1] and m is any column vector of the matrix M. More generally, letting

¢ = a’M' for arbitrary vectors a, then ¥ = ¢/ (¥1. — ¥».)and 100(1 — )% simultaneous
confidence intervals for the parametric functions ¥ have the general form

U —caly <V <V +caly (3.9.44)
where
R +n2c’Sc
Voo o
2 _ 2
co=T{_,(p—1,n+ny—-2)

for a test of size «. Or, ci may be calculated using the F distribution following (3.9.38).

When the test of parallelism is not significant, one averages over the two independent
groups to obtain a test for differences in conditions. The tests for no difference in condi-
tions, given parallelism, are

HC:M11+M21:M12+M22:_._:“1p+“2p

2 2 2
wo i tnapy  mpy tnapy o Mk p ol
C7 m+m T m+nm ny +na

for an unweighted or weighted test of differences in conditions, respectively. The weighted
test is only appropriate if the unequal sample sizes result from a loss of subjects that is
due to treatment and one would expect a similar loss of subjects upon replication of the
study. To formulate the hypothesis using the MR model, the matrix M is the same as M in
(3.9.35); however, the matrix C becomes

C=1[1/2, 1/2]  for He
C=[n1/(n +n2), ny/ (n1 +ny)j for HY
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Using T2 to test for no difference in conditions given parallel profiles, under Hc

T2 = 4 ninz yl. - yZA /M (M/SM)_1 M/ y]. B y2.
niy+ny 2 2

ninj / / 1 nq/
=4 — M (M'SM M
<n1+n2)y‘. (M'SM) ™ M'y_

~TE,(p—1, ny+ny—2) (3.9.45)

where y_ is a simple average. Defining the weighed average as y = (nlyl_ + nzyz.)
/ (n1 + ny), the statistic for testing H is

T2 = (n +n2) Y M(M'SM)™' My
~TE (p—1ni+np—2) (3.9.46)

Simultaneous 100(1 — )% confidence intervals depend on the null hypothesis tested. For
H¢ and ¢/ = a’M, the confidence sets have the general form

Y. —ca/eSc/ (n) +n2) <cp <y +co/Se/ (n) + ny) (3.9.47)

where 2 = T2, (p— 1, ni +ny —2).
To test for differences in groups, given parallelism, one averages over conditions to test
for group differences. The test in terms of the model parameters is

) Zleﬂlj _ Z;}:] Haj
p p
Vp/p="1py/p

Hg (3.9.48)

which is no more than a test of equal population means, a simple t test.

While the tests of Hg and H¢ are independent, they both require that the test of the
parallelism (interaction) hypothesis be nonsignificant. When this is not the case, the tests
for group differences is

HE iy = 1y
which is identical to the test for differences in location. The test for differences in conditions
when we do not have parallelism is

Hé:[ﬂu}:[ﬂlz}:...:[ml’} (3.9.49)
M21 H22 Hap

To test H: using the MR model, the matrices for the hypothesis in the form CBM = 0 are
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so that v, = r (C) = 2. For this test we cannot use 72 since vp # 1; instead, we may use
the Bartlett-Lawley-Hotelling trace criterion which from (3.5.4) is

T2 = v, tr (HE*‘)

0
for
H = (CBM) [c (X'X)"" c’]_1 (CBM)
=M'B’' (X'’X) BM (3.9.50)
E=MY(, - X (XX) ' X)YM
We can approximate the distribution of T02 using Theorem 3.5.1 with s = min (vp,, p —
l=min2,p—1),M =|p—3|—1,and N = (n; + np — p — 2) /2 and relate the statis-

tic to an F' distribution with degrees of freedom v; = 2 (2M + 3) and v, = 2 (2N + 3).
Alternatively, we may use Wilks’ A criterion with

__IE]
|E + H]

~U(p—12,n+ny-2) (3.9.51)

or Roy’s test criterion. However, these tests are no longer equivalent. More will be said
about these tests in Chapter 4.

Example 3.9.4 (Two-Group Profile Analysis) 7o illustrate the multivariate tests of group
difference (Hé), the test of equal vector profiles across the p conditions (Hg) and the test
of parallelism of profiles (Hp), we again use data set A generated in program m3_7_1.sas.
We may also test Hc and Hg given parallelism, which assumes that the test of parallelism
(Hp) is nonsignificant. Again we use data set A and PROC GLM. The code is provided in
program m3_9e.sas.

To interpret how the SAS procedure GLM is used to analyze the profile data, we express
the hypotheses using the general matrix product CBM = 0. For our example,

“1r M2 M3
B =

Ha1  H22  H23

To test HY, : py = py, we set C = [1, —1] to obtain the difference in group vectors and
M = I3. The within-matrix M is equal to the identity matrix since we are evaluating the
equivalence of the means for each group and p-variables, simultaneously. In PROC GLM,
this test is performed with the statement

manova h = group / printe printh;

where the options PRINTE and PRINTH are used to print H and E for hypothesis testing.
To test H}, differences among the p conditions (or treatments), the matrices

1 0
C=I, and M= -1 O
0 -1
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are used. The matrix M is used to form differences among conditions (variables/treatments),
the within-subject dimension, and the matrix C is set to the identity matrix since we are
evaluating p vectors across the two groups, simultaneously. To test this hypothesis using
PROC GLM, one uses the CONTRAST statement, the full rank model (NOINT option in the
MODEL statement) and the MANOVA statement as follows

contrast ‘Mult Cond’ group 1 0

group 0 1;
a -1 0 o 0,
manova m = 0 bl 0 0,
0O 0 0 -1 0,
0 0 0 1 —1) prefix = diff / printe printh;

where m = M’ and the group matrix is the identity matrix 1. To test for parallelism of
profiles, the matrices

1
C=[1 —1] ad M=| -1 1

are used. The matrix M again forms differences across variables (repeated measurements)
while C creates the group difference contrast. The matrices C and M are not unique
since other differences could be specified; for example, C = [1/2,—1/2] and M’ =

|: (1) (1) :i i| The rank of the matrix is unique. The expression _all_ for h in the SAS

. 1 1 . , . . .
code generates the matrix |: 1 1 ] the testing for differences in conditions given par-

allelism; it is included only to obtain the matrix H. To test these hypotheses using PROC
GLM, the following statements are used.

a -1 0

manova h = -all-m = 0 1 —1) prefix=diff/ printe printh;

To test for differences in groups (Hg) in (3.9.48), given parallelism, we set

1/3
C=[1 —1] and M= 1/3
1/3

To test this hypothesis using PROC GLM, the following statements are used.

contrast ‘Univ Gr’ group 1 —1;
manova m = (0.33333 0.33333 0.33333) prefix = GR/printe printh;

To test for conditions given parallelism (Hc) and parallelism [(G x C), the interac-
tion between groups and conditions], the REPEATED statement is used with the MANOVA
statement in SAS.

As in our discussion of the one group profile example, one may alternatively test Hp,
Hc, and Hg using an unconstrained univariate mixed ANOVA model. One formulates the
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model as

Yiig =p+o; + B+ (af)i +si)j +eijk
i=1,2j=12,...,nk=1,2,...,p

si@yj ~ 1IN (0, p0‘2>
eiji ~ IN (0.1 = p)o?)

where e;ji and sgy; are jointly independent, commonly called the unconstrained, split-
plot mixed ANOVA design. For each group, ¥; has compound symmetry structure and
Y=Y =%,

Ti=S=S=02[1-p)I+pJ]l =02+

where po? = p (O’% + og) .

Thus, we have homogeneity of the compound symmetry structures across groups. Again,
the compound symmetry assumption is a sufficient condition for split-plot univariate exact
univariate F tests of B, and (af);r. The necessary condition for exact F tests is that ¥
and ¥ have homogeneous, “Type H” structure; Huynh and Feldt (1970). Thus, we require
that

A'TIA =A'SHA
=A'TA
= Al

where A’ is an orthogonalized (p — 1) x (p — 1) matrix of M’ used to test Hp and Hc.
The whole plot test for the significance of o; does not depend on the assumption and is
always valid.

By using the REPEATED statement in PROC GLM, SAS generates exact univariate F
tests for within condition differences (across p variables/treatments) and the group by con-
dition interaction test (G x C = P) given circularity. As shown by Timm (1980), the tests
are recovered from the normalized multivariate tests given parallelism. For the one-group
example, the SAS procedure performed the test of “orthogonal” sphericity (circularity).
For more than one group, the test is not performed. This is because we must test for equality
and sphericity. This test was illustrated in Example 3.8.5 using Rao’s score test developed
by Harris (1984). Finally, PROC GLM calculates the GG and HH adjustments. While these
tests may have some power advantage over the multivariate tests under near sphericity, we
continue to recommend that one use the exact multivariate test when the circularity con-
dition is not satisfied. In Example 3.8.5 we showed that the tests of circularity is rejected;
hence, we must use the multivariate tests for this example. The results are displayed in Ta-
ble 3.9.5 using Wilk’s A criterion. The mixed model approach is discussed in Wilks Section
3.10 and in more detail in Chapter 6.

Because the test of parallelism (Hp) is significant for our example, the only valid tests
for these data are the test of H}, and H., the multivariate tests for group and condition
differences. Observe that the test of H, is no more than the test of location reviewed in
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TABLE 3.9.5. MANOVA Table: Two-Group Profile Analysis.

Multivariate Tests

Test H Matrix A F p-value
48.422
HE 64.469  85.834 0.127 105.08 < 0.0001
| 237.035 315586 1160.319
[ 1241.4135
*
HE | 37274639 11512792 ] 0.0141 174.00 < 0.0001
5.3178
Hp | 57.1867  614.981 ] 0.228 79.28 < 0.0001

Multivariate Tests Given Parallelism
Test H Matrix A F p-value

Hg 280.967 0.3731 80.68 < 0.0001

He [ 1236.11

367027 10897.81i| 0.01666 | 1387.08 | < 0.0001

5.3178
Hp [ 571867 614.981 ] 0.2286 | 79.28 < 0.0001
Univariate F Tests Given Sphericity (Circularity)
Test F -ratios p-values
Hg 80.68 < 0.0001
Hc 1398.37 < 0.0001
Hgxc 59.94 < 0.0001

Example 3.9.1. We will discuss H}. in more detail when we consider a multiple-group ex-
ample in Chapter 4. The tests of Hg and Hc should not be performed since Hp is rejected.
We would consider tests of Hg and Hc only under nonsignificance of Hp since the tests
sum over the “between” group and “within” conditions dimensions. Finally, the univariate
tests are only exact given homogeneity and circularity across groups.

Having rejected the test Hp of parallelism one may find simultaneous confidence inter-
vals for the tetrads in (3.9.43) by using the S matrix, obtained from E in SAS. T? crit-
ical values are related to the F distribution in (3.9.38) and 3@ = (n| + ny) ¢'Se/nyny.
Alternatively, one may construct contrasts in SAS by performing single degree of free-
dom protected F-tests to isolate significance. For ¢y = [1, —1] and m1 = [1, —1, 0] we
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have Y| = py1 — Moy — M1z + oo and for o = [1, =1l and my = [0, 1, —1], ¥, =
12— Moo — 13+ o3. From the SAS output, v, is clearly significant (p —value < 0.0001)
while rq is nonsignificant with (p — value = 0.3683). To find exact confidence bounds,
one must evaluate (3.9.44).

f. Profile Analysis, X1 # %,

In our discussion, we have assumed that samples are from a MVN distribution with ho-
mogeneous covariances matrices, X| = %, = X. In addition, we have not restricted the
structure of X. All elements in X have been free to vary. Restrictions on the structure of X
will be discussed when we analyze repeated measures designs in Chapter 6.

If 1 # 3¥,, we may adjust the degrees of freedom for T2 when testing Hp, Hc, HCW, or

Hg. Howeyver, since the test of Hg is not related to T2, we need a more general procedure.
This problem was considered by Nel (1997) who developed an approximate degrees of
freedom test for hypotheses of the general form

H:C B M=C B, M (3.9.52)
§Xq qXp pxv  gXq gxXp pxv
for two independent MR models

Y, = X; B + E (3.9.53)
nixp nixq  gxp ni Xp

under multivariate normality and ¥ # X,.

To test (3.9.52), we first assume X; = 3X,. Letting B, = (X;X,-)_lngi, B, ~
Ny p[Bi. Qi =% ® (X;Xl»)_l] by Exercise 3.3, Problem 6. Unbiased estimates of X; are
obtained using S; = E;/ (n; — g) where ¢ = r (X;) and E; = Y (I;, — X; (X;X,-)le;)Y,-.
Finally, we let v; = n; — ¢q, vo = v; 4+ v2 so that v,S = v1S; + 1287 and W; =

C (X; Xi) ! C’. Then, the Bartlett-Lawley-Hotelling (BLH) test statistic for testing (3.9.52)
with X = X5 is

T2 = v tr (HE—l)
U I o (3.9.54)
=tr[M B — B,)'C' (W, + W)~ C(B, — By)M (M'SM) ]

Now assume X 7# Xj; under H, C(ﬁl — ﬁz)M ~Ng v [0, MI MW +MI:M®
W>]. The unbiased estimate of the covariance matrix is
U=MSM®W; +MSM W, (3.9.55)

which is distributed independent of C (B; — B2) M. When X # ¥, the BLH trace statis-
tic can no longer be written as a trace since U is a sum of Kronecker products. However,
using the vec operator it can be written as

T% = [vec CB1 — By)M] U~ ! vec [C(B| — B)M] (3.9.56)
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Defining
Se = [S1tr (Wi (W1 + W) 1) + 500 (Wo (Wi + W) 1) /¢
72 = [vec(C(B; — By)M)] [M'S,M® (W; + W2)] ' vec(C(B| — By)M)

Nel (1997), following Nel and van der Merwe (1986), found that 7‘\1% can be approximated
with an F statistic. The hypothesis H in (3.9.52) is rejected for a test of size « if

F—v+1 T ~
Fo f++ B>l (v, Fovtl) (3.9.57)
f

where fis estimated from the data as

f = (D} ® vech (W; + W»)] (M'S.M ® M'S;M) (Dy ® [vech (W} + W2)]')}
Y7 L {(DY ® vech W;) (M'S;M ® M'S;M) (D, ® [vech (W)])}

i=1 vy

(3.9.58)
where Dy is the unique duplication matrix of order vZx v(v+1) /2 defined in Theo-
rem 2.4.8 of the symmetric matrix A = M'SM where S is a covariance matrix. That is
for a symmetric matrix Ay xy, vec A = Dy vech A and the elimination matrix is Dj‘ = (D,
DV)’ID’V, such that DY vec A = vech A. When the r(C) = 1, the approximation in (3.9.57)
reduces to Nel and van der Merwe’s test for evaluating the equality of mean vectors. For
g = v = 1, it reduces to the Welch-Aspin F statistic and if the » (M) = 1 so that M = m
the statistic simplifies to

T2 =m'(B) — B,)'C' (1BG| + 1G,) ' CB; —By)m (3.9.59)

where R
G; = m'S;m)W, /v,

Then, H : CBjm = CB;m is rejected if

F=T3/g=F'"(g f) (3.9.60)

where — - ~ —~
[vech(v1G1 + v2G2)] vech(vi G + 12G>?)

v (vech Gl )’ vech (El + vy (vech @2)/ vech 62

Example 3.9.5 (Two-Group Profile Analysis ¥| # X,) Expression (3.9.52) may be used
to test the multivariate hypotheses of no group difference (H(,), equal vector profiles across
the p conditions (H.), and the parallelism of profiles (Hp) when the covariance matrices
for the two groups are not equal in the population. And, given parallelism, it may be used
to test for differences in groups (Hg) or differences in the p conditions (Hc). For the test
of conditions given parallelism, we do not have to assume that the covariance matrices
have any special structure and for the test for differences in group means we do not require
that the population variances be equal. Because the test of parallelism determines how we

f/‘\:

(3.9.61)
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usually proceed with our analysis of profile data, we illustrate how to calculate (3.9.57) to
test for parallelism (Hp) when the population covariances are unequal. For this example,
the problem solving ability data provided in Table 3.9.9 are used. The data represent the
time required to solve four mathematics problems for a new experimental treatment pro-
cedure and a control method. The code for the analysis is provided in program m3_9f.sas.
Using formula (3.9.57) with Hotelling’s approximate T? statistic, fg = 1.2456693, the
F-statistic is F = 0.3589843. The degrees of freedom for the F-statistic for the hypothesis
of parallelism are 3 and 12.766423. The degrees of freedom for error is calculated using
(3.9.57) and (3.9.58). The p-value for the test of parallelism is 0.7836242. Thus, we do not
reject the hypothesis of parallel profiles.

For this example, the covariance matrices appear to be equal in the population so that
we may compare the p-value for the approximate test of parallelism with the p-value for
the exact likelihood ratio test. As illustrated in Example 3.9.4, we use PROC GLM to test
for parallelism given that the covariance matrices are equal in the population. The exact
F-statistic for the test of parallelism is F = 0.35 has an associated p-value of 0.7903.
Because the Type I error rates for the two procedures are approximately equal, the relative
efficiency of the two methods appear to be nearly identical when the covariance matrices
are equal. Thus, one would expect to lose little power by using the approximate test pro-
cedure when the covariance matrices are equal. Of course, if the covariance matrices are
not equal we may not use the exact test. One may modify program m3_9f.sas to test other
hypotheses when the covariances are unequal.

Exercises 3.9

1. Inapilot study designed to compare a new training program with the current standard
in grammar usage (G), reading skills (R), and spelling (S) to independent groups of
students finished the end of the first week of instruction were compared on the three
variables. The data are provided in Table 3.9.6

TABLE 3.9.6. Two-Group Instructional Data.

Experimental Control
Subject G R S Subject G R S
1 31 12 24 1 31 50 20
2 52 64 32 2 60 40 15
3 57 42 21 3 65 36 12
4 63 19 54 4 70 29 18
5 42 12 41 5 78 48 24
6 71 79 o4 6 90 47 26
7 65 38 52 7 98 18 40
8 60 14 57 8 95 10 10
9 54 75 58
10 67 22 69
11 70 34 24
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(a) Test the hypotheses that £1 = X.

(b) For @« = 0.05, test the hypothesis than the mean performance on the three
dependent variables is the same for both groups; H, : g = p,. Perform the
test assuming X1 = ¥ and X # X».

(c) Given that ¥ = X, use the discriminant coefficients to help isolate variables
that led to the rejection of Hc.

(d) Find 95% simultaneous confidences for parametric functions that evaluate the
mean difference between groups for each variable using (3.9.5). Compare these
intervals using the Studentized Maximum Modulus Distribution. The critical
values are provided in the Appendix, Table V.

(e) Using all three variables, what is the contrast that led to the rejection of H,.
Can you interpret your finding?

2. Dr. Paul Ammon had subjects listen to tape-recorded sentences. Each sentence was

followed by a “probe” taken from one of five positions in the sentence. The subject
was to respond with the word that came immediately after the probe word in the
sentence and the speed of the reaction time was recorded. The data are given in
Table 3.9.7.

Example Statement: ~ The tall man met the young girl who got

the new hat.
1 2 3 4 5
Dependent Variable:  Speed of response (transformed reaction
time).

(a) Does the covariance matrix for this data have Type H structure?

(b) Test the hypothesis that the mean reaction time is the same for the five probe
positions.

(c) Construct confidence intervals and summarize your findings.

Using that data in Table 3.7.3. Test the hypothesis that the mean length of the ramus
bone measurements for the boys in the study are equal. Does this hypothesis make
sense? Why or why not? Please discuss your observations.

The data in Table 3.9.8 were provided by Dr. Paul Ammon. They were collected as
in the one-sample profile analysis example, except that group I data were obtained
from subjects with low short-term memory capacity and group II data were obtained
from subjects with high short-term memory capacity.

(a) Plot the data.
(b) Are the profiles parallel?

(c) Based on your decision in (b), test for differences among probe positions and
differences between groups.

(d) Discuss and summarize your findings.
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TABLE 3.9.7. Sample Data: One-Sample Profile Analysis.

Probe-Word Positions
Subject 1 2 3 4 5

51 36 50 35 42
27 20 26 17 27
37 22 41 37 30
42 36 32 34 27
27 18 33 14 29
43 32 43 35 40
41 22 36 25 38
38 21 31 20 16
36 23 27 25 28
26 31 31 32 36
29 20 25 26 25

— = 000NNk~ W~

—_ o

TABLE 3.9.8. Sample Data: Two-Sample Profile Analysis.

Probe-Word Positions

1 2 3 4 5

N 20 21 42 32 32
S 67 29 56 39 41
S3 37 25 28 31 34
Sy 42 38 36 19 35
Group I Ss 57 32 21 30 29
Se 39 38 54 31 28
S7 43 20 46 42 31
Sg 35 34 43 35 42
So 41 23 51 27 30
S10 39 24 35 26 32
Mean 420 284 412 312 334
N 47 25 36 21 27
S 53 32 48 46 54
S3 38 33 42 48 49
Sy 60 41 67 53 50
Group II Ss 37 35 45 34 46
Se 59 37 52 36 52
S7 67 33 61 31 50
Sg 43 27 36 33 32
So 64 53 62 40 43
S10 41 34 47 37 46
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TABLE 3.9.9. Problem Solving Ability Data.

Problems
Subject 1 2 3 4

1 43 90 51 67
2 87 36 12 14
3 18 56 22 68
4 34 73 34 87
C 5 81 55 29 54
6 45 58 62 44
7 16 35 71 37
8 43 47 87 27
9 22 91 37 78
1 10 81 43 33
2 58 84 35 43
3 26 49 55 84
4 18 30 49 44
E 5 13 14 25 45
6
7
8

(e) Do these data satisfy the model assumptions of homogeneity and circularity so
that one may construct exact univariate F tests?

5. In an experiment designed to investigate problem-solving ability for two groups of
subjects, experimental (E) and control (C) subjects were required to solve four dif-
ferent mathematics problems presented in a random order for each subject. The time
required to solve each problem was recorded. All problems were thought to be of the
same level of difficulty. The data for the experiment are summarized in Table 3.9.9.

(a) Test that X = X, for these data.

(b) Can you conclude that the profiles for the two groups are equal? Analyze this
question given X1 = ¥, and X1 # X».

(c) In Example 3.9.5, we showed that there is no interaction between groups and
conditions. Are there any differences among the four conditions? Test this hy-
pothesis assuming equal and unequal covariance matrices.

(d) Using simultaneous inference procedures, where are the differences in condi-

tions in (c)?

6. Prove that if a covariance matrix ¥ has compound symmetry structure that it is a
“Type H” matrix.
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3.10 Univariate Profile Analysis

In Section 3.9 we presented the one- and two-group profile analysis models as multivariate
models and as univariate mixed models. For the univariate models, we represented the mod-
els as unconstrained models in that no restrictions (side conditions) were imposed on the
fixed or random parameters. To calculate expected mean squares for balanced/orthogonal
mixed models, many students are taught to use rules of thumb. As pointed out by Searle
(1971, p. 393), not all rules are the same when applied to mixed models. If you follow Neter
et al. (1996, p. 1377) or Kirk (1995, p. 402) certain terms “disappear” from the expressions
for expected mean squares (EMS). This is not the case for the rules developed by Searle.
The rules provided by Searle are equivalent to obtaining expected mean squares (EMS)
using the computer synthesis method developed by Hartley (1967). The synthesis method
is discussed in detail by Milliken and Johnson (1992, Chapter 18) and Hocking (1985,
p. 336). The synthesis method may be applied to balanced (orthogonal) designs or unbal-
anced (nonorthogonal) designs. It calculates EMS using an unconstrained model. Applying
these rules of thumb to models that include restrictions on fixed and random parameters has
caused a controversy among statisticians, Searle (1971, pp. 400-404), Schwarz (1993), Voss
(1999), and Hinkelmann et al. (2000).

Because SAS employs the method of synthesis without model constraints, the EMS as
calculated in PROC GLM depend on what factors a researcher specifies as random on the
RANDOM statement in PROC GLM, in particular, whether interactions between random
effects and fixed effects are designated as random or fixed. If any random effect that inter-
acts with a fixed effect or a random effect is designed as random, then the EMS calculated
by SAS results in the correct EMS for orthogonal or nonorthogonal models. For any bal-
anced design, the EMS are consistent with EMS obtained using rules of the thumb applied
to unconstrained (unrestricted) models as provided by Searle.

If the interaction of random effects with fixed effects is designated as fixed, and excluded
from the RANDOM statement in PROC GLM, tests may be constructed assuming one or
more of the fixed effects are zero. For balanced designs, this often causes other entries
in the EMS table to behave like EMS obtained by rules of thumb for univariate models
with restrictions. To ensure correct tests, all random effects that interact with other random
effects and fixed effects must be specified on the RANDOM statement in PROC GLM.
Then, F or quasi-F tests are created using the RANDOM statement

random r r * f / test ;

Here, r is a random effect and f is a fixed effect. The MODEL statement is used to specify
the model and must include all fixed, random, and nested parameters. When using PROC
GLM to analyze mixed models, only the tests obtained from the random statement are
valid; see Littell et al. (1996, p. 29).

To analyze mixed models in SAS, one should not use PROC GLM. Instead, PROC
MIXED should be used. For balanced designs, the F tests for fixed effects are identical. For
nonorthogonal designs they generally do not agree. This is due to the fact that parameter es-
timates in PROC GLM depend on ordinary least squares theory while PROC MIXED uses
generalized least squares theory. An advantage of using PROC MIXED over PROC GLM
is that one may estimate variance components in PROC mixed, find confidence intervals
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for the variance components, estimate contrasts in fixed effects that have correct standard
errors, and estimate random effects. In PROC MIXED, the MODEL statement only con-
tains fixed effects while the RANDOM statement contains only random effects. We will
discuss PROC MIXED in more detail in Chapter 6; we now turn to the reanalysis of the
one-group and two-group profile data.

a. Univariate One-Group Profile Analysis

Using program m3_10a.sas to analyze Example 3.9.3 using the unconstrained univariate
randomized block mixed model, one must transform the vector observations to elements
Y;;. This is accomplished in the data step. Using the RANDOM statement with subj, the
EMS are calculated and the F test for differences in means among conditions or treatments
is F = 942.9588. This is the exact value obtained from the univariate test in the MANOVA
model. The same value is realized under the Tests of Fixed Effects in PROC MIXED.
In addition, PROC MIXED provides point estimates for 02 and 02' AZ = 4.0535 and
32 = 1.6042 with standard errors and upper and lower hmlts Tukey -Kramer confidence
1ntervals for simple mean differences are also provided by the software. The F tests are

only exact under sphericity of the transformed covariance matrix (circularity).

b.  Univariate Two-Group Profile Analysis

Assuming homogeneity and circularity, program m3_10b.sas is used to reanalyze the data in
Example 3.9.4, assuming a univariate unconstrained split-plot design. Reviewing the tests
in PROC GLM, we see that the univariate test of group differences and the test of treatment
(condition) differences have a warning that this test assumes one or more other fixed effects
are zero. In particular, looking at the table of EMS, the interaction between treatments by
groups must be nonsignificant. Or, we need parallel profiles for a valid test.

Because this design is balanced, the Tests of Fixed Effects in PROC MIXED agree with
the GLM, F tests. We also have estimates of variance components with confidence inter-
vals. Again, more will be said about these results in Chapter 6. We included a discussion
here to show how to perform a correct univariate analysis of these designs when the circu-
larity assumption is satisfied.

3.11 Power Calculations

Because Hotelling’s T? statistic, T2 = nY’Q’]Y, is related to an F distribution, by Defi-

nition 3.5.3 5
— nT
P PEDT P g py) CAIRD
pn
with noncentrality parameter
y=ws '

one may easily estimate the power of tests that depend on T'2. The power 7 is the Pr[F >
Fl-o (vp, Ve, ¥)] where v, = p and v, = n — p. Using the SAS functions FINV and
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PROBEF, one computes 7 as follows

FCV =FINV(l —a,dfh,dfe,y =0)

(3.11.2)
7 =1—PROBF(F_CV,dfh,dfe,y)

The function FINV returns the critical value for the F' distribution and the function PROBF
returns the p-value. To calculate the power of the test requires one to know the size of the
test «, the sample size n, the number of variables p, and the noncentrality parameter y
which involves both of the unknown population parameters, X and .

For the two-group location test of H, : | = [, the noncentrality parameter is

ninyp

Y=, - 1) =7 (g — o) (3.11.3)

Given ny, n, o, and y, the power of the test is easily estimated.
Conversely for a given difference § = u; — i, and X, one may set n; = ny = ng so that

n2

y=-28§3%"1s§ (3.11.4)
2ng

By incrementing ng, the desired power for the test of H, : u; = g, may be evaluated to
obtain an appropriate sample size for the test.

Example 3.11.1 (Power Calculation) An experimenter wanted to design a study to eval-
uate the mean difference in performance between an experimental treatment and a control
employing two variables that measured achievement in two related content areas. To test
g = Wc. Based on a pilot study, the population covariance matrix for the two variables
was as follows

307 280

Y =
280 420

The researcher wanted to be able to detect a mean difference in performance of 8 = [ —
1y = [1, 51 units. To ensure that the power of the test was at least 0.80, the researcher
wanted to know if five or six subjects per group would be adequate for the study. Using
program m3_11_1.sas, the power for ny = 5 subjects per group or 10 subjects in the study
has power, 1 = 0.467901. For ng = 6 subjects per group, the value of 1 = 0.8028564.
Thus, the study was designed with six subjects per group or 12 subjects.

Power analysis for studies involving multivariate variables is more complicated than uni-
variate power analysis because it involves the prior specification of considerable population
structure. Because the power analysis for 72 tests is a special case of power analysis us-
ing the MR model, we will address power analysis more generally for multivariate linear
models in Chapter 4.

Exercises 3.11

1. A researcher wants to detect differences of 1, 3, and 5 units on three dependent
variables in an experiment comparing two treatments. Randomly assigning an equal
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number of subjects to the two treatments, with

10
Y= 5 10
5 5 10

and o = 0.05, how large a sample size is required to attain the power 7 = 0.80 when
testing H : py = py?

Estimate the power of the tests for testing the hypotheses in Exercises 3.7, Problem 4,
and Exercises 3.7, Problem 2.
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Multivariate Regression Models

4.1 Introduction

In Chapter 3, Section 3.6 we introduced the basic theory for estimating the nonrandom,
fixed parameter matrix B, , for the multivariate (linear) regression (MR) model Y, , =
Xiix¢Bgxp + Euxp and for testing linear hypotheses of the general form CBM = 0. For
this model it was assumed that the design matrix X contains fixed nonrandom variables
measured without measurement error, the matrix Y, , contains random variables with or
without measurement error, the E (Y) is related to X by a linear function of the parameters
in B, and that each row of Y has a MVN distribution.

When the design matrix X contains only indicator variables taking the values of zero
or one, the models are called multivariate analysis of variance (MANOVA) models. For
MANOVA models, X is usually not of full rank; however, the model may be reparameter-
ized so that X is of full rank. When X contains both quantitative predictor variables also
called covariates (or concomitant variables) and indicator variables, the class of regression
models is called multivariate analysis of covariance (MANCOVA) models. MANCOVA
models are usually analyzed in two steps. First a regression analysis is performed by re-
gressing the dependent variables in Y on the covariates and then a MANOVA is performed
on the residuals. The matrix X in the multivariate regression model or in MANCOVA mod-
els may also be assumed to be random adding an additional level of complexity to the
model. In this chapter, we illustrate testing linear hypotheses, the construction of simulta-
neous confidence intervals and simultaneous test procedures (STP) for the elements of B
for MR, MANOVA and MANCOVA models. Also considered are residual analysis, lack-
of-fit tests, the detection of influential observations, model validation and random design
matrices. Designs with one, two and higher numbers of factors, with fixed and random co-
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variates, repeated measurement designs and unbalanced data problems are discussed and il-
lustrated. Finally, robustness of test procedures, power calculation issues, and testing means
with unequal covariance matrices are reviewed.

4.2 Multivariate Regression

a. Multiple Linear Regression

In studies utilizing multiple linear regression one wants to determine the most appropriate
linear model to predict only one dependent random variable y from a set of fixed, observed
independent variables x1, x2, ..., x; measured without error. One can fit a linear model
of the form specified in (3.6.3) using the least squares criterion and obtain an unbiased
estimate of the unknown common variance o2. To test hypotheses, one assumes that y in
(3.6.3) follows a MVN distribution with covariance matrix Q = o2L,. Having fit an ini-
tial model to the data, model refinement is a necessary process in regression analysis. It
involves evaluating the model assumptions of multivariate normality, homogeneity of vari-
ance, and independence. Given that the model assumptions are correct, one next obtains
a model of best fit. Finally, one may evaluate the model prediction, called model valida-
tion. Formal tests and numerous types of plots have been developed to systematically help
one evaluate the assumptions of multivariate normality; detect outliers, select independent
variables, detect influential observations and detect lack of independence. For a more thor-
ough discussion of the iterative process involved in multiple linear and nonlinear regression
analysis, see Neter, Kutner, Nachtsheim and Wasserman (1996).

When the dependent variable y in a study can be assumed to be independent multivariable
normally distributed but the covariance structure cannot be assumed to have the sphericity
structure 2 = 21, one may use the generalized least squares analysis. Using generalized
least squares, a more general structure for the covariance matrix is assumed. Two common
forms for  are Q2 = o>V where V is known and nonsingular called the weighted least
squares (WLS) model and 2 = ¥ where X is known and nonsingular called the generalized
least squares (GLS) model. When X is unknown, one uses large sample asymptotic normal
theory to fit and evaluate models. In the case when X is unknown feasible generalized least
squares (FGLS) or estimated generalized least squares (EGLS) procedures can be used. For
a discussion of these procedures see Goldberger (1991), Neter et al. (1996) and Timm and
Mieczkowski (1997, Chapter 4).

When the data contain outliers, or the distribution of y is nonnormal, but elliptically
symmetric, or the structure of X is unknown, one often uses robust regression, nonpara-
metric regression, smoothing methodologies or bootstrap procedures to fit models to the
data vector y, Rousseeuw and Leroy (1987), Buja, Hastie and Tibshirani (1989) and Fried-
man (1991). When the dependent variable is discrete, generalized linear models introduced
by Nelder and Wedderburn (1972) are used to fit models to data. The generalized linear
model (GLIM) extends the traditional MVN general linear model theory to models that in-
clude the class of distributions known as the exponential family of distributions. Common
members of this family are the binomial, Poisson, normal, gamma and inverse gamma dis-
tributions. The GLIM combined with quasi-likelihood methods developed by Wedderburn
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(1974) allow researchers to fit both linear and nonlinear models to both discrete (e.g., bino-
mial, Poisson) and continuous (e.g., normal, gamma, inverse gamma) random, dependent
variables. For a discussion of these models which include logistic regression models, see
McCullagh and Nelder (1989), Littell, et al. (1996), and McCulloch and Searle (2001).

b.  Multivariate Regression Estimation and Testing Hypotheses

In multivariate (linear) regression (MR) models, one is not interested in predicting only
one dependent variable but rather several dependent random variables yi, y2, ..., yp. Two
possible extensions with regard to the set of independent variables for MR models are (1)
the design matrix X of independent variables is the same for each dependent variable or
(2) each dependent variable is related to a different set of independent variables so that p
design matrices are permitted. Clearly, situation (1) is more restrictive than (2) and (1) is a
special case of (2). Situation (1) which requires the same design matrix for each dependent
variable is considered in this chapter while situation (2) is treated in Chapter 5 where we
discuss the seemingly unrelated regression (SUR) model which permits the simultaneous
analysis of p multiple regression models.

In MR models, the rows of Y or E, are assumed to be distributed independent MVN so
that vec (E) ~ Ny, (0, ¥ ® I,,). Fitting a model of the form E (Y) = XB to the data matrix
Y under MVN, the maximum likelihood (ML) estimate of B is given in (3.6.20). This ML
estimate is identical to the unique best linear unbiased estimator (BLUE) obtained using
the multivariate ordinary least squares criterion that the Euclidean matrix norm squared,
tr [(Y —XB) (Y — XB)] =Y — XB||2 is minimized over all parameter matrices B for
fixed X, Seber (1984).

For the MR model Y = XB + E, the parameter matrix B is

Bo Boz Bop
Bo B Bi2 Bip
B=1 —-- Bai B2 Bap 4.2.1)
B ) . )
| Bu Bz Brp

where ¢ = k + 1 and is the number of independent variables associated with each depen-
dent variable. The vector B, contains intercepts while the matrix B; contains coefficients
associated with independent variables. The matrix B in (4.2.1) is called the raw score form
of the parameter matrix since the elements y;; in Y have the general form

yij = Boj + Bij xin +...+ Bij Xk + e (4.2.2)

fori =1,2,...,nandj =1,2,..., p.

To obtain the deviation form of the MR model, the means X; = > ;_, x;ij/n, j =
1,2, ..., k are calculated and the deviation scores d;; = x;; — X ;, are formed. Then, (4.2.2)
becomes

k k
Yij = Boj + 22 Bnj Xn + X Bnj (xin — Xn) + eij (4.2.3)
h=1 h=1
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Letting
k
aoj:ﬁ()j—‘rZﬁhjfh j:l927"'7p
h=1
OL6 = [0501, (0707 T 0601,] “4.2.4)
B =[B,;] h=12. . kandj=12...p
X¢=[dj] i=12,...,nand j=12,....p
the matrix representation of (4.2.3) is

/

%o
Y =[1, X4] +E (4.2.5)
nxp
B,
where 1, is a vector of n 1’s. Applying (3.6.21),
o~ —/ —
S| %
B=| _ = = (4.2.6)
B (X,X,) " XY (X, Xq) " X4Y,y

where Y, = [yi = y,], and y; is the mean of the j™ dependent variable. The matrix Y
may be replaced by Y, since the Xd;; = Ofori = 1,2, ..., n. This establishes the equiv-
J

alen.ce of the raw and deviation.f.orms of the MR quel since EO i=Yi— ZIZ=1 BhnjXj-
Letting the matrix S be the partitioned sample covariance matrices for the dependent and
independent variables

Syy Syx
S = (4.2.7)
Sxy Syx
and |
N X' X\ 7' /XYy,
d d -1
Bl=<n_1> (m)stxSxy

Because the independent variables are considered to be fixed variates, the matrix Sy, does
not provide an estimate of the population covariance matrix. Another form of the MR re-
gression model used in applications is the standard score form of the model. For this form,
all dependent and independent variables are standardized to have mean zero and variance
one. Replacing the matrix Y, with standard scores represented by Y, and the matrix Xy
with the standard score matrix Z, the MR model becomes

Y, =7ZB, +E (4.2.8)

and R R
B. =R 'R, orB, =R, R} (4.2.9)

where R, is a correlation matrix of the fixed x’s and R, is the sample intercorrelation
matrix of the fixed x and random y variables. The coefficients in B, are called standardized
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or standard score coefficients. Using the relationships that

R, = (diagSy,)'/? S, (diagS,,)'/?

4.2.10
R,, = (diagS,,)"S,, (diagS,,)""” ( )
B is easily obtained from ﬁz.

Many regression packages allow the researcher to obtain both raw and standardized co-
efficients to evaluate the importance of independent variables and their effect on the de-
pendent variables in the model. Because the units of measurement for each independent
variable in a MR regression model are often very different, the sheer size of the coefficients
may reflect the unit of measurement and not the importance of the variable in the model.
The standardized form of the model converts the variables to a scale free metric that often
facilitates the direct comparison of the coefficients. As in multiple regression, the magni-
tude of the coefficients are affected by both the presence of large intercorrelations among
the independent variables and the spacing and range of measurements for each of the inde-
pendent variables. If the spacing is well planned and not arbitrary and the intercorrelations
of the independent variables are low so as not to adversely effect the magnitude of the coef-
ficients when variables are added or removed from the model, the standardized coefficients
may be used to evaluate the relative simultaneous change in the set Y for a unit change in
each X; when holding the other variables constant.

Having fit a MR model of the form Y = XB +E in (3.6.17), one usually tests hypotheses
regarding the elements of B. The most common test is the test of no linear relationship
between the two sets of variables or the overall regression test

H :B =0 4.2.11)

Selecting Cyxy = [0, Ix] of full row rank k£ and M« , = I, the test that By = 0 is easily
derived from the general matrix form of the hypothesis, CBM = 0. Using (3.6.26) and

partitioning X = [1 Xp] where Q =1 —1 (1’1)_1 1’ then
[ B 1)~ 1Y — (1) 7 X, (X,QX,) ' X,QY
B= = (4.2.12)
B (X,QX,) ' X,QY

and By = X (X,QX,) ' X,QY = (X,X,) ' X, Yy since Q is idempotent and

H=8 (X,X;)B
} ( i—/) Y / n / Y ’ n (4'2'13)
E=YY-yy - B, (XdXd) B =Y,Y; - B (XdXd) B
sotht E+H=T =YY —nyy = Y/, Y is the total sum of squares and cross products
matrix, about the mean. The MANOVA table for testing B; = 0 is given in Table 4.2.1.
To test H; : B = 0, Wilks” A criterion from (3.5.2), is

L e
E+H ’
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TABLE 4.2.1. MANOVA Table for Testing B; = 0

Source df SSCP E(MSCP)
Bo 1 nyy T + nBoBy
B, | 6, kK |H=BXX)B |3z 42%XR
Residual | n —k—1 | E= Y;Yd — B/l (X&Xd)Bl pX

Total n Y'Y

where A; are the roots of |H— AE| = 0, s = min (v, p) = min(k, p), vy, = k and
ve =n —q = n —k — 1. An alternative form for A is to employ sample covariance ma-
trices. Then H = S, S Sxy and E = S,y — Sy, S;| Sy, so that [H — AE| = 0 becomes
|Syx S;xl Syy = A(Syy — S;Xl Sxy)| = 0. From the relationship among the roots in Theorem
2.6.8,[H—0 (H+E)| =[S, S5, Sxy — 0 Syy| = 050 that

Syy — Syx Sy Sy
5ol

Finally, letting S be defined as in (4.2.7) and using Theorem 2.5.6 (6), the A criterion for
testing H; : By = 0 becomes

A=TIA+r)" =10 =
i=1 i=1

[E| s -
= 1+ A
B+ H] ’l;ll ( ) (4.2.14)
IS| s -
=———=[[1-6)
|Sxx| |Syy| i=1 l

Using (3.5.3), one may relate A to an F distribution. Comparing (4.2.14) with the ex-
pression for W for testing independence in (3.8.32), we see that testing H; : By = 0 is
equivalent to testing Xy, = 0 or that the set X and Y are independent under joint mul-
tivariate normality. We shall see in Chapter 8 that the quantities rl.2 =0; = A/ (1 4+A))
are then sample canonical correlations. For the other test criteria, M = (|]p — k| — 1) /2
and N = (n —k — p —2) /2 in Theorem 3.5.1. To test additional hypotheses regarding the
elements of B other matrices C and M are selected. For example, for C =1, and M =1,
one may test that all coefficients are zero, H, : B = 0. To test that any single row of B is
zero, arow of C = [0, I] would be used with M = I,,. Failure to reject H; : ¢.B = 0’ may
suggest removing the variable from the MR model.

A frequently employed test in MR models is to test that some nested subset of the rows
of B are zero, say the last k — m rows. For this situation, the MR model becomes

B
QY =[X1, X3] +E (4.2.15)
B;
where the matrix X is associated with 1, xq, ..., x,, and X, contains the variables x,,1,

..., Xk so that g = k + 1. With this structure, suppose one is interested in testing H» :
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B, = 0. Then the matrix C = [0,,, I;_,,] has the same structure as the test of B; with the
partition for X = [X{, X,] so that X replaces 1,,. Now with Q = I —X; (X’]Xl)q X/ and
B, = (X’2QX2)_1 X, QY, the hypothesis test matrix becomes

o~ _1 o~
H= B/Q(X/QXZ — X/2X1 (X’IXI) X/l X7)B;
-1
=Y'QX; (X,QX;)” XoQY

Alternatively, one may obtain H by considering two models: the full model €2, in (4.2.15)
and the reduced model w : Y = XB; + E,, under the hypothesis. Under the reduced

model, B; = (X/IX 1)_1 XY and the reduced error matrix E, = Y'Y — ﬁ’l (X/IX 1) B, =
Y'Y - ﬁ’] XY where H,, = ﬁ/l (X’l X 1) B tests H,, : B; = 0 in the reduced model. Under
the full model, B = (X'X) ™' X'Y and Eq, = Y'Y — B/ (X'X) B = Y'Y — B'X'Y where
H=P (X'X) B tests H : B = 0 for the full model. Subtracting the two error matrices,

(4.2.16)

E, — Eq, = B (X'’X)B - B} (X|X;) B,
=YX (X'X)"' XY - B} (XX) B,
—Y [Xl (XX) ' X — X (X X)X Xs (X5Q%,) 7 X5Q
+ X (X3Q%:) ' X3Q| Y - B} (X X)) By
— Y'X, (X4Q%X,) 7 X5QY — Y'X; (X X)X, X (X5QX,) ' X4QY
=Y/ [1- X (X1X1) 7' X0 | [X2 (X50%,) 7' X5Q] ¥
= Y'QX, (X,QX,) ' X,QY
=H

as claimed. Thus, H is the extra sum of squares and cross products matrix due to X, given
the variables associated with X are in the model. Finally, to test H> : B, = 0, Wilks” A
criterion is

_[E]
|E + H|
4.2.17)
|EQO| g -1 J
= =[[A+r)" =[] U =6)~Ugpi-mu)
Eol = i=1
where v, = n —q = n — k — 1. For the other criteria, s = min(k —m, p), M =

(lp—k—m|—1)/2andN=mn—-k—p—2)/2.

The test of H, : B, = 0 is also called the test of additional information since it is
being used to evaluate whether the variables x,,+1, ..., xx should be in the model given
that x1, x3, ..., X, are in the model. The tests are being performed in order to uncover and
estimate the functional relationship between the set of dependent variables and the set of
independent variables. We shall see in Chapter 8 that 6; = A;/ (1 4+ A;) is the square of a
sample partial canonical correlation.
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In showing that H = E,, — Eq, for the test of H>, we discuss the test employing the
reduction in SSCP terminology. Under w, recall that T, = E,,+H,, so thatE, = T, —H,,
is the reduction in the total SSCP matrix due to @ and Eq, = Tq, — Hg, is the reduction
in total SSCP matrix due to Q,. Thus E,, — Eq, = (T, — H,) — (T, — Hg,) = Hg, —
H,, represents the differences in the regression SSCP matrices for fitting Y = X1B; +
X;B| + E compared to fitting the model Y = XB; + E. Letting R (B;, B2) = Hg,
and R (B;) = H, then R (B{,B;) — R (By) represents the reduction in the regression
SSCP matrix resulting from fitting B>, having already fit B;. Hence, the hypothesis SSCP
matrix H is often described at the reduction of fitting B;, adjusting for B;. This is written
as

R By | B1) = R(B1,By) — R (By) (4.2.18)

The reduction R (Bj) is also called the reduction of fitting Bj, ignoring B,. Clearly
R (B2 | B1) # R (B,). However, if X/IXZ = 0, then R (B) = R (B, | B) and B is said
to be orthogonal to B,.

One may extend the reduction notation further by letting B = (B, B, B3). Then R(B; |
B;) = R(B1,B2) — R(Bp) isnotequal to R (B, | B, B3) = R (B, By, B3) — R (B1B3)
unless the design matrix is orthogonal. Hence, the order chosen for fitting variables affects
hypothesis SSCP matrices for nonorthogonal designs.

Tests of H,, H1, H> or H; are used by the researcher to evaluate whether a set of inde-
pendent variables should remain in the MR model. If a subset of B is zero, the independent
variables are excluded from the model. Tests of H,, H;, H> or H; are performed in SAS
using PROC REG and the MTEST statement. For example to test H; : By = 0 for k
independent variables, the MTEST statement is

mtest x1,x2,x3,...,xk / print;

where x1, x2, ..., xk are names of independent variables separated by commas. The option
/ PRINT directs SAS to print the hypothesis test matrix. The hypotheses H; : [B;;, Bi2,
e By p] = (/ are tested using k statements of the form

mtest xi /print;
fori =1,2,...,k. For the subtest H, : B, = 0, the MTEST command is
mtest xm,....,xk / print;

for a subset of the variable names xm, ... , xk, again the names are separated by commas.
To test that two independent variable coefficients are both equal and equal to zero, the
statement

mtest x1, x2 / print;

is used. To form tests that include the intercept in any of these tests, on must include the
variable name intercept in the MTEST statement. The commands will be illustrated with
an example.
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¢. Multivariate Influence Measures

Tests of hypotheses are only one aspect of the model refinement process. An important
aspect of the process is the systematic analysis of residuals to determine influential obser-
vations. The matrix of multivariate residuals is defined as

E=Y-XB=Y-Y (4.2.19)

where Y = XB is the matrix of fitted values. Letting P = X x’ X)_1 X', (4.2.19) is written
as E = (I - P)Y where P is the projection matrix. P is a symmetric idempotent matrix,
also called the “hat matrix” since PY projects Y into Y. The ML estimate of ¥ may be
represented as

S=EE/n=YA-P)Y/n=E/n (4.2.20)

where E is the error sum of squares and cross products matrix. Multiplying ) byn/(n —q)
where ¢ = r (X), an unbiased estimate of X is

S=nS/(n—q)=E/(n—q) (4.2.21)

The matrix of fitted values may be represented as follows

Y Y
= 7
—~ > Yo
Y = . =PY=P )
Ya Yo
so that
=~ L /
Yi = 2 Pijy,
j=1
/ 1 /
= pii¥; + 2 Pijy;
J#i
where pj1, pia, ..., pin are the elements in the i™ row of the hat matrix P. The coefficients

pii, the diagonal elements of the hat matrix P, represent the leverage or potential influence
an observation y; has in determining the fitted value ¥;. For this reason the matrix P is
also called the leverage matrix. An observation y; with a large leverage value p;; is called a
high leverage observation because it has a large influence on the fitted values and regression
coefficients in B.

Following standard univariate notation, the subscript ‘(i)’ on the matrix X;) is used to
indicate that the i row is deleted from X. Defining Y ;) similarly, the matrix of residuals
with the i™ observation deleted is defined as

Ei =Y — XoBa)

N (4.2.22)
=Yy —Yu
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where B(,) = (X(l)X(,)) X n Y@ fori=1,2,... n. Furthermore, S¢) = ﬁ/( )E(,)/(n -
g — 1). The matrices B, and S(;) are the unbiased estimators of B and X when the i
observation vector (yl xl) is deleted from both Y and X.

In multiple linear regression, the residual vector is not distributed N (0, o (I — P));
however, for diagnostic purposes, residuals are “Studentized”. The internally Studentized
residual is defined as r; = ¢;/ [s (1-— pii)l/ 2] while the externally Studentized residual
is defined as #; = &;/ [si) (1 — pii)'/*] where g = y; — xglﬁ\i. If the r (X) = r (X)) =
gande ~ N, (0, o2I), then the r; are identically distributed as a Beta (1/2, (n — g — 1) /2)
distribution and the ¢; are identically distributed as a student ¢ distribution; in neither case
are the quantities independent, Chatterjee and Hadi (1988, pp. 76-78). The externally Stu-
dentized residual is also called the Studentized deleted residual.

Hossain and Naik (1989) and Srivastava and von Rosen (1998) generalize Studentized
residuals to the multivariate case by forming statistics that are the squares of r; and #;. The
internally and externally “Studentized” residuals are defined as

rf=¢€87'¢/(1—pi) and T} =TS ’é,/(l — pii) (4.2.23)
fori =1,2,...,n where¢; is the i row of E = Y — XB. Because Ti2 has Hotelling’s T2
distribution and rl.2 / (n—q) ~ Beta[p/2, (n — q — p) /2], assuming no other outliers, an
observation y; may be considered an outlier if

n—q-p) T}

FI™ (p.n—q—1 4.2.24
» n—g—1 (pn—g—1) ( )

where a* is selected to control the familywise error rate for n tests at the nominal level .
This is a natural extension of the univariate test procedure for outliers.
In multiple linear regression, Cook’s distance measure is defined as

(B-Bw) (XX)(/’ ﬂ(z)) F-Y0) F-Y0)

C; =
l qs? qs?
1
= 1o pliv r2 (4.2.25)
— Pii
L pi e
q(l—pi)* s

where r; is the internally Studentized residual and is used to evaluate the overall influence
of an observation (y;, x;) on all n fitted values or all g regression coefficients for i =
1,2,...,n, Cook and Weisberg (1980). That is, it is used to evaluate the overall effect of
deleting an observation from the data set. An observation is influential if C; is larger than
the 50th percentile of an F distribution with ¢ and n — g degrees of freedom. Alternatively,
to evaluate the effect of the i observatiolr} (yi, x;) has on the i™ fitted value Yi, one may
compare the closeness of 3; to ¥i) = X;B ;) using the Welsch-Kuh test statistic, Belsley,



4.2 Multivariate Regression 195
Welsch and Kuh (1980), defined as

_i=Sel _x (B—B)

WK; =
S@i)A/ Dii S@i)/ Dii (4.2.26)
— 14| Pii
I — pii

where #; is an externally Studentized residual. The statistic WK; ~ t\/q/ (n —q) fori =
1,2, ..., n. The statistic WK; is also called (DFFITS);. An observation y; is considered

influential if WK; > 2./q/ (n — q).
To evaluate the influence of the i™ observation on the j® coefficient in B in multiple

(linear) regression, the DFBETA statistics developed by Cook and Weisberg (1980) are

calculated as

N ri Wij
A=p0" ()"

i=12,....,n;j=1,2,...,q (4.2.27)
where w;; is the i element of w; = (I — P(;}) x; and Py;; is calculated without the j®
column of X. Belsley et al. (1980) rescaled C;; to the statistic

Bi—bBio _ e Wij 1
— = _ 2 172 (1 _ 5 3172
var (:3]) o(l pu) (W]WJ> (1 Pzz)

Dij = (4.2.28)

If o in (4.2.28) is estimated by s(;), then D;; is called the (DFBETA); j statistic and
t; Wij
1— p:)1/2 172
( pu) (w/le>

If o in (4.2.28) is estimated by s, then D;; = C;;. An observation y; is considered inferen-
tial on the regression coefficient B; if the | D;;| > 2//n.

Generalizing Cook’s distance to the multivariate regression model, Cook’s distance be-
comes

D;; = (4.2.29)

Ci = [vec (B—Bp)] (S® X'X) ' vec (B — B) /g
=t [(B-By) (XX) " (B-B)s™'] /g

~ o~ o~
=tr [(Y -Y@) (Y- Y(z))] (4.2.30)
_bii
= ri/q
1 — Pii
pii ~a—1~
=—eS '¢e/q
A-pi)? "
fori = 1,2,...,n. An observation is influential if C; is larger than the 50th percentile of

a chi square distribution with v = p (n — ¢) degrees of freedom, Barrett and Ling (1992).
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Alternatively, since rl.2 has a Beta distribution, an observation is influential if C; > C} =
C; x (n —q) x Beta! ™ (v, v2), vi = p/2and v» = (n — g — p) /2. Beta! ™ (vy, v2) is
the upper critical value of the Beta distribution.

To evaluate the influence of (y/, x}) on the i'" predicted value y; where ¥ is the i row
of ?, the Welsch-Kuh, DFFITS, type statistic is defined as

WK =277 i=1,2,....n (4.2.31)

Assuming the rows of Y follow a MVN distribution and the r (X) = r (X)) = ¢, an
observation is said to be influential on the i predicted value y; if

g (m—qg-—1)

n—qn—q-—p

WK; > F'" (p,n—q—p) (4.2.32)

where o* is selected to control the familywise error rate for the n tests at some nominal
level . To evaluate the influence of the i observation y; on the jth row of ﬁ the DFBETA
statistics are calculated as
R v
Djj = ———— (4.2.33)
11— Dii W jW j

fori =1,2,...,nand j = 1,2,...,q. An observation is considered influential on the
coefficient B” of B if D;j > 2 and n > 30.

Belsley et al. (1980) use a covariance ratio to evaluate the influence of the i i observa-
tion on the cov(ﬂ) in multiple (linear) regression. The covariance ratio (CVR) for the it
observation is

CVR; = [55)/s2]/(1 i) i=1,2,....n (4.2.34)

An observation is considered influential if |CVR; —1| > 3¢ /n. For the MR model, Hossain
and Naik (1989) use the ratio of determinants of the covariance matrix of B to evaluate the

influence of y;. on the covariance matrix of B. For i = 1,2,...,nthe
cvry = Lo beeBo)l ( : )p Sol)’ (4.2.35)
|cov (vecB))| 1 — pii S

If the |S;)| & 0, then CV R; ~ 0 and if the S| ~ 0 then CV R; —> oc. Thus, if CVR; is
low or very high, the observation y; is considered influential. To evaluate the influence of

y; on the cov(ﬁ), the | S; | /S~ [1 + Tiz/ n—q— 1)]_1 ~ Beta[p/2,(n —q — p) /2].
A CVR; may be influential if CVR; is larger than

q
[1/( = pil” [Bew! =2 (v, o)
or less that the lower value of

[1/(1 = pi)? [Beta’? oy, va)]'
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where vy = p/2 and v, = [(n — g — p) /2] and Beta! ~%/2and Beta®/? are the upper and
lower critical values for the Beta distribution. In SAS, one may use the function Betainv
(1 —«a,df1,df?2) to obtain critical values for a Beta distribution.

Finally, we may use the matrix of residuals E to create chi-square and Beta Q-Q plots,
to construct plots of residuals versus predicted values or variables not in the model. These
plots are constructed to check MR model assumptions.

d. Measures of Association, Variable Selection and Lack-of-Fit Tests

To estimate the coefficient of determination or population squared multiple correlation co-
efficient p? in multiple linear regression, the estimator

2! =2
=ﬂxy_"2y _SSR _, SSE (4.2.36)
yy —ny SST SST
is used. It measures the proportional reduction of the total variation in the dependent vari-
able y by using a set of fixed independent variables xp, x2, ..., xx. While the coefficient
of determination in the population is a measure of the strength of a linear relation in the
population, the estimator R? is only a measure of goodness-of-fit in the sample. Given that
the coefficients associated with the independent variables are all zero in the population,
E(R?) =k/(m—1)sothatifn = k+1 = g, E (R?) = 1. Thus, in small samples the
sheer size of R? is not the best indication of model fit. In fact Goldberger (1991, p. 177)
states: “Nothing in the CR (Classical Regression ) model requires R? to be high. Hence a
high R? is not evidence in favor of the model, and a low R? is not evidence against it”. To
reduce the bias for the number of variables in small samples, which discounts the fit when k&

is large relative to n, R.A. Fisher suggested that the population variances oil . be replaced

by its minimum variance unbiased estimate silxand that the population variance for crf, be

R2

replaced by its sample estimator s%, to form an adjusted estimate for the coefficient of de-
termination or population squared multiple correlation coefficient. The adjusted estimate

1S
B () (2)
a n—gq/) \SST
_,_(n—] P2 (4.2.37)
S

= (1 = 53l “5)

and E{R2 — k(1 — RZ)/(n —k—1]} = E(Raz) = (0, given no linear association between
Y and the set of X's. This is the case, since

2 ~ —\2 ~ — .
R; =O<:>Z(yi —¥)' =0<=7Yy; =Yy, foralli
i
in the sample. The best-fitted model is a horizontal line, and none of the variation in the
independent variables is accounted for by the variation in the independent variables. For an
overview of procedures for estimating the coefficient of determination for fixed and random
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independent variables and also the squared cross validity correlation coefficient (p%), the
population squared correlation between the predicted dependent variable and the dependent
variable, the reader may consult Raju et al. (1997).

A natural extension of R? in the MR model is to use an extension of Fisher’s correlation
ratio n° suggested by Wilks (1932). In multivariate regression eta squared is called the
square of the vector correlation coefficient

n””=1-—A=1—|E|/|E+H| (4.2.38)

when testing H; : B = 0, Rozeboom (1965). This measure is biased, thus Jobson (1992,
p. 218) suggests the less biased index

ng=1—nA/(n—q+A) (4.2.39)

where the r (X) = ¢. Another measure of association is based on Roy’s criterion. It is
17(% = A1/ (1 + A1) = 0; < n?, the square of the largest canonical correlation (discussed
in Chapter 8). While other measures of association have been proposed using the other
multivariate criteria, there does not appear to be a “best” index since X is fixed and only Y
varies. More will be said about measures of association when we discuss canonical analysis
in Chapter 8.

Given a large number of independent variables in multiple linear regression, to select a
subset of independent variables one may investigate all possible regressions and incremen-
tal changes in the coefficient of determination (Rz), the reduction in mean square error
(M S,.), models with values of total mean square error (C p) near the total number of vari-
ables in the model, models with small values of predicted sum of squares (PRESS), and
models using the information criteria (AIC, HQIC, BIC and CAIC), McQuarrie and Tsai
(1998). To facilitate searching, “best” subset algorithms have been developed to construct
models. Search procedures such as forward selection, backward elimination, and stepwise
selection methods have also been developed to select subsets of variables. We discuss some
extensions of these univariate methods to the MR model.

Before extending R? in (4.2.36) to the MR model, we introduce some new notation.
When fitting all possible regression models to the (n x p) matrix Y, we shall denote the
pool of possible X variables to be K = Q — 1 so that the number of parameters | < g < Q
and at each step the numbers of X variables is g —1 = k. Then for g parametersorg—1 = k
independent variables in the candidate MR model, the p x p matrix

Ré = (ﬁ’qX;Y —nyy) (Y/Y - ni?’)_l (4.2.40)
is a direct extension of R2. To convert Ré to a scalar, the determinant or trace functions are
used. To ensure that the function of R is bounded by 1 and 0, the tr(R?) is divided by p.
Then 0 < tr(RfI) /p < 1 attains its maximum when g = Q. The goal is to select g < Q or
the number of variables ¢ — 1 = k < K and to have the tr(RfI) /p near one. If the |R[21| is
used as a subset selection criterion, one uses the ratio: |R2 |/ |R2Q| <lforg=12,...,0.
If the largest eigenvalue is used, it is convenient to normalize R, to create a correlation
matrix P, and to use the measure y = (Amax — 1) / (g — 1) where Anmax is the largest root
of P, forg =1,2,..., 0.
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Another criterion used to evaluate the fit of a subset of variables is the error covariance

matrix o a
E;=(n-¢)S;=YY-B,X Y

-1
=(n—-¢qY [1,, — x/q (X;Xq) Xq} Y
=(n —q)Y’[I,, —Pq]Y
=(n-qEE,
for Eq =Y-X Bq =Y - Y forg =1,2,..., Q. Hence E, is a measure of predictive
closeness of Y to Y for Values of g. To reduce E, to a scalar we may use the largest
cigenvalue of E, the tr (E;)
value ¢ < Q is selected for the tr (E,) near the tr (EQ) for example.

In (4.2.41), we evaluated the overall closeness of Y to Y for var10us Values of g. Al-
ternatively, we could estlmate each row y; of Y using ¥’ 0 =X 'B q(i) Where B (i) 18 esti-

(4.2.41)

mated by deleting the i row of y and X for various values of ¢. The quantity y; — y; (i) 1s
called the deleted residual and summing the inner products of these over all observations
i =1,2,...,n we obtain the multivariate predicted sum of squares (MPRESS) criterion

n

MPRESS, = 3" (yi —¥iiy) (¥i — Vic))

i=1

n
=Y &e/ (- pi)’

(4.2.42)

-1
where €; = y; — ¥; without deleting the i™ row of Y and X, and p;; = X; (X;Xq> X;

for the deleted row Chatterjee and Hadi (1988, p. 115). MR models with small MPRESS,,
values are considered for selection. Plots of MPRESS,, versus g may facilitate variable
selection.

Another criterion used in subset selection is Mallows’ (1973) C, criterion which, instead
of using the univariate mean square error,

~ 2 —~ ~ 2

E @i —w) =var3)+ (EGi) —wi)”

uses the expected mean squares and cross products matrix
E i — ) 3 — ) = cov @)+ [E G — wi] [E ) — wi] (4.2.43)
where E (§;) — p; is Ele bias in y;. However, the cov[vec(ﬁq)] =Y¥® (X/qu)_1 so that
the cov@) = cov(x:ﬂ.Bq) = (x;i(X;Xq)_lxqi)E. Summing over the n observations,
n n
> cov@) = [X x, (X;Xq)_lxqi] =
i=1 i=1

= X} (X, X)"'X,]%

_ |:tr (X/qxq)_1 (X;Xqﬂ =
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Furthermore, summing over the bias terms:
n
2 [(EG) —m)][EG —w)] == E(S, — %)
1=

where S; = E,;/ (n — q). Multiplying both sides of (4.2.43) by »~! and summing, the
expected mean square error criterion is the matrix

Ty=ql,+(n—q@) = 'E(S, - %) (4.2.44)

as suggested by Mallows’ in univariate regression. To estimate I'y, the covariance matrix
X with Q parameters in the model or Q — 1 = K variablesis Sg = Eo / (n — Q), so that
the sample criterion is

Cy=ql,+(n—q)Sy' (Sq —Sp)

i (4.2.45)

= SQ E,+Q2q—-nl,
When there is no bias in the MR model, C; ~ ¢l,. Thus, models with values of C,; near
qI, are desirable. Using the trace criterion, we desire models in which tr (Cq) isnear gp. If
the | C, | is used as a criterion, the | C; |< 0if 2g9 —n < 0. Hence, Sparks, Coutsourides
and Troskie (1983) recommend a criterion involving the determinant that is always positive

p
_ n—gq
E,'E, |< | —— 4.2.46
| E H_Q—Q) (4.2.46)
Using their criterion, we select only subsets among all possible models that meet the cri-
terion as the number of parameters vary in size from g = 1,2,...,0 = K + 1 or as

k = g — 1 variables are included in the model. Among the candidate models, the model
with the smallest generalized variance may be the best model. One may also employ the
largest root of C, as a subset selection criterion. Because the criterion depends on only a
single value it has limited value.

Model selection using ad hoc measures of association and distance measures that evalu-
ate the difference between a candidate MR model and the expectation of the true MR model
result in matrix measures which must be reduced to a scalar using the determinant, trace or
eigenvalue of the matrix measure to assess the “best” subset. The evaluation of the eigen-
values of R?], E,, MPRESS, and C, involve numerous calculations to obtain the “best”
subset using all possible regressions. To reduce the number of calculations involved, algo-
rithms that capitalize on prior calculations have been developed. Barrett and Gray (1994)
illustrate the use of the SWEEP operator.

Multivariate extensions of the Akaike Information Criterion (AIC) developed by Akaike
(1974) or the corrected AIC (CAIC) measure proposed by Sugiura (1978); Schwartz’s
(1978) Bayesian Information Criterion (BIC), and the Hannan and Quinn (1979) Infor-
mation Criterion (HQIC) are information measures that may be extended to the MR model.
Recalling that the general AIC measure has the structure

—2 (log - likelihood) + 2d
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where d is the number of model parameters estimated; the multivariate AIC criterion is
AICy =nlog| Z¢ | +2qp + p(p + 1) (4.2.47)

if maximum likelihood estimates are substituted for B and X in the likelihood assuming
multivariate normality, since the constant np log (2 )+np in the log-likelihood does not ef-
fect the criterion. The number of parameters in the matrix B and ¥ aregp and p (p + 1) /2,
respectively. The model with the smallest AIC value is said to fit better.

Bedrick and Tsai (1994) proposed a small sample correction to AIC by estimating the
Kullback-Leibler discrepancy for the MR model, the log-likelihood difference between the
true MR model and a candidate MR motel. Their measure is defined as

AIC,, =(n—q—p—Dlog | S, |+ +q)p

Replacing the penalty factor 2d in the AIC with d log n and 2d log log n where d is the
rank of X, the BICy and HQIC criteria are

BIC,; =nlog | ’E\q | +gplogn

- (4.2.48)
HQIC,; =nlog | X, | +2gploglogn
One may also calculate the criteria by replacing the penalty factor d withgp+p (p + 1) /2.
Here, small values yield better models. If AIC is defined as the log-likelihood minus d, then
models with larger values of AIC are better. When using information criteria in various
SAS procedures, one must check the documentation to see how the information criteria
are define. Sometimes smallest is best and other times largest is best.
One may also estimate AIC and HQIC using an unbiased estimate for ¥ and B and
the small sample correction proposed by Bedrick and Tsai (1994). The estimates of the
information criteria are

AIC,, =(n—qg—p—1log|S] [+ +q)p (4.2.49)

HQIC,, = (n—q—p—1)log|S] | +2qploglog (n) (4.2.50)

McQuarrie and Tsai (1998) found that these model selection criteria performed well for real
and simulated data whether the true MR model is or is not a member of the class of can-
didate MR models and generally outperformed the distance measure criterion MPRESS,,,
C,, and R;. Their evaluation involved numerous other criteria.

An alternative to all possible regression procedures in the development of a “best” subset
is to employ statistical tests sequentially to obtain the subset of variables. To illustrate, we
show how to use Wilks’ A test of additional information to develop an automatic selection
procedure.

To see how we might proceed, we let Ar, Agand Apg represent the A criterion for
testing Hr : B =0, Hg : By =0, and HFp|r : B, = 0 where

| B1 Xy
B_|:B2] and X_[X2i|.
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Then,
LBl Y'Y|
[Er +Hp|  [Y'Y - B (XX)B|
Ap— |Erl [Y'Y|
[Er +Hg|  |Y'Y - B (X|X;)By]
A [Erir] Y'Y - B} (X/X)Bi|
FIR = = = =
| |Erig +Hpg| Y'Y — B (X'’X) B|
so that
Ar = AR AFR
Associating A p with the constant term and the variables x1, x2, ..., xy where ¢ = k + 1,
and A g with the subset of variables x1, x3, ..., xx— the significance or nonsignificance of

variable xy is, using (3.5.3), determined by the F statistic

I —Aprve—p+1
AF|R D

~F(pve—p+1) 4.2.51)

where v, = n — g = n — k — 1. The F statistics in (4.2.51), also called partial F-tests,
may be used to develop backward elimination, forward selection, and stepwise procedures
to establish a “best” subset of variables for the MR model.

To illustrate, suppose a MR model contains ¢ = k + 1 parameters and variables x1, x2,
..., Xk. By the backward elimination procedure, we would calculate F; in (4.2.51) where
the full model contained all the variables and the reduced model contained & — 1 variables
so that F; is calculated for each of the k variables. The variable x; with the smallest F; ~
F (p, n —k — p) would be deleted leaving k — 1 variables to be evaluated at the next step.
At the second step, the full model would contain k — 1 variables and the reduced model
k — 2 variables. Now, F; ~ F (p, n —k — p — 1). Again, the variable with the smallest F
value is deleted. This process continues until F attains a predetermined p-value or exceeds
some preselected F critical value.

The forward selection process works in the reverse where variables are entered using the
largest calculated F value. However, at the first step we consider only full models where
each model contains the constant term and one variable. The one variable model with the
smallest A ~ U (p, 1, n — 2) initiates the process. At the second step, F; is calculated with
the full model containing two variables and the reduced model containing the variable at
step one. The model with the largest F; ~ F (p,n — p — 1), for k = 2 is selected. At step
k, F; ~ F (p,n —k — p) and the process stops when the smallest p-value exceeds some
preset level or F; falls below some critical value.

Either the backward elimination or forward selection procedure can be converted to a
stepwise process. The stepwise backward process allows each variable excluded to be re-
considered for entry. While the stepwise forward regression process allows one to see if
a variable already in the model should by dropped using an elimination step. Thus, step-
wise procedure require two F criteria or p-values, one to enter variables and one to remove
variables.
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TABLE 4.2.2. MANOVA Table for Lack of Fit Test

Source df SSCP EMSCP)
o~ o~ I/ v—1
B m+ 1 B/ X/ V-'X,B, = H| DR AL
= = B, X, QX,B
B, k—m | ByX,QX,B; = Hy z + BROGE
Residual c—k—1|Erg=YV!Y -H -H, | =
Total (Between) | ¢ YVY.
Total Within n—c Epr=YY-YVY )
Total n Y'Y

For the MR model, we obtained a “best” subset of x variables to simultaneous predict
all y variables. If each x variable has a low correlation with a y variable we would want
to remove the y variable from the set of y variables. To ensure that all y and x variables
should remain in the model, one may reverse the roles of x and y and perform a backward
elimination procedure on y given the x set to delete y variables.

Having fit a MR model to a data set, one may evaluate the model using a multivariate
lack of fit test when replicates or near replicates exist in the data matrix X, Christensen
(1989). To develop a lack of fit test with replicates (near replicates) suppose the n rows of
X are grouped into i = 1,2, ..., c groups with n; rows per group, 1 < ¢ < n. Forming
replicates of size n; in the observation vectors y; so that y;, = Zln’zl yi/ni, we have the
multivariate weighted least squares (MWLS) model is

cxXp cXqgxp  cXp
cov(y;)=V®ZX, V=diag[l/n] (4.2.52)
E(Y.)=XB

Vectorizing the MWLS model, it is easily shown that the BLUE of B is

B= (X’V*lx)_1 X'vV-ly

R (4.2.53)
covlvecB)] = T ® (X/V_lx)
and that an unbiased estimate of ¥ is
Sk =Eg/(c—k—1)=YV'Y —BXVI'X)B/(c—k—1)
where g = k + 1.
Partitioning X = [Xj, X»] where X; contains the variables x1, x2, ..., X;; included in

the model and X the excluded variables, one may test Hy : By = 0. Letting Q = vl —
v-1X, (X’IV_IXl)_1 X V=1, the MANOVA Table 4.2.2 is established for testing H or
H :B =0.

From Table 4.2.2, we see that if By = 0 that the sum of squares and products matrix as-
sociated with B, may be combined with the residual error matrix to obtain a better estimate
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of ¥. Adding H; to Eg we obtain the lack of fit error matrix E; ¢ with degrees of freedom
¢ —m — 1. Another estimate of ¥ independent of B, = 0is Epg/ (n — ¢) which is called
the pure error matrix. Finally, we can write the pooled error matrix Eas E = Epg + ErF
with degrees of freedom (n — ¢) 4+ (¢ —m — 1) = n —m — 1. The multivariate lack of fit
test for the MR model compares the independent matrices E; r with Epg by solving the
eigenequation

|[Err —AEpg| =0 (4.2.54)

where v, = ¢ —m — 1 and v, = n — ¢. We concluded that B, = 0 if the lack of fit test is
not significant so that the variables in the MR model adequately account for the variables
in the matrix Y. Again, one may use any of the criteria to evaluate fit. The parameters for
the test criteria are s = min (vy, p), M = [lvy, —p | —1]/2and N = (v, — p —1) /2
for the other criteria.

e. Simultaneous Confidence Sets for a New Observation yyew and the
Elements of B

Having fit a MR model to a data set, one often wants to predict the value of a new ob-
servation vector Y., where E (Yhe,) = XjewB. Since ¥, = X, B and assuming the
coV (Ynew) = X where y/.,, is independent of the data matrix Y, one can obtain a predic-

tion interval for y.,, based on the distribution of (Ynew — ¥new)’- The

coV (Ynew — Ynew) = cov (y;lew) + cov (’f;lew)
=¥ + cov(X,,,B)

-1

=% + Kpew (X'X) ™ Xpew) T
—1

= (1 4 Xe (X'X) ™ Xpew) =

(4.2.55)

If y,.,, and the rows of Y are MVN, then ypew — View 18 MVN and independent of E
-1 _ —~ —~ .
so that (1 + x| (X/X) Xnew) ! (Ynew — ¥new) (Ynew — ¥new)” ~ W, (1, £, 0). Using

new

Definition 3.5.3,

(leew _/y\new)/ S_l (leew _/y\new) Ve — P + 1
(1 + Xy XX) ™ Xnew) p

~F(p,ve—p+1) (4.2.56)
Hence, a 100 (1 — o) % prediction ellipsoid for ypey is all vectors that satisfy the inequality

(y\new - Ynew)/ s! (y\new — Ynew)
pv 1— -1
S A— pe_ pF T v = D (14, (X'X) ™ Xnew)

However, the practical usefulness of the ellipsoid is of limited value for p > 2. In-
stead we consider all linear combinations of a’ypew. Using the Cauchy-Schwarz inequality
(Problem 11, Section 2.6), it is easily established that the

m;lix [a/ (Fnew — ynew)]2

7 < (Ynew — Ynew)' s (Ynew — Ynew)
a’Sa
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Hence, the
max | @' (ynew — Ynew) | :|
P| a <c|>1—-«
[ va'Sa ?
for

_ —1
2= pueF ™ (p,ve — p+ 1) (1 + Xpoy (X'X) ™ Xnew)/ (ve — p + 1)

Thus, 100 (1 — ) % simultaneous confidence intervals for linear combination of a'y,ew
for arbitrary a is

a'Vnew — CoVa' 52 < a'Ynew < a'Vnew + coVa'Sa (4.2.57)
Selecting a’ = [0,1,...,1;,0,...,0], a confidence interval for the i™ variable within

Ynew 18 €asily obtained. For a few comparisons, the intervals may be considerably larger
than 1 — a. Replacing Ypew With E (¥), Ynew With E (y) and 1 + X/ (X/ X)_1 Xpew With

new
X (X’ X)_l X, one may use (4.2.57) to establish simultaneous confidence intervals for the
mean response vector.

In addition to establishing confidence intervals for a new observation or the mean re-
sponse vector, one often needs to establish confidence intervals for the elements in the
parameter matrix B following a test of the form CBM = 0. Roy and Bose (1953) extended
Scheffé’s result to the MR model. Letting V = cov(vec ﬁ) =2XQ® (X’ X)_l , they showed
using the Cauchy-Schwarz inequality, that the

o

P{lvec(B — B)I'V ! vec(B — B)} < 1”i99a S (4.2.58)

where 6%(s, M, N) is the upper « critical value for the Roy’s largest root criterion used
to reject the null hypotheses. That is, A1 is the largest root of [H— AE| = 0 and 6] =
A1/ (1 + Xp) is Roy’s largest root criterion for the test CBM = 0. Or one may use the
largest root criterion where A% is the upper « critical value for A;, Then, 100 (1 — @) %
simultaneous confidence intervals for parametric functions v = ¢/Bm have the general
structure

¢Bm—c,6; <Y< Bm+ o5y (4.2.59)
where
6\127[ = (m'Sm) ¢ (X’X)71 c
2 =00 (1 —0%) = vA®
S=E/v,
Letting U%, UY = Toz’ «/Ve and V* represent the upper o critical values for the other

criteria to test CBM = 0, the critical constants in (4.2.59) following Gabriel (1968) are
represented as follows
(a) Wilks
ci =v.[(1 —=U%/U*] (4.2.60)
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(b) Bartlett-Nanda-Pillai (BNP)
cg = velV/(1 = V)]
(c) Bartlett-Lawley-Hotelling (BLH)

ng = UeUg = Toz,a
(d) Roy
e =0, [6%/(1 — 6%)] = vA®

Alternatively, using Theorem 3.5.1, one may use the F distribution to approximate the exact
critical values. For Roy’s criterion,

2 o U1 l—«
Cy RV | ———— | F (v1, Ve — V1 + ) (4.2.61)
Ve — VU1 + Up

where v; = max (vp,, p). For the Bartlett-Lawley-Hotelling (BLH) criterion,

2~ v, [ﬂ] FI" (u), m) (4.2.62)
v2

where v = s @M + s+ 1) and v = 2(sN + 1). For the Bartlett-Nanda-Pillai (BNP)

criterion, we relate V¢ to an F distribution as follows

Ve = <&Fl_“(v1, vz)) / <1 + ARty vz))
v v2

where vi = s QM + s + 1) and v) = s (2N + s + 1) . Then the critical constant becomes
e m v, [V/(1 = V)] (4.2.63)

To find the upper critical value for Wilks’ test criterion under the null hypothesis, one
should use the tables developed by Wall (1968). Or, one may use a chi-square approxima-
tion to estimate the upper critical value for U%. All the criteria are equal when s = 1.

The procedure outlined here, as in the test of location, is very conservative for obtaining
simultaneous confidence intervals for each of the elements 33 elemts 8 in the parame-
ter matrix B. With the rejection of the overall test, on may again use protected t-tests
to evaluate the significance of each element of the matrix B and construct approximate
100(1 — @)% simultaneous confidence intervals for each element again using the entries in
the Appendix, Table V. If one is only interested in individual elements of B, a FIT proce-
dure is preferred, Schmidhammer (1982). The FIT procedure is approximated in SAS using
PROC MULTTEST, Westfall and Young (1993).

f. Random X Matrix and Model Validation: Mean Squared Error of
Prediction in Multivariate Regression

In our discussion of the multivariate regression model, we have been primarily concerned
with the development of a linear model to establish the linear relationship between the
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matrix of dependent variables Y and the matrix of fixed independent variables X. The
matrix of estimated regression coefficients B was obtained to estimate the population mul-
tivariate linear regression function defined using the matrix of coefficients B. The es-
timation and hypothesis testing process was used to help understand and establish the
linear relationship between the random vector variable Y and the vector of fixed vari-
ables X in the population. The modeling process involved finding the population form
of the linear relationship. In many multivariate regression applications, as in univariate
multiple linear regression, the independent variables are random and not fixed. For this
situation, we now assume that the joint distribution of the vector of random variables
Z=Y X1 =[Y,Ya....Y,, X1, X2, ..., X] follows a multivariate normal distribu-
tion, Z ~ N1 (., X;) where the mean vector and covariance matrix have the following
structure
Ry yy By
", = , X = (4.2.64)
Ky ny x

The model with random X is sometimes called the correlation or structural model. In mul-
tiple linear regression and correlation models, interest is centered on estimating the popu-
lation squared multiple correlation coefficient, p2. The multivariate correlation model is
discussed in more detail in Chapter 8 when we discuss canonical correlation analysis. Us-
ing Theorem 3.3.2, property (5), the conditional expectation of Y given the random vector
variable X is
EYX=% =p,+ 2,2 (x— n)
=y — Sy Sy ) + Sy DX (4.2.65)
= Bo +Bix

And, the covariance matrix of the random vector Y given X is

cov(YX=x) =%, — 5,28y =Ty, = 3 (4.2.66)
Under multivariate normality, the maximum likelihood estimators of the population param-
eters B, Bi.and X are
0 =¥~ S;xSy Sk
1 =S8./Ssy (4.2.67)
S = (n— 1)(Syy — $,,S7!8,,)/n

=) =)

)

where the matrices S;; are formed using deviations about the mean vectors as in (3.3.3).
Thus, to obtain the unbiased estimate for the covariance matrix ¥, one may use the ma-
trix S, = ny /(n — 1) to correct for the bias. An alternative, minimal variance unbiased
REML estimate for the covariance matrix X is to use the matrix Sy, = E/(n — q) where
q = k+ 1 as calculated in the multivariate regression model. From (4.2.67), we see that the
ordinary least squares estimate or BLUE of the model parameters are identical to the max-
imum likelihood (ML) estimate and that an unbiased estimate for the covariance matrix is
easily obtained by rescaling the ML estimate for . This result implies that if we assume
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that the vector Z follows a multivariate normal distribution, then all estimates and tests for
the multivariate regression model conditioned on the independent variables have the same
formulation when one considers the matrix of independent variables to be random. How-
ever, because the distribution of the columns of the matrix B do no follow a multivariate
normal distribution when the matrix X is random, power calculations for fixed X and ran-
dom X are not the same. Sampson (1974) discusses this problem in some detail for both
the univariate multiple regression model and the multivariate regression model. We discuss
power calculations in Section 4.17 for only the fixed X case. Gatsonis and Sampson (1989)
have developed tables for sample size calculations and power for the multiple linear regres-
sion model for random independent variables. They show that the difference in power and
sample size assuming a fixed variable model when they are really random is very small.
They recommend that if one employs the fixed model approach in multiple linear regres-
sion when the variables are really random that the sample sizes should be increased by only
five observations if the number of independent variables is less than ten; otherwise, the dif-
ference can be ignored. Finally, the maximum likelihood estimates for the mean vector u,
and covariance matrix X, for the parameters in (4.2.64) follow

ol

_ o (| S S
R = , Y= »
y Sxy Sxx

Another goal in the development of either a univariate or multivariate regression model is
that of model validation for prediction. That is, one is interested in evaluating how well the
model developed from the sample, often called the calibration, training, or model-building
sample predicts future observations in a new sample called the validation sample. In model
validation, one is investigating how well the parameter estimates obtained in the model
development phase of the study may be used to predict a set of new observations. Model
validation for univariate and multivariate models is a complex process which may involve
collecting a new data set, a holdout sample obtained by some a priori data splitting method
or by an empirical strategy sometimes referred to as double cross-validation, Lindsay and
Ehrenberg (1993). In multiple linear regression, the square of the population multiple cor-
relation coefficient, p2, is used to measure the degree of linear relationship between the
dependent variable and the population predicted value of the dependent variables, 8'X. It
represents the square of the maximum correlation between the dependent variable and the
population analogue of Y. In some sense, the square of the multiple correlation coefficient
is evaluating “model” precision. To evaluate predictive precision, one is interested in how
well the parameter estimates developed from the calibration sample predict future observa-
tions, usually in a validation sample. One estimate of predictive precision in multiple linear
regression is the squared zero-order Pearson product-moment correlation between the fitted
values obtained by using the estimates from the calibration sample with the observations
in the validation sample, (p%), Browne (1975a). The square of the sample coefficient of
determination, Rczl, is an estimate of p2 and not pf. Cotter and Raju (1982) show that Rg
generally over estimates p2. An estimate of p2, sometimes called the “shruken” R-squared
estimate and denoted by R? has been developed by Browne (1975a) for the multiple linear
regression model with a random matrix of predictors. We discuss precision estimates base
upon correlations in Chapter 8. For the multivariate regression model, prediction preci-

(4.2.68)
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sion using correlations is more complicated since it involves canonical correlation analysis
discussed in Chapter 8. Raju et al. (1997) review many formula developed for evaluating
predictive precision for multiple linear regression models.

An alternative, but not equivalent measure of predictive precision is to use the mean
squared error of prediction, Stein (1960) and Browne (1975b). In multiple linear regression
the mean square error (MSE) of prediction is defined as MSEP = E [(y—?(xlﬁ)z], the ex-
pected squared difference between the observation vector (“parameter”) and its predicted
value (“estimator”). To develop a formula for predictive precision for the multivariate re-
gression model, suppose we consider a single future observation y,., and that we are
interested determining how well the linear prediction equation y = x'B obtained using the
calibration sample predicts the future observation yy,, for a new vector of independent
variables. Given multivariate normality, the estimators }30 and B1 in (4.2.67) minimize the
sample mean square error matrix defined by

> (vi — Bo — Bix)(yi — By — B\x)) /n (4.2.69)
i=1

Furthermore, for B = p, — Xy, Ex_xl I, and B/1 =Xy E;Xl in (4.2.65), the expected mean
square error matrix M where
M= E(y - Bo — Bix)(yi — Bo — B1%)’
+ By — T 2 By
+(Bo — iy + B (Bo — iy + By
+ B - T (Br) (B) — D

(4.2.70)

xx)

is minimized. Thus, to evaluate how well a multivariate prediction equation estimates a new
observation y,.,, given a vector of independent variables x, one may use the mean square
error matrix M with the parameters estimated from the calibration sample; this matrix is
the mean squared error matrix for prediction Q defined in (4.2.71) which may be used
to evaluate multivariate predictive precision. The mean square error matrix of predictive
precision for the multivariate regression model is

Q=Ey—By-Bxy—By-Bx
= (Zyy — By T Zxy)

P <, _ ~ (4.2.71)
+(ﬂ0_ﬂy_B "l'x)(ﬂo_ ‘_Blﬂ’x)
+B] — 2, ) (B B — Ty 2
Following Browne (1975b), one may show that the expected error of prediction is
A=EQ) =%, (n+ 1 —2)/n(n —k—2) (4.2.72)

where the covariance matrix Xy, = Xy — Xy X x_xl Xy is the matrix of partial variances
and covariances for the random variable Y given X = x. The corresponding value for the
expected value of Q, denoted as d> by Browne (1975b) for the multiple linear regression
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model with random X, is 82 = E(d?) = o%(n + 1)(n — 2)/n(n — k —2). Thus A is a
generalization of 8.

In investigating 82 for the random multiple linear regression model, Browne (1975b)
shows that the value of §2 tends to decrease, stabilize, and then increase as the number of
predictor variables k increases. Thus, when the calibration sample is small one wants to use
a limited number of predictor variables. The situation is more complicated for the random
multivariate regression model since we have an expected error of prediction matrix. Recall
that if the elements of the determinant of the matrix of partial variances and covariances
of the Xy, are large, one may usually expect that the determinant of the matrix to also
be large; however this is not always the case. To obtain a bounded measure of generalized
variance, one may divide the determinant of Xy, by the product of its diagonal elements.
Letting o;; represent the partial variances on the diagonal of the covariance matrix Xy,
the

p
0 < 1Byl < [ o (4.2.73)
i=1
and we have that the
| Zy)xl
17)7‘)6 = [Pyl 4.2.74)
i=19ii

where Py, is the population matrix of partial correlations corresponding to the matrix of
partial variances and covariances in Xy|,. Using (4.2.73), we have that 0 < |PW|2 <1.

To estimate A, we use the minimum variance unbiased estimator for X, from the cali-
bration sample. Then an unbiased estimator of A is

~ (n+1)n—2)
A“_Sy'x<<n—k—1)<n—k—2>)

Where§y|x =E/(n —k — 1) = E, is the REML estimate of Xy, for ¢ = k — 1 variables.
Thus, A, may also be used to select variables in multivariate regression models. However
A, it is not an unbiased estimate of the matrix Q. Over all calibration samples, one might
expect the entire estimation process to be unbiased in that the £ (|KC| — Q) = 0. Asan
exact estimate of the mean square error of prediction using only the calibration sample, one
may calculate the determinant of the matrix Sy, since

(4.2.75)

[Acl
( (n+1)(n-2) )”

=[Syl (4.2.76)
(n—k—1)(n—k—-2)

Using (4.2.74) with population matrices replaced by their corresponding sample estimates,
a bounded measure of the mean square error of predictionis 0 < Ry, |> < 1. Using results
developed by Ogasawara (1998), one may construct an asymptotic confidence interval for
this index of precision or consider other scalar functions of ZC. However, the matrix of
interest is not £(Q) = A, but Q. Furthermore, the value of the determinant of Ry, is zero
if any eigenvalue of the matrix is near zero so that the determinant may not be a good
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estimate of the expected mean square error of prediction. To obtain an estimate of the
matrix Q, a validation sample with m = n observations may be used. Then an unbiased
estimate of Q is Q,where

Q=Y. (vi — Bo — Bix)(yi — By — Bix;) /m (4.2.77)

i=1

Now, one may compare the |A.| with the |Q,| to evaluate predictive precision. If a valida-

tion sample is not available, one might estimate the predictive precision matrix by holding
out one of the original observations each time to obtain a MPRESS estimate for Q.. How-
ever, the determinant of the MPRESS estimator is always larger than the determinant of the
calibration sample estimate since we are always excluding an observation.

In developing a multivariate linear regression model using a calibration sample and
evaluating the predictability of the model using the validation sample, we are evaluating
overall predictive “fit”. The simple ratio of the squares of the Euclidean norms defined as
1 — |QxI?/ ||ZC||2 may also be used as a measure of overall multivariate predictive pre-
cision. It has the familiar coefficient of determination form. The most appropriate measure
of predictive precision using the mean square error criterion for the multivariate regression
model requires additional study, Breiman and Friedman (1997).

g. [Exogeniety in Regression

The concept of exogeniety arises in regression models when both the dependent (endoge-
nous) variables and the independent (exogeneous) variables are jointly defined and random.
This occurs in path analysis, simultaneous equation, models discussed in Chapter 10. In
regression models, the dependent variable is endogenous since it is determined by the re-
gression function. Whether or not the independent variables are exogeneous depends upon
whether or not the variable can be assumed given without loss of information. This de-
pends on the parameters of interest in the system. While joint multivariate normality of the
dependent and independent variables is a necessary condition for the independent variable
to be exogeneous, the sufficient condition is a concept known as weak exogeniety. Weak
exogeniety ensures that estimation and inference for the model parameters (called efficient
inference in the econometric literature) may be based upon the conditional density of the
dependent variable Y given the independent variable X = x (rather than the joint density)
without loss of information. Engle, Hendry, and Richard (1893) define a set of variables x
in a model to be weakly exogenous if the full model can be written in terms of a marginal
density function for X times a conditional density function for Y|X = x such that the esti-
mation of the parameters of the conditional distribution is no less efficient than estimation
of the all the parameters in the joint density. This will be the case if none of the parameters
in the conditional distribution appears in the marginal distribution for x. That is, the param-
eters in the density function for X may be estimated separately, if desired, which implies
that the marginal density can be assumed given. More will be said about this in Chapter 10,
however, the important thing to notice from this discussion is that merely saying that the
variables in a model are exogeneous does not necessary make them exogeneous.
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4.3 Multivariate Regression Example

To illustrate the general method of multivariate regression analysis, data provided by Dr.
William D. Rohwer of the University of California at Berkeley are analyzed. The data are
shown in Table 4.3.1 and contained in the file Rohwer.dat.

The data represent a sample of 32 kindergarten students from an upper-class, white, res-
idential school (Gr). Rohwer was interested in determining how well data from a set of
paired-associate (PA), learning-proficiency tests may be used to predict the children’s per-
formance on three standardized tests (Peabody Picture Vocabulary Test; PPVT-y;, Raven
Progressive Matrices Test; RPMT-y,, and a Student Achievement Test, SAT-y3). The five
PA learning proficiency tasks represent the sum of the number of items correct out of 20
(on two exposures). The tasks involved prompts to facilitate learning. The five PA word
prompts involved xj-named (N), x»-still (S), x3-named action (NA), x4-named still (NS)
and xs-sentence still (SS) prompts. The SAS code for the analysis is included in program
m4_3_1.sas.

The primary statistical procedure for fitting univariate and multivariate regression models
to data in SAS is PROC REG. While the procedure may be used to fit a multivariate model
to a data set, it is designed for multiple linear regression. All model selection methods,
residual plots, and scatter plots are performed a variable at a time. No provision has yet been
made for multivariate selection criteria, multivariate measures of association, multivariate
measures of model fit, or multivariate prediction intervals. Researchers must write their
own code using PROC IML.

When fitting a multivariate linear regression model, one is usually interested in finding a
set of independent variables that jointly predict the independent set. Because some subset
of independent variables may predict an independent variable better than others, the MR
model may overfit or underfit a given independent variable. To avoid this, one may consider
using a SUR model discussed in Chapter 5.

When analyzing a multivariate data set using SAS, one usually begins by fitting the full
model and investigates residual plots for each variable, Q-Q plots for each variable, and
multivariate Q-Q plots. We included the multinorm.sas macro into the program to produce
a multivariate chi-square Q-Q plot of the residuals for the full model. The residuals are also
output to an external file (res.dat) so that one may create a Beta Q-Q plot of the residuals.
The plots are used to assess normality and whether or not there are outliers in the data set.
When fitting the full model, the residuals for yl = PPVT and y3 = SAT appear normal;
however, y2 = RPMT may be skewed right. Even though the second variable is slightly
skewed, the chi-square Q-Q plot represents a straight line, thus indicating that the data
appear MVN. Mardia’s tests of skewness and Kurtosis are also nonsignificant. Finally, the
univariate Q-Q plots and residual plots do not indicate the presence of outliers.

Calculating Cook’s distance using formula (4.2.30), the largest value, C; = 0.85, does
not indicate that the 5™ observation is influential. The construction of logarithm leverage
plots for evaluating the influence of groups of observation are discussed by Barrett and
Ling (1992). To evaluate the influence of a multivariate observation on each row of B oron
the cov(vec ﬁ), one may calculate (4.2.33) and (4.2.35) by writing code using PROC IML.

Having determined that the data are well behaved, we next move to the model refine-
ment phase by trying to reduce the set of independent variables needed for prediction. For



TABLE 4.3.1. Rohwer Dataset

4.3 Multivariate Regression Example

PPVT RPMT SAT Gr N S NS NA SS
68 15 24 1 0 10 8§ 21 22
82 11 8 1 7 3 21 28 21
82 13 88 17 9 17 31 30
91 18 82 1 6 11 16 27 25
82 13 90 1 20 7 21 28 16

100 15 77 1 4 11 18 32 29
100 13 58 1 6 7 17 26 23
96 12 14 15 2 11 22 23
63 10 1 1 35 14 24 20
91 18 98 1 16 12 16 27 30
87 10 8 1 5 3 17 25 24
105 21 88 1 2 11 10 26 22
87 14 4 1 1 4 14 25 19
76 16 14 1 11 5 18 27 22
66 14 38 1 0 O 3 16 11
74 15 4 1 5 8 11 12 15
68 13 64 1 1 6 19 28 23
98 16 88 1 1 9 12 30 18
63 15 14 1 0 13 13 19 16
94 16 99 1 4 6 14 27 19
82 18 50 1 4 5 16 21 24
89 15 36 1 1 6 15 23 128
80 19 88 1 5 8 14 25 24
61 11 14 1 4 5 11 16 22
102 20 24 1 5 7 17 26 15
71 12 24 1 9 4 8 16 14
102 16 24 1 4 17 21 27 31
96 13 50 1 5 8 20 28 26
55 16 8 1 4 7 19 20 13
96 18 98 1 4 7 10 23 19
74 15 98 1 2 6 14 25 17
78 19 50 1 5 10 18 27 26

213
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this phase, we depend on univariate selection methods in SAS, e.g. C,-plots and stepwise
methods. We combine univariate methods with multivariate tests of hypotheses regarding
the elements of B using MTEST statements. The MTEST statements are testing that the
regression coefficients associated with of all independent variables are zero for the set of
dependent variables simultaneously by separating the independent variables by commas.
When a single variable is included in an MTEST statement, the MTEST is used to test that
all coefficients for the variable are zero for each dependent variable in the model. We may
also test that subsets of the independent variables are zero. To include the intercept in a test,
the variable name INTERCEPT must be included in the MTEST statement. Reviewing the
multiple regression equations for each variable, the C, plots, and the backward elimination
output one is unsure about which variables jointly prediction the set of dependent variables.
Variable NA is significant in predicting PPVT, S is significant in predicting RPMT, and the
variables N, NS, and NA are critical in the prediction of SAT. Only the variable SS should
be excluded from the model based upon the univariate tests. However, the multivariate tests
seem to support retaining only the variables x2, x3 and x4 (S, NS, and NA). The multivari-
ate MTEST with the label N_SS indicates that both independent variable xjand x5 (N, SS)
are zero in the population. Thus, we are led to fit the reduced model which only includes
the variables S, NS, and NA.

Fitting the reduced model, the overall measure of association as calculated by n* defined
in (4.2.39) indicates that 62% of the variation in the dependent set is accounted for by the
three independent variables: S, NS and NA. Using the full model, only 70% of the variation
is explained. The parameter matrix B for the reduced model follows.

41.695  12.357 —44.093 (Intercept)
B 0.546 0432 2390 (S)
= | —0286 —0.145 —4.069 (NS)
1.7107  0.066  5.487 (NA)

Given B for the reduced model, one may test the hypothesis H, : B=0, H; : B] =
0, and that a row vector of B is simultaneously zero for all dependent variables, H; :
B; = 0’ among others using the MTEST statement in SAS as illustrated in the program
m4_3_1.sas. While the tests of H; are exact, since s = 1 for these tests, this is not the
case when testing H, or H since s > 2. For these tests s = 3. The test that By = 0
is a test of the model or the test of no regression and is labeled B1 in the output. Because
s = 3 for this test, the multivariate criteria are not equivalent and no F approximation is
exact. However, all three test criteria indicate that B; # 0. Following rejection of any null
hypothesis regarding the elements of the parameter matrix B, one may use (4.2.59) to obtain
simultaneous confidence intervals for all parametric functions ¥ = ¢/Bm. For the test
H; : By = 0, the parametric functions have the form 1y = ¢/Bym. There are 9 elements in
the parameter matrix B;. If one is only interested in constructing simultaneous confidence
intervals for these elements, formula (4.2.49) tends to generate very wide intervals since it
is designed to be used for all bi-linear combinations of the elements of the parameter matrix
associated with the overall test and not just a few elements. Because PROC REG in SAS
does not generate the confidence sets for parametric functions v, PROC IML is used. To
illustrate the procedure, a simultaneous confidence interval for 84, in the matrix B obtained
following the test of H; by using ¢/ = [(0,0,0, 1], m’ = [0, 0, 1] is illustrated. Using
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a = 0.05, the approximate critical values for the Roy, BLH, and BNP criteria are 2.97,
4.53, and 5.60, respectively. Intervals for other elements of B; may be obtained by selecting
other values for ¢ and m. The approximate simultaneous 95% confidence interval for 8,
as calculated in the program using the upper bound of the F statistic is (1.5245, 9.4505).
While this interval does not include zero, recall that the interval is a lower bound for the
true interval and must be used with caution. The intervals using the other criteria are more
near their actual values using the F approximations. Using any of the planned comparison
procedures for nine intervals, one finds them to be very near Roy’s lower bound, for this
example. The critical constant for the multivariate t is about 2.98 for the Type I error rate
o = 0.05, C =9 comparisons and v, = 28.

Continuing with our example, Rohwer’s data are reanalyzed using the multivariate for-
ward stepwise selection method and Wilks’ A criterion, the C; criterion defined in (4.2.46),
the corrected information criteria AICy,, and H Q1C4 defined in (4.2.48) and (4.2.49), and
the uncorrected criteria: AICy, BICy, and H Q1C, using program MulSubSel.sas written
by Dr. Ali A. Al-Subaihi while he was a doctoral student in the Research Methodology
program at the University of Pittsburgh. This program is designed to select the best subset
of variables simultaneously for all dependent variables.

The stepwise (STEPWISE), C, (CP) and H Q1C,,, (H Q) procedures selected variables
1,2,3,4(N,S, NS, NA) while AICL,q (AICC) selected only variables 2 and 4 (S, N S).
The uncorrected criteria AIC,(AIC), BIC,(BIC), HQIC,; (HQIC) only selected one
variable, 4(N A). All methods excluded the fifth variable SS. For this example, the num-
ber of independent variable is only five and the correlations between the dependent and
independent variables are in the moderate range. A Monte Carlo study conducted by Dr.
Al-Subaihi indicates that the H Q1 C,,, criterion tends to find the correct multivariate model
or to moderately overfit the correct model when the number of variables is not too large and
all correlations have moderate values. The AIC,, also frequently finds the correct model,
but tends to underfit more often. Because of these problems, he proposed using the reduced
rank regression (RRR) model for variable selection. The RRR model is discussed briefly in
Chapter 8.

Having found a multivariate regression equation using the calibration sample, as an es-
timate of the expected mean square error of prediction one may use the determinant of
the sample covariance matrix Sy|,. While we compute its value for the example, to give
meaning to this value, one must obtain a corresponding estimate for a validation sample.

Exercises 4.3
1. Using the data set res.dat for the Rohwer data, create a Beta Q-Q plot for the residu-
als. Compare the plot obtained with the chi-square Q-Q plot. What do you observe.

2. For the observation yj., = [70,20,25] find a 95% confidence interval for each
element of yyew using (4.2.57).

3. Use (4.2.58) to obtain simultaneous confidence intervals for the elements in the re-
duced model parameter matrix Bj.
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4. Rohwer collected data identical to the data in Table 4.3.1 for kindergarten students

in a low-socioeconomic-status area The data for the n = 37 student are provided in
table 4.3.2. Does the model developed for the upper-class students adequately predict
the performance for the low-socioeconomic-status students? Discuss your findings.

. For the n = 37 students in Table 4.3.2, find the “best” multivariate regression equa-

tion and simultaneous confidence intervals for the parameter matrix B.

(a) Verify that the data are approximately multivariate normal.

(b) Fit a full model to the data.

(c) Find a best subset of the independent variables.

(d) Obtain confidence intervals for the elements in B for the best subset.

(e) Calculate n? for the final equation.

6. To evaluate the performance of the C; criterion given in (4.2.46), Sparks et al. (1983)

analyzed 25 samples of tobacco leaf for organic and inorganic chemical constituents.
The dependent variates considered are defined as follows.

Y;: Rate of cigarette burn in inches per 1000 seconds
Y;,: Percent sugar in the leaf

Y3: Percent nicotine
The fixed independent variates are defined as follows.

X1: Percentage of nitrogen
Xo:  Percentage of chlorine
X3: Percentage of potassim
X4: Percentage of Phosphorus
Xs:  Percentage of calculm

Xe: Percentage of Magnesium

The data are given in the file tobacco.sas and organized as [Y1, Y2, Y3, X1, Xo, ...,
Xs]. Use PROC REG and the program MulSubSel.sas to find the best subset of in-
dependent variables. Write up your findings in detail by creating a technical report
of your results. Include in your report the evaluation of multivariate normality, eval-
uation of outliers, model selection criteria, and model validation using data splitting
or a holdout procedure.



TABLE 4.3.2. Rohwer Data for Low SES Area

4.3 Multivariate Regression Example

SAT PPVT RPMT N S NS NA SS
49 48 8 I 2 6 12 16
47 76 13 5 14 14 30 27
11 40 13 0 10 21 16 16

9 52 9 0 2 5 17 8
69 63 5 2 7 11 26 17
35 82 4 2 15 21 34 25

6 71 210 1 20 23 18

8 68 &8 0O 0 10 19 14
49 74 11 9 9 7 16 13

8 70 I5 3 2 21 26 25
47 70 I5 8 16 15 35 24

6 61 11 5 4 7 15 14
14 54 12 1 12 13 27 21
30 35 13 2 1 12 20 17

4 54 10 1 3 12 26 22
24 40 4 0 2 5 14 8
19 66 13 7 12 21 35 27
45 54 10 0 6 6 14 16
22 64 14 12 8 19 27 26
16 47 16 3 9 15 18 10
32 48 16 0 7 9 14 18
37 52 4 4 6 20 26 26
47 74 9 4 9 14 23 23

5 57 12 0 2 4 11 8

6 57 o o 1 16 15 17
60 80 11 38 18 28 21
58 78 13 1 18 19 34 23

6 70 16 2 11 9 23 11
16 47 14 0 10 7 12 8
45 94 9 & 10 28 32 32

9 63 11 2 12 5 25 14
69 76 16 7 11 18 29 21
35 59 11 2 5 10 23 24
19 55 8 9 1 14 19 12
58 74 14 1 0 10 18 18
58 71 17 6 4 23 31 26
79 54 14 0 6 6 15 14
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4.4  One-Way MANOVA and MANCOVA

a. One-Way MANOVA

The one-way MANOVA model allows one to compare the means of several independent
normally distributed populations. For this design, n; subjects are randomly assigned to
one of k treatments and p dependent response measures are obtained on each subject. The
response vectors have the general form

Yi; = [yijts yij2s - Vijp] (4.4.1)
werei =1,2,...,kand j = 1,2, ..., n;. Furthermore, we assume that
yij ~ IN, (1;, =) (4.4.2)

so that the observations are MVN with independent means and common unknown covari-
ance structure X.
The linear model for the observation vectors y;; has two forms, the full rank (FR) or cell
means model
Yij = K +€j (4.4.3)

and the less than full rank (LFR) overparameterized model
Vij =R+ a; +e; 4.4.4)

For (4.4.3), the parameter matrix for the FR model contains only means

I
)
1y
and for the LFR model,
’L/I L L R
o o1 o1 s Op
qup - : = : . . (446)
o) k1 Q2 kp

sothatg = k + 1 and u;; = p; + ;. The matrix B in the LFR case contain unknown
constants 4 ; and the treatment effects o;;.

Both models have the GLM form Y, xg = [¥ij] = Xi x¢Bg xp + Enxp; however, the
design matrices of zeros and ones are not the same. For the FR model,

1, 0 - 0
0 1, --- 0
Xoxg =Xpr=| . . .| =P (4.4.7)

i=1

0 0 - 1,
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and the r (XFg) = k = g — 1. For the LFR model, the design matrix is
Xy xg = Xrrr = [14, XFRr] (4.4.8)

where n = Zi n; is a vector of n 1’s and the r (Xprr) = k = ¢ — 1 < ¢ is not of full
rank.

When the number of observations in each treatment for the one-way MANOVA model
are equal so that ny = np = ... = n; = r, the LFR design matrix X has a balanced
structure. Letting y; represent the j™ column of Y, the linear model for the j™ variable
becomes

yi=XB; te; j=12,...,p

(4.4.9)
=M1+ Li®1)ej+e

where oz’j = [alj, a2, ..., ozkj] is a vector of k treatment effects, ﬂj is the j‘h column

of B and e; is the j™ column of E. Letting K; represent the Kronecker or direct product
matrices so that Ko = 1; ® 1, and K; = Iy ® 1, with Bp; = n; and B;; = a;, an
alternative univariate structure for the j™ variable in the multivariate one-way model is

vi=Y KiBjj+e j=12...p (4.4.10)
i=0

This model is a special case of the more general representation for the data matrix Y =
[yl, Y2, .0 yp] for balanced designs

m
Y =XB+E= Y KB, +E 4.4.11)
nxp i=0

where K; are known matrices of order n x r; and rank r; and B; are effect matrices of
order r; X p. Form (4.4.11) is used with the analysis of mixed models by Searle, Casella
and McCulloch (1992) and Khuri, Mathew and Sinha (1998). We will use this form of the
model in Chapter 6.

To estimate the parameter matrix B for the FR model, with X defined in (4.4.7), we have

Vi,
/
~ ror—1 < Ya.
Brr = (X X) XY= . (4.4.12)
Vi,
where y; = Zj’: 1 Yij/ni is the sample mean for the ih treatment. Hence, I, =yiisa

vector of sample means. An unbiased estimate of X is

S=Y [I —- X (x'x)"! X’] Y/ (n — k)
. / (4.4.13)
(vij —vi) (yij —vi) /(n —k)

] =1

ﬂM*

i

where v, = n — k.
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To estimate B using the LFR model is more complicated since for X in (4.4.12), (X’X)_l
does not exist and thus, the estimate for B is no longer unique. Using Theorem 2.5.5, a
g-inverse for X'X is

o ym oo 0
xXx)"=| . . (4.4.14)
0 0 - lng
so that
0/
y/
B=(XX)" XY= (4.4.15)

Y.
which, because of the g-inverse selected, is similar to (4.4.15). Observe that the parameter
[ is not estimable.
Extending Theorem 2.6.2 to the one-way MANOVA model, we consider linear paramet-
ric functions ¥ = ¢/Bm such that ¢H = ¢ for H = (X'X)~ X'X and arbitrary vectors m.
Then, estimable functions of ¥ have the general form

k k
Y =¢Bm=m’ (Z i+t oz,-> (4.4.16)
i=1 i=1
and are estimated by

. R k
Y =c¢Bm=m’ (Z tiy,-_> 4.4.17)

i=1
for arbitrary vector t' = [fo, 11, ..., tx]. By (4.4.16), u and the &; are not estimable; how-

ever, all contrasts in the effects vector o; are estimable. Because X (X’ X)_ XX’ is unique
for any g-inverse, the unbiased estimate of X for the FR and LFR models are identical.

For the LFR model, the parameter vector u has no “natural” interpretation. To give mean-
ing to p, and to make it estimable, many texts and computer software packages add side
conditions or restrictions to the rows of B in (4.4.6). This converts a LFR model to a model
of full rank making all parameters estimable. However, depending on the side conditions
chosen, the parameters g and «; have different estimates and hence different interpreta-
tions. For example, if one adds the restriction that the Zi o; = 0, then p is estimated as an
unweighted average of the sample mean vectors y; . If the condition that the Zi nioe; =0
is selected, then u is estimated by a weighted average of the vectors y; . Representing these
two estimates by &, and H,,, respectively, the parameter estimates for u become

k k
w,= yi/k=y. and W, =) nyi./k=Y, (4.4.18)
i=1 i=1

Now u may be interpreted as an overall mean and the effects also become estimable in that

o, =y, —y. or a =Yy, —Yy. 4.4.19)
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depending on the weights (restrictions). Observe that one may not interpret @; unless one
knows the “side conditions” used in the estimation process. This ambiguity about the esti-
mates of model parameters is avoided with either the FR cell means model or the overpa-
rameterized LFR model. Not knowing the side conditions in more complex designs leads
to confusion regarding both parameter estimates and tests of hypotheses.

The SAS procedure GLM allows one to estimate B using either the cell means FR model
or the LFR model. The default model in SAS is the LFR model; to obtain a FR model
the option / NOINT is used on the MODEL statement. To obtain the general form of es-
timable functions for the LFR solution to the MANOVA design, the option / E is used in
the MODEL statement.

The primary hypothesis of interest for the one-way FR MANOVA design is that the k
treatment mean vectors, i;, are equal

For the LFR model, the equivalent hypothesis is the equality of the treatment effects
H:aj=0y=...=a; 4.4.21)

or equivalently that
H:allg; —a; =0 (4.4.22)

for all i # i’. The hypothesis in (4.4.21) is testable if and only if the contrasts ¥ = a; — ;s
are estimable. Using (4.4.21) and (4.4.16), it is easily shown that contrasts in the «; are
estimable so that H in (4.4.21) is testable. This complication is avoided in the FR model
since the u; and contrasts of the u; are estimable. In LFR models, individual «; are not
estimable, only contrasts of the «; are estimable and hence testable. Furthermore, contrasts
of ; do not depend on the g-inverse selected to estimate B.

To test either (4.4.20) or (4.4.21), one must again construct matrices Cand M to trans-
form the overall test of the parameters in B to the general form CBM = 0. The matrices
H and E have the structure given in (3.6.26). If X is not of full rank, (X’ X)~lis replaced
by any g-inverse (X/ X)_. To illustrate, we use a simple example for k = 3 treatments and
p = 3 dependent variables. Then the FR and LFR matrices for B are

M1 M2 H13 ny
Brr = M1 Mo M3 = 1)
H31 H32  M33 | N
or
K1 Mo M3 w (4.4.23)
o a3 o)
B.rr = =
az] o) 0023 o),
| @31 a3 a3z | | oy |
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To test for differences in treatments, the matrix M = I and the contrast matrix C has the
form

1 0 -1 01 0 -1
Crr = or Crpr= (4.4.24)
01 -1 0 0 1 -1

so that in either case, C has full row rank v, = k — 1. When SAS calculates the hypothesis
test matrix H in PROC GLM, it does not evaluate

H = (CBM)' (C (X'X)” C’)_1 (CBM)

directly. Instead, the MANOVA statement can be used with the specification H = TREAT
where the treatment factor name is assigned in the CLASS statement and the hypothesis
test matrix is constructed by employing the reduction procedure discussed in (4.2.18). To
see this, let

"
o B,
1
Brrr=| o |=]| -
2
) B,
i
L %

so that the full model 2, becomes

QL :Y=XB+E
=XiB; +XoB, +E

To testxy = ap = ... = og we set each &; equal to g say so thaty;; = p + oo + €;; =
iy + €;; is the reduced model with design matrix X so that fitting y;; = po + ao + €;;
is equivalent to fitting the model y;; = o + e;;. Thus, to obtain the reduced model from
the full model we may set all «; = 0. Now if all «; = 0 the reduced model is w : Y =

XB; + Eand R B)) = Y'X; (X,Xi)” X,Y = B} (X/X;)By. For the full model €,,
R (B, By) = YX (X'X)” X'Y = B’ (X'X) B so that
H=Hq -H, =R (B2 |B)
= R (B1,B2) — R(By)
=YX (XX)” XY -YX; (X[X1)” X|Y
(4.4.25)

k
= > niyiy;, —nyy.
i=1

!
= 2 ni (yi. —¥.) yi. —5..)

for the one-way MANOVA. The one-way MANOVA table is given in Table 4.4.1.
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TABLE 4.4.1. One-Way MANOVA Table

Source df sscp E (SSCP)
Between k—1 H k—-—1DHX+4+TZX
Within n—k E n—kx
“Total” n—1 H+E

The parameter matrix I" for the FR model is the noncentrality parameter of the Wishart
distribution obtained from H in (4.4.25) by replacing sample estimates with population
parameters. That is,

r= [lf ni (i —w) (i — M)/:| =h

=1

To obtain H and E in SAS for the test of no treatment differences, the following commands
are used for our example with p = 3.

proc glm;

class treat;

FR Model
model yl — y3 = treatment / noint;
manova h = treat/ printe printh;
proc glm;
class treat;

LFR Model

model yl — y3 = treat/e;

manova h = treat / printe printh;

In the MODEL statement the variable names for the dependent variables are yi, y»,
and y3. The name given the independent classification variable is ‘treat’. The PRINTE and
PRINTH options on the MANOVA statement directs SAS to print the hypothesis test matrix
H (the hypothesis SSCP matrix) and the error matrix E (the error SSCP matrix) for the null
hypothesis of no treatment effect. With H and E calculated, the multivariate criteria again
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depend on solving |H — AE| = 0. The parameters for the one-way MANOVA design are

s = min (vy, #) = min (k — 1, p)
M=(u—-v|—-1)2=k—-—p—1)/2 (4.4.26)
N=We—u—-1)2=m—-k—p—-1)/2

whereu =rM)=p, v, =k—1 and v, =n —k.

Because u is not estimable in the LFR model, it is not testable. If there were no treatment
effect, however, one may fit a mean only model to the data, y;; = p-+e;;. Assuming a model
with only a mean, we saw that u is estimated using unweighted or weighted estimates
represented as i, and iL,,. To estimate these parameters in SAS, one would specify Type II1
estimable functions for unweighted estimates or Type I estimable functions for weighted
estimates. While Type I estimates always exist, Type III estimates are only provided with
designs that have no empty cells. Corresponding to these estimable functions are H matrices
and E matrices. There are two types of hypotheses for the mean only model; the Type I
hypothesis is testing Hy,, : p = Y »_;nif; = 0 and the Type III hypotheses is testing
H, :p =YY" p =0.To test these in SAS using PROC GLM, one would specify
h = INTERCEPT on the MANOVA statement and use the HTYPE = n option where
n = lor3. Thus, to perform tests on u in SAS using PROC GLM for the LFR model, one
would have the following statements.

proc glm;
class treat;
LFR Model model y1 — y3 = treat/e;
manova h = treat / printe printh;
manova h = intercept / printe printh htype = 1;
manova h = intercept / printe printh htype = 3;

While PROC GLM uses the g-inverse approach to analyze fixed effect MANOVA and
MANCOVA designs, it provides for other approaches to the analysis of these designs by the
calculation of four types of estimable functions and four types of hypothesis test matrices.
We saw the use of the Type I and Type III options in testing the significance of the inter-
cept. SAS also provides Type IT and Type IV estimates and tests. Goodnight (1978), Searle
(1987), and Littell, Freund and Spector (1991) provide an extensive and detail discussion
of the univariate case while Milliken and Johnson (1992) illustrate the procedures using
many examples. We will discuss the construction of Type IV estimates and associated tests
in Section 4.10 when we discuss nonorthogonal designs.
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Analysis of MANOVA designs is usually performed using full rank models with restric-
tions supplied by the statistical software or input by the user, or by using less than full
rank models. No solution to the analysis of MANOVA designs is perfect. Clearly, fixed
effect designs with an equal number of observations per cell are ideal and easy to analyze;
in the SAS software system PROC ANOVA may be used for such designs. The ANOVA
procedure uses unweighted side conditions to perform the analysis. However, in most real
world applications one does not have an equal number of observations per cell. For these
situations, one has two choices, the FR model or the LFR model. Both approaches have
complications that are not easily addressed. The FR model works best in designs that re-
quire no restrictions on the population cell means. However, as soon as another factor is
introduced into the design restrictions must be added to perform the correct analysis. As
designs become more complex so do the restrictions. We have discussed these approaches
in Timm and Mieczkowski (1997). In this text we will use either the FR cell means model
with no restrictions, or the LFR model.

b. One-Way MANCOVA

Multivariate analysis of covariance (MANCOVA) models are a combination of
MANOVA and MR models. Subjects in the one-way MANCOVA design are randomly
assigned to k treatments and n; vectors with p responses are observed. In addition to the
vector of dependent variables for each subject, a vector of & fixed or random independent
variables, called covariates, are obtained for each subject. These covariates are assumed to
be measured without error, and they are believed to be related to the dependent variables
and to represent a source of variation that has not been controlled for by the study design
to represent a source of variation that has not been controlled in the study. The goal of
having covariates in the model is to reduce the determinant of the error covariance matrix
and hence increase the precision of the design.
For a fixed set of i covariates, the MANCOVA model may be written as

Y=X B+Z I' + E
nxp nxq gxXp  nxh hxp nxp

“[

= A ® 4+ E
nx(q+h) (g+h)xp  nxp

j| +E (4.4.27)

where X is the MANOVA design matrix and Z is the matrix from the MR model containing
h covariates. The MANOVA design matrix X is usually not of full rank, r (X) =r < ¢,
and the matrix Z of covariates is of full rank &, r (Z) = h.

To find © in (4.4.27), we apply property (6) of Theorem 2.5.5 where

X'X X'Z
A'A =
7’X 77
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Then
(A’A) =[ (X?)() H+
X)Xz [ zQz | [-ZXx(XX) .1
I

with Q definedas Q =1 —X (X’ X)_ X', we have

R B (X'X)” X' (Y - ZT)
o= |= (4.4.28)
r (2Qz)” 2/QY

as the least squares estimates of ©.T is unique since Z has full column rank, (Z’ QZ)_ =

(2'Qz) ~! From (4.4.28) observe that the estimate B in the MANOVA model is adjusted by
the covariates multiplied by T'. Thus, in MANCOVA models we are interested in differences
in treatment effects adjusted for covariates. Also observe that the matrix I" is common to all
treatments. This implies that Y and X are linearly related with a common regression matrix
I' across the k treatments. This is a model assumption that may be tested. In addition,
we may test for no association between the dependent variables y and the independent
variables z or that I' = 0. We can also test for differences in adjusted treatment means.

To estimate X given B and F, we define the error matrix for the combined vector (Z) as

YQY  ZQY E,, E,.
E= - (4.4.29)
YQZ ZQZ E, E.

Then, the error matrix for Y given Z is

X'X X'Z X’
Ey. =Y {0 -[X,Z]) Y
7X 7'7 VA
- 4.4.30
= YQY-YQZ (ZQz) 'Z'QY ( )
—=E,, —E, E E;
=YQY-T'(ZQz)T
To obtain an unbiased estimate of X, Ey|; is divided by the r (A) =n —r —h
Syi: =Ey/ (n—r —h) (4.4.31)

The matrix T (Z/ QZ) T = EyZEz_zl E;, is the regression SSCP matrix for the MR model
Y = QZI" + E. Thus, to test H : I' = 0, or that the covariates have no effect on Y, the
hypothesis test matrix is

H=E,E 'E, =T'(2Qz)T (4.4.32)
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where the » (H) = h. The error matrix for the test is defined in (4.4.29). The A criterion
for the test that I’ = 0 is

_ |Eyc| _ [Eyy —E\EEy|
’H + Ey\z‘ Eyy

(4.4.33)

where v, = h and v, = n — r — h. The parameters for the other test criteria are

s = min (vy, p) =min(h, p)
M=(p—vwl-1/2=(p—hl—-1)/2 (4.4.34)
N=@W—-—p-—-1D/2=m—-r—h—p—-1)/2

To test I' = 0 using SAS, one must use the MTEST statement in PROC REG. Using SAS
Version 8, the test may not currently be tested using PROC GLM.

To find a general expression for testing the hypotheses regarding B in the matrix ® is
more complicated. By replacing X in (3.6.26) with the partitioned matrix [X, Z] and finding
a g-inverse, the general structure of the hypothesis test matrix for hypothesis CBM = 0 is

H = (CBM) [C(X'X)™ €'+ C(X'X) X'Z(2Qz)' ZX (XX) ] ' (cBm
(4.4.35)
where v, = r (C) = g. The error matrix is defined in (4.4.29) and v, = n — r — h. An
alternative approach for determining H is to fit a full model (£2,) given in (4.4.26) and
the reduced model under the hypothesis (). Then H = E,, — Eq. Given a matrix H and
the matrix Ey; = Egq,, the test criteria depend on the roots of |[H — AEy;| = 0. The
parameters for testing H : CBM = 0 are

s =min(g, u)
M=(u—-—g|l—1)/2 (4.4.36)
N=m—-r—-—h—g—1)/2

where u = r(M). As in the MR model, Z may be fixed or random.

Critical to the application of the MANCOVA model is the parallelism assumption that
' =Ty = ... =T; = T. To develop a test of parallelism, we consider an I/ group
multivariate intraclass covariance model

Y, X, Z; 0 0 II? E
Y> X 0 7, 0 ! E;
Q: . = . . . I + .
Y, X, 0 0 .- Z : E;
Iy
(n x p) [n x Iq™] [Ig* x p) (n x p)
B
Y = (X, F] [ A } + E
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where ¢* = g + h = k* + 1 so that the matrices I'; vary across the [ treatments. If
H:TW=Inh=...=I''=T (4.4.38)

then (4.4.37) reduces to the MANCOVA model

Y X VA E,
Y> Xa 7, T B T E;
2 Sl=0 ol
Y, Xy Z, E,;
Y = (X, Z] llf + E
Y = A S} + E
nxp nxq* q*xp nxp

To test for parallelism given (4.4.37), we may use (3.6.26). Then we would estimate the
error matrix under 2,, Eq , and define C such that CA = 0. Using this approach,

L, 0 ... —I,
01, - —I,
C = i .
h(I—-1) x hl : : :
0, 0 .- -—-I,

where the » (C) = v, = h (I — 1). Alternatively, H may be calculated as in the MR
model in (4.2.15) for testing Bp = 0. Then H = E, — Eq, . Under w, E,, is defined
in (4.4.29). Hence, we merely have to find Eq,. To find Eq, , we may again use (4.4.29)
with Z replaced by F in (4.437) and v, = n —r(X,F) = n - Iqg* = n —r(X) — Ih.
Alternatively, observe that (4.4.37) represents / independent MANCOVA models so that
T = V4 QiZ,-)*1 Z,Q;Y; where Q; = I — X; (X/X;)~ X[. Pooling across the / groups,

I —_ _~
Eq, = Z(YﬁQiYi -T}(2;QiZ;)T)
=l ) (4.4.39)
=YQY Y. T/ (Z/QZ)T;
i=1

To test for parallelism, or no covariate by treatment interaction, Wilks” A criterion is

_ 1 Eq, | _ By — i T (ZiQiZi) T
| Eq | | Eye |

(4.4.40)

with degrees of freedom vy, = h (I — 1) and v, = n — g — Ih. Other criteria may also be
used.

The one-way MANCOVA model assumes that n; subjects are assigned to k treatments
where the p-variate vector of dependent variables has the FR and LFR linear model struc-
tures

Yij = M + F/Zl'.,' + e (4.4.41)
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or the LFR structure

vij = (m+a;) + Tz + ¢ (4.4.42)

fori =1,2,...,kand j =1,2,...,n;. The vectors z;; are h-vectors of fixed covariates,
I'j x p 1s a matrix of raw regression coefficients and the error vectors e;; ~ IN, (0, X).
As in the MR model, the covariates may also be stochastic or random; estimates and tests
remain the same in either case.

Model (4.4.41) and (4.4.42) are the FR and LFR models, for the one-way MANCOVA
model. As with the MANOVA design, the structure of the parameter matrix A = [112] de-
pends on whether the FR or LFR model is used. The matrix I" is the raw form of the
regression coefficients. Often the covariates are centered by replacing z;; with overall de-
viation scores of the form z;; — z_ where z _ is an unweighted average of the k treatment
means z; . The mean parameter u; or u + o; is estimated by y;, — F’z,-. Or, one may use
the centered adjusted means

vi=+T2. =y T @ —z) (4.4.43)

These means are called adjusted least squares means (LSMEANS) in SAS. Most software
package use the “unweighted” centered adjusted means in that z_ is used in place of Z_
even with unequal sample sizes.

Given multivariate normality, random assignment of n; subjects to k treatments, and ho-
mogeneity of covariance matrices, one often tests the model assumption that the I'; are
equal across the k treatments. This test of parallelism is constructed by evaluating whether
or not there is a significant covariate by treatment interaction present in the design. If this
test is significant, we must use the intraclass multivariate covariance model. For these mod-
els, treatment difference may only be evaluated at specified values of the covariate. When
the test is not significant, one assumes all I'; = I' so that the MANCOVA model is most
appropriate. Given the MANCOVA model, we first test H : I' = 0 using PROC REG.
If this test is not significant this means that the covariates do not reduce the determinant
of ¥ and thus it would be best to analyze the data using a MANOVA model rather than a
MANCOVA model.

If " # 0, we may test for the significance of treatment difference using PROC GLM. In
terms of the model parameters, the test has the same structure as the MANOVA test. The
test written using the FR and LFR models follows.

H:ipp=pry=...=pm (FR)

(4.4.44)
H:a0j=ay=...= 0o (LFR)

The parameter estimates fi; or contrasts in the &; now involve the i covariates and the
matrix I". The estimable functions have the form

k k
v = m’ (Z i+ Z liot,')
’j =l (4.4.45)
v =m' {Z ly, — U (2 — Z..)]}
i=1
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The hypotheses test matrix may be constructed using the reduction procedure.

With the rejection of hypotheses regarding I" or treatment effects, we may again establish
simultaneous confidence sets for estimable functions of H. General expressions for the
covariance matrices follow

cov(vecT) = T ® (Z/QZ)_1
var(¢Tm) = m' Em(¢’ (Z’QZ)_l c)
var(¢Bm) = m’ Tm[¢’ (X'X) ¢ (4.4.46)
+¢ (XX)” XZ(ZQzZ) ' ZX(X'X) ]
cov(¢Bm, cI'm) = —-mXm [c/ (X'X)" XZ(Z QZ)71 c]

where X is estimated by Sy;.

c. Simultaneous Test Procedures (STP) for One-Way MANOVA /
MANCOVA

With the rejection of the overall null hypothesis of treatment differences in either the
MANOVA or MANCOVA designs, one knows there exists at least one parametric func-
tion ¥ = ¢/Bm that is significantly different from zero for some contrast vector ¢ and an
arbitrary vector m. Following the MR model, the 100 (1 — «) % simultaneous confidence
intervals have the general structure

U —caGy <V <V +caby (4.4.47)

where ¥ = ¢ Bm and 3% — var(¢’'Bm) is defined in (4.4.46). The critical constant, 2,

depends on the multivariate criterion used for the overall test of no treatment differences.
For one-way MANOVA/MANCOVA designs, fﬂ\ and 3@ are easy to calculate given the
structure of (X’ X) . This is not the case for more complicated designs. The ESTIMATE
statement in PROC GLM calculates J and 3@ for each variable in the model. Currently,
SAS does not generate simultaneous confidence intervals for ESTIMATE statements. In-
stead, a CONTRAST statement may be constructed to test that H, : ¢; = 0. If the overall
test is rejected, one may evaluate each contrast at the nominal level used for the overall test
to try to locate significant differences in the group means. SAS approximates the signifi-
cance of each contrast using the F distribution. As in the test for evaluating the differences
in means for the two group location problem, these tests are protected F-tests and may
be evaluated using the nominal « level to determine whether any contrast is significant.
To construct simultaneous confidence intervals, (4.2.60) must be used or an appropriate
F-approximation. To evaluate the significance of a vector contrast ¥ = ¢B, one may
also use the approximate protected F approximations calculated in SAS. Again, each test is
evaluated at the nominal level @ when the overall test is rejected.

Instead of performing an overall test of treatment differences and investigating paramet-
ric functions of the form ¥; = ¢;Bm; to locate significant treatment effects, one may, a
priori, only want to investigate ¥; fori = 1, 2, ..., C comparisons. Then, the overall test
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H : CBM = 0 may be replaced by the null hypothesis H = ,'C:1 H; : ¢; = 0 for
i =1,2,...,C. The hypothesis of overall significance is rejected if at least one H; is sig-
nificant. When this is the goal of the study, one may choose from among several single-step
STPs to test the null hypothesis; these include the Bonferroni t, Siddk independent t, and the
Sidék multivariate t (Studentized maximum modulus procedure). These can be used to con-
struct approximate 100 (1 — o) % simultaneous confidence intervals forthei =1,2...,C
contrasts ¥; = cgﬁmi, Fuchs and Sampson (1987) and Hochberg and Tamhane (1987).
Except for the multivariate t intervals, each confidence interval is usually constructed at
some level a* < « to ensure that for all C comparisons the overall level is > 1 — «. Fuchs
and Sampson (1987) show that for C < 30 the Studentized maximum modulus intervals
are “best” in the Neyman sense, the intervals are shortest and have the highest probability
of leading to a significant finding that ¥; # 0.

A procedure which is superior to any of these methods is the stepdown finite intersec-
tion test (FIT) procedure discussed by Krishnaiah (1979) and illustrated in some detail in
Schmidhammer (1982) and Timm (1995). A limitation of the FIT procedure is that one
must specify both the finite, specific comparisons ¥; and the rank order of the importance
of the dependent variables in Y, » , from 1 to p where 1 is the variable of most importance
to the study and p is the variable of least importance. To develop the FIT procedure, we
use the FR “cell means” MR model so that

Y =X B +E
nxp nxkkxp

Z:; (4.4.48)
klxsp I =[] = [wiwa, ... up]
[

where E (Y) = XB and each row of E is MVN with mean 0 and covariance matrix X. For
C specific treatment comparisons, we write the overall hypothesis H as

c
H=(\H where H;:¢¥;=0

i=1 (4.4.49)
¥; = ¢;Bm; i=12,...C
where ¢; = [ci1,¢2, ..., cik] is a contrast vector so that the Z']‘-:] ¢ij = 0. In many

applications, the vectors m; are selected to construct contrasts a variable at a time so that
m; is an indicator vector m; (say) that has a one in the 7™ position and zeros otherwise.
For this case, (4.4.49) may be written as Hi; : 0 = c;.uj = 0. Then, H becomes

p
H:()[(Hij:05=0 (4.4.50)
j=1

i=1

To test the pC hypotheses H;; simultaneously, the FIT principle is used. That is, F type
statistics of the form 5
F‘;; = ei J / 6\/0\, j
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are constructed. The hypothesis H;; is accepted (<) or rejected (>) depending on whether
F;;j T Fy results such that the

P(F;;-gFa;izl,Z,...,L and j:l,2,...,p|H)=1—a (4.4.51)

The joint distribution of the statistics Fi’;. is not multivariate F and involve nuisance pa-
rameters, Krishnaiah (1979). To test H;; simultaneously, one could use the Studentized
maximum modulus procedure. To remove the nuisance parameters Krishnaiah (1965a,
1965b, 1969) proposed a stepdown FIT procedure that is based on conditional distribu-
tions and an assumed decreasing order of importance of the p variables. Using the order
of the p variables, let Y = [y, y2,...y,], B = [B1, B2, ..., ﬂp], Y = [y, y2,...¥;]
B =1[B1.B5,....,Bjlfor j = 1,2,... p for the model given in (4.4.48). Using property
(5) in Theorem 3.3.2 and the realization that the matrix X, = X211 — 21222_21 Yo re-
duces to U%'z = 0% — 0’1222721021 = |X| /| Z22] for one variable, the elements of y ;1 for
fixed Y; are distributed univariate normal with common variance a? 4= =41 /1Z)]
for j =0,1,2,..., p — 1 where the |X9| = 1 and X; is the first principal minor of order
J containing the first j rows and j columns of ¥ = [a i j]. The conditional means are

E(yj+11Y;)) =Xn; 1+ Yy,

. 4.4.52
_ [X,Yj][ M)t } (4.4.52)
Y

where ;1 =B, —B;y;, y; = [Ul,j—Ha ...,Uj,j+1]/ Zj_l, and By = 0.
With this reparameterization, the hypotheses in (4.4.49) becomes

H:

1

Hij:cin; =0 (4.4.53)
1

J

Lo

p

so that the null hypotheses regarding the u;; are equivalent to testing the null hypotheses
regarding the »,; simultaneously or sequentially. Notice that 5; is the mean for variable
j adjusting for j = 0,1,..., p — 1 covariate where the covariates are a subset of the
dependent variables at each step. When a model contains “real” covariates, the dependent
variables are sequentially added to the covariates increasing them by one at each step until
the final step which would include & + p — 1 covariates.

To develop a FIT of (4.4.50) or equivalently (4.4.49), let &, j = ¢n; where 7; is the
estimate of the adjusted mean in the MANCOVA model, then for

B, =[B1.By....B;] and S;=Y,I-X(XX) X1y,

. A~ _ frn .
the variance of ¢ = Eij, is

(4.4.54)
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so that an unbiased estimate of ogl_ is 3? = dijs]z/ (n —k—j—1) where

i ij
si/(n—k—j—1)
is an unbiased estimate of a%. Forming the statistics
o EPe—k—j+h  EPe—k—j+D
iy - - . =~
dijs; ¢ XX~ e + )7 <] 2

(4.4.55)

J

where s/2. =[S; |/ |Sj-1|and| Sy |= 1, the FIT procedure consists of rejecting H if
F;j > fja Where the fj, are chosen such that the

P(Fij < fjasj=12,....,p and i:1,2,...,C|1—1)

p

=[] P(Fj < fiesi=1,2,....,C| H)
j=1
p

=TI (1—aj)zl—a.
Jj=1 "

For a given j, the joint distribution of Fi, Fj, ..., F¢j is a central C-variate multivariate

F distribution with (1, n — k — j + 1) degrees of freedom and the statistics F;; in (4.4.55)
at each step are independent. When /4 covariates are in the model, X is replaced by Xy,
and k is replaced by / + k.

Mudholkar and Subbaiah (1980a, b) compared the stepdown FIT of Krishnaiah to Roy’s
(1958) stepdown F test. They derived approximate 100 (1 — «) % level simultaneous con-
fidence intervals for the original population means w;; and showed that FIT intervals are
uniformly shorter than corresponding intervals obtained using Roy’s stepdown F tests, if
one is only interested in contrasts a variable at a time. For arbitrary contrasts ¥;; = c;Bm;,
the FIT is not uniformly better. In a study by Cox, Krishnaiah, Lee, Reising and Schuur-
mann (1980) it was shown that the stepdown FIT, is uniformly better in the Neyman sense

than Roy’s largest root test or Roy’s 7,2, test.
The approximate 100 (1 — «) % simultaneous confidence intervals for 6;; = c;8 j Where
ﬂj is the jth column of B, a variable at a time fori = 1,2,...,Cand j =1,2,..., p are
gz‘j — Cay/ € XX) e <6< 51‘,' + can/ € XX) e
> Lty 1,/
Cq = tgi \/:
A (4.4.56)

¢j = fja/ (n—k—j+1)

ci=ci,cf=ci(l+ci+...+cj )
where #,; are the elements of the upper triangular matrix T for a Cholesky factorization of
E=TT
=Y'[I-XX'X)"'XTY.
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Replacing 6;; by arbitrary contrasts /;; = ¢;Bm; where h/j = Tm; and T'T = E,
simultaneous confidence sets for ¥;; become

~ p
vij = (Zl || v Cj) (\/ ¢, (X'X)™"! Ci) <
j:
<V + (fl |h;| /cj.)< ¢ (X’X)‘lci> (4.4.57)
]=

where ¢* is defined in (4.4.51). Using the multivariate t distribution, one may also test
one-sided hypotheses H;; simultaneously and construct simultaneous confidence sets for
directional alternatives.

Currently no SAS procedure has been developed to calculate the F;; statistics in (4.4.45)
or to create the approximate simultaneous confidence intervals given in (4.4.57) for the
FIT procedure. The problem one encounters is the calculation of the critical values for
the multivariate F distribution. The program Fit.For available on the Website performs the
necessary calculations for MANOVA designs. However, it only runs on the DEC-Alpha
3000 RISC processor and must be compiled using the older version of the IMSL Library
calls. The manual is contained in the postscript file FIT-MANUAL.PS. The program may
be run interactively or in batch mode. In batch mode, the interactive commands are placed
in an *.com file and the SUBMIT command is used to execute the program. The pro-
gram offers various methods for approximating the critical values for the multivariate F
distribution. One may also approximate the critical values of the multivariate F distribution
using a computer intensive bootstrap resampling scheme, Hayter and Tsui (1994). Timm
(1996) compared their method with the analytical methods used in the FIT program and
found little difference between the two approaches since exact values are difficult to calcu-
late.

4.5 One-Way MANOVA/MANCOVA Examples

a. MANOVA (Example 4.5.1)

The data used in the example were taken from a large study by Dr. Stanley Jacobs and Mr.
Ronald Hritz at the University of Pittsburgh to investigate risk-taking behavior. Students
were randomly assigned to three different direction treatments known as Arnold and Arnold
(AA), Coombs (C), and Coombs with no penalty (NC) in the directions. Using the three
treatment conditions, students were administrated two parallel forms of a test given under
high and low penalty. The data for the study are summarized in Table 4.5.1. The sample
sizes for the three treatments are respectively, n; = 30, np = 28, and n3 = 29. The total
sample size is n = 87, the number of treatments is k = 3, and the number of variables is
p = 2 for the study. The data are provided in the file stan_hz.dat.
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TABLE 4.5.1. Sample Data One-Way MANOVA

AA C NC
Low High Low High | Low High Low High | Low High Low High

8 28 31 24| 46 13 25 91 50 55 55 43
18 28 11 20| 26 10 39 2| 57 51 52 49
8 23 17 23 | 47 22 34 7] 62 52 67 62
12 20 14 32| 44 14 44 15| 56 52 68 61
15 30 15 23| 34 4 36 31 59 40 65 58
12 32 8 20| 34 4 40 5] 61 68 46 53
12 20 17 31| 44 7 49 21| 66 49 46 49

5

0

1

18 31 7 20| 39 42 71 57 49 47 40
29 25 12 23| 20 35 1] 62 58 64 22
6 28 15 20| 43 1 30 2| 47 58 64 54
7 28 12 20 | 43 25 31 13| 53 40 63 64

6 24 21 20| 34 2 53 12| 60 54 63 56
14 30 27 27| 25 10 40 41 55 48 64 44
11 23 18 20| 50 9 26 41 56 65 63 40
12 20 25 27 67 56

The null hypothesis of interest is whether the mean vectors for the two variates are the
same across the three treatments. In terms of the effects, the hypothesis may be written as

H, : [ “1 }: [ @21 }: [ @31 } 4.5.1)
o12 22 32

The code for the analysis of the data in Table 4.5.1 is provided in the programs: m4_5_1.sas
and m4_5_la.sas.

We begin the analysis by fitting a model to the treatment means. Before testing the hy-
pothesis, a chi-square Q-Q plot is generated using the routine multinorm.sas to investigate
multivariate normality (program m4_5_1.sas). Using PROC UNIVARIATE, we also gener-
ate univariate Q-Q plots using the residuals and investigate plots of residuals versus fitted
values. Following Example 3.7.3, the chi-square Q-Q plot for all the data indicate that ob-
servation #82 (NC, 64, 22) is an outlier and should be removed from the data set. With the
outlier removed (program m4_5_la.sas), the univariate and multivariate tests, and residual
plots indicate that the data are more nearly MVN. The chi-square Q-Q plot is almost lin-
ear. Because the data are approximately normal, one may test that the covariance matrices
are equal (Exercises 4.5, Problem 1). Using the option HOVTEST = BF on the MEANS
statement, the univariate variances appear approximately equal across the three treatment
groups.

To test (4.5.1) using PROC GLM, the MANOVA statement is used to create the hy-
pothesis test matrix H for the hypothesis of equal means or treatment effects. Solving
|H— AE| = 0, the eigenvalues for the test are .1 = 8.8237 and A, = 4.41650 since
s = min (vp, p) = min (3,2) = 2. For the example, the degrees of freedom for error is
ve = n—k = 83. By any of the MANOVA criteria, the equality of group means is rejected
using any of the multivariate criteria (p-value < 0.0001).
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With the rejection of (4.5.1), using (4.4.47) or (4.2.59) we know there exists at least one
contrast ¥ = ¢/Bm that is nonzero. Using the one-way MANOVA model, the expression
for y is

¢Bm — ca\/ m'Sm) ¢ (X'’X) ¢ < ¢ < Bm+ ca\/ m'Sm)c (X'X)" ¢ (45.2)

As in the MR model, m operates on sample covariance matrix S and the contrast vector
¢ operates on the matrix (X’ X)_. For a vector m that has a single element equal to one

and all others zero, the product m’'Sm = siz, a diagonal element of S = E/(n — r(X). For
pairwise comparisons among group mean vectors, the expression

Cixxy = Lol
n; n;

for any g-inverse. Finally, (4.5.2) involves ¢, which depends on the multivariate criterion
used for the overall test for treatment differences. The values for ¢, were defined in (4.2.60)
for the MR model. Because simultaneous confidence intervals allow one to investigate all
possible contrast vectors ¢ and arbitrary vectors m in the expression ¥ = ¢/Bm, they
generally lead to very wide confidence intervals if one evaluates only a few comparisons.
Furthermore, if one locates a significant contrast it may be difficult to interpret when the
elements of ¢ and/or m are not integer values. Because PROC GLM does not solve (4.5.2)
to generate approximate simultaneous confidence intervals, one must again use PROC IML
to generate simultaneous confidence intervals for parametric functions of the parameters as
illustrated in Section 4.3 for the regression example. In program m4_5_la.sas we have in-
cluded IML code to obtain approximate critical values using (4.2.61), (4.2.62) and (4.2.63)
[ROY, BLH, and BNP] for the contrast that compares treatment one (AA) versus treatment
three (NC) using only the high penalty variable. One may modify the code for other com-
parisons. PROC TRANSREG is used to generate a full rank design matrix which is input
into the PROC IML routine. Contrasts using any of the approximate methods yield inter-
vals that do not include zero for any of the criteria. The length of the intervals depend on
the criterion used in the approximation. Roy’s approximation yields the shortest interval.
The comparison has the approximate simultaneous interval (—31.93, —23.60) for the com-
parison of group one (AA) with group three (NC) for the variable high penalty. Because
these intervals are created from an upper bound statistic, they are most resolute. However,
the intervals are created using a crude approximation and must be used with caution. The
approximate critical value was calculated as ¢, = 2.49 while the exact value for the Roy
largest root statistic is 3.02. The F approximations for BLH and BNP multivariate crite-
ria are generally closer to their exact values. Hence they may be preferred when creating
simultaneous intervals for parametric functions following an overall test. The simultane-
ous interval for the comparison using the F approximation for the BLH criterion yields the
simultaneous interval (—37.19, —18.34) as reported in the output.

To locate significant comparisons in mean differences using PROC GLM, one may com-
bine CONTRAST statements in treatments with MANOVA statements by defining the
matrix M. For M = 1, the test is equivalent to using Fisher’s LSD method employing
Hotelling’s T2 statistics for locating contrasts involving the mean vectors. These protected
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tests control the per comparison error rate near the nominal level « for the overall test only
if the overall test is rejected. However, they may not be used to construct simultaneous con-
fidence intervals. To construct approximate simultaneous confidence intervals for contrast
in the mean vectors, one may use

Co = PUeFl o piy/ e =P+ 1)

in (4.5.2) where a* = «/C is the upper « critical value for the F distribution using, for
example, the Bonferroni method where C is the number of mean comparisons. Any number
of vectors m may be used for each of the Hotelling 72 tests to investigate contrasts that
involve the means of a single variable or to combine means across variables.

Instead of using Hotelling’s T2 statistic to locate significant differences in the means,
one may prefer to construct CONTRAST statements that involve the vectors ¢ and m.
To locate significance differences in the means using these contrasts, one may evaluate
univariate protected F tests using the nominal level «. Again, with the rejection of the
overall test, these protected F tests have an experimental error rate that is near the nominal
level o when the overall test is rejected. However, to construct approximate simultaneous
confidence intervals for the significant protected F tests, one must again adjust the alpha
level for each comparison. Using for example the Bonferroni inequality, one may adjust the
overall « level by the number of comparisons, C, so that «* = «/C. If one were interested
in all pairwise comparisons for each variable (6 comparisons) and the three comparisons
that combine the sum of the low penalty and high penalty variables, then C = 9 and o* =
0.00556. Using o = 0.05, the p-values for the C = 9 comparisons are shown below. They
are all significant. The ESTIMATE statement in PROC GLM may be used to produce /1/; and
’a\@ for each contrast specified for each variable. For example, suppose we are interested
in all pairwise comparisons (3 + 3 = 6 for all variables) and two complex contrasts that
compare ave (1 + 2) vs 3 and ave (2 + 3) vs 1 or ten comparisons. To construct approximate
simultaneous confidence intervals for 12 the comparisons, the value for ¢, may be obtained
form the Appendix, Table V by interpolation. For C = 12 contrasts and degrees of freedom
for error equal to 60, the critical values for the BON, SID and STM procedures range
between 2.979 and 2.964. Because the Siddk’s multivariate ¢ has the smallest value, by
interpolation we would use ¢, = 2.94 to construct approximate simultaneous confidence
intervals for 12 the comparisons. SAS only produces estimated standard errors, 3@, for
contrasts that involve a single variable. The general formula for estimating the standard

errors, 3@ = \/ (m’'Sm) ¢/ (X’X) ™ ¢, must be used to calculate standard errors for contrasts
for arbitrary vectors m.

Variables

Contrasts | Low High Low + High

1vs3 .0001 .0001 .0001
2vs3 .0001 .0001 .0001
1vs2 .0001 .0001 .0209

If one is only interested in all pairwise comparisons. For each variable, one does not
need to perform the overall test. Instead, the LSMEANS statement may be used by setting
ALPHA equal to «* = «/p where p is the number of variables and @ = .05 (say). Then,
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using the option CL, PDIFF = ALL, and ADJUST = TUKEY, one may directly isolate
the planned comparisons that do not include zero. This method again only approximately
controls the familywise error rate at the nominal « level since correlations among vari-
ables are being ignored. The LSMEANS option only allows one to investigate all pairwise
comparisons in unweighted means. The option ADJUST=DUNNETT is used to compare
all experimental group means with a control group mean. The confidences intervals for
Tukey’s method for «* = 0.025 and all pairwise comparisons follow.

Variables

Contrasts Low High
1vs2 (—28.15 —17.86) (11.61 20.51)
Ivs3 (—48.80 —38.50) (—32.21 —23.31)

2vs3 (—25.88 —15.41) (—48.34 —39.30)

Because the intervals do not include zero, all pairwise comparisons are significant for our
example.

Finally, one may use PROC MULTTEST to evaluate the significance of a finite set of
arbitrary planned contrasts for all variables simultaneously. By adjusting the p-value for
the family of contrasts, the procedure becomes a simultaneous test procedure (STP). For
example, using the Siddk method, a hypothesis H; is rejected if the p-value p; is less than
1 — (1 —a)/€ = o* where « is the nominal FWE rate for C comparisons. Then the
Sidak single-step adjusted p-value is p; = 1 — (1 — p;)©. PROC MULTTEST reports raw
p-values p; and the adjusted values p-values, p;. One may compare the adjusted p; val-
ues to the nominal level « to assess significance. For our example, we requested adjusted
the p-values using the Bonferroni, Siddk and permutation options. The permutation option
resamples vectors without replacement and adjusts p-values empirically. For the finite con-
trasts used with PROC MULTTEST using the ¢ test option, all comparisons are seen to
be significant at the nominal @ = 0.05 level. Westfall and Young (1993) illustrate PROC
MULTTEST in some detail for univariate and multivariate STPs.

When investigating a large number of dependent variables in a MANOVA design, it is of-
ten difficult to isolate specific variables that are most important to the significant separation
of the centroids. To facilitate the identification of variables, one may use the /CANONICAL
option on the MANOVA statement as illustrated in the two group example. For multiple
groups, there are s = min (v, p) discriminant functions. For our example, s = 2. Re-
viewing the magnitude of the coefficients for the standardized vectors of canonical variates
and the correlations of the within structure canonical variates in each significant dimension
often helps in the exploration of significant contrasts. For our example, both discriminant
functions are significant with the variable high penalty dominating one dimension and the
low penalty variable the other.

One may also use the FIT procedure to analyze differences in mean vectors for the one-
way MANOVA design. To implement the method, one must specify all contrasts of interest
for each variable, and rank the dependent variables in order of importance from highest to
lowest. The Fit.for program generates approximate 100 (1 — o) % simultaneous confidence
intervals for the conditional contrasts involving the #; and the original means. For the
example, we consider five contrasts involving the three treatments as follows.
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TABLE 4.5.2. FIT Analysis

Variable: Low Penalty

Contrast F;; Crude Estimate of Cls
for Original  Means
1 141.679* —23.0071 (—28.57 —17.45)
2 110.253* —20.6429 (—26.30 —14.99)
3 509.967* —43.6500 (—49.21 —-38.09)
4 360.501* —32.1464 (—37.01 —27.28)
5 401.020%* —33.3286 (—38.12 —28.54)

Variable: High Penalty

1 76.371* 16.0595 ( 9.67 22.43)
2 237.075% —43.8214 (=50.32 —-37.32)
3 12.681* —27.7619 (=34.15 -=21.37)
4 68.085* —35.7917 (=41.39 -30.19)
5 1.366 —5.8512 (=11.35  —0.35)

*significant of conditional means for « = 0.05

Contrasts AA C NC

1 1 -1 0
2 0 —1
3 1 —1
4 5 S -1
5 1 -5 =5

For oo = 0.05, the upper critical value for the multivariate F distribution is 8.271. Assuming
the order of the variables as Low penalty followed by High penalty, Table 4.5.2 contains
the output from the Fit.for program.

Using the FIT procedure, the multivariate overall hypothesis is rejected if any contrast is
significant.

b. MANCOVA (Example 4.5.2)

To illustrate the one-way MANCOVA design, Rohwer collected data identical to that an-
alyzed in Section 4.3 for n = 37 kindergarten students from a residential school in a
lower-SES-class area. The data for the second group are given in Table 4.3.2. It is com-
bined with the data in Table 4.3.1 and provided in the file Rohwer2.dat. The data are used
to test (4.4.44) for the two independent groups. For the example, we have three dependent
variables and five covariates. Program m4_5_2.sas contains the SAS code for the analysis.
The code is used to test multivariate normality and to illustrate the test of parallelism

H:Tj=T=0I3=T (4.5.3)
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using both PROC REG and PROC GLM. The MTEST commands in PROC REG allow one
to test for parallelism for each covariate and to perform the overall test for all covariates
simultaneously. Using PROC GLM, one may not perform the overall simultaneous test.
However, by considering interactions between each covariate and the treatment, one may
test for parallelism a covariate at a time. Given parallelism, one may test that all covariates
are simultaneously zero, H, : I' = 0 or that each covariate is zero using PROC REG. The
procedure GLM in SAS may only be used to test that each covariate is zero. It does not
allow one to perform the simultaneous test. Given parallelism, one next tests that the group
means or effects are equal
H:py = p, (FR)

4.5.4)
H : oy = oy (LFR)

using PROC GLM.

When using a MANCOVA design to analyze differences in treatments, in addition to the
assumptions of multivariate normality and homogeneity of covariance matrices, one must
have multivariate parallelism. To test (4.5.3) using PROC REG for our example, the over-
all test of parallelism is found to be significant at the « = .05 level, but not significant
for « = 0.01. For Wilks’ A criterion, A = 0.62358242 and the p-value is 0.0277. Re-
viewing the one degree of freedom tests for each of the covariates N, S, NS, NA, and SS
individually, the p-values for the tests are 0.2442, 0.1212, 0.0738, 0.0308, and 0.35009, re-
spectively. These are the tests performed using PROC GLM. Since the test of parallelism is
not rejected, we next test H, : ' = 0 using PROC REG. The overall test that all covariates
are simultaneously zero is rejected. For Wilks” A criterion, A = 0.44179289. All criteria
have p-values < 0.0001. However, reviewing the individual tests for each single covariate,
constructed by using the MTEST statement in PROC REG or using PROC GLM, we are
led to retain only the covariates NA and NS for the study. The p-value for each of the co-
variates N, S, NS, NA, and SS are : 0.4773, 0.1173, 0.0047, 0.0012, 0.3770. Because only
the covariates N A(p-value = 0.0012) and N S (p-value = 0.0047) have p-values less than
o = 0.01, they are retained. All other covariates are removed from the model. Because the
overall test that I' = 0 was rejected, these individual tests are again protected F tests. They
are used to remove insignificant covariates from the multivariate model.

Next we test (4.4.44) for the revised model. In PROC GLM, the test is performed us-
ing the MANOVA statement. Because s = 1, all multivariate criteria are equivalent and
the test of equal means, adjusted by the two covariates, is significant. The value of the F
statistic is 15.47. For the revised model, tests that the coefficient vectors for NA and NS
remain significant, however, one may consider removing the covariate NS since the p-value
for the test of significance is 0.0257. To obtain the estimate of I" using PROC GLM, the
/SOLUTION option is included on the MODEL statement. The /CANONICAL option per-
forms a discriminant analysis. Again the coefficients may be investigated to form contrasts
in treatment effects.

When testing for differences in treatment effects, we may evaluate (4.4.35) with

C=I[1,-1,0,0landM =1

This is illustrated in program m4_5_2.sas using PROC IML. The procedure TRANSREG
is used to generate a full rank design matrix for the analysis. Observe that the output for
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Hand E agree with that produced by PROC GLM using the MANOVA statement. Also
included in the output is the matrix A, where

51.456 11.850 8.229

N 33.544 10.329 —4.749

A _[ﬁzw}_ s
4x3) -

@3 23 0.117 0.104 ~1.937

1371 0.068 2777

The first two rows of A are the sample group means adjusted by T asin (4.4.28). Observe
that the rows of T' agree with the ‘SOLUTION’ output in PROC GLM; however, the matrix
B is not the adjusted means, output by PROC GLM by using the LSMEANS statement. To
output the adjusted means in SAS, centered using Z_, one must use the COV and OUT =
options on the LSMEANS statement. The matrix of adjusted means is output as follows.

R 81.735 14.873 45.829
Bgsas =
63.824 13.353 32.851

As with the one-way MANOVA model or any multivariate design analyzed using PROC
GLM, the SAS procedure does not generate 100 (1 — ) % simultaneous confidence in-
tervals for the matrix B in the MR model for the MANCOVA design B is contained in the
matrix A. To test hypotheses involving the adjusted means, one may again use CONTRAST
statements and define the matrix M = m’ in SAS with the MANOVA statement to test hy-
potheses using F statistics by comparing the level of significance with «. These are again
protected tests when the overall test is rejected. One may also use the LSMEAN statement.
For these comparisons, one usually defines the level of the test at the nominal value of
a* = o/ p and uses the ADJUST option to approximate simultaneous confidence intervals
For our problem there are three dependent variables simultaneously so we set «* = 0.0167.
Confidence sets for all pairwise contrasts in the adjusted means for the TUKEY procedure
follow. Also included below are the exact simultaneous confidence intervals for the differ-
ence in groups for each variable using the ROY criterion Program m4_5_2.sas contains the
difference for ¢ = [1, —1,0,0] and m’ = [1, 0, 0]. By changing m for each variable, one
obtains the other entries in the table. The results follow.

PPVT RPMT  SAT
U i 17912 1.521 —0.546

Lower Limit (Roy)  10.343 —0.546 12.978
Lower Limit (Tukey) 11.534 —0.219 —-2.912

Upper Limit (Roy)  25.481 3.587 31.851
Upper Limit (Tukey) 24.285 3.260  28.869

The comparisons indicate that the difference for the variable PPVT is significant since the
confidence interval does not include zero. Observe that v 4 represents the difference in
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the rows of B or ES As so that one may use either matrix to form contrasts. Centering does
effect the covariance structure of B. In the output from LSMEANS, the columns labeled
‘COV’ represent the covariance among the elements of ﬁs AS-

A test closely associated with the MANCOVA design is Rao’s test for additional infor-
mation, (Rao, 1973a, p. 551). In many MANOVA or MANCOVA designs, one collects
data on p response variables and one is interested in determining whether the additional
information provided by the last (p — s) variables, independent of the first s variables, is
significant. To develop a test procedure of this hypothesis, we begin with the linear model
2, : Y = XB + U where the usual hypothesis is H : CB = 0. Partitioning the data matrix
Y =[Y,Y2] and B = [By, B»], we consider the alternative model

Q:Y =XB; +U;

Hoi : CBy = 0 4.5.5)
where
E(Y2|Y)) =XBy+ (Y1 —XB) Z}/'Zp
=X (B2~ BT, ) + Y15 i
=XO0+Y,I'
31 =20 — Zzlzf]lfllz
Thus, the conditional model is
20 :EX2|Y)=X0+Y (4.5.6)
the MANCOVA model. Under €2, testing
Hyp :CBy—B ) =0 (4.5.7)

corresponds to testing Hy, : CO = 0. If C = I, and ® = 0, then the conditional
distribution of Y, | Y| depends only on I" and does not involve B; thus Y, provides no
additional information on B;. Because 25 is the standard MANCOVA model with Y = Y;
and Z = Yy, we may test Hy, using Wilks’ criterion

Ex — E21E1_11E12

Ary = ~Up_s, vp, Ve (4.5.8)

-1
[En2o — EpoiEg ) Enil

where vo = n — p — s and v, = r (C). Because H (CB = 0) is true if and only if
Hypp and Hy, are true, we may partition A as A = AjAjy ] where A is from the test of
Hyy; this results in a stepdown test of H (Seber, 1984, p. 472).

Given that we have found a significant difference between groups using the three depen-
dent variables, we might be interested in determining whether variables RPMT and SAT
(the variable in set 2) add additional information to the analysis of group differences above
that provided by PPVT (the variable in set 1). We calculate A, ; defined in (4.5.8) using
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PROC GLM. Since the p-value for the test is equal to 0.0398, the contribution of set 2
given set 1 is significant at the nominal level « = 0.05 and adds additional information in
the evaluation of group differences. Hence we should retain the variable in the model.

We have also included in program m4_5_2.sas residual plots and Q-Q plots to evaluate
the data set for outliers and multivariate normality. The plots show no outliers and the
data appears to be multivariate normal. The FIT procedure may be used with MANCOVA
designs by replacing the data matrix Y with the residual matrix Y — Zr.

Exercises 4.5

1. With the outlier removed and o = 0.05, test that the covariance matrices are equal
for the data in Table 4.5.1 (data set: stan_hz.dat).

2. An experiment was performed to investigate four different methods for teaching
school children multiplication (M) and addition (A) of two four-digit numbers. The
data for four independent groups of students are summarized in Table 4.5.3.

(a) Using the data in Table 4.5.3, is there any reason to believe that any one method

or set of methods is superior or inferior for teaching skills for multiplication and
addition of four-digit numbers?

TABLE 4.5.3. Teaching Methods

Group 1 | Group 2 | Group 3 | Group 4
A  M|A M|A M| A M
97 66 | 76 29 | 66 34 | 100 79
94 61 |60 22|60 32| 96 64
9% 52 |84 18 |58 27| 90 80
8 55 |8 3252 33| 90 90
9 50|70 33 |56 34| 87 82
88 43 | 70 32 (42 28| 83 72
82 46 |73 17 |55 32| 8 67
65 41 |8 29 |41 28 | 8 77
95 58 |58 21 |56 32| 78 68
90 56 |65 25|55 29| 8 70
95 55 (8 20|40 33| 67 67
8 40 |75 16 | 50 30 | 57 57
71 46 | 74 21 |42 29| 83 79
76 32 184 30|46 33| 60 50
90 44 (62 32|32 34| 8 77
77 39 (71 23|30 31| 92 81
61 37 (71 19 |47 27| 8 86
91 50 |75 18 |50 28 | 47 45
93 64 |92 23|35 28| 90 85
8 68 | 70 27 | 47 27| 8 65
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(b) What assumptions must you make to answer part a? Are they satisfied?

(c) Are there any significant differences between addition and multiplication skills
within the various groups?

3. Smith, Gnanadesikan, and Hughes (1962) investigate differences in the chemical
composition of urine samples from men in four weight categories. The eleven vari-
ables and two covariates for the study are

y1 = pH, yg = chloride (mg/ml),

y» = modified createnine coefficient, Y9 = bacon (;Lg/ml ),

y3 = pigment createnine, y1o = choline (u,/ml),

ya = phosphate (mg/ml), Y11 = copper (u,/ml),

y5 = calcium (mg/ml), x1 = volume (ml),

e = phosphours (mg/ml), xp = (specific gravity — 1) x 103,

y7 = createnine (mg/ml),

The data are in the data file SGH.dat.

(a) Evaluate the model assumptions for the one-way MANCOVA design.
(b) Test for the significance of the covariates.
(c) Test for mean differences and construct appropriate confidence sets.

(d) Determine whether variables y, y3, y4, Y6, ¥7, Y10, and y11 (Set 2) add addi-
tional information above those provided by y;, ys5, y7, and yg (Set 1).

4. Data collected by Tubb et al. (1980) are provided in the data set pottery.dat. The data
represent twenty-six samples of Romano-British pottery found a four different sites
in Wales, Gwent, and the New Forest. The sites are Llanederyn (L), Caldicot (C),
Island Thorns (S), and Ashley Rails (A). The other variables represent the percent-
age of oxides for the metals: Al, Fe, Mg, Ca, Na measured by atomic absorption
spectrophotometry.

(a) Test the hypothesis that the mean percentages are equal for the four groups.

(b) Use the Fit procedure to evaluate whether there are differences between groups.
Assume the order Al, Fe, Mg, Ca, and Na.
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4.6 MANOVA/MANCOVA with Unequal ¥; or Nonnormal
Data

Totest H : py = py = ... = p, in MANOVA/MANCOVA models, both James’ (1954)
and Johansen’s (1980) tests may be extended to the multiple k£ group case. Letting S; be an
estimate of the i group covariance matrix, W; = S;/n; and W = Zle W;., we form the
statistic

k
X2 =Y -pWiet -9 4.6.1)
i=1

where y = W! Zlewiyf, I = w! > W, T is a pooled estimate of T, T; =
(X;X,-)_1 X!Y; and y/ is the adjusted mean for the i™" group using T in (4.4.43). Then,
the statistic X2 ~ X2 (vp) with degrees of freedom v, = p (k — 1). To better approximate

the chi-square critical value we may calculate James’ first-order or second-order approxi-
mations, or use Johansen’s F test approximation. Using James’ first-order approximation,

H is rejected if
1k kox_, ()
X2> 2 i1+ | = 22 (4.6.2)
e 2lp " P(P+2)

where

ky = é r (W_IWi)z/(ni —h—1)

ky = f |:tr (W*‘Wi)2 +2 (trw‘w,»ﬂ J (i —h—1)

i=1

and  is the number of covariates. For Johansen’s (1980) procedure, the constant A becomes
k | 2 . 2
A=Yl (I—w— W,-) + (trl—w— wl-) k(i —h —1) (4.6.3)
i=1

Then (3.9.23) may be used to test for the equality of mean vectors under normality. Finally,
one may use the A statistic developed by Myers and Dunlap (2000) as discussed in the
two group location problem in Chapter 3, Section 3.9. One would combine the chi-square
p-values for the k groups and compare the statistic to the critical value for chi-square dis-
tribution with (k — 1) p degrees of freedom.

James’ and Johansen’s procedures both assume MVN samples with unequal ¥;. Alter-
natively, suppose that the samples are instead from a nonnormal, symmetric multivariate
distribution that have conditional symmetric distributions. Then, Nath and Pavur (1985)
show that the multivariate test statistics may still be used if one substitutes ranks from 1 to
n for the raw data a variable at a time. This was illustrated for the two group problem.
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4.7 One-Way MANOVA with Unequal ¥; Example

To illustrate the analysis of equal mean vectors given unequal covariance matrices, pro-
gram m4_7_1.sas is used to reanalyze the data in Table 4.5.1. The code in the program
calculates the chi-square statistic adjusted using Johansen’s correction. While we still have
significance, observe how the correction due to Johansen changes the critical value for the
test. Without the adjustment, the critical value is 9.4877. With the adjustment, the value be-
comes 276.2533. Clearly, one would reject equality of means more often without adjusting
the critical value for small sample sizes. For our example, the adjustment has little effect
on the conclusion.

Exercises 4.7

1. Modify program m_4_7_1.sas for James’ procedure and re-evaluate the data in Table
4.5.1.

2. Analyze the data in Exercises 4.5, problem 2 for unequal covariance matrices.

3. Re-analyze the data in Exercises 4.5, problem 3 given unequal covariance matrices
using the chi-square test, the test with James’ correction, and the test with Johansen’s
correction.

4. Analyze the data in Exercises 4.5, problem 3 using the A statistic proposed by Myers
and Dunlap discussed in Section3.9 (b) for the two group location problem.

4.8 Two-Way MANOVA/MANCOVA

a. Two-Way MANOVA with Interaction

In a one-way MANOVA, one is interested in testing whether treatment differences exist on
p variables for one treatment factor. In a two-way MANOVA, n, > 1 subjects are randomly
assigned to two factors, A and B say, each with levels a and b, respectively, creating a
design with ab cells or treatment combinations. Gathering data on p variables for each of
the ab treatment combinations, one is interested in testing whether treatment differences
exist with regard to the p variables provided there is no interaction between the treatment
factors; such designs are called additive models. Alternatively, an interaction may exist for
the study, then interest focuses on whether the interaction is significant for some linear
combination of variables or for each variable individually. One may formulate the two-way
MANOVA with an interaction parameter and test for the presence of interaction. Finding
none, an additive model is analyzed. This approach leads to a LFR model. Alternatively,
one may formulate the two-way MANOVA as a FR model. Using the FR approach, the
interaction effect is not contained in the model equation. The linear model for the two-way
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MANOVA design with interaction is

Yijk =m+ai+B;+y;;+ej (LFR)
= Wij + €ijk (FR)
ejx~IN,(0,X) i=1,2,...,a; j=1,2,...,b;k=1,2,...,n, > 0.

(4.8.1)

Writing either model in the form Y,,»p = Xyxg Bgxp + Enxp, the r (X) = ab < g =
1+ a + b + ab for the LFR model and the r (X) = ab = ¢ for the FR model.
For the FR model, the population cell mean vectors

M;j = [Mijla Hij2s ""Mijp] (4.8.2)
are uniquely estimable and estimated by

n

Yij. = 1;)1 Yijk/ Mo (4.8.3)
Letting
Yi. = Zb: Yij./b
j=1
Y= fjlyij./a (4.8.4)
i=
y.. = ;%:yij./ab

the marginal means u; = Y. jMij /band p; = DM /b are uniquely estimable and
estimated by f; = y;. and I j =.j., the sample marginal means. Also observe that for
any tetrad involving cells (i, j), (i,j’). (i’,j) and (i’, j’) in the ab grid for factors A
and B that the tetrad contrasts

Vi jjr = Rij — Rirj — Rijr + Ry jr

(4.8.5)
= (Wi — mirj) — (Rjjr — Rirjr)
are uniquely estimable and estimated by
Vi .y =Yij. —Yirj. = Yij.. T Yirj. (4.8.6)

These tetrad contrasts represent the difference between the differences of factor A at levels
i and i’, compared at the levels j and ;' of factor B. If these differences are equal for all
levels of A and also all levels of B, we say that no interaction exists in the FR design. Thus,
the FR model has no interaction effect if and only if all tetrads or any linear combination of
the tetrads are simultaneously zero. Using FR model parameters, the test of interaction is

HAB . alllLl/ - ”’i’j — ILU/ + lel'/j/ =0 (487)



248 4. Multivariate Regression Models

If the H 4 p hypothesis is not significant, one next tests for significant differences in marginal
means for factors A and B, called main effect tests. The tests in terms of FR model param-
eters are

Hy : all u; are equal
A @t areed (4.8.8)
Hpg : allu‘j are equal

This is sometimes called the “no pool” analysis since the interaction SSCP source is ignored
when testing (4.8.8).

Alternatively, if the interaction test H 4 p is not significant one may use this information to
modify the FR model. This leads to the additive FR model where the parametric functions
(tetrads) in p;; are equated to zero and this becomes a restriction on the model. This leads
to the restricted MGLM discussed in Timm (1980b). Currently, these designs may not be
analyzed using PROG GLM since the SAS procedure does not permit restrictions. Instead
the procedure PROG REG may be used, as illustrated in Timm and Mieczkowski (1997).
Given the LFR model formulation, PROC GLM may be used to analyze either additive or
nonadditive models.

For the LFR model in (4.8.1), the parameters have the following structure

wo=[my sy

[
ai:[()lil,aiZa-"’aip] (489)

[

[

B =[Bj1:Bjar-- By

Yij = Vij1:Vij2s - J/ijp]

The parameters are called the constant (@), treatment effects for factor A («;), treatment
effects for factor B (B), and interaction effects AB (y;;). However, because the 7 (X) =
ab < q is not of full rank and none of the parametric vectors are uniquely estimable.
Extending Theorem 2.6.2 to the LFR two-way MANOVA model, the unique BLUES of the
parametric functions ¥ = ¢'Bm are

Y =c¢Bm=m' |:Zztij (m+o;i+B;+ }’ij)i|
b (4.8.10)

w = c/ﬁm =m’ |:Z Zt,-jy,-j.:|
i

where t' = [to, 11, ... ta, 1], ..., 1], 111, ..., Iap] is an arbitrary vector such that ¢ = t'H
- - 0 0

and H = (X'’X)™ (XX) for (X'X)™ = [ 0 dinelln]

ual effects are not estimable, weighted functions of the parameters are estimable. The #;;

are nonnegative cell weights which are selected by the researcher, Fujikoshi (1993). To

illustrate, suppose the elements #; in the vector t are selected such that #;; = ;7 = 1,

tij = t;j = —1 and all other elements are set to zero. Then

]. Thus, while the individ-

V=V =Yi—Yij—ViytVij (4.8.11)
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is estimable, even though the individual y;; are not estimable. They are uniquely estimated
by

V=Y =Yij —Yi'j —Yij. T Yi'j. (4.8.12)
The vector m is used to combine means across variables. Furthermore, the estimates do not
depend on (X’ X)f. Thus, an interaction in the LFR model involving the parameters y;; is
identical to the formulation of an interaction using the parameters p;; in the FR model. As
shown by Graybill (1976, p. 560) for one variable, the test of no interaction or additivity has
the following four equivalent forms, depending on the model used to represent the two-way
MANOVA,

(@) Hap:pi— iy — Rijr + Rirjr =0

(b) Hap:yij—vij—Viy+viy=0
(4.8.13)
(©) Hap:pijj=p+ai+B;

(d Hap:py;;=0

for all subscripts i, i’, jand j’. Most readers will recognize (d) which requires adding side
conditions to the LFR model to convert the model to full rank. Then, all parameters become
estimable

w=y..
o = yi. —Yy.
Bi=vy,—Vy.

Vij =Yij. —Yi.—Y.j. Y.

This is the approach used in PROC ANOVA. Models with structure (c) are said to be
additive. We discuss the additive model later in this section.
Returning to (4.8.10), suppose the cell weights are chosen such that

Zl‘ij = Zti/]’ =1 fori # i’
J J
Then
b b
Vv=a; —oy+ ) ij(Bj+yi)— > tij(Bj+ri)
j=1 j=1

is estimable and estimated by

V=D tijyij. — D tijyij.

J J

By choosing t;; = 1/b, the function

Vv=a—ay+B +y.)— (B +ri)
=o; —ay+ (v, —vi)
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is confounded by the parameters y; and y;, . However, the estimate of ¥ is

-~

Y=y —Yyi.

This shows that one may not test for differences in the treatment levels of factor A in
the presence of interactions. Letting u;; = p + o; + B; + y;j. o, = &; + y; so that
Y=p; —py =o;—ay+ (yl; - y;) Thus, testing that all u; are equal in the FR model
with interaction is identical to testing for treatment effects associated with factor A. The
test becomes
Hy:alle; + ) ¥ij/bareequal (4.8.14)
J

for the LFR model. Similarly,
V=B — B+ tijlei +vi) =2 tij(eti + )
1 1

is estimable and estimated by

v=y,-VYj.
provided the cell weights ¢;; are selected such that the } ; #;; = >, t;y = 1 for j # j'.
Letting t;; = 1/a, the test of B becomes

Hgp:all B; + ) y;;/a areequal (4.8.15)
i

for the LFR model. Using PROC GLM, the tests of H4, Hp and Hap are called Type III
tests and the estimates are based upon LSMEANS.

PROC GLM in SAS employs a different g-inverse for (X’ X)_ so that the general form
may not agree with the expression given in (4.8.10). To output the specific structure used
in SAS, the / E option on the MODEL statement is used.

The tests Hy, Hp and Hap may also be represented using the general matrix form
CBM = 0 where the matrix Cis selected as C4, Cp and Cxp for each testand M =1,,.
To illustrate, suppose we consider a 3 x 2 design where factor A has three levels (a = 3)
and factor B has two levels (b = 2) as shown in Figure 4.8.1
Then forming tetrads ¥r; ;+ ; s, the test of interaction Hup is

Yiu—Ya-—Ynt+tryn=0
Hup :

Y21 — V31— V2nt+tV3=0

as illustrated by the arrows in Figure 4.8.1. The matrix C4p for testing Hap is

0 1 -1 -1 1 00
Cap = ‘
2x12 2x6 0 0 1 —1 —1 1

where the 7 (Cap) = vap = (a — 1) (b —1) = 2 = vy,. To test Hyp the hypothesis test
matrix Hyp and error matrix E are formed. For the two-way MANOVA design, the error



4.8 Two-Way MANOVA/MANCOVA 251

11 12

31 32

FIGURE 4.8.1. 3 x 2 Design

matrix is
E=Y[I-X(XX) X|Y

= Z > %: (vijx — ¥ij.) (yijx — YijA), (4.8.10)

i
and v, = n — r(X) = abn, — ab = ab (n, — 1). SAS automatically creates C4p so
that a computational formula for Hyp is not provided. It is very similar to the univari-
ate ANOVA formula with sum of squares replaced by outer vector products. SAS also
creates C4 and Cp to test Hy and Hp with v, = (a — 1) and v, = (b — 1) degrees
of freedom. Their structure is similar to the one-way MANOVA matrices consisting of
I’s and —1's to compare the levels of factor A and factor B; however, because main ef-
fects are confounded by interactions y; j in the LFR model, there are also 1’s and 0's
associated with the y;;. For our 3 x 2 design, the hypothesis test matrices for Type III tests
are

Ca

Cs 1111—1—1]

Il
1
o
o
o
o
|

where the r (C4) = v4 =a—1andther (Cg) = vg = (b — 1). The matrices C4 and Cp
are partitioned to represent the parameters 4, «;, fB; and y;; in the matrix B. SAS com-
mands to perform the two-way MANOVA analysis using PROC GLM and either the FR or
LFR model with interaction are discussed in the example using the reduction procedure.
The parameters s, M and N, required to test the multivariate hypotheses are summarized
by
s = min (vp, p)
M= (v, —pl—1)/2 (4.8.17)
N=@ —p—1/2
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where vj, equals v4, vp or v4 g, depending on the hypothesis of interest, and v, = ab(n, —
1).

With the rejection of any overall hypothesis, one may again establish 100 (1 — «) %
simultaneous confidence intervals for parametric functions ¥ = ¢/Bm that are estimable.
Confidence sets have the general structure

Y —caOy <Y S Y+ a0y
where ¢, depends on the overall test criterion and

7% = (m'Sm) ¢’ (X'X) ¢ (4.8.18)

where S = E/v,. For tetrad contrasts

g7 = 4(m'Sm) /n, (4.8.19)

Alternatively, if one is only interested in a finite number of parameters w;; (say), a vari-
able at a time, one may use some approximate method to construct simultaneous intervals
or us the stepdown FIT procedure.

b. Additive Two-Way MANOVA

If one assumes an additive model for a two-way MANOVA design, which is common in
a randomized block design with n, = 1 observation per cell or in factorial designs with
n, > 1 observations per cell, one may analyze the design using either a FR or LFR model
if all n, = 1; however, if n, > 1 one must use a restricted FR model or a LFR model. Since
the LFR model easily solves both situations, we discuss the LFR model. For the additive
LFR representation, the model is

Yijk=ﬂ+06,‘+ﬂj+e,‘jk
ejxr ~ 1IN, (0, X) (4.8.20)
i=12,...,a;j=1,2,...,b;k=1,2,... ,n, > 1

A common situation is to have one observation per cell. Then (4.8.20) becomes

yij=n+ait+B;+e;

. . (4.8.21)
ej~IN, (0, £)i=12...,a:j=1,2,...,b

We consider the case with n, = 1 in some detail for the 3 x 2 design given in Figure 4.8.1.
The model in matrix form is

Y 1 1.0 01 0 w e
Yio 1 1.0 0 0 1 o €,
Yy | 10101 0|« ¢,
e l=l 101001 ||| e (4.8.22)
i 100 1 10 | €y
Vi 100 10 1 : ¢,
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where the structure for u, o;, 8 j follow that given in (4.8.9). Now, (X/ X) is

6 2 2 2 3 3
2 2 0 0 1 1
xx)=| > 0 2 0 b (4.8.23)
2 : 0O O 2 : 1 1
3 1 1 1 3 0
L 3 1 1 1 0 3
and a g-inverse is given by
—1/6 0 0 0 0 0
0 1/2 0 0 0 0
~\— 0 0 1/2 0 0 0
(XX) - 0 0 0 1/2 0 0
0 0 0 0 1/3 0
0 0 0 0 0 1/3
so that
-1 -1/3 -1/3 —-1/3 —-1/2 —-1/2
1 1 0 0 1/2 1/2
N~ (v 1 0 1 0 1/2 1/2
H_(XX) (XX)_ 1 0 0 1 1/2 1/2
1 1/3 1/3 1/3 1 0
1 1/3 1/3 1/3 0 1
More generally,
—1/n (14 (14
(X'X)” = 0 »'I, 0
0 0 a_llb
and

-1 —a7'1, -b7'1;
H=(XX) XX)=| I, L b Jp
L, b ' I,
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Then a solution for B is

oy T
Y1,
B=(XX) XY=| vV,
Y,
./
L Y,
where
b
yi.= > Vij/b
j=1
a
Y.j =D VYij/a
i=1

y. =22 yij/ab
i

With ¢'H = ¢/, the BLUE for the estimable functions ¥ = ¢/Bm are

Yy =c¢Bm=m'[-1o(p+o +B)+
a b

Zn (ﬂ+ai+ﬂ.)+2t} (m+ai+B)

i=1 j=1

a b
Yy =c¢Bm=m'| -1y + Zt,-y,; + Zt}y_j
i=1 j=I
where
t'=[w.t1,0,... 0.1, 1, ..., 1]
a =) ojjaandB =3 B; /b
i J
Applying these results to the 3 x 2 design, (4.8.24) reduces to

v=—to(m+o +B)+(m+a+B)n+
(R+ar+B)n+ (n+as+B)i+
(m+a +B)t+(m+a +p)0

a b
¥ =—toy. + Y _tiyi+ ) 4y,
i=1 j=1

(4.8.24)
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so that ignoringm, ¥| = B — B, ¥, = «; —a; and Y3 = p +« + B are estimable,
and are estimated by ¥ = y1 —y2, ¥, =Y. —yr. and ¥; = y._. However, u and
individual effects e¢; and B; are not estimable since for ¢’ = [0, 1;,0,...,0], ¢H # ¢
for any vector ¢ with a 1 in the i™ position. In SAS, the general structure of estimable
functions is obtained by using the /E option on the MODEL statement.

For additive models, the primary tests of interest are the main effect tests for differences
in effects for factor A or factor B

Hy : alla; are equal
(4.8.25)
Hp : all B; are equal

The hypothesis test matrices C are constructed in a way similar to the one-way MANOVA
model. For example, comparing all levels of A (or B) with the last level of A (or B), the
matrices become
CA = [0’ Ia—ls _I,Obxb]
(a—1)xq

Cp
(b—1)xq

(4.8.26)
= [0’ 0a><a: Ib*l’ _1]

sothatvy =7 (C4q) =a —1and vg = r (Cp) = b — 1. Finally, the error matrix E may be
shown to have the following structure

E=Y[1-X(XX) X]Y
(4.8.27)

M=

b
=Y > ij—Yi—-Y,j+Y)@i;—Yi.—Yy;+y.)
i=1j=1

1

with degrees of freedom v, = n —r(X) =n—(a+b—-1) =ab—-—a—-b+1 =
(a—1)B-1).
The parameters s, M, and N for these tests are

Factor A Factor B

s =min(a — 1, p) s=min(b —1, p) (4.8.28)
M=(a—p-1-1/2 M=(b—-—p—1-1)/2
N=mn—-a—b—p)/2 N=m—-a—b—p)/2

If the additive model has n, > 1 observations per cell, observe that the degrees of free-
dom for error becomes v} = abn,—(a+b —1) =ab(n, — 1)+ (a — 1) (b — 1) which s
obtained from pooling the interaction degrees of freedom with the within error degrees of
freedom in the two-way MANOVA model. Furthermore, the error matrix E for the design
with n, > 1 observations is equal to the sum of the interaction SSCP matrix and the error
matrix for the two-way MANOVA design. Thus, one is confronted with the problem of
whether to “pool” or “not to pool” when analyzing the two-way MANOVA design. Pool-
ing when the interaction test is not significant, we are saying that there is no interaction so
that main effects are not confounded with interaction. Due to lack of power, we could have
made a Type II error regarding the interaction term. If the interaction is present, tests of
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main effects are confounded by interaction. Similarly, we could reject the test of interac-
tion and make a Type I error. This leads one to investigate pairwise comparisons at various
levels of the other factor, called simple effects. With a well planned study that has signif-
icant power to detect the presences of interaction, we recommend that the “pool” strategy
be employed. For further discussion on this controversy see Scheffé (1959, p. 126), Green
and Tukey (1960), Hines (1996), Mittelhammer et al. (2000, p. 80) and Janky (2000).

Using (4.8.18), estimated standard errors for pairwise comparisons have a simple struc-
ture for treatment differences involving factors A and B follow

A
B :

2 (m'Sm) /bn,

2 (m'Sm) /an, (4.8.29)

Q) Q)

v

when S is the pooled estimate of X. Alternatively, one may also use the FIT procedure to
evaluate planned comparisons.

c. Two-Way MANCOVA

Extending the two-way MANOVA design to include covariates, one may view the two-
way classification as a one-way design with ab independent populations. Assuming the
matrix of coefficients associated with the vector of covariates is equal over all of the ab
populations, the two-way MANCOVA model with interaction is

Yijk =+ o + B+ yi; +Tziji + eiji (LFR)

/ (4.8.30)
=p;; + U'Ziji + €iji (FR)

ek ~IN, (0,%)i=12,...,a;j=12,....,b; k=1,2,...,n,>0

Again estimates and tests are adjusted for covariates. If the ab matrices I are not equal,
one may consider the multivariate intraclass covariance model for the ab populations.

d. Tests of Nonadditivity

When a two-way design has more than one observation per cell, we may test for interaction
or nonadditivity. With one observation per cell, we saw that the SSCP matrix becomes the
error matrix so that no test of interaction is evident. A test for interaction in the univari-
ate model was first proposed by Tukey (1949) and generalized by Scheffé (1959, p. 144,
problem 4.19). Milliken and Graybill (1970, 1971) and Kshirsagar (1993) examine the test
using the expanded linear model (ELM) which allows one to include nonlinear terms with
conventional linear model theory. Using the MGLM, McDonald (1972) and Kshirsagar
(1988) extended the results of Milliken and Graybill to the expanded multiple design mul-
tivariate (EMDM) model, the multivariate analogue of the ELM. Because the EMDM is a
SUR model, we discuss the test in Chapter 5.
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4.9 Two-Way MANOVA/MANCOVA Example

a. Two-Way MANOVA (Example 4.9.1)

We begin with the analysis of a two-way MANOVA design. The data for the design are
given in file twoa.dat and are shown in Table 4.9.1. The data were obtained from a larger
study, by Mr. Joseph Raffaele at the University of Pittsburgh to analyze reading compre-
hension (C) and reading rate (R). The scores were obtained using subtest scores of the
Iowa Test of Basic Skills. After randomly selecting n = 30 students for the study and
randomly dividing them into six subsamples of size 5, the groups were randomly assigned
to two treatment conditions-contract classes and noncontract classes-and three teachers; a
total of n, = 5 observations are in each cell. The achievement data for the experiment are
conveniently represented by cells in Table 4.9.1.

Calculating the cell means for the study using the MEANS statement, Table 4.9.2 is
obtained.

The mathematical model for the example is

Yijk =+ +B; +yij +€ijk 9.1)
€ijx ~IN(0, 2) i=1,23)j=1,2k=12....,n,=5 o

In PROC GLM, the MODEL statement is used to define the model in program m4_9_1.sas.
To the left of the equal sign one places the names of the dependent variables, Rate and

TABLE 4.9.1. Two-Way MANOVA

Factor B
Contract Noncontract
Class Class
R C R C
10 21 9 14
12 22 8§ 15
Teacher 1 9 19 11 16
10 21 9 17
14 23 9 17
11 23 11 15
14 27 12 18
Factor A Teacher 2 14 17 12 18
15 26 9 17
14 24 9 18
8 17 9 22
7 12 8§ 18
Teacher 3 10 18 10 17
8 17 9 19
7 19 8§ 19




258

4. Multivariate Regression Models

Mean

TABLE 4.9.2. Cell Means for Example Data

B,

B;

Means

v, = [11.00,21.20]
vy, = [13.40,24.80]
v5, =1 8.00,17.20]

v, =[ 9.20,15.80]
¥}, = [10.20, 16.80]
Vs, =[ 8.80,19.00]

¥y, =1[10.10, 18.50]
v, = [11.80,20.80]
v, =1 8.40,18.10]

y, = [10.80,21.07]

Variable 1: reading rate (R)

13
12
11

10

13
12
11

10

y, =[ 9.40,17.20]

y =1[10.10, 19.13]

Variable 2: reading comprehension (C)

24 -
23 + /
2+
21 B
20
19
18 -
17
16 B,
15
| | |
Al AZ A3
25 |
23 I
21
19 - 4
AZ
17 + 4,
15 -
L L
Bl BZ

FIGURE 4.9.1. Plots of Cell Means for Two-Way MANOVA

Comp, to the right of the equal sign are the effect names, T, C and T*C. The asterisk between
the effect names denotes the interaction term in the model, y;;.

Before testing the three mean hypotheses of interest for the two-way design, plots of the
cell means, a variable at a time, are constructed and shown in Figure 4.9.1. From the plots,
it appears that a significant interaction may exist in the data. The hypotheses of interest
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TABLE 4.9.3. Two-Way MANOVA Table

Source df SSCP
57.8000
A (Teachers) 2 Hy = |: 45.9000 42.4667 i|
[ 14.7000
B (Class) P He= | 406000 1121333 ]
_ [ 20.6000
Interaction AB(T «C) | 2 | Hyp = | 51.3000 129.8667 ]
Within error 24 E = [givenin (4.9.3)]
. . [ 138.7000
Total 20| HEE | 1576000 339.4666 }
become 5 )3 )
Y1 Vi i V3
Ha :u1+1711=062+j—212°‘3+j73j
b b b
Hy B, 4 2 Vil }m _ g, Zi¥i Yzz (4.9.2)

HAB Y11 = V31— Y2~V = 0
Y21 = V31— ¥Yn—¥n=20
To test any of the hypotheses in (4.9.2), the estimate of E is needed. The formula for E is

E=Y[1-X(XX) X]Y

/
= ; %: %: (Yzjk - ylj.) (yl]k - ylj~) (4.9.3)
| 456
| 19.8 56.0
Thus
S_ E _ | 1.9000
- Ve T | 0.8250 2.3333

where v, =n —r (X) =30 — 6 = 24.

To find the hypothesis test matrices H4, Hp and H4 p using PROC GLM, the MANOVA
statement is used. The statement usually contains the model to the right of term # = on the
MANOVA statement. This generates the hypothesis test matrices H4, Hp and H4 p which
we have asked to be printed, along with E. From the output, one may construct Table 4.9.3,
the MANOVA table for the example.

Using the general formula for s = min(vp, p), M = (v, —p| —1)/2 and N =
(ve —p—1)/2 with p = 2, v, = 24 and v;, defined in Table 4.9.3, the values of s, M,
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and N for H4 and Hyp are s = 2, M = —0.5,and N = 10.5. ForHg,s = 1, M = 0,
and N = 10.5. Using a = 0.05 for each test, and relating each multivariate criteria to an F
statistic, all hypotheses are rejected.

With the rejection of the test of interaction, one does not usually investigate differences in
main effects since any difference is confounded by interaction. To investigate interactions
in PROC GLM, one may again construct CONTRAST statements which generate one de-
gree of freedom F tests. Because PROC GLM does not add side conditions to the model,
individual y;; are not estimable. However, using the cell means one may form tetrads in
the y;; that are estimable. The cell mean is defined by the term 7" C for our example. The
contrasts ‘11 — 31 — 12 + 32’ and ‘21 — 31 — 22 4 32’ are used to estimate

Vi=Yu—V3i—VYn—Vn
Vo=V —V31i—VYn—Vn

The estimates from the ESTIMATE statements are

}
)

The estimate ‘cl — c2’ is estimating 3 = 81 — o+ ) ; (yil - }’iz) /3 for each variable.
This contrast is confounded by interaction. The estimate for the contrast is

~ 1.40
¥i=y. —Y.2.=[ 187 }

The standard error for each variable is labeled ‘Std. Error o