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PREFACE 

Networked sensing is an area of enormous research interest, as evidenced 
by the explosive growth of technical workshops, conferences, and journals 
related to topics in sensor networks as well as by the increasing number of re- 
lated book publications. Research in sensor networks is influenced to varying 
degrees by ideas from traditional parallel and distributed computing, wireless 
ad hoc networking, signal processing, information theory, and so on. The 
semantics of spatial computing applications in sensor networks necessitate 
enhancements and extensions to traditional ideas in some cases and require 
the development of entirely new paradigms in others. The next generation of 
context-aware applications for these systems will require novel phenomenon- 
centric programming models, methodologies, and design tools to translate 
high-level intentions of the programmer into executable specifications for the 
underlying deployment. Indeed, such tools are critical for further develop- 
ment of the field; and once they become available, dramatic growth in this 
field can be expected. 

xi 
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This book deals with macroprogramming of networked sensor systems. A 
“macro”-programming language allows the application developer to express 
program behaviors at a high level of abstraction. The job of translating this 
high-level specification into node-level behaviors is delegated to a compilation 
and software synthesis system. Macroprogramming is interesting because it 
promises to facilitate rapid application development for large-scale, possibly 
heterogeneous sensor networks and also provides a framework for optimizing 
task placement and communication in such networks, without user involve- 
ment. 

Objectives 

We present a methodology and a programming languagedalled the Abstract 
Task Graph (ATaG)-for architecture-independent macroprogramming of net- 
worked sensor systems. Architecture-independence allows applications to be 
developed prior to decisions being made about the network deployment and 
also allows the same application to be compiled onto different target deploy- 
ments. 

ATaG is built upon two fundamental concepts: (1) the use of data-driven 
computing as the underlying control flow mechanism and (2) the adoption of 
mixed imperative-declarative notation for program specification. We argue 
that the former enables modular, composable programs for sensor networks 
and also provides an intuitive paradigm for specifying reactive behaviors in 
networked sensing. The latter separates concerns of task placement, firing, 
and in-network communication from the actual application functionality and 
is the key to architecture independence. 

The objective of this book is to illustrate the feasibility and usefulness of 
architecture-independent programming for networked sensor systems. The 
discussion is centered around the ATaG model, which is discussed in detail. 
Ultimately, we want the reader to gain exposure to the high-level concepts 
that guided the design and implementation of the ATaG programming lan- 
guage and environment. We also discuss the implementation of the DART 
runtime system in great detail. This is because we want the reader to be fa- 
miliar not just with the broad outline of DART but with its intimate details 
that will enable himher to modify and/or extend the DART functionality as 
desired. Eventually, it is our hope that researchers can build upon ATaG and 
DART and design full-fledged compilation and code synthesis environments 
for a variety of networked sensor systems. 
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Book Organization 

Chapter 1 provides a brief overview of sensor networks and the differences 
between sensor networks and traditional distributed systems. Various layers 
of programming abstraction for networked sensor systems are also reviewed, 
and the motivation for macroprogramming is discussed. 

Chapter 2 presents the Abstract Task Graph (ATaG) model. A discus- 
sion of the ATaG syntax and semantics is followed by a section on pro- 
gramming idioms in ATaG. ATaG programs for oft-cited behaviors in net- 
worked sensing (hierarchical tree structures, object tracking, etc.) are pre- 
sented. 

Chapter 3 discusses the design of DART the Data-driven ATaG RunTime. 
An overview of the DART components is followed by an in-depth discussion 
of each component. Relevant code listings from the current implementation 
of DART accompany the discussion. 

Chapter 4 outlines the overall process of application development with 
ATaG. This includes the graphical programming interface for ATaG, the au- 
tomatic software synthesis mechanism, and the rudimentary compiler that 
translates ATaG programs into node-level behaviors. The simulation and vi- 
sualization interface for ATaG is also discussed. 

Chapter 5 presents an ATaG case study. In this chapter, we illustrate pro- 
gramming and synthesis of a composite application consisting of a gradient 
monitoring component and an object tracking component. We walk the reader 
through the steps involved in developing the declarative and imperative parts 
of the ATaG program and the software synthesis and rudimentary compilation 
support offered by the programming environment. 

Chapter 6 concludes this book by discussing the broader context of the ATaG 
research. We argue that ATaG is not just a specific language for a class of sen- 
sor network applications but also a general framework that can be extended to 
a variety of behaviors in current and future sensor network applications. ATaG 
is also a framework for compilation in the sense that the syntax and semantics 
of ATaG and the design of the DART runtime system provide a well-defined 
framework for “intelligent compilation” of sensor network applications for a 
variety of target architectures. 

Target Audience 

This book is written for (i) researchers in networked embedded sensing and 
pervasive computing, (ii) researchers in parallel and distributed computing 
with applications to context-aware spatial computing, (iii) practitioners 
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involved in implementing and deploying networked sensor systems, and (iv) 
application developers and software engineers for networked embedded sys- 
tems for pervasive computing. 

We particularly hope that the in-depth discussion of the design of the run- 
time system and of the simulation and visualization environment will enable 
interested researchers to download the software and use it to demonstrate ex- 
tensions of the programming model or of the runtime system itself. To this 
end, we discuss specific extensions to ATaG and DART as future work in 
various clearly marked sections of this book. 

AMOL B .  BAKSHI 
VIKTOR K. PRASANNA 

Los Angeles, California 
January, 2008 
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CHAPTER 1 

INTRODUCTION 

Networked sensor systems 
A networked sensor system (a “sensor network”) is a distributed computing 

system where some or all nodes are capable of interacting with the physical en- 
vironment. These nodes are termed as sensor nodes and the interaction with the 
environment is through sensing interfaces. Sensors typically measure prop- 
erties such as temperature, pressure, humidity, flow, etc., when sampled. The 
sensed value can be one-dimensional or multi-dimensional. Sensor networks 
have a wide range of applications. Acoustic sensing can be used to detect 
and track targets in the area of deployment. Temperature, light, humidity, and 
motion sensors can be used for effective energy management through climate 
moderation in homes and commercial buildings. 

Wireless sensor networks (WSNs) [44, 3, 171 are a new class of sensor 
networks, enabled by advances in VLSI technology and comprised of sensor 
nodes with small form factors, a portable and limited energy supply, on-board 
sensing, computing, and storage capability, and wireless connectivity through 

Architecture-Independent Programming for  Wireless Sensor Networks 1 
By Amol B. Bakshi, Viktor K. Prasanna 
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2 INTRODUCTION 

a bidirectional transceiver. WSNs promise to enable dense, long-lived em- 
bedded sensing of the environment. The unprecedented degree of information 
about the physical world provided by WSNs can be used for in situ sensing and 
actuation. WSNs can also provide a new level of context awareness to other 
back-end applications, making sensor networks an integral part of the vision of 
pervasive, ubiquitous computing-with the long-term objective of seamlessly 
integrating fine grained sensing infrastructure into larger, multi-tier systems. 

There has been significant research activity over the last few years in the 
system-level aspects of wireless sensing. System level refers to the problems 
such as: (a) localization [41] and time synchronization [l5, 161 to provide 
the basic “situatedness” for a sensor node node; (b) energy-efficient medium 
access protocols that aim to increase the system lifetime through means such as 
coordinated sleep-wake scheduling [60]; (c) novel routing paradigms such as 
geographic [33,47], data-centric [22], and trajectory-based [40] that provide 
the basic communication infrastructure in a network where the assignment and 
use of globally unique identifiers (such as the IP addresses of the Internet) is 
infeasible or undesirable; (d) modular, component-based operating systems for 
extremely resource constrained nodes [27], etc. A variety of routing and data 
fusion protocols for generic patterns such as multiple-source single-sink data 
gathering trees are also being developed to optimize for a range of goodness 
metrics [30, 29, 611. A comprehensive overview of state of the art in system 
level aspects of wireless embedded sensing can be found in [3 1, 181. 

1.1 SENSOR NETWORKS AND TRADITIONAL 
DISTRIBUTED SYSTEMS 

It is instructive to compare and contrast the fundamental nature of networked 
sensing with traditional parallel and distributed computing, with a view to 
identifying the degree to which the research in the latter field over the past few 
decades can be leveraged (with our without modification) to propose solutions 
for analogous problems in the former. Since the primary focus of this work 
is on models and methodologies for programming of large-scale networked 
sensor systems, the comparison will be biased towards aspects which influence 
application development and not so much on system level issues. 

Sensor networks are essentially collections of autonomous computing ele- 
ments (sensor nodes) that pass messages through a communication network 
and hence fit the definition of a distributed computing system proposed in [8]. 
However, some of the fundamental differences between networked sensor 
systems and traditional distributed computing systems are as follows: 
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Transformational versus reactive processing 

The primary reasons for programming applications for a majority of tradi- 
tional distributed computing systems were “high speed through parallelism, 
high reliability through replication of process and data, and functional spe- 
cialization” [S]. Accordingly, the objective of most programming models and 
languages was to (i) allow the programmer to expose parallelism for the com- 
piler and runtime system to exploit and (ii) provide support for abstractions 
such as shared memory that hide the distributed and concurrent nature of the 
underlying system from the application developer. In other words, the pur- 
pose of most abstractions was to allow the programmer to still visualize the 
target architecture as a von Neumann machine, which provided an intuitive and 
straightforward mental model of reasoning about sequential problem solving. 
Alternate approaches such as dataflow and functional programming were also 
proposed, motivated by a belief in the fundamental unsuitability of the von 
Neumann approach for parallel and distributed computing [5 ] .  Regardless 
of the approach, most parallel and distributed applications were ultimately 
transformational systems that are characterized by a function that maps input 
data to output data. This function can be specified as a sequential, imperative 
program for a von Neumann architecture, and the purpose of parallelizing and 
distributing the execution over multiple nodes is mainly to reduce the total 
latency. 

A networked sensor system is not a transformational system that maps a 
well-defined set of input data to an equally well-defined set of output data. 
Instead, like a majority of embedded software, it is a continuously executing 
and primarily reactive system that has to respond to external and internal 
stimuli [24]. An event of interest in the environment triggers computation and 
communication in the network. A quiescent environment ideally implies a 
quiescent network as far as application level processing is concerned. 

Space awareness 

An embedded sensor network can be considered to represent a discrete sam- 
pling of a continuous physical space. In fact, an abstract model of a distributed 
sensor network can be defined and analyzed purely in terms of measurements 
of the space being monitored [32], without any reference to the network ar- 
chitecture. In contrast to traditional distributed computing where all compute 
nodes were basically interchangeable and the physical location of a particular 
computing element is not directly relevant from a programming or optimiza- 
tion perspective, space awareness [63] is an integral part of embedded net- 
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Figure 1.1 An example sensor network deployment for vehicle detection 
and tracking. Sensor nodes are deployed in clusters, with each cluster 
consisting of a relatively powerful clusterhead node and four resource- 
constrained sensor nodes. Each sensor could be equipped with acoustic andor 
magnetic sensors. The individual sensor nodes in each cluster communicate 
their readings to the clusterhead which computes the line of bearing and 
possibly the type of vehicls. This information will be relayed to a supervisor 
station that can triangulate the object position by ending line of bearing 
estimates from multiple clusters. This particular scenario was one of the 
early use cases for wirelessly networked sensor systems. 
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Figure 1.2 Multiple coordinate systems on the same deployment. 

worked sensing. Most of the data in a sensor network deployment are created 
through the act of sampling the sensing interface(s), and the time and location 
of the sampling are in most cases a necessary part of the description of the 
sampled data. The spatio-temporal origin of a data item also affects the quality 
and quantity of processing performed on it. 

Space awareness implies the existence of a coordinate system in which 
sensor nodes can be situated. In fact, a typical sensor network deployment is 
likely to have more than one coordinate system, each designed for a different 
purpose. For instance, the absolute or relative geographic coordinates might 
be required for tagging data samples at the node level, whereas the routing 
protocols could be using a different coordinate system that leads to reduced 
congestion and higher probability of timely data delivery in the network. Yet 
another coordinate system could be used for back-end processing which maps 
a particular (x, y) coordinate to, say, a building, a comdor, or a warehouse, 
depending on the application domain. Figure 1.2 depicts three coordinate 
sptems overlaid on the same sensor network. From the perspective of appli- 
cation development for networked sensor systems, a real or virtual coordinate 
system can be deemed to be an essential service included in the system level 
infrastructure, the details of which need not concern the programmer. 

Another aspect of space awareness is that the application behavior can 
be naturally specified in terms of spatial abstractions than in terms of nodes 
and edges of the network graph. For example, a temperature monitoring 
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application can be specified as “if more than 70% of nodes within a 2-meter 
radius of any node report a temperature higher than 90 degrees, activate an 
alarm at that node location.” The deployment of the network itself can be 
specified in terms of the desired degree of coverage. The exact placement of 
sensor nodes might not be of interest to the application developers as long 
as the set of sensing tasks mapped onto a subset of those nodes at any given 
time collaboratively ensures the desired coverage. Space-aware specification 
of the desired functionality is a unique aspect of networked sensor systems 
that has no analogous equivalent in traditional parallel and distributed com- 
puting. 

Nature of input data 

A majority of the data in a networked sensor system represents the occurrence 
of events in the physical environment and/or carries information about the 
events. Each data instance can be considered as a first-class entity with asso- 
ciated properties that could change with time and distance from its point of 
origin. For instance, in embedded sense-and-respond systems where sensing 
is coupled with local actuation and timely response to detected events is essen- 
tial, the utility of the data that represent occurrence of the event reduces with 
time. If the data are not processed by the application within a certain duration 
from its time of origin, it is effectively useless. In-network processing that 
seeks to move the computation close to the source of the data is required in 
many sensor network applications to guarantee the desired end-to-end func- 
tionality. This is in contrast to traditional distributed computing, where the 
distribution of data and placement of tasks on compute nodes is primarily 
determined by performance and reliability considerations. 

Also, different subsets of the total data in the network will be of interest to 
different applications at a given time, or to the same application at different 
times. In a sensor network deployed for climate moderation in a commer- 
cial building, an application component that periodically logs all temperature 
readings in a central database might not be interested in the semantics of that 
information, whereas another application component that is responsible for 
maintaining a uniform climate could be interested in temperature gradients 
that are above a certain threshold. From a programming perspective, it is im- 
portant to give application developers the freedom to define what is relevant 
and what is irrelevant and to produce and consume data at the desired level of 
semantic abstraction. 
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The semantics of data could also influence the protocols and services used 
for transporting data through the network, and for prioritizing in-network ac- 
tivities that are triggered in response to certain events. A piece of data that 
represents a catastrophic event such as a forest fire is much more important than 
any other data in the network at that time and the computation and communi- 
cation resources in the network can be expected to be devoted to expediting 
the transmission of the forest fire notification to its eventual destination. In a 
purely transformational system, however, it can be argued that the notion of 
importance of a particular piece of data does not really exist. 

1.2 PROGRAMMING OF DISTRIBUTED SENSOR 
NETWORKS 

1.2.1 Layers of programming abstraction 

Figure 1.3 depicts our view of the emerging layers of programming abstraction 
for networked sensor systems. Many protocols have been implemented to pro- 
vide the basic mechanisms for efficient infrastructure establishment and com- 
munication in ad hoc deployments. These include energy-efficient medium 
access, positioning, time synchronization, and a variety of routing protocols 
such as data-centric and geographic routing that are unique to spatial comput- 
ing in embedded networked sensing. Ongoing research, such as MiLAN [26], 
is focusing on sensor data composition as part of the basic infrastructure. Sen- 
sor data composition essentially means that the responsibility of interfacing 
with physical sensors and aggregating the data into meaningful application- 
level variables is delegated to an underlying runtime instead of being incor- 
porated as part of the application-level logic. We now discuss the layers of 
abstraction from the highest level of abstraction to the lowest. 

7.2.7.7 Service-oriented specification To handle the complexity of 
programming heterogeneous, large-scale, and possibly dynamic sensor net- 
work deployments and to make the computing substrate accessible to the 
non-expert, the highest level of programming abstraction for a sensor network 
is likely to be a purely declarative language. The Semantic Streams markup 
and query language [57] is an example of such a language that can be used 
by end users to query for semantic information without worrying about how 
the corresponding raw sensor data are gathered and aggregated. The basic 
idea is to abstract the collaborative computing applications in the network as 
a set of services and provide a query interpretation, planning, and resource 
management engine to translate the service requirements specified by the end 
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Figure 1.3 Layers of abstraction for application development on WSNs. 

user into a customized distributed computing application that provides the re- 
sult. A declarative, service-oriented specification allows dynamic tasking of 
the network by multiple users and is also easier to understand compared to 
low level distributed programming. 

7.2.7.2 Macroprogramming The objective of macroprogramming is to 
allow the programmer to write a distributed sensing application without explic- 
itly managing control, coordination, and state maintenance at the individual 
node level. Macroprogramming languages provide abstractions that can spec- 
ify aggregate behaviors that are automatically synthesized into software for 
each node in the target deployment. The structure of the underlying runtime 
system will depend on the particular programming model. While service- 
oriented specification is likely to be invariably declarative, various program 
flow mechanisms-functional, dataflow, and imperative-are being explored 
as the basis for macroprogramming languages. Regiment [42] is a declar- 
ative functional language based on Haskell, with support for region-based 
aggregation, filtering, and function mapping. Kairos [23] is an imperative, 
control-driven macroprogramming language for sensor networks that allows 
the application developer to write a single centralized program that operates on 
a centralized memory model of the sensor network state. ATaG [6] (discussed 
in more detail in the remainder of this book) explores the dataflow paradigm 
as a basis for architecture-independent programming of sensor network appli- 
cations. 
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1: void buildtree (node root) 
2: node parent, self; 
3: unsigned short dist-from-root; 
4: node-list neighboring-nodes , full-node-set; 
5: unsigned int sleep_interval=lOOO; 

5: full-node-set=get-available-nodesO; 
7: for (node temp=get-first(full-node-set); temp!=NULL; 

B :  self=get-local-node-ido; 
9:  if (temp==root) 
10: dist-from-root=O; parent=self ; 
11: else dist-from-root=INF; 
12: neighboring-nodes=create-node-list(get-neighbors(temp)); 
13: full-node-set=get-available-nodes 0 ; 
14: for (node iterl=get-first(full-node-set); iterl!=NULL; 

15: for(;;) //Event Loop 
16: sleep(sleep-interva1); 
17 : f o r  (node iter2=get-first(neighboring-nodes); iterZ!=MULL; 

18: if (dist-from-rootOiter2+l<dist-from-root) 
19: dist-from_root=dist-from-root@iter2+1; 
20: parent=iter2; 

//Initialization 

temp'get-next(full-node-set)) 

iterl=get-next(full-node-set)) 

iter2=get-next(neighboring-nodes)) 

Figure 1.4 Kairos code example: Building a shortest path routing tree [23]. 

Figure 1.4 [23] is a complete, centralized Kairos program for building a 
shortest path routing tree from a root node that is an input parameter. The 
entire distributed algorithm for building such a tree is specified in this program. 
Note that this code is not directly executed on each node. Instead, it is parsed 
by a compiler that uses the program specification to (a) determine the actual 
code to generate for each of the nodes in the network and (b) manage the local 
and remote variables referred to in the code. 

The initialization portion of the program gets all the nodes of the network, 
and for each node it sets the initial distance from root and the parent node 
pointer. The node that is to form the root of the routing tree sets its distance 
from root as zero and its parent pointer to itself, while all others set their 
distance to the root as infinity. 

The event loop in lines 15 through 20 represents an iterative process where 
each node periodically contacts each of its one-hop neighboring nodes from 
the list of one-hop neighbors, determines if that node is closer to the root than 
itself, and conditionally sets its parent in the routing tree to the neighboring 
node that is nearest to the root. 
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let mesh = planarize world 
nodesAbove = 

afilter ( ( > =  threshold) . 
(read-sensor SENSTYP)) 

mesh 
midpoint nstl nst2 = 

(read-nstate LOCATION nstl + 
read-nstate LOCATION nst2) / 2 

contourpoints node = 
let neighborsBelow = 

filter ( ( <  threshold) . 
(read-nstate SENSTYP)) 

(get-neighbors node) 
in map (midpoint (get-nstate node)) 

amap contourpoints nodesAbove 

neighborsBelow 
all-contourpoints = 

in 
afold append all contourpoints 

Figure 1.5 Regiment code example: Determining the contour between 
adjacent areas of a sensor network [42]. 

Figure 1.5 [42] provides a glimpse into the Regiment programming style. 
The program shown in the figure determines the contour between adjacent 
areas of the network, where the nodes on one side of the contour have sensor 
readings above some threshold. The program, written as a functional language, 
first prunes the network graph into a planar form (“planarize world”) and 
determines all the nodes whose sensor reading is above the threshold. The 
remainder of the code takes each node of the set of nodes above the threshold 
and forms a list of midpoints between the node and its neighboring nodes 
below the threshold. Finally, the list of midpoints generated at the contour 
nodes is aggregated to yield the contour line. 

1.2.7.3 Node-centric programming In node-centric programming, the 
programmer has to translate the global application behavior in terms of local 
actions on each node, as well as individually program the sensor nodes using 
languages such as nesC [19], galsC [13], C/C++, or Java. The program ac- 
cesses local sensing interfaces, maintains application level state in the local 
memory, sends messages to other nodes addressed by node ID or location, 
and responds to incoming messages from other nodes. While node-centric 
programming allows manual cross-layer optimizations and thereby leads to 
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Figure 1.6 Programming in nesC. 

efficient implementations, the required expertise and effort makes this ap- 
proach insufficient for developing sophisticated application behaviors for large- 
scale sensor networks. 

The concept of a logical neighborhood-defined in terms of distance, hops, 
or other attributes-is common in node-centric programming. Common op- 
erations upon the logical neighborhood include gathering data from all neigh- 
bors, disseminating data to all neighbors, applying a computational transform 
to specific values stored in the neighbors, etc. The usefulness and ubiquity of 
neighborhood creation and maintenance has motivated the design of node-level 
libraries [56, 551 that handle the low level details of control and coordination 
and provide a neighborhood API to the programmer. 

Middleware services [26, 37, 621 also increase the level of programming 
abstraction by providing facilities such as phenomenon-centric abstractions. 
Middleware services could create virtual topologies such as meshes and trees 
in the network, allow the program to address other nodes in terms of logical, 
dynamic relationships such as leader-follower or parent-child, support state- 
centric programming models [35], etc. The middleware protocols themselves 
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will typically be implemented using node-centric programming models and 
could possibly but not necessarily use communication libraries as part of their 
implementation. 

1.2.2 Lessons from parallel and distributed computing 

ATaG allows programmers to write architecture-independent networked sens- 
ing applications using a small set of application-neutral abstractions. Intuitive 
expression of reactive processing is accomplished in ATaG by using a data- 
driven paradigm, while architecture-independence is made possible through 
separation of functional concerns from the nonfunctional. These two core 
ideas have been explored in the distributed computing community. The data 
driven graph [52] extended the basic directed acyclic task graph model to 
support loop representation and dynamically created tasks in parallel pro- 
gramming. The use of data-driven semantics coupled with the task graph-like 
representation enabled clarity and simplicty of program design, and it also 
allowed for some optimizations relating to the data communication between 
tasks. 

The benefits of separating the core application functionality from other 
concerns such as task placement and coordination motivated the FarGo [28] 
model that enabled dynamic layout of distributqd applications in large-scale 
networks where capabilities of nodes and links could vary at runtime. By 
explicitly indicating co-location and re-location semantics of the tasks, FarGo 
elevated the performance and reliability of applications by allowing the de- 
ferment of layout decisions to runtime. Distributed Oz [25] is perhaps the 
closest to ATaG in terms of its objective of network transparency and network 
awareness. Distributed Oz cleanly separates the application functionality from 
aspects of distribution structure, fault tolerance, resource control and security, 
and openness. There are no explicit operations to transfer data across the 
network. All invocations of send() and receive() are done implicitly through 
language constructs of centralized programming. IBM’s PIMA project [9] 
explored a “write once, run anywhere” model for application front-ends by 
specifying device-specific presentation hints separately from the tasks and 
their interactions - yet again highlighting separation of functional and non- 
functional concerns as the key enabler of architecture independence. 

Tuple space is an abstract computation environment that represents a global 
communication buffer accessible to computational entities in the system. This 
was the basis for the generative communication model in the Linda coordi- 
nation language [20] and is also being applied in networked sensing [14]. 
Communication orthogonality is a property of generative communication 
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@{“employee”, 1234, “John”} P 
0 Producer adds a tuple to the tuple space. Note that producer task 

is not defined in terms of input and output tuples and producer 
task can choose to add any tuple it desires at any time 

of a tuple does not trigger the execution of consumer task and 
tuple exists till it is read and destroyed - depending on 
semantics of the language. 

@) Consumer invokes the in() method and provides a template that 
matches the tuple in the tuple space. Note that consumer task is 
not automatically triggered and the consumer can provide any 
template it desires at any time. 

@ Tuple exists independently in the tuple space. Note that creation 

Figure 1.7 Programming with tuple spaces. The producer and consumer 
tasks communicate via “in” and “out” primitives. The tuple persists in the 
tuple spaces until it is actively retrieved by the consumer. 

and means that both the sender and the receiver of a message are unaware of 
each other. ATaG also has this property because the tasks that produce and 
consume a particular data item in ATaG are not aware of each other. The data 
pool in ATaG is superficially similar to the notion of a tuple space. However, 
our active data pool moves the data items from producer to consumer(s) as 
soon as they are produced, and it schedules the consumer tasks based on their 
input interface and firing rules. This is different from the passive tuple space 
that merely buffers the produced data items and whose modifications are really 
a side effect of control-driven task execution. 
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In fact, the concept of tuple spaces has its roots in Blackboard architec- 
tures [43] of A1 research. ATaG’s active data pool is similar to the “demoned 
data servers” of DOSBART [34] that enabled distributed data-driven compu- 
tation in a blackboard architecture. The notions of activity class and trigger 
activities of DOSBART are similar to the abstract tasks and their firing rules 
in the ATaG model, respectively. 

1.3 MACROPROGRAMMING: WHAT AND WHY? 

The primary focus of this dissertation is on the programming of large-scale 
networked sensor systems. The purpose of the typical sensor network de- 
ployment is to gather and process data from the environment for a single 
“end-to-end” objective. The program that executes on each node is part of 
a larger distributed application that delivers the results of an implicit or ex- 
plicit domain specific query. Each node is required to be aware of its role 
in accomplishing the overall objective; that is, it is required to implement a 
predefined protocol for information exchange within the network. Consider a 
sensor network deployed for object tracking. The desired result of the implicit 
and perennial domain specific query in this case is the current location of tar- 
get(s) (if any) in the network. A node-centric approach to programming the 
network requires each node to be programmed with the following behavior. 
The acoustic sensor is sampled periodically with a fixed or varying frequency, 
a Fourier transform is applied to the time-domain samples, and the result is 
compared with a set of acoustic patterns of interest to the end user. If a match 
is found, the time- and location-stamped result is communicated to a desig- 
nated “clusterhead” node which performs further processing such as line of 
bearing estimation in an attempt to predict the location of the target. 

This programming methodology where the desired global application be- 
havior is manually decomposed by the programmer and subsequently coded 
into individual node-level programs is termed node-centric programming and 
is representative of state of the art. Node-centric programming has several 
limitations. Manual translation of global behavior into local actions is likely 
to be time-consuming and error prone for complex applications. If a new 
global behavior is to be added to an existing program, the modifications to 
the existing code are essentially ad hoc. The strong coupling of application- 
level logic and system-level services such as resource management, routing, 
localization, etc., also results in high coding complexity. 

Macroprogramming broadly refers to programming methodologies for sen- 
sor networks that allow the direct specification of aggregate behaviors. The 
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existence of a mechanism to translate the macroprogram into the “equivalent” 
set of node-level behaviors is implicit. The exact interpretation of macropro- 
gramming varies. A Regiment program specifies operations (such as fold and 
map) over sensor data produced by nodes with certain geographic or topologi- 
cal relationships of interest. Since these subsets of the global network state can 
be manipulated as a single unit, Regiment is a macroprogramming language. 
Kairos is a macroprogramming language because the programmer writes a sin- 
gle, centralized program for the entire network, and the compiler and runtime 
system are responsible for the translation of this program into node-level be- 
haviors, and implementing data coherence, respectively. TinyDB also enables 
macroprogramming because the programmer who formulates the SQL-like 
declarative aggregate query over sensor data is not responsible for (or even 
aware of) the details of in-network processing that are responsible for data 
collection and processing. 

We define the following two types of macroprogramming that are supported 
by ATaG. 

. Application-level macroprogramming means that the programming ab- 
stractions should allow the manipulation of information at the desired 
level of semantic abstraction. The information may indicate the occur- 
rence of an event and/or also carry information about the occurrence. 
For instance, in an object tracking application, the program should be 
able to access information such as “number of targets currently tracked,” 
“location of nearest target,” etc., without worrying about how that in- 
formation is obtained. . Architecture-level macroprogramming means that the programming ab- 
stractions should allow concise specification of common patterns of 
distributed computing and communication in the network. Such pat- 
terns are represented as part of neighborhood libraries defined for node- 
centric programming methodologies [55 ] .  These will typically have 
equivalent, concise abstractions in the macroprogramming language 
whose node-level implementation invokes the libraries. 

A macroprogramming language can be application-neutral or application- 
specific. The application-spec@ approach entails customized language fea- 
tures to support a particular class of networked sensing applications. For 
example, a programming language explicitly designed for multi-target track- 
ing might provide the current set of target locations or the handles to the current 
targets as a language feature whose implementation is hidden from the user. A 
language for temperature monitoring might provide a topographic map of the 



16 INTRODUCTION 

terrain as a built-in data structure that is created and maintained entirely by the 
runtime system. The advantage of this approach is that the implementation of 
domain-specific features can be optimized based on apriori knowledge of the 
pattern of information flow. If domain-specific features are integrated into the 
language, the resultant complexity of coding a behavior in that domain is also 
reduced. The drawback of this approach is that the portability and reusabil- 
ity of application-level code across network architectures, node architectures, 
and domains could be compromised. Also, adding new language features or 
modifying existing features might require a redesign of the runtime system 
and could be impossible or difficult for the application developer. 

1.4 CONTRIBUTIONS AND OUTLINE 

The two main contributions of this research are: (i) a programming model 
called the Abstract Task Graph (ATaG) for architecture-independent applica- 
tion development for aclass of networked sensor systems and (ii) a component- 
based software architecture for the runtime system. A third contribution 
is a prototype environment for visual programming in ATaG and automatic 
software synthesis for the target network deployment. The prototype com- 
piler integrated into this environment is designed to demonstrate functionally 
correct synthesis of a subset of the program features and does not optimize 
for any performance related metrics. Indeed, the definition of the compilation 
problem in the context of ATaG and the design and implementation of opti- 
mizing compilers for different scenarios is a significant research problem in 
its own right and one of the main areas of future work. 

The Abstract Task Graph (ATaG) 

ATaG is a macroprogramming model that builds upon the core concepts of 
data-driven computing and incorporates novel extensions for distributed sense- 
and-respond applications. In ATaG, the types of information processing func- 
tionalities in the system are modeled as a set of abstract tasks with well-defined 
inputloutput interfaces. User-provided code associated with each abstract task 
implements the actual processing in the system. An ATaG program is abstract 
because the exact number and placement of tasks and the control and coor- 
dination mechanisms are not defined in the program but are determined at 
compile-time andor runtime, depending on the characteristics of the target 
deployment. Although ATaG is superficially based on the task graph repre- 
sentation, there are significant differences in the syntax and semantics, which 
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arise from the requirements of distributed networked sensing. The differenti- 
ating factors include the notion of “abstract” tasks and data items, the use of 
data-driven program flow semantics of the graph, the elevation of data items 
as a first class entity in the graph representation along with the computational 
tasks, the concept of spatial scope of a directed edge, etc. 

There is a growing interest in defining macroprogramming languages [23, 
421 and application development environments [ 12, 531 for sensor networks. 
ATaG enables a methodology for architecture-independent development of 
networked sensing applications. The same ATaG program may be automati- 
cally synthesized for different network deployments, or adapted as nodes fail 
or are added to the system. Furthermore, it allows application development 
to proceed prior to decisions being made about the final configuration of the 
nodes and the network, and in future implementations it will permit dynamic 
reconfiguration of the application as the underlying network changes. 

ATaG provides application-neutral support for macroprogramming. Using 
a small set of basic abstractions, ATaG allows programmers to define their own 
semantics for tasks and data items. The modularity and composability of ATaG 
programs means that a library of common behaviors in a particular domain can 
be defined by the programmer and can later be plugged into other applications 
that need not know the implementation details of the library component. This 
approach provides the benefits of using predefined domain-specific features 
while avoiding the restrictiveness of a domain-specific, custom built runtime 
system. 

Data-Driven ATaG Runtime (DART) 

ATaG is supported by a runtime system called DART whose structure and 
function is not visible to the programmer. DART has a component-based soft- 
ware architecture for modularity and flexibility. Each component of DART 
provides one or more well-defined services to other components. The imple- 
mentation of a service is hidden from the users of the service. The current 
DART design can be easily implemented on operating systems that support 
preemptive priority-based scheduling, multi-threaded execution, mutual ex- 
clusion semaphores, message queues, and other mechanisms to handle con- 
current access to critical sections and coordinate interactions between threads. 
Most traditional operating system kernels provide these facilities. A proto- 
type version of DART has been implemented in Java, and is designed to run 
on relatively heavy duty sensor nodes, although Java Virtual Machines for 
resource-constrained architectures are also available [48]. DART is also be- 
ing implemented on the pC/OS-I1 real-time 0s kernel [39], which has been 
ported to a vast number of devices. 
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The performance of DART is unlikely to compare favorably with hand- 
optimized runtime systems where different functionalities are tightly inte- 
grated into an inflexible, monolithic structure, and many cross-layer opti- 
mizations are incorporated into the design. However, the tradeoff between 
usability and flexibility, on one hand, and hand-optimized performance, on 
the other, is common in all methodologies that seek to automate the design of 
complex systems. A greater level of experience with implementing different 
applications on a real DART-based system will guide future design choices 
for the ATaG runtime. 

Software synthesis 

In the context of the ATaG-based programming framework, software synthesis 
is the process of generating code for each node of the target sensor network 
deployment for the selected ATaG program. The code that is associated with 
each application-level functionality (abstract task) is to be provided by the 
programmer. The task of the software synthesis process is to generate the 
remainder of the software that is responsible for coordination and commu- 
nication between the abstract tasks. To ease the task of software synthesis, 
we designed DART such that a majority of the code base either is agnostic to 
the application level functionality or can be customized by means of a con- 
figuration file that is generated by the software synthesizer. As an example, 
approximately 3000 lines of Java code runs on each sensor node in the ATaG 
program for object tracking (Section 2.5.1), of which only 100 lines are actu- 
ally provided by the application developer and the rest is comprised of DART 
code that is used essentially unchanged and some glue code that is generated 
by the software synthesizer. The newly generated glue code is only 15 lines 
of Java that basically embeds the declarative part of the ATaG program into 
the runtime system, along with a one-line configuration file for each node in 
the target network that provides some state information to govern the node’s 
behavior during the simulation. 

Outline 

The core ideas of ATaG have been individually explored in different contexts 
in the parallel and distributed computing community. There are also other 
approaches to the problem of macroprogramming of sensor networks being 
explored in the sensor networking community. Some of these were discussed 
previously in this chapter. Chapter 2 presents the ATaG programming model 
in detail with a description of a syntax and semantics of ATaG program. A 
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set of programming idioms are also provided to illustrate the formulation of 
oft-cited behaviors in sensor networking as ATaG programs. The design of the 
DART runtime system is the subject of Chapter 3, which describes the service 
provided by each of the DART components, the interactions between the 
various components, and implementation notes. Chapters 2 and 3 also include 
a discussion of future research directions in the context of the programming 
model and the design of the runtime system, respectively. Chapter 4 presents 
the visual programming and software synthesis environment for ATaG. A brief 
primer on the Generic Modeling Environment [21] precedes the discussion of 
the various modeling paradigms that are provided to the application developer. 
A case study is included in Chapter 5 to illustrate the development of an 
application consisting of two behaviors-object tracking and environment 
monitoring-using this programming environment. We conclude in Chapter 6. 
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CHAPTER 2 

THE ABSTRACT TASK GRAPH 

2.1 TARGET APPLICATIONS AND ARCHITECTURES 

ATaG is not designed for a particular sensor node platform, network archi- 
tecture, or application domain. We model the deployment as a distributed 
system consisting of a set of autonomous elements (sensor nodes). Each ele- 
ment of the system has on-board computation and storage capability and can 
communicate with the rest of the elements through one or more neighbors. In 
addition, each element may be equipped with one or more types of sensing 
or actuation mechanisms that can be controlled through software. Since sit- 
uatedness (localization) is fundamental to embedded networked sensing, we 
assume that each element is capable of determining its own location in some 
shared coordinate system and/or namespace. 

The programming model makes no assumptions about the communication 
interface (wired or wireless) or about the computation, storage, and energy 
resources available to a node. Of course, the resources at a node will constrain 
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the number of tasks that can be mapped onto it, the latency of communica- 
tion could be affected by the available bandwidth between the node and its 
neighbors, and the type of energy resources available could also affect the 
system-wide performance. This analysis is expected to be performed at com- 
pile time in the context of a specific network architecture, and the suitability 
of an ATaG program for a particular architecture is not meant to be inherent 
in the program itself. Thus, the target system can encompass a heterogeneous 
collection of micro-sensor nodes such as the Motes, more capable nodes such 
as the Stargate, and even desktop PCs or servers connected to the internet. 
ATaG also makes no assumptions about the mobility of nodes or other factors 
that could lead to changes in network topology at run time. The interpretation 
of program elements will depend on the nature of the target deployment, but 
the definition of the features of the programming model is independent of such 
assumptions. 

For example, an ATaG programmer can specify the instantiation density 
of an application level task and can state, say, that one instance of task A 
should be instantiated per square meter of the deployment. In this case, if the 
nodes are mobile, the runtime system is expected to be capable enough to de- 
tect situations when this requirement is no longer satisfied and take corrective 
measures such as reassigning tasks to nodes in a way that expected density is 
once again achieved. If the nodes are immobile, the initial task assignment 
at compile time can be expected to be valid until other factors such as energy 
depletion necessitate reassignment. In this example, the application developer 
does not care about the static or dynamic nature of the deployment as long 
as the high-level application requirements as expressed through an ATaG pro- 
gram are met. More important, keeping the programming model free of such 
assumptions also adds to the architecture independence of the application. 
Of course, this does not preclude ATaG programs from being designed for 
specific types of deployments, but the programming model itself is designed 
for a range of network architectures, with the job of deployment-specific cus- 
tomization largely delegated to the compilation process and the protocols and 
services incorporated into the underlying runtime system. 

ATaG programs are data-driven, which means that tasks are scheduled when 
their data are available (possibly also subject to other firing rules). Tasks in- 
teract only with the data pool, and one task cannot directly control other tasks. 
This lack of application-level control over task scheduling and execution (that 
is entirely managed by the underlying runtime system) limits the applicability 
of ATaG to scenarios where such fine-grained control over node-level exe- 
cution is not required. Low-duty cycle environment monitoring that require 



KEY CONCEPTS 23 

periodic network-wide data collection with or without in-network aggrega- 
tion is an example of an application that can be programmed in ATaG. On 
the other hand, if an application requires strict latency guarantees on critical 
paths from sensing to actuation, a control-driven programming language such 
as Kairos [23] may be better suited than the data-driven semantics of ATaG. 

2.2 KEY CONCEPTS 

ATaG is based on two key concepts: (i) data-driven program flow that enables 
intuitive expression of reactive processing in the network and leads to modu- 
lar, composable, and reusable programs and (ii) mixed imperative-declarative 
program specification that separates the functional and non-functional aspects 
of the application and provides architecture independence, spatial awareness, 
and network awareness. We discuss these concepts in more detail in the fol- 
lowing subsections. 

2.2.1 Data-Driven Computing 

2.2.1.7 Program flow mechanisms Three basic program flow mecha- 
nisms being explored in the context of programming of networked sensor sys- 
tems are: control-driven, data-driven, and demand-driven. In control-driven 
program flow, instructions are executed in an explicitly specified order. An ex- 
ample of this is the well-known von Neumann architecture where the program 
counter is incremented (or otherwise modified) after every execution and the 
next instruction in the sequence is decoded and executed. The single thread 
of control passes from instruction to instruction, and the modifications to the 
data store are a side effect of instruction execution. Data are passed indirectly 
between instructions by means of referencing common memory locations. In 
parallel forms of control flow, there are multiple threads and mechanisms such 
as fork and join for coordination between the threads. Imperative languages 
such as C are representative of control-driven programming. Paradigms such 
as object-oriented programming, distributed programming through message 
passing, etc., provide ways to structure complex control-driven programs to 
make them easier to design, maintain, and/or deploy, but the basic model of 
a set of “active” instructions manipulating a (conceptually) shared “passive” 
data store remains unchanged. 

Data-driven program flow is fundamentally different from control-driven flow 
in the following aspects. First, the flow of control is governed by data depen- 
dencies and not determined by an explicitly specified sequence of taskdin- 
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Figure 2.1 Data-driven vs. Control-driven. 

structions to be executed. Tasks are defined in terms of their input and output 
data items. In the basic dataflow model, an instruction is considered to be 
enabled when its operands are ready, and the program terminates when no 
instructions are enabled. Data dependence is the sole means of task schedul- 
ing and also the synchronization. Second, data are explicitly passed between 
tasks. There is a data pool abstraction that tasks write to and read from, but 
the concept of indirect sharing of data through referencing common locations 
(shared variables) in the data pool does not exist. Dataflow programs are 
commonly expressed as directed graphs where the nodes of the graph corre- 
spond to tasks (instructions) and the directed arrows denote data dependencies 
between tasks. 

The term “event-driven processing” is used in the sensor network com- 
munity, specifically in the context of the TinyOS operating system for the 
Berkeley Motes. Event-driven means that processes need not poll or block 
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for input, consuming valuable system resources while doing so. In networked 
sensor systems where certain kinds of events might be very rare compared to 
the frequency of polling, such behavior is wasteful. Instead, the event-driven 
philosophy allows the process to sleep until its required trigger input is avail- 
able and be woken up (activated) at the suitable time. Programming with the 
nesC language qualifies as event-driven programming because the program is 
basically structured as a set of modules with well-defined interfaces that can 
be invoked by other modules to request a service (“commands”) or act as a 
callback to the caller module to indicate completion of the service (“events”). 
The event-driven execution in this context is essentially control-driven pro- 
gram flow where the events correspond not to the availability of input data for 
a particular module, but to the invocation of an asynchronous function call by 
another module. The transfer of data between modules (if any) is hidden in 
the arguments to the function being invoked. The core of the operating system 
is just a scheduler, and there is no active data store that spawns tasks based on 
their firing conditions. 

Tuple spaces is another abstraction that is superficially similar to data- 
driven program flow but, at least as used in the Linda coordination language, 
is basically a mechanism for spatially and temporally decoupled sharing of 
data among multiple processes in a control-driven distributed program. A 
tuple space is a shared, associative memory maintained by an underlying run- 
time system. Although the shared memory abstraction reduces the complexity 
of distributed programming compared to message passing, location-based ad- 
dressing of the shared memory is cumbersome for a variety of reasons. Instead, 
processes add “tuples” to the shared memory by means of an i n  () primitive, 
and they read tuples by means of the out  ( 1 primitive. Tuples are typed group- 
ings of relevant fields that are addressed not by their location in the logically 
shared memory but by their content and type. Since the reads and writes are 
directed at the tuple space and not at other processes, programs gain modular- 
ity and extensibility. The tuple space can be considered as just another form of 
shared memory in a control-driven program flow because the thread of control 
is very much in the processes themselves and not determined by the contents 
of the tuple space. Like the event-driven programming of nesC/TinyOS which 
eliminates the need for polling or blocking and thereby makes control-driven 
programming more efficient, mechanisms such as the not i f  y (1 primitive of 
JavaSpaces have been defined for the tuple space abstractions. However, just 
as event-driven execution does not make nesC a data-driven language, the ad- 
dition of no t  i f  y 0 to tuple spaces does not make it a data-driven paradigm, 
although the other benefits of the tuple spaces make it a promising approach 
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for sharing information in highly distributed and dynamic systems such as 
sensor networks. One of the many extensions to the basic Linda model that 
have been proposed over the past couple of decades is Lime, which, among 
other extensions, adds the concept of a reaction, which is a method to be exe- 
cuted when a tuple matching a particular pattern is found among the contents 
of the tuple space. An overview, classification, and analysis of approaches to 
embed reactive processing in shared dataspaces can be found in [ 111. 

Finally, demand-driven programming-also known as reduction program- 
ming-is a third paradigm where the demand for a value triggers the com- 
putation that is responsible for producing the value. That computation may 
in turn require values that lead to more computations and so on. Functional 
programming with lazy evaluation is an example of the demand-driven pro- 
gram flow mechanism. In reduction programs, there is typically no concept 
of a storage location that can be read and written. All program structures are 
expressions. When a program is expressed as a function whose arguments in 
turn can be functions themselves, the programmer is describing the solution 
space without specifying the exact sequence of instruction execution required 
to arrive at a solution. Regiment [42] is a functional language based on Haskell 
that exploits the declarative nature of functional programming to simplify the 
task of collaborative computing in networked sensor systems. 

2.2.7.2 Why data-driven? The individual sensor node will typically 
have a traditional, sequentially programmable von Neumann or Harvard ar- 
chitecture, along with support for one or more control-driven, imperative lan- 
guages such as C. At the system level, which is the domain of macroprogram- 
ming, there are different ways of modeling the collection of von Neumann 
architectures that forms the overall computing substrate. One approach is 
to (a) extend the node-level programming paradigm to encompass the entire 
system and (b) model the sensor network as a single processing element and a 
single centralized memory [23]. The von Neumann model can also be aban- 
doned at the system level altogether, and the macroprogramming language can 
be based upon an alternate paradigm such as functional programming [42]. 
ATaG explores the dataflow paradigm for the following reasons. 

Reactive processing. A sensor network application can be intuitively modeled 
as a set of node-level or sy stem-level responses to node-level or sy stem-level 
events. Events will be defined by the application developer at desired levels 
of semantic abstraction, based on the application domain. An event could 
indicate the occurrence of phenomena in the physical environment (physical 
event) or the execution of a particular phase of processing in the network 
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(computational event). In addition to denoting occurrence, the event could 
also carry information about (a) the phenomena in the former case and (b) the 
results of intermediate computation in the latter. Similarly, a reaction to an 
event could involve a sequence of computation and communication involving 
one or more nodes of the network. 

Data-driven programming is especially suited for expressing reactive ap- 
plications. A data-driven program consists of a set of tasks with well-defined 
input and output interfaces. In the pure data-driven model, a task is executed 
only when all of its inputs are available. However variants of the basic model 
(including our variant in ATaG) allow the definition of firing rules that can be 
used to define triggering condition of a task. For instance, a task could be 
triggered when a specific input is available, or when any one of its inputs is 
available, or when a certain fraction of its inputs are available. These basic 
rules can be used to define complex behaviors, as will be illustrated in Sec- 
tion 2.5. Also, tasks are disjoint from each other in the sense that all interaction 
between tasks is indirect-through the production and consumption of data 
items. Since tasks are decoupled, a given task can defined to use data items 
at the desired level of semantic abstraction without having to worrying about 
how they are produced. This supports application-level macroprogramming . 

Reusability and composability. Modularity, reusability, and composabil- 
ity are important nonfunctional requirements for sensor network applications. 
Ultimately, we envision our programming model to be integrated into an appli- 
cation synthesis framework similar to the vision of service-oriented program 
composition [36]. Macroprograms will be generated automatically from a 
high-level declarative specification and in turn compiled into node-level spec- 
ifications. Modularity and composability enables the creation of libraries of 
commonly encountered behaviors and allows existing applications to be suit- 
ably reused as subsets of larger functionalities. 

In control-driven distributed programming using message passing or other 
communication libraries, tasks explicitly invoke each other’s services. Since 
this requires a task to have information about other task it communicates with, 
any modification to a task is likely to affect other tasks in the program. Also, 
if a new task (functionality) is added to the program, all tasks that are to take 
advantage of that functionality must be modified to incorporate the suitable 
calls to the newly added task. This tight coupling of task interfaces restricts 
the reusability of code and composability of programs. 

In data-driven programming however, task interfaces are specified as “Task 
A reads data item Temperature and produces data item Alarm” or “Task B 
reads data item Temperature and produces data item Maximum.’’ Suppose 
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a new functionality is to be added to this temperature monitoring program. 
The purpose of this new task is to corroborate the readings from a wider area 
around the node that produced the alarm and produce another “verified alarm” 
based on the results. In data-driven programming, all that is required is to 
simply define a new task as “Task C reads data items Alarm and Temperature 
and produces data item VerifiedAlarm.” The representation of the spatial 
aspect of this processing will be discussed in the next section, specifically the 
collection of data from the neighborhood. The emphasis here is on the fact 
that the addition of Task C does not change the existing tasks in any way. 
Also, Task C does not care about how the Alarm is produced by Task B. The 
new program is simply a concatenation of the three tasks, and their mutual 
dependency is implicit in their input and output interfaces defined in terms of 
data items. 

2.2.2 Mixed Imperative-Declarative Specification 
Imperative programming is a programming paradigm where computation is 
specified in terms of statements (commands) that are to be executed in se- 
quence and that change the program state. Almost all processors are designed 
to execute imperative programs, and the program state at any given time is 
represented by the contents of the processor memory at that time. Since 
imperative programming requires the programmer to specify the ‘how’ of 
computation in detail, the advantage of intimate control over program execu- 
tion is offset by the programming complexity, especially for large-scale andor 
distributed systems. High-level procedural languages and object-oriented lan- 
guages provide constructs such as objects that ease the task of writing complex 
imperative programs, but the basic paradigm remains unchanged. nesC [ 191 
and Kairos [23] are examples of imperative programming languages for sensor 
network applications. 

Declarative programming, in contrast, focuses on the “what” of computa- 
tion, leaving the “how” unspecified. A declarative program can be viewed as 
the description of a solution space where the sequence of steps to arrive at 
the solution is left to some underlying interpreter. Functional programming 
and logic programming are examples of declarative programming. The ma- 
jor advantage of declarative programming from an application development 
perspective is the reduced complexity of programming that is a result of del- 
egating most of the selection and synthesis of underlying mechanisms to an 
unspecified interpreter, while the application developer focuses primarily on 
formulating the solution space. Regiment [42], TinyDB [38], and Seman- 
tic Streams [57] are examples of the declarative programming paradigm for 
sensor network applications. 
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Now, the functional aspect of a sensor network application refers to the code 
(tasks) that runs on the individual sensor nodes and performs data processing. 
Examples of nonfunctional aspects are task placement and mechanisms for 
communication and coordination. Consider a simple application where a 
collector task running on a designated root node periodically receives and 
logs temperature readings from every node in the network. The functional 
aspects of this application are completely defined by the code that performs 
the sampling and the code that performs the logging. As long as there is a 
mechanism to (i) ensure the placement of one sampling task on each node of 
the network and one logging task on the root node, (ii) periodically execute 
the sampling task, and (iii) route the sampled data from its point of origin to 
the root node, the details of its implementation should not be the application 
developers’ concern. 

The ATaG programming paradigm is based on the observation that specifi- 
cation of functional aspects of the networked sensing application in an impera- 
tive style and the nonfunctional aspects in a declarative style affords a tradeoff 
between the need for control over application execution and the need to reduce 
the complexity of communication and coordination. The latter is a substantial 
fraction of a networked sensing application and can really be considered as a 
service offered by the system instead of an integral and integrated part of the 
application code. 

More importantly, ATaG enables architecture independence by clearly sep- 
arating the “when and where” of processing from the “what.” The former 
constitutes the declarative part and is specified through parameterized spatial 
and temporal attributes for a generic network architecture. The latter con- 
stitutes the imperative part and is the actual task code supplied by the user. 
The same program can be compiled for a different network size and topology 
by interpreting the declarative part in the context of that network architecture 
while the imperative part remains unchanged. 

2.3 SYNTAX 

2.3.1 The Structure of an ATaG program 

The task graph is a widely used application model. In the task graph nota- 
tion, the overall computation is represented as an acyclic directed graph. The 
nodes of the graph correspond to processes (tasks), and a pair of distinct tasks 
are connected by a directed edge iff the task at the tail of the directed edge 
requires as input the results of execution of the task at its head. In the simplest 
model, a task cannot start executing until all its predecessors have finished 
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execution. For transformational applications, the task graph exposes the po- 
tential for concurrent execution of tasks and is widely used in task scheduling 
and allocation [2, 451. The task graph is also commonly annotatedextended 
with other information relevant to the problem domain-for example, the con- 
ditional task graph for low-power embedded system synthesis [%], the aug- 
mented task dependency graph [46] for automated software partitioning and 
mapping for distributed multiprocessors, the iterative task graph for represent- 
ing loops [59], etc. Annotation of paths in the task graph with throughput and 
latency constraints has been employed for resource allocation in distributed 
sensor-actuator systems [4]. 

The ATaG model of a program is similar to the task graph model in that the 
application is represented as a set of tasks and a set of data items connected via 
directed arrows denoting the input or output relationship between a task and 
a data item. Tasks and arrows (called “channels” in ATaG) also have associ- 
ated annotations that determine the translation of the architecture-independent 
ATaG program in the context of a particular network deployment. 

An abstract 
declaration can be one of three types: abstract task, abstract data, or abstract 
channel. Each abstract declaration consists of a set of annotations. Each 
annotation is a 2-tuple where the first element is the type of annotation, and 
the second element is the value. Hereafter, we occasionally omit the word 
“abstract” for sake of brevity. Figure 2.2 provides a general overview of the 

An ATaG program is a set of abstract declarations. 

ATaG Program 

Abstract Task Abstract Data Abstract Channel 
neighborhood - 

Firing rules Placement 
(“when”) (“where”) k-nearest 

node ID(s) virtual topology 

t Er::n geographic 
location(s) 

clustering 
domain t instances-nearest 

availability 
degree of 

resource [ 
coverage initiation 

periodic 
aperiodic 

anydata 

t 
t alldata 

Figure 2.2 An overview of the ATaG syntax. 
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ATaG syntax and the broad classification of the annotation types currently 
supported. The task annotations relate to the placement and firing rules of 
tasks, while the channel annotations are used to specify different types of 
“interests” in instances of the associated abstract data item. Support for task 
placement based on compile-time or runtime availability of resources or on 
the desired degree of coverage (for sensing tasks) is not yet implemented in 
the prototype ATaG programming environment, and is hence italicized in the 
figure. The set of annotations is open-ended: More types can be defined based 
on the target class of applications, the hardware architecture of the sensor node, 
and the capabilities of the runtime system. 

Abstract task: Each abstract task declaration represents a type of processing 
that could occur in the application. The number of instances of the abstract task 
existing in the system at a given time is determined in the context of a specific 
network description by the annotations associated with that declaration. Each 
task is labeled with a unique name by the programmer. Associated with each 
task declaration is an executable specification in a traditional programming 
language that is supported by the target platform. Table 2.1 describes the 
annotations that can be associated with a task declaration in the current version 
of ATaG. 

Abstract data: Each abstract data declaration represents a type of application- 
specific data object that could be exchanged between abstract tasks. ATaG does 
not associate any semantics with the data declaration. The number of instances 
of a particular type of data object in the system at a given time is determined by 
the associated annotations in the context of a specific deployment and depends 
on the instantiation and firing rules of tasks producing or consuming the data 
objects. Each data declaration is labeled with a unique name. Similar to the 
executable code associated with the task declaration, an application-specific 
payload is associated with the data declaration. This payload typically consists 
of a set of variables in the programming language supported by the target 
platform. No other annotations are currently associated with abstract data 
items. 

Abstract channel: The abstract channel associates a task declaration with a 
data declaration and represents not just which data objects are produced and/or 
consumed by a given task, but which instances of those types of data items are 
of interest to a particular instance of the task. An abstract channel is called an 
input (output) channel if the data item is to be consumed (produced) by the 
task. In an ATaG program, more than one input channels may be defined for a 
given abstract data item-denoting the fact that more than one consumer exists 
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Table 2.1 Abstract Task: Annotations. 

Type: Instantiation 

Value[:Parameter] Description 

one-anywhere Create one instance of the task on any node in the network 

one-on-node-1abel:l 

one-on-node-1D:id 

Create one instance of the task on each node labeled I (dynamic) 

Create one instance of the task on node id 

nodes-per- 
instance: [/In 

Create one instance of the task for each n nodes of the network. 
When n is preceded by a “I”, create exactly n instances of the task 
and divide the total number of nodes into n non-overlapping domains, 
each owned by one instance. 

Same as for nodes-per-instance. Parameter denotes area of deploy- 
ment instead of number of nodes. The non-overlapping domains are 
in terms of area of deolovment. not number of nodes. 

area-per- 
instance:[/jarea 

spatial- 
extentxl, y1,22, yz, . . . polygon defined by the coordinates (21, yi), (22, yz), . . ., (21, pi). 

Create one instance of the task on every node that is deployed in the 

Type: Firing rule 

Value[:Parameter] Description 

periodic:p Schedule task for periodic execution with period of p seconds. 

any-data Schedule task for execution when at least one of the input data items 
are available. 

all-data Schedule task for execution only when all the input data items are 
available. 

for that type of data. The current design of the ATaG runtime allows only one 
output channel to be associated with a particular abstract data item; that is, 
there can be at most one producer task. This restriction may be eliminated in 
the future. 

Table 2.2 describes the annotations that can be associated with an abstract 
channel in the current version of ATaG. The abstract channel is the key to 
concise, flexible, and architecture-independent specification of common pat- 
terns of information flow in the network. For instance, spatial dissemination 
and collection patterns may be expressed using simple annotations such as “1- 
hop,” “local,” or “all nodes,” on output and input channels. More sophisticated 
annotations may be defined as needed or desired for a particular application 
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Table 2.2 Abstract Channel: Annotations. 

Type: Initiation 

Value Description 

push The runtime system at the site of production of each instance of the 
associated abstract data item is responsible for sending the instance 
to nodes hosting suitable instances of the consumer task@). 

pull The runtime system at the node hosting an instance of the consumer 
task is responsible for requesting the required instance(s) of the as- 
sociated abstract data item from the site(s) of production. 

Type: Interest 

Value[:Parameter] Description 

[l]lOCal Channel applies to the local data pool of the task instance. The nega- 
tion qualifier excludes the local data pool, and can be used in con- 
junction with other qualifiers (see Section 2.3.3 for an example). 

Channel includes all nodes within the n-hop neighborhood of the node 
hosting the task instance 

neighborhood-hops:n 

neighborhood- 
distance:d the task instance 

Channel includes all nodes within a distance d of the node hosting 

k-nearest-nodes:k Channel includes the k nearest nodes of the node hosting the task 
instance 

The input (output) channel includes the the set of nodes that host the 
k nearest producers (consumers) of the data item associated with this 
channel 

k-nearest-pc:k 

all Channel includes all nodes in the system 

domain 

~~ 

Channel includes all nodes that are owned by the task instance. This 
value is used in conjunction with the nodes-per-instance or area-per- 
instance values of the Instantiation annotation of the abstract task (see 
Fig. 2.10 for an example) 

parent Channel applies to the parent of the node hosting the task instance; 
in the virtual tree topology imposed on the network by the runtime 
system. 

Channel applies to all children of the node hosting the task instance; 
in the virtual tree topology imposed on the network by the runtime 
system. 

children 
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domain. Section 2.5 illustrates the application of these annotations through a 
set of ATaG programming examples. 

In the following sections, we discuss in more detail the task and channel 
annotations listed in Tables 2.1 and 2.2, respectively. The annotations in the 
tables are a representative subset defined to illustrate the specification of oft 
cited programming idioms in current sensor networking literature using the 
ATaG model. There is no fixed (standard) set of annotations for ATaG. In 
fact, the annotations that form the declarative part of ATaG programming 
can and should be customized to different application domains and system 
architectures. 

2.3.2 More o n  task annotations 

The essence of mixed imperative-declarative specification is the separation 
of task functionality from the conditions that govern the instantiation of that 
functionality on one or more nodes of the network at a given time. The need to 
specify where (spatial) and when (temporal) such instantiation should occur 
leads to two classes of task annotations: The first is related to placement 
(spatial) and the second specifies the firing rules (temporal). Annotations in 
these two classes govern spatial and temporal task instantiation, respectively. 

Task placement versus task invocation. The placement of a task on a par- 
ticular node does not necessarily mean that it will be invoked. The invocation 
depends on the satisfaction of firing rules on that node. For instance, in a 
fire monitoring application, each node could host a task that is responsible 
for sending an alarm message containing the location of a fire detected in the 
node’s neighborhood. The placement annotation for this task will specify that 
it should be instantiated on all nodes. The firing rule for this task will indi- 
cate that it should be invoked only when certain conditions are satisfied. In 
a data-driven programming model like ATaG, this condition will typically be 
the presence of a data object that is produced by one or more other tasks on 
the node or on the neighboring nodes only when the result of the collaborative 
computation on temperature reading indicates the likelihood of a fire. 

Although the alarm notification task is placed on each node of the network, 
only a small fraction of the tasks may actually be executed in the lifetime of 
the sensor network. This distinction between placement and invocation, along 
with the fact that the former does not necessarily imply the latter, is therefore 
important. 

Task placement versus code placement. Another related issue is that of task 
placement versus code placement. The abstract task of an ATaG application is a 
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unit of functionality that is flexibly instantiated in the network. When an ATaG 
application is compiled onto a target deployment, the placement annotations 
for the abstract tasks are interpreted in the context of the target network and the 
tasks are “assigned to” or “placed onto” a subset of the nodes. Code placement, 
on the other hand, refers to the presence of the code corresponding to that task 
in the program memory of that node. This distinction becomes important 
for sensor networks where the program memory is relatively large and every 
sensor node has enough storage to host the code associated with every abstract 
task in the ATaG application, regardless of whether that task is assigned to (or 
placed on) that node. Just as task placement does not necessarily imply task 
invocation, code placement does not necessarily imply task placement in this 
resource-rich sensor network scenario. 

In resource-constrained environment, code placement could correspond to 
task placement and the application-level code provided to a node will be only 
for the tasks that are placed onto that node. If one or more tasks have to be re- 
assigned to adapt to a changing network or changing application requirements, 
the necessary code will also have to be provided to nodes that previously did 
not host the task. In resource-rich environments where the node already has 
the code for all tasks in the applications, reassignment can be performed much 
more simply by setting a flag in the runtime system to record the assignment 
of the task to the node. The ATaG programming model is independent of 
the architecture of the target network or sensor node. The application de- 
velopment methodology with ATaG allows for the same ATaG program to be 
compiled into widely varying architectures by encapsulating the architecture- 
specific translations within a compiler. Multiple compilers can be plugged 
into the ATaG application development environment and can conceptually al- 
low the same program to be compiled for different architectures from a single 
programming and software synthesis environment. 

We now discuss the placement annotations in more detail. The annota- 
tions listed in Table 2.1 can be broadly divided into three subclasses: (i) 
fine-grained control over task placement, (ii) density-based instantiation, and 
(iii) geographic instantiation. These subclasses are not exclusive and a given 
annotation could belong to more than one of these classes. 

Fine-grained control over task placement. In some applications, the loca- 
tion of certain types of functionality is predetermined. For instance, consider 
an in-building climate control system that is monitored from some central sta- 
tion. Besides the in-network sense-and-response functionality, periodic status 
reports could be forwarded to the central station that is also abstracted as a 
sensor node. Now, the location and/or identifier of this supervisor node are 
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determined at design time, and the supervisor task in the application must be 
assigned to this node. In scenarios such as these, there needs to be a way for 
the programmer to indicate the exact placement of one or more tasks based on 
a priori knowledge of the sensor network deployment. The one-on-node-1D:n 
is an example of an annotation that provides such fine grained control over 
task placement. Currently, the parameter for this annotation is the node ID, 
with the assumption that each node in the network has a unique identifier that 
is known at compile time. This annotation can be trivially generalized to allow 
the specification of a list of node IDS instead of a single ID, thereby allowing 
the programmer to specify a list of nodes that should host the task in question. 

The spatial  extent:^ 1 ,y 1 ,x2,y2,. . . annotation has a similar motivation and 
capability as the one-on-node-1D:n annotation, except that the former allows 
fine-grained placement control in terms of geographic area. For deployment 
scenarios where the (real or virtual) coordinate system is known a priori, this 
annotation can be used to localize certain applications to a specific area of 
deployment, thereby enabling a virtual partitioning of the deployment into 
different zones. For instance, a particular spatial extent might correspond to 
a parking garage, whereas another extent could map onto an adjacent office 
building. Although a single, connected sensor network could encompass both 
the office building and the parking garage, the programmer might be interested 
in deploying, say, a vehicle speed monitoring application only in the parking 
garage and not in the office building. 

Density-based instantiation. Density-based instantiation is based on the ob- 
servation that a sensor network can be modeled as a discrete sampling of a 
continuous physical space. The “end user” who is interested in obtaining in- 
formation about properties or events of interest in the physical environment 
will not be overly concerned with the number of nodes in the network, their 
connectivity, placement, etc. The types of sensing interfaces and the range 
of the sensors are likely to be of greater interest than the radio range and the 
network connectivity. In other words, if the range of a particular sensing in- 
terface is, say, one square meter, instantiating the corresponding task with an 
approximate density of one square meter should be sufficient to guarantee a 
high degree of coverage. Depending on the density of the node deployment, 
this specification could translate into an instantiation density in terms of nodes. 
From the programmers’ perspective, however, the former specification cap- 
tures the high-level intent independent of a particular network architecture. 
Hence, annotations such as “area-per-instance:area” have been defined. The 
“nodes-per-instance:n” annotation provides a similar control over instantiation 
density but in terms of sensor nodes instead of area. 
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Task assignment to logical partitions. Variants of the density-based instan- 
tiation annotations are created by inserting a "/" before the parameter value. 
The area-per-instance:/n annotation instructs the compiler to divide the total 
area of deployment into exactly n domains and to place one instance of the 
task in each domain. Similarly, the nodes-per-instanceh annotation implies 
a partitioning of the number of nodes into exactly n groups, and the placement 
of one instance of the task in each of those groups. These annotations form the 
basic building blocks for constructing hierarchical structures in the sensor net- 
work, where the task instantiated in a certain group of nodes or geographical 
area acts as the cluster-head for that area. 

In the current version of the ATaG compiler, this partitioning and alloca- 
tion is not performed with a view to optimize any performance metric. For 
example, the result of compiling the annotation "nodes-per-instance:/4" will 
be the division of the set of sensor nodes into four groups, and the assignment 
of one instance of the abstract task to each group. The choice of node within 
each group is random. In a real-world scenario, this choice could be influ- 
enced by performance considerations. Consider a network of a hundred nodes 
numbered 0 through 99. For the above annotation, instantiating the associated 
abstract task on nodes 0, 1,2, and 3 is correct because each of these nodes can 
be imagined to be representative of a group of 25 nodes that form a partition. 
However, if the role of this task is to collect and process data from the other 
24 nodes in its group, then the geographic placement of the four nodes will 
greatly impact the communication costs and hence the energy performance 
and lifetime of the system. Ongoing work in the ATaG project is focusing 
on developing an efficient compiler for ATaG that takes into consideration 
a specific performance metric while translating annotations for a particular 
network deployment. 

Generalizing task annotations: Attribute-based task placement. The spe- 
cific annotations listed in Table 2.1 provide control over placement based on 
geographic location or node identifiers. While this is a useful set of annota- 
tions to define many commonly encountered patterns in sensor networking (as 
will be illustrated through programming idioms in Section 2.5), other useful 
annotations can be defined. 

Consider the placement of tasks predicated on the resources available at a 
node in a heterogeneous networked sensor system where a sensor node could 
range from the Berkeley Motes to a desktop PC equipped with a webcam. 
For example, the programmer might wish to designate a task for placement 
only on sensor nodes that are equipped with an acoustic sensor. Presum- 
ably, this task will contain code that samples the acoustic sensor. Other tasks 
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could be earmarked for sensor nodes that have the minimum computation re- 
sources, communication bandwidth, or storage (memory) capacity to support 
their execution. The ability to associate the requisite sensing and compu- 
tation requirements of a task with its declaration is especially important for 
architecture-independent programming for a heterogeneous system. Note that 
such resource annotations can also be combined with other annotations to con- 
trol, say, the placement of tasks with a specific sensing interface in a particular 
geographic region. 

Resource annotations can also be defined for resources that are expected 
to change at runtime. Energy level at a node is a classic example of such a 
resource. An abstract task can be annotated with a particular minimum energy 
level so as to be invoked only when the energy resources at the node are 
above that limit and other invocation triggers (firing rules) are satisfied. The 
application of such annotation is twofold. First, it allows the system to switch 
between different versions of the application at runtime based on energy levels, 
where each version could correspond to a different pattern of computation 
and communication in the network. Second, it allows a node to switch from 
using one implementation of a task to another when the energy level drops 
below some threshold. From the ATaG program’s perspective, this means that 
different subsets of the abstract tasks (and hence the associated channels and 
data items) in the same program are activated at different times, based on the 
resource availability in the network. The program therefore represents the 
union of possible spatio-temporal execution patterns, depending on resource 
availability. 

The variety of task annotations defined above lead naturally to a common 
framework of attribute-based task placement. In the previous discussions, we 
have defined various categories for task annotations such as fine-grained con- 
trol, density-based instantiation, resource-linked instantiation, etc. For each 
of these categories, we discussed representative annotations and the applica- 
ble scenarios of usage. Instead of extending the set of annotations in each 
categories and/or defining new categories of annotations, a common frame- 
work can be adopted based on the observation that geographic location, node 
identifiers, sensing interface, resource availability, etc., all characterize the 
state of a node at a given point in time and space. Each of these categories can 
be considered as a type of attribute value that a sensor node has to satisfy in 
order to be eligible for hosting the task. If node attributes (such as geographic 
location, node ID, and type of sensing interface) are known at design time 
and are unchanging for the target deployment, task placement can also be 
determined at compile time. The runtime system does not need to incorporate 
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Figure 2.3 Instantiating an abstract task on each node in the network. 

mechanisms to track possible changes in these attributes, thereby reducing the 
complexity of the runtime system software. 

For other attributes such as energy level of the node, compile time decisions 
cannot be made because it is an inherently dynamic property of the node. 
In such cases, code placement can occur at compile time on all nodes of 
the network, while task placement is left to the runtime system. A resource 
management module on each node is then expected to track the corresponding 
attribute (in this case, the energy level) and change the task placement for that 
node based on the intent of the programmer. 

2.3.3 I I I ustrat ive examples 

In this section, we provide simple examples to help the reader visualize the 
effect of using a few of the task placement annotations and channel annotations 
to set up a variety of patterns of collaborative computation in the network. For 
sake of simplicity, we focus on a single abstract task and a single output 
channel. 

Figure 2.3 shows how to instantiate an abstract task on every single node 
of the network by using the nodes-per-instance task placement annota- 
tion with the parameter 1. This is a simple but commonly occurring pattern 
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for many environment monitoring applications, where sampler tasks on each 
sensor node perform periodic sampling and filtering of sensor values before 
further computation on them can take place. 

Figure 2.4 shows the result of instantiating a task with a density of one 
per three nodes. Figure 2.5 shows a similar density-based instantiation that 
is defined in terms of area and not in terms of the sensor nodes. Each cell of 
the grid in the figure denotes one square meter. Although we do not show an 
example application that uses this type of density-based instantiation in this 
book, this annotation can be used in conjunction with the k-nearest-pc: 
1 channel annotation to create a dynamic, hierarchical data collection pattern 
in the application. 

The use of nodes-per-instance : /k and area-per-instance : /k to 
partition the network into virtual domains in terms of nodes and area, respec- 
tively, is shown in Figure 2.6 and Figure 2.7, respectively. The dashed circles 
in the figures show the grouping of tasks into domains that are implicitly cre- 
ated by the use of these annotations. The exact partitioning of the area of 
deployment or the set of nodes into domains is up to the compiler, and various 
algorithms can be applied at this state to optimize performance metrics such 
as energy balance and network lifetime. In the current implementation, no 
optimization is performed. 

These annotations can be used to create tree structures with a fixed number 
of levels and a fixed number of nodes at each level. ATaG currently has no 
mechanism that will allow the creation of a flexible number of levels. For 
instance, consider an application with a hierarchical data collection pattern 
where the programmer wants four leaf (level 0) nodes to report to each level 1 
node, four level 1 nodes to report to each level 2 node, and so on. Now, if the 
number of children of each internal node are fixed (in this case, four), then the 
number of levels in the tree will depend on the total number of nodes in the 
network. ATaG does not currently support the specification of such variable 
structures. The patterns shown in Figures 2.6 and 2.7 can be used to create 
tree structures with a fixed number of levels. 

Figure 2.8 and Figure 2.9 illustrate a combination of task placement anno- 
tations and channel annotations to achieve different patterns of data dissemi- 
nation. Although these examples are very simple, they form powerful building 
blocks in combination with other annotations listed in Tables 2.1 and 2.2. The 
case study in Chapter 5 will demonstrate the use of such building blocks to 
develop and deploy example "real-world" applications for sensor networks. 
Figure 2.8 shows the result of compiling the depicted ATaG program for the 9- 
node sensor network Task T1 is mapped onto node 4 and transmits data items 
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Figure 2.4 Instantiating one instance of task T1 per three sensor nodes. 

Figure 2.5 
meters. 

Instantiating task T1 with a density of one task per 2 square 
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Figure 2.6 
assigning one instance of task T1 per set. 

Partitioning the sensor nodes into three “equal” sets and 

Figure 2.7 
and assigning one instance of task TI per region. 

Partitioning the area of deployment into two “equal” regions 
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to its 1-hop neighbors. The neighborhood maintenance and the mechanism 
for disseminating the instance of data item D to the five neighboring nodes 
is implemented in the runtime system. If the placement annotation for T I  is 
changed to nodes-per-instance : 1, it results in the neighbor-to-neighbor 
interaction pattern that is used in applications such as contour detection. 

Mapping an abstract task to a specific node (in this case, node 4) and 
transmitting a data item to its Ic nearest nodes shown in Figure 2.9. Consider 
an application where node 4 represents a handheld device that is used by a 
supervisor to move around the area of deployment, use a sensor interface to 
take readings at various points in the network, and send the information back 
to the supervisor station for logging. Specifying this behavior is extremely 
simple in the ATaG model using a pattern similar to the one shown in the 
figure. Suppose the data item D indicates the reading that is to be sent to 
the supervisor node, task T1 is the task hosted on the handheld device that 
performs the sampling when desired by the user, and task T2 is mapped onto 
the supervisor node (say node 8) and logs the readings when received. To 
accomplish the desired functionality, the following steps are required: 

. Annotate the output channel between task T1 and data item D as 
k-nearest-nodes:l 

. Annotate the input channel between data item D and task T2 as 
all-nodes 

. Annotate taskT2 with the any-data firingrule and one-on-node-ID : 8 
placement annotation. 

Whenever the task TI  is fired and produces data item D, it will be sent by 
the runtime to its nearest node in the network and then routed to the supervisor 
node. This example illustrates how sophisticated behaviors can be modeled 
using the basic set of annotations. Naturally, support for interpreting the 
annotations must exist in the compiler and in the runtime system. 

Figure 2.10 illustrates the effect of using the domain channel annotation 
in conjunction with the partitioning annotations for task placement. Note that 
the domain abstraction is valid only if the task associated with the channel has a 
placement annotationsnodes-per-instance : /k or area-per-instance : 
/k. As mentioned earlier, the partitioning of the set of nodes or the area of 
deployment is left to the compiler. The use of domain as the channel annota- 
tion in this case means that the scope of the dissemination (collection) of the 
output (input) data for an instance of the associated abstract task is defined by 
the partition that is ‘assigned’ to that task by the compiler. If the network is 
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Figure 2.8 
disseminate data D to the 1-hop neighbors of node 4. 

Using a combination of placement and channel annotations to 

Figure 2.9 
node 4. 

Disseminating data item D to the four nearest neighbors of 



SEMANTICS 45 

Figure 2.10 
sensor nodes. 

Hierarchical data dissemination among three disjoint sets of 

dynamic, the burden of maintaining the definition of and connectivity within 
the domains is entirely up to the runtime system. The end user does not worry 
about the low-level mechanisms involved in constructing and maintaining a 
domain. 

2.4 SEMANTICS 

2.4.1 Terminology 

The following terminology is used in the remainder of this section. 

Tusk: A “task” may refer to a particular instance of an abstract task or 
the abstract task itself. For example, a “periodic task” means that the 
corresponding abstract task in the ATaG has a “periodic” firing rule. 
On the other hand, a “periodic task that is ready for execution’’ refers 
to a particular instance of that abstract task on some node whose firing 
condition has been met. Although the usage is overloaded, the meaning 
should be apparent from the context of its usage, especially in light of 
the fact that an instance of an abstract task is the executable entity, and 
not the abstract task itself. 
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Figure 2.11 Using parent-child channel annotation to form a logical tree in 
the network deployment. Data are collected from child nodes and forwarded 
to parent nodes. In this example, the runtime system creates and maintains 
the tree without programmer intervention or control. 

Data item: The phrase “data item” always refers to an abstract data 
item. If an instance of a particular data item is being referred to, it will 
be explicitly stated. 

Input (output) data item: In the context of a particular abstract task, a 
data item is called an input (output) data item if there is an input (output) 
channel that associates the data item with that particular task. 

. Dependent tusk: In the context of a particular data item, an abstract task 
is called a dependent task if there is an input channel associating the 
data item with that particular task. 

2.4.2 Firing rules 

The following rules determine when a task is considered to be ready for exe- 
cution. The actual time of execution of a ready task depends on factors such 
as the number of tasks that might precede this task in the scheduler’s queue, 
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Figure 2.12 Use of the k-nearest producer annotation to dynamically collect 
data from the vicinity of the consumer. This annotation, with the underlying 
runtime support, is likely to be most useful when the consumer node is mobile 
and the objective of the application is to gather information from sensor nodes 
that lie close to the path of the consumer at any given time. 

the time remaining for the currently running task to complete execution, the 
duration of each of the preceding tasks, etc. 

. A periodic task is ready when the periodic timer expires, regardless of 
the state of its input data items. The per-task timer is set to zero each 
time the task begins execution and is said to expire when the timer value 
becomes equal to the task’s period. 

. An any-data task is ready as soon as a new instance of any of its input 
data items is available. 

. An all-data task is ready as soon as a new instance of each of its input 
data items is available. 
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4 A periodic V any-data task is ready when the periodic timer expires or 
a new instance of any of the input data items is available. 

. A periodic V all-data is ready when the periodic timer expires or a new 
instance of each of the input data items is available. 

. If a task is any-data V all-data, the any-data firing rules apply. 

2.4.3 Task graph execution 

. Task execution is atomic. Each instance of an abstract task will run to 
completion before an instance of any other abstract task can commence 
execution. 

. All members of the set of dependent tasks of a particular data item are 
executed before other tasks that might be dependent on the data items 
output by the tasks in this set. 

. When the production of an instance of a data item results in one or 
more of its dependent tasks becoming ready, those tasks will consume 
the same instance when they invoke a get  0 on the input data item. 
This means that that particular instance that triggered the task will not 
be overwritten or removed from the data pool before every scheduled 
dependent task finishes execution. 

2.4.4 g e t  0 and put  0 

A task reads its input data instances from the datapool using the get 0 prim- 
itive invoked as: 

d = get(int dataID); 

where dat aID is the unique integer identifier of the desired data item. 
Each invocation of the instance of a well-behaved abstract task results in 

exactly one invocation of get 0 for each of its input data items. get  0 is a 
nonblocking call in the sense that the calling task is not suspended until an 
instance of the requested data item becomes available. The following rules 
apply to the get (1 primitive: 

. When an any-data task executes, at least one of its get 0 calls will 
succeed. 

. When an all-data task executes, each of its get  (1 calls will succeed. 
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get (1 is a destructive read from the task’s perspective. Once a particular 
instance of a data item is read by a task, it is considered to be eliminated 
from the data pool as far as that task is concerned. Subsequent calls to 
get  ( 1 for the same data item in later invocations of the task will fail if 
no newer instance is available, or will return a new instance if one has 
been produced since the last invocation. 

A task adds its output data items to the data pool by using the put 0 
primitive invoked as: 

boolean status = pu t (d ) ;  

where d is an instance of some data item, and s t a t u s  is the boolean indication 
of success or failure of the call. 

put 0 is not guaranteed to succeed. This is because the ATaG runtime 
allows for at most one instance of each data item to be present in the data pool 
at a given node. If a new instance of a particular data item is produced at a 
node, the old instance (if any) must be overwritten, which is possible only if 
none of the tasks that are scheduled for execution on that node are dependent 
on it. If there is at least one task scheduled for execution that is dependent 
on the particular instance, a put (1 on that node will return with an indication 
of failure. Otherwise, the instance will be added to the node’s data pool and 
put 0 will return success. The different valid states of a data item and the 
structure of the data pool on the node is discussed in the next subsection. The 
responsibility of determining the success of put 0 and taking appropriate 
action(s) at the application level is entirely the programmers’. A common 
scenario where put (1 might fail is if a periodic task is producing one or more 
data items at a faster rate than they can be consumed by the set of dependent 
tasks. The impact on the application will depend on the semantics of the data 
item being produced. 

2.5 PROGRAMMING IDIOMS 

In this section, we qualitatively demonstrate the key features of ATaG by 
providing sample programs for commonly encountered patterns of information 
flow that form the building blocks of a large class of applications. The purpose 
of these examples is to specifically highlight the following: 
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. The ATaG data-driven model is a naturaljit for specifying reactive ap- 
plications. The concepts of abstract tasks, data items, and channels 
concisely capture a variety of task placements, along with data dissem- 
ination and collection patterns. ATaG allows the coding of symmetric 
behaviors (e.g ., neighbor-to-neighbor protocols), asymmetric behaviors 
(e.g., many-to-one data collection), and combinations of the two (e.g., 
local neighbor interaction resulting in an alarm condition that is then 
routed to a root node). 

. ATaGprograms are architecture-independent. The set of task and chan- 
nel annotations allow the programmer to control the degree of architec- 
ture independence of the specification. Tasks can be placed on specific 
node IDS or geographic locations or the placement can be left entirely 
to the compilation framework. Realistic applications can be expected 
to employ a compromise between the two extremes, with some tasks 
assigned to specific nodes or locations that are known a priori, while 
others can be more flexibly mapped. 

. ATaG programming only requires familiarity with a traditional pro- 
gramming language such as C or Java. The declarative part of the 
ATaG program (depicted by the figures accompanying each example) is 
specified visually. The imperative part is in a traditional sequential pro- 
gramming language. ATaG programming does not require the mastery 
of a new syntax or any extensions to traditional programming languages. 

Table 2.3 Event-Reaction Pairs for Object Tracking 

Event Reaction Scope 

Periodic timer expires Acoustic sensor is sampled Local 

Sensor reading exceeds Propagate location- and time- All other nodes that may have 
threshold (object in range) stamped reading detected the same target 

Sensor reading arrives at Determine if own reading is Local 
node higher than readings from 

neighbors 

Node elects itself the leader Send target location to 
designated root node 
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Figure 2.13 Object tracking. 

2.5.1 Object tracking 

Object tracking basically involves determining the location of an object in the 
area being monitored. A simple algorithm for object tracking [55]  requires 
each node to periodically sample its sensing interface and compare it against a 
predefined threshold. A reading that exceeds the threshold is indicative of the 
presence of a target in the sensing range. The nodes that detect the target elect 
a leader node, which is the node with the maximum reading among all nodes 
involved in the election. The leader node then performs some processing of 
the set of sensor readings and transmits the resultant estimate of target location 
to a base station. 

Figure 2.13 is a complete ATaG program for this application behavior. A 
prototype implementation of this application required approximately 100 lines 
of Java code overall. Threshold performs the sampling and thresholding on 
each node of the network. If a target is detected, it generates a TargetAlert 
data item which also carries information about the sensor reading. The as- 
sumption in this case is that the sensing range is less than half the dissemi- 
nation range of 10 m, which ensures that every node that detects the target 
communicates its reading to every other node that has detected the target. The 
Leader-Elect task also runs on each node and receives the TargetAlert 
notifications from all nodes that have detected the target. Since Threshold 
is pushing the data item to a 10 m radius, the Leader-Elect task can just 
read from its local datapool and does not need to explicitly pull instances of 
data items from its neighborhood. After a requisite number of sensor readings 
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Table 2.4 Event-Reaction Pairs for Neighbor-to-Neighbor Protocol 

Event Reaction Scope 

Periodic timer expires Read temperature from sensor Local 

Temperature reading available 

neighbor 

Propagate to 1-hop neighbors 

Temperature received from Compare with own reading Local 

are obtained, Leader-Elect generates the Target Inf o data item if its local 
reading is the maximum of the readings received from other nodes. 

2.5.2 Interaction within local neighborhoods 

Figure 2.14 is a complete ATaG program based on neighbor-to-neighbor inter- 
action, which is a common technique to implement collaborative computation 
where the processing at a given node is a function of its own state or the state 
of the immediate neighbors. The technique is common because such proto- 
cols require a fixed, typically low amount of resources, and they scale well 
with network size. The purpose of this program is to periodically compare its 
own temperature reading with that of its 1-hop neighbors. This comparison 
could be used for corroboration or calibration, or to detect unusual conditions 
such as a fire. Only a single abstract task and a single abstract data item is 
sufficient to capture this behavior, as shown in the figure. The output channel 
is annotated with a “llocal” because an output to the local data pool of the 
same type of data item that is also an input may cause an infinite loop and 
unpredictable system behavior, depending on the scheduling policies in the 
runtime system. 

2.5.3 In-network aggregation 

Fig. 2.16 is a complete ATaG program that sets up a data aggregation tree 
across the network. Such a mechanism is commonly used in the computation 
of system-wide properties such as the minimum or maximum reading in the 
entire system [64]. 

Note that although the program indicates a virtual topology (tree), it does 
not specify how the tree is to be constructed or maintained. The runtime system 
that supports the “parent” and “children” annotations is expected to manage 
the required protocols. Each node of the tree applies an aggregation function 
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Figure 2.14 Neighbor-to-neighbor gradient monitoring. 

Figure 2.15 Mapping and communication: Neighbor-to-neighbor protocol. 
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Figure 2.16 Tree-based aggregation. 

Figure 2.17 Mapping and communication: Tree-based data aggregation. 

to its own periodic reading (Sampler task) and the readings received from its 
child nodes. The result is then communicated up the tree to be incrementally 
aggregated. This is a continuous process, driven by the periodic sampling at 
each node. To reduce network traffic and save energy, the Aggregator could 
use static variables to maintain a count of incoming packets (local state) and 
communicate the reading up the tree only after a certain number of invocations. 
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Table 2.5 Event-Reaction Pairs for Tree-Based Aggregation. 

Event Reaction scope 

Periodic timer expires Temperature sensor is sampled Local 

Temperature reading available from Apply aggregation function (say, Local 
MAX) own node or other nodes 

~ 

Predetermined number of Send aggregated reading to parent - 
applications of aggregation node 
function completed 

2.5.4 Hierarchical data fusion 

The data aggregation tree in the previous example is a useful but simple struc- 
ture. More sophisticated applications can be efficiently programmed using 
hierarchical data fusion. In this pattern, the network is partitioned into do- 
mains, and each domain reports to its leader. The leaders in turn are succes- 
sively organized into a hierarchy with a root node at the top. A quad tree is 
an example of such hierarchy, with applications in topographic querying of 
sensor fields [7] .  

Figure 2.18 is a complete ATaG program that sets up a two-level quad-tree. 
The network is divided into four domains, each managed by one instance of the 
LlFusion task. Leaf tasks report to the appropriate LlFusion task. The Root 
collects the data from LlFusion tasks. The data items are labeled LeafMap 
and LlMap motivated by the application discussed in [7]. The meaning of the 
domain annotation and the use of "/4" as a parameter for nodes-per-instance 
are explained in Tables 2.2 and 2.1 respectively. 

Table 2.6 Event-Reaction Pairs for Hierarchical Data Fusion. 

Event Reaction Scope 

Periodic timer expires on leaf node Temperature reading sampled Local 

Temperature reading available at 
leaf node 

Reading sent to parent 

Reading received at L1 clusterhead Apply aggregation function Local 

Predetemined number of readings 
received at clusterhead node 

Send result of aggregation to root - 
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Figure 2.18 Hierarchical data fusion. 

Figure 2.19 Mapping and communication: Hierarchical data fusion. 

2.5.5 Event-triggered behavior instantiation 

The set of collaborative behaviors used to compose distributed spatial comput- 
ing applications is usually known at design time. However, it is not desirable 
from both a performance and functionality point of view to execute all behav- 
iors at all times. Especially in systems that monitor and respond to events in 
the physical environment, there could be quiescent behaviors that are built into 
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Figure 2.20 Wide-area data collection triggered by a local alarm. 

the system at design time, but are to be instantiated only when certain condi- 
tions are satisifed at runtime. The conditions could denote a variety of events 
such as resource depletion at a critical node, abnormal sensor readings, etc. 

Table 2.7 Event-Reaction Pairs for Alarm-Triggered Data Collection. 

Event Reaction scope 

Temperature gradient Produce alarm notification Local 
exceeds threshold 

Alarm notification Request temperature All nodes within a 10 m 
produced readings for corroboration radius 

Readings corroborate Produce global alarm Local 
local alarm 

The previous examples used abstract data items primarily to pass informa- 
tion such as the sensor reading or information derived from sensor readings 
such as a topographic map of the sensor field. However, the semantics ofATaG 
also allow the instantiation of new behaviors at runtime by using abstract data 
items to represent the occurrence of events, in addition to passing information 
about the events. 

Figure 2.20 is a complete ATaG program for an application that moni- 
tors temperature gradients between nodes and triggers a data collection and 
anomaly corroboration over a larger neighborhood if a node detects a high 
gradient between itself and its neighbors. Only if the anomaly is confirmed 
does the node produce an alarm event possibly targeted for some supervisor 
task. The data item LocalAlarm is used to trigger the collection of data from 
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Figure 2.21 Patterns of task execution and communication in an event- 
triggered data collection scenario. The abstract task graph for this example 
is the same as that shown in Figure 2.20, although task and data item names 
have been abbreviated. 
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nodes within a radius of 10 m. Note that the firing rule for the Corroborator 
task is any-data. Also, the input channel from Temperature to Corroborator 
has pull semantics. When the Monitor detects a discrepancy, it produces a 
LocalAlarm. Due to the any-data firing rule, the Corroborator is scheduled 
for execution, and the pull semantics then initiate a collection of data from 
the neighborhood. The Corroborator will use persistent storage (static vari- 
ables) across instantiations to store the collected temperature readings, and it 
will produce a GlobalAlarm if the LocalAlarm is corroborated by neighboring 
nodes. 

2.6 FUTURE WORK 

2.6.1 State-based dynamic behaviors 

The set of task and channel annotations listed and briefly described in 
Tables 2.1 and 2.2 are useful for describing many behaviors that form the 
building blocks of networked sensing applications in domains such as envi- 
ronment monitoring and non-real-time object tracking.' 

What the current set of annotations really provides is an abbreviated, con- 
cise, and architecture-independent representation of task placement and coor- 
dination in an application that can be otherwise developed manually, although 
with a much greater effort, using a language such as nesC or C. The examples 
shown as programming idioms can be developed in a top-down manner by 
first defining the event-reaction-scope tuples and then translating them into 
the abstract task graph. The same ATaG program could also be developed in a 
bottom-up manner by inspecting the placement and communication of tasks in 
the desired application on a concrete network deployment and then abstract- 
ing the communication patterns as channels, the types of functionalities as 
abstract task with placement annotations, and the types of data exchanged as 
abstract data items. 

A promising avenue for future work is to define high-level annotations that 
go beyond mere task placement and communication pathway instantiation. 
An example of such a class of annotations is state-based dynamic selection 
from among alternate implementations of the same abstract task. State could 
refer to a broad range of parameters such as the resource availability on a par- 
ticular sensor node, density of deployment in the neighborhood of the sensor 

'Since timing requirements cannot be indicated in the ATaG program and the runtime system 
may or may not include routing protocols that provide timing guarantees or other latency-related 
quality of service (QoS) requirements, we refer to the object tracking example as nonreal time. 



60 THE ABSTRACT TASK GRAPH 

node, the instantiation of one or more abstract tasks in a certain vicinity of 
the sensor node, etc. The tradeoff between quality of the result of a com- 
putation and the resources required to attain that quality-and algorithms to 
dynamically adjust for this tradeoff-has been an area of research in high 
performance scientific computing [ 101. In sensor networks consisting of en- 
ergy and bandwidth constrained sensor nodes, the application developer might 
wish to exercise control over the amount of resources that are devoted to some 
functionality based on the value of parameters such as the state of the energy 
resources remaining at that node. Such control can be used to (i) optimize 
application-level execution by switching to a different implementation of the 
same task when energy levels decrease and (ii) provide graceful degradation 
of functionality as resources are progressively exhausted. To support such a 
program specification, the abstract task will now be associated with one or 
more implementations in the same language meant to be invoked under dif- 
ferent circumstances at runtime. A new class of annotations will be required 
to allow the user to (concisely and precisely) specify the state of the node that 
is a trigger for a particular implementation. 

Although the ability to select a different implementation of the same ab- 
stract tasks at different times on the same node enables new ways of resource 
management for application-level quality of service, an equally useful feature 
is the ability to control which implementation of the abstract task will run 
on a particular sensor node, depending on state information available after 
deployment. In the latter case, the implementation may or may not change 
after runtime. Note that this is different from the task placement annotations 
in the current model which allow the application developer to influence which 
abstract task is placed on which node in the network, but do not allow the 
selection between different implementations of abstract tasks. 

The idea of state of a node-a simple example of which is the amount of 
energy available on that node as a fraction of the total energy at initialization 
t ime-can be generalized to represent the state of the neighborhood. For in- 
stance, consider a deployment where a designated root node wishes to receive 
a particular amount of data (e.g, a particular number of temperature samples 
per hour) from each region of the sensor network. Now, if the density of 
sensor nodes in a particular region is high, sampler tasks in that region could 
report their (aggregated) readings with a lower frequency compared to a region 
where the density of deployment is less. 

Examples of more sophisticated annotations that will require significant 
enhancements both to the ATaG model as well as to the runtime system include: 
“Execute implementation I of task T only if it can be executed for every 
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invocation of task T in the next 2 hours.” Such annotations will bridge the gap 
between the end users’ understanding of the application requirements and their 
corresponding specification in the ATaG program. The challenge in defining 
this particular annotation is to devise a mechanism in the runtime which is 
capable of predicting the resource usage on the node (with some degree of 
confidence) based on activity observed on that node in the past. 

2.6.2 Resource management in the runtime system 

Two aspects of resource management are of interest in the context of extend- 
ing the ATaG model. The first deals with the efficient management ofsensing 
resources and the packaging of sensing as a service provided by the runtime 
instead of a set of APIs to be learnt by the programmer and invoked by the 
application-level program. The second aspect deals with allowing the applica- 
tion developer to provide performance-related hints to the compiler. We now 
discuss each of these in more detail. 

Sensing as a service. Currently, there are three classes of APIs available to 
the ATaG programmer: (i) the get  0 and put 0 calls to the data pool for 
consuming and producing data items respectively, (ii) the network-awareness 
and spatial-awareness API (also offered by the runtime system) that allows 
a task instance to determine the composition of the neighborhood of its host 
node, and (iii) the API to the sensor interface. Since the task instance directly 
accesses the sensing interface, the runtime system is not aware of the access 
patterns and cannot optimize for cases where sensing resources might be used 
inefficiently. Consider a scenario where a periodic Task A is interested in 
sensor data not more than 10 minutes old, and Task B is interested in the same 
sensor data but with a tolerance of 30 minutes. In the current model, TaskA and 
Task B will be defined as abstract tasks with periodic firing rules with periods 
of 10 minutes and 30 minutes, respectively. The tasks will read from the sensor 
at each invocation, although it is obvious that frequency of Task A’s sampling 
is sufficient for Task B. A manual optimization in this case is to declare an 
abstract data item S produced locally by Task A and consumed locally by Task 
B, and to change the firing rule of Task B to “any-data.” Task A will now 
sample the sensing interface at every invocation but will produce an instance 
of S (containing the sensor reading) every third invocation. However, such 
manual optimization is not possible if Task A and Task B are part of different 
ATaG libraries being composed into a larger application. 
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Future work in this area involves the management of sensing (and actua- 
tion) resources through the ATaG runtime system. The ATaG model will be 
extended by defining a special class of read-only abstract data items (called 
“sensor data items”) that can be consumed but not produced by user-defined 
abstract tasks. These data items will represent readings (scalar values, im- 
ages, etc.) from the sensing interface(s). Task will access sensor data using 
the get ( 1 primitive, and the programmer will not be required to learn the de- 
tails of accessing the variety of sensor interfaces. A set of annotations will be 
defined for the sensor data items. These annotations could indicate the type of 
sensing interface and other parameters such as spatial coverage and temporal 
coverage (frequency of sampling, freshness of data, etc.). This extension will 
allow the runtime a greater flexibility in task placement and resource man- 
agement. More importantly, indirect access of sensor interfaces through the 
runtime system makes ATaG programs even more architecture-independent 
because the imperative part of the program (i.e., the task code) does not need 
to incorporate any code that is specific to a particular type of sensor or actu- 
ator. Nodes with diffeent sensors of the same type (i.e., producing the same 
type of sensor data item) can host instances of the same abstract task without 
the programmer being required to modify the code to adjust for the different 
sensor APIs. 

Application-level control of system performance. In almost all traditional 
parallel and distributed computing especially in scientific computing, all data 
were equal. The scheduling of tasks and handling of data was almost entirely 
influenced by end-to-end latency considerations. Hence, the many variants 
of the basic task graph (or other dependency graphs) did not support the con- 
cept of varying levels of “importance” that could be assigned to tasks or data. 
The nature of networked sensing is such that some data items and computa- 
tion pathways could have greater importance than others, where importance 
could imply preferential processing in terms of immediate scheduling of the 
tasks involved or allocating more resources to ensure that some data items are 
routed with better “quality” (e.g., less latency) than others. For example, if 
the instance of the abstract data item represents the (possible) detection of a 
forest fire, the application developer would naturally want the runtime sys- 
tem to expedite the transmission of this data from the producer node to the 
designated supervisor node. Defining and supporting such annotations also 
requires a close integration with the network model, the architecture of the 
runtime system, and the availability of protocols that are capable of providing 
the required services. 
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2.6.3 Utility-based negotiation for task scheduling and 
resource allocation 

Service-oriented specification of networked sensing applications is a vision 
where programming for sensor networks essentially involves the specification 
of semantic information desired by the end user. This purely declarative high- 
level specification is used to first select a set of services from the library of 
available services for the target network, where each “service” could map to an 
independent application with a well-defined interface for integration with other 
applications. In the context of ATaG where composition of two independent 
ATaG program is equivalent-in the simplest case where the two programs 
do not share data or functionality-to the concatenation of the corresponding 
task graphs, each service could naturally map to an ATaG program. Of course, 
this requires a new markup language for describing ATaG programs in terms 
of the services they provide to the end user, similar to semantic streams [57]. 

Assuming that the component subprograms can be identified from the high- 
level specification and that the final mapping of tasks to nodes and the setup of 
communication pathways in the network is accomplished, the next problem 
is to manage resource allocation in face of conflicting requests from applica- 
tion tasks. For example, two tasks on the same node could request an image 
from the camera at the same time, but require the camera to be pointing in 
different directions. A utility-based negotiator in the runtime could decide 
the resource allocation in such scenarios. The challenge is to develop a ro- 
bust and scalable implementation of utility-based negotiation and to define 
a common utility scale that can be used across disparately developed ATaG 
libraries that are combined into a larger application. The concept of utility 
could also model task priorities and resolve conflicts when more than one task 
simultaneously requests preferential treatment. The key challenge in extend- 
ing the basic model to handle such scenarios is to maintain the core design 
objectives-especially application neutrality-while enabling the expression 
of increasingly sophisticated behaviors. 
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CHAPTER 3 

DART: THE DATA-DRIVEN ATAG 
RUNTIME 

3.1 DESIGN OBJECTIVES 

3.1.1 Support for ATaG semantics 

The primary objective of DART is to provide the required underlying mech- 
anisms for communication and coordination between instances of abstract 
tasks specified by the programmer. Architecture independence of ATaG is en- 
sured primarily by the deployment-specific interpretation of the generic task 
and channel annotations. Depending on the characteristics of the underlying 
network, the responsibility of translating the annotations could be distributed 
between the compile-time code generator and the runtime system itself. For 
instance, consider an output channel with an annotation neighborhood-hops:], 
indicating that the data item produced by the assocated task is to be sent to all 
the 1-hop neighbors of the node where the item is produced. 

Architecture-Independent Programming for Wireless Sensor Networks 
By Amol B. Bakshi, Viktor K. Prasanna 
Copyright @ 2008 John Wiley & Sons, Inc. 
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For a network composed of relatively resource-rich nodes such as Star- 
gates [50] connected by a robust wireless network, this annotation can be 
translated at compile time. The compiler will analyze the network graph, de- 
termining the nodes that will host the associated task, determine the IDS or 
geographic locations of the 1-hop neighbors (depending on the routing pro- 
tocol being used), and hardcode the list of destinations for that data item into 
the runtime system. Every time an instance of the data item is produced, the 
runtime system will look up the IDS of the destination set (which is, in this 
scenario, assumed to be unchanging) and send the data item to each member 
of that set. 

On the other hand, the same ATaG program could be synthesized onto an 
underlying network that is dynamic in nature where the set of neighbors of a 
node is expected to change frequently: nodes being added or removed from 
the network (in a mobile setting), nodes failing due to exhaustion of limited 
energy resources, unreliable communication due to the hostile environment, 
etc. Clearly, the compile time analysis of the network graph is not feasible in 
such a scenario, and the runtime system supports runtime translation of the 
neighborhood-hops:l annotation into the instantaneous membership of the set 
of 1-hop neighbors. In addition, there are decisions to be made about how 
frequently should the runtime system update its view of the neighborhood, the 
impact of such updation on the performance and of the system, etc. 

3.1.2 Platform independence 

The objective of the DART design is not so much on the implementation 
of an ATaG runtime system for a particular sensor node platform or a par- 
ticular language and operating system, but on the architecture of a runtime 
system template that will hopefully be useful for implementing versions of 
DART tailored to specific platforms. This means that the assumptions about 
the underlying operating system implicit in the operation of the DART tem- 
plate should be clearly spelled out and should also be minimized. Specifically, 
assumptions about the type of scheduler, support for multi-threading, synchro- 
nization and inter-process coordination primitives, etc., should be explicitly 
stated. Ideally, any operating system kernel that provides these basic facilities 
should be a friendly target for implementing DART. 

Such platform independence is important because an important purpose 
of the ATaG programming model is to hide almost all the low-level details 
of control and coordination from the programmer, allowing himher to focus 
only on expressing the desired behavior in terms of data-driven event-reaction 
semantics with suitable annotations to govern deployment-specific task place- 
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ment and communication. This architecture independence makes ATaG a good 
candidate for implementation on heterogeneous system architectures. Unless 
the architecture of the underlying runtime system is defined in a platform- 
independent manner, a “seamless” deployment of ATaG on such systems will 
not be possible. 

3.1.3 Component-based design 

Components are “units of independent production, acquisition, and deploy- 
ment that interact to form a functioning system” [51]. A component is the 
deployment of one or more interfaces that define the service offered by the 
component to its consumers. Since the customers rarely care about how the 
particular interface is implemented, the data and algorithms used internally by 
the component (module) implementation can be considered to be “owned” by 
the module and the implementation details will typically be hidden from other 
modules. This also means that development of a component is decoupled from 
its integration into the system. Indeed, a variety of implementations of the 
same component (i.e., providing the same service by implementing the same 
interface(s)) can be developed to meet various requirements, and the suitable 
implementation can be selected at the time of composition. 

The modular structure of component-based design has many significant 
advantages. First, it greatly simplifies the design by requiring the clear iden- 
tification of components in terms of what exactly they model in the problem 
domain. Interactions and dependencies between components are also defined 
in terms of service provider and service consumer relationships. Second, as 
mentioned above, hiding the implementation of a module from other mod- 
ules makes it possible for an entirely different set of protocols to be used to 
provide the same service interface without affect the rest of the system. In 
the specific case of the ATaG, this allows the runtime system to be tailored 
for a specific target platform by selecting the suitable intra-module protocols 
without requiring a complete redesign. 

For instance, one of the modules of DART is responsible for translating 
channel annotations into list of node IDS or locations. The list of channel anno- 
tations used by the ATaG program is known at compile time. This knowledge 
can be used by the software synthesis process to include only those protocols 
in this module as are required to translate all the annotations actually used in 
the program and not all the annotations supported in the ATaG model. For 
example, an application may not require a virtual topology (such as a tree) 
and therefore may not employ the parent and children annotations in the ATaG 
program. When this application is synthesized, the ability to translate parent 
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and children annotations is not required in the runtime and the protocol to 
construct and maintain a logical tree is also not included in the synthesized 
software. Indeed, the runtime system can be customized differently for each 
node, based on the services (protocols) required by the tasks instantiated on 
that node. Component design of the ATaG runtime system can also be seen 
as a step toward defining standards to be followed by the designers of a par- 
ticular protocol for, say, routing, to ensure that the result is usable in a “real” 
end-to-end system. 

Another side effect of this design is that it allowed us to use essentially the 
same runtime system software for functional simulation as is intended for real 
deployments, by replacing only a subset of the modules-specially those that 
deal with the transceiver interface-and leaving others intact. 

3.1.4 Ease of software synthesis 

We have built an end-to-end application development framework based on the 
ATaG programming model that also includes a tool for synthesis of compile- 
ready customized software for the individual node of the target network, based 
on the ATaG program and the network description. The synthesized software 
for a node has three components: (i) a common DART kernel that runs on 
every node and handles basic tasks such as data pool management, managing 
the basic networking protocols, etc., (ii) user-supplied code for abstract tasks 
and user-supplied data structures (and methods) for abstract data items, and 
(iii) glue code for the interface between the runtime and the user-supplied 
code. 

The user-supplied code and the common runtime code are available to the 
software synthesizer, and ease of software synthesis can be measured by the 
size of the glue code that is to be generated for a particular node for a particular 
ATaG program. The choice of data-driven computing as the programming 
paradigm for ATaG is also influenced by the fact that in a data-driven software 
system, the only interaction between the user-supplied code and the runtime 
system is through the get 0 and put 0 calls implemented in the datapool 
manager. Therefore, the purpose of the glue code that is to be synthesized can 
be broadly classified as follows: 

Allowing the runtime to interact with application tasks, i.e., to determine 
their attributes (such as firing rule and input-output interface), schedule 
the tasks for execution through suitable interfaces such as the Runnable 
interface of Java if the application tasks are provided as Java classes 
implementing Runnable, etc. 
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Providing state information (context awareness) required by the node 
to situate itself in the network. For instance, if nodes have preassigned 
identifiers, the ID should be hardcoded into and accessible through 
a suitable function call by the modules of the runtime system. For 
scenarios where the program is synthesized onto relatively static and 
robust networks (as discussed above in Section 3.1. l), information such 
as the composition of the node’s neighborhood will be incorporated 
into the runtime system at software synthesis time. Other information 
such as the role of the node in a virtual topology (if any) will also 
be determined and incorporated into the software. For instance, on 
initialization after deployment, each node will check if it is supposed 
to be the designated root node and, based on the (boolean) result of the 
query, adjust the behavior of its protocols for virtual topology formation. 

Pre-wiring communication pathways. Consider a simple ATaG program 
for centralized data collection with two abstract tasks and one abstract 
data item. The programmer uses channel annotations to indicate that 
all data produced by the Sampler on each node is to be routed to the 
Collector on some designated root node. The placement of the Collector 
is specified by the annotation of that abstract task-say, as the node with 
ID 0. When a data item is produced on some non-root node, the runtime 
system on that node should know the destination of the data, i.e., the 
location or ID of the root node. In some deployments, the ID and 
location of the designated root node could be fixed and known a priori 
(e.g., it might be a gateway node connected to the desktop PC of the 
building supervisor). In such cases, the runtime systems on non-root 
node can be preprogrammed with a destination list (in this case, the root 
node) for the data item in question. Scenarios where this might not be 
suitable are when the root node itself is dynamic (say, a PDA device 
carried by the building supervisor) or the selection of a node as the root 
is performed only after the system is initialized. 

3.2 OVERVIEW 

Figure 3.1 is a high-level overview of the structure of DART (Data-driven 
ATaG RunTime). In this section, we briefly discuss the functionalities of the 
various components and their interactions. Later subsections focus in detail 
on the implementation of each component. 

The software system on each node can be divided into an application layer 
that consists of (a) the user-supplied code for each abstract task placed on that 
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Figure 3.1 DART The ATaG runtime system. 

node and (b) a system-layer that contains the modules of the runtime system. 
Presently, the sensor/actuator interfaces are not managed by the runtime, al- 
though that is the subject of future work. Hence, if an abstract task requires 
access to the sensor or actuator interface, the necessary code has to be supplied 
by the programmer, who is also required to understand the APIs involved. The 
two-system level interfaces that are available to the user tasks are the Datapool 
and the NetworkArchitecture, as shown in Figure 3.1. 

The Datapool components on all nodes in the network together manage 
the production, consumption, localization, and routing of all instances 
of abstract data items produced in the network. They provide the ab- 
straction of a single logical pool of data items that is uniformly accessed 
by all tasks in the system using the basic get 0 and put 0 primitives. 

. The AtagManager component acts as the respository of all relevant 
information concerning the declarative part of the ATaG program that 
might be required by other components for intranode coordination and 
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internode communication. This information includes the number of 
abstract tasks, data, and channels, the task and channel annotations, 
input-output relationships between tasks and data items on that node, 
and the firing rule for each task. The AtagManager also schedules the 
application-level tasks for execution when their firing conditions are 
met. 

NetworkArchitecture is the component responsible for managing 
all protocols for neighbor discovery, virtual topology formation, etc., 
with the objective of providing the mechanism to translate a channel 
annotation into a list of node identifiers. For instance, if a data item is 
to be sent to the ‘parent’ node in the virtual tree topology, it is the role 
of this component to implement the protocols for tree formation and 
maintenance and, when queried, return the ID of the neighboring node 
that is the current parent. 

As indicated by its name, the Networkstack is in charge of commu- 
nication with other nodes in the network and also manages the routing, 
medium access, and physical layer protocols. 

. The Dispatcher is a helper component that coordinates between the 
Datapool, AtagManager, NetworkArchitecture, and Network- 
Stack with the purpose of transmitting instances of data items produced 
on the node to their suitable destinations in the network, as indicated 
by the annotations of the output channel associated with the data item 
in the ATaG program. 

In the following sections, we describe each component of DART in more 
detail. To highlight the component-based design of the software system, the 
service offered by each component is described first, followed by the con- 
sumers of that service, and finally the implementation details of the service. 
Note that the primary objective of the current version of DART is to demon- 
strate the feasibility and usefulness of programming with ATaG. The program- 
ming and software synthesis environment (Section 4) for ATaG has an accom- 
panying simulation and visualization front-end. The current implementation 
of DART is meant to be a component of this simulation environment that runs 
on a single machine. Although DART is designed as a component-based tem- 
plate for a general ATaG runtime, some of the low-level functionalities (such 
as routing protocols and topology formation protocols) that will be required 
for DART to run on a multi-node distributed sensor node deployment have 
been replaced by code that simulates these functionalities for single-machine 
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simulation. As highlighted in Section 3.1.3, the advantage of component- 
based design is that the implementation of a component can be changed as 
long as the service it provides remains the same. Hence, the replacement 
of some of the functionalities within a component by functionally equivalent 
code that simulates their existence could be performed without affecting other 
components such as Datapool, AtagManager, Dispatcher, etc. 

3.3 COMPONENTS AND FUNCTIONALITIES 

3.3.1 Task, data, and channel declarations 

The declarative content of an ATaG program is stored in the runtime as in- 
stances of the TaskDeclaration and ChannelDeclaration classes. We 
do not define a data declaration class because no annotations are currently 
associated with the data items. 

A UML class diagram of the TaskDeclaration class is shown in 
Figure 3.2. Code listings showing the variables and the runTask0 method 
of this class are provided as Figures 3.3 and fig:td-runtask, respectively. 

The task declaration stores the firing rule and instantiation (placement) 
annotations for that task. A pointer to the actual task code (a Java class that 
supports the Runnable interface) is also stored. Pointers to input and output 
channels associated with the task are stored as arrays with a ‘1 ’  in entry k of 
the input (output) array signifying that the input (output) channel with ID k is 
associated with that task. 

In addition, a boolean variable hasBeenRun is defined, with an initial value 
of false. This variable is necessary due to the way periodic task execution 
is handled in the current DART implementation. An application-level (user- 
defined) task is just a Java class that supports the Runnable interface and 
interacts with the DataPool and possibly the NetworkArchitecture mod- 
ules through appropriate function calls. If a task is to be run periodically, say, 
with a period of 5 minutes, then the delay loop is included (and automati- 
cally generated) in that task itself. Specifically, the task runs in a permanent 
“while( 1)” loop with a 5-minute delay as the last statement of the loop. 

At startup, all periodic tasks that are assigned to the node are launched, and 
their hasBeenRun flag is set to true to indicate this fact. During the course of 
application execution, when a data item is produced, its dependent tasks are to 
be scheduled for execution. The At agManager calls the runTask (1 routine 
for the corresponding task declarations. The hasBeenRun flag ensures that if 
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Figure 3.2 Storing abstract task declarations in the TaskDeclaration class. 

the task is a periodic task and has already been launched at node initialization, 
it is not scheduled again. 

A note on managing execution of periodic tasks. The above method of 
managing periodic tasks is not desirable for the following two reasons. First, 
leaving the control of periodicity to the while loop within the task makes the 
runtime system less capable of controlling the task execution or being aware of 
the current state of the task. In the future, we would like to support changes to 
the ATaG program after compilation, when the application is already running in 
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/ /  ifdefs for annotation values 
private static final int INVALID = 0x00; 
private static final int TASK-INSTANTIATION-NODE-ID = 0x01; 
private static final int TASK-INSTANTIATION-ANYWHERE = 0x02; 
private static final int TASK-INSTANTIATION-NODES_PER_INSTANCE = 0x04; 
private static final int TASK-INSTANTIATION-AREA-PER-INSTANCE = 0x08; 
private static final int TASK-INSTANTIATION-SPATIAL_EXTENT = 0x10; 

private static final int TASK-FIRING-PERIODIC = 0x01; 
private static final int TASK-FIRING-ANYDATA = 0x02; 
private static final int TASK-FIRING-ALLDATA = 0x04; 

/ /  local variables 
private int taskID; 
private String taskName; 
private Runnable taskcode; 
private boolean runAtInit = false; 
private int instparameter; 
private int t askPriori t y ; 
private int taskperiod; 

/ /  record if a runTask has been called on this or not. 
private boolean hasBeenRun = false; 

/ /  indices into array that stores annotations 
private static final int MAX-ANNOTATION-TYPES = 2; 
private static final int INSTANTIATION = 0; 
private static final int FIRING = 1; 
private int [I annotations = new int [MAX-ANNOTATION-TYPES] ; 

private int[l inputchannels = new intEArchConstants.HAXDATA1; 
private int 11 outputchannels = new int [Archconstants. HAXDATAI ; 

Figure 3.3 The internal variables of the TaskDeclaration class. 

public boolean runTask0 C 
if ( (this.firingRuleO.compareToIgnoreCase("periodic") == 0) & 

/ /  Task is periodic. Already scheduled to run periodically. 
return false ; 

this. hasBeenRun) { 

3 
else < 

/ /  create new thread (Runnable) for this task 
Thread t-taskThread = new Thread(taskCode1; 
/ /  set specified priority for this task 
t-taskThread.setPriority(taskPriority); 
t-taskThread. start 0 ; 
/ /  record the fact that this task has been launched 
/ /  this is required for periodic tasks because the actual loop 
/ /  that executes the task periodically is in the task code itself 
/ /  and not in the runtime 
hasBeenRun = true; 
return true; 

3 
3 

Figure 3.4 The runTask0 routine of the TaskDeclaration class. 
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the field. For instance, if anew behavior is to be added or an existing behavior is 
to be modified, it should not be necessary to shut down the system, reprogram 
each node, and reinitialize the sensor network. Instead, a protocol will be 
defined that can manipulate the task and channel annotations, add new tasks 
on a set of nodes, etc., while the system is running. Part of this manipulation 
could include changing the firing rule of a task from periodic to any-data 
or vice versa. In the current implementation, where the periodic firing rule is 
hard-coded in the user task class, this modification will be impossible. 

Second, the semantics of the periodic firing rule are not exactly satisfied 
with this implementation. In ATaG, if a task is defined as periodic with, say, a 
5-minute period, it means that successive invocations of the task are separated 
by 5 minutes. This time is measured from the start of one invocation to the start 
of the next invocation. If a 5-minute delay is inserted as the last statement of 
the while loop (as is the case currently), the specified 5 minute period applies 
(incorrectly) from the end of execution of the first invocation and the beginning 
of execution of the second. By incorporating a more sophisticated mechanism 
for task management in the AtagManager, the runtime system should ensure 
that the firing of the periodic timer (again, maintained by the runtime) results 
in a call to the runTask (1 routine of the corresponding task declaration. 

The UML class diagram for the ChannelDeclaration class is shown in 
Figure 3.5. The channel declaration stores all the annotations and correspond- 
ing parameter values for the channel. The class provides methods that are used 
to query for the (a) type (input or output) of the channel and (b) annotation 
types and associated parameter values for the channel. 

3.3.2 UserTask 

3.3.2.7 Service Each abstract task in the ATaG model is required to be 
an instance of UserTask. The UserTask class is the imperative part of the 
abstract task declaration and contains the application-level code represented 
by the abstract task. From the perspective of the DART design, the service 
interface provided by this component is basically the Java Runnable interface 
that is invoked when this task is to be scheduled for execution. 

3.3.2.2 interactions The user-level task interacts with the Dat apool 
by accessing the get 0 and put 0 functions for reading and writing data 
items, respectively. UserTask can also use the interface provided by the 
NetworkArchitecture component to obtain the list of node IDS (or loca- 
tions) that constitute a specific neighborhood of the node defined either in 
terms of hops or Euclidean distance. For instance, the input channel for that 
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Figure 3.5 
class. 

Storing abstract channel information in the ChannelDeclaration 

user task might be annotated as neighborhood-hops:l, which means that each 
piece of incoming data is from one of the 1-hop neighbors of that node. If 
the functionality of the abstract task is to wait until at least one reading is 
received from each neighbor, and then aggregate the set of readings, it is im- 
portant for the task to be able to determine how many 1-hop neighbors it has 
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Figure 3.6 UML diagram: Supervisor (instance of UserTask). 

and what their locations or IDS are, so as to be able to decide when the round 
of collection can be considered complete. This information is maintained by 
the NetworkArchitecture module and can optionally be accessed via the 
suitable query interface if required by the user task. Finally, the UserTask 
can use the APIs provided by the sensors and/or actuators on the node. In the 
current version of DART, sensing resources are to be accessed directly by the 
UserTask by calling the suitable methods for classes representing the sensing 
interfaces . 

3.3.2.3 lmplemenfafion UserTask is basically a Java class that imple- 
ments the Runnable interface so that the AtagManager can schedule it for 
execution when its firing rules are deemed to be satisfied. In our program- 
ming and software synthesis framework, the code template for each instance 
of UserTask corresponding to a different abstract task is generated automati- 
cally. This template consists of the task constructor and some other attributes 
such as a reference to the DataPool that is required for invoking g e t  0 and 
p u t ( > ,  etc. 

Sample ATaG code listing for the Monitor task of Figure 2.20 is shown in 
Figure 3.7. The ATaG programmer will write a similar piece of code for each 
abstract task. Note that the program is written in a traditional language (Java in 
this case) and involves only the manipulation of data items that correspond to 
application-level events. No calls to the networking stack or any other system 
level services are explicitly invoked. The code also does not involve any calls 
to other application-level tasks - a characteristic of data-driven program flow. 
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)ublic class Monitor extends UserTask c 
/ /  local variables to maintain state 
private static int myReading = 0 ;  
private static boolean wasAlarm = false, isAlarm = false; 
private static int [I targetReadings; 
[ .  . . I  

public Monitor (Datapool dp, Conf ig myconf ig , 
NetworkArchitecture t-networkArchitecture, mGUI t-GUI){ 

super (dp, myconf ig , t-networkArchitecture , t-GUI) ; 
/ /  obtain information about the neighborhood of interest 
neighborIDs = m-networkArchitecture.kHopNeighborIDs(1); 
neighborcoords = m-networkArchitecture.kHopNeighborCoords (1); 
[ .  . . I  

3 

public void run() { 
DataItem t-dataItem = m-datapool . getData( 
[ .  . . I  

1DConstants.T-MONITOR, 1DConstants.D-TEMPERATURE); 

m-temperature = (Temperature) t-dataItem.core0; 
/ /  store the received temperature reading with its origin 
if (t-dataItem.originID0 == m-myState.myID0) 

else 
myReading = m-temperature. get ( )  ; 

setNeighborReading(senderID, m-ternperature.get0); 

/ /  check if gradient is exceeded 
for (int n=O; nCneighborIDs.length; n++) C 

if (Math. abs (getNeighborReading (n) - myReading) > 5) c 
isAlarm = true; 
break ; 

> 
3 
/ /  alarm produced only at transition (alarm to no-alarm) 
if (isAlarm && !wasAlarm) C / /  no-alarm->alarm transition 

wasAlarm = isAlarm; 
m-lAlarm = new LocalAlarm 0 ; 
DataItem m-dataitem; 
m-dataitem = new DataItem(1DConstants.D-LOCALALARM, 

m-dataPool.putData(m-dataitem); 
3 else if ( !  isAlarm && wasAlarm) { 

/ /  indicate transition from alarm to no alarm 

1DConstants.T-MONITOR, rn-lAlarm); 

Figure 3.7 ATaG code listing for the Monitor task in Figure 2.20. 
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Figure 3.8 Datapool: UML class diagram. 

3.3.3 DataPool 

3.3.3.7 Service The Datapool provides two types of interfaces. The first 
interface includes the get (1 and put (1 commands used to add data items to 
and remove data items from the data pool, respectively. putFromNetwork0 
is a minor variant of the put 0 call that is invoked when the data item arrives 
from the network interface instead of being produced by an application task. 
The second interface supports a variety of calls used to query the state of 
data items in the pool; e.g., whether an instance of a data item is available or 
unavailable, active or inactive, etc. These terms are defined and explained in 
more detail in Section 3.3.3.3. 

3.3.3.2 lnferacfions In the current design, the user tasks interact with the 
DataPool through the get 0 and put 0 calls. The Networkstack invokes 
the putFromNetwork0 call when a data item sent by another node arrives at 
the network interface. The At agManager invokes the status query interface 
to determine if one or more tasks are ready to be scheduled for execution. 

3.3.3.3 lmplemenfafion Data pool management involves handling con- 
current accesses by more than one user level or system level task, maintaining 
reference counts for each instance of a data item in order to determine if a 
particular instance is active (i.e., still waiting to be consumed by one or more 
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Figure 3.9 Structure of the data pool. 

tasks that are scheduled for execution) or inactive (i.e., it can be overwritten 
when a new instance of the same type of data item is produced by a local task 
or received by the Networkstack from another node). The g e t 0  function 
returns a copy of the requested data item to the caller and decrements the 
reference count of the associated item by one. put 0 adds an instance of a 
particular abstract data item to the data pool, unless the existing instance is 
active, in which case it returns without changing the data pool. 

Let AT = { t l ,  . . . , tm} be the set of abstract tasks, and let AD = { d l ,  . . . , 
dn} be the set of abstract data items in the ATaG program. Atmost one in- 
stance of each data item can exist on a node at a given time. Let DP = 
{ DPl, . . . , DP,} be the set of entries of the datapool. l k o  boolean mays 
- totalRef si and nowRef Si - of length m each are associated with each 
entry DPi (see Figure 3.9). When an instance of di is produced, these arrays 
help to keep track of (a) the dependent tasks for that data item and (b) the sub- 
set of those tasks that is scheduled for execution, respectively. The following 
explanation will clarify the role of these arrays. 

totalRe,fsi[j]  = fa l se ,  
nowRef si[j] = false,  
di = N U L L ,  

When the node is initialized, the following is true: 
1 5 z 5 n, 1 5 j 5 m 

1 5 Z 5 n, 1 5 j 5 m 
15 i 5 n 

An instance di can be in one or more of the following states at a given time: 

. di is available for task t j  if totalRef si[j] = true. 

di  is available if 3j s.t. di is available for task t j .  

. di is unavailable for task t j  if totalRefsi[ j ]  = false. 
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public synchronized DataItem getData(int taskID, int dataID) I 
DataItem t-dataItem = (DataItem) m-dataPool.get(dataID); 
if (t-dataItem. isAlive(task1D)) I 

t-dataItem.decrementRef(taskID); 
return t-dataItem; 

return null; 
1 else 

> 

Figure 3.10 The getData0 function. 

di is unavailable if di is unavailable for all tasks. 

di is active if (i) di is available, and (ii) 3 j  s.t. nowRef s i  [ j] = true. 

di is inactive if (i) di is available, and (ii) Vj ,  nowRef si [j] = false. 

Suppose task t j  invokes get 0 for some di.  g e t 0  succeeds if di is 
available for t j ,  and it fails otherwise. If get 0 succeeds, nowRefsi[j] and 
totalRef si[j] are both set to false, indicating that the task has consumed 
that instance. 

Suppose task t j  invokes put 0 for some di.  put 0 succeeds if d .  i sun- 
available or inactive, and it fails otherwise. If put 0 succeeds, the instance of 
di passed by the call occupies entry DPi of the datapool. Next, the datapool 
manager determines if there are any dependent tasks for d i ,  and further if any 
of those dependent tasks are ready. Let D7i  be the set of dependent tasks of 
di and let R7i be the set of ready tasks at the time the put 0 was invoked, 
where R7i DTi c AT. Before the successful put 0 returns, the datapool 
manager ensures that 

totalRefsi[j] = true, vti E DTi ,  

nowRef si[j] = true, Vti  E RTi. 

An any-data task is scheduled for execution whenever any of its input data 
items become available. Similarly, an all-data task is scheduled for execution 
whenever all of its input data items Become available. The destructive get 0 
by task t j  of some di is ensured by setting the t ot alRef si [ j] andnowRef si [ j] 
to false. When a new instance of di is created, the corresponding put 0 will 
set these values to true again. Also, when a new instance di is produced, the 
number of tasks that are ready to consume that instance is reflected in the 

and 
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public synchronized boolean putData(Data1tem outputData) I 
int t-dataID = outputData. dataID 0 ; 
/ /  If data item is active, do nothing and return “false” 
if (m-dataPool.elementAt(t-dataID) ! =  null) { 

if (((DataItem) m-dataPool.get(t-dataID)).isActiveO) 
return false ; 

3 
/ /  Set time, date, node ID, and node coordinates of origin 
outputData. setDateStamp(m-clock. getDate 0) ; 
outputData.setTimeStamp(m-clock.getTime()); 
outputData.setOriginID(m-config.myID()); 
o u t p u t D a t a . s e t O r i g i n C o o r d s ( m _ n e t w o r k A r c h i t e c t u r e . m y C o o r d s O ) ;  
/ /  Add this to the datapool before calling AtagManager 
m-datapool. add(t-dataID , outputData) ; 
/ /  Call AtagManager who will set references and spawn tasks 
m-AtagManager.newInstanceProduced(outputData.producerID0, 

/ /  Notify the dispatcher 
m-Dispatcher.newInstanceProduced(outputData); 
return true; 

outputData. dataID 0) ; 

3 

Figure 3.11 The putData0 function. 

number of true entries in nowRef si. Only when that instance is consumed 
by all the ready dependent tasks do the entries in nowRef Si become false and 
any put  (1 allowed to overwrite that instance. Note that the use of two arrays 
is necessary because the fact that one or more tasks are dependent but not 
ready is reflected in the to ta lRef  s array (e.g., an all-data task whose other 
data items are not yet available). The nowRef s array merely records whether 
a particular instance is being “actively” consumed by one or more dependent 
and ready tasks. 

3.3.4 AtagManager 

3.3.4.1 Service The A t  agManager supports a notification interface that 
is invoked whenever a new instance of a data item is produced by one of the 
tasks running on the node. A second interface provides answers to queries 
about the declarative part of the ATaG program-for example, the type and 
parameters of a particular channel annotation. 

3.3.4.2 lnferacfions The notification interface is used by the Datapool 
as part of processing a put  () call from the user task or a putFromNetwork 0 
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call from the Networkstack component. The query interface for the declar- 
ative part of the ATaG program is used by the Dispatcher component. 

3.3.4.3 lmplementafion AtagManager is charged with (i) internally 
representing the entire declarative part of the ATaG program (i.e., the task, 
data item, and channel declarations) and (ii) maintaining handles to the task 
code so that instances of abstract tasks mapped onto the node can be invoked 
when their firing conditions are met. Each abstract task declaration is stored 
as an instance of the TaskDeclaration class, and each abstract channel is 
stored as an instance of the ChannelDeclaration class. These two classes 
were discussed in Section 3.3.1. 

The UML class diagram for AtagManager in Figure 3.13 shows the various 
attributes and methods in the current version of this class. 

The constructor of AtagManager instantiates the TaskDeclarat ion and 
ChannelDeclaration classes-ne for each abstract task and abstract chan- 
nel in the ATaG program (Figure 3.14). This is one of the few methods in the 
runtime system that contain application-specific code which has to be gener- 
ated during the software synthesis process. 

When a new data item is added to the data pool using the putData0 or 
putDataFromNetwork0 function call, part of the processing of the function 
calls in the DataPool class involves an invocation of the newInstance- 
Produced0 function of the AtagManager. 

The code listing for this function in the current implementation of DART is 
shown in Figure 3.15. The arguments to this function are the ID of the abstract 
task that produced the data item and the ID of the data item that was produced. 

The AtagManager first checks if the output channel corresponding to the 
task-data pair. If the output channel is marked as nonlocal, no further process- 
ing is performed because a data item produced by a nonlocal output channel 
is not meant to trigger any scheduling of dependent tasks on that node. 

If the channel is not marked as nonlocal, the AtagManager determines the 
set of abstract tasks that are (a) mapped onto that node, and (b) dependent on 
the data item. The totalRef s array corresponding to the data item is now 
populated. The next task is to populate the nowRef s array and to schedule the 
suitable tasks for execution. The role of totalRef s and nowRef s mays  was 
discussed in Section 3.3.3.3. 

For each dependent task that is assigned to (Lee, mapped onto) the node, 
the firing rule is determined. If the firing rule is any-dat a, the corresponding 
nowRef s entry is set to 1 ,  and the task is immediately scheduled for execution. 
An any-data firing rule implies that the production of even one of the input 
data items is sufficient for the task to be scheduled, and there is no need to 
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public synchronized boolean putDataFromNetwork(Data1tem outputData) I 
int t-dataID = outputData. dataID 0 ; 
/ /  If data item is present and is active, do nothing and return "false" 
if (m-datapool. elementAt (t-dataID) ! =  null) 

if (((DataItem) m-dataPool.get(t-dataID)).isActiveO) 
return false; 

/ /  If data originates from network, it is already stamped and should 
/ /  not be changed 
/ /  Add this to the datapool before calling AtagManager 
m-datapool. add(t-dataID, outputData) ; 
/ /  Call AtagManager who will set references and will spawn tasks 
m_AtagManager.newInstanceProduced~outputData.producerID~~, 

return true; 
outputData. dataID 0 ; 

1 

Figure 3.12 The putDataFromNetwork function. 

Figure 3.13 UML class diagram: AtagManager. 
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/ /  * * * * * * * * * * * *  START OF AUTO-GENERATED CODE 

numTaskDecls = 3; 

taskDecls.add(1DConstants.T-SAMPLEANDTHRESHOLD, 
new TaskDeclaration(IDConstants.T-SAMPLEANDTHRESHOLD, 
new SampleAndThreshold(m-datapool, m-config, 

Thread.MAX-PRIORITY-0, "NODESUPERUINSTANCE", false, 1, 
PERIODIC",,l,,true)); 

m-networkArchitecture, m-GUI), 

taskDecls.add(1DConstants.T-LEADER, 
new TaskDeclaration(1DConstants.T-LEADER, 
new Leader (m-datapool , m-conf ig , m-networkArchitecture , 

Thread. MAX-PRIORITY -1, "NODESUPERUINSTANCE" , false, 1, 
"ANYDATA", 3600, false)); 

m-GUI), 

taskDecls.add(1DConstants.T-SUPERVISOR, 
new TaskDeclaration(1DConstants.T-SUPERVISOR, 
new Supervisor(m-datapool, m-config, m-networkArchitecture, 

Thread.MAX-PRIORITY-2, "ONEuINSTANCEuONuNODEUID", false, 0, 
"ANYDATA", 3600, false)) ; 

m-GUI) , 

numChannelDecls = 4; 

channelDecls.add(0, new ChannelDeclaration( 
1DConstants.T-SUPERVISOR, 1DConstants.D-TARGETINFO, "INPUT", 
false, "push", "ALLNODES", 0)); 

channelDecls.add(1, new ChannelDeclaration( 
IDConstants . T-LEADER, IDConstants. D-TARGETALERT , "INPUT", 
false, "push", '"I, 0)); 

channelDecls.add(2, newChannelDeclaration( 
1DConstants.T-SAMPLEANDTHRESHOLD, 1DConstants.D-TARGETALERT, 
"OUTPUT", true, "push", "NEIGHBORDISTANCE", 300)) ; 

channelDecls.add(3, new ChannelDeclaration( 
IDConstants . T-LEADER, IDConstants . D-TARGETINFO , "OUTPUT", 
true, "push", " "  , 0 ) )  ; 

/ /  * * * * * * * * * * * * * *  END OF AUTO-GENERATED CODE 

Figure 3.14 Section of the AtagManager constructor that instantiates task 
and channel declaration classes. This code is automatically generated during 
software synthesis. 
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public void newInstanceProduced(int taskID, int dataID) C 
/ /  If data is not local, do nothing locally when it is produced. 
ChannelDeclaration t-channelDec1 - this.getOutputChannelDeclaration(taskID, 
if (t-channelDecl==null I I !t-channelDecl.isLocal0) 

dataID); 

return; 

/ /  Data is marked 'local' and there is some out ut channel decl for it 
int [I dependentTasks = getOutTasksOfData(data1DP; 
m-dataPool.setTotalRefs(dependentTasks, dataID); 

int[] nowRefs = new int[ArchConstants.HAXTASKSl; 

for (int ctr = 0; ctr < dependentTasks.1ength; ctr++) I. 
/ /  If task is not dependent on this data item, go to next task 
if (dependentTasks[ctr] == 0) 

/ /  If task is dependent but is not assigned to this node, 
/ /  go to next task 
if ( !  m-conf ig . isTaskAssigned(ctr)) C 

> 
TaskDeclaration thisTask - (TaskDeclaration) taskDecls.get(ctr); 
if ((thisTask.firingRule0). toUpperCase0 .equals("ANYDATA")) C 

continue ; 

continue ; 

/ /  start an data task 
nowRefs [ctr!-= 1; 
thisTask. runTask 0 ; 

/ /  the task is all-data; check if other data is ready 
int [I flagArray = getInDataOfTask(ctr); 
boolean allOtherDataReady = true ; 
for (int i = 0; i < flagArray.length; i++) 

> else C 

if (flagArray[il =- 1 Qt (i ! =  dataID) kQ 
!m-dataPool.isDataReady(taskID, i)) C 

allOtherDataReady = false; 
break; 

1 
if (allOtherDataReady) I. 

/ /  start all-data task 
nowRefs[ctrl = 1; 
thisTask. runTask0 ; 

> 
1 > 

/ /  Only tasks that are actually enqueued should be  flagged '1' 
m-dataPool.setNowRefs(nowRefs, dataID); 
return; 

> 

Figure 3.15 
class. 

The newInstanceProduced() function of the AtagManager 

check if other input data items (if any) for that task are ready or not. As 
mentioned earlier, an any-data task is responsible for handling situations 
where an input data item may not be available in the data pool. If the task 
has an a l l -da ta  firing rule, the AtagManager checks if all other input data 
items for the task are ready, and it schedules the task for execution only if the 
condition is satisfied. 

We do not worry about periodic tasks when the check for firing rule is 
performed. The first reason is that if a task has a periodic firing rule, it is 
triggered when the periodic timer expires and is not affected by the production 
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of any input data items during the period between consecutive invocations. 
Also, the current version of DART does not support compound firing rules- 
for example, a task that is marked periodic V any-data. Even after this 
support is included, such tasks will return true when the check for any-data 
firing is performed. 

When the newInstanceProduced (1 function returns, all dependent tasks 
mapped onto that node whose firing conditions are met are in the scheduler’s 
queue waiting for execution. 

3.3.5 Networkstack 

3.3.5.7 Service As indicated by its name, the basic service provided 
by the Networkstack to the other components of the runtime is sending a 
data item to one or more nodes in the sensor network. The component is 
responsible for managing and initializing all the required protocols, which 
will typically include physical layer, medium access, and routing protocols. 
The sendData0 functions shown in the class diagram (Figure 3.16) provide 
this service. 

3.3.5.2 lnferacfions The Dispatcher and the NetworkArchitecture 
components interact with the network stack. The former uses the interface 
to send data items to a set of nodes as indicated by the annotations of the 
output channel associated with that data item. The topology creation and 
management-as well as other, similar protocols in the latter-also access the 
transceiver through the Networkstack. 

3.3.5.3 lmplemenfation The implementation of this component is al- 
most entirely dependent on the target sensor node platform and the family 
of protocols available for that platform. The prototype version of DART is 
implemented primarily as a component of the simulation and visualization 
environment that accompanies the ATaG visual programming interface. Since 
the simulation is on a single machine, the interaction between independent 
DART processes representing different nodes of the network is through sock- 
ets on the simulation machine. The current DART implementation therefore 
opens a listener thread on a predefined socket number to simulate the receiver 
and a transmitter thread that sends the data items to the receiver sockets of the 
destination nodes. 

In a “real” DART implementation (i.e., one that is deployed on a real or 
simulated sensor node that can directly communicate only with its 1 -hop neigh- 
bors), protocols managed by the NetworkArchitecture will register their 
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Figure 3.16 UML class diagram: Networkstack. 

interest in specific message types that will correspond to the protocol-specific 
information exchanged between nodes. A message queue or similar mecha- 
nism will be used to exchange data between these protocols and the receiver 
and transmitter threads of the Networkstack. This is similar to the active 
messages [54] model. 

3.3.6 Netwo r kArc h itec t u re 

3.3.6.1 Service NetworkArchitecture is responsible for managing 
all protocols and maintaining all information related to the situatedness of the 
node in the network. Situatedness implies a knowledge of the neighborhood 
composition, the role of the node in one or more virtual topologies (such as 
trees or meshes) that might be permanently or temporarily overlaid on all 
or part of the network. This service is provided through a query interface 
that translates architecture-independent specifications such as “ID of parent 
node,” “IDS of child nodes,” “geographic locations of nodes within 10 m 
of this node,” etc., into the desired ID or location list. To summarize, this 
component provides context-awareness to the application-level and system- 
level components of the software system running on the sensor node. 

3.3.6.2 /ntefaCfiOf?S UserTask instances may optionally interact with 
the NetworkArchitecture to obtain information about the node’s own co- 
ordinates, the composition of its neighborhood, its role (if any) in a virtual 
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topology, etc. The Dispatcher also uses this query interface to translate 
annotations of output channels into list of node IDS and/or locations for trans- 
mitting the newly produced data item to its specified destinations. Finally, the 
NetworkArchitecture uses the services provided by the Networkstack as 
required by the protocols it manages. 

3.3.6.3 implementation As mentioned above, NetworkArchitecture 
is required as a separate (and important) component of DART because applica- 
tion-level tasks require information about the situatedness of the node in the 
target deployment. The architecture-independence and data-driven semantics 
of ATaG means that all the input and output by instances of abstract tasks are 
through the basic get 0 and put 0 primitives. All communication over the 
network is implicit in the channel annotations and is not directly controlled 
by the imperative portion of the ATaG program. However, an integral char- 
acteristic of networked sensing is that the processing of data items could be 
influenced by factors such as the location of the node, the density of sensor 
nodes in its region of deployment, etc. This means that if an abstract task with 
an input channel labeled neighborhood-hops:l is mapped onto a node, it is 
highly probable that the task code will want to know the composition of its 
1 -hop neighborhood in order to meaningfully interpret and suitably process 
the incoming data items represented by that channel. 

The current implementation of NetworkArchitecture maintains infor- 
mation about a neighborhood whose “scope” is determined by the channel 
annotations of abstract tasks mapped onto that node. For example, let task 
A and task B be the only two abstract tasks of the ATaG program that are 
mapped onto a particular node. Suppose task A has an input channel with an- 
notation neighborhood-hops:3 and taskB has an input channel with annotation 
neighborhood-distunce:50 m. At compile time, the NetworkArchitecture 
component on that node is configured to collect information only about the 
union of the set of nodes within 3 hops of that node and the set of nodes 
within 50 m of that node. This ensures that the computation, communica- 
tion, and storage resources required to maintain this information are justified 
by the (possible) utility of the information to tasks on that node. The set of 
function calls that form the query interface supported by this component are 
shown in the class diagram of Figure 3.17. Decisions about the activation 
of protocols for virtual topology formation are also taken at compile time. 
For instance, if the application requires a virtual tree topology, the program- 
mer will presumably have identified the nodes that form the root and nonroot 
members of the tree in the network model that is provided to the compiler. 
The NetworkArchitecture modules on all or some of the nodes in the net- 
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Figure 3.17 UML class diagram: NetworkArchitecture. 

work will then be configured to start the tree formation protocols at node 
initialization time. 

The four types of events involving the NetworkArchitecture that can 
occur at runtime are: A data item of interest to one of the protocols managed by 
this component arrives at the transceiver and is communicated to the protocol 
by the Networkstack, a data item is sent to the Networkstack by one of the 
protocols managed by this component; the query interface is invoked by an 
application level task; and the query interface is invoked by the Dispatcher. 

3.3.7 Dispatcher 

3.3.7.1 Service The Dispatcher is responsible for transmitting any 
new instance of a data item produced on the node to other nodes (if any) 
indicated by the output channel annotation associated with the data item. 
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The component therefore supports a notification interface that consists of a 
newInstanceProduced0 function. 

3.3.7.2 lnferacfions The Datapool is responsible only for managing 
the data pool. The AtagManager stores information about the declarative 
part of the program and also schedules the imperative portions for execu- 
tion when appropriate. The Networkstack manages the transceiver, and the 
NetworkArchitecture is in charge of situatedness information of the node. 

None of the above components are assigned the task of determining where 
a particular data item produced on the node is to be sent. Hence, a new 
component-the Dispat cher-was created for coordinating between these 
modules and, when an instance of a data item is produced, sending it to the 
set of destination nodes as indicated in the ATaG program. Specifically, this 
component uses the query interface of AtagManager to obtain the output 
channel annotation associated with the data item, the translation service of 
the NetworkArchitecture to convert the channel annotation into a list of 
node IDS (or locations) that correspond to the annotation at that time, and the 
send0 interface of the Networkstack to actually dispatch the data to the 
destinations. 

3.3.7.3 lmplementafion The Dispatcher maintains handles to the 
AtagManager, NetworkArchitecture, and the Networkstack, to be in- 
voked in that order. When a new data item is produced, part of the putData(1 
method of the Datapool class calls the newInstanceProduced0 function 
of the Dispatcher module. 

The code listing for this function is shown in Figure 3.20. First, we perform 
a sanity check to ensure that there is indeed an output channel declaration that 
corresponds to the production of this data item. The assumption is that there 
is exactly one such output channel. If more than one channel were allowed, 
additional record-keeping would be required to now determine which task 
produced the data item in question. This would increase the complexity of the 
runtime system. The ATaG syntax currently prohibits more than one output 
channel from being associated with a given data item for this reason. 

The Dispatcher does not check if the output channel is local or nonlocal. 
That determination is the sole concern of the At agManager because it affects 
the scheduling of dependent tasks (if any) on the local node. The Dispatcher 
merely checks if some channel annotation (interest) is associated with the 
output channel that can translate into one or more node IDS in the system. 
This information is obtained through the AtagManager module that stores 
the channel declaration and its associated annotations. If such an annotation 



92 DART THE DATA-DRIVEN ATAG RUNTIME 

Figure 3.18 Hopscope. 

Figure 3.19 UML class diagram: Dispatcher. 
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public void newInstanceProduced(Data1tem t-dataItem) C 
int 11 nodeIDs = null; ; 
int dataID = t-dataItem. dataID 0 ; 
ChannelDeclaration t-channelDec1 = 

m-AtagManager.getOutputChannelDeclaration( 
t-dataItem. producerID0, dataID) ; 

if (t-channelDec1 == null) C 
/ /  no output channel found for this data ID 
System. exit ( -1) ; 

> 
String interest = t-channelDecl.intsrest0; 
if (!(intereet.toUpperCaseO.equale("NONE"))) I 

int interestparam = t-channelDecl.interestParam0; 
/ /  delegate the task of decoding the channel's annotation to 
/ /  the NetuorkArchitecture module 
nodeIDs = m-networkArchitecture.translateChannelAnnotation(interest, 

/ /  NetuorkArchitecture returns the list of nodeIDs (if any) that 
/ /  correspond to the channel annotation 
if (nodeIDs ! =  null) C 

intersstParam); 

/ /  delegate the task of actually transmitting the data item to the 
/ /  set of node IDS to the Networkstack module 
m-networkStack.sendData(nodeIDs, t-dataItem); 

> 
> 
/ /  Now check if any node IDS are specified as part of the config 
/ /  file generated during compile time. 
nodeIDs = m-config.getDestinationOfData(data1D); 
if (nodeIDs ! =  null) 

m-networkStack.sendData(nodeIDs, t-dataItem); 
return ; 

1 

Figure 3.20 
module. 

The newInstanceProduced0 function of the Dispatcher 

is found, it is passed to the NetworkArchitecture module that translates it 
into a (possibly empty) set of node IDS and returns the list to the Dispatcher. 

3.4 CONTROL FLOW 

The flow of control among the components of DART can be divided into two 
parts. The first is the set of activities that occur at node initialization. The 
second is the set of actions triggered during the course of application execution 
on that node. This set includes events that are generated by the user-level code 
(e.g., production and consumption of data items) and also events generated 
by components of the runtime system such as the protocols managed by the 
Net work Ar c hi t e c t ur e component. 
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3.4.1 Startup 

Figure 3.21 is the code listing for the startup routine that is executed when a 
node is initialized. This is the main routine in the Startup Java class that acts 
as the point of entry into the runtime system. 

)ackage atag . runtime ; 

import java. io . * ;  
import java.util.*; 
import atag . runtime. conf ig . * ;  
import atag.runtime .* ;  

nblic class Startup I 

public static DataPool m-datapool; 
public static Networkstack m-networkstack; 
public static NetworkArchitecture m-networkArchitecture; 
public static AtagManager m-AtagManager; 
public static Dispatcher m-Dispatcher; 
public static mCUI m-GUI; 

public static String networkFileName = " " ;  

public static int hopscope = 0; 
public static int distancescope = 0; 

public static void main(String argvC1) < 
Config m-config; 
m-config = parseCmdLineArgs(argv); 
m-datapool = new DataPool(m-config); 
m-networkstack = new NetworkStack(m-config, m-dataPoo1); 
m-networkArchitecture = new NetworkArchitecture(networkFileName, 

m-networkArchitecture.start0; 
m-CUI = new mCUI(m-networkstack); 

m-AtagManager = new AtagManager(m-datapool, m-config, 

m-Dispatcher = new Dispatcher(m-networkstack, m-networkArchitecture, 

m-dataPool.setAtagManager(m-AtagManager); 
m-dataPool.setDispatcher(m-Dispatcher); 
m - d a t a P o o l . s e t N e t w o r k A r c h i t e c t u r e ( m _ n e t v o r k A r c h i t e c t u r e ) ;  
m-AtagManager .start 0 ; 
System. err. println(m-conf ig .myID ( I + "  :,started") ; 
return; 

m-config, hopscope, distancescope); 

m-networkArchitecture, m-CUI); 

m-AtagManager. m-config); 

> 
1 

Figure 3.21 The main routine of the Startup class. 
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Each module of DART is expected to implement a start 0 function that 
performs the basic initialization (if any) required for that module. Alternately, 
initialization may be performed in the constructor of that class in an object- 
oriented implementation. The initialization might involve memory allocation, 
initialization of variables, spawning of new threads for different protocols and 
services, etc. 

A special S t a r t u p  module of DART is the first to run when the node is 
turned on, and invokes the s ta r t  0 functions of the other modules. The code 
listing for the main function in the S t a r t u p  module is shown in Figure 3.21. 

First, the Datapool is started, which mainly involves allocating memory 
for each entry of the data pool corresponding to the different data items in 
the ATAG, and then marking the entries of the datapool as empty by suitably 
initializing the reference counts. Naturally, on resource-constrained platforms 
where dynamic memory allocation is not supported and the data structures of 
the data pool are determined and generated as part of software synthesis at 
compile time, the duties of the startup function will be reduced. 

Next, the Networkstack is started, which spawns the listener thread to ac- 
cept incoming connections, and a transmitter thread to handle outgoing mes- 
sages. The initialization, if any, needed by the MAC and routing protocols, 
and also the localization and time synchronization protocols, is performed be- 
fore control returns to the S t a r t u p  class. The code listing for the constructor 
of the Networkstack is shown in Figure 3.22. 

Now that the basic communication service with other nodes is available, 
the NetworkArchitecture module is started, which will spawn the protocol 
threads required for neighbor discovery, virtual topology construction, mid- 
dleware services, etc. The startup of this module could be deemed complete 
when some minimum node state has accumulated; for example, all the infor- 
mation about the neighborhood is available. The current version of DART is 
designed primarily to support single-machine simulation and also does not in- 
clude the protocols for local topology discovery. The entire network topology 
is read from a configuration file that is passed to the S t a r t u p  module during 
initialization. We discuss this in more detail in Section 4.4.5. 

Finally, the ATaGManager is started. This module traverses the list of user- 
level tasks assigned to that node, and it spawns all the tasks that are marked “run 
at initialization” by the programmer (see Figure 3.23). These will typically 
be the tasks that (periodically) produce the set of sensor readings that will 
then drive the rest of in-network processing. It is important to note that a 
periodic firing rule does not necessarily mean that the periodic execution of 
the task is started when the node is powered on. This is because the application 
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?ackage atag . runtime ; 

import java.util.//; 
import j ava . net. / /  ; 
import atag.runtime.config.//; 
import atag. runtime. / /  ; 
import visualizer.//; 

public class Networkstack < 
private Receiver m-receiver; 
private DataPool m-datapool ; 
private Transmitter m-transmitter; 
private Conf ig m-conf ig ; 
Thread m-receiverThread; 

public NetworkStack(Config t-config, DataPool dataPoo1) 1 
/ /  Startup routine in the constructor: 
/ /  Startup the Receiver thread which will continually listen 
/ /  on a specific socket number for data transfers from 
/ /  other runtimes, and instantiate the Transmitter class 
/ /  which will be used to send the data item to other nodes. 
/ /  
/ /  Handle to the data pool is passed to the constructor 
/ /  of the network stack because the Receiver thread 
/ /  requires this handle to be able to call the 
/ /  putDataFromNetwork method when a data item is 
/ /  received from other Transmitters. 
/ /  
m-datapool = datapool ; 
m-config = t-config; 
m-receiver = new Receiver(t-config. datapool); 
/ /  start up the receiver when Networkstack starts 
m-receiverThread = new Threadcm-receiver); 
m-receiverThread.start0; 
m-transmitter = new Transmitter(t-config); 
return ; 

> 
. . .  

Figure 3.22 The constructor and startup routine for the Networkstack. 
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public void start0 c 
TaskDeclaration t-taskDec1; 
for (int ctr = 0; ctr < m-config.ntasks0; ctr++) 

if ((t-taskDecl = 
(TaskDeclaration) taskDecls.get(ctr)).runAtInit()) 

/ /  run task with ID ctr 
t-taskDecl.runTask0; 

1 1 
return ; 

public class AtagManager c 

private 
private 
private 
private 
private 
private 
private 
private 

int numTaskDecls = 0; 
int numChannelDecls = 0; 
Vector taskDecls = new Vector 0 ; 
Vector channelDecls = new Vector (1 ; 
DataPool m-datapool; 
Config m-config; 
mGUI m-GUI; 
NetworkArchitecture m-networkArchitecture; 

. . .  

Figure 3.23 The startup routine for the AtagManager. 

developer might want some task(s) to execute periodically only when a certain 
stage of the computation is reached or a certain event is detected. Hence, the 
boolean property “run at initialization” is to be specified for each abstract task 
(false by default) and only the tasks that have this property set to true will 
be started at node initialization, regardless of the firing rule. The application 
developer can use this mechanism to define application-level functionality that 
is executed only at initialization. 

3.4.2 get 0 and put 0 

During the normal course of application execution, three main events can 
occur: (i) a get (1 invocation by a user task, (ii) a put (1 invocation by a user 
task, or (iii) a put (1 invocation by the receiver thread when a data item arrives 
from another node. 

As explained in Section 3.3.3.3, a get 0 invocation merely results in the 
clearing of the corresponding entries of the totalRef s and nowRef s arrays of 
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the data pool and, as a side effect, can change the state of a particular instance of 
a data item from available to unavailable, etc. In the current implementation, 
the processing of a get  0 call is performed entirely within the Datapool 
component, and none of the services offered by other DART components are 
used by Datapool. 

Figure 3.24 Flow of control on a put 0 invocation. 

The processing of a put 0 call is more involved. Figure 3.24 shows the 
flow of control among DART components triggered by a put 0. Steps 1 
through 7 of the figure correspond to the following: 

1.  An instance of UserTask invokes put 0 for a particular abstract data 
item. The Datapool first checks if the corresponding data item can be 
safely added to the data pool-that is, if the data item is unavailable or 
inactive. If the addition fails, the put (1 returns with an error code and 
the contents of the data pool are not modified. 

2. If the addition succeeds, Datapool invokes the newInstance- 
Produced (1 function of the A t  agManager. The A t  agManager checks 
if the output channel annotation for the newly produced data item con- 
tains nonlocal. If not, the AtagManager determines the list of tasks 
that depend on this data item and checks their firing rules. The arrow 
that denotes Step 2 is double-headed because this process involves some 
calls back to the Datapool to check the status of certain data items. 
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3. If one or more tasks are ready to be scheduled for execution, the Atag- 
Manager invokes the run (1 function provided by the Runnable inter- 
face supported by each UserTask. 

4. The DataPool notifies the Dispatcher and returns control to the user 
task. Further processing by the Dispatcher can proceed in a separate 
thread of control. 

5. The Dispatcher obtains the output channel annotation for the data 
item. If the ouptut channel is marked local only, the data item is not to 
be transmitted to any other nodes in the network and processing of the 
put (1 call terminates at this point. 

6. If the output channel annotation indicates transmission of the data item 
to one or more nodes of the network, the Dispatcher queries the 
NetworkArchitecture to translate the channel annotation into a list 
of node IDS (or locations). Note that this assumes a scenario where 
the annotation is not translated into node IDS (or locations) at com- 
pile time, which typically will be the case if the network is dynamic. 
For a static network where some annotations are translated into node 
IDS (or locations) through an analysis of the network graph at compile 
time, the runtime translation will not be required. Instead, a list of node 
IDS (or locations) will be provided to the AtagManager instead of an 
untranslated channel annotation. In this case, Step 6 will be omitted. 

7. Finally, the Dispatcher hands over the data item and the list of desti- 
nations to the Networkst ack for transmission. 

The operating system and compiler support for the platform on which DART 
is implemented heavily affects the (a) design and implementation of the com- 
ponents and (b) the management of details of the control flow. For instance, a 
real-time operating system such as pC/OS-I1 includes a preemptive priority- 
based scheduler and support for multi-threading, which is not available in an 
operating system such as TinyOS for resource constrained sensor nodes. Also, 
if pC/OS-I1 is the choice of operating system, the DART implementation (and 
the software synthesis process) will be affected by the target processor. 
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Figure 3.25 
collector nodes. 

Centralized data collection: control flow at the sampler and 

The description of the DART architecture and details of its control flow are 
hence intended to be a guide (template) for implementing system-level support 
for the ATaG programming model, with DART implementations on different 
sensor node platforms differing from another in the details. 

The third type of event - an invocation of the putFromNetwork0 call by 
the receiver thread of the Networkstack-is handled in much the same way 
as a local invocation, except that the Dispatcher is not part of the loop. 

3.4.3 Illustrative example 

In centralized data collection, a Sampler task is hosted on each node of the 
network, and a Col lec tor  task is hosted on a single designated root node. 
The Sampler runs periodically and produces a data item that is to be routed to 
the Col lec tor  at the root node. The ATaG program for this behavior therefore 
consists of two abstract tasks and one data item. 

Figure 3.25 depicts the intranode and internode flow of control whenever a 
data sample is created at a nonroot node (left) and communicated to the root 
node (right). The individual steps have already been explained in the previous 
subsection. In this example, the invocation of a put  (1 by the Sampler only 
results in execution of six of the seven steps discussed in the earlier section. 
This is because the AtagManager does not invoke any task on that node, since 
no task dependent on the Sampler is mapped on the nonroot node. When the 
data item arrives at the network interface of the root node, the Networkstack 
adds it to the data pool, which leads to the scheduling of the Col lec tor  task 
that consumes the newly arrived data item sent by the Sampler. 
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3.5 FUTURE WORK 

A fully functional albeit simplified version of DART (DART-J) intended for 
single-machine simulation has been implemented in Java. DART-J has a 
modified network interface that communicates through sockets on the local 
host. Each instance of DART is also aware of the entire network architecture 
at startup (by reading from a file); and the protocols for neighborhood dis- 
covery, etc., are not required and not implemented. An ANSI C version of 
DART (DART-C) has also been partly implemented for a sensor node with 
a PIC18LF8720 microcontroller, 3840 bytes of RAM, 128KB of program 
memory, and 1KB of EEPROM. DART-C is designed for the MicroC/OS-I1 
real-time operating system. Hardware design of the node, implementation 
of low-level APIs, and software development of the runtime is proceeding in 
concert and is not yet complete. We do not expect to implement an ATaG 
runtime on the TinyOS operating system in the near future, primarily because 
of the lack of the prerequisite mechanisms required by DART to guarantee 
ATaG semantics. We believe that using a small-footprint, widely available 
component-based operating system that provides the necessary mechanisms 
is an option as good or better than first implementing these mechanisms as a 
set of extra nesC modules for TinyOS and then layering the application-level 
task code on top of these modules. 

We now discuss some areas of future work for DART. These are in addition 
to the modifications to the DART design and implementation that will be 
required to support the proposed enhancements to ATaG (Section 2.6). 

3.5.1 Lazy compilation of channel annotations 

The destination(s) of a particular data item produced on a node is indicated in 
the ATaG program in an architecture-independent manner. The actual trans- 
lation of an annotation such as neighborhood-distance:IO m into the list of 
nodes that fall within the 10 m radius of a particular node in the network can 
take place at compile time or at run time. If the network deployment is static 
and known at design time, the AtagManager can be directly supplied with 
a list of source or destination IDS corresponding to input and output chan- 
nels, respectively. The NetworkArchitecture does not need to maintain 
and update this information, thereby saving the resources required to run the 
necessary protocols. If the network is dynamic, this translation must happen 
at run time. 

The application developer does not care ifthe translation is eager (compile- 
time) or lazy (runtime), as long as the communication between tasks in the 
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network occurs according to the scheme indicated in the ATaG program. In- 
deed, this is the essence of architecture independent high-level programming. 
It also means that the decisions about lazy or eager evaluation of annotations, 
frequency of refreshing node state in a lazy evaluation scenario, etc., is entirely 
upto the compilation framework and the runtime system. 

One of the areas of future work in this context is to define a technique 
to minimize the cost of execution (using a suitably defined metric) by se- 
lecting the evaluation policy for each annotation. The evaluation policy will 
determine whether the compilation of an annotation is eager, lazy, or a com- 
bination of both. For lazy compilation, it will also determine how frequently 
the NetworkArchitecture will update the relevant information about the 
neighborhood. 

3.5.2 Automatic priority assignment for task scheduling 

When the macroprogram is translated into a set of node-level program, it is 
critical for the compiler to guarantee that the semantics of the macroprogram 
are honored by the distributed system. Some of the ATaG semantics governing 
the production and consumption of data items are the responsibility of the data 
pool manager in the runtime system. Semantics of. interest at the compiler level 
relate to task scheduling. Specifically, the compiler must guarantee atomic 
execution of application-level tasks and breadth-first execution of the task 
graph mapped onto a node. These semantics are motivated by the nature of 
“typical” data-driven sensor network applications and have been discussed in 
detail in Section 2.4. 

Target platforms for DART are required to provide a preemptive, priority- 
based scheduler. Any platform that can host a Java virtual machine or a 
real-time operating systems such as pC-0s I1 is a suitable target. With such 
a scheduler, tasks are assigned priorities and the task with the highest priority 
at any given time executes. If another task with a still higher priority becomes 
ready for execution, the running task is preempted and the new task is given 
control of the CPU. The execution semantics of the abstract task graph can be 
ensured by suitably assigning priorities to tasks, depending on the scheduling 
policy to manage the execution. 

For a given ATaG program, the compiler should perform this priority as- 
signment after the task placement phase. Not all abstract tasks in the program 
are instantiated on every node. Each node is assigned a subset of the tasks, de- 
pending on the placement annotations and any application-level optimizations 
performed during compilation. For a given node, each task in the assigned set 
has a firing rule and some data dependencies. Also, some of the data items 



FUTURE WORK 103 

might actually be produced on other nodes and injected into the local data pool 
through the network interface. The arrival times of such external data items 
cannot be predicted, and the task can become ready for execution at any time. 
Maintaining the execution semantics in the face of uncertain arrival times of 
external data items, in addition to the dependencies of tasks on that node, is a 
challenge that needs to be tackled. 

Also, the size of an ATaG program in terms of the number of abstract tasks 
depends on the application. Not all schedulers support a large number of 
distinct priority levels. For instance, a Java thread’s priority is specified with 
an integer from 1 (lowest) to 10 (highest); also the real-time specification for 
java (RTSJ) 1491 offers 28 strictly enforced priority levels, whereas pC-0s 
I1 [39] allows more than 50. Hence, another subproblem is that of performing 
priority assignment by intelligent allocation from a limited number of priority 
levels. We will implement a mechanism for limited-range priority assignment 
to abstract tasks, based on the observation that not all tasks will become active 
at a given time, and it might be acceptable to assign the same priority to more 
than one task as long as they do not become ready for execution at the same 
time. 
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CHAPTER 4 

PROGRAMMING AND SOFTWARE 
SYNTHESIS 

This chapter describes the process of application development with ATaG. 
The declarative part of the ATaG program is specified through an easy-to-use 
graphical interface. Although a variety of representations are possible for 
specifying the declarative part of an ATaG program, we chose the graphical 
interface because of the benefit of providing a concrete syntax that is identical 
to the abstract syntax, thereby eliminating the learning curve for the application 
developer. 

The imperative part, consisting of the code associated with each abstract 
task and abstract data item, is provided by the user, with assistance from a code 
template generator tool. Software synthesis, simulation, and visualization is 
performed by tools that are launched from the visual programming interface. 
The GUI is based on the Generic Modeling Environment toolsuite [21]. We 
first introduce the GME toolsuite and then describe how GME was used to 
implement a programming and software synthesis mechanism for ATaG. 

Architecture-Independent Programming for Wireless Sensor Networks 
By Amol B. Bakshi, Viktor K. Prasanna 
Copyright @ 2008 John Wiley & Sons, Inc. 
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4.1 TERMINOLOGY 

Model integrated computing (MIC): MIC is an approach for development of 
complex systems that is based on capturing all the relevant system information 
in a structured form (models) and using the model information to drive a set 
of domain-specific tools for analysis and synthesis. 

Model: Models are abstractions that allow the representation and manipu- 
lation of various aspects of the underlying system. The set of parameters 
captured in the model depends entirely on the intended usage of the model in- 
formation and the domain of application. The term “model” is commonly used 
to refer to mathematical models that describe a system through (a) a set of vari- 
ables that represent properties of interest and (b) a set of equations that describe 
the relationships between the variables. We use the term “model” to denote 
structural models and not mathematical models. A domain-specific structural 
modeling language defines the basic building blocks that are available to the 
designer to describe a particular system in that domain. The domain-specific 
language also implicitly includes the semantics of each building block and the 
semantics of relationships between the building blocks. Examples of relation- 
ships include association, containment, and physical connectivity. 

The Generic Modeling Environment (GME): GME is a configurable graph- 
ical toolsuite that supports MIC. The configuration of the environment to sup- 
port domain-specific modeling is done in a formal manner through the use of 
metamodels. The metamodeling language is the UML class diagram nota- 
tion. GME allows rapid creation of domain-specific modeling environments 
that are used by designers to describe systems in that domain, performs de- 
sired transformations on the model data, and drives external tools with the 
model information as input. Model interpreters are the software components 
that interface with the model database and manipulate and otherwise use the 
model information. 

4.2 META-MODELING FOR THE ATaG DOMAIN 

4.2.1 Objectives 

GME was used to create a programming and software synthesis for the ATaG 
model. The objective of the customized graphical programming environment 
was to provide the following basic capabilities: 
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. The ability to visually specify the declarative portion of the ATaG pro- 
gram. This means that the abstract task, abstract data, and abstract 
channel are the basic building blocks of the structural model of the 
ATaG program, and the annotations associated with each should also be 
specified (or selected from a list of predefined values). . The ability to create a library of ATaG programs (also called “behav- 
iors”) and compose larger applications by selecting and concatenating 
programs from this library. 

. The ability to visually specify the parameters of the target network 
deployment, such as the number of nodes and the coordinates of each 
node, node identifiers, radio ranges, etc. 

. The ability to create a library of network descriptions that will typi- 
cally correspond to existing deployments, similar to the library of ATaG 
programs. 

. The ability to indicate which set of ATaG programs is to be compiled on 
which of the network models, as well as to invoke the software synthesis 
tools for generating customized code to be downloaded and deployed 
on each node in the selected target. 

A visual interface for drawing the ATaG program eliminates the need for 
the programmer to learn a new syntax and also makes it easy to comprehend 
the structure of an existing program. The ability to create libraries of behav- 
iors and deployments allows reuse of existing applications as components of 
larger applications, and it also allows the same application to be compiled 
for a different network. At the highest level of abstract, as will be shown 
in the following sections, ATaG programming translates into the selection of 
one or more behaviors from the program library, the selection of one net- 
work description from the deployment library, and the invocation of software 
synthesis tools integrated into the development environment. The software 
synthesis methodology itself is structured in such a way that the imperative 
portions of existing ATaG programs (i.e., the code associated with the tasks 
and data items) can be reused. Ultimately, this means that i f a  programmer 
wishes to merely combine existing behaviors to form a larger application, and 
compile it for one of the existing network descriptions, not a single line of 
code needs to be written. This feature is one of the biggest strengths of the 
ATaG model and is the best demonstration of the advantages of using the data- 
driven programming paradigm for modularity and composability, with mixed 
imperative-declarative program specification for separation of concerns. 
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<<Model>> * 

J- 
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<<Mode I P roxy> > 

Num berOfNodesfield 
RadioRange : field 
SensingRange : field 
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YRange : field 
TreeRoot : field 
F 

DeploymentR 

1 

ATaGBehaviorR 
I <<Reference>> 
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<<ModelProxy>> 

<<Reference>> o..* 

Figure 4.1 
of behaviors mapped onto one target deployment. 

GME metamodel: Sensor network application consists of a set 

r 

The MetaGME paradigm that is used to specify the domain-specific meta- 
models provides basic building blocks that are used to define the structure of 
valid models in the target domain. Examples of the building blocks include 
atom, model connection, reference, etc. The GME users’ manual explains the 
metamodeling and modeling concepts and processes in more detail. Here, 
we present the metamodels that are defined to create the ATaG programming 
environment. 

4.2.2 Application model 

The modeling paradigm for the ATaG programming environment is defined as 
follows. As shown in Figure 4.1, the sensor network application consists of 
one or more behaviors and one network description. All behaviors to be syn- 
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thesized onto the target network are required to be part of this top-level model. 
The individual behaviors are represented as models named ATaGBehavior. 

As mentioned in earlier sections, one of the advantages of the data-driven 
paradigm is the composability of programs by literally concatenating sub- 
programs. This property allows the creation of libraries of ATaG programs for 
different behaviors, which can be easily composed into the desired application 
by the end user. To support this drag-and-drop composition of applications 
from existing libraries, we do not include the ATaGBehavior models directly 
into this high-level model. Instead, the top-level model contains references to 
behaviors and a reference to a network description. References act as pointers 
to other entities; in this case, the actual behaviors and the network description 
are stored separately in the library and the programmer includes the behaviors 
in the application by simply pointing to it. In the figure, the ATaGBehaviorR 
entity is a reference to an ATaGBehavior model, and the DeploymentR entity 
is a reference to a Deployment model, each of which is now explained in more 
detail. 

The declarative portion of the ATaG program is described by instantiating 
the ATaG model. The structure of the model is shown in Figure 4.2. The 
model consists of Tasks and DataItems, corresponding to abstract tasks and 
abstract data items, respectively. The annotations for tasks and data items 
are specified as attributes of the models. As shown in the figure, attributes 
of the Task model include firing rule, type of instantiation, priority of the 
task, whether the task should be executed at node initialization, etc. The 
fact that an attribute is associated with a model does not necessarily mean 
that the programmer has to specify its value. Attributes such as TaskID and 
Priority could be computed at compile time for a particular application and then 
recorded in the model for inspection by the programmer. Note that the current 
version of the metamodel is a prototype primarily meant to demonstrate the 
power of visual programming with ATaG. Some attributes in the current model 
are placeholders for information that is not used by the mapping and software 
synthesis tools. As the programming paradigm evolves, the metamodels will 
evolve accordingly. 

One of the main attractions of using the GME toolkit for designing the ATaG 
programming environment is the ease of modifying the modeling paradigm 
and automatically generating an updated graphical modeling environment. 
Attributes of various types (boolean, integer, string, etc.) can be associated 
with the metamodel entities (atoms, models, connections, references, etc.) by 
specifying them in the 'Attributes' aspect of the metamodeling environment. 
Figure 4.3 shows the Attributes aspect of the ATaG metamodel. The FiringRule 
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Figure 4.2 
(declarative). 

GME metamodel: Modeling paradigm for the ATaG program 
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is an enum attribute, which means that a list of valid selections is prespecified 
in the metamodel. The lower right section of the GME window in Figure 4.3 
shows the specification of allowable values for the firing rule, in accordance 
with the ATaG semantics in Section 2.4. 

-- 
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4.2.3 Network model 
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The application developer describes a target network as an instance of the 
Deployment model. The structure of the Deployment model is shown in 
Figure 4.4. The description of the target deployment can be separated into 
network-level parameters and node-level parameters. Examples of network- 
level parameters include: number of nodes, radio range (assuming all nodes 
have a fixed radio range), the real or virtual X and Y coordinate range of the 
localization system, etc. 
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GME metamodel: Specifying annotations for tasks and data 

NumberOfNodesfield 

<<Model>> 

YRange : 
TreeRoot : field 

<<Atom>> 

Nodeld : field 
O..* Script : field 
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Figure 4.4 GME metamodel: Modeling paradigm for the network. 

The set of parameters that are captured in our current metamodel are meant 
to be representative of the information that might be required for the compiler 
to synthesize an ATaG program on that deployment. By categorizing radio 
range as a network-level parameter, we assume that all nodes have identical 
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radios with fixed radio range, and hence the radio range can be specified at 
the network level and not for the individual node. The X and Y coordinate 
range also implies that nodes are localized in a two-dimensional space. The 
advantage of using a configurable modeling environment such as GME is 
that the metamodel (and hence the programming environment) can be easily 
modified by including additional network-level or node-level parameters as 
desired. 

4.3 THE PROGRAMMING INTERFACE 

This section describes the use of the visual programming environment config- 
ured by the GME metamodels discussed above. The sequence of steps to be 
followed by the programmer can be summarized as follows. 

Step I. Create a library of ATaG behaviors: An ATaG behavior is a standalone 
ATaG application, consisting of abstract taks, abstract data items, and input 
and output channels and their annotations. When part of a library, it can also 
be concatenated with other behaviors in the library and/or user-defined be- 
haviors. We require the application developer who wishes to define hisher 
own ATaG behavior to first add it to the library and then import that behavior 
and any of the other preexisting behaviors from the library into the overall 
application. 

Behaviors are created in the GME environment by navigating to the Beha- 
v i o r s  model and instantiating a model of type ATaG from the parts browser 
window at the lower right of the GME interface. The model instance is then 
renamed as desired. The programmer then double-clicks on the renamed 
ATaG model instance and is presented with a new set of building blocks that 
correspond to abstract tasks and data items. The programmer then specifies 
the declarative part of the behavior by simply dragging the desired number of 
tasks and data items from the parts browser to the model editing pane. Each 
task and data item can be renamed by selecting it and editing the values in the 
attributes window on the lower right of the main GME window. 

Output channels are created by selecting the connection mode from the 
GME mode bar, clicking first on the producer task and then on the produced 
data item. When the channel (connection) is created, its directionality is 
indicated by an arrow pointing to the data item. Selecting the channel displays 
another set of editable attributes in the attribute browser, corresponding to 
channel annotations. Input channels are specified in a similar manner by first 
selecting the data item and then the consumer task. 
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Step 11. Create a library of network descriptions: Similar to the library 
of ATaG programs (behaviors), the programming environment allows the cre- 
ation of a library of deployment descriptions. Each network description could 
correspond to some real deployment that will host the application, or simply 
a fictitious network deployment designed solely for testing the ATaG program 
behavior through functional simulation. 

A network description will consist of network-level parameters such as the 
number of nodes, the scope of the coordinate system (if any) in terms of X andY 
coordinate range, the availability of protocols for establishing virtual topology, 
etc. This information will be used to translate the ATaG annotations for that 
particular network and will also be used to determine if a particular ATaG 
behavior selected by the programmer has a valid mapping onto the selected 
target deployment. For instance, if the ATaG program uses the annotations 
‘parent’ and ‘children’ on the channels, the network description must indicate 
(a) the availability of protocols to establish a virtual tree topology and (b) any 
parameters required by that protocol, such as the identity of the root node of 
the tree. Similar to the Iibrary of behaviors, if the desired network description 
already exists, this step can be omitted. 

The network description currently captures only the number of nodes, their 
X and Y coordinates, the span of the virtual coordinate system along the two 
dimensions, the radio range, and sensing range of the sensor interface on 
each node. The network is assumed to be homogeneous in that all nodes are 
considered to be identical. We also assume an “ideal” environment and do 
not model the effect of obstacles or hostile terrain on network connectivity. If 
the ATaG compiler is to be made sophisticated enough to choose or customize 
the lower-layer network protocols based on such information, the necessary 
attributes can be added to the programming interface. We also do not capture 
any node-level attributes relating to resource availability such as the energy 
available to each node. 

Step 111. Compose the application and select the target network: After the 
new behaviors (if any) are added to the existing library of programs and the 
desired target deployment is modeled, the programmer has to compose the 
application. Application composition is simply the graphical concatenation 
of behaviors from the library. 

In the GME window, the programmer instantiates the desired number of 
references to ATaG behaviors and one reference to the network model. Then 
each behavior reference is associated with (bound to) the actual behavior from 
the library, and the reference to the target deployment is bound to one of the 
existing network models. More than one behavior references can be included 
but only one network reference must be present. 
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Figure 4.5 Application development with ATaG. 

Step IV. Invoke the compilation and software synthesis tools: After appli- 
cation composition, the programmer launches the compilation and software 
synthesis tool, which guides himher through a series of decisions, culminat- 
ing in the generation of configuration files, customized DART components, 
scripts to launch the simulation and visualization tools, etc. This process will 
be described in more detail in Section 4.4.3. 

One of the intermediate steps in this process is the automatic generation of 
code skeletons for the abstract tasks and abstract data items, which are to be 
filled in by the programmer. We expect that each behavior that is contributed 
to the library is also associated with its imperative portion (the classes for 
the task and data items). If the programmer is using existing behaviors from 
the library and not defining new ATaG programs, then the generation of code 
skeletons is not required. In other words, for the end user who wishes only to 
compile existing behaviors onto a new or existing networks, ATaG does not 
require even a single line of code to be written. 
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4.4 COMPILATION AND SOFTWARE SYNTHESIS 

In this section, we describe the rudimentary compilation mechanism in the 
current ATaG programming environment, and the support for automatic soft- 
ware synthesis that generates skeleton code for user tasks and also individually 
customizes the runtimes on each sensor node such that the “macro”-level in- 
tent of the programmer, as expressed by the ATaG program, is preserved when 
the program is translated onto a distributed system. 

Rudimentary compilation means that the compiler only ensures functionally 
correct translation of task and channel annotations in the ATaG program. No 
attempt is made to evaluate or optimize the performance of the synthesized 
application. Defining an optimizing compiler for sensor network applications 
is an exciting area for future work and outside the scope of this discourse. 

In the context of distributed computing in general and sensor networking 
in particular, the phrase “correct translation” can have a multitude of implica- 
tions and it is therefore necessary to clarify its precise meaning in the ATaG 
context. “Correct”-ness in the ATaG compilation process merely means that 
the semantics of task and channel annotations as defined in Section 2.4 are 
preserved when the program is translated for the distributed sensor network. 
For instance, the compiler ensures that the density of task instantiation and 
the firing rules as specified in the ATaG program are preserved for the partic- 
ular target network and runtimes. Atomicity of task execution is guaranteed 
by suitably assigning priorities for task scheduling on the individual sensor 
node. The assignment of priorities is the responsibility of the end user, and 
the current Compiler does not incorporate mechanisms to automatically assign 
priorities. 

For channel annotations, the compiler ensures that the propagation of data 
items in the deployed network is in accordance with the declarative intent 
of the channel annotations. If data items are routed, in the ATaG program, 
to tasks that are mapped onto specific, hard-coded node IDS, then the com- 
piler generates specific instructions for the runtimes on the producer nodes to 
transmit the data item to the specific node ID. 

Correctness does not imply anyhng more than the above translation. ATaG, 
like almost all the programming languages, only provides building blocks 
with well-defined syntax and semantics to the programmer. The programmer 
is solely responsible for translating the high-level application functionality 
(such as “track an elephant”) into the sequence of communication and com- 
putation that must take place in the network to accomplish the objective. 
By providing high-level abstractions to concisely specify this communication 
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and computation mechanism in an architecture-independent manner, ATaG 
attempts to make the task of application development easier for the average 
sensor network programmer. 

It is entirely possible to write incorrect programs in ATaG, like in almost 
every other programming language. The only guarantee of “correctness” that 
the compiler attempts to provide is that the distributed algorithm represented by 
the macroprogram will be accurately translated into the distributed computing 
substrate. It does not and cannot guarantee that the macroprogram accurately 
represents the high-level intent of the application developer concerning the 
semantics of the networked sensing application. 

The software that runs on each node of an ATaG-programmed system con- 
sists of (i) user-supplied code for each abstract task and abstract data item, 
(ii) components of the runtime system that are independent of the particular 
ATaG program being synthesized, and (iii) components of the runtime system 
that need to be customized for the particular ATaG program being synthe- 
sized. Examples of the “standard” DART components are the Datapool, 
the Dispatcher,  the NetworkArchitecture, and the Networkstack. The 
AtagManager has to be customized for the application because the informa- 
tion it maintains includes the task and channel annotations, and handles to the 
user level code. 

If dynamic memory allocation is not supported on the target platform, the 
data structures of Datapool need to be customized for the abstract data items 
that will be generated and consumed on that node-the Datapool needs to be 
customized accordingly. However, in the current implementation of DART in 
Java, this customization is not required because the data pool stores data items 
as instances of a generic class DataItem. 

Also, the current implementation of DART for single-machine simulation 
purposes does not require customization of the services forthe NetworkArchi- 
t e c t u r e  module because the protocols for neighborhood maintenance and 
topology formation are replaced with equivalent code that reads from a 
configuration file on the disk and obtains the topology information. In a 
“deployable” version of DART, some code in this component is likely to be 
customized for the requirements of the ATaG program. 

If some sensor nodes in the target system have a wired network connection 
while others communicate through a variety of wireless network interfaces, 
the suitable Networkstack will have to be selected for each node, based on 
the information provided in the network model. Currently, this component 
requires no customization because the network interfaces are assumed to be 
homogeneous, and no per-node optimization at compile time or runtime is 
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performed in this component. We now describe the compilation and software 
synthesis process in more detail. 

4.4.1 Translating task annotations 

The output of the compilation process is (i) a set of config files for each node 
in the network, (ii) customized constructor for the AtagManager, and (iii) the 
network topology file in the specific format required by the NetworkArchi- 
tecture module to initialize itself. 

Figure 4.6 is an excerpt of the GME model interpreter that interprets the task 
annotations in the context of the target network and generates config files for 
each node of the network. In this code listing, only the task annotations one- 
on-node-ZD:n and nodes-per-insfunce:I are being parsed. This simple code 
listing is from an early version of the ATaG compiler designed to demonstrate 
architecture-independent programming for a specific case study. The DART 
runtime and the compiler are being continually extended to parse an increasing 
set of task placement annotations, and the latest code will be available through 
the ATaG website. Also, the language in which the model interpreter is writ- 
ten is (naturally) independent of the language of implementation of DART. 
Currently, the code generation for DART is also performed through a model 
interpreter written in the same language (Java). Other language options such 
as C++ are also available for the model interpreter. Future compilers and code 
generators for ATaG might not be written in Java. 

4.4.2 Automatic software synthesis 

Software synthesis is performed through model interpreters in the GME en- 
vironment. Model interpreters are software components that can access the 
information entered graphically by the user by using an API provided by the 
GME toolsuite. The building blocks-such as Atom, Model, Reference, and 
Connection-provided by the GME metamodeling environment do not have 
associated domain-specific semantics. It can also be argued that the build- 
ing blocks-such as ATaGBehaviorR, Deployment, SensorNode, Task, and 
Data-provided by the domain-specific modeling environment also do not 
have any inherent semantics except in the mind of the programmer. It is the 
model interpreters written for a particular modeling paradigm that encapsulate 
the semantics of the domain by suitably “interpreting” the model components 
and parameters to accomplish the desired domain-specific objective. 
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/ /  Config file generation in the GME model interpreter 
public void CenerateConf igFiles 0 c 

configstrings = new String[ntopo.nnodesl; 

/ /  Look at all task annotations and assign them to the 
/ /  suitable nodes; parse only two types for now 
for (int i-0; i<atagInfo.numTasksO; i++) i 

. . .  

TaskInfo t = atagInfo.taskInfo(i); 
String instType - t. instType 0 ; 
int instparam - t. instparam0 ; 
if ((instType.toUpperCaseO.equals("NODESuPER~INSTANCEn)) kk  

(instparam -- 1)) 
for (int j-0; j < ntopo.nnodes; j++) { 

t . assign( j ; 
configStrings[jl +- t.id0 + 

3 
else if ~instType.toUpperCaseO.equals~"ONEuINSTANCEuONuNODE~ID"~~ 
c 

t.assign(instParam); 
configstrings [instParaml +- t. i d 0  + " " ' I ;  

> 
3 
/ /  generate instructions for data routing 
for (int i=O; i<atagInfo.numDataO; i++) I 

DataInfo d = atagInfo.dataInfo(i); 

/ /  determine where the producer tasks for this data are mapped 
for (int j = O ;  j<outChannels.length; j++) I 

. . .  

TaskInfo producer = atagInfo.taskInfo(outChannels[j].taskO); 
producerMap = producer. assignment 0 ; 

3 
/ /  determine placement of consumer tasks 
if (inChannels.length == 0) 

for (int j=O; j<inChannels.length; j++) 
continue ; 

if ((inChannels[jl. interest 0.  toUpperCase0). equals("ALL,NODES")) 

TaskInfo consumer = atagInfo.taskInfo(inChanne1s [jl . task()) ; 
int [I destinations = consumer. assignment 0 ; 
for (int k - 0 ;  k<destinations.length; k++) 

c 

consumerMap.add(new Integer(destinations[k])); 
> 
/ /  generate -senddata for config file 

. . .  
3 

t 

Figure 4.6 Generating config files for each node of the network. 

In our case, the objectives of model interpretation are: 

1. To allow the application developer to visualize the network deployment 
in two dimensions and also inspect node connectivity and sensing cov- 
erage. This facility allows the application developer to quickly create 
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and inspect dummy sensor network deployments for application test- 
ing purposes. It also provides a more intuitive interface for visualizing 
the deployment than the GME interface, which is not very friendly for 
visualizing spatial distribution. 

2. To generate code skeletons for each abstract task (if required) for the user 
to populate with application-specific code. Generating the code skeleton 
allows the application developer to focus on writing the application- 
specific functionality without worrying about details of the glue code 
that is necessary to integrate the user level tasks into the DART runtime 
system. 

3. To customize DART components such as the AtagManager. 

4. To generate files and scripts to configure and launch the simulation and 

The compilation and software synthesis process is started by invoking a sin- 
gle model interpreter-the initial dialog box is shown in Figure 4.7. Similar 
dialog boxes guide the user through the process. If the application devel- 
oper wants to visualize the deployment, a display similar to the one shown 
in Figure 4.8. The visualization is required because the GME model for a 
deployment is basically a container for atoms of type SensorNode. Inspecting 
the GME model does not give an idea of the distribution of the nodes in the 
(two-dimensional) field, the connectivity of the network as determined by the 
communication range of each transceiver, and the degree of coverage of each 
type of sensing interface in the network. 

The model interpreter then generates code skeletons for each abstract task in 
the application, if desired by the programmer. If a new ATaG behavior is being 
developed and the associated code is therefore to be written, the developer can 
create a dummy application by (a) including only the ATaG behavior being 
created and (b) choosing to generate code skeletons for the abstract tasks and 
data items. The code synthesizer analyzes (i) the YO dependencies between 
abstract tasks and data and (ii) the firing rules for the abstract task, and it 
generates a generic code skeleton as shown in Figure 4.9. 

The programmer can then add application-specific code to the body of the 
Java class, define static variables to store state information across invocations, 
etc. The remainder of the software synthesis consists of customizing the con- 
structor of the AtagManager (see Figure 3.14) and generating configuration 
files that provide the basic startup information to each DART process when it 
is launched as part of the simulation. The details of simulation are discussed 
in Section 4.4.3. 

visualization environment. 
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Figure 4.7 Invoking the GME model interpreters. 

Figure 4.8 GME model interpreter: Network visualization. 
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package atag.application; 

import atag.runtime.*; 
import atag.sensor.*; 
import atag.runtime.config.*; 
import visualizer. *;  

public class SampleAndThreshold implements Runnable C 
private DataPool m-datapool ; 
private DataItem m-dataitem; 
private Conf ig m-mystate ; 
private Sensor m-asensor ; 
private NetworkArchitecture m-networkArchitecture; 
private CUI m-CUI; 
private CUIHessage m-guinessage; 

public SampleAndThreshold(DataPoo1 dp, Config myconfig, 
NetworkArchitecture t-netuorkArchitecture, 
CUI t-CUI) C 

m-datapool = dp; 
m-mystate - myconfig; 
m-networkArchitecture = t-netuorkArch 
m-CUI = t-CUI; 

1 

public void r u n 0  { 
try C 

for(;;) C 

tecture ; 

/ *  Write output data items * /  
Thread. sleep (1000) ; 

> //end for 
> 
catch (InterruptedException e) { 

return ; 
1 

> 
> 

Figure 4.9 Automatically generated skeleton code for an abstract task. 

4.4.3 The ATaG simulator 

To allow the application developer to test the application behavior in a simu- 
lated sensor network, a single-machine simulation and visualization mecha- 
nism was developed for ATaG. The simulation occurs in a decentralized man- 
ner with no global synchronization between the simulated nodes. A method 
of sending messages to the graphical visualization interface is provided to 
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Figure 4.10 A screenshot of the simulation and visualization interface. 

the application developer and can be used to perform message logging at the 
application (i.e., the user task) level. 

Figure 4.10 is a screenshot of the simulation control and visualization in- 
terface. The application being simulated in this example is object tracking 
and gradient monitoring on a 20-node network. This application is discussed 
in detail in the next section. 

4.4.4 Initialization 

The current implementation of DART is designed to work with the single- 
machine simulation environment. Specifically, the simulation is started by 
launching an independent Java process for each simulated node in the network. 
For instance, in a 20-node network, twenty instances of DART (with different 
command-line arguments) will be started on the same machine. 
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?ackage visualizer; 

?ublic class Constants 
/ /  The main simulation CUI is listening on this port. Any 
/ /  transmissions from 
/ /  the simulation to the CUI should be eent to this socket on the 
/ /  local machine. 
/ /  

/ /  
/ /  This socket is used by a Sensor.java instance to listen to 
/ /  sensor readings controlled by sliders in the CUI. When the 
/ /  sensor is initialized, it opens a listener at the base port 
/ /  number plus its node ID. When a message is incoming on this 
/ /  socket, the current reading is changed; otherwise the 
/ /  current/old reading is returned to whoever calls 
/ /  getReading0. Initial / /  value should be provided to the 
/ /  sensor class. 
/ /  

public static final int VIZ-PORT = 4000; 

public static final int ACOUSTIC-SENSOR-READINGS-BASE-PORT = 6100; 
public etatic final int TEMPERATURE-SENSOR-READINCS_BASE-PORT = 6200; 

/ /  
/ /  This socket (base+id) is used by a node to listen for 
/ /  messages over the 
/ /  simulated network (from other nodes). 
/ /  

public static final int NODE-PROCESS-BASE-PORT = 6300; 

public static final int MIN-READING = 0; 
public static final int MAX-READING = 5 0 ;  

public static final int TEHPERATURE-SENSOR = 0 ;  
public static final int DEFAULT-TEMPERATURE = 0; 
public static final int ACOUSTIC-SENSOR = 1; 
public static final int DEFAULT-ACOUSTIC = 0; 

t 

Figure 4.11 Constants defined for simulation and visualization. 

4.4.4.7 Sifuafedness As each DART process initializes (i.e., runs the 
main function of the Startup class), it reads its own ‘situatedness’ infor- 
mation from a config file that is generated automatically by the compiler 
and passed as a command-line parameter to the process. The config file in- 
cludes information such as the node’s ID, the number of tasks and data items 
mapped onto that node, the IDS of tasks assigned to that particular node, and 
the hop-scope and distance-scope parameters that are used to initialize the 
NetworkArchitecture module. The role of the hop-scope and distance- 
scope parameters was discussed in Section 3.3.6. 
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The simulation takes place on a single machine and all processes are as- 
signed socket IDS on the localhost. A class Constants (Figure 4.1 1) contains 
basic information such as the base port number that is used by nodes to deter- 
mine the suitable destination socket number for other nodes in the network. 

4.4.4.2 Network interface After the configuration information is read 
from file, the Networkstack is initialized. The network stack determines its 
own port number by adding its node ID to the base port from the Constants 
class and starts a receiver thread to listen to messages on that port. Next, the 
network stack pings the port numbers for all other nodes in the network and 
waits until it can successfully communicate with all nodes. This is because 
each DART instance is launched independently and different receiver threads 
come online at different (and unpredictable) times. If the network stack of each 
node waits until it can contact all other nodes before returning control to the 
main startup routine, it ensures that if internode communication is required 
as part of the startup process of other modules, the messages can be sent 
successfully to an active receiver. 

4.4.4.3 Network architecture The startup routine for the Network- 
Architecture module reads the entire network topology information from a 
file that is provided as a command line parameter to the DART process. This 
information includes the number of nodes in the network, the X andY range of 
the virtual 2D topology the nodes are situated in, the radio range and sensing 
range for each node, and, finally, the X and Y coordinates of each node. We 
assume that radio range and sensing range are the same for all nodes. We 
also assume that two nodes within radio range can communicate with each 
other, and therefore the information in the network topology file is sufficient 
to construct the connectivity graph for the sensor network. 

In future DART versions, the NetworkArchitecture module will not read 
the topology from file. Instead, it will launch protocols that will communicate 
only with its neighboring nodes and simulate the gathering of local topology 
based on the hop-scope and distance-scope specifications. When these pro- 
tocols are launched, they will (correctly) assume that the network stack has 
already been initialized. 

4.4.4.4 Sensor interface The simulation version of DART has a modi- 
fied sensor interface. Some of the functions of the modified Sensor class are 
shown in Figure 4.13. When an application calls the reading0 method of 
the Sensor class, it should read the latest value of the sensor. A default value 
is assigned to each sensor type (representing a quiescent environment for that 
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mblic synchronized void transmitData( 
DataItem t-dataItem , int destinationID) 

[ 

Socket socket = null; 
int attempt; 
/ /  Translate node ID into port number 
int port = Constants.NODE-PROCESS-BASE-PDRT + destinationID; 

/ /  Try to send the packet twice; if it fails, give up 
for (attempt = 0; attempt < 2 ;  attempt++) C 

socket - new Socket ("localhost ' I ,  port) ; 
break ; 

try 

3 
catch (UnknownHostException ex) C 

System.out.println("Unknovnuhostuexceptionuwhen 

return ; 
connecting to target node"); 

3 
catch (IDException ex) C 

System.out .println("Attempt," + attempt + ":uNodeu" + 
destinationID + ",notuinitialized") ; 

try C 

3 
Thread.sleep(500); 

catch (InterruptedException e) 

1 
System. out .println("Sleepuinterrupted."); 

1 
1 
if (attempt == 2)  C 

System.err.println("Couldunotuconnectutoutarget~node. 

return ; 
Abandoning attempt. " 1  ; 

3 

try C 
ObjectOutputStream 00s = 

oos.writeDbject(t-dataItem); 
00s. flush(); 
00s. close 0 ; 
socket. close 0 ; 

System.out.println("Troubleuwritinguobject~output~stream 

return; 

new ObjectOutputStream(socket.getDutputStream0); 

1 catch (IOException ex11  C 

of data item to target node. Giving up"); 

3 
i 

Figure 4.12 transmitData0 function of the Transmitter class. 
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public Sensor(int nodeID, int type) C 
myID = nodeID; 
mltype = type; 
m-value = (m-type==Constants.ACOUSTIC-SENSOR) ? 

Constants.DEFAULT-ACOUSTIC * 

Constants. DEFAULT-TEMPERATURE ; 
//showslider 0 ; 
m-receiver = new FilePoller(nodeID, this); 
m-receiverThread = new Thread(m-receiver); 
m-receiverThread. start 0 ; 

1 

public void setReading(int r) { 
/ /  Changing sensor value to r 
m-value = r; 

1 

public int t y p e 0  c 
1 

public int r e a d i n g 0  { 

1 

return m-type ; 

return m-value ; 

Figure 4.13 The modified Sensor class for ATaG simulation. 

sensor interface), and the user can manipulate the sensor readings at selected 
sensor nodes by a simple slider mechanism in the visualization GUI. 

The visualization interface allows direct manipulation of the the values of 
the virtual sensor readings through the slider bar shown in the figure. Two 
types of sensor interfaces-acoustic and temperature-are currently supported 
and the value of each of them can be independently varied for each node. The 
screenshot of Figure 4.10 shows the values of the acoustic sensors at each 
node as bracketed integers below the circle representing the node. 

When a sensor is initialized, the constructor launches a file poller thread. 
This thread periodically polls a predetermined location on the disk. The fre- 
quency of polling is configurable, and so is the on-disk rendezvous file. When 
the user changes the value of a sensor from the visualization GUI, the updated 
value is reflected in the corresponding on-disk file and is propagated to the 
suitable node when its file poller thread reads the value next. 

Another mechanism for communicating sensor values between the visual- 
ization GUI and the simulated sensor node processes is available in the DART 
implementation but not enabled by default. This alternate mechanism uses 
a listener thread that opens a predetermined socket on the local machine. If 
the user changes the sensor reading through the GUI, the GUI process sends 
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Figure 4.14 An overview of the ATaG simulator. 

a message to the suitable port number. The reason for choosing the file-based 
communication mechanism over the socket-based one is that the former proved 
to be more robust in our testing than the latter, which was prone to delays and 
timeouts depending on the frequency of manipulation of the sensor readings 
through the GUI, the processing speed and memory available in the machine 
hosting the simulations, etc. 

Note that the file-based exchange means that changes made through the 
GUI are not reflected immediately in the simulated sensor node. If the sensor 
network application calls the readingo method of its sensor class before 
the file poller has read the latest value from file, it could read a stale reading. 
This delay can be minimized by increasing the frequency of polling, but the 
functionality of the sensor network application typically does not (and should 
not) change if the reading is reflected in the simulated node with a slight delay 
from the time it is changed by the GUI user. 

An object tracking mode is also supported for the acoustic sensor. When the 
object tracking mode is activated, the movement of the cursor simulates the 
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movement of the object. Readings of acoustic sensors on sensor nodes within 
a certain range of the object (cursor) position are automatically adjusted in 
inverse proportion to the distance of the target from the node. Any such ma- 
nipulation of the acoustic or temperature sensor reading through the graphical 
interface is reflected in the file that will be read by the sensor module when it 
is next sampled by one of the tasks on the simulated node. 

Note that the component-based design of DART insulates other compo- 
nents of the system from the modified implementations of the network stack, 
the network architecture module, the sensor interface that reads values from 
files, etc. The behavior of the core modules such as the data pool, the ATaG 
manager, the dispatcher, etc., is not affected by the fact that the processes are 
communicating through sockets on the same machine, reading topology from 
file, etc., and not running in a real sensor network deployment. 

4.4.5 Visualizing synthesized application behavior 

The purpose of designing this graphical interface is to be able to evaluate 
the functionality of the distributed software system that is generated from 
the GME-based ATaG programming interface. The application-level tasks 
and other DART components communicate with the visualization interface 
so that phenomena of interest at the application level or system level can 
be observed. For instance, the circle around node 14 in the screenshot of 
Figure 4.10 indicates that the node (which is nearest to the cursor/object) 
has elected itself the leader and “acquired” the object in accordance with the 
ATaG program for object tracking. Similarly, nodes 0 and 15 have detected 
a temperature gradient anomaly and reported the same to the root node. The 
readings shown below the sensor nodes in this screenshot are zero because the 
acoustic readings are being displayed and not the temperature readings. 

DART components can also send messages to this interface, which are 
displayed in the message log pane. A special class mGUI is provided to the 
application developer. Any messages sent to this class will be reflected in the 
message log pane of the visualization interface. The mGUI class, as shown in 
Figure 4.15, is just a wrapper around the Networkstack and invokes a special 
method of the network stack that transmits the message to the GUI port and 
not to ports corresponding to the listener threads of other simulated sensor 
nodes. 

When the send0 method of mGUI is invoked by the user task, the mes- 
sage is passed onto the network stack, which in turn passes it on to the 
transmitGUIMessage 0 method of the Transmitter class that is encapsu- 
lated within the network stack module. 
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package atag. runtime ; 

import visualizer .* ;  
import atag.runtime . * ;  
public class mGUI 

I 

private Networkstack m-networkstack; 

public mGUI(NetworkStack t-networkStack) { 
m-networkstack = t-networkstack; 

1 

/ /  Act as a wrapper for the transmitGUIMessage method of the 
/ /  Transmitter class, which is accessed through the 
/ /  sendCUIMessage of the Networkstack class 
public synchronized void send(GU1Message msg) c 

m-networkStack.sendGUIMessage(msg); 

Figure 4.15 The mGUI class. 

As shown in Figure 4.16, the Transmitter determines the port number for 
the visualization GUI from the Constants class (Figure 4.11) and makes a 
configurable number of attempts to send the message. The reason for having 
a time-out mechanism after multiple attempts is that there is a possibility that 
the visualization process may not be launched prior to the start of simulation. 
Currently, the user is expected to ensure that the visualization class is started 
before the multiple DART processes are fired. In case the former step is 
omitted, any attempts to send a message to the GUI from the individual node 
will fail after a predetermined number of attempts. 

The visualization GUI will need to be customized to display the events of 
interest in a particular application. Since the semantics of each application 
and the events that occur therein are different, the GUI cannot incorporate 
a “universal” mechanism to represent high-level event abstractions. For in- 
stance, a temperature gradient monitoring application might wish to display 
nodes that have a high temperature in a particular color. An object tracking 
application might wish to display the node nearest to the object in a particular 
manner, or perhaps triangulate the readings from different nodes and display 
the estimated position of the target itself. Such customizations must be made 
by directly modifying the current version of the visualization classes. 

Each time the application level task wants to send a message to the GUI, 
it instantiates and populates an instance of the GUIMessage class in the 
visualizer package. This class acts as the link between the application 
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iublic synchronized void transmitCUIMessage(GU1Message msg) 
/ /  Attempt to send message to the GUI 
Socket socket = null; 
int attempt = 0; 
/ /  CUI port is defined in the Constants class 
int port = Constants. VIZ-PORT; 

/ /  Make two attempts to contact the GUI port; 
/ /  sleep for 500ms between the attempts. This is configurable 
for (attempt = 0; attempt < 2; attempt++) C 

socket = new Socket ("localhost", port); 
break ; 

System.out.println("Unknownuhostuexceptionuwhenuconnecting 

return ; 

try C 

> 
catch (UnknownHostException ex) C 

to CUI receiver"); 

> 
catch (IOException ex) C 

System.out .println("Attemptu" + attempt + 
":uCUIunotuinitialized"); 

try C 

> 
catch (InterruptedException e) 

> 

Thread.sleep(500); 

System. out. println("Sleepuinterrupted. '$1 ; 

> > 
if (attempt == 2)  C 

System.err.println("CouldunotuconnectutouCUI~receiver. 

return ; 
Abandoning attempt. " )  ; 

> 
try C 

ObjectOutputStream viz-oos = nev 

viz-oos.writeObject(msg); 
viz-00s . flush 0 ; 
viz-00s . close (1 ; 
socket. close 0 ; 

System.out.println("Troubleuwritinguto,output~objectustream 

return; 

ObjectOutputStream(socket.getOutputStream()); 

> catch (IOException exl) 

or closing socket. Giving up."); 

1 

Figure 4.16 sendCUIMessage 0 function of the Transmitter class. 

and the GUI and should be modified if new types of messages or new infor- 
mation for existing message types is to be communicated. The GUI process 
parses the received GUIMessage and, depending on the type of the message 
received, responds in one of many ways such as adding the message to the 
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package visualizer; 

import java. io. *; 
public class GUIMessage 

implements Serializable C 

/ /  The following constants are used to indicate which event 
/ /  has triggered the transmission of this GUIMessage instance 

/ /  Event: A message has been transmitted (with message stats) 
public static final int GUIM-XMIT = 0x01; 
/ /  Event: A message has been received (with message stats) 
public static final int CUIM-RCV = 0x02; 
/ /  Event: The node is alive and running (with node stats) 
public static final int CUIM-NODESTATE = 0x04; 
/ /  Event: Application-level logging 
public static final int GUIM-NODEOUTPUT = 0x08; 

/ /  These values are set for all types of CUIMessages 
/ /  Timestamp and origin ID could be set by the Transmitter 
private int m-messagelype ; 
private String m-timestamp; 
private int m-originID; 

/ /  These values will be used if message is of type XMIT or RCV 
private int senderID; 
private int receiverID; 
private String xmitTime ; 
private String rcvTime; 

/ /  These values will be used if message is of type NODESTATE 
private int nodeID; 
private int [I nodeCoords ; 
private int energyLevel ; 
private int [I hostedTasks ; 
private String nodeLabe1; 

/ /  These values will be used if message is of type NODEOUTPUT 
private String nodeoutput ; 
. . . .  

} 

Figure 4.17 Inside the GUIMessage 0 class. 

message log pane for that node, changing the color of the node in the display, 
drawing a circle around the node to indicate some node state of interest, etc. 

The information sent as part of a GUIMessage is shown in the code listing 
of Figure 4.17. Additional message types and their associated variables can 
be easily defined by adding the corresponding code to this class. 
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mblic void messageReceived(CU1Hessage mag) < 
int msgType - mag .messageType 0 ; 
int magorigin - msg.origin0; 
String msgTimeStamp - msg.timeStamp0; 
switch (msgType) I 

case CUIHessage.CUIH-NODEOUTPUT: 
if (msg.messageO.equals("LEADER")) I 

m-topograph.isLeader(msgOrigin); 
> 
if (msg.messageO.equals("EXLEADER"))  I 

> 
if (msg.message0. equals("F1RE")) < 

m-topograph.onFire(msg0rigin); 
> 
if (mag. message 0. equals ('8NOFIRE")) I 

System.err.println("Node:," + magorigin + ",not,on,fire"); 
m-topograph. notOnFire (magorigin) ; 

in-topograph.notLeader(msg0rigin); 

> 
if (magorigin =- 0) I 

rootLog += nag. message 0 + "\n" ; 
rootLogArea.setText(rootLog); 

> 
case CUIHessage . CUIH-RCV : 
case CUIMessage.CUIM-XMIT: 

m-messageLogger.addLog(msg0rigin. msgTimeStamp. rnsg.message0); 
break ; 

break ; 
case GUIHessage.CUIM-NODESTATE: 

> 
/ /  If the node that sent this message is also selected 

if (Integer.parseInt((String) idList.getSelectedItem0) 
/ /  for visualization, update its log in 'real time' 

-- magorigin) 
messageLogArea.setText(m-messageLogger.nodeLog(msgOrigin)); 

Figure 4.18 Processing the messages received from sensor nodes. The 
messageReceived0 function of the Mainwindow class. 

The actual visualization interface is provided by an independent Java ap- 
plication that includes the same visualizer package with DART in order to 
facilitate exchange of GUMessage instances through serialization. When the 
visualizer receives a message from one of the simulated nodes, it determines 
the message type and implements the custom responses for various message 
types and contents. Figure 4.18 is an excerpt from the Mainwindow class of 
the visualizer application. The routine shown is invoked by a listener thread 
that listens on a predefined port number for messages of type GUIMessage. 
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The listing shows some of the customized responses to events specific to the 
temperature gradient monitoring and object tracking applications. This code 
can be easily modified to add more behaviors, in concert with extensions to 
the GUIMessage class. 

Our use of a GME-based graphical modeling language as a concrete syntax 
for an ATaG program is just one of many possible representations of the pro- 
gram. As mentioned earlier, this decision was influenced mainly by the ease 
of use of a GME-based user interface, and by the fact that we could realize 
a concrete syntax that corresponded very closely to the abstract syntax of an 
ATaG program. XML or even RDF representations of ATaG programs should 
be possible, provided the software synthesis tool chain is configured to read 
and process such representations, and that the end users have a reasonably 
intuitive interface to create and modify ATaG programs in these alternate rep- 
resentations. In fact, it should be possible to write GME model interpreters 
that read from and write to XML files, that are then consumed by software 
synthesis modules. 
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CHAPTER 5 

CASE STUDY: APPLICATION 
DEVELOPMENT WITH ATAG 

We now illustrate the process of ATaG programming and software synthesis 
through a case study. In this case study, the programmer is interested in 
synthesizing an application consisting of two behaviors-bject tracking and 
temperature gradient monitoring-for a particular network deployment. 

The purpose of this case study is 

to walk the reader through the complete process of translating a high- 
level functional description of application functionality into deployable 
code for each node of a target network using the ATaG programming 
model and application development environment, 

9 to illustrate the use of the graphical interface for translating abstract 
syntax of the ATaG program into the concrete syntax used for software 
synthesis, 
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to discuss in detail the code to be associated with each element of the 
program by the programmer and the code that is automatically generated 
by the software synthesis tool, and 

. to illustrate the architecture independence and composability of ATaG 
programs, which allow the process of developing ATaG program li- 
braries to be entirely decoupled from the process of selecting and com- 
piling a set of programs from the library onto the desired target deploy- 
ment. 

5.1 OVERVIEW OFTHE USE CASE 

5.2 DESIGNING THE MACROPROGRAMS 

5.2.1 Temperature gradient monitoring 

We now discuss the macroprogramming formulation in ATaG of tempera- 
ture gradient monitoring functionality. An ATaG program that modeled this 
behavior as a neighbor-to-neighbor protocol was discussed as part of the pro- 
gramming idioms in Section 2.5.2. Briefly, each node periodically compares 
its temperature reading with the reading of its neighboring nodes. If the gra- 
dient is above a certain threshold, an alarm notification is sent to a designated 
root node. 

There are many ways of expressing this behavior using the ATaG prim- 
itives. For instance, a simple centralized version can be defined as shown 
in Figure 5.1. In this approach, the sampling task on each node produces 
the temperature reading, and all temperature readings are transmitted to a 
central supervisor task running on the root node. Centralized solutions are 
usually undesirable in energy-constrained sensor networks because the cost 
of transmitting raw data to a central location and performing the processing 
outside the network defeats the purpose of smart sensor nodes equipped with 
computational capabilities to perform in-network, on-the-fly processing. 

An ATaG program that uses hierarchical data collection for gradient moni- 
toring is shown in Figure 5.2. In this approach, the TSampler task is instanti- 
ated on each node of the network. The assumption throughout this use case is 
that all nodes are equipped with both temperature and acoustic sensors, hence 
the sampler tasks can be instantiated on every single node. The TSampler 
produces a data item of type Temperature at each invocation. This data item 
simply encapsulates the temperature reading at that invocation. This data item 
is also added only to the local data pool as indicated by the output channel 
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Figure 5.1 Abstract syntax: Temperature gradient monitoring using a 
centralized algorithm. 

Figure 5.2 Abstract syntax: Temperature gradient monitoring using 
hierarchical data collection. 

annotation. The actual gradient monitoring is done by the Monitor tasks. As 
shown in the task annotation for the Monitor task, exactly 8 of these tasks are 
instantiated in the network. The task placement annotation directs the com- 
piler to divide the network into 8 virtual domains and assign one Monitor 
task instance to each domain. The exact placement of the Monitor task in- 
stance within each of the 8 groups is left to the compiler. The runtime system 
also ensures that instances of the Temperature data items that are produced 
on nodes within a domain are routed to the Monitor task assigned to that 
domain. This is indicated by the input channel annotation for the Monitor 
task. Finally, the supervisor task AlarmActuator is instantiated on exactly 
one node and monitors any alarm notifications sent by Monitor tasks. 
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Figure 5.3 Abstract syntax: Temperature gradient monitoring through 
neighbor-to-neighbor interactions. 

This approach represents hierarchical data collection and processing, where 
a three-level tree is formed in the network. At the topmost level, the supervisor 
task collects information about gradient violation notifications. At the middle 
level, exactly 8 Monitor tasks collect the data from their non-overlapping do- 
mains and determine if the gradient between neighboring nodes in their domain 
exceeds the prespecified threshold. At the lowest level of the tree, temperature 
sampler tasks at each node periodically produce the Temperature data items 
that contain sensor readings. 

Another possible ATaG program that we implement in this use case is shown 
in Figure 5.3. The approach in this program is to accomplish the desired over- 
all functionality by means of interactions between neighboring sensor nodes. 
The abstract tasks in this program are the same as the tasks in the hierarchical 
data processing approach. The TSampler task periodically samples the tem- 
perature and sends out the sampled reading to its local data pool and also to 
the data pools of its l-hop neighbors. The Monitor task is also instantiated 
on every node in the network. This task waits for input data item of type 
Temperature. The output channel annotation for the TSampler task implies 
that the Monitor task will receive temperature readings from its own node and 
from its l-hop neighbors. All readings received by the Monitor are recorded 
as part of its local state information. The task also continually checks the 
gradient between its host node and the neighboring nodes and generates an 
alert (Fire data item) when a gradient is exceeded. The alert is routed to 
the AlarmActuator task that is mapped onto a single supervisor node in the 
system. In this approach, each gradient violation between a pair of nodes will 
result in a message from the Monitor tasks on each of the two nodes to the 
supervisor node. 
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We discuss the imperative portion of this ATaG program in detail in Sec- 
tion 5.4. 

5.2.2 Object detection and tracking 

We now discuss the approaches to writing ATaG macroprograms for the object 
detection and tracking functionality. At the high level, the program should 
determine the presence of objects of interest in the sensor field at all times. 
We simplify the use case by assuming that identity maintenance and tracking 
is not a concern in this example. In other words, if one or more objects of 
interest are in the sensor field, the application should only generate periodic 
reports that indicate the presence and the approximate location of each object. 
The program is not required to be intelligent enough to detect if an object at 
some location X' at time T' is the same object as was detected at location X 
at an earlier time T .  

As mentioned briefly in Section 2.5, a simple algorithm for object track- 
ing [55] requires each node to periodically sample its sensing interface and 
compare it against a predefined threshold. A reading that exceeds the thresh- 
old is indicative of the presence of a target in the sensing range. The nodes 
that detect the target elect a leader node, which is the node with the maximum 
reading among all nodes involved in the election. The leader node then per- 
forms some processing of the set of sensor readings and transmits the resultant 
estimate of target location to a base station. 

As in the previous example of temperature gradient monitoring, there are 
various approaches toward formulating this functionality in terms of an ATaG 
program. While the sampling task and the supervisor task are quite straight- 
forward in terms of their logic, the implementation of the distributed leader 
election can be realized in multiple ways. 

Figure 5.4 is an example ATaG program for this behavior. The SampleAnd- 
Threshold task is executed periodically on each node. As indicated by the 
task name, it samples the acoustic sensor in each invocation and produces a 
TargetAlert notification when the reading is above some threshold that is 
indicative of the presence of an object of interest within the sensing range of 
the node. All nodes that have a given target in range at any given time produce 
these notifications. To perform leader election, it is important for each node 
that has detected the target to receive notifications from every other node that 
has also detected the target. The TargetAlert notification contains some 
measure of the distance of the target from the node as indicated by the sensor 
reading, or some other mechanism that can be used to determine the criteria 
for the leader election. Suppose that each node sends its sensor reading as part 
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Figure 5.4 
election. 

Alternate ATaG program for object tracking by local leader 

of the TargetAlert and the node with the maximum reading (i.e., which is 
closest to the target in this sense) should elect itself the leader. 

If the target can be detected at a maximum distance of d from the acoustic 
sensor on a particular sensor node, the maximum distance between nodes that 
can detect the same target is 2d. Hence, the output channel annotation for 
the sampling and thresholding task should require the target alert to be sent 
to all nodes within distance 2d of the node where the alert is produced. In 
this example, the “10 m” label implies that the sensing radius of the acoustic 
sensor is 5 meters. 

Now that the TargetAlert is disseminated from each node that has de- 
tected the object to every other node that has detected the object, it is necessary 
to define the mechanism of leader election in the ATaG program. In this case, 
we define a Leader task that is instantiated on each node of the network. This 
task consumes all TargetAlerts that are sent to the node from its neigh- 
boring nodes and also from the sampling task on the same node. The task 
maintains local state that consists of the readings received from the neighbor- 
hood. Using this information, the task can compare its own reading to the 
neighbor’s readings; and if its own reading is the maximum, it declares itself 
the leader and also generates a TargetInfo notification to the Supervisor 
task on the root node. Now, communication in the sensor network is inherently 
asynchronous because the sampling of the sensor on the nodes within range 
of the target is unlikely to be precisely synchronized. Hence, each node will 
generate its TargetAlert at different points in time. Also, multi-hop packet 
transmissions could introduce other delays in transmitting the TargetAlert. 
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Figure 5.5 
leader election. 

Abstract syntax: ATaG program for object tracking by local 

It is desirable to avoid situations where two tasks that have detected the same 
target elect themselves the leader based on incomplete and different pictures 
of the same reality. In the sample program of Figure 5.4, the Leader task 
generates a LeaderID data item when it declares itself a leader-that is, at the 
same time that it generates the TargetInf o item. This item is sent to all the 
nodes that may have detected the target, and it is meant to act as a preemptive 
notification to other nodes that might be about to elect themselves leaders. 

Naturally, this scheme could suffer from the same shortcomings as the 
problem it is designed to solve - i.e., the LeaderID notification could be 
delivered at different times to different nodes, etc. The intent here is not to 
propose this as a foolproof solution to the distributed leader election problem, 
but to illustrate how the ATaG channel annotations and other features can be 
used to create sophisticated distributed behaviors using a concise notation. The 
program shown in the figure has all the advantages of the ATaG programming 
model: It is architecture-independent, the tasks are decoupled from each other 
by defining them in terms of input and output data items, etc. 

The ATaG program that we actually implement in this case study is shown 
in Figure 5.5 and is a slightly modified and simplified version of the earlier 
program. In this program, the LeaderID data item is not generated and the 
Leader task makes the self-election decision and generates the TargetInf o 
node without attempting to notify its neighborhood of the decision. The details 
of the imperative part of this program are discussed in Section 5.5. 
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Figure 5.6 
monitoring. 

Concrete syntax: GME model of ATaG program for gradient 

5.3 SPECIFYING THE DECLARATIVE PORTION 

The concrete syntax of this program as modeled in GME is shown in 
Figure 5.6. Note that the the concrete syntax of the declarative part of the 
ATaG program is identical to the abstract syntax of the task graph. The pro- 
grammer directly translates the task graph into the GME model by dragging, 
naming, and annotating the desired number of abstract tasks, data items, and 
channels into the modeling window. The ease of use this engenders is perhaps 
the most significant advantage of visual ATaG programming through GME. 

The GME model of the ATaG program for object tracking is shown in 
Figure 5.7. Again, the concrete syntax is identical to the abstract syntax. 
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Figure 5.7 
tracking. 

Concrete syntax: GME model of ATaG program for object 

5.4 IMPERATIVE PORTION: TEMPERATURE GRADIENT 
MONlTO RI NG 

5.4.1 Abstract data items: Temperature and fire 

There are two abstract data items in the gradient monitoring program. The first 
data item, called Temperature, is used by tasks to pass the temperature read- 
ings to other tasks. Note that the nomenclature is entirely up to the application 
developer. In the current version of DART, management of sensing resources 
is entirely up to the user-level task. Tasks have to make the suitable calls to the 
sensing interface (e.g., the temperature sensor), and they process the reading 
as desired. In this case, the reading has to be sent to the neighboring nodes by 
adding it to the data pool. The application developer therefore names the data 
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package atag. application; 

import j ava . io . * ; 
public class Temperature implements Serializable { 

private int m-temperatureReading; 

public int g e t 0  { 

1 
public void set(int temp) { 

1 

return m-temperatureReading; 

m-temperatureReading = temp; 

> 
~~ 

Figure 5.8 Code associated with the Temperature data item. 

package atag. application; 

import java.io.Serializab1e; 

public class Fire implements Serializable { 

> 
int x = 0; 

Figure 5.9 Code associated with the Fire data item. 

item that will hold the temperature reading as Temperature, but the name of 
the data item has no mandatory relationship with it contents. 

The listing for the Java class associated with the Temperature data item is 
shown in Figure 5.8. Definition of the member variables and methods of this 
class is entirely up to the programmer. Figure 5.9 shows a similar listing for 
the Fire data item, which is produced on a node by the Monitor task when 
a gradient violation is detected. 

5.4.2 Abstract task: Monitor 

We now focus on the imperative portion of the Monitor task. Figure 5.10 
shows the code listing for the members of the Monitor class. Lines 1-20 
in this case are automatically generated by the software synthesis tool that 
inspects the declarative part of the ATaG program for this purpose. Lines 
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I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I I  

12 

13 

14 

I5 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

?ackage atag.application; 

import atag . runtime. *; 
import atag . runtime. conf ig . * ; 
import visualizer. *; 

?ublic class Monitor implements Runnable .( 
/ /  runtime objects 
DataPool m-datapool ; 
private Conf ig m-mystate ; 
private NetvorkArchitecture m-netvorkArchitecture; 

/ /  visualization and logging 
private mCUI m-CUI; 
private CUIMessage m-guiMessage; 

/ /  input and output data items 
private Fire m-fire = null; 
private Temperature m-temperature = null ; 

/ /  local state variables 
private static int myReading = 0; 
private static boolean vasOnFire = false, isOnFire = false; 
private static int [I targetReadings ; 
private static int [I neighborIDs; 
private static int [ I  [I neighborcoords ; 

t 

Figure 5.10 Members of the Monitor class. 

21-26 are specific to the business logic of the task and are added by the 
programmer as part of populating the code skeleton. 

User-level tasks are part of the atag . application package in the current 
version of DART. The import statements in lines 3-5 allow the user task to 
access other modules. The atag . runtime package provides access to the 
data pool class which implements the get 0 and put 0 calls for consuming 
and producing data items, respectively. The second module of this package 
that is useful to the application-level task is the NetworkArchitecture. As 
explained in Section 3.3.6, this module is in charge of maintaining the neigh- 
borhood information to an extent determined by the channel annotations of 
the task hosted on that node. For instance, if a task on that node has an input 
channel that gathers data items from a 1-hop neighborhood, it is natural to 
assume that the task may want to know the constitution of the neighborhood 
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in terms of the number of nodes and the location of each node in that neigh- 
borhood. The NetworkArchitecture class maintains this information and 
furnishes it to the task on request. 

The atag . runtime . conf ig package is imported because it includes the 
Conf ig class. This class contains state information for the node such as its 
own ID, its location in some real or virtual coordinate system (if relevant in that 
particular deployment), the label of the node (if any), etc. When a user-level 
task initializes, it uses the Conf ig class to determine where it is placed in the 
network. Lines 9-12 in Figure 5.10 show these classes being instantiated in 
the Monitor class. 

The mGUI and GUIMessage classes of lines 14 and 15 are used by the task 
to send messages to the visualization environment. These classes are basically 
wrappers around the transmit call of the network stack and cause the message 
to be sent to a specific port number on the local host that is monitored by the 
visualization process. 

Fire and Temperature are user-defined abstract data items in the ATaG 
program for gradient monitoring. The software synthesis tools determines 
that these two data items are associated with this task through output and input 
channels and creates placeholder instantiations in the class skeleton. The end 
user is free to delete these instantiations, create additional instantiations, or 
instantiate these in a different place in the code as desired. 

Lines 22-26 are the class members that are part of the task-specific seman- 
tics. In the ATaG model, as in most data-driven programming models, the data 
pool is the only persistent global storage that is accessed by tasks on different 
nodes and at different times. The DART runtime system has no provision 
for allocating and managing memory space for individual tasks. If a task is 
to maintain some information across invocations, such information is to be 
stored in static variables as shown in this example. This approach is suitable 
for the current ATaG implementation because there is no support for task mi- 
gration, and hence preserving the task state across nodes is not a concern. The 
arrays in lines 25 and 26 are used to store the IDS of the neighboring nodes 
and their 2 and y coordinates. The actual temperature readings received from 
the nodes are stored in the targetReadings array (line 24). When a data 
item produced by a task on one node is transmitted for consumption to another 
node, the runtime system automatically tags it with the time and location it 
was produced. The task can associate data items with the individual nodes 
in its neighborhood by means of this information in the data item and the 
neighborhood information from the network architecture module. 
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public Monitor (Datapool dp, Config myconf ig , 
NetworkArchitecture t-netvorkArchitecture, 

mGUI t-GUI) C 
m-datapool = dp; 
m-mystate = myconfig; 
m-GUI = t-GUI; 
m-netvorkArchitecture = t-netvorkArchitecture; 
neighborIDs = m-netvorkArchitecture.kHopNeighborIDs(1); 
neighborcoords = m-networkArchitecture.kHopNeighborCoords(1); 
targethadings = new intCneighborIDs.length1; 

> 
private void setNeighborReading(int nid, int d) C 

for (int i = 0; i < neighborIDs.length; i+t) 
if (neighborIDs[il == nid) 

targetReadings [il = d; 
> 
private int getNeighborReading(int nid) C 

if (neighborIDsCi1 == nid) 
for (int i = 0; i < neighborIDs.1ength; i++) 

return targethadings [il ; 
return -1; 

> 
private void log(String msg) 

m-guinessage = new GUIHessage (m-mystate . myID0, 

m-guiMessage.setNodeOutput(msg); 
m-GUI.send(m-guiMessage); 

GUIMessage . GUIM-NODEOUTPUT , " " )  ; 

> 
. . .  

Figure 5.11 Constructor and helper functions of the Monitor class. 

Figure 5.11 shows the constructor and some user-defined helper functions 
for the class. A skeleton for the class constructor is automatically generated 
by the software synthesis tool. Lines 3-9 are applicable to all abstract tasks 
and are not specific to a particular application logic. This section instantiates 
the handles to the data pool, the configuration (state) information for the node, 
a handle to the visualization interface, and to the network architecture mod- 
ule. In this example, since the monitor task will need to determine and then 
record readings from its neighborhood, the programmer has added the state- 
ments in lines 10-12 to obtain this information from the network architecture 
module and to create an array to store readings from each neighbor. In the cur- 
rent DART prototype, the network architecture module does not really run a 
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topology creation and maintenance protocol but simply reads the information 
from a file on the local disk. The topology or the connectivity of the network 
does not change at runtime. Hence, this information can be collected as part of 
the class constructor. If the target deployment is such that the constitution of 
the neighborhood could keep changing, a suitable re-coding will be required 
to anticipate the possibility that the result of a call to the kHopNeighborIDs 
and kHopNeighborCoords functions of the NetworkArchitecture could 
change between invocations. 

The getNeighborReading and setNeighborReading functions are 
helper functions defined by the programmer. These functions simplify ac- 
cess to the integer array where readings are stored, and they are not related to 
the data pool or the network stack. The log function is another user-defined 
function that is used to send messages to the visualization interface. 

The main function that is executed each time an instance of this abstract 
task is invoked is shown in Figure 5.12. Each task has to implement the run (1 
function because application tasks implement the Runnable interface, which 
defines this function. Implementing the Runnable interface effectively makes 
the abstract task instance a thread that can be invoked by the AtagManager 
when its firing conditions are met. We now examine the run function of this 
task in more detail. 

At the high level, the purpose of this task is to continually read the temper- 
ature readings produced on its own nodes and sent by its neighboring nodes 
and, whenever such a reading is received, calculate the difference between the 
local reading and each of the neighbors to determine if a prespecified threshold 
is exceeded. If this threshold is exceeded, the task should produce an alarm 
notification in the form of a data item of type Fire. The name of this data 
item is chosen as an indication of a possible event that could have occurred, it 
is not necessary that each gradient violation necessarily indicates a fire, and 
the programmer is free to choose any other preferred name. 

When the task is executed, it first reads a data item of type Temperature 
from the data pool. This call is guaranteed to succeed because this task has 
only one input data item and it is scheduled for execution only when the data 
item is produced. ATaG semantics ensure that each invocation of this call 
results in a valid (non-null) result. 

The parameters to the getData0 call are the IDS of the task request- 
ing the data item and the ID of the data item being requested. The ID 
of the task is required in order to ensure that each task can consume each 
data item only once. For a more detailed rationale, see Section 2.4.4. The 
IDConstants class is generated automatically during code synthesis as part 



IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 149 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

I 1  

12 

13 

I4 

IS 

16 

17 

I 8  

19 

20 

21 

22 

23 

24 

25 

26 

27 

20 

29 

M 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

public void r u n 0  { 
DataItem t-dataItem = m-datapool . getData( 

IDConstants . T-MONITOR , 
1DConstants.D-TEMPERATURE); 

if (t-dataItem == null) 

isOnFire = false; 
m-temperature = (Temperature) t-dataItem.core0; 
int senderID = t-dataItem. originID 0 ; 
if (senderID == m-mystate .myIDo) 

3 else { 

3 

return ; 

myReading = m-temperature.get(); 

setNeighborReading(senderID, m-temperature.get0); 

for (int n = 0 ;  n < neighborIDs.1ength; n++) { 
if (getNeighborReading(neighbor1Ds [n] ! =  -1) { 

if (myReading - getNeighborReading(neighborIDs[n] 
> 5 )  c 

isOnFire = true ; 
break ; 

3 
3 

> 
if (isOnFire && !vasOnFire) c 

m-fire = new Fire(); 
DataItem m-dataitem = new DataItem( 

1DConstants.D-FIRE, 
1DConstants.T-MONITOR, m-fire); 

m_dataPool.putData(m-dataitem); 
log("F1RE") ; 

m-fire = new Fire(); 
DataItem m-dataitem = new DataItem( 

> else if (!isOnFire && wasonfire) { 

IDConstants . D-FIRE , 
1DConstants.T-MONITOR, m-fire); 

m-dataPool.putData(m-dataitem); 
log("N0FIRE") ; 

3 
wasOnFire = is0nFire; 

3 

Figure 5.12 The main function of the Monitor task. 

of the atag . application package. This class contains a list of constants 
corresponding to the names of the tasks and data items. For instance, if an 
abstract task Monitor is present in the program, a corresponding integer con- 
stant TMONITOR is generated, where the T- denotes a task. The constants 
act as unique identifiers for the tasks and data items. The runtime system 
uses these unique integer identifiers instead of the names of the tasks. The 
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application developer who writes the code for abstract tasks can then use only 
the names of the constants and not integer identifiers that will change depend- 
ing on the number of data items and tasks in the program. This provides a 
degree of portability. 

The isOnFire flag is used to determine if an alarm condition exists. At 
each execution of the task, this flag is initially set to false (line 7). In line 8, the 
program extracts the actual data structure corresponding to the Temperature 
abstract data item. Note that the call to getDat a (  1 in line 2 returns an object of 
type DataItem, not of type Temperature. The DataItem class is a wrapper 
for the user-defined abstract data item class and contains additional such as 
the location and time of origin of that data item. To access the actual data 
structure, it is necessary to invoke the core (1 method of the DataItem class. 
The temperature is then stored in the m-temperature class, and the ID of 
the originating node is determined in line 9. If the data item originates on 
the same node, the temperature reading is stored as myReading; otherwise it 
is assigned to a suitable location in the array that records readings received 
from neighbors. Line 10 demonstrates the use of the maystate  instance 
of the Conf i g  class. In this example, the task uses the config information 
to determine the ID of the node it is hosted on. In lines 16-24, the node’s 
own reading is checked against each of its neighbors to see if it exceeds the 
threshold of 5 units, and the isOnFire flag is set to true if such a situation is 
encountered. 

In this example, we decided to use the Fire  data item (which is supposed 
to indicate an alarm condition) in a slightly different way. For instance, the 
alarm can be sounded each time the gradient violation is detected. However, 
consider a case where the gradient rises above the threshold and stays that way 
for multiple sampling periods. Instead of producing the alarm at each sampling 
period and thereby wasting communication and computation resources, we 
chose to produce the alarm condition only at the transition between a “fire” 
state and a “no-fire” state. 

As shown in lines 26-30, the process of producing a data item involves 
instantiating the corresponding class (Fire), wrapping it within a DataItem 
class, and then adding the DataItem class (and not the original F i re  class) 
to the data pool through the pu tda ta0  call. During the transition between 
states, a corresponding log message is also produced for transmission to the 
visualization interface. When such application-specific messages are received, 
the visualization can be customized to denote the event graphically; in our case, 
we highlight that node during the transition from no-fire to fire and retain the 
highlighting until the next transition message is received. 
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Figure 5.13 Constructor and members of the TSampler class. 

5.4.3 Abstract task: Temperature sampler 

We now discuss the imperative portion of the TSampler task. The code listing 
for the constructor and members of the Java class is is Figure 5.13, and the 
main function (run(>) is listed in Figure 5.14. 

Lines 1-6 in Figure 5.13 import the packages necessary for the application 
level task to be able to access other classes in the runtime, the visualization 
interface, and the sensor interface. In the current version of DART, the sensor 

package atag. application ; 

import atag. runtime. *; 
import atag.sens0r.c; 
import atag . runtime. conf ig . * ; 
import visualizer . * ;  
public class TSampler implements Runnable { 
private Temperature m-temperature = new Temperature 0 ; 
private DataPool m-datapool; 
private DataItem m-dataitem; 
private Config m-mystate; 
private S e n s o r  m-tSensor; 
private mGUI m-GUI; 
private CUIMessage m-guiMessage; 

private static int 1astReading = Constants.DEFAULT-TEMPERATURE; 

public TSampler (Datapool dp, Conf ig myconf ig , 
NetworkArchitecture t-networkArchitecture , 
mGUI t-CUI) { 

m-tsensor = new Sensor(myconfig.myID0, 

m-datapool 5 dp; 
m-mystate - myconfig; 
m-GUI = t-CUI; 

Constants.TEMPERATURE-SENSOR); 

> 
private void log(String msg) t 

m-guiMessage = new CUIMessage (m-mystate. myID 0 , 

m-guiMessage.setNodeOutput(msg); 
m-CUI.send(m-guiMessage); 

CUIMessage . GUIM-NODEOUTPUT , " " )  ; 

> 
t 
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public void r u n 0  { 

for ( i  ; 1 { 
try { 

int reading - n-tSensor.reading0; 
if (reading != 1astReading) { 

m-dataitem = new DataItem( 
1DConstants.D-TEMPERATURE, 
1DConstants.T-TSAMPLER, m-temperature); 

m-temperature.set(reading); 
m-dataPool.putData(m-dataitem); 
lasthading = reading; 
3 

Thread. sleep (5000) ; 
3 

3 I catch (InterruptedException e) 
return; 

3 I ’  
Figure 5.14 Main function of the rjampler class. 

interface is modeled as an instance of the Sensor class. The instantiation of a 
Sensor class to access the temperature sensor is shown in line 13. The details 
of the sensor interface class were discussed in Section 4.4.4.4. 

The temperature sampler task wishes to access the temperature sensor. 
Hence, the suitable constant TEMPERATURE-SENSOR is passed to the construc- 
tor of the sensor class (lines 22-23). The log0 function (lines 29-34) is 
defined here by the programmer as a convenient way of sending messages to 
the visualization front end. 

The run 0 function of this class, as shown in Figure 5.14, is quite straight- 
forward. The TSampler task is annotated in the declarative part of the ATaG 
program as a task with a periodic firing rule and a period of 5 seconds. At 
node initialization, the ATaGManager invokes the run0 function of all peri- 
odic tasks that are marked run-at-init by the programmer. The actual periodic 
execution is performed in the infinite for loop (lines 4-19) in the task itself. 
The for loop is automatically generated as part of software synthesis, and the 
programmer has to fill in the actual computation that will be performed at each 
periodic invocation of the task. 

In a naive implementation, the sampler task will produce a Temperature 
data item at each invocation. However, if the temperature is unchanged be- 
tween invocations, this approach will result in a lot of unnecessary computa- 
tion and communication (to 1-hop neighbors). Hence, the sampler task only 
produces a temperature data item when a change is detected between the tem- 
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perature reading at the last invocation and the reading at the current invocation. 
In line 5, the task samples the temperature sensor. Then the reading is com- 
pared with the last reading stored in the local static variable of lastReading. 
If the two are not the same, a new data item of type Temperature is created 
and added to the data pool (lines 7-1 1). 

Note that t h i s  task is not aware of how the output reading is processed. 
Since ATaG is a data-driven model, the sampler task is defined entirely in 
terms of its input and output data items - in this case, the output data item 
of the Temperature. The imperative portion of the task does not invoke any 
other application-level tasks. Its only concern is to produce a data item of the 
Temperature type and add it to the data pool when some condition is met-in 
this case, when the current temperature reading is different from the reading in 
the previous invocation. The annotation on the output channel corresponding 
to this data type, along with the presence of a task that is dependent on the 
Temperature data item as one of its inputs, drives further computation and 
communication in the application. 

5.4.4 Abstract task: Alarm actuator 

We now discuss the imperative portion of the AlarmActuator task. The 
complete code listing for the Java class corresponding to this task is shown in 
Figure 5.15. 

The declarative part of this ATaG program requires this task to be hosted on 
a root node with a fixed node ID, say, zero. This node will typically correspond 
to a supervisor station. All data items of type Fire will be routed to this node 
per the ATaG specification. The data item of type Fire is produced by the 
Monitor task only when a temperature gradient that exceeds the prespecified 
threshold is detected. Hence, a receipt of this data item at the supervisor nodes 
indicates that an abnormal condition exists somewhere in the sensor network. 
When the Monitor task produces the data item on a particular node where the 
abnormality is detected, it does not explicitly add the node information to the 
data item. However, the DART runtime system tags each data item with the 
location and time of its production. 

The functionality in lines 1-20 of Figure 5.15 has been discussed earlier for 
other abstract tasks. The r u n 0  method of the AlarmActuator is straightfor- 
ward. This method is invoked whenever an instance of type Fire is added to 
the data pool of the node that hosts this abstract task-that is, the supervisor 
node. The semantics of any-data firing rule guarantee that whenever the 
run (1 method is invoked, a data item of type Fire exists in the data pool and 
the call to getData() in line 22 never returns null. The check for a null return 
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package atag. application; 

import atag . runtime . * ; 
import atag.runtime.config.*; 
import visualizer . * ;  

public class AlarmActuator implements Runnable C 
DataPool m-datapool ; 
private Config m-mystate; 
private mCUI m-GUI; 
private GUIMessage m-guiklessage; 

public AlarmActuator (DataPool dp, Conf ig myconf ig , 
NetworkArchitecture t-networkArchitecture, 
mCUI t-CUI) I 

la-datapool = dp; 
m-mystate = myconfig; 
m-GUI = t-CUI; 

> 
public void r u n 0  

DataItem t-dataItem = m-dataPool.getData( 
IDConstants . T-ALARHACTUATOR , 
1DConstants.D-FIRE); 

Fire t-fire = null; 
if (t-dataItem ! =  null) 

t-f ire = (Fire) t-dataItem. core (1  ; 
int nodeOnFire = t-dataItem.originID0; 
m-guinessage = new CUIMessage(m-myState.myID0, 

m-guiMessage.setNodeOutput("Node," + nodeOnFire + 

m-CUI.send(m-guiMessage); 

CUIHessage. GUIH-NODEOUTPUT , " ' I )  

"uisuONuFIRE! " )  ; 

> 
1 

t 

Figure 5.15 Complete code listing for the AlarmActuator task. 

value in line 26 is added as a precautionary measure to detect the correctness 
of the implementation of the data pool manager. 

When the data item is retrieved from the pool, its origin ID is determined by 
a call to originID0 of the data item. Note that this method is supported by 
the DataItem class and not by any application-specific data item such as F i r e .  
The origin information is automatically added to the data item in the DART 
runtime. Currently, the only result of receiving the data item is a notification 
to the visualization interface. The ID of the node "on fire" is passed to the 
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package atag. application; 
import java. io. Serializable; 

public class TargetAlert implements Serializable { 

private int m-targetDistance; 
private boolean acquired ; 

public void setAcquired (boolean flag) { 

3 
acquired = flag; 

public boolean acquired (1 { 
return acquired; 

1 

public void setDistance(int d) { 
m-targetDistance = d; 

3 

public int d i s t a n c e 0  4 

3 
return m-targetDistance; 

Figure 5.16 Code listing for the TargetAlert data item. 

graphical front end, which then highlights the node in a system-wide map of 
the deployment. 

5.5 IMPERATIVE PORTION: OBJECT DETECTION AND 
TRACKING 

5.5.1 Abstract data items: TargetAlert and Targetlnfo 

There are two types of data items in the ATaG program for object detection 
and tracking. The TargetAlert data item is produced by the sampler task 
whenever the reading of the acoustic sensor is above a certain threshold. This 
data item indicates that an object of interest has been detected in the vicinity 
of the node where this data item is produced. The code listing for the corre- 
sponding class is shown in Figure 5.16. This data item has two variables; one 
corresponding to the distance of the target from this node (line 6) and the other 
indicating whether this data item corresponds to the acquisition of a target or 
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package atag. application; 
import java.io.Serializab1e; 

public class TargetInfo implements Serializable { 

private int myCoords ; 
private int reportingNode ; 

public TargetInfo(int [I myc, int nodeid) { 
myCoords = myc; 
report ingNode = nodeid ; 

1 

public int reportingNode 0 { 
return reportingNode; 

1 
public int [I c o o r d s 0  { 

return myCoords; 
1 
public int yCoords0 c 

return myCoords Ell; 
1 
public int x C o o r d 0  { 

return myCoords [O] ; 
1 

} 

Figure 5.17 Code listing for the TargetInfo data item. 

the loss of an acquired target. The reason for producing a TargetAlert data 
item corresponding to the loss of an acquired target is discussed in later sec- 
tions. A set of helper methods are also defined for the abstract task to read 
and modify the values in this data item. 

The TargetInfo data item (Figure 5.17) is produced by the Leader and 
sent to the Supervisor task. Ideally, only one of the nodes from among the set 
of nodes that has detected the target at any given point in time sends an instance 
of the Target Inf o data item to the Supervisor. This data item could contain 
information about the location of the data item. For instance, based on the 
locations of the nodes producing the TargetAlert data item, along with the 
distance readings estimated by each node from the target, the Leader task 
could compute the position of the target in some coordinate system. The 
details of distance estimation and triangulation will depend heavily on the 
parameters of the sensing interface and are outside the scope of this illustrative 
example. The variable myCoords is a placeholder for the target coordinates 
and is not actually used in this ATaG program. The only parameter of interest 
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in the current implementation is the ID of the reporting node. Note that this 
information can also be extracted from the DataItem class by invoking the 
suitable method. In this example, we also store this information as part of 
the application-level abstract data item. As shown in the code listing, a set of 
helper methods are defined for this class. 

5.5.2 Abstract Task: SampleAndThreshold 

Figure 5.18 shows the complete code listing for the SampleAndThreshold 
task in the object detection and tracking application. The purpose of this task 
is similar to the TSampler class of the temperature gradient monitoring appli- 
cation. Similar to the temperature sampler, this task is executed periodically 
with the period of execution specified in the declarative part of the program. 
At each invocation, the task samples the acoustic sensor and possibly produces 
a TargetAlert data item, depending on the value of the sensor reading. 

In this case study, we record the sensor reading in the variable reserved 
for transmitting the distance of the object from the local node. As shown 
in lines 35-53, the imperative portion of this task is quite simple. At each 
(periodic) invocation, the acoustic sensor is sampled and the reading is stored 
in the latestReading variable. If the current reading is greater than zero, 
it means that the object is within sensing range of this node. We assume that 
a quiescent environment corresponds to a zero reading at the sensor and any 
nonzero reading indicates the presence of the object of interest. The target 
alert is produced and added to the local data pool. The acquired flags is also 
set to true if it is not already set. If the current reading is zero, there are two 
possibilities. Either the node has lost the target between the prior invocation 
and this invocation, or the target was not in range in the previous invocation 
also. The first case represents a transition between the “acquired” state and 
the “lost” state. A target alert is generated with the acquired flag set to 
false to indicate this transition. As will be discussed in the next section, this 
notification causes the neighboring nodes to update their local state and clear 
any nonzero reading that may have been associated with this node. Finally, the 
current reading is saved as oldReading in readiness for the next invocation 
of this task. 

5.5.3 Abstract Task: Leader 
The Leader task is the most complex of all three abstract tasks in the ATaG 
program for object tracking. Indeed, it is the most important task of this ATaG 
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package atag. application; 

import atag.runtime .*; 
import atag. sensor .* ;  
import atag . runtime. conf ig . *; 
import visualizer .*; 

public class SampleAndThreshold implements Runnable C 
private TargetAlert m-targetAlert = nev TargetAlertO; 
private DataPool a-datapool; 
private DataItem m-dataitem; 
private Conf ig a-myState ; 
private Sensor m-asensor ; 
private NetvorkArchitecture m-netvorkArchitecture; 

private mCUI m-CUI; 
private CUIMessage m-guiMessage; 
private int 1atestReading; 
private static int oldhading; 
private static boolean acquired=false; 

public SampleAndThreshold(DataPoo1 dp, Config myconfig, 
NetvorkArchitecture t-netvorkArchitecture, 
mCUI t-CUI) I 

a-alensor * nev Sensor(myconfig.myID0, Constants.ACOUSTIC-SENSOR); 
m-datapool - dp; 
m-mystate = myconfig; 
a-netvorkArchitecture = t-netvorkArchitecture; 
m-CUI = t-CUI; 

} 

public void r u n 0  C 

for (; ; 1 C 
try C 

1atestReading = m-aSensor.reading0; 
m-dataitem = nev DataItem(1DConstants.D-TARGETALERT, 

1DConstants.T-SAMPLEANDTHRESHOLD, 
m-targetAlert); 

if (1atestReading > 0) C 
m-targetAlert.setDistance(latestReading); 
m_targetAlert.setAcquired(true); 
if (!acquired) C 

acquired - true; 
1 
m-dataPool.putData(m-dataitem); 

acquired = false; 
m-targetAlert.setAcquired(false); 
m~guiMessage.setNodeOutput("Target~lo~t"~; 
m-GUI.send(m-guiMessage); 
m-dataPool.putData(m-dataitem); 

} else if (1atestReading == 0 &P oldhading 

1 
oldhading = 1atestReading; 

Thread. sleep (2000) ; 
1 

1 
catch (InterruptedException e) C 

return: 
1 

1 

= 0) C 

Figure 5.18 Complete code listing for the SampleAndThreshold task. 
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program. The SampleAndThreshold task has a relatively simple logic: Peri- 
odically sample the acoustic sensor, and if a nonzero (zero) reading is detected, 
compare it with the earlier reading, but if the reading in the previous invocation 
was zero (nonzero) produce a TargetAlert data item corresponding to target 
acquisition (loss). All activity-sampling of the sensor, comparison with pre- 
vious state, and production of output data item-occurs on the same node. and 
state maintenance within the task is limited to storing the last read value from 
the acoustic sensor. The Supervisor task (to be discussed in the next section) 
is also quite simple and has the same role as the AlarmActuator task in the 
temperature gradient monitoring application. The role of the Supervisor 
task is to produce some alarm notification (or perform some other computa- 
tion) whenever a report of a target location is received from the field in the 
form of a TargetInf o packet. 

The Leader task has a more involved logic than the two other abstract tasks. 
Input data for this task (TargetAlert) can arrive from any node within a 10- 
meter radius of the host node that detects the target. As the target moves, the 
subset of nodes broadcasting the target alerts keeps changing. Also, depending 
on the speed of movement of the target, its path, and the sampling frequency of 
the sampling and thresholding task, multiple target alerts can be received from 
the same nodes while other nodes within a 10-meter radius may be sending 
no alerts because they are out of range of the object. This complicates state 
maintenance because readings received from all nodes have to be maintained, 
including readings from sampling tasks on the same node as the leader. The 
leader task is responsible for determining if it should generate and transmit 
the object information to the root node, or if it should depend on leader tasks 
executing on other nodes that have detected the object to do the same. Ideally, 
only one of the nodes that have detected the object will elect itself as leader, 
and the leader task will generate the object information based on readings 
received from other nodes and send it to the supervisor task on the rot node. 

There are some assumptions implicit in the formulation of this ATaG pro- 
gram and specifically in encoding the imperative portion of the Leader task. 
For instance, if two nodes that have detected the object at the same time have 
equal sensor readings that are also the maximum of all sensor readings on nodes 
that have detected the object, the program can lead to duplicate Target Inf o 
notifications being generated. There is no mechanism in the program for the 
Leader task to autonomously resolve situations where its own reading and 
the reading of one or more of its neighboring nodes is the same and is also the 
maximum of all readings it has received until that instant. 
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For applications that do not perform any critical in-network actuation or 
other computation, this duplication could be acceptable. At the supervisor 
node, all received Target Inf o notifications can be examined for their spatio- 
temporal origin, and a simple filtering mechanism can be implemented to 
detect scenarios where two nodes claim “ownership” of the object at the same 
(or “sufficiently close”) timestamp. These issues are not addressed in this 
simple ATaG program. 

Figure 5.19 shows the code for the constructor, member variables, and 
helper functions for the Leader class. Lines 1-11 should be obvious and 
have also been discussed in previous sections. The variables in lines 11- 
19 constitute the state of the Leader task. At initialization, the node’s own 
reading, as stored in the Leader task is set to zero, and the node is also marked 
as not being the current leader. The myReading variable is used to record the 
last received reading from the SampleAndThreshold task on the local node 
(i.e., the same node that is hosting the Leader). The currentLeader is used 
to record the latest state of this node; a true value indicates that this instance 
of the Leader is reporting the object information to the root node by electing 
itself as the node that is closest to the object, based on readings received from 
all nodes within range of the object. 

In lines 27-3 1, the task gathers the node IDS and coordinates of all neighbor- 
ing nodes within a distance 210 units from itself. The number 210 is selected 
arbitrarily in this example. Let d be the sensing range of the acoustic sensor; 
that is, the object of interest registers on all acoustic sensors in a d unit radius 
from its current position. Then, the number to be set in lines 29 and 3 1 is 2d. 
The intent is to ensure that the Leader task on a node that is within distance 
d of the object receives readings from all other nodes that have detected the 
same target. Since the maximum distance between two nodes that have de- 
tected the target is two times the sensing radius, the node can expect to receive 
TargetAlert notifications from other nodes in a 2d radius of that node. In 
this prototype program, the number is hard-coded into the imperative portion 
of the task, but this practice is not recommended. The sensing radius should 
be defined in a Const ants class and referred to where required. 

Helper functions are defined in lines 35-55. The getReadingCount method 
returns the number of readings corresponding to distinct neighboring nodes 
that have been stored by the Leader task at that instant. The maxNeighbor- 
Reading method returns the maximum reading from among all readings stored 
by the Leader task at the time the method is invoked. The setNeighbor- 
Reading accepts an integer reading and node ID, and it sets the reading cor- 
responding to that node ID to the integer value passed to the method. 
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package atag. application; 
import atag. runtime. *;  
import atag.runtime.config.*; 
import visualizer .*; 
public class Leader implements Runnable i: 

DataPool m-datapool ; 
private Conf ig m-mystate ; 
private mGUI m-CUI; 
private CUIMessage m-guinessage; 
private NetworkArchitecture m-networkArchitecture; 

private static int [I targetReadings ; 
private static int [I neighborIDs; 
private static int [I [I neighborcoords ; 

private static int myReading = 0; 
private static int acquiredEpoch = 0; / /  not used 
private static boolean currentLeader = false; 

public Leader (Datapool dp, Conf ig myconf ig , 
NetvorkArchitecture t-networkArchitecture, 
mCUI t-GUI) { 

m-datapool = dp; 
m-mystate = myconf ig; 
m-CUI = t-CUI; 
m-networhArchitecture = t-networkArchitecture; 
neighborIDs = 

neighborCoords = 

targetReadings = new int[neighborIDs.lengthl; 

m-networkArchitecture.dDistanceNeighborIDs(210); 

m~netuorkArchitecture.dDistanceNeighborCoords(210); 

> 
private double getReadingCount 0 C 

double count = 0; 
for (int i = 0; i < targetReadings.1ength; i++) 

if (targetReadings [il ! =  0) 
count ++; 

return count; 
> 
private int maxNeighborReading 0 { 

int max - 0 ;  
for (int i = 0; i < targetReadings.length; i++) 

if (targetReadings [i] > max) 
max - targetReadings [il ; 

return max; 
> 
private void setleighborReading(int nid, int d) { 

for (int i = 0; i < neighborIDs.length; i++) 
if (neighborIDsEi1 == nid) 

targethadings [i] = d; 
> . . .  

t 

Figure 5.19 
Leader task. 

Constructor, member variables, and helper functions for the 
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The main computation is performed in the run0 method shown in Fig- 
ure 5.20. Now, this method is invoked whenever a TargetAlert is received 
at the local data pool. This alert can be generated on the local node, or re- 
ceived from any of the neighboring nodes within the specified radius of that 
node. The information that can be derived from the TargetAlert data item 
includes (a) the ID and location of the node where the data item originated 
and (b) the reading of the acoustic sensor at the node. Remember that the 
SanpleAndThreshold task creates the alert only when the object has been 
detected. Hence, whenever the Leader receives a target alert, it is assumed 
that it has been sent by a node that is within range of the object. Whenever 
the TargetAlert is received, the Leader task has to determine if sufficient 
information exists to make a decision on electing itself the leader node (i.e., 
the node closest to the target at that moment) and transmitting the information 
to the supervisor node. 

Several factors are to be considered while making this decision. The first, 
and the most obvious factor is whether the reading at the local node is greater 
than the readings received from neighboring nodes. Note that we do not 
handle scenarios where two nodes have the same (and maximum) readings. 
The second factor is what fraction of the neighboring nodes have actually 
sent the readings. Consider the scenario in Figure 5.21. When the object 
is at position 0, it is within the sensing radius of nodes 1, 3, and 4 and is 
detected by the sampling tasks at those three nodes. Now, each node sends a 
TargetAlert to all nodes in its neighborhood. Hence, node 1 will receive 
alerts from nodes 3 and 4. Depending on the precise moment when the alerts 
are generated and the delays in transmitting the alerts over the network, node 1 
could receive the reading from node 3 before it receives the reading from node 
4. The Leader task on node 1 will be invoked when its own sampling task 
detects the object, and when the alerts are received from nodes 3 and 4. Hence, 
in its first invocation, the node’s own reading is nonzero but it hasn’t received 
any readings from neighbors. Next, when the alert from node 3 is received, 
it could be less than the node’s own reading. At this point, the Leader task 
could potentially compare its reading with that of node 3 and elect itself the 
leader. Based on the global information as depicted in Figure 5.2 1, this will be 
a wrong decision because node 4 is closer to the position 0 and is the rightful 
leader. Ideally, node 1 will wait for the reading from node 4 to be received and 
determine that it’s own reading is not the maximum. In the actual network, 
node 1 will have to make this decision based on purely local information. 
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public void r u n 0  t 
DataItem t-dataItem = m-datapool .getData( 

1DConstants.T-LEADER, 
1DConstants.D-TARGETALERT); 

TargetAlert t-tAlert = null; 
if (t-dataltem ! =  null) { 

t-tllert = (TargetAlert) t-dataItem.core0; 
1 

if (t-tAlert == null) 
return ; 

int originID = t-dataItem.originID0; 
if (originID == m-myState.myID0) t 

if (t-tAlert. acquired01 

else { 
myReading = t-tAlert.distance0; 

myReading = 0; 
return; 

> 
1 else t 

if (t-tAlert. acquiredo) 

else 
setNeighborReading(originID, t-tAlert.distance0); 

setNeighborReading(originID, 0 ) ;  
> 
if (myhading > maxNeighborReading0) < 

if ( !  currentleader) { 
currentLeader = true; 
System.out .println(m-myState.myID0 + *  :UREPORTINCUTARCET"); 
TargetInfo m-targetlnfo - new TargetInfoC 

m-netvorkArchitecture.myCoords0, 
m-myState.myID0); 

D-TARCETINFO , 
IDConstants .T-LEADER, m-targetInf 0 )  ; 

DataItem m-dataitem = nev DataItem(1DConstants. 

m-dataPool .putData(m_dataitem);  
m-guinessage = nev CUIKessage (m-myState .myIDO , 

GUIKessage.CUIK-NODEOUTPUT, 
" 1 , ) ;  

m-guiKessage.setNodeOutput("LEADER"); 
m-CUI.send(m_guiHessage); 

// do nothing if I am not already the leader 
1 else t 

1 
> else t 

if (currentLeader 1 { 
Is-guineasage = nev CUIKessage(m-myState.myID0, 

CUIKessage.GUIH_NDDEOUTPUT, 
" "1;  

m-guiKessage.setNodeOutput(HEXLEADER"); 
m-CUI.send(m-guiKessage); 
currentLeader = false; 

> 
> 
return; 

t 

Figure 5.20 The run0 routine of the Leader task. 
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Figure 5.21 TargetAlert received from only one neighbor. 

We do not propose the “right” solution to this problem and merely explain 
the logic of our particular implementation of the Leader task as shown by the 
listing in Figure 5.20. 

When the TargetAlert is consumed by the node, the following processing 
occurs: 

1.  Lines 13-26: The origin of the data item is checked to determine if 
it is produced by the local sampler task or has arrived from one of the 
neighboring nodes. If the data item is local and the acquired flag is set, 
the Leader task records the local reading in the myReading variable. 
If the acquired flag is set to false, it means that the local node has lost 
the object; that is, the object is out of sensing range of the node. In that 
case, the myReading variable is set to zero. If the data item is not local, 
a similar process is carried out and the neighbor’s reading is recorded in 
the suitable m a y  entry or set to zero if the alert indicates that the target 
was lost. 

2. Lines 2 8 4 6 :  At this stage, the received reading has been stored in 
the suitable variable. Now, the node’s local reading is compared with 
the maximum among all readings from neighboring nodes. If the local 
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reading is greater than that received from the neighbors, the node first 
determines if it has already elected itself the leader in a previous invo- 
cation of this task. If the node is the current leader, no action is taken. 
If the node is not the current leader, it first declares itself the leader by 
setting the appropriate state variable. This state is maintained to avoid 
sending repeated, duplicate messages to the supervisor node (and to the 
visualization front end). Next, the TargetInf o data item is created. In 
this implementation, this data item merely records the ID of the node 
that has elected itself the leader by virtue of being closest to the object 
based on information received till that time. This data item is added to 
the data pool and a message is sent to the visualization interface. 

3. Lines 47-56: If the local reading is not greater than the maximum of 
all readings received from neighboring nodes, it means that the node 
is clearly not the leader. If the node was the leader in the previous 
invocation, the state is changed to f a l s e  and the corresponding message 
is sent to the visualization interface. 

Note that this implementation does not have to worry about old readings 
from neighboring nodes being preserved as part of the state maintained by the 
Leader and possibly affecting its logic adversely. This is because the ATaG 
program ensures that when the node loses a target (i.e., the acoustic sensor 
reading becomes zero), it sends out the corresponding message to all nodes 
in its neighborhood. This effectively sets to zero the reading associated with 
that node in all the Leader tasks hosted in its neighborhood. 

5.5.4 Abstract Task: Supervisor 

The code listing for the Supervisor task is shown in Figure 5.22. The purpose 
of this task is the same as that of the AlarmActuator task in the temperature 
gradient monitoring application. Briefly, it receives all data items of type 
TargetInf o created anywhere in the network. When an instance of such 
a data item is received, it determines its origin and determines the location 
of the object of interest in the sensor network. In this implementation, this 
task sends a message to the visualization interface and logs the receipt of this 
message. 

5.6 APPLICATION COMPOSITION 

Each ATaG program thus defined forms part of a library of behaviors that 
can be reused in other applications. Figure 5.25 shows a library of ATaG 
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package atag. application; 

import atag.runtime . * ;  
import atag. runtime. conf ig. *; 
import visualizer .*; 
public class Supervisor implements Runnable 

DataPool m-datapool ; 
private Config m-mystate; 
private mCUI m-GUI; 
private GUIHessage a-guiHessage; 
private NetworkArchitecture m-networkArchitecture; 
private static int lastX = -1; 
private static int lastY = -1; 

public Supervisor (DataPool dp, Conf ig myconf ig , 
NetworkArchitecture t-networkArchitecture , 
mGUI t-CUI) { 

m-datapool = dp; 
m-mystate = myconfig; 
m-networkArchitecture = t-networkArchitecture; 
m-GUI = t-CUI; 

> 
public void r u n 0  { 

DataItem t-dataItem = m-datapool. getData( 
1DConstants.T-SUPERVISOR, 
1DConstants.D-TARGETINFO); 

TargetInfo t-targetInfo = null; 
if (t-dataItem ! =  null) C 

? 

/ /  START OF USER CODE 
int [I tLoc = t-targetInfo. coords 0 ; 
int currX = tLocl01; 
int curry = tLocC11; 
int nodeid = t-targetInfo.reportingNode0; 
if (currX !=  lastX I I curry !=  lasty) { 

t-targetInfo = (TargetInfo) t-dataItem.core0; 

lastX = currX; 
lastY = curry; 
m-guinessage 5 new CUIMessage(m-myState.myID0, 

CUIHessage . CUIH-NODEOUTPUT , " " )  ; 
m-guiHessage.setNodeOutput("Nodeu" + nodeid + + 

curr X + " , " + cur r Y + " r e p or t 8 o b j e c t " ) ; 
m-GUI.send(m-guiMessage); 

1 
1 
/ /  END OF USER CODE 

k 

Figure 5.22 Complete code listing for the Supervisor task. 



APPLICATION COMPOSITION 167 

programs consisting of three behaviors: object tracking, gradient monitor- 
ing, and centralized data collection. Currently, the building blocks for each 
behavior are abstract tasks, data, and channels that are indicated by directed 
arrows between tasks and data items. This modeling paradigm developed for 
prototyping purposes is not ideal because some behaviors might include other 
behaviors too; in other words, the building blocks provided to the programmer 
should include abstract tasks, abstract data, and pointers (references) to other 
behaviors in the library. In the gradient monitoring program of Figure 5.6, 
notice that the pattern of communication implied by the Monitor, Fire, and 
AlarmActuat or subgraph is centralized data collection. Similarly, the pattern 
of communication implied by LeaderElect, TargetInf 0, and Supervisor 
in the object tracking program of Figure 5.7 is also centralized data collec- 
tion. The next version of the application modeling paradigm for ATaG will 
allow the programmer to integrate existing behaviors (such as the centralized 
data collection behavior shown as CentralizedDC in Figure 5.25) into other 
behaviors to maximize reuse. This composition is illustrated in Figure 5.26. 

The next version of the modeling paradigm will allow the programmer to 
perform such composition through appropriate building blocks in the GME 
interface. 

Next, the target network is described by instantiating a Deployment model 
and setting the parameter values to match the target deployment. As shown 
in the metamodel of Figure 4.4 a Deployment consists of one or more atoms 
of type SensorNode. Node-level parameters are specified as attributes of 
SensorNode, while network-level parameters are specified for the model De- 
ployment. The set of attributes can be easily increased or otherwise modified, 
depending on the information required by the particular tools to be driven 
through the GME framework. Figures 5.23 and 5.24 show the library of de- 
ployment descriptions and the details of one particular 9-node deployment 
respectively. Network-level and node-level parameters for this example are 
shown in the lower right sections of the GME windows. 

The library of ATaG programs in GME consists only of the declarative 
portions-that is, the number of abstract tasks, data, and channels, and their 
annotations. The code associated with each abstract task is to be provided 
separately as a Java class that extends the UserTask class of DART (see 
Section 3.3.2). The developer of an ATaG behavior that is contributed to the 
library is also expected to provide the Java classes associated with the abstract 
tasks. 
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Figure 5.23 GME model: A library of deployments. 

Figure 5.24 GME model: A network of 9 nodes. 
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Figure 5.25 GME model: Library of ATaG programs (behaviors). 

Figure 5.26 Composing ATaG programs from existing libraries. 
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Figure 5.27 
of behaviors mapped onto one target deployment. 

GME model: Top level specification of the application as a set 

Given the library of ATaG programs and the library of deployment descrip- 
tions, defining and synthesizing a networked sensing application is straight- 
forward. The application is defined as an instance of the SensorNetworkApp 
model (Figure 4.1) that consists of one or more references (pointers) to ATaG 
programs and one reference to a deployment description. 

Figure 5.27 is an ATaG program that contains two behaviors from the li- 
brary: object tracking and gradient monitoring. This program is specified by 
instantiating one ATaGBehaviorR reference for each behavior, linking each 
reference to its target behavior, instantiating one DeploymentR reference to 
the target deployment description, and linking it to the desired 20-node de- 
ployment. Since the two component behaviors of the program are part of the 
library, the application code will also be available. Hence, the application 
developer is not required to write any new code or draw any new ATaG dia- 
grams. Such an interface can be used by end users who have no expertise or 
knowledge of ATaG, Java, or the lower-level aspects of sensor networking. 
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package a t a g .  a p p l i c a t i o n  ; 

/ *  Auto-gene ra t ed  * /  

p u b l i c  c l a s s  IDCons tan t s  { 
p u b l i c  s t a t i c  f i n a l  i n t  T-TSAMPLER = 0 ;  
p u b l i c  s t a t i c  f i n a l  i n t  T-ALARMACTUATOR = 1; 
p u b l i c  s t a t i c  f i n a l  i n t  T-MONITOR = 2 ;  
p u b l i c  s t a t i c  f i n a l  i n t  T-SUPERVISOR = 3 ;  
p u b l i c  s t a t i c  f i n a l  i n t  T-LEADER = 4 ;  
p u b l i c  s t a t i c  f i n a l  i n t  T-SAMPLEANDTHRESHOLD = 5 ;  
p u b l i c  s t a t i c  f i n a l  i n t  D-FIRE = 0 ;  
p u b l i c  s t a t i c  f i n a l  i n t  D-TEMPERATURE = 1; 
p u b l i c  s t a t i c  f i n a l  i n t  D-TARGETINFO = 2; 
p u b l i c  s t a t i c  f i n a l  i n t  D-TARGETALERT = 3 ;  

1 

Figure 5.28 The automatically generated IDConstants class. 

5.7 SOFTWARE SYNTHESIS 
Translation of placement annotations and channel annotations, and the general 
of skeleton code for abstract tasks and data items was discussed in Section 4.4. 
In this section, we show the specific artifacts created by the ATaG programming 
system for the two ATaG programs discussed in earlier sections. 

Figure 5.28 shows the IDConstants class that is generated automatically. 
In the current implementation, each abstract task is required to have a unique 
integer identifier and so is every abstract data item. The identifiers are used 
by the runtime system to refer to (index) the tasks and data items. The assign- 
ment of identifiers to tasks and data items is done for the entire application, 
which itself might consist of independently written ATaG programs. Hence, 
it is impossible to hard-code these identifiers as task and data IDS while writ- 
ing the individual programs. On the other hand, these identifiers are required 
as arguments to the get 0 and put 0 functions of the data pool and some 
other methods that are used by the application-level code. To allow ATaG 
programmers to write programs without worrying about the identifier assign- 
ment, we permit the use of constants-prefixed by a T- for abstract tasks and 
a D- for abstract data items-in the code, instead of the actual integers. When 
the overall application is composed, the IDConstants class is generated that 
associates the constants with integers. 

The only code in the runtime system that is generated automatically is 
a portion of the constructor of the AtagManager class that instantiates the 
abstract task and channel declarations. This automatically generated code 
fragment for our application is shown in Figure 5.29. 
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/ /  * a * * * * * * * * * *  START OF AUTO-GENERATED CODE 
numTaskDecls = 6 ;  
taskDecls . add(1DConstants .T-TSAMPLER, 

nev TaskDeclaration(1DConstants.T-TSAMPLER, 
nev TSampler (m-datapool , m-conf ig , 
m-netvorkArchitecture, m-CUI), 

Thread.MAX-PRIORITY-0, "NODESUPERUINSTANCE", 
false, 1, "PERIODIC", 1, true)); 

nsv TaskDeclaration(1DConstants.T-ALARMACTUATOR, 
taskDecls.add(1DConstants.T-ALARMACTUATOR, 

nev AlarmActuator (m-datapool, m-conf ig, 
m-netuorkArchitecture, m-CUI), 

Thread.MAX-PRIORITY-5, "ONEUINSTANCEUONUNODEuID", 
false, 0, "ANYDATA", 3600, false)); 

nev TaskDeclaration(IDCon8tants.T-MONITOR, 
taskDecls.add(1DConstante.T-MONITOR, 

nev Monitor(8-datapool, m-config, 
m-netvorkArchitecture, m-GUI), 

Thread.MAX-PRIORITY-4, "NODESUPERUINSTANCE", 
false, 1, "ANYDATA', 2 ,  true)); 

taskDecls.add(1DConstants.T-SUPERVISOR, 
new TaskDeclaration(1DConstants.T-SUPERVISOR, 

nev Supervisor (m-datapool , m-conf ig , 
m-netvorkArchitecture, m-GUI), 

Thread.MAX-PRIORITY-2, "ONEuINSTANCEuONuNODEuID", 
false, 0. "ANYDATA", 3600, false)); 

nev TaskDeclaration(1DConstants.T-LEADER, 
taskDecls.add(1DConstants.T-LEADER, 

new Leader (m-datapool , a-conf ig , 
a-netvorkArchitecture, m - G U I ) ,  

Thread.MAX-PRIORITY-1, "NODESUPERUINSTANCE", 
false, I, "ANYDATA". 3600, false)); 

nev TaskDsclaration(IDConstants.T-SAMPLEANDTHRESHOLD, 
taskDecls.add(1DConstants.T-SAMPLEANDTHRESHOLD, 

nev SampleAndThreshold(m-datapool, m-config, 
m-netvorkArchitecture, m-CUI), 

Thread. MAX-PRIORITY -0, "NODESUPERUINSTANCE", 
false. 1, "PERIODIC", 1, true)); 

numChannelDecls = 8 ;  
channelDecls.add(0, nev ChannelDeclaration(1DConstants.T-MONITOR, 

1DConstants.D-TEMPERATURE, "INPUT", false, "push", "'I, 0)); 
channelDecls.add(1. new ChannelDeclaration(IDConstants.T~ALARMACTUATOR, 

1DConstants.D-FIRE, "INPUT", false, " p u s h " ,  "ALLNODES", 0)); 
channelDecls.add(2, nev ChannelDeclaration(1DConstants.T-TSAMPLER, 

IDConstants .D-TEMPERATURE , "OUTPUT", true, "push", 
"NEIGHBORHOP", 1)); 

1DConstants.D-FIRE, "OUTPUT", true, "push", " " ,  0)); 

1DConstants.D-TARGETALERT. "INPUT", false, "push", ' I", 0)); 

IDConstants . D-TARGETINFO , "INPUT", false, "push", 
"ALLNODES", 0)); 

channelDecls.add(6, new ChannelDeclaration(IDConstant8.T-LEADER, 
IDConstanta .O-TARGETINFO , "OUTPUT", true, "push", ' I " ,  0 )  ; 

channelDecls.add(7, nev ChannelDeclaration( 
1DConstants.T-SAMPLEANDTHRESHOLD, IDConstants.0-TARCETALERT, 
"OUTPUT", true, "push', 
"NEIGHBORDISTANCE", 300)); 

channelDecls.add(3, nev ChannelDeclaration(1DConstants.T-MONITOR, 

channelDecls.add(4, nev ChannelDsclaration(1DConstants.T-LEADER, 

channelDecls.add(5, new ChannelDeclaration(IDConstants.T~SUPERVIS0R. 

? 
/ /  * I * * * * * * * * * * * *  END OF AUTO-GENERATED CODE 

Figure 5.29 
constructor class. 

The automatically generated portion of the AtaCManager 
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-myID 0 -ndata 4 -ntasks 6 -hopscope 0 -distancescope 0 
-assignedtasks 0 1 2 3 4 5 -senddata 0 0 -senddata 2 0 -end 

-myID 1 -ndata 4 -ntasks 6 -hopscope 0 -distancescope 0 
-assignedtasks 0 2 4 5 -senddata 0 0 -senddata 2 0 -end 

Figure 5.30 Sample configuration files for nodes 0 and 1 respectively. 

Finally, each node is provided with a configuration file that is read by the 
runtime system at initialization. The configuration file includes the node ID, 
the total number of abstract tasks and abstract data items, the hop scope and 
distance scope parameters, the tasks assigned to that node, and any directives 
related to data transmission to a hard-coded location. 

In our example applications, the TSampler, SampleAndThreshold, 
Monitor, and Leader tasks are to be mapped onto every node in the sys- 
tem. The IDS of these tasks as shown in the IDConstants class are 0,5,2,  
and 4, respectively. Hence, the configuration file for each node will contain 
these numbers in the assigned tasks section. Configuration files for the root 
node (node with ID 0) and for a non-root node are shown in Figure 5.30. 

As shown in the figure, the configuration file for node 0 contains all tasks 
(including the AlarmActuator and Supervisor tasks with IDS 1 and 3 re- 
spectively, as well as the other four tasks). The non-root node does not host 
tasks 1 and 3. The hopscope and distancescope parameters are not sup- 
ported in the current version of DART, hence the corresponding entries are 
zero. If support for this feature had existed, the hopscope parameter would 
be 1 in light of the output channel annotation for the TSampler task, and the 
distancescope parameter would be the distance specified on the output channel 
of the SampleAndThreshold task. 

As the last step in the application development process, the entire software 
system-including the runtime system modules and application-level tasks- 
has to be compiled. For simulation and visualization, independent processes 
have to be launched for each simulated node and the configuration file is 
provided as a parameter to customize the behavior of the individual processes. 
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CHAPTER 6 

CONCLUDING REMARKS 

The Abstract Task Graph is an attempt at defining a programming model and 
methodology that enables application developers to focus on the high level 
structure of collaborative computation without worrying about the details of 
the target sensor network deployment. It is based on the belief that ease of ap- 
plication development will ultimately determine the penetration of networked 
sensor systems into everyday life, and it can be achieved not just by defin- 
ing more and more protocols for different aspects of networked sensing but by 
also providing frameworks where a selection of existing protocols can be pack- 
aged and provided as services through an integrated application development 
environment. 

In the following two sections, we comment on the role of ATaG as (a) a 
framework for defining architecture-independent programming languages for 
specific application domains and (b) an extensible framework for integrating a 
variety of compilation and software synthesis tools for multiple platforms and 
driving their execution from a single application development environment. 
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6.1 A FRAMEWORK FOR DOMAIN-SPECIFIC 
APPLICATION DEVELOPMENT 

ATaG is based on two concepts. The first is data-driven computing, which 
provides a natural mental model for specifying reactive behaviors and has 
other significant benefits from a software development perspective such as 
composability and reusability. The second concept, which is the key to ar- 
chitecture independence at the network level, is the use of declarative task 
and channel annotations to specify the placement of functionalities and the 
patterns of interaction between functionalities. 

The task and channel annotations currently defined for ATaG and sum- 
marized in Tables 2.1 and 2.2 are merely meant to illustrate the power of 
declarative programming with ATaG. The choice of annotations was influ- 
enced by our desire to express patterns of interaction that form the building 
blocks of in-network computation in oft-cited behaviors such as object track- 
ing and environment monitoring. The annotations are not intended to be an 
exhaustive list, and we expect that they will be modified to suit the particular 
application domain and the services available in the target deployment. For 
instance, the current set of task annotations allows placement based on node 
IDS or locations. This can be generalized to placement based on context hbels. 
The idea of context labels is employed in EnviroTrack [ 13 as a mechanism to 
address sensor nodes and also to host context-specific computation. The idea 
behind context labels is to allow the user to specify dynamic behaviors based 
on the current state of a node. The fraction of total energy reserves currently 
remaining in the node can be considered as a context. This context can be 
used as a task annotation to specify alternate implementations of the same task 
and tag each implementation with the context of its invocation. This can be 
used to adapt the computation to the amount of available energy and provide 
graceful degradation of functionality where possible. Other interpretations of 
the context of a node can be used to trigger specific behaviors only if other 
behaviors are activated on neighboring nodes. For instance, the programmer 
could want task A to start executing on a node only when at least 50% of its 
1-hop neighborhood are executing task B. This will require a context label 
for each node that indicates whether task B is executing on that node, and a 
context label that indicates whether 50% of the node’s 1-hop neighborhood 
has the context label indicating task B. 

The point of these examples is to show that ATaG can be customized to a 
particular domain by defining task and channel annotations relevant to that 
domain. The requirement for defining a new domain-specific annotation is 
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the existence of a mechanism to translate the annotation into a set of param- 
eters used to customize DART, along with the availability of all the relevant 
information in the network model provided to the compiler. 

6.2 A FRAMEWORK FOR COMPILATION AND S O M A R E  
SYNTHESIS 

Just as the extensible set of ATaG annotations form a framework for domain- 
specific customization of the declarative part of ATaG, the component-based 
design of DART can be considered to be a framework for integrating a variety 
of protocols proposed for sensor network applications. The purpose of this 
integration is to ultimately provide an end-to-end application development 
methodology that allows an application developer to use these protocols (ex- 
plicitly or implicitly) for a real-world application without necessarily knowing 
the details of their implementation, or even of their existence. 

A critical part of this end-to-end methodology that is only superficially 
addressed in this work is the ATaG compiler. The high-level concept of com- 
pilation of a networked sensing application can be defined as the translation 
of a service-oriented specification or a macroprogramming language into an 
‘equivalent’ distributed software system to be deployed on a target network. 
The exact algorithms used for compilation, the structure of the compilation 
process, and the scope for compile-time and runtime optimization, however, 
depends entirely on the particular programming model and runtime system. 

The contribution of ATaG and DART and, to some extent, of the GME- 
based visual programming and software synthesis environment is to create 
a framework for compilation and software synthesis in the following sense. 
Each annotation (or a group of annotations) has a well-defined association 
with a particular module or configuration parameter in the DART design. For 
instance, the result of compiling the task annotation nodes-per-instance: k for 
some abstract task T is that approximately of the AtagManager modules 
in the system will have the assignment flag for task T set to true. Channel 
annotations are also suitably encoded into each node as DART configuration 
parameters. Every such translation of a task and channel annotation into con- 
figuration parameters for DART on some or all nodes in the network can be 
considered as an independent compilation problem. For instance, the issue of 
optimal sensing coverage has been the focus of much research in distributed 
sensing. A version of the coverage problem of special interest in the context of 
ATaG is the static or dynamic selection of a set of sensors of a particular type, 
from among all sensors of that type in the network, such that the degree of cov- 
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erage desired by the application developer is guaranteed with high probability. 
In the ATaG model, the selection of sensors could effectively translate into the 
selection of a set of nodes on which the sensing tasks (which are abstract tasks 
in the graphs) will be instantiated. The job of the compiler in this case is to 
interpret the high-level intent of the programmer as specified through suitably 
defined task annotations and assign the sensing tasks to a particular set of 
nodes. The algorithm used to select this set of nodes will reflect the quality 
of the compilation by affecting the communication and computation cost that 
is engendered in the deployment. 

The choice of the Generic Modeling Enviornment (GME) for providing 
the visual programming interface as well as integrating the different tools for 
software synthesis, simulation, etc., is particularly felicitous from the perspec- 
tive of the compilation problem. GME allows plug-and-play integration of 
software components called model interpreters. Each model interpreter, when 
invoked, can access all information about the current model which, in our do- 
main, includes the library of behaviors, deployments, and the application to 
be synthesized. A model interpreter for synthesizing the code skeletons for 
abstract tasks and data items inspects the YO relationships between tasks and 
data to generate the suitable get (1 or put (1 calls, the names of the tasks and 
data items to generate the names of the java classes, and the firing rules for 
the abstract tasks to generate a suitably timed loop for periodic execution if 
specified by the firing rule. Other model interpreters will read the model in- 
formation relevant to their own specific function. The compiler is just another 
(set of) model interpreter that reads the relevant annotations from the model 
database and performs the appropriate transformations either on the model 
itself or on external objects such as the DART code for a particular node. This 
flexibility also makes it possible for the same programming environment to 
seamlessly support a set of compilers and software synthesizers, each for a 
different target platform. 

In summary, the contribution of ATaG is the definition of an extensible 
language, runtime system, and compilation framework that can be tailored 
to different application domains, network architectures, performance metrics, 
and sensor node platforms, depending on the requirements of the end user. 
The work described in this document is a specific instance of this general 
framework. 
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