ARCHITECTURE-INDEPENDENT
PROGRAMMING FOR
WIRELESS SENSOR NETWORKS

&

AMOL B. BAKSHI
VIKTOR K. PRASANNA

Wiley Series on Plyatlel and Distributed Computing * Series Editor, Albert Y. Zomaya

ARCHITECTURE-INDEPENDENT
PROGRAMMING FORWIRELESS
SENSOR NETWORKS

Amol B. Bakshi
University of Southern California

Viktor K. Prasanna
University of Southern California

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

WILEY SERIES ON PARALLEL AND DISTRIBUTED COMPUTING
Series Editor: Albert Y. Zomaya

Parallel and Distributed Simulation Systems / Richard Fujimoto
Mobile Processing in Distributed and Open Environments / Peter Sapaty
Introduction to Parallel Algorithms / C. Xavier and S. S. lyengar

Solutions to Parallel and Distributed Computing Problems: Lessons from
Biological Sciences / Albert Y. Zomaya, Fikret Ercal, and Stephan Olariu (Editors)

Parallel and Distributed Computing: A Survey of Models, Paradigms, and
Approaches / Claudia Leopold

Fundamentals of Distributed Object Systems: A CORBA Perspective /
Zahir Tari and Omran Bukhres

Pipelined Processor Farms: Structured Design for Embedded Parallel
Systems / Martin Fleury and Andrew Downton

Handbook of Wireless Networks and Mobile Computing /
Ivan Stojmenovi¢ (Editor)

Internet-Based Workflow Management: Toward a Semantic Web /
Dan C. Marinescu

Parallel Computing on Heterogeneous Networks / Alexey L. Lastovetsky

Performance Evaluation and Characteization of Parallel and Distributed
Computing Tools / Salim Hariri and Manish Parashar

Distributed Computing: Fundamentals, Simulations and Advanced Topics,
Second Edition / Hagit Attiya and Jennifer Welch

Smart Environments: Technology, Protocols, and Applications / Diane Cook
and Sajal Das

Fundamentals of Computer Organization and Architecture /
Mostafa Abd-El-Barr and Hesham El-Rewini

Advanced Computer Architecture and Parallel Processing / Hesham El-Rewini
and Mostafa Abd-EIl-Barr

UPC: Distributed Shared Memory Programming / Tarek El-Ghazawi,
William Carlson, Thomas Sterling, and Katherine Yelick

Handbook of Sensor Networks: Algorithms and Architectures /
Ivan Stojmenovi¢ (Editor)

Parallel Metaheuristics: A New Class of Algorithms / Enrique Alba (Editor)
Design and Analysis of Distributed Algorithms / Nicola Santoro

Task Scheduling for Parallel Systems / Oliver Sinnen

Computing for Numerical Methods Using Visual C++ / Shaharuddin Salleh,
Albert Y. Zomaya, and Sakhinah A. Bakar

Architecture-Independent Programming for Wireless Sensor Networks /
Amol B. Bakshi and Viktor K. Prasanna

This Page Intentionally Left Blank

ARCHITECTURE-INDEPENDENT
PROGRAMMING FOR WIRELESS
SENSOR NETWORKS

This Page Intentionally Left Blank

ARCHITECTURE-INDEPENDENT
PROGRAMMING FORWIRELESS
SENSOR NETWORKS

Amol B. Bakshi
University of Southern California

Viktor K. Prasanna
University of Southern California

WILEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com, Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley &
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at (800) 762-2974, outside the United
States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Bakshi, Amol B., 1975-

Architecture-independent programming for wireless sensor networks / Amol B. Bakshi, Viktor K. Prasanna.

p.cm.

Includes bibliographical references and index.

ISBN 978-0-471-77889-9 (cloth)

1. Sensor networks--Programming. 2. Wireless LANs--Programming. I. Prasanna Kumar, V. K. IL. Title.

TK7872.D48 B

681'2--dc22

2007046862

Printed in the United States of America

109876354321

CONTENTS

Preface

Acknowledgments

1 Introduction

1.1 Sensor networks and traditional distributed systems
1.2 Programming of distributed sensor networks
1.2.1 Layers of programming abstraction
1.2.1.1 Service-oriented specification
1.2.1.2 Macroprogramming
1.2.1.3 Node-centric programming
1.2.2 Lessons from parallel and distributed computing
1.3 Macroprogramming: What and why?
14 Contributions and outline

xi

XV

00 ~3 ~3 1 N -

10
12
14
16

vi CONTENTS

2 The Abstract Task Graph

21
22

23

24

25

2.6

Target applications and architectures
Key concepts
2.2.1 Data-driven computing
2.2.1.1 Program flow mechanisms
2.2.1.2 Why data-driven?
2.2.2 Mixed imperative—declarative specification
Syntax |
23.1 The Structure of an ATaG program
2.3.2 More on task annotations
2.3.3 Illustrative examples
Semantics
2.4.1 Terminology
2.4.2 Firing rules
2.43 Task graph execution
244 get() and put()
Programming idioms
2.5.1 Object tracking
2.5.2 Interaction within local neighborhoods
2.5.3 In-network aggregation
2.5.4 Hierarchical data fusion
2.5.5 Event-triggered behavior instantiation
Future work
2.6.1 State-based dynamic behaviors
2.6.2 Resource management in the runtime system

2.6.3 Utility-based negotiation for task scheduling and resource

allocation

3 DART: The Data-Driven ATaG Runtime

3.1

32
33

Design objectives

3.1.1 Support for ATaG semantics
3.1.2 Platform independence
3.1.3 Component-based design
3.1.4 Ease of software synthesis
Overview

Components and functionalities

21

21
23
23
23
26
28
29
29
34
39
45
45
46
48
48
49
51
52
52
55
56
59
59
61

63

65

65
65
66
67
68
69
72

34

35

3.3.1 Task, data, and channel declarations
33.2 UserTask
3.3.2.1 Service
3.3.2.2 Interactions
3.3.2.3 Implementation
3.3.3 DataPool
3.3.3.1 Service
3.3.3.2 Interactions
3.3.3.3 Implementation
3.34 AtagManager
334.1 Service
3.34.2 Interactions
3.3.43 Implementation
3.3.5 NetworkStack
3.3.5.1 Service
3.3.5.2 Interactions
3.3.5.3 Implementation
3.3.6 NetworkArchitecture
33.6.1 Service
3.3.6.2 Interactions
3.3.6.3 Implementation
3.3.7 Dispatcher
3.3.7.1 Service
3.3.7.2 Interactions
3.3.7.3 Implementation
Control flow
34.1 Startup
342 get() and put ()
3.4.3 Illustrative example

Future work

35.1

Lazy compilation of channel annotations

CONTENTS

3.5.2 Automatic priority assignment for task scheduling

vii

72
75
75
75
77
79
79
79
79
82
82
82
83
87
87
87
87
88
88
88
89
90
90
91
91
93
94
97
100
101
101
102

viii

CONTENTS

4 Programming and Software Synthesis

4.1
4.2

43
4.4

Terminology
Meta-modeling for the ATaG domain
42.1 Objectives
4.2.2 Application model
4.2.3 Network model
The programming interface
Compilation and software synthesis
4.4.1 Translating task annotations
442 Automatic software synthesis
443 The ATaG simulator
444 Initialization
444.1 Situatedness
4.4.4.2 Network interface
4443 Network architecture
4.4.4.4 Sensor interface
4.4.5 Visualizing synthesized application behavior

5 Case Study: Application Development with ATaG

5.1
5.2

53
54

5.5

5.6
5.7

Overview of the use case

Designing the macroprograms

5.2.1 Temperature gradient monitoring

5.2.2 Object detection and tracking

Specifying the declarative portion

Imperative portion: Temperature gradient monitoring
5.4.1 Abstract data items: Temperature and fire
5.4.2 Abstract task: Monitor

5.43 Abstract task: Temperature sampler

5.4.4 Abstract task: Alarm actuator

Imperative portion: Object detection and tracking
5.5.1 Abstract data items: TargetAlert and Targetinfo
5.5.2 Abstract Task: SampleAndThreshold

5.5.3 Abstract Task: Leader

5.5.4 Abstract Task: Supervisor

Application Composition

Software Synthesis

105

106
106
106
108
110
112
115
117
117
121
122
123
124
124
124
128

135

136
136
136
139
142
143
143
144
151
153
155
155
157
157
165
165
171

CONTENTS

6 Concluding Remarks

6.1 A framework for domain-specific application development
6.2 A framework for compilation and software synthesis

References

Index

ix

175

176
177

179

185

This Page Intentionally Left Blank

PREFACE

Networked sensing is an area of enormous research interest, as evidenced
by the explosive growth of technical workshops, conferences, and journals
related to topics in sensor networks as well as by the increasing number of re-
lated book publications. Research in sensor networks is influenced to varying
degrees by ideas from traditional parallel and distributed computing, wireless
ad hoc networking, signal processing, information theory, and so on. The
semantics of spatial computing applications in sensor networks necessitate
enhancements and extensions to traditional ideas in some cases and require
the development of entirely new paradigms in others. The next generation of
context-aware applications for these systems will require novel phenomenon-
centric programming models, methodologies, and design tools to translate
high-level intentions of the programmer into executable specifications for the
underlying deployment. Indeed, such tools are critical for further develop-
ment of the field; and once they become available, dramatic growth in this
field can be expected.

Xi

xii PREFACE

This book deals with macroprogramming of networked sensor systems. A
“macro”-programming language allows the application developer to express
program behaviors at a high level of abstraction. The job of translating this
high-level specification into node-level behaviors is delegated to a compilation
and software synthesis system. Macroprogramming is interesting because it
promises to facilitate rapid application development for large-scale, possibly
heterogeneous sensor networks and also provides a framework for optimizing
task placement and communication in such networks, without user involve-
ment.

Objectives

We present a methodology and a programming language—called the Abstract
Task Graph (ATaG)—for architecture-independent macroprogramming of net-
worked sensor systems. Architecture-independence allows applications to be
developed prior to decisions being made about the network deployment and
also allows the same application to be compiled onto different target deploy-
ments.

ATaG is built upon two fundamental concepts: (1) the use of data-driven
computing as the underlying control flow mechanism and (2) the adoption of
mixed imperative-declarative notation for program specification. We argue
that the former enables modular, composable programs for sensor networks
and also provides an intuitive paradigm for specifying reactive behaviors in
networked sensing. The latter separates concerns of task placement, firing,
and in-network communication from the actual application functionality and
is the key to architecture independence.

The objective of this book is to illustrate the feasibility and usefulness of
architecture-independent programming for networked sensor systems. The
discussion is centered around the ATaG model, which is discussed in detail.
Ultimately, we want the reader to gain exposure to the high-level concepts
that guided the design and implementation of the ATaG programming lan-
guage and environment. We also discuss the implementation of the DART
runtime system in great detail. This is because we want the reader to be fa-
miliar not just with the broad outline of DART but with its intimate details
that will enable him/her to modify and/or extend the DART functionality as
desired. Eventually, it is our hope that researchers can build upon ATaG and
DART and design full-fledged compilation and code synthesis environments
for a variety of networked sensor systems.

PREFACE xiii

Book Organization

Chapter 1 provides a brief overview of sensor networks and the differences
between sensor networks and traditional distributed systems. Various layers
of programming abstraction for networked sensor systems are also reviewed,
and the motivation for macroprogramming is discussed.

Chapter 2 presents the Abstract Task Graph (ATaG) model. A discus-
sion of the ATaG syntax and semantics is followed by a section on pro-
gramming idioms in ATaG. ATaG programs for oft-cited behaviors in net-
worked sensing (hierarchical tree structures, object tracking, etc.) are pre-
sented.

Chapter 3 discusses the design of DART the Data-driven ATaG RunTime.
An overview of the DART components is followed by an in-depth discussion
of each component. Relevant code listings from the current implementation
of DART accompany the discussion.

Chapter 4 outlines the overall process of application development with
ATaG. This includes the graphical programming interface for ATaG, the au-
tomatic software synthesis mechanism, and the rudimentary compiler that
translates ATaG programs into node-level behaviors. The simulation and vi-
sualization interface for ATaG is also discussed.

Chapter 5 presents an ATaG case study. In this chapter, we illustrate pro-
gramming and synthesis of a composite application consisting of a gradient
monitoring component and an object tracking component. We walk the reader
through the steps involved in developing the declarative and imperative parts
of the ATaG program and the software synthesis and rudimentary compilation
support offered by the programming environment.

Chapter 6 concludes this book by discussing the broader context of the ATaG
research. We argue that ATaG is not just a specific language for a class of sen-
sor network applications but also a general framework that can be extended to
a variety of behaviors in current and future sensor network applications. ATaG
is also a framework for compilation in the sense that the syntax and semantics
of ATaG and the design of the DART runtime system provide a well-defined
framework for “intelligent compilation” of sensor network applications for a
variety of target architectures.

Target Audience

This book is written for (i) researchers in networked embedded sensing and
pervasive computing, (ii) researchers in parallel and distributed computing
with applications to context-aware spatial computing, (iii) practitioners

xiv PREFACE

involved in implementing and deploying networked sensor systems, and (iv)
application developers and software engineers for networked embedded sys-
tems for pervasive computing.

We particularly hope that the in-depth discussion of the design of the run-
time system and of the simulation and visualization environment will enable
interested researchers to download the software and use it to demonstrate ex-
tensions of the programming model or of the runtime system itself. To this
end, we discuss specific extensions to ATaG and DART as future work in
various clearly marked sections of this book.

AMOL B. BAKSHI
VIKTOR K. PRASANNA

Los Angeles, California
January, 2008

ACKNOWLEDGMENTS

The ATaG programming model and the associated programming environment
was born in the summer of 2004 during the author Amol Bakshi’s internship
at the Palo Alto Research Center. Special thanks are due to Jim Reich and
Dan Larner for co-inventing the programming model, as well as to Maurice
Chu, Qingfeng Huang, Patrick Cheung, and Julia Liu for patient hearings and
constructive feedback during the course of the summer work. We thank Prof.
Ramesh Govindan and Prof. Bhaskar Krishnamachari (USC) for contribut-
ing broad perspectives on wireless networked sensing, specific inputs on the
strengths and weaknesses of the ATaG model, and suggestions for future work.
We are grateful to Animesh Pathak and Qunzhi Zhou at the University of
Southern California for their wholehearted adoption and ongoing furtherance
of the ATaG research on macroprogramming for sensor networks. Finally,
an enormous amount of gratitude is due to the wonderful—and wonderfully
patient—people who encouraged this book project and drove it to completion:
Prof. Albert Zomaya (Founding Editor-in-Chief of the Wiley Book Series on
Parallel and Distributed Computing), Whitney Lesch, Val Moliere, Paul Pe-
tralia, Emily Simmons, Lisa Morano Van Horn, and Anastasia Wasko (Wiley);
and Amy Hendrickson (TgXnology, Inc.). ABB

V.K.P.
XV

This Page Intentionally Left Blank

CHAPTER 1

INTRODUCTION

Networked sensor systems

A networked sensor system (a “sensor network”) is a distributed computing
system where some or all nodes are capable of interacting with the physical en-
vironment. These nodes are termed as sensor nodes and the interaction with the
environment is through sensing interfaces. Sensors typically measure prop-
erties such as temperature, pressure, humidity, flow, etc., when sampled. The
sensed value can be one-dimensional or multi-dimensional. Sensor networks
have a wide range of applications. Acoustic sensing can be used to detect
and track targets in the area of deployment. Temperature, light, humidity, and
motion sensors can be used for effective energy management through climate
moderation in homes and commercial buildings.

Wireless sensor networks (WSNs) [44, 3, 17] are a new class of sensor
networks, enabled by advances in VLSI technology and comprised of sensor
nodes with small form factors, a portable and limited energy supply, on-board
sensing, computing, and storage capability, and wireless connectivity through

Architecture-Independent Programming for Wireless Sensor Networks 1
By Amol B. Bakshi, Viktor K. Prasanna
Copyright © 2008 John Wiley & Sons, Inc.

2 INTRODUCTION

a bidirectional transceiver. WSNs promise to enable dense, long-lived em-
bedded sensing of the environment. The unprecedented degree of information
about the physical world provided by WSNs can be used for in situ sensing and
actuation. WSNs can also provide a new level of context awareness to other
back-end applications, making sensor networks an integral part of the vision of
pervasive, ubiquitous computing—with the long-term objective of seamlessly
integrating fine grained sensing infrastructure into larger, multi-tier systems.

There has been significant research activity over the last few years in the
system-level aspects of wireless sensing. System level refers to the problems
such as: (a) localization [41] and time synchronization [15, 16] to provide
the basic “situatedness” for a sensor node node; (b) energy-efficient medium
access protocols that aim to increase the system lifetime through means such as
coordinated sleep—wake scheduling [60]; (c) novel routing paradigms such as
geographic [33, 47], data-centric [22], and trajectory-based [40] that provide
the basic communication infrastructure in a network where the assignment and
use of globally unique identifiers (such as the IP addresses of the Internet) is
infeasible or undesirable; (d) modular, component-based operating systems for
extremely resource constrained nodes [27], etc. A variety of routing and data
fusion protocols for generic patterns such as multiple-source single-sink data
gathering trees are also being developed to optimize for a range of goodness
metrics {30, 29, 61]. A comprehensive overview of state of the art in system
level aspects of wireless embedded sensing can be found in [31, 18].

1.1 SENSOR NETWORKS AND TRADITIONAL
DISTRIBUTED SYSTEMS

It is instructive to compare and contrast the fundamental nature of networked
sensing with traditional parallel and distributed computing, with a view to
identifying the degree to which the research in the latter field over the past few
decades can be leveraged (with our without modification) to propose solutions
for analogous problems in the former. Since the primary focus of this work
is on models and methodologies for programming of large-scale networked
sensor systems, the comparison will be biased towards aspects which influence
application development and not so much on system level issues.

Sensor networks are essentially collections of autonomous computing ele-
ments (sensor nodes) that pass messages through a communication network
and hence fit the definition of a distributed computing system proposed in [8].
However, some of the fundamental differences between networked sensor
systems and traditional distributed computing systems are as follows:

SENSOR NETWORKS AND TRADITIONAL DISTRIBUTED SYSTEMS 3

Transformational versus reactive processing

The primary reasons for programming applications for a majority of tradi-
tional distributed computing systems were “high speed through parallelism,
high reliability through replication of process and data, and functional spe-
cialization” [8]. Accordingly, the objective of most programming models and
languages was to (i) allow the programmer to expose parallelism for the com-
piler and runtime system to exploit and (ii) provide support for abstractions
such as shared memory that hide the distributed and concurrent nature of the
underlying system from the application developer. In other words, the pur-
pose of most abstractions was to allow the programmer to still visualize the
target architecture as a von Neumann machine, which provided an intuitive and
straightforward mental model of reasoning about sequential problem solving.
Alternate approaches such as dataflow and functional programming were also
proposed, motivated by a belief in the fundamental unsuitability of the von
Neumann approach for parallel and distributed computing [5]. Regardless
of the approach, most parallel and distributed applications were ultimately
transformational systems that are characterized by a function that maps input
data to output data. This function can be specified as a sequential, imperative
program for a von Neumann architecture, and the purpose of parallelizing and
distributing the execution over multiple nodes is mainly to reduce the total
latency.

A networked sensor system is not a transformational system that maps a
well-defined set of input data to an equally well-defined set of output data.
Instead, like a majority of embedded software, it is a continuously executing
and primarily reactive system that has to respond to external and internal
stimuli [24]. An event of interest in the environment triggers computation and
communication in the network. A quiescent environment ideally implies a
quiescent network as far as application level processing is concerned.

Space awareness

An embedded sensor network can be considered to represent a discrete sam-
pling of a continuous physical space. In fact, an abstract model of a distributed
sensor network can be defined and analyzed purely in terms of measurements
of the space being monitored [32], without any reference to the network ar-
chitecture. In contrast to traditional distributed computing where all compute
nodes were basically interchangeable and the physical location of a particular
computing element is not directly relevant from a programming or optimiza-
tion perspective, space awareness [63] is an integral part of embedded net-

4 INTRODUCTION

Figure 1.1 An example sensor network deployment for vehicle detection
and tracking. “Sensor nodes are deployed in clusters, with each cluster
consisting of a relatively powerful clusterhead node and four resource-
constrained sensor nodes. Each sensor could be equipped with acoustic and/or
magnetic sensors. The individual sensor nodes in each cluster communicate
their readings to the clusterhead which computes the line of bearing and
possibly the type of vehicls. This information will be relayed to a supervisor
station that can triangulate the object position by ending line of bearing
estimates from multiple clusters. This particular scenario was one of the
early use cases for wirelessly networked sensor systems.

SENSOR NETWORKS AND TRADITIONAL DISTRIBUTED SYSTEMS &

200,180
®

€]

Virtual topologies

@
® o
Ig-lll . 10,9 .
@
® 2]

2D coordinates

Figure 1.2 Multiple coordinate systems on the same deployment.

worked sensing. Most of the data in a sensor network deployment are created
through the act of sampling the sensing interface(s), and the time and location
of the sampling are in most cases a necessary part of the description of the
sampled data. The spatio-temporal origin of a data item also affects the quality
and quantity of processing performed on it.

Space awareness implies the existence of a coordinate system in which
sensor nodes can be situated. In fact, a typical sensor network deployment is
likely to have more than one coordinate system, each designed for a different
purpose. For instance, the absolute or relative geographic coordinates might
be required for tagging data samples at the node level, whereas the routing
protocols could be using a different coordinate system that leads to reduced
congestion and higher probability of timely data delivery in the network. Yet
another coordinate system could be used for back-end processing which maps
a particular (x, y) coordinate to, say, a building, a corridor, or a warehouse,
depending on the application domain. Figure 1.2 depicts three coordinate
systems overlaid on the same sensor network. From the perspective of appli-
cation development for networked sensor systems, a real or virtual coordinate
system can be deemed to be an essential service included in the system level
infrastructure, the details of which need not concern the programmer.

Another aspect of space awareness is that the application behavior can
be naturally specified in terms of spatial abstractions than in terms of nodes
and edges of the network graph. For example, a temperature monitoring

6 INTRODUCTION

application can be specified as “if more than 70% of nodes within a 2-meter
radius of any node report a temperature higher than 90 degrees, activate an
alarm at that node location.” The deployment of the network itself can be
specified in terms of the desired degree of coverage. The exact placement of
sensor nodes might not be of interest to the application developers as long
as the set of sensing tasks mapped onto a subset of those nodes at any given
time collaboratively ensures the desired coverage. Space-aware specification
of the desired functionality is a unique aspect of networked sensor systems
that has no analogous equivalent in traditional parallel and distributed com-
puting.

Nature of input data

A majority of the data in a networked sensor system represents the occurrence
of events in the physical environment and/or carries information about the
events. Each data instance can be considered as a first-class entity with asso-
ciated properties that could change with time and distance from its point of
origin. For instance, in embedded sense-and-respond systems where sensing
is coupled with local actuation and timely response to detected events is essen-
tial, the utility of the data that represent occurrence of the event reduces with
time. If the data are not processed by the application within a certain duration
from its time of origin, it is effectively useless. In-network processing that
seeks to move the computation close to the source of the data is required in
many sensor network applications to guarantee the desired end-to-end func-
tionality. This is in contrast to traditional distributed computing, where the
distribution of data and placement of tasks on compute nodes is primarily
determined by performance and reliability considerations.

Also, different subsets of the total data in the network will be of interest to
different applications at a given time, or to the same application at different
times. In a sensor network deployed for climate moderation in a commer-
cial building, an application component that periodically logs all temperature
readings in a central database might not be interested in the semantics of that
information, whereas another application component that is responsible for
maintaining a uniform climate could be interested in temperature gradients
that are above a certain threshold. From a programming perspective, it is im-
portant to give application developers the freedom to define what is relevant
and what is irrelevant and to produce and consume data at the desired level of
semantic abstraction.

PROGRAMMING OF DISTRIBUTED SENSOR NETWORKS 7

The semantics of data could also influence the protocols and services used
for transporting data through the network, and for prioritizing in-network ac-
tivities that are triggered in response to certain events. A piece of data that
represents a catastrophic event such as a forest fire is much more important than
any other data in the network at that time and the computation and communi-
cation resources in the network can be expected to be devoted to expediting
the transmission of the forest fire notification to its eventual destination. In a
purely transformational system, however, it can be argued that the notion of
importance of a particular piece of data does not really exist.

1.2 PROGRAMMING OF DISTRIBUTED SENSOR
NETWORKS

1.2.1 Layers of programming abstraction

Figure 1.3 depicts our view of the emerging layers of programming abstraction
for networked sensor systems. Many protocols have been implemented to pro-
vide the basic mechanisms for efficient infrastructure establishment and com-
munication in ad hoc deployments. These include energy-efficient medium
access, positioning, time synchronization, and a variety of routing protocols
such as data-centric and geographic routing that are unique to spatial comput-
ing in embedded networked sensing. Ongoing research, such as MiLAN [26],
is focusing on sensor data composition as part of the basic infrastructure. Sen-
sor data composition essentially means that the responsibility of interfacing
with physical sensors and aggregating the data into meaningful application-
level variables is delegated to an underlying runtime instead of being incor-
porated as part of the application-level logic. We now discuss the layers of
abstraction from the highest level of abstraction to the lowest.

1.2.1.1 Service-oriented specification To handle the complexity of
programming heterogeneous, large-scale, and possibly dynamic sensor net-
work deployments and to make the computing substrate accessible to the
non-expert, the highest level of programming abstraction for a sensor network
is likely to be a purely declarative language. The Semantic Streams markup
and query language [57] is an example of such a language that can be used
by end users to query for semantic information without worrying about how
the corresponding raw sensor data are gathered and aggregated. The basic
idea is to abstract the collaborative computing applications in the network as
a set of services and provide a query interpretation, planning, and resource
management engine to translate the service requirements specified by the end

8 INTRODUCTION

Service-oriented application specification

(Sc]ccliml. composition, optimization, dep]nymcnl)

/ Macro-programming

} N

Libraries and middleware services: Logical neighborhood
maintenance, event addressing, logical namespaces

Node-centric programming models

N

e
NN N

ata-centric/geographic routin ﬁensor data composition
ol

/’ositioning, time synch, MAC

Network deployment

Sensor interfaces

N\

N

Figure 1.3 Layers of abstraction for application development on WSNss.

user into a customized distributed computing application that provides the re-
sult. A declarative, service-oriented specification allows dynamic tasking of
the network by multiple users and is also easier to understand compared to
low level distributed programming.

1.2.1.2 Macroprogramming The objective of macroprogramming is to
allow the programmer to write a distributed sensing application without explic-
itly managing control, coordination, and state maintenance at the individual
node level. Macroprogramming languages provide abstractions that can spec-
ify aggregate behaviors that are automatically synthesized into software for
each node in the target deployment. The structure of the underlying runtime
system will depend on the particular programming model. While service-
oriented specification is likely to be invariably declarative, various program
flow mechanisms—functional, dataflow, and imperative—are being explored
as the basis for macroprogramming languages. Regiment [42] is a declar-
ative functional language based on Haskell, with support for region-based
aggregation, filtering, and function mapping. Kairos [23] is an imperative,
control-driven macroprogramming language for sensor networks that allows
the application developer to write a single centralized program that operates on
a centralized memory model of the sensor network state. ATaG [6] (discussed
in more detail in the remainder of this book) explores the dataflow paradigm
as a basis for architecture-independent programming of sensor network appli-
cations.

PROGRAMMING OF DISTRIBUTED SENSOR NETWORKS 9

1: void buildtree(node root)

2 node parent, self;

3: unsigned short dist_from_root;

4 node_list neighboring._nodes, full_node_set;

5 unsigned int sleep_interval=1000;
//Initialization

6: full_node_set=get_available_nodes();

7: for (node temp=get_first(full_node_set); temp!=NULL;
temp=get_next (full_node_set))

8: self=get_local_node_id ();

9: if (temp==root)

10: dist_from_root=0; parent=self;

11: else dist_from_root=INF;

12: neighboring_nodes=create _node_list(get_neighbors(temp));

13: full_node_set=get_available_nodes();
14: for (node iteri=get_first(full_node_set); iterl!=NULL;
iteri=get_next (full_node_set))

15: for(;;) //Event Loop

16: sleep(sleep_interval);

17 for (node iter2=get_first{(neighboring_nodes); iter2!=KULL;
iter2=get_next(neighboring_nodes))

18: if (dist_from_rootQ@iter2+1<dist_from_root)

19: dist_from_root=dist_from_root@iter2+l;

20: parent=iter2;

Figure 1.4 Kairos code example: Building a shortest path routing tree [23].

Figure 1.4 {23] is a complete, centralized Kairos program for building a
shortest path routing tree from a root node that is an input parameter. The
entire distributed algorithm for building such a tree is specified in this program.
Note that this code is not directly executed on each node. Instead, it is parsed
by a compiler that uses the program specification to (a) determine the actual
code to generate for each of the nodes in the network and (b) manage the local
and remote variables referred to in the code.

The initialization portion of the program gets all the nodes of the network,
and for each node it sets the initial distance from root and the parent node
pointer. The node that is to form the root of the routing tree sets its distance
from root as zero and its parent pointer to itself, while all others set their
distance to the root as infinity.

The event loop in lines 15 through 20 represents an iterative process where
each node periodically contacts each of its one-hop neighboring nodes from
the list of one-hop neighbors, determines if that node is closer to the root than
itself, and conditionally sets its parent in the routing tree to the neighboring
node that is nearest to the root.

10 INTRODUCTION

let mesh = planarize world
nodesAbove =
afilter ((>= threshold) .
(read_sensor SENSTYP))
mesh
midpoint nstl nst2 =
(read_nstate LOCATION nstl +
read_nstate LOCATION nst2) / 2
contourpoints node =
let neighborsBelow =
filter ((< threshold) .
(read_nstate SENSTYP))
(get_neighbors node)
in map (midpoint (get_nstate node))
neighborsBelow
all_contourpoints =
amap contourpoints nodesAbove
in
afold append all contourpoints

Figure 1.5 Regiment code example: Determining the contour between
adjacent areas of a sensor network [42].

Figure 1.5 [42] provides a glimpse into the Regiment programming style.
The program shown in the figure determines the contour between adjacent
areas of the network, where the nodes on one side of the contour have sensor
readings above some threshold. The program, written as a functional language,
first prunes the network graph into a planar form (“planarize world”) and
determines all the nodes whose sensor reading is above the threshold. The
remainder of the code takes each node of the set of nodes above the threshold
and forms a list of midpoints between the node and its neighboring nodes
below the threshold. Finally, the list of midpoints generated at the contour
nodes is aggregated to yield the contour line.

1.2.1.3 Node-centric programming Innode-centric programming, the
programmer has to translate the global application behavior in terms of local
actions on each node, as well as individually program the sensor nodes using
languages such as nesC [19], galsC [13], C/C++, or Java. The program ac-
cesses local sensing interfaces, maintains application level state in the local
memory, sends messages to other nodes addressed by node ID or location,
and responds to incoming messages from other nodes. While node-centric
programming allows manual cross-layer optimizations and thereby leads to

PROGRAMMING OF DISTRIBUTED SENSOR NETWORKS 11

configuration Blink { .
) module BlinkM {

1 I
provides {

implementation { %
interface StdControl; }

components Main, BlinkM, SingleTimer,

LedsC; uses {
g ! interface Timer;
Main.StdControl -> BlinkM.StdControl; interface Leds; }
Main.StdControl > 1

implementation |

SingleTimer.StdControl; i
command result_t StdControlLinit() {

BlinkM.Timer -> SingleTimer. Timer;

BlinkM.Leds -> LedsC; £all LectaiL
} return SLICCESS; }

command result_t StdControl.start() {
“configuration™ file defines modules and wiring return call Timer.slart(TIMER REPEAT, 1000y ; }
command result_t StdControl.stop() {
return call Timer.stop(); }
event result_t Timer.fired() {
call Leds.redToggle();
return SUCCESS; }

interface StdControl {
command result_t init();
command result_t start();
command result_t stop();)
}
Interface definition file for StdControl Module definition implements interfaces and
uses interfaces from other modules included
in configuration file.

Figure 1.6 Programming in nesC.

efficient implementations, the required expertise and effort makes this ap-
proach insufficient for developing sophisticated application behaviors for large-
scale sensor networks.

The concept of a logical neighborhood—defined in terms of distance, hops,
or other attributes—is common in node-centric programming. Common op-
erations upon the logical neighborhood include gathering data from all neigh-
bors, disseminating data to all neighbors, applying a computational transform
to specific values stored in the neighbors, etc. The usefulness and ubiquity of
neighborhood creation and maintenance has motivated the design of node-level
libraries [56, 55] that handle the low level details of control and coordination
and provide a neighborhood API to the programmer.

Middleware services [26, 37, 62] also increase the level of programming
abstraction by providing facilities such as phenomenon-centric abstractions.
Middleware services could create virtual topologies such as meshes and trees
in the network, allow the program to address other nodes in terms of logical,
dynamic relationships such as leader—follower or parent—child, support state-
centric programming models [35], etc. The middleware protocols themselves

12 INTRODUCTION

will typically be implemented using node-centric programming models and
could possibly but not necessarily use communication libraries as part of their
implementation.

1.2.2 Lessons from parallel and distributed computing

ATaG allows programmers to write architecture-independent networked sens-
ing applications using a small set of application-neutral abstractions. Intuitive
expression of reactive processing is accomplished in ATaG by using a data-
driven paradigm, while architecture-independence is made possible through
separation of functional concerns from the nonfunctional. These two core
ideas have been explored in the distributed computing community. The data
driven graph [52] extended the basic directed acyclic task graph model to
support loop representation and dynamically created tasks in parallel pro-
gramming. The use of data-driven semantics coupled with the task graph-like
representation enabled clarity and simplicty of program design, and it also
allowed for some optimizations relating to the data communication between
tasks.

The benefits of separating the core application functionality from other
concerns such as task placement and coordination motivated the FarGo [28]
model that enabled dynamic layout of distributed applications in large-scale
networks where capabilities of nodes and links could vary at runtime. By
explicitly indicating co-location and re-location semantics of the tasks, FarGo
elevated the performance and reliability of applications by allowing the de-
ferment of layout decisions to runtime. Distributed Oz [25] is perhaps the
closest to ATaG in terms of its objective of network transparency and network
awareness. Distributed Oz cleanly separates the application functionality from
aspects of distribution structure, fault tolerance, resource control and security,
and openness. There are no explicit operations to transfer data across the
network. All invocations of send() and receive() are done implicitly through
language constructs of centralized programming. IBM’s PIMA project [9]
explored a “write once, run anywhere” model for application front-ends by
specifying device-specific presentation hints separately from the tasks and
their interactions — yet again highlighting separation of functional and non-
functional concerns as the key enabler of architecture independence.

Tuple space is an abstract computation environment that represents a global
communication buffer accessible to computational entities in the system. This
was the basis for the generative communication model in the Linda coordi-
nation language [20] and is also being applied in networked sensing [14].
Communication orthogonality is a property of generative communication

PROGRAMMING OF DISTRIBUTED SENSOR NETWORKS 13

producer consumer

out(“employee’} 1234, “John™) in(“employee”, ifinteger, fn:firstname)

@{“employee”, 1234, “John™}

@ Producer adds a tuple to the tuple space. Note that producer task
is not defined in terms of input and output tuples and producer
task can choose to add any tuple it desires at any time

@ Tuple exists independently in the tuple space. Note that creation
of a tuple does not trigger the execution of consumer task and
tuple exists till it is read and destroyed — depending on
semantics of the language.

Consumer invokes the in() method and provides a template that
matches the tuple in the tuple space. Note that consumer task is
not automatically triggered and the consumer can provide any
template it desires at any time.

Figure 1.7 Programming with tuple spaces. The producer and consumer
tasks communicate via “in” and “out” primitives. The tuple persists in the
tuple spaces until it is actively retrieved by the consumer.

and means that both the sender and the receiver of a message are unaware of
each other. ATaG also has this property because the tasks that produce and
consume a particular data item in ATaG are not aware of each other. The data
pool in ATaG is superficially similar to the notion of a tuple space. However,
our active data pool moves the data items from producer to consumer(s) as
soon as they are produced, and it schedules the consumer tasks based on their
input interface and firing rules. This is different from the passive tuple space
that merely buffers the produced data items and whose modifications are really
a side effect of control-driven task execution.

14 INTRODUCTION

In fact, the concept of tuple spaces has its roots in Blackboard architec-
tures [43] of Al research. ATaG’s active data pool is similar to the “demoned
data servers” of DOSBART [34] that enabled distributed data-driven compu-
tation in a blackboard architecture. The notions of activity class and trigger
activities of DOSBART are similar to the abstract tasks and their firing rules
in the ATaG model, respectively.

1.3 MACROPROGRAMMING: WHAT AND WHY?

The primary focus of this dissertation is on the programming of large-scale
networked sensor systems. The purpose of the typical sensor network de-
ployment is to gather and process data from the environment for a single
“end-to-end” objective. The program that executes on each node is part of
a larger distributed application that delivers the results of an implicit or ex-
plicit domain specific query. Each node is required to be aware of its role
in accomplishing the overall objective; that is, it is required to implement a
predefined protocol for information exchange within the network. Consider a
sensor network deployed for object tracking. The desired result of the implicit
and perennial domain specific query in this case is the current location of tar-
get(s) (if any) in the network. A node-centric approach to programming the
network requires each node to be programmed with the following behavior.
The acoustic sensor is sampled periodically with a fixed or varying frequency,
a Fourier transform is applied to the time-domain samples, and the result is
compared with a set of acoustic patterns of interest to the end user. If a match
is found, the time- and location-stamped result is communicated to a desig-
nated “clusterhead” node which performs further processing such as line of
bearing estimation in an attempt to predict the location of the target.

This programming methodology where the desired global application be-
havior is manually decomposed by the programmer and subsequently coded
into individual node-level programs is termed node-centric programming and
is representative of state of the art. Node-centric programming has several
limitations. Manual translation of global behavior into local actions is likely
to be time-consuming and error prone for complex applications. If a new
global behavior is to be added to an existing program, the modifications to
the existing code are essentially ad hoc. The strong coupling of application-
level logic and system-level services such as resource management, routing,
localization, etc., also results in high coding complexity.

Macroprogramming broadly refers to programming methodologies for sen-
sor networks that allow the direct specification of aggregate behaviors. The

MACROPROGRAMMING: WHAT AND WHY? 15

existence of a mechanism to translate the macroprogram into the “equivalent”
set of node-level behaviors is implicit. The exact interpretation of macropro-
gramming varies. A Regiment program specifies operations (such as fold and
map) over sensor data produced by nodes with certain geographic or topologi-
cal relationships of interest. Since these subsets of the global network state can
be manipulated as a single unit, Regiment is a macroprogramming language.
Kairos is a macroprogramming language because the programmer writes a sin-
gle, centralized program for the entire network, and the compiler and runtime
system are responsible for the translation of this program into node-level be-
haviors, and implementing data coherence, respectively. TinyDB also enables
macroprogramming because the programmer who formulates the SQL-like
declarative aggregate query over sensor data is not responsible for (or even
aware of) the details of in-network processing that are responsible for data
collection and processing.

We define the following two types of macroprogramming that are supported
by ATaG.

» Application-level macroprogramming means that the programming ab-
stractions should allow the manipulation of information at the desired
level of semantic abstraction. The information may indicate the occur-
rence of an event and/or also carry information about the occurrence.
For instance, in an object tracking application, the program should be
able to access information such as “number of targets currently tracked,”
“location of nearest target,” etc., without worrying about how that in-
formation is obtained.

= Architecture-level macroprogramming means that the programming ab-
stractions should allow concise specification of common patterns of
distributed computing and communication in the network. Such pat-
terns are represented as part of neighborhood libraries defined for node-
centric programming methodologies {55]. These will typically have
equivalent, concise abstractions in the macroprogramming language
whose node-level implementation invokes the libraries.

A macroprogramming language can be application-neutral or application-
specific. The application-specific approach entails customized language fea-
tures to support a particular class of networked sensing applications. For
example, a programming language explicitly designed for multi-target track-
ing might provide the current set of target locations or the handles to the current
targets as a language feature whose implementation is hidden from the user. A
language for temperature monitoring might provide a topographic map of the

16 INTRODUCTION

terrain as a built-in data structure that is created and maintained entirely by the
runtime system. The advantage of this approach is that the implementation of
domain-specific features can be optimized based on a priori knowledge of the
pattern of information flow. If domain-specific features are integrated into the
language, the resultant complexity of coding a behavior in that domain is also
reduced. The drawback of this approach is that the portability and reusabil-
ity of application-level code across network architectures, node architectures,
and domains could be compromised. Also, adding new language features or
modifying existing features might require a redesign of the runtime system
and could be impossible or difficult for the application developer.

1.4 CONTRIBUTIONS AND OUTLINE

The two main contributions of this research are: (i) a programming model
called the Abstract Task Graph (ATaG) for architecture-independent applica-
tion development for a class of networked sensor systems and (ii) acomponent-
based software architecture for the runtime system. A third contribution
is a prototype environment for visual programming in ATaG and automatic
software synthesis for the target network deployment. The prototype com-
piler integrated into this environment is designed to demonstrate functionally
correct synthesis of a subset of the program features and does not optimize
for any performance related metrics. Indeed, the definition of the compilation
problem in the context of ATaG and the design and implementation of opti-
mizing compilers for different scenarios is a significant research problem in
its own right and one of the main areas of future work.

The Abstract Task Graph (ATaG)

ATaG is a macroprogramming model that builds upon the core concepts of
data-driven computing and incorporates novel extensions for distributed sense-
and-respond applications. In ATaG, the types of information processing func-
tionalities in the system are modeled as a set of abstract tasks with well-defined
input/output interfaces. User-provided code associated with each abstract task
implements the actual processing in the system. An ATaG program is abstract
because the exact number and placement of tasks and the control and coor-
dination mechanisms are not defined in the program but are determined at
compile-time and/or runtime, depending on the characteristics of the target
deployment. Although ATaG is superficially based on the task graph repre-
sentation, there are significant differences in the syntax and semantics, which

CONTRIBUTIONS AND OUTLINE 17

arise from the requirements of distributed networked sensing. The differenti-
ating factors include the notion of “abstract” tasks and data items, the use of
data-driven program flow semantics of the graph, the elevation of data items
as a first class entity in the graph representation along with the computational
tasks, the concept of spatial scope of a directed edge, etc.

There is a growing interest in defining macroprogramming languages [23,
42] and application development environments [12, 53] for sensor networks.
ATaG enables a methodology for architecture-independent development of
networked sensing applications. The same ATaG program may be automati-
cally synthesized for different network deployments, or adapted as nodes fail
or are added to the system. Furthermore, it allows application development
to proceed prior to decisions being made about the final configuration of the
nodes and the network, and in future implementations it will permit dynamic
reconfiguration of the application as the underlying network changes.

ATaG provides application-neutral support for macroprogramming. Using
a small set of basic abstractions, ATaG allows programmers to define their own
semantics for tasks and data items. The modularity and composability of ATaG
programs means that a library of common behaviors in a particular domain can
be defined by the programmer and can later be plugged into other applications
that need not know the implementation details of the library component. This
approach provides the benefits of using predefined domain-specific features
while avoiding the restrictiveness of a domain-specific, custom built runtime
system.

Data-Driven ATaG Runtime (DART)

ATaG is supported by a runtime system called DART whose structure and
function is not visible to the programmer. DART has a component-based soft-
ware architecture for modularity and flexibility. Each component of DART
provides one or more well-defined services to other components. The imple-
mentation of a service is hidden from the users of the service. The current
DART design can be easily implemented on operating systems that support
preemptive priority-based scheduling, multi-threaded execution, mutual ex-
clusion semaphores, message queues, and other mechanisms to handle con-
current access to critical sections and coordinate interactions between threads.
Most traditional operating system kernels provide these facilities. A proto-
type version of DART has been implemented in Java, and is designed to run
on relatively heavy duty sensor nodes, although Java Virtual Machines for
resource-constrained architectures are also available [48]. DART is also be-
ing implemented on the pC/OS-II real-time OS kernel [39], which has been
ported to a vast number of devices.

18 INTRODUCTION

The performance of DART is unlikely to compare favorably with hand-
optimized runtime systems where different functionalities are tightly inte-
grated into an inflexible, monolithic structure, and many cross-layer opti-
mizations are incorporated into the design. However, the tradeoff between
usability and flexibility, on one hand, and hand-optimized performance, on
the other, is common in all methodologies that seek to automate the design of
complex systems. A greater level of experience with implementing different
applications on a real DART-based system will guide future design choices
for the ATaG runtime.

Software synthesis

In the context of the ATaG-based programming framework, software synthesis
is the process of generating code for each node of the target sensor network
deployment for the selected ATaG program. The code that is associated with
each application-level functionality (abstract task) is to be provided by the
programmer. The task of the software synthesis process is to generate the
remainder of the software that is responsible for coordination and commu-
nication between the abstract tasks. To ease the task of software synthesis,
we designed DART such that a majority of the code base either is agnostic to
the application level functionality or can be customized by means of a con-
figuration file that is generated by the software synthesizer. As an example,
approximately 3000 lines of Java code runs on each sensor node in the ATaG
program for object tracking (Section 2.5.1), of which only 100 lines are actu-
ally provided by the application developer and the rest is comprised of DART
code that is used essentially unchanged and some glue code that is generated
by the software synthesizer. The newly generated glue code is only 15 lines
of Java that basically embeds the declarative part of the ATaG program into
the runtime system, along with a one-line configuration file for each node in
the target network that provides some state information to govern the node’s
behavior during the simulation.

Outline

The core ideas of ATaG have been individually explored in different contexts
in the parallel and distributed computing community. There are also other
approaches to the problem of macroprogramming of sensor networks being
explored in the sensor networking community. Some of these were discussed
previously in this chapter. Chapter 2 presents the ATaG programming model
in detail with a description of a syntax and semantics of ATaG program. A

CONTRIBUTIONS AND OUTLINE 19

set of programming idioms are also provided to illustrate the formulation of
oft-cited behaviors in sensor networking as ATaG programs. The design of the
DART runtime system is the subject of Chapter 3, which describes the service
provided by each of the DART components, the interactions between the
various components, and implementation notes. Chapters 2 and 3 also include
a discussion of future research directions in the context of the programming
model and the design of the runtime system, respectively. Chapter 4 presents
the visual programming and software synthesis environment for ATaG. A brief
primer on the Generic Modeling Environment [21] precedes the discussion of
the various modeling paradigms that are provided to the application developer.
A case study is included in Chapter 5 to illustrate the development of an
application consisting of two behaviors—object tracking and environment
monitoring—using this programming environment. We conclude in Chapter 6.

This Page Intentionally Left Blank

CHAPTER 2

THE ABSTRACT TASK GRAPH

2.1 TARGET APPLICATIONS AND ARCHITECTURES

ATaG is not designed for a particular sensor node platform, network archi-
tecture, or application domain. We model the deployment as a distributed
system consisting of a set of autonomous elements (sensor nodes). Each ele-
ment of the system has on-board computation and storage capability and can
communicate with the rest of the elements through one or more neighbors. In
addition, each element may be equipped with one or more types of sensing
or actuation mechanisms that can be controlled through software. Since sit-
uatedness (localization) is fundamental to embedded networked sensing, we
assume that each element is capable of determining its own location in some
shared coordinate system and/or namespace.

The programming model makes no assumptions about the communication
interface (wired or wireless) or about the computation, storage, and energy
resources available to a node. Of course, the resources at a node will constrain

Architecture-Independent Programming for Wireless Sensor Networks 21
By Amol B. Bakshi, Viktor K. Prasanna
Copyright ©) 2008 John Wiley & Sons, Inc.

22 THE ABSTRACT TASK GRAPH

the number of tasks that can be mapped onto it, the latency of communica-
tion could be affected by the available bandwidth between the node and its
neighbors, and the type of energy resources available could also affect the
system-wide performance. This analysis is expected to be performed at com-
pile time in the context of a specific network architecture, and the suitability
of an ATaG program for a particular architecture is not meant to be inherent
in the program itself. Thus, the target system can encompass a heterogeneous
collection of micro-sensor nodes such as the Motes, more capable nodes such
as the Stargate, and even desktop PCs or servers connected to the internet.
ATaG also makes no assumptions about the mobility of nodes or other factors
that could lead to changes in network topology at run time. The interpretation
of program elements will depend on the nature of the target deployment, but
the definition of the features of the programming model is independent of such
assumptions.

For example, an ATaG programmer can specify the instantiation density
of an application level task and can state, say, that one instance of task A
should be instantiated per square meter of the deployment. In this case, if the
nodes are mobile, the runtime system is expected to be capable enough to de-
tect situations when this requirement is no longer satisfied and take corrective
measures such as reassigning tasks to nodes in a way that expected density is
once again achieved. If the nodes are immobile, the initial task assignment
at compile time can be expected to be valid until other factors such as energy
depletion necessitate reassignment. In this example, the application developer
does not care about the static or dynamic nature of the deployment as long
as the high-level application requirements as expressed through an ATaG pro-
gram are met. More important, keeping the programming model free of such
assumptions also adds to the architecture independence of the application.
Of course, this does not preclude ATaG programs from being designed for
specific types of deployments, but the programming model itself is designed
for a range of network architectures, with the job of deployment-specific cus-
tomization largely delegated to the compilation process and the protocols and
services incorporated into the underlying runtime system.

ATaG programs are data-driven, which means that tasks are scheduled when
their data are available (possibly also subject to other firing rules). Tasks in-
teract only with the data pool, and one task cannot directly control other tasks.
This lack of application-level control over task scheduling and execution (that
is entirely managed by the underlying runtime system) limits the applicability
of ATaG to scenarios where such fine-grained control over node-level exe-
cution is not required. Low-duty cycle environment monitoring that require

KEY CONCEPTS 23

periodic network-wide data collection with or without in-network aggrega-
tion is an example of an application that can be programmed in ATaG. On
the other hand, if an application requires strict latency guarantees on critical
paths from sensing to actuation, a control-driven programming language such
as Kairos [23] may be better suited than the data-driven semantics of ATaG.

2.2 KEY CONCEPTS

ATaG is based on two key concepts: (i) data-driven program flow that enables
intuitive expression of reactive processing in the network and leads to modu-
lar, composable, and reusable programs and (ii) mixed imperative-declarative
program specification that separates the functional and non-functional aspects
of the application and provides architecture independence, spatial awareness,
and network awareness. We discuss these concepts in more detail in the fol-
lowing subsections.

2.2.1 Data-Driven Computing

2.2.1.1 Program flow mechanisms Three basic program flow mecha-
nisms being explored in the context of programming of networked sensor sys-
tems are: control-driven, data-driven, and demand-driven. In control-driven
program flow, instructions are executed in an explicitly specified order. Anex-
ample of this is the well-known von Neumann architecture where the program
counter is incremented (or otherwise modified) after every execution and the
next instruction in the sequence is decoded and executed. The single thread
of control passes from instruction to instruction, and the modifications to the
data store are a side effect of instruction execution. Data are passed indirectly
between instructions by means of referencing common memory locations. In
parallel forms of control flow, there are multiple threads and mechanisms such
as fork and join for coordination between the threads. Imperative languages
such as C are representative of control-driven programming. Paradigms such
as object-oriented programming, distributed programming through message
passing, etc., provide ways to structure complex control-driven programs to
make them easier to design, maintain, and/or deploy, but the basic model of
a set of “active” instructions manipulating a (conceptually) shared “passive”
data store remains unchanged.

Data-driven program flow is fundamentally different from control-driven flow
in the following aspects. First, the flow of control is governed by data depen-
dencies and not determined by an explicitly specified sequence of tasks/in-

24 THE ABSTRACT TASK GRAPH

The computation:
b=fi(a); d = fi(c); e = f5(b,d)

= k.
Program memory Data memory Program memory Data memory

(active) (passive) (passive) (active)

felch a (................
b= fi(a)

store b

fetch ¢ T
= C
Rl E f>: in(c) out(d) &

o e e >

fetch b i 1_

fetch d L — e e

e = fi(b.d) f3: in(b, d) out(e) ...)E]
store e ftisbianerein
end

Data-driven: Creation of data items triggers
the dependent tasks. Items a and ¢ are
assumed to exist at t=0 and hence trigger the
execution of f; and f; respectively

Control-driven: Program counter (PC)
executes instructions in order. Data accesses
are initiated by the instructions

Figure 2.1 Data-driven vs. Control-driven.

structions to be executed. Tasks are defined in terms of their input and output
data items. In the basic dataflow model, an instruction is considered to be
enabled when its operands are ready, and the program terminates when no
instructions are enabled. Data dependence is the sole means of task schedul-
ing and also the synchronization. Second, data are explicitly passed between
tasks. There is a data pool abstraction that tasks write to and read from, but
the concept of indirect sharing of data through referencing common locations
(shared variables) in the data pool does not exist. Dataflow programs are
commonly expressed as directed graphs where the nodes of the graph corre-
spond to tasks (instructions) and the directed arrows denote data dependencies
between tasks.

The term “event-driven processing” is used in the sensor network com-
munity, specifically in the context of the TinyOS operating system for the
Berkeley Motes. Event-driven means that processes need not poll or block

KEY CONCEPTS 25

for input, consuming valuable system resources while doing so. In networked
sensor systems where certain kinds of events might be very rare compared to
the frequency of polling, such behavior is wasteful. Instead, the event-driven
philosophy allows the process to sleep until its required trigger input is avail-
able and be woken up (activated) at the suitable time. Programming with the
nesC language qualifies as event-driven programming because the program is
basically structured as a set of modules with well-defined interfaces that can
be invoked by other modules to request a service (“commands”) or act as a
callback to the caller module to indicate completion of the service (“events”).
The event-driven execution in this context is essentially control-driven pro-
gram flow where the events correspond not to the availability of input data for
a particular module, but to the invocation of an asynchronous function call by
another module. The transfer of data between modules (if any) is hidden in
the arguments to the function being invoked. The core of the operating system
is just a scheduler, and there is no active data store that spawns tasks based on
their firing conditions.

Tuple spaces is another abstraction that is superficially similar to data-
driven program flow but, at least as used in the Linda coordination language,
is basically a mechanism for spatially and temporally decoupled sharing of
data among multiple processes in a control-driven distributed program. A
tuple space is a shared, associative memory maintained by an underlying run-
time system. Although the shared memory abstraction reduces the complexity
of distributed programming compared to message passing, location-based ad-
dressing of the shared memory is cumbersome for a variety of reasons. Instead,
processes add “tuples” to the shared memory by means of an in() primitive,
and they read tuples by means of the out () primitive. Tuples are typed group-
ings of relevant fields that are addressed not by their location in the logically
shared memory but by their content and type. Since the reads and writes are
directed at the tuple space and not at other processes, programs gain modular-
ity and extensibility. The tuple space can be considered as just another form of
shared memory in a control-driven program flow because the thread of control
is very much in the processes themselves and not determined by the contents
of the tuple space. Like the event-driven programming of nesC/TinyOS which
eliminates the need for polling or blocking and thereby makes control-driven
programming more efficient, mechanisms such as the notify () primitive of
JavaSpaces have been defined for the tuple space abstractions. However, just
as event-driven execution does not make nesC a data-driven language, the ad-
dition of notify () to tuple spaces does not make it a data-driven paradigm,
although the other benefits of the tuple spaces make it a promising approach

26 THE ABSTRACT TASK GRAPH

for sharing information in highly distributed and dynamic systems such as
sensor networks. One of the many extensions to the basic Linda model that
have been proposed over the past couple of decades is Lime, which, among
other extensions, adds the concept of a reaction, which is a method to be exe-
cuted when a tuple matching a particular pattern is found among the contents
of the tuple space. An overview, classification, and analysis of approaches to
embed reactive processing in shared dataspaces can be found in [11].

Finally, demand-driven programming—also known as reduction program-
ming—is a third paradigm where the demand for a value triggers the com-
putation that is responsible for producing the value. That computation may
in turn require values that lead to more computations and so on. Functional
programming with lazy evaluation is an example of the demand-driven pro-
gram flow mechanism. In reduction programs, there is typically no concept
of a storage location that can be read and written. All program structures are
expressions. When a program is expressed as a function whose arguments in
turn can be functions themselves, the programmer is describing the solution
space without specifying the exact sequence of instruction execution required
to arrive at a solution. Regiment [42] is a functional language based on Haskell
that exploits the declarative nature of functional programming to simplify the
task of collaborative computing in networked sensor systems.

2.2.1.2 Why data-driven? The individual sensor node will typically
have a traditional, sequentially programmable von Neumann or Harvard ar-
chitecture, along with support for one or more control-driven, imperative lan-
guages such as C. At the system level, which is the domain of macroprogram-
ming, there are different ways of modeling the collection of von Neumann
architectures that forms the overall computing substrate. One approach is
to (a) extend the node-level programming paradigm to encompass the entire
system and (b) model the sensor network as a single processing element and a
single centralized memory [23]. The von Neumann model can also be aban-
doned at the system level altogether, and the macroprogramming language can
be based upon an alternate paradigm such as functional programming [42].
ATaG explores the dataflow paradigm for the following reasons.

Reactive processing. A sensor network application can be intuitively modeled
as a set of node-level or system-level responses to node-level or system-level
events. Events will be defined by the application developer at desired levels
of semantic abstraction, based on the application domain. An event could
indicate the occurrence of phenomena in the physical environment (physical
event) or the execution of a particular phase of processing in the network

KEY CONCEPTS 27

(computational event). In addition to denoting occurrence, the event could
also carry information about (a) the phenomena in the former case and (b) the
results of intermediate computation in the latter. Similarly, a reaction to an
event could involve a sequence of computation and communication involving
one or more nodes of the network.

Data-driven programming is especially suited for expressing reactive ap-
plications. A data-driven program consists of a set of tasks with well-defined
input and output interfaces. In the pure data-driven model, a task is executed
only when all of its inputs are available. However variants of the basic model
(including our variant in ATaG) allow the definition of firing rules that can be
used to define triggering condition of a task. For instance, a task could be
triggered when a specific input is available, or when any one of its inputs is
available, or when a certain fraction of its inputs are available. These basic
rules can be used to define complex behaviors, as will be illustrated in Sec-
tion 2.5. Also, tasks are disjoint from each other in the sense that all interaction
between tasks is indirect—through the production and consumption of data
items. Since tasks are decoupled, a given task can defined to use data items
at the desired level of semantic abstraction without having to worrying about
how they are produced. This supports application-level macroprogramming.

Reusability and composability. Modularity, reusability, and composabil-
ity are important nonfunctional requirements for sensor network applications.
Ultimately, we envision our programming model to be integrated into an appli-
cation synthesis framework similar to the vision of service-oriented program
composition [36]. Macroprograms will be generated automatically from a
high-level declarative specification and in turn compiled into node-level spec-
ifications. Modularity and composability enables the creation of libraries of
commonly encountered behaviors and allows existing applications to be suit-
ably reused as subsets of larger functionalities.

In control-driven distributed programming using message passing or other
communication libraries, tasks explicitly invoke each other’s services. Since
this requires a task to have information about other task it communicates with,
any modification to a task is likely to affect other tasks in the program. Also,
if a new task (functionality) is added to the program, all tasks that are to take
advantage of that functionality must be modified to incorporate the suitable
calls to the newly added task. This tight coupling of task interfaces restricts
the reusability of code and composability of programs.

In data-driven programming however, task interfaces are specified as “Task
A reads data item Temperature and produces data item Alarm” or “Task B
reads data item Temperature and produces data item Maximum.” Suppose

28 THE ABSTRACT TASK GRAPH

a new functionality is to be added to this temperature monitoring program.
The purpose of this new task is to corroborate the readings from a wider area
around the node that produced the alarm and produce another “verified alarm”
based on the results. In data-driven programming, all that is required is to
simply define a new task as “Task C reads data items Alarm and Temperature
and produces data item VerifiedAlarm.” The representation of the spatial
aspect of this processing will be discussed in the next section, specifically the
collection of data from the neighborhood. The emphasis here is on the fact
that the addition of Task C does not change the existing tasks in any way.
Also, Task C does not care about how the Alarm is produced by Task B. The
new program is simply a concatenation of the three tasks, and their mutual
dependency is implicit in their input and output interfaces defined in terms of
data items.

2.2.2 Mixed Imperative—Declarative Specification

Imperative programming is a programming paradigm where computation is
specified in terms of statements (commands) that are to be executed in se-
quence and that change the program state. Almost all processors are designed
to execute imperative programs, and the program state at any given time is
represented by the contents of the processor memory at that time. Since
imperative programming requires the programmer to specify the ‘how’ of
computation in detail, the advantage of intimate control over program execu-
tion is offset by the programming complexity, especially for large-scale and/or
distributed systems. High-level procedural languages and object-oriented lan-
guages provide constructs such as objects that ease the task of writing complex
imperative programs, but the basic paradigm remains unchanged. nesC {19]
and Kairos [23] are examples of imperative programming languages for sensor
network applications.

Declarative programming, in contrast, focuses on the “what” of computa-
tion, leaving the “how” unspecified. A declarative program can be viewed as
the description of a solution space where the sequence of steps to arrive at
the solution is left to some underlying interpreter. Functional programming
and logic programming are examples of declarative programming. The ma-
jor advantage of declarative programming from an application development
perspective is the reduced complexity of programming that is a result of del-
egating most of the selection and synthesis of underlying mechanisms to an
unspecified interpreter, while the application developer focuses primarily on
formulating the solution space. Regiment [42], TinyDB [38], and Seman-
tic Streams [57] are examples of the declarative programming paradigm for
sensor network applications.

SYNTAX 29

Now, the functional aspect of a sensor network application refers to the code
(tasks) that runs on the individual sensor nodes and performs data processing.
Examples of nonfunctional aspects are task placement and mechanisms for
communication and coordination. Consider a simple application where a
collector task running on a designated root node periodically receives and
logs temperature readings from every node in the network. The functional
aspects of this application are completely defined by the code that performs
the sampling and the code that performs the logging. As long as there is a
mechanism to (i) ensure the placement of one sampling task on each node of
the network and one logging task on the root node, (ii) periodically execute
the sampling task, and (iii) route the sampled data from its point of origin to
the root node, the details of its implementation should not be the application
developers’ concern.

The ATaG programming paradigm is based on the observation that specifi-
cation of functional aspects of the networked sensing application in an impera-
tive style and the nonfunctional aspects in a declarative style affords a tradeoff
between the need for control over application execution and the need to reduce
the complexity of communication and coordination. The latter is a substantial
fraction of a networked sensing application and can really be considered as a
service offered by the system instead of an integral and integrated part of the
application code.

More importantly, ATaG enables architecture independence by clearly sep-
arating the “when and where” of processing from the “what.” The former
constitutes the declarative part and is specified through parameterized spatial
and temporal attributes for a generic network architecture. The latter con-
stitutes the imperative part and is the actual task code supplied by the user.
The same program can be compiled for a different network size and topology
by interpreting the declarative part in the context of that network architecture
while the imperative part remains unchanged.

2.3 SYNTAX
2.3.1 The Structure of an ATaG program

The task graph is a widely used application model. In the task graph nota-
tion, the overall computation is represented as an acyclic directed graph. The
nodes of the graph correspond to processes (tasks), and a pair of distinct tasks
are connected by a directed edge iff the task at the tail of the directed edge
requires as input the results of execution of the task at its head. In the simplest
model, a task cannot start executing until all its predecessors have finished

30 THE ABSTRACT TASK GRAPH

execution. For transformational applications, the task graph exposes the po-
tential for concurrent execution of tasks and is widely used in task scheduling
and allocation [2, 45]. The task graph is also commonly annotated/extended
with other information relevant to the problem domain—for example, the con-
ditional task graph for low-power embedded system synthesis {58}, the aug-
mented task dependency graph [46] for automated software partitioning and
mapping for distributed multiprocessors, the iterative task graph for represent-
ing loops [59], etc. Annotation of paths in the task graph with throughput and
latency constraints has been employed for resource allocation in distributed
sensor—actuator systems [4].

The ATaG model of a program is similar to the task graph model in that the
application is represented as a set of tasks and a set of data items connected via
directed arrows denoting the input or output relationship between a task and
a data item. Tasks and arrows (called “channels” in ATaG) also have associ-
ated annotations that determine the translation of the architecture-independent
ATaG program in the context of a particular network deployment.

An ATaG program is a set of abstract declarations. An abstract
declaration can be one of three types: abstract task, abstract data, or abstract
channel. Each abstract declaration consists of a set of annotations. Each
annotation is a 2-tuple where the first element is the fype of annotation, and
the second element is the value. Hereafter, we occasionally omit the word
“abstract” for sake of brevity. Figure 2.2 provides a general overview of the

ATaG Program

Abstract Task Abstract Data Abstract Channel

/\ —— neighborhood
Firing rules Placement Eiftance
ps
(“when”) (“where”) k-nearest
periodic node ID(s) | virtual topology
aperiodic geographic parent
tany data location(s) children
resource |— clustering
alldata availability domain
degree of instances-nearest
coverage L— initiation

|: push
pull

Figure 2.2 An overview of the ATaG syntax.

SYNTAX 31

ATaG syntax and the broad classification of the annotation types currently
supported. The task annotations relate to the placement and firing rules of
tasks, while the channel annotations are used to specify different types of
“interests” in instances of the associated abstract data item. Support for task
placement based on compile-time or runtime availability of resources or on
the desired degree of coverage (for sensing tasks) is not yet implemented in
the prototype ATaG programming environment, and is hence italicized in the
figure. The set of annotations is open-ended: More types can be defined based
on the target class of applications, the hardware architecture of the sensor node,
and the capabilities of the runtime system.

Abstract task: Each abstract task declaration represents a type of processing
that could occur in the application. The number of instances of the abstract task
existing in the system at a given time is determined in the context of a specific
network description by the annotations associated with that declaration. Each
task is labeled with a unique name by the programmer. Associated with each
task declaration is an executable specification in a traditional programming
language that is supported by the target platform. Table 2.1 describes the
annotations that can be associated with a task declaration in the current version
of ATaG.

Abstract data: Each abstract data declaration represents a type of application-
specific data object that could be exchanged between abstract tasks. ATaG does
not associate any semantics with the data declaration. The number of instances
of a particular type of data object in the system at a given time is determined by
the associated annotations in the context of a specific deployment and depends
on the instantiation and firing rules of tasks producing or consuming the data
objects. Each data declaration is labeled with a unique name. Similar to the
executable code associated with the task declaration, an application-specific
payload is associated with the data declaration. This payload typically consists
of a set of variables in the programming language supported by the target
platform. No other annotations are currently associated with abstract data
items.

Abstract channel: The abstract channel associates a task declaration with a
data declaration and represents not just which data objects are produced and/or
consumed by a given task, but which instances of those types of data items are
of interest to a particular instance of the task. An abstract channel is called an
input (output) channel if the data item is to be consumed (produced) by the
task. In an ATaG program, more than one input channels may be defined for a
given abstract data item—denoting the fact that more than one consumer exists

32 THE ABSTRACT TASK GRAPH

Table 2.1 Abstract Task: Annotations.

Type: Instantiation

Value[:Parameter]

Description

one-anywhere

Create one instance of the task on any node in the network

one-on-node-label:]

Create one instance of the task on each node labeled / (dynamic)

one-on-node-ID:id

Create one instance of the task on node id

nodes-per-
instance:[/]n

Create one instance of the task for each n nodes of the network.
When # is preceded by a “/”, create exactly n instances of the task
and divide the total number of nodes into n non-overlapping domains,
each owned by one instance.

area-per-
instance:[/larea

Same as for nodes-per-instance. Parameter denotes area of deploy-
ment instead of number of nodes. The non-overlapping domains are
in terms of area of deployment, not number of nodes.

spatial-

extent:z1, Y1, T2, Yy, . -

Create one instance of the task on every node that is deployed in the

. polygon defined by the coordinates (z1,y1), (z2,¥2), - . ., (1, y1)-

Type: Firing rule

Value[:Parameter] Description

periodic:p Schedule task for periodic execution with period of p seconds.

any-data Schedule task for execution when at least one of the input data items
are available.

all-data Schedule task for execution only when all the input data items are

available.

for that type of data. The current design of the ATaG runtime allows only one
output channel to be associated with a particular abstract data item; that is,
there can be at most one producer task. This restriction may be eliminated in
the future.

Table 2.2 describes the annotations that can be associated with an abstract
channel in the current version of ATaG. The abstract channel is the key to
concise, flexible, and architecture-independent specification of common pat-
terns of information flow in the network. For instance, spatial dissemination
and collection patterns may be expressed using simple annotations such as “I-
hop,” “local,” or “all nodes,” on output and input channels. More sophisticated
annotations may be defined as needed or desired for a particular application

SYNTAX 33

Table 2.2 Abstract Channel: Annotations.

Type: Initiation

Value Description

push The runtime system at the site of production of each instance of the
associated abstract data item is responsible for sending the instance
to nodes hosting suitable instances of the consumer task(s).

pull The runtime system at the node hosting an instance of the consumer
task is responsible for requesting the required instance(s) of the as-
sociated abstract data item from the site(s) of production.

Type: Interest

Value[:Parameter] Description

[-]local Channel applies to the local data pool of the task instance. The nega-
tion qualifier excludes the local data pool, and can be used in con-
junction with other qualifiers (see Section 2.3.3 for an example).

neighborhood-hops:n Channel includes all nodes within the #-hop neighborhood of the node
hosting the task instance

neighborhood- Channel includes all nodes within a distance d of the node hosting

distance:d the task instance

k-nearest-nodes:k

Channel includes the k nearest nodes of the node hosting the task
instance

k-nearest-pc:k

The input (output) channel includes the the set of nodes that host the
k nearest producers (consumers) of the data item associated with this
channel

all

Channel includes all nodes in the system

domain

Channel includes all nodes that are owned by the task instance. This
value is used in conjunction with the nodes-per-instance or area-per-
instance values of the Instantiation annotation of the abstract task (see
Fig. 2.10 for an example)

parent

Channel applies to the parent of the node hosting the task instance;
in the virtual tree topology imposed on the network by the runtime
system.

children

Channel applies to all children of the node hosting the task instance;
in the virtual tree topology imposed on the network by the runtime
system.

34 THE ABSTRACT TASK GRAPH

domain. Section 2.5 illustrates the application of these annotations through a
set of ATaG programming examples.

In the following sections, we discuss in more detail the task and channel
annotations listed in Tables 2.1 and 2.2, respectively. The annotations in the
tables are a representative subset defined to illustrate the specification of oft
cited programming idioms in current sensor networking literature using the
ATaG model. There is no fixed (standard) set of annotations for ATaG. In
fact, the annotations that form the declarative part of ATaG programming
can and should be customized to different application domains and system
architectures.

2.3.2 More on task annotations

The essence of mixed imperative—declarative specification is the separation
of task functionality from the conditions that govern the instantiation of that
functionality on one or more nodes of the network at a given time. The need to
specify where (spatial) and when (temporal) such instantiation should occur
leads to two classes of task annotations: The first is related to placement
(spatial) and the second specifies the firing rules (temporal). Annotations in
these two classes govern spatial and temporal task instantiation, respectively.

Task placement versus task invocation. The placement of a task on a par-
ticular node does not necessarily mean that it will be invoked. The invocation
depends on the satisfaction of firing rules on that node. For instance, in a
fire monitoring application, each node could host a task that is responsible
for sending an alarm message containing the location of a fire detected in the
node’s neighborhood. The placement annotation for this task will specify that
it should be instantiated on all nodes. The firing rule for this task will indi-
cate that it should be invoked only when certain conditions are satisfied. In
a data-driven programming model like ATaG, this condition will typically be
the presence of a data object that is produced by one or more other tasks on
the node or on the neighboring nodes only when the result of the collaborative
computation on temperature reading indicates the likelihood of a fire.

Although the alarm notification task is placed on each node of the network,
only a small fraction of the tasks may actually be executed in the lifetime of
the sensor network. This distinction between placement and invocation, along
with the fact that the former does not necessarily imply the latter, is therefore
important.

Task placement versus code placement. Another related issue is that of task
placement versus code placement. The abstract task of an ATaG applicationis a

SYNTAX 35

unit of functionality that is flexibly instantiated in the network. When an ATaG
application is compiled onto a target deployment, the placement annotations
for the abstract tasks are interpreted in the context of the target network and the
tasks are “assigned to” or “placed onto” a subset of the nodes. Code placement,
on the other hand, refers to the presence of the code corresponding to that task
in the program memory of that node. This distinction becomes important
for sensor networks where the program memory is relatively large and every
sensor node has enough storage to host the code associated with every abstract
task in the ATaG application, regardless of whether that task is assigned to (or
placed on) that node. Just as task placement does not necessarily imply task
invocation, code placement does not necessarily imply task placement in this
resource-rich sensor network scenario.

In resource-constrained environment, code placement could correspond to
task placement and the application-level code provided to a node will be only
for the tasks that are placed onto that node. If one or more tasks have to be re-
assigned to adapt to a changing network or changing application requirements,
the necessary code will also have to be provided to nodes that previously did
not host the task. In resource-rich environments where the node already has
the code for all tasks in the applications, reassignment can be performed much
more simply by setting a flag in the runtime system to record the assignment
of the task to the node. The ATaG programming model is independent of
the architecture of the target network or sensor node. The application de-
velopment methodology with ATaG allows for the same ATaG program to be
compiled into widely varying architectures by encapsulating the architecture-
specific translations within a compiler. Multiple compilers can be plugged
into the ATaG application development environment and can conceptually al-
low the same program to be compiled for different architectures from a single
programming and software synthesis environment.

We now discuss the placement annotations in more detail. The annota-
tions listed in Table 2.1 can be broadly divided into three subclasses: (i)
fine-grained control over task placement, (ii) density-based instantiation, and
(iii) geographic instantiation. These subclasses are not exclusive and a given
annotation could belong to more than one of these classes.

Fine-grained control over task placement. In some applications, the loca-
tion of certain types of functionality is predetermined. For instance, consider
an in-building climate control system that is monitored from some central sta-
tion. Besides the in-network sense-and-response functionality, periodic status
reports could be forwarded to the central station that is also abstracted as a
sensor node. Now, the location and/or identifier of this supervisor node are

36 THE ABSTRACT TASK GRAPH

determined at design time, and the supervisor task in the application must be
assigned to this node. In scenarios such as these, there needs to be a way for
the programmer to indicate the exact placement of one or more tasks based on
a priori knowledge of the sensor network deployment. The one-on-node-ID:n
is an example of an annotation that provides such fine grained control over
task placement. Currently, the parameter for this annotation is the node ID,
with the assumption that each node in the network has a unique identifier that
is known at compile time. This annotation can be trivially generalized to allow
the specification of a list of node IDs instead of a single ID, thereby allowing
the programmer to specify a list of nodes that should host the task in question.

The spatial extent:x1,y1,x2,y2,... annotation has a similar motivation and
capability as the one-on-node-ID:n annotation, except that the former allows
fine-grained placement control in terms of geographic area. For deployment
scenarios where the (real or virtual) coordinate system is known a priori, this
annotation can be used to localize certain applications to a specific area of
deployment, thereby enabling a virtual partitioning of the deployment into
different zones. For instance, a particular spatial extent might correspond to
a parking garage, whereas another extent could map onto an adjacent office
building. Although a single, connected sensor network could encompass both
the office building and the parking garage, the programmer might be interested
in deploying, say, a vehicle speed monitoring application only in the parking
garage and not in the office building.

Density-based instantiation. Density-based instantiation is based on the ob-
servation that a sensor network can be modeled as a discrete sampling of a
continuous physical space. The “end user” who is interested in obtaining in-
formation about properties or events of interest in the physical environment
will not be overly concerned with the number of nodes in the network, their
connectivity, placement, etc. The types of sensing interfaces and the range
of the sensors are likely to be of greater interest than the radio range and the
network connectivity. In other words, if the range of a particular sensing in-
terface is, say, one square meter, instantiating the corresponding task with an
approximate density of one square meter should be sufficient to guarantee a
high degree of coverage. Depending on the density of the node deployment,
this specification could translate into an instantiation density in terms of nodes.
From the programmers’ perspective, however, the former specification cap-
tures the high-level intent independent of a particular network architecture.
Hence, annotations such as “area-per-instance:area” have been defined. The
“nodes-per-instance:n” annotation provides a similar control over instantiation
density but in terms of sensor nodes instead of area.

SYNTAX 37

Task assignment to logical partitions. Variants of the density-based instan-
tiation annotations are created by inserting a “/” before the parameter value.
The area-per-instance:/n annotation instructs the compiler to divide the total
area of deployment into exactly n domains and to place one instance of the
task in each domain. Similarly, the nodes-per-instance:/n annotation implies
a partitioning of the number of nodes into exactly n groups, and the placement
of one instance of the task in each of those groups. These annotations form the
basic building blocks for constructing hierarchical structures in the sensor net-
work, where the task instantiated in a certain group of nodes or geographical
area acts as the cluster-head for that area.

In the current version of the ATaG compiler, this partitioning and alloca-
tion is not performed with a view to optimize any performance metric. For
example, the result of compiling the annotation “nodes-per-instance:/4” will
be the division of the set of sensor nodes into four groups, and the assignment
of one instance of the abstract task to each group. The choice of node within
each group is random. In a real-world scenario, this choice could be influ-
enced by performance considerations. Consider a network of a hundred nodes
numbered 0 through 99. For the above annotation, instantiating the associated
abstract task on nodes 0, 1, 2, and 3 is correct because each of these nodes can
be imagined to be representative of a group of 25 nodes that form a partition.
However, if the role of this task is to collect and process data from the other
24 nodes in its group, then the geographic placement of the four nodes will
greatly impact the communication costs and hence the energy performance
and lifetime of the system. Ongoing work in the ATaG project is focusing
on developing an efficient compiler for ATaG that takes into consideration
a specific performance metric while translating annotations for a particular
network deployment.

Generalizing task annotations: Attribute-based task placement. The spe-
cific annotations listed in Table 2.1 provide control over placement based on
geographic location or node identifiers. While this is a useful set of annota-
tions to define many commonly encountered patterns in sensor networking (as
will be illustrated through programming idioms in Section 2.5), other useful
annotations can be defined.

Consider the placement of tasks predicated on the resources available at a
node in a heterogeneous networked sensor system where a sensor node could
range from the Berkeley Motes to a desktop PC equipped with a webcam.
For example, the programmer might wish to designate a task for placement
only on sensor nodes that are equipped with an acoustic sensor. Presum-
ably, this task will contain code that samples the acoustic sensor. Other tasks

38 THE ABSTRACT TASK GRAPH

could be earmarked for sensor nodes that have the minimum computation re-
sources, communication bandwidth, or storage (memory) capacity to support
their execution. The ability to associate the requisite sensing and compu-
tation requirements of a task with its declaration is especially important for
architecture-independent programming for a heterogeneous system. Note that
such resource annotations can also be combined with other annotations to con-
trol, say, the placement of tasks with a specific sensing interface in a particular
geographic region.

Resource annotations can also be defined for resources that are expected
to change at runtime. Energy level at a node is a classic example of such a
resource. An abstract task can be annotated with a particular minimum energy
level so as to be invoked only when the energy resources at the node are
above that limit and other invocation triggers (firing rules) are satisfied. The
application of such annotation is twofold. First, it allows the system to switch
between different versions of the application at runtime based on energy levels,
where each version could correspond to a different pattern of computation
and communication in the network. Second, it allows a node to switch from
using one implementation of a task to another when the energy level drops
below some threshold. From the ATaG program’s perspective, this means that
different subsets of the abstract tasks (and hence the associated channels and
data items) in the same program are activated at different times, based on the
resource availability in the network. The program therefore represents the
union of possible spatio-temporal execution patterns, depending on resource
availability.

The variety of task annotations defined above lead naturally to a common
framework of attribute-based task placement. In the previous discussions, we
have defined various categories for task annotations such as fine-grained con-
trol, density-based instantiation, resource-linked instantiation, etc. For each
of these categories, we discussed representative annotations and the applica-
ble scenarios of usage. Instead of extending the set of annotations in each
categories and/or defining new categories of annotations, a common frame-
work can be adopted based on the observation that geographic location, node
identifiers, sensing interface, resource availability, etc., all characterize the
state of a node at a given point in time and space. Each of these categories can
be considered as a type of attribute value that a sensor node has to satisfy in
order to be eligible for hosting the task. If node attributes (such as geographic
location, node ID, and type of sensing interface) are known at design time
and are unchanging for the target deployment, task placement can also be
determined at compile time. The runtime system does not need to incorporate

SYNTAX 39

nodes-per-instance: |

Figure 2.3 Instantiating an abstract task on each node in the network.

mechanisms to track possible changes in these attributes, thereby reducing the
complexity of the runtime system software.

For other attributes such as energy level of the node, compile time decisions
cannot be made because it is an inherently dynamic property of the node.
In such cases, code placement can occur at compile time on all nodes of
the network, while task placement is left to the runtime system. A resource
management module on each node is then expected to track the corresponding
attribute (in this case, the energy level) and change the task placement for that
node based on the intent of the programmer.

2.3.3 Illlustrative examples

In this section, we provide simple examples to help the reader visualize the
effect of using a few of the task placement annotations and channel annotations
to set up a variety of patterns of collaborative computation in the network. For
sake of simplicity, we focus on a single abstract task and a single output
channel.

Figure 2.3 shows how to instantiate an abstract task on every single node
of the network by using the nodes-per-instance task placement annota-
tion with the parameter 1. This is a simple but commonly occurring pattern

40 THE ABSTRACT TASK GRAPH

for many environment monitoring applications, where sampler tasks on each
sensor node perform periodic sampling and filtering of sensor values before
further computation on them can take place.

Figure 2.4 shows the result of instantiating a task with a density of one
per three nodes. Figure 2.5 shows a similar density-based instantiation that
is defined in terms of area and not in terms of the sensor nodes. Each cell of
the grid in the figure denotes one square meter. Although we do not show an
example application that uses this type of density-based instantiation in this
book, this annotation can be used in conjunction with the k-nearest-pc:
1 channel annotation to create a dynamic, hierarchical data collection pattern
in the application.

The use of nodes-per-instance:/k and area-per-instance:/k to
partition the network into virtual domains in terms of nodes and area, respec-
tively, is shown in Figure 2.6 and Figure 2.7, respectively. The dashed circles
in the figures show the grouping of tasks into domains that are implicitly cre-
ated by the use of these annotations. The exact partitioning of the area of
deployment or the set of nodes into domains is up to the compiler, and various
algorithms can be applied at this state to optimize performance metrics such
as energy balance and network lifetime. In the current implementation, no
optimization is performed.

These annotations can be used to create tree structures with a fixed number
of levels and a fixed number of nodes at each level. ATaG currently has no
mechanism that will allow the creation of a flexible number of levels. For
instance, consider an application with a hierarchical data collection pattern
where the programmer wants four leaf (level 0) nodes to report to each level 1
node, four level 1 nodes to report to each level 2 node, and so on. Now, if the
number of children of each internal node are fixed (in this case, four), then the
number of levels in the tree will depend on the total number of nodes in the
network. ATaG does not currently support the specification of such variable
structures. The patterns shown in Figures 2.6 and 2.7 can be used to create
tree structures with a fixed number of levels.

Figure 2.8 and Figure 2.9 illustrate a combination of task placement anno-
tations and channel annotations to achieve different patterns of data dissemi-
nation. Although these examples are very simple, they form powerful building
blocks in combination with other annotations listed in Tables 2.1 and 2.2. The
case study in Chapter 5 will demonstrate the use of such building blocks to
develop and deploy example “real-world” applications for sensor networks.
Figure 2.8 shows the result of compiling the depicted ATaG program for the 9-
node sensor network Task T1 is mapped onto node 4 and transmits data items

SYNTAX 41

nodes-per-instance:3

&

Figure 2.4 Instantiating one instance of task T1 per three sensor nodes.

area-per-instance:2sq.m.

Figure 2.5 Instantiating task T1 with a density of one task per 2 square
meters.

42 THE ABSTRACT TASK GRAPH

nodes-per-instance:/3

Figure 2.6 Partitioning the sensor nodes into three “equal” sets and
assigning one instance of task T1 per set.

area-per-instance:/2sq.m.

Figure 2.7 Partitioning the area of deployment into two “equal” regions
and assigning one instance of task T1 per region.

SYNTAX 43

to its 1-hop neighbors. The neighborhood maintenance and the mechanism
for disseminating the instance of data item D to the five neighboring nodes
is implemented in the runtime system. If the placement annotation for T1 is
changed to nodes-per-instance: 1, it results in the neighbor-to-neighbor
interaction pattern that is used in applications such as contour detection.
Mapping an abstract task to a specific node (in this case, node 4) and
transmitting a data item to its k£ nearest nodes shown in Figure 2.9. Consider
an application where node 4 represents a handheld device that is used by a
supervisor to move around the area of deployment, use a sensor interface to
take readings at various points in the network, and send the information back
to the supervisor station for logging. Specifying this behavior is extremely
simple in the ATaG model using a pattern similar to the one shown in the
figure. Suppose the data item D indicates the reading that is to be sent to
the supervisor node, task T1 is the task hosted on the handheld device that
performs the sampling when desired by the user, and task T2 is mapped onto
the supervisor node (say node 8) and logs the readings when received. To
accomplish the desired functionality, the following steps are required:

* Annotate the output channel between task T1 and data item D as
k-nearest-nodes:1

* Annotate the input channel between data item D and task T2 as
all-nodes

* Annotate task T2 with the any-data firingrule and one-on-node-1ID:8
placement annotation.

Whenever the task T1 is fired and produces data item D, it will be sent by
the runtime to its nearest node in the network and then routed to the supervisor
node. This example illustrates how sophisticated behaviors can be modeled
using the basic set of annotations. Naturally, support for interpreting the
annotations must exist in the compiler and in the runtime system.

Figure 2.10 illustrates the effect of using the domain channel annotation
in conjunction with the partitioning annotations for task placement. Note that
the domain abstraction is valid only if the task associated with the channel has a
placement annotationsnodes-per-instance: /k orarea-per-instance:
/k. As mentioned earlier, the partitioning of the set of nodes or the area of
deployment is left to the compiler. The use of domain as the channel annota-
tion in this case means that the scope of the dissemination (collection) of the
output (input) data for an instance of the associated abstract task is defined by
the partition that is ‘assigned’ to that task by the compiler. If the network is

44 THE ABSTRACT TASK GRAPH

one-on-node-1D: 4

neighborho

Figure 2.8 Using a combination of placement and channel annotations to
disseminate data D to the 1-hop neighbors of node 4.

one-on-node-1D: 4

Figure 2.9 Disseminating data item D to the four nearest neighbors of
node 4.

SEMANTICS 45

nodes-per-instance:/3

domygin

Figure 2.10 Hierarchical data dissemination among three disjoint sets of
sensor nodes.

dynamic, the burden of maintaining the definition of and connectivity within
the domains is entirely up to the runtime system. The end user does not worry
about the low-level mechanisms involved in constructing and maintaining a
domain,

2.4 SEMANTICS

2.4.1 Terminology
The following terminology is used in the remainder of this section.

* Task: A “task” may refer to a particular instance of an abstract task or
the abstract task itself. For example, a “periodic task” means that the
corresponding abstract task in the ATaG has a “periodic” firing rule.
On the other hand, a “periodic task that is ready for execution” refers
to a particular instance of that abstract task on some node whose firing
condition has been met. Although the usage is overloaded, the meaning
should be apparent from the context of its usage, especially in light of
the fact that an instance of an abstract task is the executable entity, and
not the abstract task itself.

46 THE ABSTRACT TASK GRAPH

nodes-per-instance: 1
periodic:5 || any-data

parent children

Figure 2.11 Using parent—child channel annotation to form a logical tree in
the network deployment. Data are collected from child nodes and forwarded
to parent nodes. In this example, the runtime system creates and maintains
the tree without programmer intervention or control.

* Data item: The phrase “data item” always refers to an abstract data
item. If an instance of a particular data item is being referred to, it will
be explicitly stated.

= Input (output) data item: In the context of a particular abstract task, a
data item is called an input (output) data item if there is an input (output)
channel that associates the data item with that particular task.

» Dependent task: In the context of a particular data item, an abstract task
is called a dependent task if there is an input channel associating the
data item with that particular task.

2.4.2 Firing rules

The following rules determine when a task is considered to be ready for exe-
cution. The actual time of execution of a ready task depends on factors such
as the number of tasks that might precede this task in the scheduler’s queue,

SEMANTICS 47

nodes-per-instance: 1 one-on-node-1D:4
periodic: 10 periodic:30

Figure2.12 Use of the k-nearest producer annotation to dynamically collect
data from the vicinity of the consumer. This annotation, with the underlying
runtime support, is likely to be most useful when the consumer node is mobile
and the objective of the application is to gather information from sensor nodes
that lie close to the path of the consumer at any given time.

the time remaining for the currently running task to complete execution, the
duration of each of the preceding tasks, etc.

» A periodic task is ready when the periodic timer expires, regardless of
the state of its input data items. The per-task timer is set to zero each
time the task begins execution and is said to expire when the timer value
becomes equal to the task’s period.

* An any-data task is ready as soon as a new instance of any of its input
data items is available.

* An all-data task is ready as soon as a new instance of each of its input
data items is available.

48 THE ABSTRACT TASK GRAPH

* A periodic V any-data task is ready when the periodic timer expires or
a new instance of any of the input data items is available.

» A periodic V all-data is ready when the periodic timer expires or a new
instance of each of the input data items is available.

« If a task is any-data V all-data, the any-data firing rules apply.

2.4.3 Task graph execution

= Task execution is atomic. Each instance of an abstract task will run to
completion before an instance of any other abstract task can commence
execution.

= All members of the set of dependent tasks of a particular data item are
executed before other tasks that might be dependent on the data items
output by the tasks in this set.

* When the production of an instance of a data item results in one or
more of its dependent tasks becoming ready, those tasks will consume
the same instance when they invoke a get () on the input data item.
This means that that particular instance that triggered the task will not
be overwritten or removed from the data pool before every scheduled
dependent task finishes execution.

244 get() and put()

A task reads its input data instances from the datapool using the get () prim-
itive invoked as:

d = get(int datalD);

where datalID is the unique integer identifier of the desired data item.

Each invocation of the instance of a well-behaved abstract task results in
exactly one invocation of get () for each of its input data items. get() is a
nonblocking call in the sense that the calling task is not suspended until an
instance of the requested data item becomes available. The following rules
apply to the get () primitive:

* When an any-data task executes, at least one of its get () calls will
succeed.

* When an all-data task executes, each of its get () calls will succeed.

PROGRAMMING IDIOMS 49

» get () isadestructiveread from the task’s perspective. Once a particular
instance of a data item is read by a task, it is considered to be eliminated
from the data pool as far as that task is concerned. Subsequent calls to
get () for the same data item in later invocations of the task will fail if
no newer instance is available, or will return a new instance if one has
been produced since the last invocation.

A task adds its output data items to the data pool by using the put ()
primitive invoked as:

boolean status = put(d);

where d is an instance of some data item, and status is the boolean indication
of success or failure of the call.

put () is not guaranteed to succeed. This is because the ATaG runtime
allows for at most one instance of each data item to be present in the data pool
at a given node. If a new instance of a particular data item is produced at a
node, the old instance (if any) must be overwritten, which is possible only if
none of the tasks that are scheduled for execution on that node are dependent
on it. If there is at least one task scheduled for execution that is dependent
on the particular instance, a put () on that node will return with an indication
of failure. Otherwise, the instance will be added to the node’s data pool and
put () will return success. The different valid states of a data item and the
structure of the data pool on the node is discussed in the next subsection. The
responsibility of determining the success of put () and taking appropriate
action(s) at the application level is entirely the programmers’. A common
scenario where put () might fail is if a periodic task is producing one or more
data items at a faster rate than they can be consumed by the set of dependent
tasks. The impact on the application will depend on the semantics of the data
item being produced.

2.5 PROGRAMMING IDIOMS

In this section, we qualitatively demonstrate the key features of ATaG by
providing sample programs for commonly encountered patterns of information
flow that form the building blocks of a large class of applications. The purpose
of these examples is to specifically highlight the following:

50

THE ABSTRACT TASK GRAPH

The ATaG data-driven model is a natural fit for specifying reactive ap-
plications. The concepts of abstract tasks, data items, and channels
concisely capture a variety of task placements, along with data dissem-
ination and collection patterns. ATaG allows the coding of symmetric
behaviors (e.g., neighbor-to-neighbor protocols), asymmetric behaviors
(e.g., many-to-one data collection), and combinations of the two (e.g.,
local neighbor interaction resulting in an alarm condition that is then
routed to a root node).

ATaG programs are architecture-independent. The set of task and chan-
nel annotations allow the programmer to control the degree of architec-
ture independence of the specification. Tasks can be placed on specific
node IDs or geographic locations or the placement can be left entirely
to the compilation framework. Realistic applications can be expected
to employ a compromise between the two extremes, with some tasks
assigned to specific nodes or locations that are known a priori, while
others can be more flexibly mapped.

ATaG programming only requires familiarity with a traditional pro-
gramming language such as C or Java. The declarative part of the
ATaG program (depicted by the figures accompanying each example) is
specified visually. The imperative part is in a traditional sequential pro-
gramming language. ATaG programming does not require the mastery
of a new syntax or any extensions to traditional programming languages.

Table 2.3 Event-Reaction Pairs for Object Tracking

Event

Reaction

Scope

Periodic timer expires

Acoustic sensor is sampled

Local

Sensor reading exceeds
threshold (object in range)

Propagate location- and time-
stamped reading

All other nodes that may have
detected the same target

Sensor reading arrives at
node

Determine if own reading is
higher than readings from
neighbors

Local

Node elects itself the leader

Send target location to
designated root node

PROGRAMMING IDIOMS 51

[nodes-per-instance:1] [nodes-per-instance:1] [one-on-node-ID:0]
[periodic:10] [any-data] [any-data]

Leader- .
Threshold
Elect Supervisor
10m A local [local] [local } [all-nodes]
TargetAlert Targetinfo

Figure 2.13 Object tracking.

2.5.1 Object tracking

Object tracking basically involves determining the location of an object in the
area being monitored. A simple algorithm for object tracking [55] requires
each node to periodically sample its sensing interface and compare it against a
predefined threshold. A reading that exceeds the threshold is indicative of the
presence of a target in the sensing range. The nodes that detect the target elect
a leader node, which is the node with the maximum reading among all nodes
involved in the election. The leader node then performs some processing of
the set of sensor readings and transmits the resultant estimate of target location
to a base station.

Figure 2.13 is a complete ATaG program for this application behavior. A
prototype implementation of this application required approximately 100 lines
of Java code overall. Threshold performs the sampling and thresholding on
each node of the network. If a target is detected, it generates a TargetAlert
data item which also carries information about the sensor reading. The as-
sumption in this case is that the sensing range is less than half the dissemi-
nation range of 10 m, which ensures that every node that detects the target
communicates its reading to every other node that has detected the target. The
Leader-Elect task also runs on each node and receives the TargetAlert
notifications from all nodes that have detected the target. Since Threshold
is pushing the data item to a 10 m radius, the Leader-Elect task can just
read from its local datapool and does not need to explicitly pull instances of
data items from its neighborhood. After a requisite number of sensor readings

52 THE ABSTRACT TASK GRAPH

Table 2.4 Event-Reaction Pairs for Neighbor-to-Neighbor Protocol

Event Reaction Scope
Periodic timer expires Read temperature from sensor Local
Temperature reading available Propagate to 1-hop neighbors -
Temperature received from Compare with own reading Local
neighbor

are obtained, Leader-Elect generates the TargetInfo data item if its local
reading is the maximum of the readings received from other nodes.

2.5.2 Interaction within local neighborhoods

Figure 2.14 is a complete ATaG program based on neighbor-to-neighbor inter-
action, which is a common technique to implement collaborative computation
where the processing at a given node is a function of its own state or the state
of the immediate neighbors. The technique is common because such proto-
cols require a fixed, typically low amount of resources, and they scale well
with network size. The purpose of this program is to periodically compare its
own temperature reading with that of its 1-hop neighbors. This comparison
could be used for corroboration or calibration, or to detect unusual conditions
such as a fire. Only a single abstract task and a single abstract data item is
sufficient to capture this behavior, as shown in the figure. The output channel
is annotated with a “—local” because an output to the local data pool of the
same type of data item that is also an input may cause an infinite loop and
unpredictable system behavior, depending on the scheduling policies in the
runtime system.

2.5.3 In-network aggregation

Fig. 2.16 is a complete ATaG program that sets up a data aggregation tree
across the network. Such a mechanism is commonly used in the computation
of system-wide properties such as the minimum or maximum reading in the
entire system [64].

Note that although the program indicates a virtual topology (tree), it does
not specify how the tree is to be constructed or maintained. The runtime system
that supports the “parent” and “children” annotations is expected to manage
the required protocols. Each node of the tree applies an aggregation function

PROGRAMMING IDIOMS

[nodes-per-instance: 1]
[periadic:10 || any-data]

Monitor

1-hop &&
—local

Temperature

Figure 2.14 Neighbor-to-neighbor gradient monitoring.

53

nodes-per-instance: 1
periodic: 10 || any-data

neighborhood-hops:1 §
&& ocal lacal

Figure2.15S Mapping and communication: Neighbor-to-neighbor protocol.

54 THE ABSTRACT TASK GRAPH

[nodes-per-instance:1] [nodes-per-instance:1]
[periodic:10] [any-data]

Sampler Aggregator

(local) (Tlocal)

Figure 2.16 Tree-based aggregation.

nodes-per-instance: | nodes-per-instance: |
periodic: 10 any-data

local local " parent children

Figure 2.17 Mapping and communication: Tree-based data aggregation.

to its own periodic reading (Sampler task) and the readings received from its
child nodes. The result is then communicated up the tree to be incrementally
aggregated. This is a continuous process, driven by the periodic sampling at
each node. To reduce network traffic and save energy, the Aggregator could
use static variables to maintain a count of incoming packets (local state) and
communicate the reading up the tree only after a certain number of invocations.

PROGRAMMING IDIOMS 55

Table 2.5 Event-Reaction Pairs for Tree-Based Aggregation.

Event Reaction Scope
Periodic timer expires Temperature sensor is sampled Local
Temperature reading available from Apply aggregation function (say, Local
own node or other nodes MAX)

Predetermined number of Send aggregated reading to parent -
applications of aggregation node

function completed

2.5.4 Hierarchical data fusion

The data aggregation tree in the previous example is a useful but simple struc-
ture. More sophisticated applications can be efficiently programmed using
hierarchical data fusion. In this pattern, the network is partitioned into do-
mains, and each domain reports to its leader. The leaders in turn are succes-
sively organized into a hierarchy with a root node at the top. A quad tree is
an example of such hierarchy, with applications in topographic querying of
sensor fields [7].

Figure 2.18 is a complete ATaG program that sets up a two-level quad-tree.
The network is divided into four domains, each managed by one instance of the
LiFusion task. Leaf tasks report to the appropriate L1Fusion task. The Root
collects the data from L1Fusion tasks. The data items are labeled LeafMap
and L1Map motivated by the application discussed in [7]. The meaning of the
domain annotation and the use of “/4” as a parameter for nodes-per-instance
are explained in Tables 2.2 and 2.1 respectively.

Table 2.6 Event-Reaction Pairs for Hierarchical Data Fusion.

Event Reaction Scope
Periodic timer expires on leaf node =~ Temperature reading sampled Local
Temperature reading available at Reading sent to parent -

leaf node

Reading received at L1 clusterhead =~ Apply aggregation function Local

Predetermined number of readings Send result of aggregation to root -
received at clusterhead node

56 THE ABSTRACT TASK GRAPH

[nodes-per-instance:1]| | [nodes-per-instance:/4] | [[one-on-node-1D:0]
[periodic:10] [any-data] [any-data]

L1Fusion Root

[local] [domain] [iocaiJ all-nodes

P

Figure 2.18 Hierarchical data fusion.

nodes-per-instance: | nodes-per-instance:/3 one-on-node-1D:0
periodic: 10 any-data any-data

domain

local domain

Figure 2.19 Mapping and communication: Hierarchical data fusion.

2.5.5 Event-triggered behavior instantiation

The set of collaborative behaviors used to compose distributed spatial comput-
ing applications is usually known at design time. However, it is not desirable
from both a performance and functionality point of view to execute all behav-
iors at all times. Especially in systems that monitor and respond to events in
the physical environment, there could be quiescent behaviors that are built into

PROGRAMMING IDIOMS 57

[nodes-per-instance: 1] [nodes-per-instance:1]
[periodic:10 || any-data] [any-data]
Monitor Corroborator

(local]) (local] (10m:PULL) (local] (local

|Temperature| | LocalAlarm | | GlobalAlarm

Figure 2.20 Wide-area data collection triggered by a local alarm.

the system at design time, but are to be instantiated only when certain condi-
tions are satisifed at runtime. The conditions could denote a variety of events
such as resource depletion at a critical node, abnormal sensor readings, etc.

Table 2.7 Event-Reaction Pairs for Alarm-Triggered Data Collection.

Event Reaction Scope

Temperature gradient Produce alarm notification Local

exceeds threshold

Alarm notification Request temperature All nodes within a 10 m
produced readings for corroboration radius

Readings corroborate Produce global alarm Local

local alarm

The previous examples used abstract data items primarily to pass informa-
tion such as the sensor reading or information derived from sensor readings
such as a topographic map of the sensor field. However, the semantics of ATaG
also allow the instantiation of new behaviors at runtime by using abstract data
items to represent the occurrence of events, in addition to passing information
about the events.

Figure 2.20 is a complete ATaG program for an application that moni-
tors temperature gradients between nodes and triggers a data collection and
anomaly corroboration over a larger neighborhood if a node detects a high
gradient between itself and its neighbors. Only if the anomaly is confirmed
does the node produce an alarm event possibly targeted for some supervisor
task. The data item LocalAlarm is used to trigger the collection of data from

58 THE ABSTRACT TASK GRAPH

nodes-per-instance: | nodes-per-instance: |
periodic: 10 || any-data any-data

(1) Monitor task on each node periodically samples its own temperature and exchanges the
readings with its |-hop neighborhood. Rise in temperature occurs at the location of Node 4

|
1

e
(i1} Monitor task on Node 4 deteets a local alarm situation and generates the corresponding
data item. Corraborator task on Node 4 is triggered and a request for temperature readings
from all nodes within a 10m neighborhood is sent out (the “PULL™ annotation; depicted as
dotted lines). In this example, the 10m radius includes all nodes in the network,

(i1i) Corroborator task on Node 4 receives temperature readings from all nodes. If the
alarm situation is indeed valid, the global alarm may be generated. This example does not
focus on the consumption of the global alarm which will presumably be consumed by a
supervisor lask in the network.

Figure 2.21 Patterns of task execution and communication in an event-
triggered data collection scenario. The abstract task graph for this example
is the same as that shown in Figure 2.20, although task and data item names
have been abbreviated.

FUTUREWORK 59

nodes within a radius of 10 m. Note that the firing rule for the Corroborator
task is any-data. Also, the input channel from Temperature to Corroborator
has pull semantics. When the Monitor detects a discrepancy, it produces a
LocalAlarm. Due to the any-data firing rule, the Corroborator is scheduled
for execution, and the pull semantics then initiate a collection of data from
the neighborhood. The Corroborator will use persistent storage (static vari-
ables) across instantiations to store the collected temperature readings, and it
will produce a GlobalAlarm if the LocalAlarm is corroborated by neighboring
nodes.

2.6 FUTURE WORK

2.6.1 State-based dynamic behaviors

The set of task and channel annotations listed and briefly described in
Tables 2.1 and 2.2 are useful for describing many behaviors that form the
building blocks of networked sensing applications in domains such as envi-
ronment monitoring and non-real-time object tracking.!

What the current set of annotations really provides is an abbreviated, con-
cise, and architecture-independent representation of task placement and coor-
dination in an application that can be otherwise developed manually, although
with a much greater effort, using a language such as nesC or C. The examples
shown as programming idioms can be developed in a top-down manner by
first defining the event-reaction-scope tuples and then translating them into
the abstract task graph. The same ATaG program could also be developed in a
bottom-up manner by inspecting the placement and communication of tasks in
the desired application on a concrete network deployment and then abstract-
ing the communication patterns as channels, the types of functionalities as
abstract task with placement annotations, and the types of data exchanged as
abstract data items.

A promising avenue for future work is to define high-level annotations that
go beyond mere task placement and communication pathway instantiation.
An example of such a class of annotations is state-based dynamic selection
from among alternate implementations of the same abstract task. State could
refer to a broad range of parameters such as the resource availability on a par-
ticular sensor node, density of deployment in the neighborhood of the sensor

!Since timing requirements cannot be indicated in the ATaG program and the runtime system
may or may not include routing protocols that provide timing guarantees or other latency-related
quality of service (QoS) requirements, we refer to the object tracking example as nonreal time.

60 THE ABSTRACT TASK GRAPH

node, the instantiation of one or more abstract tasks in a certain vicinity of
the sensor node, etc. The tradeoff between quality of the result of a com-
putation and the resources required to attain that quality—and algorithms to
dynamically adjust for this tradeoff—has been an area of research in high
performance scientific computing [10]. In sensor networks consisting of en-
ergy and bandwidth constrained sensor nodes, the application developer might
wish to exercise control over the amount of resources that are devoted to some
functionality based on the value of parameters such as the state of the energy
resources remaining at that node. Such control can be used to (i) optimize
application-level execution by switching to a different implementation of the
same task when energy levels decrease and (ii) provide graceful degradation
of functionality as resources are progressively exhausted. To support such a
program specification, the abstract task will now be associated with one or
more implementations in the same language meant to be invoked under dif-
ferent circumstances at runtime. A new class of annotations will be required
to allow the user to (concisely and precisely) specify the state of the node that
is a trigger for a particular implementation.

Although the ability to select a different implementation of the same ab-
stract tasks at different times on the same node enables new ways of resource
management for application-level quality of service, an equally useful feature
is the ability to control which implementation of the abstract task will run
on a particular sensor node, depending on state information available after
deployment. In the latter case, the implementation may or may not change
after runtime. Note that this is different from the task placement annotations
in the current model which allow the application developer to influence which
abstract task is placed on which node in the network, but do not allow the
selection between different implementations of abstract tasks.

The idea of state of a node—a simple example of which is the amount of
energy available on that node as a fraction of the total energy at initialization
time—can be generalized to represent the state of the neighborhood. For in-
stance, consider a deployment where a designated root node wishes to receive
a particular amount of data (e.g, a particular number of temperature samples
per hour) from each region of the sensor network. Now, if the density of
sensor nodes in a particular region is high, sampler tasks in that region could
report their (aggregated) readings with a lower frequency compared to a region
where the density of deployment is less.

Examples of more sophisticated annotations that will require significant
enhancements both to the ATaG model as well as to the runtime system include:
“Execute implementation I of task T only if it can be executed for every

FUTURE WORK 61

invocation of task T in the next 2 hours.” Such annotations will bridge the gap
between the end users’ understanding of the application requirements and their
corresponding specification in the ATaG program. The challenge in defining
this particular annotation is to devise a mechanism in the runtime which is
capable of predicting the resource usage on the node (with some degree of
confidence) based on activity observed on that node in the past.

2.6.2 Resource management in the runtime system

Two aspects of resource management are of interest in the context of extend-
ing the ATaG model. The first deals with the efficient management of sensing
resources and the packaging of sensing as a service provided by the runtime
instead of a set of APIs to be learnt by the programmer and invoked by the
application-level program. The second aspect deals with allowing the applica-
tion developer to provide performance-related hints to the compiler. We now
discuss each of these in more detail.

Sensing as a service. Currently, there are three classes of APIs available to
the ATaG programmer: (i) the get () and put () calls to the data pool for
consuming and producing data items respectively, (ii) the network-awareness
and spatial-awareness API (also offered by the runtime system) that allows
a task instance to determine the composition of the neighborhood of its host
node, and (iii) the API to the sensor interface. Since the task instance directly
accesses the sensing interface, the runtime system is not aware of the access
patterns and cannot optimize for cases where sensing resources might be used
inefficiently. Consider a scenario where a periodic Task A is interested in
sensor data not more than 10 minutes old, and Task B is interested in the same
sensor data but with a tolerance of 30 minutes. Inthe current model, Task A and
Task B will be defined as abstract tasks with periodic firing rules with periods
of 10 minutes and 30 minutes, respectively. The tasks will read from the sensor
at each invocation, although it is obvious that frequency of Task A’s sampling
is sufficient for Task B. A manual optimization in this case is to declare an
abstract data item S produced locally by Task A and consumed locally by Task
B, and to change the firing rule of Task B to “any-data.” Task A will now
sample the sensing interface at every invocation but will produce an instance
of S (containing the sensor reading) every third invocation. However, such
manual optimization is not possible if Task A and Task B are part of different
ATaG libraries being composed into a larger application.

62 THE ABSTRACT TASK GRAPH

Future work in this area involves the management of sensing (and actua-
tion) resources through the ATaG runtime system. The ATaG model will be
extended by defining a special class of read-only abstract data items (called
“sensor data items”) that can be consumed but not produced by user-defined
abstract tasks. These data items will represent readings (scalar values, im-
ages, etc.) from the sensing interface(s). Task will access sensor data using
the get () primitive, and the programmer will not be required to learn the de-
tails of accessing the variety of sensor interfaces. A set of annotations will be
defined for the sensor data items. These annotations could indicate the type of
sensing interface and other parameters such as spatial coverage and temporal
coverage (frequency of sampling, freshness of data, etc.). This extension will
allow the runtime a greater flexibility in task placement and resource man-
agement. More importantly, indirect access of sensor interfaces through the
runtime system makes ATaG programs even more architecture-independent
because the imperative part of the program (i.e., the task code) does not need
to incorporate any code that is specific to a particular type of sensor or actu-
ator. Nodes with diffeent sensors of the same type (i.e., producing the same
type of sensor data item) can host instances of the same abstract task without
the programmer being required to modify the code to adjust for the different
sensor APIs.

Application-level control of system performance. In almost all traditional
parallel and distributed computing especially in scientific computing, all data
were equal. The scheduling of tasks and handling of data was almost entirely
influenced by end-to-end latency considerations. Hence, the many variants
of the basic task graph (or other dependency graphs) did not support the con-
cept of varying levels of “importance” that could be assigned to tasks or data.
The nature of networked sensing is such that some data items and computa-
tion pathways could have greater importance than others, where importance
could imply preferential processing in terms of immediate scheduling of the
tasks involved or allocating more resources to ensure that some data items are
routed with better “quality” (e.g., less latency) than others. For example, if
the instance of the abstract data item represents the (possible) detection of a
forest fire, the application developer would naturally want the runtime sys-
tem to expedite the transmission of this data from the producer node to the
designated supervisor node. Defining and supporting such annotations also
requires a close integration with the network model, the architecture of the
runtime system, and the availability of protocols that are capable of providing
the required services.

FUTUREWORK 63

2.6.3 Utility-based negotiation for task scheduling and
resource allocation

Service-oriented specification of networked sensing applications is a vision
where programming for sensor networks essentially involves the specification
of semantic information desired by the end user. This purely declarative high-
level specification is used to first select a set of services from the library of
available services for the target network, where each “service” could map to an
independent application with a well-defined interface for integration with other
applications. In the context of ATaG where composition of two independent
ATaG program is equivalent—in the simplest case where the two programs
do not share data or functionality—to the concatenation of the corresponding
task graphs, each service could naturally map to an ATaG program. Of course,
this requires a new markup language for describing ATaG programs in terms
of the services they provide to the end user, similar to semantic streams [57].

Assuming that the component subprograms can be identified from the high-
level specification and that the final mapping of tasks to nodes and the setup of
communication pathways in the network is accomplished, the next problem
is to manage resource allocation in face of conflicting requests from applica-
tion tasks. For example, two tasks on the same node could request an image
from the camera at the same time, but require the camera to be pointing in
different directions. A utility-based negotiator in the runtime could decide
the resource allocation in such scenarios. The challenge is to develop a ro-
bust and scalable implementation of utility-based negotiation and to define
a common utility scale that can be used across disparately developed ATaG
libraries that are combined into a larger application. The concept of utility
could also model task priorities and resolve conflicts when more than one task
simultaneously requests preferential treatment. The key challenge in extend-
ing the basic model to handle such scenarios is to maintain the core design
objectives—especially application neutrality—while enabling the expression
of increasingly sophisticated behaviors.

This Page Intentionally Left Blank

CHAPTER 3

DART: THE DATA-DRIVEN ATAG
RUNTIME

3.1 DESIGN OBJECTIVES

3.1.1 Support for ATaG semantics

The primary objective of DART is to provide the required underlying mech-
anisms for communication and coordination between instances of abstract
tasks specified by the programmer. Architecture independence of ATaG is en-
sured primarily by the deployment-specific interpretation of the generic task
and channel annotations. Depending on the characteristics of the underlying
network, the responsibility of translating the annotations could be distributed
between the compile-time code generator and the runtime system itself. For
instance, consider an output channel with an annotation neighborhood-hops: 1,
indicating that the data item produced by the assocated task is to be sent to ali
the 1-hop neighbors of the node where the item is produced.

Architecture-Independent Programming for Wireless Sensor Networks 65
By Amol B. Bakshi, Viktor K. Prasanna
Copyright (© 2008 John Wiley & Sons, Inc.

66 DART: THE DATA-DRIVEN ATAG RUNTIME

For a network composed of relatively resource-rich nodes such as Star-
gates [50] connected by a robust wireless network, this annotation can be
translated at compile time. The compiler will analyze the network graph, de-
termining the nodes that will host the associated task, determine the IDs or
geographic locations of the 1-hop neighbors (depending on the routing pro-
tocol being used), and hardcode the list of destinations for that data item into
the runtime system. Every time an instance of the data item is produced, the
runtime system will look up the IDs of the destination set (which is, in this
scenario, assumed to be unchanging) and send the data item to each member
of that set.

On the other hand, the same ATaG program could be synthesized onto an
underlying network that is dynamic in nature where the set of neighbors of a
node is expected to change frequently: nodes being added or removed from
the network (in a mobile setting), nodes failing due to exhaustion of limited
energy resources, unreliable communication due to the hostile environment,
etc. Clearly, the compile time analysis of the network graph is not feasible in
such a scenario, and the runtime system supports runtime translation of the
neighborhood-hops: I annotation into the instantaneous membership of the set
of 1-hop neighbors. In addition, there are decisions to be made about how
frequently should the runtime system update its view of the neighborhood, the
impact of such updation on the performance and of the system, etc.

3.1.2 Platform independence

The objective of the DART design is not so much on the implementation
of an ATaG runtime system for a particular sensor node platform or a par-
ticular language and operating system, but on the architecture of a runtime
system template that will hopefully be useful for implementing versions of
DART tailored to specific platforms. This means that the assumptions about
the underlying operating system implicit in the operation of the DART tem-
plate should be clearly spelled out and should also be minimized. Specifically,
assumptions about the type of scheduler, support for multi-threading, synchro-
nization and inter-process coordination primitives, etc., should be explicitly
stated. Ideally, any operating system kernel that provides these basic facilities
should be a friendly target for implementing DART.

Such platform independence is important because an important purpose
of the ATaG programming model is to hide almost all the low-level details
of control and coordination from the programmer, allowing him/her to focus
only on expressing the desired behavior in terms of data-driven event-reaction
semantics with suitable annotations to govern deployment-specific task place-

DESIGN OBJECTIVES 67

ment and communication. This architecture independence makes ATaG a good
candidate for implementation on heterogeneous system architectures. Unless
the architecture of the underlying runtime system is defined in a platform-
independent manner, a “seamless” deployment of ATaG on such systems will
not be possible.

3.1.3 Component-based design

Components are “units of independent production, acquisition, and deploy-
ment that interact to form a functioning system" [S1]. A component is the
deployment of one or more interfaces that define the service offered by the
component to its consumers. Since the customers rarely care about how the
particular interface is implemented, the data and algorithms used internally by
the component (module) implementation can be considered to be “owned” by
the module and the implementation details will typically be hidden from other
modules. This also means that development of a component is decoupled from
its integration into the system. Indeed, a variety of implementations of the
same component (i.e., providing the same service by implementing the same
interface(s)) can be developed to meet various requirements, and the suitable
implementation can be selected at the time of composition.

The modular structure of component-based design has many significant
advantages. First, it greatly simplifies the design by requiring the clear iden-
tification of components in terms of what exactly they model in the problem
domain. Interactions and dependencies between components are also defined
in terms of service provider and service consumer relationships. Second, as
mentioned above, hiding the implementation of a module from other mod-
ules makes it possible for an entirely different set of protocols to be used to
provide the same service interface without affect the rest of the system. In
the specific case of the ATaG, this allows the runtime system to be tailored
for a specific target platform by selecting the suitable intra-module protocols
without requiring a complete redesign.

For instance, one of the modules of DART is responsible for translating
channel annotations into list of node IDs or locations. The list of channel anno-
tations used by the ATaG program is known at compile time. This knowledge
can be used by the software synthesis process to include only those protocols
in this module as are required to translate all the annotations actually used in
the program and not all the annotations supported in the ATaG model. For
example, an application may not require a virtual topology (such as a tree)
and therefore may not employ the parent and children annotations in the ATaG
program. When this application is synthesized, the ability to translate parent

68 DART: THE DATA-DRIVEN ATAG RUNTIME

and children annotations is not required in the runtime and the protocol to
construct and maintain a logical tree is also not included in the synthesized
software. Indeed, the runtime system can be customized differently for each
node, based on the services (protocols) required by the tasks instantiated on
that node. Component design of the ATaG runtime system can also be seen
as a step toward defining standards to be followed by the designers of a par-
ticular protocol for, say, routing, to ensure that the result is usable in a “real”
end-to-end system.

Another side effect of this design is that it allowed us to use essentially the
same runtime system software for functional simulation as is intended for real
deployments, by replacing only a subset of the modules—especially those that
deal with the transceiver interface—and leaving others intact.

3.1.4 Ease of software synthesis

We have built an end-to-end application development framework based on the
ATaG programming model that also includes a tool for synthesis of compile-
ready customized software for the individual node of the target network, based
on the ATaG program and the network description. The synthesized software
for a node has three components: (i) a common DART kernel that runs on
every node and handles basic tasks such as data pool management, managing
the basic networking protocols, etc., (ii) user-supplied code for abstract tasks
and user-supplied data structures (and methods) for abstract data items, and
(iii) glue code for the interface between the runtime and the user-supplied
code.

The user-supplied code and the common runtime code are available to the
software synthesizer, and ease of software synthesis can be measured by the
size of the glue code that is to be generated for a particular node for a particular
ATaG program. The choice of data-driven computing as the programming
paradigm for ATaG is also influenced by the fact that in a data-driven software
system, the only interaction between the user-supplied code and the runtime
system is through the get () and put () calls implemented in the datapool
manager. Therefore, the purpose of the glue code that is to be synthesized can
be broadly classified as follows:

* Allowing the runtime to interact with application tasks, i.e., to determine
their attributes (such as firing rule and input—output interface), schedule
the tasks for execution through suitable interfaces such as the Runnable
interface of Java if the application tasks are provided as Java classes
implementing Runnable, etc.

OVERVIEW 69

» Providing state information (context awareness) required by the node
to situate itself in the network. For instance, if nodes have preassigned
identifiers, the ID should be hardcoded into and accessible through
a suitable function call by the modules of the runtime system. For
scenarios where the program is synthesized onto relatively static and
robust networks (as discussed above in Section 3.1.1), information such
as the composition of the node’s neighborhood will be incorporated
into the runtime system at software synthesis time. Other information
such as the role of the node in a virtual topology (if any) will also
be determined and incorporated into the software. For instance, on
initialization after deployment, each node will check if it is supposed
to be the designated root node and, based on the (boolean) result of the
query, adjust the behavior of its protocols for virtual topology formation.

» Pre-wiring communication pathways. Consider a simple ATaG program
for centralized data collection with two abstract tasks and one abstract
data item. The programmer uses channel annotations to indicate that
all data produced by the Sampler on each node is to be routed to the
Collector on some designated root node. The placement of the Collector
is specified by the annotation of that abstract task—say, as the node with
ID 0. When a data item is produced on some non-root node, the runtime
system on that node should know the destination of the data, i.e., the
location or ID of the root node. In some deployments, the ID and
location of the designated root node could be fixed and known a priori
(e.g., it might be a gateway node connected to the desktop PC of the
building supervisor). In such cases, the runtime systems on non-root
node can be preprogrammed with a destination list (in this case, the root
node) for the data item in question. Scenarios where this might not be
suitable are when the root node itself is dynamic (say, a PDA device
carried by the building supervisor) or the selection of a node as the root
is performed only after the system is initialized.

3.2 OVERVIEW

Figure 3.1 is a high-level overview of the structure of DART (Data-driven
ATaG RunTime). In this section, we briefly discuss the functionalities of the
various components and their interactions. Later subsections focus in detail
on the implementation of each component.

The software system on each node can be divided into an application layer
that consists of (a) the user-supplied code for each abstract task placed on that

70 DART: THE DATA-DRIVEN ATAG RUNTIME

‘ Sensors ‘ | Actuators \
1 - 1 Application level
UserTask1? UserTaskn
e I
I
1
r \ Y ;
NetworkArchitecture DataPool ATaGManager
Spatial awareness, get() and put(), [, Task code,
network awareness, concurrent access, dependencies,
logical namespaces reference counts annotations
Y
Y
NetworkStack .
Dispatcher
ROlllll:lg protocols, Translate annotations,
med'ETTl acces“f‘ manage outgoing data System level
physical layer
Transceiver

Figure 3.1 DART: The ATaG runtime system.

node and (b) a system-layer that contains the modules of the runtime system.
Presently, the sensor/actuator interfaces are not managed by the runtime, al-
though that is the subject of future work. Hence, if an abstract task requires
access to the sensor or actuator interface, the necessary code has to be supplied
by the programmer, who is also required to understand the APIs involved. The
two-system level interfaces that are available to the user tasks are the Datapool
and the NetworkArchitecture, as shown in Figure 3.1.

» The Datapool components on all nodes in the network together manage
the production, consumption, localization, and routing of all instances
of abstract data items produced in the network. They provide the ab-
straction of a single logical pool of data items that is uniformly accessed
by all tasks in the system using the basic get () and put () primitives.

* The AtagManager component acts as the respository of all relevant
information concerning the declarative part of the ATaG program that
might be required by other components for intranode coordination and

OVERVIEW 71

internode communication. This information includes the number of
abstract tasks, data, and channels, the task and channel annotations,
input—output relationships between tasks and data items on that node,
and the firing rule for each task. The AtagManager also schedules the
application-level tasks for execution when their firing conditions are
met.

» NetworkArchitecture is the component responsible for managing
all protocols for neighbor discovery, virtual topology formation, etc.,
with the objective of providing the mechanism to translate a channel
annotation into a list of node identifiers. For instance, if a data item is
to be sent to the ‘parent’ node in the virtual tree topology, it is the role
of this component to implement the protocols for tree formation and
maintenance and, when queried, return the ID of the neighboring node
that is the current parent.

* As indicated by its name, the NetworkStack is in charge of commu-
nication with other nodes in the network and also manages the routing,
medium access, and physical layer protocols.

= The Dispatcher is a helper component that coordinates between the
Datapool, AtagManager, NetworkArchitecture, and Network-
Stack with the purpose of transmitting instances of data items produced
on the node to their suitable destinations in the network, as indicated
by the annotations of the output channel associated with the data item
in the ATaG program.

In the following sections, we describe each component of DART in more
detail. To highlight the component-based design of the software system, the
service offered by each component is described first, followed by the con-
sumers of that service, and finally the implementation details of the service.
Note that the primary objective of the current version of DART is to demon-
strate the feasibility and usefulness of programming with ATaG. The program-
ming and software synthesis environment (Section 4) for ATaG has an accom-
panying simulation and visualization front-end. The current implementation
of DART is meant to be a component of this simulation environment that runs
on a single machine. Although DART is designed as a component-based tem-
plate for a general ATaG runtime, some of the low-level functionalities (such
as routing protocols and topology formation protocols) that will be required
for DART to run on a multi-node distributed sensor node deployment have
been replaced by code that simulates these functionalities for single-machine

72 DART: THE DATA-DRIVEN ATAG RUNTIME

simulation. As highlighted in Section 3.1.3, the advantage of component-
based design is that the implementation of a component can be changed as
long as the service it provides remains the same. Hence, the replacement
of some of the functionalities within a component by functionally equivalent
code that simulates their existence could be performed without affecting other
components such as Datapool, AtagManager, Dispatcher, etc.

3.3 COMPONENTS AND FUNCTIONALITIES

3.3.1 Task, data, and channel declarations

The declarative content of an ATaG program is stored in the runtime as in-
stances of the TaskDeclaration and ChannelDeclaration classes. We
do not define a data declaration class because no annotations are currently
associated with the data items.

A UML class diagram of the TaskDeclaration class is shown in
Figure 3.2. Code listings showing the variables and the runTask() method
of this class are provided as Figures 3.3 and fig:td-runtask, respectively.

The task declaration stores the firing rule and instantiation (placement)
annotations for that task. A pointer to the actual task code (a Java class that
supports the Runnable interface) is also stored. Pointers to input and output
channels associated with the task are stored as arrays with a ‘1’ in entry k of
the input (output) array signifying that the input (output) channel with ID k& is
associated with that task.

In addition, a boolean variable hasBeenRun is defined, with an initial value
of false. This variable is necessary due to the way periodic task execution
is handled in the current DART implementation. An application-level (user-
defined) task is just a Java class that supports the Runnable interface and
interacts with the DataPool and possibly the NetworkArchitecture mod-
ules through appropriate function calls. If a task is to be run periodically, say,
with a period of 5 minutes, then the delay loop is included (and automati-
cally generated) in that task itself. Specifically, the task runs in a permanent
“while(1)" loop with a 5-minute delay as the last statement of the loop.

At startup, all periodic tasks that are assigned to the node are launched, and
their hasBeenRun flag is set to true to indicate this fact. During the course of
application execution, when a data item is produced, its dependent tasks are to
be scheduled for execution. The AtagManager calls the runTask() routine
for the corresponding task declarations. The hasBeenRun flag ensures that if

COMPONENTS AND FUNCTIONALITIES 73

TaskDeclaration

- INVALID: int=0x00 i
- TASK INSTANTIATION NODE_ID: int= 0x01
- TASK INSTANTIATION _ANYWHERE: int=0x02
- TASK INSTANTIATION NODES FER INSTANCE: int= 0x04
- TASK INSTANTIATION AREA PER INSTANCE: int= 0:08
- TASK INSTANTIATION SPATIAL EXTEMT: int=0x10
- TASK FIRING_PERIODIC: int=0x01
- TASK FIRING ANYDATA: int= 002
- TASK FIRING ALLDATA: int=0x04
- taskiD: int |
- taskMame: String |
- taskCode: Runnable i
- runAtinit: boolean = false
instParameter. int
- taskPriority: int
- taskPeriod: int
hasBeenRun: boolean = false

MAX, ANNOTATION TYPES: int=2 i
INSTANTIATION: int=0 |
FIRING: int=1 |

annotations: int ((MAX_ANNOTATION_TYPES]) = nevw int[MAX_ANN...
inputChannels: int ([ArchConstants. MAXDATA] = new intfArchCon...
outputChannels: int ([ArchConstants. MAXDATA]D = new intfArchCon...

s

TaskDeclaration(int, Runnable, int, String, boolean, int, String, int, boolean) §
unTas): boolean |
stopTask)) : boolean

setRunatinit] : void |
runAtinit) : boolean I|
addinstantiationType(String) : void |
setinstantiationFarametenint) : woid ']
addFiringRule(String) : woid ‘
fiingRule() : Sting i

M+ + + + + + + + +

Figure 3.2 Storing abstract task declarations in the TaskDeclaration class.

the task is a periodic task and has already been launched at node initialization,
it is not scheduled again.

A note on managing execution of periodic tasks. The above method of
managing periodic tasks is not desirable for the following two reasons. First,
leaving the control of periodicity to the while loop within the task makes the
runtime system less capable of controlling the task execution or being aware of
the current state of the task. In the future, we would like to support changes to
the ATaG program after compilation, when the application is already running in

74 DART: THE DATA-DRIVEN ATAG RUNTIME

// ifdefs for annotation values

private static final int INVALID = 0x00;

private static final int TASK_INSTANTIATION_NODE_ID = 0x01i;

private static final int TASK_INSTANTIATION_ANYWHERE = 0x02;

private static fimal int TASK_INSTANTIATION_NODES_PER_INSTANCE = 0x04;
private static final int TASK_INSTANTIATION_AREA_PER_INSTANCE = 0x08;
private static final int TASK_INSTANTIATION_SPATIAL_EXTENT = 0x10;

private static final int TASK_FIRING_PERIODIC = 0x01%;
private static final int TASK_FIRING_ANYDATA = 0x02;
private static final int TASK_FIRING_ALLDATA = 0x04;

// local variables

private int taskID;

private String taskName;

private Runnable taskCode;

private boolean rumAtlnit = false;
private int instParameter;

private int taskPriority;

private int taskPeriod;

// record if a runTask has been called om this or not.
private boolean hasBeenRun = false;

// indices into array that stores annotations

private static final int MAX_ANNOTATION_TYPES = 2;

private static final int INSTANTIATION = 0;

private static final int FIRING = 1;

private int[] annotations = new int [MAX_ANNOTATION_TYPES];

private int[] inputChannels = new int{ArchConstants.MAXDATA];
private int[] outputChannels = new int[ArchConstants.MAXDATA];

Figure 3.3 The internal variables of the TaskDeclaration class.

public boolean runTask() {
if ((this.firingRule().compareTolgnoreCase("periodic") == 0) &
this.hasBeenRun) {
// Task is periodic. Already scheduled to run periodically.
return false;

else {
// create new thread (Runnable) for this task
Thread t_taskThread = new Thread(taskCode);
// set specified priority for this task
t_taskThread.setPriority(taskPriority);
t_taskThread.start();
// record the fact that this task has been launched
// this is required for periodic tasks because the actual loop
// that executes the task periodically is in the task code itself
// and not in the runtime
hasBeenRun = true;
return true;

Figure 3.4 The runTask() routine of the TaskDeclaration class.

COMPONENTS AND FUNCTIONALITIES 75

the field. Forinstance, if anew behavior is to be added or an existing behavior is
to be modified, it should not be necessary to shut down the system, reprogram
each node, and reinitialize the sensor network. Instead, a protocol will be
defined that can manipulate the task and channel annotations, add new tasks
on a set of nodes, etc., while the system is running. Part of this manipulation
could include changing the firing rule of a task from periodic to any-data
or vice versa. In the current implementation, where the periodic firing rule is
hard-coded in the user task class, this modification will be impossible.

Second, the semantics of the periodic firing rule are not exactly satisfied
with this implementation. In ATaG, if a task is defined as periodic with, say, a
5-minute period, it means that successive invocations of the task are separated
by 5 minutes. This time is measured from the start of one invocation to the start
of the next invocation. If a 5-minute delay is inserted as the last statement of
the while loop (as is the case currently), the specified 5 minute period applies
(incorrectly) from the end of execution of the first invocation and the beginning
of execution of the second. By incorporating a more sophisticated mechanism
for task management in the AtagManager, the runtime system should ensure
that the firing of the periodic timer (again, maintained by the runtime) results
in a call to the runTask () routine of the corresponding task declaration.

The UML class diagram for the ChannelDeclaration class is shown in
Figure 3.5. The channel declaration stores all the annotations and correspond-
ing parameter values for the channel. The class provides methods that are used
to query for the (a) type (input or output) of the channel and (b) annotation
types and associated parameter values for the channel.

3.3.2 UserTask

3.3.2.1 Service Each abstract task in the ATaG model is required to be
an instance of UserTask. The UserTask class is the imperative part of the
abstract task declaration and contains the application-level code represented
by the abstract task. From the perspective of the DART design, the service
interface provided by this component is basically the Java Runnable interface
that is invoked when this task is to be scheduled for execution.

3.3.2.2 Interactions The user-level task interacts with the Datapool
by accessing the get () and put () functions for reading and writing data
items, respectively. UserTask can also use the interface provided by the
NetworkArchitecture component to obtain the list of node IDs (or loca-
tions) that constitute a specific neighborhood of the node defined either in
terms of hops or Euclidean distance. For instance, the input channel for that

76 DART: THE DATA-DRIVEN ATAG RUNTIME

Channel Declaration

INVALID: int= 000
CHANNEL INIT PUSH: int= 0x01
CHANNEL INIT PULL: int= 0xD2
CHANHNEL TYFE INPUT: int= 0:01
CHANNEL TYPE OUTPUT: int= 002
CHANNEL INTEREST LOCAL: int= 0x:01 |
CHANNEL INTEREST NONLOCAL: int= 0x02 |
CHANNEL _INTEREST MNEIGHBOR HOP: int= 0x04 |
CHANNEL _INTEREST MNEIGHBOR DISTANCE: int= 0:08
CHANNEL INTEREST ALL NODES: int=0x10
CHANNEL INTEREST DOMAIN: int= 020
CHANNEL INTEREST PAREHNT: int= 0x40
CHANNEL_INTEREST _CHILDREN: int= 0x80
hAX ANNOTATION TYPES: int=3
IOTYPE: int=0
- INITIATION: int=1
- |INTEREST: int=2 i
- annotations: int ([MAX_ANNOTATION_TYPES]) = new int[MAX_ANN...
- tasklD: int
- datalD; int i
- local: boolean
interestParam: int

e

ChannelDeclaration(int, int, String, boolean, String, String, int)
setinterestP arametering) : void

datalDQ : int i
taskiD() : int

isLocal(): boolean

islinput]) : boalean

isOutput : boolean
setlnputOutputType(String) : vaoid
setPushPull Type(String) : void
addChannellnterestString) : void
interest]) : String
interestParam() : int

4 F E o+

1+ + +

Figure 3.5 Storing abstract channel information in the ChannelDeclaration
class.

user task might be annotated as neighborhood-hops: 1, which means that each
piece of incoming data is from one of the 1-hop neighbors of that node. If
the functionality of the abstract task is to wait until at least one reading is
received from each neighbor, and then aggregate the set of readings, it is im-
portant for the task to be able to determine how many 1-hop neighbors it has

COMPONENTS AND FUNCTIONALITIES 77

Runnable

Supervisor

~ m_dataPool: DataPool
m_myState: Config
m_=Ul: m&Ul
m_guibdessage: GUlMessage
m_nebwodddrchitecture: Netwonddrchitecture
lastX: int=-1
lasty: int=-1

+ SupenvisonDataPool, Config, Netwodctrchitecture, mGUIN
+ run(): woid

Figure 3.6 UML diagram: Supervisor (instance of UserTask).

and what their locations or IDs are, so as to be able to decide when the round
of collection can be considered complete. This information is maintained by
the NetworkArchitecture module and can optionally be accessed via the
suitable query interface if required by the user task. Finally, the UserTask
can use the APIs provided by the sensors and/or actuators on the node. In the
current version of DART, sensing resources are to be accessed directly by the
UserTask by calling the suitable methods for classes representing the sensing
interfaces.

3.3.2.3 Implementation UserTask is basically a Java class that imple-
ments the Runnable interface so that the AtagManager can schedule it for
execution when its firing rules are deemed to be satisfied. In our program-
ming and software synthesis framework, the code template for each instance
of UserTask corresponding to a different abstract task is generated automati-
cally. This template consists of the task constructor and some other attributes
such as a reference to the DataPool that is required for invoking get () and
put O, etc.

Sample ATaG code listing for the Monitor task of Figure 2.20 is shown in
Figure 3.7. The ATaG programmer will write a similar piece of code for each
abstract task. Note that the program is written in a traditional language (Java in
this case) and involves only the manipulation of data items that correspond to
application-level events. No calls to the networking stack or any other system
level services are explicitly invoked. The code also does not involve any calls
to other application-level tasks — a characteristic of data-driven program flow.

78 DART: THE DATA-DRIVEN ATAG RUNTIME

public class Monitor extends UserTask {
// local variables to maintain state

private static int myReading = 0;

private static boolean wasAlarm = false, isAlarm = false;
private static int[] targetReadings;

[...1

public Monitor(DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture, mGUI t_GUI){
super (dp, myconfig, t_networkArchitecture, t_GUI);
// obtain information about the neighborhood of interest
neighborIDs = m_networkArchitecture.kHopNeighborIDs(1);
?eighborCoords = m_networkArchitecture.kHopNeighborCoords (1);
R |
}

public void run() {
Dataltem t_dataltem = m_dataPool.getData(
IDConstants.T_MONITOR, IDConstants.D_TEMPERATURE);
[...1

m_temperature = (Temperature) t_dataltem.core();
// store the received temperature reading with its origin
if (t_dataltem.originID() == m_myState.myID())
myReading = m_temperature.get();
else
setNeighborReading(senderID, m_temperature.get());

// check if gradient is exceeded
for (int n=0; n<neighborIDs.length; n++) {
if (Math.abs(getNeighborReading(n) - myReading) > 5) {
isAlarm = true;
break;
}
}
// alarm produced only at transition (alarm to no-alarm)
if (isAlarm && !wasAlarm) { // no-alarm->alarm transition
wasAlarm = isAlarm;
m_lAlarm = new LocalAlarm();
Dataltem m_dataitem;
m_dataitem = new Dataltem(IDConstants.D_LOCALALARM,
IDConstants.T_MONITOR, m_lAlarm);
m_dataPool.putData(m_dataitem);
} else if ('isAlarm &% wasAlarm) {
// indicate transition from alarm to no alarm

[...1

Figure 3.7 ATaG code listing for the Monitor task in Figure 2.20.

COMPONENTS AND FUNCTIONALITIES 79

DataFool

m_dataPool: Wector= new Vecton)
m_Ataghtanager Ataghlanager
m_Dispatcher: Dispatcher

m_config: Config

m_clock: Clodk

m_netvodcdrchitecture: Nebwoddfrchitecture

DataPool(Config)

setMNetwodcdrchite cture(NetwodcArchite cture) @ void
aproperty sets setftaghanagenAtaghlanagen) : void
aproperty sets setDispatchenDispatchen : void
getData(int, int) : Dataltem

putData(D ataltem) : boolean
putDataFromMNebwordD ataltem) : boolean
isDataReady(int, int) : boolean

setTotalRefgint]], int) : void

setNowR efg(int]], int) : void

isDataReadyint, int[]) : boolean

+ 4+ + + o+ o+

Figure 3.8 DataPool: UML class diagram.

3.3.3 DataPool

3.3.3.1 Service TheDatapool providestwo types of interfaces. The first
interface includes the get () and put () commands used to add data items to
and remove data items from the data pool, respectively. putFromNetwork ()
is a minor variant of the put () call that is invoked when the data item arrives
from the network interface instead of being produced by an application task.
The second interface supports a variety of calls used to query the state of
data items in the pool; e.g., whether an instance of a data item is available or
unavailable, active or inactive, etc. These terms are defined and explained in
more detail in Section 3.3.3.3.

3.3.3.2 Interactions Inthe current design, the user tasks interact with the
DataPool through the get () and put () calls. The NetworkStack invokes
the putFromNetwork() call when a data item sent by another node arrives at
the network interface. The AtagManager invokes the status query interface
to determine if one or more tasks are ready to be scheduled for execution.

3.3.3.3 Implementation Data pool management involves handling con-
current accesses by more than one user level or system level task, maintaining
reference counts for each instance of a data item in order to determine if a
particular instance is active (i.e., still waiting to be consumed by one or more

80 DART: THE DATA-DRIVEN ATAG RUNTIME

DP| 4
pp,| ¢,
Dp| d | |

Instance totalRefs, \ nowRefs
L4 [1] [m]1] [m]

Figure 3.9 Structure of the data pool.

tasks that are scheduled for execution) or inactive (i.e., it can be overwritten
when a new instance of the same type of data item is produced by a local task
or received by the NetworkStack from another node). The get() function
returns a copy of the requested data item to the caller and decrements the
reference count of the associated item by one. put() adds an instance of a
particular abstract data item to the data pool, unless the existing instance is
active, in which case it returns without changing the data pool.

Let AT = {t1,...,tn} bethe set of abstract tasks, and let AD = {d;, ...,
d,} be the set of abstract data items in the ATaG program. Atmost one in-
stance of each data item can exist on a node at a given time. Let DP =
{DP,...,DP,} be the set of entries of the datapool. Two boolean arrays
— totalRefs; and nowRefs; — of length m each are associated with each
entry D P; (see Figure 3.9). When an instance of d; is produced, these arrays
help to keep track of (a) the dependent tasks for that data item and (b) the sub-
set of those tasks that is scheduled for execution, respectively. The following
explanation will clarify the role of these arrays.

When the node is initialized, the following is true:
totalRefs;[j] = false, 1<i<n,1<j<m
nowRefs;[j] = false, 1<i<n,1<j<m
di =NULL, 1<i<n

An instance d; can be in one or more of the following states at a given time:

* d; is available for task t; if totalRefs;[j] = true.
* d; is available if 3j s.t. d; is available for task t;.

* d; is unavailable for task t; if totalRefs;(j] = false.

COMPONENTS AND FUNCTIONALITIES 81

public synchronized Dataltem getData(int taskID, int dataID) {
Dataltem t_dataltem = (Dataltem) m_dataPool.get(datalD);
if (t_dataltem.isAlive(taskID)) {
t_dataltem.decrementRef (taskID);
return t_dataltem;
} else
return null;

Figure 3.10 The getData() function.

® d; is unavailable if d; is unavailable for all tasks.
® d; is active if (i) d; is available, and (ii) 35 s.t. nowRefs;[j] = true.
* d; is inactive if (i) d; is available, and (ii) Vj, nowRefs;[j] = false.

Suppose task t; invokes get() for some d;. get() succeeds if d; is
available for t;, and it fails otherwise. If get () succeeds, nowRefs;[j] and
totalRefs;[j] are both set to false, indicating that the task has consumed
that instance.

Suppose task t; invokes put () for some d;. put() succeeds if d; is un-
available or inactive, and it fails otherwise. If put () succeeds, the instance of
d; passed by the call occupies entry D P; of the datapool. Next, the datapool
manager determines if there are any dependent tasks for d;, and further if any
of those dependent tasks are ready. Let DT ; be the set of dependent tasks of
d; and let RT; be the set of ready tasks at the time the put () was invoked,
where RT; C DT; C AT. Before the successful put () returns, the datapool
manager ensures that

totalRefs;[j] = true, Vt; € DT,

and
nowRefs;[j] = true, Vt; € RT;.

An any-data task is scheduled for execution whenever any of its input data
items become available. Similarly, an all-data task is scheduled for execution
whenever all of its input data items become available. The destructive get ()
by task t; of some d; is ensured by setting the totalRefs;[j] and nowRefs; (j]
to false. When a new instance of d; is created, the corresponding put () will
set these values to true again. Also, when a new instance d; is produced, the
number of tasks that are ready to consume that instance is reflected in the

82 DART: THE DATA-DRIVEN ATAG RUNTIME

public synchronized boolean putData(Dataltem outputData) {

int t_dataID = outputData.dataID();
// 1f data item is active, do nothing and return "false"
if (m_dataPool.elementAt(t_dataID) != null) {

if (({(Dataltem) m_dataPool.get(t_dataID)).isActive())

return false;
}
// Set time, date, node ID, and node coordinates of origin
outputData.setDateStamp(m_clock.getDate());
outputData.setTimeStamp(m_clock.getTime());
outputData.setOriginID(m_config.myID());
outputData.setOriginCoords(m_networkArchitecture.myCoords ());
// Add this to the datapool before calling AtagManager
m_dataPool.add(t_datalD, outputData);
// Call AtagManager who will set references and spawn tasks
m_AtagManager.newInstanceProduced (outputData.producerID(),
outputData.dataID());

// Notify the dispatcher
m_Dispatcher .newInstanceProduced(outputData);
return true;

Figure 3.11 The putData() function.

number of true entries in nowRefs;. Only when that instance is consumed
by all the ready dependent tasks do the entries in nowRefs; become false and
any put () allowed to overwrite that instance. Note that the use of two arrays
is necessary because the fact that one or more tasks are dependent but not
ready is reflected in the totalRefs array (e.g., an all-data task whose other
data items are not yet available). The nowRefs array merely records whether
a particular instance is being “actively” consumed by one or more dependent
and ready tasks.

3.3.4 AtagManager

3.3.4.1 Service The AtagManager supports a notification interface that
is invoked whenever a new instance of a data item is produced by one of the
tasks running on the node. A second interface provides answers to queries
about the declarative part of the ATaG programm—for example, the type and
parameters of a particular channel annotation.

3.3.4.2 Interactions The notification interface is used by the Datapool
as part of processing a put () call from the user task or a putFromNetwork ()

COMPONENTS AND FUNCTIONALITIES 83

call from the NetworkStack component. The query interface for the declar-
ative part of the ATaG program is used by the Dispatcher component.

3.3.4.3 Implementation AtagManager is charged with (i) internally
representing the entire declarative part of the ATaG program (i.e., the task,
data item, and channel declarations) and (ii) maintaining handles to the task
code so that instances of abstract tasks mapped onto the node can be invoked
when their firing conditions are met. Each abstract task declaration is stored
as an instance of the TaskDeclaration class, and each abstract channel is
stored as an instance of the ChannelDeclaration class. These two classes
were discussed in Section 3.3.1.

The UML class diagram for AtagManager in Figure 3.13 shows the various
attributes and methods in the current version of this class.

The constructor of AtagManager instantiates the TaskDeclaration and
ChannelDeclaration classes—one for each abstract task and abstract chan-
nel in the ATaG program (Figure 3.14). This is one of the few methods in the
runtime system that contain application-specific code which has to be gener-
ated during the software synthesis process.

When a new data item is added to the data pool using the putData() or
putDataFromNetwork () function call, part of the processing of the function
calls in the DataPool class involves an invocation of the newInstance-
Produced () function of the AtagManager.

The code listing for this function in the current implementation of DART is
shown in Figure 3.15. The arguments to this function are the ID of the abstract
task that produced the data item and the ID of the data item that was produced.

The AtagManager first checks if the output channel corresponding to the
task—data pair. If the output channel is marked as nonlocal, no further process-
ing is performed because a data item produced by a nonlocal output channel
is not meant to trigger any scheduling of dependent tasks on that node.

If the channel is not marked as nonlocal, the AtagManager determines the
set of abstract tasks that are (a) mapped onto that node, and (b) dependent on
the data item. The totalRefs array corresponding to the data item is now
populated. The next task is to populate the nowRef's array and to schedule the
suitable tasks for execution. The role of totalRefs and nowRefs arrays was
discussed in Section 3.3.3.3.

For each dependent task that is assigned to (i.e., mapped onto) the node,
the firing rule is determined. If the firing rule is any-data, the corresponding
nowRefs entry is set to 1, and the task is immediately scheduled for execution.
An any-data firing rule implies that the production of even one of the input
data items is sufficient for the task to be scheduled, and there is no need to

84

DART: THE DATA-DRIVEN ATAG RUNTIME

public synchronized boolean putDataFromNetwork(Dataltem outputData) {
int t_datalD = outputData.dataID();
// If data item is present and is active, do nothing and return "false"
if (m_dataPool.elementAt(t_dataID) != null)
if (((Dataltem) m_dataPool.get(t_datalD)).isActive(})
return false;
// If data originates from network, it is already stamped and should
// not be changed
// Add this to the datapool before calling AtagManager
m_dataPool.add(t_datalD, outputData);
// Call AtagManager who will set references and will spawn tasks
m_AtagManager .newlnstanceProduced (outputData.producerID(),
outputData.datalD());
return true;

Figure 3.12 The putDataFromNetwork function.

Ataghanager :

- numTaskDecls: int=0

- numChannelDecls: int=0

- taskDecls: Vector= new Vector

- channelDecls: Vector= new Vecton)

- m_dataFPool: DataPool

- m_eonfig: Config

- m_zUl: m&Ul

- m_netwodArchitecture: Nebwodotrehitectura

e s

AtaghanagenDataPool, Config, Metwodddrchitecture, meLUIY
scheduleT asldint) : void

start]) : void

getinT asksOfD ata(int) : int[]

- getDutT asksOfD ataling) ; int]

- getlnlataOfT aslint) : int[]

- getOutDataOfT asldint) : int[]

+ newlnstanceProduced(int, int) : void

+ getOutputChannelDeclaration(int, int): ChannelDeclaration |

+ + +

Figure 3.13 UML class diagram: AtagManager.

COMPONENTS AND FUNCTIONALITIES 85

// *x%kxkxxxkx*xx START OF AUTO-GENERATED CODE
numTaskDecls = 3;

taskDecls.add(IDConstants.T_SAMPLEANDTHRESHEOLD,
new TaskDeclaration(IDConstants.T_SAMPLEANDTHRESHOLD,
new SampleAndThreshold(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread . MAX_PRIORITY-0, "NODES_,PER,,INSTANCE", false, 1,
PERIODIC", 1, true));

taskDecls.add (IDConstants.T_LEADER,
new TaskDeclaration(IDConstants.T_LEADER,
new Leader(m_dataPool, m_config, m_networkArchitecture,
n_GUI),
Thread . MAX_PRIORITY-1, "NODES_,PER_,INSTANCE", false, 1,
"ANYDATA", 3600, false));

taskDecls.add (IDConstants.T_SUPERVISOR,
new TaskDeclaration(IDConstants.T_SUPERVISOR,
new Supervisor(m_dataPool, m_config, m_networkArchitecture,
m_GUI),
Thread . MAX_PRIORITY-2, "ONE_,INSTANCE_ ON_NODE_,ID", false, O,
"ANYDATA", 3600, false));

nunChannelDecls = 4;

channelDecls.add (0, new ChannelDeclaration(
IDConstants . T_SUPERVISOR, IDConstants.D_TARGETINFO, "INPUT",
false, "push", "ALLNODES", 0));

channelDecls.add (1, new ChannelDeclaration(
IDConstants.T_LEADER, IDComnstants.D_TARGETALERT, "INPUT",
false, "push", "", 0));

channelDecls.add (2, newChannelDeclaration(
IDConstants.T_SAMPLEANDTHRESHOLD, IDConstants.D_TARGETALERT,
"QUTPUT", true, "push", "NEIGHBORDISTANCE", 300));

channelDecls.add (3, new ChannelDeclaration(
IDConstants . T_LEADER, IDConstants.D_TARGETINFO, "OUTPUT",
true, "push”, "", 0));

// F*xkxxxkkkxxkkk*x END OF AUTO-GENERATED CODE

Figure 3.14 Section of the AtagManager constructor that instantiates task
and channel declaration classes. This code is automatically generated during
software synthesis.

86 DART: THE DATA-DRIVEN ATAG RUNTIME

public void newInstanceProduced(int taskID, int dataID) {
// If data is not local, do nothing locally when it is produced.
ChannelDeclaration t_channelDecl = this.getOutputChannelDeclaration(taskID,
datalD);
if (t_channelDecl==null || !t_channelDecl.isLocal())
return;

// Data is marked ’local’ and there is some outgut channel decl for it
int [] dependentTasks = getOutTasksOfData(datalD);
m_dataPool.setTotalRefs (dependentTasks, datalD);

int [] nowRefs = new int[ArchConstants.MAXTASKS];

for (int ctr = 0; ctr < dependentTasks.length; ctr++) {
// 1f task is not dependent on this data item, go to next task
if (dependentTasks[ctr] == 0)
continue;
// If task is dependent but is not assigned to this node,
// go to next task
it (!m_config.isTaskAssigned(ctr)) {
continue;

TaskDeclaration thisTask = (TaskDeclaration) taskDecls.get(ctr);
it ((thisTask.firingRule(}).toUpperCase().equals("ANYDATA")) {
// start any-data task

nowRefs[ctr] = 1;
thisTask.runTask ();
} else {

// the task is all-data; check if other data is ready
int [] flagArray = getInDataOfTask(ctr);
beolean allOtherDataReady = true;
for (int i = 0; i < flagArray.length; i++)
if (flaghrray[i] == 1 && (i '= dataID) &&
Im_dataPool.isDataReady (taskID, i)) {
allOtherDataReady = false;
break;

if (allOtherDataReady) {
// start all-data task
nowRefs [ctr] = 1;
thisTask.runTask();

}
}
// Only tasks that are actually engueued should be flagged ’1’

m_dataPool.setNowRefs (nowRefs, datalD);
return;

Figure 3.15 The newInstanceProduced() function of the AtagManager
class.

check if other input data items (if any) for that task are ready or not. As
mentioned earlier, an any-data task is responsible for handling situations
where an input data item may not be available in the data pool. If the task
has an all-data firing rule, the AtagManager checks if all other input data
items for the task are ready, and it schedules the task for execution only if the
condition is satisfied.

We do not worry about periodic tasks when the check for firing rule is
performed. The first reason is that if a task has a periodic firing rule, it is
triggered when the periodic timer expires and is not affected by the production

COMPONENTS AND FUNCTIONALITIES 87

of any input data items during the period between consecutive invocations.
Also, the current version of DART does not support compound firing rules—
for example, a task that is marked periodic V any-data. Even after this
support is included, such tasks will return true when the check for any-data
firing is performed.

When the newInstanceProduced() function returns, all dependent tasks
mapped onto that node whose firing conditions are met are in the scheduler’s
queue waiting for execution.

3.3.5 NetworkStack

3.3.5.1 Service As indicated by its name, the basic service provided
by the NetworkStack to the other components of the runtime is sending a
data item to one or more nodes in the sensor network. The component is
responsible for managing and initializing all the required protocols, which
will typically include physical layer, medium access, and routing protocols.
The sendData() functions shown in the class diagram (Figure 3.16) provide
this service.

3.3.5.2 Interactions TheDispatcher andtheNetworkArchitecture
components interact with the network stack. The former uses the interface
to send data items to a set of nodes as indicated by the annotations of the
output channel associated with that data item. The topology creation and
management—as well as other, similar protocols in the latter—also access the
transceiver through the NetworkStack.

3.3.5.3 Implementation The implementation of this component is al-
most entirely dependent on the target sensor node platform and the family
of protocols available for that platform. The prototype version of DART is
implemented primarily as a component of the simulation and visualization
environment that accompanies the ATaG visual programming interface. Since
the simulation is on a single machine, the interaction between independent
DART processes representing different nodes of the network is through sock-
ets on the simulation machine. The current DART implementation therefore
opens a listener thread on a predefined socket number to simulate the receiver
and a transmitter thread that sends the data items to the receiver sockets of the
destination nodes.

In a “real” DART implementation (i.e., one that is deployed on a real or
simulated sensor node that can directly communicate only with its 1-hop neigh-
bors), protocols managed by the NetworkArchitecture will register their

88 DART: THE DATA-DRIVEN ATAG RUNTIME

MNetworkStack

m_receiver. Receiver
m_dataPool: DataPool
m_transmittar: Transmitter
m_config: Config

~ m_receiverThread: Thread

NetwokStadaConfig, DataPool)
sendDatadintf], Dataltem) : void
sandGUIhMezzage(GUIMeszage) : vaoid
sendDatalint, Dataltem) : void

+ + + +

Figure 3.16 UML class diagram: NetworkStack.

interest in specific message types that will correspond to the protocol-specific
information exchanged between nodes. A message queue or similar mecha-
nism will be used to exchange data between these protocols and the receiver
and transmitter threads of the NetworkStack. This is similar to the active
messages [54] model.

3.3.6 NetworkArchitecture

3.3.6.1 Service NetworkArchitecture is responsible for managing
all protocols and maintaining all information related to the situatedness of the
node in the network. Situatedness implies a knowledge of the neighborhood
composition, the role of the node in one or more virtual topologies (such as
trees or meshes) that might be permanently or temporarily overlaid on all
or part of the network. This service is provided through a query interface
that translates architecture-independent specifications such as “ID of parent
node,” “IDs of child nodes,” “geographic locations of nodes within 10 m
of this node,” etc., into the desired ID or location list. To summarize, this
component provides context-awareness to the application-level and system-
level components of the software system running on the sensor node.

3.3.6.2 Interactions UserTask instances may optionally interact with
the NetworkArchitecture to obtain information about the node’s own co-
ordinates, the composition of its neighborhood, its role (if any) in a virtual

COMPONENTS AND FUNCTIONALITIES 89

topology, etc. The Dispatcher also uses this query interface to translate
annotations of output channels into list of node IDs and/or locations for trans-
mitting the newly produced data item to its specified destinations. Finally, the
NetworkArchitecture uses the services provided by the NetworkStack as
required by the protocols it manages.

3.3.6.3 Implementation Asmentioned above, NetworkArchitecture
isrequired as a separate (and important) component of DART because applica-
tion-level tasks require information about the situatedness of the node in the
target deployment. The architecture-independence and data-driven semantics
of ATaG means that all the input and output by instances of abstract tasks are
through the basic get () and put () primitives. All communication over the
network is implicit in the channel annotations and is not directly controlled
by the imperative portion of the ATaG program. However, an integral char-
acteristic of networked sensing is that the processing of data items could be
influenced by factors such as the location of the node, the density of sensor
nodes in its region of deployment, etc. This means that if an abstract task with
an input channel labeled neighborhood-hops:1 is mapped onto a node, it is
highly probable that the task code will want to know the composition of its
1-hop neighborhood in order to meaningfully interpret and suitably process
the incoming data items represented by that channel.

The current implementation of NetworkArchitecture maintains infor-
mation about a neighborhood whose “scope” is determined by the channel
annotations of abstract tasks mapped onto that node. For example, let task
A and task B be the only two abstract tasks of the ATaG program that are
mapped onto a particular node. Suppose task A has an input channel with an-
notation neighborhood-hops:3 and task B has an input channel with annotation
neighborhood-distance:50 m. At compile time, the NetworkArchitecture
component on that node is configured to collect information only about the
union of the set of nodes within 3 hops of that node and the set of nodes
within 50 m of that node. This ensures that the computation, communica-
tion, and storage resources required to maintain this information are justified
by the (possible) utility of the information to tasks on that node. The set of
function calls that form the query interface supported by this component are
shown in the class diagram of Figure 3.17. Decisions about the activation
of protocols for virtual topology formation are also taken at compile time.
For instance, if the application requires a virtual tree topology, the program-
mer will presumably have identified the nodes that form the root and nonroot
members of the tree in the network model that is provided to the compiler.
The NetworkArchitecture modules on all or some of the nodes in the net-

90 DART: THE DATA-DRIVEN ATAG RUNTIME

Networ kArchitecture

m_kHopScope: int
m_dDistanceScope: int
m_kHopMbrs: Vector
m_dDistNbrs: Vector
m_numberOfiodes: int
nodeCoords: int (I
m_xRange: int
m_vwRange: int

Netwodotrchitecture(String, Config, int, int)
stark() : woid

myCaards() : int]]
translateChannelAnnotation(String, inf) : int]
kHopMeighborlDslint) : int[]
kHopNeighborCoords(int) : int]]
dDistanceMNeighborlDs(int) : int[]
dDistanceMeighborCoordsint) : intf]
allNodes : int]]

myDomain() : int]]

myP arent) : int[]

myChildren() : int]]

+ 4+ + + + A+ o+ A+ o+ o+

Figure 3.17 UML class diagram: NetworkArchitecture.

work will then be configured to start the tree formation protocols at node
initialization time.

The four types of events involving the NetworkArchitecture that can
occur atruntime are: A dataitem of interest to one of the protocols managed by
this component arrives at the transceiver and is communicated to the protocol
by the NetworkStack, a data item is sent to the NetworkStack by one of the
protocols managed by this component; the query interface is invoked by an
application level task; and the query interface is invoked by the Dispatcher.

3.3.7 Dispatcher

3.3.7.1 Service The Dispatcher is responsible for transmitting any
new instance of a data item produced on the node to other nodes (if any)
indicated by the output channel annotation associated with the data item.

COMPONENTS AND FUNCTIONALITIES 91

The component therefore supports a notification interface that consists of a
newInstanceProduced() function.

3.3.7.2 Interactions The Datapool is responsible only for managing
the data pool. The AtagManager stores information about the declarative
part of the program and also schedules the imperative portions for execu-
tion when appropriate. The NetworkStack manages the transceiver, and the
NetworkArchitecture is in charge of situatedness information of the node.

None of the above components are assigned the task of determining where
a particular data item produced on the node is to be sent. Hence, a new
component—the Dispatcher—was created for coordinating between these
modules and, when an instance of a data item is produced, sending it to the
set of destination nodes as indicated in the ATaG program. Specifically, this
component uses the query interface of AtagManager to obtain the output
channel annotation associated with the data item, the translation service of
the NetworkArchitecture to convert the channel annotation into a list of
node IDs (or locations) that correspond to the annotation at that time, and the
send () interface of the NetworkStack to actually dispatch the data to the
destinations.

3.3.7.3 Implementation The Dispatcher maintains handles to the
AtagManager, NetworkArchitecture, and the NetworkStack, to be in-
voked in that order. When a new data item is produced, part of the putData()
method of the DataPool class calls the newInstanceProduced() function
of the Dispatcher module.

The code listing for this function is shown in Figure 3.20. First, we perform
a sanity check to ensure that there is indeed an output channel declaration that
corresponds to the production of this data item. The assumption is that there
is exactly one such output channel. If more than one channel were allowed,
additional record-keeping would be required to now determine which task
produced the data item in question. This would increase the complexity of the
runtime system. The ATaG syntax currently prohibits more than one output
channel from being associated with a given data item for this reason.

The Dispatcher does not check if the output channel is local or nonlocal.
That determination is the sole concern of the AtagManager because it affects
the scheduling of dependent tasks (if any) on the local node. The Dispatcher
merely checks if some channel annotation (interest) is associated with the
output channel that can translate into one or more node IDs in the system.
This information is obtained through the AtagManager module that stores
the channel declaration and its associated annotations. If such an annotation

92

DART: THE DATA-DRIVEN ATAG RUNTIME

one-on-node-103:2 nodes-per-instance: | one-on-node-11:8

Figure 3.18 Hopscope.

- m_networkStad: NebwokStack

- m_netwodtrchitecture: Netwodddrchitecture

- m_AtagManager AtagManager

- m_config: Config

+ DispatchenNetuwokStack, NetwodcArchitecture, Ataghanager, Config)
+ newlnstanceProduced(Dataltem) : void

Figure 3.19 UML class diagram: Dispatcher.

CONTROL FLOW 93

public void newlInstanceProduced(Dataltem t_dataltem) {
int [] nodeIDs = null;;
int datalD = t_dataltem.dataID();
ChannelDeclaration t_channelDecl =
m_AtagManager.getOutputChannelDeclaration(
t_dataltem.producerID(), datalD);
if (t_channelDecl == null) {
// no output channel found for this data ID
System.exit(-1);
}
String interest = t_channelDecl.interest();
if (!(interest.toUpperCase().equals("NONE"))) {
int interestParam = t_channelDecl.interestParam();
// delegate the task of decoding the channel’s annotation to
// the NetworkArchitecture module
nodeIDs = m_networkArchitecture.translateChannelAnnotation(interest,
interestParam);
// NetworkArchitecture returns the list of nodeIDs (if any) that
// correspond to the chanmel annotation
if (nodeIDs != null) {
// delegate the task of actually transmitting the data item to the
// set of node IDs to the NetworkStack module
m_networkStack.sendData(nodeIDs, t_dataltem);
}
}

// Now check if any node IDs are specified as part of the config
// file generated during compile time.
nodeIDs = m_config.getDestinationOfData(datalD);

if (nodeIDs != null)
m_networkStack.sendData(nodeIDs, t_dataltem);
return;

Figure 3.20 The newInstanceProduced() function of the Dispatcher
module.

is found, it is passed to the NetworkArchitecture module that translates it
into a (possibly empty) set of node IDs and returns the list to the Dispatcher.

3.4 CONTROL FLOW

The flow of control among the components of DART can be divided into two
parts. The first is the set of activities that occur at node initialization. The
second is the set of actions triggered during the course of application execution
on that node. This set includes events that are generated by the user-level code
(e.g., production and consumption of data items) and also events generated
by components of the runtime system such as the protocols managed by the
NetworkArchitecture component.

94 DART: THE DATA-DRIVEN ATAG RUNTIME

3.4.1 Startup

Figure 3.21 is the code listing for the startup routine that is executed when a
node is initialized. This is the main routine in the Startup Java class that acts
as the point of entry into the runtime system.

package atag.runtime;

import java.io.*;

import java.util.x*;

import atag.runtime.config.x;
import atag.runtime.x*;

public class Startup {

public static DataPool m_dataPool;

public static NetworkStack m_networkStack;

public static NetworkArchitecture m_networkArchitecture;
public static AtagManager m_AtagManager;

public static Dispatcher m_Dispatcher;

public static mGUI m_GUI;

public static String networkFileName = "";

public static int hopscope = 0;
public static int distancescope = 0;

public static void main(String argv(]l) {
Config m_config;

m_config = parseCmdLineArgs(argv);

m_dataPool = new DataPool(m_config);

m_networkStack = new NetworkStack{(m_config, m_dataPool);
m_networkArchitecture = new NetworkArchitecture(networkFileName,

m_config, hopscope, distancescope);
m_networkArchitecture.start ();
n_GUI = new mGUI(m_networkStack);

m_AtagManager = new AtagManager(m_dataPool, m_config,
m_networkArchitecture, m_GUI);
m_Dispatcher = new Dispatcher (m_networkStack, m_networkArchitecture,
m_AtagManager, m_config);
m_dataPool.setAtagManager (m_AtagManager);
m_dataPool.setDispatcher(m_Dispatcher);
m_dataPool.setNetworkArchitecture(m_networkArchitecture);
m_AtagManager.start ();
System.err.println(m_config.myID()}+": started");
return;

Figure 3.21 The main routine of the Startup class.

CONTROL FLOW 95

Each module of DART is expected to implement a start () function that
performs the basic initialization (if any) required for that module. Alternately,
initialization may be performed in the constructor of that class in an object-
oriented implementation. The initialization might involve memory allocation,
initialization of variables, spawning of new threads for different protocols and
services, etc.

A special Startup module of DART is the first to run when the node is
turned on, and invokes the start () functions of the other modules. The code
listing for the main function in the Startup module is shown in Figure 3.21.

First, the Datapool is started, which mainly involves allocating memory
for each entry of the data pool corresponding to the different data items in
the ATAG, and then marking the entries of the datapool as empty by suitably
initializing the reference counts. Naturally, on resource-constrained platforms
where dynamic memory allocation is not supported and the data structures of
the data pool are determined and generated as part of software synthesis at
compile time, the duties of the startup function will be reduced.

Next, the NetworkStack is started, which spawns the listener thread to ac-
cept incoming connections, and a transmitter thread to handle outgoing mes-
sages. The initialization, if any, needed by the MAC and routing protocols,
and also the localization and time synchronization protocols, is performed be-
fore control returns to the Startup class. The code listing for the constructor
of the NetworkStack is shown in Figure 3.22,

Now that the basic communication service with other nodes is available,
the NetworkArchitecture module is started, which will spawn the protocol
threads required for neighbor discovery, virtual topology construction, mid-
dleware services, etc. The startup of this module could be deemed complete
when some minimum node state has accumulated; for example, all the infor-
mation about the neighborhood is available. The current version of DART is
designed primarily to support single-machine simulation and also does not in-
clude the protocols for local topology discovery. The entire network topology
is read from a configuration file that is passed to the Startup module during
initialization. We discuss this in more detail in Section 4.4.5.

Finally, the ATaGManager is started. This module traverses the list of user-
level tasks assigned to that node, and it spawns all the tasks that are marked “run
at initialization” by the programmer (see Figure 3.23). These will typically
be the tasks that (periodically) produce the set of sensor readings that will
then drive the rest of in-network processing. It is important to note that a
periodic firing rule does not necessarily mean that the periodic execution of
the task is started when the node is powered on. This is because the application

96 DART: THE DATA-DRIVEN ATAG RUNTIME

package atag.runtime;

import java.util.//;

import java.net.//;

import atag.runtime.config.//;
import atag.runtime.//;

import visualizer.//;

public class NetworkStack {
private Receiver m_receiver;
private DataPool m_dataPool;
private Transmitter m_transmitter;
private Config m_config;
Thread m_receiverThread;

public NetworkStack(Config t_config, DataPool dataPool) {
// Startup routime in the comnstructor:
// Startup the Receiver thread which will continually listen
// on a specific socket number for data transfers from
// other runtimes, and instantiate the Transmitter class
// which will be used to send the data item to other nodes.
//
// Handle to the data pool is passed to the comnstructor
// of the network stack because the Receiver thread
// requires this handle to be able to call the
// putDataFromNetwork method when a data item is
// received from other Transmitters.
//
m_dataPool = dataPool;
m_config = t_config;
m_receiver = new Receiver(t_config, dataPool);
// start up the receiver when NetworkStack starts
m_receiverThread = new Thread(m_receiver);
m_receiverThread.start ();
m_transmitter = new Transmitter (t_config);
return;

Figure 3.22 The constructor and startup routine for the NetworkStack.

CONTROL FLOW 97

public class AtagManager {

private int numTaskDecls = 0;

private int numChannelDecls = 0;

private Vector taskDecls = new Vector();
private Vector channelDecls = new Vector();

private DataPool m_dataPool;

private Config m_config;

private mGUI m_GUI;

private NetworkArchitecture m_networkArchitecture;

public void start() {
TaskDeclaration t_taskDecl;
for (int ctr = 0; ctr < m_config.ntasks(); ctr++)
if ({(t_taskDecl =
(TaskDeclaration) taskDecls.get(ctr)).runAtInit()) {
// run task with ID ctr
t_taskDecl.runTask ();
}
return;

3

Figure 3.23 The startup routine for the AtagManager.

developer might want some task(s) to execute periodically only when a certain
stage of the computation is reached or a certain event is detected. Hence, the
boolean property “run at initialization” is to be specified for each abstract task
(false by default) and only the tasks that have this property set to true will
be started at node initialization, regardless of the firing rule. The application
developer can use this mechanism to define application-level functionality that
is executed only at initialization,

3.4.2 get() and put ()

During the normal course of application execution, three main events can
occur: (i) a get () invocation by a user task, (ii) a put () invocation by a user
task, or (iii) a put () invocation by the receiver thread when a data item arrives
from another node.

As explained in Section 3.3.3.3, a get () invocation merely results in the
clearing of the corresponding entries of the totalRefs and nowRef s arrays of

98 DART: THE DATA-DRIVEN ATAG RUNTIME

the data pool and, as a side effect, can change the state of a particular instance of
a data item from available to unavailable, etc. In the current implementation,
the processing of a get () call is performed entirely within the Datapool
component, and none of the services offered by other DART components are
used by Datapool.

EVENT
|

N

UserTask/ UserTaskn - '@

O |

NetworkArchitecture DataPool <—®—> ATaGManager

0o & &
Dispatcher
NetworkStack @ i

Transceiver

Figure 3.24 Flow of control on a put () invocation.

The processing of a put () call is more involved. Figure 3.24 shows the
flow of control among DART components triggered by a put (). Steps 1
through 7 of the figure correspond to the following:

1. An instance of UserTask invokes put () for a particular abstract data
item. The Datapool first checks if the corresponding data item can be
safely added to the data pool—that is, if the data item is unavailable or
inactive. If the addition fails, the put () returns with an error code and
the contents of the data pool are not modified.

2. If the addition succeeds, Datapool invokes the newInstance-
Produced() function of the AtagManager. The AtagManager checks
if the output channel annotation for the newly produced data item con-
tains nonlocal. 1If not, the AtagManager determines the list of tasks
that depend on this data item and checks their firing rules. The arrow
that denotes Step 2 is double-headed because this process involves some
calls back to the Datapool to check the status of certain data items.

CONTROL FLOW 99

3. If one or more tasks are ready to be scheduled for execution, the Atag-
Manager invokes the run () function provided by the Runnable inter-
face supported by each UserTask.

4, The DataPool notifies the Dispatcher and returns control to the user
task. Further processing by the Dispatcher can proceed in a separate
thread of control.

5. The Dispatcher obtains the output channel annotation for the data
item. If the ouptut channel is marked local only, the data item is not to
be transmitted to any other nodes in the network and processing of the
put) call terminates at this point.

6. If the output channel annotation indicates transmission of the data item
to one or more nodes of the network, the Dispatcher queries the
NetworkArchitecture to translate the channel annotation into a list
of node IDs (or locations). Note that this assumes a scenario where
the annotation is not translated into node IDs (or locations) at com-
pile time, which typically will be the case if the network is dynamic.
For a static network where some annotations are translated into node
IDs (or locations) through an analysis of the network graph at compile
time, the runtime translation will not be required. Instead, a list of node
IDs (or locations) will be provided to the AtagManager instead of an
untranslated channel annotation. In this case, Step 6 will be omitted.

7. Finally, the Dispatcher hands over the data item and the list of desti-
nations to the NetworkStack for transmission.

The operating system and compiler support for the platform on which DART
is implemented heavily affects the (a) design and implementation of the com-
ponents and (b) the management of details of the control flow. For instance, a
real-time operating system such as pC/OS-II includes a preemptive priority-
based scheduler and support for multi-threading, which is not available in an
operating system such as TinyOS for resource constrained sensor nodes. Also,
if uC/OS-II is the choice of operating system, the DART implementation (and
the software synthesis process) will be affected by the target processor.

100 DART: THE DATA-DRIVEN ATAG RUNTIME

| ATaGManager [| Sampler I
o © ©

I Dispatcher 1@-{ DataPool‘ | Dispatcher | IData[’uol‘

® @
| NetworkStack | |NetworkArchi:ecturel

Multi-hop routing

NetworkStack

!

| Nerworkz\rchitectllreJ

Figure 3.25 Centralized data collection: control flow at the sampler and
collector nodes.

The description of the DART architecture and details of its control flow are
hence intended to be a guide (template) for implementing system-level support
for the ATaG programming model, with DART implementations on different
sensor node platforms differing from another in the details.

The third type of event — an invocation of the putFromNetwork () call by
the receiver thread of the NetworkStack—is handled in much the same way
as a local invocation, except that the Dispatcher is not part of the loop.

3.4.3 lllustrative example

In centralized data collection, a Sampler task is hosted on each node of the
network, and a Collector task is hosted on a single designated root node.
The Sampler runs periodically and produces a data item that is to be routed to
the Collector atthe root node. The ATaG program for this behavior therefore
consists of two abstract tasks and one data item.

Figure 3.25 depicts the intranode and internode flow of control whenever a
data sample is created at a nonroot node (left) and communicated to the root
node (right). The individual steps have already been explained in the previous
subsection. In this example, the invocation of a put () by the Sampler only
results in execution of six of the seven steps discussed in the earlier section.
This is because the AtagManager does not invoke any task on that node, since
no task dependent on the Sampler is mapped on the nonroot node. When the
data item arrives at the network interface of the root node, the NetworkStack
adds it to the data pool, which leads to the scheduling of the Collector task
that consumes the newly arrived data item sent by the Sampler.

FUTUREWORK 101

3.5 FUTURE WORK

A fully functional albeit simplified version of DART (DART-J) intended for
single-machine simulation has been implemented in Java. DART-J has a
modified network interface that communicates through sockets on the local
host. Each instance of DART is also aware of the entire network architecture
at startup (by reading from a file); and the protocols for neighborhood dis-
covery, etc., are not required and not implemented. An ANSI C version of
DART (DART-C) has also been partly implemented for a sensor node with
a PIC18LF8720 microcontroller, 3840 bytes of RAM, 128KB of program
memory, and 1KB of EEPROM. DART-C is designed for the MicroC/OS-1I
real-time operating system. Hardware design of the node, implementation
of low-level APIs, and software development of the runtime is proceeding in
concert and is not yet complete. We do not expect to implement an ATaG
runtime on the TinyOS operating system in the near future, primarily because
of the lack of the prerequisite mechanisms required by DART to guarantee
ATaG semantics. We believe that using a small-footprint, widely available
component-based operating system that provides the necessary mechanisms
is an option as good or better than first implementing these mechanisms as a
set of extra nesC modules for TinyOS and then layering the application-level
task code on top of these modules.

We now discuss some areas of future work for DART. These are in addition
to the modifications to the DART design and implementation that will be
required to support the proposed enhancements to ATaG (Section 2.6).

3.5.1 Lazy compilation of channel annotations

The destination(s) of a particular data item produced on a node is indicated in
the ATaG program in an architecture-independent manner. The actual trans-
lation of an annotation such as neighborhood-distance:10 m into the list of
nodes that fall within the 10 m radius of a particular node in the network can
take place at compile time or at run time. If the network deployment is static
and known at design time, the AtagManager can be directly supplied with
a list of source or destination IDs corresponding to input and output chan-
nels, respectively. The NetworkArchitecture does not need to maintain
and update this information, thereby saving the resources required to run the
necessary protocols. If the network is dynamic, this translation must happen
at run time.

The application developer does not care if the translation is eager (compile-
time) or lazy (runtime), as long as the communication between tasks in the

102 DART: THE DATA-DRIVEN ATAG RUNTIME

network occurs according to the scheme indicated in the ATaG program. In-
deed, this is the essence of architecture independent high-level programming.
It also means that the decisions about lazy or eager evaluation of annotations,
frequency of refreshing node state in a lazy evaluation scenario, etc., is entirely
upto the compilation framework and the runtime system.

One of the areas of future work in this context is to define a technique
to minimize the cost of execution (using a suitably defined metric) by se-
lecting the evaluation policy for each annotation. The evaluation policy will
determine whether the compilation of an annotation is eager, lazy, or a com-
bination of both. For lazy compilation, it will also determine how frequently
the NetworkArchitecture will update the relevant information about the
neighborhood.

3.5.2 Automatic priority assignment for task scheduling

When the macroprogram is translated into a set of node-level program, it is
critical for the compiler to guarantee that the semantics of the macroprogram
are honored by the distributed system. Some of the ATaG semantics governing
the production and consumption of data items are the responsibility of the data
pool manager in the runtime system. Semantics of interest at the compiler level
relate to task scheduling. Specifically, the compiler must guarantee atomic
execution of application-level tasks and breadth-first execution of the task
graph mapped onto a node. These semantics are motivated by the nature of
“typical” data-driven sensor network applications and have been discussed in
detail in Section 2.4.

Target platforms for DART are required to provide a preemptive, priority-
based scheduler. Any platform that can host a Java virtual machine or a
real-time operating systems such as pC-OS II is a suitable target. With such
a scheduler, tasks are assigned priorities and the task with the highest priority
at any given time executes. If another task with a still higher priority becomes
ready for execution, the running task is preempted and the new task is given
control of the CPU. The execution semantics of the abstract task graph can be
ensured by suitably assigning priorities to tasks, depending on the scheduling
policy to manage the execution.

For a given ATaG program, the compiler should perform this priority as-
signment after the task placement phase. Not all abstract tasks in the program
are instantiated on every node. Each node is assigned a subset of the tasks, de-
pending on the placement annotations and any application-level optimizations
performed during compilation. For a given node, each task in the assigned set
has a firing rule and some data dependencies. Also, some of the data items

FUTUREWORK 103

might actually be produced on other nodes and injected into the local data pool
through the network interface. The arrival times of such external data items
cannot be predicted, and the task can become ready for execution at any time.
Maintaining the execution semantics in the face of uncertain arrival times of
external data items, in addition to the dependencies of tasks on that node, is a
challenge that needs to be tackled.

Also, the size of an ATaG program in terms of the number of abstract tasks
depends on the application. Not all schedulers support a large number of
distinct priority levels. For instance, a Java thread’s priority is specified with
an integer from 1 (lowest) to 10 (highest); also the real-time specification for
java (RTSJ) [49] offers 28 strictly enforced priority levels, whereas pC-OS
II [39] allows more than 50. Hence, another subproblem is that of performing
priority assignment by intelligent allocation from a limited number of priority
levels. We will implement a mechanism for limited-range priority assignment
to abstract tasks, based on the observation that not all tasks will become active
at a given time, and it might be acceptable to assign the same priority to more
than one task as long as they do not become ready for execution at the same
time.

This Page Intentionally Left Blank

CHAPTER 4

PROGRAMMING AND SOFTWARE
SYNTHESIS

This chapter describes the process of application development with ATaG.
The declarative part of the ATaG program is specified through an easy-to-use
graphical interface. Although a variety of representations are possible for
specifying the declarative part of an ATaG program, we chose the graphical
interface because of the benefit of providing a concrete syntax that is identical
to the abstract syntax, thereby eliminating the learning curve for the application
developer.

The imperative part, consisting of the code associated with each abstract
task and abstract data item, is provided by the user, with assistance from a code
template generator tool. Software synthesis, simulation, and visualization is
performed by tools that are launched from the visual programming interface.
The GUI is based on the Generic Modeling Environment toolsuite [21]. We
first introduce the GME toolsuite and then describe how GME was used to
implement a programming and software synthesis mechanism for ATaG.

Architecture-Independent Programming for Wireless Sensor Networks 105
By Amol B. Bakshi, Viktor K. Prasanna
Copyright (© 2008 John Wiley & Sons, Inc.

106 PROGRAMMING AND SOFTWARE SYNTHESIS

41 TERMINOLOGY

Model integrated computing (MIC): MIC is an approach for development of
complex systems that is based on capturing all the relevant system information
in a structured form (models) and using the model information to drive a set
of domain-specific tools for analysis and synthesis.

Model: Models are abstractions that allow the representation and manipu-
lation of various aspects of the underlying system. The set of parameters
captured in the model depends entirely on the intended usage of the model in-
formation and the domain of application. The term “model” is commonly used
to refer to mathematical models that describe a system through (a) a set of vari-
ables that represent properties of interest and (b) a set of equations that describe
the relationships between the variables. We use the term “model” to denote
structural models and not mathematical models. A domain-specific structural
modeling language defines the basic building blocks that are available to the
designer to describe a particular system in that domain. The domain-specific
language also implicitly includes the semantics of each building block and the
semantics of relationships between the building blocks. Examples of relation-
ships include association, containment, and physical connectivity.

The Generic Modeling Environment (GME): GME is a configurable graph-
ical toolsuite that supports MIC. The configuration of the environment to sup-
port domain-specific modeling is done in a formal manner through the use of
metamodels. The metamodeling language is the UML class diagram nota-
tion. GME allows rapid creation of domain-specific modeling environments
that are used by designers to describe systems in that domain, performs de-
sired transformations on the model data, and drives external tools with the
model information as input. Model interpreters are the software components
that interface with the model database and manipulate and otherwise use the
model information.

4.2 META-MODELING FORTHE ATaG DOMAIN

4.2.1 Obijectives

GME was used to create a programming and software synthesis for the ATaG
model. The objective of the customized graphical programming environment
was to provide the following basic capabilities:

Meta-modeling for the ATaG domain 107

* The ability to visually specify the declarative portion of the ATaG pro-
gram. This means that the abstract task, abstract data, and abstract
channel are the basic building blocks of the structural model of the
ATaG program, and the annotations associated with each should also be
specified (or selected from a list of predefined values).

» The ability to create a library of ATaG programs (also called “behav-
iors”) and compose larger applications by selecting and concatenating
programs from this library.

» The ability to visually specify the parameters of the target network
deployment, such as the number of nodes and the coordinates of each
node, node identifiers, radio ranges, etc.

» The ability to create a library of network descripfions that will typi-
cally correspond to existing deployments, similar to the library of ATaG
programs.

» The ability to indicate which set of ATaG programs is to be compiled on
which of the network models, as well as to invoke the software synthesis
tools for generating customized code to be downloaded and deployed
on each node in the selected target.

A visual interface for drawing the ATaG program eliminates the need for
the programmer to learn a new syntax and also makes it easy to comprehend
the structure of an existing program. The ability to create libraries of behav-
iors and deployments allows reuse of existing applications as components of
larger applications, and it also allows the same application to be compiled
for a different network. At the highest level of abstract, as will be shown
in the following sections, ATaG programming translates into the selection of
one or more behaviors from the program library, the selection of one net-
work description from the deployment library, and the invocation of software
synthesis tools integrated into the development environment. The software
synthesis methodology itself is structured in such a way that the imperative
portions of existing ATaG programs (i.e., the code associated with the tasks
and data items) can be reused. Ultimately, this means that if a programmer
wishes to merely combine existing behaviors to form a larger application, and
compile it for one of the existing network descriptions, not a single line of
code needs to be written. This feature is one of the biggest strengths of the
ATaG model and is the best demonstration of the advantages of using the data-
driven programming paradigm for modularity and composability, with mixed
imperative—declarative program specification for separation of concerns.

108 PROGRAMMING AND SOFTWARE SYNTHESIS

SensorNetworkApp
<<Model>>

ATaGBehaviorR

DeploymentR
<<Reference>> 5 1 0.* <<Reference>>

Y
Deployment ATaGBehavior
<<ModelProxy>> <<ModelProxy>>
NumberOfNodesfield P

RadioRange : field
SensingRange : field

VirtualTopologyenum
XRange : field
YRange : field
TreeRoot : field
L

Figure 4.1 GME metamodel: Sensor network application consists of a set
of behaviors mapped onto one target deployment.

The MetaGME paradigm that is used to specify the domain-specific meta-
models provides basic building blocks that are used to define the structure of
valid models in the target domain. Examples of the building blocks include
atom, model connection, reference, etc. The GME users’ manual explains the
metamodeling and modeling concepts and processes in more detail. Here,
we present the metamodels that are defined to create the ATaG programming
environment.

4.2.2 Application model

The modeling paradigm for the ATaG programming environment is defined as
follows. As shown in Figure 4.1, the sensor network application consists of
one or more behaviors and one network description. All behaviors to be syn-

Meta-modeling for the ATaG domain 109

thesized onto the target network are required to be part of this top-level model.
The individual behaviors are represented as models named ATaGBehavior.

As mentioned in earlier sections, one of the advantages of the data-driven
paradigm is the composability of programs by literally concatenating sub-
programs. This property allows the creation of libraries of ATaG programs for
different behaviors, which can be easily composed into the desired application
by the end user. To support this drag-and-drop composition of applications
from existing libraries, we do not include the ATaGBehavior models directly
into this high-level model. Instead, the top-level model contains references to
behaviors and a reference to a network description. References act as pointers
to other entities; in this case, the actual behaviors and the network description
are stored separately in the library and the programmer includes the behaviors
in the application by simply pointing to it. In the figure, the ATaGBehaviorR
entity is a reference to an ATaGBehavior model, and the DeploymentR entity
is areference to a Deployment model, each of which is now explained in more
detail.

The declarative portion of the ATaG program is described by instantiating
the ATaG model. The structure of the model is shown in Figure 4.2. The
model consists of Tasks and Dataltems, corresponding to abstract tasks and
abstract data items, respectively. The annotations for tasks and data items
are specified as attributes of the models. As shown in the figure, attributes
of the Task model include firing rule, type of instantiation, priority of the
task, whether the task should be executed at node initialization, etc. The
fact that an attribute is associated with a model does not necessarily mean
that the programmer has to specify its value. Attributes such as TaskID and
Priority could be computed at compile time for a particular application and then
recorded in the model for inspection by the programmer. Note that the current
version of the metamodel is a prototype primarily meant to demonstrate the
power of visual programming with ATaG. Some attributes in the current model
are placeholders for information that is not used by the mapping and software
synthesis tools. As the programming paradigm evolves, the metamodels will
evolve accordingly.

One of the main attractions of using the GME toolkit for designing the ATaG
programming environment is the ease of modifying the modeling paradigm
and automatically generating an updated graphical modeling environment.
Attributes of various types (boolean, integer, string, etc.) can be associated
with the metamodel entities (atoms, models, connections, references, etc.) by
specifying them in the ’ Attributes’ aspect of the metamodeling environment.
Figure 4.3 shows the Attributes aspect of the ATaG metamodel. The FiringRule

110 PROGRAMMING AND SOFTWARE SYNTHESIS

.—ﬁ InputChannet
Behaviors ATaG | ", <<Connection>>
<<Model>> o <<Model>> i| Incoming : enum
- Parameter : field
0.+ o OutputChannel
Task T .' <<Connection>>
<<Model>> d Dataltem ' gdctiTqLocalbool
0.* utgoing : enum
ExecutionPeriod : field <<Model>> dst pargme?er:ﬁew
FiringRule : enum {ST€ Lifetime : field [0.*
InstantiationParameter :field [DatalD : field
InstantiationType : enum | }
TaskID : field
RunAtInit : bool
0. [0. CFile
JavaFile <<Atom>>
<<Atom>> 0-*l Filename field
Filename field Selected bool

Selected bool

Figure 4.2 GME metamodel: Modeling paradigm for the ATaG program
(declarative).

is an enum attribute, which means that a list of valid selections is prespecified
in the metamodel. The lower right section of the GME window in Figure 4.3
shows the specification of allowable values for the firing rule, in accordance
with the ATaG semantics in Section 2.4.

4.2.3 Network model

The application developer describes a target network as an instance of the
Deployment model. The structure of the Deployment model is shown in
Figure 4.4. The description of the target deployment can be separated into
network-level parameters and node-level parameters. Examples of network-
level parameters include: number of nodes, radio range (assuming all nodes
have a fixed radio range), the real or virtual X and Y coordinate range of the
localization system, etc.

Meta-modeling for the ATaG domain 111

S pe [t gew Wndw e =18 x|
viMBaxaaittddsvadMmpran=Sm 2|8 Xee
[& T Hame T [Paadiamibes Aigtes +] Base 7R Zoom[10 g m————
X Task -d
s ceMadels» AddTolocal
««BooleanAliribute>»
® FiringRule enum [Cutpuichannet — -
Q instanbationParameter feld «<Connaclion>>
InstanbiationType enum =
ff_ Priarity feid AddToLocal bool
RunAlini bool Parameter . fleld
TaskiD field Outgoing enum Outgoing
ExecubionPeriod field <<EnumAiributes=
’ [} ATaG e =,
TaskD RunAlist -
«<FiglgAibute > = S<hnomaninibulese rS—
] N
pre—— ———1 iy c<Ajoms=
[1 FiringRule Selected boal " ikl |
IngtankationFarameter AT Selected bool
< <FiplaAtiributes =<EnumAsiribute = Filename - field Fllename fisld
T —
L] | x — —
< = e
| =] [= | FarcFue I i bt
<<Booleanatibutes> | =<EnumAliribute== 1 i '
| 1 | | el | Progestien | El‘
Prompt Firing nde
- et auithd erudtem Pesodc
=<FleidAribute== Mer bems Pesndhc |
Ary npedt itom avadable
Alinput hems avalsble
Penodc OR any-nput
Penoch: OA slrputs
|| sl | Vimssaston] Corshorts, srbuses | |

Figure 4.3 GME metamodel: Specifying annotations for tasks and data
items.

Deployment
<<Model>> SensorNode
e R
<<Model>> le mange . Nodeld : field
0.”] SensingRange : field 0.* Script : field
VirtualTopologyenum YCoord : field
XRange : field .
YRange : field XCoord : field
TreeRoot : field

Figure 4.4 GME metamodel: Modeling paradigm for the network.

The set of parameters that are captured in our current metamodel are meant
to be representative of the information that might be required for the compiler
to synthesize an ATaG program on that deployment. By categorizing radio
range as a network-level parameter, we assume that all nodes have identical

112 PROGRAMMING AND SOFTWARE SYNTHESIS

radios with fixed radio range, and hence the radio range can be specified at
the network level and not for the individual node. The X and Y coordinate
range also implies that nodes are localized in a two-dimensional space. The
advantage of using a configurable modeling environment such as GME is
that the metamodel (and hence the programming environment) can be easily
modified by including additional network-level or node-level parameters as
desired.

4.3 THE PROGRAMMING INTERFACE

This section describes the use of the visual programming environment config-
ured by the GME metamodels discussed above. The sequence of steps to be
followed by the programmer can be summarized as follows.

StepI. Create alibrary of ATaG behaviors: An ATaG behavior is a standalone
ATaG application, consisting of abstract taks, abstract data items, and input
and output channels and their annotations. When part of a library, it can also
be concatenated with other behaviors in the library and/or user-defined be-
haviors. We require the application developer who wishes to define his/her
own ATaG behavior to first add it to the library and then import that behavior
and any of the other preexisting behaviors from the library into the overall
application.

Behaviors are created in the GME environment by navigating to the Beha-
viors model and instantiating a model of type ATaG from the parts browser
window at the lower right of the GME interface. The model instance is then
renamed as desired. The programmer then double-clicks on the renamed
ATaG model instance and is presented with a new set of building blocks that
correspond to abstract tasks and data items. The programmer then specifies
the declarative part of the behavior by simply dragging the desired number of
tasks and data items from the parts browser to the model editing pane. Each
task and data item can be renamed by selecting it and editing the values in the
attributes window on the lower right of the main GME window.

Output channels are created by selecting the connection mode from the
GME mode bar, clicking first on the producer task and then on the produced
data item. When the channel (connection) is created, its directionality is
indicated by an arrow pointing to the data item. Selecting the channel displays
another set of editable attributes in the attribute browser, corresponding to
channel annotations. Input channels are specified in a similar manner by first
selecting the data item and then the consumer task.

THE PROGRAMMING INTERFACE 113

Step II. Create a library of network descriptions: Similar to the library
of ATaG programs (behaviors), the programming environment allows the cre--
ation of a library of deployment descriptions. Each network description could
correspond to some real deployment that will host the application, or simply
a fictitious network deployment designed solely for testing the ATaG program
behavior through functional simulation.

A network description will consist of network-level parameters such as the
number of nodes, the scope of the coordinate system (if any) interms of X and Y
coordinate range, the availability of protocols for establishing virtual topology,
etc. This information will be used to translate the ATaG annotations for that
particular network and will also be used to determine if a particular ATaG
behavior selected by the programmer has a valid mapping onto the selected
target deployment. For instance, if the ATaG program uses the annotations
‘parent’ and ‘children’ on the channels, the network description must indicate
(a) the availability of protocols to establish a virtual tree topology and (b) any
parameters required by that protocol, such as the identity of the root node of
the tree. Similar to the library of behaviors, if the desired network description
already exists, this step can be omitted.

The network description currently captures only the number of nodes, their
X and Y coordinates, the span of the virtual coordinate system along the two
dimensions, the radio range, and sensing range of the sensor interface on
each node. The network is assumed to be homogeneous in that all nodes are
considered to be identical. We also assume an “ideal” environment and do
not model the effect of obstacles or hostile terrain on network connectivity. If
the ATaG compiler is to be made sophisticated enough to choose or customize
the lower-layer network protocols based on such information, the necessary
attributes can be added to the programming interface. We also do not capture
any node-level attributes relating to resource availability such as the energy
available to each node.

Step I11. Compose the application and select the target network: After the
new behaviors (if any) are added to the existing library of programs and the
desired target deployment is modeled, the programmer has to compose the
application. Application composition is simply the graphical concatenation
of behaviors from the library.

In the GME window, the programmer instantiates the desired number of
references to ATaG behaviors and one reference to the network model. Then
each behavior reference is associated with (bound to) the actual behavior from
the library, and the reference to the target deployment is bound to one of the
existing network models. More than one behavior references can be included
but only one network reference must be present.

114 PROGRAMMING AND SOFTWARE SYNTHESIS

! r\Q\/"l

=

Rap I X

ATaG program Target deployment

/

e Schedulability analysis
e Priority assignment

¢ Protocol selection Download
* Task placement

COMPILATION

and dgploy

v

Config file
template

Protocol
library

Runtime
module
templates

Figure 4.5 Application development with ATaG.

Step IV. Invoke the compilation and software synthesis tools: After appli-
cation composition, the programmer launches the compilation and software
synthesis tool, which guides him/her through a series of decisions, culminat-
ing in the generation of configuration files, customized DART components,
scripts to launch the simulation and visualization tools, etc. This process will
be described in more detail in Section 4.4.3.

One of the intermediate steps in this process is the automatic generation of
code skeletons for the abstract tasks and abstract data items, which are to be
filled in by the programmer. We expect that each behavior that is contributed
to the library is also associated with its imperative portion (the classes for
the task and data items). If the programmer is using existing behaviors from
the library and not defining new ATaG programs, then the generation of code
skeletons is not required. In other words, for the end user who wishes only to
compile existing behaviors onto a new or existing networks, ATaG does not
require even a single line of code to be written.

COMPILATION AND SOFTWARE SYNTHESIS 115

4.4 COMPILATION AND SOFTWARE SYNTHESIS

In this section, we describe the rudimentary compilation mechanism in the
current ATaG programming environment, and the support for automatic soft-
ware synthesis that generates skeleton code for user tasks and also individually
customizes the runtimes on each sensor node such that the “macro”-level in-
tent of the programmer, as expressed by the ATaG program, is preserved when
the program is translated onto a distributed system.

Rudimentary compilation means that the compiler only ensures functionally
correct translation of task and channel annotations in the ATaG program. No
attempt is made to evaluate or optimize the performance of the synthesized
application. Defining an optimizing compiler for sensor network applications
is an exciting area for future work and outside the scope of this discourse.

In the context of distributed computing in general and sensor networking
in particular, the phrase “correct translation" can have a multitude of implica-
tions and it is therefore necessary to clarify its precise meaning in the ATaG
context. “Correct"-ness in the ATaG compilation process merely means that
the semantics of task and channel annotations as defined in Section 2.4 are
preserved when the program is translated for the distributed sensor network.
For instance, the compiler ensures that the density of task instantiation and
the firing rules as specified in the ATaG program are preserved for the partic-
ular target network and runtimes. Atomicity of task execution is guaranteed
by suitably assigning priorities for task scheduling on the individual sensor
node. The assignment of priorities is the responsibility of the end user, and
the current compiler does not incorporate mechanisms to automatically assign
priorities.

For channel annotations, the compiler ensures that the propagation of data
items. in the deployed network is in accordance with the declarative intent
of the channel annotations. If data items are routed, in the ATaG program,
to tasks that are mapped onto specific, hard-coded node IDs, then the com-
piler generates specific instructions for the runtimes on the producer nodes to
transmit the data item to the specific node ID.

Correctness does not imply anything more than the above translation. ATaG,
like almost all the programming languages, only provides building blocks
with well-defined syntax and semantics to the programmer. The programmer
is solely responsible for translating the high-level application functionality
(such as “track an elephant”) into the sequence of communication and com-
putation that must take place in the network to accomplish the objective.
By providing high-level abstractions to concisely specify this communication

116 PROGRAMMING AND SOFTWARE SYNTHESIS

and computation mechanism in an architecture-independent manner, ATaG
attempts to make the task of application development easier for the average
sensor network programmer.

It is entirely possible to write incorrect programs in ATaG, like in almost
every other programming language. The only guarantee of “correctness" that
the compiler attempts to provide is that the distributed algorithm represented by
the macroprogram will be accurately translated into the distributed computing
substrate. It does not and cannot guarantee that the macroprogram accurately
represents the high-level intent of the application developer concerning the
semantics of the networked sensing application.

The software that runs on each node of an ATaG-programmed system con-
sists of: (i) user-supplied code for each abstract task and abstract data item,
(ii) components of the runtime system that are independent of the particular
ATaG program being synthesized, and (iii) components of the runtime system
that need to be customized for the particular ATaG program being synthe-
sized. Examples of the “standard” DART components are the Datapool,
the Dispatcher, the NetworkArchitecture, and the NetworkStack. The
AtagManager has to be customized for the application because the informa-
tion it maintains includes the task and channel annotations, and handles to the
user level code.

If dynamic memory allocation is not supported on the target platform, the
data structures of Datapool need to be customized for the abstract data items
that will be generated and consumed on that node—the Datapool needs to be
customized accordingly. However, in the current implementation of DART in
Java, this customization is not required because the data pool stores data items
as instances of a generic class Dataltem.

Also, the current implementation of DART for single-machine simulation
purposes does not require customization of the services for the NetworkArchi-
tecture module because the protocols for neighborhood maintenance and
topology formation are replaced with equivalent code that reads from a
configuration file on the disk and obtains the topology information. In a
“deployable” version of DART, some code in this component is likely to be
customized for the requirements of the ATaG program.

If some sensor nodes in the target system have a wired network connection
while others communicate through a variety of wireless network interfaces,
the suitable NetworkStack will have to be selected for each node, based on
the information provided in the network model. Currently, this component
requires no customization because the network interfaces are assumed to be
homogeneous, and no per-node optimization at compile time or runtime is

COMPILATION AND SOFTWARE SYNTHESIS 117

performed in this component. We now describe the compilation and software
synthesis process in more detail.

4.4.1 Translating task annotations

The output of the compilation process is (i) a set of config files for each node
in the network, (ii) customized constructor for the AtagManager, and (iii) the
network topology file in the specific format required by the NetworkArchi-
tecture module to initialize itself.

Figure 4.6 is an excerpt of the GME model interpreter that interprets the task
annotations in the context of the target network and generates config files for
each node of the network. In this code listing, only the task annotations one-
on-node-ID:n and nodes-per-instance:1 are being parsed. This simple code
listing is from an early version of the ATaG compiler designed to demonstrate
architecture-independent programming for a specific case study. The DART
runtime and the compiler are being continually extended to parse an increasing
set of task placement annotations, and the latest code will be available through
the ATaG website. Also, the language in which the model interpreter is writ-
ten is (naturally) independent of the language of implementation of DART.
Currently, the code generation for DART is also performed through a model
interpreter written in the same language (Java). Other language options such
as C++ are also available for the model interpreter. Future compilers and code
generators for ATaG might not be written in Java.

4.4.2 Automatic software synthesis

Software synthesis is performed through model interpreters in the GME en-
vironment. Model interpreters are software components that can access the
information entered graphically by the user by using an API provided by the
GME toolsuite. The building blocks—such as Atom, Model, Reference, and
Connection—provided by the GME metamodeling environment do not have
associated domain-specific semantics. It can also be argued that the build-
ing blocks—such as ATaGBehaviorR, Deployment, SensorNode, Task, and
Data—provided by the domain-specific modeling environment also do not
have any inherent semantics except in the mind of the programmer. It is the
model interpreters written for a particular modeling paradigm that encapsulate
the semantics of the domain by suitably “interpreting” the model components
and parameters to accomplish the desired domain-specific objective.

118 PROGRAMMING AND SOFTWARE SYNTHESIS

// Config file generation in the GME model interpreter
public void GenerateConfigFiles() {
configStrings = new String[ntopo.nnodes];

// Look at all task annotations and assign them to the
// suitable nodes; parse only two types for now
for (int i=0; i<ataglInfo.numTasks(); i++) {
TaskInfo t = atagInfo.taskInfo(i);
String instType = t.instType();
int instParam = t.instParam(};
if ((instType.toUpperCase().equals ("NODES,PER,INSTANCE")) &&
(instParam == 1))
for {(int j=0; j < ntopo.nnodes; j++) {
t.assign(j);
configStrings[j] += t.id() + " ";

}
else if (instType.toUpperCase ().equals ("ONE_INSTANCE_ON_NODE, ID"))
{

t.assign(instParam);

configStrings [instParam] += t.id() + ", ";
}

}

// generate instructions for data routing

for (int i=0; i<ataglnfo.numData(); i++) {
DataInfo d = atagIanfo.datalnfo(i);

// determine where the producer tasks for this data are mapped
for (int j=0; j<outChannels.length; j++) {
TaskInfo producer = ataglnfo.taskInfo(outChannels([j].task());
producerMap = producer.assigament ();
}
// determine placement of consumer tasks
if (inChannels.length == 0)
continue;
for (int j=0; j<inChannels.length; j++)
if ({inChannels[j].interest().toUpperCase()).equals("ALL_ NODES"))
{
TaskInfo consumer = ataglnfo.taskInfo(inChannels[j]l.task());
int [} destinations = consumer.assignment();
for (int k=0; k<destinations.length; k++)
consumerMap.add(nevw Integer(destinations(k]));
}

// generate -senddata for config file

Figure 4.6 Generating config files for each node of the network.

In our case, the objectives of model interpretation are:

1. To allow the application developer to visualize the network deployment
in two dimensions and also inspect node connectivity and sensing cov-
erage. This facility allows the application developer to quickly create

COMPILATION AND SOFTWARE SYNTHESIS 119

and inspect dummy sensor network deployments for application test-
ing purposes. It also provides a more intuitive interface for visualizing
the deployment than the GME interface, which is not very friendly for
visualizing spatial distribution.

2. To generate code skeletons for each abstract task (if required) for the user
to populate with application-specific code. Generating the code skeleton
allows the application developer to focus on writing the application-
specific functionality without worrying about details of the glue code
that is necessary to integrate the user level tasks into the DART runtime
system.

3. To customize DART components such as the AtagManager.

4. To generate files and scripts to configure and launch the simulation and
visualization environment.

The compilation and software synthesis process is started by invoking a sin-
gle model interpreter—the initial dialog box is shown in Figure 4.7. Similar
dialog boxes guide the user through the process. If the application devel-
oper wants to visualize the deployment, a display similar to the one shown
in Figure 4.8. The visualization is required because the GME model for a
deployment is basically a container for atoms of type SensorNode. Inspecting
the GME model does not give an idea of the distribution of the nodes in the
(two-dimensional) field, the connectivity of the network as determined by the
communication range of each transceiver, and the degree of coverage of each
type of sensing interface in the network.

The model interpreter then generates code skeletons for each abstract task in
the application, if desired by the programmer. If a new ATaG behavior is being
developed and the associated code is therefore to be written, the developer can
create a dummy application by (a) including only the ATaG behavior being
created and (b) choosing to generate code skeletons for the abstract tasks and
data items. The code synthesizer analyzes (i) the I/O dependencies between
abstract tasks and data and (ii) the firing rules for the abstract task, and it
generates a generic code skeleton as shown in Figure 4.9.

The programmer can then add application-specific code to the body of the
Java class, define static variables to store state information across invocations,
etc. The remainder of the software synthesis consists of customizing the con-
structor of the AtagManager (see Figure 3.14) and generating configuration
files that provide the basic startup information to each DART process when it
is launched as part of the simulation. The details of simulation are discussed
in Section 4.4.3.

120

PROGRAMMING AND SOFTWARE SYNTHESIS

ImyDdgP rogram/]

atag yDdpProgri
oS B 1., R ST e
v iME@xaatAnsinvddEoooso?)e 00000 |
X T Nane[opo [5 Aspect]4 e WA Zoom|)
LY
=
by
Q
€] Gradizant ObjTrack

Figure 4.8 GME model interpreter: Network visualization.

COMPILATION AND SOFTWARE SYNTHESIS 121

package atag.application;

import atag.runtime.*;

import atag.sensor.*;

import atag.runtime.config.*;
import visualizer.*;

public class SampleAndThreshold implements Runnable {
private DataPool m_dataPool;
private Dataltem m_dataitem;
private Config m_myState;
private Sensor m_aSensor;
private NetworkArchitecture m_networkArchitecture;
private GUI m_GUI;
private GUIMessage m_guiMessage;

public SampleAndThreshold(DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture,
GUI t_GUI) {
m_dataPool = dp;
m_myState = myconfig;
m_networkArchitecture = t_networkArchitecture;
m_GUI = t_GUI;

}
public void run() {
try {
for(;;) {
/* Write output data items */
Thread.sleep (1000);
} //end for
}
catch (InterruptedException e) {
return;
}

Figure 4.9 Automatically generated skeleton code for an abstract task.

4.4.3 The ATaG simulator

To allow the application developer to test the application behavior in a simu-
lated sensor network, a single-machine simulation and visualization mecha-
nism was developed for ATaG. The simulation occurs in a decentralized man-
ner with no global synchronization between the simulated nodes. A method
of sending messages to the graphical visualization interface is provided to

122 PROGRAMMING AND SOFTWARE SYNTHESIS

= ATaG Programming and Synthesis Environment

SN I

| Stant || Load

A S AT - e e
|| Sawe ||Acoustic | 3 ¥| Object tracking

Figure 4.10 A screenshot of the simulation and visualization interface.

the application developer and can be used to perform message logging at the
application (i.e., the user task) level.

Figure 4.10 is a screenshot of the simulation control and visualization in-
terface. The application being simulated in this example is object tracking
and gradient monitoring on a 20-node network. This application is discussed
in detail in the next section.

4.4.4 Initialization

The current implementation of DART is designed to work with the single-
machine simulation environment. Specifically, the simulation is started by
launching an independent Java process for each simulated node in the network.
For instance, in a 20-node network, twenty instances of DART (with different
command-line arguments) will be started on the same machine.

COMPILATION AND SOFTWARE SYNTHESIS

123

/7
//
//
//
//

/7
//
/7
//
//
//
//
/7
//
//

/"
//
//
//
//

package visualizer;

public class Constants {

The main simulation GUI is listening on this port. Any
transmissions from

the simulation to the GUI should be sent to this socket on the
local machine.

public static final int VIZ_PORT = 4000;

This socket is used by a Sensor.java instance to lister to
sensor readings controlled by sliders in the GUI. When the
sensor is initialized, it opens a listener at the base port
number plues its node ID. When a message is incoming on this
socket, the curreant reading is changed; otherwise the
current/old reading is returned to whoever calls
getReading (). 1Initial // value should be provided to the
sensor class.

public static final int ACOUSTIC_SENSOR_READINGS_BASE_PORT = 6100;
public static final int TEMPERATURE_SENSOR_READINGS_BASE_PORT = 6200;

This socket (base+id) is used by a node to listen for
messages over the
simulated network (from other nodes).

public static final int NODE_PROCESS_BASE_PORT = 6300;

public static final int MIN_READING = 0;
public static final int MAX_READING = 50;

public static final int TEMPERATURE_SENSOR = 0;
public static final int DEFAULT_TEMPERATURE = 0;
public static final int ACOUSTIC_SENSOR = 1;
public static final int DEFAULT_ACQOUSTIC = 0;

Figure 4.11 Constants defined for simulation and visualization.

4.4.4.1 Situatedness As each DART process initializes (i.e., runs the
main function of the Startup class), it reads its own ‘situatedness’ infor-
mation from a config file that is generated automatically by the compiler
and passed as a command-line parameter to the process. The config file in-
cludes information such as the node’s ID, the number of tasks and data items
mapped onto that node, the IDs of tasks assigned to that particular node, and
the hop-scope and distance-scope parameters that are used to initialize the
NetworkArchitecture module. The role of the hop-scope and distance-
scope parameters was discussed in Section 3.3.6.

124 PROGRAMMING AND SOFTWARE SYNTHESIS

The simulation takes place on a single machine and all processes are as-
signed socket IDs on the localhost. A class Constants (Figure 4.11) contains
basic information such as the base port number that is used by nodes to deter-
mine the suitable destination socket number for other nodes in the network.

4.4.4.2 Network interface After the configuration information is read
from file, the NetworkStack is initialized. The network stack determines its
own port number by adding its node ID to the base port from the Constants
class and starts a receiver thread to listen to messages on that port. Next, the
network stack pings the port numbers for all other nodes in the network and
waits until it can successfully communicate with all nodes. This is because
each DART instance is launched independently and different receiver threads
come online at different (and unpredictable) times. If the network stack of each
node waits until it can contact all other nodes before returning control to the
main startup routine, it ensures that if internode communication is required
as part of the startup process of other modules, the messages can be sent
successfully to an active receiver.

4.4.4.3 Network architecture The startup routine for the Network-
Architecture module reads the entire network topology information from a
file that is provided as a command line parameter to the DART process. This
information includes the number of nodes in the network, the X and Y range of
the virtual 2D topology the nodes are situated in, the radio range and sensing
range for each node, and, finally, the X and Y coordinates of each node. We
assume that radio range and sensing range are the same for all nodes. We
also assume that two nodes within radio range can communicate with each
other, and therefore the information in the network topology file is sufficient
to construct the connectivity graph for the sensor network.

In future DART versions, the NetworkArchitecture module will not read
the topology from file. Instead, it will launch protocols that will communicate
only with its neighboring nodes and simulate the gathering of local topology
based on the hop-scope and distance-scope specifications. When these pro-
tocols are launched, they will (correctly) assume that the network stack has
already been initialized.

4.4.4.4 Sensorinterface The simulation version of DART has a modi-
fied sensor interface. Some of the functions of the modified Sensor class are
shown in Figure 4.13. When an application calls the reading() method of
the Sensor class, it should read the latest value of the sensor. A default value
is assigned to each sensor type (representing a quiescent environment for that

COMPILATION AND SOFTWARE SYNTHESIS

125

public synchronized void transmitData(
Dataltem t_dataltem, int destinationlID)
{

Socket socket = null;

int attempt;

// Translate node ID into port number

int port = Constants.NODE_PROCESS_BASE_PORT + destinationlID;

// Try to send the packet twice; if it fails, give up
for (attempt = 0; attempt < 2; attempt++) {
try {
socket = new Socket("localhost", port);
break;
}
catch (UnknownHostException ex) {
System.out.println("Unknownuhostuexceptionuwhen
connecting to target node");
return;
}
catch (IDException ex) {
System.out.println("Attempty" + attempt + ":yNodep" +
destinationID + "_notyinitialized");
try {
Thread.sleep (500);
}
catch (InterruptedException e) {
System.out.println("Sleep,interrupted.");
}
}
}
if (attempt == 2) {
System.err.println("Couldynotyconnectytoytarget, node.
Abandoning attempt.");
return;

]

try {
ObjectOutputStream oos =

new ObjectOutputStream(socket.getOutputStream());

cos.writeObject(t_dataltem);
oos.flush();
cos.close();
socket.close();

} catch (IOException exl) {
System.out.println("Trouble writing object output stream

of data item to target node. Giving up");

return;

Figure 4.12 transmitData() function of the Transmitter class.

126 PROGRAMMING AND SOFTWARE SYNTHESIS

public Sensor(int nodelID, int type) {
myID = nodelD;
m_type = type;
m_value = (m_type==Constants.ACOUSTIC_SENSOR) ?
Constants.DEFAULT_ACOUSTIC :
Constants.DEFAULT_TEMPERATURE;
//shouSlider ();

m_receiver = new FilePoller (nodelD, this);
m_receiverThread = new Thread(m_receiver);
m_receiverThread.start ();

}

public void setReading(int r) {
// Changing sensor value to r
m_value = r;

}

public int type() {
return m_type;

public int reading() {
return m_value;

Figure 4.13 The modified Sensor class for ATaG simulation.

sensor interface), and the user can manipulate the sensor readings at selected
sensor nodes by a simple slider mechanism in the visualization GUI.

The visualization interface allows direct manipulation of the the values of
the virtual sensor readings through the slider bar shown in the figure. Two
types of sensor interfaces—acoustic and temperature—are currently supported
and the value of each of them can be independently varied for each node. The
screenshot of Figure 4.10 shows the values of the acoustic sensors at each
node as bracketed integers below the circle representing the node.

When a sensor is initialized, the constructor launches a file poller thread.
This thread periodically polls a predetermined location on the disk. The fre-
quency of polling is configurable, and so is the on-disk rendezvous file. When
the user changes the value of a sensor from the visualization GUI, the updated
value is reflected in the corresponding on-disk file and is propagated to the
suitable node when its file poller thread reads the value next.

Another mechanism for communicating sensor values between the visual-
ization GUI and the simulated sensor node processes is available in the DART
implementation but not enabled by default. This alternate mechanism uses
a listener thread that opens a predetermined socket on the local machine. If
the user changes the sensor reading through the GUI, the GUI process sends

COMPILATION AND SOFTWARE SYNTHESIS 127

Write modified sensor

readings to file M
e,

| L

]

| \
Sensor reading(s)
from file
Modlty sensor Send log messagep UserTask/! UserTaskn

readings for one or |
more nodes

G T

Nchrurka\rthittt[urcl | DataPool rl » ATaGManager

User View node layout,

sensor readings, log | .2
messages, application

state ¢

NetworkStack

Visualization Interface

Dispatcher

Communicate with
other DART instances
on local host

Figure 4.14 An overview of the ATaG simulator.

a message to the suitable port number. The reason for choosing the file-based
communication mechanism over the socket-based one is that the former proved
to be more robust in our testing than the latter, which was prone to delays and
timeouts depending on the frequency of manipulation of the sensor readings
through the GUI, the processing speed and memory available in the machine
hosting the simulations, etc.

Note that the file-based exchange means that changes made through the
GUI are not reflected immediately in the simulated sensor node. If the sensor
network application calls the reading () method of its sensor class before
the file poller has read the latest value from file, it could read a stale reading.
This delay can be minimized by increasing the frequency of polling, but the
functionality of the sensor network application typically does not (and should
not) change if the reading is reflected in the simulated node with a slight delay
from the time it is changed by the GUI user.

An object tracking mode is also supported for the acoustic sensor. When the
object tracking mode is activated, the movement of the cursor simulates the

128 PROGRAMMING AND SOFTWARE SYNTHESIS

movement of the object. Readings of acoustic sensors on sensor nodes within
a certain range of the object (cursor) position are automatically adjusted in
inverse proportion to the distance of the target from the node. Any such ma-
nipulation of the acoustic or temperature sensor reading through the graphical
interface is reflected in the file that will be read by the sensor module when it
is next sampled by one of the tasks on the simulated node.

Note that the component-based design of DART insulates other compo-
nents of the system from the modified implementations of the network stack,
the network architecture module, the sensor interface that reads values from
files, etc. The behavior of the core modules such as the data pool, the ATaG
manager, the dispatcher, etc., is not affected by the fact that the processes are
communicating through sockets on the same machine, reading topology from
file, etc., and not running in a real sensor network deployment.

4.4.5 Visualizing synthesized application behavior

The purpose of designing this graphical interface is to be able to evaluate
the functionality of the distributed software system that is generated from
the GME-based ATaG programming interface. The application-level tasks
and other DART components communicate with the visualization interface
so that phenomena of interest at the application level or system level can
be observed. For instance, the circle around node 14 in the screenshot of
Figure 4.10 indicates that the node (which is nearest to the cursor/object)
has elected itself the leader and “acquired” the object in accordance with the
ATaG program for object tracking. Similarly, nodes 0 and 15 have detected
a temperature gradient anomaly and reported the same to the root node. The
readings shown below the sensor nodes in this screenshot are zero because the
acoustic readings are being displayed and not the temperature readings.

DART components can also send messages to this interface, which are
displayed in the message log pane. A special class mGUI is provided to the
application developer. Any messages sent to this class will be reflected in the
message log pane of the visualization interface. The mGUI class, as shown in
Figure 4.15, is just a wrapper around the NetworkStack and invokes a special
method of the network stack that transmits the message to the GUI port and
not to ports corresponding to the listener threads of other simulated sensor
nodes.

When the send () method of mGUI is invoked by the user task, the mes-
sage is passed onto the network stack, which in turn passes it on to the
transmitGUIMessage () method of the Transmitter class that is encapsu-
lated within the network stack module.

COMPILATION AND SOFTWARE SYNTHESIS 129

package atag.runtime;

import visualizer.*;
import atag.runtime.*;

public class mGUI {
private NetworkStack m_networkStack;

public mGUI(NetworkStack t_metworkStack) {
m_networkStack = t_networkStack;

// Act as a wrapper for the transmitGUIMessage method of the

// Transmitter class, which is accessed through the

// sendGUIMessage of the NetworkStack class

public synchronized void send(GUIMessage msg) {
m_networkStack.sendGUIMessage (msg);

Figure 4.15 The nGUI class.

As shown in Figure 4.16, the Transmi t ter determines the port number for
the visualization GUI from the Constants class (Figure 4.11) and makes a
configurable number of attempts to send the message. The reason for having
a time-out mechanism after multiple attempts is that there is a possibility that
the visualization process may not be launched prior to the start of simulation.
Currently, the user is expected to ensure that the visualization class is started
before the multiple DART processes are fired. In case the former step is
omitted, any attempts to send a message to the GUI from the individual node
will fail after a predetermined number of attempts.

The visualization GUI will need to be customized to display the events of
interest in a particular application. Since the semantics of each application
and the events that occur therein are different, the GUI cannot incorporate
a “universal” mechanism to represent high-level event abstractions. For in-
stance, a temperature gradient monitoring application might wish to display
nodes that have a high temperature in a particular color. An object tracking
application might wish to display the node nearest to the object in a particular
manner, or perhaps triangulate the readings from different nodes and display
the estimated position of the target itself. Such customizations must be made
by directly modifying the current version of the visualization classes.

Each time the application level task wants to send a message to the GUI,
it instantiates and populates an instance of the GUIMessage class in the
visualizer package. This class acts as the link between the application

130 PROGRAMMING AND SOFTWARE SYNTHESIS

public synchronized void transmitGUIMessage (GUIMessage msg) {
// Attempt to send message to the GUI
Socket socket = null;
int attempt = O;
// GUI port is defined in the Constants class
int port = Constants.VIZ_PORT;

// Make two attempts to contact the GUI port;
// sleep for 500ms between the attempts. This is configurable
for (attempt = 0; attempt < 2; attempt++) {
try {
socket = new Socket("localhost", port);
break;

catch (UnknownHostException ex) {
System.out.println{("Unknown host_ exceptionywhen, connecting
to GUI receiver");
return;

}
catch (IOException ex) {
System.out.println("Attempt," + attempt +
":LGUI not initialized");
try {
Thread.sleep (500);

}
catch (InterruptedException e) {
System.out.println("Sleep interrupted.");

}

}
if (attempt == 2) {
System.err.println("Couldynotyconnect toyGUIyreceiver.
Abandoning attempt.");
return;

try {
ObjectOutputStream viz_oos = new
ObjectOutputStream(socket.getOutputStream());
viz_oos.writeObject (msg);
viz_oos.flush();
viz_oos.close();
socket.close();
} catch (IOException exl) {
System.out.println("Troubleywriting,tooutputobject stream
or closing socket. Giving up.");
return;

Figure 4.16 sendGUIMessage() function of the Transmitter class.

and the GUI and should be modified if new types of messages or new infor-
mation for existing message types is to be communicated. The GUI process
parses the received GUIMessage and, depending on the type of the message
received, responds in one of many ways such as adding the message to the

COMPILATION AND SOFTWARE SYNTHESIS 131

package visualizer;
import java.io.*;

public class GUIMessage
implements Serializable {

// The following constants are used to indicate which event
// has triggered the transmission of this GUIMessage instance

// Event: A message has been transmitted (with message stats)
public static final int GUIM_XMIT = 0XO0i;

// Event: A message has been received (with message stats)
public static final int GUIM_RCV = 0X02;

// Event: The node is alive and running (with node stats)
public static final int GUIM_NODESTATE = 0X04;

// Event: Application-level logging

public static final int GUIM_NODEOUTPUT = 0XO08;

// These values are set for all types of GUIMessages

// Timestamp and origim ID could be set by the Transmitter
private int m_messageType;

private String m_timeStamp;

private int m_originID;

// These values will be used if message is of type XMIT or RCV
private int senderlID;

private int receiverlD;

private String xmitTime;

private String rcvTime;

// These values will be used if message is of type NODESTATE
private int nodelD;

private int[] nodeCoords;

private int energylLevel;

private int[] hostedTasks;

private String nodelLabel;

// These values will be used if message is of type NODEOUTPUT
private String nodeOutput;

Figure 4.17 Inside the GUIMessage () class.

message log pane for that node, changing the color of the node in the display,
drawing a circle around the node to indicate some node state of interest, etc.

The information sent as part of a GUIMessage is shown in the code listing
of Figure 4.17. Additional message types and their associated variables can
be easily defined by adding the corresponding code to this class.

132 PROGRAMMING AND SOFTWARE SYNTHESIS

public void messageReceived (GUIMessage msg) {
int msgType = msg.messageType();
int msghrigin = msg.origin();
String msgTimeStamp = msg.timeStamp();
switch (msgType) {
case GUIMessage.GUIM_NODEOUTPUT:
if (mesg.message().equals ("LEADER")) {
m_topograph.isLeader (msgOrigin);

if (msg.message().equals ("EXLEADER")) {
m_topograph.notlLeader (msgOrigin);

if (msg.message().equals("“FIRE")) {
m_topograph.onFire(msgOrigin);

if (msg.message().equals("NOFIRE")) {
System.err.println("Node:," + msgOrigin + "ynotyonyfire");
m_topograph.notOnFire(msgOrigin);

if (msgOrigin == 0) {
rootLog += msg.message() + "\n";
rootlogArea.setText (rootlog);
}
case GUIMessage.GUIM_RCV:
case GUIMessage.GUIM_XMIT:
n_messagelogger.addLog(msgOrigin, msgTimeStamp, msg.message());
break;
case GUIMessage.GUIM_NODESTATE:
break;
}
// If the node that sent this message is alsc selected
// for visualization, update its log in ’real time’
if (Integer.parselnt ((String) idList.getSelectedItem())
== msgOrigin)
messagelLogArea.setText (m_messageLogger .nodelLog(msglrigin));

Figure 4.18 Processing the messages received from sensor nodes. The
messageReceived() function of the MainWindow class.

The actual visualization interface is provided by an independent Java ap-
plication that includes the same visualizer package with DART in order to
facilitate exchange of GUIMessage instances through serialization. When the
visualizer receives a message from one of the simulated nodes, it determines
the message type and implements the custom responses for various message
types and contents. Figure 4.18 is an excerpt from the MainWindow class of
the visualizer application. The routine shown is invoked by a listener thread
that listens on a predefined port number for messages of type GUIMessage.

COMPILATION AND SOFTWARE SYNTHESIS 133

The listing shows some of the customized responses to events specific to the
temperature gradient monitoring and object tracking applications. This code
can be easily modified to add more behaviors, in concert with extensions to
the GUIMessage class.

Our use of a GME-based graphical modeling language as a concrete syntax
for an ATaG program is just one of many possible representations of the pro-
gram. As mentioned earlier, this decision was influenced mainly by the ease
of use of a GME-based user interface, and by the fact that we could realize
a concrete syntax that corresponded very closely to the abstract syntax of an
ATaG program. XML or even RDF representations of ATaG programs should
be possible, provided the software synthesis tool chain is configured to read
and process such representations, and that the end users have a reasonably
intuitive interface to create and modify ATaG programs in these alternate rep-
resentations. In fact, it should be possible to write GME model interpreters
that read from and write to XML files, that are then consumed by software
synthesis modules.

This Page Intentionally Left Blank

CHAPTER 5

CASE STUDY: APPLICATION
DEVELOPMENT WITH ATAG

We now illustrate the process of ATaG programming and software synthesis
through a case study. In this case study, the programmer is interested in
synthesizing an application consisting of two behaviors—object tracking and
temperature gradient monitoring—for a particular network deployment.

The purpose of this case study is

= to walk the reader through the complete process of translating a high-
level functional description of application functionality into deployable
code for each node of a target network using the ATaG programming
model and application development environment,

* to illustrate the use of the graphical interface for translating abstract
syntax of the ATaG program into the concrete syntax used for software
synthesis,

Architecture-Independent Programming for Wireless Sensor Networks 135
By Amol B. Bakshi, Viktor K. Prasanna
Copyright © 2008 John Wiley & Sons, Inc.

136 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

= to discuss in detail the code to be associated with each element of the
program by the programmer and the code that is automatically generated
by the software synthesis tool, and

= to illustrate the architecture independence and composability of ATaG
programs, which allow the process of developing ATaG program li-
braries to be entirely decoupled from the process of selecting and com-
piling a set of programs from the library onto the desired target deploy-
ment.

5.1 OVERVIEW OF THE USE CASE
5.2 DESIGNING THE MACROPROGRAMS

5.2.1 Temperature gradient monitoring

We now discuss the macroprogramming formulation in ATaG of tempera-
ture gradient monitoring functionality. An ATaG program that modeled this
behavior as a neighbor-to-neighbor protocol was discussed as part of the pro-
gramming idioms in Section 2.5.2. Briefly, each node periodically compares
its temperature reading with the reading of its neighboring nodes. If the gra-
dient is above a certain threshold, an alarm notification is sent to a designated
root node.

There are many ways of expressing this behavior using the ATaG prim-
itives. For instance, a simple centralized version can be defined as shown
in Figure 5.1. In this approach, the sampling task on each node produces
the temperature reading, and all temperature readings are transmitted to a
central supervisor task running on the root node. Centralized solutions are
usually undesirable in energy-constrained sensor networks because the cost
of transmitting raw data to a central location and performing the processing
outside the network defeats the purpose of smart sensor nodes equipped with
computational capabilities to perform in-network, on-the-fly processing.

An ATaG program that uses hierarchical data collection for gradient moni-
toring is shown in Figure 5.2. In this approach, the TSampler task is instanti-
ated on each node of the network. The assumption throughout this use case is
that all nodes are equipped with both temperature and acoustic sensors, hence
the sampler tasks can be instantiated on every single node. The TSampler
produces a data item of type Temperature at each invocation. This data item
simply encapsulates the temperature reading at that invocation. This data item
is also added only to the local data pool as indicated by the output channel

DESIGNING THE MACROPROGRAMS 137

[nodes-per-instance: 1] [one-on-node-ID:0]
[periodic:10] [any-data]

TSampler Collector

Temperature

Figure 5.1 Abstract syntax: Temperature gradient monitoring using a
centralized algorithm.

[one-on-node-ID:0]

‘ [nodes-per-instance: 1] [[nodes—per—instance:;‘&]]

[periodic:10] [any-data] [any-data]
TSampler Monitor AlarmActuator
(focal] [aﬂ-nodes]

N/ N/

| Temperature ' Fire

Figure 5.2 Abstract syntax: Temperature gradient monitoring using
hierarchical data collection.

annotation. The actual gradient monitoring is done by the Monitor tasks. As
shown in the task annotation for the Monitor task, exactly 8 of these tasks are
instantiated in the network. The task placement annotation directs the com-
piler to divide the network into 8 virtual domains and assign one Monitor
task instance to each domain. The exact placement of the Monitor task in-
stance within each of the 8 groups is left to the compiler. The runtime system
also ensures that instances of the Temperature data items that are produced
on nodes within a domain are routed to the Monitor task assigned to that
domain. This is indicated by the input channel annotation for the Monitor
task. Finally, the supervisor task AlarmActuator is instantiated on exactly
one node and monitors any alarm notifications sent by Monitor tasks.

138 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

[nodes-per-instance: 1] [nodes-per-instance:1] [one-on-node-ID:0]
[periodic:10] [any-data] [any-data]

AlarmActuator

TSampler Monitor

Figure 5.3 Abstract syntax: Temperature gradient monitoring through
neighbor-to-neighbor interactions.

This approach represents hierarchical data collection and processing, where
athree-level tree is formed in the network. At the topmost level, the supervisor
task collects information about gradient violation notifications. At the middle
level, exactly 8 Monitor tasks collect the data from their non-overlapping do-
mains and determine if the gradient between neighboring nodes in their domain
exceeds the prespecified threshold. At the lowest level of the tree, temperature
sampler tasks at each node periodically produce the Temperature data items
that contain sensor readings.

Another possible ATaG program that we implement in this use case is shown
in Figure 5.3. The approach in this program is to accomplish the desired over-
all functionality by means of interactions between neighboring sensor nodes.
The abstract tasks in this program are the same as the tasks in the hierarchical
data processing approach. The TSampler task periodically samples the tem-
perature and sends out the sampled reading to its local data pool and also to
the data pools of its 1-hop neighbors. The Monitor task is also instantiated
on every node in the network. This task waits for input data item of type
Temperature. The output channel annotation for the TSampler task implies
that the Monitor task will receive temperature readings from its own node and
from its 1-hop neighbors. All readings received by the Monitor are recorded
as part of its local state information. The task also continually checks the
gradient between its host node and the neighboring nodes and generates an
alert (Fire data item) when a gradient is exceeded. The alert is routed to
the AlarmActuator task that is mapped onto a single supervisor node in the
system. In this approach, each gradient violation between a pair of nodes will
result in a message from the Monitor tasks on each of the two nodes to the
supervisor node.

DESIGNING THE MACROPROGRAMS 139

We discuss the imperative portion of this ATaG program in detail in Sec-
tion 5.4.

5.2.2 Object detection and tracking

We now discuss the approaches to writing ATaG macroprograms for the object
detection and tracking functionality. At the high level, the program should
determine the presence of objects of interest in the sensor field at all times.
We simplify the use case by assuming that identity maintenance and tracking
is not a concern in this example. In other words, if one or more objects of
interest are in the sensor field, the application should only generate periodic
reports that indicate the presence and the approximate location of each object.
The program is not required to be intelligent enough to detect if an object at
some location X’ at time 7" is the same object as was detected at location X
at an earlier time 7'

As mentioned briefly in Section 2.5, a simple algorithm for object track-
ing [55] requires each node to periodically sample its sensing interface and
compare it against a predefined threshold. A reading that exceeds the thresh-
old is indicative of the presence of a target in the sensing range. The nodes
that detect the target elect a leader node, which is the node with the maximum
reading among all nodes involved in the election. The leader node then per-
forms some processing of the set of sensor readings and transmits the resultant
estimate of target location to a base station.

As in the previous example of temperature gradient monitoring, there are
various approaches toward formulating this functionality in terms of an ATaG
program. While the sampling task and the supervisor task are quite straight-
forward in terms of their logic, the implementation of the distributed leader
election can be realized in multiple ways.

Figure 5.4 is an example ATaG program for this behavior. The SampleAnd-
Threshold task is executed periodically on each node. As indicated by the
task name, it samples the acoustic sensor in each invocation and produces a
TargetAlert notification when the reading is above some threshold that is
indicative of the presence of an object of interest within the sensing range of
the node. All nodes that have a given target in range at any given time produce
these notifications. To perform leader election, it is important for each node
that has detected the target to receive notifications from every other node that
has also detected the target. The TargetAlert notification contains some
measure of the distance of the target from the node as indicated by the sensor
reading, or some other mechanism that can be used to determine the criteria
for the leader election. Suppose that each node sends its sensor reading as part

140 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

{ [nodes-per-instance:1]] [{n odes-per-instance:1]] [[one-on-node-1D:0]]
[periodic:10] [any-data] [any-data]
SampleAnd Leader Supervisor
Threshold

b

[10m Aioca!_J [local]

Y

TargetAlert

all-nodes

Targetinfo

LeaderlD

Figure 5.4 Alternate ATaG program for object tracking by local leader
election.

of the TargetAlert and the node with the maximum reading (i.e., which is
closest to the target in this sense) should elect itself the leader.

If the target can be detected at a maximum distance of d from the acoustic
sensor on a particular sensor node, the maximum distance between nodes that
can detect the same target is 2d. Hence, the output channel annotation for
the sampling and thresholding task should require the target alert to be sent
to all nodes within distance 2d of the node where the alert is produced. In
this example, the “10 m” label implies that the sensing radius of the acoustic
sensor is 5 meters.

Now that the TargetAlert is disseminated from each node that has de-
tected the object to every other node that has detected the object, it is necessary
to define the mechanism of leader election in the ATaG program. In this case,
we define a Leader task that is instantiated on each node of the network. This
task consumes all TargetAlerts that are sent to the node from its neigh-
boring nodes and also from the sampling task on the same node. The task
maintains local state that consists of the readings received from the neighbor-
hood. Using this information, the task can compare its own reading to the
neighbor’s readings; and if its own reading is the maximum, it declares itself
the leader and also generates a TargetInfo notification to the Supervisor
task on the root node. Now, communication in the sensor network is inherently
asynchronous because the sampling of the sensor on the nodes within range
of the target is unlikely to be precisely synchronized. Hence, each node will
generate its TargetAlert at different points in time. Also, multi-hop packet
transmissions could introduce other delays in transmitting the TargetAlert.

DESIGNING THE MACROPROGRAMS 141

[[nodes~per~instance:1]] {[nodes-per-instance:ﬂJ [[one-on-node-lD:_Oj]

[periodic:10] [any-data] [any-data]
Threshold Leader- Supervisor
Elect

[10m A local] [local] all-nodes

TargetAlert Targetinfo

Figure 5.5 Abstract syntax: ATaG program for object tracking by local
leader election.

It is desirable to avoid situations where two tasks that have detected the same
target elect themselves the leader based on incomplete and different pictures
of the same reality. In the sample program of Figure 5.4, the Leader task
generates a LeaderID data item when it declares itself a leader—that is, at the
same time that it generates the TargetInfo item. This item is sent to all the
nodes that may have detected the target, and it is meant to act as a preemptive
notification to other nodes that might be about to elect themselves leaders.

Naturally, this scheme could suffer from the same shortcomings as the
problem it is designed to solve - i.e., the LeaderID notification could be
delivered at different times to different nodes, etc. The intent here is not to
propose this as a foolproof solution to the distributed leader election problem,
but to illustrate how the ATaG channel annotations and other features can be
used to create sophisticated distributed behaviors using a concise notation. The
program shown in the figure has all the advantages of the ATaG programming
model: It is architecture-independent, the tasks are decoupled from each other
by defining them in terms of input and output data items, etc.

The ATaG program that we actually implement in this case study is shown
in Figure 5.5 and is a slightly modified and simplified version of the earlier
program. In this program, the LeaderID data item is not generated and the
Leader task makes the self-election decision and generates the TargetInfo
node without attempting to notify its neighborhood of the decision. The details
of the imperative part of this program are discussed in Section 5.5.

142 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

atag - myDdgProgram - [GradientMonitor - /myDdgProgram;/Behaviors/] R4 ‘:‘;\"-l ;J_QLE’
Il Fle Edk Vew Window Help =181
sildB@X|(Ralss i ammumaaEm?|e

|—~_ it i leﬁladientMonitnr IATdi WASDECE _"_‘ Base:]ﬁfA : r i
u Agaregate | Inherhance | Meta |
¥) | Gradentionitor :l
® TSampler Monitor AlarmActuator ST —

@ m Ml Application
Q = I8 Behaviors
& -l CentralizedDC
= =i GradentMonitor

- ObjectTrack
@ Gl Deplopments

Temperature

iMDnI[DI e]
mo1m Attt B B :
B e e
Priatity (0 15 highest] 4
Dataltern Task InstantiationT ype Nodes per instance
Period of execution [seconds] 2
Fun at init? False
Farameter for instanbation type 1
Firing rule Any input tem avadabl
Aspect I
Toggle attribute panel [EDIT [100% fatag f10:38 PM

Figure 5.6 Concrete syntax: GME model of ATaG program for gradient
monitoring.

5.3 SPECIFYING THE DECLARATIVE PORTION

The concrete syntax of this program as modeled in GME is shown in
Figure 5.6. Note that the the concrete syntax of the declarative part of the
ATaG program is identical to the abstract syntax of the task graph. The pro-
grammer directly translates the task graph into the GME model by dragging,
naming, and annotating the desired number of abstract tasks, data items, and
channels into the modeling window. The ease of use this engenders is perhaps
the most significant advantage of visual ATaG programming through GME.
The GME model of the ATaG program for object tracking is shown in
Figure 5.7. Again, the concrete syntax is identical to the abstract syntax.

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 143

atag - Root Folder - [DbjectTrack - mde’nggramfﬂehavlnrsl'] e} el)] .“ .10l xi
U Ele Edt View Window Help i =18]x]
/idB@ax[aassplanvae dmErEosmn?|é
’T T Name:|ObjectTrack [ATa6 Aspect|Aspect x| Base: [NA K
w Aggregate | inkeitence | Meta |
-4 ObjectTrack :J
b C‘ - %" myDdaProgram
Q @} Il Appication

e & il Behaviors
& | SampleAnThreshold Lebdier : 51 5l CentialzedDT
] - S GradientMaritor
. @ Ll ObjectTrack
= Deployments
@ Il 20Node
@3-l dNode
=-Jdl 9Grd
TargetAlert Targetinfo
- " — =
| |5arnple.6.ndTheshnId T far bind
T O |
: .I. ,' mﬁlﬁa‘mﬂmlﬁmml
{1 Pricaty 10 i highest): 0
Dataltern Task | nstantistionT ype MNodes per instance
[Penod of execubion [seconds] |1
Flun at mit? Tue
{Parameter for instanbiation lype 1
Periodic

Aspect] i

Ready TR EDIT [100% |atag [12:05 PM

Figure 5.7 Concrete syntax: GME model of ATaG program for object
tracking.

5.4 IMPERATIVE PORTION: TEMPERATURE GRADIENT
MONITORING

5.4.1 Abstract data items: Temperature and fire

There are two abstract data items in the gradient monitoring program. The first
data item, called Temperature, is used by tasks to pass the temperature read-
ings to other tasks. Note that the nomenclature is entirely up to the application
developer. In the current version of DART, management of sensing resources
is entirely up to the user-level task. Tasks have to make the suitable calls to the
sensing interface (e.g., the temperature sensor), and they process the reading
as desired. In this case, the reading has to be sent to the neighboring nodes by
adding it to the data pool. The application developer therefore names the data

144 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

package atag.application;
import java.io.=*;

public class Temperature implements Serializable {
private int m_temperatureReading;

public int get() {
return m_temperatureReading;
}

public void set(int temp) {
m_temperatureReading = temp;
}

Figure 5.8 Code associated with the Temperature data item.

package atag.application;
import java.io.Serializable;

public class Fire implements Serializable {
int x = 0;

Figure 5.9 Code associated with the Fire data item.

item that will hold the temperature reading as Temperature, but the name of
the data item has no mandatory relationship with it contents.

The listing for the Java class associated with the Temperature data item is
shown in Figure 5.8. Definition of the member variables and methods of this
class is entirely up to the programmer. Figure 5.9 shows a similar listing for
the Fire data item, which is produced on a node by the Monitor task when
a gradient violation is detected.

5.4.2 Abstract task: Monitor

We now focus on the imperative portion of the Monitor task. Figure 5.10
shows the code listing for the members of the Monitor class. Lines 1-20
in this case are automatically generated by the software synthesis tool that
inspects the declarative part of the ATaG program for this purpose. Lines

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 145

package atag.application;

import atag.runtime.*;
import atag.runtime.config.x*;
import visualizer.x;

public class Monitor implements Runnable {
// runtime objects
DataPool m_dataPool;
private Config m_myState;
private NetworkArchitecture m_networkArchitecture;

// visualization and logging
private mGUI =m_GUI;
private GUIMessage m_guiMessage;

// input and output data items
private Fire m_fire = null;
private Temperature m_temperature = null;

// local state variables

private static int myReading = O;

private static boolean wasOnFire = false, isOnFire = false;
private static int[] targetReadings;

private static int[] neighborIDs;

private static int[]J[] neighborCoords;

Figure 5.10 Members of the Monitor class.

21-26 are specific to the business logic of the task and are added by the
programmer as part of populating the code skeleton.

User-level tasks are part of the atag.application package in the current
version of DART. The import statements in lines 3-5 allow the user task to
access other modules. The atag.runtime package provides access to the
data pool class which implements the get () and put () calls for consuming
and producing data items, respectively. The second module of this package
that is useful to the application-level task is the NetworkArchitecture. As
explained in Section 3.3.6, this module is in charge of maintaining the neigh-
borhood information to an extent determined by the channel annotations of
the task hosted on that node. For instance, if a task on that node has an input
channel that gathers data items from a 1-hop neighborhood, it is natural to
assume that the task may want to know the constitution of the neighborhood

146 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

in terms of the number of nodes and the location of each node in that neigh-
borhood. The NetworkArchitecture class maintains this information and
furnishes it to the task on request.

The atag.runtime.config package is imported because it includes the
Config class. This class contains state information for the node such as its
own ID, its location in some real or virtual coordinate system (if relevant in that
particular deployment), the label of the node (if any), etc. When a user-level
task initializes, it uses the Config class to determine where it is placed in the
network. Lines 9-12 in Figure 5.10 show these classes being instantiated in
the Monitor class.

The mGUT and GUIMessage classes of lines 14 and 15 are used by the task
to send messages to the visualization environment. These classes are basically
wrappers around the transmit call of the network stack and cause the message
to be sent to a specific port number on the local host that is monitored by the
visualization process.

Fire and Temperature are user-defined abstract data items in the ATaG
program for gradient monitoring. The software synthesis tools determines
that these two data items are associated with this task through output and input
channels and creates placeholder instantiations in the class skeleton. The end
user is free to delete these instantiations, create additional instantiations, or
instantiate these in a different place in the code as desired.

Lines 22-26 are the class members that are part of the task-specific seman-
tics. In the ATaG model, as in most data-driven programming models, the data
pool is the only persistent global storage that is accessed by tasks on different
nodes and at different times. The DART runtime system has no provision
for allocating and managing memory space for individual tasks. If a task is
to maintain some information across invocations, such information is to be
stored in static variables as shown in this example. This approach is suitable
for the current ATaG implementation because there is no support for task mi-
gration, and hence preserving the task state across nodes is not a concern. The
arrays in lines 25 and 26 are used to store the IDs of the neighboring nodes
and their z and y coordinates. The actual temperature readings received from
the nodes are stored in the targetReadings array (line 24). When a data
item produced by a task on one node is transmitted for consumption to another
node, the runtime system automatically tags it with the time and location it
was produced. The task can associate data items with the individual nodes
in its neighborhood by means of this information in the data item and the
neighborhood information from the network architecture module.

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 147

pudblic Monmitor (DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture,
mGUI t_GUI) {

m_dataPool = dp;
m_myState = myconfig;
m_GUI = ¢t_GUI;
m_networkArchitecture = t_networkArchitecture;
neighborIDs = m_networkArchitecture.kHopNeighborIDs(1);
neighborCoords = m_networkArchitecture.kHopNeighborCoords(1);
targetReadings = new int[neighborIDs.length];

}

private void setNeighborReading(int nid, imt d) {
for (int i = 0; i < neighborIDs.length; i++)
if (neighborIDs([i] == nid)
targetReadings[i] = d;
}

private int getNeighborReading(int nid) {
for (int i = 0; i < neighborIDs.length; i++)
if (neighborIDs([i] == nid)
return targetReadings[il;
return -1;

}

private void log(String msg) {
m_guiMessage = new GUIMessage(m_myState.myID(),
GUIMessage .GUIM_NODEQUTPUT, "");
m_guiMessage.setNodeOutput (msg);
m_GUI.send(m_guiMessage);

Figure 5.11 Constructor and helper functions of the Monitor class.

Figure 5.11 shows the constructor and some user-defined helper functions
for the class. A skeleton for the class constructor is automatically generated
by the software synthesis tool. Lines 3-9 are applicable to all abstract tasks
and are not specific to a particular application logic. This section instantiates
the handles to the data pool, the configuration (state) information for the node,
a handle to the visualization interface, and to the network architecture mod-
ule. In this example, since the monitor task will need to determine and then
record readings from its neighborhood, the programmer has added the state-
ments in lines 10-12 to obtain this information from the network architecture
module and to create an array to store readings from each neighbor. In the cur-
rent DART prototype, the network architecture module does not really run a

148 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

topology creation and maintenance protocol but simply reads the information
from a file on the local disk. The topology or the connectivity of the network
does not change at runtime. Hence, this information can be collected as part of
the class constructor. If the target deployment is such that the constitution of
the neighborhood could keep changing, a suitable re-coding will be required
to anticipate the possibility that the result of a call to the kHopNeighborIDs
and kHopNeighborCoords functions of the NetworkArchitecture could
change between invocations.

The getNeighborReading and setNeighborReading functions are
helper functions defined by the programmer. These functions simplify ac-
cess to the integer array where readings are stored, and they are not related to
the data pool or the network stack. The log function is another user-defined
function that is used to send messages to the visualization interface.

The main function that is executed each time an instance of this abstract
task is invoked is shown in Figure 5.12. Each task has to implement the run ()
function because application tasks implement the Runnable interface, which
defines this function. Implementing the Runnable interface effectively makes
the abstract task instance a thread that can be invoked by the AtagManager
when its firing conditions are met. We now examine the run function of this
task in more detail.

At the high level, the purpose of this task is to continually read the temper-
ature readings produced on its own nodes and sent by its neighboring nodes
and, whenever such a reading is received, calculate the difference between the
local reading and each of the neighbors to determine if a prespecified threshold
is exceeded. If this threshold is exceeded, the task should produce an alarm
notification in the form of a data item of type Fire. The name of this data
item is chosen as an indication of a possible event that could have occurred, it
is not necessary that each gradient violation necessarily indicates a fire, and
the programmer is free to choose any other preferred name.

When the task is executed, it first reads a data item of type Temperature
from the data pool. This call is guaranteed to succeed because this task has
only one input data item and it is scheduled for execution only when the data
item is produced. ATaG semantics ensure that each invocation of this call
results in a valid (non-null) result.

The parameters to the getData() call are the IDs of the task request-
ing the data item and the ID of the data item being requested. The ID
of the task is required in order to ensure that each task can consume each
data item only once. For a more detailed rationale, see Section 2.4.4. The
IDConstants class is generated automatically during code synthesis as part

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 149

public void run() {

Dataltem t_dataltem = m_dataPool.getData(
IDConstants . T_MONITOR,
IDConstants.D_TEMPERATURE);

if (t_dataltem == null)

return;

is0OnFire = false;

m_temperature = (Temperature) t_dataltem.core();

int senderID = t_dataltem.originID();

if (senderID == m_myState.myID()) {

nyReading = m_temperature.get();
} else {
setNeighborReading(senderID, m_temperature.get());

}
for (imnt n = 0; n < neighborIDs.length; n++) {
if (getNeighborReading(neighboriDs([n]) != -1) {
if (myReading - getNeighborReading(neighborIDs [n])
> 8) {
isOnFire = true;
break;
}
}
}

if (isOnFire &% !'wasOnFire) {

m_fire = new Fire();

Dataltem m_dataitem = new Dataltem(
IDConstants .D_FIRE,

IDConstants .T_MONITOR, m_fire);
m_dataPool.putData(m_dataitem);

log("FIRE“);

} else if (!isOnFire && wasOnFire) {

m_fire = new Fire();

Dataltem m_dataitem = new Dataltem(
IDConstants.D_FIRE,
IDConstants . T_MONITOR, m_fire);

m_dataPool.putData(m_dataitem);

log ("NOFIRE");

}

wasOnFire = isOnFire;

Figure 5.12 The main function of the Monitor task.

of the atag.application package. This class contains a list of constants
corresponding to the names of the tasks and data items. For instance, if an
abstract task Monitor is present in the program, a corresponding integer con-
stant T_ MONITOR is generated, where the T. denotes a task. The constants
act as unique identifiers for the tasks and data items. The runtime system
uses these unique integer identifiers instead of the names of the tasks. The

150 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

application developer who writes the code for abstract tasks can then use only
the names of the constants and not integer identifiers that will change depend-
ing on the number of data items and tasks in the program. This provides a
degree of portability.

The isOnFire flag is used to determine if an alarm condition exists. At
each execution of the task, this flag is initially set to false (line 7). In line 8, the
program extracts the actual data structure corresponding to the Temperature
abstract dataitem. Note that the call to getData() inline 2 returns an object of
type DataItem, not of type Temperature. The Dataltenm class is a wrapper
for the user-defined abstract data item class and contains additional such as
the location and time of origin of that data item. To access the actual data
structure, it is necessary to invoke the core () method of the DataItem class.
The temperature is then stored in the m_temperature class, and the ID of
the originating node is determined in line 9. If the data item originates on
the same node, the temperature reading is stored as myReading; otherwise it
is assigned to a suitable location in the array that records readings received
from neighbors. Line 10 demonstrates the use of the m_myState instance
of the Config class. In this example, the task uses the config information
to determine the ID of the node it is hosted on. In lines 16-24, the node’s
own reading is checked against each of its neighbors to see if it exceeds the
threshold of 5 units, and the isOnFire flag is set to true if such a situation is
encountered.

In this example, we decided to use the Fire data item (which is supposed
to indicate an alarm condition) in a slightly different way. For instance, the
alarm can be sounded each time the gradient violation is detected. However,
consider a case where the gradient rises above the threshold and stays that way
for multiple sampling periods. Instead of producing the alarm at each sampling
period and thereby wasting communication and computation resources, we
chose to produce the alarm condition only at the transition between a “fire”
state and a “no-fire” state.

As shown in lines 26-30, the process of producing a data item involves
instantiating the corresponding class (Fire), wrapping it within a Dataltem
class, and then adding the DataItem class (and not the original Fire class)
to the data pool through the putdata() call. During the transition between
states, a corresponding log message is also produced for transmission to the
visualization interface. When such application-specific messages are received,
the visualization can be customized to denote the event graphically; in our case,
we highlight that node during the transition from no-fire to fire and retain the
highlighting until the next transition message is received.

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 151

package atag.application;

import atag.runtime.*;

import atag.sensor.*;

import atag.runtime.config.x;
import visualizer.x;

public class TSampler implements Runnable {
private Temperature m_temperature = new Temperature();
private DataPool m_dataPool;
private Dataltem m_dataitem;
private Config m_myState;
private Sensor m_tSensor;
private mGUI m_GUI;
private GUIMessage m_guiMessage;

private static int lastReading = Constants.DEFAULT_TEMPERATURE;

public TSampler (DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture,
mGUI t_GUI) {
m_tSensor = new Sensor(myconfig.myID(),
Constants. TEMPERATURE_SENSOR) ;
m_dataPool = dp;
m_myState = myconfig;
m_GUI = t_GUI;
}

private void log(String msg) {
m_guiMessage = new GUIMessage(m_myState.myID(),
GUIMessage.GUIM_NODEQUTPUT, "");
m_guiMessage.setNodeDutput (msg);
n_GUI.send(m_guiMessage);

Figure 5.13 Constructor and members of the TSampler class.

5.4.3 Abstract task: Temperature sampler

We now discuss the imperative portion of the TSampler task. The code listing
for the constructor and members of the Java class is is Figure 5.13, and the
main function (run()) is listed in Figure 5.14.

Lines 1-6 in Figure 5.13 import the packages necessary for the application
level task to be able to access other classes in the runtime, the visualization
interface, and the sensor interface. In the current version of DART, the sensor

W NP WM R W N =

1
12
13
4
15
16
17
8
19
20

152 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

public void run() {

try {
for (; ;5) o
int reading = m_tSensor.reading();
if (reading != lastReading) {

m_dataitem = new Dataltem(
IDConstants.D_TEMPERATURE,
IDConstants.T_TSAMPLER, m_temperature);
m_temperature.set(reading);
m_dataPool.putData(m_dataitem);
lastReading = reading;

}
Thread.sleep (5000);
}

catch (InterruptedException e) {
return;
}
}

Figure 5.14 Main function of the TSampler class.

interface is modeled as an instance of the Sensor class. The instantiation of a
Sensor class to access the temperature sensor is shown in line 13. The details
of the sensor interface class were discussed in Section 4.4.4.4.

The temperature sampler task wishes to access the temperature sensor.
Hence, the suitable constant TEMPERATURE_SENSOR is passed to the construc-
tor of the sensor class (lines 22-23). The log() function (lines 29-34) is
defined here by the programmer as a convenient way of sending messages to
the visualization front end.

The run () function of this class, as shown in Figure 5.14, is quite straight-
forward. The TSampler task is annotated in the declarative part of the ATaG
program as a task with a periodic firing rule and a period of 5 seconds. At
node initialization, the ATaGManager invokes the run() function of all peri-
odic tasks that are marked run-at-init by the programmer. The actual periodic
execution is performed in the infinite for loop (lines 4-19) in the task itself.
The for loop is automatically generated as part of software synthesis, and the
programmer has to fill in the actual computation that will be performed at each
periodic invocation of the task.

In a naive implementation, the sampler task will produce a Temperature
data item at each invocation. However, if the temperature is unchanged be-
tween invocations, this approach will result in a lot of unnecessary computa-
tion and communication (to 1-hop neighbors). Hence, the sampler task only
produces a temperature data item when a change is detected between the tem-

IMPERATIVE PORTION: TEMPERATURE GRADIENT MONITORING 153

perature reading at the last invocation and the reading at the current invocation.
In line 5, the task samples the temperature sensor. Then the reading is com-
pared with the last reading stored in the local static variable of lastReading.
If the two are not the same, a new data item of type Temperature is created
and added to the data pool (lines 7-11).

Note that this task is not aware of how the output reading is processed.
Since ATaG is a data-driven model, the sampler task is defined entirely in
terms of its input and output data items — in this case, the output data item
of the Temperature. The imperative portion of the task does not invoke any
other application-level tasks. Its only concern is to produce a data item of the
Temperature type and add it to the data pool when some condition is met—in
this case, when the current temperature reading is different from the reading in
the previous invocation. The annotation on the output channel corresponding
to this data type, along with the presence of a task that is dependent on the
Temperature data item as one of its inputs, drives further computation and
communication in the application.

5.4.4 Abstract task: Alarm actuator

We now discuss the imperative portion of the AlarmActuator task. The
complete code listing for the Java class corresponding to this task is shown in
Figure 5.15.

The declarative part of this ATaG program requires this task to be hosted on
aroot node with a fixed node ID, say, zero. This node will typically correspond
to a supervisor station. All data items of type Fire will be routed to this node
per the ATaG specification. The data item of type Fire is produced by the
Monitor task only when a temperature gradient that exceeds the prespecified
threshold is detected. Hence, a receipt of this data item at the supervisor nodes
indicates that an abnormal condition exists somewhere in the sensor network.
When the Monitor task produces the data item on a particular node where the
abnormality is detected, it does not explicitly add the node information to the
data item. However, the DART runtime system tags each data item with the
location and time of its production.

The functionality in lines 1-20 of Figure 5.15 has been discussed earlier for
other abstract tasks. The run () method of the AlarmActuator is straightfor-
ward. This method is invoked whenever an instance of type Fire is added to
the data pool of the node that hosts this abstract task—that is, the supervisor
node. The semantics of any-data firing rule guarantee that whenever the
run () method is invoked, a data item of type Fire exists in the data pool and
the call to getData() in line 22 never returns null. The check for a null return

R R I N

154 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

package atag.application;

import atag.runtime.x*;
import atag.runtime.config.*;
import visualizer.x;

public class AlarmActuator implements Runnable {
DataPool m_dataPool;
private Config m_myState;
private nGUI m_GUI;
private GUIMessage m_guiMessage;

public AlarmActuator(DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture,
mGUI t_GUI) {
m_dataPool = dp;
m_myState = myconfig;
m_GUI = t_GUI;
}

public void run() {

Dataltem t_dataltem = m_dataPool.getData(
IDConstants.T_ALARMACTUATOR,
IDConstants.D_FIRE);

Fire t_fire = null;

if (t.dataltem != null) {

t_fire = (Fire) t_dataltem.core();

int nodeOnFire = t_dataltem.originID();

m_guiMessage = new GUIMessage(m_myState.myID(),
GUIMessage.GUIM_NODEQUTPUT, "");

m_guiMessage.setNodeOutput ("Node, " + nodeOnFire +
"LisyONUFIRE!");

m_GUI.send(m_guiMessage);

Figure 5.15 Complete code listing for the AlarmActuator task.

value in line 26 is added as a precautionary measure to detect the correctness
of the implementation of the data pool manager.

When the data item is retrieved from the pool, its origin ID is determined by
acall to originID() of the data item. Note that this method is supported by
the DataItem class and not by any application-specific dataitem such as Fire.
The origin information is automatically added to the data item in the DART
runtime. Currently, the only result of receiving the data item is a notification
to the visualization interface. The ID of the node “on fire” is passed to the

L I R R I I S

IMPERATIVE PORTION: OBJECT DETECTION AND TRACKING 155

package atag.application;
import java.io.Serializable;

public class TargetAlert implements Serializable {

private int m_targetDistance;
private boolean acquired;

public void setAcquired(boolean flag) {
acquired = flag;

public boolean acquired() {
return acquired;

public void setDistance(int d) {
m_targetDistance = d;

public int distance() {
return m_targetDistance;

Figure 5.16 Code listing for the TargetAlert data item.

graphical front end, which then highlights the node in a system-wide map of
the deployment.

5.5 IMPERATIVE PORTION: OBJECT DETECTION AND
TRACKING

5.5.1 Abstract data items: TargetAlert and Targetinfo

There are two types of data items in the ATaG program for object detection
and tracking. The TargetAlert data item is produced by the sampler task
whenever the reading of the acoustic sensor is above a certain threshold. This
data item indicates that an object of interest has been detected in the vicinity
of the node where this data item is produced. The code listing for the corre-
sponding class is shown in Figure 5.16. This data item has two variables; one
corresponding to the distance of the target from this node (line 6) and the other
indicating whether this data item corresponds to the acquisition of a target or

O ® u s W N =

156 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

package atag.application;
import java.io.Serializable;

public class TargetInfo implements Serializable {

private int[] myCoords;
private int reportingNode;

public TargetInfo(int[] myc, int nodeid) {
myCoords = myc;
reportingNode = nodeid;

public int reportingNode () {
return reportingNode;

}
public int (]} coords() {
return myCoords;

}
public int yCoords() {
return myCoords[1];

public int xCoord () {
return myCoords [0];

Figure 5.17 Code listing for the TargetInfo data item.

the loss of an acquired target. The reason for producing a TargetAlert data
item corresponding to the loss of an acquired target is discussed in later sec-
tions. A set of helper methods are also defined for the abstract task to read
and modify the values in this data item.

The TargetInfo data item (Figure 5.17) is produced by the Leader and
sent to the Supervisor task. Ideally, only one of the nodes from among the set
of nodes that has detected the target at any given point in time sends an instance
of the Target Info dataitem to the Supervisor. This data item could contain
information about the location of the data item. For instance, based on the
locations of the nodes producing the TargetAlert data item, along with the
distance readings estimated by each node from the target, the Leader task
could compute the position of the target in some coordinate system. The
details of distance estimation and triangulation will depend heavily on the
parameters of the sensing interface and are outside the scope of this illustrative
example. The variable myCoords is a placeholder for the target coordinates
and is not actually used in this ATaG program. The only parameter of interest

IMPERATIVE PORTION: OBJECT DETECTION AND TRACKING 157

in the current implementation is the ID of the reporting node. Note that this
information can also be extracted from the DataItem class by invoking the
suitable method. In this example, we also store this information as part of
the application-level abstract data item. As shown in the code listing, a set of
helper methods are defined for this class.

5.5.2 Abstract Task: SampleAndThreshold

Figure 5.18 shows the complete code listing for the SampleAndThreshold
task in the object detection and tracking application. The purpose of this task
is similar to the TSampler class of the temperature gradient monitoring appli-
cation. Similar to the temperature sampler, this task is executed periodically
with the period of execution specified in the declarative part of the program.
Ateach invocation, the task samples the acoustic sensor and possibly produces
a TargetAlert data item, depending on the value of the sensor reading.

In this case study, we record the sensor reading in the variable reserved
for transmitting the distance of the object from the local node. As shown
in lines 35-53, the imperative portion of this task is quite simple. At each
(periodic) invocation, the acoustic sensor is sampled and the reading is stored
in the latestReading variable. If the current reading is greater than zero,
it means that the object is within sensing range of this node. We assume that
a quiescent environment corresponds to a zero reading at the sensor and any
nonzero reading indicates the presence of the object of interest. The target
alert is produced and added to the local data pool. The acquired flags is also
set to true if it is not already set. If the current reading is zero, there are two
possibilities. Either the node has lost the target between the prior invocation
and this invocation, or the target was not in range in the previous invocation
also. The first case represents a transition between the “acquired” state and
the “lost” state. A target alert is generated with the acquired flag set to
false to indicate this transition. As will be discussed in the next section, this
notification causes the neighboring nodes to update their local state and clear
any nonzero reading that may have been associated with this node. Finally, the
current reading is saved as oldReading in readiness for the next invocation
of this task.

5.5.3 Abstract Task: Leader

The Leader task is the most complex of all three abstract tasks in the ATaG
program for object tracking. Indeed, it is the most important task of this ATaG

158

CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

import
import
import
import

public

}

}
}

m_
m_dataPool = dp;

m_myState = myconfig;

m_networkArchitecture = t_networkArchitecture;
m_GUI = t_GUI;

package atag.application;

atag.runtime.*;
atag.sensor .*;
atag.runtime.config.*;
visuvalizer.*;

class SampleAndThreshold implements Runnable {

private TargetAlert m_targetAlert = new TargetAlert();
private DataPecol m_dataPool;

private Dataltem m_dataitem;

private Config m_myState;

private Sensor m_aSensor;

private NetworkArchitecture m_networkArchitecture;

private mGUI m_GUI;

private GUIMessage m_guiMessage;
private int latestReading;

private static int oldReading;

private static boolean acquired=false;

public SampleAndThreshold(DataPool dp, Config myconfig,

NetworkArchitecture t_networkArchitecture,
mGUI t_GUI) {
aSensor = new Sensor(myconfig.myID(), Constants.ACOUSTIC_SENSOR);

}
public void run() {
try {
for (; ;) {

latestReading = m_aSensor.reading();

m_dataitem = new Dataltem(IDConstants.D_TARGETALERT,
IDConstants. T_SAMPLEANDTHRESHOLD ,
m_targetAlert);

if (latestReading > 0) {
m_targetAlert.setDistance(latestReading);
m_targetAlert.setAcquired(true);
if (lacquired) {

acquired = true;
}
m_dataPool.putData(m_dataitem);

} else if (latestReading == 0 && oldReading != 0) {
acquired = false;
m_targetAlert.setAcquired (false);
m_guiMessage.setNodeOutput ("Targetylost");
B_GUI.send(m_guiMessage);
m_dataPool.putData(m_dataitem);

}

oldReading = latestReading;

Thread.sleep (2000);
}

catch (InterruptedException e) {

return;

Figure 5.18 Complete code listing for the SampleAndThreshold task.

IMPERATIVE PORTION: OBJECT DETECTION AND TRACKING 159

program. The SampleAndThreshold task has a relatively simple logic: Peri-
odically sample the acoustic sensor, and if a nonzero (zero) reading is detected,
compare it with the earlier reading, but if the reading in the previous invocation
was zero (nonzero) produce a TargetAlert data item corresponding to target
acquisition (loss). All activity—sampling of the sensor, comparison with pre-
vious state, and production of output data item—occurs on the same node. and
state maintenance within the task is limited to storing the last read value from
the acoustic sensor. The Supervisor task (to be discussed in the next section)
is also quite simple and has the same role as the AlarmActuator task in the
temperature gradient monitoring application. The role of the Supervisor
task is to produce some alarm notification (or perform some other computa-
tion) whenever a report of a target location is received from the field in the
form of a TargetInfo packet.

The Leader task has a more involved logic than the two other abstract tasks.
Input data for this task (TargetAlert) can arrive from any node within a 10-
meter radius of the host node that detects the target. As the target moves, the
subset of nodes broadcasting the target alerts keeps changing. Also, depending
on the speed of movement of the target, its path, and the sampling frequency of
the sampling and thresholding task, multiple target alerts can be received from
the same nodes while other nodes within a 10-meter radius may be sending
no alerts because they are out of range of the object. This complicates state
maintenance because readings received from all nodes have to be maintained,
including readings from sampling tasks on the same node as the leader. The
leader task is responsible for determining if it should generate and transmit
the object information to the root node, or if it should depend on leader tasks
executing on other nodes that have detected the object to do the same. Ideally,
only one of the nodes that have detected the object will elect itself as leader,
and the leader task will generate the object information based on readings
received from other nodes and send it to the supervisor task on the rot node.

There are some assumptions implicit in the formulation of this ATaG pro-
gram and specifically in encoding the imperative portion of the Leader task.
For instance, if two nodes that have detected the object at the same time have
equal sensor readings that are also the maximum of all sensor readings on nodes
that have detected the object, the program can lead to duplicate TargetInfo
notifications being generated. There is no mechanism in the program for the
Leader task to autonomously resolve situations where its own reading and
the reading of one or more of its neighboring nodes is the same and is also the
maximum of all readings it has received until that instant.

160 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

For applications that do not perform any critical in-network actuation or
other computation, this duplication could be acceptable. At the supervisor
node, all received Target Info notifications can be examined for their spatio-
temporal origin, and a simple filtering mechanism can be implemented to
detect scenarios where two nodes claim “ownership” of the object at the same
(or “sufficiently close”) timestamp. These issues are not addressed in this
simple ATaG program.

Figure 5.19 shows the code for the constructor, member variables, and
helper functions for the Leader class. Lines 1-11 should be obvious and
have also been discussed in previous sections. The variables in lines 11—
19 constitute the state of the Leader task. At initialization, the node’s own
reading, as stored in the Leader task is set to zero, and the node is also marked
as not being the current leader. The myReading variable is used to record the
last received reading from the SampleAndThreshold task on the local node
(i.e., the same node that is hosting the Leader). The currentLeader is used
to record the latest state of this node; a true value indicates that this instance
of the Leader is reporting the object information to the root node by electing
itself as the node that is closest to the object, based on readings received from
all nodes within range of the object.

In lines 27-31, the task gathers the node IDs and coordinates of all neighbor-
ing nodes within a distance 210 units from itself. The number 210 is selected
arbitrarily in this example. Let d be the sensing range of the acoustic sensor;
that is, the object of interest registers on all acoustic sensors in a d unit radius
from its current position. Then, the number to be set in lines 29 and 31 is 2d.
The intent is to ensure that the Leader task on a node that is within distance
d of the object receives readings from all other nodes that have detected the
same target. Since the maximum distance between two nodes that have de-
tected the target is two times the sensing radius, the node can expect to receive
TargetAlert notifications from other nodes in a 2d radius of that node. In
this prototype program, the number is hard-coded into the imperative portion
of the task, but this practice is not recommended. The sensing radius should
be defined in a Constants class and referred to where required.

Helper functions are defined in lines 35-55. The getReadingCount method
returns the number of readings corresponding to distinct neighboring nodes
that have been stored by the Leader task at that instant. The maxNeighbor-
Reading method returns the maximum reading from among all readings stored
by the Leader task at the time the method is invoked. The setNeighbor-
Reading accepts an integer reading and node ID, and it sets the reading cor-
responding to that node ID to the integer value passed to the method.

IMPERATIVE PORTION: OBJECT DETECTION AND TRACKING

161

package atag.application;
import atag.runtime.*;

import atag.runtime.config.x;
import visualizer.*;

public class Leader implements Runnable {
DataPool m_dataPool;
private Config m_myState;
private mGUI m_GUI;
private GUIMessage m_guiMessage;
private NetworkArchitecture m_networkArchitecture;

private static int[] targetReadings;
private static int{] neighborIDs;
private static int[][] neighborCoords;

private static int myReading = 0;
private static int acquiredEpoch = 0; // not used
private static boolean currentleader = false;

public Leader(DataPool dp, Config myconfig,

NetworkArchitecture t_networkArchitecture,
nGUI t_GUI) {

n_dataPool = dp;

m_myState = myconfig;

m_GUI = ¢t_GUI;

m_networkArchitecture = t_networkArchitecture;

neighborIDs =

m_networkArchitecture.dDistanceNeighborIDs (210);
neighborCoords =

targetReadings = nev int[neighborIDs.lengthl;
}

private double getReadingCount{() {
double count = 0;
for (int i = 0; i < targetReadings.length; i++)
if (targetReadings[i] != 0)
count ++;
return count;

1

private int maxNeighborReading() {
int max = 0;
for (int i = 0; i < targetReadings.length; i++)
if (targetReadings({i] > max)
max = targetReadings[i];
return max;

}

private void setNeighborReading(int nid, int d) {
for (int i = 0; i < neighborIDs.length; i++)
if (neighborIDs[i] == nid)
targetReadings(i] = 4;

m_networkArchitecture.dDistanceNeighborCoords (210);

Figure 5.19 Constructor, member variables, and helper functions for the

Leader task.

162 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

The main computation is performed in the run() method shown in Fig-
ure 5.20. Now, this method is invoked whenever a TargetAlert is received
at the local data pool. This alert can be generated on the local node, or re-
ceived from any of the neighboring nodes within the specified radius of that
node. The information that can be derived from the TargetAlert data item
includes (a) the ID and location of the node where the data item originated
and (b) the reading of the acoustic sensor at the node. Remember that the
SampleAndThreshold task creates the alert only when the object has been
detected. Hence, whenever the Leader receives a target alert, it is assumed
that it has been sent by a node that is within range of the object. Whenever
the TargetAlert is received, the Leader task has to determine if sufficient
information exists to make a decision on electing itself the leader node (i.e.,
the node closest to the target at that moment) and transmitting the information
to the supervisor node.

Several factors are to be considered while making this decision. The first,
and the most obvious factor is whether the reading at the local node is greater
than the readings received from neighboring nodes. Note that we do not
handle scenarios where two nodes have the same (and maximum) readings.
The second factor is what fraction of the neighboring nodes have actually
sent the readings. Consider the scenario in Figure 5.21. When the object
is at position O, it is within the sensing radius of nodes 1, 3, and 4 and is
detected by the sampling tasks at those three nodes. Now, each node sends a
TargetAlert to all nodes in its neighborhood. Hence, node 1 will receive
alerts from nodes 3 and 4. Depending on the precise moment when the alerts
are generated and the delays in transmitting the alerts over the network, node 1
could receive the reading from node 3 before it receives the reading from node
4. The Leader task on node 1 will be invoked when its own sampling task
detects the object, and when the alerts are received from nodes 3 and 4. Hence,
in its first invocation, the node’s own reading is nonzero but it hasn’t received
any readings from neighbors. Next, when the alert from node 3 is received,
it could be less than the node’s own reading. At this point, the Leader task
could potentially compare its reading with that of node 3 and elect itself the
leader. Based on the global information as depicted in Figure 5.21, this will be
a wrong decision because node 4 is closer to the position O and is the rightful
leader. Ideally, node 1 will wait for the reading from node 4 to be received and
determine that it’s own reading is not the maximum. In the actual network,
node 1 will have to make this decision based on purely local information.

IMPERATIVE PORTION: OBJECT DETECTION AND TRACKING

163

public void run(} {

Dataltem t_dataltem = m_dataPool.getData(
IDConstants.T_LEADER,
IDConstants.D_TARGETALERT);

TargetAlert t_tAlert = null;

if (t_dataltem != null) {

t_tAlert = (TargetAlert) t_dataltem.core();
}

if (t_tAlert == null)
return;

int originID = t_dataltem.originID();
if (originID == m_myState.myID()) {
if (t_tAlert.acquired())
myReading = t_tAlert.distance();
else {
myReading = 0;
return;
}
} else {
if (t_tAlert.acquired())
setNeighborReading (originID, t_tAlert.distance());
else
setNeighborReading (originID, 0);
}

if (myReading > maxNeighborReading()) {
it (!'currentleader) {
currentlLeader = true;
System.out.println(m_myState.myID() +": REPORTING,TARGET");
TargetInfo m_targetInfo = new Targetlnfo(
m_networkArchitecture.myCoords (),
m_myState.myID());
Dataltem m_dataitem = new Dataltem{(IDConstants.
D_TARGETINFO,
IDConstants.T_LEADER, m_targetInfo);
m_dataPool.putData(m_dataiten);
m_guiMessage = new GUIMessage(m_myState.myID(),
GUIMessage.GUIM_NODEQUTPUT,
llll);
m_guiMessage.setNodeOutput ("LEADER");
m_GUI.send(m_guiMessage);
} else {
// do nothing if I am not already the leader
}
} else {
if (currentLeader) {
m_guiMessage = new GUIMessage(m_myState.myID(},
GUIMessage . GUIM_NODEOUTPUT,
HDI);
m_guiMessage.setNodeOutput ("EXLEADER");
m_GUI.send(m_guiMessage);
currentLeader = false;
¥
}

return;

Figure 5.20 The run() routine of the Leader task.

164 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

= e - L S
- ~ - ~
- ~ ~
Ay Y
/ Detection zone \ \
! o 3 N
] ! \ \
! / \ \
I [1 |
| Oo——(O° [
\ \ | |
\ I \ 4 ——F < _ l
\@ b //@ / et /
\ A / ~ /
“ /N / N,
~ / ~ 5
2 ~ / ~
- P -
O — — g S \
| |
| ‘@ [
\ |
\ 3 /
\ Node neighborhood
y \ 8 /
© @ 7,0
by 4
~ @
~ >

Figure 5.21 TargetAlert received from only one neighbor.

We do not propose the “right” solution to this problem and merely explain
the logic of our particular implementation of the Leader task as shown by the
listing in Figure 5.20.

When the TargetAlert is consumed by the node, the following processing
occurs:

1. Lines 13-26: The origin of the data item is checked to determine if
it is produced by the local sampler task or has arrived from one of the
neighboring nodes. If the dataitem is local and the acquired flag is set,
the Leader task records the local reading in the myReading variable.
If the acquired flag is set to false, it means that the local node has lost
the object; that is, the object is out of sensing range of the node. In that
case, the myReading variable is set to zero. If the data item is not local,
a similar process is carried out and the neighbor’s reading is recorded in
the suitable array entry or set to zero if the alert indicates that the target
was lost.

2. Lines 28-46: At this stage, the received reading has been stored in
the suitable variable. Now, the node’s local reading is compared with
the maximum among all readings from neighboring nodes. If the local

APPLICATION COMPOSITION 165

reading is greater than that received from the neighbors, the node first
determines if it has already elected itself the leader in a previous invo-
cation of this task. If the node is the current leader, no action is taken.
If the node is not the current leader, it first declares itself the leader by
setting the appropriate state variable. This state is maintained to avoid
sending repeated, duplicate messages to the supervisor node (and to the
visualization front end). Next, the TargetInfo data item is created. In
this implementation, this data item merely records the ID of the node
that has elected itself the leader by virtue of being closest to the object
based on information received till that time. This data item is added to
the data pool and a message is sent to the visualization interface.

3. Lines 47-56: If the local reading is not greater than the maximum of
all readings received from neighboring nodes, it means that the node
is clearly not the leader. If the node was the leader in the previous
invocation, the state is changed to f al se and the corresponding message
is sent to the visualization interface.

Note that this implementation does not have to worry about old readings
from neighboring nodes being preserved as part of the state maintained by the
Leader and possibly affecting its logic adversely. This is because the ATaG
program ensures that when the node loses a target (i.e., the acoustic sensor
reading becomes zero), it sends out the corresponding message to all nodes
in its neighborhood. This effectively sets to zero the reading associated with
that node in all the Leader tasks hosted in its neighborhood.

5.5.4 Abstract Task: Supervisor

The code listing for the Supervisor task is shown in Figure 5.22. The purpose
of this task is the same as that of the AlarmActuator task in the temperature
gradient monitoring application. Briefly, it receives all data items of type
TargetInfo created anywhere in the network. When an instance of such
a data item is received, it determines its origin and determines the location
of the object of interest in the sensor network. In this implementation, this
task sends a message to the visualization interface and logs the receipt of this
message.

5.6 APPLICATION COMPOSITION

Each ATaG program thus defined forms part of a library of behaviors that
can be reused in other applications. Figure 5.25 shows a library of ATaG

166 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

package atag.application;

impert atag.runtime.s*;
import atag.runtime.config.*;
import visualizer.x;

public class Supervisor implements Runnable {
DataPool m_dataPool;
private Config m_myState;
private mGUI m_GUI;
private GUIMessage m_guiMessage;
private NetworkArchitecture m_networkArchitecture;
private static imt lastX = -1;
private static imt lastY = -1;

public Supervisor (DataPool dp, Config myconfig,
NetworkArchitecture t_networkArchitecture,
nGUI t_GUI) {
m_.dataPool = dp;
m_myState = myconfig;
m_networkArchitecture = t_networkArchitecture;
m_GUI = t_GUI;
}

public void run() {

Dataltem t_dataltem = m_dataPool.getData(
IDConstants . T_SUPERVISOR,
IDConstants . D_TARGETINFO);

TargetInfo t_targetInfo = null;

if (t_dataltem != null) {

t_targetInfo = (TargetInfo) t_dataltem.core();
}

// START OF USER CODE
int[] tloc = t_targetInfo.coords();
int currX = tLoc[0];
int currY = tLoc[1];
int nodeid = t_targetInfo.reportingNode ();
if (currX != lastX (| currY != lastY) {
lastX = curxX;
lastY = currY;
m_guiMessage = new GUIMessage(m_myState.myID(),
GUIMessage .GUIM_NODEQUTPUT, "");
m_guiMessage.setNodeOutput ("Node," + nodeid + *_Q" +
currX+","+currY+" reportsyobject");
m_GUI.send(m_guiMessage);
}
}
// END OF USER CODE

Figure 5.22 Complete code listing for the Supervisor task.

APPLICATION COMPOSITION 167

programs consisting of three behaviors: object tracking, gradient monitor-
ing, and centralized data collection. Currently, the building blocks for each
behavior are abstract tasks, data, and channels that are indicated by directed
arrows between tasks and data items. This modeling paradigm developed for
prototyping purposes is not ideal because some behaviors might include other
behaviors too; in other words, the building blocks provided to the programmer
should include abstract tasks, abstract data, and pointers (references) to other
behaviors in the library. In the gradient monitoring program of Figure 5.6,
notice that the pattern of communication implied by the Monitor, Fire, and
AlarmActuator subgraphis centralized data collection. Similarly, the pattern
of communication implied by LeaderElect, TargetInfo, and Supervisor
in the object tracking program of Figure 5.7 is also centralized data collec-
tion. The next version of the application modeling paradigm for ATaG will
allow the programmer to integrate existing behaviors (such as the centralized
data collection behavior shown as CentralizedDC in Figure 5.25) into other
behaviors to maximize reuse. This composition is illustrated in Figure 5.26.

The next version of the modeling paradigm will allow the programmer to
perform such composition through appropriate building blocks in the GME
interface.

Next, the target network is described by instantiating a Deployment model
and setting the parameter values to match the target deployment. As shown
in the metamodel of Figure 4.4 a Deployment consists of one or more atoms
of type SensorNode. Node-level parameters are specified as attributes of
SensorNode, while network-level parameters are specified for the model De-
ployment. The set of attributes can be easily increased or otherwise modified,
depending on the information required by the particular tools to be driven
through the GME framework. Figures 5.23 and 5.24 show the library of de-
ployment descriptions and the details of one particular 9-node deployment
respectively. Network-level and node-level parameters for this example are
shown in the lower right sections of the GME windows.

The library of ATaG programs in GME consists only of the declarative
portions—that is, the number of abstract tasks, data, and channels, and their
annotations. The code associated with each abstract task is to be provided
separately as a Java class that extends the UserTask class of DART (see
Section 3.3.2). The developer of an ATaG behavior that is contributed to the
library is also expected to provide the Java classes associated with the abstract
tasks.

168 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

atag - myDdgProgram - [Deployments - /myDdgProgram,]

Figure 5.24 GME model: A network of 9 nodes.

APPLICATION COMPOSITION 169

= 3 Application
£ Bekiaviors
GradientMonitor ~ CentralizedDC ~ ObjectTrack | @ Ja CentiaizedDC

— — —
IosoTEoseresapna s e » arer eopT e e

Producer

AlarmActuator

Figure 5.26 Composing ATaG programs from existing libraries.

170 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

atag - Root Folder - [Application - /myDdgProgram/] oy _"._-. e [
U Fis Edt View Window Help =151 x|
[véildBEXRnalr4 4l dadEEnEOEmM?|s
[: T Name:|Application |Senzorletworkipp AspectlAspect =] Base N/A *
< Aggregale | inhertance | Meta |
o 20Node =l
& E-%" myDdgProgram
Q -l Apphcation
-l Behaviors
& el CentralizedDC
= ATaGBehaviorR ATaGB ATaGBehaviorR - > GradientMonitor (ATaG) | & 3l GradientMonitor
. @ Jd ObjectTrack
- Deployments
-Gl 20Node
@3l Node
-5 9Gnd
DeploymentR
T x
- IDepIuyml:ntR T forbiand
lol lQ' Alrbutes | Preferences | Properies |
ATaGEehaviarR DeploymentR
|
|
|
e NG
Ready EDIT [100% [atag [i2i67 P/

Figure 5.27 GME model: Top level specification of the application as a set
of behaviors mapped onto one target deployment.

Given the library of ATaG programs and the library of deployment descrip-
tions, defining and synthesizing a networked sensing application is straight-
forward. The application is defined as an instance of the SensorNetworkApp
model (Figure 4.1) that consists of one or more references (pointers) to ATaG
programs and one reference to a deployment description.

Figure 5.27 is an ATaG program that contains two behaviors from the li-
brary: object tracking and gradient monitoring. This program is specified by
instantiating one ATaGBehaviorR reference for each behavior, linking each
reference to its target behavior, instantiating one DeploymentR reference to
the target deployment description, and linking it to the desired 20-node de-
ployment. Since the two component behaviors of the program are part of the
library, the application code will also be available. Hence, the application
developer is not required to write any new code or draw any new ATaG dia-
grams. Such an interface can be used by end users who have no expertise or
knowledge of ATaG, Java, or the lower-level aspects of sensor networking.

SOFTWARE SYNTHESIS 171

package atag.application;
/* Auto-generated */

public class IDConstants {
public static final
public static final
public static final
public static final
public static final
public static final
public static final
public static final
public static final
public static final

int
int
int
int
int
int
int
int
int
int

T_TSAMPLER = 0;
T_ALARMACTUATOR = 1;
T_MONITOR = 2;
T_SUPERVISOR = 3;
T_LEADER = 4;
T_SAMPLEANDTHRESHOLD = 5;
D_FIRE = 0;
D_TEMPERATURE = 1
D_TARGETINFO = 2;
D_TARGETALERT = 3;

H

Figure 5.28 The automatically generated IDConstants class.

5.7 SOFTWARE SYNTHESIS

Translation of placement annotations and channel annotations, and the general
of skeleton code for abstract tasks and data items was discussed in Section 4.4.
In this section, we show the specific artifacts created by the ATaG programming
system for the two ATaG programs discussed in earlier sections.

Figure 5.28 shows the IDConstants class that is generated automatically.
In the current implementation, each abstract task is required to have a unique
integer identifier and so is every abstract data item. The identifiers are used
by the runtime system to refer to (index) the tasks and data items. The assign-
ment of identifiers to tasks and data items is done for the entire application,
which itself might consist of independently written ATaG programs. Hence,
it is impossible to hard-code these identifiers as task and data IDs while writ-
ing the individual programs. On the other hand, these identifiers are required
as arguments to the get () and put () functions of the data pool and some
other methods that are used by the application-level code. To allow ATaG
programmers to write programs without worrying about the identifier assign-
ment, we permit the use of constants—prefixed by a T_ for abstract tasks and
a D_ for abstract data items—in the code, instead of the actual integers. When
the overall application is composed, the IDConstants class is generated that
associates the constants with integers.

The only code in the runtime system that is generated automatically is
a portion of the constructor of the AtagManager class that instantiates the
abstract task and channel declarations. This automatically generated code
fragment for our application is shown in Figure 5.29.

W u AW N

172 CASE STUDY: APPLICATION DEVELOPMENT WITH ATAG

// ssxxxsxxxxxx START OF AUTO-GENERATED CODE
nunTaskDecls = 6;
taskDecls.add{IDConstants.T_TSAMPLER,
new TaskDeclaration(IDConstants.T_TSAMPLER,
new TSampler(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread.MAX_PRIORITY -0, "NODES_PER_INSTANCE",
false, 1, "PERIODIC", 1, true));
taskDecls.add(IDConstants.T_ALARMACTUATOR,
new TaskDeclaration(IDConstants.T_ALARMACTUATOR,
nevw AlarmActuator(m_dataPool, m.config,
m_networkArchitecture, m_GUI),
Thread .MAX_PRIORITY-5, "ONE,INSTANCE_ON_NODE,ID",
false, 0, "ANYDATA", 3600, false));
taskDecls.add{(IDConstants.T_MONITOR,
new TaskDeclaration(IDConstants.T_MONITCR,
nev Monitor(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread.MAX_PRIORITY-4, “NODES_,PER_INSTANCE",
false, 1, "ANYDATA", 2, true));
taskDecls.add (IDConstants.T_SUPERVISOR,
new TaskDeclaration(IDConstants.T_SUPERVISOR,
new Supervisor(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread . MAX_PRIORITY -2, "ONE_,INSTANCE_,ON_NODE_ ID",
false, 0, "ANYDATA", 3600, false));
taskDecls.add(IDConstants.T_LEADER,
new TaskDeclaration(IDConstants.T_LEADER,
new Leader(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread . MAX_PRIORITY-1, "NODES,PER_ INSTANCE",
false, 1, "ANYDATA", 3600, false));
taskDecls.add(IDConstants.T_SAMPLEANDTHRESHOLD,
new TaskDeclaration(IDConstants.T_SAMPLEANDTHRESHOLD,
new SampleAndThreshold(m_dataPool, m_config,
m_networkArchitecture, m_GUI),
Thread . MAX_PRIORITY -0, "NODES_ PER_LINSTANCE",
false, 1, "PERIODIC", 1, true));

numChannelDecls = 8;

channelDecls.add (0, new ChannelDeclaration(IDConstants.T_MONITOR,
IDConstants .D_TEMPERATURE, "INPUT®, false, “push", "", 0));

channelDecls.add (1, new ChannelDeclaration(IDConstants.T_ALARMACTUATOR,
IDConstants .D_FIRE, "INPUT", false, "push", "ALLNODES", 0))

channelDecls.add (2, new ChannelDeclaration{(IDConstants.T_TSAMPLER,
IDConstants .D_TEMPERATURE, "OUTPUT", true, "push",
“NEIGHBORHOP", 1));

channelDecls.add (3, new ChannelDeclaration(IDConstants.T_MONITOR,
IDConstants.D_FIRE, "OUTPUT", true, "push", "", 0));

channelDecls.add (4, new ChannelDeclaration{(IDConstants.T_LEADER,
IDConstants.D_TARGETALERT, "INPUT", false, "push", "%, 0));

channelDecls.add (5, new ChannelDeclaration(IDConstants.T_SUPERVISOR,
IDConstants.D_TARGETINFO, "INPUT", false, "push",
"ALLNODES*, 0));

channelDecls.add (6, new ChannelDeclaration(IDConstants.T_LEADER,
IDConstants.D_TARGETINFO, "QUTPUT", true, "push", "", 0))

channelDecls.add(7, new ChannelDeclaration(
IDConstants . T_SAMPLEANDTHRESHOLD , IDConstants.D_TARGETALERT,
"QUTPUT", true, “"push",
“NEIGHBORDISTANCE", 300));

}

// ®xxsxsxxxxxexex END OF AUTO-GENERATED CODE

Figure 5.29 The automatically generated portion of the AtaGManager
constructor class.

SOFTWARE SYNTHESIS 173

-myID O -ndata 4 -ntasks 6 -hopscope 0 ~distancescope 0
-assignedtasks 0 1 2 3 4 5 -senddata O O -senddata 2 0 -end

-myID 1 -ndata 4 -ntasks 6 -hopscope O -distancescope O
-assignedtasks 0 2 4 5 -senddata O 0 -senddata 2 0 -end

Figure 5.30 Sample configuration files for nodes 0 and 1 respectively.

Finally, each node is provided with a configuration file that is read by the
runtime system at initialization. The configuration file includes the node ID,
the total number of abstract tasks and abstract data items, the hop scope and
distance scope parameters, the tasks assigned to that node, and any directives
related to data transmission to a hard-coded location.

In our example applications, the TSampler, SampleAndThreshold,
Monitor, and Leader tasks are to be mapped onto every node in the sys-
tem. The IDs of these tasks as shown in the IDConstants class are 0, §, 2,
and 4, respectively. Hence, the configuration file for each node will contain
these numbers in the assigned tasks section. Configuration files for the root
node (node with ID 0) and for a non-root node are shown in Figure 5.30.

As shown in the figure, the configuration file for node 0 contains all tasks
(including the AlarmActuator and Supervisor tasks with IDs 1 and 3 re-
spectively, as well as the other four tasks). The non-root node does not host
tasks 1 and 3. The hopscope and distancescope parameters are not sup-
ported in the current version of DART, hence the corresponding entries are
zero. If support for this feature had existed, the hopscope parameter would
be 1 in light of the output channel annotation for the TSampler task, and the
distancescope parameter would be the distance specified on the output channel
of the SampleAndThreshold task.

As the last step in the application development process, the entire software
system—including the runtime system modules and application-level tasks—
has to be compiled. For simulation and visualization, independent processes
have to be launched for each simulated node and the configuration file is
provided as a parameter to customize the behavior of the individual processes.

This Page Intentionally Left Blank

CHAPTER 6

CONCLUDING REMARKS

The Abstract Task Graph is an attempt at defining a programming model and
methodology that enables application developers to focus on the high level
structure of collaborative computation without worrying about the details of
the target sensor network deployment. It is based on the belief that ease of ap-
plication development will ultimately determine the penetration of networked
sensor systems into everyday life, and it can be achieved not just by defin-
ing more and more protocols for different aspects of networked sensing but by
also providing frameworks where a selection of existing protocols can be pack-
aged and provided as services through an integrated application development
environment.

In the following two sections, we comment on the role of ATaG as (a) a
framework for defining architecture-independent programming languages for
specific application domains and (b) an extensible framework for integrating a
variety of compilation and software synthesis tools for multiple platforms and
driving their execution from a single application development environment.

Architecture-Independent Programming for Wireless Sensor Networks 175
By Amol B. Bakshi, Viktor K. Prasanna
Copyright © 2008 John Wiley & Sons, Inc.

176 CONCLUDING REMARKS

6.1 A FRAMEWORK FOR DOMAIN-SPECIFIC
APPLICATION DEVELOPMENT

ATaG is based on two concepts. The first is data-driven computing, which
provides a natural mental model for specifying reactive behaviors and has
other significant benefits from a software development perspective such as
composability and reusability. The second concept, which is the key to ar-
chitecture independence at the network level, is the use of declarative task
and channel annotations to specify the placement of functionalities and the
patterns of interaction between functionalities.

The task and channel annotations currently defined for ATaG and sum-
marized in Tables 2.1 and 2.2 are merely meant to illustrate the power of
declarative programming with ATaG. The choice of annotations was influ-
enced by our desire to express patterns of interaction that form the building
blocks of in-network computation in oft-cited behaviors such as object track-
ing and environment monitoring. The annotations are not intended to be an
exhaustive list, and we expect that they will be modified to suit the particular
application domain and the services available in the target deployment. For
instance, the current set of task annotations allows placement based on node
IDs or locations. This can be generalized to placement based on context labels.
The idea of context labels is employed in EnviroTrack [1] as a mechanism to
address sensor nodes and also to host context-specific computation. The idea
behind context labels is to allow the user to specify dynamic behaviors based
on the current state of a node. The fraction of total energy reserves currently
remaining in the node can be considered as a context. This context can be
used as a task annotation to specify alternate implementations of the same task
and tag each implementation with the context of its invocation. This can be
used to adapt the computation to the amount of available energy and provide
graceful degradation of functionality where possible. Other interpretations of
the context of a node can be used to trigger specific behaviors only if other
behaviors are activated on neighboring nodes. For instance, the programmer
could want task A to start executing on a node only when at least 50% of its
1-hop neighborhood are executing task B. This will require a context label
for each node that indicates whether task B is executing on that node, and a
context label that indicates whether 50% of the node’s 1-hop neighborhood
has the context label indicating task B.

The point of these examples is to show that ATaG can be customized to a
particular domain by defining task and channel annotations relevant to that
domain. The requirement for defining a new domain-specific annotation is

A FRAMEWORK FOR COMPILATION AND SOFTWARE SYNTHESIS 177

the existence of a mechanism to translate the annotation into a set of param-
eters used to customize DART, along with the availability of all the relevant
information in the network model provided to the compiler.

6.2 A FRAMEWORK FOR COMPILATION AND SOFTWARE
SYNTHESIS

Just as the extensible set of ATaG annotations form a framework for domain-
specific customization of the declarative part of ATaG, the component-based
design of DART can be considered to be a framework for integrating a variety
of protocols proposed for sensor network applications. The purpose of this
integration is to ultimately provide an end-to-end application development
methodology that allows an application developer to use these protocols (ex-
plicitly or implicitly) for a real-world application without necessarily knowing
the details of their implementation, or even of their existence.

A critical part of this end-to-end methodology that is only superficially
addressed in this work is the ATaG compiler. The high-level concept of com-
pilation of a networked sensing application can be defined as the translation
of a service-oriented specification or a macroprogramming language into an
‘equivalent’ distributed software system to be deployed on a target network.
The exact algorithms used for compilation, the structure of the compilation
process, and the scope for compile-time and runtime optimization, however,
depends entirely on the particular programming model and runtime system.

The contribution of ATaG and DART and, to some extent, of the GME-
based visual programming and software synthesis environment is to create
a framework for compilation and software synthesis in the following sense.
Each annotation (or a group of annotations) has a well-defined association
with a particular module or configuration parameter in the DART design. For
instance, the result of compiling the task annotation nodes-per-instance: k for
some abstract task T is that approximately % of the AtagManager modules
in the system will have the assignment flag for task T set to true. Channel
annotations are also suitably encoded into each node as DART configuration
parameters. Every such translation of a task and channel annotation into con-
figuration parameters for DART on some or all nodes in the network can be
considered as an independent compilation problem. For instance, the issue of
optimal sensing coverage has been the focus of much research in distributed
sensing. A version of the coverage problem of special interest in the context of
ATaG is the static or dynamic selection of a set of sensors of a particular type,
from among all sensors of that type in the network, such that the degree of cov-

178 CONCLUDING REMARKS

erage desired by the application developer is guaranteed with high probability.
In the ATaG model, the selection of sensors could effectively translate into the
selection of a set of nodes on which the sensing tasks (which are abstract tasks
in the graphs) will be instantiated. The job of the compiler in this case is to
interpret the high-level intent of the programmer as specified through suitably
defined task annotations and assign the sensing tasks to a particular set of
nodes. The algorithm used to select this set of nodes will reflect the quality
of the compilation by affecting the communication and computation cost that
is engendered in the deployment.

The choice of the Generic Modeling Enviornment (GME) for providing
the visual programming interface as well as integrating the different tools for
software synthesis, simulation, etc., is particularly felicitous from the perspec-
tive of the compilation problem. GME allows plug-and-play integration of
software components called model interpreters. Each model interpreter, when
invoked, can access all information about the current model which, in our do-
main, includes the library of behaviors, deployments, and the application to
be synthesized. A model interpreter for synthesizing the code skeletons for
abstract tasks and data items inspects the I/O relationships between tasks and
data to generate the suitable get () or put () calls, the names of the tasks and
data items to generate the names of the java classes, and the firing rules for
the abstract tasks to generate a suitably timed loop for periodic execution if
specified by the firing rule. Other model interpreters will read the model in-
formation relevant to their own specific function. The compiler is just another
(set of) model interpreter that reads the relevant annotations from the model
database and performs the appropriate transformations either on the model
itself or on external objects such as the DART code for a particular node. This
flexibility also makes it possible for the same programming environment to
seamlessly support a set of compilers and software synthesizers, each for a
different target platform.

In summary, the contribution of ATaG is the definition of an extensible
language, runtime system, and compilation framework that can be tailored
to different application domains, network architectures, performance metrics,
and sensor node platforms, depending on the requirements of the end user.
The work described in this document is a specific instance of this general
framework.

REFERENCES

1. T. Abdelzaher, B. Blum, Q. Cao, D. Evans, J. George, S. George, T. He, L. Luo,
S. Son, R. Stoleru, J. Stankovic, and A. Wood. EnviroTrack: An environmental
programming model for tracking applications in distributed sensor networks.

In Proceedings of International Conference on Distributed Computing Systems
(ICDCS), 2004,

2. T.F. Abdelzaher and K. G. Shin. Optimal combined task and message scheduling
in distributed real-time systems. In 16th IEEE Real-Time Systems Symposium,
pages 162-171, December 1995.

3. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks, 38:393-422, 2002.

4. S.Ali, A. A. Maciejewski, H. J. Siegel, and J.-K. Kim. Robust resource allocation
for sensor—actuator distributed computing systems. In International Conference
on Parallel Processing (ICPP), 2004.

5. Arvind and R. A. Iannucci. Two fundamental issues in multiprocessing: The
data flow solution. Computation Structures Group Memo 226-2, Laboratory for
Computer Science, Massachusetts Institute of Technology, July 1983.

Architecture-Independent Programming for Wireless Sensor Networks 179
By Amol B. Bakshi, Viktor K. Prasanna
Copyright © 2008 John Wiley & Sons, Inc.

180

6.

10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner. The abstract task graph:
A methodology for architecture-independent programming of networked sensor
systems. In Workshop on End-to-End Sense-and-Respond Systems (EESR), June
2005.

. A. Bakshi, M. Singh, and V. K. Prasanna. Constructing topographic maps in

networked sensor systems. In Algorithm for Wireless And mobile Networks (A-
SWAN), August 2004.

. H.E.Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for dis-

tributed computing systems. ACM Computing Surveys, 21(3):261-322, Septem-
ber 1989.

. G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Sussman, and D. Zukowski.

Challenges: An Application Model for Pervasive Computing. In 6th Annual
ACM/IEEE International Conference on Mobile Computing and Networking,
2000.

K. Bondalapati and V. K. Prasanna. Dynamic precision management for loop
computations on reconfigurable architectures. In IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM).

N. Busi, A. Rowstron, and G. Zavattaro. State- and event-based reactive pro-
gramming in shared dataspaces. In Proceedings of International Conference on
Coordination Models and Languages (COORDINATION’02), number 2315 in
Lecture Notes in Computer Science, pages 111-124, Springer-Verlag, Berlin,
2002.

I. Chatzigiannakis, G. Mylonas, and S. Nikoletseas. jWebDust: A Java-based
generic application environment for wireless sensor networks. In International
Conference on Distributed Computing in Sensor Systems (DCOSS), June 2005.

E. Cheong and J. Liu. galsC: A language for event-driven embedded systems. In
Proceedings of Design, Automation and Test in Europe (DATE), 2005.

C. Curino, M. Giani, M. Giorgetta, A. Giusti, G. P. Picco, and A. L. Murphy.
Tiny Lime: Bridging mobile and sensor networks through middleware. In 3rd
IEEE International Conference on Pervasive Computing and Communications,
2005.

J. Elson and D. Estrin. Time synchronization in wireless sensor networks. In In-
ternational Parallel and Distributed Processing Symposium (IPDPS), Workshop
on Parallel and Distributed Computing Issues in Wireless and Mobile Computing,
April 2001.

J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization
using reference broadcasts. In Proc. of the Fifth Symposium on Operating Systems
Design and Implementation (OSDI), December 2002.

D. Estrin, D. Culler, K. Pister, and G. Sukhatme. Connecting the physical world
with pervasive networks. IEEE Pervasive Computing, pages 59-69, 2002.

18

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

REFERENCES 181

D. Ganesan, A. Cerpa, Y. Yu, W. Ye, J. Zhao, and D. Estrin. Networking issues
in wireless sensor networks. Journal of Parallel and Distributed Computing
(JPDC), 64(7):799-814, July 2004.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings
of Programming Language Design and Implementation (PLDI), 2003.

D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80-112, 1985.

The Generic Modeling Environment, http://www.isis.vanderbilt.edu/projects/gme.

R. Govindan. Data-centric routing and storage in sensor networks. In Wire-
less Sensor Networks, T. Znati, K. Sivalingam, and C. S. Raghavendra, editors,
Kluwer Academic Publishers, Boston, 2004.

R. Gummadi, O. Gnawali, and R. Govindan. Macro-programming wireless sen-
sor networks using kairos. In International Conference on Distributed Computing
in Sensor Systems (DCOSS), June 2005.

D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt
(editor), Logics and Models of Concurrent Systems, vol. F-13 of NATO ASI
Series, pages 477498, Springer-Verlag, New York, 1985.

S. Haridi, P. Van Roy, P. Brand, and C. Schulte. Programming languages for
distributed applications. New Generation Computing, 16(3):223-261, 1998.

W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo. Middleware
to support sensor network applications. /EEE Network, January 2004.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System archi-
tecture directions for networked sensors. In 9th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
2000.

O. Holder, 1. Ben-Shaul, and H. Gazit. Dynamic layout of distributed applications
in FarGo. In 21st International Conference Software Engineering, 1999,

B. Hong and V. K. Prasanna. Constrained flow optimization with applications to
data gathering in sensor networks. In First International Workshop on Algorithmic
Aspects of Wireless Sensor Networks (ALGOSENSORS), July 2004.

B. Hong and V. K. Prasanna. Optimizing system life time for data gathering
in networked sensor systems. In AlgorithmS for Wireless and Ad-hoc Networks
(A-SWAN) (Held in conjunction with MobiQuitous 2004), August 2004.

S. S. Iyengar and R. R. Brooks, editors. Distributed Sensor Networks, Chapman
& Hall/CRC, Boca Raton, December 2004.

S. S. Iyengar and L. Prasad. A general computational framework for distributed
sensing and fault-tolerant sensor integration. /EEE Transactions on Systems,
Man and Cybernetics, 25(4):643-650, April 1995.

182

33.

34.

3s.

36.

37.

38.

39.
40.
41.

42.

43

45,

46.

47.

48.
49.

REFERENCES

B. Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In Proceedings of ACM/IEEE MobiCom, August 2000.

D. L. Larner. A distributed, operating system based, blackboard architecture for
real-time control. In International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, 1990.

J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao. State-centric programming for
sensor—actuator network systems. In IEEE Pervasive Computing, 2003.

J. Liu and F. Zhao. Towards service-oriented networked embedded computing.
Technical Report MSR-TR-2005-28, Microsoft Research, February 2005.

T. Liu and M. Martonosi. Impala: A middleware system for managing auto-
nomic, parallel sensor systems. In ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, 2003.

S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Supporting aggregate
queries over ad-hoc wireless sensor networks. In Workshop on Mobile Computing
and Systems Applications, 2002.

uC/OS-II RTOS, http://www.ucos-ii.com/.
B. Nath and D. Niculescu. Routing on a curve. In HOTNETS-1, October 2002.
N. Bulusu, J. Heidemann, and D. Estrin. Gps-less low cost outdoor localization

for very small devices. IEEE Personal Communications Magazine, pages 28-34,
March 2000.

R. Newton and M. Welsh. Region streams: Functional macroprogramming for

sensor networks. In Ist International Workshop on Data Management for Sensor
Networks (DMSN), 2004.

P. Nii. The blackboard model of problem solving. Al Magazine, 7(2), 1986.
G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communica-
tions of the ACM, 43(5):51-58, 2000.

K. Ramamritham. Allocation and scheduling of complex periodic tasks. In
International Conference on Distributed Computing Systems, pages 108-115,
1990.

R. S. Ramanujan, J. C. Bonney, K. J. Thurber, R. Jha, and H. J. Siegel. A frame-
work for automated software partitioning and mapping for distributed multipro-
cessors. In 2nd International Symposium on Parallel Architectures, Algorithms,
and Networks, pages 138-145, June 1996.

A. Rao, C. Papadimitriou, S. Shenker, and 1. Stoica. Geographic routing without
location information. In Proceedings of the 9th Annual International Conference
on Mobile Computing and Networking, pages 96-108, 2003.

Real Time Specification for Java, http://www.rtj.org/
Real Time Specification for Java, http://www.rtsj.org/

50.
SL

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

REFERENCES 183

Stargate: A PlatformX project, http://platformx.sourceforge.net/.

C. Szyperski. Component-Oriented Software, Beyond Object-Oriented Program-
ming. Addison-Wesley, Reading, MA, 1997.

V. D. Tran, L. Hluchy, and G. T. Nguyen. Data driven graph: A paraliel pro-
gram model for scheduling. In Proceedings, 12th International Workshop on
Languages and Compilers for Parallel Computing, pages 494-497, 1999.

M. Turon and J. Suh. MOTE-VIEW: A sensor network monitoring and man-
agement tool. In 2nd IEEE Workshop on Embedded Network Sensors (EmNets),
May 2005.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active messages:
A mechanism for integrated communication and computation. In 19th Annual
International Symposium on Computer Architecture, pages 256266, 1992.

M. Welsh and G. Mainland. Programming sensor networks using abstract re-
gions. In First USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI), March 2004.

K. Whitehouse, C. Sharp, E. Brewer, and D. Culler. Hood: a neighborhood
abstraction for sensor networks. In 2nd International Conference on Mobile
Systems, Applications, and Services, 2004.

K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: a framework for declara-
tive queries and automatic data interpretation. Technical Report MSR-TR-2005-
45, Microsoft Research, April 2005.

D. Wu, B. M. Al-Hashimi, and P. Eles. Scheduling and mapping of conditional
task graphs for the synthesis of low power embedded systems. In Proceedings
of Design, Automation and Test in Europe (DATE), 2003.

T. Yang and C. Fu. Heuristic algorithms for scheduling iterative task computations
on distributed memory machines. IEEE Transactions on Parallel and Distributed
Systems, 8(6), June 1997,

W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for
wireless sensor networks. Technical Report ISI-TR-543, USC/ISI, 2001.

Y. Yu, B. Krishnamachari, and V. K. Prasanna. Energy-latency tradeoffs for data
gathering in wireless sensor networks. In Proceedings of INFOCOM, 2004.

Y. Yu, B. Krishnamachari, and V. K. Prasanna. Issues in designing middleware
for wireless sensor networks. IEEE Network, 18(1), 2004.

F. Zambonelli and M. Mamei. Spatial computing: A recipe for self-organization
in distributed computing scenarios. In International Workshop on Self-* Proper-
ties in Complex Information Systems, 2004.

. J. Zhao, R. Govindan, and D. Estrin. Computing aggregates for monitoring wire-

less sensor networks. In International Conference on Communications (ICC),
Workshop on Sensor Network Protocols and Applications, May 2003.

This Page Intentionally Left Blank

INDEX

uCros-11, 99 ATaG behavior, 112, 119
ATaG programs
A libraries, 109
ATaG simulator, 121, 127
AtagManager, 82
absuagttaannel 30. 31 attribute-based task placement, 37
data, 30’ 31' automatic software synthesis, 117
task, 30, 31
abstract channel, 30, 31, 33 B
abstract data, 30, 31
abstract data items, 143 Blackboard architecture, 14

abstract declarations, 30

abstract task, 32, 75

all-data task, 47 C
annotations, 30
any-data task, 47 case study, 135
application composition, 165 ChannelDeclaration, 72
architecture channels
Blackboard, 14 input, 112
Harvard, 26 output, 112
architecture-independent programming, 175 code placement, 34
ATagG, 12 code skeletons, 114, 119
Abstract Task Graph, 16 communication, 12

Architecture-Independent Programming for Wireless Sensor Networks
By Amol B. Bakshi, Viktor K. Prasanna
Copyright © 2008 John Wiley & Sons, Inc.

185

186 INDEX

generative, 12

orthogonality, 12
compilation, 115

lazy, 101
component-based design, 67
composability, 109
computing

Data-Driven Computing, 23
context labels, 176
control-driven program flow, 23
coordinate system, 5
coordination language

Linda, 25

D

DART, 17, 65

Data-Driven ATaG Runtime, 17
data fusion, hierarchical, 55
data-driven ATaG Runtime, 17
data-driven computing, 23, 176
data-driven program flow, 23
dataflow programs, 24
Datapool, 79
declarations

abstract, 30
declarative programming, 28
demand-driven programming, 26
density-based instantiation, 36
dependent task, 46
Dispatcher, 90
Distributed Oz, 12
DOSBART, 14

E

event-driven processing, 24

F

Firing Rule, 32

Firing rules, 46

framework for compilation, 177
functional programming, 26

G
GME, 105, 106

Generic Modeling Environment, 105,

106, 142, 178

get (), 48, 97, 98, 178
graphical interface, 105, 128
guarantee of “correctness”, 116

H

Harvard architecture, 26
hierarchical data fusion, 55

I

imperative, 23
imperative programming, 28
in-network
aggregation, 52
processing, 6
input channels, 112
Instantiation, 32
interpreters
model, 106

J

Java virtual machine, 102
JavaSpaces, 25

K

Kairos, 9, 15

L

language

macroprogramming, 177
layers of programming abstraction, 7
lazy compilation, 101
leader election, 139
libraries of ATaG programs, 109
Linda, 12, 25

M

macroprogramming, 8, 14, 177
MIC, 106
Model Integrated Computing, 106
model interpreter, 119
model interpreters, 106, 133

INDEX 187

resource management, 61
N run(), 152, 162
Runnable interface, 148

neighbor-to-neighbor interaction, 52
nesC, 11 S
network description, 113

NetworkArchitecture, 88

sensor network, 1
NetworkStack, 87

service-oriented specification, 7

node-centric programming, 10, 14 situatedness, 88, 123
software synthesis, 171
O space awareness, 3
object tracking, 50, 51, 127, 139, 170 T
output channels, 112
task, 45
P abstract, 75
all-data, 47
periodic task, 47 any-data, 47
platform independence, 66 dependent, 46
priority assignment, 102 periodic, 47
processing scheduling, 102
event-driven, 24 task graph, 29
reactive, 26 task invocation, 34
program flow task placement, 34
data-driven, 23 task scheduling, 102
programming TaskDeclaration, 72
architecture-independent, 175 temperature gradient monitoring, 136, 137
declarative, 28 TinyDB, 15
demand-driven, 26 transformational systems, 3
functional, 26 tuple space, 12
imperative, 28 tuple spaces, 25
macroprogramming, 8, 14
node-centric, 10, 14
reduction, 26 U
programming abstraction
layers, 7 utility-based negotiator, 63
programming languages
Imperative, 23 \ ¥

programming style
Regiment, 10 .
put (), 48, 97, 98, 178 virtual topology, 52
visual programming environment, 112
visualization, 129

R visualizer package, 129, 132
)) GUIL 129
reactive processing, 26 von Neumann machine, 3

reactive system, 3
reduction programming, 26
Regiment, 15 w

Regiment programming style, 10

resource annotations, 38 Wireless sensor networks, 1

This Page Intentionally Left Blank

